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Abstra
tKnowledge of the three-dimensional stru
ture of proteins is of vital importan
e forunderstanding their fun
tion and for the rational development of new drugs. Homologymodelling is 
urrently the most su

essful method for the predi
tion of the stru
tureof a protein from its sequen
e. A stru
tural model is thereby built by in
orporatinginformation from experimentally solved proteins showing an evolutionary relationshipto the target protein. The a

urate predi
tion of loop regions whi
h frequently
ontribute to the fun
tional spe
i�
ity of proteins as well as the assessment of thequality of the models are major determinants of the appli
ability of the generatedmodels in order to answer biologi
al questions.The modelling pipeline established in the 
ourse of this work is able to produ
e verya

urate models as shown in a re
ent 
ommunity-wide blind test experiment: From18 pro
essed protein stru
ture predi
tion test 
ases, 3 very good models have beensubmitted (rank 2, 4 and 6 of over 130 parti
ipating groups) and the vast majority ofthe remaining models was above the 
ommunity average.The loop modelling routine relies on a 
omprehensive database of fragments extra
tedfrom known protein stru
tures. After the sele
tion of fragments from the database, avariety of �lters are applied in order to redu
e the number of fragments. In 
ontrastto other knowledge-based loop predi
tion methods des
ribed in the literature, whi
hmostly perform a ranking based on the geometri
al �t of the fragments to the an
horgroups in the protein, the present method ranks the remaining 
andidates with anall-atom statisti
al potential s
oring fun
tion whi
h investigates the 
ompatibility ofthe loop in
luding side
hains with its stru
tural environment. On a large test set ofover 200 loops, the loop predi
tion method is able to model loops with median rootmean square deviation per loop length below 1 Å for loops up to a length of 7 residuesif all fragments, originating from proteins sharing more than 50% sequen
e identity tothe proteins of the test set, are ex
luded. On the same data basis, the present methodoutperforms 3 out of 4 
ommer
ial loop modelling programs tested in this work.Furthermore, a 
omposite s
oring fun
tion 
onsisting of 3 statisti
al potential terms
overing the major aspe
ts of protein stability and two additional terms des
ribing theagreement between predi
tion features of the sequen
e and 
al
ulated 
hara
teristi
sIII



IVof the model is presented. The s
oring fun
tion performs signi�
antly better than�ve well-established methods in the dis
rimination of good from bad models basedon a 
omprehensive test set of 22,420 models and represents a valuable tool for theassessment of the quality of protein models.
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ZusammenfassungDas Wissen über die dreidimensionale Struktur von Proteinen ist von ents
heidenderBedeutung für das Verständnis der biologis
her Funktion und ist eine wi
htige Vo-raussetzung für die moderne Arzneimittelfors
hung. Die Vorhersage der Struktur einesProteins aus deren Sequenz mit Hilfe von 
omputergestützten Methoden wird deutli
herlei
htert, wenn Informationen von experimentell gelösten Proteinen benutzt werdenkönnen, wel
he eine evolutionäre Verwandts
haft zum gesu
hten Protein aufweisen(Homologiemodellierung). Dabei spielen die präzise Strukturvorhersage von Loopre-gionen, wel
he häu�g die funktionelle Spezi�tät von Proteinen ausma
hen, sowie dieFähigkeit, die Qualität der erzeugten Modelle zu bewerten, eine wi
htige Rolle für diespätere Verwendbarkeit der Modelle zur Beantwortung biologis
her Fragestellungen.Die im Laufe dieser Arbeit entwi
kelte Modellierungsumgebung wurde kürzli
h aneinem internationalen Blindversu
h zur Proteinstrukturvorhersage getestet und es hatsi
h gezeigt, dass sehr genaue Vorhersagen errei
ht werden können: Von den 18untersu
hten Vorhersagetestfällen wurden 3 sehr gute Modelle eingerei
ht (Platz 2,4 und 6 von über 130 teilnehmenden Arbeitsgruppen) und die überwiegende Mehrzahlder restli
hen Modelle waren besser als der Dur
hs
hnitt.Die intergrierte Loopmodellierungsroutine basiert auf einer umfangrei
hen Datenbankvon Proteinfragmenten extrahiert aus experimentell gelösten Strukturen. Im Vorher-sageprozess werden mehrere Qualitäts�lter verwendet, um die Anzahl der Fragmentezu reduzieren. Im Gegensatz zu anderen bes
hriebenen wissensbasierten Ansätzen, inwel
hen das S
oring meist über die Passgenauigkeit der Fragmente zu den Ankergrup-pen im Protein dur
hgeführt wird, verwendet die hier vorgestellten Methode eine S
or-ingfunktion basierend auf statistis
he Potentialen, wel
he die Kompatibilität der Loopsinklusive Seitenketten mit der strukturellen Umgebung bewertet. Die Methode wurdeauf einem Datensatz von über 200 Loops getestet. Der Median des RMSD (Wurzel dermittleren quadratis
hen Abwei
hung) pro Looplänge liegt dabei unter 1 Å für Loopsbis 7 Residuen. Dabei wurden Fragmente aus Proteinen extrahiert, die weniger als50% Sequenzidentität zu den Proteinen im Testdatensatz haben. Mit dem glei
henDatensatz liefert dabei die vorliegende Methode genauere Loopstrukturvorhersagen als3 von 4 untersu
hten kommerziellen Loopvorhersage-Programmen.V



VIZusätzli
h wurde eine zusammengesetzte S
oringfunktion entwi
kelt, bestehend ausfünf Termen: Drei statistis
hen Potentiale erfassen vers
hiedene Faktoren der Pro-teinstabilität und zwei zusätzli
h Terme bes
hreiben die Übereinstimmung zwis
henaus der Sequenz vorhergesagten Eigens
haften und gemessenen Eigens
haften desProteinmodells. Eine statistis
h signi�kante Verbesserung gegenüber fünf etabliertenEnergiefunktionen bezügli
h der Fähigkeit, zwis
hen guten und s
hle
hten Modellenzu uners
heiden, wird errei
ht, basierend auf einem umfangrei
hen Testdatensatzvon 22'420 Modellen und einer Vielzahl von Qualitätsmaÿen. Die hier vorgestellteS
oringfunktion stellt ein wertvolles Hilfsmittel zur Bewertung der Modellqualität dar.
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1 Introdu
tion
Proteinsa play a key role in all living organisms. They parti
ipate in all pro
essesthat 
hara
terise life, whi
h are the ability to metabolise nutrients, respond to externalstimuli, grow, reprodu
e and evolve. Proteins are involved in most physiologi
al pro-
esses, for example in the immune response, 
ell 
y
le, signal transdu
tion, metabolism,
atalysis of rea
tions and transport, and they serve as stru
tural material (e.g. a
tine,
ollagen, elastin or 
reatin).Proteins are 
omposed of 20 di�erent amino a
ids and the order of the amino a
ids isdetermined by the genes. After synthesis, the linear polymer folds in a well-de�ned3-dimensional stru
ture [7℄. The enormous variety of fun
tions proteins perform 
anbe attributed to a great extent to their ability to spe
i�
ally and tightly bind othermole
ules. Binding and fun
tion is mediated by the 3-dimensional stru
ture of theprotein and the physi
o-
hemi
al properties of the amino a
ids side
hains at the a
tiveor binding site. Therefore, knowledge about the stru
ture of a protein is of paramountimportan
e in order to understand its fun
tion, �nd explanations for diseases andpotentially design drugs against them.Over the last two de
ades, large-s
ale sequen
ing proje
ts of dozens of genomes(in
luding human) have resulted in a vast amount of sequen
es. Of these, a 
onsiderablefra
tion has no annotated fun
tion or their me
hanism of a
tion is virtually unknown.The number of known protein sequen
es is about two orders of magnitude higherthan the number of experimentally solved protein stru
tures. Sin
e experimentalmethods for the determination of protein stru
tures are time-
onsuming and fail forsome important groups of proteins (e.g. membrane proteins), e�
ient 
omputationalmethods for the predi
tion of the protein stru
ture from its sequen
e are needed.The predi
tion of the protein stru
ture from s
rat
h solely based on physi
al prin
iples(i.e. the simulation of the biologi
al pro
ess of folding) is, unfortunately, out of rea
hat present. All 
urrent methods for protein stru
ture predi
tion in
orporate to someextent knowledge of experimentally solved stru
tures either by using segments of knownaThe word �protein� 
omes from the Greek πρωτα (�prota�) whi
h means �of primary importan
e�



2 Introdu
tionprotein stru
tures to model the stru
ture of unknown ones or by parametrising energyfun
tions.In this work, the potential of these so 
alled �knowledge-based� approa
hes for proteinstru
ture predi
tion is investigated. A method for the modelling of loop regions, aswell as a s
oring fun
tion for the quality assessment of the protein stru
ture modelsare presented, whi
h both take advantage of the information stored in the set ofexperimentally solved protein stru
tures. The methods are embedded in a modellingpipeline established in the 
ourse of this work.This 
hapter starts with a general introdu
tion on proteins and their stru
ture, followedby an overview on methods used in protein stru
ture predi
tion and ends with thedes
ription of the obje
tives of this thesis.1.1 Protein stru
ture1.1.1 General properties of proteinsProteins are linear polymers 
onsisting of 20 di�erent amino a
ids. The amino a
idsare 
onne
ted by the peptide bond between the 
arbonyl C of the ith amino a
id andthe amine N of the i+1th amino a
id (Figure 1.1). During the formation of the peptidebond, a water mole
ule is released. The peptide bond has a shared double bond: thenon-bonding ele
tron pair of the nitrogen 
an be delo
alised to form a double bondwith the 
arbonyl C, with the 
onsequen
e that the π ele
trons of the C = O bond aremoved to the oxygen [2℄.As a 
onsequen
e of the double bond 
hara
ter, the peptide bond is rigid and almostplanar whi
h greatly redu
es the degrees of freedom. The 6 atoms between two
onse
utive Cα atoms (in
luding the Cαs) 
an therefore be 
onsidered to be in a plane.The dihedral angle ω (Figure 1.1) is typi
ally very 
lose to 180◦ for all amino a
ids(ex
ept proline) whi
h is equivalent to the Cα atoms being in trans 
onformation(i.e. the Cα's point in opposite dire
tions of the peptide bond). Over 99.9% of allamino a
ids in proteins (ex
ept proline) o

ur in trans 
onformation [166℄. Proline,as a 
onsequen
e of the 
ovalent bonding between side
hain and ba
kbone, o

urs in
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Figure 1.1: Important angles in polypeptides.bapproximately 5% of the 
ases in 
is-
onformation [54, 130℄.Due to the planarity, the 
onformational degrees of freedom of the protein ba
kboneare mainly redu
ed on the two torsion angles Φ and Ψ. The dihedral angle Φ des
ribesthe angle between the two planes de�ned by the 4 atoms Ci−1, Ni, Cαi, Ci and Ψ inanalogy is de�ned by Ni, Cαi, Ci, Ni+1 (i represents any position in the polypeptide
hain). Not all Φ/Ψ-angle 
ombinations are energeti
ally favourable as a 
onsequen
eof steri
 hindran
e between the �rst side
hain atom and the ba
kbone atoms. This fa
t
an be s
hemati
ally visualised by the Rama
handran plot [167℄ (Figure 1.2).The Rama
handran plot is obtained by treating the atoms as hard spheres andmarking the Φ and Ψ angle 
ombinations whi
h do not lead to 
ollisions of the vander Waals spheres. White regions are steri
ally disallowed, dark regions lead to novan der Waals 
lashes and the lighter region are possible if the radii are slightlyredu
ed. The distribution of Φ/Ψ-angles observed in experimental stru
tures 
ansometimes di�er substantially from the ideal situation depi
ted above. The high energyof an unfavourable dihedral angle 
ombination 
an be 
ompensated for example byother intera
tions. Gly
ine and proline show a quite di�erent Rama
handran plot as
ompared to the other amino a
ids: Gly
ine, as a 
onsequen
e of the missing side
hain(R-group = −H), 
an populate regions whi
h are unfavourable for the other aminobsour
e: http://kinemage.bio
hem.duke.edu/∼jsr/html/anatax.1b.html
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Figure 1.2: The Rama
handran plot.
a
ids and in proline the Φ dihedral angle is restrained as a 
onsequen
e of the 
y
li
nature of this amino a
id.There are four levels of proteins stru
ture: The linear sequen
e of amino a
ids, en
odedby the nu
leotide sequen
e of the gene, is 
alled the primary stru
ture. Se
ondarystru
ture refers to lo
al stru
tural patterns of the protein ba
kbone. The tertiarystru
ture is the 3-dimensional 
onformation of the protein whereas quaternary stru
turedes
ribes the arrangement of protein subunits forming 
omplexes.1.1.2 Amino a
idsAmino a
ids 
onsist of a 
entral 
arbon atom (the Cα atom) in tetrahedral 
oordinationwith four substituents: A hydrogen atom, the amino-group (−NH2), the 
arboxyl-group (−COOH) and an organi
 side
hain (R-group). The unique physi
al and 
hem-i
al properties of the 20 naturally o

urring amino a
ids are therefore a 
onsequen
eof the di�eren
e in the R-group. The properties of the amino a
ids 
an be represented
sour
e: http://www.bbk.a
.uk/PPS2/
ourse/se
tion3/rama.html
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Figure 1.3: Properties of the 20 amino a
ids [127℄.s
hemati
ally in a Venn diagram [127℄ (Figure 1.3).The 20 amino a
ids are shown below in Figure 1.4. The unique properties of somesele
ted amino a
ids are des
ribed in the following (a

ording to Tramontano [219℄ andVoet and Voet [231℄):
• As a 
onsequen
e of its missing side
hain, gly
ine is very �exible and 
an adoptunusual ba
kbone torsion angles. Gly
ine is therefore often observed in tightturns.
• Proline is the only imino a
id, whi
h means that the side
hain is 
onne
ted withthe ba
kbone forming a nitrogen-
ontaining ring. Proline is often observed inturn stru
tures. Proline is known to be a helix breaker [40℄. A 
onserved prolinewithin a protein family 
an be an eviden
e of a spe
i�
 stru
tural feature andshould be taken into a

ount in protein stru
ture predi
tion and espe
ially inloop modelling.
• Cysteins are the only amino a
ids able to form inter- and intra-mole
ular 
ovalentbonds by oxidation of the sulfhydryl groups (−SH) of two 
ysteins to a disul�debond. These amino a
ids are therefore of 
ru
ial importan
e in extra
ellularproteins whi
h are in a redu
ing environment. The SH−group of 
ysteins israther rea
tive and 
an 
oordinate metals.
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Figure 1.4: The 20 naturally o

uring amino a
ids.sour
e: http://www.
em.msu.edu/∼reus
h/OrgPage/aminoa
ids.htm
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• Hydrophobi
 amino a
ids su
h as for example leu
ine, valine and isoleu
ineare usually found in the interior of proteins shielded from dire
t 
onta
t withwater. Conversely, the hydrophili
 amino a
ids (e.g. asparagine and glutamine)are generally en
ountered on the exterior of proteins as well as in the a
tive
enters of enzymes. Charged residues su
h as the negatively 
harged asparagate(or asparti
 a
id) and glutamate (or glutami
 a
id) as well as lysine and arginine(positively 
harged) 
an form salt bridges and are often observed in a
tive sites.
• Another group of amino a
ids are the aromati
 residues (phenylalanine, tryp-tophane, tyrosine and histidine) whi
h 
an intera
t with ea
h other forming π-sta
ks. Histidine additionally has the important property that it 
an a
t both asa base and an a
id under physiologi
al pH and therefore plays a 
entral role ina
tive sites (e.g. in the 
atalyti
 triad in 
hymotrypsin).1.1.3 Se
ondary stru
tureSe
ondary stru
ture elements are lo
al stru
tural segments typi
ally stabilised byba
kbone hydrogen bonds and are the essential building blo
ks of protein 
onformation.Se
ondary stru
tures represent steri
ally favourable 
onformations as re�e
ted by theRama
handran plot in Figure 1.2. The most 
ommon se
ondary stru
ture elementsare α-heli
es and β-sheets. The fa
t that the amino a
ids have di�erent propensitiesto be observed in se
ondary stru
ture elements was used by Chou and Fasman in theearly 1970's to predi
t se
ondary stru
ture [40, 41℄. For example alanine, glutamate,leu
ine and methionine were identi�ed as helix formers, while proline and gly
ine, dueto the unique 
onformational properties, 
ommonly end a helix.The α-helix is the simplest and most abundant se
ondary stru
ture element (see Figure1.5). An α-helix has on average 3.6 amino a
ids per turn and is stabilised by hydrogenbonds between the amide H at position i and the 
arbonyl O at position i−4. The Φ/Ψdihedral angles are typi
ally around (-60◦, -50◦) [219℄. The side
hains point outwardfrom the helix. Other, less 
ommon, helix types are the 310-helix and the π-helix.Another frequently o

urring se
ondary stru
ture element is the β-sheet whi
h isformed by two or more β-strands (i.e. polypeptide segments in extended 
onformation)
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Figure 1.5: The α-helix stru
ture (sour
e: [2℄).linked laterally by hydrogen bonds. The side
hains of neighboring residues point intodi�erent dire
tions. The strands 
an be aligned in the same or opposite orientationforming parallel (Φ/Ψ angles around (-119◦, 113◦) [231℄) or anti-parallel β-sheets (Φ/Ψangles around (-139◦, 135◦) [231℄) whi
h are typi
ally slightly twisted (see Figure 1.6).Regions without regular stru
ture 
onne
ting se
ondary stru
ture elements are 
alledloops. A frequently o

urring stru
tural loop motif are reverse turns whi
h are stabilisedby a hydrogen bond between 
abonyl oxygen at position i and N-H group at position
i + 3. If a reverse turn is en
losed by β-strands the motif is 
alled β-hairpin. Someturns require a gly
ine at a 
ertain position as a 
onsequen
e of the torsion anglesfalling in the �forbidden� region of the Rama
handran plot for the other amino a
ids.1.1.4 Tertiary and quaternary stru
tureThe 3-dimensional arrangement of the se
ondary stru
ture elements (in
luding the
onne
ting loops) in a single 
hain is 
alled the tertiary stru
ture. Frequently o

urringgeometri
 arrangements of two or three se
ondary stru
ture elements are also known asmotifs or superse
ondary stru
tures. Examples are the β-hairpin motif des
ribed above
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Figure 1.6: An anti-parallel β-sheet (sour
e: [2℄).(beta-turn-beta) or the beta-alpha-beta unit. The 
ombination of superse
ondarystru
tures is often 
alled domain or fold [219℄. An exa
t de�nition of the term �domain�is di�
ult: domains are often des
ribed as segments that 
an independently fold intoa stable 3-dimensional stru
ture. In a more evolutionary sight, domains 
an be seen asevolutionary units whi
h 
an be dupli
ated and/or undergo re
ombination [38℄. Twovery 
ommon arrangements of superse
ondary stru
tures are the Rossman fold (beta-alpha-beta-alpha-beta) and the four-helix bundle.It is 
ommonly assumed that the number of protein folds o

urring in nature is limitedbut there is disagreement about the magnitude of this number (e.g. [37, 152, 231℄) andwhether ea
h fold originated just on
e (as propagated via divergent evolution) or hasbeen �re-invented� (
onvergent evolution of stru
tures).Several hierar
hi
al protein stru
ture 
lassi�
ation systems have been developed rang-ing from entirely manual to fully-automated approa
hes: SCOP [148℄, CATH [153℄ andFSSP [92℄. On the highest level, the proteins are typi
ally 
lassi�ed a

ording to their
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ondary stru
ture 
ontent. For example in CATH, the Class-level is organised asfollows:
• mainly α-helix
• mainly β-sheet
• α/β proteins
• few se
ondary stru
turesThe lowest 
lassi�
ation level are the protein families in whi
h the members have a
lear evolutionary relationship (i.e. are homologues).1.1.4.1 Sequen
e-stru
ture relationshipSin
e An�nsen's pioneering work in 1973 [7℄ it is known that the primary sequen
eex
lusively determines the 3-dimensional stru
ture of a protein. An�nsen realised thatthe driving for
e for folding is the gradient of free energy and that the native stru
tureof the protein is in its free energy minimum (for a review on folding see [12, 57, 95℄).Folding des
ribes the physi
al pro
ess in whi
h a polypeptide 
hain folds in its
hara
teristi
 3-dimensional stru
ture. The folding pro
ess is still not fully understood.In the late 1960's Levinthal [122℄ demonstrated that the sequential sampling of allpossible 
onformations of the polypeptide 
hain would take an astronomi
al amountof time whi
h disagrees with the folding time of mi
rose
onds to minutes typi
allyobserved in nature. He 
on
luded that proteins fold by a dire
ted pro
ess with spe
i�
folding pathways. This observation was later 
alled the �Levinthal paradox�.In a more modern view, the pathway 
on
ept assuming an obligate series of dis
reteintermediates is repla
ed by a multipli
ity of parallel routes down a folding funnelbased on the 
on
ept of the energy lands
ape [27℄. A s
hemati
 pi
ture of the funnel-like energy lands
ape is given in Figure 1.7. The energy lands
ape in potentially ruggedas a 
onsequen
e of kineti
 traps and energy barriers.Dill illustrates this 
on
ept as follows: �water �owing along di�erent routes downmountainsides 
an ultimately rea
h the same lake at the bottom� [59℄. It is generally
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Figure 1.7: S
hemati
 representation of the funnel-like energy lands
ape [59℄.assumed, that the folding pro
ess starts with the formation of lo
al se
ondary stru
turegoverned by intera
tions being 
lose in the polypeptide 
hain and that the subunitsare subsequently assembled further down the folding funnel. Folding involves a balan
ebetween loss of 
onformational entropy and gain in enthalpy. The hydrophobi
 e�e
tseems to be the driving for
e and to a 
ertain extent also hydrogen bonding.Generally, it 
an be said that sequen
e determines stru
ture and stru
ture determinesthe protein fun
tion. But unfortunately the predi
tion of protein stru
ture from s
rat
hsolely based on physi
al prin
iples is at present still out of rea
h. Most 
urrentmethods for protein stru
ture predi
tion in
orporate to some extent knowledge ofexperimentally-solved stru
tures based on the fa
t that stru
ture is more 
onservedthan sequen
e.The relationship between sequen
e similarity and stru
tural similarity was topi
 of theseminal work of Chothia and Lesk [39℄. The authors showed that the di�eren
e in thestru
ture of two proteins in
reases as the sequen
e identity de
reases (see Figure 1.8).Sequen
e similarity is typi
ally expressed as pairwise sequen
e identity based on analignment. An alignment is an ordered mapping of the residues of two sequen
es. Agap (denoted by �-�) 
an be pla
ed when a residue is not aligned with any of the residuesof the other sequen
e. More pre
isely, sequen
e identity is de�ned as the numberof positions in the alignment where the residues are identi
al divided by the length
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Figure 1.8: Relationship between sequen
e and stru
ture similarity analysed byChothia and Lesk [39℄.of the shorter sequen
e. Stru
tural similarity is traditionally expressed by the rootmean square deviation (RMSD) between 
orresponding atoms in an optimal stru
turalsuperposition (see Formula 2.7 on page 61).As an example the sequen
e alignment between myoglobin (PDB 
ode 1mbn, 153residues) and hemoglobin (PDB 
ode 3hhb, 141 residues) is shown in Figure 1.9.Conserved residues are marked in bold. The stru
tural superposition of the twoproteins in given in Figure 1.10. Although the sequen
e identity is only around 25%(36 ÷ 141 ≈ 25.5) the two proteins show a remarkable stru
tural similarity with anRMSD of the ba
kbone atoms below 1.5 Å.
myoglobine       EGEWQL LHV A VE DVAGH QDI I L K H E LEK -DR KHLKTEAEMKA EDL K  VT L
hemoglobine      PADKTN KAA G VG HAGEY AEA E M L F T KTY PH- DLSHG------ AQV G  KK A

myoglobine    T  GAILKKKGHHEA-ELKP AQS  T HKIPIKYLEFI EAIIHV HSRH GD GADAQGAMN A ELF
hemoglobine   D  TNAVAHVDDMPNALS-A SDL  H LRVDPVNFKLL HCLLVT AAHL AE TPAVHASLD F ASV

myoglobine    RKDIAA YKELGYQG
hemoglobine   STVLTS YR------

VLS      V   W K  A     G   L R F S P T   F   F           S   K HG  V

VLS      V   W K  A     G   L R F S P T   F   F           S   K HG  V

AL                 L   HA K           S      L    P  F         K L

AL                 L   HA K           S      L    P  F         K L

K

KFigure 1.9: Sequen
e alignment between myoglobin and hemoglobin.
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Figure 1.10: Superposition of myoglobin (bla
k) and hemoglobin (light grey) inribbon representation together with the heme group (sti
ks representation).In an extensive evaluation of sequen
e alignments of protein pairs with similar anddissimilar stru
ture, Rost [175℄ analysed the minimum sequen
e identity whi
h isneeded to infer stru
tural similarity. The relationship between sequen
e and stru
tureis dependent on the alignment length, but for long alignments, high sequen
e identity(>40%) guarantees stru
tural similarity. In the so 
alled �twilight zone� between 20-30% the relationship is un
ertain.1.1.5 Experimental MethodsThe two experimental methods able to determine protein stru
tures at atomi
 resolu-tion are X-ray 
rystallography and NMR-spe
tros
opy. More than 85% of the proteinstru
tures in the Protein Data Bank (see next se
tion) are determined by the formermethod. Cryo-ele
tron mi
ros
opy is also used, but this method 
an only extra
t low-resolution information of large protein 
omplexes and is therefore not des
ribed here.
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Figure 1.11: Typi
al images in X-ray 
rystallography: an expample of a di�ra
tionmap (left) and a ele
tron density map (right) derived from it.dIn X-ray 
rystallography, the �rst and most di�
ult step is the growth of a well-ordered
rystal. The 
rystal latti
e is then irradiated with X-rays leading to a di�ra
tionpattern spe
i�
 for the given protein stru
ture (see Figure 1.11 left hand side). TheX-rays, whi
h have wavelengths in the order of interatomi
 distan
es, are dispersed bythe ele
trons in the mole
ule and interfere with ea
h other resulting in a di�ra
tionpattern re�e
ting the relative positions of the ele
trons in the 
rystal. The ele
trondensity is 
al
ulated from the amplitudes and the phases of the di�ra
tion waves by aFourier transform fun
tion. Unfortunately, the phase information 
annot be measuredin this pro
ess and additional information is needed in order to estimate the phases(e.g. by isomorphous repla
ement or mole
ular repla
ement). After Fourier transformand solving the phase problem, an ele
tron density map 
an be built as shown in Figure1.11 right hand side).In the re�nement pro
ess a model of the protein stru
ture is �tted in the ele
trondensity map using information about standard geometries for bond lengths and angles.The a

ura
y of the ele
tron density map and the 
orresponding model of the proteinstru
ture depend on quality and amount of available data 
ompared to the numberof unknowns (atoms in the protein) and is expressed by the term �resolution� (inÅngstrom). From the model of the stru
ture it is possible to re
ompute the di�ra
tionmap and 
ompare it with the original one. The di�eren
e is re�e
ted by the R fa
tor.dhttp://en.wikipedia.org/wiki/Portal:Xray_Crystallography,http://biop.ox.a
.uk/www/lab_journal_1998/Endi
ott.html



1.1 Protein stru
ture 15A good stru
ture should have an R value of less than resolution divided by 10.Nu
lear magneti
 resonan
e (NMR) spe
tros
opy is a method whi
h allows to deter-mine the stru
ture of a protein in solution. The solution is exposed to a powerfulmagneti
 �eld whi
h 
auses the spin of the nu
lei to be oriented in dire
tion of theexternal �eld. An additional magneti
 �eld is used in order to measure the frequen
y atwhi
h the di�erent atom nu
lei swit
h the spin orientation (
alled resonan
e frequen
y).The resonan
e frequen
y of an atom depends on its type but also on the environment.The magneti
 intera
tion of the spins of two atoms 
lose in spa
e 
an be measuredand its intensity depends on the distan
e, whi
h allows to derive a set of distan
e
onstraints. Given a su�
ient number of 
onstraints a �nite set of models 
an be built.The more 
onstraints are given and the 
loser the models be
ome. For highly �exibleregions the derivation of distan
e 
onstraints is hindered and therefore the models inthese segments are less similar.1.1.6 The Protein Data BankThe experimentally determined stru
tures of proteins (but also other ma
romole
ules)are deposited in the publi
ly a

essible Protein Data Bank (PDB) [18℄. Ea
h stru
turein the PDB has a unique identi�er 
omposed of four letter. At the date of thiswork (September 2007) the PDB holds 45,506 stru
tures, most of whi
h are proteinsdetermined by X-ray 
rystallography. The PDB 
ontains a 
onsiderable amountof redundan
y (e.g. be
ause some proteins involved in diseases have been solvedwith di�erent bound ligands). A non-redundant subset of the PDB 
omposed ofstru
tures with less than 90% sequen
e identity and resolution better than 3 Å yieldsin approximately 12,000 stru
tures. The size of the PDB has grown exponentially overthe last years as it 
an be seen from Figure 1.12.Regardless of the exponential growth of the PDB, the number of new folds (based on theSCOP 
lassi�
ation) entering the PDB has de
reased over the last years. Virtually nonew fold were solved over the last two years. This 
an be attributed to the fa
t that onone hand some proteins (espe
ially membrane proteins) are very di�
ult or impossiblethe determine with 
urrent methods. On the other hand, stru
tural genomi
s initiativeshave solved many of the missing folds over the last years.
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Figure 1.12: Growth of the Protein Data Bank from 1972-2007 (data sour
e:www.pdb.org).1.1.7 Stru
tural genomi
sThe goal of the worldwide stru
tural genomi
s initiatives is to provide stru
tural infor-mation for most of the known protein sequen
es through a 
ombination of experimentaland 
omputational methods [33℄.The stru
tural genomi
s e�ort started around the year 2000 and 
an be split in threemain groups: the Protein Stru
ture Initiative (PSI) by the US National Instituteof Health, the Japan-based program led by the RIKEN resear
h foundation and theeuropean e�ort with the Stru
tural Genomi
s Consortium (SGC) and SPINE.One aspe
t of stru
tural genomi
s initiatives is the emphasis on high throughput proteinstru
ture determination, whi
h allows to solve stru
tures faster and with lower 
osts.In the last seven years, more than 5,000 new protein stru
tures from the stru
turalgenomi
s 
enters have been deposited in the PDB (see Figure 1.13).esour
e: http://sg.pdb.org/
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Figure 1.13: New stru
tures solved by the stru
tural genomi
s 
enters (As of:September 2007).eThe stru
tural genomi
s proje
ts attempt to deliver stru
tural templates for membersof all protein families in whi
h they were very su

essful until now (a review on theexpe
tations and out
omes of the stru
tural genomi
s initiatives 
an be found in [34℄).Targets for stru
tural genomi
s are proteins with less than 30% sequen
e identity toany stru
ture in the PDB. Protein sequen
es above this 
uto� typi
ally have a similarstru
ture as mentioned above and 
an therefore be solved by homology modelling (seenext se
tion). At the beginning of the year 2005, about 36% of the Pfam families (Pfamis a manually 
urated database of protein families) 
ontained at least one memberwith known stru
ture. This allows to model the other family members [34℄. It hasbeen estimated in 2004 [33℄ that around 57% of the domains of all sequen
es 
an bemodelled with the 
urrent PDB. An estimated number of 10,000-16,000 stru
tureshave to be determined experimentally in order to model most of the 
urrent sequen
es[33, 230℄.
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tion1.2 Protein stru
ture predi
tionThe fun
tional 
hara
terisation of a protein sequen
e is strongly fa
ilitated by theknowledge of its 3-dimensional stru
ture. Stru
tural information 
an be used to asknew biologi
al questions and e�
iently design experiments. To 
lose the gap betweenthe number of known sequen
es (approximately 4.8 million in UniProt/TrEMBLf) andthe fra
tion for whi
h the stru
ture is solved (approximately 45,500 in the PDB),e�
ient methods for protein stru
ture predi
tion are needed that 
omplement 
urrente�orts in stru
tural genomi
s (see Chapter 1.1.7).Protein stru
ture predi
tion refers to the predi
tion of the tertiary stru
ture of a proteingiven its sequen
e by means of 
omputational methods. Two fundamental prin
iplesare a
ting on proteins that guide their 3-dimensional stru
ture: the laws of physi
s andthe theory of evolution. A

ordingly, there are two di�erent 
lasses of protein stru
turepredi
tion methods: ab initio methods and template-based methods.Ab initio or de novo methods try to predi
t the stru
ture of a protein from the sequen
ealone based on the laws of physi
s and 
hemistry assuming that the native stru
ture is inthe global free energy minimum. In 
ontrast, template-based methods take into a

ountstru
tural information from experimentally solved protein stru
tures (�the templates�)to build a model of the target sequen
e relying on the fa
t that stru
ture is moreevolutionarly 
onserved than sequen
e [39℄ and that proteins adopt a limited numberof folds [37, 152, 231℄. Traditionally template-based modelling has been split into thetwo �elds of fold re
ognition and 
omparative (homology) modelling, depending on theapproa
h used for template identi�
ation. A 
onstantly in
reasing overlap between thethree �elds 
an be observed over the last years making the boundaries in
reasinglyblurred. An overview on the di�erent methods is given below.The a

ura
y of models generated by template-based modelling te
hniques is highlydependent on the sequen
e identity between the target sequen
e and the template ofknown stru
ture. It based on the relationship between sequen
e and stru
ture of aprotein des
ribed in Chapter 1.1.4.1. The appli
ation of protein stru
ture models isdetermined by their a

ura
y [11℄. High to medium a

ura
y models generated by
omparative modelling, based on a template with more than 30% sequen
e identity tofsour
e: http://www.ebi.a
.uk/swissprot/sptr_stats/index.html

http://www.ebi.ac.uk/swissprot/sptr_stats/index.html


1.2 Protein stru
ture predi
tion 19the target 
an for instan
e be used for stru
ture-based drug design, the investigationof the shape and volume of the binding site or for re�ning fun
tion predi
tion basedon sequen
e [98, 161℄.1.2.1 CASPCriti
al Assessment of te
hniques for protein Stru
ture Predi
tion (CASP) is a
ommunity-wide experiment taking pla
e every two years with the aim of assessing theprogress in this �eld [143, 147℄. CASP is a blind test experiment where the predi
torsre
eive a set of protein sequen
es for whi
h the stru
ture is about to be experimentallysolved. During the predi
tion season, of approximately 3 months, the native stru
turesremain unknown to the predi
tors. Afterwards the quality of the submitted models isanalysed by independent assessors and the results are presented at the CASP 
onferen
eand in a spe
ial issue of the journal Proteins (e.g. [145℄, [144℄).The number of predi
tion targets steadily in
reased over the years from 33 at thebeginning of CASP in the year 1994 to 95 a

epted targets at the seventh round ofCASP in summer 2006. The targets are 
ategorised a

ording to modelling di�
ultyin 
omparative modelling, fold re
ognition (homologues and analogues, respe
tively)and new folds. For the last CASP round, the 
ategories have been rede�ned to re�e
tdevelopments in methods in template-based modelling and (template-)free modelling.1.2.2 Overview of methods1.2.2.1 Ab initioAb initio or de novo methods try to predi
t the native stru
ture of the proteinby simulating the biologi
al folding pro
ess. Folding simulations using mole
ularme
hani
s for
e-�elds and mole
ular dynami
s simulations are not dis
ussed here sin
ethese appli
ations are limited to very small polypeptides and require an enormousamount of 
omputational time.In pra
ti
e, most of the ab initio methods in
orporate to some extent available stru
-tural information either through the use of fragments from known protein stru
tures
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tionor in devising s
oring fun
tions. This is the reason why the term �new folds� and �freemodelling� have been used to des
ribe this �eld in the last rounds of CASP.The two major problems in ab initio stru
ture predi
tion are the vast number of
onformations that have to be sampled and the ina

ura
ies of the s
oring fun
tions.The 
ombinatorial explosion 
an be approa
hed by using redu
ed representation of
onformations and by e�
ient sampling strategies. Su

essful approa
hes in
lude meth-ods whi
h build stru
tures from short protein fragments (so 
alled fragment assemblymethods) su
h as ROSETTA [21, 196℄ and latti
e-based simulations [154, 246℄. A
ombination of both is implemented in TASSER (Threading/ASSEmbly/Re�nement)[245℄ whi
h assembles the model from stru
tural fragments of templates identi�edby threading, if possible, and uses a latti
e-based approa
h for the remaining parts.Usually, a vast amount of 
onformations is generated from whi
h the �nal model issele
ted by 
lustering the solutions and applying a 
omposite s
oring fun
tion.1.2.2.2 Fold re
ognitionFold re
ognition is based on the notion that protein stru
ture is mu
h more evolu-tionarly 
onserved than sequen
e and that the number of adopted protein folds islimited. Two proteins 
an share the same fold even if the sequen
e similarity iseither very low or does not exist. In previous CASP rounds (until CASP7), the foldre
ognition targets have been divided in homologous and analogous folds. Homologuesare evolutionarly related and diverged from a 
ommon an
estor. Analogues have noevolutionary relationship and are a result of 
onvergent evolution, meaning that naturehas independently �re-invented� the fold. The de�nition of analogues is rather vagueand strongly depends on our ability to dete
t remote evolutionary relationships: as aresult of advan
es in sequen
e 
omparison methods su
h as PSI-BLAST [6℄, proteinswhi
h have been originally regarded as analogues have been later 
on�rmed to behomologues.The traditional division in homology (
omparative) modelling and fold re
ognition wasbased on the di�
ulty to dete
t a suitable template. Whereas in homology modellingthe template 
ould be more or less easily identi�ed (e.g. by a simple BLAST run),more advan
ed methods were used in fold re
ognition. Nowadays, fold re
ognition
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ture predi
tion 21methods are not only standard in the �eld of protein stru
ture predi
tion and part ofvirtually all 
omparative modelling pipelines but also of ab initio methods (e.g. somefragment assembly methods). In the following, approa
hes for template identi�
ationwhi
h arose from the fold re
ognition �eld are brie�y des
ribed.Histori
ally, fold re
ognition 
an be divided into threading methods and sequen
esimilarity-based methods. Threading methods were developed in the hope to dete
tanalogous folds with no evolutionary relationship. They take their name from the
on
eptual threading of the sequen
e of a protein through a library of folds withthe intention to identify the fold that �ts the given sequen
e best. The �tness ofea
h residue is assessed separately by analysing its 
ompatibility with the given lo
al
onformation and the stru
tural environment. This has led to the development of
onta
t potentials [104, 197, 200, 209℄ and 3D-pro�les whi
h en
ode the stru
turalenvironment of the residues [24℄. Dynami
 programming is usually applied in orderto align the sequen
e to the template stru
ture. By this stepwise mapping of thetarget sequen
e onto the stru
ture of the template, the stru
tural environment 
hangesa

ordingly. This problem divides the threading methods into those using the �frozenapproximation� leaving the stru
tural environment as in the template and those usingthe �defrosted approximation� in whi
h the surrounding amino a
ids are updated[85, 201℄. The models of the query protein, based on the alignment to the di�erenttemplate folds are often further evaluated by 
onta
t potentials and other statisti
alpotentials. The appli
ation of these methods is not restri
ted to fold re
ognition andsimilar methods are used in model quality assessment in general (see Chapter 1.2.4).Sequen
e similarity-based methods try to identify templates whi
h are evolutionarlyrelated to the target sequen
e. Sequen
e-sequen
e 
omparison methods su
h as FASTA[160℄ and BLAST [5℄ are the most simple methods to assign a fold of a protein (e.g. by aBLAST sear
h of the query protein sequen
e against the sequen
es of all experimentallysolved proteins). BLAST, whi
h stands for Basi
 Lo
al Alignment Sear
h Tool,has be
ome one of the standard tools in the bioinformati
s 
ommunity and beyondit. The algorithm basi
ally 
onsists of three steps: First, the sequen
e database iss
anned for exa
t mat
hes of sequen
e fragments of �xed length 
ontained in the querysequen
e (the �seeds�). In the se
ond stage, the seeds are extended in both dire
tions.Finally, high s
oring ungapped alignments are 
olle
ted and gapped alignments of
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tionthe query sequen
e with the 
orresponding database sequen
es are generated using amodi�ed version of the Smith-Waterman algorithm for lo
al alignments [203℄. Thestatisti
al signi�
an
e of the hits is reported as an E-value whi
h re�e
ts the numberof di�erent alignments with equivalent or better s
ore that are expe
ted to o

ur ina database sear
h by 
han
e. Basi
 ingredients of an alignment algorithm based ondynami
 programming su
h as Smith-Waterman and Needleman-Wuns
h [150℄ (forglobal alignments 
overing the entire length of both sequen
es) are a substitutionmatrix whi
h de�nes the similarity between two amino a
ids [89℄ and the penaltyof setting a gap (usually a separate gap open and a gap extension penalty are used).A new generation of alignment algorithms 
ame up in the mid 1990's based on theassumption that 
onserved sequen
e motifs should have a stronger in�uen
e on thealignment than variable regions resulting in the development of position-spe
i�
 s
oringmatri
es (PSSMs) [22℄. As opposed to the ordinary substitution matri
es (20 x 20amino a
ids), PSSMs or pro�les are 
omposed of 20 x N entries (where N is thelength of the sequen
e) and are generated by analysing the amino a
id variability ina multiple sequen
e alignment of the family of the query protein. A pro�le des
ribesa family of homologous proteins and not a single sequen
e. As a 
onsequen
e, pro�le-sequen
e 
omparison methods have been developed with PSI-BLAST [6℄ as the mostprominent representative. PSI-BLAST (Position-Spe
i�
 Iterative-BLAST) uses thesame heuristi
s as the original BLAST (explaining its speed) and additionally aniterative generation of multiple sequen
e alignments and pro�les in order to in
reasethe sear
h sensitivity. In a 
losely related approa
h the family-spe
i�
 information isstored in hidden Markov models (HMMs) [63, 108℄.The sensitivity in dete
ting weak evolutionary relationships as well as the a

ura
y ofthe alignment has been further in
reased by the use of pro�le-pro�le (or HMM-HMM)
omparison methods [155, 179, 180, 232, 243℄. In these approa
hes the query pro�le isaligned to the pro�le of the template protein using a s
oring fun
tion whi
h 
al
ulatesthe 
ompatibility of two 
olumns in the pro�les. Several alternative 
olumn-
olumns
oring fun
tions have been proposed in the literature as well as alternative ways togenerate the pro�les and to build the alignments (a review 
an be found in [140, 235℄).A 
lear trend to 
ombine sequen
e and stru
ture information is observable in the �eldover the last years, either by in
orporation of stru
tural information in sequen
e pro�les
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tion 23dire
tly [1, 156, 210℄ or by integrating sequen
e information in threading [60, 157, 188℄.A variety of approa
hes to integrate stru
tural information from the templates in thesequen
e pro�les have been proposed. Stru
tural information 
an be integrated usingpredi
ted stru
tural pro�les in terms of se
ondary stru
ture and sometimes solventa

essibility [65, 165, 178, 250℄. Se
ondary stru
ture information for example is usedby 
omparing observed se
ondary stru
tures in the template and predi
ted states inthe target.1.2.2.3 Comparative modellingAs mentioned in Chapter 1.1.4.1, a sequen
e identity of roughly 30% is generallysu�
ient to infer stru
tural similarity between two proteins. This is the fundamentalidea behind homology or 
omparative modelling. With the growing number ofexperimentally solved protein stru
tures, this 
on
ept has be
ome a powerful methodto predi
t the stru
ture of a large fra
tion of the known protein sequen
es (see Chapter1.1.7).Homology modelling basi
ally 
onsists of six steps: template identi�
ation and se-le
tion, target-template alignment, initial model building, loop predi
tion, side
hainpredi
tion and, �nally, re�nement and quality assessment (see Figure 2.1 in Methodsfor an overview). A short des
ription of all steps is given below. Loop predi
tion aswell as model quality assessment are pi
ked out as 
entral themes of this thesis in thenext two se
tions.The �rst two steps (template identi�
ation and alignment building) have been des
ribedin detail in the previous se
tion. Usually, more than one template is identi�ed and it isne
essary to sele
t the best 
andidate(s) for a given modelling problem. In this 
ontext,sequen
e identity between target and template is the most important argument butthere are other fa
tors whi
h should be taken into a

ount in template sele
tion:
• A phylogeneti
 tree based on a multiple sequen
e alignment of the protein family
an help to identify the template 
losest to the target sequen
e.
• The �environment� of the template should be analysed and 
ompared to thesituation in the target, e.g. quaternary intera
tions (Is the template part of a
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omplex and the target not?), protein-ligand intera
tions or 
hemi
al 
onditions(solvent, pH et
.).
• The quality of the experimental stru
ture should be 
onsidered as well, e.g.resolution and R-fa
tor of X-ray stru
tures.Multiple templates 
an be used as well, either by building alternative models based onthe single templates and subsequently sele
ting the best one, or by 
ombining parts ofmultiple templates. The simple rule that 
ombining multiple templates instead of usinga single best template results in better models does not hold, as it has been shown byVen
lovas and Margelevi
ius in the CASP6 evaluation [227℄. However, as identifyingthe best template among several is not always a trivial task, using multiple templatesin
reases the 
han
e of sele
ting the best template.The alignment produ
ed in the fold re
ognition step is often not the optimal one(e.g. BLAST typi
ally produ
es lo
al alignments 
overing only a part of the target).Spe
ialised methods should be used in order to align the target sequen
e to the templatestru
ture.In terms of fold re
ognition sensitivity and spe
i�
ity as well as in terms of a

ura
yof the resulting alignments, pro�le-pro�le methods have been shown to outperformsequen
e-sequen
e and pro�le-sequen
e methods [100, 132, 179, 187, 243℄. In general,integrating stru
tural information (e.g. based on multiple stru
tural alignments oftemplates [1, 110℄ or environment-spe
i�
 gap penalties [191, 210℄) tend to improvethe alignment a

ura
y but most probably not the fold re
ognition sensitivity. Withde
reasing sequen
e identity between target and template (espe
ially below 30%), thealignment a

ura
y drops rapidly and alignment errors be
ome the major sour
e oferrors in homology models.The alignment produ
ed by a dynami
 programming algorithm using a spe
i�
 gappenalty is not ne
essarily the best alignment to generate the model. Thus, usingsub-optimal alignments, representing alternative paths in the alignment matrix, mayidentify more suitable alignments [45, 138, 149, 186, 228℄. Additionally, a set ofsub-optimal alignments 
an be used to predi
t the lo
al alignments reliability. Lo
alalignment paths used by a higher number of sub-optimal alignments 
an be regarded asmore reliable. An alternative way to assess the lo
al alignment reliability has re
ently
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ture predi
tion 25been proposed by Tress et al. [223, 224℄: the lo
al alignment quality is predi
t basedon the information about the observed frequen
ies in the sequen
e pro�les.There is no alignment proto
ol that is 
learly superior over other proto
ols for everyprotein family and similarity level. Elofsson [65℄ for example pointed out that, forproteins related to the family level, purely sequen
e-based methods tend to produ
ebetter models, whereas at fold level, sequen
e-based methods in
luding predi
tedse
ondary stru
ture outperform purely sequen
e-based approa
hes. Thus, many groupsprodu
e several alignments based on di�erent proto
ols, parameters and sometimessub-optimal alignments. The �nal model is then sele
ted based on a s
oring fun
tion(see Chapter 1.2.4).Building a model based on the alignment between target and template is fairlystraightforward. A variety of methods 
an be used whi
h 
an be roughly dividedinto three groups [133℄:
• modelling by assembly of rigid bodies [20, 88℄
• modelling by segment mat
hing or 
oordinate re
onstru
tion [105, 123℄
• modelling by satisfa
tion of spatial restraints [8, 181℄Assembly of rigid bodies relies on the fa
t that the stru
ture of proteins belonging tothe same family 
an be roughly divided into stru
turally 
onserved regions (SCRs),or the stru
tural �
ore� and stru
turally variable regions (SVRs). The model is builtby assembling the 
ore segments from one or several templates and modelling of thestru
turally 
onserved regions (loop predi
tion).In the se
ond approa
h, a model is 
onstru
ted by using a subset of the 
oordinatesof the template (typi
ally Cα atoms of 
onserved residues) as guiding positions onwhi
h short all-atom segments are �tted. These segments 
an either be extra
ted fromexperimentally-solved stru
tures [43, 93℄ or obtained by a 
onformational sear
h guidedby the Cα-tra
e [15, 55℄.In modelling by satisfa
tion of spatial restraints, a model for the target sequen
e isderived by minimising the violations of all restraints on the target. The restraintsare obtained from the alignment to the templates (e.g. distan
es and angles) and are
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tionusually supplemented by other stereo
hemi
al restraints (e.g. bond lengths and angles,torsion angles and non-bonded 
onta
ts).The a

ura
y of models generated by the di�erent approa
hes does not di�er mu
hsin
e other fa
tors su
h as template sele
tion and target-template alignment have amu
h stronger impa
t on the quality of the �nal model.In a next step, the ba
kbone of regions whi
h 
annot be dire
tly obtained from thetemplates (i.e., the stru
turally variable regions) have to be modelled. These regionsoften 
orrespond to loop regions at the protein surfa
e whi
h 
onne
t regular se
ondarystru
ture elements and are the lo
ation where mutations (amino a
id substitutions,insertions and deletions) tend to a

umulate. Sin
e loops often de�ne the fun
tionalspe
i�
ity of proteins and 
ontribute to the binding site, an a

urate predi
tion of loopstru
tures �nally determines the usefulness of the homology model (e.g. for protein-ligand do
king). A detailed introdu
tion to loop predi
tion is given in the next se
tion.Side
hain modelling represents the last step toward a �rst all-atom model of the target.It has been shown that the prin
ipal fa
tor determining the side
hain 
onformation,beside pa
king in the stru
tural 
ore, is the lo
al ba
kbone 
onformation [23, 183℄. Theobservation that side
hains show a strong preferen
e for spe
i�
 
onformations led tothe development of rotamer libraries [163℄.Most methods use as starting point the most frequent rotamer for ea
h amino a
idand subsequently optimise the 
onformations. Sin
e the side
hain 
onformation of
onserved residues in homologous stru
tures are often identi
al, they are usually 
opied

Figure 1.14: Some side
hain 
onformations observed for tyrosine and phenylalanine[36℄.
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ture predi
tion 27from the template instead of using a rotamer library. A frequently used program forside
hain modelling is SCWRL [31℄, whi
h uses a heuristi
 sear
h strategy based onba
kbone-dependent rotamer libraries extra
ted from a set of known stru
tures. Asa 
onsequen
e of the relationship between ba
kbone and side
hain 
onformation, thelimiting fa
tor on side
hain a

ura
y is ba
kbone a

ura
y [42℄.Re�nement refers to the attempt to bring an approximate model of the target protein
loser to the experimental stru
ture. The most frequent sour
es of errors in 
omparativemodelling are: alignment errors, in
orre
t templates, wrong loop modelling, distorsionsor shifts in 
orre
tly aligned regions and errors in side
hain pa
king. As observed atCASP, predi
ted models are still rarely 
loser to the native stru
ture than the besttemplate [222℄. The CASP experiment also revealed that re�nement is problemati
and no method is 
urrently able to improve 
onsistently over the initial model [116℄.Estimating the a

ura
y of a model is an essential step in 
omparative modelling sin
ethe quality of a model determines its usefulness. The stereo
hemistry of a model
an be analysed with standard tools su
h as PROCHECK [117℄ or WHATCHECK[96℄. S
oring fun
tions used to identify the best model among a set of alternative
onformations or to identify regions of stru
tural errors fall into two broad 
ategories:physi
s-based energy fun
tions and knowledge-based s
oring fun
tions based on 3Dpro�les (e.g. VERIFY3D [129℄) or statisti
al potentials (e.g. PROSA [199℄ or ANOLEA[136℄). A 
omprehensive introdu
tion in model quality assessment is given in Chapter1.2.4.1.2.3 Loop modellingAs the sequen
e identity between target and template de
reases, an in
reasing numberof insertions and deletions as well a lo
al loss of sequen
e similarity is observed, typi
allyin solvent-exposed regions between se
ondary stru
ture elements. These regions, oftenreferred to as loops, have to be remodelled sin
e the ba
kbone of the template 
annot beused. As mentioned above, loops often determine the fun
tional spe
i�
ity of proteinsbelonging to the same family (e.g. the hypervariable region in antibodies) and thereforethe a

ura
y of loop modelling (or loop predi
tion) strongly in�uen
es the usefulnessof a model for fun
tion annotation or stru
ture-based drug design [91, 98℄.
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tionLoop predi
tion 
an be seen as a 
onstrained �mini-folding� problem [77℄ in whi
h apolypeptide segment with a given sequen
e is modelled using geometri
 
onstraintsimposed by the ba
kbone atoms on both sides of the loop that an
hor it to theremainder of the protein (
alled an
hor groups or loop stems). It has been shownthat segments of up to nine residues with identi
al sequen
e 
an have entirely unrelated
onformations [46, 185℄. Thus, the 
onformation of a loop is determined not only by itssequen
e but also by the geometry of the an
hor region and the stru
tural environment.Many loop modelling pro
edures have been des
ribed in the literature and they 
an begenerally grouped into ab initio methods and database sear
h te
hniques (knowledge-based loop predi
tion) as well as 
ombinations of both. Loop modelling basi
ally
onsists of two steps: sampling (the 
onformational spa
e) and s
oring, optionallywith an intermediate �ltering step. Ab initio loop predi
tion methods are based ona 
onformational sear
h in the given stru
tural environment usually guided by anenergy fun
tion. Algorithms used in 
onformational sear
h in
lude dis
rete samplingof energeti
ally favourable main 
hain dihedral angles [52, 56, 146, 251℄, random tweakmethods [190, 207, 241℄, analyti
al methods [86, 218℄, mole
ular dynami
s simulations[26, 77℄, Monte Carlo with simulated annealing [32, 47℄ and many more. Usually,the loop is in
rementally built up from one an
hor and a loop 
losure algorithm[30, 112, 190℄ is used in order to generate 
losed 
onformations. There are alsoapproa
hes whi
h build the loop from both the N-terminal and C-terminal an
horgroup and 
onne
t the fragments in the middle [99, 171, 251℄. The 
onformationsgenerated by ab initio methods are often evaluated using a s
oring fun
tion basedon terms from mole
ular me
hani
s for
e �elds [80, 99, 168, 171, 241℄ sometimes in
ombination with statisti
al potentials [77, 207℄.On the other hand, knowledge-based or database sear
h methods extra
t the loop
onformations from experimentally solved protein stru
tures from the PDB [28, 53, 61,70, 71, 105, 120, 134, 139, 151, 208, 220, 226℄. In 
ontrast to ab initio methods, thelo
al loop geometries predi
ted by knowledge-based approa
hes represent physi
allyreasonable 
onformations sin
e they are observed in native protein stru
tures. Inknowledge-based approa
hes, protein stru
ture fragments of the desired length aresele
ted from the database whi
h approximately �ts to the geometry imposed by thean
hor groups. The fragments are usually s
ored a

ording to the �goodness of �t� of
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ture predi
tion 29the fragment to the an
hor region and other 
riteria su
h as sequen
e similarity betweenthe database fragment and the loop to be modelled [70℄, the use of environmentally
onstrained substitution tables [53, 214℄ or the energy of the fragments based on adistan
e-dependent statisti
al potentials [52℄. A subsequent optimisation and rankingof database loops with a mole
ular me
hani
s for
e �eld has also been suggested [226℄.The a

ura
y of knowledge-based approa
hes is limited by the 
ompleteness of thePDB 
on
erning stru
tural fragments of a given length. In 1994, Fidelis et al. [74℄estimated that fragments of up to 7 residues 
an be a

urately modelled (RMSD < 1Å) with the PDB. Lessel and S
homburg [120℄ 
on�rmed these results and showed thatthe 
overage is even lower if stri
ter and more realisti
 
uto�s are used. I.e. fragmentsare not �tted on ea
h other but on the terminal an
hor residues and a RMSD 
uto� of0.8 Å was used. As a result of the exponential growth of the PDB over the last yearsthe 
overage of loop 
onformations has in
reased dramati
ally and re
ent publi
ationsreport a mu
h higher 
overage even for longer loops [62℄. Fernandez-Fuentes and Fiser[69℄ 
al
ulated a 
overage of >95% for fragments up to 10 residues.Several loop 
lassi�
ation methods have been des
ribed in the literature [29, 71, 72, 126,151, 239℄. The most 
ommon 
lassi�
ation 
riteria are geometry of the surroundingse
ondary stru
ture elements, loop length, loop sequen
e, torsion angles and solventa

essibility.Beside alignment a

ura
y, loop predi
tion is still a major sour
e of errors in 
om-parative modelling [221℄ and only short and medium loops (less than approximately8 residues) 
an be modelled with a

eptable a

ura
y [174℄. The predi
tion a

ura
yfor longer loops rapidly drops in all 
urrent methods although remarkable progress hasbeen reported re
ently, if in addition to an extensive 
onformational sampling strategy,
rystal 
onta
ts are taken into a

ount in loop ranking [99, 251℄. This also demonstratesthe limits of loop predi
tion: beside the fa
t that many loops are highly �exible, the
onformation of a loop in a 
rystal stru
ture may be determined in part by pa
king
onstraints and does not present the native 
onformation of the loop in solution.Loop predi
tion methods are usually tested in �self predi
tion� experiments whi
hmeans that the loop is 
ut out from the protein and rebuilt with the given method inthe �xed stru
tural environment. This does not represent a realisti
 modelling situation
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tionin whi
h the geometry of the an
hor region, as well as the stru
tural environment, areonly approximately 
orre
t. Furthermore, in knowledge-based loop predi
tion, oftendi�erent sequen
e similarity thresholds are used in order to remove trivial results. I.e.loops from 
lose homologues of the query protein whi
h are usually not present in theappli
ation 
ase. Be
ause loops from homologous protein stru
tures are often the bestavailable fragments in the database, the sequen
e identity 
uto� used in the evaluationof the method strongly in�uen
es the predi
tion a

ura
y.Another problem, whi
h makes a fair 
omparison of 
urrent loop modelling proto
olsdi�
ult, is the fa
t that no standard ben
hmark set for loop predi
tion exists. Mostmethods are tested on their own test sets and the performan
e is often 
ompared toother methods based on only a few examples. In a re
ent ben
hmarking by Rossi et al.[174℄, four 
ommer
ial loop modelling programs have been tested on a 
omprehensivetest set 
overing loops of 4 to 12 residues based on a the work of Ja
obson et al.[99℄. The results were rather disillusioning in that only short loops (4 to 7 residues inlength) 
ould be modelled with a

eptable a

ura
y for stru
ture-based drug designand all methods have 
onsiderable problems in loop ranking (i.e. the top-s
oringloop was rarely the loop with minimal RMSD 
ompared to the native 
onformation).These results underline the general problem in loop predi
tion: the bottlene
k in loopmodelling seems to be no longer the sampling step (as a 
onsequen
e of advan
es insampling algorithms and the growth of the PDB) but the subsequent s
oring of the
onformations.1.2.4 Model quality assessmentParti
ularly ab initio methods, but in
reasingly also template-based approa
hes,usually produ
e a 
onsiderable amount of alternative models. Sele
ting the modelbeing 
losest to the native 
onformation of a given protein out of an ensemble ofmodels, independent of being produ
ed during 
onformational sear
h in a template-free approa
h [172, 248℄ or on the basis of alternative alignments or di�erent templates[48, 101, 206℄, is a 
ru
ial step in protein stru
ture predi
tion in general. This se
tionprovides an overview on the topi
 and the methods used in the assessment of modelquality. An in-depth introdu
tion to the theoreti
al ba
kground of statsiti
al potential
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Figure 1.15: S
hemati
 representation of physi
al for
es o

uring in proteins(sour
e: [2℄).

Figure 1.16: S
hemati
 representation of hydrophobi
ity (sour
e: [2℄).s
oring fun
tions is given in Methods (Chapter 2.4.1.1).S
oring fun
tions rely on the thermodynami
 hypothesis stating that the native stateof a protein lies in the free energy minimum under physiologi
al 
onditions [119℄. Thereare basi
ally two 
ategories of s
oring fun
tions: physi
s-based energy fun
tions andknowledge-based statisti
al potentials. The former are true e�e
tive energy fun
tionsdes
ribing intera
tions observed in proteins and their parametrisation is performedeither by �tting experimental data or based on quantum 
hemi
al 
al
ulations [25, 79,118℄. A s
hemati
 representation of some important for
es in proteins is given in Figure1.15 and 1.16.



32 Introdu
tionStatisti
al potential energy fun
tions are derived from data of known protein stru
turesand are usually formalised as either distan
e-dependent or -independent pairwisepotentials of mean for
e [9, 128, 135, 184, 189, 197, 198, 213, 249℄. Alternatively,statisti
al potentials have been derived for other stru
tural features su
h as torsionangles [3, 16, 19, 111, 193, 215℄ and solvent a

essibility [94, 104℄.Statisti
al potentials are based on the inverse Boltzmann equation, whi
h relatesfrequen
ies of observed stru
tural features to their energy. A detailed des
ription of thetheoreti
al ba
kground of statisti
al potentials is given in Methods on page 55. Theyhave the advantage of being fast and simple to 
onstru
t and they are widely usedfor various purposes among whi
h are fold re
ognition [102, 141, 170, 200, 202℄, iden-ti�
ation of the native stru
ture among de
oysg [158, 225℄, model quality assessment[16, 66, 215, 233℄ or predi
tion of thermo stability [83, 84, 97, 159℄.Combining several statisti
al potential terms 
overing di�erent aspe
ts of proteinstru
tures or models is a popular strategy and the 
ombined potentials have beenshown to outperform any single potential [16, 66, 111, 135, 198, 215, 233℄. Modelquality assessment programs are used to assess models generated by various methodsand the quality of the models range from very 
oarse ab initio models often havinga wrong fold to very a

urate template-based models. Therefore, s
oring fun
tions
onsisting of several terms and being optimised on a diverse set of models will be moresuitable for the task of dis
riminating good from bad models or for the identi�
ation ofthe most native-like stru
ture. Model quality assessment programs have been tested the�rst time in a 
ommunity-wide experiment in 2004 during CASP6 as part of CAFASP(Criti
al Assessment of Fully Automated Stru
ture Predi
tion) [76℄ and only re
entlyat CASP7 [49℄.
gDe
oys are 
omputer generated 
onformations of protein sequen
es that possess some 
hara
ter-isti
s of native protein stru
tures, but are not biologi
ally real.



1.3 Obje
tives 331.3 Obje
tivesHomology modelling is 
urrently the most su

essful approa
h for the predi
tion ofthe 3-dimensional stru
ture of a protein from its sequen
e. A model of the protein isthereby built by using information from experimentally solved protein stru
tures (thetemplates) showing an evolutionary relationship to the target protein, relying on thefa
t that the stru
ture of a protein is more evolutionarly 
onserved than its sequen
e.The obje
tives of this thesis are to optimally take advantage of the information
ontained in the database of known protein stru
tures espe
ially for the predi
tionof loop regions and for the assessment of the quality of the generated models. Bothtasks are of 
ru
ial importan
e for the �nal appli
ation of the models.Both loop predi
tion as well as the s
oring fun
tions used for the quality assessmentloops and entire models 
an bene�t from the steadily growing number of known proteinstru
tures. In knowledge-based loop predi
tion, the 
overage of the 
onformationalspa
e by fragments exta
ted from known stru
tures in
reases with the number of knownproteins. A 
omprehensive and up-to-date fragment database will be established in the
ourse of this work. Furthermore, s
oring fun
tions based on the statisti
al analysis ofstru
tural features observed in experimentally solved proteins are potentially morea

urate and wider appli
able as the number of folds in
reases. These statisti
alpotentials 
an be used for the assessment of entire models but also for the ranking of
andidate fragments in loop predi
tion. In this work, it shall be investigated whether astatisti
al intera
tion potential on atomi
 level 
an be used for the ranking of 
ompleteloops after side
hain modelling. The knowledge-based loop predi
tion algorithmsdes
ribed in the literature typi
ally take into a

ount only the loop ba
kbone in thes
oring step and mostly rank the loops a

ording to the geometri
al �t of the fragmentson the an
hor groups of the protein. This approa
h is problemati
 sin
e the an
horregion is typi
ally distorted with respe
t to the native stru
ture.For the assessment of the quality of protein models, a s
oring fun
tion shall beimplemented being able to identify good models among a set of alternatives. It will beinvestigated whether the 
ombination of multiple terms 
an improve the predi
tion ofthe model a

ura
y. In order to be able to 
ope with loop predi
tion and model qualityassessment, a 
omparative modelling pipeline needs to be implemented.





2 Methods
This 
hapter is stru
tured a

ording to the typi
al modelling work�ow shown in Figure2.1. Establishing a 
omplete 
omparative modelling pipeline was a basi
 prerequisitefor dealing with loop predi
tion and model quality assessment whi
h are des
ribed laterin this 
hapter. The modelling pipeline has been implemented in C++. A des
riptionof the most important 
lasses 
an be found in the last se
tion on page 74.

Figure 2.1: Basi
 steps in homology modelling.



36 Methods2.1 Template sele
tion and alignment2.1.1 DatabasesThe non-redundant sequen
e database (nr) from the National Center for Biote
hnologyInformation (NCBI) has been downloaded from the o�
ial ftp-servera. The nr database
ontains all publi
ly available sequen
es from a variety of sour
es (e.g. translationsfrom GenBank [17℄ and RefSeq [164℄ as well as sequen
es from Swissprot [10℄, PIR[13℄ and the PDB [18℄). In order to further redu
e the redundan
y (e.g. be
ause ofprotein families being over-represented), NCBI's non-redundant sequen
e database was
lustered at 
olor 90% sequen
e identity using the tool CD-HIT [125℄. The resultingdatabase (nr90 ) was subsequently used to generate the pro�les used for templateidenti�
ation and target-template alignment.The database 
ontaining the sequen
es of all known protein stru
tures from the ProteinData Bank (PDB) [18℄, frequently 
alled pdbaa, has been obtained from the Dunbra
kLabb. In 
omparison to the pdbaa sequen
e database from NCBI, the version fromDunbra
k Lab 
ontains additional information su
h as resolution, R value, R free valueand sequen
e length in the header of ea
h entry. These information are 
ru
ial fortemplate sele
tion.2.1.2 Template identi�
ation and sele
tionThe template stru
tures are identi�ed using a variation of the PDB-BLAST proto
ol.The term PDB-BLAST was introdu
ed in a work of Ry
hlewski and 
o-workers [179℄in whi
h several strategies of using sequen
e pro�les for fold re
ognition have been
ompared. In PDB-BLAST, the pro�le generated by PSI-BLAST [6℄ is stored andused to s
an the database of known protein stru
tures. In the implementation used inthis work, the pro�le generated after 4 PSI-BLAST iterations on the nr90 sequen
edatabase is subsequently used for a �nal iteration on the pdbaa. After ea
h PSI-BLASTiteration only sequen
es with an E-value ≤ 0.001 are retained. The maximum numberaftp://ftp.n
bi.nih.gov/blast/dbbhttp://dunbra
k.f


.edu/Guoli/pis
es_download.php

ftp://ftp.ncbi.nih.gov/blast/db
http://dunbrack.fccc.edu/Guoli/pisces_download.php


2.1 Template sele
tion and alignment 37of sequen
es in the alignment was set to 1000.One or several templates are sele
ted manually based on the observed sequen
e identityto the target and their quality (i.e. resolution, target 
overage, 
ompleteness). Thesequen
e identity is 
al
ulated based on the alignments provided by PSI-BLAST.2.1.3 Target-template alignmentThe target-template alignments are built based on a pro�le-pro�le alignment proto
ol(see se
tion 1.2.2.2 in the Introdu
tion). The pro�les for both target and template are
al
ulated by PSI-BLAST with 5 iterations on the nr90 data bank using an E-value< 0.001. The alignments are generated using a modi�ed version of the pro�le-pro�lealignment fun
tionality in
luded in the Align-pa
kage, a C++ library provided by theTosatto group [216℄. The library has been extended and ben
hmarked as part of theCUBIC-proje
t of Os
ar Bortolami under the author's supervision.A total number of 20 alternative alignments is generated by applying di�erent gapopen and gap extension penalties and by applying a global (Needleman-Wuns
h [150℄and a lo
al (Smith-Waterman [203℄) alignment algorithm.The following strategy was used in order to optimise the gap penalties. The qualityof sequen
e alignments is assessed by 
omparing them with stru
tural alignments asgold standard. Therefore a representative set of stru
tural alignments has been builtas des
ribed by Marti-Renom et al. [132℄. The �nal data set 
onsists of 300 stru
turalalignments of pairs of proteins sharing less than 40% sequen
e identity and belonging tothe same homologous superfamily as de�ned by CATH [153℄, a hierar
hi
al 
lassi�
ationsystem for protein domain stru
tures.100 stru
tural alignments have been used for training (optimising the gap penalties)and the rest for testing. The stru
tural alignments were generated with CE [192℄.An exhaustive sear
h over a reasonable range for the gap penalties was performedin order to identify gap open and gap extension penalties whi
h lead to a maximumoverlap of the sequen
e alignments with the 
orresponding stru
tural alignments. Thequality of the resulting alignments was assessed based on the fra
tion of identi
ally



38 MethodsTable 2.1: Optimised gap open (go) and gap extension (ge) penalties used for lo
aland global alignments, respe
tively.global lo
al
go ge go ge8 0.2 6.5 0.54.5 0.1 6.5 0.77 0.1 6.5 0.35.5 0.2 7 0.34.5 0.15 7.5 0.56 0.1 7.5 0.37.5 0.2 7.5 0.257 0.2 8 0.37 0.08 8 0.258 0.15 8.5 0.3aligned residues. The �nal penalties are shown in Table 2.1. The optimal gap openand gap extension penalties, i.e. those values that produ
e the most similar alignments
ompared to the stru
tural alignments, are shown in the �rst row and the sub-optimalpenalties below.In analogy to the s
ores for aligning two residues in a sequen
e alignment, pro�le-pro�le alignment algorithms need a s
oring fun
tion whi
h quanti�es the degree ofsimilarity of two pro�le 
olumns being aligned. Several di�erent implementations havebeen investigated and a 
olumn-
olumn s
oring fun
tion, as proposed by Pan
henko in2003 [155℄, has been used (formula 2.1). The s
ore of aligning position i of the targetwith position j of the template is given by:
Si,j =

ni(~Fi ∗ ~Wj) + nj( ~Fj ∗ ~Wi)

ni + nj

(2.1)where ni and nj are the number of independent observations of di�erent amino a
idtypes in 
olumns i and j representing a measure of the diversity within the 
olumns.
~Fi and ~Fj are the ve
tors of observed frequen
ies in 
olumn i and j, respe
tively, inthe pro�le. ~Wi and ~Wj represent the 
orresponding 
olumns in the pro�les or PSSMs(Position Spe
i�
 S
oring Matri
es).



2.2 Model building 392.2 Model building2.2.1 Building the raw modelIn a �rst step, the target sequen
e is mapped on the template stru
ture a

ording tothe alignment, i.e. the side
hains of all non-
onserved residues are removed and theamino a
id type of the template is �mutated� to the one of the target. The side
hain
onformation of 
onserved residues are inherited dire
tly from the template, whi
hturned out to be a good strategy (see se
tion 3.1.5.4 in Results and Dis
ussion). Theside
hain 
onformations of the remaining residues are 
al
ulated with SCWRL [31℄.Deletions (i.e. residues of the template not present in the target) are automati
allyremoved from the stru
ture. For insertions, �dummy residues� with the 
orrespondingamino a
id type of the target residue and 
onsisting only of a Cα atom are added at theappropriate position in the stru
ture. At all time, the mapping between the position inthe alignment and the 
orresponding position in the model has to be guaranteed andis 
he
ked after ea
h modi�
ation. Additionally, while loading a protein stru
ture �le,information from the program DSSP [107℄ (su
h as se
ondary stru
ture assignment,solvent a

essibility, torsion angles) is mapped to ea
h residue and the integrity is
he
ked. The resulting stru
ture is 
alled here the �raw model� sin
e it is startingpoint of all subsequent modelling steps.2.2.2 De�ning the stru
tural 
ore and stru
turally variableregionsThe stru
tural 
ore 
onsists of those regions of the template whi
h have preserved theirstru
ture during evolution and whose ba
kbone 
onformation 
an be dire
tly 
opiedfrom the template. In order to illustrate the situation, the sequen
e alignment andthe stru
tural superposition of the two homologous proteins papain (PDB identi�er1ppn) and a
tinidin (PDB identi�er 2a
t) are shown in Figure 2.2. The sequen
eidentity between the two proteins is 47%. The stru
tures are 
oloured a

ording tothe stru
tural deviation between 
orresponding residues of the alignment. The region
oloured in blue represents the stru
tural 
ore with low deviation between target and



40 Methodstemplate. As it 
an be seen, the stru
turally variable regions are mainly lo
ated aroundinsertions and deletions.The identi�
ation of the stru
tural 
ore, is fa
ilitated by the use of the followinginformation:1. the sequen
e 
onservation in a multiple sequen
e alignment of the protein familyof the target2. the agreement between the se
ondary stru
ture in target and template3. the analysis of the lo
al model energy pro�le (see se
tion 2.4.5 on page 67)The multiple sequen
e alignment of the target protein family is automati
ally produ
edbased on the PSI-BLAST sear
h used to generate the targets pro�le. The 
onservationwithin the protein family is visually inspe
ted with JalView [44℄. The multiple sequen
ealignments 
an be further re�ned by using MUSCLE [64℄, a highly a

urate algorithmfor multiple sequen
e alignments. A web servi
e for MUSCLE is implemented inJalView and therefore, the PSI-BLAST based alignments 
an be dire
tly re�ned inthis environment.The agreement between the se
ondary stru
ture of the template and the target is inves-tigated by 
omparing the 
al
ulated se
ondary stru
ture of the template as derived fromDSSP [107℄ with the predi
ted se
ondary stru
ture of the target sequen
e. A 
onsensusse
ondary stru
ture predi
tion of PSIPRED [103℄, SSpro [35℄ and ProfSe
/PHD [177℄ isbuilt by simple majority voting [4℄, i.e. by assigning to ea
h amino a
id the se
ondarystru
ture state predi
ted by at least two of the three methods (otherwise the residueis de�ned as being in 
oil state).Regions of the model not belonging to the stru
tural 
ore (i.e. stru
turally variableregions) usually have to be remodelled. The stru
turally variable regions are mainly
omposed of protein surfa
e loops 
ontaining insertions and deletions as well as the
hain ends. Often, loops without insertions and deletions need to be remodelled aswell, depending on the degree of sequen
e 
onservation between target and template.Highly non-
onserved loops are likely to adopt di�erent lo
al folds as 
ompared tothe template loops. On the other hand, loop predi
tion is only possible with a 
ertain
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(a) Stru
ture-based sequen
e alignment with insertions and deletions highlighted.The last line shows the se
ondary stru
ture 
omposition of the se
ond protein.
B

A

C
E

D

(b) Superposition of two homologues 
oloured a

ording to the lo
al stru
tural deviation.Figure 2.2: Stru
tural 
ore and stru
turally variable regions: Alignment andsuperposition of the two homologous proteins papain (1ppn) and a
tinidin (2a
t).
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ura
y, typi
ally depending on the length of the fragment to be modelled. Therefore,de
iding whether to re-model a loop or not remains a di�
ult task. These regionswhi
h would bene�t from an a

urate loop modelling are still di�
ult to identify andthe predi
tion of these regions is an a
tive �eld of resear
h [68, 73, 77℄. In order toinvestigate the tenden
y of a loop to adopt a di�erent fold, a lo
al statisti
al potentials
oring fun
tion has been implemented investigating the lo
al sequen
e to stru
ture�tness. In other words, the s
oring fun
tion assesses the likelihood that a given regionof the target sequen
e adopts the stru
ture provided by the template. High lo
alenergies suggest that the sequen
e does not �feel 
omfortable� with the given stru
tureprovided by the template and therefore a lo
al refolding is rather likely. The lo
als
oring fun
tion is des
ribed in Chapter 2.4.5.Suitable start and end points of the loop modelling pro
ess, the so 
alled an
hor groups,have to be identi�ed. The an
hor groups are lo
ated in the transition of the stru
tural
ore and the stru
turally variable region. Usually, in loop predi
tion the an
hor groupsare set near the end points of the surrounding se
ondary stru
ture elements whi
hare rather likely to be stru
turally 
onserved. As mentioned above, investigating thesequen
e 
onservation in these regions further provides eviden
e for the positioning.For the models submitted to CASP, the position of the an
hor groups has beende�ned manually by investigating the agreement between the position of the se
ondarystru
ture end points between target and template and by looking at the sequen
e
onservation. In order to 
ombine all information needed to a

omplish this task, a
ondensed �model information� output �le is generated as shown in Figure 2.3. Thefollowing information is provided (in the same order as in the data lines):
• The alignment between target (in the example above CASP7 target T0379) andtemplate (PDB identi�er 2b0
, 
hain A) is shown in the �rst two data lines.
• The sequen
e 
onservation (denoted as �
onserv�) is des
ribed by an asterisk foridenti
al residues and a 
olon for similar residues a

ording to the de�nition usedin CLUSTALW [212℄.
• The line �
onf� shows the average 
on�den
e of the se
ondary stru
ture predi
-tions 
al
ulated by PSIPRED and ProfSe
. Both methods provide a measure
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Figure 2.3: Example of a �model information" output �le used for the positioningan
hor groups serving as starting points of the loop predi
tion pro
ess.



44 Methodsof 
on�den
e ranging from 0 (i.e. no reliable assignment of se
ondary stru
turepossible) to 9 (i.e. high 
on�den
e).
• �
onsensus� is the 
onsensus of the three se
ondary stru
ture predi
tions shownon the subsequent lines based on majority voting as des
ribed above.
• The last data line ("dssp") shows the 
al
ulated se
ondary stru
ture of the modelderived from DSSP.



2.3 Loop predi
tion 452.3 Loop predi
tionAs mentioned in the introdu
tion, there are basi
ally two approa
hes to the looppredi
tion problem: knowledge-based and ab initio. We follow a knowledge-basedstrategy by s
anning a database of fragments (extra
ted from the PDB) for suitableba
kbone 
onformations. A s
hemati
 representation of the loop predi
tion routine isshown in Figure 2.4. A detailed des
ription of all steps is given below.

Filtering

Figure 2.4: S
hemati
 representation of the loop predi
tion routine.



46 Methods2.3.1 Fragment databaseThe fragment database is based on a non-redundant subset of protein stru
tures fromthe PDB [18℄. The sele
tion is generated using the PISCES server [236℄ whi
h allowsto extra
t sets of protein stru
tures. The following sele
tion 
riteria are used:
• pairwise sequen
e identity < 95%
• resolution < 3.0 Å
• R-value < 0.3
• only stru
tures determined by X-ray 
rystallographyThe sele
tion 
riteria represent a trade-o� between quality of the stru
tures andquantity of the fragments in order to in
rease the 
overage of the 
onformational spa
e.Sin
e only protein ba
kbone 
oordinates are stored in the database, a resolution 
uto�of 3 Å represents a reasonable 
ompromise sin
e at this resolution the ba
kbone isusually well-de�ned in proteins solved by X-ray 
rystallography.The resulting data set 
ontains 12,376 protein 
hains whi
h are 
ut into fragments oflength 3-20 by the 
lass Fragmentor (see se
tion Implementation, page 74). In a �rststep, the 
hain is inspe
ted 
on
erning 
hain breaks and missing residues. Stru
turally
ontinuous substru
tures are then de�ned whi
h are subsequently fragmented usingsliding windows of length 3 to 20 residues. Only 
omplete fragments 
ontaining all4 ba
kbone atoms per residue are a

epted and stored in a MySQL database. Thestru
ture of the fragment database is shown in Table 2.2. Sin
e in the appli
ation 
aseonly queries on fragments of the same length are performed, spe
i�
 fragment tablesfor ea
h length are generated in order to enhan
e query speed. The fragment tables
ontain approximately 2.5 to 2.9 million fragments ea
h.The table stru
ture 
ontains information about all protein stru
tures used to generatethe fragments (e.g. PDB identi�er, 
hain identi�er, resolution R-value et
.). Thetable fragment2stru
ture stores begin and end position of the fragment in the
orresponding stru
ture (starting from 0) and additionally the two 
orresponding
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tion 47Table 2.2: Name and number of entries of the tables in the fragment database. Thefragments of the length 3-20 amino a
ids are stored in separate tables.Table name Number of entriesfragment3 2,907,542fragment4 2,879,976fragment5 2,853,117fragment6 2,826,819fragment7 2,801,064fragment8 2,775,811fragment9 2,751,095fragment10 2,726,790fragment11 2,702,933fragment12 2,679,522fragment13 2,656,505fragment14 2,633,917fragment15 2,611,692fragment16 2,589,817fragment17 2,568,295fragment18 2,547,087fragment19 2,526,182fragment20 2,505,539fragment2stru
ture 48,543,703stru
ture 12,376primary keys of the tables fragment and stru
ture. The primary keys of the fragmenttables are unique over all tables. An alternative, relational database stru
ture has beeninvestigated using an atom, a residue and fragment tables in
luding the 
orresponding
onne
tion tables. But this approa
h resulted in an explosion of the query time mostprobably as a 
onsequen
e of the multitude of joining operations on huge tables.Therefore, the database was denormalised and all ne
essary data was 
ondensed in onetable (the fragment tables). An overview on the �elds of the fragment tables is shownin Table 2.3. The query speed was further in
reased by sorting the table a

ordingto the fragment end-distan
e sin
e this represents the primary sele
tion 
riteria used.In addition to the sele
tion by fragment end-distan
e, an advan
ed sele
tion usingsequen
e or se
ondary stru
ture 
onstraints is possible. Therefore an index has beenput on these three 
olumns in order to in
rease the query speed.



48 MethodsTable 2.3: Stru
ture of the table fragment3 
ontaining fragments of the length of3 residues.Field name Datatype Des
riptionID int(11) primary keydist_bin smallint(5) fragment end-distan
e (rounded)end_distan
e �oat fragment end-distan
ean
hor_
oordinates tinytext ba
kbone 
oordinates of the an
hor residuesloop_
oordinates text ba
kbone 
oordinates of all loop residuestorsion_angles text torsion angles of all loop residuessequen
e 
har(3) sequen
e of the fragmentSSE_pattern 
har(3) se
ondary stru
ture of the fragment
hain_end_ID 
har(1) identi�er for 
hain-end fragments: N,CSSE_N_�ank a 
har(1) type of the left �anking se
ondary stru
tureSSE_C_�ank a 
har(1) type of the right �anking se
ondary stru
tureN_�ank_length a int(2) length of the left se
ondary stru
tureC_�ank_length a int(2) length of the right se
ondary stru
turesolvation_avg �oat average solvation of the fragmentsolvation_pattern var
har(3) solvation pattern: 0=buried, 1=exposedpdb_ID var
har(4) PDB identi�er of the original stru
ture
hain_ID 
har(1) 
hain identi�er of the original stru
tureaThese �elds are only used for �real� loops, i.e. fragments whi
h only 
onsist of residues with these
ondary stru
ture type 
oil and are immediately en
losed by se
ondary stru
ture elements.Sin
e the sequen
e and the se
ondary stru
ture 
omposition of the fragments are storedin the database as text entries, queries with regular expressions on these �elds arepossible. This 
an be espe
ially useful when 
onstraints derived from the analysis ofthe sequen
e 
onservation in the protein family or knowledge about the position of thesurrounding se
ondary stru
ture elements should be used as des
ribed in se
tion 2.2.2.Below, a virtual example of a 
onstraint query on the fragment database is provided:SELECT * FROM fragment10 WHERE (end_distan
e BETWEEN 10 AND 14) AND(SSE_pattern LIKE 'HH____CC__') AND (sequen
e LIKE '__G_______');2.3.2 Loop test setsA parameterisation test set 
onsisting of 50 loops of length 3-15 residues was used inorder to optimise all loop predi
tion parameters des
ribed in the next se
tion. The



2.3 Loop predi
tion 49same parameterisation as des
ribed by Mi
halsky et al. in the LIP program is used[139℄.The performan
e of the loop predi
tion routine des
ribed in this work is 
ompared to 4
ommer
ial loop modelling programs whi
h have been re
ently ben
hmarked by Rossiet al. [174℄ with a test set 
overing loops from 4-12 residues (a �ltered test set basedon the work of Ja
obson and et al. [99℄). The test set as well as the results of the 4
ommer
ial programs were obtained from the author (Karen Rossi). Additionally, atest set of 14 loops of length 4-9 is used in order to 
ompare the performan
e to sevenother programs. Although being small and probably not representative, this test set isfrequently used in the literature and is applied here as well for the sake of 
ompleteness.The results of the other loop predi
tion programs are obtained from two publi
ations[53, 139℄ and from the LIP website
.2.3.3 Sele
ting, �ltering, ranking of fragmentsThe loop predi
tion proto
ol involves basi
ally 3 steps as shown in Figure 2.4: Sele
tionof fragments from the database, �ltering in order to redu
e the set of 
andidates and�nally ranking of the remaining loops based on a s
oring fun
tion.2.3.3.1 Loop sele
tion from the fragment databaseIn the �rst step, fragments are sele
ted from the database based on a simple geometri

riterion 
omparing the distan
e between the terminal Cα atoms of the fragment withthe 
orresponding Cα distan
e of the an
hor groups (i.e. the framework in whi
hthe fragment is inserted). Upper and lower bounds for the di�eren
e between thesetwo distan
es are de�ned for ea
h loop length. The bounds have been manuallyadjusted so that less than 5 per
ent of the all Top10 fragments per loop length arereje
ted in the parametrisation set. The thresholds for di�erent loop lengths aresummarised in Table 2.4. Adjusting the bounds represents another trade-o� betweenspeed and a

ura
y. Retrieving more fragments by less restri
tive 
uto�s slows downthe whole loop predi
tion pro
ess sin
e more data (espe
ially the 
oordinates) have to
http://www.drug-redesign.de/LIP/LIP_WebseiteTestsets.html

http://www.drug-redesign.de/LIP/LIP_WebseiteTestsets.html


50 Methodsbe transferred from the database and pro
essed by the �lters and the s
oring fun
tiondes
ribed below. On the other hand, the presen
e of more 
andidates makes the taskof identifying the best fragment among others more di�
ult. All sele
ted fragmentsare subsequently �tted on the the an
hor groups by least squares �tting over the
oordinates of the 4 ba
kbone atoms N, Cα, C and O of both end points.2.3.3.2 Loop �ltering stepsIn the next step, four quality �lters are applied in order to remove unsuitable fragments,thereby redu
ing the 
andidate set for the �nal ranking step. The �rst �lter analyses the�goodness of �t� i.e. how well the ba
kbone of the terminal fragment residues mat
hesthe an
hor ba
kbone geometry provided by the protein framework. The root meansquare deviation between an
hor residues and terminal fragment residues is 
al
ulated(
alled RMSa). Fragments with a RMSa above a loop length dependent threshold arereje
ted. In analogy to the strategy used in the sele
tion pro
ess, the 
uto� values forthe RMSa �lter were set su
h that not more than 5 per
ent of all Top10 fragments are�ltered out (Table 2.4).The se
ond �lter reje
ts fragments having serious 
lashes with the environment after�tting into the framework. Two atoms are de�ned as 
lashing if the distan
e betweenthem is less than 70% of the sum of their van der Waals radii. The van der Waalsradii have been taken from a work of Li and Nussinov [124℄. A similar threshold hasTable 2.4: Threshold used in loop sele
tion and for the an
hor group RMSD �lter.di�eren
e between Cα-distan
esaloop length lower bound upper bound RMSa 
uto�bL ≤6 -1.15 0.85 16 < L ≤8 -1.5 1.75 1.358 < L ≤12 -2.25 2.5 1.5L > 12 -2.75 2.75 1.75aCα-distan
e of the fragment end points 
ompared to the Cα-distan
e of the an
hor groups.bRMSD between the terminal fragment residues and the an
hor group residues after �tting.



2.3 Loop predi
tion 51been used in a re
ent publi
ation on loop predi
tion [70℄. The �tting pro
ess basedon least squares �tting results in only an approximately 
orre
t orientation of thefragment in the protein framework and therefore loops with a

urate lo
al geometry
ompared to the native loops 
an still have 
onsiderable 
lashes. In an earlier workfrom our lab, Heuser et al. [90℄ approa
hed the problem by a

epting one 
lash withthe environment. Furthermore, �soft� 
lashes 
an be expe
ted to be removed in asubsequent energy minimisation step.The two initial �ltering steps (i.e., RMSa �lter and 
lash �lter) are performed duringthe retrieval pro
ess of the fragments from the MySQL database and, depending onthe modelling situation, the �lters remove a large fra
tion of the sele
ted fragments.This approa
h allows to restri
t the number of 
andidate fragments to be storedsimultaneously and therefore redu
es the main memory 
onsumption. The remainingloop obje
ts (see se
tion Implementation, page 74) are stored in a ve
tor for furtherpro
essing.The third �lter analyses the torsion energy of the remaining fragments. As des
ribed inthe Introdu
tion, the 20 amino a
ids show, as a 
onsequen
e of the steri
 restri
tionsimposed by their side 
hains, preferen
es for 
ertain torsion angles. The fragmentsof the database originate from stru
tures having 
ompletely di�erent amino a
id
ompositions and therefore analysing the torsion energy 
an be used to estimate howwell the given loop sequen
e mat
hes the dihedral angles of the fragment. The torsionangle potential is espe
ially valuable for �ltering sin
e it relies only on the ba
kboneatoms and does not need the side
hains whi
h have not been modelled yet. Z-s
ores ofthe torsion energies of all fragments are 
al
ulated by subtra
ting the mean and dividingby the standard deviation of the whole set. Loops with torsion energy Z-s
ores above 1standard deviation are removed. If a maximum number of 20,000 fragments is ex
eededafter the �rst round, the threshold is gradually lowered with a step size of 0.2 standarddeviations.In the last �ltering step the 
ompatibility of the loop ba
kbone with its framework isinvestigated before the a
tual s
oring is performed. This step was ne
essary sin
e side
hain modelling is the rate limiting pro
ess in the whole modelling pipeline typi
allytaking a fra
tion of a se
ond (maximum 1 se
ond) per loop. Side
hain modelling isperformed by SCWRL [31℄ but sin
e an external program is used, the protein stru
ture
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luding the loop has to be temporary saved, the program exe
uted and the outputhas to be reloaded.A 
ombination of the following 3 terms is used in the ba
kbones
oring step:
• A pairwise distan
e-dependent statisti
al potential based on Cα atoms in orderto analyse the intera
tions of the loop with its environment.
• A solvation potential based on Cα atoms investigating the propensity of the loopresidues for the given degree of solvent exposure.
• The �goodness of �t� of the terminal loop residues to the an
hor groups asexpressed by the RMSa.The theoreti
al ba
kground of statisti
al potentials of mean for
e and how they areextra
ted is des
ribed in detail in the next se
tion. For all 3 terms, Z-s
ores are
al
ulated and the Z-s
ores for ea
h loop are simply summed up. An inspe
tionof the distribution of the s
ores revealed that the values are at least approximatelynormal distributed whi
h is a prerequisite for the derivation of Z-s
ores. The useof Z-s
ores enables the 
ombination of statisti
al potential terms with the RMSadistan
e measure. Su
h a 
ombination would be di�
ult if the raw energies are useddire
tly sin
e, depending on the stru
tural environment whi
h determines the number of
onta
ts between loop and framework, the amplitude of the energies potentially di�erssigni�
antly between di�erent modelling situations, whi
h 
ompli
ates the 
ombinationwith the distan
e measure. Z-s
ores re�e
t how well a 
ertain fragment �ts in the givenenvironment (steri
ally and energeti
ally) 
ompared to all other fragments in the set. Agood, near-native fragment should have reasonable s
ores for all three terms. Based onthe 
ombined ba
kbone s
ore, the best 3,000 loops are retained. The number of loopspassing the torsion energy �lter (20,000) and the ba
kbone �lter have been optimisedbased on the parametrisation set.2.3.3.3 Loop s
oringIn the next step, side
hains are added to the loop residues by exe
uting SCWRL. Sin
ethe loop is now 
omplete in terms of its atomi
 
omposition, a more �ne-grained, all-atom energy fun
tion 
an be applied in order to rank the remaining fragments. A



2.3 Loop predi
tion 53variety of di�erent terms and parameters for the statisti
al potential terms has beeninvestigated. The performan
e of some sele
ted 
ombinations are shown in Resultsand Dis
ussion, page 135�. In the �nal s
oring fun
tion only the all-atom intera
tionpotential has been used. Among other alternative implementations, a 
ombined s
oringfun
tion 
onsisting of 4 terms has been investigated using a torsion angle potential over3 residues, an all-atom solvation potential, an all-atom pairwise intera
tion potentialas well as the RMSa. All terms are 
ombined by summing of the individual Z-s
ores.The torsion angle potential re�e
ts the propensity of the loop sequen
e to adopt thelo
al geometry des
ribed by the torsion angles of the fragment. The same bin sizesfor the Φ and Ψ angles have been applied as for model quality assessment (see se
tion2.4.1.5). The short-range pairwise intera
tion potential assesses the dire
t intera
tionswith the stru
tural environment. The upper limit of 10 Å has been set manuallyafter inspe
tion of the intera
tion 
urves. At an atomi
 distan
e of approximately10 Å the energy 
urves rea
h a pseudo energy of zero. The solvation potentialdes
ribes the propensity of a 
ertain atom for the observed degree of solvent exposureas approximated by the number of atoms within a sphere of 6 Å around the 
entralatom. A threshold of 6 Å has been 
hosen in order to assure that no water mole
ule �tsbetween the two atoms. The solvation potential to some extend favours loops forming
onta
ts with the protein surfa
e instead of pointing into the solvent. A variety ofadditional fun
tionalities are provieded by the loop predi
tion routine whi
h are brie�ydes
ribed here:
• A 
lustering library implemented in C by Mi
hiel de Hoon (originally developedfor the analysis of gene expression data) is integrated [51℄. In order to removeredundan
ies, the set of loops 
an be 
lustered based on a given RMSD value
uto� using various 
lustering strategies (e.g. single-linkage, 
omplete-linkage(default), 
entroid-linkage and average-linkage 
lustering).
• The 
olony energy approa
h as introdu
ed by Xiang et al. [241℄ has beenimplemented. In this approa
h, the energy of a loop de
reases with the presen
eof other loops with similar 
onformation and low energy assuming that the
onformational spa
e around global energy minimum is more populated thanthe rest of the energy lands
ape.



54 Methods
• Four di�erent loop �tting strategies have been implemented. Fitting on the 4ba
kbone atoms on both sides (default), �tting on ba
kbone without the oxygenatom (sin
e it is de�ned by the other 3 atoms), �tting on the ba
kbone of two
onse
utive residues on both sides, �tting on 3 
onse
utive Cα-atoms on bothsides.
• Both loops and 
hain ends 
an be modelled (in the later 
ase only one an
horgroup given).
• After building the all-atom loop model, the side
hains of the loop together withthe side
hains of surrounding residues within a given distan
e 
uto� 
an berebuilt.
• A user-de�ned number of protein stru
tures from the top ranking loop predi
tions
an be saved as PDB �les.
• A variety of rankings and quality measures are 
al
ulated for ben
hmarkingpurposes.



2.4 Model quality assessment 552.4 Model quality assessmentIn protein stru
ture predi
tion, a 
onsiderable number of alternative models are usuallyprodu
ed from whi
h subsequently the �nal model has to be sele
ted. Thus, a s
oringfun
tion for the identi�
ation of the best model within an ensemble of alternativemodels is a key 
omponent of most protein stru
ture predi
tion. Model qualityassessment in
ludes the global assessment of the quality of the entire model butalso the lo
al quality assessment analysing the reliability of di�erent regions of aspe
i�
 model. This se
tion will fo
us on the �rst task but in the last se
tion anextension for lo
al quality assessment is des
ribed. QMEAN [16℄, whi
h stands forQualitative Model Energy ANalysis, is a 
omposite s
oring fun
tion des
ribing themajor geometri
al aspe
ts of protein stru
tures. Five di�erent stru
tural des
riptorsare used. The lo
al geometry is analysed by a new kind of torsion angle potential over3 
onse
utive amino a
ids. A se
ondary stru
ture-spe
i�
 distan
e-dependent pairwiseresidue-level potential is used to assess long-range intera
tions. A solvation potentialdes
ribes the burial status of the residues. Two simple terms des
ribing the agreementof predi
ted and 
al
ulated se
ondary stru
ture and solvent a

essibility, respe
tively,are also in
luded.A variety of di�erent implementations are investigated and several approa
hes to
ombine and optimise them are des
ribed. Only the parameters used in the �nalimplementation of the statisti
al potentials are shown here together with the des
rip-tion of the optimisation strategy. The rest of the data 
an be found in the Resultsse
tion, page 108�. QMEAN was tested on several data sets as des
ribed below andwas 
ompared to �ve well-established model quality assessment programs.2.4.1 Statisti
al potentials2.4.1.1 Theoreti
al ba
kgroundThe analysis of experimentally solved protein strutures reveals obvious regularities su
has the tenden
y of hydrophobi
 residues to be buried, the pairing of oppositely 
hargedatoms or the intera
tion of aromati
 rings [87℄. Statisti
s about these empiri
al or



56 Methodsknowledge-based parameters 
an help understanding the intera
tions whi
h 
ontributeto the stability of protein stru
tures and their analysis has a long history going ba
kto the work of Tanaka and S
heraga in 1976 [209℄.In the early 1990's Sippl introdu
ed a statisti
al me
hani
s formalism based on theinverse Boltzmann prin
iple in order to derive a potential of mean for
e [197, 198,200℄. The Boltzmann prin
iple relates the energy of a 
onformational state ci to itsprobability of o

urren
e at the thermodynami
 equilibrium:
p(ci) =

e
−E(ci)

kT

∑

j e
−E(cj)

kT

(2.2)where k is the Boltzmann's 
onstant and T is the absolute temperature. Thesummation j over all allowed states of the system is 
alled the partition fun
tion orBoltzmann sum (denoted as Z(C)). In analogy, the inverse Boltzmann prin
iple relatesthe probability density fun
tion p(ci) to the energy of a given state:
E(ci) = −kT ln(p(ci)) + kT ln(Z(C)) (2.3)In a similar way, the net potential of mean for
e [198℄ 
an be derived for a spe
i�
subsystem (i.e. spe
i�
 intera
tion) sk by subtra
ting the mean for
e of referen
ethereby removing all energies whi
h are 
ommon to all subsystems. This 
an bedes
ribed as 
onditional probabilities [205℄ re�e
ting the probability of a 
onformationalstate ci in the presen
e of a spe
i�
 intera
tion sk:

∆E(ci|sk) = E(ci|sk) − E(ci) = −kT ln(
p(ci|sk)

p(ci)
) + kT ln(

Z(C|S)

Z(C)
) (2.4)For example in a distan
e-dependent pairwise potential ci refers to the distan
e and

sk to the identities of the two atoms. In torsion potentials ci stands for a given pairof Φ/Ψ dihedral angles and sk for the amino a
id type. A

ording to Sippl [198℄,
Z(C|S) = Z(C) 
an be assumed whi
h results in the following equation:

∆E(ci|sk) = −kT ln(
p(ci|sk)

p(ci)
) (2.5)



2.4 Model quality assessment 57The numerator is the observed probability of a spe
i�
 intera
tion whereas the denomi-nator re�e
ts the expe
ted probability if there where no intera
tions (i.e., the referen
estate). The observed probabilities 
an be dire
tely estimated based on statisti
s on arepresentative set of protein stru
tures from the PDB [18℄. Di�erent approa
hes havebeen des
ribed for the estimation of the referen
e distribution [184, 189, 198, 249℄. Themajority of statisti
al potentials relies on the �uniform density� referen
e state used bySippl [197℄ in whi
h it is assumed that the distribution in the referen
e state is the sameas in folded proteins. Therefore the probability distribution of the referen
e state is anaverage over all amino a
ids in the dataset. This distribution 
an be dire
tly obtainedfrom database statisti
s as well. An alternative implementation of the referen
e statehas been used by Zhou and Zhou in the DFIRE potential [249℄. In their work thereferen
e state is approximated by using uniformly distributed non-intera
ting pointsin �nite spheres. For the potentials of mean for
e des
ribed in this work, the referen
estate as proposed by Sippl is used and all potentials are derivations from the followinggeneral form:
∆E(ci|sk) = −kT ln

(

f(ci|sk)
f(sk)

∑

k
f(ci|sk)
f(sk)

) (2.6)Typi
al features investigated by statisti
al potentials are ba
kbone torsion angles,solvent a

essibility and pairwise intera
tions between non-bonded atoms. As donein this work, di�erent statisti
al potential terms 
en be 
ombined to a single s
oringfun
tion (see Introdu
tion page 30).The physi
al basis of statisti
al potentials has been questioned [75, 147, 173, 211℄. TheBoltzmann equation des
ribes a parti
ular system in its thermodynami
 equilibrium,whereas statisti
al potentials assume the system to be a database of protein stru
turesin the free energy minimum. A

ording to this assumption, stru
tural elements su
has pairwise distan
es or torsion angles obey a Boltzmann-type distribution based on ahypotheti
al rea
tion at equilibrium in whi
h a unique stru
ture 
onsisting of averagedamino a
ids �mutates� to a unique sequen
e [75, 194℄.The pseudo energy of the entire protein is 
al
ulated by summing up the energiesof the individual amino a
ids. In both 
ases (summing up di�erent energy terms



58 Methodsand summing up residue energies) thermodynami
 additivity is assumed, i.e. the
omponents 
ontribute independently to the total energy. This is a fundamentalprin
iple used in all energy fun
tions both knowledge-based and physi
s-based butit only represents a simpli�
ation (probably as a 
onsequen
e of missing alternatives).A 
riti
al dis
ussion of the additivity prin
iples in bio
hemistry 
an be found in a goodreview of Dill from 1997 [58℄.The non-redundant set of protein stru
tures used to derive the potentials is des
ribedin the next se
tion. The di�erent statisti
al potentials (i.e. distan
e-dependentpairwise potential, torsion angle potential and solvation potential) are introdu
ed inthe subsequent se
tions.2.4.1.2 Extra
tion of the statisti
al potentialsAll statisti
al potentials were extra
ted from a non-redundant set of high-resolutionprotein stru
tures from the De
ember 2006 version of the PDB [18℄. The PISCESserver [236℄ was used in order to sele
t a subset of the experimentally solved proteinstru
tures. The following sele
tion 
riteria were used:
• pairwise sequen
e identity < 30%
• resolution < 1.8 Å
• R-value < 0.2
• only stru
tures determined by X-RAY 
rystallographyThis resulted in an initial sele
tion of 1,801 protein 
hains. To redu
e over-trainingof the potentials for stru
tures subsequently used for training and testing, all targetsequen
es of CASP6 and CASP7 were blasted against the 1,801 
hains. All dete
tablehits were removed resulting in 1,688 stru
tures. The following three �lters were appliedin order to further in
rease the quality of the set of protein stru
tures used for thesubsequent statisti
al analysis:
• Proteins having less than 90% of the amino a
ids resolved in stru
ture (withrespe
t to the sequen
e) were not in
luded (171 
hains removed).
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• Stru
tures with a substantial part being �exible (i.e. more than 20% of theresidues having an residue-averaged B-fa
tor above two standard deviations) wereremoved (25 
hains).
• Stru
tures with missing ba
kbone atoms (21 
hains removed).For ea
h of the remaining 1,471 stru
tures, DSSP [107℄ was exe
uted in order to assignse
ondary stru
ture, solvent a

essibility and the torsion angles.2.4.1.3 Distan
e-dependent pairwise potentialThe distan
e-dependent 
onta
t frequen
ies were extra
ted from the protein dataset des
ribed above. The radial distribution of atoms around the 
entral atom isinvestigated as s
hemati
ally represented in Figure 2.5. In order to redu
e the biasintrodu
ed by sequentially lo
al intera
tions (the 
onta
ting atoms are assumed tobe free parti
les), only atom pairs separated by at least 4 residues were in
luded.Alternatively, a sequential separation 
uto� of 7 and an implementation without any
uto� has been investigated but resulted in worse performan
e (data not shown).

Figure 2.5: Radial distribution of atoms investigated for the derivation of thedistan
e-dependent intera
tion potential.



60 MethodsCα and Cβ atoms, respe
tively, have been investigated as possible intera
tion 
enters.Additionally, an all-atom version using all 167 atom types o

urring in proteinswas implemented and is used in loop ranking. In the se
ondary stru
ture spe
i�
implementation of the residue-level pairwise potential the potentials are 
al
ulatedbased on frequen
y 
ounts extra
ted from residues of the same se
ondary stru
turestate while ignoring the se
ondary stru
ture state of the 
onta
ting residues. A distan
erange of 3 to 25 Å (∆r = 0.5 Å) turned out to produ
e the best results. The �nalpotential integrated in QMEAN is based on Cβ atoms and uses the se
ondary stru
turespe
i�
 implementation. The 
al
ulation of the residue-level pairwise potentials hasbeen 
arried out as des
ribed by Sippl (see Chapter 2.4.1.1).2.4.1.4 Solvation potentialThe degree of residue burial was approximated by 
ounting the number of intera
tion
enters (Cβ atoms for QMEAN) within a sphere of 9 Å around the given amino a
idin a similar way as des
ribed by Jones [102℄ and in FRST [215℄. The 
uto� of 9 Åused in this work resulted in a slightly better performan
e of the potential than other
uto�s tested (see Results and Dis
ussion, page 3.2.1�). The relative a

essibility wasthen 
al
ulated by dividing the 
ounts by the maximum number of 
ounts observed forthe given amino a
id type in the protein data set. The solvation potential re�e
ts thepropensity of a 
ertain residue for a given solvent a

essibility 
ompared to any otherresidue. The potential has been implemented as des
ribed in se
tion 2.4.1.1.2.4.1.5 Torsion angle potentialThe single residue torsion angle potential re�e
ts the propensity of a 
ertain residuefor a given torsion 
ompared to any other residue. The torsion angles were dis
retisedin 10 degree bins. The 3-residue torsion angle potential des
ribed here is a furtherdevelopment of the single residue torsion angle potential by others [3, 111, 193, 215℄.The des
ription of the lo
al geometry for a 
ertain residue was extended by in
ludingthe torsion of the adja
ent residues. The 
oarseness was in
reased by using 45 degreebins for the 
enter residue and a bin size of 90 degree for the dihedral angles of theneighboring residues. Several alternative bin sizes have been investigated ranging from



2.4 Model quality assessment 6130 degrees to 90 degrees (see Results and Dis
ussion, page 3.2.1�). The identity of theneighbours was not taken into a

ount.2.4.1.6 Agreement termsA term des
ribing the agreement between the predi
ted se
ondary stru
ture of thetarget sequen
e and the observed se
ondary stru
ture of the model as 
al
ulated byDSSP was built. The DSSP output was 
onverted into the 3-state format (helix,sheet, 
oil) as used in EVA [67℄ an automati
 evaluation pipeline for protein stru
turepredi
tion. A 
onsensus se
ondary stru
ture predi
tion approa
h was investigated inthe attempt to in
rease predi
tion a

ura
y. A 
onsensus between PSIPRED [103℄,SSpro [35℄ and ProfSe
 [177℄ was built based on simple majority voting [4℄. Thefra
tion of residues with identi
al predi
ted and observed se
ondary stru
ture stateswas used as a simple quality measure. In the �nal implementation of QMEAN, onlyPSIPRED was used sin
e the 
onsensus of the methods 
urrently in
luded did not leadto an improved performan
e. A similar measure des
ribing the agreement betweenthe predi
ted binary burial status (buried/exposed) as provided by ACCpro [35℄ andobserved solvent a

essibility based on DSSP was implemented. The relative solventa

essibility was 
al
ulated by dividing the solvent a

essibility extra
ted from DSSPby the maximum solvent a

essibility for the given amino a
id type observed in thetraining set. Afterwards, the relative solvent a

essibility was transformed into thebinary 
lassi�
ation based on a 
uto� of 25%. No 
onsensus s
heme was tested in this
ase.2.4.2 Measures for the stru
tural similarity between model andtargetThe traditional measure of expressing the similarity of two protein stru
tures is theRMSD (Root Mean Square Deviation), 
al
ulated after a rigid-body superposition:
RMSD =

√

√

√

√

1

N

i=N
∑

i=1

δ2
i (2.7)



62 Methodswhere δ is the distan
e between two 
orresponding atoms among N pairs of equivalentatoms (usually either Cα atoms, ba
kbone atoms or all atoms).In order to evaluate the quality of the models in the two CASP test sets des
ribed belowthe GDT_TS s
ore was used as an obje
tive measure for the stru
tural similaritybetween model and target. The GDT_TS s
ore was 
al
ulated using the TMs
oresoftware from Zhang and Skolni
k [247℄. GDT_TS is a well-established s
ore usedin the evaluation pro
ess of the last CASP rounds having the advantage of being lesssensitive to lo
al errors in models as 
ompared to the traditional RMSD. GDT (GlobalDistan
e Test) des
ribes the maximum per
entage of residues whi
h 
an be stru
turallyaligned within a de�ned distan
e 
uto�. In GDT_TS 4 in
reasing distan
e 
uto�s areused (x = 1, 2, 4 and 8 Å) and the average of the per
entage aligned residues px is
al
ulated:
GDT_TS =

p1 + p2 + p4 + p8

4
(2.8)For the de
oy sets from the De
oys 'R' us website (see below), the RMSD values asprovided in the sets have been used dire
tly.2.4.3 Data setsIn this se
tion, the data sets used for training (i.e. optimising parameters and weightingfa
tors) and testing (i.e. 
omparison with other methods) are des
ribed.2.4.3.1 CASP6 de
oy set for trainingParameter optimisation as well as the evaluation of weighting fa
tors for the 
om-bined energy fun
tion was performed on the CASP6 set (a des
ription of the CASPexperiment is given in the Introdu
tion, page 19). This set 
onsists of all the modelssubmitted to the 64 a

epted targets of CASP6. In order to in
rease the quality ofthe data set and to redu
e the in�uen
e of random predi
tions or very di�
ult targets,all models having a GDT_TS s
ore of less than 0.2 were removed for training (11,475models). The �nal data set 
onsists of 15,893 models.



2.4 Model quality assessment 632.4.3.2 Standard de
oy sets from De
oys 'R' usThe ability of a s
oring fun
tion to identify the native stru
ture among various de
oystru
tures was investigated and 
ompared to other state-of-the-art tools with the helpof the following three frequently used de
oy sets from the De
oys 'R' us websited [182℄:4state_redu
ed [158℄, latti
e_ss�t [240℄ and LMDS [109℄ (a short des
ription of thede
oy sets 
an be found in Wallner et al. [233℄). The performan
e of the other methodson these de
oy sets has not been re
al
ulated here, but the 
orresponding data weretaken dire
tly from a re
ent publi
ation [215℄. The two quality measures Znat andrank1 used in the results se
tion des
ribe the Z-s
ore of the native stru
ture 
omparedto the ensemble of de
oys and the number of 
ases in whi
h the native stru
ture wasranked �rst in a given de
oy set, respe
tively.2.4.3.3 Mole
ular dynami
s de
oy setThe de
oy set generated by Fogolari and 
o-workers [81℄ was used to estimate theperforman
e on near-native stru
tures. It 
onsists of over 6,000 snapshots from �veindependent mole
ular dynami
s simulations. One simulation started from the nativestru
ture and the other four from minimised 
onformations of the thermo-stable sub-domain from the 
hi
ken villin headpie
e 
onsisting of 36 residues (PDB identi�er1vii). The de
oy set 
an also be downloaded from the De
oys 'R' us website and 
oversRMSD values from 2 to 12 Å. In 
ontrast to the three test sets des
ribed above, thisset 
ontains several near-native 
onformations.2.4.3.4 CASP7 de
oy set: testing model quality assessmentThe CASP7 server models for all 95 a

epted targets were downloaded from theCASP websitee. This is the same data basis used in the blind test for model qualityassessment programs whi
h was part of CASP7. Although all quality predi
tionssubmitted for the quality assessment 
ategory of other groups were available on theCASP website, this data were not used here. Rather, predi
tions were re
al
ulated withdhttp://dd.
ompbio.washington.edu/ehttp://predi
tion
enter.org/
asp7/

http://dd.compbio.washington.edu/
http://predictioncenter.org/casp7/


64 Methodssome well-established model quality assessment programs (MQAPs) downloadable fromthe CAFASP4 websitef. This has the following reasons. First, many of the MQAPsjoining CASP7 have not been published yet and from the abstra
ts submitted it wasmostly impossible to understand how they work. Se
ond, the top performing MQAPsall integrated 
onsensus information in their 
al
ulation, whi
h is not in the s
ope ofthis work. In 
onsensus methods the quality of a 
ertain model is assessed by takinginto a

ount information 
ontained in the ensemble of models. These methods areunable to assess the quality of a single model (as the methods des
ribed here). Third,the data is sometimes di�
ult to 
ompare. Some MQAPs fail to predi
t the modelquality for many servers or have not submitted any predi
tions for some targets.The following model quality assessment programs were used: FRST [215℄, Mod
he
k[162℄, ProQ [233℄, DFIRE [249℄ and RAPDF [184℄. Only server models for whi
hall of the �ve MQAPs were able to return a predi
tion were evaluated resulting in atotal number of 22,420 models over all 95 targets. ProQ has been exe
uted in twodi�erent modes either using se
ondary stru
ture information (provided as a PSIPREDpredi
tion) or not.The 95 targets were divided into the two 
ategories free-modelling (FM) and template-based modelling (TBM) as introdu
ed in the seventh round of CASPg. Sin
e severaltargets are multi-domain stru
tures and the domains 
an sometimes be assigned todi�erent 
ategories, multi-domain targets were assigned to the 
ategory of the mostdi�
ult domain they in
lude (i.e. a target 
onsisting of a FM domain and a TBMdomain was assigned to the FM 
ategory). The �nal division is shown in Table 5.1 inthe Appendix.2.4.4 Evaluation 
riteriaA variety of quality measures have been used in order to 
ompare the performan
eof the di�erent methods. logPB1 and logPB10 are the log probabilities of sele
tingthe highest GDT_TS model as the best model or among the ten best-s
oring models,respe
tively. Suppose the best s
oring 
onformation xi has the GDT_TS rank of Rifhttp://www.
s.bgu.a
.il/~dfis
her/CAFASP4/ghttp://predi
tion
enter.org/
asp7/meeting_do
s/diffi
ulty.html

http://www.cs.bgu.ac.il/~dfischer/CAFASP4/
http://predictioncenter.org/casp7/meeting_docs/difficulty.html


2.4 Model quality assessment 65in n de
oy 
onformations, then the log probability is given by:
logPB1 = log10(

Ri

n
) for logPB10 : Ri = min[R1, . . . , R10] (2.9)Fra
tion enri
hment (F.E.) is the per
entage of top 10% lowest RMSD 
onformationsor highest GDT_TS models among the top 10% best-s
oring stru
tures. In the fra
tionenri
hment 
urves variable 
uto�s are used ranging from 5% to 50%. The enri
hment asde�ned in Tsai et al. (E15%) is 
al
ulated by dividing the number of top 15% highestGDT_TS models found among the top 15% best predi
ted models by the numberobtained in a random sele
tion (15% * 15% * number of stru
tures in the de
oy set).

Znat is the Z-s
ore of the native stru
ture as 
ompared to the ensemble of models.
rank1 and rank10 are the number of targets in whi
h the native stru
ture (or the bestmodel based on GDT_TS, ex
luding the native stru
ture) was found on the �rst rankor among the Top10 predi
tions, respe
tively. GDT_TS loss is the di�eren
e betweenthe GDT_TS s
ore of the best-s
oring model and the best model in the de
oy set.Two kinds of regression 
oe�
ients have been used: Pearson's 
orrelation 
oe�
ient r2and Spearman's rank 
orrelation 
oe�
ient rho.Parameter optimisation for the statisti
al potentials (su
h as distan
e range, bin size,resolution and intera
tion 
enter) was performed on the CASP6 set. In order tomeasure the ability of the statisti
al potential to predi
t the model quality, the Pearson
orrelation 
oe�
ient between the predi
ted model energy and the measured quality interms of GDT_TS was used. A variety of alternative implementations of the statisti
alpotentials were investigated and the best performing torsion angle potential, solvationpotential and pairwise potential are sele
ted based on the 
orrelation 
oe�
ients.The weighting fa
tors for the 
ombined s
oring fun
tion are evaluated by an exhaustivesear
h strategy over reasonable ranges for the di�erent weighting fa
tors. The �nal
ombination is sele
ted based on the maximum 
orrelation 
oe�
ient. Several al-ternative optimisation strategies were investigated. Pearson's 
orrelation 
oe�
ient vsSpearman's rank 
orrelation, energy vs Z-s
ores 
ompared to sequen
e-shu�ed models.Parameters were optimised on a target-spe
i�
 basis (i.e. regressions for all models ofea
h target separately) or on a global basis by maximising the regression over all modelsfrom all targets simultaneously.



66 MethodsThe target-spe
i�
 optimisation was a

omplished by averaging the Pearson's 
orre-lation 
oe�
ient over all targets provided that at least a suitable fra
tion (i.e. 150models whi
h is around 30%) have a GDT_TS higher than 0.2. In this way, 12 of the64 a

epted targets of CASP6 set were ex
luded from the target-spe
i�
 evaluation. Allbut one belong to the novel fold or fold re
ognition 
ategory. The following targets wereex
luded in the target-spe
i�
 optimisation pro
ess (in bra
kets the number of modelswith GDT_TS > 20): T0202 (118), T0206 (94), T0228 (23), T0238 (129), T0242 (139),T0248 (5), T0262 (70), T0272 (4), T0273 (88), T0197 (51), T0198 (104), T0199 (12).This approa
h was used with the intent to redu
e the in�uen
e of very di�
ult freemodelling targets in whi
h most of the groups failed to build a reasonable model. Thesetargets are expe
ted to add no value in the optimisation pro
ess. In 
ontrast to thePearson 
orrelation, the Spearman rank 
orrelation allows to investigate a relationshipwhi
h does not have to be ne
essarily linear. As des
ribed in Pettitt et al. [162℄ Z-s
ores were built 
omparing the s
ore of the model with the s
ores of models aftersequen
e shu�ing (1000 times in this work).2.4.4.1 Statisti
al signi�
an
eIn the target-spe
i�
 assessment, the performan
e of the methods is evaluated byaveraging the results over all targets using a variety of evaluation 
riteria. Thedi�eren
e in the performan
e of two methods on the individual targets is investigatedusing Student's t-test on paired samples. For the quality measures used in this work, aShapiro-Wilk test (using the Gnu R pa
kage) was used in order to analyse whether thes
ores are approximately normally distributed whi
h is a prerequisite for the t-test. For�ve of the quality measures (Pearson 
orrelation 
oe�
ient, Spearman rank 
orrelation
oe�
ient, the two enri
hment measures and Znat) the analysis 
on�rmed that the vastmajority of the data sets 
an be regarded as normally distributed (p-value > 0.05). Ina related work [131℄, whi
h was part of the assessment of model quality in CASP4, ithas been shown that Student's t-test and the Wil
ox signed rank test (whi
h does notrely on a normal distribution of the data) rea
hed the same 
on
lusions.In Student's t-test, the two-sided upper and lower 
on�den
e limits are given by thefollowing equiation:
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µu,l = D ± tcrit(df, c)S√

n
(2.10)where D is the average performan
e di�eren
e of the two methods on the targetsinvestigated and S the standard deviation. tcrit(n − 1, c) is the 
riti
al value from thet-distribution, df is the degrees of freedom whi
h is equal to the number of targetsminus 1 and c is the 
on�den
e level whi
h is 1 minus the signi�
an
e α. A 
on�den
elevel of 95% was used in the two-tailed t-test. A s
hemati
 representation is given inFigure 2.6.

Figure 2.6: Two-tailed t-test on the 95% 
on�den
e level.The null hypothesis states that the two methods perform equally good on the set oftargets based on the given evaluation 
riteria. This hypothesis is reje
ted a

ordingto the Student's t-test if either the upper 
on�den
e limit µu is below zero or the orthe lower 
on�den
e limit µl is positive. In this 
ase one method performs signi�
antlybetter than the other.2.4.5 Lo
al model quality assessmentIn 
omparison to the approa
h used to analyse the quality of entire models, the s
oringfun
tion for loop ranking and for lo
al model quality assessment has been espe
iallyadapted by using a more short-range implementation of the intera
tion potential andby using all-atom instead of residue-level solvation and intera
tion potentials in orderto 
apture more details.



68 MethodsTable 2.5: Di�eren
es in the implementation of the lo
al and global energy fun
tion.s
oring fun
tion term parameter lo
al globalintera
tion potential range 2-10 Å 3-25 Åbin size 0.5 Å 1 Ånumber of atom types 167 (all-atom) 1 (Cβ)solvation potential radius of sphere 6 Å 9 Ånumber of atom types 167 (all-atom) 1 (Cβ)torsion angle potential # of residues 3 3As it 
an be seen from Table 2.4.5, only 
onta
ts within 10 Å are 
aptured in orderto assess to intera
tions with the stru
tural environment. For the task of assessingthe quality of entire models (see Chapter ??) best results are obtained if �intera
tions�between the Cβ atoms separated up to 25 Å are taken into a

ount. In analogy, amore short-range and �ne-grained implementation (
ompared to the model qualityassessment 
ase) has been used for the solvation potential.The di�eren
e in the implementation of the global and the lo
al s
oring fun
tion 
anbe attributed to the di�eren
e of the problems they investigate. In model qualityassessment sometimes very rough models are investigated (e.g. models from ab initiostru
ture predi
tion or fold re
ognition) and therefore a 
oarse-grained implementation(i.e. a bin size of 1 Å and a residue-level intera
tion potentials) seems to be moreappropriate. Sin
e only Cβ atoms are used, longer atomi
 distan
es have to be
onsidered in order to 
apture all dire
t intera
tions (e.g. of two long side
hainspointing toward ea
h other). Furthermore, a global s
oring fun
tion attempts toassess the �tness of every residue in the sequen
e to the fold provided by the model.Therefore a pairwise long-range statisti
al potential should des
ribe not only dire
tintera
tions to surrounding atoms but to some extent also �mediated intera
tion� toatoms being further away in spa
e. In other word, typi
al distan
es between pairs ofatoms observed in frequently o

urring, stru
turally 
onserved folds or superse
ondarystru
ture elements are likely to in�uen
e the energy fun
tion and this signal seems tobe useful for assessing the quality of models. On the other hand, lo
al energy fun
tions,should only take into a

ount 
lose, dire
t 
onta
ts and therefore the potentials wererestri
ted on short-range intera
tions.



2.4 Model quality assessment 69For the predi
tion the lo
al model quality, the energy of ea
h residue is 
al
ulatedusing the three statisti
al potentials des
ribed above. In order to smooth the energypro�le not only the 
entral residue but also neighbouring residues in a sliding windoware taken into a

ount. Di�erent window sizes have been investigated ranging from1 (i.e. only the 
entral amino a
id) to 11 (i.e �ve residues on both sides). For thean
hor group predi
tion task in whi
h it is tried to identify the region where thetarget stru
ture begins to di�er from the stru
ture of the template, also asymmetri
sliding windows have been investigated. (E.g. for the identi�
ation of the N-terminalan
hor groups, the sliding window 
overs the 
entral residue and some residues in N-terminal dire
tion (away from the lo
ation of the gap). If the sliding window 
ontainsstru
turally unde�ned positions, the following workaround is used. For gaps (i.e.insertions) the average energy of the pre
eding and the following residue is used andat the 
hain end the energy of the last residue is taken.A simple strategy was used in order to 
ombine the three statisti
al potential termsin a �nal s
ore. For ea
h of the three terms, the lo
al energies are normalised by
al
ulating Z-s
ores over the entire model. A 
ombined lo
al s
ore is then built bysumming up the three Z-s
ores for ea
h position in the model. The Z-s
ores are builtin order to 
ope with the di�erent magnitudes of the three terms and to allow a
ombination with other features su
h as sequen
e 
onservation, se
ondary stru
ture
ontent, hydrophobi
ity et
. It should be mentioned here that this approa
h onlyrepresents a �rst approximation and that more advan
ed strategies (e.g. ma
hinelearning algorithms) should be used in order to optimise the 
ombination of the terms.A 
omprehensive test set should be used for the evaluation whi
h was not in the s
opeof this work. The aim was to investigate whether the statisti
al potentials developedfor the quality assessment of entire models and for loops ranking 
an be used for theanalysis of the lo
al model a

ura
y.2.4.6 Analysis of gaps and the lo
ation of an
hor groupsA non-redundant set of homologous pairs of proteins from the HOMSTRAD database[142℄ is used for the analysis of the distribution of gap lengths (i.e. the size ofinsertions and deletions) o

uring in typi
al modelling situations. A �ltered test set of



70 Methodsinsertions and deletions (see below) has been built in order to investigate the stru
turalenvironment on both sides of the gaps for the lo
ation of suitable an
hor groups andseveral approa
hes for the predi
tion of an
hor groups based on the analysis of thelo
al model energy are des
ribed.2.4.6.1 HOMSTRAD test setHOMSTRAD (HOMologous STRu
ture Alignment Database) [142℄ is a 
urateddatabase storing stru
tural alignments of members of the same homologous proteinfamily. The version from May 2007 
ontaining 1032 protein families was used in orderto generate a non-redundant set of pairs of homologous proteins representing realisti
modelling situations (i.e. target-template pairs with a maximum sequen
e identity of40%). A similar pro
edure has been used in our lab in the past in order to build a testset for an
hor group evaluation [121, 238℄. Beside other reasons (e.g. high sequen
e
uto� of 50%, presen
e of very fragmented alignments, no information about resolutionof the proteins and 
hain identi�er), this test set was not used here be
ause it is basedon the PDB release 8/96. Sin
e then, the size of the PDB has grown by roughly afa
tor 10 whereas the number of di�erent SCOP superfamilies [148℄ in
reased by abouta fa
tor 4 (information from the PDB websiteh). The following quality �lters wereapplied in order to build the test set:
• Only families 
ontaining exa
tly 2 members are used (alignments of families withmore members are based on multiple stru
tural alignments, whi
h often di�erfrom the pairwise ones).
• A maximum pairwise sequen
e identity of 40% is used, representing a realisti
modelling situation.
• Both sequen
es need to be at least 80 residues long.
• Both stru
tures need to be resolved by a resolution < 3.0 Å.
• Only stru
tures determined by X-ray 
rystallography are used.hhttp://www.r
sb.org/pdb/stati
.do?p=general_information/pdb_statisti
s/index.html&

http://www.rcsb.org/pdb/static.do?p=general_information/pdb_statistics/index.html&


2.4 Model quality assessment 71This resulted in a �nal non-redundant set of 257 homologous pair of proteins superim-posed on ea
h other. Based on the stru
ture-based sequen
e alignment all gaps (i.e.insertions and deletions) are identi�ed. In order to build a realisti
 test set (
alled�an
hor group test set� in the following) for the analysis of the stru
tural 
onsequen
esof insertions and deletion as well as for the analysis of the lo
ation of suitable an
horgroups, the following rules are applied:
• Gaps 
lose to the 
hain ends (15 residues apart) are not used sin
e in this 
ase oneof the an
hors is missing (i.e. 
an most probably not be pla
ed in a stru
turally
onserved region.
• In order to investigate the stru
tural e�e
t of a single gap, no further gap within10 residues along the sequen
e is allowed. In the modelling 
ase, two 
lose(separated by a few residues) gaps would be merged to a single (longer) gap.
• Gaps within se
ondary stru
ture elements are not 
onsidered.
• Only gaps in loop regions having se
ondary stru
ture elements within 10 residueson both sides are taken into a

ount. This re�e
ts a typi
al loop modellingsituation. Usually predi
tors pla
e the an
hor groups 
lose to the ends of these
ondary stru
ture elements. The following de�nition for se
ondary stru
tureelements is used for the an
hor group test set: helix 
onsist of at least 2 residuesin helix 
onformation (a

ording to DSSP) and strands need to have a minimallength of 3 residues.
• The region should be identi�ed where target and template stru
ture begin todi�er. Therefore, at least three 
onse
utive residue pairs with ba
kbone RMSDbelow 1.8 Å need to be present on both sides (in analogy to Lessel und S
homburg[121℄).
• Only gaps smaller than 5 residues are in
luded in the �nal test set. Approxi-mately three-quarter of the insertions and deletions o

uring in typi
al modellingsutuations are below 5 residues (see Results and dis
ussion on page 156).The �nal an
hor group test set 
ontains 105 insertions and 124 deletions.



72 Methods2.4.6.2 An
hor group predi
tionBased on the an
hor group test set des
ribed above, the regions on both sides of thegaps (i.e. 10 residues in N- and C-terminal dire
tion) are analysed 
on
erning thelo
ation of suitable an
hor groups. The following set of simple rules has been used forthe predi
tion of the an
hor groups and the RMSD between target and template atthe given positions as well as the resulting gap length are derived:
• �x distan
e (1-4 residues) from gap on both sides.
• �x depth in the surrounding se
ondary stru
ture element (1-3 residues inside theSSE),
• as referen
e for the �optimal� an
hor groups, the lo
ation of minimal RMSDbetween target and template is used as well as the �rst position (starting fromthe gap) where the RMSD drops below 2 Å or 1.5 Å, respe
tively.The an
hor group predi
tion based on these simple 
riteria is 
ompared to a predi
tionwhi
h takes into a

ount the lo
al model energy around the gaps. For this purpose,raw models are generated based all alignment used in the an
hor group test set (i.e.by repla
ing the side
hains and by removing residues in the 
ase of deletions). Severalpossible approa
hes for the predi
tion of optimal an
hor groups based on the inspe
tionof the lo
al energy pro�le are investigated (see Results and Dis
ussion, Chapter 3.4.2).In order to analyse the 
orrelation between lo
al stru
tural deviation (between targetand template) and lo
al energy of the raw model, the S-s
ore has been used as inseveral related publi
ations [68, 195, 234, 247℄. In 
ontrast to the RMSD, the S-s
orehas an upper limit for the 
ontribution of individual atoms. This makes sense in thegiven appli
ation, sin
e two residues with an 5 Å are as ina

urate as a pair being 10 Åapart.The S-s
ore is given by the following formula:

S − score =
1

1 + ( di

d0
)2

(2.11)
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e between two atoms (here the Cα atoms) and d0 is the distan
ethreshold whi
h has been set to √
5 as in the other approa
hes. The S-s
ore rangesfrom 1 (for a perfe
t agreement between target and template) to 0 (in�nite distan
e).



74 Methods2.5 Implementation

Figure 2.7: Most important C++ 
lasses of the modelling pipeline.The modelling pipeline presented in this work has been implemented in C++. Themost important 
lasses and their inter
onne
tions are shown s
hemati
aly in Figure2.7.The 
entral 
lass Model 
ombines an instan
e of the 
lasses Alignment and Stru
tureand is 
onne
ted to the loop modelling 
lass LoopPredi
tion. At any time of themodelling pro
ess Model ensures the 
orre
t mapping of amino a
id positions in thealignment, the stru
ture of the template and the resulting model and guides the initialmodel building pro
ess based on the given template stru
ture and the alignment (i.e.the mapping of the target sequen
e on the template ba
kbone).The a
tual 
hanges of the template stru
ture in the modelling pro
ess are performedsolely in the 
lass Stru
ture. These 
hanges in
lude: mutations (
hange the identity ofa residue and remove its side
hain), prote
tion of residues (mark residues su
h that their
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onformation is not 
hanged in the side
hain building routine), deletion and insertionof residues in the template stru
ture, side
hain modelling (using SCWRL [31℄), et
.The 
lass Stru
ture itself inherits from Stru
tureBase whi
h is responsible for loadingand saving PDB-�les, for the 
orre
t assignment of properties su
h as torsion angles,se
ondary stru
ture and solvent a

essibility information from DSSP [107℄. It providesmethods for the sele
tion of atoms using the CCP4 Coordinate Library [114℄. Thesele
tion of atoms within a sphere is used in the derivation and appli
ation of thepairwise statisti
al potential and the solvation potential as well as in the 
lash 
he
kroutine in loop modelling. As 
ompared to Stru
tureBase, the 
lass Stru
tureadditionally 
ontains all methods for the energy 
al
ulation of single residues, segments(as needed in loop predi
tion) and whole stru
tures based on the statisti
al potentialsdes
ribed in this work.The 
lass Training is used to derive the frequen
ies of stru
tural features from a set ofprotein stru
tures and 
onverts them in potentials of mean for
e as des
ribed in Chapter2.4.1. The data is stored in text �les. All 
lasses using the statisti
al potentials needto in
lude the 
lass Potentials whi
h loads the data from the text �les and storesthem in internal datatyps.The 
lass LoopPredi
tion 
ontains the loop modelling routine with an interfa
e to thefragment database using the MySQL C-APIi based on the mysql
lient library. TheFragmentor 
lass performs the fragmentation of a given non-redundant set of proteinstru
tures and the storage of the data in the MySQL database. The fragmentationpro
ess is des
ribed in Chapter 2.3.1.The 
lass Superposition allows to superimpose two stru
tures either in a sequen
e-dependent manner by parsing the output of the program TMs
ore [247℄ or in asequen
e-independent manner by using the algorithm of Lessel and S
homburg [121℄.In both 
ases, the distan
es of the 
orresponding residues is 
al
ulated. For the laterapproa
h, additionally a web server with the name Protein3D�t has been implementedj.Multiple main-�les have been implemented resulting in di�erent exe
utables whi
hprovide a

ess to di�erent fun
tionalities of the modelling pipeline su
h as modellingihttp://dev.mysql.
om/do
/refman/5.1/en/
.htmljhttp://www.protein3dfit.uni-koeln.de

http://dev.mysql.com/doc/refman/5.1/en/c.html
http://www.protein3dfit.uni-koeln.de


76 Methodsas a whole, loop predi
tion and model quality assessment (global or lo
al). In all 
ases,the �-h� option displays an overview on the fun
tionality of the given exe
utable.The modelling pipeline itself requires an alignment and a template stru
ture as input(optionally an output dire
tory and the path to the se
ondary stru
ture and solventa

essibility predi
tion �les 
an be provided). After exe
ution, the user is guidedthrough the modelling pro
ess in an intera
tive manner. The initial modelling steps(template dete
tion and alignment building) are performed with separate Python andPerl s
ripts.



3 Results and Dis
ussion
The Results and Dis
ussion 
hapter is stru
tured as follows: In the �rst se
tion,the results from CASP7 experiment are used as a basis to analyse and dis
uss theperforman
e of the modelling pipeline established in this work. The se
tion startswith a brief re
apitulation of the steps involved in homology modelling. In the nextse
tion (page 108�), the s
oring fun
tion used for model quality assessment is des
ribedin detail sin
e the two subsequent se
tions both rely on the energy fun
tion termsintrodu
ed there. Afterwards, the general performan
e of the loop predi
tion routineis investigated and 
ompared to several other loop predi
tion methods (page 135�).The last se
tion deals with the lo
al analysis of model quality and a statisti
al analysisof the regions around gaps serving as potential an
hor groups for the loop modellingpro
ess is presented (page 153�).3.1 CASP7 results3.1.1 The 
omparative modelling pipelineThe basi
 steps in homology modelling or 
omparative modelling are template identi�-
ation and sele
tion, target-template alignment and model building in
luding loop andside 
hain predi
tion. A s
hemati
 representation of a typi
al 
omparative modellingwork�ow is given in Figure 2.1 at the beginning of the Methods. Usually multiplemodels are built from whi
h the �nal model is sele
ted using some kind of energy ors
oring fun
tion (typi
ally 
alled model quality assessment program). In an optionalre�nement step it 
an be tried to remove lo
al errors in the model in order to 
ome
loser to the target.The modelling pipeline as well as an early version of the QMEAN s
oring fun
tion[16℄ for model quality assessement (see Chapter 3.2) have been re
ently tested at theseventh round of 
ommunity-wide CASP experiment. The goal of CASP is to obje
tivlyassess the abilities and weaknesses of 
urrent protein stru
ture predi
tion methods (see



78 Results and Dis
ussionIntrodu
tion on page 19 for more details).This se
tion starts with the des
ription of the overall performan
e of the pipeline atCASP7 followed by a detailed analysis of the results. Sin
e an extensive evaluation ofthe performan
e of the �rst 3 steps in the modelling pipeline (i.e. template identi�-
ation, target-template alignment and model building) would go beyond the s
ope ofthis work, the performan
e of the methods is dis
ussed on the basis of some sele
tedexamples. The results are 
hosen in the attempt to highlight strengths and limitationsof the methods used in the pipeline and to dis
uss possible future improvements.3.1.2 Overview on the resultsThe CASP experiment was used as a testing ground for the pipeline established duringthe �rst two years of this proje
t. Setting up a 
omplete 
omparative modelling pipelinewas a basi
 prerequisite for dealing with loop predi
tion and model quality assessment.Sin
e we joined CASP for the �rst time, our primary intention was to investigatewhether it is possible to build reasonable models with the pipeline and whether thes
oring fun
tion is able to dis
iminate between good and bad models in the task ofmodel quality assessment. The results ex
eeded all our expe
tations: several topranking models have been built (rank 2, 4 and 6 of over 130 predi
tions) and the s
oringfun
tion was among the top-ranking model quality assessment programs [113, 169℄. Theresults are a

essible from the o�
ial CASP websitea.During the predi
tion season of approximately 3 months, the parti
ipating groups 
ouldsubmit up to 5 models for ea
h of the 95 a

epted targets. The predi
tors themselvesrank the 5 models a

ording to their belief whi
h model is 
losest to the target stru
ture(denoted as model 1 ). Our group (i.e. the author of this work) submitted a totalnumber of 68 models to the tertiary stru
ture predi
tion 
ategory and 65 predi
tionsto the model quality assessment 
ategory. Due to the limitations in time and resour
esnot more than 18 targets 
ould be pro
essed. Table 3.1 provides an overview on theranking of all 18 models designated as model 1 (i.e. the model assumed to be 
losestto native).ahttp://predi
tion
enter.org/
asp7/

http://predictioncenter.org/casp7/


3.1 CASP7 results 79Table 3.1: Overview on the CASP7 results of the 18 models designated as model 1.model quality fra
tion 
ommenttop10 models 3 of 18 rank 2, 4 and 6 of over 130 parti
ipating groupsabove average 11 of 18 above the 
ommunity average at CASP7below average 4 of 18 bad performan
e be
ause too few residues modelledIf a target 
onsists of more than one domain, the assessors additionally analysed thequality of ea
h domain (denoted with subs
ript D1 and D2 in the �rst 
olumn of Table3.2). The quality of most of the predi
ted models was above the 
ommunity averageand three of them were among the top 10 predi
tions for model 1. The best modelswere on rank 2, 4 and 8 of more than 130 parti
ipating groups. The bad results forthe remaining 4 models 
an be attributed to the low target 
overage of these models(i.e. not the full target has been modelled). In the CASP assessment, the models areranked a

ording to the GDT_TS s
ore (see de�nition on page 62), whi
h re�e
tsthe average per
entage of residues alignable below di�erent distan
e thresholds. Asa 
onsequen
e, models whi
h do not 
over the entire target sequen
e automati
allyget a lower s
ore, sin
e the missing residues are 
ounted as �not alignable�. The 4bad models mentioned above all have some residues missing at the 
hain ends (target
overage 87.1% to 98.5%). A 
loser inspe
tion of the models revealed that two of thesemodels were a
tually very good in terms of all-atom RMSD (rank 14 and 21). A moredetailed analysis follows in Chapter 3.1.5 with a ranking based on the all-atom RMSDfor all 18 targets (see Table 3.4). At the beginning of the CASP7 predi
tion season,our pipeline was not yet able to model 
hain ends. At a later point of time (for modelsafter target T0345), a modi�ed version of the loop modelling proto
ol was used in orderto model 
hain ends.As it 
an be seen from Table 3.2, the 18 targets for whi
h models have been submitted
over a wide range of modelling di�
ulty as expressed by the sequen
e identity betweenthe target sequen
e and the template used to build the model. Two of the three easymodelling 
ases with sequen
e identity above 50% 
ould be modelled with all-atomRMSD around 1.5 Å. The three outstanding predi
tions mentioned above (targetsT0341 [domain 1℄, T0373 and T0379) are highlighted in bold and represent di�
ultmodelling targets with a sequen
e identity around 20%. The results for these threetargets are dis
ussed in detail later. The last two 
olumns in Table 3.2 show the ranking



80 Results and Dis
ussionof the best model (out of the maximum �ve models submitted per target) 
ompared toall models of all predi
tors. As it 
an be seen, the best models are 
onsistently betterthan average over all targets.Table 3.2: Detailed analysis if the quality of the models submitted to CASP7.Target %id
a GDT_TS RMSDb %cov


 rank1
d %rank rankall

e %rankT0303 21.8 73.89 3.4 100 21/128 16.41 35/482 7.26
T 0303D1 83.84 2.45 100 18/128 14.06 41/482 8.51
T 0303D2 72.4 4.1 100 31/128 24.22 43/482 8.92T0334 55 89.97 2.89 99.8 55/131 41.98 195/488 39.96T0340 58.7 90.85 1.53 96 101/145 69.66 244/541 45.1T0341 22.8 73.31 2.99 95 34/133 25.56 112/508 22.05
T 0341D1 78.38 2.25 92.6 66/133 49.62 237/508 46.65T0341D2 81.97 3.35 100 6/133 4.51 28/508 5.51T0345 62.2 94.19 1.58 98.4 81/131 61.83 231/483 47.83T0359 38.1 82.78 3.09 97.8 51/145 35.17 156/543 28.73T0360 16.3 67.01 5.77 100 29/136 21.32 89/502 17.73T0362 21.2 72.4 4.05 94.4 80/139 57.55 114/534 21.35T0364 16.7 68.37 3.26 87.1 72/137 52.55 197/528 37.31T0370 20.1 63.88 3.7 88.2 45/131 34.35 103/514 20.04T0371 25.5 59.1 3.98 93.6 62/130 47.69 214/511 41.88
T 0371D1 72.69 2.99 88.9 67/130 51.54 236/511 46.18
T 0371D2 66.73 3.58 100 29/130 22.31 84/511 16.44T0373 19.7 68.58 3.84 100 2/138 1.45 13/525 2.48T0374 22.5 66.56 4.18 96.2 39/144 27.08 112/547 20.48T0375 17.2 62.25 4.31 97 41/134 30.6 133/515 25.83T0376 24.3 67.16 3.79 99 53/131 40.46 173/522 33.14T0379 20.2 68.01 4.18 100 4/135 2.96 18/516 3.49
T 0379D1 78.22 3.35 100 4/135 2.96 13/516 2.52
T 0379D2 66.41 4.6 100 32/135 23.7 85/516 16.47T0380 24.8 73.77 3.07 95.8 58/138 42.03 97/535 18.13T0384 18.2 64.53 4.46 98.7 49/135 36.3 171/524 32.63aPer
ent sequen
e identity between target and template.bAll-atom root mean square deviation.
Fra
tion of target residues present in the model.dRank of model 1 among all other models designated as model 1.eRank of the best model (of maximum 5 submitted) among all models from all groups.As mentioned in the beginning, the CASP experiment was used as a testing ground inorder to identify bottlene
ks in the predi
tion pipeline and to 
ompare the performan
ewith other methods. Even during the CASP predi
tion season the pipeline was
onstantly improved and new features were added (e.g. the ability to model 
hainends where only one an
hor group is present). This, in fa
t, 
ompli
ates the evaluation
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ess but enormously pushed the whole proje
t. The main purpose of the followingse
tions is to highlight what went right in the di�erent modelling steps and where isroom for improvement. The lessons learnt during CASP and after CASP, when theevaluation of the assessors was available, will be addressed in detail.3.1.3 Template identi�
ationAs des
ribed in Methods (see se
tion 2.1.2), templates are identi�ed using the PDB-BLAST proto
ol whi
h uses a sequen
e pro�le (generated by PSI-BLAST) representingthe protein family of the target protein in order to s
an the PDB for possible templates.In Figure 3.1, an extra
t of the PSI-BLAST output (�rst 10 hits) for the CASP7target T0288 is shown as an example. The query sequen
e, a protein involved insignaling, 
onsists of 93 amino a
ids and represents a target of the Stru
tural Genomi
sConsortium.
Score    E

Sequences producing significant alignments:                          (bits) Value

1Z87A 263 NMR NA NA NA Alpha-1-syntrophin <SWS SNA1_MOUSE> [MUS ...    95   1e-20
1UM7A 113 NMR NA NA NA synapse-associated protein 102 <GB BAA865...    92   7e-20
1QAVA 90 XRAY 1.90 0.208 0.259 ALPHA-1 SYNTROPHIN (RESIDUES 77-1...    88   1e-18
2FNEA 117 XRAY 1.83 0.194 0.243 Multiple PDZ domain protein <SWS...    88   1e-18
2FNEB 117 XRAY 1.83 0.194 0.243 Multiple PDZ domain protein <SWS...    88   1e-18
2FNEC 117 XRAY 1.83 0.194 0.243 Multiple PDZ domain protein <SWS...    88   1e-18
1TP3A 119 XRAY 1.99 0.233 0.296 Presynaptic density protein 95 <...    88   2e-18
1TP5A 119 XRAY 1.54 0.193 0.229 Presynaptic density protein 95 <...    88   2e-18
1TQ3A 119 XRAY 1.89 0.238 0.296 Presynaptic density protein 95 <...    88   2e-18
1BE9A 119 XRAY 1.82 NA NA PSD-95 <SWS DLG4_RAT> [RATTUS NORVEGICUS]    87   3e-18Figure 3.1: Extra
t of the PSI-BLAST output for target T0288 of CASP7.The output is stru
tured as follows (from left to right): PDB idenit�er in
luding 
hainidenti�er, number of amino a
ids, experimental method (NMR spe
tros
opy or X-RAY
rystallography), resolution, R value, R free value, des
ription of the protein and �nallybit s
ore and E-value.In order to de
ide whi
h template(s) to 
hoose, the E-value, re�e
ting the reliability ofthe hit, is the most valuable 
riteria. Sin
e BLAST [5℄ (Basi
 Lo
al Alignment Sear
hTool), as the name suggests, only produ
es lo
al alignments or mat
hes, the 
overageof the target by the sele
ted template has to be 
he
ked. Templates with low E-value
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ussionbut 
overing only a short fra
tion of the target are of little pra
ti
al value (at least as asingle template, but possibly in 
ombination with others). In the presen
e of a varietyof possible 
andidates, the quality of the template stru
ture should be investigated byanalysing resolution, R value and unresolved residues in the stru
ture (see des
riptionof experimental methods in the Introdu
tion on page 13). In our pipeline, 3-5 templatestru
tures are manually sele
ted based on the 
riteria des
ribed above.For many template-based modelling targets from CASP7, a simple BLAST sear
hagainst the database of sequen
es from PDB stru
tures is su�
ient to dete
t suitabletemplates. But in some 
ases, BLAST is not sensitive enough to dete
t the homologyas show exemplarily for target T0360 (141 amino a
ids). In Figure 3.2 the more orless random hits (E-value ≈ 1) identi�ed by BLAST 
annot be used as templates. Aninspe
tion of the 
orresponding alignment reveals that only approximately one-thirdof the query sequen
e are 
overed.
Score    E

Sequences producing significant alignments:                         (bits) Value

2GLFD 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida...    29   0.99
2GLFC 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida...    29   0.99
2GLFB 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida...    29   0.99
2GLFA 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida...    29   0.99

Query: 12  KSAVQTMSKKKQTEMIA----DHIYGKYDVFKRFKPLALGIDQDLIAALPQYD 60
K AV+T   K   EM      D + G+ +V   F P  +G+D+ LI A  Q D

Sbjct: 198 KEAVKTNVLKILNEMYGITEEDFVSGEIEVVPAFSPREVGMDRSLIGAYGQDD 250Figure 3.2: Hits identi�ed by a simple BLAST sear
h for target T0360.PDB-BLAST on the other hand identi�es one temnplate with a reasonably good E-value for target T0360 whi
h 
overs the whole target (Figure 3.3).
Figure 3.3: Hits identi�ed by a PSI-BLAST sear
h for target T0360.
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ording to the evaluation of the CASP assessors (see Figure 3.4), the templateidenti�ed by PDB-BLAST (1dvo) turned out to be the best available template (i.e.the template 
losest to the target as expressed by RMSD and LGA-s
ore). LGA(Lo
al/Global Alignment) is a standard tool in the CASP assessment and analyses thelo
al and global stru
tural similarity between two stru
tures. Based on the stru
turalsuperposition, the distan
e of the 
orresponding residues (a

ording to the sequen
e)in target and model are analysed and de�ned as 
orre
tly aligned if they meet a
ertain distan
e threshold (here: Cα-distan
e below 5 Å). The LGA-s
ore re�e
ts theper
entage of alignable residues among those of the whole target.As it 
an be seen from Table 3.3, in at least 4 
ases BLAST 
ould not dete
t a suitabletemplate for building a model. For the 3 targets marked with yes in bra
kets, thetemplate 
ould be identi�ed but only with an E-value > 10−3.The PDB-BLAST proto
ol not only identi�es more templates as 
ompared to a simpleBLAST but also identi�es them with a 
learly lower E-values. With PDB-BLAST,the �real" templates get 
onsiderably lower E-values than the apparently random hitswhereas this is often not the 
ase for BALST.For hard template-based modelling targets (i.e. when only very remote homologoustemplates or only analogues are available), pro�le-to-sequen
e based homology de-te
tion methods su
h as PDB-BLAST rea
h their limitation. In this 
ase, moresensitive pro�le-pro�le or HMM-HMM sear
h methods have to be applied. Threading

Figure 3.4: Coverage of the target T0360 by the top 10 templates [115℄.
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ussionTable 3.3: Template dete
tability by a simple BLAST run among the 18 pro
essedtargets. target % sequen
e identity BLAST dete
tableaT0303 21.8 yesT0334 55.0 yesT0340 58.7 yesT0341 22.8 yesT0345 62.2 yesT0359 38.1 yesT0360 16.3 noT0362 21.2 (yes)T0364 16.7 noT0370 20.1 noT0371 25.5 yesT0373 19.7 (yes)T0374 22.5 noT0375 17.2 (yes)T0376 24.3 yesT0379 20.2 yesT0380 24.8 yesT0384 18.2 yesa(yes): Only templates with E-value > 10−3 are dete
ted.algorithms, asseessing the 
ompatibility of the sequen
e to folds in a fold library, 
anbe used in order to dete
t possible analogous folds in the absen
e of homology (seese
tion �fold re
ognition� in the Introdu
tion on page 20).If no signi�
ant hits 
an be identi�ed with PDB-BLAST, fold re
ognition serverssu
h as HHPREDb [204℄ or 3D-PSSM
 [110℄ 
an be 
onsulted. The probably beststarting point is the BioInfoBank meta serverd whi
h provides a

ess to various foldre
ognition servers and translates the 
olle
ted information (i.e. identi�ed templatesand 
orresponding alignments) into a uniform format.As advan
ed template dete
tion methods require a lot of time and resour
es, ahierar
hi
al approa
h for template dete
tion is advisable, espe
ially for automati
bhttp://toolkit.tuebingen.mpg.de/hhpred
http://www.sbg.bio.i
.a
.uk/~3dpssm/dhttp://meta.bioinfo.pl

http://toolkit.tuebingen.mpg.de/hhpred
http://www.sbg.bio.ic.ac.uk/~3dpssm/
http://meta.bioinfo.pl


3.1 CASP7 results 85servers:
• �rst try BLAST (sequen
e-to-sequen
e). If no suitable template has beenidenti�ed, use
• PDB-BLAST (pro�le-to-sequen
e),
• otherwise, use advan
ed fold re
ognition methods (pro�le-pro�le and HMM-HMM, respe
tively)It should be noted here that espe
ially in the presen
e of very remote homologues, the
overage of the target sequen
e with respe
t to the template stru
ture is usually verylow whi
h makes it di�
ult to build a reasonable model based on a single template. Inthis 
ase, the 
ombination of multiple templates potentially leads to better models.Although being the se
ond best model submitted to CASP7, our model 1 for targetT0373 
ould have been further improved by 
ombining two templates. The top s
oringmodel has been built based on template 1s3j_A (i.e. PDB identi�er 1s3j, 
hain A) andshows a very good overall quality ex
ept for the N-terminus as shown in Figure 3.5a). The thi
k tube represents the native stru
ture of the target and the thin tube themodel. The regions 
olored in green mark 
orresponding residues in target and modelwhi
h are below a 
ertain distan
e threshold (here: Cα-distan
e below 5 Å). Theother regions are either in
orre
t be
ause of alignment errors or in
orre
t modelling.Alignment errors are dis
ussed in the next se
tion.Figure 3.5 b) shows our se
ond best model whi
h has been built with template 1jgs_A.The model 
overs perfe
tly the N-terminal 
hain end whi
h 
ould not be a

uratelymodelled with the �rst template. It be
omes apparent, that a 
ombination of bothtemplates 
ould lead to a 
onsiderably better model 
overing both 
hain ends perfe
tly.In a future version of the modelling pipeline, the ability to use information frommultiple templates for one model should be implemented. Due to the obje
t-orientedimplementation of the software, this 
an be done with minor e�ort. The di�
ultywhi
h then arises is to de
ide whi
h region to use from whi
h template. Sin
e the
ombination of multiple templates was not in the s
ope of this work, the models are
urrently built based on one template whi
h represents a reasonable approa
h for manytargets.
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a) template 1s3j b) template 1jgs

N-terminus

C-terminus

N-terminus

C-terminus

Figure 3.5: Two models for T0373 built based on di�erent templates illustratingthe potentials improvement possible by 
ombining multiple templates [115℄.3.1.4 Target-template alignmentAs des
ribed in Methods (see se
tion 2.1.3), the alignments between the target sequen
eand the template are generated with a pro�le-pro�le alignment proto
ol. The alignmentalgorithm has been optimised as part of the proje
t thesis of Os
ar Bortolami andshowed a 
omparable performan
e in 
omparison to other state-of-the-art alignmentprograms (data not shown). As mentioned in the Introdu
tion, alignment errors arestill, beside loop predi
tion, the major sour
e of errors in 
omparative modelling. Inthis work, the performan
e of the alignment algorithm is evaluated qualitatively basedon a detailed inspe
tion of all our models submitted to CASP7 and the 
orrespondingalignments. As an example, the alignment shift in target T0341 is des
ribed in moredetail in order to point out the stru
tural 
onsequen
es of alignment errors.Analysing the alignment quality of the models submitted to CASP7 is not a trival task.Sin
e only the �nal models are submitted and not the 
orresponding alignments (whi
hwould be di�
ult to evaluate, if multiple templates are used), the assessors �
al
ulated�the alignments quality indire
tely by 
omparing the model with the 
orrespondingexperimental stru
ture. The following pro
edure was used: Target and models were
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Figure 3.6: Alignment quality strip 
hart for target T0375 [115℄.stru
turally superimposed in a sequen
e independent manner using the LGA algorithm[244℄. The alignments based on the stru
tural superposition are subsequently rankeda

ording to the per
entage of 
orre
tly aligned residues (Cα-distan
e below 5 Å)among those of the whole target. Residues not present in the model are de�ned as notaligned. This makes it di�
ult to de
ide based on a single quality number whethera 
ertain alignment s
ored worse be
ause of alignment errors or just be
ause of somemissing residues in the model. Beside alignment errors, lo
al model errors 
an arise ifstru
turally variable regions (mainly loops) of the template have not been re-modelledor have been modelled in
orre
tly, respe
tively. These errors 
annot be distinguishedfrom alignment errors without knowledge of the alignment and the 
orrespondingtemplates used.Nevertheless, the alignment quality strip 
harts (see Figure 3.6) as provided by theCASP assessors are useful means in order to 
ompare models and identify regions oferrors. Regions in the model with `
orre
tly aligned residues are marked in green.Regions 
olored in yellow and red highlight residues of the model whi
h are, based onthe superposition, shifted with respe
t to the position in the experimental stru
ture,with yellow for shifts within 4 residues and red for shifts greater than 4 residues.
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ussionAlignment errors are a 
onsequen
e of miss-pla
ed gaps, e.g. if a long gap should besplitted into two shorter ones. As a 
onsequen
e, in the region between the gaps, theresidues of the model are shifted relative to the real position in the model (i.e. thetarget residues are mapped on the wrong region of the template ba
kbone).In the post-evaluation of the CASP models, the following pro
edure is used in orderto identify alignment errors:
• The alignment quality strip 
harts are inspe
ted in order to identify regions ofstru
tural divergen
e between target and model (see Figure 3.6).
• In these regions, the alignment used to build the model is 
ompared to a stru
turalalignment between target and template in order to identify possible di�eren
esin the gap pla
ement.
• The stru
tural superposition of target and model is used in order to determinethose regions of the model, whi
h are in
orre
t be
ause of alignment shifts and notas a 
onsequen
e of wrong loop modelling or stru
tural divergen
e between targetand template (i.e. stru
turally variable regions, whi
h have not been remodelled).
• Alignment shifts appear as regions in the stru
tural superposition where theba
kbone of model and native stru
ture 
oin
ide (i.e. this part origines from astru
turally 
onserved region of the template) but the 
orresponding sequen
e isshifted (i.e. the residues 
losest in spa
e in the superposition are not identi
al).A detailled inspe
tion of all our models submitted to CASP7 revealed that thealignments are generally very a

urate and worse alignment s
ores 
ompared to theother groups, 
an be mostly attributed to either a low target 
overage (i.e. 
hainends have not been modelled) or ina

urate loop predi
tion (e.g. di�
ult long loopswhi
h 
ould not be modelled a

urately, non-
onserved loops whi
h should have beenremodelled).For the following targets, alignments error 
ould be identi�ed (in bra
kets the sequen
eidentity between target and template): T0341 (22.8%), T0364 (16.7%), T0373 (19.7%),T0374 (22.5%), T0375 (17.2%), T0376 (24.3%). All these targets represent di�
ultmodelling 
ases as re�e
ted by the sequen
e identity between target and template being
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Phe 102

Gln 87

missing
deletion

Figure 3.7: Superposition of model and target T0341: Stru
tural 
onsequen
es ofalignment errors (yellow segment).around 20%. In target T0375 for example, multiple alignment shift were observed in themodels of nearly all groups. The available templates show a high stru
tual similaritywith the target su
h that a large fra
tion of the template 
ould have been used for themodel. But, as a 
onsequn
e of the low sequen
e 
onservation, most groups failed toa

urately position the gaps resulting in multiple alignment shifts as re�e
ted by theyellow regions in the alignment strip 
hart (see Figure 3.6).Exemplarily, the alignment shift observed in our model for target T0341 domain 2is des
ribed here in detail. A
tually, this was one of our top s
oring models, whi
hsuggests, that most of the groups as well had problems with the alignment for thistarget. The alignment error 
onsists of a mispla
ement of the deletions after residueGlu-87 whi
h 
aused an alignment shift of one residue for the following 16 residuesuntil the next gap (marked in yellow in Figure 3.7).A 
omparison of the alignment used to build the model (Figure 3.8) and a stru
ture-based sequen
e alignment (Figure 3.9) between target and template generated byCE [192℄ reveals that two residues instead of one should have been deleted afterglutamine 87. By looking at the superposition of target and model in Figure 3.7,
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1        10        20        30        40        50        6
SAARRALKAVLVDLNGTLHIEDAAVPGAQEALKRLRATSVMVRFVTNTTKETKKDLLERL
-----TYKGYLIDLDGTIYKGKDRIPAGEDFVKRLQERQLPYILVTNNTTRTPEMVQEML
IIIII  *  *:** **::     :*   :::***   :::  :***:*  *   : * *
901218888998334279718751625899999999739839998369898989999999
CCHHCCCCEEEEECCEEEEECCCCCCHHHHHHHHHHHCCCEEEEEECCCCCCHHHHHHHH

CCCEEEEECECCCEECCEECHHHHHHHHHHHHHCCCEEEEECCCCCCHHHHHHHH

0         70        80         90        100            110
KK-LEFEISEDEIFTSLTAARNLIEQKQ-VRPMLLLDDRALPEFTG-----VQTQDPNAV
ATSFNIKTPLETIYTATLATIDYMNDMKRGKTAYVIGETGLKKAVAEAGYREDSENPAYV

D: :    : * *   *    :    D : : :: :  *  :  DDDDD  :  *  *
85 8796776524553899999998548 98089975730111101     455587889
HH CCCCCCHHHEECCHHHHHHHHHHCC CCEEEEECCCHHHHHCC     CCCCCCCEE
HHHHCCCCCHHHEEEHHHHHHHHHHHHCCCCEEEEECCHHHHHHHHHCCCEECCCCCCEE

120       130       140       150       160       170
VIGLAPEHFHYQLLNQAFRLLLDGAPLIAIHKARYYKRKDGLALGPGPFVTALEYATDTK
VVGLD-TNLTYEKLTLATLAIQKGAVFIGTNPDLNIPTERGLLPGAGAILFLLEKATRVK
*:** I :::*  *: *  ::  **::*  :   :     **::*:*::: :** **  *
994278998989999999998389819985588622068860562008999999983865
EEECCCCCCCHHHHHHHHHHHHCCCEEEEECCCCCCCCCCCEEEECHHHHHHHHHHHCCE
EECCC CCCCHHHHHHHHHHHHCCCEEEECCCCCEEEECCEEEECHHHHHHHHHHHHCCC

180       190       200       210       220       230
AMVVGKPEKTFFLEALRDADCAPEEAVMIGDDCRDDVDGAQNIGMLGILVKTGKYKAADE
PIIIGKPEAVIMNKALDRLGVKRHEAIMVGDNYLTDITAGIKNDIATLLVTTGFTKPEEV
::::****  ::  **  :     **:*:** :  *:       ::::** ** :*: :
699847998999999998188945678980881388898987498489984489886676
EEEEECCCHHHHHHHHHHHCCCCCCEEEEECCCHHHHHHHHHCCCCEEEEECCCCCHHHH
CEECCCCCHHHHHHHHHHHCCCHHHEEEEECCCCCCHHHHHHCCCEEEEECCCCCCCCCH

240       250
EKINPPPYLTCESFPHAVDHILQHL-L
PALPIQPDFVLSSLAE--------WDF

: : * :   *:: IIIIIIII:D
4278997278559899999999853 9
HCCCCCCCEEECCHHHHHHHHHHHC C
HHCCCCCCEEECCHHH        CCCFigure 3.8: Original sequen
e alignment between target T0341 and template1wvi_A. The region of the alignment error is marked with a box.the missing deletion 
an be 
learly identi�ed and one 
an observe that the regionbetween the two deletions (until approximately phenylalanine 102 ) is stru
turallyhighly 
onserved and the ba
kbone therefore 
ould have been 
opied from the template.The stru
ture-based sequen
e alignment is shorter sin
e CE produ
es only lo
alalignments based on the maximum 
ommon substru
ture. The lo
ation of the othertwo gaps (i.e. a deletion after residue 62 and an insertion at position 118) agree wellbetween the two alignments.The sequen
e identity between target and template (PDB 
ode: 1wvi) is approximately23% whi
h represents a rather di�
ult modelling task. As it 
an be seen from Figure3.8, the alignment error o

ured in a region of extremely low sequen
e 
onservationwhi
h makes it di�
ult for alignment algorithms to seperate the signal from the noisein this region. Here, purely sequen
e-based alignment algorithms rea
h their limitof a

ura
y and only algorithms integarting stru
tural information (e.g. by the use
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Chain 1: /biochem/mirror/pdb/all/pdb2ho4.ent:A (Size=259)
Chain 2: /biochem/mirror/pdb/all/pdb1wvi.ent:A (Size=257)

Alignment length = 241 Rmsd = 2.11A Z-Score = 7.0 Gaps = 8(3.3%) CPU = 1s Sequence identities
= 24.2%

Chain 1:    7 LKAVLVDLNGTLHIEDAAVPGAQEALKRLRATSVXVRFVTNTTKETKKDLLERLKK-LEFEISEDEIFTS
Chain 2:    3 YKGYLIDLDGTIYKGKDRIPAGEDFVKRLQERQLPYILVTNNTTRTPEMVQEMLATSFNIKTPLETIYTA

Chain 1:   76 LTAARNLIEQKQV--RPXLLLDDRALPEF-TGVQTQD---PNAVVIGLAPEHFHYQLLNQAFRLLLDGAP
Chain 2:   73 TLATIDYMNDMKRGKTAYVIGETGLKKAVAEAGYREDSENPAYVVVGLDTN-LTYEKLTLATLAIQKGAV

Chain 1:  140 LIAIHKARYYKRKDGLALGPGPFVTALEYATDTKAXVVGKPEKTFFLEALRDADCAPEEAVXIGDDCRDD
Chain 2:  142 FIGTNPDLNIPTERGLLPGAGAILFLLEKATRVKPIIIGKPEAVIMNKALDRLGVKRHEAIMVGDNYLTD

Chain 1:  210 VDGAQNIGXLGILVKTGKYKAADEEKINPPPYLTCESFPHAV
Chain 2:  212 ITAGIKNDIATLLVTTGFTKPEEVPALPIQPDFVLSSLAEWDFigure 3.9: Stru
ture-based sequen
e alignment between target T0341 and template1wvi_A produ
ed by CE.of predi
ted se
ondary stru
ture and solvent a

essiblity of the target sequen
e orenvironment-spe
i�
 gap penalties) 
an go beyond that.A visual inspe
tion of the alignment 
an help identifying potential alignment errors.Gaps within se
ondary stru
ture elements are usually an eviden
e for alignment errors:In target T0379, for example, a gap has been moved out of the se
ondary stru
tureelement manually whi
h is one of the reasons (beside the a

urate extension of the N-terminal helix) of the high rank a
hieved by this model. The dete
tion of alignmentserror 
an be automated. Several approa
hes have been des
ribed in literature whi
hallow to dete
t reliable regions in alignmnets e.g. by analysing the variation amongdi�erent sub-optimal alignments [229℄ or the sequen
e variation in the pro�les [224℄.
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ussion3.1.5 ModellingIn this se
tion, an in-depth analysis of the models submitted to CASP7 is performed.All model designated as model 1 have been evaluated and some general 
on
lusions aredrawn 
on
erning the �lessons learnt� at CASP7 with the attempt to highlight possibleaeras for future improvements. Some of the top-s
oring models are dis
ussed in moredetail.In Table 3.4, a summary of the performan
e (re�e
ted by the rank of the model andthe rank of the 
orresponding alignment) of all 16 models designated as model 1 isgiven. In the last 
olomn, explanations for the good or bad performan
e are providedas keywords, sin
e a detailed des
ription of all models would go beyond the s
ope ofthis work.

Figure 3.10: GDT plot for T0373: fra
tion of model residues superimposable withthe experimental stru
ture using variable distan
e thresholds [115℄.In order to visualise and 
ompare the quality of all models of a spe
i�
 target, GDTplots (as shown in Figure 3.10) are provided on the CASP7 website whi
h re�e
t theper
entage of residues from the model whi
h fall below a 
ertain distan
e 
uto� after a(sequen
e-dependent) superposition on the experimental stru
ture of the target. Thelower the run of the 
urve the better a model provided that enough target residueshave been modelled. The GDT plots of all our models submitted to CASP7 is shownin the appendix.
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Table 3.4: Detailed analysis of the quality of the models submitted to CASP7 with 
omments.Targeta %cov rGDT

b rRMS


 raln CommentT0303 100 21 33 20 Good alignment; 3 loops: 2 modelled very a

urately
T 0303D1 100 18 13 3 Ni
e alignment; best available template identi�ed
T 0303D2 100 31 58 52 Bad template sele
tion for this domain (same template for both domains)T0334 99.8 55 95 66 Ina

urate loop predi
tion for 8-residue insertion (di�
ult)T0340 96 101 46 112 Alignment perfe
t, but bad 
overage (
hain ends missing)T0341 95 34 15 33 Too few residues modelled (95% modelled); alignment error
T 0341D1 92.6 66 17 77 Good alignment, but bad 
overage at C-term; non-
onserved loop not modelled
T 0341D2 100 6 22 53 Alignment error: Wrong lo
ation of deletions in region of low sequen
e identityT0345 98.4 81 21 88 Alignment good; 3 residues missing at N-terminal 
hain endT0359 97.8 51 64 38 Alignment good, but only 97.8% modelledT0360 100 29 44 28 Alignment good; bad modelling of 
hain endsT0362 94.4 80 57 170 (47) Bad model sele
tion (model 3 mu
h better); di�
ult 8-residue insertionT0364 87.1 72 14 87 Too few residues modelled (<90%); alignment error at C-terminal endT0370 88.2 45 7 32 24-residue insertion at C-terminal end not modelledT0371 93.6 62 10 60 Too few residues modelled in domain 1
T 0371D1 88.9 67 11 83 N-terminus not modelled; di�
ult insertion around position 220
T 0371D2 100 29 28 22 Best available template used; ni
e alignment; 2 non-
onserved loops not modelledT0373 100 2 21 12 Good alignment; N-terminus perfe
t; C-terminus minor alignment shiftT0374 96.2 39 21 36 Suboptimal template sele
tion; 2 di�
ult long loop regions; minor alignment errorT0375 97 41 15 83 Di�
ult alignment: multiple shifts; large movement of β-sheet in interfa
e regionT0376 99 53 42 47 Minor alignment error; stru
turally var. helix and non
onserved loop not modelledT0379 100 4 13 2 Alignment very good; a

urate extension of N-terminal helix

T 0379D1 100 4 10 3 Alignment very good; a

urate extension of N-terminal helix

T 0379D2 100 32 57 18 Alignment OKT0380 95.8 58 20 55 Alignment good, but missing residues at C-terminal 
hain endT0384 98.7 49 41 63 better templates available; huge insertion di�
ult to model; one alignment shiftaSubs
ript D1 and D2 spe
ify domain 1 and 2 in multi-domain proteins.bRank based on GDT_TS (total number of models ∼130).
Rank based on the all-atom RMSD between experimental stru
ture and model.



94 Results and Dis
ussion3.1.5.1 Loop predi
tion at CASP7Loop predi
tion at CASP7 has been performed using the fragment database des
ribedin Methods (Chapter 2.3). At the time of the predi
tion season, only a preliminaryversion of the s
oring fun
tion used for loop ranking was implemented. The loops wereranked based on a 
ombined s
oring fun
tion 
onsisting of a torsion energy term aswell as a solvation and pairwise intera
tion energy term 
onsidering only the Cα atoms.Based on this ranking, loops have been manually sele
ted by additionally taking intoa

ount sequen
e 
onservation between the target loop and the fragment extra
ted fromthe database. In the a
tual version of the s
oring fun
tion, an all-atom implementationof the pairwise intera
tion potential and the solvation potential are used. The generalperforman
e of the 
urrent loop modelling routine is des
ribed in Chapter 3.3.Nevertheless, in many 
ases, the simple s
oring fun
tion was able to identify suitableloops from the fragments database. Due to the fa
t that human intervention has beenused in loop modelling, a detailed evaluation of all loops in all CASP models is notgiven here, but instead, the loop modelling results of two sele
ted targets are shown hereexemplarily whi
h 
larify the strengths as well as the limitations of the loop predi
tionproto
ol.In our �rst model submitted to CASP7 (target T0303), 3 insertions had to be modelledas it 
an be seen from the alignment between target and template 1ah5_A in Figure3.11. Target and template have a sequen
e identity of about 23%. A 
omparisonbetween the experimental stru
ture of the target (PDB 
ode: 2hsz) and the �nalmodel revealed that a non
onserved segment between Leu-195 and Pro-209 shouldhave been remodelled as well (see superposition of target and model in Figure 3.12). Inthis non
onserved segment, two mutations involving gly
ine (position 199) and proline(position 203) 
an be observed whi
h is most likely the reason for the observed lo
alrefolding.Loop 1 (an
hor group positions 55 and 74) represents a very di�
ult modelling 
aseinvolving a huge insertion of 11 residue. Insertions of that size 
an usually not bemodelled sin
e most loop predi
tion programs are limited to loops of length 12 or 15and, more importantly, the quality of loop predi
tions rapidly de
reases with loopslonger than approximately 7 or 8 residues. The limitations are dis
ussed in more detail
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Loop 1 Loop 2

Loop 3

Non-conserved loop

1        10        20        30        40        50        6
MTQFKLIGFDLDGTLVNSLPDLALSINSALKDVNLPQASENLVMTWIGNGADVLSQRAVD
MTSITAIFFDLDGTLVDSSIGIHNAFTYTFKELGVPSPDAKTIRGFMGPPLESSFATCLS
**:: :* ******** * : :   ::: :*::::*::    : :::*  ::      :
975247886048621137789999999999973899989899998828998899999986
CCCCCEEEEECCCCHHCCHHHHHHHHHHHHHHCCCCCCCHHHHHHHHCCCHHHHHHHHHH
CCCCCEEEECCECCCEECHHHHHHHHHHHHHHHCCCCCCHHHHHHCCCCCHHHHHHCCCC

0        70        80        90        100       110       1
WACTQAEKELTEDEFKYFKRQFGFYYGENLCNISRLYPNVKETLEALKAQGYILAVVTNK
-----------KDQISEAVQIYRSYYKAKGIYEAQLFPQIIDLLEELSS-SYPLYITTTK
IIIIIIIIIII * :  :      **     :   * *:: : ** *  I:*:* : *:*
422210224688899999999999999862412876747799999999759839998678
HHHHHCCCCCCHHHHHHHHHHHHHHHHHHHHHCCCCCCCHHHHHHHHHHCCCEEEEEECC

HHHHHHHHHHHHHHHHHCHHHCCEECCCHHHHHHHHHC CCCEEEEEEE

20       130       140       150       160       170       1
PTKHVQPILTAFGIDHLFSEMLGGQSLPEIKPHPAPFYYLCGKFGLYPKQILFVGDSQND
DTSTAQDMAKNLEIHHFFDGIYGSSPEA--PHKADVIHQALQTHQLAPEQAIIIGDTKFD
* ::* ::  : * *:*  : *::  :II  :: ::::: :  :* * *::::**:  *

878999999871862362576434114788779799999999858887678764168789
CHHHHHHHHHHCCCHHHCCEEECCCCCCCCCCCHHHHHHHHHHHCCCHHHEEEECCCHHH
EHHHHHHHHHHCCCHHHCCEEEEECCCC  CCHHHHHHHHHHHCCCCHHHEEEEECCHHH

80       190       200       210       220
IFAAHSAGCAVVGLTYGYNYNIPIAQSKPDWIFDDFADILKITQ
MLGARETGIQKLAITWGFGEQADLLNYQPDYIAHKPLEVLAYFQ
:: *:  *   : :* * : :: :::: ** *:  ::::*   *
99998759808997279897001887089866659789999829
HHHHHHCCCEEEEEECCCCCCCHHHHHCCCEEECCHHHHHHHHC
HHHHHHHCCEEEEECCCCCCHHHHHCCCCCEEECCCCHHHHHCCFigure 3.11: Alignment between target T0303 and template 2ah5_A: 3 insertionand 1 non-
onserved loop.in Chapter 3.3. Furthermore, long insertions and to some extent also deletions leadtendentially to distorsion of the an
hor region, i.e. the region on both sides of theinsertion is less stru
turally 
onserved between target and template, su
h that an evenlonger part need to be remodelled. It has been tried to model the insertion with afragment of the length 20 (in
luding an
hor groups) but the predi
tion, as expe
ted,failed 
ompletely: the ba
kbone RMSD of the loop (without an
hor residues) betweenexperimental stru
ture and model was 7.36 Å (see Figure 3.12). But, in some 
ases,long 
ases long fragments 
an be predi
ted rather a

urately, as we will see for loop 3.Loop 2 (an
hor group positions 107 and 114) is a 6 residues loop and models a 1-residue insertion between a helix on the N-terminal side and a beta strand on theC-terminal side. This loop has been modelled rather a

urately as re�e
ted by thevery similar ba
kbone geometry between model and experimental stru
ture (Figure3.12). The ba
kbone RMSD of 1.82 Å is a

eptable for the modelling 
ase, where the
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Loop 2: 107-114

Loop 3: 137-155

Loop 1: 55-74

non-conserved
loop

Figure 3.12: Superposition of model (thin tube) and target T0303 (thi
k tube):loop predi
tion [115℄.an
hor residues, on whi
h the fragment is �tted, are inexa
t to a 
ertain extent. In this
ase both an
hor residues (leu
ine 107 and isoleu
ine 114) had an RMSD of around 1Å (but they were the best an
hors in this region).Loop 3 involves modelling of an insertion of 2 amino a
ids as it 
an be seen fromthe alignment shown Figure 3.11. Sin
e we were not sure if the N-terminal betastrand belongs to the stru
turally 
onserved region and 
an therefore be used from thetemplate, it has been de
ided to put the an
hor group before the beta strand at leu
ine137. The an
hor group on the C-terminal side of the insertion was set at alanine 155sin
e the two mutations involving proline just before were expe
ted to have stru
tural
onsequen
es. Finally, 17 residues have been remodelled with an ex
eptionally goodRMSD (for this loop length) of 2.37 Å. This 
an be mainly attributed to the fa
t thata fragment from a homologue of the target 
ould be used to build the loop (i.e. thefragment origines from a stru
ture with 28.3% sequen
e identity to the target basedon the BLAST lo
al alignment). The beta strand mentioned before was indead partly
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Leucine 107 Isoleucine 114

Figure 3.13: Superposition of model (light green) and target T0303 (light blue):loop 2 (residues 107-114).stru
turally 
onserved, su
h that 5 residues less 
ould have been remodelled, but stilla loop of 12 residues needed to be modelled.During CASP7, the an
hor groups in the loop modelling pro
ess have been de�nedmanually by pla
ing them in regions on both sides of the gap whi
h are expe
ted tobe stru
turally 
onserved between target and model. A rather 
onservative approa
hwas used for the de�nition of the an
hor groups leading to potentially longer fragmentsto be remodelled as ne
essary (for a more detailed des
ription of the approa
h, seeChapter 2.2.2) in Methods. The trade-o� between a

ura
y of the an
hor groups andlenght of the fragment to be remodelled is adressed in the next se
tion.Figure 3.15 shows the very a

urate predi
tion of a beta hairpin stru
ture in targetT0364. The alignment shows a 2-residue insertion between two beta strands as it 
anbe seen in Figure 3.16.The an
hor groups were pla
ed in the 
onserved region (in terms of sequen
e
onservation) of the strands on both sides of the insertion (arginine 97 and leu
ine104). The six residues have been modelled with an ex
ellent ba
kbone RMSD of 0.57Å. Figure 3.15 shows, that the ba
kbone superimposes almost perfe
tly between targetand model and most of the side
hains point into the right dire
tion.
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Leucine 137

Alanine 155

Figure 3.14: Superposition of model (light green) and target T0303 (light blue):loop 3 (residues 137-155).The loop modelling 
ases des
ribed above, point out general problems in 
omparativemodelling and loop predi
tion but also show some advantages of the method presentedhere 
ompared to other loop predi
tion programs:
• Remodelling of loop with no insertions and deletions: Loop regionswithout insertions and deletions sometimes deviate substantially between tar-get and template as a 
onsequen
e of multiple amino a
id substitutions (i.e.low sequen
e 
onservation) in this region or of 
onsiderable di�eren
es in thestru
tural environments, e.g. the loop in the template is part of an interfa
eregion whereas in the target not, therefore the loop 
an indepedently adopt its
onformation. The evaluation of the CASP7 models showed that non-
onservedloops 
ontaining mutations involving gly
ine and proline have to be treated with
aution and potentially need to be remodelled. The question, whether to remodela 
ertain non-
onserved loop or not is di�
ult to answer and it has to be takeninto a

ount that loop predi
tion itself is only possible with a 
ertain a

ura
ydepending on the loop length. Investigating the lo
al 
onformational energy
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Leucine 104

Arginine 97Figure 3.15: Very a

urate predi
tion (light green) of a beta hairpin stru
ture intarget T0364.
0        70        80        90        100       110       1

T0364     AHINYLHEVKLGTEVWVQTQILGFDRKRLHVYHSLHRAGFDEVLAASEQMLLHVDLAGPQ
1z54A     LGLTFRAPARFGEVVEVRTRLAELSSRALLFRYRVER--EGVLLAEGFTRHLCQV--GER
conserv   ::::    :::*  * * * :: :  : * : : : *II   :** : :  *:  II*
psipred   EEHHHHHHCCCCCEEEEEEEEEECCCEEEEEEEEEEECCCCEEEEEEEEEEEEEECCCCC
dssp      EEEEECCCCCCCCEEEEEEEEEEECCCEEEEEEEEEE  CCEEEEEEEEEEECEE  CCCFigure 3.16: Extra
t of the alignment between target T0364 and the 
orrespondingtemplate.in this region 
an support the de
ision. There is still an urgent need for toolsassessing the lo
al model quality as re
ently underlined in the CASP7 assessmentreport of the quality assessment 
ategory [49℄. Lo
al model quality assessment,as des
ribed in Chapter 3.4, is a step in this dire
tion.

• Using fragments from homologues to the target: Generally, if fragmentsfrom homologous stru
tures to the target are present among the top s
oringfragments, these should be prefered. Fragments from homologous stru
tures havea higher probability to be 
orre
t sin
e they tend to have a similar amino a
id
onstitution 
ompared to the target loop and origine from a similar stru
turalenvironment. As shown in Chapter 3.3 des
ribing the general performan
e of theloop predi
tion routine, fragments from homologues are almost always found onthe top ranks.
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• Modelling of loop motifs: With the given method, frequently o

uringstru
tural loop motifs are generally easier to predi
t than rare ones. In this 
ase,a variety of suitable fragments are present in the database, whi
h in
reases the
han
e of indentifying good 
andidates in the sele
tion pro
ess. As a 
onsequen
eof the statisti
al nature of the s
oring fun
tion used for loop ranking, frequentlyo

uring motifs potentially get assigned lower energies.
• Features of the fragment database: The fragment database presented inthis work di�ers in many respe
ts from other fragment databases des
ribed inliterature (FREAD [53℄, LIP [139℄, methods by Fernadez-Fuentez et al. [70℄)and several features of the database have shown to be advantageous in themodelling pro
ess during CASP7. The most important advantage is the fa
tthat not only pure loop segments are stored in the database but all fragmentsfrom a representative set of high-resolution proteins stru
tures. This allowsthe modelling of fragments 
ontaining se
ondary stru
ture elements or partsof them. This is often ne
essary if, for example as a 
onsequen
e of a longinsertion, the surrounding se
ondary stru
ture elements are extended or newse
ondary stru
tures are formed in the loop region. This situation 
an typi
allynot be pro
essed with pure loop databases. Another situation in whi
h parts ofse
ondary stru
ture elements need to be remodelled is the kink observed in heli
esas a 
onsequen
e of proline [14, 130℄. Heli
es with mutations between target andtemplate involving proline 
an be remodelled using the fragment database. Asdes
ribed in Chapter 2.3.1 in Methods and later in Chapter 3.1.5.3 
on
erningthe modelling of 
hain ends, the MySQL database allows to spe
i�
ally sear
h forfragments showing a 
ertain se
ondary stru
ture or sequen
e pattern. In the 
aseof the proline indu
ed helix kink des
ribed above, the database 
an be spe
i�
allys
anned for fragments whi
h 
ontain an initial helix segment followed by someloop residues (sin
e the subsequent loop probably is remodelled as well) and whi
hhave a proline residue at a given �xed position in the helix. The ability to modelnot only loops but any stru
tural segment represents an overlap to fragmentassembly methods su

essfully used in ab initio modelling and highlights thepotential of the given methods to be applied in areas beyond pure 
omparativemodelling.



3.1 CASP7 results 1013.1.5.2 Manual an
hor group predi
tion at CASP7The standard approa
h in 
omparative modelling is to pla
e the an
hor groups near theend points of the surrounding se
ondary stru
ture elements of the template (typi
ally1-2 residues inside). At CASP7, we additionally took into a

ount the agreementbetween the 
al
ulated positions of the se
ondary stru
ture elements in the templatewith the potential lo
ation of the se
ondary stru
ture elements in the target based on a
onsensus of 3 state-of-the-art se
ondary stru
ture predi
tion programs (see Methodson page 39). This 
an provide eviden
e whether a se
ondary stru
ture element ispossibly extended or trun
ated with respe
t to the situation in the template. Thesequen
e 
onservation between target and template in the an
hor region is taken intoa

ount as well.During CASP7, as mentioned in the previous se
tion, the an
hor groups have beenoften positioned further away from the gap as ne
essary resulting in longer fragmentswhi
h are more di�
ult to model. As it 
an be seen in Chapter 3.3, the loop modellinga

ura
y rapidly drops for loops longer than 7 residues. At CASP7, often di�erentan
hor group 
ombinations have been used for loop predi
tion if the situation was not
lear. In most 
ases, this approa
h resulted in a set of alternatives models from whi
hthe best ones were sele
ted based on the predi
ted model energy. But in a few 
ases,a sele
tion of the an
hor groups and the 
orresponding loop was made based on a
omparison of the loop ranking output �les: if for one an
hor group 
ombination onlyloops with similar s
ores are found on the top ranks but for the other 
ombination a loopwith a 
onsiderably better s
ore than the rest was found on the �rst rank (e.g. be
ausethe fragment origins from a homologous stru
ture), the later was 
hosen for all models.Loops with signi�
antly higher s
ores than the rest of the fragments are potentiallypromising 
andidates. Thus, inspe
ting di�erent alternative an
hor groups seems to beindeed a reasonable approa
h espe
ially for knowledge-based loop predi
tion proto
ols(see Chapter 3.4.2 for a more detailed dis
ussion).3.1.5.3 Modelling of 
hain endsChain ends are often highly �exible, parti
ularly if they do not establish regularse
ondary stru
tures. But if the 
hain ends are not �exible, a methods is needed
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ussionwhi
h 
an model these regions. Most of the existing loop predi
tion programs are notable to model 
hain ends sin
e they are spe
ialised on loops. Futhermore, the majorityof knowledge-based loop predi
tion programs use the RMSD between the an
hor groupresidues and the terminal fragment residues after �tting as the main s
oring fun
tionterm whi
h 
annot be used here. In this situation, only one an
hor group is given andthe RMSD of all fragments after �tting will be more or less the same. In the methoddes
ribed in this work, the ranking is performed based on a statisti
al potential s
oringfun
tion investigating the intera
tions with the stru
tural environment (see Methods).At the beginning of the CASP7 predi
tion season, our pipeline was not able yet tomodel 
hain end (only loops, where two an
hor groups are given). As a 
onsequen
e,most of our models show a low target 
overage whi
h strongly in�uen
ed the rankingbased on GDT_TS. As it 
an be seen from the overview table on page 93, missing
hain ends were the main reason why some of the models did not s
ore better. In aranking based on all-atom RMSD, two third of the models designated as model1 rankedamong the top 25 predi
tions (among approximately 130 groups).Chain ends are modelled with an adapted version of the loop predi
tion routine:fragments from the database are �tted on one an
hor group whi
h results, as a
onsequen
e of the missing distan
e 
onstraints (i.e. Calpha distan
e of the endpointsand RMSD of the an
hor groups), in an enormous amount of possible 
andidates(a
tually all fragments of the given length present in the database). The followingpro
edure was used in order to redu
e the number of possible 
andidates:
• The 
lash �lter whi
h sear
hes for overlaping van der Waals spheres between thefragment ba
kbone atoms and the rest of the protein removes the majority of the
andidate fragments.
• Only a 
ertain fra
tion of the fragments is retained based on the �goodness of �t�on the an
hor region (i.e. RMSD over the an
hor group atoms). Three �ttingstrategies have been implemented: �tting on the ba
kbone atoms of one residueor two residues and, alternatively, �tting on three 
onse
utive Calpha atoms.Fitting of more than one residue turned out to be the best strategy for this task.If, for example, a terminal helix needs to be extended, �tting on more than oneresidues in
reases the 
han
e that the helix fragment has the right orientation.
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• In order to restrain the number of possible fragments in the initial sele
tion, regu-lar expression pattern on the sequen
e or on the se
ondary stru
ture 
onstitutionof the fragment 
an be de�ned. For example for the extension of a helix element,only fragments 
onsisting of an initial helix segment are needed. In analogy, forexample in the presen
e of a 
onserved proline, only fragments with proline at thegiven position are retrieved from the database. This allows to redu
e the numberof 
andidates by several order of magnitude and therefore greatly improves therun time and the a

ura
y of the predi
tion.
• Ranking has been performed with the same s
oring fun
tions as for loop predi
-tion.
• Furthermore, 
omparing the sequen
e 
onservation of the top s
oring fragments(i.e. the agreement between the sequen
e of the segment in the target and thesequen
e of the original fragment) as well as a visual inspe
tion of the tops
oring solutions in a mole
ular graphi
s viewer su
h as Pymol provide additionaleviden
e for the �nal sele
tion.The stru
ture predi
tion of the N-terminal 
hain end in target T0373 is des
ribed hereexemplarily. As it 
an be seen from the alignment extra
t in Figure 3.17, the target
ontains an insertion with respe
t to the template and all three se
ondary stru
tureprograms indi
ate that the terminal helix present in the template (last line) is mostprobably extended in the target. For a detailed des
ribtion of the single data lines,visite Methods on page 42.

1        10        20        30        40        50        6
T0373     MPTNQDLQLAAHLRSQVTTLTRRLRREAQADPVQFSQLVVLGAIDRLGGDVTPSELAAAE
1jgsA     L-FNEIIPLGRLIHMVNQKKDRLLNEYLSPLDITAAQFKVLCSIRCAAC-ITPVELKKVL
conserv   :I *  : *   ::   :   * *   :::  ::: *: **: *  : :I:** **  :
conf      988620568888998999998898864142688857888899987437887777898864
consensus CCCCCHHHHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
psipred   CCCCCCHHHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
SSpro     CCCHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
phd       CCCCCHHHHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
dssp      C CCCCCCHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHCC ECHHHHHHHHFigure 3.17: Extra
t of the alignment for target T0373 (N-terminal 
hain end).A 
loser inspe
tion of the target protein family revealed that the leu
ine at position
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ussionnine was rather 
onserved. Therefore, the following regular expressions have been usedfor the sele
tion (the unders
ore stand for an arbitrary 
hara
ter):regular expression for SSE: CCC__HHHHHregular expression for the sequen
e: ________L_The restaint sele
tion resulted in an initial set of 8764 fragments from whi
h all loopswhi
h a an
hor group RMSD Z-s
ore above one standard deviation are removed. Thetop 10 fragments with the lowest energy are shown in Figure 3.18. The 10 fragmentsshow a high stru
tural diversity although they have a 
omparable energy. This re�e
tsthe un
ertainities asso
iated with modelling of 
hain ends.
Alanine 10Figure 3.18: Stru
tural diversity among the 10 top s
oring fragments for the N-terminal 
hain end of T0373.As a 
onsequen
e of the 
orre
t assumption 
on
erning the se
ondary stru
ture 
onsti-tution of the target stru
ture (the experimental stru
ture indeed 
ontains 5 additionalresidues in helix 
onformation as 
ompared to the template), the N-terminal 
hain endof target T0373 was modelled very a

urately as it 
an be seen from the superpositionof target and template in Figure 3.19 and this is probably the main reason why thismodel was the se
ond best predi
tion at CASP7 (among the models designated asmodel1).In the absen
e of se
ondary stru
ture elements, modelling of 
hain ends 
an be a verydi�
ult task be
ause of the vast amount of possible 
onformations and the limited



3.1 CASP7 results 105ability of energy fun
tions to identify the native 
onformation. Sin
e 
hain ends areless 
onstraint by the stru
tural environment as 
ompared to for example regions inthe stru
tural 
ore. Their 
onformations are to a greater extent determined by thesequen
e itself and less by lo
al (in sequen
e) and non-lo
al stru
tural 
onstraints.Therefore, fragments from the database having a similar amino a
id 
onstitution andorigin from similar environments (i.e. also 
hain ends) 
an be promising 
andidates.The fragment database des
ribed in this work 
ontains an entry for ea
h fragmentspe
i�ng whether the fragment is part of a 
hain end. Additionally, information aboutthe solvent exposure in the original environment is stored. This information 
ouldpotentially be used in this 
ontext.
N-terminal
chain end

Figure 3.19: Superposition of model and experimental stru
ture of target T0373:The N-terminal 
hain end has been modelled very a

ururately.
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ussion3.1.5.4 Modelling of side
hainsWhile establishing the modelling pipeline, it has been de
ided to use a 
onservativeapproa
h for side
hain modelling by leaving the side
hains 
onformation of 
onservedresidues (i.e. identi
al residues between target and template in the alignment) un-tou
hed and to only re-model side
hains of residues di�ering between target andtemplate and of 
ourse residues of regions whi
h have been remodelled (i.e. loops and
hain ends). The SCWRL software [31℄ was used in order to 
al
ulate the side
hain
onformations. This turned out to be a good strategy: �Group 191 (S
homburg-group)has the best results for rotamer a

ura
y, but it should be noted that this grouponly submitted predi
tions for 6 of the 28 target domains� [169℄. Figure 3.20 showsa 
omparison of the side
hain a

ura
y of the top performing groups in the 
ategoryhigh-a

ura
y template-based modelling (HA-TBM). The fra
tion of side
hains (χ1angle in Figure a), χ1 and χ2 in Figure b)) modelled within 30 degree from the native
onformation have been investigated and Z-s
ores over all groups are 
al
ulated inorder to 
ompare the performan
e.

Figure 3.20: A

ura
y of side
hain modelling (Z-s
ores) of side
hain torsion angle
hi-1 (a) and over 
hi-1 and 
hi-2 (b) (S
homburg-group: TS191) [169℄.The targets of the high-a

ura
y template-based modelling (HA-TBM) 
ategory arede�ned in the following manner:
• A suitable template was present in the PDB with LGA-S > 80 (LGA-S is asequen
e-idependent measure of stru
tural similarity).
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• At least one predi
tion with GDT_TD > 80 was submitted to CASP7.
• A total number of 24 HA-TBM targets were evaluated.As mentioned above, only 6 of the total 28 HA-TBM domains have been pro
essedwhi
h should be taken into a

ount when 
omparing the performan
e with other groups.Nevertheless, sin
e we did not just pi
k the easiest targets from the 24 possible onebut 
ould not solve all of them due to time 
onstraints, the pi
ture would be more orless the same. Beside the fa
t that SCWRL did a very good job, the de
ision to onlyremodel side
hains of non-
onserved residues seems to be the 
ru
ial fa
tor sin
e themajority of the groups most probably used SCWRL as well. Using as mu
h informationof the templates as possible is indeed one of the lessons whi
h has been learnt duringthe last CASP rounds. Currently, still no group is able to 
onsistently produ
e modelsbetter than the best template although there are an in
reasing number of 
ases whereimprovement over the templates are shown [49℄.
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ussion3.2 Model quality assessment
Assessing the quality of model is a vital step in protein stru
ture predi
tion as pointedout in the Introdu
tion (see Chapter 1.2.4). Depending on the method and on themodelling di�
ulty, usually a 
ertain amount of alternative models is generated rangingfrom a few alternative models (e.g. in 
omparative modelling) up to thousands or tenthousands of models (e.g. for ab initio methods based on fragment assembly in this
ontext). A s
oring fun
tion (typi
ally 
alled model quality assessment program) isneeded whi
h is able to dis
riminate between good and bad models and 
an potentiallysele
t the best model.As a part of the modelling pipeline des
ribed above, a 
omposite s
oring fun
tionbased on 3 statisti
al potential terms as well as two other terms has been developed[16℄. The s
oring fun
tion was named QMEAN whi
h stands for Qualitative ModelEnergy ANanlysis. An early version of QMEAN was used at the CASP7 experimentin order to rank our own models and to identify the best models for submission.Additionally, we parti
ipated in the quality assessment 
ategory [49℄ whi
h was newlyintrodu
ed in CASP7 in order to test the performan
e model quality programs. Thepredi
tors were asked to estimate the quality of all models predi
ted by automati
servers. Motivated by the good results (we were among the top s
oring methods solelyrelying on the 
oordinates of a single model), we de
ided to further extend and optimisethe s
oring fun
tion. The performan
e of the optimised s
oring fun
tion (i.e. QMEAN)are des
ribed in the following.The se
tion is stru
tured as follows: First, the results of the optimisation of thedi�erent statisti
al potentials terms is presented. Afterwards, it is des
ibed how theterms are 
ombined in order to build the �nal 
omposite s
oring fun
tion QMEAN.In the subsequent se
tion, QMEAN is 
ompared to �ve well-established model qualityassessment programs using several 
omprehensive test sets. The se
tion ends witha 
on
luding dis
ussion of the results obtained on the di�erent test sets and with ades
ription of areas of possible future improvements.



3.2 Model quality assessment 1093.2.1 Optimisation of the statisti
al potentialsAll statisti
al potentials were extra
ted from a non-redundant protein data set of 1,471high-resolution stru
tures from the Protein Data Bank (PDB) [18℄. The sele
tion ofthe stru
tures was performed with the PISCES server [236℄ and additional quality�lters were applied as des
ribed in Methods (see page 58). The parametrisation ofthe di�erent potentials as well as the optimisation of the weighting fa
tors for the
ombined potential were both performed on the CASP6 de
oy set by analysing theregression between the GDT_TS s
ore of the models and the predi
ted s
ore providedby the energy fun
tion. The CASP6 training set 
onsists of all models submittedto CASP6 with a GDT_TS s
ore above 20. Models with a s
ore below 20 
an be
onsidered as more or less random and are therefore useless for training purposes.For the purpose of providing an overview, Table 3.6 shows a short des
ription of alls
oring fun
tion terms mentioned in this se
tion and the di�erent versions of QMEANwhi
h were built in order to assess the in�uen
e of the two agreement terms. In thefollowing, QMEAN, unless spe
i�ed with an index, always indi
ates the original s
oringfun
tion 
onsisting of 5 terms (i.e. QMEAN5).For the three statisti
al potentials entering the QMEAN fun
tion a variety of alterna-tive implementations have been investigated. The Pearson's 
orrelation 
oe�
ients forthe di�erent implementations of the statisti
al potentials as well as for the agreementterms are given below (Table 3.7-3.11).The 
orrelation between the s
ore from di�erent implementations of the residue-levelpairwise intera
tion potential and the GDT_TS s
ore are shown in Table 3.7. The dataunderline the superior performan
e of the potentials based on Cβ atoms 
ompared tothe Cα implementation. Deriving the intera
tion potentials in a se
ondary stru
turespe
i�
 manner further improves the 
orrelation whereas taking into a

ount solventa

essibility does not add any value (see Chapter 3.2.4.5 in the dis
ussion se
tion). Inthe se
ondary stru
ture spe
i�
 implementation, the 
onta
ts of helix, strand, and loopresidues are 
ounted separately, whi
h seems to 
apture some 
hara
teristi
 featuresof the environment of residues belonging to the di�erent se
ondary stru
ture states.The �nal implementation of the residue-level distan
e-dependent pairwise potential is
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ussionTable 3.6: Short des
ription of the terms and their 
ombinations used in this in thiswork.s
oring fun
tion des
riptiontorsion single Ordinary torsion potential based on phi and psi propensities of singleamino a
ids. Bin size: 10 degreetorsion 3-residue Extended torsion potential over 3 
onse
utive residues. Bin sizes: 45degree for the 
enter residue, 90 degree for the 2 adja
ent residuespairwise Cα / pairwise Cβ Residue-spe
i�
 pairwise distan
e-dependent potential using Cα orCβ atoms respe
tively as intera
tion 
enters . Range 3...25 Å, stepsize: 0.5 Åpairwise Cβ/SSE In analogy to pairwise Cβ, but a se
ondary stru
ture spe
i�
 imple-mentation was used both for the derivation and appli
ation of thepotential.solvation Cβ Potential re�e
ting the propensity of a 
ertain amino a
id for thea 
ertain degree of solvent exposure based on number of Cβ atomswithin a sphere of 9 Åaround the 
enter Cβ.SSE X Agreement between the predi
ted se
ondary stru
ture of the targetsequen
e (using method X, or 
onsensus of 3 methods) and theobserved se
ondary stru
ture of the model as 
al
ulated by DSSP.QMEAN uses X=PSIPREDACCpro Agreement between the predi
ted relative solvent a

essibility usingACCpro (2 states buried/exposed) and the relative solvent a

essi-bility derived from DSSP (>25% a

essibility => exposed)QMEAN3 weighted linear 
ombination of torsion 3-residue, pairwise Cβ/SSE,solvation CβQMEAN4 weighted linear 
ombination of torsion 3-residue, pairwise Cβ/SSE,solvation Cβ, SSE PSIPREDQMEAN5 weighted linear 
ombination of torsion 3-residue, pairwise Cβ/SSE,solvation Cβ, SSE PSIPRED, ACCprobased on Cβ atoms as intera
tion 
enters and the radial distribution between 3 and 25Å (bin size 0.5 Å) is taken into 
onsideration (with se
ondary stru
ture spe
i�
ity).An all-atom pairwise potential was established whi
h investigates the intera
tionsbetween all 167 atom types o

uring in proteins (i.e. ea
h non-hydrogen atom in the 20amino a
ids belongs to a di�erent atom type). As for the residue-level potentials, these
ondary stru
ture spe
i�
 implementation results in a better 
orrelation as 
omparedto the normal one (see Table 3.8). All �intera
tions� in the interval from 3 to 20 Å (binsize 0.5) are taken into a

ount. Interestingly, ignoring all 
onta
ts 
loser than 3 Åresults in a 
onsiderably better 
orrelation to GDT_TS. In this way, hydrogen bondsare 
ompletely ignored sin
e the distan
e between the two atoms parti
ipating in a



3.2 Model quality assessment 111Table 3.7: Correlation between GDT_TS and the residue-level pairwise potentialon the CASP6 training set.implementation Cα Cβ Cβ,SSE Cβ,SSE,ACCrange: 0-20 Å, bin size: 0.5 Å -0.272 -0.365 -0.454 -0.473range: 0-25 Å, bin size: 0.5 Å -0.365 -0.445 -0.514 -0.528range: 0-30 Å, bin size: 0.5 Å -0.430 -0.498 -0.531 -0.539range: 3-20 Å, bin size: 1 Å -0.452 -0.532 -0.598 -0.598range: 3-25 Å, bin size: 1 Å -0.520 -0.562 -0.608 -0.608range: 3-20 Å, bin size: 0.5 Å -0.457 -0.519 -0.582 -0.587range: 3-25 Å, bin size: 0.5 Å -0.521 -0.558 -0.601 -0.603range: 3-20 Å, bin size: 0.2 Å -0.444 -0.507 -0.546 -0.557Table 3.8: Correlation between GDT_TS and all-atom pairwise potential on theCASP6 training set.implementation all-atom all-atomSSErange: 0-15 Å, bin size: 0.5 Å -0.247 -0.286range: 0-20 Å, bin size: 0.5 Å -0.302 -0.353range: 3-15 Å, bin size: 0.5 Å -0.471 -0.536range: 3-18 Å, bin size: 0.5 Å -0.519 -0.581range: 3-20 Å, bin size: 0.5 Å -0.540 -0.600range: 3-15 Å, bin size: 0.2 Å -0.462 -0.519range: 3-20 Å, bin size: 0.2 Å -0.557 -0.589hydrogen bond is typi
ally below 3 Å. Given the fa
t that hydrogen bonds are one ofthe main 
ontributors to the overall protein stabilty, this may look strange at �rst sight.But it has to be taken into a

ount that models, and not exa
t experimental stru
turesare analysed. Espe
ially for very 
oarse models (e.g. model from ab initio stru
turepredi
tion), not the exa
t lo
ation of the single atoms shall be investigated but theoverall 
orre
tness of the fold. Therefore, the high 
ontribution of the hydrogen bondingterm would potentially hide the signal of the other non-
ovalent energy 
ontributions.In
luding hydrogen bonding in the s
oring fun
tion would potentially favour modelswith more se
ondary stru
ture elements (sin
e these are stabilised by hydrogen bonds).The energy fun
tion would be very sensitive 
on
erning small perturbations in thelo
ation of the atoms with the 
onsequen
e, that a small shift of e.g. 0.5 Å awayfrom the ideal hydrogen bonding distan
e would result in a dramati
 in
rease in theintera
tion energy.
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ussionIn the �nal version of QMEAN, the all-atom potential has not been integrated. Over theentire range of modelling di�
ulty, the residue-level potential performs better than theall-atom implementation. A 
omparison of the performan
e of the all-atom intera
tionpotential on models from di�erent CASP7 
ategories suggests that the strength of thispotential is the assessment of template-based models and not of impre
ise models fromthe free modelling 
ategory. An optimal integration of both potentials des
ribed aboveusing ma
hine learning algorithms (i.e. support ve
tor ma
hine or neural network) is
urrently under development.For the solvation potential, whi
h re�e
ts the propensity of an amino a
id to be foundburied in folded proteins, the solvent a

essiblity is approximated by 
ounting thenumber of Cβ within 9 Å around the Cβ of a given amino a
id. As it 
an be seenfrom Table 3.9, sphere radii of 9 and 12 Å result in equally good 
orrelations and ithas been de
ided to use the smaller radius sin
e the same information 
ontent seemsto be 
aptured.Table 3.9: Correlation between GDT_TS and residue-level solvation potential onthe CASP6 training set.implementation Cα Cβradius of sphere: 5 Å -0.200 -0.153radius of sphere: 6 Å -0.431 -0.426radius of sphere: 7 Å -0.525 -0.551radius of sphere: 8 Å -0.542 -0.562radius of sphere: 9 Å -0.559 -0.568radius of sphere: 10 Å -0.541 -0.554radius of sphere: 11 Å -0.552 -0.559radius of sphere: 12 Å -0.559 -0.569radius of sphere: 13 Å -0.552 -0.562radius of sphere: 14 Å -0.547 -0.557All 
hains present in the 
oordinate �les have been taken into a

ount in orderto 
al
ulate the solvent a

essibility. A potential improvement by 
onsidering thebiologi
al units is diss
used later in Chapter 3.2.4.5.A 
oarse-grained torsion angle potential using the phi/psi angles of three 
onse
utiveresidues was developed. The bin sizes are 45 degrees for phi and psi of the 
enter



3.2 Model quality assessment 113residue and 90 degrees for the neighbouring torsion angles. Table 3.10 underlinesthe 
onsiderably better 
orrelation of the 3-residue torsion angle potentials with theGDT_TS s
ore as 
ompared to the regular single residue torsion angle potential. For
omparison purposes, the performan
e of the single residue torsion potential is shown.Table 3.10: Correlation between GDT_TS and torsion potential over 3 residues onthe CASP6 training set.implementation 
orrelationbin size 
entral residue: 30◦, bin size adja
ent residues: 45◦ -0.498bin size 
entral residue: 30◦, bin size adja
ent residues: 90◦ -0.515bin size 
entral residue: 45◦, bin size adja
ent residues: 45◦ -0.511bin size 
entral residue: 45◦, bin size adja
ent residues: 90◦ -0.517bin size 
entral residue: 90◦, bin size adja
ent residues: 90◦ -0.504single residue torsion potential: 10◦ -0.350Table 3.11: Correlation between GDT_TS and agreement terms on the CASP6training set.des
ription 
orrelationagreement DSSP - PSIPRED -0.561agreement DSSP - ProfSe
 -0.514agreement DSSP - SSpro -0.543agreement DSSP - 
onsensus (PSIPRED, ProfSe
, SSpro) -0.555agreement DSSP - ACCpro -0.529Two terms re�e
ting the agreement between predi
ted features of the target sequen
eand 
al
ulated features from the model enter the �nal version of QMEAN. A term
alled �SSE PSIPRED� in the further 
ourse of this work des
ribes the agreementbetween the predi
ted se
ondary stru
ture of the sequen
e by PSIPRED [103℄ andthe observed se
ondary stru
ture from the model as 
al
ulated by DSSP [107℄. Twofurther se
ondary stru
ture predi
tion programs have been investigated (ProfSe
 [177℄and SSpro [35℄) as well as the use of a 
onsensus of the three, but did not result in abetter regression. The solvent a

essiblility agreement term is based on the predi
tedsolvent a

essibilty of ACCpro [35℄ and the 
al
ulated of the model by DSSP. In the
omposite s
oring fun
tion (QMEAN5), both terms lead to a signi�
ant improvementin the performan
e as 
ompared to the version solely based on statisti
al potentials(see Table 3.12 in the next se
tion).
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ussion3.2.2 QMEAN: Generation of the 
omposite s
oring fun
tionTable 3.12 
ontains regression 
oe�
ients a
hieved in a regression of the modelsGDT_TS s
ores and the QMEAN s
ores. Two di�erent regression s
hemes wereinvestigated: A dire
t 
orrelation of the s
ores (Pearson's 
orrelation 
oe�
ient) anda rank 
orrelation (Spearman's rho) in the hope of taking into a

ount a possiblenon-linear relationship. As an alternative, the s
ores are transformed into Z-s
ores by
omparing the given model to 1000 other models with the same stru
ture but randomlyshu�ed sequen
es. Shu�ing the order of the residues has been shown [137℄ to workalmost as good as randomising the stru
ture as originally proposed by Sippl [198℄.Furthermore, two di�erent strategies for the optimisation of the weighting fa
tors havebeen investigated: First, an optimisation of the regression on a target-spe
i�
 basis bymaximising the average of the regression 
oe�
ients a
hieved on the individual targetsand se
ond, a global approa
h in whi
h the regression is optimised by using all modelsfrom all the targets at on
e.Table 3.12: Absolute values of the Pearson 
orrelation 
oe�
ients obtained in aregression of the GDT_TS s
ore against the predi
ted s
ore.Pearson's 
orrelation 
oe�
ient Spearman's 
. 
.s
oring fun
tion global global/Z-s
ore targetaveraged targetaverage/Z-s
ore targetaveraged targetaverage/Z-s
oretorsion single 0.35 0.39 0.25 0.3 0.23 0.24torsion 3-residue 0.52 0.5 0.35 0.39 0.32 0.31pairwise Cα 0.54 0.57 0.42 0.54 0.37 0.42pairwise Cβ 0.57 0.59 0.47 0.56 0.43 0.46pairwise Cβ/SSE 0.61 0.6 0.49 0.58 0.45 0.48solvation Cβ 0.58 0.55 0.5 0.52 0.46 0.43SSE PSIPRED 0.57 0.57 0.52 0.54 0.48 0.48SSE ProfSe
 0.53 0.53 0.49 0.52 0.45 0.45SSE SSpro 0.56 0.56 0.5 0.52 0.45 0.45SSE 
onsensus 0.57 0.57 0.51 0.53 0.46 0.46ACCpro 0.53 0.53 0.47 0.51 0.47 0.47QMEAN 3terms 0.66 0.64 0.56 0.58 0.52 0.52QMEAN 4terms 0.71 0.69 0.62 0.64 0.57 0.58QMEAN 5terms 0.72 0.69 0.64 0.65 0.59 0.6
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oe�
ients a
hieved for the di�erent s
oring fun
tion terms and their
ombinations do not di�er mu
h between the six optimisation strategies and all showthe same tenden
y. QMEAN5, whi
h is a linear 
ombination of �ve terms (seeTable 3.4), 
onsistently a
hieves the highest regression 
oe�
ients for all optimisationstrategies, dire
tly followed by QMEAN4. QMEAN3, 
onsisting only of statisti
alpotential terms, shows a slightly worse 
orrelation but is still better than any othersingle term. A Pearson's 
orrelation 
oe�
ient of 0.72 was observed for QMEAN5 inthe global approa
h in whi
h the regression is optimised over all models of all targetsat on
e. The s
atter plot in Figure 3.21 shows a 
lear trend but also the presen
e ofsome outliers.
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Figure 3.21: Correlation between GDT_TS and the 
omposite s
ore (QMEAN5) onthe models in the CASP6 traing set. Models with GDT_TS < 0.2 are not 
onsidered.The weighting fa
tors a
hieved in the two target-spe
i�
 approa
hes (Spearman andPearson) are quite similar to ea
h other. In 
omparison to those in the global strategy,lower weights were assigned for the torsion and pairwise term (data not shown). Inany 
ase, the performan
e di�eren
es when applying the weights of the six strategiesto the de
oy sets des
ribed in the next two se
tions are overall negligible.



116 Results and Dis
ussionFor the sake of simpli
ity, the weights of the global optimisation strategy are usedthroughout:
QMEAN5 = 0.3 ∗ Scoretorsion 3−residue + 0.17 ∗ Scorepairwise Cβ,SSE

+ 0.7 ∗ Scoresolvation Cβ + 80 ∗ ScoreSSE PSIPRED + 45 ∗ ScoreACCpro (3.1)Table 3.13 shows the 
ross-
orrelation between QMEAN and its 
omponent termsas well as some additional terms for 
omparison purposes. It 
an be seen that these
ondary stru
ture spe
i�
 implementation of the pairwise intera
tion potential doesnot have a signi�
antly higher 
ross-
orrelation to any of the other terms than theregular one.Table 3.13: Cross-
orrelation analysis of the terms entering the 
ombined s
ore(QMEAN) and some sele
ted s
ores for 
omparison. The Pearson's 
orrelation
oe�
ients are based on the global optimisation strategy without Z-s
ores.
torsion single torsion 3-residue pairwiseCβ pairwise Cβ/SSE solvation SSE PSIPRED ACCpro QMEAN3 QMEAN5 GDT_TStorsion single 1 0.81 0.41 0.43 0.34 0.35 0.31 0.59 0.54 -0.35torsion 3-residue 0.81 1 0.58 0.6 0.5 0.48 0.41 0.78 0.73 -0.52pairwise Cβ 0.41 0.58 1 0.97 0.71 0.43 0.58 0.89 0.83 -0.57pairwise Cβ/SSE 0.43 0.6 0.97 1 0.72 0.44 0.62 0.92 0.85 -0.61solvation 0.34 0.5 0.71 0.72 1 0.48 0.62 0.87 0.81 -0.58SSE PSIPRED 0.35 0.48 0.43 0.44 0.48 1 0.42 0.54 0.81 -0.57ACCpro 0.31 0.41 0.58 0.62 0.62 0.42 1 0.65 0.64 -0.53QMEAN3 0.59 0.78 0.89 0.92 0.87 0.54 0.65 1 0.93 -0.66QMEAN5 0.54 0.73 0.83 0.85 0.81 0.81 0.64 0.93 1 -0.72GDT_TS -0.35 -0.52 -0.57 -0.61 -0.58 -0.57 -0.53 -0.66 -0.72 1The solvation potential shows a relatively high 
ross-
orrelation to the pairwise poten-tials whi
h 
an be assigned to the similarity of their implementation. The 
orrelationto the ACCpro term is lower than 
ould be expe
ted.The integration of the SSE PSIPRED terms results in an in
rease of the regression
oe�
ient of at least 0.05 in all the optimisation strategies (Table 3.12) while having no
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eable 
ross-
orrelation to any of the other terms and QMEAN3 (Table 3.13). TheACCpro term, des
ribing the agreement between the predi
ted and observed solventa

essibility, only leads to a minor in
rease of the regression 
oe�
ients of QMEAN5.ACCpro shows a 
ross-
orrelation around 0.6 to the distan
e-dependent potentialsand the solvation potential and a 
omparison of the 
orrelation to QMEAN3 andQMEAN5 would suggest that ACCpro does not add mu
h value to the 
ombineds
ore. However, Table 3.16 proves that the opposite is true: ACCpro shows a verygood performan
e a

ording to the enri
hment quality measures and is responsible forthe 
onstant improvement in all quality measures of QMEAN5 over QMEAN4.A

ording to Table 3.13, a major part of the dis
riminatory power of QMEAN3 
anbe assigned to the pairwise Cβ/SSE and to the solvation potential. The 
orrelationof the 3-residue torsion angle potential is still rather high (regression 
oe�
ient 0.78).The se
ondary stru
ture agreement term shows a signi�
antly higher 
orrelation toQMEAN5 than ACCpro.3.2.3 QMEAN: Comparison with other methodsThree 
omprehensive test sets were used in order to assess the performan
e of QMEANand 
ompare it to other state-of-the-art methods. The �rst test set 
onsists ofthree standard de
oy sets from De
oys 'R' Us [182℄ whi
h have been frequentlyused in literature in order to test s
oring fun
tions. De
oys are 
omputer generated
onformations of protein sequen
es that possess some 
hara
teristi
s of native proteinstru
tures, but are not biologi
ally real. The se
ond test set 
onsists of 
onformationsgenerated during a mole
ular dynami
s (MD) simmulation and allow a 
omparison ofQMEAN with a mole
ular me
hani
s (MM) for
e �eld. The third test set 
onsists ofall server models submitted to CASP7 and represents the same databasis whi
h hasbeen used for the quality assessment 
ategory of the last CASP [49℄.3.2.3.1 Performan
e on three standard de
oy setsIn order to 
ompare the performan
e to several well-established statisti
al potentials,QMEAN was tested on three standard de
oy sets from De
oys 'R' Us [182℄. As



118 Results and Dis
ussionTable 3.14: Comparison of QMEAN with other methods in the performan
e ofsele
ting the native stru
ture in some standard de
oy sets from De
oys 'R' us.4state_redu
ed latti
e_ss�t LMDSrank1a Znatb rank1 Znat rank1 ZnatProQ 5/7 4.1 7/8 12.1 4/10 3.7Errat 1/7 2.5 3/8 5.1 5/10 3.1ProsaII 5/7 2.7 8/8 5.6 6/10 2.5Verify3D 4/7 2.6 7/8 4.5 2/10 1.4SNAPP 3/7 2.6 5/8 3.5 2/10 1.1AKBP 7/7 3.2 8/8 6.6 3/10 −0.5DFIRE 6/7 3.5 8/8 9.5 7/10 0.9RAPDF 7/7 3 8/8 7.2 3/10 0.5FRST 7/7 4.4 8/8 6.7 6/10 3.5torsion 3-residue 7/7 3.6 6/8 5 7/10 3.7pairwise Cβ/SSE 3/7 2 7/8 5.1 1/10 0.4solvation 0/7 1.6 3/8 3.1 0/10 1.1SSE PSIPRED 0/7 1.6 7/8 5.4 2/10 1.3ACCpro 1/7 2 5/8 3.7 3/10 1.9QMEAN3 4/7 2.7 8/8 6.2 2/10 2.3QMEAN4 3/7 2.4 8/8 7.5 4/10 2.3QMEAN5 4/7 2.5 8/8 7.7 6/10 2.7arank1: Number of de
oy set in whi
h the native stru
ture was found on the �rst rank.bZnat: Z-s
ore of the native stru
ture 
ompared to the ensemble of stru
ture in the de
oy set.
an be seen from Table 3.14, the 3-residue torsion angle potential shows the overallbest performan
e in sele
ting the native stru
ture and outperforms all other terms ofQMEAN as well as all QMEAN versions. Ex
ept for the latti
e_ssfit de
oy set,the torsion angle potential also produ
es the highest Znat s
ores.The pairwise potential performs 
omparably well on latti
e_ss�t, shows a moderateperforman
e on 4state_redu
ed and fails on LMDS. The solvation potential onlyprodu
es reasonable Z-s
ores on the latti
e_ss�t but fails 
ompletely on the othertwo sets. Comparing the performan
e of QMEAN5 on the 3 de
oy sets, it seems thatQMEAN5 performs best on latti
e_ss�t. In general the performan
e of QMEAN5 is
omparable to the other methods taking into a

ount the fa
t that QMEAN has been
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Figure 3.22: Correlation between GDT_TS and the 
omposite s
ore (QMEAN5)on the models of the mole
ular dynami
s simulation de
oy set of Fogolari et al. [81℄.trained for model quality assessment and not spe
i�
ally for the task of identifyingnative stru
tures. The advantage of QMEAN5 as a 
ombined s
oring fun
tion overenergy fun
tions based on a single term is the de
reased 
han
e to fail on some de
oysets generated based on a spe
i�
 method. Although the data basis is too sparse forwell-founded 
on
lusions, Table 3.14 suggests that the performan
e of a 
ertain s
oringfun
tion is dependent on the de
oy set. More pre
isely, how a given de
oy set has beenbuilt appears to allow some terms to perform better on one de
oy set than on another.3.2.3.2 Performan
e on a mole
ular dynami
s de
oy setThe de
oy set generated by Fogolari and 
o-workers [81℄ 
onsists of 6,255 snapshotsfrom 5 di�erent mole
ular dynami
s simulations of the thermostable subdomain fromthe 
hi
ken villin headpie
e. Sin
e one simulation started from the native stru
tureand the other 4 from alternative minimised 
onformation, this yields a wider range ofRMSD values 
ompared to the previously mentioned de
oy sets whi
h typi
ally haveonly few 
onformtion 
lose to native. The other advantage is that it allows a dire
t
omparison with mole
ular me
hani
s for
e �elds.



120 Results and Dis
ussionTable 3.15: Comparison of QMEAN and its terms with three mole
ular me
hani
senergy fun
tions, a 
onta
t potential and FRST.s
oring fun
tion logPB1
a logPB10

a F.E.b r2
 RMSDd
onta
t -1.08 -1.08 13.8 0.62 3.03FRST -1.38 -1.94 23.2 0.48 2.61MMe -0.25 -1.39 10.6 0.21 7.45MM/GBSAe -1.71 -2.02 29.6 0.66 2.4MM/PBSAe -1.79 -2.02 23.2 0.58 2.35QMEAN3 -1.5 -3.5 36.5 0.53 2.52QMEAN4 -1.71 -2.8 90.2 0.56 2.4QMEAN5 -1.51 -3.5 88 0.57 2.51torsion 3-residue -1.26 -2.8 58.4 0.57 2.71pairwise Cβ/SSE -1.02 -1.41 35.5 0.64 3.34solvation -0.32 -0.98 6.1 0.2 7.15SSE PSIPRED -1.32 -1.32 91.2 0.55 2.58ACCpro -3.5 -3.5 63 0.5 1.84a
logPB1 and logPB10 are the log probability of sele
tion the highest GDT_TS model as the best model or among the ten best-s
oringmodels, respe
tively.bF.E. stands for fra
tion enri
hment.
Person's 
orrelation 
oe�
ientdRMSD of the stru
ture with the lowest s
ore assigned by the energy fun
tion.eS
oring by a mole
ular me
hani
s (MM) for
e �eld by using the Generalized Born surfa
e area (GBSA) or the Poisson-Boltzmannsurfa
e area (PBSA) method for solvation e�e
ts.As 
an be seen from Figure 3.22, QMEAN 
onsistently assigns low energies to thenear-native 
onformations of the simulation starting from the native stru
ture (
oloredin bla
k). Espe
ially the de
oys from the native simulation show a 
lear 
orrelationbetween the RMSD and the s
ore predi
ted by QMEAN5. Although the nativestru
ture was not predi
ted to have the lowest energy, several 
onformations around 2Å RMSD get quite low energies. This is also re�e
ted by the ex
ellent logPB10 valueof QMEAN5 as shown in Table 3.15. A des
ription of the quality measures is given inthe footer of Table 3.15 and more detailed in Methods on page 64�.The solvent a

essibility agreement term seems to be quite good in identifying near-native stru
tures and to a 
ertain extent also the torsion angle potential over threeresidues, as re�e
ted by the low logPB10 value and the high fra
tion enri
hment s
ore.The se
ondary stru
ture agreement term produ
es a fra
tion enri
hment of over 90%



3.2 Model quality assessment 121whi
h indi
ates that there were no major 
hanges in se
ondary stru
tures during thesimulation starting from the native stru
ture. The RMSD values of the 
onformationwith the lowest s
ore are more or less the same for all three QMEAN versions whereasACCpro is able to pi
k the se
ond best 
onformation. The solvation potential produ
esbad results a
ross all quality measures. In 
omparison to the three versions of mole
ularme
hani
s (MM) energy fun
tions, QMEAN shows 
omparable 
orrelation 
oe�
ientsand logPB1 values but performs signi�
antly better in the enri
hment of near-nativesolutions.3.2.3.3 Performan
e on the CASP7 de
oy setA di�erent, and perhaps more realisti
, test 
ase is presented by the de
oys fromthe CASP7. In Table 3.16 QMEAN and its 
omponent s
oring fun
tion terms are
ompared to �ve widely-used model quality assessment programs (MQAPs). Thefollowing exe
utable programs 
ould be downloaded from the CAFASP4 website e:Mod
he
k [162℄, RAPDF [184℄, FRST [215℄ and ProQ [233℄. DFIRE [249℄ was requestedfrom the author. ProQ was exe
uted both with and without PSIPRED se
ondarystru
ture predi
tion.Table 3.16 shows the average performan
e of the methods over all targets using di�erentquality measures. Most of the quality measures have been previously introdu
ed anddes
ribed [225, 237℄, but a detailed de�nition 
an be found in Methods on page 64.The last three 
olumns des
ribe the s
oring fun
tions ability in identifying the nativestru
ture out of the ensemble of models for a spe
i�
 target whereas all other measuresdes
ribe di�erent aspe
ts of model quality assessment. The opposite algebrai
 sign ofMod
he
k and ProQ observed for the Pearson's 
orrelation 
oe�
ients and for the Znats
ores 
an be as
ribed to the fa
t that these two tools use an inverse s
aling 
omparedto the other s
oring fun
tion by assigning the highest s
ores to the best models.The statisti
al signi�
an
e of the performan
e di�eren
es between the methods wasvalidated using the the 2-sided t-test on paired samples (see Methods on page 66) inanalogy to the method used in the assessment of CASP4 [131℄. A 95% 
on�den
e levelwas used and the 
orresponding results are summarised in Figure 3.23. White squaresehttp://www.
s.bgu.a
.il/~dfis
her/CAFASP4/

http://www.cs.bgu.ac.il/~dfischer/CAFASP4/


122
Resultsan

dDis
ussio
n Table 3.16: Performan
e of di�erent s
oring fun
tions in predi
ting the quality of the server models submitted forall 95 targets of CASP7. Comparison of QMEAN with other well-known model quality assessment programs.regressiona enri
hmentb best predi
ted model
 best GDT_TS modeld native stru
turee

Method r2 rho F.E. E15% r10 logPB1 logPB10 ∆GDT_TS r1 r10 Znat r1 r10Mod
he
k 0.64 0.59 0.33 2.7 17 -0.7 -1.67 -0.18 6 27 1.99 47 69RAPDF -0.5 0.5 0.31 2.44 17 -0.91 -1.67 -0.08 4 17 -2.09 55 77DFIRE -0.39 0.53 0.32 2.59 19 -0.93 -1.68 -0.08 5 18 -1.25 59 72ProQ 0.36 0.26 0.13 1.22 5 -0.32 -0.99 -0.22 0 6 1.51 9 32

ProQSSE 0.54 0.43 0.19 1.71 8 -0.51 -1.21 -0.16 2 11 1.76 14 42FRST -0.57 0.53 0.3 2.36 21 -0.91 -1.74 -0.09 6 22 -2.41 56 72QMEAN3 -0.65 0.58 0.33 2.57 16 -0.8 -1.83 -0.12 1 35 -2.27 59 75QMEAN4 -0.71 0.63 0.38 2.76 28 -1.02 -1.9 -0.08 5 39 -1.86 55 69QMEAN5 -0.72 0.65 0.4 2.9 30 -1.05 -1.94 -0.08 6 40 -1.89 56 71torsion single -0.44 0.39 0.22 1.76 6 -0.6 -1.5 -0.13 0 13 -2.09 51 67torsion3-residue -0.53 0.44 0.22 1.86 13 -0.76 -1.51 -0.11 1 10 -2.64 59 79pairwiseCβ -0.58 0.51 0.3 2.51 17 -0.7 -1.7 -0.18 4 27 -1.96 39 69pairwiseCβ/SSE -0.59 0.52 0.34 2.58 22 -0.84 -1.8 -0.13 5 36 -2.16 45 71solvation -0.55 0.49 0.29 2.31 10 -0.55 -1.65 -0.24 2 27 -1.3 18 45SSEPSIPRED -0.65 0.52 0.24 2.03 9 -0.63 -1.43 -0.13 3 17 -0.89 7 25ACCpro -0.59 0.56 0.35 2.75 21 -0.85 -1.66 -0.11 6 33 -1.38 20 44aPearson's 
orrelation 
oe�
ient r2 and Spearmans's rank 
orrelation 
oe�
ient rhob

F.E. stands for fra
tion enri
hment and E15% is the enri
hment among the top 15% best predi
ted models as 
ompared to a random sele
tion.


r10 are the number of targets for with the top-s
oring models is among the top10 best models (based on GDT_TS). logPB1 and logPB10 are the log probability of sele
ting thehighest GDT_TS model as the best model or among the ten best-s
oring models, respe
tively.d

GDT_TSloss is the di�eren
e between the GDT_TS s
ore of the best-s
oring model and the best model in the de
oy set. r1 and r10 are the number of targets in whi
h the bestmodel based on GDT_TS, ex
luding the native stru
ture was found on the �rst rank or among the top 10 predi
tions.e

Znat is the Z-s
ore of the native stru
ture as 
ompared to the ensemble of models. r1 and r10 are the number of targets in whi
h the native stru
ture was found on the �rst rankor among the top 10 predi
tions.
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5Figure 3.23: Statisti
al analysis of the performan
e di�eren
es between the methodsat the 
on�den
e level of 95%. Green (red) stands for a better (worse) performan
e.indi
ate that the performan
e di�eren
e between two methods is not statisti
allysigni�
ant on a 95% 
on�den
e level whereas 
oloured squares mark statisti
alysigni�
ant di�eren
es. In 
ase of a green square, the 
orresponding method denoted inthe on the left side of the plot performs better than the one on the bottom.In general, QMEAN5 
onsistently outperforms the other �ve MQAPs with respe
tto almost all tested quality measures on both 
ategories (free modelling (FM) andtemplate-based modelling (TBM), see Table 5.2 and 5.4 in the Appendix) and overall targets (see Table 3.16). The spe
i�
 evaluation of the free modelling (FM) andthe template-based modelling (TBM) targets shows a similar trend as for all target:QMEAN outperforms the other methods over nearly all quality measures and thedi�eren
e is potentially more pronoun
ed in the template-based modelling 
ategory.On the two regression and enri
hment quality measures, QMEAN5 performs signi�-
antly better than all other methods tested (see Figure 3.23). DFIRE, together withQMEAN3 and the 3-residue torsion angle potential, identify to highest number of native
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tures whereas DFIRE has signi�
antly worse Znat s
ores 
ompared to all othermethods (see Figure 3.23). FRST produ
es better Znat s
ores than QMEAN3 but neverbetter than the torsion angle potential over 3 residues whi
h shows an extraordinarygood performan
e in re
ognising the native stru
ture.For the model quality assessment task des
ribed by the other quality measures, the3-residue torsion angle potential does mostly better than the ordinary single residuepotential. Mod
he
k generates statisti
al signi�
antly better regression 
oe�
ientsthan the other methods ex
ept the 3 QMEAN fun
tions. Consistently over all qualitymeasures (ex
ept for the Pearson's 
orrelation 
oe�
ient), ProQ performs signi�
antlyworse than the other methods tested even after the integration of PSIPRED se
ondarystru
ture predi
tion. The only ex
eption is the good average Znat s
ores a
hieved onthe free modelling targets whi
h re�e
ts the fa
t that ProQ has been trained spe
i�
allyon fold re
ognition models (see Table 5.4 in the Appendix).The se
ondary stru
ture agreement term shows on average the highest Pearson 
or-relation 
oe�
ient of all single terms and a reasonable performan
e on all the othermodel quality assessment measures. The solvent a

essibility agreement term on theother hand rea
hes the highest enri
hment values and rank 
orrelation 
oe�
ients andis very valuable for the sele
tion of good models. Over all quality measures and inboth 
ategories the se
ondary stru
ture spe
i�
 pairwise potential rea
hes signi�
antlybetter s
ores than the regular one for the model quality assessment task as well as inthe identi�
ation of the native stru
ture. The analysis of the statisti
al signi�
an
e ofthe QMEAN 
omponent terms 
an be found in Figure 5.2 in Appendix.The di�eren
es in the results a
hieved for the free modelling and template-basedmodelling targets are frequently easy to explain but sometimes appear to be 
ontra-intuitive. For the task of identifying the native stru
ture, the solvent a

essibilityagreement term (and to a 
ertain extent also SSE PSIPRED) performs 
onsiderablybetter on the FM targets than on the TBM 
ategory. In 
ontrast to the se
ondarystru
ture agreement term, the ACCpro s
ore 
an help to identify the native stru
turein the 
ase of free modelling targets where it re
ognises 7 out of 18 native stru
tures withan average Z-s
ore of the native stru
ture of more than 2 standard deviations. Over alltargets (Table 3.16), QMEAN3 is slightly better than QMEAN4 and QMEAN5 as a
onsequen
e of the inability of the se
ondary stru
ture agreement term in re
ognising
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ture whi
h is re�e
ted by the low Z-s
ores of the native stru
ture andthe rank measures (rank1 and rank10). An explanation for this observation is given ina separate dis
ussion se
tion on page 130.As expe
ted, the regression 
oe�
ients for TBM targets are on average higher than forFM targets. A slightly better enri
hment is possible with FM targets, sin
e the modelsin this 
ategory tend to be less similar to ea
h other than for example in the high-a

ura
y template-based modelling 
ategory in whi
h a large fra
tion of the models
an be more or less identi
al as it 
an be seen in Figure 3.24 b. Of the free modellingtargets, the pairwise and solvation potentials as well as ACCpro all produ
e highenri
hment values whereas on the template-based modelling targets the performan
e ofthe solvation potential is signi�
antly worse 
ompared to the others over most qualitymeasures. For the FM targets, the native stru
tures are re
ognised with better Z-s
ores on average but, surprisingly, the relative number of native stru
tures ranked asnumber one is lower (9 out of 18) as 
ompared to the TBM targets (51 out of 77) (seeSupplementary Material).Figure 3.24 shows the 
orrelation between GDT_TS and QMEAN s
ore for the modelsof four sele
ted targets belonging to the TBM and FM target 
ategory. The s
atterplots on the left-hand side (Figure 3.24 a and 
) represent two examples in whi
h boththe regression and the identi�
ation of the native stru
ture went �ne. The s
atter plotsfor all of the 95 targets are shown in the Appendix.Sometimes the native stru
ture 
an be easily identi�ed (target T0321, Figure 3.24
) but sometimes the native stru
ture is hidden among the bulk of the models (targetT0300, Figure 3.24 d) even though the regression 
an be reasonably good. This is quiteastonishing, sin
e for most of the FM targets, no submitted model had a GDT_TSs
ore of more than 50 and one should expe
t the native stru
ture to be easy to identify.On the other hand, the enri
hment for FM targets works rather well with enri
hmentvalues (E15%) on the order of fa
tor 3 a
hieved on average.3.2.3.4 Estimating overall performan
eFra
tion enri
hment 
urves [217℄ are useful to 
ompare and visualise the performan
e ofdi�erent MQAPs in analogy to re
eiver operator 
hara
teristi
 (ROC) 
urves frequently



126 Results and Dis
ussion

-200

-150

-100

-50

 0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0303 (TBM)

models
native

(a) Target T0303 (template-based modelling 
at-egory) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0291 (HA-TBM)

models
native

(b) Target T02901 (high-a

ura
y TBM 
ate-gory)
-200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0321 (FM)

models
native

(
) Target T0321 (free modelling 
ategory) -200

-150

-100

-50

 0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0300 (FM)

models
native

(d) Target T0300 (free modelling 
ategory)Figure 3.24: S
atter plots showing the 
orrelations between GDT_TS andQMEAN5 for four sele
ted examples.used in ben
hmarks of fold re
ognition and alignment programs. They impli
itly 
overseveral quality measures used in Table 3.16, e.g. enri
hment and regression. WhereROC 
urves require the somewhat arbitrary de�nition of a threshold to distinguishgood from bad models, fra
tion enri
hment 
urves measure the added value of MQAPsin ranking di�erent models.Figure 3.25 and 3.26 show the fra
tion of best models (based on GDT_TS) foundamong a 
ertain fra
tion of the top s
oring models as predi
ted by the s
oring fun
tion(fra
tion enri
hment). The 
al
ulations are performed on the server models of CASP7after removing the native stru
tures. The 
urves in the upper part of Figure 3.25 re�e
t
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Figure 3.25: Target-spe
i�
 fra
tion enri
hment 
urves showing the per
entage oftop x% highest GDT_TS models among the top x% best-s
oring stru
tures (averagedover all CASP7 targets).the ability of the s
oring fun
tion to identify the best models among all models for agiven target (averaged of all targets) and are a measure for the s
oring fun
tions abilityto predi
t the relative model quality. The steeper the progression of the 
urve, and thelarger the area under the 
urve, the better a s
oring fun
tion agrees with the measuredmodel quality. The average fra
tion enri
hment over the individual targets for 
uto�sranging from 5% to 50% is shown. QMEAN 
onsistently shows the best performan
eover the whole range but espe
ially between 5% and 15%, underlining its strength inre
ognising the best models. Mod
he
k, RAPDF, DFIRE and FRST show a quitesimilar behavior over the �rst 3 thresholds. Above 20 per
ent, the 
urve obtained forMod
he
k and DFIRE are slightly higher whi
h agrees with its good rank 
orrelation
oe�
ients and enri
hment values in Table 3.16. ProQ performs signi�
antly worsethan the others.The global fra
tion enri
hment 
urves shown in Figure 3.26 are obtained by poolingtogether the models of all targets and 
al
ulating the fra
tion enri
hment over the whole
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Figure 3.26: Global fra
tion enri
hment 
urves over all model from all CASP7targets.set. In this way, the s
oring fun
tion's ability to predi
t the absolute model quality (i.e.to estimate the degree of �nativeness� of a model) is investigated. In 
ontrast to theresults in Figure 3.25, the performan
e of RAPDF and espe
ially DFIRE are strikinglylow 
ompared to Mod
he
k and FRST. FRST shows the best fra
tion enri
hmentwithin the �rst 5 per
ent and appears to be good in re
ognising native and native-likestru
tures. This is also re�e
ted by the low average Z-s
ores of the native stru
ture(Znat) shown in Table 3.16. In the global enri
hment, ProQ shows a reasonableperforman
e whi
h 
an be mainly attributed to the se
ondary stru
ture informationin
luded as the di�eren
e between ProQ and ProQ PSIPRED suggests. Above afra
tion of 0.1, QMEAN 
onsistently generates the highest fra
tion enri
hments ofall MQAPs tested. For example, among the 15% best QMEAN predi
tions more than60% of the 15% best models are identi�ed. The high enri
hments are an eviden
e of agood global 
orrelation between the QMEAN s
ore and the e�e
tive model quality.Slope and inter
ept from the regression between GDT_TS and QMEAN s
ore obtainedon the training set 
an be used in order to derive a predi
ted GDT_TS. Figure 3.27
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Figure 3.27: Regression between GDT_TS and the 
omposite s
ore (QMEAN5) ofthe models in the CASP7 test set.shows the 
orrelation between measured GDT_TS and predi
ted GDT_TS based onQMEAN on the CASP7 test set. Although the 
orrelation is quite good, the data showthat a predi
tion of the absolute GDT_TS of a given model is only possible with a
ertain a

ura
y. An improved global 
orrelation will be de�nitively a
hieved by usingma
hine learning approa
hes in order to 
ombine the terms (as �rst results with aneural network suggest).
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ussion3.2.4 QMEAN: Dis
ussion and outlook3.2.4.1 General performan
eThe QMEAN s
oring fun
tion has been shown to be a valuable tool for model qualityassessment by distinguishing good from bad models and for the identi�
ation of thenative stru
ture among de
oy sets generated by a variety of methods. On the 
om-prehensive set of 22,420 server models of CASP7, QMEAN 
onsistently outperformsthe �ve model quality assessment programs over nearly all quality measures and modeldi�
ulty ranges.3.2.4.2 Agreement between predi
ted and measusred featuresOnly in two de
oy sets from De
oys 'R' us, latti
e_ssfit and LMDS, did theintegration of the se
ondary stru
ture agreement term result in an improved abilityof the 
ombined s
oring fun
tion in identifying the native stru
ture 
ompared to thestatisti
al potential terms only (QMEAN3). This 
an be possibly attributed to thegreater overall variability of the de
oy stru
tures in these sets and the absen
e ofnative-like stru
tures: latti
e_ssfit 
onteins stru
tures with RMSD ranging from5.68 to 13.23 Å and LMSD from 4.05 to 11.5Å. On the other hand, the 4state_redu
edset on whi
h the two agreement terms failed in re
ognising the native stru
ture 
oversstru
tures between 1.15 and 8.80 Å. The CASP7 test set shows a similar trend: forfree modelling targets slightly better Znat s
ores are obtained than for template-based modelling targets using the se
ondary stru
ture agreement term and solventa

essibility terms performs 
onsiderably on targets of the FM 
ategory.In 
ontrast to this observation, the se
ondary stru
ture agreement term turned out tobe a valuable 
ontributor to the good performan
e of QMEAN in the model qualityassessment task. The di�erent performan
e on these two tasks 
an, espe
ially inthe 
ase of the CASP7 set, tentatively be as
ribed to the fa
t that the se
ondarystru
ture 
omposition of the native stru
ture 
an only be predi
ted with a 
ertaina

ura
y, typi
ally around 76-80%. A theoreti
al limit of predi
tion a

ura
y of 88%per
ent was proposed by Rost [176℄ arguing that minor variations in stru
tures evenbetween homologous proteins 
an result in di�erent se
ondary stru
ture assignments
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h as DSSP. It is therefore rather unlikely that the se
ondary stru
tureagreement between PSIPRED and DSSP a
hieves 100 per
ent for the native stru
tureand more likely that there is a tenden
y for models generated by methods takingimpli
itly advantage of predi
ted se
ondary stru
ture information to re
eive betters
ores than the native stru
ture.The same argument given above holds for the solvent a

essibility agreement term,although the e�e
t seems to be less pronoun
ed as re�e
ted by the higher Z-s
oresof the native stru
ture (Znat) a
hieved in the CASP7 de
oy set. This might beexplained by the signi�
antly redu
ed sensitivity of this term toward minor di�eren
esin the stru
tures, sin
e it is based on a binary 
lassi�
ation of solvent a

essibility(buried/exposed) as provided by ACCpro. Thus, near-native stru
tures would tend tohave solvent a

essibility agreement values (e.g. pa
king) similar to the native stru
turebut bad models do not, whi
h would explain the moderate Znat s
ores to some extent.In 
ontrast to the observation des
ribed above, both agreement terms turned out tobe valuable 
ontributors to the good performan
e of QMEAN in the model qualityassessment task as re�e
ted by the 
onsistently better performan
e of QMEAN5
ompared to the version using statisti
al potential terms only (QMEAN3).3.2.4.3 Torsion angle potential over 3 residuesThe torsion angle potential over three residues turned out to be a very powerful term forthe identi�
ation of the native stru
tures out of a variety of de
oy sets, suggesting thatthe 3-residue torsion angle potential des
ribes the propensity of a 
ertain amino a
idfor a 
ertain lo
al geometry 
onsiderably better than the single residue torsion anglepotential. The �nal bin sizes of 45 degree for the phi and psi angles of the 
enter residueand 90 degree for the neighbouring torsion angles are surprisingly 
oarse-grained, but
an possibly be explained by reasonable binning of the Rama
handran plot [167℄ in90 and 45 degrees and how these values represent a trade-o� between resolution andnumber of states, redu
ing the danger of over-�tting. The resulting number of 327,680(= 20 * (360/45)2 * (360/90)2 * (360/90)2) possible states is in the same order ofmagnitude as observed in some all-atom potentials. Betan
ourt and Skolni
k [19℄have shown that the dihedral angles of a residue are in�uen
ed by the identity and
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onformation of the adja
ent residues. This e�e
t is espe
ially pronoun
ed in loopregions and near the end of β-sheets. The 3-residue torsion angle potential seemsto 
apture this e�e
t to a 
ertain extent. In 
ontrast to the potential introdu
ed byBetan
ourt and Skolni
k, the 3-residue potential des
ribed in this work does not takeinto a

ount the identity of the adja
ent residues and is attra
tive in its simpli
ity. Itbasi
ally re�e
ts the propensity of a 
ertain amino a
id type for a given lo
al geometry(as des
ribed by six torsion angles) as 
ompared to other 19 amino a
ids.3.2.4.4 Se
ondary stru
ture spe
i�
 pairwise potentialThe se
ondary stru
ture spe
i�
 implementation has shown to lead to a statisti
allysigni�
ant improvement of the performan
e over all quality measures 
ompared to theregular residue-level pairwise potential. Loops are primarily lo
ated at the proteinsurfa
e and are to a greater extent in�uen
ed by non-lo
al intera
tions in 
ontrast toheli
es and sheets whi
h are mainly determined by the lo
al potential [19℄. As loopshave fewer 
onta
ts to the rest of the protein than heli
es and sheets, whi
h are at leastpartially surrounded by more residues, it 
an be spe
ulated that pairwise statisti
alpotentials tend to be biased towards intera
tion patterns observed in the protein 
ore.As a 
onsequen
e, some motifs observed only in loop regions re
eive a slightly too highenergy. A spe
ialised potential 
ompiled and applied in a se
ondary-spe
i�
 mannermay 
ountera
t this.3.2.4.5 Solvation potentialThe 
al
ulation of the solvent a

essibility solely based on the atoms present in the
oordinate �le is problemati
. As des
ribed in Methods, the solvent a

essiblity isapproximated by 
ounting the number of β atoms with 9 Å arrount the β of the givenresidue. Although all 
hains are taken into a

ount in the 
al
ulation, the stru
ture inthe PDB �le often does not represent the biologi
ally a
tive mole
ule. For example inthe 
ase of homo-multimers (i.e. proteins 
onsisting of several identi
al subunits in thequaternary stru
ture), typi
ally only one subunit is present in the 
oordinate �le. As a
onsequen
e, some residues whi
h are buried in the native 
omplex are 
onsideredas exposed leading to ina

ura
ies in the resulting potentials. This is a possible
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e of the solvation term and also for the observation,that a solvent a

essiblity spe
i�
 implementation of the pairwise intera
tion potentialdid not improve the results.To the best of this author's knowledge, non of the statisti
al solvation potentialsdes
ribed in literatur does take into a

ount the biologi
al unit of the protein inthe derivation of the potentials. To some extent, statisti
al potentials are tolerant
on
erning minor error in the derivation of the observed frequen
ies as a 
onsequen
e oftheir statisti
al nature. But, in the 
ase of the solvation potential, the errors introdu
edby not 
onsidering the biologi
al unit 
an most probably not be negle
ted.In a future implementation of the solvation potential, the information of the biologi
alunit of the proteins will be taken into a

ount e.g. by using either stru
tures from theProtein Quaternary Stru
ture (PQS) serverf or by only using monomeri
 stru
tures.Both approa
hes are asso
iated with ina

ura
ies as well (e.g. be
ause the biologi
alunit is often assigned wrong [242℄), but in
luding information about the quaternarystru
ture is probably the better alternative than ignoring it.3.2.4.6 Training and evaluation pro
essIn order to redu
e a possible over-�tting of any of the potentials, all stru
tures withdete
table homology (based on a BLAST sear
h) to any of the stru
tures of the twoCASP de
oy sets were removed from the protein data set used to build the potentials.In this way, several 100 per
ent sequen
e identity hits have been removed. Remarkably,
omparing the results before and after adjusting the potentials, no 
onsiderable 
hangehas been observed even for the task of dete
ting the native fold (data not shown).This 
an be explained by the rather large number of stru
tures used to 
ompile thepotentials, where the in�uen
e of one spe
i�
 (even identi
al) stru
ture is diminished bythe others. In model quality assessment in parti
ular, models with signi�
ant errors,not the a
tual stru
tures, are evaluated, further redu
ing a possible bias from thepresen
e of homologous stru
tures in the data set.Parameterising and optimising the single term as well as their 
ombination on CASPde
oys represents a reasonable approa
h sin
e a variety of methods and the entire rangefhttp://pqs.ebi.a
.uk/

http://pqs.ebi.ac.uk/
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ussionof modelling di�
ulty is 
overed. The good performan
e of QMEAN on all de
oy setsand the fa
t that the targets of two CASP rounds are 
ompletely di�erent indi
atesthat QMEAN has not been spe
i�
ally trained to assess models produ
ed by CASPparti
ipants but instead is appli
able to the variety of methods.Although the strategy to derive the weighting fa
tors for the 
omposite s
ore based onthe regression 
oe�
ient represents a reasonable starting point (assuming a 
orrelationbetween energy and degree of �nativeness�), this approa
h also has some disadvantages.Some terms showing a medium 
orrelation to GDT_TS 
an still perform better onother quality measures and their dis
rimination power tends to be underestimated. Agood example is the solvent a

essibility agreement term whi
h shows lower 
orrelationto GDT_TS than the se
ondary stru
ture agreement term (Table 3.12) but performed
onsistently better in the CASP7 de
oy set over a wide range of 
onditions (Table 3.16).A possible underestimation is also re�e
ted by the low 
orrelation to the QMEAN5s
ore as shown in Table 3.13. The fa
t that some of the other terms show varyingdis
rimination power depending on the modelling di�
ulty may warrant spe
ialisedversions of the s
oring fun
tion e.g. for free modelling or template-based modellingtargets. In parti
ular, it remains to be seen why de
oys for 
ertain free modellingtargets have lower energy than the native stru
ture.3.2.4.7 Global and target-spe
i�
 predi
tion of model qualityQMEAN shows a 
onsistently better enri
hment performan
e based on the fra
tionenri
hment 
urves shown in Figure 3.25 and 3.26 
ompared to other MQAPs for boththe relative predi
tion of model quality for models of the same target as well as for theglobal quality predi
tion over all targets. Sin
e MQAPs are routinely used to assessensemble of models for the same target, the target-averaged fra
tion enri
hment 
urvesare probably of greater pra
ti
al interest sin
e they re�e
t the ability of the s
oringfun
tion in dis
riminating good from bad models. On the other hand, the need fors
oring fun
tions predi
ting the absolute quality of a model has only re
ently beenhighlighted by the CASP7 assessors [49℄. QMEAN represents a further step towardsthe predi
tion of the absolute quality of protein models.
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tion routine 1353.3 The loop predi
tion routine3.3.1 General performan
eThe knowledge-based loop modelling proto
ol des
ribed in this work basi
ally 
onsistsof 3 steps (see s
hemati
 representation on page 45 in Methods): sele
tion of fragmentsfrom the fragment database whi
h approximately �t to the geometry imposed bythe an
hor groups, �ltering of the initial sele
tion in order to remove unfavourable
andidates and, �nally, ranking of the remaining loops a

ording to a s
oring fun
tion.The optimisation of the parameters and thresholds used in the sele
tion pro
ess aswell as for the di�erent �lters (an
hor geometry �lter, 
lash �lter, torsion energy �lterand ba
kbone energy �lter) is des
ribed in detail in Methods on page 45�. In thisse
tion, the results of the loop ranking pro
ess are des
ribed and 
ompared to otherloop predi
tion methods (se
tion 3.3.2).The loop modelling a

ura
y of knowledge-based approa
hes is determined by twodistin
t fa
tors: �rst, the availability of suitable 
onformations in the fragmentdatabase based on experimentally solved protein stru
tures and, se
ond, the ability ofthe s
oring fun
tion to identify fragments whi
h are 
lose to the native 
onformation.In 
ontrast to ab initio methods, in whi
h the loop 
onformation is in
rementallybuilt up in the given protein framework, in knowledge-based approa
hes the 
andidatefragments are �tted on the an
hor groups lo
ated on the N-terminal and C-terminalside of the loop. Therefore, not only the lo
al 
onformation of a fragment is important(as expressed by the lo
al RMSD between the fragment and the native loop aftersuperposition), but also its orientation in the protein framework (as expressed bythe global RMSD between native loop and 
andidate loop after �tting on the an
horgroups).As des
ribed in Methods (Chapter 2.3), a maximum number of 3000 fragments areretained after the appli
ation of all �lters. In a subsequent step the side
hains are addedto the loop ba
kbone and the loops are ranked based on an all-atom distan
e-dependentintera
tion potential whi
h investigates the 
ompatibility of the loop with the givenstru
tural environment. The evaluation of di�erent s
oring fun
tions is des
ribed later.In Figure 3.28 the average (a) and the median (b) global RMSD of the top-ranking
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ussionloops together with the lower and upper bounds of the predi
tion a

ura
y are shownfor loops of length of 4 to 12 residues of the test set of Rossi et al. [174℄. All RMSDvalues shown in this se
tion are 
al
ulated based on the four ba
kbone atoms of the loopwithout the an
hor group residues. The lower bound is determined by the loop with thelowest global RMSD present among the 3000 
andidate fragments, averaged over thedi�erent test 
ases. This represents the maximum possible predi
tion a

ura
y whi
h
ould be a
hieved by a �perfe
t� s
oring fun
tion, i.e. if the s
oring fun
tion would
onsistently 
hoose the fragment 
losest to the native 
onformation. The upper boundis de�ned by randomly sele
ting a 
onformation out of the 3000 
andidates. Detailedresults for loop of length 4, 6, 8 residues are shown later in Table 3.19-3.21.In the majority of the test 
ases for loops of length 4-7 residues, a fragment with aglobal RMSD below 1 Å is present in the �nal sele
tion of 3000 
onformations. Forloops below 8 residues, the s
oring fun
tion shows a good performan
e in the sele
tionof near native 
onformations and works 
onsiderably better than the random sele
tion.For loops of 8 residues and longer the median RMSD of the best fragment in the �nalsele
tion in
reases whi
h re�e
ts the de
rease in 
overage of the 
onformational spa
e.In Figure 3.28, only fragments originating from protein stru
tures showing no mea-surable sequen
e identity to the protein in whi
h the loop is modelled have beenused. This allows to avoid trivial predi
tions and guarantees a fair 
omparison toother methods. However, in a realisti
 appli
ation 
ase, depending of the modellingdi�
ulty (i.e. the sequen
e identity of the query protein to its templates), fragmentsof remote homologous proteins are present and 
an be used. Figure 3.29 underlinesthe in�uen
e of the presen
e of fragments from homologous proteins on the predi
tionquality. The median RMSD of the top ranking loops is shown using di�erent sequen
eidentity 
uto�s in order to �lter out fragments from homologues of the query protein(i.e. the protein in whi
h the loop is modelled). The homology is dete
ted by a BLAST[5℄ sear
h of the query protein sequen
e against the set of proteins used to build thefragment database. Sin
e BLAST provides lo
al alignments, the per
entage sequen
eidentity over the entire stru
ture 
an be 
onsiderably lower and therefore the predi
tiona

ura
y for a given 
uto� even better.Figure 3.29 shows that the median RMSD is 
onsistently lower if fragments fromhomologous proteins are a

epted, suggesting that they are often found on the �rst
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Figure 3.28: Average (a) and median (b) RMSD of the top-ranking loops per looplength as well as upper and lower bound of loop predi
tion a

ura
y on the test setof Rossi et al.
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Median prediction accuracy depending on the presence of

fragments from homologous proteins
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Figure 3.29: Median RMSD of the top-ranking loops per loop length in presen
eof fragments originating from homologues of the loops in the test set of Rossi et al.[174℄.rank. Fragments from homologous proteins were exposed to a similar stru
turalenvironment and potentially have an
hor geometries 
omparable to those observedin the protein in whi
h the loop is modelled. This in
reases to probability that ananalogous lo
al fold is adopt and that the orientation of the fragment with respe
tto the protein framework is approximately 
orre
t. If no homology �lter is applied,the median of the RMSD drops signi�
antly (lowest 
urve in Figure 3.29). In this
ase, fragments of the native loop 
onformation itself or of a very 
lose homologueare ranked �rst. Sin
e a non-redundant set of protein stru
tures 
lustered at 95%sequen
e identity has been used to generate the fragment database, the loop of thenative stru
ture itself is often not present in the database. These results prove thatthe all-atom intera
tion potential used for loop ranking is able to 
onsistently identifyloops having a very similar or identi
al 
onformation 
ompared to the one observed inthe native stru
ture and that these loops are in most 
ases ranked �rst.However, in a realisti
 modelling situation the lo
al loop 
onformation is only approx-
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tion routine 139imately 
orre
t (for an evaluation of the an
hor region see Chapter 3.4.2) and theorientation of the fragment in the protein framwork after �tting on the an
hor groupsis rarely ideal. Sin
e the geometry of the an
hor groups and the terminal residuesof the fragments are di�erent even for fragments with a lo
al 
onformation 
lose tothe native one, the fragments are slighly misoriented in the protein framework. Theresulting rotation has a mu
h stronger e�e
t on longer loops as a 
onsequen
e of thelonger radius. This problem will be addressed in detail at the end of this se
tion anda possible solution is dis
ussed.Furthermore, even minor distorsions of the protein ba
kbone with respe
t to thenative 
onformation 
an lead to 
onsiderable di�eren
es in the orientation of theside
hains resulting in unfavourable intera
tions of the loop with its environment(see e.g. [31℄ for the des
ription of the ba
kbone-dependent rotamer libraries usedin side
hain modelling). On the other hand, ranking the loops without 
onsideringside
hain intera
tions is too impre
ise sin
e espe
ially the 
onformation of longer loopsis mainly determined by intera
tions with the stru
tural environment rather thanby the lo
al geometry (i.e. by torsion angle preferen
es of the amino a
ids of theloop) [19℄. The torsion angle potential, for example, but also as the residue-levelintera
tion potential based on Cα atoms (de�nitions in Methods page 58) are bothable to roughly dis
riminate between good and bad fragments but fail in re
ognisingnear native solutions. This is the reason why they are used as �lters and not in thes
oring pro
ess.For the �nal s
oring step, a variety of implementations for the all-atom intera
tionpotential and 
ombinations with other statisti
al potential terms (torsion angle po-tential, all-atom solvation potential) have been investigated. A 
ombination with thean
hor group RMSD (des
ribing the �goodness of �t� of the fragment to the geometryimposed by the an
hor residues) has been tried as well. Table 3.18 shows some of thebest performing s
oring fun
tions tested in the evaluation pro
ess. The average globalRMSDs on the parametrisation test set are shown for di�erent loop length.Overall, the all-atom intera
tion potential shows the best performan
e in s
oring loop
onformations, approximately as good as the 
ombination of the of three statisti
alpotentials (torsion angle potential, all-atom solvation potential, all-atom intera
tionpotential) together with the an
hor group RMSD (RMSa). This 
an be partly
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ussionattributed to the fa
t that some of the terms of the 
ombined s
oring fun
tion havebeen previously used in the �ltering step. The information 
aptured by the all-atomsolvation potential is to some extent 
overed by the all-atom intera
tion potential: thepropensity of a loops to form 
onta
ts with the protein framework insteed of beingsolvent exposed des
ribed by the solvation potential (e.g. the burial of hydrophobi
residues) is also re�e
ted by the intera
tion potential. Loops lying against the proteinbody tend to have also more favourable intera
tions and, as a 
onsequen
e, potentiallylower energies.Table 3.18: Comparison of di�erent s
oring fun
tions on the parametrisation setfor loops of length 4, 6, 8 and 12. A des
iption of the terms 
an be found in Methodson page 67. Loop lengths
oring fun
tion 4 6 8 12RMSaa 0.95 2.1 3.16 5.98RMSa + sequen
e 
onservation 1.01 2.19 3.06 5.83all-atom 2-10 Å (default) 0.94 1.95 3.03 5.96all-atom 2-10 Å (environment side
hains rebuilt)b 0.91 1.85 3.28 5.62all-atom 3-10 Å 0.91 2.02 3.2 5.68all-atom 0-10 Å (environment side
hains rebuilt)a 0.85 1.91 3.13 6.22RMSa + all-atom 1.76 3.08 3.54 5.65all-atom + solvation 1.72 2.84 3.26 5.7all-atom + torsion 1.37 2.31 3.75 6.5all-atom + solvation + torsion 1.32 2.37 3.47 5.88all-atom + solvation + torsion + RMSa 0.98 1.9 3.08 5.53Cα-pairwise + Cα-solvation + RMSa
 1.95 2.81 3.48 5.63aRMSD between the terminal fragment residues and the an
hor group residues after �tting.bIn a se
ond round, the side
hains of surrounding residues within 5 Å are rebuilt simultaneously with the loop side
hains.
S
oring fun
tion only relying on the loop ba
kbone (used in the ba
kbone energy �lter).)The average RMSD values for four alternative implementations of the all-atom intera
-tion potential are shown in Figure 3.18. A lower distan
e 
uto�s of 2 Å performs slightlybetter than 3Å for medium loop lengths. In the former implementation, hydrogenbonding is taken into a

ount typi
ally o

urring at distan
es between approximately2.5 Å - 3Å [231℄. In two implementations, the stru
tural environment is allowed to



3.3 The loop predi
tion routine 141relax in that the side
hains of all residues having an atom within 5 Å around the loopafter the intitial side
hain modelling pro
ess are rebuilt in a subsequent step togetherwith the loop side
hains. Slighly better RMSDs are obtained in this approa
h forsmall loops up the length 6. If no lower distan
e 
uto� is used, the repulsive term at
lose distan
es improves loop ranking for smaller loops but not for longer ones. This
an be attributed to the higher probability of 
lashes at longer loop lengths. Overall,the performan
e di�eren
es of the four alternative implementations are only marginal.Sin
e rebuilding the stru
tural environment results in an in
rease of the run-time, theversion investigating 
onta
ts between 2 Å and 10 Å (highlighted in bold) is usedin the following. At the end of this se
tion, the appli
ation of a subsequent energyminimisation step based on a mole
ular me
hani
s for
e �eld is suggested. This wouldallow to relax the loop, and, a side
hain rebuilding pro
ess would not be ne
essary.Using solely the all-atom potential for s
oring without 
onsidering the RMSa has theadvantage that the s
oring fun
tion is more generally appli
able. Loop predi
tionmethods are typi
ally tested in self-predi
tion experiments, whi
h means that a loopis 
ut out from a experimental protein stru
ture and rebuilt in the given exa
tenvironment. In the modelling 
ase, the situation is quite di�erent: the environmentis only approximately 
orre
t and espe
ially the an
hor geometry is usually slightlydistorted (see se
tion 3.4.2) leading to a di�erent orientation of the fragment after�tting. Whereas in the self-predi
tion 
ase the RMSa 
an to some extent indi
atewhether a fragment has the 
orre
t orientation with respe
t to the framework, thisis hardly the 
ase in the modelling situation. Therefore this term should not beused for s
oring as done in many knowledge-based approa
hes des
ribed in literature[53, 90, 139℄.In the following, the performan
e of the loop predi
tion routine on the test set by Rossiet al. [174℄ is des
ribed in detail. A 
omparison to other methods is des
ribed in thenext se
tion. In Table 3.19-3.21, the results for loops of length 4, 6 and 8 are shown.The results for the other loop length 
an be found in the Appendix Table 5.6-5.11.For loops of length 4 the average (median) predi
tion a

ura
y is 0.66 Å (0.51 Å) ifall fragments from homologous stru
tures are ex
luded. More than 90% of the loopsare predi
ted with a global ba
kbone RMSD below 1 Å. In 
olumn 6 the rank of the
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ussionTable 3.19: Results for loops of length 4 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopaPDB ID residues bestloopb random20000
 random3000d rankTop10e no ho-molgues allhomo-logues <90% <50% <30%1aaj 82-85 0.28 2.21 1.61 6 0.61 0.17 0.37 0.44 0.611ads 99-102 0.22 3.67 1.83 15 0.24 0.33 0.33 0.33 0.241
bs 21-24 0.26 4.7 0.91 3 0.34 0.34 0.34 0.34 0.341frd 59-62 0.29 3.58 2.87 6 0.43 0.06 0.39 0.43 0.431gpr 123-126 0.34 3.63 1.03 7 2.12 0.07 2.12 2.12 2.121nfp 37-40 0.95 5.31 2.54 1 0.95 0.95 0.95 0.95 0.951pbe 117-120 0.38 2.63 1.38 2 0.42 0.29 0.42 0.42 0.421pda 139-142 0.26 1.91 0.9 17 0.32 0.32 0.32 0.32 0.321pl
 74-77 0.53 1.94 2.24 16 0.81 0.06 0.21 0.58 0.811ppn 42-45 0.28 3.48 0.41 79 0.55 0.55 0.55 0.55 0.551r
f 111-114 0.11 0.6 0.25 4 0.46 0.46 0.46 0.46 0.461thw 194-197 0.36 0.69 3.57 1 0.43 0.43 0.43 0.43 0.431tib 46-49 0.32 2.55 4.05 1 0.53 0.53 0.53 0.53 0.531tml 42-45 0.87 2.09 2.16 110 2.11 2.11 2.11 2.11 2.111xif 82-85 0.32 1.77 1.29 26 0.6 0.1 0.6 0.6 0.62exo 116-164 0.29 4.83 2.47 7 0.51 0.51 0.51 0.51 0.512sil 220-223 0.4 1.92 1.74 6 0.51 0.18 0.51 0.51 0.512tgi 72-75 0.24 2.11 1.57 4 0.71 0.06 0.5 0.71 0.714enl 335-338 0.15 2.53 2.85 2 0.24 0.31 0.31 0.24 0.244g
r 116-119 0.34 3.64 3.25 3 0.4 0.11 0.4 0.4 0.47rsa 47-50 0.28 1.7 2.08 12 0.47 0.35 0.35 0.47 0.47average - 0.36 2.74 1.95 - 0.66 0.39 0.61 0.64 0.66median - 0.29 2.53 1.83 - 0.51 0.32 0.43 0.47 0.51aRMSD of the top ranking loop after removing fragments from homologues above a given 
uto�.bBest nonhomologues loop present among the 3,000 
andidate fragments after all �ltering steps.
Random sele
tion of a fragment from the maximum 20,000 loops present after appli
ation of the torsion energy �lter.dRandom sele
tion of a fragment from the maximum 3,000 loops present after appli
ation of the ba
kbone energy �lter.eRank of the �rst Top10 fragment a

ording to RMSD.�rst Top10 solution (a

oriding to the RMSD) is shown. In majority of the test 
ases aTop10 fragments is found among the �rst 10 ranks. But even if this is not the 
ase thepredi
tion 
an be still a

urate whi
h 
on�rms that a variety of near native fragmentsare present and that the fragment database shows good 
overage of the 
onformationalspa
e at this loop length. Two test 
ases were predi
ted with an RMSD above 2 Å: inthe �rst 
ase (PDB identi�er 1gpr, residues 123-126), two good loops 
an be found onrank 3 (0.55 Å) and rank 7 (0.35 Å). For the se
ond loop only 2 loops with an RMSDbelow 1 Å are present in the sele
tion. On rank 7, a loop with an RMSD of 1.31 Å isfound.
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tion routine 143Table 3.20: Results for loops of length 6 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%1ads 149-154 0.15 8.39 2.23 1 0.15 0.15 0.15 0.15 0.151ads 150-155 0.27 4.38 3.04 5 0.3 0.18 0.42 0.42 0.31brt 174-179 0.73 4.41 3.53 21 1.63 0.05 0.39 1.63 1.631brt 253-258 0.76 2.06 4.44 77 1.24 0.06 0.33 0.33 1.241
bs 66-71 0.66 6.82 5.6 2 0.66 0.41 0.41 0.66 0.661dim 318-323 0.28 2.33 1.57 5 0.67 0.3 0.67 0.67 0.671dts 146-151 0.51 4.05 2.43 2 0.81 1.67 0.81 0.81 0.811ede 180-185 1.14 3.47 4.4 87 2 0.21 2 2 21g
a 100-105 0.57 3.63 0.86 5 1.63 0.06 1.63 1.63 1.631mrp 233-238 0.34 3.91 3.55 4 1.76 1.76 1.76 1.76 1.761nif 211-216 0.76 3.33 2.03 115 3.8 0.18 0.25 3.8 3.81noa 25-30 0.61 3.31 2.71 7 3.55 0.05 0.62 0.62 3.551on
 12-17 0.94 5.28 4.44 51 2.18 2.18 2.18 2.18 2.181rge_A 73-78 0.96 3.28 2.84 359 3.58 3.58 3.58 3.58 3.581rhs 50-55 0.68 2.22 3.36 7 1.45 0.07 1.45 1.45 1.451t
a 38-43 0.65 1.35 1.51 2 0.65 0.08 0.65 0.65 0.651t
a 94-99 0.66 4.04 4.04 7 1.72 0.06 1.72 1.72 1.721tys 66-71 0.87 4.94 5.73 17 3.17 0.15 0.35 0.84 3.171xyz_A 633-638 0.86 2.97 3.67 5 0.91 0.06 0.43 0.43 0.911xyz_A 711-716 0.49 2.6 2.18 10 0.64 0.07 0.26 0.26 0.642ayh 81-86 0.86 3.77 3.12 4 0.95 0.06 0.22 0.95 0.952mnr 308-313 0.53 6.51 1.41 15 2.1 0.13 2.1 2.1 2.12ran 40-45 0.33 3.25 1.79 10 0.57 0.26 0.57 0.57 0.572sil 176-181 1.07 2.89 2 4 1.07 0.18 0.74 0.74 1.073pte 131-136 0.53 6.73 4.05 2 0.7 0.14 0.7 0.7 0.73pte 256-261 0.98 7.32 6.26 3 1.03 0.18 0.82 0.82 1.035p21 104-109 0.82 6.65 3.84 7 3.61 3.61 3.61 3.61 3.618abp 65-70 0.56 3.28 3.02 16 3.14 0.06 3.14 3.14 3.14average - 0.66 4.18 3.2 - 1.63 0.57 1.14 1.37 1.63median - 0.66 3.7 3.08 - 1.35 0.15 0.69 0.83 1.35If only non-homologous fragments are a

epted, an average (median) RMSD of 1.63 Å(1.35 Å) is obtained for loops of length 6. 39% of the loops in the test set are modelledwith an RMSD below 1 Å and 54% below 1.5 Å. If homologues with a sequen
e identityof less than 50% are in
luded, the per
entage of loops modelled below 1 Å in
reases toover 57% and the median RMSD drops to 0.83 Å. For the vast majority of loop test
ases, a Top10 loop 
an be found on the �rst ranks.As 
ould be seen from Figure 3.28, the predi
tion a

ura
y drops 
onsiderably betweenloops of length 7 and 8. The data suggest that this 
an be mainly attributed to thein
ompleteness of the fragment database 
on
erning fragments with a similar lo
algeometry and orientation after �tting. Whereas for loops of length 7 in 50% of the test
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ussionTable 3.21: Results for loops of length 8 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%1a62 71-78 2.41 4.17 3.89 9 3.99 0.13 3.99 3.99 3.991ads 274-281 1.17 4.53 2.08 71 3.56 0.29 0.29 0.47 3.561al
 34-41 3.1 6.59 5.56 203 4.24 0.11 0.89 0.66 4.241arb 136-143 1.53 3.27 3.18 110 2.66 0.07 2.66 2.66 2.661
vl 148-155 1.86 5.23 7.28 842 4.33 0.06 4.33 4.33 4.331gof 606-613 0.79 6.37 4.11 1 0.79 0.79 0.79 0.79 0.791hbq 31-38 1.55 6.8 4.9 394 3.57 1.22 1.22 3.57 3.571hf
 119-126 1.42 7.75 5.84 44 2.5 0.07 0.38 2.5 2.51hf
 142-149 0.59 4.81 3.42 9 0.59 0.51 0.51 0.51 0.521nar 192-199 1.3 6.02 3.67 106 2.13 0.05 2.13 2.13 2.131nif 221-228 2.73 6.77 5.53 62 3.04 0.31 0.26 4.85 4.851nif 279-286 0.67 3.73 4.71 5 0.82 0.46 0.46 0.89 1.171nls 97-104 0.58 6.22 2.28 5 0.58 0.07 0.41 0.58 0.581nwp_A 84-91 1 2.99 4.89 704 1.91 0.18 0.31 7.6 7.61oy
 80-87 1.56 2.57 1.91 2 1.91 0.07 1.91 1.91 1.911prn 150-157 2.56 3.41 7.1 71 5.14 0.26 5.14 5.14 5.141thw 18-25 1.87 6.2 6.3 26 7.79 0.17 7.79 7.79 7.791tml 187-194 1.59 2.92 4.69 3 2.79 0.49 0.49 0.49 2.792ayh 194-201 1.7 3.56 4.27 15 2.52 0.1 0.25 2.52 2.52average - 1.58 4.94 4.51 141.16 2.89 0.28 1.8 2.81 3.3median - 1.55 4.81 4.69 44 2.66 0.17 0.79 2.5 2.79
ases a fragment with RMSD below 1.5 Å is present in the �nal sele
tion, the per
entagedrops 21% for loops of length 8. Only 4 loops are predi
ted with an RMSD below 1 Å(21%). If homologues are ex
luded, a median RMSD of 2.66 Å is a
hieved whi
h dropsto 0.79 Å if a homology 
uto� of 90% is used. By applying no homology �lter (
olumn8 in Table 3.21, the s
oring fun
tion 
onsistently ranks near native fragments on thetop whi
h underlines that sampling of the 
onformational spa
e is the main limitationin modelling of longer loops not s
oring.The s
oring fun
tion is unable to dis
riminate between solutions whi
h are approxi-mately 
orre
t and fragmets whi
h have a few favourable intera
tions but point intothe wrong dire
tion. This holds for both the all-atom intera
tion potential but also fors
oring fun
tions 
onsisting of multiple terms. For example, a loop establishing only oneor two hydrogen bonds to the environment but having a 
ompletely wrong orientation
an still have a 
onsiderable lower energy than a loop whi
h has an approximately
orre
t 
onformation but several unfavourable intera
tions (e.g. overlaps of Van derWaals spheres or atom-atom distan
es slightly too long for hydrogen bonding). A
orrelation between intera
tion energy of the loop with its environment and RMSD
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tion routine 145
an only be expe
ted for 
onformations 
lose to the native solution.The 
onformational spa
e for short loops is restri
ted by the geometri
al 
onstraintsimposed by the an
hor region. For longer loops, as the ratio between loop length anddistan
e between the end points in
reases, the number of available 
onformations in-
reases exponentially [251℄. The rapid growth in the available alternative 
onformationsis 
hallenging both for ab initio methods (extensive sampling needed) and knowledge-based approa
hes (
overage by the fragment database de
reases). Furthermore, the
han
e for false positive 
onformations in
reases by intera
tions with other regions ofthe protein framework. For knowledge-based approa
hes, the �tting pro
ess representsanother sour
e of errors as a 
onsequen
e of the di�eren
e in the geometry of thean
hor groups and the terminal fragment residues. Several �tting strategies have beeninvestigated (e.g. �tting of two residues on both sides or �tting on three 
onse
utiveCα atoms) but did not result in a better performan
e.
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Figure 3.30: Regression between lo
al RMSD and global RMSD for two looppredi
tion test 
ases of length 6 (a) and 10 (b), respe
tively.Figure 3.30 shows the 
orrelation between lo
al RMSD (based on the �tting thefragment on the native loop 
onformation) and global RMSD (based on the orientationof the fragment after �tting on the an
hor groups) for two loop predi
tion test 
ases:On the left hand side, the 
orrelation for the �rst loop predi
tion test 
ase of length6 of the parametrisation set is shown (PDB identi�er 1al3, residues 198-203) and inanalogy, on the right hand side, the �rst test 
ase of length 10 (PDB identi�er 16pk,residues 303-312). For the longer loop predi
tion, the 
orrelation is 
onsiderably worse
ompared to the one obtained for the loop of length 6. Several fragments with low
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Correlation between local RMSD and all-atom interaction

energy for a 10-residue loop (PDB identifier 16pk, 303-312)
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Figure 3.31: Correlation between lo
al RMSD and loop energy 
al
ulated after�tting the fragments on the an
hor groups (a) and on the native loop (b), respe
tively.lo
al RMSD have a wrong orientation with respe
t to the native loop as re�e
ted bythe high global RMSD (see highlighted area).Figure 3.31 exempli�es that the poor loop predi
tion a

ura
y for longer loops is mainlya 
onsequen
e of the misorientation of the fragments in the protein framework (besidethe de
reasing database 
overage) and not a problem of loop ranking. Two alternativeregressions between the lo
al RMSD of the fragments and their energy are shownfor a loop predi
tion test 
ase of length 10 (PDB identi�er 16pk, residues 303-312). InFigure 3.31 a) a regression between the lo
al RMSD of the fragment with respe
t to thenative 
onformation and the s
ore of the fragment (after �tting of the an
hor groups)is shown. Virtually no 
orrelation exists and several fragments with low lo
al RMSDhave energies higher than the average of the ensemble. In Figure 3.31 b) ea
h fragmenthas been �tted on the native loop 
onformation in order to enfor
e an approximately
orre
t orientation (at least for fragments having a similar lo
al geometry 
ompared tothe native loop). This respresents only a hypotheti
al example, sin
e the native loopis, of 
ourse, not known in the appli
ation 
ase. As it 
an be seen, a 
orrelation existsfor loops 
lose to the native one and most of the low RMSD loops get assiged s
ores
onsiderably lower than the rest of the fragments. Furthermore, several near-nativeloops around 1 Å RMSD are not oberved on the plot on the right hand side sin
e theyhave been �ltered out by the 
lash �lter as a 
onsequen
e of the wrong orienation withrespe
t to the stru
tural environment.A reasonable extension of the 
urrent loop predi
tion proto
ol represents the appli-
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ation of a mole
ular me
hani
s for
e �eld for a subsequent energy minimisation step(not in the s
ope of this work). Energy minimisation of the loop and possibly theside
hains of the surrounding stru
tural environment 
ould 
ountera
t several inherentproblems of knowledge-based approa
hes. The �tting of a rigid fragment in a �xedprotein framework results in very unfavourable bond lengths and angles between thean
hor residues and the �rst loop residues whi
h should be relaxed. Annealing the loopwith the an
hor residues and simultaneously relaxing the loop in the given stru
turalenvironment 
an adjust the orientation of the fragment with respe
t to the proteinframework. Thereby atomi
 
lashes are removed and favourable intera
tions 
an beestablished su
h as hydrogen bonds and salt bridges.The following strategy 
ould be used in a future implementation:
• Appli
ation of the loop predi
tion proto
ol des
ribed here for the sele
tion of
andidate fragments and for an initial ranking.
• Energy minimisation of the top ranking fragments (e.g. to top 20 predi
tions).
• Optionally, re-s
oring a

ording the for
e �eld energy (with impli
it treatment ofsolvation e�e
ts for example by the Generalized Born solvation model [82℄).Su
h a strategy most probably improves the predi
tion quality for longer loops andextends the appli
ability of the knowledge-based approa
h des
ribed in this work whi
hseems to be limited to loops of up to length 7 a

ording to the results shown above.For loops of up to length 10, a fragment below 2 Å is present in the �nal sele
tionin at least 70% of the test 
ases but this per
entage drops to 23% and 11% forloops of length 11 and 12. Although the data basis is too sparse for well-founded
on
lusions, this observation suggests that for loops up to a length of approximately10 residues, fragments from the database 
ould be used as reasonable staring pointsfor a subsequent energy minimisation. Vlijmen and Karplus [226℄ 
onl
ude in 1997that 
andidate segments 
an be used as suitable starting points for loops of length upto nine. In 
ontrast to the strategy des
ribed above, Vlijmen and Karplus sele
tedthe 
andidate fragments for energy minimisation (using the CHARMM [25℄ non-bonded energy fun
tion) from the 50 loops 
losed to native (whi
h are not knownin the appli
ation 
ase). Therefore, using the 
urrent method to presele
t suitable
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ussionfragments represents a very promising strategy. Re
ently, Soto et al. used the statisti
alpotential DFIRE [249℄ in order to redu
e the number of 
onformation generated in anab initio sear
h based on the Dire
t Tweak algorithm [241℄ and subsequently s
oredthe 
andidates with the OPLS for
e �eld [106℄.3.3.2 Comparison with other methodsIn the following, the loop predi
tion routine presented in this work is 
ompared toother methods based on two di�erent test set:
• A 
omprehesive test set of approximately 200 loops of length 4-12 used re
ently byRossi et al. [174℄ in order to ben
hmark 4 
ommer
ial loop predi
tion programs.
• A set of 14 test 
ases 
overing loops of length 4-9 whi
h has been frequentlyliterature used for the evaluation of di�erent loop modelling algorithms (e.g. in[53, 139℄). The 
omplete test set in available onlineg.For the test set of Rossi et al. the predi
tion results of the 4 
ommer
ial programswere requested from the author dire
tely (Karen A. Rossi). Two ab initio methods(Prime, Modeler) and two knowledge-based loop modelling proto
ols are 
ompared inthis study [174℄. The 4 methods are brie�y des
ribed here:
• The Loop Re�nement module in Prime 2.5 (S
hrödinger, LLC) extensivelysamples the 
onformational spa
e by a dihedral-angle-based buildup pro
edureand uses the OPLS-2001 for
e �eld [106℄ together with the Generalized Bornsolvation model [82℄ in order to minimise and rank the loop 
andidates.
• The Re�ne Loop fun
tionality implemented in Modeler (A

elrys Software In
.)relies on 
onjugate gradients and mole
ular dynami
s with simulated annealing[77℄ and uses the CHARMM-22 for
e �eld [25℄ 
ombined with statisti
al potentialterms.ghttp://www.drug-redesign.de/LIP/LIP_WebseiteErgebnisse.html

http://www.drug-redesign.de/LIP/LIP_WebseiteErgebnisse.html
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• The Loop Sampling option in ICM 3.4-8 (Molsoft LLC) uses fragments extra
tedfrom a nonredundant subset of the PDB and ranks the fragments based ongeometri
al �t of the loop ends and sequen
e similarity.
• The Protein Loop Sear
h module in Sybyl 7.1 (Tripos) uses a fragment database
onstru
ted from the PDB and sele
ts the 
andidates based on the geometri
al �tto the an
hor groups. If no suitable fragments are identi�ed an ab initio proto
olis used.For the two knowledge-based approa
hes, all fragments from proteins sharing morethan 90% sequen
e identity to the protein of the loop test set are ex
luded in thestudy of Rossi et al.. Despite this rather permissive 
uto�, the results (averageglobal ba
kbone RMSD) for both knowledge-based approa
hes but also for Modelerare astonishingly bad (Figure 3.32). The loop predi
tion method presented in thiswork performs 
onsistently better than these 3 methods but slightly worse than Primewhi
h 
an be attributed to the extensive sampling strategy and espe
ially the advan
eds
oring fun
tion for energy minimisation and ranking used in this method.For Prime and Sybyl as well as for the present method, the predi
tion a

ura
y dropsrapidly for loops longer than 7 residues. The median of the global RMSD for allmethods is greater than 2 Å for loops of length 8. If fragments originating fromproteins sharing less than 50% sequen
e identity to the proteins of the test set arein
luded, the performan
e of the present methods be
omes 
omparable to Prime. Ifa 
uto� of 90% is used as in the other to knowledge-based approa
hes, this methodoutperforms Prime for some loop length (length 7,8,10 and 11).The se
ond test set 
onsists of 14 short and medium loops of length 4-9 and has beenpreviously used in literature in order to test loop predi
tion methods [53, 90, 139℄. The�rst two methods (
olumn 4 and 5 in Table 3.22) are knowledge-based appro
hes, thenext three are ab initio methods and, �nally, the method by Deane and Blundell ista 
ombination of both. The di�erent methods are not des
ribed in detail here. Theresults of the two knowledge-based approa
hes need to be treated with 
aution andthe approa
hes are therefore brie�y des
ribed here: In LIP [139℄, loops are extra
tedfrom a fragment database and ranked a

ording to the geometri
al �t to the an
horresidues but a very permissive �lter in order to remove loops from homolues has been
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Comparison with four commercial loop prediction methods

on the test set of Rossi et al. (average global RMSD)
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Figure 3.32: Comparison to four 
ommer
ial loop predi
tion programs: Average (a)and median (b) RMSD on loops of lenth 4-12 of the test set of Rossi et al. [174℄.
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tion routine 151Table 3.22: Comparison with other methods on 14 loops of length 4-9 [53, 139℄.Length PDBID Residues Vlijmenet al.[226℄*a LIP[139℄ Fiser etal. [77℄* ModLoopServer[78℄ RAPPERServer[50, 56℄ Deaneet al.[53℄ * CODAServer[53℄ Presentmethod4 3dfr 20-23 2.6 1.3 1.2 1.8 1 0.4 - 1.35 3dfr 89-93 1.6 3.3 1 1 1.1 0.6 1.3 0.95 3dfr 120-124 0.5 2.1 0.3 0.4 0.6 0.7 0.7 0.75 3blm 131-135 0.8 0.2 0.2 0.2 0.1 0.2 0.4 0.46 8abp 203-208 0.3 0.8 0.4 0.4 0.5 0.8 0.8 0.77 8tln_E 32-38 3.7 0.3 2 3.5 3.3 1.9 2.2 2.87 3grs 83-89 4.6 2.4 0.4 0.6 0.4 1.4 5.3 5.97 5
pa 231-237 2.1 0.3 1 5.8 0.7 0.2 2.8 2.57 2fb4_H 26-32 1.6 0.2 4.2 4.4 0.6 0.4 0.4 0.37 2fbj_H 100-106 0.5 9.2 0.8 3.1 1 1.4 1.7 2.78 2apr 76-83 5.2 0.5 1.3 2.7 0.6 2.2 5.3 1.78 2a
t 198-205 1.6 0.1 2 2.8 3.5 3.1 6.2 5.98 8tln_E 248-255 1.8 0.6 0.9 3.3 0.8 1.8 3.7 2.09 3sgb_E 199-211 1.8 0.2 0.3 0.7 0.3 - - 0.9aMethods marked with an asterisk use an RMSD based on only 3 ba
kbone atoms (without oxygen).applied su
h that the results probably do not re�e
t the performa
e of the method ina modelling appli
ation. As mentioned in the last se
tion, in the approa
h of Vlijmenet al. [226℄, the 50 loops from a database sear
h being 
losest to the native loop (beingunknown in the appli
ation 
ase) are subje
ted to a subsequent energy minimisationusing a mole
ular me
hani
s for
e �eld.In general, the present method shows 
omparable results to the other methodsespe
ially for shorter loops. For some loops of length 7 and 8 (for whi
h most of theother methods had problems as well) bad results are obtained. It sould be mentionedhere, that the methods marked with an astesisk in Table 3.22 use an RMSD based onlyon three ba
kbone atoms (without the oxygen) with is typi
ally slightly lower than theRMSD over all ba
kbone atoms. For the �rst loop whi
h was predi
ted with a RMSDabove 5 Å (3grs, 83-89) a fragment with 1.36 Å was found on rank 4. The se
ond outlier(2a
t, 198-205) represents a di�
ult test 
ase for the given method sin
e it involvesthe formation of a disul�de bridge of the �rst N-terminal residue (the 
ystein) with theenvironment. As a 
onsequen
e, many fragments 
lashed with the environment, sin
ethe protein framework was extremely 
lose to the N-terminal an
hor in this example.Given that the presen
e of a disul�de bridge is known before, the present method would
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ussionhave bene�tted from a subsequent energy minimisation step allowing the fragment torelax in the environment, adjust its orientation for the disul�de bridge.Re
ently, remarkably a

urate predi
tions have been reported also for long loops withRMSD values below 1.5 Å for loops of length 11-13 residues [251℄. These resultswere possible if extensive sampling is used and if 
rystal 
onta
ts are taken intoa

ount in the s
oring whi
h re�e
ts that 
onformations of longer loops observedin protein stru
tures determined by X-ray 
rystallography are sometimes not native
onformations observed in solution. The CPU time (AMD pro
essor with 1.4 GHz or900 MHz) needed for the 
al
ulation of a loop of length 11 (12, 13) took on average12 days (19 days, 31 days) in this study! The loop predi
tion routine presented in thiswork needs on average less than 2 hours per loop predi
tion test 
ase independent of theloop length (Intel Xeon 2.80 GHz). In knowledge-based loop predi
tion, the CPU times
ales only marginally with the loop length in 
onstrast to ab initio methods whi
hoften show an exponential relationship. The vast majority of the 
omputation timein the present method is spent on the 
al
ulation of the side
hain orientations for the3000 loops in the �nal sele
tion. The speed of side
hain predi
tion step highly dependson the presen
e of 
lose atoms (potential 
lashes) in the stru
tural environment. Thesele
tion of the fragments from the MySQL database as well as the appli
ation of all�lters takes typi
ally only a few minutes depending on the network 
onne
tion sin
ea 
onsiderable amount of data (mainly of the loop 
oordinates) have to be transfered.The 
omputation time 
an be a

elerated if stri
ter 
uto�s are used in the �lteringstep and therefore fewer side
hain orientations have to be predi
ted.



3.4 Lo
al model quality assessment and an
hor group predi
tion 1533.4 Lo
al model quality assessment and an
hor grouppredi
tionIn this se
tion the appli
ability of statisti
al potentials for the assessment of the lo
almodel a

ura
y is dis
ussed brie�y, sin
e an extensive evaluation was not the s
opeof this work. The aim is to show that a lo
al model quality analysis is possible.Furthermore it is analysed whether lo
al model energy pro�les 
an used in order topredi
t the lo
ation of an
hor groups serving as starting points for the loop predi
tionpro
ess.3.4.1 Lo
al model quality assessmentAs an example, the energy pro�le of our �rst model submitted to the CASP7 targetT0373 is shown in Figure 3.33 together with the residue-spe
i�
 ba
kbone RMSDbetween the model and the 
orresponding experimental stru
ture (lower 
urve).
Local Energy Profile: backbone RMSD (target T0373 vs model) and Z-score of composite energy

sliding-window size: 9 residues
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ribed in Methods (Chapter 2.4.5), by addingup the per-residue energies in a sliding window of size 9 and by 
ombining the threestatisti
al potenial terms (torsion angle potential over three residues, all-atom solvationpotential and short-range all-atom intera
tion potential) based on Z-s
ores over theentire model. The x-axis shows the sequen
es of the experimental stru
ture and of the
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ussionmodel, respe
tively (the gap indi
ates that four residues have not been resolved in theexperimental stru
ture), together with the se
ondary stru
ture of the target.A 
lear relation between energy and model a

ura
y 
an be observed: the peaks in theupper 
urve, representing regions of high energy, 
oin
ide with the lo
al model a

ura
yexpressed by the stru
tural deviation between target and model. Similar results havebeen obtained for other models. The 
orrelation between peak height and extend ofstru
tural deviation is less pronoun
ed whi
h 
an be partly attributed to the simplestrategy used to 
ombine the di�erent statisti
al potential terms based on Z-s
ores.Espe
ially the predi
ted model a

ura
y based on the intera
tion potential (and alsothe solvation potential) should be treated with 
aution: Sin
e intera
tion potentialsare two-body potentials (in 
ontrast to single-body potentials su
h as the torsion anglepotential), the high energy resulting from a unfavourable intera
tion is assigned toboth partners. For example, a solvent exposed loop lying against the wrong region ofthe protein surfa
e gets assigned high energies as a 
onsequen
e of the unfavourableintera
tions and the loop regions is therefore predi
ted to be of low a

ura
y. On theother hand, the same holds for the residues in 
onta
t with the loop although the highenergies 
an to some extent be 
ompensated by other, more favourable intera
tionswith the stru
tural environment (e.g. with residues of the protein 
ore). In thisgiven situation, the lo
ation of only one intera
tion partner is wrong and thereforethe high energy (i.e. the predi
ted low model a

ura
y) should be assigned to one ofthe intera
tion partners, in this 
ase to the loop.The se
ond last peak in the energy pro�le given in Figure 3.33 represents su
h anexample: The helix in this region (residues 95-111) is approximatielly 
orre
t, despitea small shift with respe
t to the experimental stru
ture. The residues have a ba
kboneRMSD below 2 Å, but sin
e the helix is in 
onta
t with a loops showing seriousdeviations from the native 
onformation (residues 27-35), this region gets assigneda high energy. An extra
t of the stru
tural superposition of the model and the
orresponding experimental stru
ture is shown in Figure 3.34 (Cα atoms only). Thewrong loop as well as the part of the nearby helix whi
h both got assigned high energiesin the pro�le shown above are marked in bold.Single-body potentials, su
h as the torsion angle potential, do not have this problem.A possible strategy 
ould be to use the torsion angle energy of the intera
tion partners
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Glu-95

Arg-111

Glu-27

Phe-35

wrong loop

native loopFigure 3.34: Extra
t of the superposition between the experimental stru
ture oftarget T0373 (light grey) and the model with an in
orre
t loop in 
onta
t with anearby helix (dark grey).
in order to assign the high intera
tion energy to one of the parti
ipating residues.The se
ondary stru
ture 
onstitution of both regions 
an also be taken into a

ount,sin
e loop regions are more likely in
orre
t than helix and sheets whi
h are usuallypart of the stru
tural 
ore. Anyway, the preliminary but promising results indi
atethat the statisti
al potentials developed in this work 
an be used in the analysisof the lo
al model a

ura
y. In future developments the 
ombination of the termsshould be optimised on a 
omprehensive test set. Two re
ent publi
ations 
on
erninglo
al model quality assessment use support ve
tor ma
hines [68℄ and arti�
ial neuralnetworks [234℄, respe
tively, in order to 
ombine multiple terms. The use of ma
hinelearning algorithms in order to 
ombine di�erent terms in a 
omposite s
oring fun
tionis surely a resonable approa
h. The authors do not address the problem of two-bodypotentials for lo
al model quality assessment although ma
hine learning algorithms 
anpossibly 
ope with this situation if implemented 
orre
tly. A future implemtation ofthe lo
al energy fun
tion should take this into a

ount.
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Statistics on all 1091 insertions in 257 structural alignments
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Figure 3.35: Statisti
al analysis of insertions in a set of 257 stru
tural alignmentsbetween pairs of homologous proteins.3.4.2 Analysis of the an
hor region around gapsIn this se
tion, a statisti
al analysis of the length of insertions and deletions o

urringin typi
al modelling situations is performed based on a 
omprehensive set of stru
turalalignments obtained from the HOMSTRAD database [142℄ (see Methods on page 70).Furthermore, the stru
tural 
onsequen
es of isolated insertions and deletions in loopsis investigated and the region around the gaps is analysed for the lo
ation of suitablean
hor groups. Several strategies for the predi
tion of an
hor groups are dis
ussed.Figure 3.35 and 3.36 show the distribution of gap lengths for 1091 insertions and 945deletions extra
ted from a non-redundant set of 257 stru
tural alignments between pairof homologous proteins sharing less than 40% sequen
e identity representing realisti
modelling situations. More than 35% of all gaps are of length 1. 73% of all insertionsand 77% of all deletions are smaller than 5 residues. The distribution of the gap lengthsfor insertion and deletions is quite similar.In Table 3.23, the results of the analysis of the lo
al stru
tural environment aroundthe gaps is shown. The analysis of the 257 stru
ture-based sequen
e alignments revealsthat approximately 10% of the insertions and 15% of the deletions are lo
ated in
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Statistics of all 945 deletions in 257 structural alignments
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Figure 3.36: Statisti
al analysis of deletions in a set of 257 stru
tural alignmentsbetween pairs of homologous proteins.within se
ondary stru
ture elements. Among those, 58% of the insertions and 55% ofthe deletions are 
lose of the end of the se
ondary stru
ture elements (i.e. not morethen 2 residues apart from the next loop region). These results underline the advantageof being able to remodel parts of se
ondary stru
ture elements (e.g. by extending ortrun
ating se
ondary stru
ture elements as part of the loop predi
tion pro
ess). In
ontrast to most knowledge-based loop modelling pro
edures des
ribed in literaturewhi
h are spe
ialisied on the predi
tion of �pure� loop regions, the method des
ribedin this work is able to model any stru
tural segment.The majority of the gaps are lo
ated within loop regions. From those, 642 (632) ofthe insertions (deletions) have se
ondary stru
ture elements within 10 residues on bothsides. The remaining gaps are lo
ated in longer loops (of at least 10 residues), 119(157) of them are longer than 20 residues in the insertion (deletion) test set.The region around the gaps has been inspe
ted for possible an
hor groups. In analogyto Lessel and S
homburg [121℄, at least 3 
onse
utive residues with an RMSD below1.8 Å with respe
t to the 
orresponding residues in the alignment have to be presenton both sides of the gap. In the given test set, only 16% of the insertion 23% of



158 Results and Dis
ussionTable 3.23: Analysis of the stru
tural environment of 1091 insertions and 945deletions in 257 stru
tural alignments.des
ription # insertions # deletionsgaps in se
ondary stru
ture elements (SSE) 108 145gaps within SSE but with 2 residues of SSE-end 63 80gaps within loops with SSE begin within 10 residues 642 632gaps with 3 alignable residues on both sidesa 177 214gaps with 2 alignable residues on both sides 266 295gaps with no residue < 1.8 Å RMSD within 10 residues 216 179gaps with neighbouring gap within 10 residues 504 442gaps with neighbouring gap within 8 residues 258 259gaps with neighbouring separated by < 4 residues 50 51�nal number of gaps in �an
hor group test set� 112 124total number of gaps 1091 945aAt least 3 
onse
utive residues with an RMSD below 1.8 Å are found on both sides of the gap.the deletion ful�ll this 
ondition. The per
entages raise to 24% and 31% if only 2residues on both sides are required. The di�erent per
entages observed for insertionsand deletions 
on�rm the expe
ted stronger in�uen
e of insertions on the stru
turalenvironment 
ompared to deletions. For approximately 20% of the gaps, non of 10residue on both sides has an RMSD below 1.8 Å. These results show that thereare often 
onsiderable lo
al deviations between pairs of homologous proteins in thepotential an
hor regions. This 
an be partly attributed to the presen
e of remotehomologues in the test set representing di�
ult modelling test 
ases (one quarter ofthe pairs have a sequen
e identity below 20%). Furthermore, as the sequen
e identityde
reases, the se
ondary stru
ture elements of the stru
tural 
ore are often slightlydispla
ed between the homologues. If multiple homologues (templates) are presentin the modelling pro
ess, using di�erent parts of di�erent templates 
an potentiallyimprove the 
overage and bring the model 
loser to the experimental stru
ture of thetarget. The identi�
ation of regions where the model 
an bene�t from fragments ofother templates is not a trivial task. A lo
al s
oring fun
tion, as des
ribed in the lastse
tion, 
an potentially support the de
ision.46% of the insertions and 47% of the deletions have a neighbouring gap within 10residues. If the neighbouring gap is 
lose (e.g. separated by less than 4 residues as
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190       200        210
GYMRILRNVG-GAGTCGIATM
GYIRIKRGTGNSYGVCGLYTS
**:** *: *D: * **: *
CEEEEECCCCCCCCHHHCCCCFigure 3.37: S
hemati
 representation of the an
hor group predi
tion problem.observed for a total of 101 gaps in the test set) they would be de�nitively mergedand modelled in one step. Otherwise, it has to be de
ided in the modelling pro
esswhether these gaps are merged and modelled by a longer loop or whether they aretreated separately. In the later 
ase, stru
turally 
onserved residues have to be presentbetween the gaps serving as an
hor groups. As 
an be seen from Table 3.23 thissituation o

urs quite often. The analysis of the lo
al energy pro�le 
an possibly helpindentifying stru
turally 
onserved residues.A subset of 112 insertions and 124 deletions has been extra
ted from all gaps from thetest set by applying the 
riteria des
ribed in Methods (Chapter 2.4.6.2). The regionsaround the gaps are analysed and di�erent strategies for the positioning of an
horgroups are 
ompared in the following. A s
hemati
 representation of the an
hor grouppredi
tion problem is given in Figure 3.37. An extra
t of the stru
tural alignment andthe 
orresponding sequen
e alignment of a pair of distantly homologous proteins isshown. The target stru
ture is 
oloured in grey and refers to the �rst sequen
e in thealignment. The superposition points out the stru
tural 
onsequen
es of the 1-residuedeletion observed in the loop region.An
hor group predi
tion refers to the attempt to identify those regions on both sides



160 Results and Dis
ussionof the gap (or any stru
turally non-
onserved loop to be remodelled) where the targetstru
ture begins to deviate from the template and therefore the ba
kbone 
oordinates
annot be simply 
opied. In the given example the an
hor groups are positioned
lose to the end points of the surrounding helix and sheet, respe
tively, and sequen
e
onservation has been taken into a

ount. On the C-terminal side of the deletion,gly
ine 204 has been used as an
hor group, whi
h, by looking at the superposition,turned out to be a good de
ision. On the N-terminal side, the an
hor group has beenpla
ed within the strand, resulting in 8 residues to be remodelled. The 
onservedarginine immediatelly after the strand represents another possible an
hor and wouldredu
e the number of residues to model by two and a shorter loop 
an potentially bepredi
ted more a

urately (see Chapter 3.3).This highlights the problemti
 situation in an
hor group predi
tion: a reasonable
ompromise between a

ura
y of the an
hor groups and length of the fragment tobe remodelled has to be found whi
h is not a trivial task and di�
ult to automate.As shown exemplarily in Figure 3.33, regions of low energy in the energy pro�le ofa model often 
orrespond to stru
turally 
onserved segments representing promisingan
hor groups for the loop modelling pro
ess. The energy pro�les are based on asliding window of size of 5 using the 
entral residue together with the 4 neighbouringresidues in dire
tion away from the gap. A variety of other implementations have beentested but resulted in a worse performan
e. Figure 3.38 shows that there is indeeda 
orrelation between the lo
al stru
tural deviation as expressed by the S-s
ore (seede�nition in Methods on page 72) between target and template and the lo
al energy,although not very pronoun
ed.Table 3.24 and Table 3.25 show the average loop lengths and RMSDs of the an
horgroup residues between target and template for di�erent an
hor group predi
tionstrategies on the test sets of 112 insertions and 124 deletions. Approa
hes with andwithout the use of information obtained from the energy pro�les are 
ompared andrelated to an �optimal� an
hor group positions (i.e. if the RMSD between taget andtemplate is assumed to be known). For the insertion test set, an average ba
kboneRMSD of 0.87 Å is a
hieved if the an
hors with minimal RMSD within 10 residues onboth sides of the gap are taken. This results in an average loop length of 14.59 residueswhi
h is too long for a

urate loop modelling. If the �rst an
hor groups (starting from
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Correlation between S-score and local all-atom energy for all anchor

groups within 10 residues of insertions (window size 5)
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Figure 3.38: Regression between S-s
ore (as a measure for the lo
al deviationbetween target and template, de�nition in Chapter 2.4.6.2) and lo
al energy.the gap) with an RMSD below 1.5 Å (2Å) are used, an average loop length of 9.26(7.24) residues is a
hieved whi
h are reasonable loop length for modelling. For thedeletion test set, the average loop lengths (and also the RMSDs) are lower as expe
tedsin
e the �gap residues� are not modelled in this 
ase. Even these �optimal� an
horgroups show on average 
onsiderable deviations from the native stru
ture. This hasto be taken into a

ount in the loop ranking pro
ess of knowledge-based approa
hes:Loop ranking methods with only rely on the geometri
al �t of the fragments on thean
hor groups are potentially not appli
able in realisti
 modelling situations. In theloop predi
tion method des
ribed in this work, this 
riteria has not been used (in
onstrast to most existing algorithms) and the ranking has been performed based onthe intera
tion potentials as des
ribed in Chapter 3.3.The results for the deletion test set are not dis
ussed in detail here. Deletions aretypi
ally mu
h easier to model than insertion sin
e the stru
tural 
onsequen
es ofdeletions on the surrounding residues are less pronoun
ed. A simple strategy of using



162 Results and Dis
ussionTable 3.24: Comparison of di�erent an
hor group predi
tion strategies on a test setof 112 insertions.strategy used for an
hor group positioning ØRMSD Øloop length�xed distan
e from gap: 1 residue 3.11 3.42�xed distan
e from gap: 2 residues 2.40 5.42�xed distan
e from gap: 3 residues 2.00 7.42�xed distan
e from gap: 4 residues 1.67 9.42energy minimum within 3 residues (all-atom)a 2.22 6.17energy minimum within 3 residues (3 terms)b 2.29 6.11energy minimum within 4 residues (all-atom) 1.95 7.42energy minimum within 4 residues (3 terms) 2.05 7.21�xed depth in SSE: 0 residues (SSE begin) 1.92 8.49�xed depth in SSE: 1 residues 1.66 10.49energy minimum around SSE end (all-atom) 1.92 8.22energy minimum around SSE end (3 terms) 2.09 7.75global energy minimum within 10 residues (3 terms) 1.39 13.36an
hors with lowest RMSD 0.87 14.59�rst an
hors with RMSD < 1.5 Å 1.46 9.26�rst an
hors with RMSD < 2 Å 1.69 7.24aThe minimum in the energy pro�le based on the all-atom intera
tion potential is taken.bA 
ombination of the all-atom intera
tion potential, the torsion potential and the solvation potential is used.Table 3.25: Comparison of di�erent an
hor group predi
tion strategies on a test setof 124 deletions.strategy used for an
hor group positioning ØRMSD Øloop length�xed distan
e from gap: 1 residue 3.24 2�xed distan
e from gap: 2 residues 2.27 4�xed distan
e from gap: 3 residues 1.76 6�xed distan
e from gap: 4 residues 1.46 8energy minimum within 3 residues (all-atom) 1.91 5.13energy minimum within 3 residues (3 terms) 2.03 4.99energy minimum within 4 residues (all-atom) 1.72 6.68energy minimum within 4 residues (3 terms) 1.75 6.39�xed depth in SSE: 0 residues (SSE begin) 1.98 6.27�xed depth in SSE: 1 residues 1.52 8.27energy minimum around SSE end (all-atom) 1.76 6.68energy minimum around SSE end (3 terms) 2.06 5.88global energy minimum within 10 residues (3 terms) 1.36 12.48an
hors with lowest RMSD 0.76 13.15�rst an
hors with RMSD < 1.5 Å 1.35 7.21�rst an
hors with RMSD < 2 Å 1.63 5.04
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hor groups approximately 3-4 residues away from the gap results in better an
horgroups than any other, more sophisti
ated approa
h. The average length of the loopto be remodelled in this approa
h is between 6 and 8 residues.The �rst four lines in Table 3.24 show the average loop lengths and RMSDs if �xedan
hor group positions relative to the gap are used for distan
e of 1 to 4 residues. Forinsertions, the probably best 
ompromise between loop length and RMSD of the an
horgroups is approximately 3 residues away from the gap (average RMSD 2Å loop length7.42). If the energy pro�le is taken into a

ount the RMSD or the loop length 
an beslighly lowered. If the an
hor groups are positioned within the surrounding se
ondarystru
ture elements, lower RMSDs 
an be a
hieved but only at the 
ost of longer loops.This 
an be attributed to the fa
t that (for longer loops) the se
ondary elements 
anbe far away. Depending on the stru
tural 
onservation, an
hor groups 
loser to the gap
an possibly be used. If the energy pro�le is taken into a

ount (using a 
ombination ofthree statisti
al potential terms), the average loop length 
an be redu
ed from 8.49 to7.75 at the 
ost of a slightly higher RMSD. Additional 
hara
teristi
s of the potentialan
hor residues, su
h as hydrophobi
ity, solvent a

essibility and sequen
e 
onservationhave been also taken into a

ount (as suggested by Wohlfahrt et al. [238℄) but did notimprove the predi
tion over the statisti
al potentials. This 
an be attributed to thefa
t that these fa
tors are to some extent 
overed by the statisti
al potential terms.The approa
h of simple adding Z-s
ores of the terms is also not optimal.Generally, the use of information about the lo
al energy of the 
andidate an
hor groups,did not result in a 
onsiderably better predi
tions. Lo
al energy fun
tions are possiblyto impre
ise for the predi
tion of exa
t lo
ations (on the level of single residues) andare more appropriate for the identi�
ation of segments of stru
tural deviation whi
h
an be subje
ted to re�nement in order to bring the model 
lose to the experimentalstru
ture or for loop predi
tion.Another fa
tor 
ompli
ating the automation of the an
hor group predi
tion task is
losely 
onne
ted with the knowledge-based approa
h to loop predi
tion used in thiswork: the spa
ial orientation of the database fragment after �tting on the an
hor groupatoms, is highly sensitive to distortions of the an
hor geometry. Thus, it is not onlyimportant to position the an
hor groups near the end of the stru
turally 
onservedregion of the template, but also to take into a

ount that a suitable fragment with



164 Results and Dis
ussiona similar overall geometry and showing a 
orre
t orientation after �tting has to bepresent in the database. A worse an
hor group in terms of ba
kbone deviation fromthe target stru
ture 
an still result in better loop modelling results if a loop with abetter orientation after �tting is present in the database or if the gap 
an be bridgedby a shorter fragment whi
h 
an potentially be predi
ted more a

urately. For theknowledge-based loop predi
tion routine presented in this work (Chapter 3.3), thepredi
tion quality de
reases 
onsiderably between loops of length 7 and 8 residues.The best strategy to 
ope with the un
ertainties 
on
erning an
hor groups sele
tionand loop modelling is to use multiple alternative an
hor groups and a set of top-s
oringloops for ea
h 
ombination in the modelling pro
ess and to subsequently sele
t the bestpredi
tion based on the quality of the �nal model. The QMEAN s
oring fun
tion [16℄presented in this work (Chapter 3.2) 
an be used for this task sin
e it is both fast andreliable in dis
riminating good from bad models.



4 Con
lusions and Outlook
The predi
tion of the 3-dimensional stru
ture of a protein from its sequen
e isgreatly fa
ilitated by the presen
e of proteins with experimental stru
ture sharing anevolutionary relationship to the target protein (homology modelling). The aim of thiswork was to establish a loop predi
tion methods whi
h optimally takes advantage ofthe growing number of proteins present in the database of known protein stru
tures.Furthermore, s
oring fun
tions need to be implemented whi
h 
an be used for theranking of 
andidate fragments in loop modelling and for the assessment of the qualityof the generated models. Both tasks are of 
ru
ial importan
e for the �nal appli
abilityof the models. As a framework in order to deal with loop predi
tion and model qualityassessment, a 
omplete homology modelling pipeline has been established.The homology modelling pipeline has been tested at the seventh round of the
ommunity-wide CASP experiment in summer 2006. The results on the 18 investigatedtargets 
on�rmed that the modelling pipeline is able to produ
e very a

urate homologymodels: 3 extraordinarily good predi
tions have been submitted (rank 2, 4 and 6of over 130 parti
ipating groups) and the vast majority of remaining targets havebeen modelled above the 
ommunity average. Several fa
tors are responsible for theseresults: beside a good strategy for template identi�
ation and alignment building, theability to not only remodel loop regions but any stru
tural segment (e.g. 
hain ends orsegments 
ontaining se
ondary stru
ture elements) is an important ingredient togetherwith the s
oring fun
tion used to assess to quality of the produ
ed models and to sele
tof the most reliable 
andidate.A 
omposite s
oring fun
tion (
alled QMEAN) has been presented 
onsisting of threestatisti
al potential terms 
overing the major aspe
ts of protein stability and twoadditional terms des
ribing the agreement of predi
ted and 
al
ulated se
ondarystru
ture and solvent a

essibility, respe
tively. QMEAN has been shown to be avaluable tool for the dis
rimination of good from bad models and performs signi�
antlybetter than �ve well-established methods on a 
omprehensive test set of 22,420 modelsfrom CASP7. Some of the s
oring fun
tion terms turned out to be more spe
ialised for



166 Con
lusions and Outlooka spe
i�
 task (e.g. the torsion angle potential over 3 
onse
utive residues developedin this work turned out to be very e�e
tive in re
ognising the native fold) whereasother fa
tors are more widely appli
able. The results 
on�rm that a 
ombination ofmultiple terms in
reases the performan
e of the s
oring fun
tion by taking advantageof the strengths of 
ertain terms for a spe
i�
 task while redu
ing a possibly negative
ontribution of other terms. The statisti
ally signi�
ant improvement in performan
e ofQMEAN over �ve methods gets even more pronoun
ed when taking into a

ount that asimple linear 
ombination was used in order to 
ombine the di�erent terms to the �nals
oring fun
tion. The performan
e of the QMEAN s
oring fun
tion 
an potentiallybe improved by the appli
ation of ma
hine learning algorithms for the 
ombination ofthe terms and by using spe
ialised versions of the s
oring fun
tion depending on theresolution of the models (e.g. by using a �ne-grained all-atom implementation for theassessment of models generated by 
omparative modelling and residue-level potentialsfor the analysis of rough models predi
ted by ab initio methods).The loop modelling routine presented in this work 
ombines a knowledge-basedapproa
h for 
onformational sampling based on a 
omprehensive fragment databasewith a knowledge-based approa
h for s
oring of the sele
ted fragments based on anspe
ialised all-atom intera
tion potential. In 
ontrast to other database loop predi
tionapproa
hes des
ribed in the literature, loop ranking is performed based on the 
ompleteloop in
luding side
hains. The presented method is able to a

urately model loops oflength up to 7 residues and outperforms 3 of 4 
ommer
ial loop predi
tion programson a 
omprehensive test set of over 200 loops of length 4-12 residues. An average(median) global ba
kbone RMSD of 0.66 Å (0.51 Å) and 1.63 Å(1.35 Å) is obtainedfor loops of length 4 and 6, respe
tively. If fragments from proteins sharing less than50% sequen
e identity to the proteins in the loops test set are in
luded, the medianpredi
tion a

ura
y drop below 1 Å per loop length for loops up to 7 residues. For loopslonger than 8 residues the predi
tion a

ura
y drops as a 
onsequen
e of the databasein
ompleteness and the fa
t that the orientation of the fragments after �tting in theprotein framework is only approximately 
orre
t resulting in an atomi
 displa
ementin
reasing with the loop length. A subsequent energy minimisation step using amole
ular me
hani
s for
e �eld 
an 
ountera
t the inherent problems of databaseloop predi
tion approa
hes. In this way, the loop 
an be annealed with the an
hor



167groups and at the same time the loop 
onformation 
an be relaxed in the stru
turalenvironment. Energy minimisation and re-ranking of the top s
oring loops generatedwith the given method represents a very promising strategy to extend the appli
abilityof knowledge-based loop predi
tion approa
hes toward longer loop lengths.A predi
tion of suitable an
hor groups serving as starting points for loop predi
tionbased on the analysis of the lo
al model energy around insertions and deletions turnedout to perform only marginally better than pla
ing the an
hor groups at a �x distan
efrom the gap and near the end of the surrounding se
ondary stru
ture elements. An
horgroups should be pla
ed at the end of the stru
turally 
onserved region of the templatestru
ture (i.e. in the region where target and template begin to deviate) and at the sametime, the length of the loop to be remodelled should be kept as short as possible. Inthe 
ontext of knowledge-based loop predi
tion, another fa
tor in�uen
es the lo
ationof the optimal an
hor groups: A fragment with a lo
ally 
orre
t geometry needs to bepresent in the database whi
h, after �tting on the an
hor groups, approximately showsa 
orre
t orientation with respe
t to the protein framework. Due to the interplay ofall these fa
tors, the best approa
h is to use several alternative an
hor groups in themodelling pro
ess.A reasonable future extensions of this work represents the automation of the wholemodelling pro
ess. The best strategy in order to 
ope with the multitude of fa
torsin�uen
ing the a

ura
y of protein stru
ture models is to generate a vast amount ofalternative models (e.g. by using multiple templates, alternative alignments, di�erentan
hor groups and several loop 
onformations) and to subsequently sele
t the �nalmodel based on the s
oring fun
tion des
ribed in this work.





5 Appendix
Table 5.1: Classi�
ation of the 95 target of CASP7 a

ording to their di�
ulty infree modelling (FM), template-based modelling (TBM) and high-a

ura
y template-based modelling (HA-TMB) targets. HA-TBM are a subse
tion of TBM targets.
ategory targetsFM T0287, T0296, T0300, T0304, T0307, T0309, T0314, T0316, T0319,T0321, T0347, T0348, T0350, T0353, T0356, T0361, T0382, T0386TBM T0283, T0284, T0285, T0286, T0288, T0289, T0290, T0291, T0292,T0293, T0295, T0297, T0298, T0299, T0301, T0302, T0303, T0305,T0306, T0308, T0311, T0312, T0313, T0315, T0317, T0318, T0320,T0322, T0323, T0324, T0325, T0326, T0327, T0328, T0329, T0330,T0331, T0332, T0333, T0334, T0335, T0338, T0339, T0340, T0341,T0342, T0345, T0346, T0349, T0351, T0354, T0357, T0358, T0359,T0360, T0362, T0363, T0364, T0365, T0366, T0367, T0368, T0369,T0370, T0371, T0372, T0373, T0374, T0375, T0376, T0378, T0379,T0380, T0381, T0383, T0384, T0385HA-TBM T0288, T0290, T0291, T0292, T0295, T0302, T0305, T0308, T0311,T0313, T0315, T0317, T0324, T0326, T0328, T0332, T0334, T0340,T0345, T0346, T0359, T0366, T0367
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(a) T0303 (b) T0303, domain 1

(
) T0303, domain 2 (d) T0334

(e) T0340 (f) T0341Figure 5.1: GDT plot of all targets pro
essed by our group (1/5).
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(g) T0341, domain 1 (h) T0341, domain 2

(i) T0345 (j) T0359

(k) T0360 (l) T0362Figure 5.1: GDT plot of all targets pro
essed by our group (2/5).
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(m) T0364 (n) T0370

(o) T0371 (p) T0371, domain 1

(q) T0371, domain 2 (r) T0373Figure 5.1: GDT plot of all targets pro
essed by our group (3/5).
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(s) T0374 (t) T0375

(u) T0376 (v) T0379

(w) T0379, domain 1 (x) T0379, domain 2Figure 5.1: GDT plot of all targets pro
essed by our group (4/5).
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(y) T0380 (z) T0384Figure 5.1: GDT plot of all targets pro
essed by our group (5/5).
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Table 5.2: Performan
e of di�erent s
oring fun
tions in predi
ting the quality of the server models submitted forthe 77 CASP7 targets of the 
ategory template-based modelling.regressiona enri
hmentb best predi
ted model
 best GDT_TS modeld native stru
turee
Method r2 rho F.E. E15% r10 logPB1 logPB10 ∆GDT_TS r1 r10 Znat r1 r10Mod
he
k 0.68 0.61 0.32 2.63 12 -0.66 -1.63 -0.2 5 22 1.87 39 58RAPDF -0.53 0.52 0.31 2.48 13 -0.86 -1.64 -0.08 3 13 -1.97 46 63DFIRE -0.41 0.56 0.31 2.66 16 -0.96 -1.67 -0.07 4 14 -1.18 47 58ProQ 0.39 0.28 0.12 1.1 3 -0.3 -0.96 -0.23 0 6 1.39 9 24
ProQSSE 0.57 0.44 0.17 1.59 7 -0.49 -1.12 -0.17 2 8 1.55 10 32FRST -0.6 0.55 0.29 2.27 18 -0.91 -1.72 -0.08 6 18 -2.37 49 60QMEAN3 -0.69 0.62 0.32 2.48 15 -0.8 -1.8 -0.13 1 28 -2.16 50 61QMEAN4 -0.76 0.66 0.37 2.73 22 -0.97 -1.91 -0.08 4 32 -1.76 47 56QMEAN5 -0.77 0.67 0.39 2.87 24 -1.01 -1.93 -0.08 5 33 -1.76 47 58torsion single -0.48 0.42 0.22 1.76 6 -0.62 -1.47 -0.12 0 11 -2.17 47 60torsion3-residue -0.57 0.47 0.21 1.8 9 -0.72 -1.49 -0.12 1 8 -2.64 51 65pairwiseCβ -0.62 0.54 0.28 2.42 15 -0.66 -1.68 -0.19 4 21 -1.84 32 56pairwiseCβ/SSE -0.63 0.56 0.32 2.52 17 -0.78 -1.8 -0.14 5 29 -2.04 38 56solvation -0.59 0.52 0.26 2.22 6 -0.47 -1.6 -0.27 0 20 -1.2 14 36SSEPSIPRED -0.71 0.54 0.23 2.03 7 -0.63 -1.44 -0.13 2 15 -0.83 6 20ACCpro -0.62 0.58 0.34 2.71 17 -0.85 -1.62 -0.11 5 25 -1.19 13 32aPearson's 
orrelation 
oe�
ient r2 and Spearmans's rank 
orrelation 
oe�
ient rhob

F.E. stands for fra
tion enri
hment and E15% is the enri
hment among the top 15% best predi
ted models as 
ompared to a random sele
tion.


r10 are the number of targets for with the top-s
oring models is among the top10 best models (based on GDT_TS). logPB1 and logPB10 are the log probability of sele
tion thehighest GDT_TS model as the best model or among the ten best-s
oring models, respe
tively.dGDT_TS loss is the di�eren
e between the GDT_TS s
ore of the best-s
oring model and the best model in the de
oy set.r1 and r10 are the number of targets in whi
h the bestmodel based on GDT_TS, ex
luding the native stru
ture was found on the �rst rank or among the top 10 predi
tions.e

Znat is the Z-s
ore of the native stru
ture as 
ompared to the ensemble of models. r1 and r10 are the number of targets in whi
h the native stru
ture was found on the �rst rankor among the top 10 predi
tions.
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Appendix Table 5.4: Performan
e of di�erent s
oring fun
tions in predi
ting the quality of the server models submitted forthe 18 free modelling targets of CASP7.regressiona enri
hmentb best predi
ted model
 best GDT_TS modeld native stru
turee

Method r2 rho F.E. E15% r10 logPB1 logPB10 ∆GDT_TS r1 r10 Znat r1 r10Mod
he
k 0.46 0.51 0.39 3.02 5 -0.88 -1.87 -0.13 1 5 2.5 8 11RAPDF -0.38 0.41 0.34 2.26 4 -1.1 -1.8 -0.07 1 4 -2.63 9 14DFIRE -0.32 0.43 0.34 2.27 3 0.8 -1.71 -0.11 1 4 -1.58 12 14ProQ 0.2 0.18 0.17 1.73 2 -0.37 -1.09 -0.17 0 0 1.95 0 8

ProQSSE 0.38 0.42 0.25 2.21 1 -0.58 -1.59 -0.13 0 3 2.6 4 10FRST -0.42 0.44 0.33 2.71 3 -0.92 -1.81 -0.11 0 4 -2.56 7 12QMEAN3 -0.46 0.45 0.4 2.99 1 -0.82 -1.95 -0.12 0 7 -2.76 9 14QMEAN4 -0.48 0.53 0.42 2.87 6 -1.25 -1.87 -0.07 1 7 -2.29 8 13QMEAN5 -0.51 0.56 0.44 3.06 6 -1.22 -2 -0.07 1 7 -2.43 9 13torsion single -0.27 0.29 0.2 1.73 0 -0.52 -1.65 -0.14 0 2 -1.74 4 7torsion3-residue -0.35 0.32 0.26 2.12 4 -0.91 -1.6 -0.1 0 2 -2.65 8 14pairwiseCβ -0.4 0.38 0.39 2.88 2 -0.88 -1.77 -0.12 0 6 -2.45 7 13pairwiseCβ/SSE -0.41 0.36 0.43 2.84 5 -1.03 -1.79 -0.09 0 7 -2.67 7 15solvation -0.36 0.38 0.39 2.71 4 -0.86 -1.87 -0.13 2 7 -1.69 4 9SSEPSIPRED -0.37 0.48 0.27 2.05 2 -0.62 -1.38 -0.15 1 2 -1.16 1 5ACCpro -0.44 0.51 0.39 2.93 4 -0.84 -1.83 -0.1 1 8 -2.21 7 12aPearson's 
orrelation 
oe�
ient r2 and Spearmans's rank 
orrelation 
oe�
ient rhob

F.E. stands for fra
tion enri
hment and E15% is the enri
hment among the top 15% best predi
ted models as 
ompared to a random sele
tion.


r10 are the number of targets for with the top-s
oring models is among the top10 best models (based on GDT_TS). logPB1 and logPB10 are the log probability of sele
tion thehighest GDT_TS model as the best model or among the ten best-s
oring models, respe
tively.dGDT_TS loss is the di�eren
e between the GDT_TS s
ore of the best-s
oring model and the best model in the de
oy set.r1 and r10 are the number of targets in whi
h the bestmodel based on GDT_TS, ex
luding the native stru
ture was found on the �rst rank or among the top 10 predi
tions.e

Znat is the Z-s
ore of the native stru
ture as 
ompared to the ensemble of models. r1 and r10 are the number of targets in whi
h the native stru
ture was found on the �rst rankor among the top 10 predi
tions.



177
r

2 F.E. Znat

QMEAN3 QMEAN3 QMEAN3

QMEAN4 QMEAN4 QMEAN4

QMEAN5 QMEAN5 QMEAN5

torsion_single torsion_single torsion_single

torsion_3residues torsion_3residues torsion_3residues

pairwise_Cb pairwise_Cb pairwise_Cb

pairwise_Cb_SSE pairwise_Cb_SSE pairwise_Cb_SSE

solvation solvation solvation

SSE_PSIPRED SSE_PSIPRED SSE_PSIPRED

ACCpro ACCpro ACCpro

Q
M

E
A

N
3

Q
M

E
A

N
4

Q
M

E
A

N
5

to
rs

io
n
_
s
in

g
le

to
rs

io
n
_
3
re

s
id

u
e
s

p
a
ir
w

is
e
_
C

b

p
a
ir
w

is
e
_
C

b
_
S

S
E

s
o
lv

a
ti
o
n

S
S

E
_
P

S
IP

R
E

D

A
C

C
p
ro

Q
M

E
A

N
3

Q
M

E
A

N
4

Q
M

E
A

N
5

to
rs

io
n
_
s
in

g
le

to
rs

io
n
_
3
re

s
id

u
e
s

p
a
ir
w

is
e
_
C

b

p
a
ir
w

is
e
_
C

b
_
S

S
E

s
o
lv

a
ti
o
n

S
S

E
_
P

S
IP

R
E

D

A
C

C
p
ro

Q
M

E
A

N
3

Q
M

E
A

N
4

Q
M

E
A

N
5

to
rs

io
n
_
s
in

g
le

to
rs

io
n
_
3
re

s
id

u
e
s

p
a
ir
w

is
e
_
C

b

p
a
ir
w

is
e
_
C

b
_
S

S
E

s
o
lv

a
ti
o
n

S
S

E
_
P

S
IP

R
E

D

A
C

C
p
ro

rho E%15

QMEAN3 QMEAN3

QMEAN4 QMEAN4

QMEAN5 QMEAN5

torsion_single torsion_single

torsion_3residues torsion_3residues

pairwise_Cb pairwise_Cb

pairwise_Cb_SSE pairwise_Cb_SSE

solvation solvation

SSE_PSIPRED SSE_PSIPRED

ACCpro ACCpro

Q
M

E
A

N
3

Q
M

E
A

N
4

Q
M

E
A

N
5

to
rs

io
n
_
s
in

g
le

to
rs

io
n
_
3
re

s
id

u
e
s

p
a
ir
w

is
e
_
C

b

p
a
ir
w

is
e
_
C

b
_
S

S
E

s
o
lv

a
ti
o
n

S
S

E
_
P

S
IP

R
E

D

A
C

C
p
ro

Q
M

E
A

N
3

Q
M

E
A

N
4

Q
M

E
A

N
5

to
rs

io
n
_
s
in

g
le

to
rs

io
n
_
3
re

s
id

u
e
s

p
a
ir
w

is
e
_
C

b

p
a
ir
w

is
e
_
C

b
_
S

S
E

s
o
lv

a
ti
o
n

S
S

E
_
P

S
IP

R
E

D

A
C

C
p
roFigure 5.2: Statisti
al analysis of the performan
e di�eren
es between the di�erentQMEAN terms at the 
on�den
e level of 95%.



178 Appendix
-200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0283 (TBM)

models
native

(a) T0283 (TBM) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0284 (TBM)

models
native

(b) T0284 (TBM) -200

-150

-100

-50

 0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0285 (TBM)

models
native

(
) T0285 (TBM)
-200

-150

-100

-50

 0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0286 (TBM)

models
native

(d) T0286 (TBM) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0287 (FM)

models
native

(e) T0287 (FM) -200

-150

-100

-50

 0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0288 (HA-TBM)

models
native

(f) T0288 (HA-TBM)
-200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0289 (TBM)

models
native

(g) T0289 (TBM) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0290 (HA-TBM)

models
native

(h) T0290 (HA-TBM) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0291 (HA-TBM)

models
native

(i) T0291 (HA-TBM)
-200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0292 (HA-TBM)

models
native

(j) T0292 (HA-TBM) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0293 (TBM)

models
native

(k) T0293 (TBM) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0295 (HA-TBM)

models
native

(l) T0295 (HA-TBM)
-200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0296 (FM)

models
native

(m) T0296 (FM) -200

-150

-100

-50

 0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0297 (TBM)

models
native

(n) T0297 (TBM) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0298 (TBM)

models
native

(o) T0298 (TBM)Figure 5.2: Correlation between GDT_TS and QMEAN s
ore for all server modelsof the 95 targets of CASP7 (1/7).
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ore for all server modelsof the 95 targets of CASP7 (2/7).
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ore for all server modelsof the 95 targets of CASP7 (3/7).
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(o) T0348 (FM)Figure 5.2: Correlation between GDT_TS and QMEAN s
ore for all server modelsof the 95 targets of CASP7 (4/7).
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(o) T0365 (TBM)Figure 5.2: Correlation between GDT_TS and QMEAN s
ore for all server modelsof the 95 targets of CASP7 (5/7).
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(o) T0381 (TBM)Figure 5.2: Correlation between GDT_TS and QMEAN s
ore for all server modelsof the 95 targets of CASP7 (6/7).



184 Appendix

-200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0382 (FM)

models
native

(a) T0382 (FM) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0383 (TBM)

models
native

(b) T0383 (TBM) -200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0384 (TBM)

models
native

(
) T0384 (TBM)
-200

-150

-100

-50

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
M

E
A

N
 s

co
re

GDT_TS score

T0385 (TBM)

models
native
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(e) T0386 (FM)Figure 5.2: Correlation between GDT_TS and QMEAN s
ore for all server modelsof the 95 targets of CASP7 (7/7).
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Table 5.6: Results for loops of length 5 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopaPDB ID residues bestloopb random20000
 random3000d rankTop10e no ho-molgues allhomo-logues <90% <50% <30%153l 131-135 0.27 4.54 2.87 7 0.91 0.28 0.91 0.91 0.911a2y_A 14-18 0.26 1.69 1.16 74 0.91 0.29 0.29 0.91 0.911a8e 197-201 0.3 1.97 3.59 10 0.48 0.21 0.21 0.48 0.481frd 83-87 0.38 3.3 2.55 5 0.5 0.09 0.18 0.2 0.51gpr 54-58 0.25 3.78 2.5 3 0.25 0.05 0.52 0.52 0.251hbg 19-23 1.16 4.15 5.44 14 1.99 0.09 1.99 1.99 1.991hbq 158-162 0.25 5.55 1.54 1 0.25 0.25 0.25 0.25 0.251kuh 37-41 0.64 3.9 2.63 2 0.78 0.16 0.78 0.78 0.781lit 131-135 0.68 2.92 4.55 1 0.81 0.81 0.81 0.81 0.811lit 51-55 0.37 2.99 2.6 6 0.4 0.1 0.3 0.3 0.41lkk_A 186-190 1.22 1.47 4.1 59 4.04 4.04 4.04 4.04 4.041mla 102-106 0.24 4.71 4.86 3 0.24 0.06 0.26 0.26 0.241mla 275-279 1.08 2.84 6.64 26 1.68 0.05 0.29 0.29 1.681nar 56-60 0.49 5.62 3.32 2 0.49 0.06 0.49 0.49 0.491nfp 95-99 0.42 1.93 1.18 6 1.37 0.08 0.38 0.38 1.371noa 88-92 1 2.28 3.51 50 1.91 1.91 1.91 1.91 1.911prn 187-191 0.46 2.86 3.23 8 5.01 0.33 5.01 5.01 5.011rie 149-153 1.49 5.49 5.52 11 3.8 0.06 3.8 3.8 3.81sbp 181-185 0.38 2.39 2.65 2 0.57 0.09 0.57 0.57 0.571t
a 157-161 0.39 2.32 2.93 5 0.92 0.05 0.92 0.92 0.921tml 147-151 0.52 4.4 3.6 2 0.91 0.91 0.91 0.91 0.911v

 63-67 0.28 0.61 1.8 290 1.96 1.96 1.96 1.96 1.961xyz_A 559-563 0.71 3.28 2.16 14 3.05 0.05 0.25 0.25 3.052
ba 168-172 0.53 3.73 4.02 8 0.53 0.39 0.39 0.39 0.532
md 188-192 0.31 5.15 3.71 2 0.31 0.08 0.31 0.31 0.312hbg 37-41 0.21 4 2.2 3 0.21 0.05 0.21 0.21 0.215p21 104-109 2.42 7.51 3.96 2 3.69 3.69 3.69 3.69 3.697rsa 75-79 0.6 1.23 2.06 2 0.6 0.39 0.39 0.39 0.68abp 65-70 1.12 2.63 3.04 102 3.17 3.17 3.17 3.17 3.17average - 0.64 3.42 3.24 - 1.44 0.68 1.21 1.24 1.44median - 0.46 3.28 3.04 - 0.91 0.16 0.52 0.57 0.91aRMSD of the top ranking loop after removing homologues below a given 
uto�.bBest nonhomologues loop present among the 3000 
andidate fragments.
Random sele
tion of a fragment from the maximum 20,000 loops present after appli
ation of the torsion energy �lter.dRandom sele
tion of a fragment from the maximum 3,000 loops present after appli
ation of the ba
kbone energy �lter.eRank of the �rst Top10 fragment a

ording to RMSD.
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Table 5.7: Results for loops of length 7 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%1a62 89-95 0.05 4.37 3.09 1 0.05 0.05 0.05 0.05 0.051bkf 64-70 0.37 1.2 0.69 5 0.4 0.06 0.29 0.4 0.41ads 186-192 1.33 6.7 5.32 17 4.91 0.29 0.29 0.35 4.911brt 226-232 0.34 4.44 4.82 4 0.49 0.11 0.37 0.37 0.491
vl 111-117 0.26 4.21 5.36 3 0.26 0.16 0.28 0.26 0.261dad 116-122 1.17 5 4.09 2 1.17 0.87 1.17 1.17 1.171dim 198-204 1.17 5.94 5.08 2 1.21 0.2 1.21 1.21 1.211edg 309-315 1.35 2.47 3.19 29 1.76 0.06 1.76 1.76 1.761g
a 196-202 0.56 6.47 4.73 15 0.81 0.06 0.81 0.81 0.811hbg 46-52 1.31 7.96 4.64 8 3.25 0.1 3.25 3.25 3.251hf
 152-158 1.78 2.29 5.21 12 1.78 0.05 0.59 1.78 1.781iab 142-148 0.86 2.58 4.08 3 5.59 0.11 5.59 5.59 5.591lif 64-70 0.92 5.36 4.89 148 6.26 0.16 0.45 0.48 6.261mbd 17-23 0.47 5.03 2.67 1 0.79 0.79 0.79 0.79 0.791mla 80-86 1.36 6.09 3.86 2 1.99 1.99 1.99 1.99 1.991nif 65-71 1.35 5.91 5.54 6 1.35 0.31 0.31 0.42 1.351php 135-141 0.55 2.21 3.02 6 1.2 0.16 0.33 0.42 1.21rhs 21-27 1.52 3.21 3.91 88 4.04 0.07 4.04 4.04 4.041sgp_E 128-134 0.61 4.98 4.61 3 0.71 0.06 0.51 0.71 0.711t
a 132-138 0.52 2.04 3.01 2 0.66 0.17 0.66 0.66 0.661tml 20-26 0.65 3.89 4.65 2 1.07 0.32 1.07 1.07 1.071xyz_A 689-695 2.02 2.41 6.87 177 5.28 0.89 0.89 0.89 5.282mnr 270-276 1.18 3.91 4.05 12 2.01 0.14 1.15 1.15 0.92pth 95-101 0.71 4.88 6.86 3 6.09 0.1 6.09 6.09 6.093tgl 159-165 1.25 5.92 3.74 1 2.07 2.07 2.07 2.07 2.075p21 83-89 0.71 4.44 5.89 59 1.63 0.22 0.22 0.17 0.37average - 0.94 4.38 4.38 23.5 2.19 0.37 1.39 1.46 2.09median - 0.89 4.44 4.63 4.5 1.49 0.16 0.8 0.85 1.21
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Table 5.8: Results for loops of length 9 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%1arb 168-176 4.53 6 7.52 20 8.83 0.07 8.83 8.83 8.831arp 127-135 1.14 9.47 6.04 5 1.93 0.37 1.93 1.93 1.931aru 36-44 2.18 7.26 4.3 142 6.8 6.8 6.8 6.8 6.81
se_E 95-103 2.42 6.27 4.69 351 8.83 0.52 0.52 0.42 8.831
sh 252-260 0.83 8.08 6.67 9 0.83 0.06 0.7 0.7 0.561ede 257-265 1.48 4.03 5.84 17 4.37 0.25 4.37 4.37 4.371fus 91-99 1.82 5.7 5.12 167 3.99 3.99 3.99 3.99 3.991lkk_A 142-150 1.7 6.22 8.68 8 3.67 0.1 1.64 3.67 3.671mla 194-202 2.11 5.06 6.16 100 3.32 0.2 3.32 3.32 3.321nls 131-139 0.76 4.67 4.11 405 5.88 0.06 5.88 5.88 5.881on
 70-78 0.96 6.66 5.78 8 2.94 2.94 2.94 2.94 2.941pda 108-116 1.41 8.8 8 7 6.41 0.21 6.41 6.41 6.411pgs 117-125 1.73 2.06 6.24 2 1.8 0.1 1.8 1.8 1.81php 91-99 1.55 6.47 7.67 638 6.08 0.15 0.71 6.08 6.081sgp_E 109-117 1.76 4.67 6.35 43 3.64 0.11 3.64 3.64 3.641xnb 116-124 1.53 7.35 5.16 1 1.88 1.88 1.88 1.88 1.881xnb 133-141 1.95 5.19 8.65 21 4.19 0.35 4.19 4.19 4.191xyz_A 795-803 1.64 9.83 5.69 1143 5.32 0.24 0.89 0.89 5.322ayh 169-177 1.24 2.02 2.46 12 3.08 0.1 0.34 3.08 3.082
pl 24-32 0.82 4.36 4.73 17 0.82 0.4 0.4 0.33 0.823pte 107-115 1.84 2.55 2.73 2 2.8 0.2 2.8 2.8 2.8average - 1.69 5.84 5.84 - 4.16 0.91 3.05 3.52 4.15median - 1.64 6 5.84 - 3.67 0.21 2.8 3.32 3.67
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Table 5.9: Results for loops of length 10 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%135l 18-27 1.9 5.41 7.03 252 4 0.2 0.4 0.39 41ads 170-179 1.66 4.67 7.02 414 3.6 0.31 0.31 0.44 3.61ads 171-180 1.68 4.45 7.6 44 2.74 0.42 0.42 0.47 2.741amp 181-190 2.97 3.86 3.91 8 4.05 0.23 4.05 4.05 4.051arb 41-50 1.88 4.78 4.28 75 5.53 0.06 5.53 5.53 5.531arp 37-46 3.32 7.72 4.56 586 8.45 8.45 8.45 8.45 8.451aru 128-137 1.6 8.88 2.25 9 2.88 0.36 0.66 0.66 2.881btl 170-179 2.17 4.7 4.44 448 3.38 0.76 0.76 0.76 3.381dim 87-96 1.83 3.04 13.26 601 7.85 0.28 7.85 7.85 7.851fkf 63-72 0.54 6.57 6.57 7 0.54 0.35 0.43 0.47 0.541gpr 133-142 1.36 6.68 4.25 3 3.04 0.15 3.04 3.04 3.041gvp 49-58 1.2 8.66 8.16 9 3.68 0.06 3.68 3.68 3.681ixh 84-93 1.77 4.85 4.41 530 4.49 0.13 4.49 4.49 4.491knt 35-44 1.67 5.86 6.06 7 1.75 0.24 1.62 1.62 1.751mrj 173-182 1.94 4.98 5.33 373 6.34 0.06 6.34 6.34 6.341pl
 42-51 1.58 6.82 7.55 58 6.46 0.57 0.57 1.41 6.461ppn 190-199 2.22 7.28 9.16 25 4.9 1.56 1.56 1.56 4.91s
s 65-74 0.71 5.97 3.33 79 3.58 0.53 3.58 3.58 3.581t
a 23-32 2.56 9.93 7.28 8 11.31 0.05 11.31 11.31 11.311whi 47-56 1.97 5.62 8.26 40 6.2 0.06 1.09 6.2 6.22
md 57-66 1.44 8.23 9.21 3 2.99 0.11 2.99 2.99 2.992mnr 91-100 2.2 9.35 7.05 18 5.09 5.09 5.09 5.09 5.092sil 197-206 1.05 6.27 6.19 2 1.05 0.22 1.05 1.05 1.053hs
 28-37 1.98 7.8 5.98 8 4.05 0.27 0.64 4.05 4.057rsa 110-119 1.13 1.88 2.45 3 1.13 0.41 0.41 1.13 1.137rsa 33-42 2.02 7.19 3.22 197 7.68 0.37 0.91 7.68 7.687rsa 87-96 1.34 10.79 9.56 1 2.39 2.39 2.39 2.39 2.39average - 1.77 6.38 6.24 141.04 4.41 0.88 2.95 3.58 4.41median - 1.77 6.27 6.19 25 4 0.28 1.62 3.04 4
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Table 5.10: Results for loops of length 11 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%153l 154-164 2.15 7.79 4.83 154 8.46 0.14 8.46 8.46 8.461a2p_A 76-86 2.42 5.7 8.09 164 5.48 5.48 5.48 5.48 5.481a2y_A 91-101 100 4.92 5.02 3000 2.23 0.26 0.96 1.12 2.231akz 211-221 2.73 7.15 6.22 317 4.31 0.19 0.24 0.84 4.311awq_A 1101-1111 2.63 6.39 5.14 26 9.51 0.87 0.87 0.58 9.511
vl 257-267 6.15 10.27 12.44 972 11.71 0.07 11.71 11.71 11.711dad 42-52 1.75 9.29 10.69 18 3.54 0.66 3.54 3.54 3.541fus 28-38 3 6.36 9.7 254 11.26 2.06 2.06 11.26 11.261ixh 120-130 2.25 3.19 3.41 12 3.4 0.06 3.4 3.4 3.41mla 9-19 1.11 3.67 4.36 3 1.11 0.21 0.98 0.98 1.111r
f 122-132 2.33 9.58 4.14 73 4.49 0.42 0.81 0.81 4.492pth 8-18 2.34 4.05 3.5 92 3.77 0.21 0.68 0.68 3.773pte 91-101 2.2 3.8 4.54 4 5.1 0.12 5.1 5.1 5.1average - 10.08 6.32 6.31 - 5.72 0.83 3.41 4.15 5.72median - 2.34 6.36 5.02 - 4.49 0.21 2.06 3.4 4.49
Table 5.11: Results for loops of length 12 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%153l 98-109 3.53 7.72 8.89 363 8.95 0.17 8.95 8.95 8.951akz 181-192 2.07 5.25 6.32 154 5.11 0.71 0.71 0.91 5.111arb 74-85 2.37 7.52 3.92 357 5.82 0.06 5.82 5.82 5.821bkf 9-20 2.6 6.73 4.95 191 5.04 0.05 0.68 5.04 5.041
ex 40-51 2.47 8.13 11.84 196 11.75 0.11 11.75 11.75 11.751dim 213-224 1.83 8.15 4.89 11 4.38 0.24 4.38 4.38 4.381ixh 161-171 4.31 14.32 9.18 128 11.97 0.08 11.97 11.97 11.971lu
_A 158-169 2.86 5.38 5.39 2 2.86 0.07 2.86 2.86 2.862ayh 21-32 2.51 12.19 11.53 339 4.18 0.13 4.18 4.18 4.18average - 2.73 8.38 7.43 - 6.67 0.18 5.7 6.21 6.67median - 2.51 7.72 6.32 - 5.11 0.11 4.38 5.04 5.11
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