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AbstratKnowledge of the three-dimensional struture of proteins is of vital importane forunderstanding their funtion and for the rational development of new drugs. Homologymodelling is urrently the most suessful method for the predition of the strutureof a protein from its sequene. A strutural model is thereby built by inorporatinginformation from experimentally solved proteins showing an evolutionary relationshipto the target protein. The aurate predition of loop regions whih frequentlyontribute to the funtional spei�ity of proteins as well as the assessment of thequality of the models are major determinants of the appliability of the generatedmodels in order to answer biologial questions.The modelling pipeline established in the ourse of this work is able to produe veryaurate models as shown in a reent ommunity-wide blind test experiment: From18 proessed protein struture predition test ases, 3 very good models have beensubmitted (rank 2, 4 and 6 of over 130 partiipating groups) and the vast majority ofthe remaining models was above the ommunity average.The loop modelling routine relies on a omprehensive database of fragments extratedfrom known protein strutures. After the seletion of fragments from the database, avariety of �lters are applied in order to redue the number of fragments. In ontrastto other knowledge-based loop predition methods desribed in the literature, whihmostly perform a ranking based on the geometrial �t of the fragments to the anhorgroups in the protein, the present method ranks the remaining andidates with anall-atom statistial potential soring funtion whih investigates the ompatibility ofthe loop inluding sidehains with its strutural environment. On a large test set ofover 200 loops, the loop predition method is able to model loops with median rootmean square deviation per loop length below 1 Å for loops up to a length of 7 residuesif all fragments, originating from proteins sharing more than 50% sequene identity tothe proteins of the test set, are exluded. On the same data basis, the present methodoutperforms 3 out of 4 ommerial loop modelling programs tested in this work.Furthermore, a omposite soring funtion onsisting of 3 statistial potential termsovering the major aspets of protein stability and two additional terms desribing theagreement between predition features of the sequene and alulated harateristisIII



IVof the model is presented. The soring funtion performs signi�antly better than�ve well-established methods in the disrimination of good from bad models basedon a omprehensive test set of 22,420 models and represents a valuable tool for theassessment of the quality of protein models.
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ZusammenfassungDas Wissen über die dreidimensionale Struktur von Proteinen ist von entsheidenderBedeutung für das Verständnis der biologisher Funktion und ist eine wihtige Vo-raussetzung für die moderne Arzneimittelforshung. Die Vorhersage der Struktur einesProteins aus deren Sequenz mit Hilfe von omputergestützten Methoden wird deutliherleihtert, wenn Informationen von experimentell gelösten Proteinen benutzt werdenkönnen, welhe eine evolutionäre Verwandtshaft zum gesuhten Protein aufweisen(Homologiemodellierung). Dabei spielen die präzise Strukturvorhersage von Loopre-gionen, welhe häu�g die funktionelle Spezi�tät von Proteinen ausmahen, sowie dieFähigkeit, die Qualität der erzeugten Modelle zu bewerten, eine wihtige Rolle für diespätere Verwendbarkeit der Modelle zur Beantwortung biologisher Fragestellungen.Die im Laufe dieser Arbeit entwikelte Modellierungsumgebung wurde kürzlih aneinem internationalen Blindversuh zur Proteinstrukturvorhersage getestet und es hatsih gezeigt, dass sehr genaue Vorhersagen erreiht werden können: Von den 18untersuhten Vorhersagetestfällen wurden 3 sehr gute Modelle eingereiht (Platz 2,4 und 6 von über 130 teilnehmenden Arbeitsgruppen) und die überwiegende Mehrzahlder restlihen Modelle waren besser als der Durhshnitt.Die intergrierte Loopmodellierungsroutine basiert auf einer umfangreihen Datenbankvon Proteinfragmenten extrahiert aus experimentell gelösten Strukturen. Im Vorher-sageprozess werden mehrere Qualitäts�lter verwendet, um die Anzahl der Fragmentezu reduzieren. Im Gegensatz zu anderen beshriebenen wissensbasierten Ansätzen, inwelhen das Soring meist über die Passgenauigkeit der Fragmente zu den Ankergrup-pen im Protein durhgeführt wird, verwendet die hier vorgestellten Methode eine Sor-ingfunktion basierend auf statistishe Potentialen, welhe die Kompatibilität der Loopsinklusive Seitenketten mit der strukturellen Umgebung bewertet. Die Methode wurdeauf einem Datensatz von über 200 Loops getestet. Der Median des RMSD (Wurzel dermittleren quadratishen Abweihung) pro Looplänge liegt dabei unter 1 Å für Loopsbis 7 Residuen. Dabei wurden Fragmente aus Proteinen extrahiert, die weniger als50% Sequenzidentität zu den Proteinen im Testdatensatz haben. Mit dem gleihenDatensatz liefert dabei die vorliegende Methode genauere Loopstrukturvorhersagen als3 von 4 untersuhten kommerziellen Loopvorhersage-Programmen.V



VIZusätzlih wurde eine zusammengesetzte Soringfunktion entwikelt, bestehend ausfünf Termen: Drei statistishen Potentiale erfassen vershiedene Faktoren der Pro-teinstabilität und zwei zusätzlih Terme beshreiben die Übereinstimmung zwishenaus der Sequenz vorhergesagten Eigenshaften und gemessenen Eigenshaften desProteinmodells. Eine statistish signi�kante Verbesserung gegenüber fünf etabliertenEnergiefunktionen bezüglih der Fähigkeit, zwishen guten und shlehten Modellenzu unersheiden, wird erreiht, basierend auf einem umfangreihen Testdatensatzvon 22'420 Modellen und einer Vielzahl von Qualitätsmaÿen. Die hier vorgestellteSoringfunktion stellt ein wertvolles Hilfsmittel zur Bewertung der Modellqualität dar.
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1 Introdution
Proteinsa play a key role in all living organisms. They partiipate in all proessesthat haraterise life, whih are the ability to metabolise nutrients, respond to externalstimuli, grow, reprodue and evolve. Proteins are involved in most physiologial pro-esses, for example in the immune response, ell yle, signal transdution, metabolism,atalysis of reations and transport, and they serve as strutural material (e.g. atine,ollagen, elastin or reatin).Proteins are omposed of 20 di�erent amino aids and the order of the amino aids isdetermined by the genes. After synthesis, the linear polymer folds in a well-de�ned3-dimensional struture [7℄. The enormous variety of funtions proteins perform anbe attributed to a great extent to their ability to spei�ally and tightly bind othermoleules. Binding and funtion is mediated by the 3-dimensional struture of theprotein and the physio-hemial properties of the amino aids sidehains at the ativeor binding site. Therefore, knowledge about the struture of a protein is of paramountimportane in order to understand its funtion, �nd explanations for diseases andpotentially design drugs against them.Over the last two deades, large-sale sequening projets of dozens of genomes(inluding human) have resulted in a vast amount of sequenes. Of these, a onsiderablefration has no annotated funtion or their mehanism of ation is virtually unknown.The number of known protein sequenes is about two orders of magnitude higherthan the number of experimentally solved protein strutures. Sine experimentalmethods for the determination of protein strutures are time-onsuming and fail forsome important groups of proteins (e.g. membrane proteins), e�ient omputationalmethods for the predition of the protein struture from its sequene are needed.The predition of the protein struture from srath solely based on physial priniples(i.e. the simulation of the biologial proess of folding) is, unfortunately, out of reahat present. All urrent methods for protein struture predition inorporate to someextent knowledge of experimentally solved strutures either by using segments of knownaThe word �protein� omes from the Greek πρωτα (�prota�) whih means �of primary importane�



2 Introdutionprotein strutures to model the struture of unknown ones or by parametrising energyfuntions.In this work, the potential of these so alled �knowledge-based� approahes for proteinstruture predition is investigated. A method for the modelling of loop regions, aswell as a soring funtion for the quality assessment of the protein struture modelsare presented, whih both take advantage of the information stored in the set ofexperimentally solved protein strutures. The methods are embedded in a modellingpipeline established in the ourse of this work.This hapter starts with a general introdution on proteins and their struture, followedby an overview on methods used in protein struture predition and ends with thedesription of the objetives of this thesis.1.1 Protein struture1.1.1 General properties of proteinsProteins are linear polymers onsisting of 20 di�erent amino aids. The amino aidsare onneted by the peptide bond between the arbonyl C of the ith amino aid andthe amine N of the i+1th amino aid (Figure 1.1). During the formation of the peptidebond, a water moleule is released. The peptide bond has a shared double bond: thenon-bonding eletron pair of the nitrogen an be deloalised to form a double bondwith the arbonyl C, with the onsequene that the π eletrons of the C = O bond aremoved to the oxygen [2℄.As a onsequene of the double bond harater, the peptide bond is rigid and almostplanar whih greatly redues the degrees of freedom. The 6 atoms between twoonseutive Cα atoms (inluding the Cαs) an therefore be onsidered to be in a plane.The dihedral angle ω (Figure 1.1) is typially very lose to 180◦ for all amino aids(exept proline) whih is equivalent to the Cα atoms being in trans onformation(i.e. the Cα's point in opposite diretions of the peptide bond). Over 99.9% of allamino aids in proteins (exept proline) our in trans onformation [166℄. Proline,as a onsequene of the ovalent bonding between sidehain and bakbone, ours in
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Figure 1.1: Important angles in polypeptides.bapproximately 5% of the ases in is-onformation [54, 130℄.Due to the planarity, the onformational degrees of freedom of the protein bakboneare mainly redued on the two torsion angles Φ and Ψ. The dihedral angle Φ desribesthe angle between the two planes de�ned by the 4 atoms Ci−1, Ni, Cαi, Ci and Ψ inanalogy is de�ned by Ni, Cαi, Ci, Ni+1 (i represents any position in the polypeptidehain). Not all Φ/Ψ-angle ombinations are energetially favourable as a onsequeneof steri hindrane between the �rst sidehain atom and the bakbone atoms. This fatan be shematially visualised by the Ramahandran plot [167℄ (Figure 1.2).The Ramahandran plot is obtained by treating the atoms as hard spheres andmarking the Φ and Ψ angle ombinations whih do not lead to ollisions of the vander Waals spheres. White regions are sterially disallowed, dark regions lead to novan der Waals lashes and the lighter region are possible if the radii are slightlyredued. The distribution of Φ/Ψ-angles observed in experimental strutures ansometimes di�er substantially from the ideal situation depited above. The high energyof an unfavourable dihedral angle ombination an be ompensated for example byother interations. Glyine and proline show a quite di�erent Ramahandran plot asompared to the other amino aids: Glyine, as a onsequene of the missing sidehain(R-group = −H), an populate regions whih are unfavourable for the other aminobsoure: http://kinemage.biohem.duke.edu/∼jsr/html/anatax.1b.html
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Figure 1.2: The Ramahandran plot.aids and in proline the Φ dihedral angle is restrained as a onsequene of the ylinature of this amino aid.There are four levels of proteins struture: The linear sequene of amino aids, enodedby the nuleotide sequene of the gene, is alled the primary struture. Seondarystruture refers to loal strutural patterns of the protein bakbone. The tertiarystruture is the 3-dimensional onformation of the protein whereas quaternary struturedesribes the arrangement of protein subunits forming omplexes.1.1.2 Amino aidsAmino aids onsist of a entral arbon atom (the Cα atom) in tetrahedral oordinationwith four substituents: A hydrogen atom, the amino-group (−NH2), the arboxyl-group (−COOH) and an organi sidehain (R-group). The unique physial and hem-ial properties of the 20 naturally ourring amino aids are therefore a onsequeneof the di�erene in the R-group. The properties of the amino aids an be representedsoure: http://www.bbk.a.uk/PPS2/ourse/setion3/rama.html
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Figure 1.3: Properties of the 20 amino aids [127℄.shematially in a Venn diagram [127℄ (Figure 1.3).The 20 amino aids are shown below in Figure 1.4. The unique properties of someseleted amino aids are desribed in the following (aording to Tramontano [219℄ andVoet and Voet [231℄):
• As a onsequene of its missing sidehain, glyine is very �exible and an adoptunusual bakbone torsion angles. Glyine is therefore often observed in tightturns.
• Proline is the only imino aid, whih means that the sidehain is onneted withthe bakbone forming a nitrogen-ontaining ring. Proline is often observed inturn strutures. Proline is known to be a helix breaker [40℄. A onserved prolinewithin a protein family an be an evidene of a spei� strutural feature andshould be taken into aount in protein struture predition and espeially inloop modelling.
• Cysteins are the only amino aids able to form inter- and intra-moleular ovalentbonds by oxidation of the sulfhydryl groups (−SH) of two ysteins to a disul�debond. These amino aids are therefore of ruial importane in extraellularproteins whih are in a reduing environment. The SH−group of ysteins israther reative and an oordinate metals.
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Figure 1.4: The 20 naturally ouring amino aids.soure: http://www.em.msu.edu/∼reush/OrgPage/aminoaids.htm
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• Hydrophobi amino aids suh as for example leuine, valine and isoleuineare usually found in the interior of proteins shielded from diret ontat withwater. Conversely, the hydrophili amino aids (e.g. asparagine and glutamine)are generally enountered on the exterior of proteins as well as in the ativeenters of enzymes. Charged residues suh as the negatively harged asparagate(or asparti aid) and glutamate (or glutami aid) as well as lysine and arginine(positively harged) an form salt bridges and are often observed in ative sites.
• Another group of amino aids are the aromati residues (phenylalanine, tryp-tophane, tyrosine and histidine) whih an interat with eah other forming π-staks. Histidine additionally has the important property that it an at both asa base and an aid under physiologial pH and therefore plays a entral role inative sites (e.g. in the atalyti triad in hymotrypsin).1.1.3 Seondary strutureSeondary struture elements are loal strutural segments typially stabilised bybakbone hydrogen bonds and are the essential building bloks of protein onformation.Seondary strutures represent sterially favourable onformations as re�eted by theRamahandran plot in Figure 1.2. The most ommon seondary struture elementsare α-helies and β-sheets. The fat that the amino aids have di�erent propensitiesto be observed in seondary struture elements was used by Chou and Fasman in theearly 1970's to predit seondary struture [40, 41℄. For example alanine, glutamate,leuine and methionine were identi�ed as helix formers, while proline and glyine, dueto the unique onformational properties, ommonly end a helix.The α-helix is the simplest and most abundant seondary struture element (see Figure1.5). An α-helix has on average 3.6 amino aids per turn and is stabilised by hydrogenbonds between the amide H at position i and the arbonyl O at position i−4. The Φ/Ψdihedral angles are typially around (-60◦, -50◦) [219℄. The sidehains point outwardfrom the helix. Other, less ommon, helix types are the 310-helix and the π-helix.Another frequently ourring seondary struture element is the β-sheet whih isformed by two or more β-strands (i.e. polypeptide segments in extended onformation)



8 Introdution

Figure 1.5: The α-helix struture (soure: [2℄).linked laterally by hydrogen bonds. The sidehains of neighboring residues point intodi�erent diretions. The strands an be aligned in the same or opposite orientationforming parallel (Φ/Ψ angles around (-119◦, 113◦) [231℄) or anti-parallel β-sheets (Φ/Ψangles around (-139◦, 135◦) [231℄) whih are typially slightly twisted (see Figure 1.6).Regions without regular struture onneting seondary struture elements are alledloops. A frequently ourring strutural loop motif are reverse turns whih are stabilisedby a hydrogen bond between abonyl oxygen at position i and N-H group at position
i + 3. If a reverse turn is enlosed by β-strands the motif is alled β-hairpin. Someturns require a glyine at a ertain position as a onsequene of the torsion anglesfalling in the �forbidden� region of the Ramahandran plot for the other amino aids.1.1.4 Tertiary and quaternary strutureThe 3-dimensional arrangement of the seondary struture elements (inluding theonneting loops) in a single hain is alled the tertiary struture. Frequently ourringgeometri arrangements of two or three seondary struture elements are also known asmotifs or superseondary strutures. Examples are the β-hairpin motif desribed above
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Figure 1.6: An anti-parallel β-sheet (soure: [2℄).(beta-turn-beta) or the beta-alpha-beta unit. The ombination of superseondarystrutures is often alled domain or fold [219℄. An exat de�nition of the term �domain�is di�ult: domains are often desribed as segments that an independently fold intoa stable 3-dimensional struture. In a more evolutionary sight, domains an be seen asevolutionary units whih an be dupliated and/or undergo reombination [38℄. Twovery ommon arrangements of superseondary strutures are the Rossman fold (beta-alpha-beta-alpha-beta) and the four-helix bundle.It is ommonly assumed that the number of protein folds ourring in nature is limitedbut there is disagreement about the magnitude of this number (e.g. [37, 152, 231℄) andwhether eah fold originated just one (as propagated via divergent evolution) or hasbeen �re-invented� (onvergent evolution of strutures).Several hierarhial protein struture lassi�ation systems have been developed rang-ing from entirely manual to fully-automated approahes: SCOP [148℄, CATH [153℄ andFSSP [92℄. On the highest level, the proteins are typially lassi�ed aording to their



10 Introdutionseondary struture ontent. For example in CATH, the Class-level is organised asfollows:
• mainly α-helix
• mainly β-sheet
• α/β proteins
• few seondary struturesThe lowest lassi�ation level are the protein families in whih the members have alear evolutionary relationship (i.e. are homologues).1.1.4.1 Sequene-struture relationshipSine An�nsen's pioneering work in 1973 [7℄ it is known that the primary sequeneexlusively determines the 3-dimensional struture of a protein. An�nsen realised thatthe driving fore for folding is the gradient of free energy and that the native strutureof the protein is in its free energy minimum (for a review on folding see [12, 57, 95℄).Folding desribes the physial proess in whih a polypeptide hain folds in itsharateristi 3-dimensional struture. The folding proess is still not fully understood.In the late 1960's Levinthal [122℄ demonstrated that the sequential sampling of allpossible onformations of the polypeptide hain would take an astronomial amountof time whih disagrees with the folding time of miroseonds to minutes typiallyobserved in nature. He onluded that proteins fold by a direted proess with spei�folding pathways. This observation was later alled the �Levinthal paradox�.In a more modern view, the pathway onept assuming an obligate series of disreteintermediates is replaed by a multipliity of parallel routes down a folding funnelbased on the onept of the energy landsape [27℄. A shemati piture of the funnel-like energy landsape is given in Figure 1.7. The energy landsape in potentially ruggedas a onsequene of kineti traps and energy barriers.Dill illustrates this onept as follows: �water �owing along di�erent routes downmountainsides an ultimately reah the same lake at the bottom� [59℄. It is generally
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Figure 1.7: Shemati representation of the funnel-like energy landsape [59℄.assumed, that the folding proess starts with the formation of loal seondary struturegoverned by interations being lose in the polypeptide hain and that the subunitsare subsequently assembled further down the folding funnel. Folding involves a balanebetween loss of onformational entropy and gain in enthalpy. The hydrophobi e�etseems to be the driving fore and to a ertain extent also hydrogen bonding.Generally, it an be said that sequene determines struture and struture determinesthe protein funtion. But unfortunately the predition of protein struture from srathsolely based on physial priniples is at present still out of reah. Most urrentmethods for protein struture predition inorporate to some extent knowledge ofexperimentally-solved strutures based on the fat that struture is more onservedthan sequene.The relationship between sequene similarity and strutural similarity was topi of theseminal work of Chothia and Lesk [39℄. The authors showed that the di�erene in thestruture of two proteins inreases as the sequene identity dereases (see Figure 1.8).Sequene similarity is typially expressed as pairwise sequene identity based on analignment. An alignment is an ordered mapping of the residues of two sequenes. Agap (denoted by �-�) an be plaed when a residue is not aligned with any of the residuesof the other sequene. More preisely, sequene identity is de�ned as the numberof positions in the alignment where the residues are idential divided by the length
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Figure 1.8: Relationship between sequene and struture similarity analysed byChothia and Lesk [39℄.of the shorter sequene. Strutural similarity is traditionally expressed by the rootmean square deviation (RMSD) between orresponding atoms in an optimal struturalsuperposition (see Formula 2.7 on page 61).As an example the sequene alignment between myoglobin (PDB ode 1mbn, 153residues) and hemoglobin (PDB ode 3hhb, 141 residues) is shown in Figure 1.9.Conserved residues are marked in bold. The strutural superposition of the twoproteins in given in Figure 1.10. Although the sequene identity is only around 25%(36 ÷ 141 ≈ 25.5) the two proteins show a remarkable strutural similarity with anRMSD of the bakbone atoms below 1.5 Å.
myoglobine       EGEWQL LHV A VE DVAGH QDI I L K H E LEK -DR KHLKTEAEMKA EDL K  VT L
hemoglobine      PADKTN KAA G VG HAGEY AEA E M L F T KTY PH- DLSHG------ AQV G  KK A

myoglobine    T  GAILKKKGHHEA-ELKP AQS  T HKIPIKYLEFI EAIIHV HSRH GD GADAQGAMN A ELF
hemoglobine   D  TNAVAHVDDMPNALS-A SDL  H LRVDPVNFKLL HCLLVT AAHL AE TPAVHASLD F ASV

myoglobine    RKDIAA YKELGYQG
hemoglobine   STVLTS YR------

VLS      V   W K  A     G   L R F S P T   F   F           S   K HG  V

VLS      V   W K  A     G   L R F S P T   F   F           S   K HG  V

AL                 L   HA K           S      L    P  F         K L

AL                 L   HA K           S      L    P  F         K L

K

KFigure 1.9: Sequene alignment between myoglobin and hemoglobin.
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Figure 1.10: Superposition of myoglobin (blak) and hemoglobin (light grey) inribbon representation together with the heme group (stiks representation).In an extensive evaluation of sequene alignments of protein pairs with similar anddissimilar struture, Rost [175℄ analysed the minimum sequene identity whih isneeded to infer strutural similarity. The relationship between sequene and strutureis dependent on the alignment length, but for long alignments, high sequene identity(>40%) guarantees strutural similarity. In the so alled �twilight zone� between 20-30% the relationship is unertain.1.1.5 Experimental MethodsThe two experimental methods able to determine protein strutures at atomi resolu-tion are X-ray rystallography and NMR-spetrosopy. More than 85% of the proteinstrutures in the Protein Data Bank (see next setion) are determined by the formermethod. Cryo-eletron mirosopy is also used, but this method an only extrat low-resolution information of large protein omplexes and is therefore not desribed here.
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Figure 1.11: Typial images in X-ray rystallography: an expample of a di�rationmap (left) and a eletron density map (right) derived from it.dIn X-ray rystallography, the �rst and most di�ult step is the growth of a well-orderedrystal. The rystal lattie is then irradiated with X-rays leading to a di�rationpattern spei� for the given protein struture (see Figure 1.11 left hand side). TheX-rays, whih have wavelengths in the order of interatomi distanes, are dispersed bythe eletrons in the moleule and interfere with eah other resulting in a di�rationpattern re�eting the relative positions of the eletrons in the rystal. The eletrondensity is alulated from the amplitudes and the phases of the di�ration waves by aFourier transform funtion. Unfortunately, the phase information annot be measuredin this proess and additional information is needed in order to estimate the phases(e.g. by isomorphous replaement or moleular replaement). After Fourier transformand solving the phase problem, an eletron density map an be built as shown in Figure1.11 right hand side).In the re�nement proess a model of the protein struture is �tted in the eletrondensity map using information about standard geometries for bond lengths and angles.The auray of the eletron density map and the orresponding model of the proteinstruture depend on quality and amount of available data ompared to the numberof unknowns (atoms in the protein) and is expressed by the term �resolution� (inÅngstrom). From the model of the struture it is possible to reompute the di�rationmap and ompare it with the original one. The di�erene is re�eted by the R fator.dhttp://en.wikipedia.org/wiki/Portal:Xray_Crystallography,http://biop.ox.a.uk/www/lab_journal_1998/Endiott.html



1.1 Protein struture 15A good struture should have an R value of less than resolution divided by 10.Nulear magneti resonane (NMR) spetrosopy is a method whih allows to deter-mine the struture of a protein in solution. The solution is exposed to a powerfulmagneti �eld whih auses the spin of the nulei to be oriented in diretion of theexternal �eld. An additional magneti �eld is used in order to measure the frequeny atwhih the di�erent atom nulei swith the spin orientation (alled resonane frequeny).The resonane frequeny of an atom depends on its type but also on the environment.The magneti interation of the spins of two atoms lose in spae an be measuredand its intensity depends on the distane, whih allows to derive a set of distaneonstraints. Given a su�ient number of onstraints a �nite set of models an be built.The more onstraints are given and the loser the models beome. For highly �exibleregions the derivation of distane onstraints is hindered and therefore the models inthese segments are less similar.1.1.6 The Protein Data BankThe experimentally determined strutures of proteins (but also other maromoleules)are deposited in the publily aessible Protein Data Bank (PDB) [18℄. Eah struturein the PDB has a unique identi�er omposed of four letter. At the date of thiswork (September 2007) the PDB holds 45,506 strutures, most of whih are proteinsdetermined by X-ray rystallography. The PDB ontains a onsiderable amountof redundany (e.g. beause some proteins involved in diseases have been solvedwith di�erent bound ligands). A non-redundant subset of the PDB omposed ofstrutures with less than 90% sequene identity and resolution better than 3 Å yieldsin approximately 12,000 strutures. The size of the PDB has grown exponentially overthe last years as it an be seen from Figure 1.12.Regardless of the exponential growth of the PDB, the number of new folds (based on theSCOP lassi�ation) entering the PDB has dereased over the last years. Virtually nonew fold were solved over the last two years. This an be attributed to the fat that onone hand some proteins (espeially membrane proteins) are very di�ult or impossiblethe determine with urrent methods. On the other hand, strutural genomis initiativeshave solved many of the missing folds over the last years.
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Figure 1.12: Growth of the Protein Data Bank from 1972-2007 (data soure:www.pdb.org).1.1.7 Strutural genomisThe goal of the worldwide strutural genomis initiatives is to provide strutural infor-mation for most of the known protein sequenes through a ombination of experimentaland omputational methods [33℄.The strutural genomis e�ort started around the year 2000 and an be split in threemain groups: the Protein Struture Initiative (PSI) by the US National Instituteof Health, the Japan-based program led by the RIKEN researh foundation and theeuropean e�ort with the Strutural Genomis Consortium (SGC) and SPINE.One aspet of strutural genomis initiatives is the emphasis on high throughput proteinstruture determination, whih allows to solve strutures faster and with lower osts.In the last seven years, more than 5,000 new protein strutures from the struturalgenomis enters have been deposited in the PDB (see Figure 1.13).esoure: http://sg.pdb.org/
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Figure 1.13: New strutures solved by the strutural genomis enters (As of:September 2007).eThe strutural genomis projets attempt to deliver strutural templates for membersof all protein families in whih they were very suessful until now (a review on theexpetations and outomes of the strutural genomis initiatives an be found in [34℄).Targets for strutural genomis are proteins with less than 30% sequene identity toany struture in the PDB. Protein sequenes above this uto� typially have a similarstruture as mentioned above and an therefore be solved by homology modelling (seenext setion). At the beginning of the year 2005, about 36% of the Pfam families (Pfamis a manually urated database of protein families) ontained at least one memberwith known struture. This allows to model the other family members [34℄. It hasbeen estimated in 2004 [33℄ that around 57% of the domains of all sequenes an bemodelled with the urrent PDB. An estimated number of 10,000-16,000 strutureshave to be determined experimentally in order to model most of the urrent sequenes[33, 230℄.



18 Introdution1.2 Protein struture preditionThe funtional haraterisation of a protein sequene is strongly failitated by theknowledge of its 3-dimensional struture. Strutural information an be used to asknew biologial questions and e�iently design experiments. To lose the gap betweenthe number of known sequenes (approximately 4.8 million in UniProt/TrEMBLf) andthe fration for whih the struture is solved (approximately 45,500 in the PDB),e�ient methods for protein struture predition are needed that omplement urrente�orts in strutural genomis (see Chapter 1.1.7).Protein struture predition refers to the predition of the tertiary struture of a proteingiven its sequene by means of omputational methods. Two fundamental priniplesare ating on proteins that guide their 3-dimensional struture: the laws of physis andthe theory of evolution. Aordingly, there are two di�erent lasses of protein struturepredition methods: ab initio methods and template-based methods.Ab initio or de novo methods try to predit the struture of a protein from the sequenealone based on the laws of physis and hemistry assuming that the native struture is inthe global free energy minimum. In ontrast, template-based methods take into aountstrutural information from experimentally solved protein strutures (�the templates�)to build a model of the target sequene relying on the fat that struture is moreevolutionarly onserved than sequene [39℄ and that proteins adopt a limited numberof folds [37, 152, 231℄. Traditionally template-based modelling has been split into thetwo �elds of fold reognition and omparative (homology) modelling, depending on theapproah used for template identi�ation. A onstantly inreasing overlap between thethree �elds an be observed over the last years making the boundaries inreasinglyblurred. An overview on the di�erent methods is given below.The auray of models generated by template-based modelling tehniques is highlydependent on the sequene identity between the target sequene and the template ofknown struture. It based on the relationship between sequene and struture of aprotein desribed in Chapter 1.1.4.1. The appliation of protein struture models isdetermined by their auray [11℄. High to medium auray models generated byomparative modelling, based on a template with more than 30% sequene identity tofsoure: http://www.ebi.a.uk/swissprot/sptr_stats/index.html
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1.2 Protein struture predition 19the target an for instane be used for struture-based drug design, the investigationof the shape and volume of the binding site or for re�ning funtion predition basedon sequene [98, 161℄.1.2.1 CASPCritial Assessment of tehniques for protein Struture Predition (CASP) is aommunity-wide experiment taking plae every two years with the aim of assessing theprogress in this �eld [143, 147℄. CASP is a blind test experiment where the preditorsreeive a set of protein sequenes for whih the struture is about to be experimentallysolved. During the predition season, of approximately 3 months, the native struturesremain unknown to the preditors. Afterwards the quality of the submitted models isanalysed by independent assessors and the results are presented at the CASP onfereneand in a speial issue of the journal Proteins (e.g. [145℄, [144℄).The number of predition targets steadily inreased over the years from 33 at thebeginning of CASP in the year 1994 to 95 aepted targets at the seventh round ofCASP in summer 2006. The targets are ategorised aording to modelling di�ultyin omparative modelling, fold reognition (homologues and analogues, respetively)and new folds. For the last CASP round, the ategories have been rede�ned to re�etdevelopments in methods in template-based modelling and (template-)free modelling.1.2.2 Overview of methods1.2.2.1 Ab initioAb initio or de novo methods try to predit the native struture of the proteinby simulating the biologial folding proess. Folding simulations using moleularmehanis fore-�elds and moleular dynamis simulations are not disussed here sinethese appliations are limited to very small polypeptides and require an enormousamount of omputational time.In pratie, most of the ab initio methods inorporate to some extent available stru-tural information either through the use of fragments from known protein strutures



20 Introdutionor in devising soring funtions. This is the reason why the term �new folds� and �freemodelling� have been used to desribe this �eld in the last rounds of CASP.The two major problems in ab initio struture predition are the vast number ofonformations that have to be sampled and the inauraies of the soring funtions.The ombinatorial explosion an be approahed by using redued representation ofonformations and by e�ient sampling strategies. Suessful approahes inlude meth-ods whih build strutures from short protein fragments (so alled fragment assemblymethods) suh as ROSETTA [21, 196℄ and lattie-based simulations [154, 246℄. Aombination of both is implemented in TASSER (Threading/ASSEmbly/Re�nement)[245℄ whih assembles the model from strutural fragments of templates identi�edby threading, if possible, and uses a lattie-based approah for the remaining parts.Usually, a vast amount of onformations is generated from whih the �nal model isseleted by lustering the solutions and applying a omposite soring funtion.1.2.2.2 Fold reognitionFold reognition is based on the notion that protein struture is muh more evolu-tionarly onserved than sequene and that the number of adopted protein folds islimited. Two proteins an share the same fold even if the sequene similarity iseither very low or does not exist. In previous CASP rounds (until CASP7), the foldreognition targets have been divided in homologous and analogous folds. Homologuesare evolutionarly related and diverged from a ommon anestor. Analogues have noevolutionary relationship and are a result of onvergent evolution, meaning that naturehas independently �re-invented� the fold. The de�nition of analogues is rather vagueand strongly depends on our ability to detet remote evolutionary relationships: as aresult of advanes in sequene omparison methods suh as PSI-BLAST [6℄, proteinswhih have been originally regarded as analogues have been later on�rmed to behomologues.The traditional division in homology (omparative) modelling and fold reognition wasbased on the di�ulty to detet a suitable template. Whereas in homology modellingthe template ould be more or less easily identi�ed (e.g. by a simple BLAST run),more advaned methods were used in fold reognition. Nowadays, fold reognition



1.2 Protein struture predition 21methods are not only standard in the �eld of protein struture predition and part ofvirtually all omparative modelling pipelines but also of ab initio methods (e.g. somefragment assembly methods). In the following, approahes for template identi�ationwhih arose from the fold reognition �eld are brie�y desribed.Historially, fold reognition an be divided into threading methods and sequenesimilarity-based methods. Threading methods were developed in the hope to detetanalogous folds with no evolutionary relationship. They take their name from theoneptual threading of the sequene of a protein through a library of folds withthe intention to identify the fold that �ts the given sequene best. The �tness ofeah residue is assessed separately by analysing its ompatibility with the given loalonformation and the strutural environment. This has led to the development ofontat potentials [104, 197, 200, 209℄ and 3D-pro�les whih enode the struturalenvironment of the residues [24℄. Dynami programming is usually applied in orderto align the sequene to the template struture. By this stepwise mapping of thetarget sequene onto the struture of the template, the strutural environment hangesaordingly. This problem divides the threading methods into those using the �frozenapproximation� leaving the strutural environment as in the template and those usingthe �defrosted approximation� in whih the surrounding amino aids are updated[85, 201℄. The models of the query protein, based on the alignment to the di�erenttemplate folds are often further evaluated by ontat potentials and other statistialpotentials. The appliation of these methods is not restrited to fold reognition andsimilar methods are used in model quality assessment in general (see Chapter 1.2.4).Sequene similarity-based methods try to identify templates whih are evolutionarlyrelated to the target sequene. Sequene-sequene omparison methods suh as FASTA[160℄ and BLAST [5℄ are the most simple methods to assign a fold of a protein (e.g. by aBLAST searh of the query protein sequene against the sequenes of all experimentallysolved proteins). BLAST, whih stands for Basi Loal Alignment Searh Tool,has beome one of the standard tools in the bioinformatis ommunity and beyondit. The algorithm basially onsists of three steps: First, the sequene database issanned for exat mathes of sequene fragments of �xed length ontained in the querysequene (the �seeds�). In the seond stage, the seeds are extended in both diretions.Finally, high soring ungapped alignments are olleted and gapped alignments of



22 Introdutionthe query sequene with the orresponding database sequenes are generated using amodi�ed version of the Smith-Waterman algorithm for loal alignments [203℄. Thestatistial signi�ane of the hits is reported as an E-value whih re�ets the numberof di�erent alignments with equivalent or better sore that are expeted to our ina database searh by hane. Basi ingredients of an alignment algorithm based ondynami programming suh as Smith-Waterman and Needleman-Wunsh [150℄ (forglobal alignments overing the entire length of both sequenes) are a substitutionmatrix whih de�nes the similarity between two amino aids [89℄ and the penaltyof setting a gap (usually a separate gap open and a gap extension penalty are used).A new generation of alignment algorithms ame up in the mid 1990's based on theassumption that onserved sequene motifs should have a stronger in�uene on thealignment than variable regions resulting in the development of position-spei� soringmatries (PSSMs) [22℄. As opposed to the ordinary substitution matries (20 x 20amino aids), PSSMs or pro�les are omposed of 20 x N entries (where N is thelength of the sequene) and are generated by analysing the amino aid variability ina multiple sequene alignment of the family of the query protein. A pro�le desribesa family of homologous proteins and not a single sequene. As a onsequene, pro�le-sequene omparison methods have been developed with PSI-BLAST [6℄ as the mostprominent representative. PSI-BLAST (Position-Spei� Iterative-BLAST) uses thesame heuristis as the original BLAST (explaining its speed) and additionally aniterative generation of multiple sequene alignments and pro�les in order to inreasethe searh sensitivity. In a losely related approah the family-spei� information isstored in hidden Markov models (HMMs) [63, 108℄.The sensitivity in deteting weak evolutionary relationships as well as the auray ofthe alignment has been further inreased by the use of pro�le-pro�le (or HMM-HMM)omparison methods [155, 179, 180, 232, 243℄. In these approahes the query pro�le isaligned to the pro�le of the template protein using a soring funtion whih alulatesthe ompatibility of two olumns in the pro�les. Several alternative olumn-olumnsoring funtions have been proposed in the literature as well as alternative ways togenerate the pro�les and to build the alignments (a review an be found in [140, 235℄).A lear trend to ombine sequene and struture information is observable in the �eldover the last years, either by inorporation of strutural information in sequene pro�les



1.2 Protein struture predition 23diretly [1, 156, 210℄ or by integrating sequene information in threading [60, 157, 188℄.A variety of approahes to integrate strutural information from the templates in thesequene pro�les have been proposed. Strutural information an be integrated usingpredited strutural pro�les in terms of seondary struture and sometimes solventaessibility [65, 165, 178, 250℄. Seondary struture information for example is usedby omparing observed seondary strutures in the template and predited states inthe target.1.2.2.3 Comparative modellingAs mentioned in Chapter 1.1.4.1, a sequene identity of roughly 30% is generallysu�ient to infer strutural similarity between two proteins. This is the fundamentalidea behind homology or omparative modelling. With the growing number ofexperimentally solved protein strutures, this onept has beome a powerful methodto predit the struture of a large fration of the known protein sequenes (see Chapter1.1.7).Homology modelling basially onsists of six steps: template identi�ation and se-letion, target-template alignment, initial model building, loop predition, sidehainpredition and, �nally, re�nement and quality assessment (see Figure 2.1 in Methodsfor an overview). A short desription of all steps is given below. Loop predition aswell as model quality assessment are piked out as entral themes of this thesis in thenext two setions.The �rst two steps (template identi�ation and alignment building) have been desribedin detail in the previous setion. Usually, more than one template is identi�ed and it isneessary to selet the best andidate(s) for a given modelling problem. In this ontext,sequene identity between target and template is the most important argument butthere are other fators whih should be taken into aount in template seletion:
• A phylogeneti tree based on a multiple sequene alignment of the protein familyan help to identify the template losest to the target sequene.
• The �environment� of the template should be analysed and ompared to thesituation in the target, e.g. quaternary interations (Is the template part of a



24 Introdutionomplex and the target not?), protein-ligand interations or hemial onditions(solvent, pH et.).
• The quality of the experimental struture should be onsidered as well, e.g.resolution and R-fator of X-ray strutures.Multiple templates an be used as well, either by building alternative models based onthe single templates and subsequently seleting the best one, or by ombining parts ofmultiple templates. The simple rule that ombining multiple templates instead of usinga single best template results in better models does not hold, as it has been shown byVenlovas and Margeleviius in the CASP6 evaluation [227℄. However, as identifyingthe best template among several is not always a trivial task, using multiple templatesinreases the hane of seleting the best template.The alignment produed in the fold reognition step is often not the optimal one(e.g. BLAST typially produes loal alignments overing only a part of the target).Speialised methods should be used in order to align the target sequene to the templatestruture.In terms of fold reognition sensitivity and spei�ity as well as in terms of aurayof the resulting alignments, pro�le-pro�le methods have been shown to outperformsequene-sequene and pro�le-sequene methods [100, 132, 179, 187, 243℄. In general,integrating strutural information (e.g. based on multiple strutural alignments oftemplates [1, 110℄ or environment-spei� gap penalties [191, 210℄) tend to improvethe alignment auray but most probably not the fold reognition sensitivity. Withdereasing sequene identity between target and template (espeially below 30%), thealignment auray drops rapidly and alignment errors beome the major soure oferrors in homology models.The alignment produed by a dynami programming algorithm using a spei� gappenalty is not neessarily the best alignment to generate the model. Thus, usingsub-optimal alignments, representing alternative paths in the alignment matrix, mayidentify more suitable alignments [45, 138, 149, 186, 228℄. Additionally, a set ofsub-optimal alignments an be used to predit the loal alignments reliability. Loalalignment paths used by a higher number of sub-optimal alignments an be regarded asmore reliable. An alternative way to assess the loal alignment reliability has reently



1.2 Protein struture predition 25been proposed by Tress et al. [223, 224℄: the loal alignment quality is predit basedon the information about the observed frequenies in the sequene pro�les.There is no alignment protool that is learly superior over other protools for everyprotein family and similarity level. Elofsson [65℄ for example pointed out that, forproteins related to the family level, purely sequene-based methods tend to produebetter models, whereas at fold level, sequene-based methods inluding preditedseondary struture outperform purely sequene-based approahes. Thus, many groupsprodue several alignments based on di�erent protools, parameters and sometimessub-optimal alignments. The �nal model is then seleted based on a soring funtion(see Chapter 1.2.4).Building a model based on the alignment between target and template is fairlystraightforward. A variety of methods an be used whih an be roughly dividedinto three groups [133℄:
• modelling by assembly of rigid bodies [20, 88℄
• modelling by segment mathing or oordinate reonstrution [105, 123℄
• modelling by satisfation of spatial restraints [8, 181℄Assembly of rigid bodies relies on the fat that the struture of proteins belonging tothe same family an be roughly divided into struturally onserved regions (SCRs),or the strutural �ore� and struturally variable regions (SVRs). The model is builtby assembling the ore segments from one or several templates and modelling of thestruturally onserved regions (loop predition).In the seond approah, a model is onstruted by using a subset of the oordinatesof the template (typially Cα atoms of onserved residues) as guiding positions onwhih short all-atom segments are �tted. These segments an either be extrated fromexperimentally-solved strutures [43, 93℄ or obtained by a onformational searh guidedby the Cα-trae [15, 55℄.In modelling by satisfation of spatial restraints, a model for the target sequene isderived by minimising the violations of all restraints on the target. The restraintsare obtained from the alignment to the templates (e.g. distanes and angles) and are



26 Introdutionusually supplemented by other stereohemial restraints (e.g. bond lengths and angles,torsion angles and non-bonded ontats).The auray of models generated by the di�erent approahes does not di�er muhsine other fators suh as template seletion and target-template alignment have amuh stronger impat on the quality of the �nal model.In a next step, the bakbone of regions whih annot be diretly obtained from thetemplates (i.e., the struturally variable regions) have to be modelled. These regionsoften orrespond to loop regions at the protein surfae whih onnet regular seondarystruture elements and are the loation where mutations (amino aid substitutions,insertions and deletions) tend to aumulate. Sine loops often de�ne the funtionalspei�ity of proteins and ontribute to the binding site, an aurate predition of loopstrutures �nally determines the usefulness of the homology model (e.g. for protein-ligand doking). A detailed introdution to loop predition is given in the next setion.Sidehain modelling represents the last step toward a �rst all-atom model of the target.It has been shown that the prinipal fator determining the sidehain onformation,beside paking in the strutural ore, is the loal bakbone onformation [23, 183℄. Theobservation that sidehains show a strong preferene for spei� onformations led tothe development of rotamer libraries [163℄.Most methods use as starting point the most frequent rotamer for eah amino aidand subsequently optimise the onformations. Sine the sidehain onformation ofonserved residues in homologous strutures are often idential, they are usually opied

Figure 1.14: Some sidehain onformations observed for tyrosine and phenylalanine[36℄.



1.2 Protein struture predition 27from the template instead of using a rotamer library. A frequently used program forsidehain modelling is SCWRL [31℄, whih uses a heuristi searh strategy based onbakbone-dependent rotamer libraries extrated from a set of known strutures. Asa onsequene of the relationship between bakbone and sidehain onformation, thelimiting fator on sidehain auray is bakbone auray [42℄.Re�nement refers to the attempt to bring an approximate model of the target proteinloser to the experimental struture. The most frequent soures of errors in omparativemodelling are: alignment errors, inorret templates, wrong loop modelling, distorsionsor shifts in orretly aligned regions and errors in sidehain paking. As observed atCASP, predited models are still rarely loser to the native struture than the besttemplate [222℄. The CASP experiment also revealed that re�nement is problematiand no method is urrently able to improve onsistently over the initial model [116℄.Estimating the auray of a model is an essential step in omparative modelling sinethe quality of a model determines its usefulness. The stereohemistry of a modelan be analysed with standard tools suh as PROCHECK [117℄ or WHATCHECK[96℄. Soring funtions used to identify the best model among a set of alternativeonformations or to identify regions of strutural errors fall into two broad ategories:physis-based energy funtions and knowledge-based soring funtions based on 3Dpro�les (e.g. VERIFY3D [129℄) or statistial potentials (e.g. PROSA [199℄ or ANOLEA[136℄). A omprehensive introdution in model quality assessment is given in Chapter1.2.4.1.2.3 Loop modellingAs the sequene identity between target and template dereases, an inreasing numberof insertions and deletions as well a loal loss of sequene similarity is observed, typiallyin solvent-exposed regions between seondary struture elements. These regions, oftenreferred to as loops, have to be remodelled sine the bakbone of the template annot beused. As mentioned above, loops often determine the funtional spei�ity of proteinsbelonging to the same family (e.g. the hypervariable region in antibodies) and thereforethe auray of loop modelling (or loop predition) strongly in�uenes the usefulnessof a model for funtion annotation or struture-based drug design [91, 98℄.



28 IntrodutionLoop predition an be seen as a onstrained �mini-folding� problem [77℄ in whih apolypeptide segment with a given sequene is modelled using geometri onstraintsimposed by the bakbone atoms on both sides of the loop that anhor it to theremainder of the protein (alled anhor groups or loop stems). It has been shownthat segments of up to nine residues with idential sequene an have entirely unrelatedonformations [46, 185℄. Thus, the onformation of a loop is determined not only by itssequene but also by the geometry of the anhor region and the strutural environment.Many loop modelling proedures have been desribed in the literature and they an begenerally grouped into ab initio methods and database searh tehniques (knowledge-based loop predition) as well as ombinations of both. Loop modelling basiallyonsists of two steps: sampling (the onformational spae) and soring, optionallywith an intermediate �ltering step. Ab initio loop predition methods are based ona onformational searh in the given strutural environment usually guided by anenergy funtion. Algorithms used in onformational searh inlude disrete samplingof energetially favourable main hain dihedral angles [52, 56, 146, 251℄, random tweakmethods [190, 207, 241℄, analytial methods [86, 218℄, moleular dynamis simulations[26, 77℄, Monte Carlo with simulated annealing [32, 47℄ and many more. Usually,the loop is inrementally built up from one anhor and a loop losure algorithm[30, 112, 190℄ is used in order to generate losed onformations. There are alsoapproahes whih build the loop from both the N-terminal and C-terminal anhorgroup and onnet the fragments in the middle [99, 171, 251℄. The onformationsgenerated by ab initio methods are often evaluated using a soring funtion basedon terms from moleular mehanis fore �elds [80, 99, 168, 171, 241℄ sometimes inombination with statistial potentials [77, 207℄.On the other hand, knowledge-based or database searh methods extrat the looponformations from experimentally solved protein strutures from the PDB [28, 53, 61,70, 71, 105, 120, 134, 139, 151, 208, 220, 226℄. In ontrast to ab initio methods, theloal loop geometries predited by knowledge-based approahes represent physiallyreasonable onformations sine they are observed in native protein strutures. Inknowledge-based approahes, protein struture fragments of the desired length areseleted from the database whih approximately �ts to the geometry imposed by theanhor groups. The fragments are usually sored aording to the �goodness of �t� of



1.2 Protein struture predition 29the fragment to the anhor region and other riteria suh as sequene similarity betweenthe database fragment and the loop to be modelled [70℄, the use of environmentallyonstrained substitution tables [53, 214℄ or the energy of the fragments based on adistane-dependent statistial potentials [52℄. A subsequent optimisation and rankingof database loops with a moleular mehanis fore �eld has also been suggested [226℄.The auray of knowledge-based approahes is limited by the ompleteness of thePDB onerning strutural fragments of a given length. In 1994, Fidelis et al. [74℄estimated that fragments of up to 7 residues an be aurately modelled (RMSD < 1Å) with the PDB. Lessel and Shomburg [120℄ on�rmed these results and showed thatthe overage is even lower if striter and more realisti uto�s are used. I.e. fragmentsare not �tted on eah other but on the terminal anhor residues and a RMSD uto� of0.8 Å was used. As a result of the exponential growth of the PDB over the last yearsthe overage of loop onformations has inreased dramatially and reent publiationsreport a muh higher overage even for longer loops [62℄. Fernandez-Fuentes and Fiser[69℄ alulated a overage of >95% for fragments up to 10 residues.Several loop lassi�ation methods have been desribed in the literature [29, 71, 72, 126,151, 239℄. The most ommon lassi�ation riteria are geometry of the surroundingseondary struture elements, loop length, loop sequene, torsion angles and solventaessibility.Beside alignment auray, loop predition is still a major soure of errors in om-parative modelling [221℄ and only short and medium loops (less than approximately8 residues) an be modelled with aeptable auray [174℄. The predition aurayfor longer loops rapidly drops in all urrent methods although remarkable progress hasbeen reported reently, if in addition to an extensive onformational sampling strategy,rystal ontats are taken into aount in loop ranking [99, 251℄. This also demonstratesthe limits of loop predition: beside the fat that many loops are highly �exible, theonformation of a loop in a rystal struture may be determined in part by pakingonstraints and does not present the native onformation of the loop in solution.Loop predition methods are usually tested in �self predition� experiments whihmeans that the loop is ut out from the protein and rebuilt with the given method inthe �xed strutural environment. This does not represent a realisti modelling situation



30 Introdutionin whih the geometry of the anhor region, as well as the strutural environment, areonly approximately orret. Furthermore, in knowledge-based loop predition, oftendi�erent sequene similarity thresholds are used in order to remove trivial results. I.e.loops from lose homologues of the query protein whih are usually not present in theappliation ase. Beause loops from homologous protein strutures are often the bestavailable fragments in the database, the sequene identity uto� used in the evaluationof the method strongly in�uenes the predition auray.Another problem, whih makes a fair omparison of urrent loop modelling protoolsdi�ult, is the fat that no standard benhmark set for loop predition exists. Mostmethods are tested on their own test sets and the performane is often ompared toother methods based on only a few examples. In a reent benhmarking by Rossi et al.[174℄, four ommerial loop modelling programs have been tested on a omprehensivetest set overing loops of 4 to 12 residues based on a the work of Jaobson et al.[99℄. The results were rather disillusioning in that only short loops (4 to 7 residues inlength) ould be modelled with aeptable auray for struture-based drug designand all methods have onsiderable problems in loop ranking (i.e. the top-soringloop was rarely the loop with minimal RMSD ompared to the native onformation).These results underline the general problem in loop predition: the bottlenek in loopmodelling seems to be no longer the sampling step (as a onsequene of advanes insampling algorithms and the growth of the PDB) but the subsequent soring of theonformations.1.2.4 Model quality assessmentPartiularly ab initio methods, but inreasingly also template-based approahes,usually produe a onsiderable amount of alternative models. Seleting the modelbeing losest to the native onformation of a given protein out of an ensemble ofmodels, independent of being produed during onformational searh in a template-free approah [172, 248℄ or on the basis of alternative alignments or di�erent templates[48, 101, 206℄, is a ruial step in protein struture predition in general. This setionprovides an overview on the topi and the methods used in the assessment of modelquality. An in-depth introdution to the theoretial bakground of statsitial potential
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Figure 1.15: Shemati representation of physial fores ouring in proteins(soure: [2℄).

Figure 1.16: Shemati representation of hydrophobiity (soure: [2℄).soring funtions is given in Methods (Chapter 2.4.1.1).Soring funtions rely on the thermodynami hypothesis stating that the native stateof a protein lies in the free energy minimum under physiologial onditions [119℄. Thereare basially two ategories of soring funtions: physis-based energy funtions andknowledge-based statistial potentials. The former are true e�etive energy funtionsdesribing interations observed in proteins and their parametrisation is performedeither by �tting experimental data or based on quantum hemial alulations [25, 79,118℄. A shemati representation of some important fores in proteins is given in Figure1.15 and 1.16.



32 IntrodutionStatistial potential energy funtions are derived from data of known protein struturesand are usually formalised as either distane-dependent or -independent pairwisepotentials of mean fore [9, 128, 135, 184, 189, 197, 198, 213, 249℄. Alternatively,statistial potentials have been derived for other strutural features suh as torsionangles [3, 16, 19, 111, 193, 215℄ and solvent aessibility [94, 104℄.Statistial potentials are based on the inverse Boltzmann equation, whih relatesfrequenies of observed strutural features to their energy. A detailed desription of thetheoretial bakground of statistial potentials is given in Methods on page 55. Theyhave the advantage of being fast and simple to onstrut and they are widely usedfor various purposes among whih are fold reognition [102, 141, 170, 200, 202℄, iden-ti�ation of the native struture among deoysg [158, 225℄, model quality assessment[16, 66, 215, 233℄ or predition of thermo stability [83, 84, 97, 159℄.Combining several statistial potential terms overing di�erent aspets of proteinstrutures or models is a popular strategy and the ombined potentials have beenshown to outperform any single potential [16, 66, 111, 135, 198, 215, 233℄. Modelquality assessment programs are used to assess models generated by various methodsand the quality of the models range from very oarse ab initio models often havinga wrong fold to very aurate template-based models. Therefore, soring funtionsonsisting of several terms and being optimised on a diverse set of models will be moresuitable for the task of disriminating good from bad models or for the identi�ation ofthe most native-like struture. Model quality assessment programs have been tested the�rst time in a ommunity-wide experiment in 2004 during CASP6 as part of CAFASP(Critial Assessment of Fully Automated Struture Predition) [76℄ and only reentlyat CASP7 [49℄.
gDeoys are omputer generated onformations of protein sequenes that possess some harater-istis of native protein strutures, but are not biologially real.



1.3 Objetives 331.3 ObjetivesHomology modelling is urrently the most suessful approah for the predition ofthe 3-dimensional struture of a protein from its sequene. A model of the protein isthereby built by using information from experimentally solved protein strutures (thetemplates) showing an evolutionary relationship to the target protein, relying on thefat that the struture of a protein is more evolutionarly onserved than its sequene.The objetives of this thesis are to optimally take advantage of the informationontained in the database of known protein strutures espeially for the preditionof loop regions and for the assessment of the quality of the generated models. Bothtasks are of ruial importane for the �nal appliation of the models.Both loop predition as well as the soring funtions used for the quality assessmentloops and entire models an bene�t from the steadily growing number of known proteinstrutures. In knowledge-based loop predition, the overage of the onformationalspae by fragments extated from known strutures inreases with the number of knownproteins. A omprehensive and up-to-date fragment database will be established in theourse of this work. Furthermore, soring funtions based on the statistial analysis ofstrutural features observed in experimentally solved proteins are potentially moreaurate and wider appliable as the number of folds inreases. These statistialpotentials an be used for the assessment of entire models but also for the ranking ofandidate fragments in loop predition. In this work, it shall be investigated whether astatistial interation potential on atomi level an be used for the ranking of ompleteloops after sidehain modelling. The knowledge-based loop predition algorithmsdesribed in the literature typially take into aount only the loop bakbone in thesoring step and mostly rank the loops aording to the geometrial �t of the fragmentson the anhor groups of the protein. This approah is problemati sine the anhorregion is typially distorted with respet to the native struture.For the assessment of the quality of protein models, a soring funtion shall beimplemented being able to identify good models among a set of alternatives. It will beinvestigated whether the ombination of multiple terms an improve the predition ofthe model auray. In order to be able to ope with loop predition and model qualityassessment, a omparative modelling pipeline needs to be implemented.





2 Methods
This hapter is strutured aording to the typial modelling work�ow shown in Figure2.1. Establishing a omplete omparative modelling pipeline was a basi prerequisitefor dealing with loop predition and model quality assessment whih are desribed laterin this hapter. The modelling pipeline has been implemented in C++. A desriptionof the most important lasses an be found in the last setion on page 74.

Figure 2.1: Basi steps in homology modelling.



36 Methods2.1 Template seletion and alignment2.1.1 DatabasesThe non-redundant sequene database (nr) from the National Center for BiotehnologyInformation (NCBI) has been downloaded from the o�ial ftp-servera. The nr databaseontains all publily available sequenes from a variety of soures (e.g. translationsfrom GenBank [17℄ and RefSeq [164℄ as well as sequenes from Swissprot [10℄, PIR[13℄ and the PDB [18℄). In order to further redue the redundany (e.g. beause ofprotein families being over-represented), NCBI's non-redundant sequene database waslustered at olor 90% sequene identity using the tool CD-HIT [125℄. The resultingdatabase (nr90 ) was subsequently used to generate the pro�les used for templateidenti�ation and target-template alignment.The database ontaining the sequenes of all known protein strutures from the ProteinData Bank (PDB) [18℄, frequently alled pdbaa, has been obtained from the DunbrakLabb. In omparison to the pdbaa sequene database from NCBI, the version fromDunbrak Lab ontains additional information suh as resolution, R value, R free valueand sequene length in the header of eah entry. These information are ruial fortemplate seletion.2.1.2 Template identi�ation and seletionThe template strutures are identi�ed using a variation of the PDB-BLAST protool.The term PDB-BLAST was introdued in a work of Ryhlewski and o-workers [179℄in whih several strategies of using sequene pro�les for fold reognition have beenompared. In PDB-BLAST, the pro�le generated by PSI-BLAST [6℄ is stored andused to san the database of known protein strutures. In the implementation used inthis work, the pro�le generated after 4 PSI-BLAST iterations on the nr90 sequenedatabase is subsequently used for a �nal iteration on the pdbaa. After eah PSI-BLASTiteration only sequenes with an E-value ≤ 0.001 are retained. The maximum numberaftp://ftp.nbi.nih.gov/blast/dbbhttp://dunbrak.f.edu/Guoli/pises_download.php

ftp://ftp.ncbi.nih.gov/blast/db
http://dunbrack.fccc.edu/Guoli/pisces_download.php


2.1 Template seletion and alignment 37of sequenes in the alignment was set to 1000.One or several templates are seleted manually based on the observed sequene identityto the target and their quality (i.e. resolution, target overage, ompleteness). Thesequene identity is alulated based on the alignments provided by PSI-BLAST.2.1.3 Target-template alignmentThe target-template alignments are built based on a pro�le-pro�le alignment protool(see setion 1.2.2.2 in the Introdution). The pro�les for both target and template arealulated by PSI-BLAST with 5 iterations on the nr90 data bank using an E-value< 0.001. The alignments are generated using a modi�ed version of the pro�le-pro�lealignment funtionality inluded in the Align-pakage, a C++ library provided by theTosatto group [216℄. The library has been extended and benhmarked as part of theCUBIC-projet of Osar Bortolami under the author's supervision.A total number of 20 alternative alignments is generated by applying di�erent gapopen and gap extension penalties and by applying a global (Needleman-Wunsh [150℄and a loal (Smith-Waterman [203℄) alignment algorithm.The following strategy was used in order to optimise the gap penalties. The qualityof sequene alignments is assessed by omparing them with strutural alignments asgold standard. Therefore a representative set of strutural alignments has been builtas desribed by Marti-Renom et al. [132℄. The �nal data set onsists of 300 struturalalignments of pairs of proteins sharing less than 40% sequene identity and belonging tothe same homologous superfamily as de�ned by CATH [153℄, a hierarhial lassi�ationsystem for protein domain strutures.100 strutural alignments have been used for training (optimising the gap penalties)and the rest for testing. The strutural alignments were generated with CE [192℄.An exhaustive searh over a reasonable range for the gap penalties was performedin order to identify gap open and gap extension penalties whih lead to a maximumoverlap of the sequene alignments with the orresponding strutural alignments. Thequality of the resulting alignments was assessed based on the fration of identially



38 MethodsTable 2.1: Optimised gap open (go) and gap extension (ge) penalties used for loaland global alignments, respetively.global loal
go ge go ge8 0.2 6.5 0.54.5 0.1 6.5 0.77 0.1 6.5 0.35.5 0.2 7 0.34.5 0.15 7.5 0.56 0.1 7.5 0.37.5 0.2 7.5 0.257 0.2 8 0.37 0.08 8 0.258 0.15 8.5 0.3aligned residues. The �nal penalties are shown in Table 2.1. The optimal gap openand gap extension penalties, i.e. those values that produe the most similar alignmentsompared to the strutural alignments, are shown in the �rst row and the sub-optimalpenalties below.In analogy to the sores for aligning two residues in a sequene alignment, pro�le-pro�le alignment algorithms need a soring funtion whih quanti�es the degree ofsimilarity of two pro�le olumns being aligned. Several di�erent implementations havebeen investigated and a olumn-olumn soring funtion, as proposed by Panhenko in2003 [155℄, has been used (formula 2.1). The sore of aligning position i of the targetwith position j of the template is given by:
Si,j =

ni(~Fi ∗ ~Wj) + nj( ~Fj ∗ ~Wi)

ni + nj

(2.1)where ni and nj are the number of independent observations of di�erent amino aidtypes in olumns i and j representing a measure of the diversity within the olumns.
~Fi and ~Fj are the vetors of observed frequenies in olumn i and j, respetively, inthe pro�le. ~Wi and ~Wj represent the orresponding olumns in the pro�les or PSSMs(Position Spei� Soring Matries).



2.2 Model building 392.2 Model building2.2.1 Building the raw modelIn a �rst step, the target sequene is mapped on the template struture aording tothe alignment, i.e. the sidehains of all non-onserved residues are removed and theamino aid type of the template is �mutated� to the one of the target. The sidehainonformation of onserved residues are inherited diretly from the template, whihturned out to be a good strategy (see setion 3.1.5.4 in Results and Disussion). Thesidehain onformations of the remaining residues are alulated with SCWRL [31℄.Deletions (i.e. residues of the template not present in the target) are automatiallyremoved from the struture. For insertions, �dummy residues� with the orrespondingamino aid type of the target residue and onsisting only of a Cα atom are added at theappropriate position in the struture. At all time, the mapping between the position inthe alignment and the orresponding position in the model has to be guaranteed andis heked after eah modi�ation. Additionally, while loading a protein struture �le,information from the program DSSP [107℄ (suh as seondary struture assignment,solvent aessibility, torsion angles) is mapped to eah residue and the integrity isheked. The resulting struture is alled here the �raw model� sine it is startingpoint of all subsequent modelling steps.2.2.2 De�ning the strutural ore and struturally variableregionsThe strutural ore onsists of those regions of the template whih have preserved theirstruture during evolution and whose bakbone onformation an be diretly opiedfrom the template. In order to illustrate the situation, the sequene alignment andthe strutural superposition of the two homologous proteins papain (PDB identi�er1ppn) and atinidin (PDB identi�er 2at) are shown in Figure 2.2. The sequeneidentity between the two proteins is 47%. The strutures are oloured aording tothe strutural deviation between orresponding residues of the alignment. The regionoloured in blue represents the strutural ore with low deviation between target and



40 Methodstemplate. As it an be seen, the struturally variable regions are mainly loated aroundinsertions and deletions.The identi�ation of the strutural ore, is failitated by the use of the followinginformation:1. the sequene onservation in a multiple sequene alignment of the protein familyof the target2. the agreement between the seondary struture in target and template3. the analysis of the loal model energy pro�le (see setion 2.4.5 on page 67)The multiple sequene alignment of the target protein family is automatially produedbased on the PSI-BLAST searh used to generate the targets pro�le. The onservationwithin the protein family is visually inspeted with JalView [44℄. The multiple sequenealignments an be further re�ned by using MUSCLE [64℄, a highly aurate algorithmfor multiple sequene alignments. A web servie for MUSCLE is implemented inJalView and therefore, the PSI-BLAST based alignments an be diretly re�ned inthis environment.The agreement between the seondary struture of the template and the target is inves-tigated by omparing the alulated seondary struture of the template as derived fromDSSP [107℄ with the predited seondary struture of the target sequene. A onsensusseondary struture predition of PSIPRED [103℄, SSpro [35℄ and ProfSe/PHD [177℄ isbuilt by simple majority voting [4℄, i.e. by assigning to eah amino aid the seondarystruture state predited by at least two of the three methods (otherwise the residueis de�ned as being in oil state).Regions of the model not belonging to the strutural ore (i.e. struturally variableregions) usually have to be remodelled. The struturally variable regions are mainlyomposed of protein surfae loops ontaining insertions and deletions as well as thehain ends. Often, loops without insertions and deletions need to be remodelled aswell, depending on the degree of sequene onservation between target and template.Highly non-onserved loops are likely to adopt di�erent loal folds as ompared tothe template loops. On the other hand, loop predition is only possible with a ertain
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(a) Struture-based sequene alignment with insertions and deletions highlighted.The last line shows the seondary struture omposition of the seond protein.
B
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(b) Superposition of two homologues oloured aording to the loal strutural deviation.Figure 2.2: Strutural ore and struturally variable regions: Alignment andsuperposition of the two homologous proteins papain (1ppn) and atinidin (2at).



42 Methodsauray, typially depending on the length of the fragment to be modelled. Therefore,deiding whether to re-model a loop or not remains a di�ult task. These regionswhih would bene�t from an aurate loop modelling are still di�ult to identify andthe predition of these regions is an ative �eld of researh [68, 73, 77℄. In order toinvestigate the tendeny of a loop to adopt a di�erent fold, a loal statistial potentialsoring funtion has been implemented investigating the loal sequene to struture�tness. In other words, the soring funtion assesses the likelihood that a given regionof the target sequene adopts the struture provided by the template. High loalenergies suggest that the sequene does not �feel omfortable� with the given strutureprovided by the template and therefore a loal refolding is rather likely. The loalsoring funtion is desribed in Chapter 2.4.5.Suitable start and end points of the loop modelling proess, the so alled anhor groups,have to be identi�ed. The anhor groups are loated in the transition of the struturalore and the struturally variable region. Usually, in loop predition the anhor groupsare set near the end points of the surrounding seondary struture elements whihare rather likely to be struturally onserved. As mentioned above, investigating thesequene onservation in these regions further provides evidene for the positioning.For the models submitted to CASP, the position of the anhor groups has beende�ned manually by investigating the agreement between the position of the seondarystruture end points between target and template and by looking at the sequeneonservation. In order to ombine all information needed to aomplish this task, aondensed �model information� output �le is generated as shown in Figure 2.3. Thefollowing information is provided (in the same order as in the data lines):
• The alignment between target (in the example above CASP7 target T0379) andtemplate (PDB identi�er 2b0, hain A) is shown in the �rst two data lines.
• The sequene onservation (denoted as �onserv�) is desribed by an asterisk foridential residues and a olon for similar residues aording to the de�nition usedin CLUSTALW [212℄.
• The line �onf� shows the average on�dene of the seondary struture predi-tions alulated by PSIPRED and ProfSe. Both methods provide a measure
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Figure 2.3: Example of a �model information" output �le used for the positioninganhor groups serving as starting points of the loop predition proess.



44 Methodsof on�dene ranging from 0 (i.e. no reliable assignment of seondary struturepossible) to 9 (i.e. high on�dene).
• �onsensus� is the onsensus of the three seondary struture preditions shownon the subsequent lines based on majority voting as desribed above.
• The last data line ("dssp") shows the alulated seondary struture of the modelderived from DSSP.



2.3 Loop predition 452.3 Loop preditionAs mentioned in the introdution, there are basially two approahes to the looppredition problem: knowledge-based and ab initio. We follow a knowledge-basedstrategy by sanning a database of fragments (extrated from the PDB) for suitablebakbone onformations. A shemati representation of the loop predition routine isshown in Figure 2.4. A detailed desription of all steps is given below.

Filtering

Figure 2.4: Shemati representation of the loop predition routine.



46 Methods2.3.1 Fragment databaseThe fragment database is based on a non-redundant subset of protein strutures fromthe PDB [18℄. The seletion is generated using the PISCES server [236℄ whih allowsto extrat sets of protein strutures. The following seletion riteria are used:
• pairwise sequene identity < 95%
• resolution < 3.0 Å
• R-value < 0.3
• only strutures determined by X-ray rystallographyThe seletion riteria represent a trade-o� between quality of the strutures andquantity of the fragments in order to inrease the overage of the onformational spae.Sine only protein bakbone oordinates are stored in the database, a resolution uto�of 3 Å represents a reasonable ompromise sine at this resolution the bakbone isusually well-de�ned in proteins solved by X-ray rystallography.The resulting data set ontains 12,376 protein hains whih are ut into fragments oflength 3-20 by the lass Fragmentor (see setion Implementation, page 74). In a �rststep, the hain is inspeted onerning hain breaks and missing residues. Struturallyontinuous substrutures are then de�ned whih are subsequently fragmented usingsliding windows of length 3 to 20 residues. Only omplete fragments ontaining all4 bakbone atoms per residue are aepted and stored in a MySQL database. Thestruture of the fragment database is shown in Table 2.2. Sine in the appliation aseonly queries on fragments of the same length are performed, spei� fragment tablesfor eah length are generated in order to enhane query speed. The fragment tablesontain approximately 2.5 to 2.9 million fragments eah.The table struture ontains information about all protein strutures used to generatethe fragments (e.g. PDB identi�er, hain identi�er, resolution R-value et.). Thetable fragment2struture stores begin and end position of the fragment in theorresponding struture (starting from 0) and additionally the two orresponding



2.3 Loop predition 47Table 2.2: Name and number of entries of the tables in the fragment database. Thefragments of the length 3-20 amino aids are stored in separate tables.Table name Number of entriesfragment3 2,907,542fragment4 2,879,976fragment5 2,853,117fragment6 2,826,819fragment7 2,801,064fragment8 2,775,811fragment9 2,751,095fragment10 2,726,790fragment11 2,702,933fragment12 2,679,522fragment13 2,656,505fragment14 2,633,917fragment15 2,611,692fragment16 2,589,817fragment17 2,568,295fragment18 2,547,087fragment19 2,526,182fragment20 2,505,539fragment2struture 48,543,703struture 12,376primary keys of the tables fragment and struture. The primary keys of the fragmenttables are unique over all tables. An alternative, relational database struture has beeninvestigated using an atom, a residue and fragment tables inluding the orrespondingonnetion tables. But this approah resulted in an explosion of the query time mostprobably as a onsequene of the multitude of joining operations on huge tables.Therefore, the database was denormalised and all neessary data was ondensed in onetable (the fragment tables). An overview on the �elds of the fragment tables is shownin Table 2.3. The query speed was further inreased by sorting the table aordingto the fragment end-distane sine this represents the primary seletion riteria used.In addition to the seletion by fragment end-distane, an advaned seletion usingsequene or seondary struture onstraints is possible. Therefore an index has beenput on these three olumns in order to inrease the query speed.



48 MethodsTable 2.3: Struture of the table fragment3 ontaining fragments of the length of3 residues.Field name Datatype DesriptionID int(11) primary keydist_bin smallint(5) fragment end-distane (rounded)end_distane �oat fragment end-distaneanhor_oordinates tinytext bakbone oordinates of the anhor residuesloop_oordinates text bakbone oordinates of all loop residuestorsion_angles text torsion angles of all loop residuessequene har(3) sequene of the fragmentSSE_pattern har(3) seondary struture of the fragmenthain_end_ID har(1) identi�er for hain-end fragments: N,CSSE_N_�ank a har(1) type of the left �anking seondary strutureSSE_C_�ank a har(1) type of the right �anking seondary strutureN_�ank_length a int(2) length of the left seondary strutureC_�ank_length a int(2) length of the right seondary struturesolvation_avg �oat average solvation of the fragmentsolvation_pattern varhar(3) solvation pattern: 0=buried, 1=exposedpdb_ID varhar(4) PDB identi�er of the original struturehain_ID har(1) hain identi�er of the original strutureaThese �elds are only used for �real� loops, i.e. fragments whih only onsist of residues with theseondary struture type oil and are immediately enlosed by seondary struture elements.Sine the sequene and the seondary struture omposition of the fragments are storedin the database as text entries, queries with regular expressions on these �elds arepossible. This an be espeially useful when onstraints derived from the analysis ofthe sequene onservation in the protein family or knowledge about the position of thesurrounding seondary struture elements should be used as desribed in setion 2.2.2.Below, a virtual example of a onstraint query on the fragment database is provided:SELECT * FROM fragment10 WHERE (end_distane BETWEEN 10 AND 14) AND(SSE_pattern LIKE 'HH____CC__') AND (sequene LIKE '__G_______');2.3.2 Loop test setsA parameterisation test set onsisting of 50 loops of length 3-15 residues was used inorder to optimise all loop predition parameters desribed in the next setion. The



2.3 Loop predition 49same parameterisation as desribed by Mihalsky et al. in the LIP program is used[139℄.The performane of the loop predition routine desribed in this work is ompared to 4ommerial loop modelling programs whih have been reently benhmarked by Rossiet al. [174℄ with a test set overing loops from 4-12 residues (a �ltered test set basedon the work of Jaobson and et al. [99℄). The test set as well as the results of the 4ommerial programs were obtained from the author (Karen Rossi). Additionally, atest set of 14 loops of length 4-9 is used in order to ompare the performane to sevenother programs. Although being small and probably not representative, this test set isfrequently used in the literature and is applied here as well for the sake of ompleteness.The results of the other loop predition programs are obtained from two publiations[53, 139℄ and from the LIP website.2.3.3 Seleting, �ltering, ranking of fragmentsThe loop predition protool involves basially 3 steps as shown in Figure 2.4: Seletionof fragments from the database, �ltering in order to redue the set of andidates and�nally ranking of the remaining loops based on a soring funtion.2.3.3.1 Loop seletion from the fragment databaseIn the �rst step, fragments are seleted from the database based on a simple geometririterion omparing the distane between the terminal Cα atoms of the fragment withthe orresponding Cα distane of the anhor groups (i.e. the framework in whihthe fragment is inserted). Upper and lower bounds for the di�erene between thesetwo distanes are de�ned for eah loop length. The bounds have been manuallyadjusted so that less than 5 perent of the all Top10 fragments per loop length arerejeted in the parametrisation set. The thresholds for di�erent loop lengths aresummarised in Table 2.4. Adjusting the bounds represents another trade-o� betweenspeed and auray. Retrieving more fragments by less restritive uto�s slows downthe whole loop predition proess sine more data (espeially the oordinates) have tohttp://www.drug-redesign.de/LIP/LIP_WebseiteTestsets.html

http://www.drug-redesign.de/LIP/LIP_WebseiteTestsets.html


50 Methodsbe transferred from the database and proessed by the �lters and the soring funtiondesribed below. On the other hand, the presene of more andidates makes the taskof identifying the best fragment among others more di�ult. All seleted fragmentsare subsequently �tted on the the anhor groups by least squares �tting over theoordinates of the 4 bakbone atoms N, Cα, C and O of both end points.2.3.3.2 Loop �ltering stepsIn the next step, four quality �lters are applied in order to remove unsuitable fragments,thereby reduing the andidate set for the �nal ranking step. The �rst �lter analyses the�goodness of �t� i.e. how well the bakbone of the terminal fragment residues mathesthe anhor bakbone geometry provided by the protein framework. The root meansquare deviation between anhor residues and terminal fragment residues is alulated(alled RMSa). Fragments with a RMSa above a loop length dependent threshold arerejeted. In analogy to the strategy used in the seletion proess, the uto� values forthe RMSa �lter were set suh that not more than 5 perent of all Top10 fragments are�ltered out (Table 2.4).The seond �lter rejets fragments having serious lashes with the environment after�tting into the framework. Two atoms are de�ned as lashing if the distane betweenthem is less than 70% of the sum of their van der Waals radii. The van der Waalsradii have been taken from a work of Li and Nussinov [124℄. A similar threshold hasTable 2.4: Threshold used in loop seletion and for the anhor group RMSD �lter.di�erene between Cα-distanesaloop length lower bound upper bound RMSa uto�bL ≤6 -1.15 0.85 16 < L ≤8 -1.5 1.75 1.358 < L ≤12 -2.25 2.5 1.5L > 12 -2.75 2.75 1.75aCα-distane of the fragment end points ompared to the Cα-distane of the anhor groups.bRMSD between the terminal fragment residues and the anhor group residues after �tting.



2.3 Loop predition 51been used in a reent publiation on loop predition [70℄. The �tting proess basedon least squares �tting results in only an approximately orret orientation of thefragment in the protein framework and therefore loops with aurate loal geometryompared to the native loops an still have onsiderable lashes. In an earlier workfrom our lab, Heuser et al. [90℄ approahed the problem by aepting one lash withthe environment. Furthermore, �soft� lashes an be expeted to be removed in asubsequent energy minimisation step.The two initial �ltering steps (i.e., RMSa �lter and lash �lter) are performed duringthe retrieval proess of the fragments from the MySQL database and, depending onthe modelling situation, the �lters remove a large fration of the seleted fragments.This approah allows to restrit the number of andidate fragments to be storedsimultaneously and therefore redues the main memory onsumption. The remainingloop objets (see setion Implementation, page 74) are stored in a vetor for furtherproessing.The third �lter analyses the torsion energy of the remaining fragments. As desribed inthe Introdution, the 20 amino aids show, as a onsequene of the steri restritionsimposed by their side hains, preferenes for ertain torsion angles. The fragmentsof the database originate from strutures having ompletely di�erent amino aidompositions and therefore analysing the torsion energy an be used to estimate howwell the given loop sequene mathes the dihedral angles of the fragment. The torsionangle potential is espeially valuable for �ltering sine it relies only on the bakboneatoms and does not need the sidehains whih have not been modelled yet. Z-sores ofthe torsion energies of all fragments are alulated by subtrating the mean and dividingby the standard deviation of the whole set. Loops with torsion energy Z-sores above 1standard deviation are removed. If a maximum number of 20,000 fragments is exeededafter the �rst round, the threshold is gradually lowered with a step size of 0.2 standarddeviations.In the last �ltering step the ompatibility of the loop bakbone with its framework isinvestigated before the atual soring is performed. This step was neessary sine sidehain modelling is the rate limiting proess in the whole modelling pipeline typiallytaking a fration of a seond (maximum 1 seond) per loop. Sidehain modelling isperformed by SCWRL [31℄ but sine an external program is used, the protein struture



52 Methodsinluding the loop has to be temporary saved, the program exeuted and the outputhas to be reloaded.A ombination of the following 3 terms is used in the bakbonesoring step:
• A pairwise distane-dependent statistial potential based on Cα atoms in orderto analyse the interations of the loop with its environment.
• A solvation potential based on Cα atoms investigating the propensity of the loopresidues for the given degree of solvent exposure.
• The �goodness of �t� of the terminal loop residues to the anhor groups asexpressed by the RMSa.The theoretial bakground of statistial potentials of mean fore and how they areextrated is desribed in detail in the next setion. For all 3 terms, Z-sores arealulated and the Z-sores for eah loop are simply summed up. An inspetionof the distribution of the sores revealed that the values are at least approximatelynormal distributed whih is a prerequisite for the derivation of Z-sores. The useof Z-sores enables the ombination of statistial potential terms with the RMSadistane measure. Suh a ombination would be di�ult if the raw energies are useddiretly sine, depending on the strutural environment whih determines the number ofontats between loop and framework, the amplitude of the energies potentially di�erssigni�antly between di�erent modelling situations, whih ompliates the ombinationwith the distane measure. Z-sores re�et how well a ertain fragment �ts in the givenenvironment (sterially and energetially) ompared to all other fragments in the set. Agood, near-native fragment should have reasonable sores for all three terms. Based onthe ombined bakbone sore, the best 3,000 loops are retained. The number of loopspassing the torsion energy �lter (20,000) and the bakbone �lter have been optimisedbased on the parametrisation set.2.3.3.3 Loop soringIn the next step, sidehains are added to the loop residues by exeuting SCWRL. Sinethe loop is now omplete in terms of its atomi omposition, a more �ne-grained, all-atom energy funtion an be applied in order to rank the remaining fragments. A



2.3 Loop predition 53variety of di�erent terms and parameters for the statistial potential terms has beeninvestigated. The performane of some seleted ombinations are shown in Resultsand Disussion, page 135�. In the �nal soring funtion only the all-atom interationpotential has been used. Among other alternative implementations, a ombined soringfuntion onsisting of 4 terms has been investigated using a torsion angle potential over3 residues, an all-atom solvation potential, an all-atom pairwise interation potentialas well as the RMSa. All terms are ombined by summing of the individual Z-sores.The torsion angle potential re�ets the propensity of the loop sequene to adopt theloal geometry desribed by the torsion angles of the fragment. The same bin sizesfor the Φ and Ψ angles have been applied as for model quality assessment (see setion2.4.1.5). The short-range pairwise interation potential assesses the diret interationswith the strutural environment. The upper limit of 10 Å has been set manuallyafter inspetion of the interation urves. At an atomi distane of approximately10 Å the energy urves reah a pseudo energy of zero. The solvation potentialdesribes the propensity of a ertain atom for the observed degree of solvent exposureas approximated by the number of atoms within a sphere of 6 Å around the entralatom. A threshold of 6 Å has been hosen in order to assure that no water moleule �tsbetween the two atoms. The solvation potential to some extend favours loops formingontats with the protein surfae instead of pointing into the solvent. A variety ofadditional funtionalities are provieded by the loop predition routine whih are brie�ydesribed here:
• A lustering library implemented in C by Mihiel de Hoon (originally developedfor the analysis of gene expression data) is integrated [51℄. In order to removeredundanies, the set of loops an be lustered based on a given RMSD valueuto� using various lustering strategies (e.g. single-linkage, omplete-linkage(default), entroid-linkage and average-linkage lustering).
• The olony energy approah as introdued by Xiang et al. [241℄ has beenimplemented. In this approah, the energy of a loop dereases with the preseneof other loops with similar onformation and low energy assuming that theonformational spae around global energy minimum is more populated thanthe rest of the energy landsape.



54 Methods
• Four di�erent loop �tting strategies have been implemented. Fitting on the 4bakbone atoms on both sides (default), �tting on bakbone without the oxygenatom (sine it is de�ned by the other 3 atoms), �tting on the bakbone of twoonseutive residues on both sides, �tting on 3 onseutive Cα-atoms on bothsides.
• Both loops and hain ends an be modelled (in the later ase only one anhorgroup given).
• After building the all-atom loop model, the sidehains of the loop together withthe sidehains of surrounding residues within a given distane uto� an berebuilt.
• A user-de�ned number of protein strutures from the top ranking loop preditionsan be saved as PDB �les.
• A variety of rankings and quality measures are alulated for benhmarkingpurposes.



2.4 Model quality assessment 552.4 Model quality assessmentIn protein struture predition, a onsiderable number of alternative models are usuallyprodued from whih subsequently the �nal model has to be seleted. Thus, a soringfuntion for the identi�ation of the best model within an ensemble of alternativemodels is a key omponent of most protein struture predition. Model qualityassessment inludes the global assessment of the quality of the entire model butalso the loal quality assessment analysing the reliability of di�erent regions of aspei� model. This setion will fous on the �rst task but in the last setion anextension for loal quality assessment is desribed. QMEAN [16℄, whih stands forQualitative Model Energy ANalysis, is a omposite soring funtion desribing themajor geometrial aspets of protein strutures. Five di�erent strutural desriptorsare used. The loal geometry is analysed by a new kind of torsion angle potential over3 onseutive amino aids. A seondary struture-spei� distane-dependent pairwiseresidue-level potential is used to assess long-range interations. A solvation potentialdesribes the burial status of the residues. Two simple terms desribing the agreementof predited and alulated seondary struture and solvent aessibility, respetively,are also inluded.A variety of di�erent implementations are investigated and several approahes toombine and optimise them are desribed. Only the parameters used in the �nalimplementation of the statistial potentials are shown here together with the desrip-tion of the optimisation strategy. The rest of the data an be found in the Resultssetion, page 108�. QMEAN was tested on several data sets as desribed below andwas ompared to �ve well-established model quality assessment programs.2.4.1 Statistial potentials2.4.1.1 Theoretial bakgroundThe analysis of experimentally solved protein strutures reveals obvious regularities suhas the tendeny of hydrophobi residues to be buried, the pairing of oppositely hargedatoms or the interation of aromati rings [87℄. Statistis about these empirial or



56 Methodsknowledge-based parameters an help understanding the interations whih ontributeto the stability of protein strutures and their analysis has a long history going bakto the work of Tanaka and Sheraga in 1976 [209℄.In the early 1990's Sippl introdued a statistial mehanis formalism based on theinverse Boltzmann priniple in order to derive a potential of mean fore [197, 198,200℄. The Boltzmann priniple relates the energy of a onformational state ci to itsprobability of ourrene at the thermodynami equilibrium:
p(ci) =

e
−E(ci)

kT

∑

j e
−E(cj)

kT

(2.2)where k is the Boltzmann's onstant and T is the absolute temperature. Thesummation j over all allowed states of the system is alled the partition funtion orBoltzmann sum (denoted as Z(C)). In analogy, the inverse Boltzmann priniple relatesthe probability density funtion p(ci) to the energy of a given state:
E(ci) = −kT ln(p(ci)) + kT ln(Z(C)) (2.3)In a similar way, the net potential of mean fore [198℄ an be derived for a spei�subsystem (i.e. spei� interation) sk by subtrating the mean fore of referenethereby removing all energies whih are ommon to all subsystems. This an bedesribed as onditional probabilities [205℄ re�eting the probability of a onformationalstate ci in the presene of a spei� interation sk:

∆E(ci|sk) = E(ci|sk) − E(ci) = −kT ln(
p(ci|sk)

p(ci)
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Z(C)
) (2.4)For example in a distane-dependent pairwise potential ci refers to the distane and

sk to the identities of the two atoms. In torsion potentials ci stands for a given pairof Φ/Ψ dihedral angles and sk for the amino aid type. Aording to Sippl [198℄,
Z(C|S) = Z(C) an be assumed whih results in the following equation:

∆E(ci|sk) = −kT ln(
p(ci|sk)

p(ci)
) (2.5)



2.4 Model quality assessment 57The numerator is the observed probability of a spei� interation whereas the denomi-nator re�ets the expeted probability if there where no interations (i.e., the referenestate). The observed probabilities an be diretely estimated based on statistis on arepresentative set of protein strutures from the PDB [18℄. Di�erent approahes havebeen desribed for the estimation of the referene distribution [184, 189, 198, 249℄. Themajority of statistial potentials relies on the �uniform density� referene state used bySippl [197℄ in whih it is assumed that the distribution in the referene state is the sameas in folded proteins. Therefore the probability distribution of the referene state is anaverage over all amino aids in the dataset. This distribution an be diretly obtainedfrom database statistis as well. An alternative implementation of the referene statehas been used by Zhou and Zhou in the DFIRE potential [249℄. In their work thereferene state is approximated by using uniformly distributed non-interating pointsin �nite spheres. For the potentials of mean fore desribed in this work, the referenestate as proposed by Sippl is used and all potentials are derivations from the followinggeneral form:
∆E(ci|sk) = −kT ln

(

f(ci|sk)
f(sk)

∑

k
f(ci|sk)
f(sk)

) (2.6)Typial features investigated by statistial potentials are bakbone torsion angles,solvent aessibility and pairwise interations between non-bonded atoms. As donein this work, di�erent statistial potential terms en be ombined to a single soringfuntion (see Introdution page 30).The physial basis of statistial potentials has been questioned [75, 147, 173, 211℄. TheBoltzmann equation desribes a partiular system in its thermodynami equilibrium,whereas statistial potentials assume the system to be a database of protein struturesin the free energy minimum. Aording to this assumption, strutural elements suhas pairwise distanes or torsion angles obey a Boltzmann-type distribution based on ahypothetial reation at equilibrium in whih a unique struture onsisting of averagedamino aids �mutates� to a unique sequene [75, 194℄.The pseudo energy of the entire protein is alulated by summing up the energiesof the individual amino aids. In both ases (summing up di�erent energy terms



58 Methodsand summing up residue energies) thermodynami additivity is assumed, i.e. theomponents ontribute independently to the total energy. This is a fundamentalpriniple used in all energy funtions both knowledge-based and physis-based butit only represents a simpli�ation (probably as a onsequene of missing alternatives).A ritial disussion of the additivity priniples in biohemistry an be found in a goodreview of Dill from 1997 [58℄.The non-redundant set of protein strutures used to derive the potentials is desribedin the next setion. The di�erent statistial potentials (i.e. distane-dependentpairwise potential, torsion angle potential and solvation potential) are introdued inthe subsequent setions.2.4.1.2 Extration of the statistial potentialsAll statistial potentials were extrated from a non-redundant set of high-resolutionprotein strutures from the Deember 2006 version of the PDB [18℄. The PISCESserver [236℄ was used in order to selet a subset of the experimentally solved proteinstrutures. The following seletion riteria were used:
• pairwise sequene identity < 30%
• resolution < 1.8 Å
• R-value < 0.2
• only strutures determined by X-RAY rystallographyThis resulted in an initial seletion of 1,801 protein hains. To redue over-trainingof the potentials for strutures subsequently used for training and testing, all targetsequenes of CASP6 and CASP7 were blasted against the 1,801 hains. All detetablehits were removed resulting in 1,688 strutures. The following three �lters were appliedin order to further inrease the quality of the set of protein strutures used for thesubsequent statistial analysis:
• Proteins having less than 90% of the amino aids resolved in struture (withrespet to the sequene) were not inluded (171 hains removed).
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• Strutures with a substantial part being �exible (i.e. more than 20% of theresidues having an residue-averaged B-fator above two standard deviations) wereremoved (25 hains).
• Strutures with missing bakbone atoms (21 hains removed).For eah of the remaining 1,471 strutures, DSSP [107℄ was exeuted in order to assignseondary struture, solvent aessibility and the torsion angles.2.4.1.3 Distane-dependent pairwise potentialThe distane-dependent ontat frequenies were extrated from the protein dataset desribed above. The radial distribution of atoms around the entral atom isinvestigated as shematially represented in Figure 2.5. In order to redue the biasintrodued by sequentially loal interations (the ontating atoms are assumed tobe free partiles), only atom pairs separated by at least 4 residues were inluded.Alternatively, a sequential separation uto� of 7 and an implementation without anyuto� has been investigated but resulted in worse performane (data not shown).

Figure 2.5: Radial distribution of atoms investigated for the derivation of thedistane-dependent interation potential.



60 MethodsCα and Cβ atoms, respetively, have been investigated as possible interation enters.Additionally, an all-atom version using all 167 atom types ourring in proteinswas implemented and is used in loop ranking. In the seondary struture spei�implementation of the residue-level pairwise potential the potentials are alulatedbased on frequeny ounts extrated from residues of the same seondary struturestate while ignoring the seondary struture state of the ontating residues. A distanerange of 3 to 25 Å (∆r = 0.5 Å) turned out to produe the best results. The �nalpotential integrated in QMEAN is based on Cβ atoms and uses the seondary struturespei� implementation. The alulation of the residue-level pairwise potentials hasbeen arried out as desribed by Sippl (see Chapter 2.4.1.1).2.4.1.4 Solvation potentialThe degree of residue burial was approximated by ounting the number of interationenters (Cβ atoms for QMEAN) within a sphere of 9 Å around the given amino aidin a similar way as desribed by Jones [102℄ and in FRST [215℄. The uto� of 9 Åused in this work resulted in a slightly better performane of the potential than otheruto�s tested (see Results and Disussion, page 3.2.1�). The relative aessibility wasthen alulated by dividing the ounts by the maximum number of ounts observed forthe given amino aid type in the protein data set. The solvation potential re�ets thepropensity of a ertain residue for a given solvent aessibility ompared to any otherresidue. The potential has been implemented as desribed in setion 2.4.1.1.2.4.1.5 Torsion angle potentialThe single residue torsion angle potential re�ets the propensity of a ertain residuefor a given torsion ompared to any other residue. The torsion angles were disretisedin 10 degree bins. The 3-residue torsion angle potential desribed here is a furtherdevelopment of the single residue torsion angle potential by others [3, 111, 193, 215℄.The desription of the loal geometry for a ertain residue was extended by inludingthe torsion of the adjaent residues. The oarseness was inreased by using 45 degreebins for the enter residue and a bin size of 90 degree for the dihedral angles of theneighboring residues. Several alternative bin sizes have been investigated ranging from



2.4 Model quality assessment 6130 degrees to 90 degrees (see Results and Disussion, page 3.2.1�). The identity of theneighbours was not taken into aount.2.4.1.6 Agreement termsA term desribing the agreement between the predited seondary struture of thetarget sequene and the observed seondary struture of the model as alulated byDSSP was built. The DSSP output was onverted into the 3-state format (helix,sheet, oil) as used in EVA [67℄ an automati evaluation pipeline for protein struturepredition. A onsensus seondary struture predition approah was investigated inthe attempt to inrease predition auray. A onsensus between PSIPRED [103℄,SSpro [35℄ and ProfSe [177℄ was built based on simple majority voting [4℄. Thefration of residues with idential predited and observed seondary struture stateswas used as a simple quality measure. In the �nal implementation of QMEAN, onlyPSIPRED was used sine the onsensus of the methods urrently inluded did not leadto an improved performane. A similar measure desribing the agreement betweenthe predited binary burial status (buried/exposed) as provided by ACCpro [35℄ andobserved solvent aessibility based on DSSP was implemented. The relative solventaessibility was alulated by dividing the solvent aessibility extrated from DSSPby the maximum solvent aessibility for the given amino aid type observed in thetraining set. Afterwards, the relative solvent aessibility was transformed into thebinary lassi�ation based on a uto� of 25%. No onsensus sheme was tested in thisase.2.4.2 Measures for the strutural similarity between model andtargetThe traditional measure of expressing the similarity of two protein strutures is theRMSD (Root Mean Square Deviation), alulated after a rigid-body superposition:
RMSD =
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62 Methodswhere δ is the distane between two orresponding atoms among N pairs of equivalentatoms (usually either Cα atoms, bakbone atoms or all atoms).In order to evaluate the quality of the models in the two CASP test sets desribed belowthe GDT_TS sore was used as an objetive measure for the strutural similaritybetween model and target. The GDT_TS sore was alulated using the TMsoresoftware from Zhang and Skolnik [247℄. GDT_TS is a well-established sore usedin the evaluation proess of the last CASP rounds having the advantage of being lesssensitive to loal errors in models as ompared to the traditional RMSD. GDT (GlobalDistane Test) desribes the maximum perentage of residues whih an be struturallyaligned within a de�ned distane uto�. In GDT_TS 4 inreasing distane uto�s areused (x = 1, 2, 4 and 8 Å) and the average of the perentage aligned residues px isalulated:
GDT_TS =

p1 + p2 + p4 + p8

4
(2.8)For the deoy sets from the Deoys 'R' us website (see below), the RMSD values asprovided in the sets have been used diretly.2.4.3 Data setsIn this setion, the data sets used for training (i.e. optimising parameters and weightingfators) and testing (i.e. omparison with other methods) are desribed.2.4.3.1 CASP6 deoy set for trainingParameter optimisation as well as the evaluation of weighting fators for the om-bined energy funtion was performed on the CASP6 set (a desription of the CASPexperiment is given in the Introdution, page 19). This set onsists of all the modelssubmitted to the 64 aepted targets of CASP6. In order to inrease the quality ofthe data set and to redue the in�uene of random preditions or very di�ult targets,all models having a GDT_TS sore of less than 0.2 were removed for training (11,475models). The �nal data set onsists of 15,893 models.



2.4 Model quality assessment 632.4.3.2 Standard deoy sets from Deoys 'R' usThe ability of a soring funtion to identify the native struture among various deoystrutures was investigated and ompared to other state-of-the-art tools with the helpof the following three frequently used deoy sets from the Deoys 'R' us websited [182℄:4state_redued [158℄, lattie_ss�t [240℄ and LMDS [109℄ (a short desription of thedeoy sets an be found in Wallner et al. [233℄). The performane of the other methodson these deoy sets has not been realulated here, but the orresponding data weretaken diretly from a reent publiation [215℄. The two quality measures Znat andrank1 used in the results setion desribe the Z-sore of the native struture omparedto the ensemble of deoys and the number of ases in whih the native struture wasranked �rst in a given deoy set, respetively.2.4.3.3 Moleular dynamis deoy setThe deoy set generated by Fogolari and o-workers [81℄ was used to estimate theperformane on near-native strutures. It onsists of over 6,000 snapshots from �veindependent moleular dynamis simulations. One simulation started from the nativestruture and the other four from minimised onformations of the thermo-stable sub-domain from the hiken villin headpiee onsisting of 36 residues (PDB identi�er1vii). The deoy set an also be downloaded from the Deoys 'R' us website and oversRMSD values from 2 to 12 Å. In ontrast to the three test sets desribed above, thisset ontains several near-native onformations.2.4.3.4 CASP7 deoy set: testing model quality assessmentThe CASP7 server models for all 95 aepted targets were downloaded from theCASP websitee. This is the same data basis used in the blind test for model qualityassessment programs whih was part of CASP7. Although all quality preditionssubmitted for the quality assessment ategory of other groups were available on theCASP website, this data were not used here. Rather, preditions were realulated withdhttp://dd.ompbio.washington.edu/ehttp://preditionenter.org/asp7/

http://dd.compbio.washington.edu/
http://predictioncenter.org/casp7/


64 Methodssome well-established model quality assessment programs (MQAPs) downloadable fromthe CAFASP4 websitef. This has the following reasons. First, many of the MQAPsjoining CASP7 have not been published yet and from the abstrats submitted it wasmostly impossible to understand how they work. Seond, the top performing MQAPsall integrated onsensus information in their alulation, whih is not in the sope ofthis work. In onsensus methods the quality of a ertain model is assessed by takinginto aount information ontained in the ensemble of models. These methods areunable to assess the quality of a single model (as the methods desribed here). Third,the data is sometimes di�ult to ompare. Some MQAPs fail to predit the modelquality for many servers or have not submitted any preditions for some targets.The following model quality assessment programs were used: FRST [215℄, Modhek[162℄, ProQ [233℄, DFIRE [249℄ and RAPDF [184℄. Only server models for whihall of the �ve MQAPs were able to return a predition were evaluated resulting in atotal number of 22,420 models over all 95 targets. ProQ has been exeuted in twodi�erent modes either using seondary struture information (provided as a PSIPREDpredition) or not.The 95 targets were divided into the two ategories free-modelling (FM) and template-based modelling (TBM) as introdued in the seventh round of CASPg. Sine severaltargets are multi-domain strutures and the domains an sometimes be assigned todi�erent ategories, multi-domain targets were assigned to the ategory of the mostdi�ult domain they inlude (i.e. a target onsisting of a FM domain and a TBMdomain was assigned to the FM ategory). The �nal division is shown in Table 5.1 inthe Appendix.2.4.4 Evaluation riteriaA variety of quality measures have been used in order to ompare the performaneof the di�erent methods. logPB1 and logPB10 are the log probabilities of seletingthe highest GDT_TS model as the best model or among the ten best-soring models,respetively. Suppose the best soring onformation xi has the GDT_TS rank of Rifhttp://www.s.bgu.a.il/~dfisher/CAFASP4/ghttp://preditionenter.org/asp7/meeting_dos/diffiulty.html

http://www.cs.bgu.ac.il/~dfischer/CAFASP4/
http://predictioncenter.org/casp7/meeting_docs/difficulty.html


2.4 Model quality assessment 65in n deoy onformations, then the log probability is given by:
logPB1 = log10(

Ri

n
) for logPB10 : Ri = min[R1, . . . , R10] (2.9)Fration enrihment (F.E.) is the perentage of top 10% lowest RMSD onformationsor highest GDT_TS models among the top 10% best-soring strutures. In the frationenrihment urves variable uto�s are used ranging from 5% to 50%. The enrihment asde�ned in Tsai et al. (E15%) is alulated by dividing the number of top 15% highestGDT_TS models found among the top 15% best predited models by the numberobtained in a random seletion (15% * 15% * number of strutures in the deoy set).

Znat is the Z-sore of the native struture as ompared to the ensemble of models.
rank1 and rank10 are the number of targets in whih the native struture (or the bestmodel based on GDT_TS, exluding the native struture) was found on the �rst rankor among the Top10 preditions, respetively. GDT_TS loss is the di�erene betweenthe GDT_TS sore of the best-soring model and the best model in the deoy set.Two kinds of regression oe�ients have been used: Pearson's orrelation oe�ient r2and Spearman's rank orrelation oe�ient rho.Parameter optimisation for the statistial potentials (suh as distane range, bin size,resolution and interation enter) was performed on the CASP6 set. In order tomeasure the ability of the statistial potential to predit the model quality, the Pearsonorrelation oe�ient between the predited model energy and the measured quality interms of GDT_TS was used. A variety of alternative implementations of the statistialpotentials were investigated and the best performing torsion angle potential, solvationpotential and pairwise potential are seleted based on the orrelation oe�ients.The weighting fators for the ombined soring funtion are evaluated by an exhaustivesearh strategy over reasonable ranges for the di�erent weighting fators. The �nalombination is seleted based on the maximum orrelation oe�ient. Several al-ternative optimisation strategies were investigated. Pearson's orrelation oe�ient vsSpearman's rank orrelation, energy vs Z-sores ompared to sequene-shu�ed models.Parameters were optimised on a target-spei� basis (i.e. regressions for all models ofeah target separately) or on a global basis by maximising the regression over all modelsfrom all targets simultaneously.



66 MethodsThe target-spei� optimisation was aomplished by averaging the Pearson's orre-lation oe�ient over all targets provided that at least a suitable fration (i.e. 150models whih is around 30%) have a GDT_TS higher than 0.2. In this way, 12 of the64 aepted targets of CASP6 set were exluded from the target-spei� evaluation. Allbut one belong to the novel fold or fold reognition ategory. The following targets wereexluded in the target-spei� optimisation proess (in brakets the number of modelswith GDT_TS > 20): T0202 (118), T0206 (94), T0228 (23), T0238 (129), T0242 (139),T0248 (5), T0262 (70), T0272 (4), T0273 (88), T0197 (51), T0198 (104), T0199 (12).This approah was used with the intent to redue the in�uene of very di�ult freemodelling targets in whih most of the groups failed to build a reasonable model. Thesetargets are expeted to add no value in the optimisation proess. In ontrast to thePearson orrelation, the Spearman rank orrelation allows to investigate a relationshipwhih does not have to be neessarily linear. As desribed in Pettitt et al. [162℄ Z-sores were built omparing the sore of the model with the sores of models aftersequene shu�ing (1000 times in this work).2.4.4.1 Statistial signi�aneIn the target-spei� assessment, the performane of the methods is evaluated byaveraging the results over all targets using a variety of evaluation riteria. Thedi�erene in the performane of two methods on the individual targets is investigatedusing Student's t-test on paired samples. For the quality measures used in this work, aShapiro-Wilk test (using the Gnu R pakage) was used in order to analyse whether thesores are approximately normally distributed whih is a prerequisite for the t-test. For�ve of the quality measures (Pearson orrelation oe�ient, Spearman rank orrelationoe�ient, the two enrihment measures and Znat) the analysis on�rmed that the vastmajority of the data sets an be regarded as normally distributed (p-value > 0.05). Ina related work [131℄, whih was part of the assessment of model quality in CASP4, ithas been shown that Student's t-test and the Wilox signed rank test (whih does notrely on a normal distribution of the data) reahed the same onlusions.In Student's t-test, the two-sided upper and lower on�dene limits are given by thefollowing equiation:
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µu,l = D ± tcrit(df, c)S√

n
(2.10)where D is the average performane di�erene of the two methods on the targetsinvestigated and S the standard deviation. tcrit(n − 1, c) is the ritial value from thet-distribution, df is the degrees of freedom whih is equal to the number of targetsminus 1 and c is the on�dene level whih is 1 minus the signi�ane α. A on�denelevel of 95% was used in the two-tailed t-test. A shemati representation is given inFigure 2.6.

Figure 2.6: Two-tailed t-test on the 95% on�dene level.The null hypothesis states that the two methods perform equally good on the set oftargets based on the given evaluation riteria. This hypothesis is rejeted aordingto the Student's t-test if either the upper on�dene limit µu is below zero or the orthe lower on�dene limit µl is positive. In this ase one method performs signi�antlybetter than the other.2.4.5 Loal model quality assessmentIn omparison to the approah used to analyse the quality of entire models, the soringfuntion for loop ranking and for loal model quality assessment has been espeiallyadapted by using a more short-range implementation of the interation potential andby using all-atom instead of residue-level solvation and interation potentials in orderto apture more details.



68 MethodsTable 2.5: Di�erenes in the implementation of the loal and global energy funtion.soring funtion term parameter loal globalinteration potential range 2-10 Å 3-25 Åbin size 0.5 Å 1 Ånumber of atom types 167 (all-atom) 1 (Cβ)solvation potential radius of sphere 6 Å 9 Ånumber of atom types 167 (all-atom) 1 (Cβ)torsion angle potential # of residues 3 3As it an be seen from Table 2.4.5, only ontats within 10 Å are aptured in orderto assess to interations with the strutural environment. For the task of assessingthe quality of entire models (see Chapter ??) best results are obtained if �interations�between the Cβ atoms separated up to 25 Å are taken into aount. In analogy, amore short-range and �ne-grained implementation (ompared to the model qualityassessment ase) has been used for the solvation potential.The di�erene in the implementation of the global and the loal soring funtion anbe attributed to the di�erene of the problems they investigate. In model qualityassessment sometimes very rough models are investigated (e.g. models from ab initiostruture predition or fold reognition) and therefore a oarse-grained implementation(i.e. a bin size of 1 Å and a residue-level interation potentials) seems to be moreappropriate. Sine only Cβ atoms are used, longer atomi distanes have to beonsidered in order to apture all diret interations (e.g. of two long sidehainspointing toward eah other). Furthermore, a global soring funtion attempts toassess the �tness of every residue in the sequene to the fold provided by the model.Therefore a pairwise long-range statistial potential should desribe not only diretinterations to surrounding atoms but to some extent also �mediated interation� toatoms being further away in spae. In other word, typial distanes between pairs ofatoms observed in frequently ourring, struturally onserved folds or superseondarystruture elements are likely to in�uene the energy funtion and this signal seems tobe useful for assessing the quality of models. On the other hand, loal energy funtions,should only take into aount lose, diret ontats and therefore the potentials wererestrited on short-range interations.



2.4 Model quality assessment 69For the predition the loal model quality, the energy of eah residue is alulatedusing the three statistial potentials desribed above. In order to smooth the energypro�le not only the entral residue but also neighbouring residues in a sliding windoware taken into aount. Di�erent window sizes have been investigated ranging from1 (i.e. only the entral amino aid) to 11 (i.e �ve residues on both sides). For theanhor group predition task in whih it is tried to identify the region where thetarget struture begins to di�er from the struture of the template, also asymmetrisliding windows have been investigated. (E.g. for the identi�ation of the N-terminalanhor groups, the sliding window overs the entral residue and some residues in N-terminal diretion (away from the loation of the gap). If the sliding window ontainsstruturally unde�ned positions, the following workaround is used. For gaps (i.e.insertions) the average energy of the preeding and the following residue is used andat the hain end the energy of the last residue is taken.A simple strategy was used in order to ombine the three statistial potential termsin a �nal sore. For eah of the three terms, the loal energies are normalised byalulating Z-sores over the entire model. A ombined loal sore is then built bysumming up the three Z-sores for eah position in the model. The Z-sores are builtin order to ope with the di�erent magnitudes of the three terms and to allow aombination with other features suh as sequene onservation, seondary strutureontent, hydrophobiity et. It should be mentioned here that this approah onlyrepresents a �rst approximation and that more advaned strategies (e.g. mahinelearning algorithms) should be used in order to optimise the ombination of the terms.A omprehensive test set should be used for the evaluation whih was not in the sopeof this work. The aim was to investigate whether the statistial potentials developedfor the quality assessment of entire models and for loops ranking an be used for theanalysis of the loal model auray.2.4.6 Analysis of gaps and the loation of anhor groupsA non-redundant set of homologous pairs of proteins from the HOMSTRAD database[142℄ is used for the analysis of the distribution of gap lengths (i.e. the size ofinsertions and deletions) ouring in typial modelling situations. A �ltered test set of



70 Methodsinsertions and deletions (see below) has been built in order to investigate the struturalenvironment on both sides of the gaps for the loation of suitable anhor groups andseveral approahes for the predition of anhor groups based on the analysis of theloal model energy are desribed.2.4.6.1 HOMSTRAD test setHOMSTRAD (HOMologous STRuture Alignment Database) [142℄ is a urateddatabase storing strutural alignments of members of the same homologous proteinfamily. The version from May 2007 ontaining 1032 protein families was used in orderto generate a non-redundant set of pairs of homologous proteins representing realistimodelling situations (i.e. target-template pairs with a maximum sequene identity of40%). A similar proedure has been used in our lab in the past in order to build a testset for anhor group evaluation [121, 238℄. Beside other reasons (e.g. high sequeneuto� of 50%, presene of very fragmented alignments, no information about resolutionof the proteins and hain identi�er), this test set was not used here beause it is basedon the PDB release 8/96. Sine then, the size of the PDB has grown by roughly afator 10 whereas the number of di�erent SCOP superfamilies [148℄ inreased by abouta fator 4 (information from the PDB websiteh). The following quality �lters wereapplied in order to build the test set:
• Only families ontaining exatly 2 members are used (alignments of families withmore members are based on multiple strutural alignments, whih often di�erfrom the pairwise ones).
• A maximum pairwise sequene identity of 40% is used, representing a realistimodelling situation.
• Both sequenes need to be at least 80 residues long.
• Both strutures need to be resolved by a resolution < 3.0 Å.
• Only strutures determined by X-ray rystallography are used.hhttp://www.rsb.org/pdb/stati.do?p=general_information/pdb_statistis/index.html&

http://www.rcsb.org/pdb/static.do?p=general_information/pdb_statistics/index.html&


2.4 Model quality assessment 71This resulted in a �nal non-redundant set of 257 homologous pair of proteins superim-posed on eah other. Based on the struture-based sequene alignment all gaps (i.e.insertions and deletions) are identi�ed. In order to build a realisti test set (alled�anhor group test set� in the following) for the analysis of the strutural onsequenesof insertions and deletion as well as for the analysis of the loation of suitable anhorgroups, the following rules are applied:
• Gaps lose to the hain ends (15 residues apart) are not used sine in this ase oneof the anhors is missing (i.e. an most probably not be plaed in a struturallyonserved region.
• In order to investigate the strutural e�et of a single gap, no further gap within10 residues along the sequene is allowed. In the modelling ase, two lose(separated by a few residues) gaps would be merged to a single (longer) gap.
• Gaps within seondary struture elements are not onsidered.
• Only gaps in loop regions having seondary struture elements within 10 residueson both sides are taken into aount. This re�ets a typial loop modellingsituation. Usually preditors plae the anhor groups lose to the ends of theseondary struture elements. The following de�nition for seondary strutureelements is used for the anhor group test set: helix onsist of at least 2 residuesin helix onformation (aording to DSSP) and strands need to have a minimallength of 3 residues.
• The region should be identi�ed where target and template struture begin todi�er. Therefore, at least three onseutive residue pairs with bakbone RMSDbelow 1.8 Å need to be present on both sides (in analogy to Lessel und Shomburg[121℄).
• Only gaps smaller than 5 residues are inluded in the �nal test set. Approxi-mately three-quarter of the insertions and deletions ouring in typial modellingsutuations are below 5 residues (see Results and disussion on page 156).The �nal anhor group test set ontains 105 insertions and 124 deletions.



72 Methods2.4.6.2 Anhor group preditionBased on the anhor group test set desribed above, the regions on both sides of thegaps (i.e. 10 residues in N- and C-terminal diretion) are analysed onerning theloation of suitable anhor groups. The following set of simple rules has been used forthe predition of the anhor groups and the RMSD between target and template atthe given positions as well as the resulting gap length are derived:
• �x distane (1-4 residues) from gap on both sides.
• �x depth in the surrounding seondary struture element (1-3 residues inside theSSE),
• as referene for the �optimal� anhor groups, the loation of minimal RMSDbetween target and template is used as well as the �rst position (starting fromthe gap) where the RMSD drops below 2 Å or 1.5 Å, respetively.The anhor group predition based on these simple riteria is ompared to a preditionwhih takes into aount the loal model energy around the gaps. For this purpose,raw models are generated based all alignment used in the anhor group test set (i.e.by replaing the sidehains and by removing residues in the ase of deletions). Severalpossible approahes for the predition of optimal anhor groups based on the inspetionof the loal energy pro�le are investigated (see Results and Disussion, Chapter 3.4.2).In order to analyse the orrelation between loal strutural deviation (between targetand template) and loal energy of the raw model, the S-sore has been used as inseveral related publiations [68, 195, 234, 247℄. In ontrast to the RMSD, the S-sorehas an upper limit for the ontribution of individual atoms. This makes sense in thegiven appliation, sine two residues with an 5 Å are as inaurate as a pair being 10 Åapart.The S-sore is given by the following formula:

S − score =
1

1 + ( di

d0
)2

(2.11)



2.4 Model quality assessment 73where di is the distane between two atoms (here the Cα atoms) and d0 is the distanethreshold whih has been set to √
5 as in the other approahes. The S-sore rangesfrom 1 (for a perfet agreement between target and template) to 0 (in�nite distane).



74 Methods2.5 Implementation

Figure 2.7: Most important C++ lasses of the modelling pipeline.The modelling pipeline presented in this work has been implemented in C++. Themost important lasses and their interonnetions are shown shematialy in Figure2.7.The entral lass Model ombines an instane of the lasses Alignment and Strutureand is onneted to the loop modelling lass LoopPredition. At any time of themodelling proess Model ensures the orret mapping of amino aid positions in thealignment, the struture of the template and the resulting model and guides the initialmodel building proess based on the given template struture and the alignment (i.e.the mapping of the target sequene on the template bakbone).The atual hanges of the template struture in the modelling proess are performedsolely in the lass Struture. These hanges inlude: mutations (hange the identity ofa residue and remove its sidehain), protetion of residues (mark residues suh that their



2.5 Implementation 75onformation is not hanged in the sidehain building routine), deletion and insertionof residues in the template struture, sidehain modelling (using SCWRL [31℄), et.The lass Struture itself inherits from StrutureBase whih is responsible for loadingand saving PDB-�les, for the orret assignment of properties suh as torsion angles,seondary struture and solvent aessibility information from DSSP [107℄. It providesmethods for the seletion of atoms using the CCP4 Coordinate Library [114℄. Theseletion of atoms within a sphere is used in the derivation and appliation of thepairwise statistial potential and the solvation potential as well as in the lash hekroutine in loop modelling. As ompared to StrutureBase, the lass Strutureadditionally ontains all methods for the energy alulation of single residues, segments(as needed in loop predition) and whole strutures based on the statistial potentialsdesribed in this work.The lass Training is used to derive the frequenies of strutural features from a set ofprotein strutures and onverts them in potentials of mean fore as desribed in Chapter2.4.1. The data is stored in text �les. All lasses using the statistial potentials needto inlude the lass Potentials whih loads the data from the text �les and storesthem in internal datatyps.The lass LoopPredition ontains the loop modelling routine with an interfae to thefragment database using the MySQL C-APIi based on the mysqllient library. TheFragmentor lass performs the fragmentation of a given non-redundant set of proteinstrutures and the storage of the data in the MySQL database. The fragmentationproess is desribed in Chapter 2.3.1.The lass Superposition allows to superimpose two strutures either in a sequene-dependent manner by parsing the output of the program TMsore [247℄ or in asequene-independent manner by using the algorithm of Lessel and Shomburg [121℄.In both ases, the distanes of the orresponding residues is alulated. For the laterapproah, additionally a web server with the name Protein3D�t has been implementedj.Multiple main-�les have been implemented resulting in di�erent exeutables whihprovide aess to di�erent funtionalities of the modelling pipeline suh as modellingihttp://dev.mysql.om/do/refman/5.1/en/.htmljhttp://www.protein3dfit.uni-koeln.de

http://dev.mysql.com/doc/refman/5.1/en/c.html
http://www.protein3dfit.uni-koeln.de


76 Methodsas a whole, loop predition and model quality assessment (global or loal). In all ases,the �-h� option displays an overview on the funtionality of the given exeutable.The modelling pipeline itself requires an alignment and a template struture as input(optionally an output diretory and the path to the seondary struture and solventaessibility predition �les an be provided). After exeution, the user is guidedthrough the modelling proess in an interative manner. The initial modelling steps(template detetion and alignment building) are performed with separate Python andPerl sripts.



3 Results and Disussion
The Results and Disussion hapter is strutured as follows: In the �rst setion,the results from CASP7 experiment are used as a basis to analyse and disuss theperformane of the modelling pipeline established in this work. The setion startswith a brief reapitulation of the steps involved in homology modelling. In the nextsetion (page 108�), the soring funtion used for model quality assessment is desribedin detail sine the two subsequent setions both rely on the energy funtion termsintrodued there. Afterwards, the general performane of the loop predition routineis investigated and ompared to several other loop predition methods (page 135�).The last setion deals with the loal analysis of model quality and a statistial analysisof the regions around gaps serving as potential anhor groups for the loop modellingproess is presented (page 153�).3.1 CASP7 results3.1.1 The omparative modelling pipelineThe basi steps in homology modelling or omparative modelling are template identi�-ation and seletion, target-template alignment and model building inluding loop andside hain predition. A shemati representation of a typial omparative modellingwork�ow is given in Figure 2.1 at the beginning of the Methods. Usually multiplemodels are built from whih the �nal model is seleted using some kind of energy orsoring funtion (typially alled model quality assessment program). In an optionalre�nement step it an be tried to remove loal errors in the model in order to omeloser to the target.The modelling pipeline as well as an early version of the QMEAN soring funtion[16℄ for model quality assessement (see Chapter 3.2) have been reently tested at theseventh round of ommunity-wide CASP experiment. The goal of CASP is to objetivlyassess the abilities and weaknesses of urrent protein struture predition methods (see



78 Results and DisussionIntrodution on page 19 for more details).This setion starts with the desription of the overall performane of the pipeline atCASP7 followed by a detailed analysis of the results. Sine an extensive evaluation ofthe performane of the �rst 3 steps in the modelling pipeline (i.e. template identi�-ation, target-template alignment and model building) would go beyond the sope ofthis work, the performane of the methods is disussed on the basis of some seletedexamples. The results are hosen in the attempt to highlight strengths and limitationsof the methods used in the pipeline and to disuss possible future improvements.3.1.2 Overview on the resultsThe CASP experiment was used as a testing ground for the pipeline established duringthe �rst two years of this projet. Setting up a omplete omparative modelling pipelinewas a basi prerequisite for dealing with loop predition and model quality assessment.Sine we joined CASP for the �rst time, our primary intention was to investigatewhether it is possible to build reasonable models with the pipeline and whether thesoring funtion is able to disiminate between good and bad models in the task ofmodel quality assessment. The results exeeded all our expetations: several topranking models have been built (rank 2, 4 and 6 of over 130 preditions) and the soringfuntion was among the top-ranking model quality assessment programs [113, 169℄. Theresults are aessible from the o�ial CASP websitea.During the predition season of approximately 3 months, the partiipating groups ouldsubmit up to 5 models for eah of the 95 aepted targets. The preditors themselvesrank the 5 models aording to their belief whih model is losest to the target struture(denoted as model 1 ). Our group (i.e. the author of this work) submitted a totalnumber of 68 models to the tertiary struture predition ategory and 65 preditionsto the model quality assessment ategory. Due to the limitations in time and resouresnot more than 18 targets ould be proessed. Table 3.1 provides an overview on theranking of all 18 models designated as model 1 (i.e. the model assumed to be losestto native).ahttp://preditionenter.org/asp7/

http://predictioncenter.org/casp7/


3.1 CASP7 results 79Table 3.1: Overview on the CASP7 results of the 18 models designated as model 1.model quality fration ommenttop10 models 3 of 18 rank 2, 4 and 6 of over 130 partiipating groupsabove average 11 of 18 above the ommunity average at CASP7below average 4 of 18 bad performane beause too few residues modelledIf a target onsists of more than one domain, the assessors additionally analysed thequality of eah domain (denoted with subsript D1 and D2 in the �rst olumn of Table3.2). The quality of most of the predited models was above the ommunity averageand three of them were among the top 10 preditions for model 1. The best modelswere on rank 2, 4 and 8 of more than 130 partiipating groups. The bad results forthe remaining 4 models an be attributed to the low target overage of these models(i.e. not the full target has been modelled). In the CASP assessment, the models areranked aording to the GDT_TS sore (see de�nition on page 62), whih re�etsthe average perentage of residues alignable below di�erent distane thresholds. Asa onsequene, models whih do not over the entire target sequene automatiallyget a lower sore, sine the missing residues are ounted as �not alignable�. The 4bad models mentioned above all have some residues missing at the hain ends (targetoverage 87.1% to 98.5%). A loser inspetion of the models revealed that two of thesemodels were atually very good in terms of all-atom RMSD (rank 14 and 21). A moredetailed analysis follows in Chapter 3.1.5 with a ranking based on the all-atom RMSDfor all 18 targets (see Table 3.4). At the beginning of the CASP7 predition season,our pipeline was not yet able to model hain ends. At a later point of time (for modelsafter target T0345), a modi�ed version of the loop modelling protool was used in orderto model hain ends.As it an be seen from Table 3.2, the 18 targets for whih models have been submittedover a wide range of modelling di�ulty as expressed by the sequene identity betweenthe target sequene and the template used to build the model. Two of the three easymodelling ases with sequene identity above 50% ould be modelled with all-atomRMSD around 1.5 Å. The three outstanding preditions mentioned above (targetsT0341 [domain 1℄, T0373 and T0379) are highlighted in bold and represent di�ultmodelling targets with a sequene identity around 20%. The results for these threetargets are disussed in detail later. The last two olumns in Table 3.2 show the ranking



80 Results and Disussionof the best model (out of the maximum �ve models submitted per target) ompared toall models of all preditors. As it an be seen, the best models are onsistently betterthan average over all targets.Table 3.2: Detailed analysis if the quality of the models submitted to CASP7.Target %id
a GDT_TS RMSDb %cov

 rank1
d %rank rankall

e %rankT0303 21.8 73.89 3.4 100 21/128 16.41 35/482 7.26
T 0303D1 83.84 2.45 100 18/128 14.06 41/482 8.51
T 0303D2 72.4 4.1 100 31/128 24.22 43/482 8.92T0334 55 89.97 2.89 99.8 55/131 41.98 195/488 39.96T0340 58.7 90.85 1.53 96 101/145 69.66 244/541 45.1T0341 22.8 73.31 2.99 95 34/133 25.56 112/508 22.05
T 0341D1 78.38 2.25 92.6 66/133 49.62 237/508 46.65T0341D2 81.97 3.35 100 6/133 4.51 28/508 5.51T0345 62.2 94.19 1.58 98.4 81/131 61.83 231/483 47.83T0359 38.1 82.78 3.09 97.8 51/145 35.17 156/543 28.73T0360 16.3 67.01 5.77 100 29/136 21.32 89/502 17.73T0362 21.2 72.4 4.05 94.4 80/139 57.55 114/534 21.35T0364 16.7 68.37 3.26 87.1 72/137 52.55 197/528 37.31T0370 20.1 63.88 3.7 88.2 45/131 34.35 103/514 20.04T0371 25.5 59.1 3.98 93.6 62/130 47.69 214/511 41.88
T 0371D1 72.69 2.99 88.9 67/130 51.54 236/511 46.18
T 0371D2 66.73 3.58 100 29/130 22.31 84/511 16.44T0373 19.7 68.58 3.84 100 2/138 1.45 13/525 2.48T0374 22.5 66.56 4.18 96.2 39/144 27.08 112/547 20.48T0375 17.2 62.25 4.31 97 41/134 30.6 133/515 25.83T0376 24.3 67.16 3.79 99 53/131 40.46 173/522 33.14T0379 20.2 68.01 4.18 100 4/135 2.96 18/516 3.49
T 0379D1 78.22 3.35 100 4/135 2.96 13/516 2.52
T 0379D2 66.41 4.6 100 32/135 23.7 85/516 16.47T0380 24.8 73.77 3.07 95.8 58/138 42.03 97/535 18.13T0384 18.2 64.53 4.46 98.7 49/135 36.3 171/524 32.63aPerent sequene identity between target and template.bAll-atom root mean square deviation.Fration of target residues present in the model.dRank of model 1 among all other models designated as model 1.eRank of the best model (of maximum 5 submitted) among all models from all groups.As mentioned in the beginning, the CASP experiment was used as a testing ground inorder to identify bottleneks in the predition pipeline and to ompare the performanewith other methods. Even during the CASP predition season the pipeline wasonstantly improved and new features were added (e.g. the ability to model hainends where only one anhor group is present). This, in fat, ompliates the evaluation



3.1 CASP7 results 81proess but enormously pushed the whole projet. The main purpose of the followingsetions is to highlight what went right in the di�erent modelling steps and where isroom for improvement. The lessons learnt during CASP and after CASP, when theevaluation of the assessors was available, will be addressed in detail.3.1.3 Template identi�ationAs desribed in Methods (see setion 2.1.2), templates are identi�ed using the PDB-BLAST protool whih uses a sequene pro�le (generated by PSI-BLAST) representingthe protein family of the target protein in order to san the PDB for possible templates.In Figure 3.1, an extrat of the PSI-BLAST output (�rst 10 hits) for the CASP7target T0288 is shown as an example. The query sequene, a protein involved insignaling, onsists of 93 amino aids and represents a target of the Strutural GenomisConsortium.
Score    E

Sequences producing significant alignments:                          (bits) Value

1Z87A 263 NMR NA NA NA Alpha-1-syntrophin <SWS SNA1_MOUSE> [MUS ...    95   1e-20
1UM7A 113 NMR NA NA NA synapse-associated protein 102 <GB BAA865...    92   7e-20
1QAVA 90 XRAY 1.90 0.208 0.259 ALPHA-1 SYNTROPHIN (RESIDUES 77-1...    88   1e-18
2FNEA 117 XRAY 1.83 0.194 0.243 Multiple PDZ domain protein <SWS...    88   1e-18
2FNEB 117 XRAY 1.83 0.194 0.243 Multiple PDZ domain protein <SWS...    88   1e-18
2FNEC 117 XRAY 1.83 0.194 0.243 Multiple PDZ domain protein <SWS...    88   1e-18
1TP3A 119 XRAY 1.99 0.233 0.296 Presynaptic density protein 95 <...    88   2e-18
1TP5A 119 XRAY 1.54 0.193 0.229 Presynaptic density protein 95 <...    88   2e-18
1TQ3A 119 XRAY 1.89 0.238 0.296 Presynaptic density protein 95 <...    88   2e-18
1BE9A 119 XRAY 1.82 NA NA PSD-95 <SWS DLG4_RAT> [RATTUS NORVEGICUS]    87   3e-18Figure 3.1: Extrat of the PSI-BLAST output for target T0288 of CASP7.The output is strutured as follows (from left to right): PDB idenit�er inluding hainidenti�er, number of amino aids, experimental method (NMR spetrosopy or X-RAYrystallography), resolution, R value, R free value, desription of the protein and �nallybit sore and E-value.In order to deide whih template(s) to hoose, the E-value, re�eting the reliability ofthe hit, is the most valuable riteria. Sine BLAST [5℄ (Basi Loal Alignment SearhTool), as the name suggests, only produes loal alignments or mathes, the overageof the target by the seleted template has to be heked. Templates with low E-value



82 Results and Disussionbut overing only a short fration of the target are of little pratial value (at least as asingle template, but possibly in ombination with others). In the presene of a varietyof possible andidates, the quality of the template struture should be investigated byanalysing resolution, R value and unresolved residues in the struture (see desriptionof experimental methods in the Introdution on page 13). In our pipeline, 3-5 templatestrutures are manually seleted based on the riteria desribed above.For many template-based modelling targets from CASP7, a simple BLAST searhagainst the database of sequenes from PDB strutures is su�ient to detet suitabletemplates. But in some ases, BLAST is not sensitive enough to detet the homologyas show exemplarily for target T0360 (141 amino aids). In Figure 3.2 the more orless random hits (E-value ≈ 1) identi�ed by BLAST annot be used as templates. Aninspetion of the orresponding alignment reveals that only approximately one-thirdof the query sequene are overed.
Score    E

Sequences producing significant alignments:                         (bits) Value

2GLFD 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida...    29   0.99
2GLFC 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida...    29   0.99
2GLFB 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida...    29   0.99
2GLFA 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida...    29   0.99

Query: 12  KSAVQTMSKKKQTEMIA----DHIYGKYDVFKRFKPLALGIDQDLIAALPQYD 60
K AV+T   K   EM      D + G+ +V   F P  +G+D+ LI A  Q D

Sbjct: 198 KEAVKTNVLKILNEMYGITEEDFVSGEIEVVPAFSPREVGMDRSLIGAYGQDD 250Figure 3.2: Hits identi�ed by a simple BLAST searh for target T0360.PDB-BLAST on the other hand identi�es one temnplate with a reasonably good E-value for target T0360 whih overs the whole target (Figure 3.3).
Figure 3.3: Hits identi�ed by a PSI-BLAST searh for target T0360.



3.1 CASP7 results 83Aording to the evaluation of the CASP assessors (see Figure 3.4), the templateidenti�ed by PDB-BLAST (1dvo) turned out to be the best available template (i.e.the template losest to the target as expressed by RMSD and LGA-sore). LGA(Loal/Global Alignment) is a standard tool in the CASP assessment and analyses theloal and global strutural similarity between two strutures. Based on the struturalsuperposition, the distane of the orresponding residues (aording to the sequene)in target and model are analysed and de�ned as orretly aligned if they meet aertain distane threshold (here: Cα-distane below 5 Å). The LGA-sore re�ets theperentage of alignable residues among those of the whole target.As it an be seen from Table 3.3, in at least 4 ases BLAST ould not detet a suitabletemplate for building a model. For the 3 targets marked with yes in brakets, thetemplate ould be identi�ed but only with an E-value > 10−3.The PDB-BLAST protool not only identi�es more templates as ompared to a simpleBLAST but also identi�es them with a learly lower E-values. With PDB-BLAST,the �real" templates get onsiderably lower E-values than the apparently random hitswhereas this is often not the ase for BALST.For hard template-based modelling targets (i.e. when only very remote homologoustemplates or only analogues are available), pro�le-to-sequene based homology de-tetion methods suh as PDB-BLAST reah their limitation. In this ase, moresensitive pro�le-pro�le or HMM-HMM searh methods have to be applied. Threading

Figure 3.4: Coverage of the target T0360 by the top 10 templates [115℄.



84 Results and DisussionTable 3.3: Template detetability by a simple BLAST run among the 18 proessedtargets. target % sequene identity BLAST detetableaT0303 21.8 yesT0334 55.0 yesT0340 58.7 yesT0341 22.8 yesT0345 62.2 yesT0359 38.1 yesT0360 16.3 noT0362 21.2 (yes)T0364 16.7 noT0370 20.1 noT0371 25.5 yesT0373 19.7 (yes)T0374 22.5 noT0375 17.2 (yes)T0376 24.3 yesT0379 20.2 yesT0380 24.8 yesT0384 18.2 yesa(yes): Only templates with E-value > 10−3 are deteted.algorithms, asseessing the ompatibility of the sequene to folds in a fold library, anbe used in order to detet possible analogous folds in the absene of homology (seesetion �fold reognition� in the Introdution on page 20).If no signi�ant hits an be identi�ed with PDB-BLAST, fold reognition serverssuh as HHPREDb [204℄ or 3D-PSSM [110℄ an be onsulted. The probably beststarting point is the BioInfoBank meta serverd whih provides aess to various foldreognition servers and translates the olleted information (i.e. identi�ed templatesand orresponding alignments) into a uniform format.As advaned template detetion methods require a lot of time and resoures, ahierarhial approah for template detetion is advisable, espeially for automatibhttp://toolkit.tuebingen.mpg.de/hhpredhttp://www.sbg.bio.i.a.uk/~3dpssm/dhttp://meta.bioinfo.pl

http://toolkit.tuebingen.mpg.de/hhpred
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http://meta.bioinfo.pl


3.1 CASP7 results 85servers:
• �rst try BLAST (sequene-to-sequene). If no suitable template has beenidenti�ed, use
• PDB-BLAST (pro�le-to-sequene),
• otherwise, use advaned fold reognition methods (pro�le-pro�le and HMM-HMM, respetively)It should be noted here that espeially in the presene of very remote homologues, theoverage of the target sequene with respet to the template struture is usually verylow whih makes it di�ult to build a reasonable model based on a single template. Inthis ase, the ombination of multiple templates potentially leads to better models.Although being the seond best model submitted to CASP7, our model 1 for targetT0373 ould have been further improved by ombining two templates. The top soringmodel has been built based on template 1s3j_A (i.e. PDB identi�er 1s3j, hain A) andshows a very good overall quality exept for the N-terminus as shown in Figure 3.5a). The thik tube represents the native struture of the target and the thin tube themodel. The regions olored in green mark orresponding residues in target and modelwhih are below a ertain distane threshold (here: Cα-distane below 5 Å). Theother regions are either inorret beause of alignment errors or inorret modelling.Alignment errors are disussed in the next setion.Figure 3.5 b) shows our seond best model whih has been built with template 1jgs_A.The model overs perfetly the N-terminal hain end whih ould not be auratelymodelled with the �rst template. It beomes apparent, that a ombination of bothtemplates ould lead to a onsiderably better model overing both hain ends perfetly.In a future version of the modelling pipeline, the ability to use information frommultiple templates for one model should be implemented. Due to the objet-orientedimplementation of the software, this an be done with minor e�ort. The di�ultywhih then arises is to deide whih region to use from whih template. Sine theombination of multiple templates was not in the sope of this work, the models areurrently built based on one template whih represents a reasonable approah for manytargets.
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a) template 1s3j b) template 1jgs

N-terminus

C-terminus

N-terminus

C-terminus

Figure 3.5: Two models for T0373 built based on di�erent templates illustratingthe potentials improvement possible by ombining multiple templates [115℄.3.1.4 Target-template alignmentAs desribed in Methods (see setion 2.1.3), the alignments between the target sequeneand the template are generated with a pro�le-pro�le alignment protool. The alignmentalgorithm has been optimised as part of the projet thesis of Osar Bortolami andshowed a omparable performane in omparison to other state-of-the-art alignmentprograms (data not shown). As mentioned in the Introdution, alignment errors arestill, beside loop predition, the major soure of errors in omparative modelling. Inthis work, the performane of the alignment algorithm is evaluated qualitatively basedon a detailed inspetion of all our models submitted to CASP7 and the orrespondingalignments. As an example, the alignment shift in target T0341 is desribed in moredetail in order to point out the strutural onsequenes of alignment errors.Analysing the alignment quality of the models submitted to CASP7 is not a trival task.Sine only the �nal models are submitted and not the orresponding alignments (whihwould be di�ult to evaluate, if multiple templates are used), the assessors �alulated�the alignments quality indiretely by omparing the model with the orrespondingexperimental struture. The following proedure was used: Target and models were
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Figure 3.6: Alignment quality strip hart for target T0375 [115℄.struturally superimposed in a sequene independent manner using the LGA algorithm[244℄. The alignments based on the strutural superposition are subsequently rankedaording to the perentage of orretly aligned residues (Cα-distane below 5 Å)among those of the whole target. Residues not present in the model are de�ned as notaligned. This makes it di�ult to deide based on a single quality number whethera ertain alignment sored worse beause of alignment errors or just beause of somemissing residues in the model. Beside alignment errors, loal model errors an arise ifstruturally variable regions (mainly loops) of the template have not been re-modelledor have been modelled inorretly, respetively. These errors annot be distinguishedfrom alignment errors without knowledge of the alignment and the orrespondingtemplates used.Nevertheless, the alignment quality strip harts (see Figure 3.6) as provided by theCASP assessors are useful means in order to ompare models and identify regions oferrors. Regions in the model with `orretly aligned residues are marked in green.Regions olored in yellow and red highlight residues of the model whih are, based onthe superposition, shifted with respet to the position in the experimental struture,with yellow for shifts within 4 residues and red for shifts greater than 4 residues.



88 Results and DisussionAlignment errors are a onsequene of miss-plaed gaps, e.g. if a long gap should besplitted into two shorter ones. As a onsequene, in the region between the gaps, theresidues of the model are shifted relative to the real position in the model (i.e. thetarget residues are mapped on the wrong region of the template bakbone).In the post-evaluation of the CASP models, the following proedure is used in orderto identify alignment errors:
• The alignment quality strip harts are inspeted in order to identify regions ofstrutural divergene between target and model (see Figure 3.6).
• In these regions, the alignment used to build the model is ompared to a struturalalignment between target and template in order to identify possible di�erenesin the gap plaement.
• The strutural superposition of target and model is used in order to determinethose regions of the model, whih are inorret beause of alignment shifts and notas a onsequene of wrong loop modelling or strutural divergene between targetand template (i.e. struturally variable regions, whih have not been remodelled).
• Alignment shifts appear as regions in the strutural superposition where thebakbone of model and native struture oinide (i.e. this part origines from astruturally onserved region of the template) but the orresponding sequene isshifted (i.e. the residues losest in spae in the superposition are not idential).A detailled inspetion of all our models submitted to CASP7 revealed that thealignments are generally very aurate and worse alignment sores ompared to theother groups, an be mostly attributed to either a low target overage (i.e. hainends have not been modelled) or inaurate loop predition (e.g. di�ult long loopswhih ould not be modelled aurately, non-onserved loops whih should have beenremodelled).For the following targets, alignments error ould be identi�ed (in brakets the sequeneidentity between target and template): T0341 (22.8%), T0364 (16.7%), T0373 (19.7%),T0374 (22.5%), T0375 (17.2%), T0376 (24.3%). All these targets represent di�ultmodelling ases as re�eted by the sequene identity between target and template being
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Phe 102

Gln 87

missing
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Figure 3.7: Superposition of model and target T0341: Strutural onsequenes ofalignment errors (yellow segment).around 20%. In target T0375 for example, multiple alignment shift were observed in themodels of nearly all groups. The available templates show a high strutual similaritywith the target suh that a large fration of the template ould have been used for themodel. But, as a onsequne of the low sequene onservation, most groups failed toaurately position the gaps resulting in multiple alignment shifts as re�eted by theyellow regions in the alignment strip hart (see Figure 3.6).Exemplarily, the alignment shift observed in our model for target T0341 domain 2is desribed here in detail. Atually, this was one of our top soring models, whihsuggests, that most of the groups as well had problems with the alignment for thistarget. The alignment error onsists of a misplaement of the deletions after residueGlu-87 whih aused an alignment shift of one residue for the following 16 residuesuntil the next gap (marked in yellow in Figure 3.7).A omparison of the alignment used to build the model (Figure 3.8) and a struture-based sequene alignment (Figure 3.9) between target and template generated byCE [192℄ reveals that two residues instead of one should have been deleted afterglutamine 87. By looking at the superposition of target and model in Figure 3.7,
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HHCCCCCCEEECCHHH        CCCFigure 3.8: Original sequene alignment between target T0341 and template1wvi_A. The region of the alignment error is marked with a box.the missing deletion an be learly identi�ed and one an observe that the regionbetween the two deletions (until approximately phenylalanine 102 ) is struturallyhighly onserved and the bakbone therefore ould have been opied from the template.The struture-based sequene alignment is shorter sine CE produes only loalalignments based on the maximum ommon substruture. The loation of the othertwo gaps (i.e. a deletion after residue 62 and an insertion at position 118) agree wellbetween the two alignments.The sequene identity between target and template (PDB ode: 1wvi) is approximately23% whih represents a rather di�ult modelling task. As it an be seen from Figure3.8, the alignment error oured in a region of extremely low sequene onservationwhih makes it di�ult for alignment algorithms to seperate the signal from the noisein this region. Here, purely sequene-based alignment algorithms reah their limitof auray and only algorithms integarting strutural information (e.g. by the use
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Chain 1: /biochem/mirror/pdb/all/pdb2ho4.ent:A (Size=259)
Chain 2: /biochem/mirror/pdb/all/pdb1wvi.ent:A (Size=257)

Alignment length = 241 Rmsd = 2.11A Z-Score = 7.0 Gaps = 8(3.3%) CPU = 1s Sequence identities
= 24.2%

Chain 1:    7 LKAVLVDLNGTLHIEDAAVPGAQEALKRLRATSVXVRFVTNTTKETKKDLLERLKK-LEFEISEDEIFTS
Chain 2:    3 YKGYLIDLDGTIYKGKDRIPAGEDFVKRLQERQLPYILVTNNTTRTPEMVQEMLATSFNIKTPLETIYTA

Chain 1:   76 LTAARNLIEQKQV--RPXLLLDDRALPEF-TGVQTQD---PNAVVIGLAPEHFHYQLLNQAFRLLLDGAP
Chain 2:   73 TLATIDYMNDMKRGKTAYVIGETGLKKAVAEAGYREDSENPAYVVVGLDTN-LTYEKLTLATLAIQKGAV

Chain 1:  140 LIAIHKARYYKRKDGLALGPGPFVTALEYATDTKAXVVGKPEKTFFLEALRDADCAPEEAVXIGDDCRDD
Chain 2:  142 FIGTNPDLNIPTERGLLPGAGAILFLLEKATRVKPIIIGKPEAVIMNKALDRLGVKRHEAIMVGDNYLTD

Chain 1:  210 VDGAQNIGXLGILVKTGKYKAADEEKINPPPYLTCESFPHAV
Chain 2:  212 ITAGIKNDIATLLVTTGFTKPEEVPALPIQPDFVLSSLAEWDFigure 3.9: Struture-based sequene alignment between target T0341 and template1wvi_A produed by CE.of predited seondary struture and solvent aessiblity of the target sequene orenvironment-spei� gap penalties) an go beyond that.A visual inspetion of the alignment an help identifying potential alignment errors.Gaps within seondary struture elements are usually an evidene for alignment errors:In target T0379, for example, a gap has been moved out of the seondary strutureelement manually whih is one of the reasons (beside the aurate extension of the N-terminal helix) of the high rank ahieved by this model. The detetion of alignmentserror an be automated. Several approahes have been desribed in literature whihallow to detet reliable regions in alignmnets e.g. by analysing the variation amongdi�erent sub-optimal alignments [229℄ or the sequene variation in the pro�les [224℄.



92 Results and Disussion3.1.5 ModellingIn this setion, an in-depth analysis of the models submitted to CASP7 is performed.All model designated as model 1 have been evaluated and some general onlusions aredrawn onerning the �lessons learnt� at CASP7 with the attempt to highlight possibleaeras for future improvements. Some of the top-soring models are disussed in moredetail.In Table 3.4, a summary of the performane (re�eted by the rank of the model andthe rank of the orresponding alignment) of all 16 models designated as model 1 isgiven. In the last olomn, explanations for the good or bad performane are providedas keywords, sine a detailed desription of all models would go beyond the sope ofthis work.

Figure 3.10: GDT plot for T0373: fration of model residues superimposable withthe experimental struture using variable distane thresholds [115℄.In order to visualise and ompare the quality of all models of a spei� target, GDTplots (as shown in Figure 3.10) are provided on the CASP7 website whih re�et theperentage of residues from the model whih fall below a ertain distane uto� after a(sequene-dependent) superposition on the experimental struture of the target. Thelower the run of the urve the better a model provided that enough target residueshave been modelled. The GDT plots of all our models submitted to CASP7 is shownin the appendix.
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Table 3.4: Detailed analysis of the quality of the models submitted to CASP7 with omments.Targeta %cov rGDT

b rRMS

 raln CommentT0303 100 21 33 20 Good alignment; 3 loops: 2 modelled very aurately
T 0303D1 100 18 13 3 Nie alignment; best available template identi�ed
T 0303D2 100 31 58 52 Bad template seletion for this domain (same template for both domains)T0334 99.8 55 95 66 Inaurate loop predition for 8-residue insertion (di�ult)T0340 96 101 46 112 Alignment perfet, but bad overage (hain ends missing)T0341 95 34 15 33 Too few residues modelled (95% modelled); alignment error
T 0341D1 92.6 66 17 77 Good alignment, but bad overage at C-term; non-onserved loop not modelled
T 0341D2 100 6 22 53 Alignment error: Wrong loation of deletions in region of low sequene identityT0345 98.4 81 21 88 Alignment good; 3 residues missing at N-terminal hain endT0359 97.8 51 64 38 Alignment good, but only 97.8% modelledT0360 100 29 44 28 Alignment good; bad modelling of hain endsT0362 94.4 80 57 170 (47) Bad model seletion (model 3 muh better); di�ult 8-residue insertionT0364 87.1 72 14 87 Too few residues modelled (<90%); alignment error at C-terminal endT0370 88.2 45 7 32 24-residue insertion at C-terminal end not modelledT0371 93.6 62 10 60 Too few residues modelled in domain 1
T 0371D1 88.9 67 11 83 N-terminus not modelled; di�ult insertion around position 220
T 0371D2 100 29 28 22 Best available template used; nie alignment; 2 non-onserved loops not modelledT0373 100 2 21 12 Good alignment; N-terminus perfet; C-terminus minor alignment shiftT0374 96.2 39 21 36 Suboptimal template seletion; 2 di�ult long loop regions; minor alignment errorT0375 97 41 15 83 Di�ult alignment: multiple shifts; large movement of β-sheet in interfae regionT0376 99 53 42 47 Minor alignment error; struturally var. helix and nononserved loop not modelledT0379 100 4 13 2 Alignment very good; aurate extension of N-terminal helix

T 0379D1 100 4 10 3 Alignment very good; aurate extension of N-terminal helix

T 0379D2 100 32 57 18 Alignment OKT0380 95.8 58 20 55 Alignment good, but missing residues at C-terminal hain endT0384 98.7 49 41 63 better templates available; huge insertion di�ult to model; one alignment shiftaSubsript D1 and D2 speify domain 1 and 2 in multi-domain proteins.bRank based on GDT_TS (total number of models ∼130).Rank based on the all-atom RMSD between experimental struture and model.



94 Results and Disussion3.1.5.1 Loop predition at CASP7Loop predition at CASP7 has been performed using the fragment database desribedin Methods (Chapter 2.3). At the time of the predition season, only a preliminaryversion of the soring funtion used for loop ranking was implemented. The loops wereranked based on a ombined soring funtion onsisting of a torsion energy term aswell as a solvation and pairwise interation energy term onsidering only the Cα atoms.Based on this ranking, loops have been manually seleted by additionally taking intoaount sequene onservation between the target loop and the fragment extrated fromthe database. In the atual version of the soring funtion, an all-atom implementationof the pairwise interation potential and the solvation potential are used. The generalperformane of the urrent loop modelling routine is desribed in Chapter 3.3.Nevertheless, in many ases, the simple soring funtion was able to identify suitableloops from the fragments database. Due to the fat that human intervention has beenused in loop modelling, a detailed evaluation of all loops in all CASP models is notgiven here, but instead, the loop modelling results of two seleted targets are shown hereexemplarily whih larify the strengths as well as the limitations of the loop preditionprotool.In our �rst model submitted to CASP7 (target T0303), 3 insertions had to be modelledas it an be seen from the alignment between target and template 1ah5_A in Figure3.11. Target and template have a sequene identity of about 23%. A omparisonbetween the experimental struture of the target (PDB ode: 2hsz) and the �nalmodel revealed that a nononserved segment between Leu-195 and Pro-209 shouldhave been remodelled as well (see superposition of target and model in Figure 3.12). Inthis nononserved segment, two mutations involving glyine (position 199) and proline(position 203) an be observed whih is most likely the reason for the observed loalrefolding.Loop 1 (anhor group positions 55 and 74) represents a very di�ult modelling aseinvolving a huge insertion of 11 residue. Insertions of that size an usually not bemodelled sine most loop predition programs are limited to loops of length 12 or 15and, more importantly, the quality of loop preditions rapidly dereases with loopslonger than approximately 7 or 8 residues. The limitations are disussed in more detail
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HHHHHHHCCEEEEECCCCCCHHHHHCCCCCEEECCCCHHHHHCCFigure 3.11: Alignment between target T0303 and template 2ah5_A: 3 insertionand 1 non-onserved loop.in Chapter 3.3. Furthermore, long insertions and to some extent also deletions leadtendentially to distorsion of the anhor region, i.e. the region on both sides of theinsertion is less struturally onserved between target and template, suh that an evenlonger part need to be remodelled. It has been tried to model the insertion with afragment of the length 20 (inluding anhor groups) but the predition, as expeted,failed ompletely: the bakbone RMSD of the loop (without anhor residues) betweenexperimental struture and model was 7.36 Å (see Figure 3.12). But, in some ases,long ases long fragments an be predited rather aurately, as we will see for loop 3.Loop 2 (anhor group positions 107 and 114) is a 6 residues loop and models a 1-residue insertion between a helix on the N-terminal side and a beta strand on theC-terminal side. This loop has been modelled rather aurately as re�eted by thevery similar bakbone geometry between model and experimental struture (Figure3.12). The bakbone RMSD of 1.82 Å is aeptable for the modelling ase, where the
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Loop 2: 107-114

Loop 3: 137-155

Loop 1: 55-74

non-conserved
loop

Figure 3.12: Superposition of model (thin tube) and target T0303 (thik tube):loop predition [115℄.anhor residues, on whih the fragment is �tted, are inexat to a ertain extent. In thisase both anhor residues (leuine 107 and isoleuine 114) had an RMSD of around 1Å (but they were the best anhors in this region).Loop 3 involves modelling of an insertion of 2 amino aids as it an be seen fromthe alignment shown Figure 3.11. Sine we were not sure if the N-terminal betastrand belongs to the struturally onserved region and an therefore be used from thetemplate, it has been deided to put the anhor group before the beta strand at leuine137. The anhor group on the C-terminal side of the insertion was set at alanine 155sine the two mutations involving proline just before were expeted to have struturalonsequenes. Finally, 17 residues have been remodelled with an exeptionally goodRMSD (for this loop length) of 2.37 Å. This an be mainly attributed to the fat thata fragment from a homologue of the target ould be used to build the loop (i.e. thefragment origines from a struture with 28.3% sequene identity to the target basedon the BLAST loal alignment). The beta strand mentioned before was indead partly
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Leucine 107 Isoleucine 114

Figure 3.13: Superposition of model (light green) and target T0303 (light blue):loop 2 (residues 107-114).struturally onserved, suh that 5 residues less ould have been remodelled, but stilla loop of 12 residues needed to be modelled.During CASP7, the anhor groups in the loop modelling proess have been de�nedmanually by plaing them in regions on both sides of the gap whih are expeted tobe struturally onserved between target and model. A rather onservative approahwas used for the de�nition of the anhor groups leading to potentially longer fragmentsto be remodelled as neessary (for a more detailed desription of the approah, seeChapter 2.2.2) in Methods. The trade-o� between auray of the anhor groups andlenght of the fragment to be remodelled is adressed in the next setion.Figure 3.15 shows the very aurate predition of a beta hairpin struture in targetT0364. The alignment shows a 2-residue insertion between two beta strands as it anbe seen in Figure 3.16.The anhor groups were plaed in the onserved region (in terms of sequeneonservation) of the strands on both sides of the insertion (arginine 97 and leuine104). The six residues have been modelled with an exellent bakbone RMSD of 0.57Å. Figure 3.15 shows, that the bakbone superimposes almost perfetly between targetand model and most of the sidehains point into the right diretion.
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Leucine 137

Alanine 155

Figure 3.14: Superposition of model (light green) and target T0303 (light blue):loop 3 (residues 137-155).The loop modelling ases desribed above, point out general problems in omparativemodelling and loop predition but also show some advantages of the method presentedhere ompared to other loop predition programs:
• Remodelling of loop with no insertions and deletions: Loop regionswithout insertions and deletions sometimes deviate substantially between tar-get and template as a onsequene of multiple amino aid substitutions (i.e.low sequene onservation) in this region or of onsiderable di�erenes in thestrutural environments, e.g. the loop in the template is part of an interfaeregion whereas in the target not, therefore the loop an indepedently adopt itsonformation. The evaluation of the CASP7 models showed that non-onservedloops ontaining mutations involving glyine and proline have to be treated withaution and potentially need to be remodelled. The question, whether to remodela ertain non-onserved loop or not is di�ult to answer and it has to be takeninto aount that loop predition itself is only possible with a ertain auraydepending on the loop length. Investigating the loal onformational energy
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Leucine 104

Arginine 97Figure 3.15: Very aurate predition (light green) of a beta hairpin struture intarget T0364.
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psipred   EEHHHHHHCCCCCEEEEEEEEEECCCEEEEEEEEEEECCCCEEEEEEEEEEEEEECCCCC
dssp      EEEEECCCCCCCCEEEEEEEEEEECCCEEEEEEEEEE  CCEEEEEEEEEEECEE  CCCFigure 3.16: Extrat of the alignment between target T0364 and the orrespondingtemplate.in this region an support the deision. There is still an urgent need for toolsassessing the loal model quality as reently underlined in the CASP7 assessmentreport of the quality assessment ategory [49℄. Loal model quality assessment,as desribed in Chapter 3.4, is a step in this diretion.

• Using fragments from homologues to the target: Generally, if fragmentsfrom homologous strutures to the target are present among the top soringfragments, these should be prefered. Fragments from homologous strutures havea higher probability to be orret sine they tend to have a similar amino aidonstitution ompared to the target loop and origine from a similar struturalenvironment. As shown in Chapter 3.3 desribing the general performane of theloop predition routine, fragments from homologues are almost always found onthe top ranks.
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• Modelling of loop motifs: With the given method, frequently ouringstrutural loop motifs are generally easier to predit than rare ones. In this ase,a variety of suitable fragments are present in the database, whih inreases thehane of indentifying good andidates in the seletion proess. As a onsequeneof the statistial nature of the soring funtion used for loop ranking, frequentlyouring motifs potentially get assigned lower energies.
• Features of the fragment database: The fragment database presented inthis work di�ers in many respets from other fragment databases desribed inliterature (FREAD [53℄, LIP [139℄, methods by Fernadez-Fuentez et al. [70℄)and several features of the database have shown to be advantageous in themodelling proess during CASP7. The most important advantage is the fatthat not only pure loop segments are stored in the database but all fragmentsfrom a representative set of high-resolution proteins strutures. This allowsthe modelling of fragments ontaining seondary struture elements or partsof them. This is often neessary if, for example as a onsequene of a longinsertion, the surrounding seondary struture elements are extended or newseondary strutures are formed in the loop region. This situation an typiallynot be proessed with pure loop databases. Another situation in whih parts ofseondary struture elements need to be remodelled is the kink observed in heliesas a onsequene of proline [14, 130℄. Helies with mutations between target andtemplate involving proline an be remodelled using the fragment database. Asdesribed in Chapter 2.3.1 in Methods and later in Chapter 3.1.5.3 onerningthe modelling of hain ends, the MySQL database allows to spei�ally searh forfragments showing a ertain seondary struture or sequene pattern. In the aseof the proline indued helix kink desribed above, the database an be spei�allysanned for fragments whih ontain an initial helix segment followed by someloop residues (sine the subsequent loop probably is remodelled as well) and whihhave a proline residue at a given �xed position in the helix. The ability to modelnot only loops but any strutural segment represents an overlap to fragmentassembly methods suessfully used in ab initio modelling and highlights thepotential of the given methods to be applied in areas beyond pure omparativemodelling.



3.1 CASP7 results 1013.1.5.2 Manual anhor group predition at CASP7The standard approah in omparative modelling is to plae the anhor groups near theend points of the surrounding seondary struture elements of the template (typially1-2 residues inside). At CASP7, we additionally took into aount the agreementbetween the alulated positions of the seondary struture elements in the templatewith the potential loation of the seondary struture elements in the target based on aonsensus of 3 state-of-the-art seondary struture predition programs (see Methodson page 39). This an provide evidene whether a seondary struture element ispossibly extended or trunated with respet to the situation in the template. Thesequene onservation between target and template in the anhor region is taken intoaount as well.During CASP7, as mentioned in the previous setion, the anhor groups have beenoften positioned further away from the gap as neessary resulting in longer fragmentswhih are more di�ult to model. As it an be seen in Chapter 3.3, the loop modellingauray rapidly drops for loops longer than 7 residues. At CASP7, often di�erentanhor group ombinations have been used for loop predition if the situation was notlear. In most ases, this approah resulted in a set of alternatives models from whihthe best ones were seleted based on the predited model energy. But in a few ases,a seletion of the anhor groups and the orresponding loop was made based on aomparison of the loop ranking output �les: if for one anhor group ombination onlyloops with similar sores are found on the top ranks but for the other ombination a loopwith a onsiderably better sore than the rest was found on the �rst rank (e.g. beausethe fragment origins from a homologous struture), the later was hosen for all models.Loops with signi�antly higher sores than the rest of the fragments are potentiallypromising andidates. Thus, inspeting di�erent alternative anhor groups seems to beindeed a reasonable approah espeially for knowledge-based loop predition protools(see Chapter 3.4.2 for a more detailed disussion).3.1.5.3 Modelling of hain endsChain ends are often highly �exible, partiularly if they do not establish regularseondary strutures. But if the hain ends are not �exible, a methods is needed



102 Results and Disussionwhih an model these regions. Most of the existing loop predition programs are notable to model hain ends sine they are speialised on loops. Futhermore, the majorityof knowledge-based loop predition programs use the RMSD between the anhor groupresidues and the terminal fragment residues after �tting as the main soring funtionterm whih annot be used here. In this situation, only one anhor group is given andthe RMSD of all fragments after �tting will be more or less the same. In the methoddesribed in this work, the ranking is performed based on a statistial potential soringfuntion investigating the interations with the strutural environment (see Methods).At the beginning of the CASP7 predition season, our pipeline was not able yet tomodel hain end (only loops, where two anhor groups are given). As a onsequene,most of our models show a low target overage whih strongly in�uened the rankingbased on GDT_TS. As it an be seen from the overview table on page 93, missinghain ends were the main reason why some of the models did not sore better. In aranking based on all-atom RMSD, two third of the models designated as model1 rankedamong the top 25 preditions (among approximately 130 groups).Chain ends are modelled with an adapted version of the loop predition routine:fragments from the database are �tted on one anhor group whih results, as aonsequene of the missing distane onstraints (i.e. Calpha distane of the endpointsand RMSD of the anhor groups), in an enormous amount of possible andidates(atually all fragments of the given length present in the database). The followingproedure was used in order to redue the number of possible andidates:
• The lash �lter whih searhes for overlaping van der Waals spheres between thefragment bakbone atoms and the rest of the protein removes the majority of theandidate fragments.
• Only a ertain fration of the fragments is retained based on the �goodness of �t�on the anhor region (i.e. RMSD over the anhor group atoms). Three �ttingstrategies have been implemented: �tting on the bakbone atoms of one residueor two residues and, alternatively, �tting on three onseutive Calpha atoms.Fitting of more than one residue turned out to be the best strategy for this task.If, for example, a terminal helix needs to be extended, �tting on more than oneresidues inreases the hane that the helix fragment has the right orientation.
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• In order to restrain the number of possible fragments in the initial seletion, regu-lar expression pattern on the sequene or on the seondary struture onstitutionof the fragment an be de�ned. For example for the extension of a helix element,only fragments onsisting of an initial helix segment are needed. In analogy, forexample in the presene of a onserved proline, only fragments with proline at thegiven position are retrieved from the database. This allows to redue the numberof andidates by several order of magnitude and therefore greatly improves therun time and the auray of the predition.
• Ranking has been performed with the same soring funtions as for loop predi-tion.
• Furthermore, omparing the sequene onservation of the top soring fragments(i.e. the agreement between the sequene of the segment in the target and thesequene of the original fragment) as well as a visual inspetion of the topsoring solutions in a moleular graphis viewer suh as Pymol provide additionalevidene for the �nal seletion.The struture predition of the N-terminal hain end in target T0373 is desribed hereexemplarily. As it an be seen from the alignment extrat in Figure 3.17, the targetontains an insertion with respet to the template and all three seondary strutureprograms indiate that the terminal helix present in the template (last line) is mostprobably extended in the target. For a detailed desribtion of the single data lines,visite Methods on page 42.

1        10        20        30        40        50        6
T0373     MPTNQDLQLAAHLRSQVTTLTRRLRREAQADPVQFSQLVVLGAIDRLGGDVTPSELAAAE
1jgsA     L-FNEIIPLGRLIHMVNQKKDRLLNEYLSPLDITAAQFKVLCSIRCAAC-ITPVELKKVL
conserv   :I *  : *   ::   :   * *   :::  ::: *: **: *  : :I:** **  :
conf      988620568888998999998898864142688857888899987437887777898864
consensus CCCCCHHHHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
psipred   CCCCCCHHHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
SSpro     CCCHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
phd       CCCCCHHHHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
dssp      C CCCCCCHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHCC ECHHHHHHHHFigure 3.17: Extrat of the alignment for target T0373 (N-terminal hain end).A loser inspetion of the target protein family revealed that the leuine at position



104 Results and Disussionnine was rather onserved. Therefore, the following regular expressions have been usedfor the seletion (the undersore stand for an arbitrary harater):regular expression for SSE: CCC__HHHHHregular expression for the sequene: ________L_The restaint seletion resulted in an initial set of 8764 fragments from whih all loopswhih a anhor group RMSD Z-sore above one standard deviation are removed. Thetop 10 fragments with the lowest energy are shown in Figure 3.18. The 10 fragmentsshow a high strutural diversity although they have a omparable energy. This re�etsthe unertainities assoiated with modelling of hain ends.
Alanine 10Figure 3.18: Strutural diversity among the 10 top soring fragments for the N-terminal hain end of T0373.As a onsequene of the orret assumption onerning the seondary struture onsti-tution of the target struture (the experimental struture indeed ontains 5 additionalresidues in helix onformation as ompared to the template), the N-terminal hain endof target T0373 was modelled very aurately as it an be seen from the superpositionof target and template in Figure 3.19 and this is probably the main reason why thismodel was the seond best predition at CASP7 (among the models designated asmodel1).In the absene of seondary struture elements, modelling of hain ends an be a verydi�ult task beause of the vast amount of possible onformations and the limited



3.1 CASP7 results 105ability of energy funtions to identify the native onformation. Sine hain ends areless onstraint by the strutural environment as ompared to for example regions inthe strutural ore. Their onformations are to a greater extent determined by thesequene itself and less by loal (in sequene) and non-loal strutural onstraints.Therefore, fragments from the database having a similar amino aid onstitution andorigin from similar environments (i.e. also hain ends) an be promising andidates.The fragment database desribed in this work ontains an entry for eah fragmentspei�ng whether the fragment is part of a hain end. Additionally, information aboutthe solvent exposure in the original environment is stored. This information ouldpotentially be used in this ontext.
N-terminal
chain end

Figure 3.19: Superposition of model and experimental struture of target T0373:The N-terminal hain end has been modelled very aururately.



106 Results and Disussion3.1.5.4 Modelling of sidehainsWhile establishing the modelling pipeline, it has been deided to use a onservativeapproah for sidehain modelling by leaving the sidehains onformation of onservedresidues (i.e. idential residues between target and template in the alignment) un-touhed and to only re-model sidehains of residues di�ering between target andtemplate and of ourse residues of regions whih have been remodelled (i.e. loops andhain ends). The SCWRL software [31℄ was used in order to alulate the sidehainonformations. This turned out to be a good strategy: �Group 191 (Shomburg-group)has the best results for rotamer auray, but it should be noted that this grouponly submitted preditions for 6 of the 28 target domains� [169℄. Figure 3.20 showsa omparison of the sidehain auray of the top performing groups in the ategoryhigh-auray template-based modelling (HA-TBM). The fration of sidehains (χ1angle in Figure a), χ1 and χ2 in Figure b)) modelled within 30 degree from the nativeonformation have been investigated and Z-sores over all groups are alulated inorder to ompare the performane.

Figure 3.20: Auray of sidehain modelling (Z-sores) of sidehain torsion anglehi-1 (a) and over hi-1 and hi-2 (b) (Shomburg-group: TS191) [169℄.The targets of the high-auray template-based modelling (HA-TBM) ategory arede�ned in the following manner:
• A suitable template was present in the PDB with LGA-S > 80 (LGA-S is asequene-idependent measure of strutural similarity).
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• At least one predition with GDT_TD > 80 was submitted to CASP7.
• A total number of 24 HA-TBM targets were evaluated.As mentioned above, only 6 of the total 28 HA-TBM domains have been proessedwhih should be taken into aount when omparing the performane with other groups.Nevertheless, sine we did not just pik the easiest targets from the 24 possible onebut ould not solve all of them due to time onstraints, the piture would be more orless the same. Beside the fat that SCWRL did a very good job, the deision to onlyremodel sidehains of non-onserved residues seems to be the ruial fator sine themajority of the groups most probably used SCWRL as well. Using as muh informationof the templates as possible is indeed one of the lessons whih has been learnt duringthe last CASP rounds. Currently, still no group is able to onsistently produe modelsbetter than the best template although there are an inreasing number of ases whereimprovement over the templates are shown [49℄.



108 Results and Disussion3.2 Model quality assessment
Assessing the quality of model is a vital step in protein struture predition as pointedout in the Introdution (see Chapter 1.2.4). Depending on the method and on themodelling di�ulty, usually a ertain amount of alternative models is generated rangingfrom a few alternative models (e.g. in omparative modelling) up to thousands or tenthousands of models (e.g. for ab initio methods based on fragment assembly in thisontext). A soring funtion (typially alled model quality assessment program) isneeded whih is able to disriminate between good and bad models and an potentiallyselet the best model.As a part of the modelling pipeline desribed above, a omposite soring funtionbased on 3 statistial potential terms as well as two other terms has been developed[16℄. The soring funtion was named QMEAN whih stands for Qualitative ModelEnergy ANanlysis. An early version of QMEAN was used at the CASP7 experimentin order to rank our own models and to identify the best models for submission.Additionally, we partiipated in the quality assessment ategory [49℄ whih was newlyintrodued in CASP7 in order to test the performane model quality programs. Thepreditors were asked to estimate the quality of all models predited by automatiservers. Motivated by the good results (we were among the top soring methods solelyrelying on the oordinates of a single model), we deided to further extend and optimisethe soring funtion. The performane of the optimised soring funtion (i.e. QMEAN)are desribed in the following.The setion is strutured as follows: First, the results of the optimisation of thedi�erent statistial potentials terms is presented. Afterwards, it is desibed how theterms are ombined in order to build the �nal omposite soring funtion QMEAN.In the subsequent setion, QMEAN is ompared to �ve well-established model qualityassessment programs using several omprehensive test sets. The setion ends witha onluding disussion of the results obtained on the di�erent test sets and with adesription of areas of possible future improvements.



3.2 Model quality assessment 1093.2.1 Optimisation of the statistial potentialsAll statistial potentials were extrated from a non-redundant protein data set of 1,471high-resolution strutures from the Protein Data Bank (PDB) [18℄. The seletion ofthe strutures was performed with the PISCES server [236℄ and additional quality�lters were applied as desribed in Methods (see page 58). The parametrisation ofthe di�erent potentials as well as the optimisation of the weighting fators for theombined potential were both performed on the CASP6 deoy set by analysing theregression between the GDT_TS sore of the models and the predited sore providedby the energy funtion. The CASP6 training set onsists of all models submittedto CASP6 with a GDT_TS sore above 20. Models with a sore below 20 an beonsidered as more or less random and are therefore useless for training purposes.For the purpose of providing an overview, Table 3.6 shows a short desription of allsoring funtion terms mentioned in this setion and the di�erent versions of QMEANwhih were built in order to assess the in�uene of the two agreement terms. In thefollowing, QMEAN, unless spei�ed with an index, always indiates the original soringfuntion onsisting of 5 terms (i.e. QMEAN5).For the three statistial potentials entering the QMEAN funtion a variety of alterna-tive implementations have been investigated. The Pearson's orrelation oe�ients forthe di�erent implementations of the statistial potentials as well as for the agreementterms are given below (Table 3.7-3.11).The orrelation between the sore from di�erent implementations of the residue-levelpairwise interation potential and the GDT_TS sore are shown in Table 3.7. The dataunderline the superior performane of the potentials based on Cβ atoms ompared tothe Cα implementation. Deriving the interation potentials in a seondary struturespei� manner further improves the orrelation whereas taking into aount solventaessibility does not add any value (see Chapter 3.2.4.5 in the disussion setion). Inthe seondary struture spei� implementation, the ontats of helix, strand, and loopresidues are ounted separately, whih seems to apture some harateristi featuresof the environment of residues belonging to the di�erent seondary struture states.The �nal implementation of the residue-level distane-dependent pairwise potential is



110 Results and DisussionTable 3.6: Short desription of the terms and their ombinations used in this in thiswork.soring funtion desriptiontorsion single Ordinary torsion potential based on phi and psi propensities of singleamino aids. Bin size: 10 degreetorsion 3-residue Extended torsion potential over 3 onseutive residues. Bin sizes: 45degree for the enter residue, 90 degree for the 2 adjaent residuespairwise Cα / pairwise Cβ Residue-spei� pairwise distane-dependent potential using Cα orCβ atoms respetively as interation enters . Range 3...25 Å, stepsize: 0.5 Åpairwise Cβ/SSE In analogy to pairwise Cβ, but a seondary struture spei� imple-mentation was used both for the derivation and appliation of thepotential.solvation Cβ Potential re�eting the propensity of a ertain amino aid for thea ertain degree of solvent exposure based on number of Cβ atomswithin a sphere of 9 Åaround the enter Cβ.SSE X Agreement between the predited seondary struture of the targetsequene (using method X, or onsensus of 3 methods) and theobserved seondary struture of the model as alulated by DSSP.QMEAN uses X=PSIPREDACCpro Agreement between the predited relative solvent aessibility usingACCpro (2 states buried/exposed) and the relative solvent aessi-bility derived from DSSP (>25% aessibility => exposed)QMEAN3 weighted linear ombination of torsion 3-residue, pairwise Cβ/SSE,solvation CβQMEAN4 weighted linear ombination of torsion 3-residue, pairwise Cβ/SSE,solvation Cβ, SSE PSIPREDQMEAN5 weighted linear ombination of torsion 3-residue, pairwise Cβ/SSE,solvation Cβ, SSE PSIPRED, ACCprobased on Cβ atoms as interation enters and the radial distribution between 3 and 25Å (bin size 0.5 Å) is taken into onsideration (with seondary struture spei�ity).An all-atom pairwise potential was established whih investigates the interationsbetween all 167 atom types ouring in proteins (i.e. eah non-hydrogen atom in the 20amino aids belongs to a di�erent atom type). As for the residue-level potentials, theseondary struture spei� implementation results in a better orrelation as omparedto the normal one (see Table 3.8). All �interations� in the interval from 3 to 20 Å (binsize 0.5) are taken into aount. Interestingly, ignoring all ontats loser than 3 Åresults in a onsiderably better orrelation to GDT_TS. In this way, hydrogen bondsare ompletely ignored sine the distane between the two atoms partiipating in a



3.2 Model quality assessment 111Table 3.7: Correlation between GDT_TS and the residue-level pairwise potentialon the CASP6 training set.implementation Cα Cβ Cβ,SSE Cβ,SSE,ACCrange: 0-20 Å, bin size: 0.5 Å -0.272 -0.365 -0.454 -0.473range: 0-25 Å, bin size: 0.5 Å -0.365 -0.445 -0.514 -0.528range: 0-30 Å, bin size: 0.5 Å -0.430 -0.498 -0.531 -0.539range: 3-20 Å, bin size: 1 Å -0.452 -0.532 -0.598 -0.598range: 3-25 Å, bin size: 1 Å -0.520 -0.562 -0.608 -0.608range: 3-20 Å, bin size: 0.5 Å -0.457 -0.519 -0.582 -0.587range: 3-25 Å, bin size: 0.5 Å -0.521 -0.558 -0.601 -0.603range: 3-20 Å, bin size: 0.2 Å -0.444 -0.507 -0.546 -0.557Table 3.8: Correlation between GDT_TS and all-atom pairwise potential on theCASP6 training set.implementation all-atom all-atomSSErange: 0-15 Å, bin size: 0.5 Å -0.247 -0.286range: 0-20 Å, bin size: 0.5 Å -0.302 -0.353range: 3-15 Å, bin size: 0.5 Å -0.471 -0.536range: 3-18 Å, bin size: 0.5 Å -0.519 -0.581range: 3-20 Å, bin size: 0.5 Å -0.540 -0.600range: 3-15 Å, bin size: 0.2 Å -0.462 -0.519range: 3-20 Å, bin size: 0.2 Å -0.557 -0.589hydrogen bond is typially below 3 Å. Given the fat that hydrogen bonds are one ofthe main ontributors to the overall protein stabilty, this may look strange at �rst sight.But it has to be taken into aount that models, and not exat experimental struturesare analysed. Espeially for very oarse models (e.g. model from ab initio struturepredition), not the exat loation of the single atoms shall be investigated but theoverall orretness of the fold. Therefore, the high ontribution of the hydrogen bondingterm would potentially hide the signal of the other non-ovalent energy ontributions.Inluding hydrogen bonding in the soring funtion would potentially favour modelswith more seondary struture elements (sine these are stabilised by hydrogen bonds).The energy funtion would be very sensitive onerning small perturbations in theloation of the atoms with the onsequene, that a small shift of e.g. 0.5 Å awayfrom the ideal hydrogen bonding distane would result in a dramati inrease in theinteration energy.



112 Results and DisussionIn the �nal version of QMEAN, the all-atom potential has not been integrated. Over theentire range of modelling di�ulty, the residue-level potential performs better than theall-atom implementation. A omparison of the performane of the all-atom interationpotential on models from di�erent CASP7 ategories suggests that the strength of thispotential is the assessment of template-based models and not of impreise models fromthe free modelling ategory. An optimal integration of both potentials desribed aboveusing mahine learning algorithms (i.e. support vetor mahine or neural network) isurrently under development.For the solvation potential, whih re�ets the propensity of an amino aid to be foundburied in folded proteins, the solvent aessiblity is approximated by ounting thenumber of Cβ within 9 Å around the Cβ of a given amino aid. As it an be seenfrom Table 3.9, sphere radii of 9 and 12 Å result in equally good orrelations and ithas been deided to use the smaller radius sine the same information ontent seemsto be aptured.Table 3.9: Correlation between GDT_TS and residue-level solvation potential onthe CASP6 training set.implementation Cα Cβradius of sphere: 5 Å -0.200 -0.153radius of sphere: 6 Å -0.431 -0.426radius of sphere: 7 Å -0.525 -0.551radius of sphere: 8 Å -0.542 -0.562radius of sphere: 9 Å -0.559 -0.568radius of sphere: 10 Å -0.541 -0.554radius of sphere: 11 Å -0.552 -0.559radius of sphere: 12 Å -0.559 -0.569radius of sphere: 13 Å -0.552 -0.562radius of sphere: 14 Å -0.547 -0.557All hains present in the oordinate �les have been taken into aount in orderto alulate the solvent aessibility. A potential improvement by onsidering thebiologial units is dissused later in Chapter 3.2.4.5.A oarse-grained torsion angle potential using the phi/psi angles of three onseutiveresidues was developed. The bin sizes are 45 degrees for phi and psi of the enter



3.2 Model quality assessment 113residue and 90 degrees for the neighbouring torsion angles. Table 3.10 underlinesthe onsiderably better orrelation of the 3-residue torsion angle potentials with theGDT_TS sore as ompared to the regular single residue torsion angle potential. Foromparison purposes, the performane of the single residue torsion potential is shown.Table 3.10: Correlation between GDT_TS and torsion potential over 3 residues onthe CASP6 training set.implementation orrelationbin size entral residue: 30◦, bin size adjaent residues: 45◦ -0.498bin size entral residue: 30◦, bin size adjaent residues: 90◦ -0.515bin size entral residue: 45◦, bin size adjaent residues: 45◦ -0.511bin size entral residue: 45◦, bin size adjaent residues: 90◦ -0.517bin size entral residue: 90◦, bin size adjaent residues: 90◦ -0.504single residue torsion potential: 10◦ -0.350Table 3.11: Correlation between GDT_TS and agreement terms on the CASP6training set.desription orrelationagreement DSSP - PSIPRED -0.561agreement DSSP - ProfSe -0.514agreement DSSP - SSpro -0.543agreement DSSP - onsensus (PSIPRED, ProfSe, SSpro) -0.555agreement DSSP - ACCpro -0.529Two terms re�eting the agreement between predited features of the target sequeneand alulated features from the model enter the �nal version of QMEAN. A termalled �SSE PSIPRED� in the further ourse of this work desribes the agreementbetween the predited seondary struture of the sequene by PSIPRED [103℄ andthe observed seondary struture from the model as alulated by DSSP [107℄. Twofurther seondary struture predition programs have been investigated (ProfSe [177℄and SSpro [35℄) as well as the use of a onsensus of the three, but did not result in abetter regression. The solvent aessiblility agreement term is based on the preditedsolvent aessibilty of ACCpro [35℄ and the alulated of the model by DSSP. In theomposite soring funtion (QMEAN5), both terms lead to a signi�ant improvementin the performane as ompared to the version solely based on statistial potentials(see Table 3.12 in the next setion).



114 Results and Disussion3.2.2 QMEAN: Generation of the omposite soring funtionTable 3.12 ontains regression oe�ients ahieved in a regression of the modelsGDT_TS sores and the QMEAN sores. Two di�erent regression shemes wereinvestigated: A diret orrelation of the sores (Pearson's orrelation oe�ient) anda rank orrelation (Spearman's rho) in the hope of taking into aount a possiblenon-linear relationship. As an alternative, the sores are transformed into Z-sores byomparing the given model to 1000 other models with the same struture but randomlyshu�ed sequenes. Shu�ing the order of the residues has been shown [137℄ to workalmost as good as randomising the struture as originally proposed by Sippl [198℄.Furthermore, two di�erent strategies for the optimisation of the weighting fators havebeen investigated: First, an optimisation of the regression on a target-spei� basis bymaximising the average of the regression oe�ients ahieved on the individual targetsand seond, a global approah in whih the regression is optimised by using all modelsfrom all the targets at one.Table 3.12: Absolute values of the Pearson orrelation oe�ients obtained in aregression of the GDT_TS sore against the predited sore.Pearson's orrelation oe�ient Spearman's . .soring funtion global global/Z-sore targetaveraged targetaverage/Z-sore targetaveraged targetaverage/Z-soretorsion single 0.35 0.39 0.25 0.3 0.23 0.24torsion 3-residue 0.52 0.5 0.35 0.39 0.32 0.31pairwise Cα 0.54 0.57 0.42 0.54 0.37 0.42pairwise Cβ 0.57 0.59 0.47 0.56 0.43 0.46pairwise Cβ/SSE 0.61 0.6 0.49 0.58 0.45 0.48solvation Cβ 0.58 0.55 0.5 0.52 0.46 0.43SSE PSIPRED 0.57 0.57 0.52 0.54 0.48 0.48SSE ProfSe 0.53 0.53 0.49 0.52 0.45 0.45SSE SSpro 0.56 0.56 0.5 0.52 0.45 0.45SSE onsensus 0.57 0.57 0.51 0.53 0.46 0.46ACCpro 0.53 0.53 0.47 0.51 0.47 0.47QMEAN 3terms 0.66 0.64 0.56 0.58 0.52 0.52QMEAN 4terms 0.71 0.69 0.62 0.64 0.57 0.58QMEAN 5terms 0.72 0.69 0.64 0.65 0.59 0.6



3.2 Model quality assessment 115The regression oe�ients ahieved for the di�erent soring funtion terms and theirombinations do not di�er muh between the six optimisation strategies and all showthe same tendeny. QMEAN5, whih is a linear ombination of �ve terms (seeTable 3.4), onsistently ahieves the highest regression oe�ients for all optimisationstrategies, diretly followed by QMEAN4. QMEAN3, onsisting only of statistialpotential terms, shows a slightly worse orrelation but is still better than any othersingle term. A Pearson's orrelation oe�ient of 0.72 was observed for QMEAN5 inthe global approah in whih the regression is optimised over all models of all targetsat one. The satter plot in Figure 3.21 shows a lear trend but also the presene ofsome outliers.
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Figure 3.21: Correlation between GDT_TS and the omposite sore (QMEAN5) onthe models in the CASP6 traing set. Models with GDT_TS < 0.2 are not onsidered.The weighting fators ahieved in the two target-spei� approahes (Spearman andPearson) are quite similar to eah other. In omparison to those in the global strategy,lower weights were assigned for the torsion and pairwise term (data not shown). Inany ase, the performane di�erenes when applying the weights of the six strategiesto the deoy sets desribed in the next two setions are overall negligible.



116 Results and DisussionFor the sake of simpliity, the weights of the global optimisation strategy are usedthroughout:
QMEAN5 = 0.3 ∗ Scoretorsion 3−residue + 0.17 ∗ Scorepairwise Cβ,SSE

+ 0.7 ∗ Scoresolvation Cβ + 80 ∗ ScoreSSE PSIPRED + 45 ∗ ScoreACCpro (3.1)Table 3.13 shows the ross-orrelation between QMEAN and its omponent termsas well as some additional terms for omparison purposes. It an be seen that theseondary struture spei� implementation of the pairwise interation potential doesnot have a signi�antly higher ross-orrelation to any of the other terms than theregular one.Table 3.13: Cross-orrelation analysis of the terms entering the ombined sore(QMEAN) and some seleted sores for omparison. The Pearson's orrelationoe�ients are based on the global optimisation strategy without Z-sores.
torsion single torsion 3-residue pairwiseCβ pairwise Cβ/SSE solvation SSE PSIPRED ACCpro QMEAN3 QMEAN5 GDT_TStorsion single 1 0.81 0.41 0.43 0.34 0.35 0.31 0.59 0.54 -0.35torsion 3-residue 0.81 1 0.58 0.6 0.5 0.48 0.41 0.78 0.73 -0.52pairwise Cβ 0.41 0.58 1 0.97 0.71 0.43 0.58 0.89 0.83 -0.57pairwise Cβ/SSE 0.43 0.6 0.97 1 0.72 0.44 0.62 0.92 0.85 -0.61solvation 0.34 0.5 0.71 0.72 1 0.48 0.62 0.87 0.81 -0.58SSE PSIPRED 0.35 0.48 0.43 0.44 0.48 1 0.42 0.54 0.81 -0.57ACCpro 0.31 0.41 0.58 0.62 0.62 0.42 1 0.65 0.64 -0.53QMEAN3 0.59 0.78 0.89 0.92 0.87 0.54 0.65 1 0.93 -0.66QMEAN5 0.54 0.73 0.83 0.85 0.81 0.81 0.64 0.93 1 -0.72GDT_TS -0.35 -0.52 -0.57 -0.61 -0.58 -0.57 -0.53 -0.66 -0.72 1The solvation potential shows a relatively high ross-orrelation to the pairwise poten-tials whih an be assigned to the similarity of their implementation. The orrelationto the ACCpro term is lower than ould be expeted.The integration of the SSE PSIPRED terms results in an inrease of the regressionoe�ient of at least 0.05 in all the optimisation strategies (Table 3.12) while having no



3.2 Model quality assessment 117notieable ross-orrelation to any of the other terms and QMEAN3 (Table 3.13). TheACCpro term, desribing the agreement between the predited and observed solventaessibility, only leads to a minor inrease of the regression oe�ients of QMEAN5.ACCpro shows a ross-orrelation around 0.6 to the distane-dependent potentialsand the solvation potential and a omparison of the orrelation to QMEAN3 andQMEAN5 would suggest that ACCpro does not add muh value to the ombinedsore. However, Table 3.16 proves that the opposite is true: ACCpro shows a verygood performane aording to the enrihment quality measures and is responsible forthe onstant improvement in all quality measures of QMEAN5 over QMEAN4.Aording to Table 3.13, a major part of the disriminatory power of QMEAN3 anbe assigned to the pairwise Cβ/SSE and to the solvation potential. The orrelationof the 3-residue torsion angle potential is still rather high (regression oe�ient 0.78).The seondary struture agreement term shows a signi�antly higher orrelation toQMEAN5 than ACCpro.3.2.3 QMEAN: Comparison with other methodsThree omprehensive test sets were used in order to assess the performane of QMEANand ompare it to other state-of-the-art methods. The �rst test set onsists ofthree standard deoy sets from Deoys 'R' Us [182℄ whih have been frequentlyused in literature in order to test soring funtions. Deoys are omputer generatedonformations of protein sequenes that possess some harateristis of native proteinstrutures, but are not biologially real. The seond test set onsists of onformationsgenerated during a moleular dynamis (MD) simmulation and allow a omparison ofQMEAN with a moleular mehanis (MM) fore �eld. The third test set onsists ofall server models submitted to CASP7 and represents the same databasis whih hasbeen used for the quality assessment ategory of the last CASP [49℄.3.2.3.1 Performane on three standard deoy setsIn order to ompare the performane to several well-established statistial potentials,QMEAN was tested on three standard deoy sets from Deoys 'R' Us [182℄. As



118 Results and DisussionTable 3.14: Comparison of QMEAN with other methods in the performane ofseleting the native struture in some standard deoy sets from Deoys 'R' us.4state_redued lattie_ss�t LMDSrank1a Znatb rank1 Znat rank1 ZnatProQ 5/7 4.1 7/8 12.1 4/10 3.7Errat 1/7 2.5 3/8 5.1 5/10 3.1ProsaII 5/7 2.7 8/8 5.6 6/10 2.5Verify3D 4/7 2.6 7/8 4.5 2/10 1.4SNAPP 3/7 2.6 5/8 3.5 2/10 1.1AKBP 7/7 3.2 8/8 6.6 3/10 −0.5DFIRE 6/7 3.5 8/8 9.5 7/10 0.9RAPDF 7/7 3 8/8 7.2 3/10 0.5FRST 7/7 4.4 8/8 6.7 6/10 3.5torsion 3-residue 7/7 3.6 6/8 5 7/10 3.7pairwise Cβ/SSE 3/7 2 7/8 5.1 1/10 0.4solvation 0/7 1.6 3/8 3.1 0/10 1.1SSE PSIPRED 0/7 1.6 7/8 5.4 2/10 1.3ACCpro 1/7 2 5/8 3.7 3/10 1.9QMEAN3 4/7 2.7 8/8 6.2 2/10 2.3QMEAN4 3/7 2.4 8/8 7.5 4/10 2.3QMEAN5 4/7 2.5 8/8 7.7 6/10 2.7arank1: Number of deoy set in whih the native struture was found on the �rst rank.bZnat: Z-sore of the native struture ompared to the ensemble of struture in the deoy set.an be seen from Table 3.14, the 3-residue torsion angle potential shows the overallbest performane in seleting the native struture and outperforms all other terms ofQMEAN as well as all QMEAN versions. Exept for the lattie_ssfit deoy set,the torsion angle potential also produes the highest Znat sores.The pairwise potential performs omparably well on lattie_ss�t, shows a moderateperformane on 4state_redued and fails on LMDS. The solvation potential onlyprodues reasonable Z-sores on the lattie_ss�t but fails ompletely on the othertwo sets. Comparing the performane of QMEAN5 on the 3 deoy sets, it seems thatQMEAN5 performs best on lattie_ss�t. In general the performane of QMEAN5 isomparable to the other methods taking into aount the fat that QMEAN has been
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Figure 3.22: Correlation between GDT_TS and the omposite sore (QMEAN5)on the models of the moleular dynamis simulation deoy set of Fogolari et al. [81℄.trained for model quality assessment and not spei�ally for the task of identifyingnative strutures. The advantage of QMEAN5 as a ombined soring funtion overenergy funtions based on a single term is the dereased hane to fail on some deoysets generated based on a spei� method. Although the data basis is too sparse forwell-founded onlusions, Table 3.14 suggests that the performane of a ertain soringfuntion is dependent on the deoy set. More preisely, how a given deoy set has beenbuilt appears to allow some terms to perform better on one deoy set than on another.3.2.3.2 Performane on a moleular dynamis deoy setThe deoy set generated by Fogolari and o-workers [81℄ onsists of 6,255 snapshotsfrom 5 di�erent moleular dynamis simulations of the thermostable subdomain fromthe hiken villin headpiee. Sine one simulation started from the native strutureand the other 4 from alternative minimised onformation, this yields a wider range ofRMSD values ompared to the previously mentioned deoy sets whih typially haveonly few onformtion lose to native. The other advantage is that it allows a diretomparison with moleular mehanis fore �elds.



120 Results and DisussionTable 3.15: Comparison of QMEAN and its terms with three moleular mehanisenergy funtions, a ontat potential and FRST.soring funtion logPB1
a logPB10

a F.E.b r2 RMSDdontat -1.08 -1.08 13.8 0.62 3.03FRST -1.38 -1.94 23.2 0.48 2.61MMe -0.25 -1.39 10.6 0.21 7.45MM/GBSAe -1.71 -2.02 29.6 0.66 2.4MM/PBSAe -1.79 -2.02 23.2 0.58 2.35QMEAN3 -1.5 -3.5 36.5 0.53 2.52QMEAN4 -1.71 -2.8 90.2 0.56 2.4QMEAN5 -1.51 -3.5 88 0.57 2.51torsion 3-residue -1.26 -2.8 58.4 0.57 2.71pairwise Cβ/SSE -1.02 -1.41 35.5 0.64 3.34solvation -0.32 -0.98 6.1 0.2 7.15SSE PSIPRED -1.32 -1.32 91.2 0.55 2.58ACCpro -3.5 -3.5 63 0.5 1.84a
logPB1 and logPB10 are the log probability of seletion the highest GDT_TS model as the best model or among the ten best-soringmodels, respetively.bF.E. stands for fration enrihment.Person's orrelation oe�ientdRMSD of the struture with the lowest sore assigned by the energy funtion.eSoring by a moleular mehanis (MM) fore �eld by using the Generalized Born surfae area (GBSA) or the Poisson-Boltzmannsurfae area (PBSA) method for solvation e�ets.As an be seen from Figure 3.22, QMEAN onsistently assigns low energies to thenear-native onformations of the simulation starting from the native struture (oloredin blak). Espeially the deoys from the native simulation show a lear orrelationbetween the RMSD and the sore predited by QMEAN5. Although the nativestruture was not predited to have the lowest energy, several onformations around 2Å RMSD get quite low energies. This is also re�eted by the exellent logPB10 valueof QMEAN5 as shown in Table 3.15. A desription of the quality measures is given inthe footer of Table 3.15 and more detailed in Methods on page 64�.The solvent aessibility agreement term seems to be quite good in identifying near-native strutures and to a ertain extent also the torsion angle potential over threeresidues, as re�eted by the low logPB10 value and the high fration enrihment sore.The seondary struture agreement term produes a fration enrihment of over 90%



3.2 Model quality assessment 121whih indiates that there were no major hanges in seondary strutures during thesimulation starting from the native struture. The RMSD values of the onformationwith the lowest sore are more or less the same for all three QMEAN versions whereasACCpro is able to pik the seond best onformation. The solvation potential produesbad results aross all quality measures. In omparison to the three versions of moleularmehanis (MM) energy funtions, QMEAN shows omparable orrelation oe�ientsand logPB1 values but performs signi�antly better in the enrihment of near-nativesolutions.3.2.3.3 Performane on the CASP7 deoy setA di�erent, and perhaps more realisti, test ase is presented by the deoys fromthe CASP7. In Table 3.16 QMEAN and its omponent soring funtion terms areompared to �ve widely-used model quality assessment programs (MQAPs). Thefollowing exeutable programs ould be downloaded from the CAFASP4 website e:Modhek [162℄, RAPDF [184℄, FRST [215℄ and ProQ [233℄. DFIRE [249℄ was requestedfrom the author. ProQ was exeuted both with and without PSIPRED seondarystruture predition.Table 3.16 shows the average performane of the methods over all targets using di�erentquality measures. Most of the quality measures have been previously introdued anddesribed [225, 237℄, but a detailed de�nition an be found in Methods on page 64.The last three olumns desribe the soring funtions ability in identifying the nativestruture out of the ensemble of models for a spei� target whereas all other measuresdesribe di�erent aspets of model quality assessment. The opposite algebrai sign ofModhek and ProQ observed for the Pearson's orrelation oe�ients and for the Znatsores an be asribed to the fat that these two tools use an inverse saling omparedto the other soring funtion by assigning the highest sores to the best models.The statistial signi�ane of the performane di�erenes between the methods wasvalidated using the the 2-sided t-test on paired samples (see Methods on page 66) inanalogy to the method used in the assessment of CASP4 [131℄. A 95% on�dene levelwas used and the orresponding results are summarised in Figure 3.23. White squaresehttp://www.s.bgu.a.il/~dfisher/CAFASP4/

http://www.cs.bgu.ac.il/~dfischer/CAFASP4/


122
Resultsan

dDisussio
n Table 3.16: Performane of di�erent soring funtions in prediting the quality of the server models submitted forall 95 targets of CASP7. Comparison of QMEAN with other well-known model quality assessment programs.regressiona enrihmentb best predited model best GDT_TS modeld native struturee

Method r2 rho F.E. E15% r10 logPB1 logPB10 ∆GDT_TS r1 r10 Znat r1 r10Modhek 0.64 0.59 0.33 2.7 17 -0.7 -1.67 -0.18 6 27 1.99 47 69RAPDF -0.5 0.5 0.31 2.44 17 -0.91 -1.67 -0.08 4 17 -2.09 55 77DFIRE -0.39 0.53 0.32 2.59 19 -0.93 -1.68 -0.08 5 18 -1.25 59 72ProQ 0.36 0.26 0.13 1.22 5 -0.32 -0.99 -0.22 0 6 1.51 9 32

ProQSSE 0.54 0.43 0.19 1.71 8 -0.51 -1.21 -0.16 2 11 1.76 14 42FRST -0.57 0.53 0.3 2.36 21 -0.91 -1.74 -0.09 6 22 -2.41 56 72QMEAN3 -0.65 0.58 0.33 2.57 16 -0.8 -1.83 -0.12 1 35 -2.27 59 75QMEAN4 -0.71 0.63 0.38 2.76 28 -1.02 -1.9 -0.08 5 39 -1.86 55 69QMEAN5 -0.72 0.65 0.4 2.9 30 -1.05 -1.94 -0.08 6 40 -1.89 56 71torsion single -0.44 0.39 0.22 1.76 6 -0.6 -1.5 -0.13 0 13 -2.09 51 67torsion3-residue -0.53 0.44 0.22 1.86 13 -0.76 -1.51 -0.11 1 10 -2.64 59 79pairwiseCβ -0.58 0.51 0.3 2.51 17 -0.7 -1.7 -0.18 4 27 -1.96 39 69pairwiseCβ/SSE -0.59 0.52 0.34 2.58 22 -0.84 -1.8 -0.13 5 36 -2.16 45 71solvation -0.55 0.49 0.29 2.31 10 -0.55 -1.65 -0.24 2 27 -1.3 18 45SSEPSIPRED -0.65 0.52 0.24 2.03 9 -0.63 -1.43 -0.13 3 17 -0.89 7 25ACCpro -0.59 0.56 0.35 2.75 21 -0.85 -1.66 -0.11 6 33 -1.38 20 44aPearson's orrelation oe�ient r2 and Spearmans's rank orrelation oe�ient rhob

F.E. stands for fration enrihment and E15% is the enrihment among the top 15% best predited models as ompared to a random seletion.

r10 are the number of targets for with the top-soring models is among the top10 best models (based on GDT_TS). logPB1 and logPB10 are the log probability of seleting thehighest GDT_TS model as the best model or among the ten best-soring models, respetively.d

GDT_TSloss is the di�erene between the GDT_TS sore of the best-soring model and the best model in the deoy set. r1 and r10 are the number of targets in whih the bestmodel based on GDT_TS, exluding the native struture was found on the �rst rank or among the top 10 preditions.e

Znat is the Z-sore of the native struture as ompared to the ensemble of models. r1 and r10 are the number of targets in whih the native struture was found on the �rst rankor among the top 10 preditions.
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5Figure 3.23: Statistial analysis of the performane di�erenes between the methodsat the on�dene level of 95%. Green (red) stands for a better (worse) performane.indiate that the performane di�erene between two methods is not statistiallysigni�ant on a 95% on�dene level whereas oloured squares mark statistialysigni�ant di�erenes. In ase of a green square, the orresponding method denoted inthe on the left side of the plot performs better than the one on the bottom.In general, QMEAN5 onsistently outperforms the other �ve MQAPs with respetto almost all tested quality measures on both ategories (free modelling (FM) andtemplate-based modelling (TBM), see Table 5.2 and 5.4 in the Appendix) and overall targets (see Table 3.16). The spei� evaluation of the free modelling (FM) andthe template-based modelling (TBM) targets shows a similar trend as for all target:QMEAN outperforms the other methods over nearly all quality measures and thedi�erene is potentially more pronouned in the template-based modelling ategory.On the two regression and enrihment quality measures, QMEAN5 performs signi�-antly better than all other methods tested (see Figure 3.23). DFIRE, together withQMEAN3 and the 3-residue torsion angle potential, identify to highest number of native



124 Results and Disussionstrutures whereas DFIRE has signi�antly worse Znat sores ompared to all othermethods (see Figure 3.23). FRST produes better Znat sores than QMEAN3 but neverbetter than the torsion angle potential over 3 residues whih shows an extraordinarygood performane in reognising the native struture.For the model quality assessment task desribed by the other quality measures, the3-residue torsion angle potential does mostly better than the ordinary single residuepotential. Modhek generates statistial signi�antly better regression oe�ientsthan the other methods exept the 3 QMEAN funtions. Consistently over all qualitymeasures (exept for the Pearson's orrelation oe�ient), ProQ performs signi�antlyworse than the other methods tested even after the integration of PSIPRED seondarystruture predition. The only exeption is the good average Znat sores ahieved onthe free modelling targets whih re�ets the fat that ProQ has been trained spei�allyon fold reognition models (see Table 5.4 in the Appendix).The seondary struture agreement term shows on average the highest Pearson or-relation oe�ient of all single terms and a reasonable performane on all the othermodel quality assessment measures. The solvent aessibility agreement term on theother hand reahes the highest enrihment values and rank orrelation oe�ients andis very valuable for the seletion of good models. Over all quality measures and inboth ategories the seondary struture spei� pairwise potential reahes signi�antlybetter sores than the regular one for the model quality assessment task as well as inthe identi�ation of the native struture. The analysis of the statistial signi�ane ofthe QMEAN omponent terms an be found in Figure 5.2 in Appendix.The di�erenes in the results ahieved for the free modelling and template-basedmodelling targets are frequently easy to explain but sometimes appear to be ontra-intuitive. For the task of identifying the native struture, the solvent aessibilityagreement term (and to a ertain extent also SSE PSIPRED) performs onsiderablybetter on the FM targets than on the TBM ategory. In ontrast to the seondarystruture agreement term, the ACCpro sore an help to identify the native struturein the ase of free modelling targets where it reognises 7 out of 18 native strutures withan average Z-sore of the native struture of more than 2 standard deviations. Over alltargets (Table 3.16), QMEAN3 is slightly better than QMEAN4 and QMEAN5 as aonsequene of the inability of the seondary struture agreement term in reognising



3.2 Model quality assessment 125the native struture whih is re�eted by the low Z-sores of the native struture andthe rank measures (rank1 and rank10). An explanation for this observation is given ina separate disussion setion on page 130.As expeted, the regression oe�ients for TBM targets are on average higher than forFM targets. A slightly better enrihment is possible with FM targets, sine the modelsin this ategory tend to be less similar to eah other than for example in the high-auray template-based modelling ategory in whih a large fration of the modelsan be more or less idential as it an be seen in Figure 3.24 b. Of the free modellingtargets, the pairwise and solvation potentials as well as ACCpro all produe highenrihment values whereas on the template-based modelling targets the performane ofthe solvation potential is signi�antly worse ompared to the others over most qualitymeasures. For the FM targets, the native strutures are reognised with better Z-sores on average but, surprisingly, the relative number of native strutures ranked asnumber one is lower (9 out of 18) as ompared to the TBM targets (51 out of 77) (seeSupplementary Material).Figure 3.24 shows the orrelation between GDT_TS and QMEAN sore for the modelsof four seleted targets belonging to the TBM and FM target ategory. The satterplots on the left-hand side (Figure 3.24 a and ) represent two examples in whih boththe regression and the identi�ation of the native struture went �ne. The satter plotsfor all of the 95 targets are shown in the Appendix.Sometimes the native struture an be easily identi�ed (target T0321, Figure 3.24) but sometimes the native struture is hidden among the bulk of the models (targetT0300, Figure 3.24 d) even though the regression an be reasonably good. This is quiteastonishing, sine for most of the FM targets, no submitted model had a GDT_TSsore of more than 50 and one should expet the native struture to be easy to identify.On the other hand, the enrihment for FM targets works rather well with enrihmentvalues (E15%) on the order of fator 3 ahieved on average.3.2.3.4 Estimating overall performaneFration enrihment urves [217℄ are useful to ompare and visualise the performane ofdi�erent MQAPs in analogy to reeiver operator harateristi (ROC) urves frequently
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Figure 3.25: Target-spei� fration enrihment urves showing the perentage oftop x% highest GDT_TS models among the top x% best-soring strutures (averagedover all CASP7 targets).the ability of the soring funtion to identify the best models among all models for agiven target (averaged of all targets) and are a measure for the soring funtions abilityto predit the relative model quality. The steeper the progression of the urve, and thelarger the area under the urve, the better a soring funtion agrees with the measuredmodel quality. The average fration enrihment over the individual targets for uto�sranging from 5% to 50% is shown. QMEAN onsistently shows the best performaneover the whole range but espeially between 5% and 15%, underlining its strength inreognising the best models. Modhek, RAPDF, DFIRE and FRST show a quitesimilar behavior over the �rst 3 thresholds. Above 20 perent, the urve obtained forModhek and DFIRE are slightly higher whih agrees with its good rank orrelationoe�ients and enrihment values in Table 3.16. ProQ performs signi�antly worsethan the others.The global fration enrihment urves shown in Figure 3.26 are obtained by poolingtogether the models of all targets and alulating the fration enrihment over the whole
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Figure 3.26: Global fration enrihment urves over all model from all CASP7targets.set. In this way, the soring funtion's ability to predit the absolute model quality (i.e.to estimate the degree of �nativeness� of a model) is investigated. In ontrast to theresults in Figure 3.25, the performane of RAPDF and espeially DFIRE are strikinglylow ompared to Modhek and FRST. FRST shows the best fration enrihmentwithin the �rst 5 perent and appears to be good in reognising native and native-likestrutures. This is also re�eted by the low average Z-sores of the native struture(Znat) shown in Table 3.16. In the global enrihment, ProQ shows a reasonableperformane whih an be mainly attributed to the seondary struture informationinluded as the di�erene between ProQ and ProQ PSIPRED suggests. Above afration of 0.1, QMEAN onsistently generates the highest fration enrihments ofall MQAPs tested. For example, among the 15% best QMEAN preditions more than60% of the 15% best models are identi�ed. The high enrihments are an evidene of agood global orrelation between the QMEAN sore and the e�etive model quality.Slope and interept from the regression between GDT_TS and QMEAN sore obtainedon the training set an be used in order to derive a predited GDT_TS. Figure 3.27
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130 Results and Disussion3.2.4 QMEAN: Disussion and outlook3.2.4.1 General performaneThe QMEAN soring funtion has been shown to be a valuable tool for model qualityassessment by distinguishing good from bad models and for the identi�ation of thenative struture among deoy sets generated by a variety of methods. On the om-prehensive set of 22,420 server models of CASP7, QMEAN onsistently outperformsthe �ve model quality assessment programs over nearly all quality measures and modeldi�ulty ranges.3.2.4.2 Agreement between predited and measusred featuresOnly in two deoy sets from Deoys 'R' us, lattie_ssfit and LMDS, did theintegration of the seondary struture agreement term result in an improved abilityof the ombined soring funtion in identifying the native struture ompared to thestatistial potential terms only (QMEAN3). This an be possibly attributed to thegreater overall variability of the deoy strutures in these sets and the absene ofnative-like strutures: lattie_ssfit onteins strutures with RMSD ranging from5.68 to 13.23 Å and LMSD from 4.05 to 11.5Å. On the other hand, the 4state_reduedset on whih the two agreement terms failed in reognising the native struture oversstrutures between 1.15 and 8.80 Å. The CASP7 test set shows a similar trend: forfree modelling targets slightly better Znat sores are obtained than for template-based modelling targets using the seondary struture agreement term and solventaessibility terms performs onsiderably on targets of the FM ategory.In ontrast to this observation, the seondary struture agreement term turned out tobe a valuable ontributor to the good performane of QMEAN in the model qualityassessment task. The di�erent performane on these two tasks an, espeially inthe ase of the CASP7 set, tentatively be asribed to the fat that the seondarystruture omposition of the native struture an only be predited with a ertainauray, typially around 76-80%. A theoretial limit of predition auray of 88%perent was proposed by Rost [176℄ arguing that minor variations in strutures evenbetween homologous proteins an result in di�erent seondary struture assignments



3.2 Model quality assessment 131made by tools suh as DSSP. It is therefore rather unlikely that the seondary strutureagreement between PSIPRED and DSSP ahieves 100 perent for the native strutureand more likely that there is a tendeny for models generated by methods takingimpliitly advantage of predited seondary struture information to reeive bettersores than the native struture.The same argument given above holds for the solvent aessibility agreement term,although the e�et seems to be less pronouned as re�eted by the higher Z-soresof the native struture (Znat) ahieved in the CASP7 deoy set. This might beexplained by the signi�antly redued sensitivity of this term toward minor di�erenesin the strutures, sine it is based on a binary lassi�ation of solvent aessibility(buried/exposed) as provided by ACCpro. Thus, near-native strutures would tend tohave solvent aessibility agreement values (e.g. paking) similar to the native struturebut bad models do not, whih would explain the moderate Znat sores to some extent.In ontrast to the observation desribed above, both agreement terms turned out tobe valuable ontributors to the good performane of QMEAN in the model qualityassessment task as re�eted by the onsistently better performane of QMEAN5ompared to the version using statistial potential terms only (QMEAN3).3.2.4.3 Torsion angle potential over 3 residuesThe torsion angle potential over three residues turned out to be a very powerful term forthe identi�ation of the native strutures out of a variety of deoy sets, suggesting thatthe 3-residue torsion angle potential desribes the propensity of a ertain amino aidfor a ertain loal geometry onsiderably better than the single residue torsion anglepotential. The �nal bin sizes of 45 degree for the phi and psi angles of the enter residueand 90 degree for the neighbouring torsion angles are surprisingly oarse-grained, butan possibly be explained by reasonable binning of the Ramahandran plot [167℄ in90 and 45 degrees and how these values represent a trade-o� between resolution andnumber of states, reduing the danger of over-�tting. The resulting number of 327,680(= 20 * (360/45)2 * (360/90)2 * (360/90)2) possible states is in the same order ofmagnitude as observed in some all-atom potentials. Betanourt and Skolnik [19℄have shown that the dihedral angles of a residue are in�uened by the identity and



132 Results and Disussiononformation of the adjaent residues. This e�et is espeially pronouned in loopregions and near the end of β-sheets. The 3-residue torsion angle potential seemsto apture this e�et to a ertain extent. In ontrast to the potential introdued byBetanourt and Skolnik, the 3-residue potential desribed in this work does not takeinto aount the identity of the adjaent residues and is attrative in its simpliity. Itbasially re�ets the propensity of a ertain amino aid type for a given loal geometry(as desribed by six torsion angles) as ompared to other 19 amino aids.3.2.4.4 Seondary struture spei� pairwise potentialThe seondary struture spei� implementation has shown to lead to a statistiallysigni�ant improvement of the performane over all quality measures ompared to theregular residue-level pairwise potential. Loops are primarily loated at the proteinsurfae and are to a greater extent in�uened by non-loal interations in ontrast tohelies and sheets whih are mainly determined by the loal potential [19℄. As loopshave fewer ontats to the rest of the protein than helies and sheets, whih are at leastpartially surrounded by more residues, it an be speulated that pairwise statistialpotentials tend to be biased towards interation patterns observed in the protein ore.As a onsequene, some motifs observed only in loop regions reeive a slightly too highenergy. A speialised potential ompiled and applied in a seondary-spei� mannermay ounterat this.3.2.4.5 Solvation potentialThe alulation of the solvent aessibility solely based on the atoms present in theoordinate �le is problemati. As desribed in Methods, the solvent aessiblity isapproximated by ounting the number of β atoms with 9 Å arrount the β of the givenresidue. Although all hains are taken into aount in the alulation, the struture inthe PDB �le often does not represent the biologially ative moleule. For example inthe ase of homo-multimers (i.e. proteins onsisting of several idential subunits in thequaternary struture), typially only one subunit is present in the oordinate �le. As aonsequene, some residues whih are buried in the native omplex are onsideredas exposed leading to inauraies in the resulting potentials. This is a possible



3.2 Model quality assessment 133explanation for the bad performane of the solvation term and also for the observation,that a solvent aessiblity spei� implementation of the pairwise interation potentialdid not improve the results.To the best of this author's knowledge, non of the statistial solvation potentialsdesribed in literatur does take into aount the biologial unit of the protein inthe derivation of the potentials. To some extent, statistial potentials are tolerantonerning minor error in the derivation of the observed frequenies as a onsequene oftheir statistial nature. But, in the ase of the solvation potential, the errors introduedby not onsidering the biologial unit an most probably not be negleted.In a future implementation of the solvation potential, the information of the biologialunit of the proteins will be taken into aount e.g. by using either strutures from theProtein Quaternary Struture (PQS) serverf or by only using monomeri strutures.Both approahes are assoiated with inauraies as well (e.g. beause the biologialunit is often assigned wrong [242℄), but inluding information about the quaternarystruture is probably the better alternative than ignoring it.3.2.4.6 Training and evaluation proessIn order to redue a possible over-�tting of any of the potentials, all strutures withdetetable homology (based on a BLAST searh) to any of the strutures of the twoCASP deoy sets were removed from the protein data set used to build the potentials.In this way, several 100 perent sequene identity hits have been removed. Remarkably,omparing the results before and after adjusting the potentials, no onsiderable hangehas been observed even for the task of deteting the native fold (data not shown).This an be explained by the rather large number of strutures used to ompile thepotentials, where the in�uene of one spei� (even idential) struture is diminished bythe others. In model quality assessment in partiular, models with signi�ant errors,not the atual strutures, are evaluated, further reduing a possible bias from thepresene of homologous strutures in the data set.Parameterising and optimising the single term as well as their ombination on CASPdeoys represents a reasonable approah sine a variety of methods and the entire rangefhttp://pqs.ebi.a.uk/

http://pqs.ebi.ac.uk/


134 Results and Disussionof modelling di�ulty is overed. The good performane of QMEAN on all deoy setsand the fat that the targets of two CASP rounds are ompletely di�erent indiatesthat QMEAN has not been spei�ally trained to assess models produed by CASPpartiipants but instead is appliable to the variety of methods.Although the strategy to derive the weighting fators for the omposite sore based onthe regression oe�ient represents a reasonable starting point (assuming a orrelationbetween energy and degree of �nativeness�), this approah also has some disadvantages.Some terms showing a medium orrelation to GDT_TS an still perform better onother quality measures and their disrimination power tends to be underestimated. Agood example is the solvent aessibility agreement term whih shows lower orrelationto GDT_TS than the seondary struture agreement term (Table 3.12) but performedonsistently better in the CASP7 deoy set over a wide range of onditions (Table 3.16).A possible underestimation is also re�eted by the low orrelation to the QMEAN5sore as shown in Table 3.13. The fat that some of the other terms show varyingdisrimination power depending on the modelling di�ulty may warrant speialisedversions of the soring funtion e.g. for free modelling or template-based modellingtargets. In partiular, it remains to be seen why deoys for ertain free modellingtargets have lower energy than the native struture.3.2.4.7 Global and target-spei� predition of model qualityQMEAN shows a onsistently better enrihment performane based on the frationenrihment urves shown in Figure 3.25 and 3.26 ompared to other MQAPs for boththe relative predition of model quality for models of the same target as well as for theglobal quality predition over all targets. Sine MQAPs are routinely used to assessensemble of models for the same target, the target-averaged fration enrihment urvesare probably of greater pratial interest sine they re�et the ability of the soringfuntion in disriminating good from bad models. On the other hand, the need forsoring funtions prediting the absolute quality of a model has only reently beenhighlighted by the CASP7 assessors [49℄. QMEAN represents a further step towardsthe predition of the absolute quality of protein models.



3.3 The loop predition routine 1353.3 The loop predition routine3.3.1 General performaneThe knowledge-based loop modelling protool desribed in this work basially onsistsof 3 steps (see shemati representation on page 45 in Methods): seletion of fragmentsfrom the fragment database whih approximately �t to the geometry imposed bythe anhor groups, �ltering of the initial seletion in order to remove unfavourableandidates and, �nally, ranking of the remaining loops aording to a soring funtion.The optimisation of the parameters and thresholds used in the seletion proess aswell as for the di�erent �lters (anhor geometry �lter, lash �lter, torsion energy �lterand bakbone energy �lter) is desribed in detail in Methods on page 45�. In thissetion, the results of the loop ranking proess are desribed and ompared to otherloop predition methods (setion 3.3.2).The loop modelling auray of knowledge-based approahes is determined by twodistint fators: �rst, the availability of suitable onformations in the fragmentdatabase based on experimentally solved protein strutures and, seond, the ability ofthe soring funtion to identify fragments whih are lose to the native onformation.In ontrast to ab initio methods, in whih the loop onformation is inrementallybuilt up in the given protein framework, in knowledge-based approahes the andidatefragments are �tted on the anhor groups loated on the N-terminal and C-terminalside of the loop. Therefore, not only the loal onformation of a fragment is important(as expressed by the loal RMSD between the fragment and the native loop aftersuperposition), but also its orientation in the protein framework (as expressed bythe global RMSD between native loop and andidate loop after �tting on the anhorgroups).As desribed in Methods (Chapter 2.3), a maximum number of 3000 fragments areretained after the appliation of all �lters. In a subsequent step the sidehains are addedto the loop bakbone and the loops are ranked based on an all-atom distane-dependentinteration potential whih investigates the ompatibility of the loop with the givenstrutural environment. The evaluation of di�erent soring funtions is desribed later.In Figure 3.28 the average (a) and the median (b) global RMSD of the top-ranking



136 Results and Disussionloops together with the lower and upper bounds of the predition auray are shownfor loops of length of 4 to 12 residues of the test set of Rossi et al. [174℄. All RMSDvalues shown in this setion are alulated based on the four bakbone atoms of the loopwithout the anhor group residues. The lower bound is determined by the loop with thelowest global RMSD present among the 3000 andidate fragments, averaged over thedi�erent test ases. This represents the maximum possible predition auray whihould be ahieved by a �perfet� soring funtion, i.e. if the soring funtion wouldonsistently hoose the fragment losest to the native onformation. The upper boundis de�ned by randomly seleting a onformation out of the 3000 andidates. Detailedresults for loop of length 4, 6, 8 residues are shown later in Table 3.19-3.21.In the majority of the test ases for loops of length 4-7 residues, a fragment with aglobal RMSD below 1 Å is present in the �nal seletion of 3000 onformations. Forloops below 8 residues, the soring funtion shows a good performane in the seletionof near native onformations and works onsiderably better than the random seletion.For loops of 8 residues and longer the median RMSD of the best fragment in the �nalseletion inreases whih re�ets the derease in overage of the onformational spae.In Figure 3.28, only fragments originating from protein strutures showing no mea-surable sequene identity to the protein in whih the loop is modelled have beenused. This allows to avoid trivial preditions and guarantees a fair omparison toother methods. However, in a realisti appliation ase, depending of the modellingdi�ulty (i.e. the sequene identity of the query protein to its templates), fragmentsof remote homologous proteins are present and an be used. Figure 3.29 underlinesthe in�uene of the presene of fragments from homologous proteins on the preditionquality. The median RMSD of the top ranking loops is shown using di�erent sequeneidentity uto�s in order to �lter out fragments from homologues of the query protein(i.e. the protein in whih the loop is modelled). The homology is deteted by a BLAST[5℄ searh of the query protein sequene against the set of proteins used to build thefragment database. Sine BLAST provides loal alignments, the perentage sequeneidentity over the entire struture an be onsiderably lower and therefore the preditionauray for a given uto� even better.Figure 3.29 shows that the median RMSD is onsistently lower if fragments fromhomologous proteins are aepted, suggesting that they are often found on the �rst
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Figure 3.28: Average (a) and median (b) RMSD of the top-ranking loops per looplength as well as upper and lower bound of loop predition auray on the test setof Rossi et al.
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Figure 3.29: Median RMSD of the top-ranking loops per loop length in preseneof fragments originating from homologues of the loops in the test set of Rossi et al.[174℄.rank. Fragments from homologous proteins were exposed to a similar struturalenvironment and potentially have anhor geometries omparable to those observedin the protein in whih the loop is modelled. This inreases to probability that ananalogous loal fold is adopt and that the orientation of the fragment with respetto the protein framework is approximately orret. If no homology �lter is applied,the median of the RMSD drops signi�antly (lowest urve in Figure 3.29). In thisase, fragments of the native loop onformation itself or of a very lose homologueare ranked �rst. Sine a non-redundant set of protein strutures lustered at 95%sequene identity has been used to generate the fragment database, the loop of thenative struture itself is often not present in the database. These results prove thatthe all-atom interation potential used for loop ranking is able to onsistently identifyloops having a very similar or idential onformation ompared to the one observed inthe native struture and that these loops are in most ases ranked �rst.However, in a realisti modelling situation the loal loop onformation is only approx-



3.3 The loop predition routine 139imately orret (for an evaluation of the anhor region see Chapter 3.4.2) and theorientation of the fragment in the protein framwork after �tting on the anhor groupsis rarely ideal. Sine the geometry of the anhor groups and the terminal residuesof the fragments are di�erent even for fragments with a loal onformation lose tothe native one, the fragments are slighly misoriented in the protein framework. Theresulting rotation has a muh stronger e�et on longer loops as a onsequene of thelonger radius. This problem will be addressed in detail at the end of this setion anda possible solution is disussed.Furthermore, even minor distorsions of the protein bakbone with respet to thenative onformation an lead to onsiderable di�erenes in the orientation of thesidehains resulting in unfavourable interations of the loop with its environment(see e.g. [31℄ for the desription of the bakbone-dependent rotamer libraries usedin sidehain modelling). On the other hand, ranking the loops without onsideringsidehain interations is too impreise sine espeially the onformation of longer loopsis mainly determined by interations with the strutural environment rather thanby the loal geometry (i.e. by torsion angle preferenes of the amino aids of theloop) [19℄. The torsion angle potential, for example, but also as the residue-levelinteration potential based on Cα atoms (de�nitions in Methods page 58) are bothable to roughly disriminate between good and bad fragments but fail in reognisingnear native solutions. This is the reason why they are used as �lters and not in thesoring proess.For the �nal soring step, a variety of implementations for the all-atom interationpotential and ombinations with other statistial potential terms (torsion angle po-tential, all-atom solvation potential) have been investigated. A ombination with theanhor group RMSD (desribing the �goodness of �t� of the fragment to the geometryimposed by the anhor residues) has been tried as well. Table 3.18 shows some of thebest performing soring funtions tested in the evaluation proess. The average globalRMSDs on the parametrisation test set are shown for di�erent loop length.Overall, the all-atom interation potential shows the best performane in soring looponformations, approximately as good as the ombination of the of three statistialpotentials (torsion angle potential, all-atom solvation potential, all-atom interationpotential) together with the anhor group RMSD (RMSa). This an be partly



140 Results and Disussionattributed to the fat that some of the terms of the ombined soring funtion havebeen previously used in the �ltering step. The information aptured by the all-atomsolvation potential is to some extent overed by the all-atom interation potential: thepropensity of a loops to form ontats with the protein framework insteed of beingsolvent exposed desribed by the solvation potential (e.g. the burial of hydrophobiresidues) is also re�eted by the interation potential. Loops lying against the proteinbody tend to have also more favourable interations and, as a onsequene, potentiallylower energies.Table 3.18: Comparison of di�erent soring funtions on the parametrisation setfor loops of length 4, 6, 8 and 12. A desiption of the terms an be found in Methodson page 67. Loop lengthsoring funtion 4 6 8 12RMSaa 0.95 2.1 3.16 5.98RMSa + sequene onservation 1.01 2.19 3.06 5.83all-atom 2-10 Å (default) 0.94 1.95 3.03 5.96all-atom 2-10 Å (environment sidehains rebuilt)b 0.91 1.85 3.28 5.62all-atom 3-10 Å 0.91 2.02 3.2 5.68all-atom 0-10 Å (environment sidehains rebuilt)a 0.85 1.91 3.13 6.22RMSa + all-atom 1.76 3.08 3.54 5.65all-atom + solvation 1.72 2.84 3.26 5.7all-atom + torsion 1.37 2.31 3.75 6.5all-atom + solvation + torsion 1.32 2.37 3.47 5.88all-atom + solvation + torsion + RMSa 0.98 1.9 3.08 5.53Cα-pairwise + Cα-solvation + RMSa 1.95 2.81 3.48 5.63aRMSD between the terminal fragment residues and the anhor group residues after �tting.bIn a seond round, the sidehains of surrounding residues within 5 Å are rebuilt simultaneously with the loop sidehains.Soring funtion only relying on the loop bakbone (used in the bakbone energy �lter).)The average RMSD values for four alternative implementations of the all-atom intera-tion potential are shown in Figure 3.18. A lower distane uto�s of 2 Å performs slightlybetter than 3Å for medium loop lengths. In the former implementation, hydrogenbonding is taken into aount typially ourring at distanes between approximately2.5 Å - 3Å [231℄. In two implementations, the strutural environment is allowed to



3.3 The loop predition routine 141relax in that the sidehains of all residues having an atom within 5 Å around the loopafter the intitial sidehain modelling proess are rebuilt in a subsequent step togetherwith the loop sidehains. Slighly better RMSDs are obtained in this approah forsmall loops up the length 6. If no lower distane uto� is used, the repulsive term atlose distanes improves loop ranking for smaller loops but not for longer ones. Thisan be attributed to the higher probability of lashes at longer loop lengths. Overall,the performane di�erenes of the four alternative implementations are only marginal.Sine rebuilding the strutural environment results in an inrease of the run-time, theversion investigating ontats between 2 Å and 10 Å (highlighted in bold) is usedin the following. At the end of this setion, the appliation of a subsequent energyminimisation step based on a moleular mehanis fore �eld is suggested. This wouldallow to relax the loop, and, a sidehain rebuilding proess would not be neessary.Using solely the all-atom potential for soring without onsidering the RMSa has theadvantage that the soring funtion is more generally appliable. Loop preditionmethods are typially tested in self-predition experiments, whih means that a loopis ut out from a experimental protein struture and rebuilt in the given exatenvironment. In the modelling ase, the situation is quite di�erent: the environmentis only approximately orret and espeially the anhor geometry is usually slightlydistorted (see setion 3.4.2) leading to a di�erent orientation of the fragment after�tting. Whereas in the self-predition ase the RMSa an to some extent indiatewhether a fragment has the orret orientation with respet to the framework, thisis hardly the ase in the modelling situation. Therefore this term should not beused for soring as done in many knowledge-based approahes desribed in literature[53, 90, 139℄.In the following, the performane of the loop predition routine on the test set by Rossiet al. [174℄ is desribed in detail. A omparison to other methods is desribed in thenext setion. In Table 3.19-3.21, the results for loops of length 4, 6 and 8 are shown.The results for the other loop length an be found in the Appendix Table 5.6-5.11.For loops of length 4 the average (median) predition auray is 0.66 Å (0.51 Å) ifall fragments from homologous strutures are exluded. More than 90% of the loopsare predited with a global bakbone RMSD below 1 Å. In olumn 6 the rank of the



142 Results and DisussionTable 3.19: Results for loops of length 4 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopaPDB ID residues bestloopb random20000 random3000d rankTop10e no ho-molgues allhomo-logues <90% <50% <30%1aaj 82-85 0.28 2.21 1.61 6 0.61 0.17 0.37 0.44 0.611ads 99-102 0.22 3.67 1.83 15 0.24 0.33 0.33 0.33 0.241bs 21-24 0.26 4.7 0.91 3 0.34 0.34 0.34 0.34 0.341frd 59-62 0.29 3.58 2.87 6 0.43 0.06 0.39 0.43 0.431gpr 123-126 0.34 3.63 1.03 7 2.12 0.07 2.12 2.12 2.121nfp 37-40 0.95 5.31 2.54 1 0.95 0.95 0.95 0.95 0.951pbe 117-120 0.38 2.63 1.38 2 0.42 0.29 0.42 0.42 0.421pda 139-142 0.26 1.91 0.9 17 0.32 0.32 0.32 0.32 0.321pl 74-77 0.53 1.94 2.24 16 0.81 0.06 0.21 0.58 0.811ppn 42-45 0.28 3.48 0.41 79 0.55 0.55 0.55 0.55 0.551rf 111-114 0.11 0.6 0.25 4 0.46 0.46 0.46 0.46 0.461thw 194-197 0.36 0.69 3.57 1 0.43 0.43 0.43 0.43 0.431tib 46-49 0.32 2.55 4.05 1 0.53 0.53 0.53 0.53 0.531tml 42-45 0.87 2.09 2.16 110 2.11 2.11 2.11 2.11 2.111xif 82-85 0.32 1.77 1.29 26 0.6 0.1 0.6 0.6 0.62exo 116-164 0.29 4.83 2.47 7 0.51 0.51 0.51 0.51 0.512sil 220-223 0.4 1.92 1.74 6 0.51 0.18 0.51 0.51 0.512tgi 72-75 0.24 2.11 1.57 4 0.71 0.06 0.5 0.71 0.714enl 335-338 0.15 2.53 2.85 2 0.24 0.31 0.31 0.24 0.244gr 116-119 0.34 3.64 3.25 3 0.4 0.11 0.4 0.4 0.47rsa 47-50 0.28 1.7 2.08 12 0.47 0.35 0.35 0.47 0.47average - 0.36 2.74 1.95 - 0.66 0.39 0.61 0.64 0.66median - 0.29 2.53 1.83 - 0.51 0.32 0.43 0.47 0.51aRMSD of the top ranking loop after removing fragments from homologues above a given uto�.bBest nonhomologues loop present among the 3,000 andidate fragments after all �ltering steps.Random seletion of a fragment from the maximum 20,000 loops present after appliation of the torsion energy �lter.dRandom seletion of a fragment from the maximum 3,000 loops present after appliation of the bakbone energy �lter.eRank of the �rst Top10 fragment aording to RMSD.�rst Top10 solution (aoriding to the RMSD) is shown. In majority of the test ases aTop10 fragments is found among the �rst 10 ranks. But even if this is not the ase thepredition an be still aurate whih on�rms that a variety of near native fragmentsare present and that the fragment database shows good overage of the onformationalspae at this loop length. Two test ases were predited with an RMSD above 2 Å: inthe �rst ase (PDB identi�er 1gpr, residues 123-126), two good loops an be found onrank 3 (0.55 Å) and rank 7 (0.35 Å). For the seond loop only 2 loops with an RMSDbelow 1 Å are present in the seletion. On rank 7, a loop with an RMSD of 1.31 Å isfound.



3.3 The loop predition routine 143Table 3.20: Results for loops of length 6 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%1ads 149-154 0.15 8.39 2.23 1 0.15 0.15 0.15 0.15 0.151ads 150-155 0.27 4.38 3.04 5 0.3 0.18 0.42 0.42 0.31brt 174-179 0.73 4.41 3.53 21 1.63 0.05 0.39 1.63 1.631brt 253-258 0.76 2.06 4.44 77 1.24 0.06 0.33 0.33 1.241bs 66-71 0.66 6.82 5.6 2 0.66 0.41 0.41 0.66 0.661dim 318-323 0.28 2.33 1.57 5 0.67 0.3 0.67 0.67 0.671dts 146-151 0.51 4.05 2.43 2 0.81 1.67 0.81 0.81 0.811ede 180-185 1.14 3.47 4.4 87 2 0.21 2 2 21ga 100-105 0.57 3.63 0.86 5 1.63 0.06 1.63 1.63 1.631mrp 233-238 0.34 3.91 3.55 4 1.76 1.76 1.76 1.76 1.761nif 211-216 0.76 3.33 2.03 115 3.8 0.18 0.25 3.8 3.81noa 25-30 0.61 3.31 2.71 7 3.55 0.05 0.62 0.62 3.551on 12-17 0.94 5.28 4.44 51 2.18 2.18 2.18 2.18 2.181rge_A 73-78 0.96 3.28 2.84 359 3.58 3.58 3.58 3.58 3.581rhs 50-55 0.68 2.22 3.36 7 1.45 0.07 1.45 1.45 1.451ta 38-43 0.65 1.35 1.51 2 0.65 0.08 0.65 0.65 0.651ta 94-99 0.66 4.04 4.04 7 1.72 0.06 1.72 1.72 1.721tys 66-71 0.87 4.94 5.73 17 3.17 0.15 0.35 0.84 3.171xyz_A 633-638 0.86 2.97 3.67 5 0.91 0.06 0.43 0.43 0.911xyz_A 711-716 0.49 2.6 2.18 10 0.64 0.07 0.26 0.26 0.642ayh 81-86 0.86 3.77 3.12 4 0.95 0.06 0.22 0.95 0.952mnr 308-313 0.53 6.51 1.41 15 2.1 0.13 2.1 2.1 2.12ran 40-45 0.33 3.25 1.79 10 0.57 0.26 0.57 0.57 0.572sil 176-181 1.07 2.89 2 4 1.07 0.18 0.74 0.74 1.073pte 131-136 0.53 6.73 4.05 2 0.7 0.14 0.7 0.7 0.73pte 256-261 0.98 7.32 6.26 3 1.03 0.18 0.82 0.82 1.035p21 104-109 0.82 6.65 3.84 7 3.61 3.61 3.61 3.61 3.618abp 65-70 0.56 3.28 3.02 16 3.14 0.06 3.14 3.14 3.14average - 0.66 4.18 3.2 - 1.63 0.57 1.14 1.37 1.63median - 0.66 3.7 3.08 - 1.35 0.15 0.69 0.83 1.35If only non-homologous fragments are aepted, an average (median) RMSD of 1.63 Å(1.35 Å) is obtained for loops of length 6. 39% of the loops in the test set are modelledwith an RMSD below 1 Å and 54% below 1.5 Å. If homologues with a sequene identityof less than 50% are inluded, the perentage of loops modelled below 1 Å inreases toover 57% and the median RMSD drops to 0.83 Å. For the vast majority of loop testases, a Top10 loop an be found on the �rst ranks.As ould be seen from Figure 3.28, the predition auray drops onsiderably betweenloops of length 7 and 8. The data suggest that this an be mainly attributed to theinompleteness of the fragment database onerning fragments with a similar loalgeometry and orientation after �tting. Whereas for loops of length 7 in 50% of the test



144 Results and DisussionTable 3.21: Results for loops of length 8 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%1a62 71-78 2.41 4.17 3.89 9 3.99 0.13 3.99 3.99 3.991ads 274-281 1.17 4.53 2.08 71 3.56 0.29 0.29 0.47 3.561al 34-41 3.1 6.59 5.56 203 4.24 0.11 0.89 0.66 4.241arb 136-143 1.53 3.27 3.18 110 2.66 0.07 2.66 2.66 2.661vl 148-155 1.86 5.23 7.28 842 4.33 0.06 4.33 4.33 4.331gof 606-613 0.79 6.37 4.11 1 0.79 0.79 0.79 0.79 0.791hbq 31-38 1.55 6.8 4.9 394 3.57 1.22 1.22 3.57 3.571hf 119-126 1.42 7.75 5.84 44 2.5 0.07 0.38 2.5 2.51hf 142-149 0.59 4.81 3.42 9 0.59 0.51 0.51 0.51 0.521nar 192-199 1.3 6.02 3.67 106 2.13 0.05 2.13 2.13 2.131nif 221-228 2.73 6.77 5.53 62 3.04 0.31 0.26 4.85 4.851nif 279-286 0.67 3.73 4.71 5 0.82 0.46 0.46 0.89 1.171nls 97-104 0.58 6.22 2.28 5 0.58 0.07 0.41 0.58 0.581nwp_A 84-91 1 2.99 4.89 704 1.91 0.18 0.31 7.6 7.61oy 80-87 1.56 2.57 1.91 2 1.91 0.07 1.91 1.91 1.911prn 150-157 2.56 3.41 7.1 71 5.14 0.26 5.14 5.14 5.141thw 18-25 1.87 6.2 6.3 26 7.79 0.17 7.79 7.79 7.791tml 187-194 1.59 2.92 4.69 3 2.79 0.49 0.49 0.49 2.792ayh 194-201 1.7 3.56 4.27 15 2.52 0.1 0.25 2.52 2.52average - 1.58 4.94 4.51 141.16 2.89 0.28 1.8 2.81 3.3median - 1.55 4.81 4.69 44 2.66 0.17 0.79 2.5 2.79ases a fragment with RMSD below 1.5 Å is present in the �nal seletion, the perentagedrops 21% for loops of length 8. Only 4 loops are predited with an RMSD below 1 Å(21%). If homologues are exluded, a median RMSD of 2.66 Å is ahieved whih dropsto 0.79 Å if a homology uto� of 90% is used. By applying no homology �lter (olumn8 in Table 3.21, the soring funtion onsistently ranks near native fragments on thetop whih underlines that sampling of the onformational spae is the main limitationin modelling of longer loops not soring.The soring funtion is unable to disriminate between solutions whih are approxi-mately orret and fragmets whih have a few favourable interations but point intothe wrong diretion. This holds for both the all-atom interation potential but also forsoring funtions onsisting of multiple terms. For example, a loop establishing only oneor two hydrogen bonds to the environment but having a ompletely wrong orientationan still have a onsiderable lower energy than a loop whih has an approximatelyorret onformation but several unfavourable interations (e.g. overlaps of Van derWaals spheres or atom-atom distanes slightly too long for hydrogen bonding). Aorrelation between interation energy of the loop with its environment and RMSD



3.3 The loop predition routine 145an only be expeted for onformations lose to the native solution.The onformational spae for short loops is restrited by the geometrial onstraintsimposed by the anhor region. For longer loops, as the ratio between loop length anddistane between the end points inreases, the number of available onformations in-reases exponentially [251℄. The rapid growth in the available alternative onformationsis hallenging both for ab initio methods (extensive sampling needed) and knowledge-based approahes (overage by the fragment database dereases). Furthermore, thehane for false positive onformations inreases by interations with other regions ofthe protein framework. For knowledge-based approahes, the �tting proess representsanother soure of errors as a onsequene of the di�erene in the geometry of theanhor groups and the terminal fragment residues. Several �tting strategies have beeninvestigated (e.g. �tting of two residues on both sides or �tting on three onseutiveCα atoms) but did not result in a better performane.
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Figure 3.30: Regression between loal RMSD and global RMSD for two looppredition test ases of length 6 (a) and 10 (b), respetively.Figure 3.30 shows the orrelation between loal RMSD (based on the �tting thefragment on the native loop onformation) and global RMSD (based on the orientationof the fragment after �tting on the anhor groups) for two loop predition test ases:On the left hand side, the orrelation for the �rst loop predition test ase of length6 of the parametrisation set is shown (PDB identi�er 1al3, residues 198-203) and inanalogy, on the right hand side, the �rst test ase of length 10 (PDB identi�er 16pk,residues 303-312). For the longer loop predition, the orrelation is onsiderably worseompared to the one obtained for the loop of length 6. Several fragments with low
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Correlation between local RMSD and all-atom interaction

energy for a 10-residue loop (PDB identifier 16pk, 303-312)
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fitting on the native loop conformation
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Figure 3.31: Correlation between loal RMSD and loop energy alulated after�tting the fragments on the anhor groups (a) and on the native loop (b), respetively.loal RMSD have a wrong orientation with respet to the native loop as re�eted bythe high global RMSD (see highlighted area).Figure 3.31 exempli�es that the poor loop predition auray for longer loops is mainlya onsequene of the misorientation of the fragments in the protein framework (besidethe dereasing database overage) and not a problem of loop ranking. Two alternativeregressions between the loal RMSD of the fragments and their energy are shownfor a loop predition test ase of length 10 (PDB identi�er 16pk, residues 303-312). InFigure 3.31 a) a regression between the loal RMSD of the fragment with respet to thenative onformation and the sore of the fragment (after �tting of the anhor groups)is shown. Virtually no orrelation exists and several fragments with low loal RMSDhave energies higher than the average of the ensemble. In Figure 3.31 b) eah fragmenthas been �tted on the native loop onformation in order to enfore an approximatelyorret orientation (at least for fragments having a similar loal geometry ompared tothe native loop). This respresents only a hypothetial example, sine the native loopis, of ourse, not known in the appliation ase. As it an be seen, a orrelation existsfor loops lose to the native one and most of the low RMSD loops get assiged soresonsiderably lower than the rest of the fragments. Furthermore, several near-nativeloops around 1 Å RMSD are not oberved on the plot on the right hand side sine theyhave been �ltered out by the lash �lter as a onsequene of the wrong orienation withrespet to the strutural environment.A reasonable extension of the urrent loop predition protool represents the appli-



3.3 The loop predition routine 147ation of a moleular mehanis fore �eld for a subsequent energy minimisation step(not in the sope of this work). Energy minimisation of the loop and possibly thesidehains of the surrounding strutural environment ould ounterat several inherentproblems of knowledge-based approahes. The �tting of a rigid fragment in a �xedprotein framework results in very unfavourable bond lengths and angles between theanhor residues and the �rst loop residues whih should be relaxed. Annealing the loopwith the anhor residues and simultaneously relaxing the loop in the given struturalenvironment an adjust the orientation of the fragment with respet to the proteinframework. Thereby atomi lashes are removed and favourable interations an beestablished suh as hydrogen bonds and salt bridges.The following strategy ould be used in a future implementation:
• Appliation of the loop predition protool desribed here for the seletion ofandidate fragments and for an initial ranking.
• Energy minimisation of the top ranking fragments (e.g. to top 20 preditions).
• Optionally, re-soring aording the fore �eld energy (with impliit treatment ofsolvation e�ets for example by the Generalized Born solvation model [82℄).Suh a strategy most probably improves the predition quality for longer loops andextends the appliability of the knowledge-based approah desribed in this work whihseems to be limited to loops of up to length 7 aording to the results shown above.For loops of up to length 10, a fragment below 2 Å is present in the �nal seletionin at least 70% of the test ases but this perentage drops to 23% and 11% forloops of length 11 and 12. Although the data basis is too sparse for well-foundedonlusions, this observation suggests that for loops up to a length of approximately10 residues, fragments from the database ould be used as reasonable staring pointsfor a subsequent energy minimisation. Vlijmen and Karplus [226℄ onlude in 1997that andidate segments an be used as suitable starting points for loops of length upto nine. In ontrast to the strategy desribed above, Vlijmen and Karplus seletedthe andidate fragments for energy minimisation (using the CHARMM [25℄ non-bonded energy funtion) from the 50 loops losed to native (whih are not knownin the appliation ase). Therefore, using the urrent method to preselet suitable



148 Results and Disussionfragments represents a very promising strategy. Reently, Soto et al. used the statistialpotential DFIRE [249℄ in order to redue the number of onformation generated in anab initio searh based on the Diret Tweak algorithm [241℄ and subsequently soredthe andidates with the OPLS fore �eld [106℄.3.3.2 Comparison with other methodsIn the following, the loop predition routine presented in this work is ompared toother methods based on two di�erent test set:
• A omprehesive test set of approximately 200 loops of length 4-12 used reently byRossi et al. [174℄ in order to benhmark 4 ommerial loop predition programs.
• A set of 14 test ases overing loops of length 4-9 whih has been frequentlyliterature used for the evaluation of di�erent loop modelling algorithms (e.g. in[53, 139℄). The omplete test set in available onlineg.For the test set of Rossi et al. the predition results of the 4 ommerial programswere requested from the author diretely (Karen A. Rossi). Two ab initio methods(Prime, Modeler) and two knowledge-based loop modelling protools are ompared inthis study [174℄. The 4 methods are brie�y desribed here:
• The Loop Re�nement module in Prime 2.5 (Shrödinger, LLC) extensivelysamples the onformational spae by a dihedral-angle-based buildup proedureand uses the OPLS-2001 fore �eld [106℄ together with the Generalized Bornsolvation model [82℄ in order to minimise and rank the loop andidates.
• The Re�ne Loop funtionality implemented in Modeler (Aelrys Software In.)relies on onjugate gradients and moleular dynamis with simulated annealing[77℄ and uses the CHARMM-22 fore �eld [25℄ ombined with statistial potentialterms.ghttp://www.drug-redesign.de/LIP/LIP_WebseiteErgebnisse.html

http://www.drug-redesign.de/LIP/LIP_WebseiteErgebnisse.html


3.3 The loop predition routine 149
• The Loop Sampling option in ICM 3.4-8 (Molsoft LLC) uses fragments extratedfrom a nonredundant subset of the PDB and ranks the fragments based ongeometrial �t of the loop ends and sequene similarity.
• The Protein Loop Searh module in Sybyl 7.1 (Tripos) uses a fragment databaseonstruted from the PDB and selets the andidates based on the geometrial �tto the anhor groups. If no suitable fragments are identi�ed an ab initio protoolis used.For the two knowledge-based approahes, all fragments from proteins sharing morethan 90% sequene identity to the protein of the loop test set are exluded in thestudy of Rossi et al.. Despite this rather permissive uto�, the results (averageglobal bakbone RMSD) for both knowledge-based approahes but also for Modelerare astonishingly bad (Figure 3.32). The loop predition method presented in thiswork performs onsistently better than these 3 methods but slightly worse than Primewhih an be attributed to the extensive sampling strategy and espeially the advanedsoring funtion for energy minimisation and ranking used in this method.For Prime and Sybyl as well as for the present method, the predition auray dropsrapidly for loops longer than 7 residues. The median of the global RMSD for allmethods is greater than 2 Å for loops of length 8. If fragments originating fromproteins sharing less than 50% sequene identity to the proteins of the test set areinluded, the performane of the present methods beomes omparable to Prime. Ifa uto� of 90% is used as in the other to knowledge-based approahes, this methodoutperforms Prime for some loop length (length 7,8,10 and 11).The seond test set onsists of 14 short and medium loops of length 4-9 and has beenpreviously used in literature in order to test loop predition methods [53, 90, 139℄. The�rst two methods (olumn 4 and 5 in Table 3.22) are knowledge-based approhes, thenext three are ab initio methods and, �nally, the method by Deane and Blundell ista ombination of both. The di�erent methods are not desribed in detail here. Theresults of the two knowledge-based approahes need to be treated with aution andthe approahes are therefore brie�y desribed here: In LIP [139℄, loops are extratedfrom a fragment database and ranked aording to the geometrial �t to the anhorresidues but a very permissive �lter in order to remove loops from homolues has been
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Comparison with four commercial loop prediction methods

on the test set of Rossi et al. (average global RMSD)
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Figure 3.32: Comparison to four ommerial loop predition programs: Average (a)and median (b) RMSD on loops of lenth 4-12 of the test set of Rossi et al. [174℄.



3.3 The loop predition routine 151Table 3.22: Comparison with other methods on 14 loops of length 4-9 [53, 139℄.Length PDBID Residues Vlijmenet al.[226℄*a LIP[139℄ Fiser etal. [77℄* ModLoopServer[78℄ RAPPERServer[50, 56℄ Deaneet al.[53℄ * CODAServer[53℄ Presentmethod4 3dfr 20-23 2.6 1.3 1.2 1.8 1 0.4 - 1.35 3dfr 89-93 1.6 3.3 1 1 1.1 0.6 1.3 0.95 3dfr 120-124 0.5 2.1 0.3 0.4 0.6 0.7 0.7 0.75 3blm 131-135 0.8 0.2 0.2 0.2 0.1 0.2 0.4 0.46 8abp 203-208 0.3 0.8 0.4 0.4 0.5 0.8 0.8 0.77 8tln_E 32-38 3.7 0.3 2 3.5 3.3 1.9 2.2 2.87 3grs 83-89 4.6 2.4 0.4 0.6 0.4 1.4 5.3 5.97 5pa 231-237 2.1 0.3 1 5.8 0.7 0.2 2.8 2.57 2fb4_H 26-32 1.6 0.2 4.2 4.4 0.6 0.4 0.4 0.37 2fbj_H 100-106 0.5 9.2 0.8 3.1 1 1.4 1.7 2.78 2apr 76-83 5.2 0.5 1.3 2.7 0.6 2.2 5.3 1.78 2at 198-205 1.6 0.1 2 2.8 3.5 3.1 6.2 5.98 8tln_E 248-255 1.8 0.6 0.9 3.3 0.8 1.8 3.7 2.09 3sgb_E 199-211 1.8 0.2 0.3 0.7 0.3 - - 0.9aMethods marked with an asterisk use an RMSD based on only 3 bakbone atoms (without oxygen).applied suh that the results probably do not re�et the performae of the method ina modelling appliation. As mentioned in the last setion, in the approah of Vlijmenet al. [226℄, the 50 loops from a database searh being losest to the native loop (beingunknown in the appliation ase) are subjeted to a subsequent energy minimisationusing a moleular mehanis fore �eld.In general, the present method shows omparable results to the other methodsespeially for shorter loops. For some loops of length 7 and 8 (for whih most of theother methods had problems as well) bad results are obtained. It sould be mentionedhere, that the methods marked with an astesisk in Table 3.22 use an RMSD based onlyon three bakbone atoms (without the oxygen) with is typially slightly lower than theRMSD over all bakbone atoms. For the �rst loop whih was predited with a RMSDabove 5 Å (3grs, 83-89) a fragment with 1.36 Å was found on rank 4. The seond outlier(2at, 198-205) represents a di�ult test ase for the given method sine it involvesthe formation of a disul�de bridge of the �rst N-terminal residue (the ystein) with theenvironment. As a onsequene, many fragments lashed with the environment, sinethe protein framework was extremely lose to the N-terminal anhor in this example.Given that the presene of a disul�de bridge is known before, the present method would



152 Results and Disussionhave bene�tted from a subsequent energy minimisation step allowing the fragment torelax in the environment, adjust its orientation for the disul�de bridge.Reently, remarkably aurate preditions have been reported also for long loops withRMSD values below 1.5 Å for loops of length 11-13 residues [251℄. These resultswere possible if extensive sampling is used and if rystal ontats are taken intoaount in the soring whih re�ets that onformations of longer loops observedin protein strutures determined by X-ray rystallography are sometimes not nativeonformations observed in solution. The CPU time (AMD proessor with 1.4 GHz or900 MHz) needed for the alulation of a loop of length 11 (12, 13) took on average12 days (19 days, 31 days) in this study! The loop predition routine presented in thiswork needs on average less than 2 hours per loop predition test ase independent of theloop length (Intel Xeon 2.80 GHz). In knowledge-based loop predition, the CPU timesales only marginally with the loop length in onstrast to ab initio methods whihoften show an exponential relationship. The vast majority of the omputation timein the present method is spent on the alulation of the sidehain orientations for the3000 loops in the �nal seletion. The speed of sidehain predition step highly dependson the presene of lose atoms (potential lashes) in the strutural environment. Theseletion of the fragments from the MySQL database as well as the appliation of all�lters takes typially only a few minutes depending on the network onnetion sinea onsiderable amount of data (mainly of the loop oordinates) have to be transfered.The omputation time an be aelerated if striter uto�s are used in the �lteringstep and therefore fewer sidehain orientations have to be predited.



3.4 Loal model quality assessment and anhor group predition 1533.4 Loal model quality assessment and anhor grouppreditionIn this setion the appliability of statistial potentials for the assessment of the loalmodel auray is disussed brie�y, sine an extensive evaluation was not the sopeof this work. The aim is to show that a loal model quality analysis is possible.Furthermore it is analysed whether loal model energy pro�les an used in order topredit the loation of anhor groups serving as starting points for the loop preditionproess.3.4.1 Loal model quality assessmentAs an example, the energy pro�le of our �rst model submitted to the CASP7 targetT0373 is shown in Figure 3.33 together with the residue-spei� bakbone RMSDbetween the model and the orresponding experimental struture (lower urve).
Local Energy Profile: backbone RMSD (target T0373 vs model) and Z-score of composite energy

sliding-window size: 9 residues
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1                            10                           20                               30                             30                               40                              50                              60                              70                              80                              90                               100                           110                             120                            130Figure 3.33: Example of a model energy pro�le for model 1 submitted for targetT0373. The per-residue RMSD is given in the lower urve.The energy pro�le was obtained, as desribed in Methods (Chapter 2.4.5), by addingup the per-residue energies in a sliding window of size 9 and by ombining the threestatistial potenial terms (torsion angle potential over three residues, all-atom solvationpotential and short-range all-atom interation potential) based on Z-sores over theentire model. The x-axis shows the sequenes of the experimental struture and of the



154 Results and Disussionmodel, respetively (the gap indiates that four residues have not been resolved in theexperimental struture), together with the seondary struture of the target.A lear relation between energy and model auray an be observed: the peaks in theupper urve, representing regions of high energy, oinide with the loal model aurayexpressed by the strutural deviation between target and model. Similar results havebeen obtained for other models. The orrelation between peak height and extend ofstrutural deviation is less pronouned whih an be partly attributed to the simplestrategy used to ombine the di�erent statistial potential terms based on Z-sores.Espeially the predited model auray based on the interation potential (and alsothe solvation potential) should be treated with aution: Sine interation potentialsare two-body potentials (in ontrast to single-body potentials suh as the torsion anglepotential), the high energy resulting from a unfavourable interation is assigned toboth partners. For example, a solvent exposed loop lying against the wrong region ofthe protein surfae gets assigned high energies as a onsequene of the unfavourableinterations and the loop regions is therefore predited to be of low auray. On theother hand, the same holds for the residues in ontat with the loop although the highenergies an to some extent be ompensated by other, more favourable interationswith the strutural environment (e.g. with residues of the protein ore). In thisgiven situation, the loation of only one interation partner is wrong and thereforethe high energy (i.e. the predited low model auray) should be assigned to one ofthe interation partners, in this ase to the loop.The seond last peak in the energy pro�le given in Figure 3.33 represents suh anexample: The helix in this region (residues 95-111) is approximatielly orret, despitea small shift with respet to the experimental struture. The residues have a bakboneRMSD below 2 Å, but sine the helix is in ontat with a loops showing seriousdeviations from the native onformation (residues 27-35), this region gets assigneda high energy. An extrat of the strutural superposition of the model and theorresponding experimental struture is shown in Figure 3.34 (Cα atoms only). Thewrong loop as well as the part of the nearby helix whih both got assigned high energiesin the pro�le shown above are marked in bold.Single-body potentials, suh as the torsion angle potential, do not have this problem.A possible strategy ould be to use the torsion angle energy of the interation partners
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Glu-95

Arg-111

Glu-27

Phe-35

wrong loop

native loopFigure 3.34: Extrat of the superposition between the experimental struture oftarget T0373 (light grey) and the model with an inorret loop in ontat with anearby helix (dark grey).
in order to assign the high interation energy to one of the partiipating residues.The seondary struture onstitution of both regions an also be taken into aount,sine loop regions are more likely inorret than helix and sheets whih are usuallypart of the strutural ore. Anyway, the preliminary but promising results indiatethat the statistial potentials developed in this work an be used in the analysisof the loal model auray. In future developments the ombination of the termsshould be optimised on a omprehensive test set. Two reent publiations onerningloal model quality assessment use support vetor mahines [68℄ and arti�ial neuralnetworks [234℄, respetively, in order to ombine multiple terms. The use of mahinelearning algorithms in order to ombine di�erent terms in a omposite soring funtionis surely a resonable approah. The authors do not address the problem of two-bodypotentials for loal model quality assessment although mahine learning algorithms anpossibly ope with this situation if implemented orretly. A future implemtation ofthe loal energy funtion should take this into aount.
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Statistics on all 1091 insertions in 257 structural alignments
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Figure 3.35: Statistial analysis of insertions in a set of 257 strutural alignmentsbetween pairs of homologous proteins.3.4.2 Analysis of the anhor region around gapsIn this setion, a statistial analysis of the length of insertions and deletions ourringin typial modelling situations is performed based on a omprehensive set of struturalalignments obtained from the HOMSTRAD database [142℄ (see Methods on page 70).Furthermore, the strutural onsequenes of isolated insertions and deletions in loopsis investigated and the region around the gaps is analysed for the loation of suitableanhor groups. Several strategies for the predition of anhor groups are disussed.Figure 3.35 and 3.36 show the distribution of gap lengths for 1091 insertions and 945deletions extrated from a non-redundant set of 257 strutural alignments between pairof homologous proteins sharing less than 40% sequene identity representing realistimodelling situations. More than 35% of all gaps are of length 1. 73% of all insertionsand 77% of all deletions are smaller than 5 residues. The distribution of the gap lengthsfor insertion and deletions is quite similar.In Table 3.23, the results of the analysis of the loal strutural environment aroundthe gaps is shown. The analysis of the 257 struture-based sequene alignments revealsthat approximately 10% of the insertions and 15% of the deletions are loated in
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Statistics of all 945 deletions in 257 structural alignments
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Figure 3.36: Statistial analysis of deletions in a set of 257 strutural alignmentsbetween pairs of homologous proteins.within seondary struture elements. Among those, 58% of the insertions and 55% ofthe deletions are lose of the end of the seondary struture elements (i.e. not morethen 2 residues apart from the next loop region). These results underline the advantageof being able to remodel parts of seondary struture elements (e.g. by extending ortrunating seondary struture elements as part of the loop predition proess). Inontrast to most knowledge-based loop modelling proedures desribed in literaturewhih are speialisied on the predition of �pure� loop regions, the method desribedin this work is able to model any strutural segment.The majority of the gaps are loated within loop regions. From those, 642 (632) ofthe insertions (deletions) have seondary struture elements within 10 residues on bothsides. The remaining gaps are loated in longer loops (of at least 10 residues), 119(157) of them are longer than 20 residues in the insertion (deletion) test set.The region around the gaps has been inspeted for possible anhor groups. In analogyto Lessel and Shomburg [121℄, at least 3 onseutive residues with an RMSD below1.8 Å with respet to the orresponding residues in the alignment have to be presenton both sides of the gap. In the given test set, only 16% of the insertion 23% of



158 Results and DisussionTable 3.23: Analysis of the strutural environment of 1091 insertions and 945deletions in 257 strutural alignments.desription # insertions # deletionsgaps in seondary struture elements (SSE) 108 145gaps within SSE but with 2 residues of SSE-end 63 80gaps within loops with SSE begin within 10 residues 642 632gaps with 3 alignable residues on both sidesa 177 214gaps with 2 alignable residues on both sides 266 295gaps with no residue < 1.8 Å RMSD within 10 residues 216 179gaps with neighbouring gap within 10 residues 504 442gaps with neighbouring gap within 8 residues 258 259gaps with neighbouring separated by < 4 residues 50 51�nal number of gaps in �anhor group test set� 112 124total number of gaps 1091 945aAt least 3 onseutive residues with an RMSD below 1.8 Å are found on both sides of the gap.the deletion ful�ll this ondition. The perentages raise to 24% and 31% if only 2residues on both sides are required. The di�erent perentages observed for insertionsand deletions on�rm the expeted stronger in�uene of insertions on the struturalenvironment ompared to deletions. For approximately 20% of the gaps, non of 10residue on both sides has an RMSD below 1.8 Å. These results show that thereare often onsiderable loal deviations between pairs of homologous proteins in thepotential anhor regions. This an be partly attributed to the presene of remotehomologues in the test set representing di�ult modelling test ases (one quarter ofthe pairs have a sequene identity below 20%). Furthermore, as the sequene identitydereases, the seondary struture elements of the strutural ore are often slightlydisplaed between the homologues. If multiple homologues (templates) are presentin the modelling proess, using di�erent parts of di�erent templates an potentiallyimprove the overage and bring the model loser to the experimental struture of thetarget. The identi�ation of regions where the model an bene�t from fragments ofother templates is not a trivial task. A loal soring funtion, as desribed in the lastsetion, an potentially support the deision.46% of the insertions and 47% of the deletions have a neighbouring gap within 10residues. If the neighbouring gap is lose (e.g. separated by less than 4 residues as
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190       200        210
GYMRILRNVG-GAGTCGIATM
GYIRIKRGTGNSYGVCGLYTS
**:** *: *D: * **: *
CEEEEECCCCCCCCHHHCCCCFigure 3.37: Shemati representation of the anhor group predition problem.observed for a total of 101 gaps in the test set) they would be de�nitively mergedand modelled in one step. Otherwise, it has to be deided in the modelling proesswhether these gaps are merged and modelled by a longer loop or whether they aretreated separately. In the later ase, struturally onserved residues have to be presentbetween the gaps serving as anhor groups. As an be seen from Table 3.23 thissituation ours quite often. The analysis of the loal energy pro�le an possibly helpindentifying struturally onserved residues.A subset of 112 insertions and 124 deletions has been extrated from all gaps from thetest set by applying the riteria desribed in Methods (Chapter 2.4.6.2). The regionsaround the gaps are analysed and di�erent strategies for the positioning of anhorgroups are ompared in the following. A shemati representation of the anhor grouppredition problem is given in Figure 3.37. An extrat of the strutural alignment andthe orresponding sequene alignment of a pair of distantly homologous proteins isshown. The target struture is oloured in grey and refers to the �rst sequene in thealignment. The superposition points out the strutural onsequenes of the 1-residuedeletion observed in the loop region.Anhor group predition refers to the attempt to identify those regions on both sides



160 Results and Disussionof the gap (or any struturally non-onserved loop to be remodelled) where the targetstruture begins to deviate from the template and therefore the bakbone oordinatesannot be simply opied. In the given example the anhor groups are positionedlose to the end points of the surrounding helix and sheet, respetively, and sequeneonservation has been taken into aount. On the C-terminal side of the deletion,glyine 204 has been used as anhor group, whih, by looking at the superposition,turned out to be a good deision. On the N-terminal side, the anhor group has beenplaed within the strand, resulting in 8 residues to be remodelled. The onservedarginine immediatelly after the strand represents another possible anhor and wouldredue the number of residues to model by two and a shorter loop an potentially bepredited more aurately (see Chapter 3.3).This highlights the problemti situation in anhor group predition: a reasonableompromise between auray of the anhor groups and length of the fragment tobe remodelled has to be found whih is not a trivial task and di�ult to automate.As shown exemplarily in Figure 3.33, regions of low energy in the energy pro�le ofa model often orrespond to struturally onserved segments representing promisinganhor groups for the loop modelling proess. The energy pro�les are based on asliding window of size of 5 using the entral residue together with the 4 neighbouringresidues in diretion away from the gap. A variety of other implementations have beentested but resulted in a worse performane. Figure 3.38 shows that there is indeeda orrelation between the loal strutural deviation as expressed by the S-sore (seede�nition in Methods on page 72) between target and template and the loal energy,although not very pronouned.Table 3.24 and Table 3.25 show the average loop lengths and RMSDs of the anhorgroup residues between target and template for di�erent anhor group preditionstrategies on the test sets of 112 insertions and 124 deletions. Approahes with andwithout the use of information obtained from the energy pro�les are ompared andrelated to an �optimal� anhor group positions (i.e. if the RMSD between taget andtemplate is assumed to be known). For the insertion test set, an average bakboneRMSD of 0.87 Å is ahieved if the anhors with minimal RMSD within 10 residues onboth sides of the gap are taken. This results in an average loop length of 14.59 residueswhih is too long for aurate loop modelling. If the �rst anhor groups (starting from
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Correlation between S-score and local all-atom energy for all anchor

groups within 10 residues of insertions (window size 5)
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Figure 3.38: Regression between S-sore (as a measure for the loal deviationbetween target and template, de�nition in Chapter 2.4.6.2) and loal energy.the gap) with an RMSD below 1.5 Å (2Å) are used, an average loop length of 9.26(7.24) residues is ahieved whih are reasonable loop length for modelling. For thedeletion test set, the average loop lengths (and also the RMSDs) are lower as expetedsine the �gap residues� are not modelled in this ase. Even these �optimal� anhorgroups show on average onsiderable deviations from the native struture. This hasto be taken into aount in the loop ranking proess of knowledge-based approahes:Loop ranking methods with only rely on the geometrial �t of the fragments on theanhor groups are potentially not appliable in realisti modelling situations. In theloop predition method desribed in this work, this riteria has not been used (inonstrast to most existing algorithms) and the ranking has been performed based onthe interation potentials as desribed in Chapter 3.3.The results for the deletion test set are not disussed in detail here. Deletions aretypially muh easier to model than insertion sine the strutural onsequenes ofdeletions on the surrounding residues are less pronouned. A simple strategy of using



162 Results and DisussionTable 3.24: Comparison of di�erent anhor group predition strategies on a test setof 112 insertions.strategy used for anhor group positioning ØRMSD Øloop length�xed distane from gap: 1 residue 3.11 3.42�xed distane from gap: 2 residues 2.40 5.42�xed distane from gap: 3 residues 2.00 7.42�xed distane from gap: 4 residues 1.67 9.42energy minimum within 3 residues (all-atom)a 2.22 6.17energy minimum within 3 residues (3 terms)b 2.29 6.11energy minimum within 4 residues (all-atom) 1.95 7.42energy minimum within 4 residues (3 terms) 2.05 7.21�xed depth in SSE: 0 residues (SSE begin) 1.92 8.49�xed depth in SSE: 1 residues 1.66 10.49energy minimum around SSE end (all-atom) 1.92 8.22energy minimum around SSE end (3 terms) 2.09 7.75global energy minimum within 10 residues (3 terms) 1.39 13.36anhors with lowest RMSD 0.87 14.59�rst anhors with RMSD < 1.5 Å 1.46 9.26�rst anhors with RMSD < 2 Å 1.69 7.24aThe minimum in the energy pro�le based on the all-atom interation potential is taken.bA ombination of the all-atom interation potential, the torsion potential and the solvation potential is used.Table 3.25: Comparison of di�erent anhor group predition strategies on a test setof 124 deletions.strategy used for anhor group positioning ØRMSD Øloop length�xed distane from gap: 1 residue 3.24 2�xed distane from gap: 2 residues 2.27 4�xed distane from gap: 3 residues 1.76 6�xed distane from gap: 4 residues 1.46 8energy minimum within 3 residues (all-atom) 1.91 5.13energy minimum within 3 residues (3 terms) 2.03 4.99energy minimum within 4 residues (all-atom) 1.72 6.68energy minimum within 4 residues (3 terms) 1.75 6.39�xed depth in SSE: 0 residues (SSE begin) 1.98 6.27�xed depth in SSE: 1 residues 1.52 8.27energy minimum around SSE end (all-atom) 1.76 6.68energy minimum around SSE end (3 terms) 2.06 5.88global energy minimum within 10 residues (3 terms) 1.36 12.48anhors with lowest RMSD 0.76 13.15�rst anhors with RMSD < 1.5 Å 1.35 7.21�rst anhors with RMSD < 2 Å 1.63 5.04



3.4 Loal model quality assessment and anhor group predition 163anhor groups approximately 3-4 residues away from the gap results in better anhorgroups than any other, more sophistiated approah. The average length of the loopto be remodelled in this approah is between 6 and 8 residues.The �rst four lines in Table 3.24 show the average loop lengths and RMSDs if �xedanhor group positions relative to the gap are used for distane of 1 to 4 residues. Forinsertions, the probably best ompromise between loop length and RMSD of the anhorgroups is approximately 3 residues away from the gap (average RMSD 2Å loop length7.42). If the energy pro�le is taken into aount the RMSD or the loop length an beslighly lowered. If the anhor groups are positioned within the surrounding seondarystruture elements, lower RMSDs an be ahieved but only at the ost of longer loops.This an be attributed to the fat that (for longer loops) the seondary elements anbe far away. Depending on the strutural onservation, anhor groups loser to the gapan possibly be used. If the energy pro�le is taken into aount (using a ombination ofthree statistial potential terms), the average loop length an be redued from 8.49 to7.75 at the ost of a slightly higher RMSD. Additional harateristis of the potentialanhor residues, suh as hydrophobiity, solvent aessibility and sequene onservationhave been also taken into aount (as suggested by Wohlfahrt et al. [238℄) but did notimprove the predition over the statistial potentials. This an be attributed to thefat that these fators are to some extent overed by the statistial potential terms.The approah of simple adding Z-sores of the terms is also not optimal.Generally, the use of information about the loal energy of the andidate anhor groups,did not result in a onsiderably better preditions. Loal energy funtions are possiblyto impreise for the predition of exat loations (on the level of single residues) andare more appropriate for the identi�ation of segments of strutural deviation whihan be subjeted to re�nement in order to bring the model lose to the experimentalstruture or for loop predition.Another fator ompliating the automation of the anhor group predition task islosely onneted with the knowledge-based approah to loop predition used in thiswork: the spaial orientation of the database fragment after �tting on the anhor groupatoms, is highly sensitive to distortions of the anhor geometry. Thus, it is not onlyimportant to position the anhor groups near the end of the struturally onservedregion of the template, but also to take into aount that a suitable fragment with



164 Results and Disussiona similar overall geometry and showing a orret orientation after �tting has to bepresent in the database. A worse anhor group in terms of bakbone deviation fromthe target struture an still result in better loop modelling results if a loop with abetter orientation after �tting is present in the database or if the gap an be bridgedby a shorter fragment whih an potentially be predited more aurately. For theknowledge-based loop predition routine presented in this work (Chapter 3.3), thepredition quality dereases onsiderably between loops of length 7 and 8 residues.The best strategy to ope with the unertainties onerning anhor groups seletionand loop modelling is to use multiple alternative anhor groups and a set of top-soringloops for eah ombination in the modelling proess and to subsequently selet the bestpredition based on the quality of the �nal model. The QMEAN soring funtion [16℄presented in this work (Chapter 3.2) an be used for this task sine it is both fast andreliable in disriminating good from bad models.



4 Conlusions and Outlook
The predition of the 3-dimensional struture of a protein from its sequene isgreatly failitated by the presene of proteins with experimental struture sharing anevolutionary relationship to the target protein (homology modelling). The aim of thiswork was to establish a loop predition methods whih optimally takes advantage ofthe growing number of proteins present in the database of known protein strutures.Furthermore, soring funtions need to be implemented whih an be used for theranking of andidate fragments in loop modelling and for the assessment of the qualityof the generated models. Both tasks are of ruial importane for the �nal appliabilityof the models. As a framework in order to deal with loop predition and model qualityassessment, a omplete homology modelling pipeline has been established.The homology modelling pipeline has been tested at the seventh round of theommunity-wide CASP experiment in summer 2006. The results on the 18 investigatedtargets on�rmed that the modelling pipeline is able to produe very aurate homologymodels: 3 extraordinarily good preditions have been submitted (rank 2, 4 and 6of over 130 partiipating groups) and the vast majority of remaining targets havebeen modelled above the ommunity average. Several fators are responsible for theseresults: beside a good strategy for template identi�ation and alignment building, theability to not only remodel loop regions but any strutural segment (e.g. hain ends orsegments ontaining seondary struture elements) is an important ingredient togetherwith the soring funtion used to assess to quality of the produed models and to seletof the most reliable andidate.A omposite soring funtion (alled QMEAN) has been presented onsisting of threestatistial potential terms overing the major aspets of protein stability and twoadditional terms desribing the agreement of predited and alulated seondarystruture and solvent aessibility, respetively. QMEAN has been shown to be avaluable tool for the disrimination of good from bad models and performs signi�antlybetter than �ve well-established methods on a omprehensive test set of 22,420 modelsfrom CASP7. Some of the soring funtion terms turned out to be more speialised for



166 Conlusions and Outlooka spei� task (e.g. the torsion angle potential over 3 onseutive residues developedin this work turned out to be very e�etive in reognising the native fold) whereasother fators are more widely appliable. The results on�rm that a ombination ofmultiple terms inreases the performane of the soring funtion by taking advantageof the strengths of ertain terms for a spei� task while reduing a possibly negativeontribution of other terms. The statistially signi�ant improvement in performane ofQMEAN over �ve methods gets even more pronouned when taking into aount that asimple linear ombination was used in order to ombine the di�erent terms to the �nalsoring funtion. The performane of the QMEAN soring funtion an potentiallybe improved by the appliation of mahine learning algorithms for the ombination ofthe terms and by using speialised versions of the soring funtion depending on theresolution of the models (e.g. by using a �ne-grained all-atom implementation for theassessment of models generated by omparative modelling and residue-level potentialsfor the analysis of rough models predited by ab initio methods).The loop modelling routine presented in this work ombines a knowledge-basedapproah for onformational sampling based on a omprehensive fragment databasewith a knowledge-based approah for soring of the seleted fragments based on anspeialised all-atom interation potential. In ontrast to other database loop preditionapproahes desribed in the literature, loop ranking is performed based on the ompleteloop inluding sidehains. The presented method is able to aurately model loops oflength up to 7 residues and outperforms 3 of 4 ommerial loop predition programson a omprehensive test set of over 200 loops of length 4-12 residues. An average(median) global bakbone RMSD of 0.66 Å (0.51 Å) and 1.63 Å(1.35 Å) is obtainedfor loops of length 4 and 6, respetively. If fragments from proteins sharing less than50% sequene identity to the proteins in the loops test set are inluded, the medianpredition auray drop below 1 Å per loop length for loops up to 7 residues. For loopslonger than 8 residues the predition auray drops as a onsequene of the databaseinompleteness and the fat that the orientation of the fragments after �tting in theprotein framework is only approximately orret resulting in an atomi displaementinreasing with the loop length. A subsequent energy minimisation step using amoleular mehanis fore �eld an ounterat the inherent problems of databaseloop predition approahes. In this way, the loop an be annealed with the anhor



167groups and at the same time the loop onformation an be relaxed in the struturalenvironment. Energy minimisation and re-ranking of the top soring loops generatedwith the given method represents a very promising strategy to extend the appliabilityof knowledge-based loop predition approahes toward longer loop lengths.A predition of suitable anhor groups serving as starting points for loop preditionbased on the analysis of the loal model energy around insertions and deletions turnedout to perform only marginally better than plaing the anhor groups at a �x distanefrom the gap and near the end of the surrounding seondary struture elements. Anhorgroups should be plaed at the end of the struturally onserved region of the templatestruture (i.e. in the region where target and template begin to deviate) and at the sametime, the length of the loop to be remodelled should be kept as short as possible. Inthe ontext of knowledge-based loop predition, another fator in�uenes the loationof the optimal anhor groups: A fragment with a loally orret geometry needs to bepresent in the database whih, after �tting on the anhor groups, approximately showsa orret orientation with respet to the protein framework. Due to the interplay ofall these fators, the best approah is to use several alternative anhor groups in themodelling proess.A reasonable future extensions of this work represents the automation of the wholemodelling proess. The best strategy in order to ope with the multitude of fatorsin�uening the auray of protein struture models is to generate a vast amount ofalternative models (e.g. by using multiple templates, alternative alignments, di�erentanhor groups and several loop onformations) and to subsequently selet the �nalmodel based on the soring funtion desribed in this work.





5 Appendix
Table 5.1: Classi�ation of the 95 target of CASP7 aording to their di�ulty infree modelling (FM), template-based modelling (TBM) and high-auray template-based modelling (HA-TMB) targets. HA-TBM are a subsetion of TBM targets.ategory targetsFM T0287, T0296, T0300, T0304, T0307, T0309, T0314, T0316, T0319,T0321, T0347, T0348, T0350, T0353, T0356, T0361, T0382, T0386TBM T0283, T0284, T0285, T0286, T0288, T0289, T0290, T0291, T0292,T0293, T0295, T0297, T0298, T0299, T0301, T0302, T0303, T0305,T0306, T0308, T0311, T0312, T0313, T0315, T0317, T0318, T0320,T0322, T0323, T0324, T0325, T0326, T0327, T0328, T0329, T0330,T0331, T0332, T0333, T0334, T0335, T0338, T0339, T0340, T0341,T0342, T0345, T0346, T0349, T0351, T0354, T0357, T0358, T0359,T0360, T0362, T0363, T0364, T0365, T0366, T0367, T0368, T0369,T0370, T0371, T0372, T0373, T0374, T0375, T0376, T0378, T0379,T0380, T0381, T0383, T0384, T0385HA-TBM T0288, T0290, T0291, T0292, T0295, T0302, T0305, T0308, T0311,T0313, T0315, T0317, T0324, T0326, T0328, T0332, T0334, T0340,T0345, T0346, T0359, T0366, T0367
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(a) T0303 (b) T0303, domain 1

() T0303, domain 2 (d) T0334

(e) T0340 (f) T0341Figure 5.1: GDT plot of all targets proessed by our group (1/5).
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(g) T0341, domain 1 (h) T0341, domain 2

(i) T0345 (j) T0359

(k) T0360 (l) T0362Figure 5.1: GDT plot of all targets proessed by our group (2/5).
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(m) T0364 (n) T0370

(o) T0371 (p) T0371, domain 1

(q) T0371, domain 2 (r) T0373Figure 5.1: GDT plot of all targets proessed by our group (3/5).
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(s) T0374 (t) T0375

(u) T0376 (v) T0379

(w) T0379, domain 1 (x) T0379, domain 2Figure 5.1: GDT plot of all targets proessed by our group (4/5).
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(y) T0380 (z) T0384Figure 5.1: GDT plot of all targets proessed by our group (5/5).
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Table 5.2: Performane of di�erent soring funtions in prediting the quality of the server models submitted forthe 77 CASP7 targets of the ategory template-based modelling.regressiona enrihmentb best predited model best GDT_TS modeld native struturee
Method r2 rho F.E. E15% r10 logPB1 logPB10 ∆GDT_TS r1 r10 Znat r1 r10Modhek 0.68 0.61 0.32 2.63 12 -0.66 -1.63 -0.2 5 22 1.87 39 58RAPDF -0.53 0.52 0.31 2.48 13 -0.86 -1.64 -0.08 3 13 -1.97 46 63DFIRE -0.41 0.56 0.31 2.66 16 -0.96 -1.67 -0.07 4 14 -1.18 47 58ProQ 0.39 0.28 0.12 1.1 3 -0.3 -0.96 -0.23 0 6 1.39 9 24
ProQSSE 0.57 0.44 0.17 1.59 7 -0.49 -1.12 -0.17 2 8 1.55 10 32FRST -0.6 0.55 0.29 2.27 18 -0.91 -1.72 -0.08 6 18 -2.37 49 60QMEAN3 -0.69 0.62 0.32 2.48 15 -0.8 -1.8 -0.13 1 28 -2.16 50 61QMEAN4 -0.76 0.66 0.37 2.73 22 -0.97 -1.91 -0.08 4 32 -1.76 47 56QMEAN5 -0.77 0.67 0.39 2.87 24 -1.01 -1.93 -0.08 5 33 -1.76 47 58torsion single -0.48 0.42 0.22 1.76 6 -0.62 -1.47 -0.12 0 11 -2.17 47 60torsion3-residue -0.57 0.47 0.21 1.8 9 -0.72 -1.49 -0.12 1 8 -2.64 51 65pairwiseCβ -0.62 0.54 0.28 2.42 15 -0.66 -1.68 -0.19 4 21 -1.84 32 56pairwiseCβ/SSE -0.63 0.56 0.32 2.52 17 -0.78 -1.8 -0.14 5 29 -2.04 38 56solvation -0.59 0.52 0.26 2.22 6 -0.47 -1.6 -0.27 0 20 -1.2 14 36SSEPSIPRED -0.71 0.54 0.23 2.03 7 -0.63 -1.44 -0.13 2 15 -0.83 6 20ACCpro -0.62 0.58 0.34 2.71 17 -0.85 -1.62 -0.11 5 25 -1.19 13 32aPearson's orrelation oe�ient r2 and Spearmans's rank orrelation oe�ient rhob

F.E. stands for fration enrihment and E15% is the enrihment among the top 15% best predited models as ompared to a random seletion.

r10 are the number of targets for with the top-soring models is among the top10 best models (based on GDT_TS). logPB1 and logPB10 are the log probability of seletion thehighest GDT_TS model as the best model or among the ten best-soring models, respetively.dGDT_TS loss is the di�erene between the GDT_TS sore of the best-soring model and the best model in the deoy set.r1 and r10 are the number of targets in whih the bestmodel based on GDT_TS, exluding the native struture was found on the �rst rank or among the top 10 preditions.e

Znat is the Z-sore of the native struture as ompared to the ensemble of models. r1 and r10 are the number of targets in whih the native struture was found on the �rst rankor among the top 10 preditions.
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Appendix Table 5.4: Performane of di�erent soring funtions in prediting the quality of the server models submitted forthe 18 free modelling targets of CASP7.regressiona enrihmentb best predited model best GDT_TS modeld native struturee

Method r2 rho F.E. E15% r10 logPB1 logPB10 ∆GDT_TS r1 r10 Znat r1 r10Modhek 0.46 0.51 0.39 3.02 5 -0.88 -1.87 -0.13 1 5 2.5 8 11RAPDF -0.38 0.41 0.34 2.26 4 -1.1 -1.8 -0.07 1 4 -2.63 9 14DFIRE -0.32 0.43 0.34 2.27 3 0.8 -1.71 -0.11 1 4 -1.58 12 14ProQ 0.2 0.18 0.17 1.73 2 -0.37 -1.09 -0.17 0 0 1.95 0 8

ProQSSE 0.38 0.42 0.25 2.21 1 -0.58 -1.59 -0.13 0 3 2.6 4 10FRST -0.42 0.44 0.33 2.71 3 -0.92 -1.81 -0.11 0 4 -2.56 7 12QMEAN3 -0.46 0.45 0.4 2.99 1 -0.82 -1.95 -0.12 0 7 -2.76 9 14QMEAN4 -0.48 0.53 0.42 2.87 6 -1.25 -1.87 -0.07 1 7 -2.29 8 13QMEAN5 -0.51 0.56 0.44 3.06 6 -1.22 -2 -0.07 1 7 -2.43 9 13torsion single -0.27 0.29 0.2 1.73 0 -0.52 -1.65 -0.14 0 2 -1.74 4 7torsion3-residue -0.35 0.32 0.26 2.12 4 -0.91 -1.6 -0.1 0 2 -2.65 8 14pairwiseCβ -0.4 0.38 0.39 2.88 2 -0.88 -1.77 -0.12 0 6 -2.45 7 13pairwiseCβ/SSE -0.41 0.36 0.43 2.84 5 -1.03 -1.79 -0.09 0 7 -2.67 7 15solvation -0.36 0.38 0.39 2.71 4 -0.86 -1.87 -0.13 2 7 -1.69 4 9SSEPSIPRED -0.37 0.48 0.27 2.05 2 -0.62 -1.38 -0.15 1 2 -1.16 1 5ACCpro -0.44 0.51 0.39 2.93 4 -0.84 -1.83 -0.1 1 8 -2.21 7 12aPearson's orrelation oe�ient r2 and Spearmans's rank orrelation oe�ient rhob

F.E. stands for fration enrihment and E15% is the enrihment among the top 15% best predited models as ompared to a random seletion.

r10 are the number of targets for with the top-soring models is among the top10 best models (based on GDT_TS). logPB1 and logPB10 are the log probability of seletion thehighest GDT_TS model as the best model or among the ten best-soring models, respetively.dGDT_TS loss is the di�erene between the GDT_TS sore of the best-soring model and the best model in the deoy set.r1 and r10 are the number of targets in whih the bestmodel based on GDT_TS, exluding the native struture was found on the �rst rank or among the top 10 preditions.e

Znat is the Z-sore of the native struture as ompared to the ensemble of models. r1 and r10 are the number of targets in whih the native struture was found on the �rst rankor among the top 10 preditions.
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(o) T0298 (TBM)Figure 5.2: Correlation between GDT_TS and QMEAN sore for all server modelsof the 95 targets of CASP7 (1/7).
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(o) T0365 (TBM)Figure 5.2: Correlation between GDT_TS and QMEAN sore for all server modelsof the 95 targets of CASP7 (5/7).
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(o) T0381 (TBM)Figure 5.2: Correlation between GDT_TS and QMEAN sore for all server modelsof the 95 targets of CASP7 (6/7).
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(e) T0386 (FM)Figure 5.2: Correlation between GDT_TS and QMEAN sore for all server modelsof the 95 targets of CASP7 (7/7).



185
Table 5.6: Results for loops of length 5 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopaPDB ID residues bestloopb random20000 random3000d rankTop10e no ho-molgues allhomo-logues <90% <50% <30%153l 131-135 0.27 4.54 2.87 7 0.91 0.28 0.91 0.91 0.911a2y_A 14-18 0.26 1.69 1.16 74 0.91 0.29 0.29 0.91 0.911a8e 197-201 0.3 1.97 3.59 10 0.48 0.21 0.21 0.48 0.481frd 83-87 0.38 3.3 2.55 5 0.5 0.09 0.18 0.2 0.51gpr 54-58 0.25 3.78 2.5 3 0.25 0.05 0.52 0.52 0.251hbg 19-23 1.16 4.15 5.44 14 1.99 0.09 1.99 1.99 1.991hbq 158-162 0.25 5.55 1.54 1 0.25 0.25 0.25 0.25 0.251kuh 37-41 0.64 3.9 2.63 2 0.78 0.16 0.78 0.78 0.781lit 131-135 0.68 2.92 4.55 1 0.81 0.81 0.81 0.81 0.811lit 51-55 0.37 2.99 2.6 6 0.4 0.1 0.3 0.3 0.41lkk_A 186-190 1.22 1.47 4.1 59 4.04 4.04 4.04 4.04 4.041mla 102-106 0.24 4.71 4.86 3 0.24 0.06 0.26 0.26 0.241mla 275-279 1.08 2.84 6.64 26 1.68 0.05 0.29 0.29 1.681nar 56-60 0.49 5.62 3.32 2 0.49 0.06 0.49 0.49 0.491nfp 95-99 0.42 1.93 1.18 6 1.37 0.08 0.38 0.38 1.371noa 88-92 1 2.28 3.51 50 1.91 1.91 1.91 1.91 1.911prn 187-191 0.46 2.86 3.23 8 5.01 0.33 5.01 5.01 5.011rie 149-153 1.49 5.49 5.52 11 3.8 0.06 3.8 3.8 3.81sbp 181-185 0.38 2.39 2.65 2 0.57 0.09 0.57 0.57 0.571ta 157-161 0.39 2.32 2.93 5 0.92 0.05 0.92 0.92 0.921tml 147-151 0.52 4.4 3.6 2 0.91 0.91 0.91 0.91 0.911v 63-67 0.28 0.61 1.8 290 1.96 1.96 1.96 1.96 1.961xyz_A 559-563 0.71 3.28 2.16 14 3.05 0.05 0.25 0.25 3.052ba 168-172 0.53 3.73 4.02 8 0.53 0.39 0.39 0.39 0.532md 188-192 0.31 5.15 3.71 2 0.31 0.08 0.31 0.31 0.312hbg 37-41 0.21 4 2.2 3 0.21 0.05 0.21 0.21 0.215p21 104-109 2.42 7.51 3.96 2 3.69 3.69 3.69 3.69 3.697rsa 75-79 0.6 1.23 2.06 2 0.6 0.39 0.39 0.39 0.68abp 65-70 1.12 2.63 3.04 102 3.17 3.17 3.17 3.17 3.17average - 0.64 3.42 3.24 - 1.44 0.68 1.21 1.24 1.44median - 0.46 3.28 3.04 - 0.91 0.16 0.52 0.57 0.91aRMSD of the top ranking loop after removing homologues below a given uto�.bBest nonhomologues loop present among the 3000 andidate fragments.Random seletion of a fragment from the maximum 20,000 loops present after appliation of the torsion energy �lter.dRandom seletion of a fragment from the maximum 3,000 loops present after appliation of the bakbone energy �lter.eRank of the �rst Top10 fragment aording to RMSD.
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Table 5.7: Results for loops of length 7 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%1a62 89-95 0.05 4.37 3.09 1 0.05 0.05 0.05 0.05 0.051bkf 64-70 0.37 1.2 0.69 5 0.4 0.06 0.29 0.4 0.41ads 186-192 1.33 6.7 5.32 17 4.91 0.29 0.29 0.35 4.911brt 226-232 0.34 4.44 4.82 4 0.49 0.11 0.37 0.37 0.491vl 111-117 0.26 4.21 5.36 3 0.26 0.16 0.28 0.26 0.261dad 116-122 1.17 5 4.09 2 1.17 0.87 1.17 1.17 1.171dim 198-204 1.17 5.94 5.08 2 1.21 0.2 1.21 1.21 1.211edg 309-315 1.35 2.47 3.19 29 1.76 0.06 1.76 1.76 1.761ga 196-202 0.56 6.47 4.73 15 0.81 0.06 0.81 0.81 0.811hbg 46-52 1.31 7.96 4.64 8 3.25 0.1 3.25 3.25 3.251hf 152-158 1.78 2.29 5.21 12 1.78 0.05 0.59 1.78 1.781iab 142-148 0.86 2.58 4.08 3 5.59 0.11 5.59 5.59 5.591lif 64-70 0.92 5.36 4.89 148 6.26 0.16 0.45 0.48 6.261mbd 17-23 0.47 5.03 2.67 1 0.79 0.79 0.79 0.79 0.791mla 80-86 1.36 6.09 3.86 2 1.99 1.99 1.99 1.99 1.991nif 65-71 1.35 5.91 5.54 6 1.35 0.31 0.31 0.42 1.351php 135-141 0.55 2.21 3.02 6 1.2 0.16 0.33 0.42 1.21rhs 21-27 1.52 3.21 3.91 88 4.04 0.07 4.04 4.04 4.041sgp_E 128-134 0.61 4.98 4.61 3 0.71 0.06 0.51 0.71 0.711ta 132-138 0.52 2.04 3.01 2 0.66 0.17 0.66 0.66 0.661tml 20-26 0.65 3.89 4.65 2 1.07 0.32 1.07 1.07 1.071xyz_A 689-695 2.02 2.41 6.87 177 5.28 0.89 0.89 0.89 5.282mnr 270-276 1.18 3.91 4.05 12 2.01 0.14 1.15 1.15 0.92pth 95-101 0.71 4.88 6.86 3 6.09 0.1 6.09 6.09 6.093tgl 159-165 1.25 5.92 3.74 1 2.07 2.07 2.07 2.07 2.075p21 83-89 0.71 4.44 5.89 59 1.63 0.22 0.22 0.17 0.37average - 0.94 4.38 4.38 23.5 2.19 0.37 1.39 1.46 2.09median - 0.89 4.44 4.63 4.5 1.49 0.16 0.8 0.85 1.21
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Table 5.8: Results for loops of length 9 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%1arb 168-176 4.53 6 7.52 20 8.83 0.07 8.83 8.83 8.831arp 127-135 1.14 9.47 6.04 5 1.93 0.37 1.93 1.93 1.931aru 36-44 2.18 7.26 4.3 142 6.8 6.8 6.8 6.8 6.81se_E 95-103 2.42 6.27 4.69 351 8.83 0.52 0.52 0.42 8.831sh 252-260 0.83 8.08 6.67 9 0.83 0.06 0.7 0.7 0.561ede 257-265 1.48 4.03 5.84 17 4.37 0.25 4.37 4.37 4.371fus 91-99 1.82 5.7 5.12 167 3.99 3.99 3.99 3.99 3.991lkk_A 142-150 1.7 6.22 8.68 8 3.67 0.1 1.64 3.67 3.671mla 194-202 2.11 5.06 6.16 100 3.32 0.2 3.32 3.32 3.321nls 131-139 0.76 4.67 4.11 405 5.88 0.06 5.88 5.88 5.881on 70-78 0.96 6.66 5.78 8 2.94 2.94 2.94 2.94 2.941pda 108-116 1.41 8.8 8 7 6.41 0.21 6.41 6.41 6.411pgs 117-125 1.73 2.06 6.24 2 1.8 0.1 1.8 1.8 1.81php 91-99 1.55 6.47 7.67 638 6.08 0.15 0.71 6.08 6.081sgp_E 109-117 1.76 4.67 6.35 43 3.64 0.11 3.64 3.64 3.641xnb 116-124 1.53 7.35 5.16 1 1.88 1.88 1.88 1.88 1.881xnb 133-141 1.95 5.19 8.65 21 4.19 0.35 4.19 4.19 4.191xyz_A 795-803 1.64 9.83 5.69 1143 5.32 0.24 0.89 0.89 5.322ayh 169-177 1.24 2.02 2.46 12 3.08 0.1 0.34 3.08 3.082pl 24-32 0.82 4.36 4.73 17 0.82 0.4 0.4 0.33 0.823pte 107-115 1.84 2.55 2.73 2 2.8 0.2 2.8 2.8 2.8average - 1.69 5.84 5.84 - 4.16 0.91 3.05 3.52 4.15median - 1.64 6 5.84 - 3.67 0.21 2.8 3.32 3.67
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Table 5.9: Results for loops of length 10 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%135l 18-27 1.9 5.41 7.03 252 4 0.2 0.4 0.39 41ads 170-179 1.66 4.67 7.02 414 3.6 0.31 0.31 0.44 3.61ads 171-180 1.68 4.45 7.6 44 2.74 0.42 0.42 0.47 2.741amp 181-190 2.97 3.86 3.91 8 4.05 0.23 4.05 4.05 4.051arb 41-50 1.88 4.78 4.28 75 5.53 0.06 5.53 5.53 5.531arp 37-46 3.32 7.72 4.56 586 8.45 8.45 8.45 8.45 8.451aru 128-137 1.6 8.88 2.25 9 2.88 0.36 0.66 0.66 2.881btl 170-179 2.17 4.7 4.44 448 3.38 0.76 0.76 0.76 3.381dim 87-96 1.83 3.04 13.26 601 7.85 0.28 7.85 7.85 7.851fkf 63-72 0.54 6.57 6.57 7 0.54 0.35 0.43 0.47 0.541gpr 133-142 1.36 6.68 4.25 3 3.04 0.15 3.04 3.04 3.041gvp 49-58 1.2 8.66 8.16 9 3.68 0.06 3.68 3.68 3.681ixh 84-93 1.77 4.85 4.41 530 4.49 0.13 4.49 4.49 4.491knt 35-44 1.67 5.86 6.06 7 1.75 0.24 1.62 1.62 1.751mrj 173-182 1.94 4.98 5.33 373 6.34 0.06 6.34 6.34 6.341pl 42-51 1.58 6.82 7.55 58 6.46 0.57 0.57 1.41 6.461ppn 190-199 2.22 7.28 9.16 25 4.9 1.56 1.56 1.56 4.91ss 65-74 0.71 5.97 3.33 79 3.58 0.53 3.58 3.58 3.581ta 23-32 2.56 9.93 7.28 8 11.31 0.05 11.31 11.31 11.311whi 47-56 1.97 5.62 8.26 40 6.2 0.06 1.09 6.2 6.22md 57-66 1.44 8.23 9.21 3 2.99 0.11 2.99 2.99 2.992mnr 91-100 2.2 9.35 7.05 18 5.09 5.09 5.09 5.09 5.092sil 197-206 1.05 6.27 6.19 2 1.05 0.22 1.05 1.05 1.053hs 28-37 1.98 7.8 5.98 8 4.05 0.27 0.64 4.05 4.057rsa 110-119 1.13 1.88 2.45 3 1.13 0.41 0.41 1.13 1.137rsa 33-42 2.02 7.19 3.22 197 7.68 0.37 0.91 7.68 7.687rsa 87-96 1.34 10.79 9.56 1 2.39 2.39 2.39 2.39 2.39average - 1.77 6.38 6.24 141.04 4.41 0.88 2.95 3.58 4.41median - 1.77 6.27 6.19 25 4 0.28 1.62 3.04 4
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Table 5.10: Results for loops of length 11 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%153l 154-164 2.15 7.79 4.83 154 8.46 0.14 8.46 8.46 8.461a2p_A 76-86 2.42 5.7 8.09 164 5.48 5.48 5.48 5.48 5.481a2y_A 91-101 100 4.92 5.02 3000 2.23 0.26 0.96 1.12 2.231akz 211-221 2.73 7.15 6.22 317 4.31 0.19 0.24 0.84 4.311awq_A 1101-1111 2.63 6.39 5.14 26 9.51 0.87 0.87 0.58 9.511vl 257-267 6.15 10.27 12.44 972 11.71 0.07 11.71 11.71 11.711dad 42-52 1.75 9.29 10.69 18 3.54 0.66 3.54 3.54 3.541fus 28-38 3 6.36 9.7 254 11.26 2.06 2.06 11.26 11.261ixh 120-130 2.25 3.19 3.41 12 3.4 0.06 3.4 3.4 3.41mla 9-19 1.11 3.67 4.36 3 1.11 0.21 0.98 0.98 1.111rf 122-132 2.33 9.58 4.14 73 4.49 0.42 0.81 0.81 4.492pth 8-18 2.34 4.05 3.5 92 3.77 0.21 0.68 0.68 3.773pte 91-101 2.2 3.8 4.54 4 5.1 0.12 5.1 5.1 5.1average - 10.08 6.32 6.31 - 5.72 0.83 3.41 4.15 5.72median - 2.34 6.36 5.02 - 4.49 0.21 2.06 3.4 4.49
Table 5.11: Results for loops of length 12 residues from the test set of Rossi et al.[174℄. Global RMSD of the top ranking loopPDB ID residues bestloop random20000 random3000 rankTop10 no ho-molgues allhomo-logues <90% <50% <30%153l 98-109 3.53 7.72 8.89 363 8.95 0.17 8.95 8.95 8.951akz 181-192 2.07 5.25 6.32 154 5.11 0.71 0.71 0.91 5.111arb 74-85 2.37 7.52 3.92 357 5.82 0.06 5.82 5.82 5.821bkf 9-20 2.6 6.73 4.95 191 5.04 0.05 0.68 5.04 5.041ex 40-51 2.47 8.13 11.84 196 11.75 0.11 11.75 11.75 11.751dim 213-224 1.83 8.15 4.89 11 4.38 0.24 4.38 4.38 4.381ixh 161-171 4.31 14.32 9.18 128 11.97 0.08 11.97 11.97 11.971lu_A 158-169 2.86 5.38 5.39 2 2.86 0.07 2.86 2.86 2.862ayh 21-32 2.51 12.19 11.53 339 4.18 0.13 4.18 4.18 4.18average - 2.73 8.38 7.43 - 6.67 0.18 5.7 6.21 6.67median - 2.51 7.72 6.32 - 5.11 0.11 4.38 5.04 5.11
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