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Abstract

Knowledge of the three-dimensional structure of proteins is of vital importance for
understanding their function and for the rational development of new drugs. Homology
modelling is currently the most successful method for the prediction of the structure
of a protein from its sequence. A structural model is thereby built by incorporating
information from experimentally solved proteins showing an evolutionary relationship
to the target protein. The accurate prediction of loop regions which frequently
contribute to the functional specificity of proteins as well as the assessment of the
quality of the models are major determinants of the applicability of the generated

models in order to answer biological questions.

The modelling pipeline established in the course of this work is able to produce very
accurate models as shown in a recent community-wide blind test experiment: From
18 processed protein structure prediction test cases, 3 very good models have been
submitted (rank 2, 4 and 6 of over 130 participating groups) and the vast majority of

the remaining models was above the community average.

The loop modelling routine relies on a comprehensive database of fragments extracted
from known protein structures. After the selection of fragments from the database, a
variety of filters are applied in order to reduce the number of fragments. In contrast
to other knowledge-based loop prediction methods described in the literature, which
mostly perform a ranking based on the geometrical fit of the fragments to the anchor
groups in the protein, the present method ranks the remaining candidates with an
all-atom statistical potential scoring function which investigates the compatibility of
the loop including sidechains with its structural environment. On a large test set of
over 200 loops, the loop prediction method is able to model loops with median root
mean square deviation per loop length below 1 A for loops up to a length of 7 residues
if all fragments, originating from proteins sharing more than 50% sequence identity to
the proteins of the test set, are excluded. On the same data basis, the present method

outperforms 3 out of 4 commercial loop modelling programs tested in this work.

Furthermore, a composite scoring function consisting of 3 statistical potential terms
covering the major aspects of protein stability and two additional terms describing the

agreement between prediction features of the sequence and calculated characteristics
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of the model is presented. The scoring function performs significantly better than
five well-established methods in the discrimination of good from bad models based
on a comprehensive test set of 22,420 models and represents a valuable tool for the

assessment of the quality of protein models.
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Zusammenfassung

Das Wissen iiber die dreidimensionale Struktur von Proteinen ist von entscheidender
Bedeutung fiir das Verstindnis der biologischer Funktion und ist eine wichtige Vo-
raussetzung fiir die moderne Arzneimittelforschung. Die Vorhersage der Struktur eines
Proteins aus deren Sequenz mit Hilfe von computergestiitzten Methoden wird deutlich
erleichtert, wenn Informationen von experimentell gelosten Proteinen benutzt werden
konnen, welche eine evolutiondre Verwandtschaft zum gesuchten Protein aufweisen
(Homologiemodellierung). Dabei spielen die prézise Strukturvorhersage von Loopre-
gionen, welche hiufig die funktionelle Spezifitdt von Proteinen ausmachen, sowie die
Fiahigkeit, die Qualitit der erzeugten Modelle zu bewerten, eine wichtige Rolle fiir die

spitere Verwendbarkeit der Modelle zur Beantwortung biologischer Fragestellungen.

Die im Laufe dieser Arbeit entwickelte Modellierungsumgebung wurde kiirzlich an
einem internationalen Blindversuch zur Proteinstrukturvorhersage getestet und es hat
sich gezeigt, dass sehr genaue Vorhersagen erreicht werden kénnen: Von den 18
untersuchten Vorhersagetestfillen wurden 3 sehr gute Modelle eingereicht (Platz 2,
4 und 6 von iiber 130 teilnehmenden Arbeitsgruppen) und die iiberwiegende Mehrzahl

der restlichen Modelle waren besser als der Durchschnitt.

Die intergrierte Loopmodellierungsroutine basiert auf einer umfangreichen Datenbank
von Proteinfragmenten extrahiert aus experimentell geldsten Strukturen. Im Vorher-
sageprozess werden mehrere Qualititsfilter verwendet, um die Anzahl der Fragmente
zu reduzieren. Im Gegensatz zu anderen beschriebenen wissensbasierten Ansétzen, in
welchen das Scoring meist iiber die Passgenauigkeit der Fragmente zu den Ankergrup-
pen im Protein durchgefiihrt wird, verwendet die hier vorgestellten Methode eine Scor-
ingfunktion basierend auf statistische Potentialen, welche die Kompatibilitit der Loops
inklusive Seitenketten mit der strukturellen Umgebung bewertet. Die Methode wurde
auf einem Datensatz von iiber 200 Loops getestet. Der Median des RMSD (Wurzel der
mittleren quadratischen Abweichung) pro Looplinge liegt dabei unter 1 A fiir Loops
bis 7 Residuen. Dabei wurden Fragmente aus Proteinen extrahiert, die weniger als
50% Sequenzidentitdt zu den Proteinen im Testdatensatz haben. Mit dem gleichen
Datensatz liefert dabei die vorliegende Methode genauere Loopstrukturvorhersagen als

3 von 4 untersuchten kommerziellen Loopvorhersage-Programmen.
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Zusitzlich wurde eine zusammengesetzte Scoringfunktion entwickelt, bestehend aus
fiinf Termen: Drei statistischen Potentiale erfassen verschiedene Faktoren der Pro-
teinstabilitiit und zwei zusitzlich Terme beschreiben die Ubereinstimmung zwischen
aus der Sequenz vorhergesagten Eigenschaften und gemessenen FEigenschaften des
Proteinmodells. Eine statistisch signifikante Verbesserung gegeniiber fiinf etablierten
Energiefunktionen beziiglich der Fahigkeit, zwischen guten und schlechten Modellen
zu unerscheiden, wird erreicht, basierend auf einem umfangreichen Testdatensatz
von 22’420 Modellen und einer Vielzahl von Qualitdtsmafen. Die hier vorgestellte

Scoringfunktion stellt ein wertvolles Hilfsmittel zur Bewertung der Modellqualitét dar.
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1 Introduction

Protein£ play a key role in all living organisms. They participate in all processes
that characterise life, which are the ability to metabolise nutrients, respond to external
stimuli, grow, reproduce and evolve. Proteins are involved in most physiological pro-
cesses, for example in the immune response, cell cycle, signal transduction, metabolism,
catalysis of reactions and transport, and they serve as structural material (e.g. actine,

collagen, elastin or creatin).

Proteins are composed of 20 different amino acids and the order of the amino acids is
determined by the genes. After synthesis, the linear polymer folds in a well-defined
3-dimensional structure [7]. The enormous variety of functions proteins perform can
be attributed to a great extent to their ability to specifically and tightly bind other
molecules. Binding and function is mediated by the 3-dimensional structure of the
protein and the physico-chemical properties of the amino acids sidechains at the active
or binding site. Therefore, knowledge about the structure of a protein is of paramount
importance in order to understand its function, find explanations for diseases and

potentially design drugs against them.

Over the last two decades, large-scale sequencing projects of dozens of genomes
(including human) have resulted in a vast amount of sequences. Of these, a considerable
fraction has no annotated function or their mechanism of action is virtually unknown.
The number of known protein sequences is about two orders of magnitude higher
than the number of experimentally solved protein structures. Since experimental
methods for the determination of protein structures are time-consuming and fail for
some important groups of proteins (e.g. membrane proteins), efficient computational

methods for the prediction of the protein structure from its sequence are needed.

The prediction of the protein structure from scratch solely based on physical principles
(i.e. the simulation of the biological process of folding) is, unfortunately, out of reach
at present. All current methods for protein structure prediction incorporate to some

extent knowledge of experimentally solved structures either by using segments of known

2The word “protein” comes from the Greek mpwra ("prota”) which means “of primary importance”



2 Introduction

protein structures to model the structure of unknown ones or by parametrising energy

functions.

In this work, the potential of these so called “knowledge-based” approaches for protein
structure prediction is investigated. A method for the modelling of loop regions, as
well as a scoring function for the quality assessment of the protein structure models
are presented, which both take advantage of the information stored in the set of
experimentally solved protein structures. The methods are embedded in a modelling

pipeline established in the course of this work.

This chapter starts with a general introduction on proteins and their structure, followed
by an overview on methods used in protein structure prediction and ends with the

description of the objectives of this thesis.

1.1 Protein structure

1.1.1 General properties of proteins

Proteins are linear polymers consisting of 20 different amino acids. The amino acids
are connected by the peptide bond between the carbonyl C of the i"* amino acid and
the amine N of the i+ 1" amino acid (Figure[1.T). During the formation of the peptide
bond, a water molecule is released. The peptide bond has a shared double bond: the
non-bonding electron pair of the nitrogen can be delocalised to form a double bond
with the carbonyl C, with the consequence that the 7 electrons of the C' = O bond are

moved to the oxygen |[2].

As a consequence of the double bond character, the peptide bond is rigid and almost
planar which greatly reduces the degrees of freedom. The 6 atoms between two
consecutive Ca atoms (including the Cas) can therefore be considered to be in a plane.
The dihedral angle w (Figure [1.1) is typically very close to 180° for all amino acids
(except proline) which is equivalent to the Ca atoms being in trans conformation
(i.e. the Ca’s point in opposite directions of the peptide bond). Over 99.9% of all
amino acids in proteins (except proline) occur in trans conformation ] Proline,

as a consequence of the covalent bonding between sidechain and backbone, occurs in
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Figure 1.1: Important angles in polypeptides@

approximately 5% of the cases in cis-conformation @, ’TSO]

Due to the planarity, the conformational degrees of freedom of the protein backbone
are mainly reduced on the two torsion angles ® and W. The dihedral angle ® describes
the angle between the two planes defined by the 4 atoms C;_;, N;, Cay, C; and ¥ in
analogy is defined by N;, Cay, C;, Ny (i represents any position in the polypeptide
chain). Not all /W¥-angle combinations are energetically favourable as a consequence
of steric hindrance between the first sidechain atom and the backbone atoms. This fact
can be schematically visualised by the Ramachandran plot [@] (Figure [1.2).

The Ramachandran plot is obtained by treating the atoms as hard spheres and
marking the & and ¥ angle combinations which do not lead to collisions of the van
der Waals spheres. White regions are sterically disallowed, dark regions lead to no
van der Waals clashes and the lighter region are possible if the radii are slightly
reduced. The distribution of ®/W-angles observed in experimental structures can
sometimes differ substantially from the ideal situation depicted above. The high energy
of an unfavourable dihedral angle combination can be compensated for example by
other interactions. Glycine and proline show a quite different Ramachandran plot as
compared to the other amino acids: Glycine, as a consequence of the missing sidechain

(R-group = —H), can populate regions which are unfavourable for the other amino

bsource: http://kinemage.biochem.duke.edu/~jsr/html/anatax.1b.html
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The Ramachandran Plot.

+psi Left
handed
alpha-helix.

0
-psi Right handed
alpha-helix.
-180 L
-180 - phi 0 + phi 180

Figure 1.2: The Ramachandran plotE

acids and in proline the ® dihedral angle is restrained as a consequence of the cyclic

nature of this amino acid.

There are four levels of proteins structure: The linear sequence of amino acids, encoded
by the nucleotide sequence of the gene, is called the primary structure. Secondary
structure refers to local structural patterns of the protein backbone. The tertiary
structure is the 3-dimensional conformation of the protein whereas quaternary structure

describes the arrangement of protein subunits forming complexes.

1.1.2 Amino acids

Amino acids consist of a central carbon atom (the Ca atom) in tetrahedral coordination
with four substituents: A hydrogen atom, the amino-group (—N H,), the carboxyl-
group (—COOH) and an organic sidechain (R-group). The unique physical and chem-
ical properties of the 20 naturally occurring amino acids are therefore a consequence

of the difference in the R-group. The properties of the amino acids can be represented

source: http://www.bbk.ac.uk/PPS2/course/section3/rama.html
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Figure 1.3: Properties of the 20 amino acids @]

schematically in a Venn diagram @] (Figure [1.3).

The 20 amino acids are shown below in Figure The unique properties of some
selected amino acids are described in the following (according to Tramontano ] and
Voet and Voet d??%l])

e As a consequence of its missing sidechain, glycine is very flexible and can adopt
unusual backbone torsion angles. Glycine is therefore often observed in tight

turns.

e Proline is the only imino acid, which means that the sidechain is connected with
the backbone forming a nitrogen-containing ring. Proline is often observed in
turn structures. Proline is known to be a helix breaker [40]. A conserved proline
within a protein family can be an evidence of a specific structural feature and
should be taken into account in protein structure prediction and especially in

loop modelling.

e Cysteins are the only amino acids able to form inter- and intra-molecular covalent
bonds by oxidation of the sulfhydryl groups (—SH) of two cysteins to a disulfide
bond. These amino acids are therefore of crucial importance in extracellular
proteins which are in a reducing environment. The SH —group of cysteins is

rather reactive and can coordinate metals.
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e Hydrophobic amino acids such as for example leucine, valine and isoleucine
are usually found in the interior of proteins shielded from direct contact with
water. Conversely, the hydrophilic amino acids (e.g. asparagine and glutamine)
are generally encountered on the exterior of proteins as well as in the active
centers of enzymes. Charged residues such as the negatively charged asparagate
(or aspartic acid) and glutamate (or glutamic acid) as well as lysine and arginine

(positively charged) can form salt bridges and are often observed in active sites.

e Another group of amino acids are the aromatic residues (phenylalanine, tryp-
tophane, tyrosine and histidine) which can interact with each other forming -
stacks. Histidine additionally has the important property that it can act both as
a base and an acid under physiological pH and therefore plays a central role in

active sites (e.g. in the catalytic triad in chymotrypsin).

1.1.3 Secondary structure

Secondary structure elements are local structural segments typically stabilised by
backbone hydrogen bonds and are the essential building blocks of protein conformation.
Secondary structures represent sterically favourable conformations as reflected by the
Ramachandran plot in Figure [1.2. The most common secondary structure elements
are a-helices and (-sheets. The fact that the amino acids have different propensities
to be observed in secondary structure elements was used by Chou and Fasman in the
early 1970’s to predict secondary structure , ] For example alanine, glutamate,
leucine and methionine were identified as helix formers, while proline and glycine, due

to the unique conformational properties, commonly end a helix.

The a-helix is the simplest and most abundant secondary structure element (see Figure
1.5). An a-helix has on average 3.6 amino acids per turn and is stabilised by hydrogen
bonds between the amide H at position i and the carbonyl O at position i —4. The ® /¥
dihedral angles are typically around (-60°, -50°) ] The sidechains point outward

from the helix. Other, less common, helix types are the 3;p-helix and the 7-helix.

Another frequently occurring secondary structure element is the [-sheet which is

formed by two or more [3-strands (i.e. polypeptide segments in extended conformation)
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amino acid
side chain

Figure 1.5: The a-helix structure (source: ])

linked laterally by hydrogen bonds. The sidechains of neighboring residues point into
different directions. The strands can be aligned in the same or opposite orientation
forming parallel (/¥ angles around (-119°, 113°) @]) or anti-parallel -sheets (® /¥
angles around (-139°, 135°) |231]) which are typically slightly twisted (see Figure .

Regions without regular structure connecting secondary structure elements are called
loops. A frequently occurring structural loop motif are reverse turns which are stabilised
by a hydrogen bond between cabonyl oxygen at position ¢ and N-H group at position
1+ 3. If a reverse turn is enclosed by (-strands the motif is called g-hairpin. Some
turns require a glycine at a certain position as a consequence of the torsion angles

falling in the “forbidden” region of the Ramachandran plot for the other amino acids.

1.1.4 Tertiary and quaternary structure

The 3-dimensional arrangement of the secondary structure elements (including the
connecting loops) in a single chain is called the tertiary structure. Frequently occurring
geometric arrangements of two or three secondary structure elements are also known as

motifs or supersecondary structures. Examples are the S-hairpin motif described above
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Figure 1.6: An anti-parallel (3-sheet (source: @])

(beta-turn-beta) or the beta-alpha-beta unit. The combination of supersecondary
structures is often called domain or fold [219]. An exact definition of the term “domain”
is difficult: domains are often described as segments that can independently fold into
a stable 3-dimensional structure. In a more evolutionary sight, domains can be seen as
evolutionary units which can be duplicated and/or undergo recombination [38]. Two
very common arrangements of supersecondary structures are the Rossman fold (beta-
alpha-beta-alpha-beta) and the four-helix bundle.

It is commonly assumed that the number of protein folds occurring in nature is limited
but there is disagreement about the magnitude of this number (e.g. , @, ]) and

whether each fold originated just once (as propagated via divergent evolution) or has

been “re-invented” (convergent evolution of structures).

Several hierarchical protein structure classification systems have been developed rang-
ing from entirely manual to fully-automated approaches: SCOP ], CATH ] and
FSSP [92]. On the highest level, the proteins are typically classified according to their
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secondary structure content. For example in CATH, the Class-level is organised as

follows:

e mainly a-helix
e mainly [-sheet
e «/[3 proteins

e few secondary structures

The lowest classification level are the protein families in which the members have a

clear evolutionary relationship (i.e. are homologues).

1.1.4.1 Sequence-structure relationship

Since Anfinsen’s pioneering work in 1973 [E] it is known that the primary sequence
exclusively determines the 3-dimensional structure of a protein. Anfinsen realised that
the driving force for folding is the gradient of free energy and that the native structure
of the protein is in its free energy minimum (for a review on folding see , @, ])

Folding describes the physical process in which a polypeptide chain folds in its
characteristic 3-dimensional structure. The folding process is still not fully understood.
In the late 1960’s Levinthal M] demonstrated that the sequential sampling of all
possible conformations of the polypeptide chain would take an astronomical amount
of time which disagrees with the folding time of microseconds to minutes typically
observed in nature. He concluded that proteins fold by a directed process with specific

folding pathways. This observation was later called the “Levinthal paradox”.

In a more modern view, the pathway concept assuming an obligate series of discrete
intermediates is replaced by a multiplicity of parallel routes down a folding funnel
based on the concept of the energy landscape [27|. A schematic picture of the funnel-
like energy landscape is given in Figure/1.7. The energy landscape in potentially rugged

as a consequence of kinetic traps and energy barriers.

Dill illustrates this concept as follows: “water flowing along different routes down

mountainsides can ultimately reach the same lake at the bottom” [59]. It is generally
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Figure 1.7: Schematic representation of the funnel-like energy landscape @]

assumed, that the folding process starts with the formation of local secondary structure
governed by interactions being close in the polypeptide chain and that the subunits
are subsequently assembled further down the folding funnel. Folding involves a balance
between loss of conformational entropy and gain in enthalpy. The hydrophobic effect

seems to be the driving force and to a certain extent also hydrogen bonding.

Generally, it can be said that sequence determines structure and structure determines
the protein function. But unfortunately the prediction of protein structure from scratch
solely based on physical principles is at present still out of reach. Most current
methods for protein structure prediction incorporate to some extent knowledge of
experimentally-solved structures based on the fact that structure is more conserved

than sequence.

The relationship between sequence similarity and structural similarity was topic of the
seminal work of Chothia and Lesk [39]. The authors showed that the difference in the

structure of two proteins increases as the sequence identity decreases (see Figure[1.8).

Sequence similarity is typically expressed as pairwise sequence identity based on an
alignment. An alignment is an ordered mapping of the residues of two sequences. A
gap (denoted by “-“) can be placed when a residue is not aligned with any of the residues
of the other sequence. More precisely, sequence identity is defined as the number

of positions in the alignment where the residues are identical divided by the length
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Figure 1.8: Relationship between sequence and structure similarity analysed by
Chothia and Lesk @]

of the shorter sequence. Structural similarity is traditionally expressed by the root
mean square deviation (RMSD) between corresponding atoms in an optimal structural
superposition (see Formula[2.7/on page[61).

As an example the sequence alignment between myoglobin (PDB code 1mbn, 153
residues) and hemoglobin (PDB code 3hhb, 141 residues) is shown in Figure
Conserved residues are marked in bold. The structural superposition of the two
proteins in given in Figure [1.10. Although the sequence identity is only around 25%
(36 + 141 ~ 25.5) the two proteins show a remarkable structural similarity with an
RMSD of the backbone atoms below 1.5 A.

myoglobine VLSEGEWQLVLHVWAKVEADVAGHGQODILIRLFKSHPETLEKF-DRFKHLKTEAEMKASEDLKKHGVTVL
hemoglobine VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPH-FDLSHG-----— SAQVKGHGKKVA
myoglobine TALGAILKKKGHHEA-ELKPLAQSHATKHKIPIKYLEFISEAITIHVLHSRHPGDFGADAQGAMNKALELF

hemoglobine DALTNAVAHVDDMPNALS-ALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASV

myoglobine RKDIAAKYKELGYQG
hemoglobine STVLTSKYR-—---——

Figure 1.9: Sequence alignment between myoglobin and hemoglobin.
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Figure 1.10: Superposition of myoglobin (black) and hemoglobin (light grey) in
ribbon representation together with the heme group (sticks representation).

In an extensive evaluation of sequence alignments of protein pairs with similar and
dissimilar structure, Rost [175] analysed the minimum sequence identity which is
needed to infer structural similarity. The relationship between sequence and structure
is dependent on the alignment length, but for long alignments, high sequence identity
(>40%) guarantees structural similarity. In the so called “twilight zone” between 20-

30% the relationship is uncertain.

1.1.5 Experimental Methods

The two experimental methods able to determine protein structures at atomic resolu-
tion are X-ray crystallography and NMR-spectroscopy. More than 85% of the protein
structures in the Protein Data Bank (see next section) are determined by the former
method. Cryo-electron microscopy is also used, but this method can only extract low-

resolution information of large protein complexes and is therefore not described here.
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Figure 1.11: Typical images in X-ray crystallography: an expample of a diffraction
map (left) and a electron density map (right) derived from it .4

In X-ray crystallography, the first and most difficult step is the growth of a well-ordered
crystal. The crystal lattice is then irradiated with X-rays leading to a diffraction
pattern specific for the given protein structure (see Figure [1.11]left hand side). The
X-rays, which have wavelengths in the order of interatomic distances, are dispersed by
the electrons in the molecule and interfere with each other resulting in a diffraction
pattern reflecting the relative positions of the electrons in the crystal. The electron
density is calculated from the amplitudes and the phases of the diffraction waves by a
Fourier transform function. Unfortunately, the phase information cannot be measured
in this process and additional information is needed in order to estimate the phases
(e.g. by isomorphous replacement or molecular replacement). After Fourier transform

and solving the phase problem, an electron density map can be built as shown in Figure
1.11 right hand side).

In the refinement process a model of the protein structure is fitted in the electron
density map using information about standard geometries for bond lengths and angles.
The accuracy of the electron density map and the corresponding model of the protein
structure depend on quality and amount of available data compared to the number
of unknowns (atoms in the protein) and is expressed by the term “resolution” (in
Angstrom). From the model of the structure it is possible to recompute the diffraction

map and compare it with the original one. The difference is reflected by the R factor.

dhttp://en.wikipedia.org/wiki/Portal:Xray _Crystallography,
http://biop.ox.ac.uk/www/lab_journal 1998 /Endicott.html
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A good structure should have an R value of less than resolution divided by 10.

Nuclear magnetic resonance (NMR) spectroscopy is a method which allows to deter-
mine the structure of a protein in solution. The solution is exposed to a powerful
magnetic field which causes the spin of the nuclei to be oriented in direction of the
external field. An additional magnetic field is used in order to measure the frequency at
which the different atom nuclei switch the spin orientation (called resonance frequency).
The resonance frequency of an atom depends on its type but also on the environment.
The magnetic interaction of the spins of two atoms close in space can be measured
and its intensity depends on the distance, which allows to derive a set of distance
constraints. Given a sufficient number of constraints a finite set of models can be built.
The more constraints are given and the closer the models become. For highly flexible
regions the derivation of distance constraints is hindered and therefore the models in

these segments are less similar.

1.1.6 The Protein Data Bank

The experimentally determined structures of proteins (but also other macromolecules)
are deposited in the publicly accessible Protein Data Bank (PDB) [18]. Each structure
in the PDB has a unique identifier composed of four letter. At the date of this
work (September 2007) the PDB holds 45,506 structures, most of which are proteins
determined by X-ray crystallography. The PDB contains a considerable amount
of redundancy (e.g. because some proteins involved in diseases have been solved
with different bound ligands). A non-redundant subset of the PDB composed of
structures with less than 90% sequence identity and resolution better than 3 A yields
in approximately 12,000 structures. The size of the PDB has grown exponentially over

the last years as it can be seen from Figure [1.12.

Regardless of the exponential growth of the PDB, the number of new folds (based on the
SCOP classification) entering the PDB has decreased over the last years. Virtually no
new fold were solved over the last two years. This can be attributed to the fact that on
one hand some proteins (especially membrane proteins) are very difficult or impossible
the determine with current methods. On the other hand, structural genomics initiatives

have solved many of the missing folds over the last years.
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Figure 1.12: Growth of the Protein Data Bank from 1972-2007 (data source:
www.pdb.org).

1.1.7 Structural genomics

The goal of the worldwide structural genomics initiatives is to provide structural infor-
mation for most of the known protein sequences through a combination of experimental

and computational methods [33].

The structural genomics effort started around the year 2000 and can be split in three
main groups: the Protein Structure Initiative (PSI) by the US National Institute
of Health, the Japan-based program led by the RIKEN research foundation and the
european effort with the Structural Genomics Consortium (SGC) and SPINE.

One aspect of structural genomics initiatives is the emphasis on high throughput protein
structure determination, which allows to solve structures faster and with lower costs.
In the last seven years, more than 5,000 new protein structures from the structural
genomics centers have been deposited in the PDB (see Figure[1.13)).

esource: http://sg.pdb.org/
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Figure 1.13: New structures solved by the structural genomics centers (As of:
September 2007)

The structural genomics projects attempt to deliver structural templates for members
of all protein families in which they were very successful until now (a review on the
expectations and outcomes of the structural genomics initiatives can be found in @])
Targets for structural genomics are proteins with less than 30% sequence identity to
any structure in the PDB. Protein sequences above this cutoff typically have a similar
structure as mentioned above and can therefore be solved by homology modelling (see
next section). At the beginning of the year 2005, about 36% of the Pfam families (Pfam
is a manually curated database of protein families) contained at least one member
with known structure. This allows to model the other family members @] It has
been estimated in 2004 &] that around 57% of the domains of all sequences can be
modelled with the current PDB. An estimated number of 10,000-16,000 structures

have to be determined experimentally in order to model most of the current sequences

33, 230].
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1.2 Protein structure prediction

The functional characterisation of a protein sequence is strongly facilitated by the
knowledge of its 3-dimensional structure. Structural information can be used to ask
new biological questions and efficiently design experiments. To close the gap between
the number of known sequences (approximately 4.8 million in UniProt/TrEMBLE) and
the fraction for which the structure is solved (approximately 45,500 in the PDB),
efficient methods for protein structure prediction are needed that complement current
efforts in structural genomics (see Chapter [1.1.7).

Protein structure prediction refers to the prediction of the tertiary structure of a protein
given its sequence by means of computational methods. Two fundamental principles
are acting on proteins that guide their 3-dimensional structure: the laws of physics and
the theory of evolution. Accordingly, there are two different classes of protein structure

prediction methods: ab initio methods and template-based methods.

Ab initio or de novo methods try to predict the structure of a protein from the sequence
alone based on the laws of physics and chemistry assuming that the native structure is in
the global free energy minimum. In contrast, template-based methods take into account
structural information from experimentally solved protein structures ("the templates”)
to build a model of the target sequence relying on the fact that structure is more
evolutionarly conserved than sequence |39] and that proteins adopt a limited number
of folds H, m, ’2731] Traditionally template-based modelling has been split into the
two fields of fold recognition and comparative (homology) modelling, depending on the
approach used for template identification. A constantly increasing overlap between the
three fields can be observed over the last years making the boundaries increasingly

blurred. An overview on the different methods is given below.

The accuracy of models generated by template-based modelling techniques is highly
dependent on the sequence identity between the target sequence and the template of
known structure. It based on the relationship between sequence and structure of a
protein described in Chapter [1.1.4.1. The application of protein structure models is
determined by their accuracy [11]. High to medium accuracy models generated by

comparative modelling, based on a template with more than 30% sequence identity to

fsource: http://www.ebi.ac.uk/swissprot/sptr_stats/index.html
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the target can for instance be used for structure-based drug design, the investigation

of the shape and volume of the binding site or for refining function prediction based

on sequence M, ’1—61‘]

1.2.1 CASP

Critical Assessment of techniques for protein Structure Prediction (CASP) is a
community-wide experiment taking place every two years with the aim of assessing the
progress in this field M, ’J?] CASP is a blind test experiment where the predictors
receive a set of protein sequences for which the structure is about to be experimentally
solved. During the prediction season, of approximately 3 months, the native structures
remain unknown to the predictors. Afterwards the quality of the submitted models is
analysed by independent assessors and the results are presented at the CASP conference
and in a special issue of the journal Proteins (e.g. ], ])

The number of prediction targets steadily increased over the years from 33 at the
beginning of CASP in the year 1994 to 95 accepted targets at the seventh round of
CASP in summer 2006. The targets are categorised according to modelling difficulty
in comparative modelling, fold recognition (homologues and analogues, respectively)
and new folds. For the last CASP round, the categories have been redefined to reflect

developments in methods in template-based modelling and (template-)free modelling.

1.2.2 Overview of methods
1.2.2.1 Ab initio

Ab initio or de novo methods try to predict the native structure of the protein
by simulating the biological folding process. Folding simulations using molecular
mechanics force-fields and molecular dynamics simulations are not discussed here since
these applications are limited to very small polypeptides and require an enormous

amount of computational time.

In practice, most of the ab initio methods incorporate to some extent available struc-

tural information either through the use of fragments from known protein structures
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or in devising scoring functions. This is the reason why the term “new folds” and “free
modelling” have been used to describe this field in the last rounds of CASP.

The two major problems in ab initio structure prediction are the vast number of
conformations that have to be sampled and the inaccuracies of the scoring functions.
The combinatorial explosion can be approached by using reduced representation of
conformations and by efficient sampling strategies. Successful approaches include meth-
ods which build structures from short protein fragments (so called fragment assembly
methods) such as ROSETTA |21, ’1—967] and lattice-based simulations ﬂ1—54‘, ’;46] A
combination of both is implemented in TASSER (Threading/ASSEmbly/Refinement)
] which assembles the model from structural fragments of templates identified
by threading, if possible, and uses a lattice-based approach for the remaining parts.
Usually, a vast amount of conformations is generated from which the final model is

selected by clustering the solutions and applying a composite scoring function.

1.2.2.2 Fold recognition

Fold recognition is based on the notion that protein structure is much more evolu-
tionarly conserved than sequence and that the number of adopted protein folds is
limited. Two proteins can share the same fold even if the sequence similarity is
either very low or does not exist. In previous CASP rounds (until CASPT), the fold
recognition targets have been divided in homologous and analogous folds. Homologues
are evolutionarly related and diverged from a common ancestor. Analogues have no
evolutionary relationship and are a result of convergent evolution, meaning that nature
has independently “re-invented” the fold. The definition of analogues is rather vague
and strongly depends on our ability to detect remote evolutionary relationships: as a
result of advances in sequence comparison methods such as PSI-BLAST &], proteins
which have been originally regarded as analogues have been later confirmed to be

homologues.

The traditional division in homology (comparative) modelling and fold recognition was
based on the difficulty to detect a suitable template. Whereas in homology modelling
the template could be more or less easily identified (e.g. by a simple BLAST run),

more advanced methods were used in fold recognition. Nowadays, fold recognition
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methods are not only standard in the field of protein structure prediction and part of
virtually all comparative modelling pipelines but also of ab initio methods (e.g. some
fragment assembly methods). In the following, approaches for template identification

which arose from the fold recognition field are briefly described.

Historically, fold recognition can be divided into threading methods and sequence
similarity-based methods. Threading methods were developed in the hope to detect
analogous folds with no evolutionary relationship. They take their name from the
conceptual threading of the sequence of a protein through a library of folds with
the intention to identify the fold that fits the given sequence best. The fitness of
each residue is assessed separately by analysing its compatibility with the given local
conformation and the structural environment. This has led to the development of
19%, 200, 209| and 3D-profiles which encode the structural

environment of the residues [24]. Dynamic programming is usually applied in order

contact potentials [’104

3 Y

to align the sequence to the template structure. By this stepwise mapping of the
target sequence onto the structure of the template, the structural environment changes
accordingly. This problem divides the threading methods into those using the “frozen
approximation” leaving the structural environment as in the template and those using
the “defrosted approximation” in which the surrounding amino acids are updated
M, ’2—01‘] The models of the query protein, based on the alignment to the different
template folds are often further evaluated by contact potentials and other statistical
potentials. The application of these methods is not restricted to fold recognition and

similar methods are used in model quality assessment in general (see Chapter 1.2.4).

Sequence similarity-based methods try to identify templates which are evolutionarly
related to the target sequence. Sequence-sequence comparison methods such as FASTA
@] and BLAST [5] are the most simple methods to assign a fold of a protein (e.g. by a
BLAST search of the query protein sequence against the sequences of all experimentally
solved proteins). BLAST, which stands for Basic Local Alignment Search Tool,
has become one of the standard tools in the bioinformatics community and beyond
it. The algorithm basically consists of three steps: First, the sequence database is
scanned for exact matches of sequence fragments of fixed length contained in the query
sequence (the “seeds”). In the second stage, the seeds are extended in both directions.

Finally, high scoring ungapped alignments are collected and gapped alignments of
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the query sequence with the corresponding database sequences are generated using a
modified version of the Smith-Waterman algorithm for local alignments ] The
statistical significance of the hits is reported as an E-value which reflects the number
of different alignments with equivalent or better score that are expected to occur in
a database search by chance. Basic ingredients of an alignment algorithm based on
dynamic programming such as Smith-Waterman and Needleman-Wunsch dTSO] (for
global alignments covering the entire length of both sequences) are a substitution
matrix which defines the similarity between two amino acids [89] and the penalty

of setting a gap (usually a separate gap open and a gap extension penalty are used).

A new generation of alignment algorithms came up in the mid 1990’s based on the
assumption that conserved sequence motifs should have a stronger influence on the
alignment than variable regions resulting in the development of position-specific scoring
matrices (PSSMs) ] As opposed to the ordinary substitution matrices (20 x 20
amino acids), PSSMs or profiles are composed of 20 x N entries (where N is the
length of the sequence) and are generated by analysing the amino acid variability in
a multiple sequence alignment of the family of the query protein. A profile describes
a family of homologous proteins and not a single sequence. As a consequence, profile-
sequence comparison methods have been developed with PSI-BLAST [6] as the most
prominent representative. PSI-BLAST (Position-Specific Iterative-BLAST) uses the
same heuristics as the original BLAST (explaining its speed) and additionally an
iterative generation of multiple sequence alignments and profiles in order to increase
the search sensitivity. In a closely related approach the family-specific information is
stored in hidden Markov models (HMMs) E;, @]

The sensitivity in detecting weak evolutionary relationships as well as the accuracy of
the alignment has been further increased by the use of profile-profile (or HMM-HMM)
179,180, 232

aligned to the profile of the template protein using a scoring function which calculates

comparison methods !’155, 243‘]. In these approaches the query profile is

Y Y

the compatibility of two columns in the profiles. Several alternative column-column
scoring functions have been proposed in the literature as well as alternative ways to
generate the profiles and to build the alignments (a review can be found in |140, 235]).

A clear trend to combine sequence and structure information is observable in the field

over the last years, either by incorporation of structural information in sequence profiles
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directly , @, ] or by integrating sequence information in threading , @, @]

A variety of approaches to integrate structural information from the templates in the

sequence profiles have been proposed. Structural information can be integrated using
predicted structural profiles in terms of secondary structure and sometimes solvent
accessibility @, , , @] Secondary structure information for example is used
by comparing observed secondary structures in the template and predicted states in

the target.

1.2.2.3 Comparative modelling

As mentioned in Chapter [1.1.4.1, a sequence identity of roughly 30% is generally
sufficient to infer structural similarity between two proteins. This is the fundamental
idea behind homology or comparative modelling. With the growing number of
experimentally solved protein structures, this concept has become a powerful method

to predict the structure of a large fraction of the known protein sequences (see Chapter
1.1.7).

Homology modelling basically consists of six steps: template identification and se-
lection, target-template alignment, initial model building, loop prediction, sidechain
prediction and, finally, refinement and quality assessment (see Figure 2.1 in Methods
for an overview). A short description of all steps is given below. Loop prediction as
well as model quality assessment are picked out as central themes of this thesis in the

next two sections.

The first two steps (template identification and alignment building) have been described
in detail in the previous section. Usually, more than one template is identified and it is
necessary to select the best candidate(s) for a given modelling problem. In this context,
sequence identity between target and template is the most important argument but

there are other factors which should be taken into account in template selection:

e A phylogenetic tree based on a multiple sequence alignment of the protein family

can help to identify the template closest to the target sequence.

e The “environment” of the template should be analysed and compared to the

situation in the target, e.g. quaternary interactions (Is the template part of a
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complex and the target not?), protein-ligand interactions or chemical conditions

(solvent, pH etc.).

e The quality of the experimental structure should be considered as well, e.g.

resolution and R-factor of X-ray structures.

Multiple templates can be used as well, either by building alternative models based on
the single templates and subsequently selecting the best one, or by combining parts of
multiple templates. The simple rule that combining multiple templates instead of using
a single best template results in better models does not hold, as it has been shown by
Venclovas and Margelevicius in the CASP6 evaluation ] However, as identifying
the best template among several is not always a trivial task, using multiple templates

increases the chance of selecting the best template.

The alignment produced in the fold recognition step is often not the optimal one
(e.g. BLAST typically produces local alignments covering only a part of the target).
Specialised methods should be used in order to align the target sequence to the template

structure.

In terms of fold recognition sensitivity and specificity as well as in terms of accuracy
of the resulting alignments, profile-profile methods have been shown to outperform
132,179 18%,

integrating structural information (e.g. based on multiple structural alignments of

sequence-sequence and profile-sequence methods [’100, , , 243‘]. In general,

templates |1, 110] or environment-specific gap penalties le)l, ’2710]) tend to improve
the alignment accuracy but most probably not the fold recognition sensitivity. With
decreasing sequence identity between target and template (especially below 30%), the
alignment accuracy drops rapidly and alignment errors become the major source of

errors in homology models.

The alignment produced by a dynamic programming algorithm using a specific gap

penalty is not necessarily the best alignment to generate the model. Thus, using

sub-optimal alignments, representing alternative paths in the alignment matrix, may
rg 138, 1149, 186 228‘]. Additionally, a set of

sub-optimal alignments can be used to predict the local alignments reliability. Local

identify more suitable alignments |4

) )

alignment paths used by a higher number of sub-optimal alignments can be regarded as

more reliable. An alternative way to assess the local alignment reliability has recently
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been proposed by Tress et al. [@, @] the local alignment quality is predict based

on the information about the observed frequencies in the sequence profiles.

There is no alignment protocol that is clearly superior over other protocols for every
protein family and similarity level. Elofsson d&’)ﬁ for example pointed out that, for
proteins related to the family level, purely sequence-based methods tend to produce
better models, whereas at fold level, sequence-based methods including predicted
secondary structure outperform purely sequence-based approaches. Thus, many groups
produce several alignments based on different protocols, parameters and sometimes

sub-optimal alignments. The final model is then selected based on a scoring function

(see Chapter [1.2.4).

Building a model based on the alignment between target and template is fairly
straightforward. A variety of methods can be used which can be roughly divided
into three groups 11733]

e modelling by assembly of rigid bodies M, @]
e modelling by segment matching or coordinate reconstruction , ]

e modelling by satisfaction of spatial restraints @, ’T&]

Assembly of rigid bodies relies on the fact that the structure of proteins belonging to
the same family can be roughly divided into structurally conserved regions (SCRs),
or the structural “core” and structurally variable regions (SVRs). The model is built
by assembling the core segments from one or several templates and modelling of the

structurally conserved regions (loop prediction).

In the second approach, a model is constructed by using a subset of the coordinates
of the template (typically Ca atoms of conserved residues) as guiding positions on
which short all-atom segments are fitted. These segments can either be extracted from
experimentally-solved structures @, ] or obtained by a conformational search guided
by the Ca-trace ﬂ%, 55.

In modelling by satisfaction of spatial restraints, a model for the target sequence is
derived by minimising the violations of all restraints on the target. The restraints

are obtained from the alignment to the templates (e.g. distances and angles) and are
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usually supplemented by other stereochemical restraints (e.g. bond lengths and angles,

torsion angles and non-bonded contacts).

The accuracy of models generated by the different approaches does not differ much
since other factors such as template selection and target-template alignment have a

much stronger impact on the quality of the final model.

In a next step, the backbone of regions which cannot be directly obtained from the
templates (i.e., the structurally variable regions) have to be modelled. These regions
often correspond to loop regions at the protein surface which connect regular secondary
structure elements and are the location where mutations (amino acid substitutions,
insertions and deletions) tend to accumulate. Since loops often define the functional
specificity of proteins and contribute to the binding site, an accurate prediction of loop
structures finally determines the usefulness of the homology model (e.g. for protein-

ligand docking). A detailed introduction to loop prediction is given in the next section.

Sidechain modelling represents the last step toward a first all-atom model of the target.

It has been shown that the principal factor determining the sidechain conformation,

beside packing in the structural core, is the local backbone conformation ﬂ;?), ’1—83‘] The

observation that sidechains show a st(ro_nf preference for specific conformations led to
63].

the development of rotamer libraries |1

Most methods use as starting point the most frequent rotamer for each amino acid
and subsequently optimise the conformations. Since the sidechain conformation of

conserved residues in homologous structures are often identical, they are usually copied

Figure 1.14: Some sidechain conformations observed for tyrosine and phenylalanine
36].
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from the template instead of using a rotamer library. A frequently used program for
sidechain modelling is SCWRL [31], which uses a heuristic search strategy based on
backbone-dependent rotamer libraries extracted from a set of known structures. As
a consequence of the relationship between backbone and sidechain conformation, the

limiting factor on sidechain accuracy is backbone accuracy ]

Refinement refers to the attempt to bring an approximate model of the target protein
closer to the experimental structure. The most frequent sources of errors in comparative
modelling are: alignment errors, incorrect templates, wrong loop modelling, distorsions
or shifts in correctly aligned regions and errors in sidechain packing. As observed at
CASP, predicted models are still rarely closer to the native structure than the best
template @] The CASP experiment also revealed that refinement is problematic

and no method is currently able to improve consistently over the initial model [116].

Estimating the accuracy of a model is an essential step in comparative modelling since
the quality of a model determines its usefulness. The stereochemistry of a model
can be analysed with standard tools such as PROCHECK M] or WHATCHECK
96]. Scoring functions used to identify the best model among a set of alternative
conformations or to identify regions of structural errors fall into two broad categories:
physics-based energy functions and knowledge-based scoring functions based on 3D
rofiles (e.g. VERIFY3D 11729]) or statistical potentials (e.g. PROSA le)Q] or ANOLEA
136]). A comprehensive introduction in model quality assessment is given in Chapter
1.2.4.

1.2.3 Loop modelling

As the sequence identity between target and template decreases, an increasing number
of insertions and deletions as well a local loss of sequence similarity is observed, typically
in solvent-exposed regions between secondary structure elements. These regions, often
referred to as loops, have to be remodelled since the backbone of the template cannot be
used. As mentioned above, loops often determine the functional specificity of proteins
belonging to the same family (e.g. the hypervariable region in antibodies) and therefore
the accuracy of loop modelling (or loop prediction) strongly influences the usefulness

of a model for function annotation or structure-based drug design |91, @]



28 Introduction

Loop prediction can be seen as a constrained “mini-folding” problem @] in which a
polypeptide segment with a given sequence is modelled using geometric constraints
imposed by the backbone atoms on both sides of the loop that anchor it to the
remainder of the protein (called anchor groups or loop stems). It has been shown
that segments of up to nine residues with identical sequence can have entirely unrelated
conformations ﬂ476, ’T85] Thus, the conformation of a loop is determined not only by its

sequence but also by the geometry of the anchor region and the structural environment.

Many loop modelling procedures have been described in the literature and they can be
generally grouped into ab initio methods and database search techniques (knowledge-
based loop prediction) as well as combinations of both. TLoop modelling basically
consists of two steps: sampling (the conformational space) and scoring, optionally
with an intermediate filtering step. Ab initio loop prediction methods are based on
a conformational search in the given structural environment usually guided by an
energy function. Algorithms used in conformational search include discrete sampling
of energetically favourable main chain dihedral angles @, @, , ], random tweak
methods dTQO, W, M], analytical methods M, Bglg molecular dynamics simulations
ﬂ;& E], Monte Carlo with simulated annealing BIQJ, m] and many more. Usually,
the loop is incrementally built up from one anchor and a loop closure algorithm
approaches which build the loop from both the N-terminal and C-terminal anchor
group and connect the fragments in the middle , , ] The conformations
generated by ab initio methods are often evaluated using a scoring function based
on terms from molecular mechanics force fields ﬂ%, @, ngig, ’Tﬂ, 241] sometimes in

combination with statistical potentials |77, 207].

’1—90‘] is used in order to generate closed conformations. There are also

On the other hand, knowledge-based or database search methods extract the loo
conformations from experimentally solved protein structures from the PDB M, @, Elp
%, E, 105, 120, 134, 139, 151, 208, 220 226‘]. In contrast to ab initio methods, the
local loop geometries predicted by knowledge-based approaches represent physically

3 ) ) )

reasonable conformations since they are observed in native protein structures. In
knowledge-based approaches, protein structure fragments of the desired length are
selected from the database which approximately fits to the geometry imposed by the

anchor groups. The fragments are usually scored according to the “goodness of fit” of
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the fragment to the anchor region and other criteria such as sequence similarity between
the database fragment and the loop to be modelled [70], the use of environmentally
constrained substitution tables H, M] or the energy of the fragments based on a
distance-dependent statistical potentials ] A subsequent optimisation and ranking

of database loops with a molecular mechanics force field has also been suggested [@]

The accuracy of knowledge-based approaches is limited by the completeness of the
PDB concerning structural fragments of a given length. In 1994, Fidelis et al. ]
estimated that fragments of up to 7 residues can be accurately modelled (RMSD < 1
A) with the PDB. Lessel and Schomburg ﬂl—QO‘] confirmed these results and showed that
the coverage is even lower if stricter and more realistic cutoffs are used. I e. fragments
are not fitted on each other but on the terminal anchor residues and a RMSD cutoff of
0.8 A was used. As a result of the exponential growth of the PDB over the last years
the coverage of loop conformations has increased dramatically and recent publications
report a much higher coverage even for longer loops @] Fernandez-Fuentes and Fiser

69] calculated a coverage of >95% for fragments up to 10 residues.

Several loop classification methods have been described in the literature @, , , ,
151, 239]. The most common classification criteria are geometry of the surrounding
secondary structure elements, loop length, loop sequence, torsion angles and solvent

accessibility.

Beside alignment accuracy, loop prediction is still a major source of errors in com-
parative modelling [221] and only short and medium loops (less than approximately
8 residues) can be modelled with acceptable accuracy ] The prediction accuracy
for longer loops rapidly drops in all current methods although remarkable progress has
been reported recently, if in addition to an extensive conformational sampling strategy,
crystal contacts are taken into account in loop ranking @, ] This also demonstrates
the limits of loop prediction: beside the fact that many loops are highly flexible, the
conformation of a loop in a crystal structure may be determined in part by packing

constraints and does not present the native conformation of the loop in solution.

Loop prediction methods are usually tested in “self prediction” experiments which
means that the loop is cut out from the protein and rebuilt with the given method in

the fixed structural environment. This does not represent a realistic modelling situation
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in which the geometry of the anchor region, as well as the structural environment, are
only approximately correct. Furthermore, in knowledge-based loop prediction, often
different sequence similarity thresholds are used in order to remove trivial results. I.e.
loops from close homologues of the query protein which are usually not present in the
application case. Because loops from homologous protein structures are often the best
available fragments in the database, the sequence identity cutoff used in the evaluation

of the method strongly influences the prediction accuracy.

Another problem, which makes a fair comparison of current loop modelling protocols
difficult, is the fact that no standard benchmark set for loop prediction exists. Most
methods are tested on their own test sets and the performance is often compared to
other methods based on only a few examples. In a recent benchmarking by Rossi et al.
], four commercial loop modelling programs have been tested on a comprehensive
test set covering loops of 4 to 12 residues based on a the work of Jacobson et al.
99]. The results were rather disillusioning in that only short loops (4 to 7 residues in
length) could be modelled with acceptable accuracy for structure-based drug design
and all methods have considerable problems in loop ranking (i.e. the top-scoring
loop was rarely the loop with minimal RMSD compared to the native conformation).
These results underline the general problem in loop prediction: the bottleneck in loop
modelling seems to be no longer the sampling step (as a consequence of advances in
sampling algorithms and the growth of the PDB) but the subsequent scoring of the

conformations.

1.2.4 Model quality assessment

Particularly ab initio methods, but increasingly also template-based approaches,
usually produce a considerable amount of alternative models. Selecting the model
being closest to the native conformation of a given protein out of an ensemble of
models, 1ndependent of being produced during conformational search in a template-
free approach |172 ’27] or on the basis of alternative alignments or different templates

ﬁ ’2—‘] is a crucial step in protein structure prediction in general. This section
pr0v1des an overview on the topic and the methods used in the assessment of model

quality. An in-depth introduction to the theoretical background of statsitical potential
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scoring functions is given in Methods (Chapter 2.4.1.1).

Scoring functions rely on the thermodynamic hypothesis stating that the native state
of a protein lies in the free energy minimum under physiological conditions [119]. There
are basically two categories of scoring functions: physics-based energy functions and
knowledge-based statistical potentials. The former are true effective energy functions
describing interactions observed in proteins and their parametrisation is performed
either by fitting experimental data or based on quantum chemical calculations M, %,
]. A schematic representation of some important forces in proteins is given in Figure
1.15/and [1.16]
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Statistical potential energy functions are derived from data of known protein structures
and are usually formalised as either distance-dependent or -independent pairwise
128, 135, 184, 189, 19%, 198, 213, 249|. Alternatively,

statisticalotentials have been derived for other structural features such as torsion
16

angles |E, ,, , , @] and solvent accessibility @, @]

Statistical potentials are based on the inverse Boltzmann equation, which relates

potentials of mean force H,

J )

frequencies of observed structural features to their energy. A detailed description of the
theoretical background of statistical potentials is given in Methods on page [55. They
have the advantage of being fast and simple to construct and they are widely used
141, 170, 200, 202
tification of the native structure among decoys® m \m model quality assessment

ﬂ%, M, ’2—15‘, ’2—33‘] or prediction of thermo stability dS—L @, 97, ’TE’)S)]

Combining several statistical potential terms covering different aspects of protein

for various purposes among which are fold recognition [102 |, iden-

3

structures or models is a popular strategy and the combined potentials have been
shown to outperform any single potential M, M, 111, 135, 1198, 215, 233]. Model

quality assessment programs are used to assess models generated by various methods

)

and the quality of the models range from very coarse ab initio models often having
a wrong fold to very accurate template-based models. Therefore, scoring functions
consisting of several terms and being optimised on a diverse set of models will be more
suitable for the task of discriminating good from bad models or for the identification of
the most native-like structure. Model quality assessment programs have been tested the
first time in a community-wide experiment in 2004 during CASP6 as part of CAFASP
(Critical Assessment of Fully Automated Structure Prediction) ] and only recently
at CASP7 @]

gDecoys are computer generated conformations of protein sequences that possess some character-
istics of native protein structures, but are not biologically real.
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1.3 Objectives

Homology modelling is currently the most successful approach for the prediction of
the 3-dimensional structure of a protein from its sequence. A model of the protein is
thereby built by using information from experimentally solved protein structures (the
templates) showing an evolutionary relationship to the target protein, relying on the

fact that the structure of a protein is more evolutionarly conserved than its sequence.

The objectives of this thesis are to optimally take advantage of the information
contained in the database of known protein structures especially for the prediction
of loop regions and for the assessment of the quality of the generated models. Both

tasks are of crucial importance for the final application of the models.

Both loop prediction as well as the scoring functions used for the quality assessment
loops and entire models can benefit from the steadily growing number of known protein
structures. In knowledge-based loop prediction, the coverage of the conformational
space by fragments extacted from known structures increases with the number of known
proteins. A comprehensive and up-to-date fragment database will be established in the
course of this work. Furthermore, scoring functions based on the statistical analysis of
structural features observed in experimentally solved proteins are potentially more
accurate and wider applicable as the number of folds increases. These statistical
potentials can be used for the assessment of entire models but also for the ranking of
candidate fragments in loop prediction. In this work, it shall be investigated whether a
statistical interaction potential on atomic level can be used for the ranking of complete
loops after sidechain modelling. The knowledge-based loop prediction algorithms
described in the literature typically take into account only the loop backbone in the
scoring step and mostly rank the loops according to the geometrical fit of the fragments
on the anchor groups of the protein. This approach is problematic since the anchor

region is typically distorted with respect to the native structure.

For the assessment of the quality of protein models, a scoring function shall be
implemented being able to identify good models among a set of alternatives. It will be
investigated whether the combination of multiple terms can improve the prediction of
the model accuracy. In order to be able to cope with loop prediction and model quality

assessment, a comparative modelling pipeline needs to be implemented.






2 Methods

This chapter is structured according to the typical modelling workflow shown in Figure
2.1L Establishing a complete comparative modelling pipeline was a basic prerequisite
for dealing with loop prediction and model quality assessment which are described later
in this chapter. The modelling pipeline has been implemented in C++. A description

of the most important classes can be found in the last section on page 74!
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Figure 2.1: Basic steps in homology modelling.
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2.1 Template selection and alignment

2.1.1 Databases

The non-redundant sequence database (nr) from the National Center for Biotechnology
Information (NCBI) has been downloaded from the official ftp—serveH. The nr database
contains all publicly available sequences from a variety of sources (e.g. translations
from GenBank @] and RefSeq [164] as well as sequences from Swissprot @], PIR
13] and the PDB [18]). In order to further reduce the redundancy (e.g. because of
protein families being over-represented), NCBI’s non-redundant sequence database was
clustered at color 90% sequence identity using the tool CD-HIT ] The resulting
database (nr90) was subsequently used to generate the profiles used for template

identification and target-template alignment.

The database containing the sequences of all known protein structures from the Protein
Data Bank (PDB) ], frequently called pdbaa, has been obtained from the Dunbrack
Lab®. In comparison to the pdbaa sequence database from NCBI, the version from
Dunbrack Lab contains additional information such as resolution, R value, R free value
and sequence length in the header of each entry. These information are crucial for

template selection.

2.1.2 Template identification and selection

The template structures are identified using a variation of the PDB-BLAST protocol.
The term PDB-BLAST was introduced in a work of Rychlewski and co-workers [@]
in which several strategies of using sequence profiles for fold recognition have been
compared. In PDB-BLAST, the profile generated by PSI-BLAST ﬂ%] is stored and
used to scan the database of known protein structures. In the implementation used in
this work, the profile generated after 4 PSI-BLAST iterations on the nr90 sequence
database is subsequently used for a final iteration on the pdbaa. After each PSI-BLAST

iteration only sequences with an E-value < 0.001 are retained. The maximum number

aftp://ftp.ncbi.nih.gov/blast/db
Phttp://dunbrack.fccc.edu/Guoli/pisces_download.php
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of sequences in the alignment was set to 1000.

One or several templates are selected manually based on the observed sequence identity
to the target and their quality (i.e. resolution, target coverage, completeness). The

sequence identity is calculated based on the alignments provided by PSI-BLAST.

2.1.3 Target-template alignment

The target-template alignments are built based on a profile-profile alignment protocol
(see section [1.2.2.2 in the Introduction). The profiles for both target and template are
calculated by PSI-BLAST with 5 iterations on the nr90 data bank using an E-value
< 0.001. The alignments are generated using a modified version of the profile-profile
alignment functionality included in the Align-package, a C++ library provided by the
Tosatto group [216]. The library has been extended and benchmarked as part of the

CUBIC-project of Oscar Bortolami under the author’s supervision.

A total number of 20 alternative alignments is generated by applying different gap
open and gap extension penalties and by applying a global (Needleman-Wunsch [150]
and a local (Smith-Waterman [203]) alignment algorithm.

The following strategy was used in order to optimise the gap penalties. The quality
of sequence alignments is assessed by comparing them with structural alignments as
gold standard. Therefore a representative set of structural alignments has been built
as described by Marti-Renom et al. dTSQ] The final data set consists of 300 structural
alignments of pairs of proteins sharing less than 40% sequence identity and belonging to
the same homologous superfamily as defined by CATH [153], a hierarchical classification

system for protein domain structures.

100 structural alignments have been used for training (optimising the gap penalties)
and the rest for testing. The structural alignments were generated with CE [192].
An exhaustive search over a reasonable range for the gap penalties was performed
in order to identify gap open and gap extension penalties which lead to a maximum
overlap of the sequence alignments with the corresponding structural alignments. The

quality of the resulting alignments was assessed based on the fraction of identically
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Table 2.1: Optimised gap open (g,) and gap extension (g.) penalties used for local
and global alignments, respectively.

global local

Yo Je Yo Ge

8 0.2 6.5 0.5
4.5 0.1 6.5 0.7
7 0.1 6.5 0.3
5.5 0.2 7 0.3
4.5 0.15 7.5 0.5
6 0.1 7.5 0.3
7.5 0.2 7.5 0.25
7 0.2 8 0.3
7 0.08 8 0.25
8 0.15 8.5 0.3

aligned residues. The final penalties are shown in Table The optimal gap open
and gap extension penalties, i.e. those values that produce the most similar alignments
compared to the structural alignments, are shown in the first row and the sub-optimal

penalties below.

In analogy to the scores for aligning two residues in a sequence alignment, profile-
profile alignment algorithms need a scoring function which quantifies the degree of
similarity of two profile columns being aligned. Several different implementations have
been investigated and a column-column scoring function, as proposed by Panchenko in
2003 [@], has been used (formula2.1). The score of aligning position i of the target
with position j of the template is given by:

— —

Fyx W)) +ny(Fy « W)

2.1

Sij = il

where n; and n; are the number of independent observations of different amino acid
types in columns ¢ and j representing a measure of the diversity within the columns.
F’i and FE are the vectors of observed frequencies in column ¢ and j, respectively, in
the profile. V[Z and Wj represent the corresponding columns in the profiles or PSSMs

(Position Specific Scoring Matrices).
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2.2 Model building

2.2.1 Building the raw model

In a first step, the target sequence is mapped on the template structure according to
the alignment, i.e. the sidechains of all non-conserved residues are removed and the
amino acid type of the template is “mutated” to the one of the target. The sidechain
conformation of conserved residues are inherited directly from the template, which
turned out to be a good strategy (see section [3.1.5.4]in Results and Discussion). The
sidechain conformations of the remaining residues are calculated with SCWRL [31].
Deletions (i.e. residues of the template not present in the target) are automatically
removed from the structure. For insertions, “dummy residues” with the corresponding
amino acid type of the target residue and consisting only of a Car atom are added at the
appropriate position in the structure. At all time, the mapping between the position in
the alignment and the corresponding position in the model has to be guaranteed and
is checked after each modification. Additionally, while loading a protein structure file,
information from the program DSSP [107] (such as secondary structure assignment,
solvent accessibility, torsion angles) is mapped to each residue and the integrity is
checked. The resulting structure is called here the “raw model” since it is starting

point of all subsequent modelling steps.

2.2.2 Defining the structural core and structurally variable

regions

The structural core consists of those regions of the template which have preserved their
structure during evolution and whose backbone conformation can be directly copied
from the template. In order to illustrate the situation, the sequence alignment and
the structural superposition of the two homologous proteins papain (PDB identifier
Ippn) and actinidin (PDB identifier 2act) are shown in Figure 2.2. The sequence
identity between the two proteins is 47%. The structures are coloured according to
the structural deviation between corresponding residues of the alignment. The region

coloured in blue represents the structural core with low deviation between target and
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template. As it can be seen, the structurally variable regions are mainly located around

insertions and deletions.

The identification of the structural core, is facilitated by the use of the following

information:

1. the sequence conservation in a multiple sequence alignment of the protein family

of the target
2. the agreement between the secondary structure in target and template

3. the analysis of the local model energy profile (see section [2.4.5 on page

The multiple sequence alignment of the target protein family is automatically produced
based on the PSI-BLAST search used to generate the targets profile. The conservation
within the protein family is visually inspected with JalView (4—41)] The multiple sequence
alignments can be further refined by using MUSCLE |[64], a highly accurate algorithm
for multiple sequence alignments. A web service for MUSCLE is implemented in
JalView and therefore, the PSI-BLAST based alignments can be directly refined in

this environment.

The agreement between the secondary structure of the template and the target is inves-
tigated by comparing the calculated secondary structure of the template as derived from
DSSP [107] with the predicted secondary structure of the target sequence. A consensus
secondary structure prediction of PSIPRED ﬂl—OS‘], SSpro ﬂ%] and ProfSec/PHD m] is
built by simple majority voting [4], i.e. by assigning to each amino acid the secondary
structure state predicted by at least two of the three methods (otherwise the residue

is defined as being in coil state).

Regions of the model not belonging to the structural core (i.e. structurally variable
regions) usually have to be remodelled. The structurally variable regions are mainly
composed of protein surface loops containing insertions and deletions as well as the
chain ends. Often, loops without insertions and deletions need to be remodelled as
well, depending on the degree of sequence conservation between target and template.
Highly non-conserved loops are likely to adopt different local folds as compared to

the template loops. On the other hand, loop prediction is only possible with a certain
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Zact NTRGCDGGY ITDGFQFIINDGGINTEENYPY TAQDGDCDV-ALQDQKY VTIDTYENVPYN
conserv D: *& kkk. tkiir D¥kes HLE * I :D * H -
dssp lppn CECHHHCCCHHHHHHHHHHHCCECECCCCCCCCCCCCCCH HHHHCCCECCCEEEECCCC
120 130 140 150 160 D 170
lppn NEGALLYSIANQPVSVVLEAAGKDFQLYRGGIFVGPCGNKVDHAVAAVGYGP-—--NYIL
2act NEWALQTAVTYQPVSVALDAAGDAFKQYASGIFTGPCGTAVDHAIVIVGYGTEGGVDYWL
conserv kk kk 2 2 akkkkka.kakkhk ok ok ckkk kkkk: kkkk.:..kkkk DODD *:
dssp lppn CHHHHHHHHHHCCEEEEECCCCHHHHHCCCCEECCCCCCCCCEEEEEEEEEEECCEEEEE
180 140 E 200 210
1ppn IKNSWGTGWGENGYIRIKRGTGNS YGVCGLY TS SFYPVKN
Zact VENSWDTTWGEEGYMRILRNVG-GAGTCGIATMPSY PVKY
conserv chkkhkk kokkhk kkokk ke kT ok kk. ok dkkk .

dssp lppn EECCECCCCCECCEEEEECCCC CCCHHHCCCCCEEEECC

(a) Structure-based sequence alignment with insertions and deletions highlighted.
The last line shows the secondary structure composition of the second protein.

(b) Superposition of two homologues coloured according to the local structural deviation.

Figure 2.2: Structural core and structurally variable regions: Alignment and
superposition of the two homologous proteins papain (1ppn) and actinidin (2act).
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accuracy, typically depending on the length of the fragment to be modelled. Therefore,
deciding whether to re-model a loop or not remains a difficult task. These regions
which would benefit from an accurate loop modelling are still difficult to identify and
the prediction of these regions is an active field of research @, @, E] In order to
investigate the tendency of a loop to adopt a different fold, a local statistical potential
scoring function has been implemented investigating the local sequence to structure
fitness. In other words, the scoring function assesses the likelihood that a given region
of the target sequence adopts the structure provided by the template. High local
energies suggest that the sequence does not “feel comfortable” with the given structure
provided by the template and therefore a local refolding is rather likely. The local

scoring function is described in Chapter 2.4.5

Suitable start and end points of the loop modelling process, the so called anchor groups,
have to be identified. The anchor groups are located in the transition of the structural
core and the structurally variable region. Usually, in loop prediction the anchor groups
are set near the end points of the surrounding secondary structure elements which
are rather likely to be structurally conserved. As mentioned above, investigating the

sequence conservation in these regions further provides evidence for the positioning.

For the models submitted to CASP, the position of the anchor groups has been
defined manually by investigating the agreement between the position of the secondary
structure end points between target and template and by looking at the sequence
conservation. In order to combine all information needed to accomplish this task, a
condensed “model information” output file is generated as shown in Figure 2.3. The

following information is provided (in the same order as in the data lines):

e The alignment between target (in the example above CASP7 target T0379) and
template (PDB identifier 2bOc, chain A) is shown in the first two data lines.

e The sequence conservation (denoted as “conserv”) is described by an asterisk for

identical residues and a colon for similar residues according to the definition used
in CLUSTALW ]

e The line “conf” shows the average confidence of the secondary structure predic-
tions calculated by PSIPRED and ProfSec. Both methods provide a measure
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alignment

type: global

Target segquence:

name: TO37S
length: 202
Template segquence:

name: 2b0ch
length: 155
Sequence identity: 0.201523

Energy of

TO37S
2Zh0ch
CONSEerv
conf
CONSENsUS
psipred
S8pro

phd

dssp

TO37S
2Zh0ch
CONSEerv
conf
CONSENsUS
psipred
S8pro

phd

dssp

TO37S
2Zh0ch
CONSEerv
conf
CONSENsUS
psipred
S8pro

phd

dssp

TO37S
2Zh0ch
CONSEerv
conf
CONSENsUS
psipred
S8pro

phd

dssp

the raw model: -16.383

1 10 20 30 40 50 ]
MIRNIVFDLGGVLIHLNEEESIRRFEAIGVADIEEMLIOPY LOKGLF LDLESGEESEEEFE
AKMLYIFDLGNVIVDIDFNEVLGAWSDLTRIPLASLEK SFHMGEAF HOHER GEISOEAFA

HE I I H H HE H H ® o FpwoE
S20056505760450070777788862455448887506740340000004788788888
CCEEEEEECCCEEEECCHHHHHHHHHACCCCCHHHHHHHAACCCHHHHHACCCCCHEHEA
CCEEEEECCCCEEECCCHHHHHHHHHACCCCCHHHHHHHAACCCHHHHHACCCCCHHHEA
CCEEEEEECCCEEEECCHHHHHHHHHACCCCCHHHHHHHACCCHHHHAHACCCCCHHHEA
CCCCEEEECCCEEEEECCHHHHHHHHACCCCCHHHHACHHHACCCERECCCCCCCCHHHEA
CCCEEEECCECCCEEEECHHHHHHHHHHACCCHHHHHHACCCCHHHHAHACCCCCHHHEA

o] 70 =] 50 100 110, . ...

TELSEYIGKELTYQOVY DALLGFLEEISAEKF DY IDSLEP-DYRLFLLSN THPYV LDLANM

EALCHEMALFPLEYEQF SHGWOQAVFVALEPEVIAIMAELEEQGHREVVVLEN TH - — - - ELH
.. " & "

*oeow " *:* *oeow "

R HETE R A A #E D pFpaa*FEEETIIIN i,
2222273400046722222R875676400776405654003 6435550072704564500
HHHHHHHCCCCCHHHHHHERHHHERACCHAHHHHERHHAC CCEEEEEECCCHHHEREHEE
HHHHHHHCCCCCHHHHHHERHHHERACCHAHHHHERHHAC CCEEEEEECCCHHHEREHEE
HHHHHHHCCCCCHHHHHHERHHHERACCHARHHHERHHAC CCCEEEEECCCHHHEREHEE
HHHHHHHCHHHCHHHHHHERHHHERHHHHRRACHRRACCC CCEEEECCCCCCHHHRACT
HHHERHHHCCCCCHAHHHHRRHCCEEEECHHHHHERHHHHACCCEEEEEECCC CcCcC

120 130 140 150 1a0 170000000
SPEFLPEGRTLDEFF DEVY ASCOMGEYEPNEDIF LEMIADSGMEFPERETLF I DDGRANVAT
TTFWPEEYPEIRDAADHIY LEQDLGHMEKPEARIYOHVLOARGF SPSDTVFFODONATINIEG

HH H H HEES T *E * HH By R opEpEpEEgy o*pog
00000003552444212000011067 788767778777 7607870005553278000567
CCCHHHHCCCHHHHHHHEEEHHACCCCCCCHHHHHAHHHACCCCHCCEEEECCCHHHHEA
HHHHHHHCCCHHHHHHHEEEHHHACCCCCCHHHHHHHHHHACCCHHHEEEECCCHHHHEA
CCCHHHHHCCHHHHHHHEEEHHACCCCCCCHHHHHAHHHACCCCHCCEEEECCCHHHHEA
CCCCCCCCCCHHHHHAAAAAAAACCCCCCCHHHHHAAAHACCCCCCEEEEECCCCCCHEN
CCCCHHHCHHHHHACCEEEEHHHACCCCCCHHHHHHHHHHACCCHHHEEEEECCHHHHEH

1a0 150 200
ARRLGFHTYCPINGENWIPAITELLEEQK
ANQLGITEILVEDETTIFPDYFAE -———- v
* R H HHH : $ITI1I
8750750050062 0003685888887425
HHHCCCEEEECCCHHHHHHHHHHHHHACC
HHHHCCEEEEECCHHHHHHHHHHHHHACC
HHHCCCEEEECCCHHHHHHHHHHHHACCC
HHHCCCCCECCCCCCCHHHHHHHHAAACT
HHCCCCEEEECCCCCHHHHHHAC c

Gaps in the alignment:,

nr of deletions: 1
nr of insertions: 2

Figure 2.3: Example of a “model information" output file used for the positioning

anchor groups serving as starting points of the loop prediction process.
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of confidence ranging from 0 (i.e. no reliable assignment of secondary structure

possible) to 9 (i.e. high confidence).

e “consensus” is the consensus of the three secondary structure predictions shown

on the subsequent lines based on majority voting as described above.

e The last data line ("dssp") shows the calculated secondary structure of the model
derived from DSSP.
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2.3 Loop prediction

As mentioned in the introduction, there are basically two approaches to the loop
prediction problem: knowledge-based and ab initio. We follow a knowledge-based
strategy by scanning a database of fragments (extracted from the PDB) for suitable

backbone conformations. A schematic representation of the loop prediction routine is

shown in Figure 2.4. A detailed description of all steps is given below.

Fragment
database

Selection based on
Calpha distance of filtered
end points

out

| no
Af& yes As.k yes A:k
geometry energy energy Filtering
OK? OK? OK?
| | o

no ne yes
¢ ‘ sidechain
filtered filtered « modelling
out out by SCWRL

h 4

Loop ranking

Figure 2.4: Schematic representation of the loop prediction routine.
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2.3.1 Fragment database

The fragment database is based on a non-redundant subset of protein structures from
the PDB M] The selection is generated using the PISCES server d?%] which allows

to extract sets of protein structures. The following selection criteria are used:

e pairwise sequence identity < 95%
e resolution < 3.0 A
e R-value < 0.3

e only structures determined by X-ray crystallography

The selection criteria represent a trade-off between quality of the structures and
quantity of the fragments in order to increase the coverage of the conformational space.
Since only protein backbone coordinates are stored in the database, a resolution cutoff
of 3 A represents a reasonable compromise since at this resolution the backbone is

usually well-defined in proteins solved by X-ray crystallography.

The resulting data set contains 12,376 protein chains which are cut into fragments of
length 3-20 by the class Fragmentor (see section Implementation, page [74). In a first
step, the chain is inspected concerning chain breaks and missing residues. Structurally
continuous substructures are then defined which are subsequently fragmented using
sliding windows of length 3 to 20 residues. Only complete fragments containing all
4 backbone atoms per residue are accepted and stored in a MySQL database. The
structure of the fragment database is shown in Table[2.2. Since in the application case
only queries on fragments of the same length are performed, specific fragment tables
for each length are generated in order to enhance query speed. The fragment tables

contain approximately 2.5 to 2.9 million fragments each.

The table structure contains information about all protein structures used to generate
the fragments (e.g. PDB identifier, chain identifier, resolution R-value etc.). The
table fragment2structure stores begin and end position of the fragment in the

corresponding structure (starting from 0) and additionally the two corresponding
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Table 2.2: Name and number of entries of the tables in the fragment database. The
fragments of the length 3-20 amino acids are stored in separate tables.

Table name Number of entries
fragment3 2,907,542
fragment4 2,879,976
fragment5 2,853,117
fragment6 2,826,819
fragment7 2,801,064
fragment8 2,775,811
fragment9 2,751,095
fragment10 2,726,790
fragment11 2,702,933
fragment12 2,679,522
fragment13 2,656,505
fragment14 2,633,917
fragment15 2,611,692
fragment16 2,589,817
fragment17 2,568,295
fragment18 2,547,087
fragment19 2,526,182
fragment20 2,505,539
fragment2structure 48,543,703
structure 12,376

primary keys of the tables fragment and structure. The primary keys of the fragment
tables are unique over all tables. An alternative, relational database structure has been
investigated using an atom, a residue and fragment tables including the corresponding
connection tables. But this approach resulted in an explosion of the query time most
probably as a consequence of the multitude of joining operations on huge tables.
Therefore, the database was denormalised and all necessary data was condensed in one
table (the fragment tables). An overview on the fields of the fragment tables is shown
in Table 2.3. The query speed was further increased by sorting the table according
to the fragment end-distance since this represents the primary selection criteria used.
In addition to the selection by fragment end-distance, an advanced selection using
sequence or secondary structure constraints is possible. Therefore an index has been

put on these three columns in order to increase the query speed.
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Table 2.3: Structure of the table fragment3 containing fragments of the length of

3 residues.

Field name Datatype Description

ID int(11) primary key

dist_bin smallint(5) fragment end-distance (rounded)

end distance float fragment end-distance

anchor coordinates tinytext backbone coordinates of the anchor residues
loop coordinates text backbone coordinates of all loop residues
torsion_ angles text torsion angles of all loop residues

sequence char(3) sequence of the fragment

SSE _pattern char(3) secondary structure of the fragment
chain_end ID char(1) identifier for chain-end fragments: N,C
SSE_N_flank ¢ char(1) type of the left flanking secondary structure
SSE_C_ flank ? char(1) type of the right flanking secondary structure

N_flank length ®  int(2)
C_flank length # int(2)

solvation avg float
solvation pattern  varchar(3)
pdb_ID varchar(4)
chain _ID char(1)

length of the left secondary structure
length of the right secondary structure
average solvation of the fragment
solvation pattern: O=buried, 1=exposed
PDB identifier of the original structure
chain identifier of the original structure

®These fields are only used for “real” loops, i.e. fragments which only consist of residues with the
secondary structure type coil and are immediately enclosed by secondary structure elements.

Since the sequence and the secondary structure composition of the fragments are stored

in the database as text entries, queries with regular expressions on these fields are

possible. This can be especially useful when constraints derived from the analysis of

the sequence conservation in the protein family or knowledge about the position of the

surrounding secondary structure elements should be used as described in section 2.2.2|

Below, a virtual example of a constraint query on the fragment database is provided:
SELECT * FROM fragment10 WHERE (end_distance BETWEEN 10 AND 14) AND

(SSE_pattern LIKE °HH__

2.3.2 Loop test sets

CC__’) AND (sequence LIKE ’__G_______ )

A parameterisation test set consisting of 50 loops of length 3-15 residues was used in

order to optimise all loop prediction parameters described in the next section. The
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Ia:me parameterisation as described by Michalsky et al. in the LIP program is used
139).

The performance of the loop prediction routine described in this work is compared to 4
commercial loop modelling programs which have been recently benchmarked by Rossi
et al. [@] with a test set covering loops from 4-12 residues (a filtered test set based

@ﬁ) The test set as well as the results of the 4

commercial programs were obtained from the author (Karen Rossi). Additionally, a

on the work of Jacobson and et al.

test set of 14 loops of length 4-9 is used in order to compare the performance to seven
other programs. Although being small and probably not representative, this test set is
frequently used in the literature and is applied here as well for the sake of completeness.

The results of the other loop prediction programs are obtained from two publications

, ] and from the LIP Websit.

2.3.3 Selecting, filtering, ranking of fragments

The loop prediction protocol involves basically 3 steps as shown in Figure2.4: Selection
of fragments from the database, filtering in order to reduce the set of candidates and

finally ranking of the remaining loops based on a scoring function.

2.3.3.1 Loop selection from the fragment database

In the first step, fragments are selected from the database based on a simple geometric
criterion comparing the distance between the terminal Ca atoms of the fragment with
the corresponding Ca distance of the anchor groups (i.e. the framework in which
the fragment is inserted). Upper and lower bounds for the difference between these
two distances are defined for each loop length. The bounds have been manually
adjusted so that less than 5 percent of the all Topl0 fragments per loop length are
rejected in the parametrisation set. The thresholds for different loop lengths are
summarised in Table 2.4. Adjusting the bounds represents another trade-off between
speed and accuracy. Retrieving more fragments by less restrictive cutoffs slows down

the whole loop prediction process since more data (especially the coordinates) have to

‘http://wuw.drug-redesign.de/LIP/LIP_WebseiteTestsets.html
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be transferred from the database and processed by the filters and the scoring function
described below. On the other hand, the presence of more candidates makes the task
of identifying the best fragment among others more difficult. All selected fragments
are subsequently fitted on the the anchor groups by least squares fitting over the
coordinates of the 4 backbone atoms N, Ca, C and O of both end points.

2.3.3.2 Loop filtering steps

In the next step, four quality filters are applied in order to remove unsuitable fragments,
thereby reducing the candidate set for the final ranking step. The first filter analyses the
“goodness of fit” i.e. how well the backbone of the terminal fragment residues matches
the anchor backbone geometry provided by the protein framework. The root mean
square deviation between anchor residues and terminal fragment residues is calculated
(called RMSa). Fragments with a RMSa above a loop length dependent threshold are
rejected. In analogy to the strategy used in the selection process, the cutoff values for
the RMSa filter were set such that not more than 5 percent of all Top10 fragments are
filtered out (Table[2.4).

The second filter rejects fragments having serious clashes with the environment after
fitting into the framework. Two atoms are defined as clashing if the distance between
them is less than 70% of the sum of their van der Waals radii. The van der Waals
radii have been taken from a work of Li and Nussinov M] A similar threshold has

Table 2.4: Threshold used in loop selection and for the anchor group RMSD filter.

difference between Ca-distances”
loop length lower bound upper bound RMSa cutoff?

L <6 -1.15 0.85 1
6 <L <8 -1.5 1.75 1.35
8§ < L <12 -2.25 2.5 1.5

L>12 -2.75 2.75 1.75

?Ca-distance of the fragment end points compared to the Ca-distance of the anchor groups.
PRMSD between the terminal fragment residues and the anchor group residues after fitting.
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been used in a recent publication on loop prediction @] The fitting process based
on least squares fitting results in only an approximately correct orientation of the
fragment in the protein framework and therefore loops with accurate local geometry
compared to the native loops can still have considerable clashes. In an earlier work
from our lab, Heuser et al. ] approached the problem by accepting one clash with
the environment. Furthermore, “soft” clashes can be expected to be removed in a

subsequent energy minimisation step.

The two initial filtering steps (i.e., RMSa filter and clash filter) are performed during
the retrieval process of the fragments from the MySQIL database and, depending on
the modelling situation, the filters remove a large fraction of the selected fragments.
This approach allows to restrict the number of candidate fragments to be stored
simultaneously and therefore reduces the main memory consumption. The remaining
loop objects (see section Implementation, page [74) are stored in a vector for further

processing.

The third filter analyses the torsion energy of the remaining fragments. As described in
the Introduction, the 20 amino acids show, as a consequence of the steric restrictions
imposed by their side chains, preferences for certain torsion angles. The fragments
of the database originate from structures having completely different amino acid
compositions and therefore analysing the torsion energy can be used to estimate how
well the given loop sequence matches the dihedral angles of the fragment. The torsion
angle potential is especially valuable for filtering since it relies only on the backbone
atoms and does not need the sidechains which have not been modelled yet. Z-scores of
the torsion energies of all fragments are calculated by subtracting the mean and dividing
by the standard deviation of the whole set. Loops with torsion energy Z-scores above 1
standard deviation are removed. If a maximum number of 20,000 fragments is exceeded
after the first round, the threshold is gradually lowered with a step size of 0.2 standard

deviations.

In the last filtering step the compatibility of the loop backbone with its framework is
investigated before the actual scoring is performed. This step was necessary since side
chain modelling is the rate limiting process in the whole modelling pipeline typically
taking a fraction of a second (maximum 1 second) per loop. Sidechain modelling is

performed by SCWRL ﬂi] but since an external program is used, the protein structure



52 Methods

including the loop has to be temporary saved, the program executed and the output
has to be reloaded.A combination of the following 3 terms is used in the backbone

scoring step:

e A pairwise distance-dependent statistical potential based on Ca atoms in order

to analyse the interactions of the loop with its environment.

e A solvation potential based on Ca atoms investigating the propensity of the loop

residues for the given degree of solvent exposure.

e The “goodness of fit” of the terminal loop residues to the anchor groups as
expressed by the RMSa.

The theoretical background of statistical potentials of mean force and how they are
extracted is described in detail in the next section. For all 3 terms, Z-scores are
calculated and the Z-scores for each loop are simply summed up. An inspection
of the distribution of the scores revealed that the values are at least approximately
normal distributed which is a prerequisite for the derivation of Z-scores. The use
of Z-scores enables the combination of statistical potential terms with the RMSa
distance measure. Such a combination would be difficult if the raw energies are used
directly since, depending on the structural environment which determines the number of
contacts between loop and framework, the amplitude of the energies potentially differs
significantly between different modelling situations, which complicates the combination
with the distance measure. Z-scores reflect how well a certain fragment fits in the given
environment (sterically and energetically) compared to all other fragments in the set. A
good, near-native fragment should have reasonable scores for all three terms. Based on
the combined backbone score, the best 3,000 loops are retained. The number of loops
passing the torsion energy filter (20,000) and the backbone filter have been optimised

based on the parametrisation set.

2.3.3.3 Loop scoring

In the next step, sidechains are added to the loop residues by executing SCWRIL. Since
the loop is now complete in terms of its atomic composition, a more fine-grained, all-

atom energy function can be applied in order to rank the remaining fragments. A
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variety of different terms and parameters for the statistical potential terms has been
investigated. The performance of some selected combinations are shown in Results
and Discussion, page [135ff. In the final scoring function only the all-atom interaction
potential has been used. Among other alternative implementations, a combined scoring
function consisting of 4 terms has been investigated using a torsion angle potential over
3 residues, an all-atom solvation potential, an all-atom pairwise interaction potential

as well as the RMSa. All terms are combined by summing of the individual Z-scores.

The torsion angle potential reflects the propensity of the loop sequence to adopt the
local geometry described by the torsion angles of the fragment. The same bin sizes
for the ® and ¥ angles have been applied as for model quality assessment (see section
2.4.1.5). The short-range pairwise interaction potential assesses the direct interactions
with the structural environment. The upper limit of 10 A has been set manually
after inspection of the interaction curves. At an atomic distance of approximately
10 A the energy curves reach a pseudo energy of zero. The solvation potential
describes the propensity of a certain atom for the observed degree of solvent exposure
as approximated by the number of atoms within a sphere of 6 A around the central
atom. A threshold of 6 A has been chosen in order to assure that no water molecule fits
between the two atoms. The solvation potential to some extend favours loops forming
contacts with the protein surface instead of pointing into the solvent. A variety of
additional functionalities are provieded by the loop prediction routine which are briefly

described here:

e A clustering library implemented in C by Michiel de Hoon (originally developed
for the analysis of gene expression data) is integrated [51|. In order to remove
redundancies, the set of loops can be clustered based on a given RMSD value
cutoff using various clustering strategies (e.g. single-linkage, complete-linkage

(default), centroid-linkage and average-linkage clustering).

e The colony energy approach as introduced by Xiang et al. ] has been
implemented. In this approach, the energy of a loop decreases with the presence
of other loops with similar conformation and low energy assuming that the
conformational space around global energy minimum is more populated than

the rest of the energy landscape.
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Four different loop fitting strategies have been implemented. Fitting on the 4
backbone atoms on both sides (default), fitting on backbone without the oxygen
atom (since it is defined by the other 3 atoms), fitting on the backbone of two
consecutive residues on both sides, fitting on 3 consecutive Ca-atoms on both

sides.

Both loops and chain ends can be modelled (in the later case only one anchor

group given).

After building the all-atom loop model, the sidechains of the loop together with
the sidechains of surrounding residues within a given distance cutoff can be
rebuilt.

A user-defined number of protein structures from the top ranking loop predictions
can be saved as PDB files.

A variety of rankings and quality measures are calculated for benchmarking

purposes.
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2.4 Model quality assessment

In protein structure prediction, a considerable number of alternative models are usually
produced from which subsequently the final model has to be selected. Thus, a scoring
function for the identification of the best model within an ensemble of alternative
models is a key component of most protein structure prediction. Model quality
assessment includes the global assessment of the quality of the entire model but
also the local quality assessment analysing the reliability of different regions of a
specific model. This section will focus on the first task but in the last section an
extension for local quality assessment is described. QMEAN ﬂ%], which stands for
Qualitative Model Energy ANalysis, is a composite scoring function describing the
major geometrical aspects of protein structures. Five different structural descriptors
are used. The local geometry is analysed by a new kind of torsion angle potential over
3 consecutive amino acids. A secondary structure-specific distance-dependent pairwise
residue-level potential is used to assess long-range interactions. A solvation potential
describes the burial status of the residues. Two simple terms describing the agreement
of predicted and calculated secondary structure and solvent accessibility, respectively,

are also included.

A variety of different implementations are investigated and several approaches to
combine and optimise them are described. Only the parameters used in the final
implementation of the statistical potentials are shown here together with the descrip-
tion of the optimisation strategy. The rest of the data can be found in the Results
section, page 108ff. QMEAN was tested on several data sets as described below and

was compared to five well-established model quality assessment programs.

2.4.1 Statistical potentials

2.4.1.1 Theoretical background

The analysis of experimentally solved protein strutures reveals obvious regularities such

as the tendency of hydrophobic residues to be buried, the pairing of oppositely charged

atoms or the interaction of aromatic rings H] Statistics about these empirical or
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knowledge-based parameters can help understanding the interactions which contribute
to the stability of protein structures and their analysis has a long history going back
to the work of Tanaka and Scheraga in 1976 ﬂZ—OQ‘]

In the early 1990’s Sippl introduced a statistical mechanics formalism based on the
inverse Boltzmann principle in order to derive a potential of mean force , 198,
’2700] The Boltzmann principle relates the energy of a conformational state ¢; to its
probability of occurrence at the thermodynamic equilibrium:

—E(c;)
e kT

p(ci) = ——57 (2.2)

where k is the Boltzmann’s constant and 7' is the absolute temperature. The
summation j over all allowed states of the system is called the partition function or
Boltzmann sum (denoted as Z(C)). In analogy, the inverse Boltzmann principle relates

the probability density function p(c;) to the energy of a given state:

E(¢;) = —kTin(p(c;)) + kTin(Z(C)) (2.3)

In a similar way, the net potential of mean force [@] can be derived for a specific
subsystem (i.e. specific interaction) s, by subtracting the mean force of reference
thereby removing all energies which are common to all subsystems. This can be
described as conditional probabilities ] reflecting the probability of a conformational

state ¢; in the presence of a specific interaction sy:

_ _ plcilsk) Z(C15)
AE(ci|sg) = E(ci|sk) — E(¢;) = —kTln( o) )+ ETIn( 700) ) (2.4)

For example in a distance-dependent pairwise potential ¢; refers to the distance and
sk to the identities of the two atoms. In torsion potentials ¢; stands for a given pair
of ®/¥ dihedral angles and s, for the amino acid type. According to Sippl ],
Z(C|S) = Z(C) can be assumed which results in the following equation:

pleilse)

AFE(c|sk) = —kTIn( o)

(2.5)
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The numerator is the observed probability of a specific interaction whereas the denomi-
nator reflects the expected probability if there where no interactions (i.e., the reference
state). The observed probabilities can be directely estimated based on statistics on a
representative set of protein structures from the PDB @] Different approaches have
189, 198, 249‘]. The

majority of statistical potentials relies on the “uniform density” reference state used by

been described for the estimation of the reference distribution [’184,

Y

Sippl [197] in which it is assumed that the distribution in the reference state is the same
as in folded proteins. Therefore the probability distribution of the reference state is an
average over all amino acids in the dataset. This distribution can be directly obtained
from database statistics as well. An alternative implementation of the reference state
has been used by Zhou and Zhou in the DFIRE potential [@] In their work the
reference state is approximated by using uniformly distributed non-interacting points
in finite spheres. For the potentials of mean force described in this work, the reference
state as proposed by Sippl is used and all potentials are derivations from the following

general form:

flcilsk)
k- f(sk)

Ieilsk)
AE(¢i|sk) = —kT'ln <&> (2.6)

Typical features investigated by statistical potentials are backbone torsion angles,
solvent accessibility and pairwise interactions between non-bonded atoms. As done
in this work, different statistical potential terms cen be combined to a single scoring

function (see Introduction page [30).

The physical basis of statistical potentials has been questioned di, @, @, @] The
Boltzmann equation describes a particular system in its thermodynamic equilibrium,
whereas statistical potentials assume the system to be a database of protein structures
in the free energy minimum. According to this assumption, structural elements such
as pairwise distances or torsion angles obey a Boltzmann-type distribution based on a
hypothetical reaction at equilibrium in which a unique structure consisting of averaged
amino acids “mutates” to a unique sequence di, ]

The pseudo energy of the entire protein is calculated by summing up the energies

of the individual amino acids. In both cases (summing up different energy terms
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and summing up residue energies) thermodynamic additivity is assumed, i.e. the
components contribute independently to the total energy. This is a fundamental
principle used in all energy functions both knowledge-based and physics-based but
it only represents a simplification (probably as a consequence of missing alternatives).
A critical discussion of the additivity principles in biochemistry can be found in a good
review of Dill from 1997 @]

The non-redundant set of protein structures used to derive the potentials is described
in the next section. The different statistical potentials (i.e. distance-dependent
pairwise potential, torsion angle potential and solvation potential) are introduced in

the subsequent sections.

2.4.1.2 Extraction of the statistical potentials

All statistical potentials were extracted from a non-redundant set of high-resolution
protein structures from the December 2006 version of the PDB @] The PISCES
server [236] was used in order to select a subset of the experimentally solved protein

structures. The following selection criteria were used:

e pairwise sequence identity < 30%
e resolution < 1.8 A
e R-value < 0.2

e only structures determined by X-RAY crystallography

This resulted in an initial selection of 1,801 protein chains. To reduce over-training
of the potentials for structures subsequently used for training and testing, all target
sequences of CASP6 and CASP7 were blasted against the 1,801 chains. All detectable
hits were removed resulting in 1,688 structures. The following three filters were applied
in order to further increase the quality of the set of protein structures used for the

subsequent statistical analysis:

e Proteins having less than 90% of the amino acids resolved in structure (with

respect to the sequence) were not included (171 chains removed).
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e Structures with a substantial part being flexible (i.e. more than 20% of the
residues having an residue-averaged B-factor above two standard deviations) were

removed (25 chains).

e Structures with missing backbone atoms (21 chains removed).

For each of the remaining 1,471 structures, DSSP W] was executed in order to assign

secondary structure, solvent accessibility and the torsion angles.

2.4.1.3 Distance-dependent pairwise potential

The distance-dependent contact frequencies were extracted from the protein data
set described above. The radial distribution of atoms around the central atom is
investigated as schematically represented in Figure 2.5l In order to reduce the bias
introduced by sequentially local interactions (the contacting atoms are assumed to
be free particles), only atom pairs separated by at least 4 residues were included.
Alternatively, a sequential separation cutoff of 7 and an implementation without any

cutoff has been investigated but resulted in worse performance (data not shown).
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Figure 2.5: Radial distribution of atoms investigated for the derivation of the
distance-dependent interaction potential.
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Ca and Cf atoms, respectively, have been investigated as possible interaction centers.
Additionally, an all-atom version using all 167 atom types occurring in proteins
was implemented and is used in loop ranking. In the secondary structure specific
implementation of the residue-level pairwise potential the potentials are calculated
based on frequency counts extracted from residues of the same secondary structure
state while ignoring the secondary structure state of the contacting residues. A distance
range of 3 to 25 A (Ar = 0.5 A) turned out to produce the best results. The final
potential integrated in QMEAN is based on Cf atoms and uses the secondary structure
specific implementation. The calculation of the residue-level pairwise potentials has
been carried out as described by Sippl (see Chapter 2.4.1.1).

2.4.1.4 Solvation potential

The degree of residue burial was approximated by counting the number of interaction
centers (C3 atoms for QMEAN) within a sphere of 9 A around the given amino acid
in a similar way as described by Jones ] and in FRST ] The cutoff of 9 A
used in this work resulted in a slightly better performance of the potential than other
cutoffs tested (see Results and Discussion, page[3.2.1ff). The relative accessibility was
then calculated by dividing the counts by the maximum number of counts observed for
the given amino acid type in the protein data set. The solvation potential reflects the
propensity of a certain residue for a given solvent accessibility compared to any other
residue. The potential has been implemented as described in section 2.4.1.1.

2.4.1.5 Torsion angle potential

The single residue torsion angle potential reflects the propensity of a certain residue
for a given torsion compared to any other residue. The torsion angles were discretised
in 10 degree bins. The 3-residue torsion angle potential described here is a further
development of the single residue torsion angle potential by others [E, , , ]
The description of the local geometry for a certain residue was extended by including
the torsion of the adjacent residues. The coarseness was increased by using 45 degree
bins for the center residue and a bin size of 90 degree for the dihedral angles of the

neighboring residues. Several alternative bin sizes have been investigated ranging from
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30 degrees to 90 degrees (see Results and Discussion, page[3.2.1ff). The identity of the

neighbours was not taken into account.

2.4.1.6 Agreement terms

A term describing the agreement between the predicted secondary structure of the
target sequence and the observed secondary structure of the model as calculated by
DSSP was built. The DSSP output was converted into the 3-state format (helix,
sheet, coil) as used in EVA [67] an automatic evaluation pipeline for protein structure
prediction. A consensus secondary structure prediction approach was investigated in
the attempt to increase prediction accuracy. A consensus between PSIPRED [103],
SSpro ] and ProfSec @] was built based on simple majority voting ] The
fraction of residues with identical predicted and observed secondary structure states
was used as a simple quality measure. In the final implementation of QMEAN, only
PSTPRED was used since the consensus of the methods currently included did not lead
to an improved performance. A similar measure describing the agreement between
the predicted binary burial status (buried/exposed) as provided by ACCpro [35] and
observed solvent accessibility based on DSSP was implemented. The relative solvent
accessibility was calculated by dividing the solvent accessibility extracted from DSSP
by the maximum solvent accessibility for the given amino acid type observed in the
training set. Afterwards, the relative solvent accessibility was transformed into the
binary classification based on a cutoff of 25%. No consensus scheme was tested in this

case.

2.4.2 Measures for the structural similarity between model and

target

The traditional measure of expressing the similarity of two protein structures is the

RMSD (Root Mean Square Deviation), calculated after a rigid-body superposition:

RMSD = (2.7)
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where ¢ is the distance between two corresponding atoms among N pairs of equivalent

atoms (usually either Ca atoms, backbone atoms or all atoms).

In order to evaluate the quality of the models in the two CASP test sets described below
the GDT TS score was used as an objective measure for the structural similarity
between model and target. The GDT TS score was calculated using the TMscore
software from Zhang and Skolnick di?] GDT TS is a well-established score used
in the evaluation process of the last CASP rounds having the advantage of being less
sensitive to local errors in models as compared to the traditional RMSD. GDT (Global
Distance Test) describes the maximum percentage of residues which can be structurally
aligned within a defined distance cutoff. In GDT TS 4 increasing distance cutoffs are
used (r = 1, 2, 4 and 8 A) and the average of the percentage aligned residues px is

calculated:
P1+ P2+ Ps+ps

4

GDT TS = (2.8)
For the decoy sets from the Decoys 'R’ us website (see below), the RMSD values as

provided in the sets have been used directly.

2.4.3 Data sets

In this section, the data sets used for training (i.e. optimising parameters and weighting

factors) and testing (i.e. comparison with other methods) are described.

2.4.3.1 CASP6 decoy set for training

Parameter optimisation as well as the evaluation of weighting factors for the com-
bined energy function was performed on the CASP6 set (a description of the CASP
experiment is given in the Introduction, page [19). This set consists of all the models
submitted to the 64 accepted targets of CASP6. In order to increase the quality of
the data set and to reduce the influence of random predictions or very difficult targets,
all models having a GDT TS score of less than 0.2 were removed for training (11,475
models). The final data set consists of 15,893 models.
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2.4.3.2 Standard decoy sets from Decoys 'R’ us

The ability of a scoring function to identify the native structure among various decoy
structures was investigated and compared to other state-of-the-art tools with the help
of the following three frequently used decoy sets from the Decoys 'R’ us Website@ @]
4state_ reduced ﬂ1—58‘], lattice _ssfit 1270] and LMDS le]S)] (a short description of the
decoy sets can be found in Wallner et al. ]) The performance of the other methods
on these decoy sets has not been recalculated here, but the corresponding data were
taken directly from a recent publication 12715] The two quality measures Znat and
rank! used in the results section describe the Z-score of the native structure compared
to the ensemble of decoys and the number of cases in which the native structure was

ranked first in a given decoy set, respectively.

2.4.3.3 Molecular dynamics decoy set

The decoy set generated by Fogolari and co-workers ﬂg] was used to estimate the
performance on near-native structures. It consists of over 6,000 snapshots from five
independent molecular dynamics simulations. One simulation started from the native
structure and the other four from minimised conformations of the thermo-stable sub-
domain from the chicken villin headpiece consisting of 36 residues (PDB identifier
1vii). The decoy set can also be downloaded from the Decoys 'R’ us website and covers
RMSD values from 2 to 12 A. In contrast to the three test sets described above, this

set contains several near-native conformations.

2.4.3.4 CASP7 decoy set: testing model quality assessment

The CASP7 server models for all 95 accepted targets were downloaded from the
CASP Websit(H This is the same data basis used in the blind test for model quality
assessment programs which was part of CASP7. Although all quality predictions
submitted for the quality assessment category of other groups were available on the

CASP website, this data were not used here. Rather, predictions were recalculated with

dhttp://dd.compbio.washington.edu/
®http://predictioncenter.org/casp7/
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some well-established model quality assessment programs (MQAPs) downloadable from
the CAFASP4 Website@. This has the following reasons. First, many of the MQAPs
joining CASP7 have not been published yet and from the abstracts submitted it was
mostly impossible to understand how they work. Second, the top performing MQAPs
all integrated consensus information in their calculation, which is not in the scope of
this work. In consensus methods the quality of a certain model is assessed by taking
into account information contained in the ensemble of models. These methods are
unable to assess the quality of a single model (as the methods described here). Third,
the data is sometimes difficult to compare. Some MQAPs fail to predict the model

quality for many servers or have not submitted any predictions for some targets.

The following model quality assessment programs were used: FRST [@], Modcheck
], ProQ ], DFIRE @] and RAPDF ] Only server models for which
all of the five MQAPs were able to return a prediction were evaluated resulting in a
total number of 22,420 models over all 95 targets. ProQ has been executed in two
different modes either using secondary structure information (provided as a PSIPRED

prediction) or not.

The 95 targets were divided into the two categories free-modelling (FM) and template-
based modelling (TBM) as introduced in the seventh round of CAS 'E Since several
targets are multi-domain structures and the domains can sometimes be assigned to
different categories, multi-domain targets were assigned to the category of the most
difficult domain they include (i.e. a target consisting of a FM domain and a TBM
domain was assigned to the FM category). The final division is shown in Table[5.1 in
the Appendix.

2.4.4 Evaluation criteria

A variety of quality measures have been used in order to compare the performance
of the different methods. logPg; and logPpgiy are the log probabilities of selecting
the highest GDT TS model as the best model or among the ten best-scoring models,
respectively. Suppose the best scoring conformation x¢ has the GDT TS rank of R:

fhttp://www.cs.bgu.ac.il/~dfischer/CAFASP4/
ghttp://predictioncenter.org/casp7/meeting_docs/difficulty.html
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in n decoy conformations, then the log probability is given by:

R; .
logPp, = lOQlo(;) forlogPpio: R; =min[Ry,..., R (2.9)

Fraction enrichment (F.E.) is the percentage of top 10% lowest RMSD conformations
or highest GDT TS models among the top 10% best-scoring structures. In the fraction
enrichment curves variable cutoffs are used ranging from 5% to 50%. The enrichment as
defined in Tsai et al. (Ei59) is calculated by dividing the number of top 15% highest
GDT _TS models found among the top 15% best predicted models by the number
obtained in a random selection (15% * 15% * number of structures in the decoy set).
Znat 18 the Z-score of the native structure as compared to the ensemble of models.
rankl and rankl10 are the number of targets in which the native structure (or the best
model based on GDT TS, excluding the native structure) was found on the first rank
or among the Top10 predictions, respectively. GDT TS loss is the difference between
the GDT TS score of the best-scoring model and the best model in the decoy set.
Two kinds of regression coefficients have been used: Pearson’s correlation coefficient 72

and Spearman’s rank correlation coefficient rho.

Parameter optimisation for the statistical potentials (such as distance range, bin size,
resolution and interaction center) was performed on the CASP6 set. In order to
measure the ability of the statistical potential to predict the model quality, the Pearson
correlation coefficient between the predicted model energy and the measured quality in
terms of GDT TS was used. A variety of alternative implementations of the statistical
potentials were investigated and the best performing torsion angle potential, solvation

potential and pairwise potential are selected based on the correlation coefficients.

The weighting factors for the combined scoring function are evaluated by an exhaustive
search strategy over reasonable ranges for the different weighting factors. The final
combination is selected based on the maximum correlation coefficient. Several al-
ternative optimisation strategies were investigated. Pearson’s correlation coefficient vs
Spearman’s rank correlation, energy vs Z-scores compared to sequence-shuffled models.
Parameters were optimised on a target-specific basis (i.e. regressions for all models of
each target separately) or on a global basis by maximising the regression over all models

from all targets simultaneously.
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The target-specific optimisation was accomplished by averaging the Pearson’s corre-
lation coefficient over all targets provided that at least a suitable fraction (i.e. 150
models which is around 30%) have a GDT TS higher than 0.2. In this way, 12 of the
64 accepted targets of CASP6 set were excluded from the target-specific evaluation. All
but one belong to the novel fold or fold recognition category. The following targets were
excluded in the target-specific optimisation process (in brackets the number of models
with GDT TS > 20): T0202 (118), T0206 (94), T0228 (23), T0238 (129), T0242 (139),
T0248 (5), T0262 (70), T0272 (4), T0273 (88), T0197 (51), T0198 (104), T0199 (12).
This approach was used with the intent to reduce the influence of very difficult free
modelling targets in which most of the groups failed to build a reasonable model. These
targets are expected to add no value in the optimisation process. In contrast to the
Pearson correlation, the Spearman rank correlation allows to investigate a relationship
which does not have to be necessarily linear. As described in Pettitt et al. [162]| Z-
scores were built comparing the score of the model with the scores of models after

sequence shuffling (1000 times in this work).

2.4.4.1 Statistical significance

In the target-specific assessment, the performance of the methods is evaluated by
averaging the results over all targets using a variety of evaluation criteria. The
difference in the performance of two methods on the individual targets is investigated
using Student’s t-test on paired samples. For the quality measures used in this work, a
Shapiro-Wilk test (using the Gnu R package) was used in order to analyse whether the
scores are approximately normally distributed which is a prerequisite for the t-test. For
five of the quality measures (Pearson correlation coefficient, Spearman rank correlation
coefficient, the two enrichment measures and Znat) the analysis confirmed that the vast
majority of the data sets can be regarded as normally distributed (p-value > 0.05). In
a related work M], which was part of the assessment of model quality in CASP4, it
has been shown that Student’s t-test and the Wilcox signed rank test (which does not

rely on a normal distribution of the data) reached the same conclusions.

In Student’s t-test, the two-sided upper and lower confidence limits are given by the

following equiation:
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where D is the average performance difference of the two methods on the targets

(2.10)

investigated and S the standard deviation. t..;;(n — 1, ¢) is the critical value from the
t-distribution, df is the degrees of freedom which is equal to the number of targets
minus 1 and c is the confidence level which is 1 minus the significance o. A confidence
level of 95% was used in the two-tailed t-test. A schematic representation is given in
Figure [2.6.
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Figure 2.6: Two-tailed t-test on the 95% confidence level.

The null hypothesis states that the two methods perform equally good on the set of
targets based on the given evaluation criteria. This hypothesis is rejected according
to the Student’s t-test if either the upper confidence limit p, is below zero or the or
the lower confidence limit ; is positive. In this case one method performs significantly
better than the other.

2.4.5 Local model quality assessment

In comparison to the approach used to analyse the quality of entire models, the scoring
function for loop ranking and for local model quality assessment has been especially
adapted by using a more short-range implementation of the interaction potential and
by using all-atom instead of residue-level solvation and interaction potentials in order

to capture more details.
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Table 2.5: Differences in the implementation of the local and global energy function.

scoring function term | parameter local global
interaction potential range 2-10 A 3-25 A
bin size 0.5 A 1A

number of atom types | 167 (all-atom) | 1 (Cj)

solvation potential radius of sphere 6 A 9 A
number of atom types | 167 (all-atom) | 1 (CS)

torsion angle potential # of residues 3 3

As it can be seen from Table 2.4.5 only contacts within 10 A are captured in order
to assess to interactions with the structural environment. For the task of assessing
the quality of entire models (see Chapter ??) best results are obtained if “interactions”
between the C§ atoms separated up to 25 A are taken into account. In analogy, a
more short-range and fine-grained implementation (compared to the model quality

assessment case) has been used for the solvation potential.

The difference in the implementation of the global and the local scoring function can
be attributed to the difference of the problems they investigate. In model quality
assessment sometimes very rough models are investigated (e.g. models from ab initio
structure prediction or fold recognition) and therefore a coarse-grained implementation
(i.e. a bin size of 1 A and a residue-level interaction potentials) seems to be more
appropriate. Since only C(G atoms are used, longer atomic distances have to be
considered in order to capture all direct interactions (e.g. of two long sidechains
pointing toward each other). Furthermore, a global scoring function attempts to
assess the fitness of every residue in the sequence to the fold provided by the model.
Therefore a pairwise long-range statistical potential should describe not only direct
interactions to surrounding atoms but to some extent also “mediated interaction” to
atoms being further away in space. In other word, typical distances between pairs of
atoms observed in frequently occurring, structurally conserved folds or supersecondary
structure elements are likely to influence the energy function and this signal seems to
be useful for assessing the quality of models. On the other hand, local energy functions,
should only take into account close, direct contacts and therefore the potentials were

restricted on short-range interactions.
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For the prediction the local model quality, the energy of each residue is calculated
using the three statistical potentials described above. In order to smooth the energy
profile not only the central residue but also neighbouring residues in a sliding window
are taken into account. Different window sizes have been investigated ranging from
1 (i.e. only the central amino acid) to 11 (i.e five residues on both sides). For the
anchor group prediction task in which it is tried to identify the region where the
target structure begins to differ from the structure of the template, also asymmetric
sliding windows have been investigated. (E.g. for the identification of the N-terminal
anchor groups, the sliding window covers the central residue and some residues in N-
terminal direction (away from the location of the gap). If the sliding window contains
structurally undefined positions, the following workaround is used. For gaps (i.e.
insertions) the average energy of the preceding and the following residue is used and

at the chain end the energy of the last residue is taken.

A simple strategy was used in order to combine the three statistical potential terms
in a final score. For each of the three terms, the local energies are normalised by
calculating Z-scores over the entire model. A combined local score is then built by
summing up the three Z-scores for each position in the model. The Z-scores are built
in order to cope with the different magnitudes of the three terms and to allow a
combination with other features such as sequence conservation, secondary structure
content, hydrophobicity etc. It should be mentioned here that this approach only
represents a first approximation and that more advanced strategies (e.g. machine
learning algorithms) should be used in order to optimise the combination of the terms.
A comprehensive test set should be used for the evaluation which was not in the scope
of this work. The aim was to investigate whether the statistical potentials developed
for the quality assessment of entire models and for loops ranking can be used for the

analysis of the local model accuracy.
2.4.6 Analysis of gaps and the location of anchor groups
A non-redundant set of homologous pairs of proteins from the HOMSTRAD database

@] is used for the analysis of the distribution of gap lengths (i.e. the size of

insertions and deletions) occuring in typical modelling situations. A filtered test set of
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insertions and deletions (see below) has been built in order to investigate the structural
environment on both sides of the gaps for the location of suitable anchor groups and
several approaches for the prediction of anchor groups based on the analysis of the

local model energy are described.

2.4.6.1 HOMSTRAD test set

HOMSTRAD (HOMologous STRucture Alignment Database) ] is a curated
database storing structural alignments of members of the same homologous protein
family. The version from May 2007 containing 1032 protein families was used in order
to generate a non-redundant set of pairs of homologous proteins representing realistic
modelling situations (i.e. target-template pairs with a maximum sequence identity of
40%). A similar procedure has been used in our lab in the past in order to build a test
set for anchor group evaluation @, ] Beside other reasons (e.g. high sequence
cutoff of 50%, presence of very fragmented alignments, no information about resolution
of the proteins and chain identifier), this test set was not used here because it is based
on the PDB release 8/96. Since then, the size of the PDB has grown by roughly a
factor 10 whereas the number of different SCOP superfamilies @] increased by about

a factor 4 (information from the PDB Websitﬂ). The following quality filters were
applied in order to build the test set:

e Only families containing exactly 2 members are used (alignments of families with
more members are based on multiple structural alignments, which often differ

from the pairwise ones).

e A maximum pairwise sequence identity of 40% is used, representing a realistic

modelling situation.
e Both sequences need to be at least 80 residues long.
e Both structures need to be resolved by a resolution < 3.0 A.

e Only structures determined by X-ray crystallography are used.

"http://www.rcsb.org/pdb/static.do?p=general_information/pdb_statistics/index.html&
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This resulted in a final non-redundant set of 257 homologous pair of proteins superim-
posed on each other. Based on the structure-based sequence alignment all gaps (i.e.
insertions and deletions) are identified. In order to build a realistic test set (called
“anchor group test set” in the following) for the analysis of the structural consequences
of insertions and deletion as well as for the analysis of the location of suitable anchor

groups, the following rules are applied:

e Gaps close to the chain ends (15 residues apart) are not used since in this case one
of the anchors is missing (i.e. can most probably not be placed in a structurally

conserved region.

e In order to investigate the structural effect of a single gap, no further gap within
10 residues along the sequence is allowed. In the modelling case, two close

(separated by a few residues) gaps would be merged to a single (longer) gap.
e Gaps within secondary structure elements are not considered.

e Only gaps in loop regions having secondary structure elements within 10 residues
on both sides are taken into account. This reflects a typical loop modelling
situation. Usually predictors place the anchor groups close to the ends of the
secondary structure elements. The following definition for secondary structure
elements is used for the anchor group test set: helix consist of at least 2 residues
in helix conformation (according to DSSP) and strands need to have a minimal

length of 3 residues.

e The region should be identified where target and template structure begin to
differ. Therefore, at least three consecutive residue pairs with backbone RMSD
d@w 1.8 A need to be present on both sides (in analogy to Lessel und Schomburg
121)).

e Only gaps smaller than 5 residues are included in the final test set. Approxi-
mately three-quarter of the insertions and deletions occuring in typical modelling

sutuations are below 5 residues (see Results and discussion on page [156).

The final anchor group test set contains 105 insertions and 124 deletions.
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2.4.6.2 Anchor group prediction

Based on the anchor group test set described above, the regions on both sides of the
gaps (i.e. 10 residues in N- and C-terminal direction) are analysed concerning the
location of suitable anchor groups. The following set of simple rules has been used for
the prediction of the anchor groups and the RMSD between target and template at

the given positions as well as the resulting gap length are derived:

e fix distance (1-4 residues) from gap on both sides.

e fix depth in the surrounding secondary structure element (1-3 residues inside the
SSE),

e as reference for the “optimal” anchor groups, the location of minimal RMSD
between target and template is used as well as the first position (starting from
the gap) where the RMSD drops below 2 Aor1s A, respectively.

The anchor group prediction based on these simple criteria is compared to a prediction
which takes into account the local model energy around the gaps. For this purpose,
raw models are generated based all alignment used in the anchor group test set (i.e.
by replacing the sidechains and by removing residues in the case of deletions). Several
possible approaches for the prediction of optimal anchor groups based on the inspection

of the local energy profile are investigated (see Results and Discussion, Chapter .

In order to analyse the correlation between local structural deviation (between target
and template) and local energy of the raw model, the S-score has been used as in
é, @, @, @] In contrast to the RMSD, the S-score

has an upper limit for the contribution of individual atoms. This makes sense in the

several related publications |6

given application, since two residues with an 5 A are as inaccurate as a pair being 10 A

apart.

The S-score is given by the following formula:

S —score = ———— (2.11)
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where d; is the distance between two atoms (here the Ca atoms) and dj is the distance
threshold which has been set to v/5 as in the other approaches. The S-score ranges

from 1 (for a perfect agreement between target and template) to 0 (infinite distance).
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2.5 Implementation
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Figure 2.7: Most important C++ classes of the modelling pipeline.

The modelling pipeline presented in this work has been implemented in C++. The

most important classes and their interconnections are shown schematicaly in Figure

2.7,

The central class Model combines an instance of the classes Alignment and Structure
and is connected to the loop modelling class LoopPrediction. At any time of the
modelling process Model ensures the correct mapping of amino acid positions in the
alignment, the structure of the template and the resulting model and guides the initial
model building process based on the given template structure and the alignment (i.e.

the mapping of the target sequence on the template backbone).

The actual changes of the template structure in the modelling process are performed
solely in the class Structure. These changes include: mutations (change the identity of

a residue and remove its sidechain), protection of residues (mark residues such that their
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conformation is not changed in the sidechain building routine), deletion and insertion
of residues in the template structure, sidechain modelling (using SCWRL ]), etc.

The class Structure itself inherits from StructureBase which is responsible for loading
and saving PDB-files, for the correct assignment of properties such as torsion angles,
secondary structure and solvent accessibility information from DSSP ] It provides

]. The

selection of atoms within a sphere is used in the derivation and application of the

methods for the selection of atoms using the CCP4 Coordinate Library

pairwise statistical potential and the solvation potential as well as in the clash check
routine in loop modelling. As compared to StructureBase, the class Structure
additionally contains all methods for the energy calculation of single residues, segments
(as needed in loop prediction) and whole structures based on the statistical potentials

described in this work.

The class Training is used to derive the frequencies of structural features from a set of
protein structures and converts them in potentials of mean force as described in Chapter
2.4.1. The data is stored in text files. All classes using the statistical potentials need
to include the class Potentials which loads the data from the text files and stores

them in internal datatyps.

The class LoopPrediction contains the loop modelling routine with an interface to the
fragment database using the MySQL C—APIH based on the mysqlclient library. The
Fragmentor class performs the fragmentation of a given non-redundant set of protein
structures and the storage of the data in the MySQL database. The fragmentation
process is described in Chapter[2.3.1

The class Superposition allows to superimpose two structures either in a sequence-
dependent manner by parsing the output of the program TMscore [247] or in a
sequence-independent manner by using the algorithm of Lessel and Schomburg [121].
In both cases, the distances of the corresponding residues is calculated. For the later

approach, additionally a web server with the name Protein3Dfit has been implementedﬁ
Multiple main-files have been implemented resulting in different executables which

provide access to different functionalities of the modelling pipeline such as modelling

"http://dev.mysql.com/doc/refman/5.1/en/c.html
Jhttp://www.protein3dfit.uni-koeln.de
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as a whole, loop prediction and model quality assessment (global or local). In all cases,

the “-h” option displays an overview on the functionality of the given executable.

The modelling pipeline itself requires an alignment and a template structure as input
(optionally an output directory and the path to the secondary structure and solvent
accessibility prediction files can be provided). After execution, the user is guided
through the modelling process in an interactive manner. The initial modelling steps
(template detection and alignment building) are performed with separate Python and

Perl scripts.



3 Results and Discussion

The Results and Discussion chapter is structured as follows: In the first section,
the results from CASP7 experiment are used as a basis to analyse and discuss the
performance of the modelling pipeline established in this work. The section starts
with a brief recapitulation of the steps involved in homology modelling. In the next
section (page(108ff), the scoring function used for model quality assessment is described
in detail since the two subsequent sections both rely on the energy function terms
introduced there. Afterwards, the general performance of the loop prediction routine
is investigated and compared to several other loop prediction methods (page [135ff).
The last section deals with the local analysis of model quality and a statistical analysis
of the regions around gaps serving as potential anchor groups for the loop modelling

process is presented (page [153ff).

3.1 CASPT results

3.1.1 The comparative modelling pipeline

The basic steps in homology modelling or comparative modelling are template identifi-
cation and selection, target-template alignment and model building including loop and
side chain prediction. A schematic representation of a typical comparative modelling
workflow is given in Figure 2.1/ at the beginning of the Methods. Usually multiple
models are built from which the final model is selected using some kind of energy or
scoring function (typically called model quality assessment program). In an optional
refinement step it can be tried to remove local errors in the model in order to come

closer to the target.

The modelling pipeline as well as an early version of the QMEAN scoring function
M] for model quality assessement (see Chapter [3.2) have been recently tested at the
seventh round of community-wide CASP experiment. The goal of CASP is to objectivly

assess the abilities and weaknesses of current protein structure prediction methods (see
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Introduction on page (19 for more details).

This section starts with the description of the overall performance of the pipeline at
CASPT7 followed by a detailed analysis of the results. Since an extensive evaluation of
the performance of the first 3 steps in the modelling pipeline (i.e. template identifi-
cation, target-template alignment and model building) would go beyond the scope of
this work, the performance of the methods is discussed on the basis of some selected
examples. The results are chosen in the attempt to highlight strengths and limitations

of the methods used in the pipeline and to discuss possible future improvements.

3.1.2 Overview on the results

The CASP experiment was used as a testing ground for the pipeline established during
the first two years of this project. Setting up a complete comparative modelling pipeline
was a basic prerequisite for dealing with loop prediction and model quality assessment.
Since we joined CASP for the first time, our primary intention was to investigate
whether it is possible to build reasonable models with the pipeline and whether the
scoring function is able to disciminate between good and bad models in the task of
model quality assessment. The results exceeded all our expectations: several top
ranking models have been built (rank 2, 4 and 6 of over 130 predictions) and the scoring
function was among the top-ranking model quality assessment programs , ] The

results are accessible from the official CASP website?.

During the prediction season of approximately 3 months, the participating groups could
submit up to 5 models for each of the 95 accepted targets. The predictors themselves
rank the 5 models according to their belief which model is closest to the target structure
(denoted as model 1). Our group (i.e. the author of this work) submitted a total
number of 68 models to the tertiary structure prediction category and 65 predictions
to the model quality assessment category. Due to the limitations in time and resources
not more than 18 targets could be processed. Table 3.1 provides an overview on the
ranking of all 18 models designated as model 1 (i.e. the model assumed to be closest

to native).

8http://predictioncenter.org/casp7/
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Table 3.1: Overview on the CASPT results of the 18 models designated as model 1.

model quality fraction comment

top10 models 3of 18 rank 2, 4 and 6 of over 130 participating groups
above average 11 of 18 above the community average at CASP7
below average 4 of 18  bad performance because too few residues modelled

If a target consists of more than one domain, the assessors additionally analysed the
quality of each domain (denoted with subscript D1 and D2 in the first column of Table
. The quality of most of the predicted models was above the community average
and three of them were among the top 10 predictions for model 1. The best models
were on rank 2, 4 and 8 of more than 130 participating groups. The bad results for
the remaining 4 models can be attributed to the low target coverage of these models
(i.e. not the full target has been modelled). In the CASP assessment, the models are
ranked according to the GDT TS score (see definition on page [62), which reflects
the average percentage of residues alignable below different distance thresholds. As
a consequence, models which do not cover the entire target sequence automatically
get a lower score, since the missing residues are counted as “not alignable”. The 4
bad models mentioned above all have some residues missing at the chain ends (target
coverage 87.1% to 98.5%). A closer inspection of the models revealed that two of these
models were actually very good in terms of all-atom RMSD (rank 14 and 21). A more
detailed analysis follows in Chapter [3.1.5 with a ranking based on the all-atom RMSD
for all 18 targets (see Table [3.4). At the beginning of the CASP7 prediction season,
our pipeline was not yet able to model chain ends. At a later point of time (for models
after target T0345), a modified version of the loop modelling protocol was used in order

to model chain ends.

As it can be seen from Table[3.2, the 18 targets for which models have been submitted
cover a wide range of modelling difficulty as expressed by the sequence identity between
the target sequence and the template used to build the model. Two of the three easy
modelling cases with sequence identity above 50% could be modelled with all-atom
RMSD around 1.5 A. The three outstanding predictions mentioned above (targets
T0341 [domain 1], T0373 and T0379) are highlighted in bold and represent difficult
modelling targets with a sequence identity around 20%. The results for these three

targets are discussed in detail later. The last two columns in Table[3.2 show the ranking
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of the best model (out of the maximum five models submitted per target) compared to
all models of all predictors. As it can be seen, the best models are consistently better

than average over all targets.

Table 3.2: Detailed analysis if the quality of the models submitted to CASP7.
Target %;a” GDT_TS RMSD’ %con® ranki® %ovank  ranke®  Yorank

T0303 21.8 73.89 34 100 21/128 16.41 35/482  7.26
T0303p1 83.84 2.45 100 18/128 14.06 41/482  8.51
70303 p2 72.4 4.1 100 31/128 24.22 43/482  8.92
T0334 35 89.97 2.89 99.8 55/131 41.98 195/488  39.96
T0340 58.7 90.85 1.53 96 101/145 69.66 244/541  45.1
T0341 22.8 73.31 2.99 95 34/133 25.56 112/508 22.05
T0341pq 78.38 2.25 92.6 66/133 49.62 237/508 46.65
T0341po 81.97 3.35 100 6/133 4.51 28/508 5.51
T0345 62.2 94.19 1.58 98.4 81/131 61.83 231/483 47.83
T0359 38.1 82.78 3.09 97.8 51/145 35.17 156/543 28.73
T0360 16.3 67.01 5.77 100 29/136  21.32 89/502 17.73
T0362 21.2 72.4 4.05 94.4 80/139 57.55 114/534 21.35
T0364 16.7 68.37 3.26 87.1 72/137 52.55 197/528 37.31
TO0370 20.1 63.88 3.7 88.2 45/131  34.35 103/514  20.04
T0371 25.5 59.1 3.98 93.6 62/130 47.69 214/511 41.88
T0371p1 72.69 2.99 88.9 67/130 51.54 236/511 46.18
T0371p2 66.73 3.58 100 29/130 22.31 84/511 16.44
T0373 19.7 68.58 3.84 100 2/138 1.45 13/525 2.48
T0374 22.5 66.56 4.18 96.2 39/144  27.08 112/547 20.48
TO0375 17.2 62.25 4.31 97 41/134  30.6  133/515 25.83
TO0376 24.3 67.16 3.79 99 53/131 40.46 173/522 33.14
T0379 20.2 68.01 4.18 100 4/135 2.96 18/516 3.49
T0379p1 78.22 3.35 100 4/135  2.96 13/516  2.52
T0379p2 66.41 4.6 100 32/135  23.7 85/516  16.47
T0380 24.8 73.77 3.07 95.8 58/138  42.03 97/535 18.13
T0384 18.2 64.53 4.46 98.7 49/135 36.3  171/524 32.63

%Percent sequence identity between target and template.

b All-atom root mean square deviation.

“Fraction of target residues present in the model.

IRank of model 1 among all other models designated as model 1.

®Rank of the best model (of maximum 5 submitted) among all models from all groups.

As mentioned in the beginning, the CASP experiment was used as a testing ground in
order to identify bottlenecks in the prediction pipeline and to compare the performance
with other methods. Even during the CASP prediction season the pipeline was
constantly improved and new features were added (e.g. the ability to model chain

ends where only one anchor group is present). This, in fact, complicates the evaluation
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process but enormously pushed the whole project. The main purpose of the following
sections is to highlight what went right in the different modelling steps and where is
room for improvement. The lessons learnt during CASP and after CASP, when the

evaluation of the assessors was available, will be addressed in detail.

3.1.3 Template identification

As described in Methods (see section 2.1.2), templates are identified using the PDB-
BLAST protocol which uses a sequence profile (generated by PSI-BLAST) representing
the protein family of the target protein in order to scan the PDB for possible templates.

In Figure an extract of the PSI-BLAST output (first 10 hits) for the CASP7
target T0288 is shown as an example. The query sequence, a protein involved in

signaling, consists of 93 amino acids and represents a target of the Structural Genomics

Consortium.
Score E
Sequences producing significant alignments: (bits) Value
1Z87A 263 NMR NA NA NA Alpha-l-syntrophin <SWS SNAl MOUSE> [MUS ... 95 le-20
1UM7A 113 NMR NA NA NA synapse-associated protein 102 <GB BAA865... 92 Te-20
1Q0AVA 90 XRAY 1.90 0.208 0.259 ALPHA-1 SYNTROPHIN (RESIDUES 77-1... 88 le-18
2FNEA 117 XRAY 1.83 0.194 0.243 Multiple PDZ domain protein <SWS... 88 le-18
2FNEB 117 XRAY 1.83 0.194 0.243 Multiple PDZ domain protein <SWS... 88 le-18
2FNEC 117 XRAY 1.83 0.194 0.243 Multiple PDZ domain protein <SWS... 88 le-18
1TP3A 119 XRAY 1.99 0.233 0.296 Presynaptic density protein 95 <... 88 2e-18
1TP5A 119 XRAY 1.54 0.193 0.229 Presynaptic density protein 95 <... 88 2e-18
1ITQ3A 119 XRAY 1.89 0.238 0.296 Presynaptic density protein 95 <... 88 2e-18
1BE9A 119 XRAY 1.82 NA NA PSD-95 <SWS DLG4 RAT> [RATTUS NORVEGICUS] 87 3e-18

Figure 3.1: Extract of the PSI-BLAST output for target T0288 of CASP7.

The output is structured as follows (from left to right): PDB idenitfier including chain
identifier, number of amino acids, experimental method (NMR spectroscopy or X-RAY
crystallography), resolution, R value, R free value, description of the protein and finally

bit score and E-value.

In order to decide which template(s) to choose, the E-value, reflecting the reliability of
the hit, is the most valuable criteria. Since BLAST H] (Basic Local Alignment Search
Tool), as the name suggests, only produces local alignments or matches, the coverage

of the target by the selected template has to be checked. Templates with low E-value
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but covering only a short fraction of the target are of little practical value (at least as a
single template, but possibly in combination with others). In the presence of a variety
of possible candidates, the quality of the template structure should be investigated by
analysing resolution, R value and unresolved residues in the structure (see description
of experimental methods in the Introduction on page[13). In our pipeline, 3-5 template

structures are manually selected based on the criteria described above.

For many template-based modelling targets from CASP7, a simple BLAST search
against the database of sequences from PDB structures is sufficient to detect suitable
templates. But in some cases, BLAST is not sensitive enough to detect the homology
as show exemplarily for target T0360 (141 amino acids). In Figure [3.2 the more or
less random hits (E-value ~ 1) identified by BLAST cannot be used as templates. An
inspection of the corresponding alignment reveals that only approximately one-third

of the query sequence are covered.

Score E
Sequences producing significant alignments: (bits) Value
2GLFD 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida... 29 0.99
2GLFC 450 XRAY 2.80 0.168 0.239 Probable Ml8-family aminopeptida... 29 0.99
2GLFB 450 XRAY 2.80 0.168 0.239 Probable M18-family aminopeptida... 29 0.99
2GLFA 450 XRAY 2.80 0.168 0.239 Probable Ml8-family aminopeptida... 29 0.99
Query: 12 KSAVQTMSKKKQTEMIA----DHIYGKYDVFKRFKPLALGIDQDLIAALPQYD 60
K AV+T K EM D + G+ +V F P +G+D+ LI A QD

Sbjct: 198 KEAVKTNVLKILNEMYGITEEDFVSGEIEVVPAFSPREVGMDRSLIGAYGQDD 250

Figure 3.2: Hits identified by a simple BLAST search for target T0360.

PDB-BLAST on the other hand identifies one temnplate with a reasonably good E-
value for target T0360 which covers the whole target (Figure3.3).

Score E
Sequences producing significant alignments: fbitzs) Value
lovoa 162 KRAY 2.00 0,197 0.224 FERTILITY IMNHIBITICW PROTEIN O <... 78 2e-15
1APYR 141 XKRAY 2.00 0.1658 0.224 ASPARTYLGLUCOSAMIMNIDASE <5WS ASF... 27 4.2
1AFYD 141 XRAY 2.00 0,165 0,224 ASPARTYLGLUCOSAMINIDASE <SW3 ASP... 27 4.2
1APZE 141 KRAY 2.30 0.212 0.291 ASPARTYLGLUCOSAMIMNIDASE <5WS ASF... 27 4.2
1AFPZD 141 XRAY 2.30 0.212 0,291 ASPARTYLGLUCCSAMINIDASE <SWS ASP... 27 4.2
lz2Ma 259 KRAY 1.80 0.171 0.231 putative decxyribenuclease yijv ... 26 7.8

Figure 3.3: Hits identified by a PSI-BLAST search for target T0360.
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According to the evaluation of the CASP assessors (see Figure [3.4), the template
identified by PDB-BLAST (1dvo) turned out to be the best available template (i.e.
the template closest to the target as expressed by RMSD and LGA-score). LGA
(Local/Global Alignment) is a standard tool in the CASP assessment and analyses the
local and global structural similarity between two structures. Based on the structural
superposition, the distance of the corresponding residues (according to the sequence)
in target and model are analysed and defined as correctly aligned if they meet a
certain distance threshold (here: Ca-distance below 5 A). The LGA-score reflects the

percentage of alignable residues among those of the whole target.

As it can be seen from Table (3.3, in at least 4 cases BLAST could not detect a suitable
template for building a model. For the 3 targets marked with yes in brackets, the
template could be identified but only with an E-value > 1073,

The PDB-BLAST protocol not only identifies more templates as compared to a simple
BLAST but also identifies them with a clearly lower E-values. With PDB-BLAST,
the “real" templates get considerably lower E-values than the apparently random hits
whereas this is often not the case for BALST.

For hard template-based modelling targets (i.e. when only very remote homologous
templates or only analogues are available), profile-to-sequence based homology de-
tection methods such as PDB-BLAST reach their limitation. In this case, more

sensitive profile-profile or HMM-HMM search methods have to be applied. Threading

Template - Target CA-CA deviation
(10 best templates)

# Template °? 10 20 k| 40 50 &0 70 8o ] 100 ne LGA_S RMSD
1 1dvo_A 1 11 I [ 10 | | 7e07 204
2 Toiu_A H i I i1m 4279 255
3 Ybog_A im 1IN IININIENE BN IN§ 1 . I w4184 2.96
4 i [ IINEIEE I EEEEE 1IN B rEm s 287
5 Yoom [ B | N N . | 0 B41.25 286
6 Tuz2_A | HIl I I 1 . [ ] 41.01 267
7 Toid 1 . HNEE I EI 1} 1 Hn 1 0.24 267
B Taup_# | HEE 11 H . N1 . IR W 4000 2.68
9 Tuz3 1 . HI Nl EN L 1 9.73 2.62
10Twa! | | 1 m 1 Il bl HEE 373 278

cos sz

Figure 3.4: Coverage of the target T0360 by the top 10 templates @]
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Table 3.3: Template detectability by a simple BLAST run among the 18 processed

targets.
target % sequence identity BLAST detectable®
T0303 21.8 yes
T0334 55.0 yes
T0340 58.7 yes
T0341 22.8 yes
T0345 62.2 yes
T0359 38.1 yes
T0360 16.3 no
T0362 21.2 (ves)
T0364 16.7 no
T0370 20.1 no
T0371 25.5 yes
T0373 19.7 (yes)
T0374 22.5 no
T0375 17.2 (ves)
T0376 24.3 yes
T0379 20.2 yes
T0380 24.8 yes
T0384 18.2 yes

®(yes): Only templates with E-value > 10~3 are detected.

algorithms, asseessing the compatibility of the sequence to folds in a fold library, can
be used in order to detect possible analogous folds in the absence of homology (see

section “fold recognition” in the Introduction on page 20).

If no significant hits can be identified with PDB-BLAST, fold recognition servers
such as HHPRE[ﬁ dQT)él] or 3D—PSSMM leO] can be consulted. The probably best
starting point is the BiolnfoBank meta server@ which provides access to various fold
recognition servers and translates the collected information (i.e. identified templates

and corresponding alignments) into a uniform format.

As advanced template detection methods require a lot of time and resources, a

hierarchical approach for template detection is advisable, especially for automatic

Phttp://toolkit.tuebingen.mpg.de/hhpred
‘http://www.sbg.bio.ic.ac.uk/~3dpssm/
dhttp://meta.bioinfo.pl
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Servers:

e first try BLAST (sequence-to-sequence). If no suitable template has been

identified, use
e PDB-BLAST (profile-to-sequence),

e otherwise, use advanced fold recognition methods (profile-profile and HMM-
HMM, respectively)

It should be noted here that especially in the presence of very remote homologues, the
coverage of the target sequence with respect to the template structure is usually very
low which makes it difficult to build a reasonable model based on a single template. In

this case, the combination of multiple templates potentially leads to better models.

Although being the second best model submitted to CASP7, our model 1 for target
T0373 could have been further improved by combining two templates. The top scoring
model has been built based on template 1s3j A (i.e. PDB identifier 1s3j, chain A) and
shows a very good overall quality except for the N-terminus as shown in Figure
a). The thick tube represents the native structure of the target and the thin tube the
model. The regions colored in green mark corresponding residues in target and model
which are below a certain distance threshold (here: Ca-distance below 5 A). The
other regions are either incorrect because of alignment errors or incorrect modelling.

Alignment errors are discussed in the next section.

Figure[3.5 b) shows our second best model which has been built with template 1jgs A.
The model covers perfectly the N-terminal chain end which could not be accurately
modelled with the first template. It becomes apparent, that a combination of both

templates could lead to a considerably better model covering both chain ends perfectly.

In a future version of the modelling pipeline, the ability to use information from
multiple templates for one model should be implemented. Due to the object-oriented
implementation of the software, this can be done with minor effort. The difficulty
which then arises is to decide which region to use from which template. Since the
combination of multiple templates was not in the scope of this work, the models are
currently built based on one template which represents a reasonable approach for many

targets.
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a) template 1s3j b) template 1jgs

C-terminus

N-terminus

Figure 3.5: Two models for T0373 built based on different templates illustrating
the potentials improvement possible by combining multiple templates M]

3.1.4 Target-template alignment

As described in Methods (see section[2.1.3)), the alignments between the target sequence
and the template are generated with a profile-profile alignment protocol. The alignment
algorithm has been optimised as part of the project thesis of Oscar Bortolami and
showed a comparable performance in comparison to other state-of-the-art alignment
programs (data not shown). As mentioned in the Introduction, alignment errors are
still, beside loop prediction, the major source of errors in comparative modelling. In
this work, the performance of the alignment algorithm is evaluated qualitatively based
on a detailed inspection of all our models submitted to CASP7 and the corresponding
alignments. As an example, the alignment shift in target T0341 is described in more

detail in order to point out the structural consequences of alignment errors.

Analysing the alignment quality of the models submitted to CASP7 is not a trival task.
Since only the final models are submitted and not the corresponding alignments (which
would be difficult to evaluate, if multiple templates are used), the assessors “calculated”
the alignments quality indirectely by comparing the model with the corresponding

experimental structure. The following procedure was used: Target and models were
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Alignment quality strip chart as function of position in sequence
GREENY Correctly aligned residues (0 shift) according to EQY5_0
YELLOW Residues aligned within * -4 , +4 " window (4 shift) according to EQVS_4
— Residues aligned outside " -4 , +4 " window {4+ shift) according to EQV5_|
WHITE  Residues not aligned or not predicted
RMSD calculated on all N residues superimposed under 5.0 Angstrom distance cutoff
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Figure 3.6: Alignment quality strip chart for target T0375 ]

structurally superimposed in a sequence independent manner using the LGA algorithm
244]. The alignments based on the structural superposition are subsequently ranked
according to the percentage of correctly aligned residues (Ca-distance below 5 A)
among those of the whole target. Residues not present in the model are defined as not
aligned. This makes it difficult to decide based on a single quality number whether
a certain alignment scored worse because of alignment errors or just because of some
missing residues in the model. Beside alignment errors, local model errors can arise if
structurally variable regions (mainly loops) of the template have not been re-modelled
or have been modelled incorrectly, respectively. These errors cannot be distinguished

from alignment errors without knowledge of the alignment and the corresponding
templates used.

Nevertheless, the alignment quality strip charts (see Figure [3.6) as provided by the
CASP assessors are useful means in order to compare models and identify regions of
errors. Regions in the model with ‘correctly aligned residues are marked in green.
Regions colored in yellow and red highlight residues of the model which are, based on
the superposition, shifted with respect to the position in the experimental structure,

with yellow for shifts within 4 residues and red for shifts greater than 4 residues.
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Alignment errors are a consequence of miss-placed gaps, e.g. if a long gap should be
splitted into two shorter ones. As a consequence, in the region between the gaps, the
residues of the model are shifted relative to the real position in the model (i.e. the

target residues are mapped on the wrong region of the template backbone).

In the post-evaluation of the CASP models, the following procedure is used in order

to identify alignment errors:

The alignment quality strip charts are inspected in order to identify regions of

structural divergence between target and model (see Figure :

e In these regions, the alignment used to build the model is compared to a structural
alignment between target and template in order to identify possible differences

in the gap placement.

e The structural superposition of target and model is used in order to determine
those regions of the model, which are incorrect because of alignment shifts and not
as a consequence of wrong loop modelling or structural divergence between target

and template (i.e. structurally variable regions, which have not been remodelled).

e Alignment shifts appear as regions in the structural superposition where the
backbone of model and native structure coincide (i.e. this part origines from a
structurally conserved region of the template) but the corresponding sequence is

shifted (i.e. the residues closest in space in the superposition are not identical).

A detailled inspection of all our models submitted to CASP7 revealed that the
alignments are generally very accurate and worse alignment scores compared to the
other groups, can be mostly attributed to either a low target coverage (i.e. chain
ends have not been modelled) or inaccurate loop prediction (e.g. difficult long loops

which could not be modelled accurately, non-conserved loops which should have been
remodelled).

For the following targets, alignments error could be identified (in brackets the sequence
identity between target and template): T0341 (22.8%), T0364 (16.7%), T0373 (19.7%),
T0374 (22.5%), T0375 (17.2%), T0376 (24.3%). All these targets represent difficult

modelling cases as reflected by the sequence identity between target and template being
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Figure 3.7: Superposition of model and target T0341: Structural consequences of
alignment errors (yellow segment).

around 20%. In target T0375 for example, multiple alignment shift were observed in the
models of nearly all groups. The available templates show a high structual similarity
with the target such that a large fraction of the template could have been used for the
model. But, as a consequnce of the low sequence conservation, most groups failed to
accurately position the gaps resulting in multiple alignment shifts as reflected by the

yellow regions in the alignment strip chart (see Figure [3.6).

Exemplarily, the alignment shift observed in our model for target T0341 domain 2
is described here in detail. Actually, this was one of our top scoring models, which
suggests, that most of the groups as well had problems with the alignment for this
target. The alignment error consists of a misplacement of the deletions after residue
Glu-87 which caused an alignment shift of one residue for the following 16 residues

until the next gap (marked in yellow in Figure[3.7).

A comparison of the alignment used to build the model (Figure [3.8) and a structure-
based sequence alignment (Figure [3.9) between target and template generated by
CE @] reveals that two residues instead of one should have been deleted after

glutamine 87. By looking at the superposition of target and model in Figure 3.7,
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Figure 3.8: Original sequence alignment between target T0341 and template
1wvi_A. The region of the alignment error is marked with a box.

the missing deletion can be clearly identified and one can observe that the region
between the two deletions (until approximately phenylalanine 102) is structurally

highly conserved and the backbone therefore could have been copied from the template.

The structure-based sequence alignment is shorter since CE produces only local
alignments based on the maximum common substructure. The location of the other
two gaps (i.e. a deletion after residue 62 and an insertion at position 118) agree well

between the two alignments.

The sequence identity between target and template (PDB code: 1wvi) is approximately
23% which represents a rather difficult modelling task. As it can be seen from Figure
3.8, the alignment error occured in a region of extremely low sequence conservation
which makes it difficult for alignment algorithms to seperate the signal from the noise
in this region. Here, purely sequence-based alignment algorithms reach their limit

of accuracy and only algorithms integarting structural information (e.g. by the use
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Chain 1: /biochem/mirror/pdb/all/pdb2hod.ent:A (Size=259)
Chain 2: /biochem/mirror/pdb/all/pdblwvi.ent:A (Size=257)

Alignment length = 241 Rmsd = 2.11A Z-Score = 7.0 Gaps = 8(3.3%) CPU = 1ls Sequence identities
= 24.2%

Chain 1: 7 LKAVLVDLNGTLHIEDAAVPGAQEALKRLRATSVXVRFVINTTKETKKDLLERLKK-LEFEISEDEIFTS
Chain 2: 3 YKGYLIDLDGTIYKGKDRIPAGEDFVKRLQERQLPYILVTNNTTRTPEMVQEMLATSFNIKTPLETIYTA
Chain 1: 76 LTAARNLIEQHQV--RPXLLLDDRALPEF-TGVQTQD---PNAVVIGLAPEHFHYQLLNQAFRLLLDGAP
Chain 2: 73 TLATIDYMNDMKRGKTAYVIGETGLKKAVAEAGYREDSENPRYVVVGLDTN-LTYEKLTLATLAIQKGAV

Chain 1: 140 LIATIHKARYYKRKDGLALGPGPFVTALEYATDTKAXVVGKPEKTFFLEALRDADCAPEEAVXIGDDCRDD
Chain 2: 142 FIGTNPDLNIPTERGLLPGAGAILFLLEKATRVKPIIIGKPEAVIMNKALDRLGVKRHEAIMVGDNYLTD

Chain 1: 210 VDGAQNIGXLGILVKTGKYKAADEEKINPPPYLTCESFPHAV
Chain 2: 212 ITAGIKNDIATLLVTTGFTKPEEVPALPIQPDFVLSSLAEWD

Figure 3.9: Structure-based sequence alignment between target T0341 and template
Iwvi_ A produced by CE.

of predicted secondary structure and solvent accessiblity of the target sequence or

environment-specific gap penalties) can go beyond that.

A visual inspection of the alignment can help identifying potential alignment errors.
Gaps within secondary structure elements are usually an evidence for alignment errors:
In target T0379, for example, a gap has been moved out of the secondary structure
element manually which is one of the reasons (beside the accurate extension of the N-
terminal helix) of the high rank achieved by this model. The detection of alignments
error can be automated. Several approaches have been described in literature which
allow to detect reliable regions in alignmnets e.g. by analysing the variation among

different sub-optimal alignments ] or the sequence variation in the profiles [224].
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3.1.5 Modelling

In this section, an in-depth analysis of the models submitted to CASP7 is performed.
All model designated as model 1 have been evaluated and some general conclusions are
drawn concerning the “lessons learnt” at CASP7 with the attempt to highlight possible
aeras for future improvements. Some of the top-scoring models are discussed in more
detail.

In Table a summary of the performance (reflected by the rank of the model and
the rank of the corresponding alignment) of all 16 models designated as model 1 is
given. In the last colomn, explanations for the good or bad performance are provided
as keywords, since a detailed description of all models would go beyond the scope of

this work.

T0373

10

Distance Cutoff, A
5
T

0 20 40 60 B0 100

Percent of Resldues (Ch)

Figure 3.10: GDT plot for T0373: fraction of model residues superimposable with
the experimental structure using variable distance thresholds [115].

In order to visualise and compare the quality of all models of a specific target, GDT
plots (as shown in Figure 3.10) are provided on the CASP7 website which reflect the
percentage of residues from the model which fall below a certain distance cutoff after a
(sequence-dependent) superposition on the experimental structure of the target. The
lower the run of the curve the better a model provided that enough target residues
have been modelled. The GDT plots of all our models submitted to CASP7 is shown
in the appendix.



Table 3.4: Detailed analysis of the quality of the models submitted to CASP7 with comments.

Targeti %cov TGDTi TRMS.:C. Taln Comment

T0303 100 21 33 20 Good alignment; 3 loops: 2 modelled very accurately

T0303p; 100 18 13 3 Nice alignment; best available template identified

T0303p2 100 31 58 52 Bad template selection for this domain (same template for both domains)

T0334 99.8 55 95 66 Inaccurate loop prediction for 8-residue insertion (difficult)

T0340 96 101 46 112 Alignment perfect, but bad coverage (chain ends missing)

T0341 95 34 15 33 Too few residues modelled (95% modelled); alignment error

T0341p;  92.6 66 17 77 Good alignment, but bad coverage at C-term; non-conserved loop not modelled
T0341pe, 100 6 22 53 Alignment error: Wrong location of deletions in region of low sequence identity
T0345 98.4 81 21 88 Alignment good; 3 residues missing at N-terminal chain end

T0359 97.8 51 64 38 Alignment good, but only 97.8% modelled

T0360 100 29 44 28 Alignment good; bad modelling of chain ends

T0362 94.4 80 57 170 (47) Bad model selection (model 3 much better); difficult 8-residue insertion

T0364 87.1 72 14 87 Too few residues modelled (<90%); alignment error at C-terminal end

T0370 88.2 45 7 32 24-residue insertion at C-terminal end not modelled

T0371 93.6 62 10 60 Too few residues modelled in domain 1

T0371py 88.9 67 11 83 N-terminus not modelled; difficult insertion around position 220

T0371p2 100 29 28 22 Best available template used; nice alignment; 2 non-conserved loops not modelled
T0373 100 2 21 12 Good alignment; N-terminus perfect; C-terminus minor alignment shift

T0374 96.2 39 21 36 Suboptimal template selection; 2 difficult long loop regions; minor alignment error
T0375 97 41 15 83 Difficult alignment: multiple shifts; large movement of (-sheet in interface region
T0376 99 53 42 47 Minor alignment error; structurally var. helix and nonconserved loop not modelled
T0379 100 4 13 2 Alignment very good; accurate extension of N-terminal helix

T0379p1 100 4 10 3 Alignment very good; accurate extension of N-terminal helix

T0379p2 100 32 57 18 Alignment, OK

T0380 95.8 58 20 55 Alignment good, but missing residues at C-terminal chain end

T0384 98.7 49 41 63 better templates available; huge insertion difficult to model; one alignment shift

2Subscript D1 and D2 specify domain 1 and 2 in multi-domain proteins.
®Rank based on GDT _TS (total number of models ~130).
“Rank based on the all-atom RMSD between experimental structure and model.

sHNsax LdSVD 1°€

€6
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3.1.5.1 Loop prediction at CASP7

Loop prediction at CASP7 has been performed using the fragment database described
in Methods (Chapter 2.3). At the time of the prediction season, only a preliminary
version of the scoring function used for loop ranking was implemented. The loops were
ranked based on a combined scoring function consisting of a torsion energy term as
well as a solvation and pairwise interaction energy term considering only the C,, atoms.
Based on this ranking, loops have been manually selected by additionally taking into
account sequence conservation between the target loop and the fragment extracted from
the database. In the actual version of the scoring function, an all-atom implementation
of the pairwise interaction potential and the solvation potential are used. The general

performance of the current loop modelling routine is described in Chapter [3.3.

Nevertheless, in many cases, the simple scoring function was able to identify suitable
loops from the fragments database. Due to the fact that human intervention has been
used in loop modelling, a detailed evaluation of all loops in all CASP models is not
given here, but instead, the loop modelling results of two selected targets are shown here
exemplarily which clarify the strengths as well as the limitations of the loop prediction

protocol.

In our first model submitted to CASP7 (target T0303), 3 insertions had to be modelled
as it can be seen from the alignment between target and template 1ah5 A in Figure
3.11. Target and template have a sequence identity of about 23%. A comparison
between the experimental structure of the target (PDB code: 2hsz) and the final
model revealed that a nonconserved segment between Leu-195 and Pro-209 should
have been remodelled as well (see superposition of target and model in Figure[3.12). In
this nonconserved segment, two mutations involving glycine (position 199) and proline
(position 203) can be observed which is most likely the reason for the observed local

refolding.

Loop 1 (anchor group positions 55 and 74) represents a very difficult modelling case
involving a huge insertion of 11 residue. Insertions of that size can usually not be
modelled since most loop prediction programs are limited to loops of length 12 or 15
and, more importantly, the quality of loop predictions rapidly decreases with loops

longer than approximately 7 or 8 residues. The limitations are discussed in more detail
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Figure 3.11: Alignment between target T0303 and template 2ah5 A: 3 insertion
and 1 non-conserved loop.

in Chapter [3.3. Furthermore, long insertions and to some extent also deletions lead
tendentially to distorsion of the anchor region, i.e. the region on both sides of the
insertion is less structurally conserved between target and template, such that an even
longer part need to be remodelled. It has been tried to model the insertion with a
fragment of the length 20 (including anchor groups) but the prediction, as expected,
failed completely: the backbone RMSD of the loop (without anchor residues) between
experimental structure and model was 7.36 A (see Figure 3.12). But, in some cases,

long cases long fragments can be predicted rather accurately, as we will see for loop 3.

Loop 2 (anchor group positions 107 and 114) is a 6 residues loop and models a 1-
residue insertion between a helix on the N-terminal side and a beta strand on the
C-terminal side. This loop has been modelled rather accurately as reflected by the
very similar backbone geometry between model and experimental structure (Figure
3.12). The backbone RMSD of 1.82 A is acceptable for the modelling case, where the
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Loop 1: 55-74

* non-conserved
| {loop

Loop 3: 137-155 A

Loop 2: 107-114

Figure 3.12: Superposition of model (thin tube) and target T0303 (thick tube):
loop prediction [115].

anchor residues, on which the fragment is fitted, are inexact to a certain extent. In this
case both anchor residues (leucine 107 and isoleucine 114) had an RMSD of around 1

A (but they were the best anchors in this region).

Loop 3 involves modelling of an insertion of 2 amino acids as it can be seen from
the alignment shown Figure 3.11l Since we were not sure if the N-terminal beta
strand belongs to the structurally conserved region and can therefore be used from the
template, it has been decided to put the anchor group before the beta strand at leucine
137. The anchor group on the C-terminal side of the insertion was set at alanine 155
since the two mutations involving proline just before were expected to have structural
consequences. Finally, 17 residues have been remodelled with an exceptionally good
RMSD (for this loop length) of 2.37 A. This can be mainly attributed to the fact that
a fragment from a homologue of the target could be used to build the loop (i.e. the
fragment origines from a structure with 28.3% sequence identity to the target based

on the BLAST local alignment). The beta strand mentioned before was indead partly
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Leucine 107

Figure 3.13: Superposition of model (light green) and target T0303 (light blue):
loop 2 (residues 107-114).

structurally conserved, such that 5 residues less could have been remodelled, but still

a loop of 12 residues needed to be modelled.

During CASP7, the anchor groups in the loop modelling process have been defined
manually by placing them in regions on both sides of the gap which are expected to
be structurally conserved between target and model. A rather conservative approach
was used for the definition of the anchor groups leading to potentially longer fragments
to be remodelled as necessary (for a more detailed description of the approach, see
Chapter[2.2.2) in Methods. The trade-off between accuracy of the anchor groups and

lenght of the fragment to be remodelled is adressed in the next section.

Figure [3.15/ shows the very accurate prediction of a beta hairpin structure in target
T0364. The alignment shows a 2-residue insertion between two beta strands as it can

be seen in Figure[3.16

The anchor groups were placed in the conserved region (in terms of sequence
conservation) of the strands on both sides of the insertion (arginine 97 and leucine
104). The six residues have been modelled with an excellent backbone RMSD of 0.57
A. Figure(3.15 shows, that the backbone superimposes almost perfectly between target

and model and most of the sidechains point into the right direction.
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Alanine 155

Leucine 137

Figure 3.14: Superposition of model (light green) and target T0303 (light blue):
loop 3 (residues 137-155).

The loop modelling cases described above, point out general problems in comparative

modelling and loop prediction but also show some advantages of the method presented

here compared to other loop prediction programs:

e Remodelling of loop with no insertions and deletions: Loop regions

without insertions and deletions sometimes deviate substantially between tar-
get and template as a consequence of multiple amino acid substitutions (i.e.
low sequence conservation) in this region or of considerable differences in the
structural environments, e.g. the loop in the template is part of an interface
region whereas in the target not, therefore the loop can indepedently adopt its
conformation. The evaluation of the CASP7 models showed that non-conserved
loops containing mutations involving glycine and proline have to be treated with
caution and potentially need to be remodelled. The question, whether to remodel
a certain non-conserved loop or not is difficult to answer and it has to be taken
into account that loop prediction itself is only possible with a certain accuracy

depending on the loop length. Investigating the local conformational energy
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L Arginine 97

Figure 3.15: Very accurate prediction (light green) of a beta hairpin structure in
target T0364.

0 70 80 90 100 110 1
T0364 AHINYLHEVKLGTEVWVQTQILGFDRKRLHVYHSLHRAGFDEVLAASEQMLLHVDLAGPQ
1z54A LGLTFRAPARFGEVVEVRTRLAELSSRALLFRYRVER--EGVLLAEGFTRHLCQV--GER
conserv HE HE S R S HE - ixx oo *r IIX
psipred  EEHHHHHHCCCCCEEEEEEEEEECCCEEEEEEEEEEECCCCEEEEEEEEEEEEEECCCCC
dssp EEEEECCCCCCCCEEEEEEEEEEECCCEEEEEEEEEE CCEEEEEEEEEEECEE CCC

Figure 3.16: Extract of the alignment between target T0364 and the corresponding
template.

in this region can support the decision. There is still an urgent need for tools
assessing the local model quality as recently underlined in the CASP7 assessment
report of the quality assessment category [49]. Local model quality assessment,
as described in Chapter 3.4, is a step in this direction.

e Using fragments from homologues to the target: Generally, if fragments
from homologous structures to the target are present among the top scoring
fragments, these should be prefered. Fragments from homologous structures have
a higher probability to be correct since they tend to have a similar amino acid
constitution compared to the target loop and origine from a similar structural
environment. As shown in Chapter[3.3/describing the general performance of the
loop prediction routine, fragments from homologues are almost always found on

the top ranks.
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e Modelling of loop motifs: With the given method, frequently occuring

structural loop motifs are generally easier to predict than rare ones. In this case,
a variety of suitable fragments are present in the database, which increases the
chance of indentifying good candidates in the selection process. As a consequence
of the statistical nature of the scoring function used for loop ranking, frequently

occuring motifs potentially get assigned lower energies.

Features of the fragment database: The fragment database presented in
this work differs in many respects from other fragment databases described in
literature (FREAD @], LIP @], methods by Fernadez-Fuentez et al. @])
and several features of the database have shown to be advantageous in the
modelling process during CASP7. The most important advantage is the fact
that not only pure loop segments are stored in the database but all fragments
from a representative set of high-resolution proteins structures. This allows
the modelling of fragments containing secondary structure elements or parts
of them. This is often necessary if, for example as a consequence of a long
insertion, the surrounding secondary structure elements are extended or new
secondary structures are formed in the loop region. This situation can typically
not be processed with pure loop databases. Another situation in which parts of
secondary structure elements need to be remodelled is the kink observed in helices
as a consequence of proline M, ’1—30‘] Helices with mutations between target and
template involving proline can be remodelled using the fragment database. As
described in Chapter in Methods and later in Chapter 3.1.5.3 concerning
the modelling of chain ends, the MySQL database allows to specifically search for
fragments showing a certain secondary structure or sequence pattern. In the case
of the proline induced helix kink described above, the database can be specifically
scanned for fragments which contain an initial helix segment followed by some
loop residues (since the subsequent loop probably is remodelled as well) and which
have a proline residue at a given fixed position in the helix. The ability to model
not only loops but any structural segment represents an overlap to fragment
assembly methods successfully used in ab initio modelling and highlights the
potential of the given methods to be applied in areas beyond pure comparative

modelling.



3.1 CASP7T results 101

3.1.5.2 Manual anchor group prediction at CASP7

The standard approach in comparative modelling is to place the anchor groups near the
end points of the surrounding secondary structure elements of the template (typically
1-2 residues inside). At CASP7, we additionally took into account the agreement
between the calculated positions of the secondary structure elements in the template
with the potential location of the secondary structure elements in the target based on a
consensus of 3 state-of-the-art secondary structure prediction programs (see Methods
on page [39). This can provide evidence whether a secondary structure element is
possibly extended or truncated with respect to the situation in the template. The
sequence conservation between target and template in the anchor region is taken into

account as well.

During CASP7, as mentioned in the previous section, the anchor groups have been
often positioned further away from the gap as necessary resulting in longer fragments
which are more difficult to model. As it can be seen in Chapter (3.3, the loop modelling
accuracy rapidly drops for loops longer than 7 residues. At CASP7, often different
anchor group combinations have been used for loop prediction if the situation was not
clear. In most cases, this approach resulted in a set of alternatives models from which
the best ones were selected based on the predicted model energy. But in a few cases,
a selection of the anchor groups and the corresponding loop was made based on a
comparison of the loop ranking output files: if for one anchor group combination only
loops with similar scores are found on the top ranks but for the other combination a loop
with a considerably better score than the rest was found on the first rank (e.g. because
the fragment origins from a homologous structure), the later was chosen for all models.
Loops with significantly higher scores than the rest of the fragments are potentially
promising candidates. Thus, inspecting different alternative anchor groups seems to be
indeed a reasonable approach especially for knowledge-based loop prediction protocols
(see Chapter [3.4.2] for a more detailed discussion).

3.1.5.3 Modelling of chain ends

Chain ends are often highly flexible, particularly if they do not establish regular

secondary structures. But if the chain ends are not flexible, a methods is needed
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which can model these regions. Most of the existing loop prediction programs are not
able to model chain ends since they are specialised on loops. Futhermore, the majority
of knowledge-based loop prediction programs use the RMSD between the anchor group
residues and the terminal fragment residues after fitting as the main scoring function
term which cannot be used here. In this situation, only one anchor group is given and
the RMSD of all fragments after fitting will be more or less the same. In the method
described in this work, the ranking is performed based on a statistical potential scoring

function investigating the interactions with the structural environment (see Methods).

At the beginning of the CASP7 prediction season, our pipeline was not able yet to
model chain end (only loops, where two anchor groups are given). As a consequence,
most of our models show a low target coverage which strongly influenced the ranking
based on GDT _TS. As it can be seen from the overview table on page (93, missing
chain ends were the main reason why some of the models did not score better. In a
ranking based on all-atom RMSD, two third of the models designated as modell ranked
among the top 25 predictions (among approximately 130 groups).

Chain ends are modelled with an adapted version of the loop prediction routine:
fragments from the database are fitted on one anchor group which results, as a
consequence of the missing distance constraints (i.e. Calpha distance of the endpoints
and RMSD of the anchor groups), in an enormous amount of possible candidates
(actually all fragments of the given length present in the database). The following

procedure was used in order to reduce the number of possible candidates:

e The clash filter which searches for overlaping van der Waals spheres between the
fragment backbone atoms and the rest of the protein removes the majority of the

candidate fragments.

e Only a certain fraction of the fragments is retained based on the “goodness of fit”
on the anchor region (i.e. RMSD over the anchor group atoms). Three fitting
strategies have been implemented: fitting on the backbone atoms of one residue
or two residues and, alternatively, fitting on three consecutive Calpha atoms.
Fitting of more than one residue turned out to be the best strategy for this task.
If, for example, a terminal helix needs to be extended, fitting on more than one

residues increases the chance that the helix fragment has the right orientation.
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e In order to restrain the number of possible fragments in the initial selection, regu-
lar expression pattern on the sequence or on the secondary structure constitution
of the fragment can be defined. For example for the extension of a helix element,
only fragments consisting of an initial helix segment are needed. In analogy, for
example in the presence of a conserved proline, only fragments with proline at the
given position are retrieved from the database. This allows to reduce the number
of candidates by several order of magnitude and therefore greatly improves the

run time and the accuracy of the prediction.

Ranking has been performed with the same scoring functions as for loop predic-

tion.

Furthermore, comparing the sequence conservation of the top scoring fragments
(i.e. the agreement between the sequence of the segment in the target and the
sequence of the original fragment) as well as a visual inspection of the top

scoring solutions in a molecular graphics viewer such as Pymol provide additional

evidence for the final selection.

The structure prediction of the N-terminal chain end in target T0373 is described here

exemplarily. As it can be seen from the alignment extract in Figure [3.17, the target

contains an insertion with respect to the template and all three secondary structure

programs indicate that the terminal helix present in the template (last line) is most

probably extended in the target. For a detailed describtion of the single data lines,

visite Methods on page [42.

1 10 20 30 40 50 6
T0373 MPTNQDLQLAAHLRSQVTTLTRRLRREAQADPVQFSQLVVLGAIDRLGGDVTPSELAAAE
1jgsA L-FNEITPLGRLIHMVNQKKDRLLNEYLSPLDITAAQFKVLCSIRCAAC-ITPVELKKVL
conserv I % . H : x % I A HEE R :
conf 98862056£888998999998898864142688857888899987437887777898864

consensus CCCCCHHHEHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
psipred CCCCCCHHEHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH

SSpro CCCHHHHHEHHHHHHHHHHHHHHHHHHCCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
phd CCCCCHHHEHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCCCHHHHHHHH
dssp C CCCCCCEHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHCC ECHHHHHHHH

Figure 3.17: Extract of the alignment for target T0373 (N-terminal chain end).

A closer inspection of the target protein family revealed that the leucine at position
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nine was rather conserved. Therefore, the following regular expressions have been used

for the selection (the underscore stand for an arbitrary character):

regular expression for SSE: CCC__HHHHH

regular expression for the sequence: L

The restaint selection resulted in an initial set of 8764 fragments from which all loops
which a anchor group RMSD Z-score above one standard deviation are removed. The
top 10 fragments with the lowest energy are shown in Figure [3.18 The 10 fragments
show a high structural diversity although they have a comparable energy. This reflects

the uncertainities associated with modelling of chain ends.

Figure 3.18: Structural diversity among the 10 top scoring fragments for the N-
terminal chain end of T0373.

As a consequence of the correct assumption concerning the secondary structure consti-
tution of the target structure (the experimental structure indeed contains 5 additional
residues in helix conformation as compared to the template), the N-terminal chain end
of target T0373 was modelled very accurately as it can be seen from the superposition
of target and template in Figure [3.19/ and this is probably the main reason why this
model was the second best prediction at CASP7 (among the models designated as
modell).

In the absence of secondary structure elements, modelling of chain ends can be a very

difficult task because of the vast amount of possible conformations and the limited
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ability of energy functions to identify the native conformation. Since chain ends are
less constraint by the structural environment as compared to for example regions in
the structural core. Their conformations are to a greater extent determined by the
sequence itself and less by local (in sequence) and non-local structural constraints.
Therefore, fragments from the database having a similar amino acid constitution and
origin from similar environments (i.e. also chain ends) can be promising candidates.
The fragment database described in this work contains an entry for each fragment
specifing whether the fragment is part of a chain end. Additionally, information about
the solvent exposure in the original environment is stored. This information could

potentially be used in this context.

N-terminal
| chain end

Figure 3.19: Superposition of model and experimental structure of target T0373:
The N-terminal chain end has been modelled very accururately.
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3.1.5.4 Modelling of sidechains

While establishing the modelling pipeline, it has been decided to use a conservative
approach for sidechain modelling by leaving the sidechains conformation of conserved
residues (i.e. identical residues between target and template in the alignment) un-
touched and to only re-model sidechains of residues differing between target and
template and of course residues of regions which have been remodelled (i.e. loops and
chain ends). The SCWRL software [31] was used in order to calculate the sidechain
conformations. This turned out to be a good strategy: “Group 191 (Schomburg-group)
has the best results for rotamer accuracy, but it should be noted that this group
only submitted predictions for 6 of the 28 target domains” @] Figure shows
a comparison of the sidechain accuracy of the top performing groups in the category
high-accuracy template-based modelling (HA-TBM). The fraction of sidechains (x;
angle in Figure a), x; and x» in Figure b)) modelled within 30 degree from the native
conformation have been investigated and Z-scores over all groups are calculated in

order to compare the performance.
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Figure 3.20: Accuracy of sidechain modelling (Z-scores) of sidechain torsion angle
chi-1 (a) and over chi-1 and chi-2 (b) (Schomburg-group: TS191) ]

The targets of the high-accuracy template-based modelling (HA-TBM) category are

defined in the following manner:

e A suitable template was present in the PDB with LGA-S > 80 (LGA-S is a

sequence-idependent measure of structural similarity).
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e At least one prediction with GDT _TD > 80 was submitted to CASP7.

e A total number of 24 HA-TBM targets were evaluated.

As mentioned above, only 6 of the total 28 HA-TBM domains have been processed
which should be taken into account when comparing the performance with other groups.
Nevertheless, since we did not just pick the easiest targets from the 24 possible one
but could not solve all of them due to time constraints, the picture would be more or
less the same. Beside the fact that SCWRL did a very good job, the decision to only
remodel sidechains of non-conserved residues seems to be the crucial factor since the
majority of the groups most probably used SCWRL as well. Using as much information
of the templates as possible is indeed one of the lessons which has been learnt during
the last CASP rounds. Currently, still no group is able to consistently produce models
better than the best template although there are an increasing number of cases where

improvement over the templates are shown [49].
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3.2 Model quality assessment

Assessing the quality of model is a vital step in protein structure prediction as pointed
out in the Introduction (see Chapter [1.2.4). Depending on the method and on the
modelling difficulty, usually a certain amount of alternative models is generated ranging
from a few alternative models (e.g. in comparative modelling) up to thousands or ten
thousands of models (e.g. for ab initio methods based on fragment assembly in this
context). A scoring function (typically called model quality assessment program) is
needed which is able to discriminate between good and bad models and can potentially
select the best model.

As a part of the modelling pipeline described above, a composite scoring function
based on 3 statistical potential terms as well as two other terms has been developed
@] The scoring function was named QMEAN which stands for Qualitative Model
Energy ANanlysis. An early version of QMEAN was used at the CASP7 experiment
in order to rank our own models and to identify the best models for submission.
Additionally, we participated in the quality assessment category [49] which was newly
introduced in CASP7 in order to test the performance model quality programs. The
predictors were asked to estimate the quality of all models predicted by automatic
servers. Motivated by the good results (we were among the top scoring methods solely
relying on the coordinates of a single model), we decided to further extend and optimise
the scoring function. The performance of the optimised scoring function (i.e. QMEAN)

are described in the following.

The section is structured as follows: First, the results of the optimisation of the
different statistical potentials terms is presented. Afterwards, it is descibed how the
terms are combined in order to build the final composite scoring function QMEAN.
In the subsequent section, QMEAN is compared to five well-established model quality
assessment programs using several comprehensive test sets. The section ends with
a concluding discussion of the results obtained on the different test sets and with a

description of areas of possible future improvements.
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3.2.1 Optimisation of the statistical potentials

All statistical potentials were extracted from a non-redundant protein data set of 1,471
high-resolution structures from the Protein Data Bank (PDB) ] The selection of
the structures was performed with the PISCES server ﬂ2—36‘] and additional quality
filters were applied as described in Methods (see page [58). The parametrisation of
the different potentials as well as the optimisation of the weighting factors for the
combined potential were both performed on the CASP6 decoy set by analysing the
regression between the GDT TS score of the models and the predicted score provided
by the energy function. The CASP6 training set consists of all models submitted
to CASP6 with a GDT TS score above 20. Models with a score below 20 can be

considered as more or less random and are therefore useless for training purposes.

For the purpose of providing an overview, Table shows a short description of all
scoring function terms mentioned in this section and the different versions of QMEAN
which were built in order to assess the influence of the two agreement terms. In the
following, QMEAN, unless specified with an index, always indicates the original scoring
function consisting of 5 terms (i.e. QMEANDS).

For the three statistical potentials entering the QMEAN function a variety of alterna-
tive implementations have been investigated. The Pearson’s correlation coefficients for
the different implementations of the statistical potentials as well as for the agreement
terms are given below (Table[3.743.11).

The correlation between the score from different implementations of the residue-level
pairwise interaction potential and the GDT TS score are shown in Table[3.7. The data
underline the superior performance of the potentials based on C3 atoms compared to
the Ca implementation. Deriving the interaction potentials in a secondary structure
specific manner further improves the correlation whereas taking into account solvent
accessibility does not add any value (see Chapter (3.2.4.5 in the discussion section). In
the secondary structure specific implementation, the contacts of helix, strand, and loop
residues are counted separately, which seems to capture some characteristic features
of the environment of residues belonging to the different secondary structure states.

The final implementation of the residue-level distance-dependent pairwise potential is
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Table 3.6: Short description of the terms and their combinations used in this in this

work.
scoring function description
torsion single Ordinary torsion potential based on phi and psi propensities of single
amino acids. Bin size: 10 degree
torsion 3-residue Extended torsion potential over 3 consecutive residues. Bin sizes: 45

degree for the center residue, 90 degree for the 2 adjacent residues
pairwise Ca / pairwise C3 | Residue-specific pairwise distance-dependent potential using Ca or
Cp atoms respectively as interaction centers . Range 3...25 A, step

size: 0.5

pairwise C3/SSE In analogy to pairwise Cg3, but a secondary structure specific imple-
mentation was used both for the derivation and application of the
potential.

solvation Cj3 Potential reflecting the propensity of a certain amino acid for the

a certain degree of solvent exposure based on number of C5 atoms
within a sphere of 9 Aaround the center Cf3.

SSE X Agreement between the predicted secondary structure of the target
sequence (using method X, or consensus of 3 methods) and the
observed secondary structure of the model as calculated by DSSP.
QMEAN uses X=PSIPRED

ACCpro Agreement between the predicted relative solvent accessibility using
ACCpro (2 states buried/exposed) and the relative solvent accessi-
bility derived from DSSP (>25% accessibility —> exposed)

QMEAN3 weighted linear combination of torsion 3-residue, pairwise C(/SSE,
solvation C(3

QMEAN4 weighted linear combination of torsion 3-residue, pairwise C3/SSE,
solvation C3, SSE PSIPRED

QMEANS5 weighted linear combination of torsion 3-residue, pairwise C3/SSE,

solvation C(3, SSE PSIPRED, ACCpro

based on C( atoms as interaction centers and the radial distribution between 3 and 25

A (bin size 0.5 A) is taken into consideration (with secondary structure specificity).

An all-atom pairwise potential was established which investigates the interactions
between all 167 atom types occuring in proteins (i.e. each non-hydrogen atom in the 20
amino acids belongs to a different atom type). As for the residue-level potentials, the
secondary structure specific implementation results in a better correlation as compared
to the normal one (see Table3.8). All “interactions” in the interval from 3 to 20 A (bin
size 0.5) are taken into account. Interestingly, ignoring all contacts closer than 3 A
results in a considerably better correlation to GDT _TS. In this way, hydrogen bonds

are completely ignored since the distance between the two atoms participating in a
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Table 3.7: Correlation between GDT TS and the residue-level pairwise potential
on the CASP6 training set.

implementation Ca Cﬁ Cﬁ,SSE Cﬁ,SSE,ACC
range: 0-20 A, bin size: 0.5 A -0.272  -0.365  -0.454 -0.473
range: 0-25 A, bin size: 0.5 A -0.365  -0.445  -0.514 -0.528
range: 0-30 A, bin size: 0.5 A -0.430 -0.498  -0.531 -0.539
range: 3-20 A, bin size: 1 A -0.452  -0.532  -0.598 -0.598
range: 3-25 A, bin size: 1 A -0.520 -0.562 -0.608 -0.608
range: 3-20 A, bin size: 0.5 A -0.457 -0.519  -0.582 -0.587
range: 3-25 A, bin size: 0.5 A -0.521 -0.558  -0.601 -0.603
range: 3-20 A, bin size: 0.2 A -0.444 -0.507  -0.546 -0.557

Table 3.8: Correlation between GDT TS and all-atom pairwise potential on the
CASPG training set.

implementation all-atom all-atomggg
range: 0-15 A, bin size: 0.5 A -0.247 -0.286
range: 0-20 A, bin size: 0.5 A -0.302 -0.353
range: 3-15 A, bin size: 0.5 A -0.471 -0.536
range: 3-18 A, bin size: 0.5 A -0.519 -0.581
range: 3-20 A, bin size: 0.5 A -0.540 -0.600
range: 3-15 A, bin size: 0.2 A -0.462 -0.519
range: 3-20 A, bin size: 0.2 A -0.557 -0.589

hydrogen bond is typically below 3 A. Given the fact that hydrogen bonds are one of
the main contributors to the overall protein stabilty, this may look strange at first sight.
But it has to be taken into account that models, and not exact experimental structures
are analysed. Especially for very coarse models (e.g. model from ab initio structure
prediction), not the exact location of the single atoms shall be investigated but the
overall correctness of the fold. Therefore, the high contribution of the hydrogen bonding
term would potentially hide the signal of the other non-covalent energy contributions.
Including hydrogen bonding in the scoring function would potentially favour models
with more secondary structure elements (since these are stabilised by hydrogen bonds).
The energy function would be very sensitive concerning small perturbations in the
location of the atoms with the consequence, that a small shift of e.g. 0.5 A away
from the ideal hydrogen bonding distance would result in a dramatic increase in the

interaction energy.
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In the final version of QMEAN, the all-atom potential has not been integrated. Over the
entire range of modelling difficulty, the residue-level potential performs better than the
all-atom implementation. A comparison of the performance of the all-atom interaction
potential on models from different CASP7 categories suggests that the strength of this
potential is the assessment of template-based models and not of imprecise models from
the free modelling category. An optimal integration of both potentials described above
using machine learning algorithms (i.e. support vector machine or neural network) is

currently under development.

For the solvation potential, which reflects the propensity of an amino acid to be found
buried in folded proteins, the solvent accessiblity is approximated by counting the
number of C3 within 9 A around the Cj3 of a given amino acid. As it can be seen
from Table [3.9] sphere radii of 9 and 12 A result in equally good correlations and it
has been decided to use the smaller radius since the same information content seems

to be captured.

Table 3.9: Correlation between GDT TS and residue-level solvation potential on
the CASP6 training set.

implementation C. Cgs

radius of sphere: 5 A -0.200  -0.153
radius of sphere: 6 A -0.431  -0.426
radius of sphere: 7 A -0.525  -0.551
radius of sphere: 8 A -0.542  -0.562

radius of sphere: 9 A -0.559 -0.568
radius of sphere: 10 A -0.541  -0.554
radius of sphere: 11 A -0.552  -0.559
radius of sphere: 12 A -0.559 -0.569
radius of sphere: 13 A -0.552  -0.562
radius of sphere: 14 A -0.547  -0.557

All chains present in the coordinate files have been taken into account in order

to calculate the solvent accessibility. A potential improvement by considering the
biological units is disscused later in Chapter [3.2.4.5.

A coarse-grained torsion angle potential using the phi/psi angles of three consecutive

residues was developed. The bin sizes are 45 degrees for phi and psi of the center



3.2 Model quality assessment 113

residue and 90 degrees for the neighbouring torsion angles. Table underlines
the considerably better correlation of the 3-residue torsion angle potentials with the
GDT TS score as compared to the regular single residue torsion angle potential. For

comparison purposes, the performance of the single residue torsion potential is shown.

Table 3.10: Correlation between GDT TS and torsion potential over 3 residues on
the CASPG training set.

implementation correlation
bin size central residue: 30°, bin size adjacent residues: 45° -0.498
bin size central residue: 30°, bin size adjacent residues: 90° -0.515
bin size central residue: 45°, bin size adjacent residues: 45° -0.511
bin size central residue: 45°, bin size adjacent residues: 90° -0.517
bin size central residue: 90°, bin size adjacent residues: 90° -0.504
single residue torsion potential: 10° -0.350

Table 3.11: Correlation between GDT TS and agreement terms on the CASP6
training set.

description correlation
agreement DSSP - PSIPRED -0.561
agreement DSSP - ProfSec -0.514
agreement DSSP - SSpro -0.543
agreement DSSP - consensus (PSIPRED, ProfSec, SSpro) -0.555
agreement DSSP - ACCpro -0.529

Two terms reflecting the agreement between predicted features of the target sequence
and calculated features from the model enter the final version of QMEAN. A term
called “SSE PSIPRED” in the further course of this work describes the agreement
between the predicted secondary structure of the sequence by PSIPRED [103] and
the observed secondary structure from the model as calculated by DSSP [107]. Two
further secondary structure prediction programs have been investigated (ProfSec ]
and SSpro ]) as well as the use of a consensus of the three, but did not result in a
better regression. The solvent accessiblility agreement term is based on the predicted
solvent accessibilty of ACCpro ] and the calculated of the model by DSSP. In the
composite scoring function (QMEANS5), both terms lead to a significant improvement
in the performance as compared to the version solely based on statistical potentials
(see Table[3.12]in the next section).
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3.2.2 QMEAN: Generation of the composite scoring function

Table contains regression coefficients achieved in a regression of the models
GDT TS scores and the QMEAN scores. Two different regression schemes were
investigated: A direct correlation of the scores (Pearson’s correlation coefficient) and
a rank correlation (Spearman’s rho) in the hope of taking into account a possible
non-linear relationship. As an alternative, the scores are transformed into Z-scores by
comparing the given model to 1000 other models with the same structure but randomly
shuffled sequences. Shuffling the order of the residues has been shown [@] to work
almost as good as randomising the structure as originally proposed by Sippl [198].
Furthermore, two different strategies for the optimisation of the weighting factors have
been investigated: First, an optimisation of the regression on a target-specific basis by
maximising the average of the regression coefficients achieved on the individual targets
and second, a global approach in which the regression is optimised by using all models

from all the targets at once.

Table 3.12: Absolute values of the Pearson correlation coefficients obtained in a
regression of the GDT TS score against the predicted score.

Pearson’s correlation coefficient Spearman’s c. c.

scoring function | global global/ target target target target
Z-score averaged average/ | averaged average/
Z-score Z-score

torsion single 0.35 0.39 0.25 0.3 0.23 0.24
torsion 3-residue 0.52 0.5 0.35 0.39 0.32 0.31
pairwise Ca 0.54 0.57 0.42 0.54 0.37 0.42
pairwise C(3 0.57 0.59 0.47 0.56 0.43 0.46
pairwise C8/SSE | 0.61 0.6 0.49 0.58 0.45 0.48
solvation C( 0.58 0.55 0.5 0.52 0.46 0.43
SSE PSIPRED 0.57 0.57 0.52 0.54 0.48 0.48
SSE ProfSec 0.53 0.53 0.49 0.52 0.45 0.45
SSE SSpro 0.56 0.56 0.5 0.52 0.45 0.45
SSE consensus 0.57 0.57 0.51 0.53 0.46 0.46
ACCpro 0.53 0.53 0.47 0.51 0.47 0.47
QMEAN 3terms 0.66 0.64 0.56 0.58 0.52 0.52
QMEAN d4terms 0.71 0.69 0.62 0.64 0.57 0.58
QMEAN 5terms 0.72 0.69 0.64 0.65 0.59 0.6
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The regression coefficients achieved for the different scoring function terms and their
combinations do not differ much between the six optimisation strategies and all show
the same tendency. QMEANDS, which is a linear combination of five terms (see
Table , consistently achieves the highest regression coefficients for all optimisation
strategies, directly followed by QMEAN4. QMEANS3, consisting only of statistical
potential terms, shows a slightly worse correlation but is still better than any other
single term. A Pearson’s correlation coefficient of 0.72 was observed for QMEANS in
the global approach in which the regression is optimised over all models of all targets
at once. The scatter plot in Figure [3.21] shows a clear trend but also the presence of

some outliers.

QMEAN score

-100

-120

-140 . : : . . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

GDT_TS score

Figure 3.21: Correlation between GDT TS and the composite score (QMEANS5) on
the models in the CASP6 traing set. Models with GDT TS < 0.2 are not considered.

The weighting factors achieved in the two target-specific approaches (Spearman and
Pearson) are quite similar to each other. In comparison to those in the global strategy,
lower weights were assigned for the torsion and pairwise term (data not shown). In
any case, the performance differences when applying the weights of the six strategies

to the decoy sets described in the next two sections are overall negligible.
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For the sake of simplicity, the weights of the global optimisation strategy are used
throughout:

QMEAN5 = 0.3 % Scoretorsion 3—residue T 0.17 * Scorepairwise CB,SSE

+ 0.7 % Scoresopation cp + 80 % Scoressg psiprep + 45 * Scoreaccpro  (3.1)

Table [3.13| shows the cross-correlation between QMEAN and its component terms
as well as some additional terms for comparison purposes. It can be seen that the
secondary structure specific implementation of the pairwise interaction potential does
not have a significantly higher cross-correlation to any of the other terms than the

regular one.

Table 3.13: Cross-correlation analysis of the terms entering the combined score
(QMEAN) and some selected scores for comparison. The Pearson’s correlation
coefficients are based on the global optimisation strategy without Z-scores.
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torsion single 1 0.81 041 043 034 035 031 059 054 -0.35
torsion 3-residue | 0.81 1 0.58 0.6 0.5 0.48 041 0.78 0.73 -0.52
pairwise C( 0.41 0.58 1 097 0.71 043 058 0.89 0.83 -0.57
pairwise CG/SSE | 0.43 0.6 0.97 1 0.72 044 062 092 085 -0.61
solvation 034 05 071 0.72 1 048 0.62 0.87 0.81 -0.58

SSE PSIPRED 035 048 043 044 048 1 042 054 0.81 -0.57

ACCpro 0.31  0.41 058 0.62 0.62 042 1 0.65 0.64 -0.53
QMEAN3 059 0.78 0.89 092 087 054 0.65 1 0.93 -0.66
QMEANS5 054 073 083 085 081 081 0.64 0.93 1 -0.72
GDT_TS -0.35 -0.52 -0.57 -0.61 -0.58 -0.57 -0.53 -0.66 -0.72 1

The solvation potential shows a relatively high cross-correlation to the pairwise poten-
tials which can be assigned to the similarity of their implementation. The correlation

to the ACCpro term is lower than could be expected.

The integration of the SSE PSIPRED terms results in an increase of the regression
coefficient of at least 0.05 in all the optimisation strategies (Table[3.12) while having no
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noticeable cross-correlation to any of the other terms and QMEAN3 (Table [3.13). The
ACCpro term, describing the agreement between the predicted and observed solvent
accessibility, only leads to a minor increase of the regression coefficients of QMEANS.
ACCpro shows a cross-correlation around 0.6 to the distance-dependent potentials
and the solvation potential and a comparison of the correlation to QMEAN3 and
QMEANS would suggest that ACCpro does not add much value to the combined
score. However, Table [3.16] proves that the opposite is true: ACCpro shows a very
good performance according to the enrichment quality measures and is responsible for

the constant improvement in all quality measures of QMEANS5 over QMEAN4.

According to Table [3.13, a major part of the discriminatory power of QMEAN3 can
be assigned to the pairwise C3/SSE and to the solvation potential. The correlation
of the 3-residue torsion angle potential is still rather high (regression coefficient 0.78).

The secondary structure agreement term shows a significantly higher correlation to
QMEANS5 than ACCpro.

3.2.3 QMEAN: Comparison with other methods

Three comprehensive test sets were used in order to assess the performance of QMEAN
and compare it to other state-of-the-art methods. The first test set consists of
three standard decoy sets from Decoys 'R’ Us ] which have been frequently
used in literature in order to test scoring functions. Decoys are computer generated
conformations of protein sequences that possess some characteristics of native protein
structures, but are not biologically real. The second test set consists of conformations
generated during a molecular dynamics (MD) simmulation and allow a comparison of
QMEAN with a molecular mechanics (MM) force field. The third test set consists of
all server models submitted to CASP7 and represents the same databasis which has

been used for the quality assessment category of the last CASP @]

3.2.3.1 Performance on three standard decoy sets

In order to compare the performance to several well-established statistical potentials,
QMEAN was tested on three standard decoy sets from Decoys 'R’ Us [182]. As
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Table 3.14: Comparison of QMEAN with other methods in the performance of
selecting the native structure in some standard decoy sets from Decoys 'R’ us.

4state reduced lattice ssfit LMDS

rank]H Znaﬂﬂ rankl Znat rankl Znat
ProQ 5/7 4.1 7/8 12.1 4/10 3.7
Errat 1/7 2.5 3/8 5.1 5/10 3.1
Prosall 5/7 2.7 8/8 5.6 6/10 2.5
Verify3D 4/7 2.6 7/8 4.5 2/10 1.4
SNAPP 3/7 2.6 5/8 3.5 2/10 1.1
AKBP 7/7 3.2 8/8 6.6 3/10 —0.5
DFIRE 6/7 3.5 8/8 9.5 7/10 0.9
RAPDF 7/7 3 8/8 7.2 3/10 0.5
FRST /7 4.4 8/8 6.7 6/10 3.5
torsion 3-residue  7/7 3.6 6/8 5 7/10 3.7
pairwise C3/SSE  3/7 2 7/8 5.1 1/10 0.4
solvation 0/7 1.6 3/8 3.1 0/10 1.1
SSE PSIPRED 0/7 1.6 7/8 5.4 2/10 1.3
ACCpro 1/7 2 5/8 3.7 3/10 1.9
QMEANS3 4/7 2.7 8/8 6.2 2/10 2.3
QMEAN4 3/7 2.4 8/8 7.5 4/10 2.3
QMEAN5 4/7 2.5 8/8 7.7 6/10 2.7

arankl: Number of decoy set in which the native structure was found on the first rank.

Znat: Z-score of the native structure compared to the ensemble of structure in the decoy set.

can be seen from Table [3.14, the 3-residue torsion angle potential shows the overall
best performance in selecting the native structure and outperforms all other terms of
QMEAN as well as all QMEAN versions. Except for the lattice_ssfit decoy set,

the torsion angle potential also produces the highest Znat scores.

The pairwise potential performs comparably well on lattice ssfit, shows a moderate
performance on 4state reduced and fails on LMDS. The solvation potential only
produces reasonable Z-scores on the lattice_ssfit but fails completely on the other
two sets. Comparing the performance of QMEANS on the 3 decoy sets, it seems that
QMEANS performs best on lattice ssfit. In general the performance of QMEANS is
comparable to the other methods taking into account the fact that QMEAN has been
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Figure 3.22: Correlation between GDT TS and the composite score (QMEANS)
on the models of the molecular dynamics simulation decoy set of Fogolari et al. ]

trained for model quality assessment and not specifically for the task of identifying
native structures. The advantage of QMEANS5 as a combined scoring function over
energy functions based on a single term is the decreased chance to fail on some decoy
sets generated based on a specific method. Although the data basis is too sparse for
well-founded conclusions, Table3.14 suggests that the performance of a certain scoring
function is dependent on the decoy set. More precisely, how a given decoy set has been

built appears to allow some terms to perform better on one decoy set than on another.

3.2.3.2 Performance on a molecular dynamics decoy set

The decoy set generated by Fogolari and co-workers ﬂg] consists of 6,255 snapshots
from 5 different molecular dynamics simulations of the thermostable subdomain from
the chicken villin headpiece. Since one simulation started from the native structure
and the other 4 from alternative minimised conformation, this yields a wider range of
RMSD values compared to the previously mentioned decoy sets which typically have
only few conformtion close to native. The other advantage is that it allows a direct

comparison with molecular mechanics force fields.
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Table 3.15: Comparison of QMEAN and its terms with three molecular mechanics
energy functions, a contact potential and FRST.

scoring function logPBlE logPp10® FEH r% RMS[@
contact -1.08 -1.08 13.8 0.62 3.03
FRST -1.38 -1.94 23.2 0.48 2.61
MME* -0.25 -1.39 10.6 0.21 7.45
MM/GBSA*® -1.71 -2.02 29.6 0.66 2.4
MM /PBSA® -1.79 -2.02 23.2 0.58 2.35
QMEAN3 -1.5 -3.5 36.5 0.53 2.52
QMEAN4 -1.71 -2.8 90.2 0.56 2.4
QMEANS5 -1.51 -3.5 88 0.57 2.51
torsion 3-residue -1.26 -2.8 58.4 0.57 2.71
pairwise CG/SSE ~ -1.02 -1.41 35.5 0.64 3.34
solvation -0.32 -0.98 6.1 0.2 7.15
SSE PSIPRED -1.32 -1.32 91.2 0.55 2.58
ACCpro -3.5 -3.5 63 0.5 1.84

alogPBI and logPp1o are the log probability of selection the highest GDT TS model as the best model or among the ten best-scoring
models, respectively.

F.E. stands for fraction enrichment.
“Person’s correlation coefficient
RMSD of the structure with the lowest score assigned by the energy function.

EScoring by a molecular mechanics (MM) force field by using the Generalized Born surface area (GBSA) or the Poisson-Boltzmann
surface area (PBSA) method for solvation effects.

As can be seen from Figure [3.22, QMEAN consistently assigns low energies to the
near-native conformations of the simulation starting from the native structure (colored
in black). Especially the decoys from the native simulation show a clear correlation
between the RMSD and the score predicted by QMEANS5. Although the native
structure was not predicted to have the lowest energy, several conformations around 2
A RMSD get quite low energies. This is also reflected by the excellent logP g1 value
of QMEANS as shown in Table[3.15. A description of the quality measures is given in
the footer of Table and more detailed in Methods on page [64ff.

The solvent accessibility agreement term seems to be quite good in identifying near-
native structures and to a certain extent also the torsion angle potential over three
residues, as reflected by the low logPB10 value and the high fraction enrichment score.

The secondary structure agreement term produces a fraction enrichment of over 90%
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which indicates that there were no major changes in secondary structures during the
simulation starting from the native structure. The RMSD values of the conformation
with the lowest score are more or less the same for all three QMEAN versions whereas
ACCpro is able to pick the second best conformation. The solvation potential produces
bad results across all quality measures. In comparison to the three versions of molecular
mechanics (MM) energy functions, QMEAN shows comparable correlation coefficients
and logPB1 values but performs significantly better in the enrichment of near-native

solutions.

3.2.3.3 Performance on the CASP7 decoy set

A different, and perhaps more realistic, test case is presented by the decoys from
the CASP7. In Table 3.16 QMEAN and its component scoring function terms are
compared to five widely-used model quality assessment programs (MQAPs). The
following executable programs could be downloaded from the CAFASP4 website E:
Modcheck ], RAPDF E], FRST @] and ProQ ] DFIRE @] was requested
from the author. ProQ was executed both with and without PSIPRED secondary

structure prediction.

Table[3.16/shows the average performance of the methods over all targets using different
quality measures. Most of the quality measures have been previously introduced and
described , ], but a detailed definition can be found in Methods on page 64.
The last three columns describe the scoring functions ability in identifying the native
structure out of the ensemble of models for a specific target whereas all other measures
describe different aspects of model quality assessment. The opposite algebraic sign of
Modcheck and ProQ) observed for the Pearson’s correlation coefficients and for the Znat
scores can be ascribed to the fact that these two tools use an inverse scaling compared

to the other scoring function by assigning the highest scores to the best models.

The statistical significance of the performance differences between the methods was
validated using the the 2-sided t-test on paired samples (see Methods on page [66) in
analogy to the method used in the assessment of CASP4 ] A 95% confidence level

was used and the corresponding results are summarised in Figure 3.23l White squares

®http://www.cs.bgu.ac.il/~dfischer/CAFASP4/
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Table 3.16: Performance of different scoring functions in predicting the quality of the server models submitted for
all 95 targets of CASP7. Comparison of QMEAN with other well-known model quality assessment programs.

regression® enrichment’ best predicted model® best GDT TS model? native structure®

Method r2 rho F.E. FEijs59 119 logPp logPp19 AGDT TS n T10 Dnat  T1 T10
Modcheck 0.64 0.59 0.33 2.7 17 -0.7 -1.67 -0.18 6 27 1.99 47 69
RAPDF -0.5 0.5 0.31 2.44 17 -0.91 -1.67 -0.08 4 17 -2.09 55 s
DFIRE -0.39  0.53  0.32 2.59 19 -0.93 -1.68 -0.08 5 18 -1.25 59 72
ProQ 0.36 0.26 0.13 1.22 5 -0.32 -0.99 -0.22 0 6 1.51 9 32
ProQssk 0.54 0.43 0.19 1.71 8 -0.51 -1.21 -0.16 2 11 1.76 14 42
FRST -0.57  0.53 0.3 2.36 21 -0.91 -1.74 -0.09 6 22 -2.41 56 72
QMEAN3 -0.65 0.58 0.33 2.57 16 -0.8 -1.83 -0.12 1 35 -2.27 59 75
QMEAN4 -0.71  0.63 0.38 2.76 28 -1.02 -1.9 -0.08 5 39 -1.86 55 69
QMEAN5 -0.72 0.65 0.4 2.9 30 -1.05 -1.94 -0.08 6 40 -1.89 56 71
torsion single -0.44  0.39 0.22 1.76 6 -0.6 -1.5 -0.13 0 13 -2.09 51 67
torsion3-residue -0.53  0.44 0.22 1.86 13 -0.76 -1.51 -0.11 1 10 -2.64 59 79
pairwiseCg -0.58 0.51 0.3 2.51 17 -0.7 -1.7 -0.18 4 27 -1.96 39 69
pairwiseCﬂ/SSE -0.59  0.52 0.34 2.58 22 -0.84 -1.8 -0.13 5 36 -2.16 45 71
solvation -0.55 049 0.29 2.31 10 -0.55 -1.65 -0.24 2 27 -1.3 18 45
SSEPSIPRED -0.65 0.52 0.24 2.03 9 -0.63 -1.43 -0.13 3 17 -0.89 7 25
ACCpro -0.59  0.56  0.35 2.75 21 -0.85 -1.66 -0.11 6 33 -1.38 20 44

a . . . .
Pearson’s correlation coefficient 72 and Spearmans’s rank correlation coefficient rho

b . . . . . .
F.E. stands for fraction enrichment and FEqg¢ is the enrichment among the top 15% best predicted models as compared to a random selection.

Crlo are the number of targets for with the top-scoring models is among the topl0 best models (based on GDT _TS). logPp and logPpiq are the log probability of selecting the
highest GDT TS model as the best model or among the ten best-scoring models, respectively.

dGDTiTSloss is the difference between the GDT TS score of the best-scoring model and the best model in the decoy set. 71 and 710 are the number of targets in which the best
model based on GDT TS, excluding the native structure was found on the first rank or among the top 10 predictions.

eZm,t is the Z-score of the native structure as compared to the ensemble of models. 1 and r10 are the number of targets in which the native structure was found on the first rank
or among the top 10 predictions.
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Figure 3.23: Statistical analysis of the performance differences between the methods
at the confidence level of 95%. Green (red) stands for a better (worse) performance.

indicate that the performance difference between two methods is not statistically
significant on a 95% confidence level whereas coloured squares mark statisticaly
significant differences. In case of a green square, the corresponding method denoted in
the on the left side of the plot performs better than the one on the bottom.

In general, QMEANS5 consistently outperforms the other five MQAPs with respect
to almost all tested quality measures on both categories (free modelling (FM) and
template-based modelling (TBM), see Table 5.2 and [5.4] in the Appendix) and over
all targets (see Table [3.16). The specific evaluation of the free modelling (FM) and
the template-based modelling (TBM) targets shows a similar trend as for all target:
QMEAN outperforms the other methods over nearly all quality measures and the

difference is potentially more pronounced in the template-based modelling category.

On the two regression and enrichment quality measures, QMEANS performs signifi-
cantly better than all other methods tested (see Figure 3.23). DFIRE, together with
QMEAN3 and the 3-residue torsion angle potential, identify to highest number of native
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structures whereas DFIRE has significantly worse Znat scores compared to all other
methods (see Figure[3.23). FRST produces better Znat scores than QMEAN3 but never
better than the torsion angle potential over 3 residues which shows an extraordinary

good performance in recognising the native structure.

For the model quality assessment task described by the other quality measures, the
3-residue torsion angle potential does mostly better than the ordinary single residue
potential. Modcheck generates statistical significantly better regression coefficients
than the other methods except the 3 QMEAN functions. Consistently over all quality
measures (except for the Pearson’s correlation coefficient), ProQ performs significantly
worse than the other methods tested even after the integration of PSIPRED secondary
structure prediction. The only exception is the good average Znat scores achieved on
the free modelling targets which reflects the fact that Pro(Q) has been trained specifically
on fold recognition models (see Table[5.4]in the Appendix).

The secondary structure agreement term shows on average the highest Pearson cor-
relation coefficient of all single terms and a reasonable performance on all the other
model quality assessment measures. The solvent accessibility agreement term on the
other hand reaches the highest enrichment values and rank correlation coefficients and
is very valuable for the selection of good models. Over all quality measures and in
both categories the secondary structure specific pairwise potential reaches significantly
better scores than the regular one for the model quality assessment task as well as in
the identification of the native structure. The analysis of the statistical significance of
the QMEAN component terms can be found in Figure 5.2 in Appendix.

The differences in the results achieved for the free modelling and template-based
modelling targets are frequently easy to explain but sometimes appear to be contra-
intuitive. For the task of identifying the native structure, the solvent accessibility
agreement term (and to a certain extent also SSE PSIPRED) performs considerably
better on the FM targets than on the TBM category. In contrast to the secondary
structure agreement term, the ACCpro score can help to identify the native structure
in the case of free modelling targets where it recognises 7 out of 18 native structures with
an average Z-score of the native structure of more than 2 standard deviations. Over all
targets (Table 3.16), QMEANS3 is slightly better than QMEAN4 and QMEAN5 as a

consequence of the inability of the secondary structure agreement term in recognising
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the native structure which is reflected by the low Z-scores of the native structure and
the rank measures (rankl and rank10). An explanation for this observation is given in

a separate discussion section on page [130.

As expected, the regression coefficients for TBM targets are on average higher than for
EFM targets. A slightly better enrichment is possible with FM targets, since the models
in this category tend to be less similar to each other than for example in the high-
accuracy template-based modelling category in which a large fraction of the models
can be more or less identical as it can be seen in Figure[3.24 b. Of the free modelling
targets, the pairwise and solvation potentials as well as ACCpro all produce high
enrichment values whereas on the template-based modelling targets the performance of
the solvation potential is significantly worse compared to the others over most quality
measures. For the FM targets, the native structures are recognised with better Z-
scores on average but, surprisingly, the relative number of native structures ranked as
number one is lower (9 out of 18) as compared to the TBM targets (51 out of 77) (see
Supplementary Material).

Figure[3.24/shows the correlation between GDT TS and QMEAN score for the models
of four selected targets belonging to the TBM and FM target category. The scatter
plots on the left-hand side (Figure3.24 a and ¢) represent two examples in which both
the regression and the identification of the native structure went fine. The scatter plots

for all of the 95 targets are shown in the Appendix.

Sometimes the native structure can be easily identified (target T0321, Figure [3.24]
¢) but sometimes the native structure is hidden among the bulk of the models (target
T0300, Figure d) even though the regression can be reasonably good. This is quite
astonishing, since for most of the FM targets, no submitted model had a GDT TS
score of more than 50 and one should expect the native structure to be easy to identify.
On the other hand, the enrichment for FM targets works rather well with enrichment

values (E15%) on the order of factor 3 achieved on average.

3.2.3.4 Estimating overall performance

Fraction enrichment curves ] are useful to compare and visualise the performance of

different MQAPs in analogy to receiver operator characteristic (ROC) curves frequently
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Figure 3.24: Scatter plots showing the correlations between GDT TS and
QMEANS for four selected examples.

used in benchmarks of fold recognition and alignment programs. They implicitly cover
several quality measures used in Table [3.16, e.g. enrichment and regression. Where
ROC curves require the somewhat arbitrary definition of a threshold to distinguish

good from bad models, fraction enrichment curves measure the added value of MQAPs

in ranking different models.

Figure [3.25 and [3.26] show the fraction of best models (based on GDT _TS) found
among a certain fraction of the top scoring models as predicted by the scoring function
(fraction enrichment). The calculations are performed on the server models of CASP7

after removing the native structures. The curves in the upper part of Figure(3.25/reflect
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Figure 3.25: Target-specific fraction enrichment curves showing the percentage of
top x% highest GDT _ TS models among the top x% best-scoring structures (averaged
over all CASP7 targets).

the ability of the scoring function to identify the best models among all models for a
given target (averaged of all targets) and are a measure for the scoring functions ability
to predict the relative model quality. The steeper the progression of the curve, and the
larger the area under the curve, the better a scoring function agrees with the measured
model quality. The average fraction enrichment over the individual targets for cutoffs
ranging from 5% to 50% is shown. QMEAN consistently shows the best performance
over the whole range but especially between 5% and 15%, underlining its strength in
recognising the best models. Modcheck, RAPDF, DFIRE and FRST show a quite
similar behavior over the first 3 thresholds. Above 20 percent, the curve obtained for
Modcheck and DFIRE are slightly higher which agrees with its good rank correlation
coefficients and enrichment values in Table 3.16 Pro(Q performs significantly worse
than the others.

The global fraction enrichment curves shown in Figure are obtained by pooling

together the models of all targets and calculating the fraction enrichment over the whole
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Figure 3.26: Global fraction enrichment curves over all model from all CASP7
targets.

set. In this way, the scoring function’s ability to predict the absolute model quality (i.e.
to estimate the degree of “nativeness” of a model) is investigated. In contrast to the
results in Figure(3.25, the performance of RAPDF and especially DFIRE are strikingly
low compared to Modcheck and FRST. FRST shows the best fraction enrichment
within the first 5 percent and appears to be good in recognising native and native-like
structures. This is also reflected by the low average Z-scores of the native structure
(Znat) shown in Table 3.16 In the global enrichment, ProQ shows a reasonable
performance which can be mainly attributed to the secondary structure information
included as the difference between ProQ and ProQ PSIPRED suggests. Above a
fraction of 0.1, QMEAN consistently generates the highest fraction enrichments of
all MQAPs tested. For example, among the 15% best QMEAN predictions more than
60% of the 15% best models are identified. The high enrichments are an evidence of a
good global correlation between the QMEAN score and the effective model quality.

Slope and intercept from the regression between GDT TS and QMEAN score obtained
on the training set can be used in order to derive a predicted GDT _TS. Figure [3.27
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Figure 3.27: Regression between GDT TS and the composite score (QMEANS) of
the models in the CASP7 test set.

shows the correlation between measured GDT TS and predicted GDT TS based on
QMEAN on the CASPT test set. Although the correlation is quite good, the data show
that a prediction of the absolute GDT TS of a given model is only possible with a
certain accuracy. An improved global correlation will be definitively achieved by using
machine learning approaches in order to combine the terms (as first results with a

neural network suggest).
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3.2.4 (QMEAN: Discussion and outlook

3.2.4.1 General performance

The QMEAN scoring function has been shown to be a valuable tool for model quality
assessment by distinguishing good from bad models and for the identification of the
native structure among decoy sets generated by a variety of methods. On the com-
prehensive set of 22,420 server models of CASP7, QMEAN consistently outperforms
the five model quality assessment programs over nearly all quality measures and model

difficulty ranges.

3.2.4.2 Agreement between predicted and measusred features

Only in two decoy sets from Decoys 'R’ us, lattice_ssfit and LMDS, did the
integration of the secondary structure agreement term result in an improved ability
of the combined scoring function in identifying the native structure compared to the
statistical potential terms only (QMEAN3). This can be possibly attributed to the
greater overall variability of the decoy structures in these sets and the absence of
native-like structures: lattice_ssfit conteins structures with RMSD ranging from
5.68 to 13.23 A and LMSD from 4.05 to 11.5A. On the other hand, the 4state_reduced
set on which the two agreement terms failed in recognising the native structure covers
structures between 1.15 and 8.80 A. The CASPT test set shows a similar trend: for
free modelling targets slightly better Znat scores are obtained than for template-
based modelling targets using the secondary structure agreement term and solvent

accessibility terms performs considerably on targets of the FM category.

In contrast to this observation, the secondary structure agreement term turned out to
be a valuable contributor to the good performance of QMEAN in the model quality
assessment task. The different performance on these two tasks can, especially in
the case of the CASP7 set, tentatively be ascribed to the fact that the secondary
structure composition of the native structure can only be predicted with a certain
accuracy, typically around 76-80%. A theoretical limit of prediction accuracy of 88%
percent was proposed by Rost ] arguing that minor variations in structures even

between homologous proteins can result in different secondary structure assignments
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made by tools such as DSSP. It is therefore rather unlikely that the secondary structure
agreement between PSIPRED and DSSP achieves 100 percent for the native structure
and more likely that there is a tendency for models generated by methods taking
implicitly advantage of predicted secondary structure information to receive better

scores than the native structure.

The same argument given above holds for the solvent accessibility agreement term,
although the effect seems to be less pronounced as reflected by the higher Z-scores
of the native structure (Znat) achieved in the CASP7 decoy set. This might be
explained by the significantly reduced sensitivity of this term toward minor differences
in the structures, since it is based on a binary classification of solvent accessibility
(buried/exposed) as provided by ACCpro. Thus, near-native structures would tend to
have solvent accessibility agreement values (e.g. packing) similar to the native structure

but bad models do not, which would explain the moderate Znat scores to some extent.

In contrast to the observation described above, both agreement terms turned out to
be valuable contributors to the good performance of QMEAN in the model quality
assessment task as reflected by the consistently better performance of QMEANS5
compared to the version using statistical potential terms only (QMEAN3).

3.2.4.3 Torsion angle potential over 3 residues

The torsion angle potential over three residues turned out to be a very powerful term for
the identification of the native structures out of a variety of decoy sets, suggesting that
the 3-residue torsion angle potential describes the propensity of a certain amino acid
for a certain local geometry considerably better than the single residue torsion angle
potential. The final bin sizes of 45 degree for the phi and psi angles of the center residue
and 90 degree for the neighbouring torsion angles are surprisingly coarse-grained, but
can possibly be explained by reasonable binning of the Ramachandran plot [167] in
90 and 45 degrees and how these values represent a trade-off between resolution and
number of states, reducing the danger of over-fitting. The resulting number of 327,680
(= 20 * (360/45)% * (360/90)% * (360/90)?) possible states is in the same order of
magnitude as observed in some all-atom potentials. Betancourt and Skolnick ]

have shown that the dihedral angles of a residue are influenced by the identity and
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conformation of the adjacent residues. This effect is especially pronounced in loop
regions and near the end of [(-sheets. The 3-residue torsion angle potential seems
to capture this effect to a certain extent. In contrast to the potential introduced by
Betancourt and Skolnick, the 3-residue potential described in this work does not take
into account the identity of the adjacent residues and is attractive in its simplicity. It
basically reflects the propensity of a certain amino acid type for a given local geometry

(as described by six torsion angles) as compared to other 19 amino acids.

3.2.4.4 Secondary structure specific pairwise potential

The secondary structure specific implementation has shown to lead to a statistically
significant improvement of the performance over all quality measures compared to the
regular residue-level pairwise potential. Loops are primarily located at the protein
surface and are to a greater extent influenced by non-local interactions in contrast to
helices and sheets which are mainly determined by the local potential M] As loops
have fewer contacts to the rest of the protein than helices and sheets, which are at least
partially surrounded by more residues, it can be speculated that pairwise statistical
potentials tend to be biased towards interaction patterns observed in the protein core.
As a consequence, some motifs observed only in loop regions receive a slightly too high
energy. A specialised potential compiled and applied in a secondary-specific manner

may counteract this.

3.2.4.5 Solvation potential

The calculation of the solvent accessibility solely based on the atoms present in the
coordinate file is problematic. As described in Methods, the solvent accessiblity is
approximated by counting the number of 3 atoms with 9 A arrount the  of the given
residue. Although all chains are taken into account in the calculation, the structure in
the PDB file often does not represent the biologically active molecule. For example in
the case of homo-multimers (i.e. proteins consisting of several identical subunits in the
quaternary structure), typically only one subunit is present in the coordinate file. As a
consequence, some residues which are buried in the native complex are considered

as exposed leading to inaccuracies in the resulting potentials. This is a possible
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explanation for the bad performance of the solvation term and also for the observation,
that a solvent accessiblity specific implementation of the pairwise interaction potential

did not improve the results.

To the best of this author’s knowledge, non of the statistical solvation potentials
described in literatur does take into account the biological unit of the protein in
the derivation of the potentials. To some extent, statistical potentials are tolerant
concerning minor error in the derivation of the observed frequencies as a consequence of
their statistical nature. But, in the case of the solvation potential, the errors introduced

by not considering the biological unit can most probably not be neglected.

In a future implementation of the solvation potential, the information of the biological
unit of the proteins will be taken into account e.g. by using either structures from the
Protein Quaternary Structure (PQS) server@ or by only using monomeric structures.
Both approaches are associated with inaccuracies as well (e.g. because the biological
unit is often assigned wrong @]), but including information about the quaternary

structure is probably the better alternative than ignoring it.

3.2.4.6 Training and evaluation process

In order to reduce a possible over-fitting of any of the potentials, all structures with
detectable homology (based on a BLAST search) to any of the structures of the two
CASP decoy sets were removed from the protein data set used to build the potentials.
In this way, several 100 percent sequence identity hits have been removed. Remarkably,
comparing the results before and after adjusting the potentials, no considerable change
has been observed even for the task of detecting the native fold (data not shown).
This can be explained by the rather large number of structures used to compile the
potentials, where the influence of one specific (even identical) structure is diminished by
the others. In model quality assessment in particular, models with significant errors,
not the actual structures, are evaluated, further reducing a possible bias from the

presence of homologous structures in the data set.

Parameterising and optimising the single term as well as their combination on CASP

decoys represents a reasonable approach since a variety of methods and the entire range

fhttp://pgs.ebi.ac.uk/
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of modelling difficulty is covered. The good performance of QMEAN on all decoy sets
and the fact that the targets of two CASP rounds are completely different indicates
that QMEAN has not been specifically trained to assess models produced by CASP

participants but instead is applicable to the variety of methods.

Although the strategy to derive the weighting factors for the composite score based on
the regression coefficient represents a reasonable starting point (assuming a correlation
between energy and degree of “nativeness”), this approach also has some disadvantages.
Some terms showing a medium correlation to GDT TS can still perform better on
other quality measures and their discrimination power tends to be underestimated. A
good example is the solvent accessibility agreement term which shows lower correlation
to GDT TS than the secondary structure agreement term (Table but performed
consistently better in the CASP7 decoy set over a wide range of conditions (Table[3.16)).
A possible underestimation is also reflected by the low correlation to the QMEANS
score as shown in Table [3.13l The fact that some of the other terms show varying
discrimination power depending on the modelling difficulty may warrant specialised
versions of the scoring function e.g. for free modelling or template-based modelling
targets. In particular, it remains to be seen why decoys for certain free modelling

targets have lower energy than the native structure.

3.2.4.7 Global and target-specific prediction of model quality

QMEAN shows a consistently better enrichment performance based on the fraction
enrichment curves shown in Figure|3.25 and [3.26] compared to other MQAPs for both
the relative prediction of model quality for models of the same target as well as for the
global quality prediction over all targets. Since MQAPs are routinely used to assess
ensemble of models for the same target, the target-averaged fraction enrichment curves
are probably of greater practical interest since they reflect the ability of the scoring
function in discriminating good from bad models. On the other hand, the need for
scoring functions predicting the absolute quality of a model has only recently been
highlighted by the CASP7 assessors [49]. QMEAN represents a further step towards

the prediction of the absolute quality of protein models.
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3.3 The loop prediction routine

3.3.1 General performance

The knowledge-based loop modelling protocol described in this work basically consists
of 3 steps (see schematic representation on page(45 in Methods): selection of fragments
from the fragment database which approximately fit to the geometry imposed by
the anchor groups, filtering of the initial selection in order to remove unfavourable
candidates and, finally, ranking of the remaining loops according to a scoring function.
The optimisation of the parameters and thresholds used in the selection process as
well as for the different filters (anchor geometry filter, clash filter, torsion energy filter
and backbone energy filter) is described in detail in Methods on page [45ff. In this
section, the results of the loop ranking process are described and compared to other
loop prediction methods (section [3.3.2).

The loop modelling accuracy of knowledge-based approaches is determined by two
distinct factors: first, the availability of suitable conformations in the fragment
database based on experimentally solved protein structures and, second, the ability of
the scoring function to identify fragments which are close to the native conformation.
In contrast to ab initio methods, in which the loop conformation is incrementally
built up in the given protein framework, in knowledge-based approaches the candidate
fragments are fitted on the anchor groups located on the N-terminal and C-terminal
side of the loop. Therefore, not only the local conformation of a fragment is important
(as expressed by the local RMSD between the fragment and the native loop after
superposition), but also its orientation in the protein framework (as expressed by
the global RMSD between native loop and candidate loop after fitting on the anchor
groups).

As described in Methods (Chapter 2.3), a maximum number of 3000 fragments are
retained after the application of all filters. In a subsequent step the sidechains are added
to the loop backbone and the loops are ranked based on an all-atom distance-dependent
interaction potential which investigates the compatibility of the loop with the given

structural environment. The evaluation of different scoring functions is described later.

In Figure [3.28 the average (a) and the median (b) global RMSD of the top-ranking
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loops together with the lower and upper bounds of the prediction accuracy are shown
for loops of length of 4 to 12 residues of the test set of Rossi et al. [@] All RMSD
values shown in this section are calculated based on the four backbone atoms of the loop
without the anchor group residues. The lower bound is determined by the loop with the
lowest global RMSD present among the 3000 candidate fragments, averaged over the
different test cases. This represents the maximum possible prediction accuracy which
could be achieved by a “perfect” scoring function, i.e. if the scoring function would
consistently choose the fragment closest to the native conformation. The upper bound
is defined by randomly selecting a conformation out of the 3000 candidates. Detailed
results for loop of length 4, 6, 8 residues are shown later in Table[3.1943.21.

In the majority of the test cases for loops of length 4-7 residues, a fragment with a
global RMSD below 1 A is present in the final selection of 3000 conformations. For
loops below 8 residues, the scoring function shows a good performance in the selection
of near native conformations and works considerably better than the random selection.
For loops of 8 residues and longer the median RMSD of the best fragment in the final

selection increases which reflects the decrease in coverage of the conformational space.

In Figure 3.28, only fragments originating from protein structures showing no mea-
surable sequence identity to the protein in which the loop is modelled have been
used. This allows to avoid trivial predictions and guarantees a fair comparison to
other methods. However, in a realistic application case, depending of the modelling
difficulty (i.e. the sequence identity of the query protein to its templates), fragments
of remote homologous proteins are present and can be used. Figure [3.29 underlines
the influence of the presence of fragments from homologous proteins on the prediction
quality. The median RMSD of the top ranking loops is shown using different sequence
identity cutoffs in order to filter out fragments from homologues of the query protein
i.e. the protein in which the loop is modelled). The homology is detected by a BLAST
5| search of the query protein sequence against the set of proteins used to build the
fragment database. Since BLAST provides local alignments, the percentage sequence
identity over the entire structure can be considerably lower and therefore the prediction

accuracy for a given cutoff even better.

Figure shows that the median RMSD is consistently lower if fragments from

homologous proteins are accepted, suggesting that they are often found on the first
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Figure 3.28: Average (a) and median (b) RMSD of the top-ranking loops per loop
length as well as upper and lower bound of loop prediction accuracy on the test set

of Rossi et al.
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Figure 3.29: Median RMSD of the top-ranking loops per loop length in presence
of fragments originating from homologues of the loops in the test set of Rossi et al.

[174].

rank. Fragments from homologous proteins were exposed to a similar structural
environment and potentially have anchor geometries comparable to those observed
in the protein in which the loop is modelled. This increases to probability that an
analogous local fold is adopt and that the orientation of the fragment with respect
to the protein framework is approximately correct. If no homology filter is applied,
the median of the RMSD drops significantly (lowest curve in Figure [3.29). In this
case, fragments of the native loop conformation itself or of a very close homologue
are ranked first. Since a non-redundant set of protein structures clustered at 95%
sequence identity has been used to generate the fragment database, the loop of the
native structure itself is often not present in the database. These results prove that
the all-atom interaction potential used for loop ranking is able to consistently identify
loops having a very similar or identical conformation compared to the one observed in

the native structure and that these loops are in most cases ranked first.

However, in a realistic modelling situation the local loop conformation is only approx-
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imately correct (for an evaluation of the anchor region see Chapter and the
orientation of the fragment in the protein framwork after fitting on the anchor groups
is rarely ideal. Since the geometry of the anchor groups and the terminal residues
of the fragments are different even for fragments with a local conformation close to
the native one, the fragments are slighly misoriented in the protein framework. The
resulting rotation has a much stronger effect on longer loops as a consequence of the
longer radius. This problem will be addressed in detail at the end of this section and

a possible solution is discussed.

Furthermore, even minor distorsions of the protein backbone with respect to the
native conformation can lead to considerable differences in the orientation of the
sidechains resulting in unfavourable interactions of the loop with its environment
(see e.g. [31] for the description of the backbone-dependent rotamer libraries used
in sidechain modelling). On the other hand, ranking the loops without considering
sidechain interactions is too imprecise since especially the conformation of longer loops
is mainly determined by interactions with the structural environment rather than
by the local geometry (i.e. by torsion angle preferences of the amino acids of the
loop) [19]. The torsion angle potential, for example, but also as the residue-level
interaction potential based on Ca atoms (definitions in Methods page [58) are both
able to roughly discriminate between good and bad fragments but fail in recognising
near native solutions. This is the reason why they are used as filters and not in the

scoring process.

For the final scoring step, a variety of implementations for the all-atom interaction
potential and combinations with other statistical potential terms (torsion angle po-
tential, all-atom solvation potential) have been investigated. A combination with the
anchor group RMSD (describing the “goodness of fit” of the fragment to the geometry
imposed by the anchor residues) has been tried as well. Table shows some of the
best performing scoring functions tested in the evaluation process. The average global

RMSDs on the parametrisation test set are shown for different loop length.

Overall, the all-atom interaction potential shows the best performance in scoring loop
conformations, approximately as good as the combination of the of three statistical
potentials (torsion angle potential, all-atom solvation potential, all-atom interaction
potential) together with the anchor group RMSD (RMSa). This can be partly
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attributed to the fact that some of the terms of the combined scoring function have
been previously used in the filtering step. The information captured by the all-atom
solvation potential is to some extent covered by the all-atom interaction potential: the
propensity of a loops to form contacts with the protein framework insteed of being
solvent exposed described by the solvation potential (e.g. the burial of hydrophobic
residues) is also reflected by the interaction potential. Loops lying against the protein
body tend to have also more favourable interactions and, as a consequence, potentially

lower energies.

Table 3.18: Comparison of different scoring functions on the parametrisation set
for loops of length 4, 6, 8 and 12. A desciption of the terms can be found in Methods
on page [67.

Loop length

scoring function 4 6 8 12

RMSa?® 0.95 2.1 3.16 5.98
RMSa + sequence conservation 1.01 2.19 3.06 5.83
all-atom 2-10 A (default) 0.94 1.95 3.03 5.96
all-atom 2-10 A (environment sidechains rebuilt)? 0.91 1.85 3.28 5.62
all-atom 3-10 A 0.91 2.02 3.2 5.68
all-atom 0-10 A (environment sidechains rebuilt)?  0.85 1.91 3.13 6.22
RMSa + all-atom 1.76 3.08 3.54 5.65
all-atom + solvation 1.72 2.84 3.26 5.7

all-atom + torsion 1.37 2.31 3.75 6.5

all-atom + solvation + torsion 1.32 2.37 3.47 5.88
all-atom + solvation + torsion + RMSa 0.98 1.9 3.08 5.53
Ca-pairwise + Ca-solvation + RMSa® 1.95 2.81 3.48 5.63

?RMSD between the terminal fragment residues and the anchor group residues after fitting.

bIn a second round, the sidechains of surrounding residues within 5 A are rebuilt simultaneously with the loop sidechains.

CScoring function only relying on the loop backbone (used in the backbone energy filter).)

The average RMSD values for four alternative implementations of the all-atom interac-
tion potential are shown in Figure[3.18l A lower distance cutoffs of 2 A performs slightly
better than 3A for medium loop lengths. In the former implementation, hydrogen
bonding is taken into account typically occurring at distances between approximately

2.5 A - 3A ﬂ2—31‘] In two implementations, the structural environment is allowed to
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relax in that the sidechains of all residues having an atom within 5 A around the loop
after the intitial sidechain modelling process are rebuilt in a subsequent step together
with the loop sidechains. Slighly better RMSDs are obtained in this approach for
small loops up the length 6. If no lower distance cutoff is used, the repulsive term at
close distances improves loop ranking for smaller loops but not for longer ones. This
can be attributed to the higher probability of clashes at longer loop lengths. Overall,
the performance differences of the four alternative implementations are only marginal.
Since rebuilding the structural environment results in an increase of the run-time, the
version investigating contacts between 2 A and 10 A (highlighted in bold) is used
in the following. At the end of this section, the application of a subsequent energy
minimisation step based on a molecular mechanics force field is suggested. This would

allow to relax the loop, and, a sidechain rebuilding process would not be necessary.

Using solely the all-atom potential for scoring without considering the RMSa has the
advantage that the scoring function is more generally applicable. Loop prediction
methods are typically tested in self-prediction experiments, which means that a loop
is cut out from a experimental protein structure and rebuilt in the given exact
environment. In the modelling case, the situation is quite different: the environment
is only approximately correct and especially the anchor geometry is usually slightly
distorted (see section [3.4.2) leading to a different orientation of the fragment after
fitting. Whereas in the self-prediction case the RMSa can to some extent indicate
whether a fragment has the correct orientation with respect to the framework, this
is hardly the case in the modelling situation. Therefore this term should not be

used for scoring as done in many knowledge-based approaches described in literature

153, 90, 139,

In the following, the performance of the loop prediction routine on the test set by Rossi
et al. |174] is described in detail. A comparison to other methods is described in the
next section. In Table 3.1943.21, the results for loops of length 4, 6 and 8 are shown.
The results for the other loop length can be found in the Appendix Table 5.11

For loops of length 4 the average (median) prediction accuracy is 0.66 A (0.51 A) if
all fragments from homologous structures are excluded. More than 90% of the loops
are predicted with a global backbone RMSD below 1 A. In column 6 the rank of the
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Table 3.19: Results for loops of length 4 residues from the test set of Rossi et al.

[174].

Global RMSD of the top ranking loop®

PDBID  residues best random random rank no ho- all <90% <50% <30%
loog® 20000¢ 30004 Top1de| molgues homo-
logues

laaj 82-85 0.28 2.21 1.61 6 0.61 0.17 0.37 0.44 0.61
lads 99-102 0.22 3.67 1.83 15 0.24 0.33 0.33 0.33 0.24
1cbs 21-24 0.26 4.7 0.91 3 0.34 0.34 0.34 0.34 0.34
1frd 59-62 0.29 3.58 2.87 6 0.43 0.06 0.39 0.43 0.43
lgpr 123-126 0.34 3.63 1.03 7 2.12 0.07 2.12 2.12 2.12
Infp 37-40 0.95 5.31 2.54 1 0.95 0.95 0.95 0.95 0.95
1pbe 117-120 0.38 2.63 1.38 2 0.42 0.29 0.42 0.42 0.42
1pda 139-142  0.26 1.91 0.9 17 0.32 0.32 0.32 0.32 0.32
1plc T4-77 0.53 1.94 2.24 16 0.81 0.06 0.21 0.58 0.81
1ppn 42-45 0.28 3.48 0.41 79 0.55 0.55 0.55 0.55 0.55
1rcf 111-114 0.11 0.6 0.25 4 0.46 0.46 0.46 0.46 0.46
1thw 194-197 0.36 0.69 3.57 1 0.43 0.43 0.43 0.43 0.43
1tib 46-49 0.32 2.55 4.05 1 0.53 0.53 0.53 0.53 0.53
1tml 42-45 0.87 2.09 2.16 110 2.11 2.11 2.11 2.11 2.11
1xif 82-85 0.32 1.77 1.29 26 0.6 0.1 0.6 0.6 0.6
2exo0 116-164 0.29 4.83 2.47 7 0.51 0.51 0.51 0.51 0.51
2sil 220-223 0.4 1.92 1.74 6 0.51 0.18 0.51 0.51 0.51
2tgi 72-75 0.24 2.11 1.57 4 0.71 0.06 0.5 0.71 0.71
4enl 335-338 0.15 2.53 2.85 2 0.24 0.31 0.31 0.24 0.24
4ger 116-119 0.34 3.64 3.25 3 0.4 0.11 0.4 0.4 0.4
Trsa 47-50 0.28 1.7 2.08 12 0.47 0.35 0.35 0.47 0.47
average - 0.36 2.74 1.95 - 0.66 0.39 0.61 0.64 0.66
median - 0.29 2.53 1.83 - 0.51 0.32 0.43 0.47 0.51

a
b

Best nonhomologues loop present among the 3,000 candidate fragments after all filtering steps.

RMSD of the top ranking loop after removing fragments from homologues above a given cutoff.

®Random selection of a fragment from the maximum 20,000 loops present after application of the torsion energy filter.
dRandom selection of a fragment from the maximum 3,000 loops present after application of the backbone energy filter.

®Rank of the first Topl0 fragment according to RMSD.

first Top10 solution (accoriding to the RMSD) is shown. In majority of the test cases a
Top10 fragments is found among the first 10 ranks. But even if this is not the case the
prediction can be still accurate which confirms that a variety of near native fragments
are present and that the fragment database shows good coverage of the conformational
space at this loop length. Two test cases were predicted with an RMSD above 2 A:in
the first case (PDB identifier 1gpr, residues 123-126), two good loops can be found on
rank 3 (0.55 A) and rank 7 (0.35 A). For the second loop only 2 loops with an RMSD
below 1 A are present in the selection. On rank 7, a loop with an RMSD of 1.31 A is

found.
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Table 3.20: Results for loops of length 6 residues from the test set of Rossi et al.
[174].

Global RMSD of the top ranking loop
PDB ID  residues best random random rank no ho- all <90% <50% <30%
loop 20000 3000 Top10 molgues homo-
logues

Tads 149-154  0.15 8.39 2.23 1 0.15 0.15 0.15 0.15 0.15
lads 150-155  0.27 4.38 3.04 5 0.3 0.18 0.42 0.42 0.3
1brt 174-179  0.73 4.41 3.53 21 1.63 0.05 0.39 1.63 1.63
1brt 253-258  0.76 2.06 4.44 77 1.24 0.06 0.33 0.33 1.24
Lcbs 66-71 0.66 6.82 5.6 2 0.66 0.41 0.41 0.66 0.66
1dim 318-323  0.28 2.33 1.57 5 0.67 0.3 0.67 0.67 0.67
1dts 146-151  0.51 4.05 2.43 2 0.81 1.67 0.81 0.81 0.81
lede 180-185  1.14 3.47 4.4 87 2 0.21 2 2 2
lgca 100-105  0.57 3.63 0.86 5 1.63 0.06 1.63 1.63 1.63
lmrp 233-238  0.34 3.91 3.55 4 1.76 1.76 1.76 1.76 1.76
Inif 211-216  0.76 3.33 2.03 115 3.8 0.18 0.25 3.8 3.8
1noa 25-30 0.61 3.31 2.71 7 3.55 0.05 0.62 0.62 3.55
lonc 12-17 0.94 5.28 4.44 51 2.18 2.18 2.18 2.18 2.18
lrge A 73-78 0.96 3.28 2.84 359 3.58 3.58 3.58 3.58 3.58
Irhs 50-55 0.68 2.22 3.36 7 1.45 0.07 1.45 1.45 1.45
Ltca 38-43 0.65 1.35 1.51 2 0.65 0.08 0.65 0.65 0.65
Ltca 94-99 0.66 4.04 4.04 7 1.72 0.06 1.72 1.72 1.72
Ttys 66-71 0.87 4.94 5.73 17 3.17 0.15 0.35 0.84 3.17
Ixyz A 633-638 0.86 2.97 3.67 5 0.91 0.06 0.43 0.43 0.91
Ixyz A 711-716  0.49 2.6 2.18 10 0.64 0.07 0.26 0.26 0.64
2ayh 81-86 0.86 3.77 3.12 4 0.95 0.06 0.22 0.95 0.95
2mnr 308-313  0.53 6.51 1.41 15 2.1 0.13 2.1 2.1 2.1
2ran 40-45 0.33 3.25 1.79 10 0.57 0.26 0.57 0.57 0.57
2sil 176-181  1.07 2.89 2 4 1.07 0.18 0.74 0.74 1.07
3pte 131-136  0.53 6.73 4.05 2 0.7 0.14 0.7 0.7 0.7
3pte 256-261  0.98 7.32 6.26 3 1.03 0.18 0.82 0.82 1.03
5p21 104-109  0.82 6.65 3.84 7 3.61 3.61 3.61 3.61 3.61
8abp 65-70 0.56 3.28 3.02 16 3.14 0.06 3.14 3.14 3.14
average - 0.66 1.18 3.2 - 1.63 0.57 1.14 1.37 1.63
median - 0.66 3.7 3.08 - 1.35 0.15 0.69 0.83 1.35

If only non-homologous fragments are accepted, an average (median) RMSD of 1.63 A
(1.35 A) is obtained for loops of length 6. 39% of the loops in the test set are modelled
with an RMSD below 1 A and 54% below 1.5 A. If homologues with a sequence identity
of less than 50% are included, the percentage of loops modelled below 1 A increases to
over 57% and the median RMSD drops to 0.83 A. For the vast majority of loop test

cases, a Top10 loop can be found on the first ranks.

As could be seen from Figure/3.28| the prediction accuracy drops considerably between

loops of length 7 and 8. The data suggest that this can be mainly attributed to the

incompleteness of the fragment database concerning fragments with a similar local

geometry and orientation after fitting. Whereas for loops of length 7 in 50% of the test
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Table 3.21: Results for loops of length 8 residues from the test set of Rossi et al.

[174].

Global RMSD of the top ranking loop

PDB ID  residues best random random rank no ho- all <90% <50% <30%
loop 20000 3000 Top10 molgues homo-
logues

la62 71-78 2.41 4.17 3.89 9 3.99 0.13 3.99 3.99 3.99
lads 274-281  1.17 4.53 2.08 71 3.56 0.29 0.29 0.47 3.56
lalc 34-41 3.1 6.59 5.56 203 4.24 0.11 0.89 0.66 4.24
larb 136-143  1.53 3.27 3.18 110 2.66 0.07 2.66 2.66 2.66
lcvl 148-155 1.86 5.23 7.28 842 4.33 0.06 4.33 4.33 4.33
1gof 606-613  0.79 6.37 4.11 1 0.79 0.79 0.79 0.79 0.79
1hbq 31-38 1.55 6.8 4.9 394 3.57 1.22 1.22 3.57 3.57
1hfc 119-126 1.42 7.75 5.84 44 2.5 0.07 0.38 2.5 2.5
1hfc 142-149  0.59 4.81 3.42 9 0.59 0.51 0.51 0.51 0.52
Inar 192-199 1.3 6.02 3.67 106 2.13 0.05 2.13 2.13 2.13
1nif 221-228  2.73 6.77 5.53 62 3.04 0.31 0.26 4.85 4.85
1nif 279-286 0.67 3.73 4.71 5 0.82 0.46 0.46 0.89 1.17
1nls 97-104 0.58 6.22 2.28 5 0.58 0.07 0.41 0.58 0.58
Inwp_ A 84-91 1 2.99 4.89 704 1.91 0.18 0.31 7.6 7.6
loyc 80-87 1.56 2.57 1.91 2 1.91 0.07 1.91 1.91 1.91
lprn 150-157 2.56 3.41 7.1 71 5.14 0.26 5.14 5.14 5.14
1thw 18-25 1.87 6.2 6.3 26 7.79 0.17 7.79 7.79 7.79
1tml 187-194  1.59 2.92 4.69 3 2.79 0.49 0.49 0.49 2.79
2ayh 194-201 1.7 3.56 4.27 15 2.52 0.1 0.25 2.52 2.52
average - 1.58 4.94 4.51 141.16 2.89 0.28 1.8 2.81 3.3
median - 1.55 4.81 4.69 44 2.66 0.17 0.79 2.5 2.79

cases a fragment with RMSD below 1.5 A is present in the final selection, the percentage
drops 21% for loops of length 8. Only 4 loops are predicted with an RMSD below 1 A
(21%). If homologues are excluded, a median RMSD of 2.66 A is achieved which drops
t0 0.79 A if a homology cutoff of 90% is used. By applying no homology filter (column
8 in Table [3.21} the scoring function consistently ranks near native fragments on the
top which underlines that sampling of the conformational space is the main limitation

in modelling of longer loops not scoring.

The scoring function is unable to discriminate between solutions which are approxi-
mately correct and fragmets which have a few favourable interactions but point into
the wrong direction. This holds for both the all-atom interaction potential but also for
scoring functions consisting of multiple terms. For example, a loop establishing only one
or two hydrogen bonds to the environment but having a completely wrong orientation
can still have a considerable lower energy than a loop which has an approximately
correct conformation but several unfavourable interactions (e.g. overlaps of Van der
Waals spheres or atom-atom distances slightly too long for hydrogen bonding). A

correlation between interaction energy of the loop with its environment and RMSD
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can only be expected for conformations close to the native solution.

The conformational space for short loops is restricted by the geometrical constraints
imposed by the anchor region. For longer loops, as the ratio between loop length and
distance between the end points increases, the number of available conformations in-
creases exponentially [251]. The rapid growth in the available alternative conformations
is challenging both for ab initio methods (extensive sampling needed) and knowledge-
based approaches (coverage by the fragment database decreases). Furthermore, the
chance for false positive conformations increases by interactions with other regions of
the protein framework. For knowledge-based approaches, the fitting process represents
another source of errors as a consequence of the difference in the geometry of the
anchor groups and the terminal fragment residues. Several fitting strategies have been
investigated (e.g. fitting of two residues on both sides or fitting on three consecutive
Ca atoms) but did not result in a better performance.

a) Correlation between local RMSD and global RMSD b) Correlation between local RMSD and global RMSD
for a 6-residue loop (PDB identifier 1al3, 198-203) for a 10-residue loop (PDB identifier 16pk, 303-312)
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Figure 3.30: Regression between local RMSD and global RMSD for two loop
prediction test cases of length 6 (a) and 10 (b), respectively.

Figure shows the correlation between local RMSD (based on the fitting the
fragment on the native loop conformation) and global RMSD (based on the orientation
of the fragment after fitting on the anchor groups) for two loop prediction test cases:
On the left hand side, the correlation for the first loop prediction test case of length
6 of the parametrisation set is shown (PDB identifier 1al3, residues 198-203) and in
analogy, on the right hand side, the first test case of length 10 (PDB identifier 16pk,
residues 303-312). For the longer loop prediction, the correlation is considerably worse

compared to the one obtained for the loop of length 6. Several fragments with low
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a) Correlation between local RMSD and all-atom interaction b) Correlation between RMSD and interaction energy after
energy for a 10-residue loop (PDB identifier 16pk, 303-312) fitting on the native loop conformation
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Figure 3.31: Correlation between local RMSD and loop energy calculated after
fitting the fragments on the anchor groups (a) and on the native loop (b), respectively.

local RMSD have a wrong orientation with respect to the native loop as reflected by
the high global RMSD (see highlighted area).

Figure3.31/exemplifies that the poor loop prediction accuracy for longer loops is mainly
a consequence of the misorientation of the fragments in the protein framework (beside
the decreasing database coverage) and not a problem of loop ranking. Two alternative
regressions between the local RMSD of the fragments and their energy are shown
for a loop prediction test case of length 10 (PDB identifier 16pk, residues 303-312). In
Figure[3.31]a) a regression between the local RMSD of the fragment with respect to the
native conformation and the score of the fragment (after fitting of the anchor groups)
is shown. Virtually no correlation exists and several fragments with low local RMSD
have energies higher than the average of the ensemble. In Figure(3.31/b) each fragment
has been fitted on the native loop conformation in order to enforce an approximately
correct orientation (at least for fragments having a similar local geometry compared to
the native loop). This respresents only a hypothetical example, since the native loop
is, of course, not known in the application case. As it can be seen, a correlation exists
for loops close to the native one and most of the low RMSD loops get assiged scores
considerably lower than the rest of the fragments. Furthermore, several near-native
loops around 1 A RMSD are not oberved on the plot on the right hand side since they
have been filtered out by the clash filter as a consequence of the wrong orienation with

respect to the structural environment.

A reasonable extension of the current loop prediction protocol represents the appli-
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cation of a molecular mechanics force field for a subsequent energy minimisation step
(not in the scope of this work). Energy minimisation of the loop and possibly the
sidechains of the surrounding structural environment could counteract several inherent
problems of knowledge-based approaches. The fitting of a rigid fragment in a fixed
protein framework results in very unfavourable bond lengths and angles between the
anchor residues and the first loop residues which should be relaxed. Annealing the loop
with the anchor residues and simultaneously relaxing the loop in the given structural
environment can adjust the orientation of the fragment with respect to the protein
framework. Thereby atomic clashes are removed and favourable interactions can be

established such as hydrogen bonds and salt bridges.

The following strategy could be used in a future implementation:

e Application of the loop prediction protocol described here for the selection of

candidate fragments and for an initial ranking.
e Energy minimisation of the top ranking fragments (e.g. to top 20 predictions).

e Optionally, re-scoring according the force field energy (with implicit treatment of

solvation effects for example by the Generalized Born solvation model [82]).

Such a strategy most probably improves the prediction quality for longer loops and
extends the applicability of the knowledge-based approach described in this work which
seems to be limited to loops of up to length 7 according to the results shown above.
For loops of up to length 10, a fragment below 2 A is present in the final selection
in at least 70% of the test cases but this percentage drops to 23% and 11% for
loops of length 11 and 12. Although the data basis is too sparse for well-founded
conclusions, this observation suggests that for loops up to a length of approximately
10 residues, fragments from the database could be used as reasonable staring points
for a subsequent energy minimisation. Vlijmen and Karplus [226] conlcude in 1997
that candidate segments can be used as suitable starting points for loops of length up
to nine. In contrast to the strategy described above, Vlijmen and Karplus selected
the candidate fragments for energy minimisation (using the CHARMM M] non-
bonded energy function) from the 50 loops closed to native (which are not known

in the application case). Therefore, using the current method to preselect suitable
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fragments represents a very promising strategy. Recently, Soto et al. used the statistical
potential DFIRE ] in order to reduce the number of conformation generated in an
ab initio search based on the Direct Tweak algorithm M] and subsequently scored
the candidates with the OPLS force field [106].

3.3.2 Comparison with other methods

In the following, the loop prediction routine presented in this work is compared to

other methods based on two different test set:

e A comprehesive test set of approximately 200 loops of length 4-12 used recently by

Rossi et al. |174] in order to benchmark 4 commercial loop prediction programs.

e A set of 14 test cases covering loops of length 4-9 which has been frequently
literature used for the evaluation of different loop modelling algorithms (e.g. in
ﬂ;, ’TZSS)]) The complete test set in available online®.

For the test set of Rossi et al. the prediction results of the 4 commercial programs
were requested from the author directely (Karen A. Rossi). Two ab initio methods
(Prime, Modeler) and two knowledge-based loop modelling protocols are compared in
this study dTM] The 4 methods are briefly described here:

e The Loop Refinement module in Prime 2.5 (Schrodinger, LLC) extensively
samples the conformational space by a dihedral-angle-based buildup procedure
and uses the OPLS-2001 force field [106] together with the Generalized Born
solvation model ] in order to minimise and rank the loop candidates.

e The Refine Loop functionality implemented in Modeler (Accelrys Software Inc.)
relies on conjugate gradients and molecular dynamics with simulated annealing
ﬂ%] and uses the CHARMM-22 force field M] combined with statistical potential

terms.

Shttp://www.drug-redesign.de/LIP/LIP_WebseiteErgebnisse.html
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e The Loop Sampling option in ICM 3.4-8 (Molsoft LLC) uses fragments extracted
from a nonredundant subset of the PDB and ranks the fragments based on

geometrical fit of the loop ends and sequence similarity.

e The Protein Loop Search module in Sybyl 7.1 (Tripos) uses a fragment database
constructed from the PDB and selects the candidates based on the geometrical fit
to the anchor groups. If no suitable fragments are identified an ab initio protocol

is used.

For the two knowledge-based approaches, all fragments from proteins sharing more
than 90% sequence identity to the protein of the loop test set are excluded in the
study of Rossi et al.. Despite this rather permissive cutoff, the results (average
global backbone RMSD) for both knowledge-based approaches but also for Modeler
are astonishingly bad (Figure [3.32). The loop prediction method presented in this
work performs consistently better than these 3 methods but slightly worse than Prime
which can be attributed to the extensive sampling strategy and especially the advanced

scoring function for energy minimisation and ranking used in this method.

For Prime and Sybyl as well as for the present method, the prediction accuracy drops
rapidly for loops longer than 7 residues. The median of the global RMSD for all
methods is greater than 2 A for loops of length 8. If fragments originating from
proteins sharing less than 50% sequence identity to the proteins of the test set are
included, the performance of the present methods becomes comparable to Prime. If
a cutoff of 90% is used as in the other to knowledge-based approaches, this method
outperforms Prime for some loop length (length 7,8,10 and 11).

The second test set consists of 14 short and medium loops of length 4-9 and has been
previously used in literature in order to test loop prediction methods @, , @] The
first two methods (column 4 and 5 in Table [3.22) are knowledge-based approches, the
next three are ab initio methods and, finally, the method by Deane and Blundell ist
a combination of both. The different methods are not described in detail here. The
results of the two knowledge-based approaches need to be treated with caution and
the approaches are therefore briefly described here: In LIP Eﬁ&)], loops are extracted
from a fragment database and ranked according to the geometrical fit to the anchor

residues but a very permissive filter in order to remove loops from homolues has been
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a) Comparison with four commercial loop prediction methods
on the test set of Rossi et al. (average global RMSD)
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b) Comparison with four commercial loop prediction methods
on the test set of Rossi et al. (median global RMSD)
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Figure 3.32: Comparison to four commercial loop prediction programs: Average (a)
and median (b) RMSD on loops of lenth 4-12 of the test set of Rossi et al. ]
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Table 3.22: Comparison with other methods on 14 loops of length 4-9 “%, ’@]

Length PDB Residues ~ Vlijmen LIP Fiser et ModLoop RAPPER Deane CODA  Present

ID et al. [139] al. [77]  Server Server et al. Server method
x[?] * [78] [50,56] [53]*  [53]

4 3dfr 20-23 2.6 1.3 1.2 1.8 1 0.4 - 1.3

5 3dfr 89-93 1.6 3.3 1 1 1.1 0.6 1.3 0.9

5 3dfr 120-124 0.5 2.1 0.3 0.4 0.6 0.7 0.7 0.7

5 3blm 131-135 0.8 0.2 0.2 0.2 0.1 0.2 0.4 0.4

6 8abp 203-208 0.3 0.8 0.4 0.4 0.5 0.8 0.8 0.7

7 8tln_E  32-38 3.7 0.3 2 3.5 3.3 1.9 2.2 2.8

7 3grs 83-89 4.6 2.4 0.4 0.6 0.4 1.4 5.3 5.9

7 5cpa 231-237 2.1 0.3 1 5.8 0.7 0.2 2.8 2.5

7 2fb4 H  26-32 1.6 0.2 4.2 4.4 0.6 0.4 0.4 0.3

7 2fbj H  100-106 0.5 9.2 0.8 3.1 1 1.4 1.7 2.7

8 2apr 76-83 5.2 0.5 1.3 2.7 0.6 2.2 5.3 1.7

8 2act 198-205 1.6 0.1 2 2.8 3.5 3.1 6.2 5.9

8 8tln_ E  248-255 1.8 0.6 0.9 3.3 0.8 1.8 3.7 2.0

9 3sgb B 199-211 1.8 0.2 0.3 0.7 0.3 - - 0.9

“Methods marked with an asterisk use an RMSD based on only 3 backbone atoms (without oxygen).

applied such that the results probably do not reflect the performace of the method in
a modelling application. As mentioned in the last section, in the approach of Vlijmen
et al. M], the 50 loops from a database search being closest to the native loop (being
unknown in the application case) are subjected to a subsequent energy minimisation

using a molecular mechanics force field.

In general, the present method shows comparable results to the other methods
especially for shorter loops. For some loops of length 7 and 8 (for which most of the
other methods had problems as well) bad results are obtained. It sould be mentioned
here, that the methods marked with an astesisk in Table3.22 use an RMSD based only
on three backbone atoms (without the oxygen) with is typically slightly lower than the
RMSD over all backbone atoms. For the first loop which was predicted with a RMSD
above 5 A (3grs, 83-89) a fragment with 1.36 A was found on rank 4. The second outlier
(2act, 198-205) represents a difficult test case for the given method since it involves
the formation of a disulfide bridge of the first N-terminal residue (the cystein) with the
environment. As a consequence, many fragments clashed with the environment, since
the protein framework was extremely close to the N-terminal anchor in this example.

Given that the presence of a disulfide bridge is known before, the present method would
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have benefitted from a subsequent energy minimisation step allowing the fragment to

relax in the environment, adjust its orientation for the disulfide bridge.

Recently, remarkably accurate predictions have been reported also for long loops with
RMSD values below 1.5 A for loops of length 11-13 residues [251]. These results
were possible if extensive sampling is used and if crystal contacts are taken into
account in the scoring which reflects that conformations of longer loops observed
in protein structures determined by X-ray crystallography are sometimes not native
conformations observed in solution. The CPU time (AMD processor with 1.4 GHz or
900 MHz) needed for the calculation of a loop of length 11 (12, 13) took on average
12 days (19 days, 31 days) in this study! The loop prediction routine presented in this
work needs on average less than 2 hours per loop prediction test case independent of the
loop length (Intel Xeon 2.80 GHz). In knowledge-based loop prediction, the CPU time
scales only marginally with the loop length in constrast to ab initio methods which
often show an exponential relationship. The vast majority of the computation time
in the present method is spent on the calculation of the sidechain orientations for the
3000 loops in the final selection. The speed of sidechain prediction step highly depends
on the presence of close atoms (potential clashes) in the structural environment. The
selection of the fragments from the MySQL database as well as the application of all
filters takes typically only a few minutes depending on the network connection since
a considerable amount of data (mainly of the loop coordinates) have to be transfered.
The computation time can be accelerated if stricter cutoffs are used in the filtering

step and therefore fewer sidechain orientations have to be predicted.
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3.4 Local model quality assessment and anchor group

prediction

In this section the applicability of statistical potentials for the assessment of the local
model accuracy is discussed briefly, since an extensive evaluation was not the scope
of this work. The aim is to show that a local model quality analysis is possible.
Furthermore it is analysed whether local model energy profiles can used in order to

predict the location of anchor groups serving as starting points for the loop prediction
process.

3.4.1 Local model quality assessment

As an example, the energy profile of our first model submitted to the CASP7 target
T0373 is shown in Figure [3.33 together with the residue-specific backbone RMSD

between the model and the corresponding experimental structure (lower curve).

Local Energy Profile: backbone RMSD (target T0373 vs model) and Z-score of composite energy

sliding-window size: 9 residues
16 - —— RMSD backbone
— Energy Z-score

o
o = N w &

backbone RMSD
Z-score

S bk b L

Figure 3.33: Example of a model energy profile for model 1 submitted for target
T0373. The per-residue RMSD is given in the lower curve.

The energy profile was obtained, as described in Methods (Chapter 2.4.5), by adding
up the per-residue energies in a sliding window of size 9 and by combining the three
statistical potenial terms (torsion angle potential over three residues, all-atom solvation
potential and short-range all-atom interaction potential) based on Z-scores over the

entire model. The x-axis shows the sequences of the experimental structure and of the
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model, respectively (the gap indicates that four residues have not been resolved in the

experimental structure), together with the secondary structure of the target.

A clear relation between energy and model accuracy can be observed: the peaks in the
upper curve, representing regions of high energy, coincide with the local model accuracy
expressed by the structural deviation between target and model. Similar results have
been obtained for other models. The correlation between peak height and extend of
structural deviation is less pronounced which can be partly attributed to the simple
strategy used to combine the different statistical potential terms based on Z-scores.
Especially the predicted model accuracy based on the interaction potential (and also
the solvation potential) should be treated with caution: Since interaction potentials
are two-body potentials (in contrast to single-body potentials such as the torsion angle
potential), the high energy resulting from a unfavourable interaction is assigned to
both partners. For example, a solvent exposed loop lying against the wrong region of
the protein surface gets assigned high energies as a consequence of the unfavourable
interactions and the loop regions is therefore predicted to be of low accuracy. On the
other hand, the same holds for the residues in contact with the loop although the high
energies can to some extent be compensated by other, more favourable interactions
with the structural environment (e.g. with residues of the protein core). In this
given situation, the location of only one interaction partner is wrong and therefore
the high energy (i.e. the predicted low model accuracy) should be assigned to one of

the interaction partners, in this case to the loop.

The second last peak in the energy profile given in Figure [3.33] represents such an
example: The helix in this region (residues 95-111) is approximatielly correct, despite
a small shift with respect to the experimental structure. The residues have a backbone
RMSD below 2 A, but since the helix is in contact with a loops showing serious
deviations from the native conformation (residues 27-35), this region gets assigned
a high energy. An extract of the structural superposition of the model and the
corresponding experimental structure is shown in Figure [3.34/ (Car atoms only). The
wrong loop as well as the part of the nearby helix which both got assigned high energies

in the profile shown above are marked in bold.

Single-body potentials, such as the torsion angle potential, do not have this problem.

A possible strategy could be to use the torsion angle energy of the interaction partners
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Arg-111

native loop L7

Figure 3.34: Extract of the superposition between the experimental structure of
target T0373 (light grey) and the model with an incorrect loop in contact with a
nearby helix (dark grey).

in order to assign the high interaction energy to one of the participating residues.
The secondary structure constitution of both regions can also be taken into account,
since loop regions are more likely incorrect than helix and sheets which are usually
part of the structural core. Anyway, the preliminary but promising results indicate
that the statistical potentials developed in this work can be used in the analysis
of the local model accuracy. In future developments the combination of the terms
should be optimised on a comprehensive test set. Two recent publications concerning
local model quality assessment use support vector machines [68] and artificial neural
networks [234], respectively, in order to combine multiple terms. The use of machine
learning algorithms in order to combine different terms in a composite scoring function
is surely a resonable approach. The authors do not address the problem of two-body
potentials for local model quality assessment although machine learning algorithms can
possibly cope with this situation if implemented correctly. A future implemtation of

the local energy function should take this into account.



156 Results and Discussion

Statistics on all 1091 insertions in 257 structural alignments
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Figure 3.35: Statistical analysis of insertions in a set of 257 structural alignments
between pairs of homologous proteins.

3.4.2 Analysis of the anchor region around gaps

In this section, a statistical analysis of the length of insertions and deletions occurring
in typical modelling situations is performed based on a comprehensive set of structural
alignments obtained from the HOMSTRAD database M] (see Methods on page[70).
Furthermore, the structural consequences of isolated insertions and deletions in loops
is investigated and the region around the gaps is analysed for the location of suitable

anchor groups. Several strategies for the prediction of anchor groups are discussed.

Figure 3.35 and [3.36/ show the distribution of gap lengths for 1091 insertions and 945
deletions extracted from a non-redundant set of 257 structural alignments between pair
of homologous proteins sharing less than 40% sequence identity representing realistic
modelling situations. More than 35% of all gaps are of length 1. 73% of all insertions
and 77% of all deletions are smaller than 5 residues. The distribution of the gap lengths

for insertion and deletions is quite similar.

In Table [3.23] the results of the analysis of the local structural environment around
the gaps is shown. The analysis of the 257 structure-based sequence alignments reveals

that approximately 10% of the insertions and 15% of the deletions are located in
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Statistics of all 945 deletions in 257 structural alignments
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Figure 3.36: Statistical analysis of deletions in a set of 257 structural alignments
between pairs of homologous proteins.

within secondary structure elements. Among those, 58% of the insertions and 55% of
the deletions are close of the end of the secondary structure elements (i.e. not more
then 2 residues apart from the next loop region). These results underline the advantage
of being able to remodel parts of secondary structure elements (e.g. by extending or
truncating secondary structure elements as part of the loop prediction process). In
contrast to most knowledge-based loop modelling procedures described in literature
which are specialisied on the prediction of “pure” loop regions, the method described

in this work is able to model any structural segment.

The majority of the gaps are located within loop regions. From those, 642 (632) of
the insertions (deletions) have secondary structure elements within 10 residues on both
sides. The remaining gaps are located in longer loops (of at least 10 residues), 119

(157) of them are longer than 20 residues in the insertion (deletion) test set.

The region around the gaps has been inspected for possible anchor groups. In analogy
to Lessel and Schomburg M], at least 3 consecutive residues with an RMSD below
1.8 A with respect to the corresponding residues in the alignment have to be present

on both sides of the gap. In the given test set, only 16% of the insertion 23% of
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Table 3.23: Analysis of the structural environment of 1091 insertions and 945
deletions in 257 structural alignments.

description # insertions # deletions
gaps in secondary structure elements (SSE) 108 145
gaps within SSE but with 2 residues of SSE-end 63 80
gaps within loops with SSE begin within 10 residues 642 632
gaps with 3 alignable residues on both sides® 177 214
gaps with 2 alignable residues on both sides 266 295
gaps with no residue < 1.8 A RMSD within 10 residues 216 179
gaps with neighbouring gap within 10 residues 504 442
gaps with neighbouring gap within 8 residues 258 259
gaps with neighbouring separated by < 4 residues 50 51
final number of gaps in “anchor group test set” 112 124
total number of gaps 1091 945

®At least 3 consecutive residues with an RMSD below 1.8 A are found on both sides of the gap.

the deletion fulfill this condition. The percentages raise to 24% and 31% if only 2
residues on both sides are required. The different percentages observed for insertions
and deletions confirm the expected stronger influence of insertions on the structural
environment compared to deletions. For approximately 20% of the gaps, non of 10
residue on both sides has an RMSD below 1.8 A. These results show that there
are often considerable local deviations between pairs of homologous proteins in the
potential anchor regions. This can be partly attributed to the presence of remote
homologues in the test set representing difficult modelling test cases (one quarter of
the pairs have a sequence identity below 20%). Furthermore, as the sequence identity
decreases, the secondary structure elements of the structural core are often slightly
displaced between the homologues. If multiple homologues (templates) are present
in the modelling process, using different parts of different templates can potentially
improve the coverage and bring the model closer to the experimental structure of the
target. The identification of regions where the model can benefit from fragments of
other templates is not a trivial task. A local scoring function, as described in the last

section, can potentially support the decision.

46% of the insertions and 47% of the deletions have a neighbouring gap within 10

residues. If the neighbouring gap is close (e.g. separated by less than 4 residues as
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Figure 3.37: Schematic representation of the anchor group prediction problem.

observed for a total of 101 gaps in the test set) they would be definitively merged
and modelled in one step. Otherwise, it has to be decided in the modelling process
whether these gaps are merged and modelled by a longer loop or whether they are
treated separately. In the later case, structurally conserved residues have to be present
between the gaps serving as anchor groups. As can be seen from Table [3.23 this
situation occurs quite often. The analysis of the local energy profile can possibly help

indentifying structurally conserved residues.

A subset of 112 insertions and 124 deletions has been extracted from all gaps from the
test set by applying the criteria described in Methods (Chapter 2.4.6.2). The regions
around the gaps are analysed and different strategies for the positioning of anchor
groups are compared in the following. A schematic representation of the anchor group
prediction problem is given in Figure[3.37. An extract of the structural alignment and
the corresponding sequence alignment of a pair of distantly homologous proteins is
shown. The target structure is coloured in grey and refers to the first sequence in the
alignment. The superposition points out the structural consequences of the 1-residue

deletion observed in the loop region.

Anchor group prediction refers to the attempt to identify those regions on both sides
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of the gap (or any structurally non-conserved loop to be remodelled) where the target
structure begins to deviate from the template and therefore the backbone coordinates
cannot be simply copied. In the given example the anchor groups are positioned
close to the end points of the surrounding helix and sheet, respectively, and sequence
conservation has been taken into account. On the C-terminal side of the deletion,
glycine 204 has been used as anchor group, which, by looking at the superposition,
turned out to be a good decision. On the N-terminal side, the anchor group has been
placed within the strand, resulting in 8 residues to be remodelled. The conserved
arginine immediatelly after the strand represents another possible anchor and would
reduce the number of residues to model by two and a shorter loop can potentially be
predicted more accurately (see Chapter 3.3).

This highlights the problemtic situation in anchor group prediction: a reasonable
compromise between accuracy of the anchor groups and length of the fragment to
be remodelled has to be found which is not a trivial task and difficult to automate.
As shown exemplarily in Figure regions of low energy in the energy profile of
a model often correspond to structurally conserved segments representing promising
anchor groups for the loop modelling process. The energy profiles are based on a
sliding window of size of 5 using the central residue together with the 4 neighbouring
residues in direction away from the gap. A variety of other implementations have been
tested but resulted in a worse performance. Figure [3.38 shows that there is indeed
a correlation between the local structural deviation as expressed by the S-score (see
definition in Methods on page [72) between target and template and the local energy,

although not very pronounced.

Table [3.24 and Table show the average loop lengths and RMSDs of the anchor
group residues between target and template for different anchor group prediction
strategies on the test sets of 112 insertions and 124 deletions. Approaches with and
without the use of information obtained from the energy profiles are compared and
related to an “optimal” anchor group positions (i.e. if the RMSD between taget and
template is assumed to be known). For the insertion test set, an average backbone
RMSD of 0.87 A is achieved if the anchors with minimal RMSD within 10 residues on
both sides of the gap are taken. This results in an average loop length of 14.59 residues

which is too long for accurate loop modelling. If the first anchor groups (starting from
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Correlation between S-score and local all-atom energy for all anchor
groups within 10 residues of insertions (window size 5)
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Figure 3.38: Regression between S-score (as a measure for the local deviation
between target and template, definition in Chapter [2.4.6.2) and local energy.

the gap) with an RMSD below 1.5 A (2A) are used, an average loop length of 9.26
(7.24) residues is achieved which are reasonable loop length for modelling. For the
deletion test set, the average loop lengths (and also the RMSDs) are lower as expected
since the “gap residues” are not modelled in this case. Even these “optimal” anchor
groups show on average considerable deviations from the native structure. This has
to be taken into account in the loop ranking process of knowledge-based approaches:
Loop ranking methods with only rely on the geometrical fit of the fragments on the
anchor groups are potentially not applicable in realistic modelling situations. In the
loop prediction method described in this work, this criteria has not been used (in
constrast to most existing algorithms) and the ranking has been performed based on

the interaction potentials as described in Chapter [3.3|

The results for the deletion test set are not discussed in detail here. Deletions are
typically much easier to model than insertion since the structural consequences of

deletions on the surrounding residues are less pronounced. A simple strategy of using
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Table 3.24: Comparison of different anchor group prediction strategies on a test set

of 112 insertions.

strategy used for anchor group positioning

ORMSD OQloop length

fixed distance from gap: 1 residue 3.11 3.42
fixed distance from gap: 2 residues 2.40 0.42
fixed distance from gap: 3 residues 2.00 7.42
fixed distance from gap: 4 residues 1.67 9.42
energy minimum within 3 residues (all- atom) 2.22 6.17
energy minimum within 3 residues (3 terms)® 2.29 6.11
energy minimum within 4 residues (all-atom) 1.95 7.42
energy minimum within 4 residues (3 terms) 2.05 7.21
fixed depth in SSE: 0 residues (SSE begin) 1.92 8.49
fixed depth in SSE: 1 residues 1.66 10.49
energy minimum around SSE end (all-atom) 1.92 8.22
energy minimum around SSE end (3 terms) 2.09 7.75
global energy minimum within 10 residues (3 terms) 1.39 13.36
anchors with lowest RMSD 0.87 14.59
first anchors with RMSD < 1.5 A 1.46 9.26
first anchors with RMSD < 2 A 1.69 7.24

?The minimum in the energy profile based on the all-atom interaction potential is taken.

A combination of the all-atom interaction potential, the torsion potential and the solvation potential is used.

Table 3.25: Comparison of different anchor group prediction strategies on a test set

of 124 deletions.

strategy used for anchor group positioning

ORMSD Oloop length

fixed distance from gap: 1 residue 3.24 2

fixed distance from gap: 2 residues 2.27 4

fixed distance from gap: 3 residues 1.76 6

fixed distance from gap: 4 residues 1.46 8

energy minimum within 3 residues (all-atom) 1.91 5.13
energy minimum within 3 residues (3 terms) 2.03 4.99
energy minimum within 4 residues (all-atom) 1.72 6.68
energy minimum within 4 residues (3 terms) 1.75 6.39
fixed depth in SSE: 0 residues (SSE begin) 1.98 6.27
fixed depth in SSE: 1 residues 1.52 8.27
energy minimum around SSE end (all-atom) 1.76 6.68
energy minimum around SSE end (3 terms) 2.06 5.88
global energy minimum within 10 residues (3 terms) 1.36 12.48
anchors with lowest RMSD 0.76 13.15
first anchors with RMSD < 1.5 A 1.35 7.21
first anchors with RMSD < 2 A 1.63 5.04
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anchor groups approximately 3-4 residues away from the gap results in better anchor
groups than any other, more sophisticated approach. The average length of the loop

to be remodelled in this approach is between 6 and 8 residues.

The first four lines in Table [3.24 show the average loop lengths and RMSDs if fixed
anchor group positions relative to the gap are used for distance of 1 to 4 residues. For
insertions, the probably best compromise between loop length and RMSD of the anchor
groups is approximately 3 residues away from the gap (average RMSD 2A loop length
7.42). If the energy profile is taken into account the RMSD or the loop length can be
slighly lowered. If the anchor groups are positioned within the surrounding secondary
structure elements, lower RMSDs can be achieved but only at the cost of longer loops.
This can be attributed to the fact that (for longer loops) the secondary elements can
be far away. Depending on the structural conservation, anchor groups closer to the gap
can possibly be used. If the energy profile is taken into account (using a combination of
three statistical potential terms), the average loop length can be reduced from 8.49 to
7.75 at the cost of a slightly higher RMSD. Additional characteristics of the potential
anchor residues, such as hydrophobicity, solvent accessibility and sequence conservation
have been also taken into account (as suggested by Wohlfahrt et al. ]) but did not
improve the prediction over the statistical potentials. This can be attributed to the
fact that these factors are to some extent covered by the statistical potential terms.

The approach of simple adding Z-scores of the terms is also not optimal.

Generally, the use of information about the local energy of the candidate anchor groups,
did not result in a considerably better predictions. Local energy functions are possibly
to imprecise for the prediction of exact locations (on the level of single residues) and
are more appropriate for the identification of segments of structural deviation which
can be subjected to refinement in order to bring the model close to the experimental

structure or for loop prediction.

Another factor complicating the automation of the anchor group prediction task is
closely connected with the knowledge-based approach to loop prediction used in this
work: the spacial orientation of the database fragment after fitting on the anchor group
atoms, is highly sensitive to distortions of the anchor geometry. Thus, it is not only
important to position the anchor groups near the end of the structurally conserved

region of the template, but also to take into account that a suitable fragment with
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a similar overall geometry and showing a correct orientation after fitting has to be
present in the database. A worse anchor group in terms of backbone deviation from
the target structure can still result in better loop modelling results if a loop with a
better orientation after fitting is present in the database or if the gap can be bridged
by a shorter fragment which can potentially be predicted more accurately. For the
knowledge-based loop prediction routine presented in this work (Chapter [3.3), the

prediction quality decreases considerably between loops of length 7 and 8 residues.

The best strategy to cope with the uncertainties concerning anchor groups selection
and loop modelling is to use multiple alternative anchor groups and a set of top-scoring
loops for each combination in the modelling process and to subsequently select the best
prediction based on the quality of the final model. The QMEAN scoring function @]
presented in this work (Chapter [3.2)) can be used for this task since it is both fast and

reliable in discriminating good from bad models.



4 Conclusions and Outlook

The prediction of the 3-dimensional structure of a protein from its sequence is
greatly facilitated by the presence of proteins with experimental structure sharing an
evolutionary relationship to the target protein (homology modelling). The aim of this
work was to establish a loop prediction methods which optimally takes advantage of
the growing number of proteins present in the database of known protein structures.
Furthermore, scoring functions need to be implemented which can be used for the
ranking of candidate fragments in loop modelling and for the assessment of the quality
of the generated models. Both tasks are of crucial importance for the final applicability
of the models. As a framework in order to deal with loop prediction and model quality

assessment, a complete homology modelling pipeline has been established.

The homology modelling pipeline has been tested at the seventh round of the
community-wide CASP experiment in summer 2006. The results on the 18 investigated
targets confirmed that the modelling pipeline is able to produce very accurate homology
models: 3 extraordinarily good predictions have been submitted (rank 2, 4 and 6
of over 130 participating groups) and the vast majority of remaining targets have
been modelled above the community average. Several factors are responsible for these
results: beside a good strategy for template identification and alignment building, the
ability to not only remodel loop regions but any structural segment (e.g. chain ends or
segments containing secondary structure elements) is an important ingredient together
with the scoring function used to assess to quality of the produced models and to select

of the most reliable candidate.

A composite scoring function (called QMEAN) has been presented consisting of three
statistical potential terms covering the major aspects of protein stability and two
additional terms describing the agreement of predicted and calculated secondary
structure and solvent accessibility, respectively. QMEAN has been shown to be a
valuable tool for the discrimination of good from bad models and performs significantly
better than five well-established methods on a comprehensive test set of 22,420 models

from CASP7. Some of the scoring function terms turned out to be more specialised for
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a specific task (e.g. the torsion angle potential over 3 consecutive residues developed
in this work turned out to be very effective in recognising the native fold) whereas
other factors are more widely applicable. The results confirm that a combination of
multiple terms increases the performance of the scoring function by taking advantage
of the strengths of certain terms for a specific task while reducing a possibly negative
contribution of other terms. The statistically significant improvement in performance of
QMEAN over five methods gets even more pronounced when taking into account that a
simple linear combination was used in order to combine the different terms to the final
scoring function. The performance of the QMEAN scoring function can potentially
be improved by the application of machine learning algorithms for the combination of
the terms and by using specialised versions of the scoring function depending on the
resolution of the models (e.g. by using a fine-grained all-atom implementation for the
assessment of models generated by comparative modelling and residue-level potentials

for the analysis of rough models predicted by ab initio methods).

The loop modelling routine presented in this work combines a knowledge-based
approach for conformational sampling based on a comprehensive fragment database
with a knowledge-based approach for scoring of the selected fragments based on an
specialised all-atom interaction potential. In contrast to other database loop prediction
approaches described in the literature, loop ranking is performed based on the complete
loop including sidechains. The presented method is able to accurately model loops of
length up to 7 residues and outperforms 3 of 4 commercial loop prediction programs
on a comprehensive test set of over 200 loops of length 4-12 residues. An average
(median) global backbone RMSD of 0.66 A (0.51 A) and 1.63 A(1.35 A) is obtained
for loops of length 4 and 6, respectively. If fragments from proteins sharing less than
50% sequence identity to the proteins in the loops test set are included, the median
prediction accuracy drop below 1 A per loop length for loops up to 7 residues. For loops
longer than 8 residues the prediction accuracy drops as a consequence of the database
incompleteness and the fact that the orientation of the fragments after fitting in the
protein framework is only approximately correct resulting in an atomic displacement
increasing with the loop length. A subsequent energy minimisation step using a
molecular mechanics force field can counteract the inherent problems of database

loop prediction approaches. In this way, the loop can be annealed with the anchor
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groups and at the same time the loop conformation can be relaxed in the structural
environment. Energy minimisation and re-ranking of the top scoring loops generated
with the given method represents a very promising strategy to extend the applicability

of knowledge-based loop prediction approaches toward longer loop lengths.

A prediction of suitable anchor groups serving as starting points for loop prediction
based on the analysis of the local model energy around insertions and deletions turned
out to perform only marginally better than placing the anchor groups at a fix distance
from the gap and near the end of the surrounding secondary structure elements. Anchor
groups should be placed at the end of the structurally conserved region of the template
structure (i.e. in the region where target and template begin to deviate) and at the same
time, the length of the loop to be remodelled should be kept as short as possible. In
the context of knowledge-based loop prediction, another factor influences the location
of the optimal anchor groups: A fragment with a locally correct geometry needs to be
present in the database which, after fitting on the anchor groups, approximately shows
a correct orientation with respect to the protein framework. Due to the interplay of
all these factors, the best approach is to use several alternative anchor groups in the

modelling process.

A reasonable future extensions of this work represents the automation of the whole
modelling process. The best strategy in order to cope with the multitude of factors
influencing the accuracy of protein structure models is to generate a vast amount of
alternative models (e.g. by using multiple templates, alternative alignments, different
anchor groups and several loop conformations) and to subsequently select the final

model based on the scoring function described in this work.






5 Appendix

Table 5.1: Classification of the 95 target of CASP7 according to their difficulty in
free modelling (FM), template-based modelling (TBM) and high-accuracy template-
based modelling (HA-TMB) targets. HA-TBM are a subsection of TBM targets.

category targets

FM T0287, T0296, T0300, T0304, T0307, T0309, T0314, T0316, T0319,
T0321, T0347, T0348, T0350, T0353, T0356, T0361, T0382, T0386
TBM T0283, T0284, T0285, T0286, T0288, T0289, T0290, T0291, T0292,

T0293, T0295, T0297, T0298, T0299, T0301, T0302, T0303, T0305,
T0306, T0308, T0311, T0312, T0313, T0315, T0317, T0318, T0320,
T0322, T0323, T0324, T0325, T0326, T0327, T0328, T0329, T0330,
T0331, T0332, T0333, T0334, T0335, T0338, T0339, T0340, T0341,
T0342, T0345, T0346, T0349, T0351, T0354, T0357, T0358, T0359,
T0360, T0362, T0363, T0364, T0365, T0366, T0367, T0368, T0369,
T0370, T0371, T0372, T0373, T0374, T0375, T0376, T0378, T0379,
T0380, T0381, T0383, T0384, T0385

HA-TBM T0288, T0290, T0291, T0292, T0295, T0302, T0305, T0308, T0311,
T0313, T0315, T0317, T0324, T0326, T0328, T0332, T0334, T0340,
T0345, T0346, T0359, T0366, T0367
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Figure 5.1: GDT plot of all targets processed by our group (1/5).
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Table 5.2: Performance of different scoring functions in predicting the quality of the server models submitted for
the 77 CASP7 targets of the category template-based modelling.

regression® enrichment’ best predicted model® best GDT TS model? native structure®

Method r2 rho F.E. FEi5 1o logPp logPp1o AGDT TS nr 710 Znat ~ T1 710
Modcheck 0.68 0.61 0.32 2.63 12 -0.66 -1.63 -0.2 5 22 1.87 39 58
RAPDF -0.53  0.52  0.31 2.48 13 -0.86 -1.64 -0.08 3 13 -1.97 46 63
DFIRE -0.41 0.56 0.31 2.66 16 -0.96 -1.67 -0.07 4 14 -1.18 47 58
ProQ 0.39 0.28 0.12 1.1 3 -0.3 -0.96 -0.23 0 6 1.39 9 24
ProQssk 0.57 0.44 0.17 1.59 7 -0.49 -1.12 -0.17 2 8 1.55 10 32
FRST -0.6 0.55 0.29 2.27 18 -0.91 -1.72 -0.08 6 18 -2.37 49 60
QMEAN3 -0.69 0.62 0.32 2.48 15 -0.8 -1.8 -0.13 1 28 -2.16 50 61
QMEAN4 -0.76  0.66 0.37 2.73 22 -0.97 -1.91 -0.08 4 32 -1.76 47 56
QMEAN5 -0.77 0.67 0.39 2.87 24 -1.01 -1.93 -0.08 5 33 -1.76 47 58
torsion single -0.48  0.42 0.22 1.76 6 -0.62 -1.47 -0.12 0 11 -2.17 47 60
torsion3-residue -0.57 0.47 0.21 1.8 9 -0.72 -1.49 -0.12 1 8 -2.64 51 65
pairwiseCS -0.62 0.54 0.28 2.42 15 -0.66 -1.68 -0.19 4 21 -1.84 32 56
pairwiseC3/SSE  -0.63  0.56  0.32 2.52 17 -0.78 -1.8 -0.14 5 29 -2.04 38 56
solvation -0.59 0.52 0.26 2.22 6 -0.47 -1.6 -0.27 0 20 -1.2 14 36
SSEPSIPRED -0.71  0.54  0.23 2.03 7 -0.63 -1.44 -0.13 2 15 -0.83 6 20
ACCpro -0.62 0.58 0.34 2.71 17 -0.85 -1.62 -0.11 5 25 -1.19 13 32

a . . . .
Pearson’s correlation coefficient r2 and Spearmans’s rank correlation coefficient rho

b . . . . . .
F.E. stands for fraction enrichment and E5¢ is the enrichment among the top 15% best predicted models as compared to a random selection.

C'rlg are the number of targets for with the top-scoring models is among the topl0 best models (based on GDT_TS). logPg and logPp1q are the log probability of selection the
highest GDT _TS model as the best model or among the ten best-scoring models, respectively.

GDT _TS loss is the difference between the GDT TS score of the best-scoring model and the best model in the decoy set.rl and r10 are the number of targets in which the best
model based on GDT TS, excluding the native structure was found on the first rank or among the top 10 predictions.

eZnat is the Z-score of the native structure as compared to the ensemble of models. r1 and r10 are the number of targets in which the native structure was found on the first rank
or among the top 10 predictions.

GLl
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Table 5.4: Performance of different scoring functions in predicting the quality of the server models submitted for
the 18 free modelling targets of CASP7.

regression® enrichment’ best predicted model® best GDT TS model? native structure®

Method r? rho F.E. FEi59 1ri9 logPp logPp19 AGDT TS n 710 Lnat  T1 710
Modcheck 0.46 0.51 0.39 3.02 5 -0.88 -1.87 -0.13 1 5 2.5 8 11
RAPDF -0.38 041 0.34 2.26 4 -1.1 -1.8 -0.07 1 4 -2.63 9 14
DFIRE -0.32 043 0.34 2.27 3 0.8 -1.71 -0.11 1 4 -1.58 12 14
ProQ 0.2 0.18 0.17 1.73 2 -0.37 -1.09 -0.17 0 0 1.95 0 8
ProQssk 0.38 0.42 0.25 2.21 1 -0.58 -1.59 -0.13 0 3 2.6 4 10
FRST -0.42 044 0.33 2.71 3 -0.92 -1.81 -0.11 0 4 -2.56 7 12
QMEAN3 -0.46  0.45 0.4 2.99 1 -0.82 -1.95 -0.12 0 7 -2.76 9 14
QMEAN4 -0.48 0.53 0.42 2.87 6 -1.25 -1.87 -0.07 1 7 -2.29 8 13
QMEAN5 -0.51 0.56 0.44 3.06 6 -1.22 -2 -0.07 1 7 -2.43 9 13
torsion single -0.27  0.29 0.2 1.73 0 -0.52 -1.65 -0.14 0 2 -1.74 4 7
torsion3-residue -0.35 0.32  0.26 2.12 4 -0.91 -1.6 -0.1 0 2 -2.65 8 14
pairwiseC -0.4 0.38 0.39 2.88 2 -0.88 -1.77 -0.12 0 6 -2.45 7 13
pairwiseC3/SSE  -0.41 0.36 0.43 2.84 5 -1.03 -1.79 -0.09 0 7 -2.67 7 15
solvation -0.36  0.38 0.39 2.71 4 -0.86 -1.87 -0.13 2 7 -1.69 4 9
SSEPSIPRED -0.37  0.48 0.27 2.05 2 -0.62 -1.38 -0.15 1 2 -1.16 1 5
ACCpro -0.44  0.51 0.39 2.93 4 -0.84 -1.83 -0.1 1 8 -2.21 7 12

a . . . .
Pearson’s correlation coefficient 72 and Spearmans’s rank correlation coefficient rho

b . . . . . .
F.E. stands for fraction enrichment and Eqg¢ is the enrichment among the top 15% best predicted models as compared to a random selection.

Crlo are the number of targets for with the top-scoring models is among the topl0 best models (based on GDT _TS). logPp and logPpiq are the log probability of selection the
highest GDT TS model as the best model or among the ten best-scoring models, respectively.

"GDT TS loss is the difference between the GDT TS score of the best-scoring model and the best model in the decoy set.rl and r10 are the number of targets in which the best
model based on GDT TS, excluding the native structure was found on the first rank or among the top 10 predictions.

eZm,t is the Z-score of the native structure as compared to the ensemble of models. r1 and r10 are the number of targets in which the native structure was found on the first rank
or among the top 10 predictions.
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Figure 5.2: Statistical analysis of the performance differences between the different
QMEAN terms at the confidence level of 95%.
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Figure 5.2: Correlation between GDT TS and QMEAN score for all server models
of the 95 targets of CASP7 (1/7).
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Figure 5.2: Correlation between GDT TS and QMEAN score for all server models
of the 95 targets of CASP7 (2/7).
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Figure 5.2: Correlation between GDT TS and QMEAN score for all server models
of the 95 targets of CASP7 (3/7).
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Figure 5.2: Correlation between GDT TS and QMEAN score for all server models
of the 95 targets of CASP7 (4/7).
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Figure 5.2: Correlation between GDT TS and QMEAN score for all server models

of the 95 targets of CASP7 (5/7).
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Figure 5.2: Correlation between GDT TS and QMEAN score for all server models
of the 95 targets of CASP7 (6/7).
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Table 5.6: Results for loops of length 5 residues from the test set of Rossi et al.

[174].

Global RMSD of the top ranking loop®

PDBID residues best random random rank no ho- all <90% <50% <30%
loog? 200049 3000 Topld® molgues homo-
logues

1531 131-135 0.27 4.54 2.87 7 0.91 0.28 0.91 0.91 0.91
la2y A 14-18 0.26 1.69 1.16 74 0.91 0.29 0.29 0.91 0.91
la8e 197-201 0.3 1.97 3.59 10 0.48 0.21 0.21 0.48 0.48
1frd 83-87 0.38 3.3 2.55 5 0.5 0.09 0.18 0.2 0.5
1gpr 54-58 0.25 3.78 2.5 3 0.25 0.05 0.52 0.52 0.25
1lhbg 19-23 1.16 4.15 5.44 14 1.99 0.09 1.99 1.99 1.99
1hbq 158-162  0.25 5.55 1.54 1 0.25 0.25 0.25 0.25 0.25
1kuh 37-41 0.64 3.9 2.63 2 0.78 0.16 0.78 0.78 0.78
11it 131-135  0.68 2.92 4.55 1 0.81 0.81 0.81 0.81 0.81
11it 51-55 0.37 2.99 2.6 6 0.4 0.1 0.3 0.3 0.4
11kk A 186-190 1.22 1.47 4.1 59 4.04 4.04 4.04 4.04 4.04
1mla 102-106 0.24 4.71 4.86 3 0.24 0.06 0.26 0.26 0.24
1mla 275-279 1.08 2.84 6.64 26 1.68 0.05 0.29 0.29 1.68
Inar 56-60 0.49 5.62 3.32 2 0.49 0.06 0.49 0.49 0.49
Infp 95-99 0.42 1.93 1.18 6 1.37 0.08 0.38 0.38 1.37
Inoa 88-92 1 2.28 3.51 50 1.91 1.91 1.91 1.91 1.91
1prn 187-191 0.46 2.86 3.23 8 5.01 0.33 5.01 5.01 5.01
1rie 149-153 1.49 5.49 5.52 11 3.8 0.06 3.8 3.8 3.8
1sbp 181-185  0.38 2.39 2.65 2 0.57 0.09 0.57 0.57 0.57
ltca 157-161 0.39 2.32 2.93 5 0.92 0.05 0.92 0.92 0.92
1tml 147-151 0.52 4.4 3.6 2 0.91 0.91 0.91 0.91 0.91
lvee 63-67 0.28 0.61 1.8 290 1.96 1.96 1.96 1.96 1.96
1xyz A 559-563  0.71 3.28 2.16 14 3.05 0.05 0.25 0.25 3.05
2cba 168-172 0.53 3.73 4.02 8 0.53 0.39 0.39 0.39 0.53
2cmd 188-192  0.31 5.15 3.71 2 0.31 0.08 0.31 0.31 0.31
2hbg 37-41 0.21 4 2.2 3 0.21 0.05 0.21 0.21 0.21
5p21 104-109 2.42 7.51 3.96 2 3.69 3.69 3.69 3.69 3.69
Trsa 75-79 0.6 1.23 2.06 2 0.6 0.39 0.39 0.39 0.6
8abp 65-70 1.12 2.63 3.04 102 3.17 3.17 3.17 3.17 3.17
average - 0.64 3.42 3.24 - 1.44 0.68 1.21 1.24 1.44
median - 0.46 3.28 3.04 - 0.91 0.16 0.52 0.57 0.91

a
b

Best nonhomologues loop present among the 3000 candidate fragments.
“Random selection of a fragment from the maximum 20,000 loops present after application of the torsion energy filter.

Random selection of a fragment from the maximum 3,000 loops present after application of the backbone energy filter.

“Rank of the first Topl0 fragment according to RMSD.

RMSD of the top ranking loop after removing homologues below a given cutoff.
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Table 5.7: Results for loops of length 7 residues from the test set of Rossi et al.

[174].

Global RMSD of the top ranking loop

PDB ID  residues best random random rank no ho- all <90% <50% <30%
loop 20000 3000 Top10 molgues homo-
logues

la62 89-95 0.05 4.37 3.09 1 0.05 0.05 0.05 0.05 0.05
1bkf 64-70 0.37 1.2 0.69 5 0.4 0.06 0.29 0.4 0.4
lads 186-192 1.33 6.7 5.32 17 4.91 0.29 0.29 0.35 4.91
1brt 226-232 0.34 4.44 4.82 4 0.49 0.11 0.37 0.37 0.49
lcvl 111-117 0.26 4.21 5.36 3 0.26 0.16 0.28 0.26 0.26
ldad 116-122 1.17 5 4.09 2 1.17 0.87 1.17 1.17 1.17
1dim 198-204 1.17 5.94 5.08 2 1.21 0.2 1.21 1.21 1.21
ledg 309-315 1.35 2.47 3.19 29 1.76 0.06 1.76 1.76 1.76
lgca 196-202 0.56 6.47 4.73 15 0.81 0.06 0.81 0.81 0.81
1hbg 46-52 1.31 7.96 4.64 8 3.25 0.1 3.25 3.25 3.25
1hfc 152-158 1.78 2.29 5.21 12 1.78 0.05 0.59 1.78 1.78
liab 142-148 0.86 2.58 4.08 3 5.59 0.11 5.59 5.59 5.59
11if 64-70 0.92 5.36 4.89 148 6.26 0.16 0.45 0.48 6.26
1mbd 17-23 0.47 5.03 2.67 1 0.79 0.79 0.79 0.79 0.79
1mla 80-86 1.36 6.09 3.86 2 1.99 1.99 1.99 1.99 1.99
1nif 65-71 1.35 5.91 5.54 6 1.35 0.31 0.31 0.42 1.35
1php 135-141 0.55 2.21 3.02 6 1.2 0.16 0.33 0.42 1.2
1rhs 21-27 1.52 3.21 3.91 88 4.04 0.07 4.04 4.04 4.04
1sgp E 128-134 0.61 4.98 4.61 3 0.71 0.06 0.51 0.71 0.71
ltca 132-138 0.52 2.04 3.01 2 0.66 0.17 0.66 0.66 0.66
1tml 20-26 0.65 3.89 4.65 2 1.07 0.32 1.07 1.07 1.07
Ixyz A 689-695 2.02 2.41 6.87 177 5.28 0.89 0.89 0.89 5.28
2mnr 270-276 1.18 3.91 4.05 12 2.01 0.14 1.15 1.15 0.9
2pth 95-101 0.71 4.88 6.86 3 6.09 0.1 6.09 6.09 6.09
3tgl 159-165 1.25 5.92 3.74 1 2.07 2.07 2.07 2.07 2.07
5p21 83-89 0.71 4.44 5.89 59 1.63 0.22 0.22 0.17 0.37
average - 0.94 4.38 4.38 23.5 2.19 0.37 1.39 1.46 2.09

median - 0.89 4.44 4.63 4.5 1.49 0.16 0.8 0.85 1.21
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Table 5.8: Results for loops of length 9 residues from the test set of Rossi et al.

[174].

Global RMSD of the top ranking loop

PDB ID residues best random random rank no ho- all <90% <50% <30%
loop 20000 3000 Top10 molgues homo-
logues

larb 168-176 4.53 6 7.52 20 8.83 0.07 8.83 8.83 8.83
larp 127-135  1.14 9.47 6.04 5 1.93 0.37 1.93 1.93 1.93
laru 36-44 2.18 7.26 4.3 142 6.8 6.8 6.8 6.8 6.8
lcse E 95-103 2.42 6.27 4.69 351 8.83 0.52 0.52 0.42 8.83
lcsh 252-260  0.83 8.08 6.67 9 0.83 0.06 0.7 0.7 0.56
lede 257-265 1.48 4.03 5.84 17 4.37 0.25 4.37 4.37 4.37
1fus 91-99 1.82 5.7 5.12 167 3.99 3.99 3.99 3.99 3.99
11kk A 142-150 1.7 6.22 8.68 8 3.67 0.1 1.64 3.67 3.67
1mla 194-202 2.11 5.06 6.16 100 3.32 0.2 3.32 3.32 3.32
1nls 131-139 0.76 4.67 4.11 405 5.88 0.06 5.88 5.88 5.88
lonc 70-78 0.96 6.66 5.78 8 2.94 2.94 2.94 2.94 2.94
1pda 108-116 1.41 8.8 8 7 6.41 0.21 6.41 6.41 6.41
1pgs 117-125 1.73 2.06 6.24 2 1.8 0.1 1.8 1.8 1.8
1php 91-99 1.55 6.47 7.67 638 6.08 0.15 0.71 6.08 6.08
1sgp_ E 109-117 1.76 4.67 6.35 43 3.64 0.11 3.64 3.64 3.64
1xnb 116-124 1.53 7.35 5.16 1 1.88 1.88 1.88 1.88 1.88
1xnb 133-141 1.95 5.19 8.65 21 4.19 0.35 4.19 4.19 4.19
Ixyz A 795-803  1.64 9.83 5.69 1143 5.32 0.24 0.89 0.89 5.32
2ayh 169-177 1.24 2.02 2.46 12 3.08 0.1 0.34 3.08 3.08
2cpl 24-32 0.82 4.36 4.73 17 0.82 0.4 0.4 0.33 0.82
3pte 107-115 1.84 2.55 2.73 2 2.8 0.2 2.8 2.8 2.8
average - 1.69 5.84 5.84 - 4.16 0.91 3.05 3.52 4.15
median - 1.64 6 5.84 - 3.67 0.21 2.8 3.32 3.67
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Table 5.9: Results for loops of length 10 residues from the test set of Rossi et al.

[174].

Global RMSD of the top ranking loop

PDB ID  residues best random random rank no ho- all <90% <50% <30%

loop 20000 3000 Top10 molgues homo-

logues

1351 18-27 1.9 5.41 7.03 252 4 0.2 0.4 0.39 4
lads 170-179 1.66 4.67 7.02 414 3.6 0.31 0.31 0.44 3.6
lads 171-180 1.68 4.45 7.6 44 2.74 0.42 0.42 0.47 2.74
lamp 181-190 2.97 3.86 3.91 8 4.05 0.23 4.05 4.05 4.05
larb 41-50 1.88 4.78 4.28 75 5.53 0.06 5.53 5.53 5.53
larp 37-46 3.32 7.72 4.56 586 8.45 8.45 8.45 8.45 8.45
laru 128-137 1.6 8.88 2.25 9 2.88 0.36 0.66 0.66 2.88
1btl 170-179 217 4.7 4.44 448 3.38 0.76 0.76 0.76 3.38
1dim 87-96 1.83 3.04 13.26 601 7.85 0.28 7.85 7.85 7.85
1fkf 63-72 0.54 6.57 6.57 7 0.54 0.35 0.43 0.47 0.54
lgpr 133-142 1.36 6.68 4.25 3 3.04 0.15 3.04 3.04 3.04
lgvp 49-58 1.2 8.66 8.16 9 3.68 0.06 3.68 3.68 3.68
lixh 84-93 1.77 4.85 4.41 530 4.49 0.13 4.49 4.49 4.49
1knt 35-44 1.67 5.86 6.06 7 1.75 0.24 1.62 1.62 1.75
1mrj 173-182 1.94 4.98 5.33 373 6.34 0.06 6.34 6.34 6.34
1plc 42-51 1.58 6.82 7.55 58 6.46 0.57 0.57 1.41 6.46
1ppn 190-199 2.22 7.28 9.16 25 4.9 1.56 1.56 1.56 4.9
1scs 65-74 0.71 5.97 3.33 79 3.58 0.53 3.58 3.58 3.58
ltca 23-32 2.56 9.93 7.28 8 11.31 0.05 11.31 11.31 11.31
1whi 47-56 1.97 5.62 8.26 40 6.2 0.06 1.09 6.2 6.2
2cmd 57-66 1.44 8.23 9.21 3 2.99 0.11 2.99 2.99 2.99
2mnr 91-100 2.2 9.35 7.05 18 5.09 5.09 5.09 5.09 5.09
2sil 197-206 1.05 6.27 6.19 2 1.05 0.22 1.05 1.05 1.05
3hsc 28-37 1.98 7.8 5.98 8 4.05 0.27 0.64 4.05 4.05
Trsa 110-119 1.13 1.88 2.45 3 1.13 0.41 0.41 1.13 1.13
Trsa 33-42 2.02 7.19 3.22 197 7.68 0.37 0.91 7.68 7.68
Trsa 87-96 1.34 10.79 9.56 1 2.39 2.39 2.39 2.39 2.39
average - 1.77 6.38 6.24 141.04 4.41 0.88 2.95 3.58 4.41

median - 1.77 6.27 6.19 25 4 0.28 1.62 3.04 4
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Table 5.10:
[174].

Results for loops of length 11 residues from the test set of Rossi et al.

Global RMSD of the top ranking loop

PDB ID  residues best random random rank no ho- all <90% <50% <30%

loop 20000 3000 Top10 molgues homo-

logues

1531 154-164 2.15 7.79 4.83 154 8.46 0.14 8.46 8.46 8.46
la2p A 76-86 2.42 5.7 8.09 164 5.48 5.48 5.48 5.48 5.48
la2y A 91-101 100 4.92 5.02 3000 2.23 0.26 0.96 1.12 2.23
lakz 211-221 2.73 7.15 6.22 317 4.31 0.19 0.24 0.84 4.31
lawq_A 1101-1111 2.63 6.39 5.14 26 9.51 0.87 0.87 0.58 9.51
lcvl 257-267 6.15 10.27 12.44 972 11.71 0.07 11.71 11.71 11.71
ldad 42-52 1.75 9.29 10.69 18 3.54 0.66 3.54 3.54 3.54
1fus 28-38 3 6.36 9.7 254 11.26 2.06 2.06 11.26 11.26
lixh 120-130 2.25 3.19 3.41 12 3.4 0.06 3.4 3.4 3.4
1mla 9-19 1.11 3.67 4.36 3 1.11 0.21 0.98 0.98 1.11
1rcf 122-132 2.33 9.58 4.14 73 4.49 0.42 0.81 0.81 4.49
2pth 8-18 2.34 4.05 3.5 92 3.77 0.21 0.68 0.68 3.77
3pte 91-101 2.2 3.8 4.54 4 5.1 0.12 5.1 5.1 5.1
average - 10.08 6.32 6.31 - 5.72 0.83 3.41 4.15 5.72
median - 2.34 6.36 5.02 - 4.49 0.21 2.06 3.4 4.49

Table 5.11: Results for loops

[174].

of length 12 residues from the test set of Rossi et al.

Global RMSD of the top ranking loop

PDB ID residues best random random rank no ho- all <90% <50% <30%
loop 20000 3000 Top10 molgues homo-
logues
1531 98-109 3.53 7.72 8.89 363 8.95 0.17 8.95 8.95 8.95
lakz 181-192 2.07 5.25 6.32 154 5.11 0.71 0.71 0.91 5.11
larb 74-85 2.37 7.52 3.92 357 5.82 0.06 5.82 5.82 5.82
1bkf 9-20 2.6 6.73 4.95 191 5.04 0.05 0.68 5.04 5.04
lcex 40-51 2.47 8.13 11.84 196 11.75 0.11 11.75 11.75 11.75
1dim 213-224 1.83 8.15 4.89 11 4.38 0.24 4.38 4.38 4.38
lixh 161-171 4.31 14.32 9.18 128 11.97 0.08 11.97 11.97 11.97
1luc_ A 158-169 2.86 5.38 5.39 2 2.86 0.07 2.86 2.86 2.86
2ayh 21-32 2.51 12.19 11.53 339 4.18 0.13 4.18 4.18 4.18
average - 2.73 8.38 7.43 - 6.67 0.18 5.7 6.21 6.67
median - 2.51 7.72 6.32 - 5.11 0.11 4.38 5.04 5.11
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