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List of symbols 
δ Chemical shift 

λmax Maximum absorption wavelength 

λem Maximum emission wavelength 

Φf Photoluminescence quantum yield 

A Ampere 

ANT Anthracene 

BTH Bithiophene 

BTZ 2,1,3-Benzothiodiazole 

CBZ Carbazole 

cm Centimeter 

CV Cyclic voltammogram 

DCM Dichloromethane 

DMF N,N-Dimethylformamide 

DMSO Dimethylsulfoxide 

DPP 1,4-Diketo-3,6-diphenylpyrrolo-[3,4-c]pyrrole 

EC Electrochromic 

EDOT 3, 4-Ethylenedioxythiophene 

EL Electroluminescent 

g Gram 

GPC Gel-permeation chromatography 

h Hour 

LED Light emitting diode 

min Minute 

mm Millimeter 

NMP N-Methyl-2-pyrrolidon 

NMR Nuclear magnetic resonance 

PDA N,N'-Diphenyl-1,4-phenylenediamine 

PL Photoluminescence 

PYRE Pyrene 

RT Room temperature 

SCE Saturated calomel electrode 

SEC Size-exclusion chromatography  
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TBAN 4-t-Butylaniline 

TBAPF6 Tetrabutylammonium hexafluorophosphate 

TH Thiophene 

THF Tetrahydrofuran 

TPA Triphenylamine 

UV Ultraviolet 

V Volt 

Vis Visible light 
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Abstract 
Synthesis and characteristic properties of new conjugated polymers and polyelectrolytes 

containing DPP-units in the main chain are described. The polymers are synthesized upon 

palladium-catalyzed Suzuki, Stille and Buchwald-Hartwig polycondensation and 

electropolymerization. Characteristic properties such as molecular weight, structure, optical 

and electrooptical properties of the polymers are studied using gel permeation 

chromatography, spectroscopic methods (UV/vis, Fluorescence, NMR spectroscopy), cyclic 

voltammetry and spectroelectrochemical characterization. 

Using the Suzuki, Stille and Buchwald-Hartwig coupling, conjugated polymers are 

synthesized from dibromo-DPP or the boronic ester of DPP and derivatives of the carbazole 

(CBZ), triphenylamine (TPA), benzothiadiazole (BTZ), thiophene (TH), bithiophene (BTH), 

3,4-ethylenedioxythiophene (EDOT), pyrene (PYRE) or N,N'-diphenyl-1,4-phenylene 

diamine (PDA). The molecular weights of the resulting polymers are between 4.3 and 16.5 

kDa. The polymers are soluble in solvents such as toluene, chloroform or THF forming red to 

purple solutions with strong photoluminescence. Compared with the DPP monomer, the 

optical properties of the polymers are bathochromically shifted due to the increase of the 

conjugated system. Polymers in solution exhibit absorption maxima between 506 and 560 nm, 

and fluorescence maxima between 585 and 635 nm. The polymer P-DPP-TPA exhibits a 

photoluminescence quantum yield of 85 %, which is the highest value reported for DPP 

containing conjugated polymers so far. Polymers of DPP and BTH, PDA and PYRE exhibit 

reversible electrochromic properties upon electrochemical oxidation and reduction. The 

abrupt colour changes from purple to dark blue to black-green are observed.  

Furthermore, a series of electropolymerizable DPP containing monomer have been 

successfully prepared using Suzuki, Stille or Buchwald-Hartwig coupling. The in-situ formed 

polymer films are robust and insoluble in common solvents. They exhibit a very good stability 

during oxidation reduction cycles together with electrochromic properties. The polymer films 

are useful as active materials in electrochromic devices showing colour changes from blue to 

transparent, brown-red to olive-green, purple-red to brown-red, and colourless to green. 

Conjugated polyelectrolytes were synthesized from bis-bromohexyl-DPP or bis-sulfonylbutyl-

DPP using Suzuki and Buchwald-Hartwig coupling. The resulting cationic and anionic 

polyelectrolytes are readily soluble in water and polar organic solvents such as methanol and 

DMSO. The polymers are non-luminescent in water, but exhibit photoluminescence quantum 

yields between 6.2 % and 49 % in DMSO. 
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Abstract 
 

Ziel dieser Arbeit war die Herstellung und die Charakterisierung von konjugierten Polymeren 

mit DPP-Einheiten in der Hauptkette. Die Polymere wurden mit Hilfe der Suzuki, Stille und 

Buchwald-Hartwig Kupplung so wie durch Elektropolymerisation hergestellt. Die 

Eigenschaften der resultierenden Polymere (Molekulargewicht, UV/vis, Fluoreszenz, NMR 

Spektroskopie, Zyklovoltammetrische Untersuchungen und spektroelektrochemische 

Charakterisierung) wurden untersucht.  

Mit Hilfe der Suzuki, Stille und Buchwald-Hartwig Kupplung, wurden Dibromo-DPP oder 

Diboronester-DPP mit Carbazol (CBZ), Triphenylamin (TPA), Benzothiadiazol (BTZ), 

Thiophen (TH), Bithiophen (BTH), 3,4-Ethylenedioxythiophen (EDOT), Pyrene (PYRE) 

oder N,N'-diphenyl-1,4-phenylene diamin (PDA) gekupplet. Die Molekulargewichte der 

erhaltenen Polymere liegen zwischen 4.3 und 16.5 kDa. Die Polymeren sind in gängigen 

Lösemitteln wie Toluol, Chloroform, Dichlormethan oder THF gut löslich. Dabei bilderen sie 

stark fluoreszierende Lösungen. Die Absorptionsmaxima liegen zwischen 506 und 560 nm, 

die Fluoreszenz maxima zwischen 585 und 635 nm.  

Weiterhin wurden DPP-Polymere durch Elektropolymerisation herstellt. Die Polymere sind 

unter Farbwechsel Oxidationsbeständig. 

Konjugierte Polyelektrolyte wurde mit Hilfe der Suzuki und Buchwald-Hartwig Kupplungs 

hergestellt. Die Polymeren sind löslich in Wasser, DMSO und Methanol. 
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1. Introduction 
 

1.1. Diketopyrrolopyrrole (DPP) 
 
In 1974, Farnum, et al. 1 briefly reported the attempted synthesis of 2-azetinones according to 

the following reaction (Scheme 1.1). The desired reaction failed. Instead, the diphenyl DPP 

derivative was isolated in 5-20% yield. 

 

CN + BrCH2CO2CH3

HN
O

NHHN

O

O

Zn

 
Scheme 1.1 Preparation of DPP (Farnum, et al. 1974) 

 

However, the important physical properties of the DPPs such as high melting points (>350 
oC), insolubility in most solvents and brilliant red colour remained unnoticed due to its too 

poor yield. In 1980, researchers from Ciba-Geigy (now Ciba Specialty Chemicals) took notice 

of this reaction in a compilation of interesting reactions published by Ranganathan in 19802. 

Then the chemistry and applicatory properties were developed 3,4, and in 1986 the first DPP 

pigments have been developed and introduced to the market for conventional pigment 

applications like paints, plastics, fibers and inks.  

Besides the original report from Farnum 1, there are several reports for the synthesis of DPP 

pigments 5-7. Among all these methods, the succinic ester route is regarded as the best one 5,6. 

In this route, succinic ester is condensed in a pseudo-Stobbe condensation with an aromatic 

nitrile in the presence of strong base to afford the desired DPP in a yield over 60% (Scheme 

1.2). The key-step of the mechanism is the formation of pyrrolinone esters from the initially 

formed enaminoesters, then it can further react with another benzonitrile under basic 

conditions. Subsequent ring closure affords the DPP compounds. 
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CN +

O
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NH2
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NH
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NH
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NH

O
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O
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diethyl succinate

 
Scheme 1.2 Preparation of DPP via the succinic ester route 

 

a) Absorption spectra of DPP in solution 

(DMSO) and in the solid state 

b) Absorption and emission spectra of DPP 

in solution (CHCl3) 

Figure 1.1 UV/vis absorption and photoluminescence spectra of  

diphenyl-diketopyrrolopyrrole 

 

The synthesis of DPP pigments was discussed in a series of publications from Morton and 

Riggs8-10. More recently, the synthesis of unsymmetrical DPP11,12 was reported. Some new 

synthetic methods such as the microwave route13 have also been reported.  

The diketopyrrolopyrrole is a bicyclic 8π electron system containing two lactam units. Typical 

DPP derivatives such as diphenyl-diketopyrrolopyrrole have melting points over 350 oC, a 

very low solubility in most solvents (<110 mg/L in DMF at 25 oC), an absorption in the 
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visible region with a molar extinction coefficient of 33,000 dm2mol-1, a strong 

photoluminescence with maximum between 500 nm and 600 nm.  The UV/vis 

absorption5,14,15 and photoluminescence16 spectra of diphenyl-diketopyrrolopyrrole (see 

Scheme 1.1) are shown in Figure 1.1. 

X-ray structure analyses 15,17-22 of diphenyl-diketopyrrolopyrrole pointed out that the whole 

molecule is almost in one plane. The phenyl rings are twisted out of the heterocyclic plane by 

7o. The intermolecular hydrogen bonding between neighboring lactam NH and carbonyl units 

dominates the structure of DPP in the solid state. This in turn determines the molecular 

packing along the direction perpendicular to the DPP chromophore plane. The π-π interaction 

between the layers of DPPs is then understandable. The optimum interlayer distances between 

chromophore planes (3.36 Å) and between phenyl ring planes (3.54 Å) is short enough to 

warrant significant π-π interaction, the growth of crystals being also the strongest along this 

direction. Recent ab initio calculations 23-25 of the DPP molecules also confirmed this 

structure. 

1.2. The chemistry of DPP 
Figure 1.2 depicts the possible reactive sites of the diaryl-DPP molecule and its corresponding 

reagents. 

In this dissertation, only the basic reactions about the DPP itself are discussed below. Further 

detailed information can be found in the literature 8-10,26,27. 

 
Figure 1.2 Potentially reactive centers in a diaryl-DPP derivative27. 

EFG: electrophilic functional group, e.g. CN, COOR 

NFG: nucleophilic functional group, eg. OH, SH, NHR 

X: halogen 
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1.2.1. N-Alkylation 
The heterocyclic DPP moiety can be alkylated by alkyl halides or alkyl sulfonates. The 

following Scheme 1.3 is the example of N-methylation of diphenyl-DPP28,29. 

 

NHHN

O

O

NN

O

O

H3C CH3

H3C SO3CH3

K2CO3 / Nitrobenzene

 
Scheme 1.3 The N-methylation of DPP 

 

After the N-alkylation, the biggest change for DPP is the loss of intermolecular hydrogen 

bonding. The solubilities of the diaryl-DPPs are drastically raised upon N-alkylation. 

Compared with the unsubstituted diaryl-DPP (100mg/L in DMF at 25 oC), the solubility of N-

methyldiaryl-DPP is 3300 mg/L. The N-substituted DPP derivatives are generally fluorescent 

in solution with a maximum quantum yield up to 95%. 

 

1.2.2. Electrophilic aromatic substitution 
DPP can be sulfonated by oleum to form the disulfonic acid and the salts of the disulfonic 

acid. The sulfonation renders the DPP-derivatives water-soluble. The halogenation of 

diphenyl-DPP is difficult. With bromine gas, diphenyl-DPP can be transferred to 4,4’-

dibromophenyl DPP. However, the chlorination does not form the corresponding compounds. 

This may be due to the reason that bromine is a better leaving group and a better nucleophile 

compared with chlorine5. 



 

 5

NHHN

O

O

NHHN

O

OH2SO4

fuming

HO3S

SO3H

NHHN

O

O

NHHN

O

O

NHHN

O

O

Br2(g)

Cl2(g)

Cl

Cl

Br

Br

 
Scheme 1.4 Electrophilic aromatic substitution 

 

1.2.3. Nucleophilic aromatic substitution 
The nucleophilic aromatic substitution was reported in polar solvent at high temperature 

(Scheme 1.5) 

NHHN

O

O

NHHN

O

ONMP, 180 oC

HNR2

R2N

NR2  
Scheme 1.5 Nucleophilic aromatic substitution 
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1.2.4. Transformations at the carbonyl group 
The transformation at the carbonyl group of DPP has been investigated. The atom O can be 

replaced by S, N and C (Scheme 1.6). 

NHHN

O

O

NHHN

S

S

P4S10 / PO(NMe2)3

H3CO P
S

P
SS

S
OCH3

 
Scheme 1.6 DPP transformation reaction 

 

1.3. Conjugated DPP polymers 
DPPs are used as pigments in applications like paints, plastics, fibers and inks for years. 

However, since A. J. Heeger, A. G. MacDiarmid and H. Shirakawa found the conducting 

polyacetylenes and finally were awarded the Nobel Prize in 2000, this chromophore is 

interested for its promising properties in organic electronic applications. Due to the 8π 

electron system, DPP chromophore is an ideal building block for conjugated molecules, 

oligomers, polymers and dendrimers.  

The very first DPP containing polymer was reported by L. Yu 30-32. A series of DPP 

containing block copolymers were prepared by Stille polycondensation (Scheme 1.7).   

 

N

N

O

OS

S

N

SO2CH3

y

x

n

 
Scheme 1.7 The first reported DPP containing conjugated polymer 
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DPP-containing polymers have been prepared upon radical polymerization33,34 and polymer 

modification35. In 199936, the polycondensation reaction for the preparation of DPP 

containing polymers was reported from our group. Copolyesters and copolyurethanes with 

1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP) units in the main chain were prepared 

(Scheme 1.8). Because the conjugation did not extend along the polymer chain, the polymer 

exhibited similar optical properties as the monomer. Polymer solutions were yellow to orange 

with an optical absorption maximum at 470 nm and a fluorescence maximum at 520 nm.  

 

NN

O

O

O
O R O (CH2)n O

x

y

R =
O O

n=12
O

N (CH2)6

H
N

R

O

H

n=6

  
Scheme 1.8 Copolyesters and -urethanes with 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole 

(DPP) units in the main chain. 

 

Smet and Dehaen reported synthetic work about rod-like diketopyrrolopyrrole oligomers and 

dendritic molecules containing DPP units37,38. DPP units used in the ligand system39, as 

fluorescent Ca2+ indicator40 and hydrogen gas sensors41 have also been reported recently. Two 

different dendrimers using DPP unit as core have been synthesized by Verheijen and his 

colleagues42 and the fluorescence quantum yield was over 80% for G3 dendrimers. Other 

important reports were concerned with liquid crystalline DPP derivatives 43 and with latent 

DPP pigments, which are transformed from the soluble N,N’-bis-(t-butoxycarbonyl)-3,6-

diphenyl-1,4-diketo-pyrrolo[3,4-c]pyrrole into insoluble 3,6 diphenyl-1,4-diketo-pyrrolo[3,4-

c]pyrrole upon heat treatment 44(Scheme 1.9). 

NHHN

O

O

NN

O

O

OO

O O

t-butoxycarbonylation

Thermal treatment

 
Scheme 1.9 Transformation of  soluble DPP into insoluble DPP pigment 
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Following the very first report of multifunctional DPP polymers from L. Yu30-32 (Scheme 1.7), 

a number of π-conjugated DPP-polymers and copolymers have been reported recently, which 

are promising materials for electronic applications because of their brilliant colours, 

photochemical stability and electroluminescent properties. Beyerlein et. al. synthesized the 

conjugated copolymers with DPP units and 1,4-phenylene units in the main chain45 (Scheme 

1.10). These polymers were used to fabricate a polymer light emitting device (PLED)46. 

N

N

O

O

C8H17

C8H17

N

N

O
O

C8H17

C8H17

C6H13 C6H13
n

C6H13 C6H13

n

N

N

O

O

C6H13

C6H13
n

C6H13

C6H13

N

N

O

O

C6H13

C6H13
n

O

O

i-C5H11

i-C5H11

N

N

O

O

R

R n

R= methyl, hexyl, 2-ethylhexyl

 
Scheme 1.10 Recent explore for the synthesis of DPP conjugated polymers.  

 

Beyerlein also synthesized the conjugated polymers with DPP and fluorene in the main chain, 

the results were reported in his thesis. Cao and his colleagues reported a similar polymer in a 

recent publication47. I. Heim, another previous member in our group, synthesized a series of 

poly-DPP-vinylenes using Heck polycondensation reaction.198 

 

1.4. Electroluminescent applications 
The photoluminescence of π-conjugated molecules was found in the middle of the 19th 

century. However, until the middle of the 20th century, people did not know about the 

electroluminescence. 

A typical conjugated polymer based electroluminescence device is shown in Figure 1.3. 
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Figure 1.3 A typical electroluminescence device. 

 

The principles of electroluminescent devices are depicted as follows: 

• Organic multilayered thin films of electron transport layer (ETL), emitting materials 

layer (EML), and hole transport layer (HTL) are sandwiched between two metallic 

electrodes forming the anode and cathode on a transparent substrate. 

• When a voltage is applied, charges are injected into the organic layers: electrons from 

the cathode, and holes from the anode. 

• The electrons and holes form excitons through electrostatic interaction. 

• Radiative recombination of excitons generates light.  

The anode generally is an indium-tin oxide (ITO) coated glass, which is transparent and 

therefore the light can be emitted at this side. Typical hole transport materials are NPB, TPD, 

PVK, PMPS, PEDOT-PSS (Scheme 1.11) and typical electron transport materials are Alq3, 

Znq2, Beq2, PBD, PPY and 4-AcNi (Scheme 1.12). 
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Scheme 1.12 Common electron transport materials 

 

The following Figure 1.4 shows the band scheme of a single layer PLED system. The anode is 

ITO, a high work function material. The cathode is a low work function metal. The highest 

occupied molecular orbit (HOMO) of the emitting material should be a little bit higher than 

the work function of ITO. The lowest unoccupied molecular orbit (LUMO) of the emitting 

material should be a little bit lower than the work function of the metal. The injection barrier 

for hole ΔEh and electron ΔEe can be further adjusted by the additional hole transport layer 

and electron transport layer. 
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Figure 1.4 Schematic energy-level-diagram for single layer PLED system. 

 

 

1.5. Electrochromic applications 
Electrochromism is broadly defined as a reversible change of the optical absorption of a 

material induced by an external voltage, with many inorganic and organic species showing 

electrochromism throughout the electromagnetic spectrum. Conjugated polymers are a new 

class of electrochromic (EC) materials that have gained popularity due to their ease of 

processability, rapid response times, high optical contrast, and the ability to modify their 

structure to create multicolor electrochromism. A typical conjugated polymer based EC 

device is shown in Figure 1.5.  
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Figure 1.5 A typical electrochromic device. 

 

Electrochromism in conjugated polymers occurs through changes in the electronic character 

accompanied by reversible insertion and extraction of ions in and from the polymer film upon 

electrochemical oxidation and reduction. In their neutral (insulating) states, these polymers 

show semiconducting behaviour with an energy gap between the valence band (HOMO) and 

the conduction band (LUMO). Upon electrochemical or chemical doping ("p-doping" for 

oxidation and "n-doping" for reduction, see Scheme 1.13), the band structure of the neutral 

polymer is modified, generating lower energy intraband transitions and creation of charge 

carriers (polarons and bipolarons), which are responsible for increased conductivity and 

change of physical absorption. Such optical and structural changes are reversible through 

repeated doping and dedoping over many redox cycles, making the conjugated polymers 

potentially useful in many applications.  
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n
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Scheme 1.13 Doping of poly-p-phenylene upon oxidation (left) or reduction (right) 
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The greatest challenge thing in an applicable electrochromic material is its reversibility upon 

the doping processes. As shown in Scheme 1.13, polarons and bipolarons determine the 

colour change of the materials. However, these carriers (carbanium ionsor carbanions) are 

very unstable and may react with the environment. Therefore the point is to increase the 

stability of the materials in the doped state. Most reported electrochromic materials are 

suitable for p-doping because carbanium ions are generally considered more stable than the 

carbonions. To increase the stability of carbanium ions, a low oxidation potential is preferred. 

Thus for lowering the oxidation potential of the polymer it is very important to decrease the 

reaction with the environment and increase the reversibility of the polymer upon p-doping and 

dedoping processes. 

Of the conjugated polymers, derivatives of poly(thiophene), poly(pyrrole) and poly(aniline) 

are widely studied for their electrochromism. The commonly used electrochromic materials 

and their colour changes are reviewed in publications48.  

 

1.6. DPP-based conjugated polyelectrolytes 
DPP-based conjugated polyelectrolytes are DPP containing conjugated polymers featured 

with ionic side group which render the material soluble in water and other polar organic 

solvent such as methanol and DMSO. Due to the solubility, these polymers are useful for 

special applications, e.g. for the preparation of ultrathin organized films in layer-by-layer self-

assembly film processes.49 

A photoluminescent amphiphilic 1,4-diketo-3,6-diphenylpyrrolo-[3,4-c]-pyrrole derivative 

and its complexes with polyelectrolytes were prepared by Behnke35 using the method of 

polymer modification (Scheme 1.14). The water soluble DPP molecule was reported by 

Saremi et. al50. Self-assembled multilayers of anionic DPP bolaamphiphiles and cationic 

polyelectrolytes were also reported (Scheme 1.14). However, up to now, there is no report on 

conjugated DPP-based polyelectrolytes and the use of these polyelectrolytes for preparation of 

layer-by-layer assembled films.  
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Scheme 1.14 DPP complex with polyallylamine, and an anionic DPP used for preparation of 

self-assembled multilayers with cationic polyelectrolytes. 

 

1.7. Motivation of the work 
The purpose of this dissertation is to synthesize new conjugated DPP containing polymers 

suitable for electroluminescent or electrochromic applications. Although some reports about 

the synthesis of DPP containing conjugated polymers are published already, this type of 

conjugated polymers has not yet been explored thoroughly. Suzuki, Stille and Heck 

polycondensations are the only reported methods for DPP conjugated polymers and the 

explored building blocks are limited (only with fluorene and phenylene). There are several 

reasons to synthesize new DPP containing conjugated polymers. 

• There are lots of newly developed polycondensation methods, which have not been 

applied for the preparation of the DPP containing conjugated polymers yet. Two of the 

most important techniques are Buchwald-Hartwig coupling and electropolymerization. 

Buchwald-Hartwig coupling offers the possibility to couple DPP derivatives with 

different arylamine compounds, which are more easily prepared than the stannanes 

and boron compounds. Using electropolymerization, the polymer films can be formed 

on the electrode in-situ. 

• Some building blocks, which either offer high luminescence or low oxidation potential, 

have not been incorporated into the DPP containing polymers yet. These building-

blocks should be commercial available and the corresponding dibromo derivatives can 

be easily prepared. The examples are carbazole, triphenylamine, benzothiodiazole, 

thiophene, pyrrole etc.  

• A low oxidation potential of the polymer is crucial for a successful electrochromic 

material. The reversibility of the electrochromism is very much related with the 
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stability of the doped polymer. New synthetic method and new functional groups are 

needed to be introduced to afford the requirements.  

• New developed techniques such as layer by layer assembling need a new class of 

polymers, such as the conjugated DPP polyelectrolytes.  

The synthetic methods and the physical chemistry properties of the polymers will be 

discussed in the following chapters. The applications of these polymers are also described. 
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2. Conjugated DPP polymers prepared upon palladium catalyzed 
polycondensation 

 

One of the most important methods for preparation of conjugated polymers is chemical 

polycondensation. The Ni promoted coupling reactions (Yamamoto coupling51, Kumada 

coupling52, Negishi coupling53), Palladium catalyzed reactions (Heck coupling54, Suzuki 

coupling55, Stille coupling30,56-58, Sonogashira coupling59,60, Buchwald-Hartwig coupling, 

Kumuda coupling52, Negishi coupling53, Hiyama coupling61), Cu-catalyzed reactions 

(Ullmann Reaction62, Glaser coupling63) and coupling reactions not involving metal catalysis 

(Wittig coupling64, Knoevenagel coupling65,66) were applied. Up to now, the palladium 

catalyzed polycondensations were regarded as the best methods. Especially Suzuki coupling, 

Stille coupling, Heck coupling and Sonogashira coupling are widely used in the field.  

In this chapter, new DPP containing conjugated polymers (and some exceptions without DPP 

units in the backbone) were prepared upon Suzuki, Stille and Buchwald-Hartwig 

polycondensation catalyzed by palladium compounds. 

 

2.1. Suzuki coupling polycondensation 
Suzuki coupling is a Pd-catalysed reaction for carbon–carbon (C–C) bond formation. The 

organoboron compounds serve as the active material to react with halide (Scheme 2.1).  

 

B Br+
OH

OH Base

Pd

 
Scheme 2.1 Scheme of Suzuki coupling. 

 

Potassium trifluoroborates and organoboranes or boronic esters may be used in place of 

boronic acids. Some pseudohalides (for example triflates) may also be used as coupling 

partners. One difference between the Suzuki mechanism and that of other cross coupling 

reactions (such as Stille coupling) is that the boronic acid must be activated, generally with a 

base. This activation of the boron atom enhances the polarization of the organic ligand, and 

facilitates transmetallation. The generally accepted mechanism of Suzuki coupling is shown 

in Figure 2.1. 



 

 17

Ar'
Pd(0)

Pd(II)

Ar X

B(OH)4-

Ar

NaOH

NaX
X=Br, I

Ar X

Pd(II)Ar OH

B-Ar'
OH

OH
OH

NaOHAr'B(OH)2

Pd(II)Ar Ar'

 
Figure 2.1 Mechanism of Suzuki coupling 

 

The first step is the oxidative addition of palladium to the halide to form the organo-palladium 

species. This species reacts with a base to give intermediate Ar-Pd(II)-OH, which via 

transmetallation with the boronate complex forms the organopalladium species Ar-Pd(II)-Ar’. 

Reductive elimination of the desired product restores the original palladium catalyst. 

In case of polymerization, bifunctional dibromo-compounds and diboronic acid derivatives 

are needed. Therefore the first step is to prepare suitable monomers to be used in the 

polycondensation reaction. 

 

2.1.1. Preparation of the monomers 
The dibromo-DPP derivative (see Scheme 2.2) is used as the start material. Similar to the 

ordinary DPP pigments, this material is insoluble in most solvents. Before the 

polycondensation is preceded, the monomer has to be rendered soluble upon N-alkylation. 

The alkylation reaction has been reported before; however, the yield is quite low (<20%). In 

this work, a new procedure (originally from Ciba) was investigated giving a yield of soluble 

monomer at around 50%. The alkylation reaction is shown in Scheme 2.2. 
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Scheme 2.2 Alkylation of dibromo-DPP pigment 

 

In the new procedure, NMP and potassium t-butoxide replace the DMF and potassium 

carbonate. Therefore the reaction can be carried out at a much lower temperature (60 oC). 

Because the deprotonated intermediate DPP is very reactive, the lower reaction temperature 

can efficiently reduce the side reaction. Then the yield of the desired N-alkylated compound 

can be much higher. 

The diboronic acid or diboronic ester is another crucial monomer for the Suzuki coupling. 

Unfortunately, due to the presence of the carbonyl group, the DPP compound can not be 

transferred to boronic acid using the general lithiation procedure. The chromophore will be 

destroyed immediately after the n-butyllithium is dropped into the 1,4-diketo-2,5-dihexyl-3,6-

bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole (HDPP) containing THF solution even at low 

temperature (-70 oC). Miyaura67 developed another method to prepare a boronic ester via 

palladium catalyzed coupling reaction using bispinacolate diboron. This method is very mild 

and can tolerate many functional groups. The DPP diboronic ester 1,4-diketo-2,5-dihexyl-3,6-

bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrolo[3,4-c]pyrrole (HDPPB) 

was successfully synthesized by this reaction with a high yield (> 80%). 
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Scheme 2.3 Preparation of DPP diboronic ester HDPPB 
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Preparation of DPP-based monomers 
The resulting monomers HDPP and HDPPB are very soluble in common organic solvents 

such as chloroform, toluene and THF. The UV/vis absorption and photoluminescence spectra 

of HDPP and HDPPB in chloroform are shown in Figure 2.2. 
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Figure 2.2 UV/vis absorbance and photoluminescence spectra of HDPP and HDPPB.  

Solvent: CHCl3. The excitation wavelength is 350 nm. 

 

Both monomers have an absorption maximum in the ultraviolet region, which originates from 

the phenylene units connected with the DPP chromophore. The absorption maxima from the 

DPP chromophore are at 476 nm and 479 nm for HDPP and HDPPB, respectively. The 

emission maxima are at 533 nm and 548 nm. The colours of these two polymers are very 

similar, but for the luminescence they are quite different. Monomer HDPP is green 

luminescent, HDPPB is yellow luminescent (Figure 2.3). The photoluminescence quantum 

yields for these two monomers are over 90% (compared with Rhodamine 6G 95% in ethanol). 
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HDPPB 

 
HDPPB 

Figure 2.3 Photographs of HDPP and HDPPB in normal and luminescent state. Solvent: 

CHCl3 

 

The 1H-NMR of HDPP and HDPPB are shown in Figure 2.4. The triplet signal at 0.85 ppm 

originates from the methyl group of the hexyl unit. The signal of the α-methylene unit directly 

attached to the N-atom of the lactam unit appears at 3.72 ppm. Signals of the other methylene 

unit appeared at 1.23 ppm and 1.85 ppm. The doublet signals of aromatic protons of HDPP 

are overlapped between 7.65 ppm to 7.66 ppm. For the boronic ester HDPPB, the additional 

peak at 1.38 ppm stems from the methyl group of the pinacolato boronester unit. The doublet 

signals of aromatic protons of HDPPB are found at 7.80 ppm to 7.95 ppm. 
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Figure 2.4 The proton NMR spectra of HDPP and HDPPB 
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Preparation of other monomers 
The corresponding monomers were prepared as outlined in Scheme 2.4. The boronic ester of 

carbazole68,69 and triphenylamine70-73 were prepared from the corresponding dibromo 

derivatives upon successive treatment with n-butyllithium and 2-isopropoxy-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane, respectively. In order to increase the solubility of the 

monomer and to block the active proton at the carbazole unit, the 3,6-dibromocarbazole74,75 

was alkylated with 2-ethylhexyl bromide before lithiation was carried out. The method of 

direct lithiation of 4,7-dibromo-2,1,3-benzothiadiazole was not applied, since 2,1,3-

benzothiadiazole can not bear such a strong base as n-butyllithium. In this case, 4,7-dibromo-

2,1,3-benzothiodiazole76 was prepared and used for the polycondensation reaction. 
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2.1.2. Polymerization 
The Suzuki polycondensation reactions performed in this work are shown in Scheme 2.5.  
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Scheme 2.5 Scheme of Suzuki polycondensation. 

 

In this work, the new DPP-based homopolymer (P-DPP), which only contains the N,N’-di-

alkylated DPP-chromophore as para-linked repeating unit (the so-called ‘poly-DPP’), was 

synthesized at first. In an earlier progress report of our group77, the P-DPP was synthesized 

by Ni-promoted Yamamoto coupling. The resulting polymer had a molecular weight up to 3 

kDa. In order to avoid the use of the expensive Yamamoto reagent, another preparation route 
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based on Suzuki coupling was investigated. The reaction route started from the 1,4-diketo-

2,5-dihexyl-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole and led to the polymer in one 

reaction step. While this kind of one-pot synthetic method is already well-known for 

preparation of biaryl compounds78-80, only a single report on one-pot Suzuki polycondensation 

was reported so far by A. Izumi81. In this work, the method was optimized and successfully 

applied for the preparation of DPP homopolymer. The first stage of the reaction was carried 

out using 1,4-diketo-2,5-dihexyl-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole (HDPP) and 

bis(pinacolato)diboron in the presence of palladium(II) acetate (Pd(OAc)2) and potassium 

acetate. The weak base and the non-ligand catalysis will restrain the reaction in the Ishiyama-

Miyaura state67. During this process, the HDPP could be transformed to HDPPB. This 

transformation could be monitored accurately by thin layer chromatography (TLC) (silica, 

dichloromethane). After all the HDPP reacted, another equimolar amount of HDPP and the 

required amounts of the tetrakis(triphenylphosphine)palladium catalyst and the strong base 

potassium carbonate were added to the reaction mixture. The reaction condition was then 

changed to the standard Suzuki polycondensation reaction. Finally, P-DPP was obtained with 

a molecular weight up to 8.7 kDa.  

Carbazole, triphenylamine and benzothiadiazole units are very useful building blocks for the 

preparation of conjugated polymers. They are widely used in light emitting polymers, 

electrochromic polymers and polymer field-effect transistors68,72,74,75,82-86. The conjugated 

copolymer P-DPP-CBZ was prepared from HDPP and 3,6-bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-9-ethylhexyl-carbazole. Toluene was chosen as the solvent to reach a high 

reaction temperature. At first, tetrakis(triphenylphosphine)palladium(0) was used as catalyst, 

but later on the combination of palladium(II) acetate (Pd(OAc)2) and tris(o-tolyl)phosphine 

was found more efficient for giving high molecular weights. This is probably due to the 

ligand tris(o-tolyl)phosphine, which is used to prevent the incorporation of the phosphor into 

the polymer main chain. In all reactions, tetrabutylammonium bromide was used as the phase-

transfer catalyst. Furthermore this salt also worked as the bromine source87,88. After the 

reaction, the diluted reaction solution was passed through a celite column to remove the 

residual catalyst and then the polymers were precipitated in acetone or ethanol to form red 

powders after drying. 

The preparation of copolymer P-DPP-TPA was rather complicated. Two different strategies 

were applied: firstly HDPP and 4,4´-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-

triphenylamine were used. The resulting polymer exhibited a molecular weight of only 3.7 

kDa. Alternatively, HDPPB and 4,4´-dibromotriphenylamine were reacted and a polymer 
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with molecular weight of 7.4 kDa was obtained. The UV absorption of the polymer from the 

second route was more red-shifted indicating more extended π-conjugation along the polymer 

main chain. The difference might be caused by the low yield of boronic ester of 

triphenylamine, which made the purification of the compound very difficult. 

The preparation method of P-DPP-BTZ and P-CBZ-TPA was similar to that of P-DPP-CBZ 

except for the use of the different monomers. For P-DPP-BTZ, HDPPB and 4,7-dibromo-

2,1,3-benzothiadiazole were used. For P-CBZ-TPA, 3,6-bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-9-ethylhexyl-carbazole and 4,4´-dibromotriphenylamine were used. 

 

2.1.3. Characterization of the polymers 

GPC 
The polymers received are all very soluble in common organic solvents such as chloroform, 

toluene and THF. Molecular weights were determined upon size exclusion chromatography 

(SEC) using a Waters/Millipore UV detector 481 and an SEC column combination 

(Latek/styragel 50/1000) nm pore size). All measurements were carried out in tetrahydrofuran 

at 45 °C. The columns were calibrated versus commercially available polystyrene standards. 

The weight average molecular weight and the polydispersity of the polymers are listed in 

Table 2.1. The polymers exhibit molecular weights between 5.0 and 16.5 kDa. 

 

Table 2.1 Molecular weight and polydispersity of the polymers prepared via Suzuki 

coupling. 

 Mw (kDa) Polydispersity 

P-DPP 8.7 1.6 

P-DPP-CBZ 16.5 2.2 

P-DPP-TPA 7.4 1.9 

P-DPP-BTZ 7.0 1.7 

P-CBZ-TPA 5.0 1.3 

 

1H-NMR 
The proton NMR spectra of monomer HDPP and various polymers were measured in 

chloroform-D. They are shown in Figure 2.5. For all DPP containing polymers, the signals of 

the hexylated lactam group of DPP appear in the region from 0.7 ppm to 1.8 ppm, 

corresponding to the signals at 0.85 ppm, 1.23 ppm and 1.85 ppm for the monomer HDPP. 
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The signal of the α-methylene unit directly attached to the N-atom of the lactam unit appears 

around 3.8 ppm for all DPP containing polymers. The signal for the phenyl rings connected 

with the DPP chromophore is generally separated in the polymer spectra. The only exception 

is P-DPP-BTZ, in which the signals for the phenyl rings were overlapped with the signal for 

the benzothiadiazole group. In case of P-DPP-CBZ, the α-methylene unit directly attached to 

the N-atom of the carbazole unit appears around the position 4.2 ppm. The signal of 

methylidyne group appears at 2.1 ppm for P-DPP-CBZ. For P-DPP-CBZ and P-DPP-TPA, 

there are several signals overlapped in the region of the aromatic protons. Regarding P-DPP-

TPA, the characteristic signals are the peaks between 6.9 ppm to 7.2 ppm belonging to the 

aromatic protons adjacent to the amine group. For polymer P-CBZ-TPA, there is no DPP unit 

in the polymer. However, compared with P-DPP-CBZ and P-DPP-TPA, the signals at 2.1 

ppm (methylidyne group), 4.2 ppm (α-methylene group), 6.9 ppm to 7.2 ppm (aromatic 

protons adjacent to the amine group) clearly elucidate the structure of the polymer. There is a 

small peak around 3.9 ppm to 4.0 ppm in some polymers such as P-DPP and P-DPP-BTZ. It 

probably originates from the O-alkylated DPP formed during the polycondensation reaction. 
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Figure 2.5 The proton NMR of HDPP, P-DPP, P-DPP-CBZ, 

 P-DPP-TPA, P-DPP-BTZ and P-CBZ-TPA in CDCl3  

(The structures of the monomer and polymer are shown in the following page) 
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Figure 2.5 continued. 
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Optical properties 
All the synthesized DPP containing polymers are red powders, while the non-DPP-containing 

polymer P-CBZ-TPA is a white powder. After being dissolved in chloroform or toluene, the 

DPP polymers form red solutions; the P-CBZ-TPA solution is colorless. The photographs are 

shown in Figure 2.6. 

 

      

   
HDPP P-DPP P-DPP-CBZ P-DPP-TPA P-DPP-BTZ P-CBZ-TPA

Figure 2.6 Photographs of HDPP and various polymers prepared via Suzuki 

polycondensation in normal (upper) and luminescent state (lower). 

 

The UV/vis absorption spectra and fluorescence spectra of the polymers were measured in 

chloroform (P-DPP, P-DPP-CBZ, P-DPP-BTZ) or toluene (P-DPP-TPA, P-CBZ-TPA). 

For the DPP containing polymers, the maximum absorption peak in the visible region is found 

in the wavelength range from 506 to 528 nm. Compared with the monomer HDPP, the 

absorption is bathochromically shifted from 30 to 52 nm due to the extension of the π-

conjugated system. The maximum emission wavelengths of DPP containing polymers range 

from 585 to 631 nm. The polymer P-DPP exhibits a Bordeaux-red emission colour, the 

fluorescence maximum appears at 631 nm (which is red-shifted by 87 nm compared with the 

monomer HDPP). From this behaviour a Stokes-shift of 103 nm can be derived, the largest 

value ever found for DPP-containing polymers prepared via Suzuki polycondensation. As for 
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polymer P-CBZ-TPA, it is a blue emitting material with the maximum emission being at 409 

nm. The UV/vis absorption and photoluminescence spectra of these polymers are shown in 

Figure 2.7. 
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Figure 2.7 UV/vis absorbance and photoluminescence spectra of the polymers prepared via 

Suzuki coupling polycondensation. The excitation wavelength is 350 nm. Polymer P-DPP-TPA 

and P-CBT-TPA are measured in toluene. Other samples are measured in chloroform. For 

comparison, the spectra of the corresponding monomer HDPP are also shown. 
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Some DPP containing polymers were found to be highly luminescent. The photoluminescence 

quantum yield of P-DPP-TPA is 85% (excited at 400 nm in toluene, and calculated by 

compared with Rhodamine 6G in ethanol, Фf=0.95), which is the highest value among all 

reported DPP containing conjugated polymers. The photoluminescence quantum yield of P-

DPP-CBZ is 46%, which is also quite a good value. The quantum yield of P-DPP and P-

DPP-BTZ is only 13% and 19%, respectively. The lower quantum yields probably originate 

from the presence of O-alkylated DPP units in the polymer chain which was detected by 

proton NMR spectra. P-CBZ-TPA has a very high photoluminescence quantum yield of 91%. 

The solid film absorption and luminescence of the DPP containing polymer has also been 

measured and the spectra are shown in Figure 2.8. 
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Figure 2.8 UV/vis absorbance and photoluminescence spectra of solid films of the DPP containing 

polymers prepared via Suzuki coupling. The excitation wavelength is 350 nm. 

 

The optical data were collected in Table 2.2. UV and fluorescence spectra of polymer films 

cast from solution are very similar to the solution spectra with the exception that the 

absorption and emission maxima are red-shifted by 7 to 21 nm. The bathochromic shift is 
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probably caused by the π-π stacking of the molecules, which was first observed in DPP 

pigments15. The absorption maximum is between 526 and 535 nm for the polymers. The 

maximum emission wavelength for P-DPP, P-DPP-CBZ, P-DPP-TPA and P-DPP-BTZ are 

640 nm, 638 nm, 621 nm and 665 nm, respectively.  

 

Table 2.2 Optical data of polymers prepared via Suzuki coupling in solution and solid film. 

 
λmax(nm) 

solution 

λem(nm) 

solution 

λmax(nm) 

film 

λem(nm) 

film 
Φf 

HDPP 476 533 - - 0.90 

P-DPP 528 631 535 640 0.13 

P-DPP-CBZ 506 585 527 638 0.46 

P-DPP-TPA 511 587 526 621 0.85 

P-DPP-BTZ 515 600 528 665 0.19 

P-CBZ-TPA 326 409 - - 0.91 

The excitation wavelength is 350 nm. Polymers P-DPP-TPA and P-CBZ-TPA were 

measured in toluene, others were measured in chloroform. The photoluminescence quantum 

yields were measured at an excitation wavelength of 400 nm (for all DPP containing 

compounds) or 350 nm (for P-CBZ-TPA), and calculated by comparing with Rhodamine 6G 

in ethanol (Фf=0.95). 

 

Electrochemical Characterization 
Cyclic voltammograms of the polymers were recorded using a potentiostat PG390 from Heka 

Company. A thin film of the polymer was cast on an ITO electrode and cycled in CH3CN 

containing 0.1 M tetrabutylammonium hexafluorophosphate as electrolyte salt. Counter and 

reference electrodes were platinum. The voltage data were calculated for the standard calomel 

electrode (SCE), the scan rate was 25 mVs-1. The measurement was carried out at room 

temperature. 

The cyclic voltammetry (CV) data are compiled in Table 2.3. The HOMO and LUMO levels 

were calculated using the equations89  

- EHOMO = Eonset(ox) + 4.4 [eV] 

and 

- ELUMO = Eonset(red) + 4.4 [eV]. 

In Table 2.3, the HOMO and LUMO levels are listed. Based on the HOMO/LUMO 

calculation, the band gap can be determined.  
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- Eelectro = EHOMO - ELUMO [eV]. 

Alternatively, the band gaps can also be calculated from the onset of the optical absorption 

using the equation 

Eopt = 1240 / λonset [eV]. 

As shown in Table 2.3, the band gap values from the optical measurements match those from 

the electrochemical experiment well. 

 

Table 2.3 Band gap data of different polymers prepared via Suzuki coupling 

Polymer 

Absorption 

 of film 

λonset(nm)  

Eopt (eV)/Eelectro (eV) 

band gap 

Eonset(ox) (V) 

{EHOMO (eV)} 

Eonset(red) (V) 

{ELUMO (eV)} 

P-DPP 603 2.06/1.93 0.95{-5.35} -0.98{-3.42} 

P-DPP-CBZ 615 2.02/1.90 0.93{-5.33} -0.97{-3.43} 

P-DPP-TPA 596 2.08/1.82 0.97{-5.37} -0.85{-3.55} 

P-DPP-BTZ 617 2.01/1.77 0.94{-5.34} -0.83{-3.57} 

P-CBZ-TPA - -/- 0.54{-4.94} -{-} 

Band gap (Eopt) measured at the onset of electronic absorption of the polymer film (Eopt

=1240/λonset eV). HOMO-LUMO gap according to the equation: -ELUMO=Eonset(red)+4.4 eV and   -

EHOMO=Eonset(ox)+4.4 eV, where Eonset(ox) and Eonset(red) are the onset potentials for the oxidation 

and reduction processes of polymer thin films vs. SCE. 

 

The CV-diagrams are shown in Figure 2.9. All DPP containing polymers exhibit quasi-

reversible oxidative processes with onset potential Eonset(ox) between 0.93 V and 0.97 V(vs. 

SCE). The similar oxidation potentials indicate that the first oxidation step occurred at the 

DPP chromophore. The oxidation onset potential of polymer P-CBZ-TPA is only 0.54 V (vs. 

SCE). For all polymers, the reduction is irreversible. 
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Figure 2.9 Cyclic voltammograms of P-DPP, P-DPP-CBZ, P-DPP-TPA, P-DPP-BTZ and 

P-CBZ-TPA. Scan rate: 25 mVs-1, T = 20 0C. Electrolyte solution: 0,1 M TBAPF6 in 

acetonitrile. 
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Figure 2.9 continued 

 

The electrochromic properties of the polymers were investigated through 

spectroelectrochemical experiments. Unfortunately, the colours of DPP containing polymer 

can be changed only at very high oxidation potentials. The change is accompanied by a 

destruction of the DPP chromophore. As a consequence, the colour change becomes 

irreversible. The polymers can not be switched back to the original state upon the dedoping 

process. Only P-CBZ-TPA can change and restore its colour during the doping and dedoping 

processes due to its very low oxidation potential. 

The spectroelectrochemical experiments of a solid film of P-CBZ-TPA were carried out in 

clean CH3CN solution with TBAPF6 as electrolyte. The UV/vis absorption at different 

oxidation potentials are shown in Figure 2.10. Upon oxidation, new absorption peaks 

originating from radical cations (polarons) and dications (bipolarons) appear at 450 nm and 

over 1000 nm respectively. There is a very clear colour change after the oxidation potential of 

0.53 V (vs. SCE) has been reached. The colour of the polymer film changes from colorless to 

green (see the photographs in Figure 2.10). 
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Figure 2.10 Spectroelectrochemical study of P-CBZ-TPA film on ITO-coated glass anode in 

0.1M TBAPF6 in CH3CN. (Voltage calculated versus SCE). 

 

The origin of this kind of colour change has been described in a recent publication48. In the 

neutral (insulating) state, the conjugated polymer shows semiconducting behaviour with an 

energy gap between the valence band (HOMO) and the conduction band (LUMO). Upon 

electrochemical doping (“p-doping” for oxidation and “n-doping” for reduction), the band 

structure of the neutral polymer is modified, generating lower energy intraband transitions and 

creating charged carriers (polarons and bipolarons), which are responsible for the increased 

conductivity and optical modulation. The electrochromic process is quite stable and can be 

repeated many times in air without special treatment of the solution. The absorption of the 

neutral film after the first cycle is shown in Figure 2.10 (dashed line). During the oxidation 

process, some oxidized polymer may enter the solution. This probably is the origin of the 

diminished absorption in the visible region. 
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2.2. Stille coupling polycondensation  
 

Stille coupling is a Pd-catalysed reaction for carbon–carbon (C–C) bond formation. Aryl 

stannanes serve as the active materials to react with aryl halides (Scheme 2.6).  

 

 
Scheme 2.6 Stille coupling reaction. 

 

The generally accepted mechanism of Stille coupling is shown in Figure 2.11. 
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Figure 2.11 Mechanism of Stille coupling 

 

The active catalyst is believed to be a 14-electron palladium(0) complex, which can be 

generated from a suitable palladium(0) precursor such as Pd(PPh3)4. Alternatively, the active 

palladium(0) catalyst can be formed by reduction of a suitable palladium(II) precursor such as 

(Ph2P)2PdCl2. Palladium(0) complexes are nucleophilic and they react readily with organic 

electrophiles in an oxidative addition reaction to produce a 16-electron palladium(II) 

intermediate RPdL2X. The electrophilic component RX in the reaction is frequently an 

organohalide or organotriflate compound. The next step occurring in the catalytic cycle of the 

Stille reaction is a transmetallation reaction. In the transmetallation step one group from the 

organotin reagent transfers to the palladium(II) intermediate whilst the halide or triflate group 

becomes associated with the tin of the organostannane. Fortunately, alkyl groups migrate 

from tin to palladium at the slowest rate. Mixed organostannanes that contain three spectator 
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methyl or butyl groups can therefore be used so that exclusive transfer of a more chemically 

complex group such as a vinyl or aryl moiety can occur. The transmetallation step is the rate-

determining step in the catalytic cycle. In the final step of the catalytic cycle the cross-coupled 

product is expelled from the palladium(II) intermediate and the active palladium(0) catalyst is 

regenerated. 

 

2.2.1. Polymerization 
Since Stille coupling was found in 1970s, there are several reviews discussing the reaction 

conditions in the synthesis of small molecules56-58. The polymerization process was discussed 

by Bao and Yu30. Stille coupling was found very efficient for heterocyclic aromatic 

compounds, especially for thiophene and its derivatives. In this work, thiophene containing 

stannanes were prepared.  
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Scheme 2.7 Preapartion of monomers for Stille coupling. 

 

The syntheses of 2,5-bis(tributylstannyl)thiophene90,91, 5,5´-bis(tributylstannyl)bithiophene91 

and 2,5-bis(tributylstannyl)-3,4-ethylenedioxythiophene92-95 described in Scheme 2.7 are 

reported in the literature. However, in this work all stannanes were prepared in a two step 

process: bromination of the thiophene derivative and successive treatment with butyllithium 

and tributyltin chloride, respectively. The method of direct lithiation of the non-brominated 

thiophene precursors was not applied, because in this route the separation of mono- and bis-

substituted stannanes is quite difficult. The two step process assures the purity of the 

monomers and this is crucial for the polymerization reaction. 

The Stille polycondensation reactions performed in this thesis are shown in Scheme 2.8. 
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Scheme 2.8 Scheme of Stille polycondensation. 

 

The polymers P-DPP-TH, P-DPP-BTH and P-DPP-EDOT were synthesized upon Stille 

coupling polycondensation. For the coupling, tetrahydrofuran was chosen as the solvent, 

because it previously turned out to be well suited for this type of reaction30. 

Tetrakis(triphenylphosphine)palladium(0) was used as catalyst, because it is stable enough to 

withstand the prolonged heating time of 48 h. After the reaction, the polymers were 

precipitated in acetone and formed dark powders after drying.  

 

2.2.2. Characterization of the polymers 

GPC 
The polymers were very soluble in chloroform and toluene, and slightly less soluble in THF. 

However, after ultrasonic treatment, a complete dissolution in THF was possible. The weight 

average molecular weight and the polydispersity of the polymers are listed in Table 2.4. The 

polythienylenes exhibit molecular weights between 6.7 and 12 kDa.  

 

Table 2.4 Molecular weight and polydispersity of polymers prepared via Stille coupling. 

 Mw (kDa) Polydispersity 

P-DPP-TH 12.2 2.2 

P-DPP-BTH 9.1 1.7 

P-CBZ-BTH 6.7 1.5 



 

 39

1H-NMR 
The proton NMR spectra of the polymers were measured in chloroform-D and are shown in 

Figure 2.12.  
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Figure 2.12 Proton NMR spectra of HDPP, P-DPP-TH, P-DPP-BTH and P-DPP-EDOT 
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All spectra show signals of the phenylene protons at about 7.6 ppm, and signals of the 

hexylated lactam group of DPP in the region from 0.7 to 1.5 ppm. The signal of the methylene 

group adjacent to the lactam N atom appears at 3.7 ppm. The characteristic signal of the 

thienylene protons of P-DPP-TH occurs at 7.2 ppm, and the signal of the dioxyethylene 

group in P-DPP-EDOT is observed at about 4.4 ppm. 

Optical properties 
The DPP-polythienylenes were obtained as black powders. After dissolution in chloroform, 

the polymers formed bright red purple solutions. The photographs are shown in Figure 2.13. 

The UV/vis absorption spectra and fluorescence spectra of the DPP-thienylene polymers were 

measured in chloroform. The maximum absorption peak in the visible range is found in the 

wavelength range from 545 to 560 nm. Compared with monomer HDPP, the absorption is 

bathochromically shifted from 75 to 90 nm due to the extension of the π-conjugated system. 

In addition, some charge transfer from the easily oxidizable ethylenedioxythiophene and 

bithiophene units to the electron accepting DPP chromophore might contribute to the shift. 

The maximum emission wavelength of the polymers ranges from 616 to 640 nm as indicated 

in Figure 2.14. 

 

    

    
HDPP P-DPP-TH P-DPP-BTH P-DPP-EDOT 

Figure 2.13 Photographs of HDPP monomer and corresponding polymers prepared via Stille 

polycondensation in normal (upper) and luminescent state (lower). 
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Figure 2.14 UV/vis absorbance and photoluminescence spectra of the polymers prepared via 

Suzuki coupling polycondensation. The excitation wavelength is 350 nm. Solvent: CHCl3 

 

Unfortunately, the DPP polythienylenes prepared upon Stille coupling were found to exhibit 

relatively low photoluminescence quantum yields. The highest quantum yield was found for 

P-DPP-EDOT.  However, the value is only 36% (excited at 400 nm in chloroform and 

calculated by comparison with Rhodamine 6G in ethanol, Фf=0.95). The values for P-DPP-

TH and P-DPP-BTH are 12% and 13%, respectively. It may also be caused by the presence 

of tin and residual catalyst in the polymer. 
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Figure 2.15 UV/vis absorbance and photoluminescence spectra of solid films of DPP-

polythienylenes. The excitation wavelength is 350 nm. 

 

Films of the polymers cast from chloroform solution are bluish purple with absorption 

maxima between 558 and 581 nm (Figure 2.15). Compared with the solution spectra, the 

maxima are red-shifted by 12 to 21 nm (see Table 2.5). The fluorescence maxima of the 

polymer films occur between 699 and 723 nm. They are red-shifted with regard to the 

fluorescence maxima in solution from 70 to 100 nm, probably due to interaction moments of 

nearest-neighbour molecules in the solid state24. 
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Table 2.5 Optical data of polythienylenes in solution and as solid film. 

 
λmax(nm) 

solution 

λem(nm) 

solution 

λmax(nm) 

film 

λem(nm) 

film 
Φf 

HDPP 476 533 - - 0.90 

P-DPP-TH 545 635 558 704 0.12 

P-DPP-BTH 558 616 570 699 0.13 

P-DPP-EDOT 560 624 581 723 0.36 

Excitation wavelength is 350 nm. Polymers were measured in chloroform. The 

photoluminescence quantum yields were measured at an excitation wavelength of 400 nm 

and calculated by comparison with Rhodamine 6G in ethanol (Фf=0.95). 

 

Electrochemical Characterization 
Cyclic voltammograms of the polymers were carried out under the same conditions as 

described before in section 2.1.3. The corresponding CV-diagrams are shown in Figure 2.16. 

CV-data are compiled in Table 2.6. P-DPP-TH, P-DPP-BTH and P-DPP-EDOT exhibit 

quasireversible oxidative processes with onset potentials Eonset(ox) at 0.86, 0.75 and 0.72 V (vs. 

SCE), respectively. For all polymers, the reduction is irreversible. The HOMO and LUMO as 

well as the optical band gaps are also listed in Table 2.6. 
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Figure 2.16 Cyclic voltammograms of P-DPP-TH, P-DPP-BTH and P-DPP-EDOT. Scan 

rate: 25 mVs-1, T = 20 0C. Electrolyte solution: 0.1 M TBAPF6 in acetonitrile. 
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Table 2.6 Band gap data of polymers prepared via Stille coupling 

Polymer 

Absorption 

 of film 

λonset(nm)  

Eopt (eV)/Eelectro (eV) 

band gap 

Eonset(ox) (V) 

{EHOMO (eV)} 

Eonset(red) (V) 

{ELUMO (eV)} 

P-DPP-TH 711 1.74/1.57 0.86{-5.26} -0.71{-3.69} 
P-DPP-BTH 759 1.63/1.47 0.75{-5.15} -0.72{-3.68} 

P-DPP-EDOT 757 1.64/1.47 0.72{-5.11} -0.75{-3.65} 
Band gap (Eopt) measured at the onset of electronic absorption of the polymer film (Eopt 

=1240/λonset eV). HOMO-LUMO gap according to the equation: -ELUMO=Eonset(red)+4.4 eV 

and    -EHOMO=Eonset(ox)+4.4 eV, where Eonset(ox) and Eonset(red) are the onset potentials for the 

oxidation and reduction processes of polymer thin films vs. SCE. 

 

As shown in Table 2, the band gap values from the optical and electrochemical measurements 

match very well. Among the polymers, P-DPP-BTH and P-DPP-EDOT have the lowest 

band gap of 1.54 ± 0.09 eV. The bandgap and oxidation onset potential of the polythienylenes 

are significantly lower than that of the polymers synthesized via Suzuki coupling. The low 

oxidation potential indicates that the first oxidation step occurred at the thiophene ring of the 

polymers. 

Although the thiophene containing DPP conjugated polymers do not exhibit a strong 

luminescence, their stable oxidized state and low oxidation potential render them promising 

for electrochromic devices. The electrochromic properties of the polymers were characterized 

using spectroelectrochemical studies. Among the DPP polythienylenes, the p-doping of P-

DPP-BTH exhibits the best reversibility and stability. The colour of this polymer could be 

switched many times between the oxidative and neutral state. 

The spectroelectrochemical studies of P-DPP-BTH films were carried out in clean CH3CN 

solution with TBAPF6 as electrolyte. The UV/vis absorption at several different oxidation 

potentials are shown in Figure 2.17. 

Upon oxidation, the absorption peaks of the thiophene (~ 405 nm) and DPP chromophore     

(~ 580 nm) gradually decreased. Simultaneously, another absorption peak belonging to the 

radical cation (polaron) appeared in the infrared region. The colour of P-DPP-BTH changes 

from purple red to dark blue (see the photos in Figure 2.17). The absorption after one cycle is 

shown in Figure 2.17 as the dotted line. The electrochromic process is very stable and can be 

repeated many times in air without special treatment of the solution. 
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Figure 2.17 Spectroelectrochemical analysis of P-DPP-BTH film on ITO coated glass 

electrode in 0.1M TBAPF6 in CH3CN (Voltage calculated versus SCE). 

 

 

 

2.3. Buchwald-Hartwig coupling polycondensation 
The Buchwald-Hartwig coupling is a Pd-catalysed reaction for aryl carbon–nitrogen (C–N) 

bond formation. The aryl amine compounds serve as the active material to react with aryl 

halide (Scheme 2.1).  
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Scheme 2.9 Buchwald-Hartwig coupling reaction. 
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This reaction type was developed independently by the groups of S. Buchwald96 and J. 

Hartwig97. The primary or secondary amine substituents can be any aryl group. The regular 

catalyst ligand combination is tris(dibenzylideneacetone)dipalladium(0).  The base can be 

sodium t-butoxide. The reaction is conceptually related to the Stille and Heck reaction and its 

scope extends to oxygen nucleophiles like phenols and carbon nucleophiles like malonates. 

The generally accepted mechanism of Buchwald-Hartwig coupling is shown in Figure 2.18. 
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Figure 2.18 Mechanism of Buchwald-Hartwig coupling 

 

The catalytic cycle starts with species L2Pd(0) lacking one ligand. Then the aryl halide 

coordinates to palladium by oxidative addition forming intermediate L2Pd(II)ArX. In the next 

step a halide atom is replaced by the nitrogen atom of the amine. The strong base is required 

to abstract the proton from the amine towards L2Pd(II)NR(R’). This intermediate undergoes a 

reductive elimination to the desired aryl amine. The liberated L2Pd species starts a new 

catalytic cycle. 

 

2.3.1. Polymerization 
Buchwald-Hartwig coupling was found in 1994 and has been developed since by many 

researchers. Many new ligands were designed to increase the reactivity and selectivity of the 

reaction98. The polymerization technique for this reaction was also developed99-103. In this 

work, two amine compounds (one primary amine, one secondary amine) were reacted with 

HDPP to prepare conjugated polymers. Additional reactions were carried out in order to 

explore the use of the Buchwald-Hartwig coupling in the synthesis of pyridine containing 
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conjugated polymers. In Scheme 2.10, all Buchwald-Hartwig polycondensation reactions 

performed in this study are compiled.  
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Scheme 2.10 Scheme of Buchwald-Hartwig polycondensation. 

 

For the synthesis of two DPP-containing polymers, P-DPP-PDA and P-DPP-PYRE, the 

applicability of two generally used ligands (tris(t-butyl)phosphine and 2-

dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos)) in Buchwald-Hartwig coupling 

was compared. Although the polycondensation occurred with both catalyst systems, the first 

system led to a higher molecular weight (for P-DPP-PDA, the molecular weights were 14 

kDa and 9 kDa, respectively) and therefore was preferentially applied. However, Xphos was 

also used occasionally, because it can be handled more easily. It was very important to mix 

the palladium catalyst and ligand in solution for 30 min before the reaction was started. The 

choice of the base was also a very important factor to perform a successful polycondensation 

reaction. Generally used bases such as sodium butoxide or potassium butoxide were not 
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always effective in our reactions. In case of the preparation of P-DPP-PYRE, the DPP 

chromophore was destroyed by these strong bases. Especially when the amine was not active 

enough, the side reaction between the DPP chromophore and the strong base occurred. In this 

case, a weak base such as potassium phosphate was used to avoid the side reaction, and as the 

result, the polymer was obtained in sufficient yield and degree of polymerization. Organic 

nonpolar solvents such as toluene and dioxane were used as reaction medium in order to 

dissolve DPP monomers and to reach high reaction temperatures. For the pyridine containing 

systems, 3-amino-pyridine and 2,5-dibromopyridine were found to be not suited for the 

Buchwald-Hartwig polycondensation reaction. Only the 3,5-dibromopyridine could be 

successfully used. The reaction conditions for the pyridine containing polymers were the same 

as for P-DPP-PDA. 

 

2.3.2. Characterization of the polymers 

GPC 
All polymers were very soluble in common organic solvents such as chloroform, toluene and 

THF. The weight average molecular weight and the polydispersity of the polymers are listed 

in Table 2.7. The reactivity of the secondary amine in the polymerization reaction was high. 

P-DPP-PDA exhibits a molecular weight of 14 kDa, which is comparable with the results of 

the other metal-catalysed polycondensation reactions. The molecular weight of P-DPP-PYRE 

is only 4.3 kDa because of a lower solubility of the pyrene compound and a relatively low 

reactivity of the primary amine. Due to the lower solubility, the pyridine containing polymers 

only exhibit molecular weights between 2.2 and 2.5 kDa. 

 

Table 2.7 Molecular weight and polydispersity of polymers prepared via Buchwald-Hartwig 

coupling. 

 Mw (kDa) Polydispersity 

P-DPP-PDA 14 1.9 

P-DPP-PYRE 4.3 1.3 

P-PY-TBAN 2.2 1.2 

P-PY-ANT 2.6 1.3 

P-PY-PYRE 2.3 1.1 
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1H-NMR 
The proton NMR spectra of the DPP-based monomer and the corresponding polymers were 

measured in chloroform-D. 
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Figure 2.19 The proton NMR spectra of HDPP, P-DPP-PDA and P-DPP-PYRE 

 

In Figure 2.19 the proton NMR spectra of the DPP containing polymers are compared with 

the spectra of HDPP. All spectra show signals of the DPP phenylene protons at about 7.6 

ppm, and signals of the hexylated lactam group of DPP in the region from 0.7 to 1.5 ppm. The 

signal of the methylene group adjacent to the lactam N atom appears at 3.7 ppm. The polymer 

spectra mainly differ from the corresponding spectra of polymers from C-C coupling 

reactions by the additional presence of the characteristic signals of the aromatic protons 

adjacent to the imino group at about 6.6 to 7.3 ppm. For the pyridine compounds, there is a 

broad peak between 7 and 8 ppm, which stems from the heavily overlapping signals of the 

phenylene units. The proton NMR spectra of pyridine containing polymers are shown in the 

experimental part of this work. 
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Optical properties 
The DPP containing polyiminoarylenes are obtained as black powders. After dissolution in 

toluene, the polymers form bright purple red solutions. The pyridine-based polymers are 

brown. Their solutions are colorless or slightly brown. Photographs of all polymer solutions 

are shown in Figure 2.20. 

 

  

      

     

HDPP P-DPP-PDA 
P-DPP-

PYRE 
P-PY-TBAN P-PY-ANT P-PY-PYRE

Figure 2.20 Photographs of HDPP monomers and various polymers prepared via Buchwald-

Hartwig polycondensation in normal (upper) and luminescent state (lower). 

 

The UV/vis absorption spectra and fluorescence spectra of the polyiminoarylenes were 

measured in toluene. The DPP containing polymers form bright purple red solutions with 

absorption maxima between 527 and 539 nm. Compared with the DPP copolymers from 

Suzuki coupling, the emission maxima of P-DPP-PDA and P-DPP-PYRE are clearly red 

shifted (Figure 2.21). They appear at 608 and 607 nm, respectively. Similar to P-DPP-TPA, 

in which an amine group is also present in the polymer main chain, the polymers exhibit much 

better luminescent properties in toluene than in chloroform.  
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Figure 2.21 UV/vis absorbance and photoluminescence spectra of various polymers prepared via 

Buchwald-Hartwig coupling polycondensation. The excitation wavelength is 350 nm. Solvent: 

toluene 

 

The photoluminescence quantum yields of the poly-DPP-iminoarylenes were measured in 

toluene. The values are 48% and 62% for P-DPP-PDA and P-DPP-PYRE, respectively. The 

high quantum yield of P-DPP-PYRE may result from the incorporation of the large aromatic 

pyrene group. The polymer films cast on quartz supports exhibited absorption maxima 

between 546 nm and 554 nm as indicated in Figure 2.22, about 16 nm to 19 nm red shifted 
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compared with the solution. Unfortunately, the solid films of poly-DPP-iminoarylenes were 

nonluminescent probably due to aggregation of the polymer chains in the solid state. 
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Figure 2.22 UV/vis absorbance spectra of solid films of DPP containing polyiminoarylenes. 

The UV/vis absorption and fluorescence spectra of the pyridine containing compounds are 

shown in Figure 2.21 as well. The maximum absorption of the polymers is located in the 

ultraviolet region. The emission maxima are 448 nm, 462 nm and 432 nm for P-PY-TBAN, 

P-PY-ANT and P-PY-PYRE, respectively. The optical data of the polymers are collected in 

Table 2.8. 

Table 2.8 Optical data of polyiminoarylenes in toluene solution and as solid film. 

 
λmax(nm) 

solution 

λem(nm) 

solution 

λmax(nm) 

film 

λem(nm) 

film 
Φf 

HDPP 476 533 - - 0.90 

P-DPP-PDA 539 608 544 None 0.48 

P-DPP-PYRE 527 607 564 None 0.62 

P-PY-TBAN 335 448 - - 0.23 

P-PY-ANT 305 462 - - 0.34 

P-PY-PYRE 359 432 - - 0.41 

The excitation wavelength is 350 nm. The photoluminescence quantum yield was measured at 

an excitation wavelength of 400 nm (for DPP compounds) or 350 nm (for pyridine 

compounds)  and calculated by comparison with Rhodamine 6G in ethanol (Фf=0.95). 

 

Electrochemical Characterization 
Cyclic voltammograms of the polymers P-DPP-PDA and P-DPP-PYRE were determined 

under the same conditions as described before. The corresponding CV-diagrams are shown in 

Figure 2.23. 
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Figure 2.23 Cyclic voltammograms of P-DPP-PDA and P-DPP-PYRE. Scan rate: 25 mVs-1, 

T = 20 0C. Electrolyte solution: 0.1 M TBAPF6 in acetonitrile. 

 

CV-data are compiled in Table 2.9. All DPP containing polymers exhibit quasi-reversible 

oxidative processes with onset potentials Eonset(ox) between 0.66 and 0.84 V (vs. SCE). The 

oxidative onset potentials of poly-DPP-iminoarylenes (P-DPP-PDA and P-DPP-PYRE) are 

significantly lower than those of the poly-DPP-arylenes (P-DPP-CBZ, P-DPP-TPA and P-

DPP-BTZ). This may result from the presence of N atom on the main chain of poly-DPP-

iminoarylene, which makes the polymer easier to be oxidized. For all polymers, the reduction 

is irreversible. As shown in Table 2.9, the band gap values from the optical measurements and 

the electrochemical experiment match well. The bandgaps of the poly-DPP-iminoarylenes are 

between the values for poly-DPP-thienylenes and those of DPP polymers via Suzuki coupling. 

Among all DPP containing polymers, P-DPP-PDA has the lowest onset oxidation potential of 

0.66 V.  
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Table 2.9 Band gap data of DPP-based polyiminoarylenes 

Polymer 

Absorption 

 on film 

λonset(nm)  

Eopt (eV)/Eelectro (eV) 

band gap 

Eonset(ox) (V) 

{EHOMO (eV)} 

Eonset(red) (V) 

{ELUMO (eV)} 

P-DPP-PDA 627 1.98/1.76 0.66{-5.06} -1.10{-3.30} 

P-DPP-PYRE 647 1.92/1.84 0.84{-5.24} -1.00{-3.40} 

Band gap (Eopt) measured at the onset of electronic absorption of the polymer film (Eopt

=1240/λonset eV). HOMO-LUMO gap according to the equation: -ELUMO=Eonset(red)+4.4 eV and   -

EHOMO=Eonset(ox)+4.4 eV, where Eonset(ox) and Eonset(red) are the onset potentials for the oxidation 

and reduction processes of polymer thin films vs. SCE. 
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Figure 2.24 Spectroelectrochemical analysis of P-DPP-PYRE in 0.1M TBAPF6 in CH3CN. 

(Voltage calculated versus SCE). 

The comparatively low oxidation potentials indicate that the poly-DPP-iminoarylenes are 

probably promising materials for electrochromic devices. The electrochromic properties of the 
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polymers were investigated using spectroelectrochemical analysis. It was found that P-DPP-

PDA and P-DPP-PYRE exhibit very similar behaviour upon oxidative cycling. The 

spectroelectrochemical analysis of the P-DPP-PYRE film was carried out in clean CH3CN 

solution with TBAPF6 as electrolyte. In Figure 2.24, the UV/vis absorption at different 

oxidation potentials is shown. Upon oxidation, the absorption peak of the DPP chromophore 

(at about 560 nm) gradually decreased. Another absorption peak originating from the radical 

cation (polaron) appears in the infrared region. Simultaneously the colour is changed from 

purple to black-green (see also the photographs in Figure 2.24). The decrease of the 

absorbance after one cycle originates from the dissolution of parts of the polymer film at the 

highly oxidized state (if the oxidation potential is over 0.93 V). If the potential is clearly 

below 0.93 V, the electrochromism is highly reversible under ambient conditions without 

special treatment of the solution. The behaviour of polymer P-DPP-PDA is very similar to P-

DPP-PYRE. 

 

2.4. Conclusions 
 New DPP containing polymers were successfully synthesized using Suzuki, Stille and 

Buchwald-Hartwig coupling polycondensation with molecular weights between 5 kDa to 16.5 

kDa. The polymers are readily soluble in common organic solvents, the solutions exhibit 

bright red colours and strong red to purple photoluminescence. P-DPP-TPA is especially 

interesting because of its high photoluminescence quantum yield of 85%. P-DPP-CBZ is also 

very promising because of its high molecular weight, excellent solubility, relatively good 

photoluminescence quantum yield of 46% and quasi-reversible oxidation behaviour. They are 

useful candidates as active materials in PLED applications. The DPP-thienylene-copolymers 

(P-DPP-TH, P-DPP-BTH and P-DPP-EDOT) are interesting because of their reversible 

oxidation behavior. The cyclovoltammetric and spectroelectrochemical experiments show that 

P-DPP-BTH is a promising electrochromic material. The solid state luminescence of the 

polymers is quenched. The poly-DPP-iminoarylenes are interesting for their significantly low 

oxidation potential. The spectroelectrochemical analysis shows that the polymers exhibit 

sharp colour changes from purple to black-green upon oxidation. 
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3. Electropolymerization of DPP containing molecules 
 

3.1. Introduction 
Since the first report on the electropolymerization of pyrrole was published, 

electropolymerization became an important method to prepare conductive polymer films 104. 

Although the procedure of electropolymerization is fairly simple, the origin of this process is 

still unclear105. Despite of the many divarications, the process of electropolymerization was 

generally regarded as a series of oxidation reactions at the anode. For the simplest monomer 

pyrrole, the most popular mechanism was proposed by Diaz106 as described in Scheme 3.1. 
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Scheme 3.1 Mechanism of electropolymerization of pyrrole 

 

In Diaz’s mechanism, the first step is the oxidation of the pyrrole monomer. The cation 

radical is formed, which has several resonance forms represented as 2, 3 and 4. It is clear that 

a high concentration of cation radicals is formed at the electrode surface. These cations may 

undergo the following processes depending on their reactivity: 

When the cation radical is relatively stable, it can diffuse into the solution and react to form 

soluble products with low molecular weights. 

When the cation radical is very unstable, it can rapidly react near the electrode with the 

solvent or the anion to also form soluble products of low molecular weight. 
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Between these two extremes, cation radicals can also undergo dimerization reactions. In this 

case, cation radicals of resonance form 3 dimerize and form the dication 4. Then the protons 

are released and the aromatic dimer 5 is formed. 

In the following steps, the dimer is oxidized again to form a cation radical and then trimer, 

tetramer, pentamer etc. is formed via the same sequence: oxidation, coupling, deprotonation. 

Finally a polymer is obtained. 

After the electropolymerization was described, Adamcova and her colleagues104 published an 

excellent review on the polymer film formation by electropolymerization. This review 

concentrated on simple aromatic monomers, especially the five membered heterocyclic 

aromatic compounds such as thiophene, furan and pyrrole. The authors discussed the factors 

affecting the process of the film formation and regarded the monomer oxidation potential as 

the most important factor. The oxidation potentials of various aromatic monomers used in 

electropolymerzation are listed in Table 3.1 (data from reference104). 

 

Table 3.1 Oxidation potentials of aromatic molecules 

Compounds Oxidation potential in voltage vs. SCE 

Pyrrole 0.8 

Thiophene 1.6 

Furan 1.85 

2,2-Bithiophene 1.32 

Indole 0.9 

Azulene 0.9 

Pyrene 1.30-1.33 

Fluorene 1.82 

 

From the Table above, it is clear that pyrrole has the lowest oxidation potential among the 

various monomers. In practical, pyrrole was found the most easily oxidized monomer. 

Thiophene and its derivatives have a higher oxidation potential than pyrrole, the film 

formation process can only be achieved in some cases. For furan and other aromatic 

compounds, it is almost impossible to form polymer films by electropolymerization. In this 

dissertation, a short review of the electropolymerization is given below. 
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3.1.1. Electropolymerization of pyrrole and its derivatives 
Pyrrole can be easily electropolymerized. However, the film-formation process can be 

affected by many factors.  

As shown in Adamcova’s review, different N-substitution changes the film-formation process 

dramatically. Generally non-substituted polypyrrole is regarded as a good candidate for 

conducting polymer films107. The conductivity is lowered by 2 to 3 orders of magnitude, if the 

proton at the nitrogen atom is replaced by a carbon atom104. Some researchers also detected 

the formation of insulating or electro-inactive polypyrrole film when a higher oxidation 

potential was used108,109. Zhou and Heinze studied the electropolymerization of pyrrole and 

indicated the affecting factors for this process in a series of publications110-114. 

Although pyrrole derivatives are very hard to be prepared, there are some reports on the 

synthesis of pyrrole derivatives and the corresponding polymers (Scheme 3.2). Thomas and 

Reynolds115 synthesized 3,4-alkylenedioxypyrroles and prepared stable aqueous-compatible 

conducting polymers from it. The poly(3,4-ethylenedioxypyrrole)  exhibits electrochromic 

properties116. Very recently, conducting polymers based on alkythiopyrroles were also 

reported117. 
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The unsubstituted bis-pyrrole-arylene compound is very difficult to synthesize because 

bromo-pyrrole is unstable118. Sotzing and Reynolds119,120 prepared bis-pyrrole-arylenes from 

the appropriate acid chlorides using a three-step method. The arylenes involved were benzene, 

alkoxybenzene, naphthalene and biphenyl. The conductivity of the polymer film is up to 30 

S/cm. Bueschel121 proposed a method to prepare substituted bis-pyrrole-arylene. In his 

publication, the N-alkylpyrrole-2-carboxaldehydes were used in a Wittig-Horner-Emmons 

olefination reaction to react with benzene, alkoxybenzene, alkoxynaphthalene and anthracene. 

Except for divinylanthracene-bridged bispyrrole, all monomers could be successfully 

electropolymerized.  

Besides the normal polypyrrole films, polypyrrole network films were reported by Deng and 

Advincula122, who prepared the polymethacrylate functionalized with pyrrole and then 

electropolymerized it on ITO coated glass substrates.  

 

3.1.2. Electropolymerization of thiophene and its derivatives (without EDOT) 
Although pyrrole is the compound which can be electropolymerized most easily, it is not the 

most widely reported unit in electropolymerization. Thiophene is more popular in 

electropolymerization because it can be connected more easily with other arylenes to form 

electropolymerizable monomers with different conjugated length. That means, the optical 

properties of the thiophene derivatives can be adjusted easily. 

The electropolymerization process of thiophene has been explored by many researchers. 

Kabasakaloglu and colleagues studied the electrochemical properties of thiophene and 

polythiophene using different supporting electrolytes (ammonium perchlorate, tetraethyl-

ammonium tetrafluoroborate and tetrabutylammonium hexafluorophosphate) in acetonitrile123. 

The thiophene oxidation potential against Ag/Ag+ was 1.6 V, if tetrabutylammonium 

hexafluorophosphate was used. It is generally accepted that the Pt working electrode adsorbs 

the weak acid anions such as PF6
- and this adsorption benefits the polymer film formation 

process.  
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Scheme 3.3 Bis- and tetra-thiophene-arylenes reported in literature 

 

Shi124,125 reported high-strength conducting polythiophene prepared in boron trifluoride 

diethyletherate solution. The polythiophene made in this way exhibited a tensile strength even 

greater than that of aluminium. This method was further adopted by Alkan and Reynolds126 

and they reported the electrochromic properties of this polythiophene. Both the swiching into 
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the oxidized and the reduced states was fully reversible. The colour change is from 

transmissive blue to deep red.  

Because the synthesis of the bis-thiophene-arylene compounds is quite easy, the 

corresponding polymers were widely reported in last ten years. The report from Reynolds 

group127 disclosed the synthesis of the bis-thiophene-arylenes and bis-furan-arylenes. The 

arylenes include benzene, alkyl- and alkoxy- benzene (Scheme 3.3). Later, Lin and Leung128 

synthesized bis(2-cyano-2-α-thienylethenyl)arylenes.  

A very simple but still not widely spread information is that the bis-bithiophene-arylenes and 

bis-thiophene-arylenes can be very easily oxidized and electropolymerized compared with 

bis-thiophene-arylenes. Destri and coworkers129 reported thiophene derivatives, which even 

become luminescent after electropolymerization. The bis-thiophene-ferrocene, the bis-

bithiophene-ferrocene and bis-thiophene-ferrocene were synthesized and only the latter two 

compounds could be electropolymerized. Perylene containing bis-bithiophene and bis-

thiophene monomers130 were also reported and the compounds could be electropolymerized 

using acetonitril as solvent. 

 

3.1.3. Electropolymerization of EDOT (3,4-(ethylenedioxy)thiophene) and its 
derivatives 

The invention of 3,4-(ethylenedioxy)thiophene (EDOT)131  dramatically speeded up the 

research work of electropolymerization. EDOT is more stable than pyrrole, but is more easily 

oxidized than thiophene. The oxidation potential of EDOT is only 1.2 V (Ag/Ag+), which is 

much lower than that of thiophene (1.6V vs Ag/Ag+). The lower oxidation potential originates 

from the electron-rich ethylenedioxy group, which stabilizes the cation radical intermediates 

allowing the electropolymerization to proceed at low potentials and with a minimum of side 

reactions. The poly(3,4-(ethylenedioxy)thiophene) film is easily formed at the anode. It 

exhibits an oxidation potential between –0.07 V and –0.28 V (vs Ag/Ag+) depending on the 

solvent system. The polymer films show an absorption maximum between 580 nm and 610 

nm with a bandgap of 1.60 eV. After EDOT was first reported, similar compounds (3,4-

(methylenedioxy)thiophene, 3,4-(propylenedioxy)thiophene, 3,4-(butylenedioxy)thiophene 

were prepared by several researchers 132,133. The molecular structures are shown in Scheme 

3.4.  
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Scheme 3.4 EDOT and several derivatives 

 

The molecular structure was varied in order to increase the solubility in different organic 

solvents and water. Sulfonate substituted EDOT134,135, alkoxyl-derivatives136 and alkyl-

derivatives137,138 have been reported. In recent research, some more sophisticated EDOT 

analogues have been synthesized. Roquet and his colleagues reported the synthesis of 3,4-

phenylenedioxythiophene derivatives139. Turbiez and co-workers synthesized the 3,4-

ethylenedisulfanylthiophene unit140. All compounds can be easily electropolymerized and the 

resulting films exhibit electrochromic properties. 

Similar to the bisthiophene arylene compounds, a wide variety of EDOT-arylene-EDOT 

monomers were reported. The method to sandwich the arylene between two EDOT offers the 

way to change the conjugation length of the monomer and to change the optical properties of 

the corresponding polymers. Compared with the bisthiophene arylene compounds, the EDOT-

arylene-EDOT monomers can be oxidized at a lower potential and the possibility to 

incorporate various arylene units in the polymer backbone is increased. In Scheme 3.5 several 

EDOT-arylene-EDOT compounds prepared up to now are listed. 
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The reported arylenes include vinylene119, cyanovinylene141, ethynylene142, furan119, 

thiophene119, bithiophene143, 2,2’-bis(vinylene)-bithiophene143, benzene119, 

dialkoxybenzene144, biphenyl119, pyridine145, bipyridine146, N-alkylcarbazole147, 9,9’-

didecylfluorene148, silole149, benzothiodiazo150 and sulphur units151. Recently, the 

electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives was reviewed by 

Groenendaal152. 

Most of the bis-EDOT-arylene polymers exhibit electrochromic properties; the colour change 

in response with the potential applied is useful in many applications. The water soluble 

PEDOT-PSS system was introduced by Bayer as Baytron P, which was deep blue in the 

neutral state and transparent in the oxidized state. The polymer was used as the active material 

for smart windows153. Reynolds’ group even reported a dual polymer electrochromic device 

which was capable to switch between a colourless neutral state and a doped gray-green 

state154. 

 

3.1.4. Electropolymerization using other building blocks 
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Scheme 3.6 Heterocyclic compounds suitable for electropolymerization 

 

There are only few other units which are suitable for electropolymerization (Scheme 3.6). The 

most important compounds are carbazole and triphenylamine. Carbazole has been reported to 

be electropolymerizable at a very high potential (1.9 V vs SCE) 155. The formation and redox 

behaviour of polycarbazole prepared by electropolymerization of solid carbazole crystals 

immobilized at an electrode surface was also reported156. A very recent article reported on a 
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luminescent polycarbazole film prepared upon electropolymerization157, which could be quite 

interesting for OLED devices. Triphenylamine itself can not be electropolymerized. However, 

it was reported that derivatives with enlarged conjugated system can be electropolymerized158.  

  

3.2. Electropolymerization of DPP containing molecules 
Up to now, there is no report on the electropolymerization of DPP containing compounds. 

The DPP monomer itself can not be electropolymerized, because the oxidation potential of the 

monomer is too high. In order to lower the oxidation potential and obtain 

electropolymerizable monomers, the following sandwich-structured monomers were 

synthesized (Scheme 3.7). The heterocyclic aromatic rings at both side of DPP can be 

thiophene, pyrrole and carbazole derivatives. 
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Scheme 3.7  Sandwich-structured DPP monomers 

 

In the following sections, the monomer preparation and the process of electropolymerization 

will be discussed in detail. 
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3.2.1. Synthesis and properties of sandwich-structured DPP monomers 

Thiophene containing DPP monomers 
Four thiophene containing sandwich-structured DPP monomers 1,4-diketo-2,5-dihexyl-3,6-

bis(4-(2-thienyl)phenyl)pyrrolo[3,4-c]pyrrole (TH-DPP-TH), 1,4-diketo-2,5-dihexyl-3,6-

bis(4-(2-(4-hexylthienyl))phenyl)pyrrolo [3,4-c]pyrrole (HTH-DPP-HTH), 1,4-diketo-2,5-

dihexyl-3,6-bis(4-(2,2'-bithiophen-5-yl)phenyl)pyrrolo[3,4-c]pyrrole (BTH-DPP-BTH) and 

1,4-diketo-2,5-dihexyl-3,6-bis((2-(3’,4’-ethylenedioxy)thienyl)-phenyl)pyrrolo[3,4-c]pyrrole 

(EDOT-DPP-EDOT) were prepared by Stille or Suzuki coupling. The preparation of the 

monomers is shown in Scheme 3.8.  

TH-DPP-TH, HTH-DPP-HTH and EDOT-DPP-EDOT are prepared upon Stille coupling. 

The reagent 2-(tri-n-butylstannyl)thiophene was prepared according to a general procedure58. 

The thiophene and 3,4-ethylenedioxythiophene were successively lithiated and treated with 

tri-n-butyltin chloride. The products were purified by chromatography using neutral alumina 

and petroleum ether as eluent. The precursor 2-(tri-n-butylstannyl)-4-hexyl-thiophene was 

synthesized by a two step reaction. In the first step, the 3-bromothiophene was alkylated in a 

Grignard reaction. The 3-hexylthiophene was separated by vacuum distillation and 

successively reacted with n-butyllithium and tributyltin chloride at low temperature. The final 

product was purified by chromatography using neutral alumina and petroleum ether as eluent. 

The Stille coupling was carried out in THF with Pd(PPh3)4 as catalyst. The resulting monomer 

was purified by column chromatography using silica and dichloromethane as solvent. TH-

DPP-TH was collected as red powder. HTH-DPP-HTH and EDOT-DPP-EDOT were 

collected as red foil. They are well soluble in common organic solvents. 

Different from the other thienylene DPP derivatives, BTH-DPP-BTH was prepared upon 

Suzuki coupling. The dibrominated monomer HDPP was reacted with an excess amount of 5-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-(2,2'-bithiophene) as indicated in Scheme 3.8. 

The resulting product was purified by chromatography. The monomer BTH-DPP-BTH was 

collected as a black powder, which was different from the red powderous TH-DPP-TH and 

red foil HTH-DPP-HTH. The solubility of BTH-DPP-BTH is lower than that of TH-DPP-

TH and HTH-DPP-HTH. However, it can be dissolved in chloroform, toluene and THF with 

the help of ultrasonic treatment. 
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The 1H-NMR spectra of TH-DPP-TH, HTH-DPP-HTH, BTH-DPP-BTH, EDOT-DPP-

EDOT and HDPP are shown in Figure 3.1.  

For the spectrum of TH-DPP-TH, there are three signals at 7.15 ppm, 7.38 ppm and 7.45 

ppm, which belong to the thiophene unit. In the spectrum of HTH-DPP-HTH, the signal at 

2.66 ppm is typical for the alpha methylene proton of the hexyl group. The two aromatic 

signals of thiophene at 6.97 ppm and 7.29 ppm are both singlets, which indicate that the hexyl 

chain of thiophene is located at the 4-position. In the spectrum of BTH-DPP-BTH, the 

signals with chemical shift between 7.07 ppm and 7.37 ppm belong to the bithiophene unit. 

For EDOT-DPP-EDOT, the occurrence of the doublet signals with chemical shift at 4.34 

ppm is typical for EDOT. The other signals in the sandwich-structured thiophene containing 

DPP monomers are very similar to those of HDPP. 
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Figure 3.1 1H-NMR spectra of TH-DPP-TH, HTH-DPP-HTH, BTH-DPP-BTH, EDOT-DPP-EDOT 

and HDPP in CDCl3 (for molecular structures, see next page). 
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Figure 3.1 Continued 

 

 

The UV/vis absorption and photoluminescence spectra of TH-DPP-TH, HTH-DPP-HTH, 

BTH-DPP-BTH and EDOT-DPP-EDOT were measured in chloroform. The results are 

compared with those of HDPP in Figure 3.2. After the thiophene units are introduced at both 

ends of the DPP chromophore, a red-shift of the absorption and emission maxima can be 

detected. The maximum absorbance of TH-DPP-TH in chloroform is at 500 nm (for HDPP: 

476 nm), the corresponding emission maximum appears at 575 nm (for HDPP: 533 nm). The 

photoluminescence quantum yield of TH-DPP-TH is 89%, which is almost the same as for 

HDPP (90%). The optical properties of HTH-DPP-HTH are very similar to that of TH-

DPP-TH. Compared with HDPP, the absorption and emission maxima exhibit bathochromic 

shifts of 25 nm and 46 nm, respectively. The photoluminescence quantum yield is 88%. When 

the DPP unit is connected with the bithiophene units, the conjugation length of the molecule 

BTH-DPP-BTH is strongly extended. The absorption and emission peak now appear at 512 

nm and 600 nm, respectively. Compared with HDPP, they exhibit a bathochromic shift of 36 

nm and 67 nm, respectively. However, the photoluminescence quantum yield is lowered to 

TH-DPP-TH HTH-DPP-HTH 

BTH-DPP-BTH EDOT-DPP-EDOT 
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50% due to the lower solubility in common organic solvents. EDOT normally introduces a 

bathochromic shift and a lower bandgap in a conjugated system. However, EDOT-DPP-

EDOT exhibits absorption and emission maxima at 510 nm and 585 nm, respectively. This 

means that the bathochromic shift is similar to that of BTH-DPP-BTH. However, the 

photoluminescence quantum yield is still quite high (84%). This may result from the good 

solubility of the EDOT unit. The UV/vis absorption of a solid monomer film was also 

measured and a maximum at 521 nm, 518 nm, 537 nm and 525 nm was found for TH-DPP-

TH, HTH-DPP-HTH, BTH-DPP-BTH and EDOT-DPP-EDOT, respectively. This 

indicates a bathochromic shift compared with the absorption in chloroform solution. 
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Figure 3.2 UV/vis absorbance and photoluminescence spectra of TH-DPP-TH, HTH-DPP-

HTH, BTH-DPP-BTH and EDOT-DPP-EDOT compared with those of HDPP. Solvent: 

CHCl3. The excitation wavelength is 350 nm. 
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Pyrrole containing DPP monomers 
Bispyrrole derivatives are very hard to be synthesized because 2-bromo-pyrrole and most N-

substituted 2-bromo-pyrroles are instable159-161. The corresponding alkylstannyl and boronic 

ester derivatives are also not available. In a previous report on bis-pyrrole-arylenes120, a 

complicated procedure was used to synthesize the desired compounds. Recently, t-

butoxycarbonyl protected pyrrole was reported, with which the corresponding brominated 

derivatives162, the boronic acid or esters163 and the stannane164 could  be prepared. Tyrrell and 

Brookes discussed the preparation of the pyrrole boronic acids in a recent review165. The t-

butoxycarbonyl protected pyrrole became popular in palladium catalyzed reactions in recent 

years163,164,166-168, because it was able to bear butyl-lithium and was suitable to prepare the 

corresponding boronic acid, ester or stannane. Furthermore, the t-butoxycarbonyl group could 

be removed during the coupling reaction166, upon  treatment with a strong base168 or 

heating164,167. 

The preparation of pyrrole containing DPP monomers 1,4-diketo-2,5-dihexyl-3,6-bis(4-(1-(t-

butoxycarbonyl)-1H-pyrrol-2-yl)-phenyl)pyrrolo[3,4-c]pyrrole (BPY-DPP-BPY) and 1,4-

diketo-2,5-dihexyl-3,6-bis(4-(pyrrol-2-yl)-phenyl)pyrrolo[3,4-c]pyrrole (PY-DPP-PY)  are 

shown in Scheme 3.9. PY-DPP-PY was prepared according to a modified version of a 

procedure described in the literature164,167.  

N

N

O

OBr

Br

DME, Na2CO3, reflux

+
N

Pd(PPh3)4
2

N

N

O

O

N

N

B
O

O

OO
O O

OO

N

N

O

O

N
H

N
H

Heating in vacuum

1800C, 30min

BPY-DPP-BPY

PY-DPP-PY
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BPY-DPP-BPY was purified by chromatography and collected as red-orange polycrystalline 

materials. PY-DPP-PY was obtained as a red powder. Both monomers are very soluble in 

common organic solvents such as toluene, chloroform and THF. 

The proton NMR spectra of HDPP, BPY-DPP-BPY and PY-DPP-PY are compared in 

Figure 3.3. The large signal with chemical shift at 1.43 ppm indicates the presence of the t-

butoxycarbonyl group. The signals of aromatic protons at the pyrrole ring appeared at 6.29, 

6.31 and 7.53 ppm for BPY-DPP-BPY. Compared with BPY-DPP-BPY, the large signal at 

1.43 ppm disappears in the spectrum of PY-DPP-PY. Another signal with chemical shift at 

8.59 ppm appears. The new signal originates from the proton connected with the nitrogen 

atom of the pyrrole ring. The signals of the aromatic protons at the pyrrole ring are located at 

6.37, 6.69 and 6.96 ppm, which are slightly smaller than those of BPY-DPP-BPY. The other 

signals in the spectra of sandwich-structured pyrrole containing DPP monomers are very 

similar to those of HDPP. 
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Figure 3.3 1H-NMR spectra of BPY-DPP-BPY, PY-DPP-PY and HDPP (for molecular structures, 

see next page). 
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Figure 3.3 Continued 

 

The UV/vis absorption and photoluminescence spectra in chloroform are compared with those 

of HDPP in Figure 3.10. Due to the presence of the t-butoxycarbonyl group, the pyrrole can 

not form a co-planar structure with the DPP chromophore very well. This renders the 

conjugation between the pyrrole ring and the DPP chromophore significantly smaller than in 

the TH-DPP-TH monomer. As for the optical properties, the bathochromic shift of BPY-

DPP-BPY is only 14 nm for the absorption, and 30 nm for the emission compared with 

HDPP. The photoluminescence quantum yield is still very high (85%). However, the solid 

monomer film exhibits an absorption maximum at 525 nm which is even larger than that of 

TH-DPP-TH indicating that a more co-planar structure formed in the solid state. If the t-

butoxycarbonyl group is removed, the PY-DPP-PY monomer is able to form a co-planar 

structure. The conjugation between the pyrrole ring and the DPP chromophore becomes 

significantly enlarged. As a consequence, the optical absorption of PY-DPP-PY is 

bathochromically shifted by 20 nm compared with BPY-DPP-BPY, while the emission is 

shifted by 22 nm. The photoluminescence quantum yield is slightly lower (78%). The solid 

monomer film exhibits an absorption maximum at 544 nm, which is the largest one among all 

DPP containing monomers synthesized in this work. 

 

BPY-DPP-BPY PY-DPP-PY 
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Figure 3.4 UV/vis absorbance and photoluminescence spectra of BPY-DPP-BPY and PY-DPP-

PY compared with those of HDPP. Solvent: CHCl3. The excitation wavelength is 350 nm. 

 

Carbazole containing DPP monomers 
The Buchwald-Hartwig coupling reaction was used to prepare 1,4-diketo-2,5-dihexyl-3,6-

bis(4-N-carbazolylphenyl)pyrrolo[3,4-c]pyrrole (CBZ-DPP-CBZ). The synthesis is described 

in Scheme 3.14: 
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Scheme 3.10 The preparation of 1,4-diketo-2,5-dihexyl-3,6-bis(4-N-

carbazolylphenyl)pyrrolo[3,4-c]pyrrole (CBZ-DPP-CBZ) 

 

After purification by chromatography, the resulting monomer CBZ-DPP-CBZ was collected 

as orange foils. The compound is well soluble in common organic solvents such as toluene, 

chloroform and THF with the help of ultrasonic treatment. Proton NMR spectra of CBZ-

DPP-CBZ and HDPP are compared in Figure 3.5. 
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Figure 3.5, 1H-NMR spectra of CBZ-DPP-CBZ and HDPP in chloroform-D 

 

Compared with HDPP, additional signals at 8.2 ppm and about 7.2 ppm appear, which can be 

ascribed to the carbazole units. In Figure 3.6, UV/vis absorption and photoluminescence 

spectra in chloroform are compared with those of HDPP. 
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Figure 3.6, UV/vis absorbance and photoluminescence spectra of CBZ-DPP-CBZ and 

HDPP. Solvent: CHCl3. The excitation wavelength is 350 nm. 
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Compared with HDPP, the absorption and emission maxima of CBZ-DPP-CBZ are 

bathochromically shifted by 19 and 31 nm, respectively. The small bathochromic shifts 

indicate that the carbazole units do not form a co-planar structure with the DPP chromophore. 

The photoluminescence quantum yield is very high (95%). The solid monomer film exhibits 

an absorption maximum at 518 nm, which is the lowest wavelength among all sandwich type 

DPP monomers. 

 

3.2.2. Electrochemical polymerization 

Device and method used for electrochemical polymerization 
For electrochemical polymerization, a three-electrode cell was used as shown in Figure 3.7. 

 

 
Figure 3.7 Three-electrode cell used for electropolymerization. 

 

Two platinum wires are used as the counter and reference electrode. The end of the counter 

electrode is flattened to achieve a size of 4 mm2. The working electrode is an ITO coated 

glass electrode. The cell is made of quartz and therefore can be also used for UV/vis 

absorption measurements at different potentials. 

Unfortunately, the sandwich type DPP monomers were not soluble in acetonitrile, which is 

generally used as the solvent for electrochemical experiments. Therefore a mixture of 

acetonitrile and dichloromethane with 1:3 ratio was used. The mixture was a good solvent for 

most of the monomers except for CBZ-DPP-CBZ. For the carbazole-containing monomer, 

pure dichloromethane was used. In all experiments, tetrabutylammonium hexafluoro-

phosphate (TBAPF6) was used as the electrolyte. It was regarded as most suitable since it is 
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able to lower the oxidation potential of the monomers123. The concentration of the electrolyte 

was 0.1 M and the concentration of the DPP containing monomers was about 1 mg/mL. 

The electropolymerization was carried out using a potentiostat PG390 from Heka Company. 

The anodic polymerization can be carried out at constant potential as a potentiostatic method, 

at constant current as a galvanostatic method, or cycling potential scanning as a 

potentiodynamic method. In this work, the potentiodynamic method was used for most DPP 

monomers except for CBZ-DPP-CBZ, for which the potentiostatic method was applied.  

The standard potential of the platinum electrode was measured in different solvent systems 

using ferrocene as standard prior to the electropolymerization. The potential value can then be 

recalculated as versus SCE. The relationship between the platinum electrode and SCE is 

shown in Figure 3.8.  
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Figure 3.8 Electrode potential relationship between common reference electrodes 

 

Using the calculation of the potential described above, the oxidation potentials of the 

monomers were calculated for different solvent systems versus SCE. The results are listed in 

Figure 3.9. 
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Although in all monomer molecules electropolymerizable heterocycles are attached on both 

sides, not all of them can be successfully electropolymerized. The electropolymerization 

depends on many factors, the most important one being the oxidation potential of the 

monomer. The monomers with the lowest oxidation potential (PY-DPP-PY, EDOT-DPP-

EDOT and BTH-DPP-BTH) can be easily electropolymerized and the films formed on the 

electrode are very robust. The monomer BPY-DPP-BPY also has a low oxidation potential, 

but the polymer film formed with this monomer is electroinactive. This is probably due to the 

presence of the voluminous butoxycarbonyl groups, which cause that the pyrrole rings are 

twisted being off the plane of the DPP chromophore. As a consequence, the polymer chain 

becomes then twisted and the π-conjugation is interrupted after several repeated units. For 

TH-DPP-TH and HTH-DPP-HTH, the oxidation potentials are too high and only soluble 

oligomers are formed during the oxidation processes. It is unexpected that CBZ-DPP-CBZ 

can be oxidized and form polymer films although the oxidation potential is quite high. For 

polymerization of CBZ-DPP-CBZ, the potentiostatic method was used, which means that the 

potential was hold at 1.4 V for two minutes. The successful deposition of polymer films may 

be caused by the lower solubility of CBZ-DPP-CBZ which causes that the oligomeric 

intermediates deposite at the ITO glass very quickly during the oxidation process. 
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Figure 3.9 Oxidation potentials of different DPP-based monomers vs. SCE. 
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Characterization of Poly(BTH-DPP-BTH) films 
Poly(BTH-DPP-BTH) was prepared upon anodic electropolymerization of the monomer. For 

this purpose, the monomer BTH-DPP-BTH was dissolved in a mixture of CH3CN/CH2Cl2 

and 0.1 M TBAPF6 as electrolyte.  The ratio of CH3CN and CH2Cl2 was 1:3. The 

potentiodynamic method was used in the potential range from -0.26 V to 1.11 V. The scan 

rate was 100 mV/s. The working electrode was ITO-coated glass, the counter and reference 

electrodes were platinum. Cyclic voltammograms monitored during the electropolymerization 

are shown in Figure 3.10. After several cycles, a thin polymer film was deposited on the ITO 

anode. 
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Figure 3.10 Cyclic voltammograms of electropolymerization of BTH-DPP-BTH. Working 

electrode: ITO; reference and counter electrode: Pt. Potential is vs SCE. The monomer was 

dissolved in 0.1 M TBAPF6 in CH3CN/CH2Cl2 mixture. Scan rate: 100 mV/s, T = 20 °C. 

 

The polymer film is insoluble in common organic solvents. Therefore it is not possible to use 

standard characterization methods such as GPC or NMR to analyze the compound. However, 
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the UV/vis absorption can be measured and the in situ formed films can be directly used in 

many applications. 

The absorption maximum of the Poly(BTH-DPP-BTH) film is at 356 nm and the colour is 

brown-red. Compared with the monomer, which has a maximum absorption at 537 nm, it is 

clear that the bithiophene units dominate the electronic properties of the polymer. Due to the 

incorporation of the counter ions in the film, the luminescence of the polymer is quenched. 

The spectroelectrochemical study of the Poly(BTH-DPP-BTH) films was carried out in dry 

CH3CN solution with TBAPF6 as electrolyte salt. The cyclic voltammogram is shown in 

Figure 3.11-a, and the corresponding UV/vis absorption at different oxidation potentials is 

shown in Figure 3.11-b. 
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Figure 3.11-a Cyclic voltammogram of a film of Poly(BTH-DPP-BTH) measured in 0.1 M 

TBAPF6 in CH3CN (Voltage calculated versus SCE) 
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Figure 3.11-b Spectroelectrochemical analysis of Poly(BTH-DPP-BTH) in 0.1 M TBAPF6 

in CH3CN (Voltage calculated versus SCE). 

 

Upon oxidation, a new absorption peak belonging to the formation of dications (the radicals 

dimerize) appears at 618 nm. There is an abrupt colour change, if the oxidation potential has 

reached 0.93 V (vs. SCE). The colour of the polymer film changes from brown red to olive 

green (see the photographs in Figure 3.11-b). After the colour change, the polymer is very 

stable and the switching can be repeated many times without special treatment of the solution 

or the use of protecting gas. The origin of this kind of colour change has been described in 

publications48. In the neutral (insulating) state, the conjugated polymer shows semiconducting 

behaviour with an energy gap between the valence band (HOMO) and the conduction band 

(LUMO). Upon electrochemical doping (“p-doping” for oxidation and “n-doping” for 

reduction), the band structure of the neutral polymer is modified generating lower energy 

intraband transitions and charge carriers (polarons and bipolarons), which are responsible for 

the increased conductivity and optical modulation. 

 



 

 82 

Characterization of Poly(EDOT-DPP-EDOT) films 
Poly(EDOT-DPP-EDOT) was prepared according to the same method as described 

previously for Poly(BTH-DPP-BTH) except that another monomer EDOT-DPP-EDOT and 

a different potential range (from -0.06 V to 0.91 V) were used. The cyclic voltammograms 

monitored during the potential cycling are shown in Figure 3.12. After several cycles, a 

polymer film was deposited on the ITO electrode. 
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Figure 3.12 Cyclic voltammograms of electropolymerization of EDOT-DPP-EDOT. 

Working electrode: ITO; reference and counter electrode: Pt. Potential is vs SCE. The 

monomer was dissolved in 0.1M TBAPF6 in CH3CN/CH2Cl2 mixture, scan rate: 100 mV/s,  

T = 20 °C. 

 

 

The Poly(EDOT-DPP-EDOT) polymer film is also insoluble in common organic solvents as 

also found for the film of Poly(BTH-DPP-BTH). The absorption maximum of Poly(EDOT-

DPP-EDOT) is at 626 nm and the colour is deep-blue, while for the monomer, the absorption 

maximum was only 525 nm. The red-shift of the absorption may be caused by the increase of 
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the conjugation length during polymerization. It may be recalled that P-EDOT-DPP, a 

polymer with similar structure prepared by Stille polycondensation (see chapter 2) exhibits an 

absorption maximum at 581 nm. The large bathochromic shift of the electropolymerized the 

film indicates that the molecular weight of the polymer is probably much higher. This may 

also explain the insolubility. The UV/vis absorptions of solid films of the monomers and the 

polymers are shown in Figure 3.13. 
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Figure 3.13 UV/vis absorption spectra of solid films of monomer EDOT-DPP-EDOT, 

polymer P-EDOT-DPP and Poly(EDOT-DPP-EDOT). 

 

The spectroelectrochemical analysis of the Poly(EDOT-DPP-EDOT) film was carried out in 

dry CH3CN solution with TBAPF6 as electrolyte salt. The cyclic voltammogram was 

performed as shown in Figure 3.14-a, and the corresponding UV/vis absorption at different 

oxidation potentials is shown in Figure 3.14-b. 
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Figure 3.14-a Cyclic voltammogram of a film of Poly(EDOT-DPP-EDOT). The CV was 

measured in 0.1 M TBAPF6 in CH3CN (Voltage calculated versus SCE). 
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Figure 3.14-b Spectroelectrochemical analysis of Poly(EDOT-DPP-EDOT) in 0.1 M TBAPF6 

in CH3CN (Voltage calculated versus SCE). 
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Upon anodic oxidation, the original absorption peak at 626 nm decreases and another 

absorption peak originating from the formation cations along the conjugated backbone 

(polarons) appears at 900 nm. The absorption of the polymer film is shifted to the infrared 

region and therefore the colour changes from deep blue to nearly transparent (see the 

photographs in Figure 3.14-b). The colour transition is rather abrupt once the oxidation 

potential exceeds 0.6 V (vs. SCE). After the transition, the polymer is very stable and the 

switching can be repeated many times without special treatment of the solution and the use of 

protecting gas. 

 

Characterization of Poly(PY-DPP-PY) films 
Poly(PY-DPP-PY) was prepared according to the same method as described previously 

except that the monomer PY-DPP-PY and a different potential range (-0.27 V to +0.9 V) 

were used. The cyclic voltammograms monitored during the potential cycling are shown in 

Figure 3.15. After several cycles, a polymer film was deposited on the ITO electrode. 
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Figure 3.15 Cyclic voltammogram of electropolymerization of PY-DPP-PY. Working 

electrode: ITO; reference and counter electrode: Pt. Potential is vs SCE. The monomer was 

dissolved in 0.1 M TBAPF6 in CH3CN/CH2Cl2, scan rate: 100 mV/s, T = 20 °C. 
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PY-DPP-PY has the lowest oxidation potential and is very easily oxidized under formation of 

a polymer film. The polymer film is red-purple with a maximum absorption at 535 nm. It is 

about 11 nm hypsochromically shifted with regard to a film of the monomer. This might be an 

orientational effect of the chromophore units along the backbone leading to twisting of the π-

conjugated polymer backbone. The polymer film is nonluminescent due to the incorporation 

of the counter anions. 

The spectroelectrochemical analysis of Poly(PY-DPP-PY) films was carried out in dry 

CH3CN solution with TBAPF6 as electrolyte. The cyclic voltammogram of the film is shown 

in Figure 3.16-a, and the corresponding UV/vis absorption at different oxidation potentials is 

shown in Figure 3.16-b. 
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Figure 3.16-a Cyclic voltammogram of a film of Poly(PY-DPP-PY). The CV was measured 

in 0.1 M TBAPF6 in CH3CN (Voltage calculated versus SCE). 
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Figure 3.16-b Spectroelectrochemical analysis of Poly(PY-DPP-PY) in 0.1 M TBAPF6 in 

CH3CN (Voltage calculated versus SCE). 

 

In the neutral state, the maximum absorption of the polymer film is at 535 nm. Upon 

oxidation the absorption peak at 535 nm decreased and the absorption at λ > 700 nm increased. 

The isosbestic point is around 671 nm when the potential is lower than 0.63 V. However, the 

colour change of the polymer film is not very pronounced because the absorption around 535 

nm does not completely disappear even at a very high applied voltage (1.03 V vs. SCE). The 

colour turns form purple-red (in the neutral state) to brown-red (in the oxidized state). 

 

Characterization of Poly(CBZ-DPP-CBZ) film 
Poly(CBZ-DPP-CBZ) was prepared by oxidative electropolymerization of the monomer. The 

monomer CBZ-DPP-CBZ was dissolved in CH2Cl2 with 0.1M TBAPF6 as electrolyte. The 

working electrode was ITO glass, the counter and reference electrodes were platinum. The 

cyclic voltammogram for the proceeding electropolymerization is shown in Figure 3.17. After 

several cycles, a very thin polymer film was obtained at the ITO coated electrode. However, 
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the polymer film prepared by this method is too thin for a detailed characterization. Therefore, 

the potentiostatic method (hold potential at 1.4 V for 2 minutes) was used. A thicker film was 

obtained and used for the characterization. 
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Figure 3.17 Cyclic voltammogram of electropolymerization of CBZ-DPP-CBZ. Working 

electrode: ITO; reference and counter electrode: Pt. Potential is vs SCE. The monomer was 

dissolved in 0.1M TBAPF6 in CH3CN/CH2Cl2 mixture, scan rate: 100 mV/s, T = 20 °C. 

 

The potentiostatically deposited film was subjected to a spectroelectrochemical study. The 

results are shown in Figure 3.18-a and 3.18-b. 
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Figure 3.18-a, Cyclic voltammogram of a film of Poly(Bis- Carbazole -DPP). The CV was 

measured in 0.1M TBAPF6 in CH3CN (Voltage calculated versus SCE). 
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Figure 3.18-b, Spectroelectrochemical analysis of Poly(Bis- Carbazole -DPP) in 0.1M 

TBAPF6 in CH3CN (Voltage calculated versus SCE). 
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In the neutral state, the polymer film only absorbs at wavelengths shorter than 400 nm and 

there is almost no absorption in the visible range. This means that the DPP chromophore is 

probably destroyed. The destruction may originate from the very high oxidation potential 

applied to the CBZ-DPP-CBZ monomer. The polymer film is quite brittle compared with the 

other polymer films, which might be an indication that the molecular weight of the polymer is 

probably low. Upon oxidation an absorption peak at 429 nm appears and the polymer film 

turns to green (Figure 3.18-b). The strong colour change from colourless to green makes it 

very promising for electrochromic applications. 

 

3.3. Conclusions 
In this chapter, the electropolymerization of a number of DPP containing monomers was 

investigated and the successful preparation of four different polymer films is described. The 

low oxidation potential of the monomer was found to be the crucial factor for a successful 

electropolymerization. The reason is that there are a lot of side reactions, if a high potential is 

applied. Besides the oxidation potential, the solubility of the monomer also affects the 

deposition process. If the oligomers formed during the oxidation reaction are only little 

soluble, they could be easily deposited at the electrode surface, and the film formation process 

was considerably proved.  

Compared with the polymers prepared upon chemical polycondensation reactions, the 

polymers from electropolymerization are generally insoluble in common organic solvents; 

which renders a characterization very difficult. Furthermore, the electrochemically prepared 

polymer is non-luminescent due to incorporation of counter anions during the polymerization 

process.  

However, there are several advantages for the electropolymerization: 

• The monomers can be purified by usual separation methods and there is no palladium 

and ligand from the catalyst incorporated in the polymer chain. This favours a high 

conductivity of the polymer film. 

• The amount of monomer needed to carry out the polymerization is very small. One 

milligram is already sufficient to deposit several films at the anode. 

• The electrochemically prepared polymer film is mechanically robust and very 

insoluble in most solvents. The stability is generally very good. Upon oxidative 

cycling (reversible p-doping and de-doping), the film is more stable and reversible 

than polymer film prepared by chemical polycondensation. 
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These properties render the electropolymerization might suitable for preparation of 

electroactive polymer films, which might be used as achive components in electronic devices. 

Upon oxidation, the polymer films reversibly change colour from brown-red to olive green 

(Poly(BTH-DPP-BTH)), deep blue to colourless (Poly(EDOT-DPP-EDOT)), purple-red to 

brown-red (Poly(PY-DPP-PY)) and colourless to green (Poly(CBZ-DPP-CBZ)). 
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4. Water soluble conjugated DPP polymers 
 

4.1. Introduction 
Water soluble conjugated polymers are aromatic polymers equipped with special side groups 

such as ionic or nonionic water soluble substituent groups. The substituents render the 

materials soluble in water and other polar organic solvents such as methanol or DMSO. If a 

water soluble conjugated polymer is dissolved in a non-aggregated state, it exhibits similar 

optical and electrochemical properties as the non-water soluble analogs169. Moreover, the 

solubility in water and polar solvents adds an advantage to these polymers over other 

materials. For example, the water soluble conjugated polymers can be used in the 

development of highly sensitive fluorescence-based sensors for chemical and biological 

targets170. 

Depending on the side chain, the water soluble conjugated polymers can be divided into the 

two classes of ionic conjugated polymers (conjugated polyelectrolytes) and nonionic water 

soluble conjugated polymers. Although there are some reports of nonionic water soluble 

conjugated polymers171-173, in which oligoethylene- and sugar-substituted PPEs 

( poly(phenylene ethynylene)s ) have been prepared, the conjugated polyelectrolytes (CPE) 

dominate the research area due to their better hydrophilic properties and their usefulness in 

the preparation of layer-by-layer assembled films. This work concentrates on the preparation 

of DPP containing conjugated polyelectrolytes. 
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The palladium catalyzed polycondensation is one of the most popular methods to prepare 

conjugated polymers. Among the various methods of catalytic polycondensation, the Suzuki, 

Sonogashira and Heck coupling are the most frequently used reactions to prepare conjugated 

polyelectrolytes. The first successful synthesis of a CPE is reported by Shi and Wudl174 using 

the Wessling route in 1990. The reaction is described in Scheme 4.1-a. The resulting 

polyelectrolyte contains a PPV-type conjugated backbone. Later the Wudl group prepared a 

cationic poly(p-phenylene vinylene) upon Heck polycondensation175 (Scheme 4.1-b). In a 

recent work176, the cationic PPV-type CPEs (Scheme 4.1-c) were used in preparation of 

multilayered self-assembly films for application as solar cells. 

The first PPP-type CPEs was reported by Wallow and Novak177 in 1991. The polymer was 

synthesized by means of Suzuki polycondensation of biphenyl derivatives in aqueous solution 

catalyzed by a water-soluble catalyst-ligand system (Scheme 4.2-a). Although the boronic 

ester is insoluble in water, it can undergo rapid hydrolysis to afford the soluble boronic acid 

analog. A molecular weight of 50 kD could be determined using polyacrylamide gel 

electrophoretic analysis with ssDNA as a standard. The method was improved by Reynolds 

group using a sulfonate monomer to increase the solubility in water178 (Scheme 4.2-b). In 

addition to this procedure, Rau and Rehahn developed another method to avoid the use of 

water soluble monomers. They synthesized a PPP-type polymer precursor containing alkyl 

bromide side groups and then converted it to an anionic water-soluble CPE179,180 (Scheme 4.2-
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b). Several years later, this method was adopted and revised by Ballauff and Rehahn181 to 

prepare the first PPP type cationic conjugated polyelectrolyte (Scheme 4.2-c). Recently 

research on CPEs has been extended to fused phenyl and heterocyclic building blocks. PPP-

type CPEs containing fluorene (Scheme 4.2-d)182,183, thiophene (Scheme 4.2-e)182,184, 

benzothiadiazole (Scheme 4.2-f)182 and triphenylamine (Scheme 4.2-g)185 have been reported. 
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The first PPE-type CPE was reported by Li186,187. Palladium-catalyzed copolymerization of 

3,5-diiodobenzoic acid with acetylene gas in a basic aqueous medium provided a m-

phenylene ethynylene polymer (Scheme 4.3-a) with a molecular weight around 60 kDa. Due 

to the relatively high molecular weight, this method was exploited by several other research 

groups soon. Swager’s group170,188 synthesized a cationic phenyleneethynylene polymer 

(Scheme 4.3-b) that can be used as a sensor material.  Schanze’s group (Scheme 4.3-c) 
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reported an anionic PPE type CPE with sulfonate189 and phosphonate side chains190 together 

with layer-by-layer self-assembled films. Recently, they extend this method to heterocyclic 

building blocks191 such as pyridine, thiophene, benzothiadiazole and ethylenedioxythiophene 

(EDOT). 
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The first water soluble DPP compound was reported in a patent192. Treated with sulfonic acid, 

DPP pigments can undergo a sulfonation reaction and turn to water soluble DPP derivatives. 

However, the DPP derivatives are non-luminescent and not suitable for the polycondensation 

reaction. Another water soluble DPP derivative was reported from our group35,50 several years 

ago. The water soluble DPP derivative was prepared in a two-step reaction: First the 

hydroxyhexyl alkylated DPP was prepared, and then it was reacted with the pyridine-SO3-

complex to yield the desired anionic DPP disulfate. This work is aimed at preparing cationic 

and anionic conjugated DPP polyelectrolytes, which can be used for the preparation of layer-

by-layer assembled films. 
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4.2. Cationic DPP containing conjugated polyelectrolytes 

4.2.1. Preparation of the monomers 
There are two popular methods to introduce cationic alkyl chains into conjugated polymers. 

The first method was reported by Swager188 and Li176, in which a bis-halogenated cationic 

monomer was prepared and the polycondensation was carried out subsequently under 

heterogeneous conditions. Another method adopted by most of the researchers was to prepare 

a neutral precursor polymer and then to quaternize the polymer in order to render it soluble in 

water and polar organic solvents. The latter method was used in this work, because the 

polycondensation could be carried out in a homogeneous system and the precursor polymer 

could be isolated and characterized by common procedures. Furthermore, cationic boronic 

esters, stannanes, ethynylenes and vinylenes can not be synthesized, and therefore the first 

method always involves hydrophobic groups upon polycondensation.  

In the first attempt, the dibromo DPP pigment was reacted with dimethylaminohexylchloride 

under similar conditions as described in Cao’s paper193 (Scheme 4.4).  

 

N
H

H
N

O

OBr

Br

(Me)2NC6H12Cl.HCl

DMSO, KOtBu
N

N

O

OBr

Br

C6H12

C6H12

N

N  
Scheme 4.4 Possible method to prepare ω-aminoalkyl substituted DPP 

 

However, after the reaction only an oil-like non-luminescent red material is obtained, which is 

hard to be purified and characterized. In a second attempt, the 1,4-diketo-2,5-bis(1-

bromohexyl)-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole (BrHDPP) could be successfully 

synthesized using dibromo DPP pigment and 1,6-dibromohexane as starting reagents (Scheme 

4.5). 
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The alkylation reaction was carried out under the same conditions as for HDPP. However, the 

yield (13%) was much lower than for the hexyl alkylated analog (~ 50%). The 1H-NMR 

spectra of BrHDPP and HDPP are compared in Figure 4.1. The characteristic triplet signal of 

the Br-CH2 unit at 3.37 ppm is very clear. It is the strongest difference between the spectra of 

the two monomers. Since no methyl group is present in BrHDPP, the corresponding signal 

between 0.5 and 1.0 ppm is missing. 
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Figure 4.1 1H-NMR of BrHDPP and HDPP in CDCl3. 

 

The physical and optical properties of BrHDPP and HDPP are very similar (Figure 4.2). 

BrHDPP is very soluble in chloroform, toluene and THF, but insoluble in water and 

methanol. Figure 4.2 shows the absorption and emission spectra for the two monomers. The 

maximum UV/vis absorbance of BrHDPP is 477 nm. Compared with HDPP, there is a 

bathochromic shift of only 1 nm. The emission maxima of BrHDPP and HDPP are 539 nm 

and 533 nm, respectively. The photoluminescence quantum yield of BrHDPP is 95%, which 

is similar to that of HDPP (90 %). 
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Figure 4.2 UV/vis absorbance and photoluminescence spectra of BrHDPP and HDPP in 

CHCl3. The excitation wavelength is 350 nm. 

 

To increase the solubility of the polymers, it is necessary to synthesize the ω-bromoalkylated 

phenylene diboronic ester. The synthesis of the diboronic ester 1,4-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-2,5-dibromohexyloxybenzene is shown in Scheme 4.6.  
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dibromohexyloxybenzene. 
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Hydroquinone was used as the starting material. There are two routes to prepare the desired 

boronic ester and both routes were tried in this work. As indicated in Scheme 4.6, route I of 

alkylation-bromination is more favourable than the bromination-alkylation procedure of route 

II. The alkylation procedure is a modification of the procedure used by Yan194. The yield of 

1,4-dibromohexyloxybenzene is 46%. The bromination of 1,4-dibromohexyloxybenzene 

followed a revised procedure of Whiteside195, the yield was 86%. The diboronic ester 1,4-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,5-dibromohexyloxybenzene was prepared 

from the corresponding dibromo compound upon successive treatment with n-butyllithium 

and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane at low temperature. The 1H-NMR 

spectra of 1,4-dibromohexyloxybenzene, 1,4-dibromo-2,5-dibromohexyloxybenzene and 1,4-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,5-dibromohexyloxybenzene are shown in 

Figure 4.3.  
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Figure 4.3 1H-NMR spectra of 1,4-dibromohexyloxybenzene, 1,4-dibromo-2,5-

dibromohexyloxybenzene and 1,4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,5-

dibromohexyloxybenzene in CDCl3. 

 

The typical signals of the three monomers are the triplet signal of Br-CH2 at 3.45 ppm and the 

triplet signal O-CH2 at 3.95 ppm. The signals of the other alkyl protons are located at 1.55, 

1.8 and 1.9 ppm. 1,4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2,5-dibromohexyloxy-
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benzene has an additional signal at 1.36 ppm originating from its methyl groups. The aromatic 

protons of 1,4-dibromohexyloxybenzene are located at 6.84 ppm, which is lower than the 

values of the other two compounds at 7.11 ppm. 

 

4.2.2. Preparation of the neutral precursor polymers 
The Suzuki polycondensation of BrHDPP and 1,4-phenylenediboronic acid was carried out 

under conventional conditions using Pd(PPh3)4 as catalyst, K2CO3 as base and toluene/water 

as solvent system, but the molecular weight of the resulting polymers never exceeded 2500 

Dalton. This is probably caused by the low solubility of oligomeric products, which prevent 

the further coupling. Using 1,4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,5-

dibromohexyloxybenzene in order to replace the 1,4-phenylenediboronic acid increased the  

degree of polymerization strongly (Scheme 4.7).  
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Scheme 4.7 Preparation of polymers P-BrDPP-BrPH and P-AMDPP-AMPH. 

 

The resulting polymer P-BrDPP-BrPH exhibits a molecular weight up to 16 kDa with a 

polydispersity of 2.1. Polymer P-BrDPP-BrPH is very soluble in toluene, chloroform and 

THF. Compared with the monomer BrHDPP, the polymer shows a bathochromic shift of 27 

nm of the maximum UV/vis absorbance (504 nm). The photoluminescence maximum is at 

568 nm, about 29 nm red-shifted compared with the monomer. The photoluminescence 

quantum yield is 44%. The spectra are shown in Figure 4.4. 
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Figure 4.4. UV/vis absorbance and photoluminescence spectra of BrHDPP and P-BrDPP-

BrPH in CHCl3. The excitation wavelength is 350 nm. 

 

4.2.3. Preparation of the cationic polymer 
The precursor polymer was dissolved in chloroform and treated with an ethanolic 

trimethylamine for 24 hours. Subsequently the solvent was removed in vacuum and a red 

solid product was received. The resulting solid was soluble in water and DMSO with a 

maximum absorbance at 506 nm and 502 nm, respectively (Figure 4.5). The cationic polymer 

was non-luminescent in water, but luminescent in DMSO. The photoluminescence spectrum 

exhibits two emission peaks at 432 and 565 nm. The emission peak at 565 nm can be ascribed 

to the DPP chromophore, while the other one probably originates from the phenylene units in 

between. The emission peak of phenylene is even bigger than that of the DPP chromophore, 

which is very unusual for DPP polymers. It points to a partial destruction of the DPP 

chromophore during the quaternization reaction. As a consequence, the π-conjugation of the 

backbone is interrupted and emission mainly occurs from the residual phenylene units. From 

the NMR spectra in the experimental part, it is very clear that the percentage of the signals 

from aromatic protons is decreased after quaternization. 
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Figure 4.5 UV/vis absorbance and photoluminescence spectra of P-BrDPP-BrPH (CHCl3) 

and P-AMDPP-AMPH (DMSO or H2O). The excitation wavelength is 350 nm. 
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4.3. Anionic DPP containing conjugated polyelectrolytes 

4.3.1. Preparation of the monomers 
An anionic DPP derivative was already prepared by Saremi, Lange and Tieke50 (Scheme 4.8-

a). However, in the present work a more convenient method has been developed (Scheme 4.8-

b).  
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Scheme 4.8 Preparation of anionic DPP containing compounds. 

 

Dibrominated DPP was reacted with butane sultone in the presence of a strong base such as 

potassium t-butoxide. The reaction was carried out in DMF for 24 hours. The resulting DPP-

based monomer 1,4-diketo-2,5-bis(sulfonylbutyl)-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]-

pyrrole (SDPP) was obtained in a very high yield (> 95%). The monomer is very soluble in 

water, soluble in methanol and DMSO, but insoluble in toluene, chloroform or THF. The 

purification of the monomer is tedious: it has to be dissolved in water, precipitated in acetone 

and the dissolution/precipitation has to be repeated several times. There is always a trace 

amount of water inside the product even after drying in vacuum for several days. The water 

probably exists as crystal water. However, from the 1H-NMR spectrum (Figure 4.6), it is very 

clear that the desired product has been formed. The typical signals at 3.59 ppm for N-CH2 and 

2.61 ppm for S-CH2 are very clear and well in the expected 1:1 ratio. The signals of the 

aromatic protons are located at 7.34 and 7.50 ppm. The other methylene protons appear at 

1.41 ppm. 
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Figure 4.6 1H-NMR spectrum of SDPP in D2O. 

 

The monomer SDPP exhibits very interesting optical properties. Compared with the ordinary 

HDPP, the UV/vis absorbance maximum is hypsochromically shifted by 6 nm (Figure 4.7). 

The aqueous solution shows a strong photoluminescence with a quantum yield of 88%. The 

maximum emission is at 533 nm, which is identical with HDPP. 
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Figure 4.7 UV/vis absorbance and photoluminescence spectra of SDPP in water.  

The excitation wavelength is 350 nm. 
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4.3.2. Synthesis of the anionic polymer 

Suzuki polycondensation 
The anionic DPP containing polymer P-SDPP-PH was synthesized upon Suzuki 

polycondensation using equal amounts of SDPP and 1,4-phenylenediboronic acid (Scheme 

4.9). The reaction was carried out in a mixture of DMSO/water and Pd(PPh3)4 was used as 

catalyst. Potassium carbonate was dissolved in water and added to the reaction after the 

reactants and the catalyst were totally dissolved. Then the temperature was raised and the 

mixture was refluxed under nitrogen for 24 hours. After the reaction, the mixture was 

precipitated in ethanol while it was still hot. The precipitate was successively washed with 

chloroform and acetone. The solid product was collected and dried under vacuum at 100 oC 

for 24 hours.  
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Scheme 4.9 Preparation of polymers P-SDPP-PH, P-SDPP-AB and P-SDPP-ABS. 

 

Polymer P-SDPP-PH is soluble in water, methanol and DMSO. Although the molecular 

weight of the polymer was not determined because of the insolubility in THF, the large 

bathochromic shift of 63 nm indicates that the conjugation length of the polymer must have 
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been extended strongly. Unfortunately, the polymer is non-luminescent in water and only 

slightly luminescent in DMSO. The quenching of the fluorescence might be caused by a 

strong aggregation of the polymer molecules in aqueous solution196. The photoluminescence 

quantum yield in DMSO is only 6.2%. Figure 4.8 shows the UV/vis absorption spectra in 

water and DMSO, and the photoluminescence spectrum in DMSO.  For comparison, the 

spectra of the monomer SDPP in water are also shown. 
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Figure 4.8 UV/vis absorbance and photoluminescence spectra of S-DPP and P-SDPP-PH in

water and DMSO. The excitation wavelength is 350 nm. 
 

Buchwald-Hartwig polycondensation 
In a previous publication77, it was pointed out that under the condition of Suzuki 

polycondensation the N-alkylated DPP may be transferred into the O-alkylated form, which is 

accompanied by a decrease of the photoluminescence quantum yield. The transformation is 

generally favoured by a low reactivity of the monomers in the coupling reaction. The previous 

Suzuki coupling in Scheme 4.9 may bear this situation because the two monomers are very 

different in their solubility. The preparation of the precursor for cationic polyelectrolytes 

(chapter 4.2.2.) also indicates this problem. Therefore it seemed useful to look for monomers 

which enable the polycondensation reaction in a homogeneous phase. Unfortunately, no 

water-soluble aryl boronic acid or boronic ester are available. Therefore the alternative 

method of Buchwald-Hartwig coupling was adopted to synthesize anionic DPP containing 

conjugated polyelectrolytes.  
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The first Buchwald-Hartwig C-N coupling involving a water-soluble compound was reported 

by Buchwald197. Although only a coupling reaction between aminobenzoic acid and a 

dibromo arylene compound was reported, it was tried to adopt this reaction for a 

polymerization process.  

The first water soluble polymer P-SDPP-AB was obtained by reacting equal amounts of 

SDPP and 4-aminobenzoic acid using tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) 

and tris-t-butylphosphine as catalyst. The catalyst was dissolved t-butanol and stirred for 30 

minutes. Subsequently the monomers, a strong base (sodium ethoxide) and more t-butanol 

were added. The mixture was degassed and then was stirred at 100 °C under nitrogen for 24 

hours. After the reaction, the mixture was precipitated in ethanol while it was still hot. The 

precipitate was successively washed with chloroform and acetone. The solid product was 

collected and dried under vacuum at 100 oC for 24 hours. The resulting polymer was very 

soluble in water and exhibited a strong bathochromic shift of 57 nm compared with the 

monomer SDPP in water. The polymer was non-luminescent in water but strongly 

luminescent in DMSO. The absorption maximum in water and DMSO was at 528 nm and 560 

nm, respectively (Figure 4.9). The maximum photoluminescence in DMSO was at 594 nm, 

the quantum yield was 45 %.  
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Figure 4.9 UV/vis absorbance and photoluminescence spectra of S-DPP and P-SDPP-AB in

water and DMSO. The excitation wavelength is 350 nm. 
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In order to increase the solubility of the polymer in water, another DPP containing conjugated 

polyelectrolyte P-SDPP-ABS was prepared. The polycondensation procedure was the same as 

the one for P-SDPP-AB except that another ligand and base were used. For the new polymer, 

Xphos and potassium t-butoxide were used. The resulting polymer P-SDPP-ABS shows 

excellent solubility in water and DMSO, but is totally insoluble in toluene, chloroform and 

THF. The 1H-NMR spectrum of the polymer P-SDPP-ABS is shown below (Figure 4.10) 

together with the NMR spectrum of monomer SDPP. For the polymer, the signals of the S-

CH2 and N-CH2 protons occur at 2.8 ppm and 3.5 ppm, respectively. The corresponding 

signals of the monomer appear at 2.61 ppm and 3.59 ppm. The signals of the aromatic protons 

are between 6.8 ppm and 7.9 ppm for the polymer, and at 7.34 ppm and 7.50 ppm, 

respectively, for the monomer. The signal at 6.8 ppm is a typical signal of aromatic protons 

adjacent to an aromatic amine group. 
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Figure 4.10 1H-NMR spectra of P-SDPP-ABS and SDPP in D2O. 

 

The optical properties of polymer P-SDPP-ABS are shown in Figure 4.11.The polymer is 

non-luminescent in water, but strongly luminescent in DMSO, the quantum yield is 49 %. The 

maximum absorption maximum of the polymer in water is at 524 nm. It is red shifted by 53 
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nm compared with the monomer. The maximum absorption maximum of the polymer in 

DMSO is at 554 nm.  

300 400 500 600 700 800
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 E
m

ission [a. u.]A
bs

or
ba

nc
e 

[a
. u

.]

Wavelength [nm]

 SDPP in Water
 P-SDPP-ABS in Water
 P-SDPP-ABS in DMSO

UV PL

 
Figure 4.11 UV/vis absorbance and photoluminescence spectra of S-DPP and P-SDPP-ABS 

in water and DMSO. The excitation wavelength is 350 nm. 

 

4.4. Conclusion 
The water-soluble DPP containing polyelectrolytes were successfully prepared upon Suzuki 

and Buchwald-Hartwig coupling polycondensation. The process for the preparation of the 

cationic polymer was to synthesize the neutral precursor polymer and then to quaternize the 

polymer. The neutral precursor could be successfully prepared and characterized. 

Quaternation of the neutral polymer indeed enabled the preparation of a cationic conjugated 

polyelectrolyte, but the emission spectrum indicated that the DPP chromophore must have 

been destroyed partially. The cationic polyelectrolyte is soluble in water, methanol and 

DMSO, but it is only luminescent in the two non-aqueous solvents. The anionic DPP 

monomer could successfully be synthesized and exhibited a strong photoluminescence in 

water and DMSO. The anionic monomer was used in the Suzuki and Buchwald-Hartwig 

polycondensation to synthesize three DPP containing anionic conjugated polyelectrolytes. 

The polymers from Buchwald-Hartwig polycondensation exhibit a stronger 

photoluminescence and better solubility, because an additional ionizing group is present in the 

aryl-amine units. However, the anionic polymers are non-luminescent in aqueous 

environment although the corresponding monomer is very luminescent in water. This may be 
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caused by a strong aggregation of the polymers in aqueous solution. At the end of this chapter, 

the optical properties of all the DPP containing monomers and polymers are compiled. 

 

Table 4.1 The optical properties of DPP containing polymer and monomers in Chapter IV 

Structure λmax (nm) λem (nm) Φf 

N

N

O

O

C6H13

Br

C6H13

Br

 
HDPP 

476 (in CHCl3) 533 (in CHCl3) 0.90 (in CHCl3) 

N

N

O

O

C6H12

Br

C6H12

Br

Br

Br

 
BrHDPP 

477 (in CHCl3) 539 (in CHCl3) 0.95 (in CHCl3) 

N

N

O

O

C6H12

C6H12

Br

Br

O

O

C6H12

C6H12

Br

Br

n

 
P-BrDPP-Br-PH 

504 (in CHCl3) 564 (in CHCl3) 0.44 (in CHCl3) 

N

N

O

O

C6H12

C6H12

N

N

O

O

C6H12

C6H12

N

N

n

Br

Br

Br

Br
 

P-AMDPP-AMPH 

506 (in H2O) 

502 (in DMSO) 

432, 565 (in 

DMSO) 
- 

N

N

O

O

C4H8

Br

C4H8

Br

SO3
-K+

SO3
-K+  

SDPP 

471 (in H2O) 533 (in H2O) 0.88(in H2O) 
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N

N

O

O

C4H8

C4H8

SO3
-K+

SO3
-K+

n

 
P-SDPP-PH 

534 (in H2O) 

506 (in DMSO) 
565 (in DMSO) 0.062 (in DMSO) 

N

N

O

O

C4H8

C4H8

SO3
-K+

SO3
-K+

n
N

CO2
-K+ 

P-SDPP-AB 

528 (in H2O) 

560 (in DMSO) 
594 (in DMSO) 0.45 (in DMSO) 

N

N

O

O

C4H8

C4H8

SO3
-K+

SO3
-K+

n
N

SO3
-K+ 

P-SDPP-ABS 

524 (in H2O) 

554 (in DMSO) 
591 (in DMSO) 0.49 (in DMSO) 
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5.  Experimental part 
 

5.1. Materials, instruments and general procedures 

5.1.1. Materials 
Tetrahydrofuran (THF) was distilled over sodium hydride under nitrogen. N-Methyl-2-

pyrrolidon (NMP) and N,N-dimethylformamide (DMF) were distilled over CaH2. 

Chromatographic separations were carried out using Acros silica gel 60 (0.060 – 0.200 mm). 

1,4-Diketo-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole was kindly supplied by Dr. M. 

Dueggeli and Dr. R. Lenz from Ciba Specialty Chemicals, Basle, Switzerland. 

Bis(pinacolato)diboron was purchased from Combi-Blocks Inc. Other materials were obtained 

from Acros, Fluka and Aldrich and used without further purification. 

5.1.2. Instruments 
1H NMR spectra were recorded on a Bruker AC 300 spectrometer operating at 300 MHz for 
1H experiments. UV/vis absorption spectra were recorded on a Perkin-Elmer Lambda 14 

spectrometer. Photoluminescence spectra were recorded on a Perkin-Elmer LS50B 

spectrometer. Molecular weights were determined upon size exclusion chromatography (SEC) 

using a Waters/Millipore UV detector 481 and an SEC column combination (Latek/styragel 

50/1000 nm pore size). All measurements were carried out in tetrahydrofuran at 45 °C. The 

columns were calibrated versus commercially available polystyrene standards. Cyclic 

voltammograms were recorded using a potentiostat PG390 from Heka Company. A thin film 

of the polymer was cast on an ITO electrode and cycled in CH3CN containing 0.1 M 

tetrabutylammoniumhexafluorophosphate. Counter electrode: Pt; reference: Pt; scan rate: 25 

mVs-1; temperature: 20 oC. 

5.1.3. Electropolymerization 
The oxidative electropolymerization of the monomer was carried out in a mixture of 

CH3CN/CH2Cl2 with 0.1M TBAPF6 as electrolyte. The ratio of CH3CN and CH2Cl2 was 1:3. 

The scan rate was 100 mV/s. The monomer was dissolved in the mixture. The working 

electrode was ITO coated glass, the counter and reference electrodes were platinum. The 

potentiostatic or potentiodynamic (cyclic voltammetry) method were performed. After 

polymerization, the polymer film was deposited on the ITO electrode. 
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5.2. DPP conjugated polymers via polycondensation reactions 

5.2.1. Suzuki coupling 

1,4-Diketo-2,5-dihexyl-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole  
8.92 g (20 mmol) 1,4-Diketo-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, 4.94 g (44 mmol) 

potassium t-butoxide and 150 mL dry NMP were heated to 60 °C. 16.9 mL (120 mmol) 1-

bromohexane was slowly added and the mixture was stirred at 60 °C for 18 h. After cooling to 

room temperature, 250 mL toluene were added and the reaction mixture was washed with 

water to remove the NMP. The organic solution was concentrated using a rotary evaporator. 

The raw material was purified by column chromatography on silica using dichloromethane as 

the solvent. 5.1 g (42 %) of an orange, polycrystalline powder were obtained. The melting 

point was 183 oC. 

 
1H NMR (CDCl3, 300 MHz): δ (ppm) 0.85 (t, 6H), 1.23 (m, 12H), 1.56 (m, 4H) 3.74 (t, 4H, 

N-CH2), 7.65 (d, 4H), 7.66 (d, 4H);  

λmax(CHCl3):      476 nm  

λem(CHCl3):      533 nm 

Φf(CHCl3):     90 % 
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1,4-Diketo-2,5-dihexylpyrrolo[3,4-c]pyrrole-3,6-diphenyl-4-pinacolato boronester  
1 g (1.63 mmol) 1,4-Diketo-2,5-dihexyl-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, and 

0.91 g (3.59 mmol) bis(pinacolato)diboron were dissolved in 60 ml degassed DMF followed 

by the addition of 0.022 g (6 mol%) palladium(II) acetate and 0.9593 g (9.80 mmol) 

potassium acetate. The reaction mixture was vigorously stirred under nitrogen at 80 °C for 2 h. 

During this period, the progress of the reaction was monitored by thin layer chromatography 

(TLC) (silica, dichlormethane/MeOH, 10:1). After completion, the reaction mixture was 

poured into distilled water to induce the precipitation of the crude product. A red solid was 

formed which was filtered off, rinsed with water and dried under ambient conditions. The 

crude product was dissolved in a minimum amount of dichloromethane and poured into 

ethanol to precipitate polymeric side products. After filtration, the mother solution was 

concentrated using a rotary evaporator. Upon cooling, 0.7 g (61 %) of the pure product was 

obtained as bright red flakes. The melting point was 235 0C.  
1H NMR (CDCl3, 300 MHz): δ(ppm) 0.84 (t, 6H), 1.21 (m, 12H), 1.38 (s, 24H), 1.58 (m, 4H), 

3.75 (t, 4H, N-CH2), 7.80 (d, 4H), 7.95 (d, 4H). 

λmax(CHCl3):      479 nm  

λem(CHCl3):      548 nm 
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3,6-Dibromocarbazole 
Carbazole (35.65 g, 213 mmol) was dissolved in N,N-dimethylformamide (DMF) (300 mL) at 

0°C with stirring.  To this was dropped 200 mL NBS (75.89 g, 426 mmol) DMF solution. 

After stirring at room temperature for 2 h, the solution was poured into 2000 mL of water, 

filtered, washed with 2000 mL water. The filter white residue was recrystallized in ethanol 

and gave 3,6-dibromocarbazole as colorless crystals (58.9 g, 85 %).  

 
1H NMR (CDCl3): δ (ppm) 7.32 (d, 2H), 7.54 (d, 2H), 8. 1(s, 1H), 8.15 (s, 2H). MP: 215-

216°C. 
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3,6-Dibromo-9-ethylhexylcarbazole  
A revised method from Paliulis69 was used. 3,6-dibromocarbazole (6.5 g, 20 mmol) was 

dissolved in 50 mL acetone. The phase-transfer catalyst [(C4H9)4N]HSO4 (0.41g, 1.21 mmol), 

2-ethylhexylbromide (5.79 g, 30 mmol) and NaOH (1.6g, 40mmol) were added. The reaction 

mixture was stirred and refluxed for 4 hours. The solvent was removed and 300 mL toluene 

was added. Then the mixture was washed with brine (3×200 mL) and dried over anhydrous 

magnesium sulfate. The solvents were concentrated using a rotary evaporator. Column 

chromatography of the residue over silicon gel with petrol ether as eluent gave 3,6-dibromo-

9-ethylhexylcarbazole as a colorless liquid (7.1g, 81%).  

 
1H NMR (CDCl3): δ (ppm) 0.92 (t, 6H), 1.31 (m, 8H), 2.01 (m, 1H), 4.12 (d, 2H), 7.24 (d, 

2H), 7. 56(d, 2H), 8.15 (s, 2H). 
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3,6-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-ethylhexylcarbazole  
Using a syringe, 2.5 M n-BuLi ( 8.62 mL, 20.2 mmol) were added to a solution of 3,6-

dibromo-9-ethylhexylcarbazole ( 2.73 g,  6.23 mmol) in THF (160 mL) at -78 °C with stirring. 

After stirring for one hour at this temperature, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (4.2 mL, 20.4 mmol) was added. The reaction mixture was stirred at -78 °C for 

additional 1 h and then was gradually warmed to room temperature and stirred overnight. 

After the reaction, 100 mL water and 100 mL ether were added to the solution. Then the 

mixture was washed with brine (3×40 mL) and the organic layer was dried over MgSO4. The 

solvents were evaporated using a rotary evaporator. Column chromatography of the residue 

over silicon gel with hexane and ethyl acetate mixture (hexane: ethyl acetate, 10:1; Rf ≈ 0.6) 

as eluent gave 3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-ethylhexylcarbazole as 

a white solid (0.98 g, 30 %).  

 
1H NMR (CDCl3): δ (ppm) 0.90 (t, 6H), 1.30 (m, 8H), 1.41 (m, 24H) 2.01 (m, 1H), 4.19 (d, 

2H), 7.39 (d, 2H), 7. 91(d, 2H), 8.68 (s, 2H). 
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4,4´-Dibromotriphenylamine  
Triphenylamine (3.65 g, 15 mmol) was dissolved in DMF (75 mL) with stirring. To this 

mixture, solid NBS (5.34 g, 30 mmol) was added in small portions. The color of the solution 

changed from colorless to clear green and then back to light yellow gradually. After stirring at 

room temperature for 24 h, 160 mL dichloromethane was added to the solution. Then the 

reaction mixture was washed with water (1×80 mL, 4×40 mL) and the organic layer was dried 

over MgSO4. The solvents were evaporated below 40 °C using a rotary evaporator. Column 

chromatography of the residue over silicon gel with hexane and dichloromethane mixture 

(hexane: dichloromethane, 5:1; Rf ≈ 0.7) as eluent gave 4,4´-dibromotriphenylamine as a 

white solid (0.98 g, 30 %).   

 
1H NMR (CDCl3): δ (ppm) 6.95 (d, 4H), 7.08 (d, 2H), 7.10 (m, 1H), 7.29 (m, 2H), 7.36 (d, 

4H). 
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4,4´-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-triphenylamine  
Using a syringe, 2.5 M n-BuLi ( 8.3 mL, 19.35 mmol) were added to a solution of 4,4´-

dibromotriphenylamine ( 2.6 g, 6.45 mmol) in THF (50 mL) at -78 °C with stirring. The color 

of the solution turned to red-purple first and then turned to light yellow gradually. The 

mixture was stirred at -78 °C for one hour. Then the temperature was allowed to increase to 

room temperature. After that the mixture was cooled to -78 °C again, 2-isopropoxy-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane (3.94 mL, 19.35 mmol) was added by syringe. The reaction 

mixture was stirred at -78 °C for an additional two hours and then was gradually warmed to 

room temperature and stirred overnight. The clear solution was diluted with ether (100 mL) 

and washed with water (3×50 mL). The organic layer was dried over MgSO4, and the solvents 

were concentrated below 40 °C using a rotary evaporator. Flash column chromatography of 

the residue over silicon gel with hexane and ethyl acetate mixture (hexane: ethyl acetate, 

100:5; Rf ≈ 0.3) as eluent gave 4,4´-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-

triphenylamine as a white solid (0.48 g, 15 %).  

 
1H NMR (CDCl3): δ (ppm) 1.35 (s, 24H), 7.02 (d, 4H), 7.08 (d, 2H), 7.10 (m, 1H), 7.26 (m, 

2H), 7.66 (d, 4H).  
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4,7-Dibromo-2,1,3-benzothiadiazole  
The revised method form Pilgram76 was used. 2,1,3-benzothiadiazole (2.72 g, 20 mmol) and 

15 mL 47% hydrobromic acid were mixed and heated under reflux with stirring, while 

bromine (9.6 g, 60 mmol) was dropped slowly in within one hour. To facilitate stirring, 10 ml 

of 47% hydrobromic acid was added and the mixture was heated under reflux for two hours 

after completion of bromine addition. The mixture was filtered while hot, cooled, filtered 

again, washed well with water and recrystallized with 40 mL ethanol to give 4,7-dibromo-

2,1,3-benzothiadiazole as white needles. (4.15 g, 71 %). m.p.: 188-189 °C. 
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P-DPP 
Under nitrogen atmosphere, 0.1224 g (0.2 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.122 g (0.48 mmol) bis(pinacolato)diboron, 0.180 g (0.6 

mmol) potassium acetate, 1.5 mg (3 mol%) palladium(II) chloride and 9 mg dppf were 

dissolved in 30 mL DMF. The mixture was heated to 80 °C for 100 minutes until no start 

material could be detected anymore. After that, 5 mg (2 mol%) 

tetrakis(triphenylphosphine)palladium, 0.1224 g (0.2 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole and 0.089 g (0.6 mmol) potassium carbonate in aqueous 

solution were added to the mixture. Simultaneously 30 mL toluene were added to dissolve all 

solids. The reaction mixture was heated to 95 °C for 12 h. After the mixture was cooled, 200 

mL toluene were added and the mixture was extracted with water to remove DMF and salts. 

The organic solution was dried in vacuum, redissolved in a minimum amount of chloroform, 

and precipitated in ethanol. The whole procedure was carried out twice. The polymer was 

collected and dried in vacuum to give 0.147g (82 %) of a black powder. The polymer did not 

melt or decompose up to 295 °C. Molecular weight: 8.7 kDa, polydispersity: 1.6.  
1H NMR (CDCl3, 300 MHz): δ(ppm) 0.70-1.80 (Alkyl-H); 3.73 (N-CH2); 7.38 (aromatic CH); 

7.76 (aromatic CH). 

λmax(CHCl3):      528 nm  

λem(CHCl3):      631 nm 

Φf(CHCl3):     13% 

λmax(film):      535 nm  

λem(film):      640 nm 

HOMO:     -5.35 eV 

LUMO:     -3.42 eV 

Bandgap:     1.93 eV 
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P-DPP-CBZ  

N

N

O

OBr

Br

Toluene, K2CO3,
TBAB, reflux

+

Pd(OAc)2, P(o-toly)3

N

B B
O

O O
O

N

N

O

O
n

N

Under nitrogen atmosphere, 0.2 g (0.326 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.173 g (0.326 mmol) 3,6-bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-9-ethylhexyl-carbazole, 5 mg (3 mol%) palladium(II) acetate (Pd(OAc)2) 

and 35 mg tris(o-tolyl)phosphine were dissolved in 5 mL toluene and stirred under room 

temperature for 30 minutes. After that, 226 mg K2CO3 (1.63 mmol) and 10 mg 

tetrabutylamonium bromide were dissolved in 2 mL water and added to the reaction mixture 

under the inert gas atmosphere. Then the reaction mixture was allowed to raise the 

temperature and refluxed under nitrogen for 24 h. After cooling, 50 mL of chloroform were 

added and the mixture was filtered through celite to remove the residue palladium. Then the 

filtrate was concentrated, the residue was redissolved in a minimum amount of chloroform 

and precipitated in acetone. The whole procedure was carried out twice. The polymer was 

collected and dried under vacuum for 24h. m.w.: 16,500, polydispersity: 2.2, yield: 61 %. 

 

1H NMR (CDCl3): δ (ppm) 0.7-1.8 (C-CH2,CH3), 2.1(CH), 3.90 (DPP N-CH2), 4.25 

(carbazole N-CH2), 7.52, 7.79 (phenyl H), 7.92, 8.02, 8.48 (carbazole aromatic H). 

λmax(CHCl3):      506 nm  

λem(CHCl3):      585 nm 

Φf(CHCl3):     46 % 

λmax(film):      527 nm  

λem(film):      638 nm 

HOMO:     -5.33 eV 

LUMO:     -3.43 eV 

Bandgap:     1.90 eV 
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P-DPP-TPA  

N

N

O

OBr

Br

Toluene, K2CO3,
TBAB, reflux

+

Pd(OAc)2, P(o-toly)3
NB B

O

O O

O

N

N

O

O
n

N

Toluene, K2CO3,
TBAB, reflux

+

Pd(OAc)2, P(o-toly)3

N

N

O

O
n

N

NBr Br
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N
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OB

B
O

O

O

O

 
Method 1: Under nitrogen atmosphere, 0.217 g (0.355 mmol) 1,4-diketo-2,5-dihexyl-3,6-

bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, 0.177 g (0.355 mmol) 4,4´-bis(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)-triphenylamine, 5 mg (3 mol%) palladium(II) acetate (Pd(OAc)2) 

and 35 mg tris(o-tolyl)phosphine were dissolved in 5 mL toluene and stirred under room 

temperature for 30 minutes. After that, 294 mg K2CO3 (2.13 mmol) and 10 mg 

tetrabutylamonium bromide were dissolved in 2 mL water and added to the reaction mixture 

under the inert gas atmosphere. Then the reaction mixture was allowed to raise the 

temperature and refluxed under nitrogen for 24 h. After cooling, 50 mL of chloroform were 

added and the mixture was filtered through celite to remove the residue palladium. Then the 

filtrate was concentrated, the residue was redissolved in a minimum amount of chloroform 

and precipitated in ethanol. The whole procedure was carried out twice. The polymer was 

collected and dried under vacuum for 24 h. m.w.: 3,700, polydispersity: 1.5, yield: 40 %.  

 

Method 2: Under nitrogen atmosphere, 0.084 g (0.119 mmol) 1,4-diketo-2,5-dihexyl-3,6-

bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrolo[3,4-c]pyrrole, 0.048 g 

(0.119 mmol) 4,4´-Dibromotriphenylamine, 4.1 mg (3% mol) Pd(PPh3)4 were dissolved in 5 

mL toluene and stirred under room temperature for 30 minutes. After that, 0.098 g K2CO3 

(0.72 mmol) and 10 mg tetrabutylamonium bromide were dissolved in 2 mL water and added 

to the reaction mixture under the inert gas atmosphere. Then the reaction mixture was allowed 

to raise the temperature and refluxed under nitrogen for 24 h. After cooling, 50 mL of 
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chloroform were added and the mixture was filtered through celite to remove the residue 

palladium. Then the filtrate was concentrated, the residue was redissolved in a minimum 

amount of chloroform and precipitated in ethanol. The whole procedure was carried out twice. 

The polymer was collected and dried under vacuum for 24 h. m.w.: 7,400, polydispersity: 1.9, 

yield: 30 %. 

 
1H NMR (CDCl3): δ (ppm) 0.7-1.8 (C-CH2,CH3), 3.850 (DPP N-CH2), 7.0-7.4(TPA-H) 7.59 

(TPA-H), 7.77, 7.93 (phenyl-H). 

λmax(toluene):      511 nm  

λem(toluene):      587 nm 

Φf(toluene):     85 % 

λmax(film):      526 nm  

λem(film):      621 nm 

HOMO:     -5.37 eV 

LUMO:     -3.55 eV 

Bandgap:     1.82 eV 
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P-DPP-BTZ  

Toluene, K2CO3,
TBAB, reflux

+

Pd(OAc)2, P(o-toly)3
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Under nitrogen atmosphere, 0.120 g (0.170 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrolo[3,4-c]pyrrole, 0.050 g (0.170 mmol) 4,7-

dibromo-2,1,3-benzothiodiazole, 2.2 mg (3 mol%) palladium(II) acetate (Pd(OAc)2) and 6.1 

mg tris(o-tolyl)phosphine were dissolved in 5 mL toluene and stirred under room temperature 

for 30 minutes. After that, 0.141 g K2CO3 (1.02 mmol) and 10 mg tetrabutylamonium 

bromide were dissolved in 2 mL water and added to the reaction mixture under the inert gas 

atmosphere. Then the reaction mixture was allowed to raise the temperature and refluxed 

under nitrogen for 24 h. After cooling, 50 mL of chloroform were added and the mixture was 

filtered through celite to remove the residue palladium. Then the filtrate was concentrated, the 

residue was redissolved in a minimum amount of chloroform and precipitated in acetone. The 

whole procedure was carried out twice. The polymer was collected and dried under vacuum 

for 24 h. m.w.: 7,000, polydispersity: 1.3, yield: 75 %. 
1H NMR (CDCl3): δ (ppm) 0.7-1.5 (C-CH2,CH3), 3.9 (DPP N-CH2), 7.17 (thiophene-H), 7.44, 

7.65 (phenyl-H). m.w.: 7,000, polydispersity: 1.70, yield: 70 %, 1H NMR (CDCl3): δ (ppm) 

0.7-1.8 (alkyl-H), 3.87 (N-CH2), 7.82 (aromatic H). 

λmax(CHCl3):      515 nm;  

λem(CHCl3):      600 nm. 

Φf(CHCl3):     19% 

λmax(film):      528 nm.  

λem(film):      665 nm. 

HOMO:     -5.34 eV 

LUMO:     -3.57 eV 

Bandgap:     1.77 eV 
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P-CBZ-TPA 

N

Br Br

NB B
O

O O

O
+

N

N

n
Toluene, K2CO3, reflux

Pd(OAc)2, P(o-toly)3

 
Under nitrogen atmosphere, 0.084 g (0.21 mmol) 4,4´-dibromotriphenylamine, 0.111 g (0.21 

mmol) 3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-ethylhexylcarbazole, 3 mg (3 

mol%) Pd(OAc)2 and 12 mg tris(o-tolyl)phosphine were dissolved in 5 mL toluene and stirred 

under room temperature for 30 minutes. After that, 0.174 g K2CO3 (1.26 mmol) were 

dissolved in 2 mL water and added to the reaction mixture under the inert gas atmosphere. 

Then the reaction mixture was allowed to raise the temperature and refluxed under nitrogen 

for 24 h. After cooling, 50 mL of chloroform were added and the mixture was filtered through 

celite to remove the residue palladium. Then the filtrate was concentrated, the residue was 

redissolved in a minimum amount of chloroform and precipitated in acetone. The whole 

procedure was carried out twice. The polymer was collected and dried under vacuum for 24 h. 

m.w.: 5,000, polydispersity: 1.3, yield: 61 %. 1H NMR (CDCl3): δ (ppm) 0.8-1.0 (CH3), 1.2-

1.5 (C-CH2), 2.1 (-CH), 4.2 (N-CH2), 6.9-7.3 (TPA and CBZ aromatic H), 7.45 (TPA 

aromatic H), 7.64 (CBZ aromatic H), 7.71 (TPA aromatic H), 8.35 (CBZ aromatic H). 

λmax(toluene):      326 nm  

λem(toluene):      409 nm 

Φf(toluene):     91 % 
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5.2.2. Stille coupling 

2,5-Bis(tri-n-butylstannyl)thiophene  
Using a syringe, 1.6 M n-BuLi ( 2.6 mL, 4 mmol) were added to a solution of 2,5-

dibromothiophene (0.24 mL, 2 mmol) in THF (40 mL) at -78 °C with stirring. A thick, white 

precipitation was formed. Then the temperature was allowed to increase to 0 °C in one hour. 

After that the mixture was cooled to -78 °C again, tri-n-butyltin chloride (1.2 mL, 4 mmol) 

was added. The reaction mixture was stirred at -78 °C for additional 1 h, and then was 

gradually warmed to room temperature and stirred overnight. The clear solution was diluted 

with n-hexane (200 mL) and washed with aqueous sodium bicarbonate solution (5%, 20 mL), 

and water (20 mL). The organic layer was dried over MgSO4, and the solvents were 

concentrated using a rotary evaporator. Column chromatography of the residue over grade I 

neutral alumina with petrol ether as eluent gave title compound as a colorless liquid (0.93 g, 

70 %). 

 
1H NMR (CDCl3): δ (ppm) 0.92 (t, 18H), 1.13 (m, 12H), 1.37 (m, 12H), 1.60 (t, 12H), 7.39 (s, 

2H). 
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5,5’-Dibromo-2,2’-bithiophene 
2,2’-Bithiophene ( 1.66 g,  10 mmol) was dissolved in N,N-dimethylformamide (DMF) (50 

mL). To this was added solid N-Bromosuccinimide (3.6 g, 20 mmol) in small portions. After 

stirring at 50°C for 3 h, the solution was poured into 100 mL of water, filtered, washed with 

100 mL water and aqueous sodium bicarbonate solution until no bubbles appeared anymore. 

The filter residue was recrystallized in ethanol and gave 5,5’-bis(bromo)-2,2’-bithiophene as 

white crystals (1.95 g, 60 %).  

 
1H NMR (CDCl3): δ (ppm) 6.87 (d, 2H), 6.98 (d, 2H). 
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5,5’-Bis(tri-n-butylstannyl)-2,2’-bithiophene  
Using a syringe, 2.5 M n-BuLi (1.23 mL, 3.08 mmol) were added to a solution of 5,5’-

bis(bromo)-2,2’-bithiophene (0.5 g, 1.54 mmol) in THF (40 mL) at -78 °C with stirring. A 

thick, white precipitate was formed. Then the temperature was allowed to increase to 0 °C in 

one hour. After that the mixture was cooled to -78 °C again and tri-n-butyltin chloride (0.925 

mL, 3.08 mmol) was added. The reaction mixture was stirred at -78 °C for additional 1 h and 

then was gradually warmed to room temperature and stirred overnight. The clear solution was 

diluted with n-hexane (200 mL) and washed with aqueous sodium bicarbonate solution (5 %, 

20 mL), and water (20 mL). The organic layer was dried over MgSO4, and the solvents were 

evaporated using a rotary evaporator. Column chromatography of the residue over grade I 

neutral alumina with petrol ether as eluent gave the title compound as a colorless liquid (1.15 

g, 70 %). 

 
1H NMR (CDCl3): δ (ppm) 0.92 (t, 18H), 1.13 (m, 12H), 1.36 (m, 12H), 1.60 (t, 12H), 7.07 (d, 

2H), 7.30 (d, 2H). 
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2,5-Dibromo-3,4-ethylenedioxythiophene.  
EDOT (2.668 g, 18.77 mmol) was dissolved in a mixture of chloroform (50 mL) and glacial 

acetic acid (50 mL). To this mixture, solid N-Bromosuccinimide (7.1 g, 38.7 mmol) was 

added in small portions. The color of the solution changed from colorless to clear yellow. 

After stirring at room temperature for 2.5 h, the solution was poured into 200 mL of water, 

filtered and washed with 100 mL of water and aqueous sodium bicarbonate solution, until no 

bubble appeared anymore. The filter residue was recrystallized in ethanol and gave 2,5-

dibromo-3,4-ethylenedioxythiophene as white crystals (1.71 g, 30 %).  

 
1H NMR (CDCl3): δ (ppm) 4.28 (s, 4H) 
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2,5-Bis(tri-n-butylstannyl)-3,4-ethylenedioxythiophene. 
Using a syringe, 1.6 M n-BuLi ( 2.6 mL, 4 mmol) were added to a solution of 2,5-dibromo-

3,4-ethylenedioxythiophene ( 0.6 g, 2 mmol) in THF (40 mL) at -78 °C with stirring. Then the 

temperature was allowed to increase to 0 °C in one hour. After that the mixture was cooled to 

-78 °C again, tri-n-butyltin chloride (1.2 mL, 4 mmol) was added. The reaction mixture was 

stirred at -78 °C for an additional hour and then was gradually warmed to room temperature 

and stirred overnight. The clear solution was diluted with n-hexane (200 mL) and washed 

with aqueous sodium bicarbonate solution (5 %, 20 mL), and water (20 mL). The organic 

layer was dried over MgSO4, and the solvents were concentrated using a rotary evaporator. 

Column chromatography of the residue over grade I neutral alumina with petrol ether as 

eluent gave the title compound as a colorless liquid (1.04 g, 72 %).  

 
1H NMR (CDCl3): δ (ppm) 0.89 (t, 18H), 1.09 (m, 12H), 1.32 (m, 12H), 1.57 (t, 12H), 4.11 (s, 

4H). 
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P-DPP-TH 

N

N
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Br
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n

Pd(PPh3)4

 
In a 100 mL flask, 0.1 g (0.163 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.108 g (0.163 mmol) 2,5-bis(tri-n-

butylstannyl)thiophene and 5.5 mg (2 mol%) Pd(PPh3)4 were dissolved in 20 mL THF and 

refluxed under nitrogen for 24 h. After cooling, 50 mL of chloroform were added and the 

mixture was filtered. Then the filtrate was concentrated, the residue was redissolved in a 

minimum amount of chloroform and reprecipitated in acetone. The whole procedure was 

carried out twice. The polymer was collected and dried under vacuum at 100 °C for 24 h. 

m.w.: 12,200, polydispersity: 2.15, yield: 71 %,  
1H NMR (CDCl3): δ (ppm) 0.7-1.5 (alkyl-H), 3.75 (N-CH2), 7.17 (thiophene-H), 7.44, 7.65 

(phenyl-H). 

λmax(CHCl3):      545 nm  

λem(CHCl3):      635 nm 

Φf(CHCl3):     12 % 

λmax(film):      558 nm  

λem(film):      704 nm 

HOMO:     -5.26 eV 

LUMO:     -3.69 eV 

Bandgap:     1.57 eV 
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P-DPP-BTH 

N

N
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In a 100 mL flask, 0.1 g (0.163 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.121 g (0.163 mmol) 5,5’-bis(tri-n-butylstannyl)-2,2’-

bithiophene and 5.5 mg (2% mol) Pd(PPh3)4 were dissolved in 20 mL THF and refluxed 

under nitrogen for 24 h. After cooling, 50 mL of chloroform were added and the mixture was 

filtered. Then the filtrate was concentrated, the residue was redissolved in a minimum amount 

of chloroform and reprecipitated in acetone. The whole procedure was carried out twice. The 

polymer was collected and dried under vacuum at 100 °C for 24 h. m.w.: 9,100, 

polydispersity: 1.70, yield: 70 %,  

 
1H NMR (CDCl3): δ (ppm) 0.7-1.5 (alkyl-H), 3.75 (N-CH2), 6.99, 7.17 (bithiophene-H), 7.40, 

7.59 (phenyl-H). 

λmax(CHCl3):      558 nm  

λem(CHCl3):      616 nm 

Φf(CHCl3):     13 % 

λmax(film):      570 nm  

λem(film):      699 nm 

HOMO:     -5.15 eV 

LUMO:     -3.68 eV 

Bandgap:     1.47 eV 
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P-DPP-EDOT 
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In a 100 mL flask, 0.1 g (0.163 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.117 g (0.163 mmol) 2,5-Bis(tri-n-butylstannyl)-3,4-

ethylenedioxythiophene and 5.5 mg (2 mol%) Pd(PPh3)4 were dissolved in 20 mL THF and 

refluxed under nitrogen for 24 h. After cooling, 50 mL of chloroform were added and the 

mixture was filtered. Then the filtrate was concentrated, the residue was redissolved in a 

minimum amount of chloroform and reprecipitated in acetone. The whole procedure was 

carried out twice. The polymer was collected and dried under vacuum at 100 °C for 24 h. 

m.w.: 6700, polydispersity: 1.47, yield: 40 %. 

 
1H NMR (CDCl3): δ (ppm) 0.7-1.5 (alkyl-H), 3.79 (N-CH2), 4.42 (O-CH2), 7.62, 7.78 

(phenyl-H). 

λmax(CHCl3):      560 nm  

λem(CHCl3):      624 nm 

Φf(CHCl3):     36 % 

λmax(film):      581 nm  

λem(film):      723 nm 

HOMO:     -5.11 eV 

LUMO:     -3.65 eV 

Bandgap:     1.47 eV 
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5.2.3.  Buchwald-Hartwig coupling 

P-DPP-PDA  

N

N

O

OBr

Br

Toluene, NaOtBu,
reflux

+

Pd2(dba)3, P(t-butyl)3

N

N

O

O

N

n

N

HN NH

 
Under nitrogen atmosphere, 6 mg (2 mol%) tris(dibenzylideneacetone) dipalladium(0) 

(Pd2(dba)3) and 2.7 mg tris-t-butylphosphine were dissolved in 2 mL toluene and stirred under 

room temperature for 30 minutes. Another Schlenk tube was charged with 0.1224 g (0.200 

mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, 0.0521 g (0.200 

mmol) N,N'-diphenyl-p-phenylenediamine and 0.041 g (0.600 mmol) sodium t-butylate and 8 

ml of dry toluene. The mixture was degassed. Then the solution of the palladium complex was 

added and the reaction mixture was stirred at 100 °C under nitrogen for 24 h. After cooling, 

50 mL of chloroform were added and the mixture was filtered through celite to remove the 

residue palladium. Then the filtrate was concentrated, the residue was redissolved in a 

minimum amount of chloroform and precipitated in acetone. The whole procedure was carried 

out twice. The polymer was collected and dried under vacuum for 24 h. m.w.: 14,000, 

polydispersity: 1.9, yield: 80 %. 

  
1H NMR (CDCl3): δ (ppm) 0.7-1.8 (alkyl-H), 3.81 (N-CH2), 7.15, 7.25 (PDA aromatic H), 

7.37, 7.80 (DPP phenyl H). 

λmax(toluene):      539 nm  

λem(toluene):      608 nm 

Φf(toluene):     42 % 

λmax(film):      544 nm  

λem(film):      none 

HOMO:     -5.06 eV 

LUMO:     -3.30 eV 

Bandgap:     1.76 eV 
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P-DPP-PYRE 

N

N

O

OBr

Br

Toluene, K3PO4,
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+
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N
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O
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Under nitrogen atmosphere, 6 mg (2% mol) tris(dibenzylideneacetone)dipalladium(0) 

(Pd2(dba)3) and 2.7 mg tris-t-butylphosphine were dissolved in 2 mL toluene and stirred under 

room temperature for 30 minutes. A Schlenk tube was charged with 0.1224 g (0.200 mmol) 

1,4-diketo-2,5-dihexyl-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, 0.0434 g (0.200 mmol) 

1-aminopyrene and 0.17 g (0.800 mmol) potassium phosphate and 8 ml of dry toluene. The 

mixture was degassed. Then the solution of the palladium complex was added and the 

reaction mixture was stirred at 100 °C under nitrogen for 24 h. After cooling, 50 mL of 

chloroform were added and the mixture was filtered through celite to remove the residue 

palladium. Then the filtrate was concentrated, the residue was redissolved in a minimum 

amount of chloroform and precipitated in acetone. The whole procedure was carried out twice. 

The polymer was collected and dried under vacuum for 24 h. m.w.: 4,300, polydispersity: 1.3, 

yield: 81 %. 

 
1H NMR (CDCl3): δ (ppm) 0.7-1.8 (alkyl-H), 3.7 (N-CH2), 7.08 (Pyrene-H), 7.3, 7.8 (DPP 

phenyl-H), 7.9-8.3 (Pyrene-H). 

λmax(toluene):      527 nm  

λem(toluene):      607 nm 

Φf(toluene):     62 % 

λmax(film):      564 nm  

λem(film):      none 

HOMO:     -5.24 eV 

LUMO:     -3.40 eV 

Bandgap:     1.84 eV 
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 P-PY-TBAN 

N

Br Br

N

N
n

+

NH2

Toluene, KOtBu
reflux

Pd2(dba)3, P(t-butyl)3

 
Under nitrogen atmosphere, 55 mg (3% mol) tris(dibenzylideneacetone)dipalladium(0) 

(Pd2(dba)3) and 49 mg tris-t-butylphosphine were dissolved in 5 mL toluene and stirred under 

room temperature for 120 minutes. A Schlenk tube was charged with 474 mg (2 mmol) 3,5-

dibromopyridine, 298 mg (2 mmol) 4-t-butylanilin and 337 mg (6 mmol) potassium t-

butoxide and 8 ml of dry toluene. The mixture was degassed. Then the solution of the 

palladium complex was added and the reaction mixture was stirred at 100 °C under nitrogen 

for 24 h. After cooling, 50 mL of chloroform were added and the mixture was filtered through 

celite to remove the residual palladium. Then the filtrate was concentrated, the residue was 

redissolved in a minimum amount of chloroform and precipitated in petroleum ether. The 

polymer was collected and dried under vacuum for 24 h. m.w.: 2200, polydispersity: 1.2, 

yield: 65 %.  
1H NMR (CDCl3): δ (ppm) 1.35 (t-butyl H), 7.0 (aromatic H), 7.3 (aromatic H), 7.9 (aromatic 

H). 

λmax(toluene):      335 nm  

λem(toluene):      448 nm 

Φf(toluene):     23 % 
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P-PY-ANT 

N

Br Br
+

Toluene, KOtBu
reflux

Pd2(dba)3, P(t-butyl)3

N

N
nNH2  

Under nitrogen atmosphere, 15 mg (3% mol) tris(dibenzylideneacetone)dipalladium(0) 

(Pd2(dba)3) and 13 mg tris-t-butylphosphine were dissolved in 5 mL toluene and stirred under 

room temperature for 120 minutes. A Schlenk tube was charged with 123 mg (0.52 mmol) 

3,5-dibromopyridine, 100 mg (0.52 mmol) 2-aminoanthracene and 175 mg (1.56 mmol) 

potassium t-butoxide and 8 ml of dry toluene. The mixture was degassed. Then the solution of 

the palladium complex was added and the reaction mixture was stirred at 100 °C under 

nitrogen for 24 h. After cooling, 50 mL of chloroform were added and the mixture was 

filtered through celite to remove the residual palladium. Then the filtrate was concentrated, 

the residue was redissolved in a minimum amount of chloroform and precipitated in 

petroleum ether. The polymer was collected and dried under vacuum for 24 h. m.w.: 2600, 

polydispersity: 1.3, yield: 30 %.  

 
1H NMR (CDCl3): δ (ppm) 7.1-8.4 (aromatic H). 

λmax(toluene):      305 nm  

λem(toluene):      462 nm 

Φf(toluene):     34 % 
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P-PY-PYRE 

N

Br Br
+

Toluene, KOtBu
reflux

Pd2(dba)3, P(t-butyl)3

N

N
nNH2  

Under nitrogen atmosphere, 14 mg (3% mol) tris(dibenzylideneacetone)dipalladium(0) 

(Pd2(dba)3) and 12 mg tris-t-butylphosphine were dissolved in 5 mL toluene and stirred under 

room temperature for 120 minutes. A Schlenk tube was charged with 119 mg (0.5 mmol) 3,5-

dibromopyridine, 109 mg (0.5 mmol) 1-aminopyrene and 168 mg (1.5 mmol) potassium t-

butoxide and 8 ml of dry toluene. The mixture was degassed. Then the solution of the 

palladium complex was added and the reaction mixture was stirred at 100 °C under nitrogen 

for 24 h. After cooling, 50 mL of chloroform were added and the mixture was filtered through 

celite to remove the residual palladium. Then the filtrate was concentrated, the residue was 

redissolved in a minimum amount of chloroform and precipitated in petroleum ether. The 

polymer was collected and dried under vacuum for 24 h. m.w.: 2300, polydispersity: 1.1, 

yield: 40 %.  

 

1H NMR (CDCl3): δ (ppm) 7.5-8.3 (aromatic H). 

λmax(toluene):      359 nm  

λem(toluene):      432 nm 

Φf(toluene):     41 % 
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5.3. DPP conjugated polymers via electropolymerization 

5.3.1. Synthesis of the Precursors 

2-(tri-n-butylstannyl)thiophene 
Using a syringe, 1.5 M n-BuLi (22 mL, 33 mmol) were added to a solution of thiophene (4.8 

mL, 60 mmol) in THF (50 mL) at -78 °C with stirring. A thick, white precipitation was 

formed. Then the temperature was allowed to increase to 0 °C in one hour. After that the 

mixture was cooled to -78 °C again, tri-n-butyltin chloride (8.8 mL, 30 mmol) was added. The 

reaction mixture was stirred at -78 °C for additional 1 h, and then was gradually warmed to 

room temperature and stirred overnight. The clear solution was diluted with n-hexane (200 

mL) and washed with aqueous sodium bicarbonate solution (5%, 50 mL), and brine (50 mL). 

The organic layer was dried over MgSO4, and the solvents were concentrated using a rotary 

evaporator. Column chromatography of the residue over grade I neutral alumina with 

petroleum ether as eluent gave title compound as a colorless liquid (7.8 g, 70 %). 

 
1H NMR (CDCl3): δ (ppm) 0.92 (t, 9H), 1.13 (m, 6H), 1.37 (m, 6H), 1.60 (t, 6H), 7.26 (d, 1H), 

7.32 (t, 1H), 7.69 (d, 1H). 
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3-hexyl-thiophene 
 
Step 1: Preparation of the Grignard reagent 

 A three neck flask was charged with 3 g (0.12 mmol) magnesium, 1 piece of iodine and 30 

mL of absolute diethyl ether. 14.1 mL hexylbromide was dissolved in 40 mL absolute diethyl 

ether and was poured in a dropping funnel. Under nitrogen atmosphere, 1/8 of the 

hexylbromide solution was dropped in the flask to initiate the reaction. The remaining 

hexylbromide was dropped slowly to hold the reaction statues. After the addition was finished, 

the mixture was heated to reflux for 30 min until all magnesium disappeared.  

 

Step 2: Preparation of 3-hexyl-thiophene 

A three neck flask was charged with 10 mL (103.3 mmol) 3-bromothiophene, 40 mg (10%) 

NiCl2(dppp) and 60 mL absolute diethyl ether. 4-5 mL Grignard reagent was dropped into the 

flask and the mixture was stirred for 15 min at a temperature between 15 to 20 °C. Then the 

remaining Grignard reagent was dropped slowly keeping the temperature between 25 to 30 °C. 

After the addition, the mixture was heated to reflux for 30 min. The reaction mixture was 

cooled and filtered. The filtrate was distilled in vacuum and the title compound was received 

as colorless oil at 65 oC, 0.45 mmHg (11.8 g, 70 %). 

 

S  
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2-(tri-n-butylstannyl)-4-hexyl-thiophene 
Using a syringe, 1.6 M n-BuLi (3.84 mL, 6 mmol) were added to a solution of 3-hexyl-

thiophene (1.0 g, 5.94 mmol) in THF (50 mL) at -78 °C with stirring. A thick, white 

precipitation was formed. Then the temperature was allowed to increase to 0 °C in one hour. 

After that the mixture was cooled to -78 °C again, tri-n-butyltin chloride (1.8 mL, 6 mmol) 

was added. The reaction mixture was stirred at -78 °C for additional 1 h, and then was 

gradually warmed to room temperature and stirred overnight. The clear solution was diluted 

with n-hexane (200 mL) and washed with aqueous sodium bicarbonate solution (5 %, 50 mL), 

and brine (50 mL). The organic layer was dried over MgSO4, and the solvents were 

concentrated using a rotary evaporator. Column chromatography of the residue over grade I 

neutral alumina with petroleum ether as eluent gave title compound as a colorless liquid (2.0 g, 

71 %). 

 
1H NMR (CDCl3): δ (ppm) 0.90 (t, 12H), 1.09 (m, 8H), 1.33 (m, 10H), 1.57 (m, 8H), 2.66 (t, 

2H), 6.97 (s, 1H), 7.20 (s, 1H). 
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2-(tri-n-butylstannyl)-3,4-ethylenedioxythiophene. 
Using a syringe, 1.6 M n-BuLi ( 6.1 mL, 9.5 mmol) were added to a solution of 3,4-

ethylenedioxythiophene ( 0.667 g, 4.7 mmol) in THF (40 mL) at -78 °C with stirring. Then 

the temperature was allowed to increase to 0 °C in one hour. After that the mixture was 

cooled to -78 °C again, tri-n-butyltin chloride (2.85 mL, 9.5 mmol) was added. The reaction 

mixture was stirred at -78 °C for an additional hour and then was gradually warmed to room 

temperature and stirred overnight. The clear solution was diluted with n-hexane (200 mL) and 

washed with aqueous sodium bicarbonate solution (5 %, 20 mL), and water (20 mL). The 

organic layer was dried over MgSO4, and the solvents were concentrated using a rotary 

evaporator. Column chromatography of the residue over grade I neutral alumina with petrol 

ether as eluent gave the title compound as a colorless liquid (1.04 g, 72 %).  

 
1H NMR (CDCl3): δ (ppm) 0.89 (t, 9H), 1.09 (m, 6H), 1.32 (m, 6H), 1.57 (t, 6H), 4.11 (s, 4H), 

6.66 (s, 1H). 
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5.3.2. Synthesis of the monomers and electropolymerization 

1,4-Diketo-2,5-dihexyl-3,6-bis(4-(2-thienyl)phenyl)pyrrolo[3,4-c]pyrrole 

N

N

O

OBr

Br

THF, reflux
+

S Sn
Pd(PPh3)4

2

N

N

O

O

S

S

 
In a 100 mL flask, 0.234 g (0.4 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.5 g (1.34 mmol) 2-(tri-n-butylstannyl)thiophene and 

9.2 mg (2 mol%) Pd(PPh3)4 were dissolved in 20 mL THF and refluxed under nitrogen for 24 

h. After cooling, 50 mL of dichloromethane were added and the mixture was filtered. Then 

the mixture was washed with brine (3×40mL) and the organic layer was dried over anhydrous 

MgSO4. The solvents were evaporated using a rotary evaporator. Column chromatography of 

the residue over silicon gel with dichloromethane as eluent gave the title compound as a red 

solid (1.98 g, 75 %).  
1H NMR (CDCl3): δ (ppm) 0.86 (t, 6H), 1.26 (m, 12H), 1.68 (m, 4H), 3.82 (t, N-CH2, 4H), 

7.15 (t, thiophene-H, 2H), 7.38 (d, thiophene-H, 2H), 7.45 (d, thiophene-H, 2H), 7.79 (d, 4H), 

7.90 (d, 4H). 

λmax(CHCl3):      500 nm  

λem(CHCl3):      575 nm 

λmax(film):      521 nm 

Φf(CHCl3):     89 % 
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1,4-Diketo-2,5-dihexyl-3,6-bis(4-(2-(4-hexylthienyl))phenyl)pyrrolo [3,4-c]pyrrole 

N

N

O

OBr

Br

THF, reflux
+

S Sn
Pd(PPh3)4

2

N

N

O

O

S

S

 
In a 100 mL flask, 0.072 g (0.117 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.21 g (0.467 mmol) 2-(tri-n-butylstannyl)-4-hexyl-

thiophene and 2.2 mg (2 mol%) Pd(PPh3)4 were dissolved in 20 mL THF and refluxed under 

nitrogen for 24 h. After cooling, 50 mL of dichloromethane were added and the mixture was 

filtered. Then the mixture was washed with brine (3×40mL) and the organic layer was dried 

over anhydrous MgSO4. The solvents were evaporated using a rotary evaporator. Column 

chromatography of the residue over silicon gel with dichloromethane as eluent gave the title 

compound as a red foil (0.053 g, 58 %). 

 
1H NMR (CDCl3): δ (ppm) 0.86 (t, 6H), 0.92 (t, 6H), 1.25 (m, 12H), 1.36 (m, 12H),  1.66 (m, 

4H), 1.68 (m, 4H), 2.66 (t, 4H), 3.82 (t, N-CH2, 4H), 6.97 (d, thiophene-H, 2H), 7.29 (d, 

thiophene-H, 2H), 7.76 (d, 4H), 7.87 (d, 4H). 

 

λmax(CHCl3):      501 nm  

λem(CHCl3):      579 nm 

λmax(film):      518 nm 

Φf(CHCl3):     88 % 
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1,4-Diketo-2,5-dihexyl-3,6-bis(4-(2,2'-bithiophen-5-yl)phenyl)pyrrolo[3,4-c]pyrrole  

N

N

O

OBr

Br

Toluene, K2CO3
reflux

+
S

Pd(PPh3)4
2

N

N

O

O

S

S
S

S

S

B
O

O

 
In a 100 mL flask, 0.234 g (0.4 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.350 g (1.2 mmol) 5-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-(2,2'-bithiophene) and 28 mg (3 mol%) Pd(PPh3)4 were dissolved in 20 

mL toluene and stirred for 30 min. After that, 331 mg K2CO3 (2.4 mmol) were dissolved in 5 

mL water and added to the reaction mixture under the inert gas atmosphere. Then the reaction 

mixture was allowed to raise the temperature and refluxed under nitrogen for 12 h. After 

cooling, 50 mL of dichloromethane were added and the mixture was filtered. Then the 

mixture was washed with brine (3×40mL) and the organic layer was dried over anhydrous 

MgSO4. The solvents were evaporated using a rotary evaporator. Column chromatography of 

the residue over silicon gel with dichloromethane as eluent gave the title compound as a black 

purple powder (0.21 g, 70 %). 

 
1H NMR (CDCl3): δ (ppm) 0.86 (t, 6H), 1.27 (m, 12H), 1.67 (m, 4H), 3.83 (t, N-CH2, 4H), 

7.08 (t, thiophene-H, 2H), 7.21 (d, thiophene-H, 2H), 7.27 (d, thiophene-H, 4H), 7.37 (d, 

thiophene-H, 2H), 7.77 (d, 4H), 7.91 (d, 4H). 

 

λmax(CHCl3):      512 nm  

λem(CHCl3):      600 nm 

λmax(film):      537 nm 

Φf(CHCl3):     50 % 
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1,4-Diketo-2,5-dihexyl-3,6-bis((2-(3’,4’-ethylenedioxy)thienyl)-phenyl)pyrrolo[3,4-c]pyrrole 

N

N

O

OBr

Br

THF, reflux
+

S Sn
Pd(PPh3)4

2

N

N

O

O

S

S

OO
OO

OO

 
In a 100 mL flask, 0.39 g (0.63 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-bromophenyl)pyrrolo 

[3,4-c]pyrrole, 0.82 g (1.9 mmol) 2-(tri-n-butylstannyl)-3,4-ethylenedioxythiophene and 22 

mg (3 mol%) Pd(PPh3)4 were dissolved in 20 mL toluene and heated at 85oC under nitrogen 

for 24 h. After cooling, 50 mL of dichloromethane were added and the mixture was filtered. 

Then the mixture was washed with brine (3×40mL) and the organic layer was dried over 

anhydrous MgSO4. The solvents were evaporated using a rotary evaporator. Column 

chromatography of the residue over silicon gel with dichloromethane as eluent gave the title 

compound as a dark red foil (0.25 g, 52 %). 

 
1H NMR (CDCl3): δ (ppm) 0.86 (t, 6H), 1.26 (m, 12H), 1.67 (m, 4H), 3.82 (t, N-CH2, 4H), 

4.34 (d, EDOT-CH2, 8H), 6.4 (t, EDOT aromatic H, 2H), 7.89 (d, DPP aromatic H, 8H). 

 

λmax(CHCl3):      510 nm  

λem(CHCl3):      585 nm 

λmax(film):      525 nm 

Φf(CHCl3):     84 % 
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1,4-Diketo-2,5-dihexyl-3,6-bis(4-(1-(t-butoxycarbonyl)-1H-pyrrol-2-yl)-phenyl)pyrrolo[3,4-
c]pyrrole 

N

N

O

OBr

Br

DME, Na2CO3, reflux

+
N

Pd(PPh3)4
2

N

N

O

O

N

N

B
O

O

OO
O O

OO

 
In a 100 mL flask, 0.123 g (0.2 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-bromophenyl)pyrrolo 

[3,4-c]pyrrole, 0.250 g (1.18 mmol) 1-(t-butoxycarbonyl)-1H-pyrrol-2-ylboronic acid and 68 

mg (5 mol%) Pd(PPh3)4 were dissolved in 20 mL DME and stirred for 30 min. After that, 375 

mg Na2CO3 (3.54 mmol) were dissolved in 5 mL water and added to the reaction mixture 

under the inert gas atmosphere. Then the reaction mixture was allowed to raise the 

temperature and refluxed under nitrogen for 12 h. After cooling, 50 mL of dichloromethane 

were added and the mixture was filtered. Then the mixture was washed with brine (3×40mL) 

and the organic layer was dried over anhydrous MgSO4. The solvents were evaporated using a 

rotary evaporator. Flash column chromatography of the residue over silicon gel with toluene 

as eluent gave the title compound as dark orange powder (0.096 g, 61 %). 

 
1H NMR (CDCl3): δ (ppm). 0.86 (t, 6H), 1.26 (m, 12H), 1.43 (t-butyl, 18H), 1.67 (m, 4H), 

3.82 (t, N-CH2, 4H), 6.29 (d, pyrrol-H, 2H), 6.31 (t, pyrrole-H, 2H), 7.43 (d, pyrrol-H, 2H), 

7.53 (d, DPP aromatic H, 4H), 7.87 (d, DPP aromatic H, 4H). 

 

λmax(CHCl3):      490 nm  

λem(CHCl3):      563 nm 

λmax(film):      525 nm 

Φf(CHCl3):     85 % 
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1,4-Diketo-2,5-dihexyl-3,6-bis(4-(pyrrol-2-yl)-phenyl)pyrrolo[3,4-c]pyrrole 

N

N

O

O

N

N

O O

OO

N

N

O

O

N
H

N
H

Heated in Vacuum

1800C, 30min

 
1,4-Diketo-2,5-dihexyl-3,6-bis(4-(1-(t-butoxycarbonyl)-1H-pyrrol-2-yl)-phenyl)pyrrolo[3,4-

c]pyrrole was heated in vacuum at 180 oC for 30 min. The title compound was received as red 

powder. 

 
1H NMR (CDCl3): δ (ppm). 0.86 (t, 6H), 1.26 (m, 12H), 1.67 (m, 4H), 3.82 (t, N-CH2, 4H), 

6.37 (d, pyrrol-H, 2H), 6.69 (t, pyrrol-H, 2H), 6.96 (d, pyrrol-H, 2H), 7.63 (d, DPP aromatic 

H, 4H), 7.90 (d, DPP aromatic H, 4H), 8.59 (s, pyrrol-H, 1H). 

 

λmax(CHCl3):      510 nm  

λem(CHCl3):      585 nm 

λmax(film):      544 nm 

Φf(CHCl3):     78 % 
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1,4-Diketo-2,5-dihexyl-3,6-bis(4-N-carbazolylphenyl)pyrrolo[3,4-c]pyrrole 

N

N

O

ON

N
N

N

O

OBr

Br

+
DME, K3PO4, reflux

Pd2(dba)3, P(t-butyl)3H
N

2

 
Under nitrogen atmosphere, 6 mg (3% mol) tris(dibenzylideneacetone)dipalladium(0) 

(Pd2(dba)3) and 5.1 mg tris-t-butylphosphine were dissolved in 10 mL DME and stirred under 

room temperature for 30 minutes. 0.123 g (0.2 mmol) 1,4-diketo-2,5-dihexyl-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.08 g (0.48 mmol) carbazole, 0.17 g (0.8 mmol) K3PO4 

were added to the reaction mixture under the inert gas atmosphere. Then the reaction mixture 

was allowed to raise the temperature and refluxed under nitrogen for 48 h. After cooling, 50 

mL of dichloromethane were added and the mixture was filtered. Then the mixture was 

washed with brine (3×40mL) and the organic layer was dried over anhydrous MgSO4. The 

solvents were evaporated using a rotary evaporator. Column chromatography of the residue 

over silicon gel with dichloromethane as eluent gave the title compound as a bright orange 

foil (0.095 g, 60 %).  

 
1H NMR (CDCl3): δ (ppm) 0.86 (t, 6H), 1.26 (m, 12H), 1.67 (m, 4H), 3.82 (t, N-CH2, 4H). 

 

λmax(CHCl3):      495 nm  

λem(CHCl3):      564 nm 

λmax(film):      518 nm 

Φf(CHCl3):     95 % 
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5.4. Water-soluble DPP containing conjugated polyelectrolytes 

5.4.1. Synthesis of the monomers 

1,4-Diketo-2,5-bis(1-bromohexyl)-3,6-bis(4-bromophenyl)pyrrolo[3,4-c] pyrrole    
2.23 g (5 mmol) 1,4-Diketo-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, 1.68 g (15 mmol) 

potassium t-butoxide and 60 mL dry NMP were heated to 60 °C. 2.36 mL (15 mmol) 1,6-

dibromohexane was slowly added and the mixture was stirred at 50 °C for 14 h. After cooling 

to room temperature, 100 mL toluene was added and the reaction mixture was washed with 

water to remove the NMP. The organic solution was concentrated using a rotary evaporator. 

The raw material was purified by column chromatography on silica using dichloromethane as 

the solvent. 0.47 g (13 %) of an orange, polycrystalline powder was obtained.  

 
1H NMR (CDCl3, 300 MHz): δ (ppm) 1.28 (m, 4H), 1.39 (m, 4H), 1.60 (m, 4H), 1.8 (m, 4H), 

3.37 (t, Br-CH2, 4H), 3.77 (t, N-CH2, 4H), 6.37 (d, pyrrol-H, 2H), 6.69 (t, pyrrol-H, 2H), 6.96 

(d, pyrrol-H, 2H), 7.70 (s, DPP aromatic H, 8H); 

λmax(CHCl3):      477 nm  

λem(CHCl3):      539 nm 

Φf(CHCl3):     95% 
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1,4-diketo-2,5-bis(sulfonylbutyl)-3,6-bis(4-bromophenyl) pyrrolo [3,4-c] pyrrole       
4.46 g (10 mmol) 1,4-Diketo-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, 1.76 g (22 mmol) 

lithium t-butoxide and 150 mL dry DMF were heated to 60 °C. 3.1 mL (30 mmol) Butane 

sultone was slowly added and the mixture was stirred at 90 °C for 12 h. The mixture was 

precipitated in 1 L ethanol when it was still hot. The precipitates were collected and washed 

with acetone. The dark red powder 5.9 g (95 %) was obtained after dried in vacuum for 24h at 

120 oC.  

 
1H NMR (D2O, 300 MHz): δ (ppm) 1.41 (m, 8H), 2.61 (t, S-CH2, 4H), 3.59 (t, N-CH2, 4H), 

7.34 (d, DPP aromatic H, 4H), 7.50 (d, DPP aromatic H, 4H);  

λmax(H2O):      471 nm  

λem(H2O):      533 nm 

Φf(H2O):     88 % 
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1,4-Dibromohexyloxybenzene 
4.4 g (40 mmol) Hydroquinone, 24 g (172 mmol) potassium carbonate and 200 mL dry 

acetone were mixed. 38 mL (240 mmol) 1,6-dibromohexane was slowly added and the 

mixture was heated to reflux for 24 h. The mixture was filtered when it was hot. After cooling 

to room temperature, the solid was obtained form the filtrate and was recrystallized in acetone. 

The solid was further purified by silica gel chromatography with ether to give the white 

powder 8.02 g (46 %). m.p.: 98 oC. 

 
1H NMR (CDCl3, 300 MHz): δ (ppm) 1.52 (m, 8H), 1.79 (m, 4H), 1.91 (m, 4H), 3.44 (t, Br-

CH2, 4H), 3.92 (t, O-CH2, 4H), 6.84 (s, phenyl-H, 4H); 
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1,4-Dibromo-2,5-dibromohexyloxybenzene 
2 g (4.58 mmol) 1,4-Dibromohexyloxybenzene was dissolved in 75 mL carbon tetrachloride. 

0.52 mL (10 mmol) bromine was dissolved in 20 mL carbon tetrachloride and was slowly 

added under the nitrogen atmosphere at a temperature lower than 5 oC. After stirring for 2 h at 

a temperature lower than 5 oC, the mixture was poured into a separatory funnel and washed 

with 5% Na2S2O4 (2×30 mL) and brine (3×30 mL). The organic phase was dried over 

anhydrous MgSO4. The solvent was removed and the solid was recrystallized in ethyl acetate 

to give title compound as white powder 1.82 g (67 %). 

 
1H NMR (CDCl3, 300 MHz): δ (ppm) 1.55 (m, 8H), 1.84 (m, 4H), 1.93 (m, 4H), 3.45 (t, Br-

CH2, 4H), 3.98 (t, O-CH2, 4H), 7.11 (s, phenyl-H, 2H); 

O

O

Br

Br

1

2

3

4

5

6

7

Br

Br

 

 

9 8 7 6 5 4 3 2 1

ppm

3,4

25

16

7

CDCl3

300 MHz-1H-NMR spectrum in CDCl3 

 

 



 

 170 

1,4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2,5-dibromohexyloxybenzene 
Using a syringe, 2.5 M n-BuLi ( 1.8 mL, 4.2 mmol) were added to a solution of 1,4-dibromo-

2,5-dibromohexyloxybenzene ( 1.2 g,  2 mmol) in THF (50 mL) at -78 °C with stirring. After 

stirring for one hour at this temperature, the temperature of the solution was allowed to 

increase to room temperature. Then the mixture was cooled to -78 °C again and 2-isopropoxy-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.9 mL, 4.4 mmol) was added. The reaction mixture 

was stirred at -78 °C for additional 1 h and then was gradually warmed to room temperature 

and stirred overnight. After the reaction, 100 mL water and 100 mL ether were added to the 

solution. Then the mixture was washed with brine (3×40mL) and the organic layer was dried 

over MgSO4. The solvents were evaporated using a rotary evaporator. Column 

chromatography of the residue over silicon gel with hexane and ethyl acetate mixture as 

eluent gave the title compound as a white solid (0.54 g, 40 %). 

 
1H NMR (CDCl3, 300 MHz): δ (ppm) 1.36 (s, 24H),1.56 (m, 8H), 1.79 (m, 4H), 1.91 (m, 4H), 

3.44 (t, Br-CH2, 4H), 3.97 (t, O-CH2, 4H), 7.11 (s, phenyl-H, 2H); 
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5.4.2. Synthesis of the polymers 

P-BrDPP-BrPH 

Toluene, K2CO3,
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Under nitrogen atmosphere, 0.096 g (0.1242 mmol) 1,4-diketo-2,5-bis(1-bromohexyl)-3,6-

bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, 0.0855 g (0.1242 mmol) 1,4-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)-2,5-dibromohexyloxybenzene and 7 mg (5 mol%) Pd(PPh3)4 were 

dissolved in 5 mL toluene and stirred under room temperature for 30 minutes. After that, 

0.103 g K2CO3 (0.75 mmol) were dissolved in 2 mL water and added to the reaction mixture 

under the inert gas atmosphere. Then the reaction mixture was allowed to raise the 

temperature and refluxed under nitrogen for 24 h. After cooling, 50 mL of chloroform were 

added and the mixture was filtered through celite to remove the residue palladium. Then the 

filtrate was concentrated, the residue was redissolved in a minimum amount of chloroform 

and precipitated in acetone. The whole procedure was carried out twice. The polymer was 

collected and dried under vacuum for 24 h. m.w.: 16,000, polydispersity: 2.1, yield: 61 %.  

 
1H NMR (CDCl3): δ (ppm) 1.0-2.1 (C-CH2), 3.38 (Br-CH2), 3.87 (N-CH2), 4.07 (O-CH2), 

7.46 (aromatic H at o-alkylated phenylene), 7.67 (DPP aromatic H), 7.89 (DPP aromatic H). 

 

λmax(CHCl3):      504 nm  

λem(CHCl3):      568 nm 

Φf(CHCl3):     44 % 
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P-AMDPP-AMPH 
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Trimethylamine ethanol solution (2 mL) was added to a solution of the neutral polymer P-

BrDPP-BrPH (50 mg) in CHCl3 (10 mL) at low temperature (-70 oC). The mixture was 

allowed to warm up to room temperature. The precipitate was redissolved by the addition of 

water (10 mL). After the mixture was cooled down to 0 oC, extra trimehtylamine ethanol 

solution (mL) was added and the mixture was stirred for 24 h at room temperature. After 

removing most of solvent, acetone was added to precipitate P-AMDPP-AMPH (35 mg) as 

red powder, yield: 65 %.  

 
1H NMR (CDCl3): δ (ppm) 1.0-2.0 (C-CH2), 2.5-3.5 (N-CH2, O-CH2), 7.2-7.9 (aromatic H). 

 

λmax(H2O):      506 nm  

λmax(DMSO):      502 nm  

λem(DMSO):      432, 565 nm 
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P-SDPP-PH 
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Under nitrogen atmosphere, 0.73 g (1 mmol) 1,4-diketo-2,5-bis(sulfonylbutyl)-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole, 0.166 g (1 mmol) 1,4-phenylenediboronic acid and 35 

mg (3 mol%) Pd(PPh3)4 were dissolved in 10 mL DMSO and stirred under room temperature 

for 30 minutes. After that, 0.414 g K2CO3 (3 mmol) were dissolved in 3 mL water and added 

to the reaction mixture. Then the reaction mixture was allowed to raise the temperature and 

refluxed under nitrogen for 24 h. After the reaction, the mixture was precipitated in ethanol 

when it was hot. The precipitates were washed with CHCl3 and acetone successively. The 

solid was collected and dried under vacuum at 100 oC for 24 h, yield: 91 %. 

 
1H NMR (D2O): δ (ppm) 1.4-1.9 (C-CH2), 2.8 (S-CH2), 3.55 (N-CH2), 7.3-7.9 (aromatic H). 

 

λmax(H2O):      534 nm  

λmax(DMSO):      506 nm  

λem(DMSO):      565 nm 

Φf(DMSO):     6.2 % 
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P-SDPP-AB 
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Under nitrogen atmosphere, 7 mg (3% mol) tris(dibenzylideneacetone)dipalladium(0) 

(Pd2(dba)3) and 7 mg tris-t-butylphosphine were dissolved in 2 mL t-butanol and stirred under 

room temperature for 30 minutes. A Schlenk tube was charged with 0.1 g (0.126 mmol) 1,4-

diketo-2,5-bis(sulfonylbutyl)-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, 0.0173 g (0.200 

mmol) 4-aminobenzoic acid, 0.034 g (0.5 mmol) sodium ethoxide and 8 ml of t-butanol. The 

mixture was degassed. Then the solution of the palladium complex was added and the 

reaction mixture was stirred at 100 °C under nitrogen for 24 h. After the reaction, the mixture 

was precipitated in ethanol when it was hot. The precipitates were washed with CHCl3 and 

acetone successively. The solid was collected and dried under vacuum at 100 oC for 24 h, 

yield: 70 %. 

 
1H NMR (CDCl3): δ (ppm) 1.5-2.0 (C-CH2), 2.8 (S-CH2), 3.3 (N-CH2), 6.6-7.9 (aromatic H). 

 

λmax(H2O):      528 nm  

λmax(DMSO):      560 nm  

λem(DMSO):      594 nm 

Φf(DMSO):     45 % 
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P-SDPP-ABS 
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Under nitrogen atmosphere, 55 mg (3 mol%) tris(dibenzylideneacetone)dipalladium(0) 

(Pd2(dba)3) and 57 mg XPhos were dissolved in 2 mL t-butanol and stirred under room 

temperature for 30 minutes. A Schlenk tube was charged with 0.794 g (1 mmol) 1,4-diketo-

2,5-bis(sulfonylbutyl)-3,6-bis(4-bromophenyl)pyrrolo[3,4-c]pyrrole, 0.174 g (1 mmol) 4-

aminobenzenesulfonic acid, 0.784 g (7 mmol) potassium t-butoxide and 8 ml of t-butanol. 

The mixture was degassed. Then the solution of the palladium complex was added and the 

reaction mixture was stirred at 100 °C under nitrogen for 24 h. After the reaction, the mixture 

was precipitated in ethanol when it was hot. The precipitates were washed with chloroform 

and acetone successively. The solid was collected and dried under vacuum at 100 oC for 24 h, 

yield: 90 %. 
 

1H NMR (CDCl3): δ (ppm) 1.5-1.8 (C-CH2), 2.8 (S-CH2), 3.5 (N-CH2), 6.8 (aromatic H), 7.1-

7.9 (aromatic H). 

 

λmax(H2O):      524 nm  

λmax(DMSO):      554 nm  

λem(DMSO):      591 nm 

Φf(DMSO):     49 % 
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6. Summary 
 

• New DPP containing conjugated polymers were synthesized by introducing new 

building-blocks suitable for electroluminescent and electrochromic applications. 

• New methods for the synthesis of DPP containing conjugated polymers were explored 

such as Buchwald-Hartwig coupling and electrochemical polymerization.  

• New DPP containing conjugated polyelectrolytes were synthesized. 

 

Prior to this work, Suzuki, Heck and Stille polycondensation were the only reported methods 

for the synthesis of DPP containing conjugated polymers. As comonomer units, only fluorene 

and phenylene units were reported. In this work, other important and popular building blocks 

such as carbazole, triphenylamine, benzothiodiazole, thiophene, and pyrrole have been used to 

prepare new DPP containing conjugated polymers. In addition, Buchwald-Hartwig coupling 

and electropolymerization have been applied for the first time to synthesize DPP containing 

conjugated polymers. The DPP containing polymers prepared by palladium catalyzed 

polycondensation reactions are summarized in Scheme 6.1. 

Eight new DPP containing conjugated polymers were successfully synthesized exhibiting 

molecular weights between 5 and 16.5 kDa. The polymers are readily soluble in common 

organic solvents, the solutions exhibit bright red colours and strong red to purple 

photoluminescence. The P-DPP-TPA polymer is especially interesting because of its high 

photoluminescence quantum yield of 85 %. The P-DPP-CBZ polymer is also very promising 

because of its high molecular weight, excellent solubility, relatively high photoluminescence 

quantum yield of 46 % and quasi-reversible oxidation behavior. The polymer might be useful 

as active materials in PLED applications.  
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Scheme 6.1 DPP containing conjugated polymers prepared upon palladium catalyzed 

polycondensation reactions. 

 

The DPP-thienylene-copolymers (P-DPP-TH, P-DPP-BTH and P-DPP-EDOT) are 

interesting because of their reversible oxidation behaviour. For some of the polymers, the 

bandgap is as low as 1.47 eV. The cyclovoltammetric and spectroelectrochemical studies 

show that P-DPP-BTH is able to change colours upon oxidation and the switching can be 

repeated many times. For the poly-DPP-iminoarylenes, the solid state luminescence of the 

polymers is quenched. However, they are interesting because of their low oxidation potential. 

The spectroelectrochemical studies show that the polymers exhibit abrupt colour changes 

from purple to black-green upon oxidation and reduction. 
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Scheme 6.2 Sandwich-type electropolymerizable DPP monomers prepared upon palladium 

catalyzed coupling reactions. 

 

DPP monomers which are potentially useful for electropolymerization were prepared upon 

palladium catalyzed coupling reactions outlined in Scheme 6.2. Four of the monomers could 

be successfully electropolymerized. The polymer films are insoluble in common organic 

solvents and non-luminescent. The colour change from brown-red to olive green (Poly(Bis-

Bithiophene-DPP)), deep blue to colourless (Poly(Bis-EDOT-DPP)), purple-red to brown-

red (Poly(Bis-Pyrrole-DPP)) and colourless to green (Poly(Bis-Carbazole-DPP)) upon 

oxidation process are observed. It was found that a low oxidation potential of the monomer 

favours the film formation, because the chance for side reactions is lowered. Compared with 
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the polymers prepared upon chemical polycondensation, the polymers from 

electropolymerization have the disadvantage to be generally insoluble in common organic 

solvents, which prevents a detailed structure characterization. However, the monomers can be 

easily purified and the amount of monomer needed for electropolymerization into thin films is 

very small, which is advantageous. Furthermore, the stability of the electropolymerized films 

is generally better than that of the films prepared by solution casting. Therefore, 

electropolymerization is probably more suitable for the electrochromic and organic solar cells.  
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Finally, water soluble cationic and anionic DPP containing polyelectrolytes could be 

successfully prepared upon Suzuki and Buchwald-Hartwig coupling. The preparation is 

described in Scheme 6.3. The DPP conjugated polyelectrolytes are soluble in water, methanol 

and DMSO. However, they are only luminescent in organic solvents or in a mixture of water 

and organic solvents. This may be due to aggregate formation of the polymers in aqueous 

solution. The polymers from Buchwald-Hartwig polycondensation exhibit a stronger 

photoluminescence quantum yield and solubility because the water soluble amine could be 

used in the reaction. 

At last, a short outlook is shown in Scheme 6.4. One of the future work may be the 

preparation of the t-butoxycarbonyl alkylated DPP.  The soluble conjugated polymer can be 

prepared with this monomer. Upon heating, the soluble polymer may be immobilized on the 

surface of electrode, which may offer better stability for the corresponding electronic devices.  
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