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  “Einst vor langer Zeit waren die Spiegelwelt und Menschenwelt noch nicht 

getrennt. Zu jener Zeit konnte man auch durch den Spiegel hindurch 

kommen und gehen. Eines Nachts jedoch drangen die Spiegelwesen ohne 

Warnung in unsere Welt ein, und es brach Chaos aus.  

  Die Menschenwesen stellten schnell fest, dass die Spiegelwesen das 

Chaos selbst darstellten. ... Dank der magischen Fähigkeiten des Gelben 

Kaisers gelang es, sie durch einen mächtigen Zauber zu besiegen und in 

ihren Spiegel zurückzutreiben. 

  Eines Tages wird der Zauber aber so schwach werden, dass sich in 

unserem Spiegel turbulente Gestalten zu regen beginnen. ... Und plötzlich 

wird die lange eingekerkerte Welt des Chaos in unsere eigene Welt hinein 

überkochen.“ 

 Ist es schon da? 

 

   “Once before long time the mirror world and the people world were not yet 

separated. To that time one could come and go by the mirror through. One 

night, however, the mirror natures penetrated into our world without warning, 

and it broke chaos off.  

  The people stated fast that the mirror natures represented the chaos 

themselves. … Owing to the magic abilities of the yellow emperor, one suc-

ceeded to defeat by driving them back into the mirror by a powerful charm.  

  One day, however, the charm will become so weak that in our mirror tur-

bulent shapes begin to move. … And the long incarcerated world of the 

chaos suddenly will cook over into our own world. “ 

 Is it already there?   

 

 

                        From “Complete works of Chuang-tzu, 1968“ 
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INTRODUCTION 

   Population dynamics is the study of how and why population numbers 

change with time and space. Studies of population dynamics have a long 

history and go back to the early decades of 1900 (Elton 1924, Volterra 1926). 

Intrinsic mechanisms - processes that pertain a focal population - and 

extrinsic mechanisms interact by determining population dynamics and lead 

to different dynamic patterns. On one hand, extrinsic processes are often 

stochastic and may lead to dynamics without any pattern. On the other hand, 

extrinsic forces may have a strong seasonal character leading to seasonal 

population fluctuations. Deterministic intrinsic processes can generate also 

different patterns of dynamic behaviours such as damped oscillations, stable 

limit cycles, or chaotic dynamics. Even though chaotic dynamics appear to be 

without any pattern like the stochastic fluctuations there is a clear distinction 

between the two processes. For chaotic dynamics there is dependence 

between the states of the system over time, while pure stochastic dynamics 

are lacking any dependence between states. The dependence can easily be 

shown by means of time delay reconstructions (Fig. 1). The chaotic systems 

show a clear pattern (Fig. 1a) but no pattern is detectable for the stochastic 

dynamics (Fig. 1b). Furthermore, chaos is characterised by a sensitivity to 

initial conditions, which means infinitesimal differences in the starting values 

of the system amplify and lead to complete different fluctuations over time. 

Sensitivity to initial conditions is indicated by a positive Lyapunov exponent λ. 

In contrast, differences in initial conditions are damped over time in 

stochastic systems. A third important attribute of chaotic patterns is that they 

have upper and lower boundaries (state value never over- or respectively 

undershoot certain values), because data (system states) stay inside an 

attractor. Hence, chaotic dynamics are predictable on a short time-scale. 

Stochastic dynamics have no boundaries and thus lack predictability on any 

time scale.  While the first two attributes are mainly used to distinguish chaos 

from stochasticity, the second and latter one may be used for applied 

methods (Hastings et al. 1993). However, the interactions of intrinsic and 

extrinsic processes make the understanding and prediction of population 

dynamics difficult, but fascinating.   

   The focus on intrinsic driven patterns and chaos was introduced to 

population ecology by the works of Robert May (1974) who showed that a 

simple mathematical model reveals different intrinsic driven dynamics by 
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changing one control parameter. He showed that the logistic growth equation 

exhibits complex dynamic behaviour in dependence on the growth rate r, and 

for high r values even chaos. Therewith chaos became a subject of ecology 

and an ongoing intensive and controversial debate about the occurrence and 

meaning of chaos in population dynamics began. 

   The occurrence of complex intrinsic driven dynamics and chaos was 

found in many deterministic mathematical models, from one-species to multi-

species systems involving more and more ecological mechanisms 

discovered over time (e g. Gilpin 1979, Hastings & Powell 1991, Fussmann 

et al. 2005). These theoretical studies conveyed that chaos might be a 

common pattern in population dynamics for certain parameter settings. An 
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Fig. 1. Comparison of chaotic (a) and stochastic (b) fluctuations shown 
as time series and the corresponding time delay reconstruction where 
the population densities are plotted against the population density the 
day before. Chaotic time series is generated by the logistic growth 
equation with r = 2.9, stochastic time series are random numbers 
between 0.1 and 2.  
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empirical support for the occurrence of chaos in population dynamics - from 

experiments or field data - is rare, which leads some studies to conclude that 

chaos does not occur or is negligible (Chattopadhyay & Sarkar 2003). 

Potential reasons for the discrepancy between theoretical and empirical 

studies are miscellaneous. One problem is that signals of deterministic 

processes, thus also chaos, of empirical data are woven together with 

stochasticity, making field data samples insufficient for the analysis of the 

meaning of chaos, even combined with mathematical modelling (Ellner & 

Turchin 1995). Controlled laboratory experiments with a reduced and 

manageable population system have been shown as a useful tool to study 

population dynamics regarding intrinsic mechanisms (Costantino et al. 1997, 

Fussmann et al. 2000). Complex dynamics, from damped oscillations, stable 

limit cycles to chaos, was shown for the one-species system of the flour 

beetle Tribolium castaneum. Damped oscillations and stable limit cycles were 

shown for a two-species system of an algae-rotifer system. Mathematical 

models pointed out that the length and the linkages in a food web are 

relevant for the occurrence of chaos. Long food chains with no or less 

linkages between the trophic levels tend to show a high potential for chaotic 

dynamics (in the sense of a large parameter range). More links between the 

trophic levels are predicted by mathematical models to reduce the potential 

of chaos in the food web (Fussmann & Herber 2002, Gross et al. 2005). 

Chaos was only shown in a one-species system (Costantino et al. 1997) and 

empirical studies on chaos in multi-species systems may shed more light on 

the question if chaos occurs in population dynamics.   

The question if chaotic dynamics are exhibited in the real world is not 

restricted to population ecology. Other nonlinear biological systems are 

thought to exhibit chaotic dynamics, but most of them are lacking possibilities 

to study the chaotic behaviour experimentally. For instance, mathematical 

models were shown to describe the behaviour of measles dynamics over the 

last years. But it is impossible to test the model hypothesis that measles 

dynamics are chaotic (Earn et al. 2000). Other systems like dynamics in 

human brain (Tirsch et al. 2004), heart dynamics, or the interplay between 

glucose and insulin in the blood (Kroll 1999) show also indications for chaotic 

dynamics. But again, manipulations to study these system behaviours are 

restricted.  
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   The present study should find answers to the question of relevance of 

chaos in population dynamics by means of an experimental multi-species 

system. Experiments with complex population dynamics of a three-species 

system should be conducted to study the persistence and the transitional 

behaviour of the dynamics. The persistence of complex behaviour and 

especially chaotic dynamics in response to disturbance are important for the 

understanding of chaos in nature and for the spatial and temporal extent of 

chaotic dynamics. Therefore a conceptional model of a two-prey-one-

predator system should be implemented into a microbial laboratory system. A 

clear defined species composition by the use of axenic cultures should 

enable the study of complex population dynamics. The possible persistence 

of deterministically driven population dynamics should be analysed: First, by 

a change in one experimental parameter and second by coupling of different 

populations with different intrinsic dynamics.  
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CHAPTER I 

    Since Robert May showed in the 1970´s that populations exhibit 

different complex dynamics for the simple discrete logistic growth equation - 

like stable equilibrium, stable limit cycles and chaos - different approaches 

have evolved to understand and analyse population dynamics. One approach 

following the idea of May is to find general patterns and mechanisms in 

mathematical population models. Furthermore, time series analyses of field 

data or experimental results are a tool to understand population dynamics. 

Combining mathematical modelling with time series analyses of experimental 

data is probably most efficient. Field data have the great disadvantage that 

deterministic and stochastic processes interact, which makes a detection of a 

general mechanism in pattern formation difficult (Turchin 2003). Laboratory 

experiments under constant controlled conditions minimize the stochastic 

behaviour to a tradable degree. Due to short generation times (sometimes 

less than one day), microorganisms like bacteria and protozoa have a long 

history in experimental population studies (Gause 1934, Jessup et al. 2004, 

Luckinbill & Fenton 1978). One can observe many generations in a relatively 

short time period. Furthermore the use of microorganisms or small metazoan 

enables the possibility to conduct experiments under clearly defined 

conditions which is necessary to understand mechanisms in population 

dynamics (Cadotte et al. 2005). Microorganisms are mainly cultured under 

batch or flow through conditions. One of the main advantages of flow through 

conditions like in a chemostat are that the dilution rate of the system can be 

used as a control parameter of the system and changes in the dilution rate 

may lead to different dynamic behaviours (e.g. Vayenas & Pavlou 1999, 

Fussmann et al. 2000, Kooi & Boer 2003).  

   To include the most relevant mechanism for population communities, 

competition and consumption (Chase et al. 2002), one of the simplest three 

species systems is a two-prey-one-predator system. Coexistence for the 

three species is possible if the preferred prey of the predator is assumed to 

be the superior competitor. A conceptual model of a two-prey-one-predator 

system is described in Fig. 1. Considering one randomly chosen starting 

situation (a in Fig. 1). The preferred prey and superior competitor are highly 

abundant, while the less preferred prey (and inferior competitor) and predator 

are at low densities. Due to the high supply of the preferred food, the 

predator population increases. But at the same time the grazing pressure on 
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the preferred prey and superior 

competitor increases and their 

population abundance decreases 

simultaneously (b in Fig.1). In this 

situation the grazing pressure is 

still high on the superior competitor 

and the inferior competitor can 

overgrow the superior competitor. 

In turn, the predator abundance 

decreases because the preferred 

prey is low abundant (c in Fig. 1). 

Now the grazing pressure is 

decreasing on the preferred prey 

and the superior competitor population increases, while the less preferred 

prey and inferior competitor populations decrease (a in Fig.1). Four different 

types of dynamic behaviour can be revealed by this simple three species 

system. Figure 2 summarizes the typical population dynamics as time series 

and Poincaré plots where the population abundances for each population are 

plotted against each other. The Poincaré plots show the typical attractors 

corresponding to the underlying dynamic behaviour. First, one of the species 

can go extinct due to high grazing activity by the predator and a low growth 

rate, while the two other species coexist at equilibrium (Fig. 2a). Second, all 

three species coexist at equilibrium due to the same rates of loss and growth 

(Fig. 2b). Third, if the cycle in Fig. 1 is always exactly repeated, the system 

shows stable limit cycles (Fig. 2c). Fourth, it is possible that the same cycle is 

never repeated and the system exhibit chaotic dynamics (Fig. 2d). The 

corresponding attractors are point attractors for coexistence at equilibrium 

(Fig. 2a, b left column), ring attractors for stable limit cycles (Fig. 2c left 

column) and strange attractors for chaos (Fig. 2d left column).  

b

c
a

Fig. 1: Schematic two-prey-one-
predator system. Ciliate drawing 
represents the predator, rods the 
preferred prey and superior competitor, 
and circles the less preferred prey and 
inferior competitor.

b

c
a

b

c
a

Fig. 1: Schematic two-prey-one-
predator system. Ciliate drawing 
represents the predator, rods the 
preferred prey and superior competitor, 
and circles the less preferred prey and 
inferior competitor.

    The aim of this work was to find a mathematical model of a two-prey-

one-predator system under controlled chemostat conditions that can be 

tested experimentally. Control parameters should be found that trigger the 

system to exhibit different dynamic behaviours such as coexistence at 

equilibrium of the three species, stable limit cycles and chaotic dynamics. 
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Fig. 2: Typical dynamic pattern occurring in mathematical models of a two-
prey-one-predator system as time series (left columns) and Poincaré plots, 
where population densities are plotted against each other (right columns). (a) 
Extinction of one population and stable equilibria for the other two populations and a 
resulting point attractor in the Poincaré plot, (b) stable equilibria for all three 
populations and a corresponding point attractor, (c) stable limit cycles forming a 
characteristic ring attractor in the Poincaré plot, and (d) chaos with a corresponding 
strange attractor (after Takeuchi & Adachi, 1983; model parameterised with b1 = b2 
= b3 =1.0, α = 1.0, β = 1.5, µ = 1.0, d = 0.5, (a) e = 3, (b) e = 5, (c) e = 6, and (d) = 9; 
initial values 1.0 for the prey population and 0.01 for the predator population). 
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Mathematical Model  
 
         The dynamic behaviour of mathematical models of two-prey-one-

predator systems has been analysed through the last decades showing that 

complex dynamics occur. Most models use continuous time systems to 

describe the population changes over time regarding changes in the 

parameter setting. Fujii (1977) showed that a two-prey-one-predator system 

reveals limit cycles for a Lotka-Volterra model with a linear type of functional 

response. Vance (1978) and later Gilpin (1979) discovered spiral chaos for 

this system. Takeuchi and Adachi (1983) analysed a Lotka-Volterra model 

and could show that the occurrence of chaotic dynamics depends on the 

greater competitive abilities of one prey population compared to the strength 

of the prey preference of the predator. The complex dynamics of the three 

populations occurs also in models of microbial two-prey-one-predator 

systems under chemostat conditions for different dilution rates of the 

chemostat system (Vayenas & Pavlou 1999, Kooi & Boer 2003, Vayenas et 

al. 2005). The dilution rates that reveal complex dynamics like stable limit 

cycles or chaos were for all models low, with D < 0.1 d-1 and intervals of 0.01 

d-1. An experimental implementation of such low dilution rates in chemostats 

is hardly realisable. Even though microorganisms reproduce fast the 

experimental conditions must be constant for at least 30 days to see the 

asymptotic or long-term behaviour of the populations. To find a mathematical 

model that shows complex dynamics for dilution rates that are realisable in 

experiments with microbial two-prey-one-predator systems, a model after 

Takeuchi & Adachi (1983) was adapted to chemostat conditions by 

introducing the dilution rate D. The intrinsic death rate b3 of the predator was 

replaced by the dilution rate D.  

 

dx1/dt = x1* (b1 - x1 - α*x2 – e*z - D) 
dx2/dt = x2 *(b2 - β*x1 - x2 - µ*z - D)                              
dz/dt = z * (d*e*z - d*µ*z - D) 
 

x1 and x2 denote the densities of the two prey and z the density of the 

predator population. b1 and b2 are the intrinsic rates of increase, α > 0 and β 

> 0 are parameters, that describe the competitive effect between the two 

prey species, e > 0 and µ > 0 are coefficients of decrease of the prey species 

 24



CHAPTER I 

due to predation, d > 0 is the transformation rate of the predator describing 

the amount of energy that can be used for growth, D is the dilution rate of the 

chemostat system per day. The model was parameterised with b1 = b2 = 1.0 

per day; α = 1.0, β = 1.5, µ = 1.0, d = 0.5, and x1(0) = 1.0, x2(0) = 1.0, and z 

(0) = 0.01 as initial values for the population. The prey preference e was 

used as a bifurcation parameter and varied between 0 and 8 (0 < e < 8). The 

dilution was varied between 0 and 1 (0 < D < 1) to analyse the dynamic 

behaviour of the system regarding the dependence on the dilution rate. 

Model analyses were done using Matlab 7.0 Release 14 (Mathworks Inc.).  
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Fig. 3: Operating diagram for the mathematical two-prey-one-predator model 

 under chemostat conditions summarizing the dynamic behaviour of the 
population depending on the prey preference e and the dilution rate D. Region 
a: Extinction of the less preferred prey x2 and the predator z. Region b: Extinction of 
the less preferred prey x2. Region c: Extinction of the preferred prey b1 and the 
predator z. Region d: Coexistence of the two prey x1, x2, and the predator z at an 
equilibrium. Region e: Coexistence of the two prey x1, x2, and the predator z at 
stable limit cycle. Region f: Coexistence of the two prey x1, x2, and the predator z 
showing irregular fluctuations, probably chaos. 
 

The introduction of the dilution rate D did not change the general dynamic 

behaviour of the two-prey-one-predator model compared to the results of 

Takeuchi and Adachi (1983). Fluctuating dynamics occurred for dilution rates 

0.3 < D < 0.8  d-1 for e > 2 with a shift to higher dilution rates for increasing 

predation rates e. Irregular dynamics - likely chaos - were found for a small 

parameter set of e and D (f in Fig. 3).  
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Experimental system  

          A microbial community was chosen to analyse the dynamic behaviours 

in a two-prey-one-predator system predicted by model . We used a defined 

community from axenic cultures to ensure a constant species composition in 

the experimental system. The system consisted of the bacterivorous ciliate 

Tetrahymena pyriformis (average length 85µm * 22µm; from CCAP 1630/1W) 

as the predator and the two bacteria Pedobacter spec. (Cytophaga 

Flexibacter group, 2 * 1 µm) and Brevundimonas spec. (α-Proteobacter, 2,5 

µm * 2,5µm) isolated by K. Beck from Lake Schöhsee, Germany, and kindly 

provided by Klaus Jürgens, Rostock-Warnemünde) as prey organisms. 

Coexistence of two competing species is possible by predator mediated 

coexistence (Hairston et al. 1960, HilleRisLambers & Dieckmann 2003). 

Coexistence is ensured if the predator preys preferentially on one prey 

species and the preferred prey is the superior competitor at the same time. 

Prey preference of the predator Tetrahymena was determined in grazing 

experiments and competition abilities were analysed in chemostat 

experiments without predation.  

 

Grazing experiments 

        Grazing experiments were carried out in 50-ml-tissue culture flasks 

(Sarstedt) to determine the grazing rates of Tetrahymena on Pedobacter and 

Brevundimonas. Five times 7.5 ml of both bacterial liquid cultures (in 

PPY100: 0.2 g/l proteose peptone, 0.025 g/l yeast extract) with an equal 

density of about 4*106 were added to 5 ml of a Tetrahymena culture. Since 

specific antibody staining worked only until the first three minutes after 

vacuole formation, grazing experiments were terminated by adding buffered 

paraformaldehyde (Eisenmann et al. 1998; 4.4% paraformaldehyde, 150 µl/l 

1 M NaOH, 7.6 g/l NaCl, 1.57 g/l Na2HPO4 * 2 H20, 0.47 g/l NaH2PO4) after 

three minutes. The fixed samples were collected on black 0.8 µm pore-size 

polycarbonate membrane filters and washed 2 times with 5 x PBS buffer 

(Phosphate Buffered Saline: 40g/ml NaCl, 1 g/l KCl, 5.76 g/l Na2HPO4*2H2O, 

1 g/l KH2PO4; pH 7.3). The ingested bacteria were determined in the food 

vacuoles by using immunofluorescence and DAPI (4',6-diamino-2-

phenylindole, Porter & Feig 1980) labelling. The following protocol was used: 
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Samples were treated with Triton X-100 (Merck Chemicals; final 

concentration 8%) for permeabilization of the ciliate membranes to ensure a 

better labelling result in the food vacuoles (Christoffersen et al. 1997). Triton 

X-100 was added to membrane filters and incubated for 20 minutes. The filter 

was washed three times for five minutes with PBS buffer. The strain specific 

antibodies were diluted 1:200 in 5% BSA (bovine serum albumin/ PBS 

(volume 3.0 ml)) and added to the samples which were incubated for five 

minutes. After washing three times with PBS, the filters were incubated with 

the second, Cy3-labelled antibodies (1:200 diluted with 5% BSA/PBS, 

volume 3.0 ml) and DAPI solution (final concentration 5 µg/ml) for 5 minutes 

and washed 3 times with PBS. Membrane filters were mounted on glass 

slides with an oil droplet (Zeiss 128 F) and stored at -20°C until microscopic 

analysis. Always care was taken to exclude bacterial contaminations. 

Ingested bacteria were counted using the epifluorescence microscope (Zeiss 

Axioskop, filterset 14 for the detection of Cy3-labelled antibodies and filterset 

01 to detect DAPI staining). Since both specific primary antibodies were 

detected by the same second, Cy3 labelled antibodies the staining could only 

be performed for one bacteria strain in one staining process. The bacteria 

abundance of the other bacteria was calculated from the differences between 

the total number of bacteria (enumerated from the unspecific DAPI staining) 

and the specific stained bacteria. Results from the first enumeration were 

verified, using a second staining process with the other specific antibodies.

         Grazing experiments revealed that both bacteria were grazed and 

detectable by the use of specific antibody staining and unspecific staining 

with DAPI (Figs. 4 and 5). Experiments showed that Pedobacter could be 

found four times more in food vacuoles than Brevundimonas after three 

minutes grazing on an equal dens mixture of bacteria (Fig. 4). Thus, we can 

assume that Pedobacter is the preferred prey species of the predator 

Tetrahymena by a factor of four. Both staining procedures showed the same 

abundances of ingested bacteria. No differences occurred in the relation of 

ingested bacteria from the two strains when either stained with specific 

antibodies against Pedobacter (Fig. 4a) or against Brevundimonas (Fig 4b). 
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Fig. 4: Bacteria abundance 
in food vacuoles of 
Tetrahymena after three 
minutes grazing, 
determined after staining 
with specific Cy3 labelled 
antibodies and unspecific 
4', 6-diamino-2-
phenylindole (DAPI) 
staining. (a) Pedobacter 
abundance determined by 
specific staining while 
Brevundimonas abundance 
was calculated from the 
difference between all bacteria stained with DAPI and the specific stained 
Pedobacter. (b) Brevundimonas abundance was determined by specific antibody 
labelling and Pedobacter abundance was calculated. Numbers are the relation of 
ingested Pedobacter to Brevundimonas.  
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Fig. 5: Results from grazing experiments showing ingested bacteria in food 
vacuoles of Tetrahymena after staining with (a) unspecific 4', 6-diamino-2-
phenylindole (DAPI) and (b) specific Cy3 labelled antibodies against Pedobacter. 
Arrows indicates the food vacuoles with the bacteria. 
 

Competition experiments 

        Competition experiments were run in one-stage chemostat systems 

(Fig. 6) at different dilution rates (D = 0.2, 0.45, 0.5, 0.75, 0.9 d-1) with 

Pedobacter and Brevundimonas. Chemostat experiments were conducted 

under sterile and constant conditions (temperature 20 ± 1°C). Chemostats 

(glass vessels with a volume of 185 ml) were constantly fed with organic 

medium (PPY100: 0.2 g/l proteose peptone, 0.025 g/l yeast extract; pumps: 

Watson Marlow 205S) and mixed by gentle aeration. 
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Fig. 6: Chemostat system used for competition experiments and all other 
chemostat experiments described in chapter II - IV. Left column show a 
simplified scheme of a one-stage-chemostat system. Right column shows a picture 
of an one-stage-chemostat reactor. 

 

Chemostats were inoculated from overnight cultures in LB-medium (Trypton: 

10 g/l, yeast extract 5 g/l, NaCl 10 g/100 ml; bacteria taken from a deep 

frozen stock (-80°C)) with initial densities of 1*105 cells per ml. Triplicate 

samples were taken daily from the middle of the chemostats (fixation with 

formaldehyde, final concentration 3%) followed by staining with DAPI (4’, 6-

diamino-2-phenylindole) on black 0.2 µm pore-size polycarbonate membrane 

filters (Porter & Feig 1980) and enumeration under an epifluorescence 

microscope (Zeiss Axioskop with filter set 01). At least 300 bacteria of each 

strain were counted per filter. 

All time series recorded from the chemostat experiments revealed that 

Brevundimonas was outcompeted while Pedobacter existed at stable 

equilibrium (Fig. 7).  
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Fig. 7: Experimental results showing the population dynamics of the two 
bacteria Pedobacter (open circles) and Brevundimonas (filled circles) in 
chemostat systems at the different dilution rates D. (a): 0.2 d-1, (b): 0.45 d-1, (c): 
0.5 d-1, (d): 0.75 d-1, (e): 0.9 d-1. Vertical bars represent standard deviation of 
triplicates taken separately form one chemostat. No sampling took place on day 24. 

 

        In conclusion, grazing and competition experiments revealed that the 

experimental system allows the analysis of complex population dynamics as 

described in the mathematical model. Grazing experiments showed that the 

prey preference of Tetrahymena on Pedobacter was e = 4 when the prey 

preference on Brevundimonas was set to µ = 1. The model predicted limit 
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cycles and coexistence at equilibrium for all three species for a dilution rate 

of 0.3 < D < 0.6 d-1 with e = 4 (Fig. 3). Extinction of one population was found 

for a dilution rate D smaller than 0.3 d-1and for 0.6 < D < 0.8 d-1. For a dilution 

rate greater than D = 0.8 d-1 extinction of the less preferred prey b2 and the 

predator p were recorded from the mathematical model. Dilution rates D > 

0.1 d-1 and experimental intervals of 0.05 are realisable for experiments with 

microorganisms. The use of axenic cultures give the possibility of analyses 

without any dynamics from contaminations with other microorganisms, as are 

found in other systems used for studies of intrinsically driven population 

dynamics. We can assume different dynamic behaviours in the two-prey-one-

predator system with Tetrahymena, Pedobacter, and Brevundimonas for 

dilution rate of 0.1 < D < 0.9 d-1. 
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Experimental demonstration of chaos in a microbial
food web
Lutz Becks1*, Frank M. Hilker2, Horst Malchow2, Klaus Jürgens3,4 & Hartmut Arndt1*

Discovering why natural population densities change over time
and vary with location is a central goal of ecological and evolu-
tional disciplines. The recognition that even simple ecological
systems can undergo chaotic behaviour has made chaos a topic of
considerable interest among theoretical ecologists1–4. However,
there is still a lack of experimental evidence that chaotic behaviour
occurs in the real world of coexisting populations in multi-species
systems. Here we study the dynamics of a defined predator–prey
system consisting of a bacterivorous ciliate and two bacterial prey
species. The bacterial species preferred by the ciliate was the
superior competitor. Experimental conditions were kept constant
with continuous cultivation in a one-stage chemostat. We show
that the dynamic behaviour of such a two-prey, one-predator
system includes chaotic behaviour, as well as stable limit cycles
and coexistence at equilibrium. Changes in the population
dynamics were triggered by changes in the dilution rates of the
chemostat. The observed dynamics were verified by estimating the
corresponding Lyapunov exponents. Such a defined microbial
food web offers a new possibility for the experimental study of
deterministic chaos in real biological systems.
Apart from the intuitive understanding that external (extrinsic)

stimuli influence the variability of abundances, mathematical models
have made it apparent that the internal (intrinsic) qualities of a
population give rise to population dynamics with large and (at
certain parameter ranges) even chaotic fluctuations of abundances,
even under wholly constant and predictable conditions5. Predator–
prey interactions have been considered as a possible driving force of
population dynamics since the beginning of ecological studies6,7. In
his analysis of mathematical models, May1 found that even simple
processes of population growth can show (for a certain range of
parameters) an unpredictable behaviour driven by intrinsic mecha-
nisms. May’s studies marked the beginning of an intensive debate on
the question of whether or not natural systems are characterized by
chaotic behaviour. In this context, the term ‘deterministic chaos’
can be defined as bounded aperiodic fluctuations with sensitive
dependence on initial conditions4. Under chaotic conditions, popu-
lation abundances never show a precisely repeated pattern over time;
such patterns are only observable in populations at equilibrium or at
stable limit cycles. Theoreticians can clearly define parameter ranges
of mathematical models that create chaotic behaviour in idealized
biological systems3,8–10. However, only a very few experiments
indicating that bifurcations of dynamic behaviour might occur in
the real world have been conducted (for example, ciliate–bacteria
interactions11, flour beetle (Tribolium castaneum) dynamics12,13

and rotifer–algae interactions14). Indications of chaotic dynamics
under controlled conditions have so far been reported for one-species
systems only13. A robust tool to verify observed dynamics is

estimations of Lyapunov exponents from time series, which test for
the exponential divergence of nearby trajectories. Mathematically,
stable (convergent) systems show negative Lyapunov exponents,
whereas chaotic (divergent) systems have at least one positive
Lyapunov exponent4.
The aim of the present study was to verify the biological relevance

of chaotic behaviour in a real multi-species system. The long
generation durations of most organisms and the complexity of
natural environments have generally made the explanation of under-
lying ecological mechanisms difficult15. However, experiments using
microbial populations propagated in controlled environments
reduce ecosystem complexity to the point at which understanding
simple processes in isolation becomes possible. The rapid reproduc-
tion of bacteria and protists is one of the main advantages of working
with microorganisms as model organisms7,16,17. In addition, the
community structure can be exactly defined; for example, single
strains of bacteria and protists can be selected. Microorganisms can
also be cultured under chemostat conditions. This has the great
advantage that extrinsic factors are negligible and changes in popu-
lation dynamics can be attributed to intrinsic factors. In terms of
predation and interspecific competition, one of the simplest systems
imaginable is a three-species systemwith two prey organisms and one
predator. Several theoretical studies have been made of such model
systems8–10,18. Generally, different patterns of population dynamics
are predicted by models; for example, the extinction of one or two
species and the coexistence of all three species. Assuming that the two
prey populations compete with each other and assuming that the
better competitor is the preferred prey, three patterns may occur:
coexistence at equilibrium, coexistence at stable limit cycles, and
coexistence at chaos8–10,18.
Our study was aimed at identifying these different patterns of

coexistence in controlled experiments in a chemostat. We used the
dilution rate as the bifurcation parameter in the experiments,
because the dynamical behaviour of chemostat models can change
with dilution rate9,10,14. We constructed one-stage chemostat systems
consisting of axenic cultures of three species: a predator (the ciliate
Tetrahymena pyriformis) and two coexisting prey bacteria, the rod-
shaped Pedobacter and the coccus Brevundimonas. The effective
consumption of these bacteria by the ciliate and its food preference
was analysed by immunofluorescence techniques. The ciliate can
establish stable populations when feeding on either bacterium, but it
dies off in the highly diluted organic medium when bacteria are
absent. The growth conditions for the bacteria and the mortality of
the ciliate are determined by the dilution rates (controlled by
peristaltic pumps). Brevundimonas was always outcompeted in
chemostat experiments containing both bacterial strains without a
predator. Thus, Pedobacter was considered to have a better fitness. In
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contrast, our grazing experiments revealed that Pedobacter is pre-
ferred as prey by the ciliate over Brevundimonas by a factor of four
(see Supplementary Information). Experiments were performed
with dilution rates of 0.90, 0.75, 0.50 and 0.45 d21. These dilution
rates were selected on the basis of preceding model calculations.
The results revealed a different dynamic behaviour of the experi-

mental system, depending on the applied dilution rate (Fig. 1). At the
highest dilution rate (D ¼ 0.90 d21), Brevundimonas had died off by
the sixth day; the remaining species existed in stable coexistence at
equilibrium (Fig. 1a). The establishment of constant, equilibrium
population densities of all species was achieved after about 5 days at
D ¼ 0.75 d21 (Fig. 1b). To check the robustness of the stable
equilibrium, we repeated this experiment with a preceding 30-day
period of aperiodic dynamics at D ¼ 0.50 d21 (Fig. 1c). Although
similar dynamic behaviour was observed after a transition period of 5
days, the abundances reached by the three species were different from

those of the previous experiment. One possible explanation for these
differences in abundances of the rapidly reproducing microbes (30
days represents about 240 generations in the experiments) might be a
potential evolutionary shift in population structure19. Obviously
stable limit cycles were established in the two parallel chemostat
systems after a period of about 8 days at a dilution rate of 0.45 d21

(Fig. 1h, i). Maxima andminima for all three species recurred during
the whole observation period. Slight differences can be attributed
to the sampling interval, which was kept constant at about 24 h. The
cycles started with a maximum abundance of the preferred bacte-
rium, followed by a peak of the less-preferred bacterium and the
predator. Aperiodic oscillations were always obtained when dilution
rates were set to 0.50 d21 (Fig. 1d–g). All four trials showed different
patterns in their dynamics. The observed aperiodic oscillations of the
chemostat populations were analysed for possible chaotic behaviour
by using estimates of corresponding Lyapunov exponents (Fig. 2; see

Figure 1 | Experimental results showing the population dynamics of
bacteria–ciliate chemostat systems. Dilution rates D were as follows:
a, 0.90 d21, b, 0.75 d21; c, 0.50 d21 (the line indicates the change to 0.75 d21

at day 30); d–g, 0.50 d21 (replicate experiments; no sampling took place on

days 3, 4 and 7–13 in f and g); h, i, 0.45 d21 (replicate experiments). Open
circles, Pedobacter (preferred prey); filled circles, Brevundimonas (less-
preferred prey); horizontal bar, Tetrahymena (predator). Vertical bars
represent the s.d. of triplicate samples taken separately from one chemostat.
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Supplementary Information). They were determined from each time
series with a previously published algorithm20, which tests directly
for the exponential divergence from nearby trajectories and provides
a very robust method for also dealing with small data sets (see
Methods). According to general theoretical expectations, the data
sets with extinction of the less-preferred prey species (Fig. 1a) and
with coexistence at stable equilibrium (Fig. 1b) revealed negative
Lyapunov exponents. This also holds true for the second part of the
time series in Fig. 1c (after a change in the dilution rate to 0.75 d21).
All experiments withD ¼ 0.5 d21 (Fig. 1c, left of the vertical line, and
Fig. 1d–g) have positive Lyapunov exponents. Thus, we obtained
strong experimental evidence for the existence of chaos in a real
multi-species system. Note that for small data sets the range of
the confidence interval generally increases. The stable sustained
oscillations (Fig. 1h, i) have Lyapunov exponents close to zero
(Fig. 2). Their absolute value is at least one order of magnitude
smaller than all the other exponents. The exponential divergences of
nearby trajectories show strong, sustained oscillations as well. There
is a large asymptotic standard error in the fit of the Lyapunov
exponents because of the strong oscillations. We conclude that the
underlying dynamics are stable limit cycles. The observed dynamics
in the experiments changed as predicted by a model10 (stable
coexistence at high dilution rates, chaos at intermediate dilution
rates, and stable limit cycles at low dilution rates).
There are two important conclusions to be drawn. First, chaotic

dynamics of small, rapidly growing organisms can occur in all micro-
biotopes. Second, because of the low generation times of microbes
(only a few hours), such dynamics may be established before
perturbations by external stimuli are effective. Examples of such
communities are the tiny, fragmented populations of protists and
bacteria that can occur on each grain of sand in a sediment, as well as
on each small detritus particle in the pelagic zone of the open ocean
or lakes21,22. The defined microbial food web that we established
under chemostat conditions offers a completely new possibility for
the experimental study of deterministic chaos in real biological
systems. It is now possible to address many questions previously
posed by theoreticians. We have provided a biological system that
allows the investigation of the transition between different dynamical
states, the analysis of interactions of fragmented populations show-
ing either similar or different dynamic behaviours, the study of

resilience and the importance of perturbations under varying dyna-
mical states, and the interplay between complex dynamics and
biodiversity1–4,8,16,18,23. When combined with molecular techniques,
this system would also allow the evolutionary consequences of
different dynamic behaviours to be analysed19.

METHODS
Chemostat experiments. We established cultures of the ciliate Tetrahymena
pyriformis (axenic culture from CCAP 1630/1W, average length and width
85 mm £ 22 mm), the bacterium Pedobacter sp. (Cytophaga Flexibacter group,
2 mm £ 1 mm) and Brevundimonas sp. (a-Proteobacteria, 2.5mm £ 2.5mm) in
185ml glass chemostats at 20 ^ 1 8C in the dark. Both bacterial species were
isolated by K. Beck from Lake Schöhsee, Germany; bacteria were always
inoculated from deep-frozen stock cultures. The one-stage chemostat systems
were fed continuously with sterile medium (0.2 g l21 proteose peptone,
0.025 g l21 yeast extract) at different dilution rates and mixed by continuous
gentle aeration to ensure an even distribution of organisms. Chemostats were
always started with the same inoculum. Sterile syringes were used to take samples
daily at about 11:00 from the centre of the chemostats. Living ciliate samples
were counted under a phase-contrast microscope immediately after sampling
(more than 150 individuals were counted). Samples of bacteria were fixed with
formaldehyde and stained with 4 0 ,6-diamidino-2-phenylindole (DAPI)24

for subsequent counting on membrane filters (pore size 0.2mm) under an
epifluorescence microscope (Zeiss Axioskop) with Zeiss filter set 01. At least 300
bacteria were counted on each filter. Organism abundances were the average of
triplicates taken separately from one chemostat. The total volume of water taken
from the chemostats during one sampling was 3ml. Chemostats were checked
regularly for the appearance of contaminant bacteria by using strain-specific
antibodies against Pedobacter and Brevundimonas and by non-specific staining
of the bacterial community with DAPI. With our present apparatus, the
maximum number of samplings possible before contamination or any other
technical problem hindered further experimentation was 50–55 days.
Grazing experiments. Experiments were performed to determine the food
preference of Tetrahymena. A bacterial mixture (1:1) of Pedobacter and Brevundi-
monas (each strain at 4 £ 106 cellsml21) was offered as prey in 50-ml vessels at
20 8C. The contents of the vessels were fixed with a buffered paraformaldehyde
solution 3min after inoculation ofTetrahymena25. The abundances of Pedobacter
and Brevundimonas in the food vacuoles of Tetrahymena were determined by
immunofluorescence26 after hybridization with specific Cy3-labelled antibodies
(permeabilization was performed with 8% Triton X-100).
Calculation of Lyapunov exponents. The calculations of the Lyapunov expo-
nents by using the algorithm of Rosenstein et al.20 were performed with the
TISEAN package27 (see Supplementary Information). Similarly to the indepen-
dently published algorithm of Kantz28, it directly tests the presence of exponen-
tial divergence and thus permits a decision onwhether it makes sense to compute
a Lyapunov exponent for given data. In contrast, the first published and widely
used algorithm of Wolf et al.29 makes the a priori assumption that there is an
exponential divergence of nearby trajectories and is therefore prone to yield
finite positive Lyapunov exponents also for stochastic data. This has been
criticized in the ecological literature4,30, and alternative approaches have been
proposed that rely on approximating the equations of the underlying dynamics.
The exponents are calculated from the jacobian, which resembles the linear part
of the dynamics. Thismethod is efficient if the data permit a good reconstruction
of the dynamics. However, one has to be careful, because a good approximation
of the dynamics does not guarantee well-approximated partial derivatives in the
jacobian. However, because the present data stem from constant experimental
conditions in a chemostat environment, the algorithm of Rosenstein et al.28

should reveal more reliable estimates. The exponents were calculated by
reconstructing the attractor dynamics from the time series of the predator’s
abundances with appropriate embedding dimensions and reconstruction delays,
which robustly exhibited exponential divergence. The Lyapunov exponent was
then fitted as the slope of the linear increase in the log-transformed divergence by
using the least-squares method.
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time series in Fig. 1c; t ¼ 31–50 days). Note that for dilution rates of 0.45 d21

and 0.5 d21, data points were spread slightly along the x axis for visual
clarity.
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Figure 1: Experimental results showing the population dynamics of bacteria-ciliate 
chemostat systems at different dilution rates D. a: 0.90 d-1, b: 0.75 d-1, c: 0.50 d-1, line 
indicates the switch to 0.75 d-1 at day 30; d-g: 0.50 d-1, no sampling took place on 
day 3,4 and 7-13 in f and g, h, i: 0.45 d-1; open circles: Pedobacter (preferred prey), 
filled circles: Brevundimonas (less-preferred prey), horizontal bar: Tetrahymena 
(predator). Vertical bars represent SD of triplicates taken separately from one 
chemostat. 
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Supplementary Information: Lutz Becks et al., Experimental demonstration of 

chaos in a microbial food web. Nature (2005).  

 

Growth characteristics of the three species 

The food preference of the ciliate Tetrahymena pyriformis was determined by 

grazing experiments (see Methods). Tetrahymena grazed 163 ± 6 cells* h-1 * 

individual-1 of the bacterium Pedobacter and 41 ± 2 cells* h-1 * individual-1 of the 

bacterium Brevundimonas in a food suspension containing equal numbers of both 

bacteria. Mean growth rates in the chemostat experiments were 0.54 ± 0.11 d-1 for 

Tetrahymena, 2.98 ± 0.47 d-1 for Pedobacter and 1.93 ± 0.86 d-1 for Brevundimonas. 

 

Attractor reconstruction and divergence plots 

The first step in determining the largest Lyapunov exponent involves 

reconstructing the attractor dynamics from a single time series. Here, we have chosen 

the predator abundances. The embedding theorem of Takens (1981) guarantees that 

the reconstructed trajectory portrays the dynamics in the higher dimensional state 

space.  

Reconstruction delay:  The reconstruction delay (also called lag) has been set to 

1 d. This choice is recommended for biological systems with continuous 

reproduction and generation times less than the unit time interval (Turchin 2003). 

Moreover, we have also checked the autocorrelation function (ACF) and the mutual 

information. For a delay of 1 d, the ACF drops below 1/2 as suggested by Turchin 

(2003) and thus below 1-1/e as suggested by Rosenstein et al. (1993), except for the 

stationary systems (Fig. 1 a,b and the second part of c), where the ACF still remains 

below 0.7. Another choice can be the time at which the first local minimum of the 

mutual information is reached (Yamamoto, 1999). In the majority of the considered 

time series, this again yields a delay of 1 d or close to this delay (2 d for Fig. 1 d,g 

and 3 d for Fig. 1 a, b, d). 

Embedding dimension:  A first impression about the embedding dimension m 

can be obtained by considering the dimension for which the fraction of false nearest 
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neighbours drops substantially to zero (Hegger et al. 1999, Yamamoto 1999). This 

has been the case for an embedding dimension of 3 or 4; only for the time series in 

Fig. 1 first part of c, f and g, there was no clear decline in the fraction of false nearest 

neighbours. For the calculation of Lyapunov exponents, the (minimum) embedding 

dimension is required for which the slopes of the exponential divergence do not 

change anymore. The rate of exponential separation has been computed for m = 2,…, 

6. Robust results have been obtained for embedding dimensions larger than 2 or 3. 

Hence, Lyapunov exponents are throughout given for m = 4.  

Divergence plot:  The Lyapunov exponent quantifies the exponential 

divergence/convergence of initially close trajectories. Chaotic systems typically 

show an initial linear increase in the separation of trajectories, followed by a constant 

plateau since chaotic attractors are bounded. The Lyapunov exponent can be 

estimated by the slope of a straight line that is fitted to the linear part of the ln-

transformed divergence. By way of example, this is shown in Supplementary Figure 

1. Fitting is done by least squares. For the time series with the switch in the dilution 

rate (Fig. 1 c) and with the sustained oscillations (Fig. 1 h and i), respectively 4 and 

10 data points have been omitted in order to avoid transient effects. 
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Supplementary Figure 1: Estimation of the Lyapunov exponent by fitting a 

straight line (without points) to the linear part of the ln-transformed 

divergence of nearby trajectories. The lines with points correspond to the 

embedding dimensions m = 2,…, 6 (in increasing order at t=0).  
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CHAPTER III 

Understanding temporal fluctuations in natural systems is of 
fundamental interest in natural sciences. Deterministic models predict 
that shifts in ecological parameters may lead to a transition between 
deterministic chaos and stable equilibria or limit cycles. For the first 
time, we experimentally document short-term transitions between these 
different dynamics. After manipulation of one external stimulus 
(chemostat dilution rate) in a multi-species food web of two bacteria 
and a bacterivorous ciliate, experiments showed that switching 
between different dynamic behaviours may occur surprisingly fast in 
microbial populations (4-7 days). Thus chaotic dynamics may be easily 
overlooked in field observations.  
 

Intrinsic and extrinsic forces and the interplay between them drive 

system dynamics and result in temporal and spatial population fluctuations 

(May 1974, Ellner & Turchin 1995, Hastings 2001, Henson et al. 2003) as 

well as fluctuations in other complex systems (e.g. measles dynamics (Olsen 

& Schaffer 1990), hydrodynamics and oscillatory chemical reactions 

(Gaspard et al. 1999), neural activity in the brain (Martinerie et al. 1998)). 

Due to the strength of intrinsic mechanisms, populations can show different 

asymptotic or long-term behaviour such as stable equilibria (point attractors) 

or cyclic or chaotic behaviour (May 1976). During the last decade, the 

importance of intrinsically driven transitions between different kinds of 

dynamics became evident (Hastings & Higgins 1994). It was found that 

transitions in dynamic behaviour may support the coexistences of a large 

number of species using the same food sources (Huisman & Weissing, 1999, 

2001). Intrinsically driven dynamics may also be superimposed by external 

forces (Higgins et al. 1997, Kaitala et al. 1997, Bjørnstad & Grenfell 2001, 

Clouson et al. 2004); the necessity to change the focus of ecological thinking 

towards dynamical changes of population densities within shorter timescales 

has become evident (Hastings 2004, Earn et al. 2000, Noonburg & Abrams 

2005). According to model analyses, a transition in dynamic behaviour can 

be induced by shifts in biotic and abiotic parameters changing in space and 

time (May 1974, Hastings 2001, Earn et al. 2000). Models predict that 

ecosystems of small spatial and/or temporal scales lead to the dominance of 

transient dynamics (De Angelis & Waterhouse 1987, Chen & Cohen 2001).  

 49



CHAPTER III 

Experimental evidence of transitions between different kinds of 

dynamic behaviour of real populations is very rare. In an experimental one-

species system of the floor beetle Tribolium castaneum, manipulations of a 

demographic parameter (i.e. rates of between-stage cannibalism) lead to a 

transition from stable to cyclic and chaotic behaviour within a few generations 

(Costantino et al. 1995, Dennis et al. 1997). And the only available two-

species example of a rotifer-algae chemostat system showed transitions from 

equilibrium to limit cycles after manipulation of dilution rates (Fussmann et al. 

2000, Chapter I, compare to Becks et al. 2005). The key question is: How 

fast do transitions occur and how long do they last? If transitions occur within 

a few days, such processes may be easily overlooked and may have resulted 

in underestimations of chaotic processes in natural habitats in the past.  

 Most models predict that transitions should last several hundred 

generations (Hastings & Higgins 1994, Earn et al. 2000, DeAngelis & 

Waterhouse 1987), while a few empirical studies (Costantino et al. 1995, 

Dennis et al. 1997, Fussmann et al. 2000, Becks et al. 2005) indicate a 

possible transition within only about 5-7 generations. If the latter is true, 

short-term persisting, intrinsically triggered chaos may often be miss-

interpreted as stochastic fluctuations (noise) leading to a completely different 

conclusion regarding the causal interrelationships. Similar problems are 

typical for other complex systems studied in medicine and economy. 

Experimental testing in these disciplines is often impossible, and biological 

experiments may provide a tool to analyze and understand transitions in 

general.  

A unique microbial chemostat system allows us to address the 

question regarding the occurrence and duration of transitions between 

different dynamic behaviours in a multi-species system for the first time 

(Becks et al. 2005). In a two-prey-one predator system we demonstrate how 

the behaviour of the system shifts due to manipulations of the dilution rate of 

a chemostat system. The high reproduction rate of microorganisms and the 

resultant high number of generations observed in short-term experiments 

make microorganisms good model organisms for the study of population 

dynamics. By reducing ecosystem complexity to a degree at which dynamics 

are comprehensible and by minimizing external perturbation it is possible to 

analyze deterministic population behaviours (c.f Chapter II, compare to 
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Becks et al. 2005, Jessup et al. 2004). Dynamic behaviour can be visualized 

by phase space graphs and estimated by calculations of corresponding 

Lyapunov exponents from observed time series (Hastings et al. 1993, 

Turchin 2003). We were able to drive the chemostat system from one 

dynamic state to the other by establishing dilution rates of either 0.9 d-1, 0.75 

d-1, 0.5 d-1, 0.45 d-1 or 0.2 d-1. The one-stage chemostat system consisted 

of the predator Tetrahymena pyriformis, the preferred prey and superior 

competitor Pedobacter sp. (Cytophaga/Flavobacter-group) and the less 

preferred prey and inferior competitor Brevundimonas sp. (α-

proteobacteria).The data are presented as time-dependent changes in 

abundances (Fig. 1 a-e) as well as in the time delay reconstruction (Fig. 2 a-

e). A shift in dynamic behaviour is obvious in all five experiments, and 

detectable transitions between the types of dynamic behaviour occurred in 

four experiments (Figs. 1a-d, 2 a-d). The duration of transition after the shift 

of the dilution rate was determined graphically by counting the days before 

the trajectories settle on a different type of attractor. For a dilution rate shifted 

from D = 0.5 d-1 to D = 0.2 d-1, a change from chaotic behaviour (Lyapunov 

exponent Λ positive) to equilibrium of Tetrahymena and Pedobacter occurred 

within four days (Figs. 1a, 2a). For a shift in dilution rate from D = 0.5 d-1 to 

D = 0.45 d-1, a change from chaos (Λ positive) to stable limit cycles of 

Tetrahymena, Pedobacter, and Brevundimonas was observed within four 

days (Figs. 1b, 2b). Changing the dilution rate from D = 0.5 d-1 to D = 0.75 d-

1 revealed a switch from chaos (Λ positive) to stable equilibrium of all three 

species within six days (Figs. 1c, 2c). For a shift in dilution rate from D = 0.5 

d-1 to D = 0.9 d-1, a change from chaotic behaviour (Λ positive) to 

equilibrium of Tetrahymena and Pedobacter   was evident after seven days 

(Figs. 1d, 2d). Changing the dilution rate from D = 0.75 d-1 to D = 0.5 d-1 

lead to a change from stable equilibrium of all three species to irregular 

fluctuations (Λ could not be calculated due to a lack of sufficient data). The 

duration of the transition could not be estimated in this case, but seems to be 

similar to the other experiments (Figs. 1e, 2e). 
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Fig. 1: Time series data of an experimental two-prey-one-predator system of a 
bacterivorous ciliate and two prey bacteria species cultured in chemostats at 
different dilution rates (185 ml vessels supplied with organic medium PPY 100, 
at 20 ±1°C). Open circles, abundances of the rod-shaped bacterium Pedobacter 
spec. (preferred prey and better competitor; 2 µm x 1 µm); filled circles, abundances 
of the coccus Brevundimonas spec. (less preferred prey and inferior competitor; 2 
µm x 2 µm; both bacteria were isolated from Lake Schöhsee, Germany by K. Beck); 
horizontal bar, abundances of the ciliate Tetrahymena pyriformis (predator, culture 
from CCAP 1630/1W). Vertical bars represent the standard deviation of separately 
taken triplicate samples. Continuous arrows indicate the start of the experiment, 
dashed arrows mark the change in the dilution rate after 30 days. Dilution rates were 
set to (a) D = 0.5 d-1 and 0.2 d-1 after 30 days, (b) D = 0.5 d-1 and 0.45 d-1 after 30 
days, (c) D = 0.5 d-1 and 0.75 d-1 after 30 days (taken from Chapter II, compare to 
Becks et al. 2005 Fig, 1c), (d) D = 0.5 d-1 and 0.9 d-1 after 30 days, and (e) D = 
0.75 d-1 and 0.5 d-1 after 30 days.  
 

 We could show that a transition between different complex dynamics 

of a three-species system was realized through a manipulation of one 

experimental parameter. Point attractors were observed for equilibrium 

dynamics (Figs. 2a, c, d, and e) and are consistent with general theory 

(Turchin 2003). For stable limit cycles (Fig. 2b; after the shift in dilution rate), 

data points forming a ring attractor do not cumulate as strictly on a ring as 

expected based on theory. 
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Fig. 2: Time delay reconstruction graphs for the three coexisting species Tetrahymena 
(left column), Pedobacter (middle column) and Brevundimonas (right column) from 
chemostat experiments. The dynamic behaviour is indicated before the shift in the dilution 
rate (days 0-30, solid line and filled circles); the transition time (dashed line and open circles) 
and the dynamic behaviour after the transition (dotted line and filled triangles). The 
population sizes of organisms at time t are plotted against population sizes the day before (t-
1). Letters a-e correspond to panels in Fig. 1. Continuous arrows indicate the start of the 
experiment, dashed arrows mark the data point at the shift of the dilution rate, and dotted 
arrows indicate the settlement of trajectories on the new attractor (determined graphically). 
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This is probably due to the small number of data points after the shift (14 

days). Attractors projected from time series for a dilution rate of D = 0.5 d-1 

always showed a cyclic and bounded pattern. The trajectories behave as if 

influenced by some attraction. Even though experiments were conducted 

under constant laboratory conditions, process noise could induce some 

stochasticity.   

 In addition, reproduction of organisms is not a “rigid schedule” (Dennis 

et al. 2001), so that at least some demographic stochasticity leading to fuzzy 

attractors is also present. From time delay reconstruction graphs it is obvious 

that all attractors had a lower and upper boundary (Fig. 2a-e). This result 

emphasizes that even if population dynamics are chaotic there is a measure 

of predictability, since all data points remain between the boundaries 

(Hastings et al. 1993). 

 The following important conclusions can be drawn from our studies: 

Population dynamics of microbes seem to switch easily between the different 

types of dynamic behaviour. This supports the idea that small rapidly growing 

organisms may live under chaotic dynamics (c.f. Chapter II, compare to 

Becks et al. 2005). Chaotic dynamics may occur in the field only as a part of 

a more complex behaviour with transitions and asymptotic dynamics due to 

shifts in parameters affecting population dynamics (Hastings 2004). Model 

predictions indicate that ecosystems of small spatial scale, spatial dynamics 

and time delays may lead to the dominance of transient dynamics (De 

Angelis & Waterhouse 1987, Chen & Cohen 2001). Recent theoretical work 

has shown that transient dynamics enhance the chance of coexistence of 

competing species (Huisman & Weissing 1999, 2001). Knowing that 

transitions between the different types of dynamic behaviour in the microbial 

world can occur within a few days makes it very probable that short-term 

periods of chaos are often overlooked due the fact that complex dynamics 

are woven with environmental stochasticity. This might also be true for other 

complex systems (e.g. epidemics, chemical reactions, cell-cell 

communications). The major part of the biosphere (deep sea and 

groundwater) is characterized by constant environmental parameters which 

support intrinsically driven microbial population dynamics. Thus, chaos may 

be much more common in nature than currently assumed.   
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Materials and Methods 
 We conducted one stage-chemostat experiments under constant 

conditions, as described by Chapter II (compare to Becks et al. 2005). 

Chemostat communities contained populations of two bacterial strains 

Pedobacter spec. and Brevundimonas spec. and the bacterivorous ciliate 

Tetrahymena pyriformis from axenic cultures (bacteria isolated by K. Beck 

from Lake Schöhsee, Germany, inoculations from deep-frozen stock cultures; 

Tetrahymena pyriformis culture from CCAP 1630/1W). Coexistence of all 

three populations is possible because the predator Tetrahymena preys 

preferentially on the better competitor Pedobacter. Prey preference was 

tested using specific Cy3-labeled antibodies and unspecific staining with 4’, 

6-diamino-2-phenylindole DAPI (Porter & Feig 1983, Christofferson et al. 

1997). Competition was determined in one stage chemostat experiments at 

different dilution rates (D = 0.2, 0.45, 0.5, 0.75, 0.9 d-1) as described below 

without the predator. Brevundimonas was always out-competed by 

Pedobacter. Feeding experiments using specific antibody staining showed 

that the rod-shaped Pedobacter was ingested four times more often than the 

coccus Brevundimonas.  

 Chemostat experiments were always started with the same inoculum 

(bacterial inoculum 100,000 cells/ml, ciliate inoculum 1,000 ind. /cells). 

Abundances of organisms in chemostats were determined daily. Living 

ciliates were counted under the phase-contrast microscope. Bacterial 

population sizes were determined after fixation (formaldehyde: final 

concentration 3%) and staining with DAPI. Evaluation of bacteria 

abundances was preformed under an epi-fluorescence microscope (Zeiss 

Axioskop with filter set 01). Experiments were performed at different dilution 

rates. Dilution rates were set to D = 0.5 d-1 and shifted to (a) D = 0.2 d-1, (b) 

D = 0.45 d-1, (c) D = 0.75 d-1 and (d) D = 0.9 d-1 respectively after 30 days. 

One experiment was conducted with a dilution rate of D = 0.75 d-1 for 30 

days and a shift to D = 0.5 d-1 (e).  

 The largest Lyapunov exponents Λ were calculated from recorded 

abundances of Tetrahymena for a classification of the observed dynamics by 

using the algorithm by Rosenstein et al. (1993). Calculations were preformed 

with the TISEAN package, with a time delay of one day and an embedding 

dimension of 4 (Fig. 1a: Λ = 0.11 ± 0.14; Fig. 1b: Λ = 0.14 ± 0.14; Fig. 1c: Λ = 
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0.14 ± 0.11; Fig. 1d: Λ = 0.08 ± 0.13) (Chapter II). Due to the small data set, 

no calculations were done for the second part of the time series from the 

experiment after the shift as well as for the experiment with a dilution rate of 

D = 0.75 d-1 from the start of the experiment (Figs. 1e, 2e). Nevertheless the 

underlying dynamics could be determined from time series and by the 

constructed attractor in the time delay reconstruction. Time delay 

reconstruction graphs were drawn from time series abundances with a delay 

of one day. The duration of transition after the shift of the dilution rate was 

determined graphically by counting the days before the trajectories settle on 

a different type of attractor.  
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The understanding and prediction of population dynamics of organisms 

either free-living or parasitic are an ongoing challenge for biology and 

medicine. Recently it became known that dynamics of real populations 

are not only determined by extrinsic but also by intrinsic mechanisms 

and the interactions between the two. Theoretically, local populations 

may differ regarding their dynamic behaviour and may comprise stable 

equilibrium, stable limit cycles as well as chaos. Due to the lack of 

suitable experimental systems, it is not known how local population 

dynamics may influence the dynamic behaviour of coupled populations 

when these populations are driven by intrinsic mechanisms. We 

studied the dynamics of a real world microbial community (2nd stage 

chemostat system) which received a continuous immigration of 

organisms from two local communities (1st stage chemostat systems) 

with different intrinsic dynamics. An experimental two-prey-one-

predator system (bacteria, protozoa) served as a model community. 

Here we show that the dynamic behaviour of the coupled populations 

depends on intrinsic forces rather than on disturbances from intrinsic 

dynamics of the source populations. These results point to the stability 

of intrinsically forced dynamics. Determining the key factors of intrinsic 

dynamics should allow controlling population dynamics and diseases. 

 The role of complex deterministic population dynamics received 

continuous attention since the early work of Robert May in the 1970´s (May 

1974). Different deterministic dynamic behaviours are exhibited in simple 

population models in dependence of one or more control parameters 

showing equilibria, limit cycles and chaos (e.g. May 1974). However, 

empirical evidence for such complex dynamics is very rare. To our 

knowledge, a bifurcation into all types of dynamic behaviour was shown only 

for a one-species system (the flour beetle, Tribolium castaneum (Costantino 

et al. 1997)) and recently for a three-species system (microbial two-prey-one-

predator system (Becks et al. 2005). The occurrence and persistence of 

complex deterministic dynamics – stable or fluctuating - depends on the 

spatial structure of the system (Malchow 1993, Blasius et al.1999). Both, the 
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Tribolium (Costantino et al. 1997) and the microbial system (Becks et al. 

2005) assume that the populations in separate experimental systems (milk 

bottle and chemostat, respectively) are uniform homogeneous populations. 

Most organisms and populations in nature have a patchy distribution and 

create small local subpopulations with possible inherently different local 

dynamics creating all together one metapopulation (Levins 1969, Hanski 

1998, Holyoak et al. 2005). Metapopulation dynamics are driven by migration 

or dispersal between local populations. Theoretical studies have shown that 

the persistence and occurrence of dynamic behaviour of a population can 

change when heterogeneity is considered (Rohde & Rohde 2001, Dhamala 

et al. 2001, Maionchi et al. 2006). Spatial heterogeneity between local 

populations might be expressed by differences in demographic parameters, 

like the intrinsic growth rate (Rohde & Rohde 2001). It was shown that 

dispersal may either stabilise unstable dynamics in local populations caused 

by predator-prey interactions (e.g. parasite and host dynamics Hassel & May 

1973, Ives 1992) or cause replacement of regular oscillations by chaos 

(rotifer and algae dynamics, Medvinsky et al. 2005). 

There is a major gap between the theory of population interactions with 

specific intrinsically forced dynamics and empirical data from the real world. 

Here we show for the first time experimental studies of coupled populations 

with unidirectional coupling exhibiting different dynamic behaviour ranging 

from stable equilibrium to chaos. Using a system of combined chemostats, 

we were able to address the following questions: How stable is the dynamic 

behaviour of food web components when disturbed by chaotic, oscillating or 

constant immigrations? What type of dynamic behaviour is established in 

coupled communities when couples were originally characterised by different 

types of dynamic behaviour including chaos?  

 Laboratory microcosms were used to test the influence of local 

dynamic behaviour on coupled populations. The chemostat systems allows to 

exhibit different complex population dynamics like damped oscillations, stable 

limit cycles and chaos in a two-prey-one-predator system (c.f. Chapter II, 

compare to Becks et al. 2005). Different dynamic behaviours for all three 
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populations can be obtained for different dilution rates D: damped oscillations 

for D = 0.75 d-1, stable limit cycles for D = 0.45 d-1 and chaos for D = 0.5 d-1. 

For each type of dynamic behaviour we established two local populations in 

the first-stage of the chemostat system (Table 1a-h).  

Table 1: Summary of chemostat set up and dynamic behaviour in the two-
stage-chemostat systems of the bacterivorous ciliate Tetrahymena pyriformis 
and the two bacteria Pedobacter spec. and Brevundimonas spec. Lyapunov 
exponents were determined according to Rosenstein et al. 1993 (Hegger & Kantz 
1999, c.f. Chapter II) for Tetrahymena time series. Due to a lack of a sufficient 
number of data, values could not be calculated for chemostat o.  

1ST-STAGE 
CHEMOSTAT 

DILUTION 
RATE D [D-

1] IN1ST  

STAGE 

LYAPUNOV 
EXPONENT 
Λ 

DYNAMIC 
BEHAVIOUR* 

2ND STAGE 
CHEMOSTAT 
(TAKEN 

EQUALLY FROM 
FIRST STAGE 
CHEMOSTAT) 

DILUTION 
RATE D [D-1] 
IN 2ND 

STAGE 

LYAPUNOV 
EXPONENT 
Λ 

DYNAMIC 
BEHAVIOUR* 

a 0.45 0.005 stable limit 

cycles 
i (a +b) 0.45 -0.037 stable limit 

cycles 

b 0.45 0.003 stable limit 

cycles 
j (c +d) 0.5 0.04 chaos 

c 0.5 0.14 chaos k (e +f) 0.75 -0.034 damped 

oscillations 

d 0.5 -0.089 chaos l (a +c) 0.45 -0.037 stable limit 

cycles 

e 0.75 -0.05 damped 

oscillations 
m (b + d) 0.5 0.029 chaos 

f 0.75 -0.065 Damped 

oscillations 
n (f + g) 0.5 0.027 chaos 

g 0.5 0.091 chaos o (e + h) 0.75 -- damped 

oscillations 

h 0.5 0.195 chaos     

*Determined by Lyapunov exponents  

We used a defined microbial system of the ciliate Tetrahymena 

pyriformis (axenic culture from CCAP 1630/1W) as the predator and the two 

bacterial strains Pedobacter sp. (preferred and superior competitor) and 

Brevundimonas sp. (less preferred and inferior competitor) as prey bacteria 

(kindly provided by Klaus Jürgens) in the chemostats  systems (185ml). The 

local populations were coupled in second stages of chemostats with different 

dilution rates receiving equal volumes of both of the coupled chemostats as 

the inflows (Table 1 i-o). The chemostats were handled using sterile 

techniques to prevent contaminations. If contaminations occurred, 
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experiments were terminated. Population abundances (fixation with Norris-

Powel solution (Koch 1994)) were determined daily using the frame spotting 

method for the two bacteria (Maruyama et al. 2004). Tetrahymena 

abundances were enumerated by phase-contrast microscopy. 

The dynamic behaviour of coupled populations in our experiments 

depended only on the dilution rate of the second chemostat and not on the 

inflow (immigration) from local populations (Figs. 1, 2). Intrinsically driven 

population dynamics in 2nd-stage-chemostats persisted in their dynamic 

behaviour when disturbed by a continuous immigration of organisms from 

two local communities (1st stage chemostat systems) with different intrinsic 

dynamics (abundances at equilibrium, stable limit cycles or chaos). A 

coupling of two first-stage chemostats with damped oscillations (D = 0.75 d-1; 

Figs. 1, 2 e, f, k) resulted in damped oscillations when exposed to a dilution 

rate D = 0.75 d-1, which created a damped oscillation. When damped 

oscillating populations of three species were combined with chaotically 

fluctuating populations, again damped oscillations of microbes were created 

when running at D = 0.75 d-1 independent of the dramatic fluctuations of the 

inflowing abundances of microbes. However, when the same combination of 

communities was running at D = 0.5 d-1, the resulting dynamic was chaotic 

(Figs. 1 and 2 f, g, n). When two chaotic microbial communities were 

combined at chaos driving dilution rate (D = 0.5 d-1) chaos occurred. And 

also, if a chaotic fluctuating community was coupled with a community 

running at stable limit cycles, a chaotic dynamic resulted when held a dilution 

rate of D = 0.5 d-1 (Figs. 1, 2 b, d, m). When the same combination of 

microbial communities was held at a dilution rate of D = 0.45 d-1 in the 

second stage, the resulting dynamics were damped oscillations according to 

estimates of Lyapunov exponents (Table 1), but were close to the 

establishment of stable limit cycles when analysing the time delay 

reconstructions. 
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Fig. 1: Experimental results showing the population dynamics of bacteria-
ciliate two-stage-chemostat systems. Left panels show the dynamics of the first-
stage chemostats (a-h), right panels show dynamics in the coupled two-stage 
chemostats (i-o). Open circles, Pedobacter (preferred prey, superior competitor); 
filled circles, Brevundimonas (less preferred prey, inferior competitor); horizontal 
bar, Tetrahymena (predator). Vertical bars indicate the standard deviation of 
triplicate samples taken separately from one chemostat. Numbers represent the 
dilution rate D [d-1] of the chemostats. Damped oscillations are shown for a dilution 
rate of D = 0.75 d-1 (e, f, k, and o), chaotic dynamics for a dilution rate of D = 0.5 d-1 
(c, d, g, h, j, m and n), and stable limit cycles for a dilution rate of D = 0.45 d-1 (a, b,i , 
and l), respectively. 

The same was true, when two limit cycling communities were coupled under 

similar conditions. It seems that both communities in Fig. 1 i and l were still in 

transition to stable limit cycles as it was obvious from the dynamics of the two 

faster reproducing bacteria species (Fig. 2 i and l). 

All experiments indicated that the dynamic behaviours of the combined 

populations were only triggered by the demographic parameter – in this case 

the dilution rate - and react independently of the dynamic behaviour of the 

stage before. Unexpectedly, the great variations in the abundances in the 1st 

stage chemostats had only a very minor effect on dynamics in the 2nd stage 

chemostats. One explanation why empirical evidence for chaos and complex 

population dynamics is scarce might be due to the fact that intrinsically driven 

dynamics are not persistent when disturbed. Model analyses showed that the 

establishment and persistence of complex dynamics requires particular 

conditions (parameter settings) and small differences may lead to a shift in 

the dynamic behaviours (Scheffer 1991). The persistence of intrinsically 

triggered population dynamics of our three-species food web was surprisingly 

stable. Hence, the experimental driven complex dynamics were not fragile, 

as generally assumed and predicted by models. Chaotic dynamics show 

sensitivity to initial conditions. Thus, small perturbations of state variables are 

suggested to control chaos in terms of stabilising population densities 

(Shinbrot et al. 1993, Ott et al. 1990). 
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Fig. 2: Time delay reconstructions of experimental results (from day 15 on) showing 
the population abundances of Tetrahymena, Pedobacter, and Brevundimonas at 
time t plotted versus the population abundances at time t-1 (the day before) for the 
coupled chemostats (i-o in Table 1 and Fig. 1).  
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However, no stabilisation effects occurred in our experimental system, 

when chaotic systems were disturbed by fluctuating inflow concentrations 

(e.g. Figs.1, 2  l). In conclusion, intrinsically driven population dynamics may 

be more stable as commonly assumed. Stable coexistence at equilibrium, 

stable limit cycles, and chaotic dynamics may appear in habitats with a 

constant unidirectional flow of organisms and resources - such as aquatic 

organisms in streams, rivers and oceanic currents, and water drainage to 

groundwater.  
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ABSTRACT 

          The study of spatial and temporal population dynamics has a long his-

tory in ecology, going back to the beginning of the 1900´s. Both intrinsic and 

extrinsic mechanisms are involved in determining the temporal and spatial 

occurrences of populations and species. Different dynamic patterns result 

from the strength and the interplay of the two mechanisms. The fact that in-

trinsic driven population dynamics are woven together with extrinsic, often 

stochastic dynamics makes analyses of intrinsic mechanisms difficult and led 

to a controversial discussion about the relevance in nature. However, there is 

a gap between results from mathematical modelling showing the occurrence 

and meaning of intrinsically driven dynamics, and empirical proves. Recently, 

laboratory experiments under clearly defined and controlled conditions were 

shown to be a suitable tool to study intrinsic, deterministic population dynam-

ics. Deterministic chaos is one type of dynamic behaviour exhibited by a 

change in one or more intrinsic parameters beside extinction, damped oscil-

lations, and stable limit cycle. Most discussed is the relevance of chaotic be-

haviour in population dynamics, due to the fact that empirical evidence is lim-

ited to a simple one-species system. Furthermore, chaotic fluctuations are 

thought to lead to extinction of a population, because chaotic dynamics can 

obtain very small population sizes, even more vulnerable when mixed to-

gether with stochastic events. The question, if chaos occurs in the real world 

and under which circumstances chaos may be found in nature, is still open.  

    Clearly defined laboratory experiments were established to analyse in-

trinsically driven dynamics in a multi-species system. Different dynamic be-

haviours were found in chemostat experiments with a two-prey-one-predator 

system of a bacterivorous ciliate as the predator and two bacteria strains as 

the prey organisms. The different population dynamics - extinction, damped 

oscillations, stable limit cycles and chaos - were triggered by a change in the 

dilution rate of the chemostat system and verified by calculations of the cor-

responding Lyapunov exponents. Therewith, chaos was shown in an experi-

mental three-species system for the first time. The different dynamics in the 

microbial food web revealed a surprisingly short transition (4-7 days) to a dif-

ferent dynamic behaviour when the dilution rate as the control parameter was 

changed. All dynamics persisted in experiments when different local popula-

tions with different dynamics (chemostats with different dilution rates) were 

coupled. Experiments showed that the dynamic behaviours of the coupled 
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populations were only triggered by the demographic parameter – in this case 

the dilution rate -  and reacted independent of the constant inflow of organ-

isms from populations with different dynamics. 

    Here, we were able to shed more light on the question about the rele-

vance of chaos in the real world. In conclusion spatio-temporal chaos might 

be more common in nature than generally assumed. Microbial communities 

with fast reproduction rates might be favoured candidates to show chaos and 

other complex dynamics in nature. Intrinsically driven dynamics might be 

persistent when perturbated by a constant fluctuating inflow of organisms and 

might lead to the establishment of chaos in habitats with constant flows (e.g. 

aquatic organisms in rivers and oceanic currents, and water drainage to 

groundwater). The fast transition to a different dynamic behaviour after a 

change in a control parameter shows how distinct intrinsic driven processes 

might be. A reason why chaotic dynamics in nature are not observed might 

be due too the large sampling intervals in most field studies.  
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   Die Erforschung von zeitlichen und räumlichen Populationsdynamiken 

hat eine lange Geschichte und geht zurück auf das frühe 20. Jahrhundert. 

Sowohl intrinsische als auch extrinsische Mechanismen sind am zeitlichen 

und räumlichen Auftreten von Populationen und Arten beteiligt. Dabei können 

sich verschiedene dynamische Muster in Abhängigkeit von der Stärke und 

dem Wechselspiel der beiden Mechanismen ergeben. Deterministischem 

Chaos, das Aussterben einer oder mehrere Populationen, gedämpfte 

Oszillationen und stabile Grenzzyklen sind intrinsisch gesteuerte 

dynamischen Muster, die durch die Änderung intrinsischer Parameter – 

Kontrollparameter –auftreten können. Die Tatsache, dass intrinsisch 

gesteuerte Populationsdynamiken mit extrinsischen, oft zufälligen 

Dynamiken, interagieren, macht Analysen von intrinsischen Dynamiken 

schwierig, was zu einer andauernden Diskussion über die Bedeutung 

intrisich gesteuerter Dynamiken in der Natur geführt hat. Insbesondere die 

große Diskrepanz zwischen empirischen Nachweisen und Ergebnissen 

mathematischer Modelle belebt die Diskussion immer wieder. Theoretische 

Arbeiten zeigen deutlich die Bedeutung intrinsisch gesteuert Dynamiken 

während eindeutige empirische Nachweise selten sind. Die Frage nach der 

Bedeutung von Chaos für Populationen hat die größte Kontroverse 

hervorgerufen. Neben der Sensitivität gegenüber kleinsten Störungen und 

evolutionären Argumenten, ist vor allem der fehlende empirische Nachweis 

ein Argument, dass gegen das Auftreten von Chaos in natürlichen 

Gemeinschaften spricht. Denn bis jetzt war der Nachweis auf ein Ein-Arten 

System beschränkt. Somit ist die Frage, ob Chaos in der 'realen' Welt 

vorkommt und unter welchen Umständen Chaos beobachtet werden kann, 

bis heute offen.  

 

   Um intrinsisch gesteuerte Dynamiken in einem Mehr-Arten System zu 

analysieren, wurden klar definierte Laborexperimente durchgeführt. 

Verschiedenen dynamischen Verhaltensweisen konnten in 

Chemostatexperimenten mit einem bakterivoren Cilliaten als Räuber und 

zwei Bakterienarten als Beuteorganismen aufgezeigt werden. Die 

verschiedenen Populationsdynamiken - Aussterben, gedämpfte 

Oszillationen, stabile Grenzzyklen und Chaos - konnten durch Änderungen 

der Verdünnungsrate (Kontrollparameter) eingestellt und mittels der 
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Berechnung des korrespondierenden Lyapunov Exponenten verifiziert 

werden. Dies ist der erste experimentelle Nachweis für Chaos in einem Drei-

Arten System. In weiteren Versuchen konnte gezeigt werden, dass das 

mikrobielle Nahrungsgewebe erstaunlich schnell zwischen den 

verschiedenen dynamischen Verhaltensweisen wechselt (4 - 7 Tage), wenn 

die Verdünnungsrate (Kontrollparameter) geändert wird. Die Dynamiken in 

den Experimenten waren weiterhin beständig gegenüber einem konstanten 

oder fluktuierenden Zulauf von Organismen aus vorgeschalteten 

Chemostaten. Das dynamische Verhalten der Populationen war allein von 

der etablierten Verdünnungsrate im Chemostaten abhängig.  

     Die vorliegende Arbeit konnte mehr Aufschluss über die Bedeutung 

von Chaos und intrinsisch gesteuerten Dynamiken geben. Räumlich und 

zeitlich begrenztes Chaos ist wahrscheinlicher, als allgemein angenommen. 

Dafür spricht vor allem der hier erbrachte Nachweis von chaotischen 

Dynamiken in einem Mehrarten-System. Des Weiteren sind intrinsisch 

gesteuerte Dynamiken persisierend, auch wenn sie durch einen konstanten 

oder fluktuierenden Zulauf von Organismen gestört werden, woraus man 

schließen kann, das sich komplexe Dynamiken wie Chaos in konstanten 

Lebensräumen ausbilde kann (z. B. in Fliessgewässern, ozeanischen 

Strömungen oder Grundwasserabflüssen). Der schnelle Wechsel zwischen 

verschiedenen Dynamiken nach einem Wechsel des Kontrollparameters 

zeigt, wie stark intrinsische Kräfte auf ein System einwirken können. 

Mikrobielle Gemeinschaften mit ihren hohen Vermehrungsraten sind 

mögliche Kandidaten, die Chaos und andere intrinsisch gesteuerte, 

komplexe Dynamiken in der Natur zeigen können. Denn in mikrobiellen 

Gemeinschaften können sich komplexe Dynamiken – darunter eben auch 

chaotische Dynamiken – schneller etablieren, als dass sie von außen gestört 

werden. Zusätzlich können zu kleine Probenameintervalle dazu führen, dass 

Chaos, aber auch andere Dynamiken in der Natur übersehen werden. 
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