Antigen-spezifische T-Zellaktivierung durch rekombinante Immunrezeptoren: Evaluierung in einem immunkompetenten Maus-Modell

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von Markus Chmielewski aus Lötzen (Ostpreußen)

Köln, März 2007

Berichterstatter:	Prof. Dr. Hinrich Abken
	Prof. Dr. Thomas Langer
Prüfungsvorsitzender:	Prof. Dr. Jens C. Brüning

Tag der Disputation:15. Juni 2007

Abstract

T cells with tumor specificity frequently lack the physiological repertoire of effector functions. A promising approach in adoptive immunotherapy is based on the induction of a specific cellular anti-tumor reaction by grafting cytolytic T cells with immunoreceptors with MHC independent binding. Here we investigated targeting of human and murine cytotoxic T cells towards tumor cells by expression of recombinant, CEA specific immunoreceptors. The immunoreceptors are modularily composed of an extracellular single chain antibody fragment (scFv) for binding and an intracellular signaling domain both of which are linked by the IgG Fc domain. In vitro cytotoxic human and murine T cells, genetically equipped with a carcinoembryonic antigen (CEA) specific immunoreceptor, secrete IFN- γ and specifically lyse CEA⁺ tumor cells upon binding. T cells with anti-CEA immunoreceptors that harbor both CD3 cand CD28 signaling domains in its cytoplasmatic moiety secreted higher amounts of IFN-y than T cells with anti-CEA receptors that harbor the CD3ζ and OX40 domains or the CD3ζ domain only. The efficiency of CEA specific cytolysis by receptor grafted T cells is not affected by CD28 costimulation. Coinjection of CEA⁺ tumor cells and T cells grafted with CEA specific, CD28-CD3ζ and CD3ζ signaling immunoreceptor resulted in significant tumor protection in immunocompetent C57-Black/6 mice. Mice that successfully eliminated CEA⁺ tumor cells by receptor grafted T cells efficiently prevented CEA⁺ tumor growth upon tumor cell rechallenge. T cells triggered by the recombinant CD3^{\(\zeta\)} immunoreceptor were more efficiently protected against reinjected tumor cells than mice which had received T cells triggered by the CD28-CD3(immunoreceptor. Further investigations revealed that application of T cells with a CEA specific immunoreceptor results in generation of a CEA specific immunological memory. Based on our mouse studies, the immunoreceptor strategy provides a promising approach to prevent an early tumor relapse by generation of antigen specific memory, thereby substantially increasing the therapeutic spectrum of the immunoreceptor strategy.

I

<u>Abstract</u>

Inhaltstverzeichnis

Abkürzungsverzwichnis

		Seite
1	Einleitung	1
1.1 T	umorzellen entgehen der Überwachung durch das Immunsystem	1
1.2 T	umor-assoziierte Antigene	2
1.2.1	Das karzinoembryonale Antigen (CEA)	3
1.3 E	ntstehung der spezifischen Immuntherapie	4
1.4 K	onstruktion rekombinanter Immunrezeptoren	6
1.5 D	ie in vivo Evaluierung des immuntherapeutischen Ansatzes	10
1.6 Z	ielsetzung	12
2	Material und Methoden	13
2.1 Ma	aterial	13
2.1.1	Stammlösungen und Puffer	13
2.1.2	Lösungen und Puffer für die Gelelektrophorese	13
2.1.3	Größenmarker für die Gelelektrophorese	14
2.1.3	3.1 DNA Größenmarker	14
2.1.3	3.2 Protein Größenmarker	14
2.1.4	Lösungen und Puffer für den Western-Blot	14
2.1.5	Puffer und Säulen für den Auto-MACS TM	15
2.1.6	Medien für Bakterienkultur und Medienzusätze	15
2.1.7	Bakterienstämme	15
2.1.8	Zellinien	16
2.1.9	Medien für die Zellkultur und die Medienzusätze	17
2.1.10	Antikörper, Antikörpercocktails, Antiseren und Zytokine	19
2.1.	10.1 Primärantikörper	19
2.1.1	10.2 Konjugierte Sekundärantikörper	21
	2.1.10.2.1 Peroxidase gekoppelte Antikörper	21
	2.1.10.2.2 Phycoerythrin gekoppelte Antikörper	21
	2.1.10.2.3 Biotin gekoppelte Antikörper	21

2.1.10.2.4 FITC gekoppelte Antikörper	22
2.1.10.3 Auto-MACS TM Antikörpercocktails	23
2.1.10.4 Antiseren	23
2.1.11 Sonstige Proteine	23
2.1.12 Restriktionsendonukleasen und Restriktions	puffer 24
2.1.13 Oligonukleotide	25
2.1.14 Vektoren	26
2.1.15 anti-ErbB2 Einzelketten-Antikörper (scFv)	28
2.2 Methoden	29
2.2.1 Präparation von Plasmid DNA	29
2.2.1.1 Midi-Präparation von Plasmid DNA dur	ch Bindung an eine
Anionenaustauscher-Säule	29
2.2.1.2 Schnellpräparation von Plasmid DNA na	ch der Koch-(boiling)
Methode	29
2.2.1.3 Ethanolfällung	30
2.2.2 Konzentrationsbestimmung von Nukleinsäu	ren 30
2.2.2.1 Photometrische Bestimmung	30
2.2.2.2 Mengenabschätzung im Agarosegel im V	Vergleich zu Markerbanden 30
2.2.3 Präparation von RNA aus Mausmilzzellen	31
2.2.4 Gewinnung von cDNA mit Hilfe der Revers	en Transkription 32
2.2.5 Polymerasekettenreaktion	32
2.2.6 DNA Sequenzierung nach der Kettenabbruc	h-Methode 34
2.2.7 Gelelektrophorese	35
2.2.7.1 Native Agarose-Gelelektrophorese	35
2.2.7.2 Denaturierende SDS-Polyacrylamid-Gel	elektrophorese 35
2.2.8 Western-Blot zur Molekulargewichtbestimm	nung der Proteine 36
2.2.9 Isolierung von DNA Fragmenten aus Agaros	se durch Bindung an
Siliziumpartikel	36
2.2.10 Enzymatische Reaktionen mit doppelsträngi	ger DNA 37
2.2.10.1 Spaltung der doppelsträngigen DNA dur	ch Restriktions-
Endonukleasen	37
2.2.10.2 Ligation von DNA Doppelsträngen mit i	iberlappenden kohäsiven
Enden durch T4 DNA Ligase	38
2.2.11 Bakterienkultur	38

2.2.11.1 Herstellung kompetenter E.coli DH5α Bakterien	38
2.2.11.2 Transformation chemokompetenter <i>E.coli</i> DH5α Bakterien	39
2.2.11.3 Blau-weiß Selektion	39
2.2.12 Zellkultur	40
2.2.12.1 Allgemeine Kulturbedingungen	40
2.2.12.2 Splitten adhärenter Zellkulturen	40
2.2.12.3 Separation von peripheren Blutlymphozyten (PBL) mittels	
Dichtezentrifugation	41
2.2.12.4 Präparation von mononukleären Zellen aus der Mausmilz	41
2.2.12.4.1 Separation von mononukleären Mausmilzzellen mittels	
Dichtezentrifugation	41
2.2.12.4.2 Anreicherung und Selektion verschiedener muriner	
Milzzellen	42
2.2.12.4.2.1 Selektion muriner CD8 ⁺ T-Lymphozyten mittels	
magnetischer Zellsortierung (MACS [®])	42
2.2.12.4.2.2 Depletion muriner CD3 ⁺ T-Lymphozyten mittels	
magnetischer Zellsortierung (MACS [®])	43
2.2.12.5 Aktivierung muriner T-Lymphozyten	43
2.2.13 Transfektion von 293T Tumorzellen	44
2.2.14 Herstellung der Zell-Lysate	44
2.2.15 Retrovirale Transduktion humaner peripherer Blutlymphozyten (PBL)	45
2.2.16 Retrovirale Transduktion muriner T-Lymphozyten	45
2.2.17 Stimulation humaner oder muriner T-Zellen mit rekombinanten	
Immunrezeptoren durch Ko-Kultivierung mit Antigen-positiven	
Tumorzellen	46
2.2.18 Enzym-gekoppelter-Immunadsorbanztest (ELISA)	46
2.2.18.1 Nachweis löslicher Zytokine mittels der Antibody capture Assay	
Methode	47
2.2.18.2 Nachweis CEA oder human IgG spezifischer Antikörper im Serum	
immunisierter Versuchstiere mittels der Antigen capture Methode	48
2.2.18.3 Konzentrationsbestimmung von murinen IgG Proteinen im Mausseru	ım
von Versuchstieren mittels der Antigen capture Methode	49
2.2.18.4 Nachweis anti-idiotypischer Antikörper gegen die BW431/26scFv ur	ıd
SCA-431scFv Bindedomäne aus dem Serum immunisierter Tiere	

		mittels der modifizierten Antigen capture Assay Methode	50
2.2	.19	XTT-basierender Zytotoxizitätstest	50
2.2	2.2.20 Immunfluoreszenz (FACS)-Analysen 51		
2.2	2.2.21 Kryokonservierung von Zellen 57		52
2.2	.22	Mausversuche	52
	2.2.2	22.1 Gewinnung von Serumproben	52
3		Ergebnisse	53
2.1	0		
3.1	Op	timierung eines retroviralen Gentransfer-Protokolls für die Transduktion	
	mu	riner T-Lymphozyten	53
3.2	Ge	nerierung muriner T-Zell Rezeptoren erster Generation mit Spezifität für	
	CE	A und CD30	55
3.2	.1	Generierung der murinen CD3ζ cDNA	55
3.2	.2	Generierung der murinen CD28 cDNA	57
3.2	.3	Klonierung des rekombinanten anti-CD30 Immunrezeptors #866 mit	
		muriner CD3ζ Signalkette	59
3.2	.4	Klonierung des rekombinanten anti-CD30 Immunrezeptors #878 mit	
muriner CD28-CD3ζ Signalkette		61	
3.2.5 Klonierung des rekombinanten anti-CEA Immunrezeptors #881 mit			
		muriner CD3ζ Signalkette	65
3.2	.6	Klonierung des rekombinanten anti-CEA Immunrezeptors #883 mit	
		muriner CD28-CD3ζ Signalkette	67
3.2	.7	Expression der rekombinanten anti-CEA oder anti-CD30 Immunrezeptore	en
		mit einer CD3 ζ oder CD28-CD3 ζ Signaltransduktionskette in Zellen der	
		Linie 293T	70
3.2	.8	Expression der rekombinanten murinen anti-CEA oder anti-CD30	
		Immunrezeptoren in murinen CD3 ⁺ T-Lymphozyten	72
3.3	Ge	nerierung muriner T-Zell Rezeptoren zweiter Generation mit Spezifität für	r
	CE	A oder CD30	74
3.3	.1	Klonierung des rekombinanten anti-CD30 Immunrezeptors #892 mit	
		muriner CD4 Transmembran- und CD3ζ Signaldomäne	74
3.3	.2	Klonierung des rekombinanten anti-CEA Immunrezeptors #895 mit	
		muriner CD4 Transmembran- und CD3ζ Signaldomäne	76

3.3.3	Klonierung des rekombinanten anti-CD30 Immunrezeptors #897 mit	
	muriner CD4 Transmembrandomäne und CD3ζ-OX40 Signalkette	78
3.3.4	Klonierung des rekombinanten anti-CEA Immunrezeptors #898 mit	
	muriner CD4 Transmembrandomäne und CD3ζ-OX40 Signalkette	83
3.3.5	Klonierung des rekombinanten anti-CD30 Immunrezeptors #901 mit	
	muriner CD4 Transmembrandomäne und CD28-CD3ζ Signalkette	85
3.3.6	Klonierung des rekombinanten anti-CEA Immunrezeptors #907 mit	
	muriner CD4 Transmembrandomäne und CD28-CD3ζ Signalkette	89
3.3.7	Expression der rekombinanten anti-CEA (#895, #898, #907) und	
	anti-CD30 Immunrezeptoren (#892, #897, #901) auf der Oberfläche	
	von Zellen der Linie 293T	93
3.3.8	Expression der rekombinanten anti-CEA (#895, #898 und #907) und	
	anti-CD30 Immunrezeptoren (#892, #897 und #901) auf der	
	Oberfläche humaner T-Lymphozyten	95
3.3.9	Aktivierung humaner CD3 ⁺ T-Lymphozyten mit CEA oder CD30	
	spezifischen Immunrezeptoren nach Kreuzvernetzung mit	
	immobilisierten anti-idiotypischen Antikörpern	97
3.3.10	Aktivierung humaner CD3 ⁺ T-Lymphozyten mit CEA spezifischen	
	Immunrezeptoren durch Ko-Inkubation mit CEA ⁺ Tumorzellen	100
3.3.	10.1 T-Lymphozyten mit CEA spezifischen Rezeptoren werden durch	
	Ko-Inkubation mit CEA^+ Tumorzellen zur IFN- γ Sekretion aktiviert	101
3.3.	10.2 Spezifische Zytolyse von CEA ⁺ Tumorzellen durch humane CD3 ⁺	
	T-Lymphozyten mit CEA spezifischen Immunrezeptoren	102
3.3.11	Expression der rekombinanten anti-CEA oder anti-CD30	
	Immunrezeptoren auf der Oberfläche muriner T-Zellen	104
3.3.12	Rezeptor-vermittelte Aktivierung muriner CD8 ⁺ T-Lymphozyten mit	
	CEA spezifischen Immunrezeptoren	107
3.3.	12.1 Induktion der IFN-γ Sekretion	107
3.3.	12.2 Spezifische Zytolyse	109
3.4 Ge	nerierung rekombinanter anti-CEA Immunrezeptoren, die aus murinen	
Do	mänen bestehen	111
3.4.1	Generierung des murinen anti-CEA Immunrezeptors SCA-431scFv-	
	mIgG-mCD4-mCD3ζ (#977)	111
3.4.2	Generierung des murinen anti-CEA Immunrezeptors SCA-431scFv-	

mIgG-mCD4-mCD3ζ-mOX40 (#978)	114
Generierung des murinen anti-CEA Immunrezeptors SCA-431scFv-	
mIgG-mCD4-mCD28-mCD3ζ (#982)	116
Expression der rekombinanten anti-CEA Immunrezeptoren #977, #978	
und #982 auf der Oberfläche von Zellen der Linie 293T	119
Biochemische Charakterisierung der rekombinanten Immunrezeptoren	120
Expression muriner anti-CEA Immunrezeptoren (#977, #978 und #982)	
auf der Oberfläche humaner T-Lymphozyten	122
Funktionelle Charakterisierung muriner T-Zell Rezeptoren #977, #978	
und #982	123
Aktivierung humaner T-Lymphozyten mit CEA spezifischen	
Immunrezeptoren durch Ko-Kultur mit CEA ⁺ Tumorzellen	125
Spezifische Zytolyse von CEA ⁺ Tumorzellen durch humane	
T-Lymphozyten mit murinen anti-CEA Immunrezeptoren	127
Expression der murinen anti-CEA Immunrezeptoren #977, #978 und	
#982 auf der Oberfläche von murinen CD3 ⁺ T-Zellen	129
vivo Evaluierung des Immunrezeptoransatzes	131
Wachstumskinetik der murinen Kolonkarzinomzellinie C15A3	
(CEA ⁺ , CD30 ⁻) und MC-38 (CEA ⁻ , CD30 ⁻) in Versuchstieren	131
Eliminierung der CEA ⁺ C15A3 Tumorzellen in vivo durch murine	
T-Zellen mit anti-CEA Immunrezeptoren	132
2.1 In vivo Immunreaktion gegen CEA ⁺ Tumorzellen bei Ko-	
Injektion mit CEA spezifischen T-Zellen	133
2.2 In vivo Immunreaktion gegen Zellen der Kolonkarzinomzellinie	
C15A3 bei wiederholter Injektion der Tumorzellen	135
Generierung der humoralen Immunantwort gegen Zellen mit CEA	
Expression durch Vakzinierung mit CEA ⁺ Tumorzellen	137
Generierung eines immunologischen Gedächtnisses gegen CEA ⁺	
Tumorzellen nach Vakzinierung mit CEA spezifischen T-Zellen	
und CEA ⁺ Tumorzellen	141
Generierung eines immunologischen Gedächtnisses gegen CEA ⁺	
Tumorzellen nach Vakzinierung mit CEA spezifischen T-Zellen und	
\mbox{CEA}^+ Tumorzellen in C57-Bl/6 Mäusen ohne endogene $\mbox{CD4}^+$ und	
CD8 ⁺ T-Zellen	145
	mIgG-mCD4-mCD3ζ-mOX40 (#978) Generierung des murinen anti-CEA Immunrezeptors SCA-431scFv- mIgG-mCD4-mCD28-mCD3ζ (#982) Expression der rekombinanten anti-CEA Immunrezeptoren #977, #978 und #982 auf der Oberfläche von Zellen der Linie 293T Biochemische Charakterisierung der rekombinanten Immunrezeptoren Expression muriner anti-CEA Immunrezeptoren (#977, #978 und #982) auf der Oberfläche humaner T-Lymphozyten Funktionelle Charakterisierung muriner T-Zell Rezeptoren #977, #978 und #982 Aktivierung humaner T-Lymphozyten mit CEA spezifischen Immunrezeptoren durch Ko-Kultur mit CEA * Tumorzellen Spezifische Zytolyse von CEA ⁺ Tumorzellen durch humane T-Lymphozyten mit murinen anti-CEA Immunrezeptoren Expression der murinen Kolonkarzinomzellinie C15A3 (CEA ⁺ , CD30 ⁻) und MC-38 (CEA ⁻ , CD30 ⁻) in Versuchstieren Eliminierung der CEA ⁺ C15A3 Tumorzellen in vivo durch murine T-Zellen mit anti-CEA Immunrezeptoren 2.1 <i>In vivo</i> Immunreaktion gegen CEA ⁺ Tumorzellen bei Ko- Injektion mit CEA spezifischen T-Zellen 2.2 <i>In vivo</i> Immunreaktion gegen Zellen der Kolonkarzinomzellinie C15A3 bei wiederholter Injektion der Tumorzellen Generierung eines immunologischen Gedächtnisses gegen CEA ⁺ Tumorzellen nach Vakzinierung mit CEA spezifischen T-Zellen und CEA ⁺ Tumorzellen Generierung eines immunologischen Gedächtnisses gegen CEA ⁺ Tumorzellen nach Vakzinierung mit CEA spezifischen T-Zellen und CEA ⁺ Tumorzellen Generierung eines immunologischen Gedächtnisses gegen CEA ⁺ Tumorzellen nach Vakzinierung mit CEA spezifischen T-Zellen und CEA ⁺ Tumorzellen in C57-Bl/6 Mäusen ohne endogene CD4 ⁺ und CD8 ⁺ T-Zellen

3.5.6	Immunogenität der rekombinanten Immunrezeptoren	149
3.5.	6.1 Nachweis der Antikörper gegen die humanisierte BW431scFv	
	oder die murine SCA-431scFv Bindedomäne im Blutserum	
	der Versuchstiere	153
3.6 Ge	nerierung und funktionelle Charakterisierung rekombinanter Antikörper	
geg	gen das humane ErbB2	156
3.6.1	Generierung rekombinanter Proteine mit unterschiedlicher Affinität für	
	ErbB2	156
3.6.2	Expression rekombinanter ErbB2 spezifischer Antikörper in 293T Zellen	159
3.6.3	Bindung löslicher ErbB2 spezifischer Antikörper an ErbB2 ⁺ Zellen	160
3.6.4	Kompetitive Hemmung der Bindung ErbB2 spezifischer Antikörper an	
	ErbB2 ⁺ Tumorzellen durch Zugabe des löslichen ErbB2	161
3.7 Bi	ndung CEA spezifischer Antikörper an membranständiges CEA	163
3.7.1	Keine kompetitive Hemmung der Bindung CEA spezifischer	
	Antikörper an CEA ⁺ Tumorzellen durch Zugabe des löslichen CEA	164
3.8 Ein	nfluss des löslichen Kompetitors ErbB2 auf die Aktivierung der IFN-γ	
Se	kretion und der Antigen-spezifischen Zytolyse der Tumorzellen	
bei	Ko-Inkubation humaner T-Zellen mit ErbB2 spezifischen	
Im	munrezeptoren und ErbB2 ⁺ Tumorzellen	165
3.8.1	Expression der rekombinanten ErbB2 spezifischen Immunrezeptoren mit	
	einer CD3 ζ Signaltransduktionskette in humanen CD3 ⁺ T-Lymphozyten	166
3.8.2	Untersuchung der Aktivierung humaner T-Zellen mit ErbB2	
	spezifischen Immunrezeptoren durch Ko-Inkubation mit ErbB2 ⁺	
	Tumorzellen in Gegenwart des löslichen Kompetitors ErbB2	168
3.9 Ge	nerierung und funktionelle Charakterisierung des murinen CEA	
spe	ezifischen Antikörpers SCA-431scFv-hIgG	171
3.9.1	Expression und Nachweis der Funktionalität des murinen	
	CEA spezifischen Antikörpers SCA-431scFv-hIgG (#970)	176
4	Diskussion	178
4.1 Opt	timierung eines retroviralen Gentransfer-Protokolls für die Transduktion	

4.2 Generierung, Expression und funktionelle Charakterisierung

muriner T-Lymphozyten

178

rekombinanter Immunrezeptoren 17		179
4.2.1	Optimierung der Rezeptorkonstruktion – Generierung der	
	Immunrezeptoren der ersten und zweiten Generation	179
4.2.2	Funktionelle Charakterisierung rekombinanter CEA spezifischer	
	Immunrezeptoren	181
4.3 In	vivo Evaluierung des Immunrezeptoransatzes	185
4.4 Fui	nktionelle Charakterisierung löslicher Antikörper mit Spezifität für	
hu	manes CEA und ErbB2 Protein	192
4.5 Ein	fluss des löslichen ErbB2 Proteins als Kompetitor auf die	
Re	zeptor-vermittelte Aktivierung ErbB2 spezifischer T-Zellen	194
5	Zusammenfassung	196
6	Anhang	197
6.1 DI	NA Sequenzen der murinen CD3ζ und CD28 Signalkette	197
6.1.1	# 857: pCR 2.1-murine-CD28	197
6.1.2	# 861: pCR 2.1-murine-CD3ζ	198
6.2 DI	NA Sequenzen der rekombinanten Immunrezeptoren erster	
Ge	eneration mit Spezifität für CEA und CD30	198
6.2.1	# 866: pBullet-HRS3scFv-mIgG-mCD3ζ	199
6.2.2	# 878: pBullet-HRS3scFv-mIgG-mCD28-mCD3ζ	200
6.2.3	# 881: pBullet-BW431/26scFv-mIgG-mCD3ζ	201
6.2.4	# 883: pBullet-BW431/26scFv-mIgG-mCD28-mCD3ζ	202
6.3 DI	NA Sequenzen der rekombinanten Immunrezeptoren zweiter	
Ge	eneration mit Spezifität für CEA und CD30	204
6.3.1	# 892: pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ	204
6.3.2	# 895: pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ	206
6.3.3	# 897: pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40	207
6.3.4	# 898: pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40	208
6.3.5	# 901: pBullet-HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ	210
6.3.6	# 907: pBullet-BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ	211
6.4 DI	NA Sequenzen der rekombinanten Immunrezeptoren mit Spezifität für	
CH	EA, die aus murinen Domänen bestehen	212

6.4.1	# 977: pBullet-SCA-431scFv-mIgG-mCD4-mCD3ζ	213
6.4.2	# 978: pBullet-SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40	214
6.4.3	# 982: pBullet-SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ	216

7 Literaturverzeichnis

218

Abkürzungsverzeichnis

Gebräuchliche Abkürzungen, sowie physikalische SI-Basiseinheiten werden nicht gesondert aufgeführt.

ABTS	2,2'-Azino-bis(3-Ethylbenzthiazolin-6-Sulfonsäure)
AK	Antikörper
Amp	Ampicillin
APC	Antigen-präsentierende-Zelle
Amp ^R	Ampicillin-Resistenzgen
APS	Ammoniumperoxydisulfat
AS	Aminosäure
bidest.	bidestilliertes Wasser
bp	Basenpaare
BSA	Rinderserumalbumin
CDR	komplementaritätsbestimmende Region
CEA	karzinoembryonales Antigen
CTL	zytotoxische T-Lymphozyten
ddNTP	Didesoxynukleotid-Triphosphat
dNTP	Desoxynukleotid-Triphosphat
DMEM	Dulbecco's modified Eagle's Medium
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DTT	1,4 Dithiothreitol
EDTA	Ethylendiamintetraessigsäure
EGF	Epidermaler Wachstumsfaktor
ELISA	Enzymgekoppelter Immunadsorptionstest
ErbB2	epidermaler Wachstumsfaktor-Rezeptor B2 (Her-2/neu)
EtBr	Ethidiumbromid
EtOH	Ethanol
Fab	Antigen-bindendes Fragment
FACS	Fluoreszenzaktivierter Zellsortierer
Fc	Kristallisierbares Fragment
FCS	fetales Kälberserum
FITC	Fluorescein-5-isocyanat
Fv	variables Frament

HBS	HEPES-gepufferte Saline
HEPES	4-(2-Hydroxyethyl)-1-Piperazin-Ethan-Sulfonsäure
HER-2/neu	epidermaler Wachstumsfaktor-Rezeptor (ERBB2)
Ig	Immunglobulin
IL-2	Interleukin-2
IL-15	Interleukin-15
IFN-γ	Interferon-γ
ITAM	Immunrezeptor Tyrosin-abhängiges Aktivierungs-Motiv
LB	Luria-Broth-Vollmedium
MACS	magnetisch-assoziierte Zellsortierung
MCS	multiple Klonierungsstelle
МНС	Haupthistokompatibilitätskomplex
ori	Startpunkt der Replikation
PAA	Polyacrylamid
PAGE	Polyacrylamid-Gelelektrophorese
PBL	periphere Blutlymphozyten
PBS	Phosphat gepufferte Saline
PCR	Polymerase-Kettenreaktion
PE	Phycoerythrin
PHA-L	Leucoagglutinin
PI	Propidiumjodid
RT	Raumtemperatur
scFv	Einzelketten-Antikörper
SDS	Natriumdodecylsulfat
TAA	Tumor-assoziiertes-Antigen
TAE	Tris-HCl/Acetat/EDTA-Puffer
TCR	T-Zell-Rezeptor
TE	Tris-HCl/EDTA-Lösung
TEMED	N,N,N',N'Tetramethylethylamin
TIL	Tumor-infiltrierende-Lymphozyten
Tris-HCl	Tris-(hydroxymethyl)-Amonomethan-Hydrochlorid
ÜN	Über Nacht
XTT	Natrium 3'-[1-(phenylamino-carbonyl)-3,4,tetrazolium]-bis (4-
	methoxy-6-nitro) benzen Sulfonsäure Hydrat

1 Einleitung

Die adaptive Immunität basiert auf der klonalen Selektion von Lymphozyten, die spezifische Rezeptoren besitzen, die es dem Immunsystem ermöglichen, eine Vielfalt von Antigenen zu erkennen. T-Lymphozyten sind eine tragende Säule der adaptiven Immunität. Nach Bindung des T-Zell-Rezeptors (TCR) an das prozessierte Antigen im MHC Komplex differenzieren T-Lymphozyten zu Effektorzellen, die die Pathogene eliminieren. Die adaptive Immunantwort beseitigt nicht nur effektiv Krankheitserreger, sie generiert gleichzeitig durch klonale Selektion einer erhöhte Zahl ausdifferenzierter Gedächtniszellen. Das erlaubt bei wiederholter Infektion eine schnelle und wirksame Reaktion. Während das adaptive Immunsystem uns erfolgreich gegen äußere Gefahren schützt, wird die Onkogenese von körpereigenen, gesunden Zellen zu Tumorzellen vom adaptiven Immunsystem toleriert. Diese Toleranzentwicklung gegenüber neoplastisch transformierten Zellen begünstigt die Entwicklung, das Wachstum und die Metastasierung maligner Tumore (Smyth *et al.*, 2001).

1.1 Tumorzellen entgehen der Überwachung durch das Immunsystem

Vielschichtige molekulare Mechanismen verleihen Tumorzellen Schutz vor dem Zugriff durch das Immunsystem (Stuhler *et al.*, 2002). Eine Immunantwort gegen entartete Zellen wird oftmals durch folgende intrinsische Mechanismen verhindert:

- Die zentrale und periphere Toleranz führt zur Eliminierung von Tumor-spezifischen T-Lymphozyten und somit zur Abwesenheit von Tumor-spezifischen T-Zellen am Tumor.
- Tumor-assoziierte-Antigene (TAA) werden oftmals unzureichend durch Antigenpräsentierenden-Zellen (APC) präsentiert, was zur fehlenden Aktivierung, Proliferation und Persistenz von T-Zellen in der unmittelbaren Umgebung des Tumors führt, wodurch auch die pro-inflammatorischen Mechanismen ausbleiben (Speiser *et al.*, 1997).
- Ein Netzwerk von CD4⁺CD25⁺ regulatorischen T-Zellen (T_{reg}) supprimiert die Aktivität von Tumor-spezifischen T-Lymphozyten am Tumor (Nomura *et al.*, 2005).

Zugleich können Tumorzellen durch eine Reihe von extrinsischen Mechanismen der Kontrolle durch das Immunsystem entgehen. Zu diesen extrinsischen Umgehungsmechanismen werden gezählt:

- Eine fehlende Antigenexpression auf der Tumorzelloberfläche führt zu einer geminderten Immunogenität des Tumors bei. Hierfür ist die unzureichende Expression und/oder die Dysregulation der Funktion einzelner Komponenten des MHC-Klasse I Komplexes sowie weiterer Proteine, die an der Prozessierung und dem Transport von Peptiden beteiligt sind, verantwortlich (Khong *et al.*, 2002).
- Die antigenmodulierende Immunselektion führt dazu, dass Tumorzellen mit keiner oder geringer Expressionsdichte des Tumorantigens einen Überlebensvorteil vor Tumorzellen haben, die eine hohe Expressionsdichte des Tumorantigens auf der Zelloberfläche aufweisen.
- Die Sekretion von Faktoren wie beispielsweise TGF-β, IL-10 und VEGF, die eine immunsuppressive Wirkung auf zytotoxische T-Zellen in der unmittelbaren Umgebung des Tumors haben, bewirkt eine tumorinduzierte Immunsuppression (Gorelik *et al.*, 2002; Salazar-Onfray *et al.*, 1999).
- Die Expression der Todesrezeptoren CD95 oder TRAIL, die das Signal zum programmierten Zelltod weiterleiten, wird oftmals bei Tumorzellen runterreguliert, wodurch die Tumorzellen unempfindlich gegenüber Todesrezeptor-vermittelten Apoptose durch zytotoxische T-Zellen werden. Störungen der Todesrezeptorvermittelten Apoptose tragen deshalb auch zur Resistenz gegenüber zytotoxischen T-Zellen bei (Kershaw *et al.*, 2005).

1.2 Tumor-assoziierte Antigene

Körperzellen, die typische Veränderungen auf dem Weg zur Tumorentstehung hin durchgemacht haben, werden von der zellulären Immunabwehr kontrolliert. Um jedoch vom Immunsystem erkannt zu werden, müssen Tumorzellen an ihrer Zelloberfläche Moleküle tragen, die überexprimiert oder modifiziert sind und sich somit deutlich von gesunden Zellen unterscheiden. Diese Moleküle werden auch als Tumor-assoziierte-Antigene (TAA) bezeichnet. Eine Vielzahl von Tumor-assoziierten Antigenen wurde innerhalb des letzten Jahrzehnts mit Hilfe immunologischer Methoden identifiziert (Spagnoli *et al.*, 2005). Tumor-assoziierte-Antigene werden in fünf Hauptgruppen klassifiziert (Tab. 1). Damit entartete Zellen durch zytotoxische T-Zellen eliminiert werden, müssen Tumor-assoziierte-Antigene, die auf der Zelloberfläche exprimiert werden, nicht notwendigerweise fremd für das Immunsystem sein. Beispielsweise reaktivieren manche Tumorzellen die Expression von Glyko-Proteinen wie CEA, die während der Embryonalentwicklung exprimiert sind, die aber in ausdifferenzierten Zellen des Darmepithels nur eine untergeordnete Rolle spielen (Dwenger *et al.*, 1996). Manches TAA, wie beispielsweise ErbB2, wird in Folge einer Gen-Amplifikation überexprimiert, was ebenfalls einen Unterschied zu gesunden Zellen darstellt (Seliger *et al.*, 2000).

ТАА-Тур	Beschreibung	Beispiele	Literaturhinweis
Differenzierungs- Antigene	Proteine, die durch alle Tumorzellen eines Histotyps exprimiert werden	Tyrosinase, gp100, MART/Melan, PSA	(Bakker <i>et al.</i> , 1994; Kawakami <i>et al.</i> , 1994; Litvinov <i>et al.</i> , 2006; Wolfel <i>et al.</i> , 1994)
embryonale Antigene	Proteine, die physiologisch in embryonalen Zellen exprimiert werden	CEA, AFP	(Kawashima <i>et al.</i> , 1999; Tsang <i>et al.</i> , 1999)
hochexprimierte Antigene	Proteine, deren Expressionsdichte hochreguliert wurde	HER-2/neu (ERBB2), p53, PRAME	(Erkanli <i>et al.</i> , 2006; Neumann <i>et al.</i> , 1998; Rongcun <i>et al.</i> , 1999)
mutierte Antigene	veränderte Formen der physiologisch exprimierten Proteine	CDK4, MUM, CASP- 8	(Coulie <i>et al.</i> , 1995; Madruzzato <i>et al.</i> , 1997; Wolfel <i>et al.</i> , 1995)
Antigene viralen Ursprungs	virale transformierende Proteine (Bsp. Papillomviren)	E6, E7, HPV,HHV- 8,HTLV-1	(Bieganowska <i>et al.</i> , 1999; Canham <i>et al.</i> , 2004; Ressing <i>et al.</i> , 1995; Tang <i>et al.</i> , 2004)

Tabelle 1: Beispiele für humane Tumor-assoziierte-Antigene (TAA)

1.2.1 Das karzinoembryonale Antigen (CEA)

CEA (CEACAM5, CD66e) wird in Kolonkarzinomen und fetalem Darmgewebe exprimiert, nicht aber im normalen adulten Darmgewebe. CEACAM (CEA *cell adhesion molecules*) oder CD66e Protein gehört zur Familie der Adhäsionsproteine, ist in der Plasmamembran verankert und hat ein Molekulargewicht von ca. 180 kDa (Beauchemin *et al.*, 1999). Die Verankerung in der Lipiddoppelschicht wird durch Verknüpfung mit Glykosylphosphatidyl-inositol-Molekülen (GPI) am C-terminalen Ende des CEA Proteins ermöglicht (Takami *et al.*, 1988). CEA wird bei Erwachsenen als Bestandteil der Glykokalyx auf der apikalen Seite reifender und enddifferenzierter Enterozyten und Darmzotten exprimiert (Frangsmyr *et al.*, 1999). Das CEA hat eine Bedeutung beim Schutz vor pathogenen Bakterien und wird sowohl in lipidgebundener Form über die Vesikulation der Mikrovilli als auch in gelöster Form mit Hilfe der GPIabhängigen Phospholipase C in das Darmlumen freigesetzt (Matsuoka *et al.*, 1991). CEA wird in pathologisch veränderten, aber tumorfreien Geweben, beispielsweise bei Divertikulitis oder Pankreatitis, erhöht exprimiert (Fletcher, 1986). Epithelialen Tumore, insbesondere Adenokarzinome exprimieren häufig CEA (Kinugasa *et al.*, 1998). CEA erleichtert Tumorzellen, sich von Tumorzellaggregaten zu lösen und sich wieder in fremden Geweben zu etablieren und so zur Metastasierung beizutragen (Levin & Griffin, 1991). Kolonkarzinom-Patienten weisen eine CEA Serumkonzentration, die zwischen 1,0 und 4,0 μ g/ml Serum liegt (Moertel *et al.*, 1986). Dieser erhöhte Blutwert ist nicht zwingend indikativ für Tumore, da der CEA-Spiegel bei Rauchern dem eines Patienten mit metastasierendem Kolonkarzinom entsprechen kann.

1.3 Entwicklung der spezifischen Immuntherapie

Innerhalb der letzten Jahrzehnte führte die Forschung auf dem Feld der Immunologie und Onkologie zur Entwicklung neuer therapeutischer Ansätze, deren Zweck die Induktion einer spezifischen anti-Tumor Reaktion ist. Grundsätzlich unterscheidet man Antikörper-vermittelte Ansätze von immuntherapeutischen Ansätzen, die auf der Rekrutierung von Antigen-spezifischen, zytotoxischen T-Lymphozyten basieren.

Die Entwicklung der Hybridomtechnik ermöglichte die Herstellung von monoklonalen Antikörpern, die gegen ein definiertes Antigen auf der Tumorzelloberfläche zielen und damit im Unterschied zu Chemotherapeutkia und Strahlenbehandlung anvisierte Zellen spezifisch binden. Die Arbeitsgruppe Goldberg hat monoklonale Antikörper mit Spezifität zu CEA generiert und in der Radioimmundiagnostik eingesetzt (Goldberg *et al.*, 1978). Jedoch ist die therapeutische Anwendung monoklonaler Antikörper *in vivo* durch die niedrige Halbwertszeit, unzureichende Gewebspenetration, ungenügende Immunstimulation und Reaktivität mit Normalgewebe limitiert (Pavoni *et al.*, 2006).

Im Gegensatz zu passiv penetrierenden Antikörpern weisen Tumor-infiltrierende T-Lymphozyten (TILs), die aus Tumorinfiltraten von Tumoren, beispielsweise Melanom, gewonnen wurden, die Fähigkeit aktiver Tumorpenetration auf (Yazdi *et al.*, 2006). Desweiteren können Tumor-spezifische T-Lymphozyten eine anti-Tumor-Reaktion unterhalten, die sich in der langandauernden Induktion und Vermittlung einer komplexen Immunreaktion mit hoher zytolytischen Aktivität gegenüber Tumorzellen äußert (Rosenberg, 1996). Der therapeutische Einsatz Tumor-infiltrierenderLymphozyten (TIL) wurde bisher durch die aufwendige Präparation aus Tumorbiopsien und die meist unzureichende Menge an Tumorantigen-spezifischen T-Zellen limitiert. Verbesserte Kultivierungs- und Stimulationsprotokolle in vitro ermöglichten eine gesteigerte Proliferation von Tumorantigen spezifischen T-Zellen, die im Rahmen der Immuntherapie den Tumorpatienten in ausreichender Menge verabreicht werden konnten (Dudley et al., 2003). Unter Verwendung von amplifizierten TILs wurde eine klinische Studie an Patienten mit metastasierendem Myelom, die nach Chemotherapiebedingten Lymphozytendepletion mit autologen Tumor-reaktiven T-Zellen und Interleukin-2 (IL-2) behandelt wurden, durchgeführt. Nach erfolgter Behandlung mit TILs wurde in 51 % der Fälle eine Tumorrückbildung, bei ca. 10 % der Tumorpatienten eine vollständige Tumorregression registriert (Dudley et al., 2005). Bei keiner dieser Studien zur adoptiven Immuntherapie wurden jedoch TILs appliziert, die spezifisch gegen ein definiertes Peptid-Antigen gerichtet waren. Prinzipiell ist ein solcher Ansatz als spezifische adoptive Immuntherapie denkbar, obwohl viele wichtige Fragen zu Migrationsverhalten, Lebensdauer und spezifischer in vivo Aktivität bisher offen geblieben sind.

Auf der anderen Seite ist es jedoch möglich mit Hilfe DNA-Transfertechniken ausreichend viele T-Lymphozyten mit T-Zell Rezeptoren mit Spezifität zum definierten TAA zu generieren. Beispielsweise wurde die DNA für die α - und β -Kette für Tumorreaktive T-Zell-Rezeptoren (TCR) aus Tumor infiltrierenden Lymphozyten (TIL) von Patienten mit NY-ESO-1-positiven Tumoren isoliert und zur Transduktion von Vorläufer und reifen T-Zellen verwendet. Die auf diese Weise TCR-modifizierten humanen T-Lymphozyten sind in vitro gegenüber Tumorzellen mit MHC Präsentation des NY-ESO-1 Antigens zytolytisch wirksam (Zhao et al., 2005). In einem weiteren Ansatz wurden T-Zellen mit der DNA für die α- und β-Kette eines T-Zell-Rezeptors mit Spezifität zu Nukleoprotein (NP) des Influenzavirus transduziert und in einem in vivo Mausmodell untersucht. Es wurde gezeigt, dass T-Lymphozyten mit NP spezifischen T-Zell Rezeptoren gegenüber NP-positiven Tumorzellen zytolytisch wirksam sind und zur Regression der NP-positiven Tumore führen (Kessels et al., 2001). Ein Nachteil dieser Methode ist, dass das Auffinden von T-Zell Rezeptoren aus TILs mit Spezifität für ein definiertes Tumor-assoziiertes Antigen äußerst zeitintensiv ist und nicht immer gelingt (Yazdi et al., 2006)

Aus diesem Grund wurde ein transgenes Mausmodell entwickelt, das die Suche nach Tumorantigen-spezifischen T-Zell-Rezeptoren vereinfacht. Zu diesem Zweck wurden transgene Tiere, die humane MHC-Moleküle auf der Oberfläche von murinen T-Zellen exprimieren, erzeugt. Anschließend wurden die MHC-Moleküle mit Peptidfragmenten des humanen MDM2 Antigens beladen und durch MHC Komplexe in vivo präsentiert, was zur Generierung muriner T-Zellen mit TCR-Spezifität zum humanen MDM2 Antigen führte (Stanislawski et al., 2001). Auf diese Weise können T-Zell Rezeptoren mit Spezifität zu einer Vielzahl Tumor-assoziierter Antigene generiert werden, die in Peptidform mittels MHC-Moleküle präsentiert werden. Die so gewonnenen T-Zell Rezeptoren müssen allerdings vor dem therapeutischen Einsatz in Menschen humanisiert werden (Kershaw et al., 2005). Ein wesentlicher Nachteil dieser MHCabhängigen Immuntherapie ist die Beobachtung, dass oftmals die MHC-Präsentation von prozessierten Antigenfragmenten in neoplastisch transformierten Zellen dysreguliert ist und dass im Rahmen eines immuntherapeutischen Ansatzes T-Zell Rezeptoren generiert werden müssen, die für sämtliche MHC-Haplotypen spezifisch sind (Sadelain et al., 2002; Seliger, 2005). Da zahlreiche Kohlenhydrat- und Glykolipidstrukturen Tumor-assoziierte-Antigene sind, die nicht mittels MHC-Komplexe präsentiert werden, kann eine wichtige Gruppe von Tumor-assoziierten Antigenen nicht als ein mögliches Ziel verwendet werden. Um diese Defizite auszugleichen, wurden Lymphozyten mit rekombinanten Immunrezeptoren definierter und MHC-unabhängiger Spezifität für ein TAA, beispielsweise das Glykoprotein CEA, ausgestattet und deren Funktion in vitro erfolgreich nachgewiesen (Arakawa et al., 2002).

1.4 Konstruktion rekombinanter Immunrezeptoren

Die Generierung rekombinanter T-Zell Rezeptoren zielt darauf, die umfangreichen Eigenschaften von T-Lymphozyten zur Induktion und Modulation einer komplexen Immunantwort mit den spezifischen Bindungseigenschaften von monoklonalen Antikörpern zu verknüpfen. Derartige rekombinante Rezeptoren bestehen aus einer Antigen-bindenden Domäne, abgeleitet aus einem Einzelketten-Antikörper (scFv), welche mit Hilfe eines extrazellulären Gelenks mit intrazellulären Signaldomäne verbunden ist (Abb. 1). T-Zellen mit TAA-spezifischen Rezeptoren induzieren nach Bindung an das Zielantigen eine spezifische Immunantwort gegen die TAA-positive Zielzelle, die abhängig von der ausgewählten (ko)stimulatorischen Signalkette(n) zu einer komplexen T-Zell-Antwort führt. Bevorzugt wird die CD3ζ Signalkette eingesetzt,

die mit einer ko-stimulatorischen Domäne, wie beispielsweise CD28, OX40 oder 4-1BB, verknüpft wird. Nach diesem Konstruktionsschema ist eine Reihe von rekombinanten Immunrezeptoren konstruiert und deren Funktion *in vitro* nachgewiesen worden (Tab. 2).

Abbildung 1: Konstruktion eines rekombinanten Immunrezeptors. Die Antigen-bindende Domäne des Rezeptors wird von der Einzelketten-Bindedomäne (scFv) eines monoklonalen Antikörpers mit der Spezifität für ein Tumor-assoziiertes-Antigen (TAA) abgeleitet, dessen variable Regionen V_H und V_L mit Hilfe einer flexiblen, Glycin-reichen Aminosäurensequenz miteinander verbunden sind. Der konstante Fc-Anteil eines IgG₁ stellt über die Transmembrandomäne die Verbindung zu der intrazellulären CD3 ζ Signaldomäne her.

Die Generierung rekombinanter Immunrezeptoren MHC-unabhängiger mit Antigenerkennung erfordert den Einsatz von Einzelketten-Antikörpern (scFv) mit definierter Spezifität für ein TAA. Die Grundlage hierfür sind die variablen Regionen der schweren (V_H) und der leichten (V_L) Kette monoklonaler Antikörper, die mit Hilfe eines flexiblen (Gly₄Ser)₃-,,Linkers" zu einer Polypeptidkette verbunden werden (Huston et al., 1988). Die Spezifität und Affinität derartig modifizierter Bindedomänen bleibt im Vergleich zum ursprünglichen Antikörper gleich (Reinhold et al., 1999; Huston et al., 2001). Mit Hilfe der Phagen-Display-Methode wurde eine Reihe von Tumorantigen-spezifischen Antikörpern aus vorhandenen cDNA-Bibliotheken isoliert und für die Generierung TAA-spezifischer scFv-Bindedomänen bereitgestellt (Itoh et al., 2003).

Tumorart	Tumor-assoziiertes- Antigen	Signal- domäne	Literaturhinweis
B-Zell-Lymphom	CD19	CD3ζ 4-1BB-CD3ζ	(Brentjens <i>et al.</i> , 2003; Imai <i>et al.</i> , 2004)
Kolonkarzinom	CEA CA19-9	CD3ζ CD28-CD3ζ	(Haynes <i>et al.</i> , 2001 und 2002; Hombach <i>et al.</i> , 2000) (Gilham <i>et al.</i> , 2006)
Ovarialkarzinom	FBP	FcεRIγ	(Hwu <i>et al.</i> , 1995; Kershaw <i>et al.</i> , 2002)
Mammakarzinom und andere Karzinome	ERBB2	CD3ζ CD28-CD3ζ	(Chmielewski <i>et al.</i> , 2004; Teng <i>et al.</i> , 2004; Stancovski <i>et al.</i> , 1993)
Prostatakarzinom	PSMA	CD28-CD3ζ	(Maher et al., 2002)
verschiedene Karzinome	KDR	CD3ζ	(Kershaw et al., 2000)
Adenokarzinom	TAG72	CD3ζ	(McGuinness et al., 1999)
Melanom	GD3	CD3ζ	(Yun et al., 2000)
Neuroblastom	GD2	CD3ζ	(Rossig et al., 2001)
Nierenkarzinom	CA9	FcεRIγ CD4-FcεRIγ	(Wejitens <i>et al.</i> , 1996; Lamers <i>et al.</i> , 2002)

Tabelle 2: Auflistung von Immunrezeptoren mit Spezifität zu zahlreichen Tumor-assoziierten-Antigenen.

Untersuchungen haben gezeigt, dass das Einfügen einer IgG_1 -(CH2/CH3) Gelenkregion, die als Bindeglied zwischen der Einzelketten-Antikörper (scFv) und der Signaldomäne des Immunrezeptors fungiert, einerseits zur stabileren Expression des rekombinanten Proteins auf der Oberfläche von T-Lymphozyten beiträgt und andererseits die Signalgenerierung der T-Zelle beeinflusst (Moritz *et al.*, 1995; Hombach *et al.*, 1998; Hombach *et al.*, 2000) Zudem wird die IgG₁ Domäne zur Detektion rekombinanter Immunrezeptoren auf der Zelloberfläche transduzierter T-Lymphozyten verwendet, da häufig keine anti-idiotypischen Antikörper gegen die Bindedomäne des Rezeptors verfügbar sind.

Die Bindung des rekombinanten Immunrezeptors an ein Antigen führt direkt zur intrazellulären Aktivierung der T-Zelle, deren Ausmaß unmittelbar von der Signaltransduktionskette des rekombinanten Immunrezeptors abhängt (Haynes *et al.*,

2001). Bevorzugt wird die endogene CD3 ζ Signalkette des TCR-Komplexes, die über drei Immunrezeptor-Tyrosin-Aktivierungs-Motive (ITAM) verfügt, als Aktivierungs-domäne in rekombinanten Immunrezeptoren verwendet (Tab. 2). Kinasen aus der Src-Kinasen-Famile (SKF) tragen zur Phosphorylierung der Tyrosinreste an den drei CD3 ζ ITAM-Motiven bei (Banyiash *et al.*, 1988; Iwashima *et al.*, 1994). An der Phosphorylierungsreaktionen ist die Lck und die Fyn Kinase beteiligt (Weiss *et al.*, 1994; van Oers *et al.*, 1996). Zugleich wird das ZAP-70 Protein rekrutiert und in die phosphorylierte und somit katalytisch aktive Form umgewandelt (Hatada *et al.*, 1995). Das Protein ZAP-70 leitet die Phosphorylierungskaskade weiter und führt zur Rekrutierung des LAT Proteins (*Linker for activation of T-cells*), das an der Bildung des T-Zell Aktivierungskomplexes beteiligt ist (Zhang *et al.*, 1996).

Eine vollständige T-Zell Aktivierung benötigt, neben der Bindung des endogenen TCR-Komplexes an prozessiertes und MHC-abhängig präsentiertes Antigen, ein kostimulatorisches CD28 Signal. Die T-Zelle verbleibt im Zustand der Anergie, trotz Bildung des TCR-MHC Antigen-Komplexes, bei Fehlen des ko-stimulatorischen CD28 Signals. Dieser Zustand der peripheren Immuntoleranz schützt den Organismus vor naiven autoreaktiven T-Lymphozyten, die Auto-Antigene auf Gewebezellen erkennen. Durch die Interaktion zwischen dem CD28 Molekül der T-Zelle und dessen Liganden B7-1 (CD80) oder B7-2 (CD86) auf der Antigen-präsentierenden-Zelle (APC) wird diese Selbst-Toleranz durchbrochen (Bonnevier et al., 2006). Humane T-Lymphozyten mit rekombinanten Immunrezeptoren und einer CD28-CD3 (Signalkette (Abb. 2) werden nach Bindung an CEA und Kreuzvernetzung des Rezeptors zur IFN-γ und IL-2 Sekretion, sowie Zytolyse von CEA-positiven Tumorzellen aktiviert. T-Lymphozyten mit CEA spezifischen Immunrezeptoren und einer CD3ζ Signalkette werden nach Bindung an CEA-positive Tumorzellen nicht zur IL-2 Sekretion und weniger stark zur IFN-y Sekretion als T-Zellen mit gleicher Spezifität und einer kombinierten CD28-CD3 Signalkette aktiviert (Hombach et al., 2001). Untersuchungen ergaben, dass humane T-Lymphozyten mit CEA-spezifischen Immunrezeptoren und einer CD28-CD3² Signalkette gleich oder höher zur Zytolyse von CEA-positiven Tumorzellen aktiviert werden als T-Zellen mit einer CD3ζ Signalkette (Hombach et al., 2001 und 2002). Eine weitere Wirkung der CD28 Stimulation ist die Transkription von bcl-2 und bcl-x1, deren Produkte den programmierten apoptotischen Zelltod der Effektorzelle verhindern (Mor et al., 1996; Radvani et al., 1996). Für die Optimierung der Rezeptorvermittelten T-Zell Aktivierung stehen neben CD3ζ und CD28 weitere interessante

Signalmodule, beispielsweise OX40, zur Verfügung. Das ko-stimulatorische Protein OX40 (CD134) ist ein Mitglied der Tumor-Nekrose-Faktor-Rezeptor-Famile (TNFR). Eine erhöhte OX40 Expression wird nicht in naiven, jedoch in aktivierten CD4⁺ T-Lymphozyten nach TCR vermittelten Aktivierung beobachtet (Gramaglia *et al.*, 1998). Eine gezielte Stimulation des OX40 Rezeptors führt zur gesteigerten klonalen T-Zell Expansion und verstärkten Generierung von Gedächtnis-T-Zellen (Croft, 2003). Zudem führt die Bindung des OX40 Liganden an den OX40 Rezeptor einerseits zur Sekretion von IL-4, IL-5 und IL-13, andererseits wird die Generierung IL-10 sezenierender CD4⁺CD25⁺ regulatorischer T-Zellen (T_{reg}) supprimiert (Ito *et al.*, 2005).

 \triangle = Tumor-assoziiertes-Antigen (TAA)

Abbildung 2: T-Lymphozyten mit rekombinanten Immunrezeptoren werden MHC-unabhängig durch TAA-positive Tumorzellen zellulär aktiviert.

1.5 Die *in vivo* Evaluierung des immuntherapeutischen Ansatzes

Innerhalb der letzten Jahre wurde eine Reihe von Mausmodellen entwickelt, um den therapeutischen Nutzen von TAA spezifischen T-Lymphozyten zu untersuchen. So wurde gezeigt, dass murine T-Lymphozyten, ausgestattet mit dem anti-CEAscFv-FcεRIγ-Rezeptor, zur partiellen oder vollständigen Regression von etablierten CEA-positiven Tumoren, sowohl in der *scid* als auch in der syngenen C57/BL6 Maus, beitragen (Darcy *et al.*, 2000). Basierend auf den Ergebnissen dieser Studie wurden

zwei rekombinante Immunrezeptoren mit derselben Spezifität zu CEA, aber unterschiedlichen Signaltransduktionsketten miteinander verglichen (Haynes *et al.*, 2001). Dabei zeigte sich, dass T-Zellen mir rekombinanten Immunrezeptoren mit einer CD3ζ Signaldomäne in der Induktion der T-Zell Aktivierung effektiver sind als mit einer γ Signalkette, angezeigt *in vitro* durch eine erhöhte IFN- γ -Sekretion nach Bindung an CEA-positive Tumorzellen und gesteigerter Lyse von CEA-positiven Tumorzellen. Im nachfolgenden *in vivo* Experiment wurde gezeigt, dass das Wachstum des CEApositiven Tumors, sowohl in der *scid* als auch der syngenen C57/BL6 Maus, durch T-Zellen mit dem anti-CEAscFv-CD3ζ Immunrezeptor stärker gehemmt wurde als durch T-Zellen mit dem rekombinanten anti-CEAscFv- γ Immunrezeptor.

Eine abgewandelte immuntherapeutische Strategie beruht auf der Generierung von T-Zellen mit Spezifität zum *vascular endothelial growth fector receptor* (VEGFR) Antigen, das an der Angiogenese beteiligt ist (Niedermann *et al.*, 2002). Hierfür hat die Arbeitsgruppe um T.M.J. Niedermann einen anti-VEGFscFv-CD3ζ Rezeptor konstruiert und in murinen CD8⁺ T-Zellen exprimiert. Die *in vitro* Voruntersuchungen zeigten einen zytotoxischen Effekt von CD8⁺ Mauszellen mit VEGF spezifischen Rezeptor auf VEGF-positive Tumorzellen, wobei CD8⁺ T-Zellen mit VEGF spezifischen Rezeptoren in Mäusen (C57/BL6) mit etablierten, syngenen Tumoren das Tumorvolumen reduzierten. Eine gesteigertere Tumorrückbildung setzte ein, wenn VEGF spezifische CD8⁺ T-Zellen in einer Kombination mit dem konventionellen Anigogenese-Inhibitor TNP-470 systemisch den Versuchstieren mit syngenen Tumoren injiziert wurden.

Eine optimierte T-Zell Aktivierung wurde durch Generierung von ErbB2 spezifischen Rezeptoren mit einer kombinierten CD28-CD3 ζ Signalkette erreicht (Haynes *et al.*, 2002). Murine CD8⁺ T-Lymphozyten mit anti-ErbB2scFv-CD28-CD3 ζ Rezeptoren wurden nach Antigenbindung stärker zur IFN- γ Sekretion aktiviert als T-Zellen mit anti-ErbB2scFv-CD3 ζ Immunrezeptoren. Das *in vivo* Experiment an *scid* Mäusen zeigte, dass die Applikation von CD8⁺ T-Zellen mit anti-ErbB2scFv-CD28-CD3 ζ Rezeptoren in Versuchtieren mit subkutan etablierten, ErbB2-positiven Tumoren, zu einer stärkeren Hemmung des Tumorwachstums führte als die Applikation von CD8⁺ T-Zellen mit anti-ErbB2scFv-CD3 ζ Immunrezeptoren.

1.6 Zielsetzung

Die Onkogenese geht oft mit dem Verlust der MHC-abhängigen Antigenpräsentation auf der Zelloberfläche einher. Dennoch exprimieren die meisten Tumore sogenannte Tumor-assoziierte-Antigene (TAA), unter anderem Polypeptide, Carbohydrate und Glykolipide. Dieses sind jedoch Autoantigene, für die T-Zellen mit hoher Avidität und Spezifität dem Organismus fehlen. Es wird versucht, dieses Defizit durch einen neuen immuntherapeutischen Ansatz zu überwinden. Hierfür werden T-Zellen mit rekombinanten Rezeptoren ausgestattet, die aus einer extrazellulären Bindedomäne, einer CH2-CH3-,,spacer" Domäne und einer intrazellulären Signalkette, bevorzugt CD3 ζ Signalkette, bestehen. Um die Rezeptor-vermittelte T-Zell Aktivierung zu optimieren, kann ein weiteres Modul, beispielsweise die ko-aktivierende CD28 Signalkette, mit der CD3 ζ Signalkette kombiniert und im Rezeptor integriert werden.

Im Rahmen der Promotionsarbeit soll die Immunrezeptor-Strategie am Beispiel rekombinanter T-Zell Rezeptoren mit Spezifität zum tumorassoziierten Glykoprotein CEA in einem immunkompetenten Maus-Modell evaluiert werden. Dafür müssen murine Immunrezeptoren mit Spezifität zu CEA generiert, retroviral verpackt und in murinen T-Zellen exprimiert werden, um mittels Ko-Kultur mit CEA⁺ Tumorzellen hinsichtlich ihrer Fähigkeit zur zellulären T-Zell Aktivierung, angezeigt durch IFN-y Sekretion und Zytolyse CEA⁺ Tumorzellen, in vitro charakterisiert zu werden. Die in vivo Testung des immuntherapeutischen Ansatzes erfolgt im immunkompetenten Tiermodell mit C57-Bl/6 Mäusen durch Applikation von syngenen CEA-positiven Tumorzellen zusammen mit murinen T-Zellen, die mit CEA spezifischen Rezeptoren ausgestattet werden. Hierbei sollen Rezeptoren mit einer CD3 Signaleinheit mit Rezeptoren mit einer kombinierten CD28-CD3 Signalkette hinsichtlich ihrer Effizienz bei der primären Tumorprotektion verglichen werden. Weiterhin soll die Generierung eines immunologischen Gedächtnisses in einem "Rechallenge" Experiment mit syngenen CEA⁺ Tumorzellen untersucht werden. Neben der Effizienz sollen auch die Sicherheitsuntersuchungen des immuntherapeutischen Ansatzes durchgeführt werden. Durch die Untersuchung der Immunogenität des rekombinanten Rezeptors soll in der C57-Black/6 Maus analysiert werden, in wie weit das rekombinante Rezeptorprotein bei mehrmaligen Applikation der Rezeptor-exprimierenden T-Zelle immunogen ist.

Diese Untersuchungen sollen dazu beitragen, in einem immunkompetenten Tier-Modell einen klinischen Einsatz von rekombinanten T-Zell Rezeptoren in der adoptiven Immuntherapie zu evaluieren.

2 Material und Methoden

2.1 Material

2.1.1 Stammlösungen und Puffer

PBS

8,0 g/l NaCl; 0,2 g/l KCl; 1,15 g/l Na₂HPO₄; 0,2 g/l KH₂PO₄; pH 7,4

PBS/T

PBS mit 0,1% (v/v) Tween[®]-20 (Merck, Darmstadt)

RNase-Stammlösung

100 U/ml RNase A und 8000 U/ml RNase T1 werden für 15 min bei 100°C in 15 mM NaCl; 10 mM Tris-HCl, pH 7,5 inkubiert

Tris-HCl

10 mM Tris-Base, eingestellt mit 37 %-igen HCl-Säure auf pH 8,4

2.1.2 Lösungen und Puffer für die Gelelektrophorese

50 x TAE-Puffer

2M Tris-HCl; 57,1 ml/l Eisessig; 50 mM EDTA, pH 8,5

Ethidiumbromid

Ethidiumbromid wird in aqua bidest in einer Stammlösung 10 mg/ml in H₂O angesetzt.

10 x SDS-Gelelektrophorese-Puffer

30,2 g Tris-Base; 188g Glycin; 100 ml 10% Natrium-dodecylsulfat (SDS) ad 1 l in *aqua dest*

6 x Gel-Beladungspuffer für native Agarosegele

0,25 % (w/v) Bromphenolblau; 0,25 % (w/v) Xylencyanol; 40 % (w/v) Saccharose

2.1.3 Größenmarker für die Gel-Elektrophorese

Größenstandard	dsDNA Fragmentgröße (bp)	
1 kb DNA-ladder	12216, 11198, 10180, 9162, 7126, 6108, 5090, 4072, 3054, 2036, 1636, 1018, 506/517, 396, 344, 298, 220, 201, 154, 134, 75	
100 bp DNA-ladder	2072, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100	
Größenstandard	dsDNA Fragmentgröße (bp)	
1 kb DNA-ladder	12216, 11198, 10180, 9162, 7126, 6108, 5090, 4072, 3054, 2036, 1636, 1018, 506/517, 396, 344, 298, 220, 201, 154, 134, 75	
100 bp DNA-ladder	2072, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100	

2.1.3.1 DNA Größenmarker, (GibcoBRL, Eggenheim)

2.1.3.2 Protein Größenmarker

Precision Plus Protein[™]-Standards, (Bio-Rad Laboratories, Hercules, CA).

Der Standard enthält rekombinante, gefärbte Proteine, deren Molekulargewicht zwischen 10 kDa und 250 kDa liegt.

	Volumen Low DNA mass TM ladder		
Fragmentgröße (bp)	2 µl	4 μ1	8µ1
2000	100 ng	200 ng	400 ng
1200	60 ng	120 ng	240 ng
800	40 ng	80 ng	160 ng
400	20 ng	40 ng	80 ng
200	10 ng	20 ng	40 ng
100	5 ng	10 ng	20 ng

2.1.4 Lösungen und Puffer für den Western-Blot

Transfer-Puffer

2,9 g Glycin; 5,8 g Tris-Base; 0,37 g SDS; 200 ml Methanol ad 11 aqua bidest

Blocking-Puffer

50 ml 'Roti-Block' (Bio-Rad Laboratories, Richmond, CA); 5% (w/v) Milchpulver

(Glücksklee)

2.1.5 Puffer und Säulen für den Auto-MACSTM

MACS[®]-Waschpuffer

PBS (1x), pH 7,4 supplementiert mit FCS 1,0 % (v/v) und EDTA 2 mM

MACS[®]-Trennpuffer

PBS (1x), pH 7,4 supplementiert mit EDTA 2 mM

Auto-MACSTM column (Trennsäulen)

(Product code: 130-021-101, Miltenyi Biotec GmbH, Bergisch Gladbach)

2.1.6 Medien für Bakterienkultur und Medienzusätze

Alle Nährmedien wurden vor dem Gebrauch 20 min autoklaviert. Hitzelabile Zusätze (z.B. Antibiotika) wurden steril filtriert und dem Medium erst nach dem Autoklavieren zugegeben.

LB-Medium

10g/l Trypton; 5g/l Hefe-Extrakt; 10g/l NaCl

LB-Agar

11 LB-Medium; 15g Bacto-Agar

Ampicillin- und Kanamycin-Stocklösung

100 mg/ml Ampicillin (Merck, Darmstadt) in H₂O, steilfiltriert. Die eingesetzte Ampicillin-Konzentration zur Selektion Ampicillin-resistenter Bakterienstämme in LB-Medium betrug 0,1 mg/ml.

50 mg/ml Kanamycin (Merck, Darmstadt) in H_2O , steilfiltriert. Die eingesetzte Kanamycin-Konzentration zur Selektion Kanamycin-resistenter Bakterienstämme in LB-Medium betrug 50 µg/ml.

2.1.7 Bakterienstämme

E.coli DH5a

F⁻, end A1, hsd R17 (r_{K-} , m_{K-}) sup E44, thi-1, lambda⁻, recA1, gyrA96, Φ 80 d lacZ δ M15 (Woodcock *et al.*, 1989)

E.coli Top10[®] (Inivtrogen)

F, mcrA Δ (mrr-hsdRMS-mcrBC) φ 80 lacZ Δ M15 Δ lacX74 recA1 deoR araD139 Δ (ara-leu)7697 ga/U ga/K rpsL (Str^R) endA1 nupG

2.1.8 Zellinien und primäre Zellen.

293T

(Pear, 1993) Derivat von 293-Zellen, die das SV40 *large* T-Antigen exprimieren. Die Zellen werden in RPMI 1640 Medium (Sigma-Aldrich Chemie GmbH, Taufkirchen), 10 % (v/v) FCS kultiviert.

BW2064/36

Hybridomzellinie, sezerniert monoklonalen, anti-idiotypischen Antikörper des Isotyps IgG₁ gegen die Bindedomäne des CEA-spezifischen BW431/26 Antikörpers.

C15A3

J. Shively (City of Hope Graduate School, Duarte, CA, USA). Zellen der Kolonkarzinomzellinie MC-38 wurden stabil mit der DNA für CEA transfiziert. Die Arbeitsgruppe um J.Shivley hat hierfür einen Expressionsvektor mit Neomycin-Resistenz verwendet. Um die CEA Expression zu halten, werden C15A3 Zellen in RPMI 1640 Medium 10 % (v/v) FCS und G418 0,2 mg/ml RPMI kultiviert.

Colo320 (ATCC CCL-220)

CEA-negative kolorektale Adenokarzinom-Zelllinie. Die Zellen werden in RPMI 1640 Medium (Sigma-Aldrich Chemie GmbH, Taufkirchen), 10 % (v/v) FCS kultiviert.

LS174T (ATCC CCL 253)

CC49- und CEA-exprimiernde humane Kolonkarzinomzellinie. Die Zellen werden in RPMI 1640 Medium mit 10 % (v/v) FCS kultiviert.

MC-38

Murine Kolonkarzinomzellinie, J. Schlom (*National Cancer Institute* NIH, Bethesda, MD, USA). Die Zellen werden in RPMI 1640 Medium, 10 % (v/v) FCS kultiviert.

SK-OV-3

(Lamendola et al., 2003)

ERBB2-exprimierende humane Overialkarzinom-Zellinie. Die Zellen werden in RPMI 1640 Medium, 10 % (v/v) FCS kultiviert.

Humane periphere Blutlymphozyten (PBL)

Die humanen T-Lymphozyten wurden aus "buffy coats" gewonnen und stammen von gesunden, zufällig ausgesuchten Spendern der Blutbank der Universität zu Köln. Die isolierten Lymphozyten werden in RPMI 1640 Medium, 10 % (v/v) FCS, IL-2 (200 U/ml) kultiviert.

Mausmilz Lymphozyten

Lymphozyten wurden aus Mausmilzen der C57-black/6 Maus präpariert. Die Spendertiere wurden von der Firma Charles River geliefert. Die murinen Lymphozyten werden in RPMI 1640 Medium (dutch modification), 10% (v/v) FCS, IL-2 (200 U/ml), IL-15 (5 ng/ml) und 2% (v/v) L-Glutamat kultiviert.

2.1.9 Medien für die Zellkultur und Medienzusätze.

RPMI 1640 Medium mit GlutaMAXTM für Kultivierung von Zellinien und primären humanen Zellen

(*Product Code 61870-010*, GibcoBRL, Eggenheim). Formulierung mit Gluta MAX^{TM} und:

Kalziumnitrat (Ca(NO3)2 4H2O)	0,424 mM
Magnesiumsulfat (MgSO4-7H2O)	0,407 mM
Kaliumchlorid (KCI)	5,33 mM
Natriumbikarbonat (NaHCO3)	23,81 mM
Natriumchlorid (NaCl)	103,45 mM
Dinatriumhydrogenphosphat (Na2HPO4) Anhydrat	5,63 mM

RPMI 1640 Medium (Dutch modification) für Kultivierung von primären Mauszellen

(*Product Code 22409-015*, GibcoBRL, Eggenheim). Formulierung ohne L-Glutamat und:

Kalziumnitrat (Ca(NO3)2 4H2O)	0,424 mM
Magnesiumsulfat (MgSO4-7H2O)	0,407 mM
Kaliumchlorid (KCI)	5,33 mM
Natriumbikarbonat (NaHCO3)	11,90 mM
Natriumchlorid (NaCl)	110,34 mM
Dinatriumhydrogenphosphat (Na2HPO4) Anhydrat	5,63 mM
HEPES	0,0133 mM

Fetales Kälberserum (FCS)

(Biochrom KG, Berlin)

L-Glutamin

(Product Code 25030-081, GibcoBRL, Eggenheim)

Natrium-Pyruvat

(Product Code 11360-039, GibcoBRL)

Nicht-essentielle Aminosäuren

(Product Code 11140-035, GibcoBRL)

β-Mercaptoethanol

(Product Code 21985-023, GibcoBRL)

PHA-L

(Product Code L4144, Sigma-Aldrich, St.Louis, USA)

Ciprofloxacin

(*Ciprobay*, Bayer AG, Leverkusen) Eingesetzte Konzentration: 4 µg/ml

Penicillin-Streptomycin

(GibcoBRL, Eggenheim)

Eingesetzte Konzentration: 50 IE/ml Penicillin, 50 µg/ml Streptomycin

2.1.10 Antikörper, Antikörpercocktails, Antiseren und Zytokine

2.1.10.1 Primärantikörper

Ziege-anti-human IgG₁ (Southern Biotechnology, Birmingham, Alabama, USA), polyklonales Serum

Ziege-anti-Maus IgG₁ (Southern Biotechnology) polyklonales Serum

Human IgG Isotyp-Kontrolle (Southern Biotechnology), polyklonales Serum

Maus IgG Isotyp-Kontrolle

(Southern Biotechnology), polyklonales Serum

Maus anti-human Interferon-y Antikörper

(PharMingen, Hamburg), Klon-Nr.: NB42 Muriner monoklonaler Antikörper gegen humanes Interferon-γ.

Kaninchen anti-Maus/Ratte Interferon-y Antikörper

(Biosource, Camarillo, USA) Polyklonaler Antikörper gegen murines Interferon-γ.

Maus anti-human Interleukin-2 Antikörper

(PharMingen), Klon-Nr.: 5344-111 Muriner monoklonaler Antikörper gegen humanes Interleukin-2.

Kaninchen anti-human CEA Antikörper (Abcam, Cambridge, GB)

Polyklonaler Antikörper gegen CEA.

SCA431 monoklonaler Antikörper

(Behringer Werke, Hr. Dr. K. Bosslet, Marburg) Muriner monoklonaler Antikörper gegen CEA.

BW431/26 monoklonaler Antikörper

(Behringer Werke, Hr. Dr. K. Bosslet, Marburg) Humanisierter monoklonaler Antikörper gegen CEA, abgeleitet vom SCA431 mAk.

BW2064/36 monoklonaler Antikörper

(Behringer Werke, Hr. Dr. K. Bosslet, Marburg) Muriner monoklonaler anti-idiotypischer Antikörper mit Spezifität für SCA431 mAk und BW431/26 mAk.

H10 monoklonaler Antikörper

(Institut für für Biologie, RWTH Aachen, Dr. R. Finnern) Muriner monoklonaler Antikörper gegen CEA.

C6B1D2, C6ML3.9, C6.5, C6MH-B1, C6.5G98A (jeweils ein monoklonaler

Antikörper)

(Schier *et al.*, 1996; G. P. Adams, Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, USA) Monoklonale Antikörper mit unterschiedlicher Affinität zu ErbB2 (Her-2).

OKT3 monoklonaler Antikörper

(ATCC, Rockville, USA) Muriner monoklonaler Antikörper gegen humanes CD3.

Hamster anti-Maus CD3e monoklonaler Antikörper

(BD, Franklin Lackes, New Jersy, USA), Klon-Nr.: 145-2C11 Monoklonaler Antikörper gegen murine ε-Domäne des CD3-Komplexes.

YTS191.1 monoklonaler Antikörper und YTA 3.1 monoklonaler Antikörper (Qin *et al.*, 1987)

Monoklonaler Ratte Antikörper gegen murines CD4.

YTS169.4 monoklonaler Antikörper (Cobbold *et al.*, 1984) Monoklonaler Ratte Antikörper gegen murines CD8.

Hamster anti-Maus CD28 monoklonaler Antikörper

(BD, Franklin Lakes, New Jersey, USA), Klon-Nr.: 37.51 Monoklonaler Antikörper gegen murines CD28-Antigen.

2.1.10.2 Konjugierte Sekundärantikörper

2.1.10.2.1 Peroxidase gekoppelte Antikörper

HRP gekoppelter Ratte anti-Maus IgG1 Antikörper

(BD, Franklin Lakes, New Jersey, USA), Klon-Nr.: X56 Monoklaner Antikörper gegen murine IgG₁-Domäne

2.1.10.2.2 Phycoerythrin gekoppelte Antikörper

PE gekoppelter Maus anti-human CD3 Antikörper

(DAKO, Glostrup, Dänemark), polyklonales Serum

R-PE gekoppelter Ziege anti-Maus IgG

(Southern Biotechnology, Birmingham, Alabama, USA), polyklonales Serum

R-PE gekoppelter Ziege anti-human IgG

(Southern Biotechnology), polyklonales Serum

2.1.10.2.3 FITC gekoppelte Antikörper

FITC gekoppelter Ziege F(ab')₂ anti-human IgG Antikörper (Southern Biotechnology, Birmingham, Alabama, USA), polyklonales Serum

FITC gekoppelter Ziege F(ab')2 anti-Maus IgG Antikörper

(Southern Biotechnology), polyklonales Serum

FITC gekoppelter Kaninchen anti-human CD3 Antikörper (DAKO, Glostrup, Dänemark), Klon-Nr.: UCHT1 Monoklonaler Antikörper gegen humanes CD3 Antigen.

FITC gekoppelter Ratte anti-Maus CD3 Antikörper (Serotec, Oxford, GB), Klon-Nr.: KT3 Monoklonaler Antikörper gegen murines CD3 Antigen

FITC gekoppelter Ratte anti-Maus CD4/L3T4 Antikörper (Southern Biotechnology), Klon-Nr.: GK 1.5 Monoklonaler Antikörper gegen murines CD4 Antigen

FITC gekoppelter Ratte anti-Maus CD8α/Lyt-2 Antikörper (Southern Biotechnology), Klon-Nr.: 53-6.7 Monoklonaler Antikörper gegen murines CD8 Antigen

2.1.10.2.4 Biotin gekoppelte Antikörper

Biotin gekoppelter Ziege F(ab')₂ anti-human IgG Antikörper (Southern Biotechnology), Klon-Nr.: N/A

Biotin gekoppelter Ziege anti-Maus-IgG Antikörper (Southern Biotechnology), polyklonales Serum

Biotin gekoppelter Maus anti-human Interferon-γ **Antikörper** (PharMingen, Hamburg), monoklonaler Antikörper, Klon-Nr.: 4S.B3.

Biotin konjugierter Maus anti-Ratte/Maus Interferon-γ **Antikörper** (Biosource, Camarillo, California, USA), monoklonaler Antikörper, Klon-Nr.: DB-1.

Biotin gekoppelter Kaninchen anti-human IL-2 Antikörper (Biosource), monoklonaler Antikörper, Klon-Nr.: B33-2.
2.1.10.3 Auto-MACSTM Antikörpercocktails

Negative Anreicherung von murinen CD3⁺ T-Zellen

(Pan T cell isolation kit, *Product code*: 130-090-861, Miltenyi Biotec GmbH, Bergisch Gladbach)

Positive Anreicherung von murinen CD8⁺ T-Zellen

(CD8 MicroBeads, Product code: 130-049-401, Miltenyi Biotec GmbH)

2.1.10.4 Antiseren

Mausserum (DAKO, Glostrup, Dänemark)

Rattenserum

(DAKO)

2.1.11 Sonstige Proteine

Trypsin-EDTA-Lösung (10x)

(Sigma, Deisenhofen)

rekombinantes humanes IFN-γ

(PharMingen, Hamburg), Kat.-Bez.: R-IFNG-50 Molekulargewicht: 15,5 kDa; produziert in *E.coli*.

rekombinantes Maus IFN-γ

(BD, Franklin Lakes, New Jersy, USA), Kat.-Nr.: 554587

rekombinantes humanes IL-2

(Chiron GmbH, Ratingen) Molekulargewicht: 15,3 kDa; produziert in *E.coli*.

rekombinantes humanes IL-15

(ImmunoTools GmbH, Friesoythe)

Molekulargewicht: 13,0 kDa; produziert in E.coli.

rekombinantes humanes ErbB2/Fc

(R&D Systems, Minneapolis, USA)

Humanes ErbB2 fusioniert mit humanem IgG1 MW: 131 kDa; produziert in E.coli

rekombinantes humanes CEA

(Abcam, Cambridge, GB)

Molekulargewicht: 120 kDa; produziert in E.coli

2.1.12 Restriktionsendonukleasen und Restriktionspuffer

Name des Enzyms (Roche Diagnostics)	Schnittsequenz	Inkubationspuffer
BamHI	5 '-G↓GATCC- 3 '	A oder M
BglII	5' -A↓GATCT -3'	A, M oder H
BstXI	5' -CCA(N) ₅ ↓NTGG -3'	B oder H
EcoRI	5 '-G↓AATTC- 3 '	A, B oder H
NcoI	5' -C↓CATGG -3'	Н
Sall	5 '-G↓TCGAC -3 '	Н
XbaI	5 '-T↓CTAGA- 3 '	A oder H
XhoI	5 '-C↓TCGAG- 3 '	Н

Puffer A: 33mM Tris-Acetat; 10 mM Mg-Acetat; 66 mM K-Acetat; 0,5 mM DTT; pH 7,9

Puffer B: 10 mM Tris HCl, 5 mM MgCl₂; 100 mM NaCl; 1mM β-Mercaptoethanol, pH 8,0

Puffer H: 10 mM MgCl₂, 100 mM NaCl; 1mM DTE; pH 7,5

Puffer M: 10 mM Tris-HCL; 10mM MgCl₂; 100 mM NaCl; 1mM DTE; pH 7,5

Das Temperaturoptimum für die Restriktionsreaktion liegt bei den meisten Enzymen bei 37° C. Die Restriktionsreaktion mit dem Enzym *BstXI* erfordert 45° C.

2.1.13 Oligonukleotide

(MWG-Biotech AG, Ebersberg)

Nr	Name	Sacuanz	Verwendur	ngszweck
191.	Name	Sequenz	Sequenz.	Klon.
# 51	pBullet 5'	5'-[TTA CAC AGT CCT GCT GAC CA]-3'		
# 75	pRSV-sense	5'-[TTG GTG TGC ACC TCC AAG CTC CTC]- 3'	\checkmark	
# 76	hIgG-Seq-AS	5'-[CAT TGC TCT CCC ACT CCA CGG]-3'		
# 136	pBullet 3'	5' -[CGT ACT ATA GGC TTC AGC TGG TGA TAT TG] - 3'		
# 221	mCD28-S	5' -[AGT ACA CTC CAC TCT CCT GGT AAC AAG ATT TTG GTA AAG CAG TCG CCC]- 3'		\checkmark
# 222	mCD28-S-TM-IC	5' -[AGT ACA CTC CAC TCT CCT GGT TTT TGG GCA CTG GTC GTG GTT GCT GGA]- 3'		\checkmark
# 223	mCD28-AS	5' -[AGC TCT CGA GTA CTC GTC GAC TCA GGG GCG GTA CGC TGC AAA GTC TCT]- 3'		\checkmark
# 224	mCD3zeta-S	5' -[ATA TCC ACT CTC CTG GTA TCC CAC CCA GAT CCC AAA CTC TGC TAC TTG CTA GAT GGA]- 3'		\checkmark
# 243	mCD3-zeta-AS	5' -[AGC TCT CGA GTA CTC GTC GAC TTA GCG AGG GGC CAG GGT CTG CAT]- 3'		\checkmark
# 246	mOx40-AS	5' -[AGC TCT CGA GTA CTC GTC GAC TCA GAT CTT GGC CAG AGT AAA GTG]- 3'		\checkmark
# 247	mCD28/mCD3zeta -S	5' -[TTT GCA GCG TAC CGC CCC CTG AGA GCA AAA TTC AGC AGG]- 3'		\checkmark
# 248	mCD3zeta/mCD28 -AS	5' -[CCT GCT GAA TTT TGC TCT CAG GGG GCG GTA CGC TGC AAA]- 3'		\checkmark
# 251	mIgG1-S	5' -[AAC TGG GAG GCA GGA AAT ACT TTC ACC]- 3'	\checkmark	
# 255	mCD4TM- mCD3zeta-S	5' -[CTC TCC CAC TCT CCT GGT ATT GTG TTC CTG GCT TGC GTG CTG GGT GGC TCC TTC GGC TTT CTG GGT TTC CTT GGG CTC TGC ATC CTC TGC TGT GTC CTG AGA GCA AAA TTC AGC AGG AGT]- 3'		\checkmark
# 263	mCD4tm- mCD28ic-S	5' -[CTC TCC CAC TCT CCT GGT ATT GTG TTC CTG GCT TGC GTG CTG GGT GGC TCC TTC GGC TTT CTG GGT TTC CTT GGG CTC TGC ATC CTC TGC TGT GTC AAT AGT AGA AGG AAC AGA CTC CTT]- 3'		\checkmark
# 322	L-kappa-SCA431- NcoI	5' -[CGT ACC ATG GAT TTT CAG GTG CAG ATT TTC AGC TTC CTG CTA ATC AGT GCC TCA GTC ATA ATG TCT AGA GGT GTC CAC TCC CAG GTC CAA CTG CAG GAG]- 3'		\checkmark
# 323	SCA431-VH-AS	5' -[GCC ACC CGA CCC GCC ACC GCC CGA TCC ACC ACC TCC TGA GGA GAC GGT GAC CGT GGT CCC TGC]- 3'		\checkmark
# 324	SCA431-VK-S	5' -[TCG GGC GGT GGC GGG TCG GGT GGC GGC GGA TCT GAC ATC CAG CTG ACC CAG TCT CCA GCA ATC]- 3'		\checkmark
# 325	SCA431-VK- BglII-AS	5' -[CTA GAC CAG ATC TAC TTT GAT CTC CAG CTT GGT CCC CCC TCC GAA]- 3'		\checkmark
# 332	mCD3zeta/mOX40	5' -[ATG CAG ACC CTG GCC CCT CGC CGG AAG GCT TGG AGA TTG CCT AAC ACT]- 3'		\checkmark
# 333	mOX40/mCD3zeta	5' -[AGT GTT AGG CAA TCT CCA AGC CTT CCG GCG AGG GGC CAG GGT CTG CAT]- 3'		\checkmark

2.1.14 Vektoren

Für die Konstruktion retroviraler Expressionsvektoren wurden Plasmide verwendet, die sich vom retroviralen Expressionsvektor pBullet ableiten. Sie verfügen neben den regulatorischen Elementen (SV40 ori) und dem Resistenzgen (amp^r) über eine Expressionskassette, die unter der Kontrolle der CMV-Promotorsequenz steht. Der Vektor pBullet leitet sich von pStitch ab, dem zwei *NcoI*- und eine *XhoI*-Restriktionsschnittstelle deletiert wurden (*Weijtens et al.*, 1998a).

Für die Generierung des löslichen anti-CEA-Antikörpers SCA431scFv-hIgG (#970) und der anti-ErbB2-Antikörper Proteine (#788), (#789), (#790), (#791) und (#792) wurde das DNA-Plasmid pRSV-anti-CEA-hFc (# 443) verwendet, das sich vom Expressions-vektor pRSV ableitet. Es verfügt neben der DNA für die Resistenzgene amp^r und neo^r über eine Expressionskassette, die unter der Kontrolle der RSV-LTR Promotorsequenz steht (Eshhar *et al.*, 1993). Die vorhandene Expressionskassette wurde durch Restriktion mit den Enzymen *XbaI* und *XhoI* deletiert und durch eine neue Expressionskassette ersetzt.

pCR[®]2.1 Vektor

(Invitrogen, Karlsruhe; K4520-01)

pCOLT-GalV (#392)

R.L. Bolhuis, Rotterdam, NL (Weijtens et al., 1998a)

Dieses retrovirales Helferplasmid enthält die Expressionskassette für das GALV *Env* Protein.

pHIT 60 (#393)

R.L. Bolhuis, Rotterdam, NL (Weijtens *et al.*, 1998a)Dieses retrovirale Helferplasmid enthält die Expressionskassette für MLV *Gag* und MLV *Pol* Protein.

pRSV-anti-CEA-hFc (#443)

(Eshhar et al., 1993)

Dieses Plasmid enthält die Expressionskassette für das CEA spezifische Fusionsprotein, das sich aus der BW431/26 Bindedomäne und dem humanen IgG zusammensetzt .

pVpack-10A1 (#596), pVpack-VSV-G (#597), pVpack-Eco (#598), pVpack-Ampho (#599) und pVpack-GP (#600)

(Stratagene, La Jolla, USA)

Das Plasmid #596 enthält die Expressionskassette für das MMLV-basierte 10A1 *Env* Protein, das Plasmid #598 die Expressionskassette für das MMLV-basierte Eco *Env* Protein und das Plasmid #599 die Expressionskassette das MMLV-basierte Ampho *Env* Protein. Das Plasmid #597 kodiert für VSV-basierte VSV-G *Env* Protein. Plasmid #600 enthält eine Expressionskassette, die für die MMLV-basierten *Gag* und *Pol* Proteine kodiert.

pBullet-Lκ-BW431/26scFv-hFc-CD28-CD3ζ (#607)

(Hombach *et al.*, 2001)

Das Plasmid #607 enthält die Expressionskassette für den CEA spezifischen Rezeptor BW431/26-hFc-CD28-CD3ζ.

pRSV-H10scFv-hFc (#648)

(Journal of Immunology, in press)

Das Plasmid #648 enthält die Expressionskassette für das CEA spezifische Fusionsprotein H10scFv-hFc, das sich aus der CEA spezifischen Bindedomäne H10scFv und der humanen IgG-Domäne zusammensetzt.

pBullet-Lκ-HRS3scFv-hFc-γ (#664)

(nicht publiziert)

Das Plasmid enthält die Expressionskassette für den rekombinanten Immunrezeptor HRS3scFv-mCH2-CH3-gamma, wobei eine murine IgG Domäne als Linker zwischen der CD30 spezifischen Bindedomäne und der γ Signalkette fungiert.

pBullet-Lκ-BW431/26scFv-hFc-CD3ζ (#700)

(nicht publiziert)

Das Plasmid enthält die Expressionskassette für den CEA spezifischen Immunrezeptor BW431/26scFv-hFc-CD3ζ.

pBullet-C6-B1.D2scFv-hIgG-CD3ζ (#710), pBullet-C6-B1.D2scFv-hIgG-CD28-CD3ζ (#714), pBullet-C6-ML3-9scFv-hIgG-CD3ζ (#744), p-Bullet-C6.5scFv-hIgG- CD28-CD3ζ (#745), p-Bullet-C6.5scFv-hIgG-CD3ζ (#746), pBullet-C6MH3-B1scFv-hIgG-CD28-CD3ζ (#747), pBullet-C6MH3-B1scFv-hIgG-CD3ζ (#748), pBullet-C6.5G98AscFv-hIgG-CD28-CD3ζ (#749), pBullet-C6.5G98AscFv-hIgG-CD3ζ (# 750) und pBullet-C6-ML3-9scFv-hIgG-CD28-CD3ζ (# 753)

(Chmielewski et al., 2004)

Plasmide mit der Nummer # 710, # 744, # 746, # 748 und # 750 enthalten jeweils eine Expressionskassette für einen ErbB2 spezifischen Immunrezeptor mit einer CD3ζ Signalkette. Plasmide mit der Nummer # 714, # 745, # 747, # 749 und # 753 enthalten jeweils eine Expressionskassette für einen ErbB2 spezifischen Immunrezeptor mit einer kombinierten CD28-CD3ζ Signalkette.

pCR-Blunt/mOx40 (#832)

(La Jolla, Institute for Allergy and Immunology, San Diego, USA) Dieser PCR-Vektor enthält die Sequenz für die murine OX40 Signalkette.

pBullet-HRS3svFv-mCH2/3-mCD28-mCD3-mOX40 (#869)

(nicht publiziert)

Das Plasmid enthält die Expressionskassette für den CD30 spezifischen Rezeptor mit dem dreifachen murinen CD28-CD3ζ-OX40 Modul zur Signalübertragung in der T-Zelle.

2.1.15 anti-ErbB2 Einzelketten-Antikörper (scFv)

Greg Adams, Fox Chase Cancer Center (Adams et al., 2001)

Mutationen in der CDR3 Region der schweren (V_H) und der leichten (V_L) Kette der anti-ErbB2 Einzelketten-Antikörper (scFv) führen zu einer veränderten Bindungskinetik (Tab.3).

Nr.	Klon	V _L CDR3	V _H CDR3	k _d	k _{on}	k _{off}
# 710	C6-B1D2	AAWDDSLSGWV	HDVGYCSSSNCAKWPEYFQH	1,6x10 ⁻¹⁰ M	4,0x10 ⁵ s ⁻¹ M ⁻¹	6,3x10 ⁻³ s ⁻¹
# 744	C6ML3-9	A S WD YT LSGWV	HDVGYCSSSNCAKWPEYFQH	1,0x10 ⁻⁹ M	7,6x10 ⁵ s ⁻¹ M ⁻¹	0,76x10 ⁻³ s ⁻¹
# 746	C6.5	AAWDDSLSGWV	HDV A YCSSSNCAKWPEYFQH	3,17x10 ⁻⁷ M	4,1x10 ⁵ s ⁻¹ M ⁻¹	1,38x10 ⁻¹ s ⁻¹
# 748	C6MH3-B1	AAWDDSLSGWV	HDVGYC TDRT CAKWPEYFQH	1,2x10 ⁻¹⁰ M	5,0x10 ⁵ s ⁻¹ M ⁻¹	0,60x10 ⁻⁴ s ⁻¹
# 750	C6.5G98A	AAWDDSLSGWV	HDVGYCSSSNCAKWPE WLGV	1,5x10 ⁻¹¹ M	6,9x10 ⁵ s ⁻¹ M ⁻¹	0,1x10 ⁻⁴ s ⁻¹

Tabelle 3: Sequenz, Affinität und Bindungskinetik der anti-ERBB2 scFv. Durch gezielte Mutationen in der CDR3 Region der schweren (V_H) und leichten Kette (V_L) des monoklonalen Antikörpers C6.5 wurden scFv mit gleicher Spezifität, aber unterschiedlich hoher Affinität für ErbB2 generiert (Schier *et al.*, 1996).

2.2 Methoden

2.2.1 Präparation von Plasmid DNA

2.2.1.1 Midi-Präparation von Plasmid DNA durch Bindung an eine Anionenaustauscher-Säule

(QiaFilter Midi Kit, Qiagen, Hilden)

Eine 30 ml Bakterien-Übernachtkultur wurde 15 Minuten bei 1100 x g sedimentiert und in 8 ml Puffer P1 (50 mM Tris-HCl, pH 8; 10 mM EDTA; 100 µg/ml RNase A) resuspendiert. Die Lyse der Bakterien erfolgte durch Zugabe von 8 ml Puffer P2 (200mM NaOH; 1 % SDS). Nach 5 minütiger Inkubation bei RT wurde die Lösung mit 8 ml eiskaltem Puffer P3 (3 M Kaliumacetat, pH 5,5) neutralisiert. Das Lysat wurde für 10 Minuten bei RT inkubiert. Die Anionenaustauscher-Säule (Qiagen-tip 500) wurde mit 10 Puffer QBT (750 mM NaCl; 50 mM MOPS, pH 7; 15 % (v/v) EtOH; 0,15 % (v/v) Triti-X-100) äquilibriert. Das Zelllysat wurde durch Filtration (Qiafilter) von Bakterientrümmern, Proteinen und genomischer DNA befreit und dann auf die Anionenaustauschersäule gegeben. Die beladene Säule wurde zweimal mit je 30 ml Puffer QC (1 M NaCl; 50 mM MOPS, pH 7; 15 % (v/v) Isopropanol) gewaschen. Die Elution der Plasmid DNA erfolgte mit 15 ml Puffer QF (1,25 M NaCl; 50 mM Tris-HCl, pH 8,5; 15 % (v/v) Isopropanol). Danach wurde die Plasmid DNA durch Zugabe von 10,5 ml Isopropanol und Zentrifugation für 30 Minuten bei 15.000 x g, 4 °C präzipiert, mit 2,5 ml 70%-igem (v/v) EtOH gewaschen und erneut wie vorher zentrifugiert. Die sedimentierte Plasmid DNA wurde bei RT getrocknet und schließlich in 200 µl 10 mM Tris-HCl, pH 8,4 resuspendiert. Aufbewahrt wurde die DNA entweder kurzfristig bei 4°C oder längerfristig bei -20°C.

2.2.1.2 Schnellpräparation von Plasmid DNA nach der Koch-(boiling) Methode

Eine 1,5 ml Bakterien-Übernachtkultur wurde 3 Minuten bei 1100 x g sedimentiert. Der Überstand wurde verworfen und das Zell-Sediment in 400 μ l STET-Lösung (10mM Tris-HCl, pH 8; 1 mM EDTA; 5 % (v/v) Triton-X-100; 0,1 M NaCl) resuspendiert. Die Suspension wurde mit 25 μ l Lysozym-Lösung (10 mg/ml) durchmischt, für 30 Sekunden gekocht und anschließend für 10 Minuten bei 13.000 x g bei RT zentrifugiert. Die Plasmid DNA im Überstand wurde durch Zugabe von 40 μ l 3 M NaAc, pH 5,2 und 420 μ l Isopropanol präzipiert und durch Zentrifugation für 15 Minuten bei 13.000 x g bei RT sedimentiert. Nach zweimaligem Waschen mit je 1 ml 70%-igem EtOH wurde die DNA an der Luft getrocknet und in 20 μ l 10 mM Tris-HCl, pH 8,4 resuspendiert. Noch verbliebene RNA wurde durch Zugabe von 10 % (v/v) RNase degradiert.

2.2.1.3 Ethanolfällung

Zur Fällung wurde die DNA-Lösung mit

0,1 Vol. 3M Na⁺-Acetat, pH 5,2

2,5 Vol. Ethanolabs

versetzt, gründlich gemischt und 30 min bei –80 °C gefällt. Die DNA wurde durch 30minütige Zentrifugation bei 4 °C und 10.000 x g sedimentiert, mit 70 %-igem EtOH gewaschen und 15 min bei 4 °C und 10.000 x g zentrifugiert. Der Überstand wurde in beiden Fällen verworfen. Anschließend wurde das DNA Sediment bei RT getrocknet und in 10 mM Tris-HCl, pH 8,4 resuspendiert.

2.2.2 Konzentrationsbestimmung von Nukleinsäuren

2.2.2.2 Photometrische Bestimmung

(Gene Quant RNS/DNS Calculator, Pharmacia, Freiburg)

Zur Bestimmung der Konzentration einer wässrigen Nukleinsäurelösung wurde mittels eines Photospektrometers die Extinktion bei 260 nm und 280 nm gegen Tris-HCl als Leerwert gemessen. Der Reinheitsgrad der Lösung wurde durch den Extinktionskoeffizienten E_{260}/E_{280} abgeschätzt. Reine DNA-Lösungen besitzen einen Quotienten von 1,8. Bei 1 cm Strahlengang entspricht eine $OD_{260} = 1$ einer doppelsträngigen Nukleinsäure-Konzentration von 50 µg/ml dsDNA.

2.2.2.3 Mengenabschätzung im Agarosegel im Vergleich zu Markerbanden

(Low DNA mass[™] ladder, Gibco BRL/Invitrogen, Eggenheim)

Bei dieser Methode ist nur eine ungefähre Mengenabschätzung möglich. Die zirkuläre DNA wurde durch Restriktionsendonukleasen linearisiert und auf ein 1%-iges Agarosegel aufgetragen. Anschließend erfolgte die elektrophoretische Auftrennung. Unter dem UV-Licht (245 nm) wurden die DNA Banden mit Marker-DNA Banden gleicher Größe und bekannter Konzentration verglichen ($\rightarrow 2.1.3$).

2.2.3 Präparation von RNA aus Mausmilzzellen

(RNeasy[®] Mini Kit, Qiagen, Hilden)

Das Prinzip des RNeasy[®] Mini Kits beruht auf der Bindung freigesetzter RNA Moleküle mittels Zentrifugation an die Silizium-Matrix einer RNeasy-Säule. Hierfür wurden Zellen aus der Milz einer Maus des Stammes C57-Black/6 isoliert und bei 37° C im Aktivierungsmedium kultiviert. Nach 48h wurden ca. $1.0 \ge 10^4$ Milzzellen entnommen und durch Zentrifugation (bei 300 x g und 4° C) pelletiert. Das Zellpellet wurde im sterilen PBS resuspendiert und erneut durch Zentrifugation (bei 300 x g und 4° C) sedimentieren. Das Zellpellet wurde mit 350 µl des Lysis-Puffers (RLT-Puffer) resuspendiert, geschwenkt, bis sich das Sediment vollständig gelöst hat. Anschließend wurden 350 µl 70%-iges (v/v) EtOH zugegeben. Die Lysat-EtOH Mischung (700 µl) wurde direkt auf die Matrix einer RNeasy-Säule pipettiert, die in ein Eppendorf-Sammelgefäß gesteckt wurde. Mit Hilfe der Zentrifugation für 15s bei 10.000 rpm wurde die RNA an das Säulenmaterial gebunden. Im ersten Waschschritt wurden 700 µl des RW1-Puffers auf die Matrix der RNeasy-Säule pipettiert und mittels der Zentrifugation für 15s bei 10.000 rpm wurde die RNeasy-Säule gewaschen. Die Säule wurde noch zweimal mit dem RPE-Puffer gewaschen, um das restliche EtOH zu entfernen. Hierfür wurden je 500 µl des RPE-Puffers auf die Säulenmatrix pipettiert und mittels der Zentrifugation für 15s und 2min bei 10.000 rpm wurde die Säule gewaschen. Anschließend wurde die RNeasy-Säule mittels Zentrifugation für 1min bei 10.000 rpm getrocknet und in ein neues Gefäß überführt. Zur RNA-Gewinnung wurden 50 µl RNase-freies H₂O auf die Säulenmatrix pipettiert und die RNA mit Hilfe der Zentrifugation für 1min bei 10.000 rpm eluiert. Die gewonnene RNA wurde bei -80°C gelagert.

2.2.4 Gewinnung von cDNA mit Hilfe der Reversen Transkription

(Omniscript[®], Qiagen, Hilden)

Die Umschreibung der RNA in die cDNA wurde mit Hilfe der RNA-abhängigen DNase (Qiagen) durchgeführt. Hierfür wurde die tiefgefrorene RNA auf Eis, der RT-Puffer, die Oligonukleotide, der dNTP-Mix (dATP, dCTP, dGTP und dTTP, je 10 mM) und RNase-freies H₂O bei RT aufgetaut. Anschließend wurde der RNase-Inhibitor (10 U/µl) zum RT-Puffer dazu pipettiert. Im nächsten Schritt wurde ein Master-Mix vorbereitet, der sich folgenden Komponenten zusammensetzt:

Komponenten des Master-Mix	Volumen/Reaktion	Endkonzentration
10x RT-Puffer	2 µl	1x
dNTP-Mix	2 μl	0,5 mM, je dNTP
Oligo-dT-Nukleotid	2 μl	1 μM
RNase-Inhibitor	1 μl	10 U/20 µ1
Omniscript Reverse Transkriptase	1 μl	4 U/20 μl
RNase-freies Wasser	x μl	
RNA (wird als letztes zugegeben)	x µl	bis 2 μg/20 μl
Gesamtvolumen	20 µ1	-

Der Master-Mix wurde bis zur Zugabe der RNA auf Eis gelagert. Für die cDNA-Synthese wurden die Reaktionsgefäße mit dem Master-Mix für 60min bei 37° C inkubiert. Die generierte cDNA wurde für die PCR verwendet.

2.2.5 Polymerase-Kettenreaktion

(Mullis & Faloona et al., 1988)

Das Prinzip der PCR beruht auf einer zyklischen Wiederholung von drei Reaktionsschritten, die im selben Ansatz bei unterschiedlichen Temperaturen ablaufen. Im ersten Schritt werden die zu amplifizierenden DNA Moleküle denaturiert. Im folgenden Schritt hybridisieren unter geeigneten Temperaturbedingungen zwei DNA-Oligonukleotide (Primer) mit je einem der beiden DNA Einzelstränge. Im dritten Schritt erfolgt die Verlängerung dieser Startermoleküle entlang der einzelsträngigen Matrize durch eine thermostabile *Taq* oder *Pwo* DNA-Polymerase (Roche Diagnostics GmbH, Mannheim).

Die PCR-Reaktionen wurden in einem programmierbaren Heizblock (UNO II, Biometra[®]) durchgeführt.

Zur Amplifikation von DNA Fragmenten wurde folgender Standardansatz verwendet:

x μl Matrizen-DNA (10-100 ng)
5 μl 10 x Taq-Puffer
1 μl dNTPs (je 2 mM)
1 μl Primer I (100 ng)
1 μl Primer II (100 ng)
x μl aqua bidest.
1 μl Taq- oder Pwo-Polymerase (2,5 Units)

 $\sum 50 \ \mu l$

Zur Amplifikation der DNA Fragmente wurde beispielsweise folgendes Temperaturprofil verwendet:

1.)	Hitzedenaturierung:		95 °C	60 Sekunden
	Pause (Zugabe der Taq-Polymerase)	I		
2.)	Hitzedenaturierung:		95 °C	60 Sekunden
3.)	Anlagerung der Oligonukleotide:	55 °C	20 Sek	unden
4.)	Polymerisation			72 °C 60 Sekunden
	30 Reaktionszyklen (2 4.)			
5.)	Einmalige Endpolymerisation		72 °C	4 Minuten
6.)	Kühlung			4 °C

Die individuellen Hybridisierungstemperaturen (T_D) für Oligonukleotide mit einer Länge von weniger als 25 Basen wurde nach der "Wallace-Regel" (*Suggs et al.*, 1981) in Annäherung bestimmt:

$$T_D = 4 x (C+G) + 2 x (A+T)$$

2.2.6 DNA Sequenzierung nach der Kettenabbruch-Methode

(ABI Prism[®] Big DyeTM Terminator Cycle Sequencing Ready Reaction Kit, ABI-Prism Sequnecer, Applied Biosystems, Warrington, GB)

Die DNA Sequenzierung wurde nach der Didesoxy-Kettenabbruch Methode (Sanger et al., 1977) durchgeführt. Das Prinzip diese enzymatischen Verfahrens beruht auf dem Einbau von fluoreszenzmarkierten 2', 3' Dideoxy-Nukleotiden (ddNTPs) in einen durch die DNA-Polymerase I neu synthetisierten DNA-Strang. Dies führt zum Abbruch der Synthese, da die für die Kettenverlängerung benötigte 3'-Hydroxylgruppe im Didesoxy-Nukleotid fehlt. Auf diese Weise wird die Polymerisierung selektiv bei A, C, G oder T terminiert. Es entsteht eine Vielzahl von unterschiedlich langen DNA Fragmenten, die sich durch ein fixes 5'-Ende und ein variables, basenspezifisches 3'-Ende auszeichnen. Durch den Einsatz von vier unterschiedlichen Fluoreszenzfarbstoffen (A: di-chloro [R6G]; C [ROX]; G di-chloro [R100]; T di-chloro [TAMRA] können alle vier Sequenzier-Reaktionen enzymatischen gleichzeitig in einem Reaktionsgefäß durchgeführt werden. Durch Gel-Elektrophorese in einem denaturierenden Polyacrylamid-Gel werden die DNA Fragmente getrennt.

Reaktionsansatz für die Sequenzreaktion:

- 1 µl Matrizen-DNA (100-200 ng)
- 1 µl Sequenzierungs-Oligonukleotide (3,2 pmol)
- 8 µl Terminator-Ready-Reaction-Mix (ABI-Prism)
- $10 \ \mu l$ $H_2 0$

 $\sum 20 \mu l$

Dieser Reaktionsansatz wurde nach folgendem PCR-Programm amplifiziert. Es wurden 30 Zyklen mit einem spezifischen Temperaturprofil in einem programmierbaren Heizblock (*UNO II*, Biometra[®]) durchgeführt:

- 1. 96 °C 30 Sekunden
- 2. $50 \degree C$ 15 Sekunden
- 3. $60 \degree C$ 4 Minuten

Die Sequenzierungen wurden vom ZMMK-Servicelabor, Institut für Biochemie der Medizinischen Einrichtungen der Universität zu Köln, auf einem ABI PrismTM 377 DNA Sequencer (Perkin Elmer/ Applied Biosystems) oder (ab 2005) auf einem ABI PrismTM 3730 DNA Sequencer (Perkin Elmer/ Applied Biosystems) im Institut für Genetik an der Universität zu Köln durchgeführt.

2.2.7 Gelelektrophorese

2.2.7.1 Native Agarose-Gelelektrophorese

Zur analytischen und präparativen Auftrennung der DNA wurden horizontale Agarosegele verwendet. Die Gelelektrophorese wurde 30 min bis 1,5 h bei 50-100 V durchgeführt. Zur Anfärbung der DNA wurde der Agarose Ethidiumbromid (0,5 μ g/ml) zugesetzt. Die Analyse erfolgte unter UV-Licht (245 nm) durch Vergleich mit den oben beschriebenen Größenstandards.

2.2.7.2 Denaturierende SDS-Polyacrylamid-Gelelektrophorese

SDS-Polyacrylamid-Gele wurden bei der Auftrennung von Proteinen zur Analyse ihres Molekulargewichts verwendet. Sie bestehen aus einem Sammelgel und einem Trenngel.

Lösungen [ml]	Sammelgel (8%)	Trenngel (5%)
aqua bidest.	4,6	2,1
30 % Acrylamid-Mix (BioRad)	2,7	0,5
1,5 M Tris/HCl (pH 8,8)	2,5	-
1 M Tris/HCl (pH 6,8)	-	0,38
10 % (w/v) SDS	0,1	0,3
10 % (w/v) APS	0,1	0,3
TEMED	0,006	0,003
Gesamtvolumen	$\sum 10 \text{ ml}$	$\sum 3 \text{ ml}$

Das Gießen der Gele und die Elektrophorese erfolgten mittels eines speziellen Kammersystems (BioRad). Die Proben wurden auf das Gel aufgetragen (25 μ l/Vertiefung). Zusätzlich wurde ein Protein-Molekulargewichtsmarker aufgetragen. Die Elektrophorese wurde 90-120 Minuten bei 70 V SDS-Gelelektrophorese-Puffer durchgeführt, bis die Lauffront am Ende des Gels angelangt war.

2.2.8 Western-Blot zur Molekulargewichtsbestimmung der Proteine

(nach Sambrook *et al.*, "Molecular Cloning", Cold Spring Harbor Laboratory Press, 3. Aufl., 2001, New York)

Der Western-Blot erfolgte mittels eines speziellen Kammersystems (BioRad). Alle Elemente wurden vor dem Zusammenbau auf Gelgröße zurechtgeschnitten und mit Transfer-Puffer benetzt. Der Blot wurde dann luftblasenfrei wie folgt aufgebaut. Eine Lage Whatman-Papier (BioRad) wurde auf ein Schwammstück gelegt, darauf wurde das Gel gelegt, auf welches dann eine Trans-Blot-Nitrozellulosemembran (BioRad), eine Lage Whatman-Papier (BioRad) und schließlich wieder ein Schwammstück gelegt wurden. Das Paket wurde in das Kammersystem eingespannt, dass die Nitrozellulose-Seite der Anode und das SDS-Polyacrylamid-Gel der Kathode zugewandt war. Der Elektrotransfer der Proteine wurde 2h bei 70 mA und 4 °C durchgeführt. Anschließend wurde die Nitrozellulosemembran mit 20 ml Blocking-Puffer über Nacht bei 4 °C geblockt. Am nächsten Tag wurde die Blocking-Lösung verworfen und die Nitrozellulosemembran für 2h bei RT in 20 ml Antikörperlösung [HRP gekoppelter Ratte anti-Maus IgG Antikörper (100 ng/ml); 10 % (w/v) Magermilchpulver (Glücksklee), 10 % (v/v) fetales Kälberserum und Rattenserum (200 ng/ml)] inkubiert und anschließend fünfmal 5 Minuten mit PBS-Tween gewaschen. Dann wurde die Nitrozellulosemembran für eine Minute mit 4 ml ECL-Substratlösung (BioRad) benetzt. Die Membran wurde eingeschweißt und auf einen Autoradiographie Film (Scientific Imaging Film, Kodak, NY, USA) exponiert.

2.2.9 Isolierung von DNA-Fragmenten aus Agarose durch Bindung an Siliciumpartikel.

(Qiaex II Gel Extraction Kit (150), Qiagen, Hilden, 1999)

Nach Auftrennung der DNA-Fragmente durch die Agarose-Gelelektrophorese wurde die gewünschte DNA Bande unter UV-Licht (245 nm) ausgeschnitten und das Gewicht des Gelstücks bestimmt. Abhängig von der Größe des im Agarosegel gefangenen DNA-Fragments wurde entsprechendes Volumen des Lösungspuffers QX1 (Qiagen) hinzugegeben:

Größe des DNA-	Zugabe von QX1, x-faches Volumen des	Zugabe von H ₂ O, x-faches Volumen
Fragmentes	Gel-Gewichts	des Gel-Gewichts
< 100 bp	6-faches Volumen	-
100 bp – 4 kb	3-faches Volumen	-
> 4 kb	3-faches Volumen	2-faches Volumen

QIAEX II-Lösung (Qiagen) wurde resuspendiert und abhängig von der eingesetzten DNA Menge hinzugefügt:

DNA-Menge	Zugabe an QIAEX II
$\leq 2\mu g DNA$	10 [µl]
2-10 µg DNA	30 [µ1]

Unter mehrmaligem Mischen wurde das gelöste Agarosestück mit der DNA-Bande 10 Minuten bei 50 °C inkubiert. Dabei wurde kontrolliert, dass der pH-Wert der Lösung im optimalen pH-Bereich (pH \leq 7,5) liegt, angezeigt durch einen pH-Indikator, um eine maximale Adsorption der DNA durch die Säulenpartikel zu erreichen. Bei einem unerwünschten Farbumschlag wurde nach Bedarf mit 1-10 µl einer 3 M Na-Acetat-Lösung, pH 5,0 gegengesteuert, um den optimalen pH-Bereich einzustellen. Danach wurde das Eppendorf-Gefäß mit der geschmolzenen Gelmatrix für 30 Sekunden bei 10.000 x g, RT zentrifugiert und das Sediment in 500 µl Puffer QX1 (Qiagen) resuspendiert. Nach erneuter Zentrifugation (30 Sekunden; 10.000 x g; RT) wurde das Sediment zweimal mit Puffer PE (Qiagen) gewaschen und 30-60 Minuten bei RT getrocknet. Die DNA wurde in 20 µl 10 mM Tris-HCl, pH 8,4 resuspendiert und, um die Elutions-Effizienz zu steigern, unter folgenden Bedingungen inkubiert:

Größe des DNA-Fragments	Inkubation
$\leq 4 \text{ kb}$	RT, 5 Minuten
4 kb – 10 kb	50 °C, 5 Minuten

Anschließend wurde die Lösung für 30 Sekunden bei 10.000 x g zentrifugiert. Um zu verhindern, dass nicht dennoch Agaroserückstände in dem Eppendorf-Gefäß mitgeschleppt werden, die die weitere Klonierungsarbeit stören, wurde die Lösung zweimal für 30 Sekunden bei 10.000 x g zentrifugiert und jeweils in ein frisches Eppendorf-Gefäß überführt.

2.2.10 Enzymatische Reaktionen mit doppelsträngiger DNA.

2.2.10.1 Spaltung der doppelsträngigen DNA durch Restriktionsendonukleasen.

Die verwendeten Enzyme (Roche Diagnostics, Mannheim) spalten die DNA an

definierten Schnittstellen, bei denen die DNA-Erkennungssequenz der Spaltstelle entspricht. Pro μ g DNA wurden 1-3 Units Restriktionsenzym eingesetzt. Eine Enzymeinheit (Unit) entspricht dabei der definierten Menge an Enzym, die in einer Stunde 1 μ g DNA, bei der vorgegebenen Temperatur (meist 37 °C), in einem Gesamtvolumen von 10 μ l spaltet. Um optimale Reaktionsbedingungen für die verschiedenen Restriktionsenzyme zu schaffen, wurden die vom Hersteller mitgelieferten 10 x Puffer verwendet. Die DNA wurde nur dann mit zwei verschiedenen Restriktions-Endonukleasen gleichzeitig geschnitten, wenn die geforderten optimalen Pufferbedingungen erfüllt waren. Ansonsten wurde nacheinander geschnitten, wobei nach jedem Restriktionsverdau eine EtOH-Fällung durchgeführt wurde.

2.2.10.2 Ligation von DNA-Doppelsträngen mit überlappenden kohäsiven Enden durch T4-DNA-Ligase

Isolierte DNA-Fragmente wurden in einem 4-fach molaren Überschuss mit linearisierter Vektor DNA gemischt. Nach der Zugabe von 1 U/ μ l T4-DNA-Ligase (Roche Diagnostics, Mannheim) und 1/10 Vol. 10 x Inkubationspuffer wurde der Reaktionsansatz über Nacht bei 6 °C inkubiert und anschließend zur Transformation von kompetenten Bakterien eingesetzt.

10 x Ligationspuffer

660 mM Tris-HCl, 50 mM MgCl₂, 50 mM DTT, 10 mM ATP, pH 7,5

Ligationsansatz:

Komponenten	verwendetes Volumen
DNA-Gesamtmenge 100 ng (ein 4:1 molares Verhältnis der Vektor-DNA zur Insertions-DNA)	2-4 µl
10 x Ligatiospuffer	1 µl
T4 DNA Ligase (1U/µl)	1 µ1
$H_{2}0$	4-6 µl
Gesamtvolumen	$\sum 10 \mu$ l
Inkubation	ü.N., bei 6°C

2.2.11 Bakterienkultur

2.2.11.1 Herstellung kompetenter E.coli DH5a Bakterien

(modifiziert nach Hanahan, 1983)

Eine stationäre *E.coli*-Kultur des Stammes DH5 α (500 µl) wurde in einem Verhältnis von 1:100 mit vorgewärmten 2 x YT-Medium verdünnt und bis zum Erreichen der logarithmischen Wachstumsphase (OD₆₀₀ \approx 0,50) bei 37 °C unter Schütteln inkubiert. Die Bakterienkultur wurde sofort unter gelegentlichem Schwenken für 10 Minuten auf Eis abgekühlt und 5 Minuten bei 4.000 x g und 4 °C zentrifugiert. Die Bakterien wurden in eiskaltem TFB I Puffer (30 mM Kaliumacetat; 50 mM MgCl₂; 100 mM NaCl; 10 mM CaCl₂; 15 % (v/v) Glycerin; pH 5,8) resuspendiert, 10 Minuten auf Eis inkubiert, erneut sedimentiert (5 Minuten, 4.000 x g; 4 °C) und in 2 ml eiskalten TFB II Puffer (10 mM MOPS, pH 7,5; 75 mM CaCl₂; 10 mM NaCl; 15 % (v/v) Glycerin) resuspendiert. In jedes Eppendorf-Gefäß wurden 200 µl der Lösung mit den kompetenten Bakterien gegeben und sofort im flüssigen Stickstoff schockgefroren. Anschließend wurden die Bakterien bei -80 °C gelagert.

2.2.11.2 Transformation chemokompetenter E.coli Bakterien

(Hanahan, 1983)

Bei -80 °C gelagerte chemokompetente Bakterien (100 µl/Eppendorf-Gefäß) wurden auf Eis aufgetaut und mit 1 bis 100 ng Plasmid DNA gemischt. Anschließend wurden die Bakterien 20 Minuten auf Eis und für 90 Sekunden bei 42 °C inkubiert. Danach wurden die Bakterien für 2 Minuten auf Eis abgekühlt. Nach Zugabe von 800 µl LB-Medium wurden die Bakterien zum Erwerb der Resistenzeigenschaft (Ampicillin-Resistenz) für 1h bei 37 °C unter Schütteln inkubiert. Anschließend wurde aus jedem Eppendorf-Gefäß das Gesamtvolumen entnommen und auf Antibiotika-haltige LB-Agarplatten mit dem "Drigalsky"-Spatel ausgestrichen, wobei der Spatel nach jedem Ausstrich im 70 % Ethanol eingetaucht und abgesengt wurde.

2.2.11.3 Blau-weiß Selektion

(TOPO[®]TA Cloning Kit, Invitrogen, Eggenheim)

Das Plasmid pCR[®]2.1 (Invitrogen) wird als lineare DNA Sequenz geliefert und enthält ein ori-Element, ein Resistenzgen für Ampicillin, ein Resistenzgen für Kanamycin, einen Promotor, das Gen für ß-Lactamase (lacZ) und eine multiple Klonierungsstelle (MCS). An beiden Enden der linearen DNA Sequenz befindet sich je ein Teil des kompletten lacZ-Gens und die durchgetrennte multiple Klonierungsstelle. Die intramolekulare Ligation des Vektors führt zu einer zirkulären Plasmid DNA. *E.co*li-Bakterien, die mit diesem Plasmid transformiert werden, produzieren β-Lactamase. Die Kultur dieser *E.coli* Bakterien auf X-Gal ausgestrichenen LB-Agar Platten führt zu einer Blaufärbung der Kolonie. Bakterien ohne Plasmid produzieren keine β-Lactamase, setzen kein X-Gal um und die Kolonie bleibt ungefärbt. Im konkreten Fall führt der Einbau eines PCR Produkts an der multiplen Klonierungsstelle, im Bereich des lacZ-Gens, des pCR[®]2.1 Plasmids zur Zerstörung des Leserasters für β-Lactamase. Die mit diesem Plasmid transformierten *E.coli*-Bakterien wachsen auf LB-Agar Platten mit Ampicillin, setzen jedoch kein X-Gal um. Aufgrund der fehlenden Blaufärbung können diese *E.coli* Bakterien auf LB-Agar Platten (mit X-Gal und Ampicillin) von Bakterien mit intramolekular religierten Plasmiden unterschieden werden.

2.2.12 Zellkultur

2.2.12.1 Allgemeine Kulturbedingungen

Alle Zellkulturarbeiten wurden in Laboren der Sicherheitsstufe I oder II unter einer Sterilbank der Sicherheitsklasse II (Heraeus Biotech, Hanau) durchgeführt. Die Zellen wurden in Inkubatoren (Heraeus) unter 5% CO₂-Versorgung bei 37 °C und 95 bis 100 %-iger Luftfeuchtigkeit kultiviert. Medien, Zusätze und Lösungen wurden nach dem Autoklavieren oder Sterilfiltrieren unter sterilen Bedingungen gehandhabt. Vor Gebrauch wurden die verwendeten Medien, sowie Wasch- und andere Lösungen auf 37 °C vorgewärmt oder auf 4°C abgekühlt.

2.2.12.2 Splitten adhärenter Zellkulturen

Nach Abnahme des Zellkulturüberstandes wurden die Zellen einmal mit Ca²⁺-freiem PBS gewaschen, mit 1 ml einer Trypsin-Lösung (1 ml 10 x-fach Trypsin (Sigma, Deisenhofen) pro 10 ml PBS) für 3-5 Minuten bei 37° C inkubiert und von der Kulturschalenoberfläche abgelöst. Anschließend wurden die gelösten Zellen in geeignetem Medium (meist 1640 RPMI, 10% (v/v) FCS) resuspendiert, wodurch die Trypsin-Aktivität blockiert wurde, und einmal mit RPMI Medium gewaschen. Nach Bedarf wird eine gewisse Anzahl Zellen in die Zellkulturschale zurückgegeben und im frischen Medium aufgenommen.

2.2.12.3 Separation von peripheren Blutlymphozyten (PBL) mittels Dichtezentrifugation

(Ficoll-Paque, Pharmacia Biotech, Freiburg)

Von der Blut-Entnahme bis zur Bereitstellung der "buffy-coats"-Konserven (Blutbank der Universität zu Köln) vergingen in der Regel 4 bis 6 Stunden. Humane T-Lymphozyten wurden mittels Dichtezentrifugation aus "buffy-coats"-Konserven separiert. Dieses Verfahren macht sich die unterschiedliche Dichte der verschiedenen Zellen des humanen Blutes zunutze. Dabei wird das Blut über eine hochmolekulare Flüssigkeit geschichtet, in welcher sich Blutzellen nach der Zentrifugation in verschiedene, dichteabhängige Phasen aufteilen. Hierfür wurden 15 ml des Blutes eines gesunden Spenders 1:2 mit PBS verdünnt und auf 15 ml Ficoll Paque, geschichtet. Anschließend wurde der Ansatz für 30 min bei 400 x g und 20 °C zentrifugiert, wobei die Bremse des Gerätes ausgeschaltet war. Nach der Zentrifugation wurde die obere Phase verworfen. Die Interphase mit den mononukleären Zellen wurde vorsichtig abgenommen, mit 20 ml PBS gewaschen und bei 400 x g, 10 min, bei 20 °C zentrifugiert, wobei die Bremse des Gerätes wieder eingeschaltet war. Der Überstand wurde verworfen und das Zellsediment resuspendiert. Dieser Waschschritt wurde noch einmal wiederholt. Anschließend wurden die Zellen in 30 ml FCS-freiem RPMI 1640 Medium aufgenommen und erneut bei 400 x g zentrifugiert. Dieser Waschschritt wurde wiederholt. Das Zellsediment wurde in 50 ml RPMI 1640 Medium, 10 % (v/v) FCS resuspendiert und die Zellen mit 1 µl IL-2 (200 U/ml) und 50 µl OKT-3 (100 ng/ml) stimuliert. Die separierten T-Lymphozyten wurden bei 37 °C und 5 % CO₂ kultiviert.

2.2.12.4 Präparation von mononukleären Zellen aus der Mausmilz

Das Töten der Versuchstiere erfolgte durch zervikale Dislokation. Das Mausfell wurde mittels 70%-igem Alkohol desinfiziert, der Peritonealraum mittels einer Schere eröffnet und die Milz entnommen.

2.2.12.4.1 <u>Separation von mononukleären Mausmilzzellen mittels Dichtezentrifugation</u> (*Histo-Paque-1083*, Sigma-Aldrich Chemie GmbH, Taufkirchen)

Die Mausmilzen wurden mechanisch aufgeschlossen und die mononukleären Zellen mittels Dichtezentrifugation separiert. Zur Herstellung einer Einzelzellsuspension wurden die entnommenen Milzen, nach Zerkleinerung mittels eines Spritzkolbens, durch ein Metallsieb (Porengröße 100 μ m) in frisches RPMI 1640 Medium gerieben. Die erhaltenen Zellsuspensionen wurden einmal mit RPMI 1640 Medium gewaschen, in 5 ml PBS resuspendiert, zur Dichtegradientenzentrifugation auf 2,5 ml Histopaque-1083[®] Lösung in einem 15 ml Falcon-Röhrchen geschichtet und für 20 min bei Raumtemperatur (RT), ohne Bremse bei 850 x *g* zentrifugiert. Lebende, mononukleäre Zellen sammeln sich dabei in der Interphase, in der sie abpipettiert und anschließend zweimal mit RPMI 1640 Medium gewaschen wurden.

2.2.12.4.2 Anreicherung und Selektion verschiedener muriner Milzzellen

Prinzipiell unterscheidet man bei Anreicherungsverfahren für Lymphozytensubpolutaion zwischen Positivanreicherung (Selektion) und Negativanreicherung (Depletion).

2.2.12.4.2.1 Selektion muriner CD8⁺ T-Lymphozyten mittels magnetischer Zellsortierung (MACS[®])

(CD8 MicroBeads, *Product code*: 130-049-401, Miltenyi Biotec GmbH, Bergisch Gladbach)

Die aus der Mausmilz gewonnen mononukleären Zellen werden nach Anweisung des Herstellers mit CD8 spezifischen Antikörpern, an die Magnetkügelchen (Beads) gekoppelt sind, im MACS[®] Waschpuffer inkubiert, gewaschen, im entsprechenden Volumen des MACS[®] Trennpuffers in einem Falcon-Röhrchen resuspendiert und für die Trennung mittels AutoMACS[®] Gerät bereitgestellt. Die Zellsuspension wird durch eine Saugvorrichtung zur ferromagnetischen Trennsäule des AutoMACS Geräts geleitet. Zellen, an die Beads-gekoppelte anti-CD8 Antikörper gebunden sind, werden im magnetischen Feld zurückgehalten. Die Fraktion der restlichen, CD8⁻ Zellen wird beim Waschen der Säule entfernt und in einem Sammelgefäß aufgefangen. Das erzeugte Magnetfeld wird ausgeschaltet und die Fraktion der CD8⁺ Zellen wird beim erneuten Waschen aus der Säule entfernt und durch eine andere Öffnung zum Sammelgefäß geleitet. Die Überprüfung der Reinheit von sortierten Zellpopulationen erfolgt mit Hilfe der Durchflußzytometrie.

2.2.12.4.2.2 Depletion muriner CD3⁺ T-Lymphozyten mittels magnetischer Zellsortierung (MACS[®])

("Pan T cell isolation kit", *Product code*: 130-090-861, Miltenyi Biotec GmbH, Bergisch Gladbach)

Das hier verwendete "Pan T cell isolation kit" beruht auf einem indirekten Verfahren bei dem anti-Biotin MicroBeads an Biotin-konjugierte Antikörper binden, die spezifische Antigene auf der Zelloberfläche von Zellen erkennen. Zellen, die indirekt markiert werden, können in der ferromagnetischen Trennsäule des AutoMACS[®] Geräts bei eingeschaltetem Magnetfeld zurückgehalten werden. Durch negative Selektion werden CD45R⁺, CD49b⁺, CD11b⁺ und Ter-119⁺ Zellen von CD3⁺ Zellen getrennt. Die Fraktion der CD3⁺ Zellen passiert das Magnetfeld ohne angehalten zu werden und wird depletiert. Die Vorbereitung und die Durchführung der Negativanreicherung am AutoMACS[®] Gerät erfolgt analog der Positivanreicherung.

2.2.12.5 Aktivierung muriner T-Lymphozyten

Nicht-selektionierte mononukleäre Milzzellen als auch selektionierte Lymphozytensubpopulationen werden nach dem gleichen Protokoll aktiviert. Am Tag der Präparation werden Zellen im Aktivierungsmedium (Tab. 4) kultiviert. Nach 24h wird das Aktivierungsmedium gegen Kulturmedium ausgetauscht. Nach 48h befindet sich ein Großteil der so behandelten Zellen in zellulären Teilungsphasen, was eine Voraussetzung für viralen Gentransfer ist.

Komponenten	Aktivierungsmedium	Kulturmedium
RPMI 1640 Medium (Dutch modification)		
Fetales Kälberserum (FCS)	10 % (v/v)	10 % (v/v)
L-Glutamin	2 % (v/v)	2 % (v/v)
Natrium-Pyruvat (100x)	1x	1x
NEAA-Aminosäuren (100x)	1x	1x
ß-Mercaptoethanol (1000x)	1x	1x
Penicillin	50 IE/ml	50 IE/ml
Streptomycin	50 µg/ml	50 µg/ml
PHA-L	3 µg/ml	-
anti-Maus CD3 mAk (Klon: 145-2C11)	100 ng/ml	-
anti-Maus CD28 mAk (Klon: 37.51)	100 ng/ml	-
rekobinantes humanes IL-2	300 U/ml	100 U/ml
rekobinantes murines IL-15	5 ng/ml	5 ng/ml

Tabelle 4: Medien und Medienzusätze für	die Aktivierung und Kultivierung muriner T-Zellen.
---	--

2.2.13 Transfektion von 293T Tumorzellen

(PolyFect[®] Transfection Reagent, Qiagen GmbH, Hilden)

Die DNA wird mit Hilfe von fein verzweigten Trägermolekülen verpackt, deren positiv geladene Amino-Gruppen die DNA umschließen und die Passage durch die Zellmembran erleichtern. Der DNA-Polyfect-Komplex bindet an negativ geladene Rezeptoren (Glykoproteine) der eukaryotischen Zelle und ermöglicht so die Endozytose in ein von einer einschichtigen Membran umhülltes Lysosom. Das alkalische PolyFect-Reagenz wirkt bei pH \leq 5 als Puffer-Substanz und erhöht den pH-Wert des Lysosomenkompartiments, so dass lysosomale Nukleasen erfolgreich inhibiert werden.

Jeweils 10^6 Zellen der Linie 293T wurden 24h vor der Transfektion in 8 ml Kulturmedium (RPMI 1640, 10% (v/v) FCS) pro 100 mm Kulturschale resuspendiert. Die Zellen wurden über Nacht bei 37 °C und 5 % CO₂ inkubiert.

Jeweils 9 µg Plasmid DNA wurden in einem Eppendorfgefäß mit Kulturmedium (RPMI 1640, Serum- und Antibiotika-frei) auf 300 µl Gesamtvolumen verdünnt. Anschließend wurde die DNA-Lösung mit 40 µl *PolyFect Transfection Reagent* vermischt und 10 min bei RT inkubiert. Nachfolgend wurde jeder Transfektionsansatz mit Kulturmedium (RPMI 1640, 10 % (v/v) FCS, Antibiotika-haltig) auf 1 ml Gesamtvolumen verdünnt. Die Transfektionsansätze wurden tropfenweise zu den kultivierten Zellen in das Kulturmedium gegeben. Nach 24h wurde das Medium durch ein frisches Medium ersetzt. Nach weiteren 24h wurde die Expression des transfizierten Plasmids in 293T Zellen mit Hilfe der Durchflußzytometrie analysiert. Bei löslichen Proteinen wurde der Kulturüberstand gesammelt und mit Hilfe eines ELISA analysiert.

2.2.14 Herstellung der Zell-Lysate

Die Herstellung der Zell-Lysate erfolgte durch Resuspension von 10⁷ Zellen in 1 ml Verdünnungspuffer (100 mM NaCl; 50 mM Tris-HCl) und Zugabe von 1 ml Lysispuffer (100 mM NaCl; 50 mM Tris-HCl, Proteinase-Inhibitoren 1 mg/ml; 2 % NP40). Nach einer 30 minütigen Inkubation auf Eis wurde das Lysat für 20 Minuten bei 6.000 x g bei 4 °C zentrifugiert. Je 1 mg Proteinase Inhibor-Mix (*Complete*[®], Roche Diagnostics) wurde pro 1 ml Überstand zugegeben, um einer Protease-Degradierung der freigesetzten Rezeptorproteine vorzubeugen. Das Vorhandensein rekombinanter Rezeptorproteine im Überstand wurde mittels ELISA getestet.

2.2.15 Retrovirale Transduktion humaner peripherer Blutlymphozyten (PBL)

Retrovirale Vektor DNA wurde mit der retroviralen Helferplasmid DNA pHIT60 und pCOLT (je 3 µg DNA) in Zellen der Linie 293T mit Hilfe des *PolyFect*[®] *Transfection Reagent* endozytotisch eingebracht. Das Helfer-Plasmid pHIT60 kodiert für MuLV (*Moloney murine Leukemia Virus*) gag und pol Gene. Das Helfer-Plasmid pCOLT kodiert für das GALV (*Gibbon Ape Leukemia Virus*) env Gen. Die Verpackungs-Gene stehen unter der Kontrolle des CMV Promotors/Enhancers (Weijtens et al., 1996). Periphere Blutlymphozyten wurden mit OKT-3 monoklonalem Antikörper und IL-2 nach der Lymphozytenseparation mit Hilfe der *Ficoll-Paque*-Reagenz stimuliert. Nach 48h Inkubation wurden die Zellen gewaschen, in Medium (RPMI 1640, 5 % (v/v) FCS; 200 U/ml IL-2) resuspendiert und für 48h mit den transfizierten Zellen der Linie 293T ko-kultiviert. Die Viren wurden in den Zellkulturüberstand sezerniert und transduzierten die T-Zellen. Die T-Zellen wurden abgenommen und die Rezeptorexpression durchfluß-zytometrisch bestimmt.

2.2.16 Retrovirale Transduktion muriner T-Lymphozyten

(Stratagene, La Jolla, USA)

Die Transduktion muriner T-Lymphozyten erfolgte ebenfalls mittels eines Dreikomponenten-Systems. Dieses System besteht aus einem retroviralen Expressionsvektor, der Verpackungs-zellinie 293T und den MMLV-basierenden Helferplasmiden pVpack-Eco (# 598) und pVpack-GP (# 600). Das Helferplasmid pVpack-GP (# 600) enthält die retroviralen Gene gag und pol. Das Helferplasmid pVpack-Eco (# 598) enthält ein retrovirales env Gen, welches für ein Hüllenprotein kodiert. Dieses Hüllenprotein ermöglicht, dass die freigesetzten Retroviren das CAT-1 Protein, ein Transporter-Portein für kationische Aminosäuren, auf der Oberfläche muriner T-Lymphozyten binden. Der Ablauf der Transduktion muriner T-Lymphozyten entspricht dem für humane T-Zellen. Durch die Bindung des ecotropen Retrovirus an die T-Zelle gelangt die retrovirale RNA, die für einen Immunrezeptor kodiert, in die murine T-Zelle. 2.0 x 10^6 Zellen der Linie 293T werden äquimolar (je 3.0 µg) mit dem retroviralen Expressionsvektor und den DNA-Plasmiden pVpack-Eco (# 598) und pVpack-GP (# 600) ko-transfiziert. Anschließend werden die T-Lymphozyten 24h mit den ko-transfizierten Zellen der Verpackungslinie 293T in Kulturmedium (RPMI 1640

Medium, dutch modification) ko-kultiviert. Die Expression rekombinanter Immunrezeptoren auf der Oberfläche transduzierter T-Zellen wird mittels Durchflußzytometrie analysiert.

2.2.17 Stimulation humaner oder muriner T-Zellen mit rekombinanten Immunrezeptoren durch Ko-Kultivierung mit Antigen-positiven Tumorzellen

Transduzierte und nicht-transduzierte T-Lymphozyten werden 5 Minuten bei 400 x g abzentrifugiert, das Zellsediment in Medium (RPMI 1640, 5 % (v/v) FCS) resuspendiert. Dieser Waschschritt wird insgesamt dreimal durchgeführt. Anschließend werden die Zellen im frischen Medium (RPMI 1640, 5 % (v/v) FCS) resuspendiert und die Zellzahl bestimmt. Die T-Zellen werden auf Immunrezeptor tragende Effektorzelle normiert und in einer Verdünnungsreihe auf 96-Loch-Rundbodenplatten (TPP[®], Trasadingen, Schweiz) mit konstanter Zahl an Tumorzellen ko-kultiviert. Nach 48h wird ein Teil des Überstands abgenommen und für Zytokin-ELISA weiterverwendet, während die Zellen einem Zytotoxizitäts-Test (XTT) unterzogen werden. Je nach Ansatz variiert die Anzahl der eingesetzten Effektorzellen und Zielzellen.

2.2.18 Enzym-gekoppelter-Immunadsorbanztest (ELISA)

Es gibt zwei Varianten der ELISA-Technik, die in dieser Arbeit verwendet wurden:

- 1.) Antibody capture assay-Methode
- 2.) Antigen capture Assay-Methode

zu 1.) Modell der Antibody capture Assay-Methode:

zu 2.) Modell der Antigen capture Assay-Methode:

2.2.18.1Nachweis löslicher Zytokine mittels der Antibody capture Assay Methode

Die Beschichtung der Mikrotiterplatten (PolySorbTM, Nunc GmbH, Wiesbaden) erfolgte durch Inkubation (ÜN bei 4 °C) von einem Fangantikörper in 50 µl Beschichtungspuffer (1,7 ml 0,2 M Na₂CO₃, 0,8 ml 0,2 M NaHCO₃, ad 10 ml aqua bidest.). Die Konzentration des verwendeten Fangantikörpers betrug 1 µg/ml Beschichtungspuffer. Zur Absättigung der freien Bindungsstellen wurde für 2h bei RT mit 3 % (w/v) BSA in PBS inkubiert und fünfmal 200 µl PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Die Proben (50 µl/Vertiefung) wurden auf die Mikrotiterplatte aufgetragen, 2h bei RT inkubiert und anschließend fünfmal mit 200 µl PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Die Inkubation mit je 50 µl/Vertiefung mit einem Biotin-gekoppelten Detektions-Antikörper (0,2 µg/ml) erfolgte 1h bei RT, anschließend wurde fünfmal mit 200 µl PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen, 30 Minuten mit einer Streptavidin-gekoppelten Peroxidase (500 U/ml; 1:10.000 Verdünnung in PBS; Roche Diagnostics) inkubiert und erneut fünfmal gewaschen. Der Test wurde durch Zugabe von 50 µl ABTS-Substratlösung/Vertiefung (1 mg/ml ABTS-Puffer[®], Roche Diagnostics) bei Raumtemperatur (RT) entwickelt. Die Absorption bei einer Wellenlänge von 405 nm (OD₄₀₅) wurde photometrisch bestimmt.

Beim Nachweis des humanen IL-2 wurden die PolySorbTM-Mikrotiterplatten (Nunc GmbH, Wiesbaden) mit 1 μ g/ml anti-human-IL-2 Antikörper (PharMingen, Hamburg) beschichtet. Entwickelt wurde der ELISA mit 0,2 μ g/ml Biotin-konjugierten anti-human IL-2 Antikörper (PharMingen).

Bei der Bestimmung der Konzentration des humanen IFN- γ wurden MaxiSorbTM-Mikrotiterplatten (Nunc GmbH, Wiesbaden) mit 1 µg/ml anti-human IFN- γ AK (PharMingen, Hamburg) beschichtet. Gebundenes humanes IFN- γ wurde nachgewiesen mit Hilfe des Biotin-konjugierten anti-human IFN- γ Antikörpers (PharMingen) 0,25 µg/ml PBS.

Beim ELISA-Nachweis des murinen IFN- γ wurden MaxiSorbTM-Mikrotiterplatten (Nunc GmbH) mit 1 μ g/ml anti-Maus-IFN- γ AK (Biosource, Camarillo, USA)

Gebundenes murines IFN- γ wurde nachgewiesen mit Hilfe des Biotin-konjugierten anti-Maus IFN- γ Antikörpers (Biosource) 0,20 µg/ml PBS.

2.2.18.2 Nachweis CEA oder human IgG spezifischer Antikörper im Serum immunisierter Versuchstiere mittels der Antigen capture Methode

Beim Nachweis von Mausserum Antikörpern gegen das CEA Antigen wurden die Vertiefung von MaxiSorbTM-Mikrotiterplatten (Nunc GmbH, Wiesbaden) mit 50 µl CEA (2,5 µg/ml Beschichtungspuffer (1,7 ml 0,2 M Na₂CO₃, 0,8 ml 0,2 M NaHCO₃, ad 10 ml aqua bidest.) über Nacht bei 4° C inkubiert. Anschließend wurden die Vertiefungen der ELISA-Platten mit je fünfmal 200 µl PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Die Blutseren wurden aufgetaut, 1:300 vorverdünnt, in einer Verdünnungsreihe auf die beschichteten Mikrotiterplatten pipettiert (je 50 µl/Vertiefung) und 2h bei RT inkubiert. Kommerziell erworbenes Mauserum (Dako) und der anti-CEA Antikörper (Abcam) wurden als Kontrollen verwendet. Das Kontrollserum (Dako) wurde ebenfalls 1:300 vorverdünnt. Der anti-CEA Kontroll-Antikörper wurde in einer Verdünnungsreihe (0,5 µg/ml bis 0,5 ng/ml) eingesetzt. Anschließend wurden die Platten fünfmal mit PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Zur Detektion diente ein Biotin-konjugierter anti-Maus IgG Antikörper (SouthernBiotech), eingesetzt 0,2 µg/ml in PBS. Nach 60-minütiger Inkubation mit dem Detektions-Antikörper wurden die Platten fünfmal mit PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Anschließend wurden die Platten mit der Streptavidingekoppelten Peroxidase (500 U/ml; 1:10.000-Verdünnung in PBS; Roche Diagnostics) 30 min bei RT inkubiert und erneut fünfmal mit PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Der Test wurde durch Zugabe von 50 µl ABTS-Substratlösung/Vertiefung (1 mg/ml ABTS-Puffer[®], Roche Diagnostics) bei RT entwickelt. Die Absorption bei einer Wellenlänge von 405 nm (OD₄₀₅) wurde photometrisch bestimmt.

Beim Nachweis von human IgG spezifischen Antikörpern im Mausserum von immunisierten Versuchstieren wurden die Vertiefung von MaxiSorbTM-Mikrotiterplatten (Nunc GmbH, Wiesbaden) mit human IgG (SouthernBiotech) in einer Konzentration von 1 μ g/ml PBS, 2h bei RT beschichtet. Blutseren, deren murine IgG-Konzentration zuvor bestimmt wurde, wurden in einer Verdünnungsreihe (5,0 μ g/ml bis 40 ng/ml) auf den beschichteten Mikrotiterplatten inkubiert. Der ELISA wurde 1h bei RT mit Hilfe des Biotin-konjugierten anti-Maus IgG Antikörper 0,2 μ g/ml PBS entwickelt. Zwischen jedem Inkubationsschritt lagen jeweils fünf Waschschritte mit PBS-T (PBS, 0,1 % (v/v) Tween-20). Anschließend wurden die Platten mit der Streptavidin-gekoppelten Peroxidase (500 U/ml; 1:10.000-Verdünnung in PBS; Roche Diagnostics), 30 min bei RT inkubiert und erneut fünfmal mit PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Der Test wurde durch Zugabe von 50 μ l ABTS-Substratlösung/Vertiefung (1 mg/ml ABTS-Puffer[®], Roche Diagnostics), 30 min bei RT entwickelt. Die Absorption bei einer Wellenlänge von 405 nm (OD₄₀₅) wurde photometrisch bestimmt.

2.2.18.3 Konzentrationsbestimmung von murinen IgG Proteinen im Mausserum von Versuchstieren mittels der Antigen capture Methode

Für die Konzentrationsbestimmung von murinen IgG Proteinen im Mausserum von Versuchstieren wurden die Vertiefungen von MaxiSorbTM-Mikrotiterplatten (Nunc GmbH, Wiesbaden) mit anti-Maus IgG Antikörper (Southern Biotech) 1 µg/ml Beschichtungspuffer (1,7 ml 0,2 M Na₂CO₃, 0,8 ml, 0,2 M NaHCO₃, ad 10 ml aqua bidest.) 2h bei RT inkubiert. Anschließend wurden die Vertiefungen der ELISA-Platten mit je fünfmal 200 µl PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Die Blutseren wurden aufgetaut, 1:200 vorverdünnt, in einer Verdünnungsreihe auf die beschichteten Mikrotiterplatten gegeben und 2h bei RT inkubiert. Kommerziell erworbenes murines IgG (Southern Biotech) wurde als Standard verwendet und in einer Verdünnungsreihe (1,0 µg/ml bis 0,5 ng/ml) auf den beschichteten ELISA-Platten inkubiert. Entwickelt wurde der ELISA mit Hilfe des Biotin-konjugierten anti-Maus IgG Antikörpers (Southern Biotech), welcher in einer Konzentration von 0,2 µg/ml PBS (je 50 µl/ Vertiefung) eingesetzt wurde. Zwischen jedem Inkubationsschritt lagen jeweils fünf Waschschritte mit PBS-T (PBS, 0,1 % (v/v) Tween-20). Der ELISA wurde mit Streptavidin-gekoppelten Peroxidase (500 U/ml; 1:10.000-Verdünnung in PBS; 50 µl/Vertiefung, Roche Diagnostics), 30 min bei RT inkubiert und die ELISA-Platten erneut fünfmal mit PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen, bevor je 50 (1 mg/ml ABTS-Puffer[®], Roche Diagnostics) µl/Vertiefung ABTS-Substratlösung bei RT inkubiert wurden. Die photometrische pipettiert und 30 min Absorptionsmessung wurde bei einer Wellenlänge von 405 nm (OD₄₀₅) am Emax[®] ELISA-Reader (Molecular Devices Corporation, Sunnyvale, CA, USA) durch-geführt.

2.2.18.4 Nachweis anti-idiotypischer Antikörper gegen die BW431/26scFv und SCA-431scFv Bindedomäne aus dem Serum immunisierter Tiere mittels der modifizierten Antigen capture Assay Methode

Die Beschichtung der Mikrotiterplatten (PolySorbTM, Nunc GmbH, Wiesbaden) erfolgte durch Inkubation (ÜN bei 4 °C) mit dem anti-human IgG Fangantikörper (1µg/ml) in Beschichtungspuffer (1,7 ml 0,2 M Na₂CO₃, 0,8 ml 0,2 M NaHCO₃ ad 10 ml aqua *bidest.*). Zur Absättigung der freien Bindungsstellen wurde für 2h bei RT mit 3 % (w/v) BSA in PBS-Tween inkubiert und fünfmal mit PBS-Tween gewaschen. Auf die beschichteten Mikrotiterplatten wurde das lösliche Protein BW431/26scFv-hIgG (# 443) oder das Protein SCA431scFv-hIgG (# 970) in einer Konzentration von 1,0 µg/ml PBS eingesetzt (je 50 µl/Vertiefung) und 2h bei RT inkubiert. Anschließend wurden die Platten fünfmal mit je 200 µl PBS-T gewaschen. In nächsten Schritt wurden Mausseren der Versuchstiere in einer Verdünnungsreihe 5 µg bis 2,5 ng murines IgG Protein pro 1 ml PBS auf die Mikrotiterplatten aufgetragen (je 50 µl/Vertiefung) und 2h bei RT inkubiert. Als Kontrolle wurde der anti-idiotypische Antikörper BW648/31 (1 µg/ml PBS), der an die BW431/26scFv und SCA431scFv Domäne bindet, verwendet. Anschließend wurden die ELISA-Platten mit je 200 µl PBS gewaschen. Detektiert wurde der ELISA mit sekundärem Biotin-konjugierten anti-Maus IgG Antikörper, der in einer Konzentration von 0,2 µg/ml PBS eingesetzt und 1h bei RT auf der ELISA-Platte inkubiert wurde. Anschließend wurden die Platten fünfmal mit je 200 µl PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Anschließend wurden die Platten mit der Streptavidin-gekoppelten Peroxidase (500 U/ml; 1:10.000-Verdünnung in PBS; Roche Diagnostics), 30 min bei RT inkubiert und erneut fünfmal mit PBS-T (PBS, 0,1 % (v/v) Tween-20) gewaschen. Der Test wurde durch Zugabe von 50 µl ABTS-Substratlösung/Vertiefung (1 mg/ml ABTS-Puffer[®], Roche Diagnostics), 30 min bei RT entwickelt. Die Absorption bei einer Wellenlänge von 405 nm (OD₄₀₅) wurde photometrisch bestimmt.

2.2.19 XTT-basierender Zytotoxizitätstest

(Cell proliferation Kit II (XTT), Roche Diagnostics, Mannheim)

(Jost und Kirkwood, 1992)

Die Zytolyse von Tumorzellen wurde mit Hilfe eines XTT-basierenden Zytotoxizitäts-Test bestimmt. Hierbei wurde der Umsatz des durch mitochondriale Dehydrogenasen metabolisierten XTT (Natrium 3'-[1-phenylaminocarbonyl)-3,4-tetrazolium]-bis (4methoxy-6-nitro) Benzen-Sulfonsäure-hydrat] zu einem wasserlöslichen Formazan-Salz photometrisch bestimmt. Die Höhe des Umsatzes hängt direkt von der Viabilität der kokultivierten Zellen ab.

Es wurden jeweils 50 µl/Vertiefung XTT-Markierungslösung (1 mg/ml XTT; 1,25 mM PMS, Roche Diagnostics, Mannheim) zu 50 µl Medium/Vertiefung gegeben, der Ansatz bei 37 °C und 5 % CO₂ inkubiert und die Extinktion alle 30 min photometrisch bei einer Wellenlänge von 450 nm mit 650 nm Referenzwellenlänge ($OD_{450-650}$) bestimmt. Der maximale Umsatz von XTT wurde gemessen in den Vertiefungen, die nur Tumorzellen enthielten. Zudem wurde die OD der Vertiefungen bestimmt, die nur RPMI 1640 Medium mit 10 % (v/v) FCS. Ebenso wurde der Anteil am Gesamtumsatz des XTT-Substrates durch die Effektorzellen bestimmt. Hierfür wurde die gleiche Anzahl T-Zellen wie auch im Versuchansatz in RPMI 1640 Medium, 10 % (v/v) FCS ausplattiert und die OD-Messung dieser Vertiefungen nach Zugabe von XTT gemessen.

Die Anzahl der lebenden Tumorzellen [%] wurde wie folgt bestimmt:

Viabilität [%] =
$$\frac{OD_{Vertiefung des Versuchansatzes} - OD_{Effektorzellen alleine}}{OD_{Tumorzellen alleine} - OD_{Medium}} \times 100$$

2.2.20 Immunfluoreszenz (FACS)-Analysen

Die Zellen werden zweimal mit PBS (4 °C) gewaschen, adhärent wachsende Zellen trypsiniert und in 10 ml Medium (RPMI 1640, 10 % (v/v) FCS) resuspendiert. Etwa 2 x 10^5 Zellen werden in ein FACS-Röhrchen überführt. Die Zellen werden 3 min bei 400 x *g* zentrifugiert. Das Zellsediment wird in 2 ml PBS resuspendiert. Dieser Waschschritt wird insgesamt dreimal wiederholt. Nach dem letzten Waschschritt wird der Überstand erneut verworfen und die Zellen in etwa 100 µl PBS resuspendiert. Ein Detektions-Antikörper (Endkonzentration 5 µg/ml) wird zugegeben und die Probe 30 min auf Eis inkubiert. Ab diesem Schritt werden die Proben vor direkten Lichteinstrahlung geschützt. Danach werden die Zellen zweimal mit 2 ml eiskaltem PBS gewaschen und bei 400 x *g* zentrifugiert, wobei der Überstand jeweils verworfen wird. Anschließend wird das Zellsediment in 500 µl PBS resuspendiert und 1 µl Propidiumjodid (0,5 mg/ml, Sigma, Deisenhofen) hinzugegeben, um tote Zellen zu markieren. Die

Auswertung der Immunfluoreszenz-Tests erfolgt mit Hilfe eines FACSCaliburTM oder FACSCantoTM Durchflußzytometers (Becton Dickinson, Heidelberg).

2.2.21 Kryokonservierung von Zellen

Etwa 5 x 10^6 Zellen wurden trypsiniert, in Medium überführt und durch Zentrifugation bei 500 x g für 5 min bei RT sedimentiert. Das Zellsediment wurde in 900 µl Einfriermedium mit 10 % (v/v) DMSO resuspendiert. Diese Zellsuspensionen wurden zügig in Gefrier-Ampullen überführt und sofort auf Eis gelagert. Zunächst wurden die Zellen bei -80 °C eingefroren und nach 48h zur langfristigen Lagerung N₂ überführt.

2.2.22 Mausversuche

Für alle Mausversuche lag die Genehmigung der Bezirksregierung Köln vor. Für alle Experimente wurden ca. 8 bis 12 Wochen junge Mäuse des immunkompetenten Stammes C57-black/6 (Charles River) verwendet. Jeweils drei bis sechs Tiere pro Käfig wurden unter SPF Bedingungen gehalten. Im Tierstall wurden die Tiere bei konstant 20° C gehalten. Ein künstlicher Tag/Nacht-Zyklus von je 12 Stunden wurde erzeugt. Effektorzellen und/oder Tumorzellen wurden subkutan injiziert. Je nach Versuch wurden Zellen mit 20 bis 30 Gray mit Hilfe eines Teilchenbeschleunigers mit Neutronenquelle bestrahlt. Die Bestrahlung wurde in der Strahlentherapie der

Universitätsklinik zu Köln etwa 16 Stunden vor der Injektion durchgeführt.

2.2.23 Gewinnung von Serumproben

Blut wird aus der Schwanzarterie entnommen. Hierzu wird der Schwanz des Versuchstiers unter einer Wärmelampe gehalten, um eine maximale Gefäßerweiterung zu erreichen. Anschließend wird der Schwanz mit 70%-igem Ethanol eingerieben. Nach schneller Trocknung wird der Schwanz mit einem Skalpell eingeritzt und das herausfließende Blut in einem Eppendorf-Gefäß aufgefangen. Nach kurzem Abdrücken der Wunde kommt die Blutung zum Stehen. Das Blut wird bei 2h bei RT inkubiert. Das geronnene Blut wird für 15 min bei 1500 x g zentrifugiert und der Serumüberstand in ein frisches Eppendorf-Gefäß überführt. Die Serumproben werden bis zur Verwendung bei -80°C gelagert.

3 Ergebnisse

3.1 Optimierung eines retroviralen Gentransfer-Protokolls für die Transduktion muriner T-Lymphozyten.

Im ersten Kapitel des Ergebnisteils beschäftigen wir uns mit der Optimierung eines retroviralen Gentransferprotokolls, welches uns eine effiziente Transduktion muriner T-Lymphozyten ermöglicht. Die Retroviren werden mit Hilfe einer Verpackungszellinie, eines retroviralen Vektors mit der Expressionskassette für den rekombinanten Immunrezeptor und zwei Helfer-Plasmiden kodierend für die *Gag*, *Pol* und *Env* Proteine produziert. In unserem Fall verwenden wir Zellen der Linie 293T für die Produktion des Retrovirus. Da für die Effizienz der Transduktion das *Env* Protein entscheidend ist, verglichen wir die *Env* Proteine (Tab. 5) von Vesicular Stomatitis Virus G (VSVG), Gibbon Ape Leukemia Virus (GALV) und Moloney Murine Leukemia Virus (MMLV) untereinander.

ursprüngliches Virus	Helferplasmid, das für ein <i>Env</i> Protein kodiert
VSVG	pVpack-VSV-G (#597)
GALV	GaLV (#392)
MMLV	pVpack-10A1 (#596), pVpack-Eco (#598) und pVpack-Ampho (#599)

Tabelle 5: Plasmide, die eine Expressionskassette für ein retrovirales *Env* Protein enthalten.

Zur Produktion der Retroviren wurden Zellen der Linie 293T mit der Plasmid DNA für den retroviralen Vektor #439 kodierend für den anti-CEAscFv-hFc-hCD3ζ Immunrezeptor, der Helfer-Plasmid DNA kodierend für das *Gag* und *Pol* Protein # 393 (pHIT60) und jeweils einer der fünf Helfer-Plasmid DNA kodierend für das *Env* Protein #392 (GaLV), #596 (pVpack-10A1), #597 (pVpack-VSV-G), #598 (pVpack-Eco) oder #599 (pVpack-Ampho) ko-transfiziert. Nach 8h Stunden wurde das Medium ausgetauscht und murine T-Zellen, die mit PHA-L (3,0 µg/ml), IL-2 (500 U/ml), IL-15 (5,0 µg/ml), anti-Maus-CD3 Antikörper (1,0 µg/ml) und anti-Maus-CD28 Antikörper (0,1 µg/ml) voraktiviert waren, wurden zu den transfizierten Zellen der Linie 293T zugegeben. Nach weiteren 24h der Ko-Kultur wurden die T-Zellen entnommen. Der Nachweis des Rezeptors #439 auf der T-Zelloberfläche wurde mittels Durchflußzytometrie mit Hilfe eines PE gekoppelten anti-human IgG₁ Antikörpers, der gegen die extrazelluläre "spacer"-Domäne des rekombinanten Rezeptors gerichtet ist, und eines FITC konjugierten anti-Maus CD3 Antikörpers zum Markieren von T-Zellen durchgeführt. Nicht-transduzierte T-Zellen dienten als Kontrolle. Die Immun-fluoreszenz-Analysen wurden mit Hilfe der Durchflußzytometrie ausgewertet (Abb. 3 [A]-[F]). Alle geprüften "envelopes" vermögen murine T-Zellen zu transduzieren. Offensichtlich werden murine T-Zellen aber am effizientesten mit Retroviren infiziert, die das ecotrope *Env* Protein pVpack Eco (#598) vom MMLV enthalten (Abb.3 [E]). Nicht-transduzierte murine T-Zellen exprimieren auf der Oberfläche keinen Rezeptor.

Abbildung 3: Optimierung eines retroviralen Gentransfer-Protokolls für die Transduktion muriner

T-Lymphozyten. Zellen der Linie 293T wurden mit der Plasmid DNA für den retroviralen Vektor #439, der Helfer-Plasmid DNA #393 (*gag* und *pol* Gen) und jeweils einer der fünf *env* Plasmid DNA #392, #596, #597, #598 oder #599 ko-transfiziert. Nach 8h Stunden wurde das Medium ausgetauscht und aktivierte murine T-Lymphozyten wurden zu den transfizierten Zellen der Linie 293T zugegeben. Nach weiteren 24h der Ko-Kultur wurden die T-Lymphozyten entnommen. Der Expressionsnachweis des Rezeptors # 439 auf der T-Zelloberfläche wurde mittels Durchflußzytometrie durchgeführt. Hierfür wurde ein PE-gekoppelter anti-human IgG₁ Antikörper, der an die extrazelluläre Fc-Domäne des Rezeptors bindet, und ein FITC-konjugierter anti-Maus-CD3 Antikörper zum Markieren der T-Zellen verwendet.

3.2 Generierung muriner T-Zell Rezeptoren erster Generation mit Spezifität für CEA und CD30.

In diesem Kapitel beschäftigen wir uns mit der Konstruktion rekombinanter Immunrezeptoren für den *in vivo* Einsatz in Mäusen.

3.2.1 Generierung der murinen CD3ζ cDNA.

Die cDNA für die murine CD3ζ Signaldomäne wurde aus aktivierten murinen T-Lymphozyten gewonnen. Hierfür wurden Zellen aus der Milz einer C57-Black/6 Maus isoliert und aktiviert. Die Gesamt-RNA wurde aus den T-Zellen isoliert und in cDNA umgeschrieben. Hierfür wurde das poly-T antisense-Oligonukleotid dt(18)-N, das am 3'-poly-A-Ende der mRNA ansetzt, verwendet. Im nächsten Schritt wurde die cDNA für die murine CD3ζ Signaldomäne mit Hilfe der Oligonukleotide mCD3zeta-S (Oligo # 224) und CD3zeta-AS (Oligo # 243) aus der Gesamt-cDNA amplifiziert. Dabei wurde am 5'-Ende der vervielfältigten DNA eine Restriktionsschnittstelle für BstXI und am 3'-Ende je eine Schnittstelle für Sall und Xhol generiert. Das 488 bp lange PCR Produkt wurde aufgereinigt und mit dem linearisierten Plasmid pCR[®]2.1 ligiert (Abb. 4). Dabei fungierte die überstehende Adenin-Base an dem 3'-Ende des PCR-Produkts zusammen mit der Thymin-Base am 3'-Ende des pCR 2.1-Vektors als Bindungspaar. Zur Überprüfung der Klonierung wurde das erhaltene Plasmid pCR 2.1-murine-CD3-(#861) mit Sall geschnitten. Da die murine CD3 ζ Sequenz über eine Sall Schnittstelle verfügt, wurde das Plasmid #861 linearisiert. Erwartet wurde ein ca. 4.4 kb langes Fragment (Abb. 4). Desweiteren wurde die cDNA für die CD3ζ Signalkette in dem neu generierten Plasmid #861 sequenziert. Zur Sequenzierung der CD3C cDNA wurden die beiden Oligonukleotide M13 Reverse Primer und M13 Forward (-20) Primer verwendet (Sequenz der CD3ζ cDNA im Anhang).

Abbildung 4: Klonierungsschema zur Gewinnung der DNA Sequenz der murinen CD3 ζ Signaldomäne. Die Gesamt-RNA aus aktivierten Milzzellen einer C57-Black/6 Spendermaus wurde aus den T-Lymphozyten isoliert und in cDNA umgeschrieben. Hierfür wurde das poly-T *antisense*-Oligonukleotid dt(18)-N, das am 3'-poly-A-Ende der m-RNA ansetzt, verwendet. Aus der Gesamt-cDNA wurde mit Hilfe der Oligonukleotide mCD3zeta-S (Oligo # 224) und CD3zeta-AS (Oligo # 243) die cDNA-Sequenz für die murine CD3 ζ Signalkette amplifiziert. Am 5'-Ende der vervielfältigten DNA wurde eine Restriktionsschnittstelle für das Restriktionsenzym *BstXI* und am 3'-Ende für *SalI* und *XhoI* generiert. Das erzeugte PCR-Produkt ist ca. 0,5 kb lang und wurde zum Nachweis mittels Gelelektrophorese aufgetrennt. Das PCR Produkt wurde gereinigt und mit dem linearisierten Plasmid pCR[®]2.1 ligiert. Zur Überprüfung der Klonierung wurde das Plasmid pCR 2.1-murine-CD3 ζ (#861)

durch Restriktion mit dem Restriktionsenzym *Sall* geschnitten, wobei das Plasmid #861, aufgrund einer Schnittstelle für *Sall*, linearisiert wurde. Erwartet wurde ein ca. 4.4 kb langes Fragment.

3.2.2 Generierung der murinen CD28 cDNA.

Die cDNA für die murine CD28 Signaldomäne wurde aus aktivierten murinen T-Zellen gewonnen. Hierfür wurden T-Lymphozyten aus der Milz einer C57-Black/6 Maus präpariert und die Gesamt-RNA aus den T-Lymphozyten isoliert und in die cDNA umgeschrieben. Hierfür wurde das poly-T antisense-Oligonukleotid dt(18)-N, das am 3'-poly-A-Ende der mRNA ansetzt, verwendet. Im nächsten Schritt wurde die cDNA für die murine CD28 Signaldomäne mit Hilfe der Oligonukleotide mCD28-S (Oligo # 221) und mCD28-AS (Oligo # 223) aus der Gesamt-cDNA amplifiziert. Auf diese Weise wurde am 5'-Ende der vervielfältigten DNA eine Restriktionsschnittstelle für BstXI und am 3'-Ende je eine Schnittstelle für das Restriktionsenzym Sall und XhoI erzeugt. Das 641 bp lange PCR Produkt wurde gereinigt und mit dem linearen Plasmid pCR[®]2.1 zum neuen Plasmid pCR 2.1-murine-CD28 (#857) ligiert. Das Vorhandensein der CD28 cDNA in dem neu generierten Plasmid #857 wurde durch Restriktion mit den Restriktionsenzymen BstXI und Sall nachgewiesen. Erwartet wurde ein 3,9 kb und ein ca. 0,6 kb langes Fragment (Abb. 5). Die DNA der CD28 Signalkette wurde mit Hilfe der beiden Oligonukleotide M13 Reverse Primer und M13 Forward (-20) Primer sequenziert (Sequenzen der CD28 cDNA im Anhang).

Abbildung 5: Klonierungsschema zur Gewinnung der DNA Sequenz der murinen CD28 Signaldomäne. Die mRNA aus aktivierten Milzzellen einer C57-Black/6 Spendermaus wurde mit Hilfe des poly-T *antisense*-Oligonukleotids dt(18)-N, das am 3'-poly-A-Ende der m-RNA ansetzt, in die cDNA umgeschrieben. Aus der Gesamt-cDNA wurde mit Hilfe der Oligonukleotide mCD28-S (Oligo # 221) und CD28-AS (Oligo # 223) die cDNA-Sequenz für die murine CD28 Signalkette amplifiziert. Am 5'-Ende der vervielfältigten DNA wurde eine Restriktionsschnittstelle für das Restriktionsenzym *BstXI* und am 3'-Ende je eine Schnittstelle für *SalI* und *XhoI* generiert. Das erzeugte PCR-Produkt wurde gereinigt und mit dem linearem Plasmid pCR[®]2.1 #857 ligiert. Zur Überprüfung der Klonierung wurde das Plasmid pCR 2.1-murine-CD28 (#857) durch Restriktion mit den Restriktionsenzymen *BstXI* und *SalI* geschnitten, wobei das Plasmid in zwei Fragmente gespalten wurde. Erwartet wurde ein ca. 3,9 kb und ein ca. 0,6 kb langes Fragment.
3.2.3 Klonierung des rekombinanten anti-CD30 Immunrezeptors #866 mit muriner CD3ζ Signalkette.

Die cDNA-Sequenz für die murine CD3 ζ Transmembrandomäne und Signalkette wurde mit Hilfe der Oligonukleotide mCD3zeta-S (Oligo # 224) und mCD3zeta-AS (Oligo # 243) in einer PCR Reaktion aus dem Plasmid # 861 amplifiziert. Auf diese Weise wurde am 5'-Ende der amplifizierten DNA eine Restriktionsstelle für *BstXI* und am 3'-Ende je eine Schnittstelle für *SalI* und *XhoI* generiert. Das PCR Produkt wurde elektrophoretisch aufgetrennt und gereinigt. Im nächsten Schritt wurde das PCR Produkt und die DNA des Plasmids pBullet-HRS3scFv-mIgG- γ (#664) durch Restriktion mit den Enzymen *BstXI* und *XhoI* geschnitten (Abb. 6). Dabei wurde das DNA Fragment für die humane γ Signalkette aus dem Plasmid HRS3scFv-mIgG- γ (#664) deletiert. Die komplementären kohäsiven Enden der murinen CD3 ζ DNA und der linearisierten Plasmid DNA #664 wurden zum neuen retroviralen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD3 ζ (#866) ligiert (Abb. 12).

Die DNA für die murine CD3ζ Signalkette in dem neu generierten retroviralen Expressionsvektor #866 wurde durch Restriktion mit den Restriktions-Endonukleasen *BstXI* und *SalI* nachgewiesen, wobei zwei Fragmente der Größe 6,9 kb und 0,4 kb generiert wurden.

Zusätzlich wurde die DNA für die CD3ζ Signalkette in dem neu generierten Plasmid #866 mit Hilfe zweier Oligonukleotide mIgG1-S (Oligo # 251) und pBullet-3' (Oligo # 136) sequenziert (Sequenz im Anhang).

Abbildung 6: Klonierung des rekombinanten anti-CD30 Immunrezeptors #866. Das Plasmid #861 kodiert für die murine CD3 ζ Signalkette. Mit Hilfe der PCR wurde die CD3 ζ DNA amplifiziert und dabei am 5'-Ende die Schnittstellen für das Enzym *BstXI* und am 3'-Ende für das Enzym *XhoI* generiert, die zur Klonierung in das Plasmid pBullet-HRS3scFv-mIgG- γ (#664) genutzt wurden. Das PCR-Produkt und das Plasmid wurden durch Restriktion mit den Enzymen *BstXI* und *XhoI* geschnitten, wobei die DNA für die γ Signalkette aus dem Plasmid #664 deletiert wurde. Die komplementären kohäsiven Enden des DNA Fragments für die CD3 ζ Signalkette und des linearisierten HRS3scFv-Plasmids #664 wurden mit Hilfe der T4-Ligase ligiert. Zur Überprüfung der Klonierung wurde das entstandene Plasmid pBullet-HRS3scFv-mIgG-CD3 ζ (#866) durch Restriktion mit den Restriktionsenzymen *BstXI* und *SalI* geschnitten, wobei zwei Fragmente ca. 6,9 kb und ca. 0,4 kb groß generiert wurden.

3.2.4 Klonierung des rekombinanten anti-CD30 Immunrezeptors #878 mit muriner CD28-CD3ζ Signalkette.

Die cDNA für die murine CD28 Transmembrandomäne und Signalkette wurde mittels der PCR-Methode mit Hilfe der Oligonukleotide mCD28-S-TM-IC (Oligo # 222) und mCD3zeta/mCD28-AS (Oligo # 248) aus dem Plasmid #857 amplifiziert. Am 5'-Ende des PCR Produkts wurde eine Schnittstelle für das Restriktionsenzym *BstXI* inseriert. Am 3'-Ende des PCR Produkts wurde ein 20 Basenpaar langes Sequenzfragment inseriert, das für einen Teil der CD3 ζ Signalkette kodiert. Das fertige PCR-Produkt CD28(tm+ic) setzt sich aus der DNA für die Transmembrandomäne und Intrazellulärdomäne des murinen CD28 zusammen (Abb. 7).

Die cDNA der murinen CD3 ζ Signaldomäne wurde mittels der PCR-Methode mit Hilfe der beiden Oligonukleotide mCD3zeta-AS (Oligo # 243) und mCD28/mCD3zeta-S (Oligo # 247) aus dem Plasmid #861 amplifiziert. Am 5'-Ende des PCR Produkts wurde eine 20 Basenpaar lange Sequenz inseriert, die für einen Teil der CD28 Signaldomäne kodiert. Am 3'-Ende des PCR-Produkts wurde jeweils eine Schnittstelle für die Restriktions-Endonuklease *SalI* und *XhoI* erzeugt. Das PCR Produkt CD3 ζ (ic) enthält die DNA für die murine intrazelluläre CD3 ζ Signaldomäne (Abb. 7).

Mit Hilfe der Assembly-PCR wurden die PCR-Produkte CD28(tm+ic) und CD3 ζ (ic) dadurch miteinander verknüpft, dass die denaturierten DNA-Einzelstränge mit Hilfe der Komplementärsequenz am 3'-Ende des CD28 und am 5'-Ende des CD3 ζ PCR Produkts miteinander hybridisierten und gleichzeitig als Oligonukleotide bei der Synthese zum DNA-Doppelstrang dienten. Anschließend wurden mit Hilfe der PCR unter Verwendung der Oligonukleotide mCD28-S-TM-IC (Oligo # 222) und mCD3zeta-AS (Oligo # 243) die mCD28-mCD3 ζ DNA vervielfältigt (Abb. 8). Für den weiteren Klonierungsschritt wurde das amplifizierte PCR-Produkt mCD28-mCD3 ζ elektrophoretisch aufgetrennt und gereinigt.

Im nächsten Schritt wurde das PCR-Produkt mCD28-mCD3 ζ und die DNA des Plasmids pBullet-HRS3scFv-mIgG- γ (#664) durch Restriktion mit *BstXI* und *XhoI* geschnitten (Abb. 9). Dabei wurde das DNA Fragment für die humane γ Signalkette aus dem Plasmid HRS3scFv-mCH2/3- γ (#664) deletiert. Die komplementären kohäsiven Enden der DNA für die murine CD28-CD3 ζ Signalkette und der linearisierten Plasmid DNA #664 wurden zum neuen retroviralen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD28-mCD3 ζ (#878) ligiert. Das Vorhandensein der DNA für die murine

CD28-CD3ζ Signalkette in dem neu generierten retroviralen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD28-mCD3ζ (#878) wurde durch die Restriktion mit den Restriktionsendonukleasen *BstXI* und *XhoI* nachgewiesen, wobei zwei Fragmente der erwarteten Größe ca. 6,9 kb und ca. 0,6 kb generiert wurden (Abb. 9). Die DNA für die CD28 Signalkette in dem neu generierten Plasmid #878 wurde mittels der Oligonukleotide mIgG1-S (Oligo # 251) und pBullet-3' (Oligo # 136) sequenziert (Sequenzen im Anhang).

Abbildung 7: Klonierung des rekombinanten anti-CD30 Immunrezeptors #878 mit muriner CD28-CD3*ζ***Signalkette.** Die CD28 DNA wurde mittels der PCR-Methode mit Hilfe der Oligonukleotide mCD28-S-TM-IC (Oligo # 222) und mCD3zeta/mCD28-AS (Oligo # 248) aus dem Plasmid #857 amplifiziert und dabei am 5'-Ende die Schnittstelle für das Restriktionsenzym *BstXI* und am 3'-Ende eine 20 Basenpaar lange Sequenz inseriert, die für einen Teil der interzellulären CD3ζ Signaldomäne kodiert. Das PCR Produkt CD28(tm+ic) enthält die DNA für die Transmembran- und Intrazellulärdomäne des murinen CD28. Das murine CD3ζ wurde mittels der Oligonukleotide mCD3zeta-AS (Oligo # 243) und mCD28/mCD3zeta-S (Oligo # 247) aus dem Plasmid #861 amplifiziert. Das PCR Produkt CD3ζ(ic) enthält die DNA für die intrazelluläre murine CD3ζ Signalkette. Am 5'-Ende des PCR Produkts wurde eine 20 Basenpaar lange Sequenz inseriert, die für einen Teil der intrazellulären CD28 Signalkette kodiert. Am 3'-Ende des PCR Produkts wurde je eine Schnittstelle für die Enzyme *SalI* und *XhoI* erzeugt.

Abbildung 8: Generierung der DNA für die murine mCD28-mCD3 Signalkette mittels Assembly-**PCR.** Mit Hilfe der Assembly-PCR wurden die beiden PCR-Produkte CD28(tm+ic) und CD3ζ(ic) miteinander verknüpft. Nach der Denaturierung hybridisierte die 3'-Endsequenz des CD28 PCR Produkts mit der komplementären 5'-Sequenz des CD3ζ PCR Produkts. Dabei dienten die miteinander hybridisierten Sequenzbereiche als Oligonukleotide bei der Synthese zum DNA-Doppelstrang. Anschließend wurden die beiden Oligonukleotide mCD28-S-TM-IC (Oligo # 222) und mCD3zeta-AS (Oligo # 243) zugegeben, um das PCR-Produkt mCD28-mCD3ζ in der gewünschten Gesamtlänge zu amplifizieren. Dabei wurde am 5'-Ende eine Schnittstelle für das Restriktionsenzym *BstXI*, am 3'-Ende

jeweils eine Schnittstelle für das Restriktionsenzym Sall und Xhol inseriert.

Abbildung 9: Klonierung des rekombinanten anti-CD30 Immunrezeptors #878 mit muriner CD28-CD3 ζ Signalkette. Das PCR-Produkt mCD28-mCD3 ζ und die Plasmid DNA pBullet-HRS3scFvmCH2/3- γ (#664) wurden mit *BstXI* und *XhoI* geschnitten. Dabei wurde das DNA Fragment für die humane γ Signalkette aus dem Plasmid HRS3scFv-mCH2/3- γ (#664) deletiert. Die DNA für die murine CD28-CD3 ζ Signalkette wurde mit der linearisierten Plasmid DNA #664 mittels T4-Ligase ligiert. Der Nachweis der DNA für die murine CD28-CD3 ζ Signalkette in dem neu generierten retroviralen Expressionsvektor pBullet-HRS3scFv-mCH2/3-mCD28-mCD3 ζ (#878) wurde durch Restriktion mit den Restriktionsendonukleasen *BstXI* und *XhoI* durchgeführt. Die Reaktion lieferte erwartungsgemäß ein ca. 6,9 kb und ein ca. 0,6 kb langes Fragment.

3.2.5 Klonierung des rekombinanten anti-CEA Immunrezeptors #881 mit muriner CD3ζ Signalkette.

Das Plasmid pBullet-HRS3scFv-mIgG-mCD3 ζ (#866) wurde durch Restriktion mit den Restriktionsendonukleasen *NcoI* und *BstXI* in zwei Fragmente geschnitten, wobei das Fragment, das die HRS3scFv-mIgG DNA enthält, deletiert wurde. Das andere Fragment, das die linearisierte Plasmid DNA #866 enthält, wurde für die weitere Klonierungsarbeit verwendet. Um die BW431/26scFv-mIgG Sequenz zu erhalten, wurde das Plasmid pBullet-BW431/26scFv-mIgG- γ (#663) durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* geschnitten, so dass ein ca. 1,5 kb langes Fragment, das für den extrazellulären Anteil am Rezeptor kodiert, isoliert wurde.

Die komplementären kohäsiven Enden des BW431/26scFv-mIgG Fragments und der linearisierten Plasmid DNA #866 wurden miteinander ligiert, wobei der retrovirale Expressionsvektor pBullet-BW431/26scFv-mIgG-mCD3ζ (#881) generiert wurde (Abb. 10).

Zur Überprüfung der Klonierung wurde das Plasmid #881 durch Restriktion mit dem Restriktionsenzym *BstXI* linearisiert. Das Vorhandensein der BW431/26scFv Sequenz im Plasmid # 881 wurde durch Restriktion mit dem Restriktionsenzym *XhoI* nachgewiesen. Im Unterschied zu dem Ausgangsvektor #866 enthält das neu generierte Plasmid #881 eine zusätzliche Schnittstelle für das Restriktionsenzym *XhoI*, so dass die Restriktionsreaktion jeweils zwei Fragmente der Größe 5.9 kb und 1,4 kb lieferte (Abb. 10).

Die Sequenz des Rezeptors BW431/26scFv-mIgG-mCD3ζ mit den flankierenden Regionen im neu generierten Plasmid #881 mittels der Oligonukleotide pBullet-5' (Oligo # 51), pBullet-3' (Oligo # 136) und mIgG1-S (Oligo # 251) sequenziert (Sequenzen im Anhang).

Abbildung 10: Klonierung des rekombinanten anti-CEA Immunrezeptors #881 mit muriner CD3 ζ Signalkette. Das Plasmid pBullet-BW431/26scFv-mCH2/3- γ (#663) wurde durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei Sequenzfragmente geschnitten, wobei die BW431/26scFvmIgG DNA generiert und für die weitere Klonierung verwendet wurde. Die linearisierte Plasmid DNA #663 wurde deletiert. Das Plasmid pBullet-HRS3scFv-mIgG-mCD3 ζ (#866) wurde ebenfalls durch Restriktion mit den Enzymen *NcoI* und *BstXI* geschnitten, wobei das HRS3scFv-mIgG Fragment deletiert und die linearisierte Plasmid DNA #866 für die weitere Klonierung verwendet wurde Das BW431/26scFv-mIgG Fragment wurde mit der linearisierten Plasmid DNA #866 mittels T4-Ligase zum neun retroviralen Expressionsvektor pBullet-BW431/26scFv-mIgG-mCD3 ζ (#881) ligiert. Das

Vorhandensein der DNA für die BW431/26scFv-Bindedomäne in dem neu generierten retroviralen Expressionsvektor #881 wurde durch Restriktion mit dem Enzym *XhoI* nachgewiesen, wobei das Plasmid #881 erwartungsgemäß in zwei Fragmente, ca. 5,9 kb und ca. 1,4 kb lang, gespalten wurde.

3.2.6 Klonierung des rekombinanten anti-CEA Immunrezeptors #883 mit muriner CD28-CD3ζ Signalkette.

Das Plasmid pBullet-HRS3scFv-mIgG-mCD28-mCD3 ζ (#878) wurde durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei Fragmente geschnitten. Das Fragment, das die HRS3scFv-mIgG DNA enthält, wurde deletiert. Das andere Fragment, das die linearisierte Plasmid DNA #878 enthält, wurde gereinigt und isoliert. Das Plasmid pBullet-BW431/26scFv-mCH2/3- γ (#663) wurde durch Restriktion mit den Enzymen *NcoI* und *BstXI* in zwei Fragmente geschnitten, wobei die BW431/26scFv-mIgG DNA isoliert, gereinigt und mit der linearisierten Plasmid DNA #878 zum neuen Plasmid pBullet-BW431/26scFv-mIgG-mCD28-mCD3 ζ (#883) ligiert wurde.

Das Vorhandensein der BW431/26scFv Sequenz im Plasmid #883 wurde durch Restriktion mit dem Restriktionsenzym *XhoI* nachgewiesen, da im Unterschied zu dem Ausgangsvektor #878 das neu generierte Plasmid #883 über eine zusätzliche Schnittstelle für das Restriktionsenzym *XhoI* verfügt, so dass zwei Fragmente der Größe 5,9 kb und 1,5 kb generiert wurden (Abb. 11). Zusätzlich wurde die DNA des Rezeptors BW431/26scFv-mIgG-mCD28-mCD3ζ (#883) einschließlich der flankierenden Regionen mit Hilfe der Oligonukleotide pBullet-5' (Oligo # 51), pBullet-3' (Oligo # 136) und mIgG1-S (Oligo #251) sequenziert (Rezeptorsequenz im Anhang).

Abbildung 11: Klonierung des rekombinanten anti-CEA Immunrezeptors #883 mit muriner CD28-CD3 ζ Signalkette. Das Plasmid pBullet-BW431/26scFv-mCH2/3- γ (#663) wurde durch Restriktion mit den Enzymen *NcoI* und *BstXI* in zwei Sequenzfragmente gespalten. Das BW431/26scFv-mIgG Fragment, das für den extrazellulären Anteil am Immunrezeptor kodiert, wurde isoliert. Die linearisierte Plasmid DNA #663 wurde deletiert. Das Plasmid pBullet-HRS3scFv-mIgG-mCD28-mCD3 ζ (#878) wurde ebenfalls durch Restriktion mit den Enzymen *NcoI* und *BstXI* geschnitten, wobei das HRS3scFv-mIgG Fragment deletiert wurde. Hingegen wurde die linearisierte Plasmid DNA #878 mit der BW431/26scFv DNA mit Hilfe der T4-Ligase zum neuen retroviralen Expressionsvektor pBullet-BW431/26scFv-mIgG-mCD3 ζ (#883) ligiert. Das Vorhandensein der DNA für die BW431/26scFv-Bindedomäne in dem neu generierten retroviralen Expressionsvektor pBullet-BW431/26scFv-mIgG-mCD3 ζ (#878)

(#883) wurde durch Restriktion mit dem Restriktionsenzym *XhoI* nachgewiesen, wobei zwei Fragmente, ca. 5,9 kb und ca. 1,5 kb lang, generiert wurden.

Abbildung 12: Plasmidkarten der neu generierten retroviralen Expressionsvektoren # 866, # 878, # 881 und # 883.

3.2.7 Expression der rekombinanten anti-CEA oder anti-CD30 Immunrezeptoren mit einer CD3ζ oder CD28-CD3ζ Signaltransduktionskette in Zellen der Linie 293T.

In diesem Abschnitt untersuchten wir die Expression der neu generierten rekombinanten Immunrezeptoren auf der Oberfläche von Zellen der Linie 293T. Dazu wurden Zellen der Linie 293T mit der DNA für den anti-CEA Rezeptor BW431/26scFv-mIgG-mCD3ζ (#881) und für den anti-CEA Rezeptor BW431/26scFv-mIgG-mCD3ζ (#883) transfiziert. Außerdem wurden weitere Zellen der Linie 293T mit der DNA für die anti-CD30 Rezeptoren HRS3scFv-mIgG-mCD3ζ (#866) und HRS3scFv-mIgG-mCD28mCD3ζ (#878) transfiziert.

Nach 48h der Inkubation wurde die Expression rekombinanter Rezeptoren auf der Oberfläche transfizierter 293T Zellen mittels Durchflußzytometrie mit Hilfe des FITC-konjugierten anti-Maus IgG₁ Antikörpers, der an die extrazelluläre IgG Proteindomäne des Rezeptors bindet, nachgewiesen. Als Isotyp-Kontrolle wurde ein FITC-gekoppelter anti-human IgG₁ Antikörper verwendet.

Die Expression der rekombinanten anti-CD30 und anti-CEA Immunrezeptoren mit einer CD3 ζ (#866 und #881) oder mit einer kombinierten CD28-CD3 ζ -Signalkette (#878 und #883) wurde mit Hilfe des FITC-konjugierten anti-Maus-IgG₁ Antikörpers nachgewiesen. Die Frequenz der Rezeptorexpression in 293T Zellen ist offensichtlich äußerst niedrig (Abb.13, [B], [C], [D] und [E]). Der Nachweis der Rezeptoren ist jedoch spezifisch, da auf der Zelloberfläche nicht-transfizierter Zellen der Linie 293T keine Rezeptoren detektiert wurden (Abb.13 [A]).

Abbildung 13: Expression der rekombinanten anti-CEA (#881 und #883) und der anti-CD30 Immunrezeptoren (#866 und #878) auf der Oberfläche von Zellen der Linie 293T. Jeweils $1,5 \times 10^6$ Zellen der Linie 293T wurden mit Vektor DNA, kodierend für die Rezeptoren # 866, # 878, # 881 oder # 883, transfiziert und für 48h bei 37°C inkubiert. Nach der Inkubation wurden Zellen der Linie 293T mit einem FITC-gekoppelten anti-Maus IgG₁ Antikörper (schwarze Linie), der an die extrazelluläre IgG Domäne des rekombinanten Rezeptors bindet, oder mit einem FITC-markierten anti-human IgG₁ Antikörper als Kontrolle (graue Linie) inkubiert und mittels Durchflußzytometrie ausgewertet.

3.2.8 Expression der rekombinanten murinen anti-CEA oder anti-CD30 Immunrezeptoren in murinen CD3⁺ T-Lymphozyten.

Murine CD3⁺ T-Lymphozyten wurden aus der Milz einer C57-Black/6 Maus isoliert und mit Hilfe von PHA-L (1,0 µg/ml), anti-Maus CD28 (0,1 ng/ml), anti-Maus CD3 (0,2 ng/ml), IL-2 (200 U/ml) und IL-15 (5,0 µg/ml) aktiviert. Anschließend wurden die T-Lymphozyten jeweils mit den Vektoren für den Rezeptor BW431/26scFv-mIgGmCD3ζ (#881), BW431/26scFv-mIgG-mCD28-mCD3ζ (#883), HRS3scFv-mIgGmCD3ζ (#866), HRS3scFv-mIgG-mCD28-mCD3ζ (#878) oder BW431/26-mIgGmCD4-mCD3ζ (#895) retroviral transduziert. Dazu wurden die Retroviren in Zellen der Linie 293T durch Transfektion mit der Vektor DNA und mit den beiden retroviralen Helferplasmiden pColt (#393) und pVPack-Eco (#598) produziert. Die murinen CD3⁺ T-Lymphozyten wurden anschließend mittels der generierten ecotropen Retroviren infiziert. Nach 24h der Ko-Kultivierung der T-Zellen mit den Virus-produzierenden 293T Zellen im IL-2- und IL-15-haltigen Kulturmedium erfolgte der Nachweis der Immunrezeptoren mittels Durchflußzytometrie mit Hilfe des FITC-gekoppelten anti-Maus CD3 Antikörpers und des PE-konjugierter anti-Maus IgG₁ Antikörpers. Murine CD3⁺ T-Lymphozyten, die mit dem Vektor für den Rezeptor anti-CEA-mIgG-mCD4-CD3((#895) retroviral transduziert wurden, dienten zum Vergleich. Nicht-transduzierte murine CD3⁺ T-Lymphozyten dienten als Kontrolle (Abb. 14).

Die Frequenz und Expressionsstärke des Immunrezeptors mit der murinen CD4 Transmembrandomäne (#895) ist in Vergleich zu Immunrezeptoren mit der murinen CD3 Transmembrandomäne (#866, #878, #881 und #883) signifikant höher. Aufgrund dieses Ergebnisses wurden rekombinante Immunrezeptoren der zweiten Generation kloniert, die eine murine CD4 Transmembrandomäne enthalten.

Abbildung 14: Expression der anti-CEA (#881 und #883) und der anti-CD30 Immunrezeptoren (#866 und #878) auf der Oberfläche transduzierter muriner CD3⁺ T-Lymphozyten. Die murinen CD3⁺ T-Zellen wurden mit den Expressionsvektoren, kodierend für die Immunrezeptoren #866, #878, #881 und #883, retroviral transduziert. T-Zellen, transduziert mit dem Vektor, kodierend für den Immunrezeptor #895, dienten als Vergleich und nicht-transduzierte murine CD3⁺ T-Zellen wurden als Kontrolle benutzt. Nach 24h der Inkubation wurde die Expression der rekombinanten Rezeptoren auf der Oberfläche von CD3⁺ T-Zellen mit Hilfe des PE-konjugierten anti-Maus-IgG₁ Antikörpers, der an die extrazelluläre murine mIgG Domäne bindet, und des FITC-gekoppelten anti-Maus-CD3 Antikörpers, der an die CD3 Domäne des T-Zell-Rezeptors bindet, mittels Durchflußzytometrie nachgewiesen. Mit Hilfe der durchflußzytometrischen Analyse wurde der prozentuale Anteil der T-Zellen, die den Rezeptor auf der Oberfläche exprimiert haben, von der Gesamtzahl der T-Zellen bestimmt.

3.3 Generierung muriner T-Zell Rezeptoren zweiter Generation mit Spezifität für CEA oder CD30.

In diesem Kapitel beschäftigen wir uns mit der Optimierung der rekombinanten Immunrezeptoren. Die zuvor konstruierten Immunrezeptoren mit der murinen CD3ζ Transmembrandomäne wurden nur unzureichend auf der T-Zell Oberfläche exprimiert. Für den *in vitro* als auch den *in vivo* Einsatz rekombinanter Immunrezeptoren benötigen wir eine höhere Expressionsdichte des Rezeptors auf der Oberfläche transduzierter T-Lymphozyten. Um dieses zu erreichen, haben wir die murinen Rezeptoren mit der CD4 Transmembrandomäne ausgestattet.

3.3.1 Klonierung des rekombinanten anti-CD30 Immunrezeptors #892 mit muriner CD4 Transmembran- und CD3ζ Signaldomäne.

Die DNA für die murine CD3ζ Signalkette wurde mittels der PCR und mit Hilfe der Oligonukleotide mCD4TM-mCD3zeta-S (Oligo # 255) und mCD3zeta-AS (Oligo # 243) aus dem Plasmid #861 amplifiziert. Auf diese Weise wurde am 5'-Ende der amplifizierten DNA eine Restriktionsschnittstelle für BstXI erzeugt. Hinter die Schnittstelle für das Restriktionsenzym BstXI wurde die DNA für die Transmembrandomäne des murinen CD4 inseriert. Am 3'-Ende der amplifizierten DNA wurde je eine Schnittstelle für das Restriktionsenzym Sall und Xhol generiert. Das PCR Produkt wurde elektrophoretisch aufgetrennt, gereinigt und anschließend durch Restriktion mit den Enzymen BstXI und XhoI geschnitten. Ebenso wurde die DNA des Plasmids pBullet-HRS3scFv-mCH2/3-mCD28-mCD3ζ-mOX40 (#869) durch Restriktion mit den Enzymen BstXI und XhoI geschnitten, wobei die DNA für die murine CD28-CD3-OX40 Domäne aus dem Plasmid #869 deletiert wurde. Die komplementären kohäsiven Enden des CD4-CD3² PCR-Produktes und des linearisierten Plasmids #869 wurden zum neuen retroviralen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD4-mCD3 (#892) ligiert, der statt der CD3ζ Transmembrandomäne die CD4 Domäne besitzt (Abb. 15).

Zur Überprüfung der Klonierung wurden sowohl der Ausgangsvektor pBullet-HRS3scFv-mIgG-mCD28-mCD3ζ-mOX40 (#869) als auch der neu generierte Expressionsvektor pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ (#892) durch Restriktion mit den Restriktionsenzymen *BstXI* und *XhoI* geschnitten, wobei zwei DNA Fragmente erwarteter Größe generiert wurden. Zudem wurde die DNA für die Transmembrandomäne und die Signalkette im Plasmid #892 mit Hilfe der Oligonukleotide pBullet-3' (Oligo # 136) und mIgG1-S (Oligo # 251) sequenziert (Sequenz im Anhang).

Abbildung 15: Klonierung des rekombinanten anti-CD30 Immunrezeptors #892 mit muriner CD4 Transmembrandomäne und CD3ζ **Signalkette.** Mit Hilfe der PCR und der Oligonukleotide mCD4TMmCD3zeta-S (Oligo # 255) und mCD3zeta-AS (Oligo # 243) wurde die DNA für die murine CD3ζ Signalkette aus dem Plasmid #861 amplifiziert. Hierdurch wurde am 5'-Ende der amplifizierten DNA

eine Restriktionsschnittstelle für *BstXI* generiert und dahinter die murine CD4 Transmembrandomäne inseriert. Am 3'-Ende der amplifizierten DNA wurde je eine Schnittstelle für das Restriktionsenzym *SalI* und *XhoI* erzeugt. Nach elektrophoretischer Auftrennung und Reinigung wurde das PCR Produkt und die DNA des Plasmids pBullet-HRS3scFv-mIgG-mCD28-mCD3ζ-mOX40 (#869) durch Restriktion mit *BstXI* und *XhoI* geschnitten, wobei die CD28-CD3-OX40 DNA aus dem Plasmid #869 deletiert wurde. Mit Hilfe der T4-Ligase wurde die DNA für die murine CD4-CD3ζ Domäne mit dem linearisierten Plasmid #869 zum neuen retroviralen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ (#892) ligiert, dessen Gesamtgröße etwa 7,3 kb beträgt. Die erfolgreiche Insertion der DNA für die murine CD4-CD3ζ Domäne wurde durch Restriktion mit den Restriktionsenzymen *BstXI* und *XhoI* nachgewiesen, wobei erwartungsgemäß für das Plasmid #869 ein ca. 5,4 kb und ein ca. 0,7 kb langes Fragment und für das Plasmid #892 DNA Fragmente von ca. 5,4 kb und ca. 0,5 kb Länge generiert wurden.

3.3.2 Klonierung des rekombinanten anti-CEA Immunrezeptors #895 mit muriner CD4 Transmembrandomäne und CD3ζ Signalkette.

Die DNA für die murine CD3ζ Signalkette wurde mittels der PCR aus dem Plasmid #861 mit Hilfe der Oligonukleotide mCD4TM-mCD3zeta-S (Oligo # 255) und mCD3zeta-AS (Oligo # 243) amplifiziert. Am 5'-Ende der amplifizierten DNA wurde eine Restriktionsschnittstelle für das Restriktionsenzym BstXI erzeugt. Hinter die Schnittstelle für die Restriktionsendonuklease BstXI wurde die DNA für die Transmembrandomäne des murinen CD4 inseriert. Am 3'-Ende der amplifizierten DNA wurde je eine Schnittstelle für das Restriktionsenzym Sall und XhoI erzeugt. Das PCR-Produkt und die DNA des Plasmids pBullet-BW431/26scFv-mIgG-mCD28-mCD3ζmOX40 (#884) wurden in einer Restriktionsreaktion mit BstXI und Sall geschnitten (Abb. 16). Dabei wurde das DNA Fragment für die murine CD28-CD3-OX40 Domäne aus dem Plasmid #884 deletiert. Das DNA Fragment für die murine CD4-CD3 Domäne und das linearisierte Plasmid #884 wurden mit Hilfe der T4-Ligase ligiert (Abb. 16). Auf diese Weise wurde die CD3 Transmembrandomäne des Rezeptors #884 gegen die CD4 Transmembrandomäne ausgetauscht, was zur Generierung des retroviralen Expressionsvektors pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ (#895) führte.

Zur Überprüfung der Klonierung wurden die Expressionsvektoren #884 und #895 durch Restriktion mit dem Restriktionsenzym *XhoI* geschnitten., wobei für die Plasmide #884 und #895 jeweils zwei Fragmente erwarteter Größe generiert wurden, da sie je eine Schnittstelle für *XhoI* innerhalb der Bindedomäne BW431/26scFv und eine weitere unmittelbar hinter dem Stop-Codon des Rezeptors enthalten. Zudem wurde die DNA für die Transmembrandomäne und die Signalkette im neu generierten Plasmid #895 mit Hilfe der beiden Oligonukleotide pBullet-3' (Oligo # 136) und mIgG1-S (Oligo # 251) sequenziert (Rezeptorsequenz im Anhang).

Abbildung 16: Klonierung des rekombinanten anti-CEA Immunrezeptors #895 mit muriner CD4 Transmembrandomäne und CD3ζ Signalkette. Mit Hilfe der PCR und mittels der Oligonukleotide

mCD4TM-mCD3zeta-S (Oligo # 255) und mCD3zeta-AS (Oligo # 243) wurde die DNA für die murine CD3ζ Signalkette aus dem Plasmid #861 amplifiziert. Am 5'-Ende des PCR Produkts wurde eine Restriktionsschnittstelle für *BstXI* erzeugt und dahinter die DNA für die CD4 Transmembrandomäne inseriert. Am 3'-Ende der amplifizierten DNA wurde je eine Schnittstelle für das Restriktionsenzym *SalI* und *XhoI* erzeugt. Das PCR Produkt ist ca. 0,5 kb lang und wurde elektrophoretisch getrennt und gereinigt und anschließend durch Restriktion mit den Restriktionsenzymen *BstXI* und *XhoI* geschnitten. Die DNA des Plasmids pBullet-BW431/26scFv-mIgG-mCD28-mCD3ζ-mOX40 (#884) wurde ebenfalls durch Restriktion mit den Enzymen *BstXI* und *XhoI* geschnitten, wobei die DNA für die CD28-CD3-OX40 Signalkette deletiert wurde. Anschließend wurde die DNA für die murine CD4-CD3ζ Domäne mit dem linearisierten Plasmids #884 mit Hilfe der T4-Ligase zum neuen retroviralen Expressionsvektor pBullet-BW431/26scFv-mIgG-mCD4(#895) ligiert. Zur Überprüfung der Klonierung wurde die Plasmid DNA der Expressionsvektoren #884 und #895 durch Restriktion mit dem Restriktionsenzym *XhoI* geschnitten, wobei die Reaktion für das Plasmid #884 ein ca. 5,9 kb und ein ca. 1,8 kb langes DNA Fragment und für das Plasmid #895 ein ca. 5,9 kb und ein ca.1,4 kb langes DNA Fragment lieferte.

3.3.3 Klonierung des rekombinanten anti-CD30 Immunrezeptors #897 mit muriner CD4 Transmembrandomäne und CD3ζ-OX40 Signalkette.

Die DNA für die murine OX40 Signalkette wurde mit Hilfe der PCR und mittels der Oligonukleotide mCD3zeta/mOx40 (Oligo # 332) und mOx40-AS (Oligo # 246) aus dem Plasmid #832 amplifiziert. Am 5'-Ende des PCR-Produkts wurde die 21 Basenpaar lange Teilsequenz der intrazellulären CD3ζ Signaldomäne inseriert. Am 3'-Ende des PCR Produkts wurde je eine Schnittstelle für das Restriktionsenzym Sall und Xhol inseriert (Abb. 17). Parallel wurde die DNA für die murine CD35 Signalkette mittels der Oligonukleotide mCD4tm-mCD3zeta-S (Oligo # PCR und der 255) und mOx40/mCD3zeta (Oligo # 333) aus dem Plasmid #861 amplifiziert. Am 5'-Ende der amplifizierten DNA wurde eine Restriktionsschnittstelle für das Restriktionsenzym BstXI generiert und dahinter die DNA für die Transmembrandomäne des murinen CD4 inseriert. Am 3'-Ende des PCR Produkts wurde eine 27 Basenpaar lange Teilsequenz der murinen OX40 Signaldomäne eingefügt. Das PCR Produkt mCD4-mCD3ζ enthält die DNA für die murine CD4 Transmembrandomäne und die CD35 Signalkette (Abb. 17).

Mit Hilfe der Assembly-PCR wurden die PCR Produkte mCD4-mCD3ζ und mOX40 miteinander fusioniert (Abb. 18). Aufgrund der komplementären Sequenzen am 3'-Ende des mCD4-mCD3ζ und am 5'-Ende des mOX40 PCR-Produkts hybridisierten die denaturierten DNA-Einzelstränge miteinander und dienten gleichzeitig als

Oligonukleotide bei der Synthese zum DNA-Doppelstrang. Anschließend wurde mit Hilfe der PCR und mittels der Oligonukleotide mCD4TM-mCD3zeta (Oligo # 255) und mOx40-AS (Oligo # 246) das PCR-Produkt mCD4-mCD3ζ-mOX40 in der geforderten Gesamtlänge vervielfältigt. Das Assembly-PCR-Produkt mCD4-mCD3ζ-mOX40 enthält am 5'-Ende eine Schnittstelle für das Restriktionsenzym *BstXI* und am 3'-Ende je eine Schnittstelle für das Restriktionsenzym *SalI* und *XhoI* (Abb. 18).

Anschließend wurde das PCR-Produkt mCD4-mCD3 ζ -mOX40 und die DNA des Plasmids pBullet-HRS3scFv-mCH2/3- γ (#664) durch Restriktion mit den Enzymen *BstXI* und *XhoI* geschnitten, wobei das DNA Fragment für die humane γ Signalkette aus dem Plasmid HRS3scFv-mCH2/3- γ (#664) deletiert. Mit Hilfe der T4-Ligase wurde die DNA für die murine mCD4-mCD3- ζ -mOx40 Signalkette mit der linearisierten Plasmid DNA #664 zum neu generierten retroviralen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#897), der die murine CD4 Transmembrandomäne enthält, ligiert (Abb. 19).

Das Vorhandensein der DNA für die murine CD4-CD3ζ-OX40 Signalkette in dem neuen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897) wurde durch Restriktion mit den Restriktionsendonukleasen *BstXI* und *XhoI* nachgewiesen, wobei diese Reaktion jeweils zwei Fragmente der erwarteten Größe lieferte (Abb. 19). Ferner wurde die Sequenz für die CD4-CD3ζ-OX40 Signalkette in dem neu generierten Expressionsvektor #897 mit Hilfe der Oligonukleotide mIgG1-S (Oligo # 251) und pBullet-3' (Oligo # 136) sequenziert (Sequenzen im Anhang).

Abbildung 17: Klonierung des rekombinanten anti-CD30 Immunrezeptors #897 mit muriner CD4 Transmembrandomäne und muriner CD3 ζ -OX40 Signalkette. Die CD3 ζ DNA wurde mittels der PCR aus dem Plasmid #861 mit Hilfe der Oligonukleotide mCD4TM-mCD3-zeta-S (Oligo # 255) und mOx40/mCD3zeta (Oligo # 333) amplifiziert. Das PCR Produkt enthält die DNA für die murine CD4 Transmembrandomäne und die CD3 ζ Signalkette und ist ca. 0,5 kb lang. Am 5'-Ende des PCR Produkts wurde die Schnittstelle für das Restriktionsenzym *BstXI* generiert. Hinter die Schnittstelle für die Restriktionsendonuklease *BstXI* wurde die DNA für die Transmembrandomäne des murinen CD4 inseriert. Am 3'-Ende des PCR-Produkts wurde zusätzlich eine 27 Basenpaar lange Teilsequenz der murinen OX40 Signaldomäne inseriert. Die DNA für die murine OX40 Signaldomäne wurde mittels der PCR aus dem Plasmid # 832 und mit Hilfe der Oligonukleotide mCD3zeta/mOX40 (Oligo # 332) und mOX40-AS (Oligo # 246) amplifiziert und dabei zusätzlich am 5'-Ende eine 21 Basenpaar lange Teilsequenz der intrazellulären CD3 ζ Signaldomäne inseriert. Am 3'-Ende des PCR-Produkts wurde je eine Schnittstelle für das Restriktionsenzym *SalI* und *XhoI* erzeugt. Das fertige PCR-Produkt mOX40(ic) ist ca. 0,15 kb lang.

Abbildung 18: Erzeugung der DNA Sequenz für die murine CD4-CD3ζ-OX40 Signalkette mittels Assembly-PCR. Mit Hilfe der Assembly-PCR wurden die PCR Produkte mCD4-mCD3ζ und mOX40 miteinander fusioniert. Nach der Denaturierung hybridisierte die 3'-Endsequenz des mCD4-mCD3ζ PCR Produkts mit der komplementären 5'-Anfangssequenz des mOX40 PCR Produkts. Dabei dienten die miteinander hybridisierten Sequenzbereiche als Oligonukleotide bei der Synthese zum DNA-Doppelstrang. Anschließend wurden die beiden Oligonukleotide mCD4tm-mCD3zeta-S (Oligo # 255) und mOx40-AS (Oligo # 246) zugegeben, um das PCR Produkt CD4-CD3ζ-OX40 in der gewünschten Gesamtlänge zu amplifizieren. Dabei wurde am 5'-Ende eine Schnittstelle für das Restriktionsenzym *BstXI*, am 3'-Ende jeweils eine Schnittstelle für das Restriktionsenzym *SalI* und *XhoI* inseriert. Das fertige PCR-Produkt mCD28-mCD3-ζ ist ca. 0,6 kb lang.

Abbildung 19: Klonierung des rekombinanten anti-CD30 Immunrezeptors #897 mit muriner CD4 Transmembrandomäne und muriner CD3ζ-OX40 Signalkette. Das PCR Produkt mCD4-mCD3ζmOX40 und die Plasmid DNA pBullet-HRS3scFv-mCH2/3- γ (#664) wurden durch Restriktion mit den Enzymen *BstXI* und *XhoI* geschnitten. Dabei wurde das DNA Fragment für die humane γ Signalkette aus dem Plasmid HRS3scFv-mCH2/3- γ (#664) deletiert. Die DNA für die murine CD4-CD3ζ-OX40 Signalkette wurde mit der linearisierten Plasmid DNA #664 zum neuen retroviralen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897) ligiert, dessen Gesamtgröße etwa 7,4 kb beträgt. Das Vorhandensein der DNA für die murine CD4-CD3ζ-OX40 Domäne in dem neuen retroviralen Expressionsvektor #897 wurde durch Restriktion mit den Restriktionsenzymen *BstXI* und *XhoI* nachgewiesen. Die Reaktion lieferte erwartungsgemäß ein ca. 6,9 kb und ein ca. 0,6 kb langes Fragment.

3.3.4 Klonierung des rekombinanten anti-CEA Immunrezeptors #898 mit muriner CD4 Transmembrandomäne und CD35-OX40 Signalkette.

Das Plasmid pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ (#895) wurde durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei DNA Fragmente geschnitten. Das eine Fragment, das die BW431/26scFv-mIgG DNA enthält, wurde für die weitere Klonierungsarbeit verwendet. Das andere Fragment, das die linearisierte Plasmid DNA #895 enthält, wurde deletiert.

Das Plasmid pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897) wurde durch Restriktion mit Hilfe der Restriktionsenzyme *NcoI* und *BstXI* in zwei DNA Fragmente geschnitten, wobei das Fragment, das die Sequenz für die extrazelluläre HRS3scFv-mIgG Domäne enthält, deletiert und das andere Fragment, das die linearisierte Plasmid DNA #897 enthält, für die weitere Klonierungsarbeit verwendet wurde.

Das DNA Fragment BW431/26scFv-mIgG wurde mit der linearisierten Plasmid DNA #897 zum neuen retroviralen Expressionsvektor pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898) ligiert (Abb. 20).

Das Vorhandensein der BW431/26scFv DNA in dem Plasmid #898 wurde durch Restriktion mit dem Restriktionsenzym *XhoI* nachgewiesen. Im Unterschied zu dem Ausgangsvektor #897 verfügt der neue Expressionsvektor #898 im Sequenzbereich der BW431/26scFv Domäne über eine zusätzliche Schnittstelle für das Restriktionsenzym *XhoI*, so dass die Restriktion jeweils zwei Fragmente der erwarteten Größe lieferte (Abb. 20).

Ferner wurde die DNA des Rezeptors BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 mit den flankierenden Regionen im neu generierten Plasmid #898 mit Hilfe der Oligonukleotide pBullet-5' (Oligo # 51), pBullet-3' (Oligo # 136) und mIgG1-S (Oligo # 251) sequenziert (Sequenzen im Anhang).

Abbildung 20: Klonierung des rekombinanten anti-CEA Immunrezeptors #898 mit muriner CD4-CD3ζ-OX40 Signalkette. Die DNA des Plasmids pBullet-BW431/26scFv-mIgG-mCD3ζ (#895) wurde durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei DNA Fragmente geschnitten, wobei die BW431/26scFv-mIgG DNA für die weitere Klonierung verwendet und die linearisierte Plasmid DNA #895 deletiert wurde. Das Plasmid pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897) wurde durch Restriktion mit den Enzymen *NcoI* und *BstXI* geschnitten, wobei die HRS3scFv-mIgG Sequenz deletiert und das linearisierte Plasmid #897 für die weitere Klonierung verwendet wurde. Die BW431/26scFv-mIgG DNA wurde mit der linearisierten Plasmid DNA #897 zum neuen, ca. 7,4 kb großen, retroviralen Expressionsvektor pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898) ligiert. Das Vorhandensein der DNA für die BW431/26scFv Bindedomäne in dem retroviralen Expressionsvektor #898 wurde durch Restriktion mit dem Enzym *XhoI* nachgewiesen, wobei erwartungs-

gemäß ein 5,9 kb und ein 1,6 kb langes Fragment generiert wurde, wohingegen das Ausgangsplasmid #897 aufgrund einer einzigen Schnittstelle für das Restriktionsenzym *XhoI* linearisiert wurde.

3.3.5 Klonierung des rekombinanten anti-CD30 Immunrezeptors #901 mit muriner CD4 Transmembrandomäne und CD28-CD3ζ Signalkette.

Die DNA für die murine CD28 Signalkette wurde mittels PCR und mit Hilfe der Oligonukleotide mCD3zeta/mCD28-AS (Oligo # 248) und mCD4tm-mCD28ic-S (Oligo # 263) aus dem Plasmid #857 amplifiziert. Am 5'-Ende des PCR Produkts wurde eine Schnittstelle für das Restriktionsenzym *BstXI* generiert. Hinter die Schnittstelle für die Restriktionsendonuklease *BstXI* wurde die DNA für die Transmembrandomäne des murinen CD4 inseriert. Am 3'-Ende des PCR Produkts wurde eine 21 Basenpaar lange Teilsequenz der murinen CD3ζ Signaldomäne inseriert (Abb. 21).

Die DNA für die murine CD3ζ Signalkette wurde mittels der PCR und mit Hilfe der Oligonukleotide mCD3zeta-AS (Oligo # 243) und mCD28/mCD3zeta-S (Oligo # 247) aus dem Plasmid #861 amplifiziert. Am 5'-Ende der vervielfältigten DNA wurde eine 21 Basenpaar lange Teilsequenz der murinen CD28 Signaldomäne inseriert. Am 3'-Ende des PCR Produkts wurde je eine Schnittstelle für das Restriktionsenzym *SalI* und *XhoI* generiert (Abb. 21).

Mit Hilfe der Assembly-PCR wurden die PCR Produkte mCD4-mCD28 und mCD3 ζ miteinander fusioniert (Abb. 22). Aufgrund der komplementären Sequenzen am 3'-Ende des mCD4-mCD28 und am 5'-Ende des mCD3 ζ PCR Produkts hybridisierten die denaturierten DNA-Einzelstränge miteinander und dienten gleichzeitig als Oligonukleotide bei der Synthese zum DNA-Doppelstrang. Anschließend wurden die beiden Oligonukleotide mCD4TM-mCD3zeta (Oligo # 263) und mCD3zeta-AS (Oligo # 243) hinzugegeben, um das PCR Produkt mCD4(tm)-mCD28(ic)-mCD3- ζ (ic) in der gewünschten Gesamtlänge zu amplifizieren. Das fertige Assembly-PCR Produkt mCD4-mCD28-mCD3 ζ enthält am 5'-Ende eine Schnittstelle für das Restriktionsenzym *BstXI* und am 3'-Ende je eine Schnittstelle für das Restriktionsenzym *SalI* und *XhoI*.

Im nächsten Schritt wurde das PCR Produkt mCD4-mCD28-mCD3 ζ und die DNA des Plasmids pBullet-HRS3scFv-mCH2/3- γ (#664) durch Restriktion mit den Restriktionsenzymen *BstXI* und *XhoI* fragmentiert, wobei das Fragment für die humane γ Signalkette aus dem Plasmid HRS3scFv-mCH2/3- γ (#664) deletiert wurde (Abb. 23). Mit Hilfe der T4-Ligase wurde die DNA für die murine mCD4-mCD28-mCD3 ζ Signalkette mit der linearisierten Plasmid DNA #664 zum neuen retroviralen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ (#901) ligiert. Das Vorhandensein der DNA Sequenz für die murine CD4-CD28-CD3 ζ Signalkette in dem neu generierten retroviralen Expressionsvektor #901 wurde durch Restriktion mit den Restriktionsendonukleasen *BstXI* und *XhoI* dadurch nachgewiesen, dass diese Reaktion jeweils zwei Fragmente der erwarteten Größe lieferte (Abb. 23). Ferner wurde die DNA für die murine CD4-CD28-CD3 ζ Signaldomäne in dem neu generierten Expressionsvektor #901 mit Hilfe der Oligonukleotide mIgG1-S (Oligo # 251) und pBullet-3' (Oligo # 136) sequenziert (Sequenzen im Anhang).

Abbildung 21: Klonierung des rekombinanten anti-CD30 Immunrezeptors #901 mit muriner CD4 Transmembrandomäne und CD28-CD3ζ Signalkette. Die DNA für die murine CD28 Signaldomäne wurde mittels der PCR und mit Hilfe der Oligonukleotide mCD3zeta/mCD28-AS (Oligo # 248) und mCD4tm-mCD28ic-S (Oligo # 263) aus dem Plasmid #857 amplifiziert. Am 5'-Ende des PCR Produkts wurde die Schnittstelle für das Restriktionsenzym *BstXI* generiert. Hinter die Schnittstelle für die Restriktionsendonuklease *BstXI* wurde die DNA für die Transmembrandomäne des murinen CD4 inseriert. Am 3'-Ende des PCR-Produkts wurde eine 21 Basenpaar lange Teilsequenz der murinen CD3ζ Signaldomäne inseriert. Das PCR Produkt mCD4-mCD28 ist 240 Basenpaar lang. Die CD3ζ DNA wurde mittels der PCR unter Verwendung der Oligonukleotide mCD3zeta-AS (Oligo # 243) und

mCD28/mCD3zeta-S (Oligo # 247) amplifiziert. Das PCR Produkt CD3ζ enthält die DNA für die murine CD3ζ Signaldomäne und ist ca. 0,4 kb lang. Am 5'-Ende des PCR-Produkts wurde eine 21 Basenpaar lange Teilsequenz der murinen CD28 Signaldomäne inseriert und am 3'-Ende des PCR-Produkts wurde je eine Schnittstelle für die Restriktionsendonuklease *SalI* und *XhoI* generiert.

Abbildung 22: Erzeugung der DNA für die murine CD4 Transmembrandomäne und CD28-CD3 Signalkette mit Hilfe der Assembly-PCR. Mit Hilfe der Assembly-PCR wurden die PCR Produkte mCD4-mCD28 und mCD3ζ miteinander verknüpft. Nach der Denaturierung hybridisierte die 3'-Sequenz des mCD4-mCD28 PCR Produkts mit der komplementären 5'-Sequenz des CD3ζ PCR Produkts. Dabei

dienten die miteinander hybridisierten Sequenzbereiche als Oligonukleotide bei der Synthese zum DNA-Doppelstrang. Anschließend wurden die beiden Oligonukleotide mCD3zeta-AS (Oligo # 243) und mCD4tm-mCD28ic-S (Oligo # 263) hinzugegeben, um das PCR-Produkt mCD4-mCD28-mCD3ζ in der gewünschten Gesamtlänge zu amplifizieren. Dabei wurde am 5'-Ende eine Schnittstelle für das Restriktionsenzym *BstXI*, am 3'-Ende jeweils eine Schnittstelle für das Restriktionsenzym *SalI* und *XhoI* inseriert. Das PCR-Produkt mCD4-mCD28-mCD3ζ ist ca. 0,6 kb lang.

Abbildung 23: Klonierung des rekombinanten anti-CD30 Immunrezeptors #901 mit muriner CD4 Transmembrandomäne und CD28-CD3ζ **Signalkette.** Das PCR Produkt mCD4-mCD28-mCD3ζ und die Plasmid DNA pBullet-HRS3scFv-mCH2/3-γ (#664) wurden durch Restriktion mit den Restriktions-

enzymen *BstXI* und *XhoI* geschnitten, wobei das DNA Fragment für die humane γ Signalkette aus dem Plasmid HRS3scFv-mCH2/3- γ (#664) deletiert wurde. Die DNA für die murine CD4-CD28-CD3 ζ Signalkette wurde mit der linearisierten Plasmid DNA #664 mittels T4-Ligase zum neuen retroviralen Expressionsvektor pBullet-HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ (#901) ligiert. Das Vorhandensein der DNA für die murine CD4-CD28-CD3 ζ Domäne in dem neu generierten Plasmid pBullet-HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ (#901) wurde dadurch nachgewiesen, dass die Restriktion mit den Restriktionsendonukleasen *BstXI* und *XhoI* ein ca. 6,9 kb und ein ca. 0,6 kb langes Fragment lieferte.

3.3.6 Klonierung des rekombinanten anti-CEA Immunrezeptors #907 mit muriner CD4 Transmembrandomäne und CD28-CD3ζ Signalkette.

Der Expressionsvektor pBullet-HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ (#901) wurde durch Restriktion mittels der beiden Restriktionsenzymen *NcoI* und *BstXI* in zwei DNA Fragmente geschnitten, wobei das Fragment, das die HRS3scFv-mIgG DNA enthält, deletiert wurde. Das andere Fragment, das die linearisierte DNA #901 enthält, wurde für die weitere Klonierungsarbeit verwendet. Das Plasmid pBullet-BW431/26scFvmCH2/3- γ (#663) wurde durch die Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* geschnitten, wobei die DNA für die BW431/26scFv-mIgG Domäne für die weitere Klonierungsarbeit verwendet und die linearisierte Plasmid DNA #663 deletiert wurde. Die komplementären kohäsiven Enden der BW431/26scFv-mIgG DNA und der linearisierten Plasmid DNA #901 wurden zum retroviralen Expressionsvektor pBullet-BW431/26scFv-mIgG-mCD4-mCD28-mCD3 ζ (#907) ligiert (Abb. 24).

Das Vorhandensein der BW431/26scFv Domäne in dem Plasmid #907 wurde durch Restriktion mit dem Restriktionsenzym *XhoI* nachgewiesen. Im Unterschied zu dem Ausgangsvektor #901 verfügt das neu generierte Plasmid #907 über eine zusätzliche Schnittstelle für das Restriktionsenzym *XhoI*, so dass diese Reaktion jeweils zwei Fragmente der erwarteten Größe lieferte (Abb. 24). Ferner wurde die DNA des Rezeptors BW431/26scFv-mIgG-mCD3ζ mit den flankierenden Regionen im neu generierten Plasmid #907 mit Hilfe der Oligonukleotide pBullet-5' (Oligo # 51), pBullet-3' (Oligo # 136) und mIgG1-S (Oligo # 251) bestimmt (Sequenzen im Anhang).

Abbildung 24: Klonierung des rekombinanten anti-CEA Immunrezeptors #907 mit muriner CD4 Transmembrandomäne und CD28-CD3ζ **Signalkette.** Das Plasmid pBullet-BW431/26scFv-mCH2/3-γ (#663) wurde durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei Sequenzfragmente geschnitten, wobei die BW431/26scFv-mIgG Domäne für die weitere Klonierung verwendet und die linearisierte Plasmid DNA #663 deletiert wurde. Das Plasmid pBullet-HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ (#901) wurde durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* geschnitten, wobei die DNA für die HRS3scFv-mIgG Domäne deletiert und die linearisierte Plasmid DNA #901 für die Klonierung verwendet wurde. Die BW431/26scFv-mIgG DNA wurde mit der linearisierten Plasmid DNA #901 für die Klonierung verwendet wurde. Die BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) ligiert. Das Vorhandensein der DNA für die BW431/26scFv Bindedomäne in dem neu generierten retroviralen

Abbildung 25: Plasmidkarten der neu generierten retroviralen anti-CD30 Expressionsvektoren (#892, #897, #901).

Abbildung 26: Plasmidkarten der neu generierten retroviralen anti-CEA Expressionsvektoren (#895, #898, #907).

3.3.7 Expression der rekombinanten anti-CEA (#895, #898, #907) und anti-CD30 Immunrezeptoren (#892, #897, #901) auf der Oberfläche von Zellen der Linie 293T.

Es wurde überprüft, ob die rekombinanten T-Zell Rezeptoren mit der CD4 Transmembrandomäne auf der Oberfläche von Zellen der Linie 293T exprimiert werden. Hierfür wurden Zellen der Linie 293T mit der Plasmid DNA für die murinen Rezeptoren HRS3scFv-mIgG-mCD4-mCD3 ζ (#892), BW431/26scFv-mIgG-mCD4mCD3 ζ (#895), HRS3scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#897), BW431/26scFvmIgG-mCD4-mCD3 ζ -mOX40 (#898), HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ (#901) oder BW431/26scFv-mIgG-mCD4-mCD28-mCD3 ζ (#907) transfiziert. Nach 48h wurde die Expression rekombinanter Rezeptoren auf der Oberfläche transfizierter Zellen der Linie 293T mittels Durchflußzytometrie mit einem PE-konjugierten anti-Maus IgG₁ Antikörper, der an die murine IgG Domäne des extrazellulären Rezeptorteils bindet, nachgewiesen. Als Isotyp-Kontrolle wurde ein PE-gekoppelter anti-human IgG₁ Antikörper verwendet.

Die Expression der rekombinanten anti-CD30 Rezeptoren sowie der anti-CEA Rezeptoren, jeweils mit der CD3ζ (#892, #895), der CD3ζ-OX40 (#897, #898) und der CD28-CD3ζ Signalkette (#901, #907) wurde mit Hilfe des PE-konjugiertem anti-Maus IgG₁ Antikörpers nachgewiesen (Abb.27 [B] bis [G]). Sowohl die anti-CD30 (#892, #897, #901) als auch die anti-CEA Immunrezeptoren (#895, #898, #907) werden mit einer hoher Frequenz auf der Oberfläche von 293T Zellen exprimiert. Auf der Oberfläche nicht-transfizierter Zellen der Linie 293T wurden keine Rezeptoren detektiert (Abb.27 [A]).

Anschließend wurden die transfizierten Zellen der Linie 293T lysiert, um die rekombinanten Rezeptoren mit Hilfe der Western-Blot-Analyse darzustellen (Kapitel 3.4.5).

Abbildung 27: Expression der rekombinanten anti-CEA (#895, #898, #907) und der anti-CD30 Immunrezeptoren (#892, #897, #901) auf der Oberfläche von Zellen der Linie 293T. Jeweils 1,5 x 10⁶ Zellen der Linie 293T wurden mit dem Plasmid für die Immunrezeptoren HRS3scFv-mIgG-mCD4mCD3ζ (#892), BW431/26scFv-mIgG-mCD4-mCD3ζ (#895), HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897), BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898), HRS3scFv-mIgG-mCD4-mCD3ζ (#901) oder BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) transfiziert. Nach 48h der Inkubation wurden die transfizierten und nicht-transfizierten Zellen der Linie 293Tmit einem PE-konjugiertem anti-Maus IgG₁ Antikörper (schwarze Linie), der an die murine IgG Domäne bindet, oder mit einem PE-markierten anti-human IgG₁ Antikörper (graue Linie) als Kontrolle inkubiert. Die Expression der rekombinanten Rezeptoren auf der Oberfläche der Zellen der Linie 293T wurde mittels Durchflußzytometrie nachgewiesen.
3.3.8 Expression der rekombinanten anti-CEA (#895, #898 und #907) und anti-CD30 Immunrezeptoren (#892, #897 und #901) auf der Oberfläche humaner T-Lymphozyten.

Periphere Blutlymphozyten wurden durch Stimulation mit dem agonistischen anti-CD3 Antikörper OKT-3 (1 μ g/ml) und IL-2 (200 U/ml) aktiviert. In einem ersten Ansatz wurden T-Lymphozyten jeweils mit den rekombinanten Vektoren für die anti-CD30 Rezeptoren HRS3scFv-mIgG-mCD4-mCD3 ζ (#892), HRS3scFv-mIgG-mCD4-mCD3 ζ mOX40 (#897) und HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ (#901) retroviral transduziert (Abb. 28 [E], [F] oder [G]).

In einem weiteren Ansatz wurden T-Lymphozyten jeweils mit den Vektoren für die anti-CEA Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ (#895), BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898) und BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907), wie im Methodenteil beschrieben, retroviral transduziert (Abb. 28 [A], [B] oder [C]).

Nach 48h wurden humane T-Lymphozyten entnommen und für die Untersuchung der Rezeptorexpression mittels Durchflußzytometrie mit PE-konjugiertem anti-Maus IgG₁ Antikörper, der an die IgG Domäne des rekombinanten Rezeptors bindet, inkubiert. Nicht-transduzierte humane PBL dienten als Kontrolle. Die Expression der rekombinanten anti-CD30 (#892, #897, #901) und anti-CEA (#895, #898, #907) Immunrezeptoren wurde auf der Oberfläche von humanen T-Lymphozyten mittels Sowohl anti-CD30 Durchflußzytometrie nachgewiesen. als auch anti-CEA Immunrezeptoren werden mit hoher Frequenz auf der Oberfläche von T-Zellen exprimiert. Nicht-transduzierte T-Lymphozyten exprimieren keine rekombinanten Immunrezeptoren auf der Oberfläche.

transduzierte T-Zellen

Abbildung 28: Expression der anti-CEA (#895, #898 und #907) und anti-CD30 Immunrezeptoren (**#892, #897 und #901) auf der Oberfläche humaner T-Lymphozyten.** Die T-Lymphozyten wurden retroviral mit den Vektoren, kodierend für anti-CD30 Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892), HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897), HRS3scFv-mIgG-mCD4-mCD3Z (#901) oder mit den Vektoren, kodierend für anti-CEA Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ (#901) oder mit den Vektoren, kodierend für anti-CEA Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ (#895), BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898), BW431/26scFv-mIgG-mCD4-mCD3ζ (#895), BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898), BW431/26scFv-mIgG-mCD4-mCD3ζ (#907), transduziert. Hierfür wurden Zellen der Linie 293T mit der Vektor DNA und den Helferplasmiden pHit60 (# 392) und pColt (# 393) ko-transfiziert und anschließend mit isolierten Blutlymphozyten inkubiert. Nach 48h der Ko-Inkubation mit Virus-produzierenden 293T Zellen wurden die T-Lymphozyten entnommen und für die anschließende Messung mittels Durchflußzytometrie vorbereitet. Zu diesem Zweck wurden die transduzierten T-Zellen und zur Kontrolle die nicht-transduzierten T-Zellen mit dem PE-konjugierten anti-Maus IgG₁ Antikörper, der spezifisch an die IgG₁ Domäne des rekombinanten Immunrezeptors bindet, inkubiert. Anschließend wurden die T-Lymphozyten

3.3.9 Aktivierung humaner CD3⁺ T-Lymphozyten mit CEA oder CD30 spezifischen Immunrezeptoren nach Kreuzvernetzung mit immobilisierten anti-idiotypischen Antikörpern.

Es wurde die zelluläre Aktivierung von $CD3^+$ T-Lymphozyten nach Kreuzvernetzung der membranständigen rekombinanten Immunrezeptoren geprüft. Dazu wurde der anti-Maus IgG₁ monoklonaler Antikörper, der gegen die IgG Domäne im extrazellulären Anteil des Rezeptors gerichtet ist, und alternativ der BW2064/36 monoklonaler Antikörper, der gegen die BW431/26scFv Bindedomäne des Rezeptors gerichtet ist, verwendet. Als Kontrollen dienten der anti-human IgG₁ Antikörper gleichen Isotyps und das mIgG Protein gleichen Isotyps. Die zelluläre Aktivierung der CD3⁺ T-Lymphozyten wurde anhand der Induktion der IFN- γ und IL-2 Sekretion bestimmt.

Die humanen T-Lymphozyten (CD3⁺) wurden mit Hilfe der magnetischen Zellsortierung MACS[®] aus dem peripheren Blut eines gesunden Spenders isoliert und mit dem agonistischen anti-CD3 Antikörper OKT-3 (1 µg/ml) und IL-2 (200 U/ml) aktiviert. Im nächsten Schritt wurden die CD3⁺ T-Lymphozyten mittels retroviralen Gentransfers mit den anti-CEA Immunrezeptoren BW431/26scFv-mIgG-mCD4mCD3ζ (#895), BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898), BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) oder den anti-CD30 Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892), HRS3scFv-mIgG-mCD4-mCD3ζmOX40 (#897), HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ (#901) ausgestattet. T-Lymphozyten mit CEA spezifischen Rezeptoren (#895, #898 und #907), normiert auf die Anzahl Rezeptor tragender T-Zellen, wurden für 48h auf Kulturplatten inkubiert, die mit BW2064/36 Antikörper, murinem IgG, anti-Maus IgG₁ Antikörper oder anti-human IgG₁ Antikörper beschichtet wurden. Als Kontrolle wurden CD3⁺ T-Lymphozyten mit anti-CD30 Immunrezeptoren (#892, #897 und #901) und nicht-transduzierte CD3⁺ T-Lymphozyten verwendet. Die Konzentration des sezernierten IFN-y und IL-2 im Kulturüberstand als Marker für die zelluläre Aktivierung wurde mit Hilfe eines ELISA bestimmt.

Wir erhielten folgende Ergebnisse (Abb. 29):

 In den Kulturüberständen von CD3⁺ T-Lymphozyten mit den CEA spezifischen Immunrezeptoren #895, #898 und #907 als auch mit CD30 spezifischen Immunrezeptoren #892, #897 und #901 wurde nach Inkubation auf Kulturplatten mit immobilisiertem anti-Maus IgG₁ Antikörper eine erhöhte IFN- γ Konzentration detektiert. Dies ist auf die Kreuzvernetzung der Rezeptoren über die murine IgG₁ Domäne zurückzuführen. In den Zellkulturüberständen von nicht-transduzierten T-Lymphozyten wurde eine geringere IFN- γ Konzentration detektiert.

- (2.) In den Kulturüberständen von T-Lymphozyten mit den CEA spezifischen Immunrezeptoren #895, #898 und #907 wurde nach Inkubation auf Kulturplatten mit immobilisiertem BW2064/36 Antikörper eine erhöhte IFN-γ Konzentration im Vergleich zu Zellkulturüberständen von nicht-transduzierten T-Lymphozyten und T-Zellen mit den CD30 spezifischen Rezeptoren #892, #897 und #901 detektiert. Offensichtlich werden CEA spezifische T-Zellen spezifisch über die Bindedomäne aktiviert.
- (3.) Nach Inkubation von T-Zellen mit CEA oder CD30 spezifischen Immunrezeptoren auf Kulturplatten mit immobilisiertem murinen IgG Protein oder anti-human IgG₁ Antikörper, die als Kontrollen dienten, wurde eine niedrige IFN-γ Konzentration detektiert. Diese IFN-γ Konzentration ist gleich hoch wie bei naiven, nicht-transduzierten CD3⁺ T-Lymphozyten, was die Voraktivierung der T-Zellen mit dem agonistischen anti-CD3 Antikörper OKT3 anzeigt.

Ein Teil des Kulturüberstandes wurde für die Konzentrationsbestimmung des sezernierten IL-2 mittels ELISA verwendet (Abb. 30):

- (1.) In den Überständen von T-Lymphozyten mit CD28-CD3ζ Immunrezeptoren #907 (anti-CEA) und #901 (anti-CD30) wurde nach Inkubation auf Kulturplatten mit immobilisierten anti-Maus IgG₁ Antikörper, der sich gegen die murine IgG₁ Domäne des Rezeptors richtet, eine erhöhte IL-2 Konzentration detektiert. In den Zellkulturüberständen von nicht-transduzierten T-Zellen, T-Zellen mit CD3ζ-OX40 Immunrezeptoren #898 (anti-CEA) und #897 (anti-CD30) oder mit CD3ζ Immunrezeptoren #895 (anti-CEA) und #892 (anti-CD30) wurde eine niedrige IL-2 Konzentration detektiert. Somit werden T-Zellen mit rekombinanten CEA als auch CD30 spezifischen Immunrezeptor mit einer kombinierten CD28-CD3ζ Signaldomäne zur IL-2 Sekretion aktiviert.
- (2.) In den Überständen von T-Zellen mit dem CEA spezifischen Immunrezeptor

#907 mit einer kombinierten CD28-CD3ζ Signaldomäne wurde nach Antigenspezifischer Stimulation mit immobilisiertem BW2064/36 Antikörper eine erhöhte IL-2 Konzentration detektiert. Dagegen wurde im Überstand von T-Zellen mit dem CD30 spezifischen Immunrezeptor #901 nach Inkubation mit dem BW2064/36 Antikörper eine geringere IL-2 Konzentration, trotz CD28-CD3 Signaldomäne, detektiert. identischer Dies zeigt, dass ausschließlich CEA spezifische T-Zellen durch den agonistischen BW2064/36 Antikörper zur IL-2 Sekretion aktiviert werden. In den Überständen von T-Zellen mit CEA spezifischen Immunrezeptoren mit CD3ζ Signalkette (#895) und mit CD3ζ-OX40 Signaleinheit (#898) als auch von T-Zellen mit CD30 spezifischen Immunrezeptoren #892 und #897, die als Kontrolle dienten, wurde eine geringe IL-2 Konzentration gemessen, die dem Messhintergrund des Systems zuzuordnen ist.

(3.) Nach Inkubation von CD3⁺ T-Lymphozyten mit CEA (#895, #898 oder #907) oder mit CD30 spezifischen Immunrezeptoren (#892, #897 oder #901) auf Kulturplatten mit immobilisiertem murinen IgG Protein oder anti-human IgG₁ Antikörper, die als Kontrollen dienten, wurde im Kulturüberstand eine geringe IL-2 Konzentration detektiert, die gleich hoch ist wie bei naiven, nichttransduzierten T-Lymphozyten. Dieses ist auf die Voraktivierung mit dem OKT3 Antikörper und IL-2 zurückzuführen.

Abbildung 29: Humane CD3⁺ T-Lymphozyten mit rekombinanten CEA oder CD30 spezifischen Immunrezeptoren werden zur IFN-γ Sekretion induziert. Zellkulturplatten wurden mit je 5 µg/ml Beschichtungspuffer mit BW2064/36 Antikörper (anti-idiotypischer Antikörper gegen BW431/26scFv), anti-Maus-IgG₁ Antikörper (Antikörper gegen die IgG Domäne im extrazellulären Anteil des Rezeptors) beschichtet. Als Kontrollen gleichen Isotyps wurden das mIgG Protein (5 μ g/ml) und der anti-human-IgG₁ Antikörper (5 μ g/ml) verwendet, die ebenfalls auf Mikrotiterplatten immobilisiert wurden. Anschließend wurden CEA spezifische (#895, #898 und #907), CD30 spezifische (#892, #897 und #901) oder naive T-Zellen auf den beschichteten Platten für 48h inkubiert. Die IFN- γ Konzentration im Kulturüberstand wurde nach 48h mit Hilfe eines ELISA gemessen.

Abbildung 30: Humane CD3⁺ T-Lymphozyten mit rekombinanten CEA oder CD30 spezifischen Immunrezeptoren werden zur IL-2 Sekretion stimuliert. Zellkulturplatten wurden mit BW2064/36 Antikörper, anti-Maus-IgG₁ Antikörper und als Kontrolle mit anti-human-IgG₁ Antikörper oder murinem IgG Protein (je 5 μg/ml Beschichtungspuffer) beschichtet. Anschließend wurden CEA spezifische (#895, #898 und #907), CD30 spezifische (#892, #897 und #901) oder naive T-Zellen auf den beschichteten Platten für 48h inkubiert. Die IL-2 Konzentration im Kulturüberstand wurde mittels ELISA bestimmt.

3.3.10 Aktivierung humaner CD3⁺ T-Lymphozyten mit CEA spezifischen Immunrezeptoren durch Ko-Inkubation mit CEA⁺ Tumorzellen.

Während in dem vorherigen Experiment gezeigt wurde, dass humane CD3⁺ T-Lymphozyten mit CEA spezifischen Rezeptoren, nach spezifischer Kreuzvernetzung, aktiviert werden, wollen wir in den weiteren Untersuchungen der Frage nachgehen, ob die Aktivierung auch erfolgt, wenn die humanen T-Lymphozyten mit CEA spezifischen Immunrezeptoren mit CEA⁺ Tumorzellen ko-kultiviert werden.

3.3.10.1 T-Lymphozyten mit CEA spezifischen Rezeptoren werden durch Ko-Inkubation mit CEA⁺ Tumorzellen zur IFN-γ Sekretion aktiviert.

Zellen der Linie LS174T (CEA⁺, CD30⁻) oder Colo320 (CEA⁻, CD30⁻) wurden mit humanen T-Zellen ko-kultiviert, die mit CEA spezifischen Immunrezeptoren (#895, #898 und #907) ausgestattet wurden. Hierfür wurden CD3⁺ T-Lymphozyten mit den Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ (#895), BW431/26scFv-mIgGmCD4-mCD3ζ-mOX40 (#898) und BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) durch retroviralen Gentransfer ausgestattet und in einer Verdünnungsreihe auf Mikrotiterplatten mit Zellen der Linie LS174T (CEA⁺, CD30⁻) oder Colo320 (CEA⁻, CD30⁻) ko-kultiviert. Als Kontrollen dienten nicht-transduzierte CD3⁺ T-Lymphozyten und CD3⁺ T-Lymphozyten mit den CD30 spezifischen Immunrezeptoren HRS3scFvmIgG-mCD4-mCD3ζ (#892), HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897) und HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ (#901). Nach 48h der Ko-Kultur wurde die IFN-γ Konzentration mit Hilfe eines ELISA bestimmt.

Wir erhielten folgende Ergebnisse (Abb.31 [A] und [B]):

- (1.) CD3⁺ T-Lymphozyten mit den CEA spezifischen Immunrezeptoren #895 und #898 sezernieren nach Ko-Kultur mit Zellen der Linie LS174T (CEA⁺) IFN-γ, wobei die OX40 Ko-Stimulation durch den Rezeptor #898 die IFN-γ Konzentration nicht weiter erhöht. Die Ko-Kultivierung der CD3⁺ T-Lymphozyten mit dem CEA spezifischen Immunrezeptor #907 mit kostimulatorischer CD28 Signaldomäne mit Zellen der Linie LS174T (CEA⁺) führte zu einer höheren IFN-γ Sekretion im Vergleich zu T-Lymphozyten mit den CEA spezifischen Immunrezeptoren mit der CD3ζ Signalkette (#895) oder mit der CD3ζ-OX40 Signaleinheit (#898). Die Ko-Kultivierung der T-Zellen mit CEA spezifischen Immunrezeptoren (#895, #898 und #907) mit Zellen der Linie Colo320 (CEA⁻) führt nicht zur Induktion der IFN-γ Sekretion. Dies zeigt, dass die Aktivierung Antigen spezifisch durch die anti-CEA Rezeptoren vermittelt wird.
- (2.) Die Ko-Kultivierung der CD3⁺ T-Lymphozyten mit Rezeptorspezifität für CD30 (#892, #897 oder #901) und nicht-transduzierten CD3⁺ T-Lymphozyten mit Zellen der Linie LS174T (CEA⁺, CD30⁻) und Zellen der Linie Colo320 (CEA⁻,

CD30⁻) führt zu keiner Induktion der IFN-γ Sekretion.

Abbildung 31: Induktion der IFN- γ Sekretion bei CD3⁺ T-Lymphozyten mit CEA spezifischen Immunrezeptoren bei Ko-Inkubation mit Zellen der Linie LS174T (CEA⁺,CD30⁻) oder Zellen der Linie Colo320 (CEA⁻,CD30⁻). CD3⁺ T-Lymphozyten mit den CEA (#895, #898 und #907) oder den CD30 spezifischen Immunrezeptoren (#892, #897 und #901) wurden in einer Verdünnungsreihe (1,25 x 10^3 bis 4 x 10^4 Rezeptor tragende T-Zellen/Vertiefung) ausplattiert und mit je 2,5 x 10^4 Tumorzellen der Linie [A] LS174T (CEA⁺, CD30⁻) oder [B] Colo320 (CEA⁻, CD30⁻) in einem Gesamtvolumen von 200 µl RPMI 1640 Medium für 48h ko-inkubiert. Die IFN- γ Konzentration im Zellkulturüberstand wurde mit Hilfe eines ELISA bestimmt.

3.3.10.2 Spezifische Zytolyse von CEA⁺ Tumorzellen durch humane CD3⁺ T-Lymphozyten mit CEA spezifischen Immunrezeptoren.

In diesem Teil untersuchen wir, ob humane CD3⁺ T-Lymphozyten, ausgestattet mit CEA spezifischen Immunrezeptoren, *in vitro* eine spezifische Zytolyse CEA⁺ Tumorzellen vermitteln. Hierfür wurden CD3⁺ T-Lymphozyten mit den anti-CEA Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ (#895), BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898) und BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) durch retroviralen Gentransfer ausgestattet und mit Tumorzellen der Linie LS174T (CEA⁺, CD30⁻) ko-inkubiert. Als Kontrolle wurden naive CD3⁺ T-Lymphozyten und T-Lymphozyten mit den CD30 spezifischen Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892), HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897) und HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ (#901) verwendet, die ebenfalls durch retroviralen Gentransfer mit rekombinanten Immunrezeptoren ausgestattet wurden.

In einem ersten Ansatz wurden die CD3⁺ T-Zellen, normiert auf die Anzahl Rezeptor tragender T-Zellen, in einer Verdünnungsreihe mit Zellen der Linie LS174T (CEA⁺, CD30⁻) ausplattiert und für 48h ko-inkubiert. In einem zweiten Ansatz wurden CD3⁺ T-Zellen, eingestellt auf die Anzahl der Rezeptor tragender T-Zellen in einer Verdünnungsreihe ausplattiert und mit Zellen der Linie Colo320 (CEA⁻, CD30⁻) für 48h ko-inkubiert.

Wir erhielten folgende Ergebnisse (Abb. 32 [A] und [B]):

CD3⁺ T-Lymphozyten mit CEA spezifischen Immunrezeptoren #895, #898 oder #907 vermitteln nach Bindung an CEA⁺ Tumorzellen der Linie LS174T dosisabhängig eine spezifische Zytolyse der CEA⁺ Tumorzellen. Die zytolytische Aktivität der CD3⁺ T-Zellen mit CEA spezifischen Immunrezeptoren #895, #898 oder #907 ist gegenüber Zellen der Linie LS174T gleich hoch. Dies zeigt, dass unter diesen experimentellen Bedingungen, unabhängig von der CD28 oder OX40 ko-stimulatorischen Domäne des Rezeptors, CEA spezifische T-Zellenn nach Antigenbindung gleich effizient die Zytolyse vermitteln.

CD3⁺ T-Zellen ohne rekombinanten Immunrezeptor und CD3⁺ T-Lymphozyten mit den CD30 spezifischen Immunrezeptoren #892, #897 und #901 entwickeln gegenüber Zellen der Linie LS174T (CEA⁺, CD30⁻) keine Immunrezeptor-vermittelte zytolytische Aktivität. Offensichtlich wurde die Aktivierung des zytolytischen Effekts auf CEA⁺ Tumorzellen der Linie LS174T Antigen spezifisch vermittelt.

Die Antigen Spezifität der Rezeptor-vermittelten Zytolyse wurde dadurch demonstriert, dass CD3⁺ T-Lymphozyten mit CEA spezifischen Immunrezeptoren #895, #898 und #907 bei Ko-Kultivierung mit Zellen der Linie Colo320 (CEA⁻) keine spezifische Zytolyse der CEA-negativen Tumorzellen vermitteln. Weiterhin wurde gezeigt, dass CD3⁺ T-Lymphozyten mit CD30 spezifischen Immunrezeptoren (#892, #897 und #901) und nicht-transduzierte CD3⁺ T-Lymphozyten keine Rezeptor-vermittelte Zytolyse gegenüber Tumorzellen der Linie Colo320 (CEA⁻, CD30⁻) induzieren.

Abbildung 31: Spezifische Zytolyse von CEA⁺ Tumorzellen der Linie LS174T bei Ko-Inkubation mit T-Zellen mit rekombinanten CEA spezifischen Immunrezeptoren. Nicht-transduzierte humane CD3⁺ T-Zellen, T-Zellen mit den CEA (#895, #898 und #907) oder den CD30 spezifischen Immunrezeptoren (#892, #897 und #901), normiert auf die Anzahl Rezeptor tragender T-Zellen, wurden in einer Verdünnungsreihe (5 x 10³ bis 4 x 10⁴ Effektorzellen/Vertiefung) ausplattiert und mit je 2,5 x 10⁴ Tumorzellen/Vertiefung [A] der Linie LS174T (CEA⁺, CD30⁻) oder [B] Colo320 (CEA⁻, CD30⁻) für 48h ko-inkubiert. Die Messung des zytolytischen Effektes auf Tumorzellen erfolgte durch die Bestimmung der Viabilität der Tumorzellen mit Hilfe der Metabolisierungsreaktion des XTT-Substrates. Aus den Daten wurden Mittelwerte und Standardabweichungen berechnet.

3.3.11 Expression der rekombinanten anti-CEA oder anti-CD30 Immunrezeptoren auf der Oberfläche muriner T-Zellen.

Die rekombinanten T-Zell Rezeptoren wurden durch retroviralen Gentransfer auf der Oberfläche muriner CD3⁺ oder CD8⁺ T-Lymphozyten exprimiert. Hierfür wurden T-Zellen aus der Milz einer C57-Black/6 Maus isoliert, aktiviert und durch retroviralen Gentransfer mit den Vektoren für die anti-CEA Rezeptoren BW431/26scFv-mIgGmCD4-mCD3ζ (#895), BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898) und BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) oder anti-CD30 Rezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892), HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897) und HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ (#901) ausgestattet. Zur Produktion der Retroviren wurde die retrovirale Vektor DNA zusammen mit der retroviralen Helferplasmiden pColt (#393) und pVPack-Eco (#598) in die Zellen der Linie 293T ko-transfiziert. Die murinen T-Lymphozyten wurden durch Ko-Inkubation mit Virus-produzierenden 293T Zellen mit den generierten ecotropen Retroviren infiziert. Nach 36 Stunden wurde der Nachweis der Rezeptorexpression auf der Oberfläche von transduzierten T-Zellen mit Hilfe des Durchflußzytometrie durchgeführt. Hierfür wurden die transduzierten T-Zellen mit Hilfe des PE-gekoppelten anti-Maus IgG₁ Antikörpers und des FITC-konjugierten anti-Maus CD3 Antikörpers bei $CD3^+$ T-Zell-Population oder mittels des FITC-konjugierten anti-Maus-CD8a Antikörpers bei CD8⁺ T-Zell-Population markiert. Je nach Ansatz dienten nichttransduzierte CD3⁺ als auch CD8⁺ T-Zellen als Kontrolle.

Die CEA spezifischen Immunrezeptoren #895, #898 und #907 werden auf der Oberfläche transduzierter CD8⁺ T-Zellen exprimiert, wobei der Anteil Rezeptor tragender T-Zellen, trotz gleicher Transduktionsbedingungen, in einem Experiment zwischen 30 und 90 % lag (Abb. 33 [B] bis [D]). Die CD30 spezifischen Immunrezeptoren #892, #897 und #901 werden auf der Oberfläche transduzierter CD3⁺ T-Zellen exprimiert, wobei die Frequenz Rezeptor exprimierender T-Zellen zwischen 40 und 50 % liegt (Abb. 33 [F] bis [H]). Sowohl nicht-transduzierte CD8⁺ als auch CD3⁺ T-Zellen exprimieren keine rekombinanten Rezeptoren auf der Oberfläche (Abb. 33 [A] und [E]).

Abbildung 33: Nachweis der Expression der anti-CEA Rezeptoren (#895, #898 und #907) und anti-CD30 Rezeptoren (#892, #897 und #901) auf der Oberfläche transduzierter muriner T-Zellen mittels Durchflußzytometrie. Die CD8⁺ T-Zellen wurden retroviral mit den Vektoren, kodierend für die CEA spezifischen Immunrezeptoren #895 (BW431/26-scFv-mIgG-mCD4-mCD3ζ), #898 (BW431/26-

scFv-mIgG-mCD4-mCD3 ζ -mOX40) und #907 (BW431/26-scFv-mIgG-mCD4-mCD28-mCD3 ζ) transduziert. Die CD3⁺ T-Zellen wurden retroviral mit den Vektoren, kodierend für die CD30 spezifischen Immunrezeptoren #892 (HRS3scFv-mIgG-mCD4-mCD3 ζ), #897 (HRS3-scFv-mIgG-mCD4-mCD3 ζ -mOX40) und #901 (HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ), transduziert. Die nicht-transduzierten CD8⁺ als auch CD3⁺ T-Lymphozyten dienten als Kontrolle. Nach 36h wurde die Expression der rekombinanten anti-CEA und anti-CD30 Immunrezeptoren auf der Oberfläche von T-Zellen mittels Durchflußzytometrie untersucht. Zu diesem Zweck wurden die CD8⁺ T-Lymphozyten mit dem FITC-gekoppelten anti-Maus IgG₁ Antikörper und dem PE-konjugierten anti-Maus IgG₁ Antikörper inkubiert wurden. Anschließend wurden die T-Zellen mittels Durchflußzytometrie analysiert. Die Prozentzahl gibt den Anteil der T-Zellen, die den Immunrezeptor auf der Oberfläche exprimiert haben, von der Gesamtzahl der T-Zellen an.

3.3.12 Rezeptor-vermittelte Aktivierung muriner CD8⁺ T-Lymphozyten mit CEA spezifischen Immunrezeptoren.

In dem Kapitel 3.2.10 haben wir gezeigt, dass humane $CD3^+$ T-Lymphozyten mit rekombinanten anti-CEA Immunrezeptoren durch Ko-Inkubation mit humanen, CEApositiven Tumorzellen zur IFN- γ Sekretion und zur Antigen spezifischen Zytolyse aktiviert werden. In diesem Kapitel möchten wir untersuchen, ob murine $CD8^+$ T-Zellen mit den gleichen Immunrezeptoren bei Ko-Inkubation mit murinen, CEA⁺ Tumorzellen zur IFN- γ Sekretion und zur Antigen spezifischen Zytolyse aktiviert werden.

3.3.12.1 Induktion der IFN-γ Sekretion.

Murine CD8⁺ T-Lymphozyten wurden durch retroviralen Gentransfer mit den CEA spezifischen Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ (#895) und BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) oder mit den CD30 spezifischen Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892) und HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ (#901) ausgestattet. Die Aktivierung der transduzierten CD8⁺ T-Zellen wurde anhand der Induktion der IFN-γ Sekretion bestimmt. In diesem Experiment wurden die CEA spezifischen CD8⁺ T-Zellen in einer Verdünnungsreihe auf Mikrotiterplatten mit Zellen der Linie C15A3 (CEA⁺, CD30⁻) oder MC-38 (CEA⁻, CD30⁻) ko-kultiviert. Als Kontrolle dienten nicht-transduzierte CD8⁺ T-Lymphozyten oder CD8⁺ T-Lymphozyten mit den CD30 spezifischen Immunrezeptoren HRS3scFv-

mIgG-mCD4-mCD3 ζ (#892), oder HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ (#901). Nach 48h wurde die IFN- γ Konzentration im Kulturüberstand mit Hilfe eines ELISA bestimmt.

Wir erhielten folgende Ergebnisse (Abb.34 [A] und [B]):

- (1.) Murine CD8⁺ T-Zellen mit rekombinanten anti-CEA Immunrezeptoren #895 oder #907 sezernierten nach Ko-Inkubation mit Zellen der Linie C15A3 (CEA⁺) IFN-γ abhängig von der Anzahl Rezeptor-tragender T-Zellen. Die Ko-Kultivierung der T-Zellen mit dem Immunrezeptor #907 mit kombinierter CD28-CD3ζ Signalkette mit C15A3 Zellen führte zu einer höheren IFN-γ Sekretion im Vergleich zu T-Zellen mit dem Immunrezeptor #895 mit einer CD3ζ Signaldomäne. Da beide Rezeptoren sich in der CD28 Domäne unterscheiden, schließen wir, dass die Rezeptor-vermittelte Induktion der T-Zelle zur IFN-γ Sekretion durch die ko-stimulatorische CD28 Signaldomäne im Immunrezeptor #907 verstärkt wird.
- (2.) Bei der Inkubation der CD8⁺ T-Zellen mit CD30 spezifischen Immunrezeptoren (#892 und #901) mit Zellen der Linie C15A3 (CEA⁺, CD30⁻) wurde kein IFN-γ im Zellkulturüberstand detektiert. Nicht-transduzierte CD8⁺ T-Zellen werden nicht zur IFN-γ Sekretion durch Ko-Inkubation mit CEA⁺ Tumorzellen induziert.
- (3.) Als Kontrollen für die Rezeptorspezifität wurden murine CD8⁺ T-Zellen mit CEA spezifischen Immunrezeptoren #895, #898 und #907 oder CD30 spezifischen Immunrezeptoren #892, #897 und #901 mit Zellen der Linie MC-38 (CEA⁻, CD30⁻) ko-inkubiert, wobei keine Induktion der IFN-γ Sekretion registriert wurde. Nicht-transduzierte CD8⁺ T-Zellen wurden ebenfalls durch die Ko-Inkubation mit Zellen der Linie MC-38 nicht zur IFN-γ Sekretion aktiviert. Offensichtlich wird die T-Zell Aktivierung Antigen spezifisch durch die anti-CEA Immunrezeptoren #895 und #907 vermittelt.

Abbildung 34: Induktion der Rezeptor-vermittelten IFN-γ Sekretion durch murine CD8⁺ T-Lymphozyten. Die murinen CD8⁺ T-Lymphozyten mit den CEA spezifischen Immunrezeptoren BW431/26scF-mIgG-mCD4-mCD3ζ (#895) oder BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) wurden in einer Verdünnungsreihe (1,25 x 10³ bis 1 x 10⁴ Rezeptor tragende T-Zellen/Vertiefung) ausplattiert und mit je 2 x 10⁴ Tumorzellen/Vertiefung der Linie [A] C15A3 (CEA⁺, CD30⁻) oder [B] MC-38 (CEA⁻, CD30⁻) für 48h ko-kultiviert. Als Kontrolle wurden nicht-transduzierte CD8⁺ T-Lymphozyten oder CD8⁺ T-Lymphozyten mit den CD30 spezifischen rekombinanten Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892) und HRS3scFv-mIgG-mCD4-mCD3ζ (#901) verwendet. Die Konzentration des murinen IFN-γ im Zellkulturüberstand wurde mit Hilfe eines ELISA bestimmt.

3.3.12.2 Spezifische Zytolyse.

In diesem Teilkapitel wurde untersucht, ob murine CD8⁺ T-Lymphozyten mit dem anti-CEA-CD3ζ Rezeptor #895 oder mit anti-CEA-CD28-CD3ζ Rezeptor #907 *in vitro* Antigen spezifisch zur spezifischen Zytolyse induziert werden. Hierfür wurden murine CD8⁺ T-Zellen mit rekombinanten Rezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ (#895) und BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) ausgestattet. Die T-Zellen wurden durchflußzytometrisch analysiert, auf die Anzahl Rezeptor tragender Effektorzellen eingestellt und in einer Verdünnungsreihe zusammen mit Tumorzellen der Linie C15A3 (CEA⁺, CD30⁻) oder der Linie MC-38 (CEA⁻, CD30⁻) für 48h koinkubiert.

Wir erhielten folgende Ergebnisse (Abb.35 [A] und [B]):

- (1.) Murine CD8⁺ T-Zellen mit rekombinanten anti-CEA Immunrezeptoren #895 oder #907 wurden durch Ko-Kultivierung mit Zellen der Linie C15A3 (CEA⁺, CD30⁻) zellulär aktiviert und entwickelten eine zytolytische Aktivität gegenüber CEA⁺ Tumorzellen. Dabei ist die zytolytische Aktivität von CD8⁺ T-Zellen mit dem Immunrezeptor #895 mit der CD3ζ Signaleinheit und CD8⁺ T-Zellen mit dem Immunrezeptor #907 mit einer kombinierten CD28-CD3ζ Signaldomäne gegenüber Zellen der Linie C15A3 gleich hoch. Hingegen wurde keine zytolytische Aktivität muriner CD8⁺ T-Lymphozyten mit CD30 spezifischen Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892) und HRS3scFv-mIgG-mCD4-mCD3ζ (#892) und HRS3scFv-mIgG-mCD4-mCD3ζ (#892) ind HRS3scFv-mIgG-mCD4-mCD3ζ (#892) ind HRS3scFv-mIgG-mCD4-mCD3ζ (ZEA⁺) registriert. Dies zeigt, dass die zytolytische Aktivität Antigen spezifisch durch die anti-CEA Immunrezeptoren #895 und #907 vermittelt wird.
- (2.) Als weitere Kontrollen für die Rezeptorspezifität verwendeten wir murine CD8⁺ T-Lymphozyten mit CEA (#895 oder #907) oder CD30 spezifischen Immunrezeptoren (#892 oder #901), die mit MC-38 Zellen (CEA⁻,CD30⁻) koinkubiert wurden. Dabei wurde kein zytolytischer Effekt gegenüber MC-38 Tumorzellen registriert. Auch diese Kontrollen zeigen, dass die zytolytische Aktivität spezifisch durch die anti-CEA Immunrezeptor vermittelt wird

-<u>→</u> # 892 -<u>+</u> # 895 -<u>+</u> # 901 -<u>+</u> # 907 -+ CD8+

Abbildung 35: Spezifische Zytolyse von CEA⁺ C15A3 Tumorzellen bei Ko-Kultivierung mit T-Zellen mit rekombinanten CEA spezifischen Immunrezeptoren. Murine CD8⁺ T-Zellen wurden mittels retroviralen Gentransfers mit anti-CEA Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ

(#895) oder BW431/26scFv-mIgG-mCD4-mCD28-mCD3 ζ (#907) ausgestattet. Die Anzahl der zu einsetzenden T-Zellen wurde auf die Zahl Rezeptor tragender T-Zellen eingestellt. Die Effektorzellen wurden in einer Verdünnungsreihe (1,25 x 10³ bis 1 x 10⁴ Rezeptor tragende T-Zellen/Vertiefung) ausplattiert und mit Zellen (2 x 10⁴ Tumorzellen/Vertiefung) der Linie [A] C15A3 (CEA⁺, CD30⁻) oder [B] MC-38 (CEA⁻, CD30⁻) für 48h ko-kultiviert. Als Kontrolle wurden nicht-transduzierte T-Zellen oder CD8⁺ T-Lymphozyten mit den CD30 spezifischen rekombinanten Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3 ζ (#892) oder HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ (#901) verwendet. Die Tumorzell-Viabilität wurde durch Metabolisierung des XTT-Substrates nachgewiesen. Der Test wurde als Dreifachbestimmung durchgeführt, der Mittelwert und die Standardabweichung bestimmt.

3.4 Generierung rekombinanter anti-CEA Immunrezeptoren, die aus murinen Domänen bestehen.

In dem vorherigen Kapitel konnten wir zeigen, dass die anti-CEA Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ (#895) und BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ (#907) in hoher Rezeptordichte auf der Zelloberfläche transduzierter muriner T-Lymphozyten exprimiert werden und eine T-Zellaktivierung *in vitro* vermitteln. In diesem Kapitel wollen wir Immunrezeptoren, die nur aus murinen Komponenten bestehen, generieren. Das Ziel ist die Ausstattung muriner T-Lymphozyten mit funktionstüchtigen anti-CEA Rezeptoren mit keiner oder nur geringer Immunogenität bei einem *in vivo* Versuch mit immunkompetenten Mäusen. Um diese T-Zell Rezeptoren zu generieren, wurde die humanisierte BW431/26scFv Bindedomäne der Rezeptoren #895, #898 und #907 gegen die murine SCA-431scFv Bindedomäne ausgetauscht. Die Generierung der neuen rekombinanten Immunrezeptoren über die Klonierung, Proteinexpression hinzu biochemischer und funktioneller Charakterisierung beschreibt das folgende Kapitel.

3.4.1 Generierung des murinen anti-CEA Immunrezeptors SCA-431scFvmIgG-mCD4-mCD3ζ (#977).

Das Plasmid pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ (#895) wurde mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei DNA Fragmente geschnitten. Das eine Fragment, das die BW431/26-scFv-mIgG DNA enthält, wurde deletiert. Das andere Fragment, das die restliche Plasmid DNA #895 enthält, wurde für die weitere Klonierungsarbeit verwendet. Das Plasmid pBullet-SCA-431scFv-mIgG-γ (#971) wurde durch Restriktion mit den Restriktionsendonukleasen *NcoI* und *BstXI* in zwei DNA Fragmente geschnitten. Dabei wurde das Fragment, das für die murine anti-CEA Bindedomäne SCA-431scFv-mIgG kodiert, elektrophoretisch getrennt, gereinigt und für die weitere Klonierungsarbeit zur Verfügung gestellt. Das andere Fragment mit der linearisierten Plasmid DNA #971 wurde deletiert. Die komplementären kohäsiven Enden des SCA-431scFv-mIgG DNA Fragments und der linearisierten Plasmid DNA #895 wurden mit Hilfe zu dem neuen retroviralen Expressionsvektor pBullet-SCA-431scFv-mIgG-mCD4-mCD3ζ (#977) ligiert (Abb. 36).

Zur Überprüfung der Klonierung wurden sowohl das neu generierte Plasmid pBullet-SCA-431scFv-mIgG-mCD4-mCD3 ζ (#977) als auch das Ausgangsplasmid pBullet-BW431/26scFv-mIgG-mCD4-mCD3 ζ (#895) durch Restriktion mit der Restriktionsendonuklease *BamHI* geschnitten, wobei für das Plasmid #977 und das Plasmid #895 jeweils zwei DNA Fragmente der erwarteten Größe generiert wurden.

Zudem wurde die DNA des Rezeptors SCA-431scFv-mIgG-mCD4-mCD3ζ im neu generierten Plasmid #977 mit Hilfe der beiden Oligonukleotide pBullet-5' (# 51) und pBullet-3' (# 136) sequenziert (Rezeptorsequenz im Anhang).

Abbildung 36: Klonierung des rekombinanten anti-CEA Immunrezeptors SCA-431scFv-mIgGmCD4-mCD3 ζ (#977). Das Plasmid pBullet-BW431/26scFv-mIgG-mCD4-mCD3 ζ (#895) wurde durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei Fragmente geschnitten. Die BW431/26scFv-IgG DNA wurde deletiert. Der linearisierte Vektor #895 wurde für die weitere Klonierungsarbeit verwendet. Das Plasmid pBullet-SCA-431scFv-mIgG- γ (#971) wurde ebenfalls durch Restriktion mit den Enzymen *NcoI* und *BstXI* geschnitten, wobei das SCA-431scFv-mIgG DNA Fragment für die weitere Klonierungsarbeit verwendet und die linearisierte Plasmid DNA #971 deletiert wurde. Die SCA-431scFv-mIgG DNA wurde zusammen mit der linearisierten Plasmid DNA #895 mit Hilfe der T4-Ligase zum neuen retroviralen Expressionsvektor pBullet-SCA-431scFv-mIgG-mCD4mCD3 ζ (#977) ligiert. Zur Überprüfung der Klonierung wurden sowohl das neu generierte Plasmid

pBullet-SCA-431scFv-mIgG-mCD4-mCD3ζ (#977) als auch das Ausgangsplasmid pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ (#895) mit dem Restriktionsenzym *BamHI* geschnitten. Diese Reaktion lieferte erwartungsgemäß für das Plasmid #977 ein ca. 5,8 kb und ein ca. 1,5 kb langes DNA Fragment und für das Plasmid # 895 ein ca.6,4 kb und ein ca.0,9 kb langes DNA Fragment.

3.4.2 Generierung des murinen anti-CEA Immunrezeptors SCA-431scFvmIgG-mCD4-mCD3ζ-mOX40 (#978).

Das Plasmid pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897) wurde durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei DNA Fragmente geschnitten. Das eine Fragment, das die HRS3scFv-mIgG DNA enthält, wurde deletiert. Das andere Fragment, das die linearisierte Plasmid DNA #897 enthält, wurde für die weitere Klonierungsarbeit verwendet.

Das Plasmid pBullet-SCA-431scFv-mIgG-γ (#971) wurde mit Hilfe der Restriktionsendonukleasen *NcoI* und *BstXI* in zwei DNA Fragmente geschnitten. Dabei wurde das Fragment, das für die murine anti-CEA Bindedomäne SCA-431scFv-mIgG kodiert, elektrophoretisch getrennt, gereinigt und für die weitere Klonierungsarbeit zur Verfügung gestellt. Das andere Fragment mit der linearisierten Plasmid DNA #971 wurde deletiert.

Das SCA-431scFv-mIgG DNA Fragment und die linearisierte Plasmid DNA #897 wurden miteinander zum neuen retroviralen Expressionsvektor pBullet-SCA-431scFvmIgG-mCD4-mCD3ζ-mOX40 (#978) ligiert (Abb. 37). Zur Überprüfung wurde die DNA für den Rezeptor #978 mit Hilfe der Oligonukleotide pBullet-5' (# 51) und pBullet-3' (# 136) sequenziert (Rezeptorsequenz im Anhang).

Abbildung 37: Klonierung des rekombinanten anti-CEA Immunrezeptors SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#978). Das Plasmid pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40 (#897) wurde durch die Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei DNA Fragmente geschnitten. Die HRS3scFv-mIgG DNA wurde deletiert. Die linearisierte Plasmid DNA #897 wurde für die weitere Klonierungsarbeit verwendet. Das Plasmid pBullet-SCA-431scFv-mCH2/3-γ (#971) wurde ebenfalls durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* geschnitten, wobei die DNA für die SCA-431scFv-mIgG Domäne für die weitere Klonierungsarbeit verwendet weitere Klonierungsarbeit verwendet Restriktionsenzymen *NcoI* und *BstXI* geschnitten, wobei die DNA für die SCA-431scFv-mIgG Domäne für die weitere Klonierungsarbeit verwendet wurde. Hingegen wurde die linearisierte Plasmid DNA #971 deletiert. Die SCA431scFv-mIgG DNA wurde mit der linearisierten Plasmid DNA #895 mit Hilfe der T4-Ligase zum ca. 7,4 kb großen retroviralen Expressionsvektor pBullet-SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#977) ligiert.

3.4.3 Generierung des murinen anti-CEA Immunrezeptors SCA-431scFvmIgG-mCD4-mCD28-mCD3ζ (#982).

Das Plasmid pBullet-HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ (#901) wurde durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei Fragmente gespalten. Dabei wurde das DNA Fragment, das die HRS3scFv-mIgG Domäne enthält, deletiert. Das andere DNA Fragment, das die linearisierte Plasmid DNA #901 enthält, wurde für die weitere Klonierungsarbeit verwendet. Das Plasmid pBullet-SCA-431scFv-mIgGmCD4-mCD3ζ (#977) wurde ebenfalls durch Restriktion mit den Restriktionsenzymen *NcoI* und *BstXI* in zwei Fragmente gespalten. Dabei wurde das DNA Fragment, das für die SCA-431scFv-mIgG Domäne kodiert, für die weitere Klonierungsarbeit verwendet. Das andere Fragment, das die linearisierte Plasmid DNA #977 enthält, wurde deletiert. Anschließend wurde das DNA Fragment SCA-431scFv-mIgG mit der linearisierten Plasmid DNA #901 zum neuen Plasmid pBullet-SCA-431scFv-mIgG-mCD4-mCD28mCD3ζ (#982) ligiert (Abb. 38).

Die erfolgreiche Integration der SCA-431scFv DNA im Plasmid #982 wurde durch Restriktion mit dem Enzym *XhoI* nachgewiesen. Im Unterschied zu dem Ausgangsvektor #901 verfügt das neu generierte Plasmid #982 über zwei zusätzliche Schnittstellen für das Restriktionsenzym *XhoI*, so dass diese Reaktion jeweils drei Fragmente der erwarteten Größe lieferte (Abb. 38).

Zusätzlich wurde die DNA des Rezeptors SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ mitsamt der umgebenden Regionen im neu generierten Plasmid #982 mit Hilfe der Oligonukleotide pBullet-5' (# 51), pBullet-3' (# 136) und mIgG1-S (#251) sequenziert (Sequenzen im Anhang).

Abbildung 38: Klonierung des rekombinanten anti-CEA Immunrezeptors SCA-431scFv-mIgGmCD4-mCD28-mCD3ζ (#982) mit muriner CD28-CD3ζ Signalkette. Das Plasmid pBullet-HRS3scFvmIgG-mCD4-mCD28-mCD3ζ (#901) wurde durch Restriktion mit den Endonukleasen *NcoI* und *BstXI* in zwei DNA Fragmente gespalten, wobei das HRS3scFv-mIgG DNA Fragment deletiert und die linearisierte Plasmid DNA #901 für die weitere Klonierungsarbeit verwendet wurde. Das Plasmid pBullet-SCA-431scFv-mIgG-mCD3ζ (#977) wurde ebenfalls durch Restriktion mit den Endonukleasen *NcoI* und *BstXI* in zwei DNA Fragmente gespalten. Dabei wurde die DNA für die SCA-431scFv-mIgG Domäne für die weitere Klonierungsarbeit verwendet und die linearisierte Plasmid DNA #977 deletiert. Die SCA-431scFv-mIgG DNA wurde mit der linearisierten Plasmid DNA #901 mit Hilfe der T4-Ligase

zum neuen retroviralen Expressionsvektor pBullet-SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ (#982) ligiert. Die erfolgreiche Klonierung des Plasmids #982 wurde durch die Restriktion mit dem Enzym *XhoI* nachgewiesen, die erwartungsgemäß ein 5,7 kb, 1,4 kb und 0,3 kb großes DNA Fragment generierte.

Abbildung 39: Plasmidkarten der neu generierten retroviralen Plasmide #977, #978 und #982.

3.4.4 Expression der rekombinanten anti-CEA Immunrezeptoren #977, #978 und #982 auf der Oberfläche von Zellen der Linie 293T.

Es wurde überprüft, ob die rekombinanten T-Zell-Rezeptoren mit der SCA-431scFv Bindedomäne auf der Zelloberfläche von Zellen der Linie 293T exprimiert werden. Hierfür wurden Zellen der Linie 293T mit der Plasmid DNA für die murinen Rezeptoren SCA-431scFv-mIgG-mCD4-mCD3 ζ (#977), SCA-431scFv-mIgG-mCD4mCD3 ζ -mOX40 (#978) und SCA-431scFv-mIgG-mCD4-mCD28-mCD3 ζ (#982) transfiziert. Nach 48h wurde die Expression rekombinanter Rezeptoren auf der Oberfläche transfizierter 293T Zellen mittels Durchflußzytometrie untersucht. Hierfür wurden die transfizierten Zellen mit dem PE-konjugierten anti-Maus IgG₁ Antikörper inkubiert, der an die murine IgG Domäne des extrazellulären Rezeptorteils bindet. Als Kontrolle gleichen Isotyps wurde der PE-gekoppelte anti-human IgG₁ Antikörper verwendet. Die Histogramme der Fluoreszenzintensitäten wurden paarweise übereinander gelegt und ausgewertet (Abb. 40).

Die Expression der rekombinanten anti-CEA Rezeptoren SCA-431scFv-mIgG-mCD4mCD3ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#978) oder SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ (#982) auf der Oberfläche von 293T Zellen wurde mit Hilfe des PE-konjugiertem anti-Maus IgG₁ Antikörper nachgewiesen (Abb. 40 [B], [C] und [D]), wobei eine hohe Expressionsrate für alle neu generierten rekombinanten Immunrezeptoren (#977, #978, #982) registriert wurde. Auf der Zelloberfläche nicht-transfizierter Zellen der Linie 293T, die der Kontrolle dienten, wurden keine rekombinanten Rezeptoren detektiert (Abb. 40 [A]).

Die rekombinanten Proteine wurden weiter mit Hilfe der Western-Blot Analyse (Kap. 3.4.5) untersucht, wofür die transfizierten 293T Zellen lysiert wurden.

Abbildung 40: Expression der murinen CEA spezifischen Immunrezeptoren #977, #978 oder #982 auf der Oberfläche von Zellen der Linie 293T. Jeweils $1,5 \times 10^6$ Zellen der Linie 293T wurden mit der DNA für den rekombinanten Immunrezeptor SCA-431scFv-mIgG-mCD4-mCD3 ζ (#977), SCA-431scFvmIgG-mCD4-mCD3 ζ -mOX40 (#978) oder SCA-431scFv-mIgG-mCD4-mCD28-mCD3 ζ (#982) transfiziert und nach 48h zum Nachweis der Immunrezeptoren mit dem PE-markierten anti-Maus IgG₁ Antikörper (schwarze Linie), der gegen die murine IgG Domäne des Rezeptors gerichtet ist, oder mit dem PE-konjugierten anti-human-IgG₁ Antikörper (graue Linie) inkubiert. Die Expression der rekombinanten Rezeptoren auf der Oberfläche der Zellen der Linie 293T wurde mittels Durchflußzytometrie nachgewiesen.

3.4.5 Biochemische Charakterisierung der rekombinanten Immunrezeptoren.

Die SDS-Gelelektrophorese diente zusammen mit der Western-Blot Analyse der Molekulargewichtbestimmung und Identifikation rekombinanter CEA spezifischer Rezeptorproteine. Hierfür wurden Zellen der Linie 293T wurden mit der Plasmid DNA für die rekombinanten anti-CEA Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3ζ (#895), BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (#898), SCA-431scFv-

mIgG-mCD4-mCD3ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#978) und SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ (#982) transfiziert, 48h inkubiert und zur Proteingewinnung lysiert. Nach Auftrennung mittels SDS-Gelelektrophorese wurden die Rezeptorproteine mittels Western-Blot auf eine Nitrocellulosemembran übertragen. Die "geblotteten" Rezeptorproteine wurden mit dem HRP-konjugierten anti-Maus IgG₁ monoklonalen Antikörper, der die IgG Domäne des Rezeptors erkennt, detektiert. Wir ermittelten für die anti-CEA Rezeptorproteine # 895 und # 977 ein Molekulargewicht von etwa 70 kDa, für die CEA Rezeptoren # 978 und # 982 ein Molekulargewicht von ca. 73 kDa und für den Rezeptor # 898 ein Molekulargewicht von ca. 75 kDa. Diese entsprechen dem errechnetem Molekulargewicht Werte der rekombinanten Rezeptorproteine.

Abbildung 41: Western-Blot Analyse der rekombinanten anti-CEA Rezeptorproteine. Zellen der Linie 293T wurden mit der DNA für die rekombinanten Rezeptorproteine BW431/26scFv-mIgG-mCD4mCD3 ζ (#895), BW431/26scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#898), SCA431-26scFv-mIgG-mCD4mCD3 ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#978) und SCA-431scFv-mIgG-mCD4mCD28-mCD3 ζ (#982) transfiziert, 48h inkubiert und anschließend lysiert. Zell-Lysate wurden unter reduzierenden Bedingungen in einem 8%-igen denaturierenden PAA-Gel mit Hilfe der SDS-Gelelektrophorese aufgetrennt, auf eine Nitrocellulosemembran übertragen und mit dem HRPkonjugierten anti-Maus IgG₁ Antikörper, der die murine IgG Domäne der Rezeptoren erkennt, und durch Zugabe des HRP-Substrates und Chemolumineszenz detektiert.

3.4.6 Expression muriner anti-CEA Immunrezeptoren (#977, #978 und #982) auf der Oberfläche humaner T-Lymphozyten.

Um die Modulation der Rezeptor-vermittelten Aktivität von T-Zellen durch die neuen rekombinanten anti-CEA Rezeptoren (#977, #978 und #982) *in vitro* zu untersuchen, wurden isolierte humane CD3⁺ T-Zellen durch retroviralen Gentransfer mit rekombinanten Rezeptoren SCA-431scFv-mIgG-mCD4-mCD3ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3ζ (#978) und SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ (#982) ausgestattet (Abb. 42 [B], [C] oder [D]).

Nach 48h der Ko-Kultivierung der T-Zellen mit Virus-produzierenden 293T Zellen im IL-2-haltigen Kulturmedium erfolgte der Nachweis der membranständigen Immunrezeptoren mittels Durchflußzytometrie mit Hilfe des FITC-gekoppelten antihuman-CD3 Antikörpers und des PE-konjugierten anti-Maus-IgG₁ Antikörpers. Nichttransduzierte humane CD3⁺ T-Lymphozyten dienten als Kontrolle. Es wurde eine Expressionsrate der CEA spezifischen Immunrezeptoren (#977, #978 und #982) auf T-Lymphozyten registriert, die zwischen 30 % und 60 % liegt (Abb. 42).

Abbildung 42: Expression der murinen CEA spezifischen Immunrezeptoren #977, #978 und #982 auf der Oberfläche transduzierter humaner CD3⁺ T-Lymphozyten. Die humanen CD3⁺ T-Zellen

wurden durch retroviralen Gentransfer mit rekombinanten Immunrezeptoren SCA-431scFv-mIgGmCD4-mCD3ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#978) und SCA-431scFv-mIgGmCD4-mCD28-mCD3ζ (#982) ausgestattet. Nicht-transduzierte humane CD3⁺ T-Lymphozyten dienten als Kontrolle. Nach 48h wurde die Expression der rekombinanten Rezeptoren auf der Oberfläche von CD3⁺ T-Zellen mittels Durchflußzytometrie untersucht. Hierfür wurden die T-Zellen mit dem FITCgekoppelten anti-Maus-CD3 Antikörper und dem PE-konjugierten anti-Maus-IgG₁ Antikörper, der an die murine IgG Domäne bindet, inkubiert und anschließend durchflußzytometrisch analysiert. Die ermittelte Prozentzahl gibt den Anteil der T-Zellen, die den Immunrezeptor auf der Oberfläche exprimieren, von der Gesamtzahl der T-Zellen an.

3.4.7 Funktionelle Charakterisierung muriner T-Zell Rezeptoren #977, #978 und #982.

Da die rekombinanten Immunrezeptoren SCA-431scFv-mIgG-mCD4-mCD3 ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#978) und SCA-431scFv-mIgG-mCD4mCD28-mCD3 ζ (#982) mit hoher Frequenz auf humanen T-Zellen exprimiert werden, wenden wir uns im folgenden Kapitel der Funktionsuntersuchung der neu generierten Immunrezeptoren zu. Hierfür werden humane CD3⁺ T-Lymphozyten durch retroviralen Gentransfer mit den neu generierten Immunrezeptoren #977, #978 und #982 ausgestattet und die Aktivierung der T-Zellen nach Kreuzvernetzung des Rezeptors anhand der IFN- γ oder IL-2 Sekretion bestimmt.

Die zelluläre Aktivierung von CD3⁺ T-Lymphozyten durch die rekombinanten anti-CEA Immunrezeptoren #977, #978 oder #982 wurde dadurch induziert, dass der Immunrezeptor mit immobilisiertem anti-Maus IgG₁ Antikörper, welcher an die IgG Domäne im extrazellulären Anteil des Rezeptors bindet, kreuzvernetzt wurde. Als Kontrolle diente der anti-human IgG1 Antikörper gleichen Isotyps. Die zelluläre Aktivierung der CD3⁺ T-Lymphozyten wurde anhand des Anstiegs der IFN- γ und IL-2 Konzentration im Kulturüberstand nachgewiesen. Bei der Versuchsvorbereitung wurden CD3⁺ T-Lymphozyten isoliert, mit dem anti-CD3 Antikörper OKT-3 und IL-2 aktiviert und durch retroviralen Gentransfer mit rekombinanten anti-CEA Immunrezeptoren SCA-431scFv-mIgG-mCD4-mCD3 (#977), SCA-431scFv-mIgG-mCD4-mCD3ζmOX40 (#978), SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ (# 982) oder mit den anti-CD30 Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892) und HRS3scFvmIgG-mCD4-mCD28-mCD3ζ (#901) ausgestattet. T-Zellen mit CEA spezifischen Rezeptoren #977, #978 oder #982, normiert auf die Anzahl Rezeptor tragender CD3⁺ T-

Zellen, wurden für 48h auf Kulturplatten inkubiert, die mit dem anti-Maus IgG₁ Antikörper oder dem anti-human IgG₁ Antikörper beschichtet wurden. Als Kontrolle dienten nicht-transduzierte CD3⁺ T-Zellen und CD3⁺ T-Zellen mit den anti-CD30 Immunrezeptoren (#892 und #901). Die Kulturüberstände wurden gesammelt und die Konzentration des sezernierten IFN- γ und IL-2 im Kulturüberstand mittels ELISA bestimmt.

Wir erhielten folgende Ergebnisse:

- (1.) In den Überständen von CD3⁺ T-Zellen mit CEA spezifischen Immunrezeptoren (#977, #978 und #982) als auch mit CD30 spezifischen Immunrezeptoren (#892 und #901) wurde nach Inkubation auf Kulturplatten mit immobilisiertem anti-Maus-IgG₁ Antikörper eine erhöhte IFN-y Konzentration detektiert (Abb. 43 [A]). In den Zellkulturüberständen von T-Zellen mit den CEA oder CD30 spezifischen Immunrezeptoren (#982 oder #901) mit einer kombinierten CD28-CD3ζ Signaleinheit wurde eine erhöhte IL-2 Konzentration detektiert (Abb. 43 [B]), wohingegen in den Kulturüberständen von T-Zellen mit rekombinanten CEA (#977, #978) oder CD30 spezifischen Immunrezeptor (#892) ohne die kostimulatorische CD28 Signaldomäne kein IL-2 detektiert wurde. In Kulturüberständen von nicht-transduzierten T-Lymphozyten wurde keine erhöhte IFN-y und IL-2 Konzentration detektiert (Abb. 43 [A] und [B]). Dies zeigt einerseits, dass die Kreuzvernetzung der IgG Domäne des CEA oder CD30 spezifischen Immunrezeptors mit der CD3ζ Signalkette (#977, #892), der CD28-CD3ζ Signaldomäne (#982, #901) oder der CD3ζ-OX40 Signaleinheit (#978) mit immobilisierten anti-mIgG₁ Antikörper zur Induktion der IFN- γ Sekretion führt. Andererseits wird gezeigt, dass die IL-2 Sekretion nach Kreuzvernetzung der IgG Domäne ausschließlich durch T-Zellen mit Immunrezeptoren (#901, #982) mit der CD28-CD3ζ Signaldomäne induziert wird.
- (2.) CD3⁺ T-Zellen mit dem CEA (#982) oder CD30 spezifischen (#901) Immunrezeptor mit der CD28-CD3ζ Signaldomäne werden stärker zur IFN-γ Sekretion stimuliert als T-Zellen mit den CEA oder CD30 spezifischen Immunrezeptoren mit der CD3ζ Signaldomäne (#977, #892) oder mit der CD3ζ-OX40 Signaleinheit (#978). Die CD28 ko-stimulatorische Domäne führt bei der T-Zell Aktivierung offensichtlich zu einer erhöhten IFN-γ Sekretion.

(3.) Als Kontrollen wurden nicht-transduzierte T-Lymphozyten, T-Zellen mit CEA spezifischen (#977, #978 und #982) und mit CD30 spezifischen Immunrezeptoren (#892 und #901) auf Kulturplatten mit immobilisierten antihuman IgG₁ Antikörper inkubiert, was zu keiner Rezeptor-vermittelten Aktivierung der IFN-γ und IL-2 Sekretion führte (Abb. 43 [A] und [B].

Abbildung 43: Induktion der IFN-γ und IL-2 Sekretion bei humanen CD3⁺ T-Lymphozyten nach Kreuzvernetzung der Immunrezeptoren. Zellkulturplatten wurden mit dem anti-Maus IgG₁ Antikörper, der gegen die IgG Domäne im extrazellulären Anteil des Rezeptors gerichtet ist, beschichtet. Als Kontrolle gleichen Isotyps wurde der anti-human IgG₁ Antikörper auf den Zellkulturplatten immobilisiert. T-Zellen mit CEA spezifischen Immunrezeptoren SCA-431scFv-mIgG-mCD4-mCD3ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#978) und SCA-431scFv-mIgG-mCD4-mCD3ζmOX40 (#982) oder mit den CD30 spezifischen Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892), HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ (#901), normiert auf die Anzahl Rezeptor tragender CD3⁺ T-Zellen (je 2 x 10⁴ Effektorzellen/Vertiefung) wurden für 48h auf Kulturplatten inkubiert, die mit dem anti-Maus IgG₁ Antikörper (5 µg/ml) oder zur Kontrolle mit dem anti-human IgG₁ Antikörper (5 µg/ml) beschichtet worden waren. Die Aktivierung der humanen Rezeptor tragenden CD3⁺ T-Zellen mit rekombinanten anti-CEA (#977, #978 und #982) oder anti-CD30 Immunrezeptoren (#892 und #901) wurde anhand der IFN-γ und IL-2 Konzentration mittels ELISA bestimmt.

3.4.8 Aktivierung humaner T-Lymphozyten mit CEA spezifischen Immunrezeptoren durch Ko-Kultur mit CEA⁺ Tumorzellen.

In den weiteren Untersuchungen wollen wir der Frage nachgehen, ob humane CD3⁺ T-Lymphozyten mit CEA spezifischen Immunrezeptoren bei Ko-Kultur mit CEA⁺ Tumorzellen zur IFN-γ Sekretion und zur Zytolyse der CEA⁺ Tumorzellen aktiviert werden. Hierfür wurden Zellen der Linie LS174T (CEA⁺) und als Kontrolle Zellen der Linie Colo320 (CEA⁻) mit humanen CD3⁺ T-Lymphozyten in einer Verdünnungsreihe ko-inkubiert, die mit Hilfe des retroviralen Gentransfers mit murinen CEA spezifischen Immunrezeptoren SCA-431scFv-mIgG-mCD4-mCD3ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#978) und SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ (#982) ausgestattet wurden. Als weitere Kontrollen wurden nicht-transduzierte CD3⁺ T-Lymphozyten und CD3⁺ T-Lymphozyten mit den CD30 spezifischen Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892) und HRS3scFv-mIgG-mCD4-mCD3ζ (#901) verwendet. Nach 48h der Ko-Inkubation wurde der zytolytische Effekt auf die CEA⁺ Tumorzellen durch Umsetzungsreaktion des XTT-Substrates und die sezernierte IFN-γ Konzentration im Kulturüberstand mittels ELISA bestimmt.

Wir erhielten folgende Ergebnisse (Abb.44 [A] und [B]):

- (1.) CD3⁺ T-Lymphozyten mit Expression der CEA spezifischen Immunrezeptoren #977, #978 oder # 982 wurden dosisabhängig durch Ko-Kultur mit Zellen der Linie LS174T (CEA⁺) zur IFN-γ Sekretion induziert. CD3⁺ T-Lymphozyten mit den CEA spezifischen Immunrezeptoren mit einer CD3ζ Signalkette (#977) und mit der kombinierten CD3ζ-OX40 Signaleinheit (#978) werden gleichstark zur IFN-γ Sekretion stimuliert. T-Lymphozyten mit dem CEA spezifischen Immunrezeptor mit der CD28-CD3ζ Signaleinheit (#982) werden durch die Ko-Kultivierung mit Zellen der Linie LS174T stärker zur IFN-γ Sekretion stimuliert als T-Zellen mit den Immunrezeptoren #977 oder #978.
- (2.) CD3⁺ T-Lymphozyten mit einer Spezifität für das CD30-Antigen (#892 und #901) und nicht-transduzierte CD3⁺ T-Lymphozyten werden durch die Ko-Kultivierung mit Zellen der Linie LS174T (CEA⁺, CD30⁻) nicht zur IFN-γ Sekretion aktiviert. Dies zeigt, dass die Aktivierung der T-Zellen Antigenspezifisch durch die rekombinanten Rezeptoren vermittelt wird.
- (3.) CD3⁺ T-Lymphozyten mit CEA (#977, #978 und #982) oder CD30 spezifischen Rezeptoren (#892 und #901) als Kontrolle werden durch die Ko-Kultivierung mit Zellen der Linie Colo320 (CEA⁻, CD30⁻) nicht zur IFN-γ Sekretion aktiviert. Nicht-transduzierte CD3⁺ T-Lymphozyten wurden ebenfalls nicht durch die Zellen der Linie Colo320 zur IFN-γ Sekretion aktiviert.

→ # 892 + # 901 + # 977 + # 978 + # 982 + CD3+

Abbildung 44: Induktion der IFN- γ Sekretion durch Ko-Inkubation der CEA spezifischen T-Lymphozyten mit CEA⁺ Tumorzellen. Die humanen CD3⁺ T-Lymphozyten mit den CEA spezifischen Immunrezeptoren SCA-431scFv-mIgG-mCD4-mCD3 ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3 ζ mOX40 (#978) und SCA-431scFv-mIgG-mCD4-mCD28-mCD3 ζ (#982) wurden in einer Verdünnungsreihe (2,5 x 10³ bis 2 x 10⁴ Rezeptor tragende T-Zellen/Vertiefung) ausplattiert und mit je 2,5 x 10⁴ Tumorzellen/Vertiefung der Linie [A] LS174T (CEA⁺, CD30⁻) oder als Kontrolle mit [B] Colo320 (CEA⁻, CD30⁻) für 48h ko-inkubiert. Als Kontrolle wurden nicht-transduzierte T-Lymphozyten und CD3⁺ T-Lymphozyten mit den CD30 spezifischen rekombinanten Immunrezeptoren HRS3scFvmIgG-mCD4-mCD3 ζ (#892) und HRS3scFv-mIgG-mCD4-mCD28-mCD3 ζ (#901) verwendet. Die IFN- γ Konzentration im Zellkulturüberstand wurde mit Hilfe des ELISA bestimmt. Aus den Daten wurde der Mittelwert und die Standardabweichung errechnet.

3.4.9 Spezifische Zytolyse von CEA⁺ Tumorzellen durch humane T-Lymphozyten mit murinen anti-CEA Immunrezeptoren.

In diesem Teil untersuchen wir, ob die Ko-Inkubation von humanen CD3⁺ T-Lymphozyten, retroviral ausgestattet mit murinen CEA spezifischen Immunrezeptoren (#977, #978 und #982), mit CEA⁺ Tumorzellen zur Antigen spezifischer Zytolyse von CEA⁺ Tumorzellen führt. Der hierfür benötigte Testansatz wurde zuvor im Kapitel 3.4.9 beschrieben. T-Zellen, ausgestattet mit rekombinanten Immunrezeptoren SCA-431scFvmIgG-mCD4-mCD3ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#978) und SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ (#982), wurden in einer Verdünnungsreihe mit Tumorzellen der Linie LS174T (CEA⁺, CD30⁻) oder der Linie Colo320 (CEA⁻, CD30⁻) für 48h ko-inkubiert. Als Kontrolle wurden naive CD3⁺ T-Zellen und T-Zellen mit den CD30 spezifischen Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3ζ (#892) und HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ (#901) verwendet. Wir erhielten folgende Ergebnisse (Abb.45 [A] und [B]):

- (1.) CD3⁺ T-Lymphozyten mit CEA spezifischen Immunrezeptoren #977, #978 und #982 werden bei Ko-Inkubation mit Tumorzellen der Linie LS174T (CEA⁺) zur spezifischen Zytolyse der CEA⁺ Tumorzellen aktiviert, wobei die zytolytische Aktivität der CD3⁺ T-Zellen mit CD3ζ Rezeptor # 977, CD3ζ-OX40 Rezeptor #978 und CD28-CD3ζ Rezeptor #982 gegenüber Zellen der Linie LS174T gleich hoch ist. Unabhängig von der Art der intrazellulären Signalkette des Rezeptors sind die T-Zellen nach Antigenbindung gleichstark zytolytisch wirksam gegen CEA⁺ Zielzellen.
- (2.) Naive humane CD3⁺ T-Zellen und CD3⁺ T-Zellen mit den CD30 spezifischen Immunrezeptoren #892 und #901 entwickeln gegenüber Zellen der Linie LS174T (CEA⁺, CD30⁻) keine zytolytische Aktivität. Dies zeigt, dass die Rezeptor-vermittelte zytolytische Aktivität der T-Zellen Antigen spezifisch verläuft.
- (3.) Als Kontrollen verwendete humane T-Zellen mit CEA spezifischen Immunrezeptoren #977, #978 oder #982 entwickeln bei Ko-Inkubation mit Colo320 (CEA⁻, CD30⁻) keine spezifische zytolytische Aktivität gegen die CEA⁻ Zielzellen. Nicht-transduzierte T-Zellen und T-Zellen, ausgestattet mit rekombinanten CD30 spezifischen Immunrezeptoren (#892 und #901), die als weitere Kontrollen verwendet wurden und mit Colo320 (CEA⁻, CD30⁻) Tumorzellen ko-inkubiert wurden, entwickeln ebenfalls keine zytolytische Aktivität gegen die CEA⁻ und CD30⁻ Zielzellen. Die zytolytische Aktivität der T-Zellen ist somit Antigen-spezifisch.

→ # 892 → # 901 → # 977 → # 978 → # 982 → CD3+

Abbildung 45: Induktion der Zytolyse von CEA⁺ Tumorzellen bei Ko-Inkubation mit humanen CD3⁺ T-Zellen mit murinen CEA spezifischen Immunrezeptoren. Humane CD3⁺ T-Zellen mit den CEA spezifischen Immunrezeptoren (#977, #978 und #982) oder den CD30 spezifischen Immunrezeptoren (#892 und #901), normiert auf die Anzahl Rezeptor-tragender T-Zellen, wurden in einer Verdünnungsreihe (2,5 x 10³ bis 2 x 10⁴ Effektorzellen/Vertiefung) ausplattiert und mit je 2,5 x 10⁴ Tumorzellen/Vertiefung der Linie [A] LS174T (CEA⁺, CD30⁻) oder [B] Colo320 (CEA⁻, CD30⁻) für 48h ko-inkubiert. Die Messung des zytolytischen Effektes auf Tumorzellen der Linie LS174T oder Colo320 erfolgte durch die Bestimmung der Viabilität der Tumorzellen mittels Umsetzung des XTT-Substrates. Aus den Daten wurden Mittelwerte und Standardabweichungen berechnet.

3.4.10 Expression der murinen anti-CEA Immunrezeptoren #977, #978 und #982 auf der Oberfläche von murinen CD3⁺ T-Zellen.

Im vorherigen Kapitel konnten wir zeigen, dass humane T-Lymphozyten, retroviral ausgestattet mit CEA spezifischen Immunrezeptoren SCA-431scFv-mIgG-mCD4-mCD3 ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#978) und SCA-431scFv-mIgG-mCD4-mCD28-mCD3 ζ (#982), durch Ko-Inkubation mit humanen CEA⁺ Tumorzellen zur IFN- γ Sekretion und zur Zytolyse von CEA⁺ Tumorzellen ktiviert werden. Im Hinblick auf den bevorstehenden experimentellen Einsatz der rekombinanten Rezeptoren in immunkompetenten Mäusen wollen wir in diesem Kapitel untersuchen, ob diese murinen Rezeptoren auf der Oberfläche muriner CD3⁺ T-Zellen exprimiert werden.

Für die retrovirale Transduktion muriner CD3⁺ T-Zellen wurden Milzzellen einer C57-

Black/6 Maus isoliert, mit einem Aktivierungscocktail, zusammengesetzt aus dem anti-Maus-CD3 Antikörper (Klon-Nr: 145-2C11) (0,1 µg/ml), anti-Maus-CD28 Antikörper (Klon-Nr.: 37.51) (0,1 µg/ml), PHA-L (3 µg/ml), IL-2 (300 U/ml) und IL-15 (5 ng/ml), aktiviert und mittels retroviralen Gentransfers mit murinen anti-CEA Rezeptoren SCA-431scFv-mIgG-mCD4-mCD3 ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#978) und SCA-431scFv-mIgG-mCD4-mCD28-mCD3 ζ (#982) ausgestattet. Der Nachweis der Rezeptorexpression auf der Oberfläche transduzierter T-Lymphozyten wurde mit Hilfe der Durchflußzytometrie durchgeführt. Hierfür wurden die transduzierten CD3⁺ T-Lymphozyten mittels des FITC-konjugierten anti-Maus CD3 Antikörpers und des PE-gekoppelten anti-Maus IgG₁ Antikörpers markiert. Nichttransduzierte CD3⁺ T-Lymphozyten dienten als Kontrolle. Die Expression der anti-CEA Rezeptoren #977, #978 und #982 auf der Oberfläche transduzierter T-Zellen wurde mit Hilfe der FACS Analyse bestimmt. Nicht-transduzierte CD3⁺ T-Zellen exprimieren keine rekombinanten Immunrezeptoren auf der Oberfläche (Abb. 46 [A] bis [D]).

Abbildung 46: Expression der CEA spezifischer Immunrezeptoren #977, #978 und #982 auf der Oberfläche transduzierter muriner CD3⁺ T-Zellen. Die murinen CD3⁺ T-Zellen wurden durch retroviralen Gentransfer mit rekombinanten Immunrezeptoren SCA-431scFv-mIgG-mCD4-mCD3ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#978) und SCA-431scFv-mIgG-mCD4-mCD28mCD3ζ (#982) ausgestattet. Hierfür wurden murine T-Zellen mit Virus-produzierenden 293T-Zellen für 24h ko-inkubiert. Anschließend wurde die Expression der rekombinanten Rezeptorproteine auf der Oberfläche von CD3⁺ T-Zellen mittels Durchflußzytometrie mit Hilfe des FITC-gekoppelten anti-Maus
CD3 Antikörpers (1 μ g/ml) und des PE-konjugierten anti-Maus-IgG₁ Antikörpers (0,2 μ g/ml), der die murine IgG Domäne erkennt, untersucht und die Transduktionsrate bestimmt. Die Prozentzahl gibt den Anteil der T-Zellen, die den Immunrezeptor auf der Oberfläche exprimiert haben, von der Gesamtzahl der T-Zellen an.

3.5 *In vivo* Evaluierung des Immunrezeptoransatzes.

In den vorherigen Kapiteln wurden die rekombinanten Immunrezeptoren *in vitro* hinsichtlich der zellulären Aktivierung charakterisiert. Dieses Kapitel beschäftigt sich mit der Prüfung der anti-Tumor Aktivität in *in vivo* Ansätzen. Alle Untersuchungen werden an immunkompetenten C57-Black/6 Mäusen durchgeführt.

3.5.1 Wachstumskinetik der murinen Kolonkarzinomzellinie (CEA⁺, CD30⁻) und MC-38 (CEA⁻, CD30⁻) in Versuchstieren.

In diesem Versuch wollten wir der Frage nachgehen, ob die subkutane Injektion von Zellen der Linie C15A3 (CEA⁺) oder MC-38 (CEA⁻) zur Tumorbildung in immunkompetenten C57-Black/6 Versuchstieren führt. Tumorzellen der Linie C15A3 und MC-38 wurden in unterschiedlicher Zellzahl den Versuchstieren subkutan injiziert. Anschließend wurde das Tumorvolumen regelmäßig gemessen (Abb. 49 [A] und [B]). Zellen der Linie C15A3 (CEA⁺) induzieren dosisabhängig einen Tumor in C57-Black/6 Mäusen. Tiere mit einer höheren Zahl (1 x 10⁶ Tumorzellen) an Zellen der Linie C15A3 zeigen ein früheres Tumorwachstum als Versuchstiere mit einer niedrigeren Zellzahl (5 x 10⁵ und 1 x 10⁵ Tumorzellen) auf. Injizierte Zellen der Linie MC-38 (CEA⁻) führen ebenfalls dosisabhängig zur Tumorbildung in C57-Black/6 Mäusen.

[A] Zellen der Linie C15A3 in Mäusen des Stammes C57-Black/6

Abbildung 48: Wachstumskinetik der murinen Kolonkarzinomzellinie C15A3 (CEA⁺) und MC-38 (CEA⁻) in n C57-Black/6 Versuchstieren. Jeweils 1×10^5 , 5×10^5 oder 1×10^6 Zellen der Linie C15A3 [A] oder MC-38 [B] wurden jeweils vier C57-Black/6 Tieren subkutan injiziert. Anschließend wurde über den Zeitraum von bis zu 34 Tagen das Tumorvolumen gemessen.

3.5.1 Eliminierung der CEA⁺ C15A3 Tumorzellen in vivo durch murine T-Zellen mit anti-CEA Immunrezeptoren.

In ersten Teil des nachfolgenden Experiments wollten wir der Frage nachgehen, ob

murine CD8⁺ T-Lymphozyten mit CEA spezifischen Immunrezeptor *in vivo* Antigen spezifisch ko-injizierte CEA⁺ Tumorzellen der Linie C15A3 in immunkompetenten C57-Black/6 Versuchsmäusen eliminieren.

3.5.1.1 *In vivo* Immunreaktion gegen CEA⁺ Tumorzellen bei Ko-Injektion mit CEA spezifischen T-Zellen.

Zellen der murinen Kolonkarzinomzellinie C15A3 und murine CD8⁺ T-Lymphozyten, ausgestattet durch retroviralen Gentransfer mit den CEA spezifischen Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3 ζ (#895) und BW431/26scFv-mIgG-mCD4-mCD28-mCD3 ζ (#907), wurden jeweils sechs C57-Black/6 Mäusen subkutan koinjiziert. Tumorzellen der Linie C15A3 (CEA⁺) und nicht-transduzierte murine CD8⁺ T-Zellen wurden weiteren sechs Versuchstieren als Kontrolle ko-injiziert.

In den darauffolgenden Tagen wurde das Tumorvolumen der Versuchstiere in den drei Gruppen gemessen (Abb. 49 [B]). Das tumorfreie Überleben der Versuchstiere in Abhängigkeit von der Zeit zeigt der Kaplan-Meier Plot (Abb. 49 [C]).

Wir erhielten folgende Ergebnisse:

- (1.) In allen C57-Black/6 Versuchsmäusen (6/6) der Gruppe 1, die als Kontrolle dient, entwickelten sich nach subkutaner Ko-Injektion mit Zellen der Kolonkarzinomzellinie C15A3 (CEA⁺) und nicht-transduzierten CD8+ T-Lymphozyten Tumore.
- (2.) Nach subkutaner Ko-Injektion mit Zellen der Linie C15A3 (CEA⁺) und CD8⁺ T-Lymphozyten, retroviral ausgestattet mit den CEA spezifischen Immunrezeptoren #895 oder #907, entwickelten sich in keinem der Tiere aus der Gruppe 2 (0/6) und aus der Gruppe 3 (0/6) in einem Beobachtungszeitraum von 25 Tagen Tumore.

Abbildung 49: Wachstum der CEA⁺ Tumore in C57-Black/6 Mäusen nach Ko-Injektion der CEA⁺ Tumorzellen mit CEA spezifischen CD8⁺ T-Zellen. Es wurden je drei Gruppen mit jeweils sechs C57-Black/6 Mäusen gebildet. [A] Je 6 Tiere wurden mit je 5 x 10⁵ C15A3 (CEA⁺) Tumorzellen und mit jeweils 5 x 10⁵ nicht-transduzierten CD8⁺ T-Zellen (Gruppe 1), mit jeweils 5 x 10⁵ Rezeptor tragenden CD8⁺ T-Zellen mit dem CEA spezifischen CD3 ζ Immunrezeptor #895 (Gruppe 2) oder mit jeweils 5 x 10⁵ Rezeptor tragenden CD8⁺ T-Zellen mit dem CEA spezifischen CD28-CD3 ζ Immunrezeptor #907 (Gruppe 3) ko-injiziert, [B] das Tumorvolumen innerhalb von 24 Tagen gemessen und anschließend aus den Daten des Tumorwachstums [C] das tumorfreie Überleben in Abhängigkeit von der Zeit nach Kaplan-Meier bestimmt.

134

3.5.1.2 *In vivo* Immunreaktion gegen Zellen der Kolonkarzinomzellinie C15A3 bei wiederholter Injektion der Tumorzellen.

Im zweiten Experimentteil haben wir uns damit beschäftigt, ob bei einer erneuten Injektion der CEA⁺ Tumorzellen ein "immunologisches Gedächtnis" generiert wird, das das Tumorwachstum ganz oder nur teilweise verhindert.

Um diese Frage zu beantworten, wurden CEA⁺ Tumorzellen den Versuchstieren appliziert, die vor 16 Tagen mit CEA⁺ Tumorzellen und CEA spezifischen T-Zellen mit dem CD3ζ Immunrezeptor #895 (Gruppe 2) oder mit dem CD28-CD3ζ Immunrezeptor #907 (Gruppe 3) ko-injiziert wurden und keine Tumore 17 Tage nach der Behandlung entwickelt haben. Versuchstiere der Gruppe 1 wurden aufgrund der Tumorgröße nicht als Kontrolle wiederverwendet. Als Kontrolle wurden Versuchstieren der neuen Gruppe 4, die bisher unbehandelt blieben, CEA⁺ Tumorzellen C15A3 appliziert (Abb. 50 [A] und [B]). Nach erfolgter Applikation der CEA⁺ Tumorzellen in Mäuse der Gruppe 1, Gruppe 2 und Gruppe 4 wurde das Tumorvolumen über den Zeitraum von 5 Wochen gemessen (Abb. 50 [C]) und das tumorfreie Überleben der Versuchstiere nach Kaplan-Meier in Abhängigkeit von der Zeit bestimmt (Abb. 50 [D]).

Aus der Untersuchung erhielten folgendes Ergebnis:

(1.) Alle tumorfrei gebliebenen Tiere der Gruppe 2, die bei der ersten Behandlung mit Zellen der Linie C15A3 und T-Lymphozyten, ausgestattet mit dem CD3ζ Immunrezeptor #895, ko-injiziert wurden, haben auch nach wiederholter subkutaner Injektion der CEA⁺ C15A3 Tumorzellen keine Tumore entwickelt (0/6). Die Hälfte der Tiere der Gruppe 2, die in der ersten Behandlung mit Zellen der Linie C15A3 und T-Lymphozyten, ausgestattet mit dem CD28-CD3ζ Immunrezeptor #907, ko-injiziert wurden, haben nach wiederholter subkutaner Injektion mit Zellen der Linie C15A3 einen Tumor entwickelt (3/6). Hingegen führte bei allen Versuchstieren der Gruppe 4 als Kontrolle die subkutane Injektion der CEA⁺ C15A3 Tumorzellen zur Tumorentstehung (6/6). Offensichtlich werden CEA⁺ Tumorzellen bei wiederholter Gabe in allen Versuchstieren der Gruppe 1 und der Hälfte der Versuchstiere der Gruppe 2 eliminiert, die zuvor mit CEA⁺ Tumorzellen und mit T-Zellen mit CEA spezifischen Immunrezeptoren (#895 und #907) ko-injiziert wurden. Ob dieses

Ergebnis auf die injizierten und persistierenden CEA spezifischen T-Zellen, die humorale oder zelluläre Antwort des Wirts zurückzuführen ist, wollen wir in den nächsten Kapiteln untersuchen.

Abbildung 50: Wachstum CEA-positiver Tumore in vorbehandelten C57-Black/6 Mäusen nach wiederholter Injektion mit CEA⁺ Tumorzellen. Im Vorversuch wurden drei Gruppen mit jeweils 6 Tieren gebildet, wobei Mäuse der Gruppe 1 mit je 5 x 10^5 Tumorzellen der Linie C15A3 und nicht-transduzierten murinen T-Zellen, Mäuse der Gruppe 2 mit je 5 x 10^5 Zellen der Linie C15A3 und Rezeptor tragenden T-Lymphozyten mit dem CD3 ζ Rezeptor #895 und Mäuse der Gruppe 3 mit jeweils 5 x 10^5 Zellen der Linie C15A3 und Rezeptor tragende T-Zellen mit dem CD28-CD3 ζ Rezeptor #907 subkutan, rechts lateral ko-injiziert wurden. Anschließend wurde das Tumorwachstum bestimmt. **[A]** Nach 17 Tagen erfolgte die wiederholte Applikation der CEA⁺ C15A3 subkutan links lateral injiziert. Als Kontrolle wurde die Gruppe 1 aufgrund der Tumorgröße aufgelöst und durch unbehandelte

[A]

Versuchstiere aus derselben Lieferung ersetzt (Gruppe 4), die ebenfalls mit je 5 x 10^5 Zellen der Linie C15A3 subkutan links lateral injiziert wurden. **[B]** Die Pfeile markieren die Behandlungstage, wobei die Ko-Injektion am Tag 1, die erste Blutentnahme am Tag 14, die wiederholte Applikation CEA⁺ Tumorzellen ("Challenge") am Tag 17 und die zweite Blutentnahme für die Gewinnung der Blutseren am Tag 37 durchgeführt wurde. Das Tumorvolumen wurde regelmäßig gemessen **[C]** und aus den gewonnen Daten das tumorfreie Überleben in Abhängigkeit von der Zeit bestimmt **[D]**.

3.5.2 Generierung der humoralen Immunantwort gegen Zellen mit CEA Expression durch Vakzinierung mit CEA⁺ Tumorzellen.

Durch die Entnahme von Blutseren, im ersten Teil (nach Ko-Injektion von T-Zellen mit Tumorzellen) und im zweiten Teil des vorherigen Versuchs (nach der wiederholten Gabe der CEA⁺ Tumorzellen) konnten wir uns ein genaueres Bild über die humorale Immunantwort machen. Dieses Kapitel beschäftigt sich mit dem Nachweis der CEA spezifischer Antikörper in den Blutseren der Versuchstiere.

Den Versuchstieren der Gruppe 1 bis Gruppe 4 (Kap.: 3.5.2) wurde am Tag 14 und am Tag 37 Blut aus der Schwanzarterie entnommen (Abb. 50 [B]). Aus dem Vollblut wurde das Blutserum vom Blutplasma mit Hilfe der Zentrifuge getrennt. Der Nachweis der anti-CEA Antikörper aus dem Blutserum der Versuchstiere wurde mittels ELISA durchgeführt.

Folgendes Ergebnis erhielten wir aus den Serumproben am Tag 14 des Versuchs (Abb. 51 [A], [B] und [C]):

(1.) In den Blutseren der Versuchstiere der Gruppe 2, die 14 Tage nach der Ko-Injektion mit CEA⁺ Tumorzellen und CEA spezifischen CD8⁺ T-Zellen mit dem CD3ζ Immunrezeptor #895 keine Tumore entwickelten, wurden keine CEA spezifischen Antikörper gefunden. Im Blutserum der Versuchstiere der Gruppe 3, die zwei Wochen nach der Ko-Injektion mit CEA⁺ Tumorzellen und CEA spezifischen CD8⁺ T-Zellen mit dem CD28-CD3ζ Immunrezeptor #907 keine Tumore entwickelten, wurden ebenfalls keine CEA spezifischen Antikörper detektiert. Hingegen wurden in den Blutseren aller Kontrolltiere aus der Gruppe 1 (6/6), die zwei Wochen nach der Ko-Injektion der CEA⁺ Tumorzellen mit nicht-transduzierten T-Zellen Tumore entwickelten, CEA spezifischen Antikörper mittels ELISA detektiert. Offensichtlich ist das Vorliegen eines CEA⁺ soliden Tumors die Voraussetzung für die Produktion CEA spezifischer Antikörper. Dennoch reicht allein die humorale Antwort gegen das CEA nicht aus, um CEA⁺ Tumore zu eliminieren.

Wir erhielten weiterhin folgendes Ergebnis aus den Serumproben, die wir am Tag 37 des Versuchs entnommen haben (Abb. 52 [A], [B] und [C]):

- (1.) In den Blutseren aller Versuchstiere der Gruppe 2, die nach erneuter Injektion mit CEA⁺ Tumorzellen keine Tumore entwickelten, wurden auch 14 Tage nach der erneuten Applikation CEA-positiver Tumorzellen keine CEA spezifischen Antikörper detektiert. In den Blutseren der Versuchstiere aus der Gruppe 3, die nach der erneuten Injektion mit Zellen der Linie C15A3 (CEA⁺) Tumore entwickelten (3/6), wurden Antikörper gegen das CEA mittels ELISA detektiert. In den Blutseren der Versuchstiere derselben Gruppe, die nach wiederholter Injektion mit C15A3 Tumorzellen keine Tumore entwickelten, wurden keine CEA spezifischen Antikörper detektiert.
- (2.) Als Kontrolle führte die Injektion der CEA⁺ Tumorzellen der Linie C15A3 in allen Versuchstieren der Gruppe 4 (6/6) zur Bildung eines soliden Tumors und zur Generierung muriner Antikörper gegen CEA. Dies zeigt, dass die Generierung CEA spezifischer Antikörper von der Bildung eines soliden CEA⁺ Tumors abhängig ist. Offensichtlich hängt die humorale Antwort der Versuchstiere allein von dem Vorhandensein eines soliden CEA⁺ Tumors in dem Versuchstier ab.

Abbildung 51: Nachweis CEA spezifischer Antikörper im Blutserum der Versuchstiere. Der Nachweis CEA spezifischer Antikörper im Blutserum 14 Tage nach der Ko-Injektion der CEA⁺ Tumorzellen der Linie C15A3 mit murinen [A] nicht-transduzierten T-Zellen, mit [B] T-Zellen mit dem CD3 ζ Immunrezeptor #895 oder mit [C] T-Zellen mit dem CD28-CD3 ζ Immunrezeptor #907 erfolgte mittels ELISA. Hierfür wurden die Vertiefung der Mikrotiterplatten mit CEA (2,5 µg/ml) beschichtet. Die Blutseren wurden 1:200 vorverdünnt und in einer Verdünnungsreihe auf die beschichteten Platten gegeben und inkubiert. Kommerziell erworbenes Mauserum (Dako) (1:200) und der anti-CEA Antikörper (Abcam) (0,5 µg/ml) bis 0,5 ng/ml) wurden als Kontrollen verwendet.

Abbildung 52: Nachweis CEA spezifischer Antikörper im Blutserum der Versuchstiere nach wiederholter Injektion mit CEA⁺ Tumorzellen. Der Nachweis CEA spezifischer Antikörper im Blutserum 20 Tage nach wiederholter Injektion ("Challenge") mit CEA⁺ Tumorzellen der Linie C15A3 im Blutserum der Versuchstiere aus der Gruppe 2 [A], Gruppe3 [B] und Gruppe 4 [C] erfolgte mittels ELISA.

3.5.3 Generierung eines immunologischen Gedächtnisses gegen CEA⁺ Tumorzellen nach Vakzinierung mit CEA spezifischen T-Zellen und CEA⁺ Tumorzellen.

In dem Kapitel 3.5.2 haben wir gezeigt, dass murine CD8⁺ T-Zellen mit rekombinanten CEA spezifischen Immunrezeptoren bei Ko-Injektion mit CEA⁺ Tumorzellen die Entstehung solider Tumore verhindern. Es ist bisher unbeantwortet geblieben, ob diese Hemmung der Tumorbildung spezifisch für CEA ist und durch die zuvor applizierten T-Zellen mit anti-CEA Immunrezeptoren (#895) oder durch das Immunsystem der C57-Black/6 Maus ausgelöst wird. Um diese Frage zu beantworten, haben wir C57-Black/6 Mäuse mit bestrahlten, teilungsunfähigen CEA⁺ Tumorzellen mit CEA spezifischen murinen CD8⁺ T-Lymphozyten ko-injiziert und nach zwei Wochen entweder mit CEA⁺ C15A3 Tumorzellen oder als Kontrolle mit CEA⁻ MC-38 Tumorzellen injiziert.

Hierfür haben wir vier Gruppen mit je 24 Tieren gebildet, wobei jedem Versuchstier bestrahlte Tumorzellen (20 Gray) der Linie C15A3 mit CD8⁺ T-Zellen mit dem CEA spezifischen CD3ζ Immunrezeptor #895 (Gruppe 1), mit CD8⁺ T-Zellen mit dem CD30 spezifischen CD3ζ Rezeptor #892 als Kontrolle (Gruppe 2) oder mit nichttransduzierten CD8⁺ T-Zellen als weitere Kontrolle ko-injiziert wurden (Abb. 53). Versuchstiere aus der Gruppe 4 wurden zur Kontrolle nur mit bestrahlten C15A3 (CEA⁺) Tumorzellen injiziert. Nach 14 Tagen erfolgte der zweite Versuchsteil, wobei Mäuse aus den vier Hauptgruppen in jeweils zwei Untergruppen mit je zwölf Tieren aufgeteilt wurden. Versuchstiere der Untergruppen 1a, 2,a 3a und 4a wurden mit Tumorzellen der Linie C15A3 (CEA⁺) und als Kontrolle Versuchstiere der Untergruppen 1b, 2b, 3b und 4b mit Tumorzellen der Linie MC-38 (CEA⁻) injiziert. In den folgenden Tagen wurde das Tumorvolumen gemessen (Abb. 54).

Abbildung 53: Schematische Darstellung des zweistufigen Versuchsaufbaus.

Wir haben folgendes Ergebnis bekommen (Abb. 54 [A] und [B]):

- (1.) Versuchstiere aus der Gruppe 1a, die 14 Tage nach der ersten Behandlung erneut mit Zellen der Kolonkarzinomzellinie C15A3 (CEA⁺) injiziert wurden, haben 35 Tage danach Tumore mit dem kleinsten Volumen im Vergleich zu Tieren aus den Gruppen 2a, 3a und 4a entwickelt. Offensichtlich haben Versuchstiere, die zuvor mit T-Zellen mit dem CEA spezifischen Immunrezeptor #895 und bestrahlten CEA⁺ Tumorzellen ko-injiziert wurden, einen Überlebensvorteil gegenüber Versuchstieren aus der Gruppe 2a, 3a und 4a, die 35 Tage nach der wiederholten Injektion mit CEA⁺ Tumorzellen größere Tumore im Vergleich zu Gruppe 1a gebildet haben. Das durchschnittliche Tumorvolumen der Versuchstiere aus der Gruppe 2a, 3a und 4a ist zwischen 10-bis 100-fach größer als bei Versuchstieren aus der Gruppe 1.
- (2.) Versuchstiere aus der Gruppe 1b, 2b, 3b und 4b, die als Kontrolle im zweiten Versuchsteil mit CEA⁻ Tumorzellen der Linie MC38 (CEA⁻) injiziert wurden, entwickelten 35 Tage nach der Behandlung durchschnittlich gleich große Tumore. Versuchstiere der Gruppe 1b, die im ersten Versuchsteil mit bestrahlten CEA⁺ Tumorzellen und T-Zellen mit dem Immunrezeptor #895 ko-injiziert wurden, haben keinen Überlebensvorteil gegenüber Versuchstieren aus der Kontrollgruppe 2b, 3b und 4b, wenn im zweiten Versuchsteil CEA⁻ Tumorzellen anstatt von CEA⁺ Tumorzellen ko-injiziert werden.

Anhand der Wachstumskurven der Tumore errechneten wir die Wahrscheinlichkeit für das tumorfreie Überleben in Abhängigkeit von der Zeit für die Versuchstiere aus den Gruppen 1a, 1b, 2a, 2b, 3a, 3b, 4a und 4b (Abb. 54 [C] und [D]):

- (1.) Rund 90 % der Versuchstiere aus der Gruppe 1a, die mit T-Zellen mit dem CEA spezifischen Immunrezeptor #895 und mit bestrahlten CEA⁺ Tumorzellen vakziniert und 14 Tage später mit C15A3 Tumorzellen injiziert wurden, blieben in darauffolgenden 35 Tagen tumorfrei. Dagegen blieben nur 60 bis 70 % der Versuchstiere, die als Kontrolle mit bestrahlten CEA⁺ Tumorzellen und mit T-Zellen mit dem CD30 spezifischen Immunrezeptor #892 (Gruppe 2) oder mit nicht-transduzierten T-Zellen (Gruppe 3) ko-injiziert und 14 Tage später mit C15A3 Tumorzellen injiziert wurden, in den nächsten 35 Tagen tumorfrei. Rund 75 % der Versuchstiere aus der Gruppe 4a, die als eine weitere Kontrolle mit bestrahlten C15A3 (CEA⁺) Tumorzellen vakziniert und zwei Wochen später mit C15A3 Tumorzellen injiziert wurden, blieben ebenfalls in den folgenden 35 Tagen tumorfrei. Offensichtlich ist das tumorfreie Überleben der Versuchstiere aus der Gruppe 1a am höchsten (ca. 90 %), die zuvor mit T-Zellen mit dem CEA spezifischen Immunrezeptor #895 und bestrahlten CEA⁺ Tumorzellen koinjiziert wurden, da durchschnittlich etwa 65 % der Versuchstiere aus den Kontrollgruppen 2a, 3a und 4a nach erfolgter Vakzinierung mit bestrahlten CEA⁺ Tumorzellen und erneuter Injektion mit C15A3 Tumorzellen im untersuchten Zeitraum tumorfrei blieben.
- (2.) Die (Ko)-Injektion bestrahlter C15A3 (CEA⁺, CD30⁻) Tumorzellen (Gruppe 4b) mit T-Zellen mit dem anti-CEA Immunrezeptor #895 (Gruppe 1b), mit T-Zellen mit dem anti-CD30 Immunrezeptor #892 (Gruppe 2b) oder mit nicht-transduzierten T-Zellen (Gruppe 3b) als Kontrolle führte dazu, dass weniger als 50 % der Versuchstiere (Gruppe 1b, 2b, 3b und 4b) 35 Tage nach der Injektion mit CEA⁻ MC-38 Zellen tumorfrei blieb. Offensichtlich haben Versuchstiere aus der Gruppe 1b, die wie Versuchstiere aus der Gruppe 1a im ersten Versuchsteil mit bestrahlten CEA⁺ Tumorzellen und T-Zellen mit dem CEA spezifischen Immunrezeptor #895 ko-injiziert wurden, keine erhöhte Wahrscheinlichkeit auf tumorfreies Überleben bei anschließender Applikation CEA⁻ Tumorzellen im Vergleich zu Versuchstieren aus den Gruppe 2b, 3b und 4b.

Abbildung 54: Tumorwachstum und tumorfreies Überleben der Versuchstiere bei wiederholter

Injektion mit CEA⁺ Tumorzellen. Im ersten Versuchsteil wurden jeweils 24 Tiere mit je 5 x 10^5 bestrahlten CEA⁺ Tumorzellen der Linie C15A3 (Gruppe 4) und jeweils 5 x 10^5 CD8⁺ T-Zellen mit dem rekombinanten CEA spezifischen CD3 ζ Immunrezeptor #895 (Gruppe 1), mit T-Zellen mit dem CD30 spezifischen CD3 ζ Immunrezeptor #892 (Gruppe 2), oder mit nicht-transduzierten T-Zellen (Gruppe 3) als Kontrolle (ko)-injiziert. Nach 14 Tagen wurden die Gruppen geteilt und jeweils 12 Versuchstiere wurden mit jeweils 6,5 x 10^5 CEA⁺ Tumorzellen der Linie C15A3 (Gruppe 1a, 2a, 3a und 4a) und die anderen 12 Versuchstiere mit jeweils 6,5 x 10^5 CEA⁺ Tumorzellen der Linie MC-38 (Gruppe 1b, 2b, 3b und 4b) subkutan injiziert und das Wachstum der Tumore gemessen [**A**] und [**B**]. Anhand der Daten aus der Messung der Tumore wurde die Wahrscheinlichkeit auf das tumorfreie Überleben in Abhängigkeit von der Zeit errechnet und als Kaplan-Meier Plot dargestellt [**C**] und [**D**].

3.5.4 Generierung eines immunologischen Gedächtnisses gegen CEA⁺ Tumorzellen nach Vakzinierung mit CEA spezifischen T-Zellen und CEA⁺ Tumorzellen in C57-Bl/6 Mäusen ohne endogene CD4⁺ und CD8⁺ T-Zellen.

Im Kapitel 3.5.4 haben wir gezeigt, dass Versuchstiere nach Ko-Injektion mit murinen CD8⁺ T-Zellen mit dem CEA spezifischen Immunrezeptor #895 und mit bestrahlten CEA⁺ Tumorzellen am effektivsten vor Tumorbildung geschützt werden, wenn sie erneut mit CEA⁺ Tumorzellen injiziert werden ("Challenge"). Es ist bisher unbeantwortet geblieben, ob dieser Effekt allein auf die injizierten murinen CD8⁺ T-Zellen mit rekombinanten Immunrezeptoren zurückzuführen ist oder ob endogene CD4⁺ und CD8⁺ T-Zellen daran beteiligt sind. Um diese Fragestellung in C57-Black/6 Versuchstieren ohne CD4⁺ und CD8⁺ T-Zellen zu beantworten, wurden Versuchstiere mit depletierenden anti-Maus CD4 Antikörper (YTS191.1 und YTA3.1) und anti-Maus CD8 Antikörper (YTS169.4) behandelt. Die Depletion endogener CD4⁺ und CD8⁺ T-Zellen im peripheren Blut der Versuchstiere wurde mit dem FITC konjugierten anti-Maus-CD4 Antikörper und dem FITC-markierten anti-Maus-CD8 Antikörper nachgewiesen. Hierfür wurde aus der Schwanzarterie das Blut entnommen, die Erythrozyten mittels Lysispuffer lysiert und die verbliebenen Blutzellen mittels der genannten Antikörpern durchflußzytometrisch untersucht.

Abbildung 55: Depletion endogener CD4⁺ und CD8⁺ T-Zellen in C57-Black/6 Mäusen. C57-Black/6 Versuchsmäuse wurden am Tag -10 und Tag -7 mit den monoklonalen anti-Maus CD4 Antikörpern YTS191.1 und YTA3.1 (jeweils 250 μ g/Maus) und mit dem monoklonalen anti-Maus-CD8 Antikörper YTS169.4 (je 500 μ g/Maus) intraperitoneal injiziert. Am Tag -1 wurde aus der Schwanzarterie der behandelten und als Kontrolle der nicht-behandelten Versuchstiere das periphere Blut entnommen, die Erythrozyten mittels Lysispuffer lysiert und die verbliebenen Blutzellen mit dem FITC-konjugierten anti-Maus-CD4 Antikörper oder dem FITC-markierten anti-Maus-CD8 Antikörper (jeweils 0,5 μ g/ml) inkubiert. Anschließend wurden die Zellen mittels Durchflußzytometrie untersucht.

Mit Hilfe der Durchflußzytometrie konnten wir nachweisen, dass eine Woche nach der Depletion der CD4⁺ und CD8⁺ T-Zellen mit den monoklonalen anti-Maus CD4 Antikörpern YTS191.1 und YTA3.1 und dem monoklonalen anti-Maus CD8 Antikörper YTS169.4 der Anteil der CD4⁺ und CD8⁺ T-Zellen an der Gesamtzellzahl im peripheren Blut behandelter Versuchstiere unter 0,2 % liegt. Als Kontrolle verwendetes Blut unbehandelter C57-Black/6 Versuchstiere enthält nach Erythrozyten-Lyse etwa 20 % CD4⁺ und ca. 10 % CD8⁺ T-Zellen. Somit generierten wir C57-Black/6 Versuchstiere, die temporär kaum endogene CD4⁺ und CD8⁺ T-Zellen im peripheren Blut enthalten.

Im nachfolgenden Mausversuch wollten wir untersuchen, ob ein "immunologisches Gedächtnis" bei temporär CD4⁺ und CD8⁺ T-Zell-defizienten C57-Black/6 Versuchstieren durch Ko-Injektion muriner CD8⁺ T-Zellen mit dem CEA spezifischem Immunrezeptor #895 mit bestrahlten CEA⁺ Tumorzellen generiert wird. Hierfür wurden zwei Gruppen mit je sechs Tieren gebildet, wobei jedem Versuchstier bestrahlte Tumorzellen (20 Gy) der Linie C15A3 mit unbestrahlten (Gruppe 1) oder als Kontrolle mit bestrahlten (Gruppe 2) murinen CD8⁺ T-Zellen mit dem CEA spezifischen CD3ζ Rezeptor #895 ko-injiziert wurden. Als weitere Kontrollen wurden zwei Gruppen mit jeweils sechs Versuchstieren gebildet, die nicht mit depletierenden Antikörpern vorbehandelt und mit bestrahlten CEA⁺ Tumorzellen und T-Zellen (je 20 Gy) mit dem CEA spezifischen Immunrezeptor #895 (Gruppe 3) oder mit dem CD30 spezifischen Immunrezeptor #892 (Gruppe 3) ko-injiziert wurden. Nach zwei Wochen wurden Versuchstiere aus der Gruppe 1 bis Gruppe 4 erneut mit CEA⁺ Tumorzellen der Linie C15A3 injiziert ("Challenge") und in den darauffolgenden 50 Tagen das Wachstum der Tumore in den Versuchstieren gemessen. Aus den Daten wurde das tumorfreie Überleben errechnet und mittels Kaplan-Meier Plot dargestellt (Abb. 56 [B] und [C]).

Wir erhielten folgendes Ergebnis:

- (1.) Alle Versuchstiere aus der Gruppe 1, die nach der Depletion endogener CD4⁺ und CD8⁺ T-Zellen mit CD8⁺ T-Zellen mit dem CEA spezifischen Immunrezeptor #895 und bestrahlten CEA⁺ Tumorzellen ko-injiziert wurden, entwickelten nach erneuter Injektion mit CEA⁺ Tumorzellen ("Challenge") im Zeitraum von 50 Tagen keine Tumore (0/6). Hingegen entwickelten im beobachtetem Zeitraum 33 % der Versuchstiere aus der Kontrollgruppe 2, die nach der Depletion endogener CD4⁺ und CD8⁺ T-Zellen mit bestrahlten CD8⁺ T-Zellen mit dem CEA spezifischen Immunrezeptor #895 und bestrahlten CEA⁺ Tumorzellen ko-injiziert wurden, nach erneuter Injektion mit CEA⁺ Tumorzellen ("Challenge") Tumore (2/6).Offensichtlich entwickeln Versuchstiere aus der Gruppe 1 ein "immunologisches Gedächtnis", das erfolgreicher als Versuchstiere aus der Gruppe 2 vor CEA⁺ Tumorzellen schützt, obwohl die endogenen CD4⁺ und CD8⁺ T-Zellen zu Versuchsbeginn depletiert wurden. Hingegen weisen Versuchstiere aus der Gruppe 2, die nach der Depletion der CD4⁺ und CD8⁺ T-Zellen mit bestrahlten CEA spezifischen T-Zellen (#895) und bestrahlten Tumorzellen ko-injiziert wurden, nach der erneuten Injektion mit CEA⁺ Tumorzellen eine geringere Wahrscheinlichkeit auf ein tumorfreies Überleben in Abhängigkeit von der Zeit im Vergleich zu Versuchstieren aus der Gruppe 1 auf.
- (2.) Weitere Kontrollen zeigen, dass Versuchstiere, die mit bestrahlten CEA⁺ Tumorzellen und bestrahlten T-Zellen mit dem CD30 spezifischen Immunrezeptor #892 (Gruppe 3) oder mit bestrahlten T-Zellen mit dem CEA

spezifischen Immunrezeptor #895 (Gruppe 4) ko-injiziert und anschließend mit CEA^+ Tumorzellen injiziert wurden ("Challenge"), eine geringere Wahrscheinlichkeit auf ein tumorfreies Überleben im Vergleich zu Versuchstieren aus der Gruppe 1 haben. Die Wahrscheinlichkeit auf ein tumorfreies Überleben in Abhängigkeit von der Zeit bei Versuchstieren aus der Gruppe 3 und Gruppe 4 entspricht dem der Versuchstiere aus der Gruppe 2, obwohl bei Gruppe 2 zu Versuchsbeginn die CD4⁺ und CD8⁺ T-Zellen depletiert wurden. Offensichtlich beruht die erhöhte Wahrscheinlichkeit auf ein tumorfreies Überleben der Versuchstiere aus der Gruppe 1 gegenüber Versuchstieren aus der Gruppe 2, Gruppe 3 und Gruppe 4 auf den injizierten murinen CD8⁺ T-Zellen mit dem rekombinanten Immunrezeptor #895.

Abbildung 56: Generierung eines immunologischen Gedächtnisses gegen CEA⁺ Tumorzellen nach Vakzinierung mit CEA spezifischen T-Zellen und CEA⁺ Tumorzellen in C57-Bl/6 Mäusen. Es wurden vier Gruppen mit jeweils sechs C57-Black/6 Versuchstieren gebildet. [A] Nach der Depletion endogener CD4⁺ und CD8⁺ T-Zellen wurden Versuchstiere am Tag 0 mit jeweils 5 x 10⁵ bestrahlten (20 Gy) CEA⁺ C15A3 Tumorzellen und unbestrahlten CD8⁺ T-Zellen mit dem CEA spezifischen Immunrezeptor # 895 (Gruppe 1) oder als Kontrolle mit bestrahlten CD8⁺ T-Zellen mit dem Immunrezeptor # 895 (Gruppe 2) ko-injiziert. Als weitere Kontrollen wurden Versuchstiere der Gruppe 3 mit jeweils 5 x 10⁵ bestrahlten C15A3 Tumorzellen und bestrahlten T-Zellen mit dem CD30 spezifischen Immunrezeptor #892 und Versuchstiere der Gruppe 4 mit je 5 x10⁵ bestrahlten CEA⁺ Tumorzellen und bestrahlten T-Zellen mit dem Immunrezeptor #895 ko-injiziert. Anschließend wurden 14 Tage nach der Vakzinierung Versuchstiere der Gruppe 1, Gruppe 2, Gruppe 3 und Gruppe 4 mit je 5 x 10⁵ CEA⁺ C15A3 Tumorzellen injiziert und [**B**], [**C**] das tumorfreie Überleben in Abhängigkeit von der Zeit bestimmt. Als tumorfrei wurden Versuchstiere mit einem Tumorvolumen \leq 30 mm³ gewertet.

3.5.5 Immunogenität der rekombinanten Immunrezeptoren.

Bisher konnten wir zeigen, dass die humorale Immunantwort nach Vakzinierung der C57-Black/6 Versuchstiere mit CEA⁺ Tumorzellen aktiviert wird (Kap. 3.5.3). Es wurden CEA spezifische Antikörper im Blutserum der Versuchstiere mit soliden Tumoren detektiert. In diesem Kapitel wollen wir der Frage nachgehen, ob die rekombinanten Immunrezeptoren selbst als Fremd-Antigene durch das Immunsystem der immunkompetenten C57-Black/6 Maus erkannt werden. Getestet wurden rekombinante anti-CEA Rezeptoren, die ausschließlich humane (#439), gemischt human-murine (#895) oder ausschließlich murine Domänen (#977) enthalten (Abb. 57).

Abbildung 57: Aufbau der CEA spezifischen rekombinanten T-Zell Rezeptoren. Der rekombinante Immunrezeptor #439 besteht ausschließlich aus humanen Domänen. Der Rezeptor #895 enthält bis auf die Bindedomäne nur murine Domänen. Der rekombinante T-Zell-Immunrezeptor #977 enthält ausschließlich murine Domänen.

Murine CD3⁺ T-Lymphozyten wurden durch retroviralen Gentransfer mit den CEA spezifischen CD3 ζ Immunrezeptoren #439, #895 und # 77 ausgestattet. Anschließend wurden vier Gruppen mit C57-Black/6 Versuchstieren gebildet, die mit nicht-transduzierten murinen T-Lymphozyten (Gruppe 1), mit T-Zellen mit dem humanen Immunrezeptor #439 (Gruppe 2), mit T-Zellen mit dem gemischt human-murinen Immunrezeptor #895 oder mit T-Zellen mit dem ausschließlich murinen Immunrezeptor #977 intraperitoneal injiziert wurden (jeweils 5 x 10⁵ T-Zellen/Maus).

Vier Wochen nach der Vakzinierung mit T-Zellen mit den rekombinanten anti-CEA Immunrezeptoren #439, #895 und #977 und nicht-transduzierten T-Zellen als Kontrolle erfolgte der zweite Versuchsteil, wobei Tieren aus den Versuchsgruppe 1 bis 4 jeweils 5 x 10⁵ CEA⁺ Tumorzellen mit T-Zellen mit CEA spezifischen Immunrezeptoren injiziert wurden. Während des Experiments wurde den Versuchtieren an zuvor festgelegten Zeitpunkten Blut aus der Schwanzarterie entnommen, um daraus Blutserum zu gewinnen. Der zeitliche Ablauf des Versuchs ist in der Abbildung 58 zusammengefasst.

Abbildung 58: Versuchsaufbau und zeitlicher Ablauf der Untersuchung der Immunogenität rekombinanter anti-CEA Immunrezeptoren in C57-Black/6 Versuchstieren.

In den gewonnen Blutseren haben wir zunächst nach Antikörpern gegen die humane IgG₁-,,spacer"-Domäne des Immunrezeptors #439 gesucht. Als Kontrolle wurden Blutseren der Versuchstiere verwendet, die mit nicht-transduzierten T-Zellen injiziert wurden. Nachfolgend untersuchten wir, ob Versuchstiere Antikörper gegen die humanisierte BW431/26scFv Bindedomäne der Rezeptoren #439 und #895 generieren, wenn sie erneut mit T-Zellen mit CEA spezifischen Immunrezeptoren #439 und #895 injiziert werden. Als Kontrolle wurden Blutseren der Versuchstiere verwendet, die mit nicht-transduzierten CD3⁺ T-Zellen oder mit T-Zellen mit dem Immunrezeptor #977 mit der murinen anti-CEA Bindedomäne SCA-431scFv injiziert wurden.

Den Nachweis der Antikörper gegen die humane IgG_1 -, spacer" Domäne des Rezeptors #439 haben wir mittels ELISA durchgeführt. Die Vertiefungen der Mikrotiterplatten wurden mit humanem IgG Protein beschichtet. Blutseren, deren murine IgG Konzentration zuvor mittels ELISA bestimmt wurde, wurden in einer Verdünnungsreihe auf den beschichteten Mikrotiterplatten inkubiert und zur Detektion der gebunden murinen IgG Proteine der Biotin-konjugierte anti-Maus IgG Antikörper zugegeben.

- (1.) In den Blutseren der Versuchstiere aus der Gruppe 2a wurden 14 Tage nach der Vakzinierung mit murinen CD3⁺ T-Zellen, retroviral ausgestattet mit dem humanen Immunrezeptor #439, keine Antikörper gegen die humane IgG-"spacer"-Domäne detektiert. In den Blutseren der Kontrolltiere aus der Gruppe 1, die mit nicht-transduzierten CD3⁺ T-Zellen vakziniert wurden, wurden ebenfalls keine Antikörper gegen die humane IgG-"spacer" Domäne detektiert. Offensichtlich gibt es zwei Wochen nach der Vakzinierung mit Rezeptortragenden T-Zellen keinen Hinweis darauf, dass die humane IgG Domäne des Immunrezeptors #439 in der C57-B1./6 Maus spezifische Antikörper induziert.
- (2.) In den Blutseren der Versuchstiere aus der Gruppe 1a wurden 31 bzw. 38 Tage nach der Injektion mit nicht-transduzierten CD3⁺ T-Lymphozyten und 7 bzw. 14 Tage nach der Ko-Injektion mit T-Zellen mit dem humanen Immunrezeptor #439 und Tumorzellen der Linie C15A3 keine Antikörper gegen die humane IgG-"spacer" Domäne detektiert. In den Blutseren der Versuchstiere aus der Kontrollgruppe 1d wurden ebenfalls 31 bzw. 38 Tage nach der Injektion mit nicht-transduzierten CD3⁺ T-Zellen und 7 bzw. 14 Tage nach der erneuten Injektion mit nicht-transduzierten T-Zellen und Zellen der Linie C15A3 keine Antikörper gegen die humane IgG-"spacer" Domäne detektiert. Hingegen wurde in den Blutseren der Versuchstiere aus der Gruppe 2a, die 31 bzw. 38 Tage nach der Injektion mit CD3⁺ T-Zellen mit dem humanen Immunrezeptor #439 und 7 bzw. 14 Tage nach der erneuten Injektion ("Challenge") mit CD3⁺ T-Zellen mit dem Rezeptor #439 und Zellen der Linie C15A3 Antikörper gegen die humane IgG-"spacer" Domäne nachgewiesen. Offensichtlich führt die zweimalige Applikation der T-Zellen mit dem humanem Immunrezeptor #439 in der C57-Bl./6 Maus zur Generierung der human IgG spezifischen Antikörpern.
- (3.) In den Blutseren der Versuchstiere aus der Gruppe 2b wurden 31 bzw. 38 Tage nach der Injektion mit CD3⁺ T-Zellen mit dem humanen Immunrezeptor #439 und 7 bzw. 14 Tage nach der Injektion ("Challenge") mit CD3⁺ T-Lymphozyten mit dem murinen Rezeptor #977 und Zellen der Linie C15A3 Antikörper gegen die humane IgG-"spacer" Domäne nachgewiesen. Offenbar ist 31 bzw. 38 Tage nach der Vakzinierung mit T-Zellen mit dem humanem Immunrezeptor #439 und 7 bzw. 14 Tage nach Injektion mit T-Zellen mit dem murinen Immunrezeptor #439 mit CD3⁺ T-Lymphozyten mit dem humanem Immunrezeptor #439 mit T-Zellen mit dem humanem Immunrezeptor #439 mit CD3⁺ T-Lymphozyten mit T-Zellen mit dem humanem Immunrezeptor #439 mit CD3⁺ T-Lymphozyten mit T-Zellen mit dem humanem Immunrezeptor #439 mit 7 bzw. 14 Tage nach Injektion mit T-Zellen mit dem humanem Immunrezeptor #439 mit 7 bzw.

gewonnen. Mikrotiterplatten wurden mit humanem IgG Protein (1µg/ml) beschichtet. Anschließend wurden Blutseren hinzugegeben und in einer Verdünnungsreihe (5 µg/ml bis 40 ng/ml) auf den beschichteten Mikrotiterplatten ausplattiert und inkubiert, wobei die murine IgG Konzentration in den Mausseren zuvor mittels ELISA bestimmt wurde. Die Bindung der murinen IgG Proteine wurde mit Hilfe des Biotin-konjugierten anti-Maus IgG Antikörpers (0,2 µg/ml) detektiert.

3.5.5.1 Nachweis der Antikörper gegen die humanisierte BW431scFv oder die murine SCA-431scFv Bindedomäne im Blutserum der Versuchstiere.

Der Nachweis von Antikörpern gegen die humanisierte anti-CEA Bindedomäne BW431/26scFv des Rezeptors #895 in den Blutseren der Versuchstiere erfolgte mittels ELISA mit Hilfe der Antikörper BW431/26scFv-hIgG (#443) und SCA431scFv-hIgG (#970), die die Bindedomänen der membranständigen CD3ζ Immunrezeptoren #895 und #977 enthalten. Zuvor wurden die Vertiefungen der Mikrotiterplatten mit dem antihuman IgG Antikörper beschichtet. Auf die beschichteten Mikrotiterplatten wurde der Antikörper BW431/26scFv-hIgG (#443) oder SCA-431scFv-hIgG (#970) zugegeben und mittels der immobilisierten anti-human IgG Antikörper gebunden. Anschließend wurden Mausseren der Versuchstiere in einer Verdünnungsreihe auf die Mikrotiterplatten aufgetragen. Als Kontrolle wurde der anti-idiotypische Antikörper BW648/31mIgG, der an die BW431/26scFv und SCA-431scFv Bindedomäne bindet, verwendet. Entwickelt wurde der ELISA mit dem Biotin-konjugierten anti-Maus IgG Antikörper.

(1.) In den Blutseren der Versuchstiere wurden 14 Tage nach der Vakzinierung mit nicht-transduzierten CD3⁺ T-Zellen (Gruppe 1a), mit CD3⁺ T-Zellen mit dem Immunrezeptor #895 mit der humanisierten BW431/26scFv Domäne (Gruppe 3a) und mit CD3⁺ T-Zellen mit dem Immunrezeptor #977 mit der murinen SCA431scFv Bindedomäne (Gruppe 4a) keine Antikörper gegen die humanisierte BW431/26scFv Bindedomäne detektiert. Als Kontrolle wurde die Bindung des BW648/31-mIgG Idiotyp-Antikörpers an die immobilisierte BW431/26-scFv Domäne (#443) nachgewiesen. Offensichtlich generieren die Versuchstiere zwei Wochen nach der Vakzinierung mit T-Zellen mit dem humanem Immunrezeptor #895 keine Antikörper gegen die humanisierte BW431/26 Bindedomäne des Rezeptors.

Weiterhin wurden 31 bzw. 38 Tage nach der Vakzinierung mit nicht-

transduzierten CD3⁺ T-Zellen und 7 bzw. 14 Tage nach der Ko-Injektion mit Zellen der Linie C15A3 und mit T-Zellen mit dem human-murinen Immunrezeptor #895 (Gruppe 1b), und mit nicht-transduzierten T-Zellen als Kontrolle (Gruppe 1d) keine Antikörper gegen die BW431/26scFv Bindedomäne des Immunrezeptors #439 detektiert. In den Blutseren der Versuchstiere wurden 31 bzw. 38 Tage nach der Vakzinierung mit nichttransduzierten CD3⁺ T-Zellen und 7 bzw. 14 Tage nach der Ko-Injektion mit Zellen der Linie C15A3 mit T-Zellen mit dem Immunrezeptor #977 (Gruppe 1c) keine Antikörper gegen die murine SCA-431scFv Bindedomäne detektiert. Offensichtlich führt die einmalige Injektion der T-Zellen mit dem Immunrezeptor #895 mit der humanisierten anti-CEA Bindedomäne BW431/26scFv, unter gegebenen Versuchsbedingungen, zu keiner Generierung der Antikörper gegen die BW431/26scFv Domäne des Immunrezeptors.

(2.) Ferner haben wir in den Blutseren der Versuchstiere 31 bzw. 38 Tage nach der Vakzinierung mit CD3⁺ T-Zellen mit dem human-murinen Immunrezeptor #895 und 7 bzw. 14 Tage nach der Ko-Injektion mit Zellen der Linie C15A3 und mit T-Zellen mit dem Immunrezeptor #895 (Gruppe 3a) und mit T-Zellen mit dem murinen Immunrezeptor #977 (Gruppe 3b) keine Antikörper gegen die BW431/26scFv Bindedomäne des Immunrezeptors #895 und die SCA-431scFv Bindedomäne des Immunrezeptors #977 detektiert. Offensichtlich führte auch die erneute Injektion mit T-Zellen mit dem Immunrezeptor #895 mit einer humanisierten anti-CEA Bindedomäne, unter gegebenen Versuchsbedingungen, zu keiner Generierung der Antikörper gegen die BW431/26scFv Domäne des rekombinanten Immunrezeptors #895. Offenbar ist die murine Bindedomäne SCA-431scFv und die humanisierte Bindedomäne BW431/26scFv unter gegebenen Versuchsbedingungen nicht in immunkompetenten C57-Black/6 Mäusen immunogen.

[B] Antikörper gegen die BW431/26scFv Bindedomäne des Rezeptors # 895 und die SCA-431scFv Binddomäne des Rezeptors # 977

▲ Gruppe 1b: 31 Tage nach Injektion mit nicht-transduzierten CD3+ T-Lymphozyten und 7 Tage nach "Challenge" mit T-Zellen mit dem Rezeptor # 895 und Zellen der Linie C15A3

Gruppe 1c: 31 Tage nach Injektion mit nicht-transduzierten CD3⁺ T-Lymphozyten und 7 Tage nach "Challenge" mit T-Zellen mit dem Rezeptor # 977 und Zellen der Linie C15A3

Gruppe 1d: 31 Tage nach Injektion mit nicht-transduzierten CD3⁺ T-Lymphozyten und 7 Tage nach "Challenge" mit nicht-transduzierten T-Zellen und Zellen der Linie C15A3

Gruppe 1e: 31 Tage nach Injektion mit nicht.transduzierten CD3⁺ T-Lymphozyten und 7 Tage nach "Challenge"mit nicht-transduzierten T-Zellen und Zellen der Linie C15A3

X Gruppe 3a: 31 Tage nach Injektion mit CD3+ T-Lymphozyten mit dem Rezeptor # 895 und 7 Tage nach "Challenge"mit T-Zellen mit dem Rezeptor # 895 und Zellen der Linie C15A3

 Gruppe 3b: 31 Tage nach Injektion mit CD3⁺ T-Lymphozyten mit dem Rezeptor # 895 und 7 Tage nach "Challenge"mit T-Zellen mit dem Rezeptor # 977 und Zellen der Linie C15A3

Gruppe 4a: 31 Tage nach Injektion mit CD3⁺ T-Lymphozyten mit dem Rezeptor # 977 und 7 Tage nach "Challenge"mit T-Zellen mit dem Rezeptor # 977 und Zellen der Linie C15A3

★ BW648/31-mIgG (Idiotyp-Antikörper gegen BW431/26scFv oder SCA-431scFv)

Abbildung 60: Nachweis der Antikörper gegen die humanisierte BW431/26scFv und die murine SCA-431scFv Bindedomäne in den Blutseren der Versuchstiere. Nicht-transduzierte T-Zellen oder T-Zellen mit dem Immunrezeptor #895 oder #977 (je 5 x 10^5 Rezeptor Tragende T-Zellen/Maus) wurden Mäuse intraperitoneal injiziert. Nach 24 Tagen wurden Versuchstiere erneut mit je 5 x 10^5 Tumorzellen

★ BW648/31-mIgG (Idiotyp-Antikörper gegen BW431/26scFv oder SCA-431scFv)

der Linie C15A3 und nicht-transduzierten CD3+ T-Zellen oder T-Zellen mit dem Immunrezeptor #895 oder #977 ko-injiziert ("Challenge"). Aus der Schwanzarterie der Versuchstiere wurde **[A]** 7 Tage nach der Vakzinierung und **[B]** 7 Tage und **[C]** 14 Tage nach dem "Challenge" Blut entnommen, um aus dem Vollblut Mausseren zu gewinnen. Mikrotiterplatten wurden mit dem anti-human IgG Antikörper (1 μ g/ml) beschichtet und auf die vorbeschichteten Mikrotiterplatten der Antikörper BW431/26scFv-hIgG (#443) (1 μ g/ml) oder SCA-431scFv-hIgG (#970) (1 μ g/ml) inkubiert. Anschließend wurden Mausseren der Versuchstiere aus der Gruppe 1b, 1c, 1d, 3a, 3b oder 4a in einer Verdünnungsreihe (5 μ g/ml bis 2,5 ng/ml) auf die Mikrotiterplatten aufgetragen. Als Kontrolle wurde der anti-idiotypische Antikörper BW648/31-mIgG (1 μ g/ml), der an die BW431/26scFv und SCA-431scFv Domäne bindet, verwendet. Entwickelt wurde der ELISA mit dem Biotin-konjugierten anti-MausIgG Antikörper (0,2 μ g/ml).

3.6 Generierung und funktionelle Charakterisierung rekombinanter Antikörper gegen das humane ErbB2.

Die Spezifität des rekombinanten Immunrezeptors für ein Zielprotein wird durch die Bindedomäne definiert. Zahlreiche Zielproteine auf der Oberfläche von Tumorzellen werden proteolytisch gespalten und als lösliche Proteine freigesetzt, so dass die erhöhte Konzentration des freigesetzten Proteins im Blut als Tumormarker detektiert werden kann. Wir wollen der Frage nachgehen, ob die Bindung löslicher, antigen-spezifischer Proteine an Zielantigen⁺ Zellen durch das lösliche Zielantigen beeinträchtigt wird. Dazu wurden zunächst Expressionsvektoren für extrazellulären Domänen mit CEA und ErbB2 Spezifität generiert, in 293T Zellen exprimiert und die produzierten Antikörper mit Hilfe der Durchflußzytometrie untersucht.

3.6.1 Generierung rekombinanter Proteine mit unterschiedlicher Affinität für ErbB2.

Die DNA für die anti-ErbB2scFv Bindedomänen wurden aus den retroviralen Expressionsvektoren #710, #744, #746, #748 und #750 durch Restriktion mit den Restriktionsenzymen *BamHI* und *XbaI* herausgeschnitten. Das Plasmid pRSV-BW431/26scFv-hIgG (#443) wurde ebenfalls durch Restriktion mit den Enzymen *BamHI* und *XbaI* geschnitten, wobei die DNA für die anti-CEA Bindedomäne BW431/26scFv deletiert wurde. Die linearisierte Plasmid DNA #443 wurde für die weitere Klonierungsarbeit verwendet. Anschließend wurden die DNA Fragmente für die anti-ErbB2scFv Bindedomänen #710, #744, #746, #748 und #750 mit der linearisierten

Plasmid DNA #443 ligiert, so dass die Plasmide pRSV-C6-B1D2-hIgG (#788), pRSV-C6ML3-9-hIgG (#789), pRSV-C6.5-hIgG (#790), pRSV-C6MH3-B1-hIgG (#791) und pRSV-C6.5G98A-hIgG (#792) resultierten, die zur Überprüfung der Klonierung durch Restriktion mit den Restriktionsenzymen BamHI und XbaI geschnitten wurden. Die Reaktion lieferte zwei DNA Fragmente der erwarteten Größe (Abb. 61). Das Vorhandensein der DNA für die anti-ErbB2 Domänen in den neu generierten Plasmiden pRSV-C6-B1D2-hIgG (#788), pRSV-C6ML3-9-hIgG (#789), pRSV-C6.5-hIgG (#790), pRSV-C6MH3-B1-hIgG (#791) und pRSV-C6.5G98A-hIgG (#792) wurde durch Restriktion mit dem Restriktionsenzym Xhol nachgewiesen, wobei im Gegensatz zum Plasmid #443 die Plasmide #788 bis #792 aufgrund einer einzigen XhoI Schnittstelle linearisiert wurden. Hingegen lieferte die Restriktion des Plasmids #443, aufgrund zweier XhoI Schnittstellen, zwei Fragmente der erwarteten Größe. Ferner wurde die DNA für die anti-ErbB2scFv Bindedomänen der Plasmide pRSV-C6-B1D2-hIgG (#788), pRSV-C6ML3-9-hIgG (#789), pRSV-C6.5-hIgG (#790), pRSV-C6MH3-B1hIgG (#791) und pRSV-C6.5G98A-hIgG (#792) mit Hilfe der Oligonukleotide pRSVsense (# 75) und seq hFc-AS (# 76) sequenziert.

Abbildung 61: Klonierung der rekombinanten anti-ErbB2scFv-hIgG Proteine mit unterschiedlicher Affinität für ErbB2. Die DNA für die anti-ErbB2scFv Bindedomänen wurde aus den Plasmiden #710, #744, #746, #748 und #750 durch Restriktion mit den Restriktionsenzymen *BamHI* und *XbaI* geschnitten. Das Plasmid pRSV-CEAscFv-hIgG (#443) wurde ebenfalls durch Restriktion mit den Restriktionsenzymen *BamHI* und *XbaI* geschnitten, wobei die DNA für die anti-CEA Bindedomäne BW431/26scFv deletiert wurde. Mit Hilfe der T4-Ligase wurden die DNA Fragmente für die anti-ErbB2scFv Bindedomänen #710, #744, #746, #748 und #750 mit der linearisierten Plasmid DNA #443 ligiert, so dass die Expressionsvektoren pRSV-C6-B1D2-hIgG (#788), pRSV-C6ML3-9-hIgG (#789), pRSV-C6.5-hIgG (#790), pRSV-C6MH3-B1-hIgG (#791) und pRSV-C6.5G98A-hIgG (#792) resultierten, die zur Überprüfung der erfolgreichen Klonierung durch Restriktion mit den Restriktionsenzymen *BamHI* und *XbaI* geschnitten wurden. Die Reaktion lieferte erwartungsgemäß ein 6,4 kb und ein 0,8 kb langes Fragment. Das Vorhandensein der ErbB2 spezifischen Bindedomänen in den

Rezeptoren #788 bis #792 wurde durch Restriktion mit dem Enzym *XhoI* nachgewiesen, wobei die neu generierten Plasmide #788 bis #792 aufgrund einer einzigen Schnittstelle für *XhoI* linearisiert wurden.

Abbildung 62: Plasmidkarte der neu generierten Expressionsvektoren pRSV-C6-B1D2(scFv)-hIgG (#788), pRSV-C6ML3-9scFv-hIgG (#789), pRSV-C6.5scFv-hIgG (#790), pRSV-C6MH3-B1scFv-hIgG (#791) und pRSV-C6.5G98AscFv-hIgG (#792).

3.6.2 Expression rekombinanter ErbB2 spezifischer Antikörper in 293T Zellen.

Tumorzellen der Linie 293T wurden mit der Plasmid DNA, kodierend für die Fusionsproteine pRSV-C6-B1D2-hIgG (#788), pRSV-C6ML3-9-hIgG (#789), pRSV-C6.5hIgG (#790), pRSV-C6MH3-B1-hIgG (#791) und pRSV-C6.5G98A-hIgG (#792) transfiziert und 48h inkubiert. Die Expressionskassette sind mit der Ig kappa Sequenz ausgestattet, so dass die Antikörper von der transfizierten Zelle sezerniert werden. Anschließend wurden die Kulturüberstände gesammelt und die Konzentration der anti-ErbB2 Antikörper auf einheitliche 1 µg/ml human IgG durch Titerbestimmung mittels ELISA eingestellt (Abb. 63). Hierfür wurden die Vertiefungen der Mikrotiterplatten mit dem monoklonalen anti-human IgG Antikörper beschichtet und die vorverdünnten Kulturüberständen mit den generierten rekombinanten anti-ErbB2-hIgG Proteinen (#788, #789, #790, #791 und #792) dazugegeben. Anschließend wurde der ELISA mit dem polyklonanalen Biotin-konjugierten anti-human IgG Antikörper detektiert.

Abbildung 63: Titerbestimmung löslicher anti-ErbB2 Proteine im Zellkulturüberstand. Überstände wurden zuvor mittels ELISA auf 1 μ g/ml human IgG eingestellt und auf Mikrotiterplatten pipettiert, die mit dem anti-human IgG Antikörper (1 μ g/ml) beschichteten wurden. Entwickelt wurde der ELISA mit dem Biotin-gekoppelten anti-human IgG Antikörper (0,25 μ g/ml).

3.6.3 Bindung löslicher ErbB2 spezifischer Antikörper an ErbB2⁺ Zellen.

Die Bindung der anti-ErbB2 Antikörper C6-B1D2-hIgG (#788), C6ML3-9-hIgG (#789), C6.5-hIgG (#790), C6MH3-B1-hIgG (#791) oder C6.5G98A-hIgG (#792) an ErbB2⁺ Zellen der Linie Sk-Ov-3 wurde durchflußzytometrisch untersucht. Hierfür wurden Tumorzellen der Linie Sk-Ov-3 zusammen mit dem anti-ErbB2 Antikörper #788, #789, #790, #791 oder #792 in einer Verdünnungsreihe inkubiert. Als Kontrolle wurde ein humanes IgG Protein verwendet. Detektiert wurde die Bindung der ErbB2 spezifischen Proteine an Zellen mittels Durchflußzytometrie mit Hilfe des PE-konjugierten anti-human IgG Antikörpers (0,2 µg/ml). Anschließend wurden die durchschnittlichen Fluoreszenzintensitäten bestimmt (Abb. 64).

(1.) Die anti-ErbB2 Antikörper C6-B1D2-hIgG (#788), C6ML3-9-hIgG (#789), C6.5-hIgG (#790), C6MH3-B1-hIgG (#791) mit einer Affinität der Antigenbindenden Domäne für ErbB2 $k_D \leq 1.6 \times 10^{-8}$ M binden stärker an Zellen der

Linie Sk-Ov-3 als das Protein C6.5G98A-hIgG (# 792) mit der niedrigsten Affinität aller fünf Proteine für ErbB2 (k_{D} = 1,0 x 10⁻⁹ M).

Abbildung 64: Bindung löslicher ErbB2 spezifischer Antikörper an ErbB2⁺ Zellen. Je 2,5 x 10^5 Tumorzellen der Linie Sk-Ov-3 (ErbB2⁺) wurden zusammen mit dem anti-ErbB2 Antikörper #788, #789, #790, #791 oder #792 in einer Verdünnungsreihe (10,4 µg/ml bis 0,2 µg/ml) inkubiert. Als Kontrolle gleichen Isotyps wurde das humane IgG Protein verwendet, und ebenfalls in einer Verdünnungsreihe (10,4 µg/ml bis 0,2 µg/ml) mit ErbB2⁺ Tumorzellen inkubiert. Die Bindung der ErbB2 spezifischen Antikörper an Zellen wurde mit Hilfe des PE-markierten anti-human IgG Antikörpers (0,2 µg/ml) detektiert. Die Bestimmung der durchschnittlichen Fluoreszenzintensitäten wurde mittels Durchflußzytometrie durchgeführt.

3.6.4 Kompetitive Hemmung der Bindung ErbB2 spezifischer Antikörper an ErbB2⁺ Tumorzellen durch Zugabe des löslichen ErbB2.

Es wurde untersucht, ob durch die Zugabe des ErbB2-hIgG Proteins eine kompetitive Hemmung der Bindung der rekombinanten anti-ErbB2 Antikörper C6-B1D2-hIgG (#788), C6ML3-9-hIgG (#789), C6.5-hIgG (#790), C6MH3-B1-hIgG (#791) und C6.5G98A-hIgG (#792) an ErbB2⁺ Zellen induziert wird. Hierfür wurden Tumorzellen der Linie Sk-Ov-3 (ErbB2⁺) zusammen mit einer konstanter Konzentration des anti-ErbB2 Antikörper #788, #789, #790, #791 oder #792 in einer Verdünnungsreihe mit ErbB2-hIgG Protein inkubiert. Als Kontrolle wurden Sk-Ov-3 Tumorzellen zusammen mit humanem IgG Protein (Southern Biotech) kompetitiert. Detektiert wurde die Bindung ErbB2 spezifischer Antikörper an Sk-Ov-3 Tumorzellen mit dem PEkonjugierten anti-human IgG Antikörper. Mit Hilfe der Durchflußzytometrie wurden die durchschnittlichen Fluoreszenzintensitäten bestimmt und die kompetitive Hemmung der Bindung an ErbB2⁺ Tumorzellen errechnet (Abb. 65).

Die Bindung ErbB2 spezifischer Antikörper C6-B1D2scFv-hIgG (#788), C6ML3-9scFv-hIgG (#789), C6.5scFv-hIgG (#790), C6MH3-B1scFv-hIgG (#791) und C6.5G98AscFv-hIgG (#792) an ErbB2⁺ Sk-Ov-3 wird durch die Zugabe des löslichen ErbB2-hIgG ab einer Konzentration von ca. 1 μ g/ml kompetitiv gehemmt. Die Substratkonzentration, bei der die halbmaximale Hemmung der Bindung ErbB2 spezifischer Antikörper an membranständiges ErbB2 eintritt, ist für alle ErbB2 spezifischen Antikörper gleich und beträgt etwa 2,8 μ g/ml des Kompetitors. Offensichtlich hängt die kompetitive Hemmung der Bindung ErbB2 spezifischer Antikörper an membranständiges ErbB2 der Tumorzellen nicht von der unterschiedlichen Affinität der anti-ErbB2 Antikörper ab.

Abbildung 65: Die kompetitive Hemmung der Bindung ErbB2 spezifischer Antikörper an ErbB2⁺ Tumorzellen ist von der Konzentration des zugegeben Kompetitorproteins abhängig. Je 2,5 x 10^5 Tumorzellen der Linie Sk-Ov-3 wurden zusammen mit einer konstanter Konzentration (4 µg/ml) am anti-ErbB2 Antikörper #788, #789, #790, # 791 oder #792 in einer Verdünnungsreihe mit ErbB2-hIgG Protein (20 µg/ml bis 0,03 µg/ml) inkubiert. Als Kontrolle wurden je 2,5 x 10^5 Sk-Ov-3 Tumorzellen zusammen mit humanem IgG Protein (20 µg/ml bis 0,03 µg/ml) inkubiert. Detektiert wurde die Bindung ErbB2 spezifischer Antikörper an Sk-Ov-3 Tumorzellen mit dem PE-konjugierten anti-human IgG Antikörper

(0,2 µg/ml). Mittels der Durchflußzytometrie wurden die durchschnittlichen Fluoreszenzintensitäten bestimmt. Die kompetitive Hemmung (in %) der ErbB2 spezifischen Antikörper wurde durch das Auftragen der durchschnittlichen Fluoreszenzintensität (MFI) aus dem Kontrollansatz (ohne Kompetitor) gegen die aus dem Kompetitionsansatz (in Gegenwart des Kompetitors) errechnet.

3.7 Bindung CEA spezifischer Antikörper an membranständiges CEA.

In diesem Kapitel wollen wir untersuchen, ob zwei Antikörper mit Spezifität für unterschiedliche Domänen des CEA durch die Zugabe des löslichen CEA in ihrer Bindung an membranständiges CEA der LS174T Tumorzellen kompetitiv gehemmt werden.

Hierfür wurden Tumorzellen der Linie 293T mit der Plasmid DNA für die löslichen CEA spezifischen Antikörper BW431/26scFv-hIgG (#443) und H10scFv-hIgG (#648) transfiziert. Nach 48h wurden die Kulturüberstände gesammelt, die Konzentration der CEA spezifischen Antikörper im Kulturüberstand mittels ELISA bestimmt und durch Verdünnung auf gleiche Konzentration eingestellt.

Die Bindung der CEA spezifischen Proteine BW431/26scFv-hIgG (#443) und H10scFv-hIgG (#648) an CEA⁺ LS174T Tumorzellen wurde mit Hilfe der Durchflußzytometrie untersucht. Hierfür wurden Tumorzellen der Linie LS174T zusammen mit dem anti-CEA Antikörper #443 oder #648 in einer Verdünnungsreihe inkubiert. Als Kontrolle wurden LS174T Zellen mit dem humanen IgG Protein in einer Verdünnungsreihe inkubiert wurde die Bindung der CEA spezifischen Antikörper mit dem PE-markierten anti-human IgG Antikörper.

Der anti-CEA Antikörper H10scFv-hIgG (#648) bindet stärker an membranständiges CEA der Tumorzellen als der anti-CEA Antikörper BW431/26scFv-hIgG (#443). Das humane IgG Kontrollprotein bindet nicht an LS174T Tumorzellen (Abb. 66). Dieser Versuch wurde mehrfach durchgeführt, wobei der H10scFv-hIgG Antikörper durchgehend stärker als der BW431/26scFv-hIgG Antikörper an CEA⁺ Tumorzellen gebunden hat.

Abbildung 66: Bindung CEA spezifischer Antikörper an CEA⁺ Tumorzellen. Je 1 x 10⁵ Tumorzellen der Linie LS174T (CEA⁺) wurden zusammen mit dem anti-CEA Antikörper #443 oder #648 in einer Verdünnungsreihe (8 μ g/ml bis 0,2 μ g/ml) inkubiert. Als Kontrolle wurde das humane IgG Protein (Southern Biotech) verwendet. Detektiert wurde die Bindung der CEA spezifischen Antikörper an CEA⁺ Tumorzellen mit dem PE-konjugierten anti-human IgG Antikörper (0,2 μ g/ml). Mit Hilfe der Durchflußzytometrie wurden die durchschnittlichen Fluoreszenzintensitäten bestimmt.

3.7.1 Keine kompetitive Hemmung der Bindung CEA spezifischer Antikörper an CEA⁺ Tumorzellen durch Zugabe des löslichen CEA.

Tumorzellen der Linie LS174T wurden mit einer konstanter Konzentration des anti-CEA Antikörpers #443 oder #648 in einer Verdünnungsreihe mit gelöstem CEA inkubiert. In einem zusätzlichen Kontrollansatz wurden LS174T Tumorzellen zusammen mit BSM (bovine serum mercaptalbumin) inkubiert. Detektiert wurde die Bindung CEA spezifischer Antikörper mit dem PE-konjugierten anti-human IgG Antikörper. Mit Hilfe der Durchflußzytometrie wurden die durchschnittlichen Fluoreszenzintensitäten bestimmt (Abb. 67).

(1.) Die Bindung CEA spezifischer Antikörper BW431/26scFv-hIgG (#443) und H10scFv-hIgG (#648) an membranständiges CEA der LS174T Tumorzellen wird durch die Zugabe des löslichen Inhibitors CEA, ab einer Konzentration von etwa 1 μg/ml CEA, verstärkt. Offensichtlich bindet der dimere anti-CEA Antikörper sowohl gelöstes als auch membranständiges CEA. Im Kontrollansatz hat die Zugabe von BSM keine kompetitiven Einfluss auf Die Bindung CEA spezifischer Antikörper #443 und #648 an membranständiges CEA. Die Bindung der anti-CEA Antikörper ist somit spezifisch. Es ist keine kompetitive Hemmung der Bindung der CEA spezifischen Antikörpern #443 und #648 an membranständiges CEA durch Zugabe des löslichen CEA in einer Konzentrationsbreite von 0,12 μ g/ml bis 10 μ g/ml nachweisbar. Die Bindung CEA spezifischer Antikörper an membranständiges CEA wird durch die Zugabe des löslichen CEA verstärkt.

Abbildung 67: Bindung CEA spezifischer Antikörper an membranständiges CEA in Gegenwart eines Kompetitors. Je 1 x10⁵ Zellen der Linie LS174T wurden mit einer konstanter Konzentration (4 μ g/ml) des anti-CEA Antikörpers #443 oder #648 in einer Verdünnungsreihe mit löslichem CEA (10 μ g/ml bis 0,12 μ g/ml) inkubiert. Als Kontrolle wurden je 1 x 10⁵ LS174T Tumorzellen in einer Verdünnungsreihe mit BSM (10 μ g/ml bis 0,12 μ g/ml) inkubiert. Detektiert wurde die Bindung CEA spezifischer Proteine #443 oder #648 an die CEA⁺ Tumorzellen mit dem PE-markierten anti-human IgG Antikörper (0,2 μ g/ml). Mittels der Durchflußzytometrie wurden die durchschnittlichen Fluoreszenzintensitäten bestimmt.

3.8 Einfluss des löslichen Kompetitors ErbB2 auf die Aktivierung der IFN-γ Sekretion und der Antigen-spezifischen Zytolyse der Tumorzellen bei Ko-Inkubation humaner T-Zellen mit ErbB2 spezifischen Immunrezeptoren und ErbB2⁺ Tumorzellen.

Die Bindung ErbB2 spezifischer Antikörper an membranständiges ErbB2 wird durch

die Zugabe des löslichen ErbB2 Proteins kompetitiv gehemmt und ist von der Konzentration des Kompetitors abhängig. In diesem Kapitel wollen wir der Frage T-Zellen nachgehen, ob humane mit ErbB2 spezifischen rekombinanten Immunrezeptoren in ihrer Aktivierung durch das lösliche Kompetitorprotein ErbB2 beeinträchtigt werden. Hierfür sollen T-Zellen durch retroviralen Gentransfer mit rekombinanten anti-ErbB2 Immunrezeptoren ausgestattet und mit ErbB2⁺ Tumorzellen in Gegenwart des Kompetitors ko-inkubiert werden. Der Einfluss des Kompetitors auf die T-Zell Aktivierung soll anhand der IFN-y Sekretion und Messung des zytolytischen Effektes auf ErbB2⁺ Tumorzellen untersucht werden.

3.8.1 Expression der rekombinanten ErbB2 spezifischen Immunrezeptoren mit einer CD3ζ Signaltransduktionskette in humanen CD3⁺ T-Lymphozyten.

Periphere Blutlymphozyten wurden mit monoklonalem OKT-3 Antikörper und IL-2 aktiviert und durch retroviralen Gentransfer zur Expression der anti-ErbB2-CD3 Rezeptoren C6-B1D2scFv-hIgG-hCD3ζ (#710), C6ML3-9scFv-hIgG-hCD3ζ (#744), C6.5scFv-hIgG-hCD3ζ (#746), C6MH3-B1scFv-hIgG-hCD3ζ (#748) und C6.5G98AscFv-hIgG-hCD3ζ (#750) transduziert. Nach 48h der Ko-Kultur der T-Zellen mit Retrovirus-produzierenden 293T Tumorzellen erfolgte der Nachweis der rekombinanten Immunrezeptoren mittels der Durchflußzytometrie mit Hilfe des FITCgekoppelten anti-human IgG₁ Antikörpers, der gegen die humane IgG Domäne des rekombinanten Immunrezeptors gerichtet ist, und des PE-konjugierter anti-human CD3 Antikörpers, zur Markierung der CD3⁺ T-Zelle. Nicht-transduzierte T-Lymphozyten und T-Lymphozyten mit dem CEA spezifischen Immunrezeptor BW431/26-hIgGhCD3ζ (#700) dienten als Kontrolle. Mit Hilfe der Durchflußzytometrie wurde die Expressionsrate der Rezeptoren #700, #710, #744, #746, #748 und #750 analysiert. Nicht-transduzierte T-Lymphozyten exprimieren keine rekombinanten Rezeptoren auf der Zelloberfläche (Abb. 68).

Abbildung 68: Expression der ErbB2 spezifischen Immunrezeptoren mit CD3 ζ Signaleinheit auf der Oberfläche transduzierter CD3⁺ T-Lymphozyten. Die T-Lymphozyten wurden durch retroviralen Gentransfer mit rekombinanten Immunrezeptoren C6-B1D2scFv-hIgG-hCD3 ζ (#710), C6ML3-9scFv-hIgG-hCD3 ζ (#744), C6.5scFv-hIgG-hCD3 ζ (#746), C6MH3-B1scFv-hIgG-hCD3 ζ (#748) und C6.5G98AscFv-hIgG-hCD3 ζ (#750) ausgestattet. Die Expression rekombinanter Immunrezeptoren auf den CD3⁺ T-Zellen wurde mittels der Durchflußzytometrie und mit Hilfe des FITC-gekoppelten antihuman IgG₁ Antikörpers, der gegen die humane IgG-"spacer" Domäne der rekombinanten Immunrezeptoren gerichtet ist, und des PE-konjugierten anti-human-CD3 Antikörpers, zur Markierung der CD3⁺ T-Zellen, durchgeführt. Als Kontrolle dienten T-Lymphozyten mit dem CEA spezifischen Immunrezeptor BW431/26scFv-hIgG-hCD3 ζ (#700) und nicht-transduzierte CD3⁺ T-Zellen Die Prozentzahl gibt den Anteil der CD3⁺ T-Lymphozyten, die den Immunrezeptor auf der Oberfläche exprimiert haben, von der Gesamtzahl der T-Zellen an.

3.8.2 Untersuchung der Aktivierung humaner T-Zellen mit ErbB2 spezifischen Immunrezeptoren durch Ko-Inkubation mit ErbB2⁺ Tumorzellen in Gegenwart des löslichen Kompetitors ErbB2.

In diesem Teilkapitel wollen wir der Frage nachgehen, welchen Einfluss die Zugabe des löslichen Antigens ErbB2 auf die Aktivierung der IFN- γ Sekretion und der ErbB2 spezifischen Zytolyse der Tumorzellen bei Ko-Inkubation der humanen T-Zellen mit ErbB2 spezifischen Immunrezeptoren mit ErbB2⁺ Tumorzellen hat.

Hierfür wurden humane CD3⁺ Effektorzellen durch retroviralen Gentransfer mit dem anti-ErbB2 Immunrezeptor C6-B1D2scFv-hIgG-hCD3 ζ (#710), C6ML3-9scFv-hIgG-hCD3 ζ (#744), C6.5scFv-hIgG-hCD3 ζ (#746), C6MH3-B1scFv-hIgG-hCD3 ζ (#748) und C6.5G98AscFv-hIgG-hCD3 ζ (#750) ausgestattet und auf Mikrotiterplatten mit Zellen der Linie Sk-Ov-3 (ErbB2⁺) in Gegenwart des löslichen ErbB2 ko-inkubiert. Als Kontrolle diente ein Ansatz ohne die Zugabe des löslichen ErbB2. Als weitere Kontrollen dienten nicht-transduzierte T-Lymphozyten und T-Lymphozyten, die den CEA spezifischen Immunrezeptor BW431/26scFv-hIgG-hCD3 ζ (#439) exprimieren. Nach 48h wurde die IFN- γ Konzentration mit Hilfe eines ELISA und die Zytolyse ErbB2⁺ Tumorzellen mittels des mit Hilfe der Umsetzungsreaktion des XTT-Substrates bestimmt.

T-Lymphozyten mit Expression der ErbB2 spezifischen Immunrezeptoren #710, #744, #746, #748 und #750 werden durch Ko-Inkubation mit Sk-Ov-3 (ErbB2⁺) Tumorzellen zur IFN-γ Sekretion aktiviert. T-Lymphozyten, die den Immunrezeptor #710, #744, #746 und #748 auf der Oberfläche exprimieren, sezernieren gleich hohe Mengen IFN-γ. T-Lymphozyten, die den nieder affinen anti-ErbB2 Immunrezeptor #750 ($k_D = 3.2 \times 10^{-7}$ M) auf ihrer Oberfläche exprimieren, sezernieren eine geringere Menge IFN-γ im Vergleich zu T-Zellen mit den höher affinen Immunrezeptoren für ErbB2.

Die Zugabe des ErbB2 Antigens ins Kulturmedium führt zur geminderten Induktion der IFN- γ Sekretion in Abhängigkeit von Konzentration des Kompetitors ErbB2. Die Minderung der IFN- γ Sekretion betrifft alle Ko-Inkubationsansätze mit gleicher Kinetik (Abb. 69).

Abbildung 69: IFN-γ Sekretion nach ErbB2 spezifischer Aktivierung humaner CD3⁺ T-Lymphozyten. Je 1 x10⁴ humane CD3⁺ T-Zellen mit dem ErbB2 spezifischen Immunrezeptor C6-B1D2hIgG-hCD3ζ (#710), C6ML3-9scFv-hIgG-hCD3ζ (#744), C6.5scFv-hIgG-hCD3ζ (#746), C6MH3-B1scFv-hIgG-hCD3ζ (#748) und C6.5G98AscFv-hIgG-hCD3ζ (#750) wurden mit je 5 x10⁴ Tumorzellen der Linie Sk-Ov-3 in Gegenwart des Kompetitors ErbB2-hIgG in einer Verdünnungsreihe (20 µg/ml bis 0,08 µg/ml) ko-inkubiert. Als Kontrolle diente ein Ansatz ohne die Zugabe des löslichen ErbB2. Nichttransduzierte humane CD3⁺ T-Lymphozyten und T-Zellen mit dem CEA spezifischen Immunrezeptor #439 wurden als weitere Kontrollen verwendet. Nach 48h wurde die IFN-γ Konzentration im Zellkulturüberstand mit Hilfe eines ELISA bestimmt. Die Daten zeigen den Mittelwert und die Standardabweichung.

Humane CD3⁺ T-Zellen mit ErbB2 spezifischen Immunrezeptoren #710, #744, #746, #748 oder #750 werden durch Ko-Inkubation mit ErbB2⁺ Sk-Ov-3 Tumorzellen zur spezifischen Zytolyse induziert. Dagegen werden nicht-transduzierte humane CD3⁺ T-Zellen und T-Zellen mit dem Immunrezeptor #439 durch Ko-Inkubation mit Zellen der Linie Sk-Ov-3 nicht zur spezifischen Zytolyse aktiviert (Abb. 70). T-Zellen mit den Immunrezeptoren #710, #744, #746 oder #748 mit verschiedener Affinität zu ErbB2 werden in Gegenwart des löslichen ErbB2 gleich stark zur spezifischen Zytolyse induziert. Als Kontrolle dienenden CD3⁺ T-Zellen mit dem für ErbB2 nieder affinen Rezeptor C6.5G98AscFv-hFc-hCD3 ζ (#750) (kD = 3,2 x 10⁻⁷ M) werden in Gegenwart des Kompetitors ErbB2 weniger stark zur spezifischen Zytolyse induziert als T-Zellen mit höher affinen anti-ErbB2 Immunrezeptoren ($k_D \leq 1,6 \times 10^{-8}$ M). Die Aktivität der ErbB2 spezifischen T-Zellen gegenüber ErbB2-positiven Tumorzellen wird nicht durch die Zugabe des löslichen ErbB2-hIgG Fusionsproteins beeinflusst (Abb. 70). Offensichtlich führt die Gegenwart des Kompetitorproteins ErbB2-hIgG, trotz Minderung der IFN- γ Sekretion, zu keiner kompetitiven Hemmung des zytolytischen Effektes der T-Zellen mit ErbB2 spezifischen Immunrezeptoren auf ErbB2⁺ Tumorzellen.

Abbildung 70: Einfluss des löslichen Kompetitors ErbB2-hIgG auf die Induktion der zytolytischen Aktivität der ErbB2 spezifischen T-Zellen gegenüber ErbB2⁺ Tumorzellen. Je 1 x10⁴ humane CD3⁺ T-Zellen mit dem ErbB2 spezifischen Immunrezeptor C6-B1D2scFv-hIgG-hCD3 ζ (#710), C6ML3-9scFv-hIgG-hCD3 ζ (#744), C6.5scFv-hIgG-hCD3 ζ (#746), C6MH3-B1scFv-hIgG-hCD3 ζ (#748) und C6.5G98AscFv-hIgG-hCD3 ζ (#750) wurden mit je 5 x10⁴ Tumorzellen der Linie Sk-Ov-3 im Kulturmedium ko-inkubiert, dem das lösliche Protein ErbB2-hIgG in einer Verdünnungsreihe 20 µg/ml bis 0,08 µg/ml zugegeben wurde. Als Kontrolle wurde ein weiterer Ansatz ohne die Gegenwart des Kompetitors angefertigt. Nicht-transduzierte CD3⁺ T-Lymphozyten und T-Zellen mit dem CEA spezifischen Immunrezeptor anti-CEA-hIgG-hCD3 ζ #439 wurden als weitere Kontrollen verwendet. Nach 48h wurde die Viabilität der Tumorzellen mit Hilfe der Umsetzungsreaktion des XTT-Substrates bestimmt. Aus der Dreifachbestimmung wurden die Mittelwerte und Standardabweichungen bestimmt.

3.9 Generierung und funktionelle Charakterisierung des murinen CEA spezifischen Antikörpers SCA-431scFv-hIgG.

Aus einer schweren (V_H) und einer leichten (V_K) Antikörper-Einzelkette eines CEA spezifischen Antikörpers sollte ein funktionstüchtiger Antikörper SCA-431scFv-hIgG generiert werden. In diesem Kapitel beschreiben wir die Generierung des CEA spezifischen murinen Antikörpers SCA-431scFv-hIgG (#977) und dessen Charakterisierung mittels der Durchflußzytometrie mit Hilfe der Tumorzellen, die in dieser Arbeit verwendet wurden.

Für die Generierung des CEA spezifischen Antikörpers wurde die DNA für die schwere Kette mit Hilfe der PCR mittels der Oligonukleotide L-kappa-SCA-431-NcoI (# 322) und SCA431-VH-AS (# 323) aus dem Plasmid 431-VH Mas Lys 19 (#680) amplifiziert. Am 5'-Ende des PCR Produkts wurde vor die DNA für die L-kappa Domäne die Restriktionsschnittstelle für Ncol und dahinter eine weitere Schnittstelle für das Restriktionsenzym XbaI inseriert. Am 3'-Ende des PCR Produkts wurde eine 40 bp lange Sequenz der Glycin-Linker Domäne eingefügt, die die beiden Domänen miteinander verbinden soll. Die DNA für die leichte Kette des Antikörpers wurde mit Hilfe der PCR und mittels der Oligonukleotide SCA-431-VK-S (# 324) und SCA431-VK-BglII-AS (# 325) aus dem Plasmid 431-Vk Lys 17 (#681) amplifiziert. Am 5'-Ende des PCR Produkts wurde eine 33 bp lange Sequenz des Glycin-Linkers eingefügt. Am 3'-Ende des PCR Produkts wurde eine Schnittstelle für das Restriktionsenzym BglII inseriert (Abb. 71). Die PCR Produkte V_H und V_K wurden elektrophoretisch getrennt und für die weiteren Klonierungsschritte gereinigt. Beim nächsten Klonierungsschritt wurde die schwere und die leichte Kette des Antikörpers mit Hilfe der Assembly-PCR miteinander verbunden. Aufgrund der kurzen Komplementärsequenz am 3'-Ende der DNA für die V_H-Kette und am 5'-Ende der V_K-Kette hybridisierten die denaturierten DNA Einzelstränge miteinander und dienten gleichzeitig als Oligonukleotide bei der Synthese zum DNA-Doppelstrang. Anschließend wurden die beiden Oligonukleotide Lkappa-SCA-431-NcoI (# 322) und SCA431-VK-BglII-AS (# 325) zugegeben, um das PCR Produkt 431-VH-Kette-431-VK-Kette in der gewünschten Gesamtlänge zu vervielfältigen. Für den weiteren Klonierungsschritt wurde das amplifizierte Gesamt-PCR Produkt 431-VH-Kette-431-VK-Kette elektrophoretisch aufgetrennt, gereinigt und mit dem linearisierten pCR[®]2.1 Vektor zum neuen Plasmid pCR 2.1-431-VH-Kette431-VK-Kette (#939) ligiert (Abb. 72). Anschließend wurde das inserierte Fragmentstück im Plasmid #939 mit Hilfe der PCR und mittels der Oligonukleotide M13 Reverse Primer (Invitrogen) und M13 Forward (-20) Primer (Invitrogen) sequenziert.

Im letzten Schritt wurde das Plasmid pCR-2.1-SCA-431-(scFv) (#939) durch Restriktion mit den Restriktionsendonukleasen *BglII* und *XbaI* geschnitten (Abb. 73), wobei das DNA Fragment für die anti-CEA Bindedomäne SCA-431scFv aus dem PCR-Vektor #939 isoliert wurde. Die verbliebene Vektor DNA #939 wurde deletiert. Das Plasmid pRsV-ErbB2scFv-hIgG (#788) wurde durch Restriktion mit den Restriktionsenzymen *XbaI* und *BamHI* geschnitten, wobei das DNA Fragment für die anti-ErbB2scFv Bindedomäne deletiert und das linearisierte Plasmid #788 für die weitere Klonierungsarbeit verwendet wurde. Die komplementären kohäsiven Enden der DNA für die murine anti-CEA Bindedomäne SCA-431scFv und des linearisierten Plasmids #788 wurden zum neuen Expressionsvektor pBullet-SCA-431scFv-hIgG₁ (#970) ligiert. Zur Überprüfung der Klonierung wurde das Plasmid #970 durch Restriktion mit den Enzymen mit *NcoI* und *BamHI* geschnitten, wobei erwartungsgemäß drei Fragmente der erwarteten Größe generiert wurden. Ferner wurde der Vektor # 977 mit Hilfe der beiden Oligonukleotide pRSVsense (# 75) und seq hFc-As (# 76) sequenziert (Sequenzen im Anhang).

Abbildung 71: Klonierung des murinen CEA spezifischen Antikörpers SCA-431scFv-hIgG. Die DNA für die schwere Kette des Antikörpers wurde mit Hilfe der PCR mittels der Oligonukleotide Lkappa-SCA-431-NcoI (# 322) und SCA431-VH-AS (# 323) aus dem Plasmid 431-VH Mas Lys 19 (# 680) amplifiziert. Am 5'-Ende des PCR Produkts wurde vor die L-kappa DNA die Restriktionsschnittstelle für *NcoI* und dahinter eine Schnittstelle für das Restriktionsenzym *XbaI* inseriert. Am 3'-Ende des PCR Produkts wurde eine 40 bp lange Sequenz der Glycin-Linker Domäne, die die beiden Ketten V_H und V_K miteinander verbinden soll, inseriert. Das fertige PCR-Produkt VH enthält die DNA für die schwere Kette des Antikörpers. Die DNA für die leichte Kette des Antikörpers wurde mit Hilfe der PCR und der Oligonukleotide SCA-431-VK-S (# 324) und SCA431-VK-BglII-AS (# 325) aus dem Plasmid 431-Vk Lys 17 (#681) amplifiziert. Am 5'-Ende des PCR-Produkts wurde eine 33 bp lange Sequenz des Glycin-Linkers und am 3'-Ende eine Schnittstelle für das Restriktionsenzym *BglII* inseriert. Das PCR-Produkt VK enthält die DNA für die leichte Kette des Antikörpers.

Abbildung 72: Generierung des PCR-Vektors pCR2.1 SCA-431-VH-SCA-431-VK (#939). Mit Hilfe der Assembly-PCR wurden die beiden PCR Produkte 431-VH und 431-VK miteinander verknüpft. Nach der Denaturierung hybridisierte die 3'-Sequenz des 431-VH PCR Produkts mit der komplementären 5'-Sequenz des 431-VK PCR Produkts. Dabei dienten die miteinander hybridisierten Sequenzbereiche als Oligonukleotide bei der Synthese zum DNA-Doppelstrang. Anschließend wurden die beiden Oligonukleotide L-kappa-SCA-431-NcoI (# 322) und SCA431-VK-BglII-AS (# 325) zugegeben, um das PCR Produkt 431-VH-Kette-431-VK-Kette in der gewünschten Gesamtlänge zu amplifizieren. Dabei wurde am 5'-Ende eine Schnittstelle für das Restriktionsenzym *NcoI*, am 3'-Ende eine Schnittstelle für das Restrik

Abbildung 73: Generierung des Expressionsvektors pRSV-SCA-431scFv-hIgG (#970). Der PCR Vektor pCR-2.1-SCA431-VH-SCA431-VK (#939) wurde durch Restriktion mit den Enzymen *BglII* und *XbaI* geschnitten, wobei das DNA Fragment für anti-CEA Bindedomäne SCA-431scFv aus dem Plasmid #939 isoliert wurde. Der linearisierte PCR Vektor #939 wurde deletiert. Das Plasmid pRsV-ErbB2scFv-hIgG (#788) wurde durch Restriktion mit den beiden Enzymen *XbaI* und *BamHI* geschnitten, wobei das DNA Fragment für die beiden Enzymen *XbaI* und *BamHI* geschnitten, wobei das DNA Fragment für die anti-ErbB2scFv Bindedomäne deletiert und das linearisierte Plasmid #788 isoliert wurde. Die DNA für die murine anti-CEA Bindedomäne SCA431-VH-SCA431-VK wurde mit der linearisierten Plasmid DNA #788 mit Hilfe der T4-Ligase zum neuen Expressionsvektor pBullet-SCA-431scFv-hIgG₁ (#970) ligiert. Zur Überprüfung der Klonierung wurde das Plasmid #970 durch Restriktion mit den Enzymen *NcoI* und *BamHI* geschnitten. Erwartet wurden drei Fragmente 4,8 kb, 2,2 kb und 0,2 kb.

Abbildung 74: Plasmidkarte des neu generierten Plasmids pRSV-SCA-431scFv-hIgG (#970).

3.9.1 Expression und Nachweis der Funktionalität des murinen CEA spezifischen Antikörpers SCA-431scFv-hIgG (# 970).

Tumorzellen der Linie 293T wurden mit der Plasmid DNA für den Antikörper SCA-431scFv-hIgG (#970) transfiziert und 48h inkubiert. Anschließend wurden die Kulturüberstände gesammelt, die Konzentration der CEA spezifischen Antikörper mittels ELISA bestimmt. Die Bindung des neu generierten Antikörpers #970 an CEA⁺ Tumorzellen der Linie C15A3 und LS174T wurde untersucht. Hierfür wurden Tumorzellen der Linie C15A3, LS174T und als Kontrolle der Linie MC38 (CEA⁻) mit dem SCA-431scFv-hIgG Antikörper (#970) inkubiert. Tumorzellen der Linien C15A3, LS174T und MC-38, die mit dem humanem IgG Protein inkubiert wurden, dienten als Kontrolle. Die Bindung des CEA spezifischen Antikörpers SCA-431-hIgG (#970) auf der Oberfläche der Tumorzellen der Linie C15A3 und LS174T wurde indirekt mit Hilfe des PE-konjugierten anti-human IgG Antikörpers nachgewiesen. Auf der Oberfläche der CEA⁻ MC-38 Tumorzellen wurde keine Bindung des PE-konjugierten anti-human IgG Antikörpers an den primären SCA-431-hIgG Antikörper detektiert.

Abbildung 75: Bindung des CEA spezifischen Antikörpers an CEA-positive Zellen. Jeweils 2,5 x 10^5 Zellen der Linie C15A3, MC-38 und LS174T wurden mit dem CEA spezifischen SCA431scFv-hIgG Antikörper (#970) oder zur Kontrolle mit dem humanem IgG Protein (Southern Biotech) (2 µg/ml) inkubiert. Nach 30 min erfolgte die Detektion der Bindung an Tumorzellen der Linien LS174T, C15A3 und MC-38 mit Hilfe des PE-markierten anti-human IgG Antikörpers (0,5 µg/ml). Die Bindung des CEA spezifischen Antikörpers SCA-431scFv-hIgG (#970) (schwarze Linie) an Zellen der Linie LS174T und C15A3 wurde indirekt mit Hilfe des PE-markierten anti-human IgG Antikörpers nachgewiesen. Es wurde keine Bindung des rekombinanten Antikörpers SCA-431scFv an CEA⁻ MC-38 Tumorzellen detektiert. Zellen der Linie C15A3, MC-38 und LS174T, die als Kontrolle mit dem hIgG Protein inkubiert wurden (graue Linie), wurden nicht durch den PE-konjugierten Antikörper anti-human IgG gebunden.

4 Diskussion

Ein neuer Ansatz in der adoptiven Immuntherapie maligner Erkrankungen beruht darauf, T-Zellen durch einen rekombinanten T-Zell Rezeptor Spezifität für ein Tumorassoziiertes-Antigen (TAA) zu verleihen. Derartige rekombinante Immunrezeptoren bestehen in ihrem extrazellulären Anteil aus einer antigenbindenden Domäne eines Einzelketten-Antikörpers (scFv), einer Transmembrandomäne und intrazellulär aus einer Signalkette, die der zellulären Aktivierung dient. Dieser modulare Aufbau der rekombinanten Immunrezeptoren erlaubt es, T-Zellen eine gewünschte Spezifität mit umfangreichen Fähigkeiten zur Induktion und Modulation einer zellulären Immunantwort zu verleihen. Innerhalb der letzten Jahre haben Forschergruppen zahlreiche Immunrezeptoren mit Spezifität zu unterschiedlichen Antigenen generiert, wobei die *in vivo* Evaluierung der Immunrezeptor-Strategie meist in immundefizienten Mäusen durchgeführt wurde. Im Rahmen dieser Arbeit sollte die Immunrezeptor-Strategie am Beispiel des anti-CEA Rezeptors in einem immunkompetenten Maus-Modell evaluiert werden.

4.1 Optimierung eines retroviralen Gentransfer-Protokolls für die Transduktion muriner T-Lymphozyten.

Im Rahmen der *in vivo* Evaluierung des immuntherapeutischen Ansatzes sollte das retrovirale Gentransferverfahren für die Transduktion muriner T-Zellen optimiert werden. Für die Produktion retroviraler Partikel sind *gag*, *pol* und *env* Gene notwendig, wobei die *gag* Gene für virale Matrix, Capsid und Nucleocapsid Proteine, die *pol* Gene für Protease, Reverse Transkriptase und Integrase und die *env* Gene für Oberflächenproteine zur spezifischen Zielzellerkennung kodieren (Tai *et al.*, 2005). Da für die Spezifität und somit auch für die Effizienz der Transduktion das *Env* Protein des Retrovirus entscheidend ist, wurden in dieser Arbeit die *Env* Proteine der Retroviren *Vesicular Stomatitis Virus G* (VSVG), *Gibbon Ape Leukemia Virus* (GALV) und *Moloney Murine Leukemia Virus* (MMLV) untersucht.

Hierfür wurden Zellen der Linie 293T mit retroviralem Expressionsvektor #439, mit Helferplasmid für *Gag* und *Pol* Proteine pHIT60 (#393) und Helferplasmid für das *Env* Protein GaLV (#392), pVpack-10A1 (#596), pVpack-VSV-G (#597), pVpack-Eco (#598) oder pVpack-Ampho (#599) ko-transfiziert und Retroviren generiert, deren Capside den Vektor #439 enthalten. Die murinen T-Zellen wurden mittels Retroviren mit den Env Hüllenproteinen der Retroviren VSVG, GALV oder MMLV, transduziert. Obwohl VSVG, GALV und MMLV basierte Retroviren die Fähigkeit zur T-Zell Transduktion haben, werden murine T-Lymphozyten am effizientesten mit Retroviren infiziert, die das vom MMLV abgeleitete ecotrope Env Protein (#598) enthalten. Dieses Ergebnis entspricht der Erwartung, dass Retroviren mit MMLV Grundgerüst effektiv murine T-Zellen transduzieren. Dabei spielen die in vitro Kulturbedingungen eine Schlüsselrolle und müssen je nach Ansatz modifiziert werden (Kiem et al., 2004). Der Einsatz retroviraler Vektoren zur Transduktion proliferierender primärer Maus T-Lymphozyten ist derzeitiges Standardsystem, da die Viren nach Infektion der mitotisch aktiven Zielzelle in das Wirtsgenom integrieren und eine stabile Expression des Transgens ermöglichen. Durch die Entwicklung gewebsspezifischer Inkubationssysteme für T-Zellen (Hozumi et al., 2000) und Generierung neuartiger Vektorensysteme (Van Parijs et al., 1999; Rossi et al., 2003) wurde die Effizienz retroviraler Gentransfersysteme in vitro gesteigert. Neben den retroviralen Systemen werden alternativ adenovirale Systeme verwendet, um primäre Zellen lymphatischen Ursprungs zu transduzieren (Volpers et al., 2004). Jedoch die begrenzte Größe des Transgens, die zeitaufwendige Generierung adenoviraler Vektoren und die episomale Persistenz des adenoviralen Genoms zählen zu den entscheidenden Nachteilen der adenoviralen Systeme gegenüber den retroviralen Systemen.

4.2 Generierung, Expression und funktionelle Charakterisierung rekombinanter Immunrezeptoren.

Im Rahmen der Evaluierung der adoptiven Immuntherapie in einem immunkompetenten Maus-Modell wurden rekombinante CEA spezifische Immunrezeptoren mit humanen und murinen Binde-, Transmembran- und Signaldomänen generiert, deren Expression auf der Oberfläche transduzierter humaner und muriner T-Zellen detektiert und die Immunrezeptor-vermittelte T-Zell Aktivität untersucht.

4.2.1 Optimierung der Rezeptorkonstruktion – Generierung der Immunrezeptoren der ersten und zweiten Generation.

Während im letzten Jahrzehnt zahlreiche Immunrezeptoren mit humanen Domänen

generiert, in humanen T-Zellen exprimiert und in vitro untersucht wurden, ist über die Konstruktion, Expression und Funktion muriner rekombinanter Immunrezeptoren wenig bekannt. Neben der Gentransfermethode, die für die Effizienz der T-Zell Transduktion entscheidend ist, ist die Stabilität der Expression rekombinanter Immunrezeptoren auf der Oberfläche der T-Zelle von der Anordnung der Domänen in dem rekombinanten Rezeptorprotein abhängig (Hombach et al., 2002). Deswegen haben wir bei der Generierung muriner Immunrezeptoren der ersten Generation die bewährte Konstruktion humaner rekombinanter Rezeptorproteine übernommen. Dementsprechend wurden CEA und CD30 spezifische Immunrezeptoren (#866 und #881) generiert, die die scFv Domäne zur Antigen-Bindung, die murine IgG1 CH2-CH3 Domäne als "spacer" und die transmembrane und intrazelluläre Domäne der CD3ζ Kette als Signalkette tragen. Da eine adäquate Kostimulation eine erhebliche Bedeutung für die Eigenschaft, Effizienz und die Dauer der Tumor spezifischen T-Zell Aktivierung hat, wurden ferner murine CEA und CD30 spezifische Immunrezeptoren (#878 und #883) mit einer kombinierten CD28-CD3ζ Signalkette generiert. Im Vergleich zur einzelnen CD3ζ Signalkette führt die Kombination aus der CD3ζ Signalkette und der ko-stimulatorischen CD28 Signaldomäne im humanen System nach Bindung des Rezeptors an Antigen zur gesteigerten IFN-y Sekretion und zusätzlich zur Induktion der IL-2 Sekretion (Hombach et al., 2001). Die Transfektion von 293T Tumorzellen mit der DNA für die neu generierten murinen CEA und CD30 spezifischen Immunrezeptoren #866, #878, #881 und #883 ergab eine signifikant geringe Expression der Rezeptoren auf der Zelloberfläche im Vergleich zu baugleichem humanen Immunrezeptor #439. Die anschließende Untersuchung der retroviralen Transduktionsrate humaner T-Zellen zeigte erneut eine signifikant niedrige Expressionsfrequenz der murinen rekombinanten Immunrezeptoren mit einer CD3 (Signalkette (#866 und #878) und einer CD28-CD3 (Signaleinheit (#881 und #883). Offensichtlich sichert die Konstruktion muriner Immunrezeptoren nach dem Vorbild humaner Immunrezeptoren nicht eine vergleichbar hohe Expressionsrate (30 % bis 70 %) der rekombinanten Proteine auf der Oberfläche transduzierter T-Zellen. Die Arbeitsgruppe um Hans-Christoph Selinka hat bei der Generierung rekombinanter Membranproteine gezeigt, dass die Verwendung der CD4 Transmembrandomäne zu einer signifikant hohen Expressionsrate des generierten Proteins auf der Oberfläche muriner und humaner T-Zellen führt (Selinka et al., 1992). Andererseits wurden an der University of Manchester rekombinante Immunrezeptoren mit der humanen CD3 Transmembrandomäne generiert und mit einer Frequenz von

20 % in murinen CD4⁺ und 70 % in CD8⁺ T-Zellen exprimiert (Jiang *et al.*, 2006). Ferner wurde am Weizmann Institut (Rehovot, Israel) gezeigt, dass Mäuse, transgen für den rekombinanten anti-2,4,6-trinitrophenyl (TNP) Immunrezeptor mit der CD28 Transmembrandomäne, den rekombinanten Immunrezeptor mit einer hohen Frequenz in murinen T-Zellen exprimieren (Friedmann-Morvinski *et al.*, 2005).

Aufgrund der bisher niedrigen Expressionsfrequenz der CEA und CD30 spezifischer Immunrezeptoren mit der murinen CD3 und CD28 Transmembrandomäne haben wir eine zweite Generation muriner Immunrezeptoren mit der CD4 Transmembrandomäne generiert. Hierfür wurde die CD3 und die CD28 Transmembrandomäne der CEA und CD30 spezifischen Immunrezeptoren (#866, #878, #881 und #883) durch die murine CD4 Transmembrandomäne ausgetauscht und rekombinante CEA und CD30 spezifische Immunrezeptoren mit der CD3ζ Signaleinheit (#892, #895), mit der kombinierten CD28-CD3ζ Signalkette (#901, #907) und mit der CD3ζ-OX40 Signaldomäne (#897 und #898) generiert. Anschließend wurden die neuen Rezeptorproteine in 293T Tumorzellen, in humanen und in murinen T-Zellen mit einer hohen Frequenz (30% bis 90 %) exprimiert. Offensichtlich sichert die CD4 Transmembrandomäne eine hinreichend hohe Expressionsfrequenz der rekombinanten Immunrezeptoren in murinen und in humanen T-Zellen, um diese *in vitro* und *in vivo* funktionell charakterisieren zu können.

4.2.2 Funktionelle Charakterisierung rekombinanter CEA spezifischer Immunrezeptoren.

Wir wollten zunächst untersuchen, ob humane T-Zellen mit den neu generierten CEA und CD30 spezifischen Immunrezeptoren durch Kreuzvernetzung der humanen IgG CH2-CH3-,,spacer" Domäne zur IFN- γ und IL-2 Sekretion induziert werden. Hierfür wurden humane CD3⁺ T-Zellen durch retroviralen Gentransfer mit murinen CEA spezifischen Immunrezeptoren BW431/26scFv-mIgG-mCD4-mCD3 ζ (#895), BW431/26scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#898) und BW431/26scFv-mIgG-mCD4-mCD3 ζ (#897), mIgG-mCD4-mCD3 ζ (#907) und CD30 spezifischen Immunrezeptoren HRS3scFv-mIgG-mCD4-mCD3 ζ (#892), HRS3scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#897) und HRS3scFv-mIgG-mCD4-mCD3 ζ (#892), HRS3scFv-mIgG-mCD4-mCD3 ζ -mOX40 (#897) und HRS3scFv-mIgG-mCD4-mCD3 ζ (#901) ausgestattet und durch Kreuzvernetz-ung mit immobilisierten Antikörpern zur IFN- γ und IL-2 Sekretion induziert. Dabei wurde gezeigt, dass T-Zellen mit den CEA und CD30 spezifischen Immunrezeptoren

mit der CD3ζ Signalkette (#892, #895), mit der CD3ζ-OX40 Signaleinheit (#897, #898) und mit der kombinierten CD28-CD3ζ Signaldomäne (#901, #907) durch Vernetzung der IgG-"spacer" Domäne zur IFN-y Sekretion induziert werden, wobei T-Zellen mit den CEA spezifischen Immunrezeptoren (#895, #898) mit der CD3ζ und CD3ζ-OX40 Domäne gering schwächer zur IFN-y Sekretion induziert werden als T-Zellen mit dem Immunrezeptor #907 mit der CD28-CD3ζ Signaleinheit. Die Untersuchung der IL-2 Sekretion ergab, dass T-Zellen mit dem rekombinanten CEA spezifischen Immunrezeptor #907 mit der CD28-CD35 Signalkette durch Vernetzung der IgG-"spacer" Domäne zur IL-2 Sekretion induziert werden. Dagegen werden T-Zellen mit dem Immunrezeptor mit der CD3ζ Signalkette (#895) und mit der CD3ζ-OX40 Signaldomäne (#898) nicht zur IL-2 Sekretion induziert. Diese Ergebnisse stimmen mit den Resultaten aus der Untersuchung der humanen T-Zellen mit CD30 spezifischen Immunrezeptoren mit der CD3ζ (# 892), CD3ζ-OX40 (# 897) und CD28-CD3ζ (# 901) Signalkette überein, die ebenfalls durch Kreuzvernetzung der humanen IgG CH2-CH3-"spacer" Domäne zur IFN-y Sekretion und im Fall des CD28-CD3ζ Immunrezeptors #901 zur IL-2 Sekretion induziert werden.

Als nächstes haben wir uns mit der Frage beschäftigt, ob humane T-Zellen mit CEA spezifischen Immunrezeptoren (#895, #898 und #907) durch die Ko-Inkubation mit CEA⁺ Tumorzellen zur spezifischen Zytolyse gegenüber CEA⁺ Tumorzellen und zur IFN-y Sekretion induziert werden. Hierfür wurden humane T-Zellen, ausgestattet mit den Immunrezeptoren mit der CD3ζ Signalkette (#895), mit der CD3ζ-OX40 Signaleinheit (#898) und mit der kombinierten CD28-CD3ζ (#907) Signaldomäne mit CEA⁺ Tumorzellen der humanen Linie LS174T ko-inkubiert. Dabei wurden die T-Zellen mit den rekombinanten Rezeptoren #895, #898 oder #907 Antigen spezifisch mit gleicher Effizienz zur Zytolyse der CEA⁺ Tumorzellen induziert. Außerdem wurden T-Zellen mit dem Immunrezeptor #907 mit der CD28-CD3ζ Signaleinheit durch die Ko-Inkubation mit CEA⁺ Tumorzellen Antigen-spezifisch zur IFN-y Sekretion stärker induziert als T-Zellen mit dem Immunrezeptor #895 mit der CD3ζ Signalkette und T-Zellen mit dem Immunrezeptor #898 mit der CD3ζ-OX40 Signaldomäne. Dies entspricht den bisherigen Erkenntnissen, dass T-Zellen mit Immunrezeptoren mit der kombinierten CD28-CD3ζ Signalkette im Vergleich zu T-Zellen mit der einzelnen CD3ζ Signalkette oder mit der kombinierten CD3ζ-OX40 Signaldomäne sich durch die Induktion der IL-2 Sekretion, Aktivierung einer erhöhten IFN-y Sekretion und einer stärkeren T-Zell Proliferation unterscheiden (Eshhar et al., 2001; Hombach et al., 2001;

Maher *et al.*, 2002). Darüber hinaus ist bekannt, dass die Aktivierung der T-Zelle mit rekombinantem Immunrezeptor mit dem ko-stimulatorischen OX40 (CD134) Signalmolekül zur verstärkten Expression der anti-apoptotischen Proteine Bcl-2, Bcl-X and Bfl1 führt, womit die Lebensdauer der T-Zelle verlängert wird (Finney et al., 2004). Die so aktivierte T-Zelle kann im Zuge der T-Zell Differenzierung sich weiter zu einer Gedächtnis-T-Zelle entwickeln (Sugamura *et al.*, 2004).

Nachdem wir die Antigen spezifische Aktivierung der humanen T-Zellen mit murinen CEA spezifischen Immunrezeptoren gezeigt haben, beschäftigten wir uns mit der Frage, ob auch murine T-Zellen mit CEA spezifischen Immunrezeptoren durch Ko-Inkubation mit CEA⁺ Tumorzellen Antigen spezifisch zur Zytolyse CEA⁺ Tumorzellen und IFN-y Sekretion induziert werden. Hierfür haben wir murine CD8⁺ T-Zellen durch retroviralen Gentransfer mit murinen CEA spezifischen Immunrezeptoren mit der CD3((#895) und mit der kombinierten CD28-CD3ζ Signaldomäne (#907) ausgestattet und mit CEA⁺ Tumorzellen der murinen Linie C15A3 ko-inkubiert. Die Untersuchung ergab, dass murine CD8⁺ T-Zellen mit CEA spezifischen Immunrezeptor mit der CD28-CD3ζ Signaleinheit (#907) Antigen spezifisch stärker zur IFN-y Sekretion induziert werden als T-Zellen mit dem CEA spezifischen Immunrezeptor mit der CD3 Signaldomäne (#895). Die anschließend durchgeführte Untersuchung der Rezeptor-vermittelten zytolytischen Aktivität der CEA spezifischen T-Zellen gegenüber CEA⁺ Tumorzellen ergab, dass T-Zellen mit dem CD3ζ (#895) und dem CD28-CD3ζ (#907) Immunrezeptor Antigen spezifisch gleich stark zytolytisch auf CEA⁺ Tumorzellen wirken. Möglicherweise verleihen die rekombinanten murinen CEA spezifischen Immunrezeptoren mit der CD3ζ und der CD28-CD3ζ Signaleinheit sowohl der humanen als auch der murinen T-Zelle eine gleich effektive Rezeptor-vermittelte Aktivierung. Moeller et al., 2005, zeigten, dass murine CD8⁺ T-Zellen mit ErbB2 spezifischem Immunrezeptor mit der humanen CD3 Signaldomäne im Vergleich zu T-Zellen mit ErbB2 spezifischem Immunrezeptor mit integrierter CD28-CD3ζ Signalkette zytolytisch gleich effektiv auf ErbB2⁺ Tumorzellen wirken. Weiterhin wurde durch diese Arbeitsgruppe gezeigt, dass murine CD8⁺ T-Zellen mit ErbB2 spezifischem Immunrezeptor mit der CD28-CD3ζ Signaleinheit stärker zur IFN-γ Sekretion induziert werden als T-Zellen mit dem CD3ζ Immunrezeptor. Diese Ergebnisse werden durch unsere Resultate, die wir aus der funktionellen Charakterisierung der murinen CD8⁺ T-Zellen mit CEA spezifischen Immunrezeptoren gewonnen haben, bestätigt. Ergänzend konnte durch Moeller et al. gezeigt werden, dass T-Zellen mit dem ErbB2 spezifischen Immunrezeptor mit der CD28-CD3ζ Signaldomäne bei Antigen spezifischer Aktivierung deutlich stärker proliferieren als T-Zellen mit der CD3ζ Signaldomäne. Offensichtlich profitieren sowohl humane als auch murine T-Zellen mit rekombinantem Immunrezeptor von der Insertion der CD28 ko-stimulatorischen Domäne. Interessanterweise hat die Arbeitsgruppe um Zelig Eshhar für die Erforschung der CD28 Ko-Aktivierung zwei Mäuse generiert, die transgen für den 2,4,6-trinitrophenyl (TNP) spezifischen Immunrezeptor mit der kombinierten CD28-FcRy und der FcRy Signalkette sind (Friedmann-Morvinski et al., 2005). Die Ko-Inkubation der murinen T-Zellen mit dem TNP spezifischen Immunrezeptor CD28-FcRy und FcRy mit TNP⁺, B7⁺ Tumorzellen führt zur Expression der IL-2Ra Rezeptorkette (CD25) als Marker für T-Zell Aktivierung und T-Zell Proliferation. Andererseits werden ausschließlich T-Zellen mit dem TNP spezifischen CD28-FcRy Immunrezeptor durch die Ko-Inkubation mit TNP⁺, B7⁻ Tumorzellen zur Expression der IL-2Rα Rezeptorkette aktiviert. Hingegen werden T-Zellen mit dem FcRy Immunrezeptor nicht zur Expression der IL-2Ra Rezeptorkette aktiviert. Offensichtlich führt die fehlende CD28/B7 Interaktion in murinen T-Zellen zur geminderten T-Zell Aktivierung.

Bei unserer in vivo Evaluierung des immuntherapeutischen Ansatzes werden murine T-Zellen retroviral mit CEA spezifischen Immunrezeptoren ausgestattet und anschließend in immunkompetente C57-Black/6 Mäuse injiziert. In der Literatur ist es bisher unbeantwortet geblieben, ob rekombinante Immunrezeptoren mit humanen Domänen in der Maus als immunogen erkannt und eliminiert werden. Daher haben wir Immunrezeptoren generiert, die ausschließlich aus murinen Domänen bestehen. Das Ziel ist die Ausstattung muriner T-Lymphozyten mit anti-CEA Rezeptoren mit keiner oder nur geringer Immunogenität bei einem in vivo Versuch in immunkompetenten Mäusen. Um diese T-Zell Rezeptoren zu generieren, wurde die humanisierte BW431/26scFv Bindedomäne der Rezeptoren #895, #898 und #907 gegen die murine SCA-431scFv Bindedomäne ausgetauscht. Nachfolgend untersuchten wir die Rezeptorvermittelte Aktivierung der humanen T-Zellen mit den neu generierten Immunrezeptoren. Hierfür wurden humane CD3⁺ T-Zellen durch retroviralen Gentransfer mit den Immunrezeptoren mit der CD3ζ Signalkette (#977), mit der CD3ζ-OX40 Signaldomäne (#978) und mit der CD28-CD3ζ Signaleinheit (#982) ausgestattet. Durch die Kreuzvernetzung der murinen IgG-"spacer" Domäne des Rezeptors wurden T-Zellen zur IFN-γ Sekretion induziert, wobei T-Lymphozyten mit dem CD28-CD3ζ Immunrezeptor (#982) stärker zur IFN-y Sekretion aktiviert wurden als T-Zellen mit dem CD3 ζ (#977) und dem CD3 ζ -OX40 (#978) Immunrezeptor. Ferner ermöglicht die ko-stimulatorische CD28 Domäne die Rezeptor-vermittelte Induktion der IL-2 Sekretion bei T-Zellen mit dem CD28-CD3 ζ Immunrezeptor (#982). Bei der Ko-Inkubation der humanen T-Zellen mit CEA spezifischen Immunrezeptoren (#977, #978 und #982) mit CEA⁺ Tumorzellen wurden T-Zellen mit dem CD28-CD3 ζ Immunrezeptor stärker zur IFN- γ Sekretion induziert als T-Zellen mit dem CD3 ζ (#977) und dem CD3 ζ -OX40 (#978) Immunrezeptor. Es wurde ferner gezeigt, dass T-Zellen mit dem CEA spezifischen Immunrezeptor mit der CD3 ζ Signalkette(#977), mit der CD3 ζ -OX40 Signaleinheit (#978) und mit der CD3 ζ Signaldomäne (#982) gleich stark Antigen spezifisch zur Zytolyse der CEA⁺ Tumorzellen induziert werden.

Im Hinblick auf den geplanten experimentellen Einsatz der rekombinanten Rezeptoren in immunkompetenten C57-Black/6 Mäusen untersuchten wir, ob murine CD8⁺ T-Lymphozyten die neu generierten Immunrezeptoren #977, #978 und #982 exprimieren. Hierfür wurden murine CD8⁺ T-Zellen durch retroviralen Gentransfer mit Immunrezeptoren mit ausschließlich murinen Domänen SCA-431scFv-mIgG-mCD4-mCD3ζ (#977), SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40 (#978) und SCA-431scFv-mIgGmCD4-mCD28-mCD3ζ (#982) mit einer Frequenz von ca. 50 % transduziert. Offensichtlich führt der Austausch der humanisierten CEA spezifischen Bindedomäne BW431/26 gegen die murine anti-CEA Bindedomäne SCA-431 nicht zur Minderung der Expression der rekombinanten Immunrezeptoren auf der Oberfläche muriner T-Zellen.

4.3 *In vivo* Evaluierung des Immunrezeptoransatzes.

Wir verwendeten ausschließlich immunkompetente C57-Black/6 Mäuse, um den immuntherapeutischen Ansatz an einem "naturnahen" Tiermodell zu evaluieren. Dabei haben wir zunächst untersucht, ob die subkutaner Injektion der Zellen der murinen Kolonkarzinomzellinie C15A3 (CEA⁺) und MC-38 (CEA⁻) zur Tumorentwicklung in C57-Black/6 Mäusen führt. Wir zeigten, dass Zellen der Linie C15A3 und MC-38 dosisabhängig einen Tumor in C57-Black/6 Mäusen induzieren, wobei bereits 1 x 10⁵ Tumorzellen für die Tumoretablierung ausreichend sind.

Wir wollten nun untersuchen, ob die Ko-Injektion von T-Zellen mit anti-CEA Immunrezeptoren mit CEA⁺ Tumorzellen zur Eliminierung des syngenen CEA⁺ Tumors führt und welchen Einfluss die Insertion der CD28 ko-stimulatorischen Domäne auf die Induktion der Rezeptor-vermittelten zytolytischen Aktivität der T-Zellen hat.

Hierfür haben wir murine CD8⁺ T-Zellen mit CEA spezifischem Immunrezeptor mit der CD3ζ (#895) und der CD28-CD3ζ (#907) Signaldomäne ausgestattet und mit CEA⁺ Tumorzellen subkutan ko-injiziert. Während alle Kontrolltiere (6/6), ko-injiziert mit nicht-transduzierten T-Zellen und CEA⁺ Tumorzellen, in einem Zeitraum von 15 Tagen Tumore entwickelten, blieben alle Versuchstiere nach der Ko-Injektion der CEA⁺ Tumorzellen mit T-Zellen mit dem CD3ζ Immunrezeptor #895 und mit den T-Zellen mit dem CD28-CD35 Immunrezeptor #907 im selben Zeitraum tumorfrei. Dieses Ergebnis bestätigt teilweise das Resultat der Mausversuche, die die Arbeitsgruppe um N. M. Haynes, 2002, publiziert hat. In diesem Ansatz wurden ErbB2⁺ Tumorzellen den BALB/c Versuchsmäusen subkutan injiziert und anschließend angereicherte murine CD8⁺ T-Zellen, ausgestattet mit ErbB2 spezifischen Immunrezeptoren mit der CD3⁽ und der CD28-CD3ζ Signaldomäne, appliziert. Die anschließende Untersuchung des Tumorwachstums ergab, dass Versuchstiere, die am selben Tag mit T-Zellen mit dem CD28-CD3ζ Immunrezeptor und ErbB2⁺ Tumorzellen injiziert wurden, ein geringeres Tumorvolumen nach drei Wochen aufwiesen als Versuchstiere, denen T-Zellen mit dem CD3 ζ Immunrezeptor und ErbB2⁺ Tumorzellen appliziert wurden. Es wurde ferner gezeigt, dass mit steigendem zeitlichen Abstand zwischen der Injektion (s.c.) der ErbB2⁺ Tumorzellen und der Applikation (i.v.) der ErbB2 spezifischen T-Zellen die tumorprotektive Wirkung in den Versuchstieren abnimmt. Durch die unterschiedlichen Bedingungen beim Versuchsaufbau und Versuchsdurchführung ist das Maus-Modell der Arbeitsgruppe um Haynes mit unserem Maus-Modell nur begrenzt vergleichbar. Die erhöhte tumorprotektive Wirkung der murinen CD8⁺ T-Zellen mit dem CD28-CD3ζ Immunrezeptor gegenüber T-Zellen mit dem CD3ζ Immunrezeptor wurde bei uns nicht registriert, was beispielsweise daran liegen kann, dass die T-Zellen dort zeitverzögert intravenös injiziert wurden. Außerdem unterscheiden sich die beiden Maus-Modelle durch den unterschiedlichen Rezeptorbau, anderes Zielantigen und der Verwendung anderer Zellinien.

Wir haben uns anschließend gefragt, ob die Versuchstiere die zuvor erfolgreich CEA⁺ Tumorzellen eliminiert haben, ein "immunologisches Gedächtnis" generiert haben, das bei erneuter Injektion ("Challenge") mit CEA⁺ Tumorzellen die Etablierung des CEA⁺ Tumors ganz oder teilweise verhindert. Hierfür wurden Versuchstiere, die vor zwei Wochen mit CEA⁺ Tumorzellen und mit T-Zellen mit dem CD3ζ Immunrezeptor oder mit T-Zellen mit dem kombinierten CD28-CD3ζ Immunrezeptor ko-injiziert wurden, erneut mit CEA⁺ Tumorzellen injiziert. Während die Hälfte der Versuchstiere, die zuvor mit CEA⁺ Tumorzellen und T-Zellen mit dem CD28-CD3ζ Immunrezeptor ko-injiziert wurden nach dem "Challenge"-Versuch einen Tumor entwickelte (3/6), blieben alle Versuchstiere, die zuvor mit CEA⁺ Tumorzellen und T-Zellen mit dem CD3ζ Immunrezeptor ko-injiziert wurden, nach erneuter Injektion ("Challenge") mit CEA⁺ Tumorzellen tumorfrei. Als Kontrolle entwickelten alle Versuchstiere (6/6) einen Tumor, die mit CEA⁺ Tumorzellen injiziert wurden. Offensichtlich ist die Tumorprotektion nach erneuter Injektion mit CEA⁺ Tumorzellen bei Versuchstieren mit zuvor injizierten T-Zellen mit dem CD3ζ Immunrezeptor (#895) effektiver als bei Versuchstieren mit zuvor injizierten T-Zellen mit dem CD28-CD3ζ Immunrezeptor (#907). In der Literatur ist bisher wenig über die Generierung eines Immunrezeptorvermittelten "immunlogischen Gedächtnisses" bei murinen und humanen T-Zellen bekannt. Moeller et al., 2005, haben gezeigt, dass BALB/c Versuchsmäuse nach einer initialen Injektion mit murinen CD4⁺ und CD8⁺ T-Zellen mit dem ErbB2 spezifischen CD28-CD3ζ Immunrezeptor und mit ErbB2⁺ Tumorzellen auch nach einer erneuten Applikation ("Challenge") der ErbB2⁺ Zellen tumorfrei bleiben. Interessanterweise lässt die tumorprotektive Wirkung deutlich in der Effizienz nach, wenn zuvor ausschließlich murine CD8⁺ T-Zellen mit dem ErbB2 spezifischen CD28-CD3ζ Immunrezeptor injiziert wurden. Pule et al., 2005, haben einen rekombinanten Immunrezeptor mit drei Signaldomänen generiert, wobei im cytosolischen Teil des Rezeptors, neben der CD3 und der CD28 Signaleinheit, die ko-stimulatorische OX40 Signaldomäne integriert wurde. Zusammengefasst erwies sich die OX40 Kostimulation während der Antigen spezifischen Immunantwort als wirkungsvoller "Verstärker" zur Verlängerung des Überlebens von Antigen spezifischen Effektor- und Gedächtnis-T-Zellen. Der Einsatz der T-Zellen mit derartig konstruierten Immunrezeptoren könnte als effizientes Mittel bei einem Tumorrezidiv wirken und zur Antigen spezifischen Eliminierung der Tumorzellen beitragen.

Wir konnten bisher zeigen, dass murine $CD8^+$ T-Zellen mit rekombinanten CEA spezifischen Immunrezeptoren mit der CD3 ζ Signalkette und der kombinierten CD28-CD3 ζ Signaldomäne bei Ko-Injektion mit CEA⁺ Tumorzellen effektiv die Entwicklung solider Tumore in C57-Black/6 Versuchsmäusen verhindern. Es ist dennoch unbeantwortet geblieben, ob die Hemmung der Entwicklung der Tumore, bei wiederholter Injektion der CEA⁺ Tumorzellen, spezifisch durch die zuvor applizierten T-Zellen mit anti-CEA Immunrezeptoren (#895) oder durch das eigene Immunsystem der C57-Black/6 Maus vermittelt wird. Um diese Frage zu beantworten, haben wir C57-Black/6 Mäuse mit bestrahlten, teilungsunfähigen CEA⁺ Tumorzellen mit murinen CD8⁺ T-Lymphozyten mit dem CEA spezifischen CD3ζ Immunrezeptor (#895) koinjiziert und nach zwei Wochen entweder mit CEA⁺ C15A3 Tumorzellen oder als Kontrolle mit CEA⁻ MC-38 Tumorzellen injiziert. Wir zeigten, dass Versuchstiere, die zuvor mit T-Zellen mit dem CEA spezifischen Immunrezeptor #895 und bestrahlten CEA⁺ Tumorzellen ko-injiziert wurden, eine signifikant erhöhte Wahrscheinlichkeit auf ein tumorfreies Überleben in Abhängigkeit von der Zeit haben als Versuchstiere aus den Kontrollgruppen, die zuvor mit bestrahlten Tumorzellen und mit T-Zellen mit dem CD30 spezifischen Immunrezeptor (#892) oder mit nicht-transduzierten T-Zellen koinjiziert wurden. Es ist festzuhalten, dass die wiederholte Injektion der CEA⁺ Tumorzellen bereits zu einem erheblichen Vakzinierungseffekt in immunkompetenten C57-Black/6 Versuchstieren führt, so dass mehr als 60 % der Versuchstiere, die zuvor mit bestrahlten und anschließend mit vitalen CEA⁺ Tumorzellen injiziert wurden, tumorfrei blieb. Diesen Vakzinierungseffekt machte sich die Arbeitsgruppe um Dr. Gilham zu Nutze, um die tumorprotektive Wirkung des immuntherapeutischen Ansatzes zu erhöhen (Jiang et al., 2006). In dem Ansatz wurden BALB/c Versuchsmäuse mit Tumorzellen, die das humane h5T4 Antigen exprimeren, injiziert und anschließend mit replikationsdefizienten h5T4⁺ Adenoviren vakziniert. Nach einer Woche erfolgte die Injektion muriner CD8⁺ und CD4⁺ T-Zellen mit dem anti-h5T4-CD3ζ Immunrezeptor. Dabei wurde gezeigt, dass die Vakzinierung und die Injektion der T-Zellen mit dem anti-h5T4-CD3ζ Immunrezeptor Antigen spezifisch das Wachstum der h5T4⁺ Tumore hemmt. Zudem wurde registriert, dass der tumorsuppressive Effekt auf die h5T4⁺ Tumore bei zeitnaher Injektion der h5T4⁺ Tumorzellen und der T-Zellen mit anti-h5T4 Immunrezeptoren am höchsten ist und mit zunehmend zeitlichen Abstand abnimmt. Interessanterweise wird die Effizienz des immuntherapeutischen Ansatzes mit h5T4 spezifischen T-Zellen dadurch gesteigert, dass Versuchstiere mit einer Kombination aus murinen dendritischen Zellen (BMDC) und replikationsdefizienten h5T4⁺ Adenoviren vakziniert werden. Begründet wird dieses Phänomen dadurch, dass durch die Applikation der h5T4⁺ Adenoviren und der dendritischen Zellen es in vivo zur Generierung von Th1 Zellen kommt, die die tumorsuppressive Wirkung der injizierten h5T4 spezifischen T-Zellen gegenüber h5T4⁺ Tumorzellen verstärken (Palmer et al., 2004). Ferner zeigten Lou et al., 2004, dass T-Zellen mit definierter Antigenspezifität, ko-injiziert mit Antigen spezifischen dendritischen Zellen, zu einer verstärkten Immunantwort gegen Zielzellen induziert werden, gezeigt durch eine erhöhte Proliferation der T-Zellen, verstärkte Tumorinfiltration und effektivere tumorsuppressive Wirkung.

Wir zeigten, dass immunkompetente C57-Black/6 Versuchstiere, die zuvor mit CEA spezifischen T-Zellen und bestrahlten CEA⁺ Zellen ko-injiziert wurden, bei erneuter Injektion ("Challenge") mit CEA⁺ Tumorzellen eine signifikant erhöhte Wahrscheinlichkeit auf ein tumorfreies Überleben in Abhängigkeit von der Zeit in Vergleich zu Versuchstieren haben, die als Kontrolle mit bestrahlten CEA⁺ Tumorzellen und CD30 spezifischen oder nicht-transduzierten murinen T-Zellen zuvor ko-injiziert wurden. Dieser Überlebensvorteil der Versuchstiere mit T-Zellen mit dem CEA spezifischen Immunrezeptor (#895) gegenüber Mäusen aus den Kontrollgruppen entfällt dann, wenn die Mäuse nicht erneut mit CEA⁺ C15A3 Zellen, sondern mit den parentalen CEA⁻ MC-38 Zellen injiziert werden. Offensichtlich ist die Tumorprotektion CEA spezifisch. Um auszuschließen, dass dieses "immunologische Gedächtnis" in den Versuchstieren durch endogene CD4⁺ und CD8⁺ T-Zellen generiert wird, wurden CD4⁺ und CD8⁺ T-Zellen in den Versuchstieren depletiert. Anschließend wurden die Versuchsmäuse mit bestrahlten CEA⁺ Tumorzellen und mit T-Zellen mit dem anti-CEA Immunrezeptor (#895) und als Kontrolle mit bestrahlten T-Zellen mit dem anti-CEA Immunrezeptor (#895) ko-injiziert. Die Untersuchung des tumorfreien Überlebens in Abhängigkeit von der Zeit zeigte, dass Versuchstiere, die mit murinen CD8⁺ T-Zellen mit CEA spezifischen Rezeptor (#895) und mit bestrahlten CEA⁺ Tumorzellen koinjiziert wurden, eine tendenziell erhöhte Überlebenswahrscheinlichkeit im Vergleich zu Versuchstieren haben, die als Kontrolle mit bestrahlten CEA spezifischen CD8⁺ T-Zellen und bestrahlten CEA⁺ Tumorzellen ko-injiziert wurden. Offensichtlich wird in den Versuchstieren der anti-CEA Effekt gegenüber CEA⁺ Tumorzellen durch persistierende T-Zellen mit dem anti-CEA-CD3ζ Immunrezeptor (#895) vermittelt. Dieser anti-CEA Effekt wurde nicht bei Kontrolltieren ohne CD4⁺ und CD8⁺ T-Zell-Depletion beobachtet, die mit bestrahlten CEA⁺ Tumorzellen und bestrahlten CEA oder CD30 spezifischen T-Zellen vakziniert und erneut mit vitalen CEA⁺ Tumorzellen injiziert wurden ("Challenge"). Offenbar wird das "immunologische Gedächtnis" gegenüber CEA⁺ Tumorzellen nicht durch die endogenen CD4⁺ und CD8⁺ T-Zellen generiert. Saha et al. zeigten, 2006, in ihrem Maus-Modell einen alternativen Weg, der möglicherweise zur Generierung CEA spezifischer T-Zellen und Gedächtniszellen führt. Hierfür wurden dendritische Zellen mit dem anti-idiotypischen Antikörper, der

das CEA Epitop imitiert, gepulst. Anschließend wurden C57-Black/6 Versuchsmäuse, transgen für das CEA, mit gepulsten dendritischen Zellen und CEA⁺ C15 Tumorzellen injiziert. Hierdurch wurden in der Maus CEA spezifische T-Zellen generiert, die mittels des MHC I Komplexes zur Eliminierung der CEA⁺ Tumore induziert wurden. Ferner wurde durch weitere Untersuchungen mittels Durchflußzytometrie gezeigt, dass 6 bis 12 Wochen nach erfolgreicher Eliminierung der CEA⁺ Tumorzellen eine signifikant erhöhte Expression der Markerproteine LY-6C, CD44 und CD127 auf der Oberfläche der murinen CD4⁺ und CD8⁺ T-Zellen registriert wurde, die indikativ für die Generierung von Gedächtnis-T-Zellen sind. Um die Generierung des tumor-protektiven "immunologischen Gedächtnisses" zu beweisen, hat die Arbeitsgruppe um A. Saha 90 Tage nach der Vakzinierung mit dendritischen Zellen und CEA⁺ Tumorzellen die Versuchstiere erneut mit CEA⁺ C15 Tumorzellen injiziert ("Challenge"). Das Ergebnis zeigt, dass die Versuchstiere eine gleich effiziente Tumorprotektion gegen die CEA⁺ C15 als auch die CEA⁻ MC-38 Tumorzellen nach Vakzinierung mit gepulsten dendritischen Zellen generiert haben, was in unserem Maus-Modell als Vakzinierungseffekt beschrieben wird. Mit unserem Maus-Modell zeigen wir, dass dieser Vakzinierungseffekt genauso durch bestrahlte, teilungsunfähige CEA⁺ Tumorzellen generiert wird. Aus unseren Ergebnissen geht zusätzlich hervor, dass die Ko-Injektion der T-Zellen mit dem CEA spezifischen CD3ζ Immunrezeptor (#895) und bestrahlten CEA⁺ Tumorzellen zusätzlich zur Generierung eines CEA spezifischen "immunologischen Gedächtnisses" führt, das offenbar auf die CEA spezifischen T-Zellen zurückzuführen ist.

Die Untersuchung der humoralen Antwort gegen CEA⁺ Tumore in immunkompetenten C57-Black/6 Mäusen hat uns zudem gezeigt, dass CEA spezifische Antikörper ausschließlich im Blutserum der Versuchstiere detektierbar sind, die einen soliden CEA⁺ Tumor entwickelt haben. Dabei spielt es offenbar keine Rolle, ob die Versuchstiere zuvor mit CEA⁺ Tumorzellen und mit T-Zellen mit dem CEA spezifischen Immunrezeptor (#895) oder als Kontrolle mit nicht-transduzierten T-Zellen und CEA⁺ Tumorzellen ko-injiziert wurden. Die Höhe des Antikörpertiters im Blutserum ist nicht von der Größe des Tumors abhängig und entsprechend für alle Versuchstiere mit einem soliden Tumor gleich hoch. Jiang *et al.*, 2006, zeigten, dass in Mausseren der Versuchstiere drei Wochen nach der Vakzinierung mit h5T4⁺ replikationsdefizienten Adenoviren und dendritischen Zellen h5T4 und anschließender Ko-Injektion mit h5T4⁺ Tumorzellen und T-Zellen, ausgestattet mit dem anti-h5T4-

CD3ζ Immunrezeptor, spezifische Antikörper gegen h5T4 detektiert wurden. Der dortige Ansatz diskriminiert jedoch nicht zwischen Versuchstieren mit und ohne Tumorentwicklung, wodurch nur der durchschnittliche und nicht der individuelle Antikörpertiter gezeigt wird.

In der Literatur ist bisher unbeantwortet geblieben, ob für den immuntherapeutischen Ansatz im Menschen der rekombinante Immunrezeptor humanisiert werden muss. Wir haben deswegen bei der weiteren Untersuchung der humoralen Immunantwort uns die Frage gestellt, ob die rekombinanten Immunrezeptoren selbst als Fremd-Antigene durch das Immunsystem der immunkompetenten C57-Black/6 Maus erkannt werden. Getestet wurden T-Zellen mit rekombinanten anti-CEA Rezeptoren mit ausschließlich humanen (#439), gemischt human-murinen (#895) oder ausschließlich murinen Domänen (#977). Hierfür wurden Versuchstiere nach einem festgelegten Schema (Abb. 58) mit murinen Rezeptor tragenden T-Zellen und bestrahlten CEA⁺ Tumorzellen vakziniert und anschließend nach vier Wochen erneut mit Rezeptor-tragenden T-Zellen und CEA⁺ Tumorzellen injiziert ("Challenge"). Wir haben durch die Untersuchung der gewonnen Mausseren gezeigt, dass zwei Wochen nach der Ko-Injektion mit bestrahlten CEA⁺ Tumorzellen und mit Rezeptor-tragenden T-Zellen oder als Kontrolle mit nichttransduzierten T-Zellen keine Antikörper gegen die humane IgG-"spacer" Domäne und die humanisierte CEA spezifische Bindedomäne BW431/26 der Immunrezeptoren #439 und #895 generiert werden. Hingegen wurden in den Mausseren 7 und 14 Tage nach der wiederholten Applikation ("Challenge") mit Rezeptor-tragenden T-Zellen und CEA⁺ Tumorzellen Antikörper gegen die humane IgG-"spacer" Domäne detektiert. Hierbei handelte es sich um Versuchstiere, die zunächst mit T-Zellen mit dem humanen anti-CEA Immunrezeptor #439 und bestrahlten CEA⁺ Zellen vakziniert und anschließend erneut mit T-Zellen mit dem humanen Immunrezeptor #439 oder mit dem murinen Immunrezeptor #977 und CEA⁺ Zellen injiziert wurden ("Challenge"). Es wurden keine Antikörper gegen die humane IgG-"spacer" Domäne im Blutserum der Versuchstiere detektiert, die als Kontrolle ausschließlich mit T-Zellen mit dem murinen Rezeptor #977 vakziniert wurden. Offenbar werden unter den gegebenen Versuchsbedingungen Antikörper gegen die humane IgG-"spacer" Domäne des rekombinanten Immunrezeptors #439 generiert. Gleichzeitig wurden keine Antikörper gegen die humanisierte CEA spezifische Bindedomäne BW431/26scFv der Rezeptoren #439 und #895 im Blutserum der Versuchstiere detektiert. Offensichtlich führen die humanen "framework Regionen" zwischen den hypervariablen Regionen des Einzelketten-Antikörpers in der

Maus nicht zur Generierung von Antikörpern gegen die humanisierte anti-CEA Bindedomäne BW431/26scFv. Um jedoch die potentielle Immunogenität der murinen Bindedomäne in einer klinischen Studie auszuschließen, gibt es zwei Varianten, Antikörper mit murinen Ketten zu humanisieren (Gonzales et al., 2005). Einerseits ist es möglich, die murinen "framework Regionen" gegen humane auszutauschen, andererseits führt die Proteinstrukturanalyse zur Identifizierung der Aminosäuren im hypervariablen CDR Bereich (complementarity determining region), welche dem Antikörper die Bindungsspezifität zum Antigen verleihen. Aufgrund dieser Analyse werden die benötigten murinen hypervariablen Regionen in das Gerüst eines humanen Antikörpers integriert. Klinische Studien mit derartig humanisieren Antikörpern IDEC-131 (Kalunian et al., 2002), OKT3 (Friend et al., 1999), rhuMAb (Cobleigh et al., 1999) und h-R3 (Crombet et al., 2004), die zu ca.10 % murine Sequenzen enthalten, zeigen, dass der Einsatz in Patienten zu einer geringen oder keinen humoralen Antwort gegenüber dem humanisierten Antikörper führt, wobei die Antikörper Bestimmung mittels ELISA erfolgte. In anderen klinischen Studien wurde im Blutserum der Patienten mit Hilfe der Oberflächenplasmonenresonanz Methode (SPR) ein erhöhte Antikörpertiter gegen den humanisierten Antikörper, besonders gegen die hypervariablen Regionen im CDR Bereich, detektiert (Ritter et al., 2001; Welt et al., 2003). Offensichtlich besteht gegenwärtig kein einheitliches Bild zu diesem Thema in der Literatur. Dieses mag darauf beruhen, dass in manchen klinischen Studien der erfolgreiche Nachweis von anti-idiotypischen Antikörpern gegen die eingesetzten humanisierten Antikörperdomänen auf den Einsatz der sensitiveren SPR statt der ELISA Technik zurückzuführen ist.

4.4 Funktionelle Charakterisierung löslicher Antikörper mit Spezifität für humanes CEA und ErbB2 Protein.

Zahlreiche Tumor-assoziierte-Proteine (TAA), beispielsweise CEA und ErbB2 werden auf der Oberfläche von Tumorzellen exprimiert, proteolytisch gespalten und freigesetzt, so dass eine erhöhte Konzentration des freigesetzten Proteins im Blut als Tumormarker detektiert werden kann (Gonda *et al.*, 2006). Daher ist es vorstellbar, dass T-Zellen mit rekombinanten Immunrezeptoren mit Spezifität für ein solches TAA durch das lösliche Antigenfragment in der Bindung an membranständiges TAA kompetitiv gehemmt werden. Um diese Frage zu beantworten, haben wir die Bindung der CEA und ErbB2

spezifischen Antikörper an membranständiges CEA und ErbB2 in Gegenwart eines löslichen Antigens als Kompetitor (ErbB2-hIgG und CEA) untersucht. Wir haben fünf ErbB2 spezifische Antikörper mit Spezifität für dasselbe Antigen Epitop, aber unterschiedlicher Affinität für ErbB2 (k_D: 3,2 x 10⁻⁷ M - 1,5 x 10⁻¹¹ M) generiert und miteinander verglichen. Zum Nachweis der Bindung an membranständiges ErbB2 wurden die Antikörper mit ErbB2⁺ Tumorzellen ko-inkubiert und die Bindung an die Tumorzellen mittels eines Detektionsantikörpers mit Hilfe der Durchflußzytometrie bestimmt. Dabei wurde gezeigt, dass die ErbB2 spezifischen Antikörper (#788, #789, #790 und #791) mit einer Dissoziationskanstane von $k_D \leq 1,2 \ x \ 10^{-8}$ gleich stark an membranständiges ErbB2 binden. Die Bindung des niederaffinen anti-ErbB2 Antikörpers (#792) an membranständiges ErbB2 ist im Vergleich zu den höheraffinen anti-ErbB2 Antikörper (#788 bis #791) deutlich geringer. Im nachfolgenden Experiment wurden ErbB2 spezifische Antikörper durch die Zugabe des löslichen Kompetitors ErbB2-hIgG ab einer Konzentration von ca. 1 µg/ml kompetitiv gehemmt. Die Substratkonzentration, bei der die halbmaximale Hemmung der Bindung ErbB2 spezifischer Antikörper an membranständiges ErbB2 erreicht ist, ist für alle verwendeten ErbB2 spezifischen Antikörper gleich und beträgt etwa 2,8 µg/ml des Kompetitors. Offensichtlich hängt die kompetitive Hemmung der Bindung ErbB2 spezifischer Antikörper an membranständiges ErbB2 der Tumorzellen nicht von der unterschiedlichen Affinität der anti-ErbB2 Antikörper ab.

Dass das ErbB2-Modell nicht auf das CEA-Modell übertragbar ist, haben wir bei der Untersuchung der CEA spezifischen Antikörper BW431/26scFv-hIgG (#443) und H10scFv-hIgG (#648) gezeigt, die für zwei unterschiedliche Epitope des CEA spezifisch sind. Im Kompetitionsassay haben wir gezeigt, dass CEA spezifische Antikörper durch die Zugabe des löslichen CEA [0,1 μ g/ml bis 10 μ g/ml] nicht in der Bindung an membranständiges CEA kompetitiv gehemmt werden. Vielmehr wird die Bindung CEA spezifischer Antikörper (#443 und #648) an membranständiges CEA durch die Zugabe des löslichen CEA verstärkt, was durch die gleichzeitige Bindung der dimeren anti-CEA Antikörper an gelöstes und membranständiges CEA erklärbar ist.

4.5 Einfluss des löslichen ErbB2 Proteins als Kompetitor auf die Rezeptor-vermittelte Aktivierung ErbB2 spezifischer T-Zellen.

Die Tatsache, dass zahlreiche TAA, beispielsweise ErbB2 (Myers et al., 1996), proteolytisch gespalten, freigesetzt und in erhöhter Konzentration als Tumormarker im Patientenblut detektiert sind, führt zu der Frage, ob die Rezeptor-vermittelte Aktivierung humaner T-Zellen mit ErbB2 spezifischen Immunrezeptoren durch die Zugabe des löslichen Kompetitors ErbB2 gehemmt wird. Hierfür wurden T-Zellen mit anti-ErbB2-CD3 Immunrezeptoren C6-B1D2scFv-hIgG-mCD3 rekombinanten (#710), C6ML3-9scFv-hIgG-mCD3ζ (#744), C6.5scFv-hIgG-mCD3ζ (#746), C6MH3-B1scFv-hIgG-mCD3ζ (#748) und C6.5G98AscFv-hIgG-mCD3ζ (#750) mit ErbB2⁺ Tumorzellen in Gegenwart des löslichen ErbB2 ko-inkubiert. Die Wirkung des löslichen Kompetitors auf die T-Zell Aktivierung wurde anhand der IFN-y Sekretion und Messung des zytolytischen Effektes auf ErbB2⁺ Tumorzellen bestimmt. Wir haben gezeigt, dass humane CD3⁺ T-Lymphozyten mit ErbB2 spezifischen Immunrezeptoren #710, #744, #746, #748 und #750 durch die Ko-Inkubation mit ErbB2⁺ Tumorzellen zur IFN- γ Sekretion aktiviert werden, wobei T-Lymphozyten mit den hoch affinen (k_D \leq 1,2 x 10⁻⁸) Immunrezeptoren #710, #744, #746 und #748, gleich stark zur IFN-γ Sekretion induziert werden. T-Lymphozyten mit dem nieder affinen anti-ErbB2 Rezeptor #750 $(k_D = 3.2 \times 10^{-7} \text{ M})$ werden im Vergleich zu T-Zellen mit den höher affinen Immunrezeptoren für ErbB2 durch die Ko-Inkubation mit ErbB2⁺ Tumorzellen weniger stark zur IFN-y Sekretion induziert. Die Zugabe des löslichen ErbB2 Antigens führt zur geminderten Induktion der IFN-y Sekretion in Abhängigkeit von der Konzentration des löslichen Kompetitors, wobei die Rezeptor-vermittelte Induktion der IFN-y Sekretion durch T-Zellen mit den hochaffinen Immunrezeptoren für ErbB2 #710, #744, #746 und #748 als auch mit dem niederaffinen Immunrezeptor #750 durch die Zugabe des löslichen Kompetitors mit gleicher Kinetik gehemmt wird. Dieses Resultat entspricht dem Ergebnis, das die Arbeitsgruppe um T. Sasaki mit Hilfe des CEA-Modells gezeigt hat (Sasaki et al., 2006). Hierfür wurde ein CEA spezifischer Immunrezeptor mit einer kombinierten CD28-CD3ζ generiert und in humanen CD4⁺ und CD8⁺ T-Zellen exprimiert. Anschließend wurden die T-Zellen mit dem CEA spezifischen Immunrezeptor mit CEA⁺ Tumorzellen ko-inkubiert, wobei das lösliche CEA Antigen als Kompetitor in unterschiedlichen Konzentrationen zugegeben wurde. Es wurde gezeigt, dass T-Zellen mit dem anti-CEA-CD28-CD3ζ Immunrezeptor durch die

Zugabe des löslichen CEA (2 µg/ml) nicht in der Aktivierung des zytolytischen Effekts auf CEA⁺ Tumorzellen gehemmt werden. Es ist anzumerken, dass die durchschnittliche Konzentration des CEA im Blut von Patienten mit Kolonkarzinom unter 1 µg/ml liegt. Hombach et al., 1999, zeigten, dass murine T-Zellen der Linie MD45 mit dem anti-CEA-hIgG-γ Immunrezeptor durch Ko-Kultur mit CEA⁺ Tumorzellen zur Zytolyse dieser Tumorzellen und IL-2 Sekretion induziert werden, wobei die Rezeptorvermittelte Aktivierung der T-Zellen durch die Zugabe des löslichen CEA Proteins als Kompetitor ($\leq 25 \ \mu g/ml$) nicht gehemmt wurde. Hingegen hat die Arbeitsgruppe um T. Sasaki gezeigt, dass die Zugabe des löslichen CEA (2 µg/ml) die Induktion der Rezeptor-vermittelten IFN-y Sekretion durch die CEA spezifischen T-Zellen mindert, was wir am ErbB2-Modell ebenfalls gezeigt haben. Die Arbeitsgruppe um T. Zhang untersuchte ebenfalls den Einfluss eines löslichen Kompetitors auf die Rezeptorvermittelte T-Zell Aktivierung (Zhang et al., 2006). Dabei wurde ein rekombinanter Immunrezeptor generiert, der sich aus der NKG2D Rezeptorbindedomäne der natürlichen Killerzellen (NK) und der CD3ζ Signalkette der T-Zellen zusammensetzt. Der NKG2D Immunrezeptor bindet den Liganden MICA, welcher als Stressprotein auf der Oberfläche zahlreicher Epitheltumore in einer erhöhten Dichte exprimiert wird. Die Tatsache, dass MICA proteolytisch gespalten und in einer erhöhten Konzentration (0,2 -10 ng/ml) im Patientenblut vorkommt, veranlasste die Forscher der Frage nachzugehen, ob durch die Zugabe des löslichen MICA die Induktion der Rezeptor-vermittelten Zytolyse der MICA⁺ Tumorzellen durch T-Zellen mit dem NKG2D-CD3ζ Immunrezeptor gemindert wird. Dabei wurde gezeigt, dass eine Konzentration des Kompetitors von 1,5 µg/ml Inkubationsmedium nicht ausreichend ist, um eine Hemmung der spezifischen Zytolyse durch T-Zellen mit dem NKG2D-CD3ζ Immunrezeptor gegenüber MICA⁺ Tumorzellen zu induzieren. Erst ab einer Konzentration von 15 µg/ml, die um mehr als das 1000-fache den Blutwert eines durchschnittlichen Krebspatienten übersteigt, wurde eine Hemmung der Zytolyse registriert, womit erneut gezeigt wurde, dass bei einem immuntherapeutischen Ansatz am Patienten eine Hemmung der TAA spezifischen T-Zellen durch das lösliche Zielantigen nicht zu erwarten ist.

5 Zusammenfassung

Ein erfolgsversprechender Ansatz der adoptiven Immuntherapie zur Behandlung maligner Tumore beruht darauf, T-Zellen durch einen rekombinanten Rezeptor Spezifität für ein Tumor-assoziiertes-Antigen (TAA) zu verleihen. Derartige Rezeptoren bestehen aus einer extrazellulären Bindedomäne, die von einem Einzelketten-Antikörper (scFv) abgeleitet ist und einer intrazellulären Signalkette, die der T-Zell Aktivierung dient. Zahlreiche Ansätze zur Evaluierung der Immunrezeptor-Strategie basierten bisher auf der Verwendung immundefizienter Maus-Modelle, die nur unzureichend die physiologische Immunsituation wiedergeben. Das Ziel der vorliegenden Arbeit war es, die Immunrezeptor-Strategie am Beispiel des anti-CEA Rezeptors in einem immunkompetenten Mausmodell zu evaluieren. Hierfür wurden murine Rezeptoren mit Spezifität für CEA und mit der CD3ζ oder der kombinierten CD28-CD3C Signalkette generiert und durch retroviralen Gentransfer in humanen und in murinen T-Zellen exprimiert. Die Rezeptor-vermittelte T-Zell Aktivierung wurde anhand der IFN-y Sekretion und zytolytischen Aktivität in vitro charakterisiert. Dabei wurde gezeigt, dass humane und murine T-Zellen mit den rekombinanten CD28-CD3ζ Rezeptoren stärker zur IFN-γ Sekretion induziert werden als mit den CD3ζ Rezeptoren, jedoch wird die spezifische lytische Aktivität gleich stark induziert. Durch die Ko-Injektion der CEA⁺ Tumorzellen mit CD8⁺ T-Zellen mit dem anti-CEA-CD3ζ Rezeptor (#895) und T-Zellen mit dem anti-CEA-CD28-CD3ζ Rezeptor (#907) wurden die CEA⁺ Tumore in der immunkompetenten Maus effizient eliminiert. Bei einer erneuten Injektion der CEA⁺ Tumorzellen blieben Tiere, die zuvor die Tumorzellen mit Hilfe der T-Zellen mit dem CD3⁽ Rezeptor (#895) eliminiert hatten, tumorfrei, wohingegen die Hälfte der Tiere, die zuvor mit T-Zellen mit dem CD28-CD3ζ Rezeptor (#907) injiziert wurden, einen Tumor entwickelte. Diese und weitere Untersuchungen zeigen, dass T-Zellen mit dem anti-CEA-CD3ζ Rezeptor (#895) zur Generierung eines Antigen spezifischen "immunologischen Gedächtnisses" in C57-Bl/6 Mäusen führen. Unsere Untersuchungen mit Hilfe immunkompetenter Mausmodelle legen nahe, dass die Immunrezeptorstrategie möglicherweise für die Vorbeugung früher Rezidive durch Ausbildung eines Antigen spezifischen Gedächtnisses geeignet sein könnte. Dieses würde die Indikation der Immunrezeptorstrategie erheblich erweitern.

6 Anhang

6.1 DNA Sequenzen der murinen CD3ζ und CD28 Signalkette.

Gezeigt werden die cDNA Sequenzen für die murinen Proteine CD3 ζ und CD28, die in die Vektoren pCR 2.1-murine-CD3- ζ (# 861) und pCR 2.1-murine-CD28 (# 857) kloniert wurde. Die abgeleitete Aminosäuresequenz wird oberhalb der DNA Sequenz im Ein-Buchstaben-Code aufgeführt. Ein "*" kennzeichnet das Stopcodon. Restriktionsschnittstellen, die der Klonierung dienten, sind durch Fett-Druck gekennzeichnet.

6.1.1 # 857: pCR 2.1-murine-CD28

	Ν	Κ	I	L	V	Κ	Q	S	Ρ	L	L	V	V	D	S	Ν	Е	V	S	L	S	С	R	Y
1	AAC	AAG	ATT	TTG	GTA.	AAG	CAG	TCG	CCC	CTG	CTT	GTG	GTA	GAT	AGC	AAC	GAG	GTC.	AGC	CTC	AGC	TGC	AGG	TAT
	TTG	TTC	TAA	AAC	CAT	TTC	GTC	AGC	GGG	GAC	GAA	CAC	CAT	CTA	TCG	TTG	CTC	CAG	TCG	GAG	TCG	ACG	TCC.	ATA
	S	Y	Ν	L	L	А	Κ	Е	F	R	А	S	L	Y	Κ	G	V	Ν	S	D	V	Е	V	С
73	TCC	TAC	AAC	CTT	CTC	GCA	AAG	GAA	TTC	CGG	GCA	TCC	CTG	TAC	AAG	GGC	GTG.	AAC.	AGC	GAC	GTG	GAA	GTC	TGT
	AGG.	ATG	TTG	GAA	GAG	CGT	TTC	CTT	AAG	GCC	CGT.	AGG	GAC	ATG	TTC	CCG	CAC	TTG	TCG	CTG	CAC	CTT	CAG.	ACA
	V	G	Ν	G	Ν	F	Т	Y	Q	Ρ	Q	F	R	S	Ν	А	Е	F	Ν	С	D	G	D	F
145	GTC	GGG	AAT	GGG	AAT	TTT	ACC	TAT	CAG	CCC	CAG	TTT	CGC	TCG	AAT	GCC	GAG	TTC.	AAC	TGC	GAC	GGG	GAT	TTC
	CAG	CCC	TTA	CCC	TTA.	AAA	TGG	ATA	GTC	GGG	GTC.	AAA	GCG	AGC	TTA	CGG	CTC.	AAG	TTG	ACG	CTG	CCC	CTA.	AAG
	D	Ν	Е	Т	V	Т	F	R	L	W	Ν	L	Η	V	Ν	Н	Т	D	I	Y	F	С	Κ	I
217	GAC.	AAC	GAA	ACA	GTG.	ACG	TTC	CGT	CTC	TGG	AAT	CTG	CAC	GTC	AAT	CAC	ACA	GAT.	ATT	TAC	TTC	TGC	AAA.	ATT
	CTGTTGCTTTG			TGT	CAC	TGC	AAG	GCA	GAG	ACC	TTA	GAC	GTG	CAG	TTA	GTG	TGT	CTA	ТАА	ATG	AAG	ACG	TTT	TAA
	Е	F	М	Y	Ρ	Ρ	Ρ	Y	L	D	Ν	Е	R	S	Ν	G	Т	Ι	I	Η	I	Κ	Е	K
289	GAG	TTC	ATG	TAC	CCT	CCG	CCT	TAC	CTA	GAC	AAC	GAG	AGG	AGC	AAT	GGA	ACT.	ATT.	ATT	CAC	ATA	AAA	GAG.	AAA
	CTC	AAG	TAC.	ATG	GGA	GGC	GGA	ATG	GAT	CTG	TTG	CTC	TCC	TCG	TTA	ССТ	TGA	TAA	TAA	GTG	TAT	TTT	CTC	TTT
	Η	L	С	Н	Т	Q	S	S	Ρ	Е	L	F	W	А	L	V	V	V	А	G	V	L	F	С
361	CAT	CTT	TGT	CAT	ACT	CAG	TCA	TCT	CCT	GAG	CTG	TTT	TGG	GCA	CTG	GTC	GTG	GTT	GCT	GGA	GTC	CTG	TTT	TGT
	GTA	GAA	ACA	GTA	TGA	GTC	AGT	AGA	GGA	CTC	GAC.	AAA	ACC	CGT	GAC	CAG	CAC	CAA	CGA	ССТ	CAG	GAC	AAA.	ACA
	Y	G	L	L	V	Т	V	А	L	С	V	I	W	Т	Ν	S	R	R	Ν	R	L	L	Q	S
433	TAT	GGC	TTG	CTA	GTG.	ACA	GTG	GCT	CTT	TGT	GTT.	ATC	TGG	ACA	AAT	AGT	AGA	AGG.	AAC	AGA	CTC	CTT	CAA	AGT
	ATA	CCG	AAC	GAT	CAC	TGT	CAC	CGA	GAA	ACA	CAA	TAG	ACC	TGT	TTA	TCA	TCT	TCC	TTG	TCT	GAG	GAA	GTT	TCA
	D	Y	М	Ν	М	Т	Ρ	R	R	Ρ	G	L	Т	R	Κ	Ρ	Y	Q	Ρ	Y	А	Ρ	А	R
505	GAC	TAC	ATG.	AAC	ATG.	ACT	CCC	CGG	AGG	ССТ	GGG	CTC	ACT	CGA	AAG	ССТ	TAC	CAG	CCC	TAC	GCC	CCT	GCC.	AGA
	CTG.	ATGTACTTG TACTGAGGGGGCC TO		TCCGGACCCGAG		AG TGAGCTTTCGGA				GA ATGGTCGGGATG CGGGGACGGTCI					TCT									
577	D GAC	F TTT	A GCA	A GCG	Y TAC	R CGC	P CCC	* TGA																

CTGAAACGTCGC ATGGCGGGGACT

6.1.2 # 861: pCR 2.1-murine-CD3ζ

	D	Ρ	Κ	L	С	Y	L	L	D	G	I	L	F	I	Y	G	V	I	I	Т	А	L	Y	L
1	GAT	CCC.	AAA	CTC	TGC	TAC	ТТG	CTA	GAT	GGA	ATC	CTC	TTC	ATC	TAC	GGA	GTC.	ATC.	ATC	ACA	GCC	CTG	TAC	CTG
	CTA	GGG	TTT	GAG	ACG	ATG.	AAC	GAT	CTA	CCT	TAG	GAG	AAG	TAG.	ATG	ССТ	CAG	TAG	TAG	TGT	CGG	GAC	ATG	GAC
	R	А	K	F	S	R	S	А	Е	Т	А	А	Ν	L	Q	D	Ρ	Ν	Q	L	Y	Ν	Е	L
73	AGA	GCA	AAA	TTC	AGC	AGG.	AGT	GCA	GAG	ACT	GCT	GCC	AAC	CTG	CAG	GAC	CCC	AAC	CAG	CTC	TAC	AAT	GAG	CTC
	TCT	CGT	TTT.	AAG	TCG	TCC	гса	CGT	CTC	TGA	CGA	CGG	TTG	GAC	GTC	CTG	GGG	TTG	GTC	GAG	ATG	TTA	CTC	GAG
																	B	amH.	Ι					
																~	~~~	~~						
	Ν	L	G	R	R	Е	Е	Y	D	V	L	Е	Κ	K	R	А	R	D	Ρ	Е	М	G	G	K
145	AAT	CTA	GGG	CGA	AGA	GAG	GAA	TAT	GAC	GTC	ΓTG	GAG	AAG	AAG	CGG	GCT	CG G	GAT	CCA	GAG	ATG	GGA	GGC.	AAA
	TTAGATCCCGC			GCT	TCTCTCCTTATA				CTG	CTGCAGAACCTC			TTC	TTC	GCC	CGA	GCC	CTA	GGT	CTC	TAC	ССТ	CCG	TTT
	Q	Q	R	R	R	Ν	Ρ	Q	Е	G	V	Y	Ν	А	L	Q	Κ	D	Κ	М	А	Е	А	Y
217	CAG	CAG.	AGG.	AGG	AGG	AAC	CCC	CAG	GAA	GGC	GTA	TAC	AAT	GCA	CTG	CAG	AAA	GAC.	AAG	ATG	GCA	GAA	GCC	TAC
	GTC	GTC	TCC	TCC	TCC	TTG	GGG	GTC	CTT	CCG	CAT.	ATG	TTA	CGT	GAC	GTC	TTT	CTG	TTC	TAC	CGT	CTT	CGG.	ATG
	S	Е	I	G	Т	Κ	G	Е	R	R	R	G	Κ	G	Н	D	G	L	Y	Q	G	L	S	Т
289	AGT	GAG.	ATC	GGC	ACA	AAA	GGC	GAG	AGG	CGG	AGA	GGC	AAG	GGG	CAC	GAT	GGC	CTT	TAC	CAG	GGT	CTC	AGC.	ACT
	TCA	TCACTCTAGCCG TGTTTTCCGC				CTC	TCC	GCC'	TCT	CCG	TTC	CCC	GTG	CTA	CCG	GAA	ATG	GTC	CCAGAGTCGTGA					
	А	Т	K	D	Т	Y	D	А	L	Η	М	Q	Т	L	А	Ρ	R	*						
361	GCC	ACC.	AAG	GAC	ACC'	TAT	GAT	GCC	CTG	CAT	ATG	CAG	ACC	CTG	GCC	ССТ	CGC	TAA						
	CGGTGGTTCCTG			CTG	TGG	ATA	СТА	CGG	GAC	GTA'	TAC	GTC	TGG	GAC	CGG	GGA	GCG.	ATT						

6.2 DNA Sequenzen der rekombinanten Immunrezeptoren erster Generation mit Spezifität für CEA und CD30.

Gezeigt wird die DNA Sequenz der rekombinanten Immunrezeptoren pBullet-HRS3scFv-mIgG-mCD3ζ (# 866), pBullet-HRS3scFv-mIgG-mCD28-mCD3ζ (# 878), pBullet-BW431/26scFv-mIgG-mCD3ζ (# 881) und pBullet-BW431/26scFv-mIgGmCD28-mCD3ζ (# 883). Die abgeleitete Aminosäuresequenz wird oberhalb der DNA Sequenz im Ein-Buchstaben-Code aufgeführt. Ein "*" kennzeichnet das Stopcodon. Restriktionsschnittstellen, die der Klonierung oder Restriktionsanalyse dienten, sind durch Fett-Druck gekennzeichnet.

6.2.1 # 866: pBullet-HRS3scFv-mIgG-mCD3ζ

					Xba	aI
	MDFO	VOTE	SFLL	TSAS	V T M S	RVAO
1	ATGGATTTTCAG	GTGCAGATTTTC	AGCTTCCTGCTA	ATCAGTGCCTCA	GTCATAATG TCT	AGAGTGGCCCAG
	TACCTAAAAGTC	CACGTCTAAAAG	TCGAAGGACGAT	TAGTCACGGAGT	CAGTATTAC AGA	$\mathbf{TCT}CACCGGGTC$
	VQLQ	QSGA	ELAR	PGAS	VKMS	CKAS
73	GTGCAACTGCAG	CAGTCAGGGGCT	GAGCTGGCTAGA	CCTGGGGCTTCA	GTGAAGATGTCC	TGCAAGGCTTCT
	G Y T F	T T Y T	I H W V	R O R P	G H D L	E W I G
145	GGCTACACCTTT	ACTACCTACACA	ATACACTGGGTA	AGACAGAGGCCT	GGACACGATCTG	GAATGGATTGGA
	CCGATGTGGAAA	TGATGGATGTGT	TATGTGACCCAT	TCTGTCTCCGGA	CCTGTGCTAGAC	CTTACCTAACCT
	Y I N P	S S G Y	S D Y N	Q N F K	GKTT	LTAD
217	ATCTA ATTACCT	AGCAGTGGATAT	ACACTCATCTTA	CAAAACTTCAAG	GGCAAGACCACA	1 I'I'GAC'I'GCAGAC
	K S S N	T A Y M	O L N S	L T S E	D S A V	Y Y C A
289	AAGTCCTCCAAC	ACAGCCTACATG	CAACTGAACAGC	CTGACATCTGAG	GACTCTGCGGTC	TATTACTGTGCA
	TTCAGGAGGTTG	TGTCGGATGTAC	GTTGACTTGTCG	GACTGTAGACTC	CTGAGACGCCAG	ATAATGACACGT
261	R R A D	Y G N Y	E Y T W	F A Y W	G Q G T	
301	TCTTCTCGCCTG	ATACCATTGATG	GAAIAIACCIGG CTTATATGGACC	AAACGAATGACC	CCGCTTCCCTGG	TGCCAGTGGCAG
	S S G G	G G S G	G G G S	G G G G	S D I E	L T Q S
433	TCCTCAGGTGGA	GGCGGTTCAGGC	GGAGGTGGCTCT	GGCGGTGGCGGA	TCGGACATCGAG	CTCACTCAGTCT
	AGGAGTCCACCT	CCGCCAAGTCCG	CCTCCACCGAGA	CCGCCACCGCCT	AGCCTGTAGCTC	GAGTGAGTCAGA
FOF	P K F M	S T S V	G D R V	N V T Y	K A S Q	N V G T
505	GGTTTTAAGTAC	AGGTGTAGTCAT	CCTCTGTCCCAG	TTGCAGTGGATG	TTCCGGTCAGTC	TTACACCCATGA
	N V A W	F Q Q K	P G Q S	PKVL	I Y S A	SYRY
577	AATGTAGCCTGG	TTTCAACAAAAA	CCAGGGCAATCT	CCTAAAGTTCTG	ATTTACTCGGCA	TCTTACCGATAC
	TTACATCGGACC	AAAGTTGTTTTT	GGTCCCGTTAGA	GGATTTCAAGAC	TAAATGAGCCGT	AGAATGGCTATG
649	AGTEGACTCCCT		G S G S GCCACTCCATCT	G I D F		ACCAATCTCCAC
015	TCACCTCAGGGA	CTAGCGAAGTGT	CCGTCACCTAGA	CCTTGTCTAAAG	TGAGAGTGGTAG	TCGTTACACGTC
	SEDL	A E Y F	СДДҮ	Н Т Ү Р	LTFG	G G T K
721	TCTGAAGACTTG	GCAGAGTATTTC	TGTCAGCAATAT	CACACCTATCCT	CTCACGTTCGGA	GGGGGCACCAAG
	AGACTTCTGAAC	BamHT	ACAGICGITATA	GIGIGGAIAGGA	GAGIGCAAGCCI	CCCCCGIGGITC
		~~~~~				
	LEIK	R A D P	V P R D	CGCK	PCIC	T V P E
793	CTGGAAATCAAA	CGGGC <b>GGATCC</b> T	GTGCCCAGGGAT	TGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA
	GACCTITIAGTIT	GCCCGCCTAGGA	CACGGGTCCCTA	ACACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT
865	GTATCATCTGTC	TTCATCTTCCCC	CCAAAGCCCAAG	GATGTGCTCACC	ATTACTCTGACT	CCTAAGGTCACG
	CATAGTAGACAG	AAGTAGAAGGGG	GGTTTCGGGTTC	CTACACGAGTGG	TAATGAGACTGA	GGATTCCAGTGC
	CVVV	DISK	DDPE	VQFS	WFVD	DVEV
937	TGTGTTGTGGTA	GACATCAGCAAG	GATGATCCCGAG	GTCCAGTTCAGC	TGGTTTGTAGAT	GATGTGGAGGTG
	H T A O	T O P R	E E O F	N S T F	R S V S	E L P I
1009	CACACAGCTCAG	ACGCAACCCCGG	GAGGAGCAGTTC	AACAGCACTTTC	CGCTCAGTCAGT	GAACTTCCCATC
	GTGTGTCGAGTC	TGCGTTGGGGGCC	CTCCTCGTCAAG	TTGTCGTGAAAG	GCGAGTCAGTCA	CTTGAAGGGTAG
1001	M H Q D	W L N G	K E F K	C R V N	S A A F	P A P I
1001	TACGTGGTCCTG	ACCGAGTTACCG	TTCCTCAAGTTT	ACGTCCCAGTTG	TCACGTCGAAAG	GGACGGGGGGTAG
	ЕКТІ	SKTK	GRPK	A P Q V	YTIP	PPKE
1153	GAGAAAACCATC	TCCAAAACCAAA	GGCAGACCGAAG	GCTCCACAGGTG	TACACCATTCCA	CCTCCCAAGGAG
	CTCTTTTGGTAG	AGGTTTTGGTTT	CCGTCTGGCTTC	CGAGGTGTCCAC	ATGTGGTAAGGT	GGAGGGTTCCTC
1225	CAGATGGCCAAG	GATAAAGTCAGT	CTGACCTGCATG	ATAACAGACTTC	TTCCCTGAAGAC	ATTACTGTGGAG
	GTCTACCGGTTC	CTATTTCAGTCA	GACTGGACGTAC	TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC
	W Q W N	G Q P A	E N Y K	N T Q P	I M D T	D G S Y
1297	TGGCAGTGGAAT	GGGCAGCCAGCG	GAGAACTACAAG	AACACTCAGCCC	ATCATGGACACA	GATGGCTCTTAC
	F V Y S	K I' N A	O K S N	W E A G	N T F T	C S V L
1369	TTCGTCTACAGC	AAGCTCAATGTG	CAGAAGAGCAAC	TGGGAGGCAGGA	AATACTTTCACC	TGCTCTGTGTTA
	AAGCAGATGTCG	TTCGAGTTACAC	GTCTTCTCGTTG	ACCCTCCGTCCT	TTATGAAAGTGG	ACGAGACACAAT
				BstX	II.	
	HECT	ничи	י א א ד	т, с н с	 Р (3 Т П	ркт. С
1441	CATGAGGGCCTG	CACAACCACCAT	ACTGAGAAGAGC	CTCTCCCCACTCT	CCTGGTATTGAT	CCCAAACTCTGC
	GTACTCCCGGAC	GTGTTGGTGGTA	TGACTCTTCTCG	GAGAG <b>GGTGAGA</b>	<b>GGACCA</b> TAACTA	GGGTTTGAGACG
	YLLD	GILF	I Y G V	IITA	LYLR	AKFS
1513	TACTTGCTAGAT	GGAATCCTCTTC	ATCTACGGAGTC	ATCATCACAGCC	CTGTACCTGAGA	GCAAAATTCAGC
	R S A E	T A A N	L O D P	N O L Y	N E L N	L G R R
1585	AGGAGTGCAGAG	ACTGCTGCCAAC	CTGCÃGGACCCC	AACCAGCTCTAC	AATGAGCTCAAT	CTAGGGCGAAGA
	TCCTCACGTCTC	TGACGACGGTTG	GACGTCCTGGGG	TTGGTCGAGATG	TTACTCGAGTTA	GATCCCGCTTCT

XbaI

#### BamHI

~	~	~	~	~	~	~

	Е	Е	Y	D	V	L	Е	Κ	Κ	R	А	R	D	Ρ	Е	М	G	G	Κ	Q	Q	R	R	R
1657	GAG	GAA	TAT	GAC	GTC	TTG	GAG	AAG	AAGCGGGCTCG <b>G</b>				GAT	CCA	GAG	ATG	GGA	GGC	AAA	CAG	CAG	AGG.	AGG.	AGG
	CTC	CTT	ATA	CTG	CAG	AAC	СТС	TTC	TTC	GCC	CGA	GC <b>C</b>	CTA	GGT	СТС	TAC	CCT	CCG	TTT	GTC	GTC	TCC	TCC	TCC
	Ν	Ρ	Q	Е	G	V	Y	Ν	А	L	Q	Κ	D	Κ	М	А	Е	А	Y	S	Е	I	G	Т
1729	AAC	CCC	CAG	GAA	GGC	GTA'	TAC	AAT	GCA	CTG	CAG	AAA	GAC	AAG	ATG	GCA	GAA	GCC	TAC	AGT	GAG	ATC	GGC.	ACA
	TTG	GGG	GTC	CTT	CCG	CAT	ATG	TTA	CGT	GAC	GTC	TTT	CTGTTCTACCGT				CTT	CGG	ATG	TCA	CTCTAGCCGTGT			
	Κ	G	Е	R	R	R	G	Κ	G	Η	D	G	L	Y	Q	G	L	S	Т	А	Т	Κ	D	Т
1801	AAA	GGC	GAG.	AGG	CGG.	AGA	GGC	AAG	GGG	CAC	GAT	GGC	CTT	TAC	CAG	GGT	CTC.	AGC	ACT	GCC	ACC	AAG	GAC.	ACC
	TTT	CCG	CTC	TCC	GCC	TCT	CCG	TTC	CCCGTGCTACCG				GAA	ATG	GTC	CCA	GAG	TCG	TGA	CGG	TGG	TTC	CTG	TGG
	Y	D	А	L	Н	М	Q	Т	L	А	Ρ	R	*											
1873	TAT	GAT	GCC	CTG	CAT	TATGCAGACC CTGGCCCCTCGC						CGC	TAA											

ATACTACGGGAC GTATACGTCTGG GACCGGGGAGCG ATT

### 6.2.2 # 878: pBullet-HRS3scFv-mIgG-mCD28-mCD3ζ

					~~~~	~~~~
1	M D F Q ATGGATTTTCAG	V Q I F GTGCAGATTTTC	S F L L AGCTTCCTGCTA	I S A S ATCAGTGCCTCA	V I M S GTCATAATG TCT	R V A Q AGAGTGGCCCAG
	IACCIAAAAGIC	CACGICIAAAAG	ICGAAGGACGAI		U V M C	
72				P G A S		
13	GIGCAACIGCAG	CAGICAGGGGCI	GAGCIGGCIAGA	CCIGGGGCIICA	GIGAAGAIGICC	IGCAAGGCIICI
	CACGTTGACGTC	GTCAGTCCCCGA	CTCGACCGATCT	GGACCCCGAAGT	CACTTCTACAGG	ACGITCCGAAGA
	GYTF	ттүт	IHWV	RQRP	GHDL	EWIG
145	GGCTACACCTTT	ACTACCTACACA	ATACACTGGGTA	AGACAGAGGCCT	GGACACGATCTG	GAATGGATTGGA
	CCGATGTGGAAA	TGATGGATGTGT	TATGTGACCCAT	TCTGTCTCCGGA	CCTGTGCTAGAC	CTTACCTAACCT
	Y I N P	S S G Y	S D Y N	Q N F K	GKTT	LTAD
217	TACATTAATCCT	AGCAGTGGATAT	TCTGACTACAAT	CAAAACTTCAAG	GGCAAGACCACA	TTGACTGCAGAC
	ATGTAATTAGGA	TCGTCACCTATA	AGACTGATGTTA	GTTTTGAAGTTC	CCGTTCTGGTGT	AACTGACGTCTG
	K S S N	ТАҮМ	QLNS	LTSE	d s a v	ҮҮСА
289	AAGTCCTCCAAC	ACAGCCTACATG	CAACTGAACAGC	CTGACATCTGAG	GACTCTGCGGTC	TATTACTGTGCA
	TTCAGGAGGTTG	TGTCGGATGTAC	GTTGACTTGTCG	GACTGTAGACTC	CTGAGACGCCAG	ATAATGACACGT
	RRAD	Y G N Y	ЕҮТW	FAYW	GQGT	туту
361	AGAAGAGCGGAC	TATGGTAACTAC	GAATATACCTGG	TTTGCTTACTGG	GGCCAAGGGACC	ACGGTCACCGTC
	TCTTCTCGCCTG	ATACCATTGATG	CTTATATGGACC	AAACGAATGACC	CCGGTTCCCTGG	TGCCAGTGGCAG
	SSGG	GGSG	GGGS	GGGG	SDIE	LTOS
433	TCCTCAGGTGGA	GGCGGTTCAGGC	GGAGGTGGCTCT	GGCGGTGGCGGA	TCGGACATCGAG	CTCACTCAGTCT
	AGGAGTCCACCT	CCGCCAAGTCCG	CCTCCACCGAGA	CCGCCACCGCCT	AGCCTGTAGCTC	GAGTGAGTCAGA
	PKFM	STSV	GDRV	ΝΥΤΥ	KASO	NVGT
505	CCAAAATTCATG	TCCACATCAGTA	GGAGACAGGGTC	AACGTCACCTAC	AAGGCCAGTCAG	AATGTGGGTACT
	GGTTTTTAAGTAC	AGGTGTAGTCAT	CCTCTGTCCCAG	TTGCAGTGGATG	TTCCGGTCAGTC	TTACACCCATGA
	NVAW	FOOK	PGOS	PKVL	IYSA	SYRY
577	AATGTAGCCTGG	TTTCAACAAAAA	CCAGGGCAATCT	CCTAAAGTTCTG	ATTTACTCGGCA	TCTTACCGATAC
	TTACATCGGACC	AAAGTTGTTTTT	GGTCCCGTTAGA	GGATTTCAAGAC	TAAATGAGCCGT	AGAATGGCTATG
	SGVP	DRFT	GSGS	GTDF	тьті	SNVO
649	AGTGGAGTCCCT	GATCGCTTCACA	GGCAGTGGATCT	GGAACAGATTTC	ACTCTCACCATC	AGCAATGTGCAG
010	TCACCTCAGGGA	CTAGCGAAGTGT	CCGTCACCTAGA	CCTTGTCTAAAG	TGAGAGTGGTAG	TCGTTACACGTC
	SEDL	AEYF	C 0 0 Y	нтур	L T F G	GGTK
721	TCTGAAGACTTG	GCAGAGTATTTC	TGTCAGCAATAT	CACACCTATCCT	CTCACGTTCGGA	GGGGGGCACCAAG
	AGACTTCTGAAC	CGTCTCATAAAG	ACAGTCGTTATA	GTGTGGATAGGA	GAGTGCAAGCCT	CCCCCGTGGTTC
	1101101101010101	BamHT		0101001110011	011010011100001	000000100110
		~~~~~				
	т. в т к	RADP	VPRD	CGCK	PCTC	тире
793	CTGGAAATCAAA	CGGGCGGATCCT	GTGCCCAGGGAT	TGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA
	GACCTTTAGTTT	GCCCGCCTAGGA	CACGGGTCCCTA	ACACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT
	VSSV	ч <del>т т</del> я	ркрк	D V L T	ттг, т	ркут
865	GTATCATCTGTC	TTCATCTTCCCC	CCAAAGCCCAAG	GATGTGCTCACC	ATTACTCTGACT	CCTAAGGTCACG
000	CATAGTAGACAG	AAGTAGAAGGGG	GGTTTTCGGGTTC	CTACACGAGTGG	TAATGAGACTGA	GGATTCCAGTGC
	C V V V	DISK		V O F S	WFVD	D V E V
937	ТСТСТТСТССТА	GACATCAGCAAG	GATGATCCCGAG	GTCCAGTTCAGC	TGGTTTGTAGAT	GATGTGGAGGTG
231	ACACAACACCAT	CTCTACTCCTTC	CTACTACCCCTC	CACCTCAACTCC	ACCABACATCTA	CTACACCTCCAC
			F F O F	N C T F	D C V C	F I. D T
1000						
1005	CTCTCTCCAGCICAG	TCCCTTCCCCCG	CTCCTCCTCA AC	TTCTCCTCAAAC	CCCACTCACTCA	CTTCAACCCAIC
	GIGIGICGAGIC	W T N C	V F F V	C D V N	GCGAGICAGICA	
1001						
1001	TIGCACCAGGAC	1GGCICAAIGGC		A COTTO CARCE	TARIGCAGCITIC	CCIGCCCCAIC
	THCGIGGICCIG		C D D V	ACGICCCAGIIG		DALOGOGIAG
1150						
1123	GAGAAAACCATC		GGCAGACCGAAG	GUICCACAGGIG	TACACCATTCCA	
	CICITITIGGIAG	AGGITTTTGGTTT	CCGTCTGGCTTC	CGAGGIGICCAC	AIGIGGIAAGGI	GGAGGGTTCCTC
1005	V M A K				F F E D	
1225	CAGATGGCCAAG	GATAAAGTCAGT	CTGACCTGCATG	ATAACAGAC'I'TC	TTCCCTGAAGAC	ATTACTGTGGAG
	GTCTACCGGTTC	CTATTCAGTCA	GACTGGACGTAC	TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC

	W Q W N	G Q P A	E N Y K	N T Q P	I M D T	D G S Y
1297	TGGCAGTGGAAT	GGGCAGCCAGCG	GAGAACTACAAG	AACACTCAGCCC	ATCATGGACACA	GATGGCTCTTAC
	ACCGTCACCTTA	CCCGTCGGTCGC	CTCTTGATGTTC	TTGTGAGTCGGG	TAGTACCTGTGT	CTACCGAGAATG
	FVYS	K L N V	QKSN	WEAG	ΝΤΕΤ	CSVL
1369	TTCGTCTACAGC	AAGCTCAATGTG	CAGAAGAGCAAC	TGGGAGGCAGGA	AATACTTTCACC	TGCTCTGTGTTA
	AAGCAGATGTCG	TTCGAGTTACAC	GTCTTCTCGTTG	ACCCTCCGTCCT	TTATGAAAGTGG	ACGAGACACAAT
				BstXI		
				~~~~~~	~~~~	
	HEGL	н м н н	TEKS	LSHS	PGIF	WALV
1441	CATGAGGGCCTG	CACAACCACCAT	ACTGAGAAGAGC	CTCTC CCACTCT	CCTGG TATTTTT	TGGGCACTGGTC
	GTACTCCCGGAC	GTGTTGGTGGTA	TGACTCTTCTCG	GAGAG GGTGAGA	GGACC ATAAAAA	ACCCGTGACCAG
	V V A G	VLFC	YGLL	V T V A	LCVI	W T N S
1513	GTGGTTGCTGGA	GTCCTGTTTTGT	TATGGCTTGCTA	GTGACAGTGGCT	CTTTGTGTTATC	TGGACAAATAGT
	CACCAACGACCT	CAGGACAAAACA	ATACCGAACGAT	CACTGTCACCGA	GAAACACAATAG	ACCTGTTTATCA
	RRNR	LLQS	D Y M N	MTPR	RPGL	TRKP
1585	AGAAGGAACAGA	CTCCTTCAAAGT	GACTACATGAAC	ATGACTCCCCGG	AGGCCTGGGCTC	ACTCGAAAGCCT
	TCTTCCTTGTCT	GAGGAAGTTTCA	CTGATGTACTTG	TACTGAGGGGCC	TCCGGACCCGAG	TGAGCTTTCGGA
	Y О Р Y	APAR	DFAA	YRPL	RAKF	SRSA
1657	TACCAGCCCTAC	GCCCCTGCCAGA	GACTTTGCAGCG	TACCGCCCCCTG	AGAGCAAAATTC	AGCAGGAGTGCA
	ATGGTCGGGATG	CGGGGACGGTCT	CTGAAACGTCGC	ATGGCGGGGGGAC	TCTCGTTTTAAG	TCGTCCTCACGT
	ЕТАА	NLOD	PNOL	YNEL	NLGR	REEY
1729	GAGACTGCTGCC	AACCTGCAGGAC	CCCAACCAGCTC	TACAATGAGCTC	AATCTAGGGCGA	AGAGAGGAATAT
	CTCTGACGACGG	TTGGACGTCCTG	GGGTTGGTCGAG	ATGTTACTCGAG	TTAGATCCCGCT	TCTCTCCTTATA
			BamHI			
			~~~~~			
	DVLE	KKRA	RDPE	MGGK	QQRR	RNPQ
1801	GACGTCTTGGAG	AAGAAGCGGGCT	CG <b>GGATCC</b> AGAG	ATGGGAGGCAAA	CAGCAGAGGAGG	AGGAACCCCCAG
	CTGCAGAACCTC	TTCTTCGCCCGA	GCCCTAGGTCTC	TACCCTCCGTTT	GTCGTCTCCTCC	TCCTTGGGGGGTC
	EGVY	NALQ	КДКМ	АЕАҮ	SEIG	TKGE
1873	GAAGGCGTATAC	AATGCACTGCAG	AAAGACAAGATG	GCAGAAGCCTAC	AGTGAGATCGGC	ACAAAAGGCGAG
	CTTCCGCATATG	TTACGTGACGTC	TTTCTGTTCTAC	CGTCTTCGGATG	TCACTCTAGCCG	TGTTTTCCGCTC
	RRRG	KGHD	GLYQ	GLST	A T K D	ТҮДА
1945	AGGCGGAGAGGC	AAGGGGCACGAT	GGCCTTTACCAG	GGTCTCAGCACT	GCCACCAAGGAC	ACCTATGATGCC
	TCCGCCTCTCCG	TTCCCCGTGCTA	CCGGAAATGGTC	CCAGAGTCGTGA	CGGTGGTTCCTG	TGGATACTACGG
	L Н М О	TLAP	R *			
2017	CTGCATATGCAG	ACCCTGGCCCCT	CGCTAA			
	GACGTATACGTC	TGGGACCGGGGA	GCGATT			

## 6.2.3 # 881: pBullet-BW431/26scFv-mIgG-mCD3ζ

XbaI

					~~~	~~~~
	M D F Q	VQIF	SFLL	ISAS	V I M S	R G V H
1	ATGGATTTTCA	G GTGCAGATTTTC	AGCTTCCTGCTA	ATCAGTGCCTCA	GTCATAATG TCT	AGA GGTGTCCAC
	TACCTAAAAGT	CACGTCTAAAAG	TCGAAGGACGAT	TAGTCACGGAGT	CAGTATTAC AGA	TCT CCACAGGTG
	SQVQ	LQES	G P G L	VRPS	QTLS	L T C T
73	TCCCAGGTCCA	A CTGCAGGAGTCA	GGTCCAGGTCTT	GTGAGACCTAGC	CAGACCCTGAGC	CTGACCTGCACC
	AGGGTCCAGGT	GACGTCCTCAG	CCAGGTCCAGAA	CACTCTGGATCG	GTCTGGGACTCG	GACTGGACGTGG
	VSGF	TISS	G Y S W	HWVR	Q P P G	RGLE
145	GTGTCTGGCTT	C ACCATCAGCAG1	GGTTATAGCTGG	CACTGGGTGAGA	CAGCCACCTGGA	CGAGGTCTTGAG
	CACAGACCGAA	G TGGTAGTCGTCA	CCAATATCGACC	GTGACCCACTCT	GTCGGTGGACCT	GCTCCAGAACTC
	WIGY	IQYS	GITN	Y N P S	LKSR	V T M L
217	TGGATTGGATA	C ATACAGTACAGT	GGTATCACTAAC	TACAACCCCTCT	CTCAAAAGTAGA	GTGACAATGCTG
	ACCTAACCTAT	G TATGTCATGTCA	CCATAGTGATTG	ATGTTGGGGAGA	GAGTTTTCATCT	CACTGTTACGAC
	VDTS	K N Q F	SLRL	SSVT	AADT	A V Y Y
289	GTAGACACCAG	C AAGAACCAGTTO	AGCCTGAGACTC	AGCAGCGTGACA	GCCGCCGACACC	GCGGTCTATTAT
	CATCTGTGGTC	G TTCTTGGTCAAG	TCGGACTCTGAG	TCGTCGCACTGT	CGGCGGCTGTGG	CGCCAGATAATA
	CARE	DYDY	H W Y F	D V W G	QGTT	VTVS
361	TGTGCAAGAGA	A GACTATGATTAC	CACTGGTACTTC	GATGTCTGGGGC	CAAGGGACCACG	GTCACCGTCTCC
	ACACGTTCTCT	CTGATACTAATO	GTGACCATGAAG	CTACAGACCCCG	GTTCCCTGGTGC	CAGTGGCAGAGG
	S G G G	G S G G	G G S G	G G G S	DIQL	TQSP
433	TCAGGAGGTGG	GGATCGGGCGG1	GGCGGGTCGGGT	GGCGGCGGATCT	GACATCCAGCTG	ACCCAGAGCCCA
	AGTCCTCCACC	A CCTAGCCCGCCA	CCGCCCAGCCCA	CCGCCGCCTAGA	CTGTAGGTCGAC	TGGGTCTCGGGT
					XhoI	
				~ ~		
FOF	S S L S	A S V G	D R V T	I T C S	TSSS	V S Y M
505	AGCAGCCTGAG	GCCAGCGTGGGT	GACAGAGIGACC	ATCACCTGTAGT	ACCAG CTCGAG T	GTAAGTTACATG
	TCGTCGGACTC	GGGTCGCACCCA	CIGICICACIGG	TAGIGGACATCA	TGGTCGAGCTCA	CATTCAATGTAC
F 7 7	H W Y Q	Q K P G	K A P K		S T S N	L A S G
577	CACTGGTACCA		AAGGCTCCAAAG	CIGCIGATCIAC	AGCACATCCAAC	CIGGCITCIGGI
	GIGACCAIGGI	GICTICGGICCA	. TTCCGAGGTTTC	GACGACTAGATG	TCGTGTAGGTTG	GACCGAAGACCA
C 1 0	V P S R	F S G S	G S G T		TISS	L Q P E
649	GIGCCAAGCAG		GGTAGCGGTACC	GACITCACCITC	ACCATCAGCAGC	CTCCAGCCAGAG
	CACGGIICGIC	AAGICGCCAICC	CCAICGCCAIGG	V D T F		GAGGICGGICIC
701						
121	GACALCGCCAC			IAICCCACGIIC	GGCCAAGGGGACC	
	CIGIAGCGGIG	- AIGAIGACGGTA	GICACCICATCA	ATAGGGTGCAAG	CCGGIIICCCIGG	TICCACCICIAG

	BamHI				
	~~~~~				
	KVDP	VPRD	GGCK	PCIC	T V P E V S S V
793	AAAGT <b>GGATCC</b> T	GTGCCCAGGGAT	GGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA GTATCATCTGTC
	T'I'TCA <b>CCTAGG</b> A	CACGGGTCCCTA	CCACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT CATAGTAGACAG
0.65	F I F P	PKPK	D V L T	I T L T	
865	1 TCATCITCCCCC	CCAAAGCCCAAG	GATGTGCTCACC	ATTACTCTGACT	CCTAAGGTCACG TGTGTTGTGGTA
	AAGTAGAAGGGG	GGTTTTCGGGGTTC	CTACACGAGIGG	TAATGAGACTGA	GGATTCCAGTGC ACACACACCAT
027					
951	GACAI CAGCAAG	GAIGAICCCGAG	CACCTCAGIICAGC	ACCANACATCTA	GAIGIGGAGGIG CACACAGCICAG
		F F O F	N C T F	D C V C	
1009					
1005	TCCCTTCCCCCG	CTCCTCCTCAAC	TTCTCCTCAAAC	CCCACTCACTCA	CTTGAACCCTAC TACCTCCTC
	W L N G	K F F K	C R V N	C A A F	
1081	TGGCTCAATGGC	AAGGAGTTCAAA	TGCAGGGTCAAC	AGTGCAGCTTTC	CCTGCCCCCATC GAGAAAACCATC
1001	ACCGAGTTACCG	TTCCTCAAGTTT	ACGTCCCAGTTG	TCACGTCGAAAG	CCACCCCCCCTAC CTCTTTTCCTAC
	SKTK	G R P K	A P O V	CTIP	
1153	ТССААААССААА	GGCAGACCGAAG	GCTCCACAGGTG	TGCACCATTCCA	CCTCCCAAGGAG CAGATGGCCAAG
	AGGTTTTGGTTT	CCGTCTGGCTTC	CGAGGTGTCCAC	ACGTGGTAAGGT	GGAGGGTTCCTC GTCTACCGGTTC
	DKVS	L T С М	ITDF	FPED	ITVE WOWN
1225	GATAAAGTCAGT	CTGACCTGCATG	ATAACAGACTTC	TTCCCTGAAGAC	ATTACTGTGGAG TGGCAGTGGAAT
	CTATTTCAGTCA	GACTGGACGTAC	TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC ACCGTCACCTTA
	GQPA	E N Y K	ΝΤQΡ	I M D T	D G S Y F V Y S
1297	GGGCAGCCAGCG	GAGAACTACAAG	AACACTCAGCCC	ATCATGGACACA	GATGGCTCTTAC TTCGTCTACAGC
	CCCGTCGGTCGC	CTCTTGATGTTC	TTGTGAGTCGGG	TAGTACCTGTGT	CTACCGAGAATG AAGCAGATGTCG
	K L N V	QKSN	WEAG	ΝΤΕΤ	C S V L H E G L
1369	AAGCTCAATGTG	CAGAAGAGCAAC	TGGGAGGCAGGA	AATACTTTCACC	TGCTCTGTGTTA CATGAGGGCCTG
	TTCGAGTTACAC	GTCTTCTCGTTG	ACCCTCCGTCCT	TTATGAAAGTGG	ACGAGACACAAT GTACTCCCGGAC
			BstXI		
			T C II C		
1441				Р С І Д	
TIIT	CTCTTCCTCCT	TGACTCTTCTCG	CACACCCACICI	CCICGIAIIGAI CCACCATAACTA	CCCTTTGAGACC ATGAACGATCTA
	G T I. F	T V C V	T T T A	I. V I. P	A K F S P S A F
1513	GGAATCCTCTTC	ATCTACGGAGTC	ATCATCACAGCC	CTGTACCTGAGA	GCAAAATTCAGC AGGAGTGCAGAG
	CCTTAGGAGAAG	TAGATGCCTCAG	TAGTAGTGTCGG	GACATGGACTCT	CGTTTTTAAGTCG TCCTCACGTCTC
	TAAN	LODP	NOLY	NELN	L G R R E E Y D
1585	ACTGCTGCCAAC	CTGCAGGACCCC	AACCAGCTCTAC	AATGAGCTCAAT	CTAGGGCGAAGA GAGGAATATGAC
	TGACGACGGTTG	GACGTCCTGGGG	TTGGTCGAGATG	TTACTCGAGTTA	GATCCCGCTTCT CTCCTTATACTG
		i	BamHI		
		~	~~~~~		
	VLEK	KRAR	D P E M	GGKQ	Q R R R N P Q E
1657	GTCTTGGAGAAG	AAGCGGGGCTCG <b>G</b>	<b>GATCC</b> AGAGATG	GGAGGCAAACAG	CAGAGGAGGAGG AACCCCCAGGAA
	CAGAACCTCTTC	TTCGCCCGAGC <b>C</b>	<b>CTAGG</b> TCTCTAC	CCTCCGTTTGTC	GTCTCCTCCTCC TTGGGGGGTCCTT
	G V Y N	A L Q K	DKMA	EAYS	EIGT KGER
1729	GGCGTATACAAT	GCACTGCAGAAA	GACAAGATGGCA	GAAGCCTACAGT	GAGATCGGCACA AAAGGCGAGAGG
	CCGCATATGTTA	CGTGACGTCTTT	CTGTTCTACCGT	CTTCGGATGTCA	CTCTAGCCGTGT TTTCCGCTCTCC
	RRGK	GHDG	LYQG	LSTA	T K D T Y D A L
1801	CGGAGAGGCAAG	GGGCACGATGGC	CTTTACCAGGGT	CICAGCACTGCC	ACCAAGGACACC TATGATGCCCTG
	GCCTCTCCGTTC	CCCGTGCTACCG	GAAATGGTCCCA	GAGTCGTGACGG	TGGTTCCTGTGG ATACTACGGGAC
1080	H M Q T	L A P R	*		
T8.13	CATATGCAGACC	CIGGCCCCTCGC	TAA		

GTATACGTCTGG GACCGGGGAGCG ATT

### 6.2.4 # 883: pBullet-BW431/26scFv-mIgG-mCD28-mCD3ζ

XbaI

																			~~~~	~~~~				
	М	D	F	Q	V	Q	I	F	S	F	L	L	I	S	А	S	V	I	М	S	R	G	V	Н
1	ATG	GAT	TTT	CAG	GTG	CAG	ATT	TTC	AGC	TTC	CTG	CTA	ATC	AGT	GCC	TCA	GTC	ATA	ATG	TCT	AGA	GGT	GTC	CAC
	TAC	CTA	AAA	GTC	CAC	GTC	TAA.	AAG	TCG	AAG	GAC	GAT	TAG	TCA	CGG	AGT	CAG	TAT	TAC	AGA	TCT	CCA	CAG	GTG
	S	Q	V	Q	L	Q	Е	S	G	Ρ	G	L	V	R	Ρ	S	Q	Т	L	S	L	Т	С	Т
73	TCC	CAG	GTC	CAA	CTG	CAG	GAG	TCA	GGT	CCA	GGT	CTT	GTG	AGA	CCT	AGC	CAG	ACC	CTG	AGC	CTG.	ACC	TGC	ACC
	AGG	AGGGTCCAGGTT GACGTCCTCAGT CCAGG					.GGT	CCA	GAA	CAC	GTC	TGG	GAC	TCG	GACTGGACGTGG									
	V	S	G	F	Т	I	S	S	G	Y	S	W	Η	W	V	R	Q	Ρ	Ρ	G	R	G	L	Е
145	GTG	TCT	GGC	TTC	ACC	ATC	AGC.	AGT	GGT	TAT	AGC	TGG	CAC	TGG	GTG	AGA	CAG	CCA	CCT	GGA	CGA	GGT	CTT	GAG
	CAC	AGA	ACCGAAG TGGTAGTCGTCA CCAATATCGA					ACC	GTG	ACC	CAC	TCT	GTC	GGT	GGA	CCT	GCT	CCA	GAA	CTC				
	W	I	G	Y	I	Q	Y	S	G	I	Т	Ν	Y	Ν	Ρ	S	L	Κ	S	R	V	Т	М	L
217	TGG	ATT	'GGA	TAC	ATA	CAG	TAC.	AGT	GGT	ATC	ACT	AAC	TAC	AAC	CCC	TCT	CTC	AAA	AGT	AGA	GTG	ACA	ATG	CTG
	ACC	TAA	CCT	ATG	TAT	GTC	ATG	TCA	CCA	TAG	TGA	TTG	ATGTTGGGGAGA				GAG	TTT	TCA	TCT	CAC	TGT	TAC	GAC
	V	D	Т	S	Κ	Ν	Q	F	S	L	R	L	S	S	V	Т	А	А	D	Т	Α	V	Y	Y
289	GTA	GAC	ACC	AGC	AAG	AAC	CAG	TTC	AGCCTGAGAG			CTC	AGC	AGC	GTG	ACA	GCC	GCC	GAC	ACC	GCG	GTC	TAT	TAT
	CAT	CTG	TGG	TCG	TTCTTGGTCAAG TCGGACTCT		GAG	TCG	TCG	CAC	TGT	T CGGCGGCTGTGG				GCCAGATAATA			ATA					
	С	А	R	Е	D	Y	D	Y	Η	W	Y	F	D	V	W	G	Q	G	Т	Т	V	Т	V	S
361	TGTGCAAGAGAA GACTATGATTAC CACTGGTACT				TTC:	IC GATGTCTGGGGC CAAGGGACCA					ACG	G GTCACCGTCTCC												
	ACACGTTCTCTT				CTG	ATA	CTA.	ATG	GTG	ACC	ATG	AAG	CTA	CAG	ACC	CCG	GTT	CCC	TGG	TGC	CAG	TGG	CAG	AGG
433	S G G G TCAGGAGGTGGT AGTCCTCCACCA	G S G G GGATCGGGCGGT CCTAGCCCGCCA	G G S G GGCGGGTCGGGT CCGCCCAGCCCA	G G G S GGCGGCGGATCT CCGCCGCCTAGA	D I Q L GACATCCAGCTG CTGTAGGTCGAC XhOI	T Q S P ACCCAGAGCCCA TGGGTCTCGGGT																		
------	---	---	---	---	--	---																		
505	S S L S	A S V G	D R V T	I T C S	T S S S	V S Y M																		
	AGCAGCCTGAGC	GCCAGCGTGGGT	GACAGAGTGACC	ATCACCTGTAGT	ACCAG CTCGAG T	GTAAGTTACATG																		
	TCGTCGGACTCG	CGGTCGCACCCA	CTGTCTCACTGG	TAGTGGACATCA	TGGTC GAGCTC A	CATTCAATGTAC																		
	H W Y O	O K P G	K A P K	L L I Y	S T S N	L A S G																		
577	CACTGGTACCAG	CAGAAGCCAGGT	AAGGCTCCAAAG	CTGCTGATCTAC	AGCACATCCAAC	CTGGCTTCTGGT																		
	GTGACCATGGTC	GTCTTCGGTCCA	TTCCGAGGTTTC	GACGACTAGATG	TCGTGTAGGTTG	GACCGAAGACCA																		
	V P S R	F S G S	G S G T	D F T F	T I S S	L O P E																		
649	GTGCCAAGCAGA	TTCAGCGGTAGC	GGTAGCGGTACC	GACTTCACCTTC	ACCATCAGCAGC	CTCCAGCCAGAG																		
	CACGGTTCGTCT	AAGTCGCCATCG	CCATCGCCATGG	CTGAAGTGGAAG	TGGTAGTCGTCG	GAGGTCGGTCTC																		
	D I A T	Y Y C H	O W S S	Y P T F	G O G T	K V E I																		
721	GACATCGCCACC CTGTAGCGGTGG BamHI	TACTACTGCCAT ATGATGACGGTA	CAGTGGAGTAGT GTCACCTCATCA	TATCCCACGTTC ATAGGGTGCAAG	GGCCÄAGGGACC CCGGTTCCCTGG	AAGGTGGAGATC TTCCACCTCTAG																		
793	AAAGT GGATCC T	GTGCCCAGGGAT	GGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA	GTATCATCTGTC																		
	TTTCA CCTAGG A	CACGGGTCCCTA	CCACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT	CATAGTAGACAG																		
865	F I F P TTCATCTTCCCC AAGTAGAAGGGG	P K P K CCAAAGCCCAAG GGTTTCGGGTTC	D V L T GATGTGCTCACC CTACACGAGTGG	I T L T ATTACTCTGACT TAATGAGACTGA	CCTAAGGTCACG GGATTCCAGTGC	C V V V TGTGTTGTGGTA ACACAACACCAT																		
937	D I S K	D D P E	V Q F S	W F V D	D V E V	H T A Q																		
	GACATCAGCAAG	GATGATCCCGAG	GTCCAGTTCAGC	TGGTTTGTAGAT	GATGTGGAGGTG	CACACAGCTCAG																		
	CTGTAGTCGTTC	CTACTAGGGCTC	CAGGTCAAGTCG	ACCAAACATCTA	CTACACCTCCAC	GTGTGTCGAGTC																		
1009	ACGCAACCCCGG	GAGGAGCAGTTC	AACAGCACTTTC	CGCTCAGTCAGT	GAACTTCCCATC	ATGCACCAGGAC																		
	TGCGTTGGGGCC	CTCCTCGTCAAG	TTGTCGTGAAAG	GCGAGTCAGTCA	CTTGAAGGGTAG	TACGTGGTCCTG																		
1081	TGGCTCAATGGC	AAGGAGTTCAAA	TGCAGGGTCAAC	AGTGCAGCTTTC	CCTGCCCCCATC	GAGAAAACCATC																		
	ACCGAGTTACCG	TTCCTCAAGTTT	ACGTCCCAGTTG	TCACGTCGAAAG	GGACGGGGGGTAG	CTCTTTTGGTAG																		
	S K T K	G R P K	A P O V	C T I P	P P K E	O M A K																		
1153	TCCAAAACCAAA	GGCAGACCGAAG	GCTCCACAGGTG	TGCACCATTCCA	CCTCCCAAGGAG	CAGATGGCCAAG																		
	AGGTTTTGGTTT	CCGTCTGGCTTC	CGAGGTGTCCAC	ACGTGGTAAGGT	GGAGGGTTCCTC	GTCTACCGGTTC																		
	D K V S	L. T. C. M	T T D F	F P E D	T T V E	W O W N																		
1225	GATAAAGTCAGT	CTGACCTGCATG	ATAACAGACTTC	TTCCCTGAAGAC	ATTACTGTGGAG	TGGCAGTGGAAT																		
	CTATTTCAGTCA	GACTGGACGTAC	TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC	ACCGTCACCTTA																		
	G O P A	E N Y K	N T O P	I M D T	D G S Y	F V Y S																		
1297	GGGCAGCCAGCG	GAGAACTACAAG	AACACTCAGCCC	ATCATGGACACA	GATGGCTCTTAC	TTCGTCTACAGC																		
	CCCGTCGGTCGC	CTCTTGATGTTC	TTGTGAGTCGGG	TAGTACCTGTGT	CTACCGAGAATG	AAGCAGATGTCG																		
	K L N V	O K S N	W E A G	N T F T	C S V L	H E G L																		
1369	AAGCTCAATGTG	CAGAAGAGCAAC	TGGGAGGCAGGA	AATACTTTCACC	TGCTCTGTGTTA	CATGAGGGCCTG																		
	TTCGAGTTACAC	GTCTTCTCGTTG	ACCCTCCGTCCT	TTATGAAAGTGG	ACGAGACACAAT	GTACTCCCGGAC																		
	H N H H	T E K S	L S H S	P G I F	WALV	V V A G																		
			BstXI																					
1441	CACAACCACCAT	ACTGAGAAGAGC	CTCTCCCACTCT	CCTGGTATTTTT	TGGGCACTGGTC	GTGGTTGCTGGA																		
1513	V L F C	Y G L L	V T V A	L C V I	W T N S	R R N R																		
	GTCCTGTTTTGT	TATGGCTTGCTA	GTGACAGTGGCT	CTTTGTGTTATC	TGGACAAATAGT	AGAAGGAACAGA																		
1505	CAGGACAAAACA	ATACCGAACGAT	CACTGTCACCGA	GAAACACAATAG	ACCTGTTTATCA	TCTTCCTTGTCT																		
	L L Q S	D Y M N	M T P R	R P G L	T R K P	Y Q P Y																		
1282	GAGGAAGTTTCA	CTGATGTACTTG	TACTGAGGGGGCC	TCCGGACCCGAG	TGAGCTTTCGGA	ATGGTCGGGATG																		
	A P A R	D F A A	Y R P L	R A K F	S R S A	E T A A																		
1657	GCCCCTGCCAGA	GACTTTGCAGCG	TACCGCCCCTG	AGAGCAAAATTC	AGCAGGAGTGCA	GAGACTGCTGCC																		
	CGGGGGACGGTCT	CTGAAACGTCGC	ATGGCGGGGGGAC	TCTCGTTTTAAG	TCGTCCTCACGT	CTCTGACGACGG																		
	N L Q D	P N Q L	Y N E L	N L G R	R E E Y	D V L E																		
1729	AACCTGCAGGAC TTGGACGTCCTG	CCCAACCAGCTC GGGTTGGTCGAG BamHI ~~~~~~	TACAATGAGCTC ATGTTACTCGAG	AATCTAGGGCGA TTAGATCCCGCT	AGAGAGGAATAT TCTCTCCTTATA	GACGTCTTGGAG CTGCAGAACCTC																		
1801	K K R A	R D P E	M G G K	Q Q R R	R N P Q	E G V Y																		
	AAGAAGCGGGCT	CG GGATCC AGAG	ATGGGAGGCAAA	CAGCAGAGGAGG	AGGAACCCCCAG	GAAGGCGTATAC																		
	TTCTTCGCCCGA	GC CCTAGG TCTC	TACCCTCCGTTT	GTCGTCTCCTCC	TCCTTGGGGGGTC	CTTCCGCATATG																		
1873	AATGCACTGCAG	AAAGACAAGATG	GCAGAAGCCTAC	AGTGAGATCGGC	ACAAAAGGCGAG	AGGCGGAGAGGC																		
	TTACGTGACGTC	TTTCTGTTCTAC	CGTCTTCGGATG	TCACTCTAGCCG	TGTTTTCCGCTC	TCCGCCTCTCCG																		
1945	K G H D AAGGGGGCACGAT TTCCCCGTGCTA T L A P	G L Y Q GGCCTTTACCAG CCGGAAATGGTC R *	G L S T GGTCTCAGCACT CCAGAGTCGTGA	A T K D GCCACCAAGGAC CGGTGGTTCCTG	T Y D A ACCTATGATGCC TGGATACTACGG	L H M Q CTGCATATGCAG GACGTATACGTC																		
2017	ACCCTGGCCCCT TGGGACCGGGGA	CGCTAA GCGATT																						

6.3 DNA Sequenzen der rekombinanten Immunrezeptoren zweiter Generation mit Spezifität für CEA und CD30.

Gezeigt wird die DNA Sequenz der rekombinanten Immunrezeptoren pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ (# 892), pBullet-BW431/26scFv-mIgG-mCD4mCD3ζ (# 895), pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ-OX40 (# 897), pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 (# 898), pBullet-HRS3scFv-mIgGmCD4-mCD28-mCD3ζ (# 901) und pBullet-BW431/26scFv-mIgG-mCD4-mCD28mCD3ζ (# 907). Die abgeleitete Aminosäuresequenz wird oberhalb der DNA Sequenz im Ein-Buchstaben-Code aufgeführt. Ein "*" kennzeichnet das Stopcodon. Restriktionsschnittstellen, die der Klonierung oder Restriktionsanalyse dienten, sind durch Fett-Druck gekennzeichnet.

6.3.1 # 892: pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ

M D F Q V Q I F S F L L I S A S V I M S R V A Q 1 ATGGATTTTCAG GTGCAGATTTTC AGCTTCCTGCTA ATCAGTGCCTCA GTCATAATG**TCT AGA**GTGGCCCAG TACCTAAAAGTC CACGTCTAAAAG TCGAAGGACGAT TAGTCACGGAGT CAGTATTAC**AGA TCT**CACCGGGTC

XbaI

72	V Q L Q	Q S G A	E L A R	P G A S	V K M S	C K A S
73	CACGTTGACGTC	GTCAGTCCCCGA	CTCGACCGATCT	GGACCCCGAAGT	CACTTCTACAGG	ACGTTCCGAAGA
145	GGCTACACCTTT CCGATGTGGAAA	ACTACCTACACA TGATGGATGTGT	ATACACTGGGTA TATGTGACCCAT	AGACAGAGGCCT TCTGTCTCCGGA	G A D L GGACACGATCTG CCTGTGCTAGAC	GAATGGATTGGA CTTACCTAACCT
217	TACATTAATCCT ATGTAATTAGGA	AGCAGTGGATAT TCGTCACCTATA	TCTGACTACAAT AGACTGATGTTA	CAAAACTTCAAG GTTTTGAAGTTC	GGCAAGACCACA CCGTTCTGGTGT	TTGACTGCAGAC AACTGACGTCTG
289	AAGTCCTCCAAC TTCAGGAGGTTG	ACAGCCTACATG TGTCGGATGTAC	CAACTGAACAGC GTTGACTTGTCG	CTGACATCTGAG GACTGTAGACTC	GACTCTGCGGTC CTGAGACGCCAG	TATTACTGTGCA ATAATGACACGT
361	AGAAGAGCGGAC TCTTCTCGCCTG	TATGGTAACTAC ATACCATTGATG	GAATATACCTGG CTTATATGGACC	F A I W TTTGCTTACTGG AAACGAATGACC	G Q G I GGCCAAGGGACC CCGGTTCCCTGG	ACGGTCACCGTC TGCCAGTGGCAG
433	S S G G TCCTCAGGTGGA AGGAGTCCACCT P K F M	G G S G GGCGGTTCAGGC CCGCCAAGTCCG S T S V	G G G S GGAGGTGGCTCT CCTCCACCGAGA G D R V	G G G G GGCGGTGGCGGA CCGCCACCGCCT N V T Y	S D I E TCGGACATCGAG AGCCTGTAGCTC K A S O	L T Q S CTCACTCAGTCT GAGTGAGTCAGA N V G T
505	CCAAAATTCATG GGTTTTAAGTAC N V A W	TCCACATCAGTA AGGTGTAGTCAT F O O K	GGAGACAGGGTC CCTCTGTCCCAG P G O S	AACGTCACCTAC TTGCAGTGGATG P K V I.	AAGGCCAGTCAG TTCCGGTCAGTC T Y S A	AATGTGGGTACT TTACACCCATGA S Y R Y
577	AATGTAGCCTGG TTACATCGGACC	TTTCAACAAAAA AAAGTTGTTTTT D R F T	CCAGGGCAATCT GGTCCCGTTAGA G S G S	CCTAAAGTTCTG GGATTTCAAGAC G T D F	ATTTACTCGGCA TAAATGAGCCGT	TCTTACCGATAC AGAATGGCTATG S N V O
649	AGTGGAGTCCCT TCACCTCAGGGA	GATCGCTTCACA CTAGCGAAGTGT	GGCAGTGGATCT CCGTCACCTAGA	GGAACAGATTTC CCTTGTCTAAAG	ACTCTCACCATC TGAGAGTGGTAG	AGCAATGTGCAG TCGTTACACGTC
721	TCTGAAGACTTG AGACTTCTGAAC	GCAGAGTATTTC CGTCTCATAAAG BamHI	TGTCAGCAATAT ACAGTCGTTATA	CACACCTATCCT GTGTGGATAGGA	CTCACGTTCGGA GAGTGCAAGCCT	GGGGGCACCAAG CCCCCGTGGTTC
		~~~~~				
793	L E I K CTGGAAATCAAA GACCTTTAGTTT	R A D P CGGGC <b>GGATCC</b> T GCCCG <b>CCTAGG</b> A	V P R D GTGCCCAGGGAT CACGGGTCCCTA	C G C K TGTGGTTGTAAG ACACCAACATTC	P C I C CCTTGCATATGT GGAACGTATACA	T V P E ACAGTCCCAGAA TGTCAGGGTCTT
865	V S S V GTATCATCTGTC CATAGTAGACAG	F I F P TTCATCTTCCCC AAGTAGAAGGGG	P K P K CCAAAGCCCAAG GGTTTCGGGTTC	D V L T GATGTGCTCACC CTACACGAGTGG	I T L T ATTACTCTGACT TAATGAGACTGA	P K V T CCTAAGGTCACG GGATTCCAGTGC
937	TGTGTTGTGGTA ACACAACACCAT H T A O	GACATCAGCAAG CTGTAGTCGTTC T O P R	GATGATCCCGAG CTACTAGGGCTC E E O F	V Q F S GTCCAGTTCAGC CAGGTCAAGTCG N S T F	W F V D TGGTTTGTAGAT ACCAAACATCTA R S V S	GATGTGGAGGTG CTACACCTCCAC E L P I
1009	CACACAGCTCAG GTGTGTCGAGTC	ACGCAACCCCGG TGCGTTGGGGGCC	GAGGAGCAGTTC CTCCTCGTCAAG	AACAGCACTTTC TTGTCGTGAAAG	CGCTCAGTCAGT GCGAGTCAGTCA	GAACTTCCCATC CTTGAAGGGTAG
1081	M H Q D ATGCACCAGGAC TACGTGGTCCTG	W L N G TGGCTCAATGGC ACCGAGTTACCG	AAGGAGTTCAAA TTCCTCAAGTTT	TGCAGGGTCAAC ACGTCCCAGTTG	AGTGCAGCTTTC TCACGTCGAAAG	CCTGCCCCCATC GGACGGGGGGTAG
1153	GAGAAAACCATC CTCTTTTGGTAG O M A K	TCCAAAACCAAA AGGTTTTGGTTT D K V S	G K P K GGCAGACCGAAG CCGTCTGGCTTC L T C M	GCTCCACAGGTG CGAGGTGTCCAC I T D F	TACACCATTCCA ATGTGGTAAGGT F P E D	CCTCCCAAGGAG GGAGGGTTCCTC I T V E
1225	CAGATGGCCAAG GTCTACCGGTTC W O W N	GATAAAGTCAGT CTATTTCAGTCA G O P A	CTGACCTGCATG GACTGGACGTAC E N Y K	ATAACAGACTTC TATTGTCTGAAG N T O P	TTCCCTGAAGAC AAGGGACTTCTG I M D T	ATTACTGTGGAG TAATGACACCTC D G S Y
1297	TGGCAGTGGAAT ACCGTCACCTTA	GGGCAGCCAGCG CCCGTCGGTCGC	GAGAACTACAAG CTCTTGATGTTC	AACACTCAGCCC TTGTGAGTCGGG	ATCATGGACACA TAGTACCTGTGT	GATGGCTCTTAC CTACCGAGAATG
1369	F V Y S TTCGTCTACAGC AAGCAGATGTCG	AAGCTCAATGTG TTCGAGTTACAC	Q K S N CAGAAGAGCAAC GTCTTCTCGTTG	W E A G TGGGAGGCAGGA ACCCTCCGTCCT	AATACTTTCACC TTATGAAAGTGG	TGCTCTGTGTTA ACGAGACACAAT
				~~~~~~	~~~~~	
	HEGL	H N H H	TEKS	LSHS	PGIV	FLAC
1441	CATGAGGGCCTG	CACAACCACCAT	ACTGAGAAGAGC	CTCTCCCACTCT	CCTGGTATTGTG	TTCCTGGCTTGC

п	Ŀ	G	ш	п	TA	п	п	T	Ŀ	L.	5	ш	5	п	5	P	G	1	v	г	ш	А	C
CAT	GAG	GGC	CTG	CAC	AAC	CAC	CAT	ACT	GAG	AAG	AGC	CTC	TCC	CAC	тст	CCT	GGT.	ATT	GTG	TTC	CTG	GCT	TGC
GTA	CTC	CCG	GAC	GTG	TTG	GTG	GTA	TGA	CTC	TTC	TCG	GAG	AGG	GTG	AGA	GGA	CCA	TAA	CAC	AAG	GAC	CGA.	ACG
V	L	G	G	S	F	G	F	L	G	F	L	G	L	С	I	L	С	С	V	L	R	А	Κ
GTG	CTG	GGT	GGC	TCC	TTC	GGC	TTT	CTG	GGT	TTC	CTT	GGG	CTC	TGC	ATC	CTC	TGC	TGT	GTC	CTG	AGA	GCA.	AAA
CAC	GAC	CCA	CCG	AGG	AAG	CCG	AAA	GAC	CCA	AAG	GAA	CCC	GAG	ACG	TAG	GAG.	ACG.	ACA	CAG	GAC	TCT	CGT	TTT
F	S	R	S	А	Е	Т	А	А	Ν	L	Q	D	Ρ	Ν	Q	L	Y	Ν	Е	L	Ν	L	G
TTC.	AGC.	AGG	AGT	GCA	GAG	ACT	GCT	GCC	AAC	CTG	CAG	GAC	CCC	AAC	CAG	CTC	TAC.	AAT	GAG	CTC	AAT	СТА	GGG
AAG	TCG	TCC	TCA	CGT	CTC	TGA	CGA	CGG	TTG	GAC	GTC	CTG	GGG	TTG	GTC	GAG.	ATG	TTA	CTC	GAG	TTA	GAT	CCC
													В	amH	Ι								
													~	~~~	~~								
	CAT GTA V GTG CAC F TTC. AAG	CATGAG GTACTC V L GTGCTG CACGAC F S TTCAGC AAGTCG	CATGAGGGC GTACTCCCG V L G GTGCTGGGT CACGACCCA F S R TTCAGCAGG AAGTCGTCC	CATGAGGGCCTG GTACTCCCGGAC V L G G GTGCTGGGTGGC CACGACCCACCG F S R S TTCAGCAGGAGT AAGTCGTCCTCA	CATGAGGGCTG CAC GTACTCCCGGAC GTG V L G G S GTGCTGGGTGGC TCC CACGACCCACCG AGG F S R S A TTCAGCAGGAGT GCA AAGTCGTCCTCA CGT	CATGAGGGCCTG CACAAC GTACTCCCCGGAC GTGTTG V L G G S F GTGCTGGGTGGC TCCTTC CACGACCCACCG AGGAAG F S R S A E TTCAGCAGGAGT GCAGAG AAGTCGTCCTCA CGTCTC	CATGAGGGCCTG CACAACCAC GTACTCCCGGAC GTGTTGGTG V L G G S F G GTGCTGGGTGGC TCCTTCGGC CACGACCCACCG AGGAAGCCG F S R S A E T TTCAGCAGGAGT GCAGAGACT AAGTCGTCCTCA CGTCTCTGA	CATGAGGGCCTG CACAACCACCAT GTACTCCCCGGAC GTGTTGGTGGTA V L G G S F G F GTGCTGGGTGGC TCCTTCGGCTTT CACGACCCACCG AGGAAGCCGAAA F S R S A E T A TTCAGCAGGAGT GCAGAGACTGCT AAGTCGTCCTCA CGTCTCTGACGA	CATGAGGGCTG CACAACCACCAT ACT GTACTCCCGGAC GTGTTGGTGGTA TGA V L G G S F G F L GTGCTGGGTGGC TCCTTCGGCTTT CTG CACGACCCACCG AGGAAGCCGAAA GAC F S R S A E T A A TTCAGCAGGAGT GCAGAGACTGCT GCC AAGTCGTCCTCA CGTCTCTGACGA CGG	CATGAGGGCCTG CACAACCACCACCAC ACTGAC GTACTCCCCGGAC GTGTTGGTGGTGT TGACTC V L G G S F G F L G GTGCTGGGTGGC TCCTTCGGCTTT CTGGGT CACGACCCACCG AGGAAGCCGAAA GACCCA F S R S A E T A A N TTCAGCAGGAGT GCAGAGACTGCT GCCAAC AAGTCGTCCTCA CGTCTCTGACGA CGGTTG	CATGAGGGCCTG CACAACCACCAT ACTGAGAAG GTACTCCCGGAC GTGTTGGTGGTA TGACTCTTC V L G G S F G F L G F GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTC CACGACCCACCG AGGAAGCCGAAA GACCCAAAG F S R S A E T A A N L TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTG AAGTCGTCCTCA CGTCTCTGACGA CGGTTGGAC	$ \begin{array}{cccccccccccccccat & \mbox{Act} & $	CATGAGGGCCTG CACAACCACCAT ACTGAGAAGAGC CTC GTACTCCCGGAC GTGTTGGTGGTA TGACTCTTCTCG GAG V L G G S F G F L G F L G GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTCCTT GGG CACGACCCACCG AGGAAGCCGAAA GACCCAAAGGAA CCC F S R S A E T A A N L Q D TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTGCAG GAC AAGTCGTCCTCA CGTCTCTGACGA CGGTTGGACGTC CTG	CATGAGGGCCTG CACAACCACCACCACCAT ACTGAGAGAGAG CCTCTC GTACTCCCCGGAC GTGTTGGTGGTGTA TGACTCTTCTCG GAGAGG V L G G S F G F L G F L G L GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTCCTT GGGCTC CACGACCCACCG AGGAAGCCGAAA GACCCAAAGGAA CCCGAG F S R S A E T A A N L Q D P TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTGCAG GACCCC AAGTCGTCCTCA CGTCTCTGACGA CGGTTGGACGTC CTGGGG B	CATGAGGGCTG CACAACCACCAT ACTGAGAAGAGG CTCTCCCAC GTACTCCCGGAC GTGTTGGTGGTA TGACTCTTCTCG GAGAG GGTG V L G G S F G F L G F L G L C GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTCCTT GGGCTCTGC CACGACCCACCG AGGAAGCCGAAA GACCCAAAGGAA CCCGAGACG F S R S A E T A A N L Q D P N TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTGCAG GACCCCAAC AAGTCGTCCTCA CGTCTCTGACGA CGGTTGGACGTC CTGGGGTTG BamH	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CATGAGGCCTG CACAACCACCAT ACTGAGAAGAGC CTCTCCCCACTCT CCT GTACTCCCCGGAC GTGTTGGTGGTGGTA TGACTCTTCTCG GAGAGGGGTGAGA GGA V L G G S F G F L G F L G L C I L GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTCCTT GGGCTCTGCATC CTC CACGACCCACCG AGGAAGCCGAAA GACCCAAAGGAA CCCGAGACGTAG GAG F S R S A E T A A N L Q D P N Q L TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTGCAG CACCAACCAG CTC AAGTCGTCCTCA CGTCTCGACGA CGGTTGGACGTC CTGGGTGGTC GAG BamHI	CATGAGGCCTG CACAACCACCACCAC ACTGAGAGAGAC CTCTCCCCACTCT CCTGGT GTACTCCCCGGAC GTGTTGGTGGTGTA TGACTCTTCTCG GAGAGGGTGAGA GGACCA V L G G S F G F L G F L G L C I L C GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTCCTT GGGCTCTGCATC CTCTGC CACGACCCACCG AGGAAGCCGAAA GACCCAAAGGAA CCCGAGACGTAG GAGACG F S R S A E T A A N L Q D P N Q L Y TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTGCAG GACCCCACCAG CTCTAC AAGTCGTCCTCA CGTCTCTGACGA CGGTTGGACGTC CTGGGGTGGTC GAGAAG	CATGAGGGCCTG CACAACCACCAT ACTGAGAAGAGC CTCTCCCACTCT CCTGGTATT GTACTCCCGGAC GTGTTGGTGGTA TGACTCTTCTCG GAGAGGGTGAGA GGACCATAA V L G G S F G F L G F L G L C I L C C GTGCTGGGTGGC TCCTCGGCTTT CTGGGTTTCCTT GGGCTCTGCATC CTCTGCTGT CACGACCCACCG AGGAAGCCGAAA GACCCAAAGGAA CCCGAGACGTAG GAGACGACA F S R S A E T A A N L Q D P N Q L Y N TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTGCAG GACCCCAACGA CTCTACAAT AAGTCGTCCTCA CGTCTCTGACGA CGGTTGGACGTC CTGGGGTTGGAC GAGATGTTA BamHI	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CATGAGGGCTG CACAACCACCAT ACTGAGAAGAGAC CTCTCCCCACTCT CCTGGTATTGTG TTC GTACTCCCCGGAC GTGTTGGTGGTG TGACTCTTTCTCG GAGAGGGGTGAGA GGACCATAACAC AAG V L G G S F G F L G F L G L C I L C V L GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTCCTT GGGCTCTGCATC CTCTGCTGTGTC CTG CACGACCCACCG AGGAAGCCGAAA GACCCAAAGGAA CCCGAGACGTAG GAGACGACACAG GAC F S R S A E T A A N L Q D P N Q L Y N E L TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTGCAG CACCCAACCAG CTCTACAATGAG CTC AAGTCGTCCTCA CGTCTCTGACGA CGGTTGGACGTC CTGGGGTTGCTC GAGATGTTACTC GAG	CATGAGGCCTG CACAACCACCACCAT ACTGAGAGAGGC CTCTCCCACTCT CCTGGTATTGTG TTCCTGG GTACTCCCCGGAC GTGTTGGTGGTGTA TGACTCTTCTCG GAGAGGGTGAGA GGACCATAACAC AAGGAC V L G G S F G F L G F L G L C I L C C V L R GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTCCTT GGGCTCTGCATC CTCTGCTGTGTC CTGAGA CACGACCCACCG AGGAAGCCGAAA GACCCAAAGGAA CCCGAGACGTAG GAGACGACACAG GACTCT F S R S A E T A A N L Q D P N Q L Y N E L N TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTGCAG CACCAGC CTCTACAATGAG CTCAAT AAGTCGTCCTCA CGTCTCTGACGA CGGTTGGACGTC CTGGGGTGGC GAGAGTGTTACTC GAGTTA	CATGAGGGCTG CACAACCACCAT ACTGAGAAGAGC CTCTCCCACATCT CCTGGTATTGTC TTCCTGGCT GTACTCCCCGGAC GTGTTGGTGGTA TGACTCTTCTCG GAGAGGGGTGAGA GGACCATAACAC AAGGACCGA V L G G S F G F L G F L G L C I L C C V L R A GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTCCTT GGGCTCTGCATC CTCTGCTGTGTC CTGAGAGCA GACCCAAAGGAA GACCCAAAGGAA CCCGAGACGTAG GAGACGACACAG GACTCTCGT F S R S A E T A A N L Q D P N Q L Y N E L N L TTCAGCAGGAGT GCAGAGACTGCT GCCAACCTGCAG GACCCCAACGA CTCTACAATGAG CTCAATCTA AAGTCGTCCTCA CGTCTCTGACGA CGGTTGGACGTC CTGGGGTTGGCC GAGATGTTACTC GAGTTAGAT $BamHI$

R R E E Y D V L E K K R A R D P E M G G K Q Q R CGAAGAGAGAGAA TATGACGTCTTG GAGAAGAAGCGG GCTCG**GGATCC**A GAGATGGGAGGC AAACAGCAGAGG GCTTCTCTCCCTT ATACTGCAGAAC CTCTTCTCGCC CGAGC**CCTAGG**T CTCTACCCTCCG TTTGTCGTCTCC R R N P Q E G V Y N A L Q K D K M A E A Y S E I AGGAGGAACCCC CAGGAAGGCGTA TACAATGCACTG CAGAAAGACAAG ATGGCAGAAGCC TACAGTGAGATC TCCTCCTTGGGG GTCCTTCCGCAT ATGTTACGTGAC GTCTTTCTGTC TACCGTCTCGG ATGTCACTCTAG G T K G E R R R G K G H D G L Y Q G L S T A T K 1801 GGCACAAAAGGC GAGAGGCGGAGA GGCAAGGGGCAC GATGGCCTTTAC CAGGGTCTCAGC ACTGCCACCAAG CCGTGTTTTCCG CTCTCCGCCTCT CCGTTCCCCGTG CTACCGGAAATG GTCCCAGAGTCG TGACGGTGGTTC

D T Y D A L H M Q T L A P R * 1873 GACACCTATGAT GCCCTGCATATG CAGACCCTGGCC CCTCGCTAA CTGTGGATACTA CGGGACGTATAC GTCTGGGACCGG GGAGCGATT

6.3.2 # 895: pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ

XbaI ~~~~~~

	M D F Q	VQIF	SFLL	ISAS	VIMSRGVH
1	ATGGATTTTCAG TACCTAAAAGTC	GTGCAGATTTTC CACGTCTAAAAG	AGCTTCCTGCTA TCGAAGGACGAT	ATCAGTGCCTCA TAGTCACGGAGT	GTCATAATG TCT AGA GGTGTCCAC CAGTATTAC AGA TCT CCACAGGTG
73	S Q V Q TCCCAGGTCCAA	L Q E S CTGCAGGAGTCA	G P G L GGTCCAGGTCTT	V R P S GTGAGACCTAGC	Q T L S L T C T CAGACCCTGAGC CTGACCTGCACC
145	AGGGTCCAGGTT V S G F	GACGTCCTCAGT T I S S	CCAGGTCCAGAA G Y S W	CACTCTGGATCG H W V R	GTCTGGGACTCG GACTGGACGTGG Q P P G R G L E
145	CACAGACCGAAG	TGGTAGTCGTCA	CCAATATCGACC	GTGACCCACTCT	GTCGGTGGACCT GCTCCAGAACTC
217	TGGATTGGATAC ACCTAACCTATG	ATACAGTACAGT TATGTCATGTCA	GGTATCACTAAC CCATAGTGATTG	TACAACCCCTCT ATGTTGGGGGAGA	CTCAAAAGTAGA GTGACAATGCTG GAGTTTTCATCT CACTGTTACGAC
	V D T S	K N Q F	SLRL	SSVT	A A D T A V Y Y
289	GTAGACACCAGC CATCTGTGGTCG	AAGAACCAGTTC TTCTTGGTCAAG	AGCCTGAGACTC TCGGACTCTGAG	AGCAGCGTGACA TCGTCGCACTGT	GCCGCCGACACC GCGGTCTATTAT CGGCGGCTGTGG CGCCAGATAATA
261	CARE	D Y D Y	H W Y F	D V W G	Q G T T V T V S
301	ACACGTTCTCTT	CTGATACTAATG	GTGACCATGAAG	CTACAGACCCCG	GTTCCCTGGTGC CAGTGGCAGAGG
433	TCAGGAGGTGGT	GGATCGGGCGGT	GGCGGGTCGGGT	GGCGGCGGATCT	GACATCCAGCTG ACCCAGAGCCCA
	AGTCCTCCACCA	CCTAGCCCGCCA	CCGCCCAGCCCA	CCGCCGCCTAGA	CTGTAGGTCGAC TGGGTCTCGGGT XhoI
	9 9 T. 9	ASVC	ידי ע פור	ттся	~~~~~ м у р у р р Т
505	AGCAGCCTGAGC	GCCAGCGTGGGT	GACAGAGTGACC	ATCACCTGTAGT	ACCAG CTCGAG T GTAAGTTACATG
	TCGTCGGACTCG H W Y O	CGGTCGCACCCA O K P G	CTGTCTCACTGG	TAGTGGACATCA L L I Y	TGGTC GAGCTC A CATTCAATGTAC S T S N L A S G
577	CACTGGTACCAG	CAGAAGCCAGGT	AAGGCTCCAAAG	CTGCTGATCTAC	AGCACATCCAAC CTGGCTTCTGGT
	GTGACCATGGTC	GTCTTCGGTCCA	TTCCGAGGTTTC	GACGACTAGATG	TCGTGTAGGTTG GACCGAAGACCA
649	V P S R	F S G S	G S G T	D F T F	T I S S L Q P E
049	CACGGTTCGTCT	AAGTCGCCATCG	CCATCGCCATGG	CTGAAGTGGAAG	TGGTAGTCGTCG GAGGTCGGTCTC
	DIAT	ҮҮСН	QWSS	Y P T F	G Q G T K V E I
721	GACATCGCCACC CTGTAGCGGTGG	TACTACTGCCAT ATGATGACGGTA	CAGTGGAGTAGT GTCACCTCATCA	TATCCCACGTTC ATAGGGTGCAAG	GGCCAAGGGACC AAGGTGGAGATC CCGGTTCCCTGG TTCCACCTCTAG
	BamHI				
	~~~~~	ת פ ת זז	C C C K	DCTC	
793	AAAGT <b>GGATCC</b> T	GTGCCCAGGGAT	GGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA GTATCATCTGTC
	TTTCA <b>CCTAGG</b> A	CACGGGTCCCTA	CCACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT CATAGTAGACAG
0.65	F I F P	PKPK	DVLT	ITLT	PKVTCVVV
865	AAGTAGAAGGGG	GGTTTCGGGTTC	CTACACGAGTGG	TAATGAGACTGA	GGATTCCAGTGC ACACAACACCAT
0.27	D I S K	D D P E	V Q F S	W F V D	
937	CTGTAGTCGTTC	CTACTAGGGCTC	CAGGTCAAGTCG	ACCAAACATCTA	CTACACCTCCAC GTGTGTCGAGTC
1009	ACGCAACCCCGG	GAGGAGCAGTTC	AACAGCACTTTC	CGCTCAGTCAGT	GAACTTCCCATC ATGCACCAGGAC
	TGCGTTGGGGGCC	CTCCTCGTCAAG	TTGTCGTGAAAG	GCGAGTCAGTCA	CTTGAAGGGTAG TACGTGGTCCTG
1081	W L N G	K E F K	C R V N	S A A F	P A P I E K T I
TOOT	ACCGAGTTACCG	TTCCTCAAGTTT	ACGTCCCAGTTG	TCACGTCGAAAG	GGACGGGGGTAG CTCTTTTGGTAG
	ѕктк	GRPK	A P Q V	CTIP	РРКЕ ОМАК
1153	TCCAAAACCAAA AGGTTTTGGTTT	GGCAGACCGAAG CCGTCTGGCTTC	GCTCCACAGGTG CGAGGTGTCCAC	TGCACCATTCCA ACGTGGTAAGGT	CCTCCCAAGGAG CAGATGGCCAAG GGAGGGTTCCTC GTCTACCGGTTC
	D K V S	L T C M	ITDF	FPED	I T V E W Q W N
1225	GATAAAGTCAGT	CTGACCTGCATG	ATAACAGACTTC	TTCCCTGAAGAC	ATTACTGTGGAG TGGCAGTGGAAT
	CTATTTCAGTCA	GACTGGACGTAC	'TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC ACCGTCACCTTA
1297	GGGCAGCCAGCG	GAGAACTACAAG	AACACTCAGCCC	ATCATGGACACA	GATGGCTCTTAC TTCGTCTACAGC
	CCCGTCGGTCGC	CTCTTGATGTTC	TTGTGAGTCGGG	TAGTACCTGTGT	CTACCGAGAATG AAGCAGATGTCG
	K L N V	QKSN	WEAG	NTFT	C S V L H E G L
1369	AAGCTCAATGTG	CAGAAGAGCAAC GTCTTCTCGTTC	TGGGAGGCAGGA	AATACTTTCACC	TGCTCTGTGTTA CATGAGGGCCTG ACGAGACACAAT GTACTCCCCCGAC
	COLICI INCAC				

#### BstXI

	~~~~~~~																							
	Н	Ν	Н	Н	Т	Е	Κ	S	L	S	Н	S	Ρ	G	I	V	F	L	А	С	V	L	G	G
1441	CAC	AAC	CAC	CAT	ACT	GAG	AAG	AGC	CTC	TCC	CAC	TCT	CCT	GGT.	ATT	GTG	TTC	CTG	GCT	TGC	GTG	CTG	GGT	GGC
	GTG	ΓTG	GTG	GTA	TGA	CTC	TTC	TCG	GAG	AG G	GTG	AGA	GGA	CCA'	TAA	CAC	AAG	GAC	CGA.	ACG	CAC	GAC	CCA	CCG
	S	F	G	F	L	G	F	L	G	L	С	I	L	С	С	V	L	R	А	Κ	F	S	R	S
1513	TCC	TTC	GGC'	TTT	CTG	GGT'	TTC	CTT	GGG	CTC	TGC	ATC	CTC	TGC	ΓGT	GTC	CTG.	AGA	GCA.	AAA	TTC	AGC	AGG	AGT
	AGG	AAG	CCG.	AAA	GAC	CCA	AAG	GAA	CCC	GAG	ACG	TAG	GAG	ACG.	ACA	CAG	GAC	TCT	CGT	TTT	AAG	TCG	TCC	TCA
	А	Е	Т	А	А	Ν	L	Q	D	Ρ	Ν	Q	L	Y	Ν	Е	L	Ν	L	G	R	R	Е	Е
1585	GCA	GAG.	ACT	GCT	GCC	AAC	CTG	CAG	GAC	CCC	AAC	CAG	CTC	TAC.	AAT	GAG	CTC.	AAT	CTA	GGG	CGA	AGA	GAG	GAA
	CGT	CTC	TGA	CGA	CGG	TTG	GAC	GTC	CTG	GGG	TTG	GTC	GAG	ATG	ГТА	CTC	GAG	TTA	GAT	CCC	GCT	TCT	CTC	CTT
										В	amH	Ι												
										~	~~~	~~												
	Y	D	V	L	Е	Κ	Κ	R	А	R	D	Ρ	Е	М	G	G	K	Q	Q	R	R	R	Ν	Ρ
1657	TAT	GAC	GTC	TTG	GAG	AAG.	AAG	CGG	GCT	CGG	GAT	CCA	GAG	ATG	GGA	GGC	AAA	CAG	CAG.	AGG	AGG	AGG	AAC	CCC
	ATA	CTG	CAG.	AAC	CTC	TTC	TTC	GCC	CGA	GC C	CTA	GGΤ	CTC	TAC	ССТ	CCG	TTT	GTC	GTC	TCC	TCC	TCC	TTG	GGG
	Q	Е	G	V	Y	Ν	А	L	Q	Κ	D	K	М	А	Е	А	Y	S	Е	I	G	Т	Κ	G
1729	CAG	GAA	GGC	GTA	TAC	AAT	GCA	CTG	CAG	AAA	GAC	AAG	ATG	GCA	GAA	GCC	TAC.	AGT	GAG.	ATC	GGC	ACA	AAA	GGC
	GTC	CTT	CCG	CAT	ATG	TTA	CGT	GAC	GTC	TTT	CTG	TTC	TAC	CGT	CTT	CGG	ATG	TCA	CTC	TAG	CCG	TGT	TTT	CCG
	Е	R	R	R	G	Κ	G	Η	D	G	L	Y	Q	G	L	S	Т	А	Т	Κ	D	Т	Y	D
1801	GAG	AGG	CGG.	AGA	GGC	AAG	GGG	CAC	GAT	GGC	CTT	TAC	CAG	GGT	CTC.	AGC	ACT	GCC	ACC.	AAG	GAC	ACC	TAT	GAT
	CTC	TCC	GCC'	ТСТ	CCG	TTC	CCC	GTG	CTA	CCG	GAA	ATG	GTC	CCA	GAG	TCG	TGA	CGG	TGG	TTC	CTG	TGG	ATA	CTA
	А	L	Η	М	Q	Т	L	А	Ρ	R	*													
1873	GCC	CTG	CAT	ATG	CAG	ACC	CTG	GCC	CCT	CGC	TAA													
	CGG	GAC	GTA'	TAC	GTC	TGG	GAC	CGG	GGA	.GCG	ATT													

6.3.3 # 897: pBullet-HRS3scFv-mIgG-mCD4-mCD3ζ-mOX40

XbaI

															~	~~~	,~~~		
	M D F	Q	V	Q I	F	S	F	L L	I	S	А	S	V	I	М	S	R	V A	A Q
1	ATGGATTT	TCAG	GTGC	AGAT	TTTC	AGC	TTC	CTGCT	A ATO	CAGT	GCC	TCA	GTC.	ATAA	ATG T	ЧT	AGA	GTGG	CCCAG
	TACCTAAA	AGTC	CACG	TCTA	AAAG	TCG.	AAG	GACGA	Γ ΤΑ	GTCA	CGG	AGT	CAG	TATT	rac a	GA	TCT	CACCO	GGGTC
	V Q L	Q	Q	S G	A	Е	L	A R	Ρ	G	А	S	V	Κ	М	S	С	K A	A S
73	GTGCAACT	GCAG	CAGT	CAGG	GGCT	GAG	CTG	GCTAG	A CC	rggg	GCT	TCA	GTG.	AAGA	ATGT	CC	TGC	AAGG	CTTCT
	CACGTTGA	CGTC	GTCA	GTCC	CCGA	CTC	GAC	CGATC	r GG2	ACCC	CGA	AGT	CAC	ГТСТ	FACA	GG	ACG	FTCCC	GAAGA
	G Y T	F	Т	т ү	Т	I	Η	W V	R	Q	R	Ρ	G	Н	D	L	Е	W	ΙG
145	GGCTACAC	CTTT	ACTA	CCTA	CACA	ATA	CAC	FGGGT	A AG	ACAG	AGG	CCT	GGA	CACO	GATC	TG	GAA	rgga:	TTGGA
	CCGATGTG	GAAA	TGAT	GGAT	GTGT	TAT	GTGI	ACCCA	r TC	FGTC	TCC	GGA	CCT	GTGC	CTAG	AC	CTT	ACCTA	AACCT
	Y I N	Ρ	S	S G	Y	S	D	Y N	Q	Ν	F	Κ	G	Κ	Т	Т	L	ΤA	A D
217	TACATTAA	TCCT	AGCA	GTGG	ATAT	TCT	GACT	ГАСАА	r cai	AAAC	TTC	AAG	GGC.	AAGA	ACCA	CA	TTG	ACTG	CAGAC
	ATGTAATT	AGGA	TCGI	CACC	TATA	AGA	CTGI	ATGTT	A GT	ΓTTG	AAG	TTC	CCG	ГТСТ	rggt	GΤ	AAC	rgaco	GTCTG
	K S S	Ν	т	A Y	М	Q	L	N S	L	Т	S	Е	D	S	А	V	Y	Y (C A
289	AAGTCCTC	CAAC	ACAG	CCTA	CATG	CAA	CTGI	AACAG	C CT	GACA	TCT	GAG	GAC	TCTO	GCGG	TC	TAT	FACT	GTGCA
	TTCAGGAG	GTTG	TGTC	GGAT	GTAC	GTT	GACT	FTGTC	G GA	CTGT	AGA	CTC	CTG.	AGAC	CGCC	AG	ATA	ATGA	CACGT
	RRA	D	Y	G N	Υ	Е	Y	т W	F	А	Y	W	G	Q	G	Т	Т	V	гν
361	AGAAGAGC	GGAC	TATG	GTAA	CTAC	GAA'	TAT	ACCTG	G TT	ГGCT	TAC	TGG	GGC	CAAG	GGGA	CC	ACG	GTCA	CCGTC
	TCTTCTCG	CCTG	ATAC	CATT	GATG	CTT	ATA	rggac	C AA	ACGA	ATG	ACC	CCG	GTTC	CCCT	'GG	TGC	CAGTO	GGCAG
	S S G	G	G	G S	G	G	G	G S	G	G	G	G	S	D	I	Е	L	T (2 S
433	TCCTCAGG	TGGA	GGCG	GTTC	AGGC	GGA	GGT	GGCTC	r gg(CGGT	GGC	GGA	TCG	GACA	ATCG	AG	CTC	ACTC	AGTCT
	AGGAGTCC	ACCT	CCGC	CAAG	TCCG	CCT	CCAC	CCGAG	A CCO	GCCA	.CCG	CCT	AGC	CTGI	FAGC	TC	GAG	rgag:	rcaga
	PKF	М	S	T S	V	G	D	r v	Ν	V	Т	Y	K	А	S	Q	Ν	V (ЗT
505	CCAAAATT	CATG	TCCA	CATC	AGTA	GGA	GAC	AGGGT	C AA	CGTC	ACC	TAC	AAG	GCCA	AGTC	AG	AAT	GTGG	GTACT
	GGTTTTAA	GTAC	AGGT	GTAG	TCAT	CCT	CTG	FCCCA	G TT(GCAG	TGG	ATG	TTC	CGGI	rcag	TC	TTA	CACCO	CATGA
	N V A	W	F	QQ	K	Ρ	G	Q S	P	K	V	L	I	Y	S	A	S	ΥF	RY
577	AATGTAGC	CTGG	TTTC	AACA	AAAA	CCA	GGG	CAATC	r cc	FAAA	GTT	CTG	ATT'	ГАСТ	rcgg	CA	TCT	FACCO	GATAC
	TTACATCG	GACC	AAAG	TTGT	TTTT	GGT	CCCC	GTTAG	A GG2	ATTT	CAA	GAC	TAA	ATGA	AGCC	GT	AGA	ATGG	CTATG
~ • • •	SGV	P	D	R F	T	G	S	G S	G	Т	D	- F'	Т	L	Т	I	S	N V	V Q
649	AGTGGAGT	CCC.I.	GATC	GC11	CACA	GGC.	AGTO	GATC	I' GGA	ACA	GA'I'	TTC	ACTO	CTCF	ACCA	CTC	AGC	AA'I'G'	IGCAG
	TCACCTCA	GGGA	CTAG	CGAA	GTGT	CCG	TCAC	CTAG	A CC	I'TGT	CTA	AAG	TGA	GAGI	rGGT	'AG	TCG.	I'TACA	ACGTC
801	S E D	L	A	E Y	F.	C	Q	Q Y	H	.T.	Y T T	P	L	.T.	F.	G	G	G	I' K
/21	TCTGAAGA	CITG	GCAG	JAGTA	J. T. T. T. C.	TGT	CAG				TAT	CCT	CTC	ACGI	LICG	GA	GGGG	JGCA	
	AGACIICI	GAAC	CGIC	Dom:	AAAG	ACA	GICC	JIAI	A GIO	3166	AIA	GGA	GAG	IGCF	AAGC	CI	CCCC	CGIC	JGIIC
				вап	нт														
		77	Б	~~~ 7	~~~	T 7	Ð		a	a	a	77	P	a	-	a	-	77 1	
702		N CAAA	R	A L		V CTTC	P	K D	r mor	G	С тот	N NAC	P	U TCC7	 \	C CTT		1 V Amaaa	77.077
195	CIGGAAAI		CGGGG			GIG		AGGGA POOOT			TGT.		CCI		41A1	GI	TOT	JUCC	
	GACCIIIA	GIII	GCCC			CAC	. DDD				ACA T	TIC	GGA.	HCG1		T A J	TGT		
065		v mama	r mmaa		Pagaa	P	N N C		ע יגרט ר	v nama	ц Сто	7 d d	<u>۲</u>		ц котг	1 Cm	P COTT		
805	GIAICAIC	TGIC	11CA	1011 77077	adad	CCA						TCC	MI 17				CCII	TTAGG	
	C W W	ACAG	AAGI		טטטטט	- GGT GGT	TICC	ייי ם דרטיטיב		ACAC	GAG	TGG	TAA	I GAG	JAC I	GA D	GGA.	11008	E W
027		V CCTTN	CV CV	т В ТСЛС		U C A TH	് പ്രസംഗ	r E	ע ידיי ב	y Nan	г ԴԴԴԴ	700 2	W TCC	ւր հահա√	ע ⊂רעדיב	ע יייגי	U C A TH	i v roomr	
וככ	TGIGIIGI	CONT	CTCT			CTA	OT NO	ZCCGA	3 GIU 7 CN	2CAG		TCC	TGG	7 7 7 C	סאדנ חדעי	1771 ΓΓΓΓ	CTA	3100r	
		CCAI 0	T		GIIC P	UIA F	CIA(2010	ллс T	F.	P	DAAC Q	V	C S	CIA(T. I	D T
				., P		C .			1.1				- 7						

1009 CACACAGCTCAG ACGCAACCCCGG GAGGAGCAGTTC AACAGCACTTTC CGCTCAGTCAGT GAACTTCCCATC GTGTGTCGAGTC TGCGTTGGGGCC CTCCTCGTCAAG TTGTCGTGAAAG GCGAGTCAGTCA CTTGAAGGGTAG

	мндр	WLNG	KEFK	CRVN	SAAF	PAPI
1081	ATGCACCAGGAC	TGGCTCAATGGC	AAGGAGTTCAAA	TGCAGGGTCAAC	AGTGCAGCTTTC	CCTGCCCCATC
	TACGTGGTCCTG	ACCGAGTTACCG	TTCCTCAAGTTT	ACGTCCCAGTTG	TCACGTCGAAAG	GGACGGGGGTAG
	ЕКТІ	SKTK	GRPK	A P Q V	Y T I P	РРКЕ
1153	GAGAAAACCATC	TCCAAAACCAAA	GGCAGACCGAAG	GCTCCACAGGTG	TACACCATTCCA	CCTCCCAAGGAG
	CTCTTTTGGTAG	AGGTTTTGGTTT	CCGTCTGGCTTC	CGAGGTGTCCAC	ATGTGGTAAGGT	GGAGGGTTCCTC
	Q M A K	D K V S	L T C M	ITDF	FPED	ΙΤΥΕ
1225	CAGATGGCCAAG	GATAAAGTCAGT	CTGACCTGCATG	ATAACAGACTTC	TTCCCTGAAGAC	ATTACTGTGGAG
	GTCTACCGGTTC	CTATTTCAGTCA	GACTGGACGTAC	TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC
	WQWN	GQPA	E N Y K	ΝΤQΡ	IMDT	DGSY
1297	TGGCAGTGGAAT	GGGCAGCCAGCG	GAGAACTACAAG	AACACTCAGCCC	ATCATGGACACA	GATGGCTCTTAC
	ACCGTCACCTTA	CCCGTCGGTCGC	CTCTTGATGTTC	TTGTGAGTCGGG	TAGTACCTGTGT	CTACCGAGAATG
	FVYS	K L N V	QKSN	WEAG	NTFT	CSVL
1369	TTCGTCTACAGC	AAGCTCAATGTG	CAGAAGAGCAAC	TGGGAGGCAGGA	AATACTTTCACC	TGCTCTGTGTTA
	AAGCAGATGTCG	TTCGAGTTACAC	GTCTTCTCGTTG	ACCCTCCGTCCT	TTATGAAAGTGG	ACGAGACACAAT
				BstX1		
					~~~~	
1 4 4 1	H E G L	H N H H	T E K S		P G I V	F L A C
1441	CATGAGGGCCTG	CACAACCACCAT	ACTGAGAAGAGC	CTCTCCCACTCT	CCTGGTATIGIG	TICCIGGCTIGC
	GIACICCCGGAC	GIGIIGGIGGIA	IGACICITCICG	GAGAGGGTGAGA	GGACCATAACAC	AAGGACCGAACG
1 5 1 2						
1212	GIGCIGGGIGGC	ACCINCGGCIII		GGGCICIGCAIC	CICIGCIGIGIC	
	E C D C		ACCCAAAGGAA		I V N F	J N J C
1505						
1000	AAGTCGTCCTCA	CCTCTCTCACCA	CCCTTCCACCTC	CTCCCCTTCCTC	CICIACAAIGAG	CICANICIAGGG
	ANDICOLCCICA	COTCICICACOA	COOTIOGACOIC	BamHT	ONONIOTIACIC	GAGIIAGAICCC
				~~~~~		
	RREE	YDVL	EKKR	ARDP	EMGG	KOOR
1657	CGAAGAGAGGAA	TATGACGTCTTG	GAGAAGAAGCGG	GCTCG GGATCC A	GAGATGGGAGGC	AAACAGCAGAGG
	GCTTCTCTCCTT	ATACTGCAGAAC	CTCTTCTTCGCC	CGAGC CCTAGG T	CTCTACCCTCCG	TTTGTCGTCTCC
	RRNP	QEGV	Y N A L	Q К D К	MAEA	YSEI
1729	AGGAGGAACCCC	CAGGAAGGCGTA	TACAATGCACTG	CAGAAAGACAAG	ATGGCAGAAGCC	TACAGTGAGATC
	TCCTCCTTGGGG	GTCCTTCCGCAT	ATGTTACGTGAC	GTCTTTCTGTTC	TACCGTCTTCGG	ATGTCACTCTAG
	G T K G	ERRR	G K G H	DGLY	QGLS	ТАТК
1801	GGCACAAAAGGC	GAGAGGCGGAGA	GGCAAGGGGCAC	GATGGCCTTTAC	CAGGGTCTCAGC	ACTGCCACCAAG
	CCGTGTTTTCCG	CTCTCCGCCTCT	CCGTTCCCCGTG	CTACCGGAAATG	GTCCCAGAGTCG	TGACGGTGGTTC
	D T Y D	A L H M	QTLA	PRRK	AWRL	P N T P
1873	GACACCTATGAT	GCCCTGCATATG	CAGACCCTGGCC	CCTCGCCGGAAG	GCTTGGAGATTG	CCTAACACTCCC
	CTGTGGATACTA	CGGGACGTATAC	GTCTGGGACCGG	GGAGCGGCCTTC	CGAACCTCTAAC	GGATTGTGAGGG
	K P C W	G N S F	RTPI	QEEH	TDAH	FTLA
1945	AAACCTTGTTGG	GGAAACAGCTTC	AGGACCCCGATC	CAGGAGGAACAC	ACAGACGCACAC	TTTACTCTGGCC
	TTTGGAACAACC	CCTTTGTCGAAG	TCCTGGGGCTAG	GTCCTCCTTGTG	TGTCTGCGTGTG	AAATGAGACCGG
	BglII					
	~~~~~					

K I * 2017 A**AGATCT**GA T**TCTAGA**CT

#### # 898: pBullet-BW431/26scFv-mIgG-mCD4-mCD3ζ-mOX40 6.3.4

#### XbaI

																				~~~	~~~~			
	М	D	F	Q	V	Q	I	F	S	F	L	L	I	S	А	S	V	I	М	S	R	G	V	Н
1	ATG	GAT	TTT	CAG	GTG	CAG	ATT	TTC	AGC	TTC	CTG	CTA	ATC	AGT	GCC	TCA	GTC	ATA	ATG	TCT	AGA	.GGT	GTC	CAC
	TAC	CTA	AAA	GTC	CAC	GTC	TAA	AAG	TCG	AAG	GAC	'GAT	TAG	TCA	CGG	AGT	CAG	TAT	TAC	AGA	TCT	CCA	CAG	GTG
	S	Q	V	Q	L	Q	Е	S	G	Ρ	G	L	V	R	Ρ	S	Q	Т	L	S	L	Т	С	Т
73	TCC	CAG	GTC	CAA	CTG	CAG	GAG	TCA	GGT	CCA	GGT	CTT	GTG	AGA	CCT	AGC	CAG	ACC	CTG	AGC	CTG	ACC	TGC.	ACC
	AGG	GTC	CAG	GTT	GAC	GTC	CTC	AGT	CCA	GGT	CCA	GAA	CAC	TCT	'GGA	TCG	GTC	TGG	GAC	TCG	GAC	TGG	ACG	TGG
	V	S	G	F	Т	I	S	S	G	Y	S	W	Η	W	V	R	Q	Ρ	Ρ	G	R	G	L	Е
145	GTG	TCT	GGC	TTC	ACC	ATC	AGC	AGT	GGT	TAT	AGC	TGG	CAC	TGG	GTG	AGA	CAG	CCA	CCT	'GGA	CGA	.GGT	CTT	GAG
	CAC	AGA	CCG	AAG	TGG	TAG	TCG	TCA	CCA	ATA	TCG	ACC	GTG	ACC	CAC	тст	GTC	GGT	'GGA	CCT	GCT	CCA	GAA	CTC
	W	I	G	Y	I	Q	Y	S	G	I	Т	Ν	Y	Ν	Ρ	S	L	Κ	S	R	V	Т	М	L
217	TGG	ATT	GGA	TAC	ATA	CAG	TAC	AGT	GGT	ATC	ACT	AAC	TAC	AAC	CCC	тст	CTC	AAA	AGT	'AGA	GTG	ACA	ATG	CTG
	ACC	TAA	CCT	ATG	TAT	GTC	ATG	TCA	CCA	TAG	TGA	TTG	ATG	TTG	GGG	AGA	GAG	TTT	TCA	TCT	CAC	TGT	TAC	GAC
	V	D	Т	S	Κ	Ν	Q	F	S	L	R	L	S	S	V	Т	А	А	D	Т	А	V	Y	Y
289	GTA	GAC	ACC	AGC	AAG	AAC	CAG	TTC	AGC	CTG	AGA	CTC	AGC	AGC	GTG	ACA	GCC	GCC	GAC	ACC	GCG	GTC	TAT	TAT
	CAT	CTG	TGG	TCG	TTC	TTG	GTC	AAG	TCG	GAC	TCT	GAG	TCG	TCG	CAC	TGT	CGG	CGG	CTG	TGG	CGC	CAG	ATA	ATA
	С	А	R	Е	D	Y	D	Y	Η	W	Y	F	D	V	W	G	Q	G	Т	Т	V	Т	V	S
361	TGT	GCA	AGA	GAA	GAC	TAT	GAT	TAC	CAC	TGG	TAC	TTC	GAT	GTC	TGG	GGC	CAA	GGG	ACC	ACG	GTC	ACC	GTC	TCC
	ACA	CGT	TCT	CTT	CTG	ATA	CTA	ATG	GTG	ACC	ATG	BAAG	CTA	CAG	ACC	CCG	GTT	CCC	TGG	TGC	CAG	TGG	CAG	AGG
	S	G	G	G	G	S	G	G	G	G	S	G	G	G	G	S	D	I	Q	L	Т	Q	S	Ρ
433	TCA	GGA	GGT	GGT	GGA	TCG	GGC	GGT	GGC	GGG	TCG	GGT	GGC	GGC	GGA	ТСТ	GAC	ATC	CAG	CTG	ACC	CAG	AGC	CCA
	AGT	CCT	CCA	CCA	CCT	AGC	CCG	CCA	CCG	CCC	AGC	CCA	CCG	CCG	CCT	AGA	CTG	TAG	GTC	GAC	TGG	GTC	TCG	GGT

					XhoI	
	SSLS	ASVG	DRVT	ттся	 т s s s	VSYM
505	AGCAGCCTGAGC	GCCAGCGTGGGT	GACAGAGTGACC	ATCACCTGTAGT	ACCAGCTCGAGT	GTAAGTTACATG
	ICGICGGACICG	CGGICGCACCCA	CIGICICACIGG	TAGIGGACAICA	IGGICGAGCICA	CATICAAIGIAC
577	CACTGGTACCAG	CAGAAGCCAGGT	AAGGCTCCAAAG	CTGCTGATCTAC	AGCACATCCAAC	CTGGCTTCTGGT
	U D C P	F C C C	C C C T	GACGACIAGAIG		GACCGAAGACCA
649	GTGCCAAGCAGA	TTCAGCGGTAGC	GGTAGCGGTACC	GACTTCACCTTC	ACCATCAGCAGC	CTCCAGCCAGAG
	D I A T	Y Y C H	O W S S	Y P T F	G O G T	K V E I
721	GACATCGCCACC	TACTACTGCCAT	CAGTGGAGTAGT	TATCCCACGTTC	GGCCÄAGGGACC	AAGGTGGAGATC
	CTGTAGCGGTGG	ATGATGACGGTA	GTCACCTCATCA	ATAGGGTGCAAG	CCGGTTCCCTGG	TTCCACCTCTAG
	ватні ~~~~~					
	курр	VPRD	GGCK	PCIC	ТУРЕ	vssv
793	AAAGT GGATCC T	GTGCCCAGGGAT	GGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA	GTATCATCTGTC
	TTTCA CCTAGG A	CACGGGTCCCTA	CCACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT	CATAGTAGACAG
0.65	FIFP	PKPK	DVLT	ITLT	PKVT	CVVV
865	TTCATCTTCCCC	CCAAAGCCCAAG	GATGTGCTCACC	ATTACTCTGACT	CCTAAGGTCACG	TGTGTTGTGGTA
	D I S K	D D P F	V O F S	W F V D	D V E V	H T A O
937	GACATCAGCAAG	GATGATCCCGAG	GTCCAGTTCAGC	TGGTTTGTAGAT	GATGTGGAGGTG	CACACAGCTCAG
	CTGTAGTCGTTC	CTACTAGGGCTC	CAGGTCAAGTCG	ACCAAACATCTA	CTACACCTCCAC	GTGTGTCGAGTC
	TQPR	EEQF	NSTF	RSVS	ELPI	МНQD
1009	ACGCAACCCCGG TGCGTTGGGGGCC	GAGGAGCAGTTC CTCCTCGTCAAG	AACAGCACTTTC TTGTCGTGAAAG	CGCTCAGTCAGT GCGAGTCAGTCA	GAACTTCCCATC CTTGAAGGGTAG	ATGCACCAGGAC TACGTGGTCCTG
	WLNG	KEFK	CRVN	SAAF	PAPI	EKTI
1081	TGGCTCAATGGC ACCGAGTTACCG	AAGGAGTTCAAA TTCCTCAAGTTT	TGCAGGGTCAAC ACGTCCCAGTTG	AGTGCAGCTTTC TCACGTCGAAAG	CCTGCCCCCATC GGACGGGGGGTAG	GAGAAAACCATC CTCTTTTGGTAG
	SKTK	GRPK	A P Q V	CTIP	PPKE	Q M A K
1153	TCCAAAACCAAA AGGTTTTGGTTT	GGCAGACCGAAG CCGTCTGGCTTC	GCTCCACAGGTG CGAGGTGTCCAC	TGCACCATTCCA ACGTGGTAAGGT	CCTCCCAAGGAG GGAGGGTTCCTC	CAGATGGCCAAG GTCTACCGGTTC
1005	D K V S	L T C M	I T D F	F P E D	I T V E	W Q W N
1225	CTATTTCAGTCA	GACTGGACGTAC	TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC	ACCGTCACCTTA
1007	G Q P A	E N Y K	N T Q P	I M D T	D G S Y	F V Y S
1297	CCCGTCGGTCGC	GAGAACTACAAG CTCTTGATGTTC	TTGTGAGTCGGG	TAGTACCTGTGT	CTACCGAGAATG	AAGCAGATGTCG
1260	K L N V	QKSN	W E A G	N T F T	C S V L	H E G L
1309	TTCGAGTTACAC	GTCTTCTCGTTG	ACCCTCCGTCCT	TTATGAAAGTGG	ACGAGACACAAT	GTACTCCCCGAC
			BstXI			
			~~~~~~~	~~~~		
	HNHH	TEKS	LSHS	PGIV	FLAC	VLGG
1441	CACAACCACCAT	ACTGAGAAGAGC	CTCTCCCACTCT	CCTGGTATTGTG	TTCCTGGCTTGC	GTGCTGGGTGGC
	S F G F	IGACICITCICG	G I. C I	GGACCATAACAC	I. R A K	F S R S
1513	TCCTTCGGCTTT	CTGGGTTTCCTT	GGGCTCTGCATC	CTCTGCTGTGTC	CTGAGAGCAAAA	TTCAGCAGGAGT
	AGGAAGCCGAAA	GACCCAAAGGAA	CCCGAGACGTAG	GAGACGACACAG	GACTCTCGTTTT	AAGTCGTCCTCA
1	A E T A	A N L Q	D P N Q	L Y N E	L N L G	
1585	CGTCTCTGACGA	CCCTTCCACCTCCAC	GACCCCCAACCAG	CICIACAAIGAG	CICAAICIAGGG	CGAAGAGAGGAA
	corcretoncon	0001100/100/100/10	BamHI	011011101111010		0011010100011
			~~~~~			
	Y D V L	E K K R	A R D P	E M G G	K Q Q R	R R N P
1657	TATGACGTCTTG	GAGAAGAAGCGG	GCTCGGGATCCA	GAGATGGGAGGC	AAACAGCAGAGG	AGGAGGAACCCC
	ATACTGCAGAAC	V N A L	CGAGCCCTAGGT	M A F A	V C F T	C T K C
1729	CAGGAAGGCGTA	TACAATGCACTG	CAGAAAGACAAG	ATGGCAGAAGCC	TACAGTGAGATC	GGCACAAAAGGC
	GTCCTTCCGCAT	ATGTTACGTGAC	GTCTTTCTGTTC	TACCGTCTTCGG	ATGTCACTCTAG	CCGTGTTTTCCG
	ERRR	G K G H	D G L Y	Q G L S	ТАТК	D T Y D
1801	GAGAGGCGGAGA	GGCAAGGGGCAC	GATGGCCTTTAC	CAGGGTCTCAGC	ACTGCCACCAAG	GACACCTATGAT
	A I. H M	O T T. A	P R R K	A W R T	IGACGGTGGTTC	K D C M
1873	GCCCTGCATATG	CAGACCCTGGCC	CCTCGCCGGAAG	GCTTGGAGATTG	CCTAACACTCCC	AAACCTTGTTGG
	CGGGACGTATAC	GTCTGGGACCGG	GGAGCGGCCTTC	CGAACCTCTAAC	GGATTGTGAGGG	TTTGGAACAACC
						BglII ~~~~~
	GNSF	RTPI	ОЕЕН	ТДАН	FTLA	K I *
1945	GGAAACAGCTTC	AGGACCCCGATC	CAGGAGGAACAC	ACAGACGCACAC	TTTACTCTGGCC	A AGATCT GA
	CCTTTGTCGAAG	TCCTGGGGCTAG	GTCCTCCTTGTG	TGTCTGCGTGTG	AAATGAGACCGG	T TCTAGA CT

6.3.5 # 901: pBullet-HRS3scFv-mIgG-mCD4-mCD28-mCD3ζ

XbaI ~~~~~~

1	M D F Q	V Q I F	S F L L	I S A S	V I M S	R V A Q
	ATGGATTTTCAG	GTGCAGATTTTC	AGCTTCCTGCTA	ATCAGTGCCTCA	GTCATAATG TCT	AGAGTGGCCCAG
	TACCTAAAAGTC	CACGTCTAAAAG	TCGAAGGACGAT	TAGTCACGGAGT	CAGTATTAC AGA	TCTCACCGGGTC
73	V Q L Q	Q S G A	E L A R	P G A S	V K M S	C K A S
	GTGCAACTGCAG	CAGTCAGGGGCT	GAGCTGGCTAGA	CCTGGGGGCTTCA	GTGAAGATGTCC	TGCAAGGCTTCT
	CACGTTGACGTC	GTCAGTCCCCGA	CTCGACCGATCT	GGACCCCGAAGT	CACTTCTACAGG	ACGTTCCGAAGA
	G V T F	T T Y T	T H W V	R O R P	G H D L	E W I G
145	GGCTACACCTTT	ACTACCTACACA	ATACACTGGGTA	AGACAGAGGCCT	GGACACGATCTG	GAATGGATTGGA
	CCGATGTGGAAA	TGATGGATGTGT	TATGTGACCCAT	TCTGTCTCCGGA	CCTGTGCTAGAC	CTTACCTAACCT
217	TACATTAATCCT	AGCAGTGGATAT	TCTGACTACAAT	CAAAACTTCAAG	GGCAAGACCACA	TTGACTGCAGAC
	ATGTAATTAGGA	TCGTCACCTATA	AGACTGATGTTA	GTTTTGAAGTTC	CCGTTCTGGTGT	AACTGACGTCTG
289	AAGTCCTCCAAC TTCAGGAGGTTG	ACAGCCTACATG TGTCGGATGTAC Y G N Y	CAACTGAACAGC GTTGACTTGTCG E Y T W	CTGACATCTGAG GACTGTAGACTC F A Y W	GACTCTGCGGTC CTGAGACGCCAG G O G T	TATTACTGTGCA ATAATGACACGT
361	AGAAGAGCGGAC TCTTCTCGCCTG S S G G	TATGGTAACTAC ATACCATTGATG G G S G	GAATATACCTGG CTTATATGGACC G G G S	TTTGCTTACTGG AAACGAATGACC G G G G	GGCCAAGGGACC CCGGTTCCCTGG S D I E	ACGGTCACCGTC TGCCAGTGGCAG
433	TCCTCAGGTGGA	GGCGGTTCAGGC	GGAGGTGGCTCT	GGCGGTGGCGGA	TCGGACATCGAG	CTCACTCAGTCT
	AGGAGTCCACCT	CCGCCAAGTCCG	CCTCCACCGAGA	CCGCCACCGCCT	AGCCTGTAGCTC	GAGTGAGTCAGA
	PKFM	S T S V	G D R V	N V T Y	K A S O	N V G T
505	CCAAAATTCATG	TCCACATCAGTA	GGAGACAGGGTC	AACGTCACCTAC	AAGGCCAGTCAG	AATGTGGGTACT
	GGTTTTAAGTAC	AGGTGTAGTCAT	CCTCTGTCCCAG	TTGCAGTGGATG	TTCCGGTCAGTC	TTACACCCATGA
	N V A W	F O O K	P G O S	P K V L	I Y S A	S Y R Y
577	AATGTAGCCTGG	TTTCAACAAAAA	CCAGGGCAATCT	CCTAAAGTTCTG	ATTTACTCGGCA	TCTTACCGATAC
	TTACATCGGACC	AAAGTTGTTTTT	GGTCCCGTTAGA	GGATTTCAAGAC	TAAATGAGCCGT	AGAATGGCTATG
	S G V P	D R F T	G S G S	G T D F	T L T I	S N V O
649	AGTGGAGTCCCT	GATCGCTTCACA	GGCAGTGGATCT	GGAACAGATTTC	ACTCTCACCATC	AGCAATGTGCAG
	TCACCTCAGGGA	CTAGCGAAGTGT	CCGTCACCTAGA	CCTTGTCTAAAG	TGAGAGTGGTAG	TCGTTACACGTC
	S E D L	A E Y F	C O O Y	H T Y P	L T F G	G G T K
721	TCTGAAGACTTG AGACTTCTGAAC	GCAGAGTATTTC CGTCTCATAAAG BamHI	TGTCAGCAATAT ACAGTCGTTATA	CACACCTATCCT GTGTGGATAGGA	CTCACGTTCGGA GAGTGCAAGCCT	GGGGGGCACCAAG CCCCCGTGGTTC
		~~~~~				
793	L E I K	R A D P	V P R D	C G C K	P C I C	T V P E
	CTGGAAATCAAA	CGGGC <b>GGATCC</b> T	GTGCCCAGGGAT	TGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA
	GACCTTTAGTTT	GCCCG <b>CCTAGG</b> A	CACGGGTCCCTA	ACACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT
865	V S S V	F I F P	P K P K	D V L T	I T L T	P K V T
	GTATCATCTGTC	TTCATCTTCCCC	CCAAAGCCCAAG	GATGTGCTCACC	ATTACTCTGACT	CCTAAGGTCACG
	CATAGTAGACAG	AAGTAGAAGGGG	GGTTTCGGGTTC	CTACACGAGTGG	TAATGAGACTGA	GGATTCCAGTGC
	C V V V	D I S K	D D P E	V O F S	W F V D	D V E V
937	TGTGTTGTGGTA	GACATCAGCAAG	GATGATCCCGAG	GTCCAGTTCAGC	TGGTTTGTAGAT	GATGTGGAGGTG
	ACACAACACCAT	CTGTAGTCGTTC	CTACTAGGGCTC	CAGGTCAAGTCG	ACCAAACATCTA	CTACACCTCCAC
1009	H I A Q CACACAGCTCAG GTGTGTCGAGTC	ACGCAACCCCGG TGCGTTGGGGCC	E E Q F GAGGAGCAGTTC CTCCTCGTCAAG	N S I F AACAGCACTTTC TTGTCGTGAAAG	R S V S CGCTCAGTCAGT GCGAGTCAGTCA	E L P I GAACTTCCCATC CTTGAAGGGTAG
1081	M H Q D	W L N G	K E F K	C R V N	S A A F	P A P I
	ATGCACCAGGAC	TGGCTCAATGGC	AAGGAGTTCAAA	TGCAGGGTCAAC	AGTGCAGCTTTC	CCTGCCCCATC
	TACGTGGTCCTG	ACCGAGTTACCG	TTCCTCAAGTTT	ACGTCCCAGTTG	TCACGTCGAAAG	GGACGGGGGTAG
1153	E K T I	S K T K	G R P K	A P Q V	Y T I P	P P K E
	GAGAAAACCATC	TCCAAAACCAAA	GGCAGACCGAAG	GCTCCACAGGTG	TACACCATTCCA	CCTCCCAAGGAG
	CTCTTTTGGTAG	AGGTTTTGGTTT	CCGTCTGGCTTC	CGAGGTGTCCAC	ATGTGGTAAGGT	GGAGGGTTCCTC
1225	Q M A K	D K V S	L T C M	I T D F	F P E D	I T V E
	CAGATGGCCAAG	GATAAAGTCAGT	CTGACCTGCATG	ATAACAGACTTC	TTCCCTGAAGAC	ATTACTGTGGAG
	GTCTACCGGTTC	CTATTTCAGTCA	GACTGGACGTAC	TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC
1297	W Q W N	G Q P A	E N Y K	N T Q P	I M D T	D G S Y
	TGGCAGTGGAAT	GGGCAGCCAGCG	GAGAACTACAAG	AACACTCAGCCC	ATCATGGACACA	GATGGCTCTTAC
	ACCGTCACCTTA	CCCGTCGGTCGC	CTCTTGATGTTC	TTGTGAGTCGGG	TAGTACCTGTGT	CTACCGAGAATG
1369	F V Y S TTCGTCTACAGC AAGCAGATGTCG	AAGCTCAATGTG TTCGAGTTACAC	Q A S N CAGAAGAGCAAC GTCTTCTCGTTG	W L A G TGGGAGGCAGGA ACCCTCCGTCCT BstXI	AATACTTTCACC	TGCTCTGTGTTA ACGAGACACAAT
1441	H E G L	H N H H	T E K S	L S H S	P G I V	F L A C
	CATGAGGGCCTG	CACAACCACCAT	ACTGAGAAGAGC	CTCTCCCACTCT	CCTGGTATTGTG	TTCCTGGCTTGC
	GTACTCCCGGAC	GTGTTGGTGGTA	TGACTCTTCTCG	GAGAGGGTGAGA	GGACCATAACAC	AAGGACCGAACG
	V L G G	S F G F	L G F L	G L C I	L C C V	N S R R

1513 GTGCTGGGTGGC TCCTTCGGCTTT CTGGGTTTCCTT GGGCTCTGCATC CTCTGCTGTGTC AATAGTAGAAGG CACGACCCACCG AGGAAGCCGAAA GACCCAAAGGAA CCCGAGACGTAG GAGACGACACAG TTATCATCTTCC

	Ν	R	L	L	Q	S	D	Y	М	Ν	М	Т	Ρ	R	R	Ρ	G	L	Т	R	K	Ρ	Y	Q
1585	AACA	.GA(	CTC	CTT	CAA	AGT	GAC	TAC	ATG.	AAC	ATG	ACT	CCC	CGG	AGG	CCT	GGG	CTC	ACTO	CGA	AAG	CCT	TAC	CAG
	TTGT	CTC	GAG	GAA	GTT	ГСА	CTG.	ATG	TAC	TTG	TAC	TGA	GGG	GCC	TCC	GGA	CCC	GAG	TGA	ЗCТ	TTC	GGA	ATG	GTC
	P	Y	А	Ρ	А	R	D	F	А	А	Y	R	Ρ	L	R	А	Κ	F	S	R	S	А	Е	Т
1657	CCCT	AC	GCC	ССТ	GCC	AGA	GAC	TTT	GCA	GCG	TAC	CGC	CCC	CTG	AGA	GCA	AAA	TTC	AGC	AGG	AGT	GCA	GAG	ACT
	GGGA	TG	CGG	GGA	CGG	гст	CTG.	AAA	CGT	CGC	ATG	GCG	GGG	GAC	TCT	CGT	TTT	AAG	TCG:	rcc	TCA	CGT	CTC	TGA
	А	А	Ν	L	0	D	Ρ	Ν	0	L	Y	Ν	Е	L	Ν	L	G	R	R	Е	Е	Y	D	v
1729	GCTG	 ()		CTG	CAG	- GAC	-		CAG	 СТС	- 'TAC	ידעמי	GAG	- СТС	 22T		GGG	CGA		TAG	GAA	- гдт		GTC
1,20	CGAC				CTC	опс отс			CTC	CIC CIC	111C		CTC			CAT	CCC	COTT			CTTT		CTC	CNC
	CGAC	GG	110	GAC	GIC	010	DDD G	2 m U	r T	GAG	AIG	IIA	CIC	GAG	TIN	GAI	CCC	GCI		-10	C111	- I A	.010	CAG
							Б	ann	L															
	-	_			_	-	_~	~~~	~~~	-		~	~		~	~	-	_	_		-	~	_	~
	Ц	F:	K.	K.	R	A	R	D	Р	E	М	G	G	K.	Q	Q	R	R	R	N	Р	Q	E	G
1801	TTGG	AG	AAG.	AAG	CGG	GCT	CG <b>G</b>	GAT	CCA	GAG	ATG	IGGA	GGC	AAA	CAG	CAG	AGG	AGG	AGGI	AAC	CCC	CAG	GAA	GGC
	AACC	TC	TTC'	TTC	GCC	CGA	GCC	CTA	GGT	CTC	TAC	CCT	CCG	TTT	GTC	GTC	TCC	TCC	TCC:	ΓTG	GGG	GTC	CTT	CCG
	V	Y	Ν	А	L	Q	Κ	D	Κ	М	А	Е	Α	Y	S	Е	I	G	Т	Κ	G	Е	R	R
1873	GTAT	AC	AAT	GCA	CTG	CAG.	AAA	GAC	AAG	ATG	GCA	GAA	GCC	TAC.	AGT	GAG	ATC	GGC	ACAA	AAA	GGC	GAG	AGG	CGG
	CATA	TG	TTA	CGT	GAC	GTC	TTT	CTG	TTC	TAC	CGT	CTT	CGG	ATG	TCA	CTC	TAG	CCG	TGT.	TTT	CCG	CTC	TCC	GCC
	R	G	К	G	Η	D	G	L	Y	Q	G	L	S	Т	А	Т	Κ	D	Т	Y	D	А	L	Η
1945	AGAG	GC	AAG	GGG	CAC	GAT	GGC	CTT	TAC	CÂG	GGT	CTC	AGC	ACT	GCC	ACC	AAG	GAC	ACC	TAT	GAT	GCC	CTG	CAT
	TCTC	CG	TTC	CCC	GTG	CTA	CCG	GAA	ATG	GTC	CCA	GAG	TCG	TGA	CGG	TGG	TTC	CTG	TGGZ	АТА	CTA	7GG	GAC	GTA
	M	0	т Т	т.	Δ	D	P	*		010	0011	.00	100	- 0	000	100		010			0		0110	0111
2017	7.1 7.1 7.1	NC:	1 1 1		000	- - - -		ד א יד																
201/	MIGC	AGI mar	Taa	CIG	GCC																			
	TACG	T.C.	LGG	GAC	CGG	зGА	GCG.	A.T.,T.																

#### 6.3.6 # 907: pBullet-BW431/26scFv-mIgG-mCD4-mCD28-mCD3ζ

					Xba	aI
					~~~~	~~~~
	M D F Q	VQIF	SFLL	ISAS	V I M S	R G V H
1	ATGGATTTTCAG	GTGCAGATTTTC	AGCTTCCTGCTA	ATCAGTGCCTCA	GTCATAATG TCT	AGAGGTGTCCAC
	TACCTAAAAGTC	CACGTCTAAAAG	TCGAAGGACGAT	TAGTCACGGAGT	CAGTATTAC AGA	TCTCCACAGGTG
	SQVQ	LQES	GPGL	VRPS	QTLS	L T С Т
73	TCCCAGGTCCAA	CTGCAGGAGTCA	GGTCCAGGTCTT	GTGAGACCTAGC	CAGACCCTGAGC	CTGACCTGCACC
	AGGGTCCAGGTT	GACGTCCTCAGT	CCAGGTCCAGAA	CACTCTGGATCG	GTCTGGGACTCG	GACTGGACGTGG
	VSGF	TISS	G Y S W	HWVR	Q P P G	RGLE
145	GTGTCTGGCTTC	ACCATCAGCAGT	GGTTATAGCTGG	CACTGGGTGAGA	CAGCCACCTGGA	CGAGGTCTTGAG
	CACAGACCGAAG	TGGTAGTCGTCA	CCAATATCGACC	GTGACCCACTCT	GTCGGTGGACCT	GCTCCAGAACTC
	W I G Y	IQYS	GITN	Y N P S	LKSR	V T M L
217	TGGATTGGATAC	ATACAGTACAGT	GGTATCACTAAC	TACAACCCCTCT	CTCAAAAGTAGA	GTGACAATGCTG
	ACCTAACCTATG	TATGTCATGTCA	CCATAGTGATTG	ATGTTGGGGAGA	GAGTTTTCATCT	CACTGTTACGAC
	V D T S	K N Q F	SLRL	S S V T	A A D T	ΑΥΥΥ
289	GTAGACACCAGC	AAGAACCAGTTC	AGCCTGAGACTC	AGCAGCGTGACA	GCCGCCGACACC	GCGGTCTATTAT
	CATCTGTGGTCG	TTCTTGGTCAAG	TCGGACTCTGAG	TCGTCGCACTGT	CGGCGGCTGTGG	CGCCAGATAATA
	CARE	DYDY	H W Y F	D V W G	QGTT	V T V S
361	TGTGCAAGAGAA	GACTATGATTAC	CACTGGTACTTC	GATGTCTGGGGC	CAAGGGACCACG	GTCACCGTCTCC
	ACACGTTCTCTT	CTGATACTAATG	GTGACCATGAAG	CTACAGACCCCG	GTTCCCTGGTGC	CAGTGGCAGAGG
	S G G G	G S G G	G G S G	G G G S	DIQL	TQSP
433	TCAGGAGGTGGT	GGATCGGGCGGT	GGCGGGTCGGGT	GGCGGCGGATCT	GACATCCAGCTG	ACCCAGAGCCCA
	AGTCCTCCACCA	CCTAGCCCGCCA	CCGCCCAGCCCA	CCGCCGCCTAGA	CTGTAGGTCGAC	TGGGTCTCGGGT
					XhoI	
					~~~~~	
	SSLS	A S V G	DRVT	ITCS	TSSS	V S Y M
505	AGCAGCCTGAGC	GCCAGCGTGGGT	GACAGAGTGACC	ATCACCTGTAGT	ACCAG <b>CTCGAG</b> T	GTAAGTTACATG
	TCGTCGGACTCG	CGGTCGCACCCA	CTGTCTCACTGG	TAGTGGACATCA	TGGTC <b>GAGCTC</b> A	CATTCAATGTAC
	н w ү Q	QKPG	КАРК	LLIY	STSN	LASG
577	CACTGGTACCAG	CAGAAGCCAGGT	AAGGCTCCAAAG	CTGCTGATCTAC	AGCACATCCAAC	CTGGCTTCTGGT
	GTGACCATGGTC	GTCTTCGGTCCA	TTCCGAGGTTTC	GACGACTAGATG	TCGTGTAGGTTG	GACCGAAGACCA
	VPSR	FSGS	GSGT	DFTF	TISS	LQPE
649	GTGCCAAGCAGA	TTCAGCGGTAGC	GGTAGCGGTACC	GACTTCACCTTC	ACCATCAGCAGC	CTCCAGCCAGAG
	CACGGTTCGTCT	AAGTCGCCATCG	CCATCGCCATGG	CTGAAGTGGAAG	TGGTAGTCGTCG	GAGGTCGGTCTC
	DIAT	ҮҮСН	QWSS	Y P T F	GQGT	K V E I
721	GACATCGCCACC	TACTACTGCCAT	CAGTGGAGTAGT	TATCCCACGTTC	GGCCAAGGGACC	AAGGTGGAGATC
	CTGTAGCGGTGG	ATGATGACGGTA	GTCACCTCATCA	ATAGGGTGCAAG	CCGGTTCCCTGG	TTCCACCTCTAG
	BamHI					
	~~~~~					
	K V D P	VPRD	GGCK	PCIC	TVPE	VSSV
793	AAAGT GGATCC T	GTGCCCAGGGAT	GGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA	GTATCATCTGTC
	TTTCA CCTAGG A	CACGGGTCCCTA	CCACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT	CATAGTAGACAG
	FIFP	РКРК	DVLT	ITLT	ΡΚΥΤ	CVVV
865	TTCATCTTCCCC	CCAAAGCCCAAG	GATGTGCTCACC	ATTACTCTGACT	CCTAAGGTCACG	TGTGTTGTGGTA
	AAGTAGAAGGGG	GGTTTCGGGTTC	CTACACGAGTGG	TAATGAGACTGA	GGATTCCAGTGC	ACACAACACCAT
	D I S K	DDPE	VQFS	WFVD	DVEV	НТАQ
937	GACATCAGCAAG	CATCATCCCCAC	GTCCAGTTCAGC	TGGTTTGTAGAT	CATCTCCACCTC	CACACAGCTCAG

CTGTAGTCGTTC CTACTAGGGCTC CAGGTCAAGTCG ACCAAACATCTA CTACACCTCCAC GTGTGTCGAGTC

	TQPR	EEQF	N S T F	r s v s	ELPI	мндр		
1009	ACGCAACCCCGG	GAGGAGCAGTTC	AACAGCACTTTC	CGCTCAGTCAGT	GAACTTCCCATC	ATGCACCAGGAC		
	TGCGTTGGGGGCC	CTCCTCGTCAAG	TTGTCGTGAAAG	GCGAGTCAGTCA	CTTGAAGGGTAG	TACGTGGTCCTG		
	W L N G	KEFK	CRVN	SAAF	PAPI	ЕКТІ		
1081	TGGCTCAATGGC	AAGGAGTTCAAA	TGCAGGGTCAAC	AGTGCAGCTTTC	CCTGCCCCATC	GAGAAAACCATC		
	ACCGAGTTACCG	TTCCTCAAGTTT	ACGTCCCAGTTG	TCACGTCGAAAG	GGACGGGGGTAG	CTCTTTTGGTAG		
	S K T K	G R P K	A P Q V	СТІР	PPKE	Q M A K		
1153	TCCAAAACCAAA	GGCAGACCGAAG	GCTCCACAGGTG	TGCACCATTCCA	CCTCCCAAGGAG	CAGATGGCCAAG		
	AGGTTTTGGTTT	CCGTCTGGCTTC	CGAGGTGTCCAC	ACGTGGTAAGGT	GGAGGGTTCCTC	GTCTACCGGTTC		
	DKVS	L T C M	ITDF	FPED	ITVE	WQWN		
1225	GATAAAGTCAGT	CTGACCTGCATG	ATAACAGACTTC	TTCCCTGAAGAC	ATTACTGTGGAG	TGGCAGTGGAAT		
	CTATTTCAGTCA	GACTGGACGTAC	TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC	ACCGTCACCTTA		
	GQPA	ENYK	N T Q P	IMDT	DGSY	FVYS		
1297	GGGCAGCCAGCG	GAGAACTACAAG	AACACTCAGCCC	ATCATGGACACA	GATGGCTCTTAC	TTCGTCTACAGC		
	CCCGTCGGTCGC	CTCTTGATGTTC	TTGTGAGTCGGG	TAGTACCTGTGT	CTACCGAGAATG	AAGCAGATGTCG		
1260	K L N V	QKSN	W E A G	N T F T	C S V L	H E G L		
1369	AAGCTCAATGTG	CAGAAGAGCAAC	TGGGAGGCAGGA	AATACTTTCACC	TGCTCTGTGTTA	CATGAGGGCCTG		
	TTCGAGTTACAC	GICITCICGITG	ACCOTCOGTCOT	TTATGAAAGTGG	ACGAGACACAAT	GTACTCCCGGAC		
			BSTAL					
	нмнн	т г к с	т. с н с	PGTV	FT. AC	VI. C. C		
1441	CACAACCACCAT	ACTGAGAAGAGC	CTCTCCCCACTCT	CCTGGTATTGTG	TTCCTGGCTTGC	GTGCTGGGTGGC		
	GTGTTGGTGGTA	TGACTCTTCTCG	GAGAG GGTGAGA	GGACCATAACAC	AAGGACCGAACG	CACGACCCACCG		
	SFGF	LGFL	GLCI	LCCV	NSRR	NRLL		
1513	TCCTTCGGCTTT	CTGGGTTTCCTT	GGGCTCTGCATC	CTCTGCTGTGTC	AATAGTAGAAGG	AACAGACTCCTT		
	AGGAAGCCGAAA	GACCCAAAGGAA	CCCGAGACGTAG	GAGACGACACAG	TTATCATCTTCC	TTGTCTGAGGAA		
	Q S D Y	M N M T	PRRP	GLTR	КРҮД	РҮАР		
1585	CAAAGTGACTAC	ATGAACATGACT	CCCCGGAGGCCT	GGGCTCACTCGA	AAGCCTTACCAG	CCCTACGCCCCT		
	GTTTCACTGATG	TACTTGTACTGA	GGGGCCTCCGGA	CCCGAGTGAGCT	TTCGGAATGGTC	GGGATGCGGGGA		
	ARDF	A A Y R	PLRA	KFSR	SAET	A A N L		
1657	GCCAGAGACTTT	GCAGCGTACCGC	CCCCTGAGAGCA	AAATTCAGCAGG	AGTGCAGAGACT	GCTGCCAACCTG		
	CGGTCTCTGAAA	CGTCGCATGGCG	GGGGACTCTCGT	TTTAAGTCGTCC	TCACGTCTCTGA	CGACGGTTGGAC		
	Q D P N	QLYN	ELNL	GRRE	EYDV	LEKK		
1729	CAGGACCCCAAC	CAGCTCTACAAT	GAGCTCAATCTA	GGGCGAAGAGAG	GAATATGACGTC	TTGGAGAAGAAG		
	GTCCTGGGGTTG	GTCGAGATGTTA	CTCGAGTTAGAT	CCCGCTTCTCTC	CTTATACTGCAG	AACCTCTTCTTC		
	BamH.	Ε						
	~~~~					57 57 NT 7		
1001	K A K D	PEMG	G K Q Q	K K K N	P Q E G			
TOOT	CCCCCACCCCTA	CCAGAGAIGGGA	CCCTTTCCCCC	TCCTCCTCCTTC	CCCCAGGAAGGC	CATATACAAIGCA		
	L O K D	K M A F	A V C F	T C T K	C F P P	P C K C		
1873		AACATCCCACAA	CCCTACACTCAC	ATCCCCACAAAA	GCCCACACGCCCC	ACACCCAACCCC		
1075	CICCACATACAC	TTOTACCOTOTT	CCCATCTCACTC	TACCCCTCTTT	CCCCTCTCCCCCC	TOTOCOTTOCCO		
	H D G L	Y O G L	S T A T	K D T Y	D A L H	M O T L		
1945	CACGATGGCCTT	TACCAGGGTCTC	AGCACTGCCACC	AAGGACACCTAT	GATGCCCTGCAT	ATGCAGACCCTG		
	GTGCTACCGGAA	ATGGTCCCAGAG	TCGTGACGGTGG	TTCCTGTGGATA	CTACGGGACGTA	TACGTCTGGGAC		
	APR*							
2017	GCCCCTCGCTAA							
	CGGGGAGCGATT							

# 6.4 DNA Sequenzen der rekombinanten Immunrezeptoren mit Spezifität für CEA, die aus murinen Domänen bestehen.

Gezeigt wird die DNA Sequenz der rekombinanten Immunrezeptoren pBullet-SCA-431scFv-mIgG-mCD4-mCD3ζ (#977), pBullet-SCA-431scFv-mIgG-mCD4-mCD3ζ-OX40 (#978) und pBullet-SCA-431-mIgG-mCD4-mCD28-mCD3ζ (#982). Die abgeleitete Aminosäure-sequenz wird oberhalb der DNA Sequenz im Ein-Buchstaben-Code aufgeführt. Ein "*" kennzeichnet das Stopcodon. Restriktionsschnittstellen, die der Klonierung oder Restriktionsanalyse dienten, sind durch Fett-Druck gekennzeichnet.



#### 6.4.1 # 977: pBullet-SCA-431scFv-mIgG-mCD4-mCD3ζ

					Xba	aΙ
1	M D F Q	V Q I F	S F L L	I S A S	V I M S	R G V H
	ATGGATTTTCAG	GTGCAGATTTTC	AGCTTCCTGCTA	ATCAGTGCCTCA	GTCATAATG <b>TCT</b>	AGAGGTGTCCAC
	TACCTAAAAGTC	CACGTCTAAAAG	TCGAAGGACGAT	TAGTCACGGAGT	CAGTATTAC <b>AGA</b>	TCTCCACAGGTG
73	S Q V Q TCCCAGGTCCAA AGGGTCCAGGTT	L Q E S CTGCAGGAGTCA GACGTCCTCAGT	G P D L GGACCTGACCTG CCTGGACTGGAC	V K P S GTGAAACCTTCT CACTTTGGAAGA BamHI	Q S L S CAGTCACTTTCA GTCAGTGAAAGT	L T C T CTCACCTGCACT GAGTGGACGTGA
145	V T G Y GTCACTGGCTAC CAGTGACCGATG	S I T S TCCATCACCAGT AGGTAGTGGTCA	G Y S W GGTTATAGCTGG CCAATATCGACC	H W I R CACT <b>GGATCC</b> GG GTGA <b>CCTAGG</b> CC	Q F P G CAGTTTCCAGGA GTCAAAGGTCCT	N K L E AACAAACTGGAA TTGTTTGACCTT <b>XhoI</b>
217	W M G Y TGGATGGGCTAC ACCTACCCGATG XhoI ~~~~	I Q Y S ATACAATACAGT TATGTTATGTCA	G I T N GGTATCACTAAC CCATAGTGATTG	Y N P S TACAACCCCTCT ATGTTGGGGAGA	L K S R CTCAAAAGTCGA GAGTTTTCAGCT	ISIT ATCTCTATCA <b>CT</b> TAGAGATAGT <b>GA</b>
289	R D T S	K N Q F	F L Q L	N S V T	T E D T	A T Y Y
	CGAGACACATCC	AAGAACCAGTTC	TTCCTGCAGTTG	AATTCTGTGACT	ACTGAGGACACA	GCCACATATTAC
	GCTCTGTGTGTAGG	TTCTTGGTCAAG	AAGGACGTCAAC	TTAAGACACTGA	TGACTCCTGTGT	CGGTGTATAATG
	C A R E	D Y D Y	H W Y F	D V W G	O G T T	V T V S
361	TGTGCAAGAGAA	GACTATGATTAC	CACTGGTACTTC	GATGTCTGGGGC	CAAGGGACCACG	GTCACCGTCTCC
	ACACGTTCTCTT	CTGATACTAATG	GTGACCATGAAG	CTACAGACCCCG	GTTCCCTGGTGC	CAGTGGCAGAGG
433	TCAGGAGGTGGT AGTCCTCCACCA	G S G G GGATCGGGCGGT CCTAGCCCGCCA	GGCGGGTCGGGT CCGCCCAGCCCA	G G G S GGCGGCGGATCT CCGCCGCCTAGA	GACATCCAGCTG CTGTAGGTCGAC XhoI	ACCCAGTCTCCA TGGGTCAGAGGT
					~~~~~	
505	A I M S	A S L G	E E I T	L T C S	A S S S	V S Y M
	GCAATCATGTCT	GCATCTCTAGGG	GAGGAGATCACC	CTAACCTGCAGT	GCCAG CTCGAG T	GTAAGTTACATG
	CGTTAGTACAGA	CGTAGAGATCCC	CTCCTCTAGTGG	GATTGGACGTCA	CGGTC GAGCTC A	CATTCAATGTAC
577	H W Y Q	Q K S G	T S P K	L L I Y	S T S N	L A S G
	CACTGGTACCAG	CAGAAGTCAGGC	ACTTCTCCCAAA	CTCTTGATTTAT	AGCACATCCAAC	CTGGCTTCTGGA
	GTGACCATGGTC	GTCTTCAGTCCG	TGAAGAGGGTTT	GAGAACTAAATA	TCGTGTAGGTTG	GACCGAAGACCT
649	V P S R	F S G S	G S G T	F Y S L	T I S S	V E A E
	GTCCCTTCTCGC	TTCAGTGGCAGT	GGGTCTGGGACC	TTTTATTCTCTC	ACAATCAGCAGT	GTGGAGGCTGAA
	CAGGGAAGAGCG	AAGTCACCGTCA	CCCAGACCCTGG	AAAATAAGAGAG	TGTTAGTCGTCA	CACCTCCGACTT
721	D A A D	Y Y C H	Q W S S	Y P T F	G G G T	K L E I
	GATGCTGCCGAT	TATTACTGCCAT	CAGTGGAGTAGT	TATCCCACGTTC	GGAGGGGGGGACC	AAGCTGGAGATC
	CTACGACGGCTA	ATAATGACGGTA	GTCACCTCATCA	ATAGGGTGCAAG	CCTCCCCCTGG	TTCGACCTCTAG
793	AAAGTAGATCCT TTTCATCTAGGA	GTGCCCAGGGAT CACGGGTCCCTA	G G C K GGTGGTTGTAAG CCACCAACATTC	CCTTGCATATGT GGAACGTATACA	ACAGTCCCAGAA TGTCAGGGTCTT	V S S V GTATCATCTGTC CATAGTAGACAG
865	F I F P TTCATCTTCCCC AAGTAGAAGGGG	CCAAAGCCCAAG GGTTTCGGGTTC	GATGTGCTCACC CTACACGAGTGG	ATTACTCTGACT TAATGAGACTGA	CCTAAGGTCACG GGATTCCAGTGC	TGTGTTGTGGTA ACACAACACCAT
937	D I S K	D D P E	V Q F S	W F V D	D V E V	H T A Q
	GACATCAGCAAG	GATGATCCCGAG	GTCCAGTTCAGC	TGGTTTGTAGAT	GATGTGGAGGTG	CACACAGCTCAG
	CTGTAGTCGTTC	CTACTAGGGCTC	CAGGTCAAGTCG	ACCAAACATCTA	CTACACCTCCAC	GTGTGTCGAGTC

	ТО	PR	Е	Е	O F	Ν	SІ	F	R	S	v	S	Е	L	Ρ	I	М	Н	0	D
1009	ACGCÃAC	CCCGG	GAG	GAGO	CAGTTC	AAC	AGCAC	TTTC	CGC	TCA	GTC.	AGT	GAA	CTT	CCC	ATC	ATG	CAC	CÂG	GAC
	TGCGTTG	GGGCC	CTC	CTCO	TCAAG	TTG	TCGTO	AAAG	GCG	AGT	CAG	TCA	CTT	GAA	GGG	ГАG	TAC	GTG	GTC	CTG
	WL	N G	K	Е	FΚ	С	R V	V N	S	А	А	F	Ρ	А	Ρ	I	Е	K	т	I
1081	TGGCTCA	ATGGC	AAG	GAGI	TCAAA	TGC	AGGGT	CAAC	AGT	GCA	GCT	TTC	CCT	GCC	CCC	ATC	GAG	AAA	ACC	ATC
	ACCGAGT	TACCG	TTC	CTCF	AGTTT	ACG	TCCCA	GTTG	TCA	CGT	CGA	AAG	GGA	CGG	GGG	ГАG	CTC	TTT?	rgg'	TAG
	S K	т к	G	R	РK	А	ΡÇ	v v	С	т	I	Ρ	Ρ	Ρ	Κ	Е	Q	М	А	Κ
1153	TCCAAAA	CCAAA	GGC	AGAC	CCGAAG	GCT	CCACA	GGTG	TGC	ACC	ATT	CCA	CCT	CCC	AAG	GAG	CAG	ATGO	GCC	AAG
	AGGTTTT	GGTTT	CCG	TCTO	GCTTC	CGA	GGTGI	CCAC	ACG	TGG	TAA	GGT	GGA	GGG	TTC	CTC	GTC	FAC	CGG	TTC
	D K	V S	L	Т	C M	I	ΤĽ	F	F	Ρ	Е	D	I	Т	V	Е	W	Q	W	Ν
1225	GATAAAG	TCAGT	CTG	ACCI	GCATG	ATA	ACAGA	CTTC	TTC	CCT	GAA	GAC	ATT	ACT	GTG	GAG	TGG	CAG	rgg.	AAT
	CTATTTC	AGTCA	GAC	TGGI	ACGTAC	TAT	TGTCI	GAAG	AAG	GGA	CTT	CTG	TAA	TGA	CAC	CTC	ACC	GTCA	ACC	TTA
	GQ	ΡA	Е	Ν	Y K	Ν	ТÇ	<u>P</u>	I	М	D	Т	D	G	S	Y	F	V	Y	S
1297	GGGCAGC	CAGCG	GAG	AACI	TACAAG	AAC	ACTCA	GCCC	ATC	ATG	GAC	ACA	GAT	GGC	TCT	TAC	TTC	GTC?	FAC	AGC
	CCCGTCG	GTCGC	CTC	TTGZ	ATGTTC	TTG	TGAGI	CGGG	TAG	TAC	CTG	TGT	CTA	CCG	AGA	ATG	AAG	CAGA	ATG	TCG
	K L	N V	Q	Κ	S N	W	ΕA	G	Ν	Т	F	Т	С	S	V	L	Η	Е	G	L
1369	AAGCTCA	ATGTG	CAG	AAGA	AGCAAC	TGG	GAGGC	AGGA	AAT	ACT	TTC.	ACC	TGC	TCT	GTG	ΓTΑ	CAT	GAG	GGC	CTG
	TTCGAGI	TACAC	GTC	TTCI	CGTTG	ACC	CTCCG	TCCT	TTA	TGA	AAG	TGG	ACG.	AGA	CAC	AAT	GTA	CTC	CCG	GAC
							E	stXI												
							~~~~	~~~~	~~~~	~										
	H N	Н Н	Т	Е	K S	L	S H	I S	Ρ	G	I	V	F	L	А	С	V	L	G	G
1441	CACAACC	ACCAT	ACT	GAGA	AGAGC	CTC	TCCCA	CTCT	CCI	GGT	ATT	GTG	TTC	CTG	GCT	IGC	GTG	CTGC	GGT(	GGC
	GTGTTGG	TGGTA	TGA	CTCI	TCTCG	GAG	AG <b>GG1</b>	GAGA	GGA	CCA	TAA	CAC	AAG	GAC	CGA	ACG	CAC	GACO	CCA	CCG
	S F	G F	L	G	FL	G	L C	! I	L	С	С	V	L	R	А	K	F	S	R	S
1513	TCCTTCG	GCTTT	CTG	GGTI	TTCCTT	GGG	CTCTG	CATC	CTC	TGC	TGT	GTC	CTG.	AGA	GCA	AAA	TTC	AGCI	AGG	AGT
	AGGAAGC	CGAAA	GAC	CCAF	AGGAA	CCC	GAGAC	'GTAG	GAG	ACG	ACA	CAG	GAC	TCT(	CGT	$\Gamma T T$	AAG	LCC1	rcc'	ГСА
	A E	ТΑ	A	Ν	LQ	D	ΡŇ	I Q	L	Y	Ν	Е	L	Ν	L	G	R	R	Е	Е
1585	GCAGAGA	CTGCT	GCC	AACC	CTGCAG	GAC	CCCAA	CCAG	CTC	TAC	AAT	GAG	CTC.	AAT	CTA	GGG	CGA	AGAC	GAG	GAA
	CGTCTCI	GACGA	CGG	TTGO	GACGTC	CTG	GGGTI	GGTC	GAG	ATG	TTA	CTC	GAG'	TTA	GAT	CCC	GCT	ГСТС	CTC	CTT
							Ban	ΉI												
			-		w 5		~~~	~~~~			a	~		~	~	-	-	-		-
1657		V L	E	K N N C 7	K K	A	K L		E	M	G	G	K.	Q	Q Q	R	R	R	N	P
1021	ATAIGACG	ICIIG	GAG	AAGF		GCI	CGGGGA		GAG	DAIG	GGA	GGC			amar	HGG TCC	AGG			
	ATACIGO	AGAAC	UIC V	N	N T	CGA	GCCC1	AGGI	CIC	.IAC		CCG	111	GIC		TCC T	ICC.	ICCI m	IIG(	DDE
1700	Q E	G V	I maa	N N N THC		Q			™ 7000	A	E C A A	A	I mag	2011/	ц ц	T T	G	1	к. 	G
1729	CAGGAAG	GCGIA	IAC		CACIG	CAG			AIG	GCA	GAA	GCC	IAC	AGIO	JAG	AIC	GGC			JGC
	GICCITIC	CGCAT	ATG	TTAC	GIGAC	GIC	TTTTCT	GITC	TAC	CGT	C.II.	CGG	ATG	PCAG	CIC:	TAG	CCG	I'G'I''	TTT.(	CCG
1001	E R	K K	G	K.	G H	D	GL		Q	G	Ц ата	5	.T.	A	.T.	ĸ	D	.T.	Y D D D D D	
TAAT	GAGAGGC	GGAGA	GGC	AAGO	JGGCAC	GA'I'	GGCCI	1 TAC	CAG	iGG.L	CTC.	AGC	ACTO	GCC	ACCA	AAG	GAC		Т Ч.Т.(	JA'I'
	CTCTCCC	CCTCT	CCG	TUCC	CCGIG	CTA	CCGGA	AATG	GIC	CCA	GAG	TCG	TGA	UGG.	T GG.	11C	CIG	I GGA	ATA	J'I'A
1072	A L	н М	Q	.T.	АЦ	P	K *	7												
10/3	GCCCTGC	AIATG	CAG			CCT	CGCTA	A.												
	CGGGACG	TATAC	GLC	TGGC	JACCGG	GGA	GCGAI	T.												

## 6.4.2 # 978: pBullet-SCA-431scFv-mIgG-mCD4-mCD3ζ-mOX40

				Xba	I ~~~~
1	M D F Q ATGGATTTTCAG TACCTAAAAGTC S O V O	V Q I F S F L L GTGCAGATTTTC AGCTTCCTGCTA CACGTCTAAAAG TCGAAGGACGAT L O E S G P D L	I S A S ATCAGTGCCTCA TAGTCACGGAGT V K P S	V I M S GTCATAATG <b>TCT</b> CAGTATTAC <b>AGA</b> O S L S	R G V H AGAGGTGTCCAC TCTCCACAGGTG L T C T
73	TCCCAGGTCCAA AGGGTCCAGGTT	CTGCAGGAGTCA GGACCTGACCTG GACGTCCTCAGT CCTGGACTGGAC	GTGAAACCTTCT CACTTTGGAAGA <b>BamHI</b> ~~~~~~	CAGTCACTTTCA GTCAGTGAAAGT	CTCACCTGCACT GAGTGGACGTGA
145	V T G Y GTCACTGGCTAC CAGTGACCGATG	S I T S G Y S W TCCATCACCAGT GGTTATAGCTGG AGGTAGTGGTCA CCAATATCGACC	H W I R CACT <b>GGATCC</b> GG GTGA <b>CCTAGG</b> CC	Q F P G CAGTTTCCAGGA GTCAAAGGTCCT	N K L E AACAAACTGGAA TTGTTTGACCTT <i>XhoI</i> ~~
217	W M G Y TGGATGGGCTAC ACCTACCCGATG XhoI ~~~~	I Q Y S G I T N ATACAATACAGT GGTATCACTAAC TATGTTATGTCA CCATAGTGATTG	Y N P S TACAACCCCTCT ATGTTGGGGAGA	L K S R CTCAAAAGTCGA GAGTTTTCAGCT	I S I T ATCTCTATCA <b>CT</b> TAGAGATAGT <b>GA</b>
289	R D T S CGAGACACATCC GCTCTGTGTGTAGG	K N Q F F L Q L AAGAACCAGTTC TTCCTGCAGTTG TTCTTGGTCAAG AAGGACGTCAAC	N S V T AATTCTGTGACT TTAAGACACTGA	T E D T ACTGAGGACACA TGACTCCTGTGT	A T Y Y GCCACATATTAC CGGTGTATAATG
361	C A R E TGTGCAAGAGAA ACACGTTCTCTT	D Y D Y H W Y F GACTATGATTAC CACTGGTACTTC CTGATACTAATG GTGACCATGAAG G S G G G G S G	GATGTCTGGGGC CTACAGACCCCG	Q G T T CAAGGGACCACG GTTCCCTGGTGC	GTCACCGTCTCC CAGTGGCAGAGG T O S P
433	TCAGGAGGTGGT AGTCCTCCACCA	GGATCGGGCGGT GGCGGGTCGGGT CCTAGCCCGCCA CCGCCCAGCCCA	GGCGGCGGGATCT CCGCCGCCTAGA	GACATCCAGCTG CTGTAGGTCGAC	ACCCAGTCTCCA TGGGTCAGAGGT

					XhoI	
					~~~~~	
505	A I M S	A S L G	E E I T	L T C S	A S S S	V S Y M
505	CGTTAGTACAGA	CGTAGAGATCCC	CTCCTCTACTCC	CIAACCIGCAGI	CCCTCCACCTCA	CATTCAATGTAC
	H W V O	O K S G	T C D K	I. I. T V	S T S N	I. A S G
577	CACTGGTACCAG	CAGAAGTCAGGC	ACTTCTCCCAAA	СТСТТСАТТТАТ	AGCACATCCAAC	CTGGCTTCTGGA
5	GTGACCATGGTC	GTCTTCAGTCCG	TGAAGAGGGTTT	GAGAACTAAATA	TCGTGTAGGTTG	GACCGAAGACCT
	V P S R	FSGS	G S G T	FYSL	TISS	VEAE
649	GTCCCTTCTCGC	TTCAGTGGCAGT	GGGTCTGGGACC	TTTTTATTCTCTC	ACAATCAGCAGT	GTGGAGGCTGAA
	CAGGGAAGAGCG	AAGTCACCGTCA	CCCAGACCCTGG	AAAATAAGAGAG	TGTTAGTCGTCA	CACCTCCGACTT
	DAAD	ҮҮСН	QWSS	Y P T F	G G G T	KLEI
721	GATGCTGCCGAT	TATTACTGCCAT	CAGTGGAGTAGT	TATCCCACGTTC	GGAGGGGGGACC	AAGCTGGAGATC
	CTACGACGGCTA	ATAATGACGGTA	GTCACCTCATCA	ATAGGGTGCAAG	CCTCCCCCTGG	TTCGACCTCTAG
	K V D P	VPRD	GGCK	PCIC	TVPE	VSSV
793	AAAGTAGATCCT	GTGCCCAGGGAT	GGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA	GTATCATCTGTC
	TTTCATCTAGGA	CACGGGTCCCTA	CCACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT	CATAGTAGACAG
0.65	F I F P	PKPK	D V L T	I T L T	P K V T	
865	TICATCITCCCC	CCAAAGCCCCAAG	GATGIGCTCACC	ATTACTCTGACT	CCTAAGGTCACG	TGTGTTGTGGTA
	AAGIAGAAGGGG	GGIIICGGGIIC	V O E C	IAAIGAGACIGA	GGATICCAGIGC	
937	CACATCACCAAC			TCCTTTCTACAT		CACACACCTCAC
251	CTGTAGTCGTTC	CTACTACCCCTC	CAGGTCAAGTCG	ACCAAACATCTA	CTACACCTCCAC	GTGTGTCGAGTC
	TOPR	E E O F	N S T F	RSVS	ELPI	M H O D
1009	ACGCAACCCCGG	GAGGAGCAGTTC	AACAGCACTTTC	CGCTCAGTCAGT	GAACTTCCCATC	ATGCACCAGGAC
	TGCGTTGGGGGCC	CTCCTCGTCAAG	TTGTCGTGAAAG	GCGAGTCAGTCA	CTTGAAGGGTAG	TACGTGGTCCTG
	W L N G	KEFK	CRVN	SAAF	PAPI	EKTI
1081	TGGCTCAATGGC	AAGGAGTTCAAA	TGCAGGGTCAAC	AGTGCAGCTTTC	CCTGCCCCATC	GAGAAAACCATC
	ACCGAGTTACCG	TTCCTCAAGTTT	ACGTCCCAGTTG	TCACGTCGAAAG	GGACGGGGGTAG	CTCTTTTGGTAG
1150	SKTK	G R P K	A P Q V	C T I P	P P K E	Q M A K
1153		GGCAGACCGAAG	GCTCCACAGGTG	TGCACCATTCCA		CAGATGGCCAAG
	AGGIIIIGGIII		CGAGGIGICCAC	ACGIGGIAAGGI	GGAGGGIICCIC	W O W N
1225		СТСАССТССАТС		TTCCCTCAACAC		TCCCACTCCAAT
1225	CTATTTCAGTCA	GACTGGACGTAC	TATTGTCTGAAG	AAGGGACTTCTG	TAATGACACCTC	ACCGTCACCTTA
	GOPA	ENYK	ΝΤΟΡ	IMDT	DGSY	FVYS
1297	GGGCAGCCAGCG	GAGAACTACAAG	AACACTCAGCCC	ATCATGGACACA	GATGGCTCTTAC	TTCGTCTACAGC
	CCCGTCGGTCGC	CTCTTGATGTTC	TTGTGAGTCGGG	TAGTACCTGTGT	CTACCGAGAATG	AAGCAGATGTCG
	K L N V	QKSN	WEAG	NTFT	C S V L	HEGL
1369	AAGCTCAATGTG	CAGAAGAGCAAC	TGGGAGGCAGGA	AATACTTTCACC	TGCTCTGTGTTA	CATGAGGGCCTG
	TTCGAGTTACAC	GTCTTCTCGTTG	ACCCTCCGTCCT	TTATGAAAGTGG	ACGAGACACAAT	GTACTCCCGGAC
			BSTAI			
	нмнн	ר ד ד כ	т. с н с	D G T V	FT. AC	VI. CC
1441	CACAACCACCAT	ACTGAGAAGAGC	CTCTCCCCACTCT	CCTGGTATTGTG	TTCCTGGCTTGC	GTGCTGGGTGGC
	GTGTTGGTGGTA	TGACTCTTCTCG	GAGAG GGTGAGA	GGACC ATAACAC	AAGGACCGAACG	CACGACCCACCG
	SFGF	LGFL	GLCI	LCCV	LRAK	FSRS
1513	TCCTTCGGCTTT	CTGGGTTTCCTT	GGGCTCTGCATC	CTCTGCTGTGTC	CTGAGAGCAAAA	TTCAGCAGGAGT
	AGGAAGCCGAAA	GACCCAAAGGAA	CCCGAGACGTAG	GAGACGACACAG	GACTCTCGTTTT	AAGTCGTCCTCA
	АЕТА	A N L Q	D P N Q	L Y N E	L N L G	RREE
1585	GCAGAGACTGCT	GCCAACCTGCAG	GACCCCAACCAG	CTCTACAATGAG	CTCAATCTAGGG	CGAAGAGAGGAA
	CGTCTCTGACGA	CGGTTGGACGTC	CTGGGGGTTGGTC	GAGATGTTACTC	GAGTTAGATCCC	GCTTCTCTCCTT
			BamHI			
	V D V T	סעעק	 ת ת ם ג	EMCC	K O O P	ת זא ם ם
1657		GAGAAGAAGCGG	GCTCG GGATCC A	GAGATGGGAGGC	A Q Q K	AGGAGGAACCCC
1007	ATACTGCAGAAC	CTCTTCTTCGCC	CGAGCCCTAGGT	CTCTACCCTCCG	TTTGTCGTCTCC	TCCTCCTTGGGG
	OEGV	YNAL	ОКDК	MAEA	YSEI	GTKG
1729	CAGGAAGGCGTA	TACAATGCACTG	CAGAAAGACAAG	ATGGCAGAAGCC	TACAGTGAGATC	GGCACAAAAGGC
	GTCCTTCCGCAT	ATGTTACGTGAC	GTCTTTCTGTTC	TACCGTCTTCGG	ATGTCACTCTAG	CCGTGTTTTCCG
	ERRR	G K G H	DGLY	QGLS	ТАТК	D T Y D
1801	GAGAGGCGGAGA	GGCAAGGGGCAC	GATGGCCTTTAC	CAGGGTCTCAGC	ACTGCCACCAAG	GACACCTATGAT
	CTCTCCGCCTCT	CCGTTCCCCGTG	CTACCGGAAATG	GTCCCAGAGTCG	TGACGGTGGTTC	CTGTGGATACTA
1070	A L H M	Q T L A	P K K K	A W K L	P N T P	K P C W
T0/2	CCCCCCCCATAIG	CAGACCC I GGCC	CCICGCCGGAAG	CGAACCTCTAAC	GGATTGTGAGCC	TTTCCAACAACC
	COURCEINIAC	SICIOGACCOG	COAGCOGCCIIC	COARCELEIAAC	CONTIGIGAGGG	BglII
						-
	CNSE	ד מ ייי מ		עתיד	\mathbf{E} \mathbf{T} \mathbf{T} \mathbf{N}	v T *

G N S F R T P I Q E E H T D A H F T L A K I * 1945 GGAAACAGCTTC AGGACCCCGATC CAGGAGGAACAC ACAGACGCACAC TTTACTCTGGCC AAGATCTGA CCTTTGTCGAAG TCCTGGGGCTAG GTCCTCCTTGTG TGTCTGCGTGTG AAATGAGACCGG T**TCTAGA**CT

6.4.3 # 982: pBullet-SCA-431scFv-mIgG-mCD4-mCD28-mCD3ζ

					Xba	aI
1 73	M D F Q ATGGATTTTCAG TACCTAAAAGTC S Q V Q TCCCAGGTCCAA	V Q I F GTGCAGATTTTC CACGTCTAAAAG L Q E S CTGCAGGAGTCA CACGTCCTCAGT	S F L L AGCTTCCTGCTA TCGAAGGACGAT G P D L GGACCTGACCTG CCTCGACTGGAC	I S A S ATCAGTGCCTCA TAGTCACGGAGT V K P S GTGAAACCTTCT CACTTTCGAAGA	V I M S GTCATAATG TCT CAGTATTAC AGA Q S L S CAGTCACTTTCA	R G V H AGAGGTGTCCAC TCTCCACAGGTG L T C T CTCACCTGCACT GAGTGGACGTGA
145	V T G Y GTCACTGGCTAC CAGTGACCGATG	S I T S TCCATCACCAGT AGGTAGTGGTCA	G Y S W GGTTATAGCTGG CCAATATCGACC	BamHI ~~~~~ H W I R CACTGGATCCGG GTGACCTAGGCC	Q F P G CAGTTTCCAGGA GTCAAAGGTCCT	N K L E AACAAACTGGAA TTGTTTGACCTT
						XhoI ~~
217	W M G Y TGGATGGGCTAC ACCTACCCGATG XhoI	I Q Y S ATACAATACAGT TATGTTATGTCA	G I T N GGTATCACTAAC CCATAGTGATTG	Y N P S TACAACCCCTCT ATGTTGGGGAGA	L K S R CTCAAAAGTCGA GAGTTTTCAGCT	I S I T ATCTCTATCA CT TAGAGATAGT GA
289	R D T S	K N Q F	F L Q L	N S V T	T E D T	A T Y Y
	CGAGACACATCC	AAGAACCAGTTC	TTCCTGCAGTTG	AATTCTGTGACT	ACTGAGGACACA	GCCACATATTAC
	GCTCTGTGTAGG	TTCTTGGTCAAG	AAGGACGTCAAC	TTAAGACACTGA	TGACTCCTGTGT	CGGTGTATAATG
361	C A R E	D Y D Y	H W Y F	D V W G	Q G T T	V T V S
	TGTGCAAGAGAA	GACTATGATTAC	CACTGGTACTTC	GATGTCTGGGGC	CAAGGGACCACG	GTCACCGTCTCC
	ACACGTTCTCTT	CTGATACTAATG	GTGACCATGAAG	CTACAGACCCCG	GTTCCCTGGTGC	CAGTGGCAGAGG
433	S G G G TCAGGAGGTGGT AGTCCTCCACCA	G S G G GGATCGGGCGGT CCTAGCCCGCCA	G G S G GGCGGGTCGGGT CCGCCCAGCCCA	G G G S GGCGGCGGATCT CCGCCGCCTAGA	D I Q L GACATCCAGCTG CTGTAGGTCGAC <i>XhOI</i>	T Q S P ACCCAGTCTCCA TGGGTCAGAGGT
505	A I M S	A S L G	E E I T	L T C S	A S S S	V S Y M
	GCAATCATGTCT	GCATCTCTAGGG	GAGGAGATCACC	CTAACCTGCAGT	GCCAG CTCGAG T	GTAAGTTACATG
	CGTTAGTACAGA	CGTAGAGATCCC	CTCCTCTAGTGG	GATTGGACGTCA	CGGTC GAGCTC A	CATTCAATGTAC
	H W Y O	O K S G	T S P K	L L Y	S T S N	L A S G
577	CACTGGTACCAG	CAGAAGTCAGGC	ACTTCTCCCAAA	CTCTTGATTTAT	AGCACATCCAAC	CTGGCTTCTGGA
	GTGACCATGGTC	GTCTTCAGTCCG	TGAAGAGGGTTT	GAGAACTAAATA	TCGTGTAGGTTG	GACCGAAGACCT
649	V P S R	F S G S	G S G T	F Y S L	T I S S	V E A E
	GTCCCTTCTCGC	TTCAGTGGCAGT	GGGTCTGGGACC	TTTTATTCTCTC	ACAATCAGCAGT	GTGGAGGCTGAA
	CAGGGAAGAGCG	AAGTCACCGTCA	CCCAGACCCTGG	AAAATAAGAGAG	TGTTAGTCGTCA	CACCTCCGACTT
721	D A A D	Y Y C H	Q W S S	Y P T F	G G G T	K L E I
	GATGCTGCCGAT	TATTACTGCCAT	CAGTGGAGTAGT	TATCCCACGTTC	GGAGGGGGGGACC	AAGCTGGAGATC
	CTACGACGGCTA	ATAATGACGGTA	GTCACCTCATCA	ATAGGGTGCAAG	CCTCCCCCTGG	TTCGACCTCTAG
793	K V D P	V P R D	G G C K	P C I C	T V P E	V S S V
	AAAGTAGATCCT	GTGCCCAGGGAT	GGTGGTTGTAAG	CCTTGCATATGT	ACAGTCCCAGAA	GTATCATCTGTC
	TTTCATCTAGGA	CACGGGTCCCTA	CCACCAACATTC	GGAACGTATACA	TGTCAGGGTCTT	CATAGTAGACAG
865	F I F P TTCATCTTCCCC AAGTAGAAGGGG	CCAAAGCCCAAG GGTTTCGGGTTC	D V L T GATGTGCTCACC CTACACGAGTGG	I T L T ATTACTCTGACT TAATGAGACTGA	CCTAAGGTCACG GGATTCCAGTGC	C V V V TGTGTTGTGGTA ACACAACACCAT
937	GACATCAGCAAG	GATGATCCCGAG	GTCCAGTTCAGC	TGGTTTGTAGAT	GATGTGGAGGTG	CACACAGCTCAG
	CTGTAGTCGTTC	CTACTAGGGCTC	CAGGTCAAGTCG	ACCAAACATCTA	CTACACCTCCAC	GTGTGTCGAGTC
1009	ACGCAACCCCGG TGCGTTGGGGCC	E E Q F GAGGAGCAGTTC CTCCTCGTCAAG	N S I F AACAGCACTTTC TTGTCGTGAAAG	K S V S CGCTCAGTCAGT GCGAGTCAGTCA	E L P I GAACTTCCCATC CTTGAAGGGTAG	M H Q D ATGCACCAGGAC TACGTGGTCCTG
1081	W L N G	K E F K	C R V N	S A A F	P A P I	E K T I
	TGGCTCAATGGC	AAGGAGTTCAAA	TGCAGGGTCAAC	AGTGCAGCTTTC	CCTGCCCCCATC	GAGAAAACCATC
	ACCGAGTTACCG	TTCCTCAAGTTT	ACGTCCCAGTTG	TCACGTCGAAAG	GGACGGGGGTAG	CTCTTTTGGTAG
1153	S K T K	G R P K	A P Q V	C T I P	P P K E	Q M A K
	TCCAAAACCAAA	GGCAGACCGAAG	GCTCCACAGGTG	TGCACCATTCCA	CCTCCCAAGGAG	CAGATGGCCAAG
	AGGTTTTGGTTT	CCGTCTGGCTTC	CGAGGTGTCCAC	ACGTGGTAAGGT	GGAGGGTTCCTC	GTCTACCGGTTC
1225	D K V S GATAAAGTCAGT CTATTTCAGTCA	L T C M CTGACCTGCATG GACTGGACGTAC	L T D F' ATAACAGACTTC TATTGTCTGAAG	F P E D TTCCCTGAAGAC AAGGGACTTCTG	ATTACTGTGGAG	W Q W N TGGCAGTGGAAT ACCGTCACCTTA
1297	G Q P A GGGCAGCCAGCG CCCGTCGGTCGC	E N Y K GAGAACTACAAG CTCTTGATGTTC	N T Q P AACACTCAGCCC TTGTGAGTCGGG	ATCATGGACACA TAGTACCTGTGT	D G S Y GATGGCTCTTAC CTACCGAGAATG	F V Y S TTCGTCTACAGC AAGCAGATGTCG
1369	K L N V	Q K S N	W E A G	N T F T	C S V L	H E G L
	AAGCTCAATGTG	CAGAAGAGCAAC	TGGGAGGCAGGA	AATACTTTCACC	TGCTCTGTGTTA	CATGAGGGCCTG
	TTCGAGTTACAC	GTCTTCTCGTTG	ACCCTCCGTCCT	TTATGAAAGTGG	ACGAGACACAAT	GTACTCCCGGAC
	н n н н	TEKS	L S H S BstXI	PGIV C	f'LAC	V L G G

1441 CACAACCACCAT ACTGAGAAGAGC CTCTCCCACTCT CCTGGTATTGTG TTCCTGGCTTGC GTGCTGGGTGGGC GTGTTGGTGGTA TGACTCTTCTCG GAGAGGGTGAGA GGACCATAACAC AAGGACCGAACG CACGACCCACCG

	S	F	G	F	L	G	F	L	G	L	С	I	L	С	С	V	Ν	S	R	R	Ν	R	L	L
1513	TCC	TTC	GGC	TTT	CTG	GGT	TTC	CTT	GGG	CTC	TGC	ATC	CTC	TGC	TGT	GTC	AAT	AGT	AGA	AGG	AAC	AGA	CTC	CTT
	AGG	AAG	CCG	AAA	GAC	CCA	CAAAGGAA (CCCGAGACGTAG			GAGACGACACAG			TTATCATCTTCC			TTGTCTGAGGAA					
	Q	S	D	Y	М	Ν	М	т	Ρ	R	R	Ρ	G	L	т	R	Κ	Ρ	Y	Q	Ρ	Y	А	Ρ
1585	CAA	AGT	GAC	TAC	ATG	AAC	ATG	ACT	CCC	CGG	AGG	ССТ	GGG	CTC	ACT	CGA	AAG	ССТ	TAC	CAG	CCC	TAC	GCC	ССТ
	GTT	TCA	CTG	ATG	TAC	TTG	TAC	TGA	GGG	GCC	TCC	GGA	CCC	GAG	TGA	GCT	TTC	GGA	ATG	GTC	GGG	ATG	CGG	GGA
	А	R	D	F	А	А	Y	R	Ρ	L	R	А	Κ	F	S	R	S	А	Е	Т	А	А	Ν	L
1657	GCC	AGA	GAC	TTT	GCA	GCG	TAC	CGC	CCC	CTG	AGA	GCA	AAA	TTC	AGC	AGG	AGT	GCA	GAG	ACT	GCT	GCC	AAC	CTG
	CGG	TCT	CTG	AAA	CGT	CGC	ATG	GCG	GGG	GAC	TCT	CGT	TTT	AAG	TCG	TCC	TCA	CGT	CTC	TGA	CGA	CGG	TTG	GAC
	Q	D	Ρ	Ν	Q	L	Y	Ν	Е	L	Ν	L	G	R	R	Е	Е	Y	D	V	L	Е	Κ	К
1729	CAG	GAC	CCC	AAC	CAG	CTC	TAC	AAT	GAG	CTC	AAT	CTA	GGG	CGA	AGA	GAG	GAA	TAT	GAC	GTC	TTG	GAG	AAG.	AAG
	GTC	CTG	GGG	TTG	GTC	GAG	ATG	TTA	CTC	GAG	TTA	GAT	CCC	GCT	TCT	CTC	CTT	ATA	CTG	CAG	AAC	CTC	TTC	TTC
			В	amHI	τ																			
			~	~ ~ ~ ~	~~~																			
	R	А	R	D	Ρ	Е	М	G	G	Κ	Q	Q	R	R	R	Ν	Ρ	Q	Е	G	V	Y	Ν	А
1801	CGG	GCT	CGG	GAT	CCA	GAG	ATG	GGA	GGC	AAA	CAG	CAG	AGG	AGG	AGG	AAC	CCC	CAG	GAA	GGC	GTA	TAC	AAT	GCA
	GCC	CGA	GCC	CTA	GGT	CTC	TAC	ССТ	CCG	TTT	GTC	GTC	TCC	TCC	TCC	TTG	GGG	GTC	CTT	CCG	CAT	ATG	TTA	CGT
	L	Q	Κ	D	Κ	М	А	Е	Α	Y	S	Е	I	G	Т	Κ	G	Е	R	R	R	G	Κ	G
1873	CTG	CAG	AAA	GAC	AAG	ATG	GCA	GAA	GCC	TAC	AGT	GAG	ATC	GGC	ACA	AAA	GGC	GAG	AGG	CGG	AGA	GGC	AAG	GGG
	GAC	GTC	TTT	CTG	TTC	TAC	CGT	CTT	CGG	ATG	TCA	CTC	TAG	CCG	TGT	TTT	CCG	CTC	TCC	GCC	TCT	CCG	TTC	CCC
	Η	D	G	L	Y	Q	G	L	S	Т	А	Т	Κ	D	Т	Y	D	А	L	Η	М	Q	Т	L
1945	CAC	GAT	GGC	CTT	TAC	CAG	GGT	CTC	AGC	ACT	GCC	ACC	AAG	GAC	ACC	TAT	GAT	GCC	CTG	CAT	ATG	CAG	ACC	CTG
	GTG	CTA	.CCG	GAA	ATG	GTC	CCA	GAG	TCG	TGA	CGG	TGG	TTC	CTG	TGG	ATA	CTA	CGG	GAC	GTA	TAC	GTC	TGG	GAC
	Α	Ρ	R	*																				
2017	CCC	COT	rada	ጥአአ																				

2017 GCCCCTCGCTAA CGGGGAGCGATT

7 Literaturverzeichnis

A

Adams, G. P.; Schier, R.; McCall, A. M.; Simmons, H. H.; Horak, E. M.; Alpaugh, R. K.; Marks, J. D.; Weiner, L. M. (2001): High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules, Cancer Research, 61(12): 4750-4755.

Altenschmidt, U.; Klundt, E.; Groner, B. (1997): Adoptive transfer of *in vitro*-targeted, activated T lymphocytes results in total tumor regression, Journal of Immunology, 159: 5509-5515.

Arakawa, F.; Shibaguchi, H.; Xu, Z.; Kuroki, M. (2002): Targeting of T cells to CEAexpressing tumor cells by chimeric immune receptrs with a highly specific singlechain anti-CEA activity, Anticancer Research, 22(6C): 4285-4289.

B

Baniyash, M.; Garcia-Morales, P.; Luong, E.; Samelson, L. E., Klausner R. D. (1988): The T cell antigen receptor ζ chain is tyrosine phosphorylated upon activation, Journal of Biological Chemistry, 263: 18225-18230.

Beauchemin, N; Draber, P.; Dveksler, G.; Gold, P.; Gray-Owen, S.; Grunert, F.; Hammarstrom S.; Holmes, K. V.; Karlsson, A.; Kuroki, M.; Lin, S. H.; Lucka, L.; Najjar, S. M.; Neumaier, M.; Obrink, B.; Shively, J. E.; Skubitz, K. M.; Stanners, C. P.; Thomas, P.; Thompson, J. A.; Virji, M.; von Kleist, S.; Wagener, C.; Watt, S.; Zimmermann, W (1999): Redefined nomenclature for members of the carcinoembryonic antigen family, Experimental Cell Research, 252(2): 243-249.

Bieganowska, K.; Hollsberg, P.; Buckle, G. J.; Greten, T. F.; Schneck, J.; Altmann, J. D.; Jacobson, S.; Ledis, S.L.; Hanchard, B.; Chin, J.; Morgan, O.; Roth, P. A.; Hafler, D. A. (1999): Direct analysis of viral-specific CD8+ T cells with solubile HLA-A2/Tax11-19 tetramer complexes in patients with human T cell lymphotropic virus-associated myelopathy, Journal of Immunology, 162(3): 1765-1771.

Bonnevier, J. L.; Yarke, C. A.; Mueller, D. L. (2006): Sustained B7/CD28 interactions and resultant phospatidylinositol 3-kinase activity maintain G1 -> S phase transitions at an optimal rate, European Jurnal of Immunology, 36(6): 1583-1597.

Brentjens, R. J.; Latouche, J. B.; Santos, E.; Marti, F.; Gong, M. C.; Lyddane, C.; King, P. D.; Larson, S.; Weiss, M.; Riviere, I.; Sadelain, M. (2003): Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and Interleukin-15, Nature medicine, 9(3): 279-286.

С

Canham, M. & Talbot, S. J. (2004): A naturally occuring C-terminal truncated isoform of the latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus does not associate with viral episomal DNA, Journal of General Virology, 85(Pt6): 1369-1369.

Chmielewski, M.; Hombach, A.; Heuser, C.; Adams, G. P.; Abken, H. (2004): T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain

fragment domain above threshold does not increase T cell activation against antigenpositive target cells but decreases selectivity, 173(12): 7647-7653.

Cobleigh, M. A.; Vogel, C. L.; Tripathy, D.; Robert, N. J.; Scholl, S.; Fehrenbacher, L.; Wolter, J. M.; Paton, V.; Shak, S.; Liebermann, G.; Slamon, D. J. (1999): Multinational study of the efficacy and safety of humanized anti-HER-2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease, Journal of clinical Oncology, 17: 2639-2648.

Constant, S.L.; Bottomly, K. (1997): Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches, Annual review of Immunology, 15: 297-322.

Croft, M. (2003): Co-stimulatory members of the TNFR family: keys to effective T-cell immunity ?, Nature Reviews Immunology, 3(8): 609-620.

Crombet, T.; Osorio, M.; Cruz, T.; Rosa, C.; del Castillo, R.; Mon, R.; Iznaga,-Escobar, N.; Figueredo, R.; Koropatnick, J.; Renginfo, E.; Fernandez, E.; Alvarez, D.; Torres, O.; Ramos, M.; Leonard, I.; Perez, R.; Lage, A. (2004): Use of the humanized antiepidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients, Journal of clinical Oncology, 22: 1646-1654.

D

Darcy, P. K.; Haynes, N.M.; Snook, M. B.; Trapani, J. A.; Cerruti, L.; Jane, S. M.; Smyth (2000): Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL, Journal of Immunology, 164(7): 3705-3712.

Dudley, M. E.; Wunderlich, J. R.; Shelton, T. E. (2003): Generation of tumorinfiltrating lymphocyte cultures for use in adoptive therapy for melanoma patients, Journal of Immunotherapy, 26(4): 332-342.

Dudley, M. E., Wunderlich, J. R.; Yang, J. C.; Sherry, R. M.; Topalian, S. L.; Restifo, N. P.; Royal, R. E.; Kammula, U.; White, D. E.; Mavroukakis, S. A.; Gracia, G. J.; Mangiamelli, D. P.; Pelletier, M. M.; Gea-Banacloche, J.; Robinson, M. R.; Berman, D. M.; Filie, A. C.; Abati, A.; Rosenberg, S. A. (2005): Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma, Journal of Clinical Oncology, 23(10): 2346-2357.

Dwenger, A.; Lindemann, A.; Mertelsmann, R. (1996): Minimal residual disease: detection, clinical relevance, and treatment strategies, Journal of Hematotherapy, 5(5): 537-548.

E

Eades-Perner, A. M.; van der Putten, H.; Hirth, A.; Thompson, J.; Neumaier, M; von Kleist, S.; Zimmermann, W. (1994): Mice transgenic for the human carcinoembryonic antigen gene maintain ist spatiotemporal expression pattern, Cancer Research, 54(15): 4169-4176.

Eck, S. C.; Chang, D.; Wells, A. D.; Turka, L. A. (1997): Differentiation down-regulation of CD28 by B7-1 and B7-2 engagement, Transplantation, 64(10): 1497-1499.

Erkanli, A.; Taylor, D. D.; Dean, D.; Eksir, F.; Egger, D.; Geyer, J.; Nelson, B. H.; Stone, B.; Fritsche, H. A.; Roden R. B. (2006): Application of Bayesian modeling of autologous antibody responses against ovarian tumor-associated antigens to cancer detection, Cancer Research, 66(3): 1792-1798.

Eshhar,Z.; Waks, G.; Gross, G.; Schindler, D. G. (2001): Functional expression of chimeric receptor genes in human T cells, Journal of immunological Methods, 248: 67-76.

F

Fan, Y.; Ge, Y.; Wang, Y.; Yang, B.; Zhuang, Y.; Ma, H.; Zhang, X. (2004): Characterization and application of two novel monoclonal antibodies against CD40L: epitope and functional studies on cell membrane CD40L and studies on the origin of soluble serum CD40L, Tissue Antigens, 64(3): 257-263.

Finney, H. M.; Akbar, A. N.; Lawson, A. D. (2004) Activation of resting primary human T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain, Journal of Immunology, 172(1): 104-113.

Fletcher, R. H. (1986): Carcinoembryonic antigen, Annals of Internal Medicine, 104(1): 66-73.

Friedmann-Morvinski, D.; Bendavid, A.; Waks, T.; Schindler, D.; Eshhar, Z. (2005): redirected primary T cells harboring a chimeric receptor require costimulation for their antigen-specific activation, Blood, 105(8): 3087-3093.

Friend, P. J.; Hale, G.; Chatenoud, L.; Rebello, P.; Bradley, J.; Thiru, S.; Phillips, J. M.; Waldmann, H. (1999): Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection, Transplantation, 68: 1632-1637.

G

Gonda, T.; Okada, N.; Nakada, H.; Yokoyama, M.; Miyazaki, T.; Ishibashi, K.; Ishida, H.; Matsumoto, Y.; Miura, T. (2006): [The relationship between plasma level of VEGF or soluble Flt-1 and efficacy of hepatic arterial chemotherapy in patients with liver metastasis of colorectal cancer], Gan To Kagaku Ryoho, 33(12): 1841-1844.

Gonzales, N. R.; De Pascalis, R.; Schlom, J.; Kashmiri, S. V. (2005) : Minimizing the immunogenicity of antibodies for clinical application, Tumour biology, 26(1): 31-43.

Gramaglia, I.; Weinberg, A. D.; Lemon, M.; Croft, M. (1998): OX-40 ligand a potent costimulatory molecule for sustaining primary CD4 T cell responses, Journal of Immunology, 161(12): 6510-6517.

H

Hatada, M. H.; Lu, X.; Laird, E. R.; Green, J.; Morgenstern, J. P.; Lou, M.; Marr, C. S.; Phillips, T. B.; Ram, M. K.; Theriault, K. (1995): Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor, Nature, 377: 32-38.

Haynes, N. M.; Snook, M. B.; Trapani, J. A.; Cerruti, L.; Jane, S. M.; Smyth, M. J.;

Darcy, P. K. (2001): Redirecting mouse CTL against colon carcinoma:superior signaling efficacy of single-chain variable domain chimeras containing TCR-zeta vs Fc epsilon RI-gamma, Journal of Immunology, 166(1): 182-187.

Haynes, N. M.; Trapani., J. A.; Teng, M. W.; Jackson, J. T.; Cerruti, L.; Jane, S. M.; Kershaw, M. H.; Smyth, M. J.; Darcy, P. K. (2002): Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors, Blood, 100(9): 3155-3163.

Haynes, N.M.; Trapani, J. A.; Teng, M. W.; Jackson, J. T.; Cerruti, L.; Jane, S. M.; Kershaw, M. H., Smyth, M. J.; Darcy, P. K. (2002): Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation, Journal of Immunology, 169(10): 5780-5786.

Hombach, A.; Sircar, R.; Heuser, C.; Tillmann, T.; Kruis, W.; Diehl, V.; Pohl, C.; Abken, H. (1998): Chimeric anti-TAG72 receptors with immunoglobulin constant Fc domains and gamma or zeta signalling chains, International Journal of Molecular Medicine, 2(1): 99-103.

Hombach, A; Koch, D.; Sircar, R.; Heuser, C.; Diehl, V.; Kruis, W.; Pohl, C.; Abken, H. (1999): A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in the presence of soluble CEA, Gene Therapy, 6(2): 300-304.

Hombach, A.; Heuser, C.; Gerken, M.; Fischer, B.; Lewalter, K.; Diehl, V.; Abken, H. (2000): T cell activation by recombinant FcepsilonRI gamma-chain immune receptors: an extracellular spacer domain impairs antigen-dependent T cell activation but not antigen recognition, Gene Therapy, 7(12): 1067-1075.

Hombach, A.; Schneider, C.; Sent, D.; Koch, D.; Willemsen, R. A.; Diehl, V.; Kruis, W.; Bolhuis, R. L.; Pohl, C.; Abken, H. (2000): An entirely humanized CD3 zeta-chain signaling receptor that directs peripheral blood T cells to specific lysis of carcinoembryonic antigen-positive tumor cells, International Journal of Cancer, 88(1): 115-120.

Hombach, A.; Wieczarkowiecz, A.; Marquardt, T.; Heuser, C.; Usai, L.; Pohl, C.; Seliger, B.; Abken, H. (2001): Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule, Journal of Immunology, 167(11): 6123-6131.

Huston, J. S. & George, A. J. (2001): Engineered antibodies take center stage, Human Antibodies, 10(3-4): 127-142.

Hombach, A.; Heuser, C.; Abken, H. (2002): The recombinant T cell receptor strategy: insights into structure and function of recombinant immunoreceptors on the way towards an optimal receptor design for cellular immunotherapy, Current Gene Therapy, 2(2): 211-226.

Hwu, P.; Yang, J. C.; Cowherd, R.; Treisman, J.; Shafer, G. E.; Eshhar, Z.; Rosenberg,

S. A. (1995): In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes, Cancer Research, 55(15): 3369-3373.

I

Imai, C.; Mihara, K.; Andreansky, M.; Nicholson, I. C.; Pui, C. H.; Geiger, T. L.; Campana, D. (2004): Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia, Leukemia, 18(4): 676-684.

Ito, T.; Wang, Y. H.; Duramad, O.; Hanabuchi, S.; Perng, O. A.; Gilliet, M.; Qin, F. X.; Liu, Y. J. (2006): OX40 ligand shuts down IL-10-producing regulatory T cells, PNAS, 103(35): 13138-13143.

Ito, T.; Wang, Y. H.; Duramand, O.; Hori, T.; Delespesse, G. J.; Watanabe, N.; Qin, F. X.; Yao, Z.; Cao, W.; Liu, Y. (2005): TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand, Journal of experimental medicine, 202(9): 1213-1223.

Itoh, K.; Inoue, K.; Tezuka, T.; Tada, H.; Hashimoto, Y.; Masuko, T.; Suzuki, T. (2003): Molecular structural and functional characterization of tumor suppressive anti-ErbB-2 monoclonal antibody by phage display system, Journal of Biochemistry (Tokyo), 133(2): 239-245.

Iwashima, M.; Irving, B. A.; van Oers, N. S.; Chan, A. C.; Weiss, A. (1994): Sequential interactions of the TCR with two distinct cytoplasmatic tyrosine kinases, Science, 263: 1136-1139.

J

Jiang, H. R.; Gilham, D. E.; Mulryn, K.; Kirillova, N.; Hawkins, R. E.; Stern, P. L. (2006): Combination of vaccination and chimeric receptor expressing T cells provides improved active therapy of tumors, Journal of Immunology, 177(7): 4288-4298.

K

Kalunian, K. C.; Davis, J. C.; Merrill, J. T.; Totoristis, M. C.; Wofsy, D. (2002): Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: A randomized, double-blind, placebo-controlled trial, Arthritis and Rheumatism, 46: 3251-3258.

Kershaw, M. H.; Westwood, J. A.; Zhu, Z.; Witte, L.; Libutti, S. K.; Hwu, P. (2000): Generation of gene-modified T cells reactive against the angiogenic kinase insert domain-containing receptor (KDR) found on tumor vasculature, Human Gene Therpapy, 11(18): 2445-2452.

Kershaw, M. H.; Westwood, J. A.; Hwu, P. (2002): Dual-specific T combine proliferation and antitumor activity, Nature Biotechnology, 20: 1221-1227.

Kershaw, M. H.; Teng, M. W.; Smyth, M. J.; Darcy, P. K. (2005): Supernatural T cells: Genetic modification of T cells for Cancer Therapy, Nature reviews Immunology, 5(12): 928-940.

Kiem, H. P.; Sllers, S.; Thomasson, B.; Morris, J. C.; Tisdale, J. F.; Horn, P. A.; Hematti, P.; Adler, R.; Kuramoto, K.; Calmels, B.; Bonifacino, A.; Hu, J.; von Kalle,

C.; Schmidt, M.; Sorrentino, M., Nienhuis, A.; Blau, C. A.; Andrews, R. G.; Donahue, R. E.; Dunbar, C. E. (2004): Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia, Molecular Therapy, 9(3): 389-395.

Kinugasa, T.; Kuroki, M.; Takeo, H.; Matsuo, Y.; Ohshima, K.; Yamashita, Y.; Shirakusa, T.; Matsuoka, Y. (1998): Expression of four CEA family antigens (CEA, NCA, BGP and CGM2) in normal and cancerous gastric epithelial cells: up-regulation of BGP and CGM2 in carcinomas, International Journal of Cancer, 76(1): 148-153.

L

Lamers, C. H.; Willemsen, R. A.; Luider, B. A.; Debets, R.; Bolhuis, R. L. (2002): Protocol for gene transduction and expansion of human T lymphocytes for clinical immunogene therapy of cancer, Cancer Gene Therapy, 9: 613-623.

Levin, L. V. & Griffin, T. W. (1991): Specific adhesion of carcinoembryonic antigenbearing colorectal cancer cells to immobilized carcinoembryonic antigen, Cancer Letters, 60(2): 143-152.

Litvinov, I., V.; Vander Griend D.; J., Xu, Y.; Antony, L.; Dalrymple, S. L.; Isaacs, J. T. (2006): Lo-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells, Cancer Research, 66(17): 8598-8607.

Lou, Y.; Wang, G.; Lizee, G.; Kim, G. J.; Finkelstein, S. E.; Feng, C.; Restifo, N. P.; Hwu, P. (2004): Dendritic cells strongly boost the antitumor activity of adoptively transferred T cells in vivo, Cancer Research, 64(18): 6783-6790.

Μ

Maher, J.; Brentjens, R. J.; Gunset, G.; Riviere, I.; Sadelain, M. (2002): Human T-lymphocytes cytotoxicity and proliferation directed by a single chimeric TCR ζ /CD28 receptor, Nature biotechnology, 20: 70-75.

Mandruzzato, S.; Brasseur, F.; Andry, G.; Boon, T.; van der Bruggen, P. (1997): A CASP-8 mutation ecognized by cytolytic T lymphocytes on a human head and neck carcinoma, Journal of experimental medicine, 186(5): 785-793.

Matsuoka, Y.; Matsou Y.; Okamato, N.; Kuroki, M.; Ikehara, Y. (1991): Highly effective extraction of carcinoembryonic antigen with phosphatidylinositol-specific phospholipase C, Tumour Biology, 12(2): 91-98.

McGuinness, R. P.; Ge, Y.; Patel, S. D.; Kashmiri, S. V.; Lee, H. S.; Hand, P. H.; Schlom, J.; Finer, M. H.; McArthur, J. G. (1999): Anti-tumor activity of human T cells expressing the CC49-zeta chimeric immune receptor, Human Gene Therapy, 10(2): 165-173.

Moeller, M.; Haynes, N. M.; Kershaw, M. H.; Jackson, J. T.; Teng, M. W.; Street, S. E.; Cerutti, L.; Jane, S. M.; trapani, J. A.; Smyth, M. J.; Darcy, P. K. (2005): Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection, Blood, 106(9): 2995-3003.

Moertel, C. G.; O'Fallon, J. R.; Go, V. L.; O'Connell, M. J.; Thynne, G. S. (1986): The

preoperative carcinoembryonic antigen test in the diagnosis, staging, and prognosis of colorectal cancer, Cancer, 58(3): 603-610.

Mor, F.; Cohen, I. R. IL-2 rescues antigen specific T-cells from radiation or dexamethasone-induced apoptosis. Correlation with induction of Bcl-2, Journal of Immunology, 156, 515-522.

Moritz, D.and Groner, B. (1995): A spacer region between the single chain antibody and the CD3 zeta-chain domain of chimeric T cell receptor components is required for efficient ligand binding and signalling activity, Gene Therapy, 2: 539-546.

Muramatsu, H.; Yoshikawa, K.; Hayashi, T.; Takasu, S.; Kawada, Y.; Uchida, K.; Sato, S.; Takahashi, T.; Saga, S.; Ueda, R. (2005): Production and characterization of an active single-chain variable fragment antibody recognizing CD25, Cancer Letters, 225(2): 225-236.

Myers, R. B.; Brown, D.; Oelschlager, D. K.; Waterbor, J. W.; Marshall, M. E.; Srivasava, S.; Stockard, C. R.; Urban, D. A.; Grizzle, W. E. (1996): Elevated serum levels of p105(erbB-2) in patients with advanced-stage prostatic adenocarcinoma, International journal of Cancer, 69(5): 398-402.

Ν

Neumann, E.; Engelsberg, A.; Decker, J.; Storkel, S.; Jaeger, E.; Huber, C.; Seliger, B. (1998): Heterogeneous expression of the tumor-associated antigens to cancer detection, Cancer Research, 58(18): 4090-4095.

Niedermann, T. M.; Ghogawala, Z.; Carter, B. S.; Russell, M. M.; Mulligan, R. C. (2002): Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors, PNAS, 99(10): 7009-7014.

0

van Oers, N. S.; Killeen, N.; Weiss, A. (1996): Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes, Journal of experimental Medicine, 183: 1053-1062.

Р

Palmer, D. C.; Balasubramaniam, S.; Hanada, K.; Wrzesinski, C.; Yu, Z.; Farid, S.; Theoret, M. R.; Hwang, L. N.; Klebanoff, C. A.; Gattinoni, L.; Goldstein, A. L.; Yang, J. C.; Restifo, N. P. (2004): Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction, Journal of Immunology, 173(12): 7209-7216.

Pavoni, E.; Flego, M.; Dupuis, M. L.; Barca, S.; Petronzelli, F.; Anastasi, A. M.; D'Alessio, V.; Pellccia, A.; Vaccaro, P.; Monteriu, G.; Ascione, A.; De Santis, R.; Felici, F.; Cianfriglia, M.; Minenkova, O. (2006): Selection, affinity maturation, and characterization of a human scFv antibody against CEA protein, BMC Cancer, 24; 6:41.

Q

Qin, S.; Cobbold, S.; Tighe, H.; Benjamin, R.; Waldmann, H. (1987): CD4 monoclonal antibody pairs for immunosuppression and tolerance induction, European journal of Immunology, 17(8): 1159-1165.

R

Radvanyi, M.E.; Shi, Y.; Vaziri, H.; Sharma, A.; Dhala, R.; Mills, G. B.; Miller, R. G. (1996): CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response, Journal of Immunology, 156: 1788-1798.

Reinhold, U.; Liu, L.; Ludtke-Handjery, H. C.; Heuser, C.; Hombach, A.; Wang, X.; Tilgen, W.; Ferrone, S.; Abken, H. (1999): Specific lysis of melanoma cells by receptor grafted T cells is enhanced by anti-idiotypic monoclonal antibodies directed to the scFv domain of the receptor, Journal of Investigative Dermatology, 112(5): 744-750.

Ren-Heidenreich, L.; Hayman, G. T.; Trevor, K. T. (2000): Specific targeting of EGP- 2^+ tumor cells by primary lymphocytes modified with chimeric T cell receptors, Human Gene Therapy, 11: 9-19.

Ritter, G.; Cohen, L. S.; Williams, C.; Richards, E. C.; Old, L. J.; Welt, S. (2001): Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33, Cancer Research, 61: 6851-6859.

Rossig, C.; Bollard, C. M.; Nuchtern, J. G.; Merchant, D. A.; Brenner, M. K. (2001): Targeting of G_{D2} -positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes, International Journal of Cancer, 94: 228-236.

S

Saha, A.; Chatterjee, S. K.; Foon, K. A.; Bhattacharya-Chatterjee, M. (2006): Antiidiotype antibody induced cellular immunity in mice transgenic for human carcinoembryonic antigen, Immunology, 118(4): 483-496.

Sasaki, T.; Ikeda, H.; Sato, M.; Ohkuri, T.; Abe, H.; Kuroki, M.; Onodera, M.; Miyamoto, M.; Kondo, S.; Nishimura, T. (2006): Antitumor activity of chimeric immunoreceptor gene-modified Tc1 and Th1 cells against autologous carcinoembryonic antigen-expressing colon cancer cells, Cancer Science, 97(9): 920-927.

Schier R.; McCall, A.; Adams, G. P.; Marshall, K. W.; Merritt, H.; Yim, M.; Crawford, R. S.; Weiner, L. M.; Marks, C.; Marks, J. D. (1996): Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site, Journal of molecular Biology, 263(4): 551-567.

Seliger, B.; Maeurer, M. J.; Ferrone, S. (2000) TAP off – tumors on, Immunology Today, 18: 292-298.

Seliger B. (2005): Strategies of tumor immune evasion, BioDrugs (clinical immunotherapeutics, biopharmaceuticals and gene therapy), 19(6) : 347-354.

Selinka, H. C.; Zibert, A.; Wimmer, E. (1992): A chimeric poliovirus/CD4 receptor confers susceptibility to poliovirus on mouse cells, Journal of Virology, 66(4): 2523-2526.

Stancovski, I.; Schindler, D. G.; Waks, T.; Yarden, Y.; Sela, M.; Eshhar, Z. (1993): Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain

Fv receptors, Journal of Immunology, 151(11): 6577-6582.

Sugamura, K.; Ishii, N.; weinberg, A. D. (2004): Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40, Nature Reviews Immunology, 4(6): 420-431.

Spagnoli, G. C.; Adamina, M.; Bolli, M.; Weber, W. P.; Zajac, P.; Oertli, D.; Heberer, M.; Harder., F. (2005): Active antigen-specific immunotherapy of melanoma: from basic science to clinical investigation, World Journal of Surgery, 29(6): 692-699.

Т

Tai, C. K.; Wang, W. J.; Chen, T. C.; Kasahara, N. (2005): Single-shot, multicycle suicide gene therapy by replication-competent retrovirus vectors achieves long-term survival benefit in experimental glioma, Molecular Therapy, 12(5): 842-851.

Takami, N.; Misumi, Y.; Kuroki, M; Matsuoka, Y., Ikehara, Y. (1988): Evidence for carboxyl-terminal processing and glycolipid-anchoring of human carcinoembryonic antigen, Journal of Biological Chemistry 263(25): 12716-12720.

Tang, Y.; Zhang, L.; Yuan, J.; Akbulut, H.; Maynard, J.; Linton, P. J.; Deisseroth, A. (2004): Multistep process through which adenoviral vector vaccine overcomes anergy to tumor-associated antigens, Blood, 104(9): 2704-2713.

Teng, M. W.; Kershaw, M. H.; Moeller, M.; Smyth, M. J.; Darcy, P. K. (2004): mmunotherapy of cancer using systemically delivered gene-modified human T lymphocytes, Human Gene Therapy, 15: 699-708.

Thompson, J. A.; Eades-Perner, A. M.; Ditter, M.; Muller, W. J.; Zimmermann, W. (1997): Expression of transgenic carcinoembryonic antigen (CEA) in tumor-prone mice: an animal model for CEA-directed tumor immunotherapy, International Journal of Cancer, 72(1), 197-202.

Thompson, J; Epting, T.; Schwarzkopf, G.; Sninghofen, A.; Eades-Perner, A. M., van der Putten, H.; Zimmermann, W. (2000): A transgenic mouse line that develops early-onset invasive gastric carcinoma provides a model for carcinoembryonic antigentargeted tumor therapy, International Journal of Cancer, 86(6): 863-869.

U

Utermoehlen, O.; Schulze-Garg, C.; Warnecke, G.; Gugel, R.; Lohler, J.; Deppert, W. (2001): Simian virus 40 large-T-antigen-specific rejection of mKSA tumor cells in BALB/c mice is critically dependent on borth strictly tumor-associated, tumor-specific CD8(+) cytotoxic T lymphocytes and CD4(+) T helper cells, Journal of Virology, 75(22): 10593-10602.

V

W

Weijtens, M. E.; Willemsen, R. A.; Valerio, D.; Stam, K.; Bolhuis, R. L. (1996): Single chain Ig/ γ gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity, Journal of Immunology, 157: 836-843.

Weiss, A. & Littmann, D. R. (1994): Signal transduction by lymphocyte antigen

receptors, Cell, 76: 1053-1062.

Welt, S.; Ritter, G.; Williams, C.; Cohen, L. S.; John, M.; Jungbluth, A.; Richards, E. A.; Old, L. J.; Kemeny, N. E. (2003): Phase I study of anticolon cancer humanized antibody A33, Clinical Cancer Research, 9: 1338-1346.

Х

Y

Yazdi, A. S.; Morstedt, K.; Puchta, U.; Ghoreschi, K.; Flaig, M. J.; Rocken, M.; Sander, C. A. (2006): Heterogeneity of T-cell clones infiltrating primary malignant melanomas, Journal of Investigative Dermatology, 126(2): 393-398.

Yun, C. O.; Nolan, K. F.; Beecham, E. J.;Reisfeld, R. A.; Junghans, R. P. (2000): Targeting of T lymphocytes to melanoma cells through chimeric anti-GD3 immunoglobulin T-cell receptors, Neoplasia, 2: 449-459.

Z

Zhang, T.; Barber, A.; Sentman, C. L. (2006): Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor, Cancer Research, 66(11): 5927-5933.

Zhang, W.; Sloan-Lancaster, J.; Kitchen, J.; Trible, R. P.; Samelson, L. E. (1998): LAT: the ZAP-70 tyrosine kinase substratethat links T cell receptor to cellular activation, Cell, 92(1): 83-92.

Danksagung

Herrn Prof. Dr. Hinrich Abken danke ich sehr herzlich für die Ermöglichung dieser Arbeit und die kontinuierliche Förderung während meiner Promotionszeit. Er war jederzeit offen für Fragen, Diskussionen und Anregungen und sorgte für ein sehr angenehmes Arbeitsklima in unserer Arbeitsgruppe Tumorgenetik. Ich empfand die freundschaftliche Zusammenarbeit als sehr angenehm. Desweiteren bedanke ich mich bei Ihm für die Begutachtung dieser Dissertation.

Herrn Prof. Dr. Thomas Langer danke ich für seine Bereitschaft die Betreuung dieser Arbeit in der Mathematisch-Naturwissenschaftlichen Fakultät zu übernehmen und für die Übernahme des Koreferates.

Herrn Prof. Dr. Jens C. Brüning möchte ich ganz herzlich für die Übernahme des Prüfungsvorsitzes danken.

Weiter danke ich Frau Dr. Lichtenberg, die als Mitglied der Prüfungskommission mir Ihre Zeit gewidmet hat.

An dieser Stelle will ich mich bei Allen bedanken, die zum gelingen meiner Arbeit beigetragen haben. Herrn Dr. Andreas Hombach danke ich für die konstruktiven und hilfreichen Diskussionen. Meinem Freund Samir Tawadros danke ich sehr herzlich für seine ständige Bereitschaft mich bei der Arbeit zu unterstützen. Herrn Frank Steiger danke ich sehr für seine zahlreichen Hilfestellungen.

An dieser Stelle bedanke ich mich bei allen Mitarbeitern des Labors für Tumorgenetik für das sehr angenehme Arbeitsklima.

Ein liebes Dankeschön an meine Eltern und meinen Bruder für deren uneingeschränkte Unterstützung.

Mojej kochanej Ani dziękuje serdecznie za pomoc i cierpliwość.

Erklärung

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; daß sie - abgesehen von unten angegebenen Teilpublikationen noch nicht veröffentlicht worden ist sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Hinrich Abken und Prof. Dr. Thomas Langer betreut worden.

Köln, den 12. März 2007

Markus Chmielewski

Teilpublikationen (submitted):

Adoptive transfer of engineered T cells induces memory of pre-defined specificity Markus Chmielewski, Andreas Hombach and Hinrich Abken

CD28 costimulation does not alter the binding affinity dependent threshold in T cell activation via recombinant immunoreceptor

Markus Chmielewski, Andreas Hombach and Hinrich Abken

T-cells redirected against Hepatitis B Virus surface proteins eliminate HBV infected hepatocytes

Felix Bohne, Eva Gückel, Markus Chmielewski, Katja Wiegmann, Timo Kürschner, Andreas Schulze, Stefan Urban, Martin Krönke, Hinrich Abken and Ulrike Protzer

Breaking Natural Killer Cell Tolerance to HER-2 Expressing Carcinomas

Anna Kruschinski, Markus Chmielewski, Thomas Blankenstein, Hinrich Abken and Jehad Charo

Lebenslauf

Name:	Markus Chmielewski
Geburtsdatum:	30. September 1975
Geburtsort:	Lötzen (Ostpreußen)
Staatsangehörigkeit:	deutsch
Familienstand:	ledig
Adresse:	Vitalisstrasse 21, 50827 Köln
e-mail:	markus.chmielewski@uk-koeln.de
Telefon:	0176 / 23 53 93 52

Schulische Ausbildung:

1982 - 1987	Volksschule in Lötzen (Ostpreußen)
1987 - 1988	Katholische Hauptschule in Köln
1988 - 1996	Heinrich-Mann-Gymnasium in Köln, Abschluss: Abitur

Zivildienst:

1996 - 1997 Marie-Juchacz-Altenzentrum in Köln

Akademische Ausbildung:

- 1997 2003 Biologiestudium an der Universität zu Köln, Diplom (Note: sehr gut)
- 2004 Publikation der Ergebnisse aus der Diplomarbeit:

Chmielewski, M.; Hombach, A.; Heuser, C.; Adams, G.P. and Abken,
H.; T Cell Activation by Antibody-Like Immunoreceptors: Increase in
Affinity of the Single-Chain Fragment Domain above Threshold Does
Not Increase T Cell Activation against Antigen-Positive Target Cells but
Decreases Selectivity.
The Journal of Immunology, 2004, 173: 7647-7653.

seit 11/2003 Promotionsstudium am Institut für Genetik; externe Doktorarbeit am

Klinikum der Universität zu Köln, Klinik I für Innere Medizin, Labor für Tumorgenetik und Immunologie, Univ.-Prof. Dr. med. Hinrich Abken

Köln, den 12. März 2007