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geholfen haben über die vielen Selbstzweifel während der Arbeit hinwegzukom-

men. Den Teilnehmern des Oberseminars der beiden Statistiklehrstühle danke ich

für die hilfreichen Kommentare.

Eine gute Promotion ist offen für Impulse von außerhalb. Deshalb möchte ich
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Abstract

As a consequence of the ongoing liberalization process, sensible management in the

electricity sector has to take into account the market price risk as well as volume

risks.

Market price risk mainly arises due to the scarce storability of electricity which

causes spot prices to be highly volatile. Secondly, the demand for electricity

strongly depends on weather conditions. Electricity suppliers sell less power dur-

ing mild winters than expected beforehand. Consequently, the suppliers are faced

with volume risks.

To cope with the market price risk suitable models of the spot price are required.

These models can be exploited for pricing of derivatives on the electricity spot

price as the underlying on one hand and the short term optimization of the pro-

duction schedule on the other hand.

In the first part of the thesis, the author discusses some of the existing approaches

to the modelling of spot prices and puts forward a new approach. In addition, he

examines the impact of weather on electricity spot prices.

In the second part of the thesis, the author discusses bivariate modelling of temper-

ature time series which is crucial for cross-city hedging with weather derivatives.

Weather derivatives are financial instruments which allow to hedge against volume

risks emerging from unforeseen weather conditions.

Zusammenfassung

Die Liberalisierung des Energiesektors stellt Energiemanager vor neue Aufgaben.

Sie müssen sich mit Marktpreis- und Mengenrisiken auseinandersetzen.

Marktpreisrisiken spiegeln sich in der hohen Volatilität der Spotpreise wider, die

hauptsächlich in der Nichtspeicherbarkeit von Strom begründet ist. Ferner ist die

Nachfrage nach Strom stark wetterabhängig. Während milder Winter wird weniger

Strom abgesetzt als erwartet. Folglich sind Stromproduzenten auch einem Men-

genrisiko ausgesetzt.

Um sich gegen Marktpreisrisiken abzusichern, sind geeignete Modelle für den

Spotpreis notwendig. Diese Modelle können zur Bewertung von Derivaten auf

dem Spotpreis als dem Underlying einerseits und zur operationalen Kurzfristopti-

mierung andererseits eingesetzt werden.

Im ersten Teil der Arbeit diskutiert der Verfasser ausgewählte bestehende Ansätze

zur Spotpreismodellierung und stellt einen neuen Ansatz vor. Außerdem unter-

sucht der Verfasser den Einfluss von Wetter auf die Spotpreise.

Im zweiten Teil der Arbeit, wird die Bivariate Modellierung von Temperaturzeitrei-

hen diskutiert. Dies ist von Bedeutung für Cross- city hedging mit Wetter-

derivaten. Wetterderivate sind Finanzinstrumente, die es erlauben sich gegen

Mengenrisiken hervorgerufen durch unvorhergesehene Wetterbedingungen abzu-

sichern.
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Chapter 1

Introduction

Until recently, the electricity sector has been a vertically integrated industry and

prices have been fixed by regulators. The rapidly progressing deregulation is now

leading to gradually privatised electricity markets. These markets divide into for-

ward markets, on one hand, and spot markets on the other hand. Especially in

spot markets, market participants are exposed to very volatile prices and high un-

certainty. Since storability of electricity is limited, spot and forward prices cannot

be easily linked. Consequently, forward and spot prices require a separate analysis.

In this thesis, we focus on electricity spot markets, since spot prices are more chal-

lenging in modelling than forward prices. Our empirical investigations focus on

the spot market at the European Energy Exchange in Leipzig.

As in the commodity and financial markets, derivatives can be used to cope with

the large uncertainty due to highly volatile prices. However, pricing of derivatives

with the spot price as the underlying asset has to take into account the salient

characteristics of electricity spot prices. These features are several seasonality cy-

cles, mean reversion and extreme price spikes. Spikes are a direct consequence

of the non-storable nature of electricity and are usually explained either by unex-

pected outages of large power plants or unpredicted changes of weather conditions.

In most cases, spikes are very short-lived but they can also last for several days in

a row.

Besides derivative pricing, short-term price forecasting is of crucial interest for

spot market participants. Since spot prices are typically determined through an

auction, market participants are requested to express their bids in terms of prices

and quantities. Consequently, market participants who are able to accurately fore-

cast spot prices can adjust their production schedule to maximize their profits.

Derivative pricing as well as short-term price forecasting require a suitable spot

price model. Time series models are capable of capturing the salient characteristics

of electricity prices. However, spikes induce non-linearities into the price process.

Therefore, we especially focus on non-linear time series approaches. Among sev-

eral non-linear time series approaches, we opt for Markov regime-switching models

in spirit to Hamilton (1989). Markov regime-switching models are tailor-made for

spot prices and very flexible in modelling non-linearities. In addition, forecasting

11



can be easily carried out following Hamilton (1989).

The second chapter is dedicated to the application of Markov regime-switching

models to spot prices. More precisely, we start with a discussion and application

of two established Markov regime-switching models. In a second step, we extend

these models by introducing day-dependent spikes. With the inclusion of day-

dependent spikes, we take into account that large sized upward spikes are not to

be expected on days such as weekends or holidays when demand is usually low.

In a forecasting study, we show that our model extensions do not only successfully

capture main characteristics of electricity prices but are also an asset in terms of

forecasting.

We conclude with a presentation of model extensions of the models with day-

dependent spikes which take into account autoregressive conditional heteroscedas-

ticity dynamics.

Hence, the contribution to the literature in the first part of the thesis is the intro-

duction of new models which are an asset in derivative pricing and forecasting.

In the third chapter, the relation between weather, represented by temperature

and wind velocity, and hourly electricity prices from the European Energy Ex-

change in Leipzig is investigated. Furthermore, we assess whether the relation

between weather and prices can be successfully exploited for short-term forecast-

ing. Thereby, we proceed in the framework of a Markov regime-switching model

with day-dependent spikes.

The additional input to existing literature is the examination of the relationship

between temperature and wind, on one hand, and hourly power prices from the

EEX on the other. Moreover, we prove that transition probabilities, which govern

the transition between the regimes, can be successfully modelled as functions of

temperature and wind velocity for a couple of hours. Finally, we assess the signif-

icance of the relation between weather variables and hourly prices for forecasting

hourly prices at the EEX.

As monopolies gave their way to competitive wholesale electricity markets, volu-

metric risk came into play. Therefore in the fourth chapter, we turn to a discus-

sion of weather derivatives which can be bought by electricity suppliers to protect

from revenue uncertainties due to unexpected weather conditions. Our focus is

on temperature derivatives. Yet, exchange-based trading of temperature deriva-

tives mainly takes place at the Chicago Mercantile Exchange. Since temperature

contracts at the Chicago Mercantile Exchange can only be struck for weather vari-

ables measured at few selected locations, electricity supplier who wish to hedge

their risk at non-traded locations have to correlate their risk with the risk at trade-

able locations.

We examine the usefulness of bivariate GARCH models with dynamic conditional

correlations in modelling the correlation between non-traded and traded temper-

ature time series.

The knowledge of correlation dynamics between these temperature time series en-

ables an electricity supplier to correlate his risk with the risk of a traded city and

to construct a sensible hedge.

The contribution to the existing literature can be described as follows. We extend
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the existing univariate GARCH framework for temperature time series to the bi-

variate case. Bivariate GARCH models allow us to explicitly address and model

conditional correlation dynamics between two temperature time series. Knowing

the conditional correlation dynamics is the key to construct a cross-city hedge.

In chapter five, we summarize our work and highlight the contributions of these

thesis. Finally, we outline hints for further research.
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Chapter 2

Markov Regime-Switching

Models for Electricity Spot

Prices

2.1 Review of Literature on Electricity Spot Prices

To highlight the contribution to the literature made in this chapter, we have to

summarize previous work, first. Here, we especially outline important articles on

electricity spot prices. However, we also mention parts of our own work which

have already been evaluated and quoted by other authors in the meantime.

To start with, important initial articles are those of Knittel and Roberts (2005) and

of Lucia and Schwartz (2002). Knittel and Roberts (2005) evaluate the forecast

performance of several univariate models using Californian power prices. More-

over, they successfully include temperature as covariate. Lucia and Schwartz

(2002) present analytic formulas for the pricing of power derivatives. In addition,

they take seasonality and mean reversion into account. Escribano et al. (2002)

suggest a very general jump model approach. They incorporate mean reversion,

spikes and generalized autoregressive conditional heteroscedasticity (GARCH) in

their approach for the modelling of electricity spot prices. Moreover, Cuaresma

et al.(2004) carry out a forecast study with several linear univariate time series

models. They use data from the European Energy Exchange ( EEX )in Germany.

Angeles et al., forthcoming in (2007), provide empirical evidence of periodic ex-

tensions of regression models with autoregressive fractionally integrated moving

average disturbances for the analysis of daily spot prices. They apply their mod-

els to four different markets. Burger et al. (2004) derive a spot market model for

hourly power prices at the EEX. They base their model on economic fundamentals

of power prices in combination with a seasonal autoregressive integrated moving

average approach. Rambharat et al. (2005) propose a threshold autoregressive

model for daily spot prices from Pennsylvania. They incorporate a flexible mean

reversion rate depending on temperature and spikes. More recently, Misioreket

al. (2006) found that threshold autoregressive regime-switching models clearly

outperformed linear approaches in terms of interval forecasts for data from the
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California Power Exchange.

Basic idea behind non-linear Markov regime-switching approaches in spirit to

Hamilton (1989) is to model spikes as a separate regime. Modelling approaches

based on regime-switching have been suggested and successfully applied for in-

stance by Ethier and Mount (1998), Huisman and Mahieu (2003), De Jong and

Huisman (2003), Kosater and Mosler (2006). The latter focussed on the fore-

casting ability of Markov regime-switching models, whereas the remaining authors

stressed applicability in derivative pricing. In addition, Mount et al. (2006) show

that daily price spikes in the Pennsylvania-New Jersey-Maryland (PJM) Power

Pool can be very accurately predicted one day-ahead if load and the reserve mar-

gin are included in the model specification and transition probabilities are modelled

as functions of load and the reserve margin. Finally, De Jong (2006) tests several

spot price models on day-ahead markets in Europe and the USA. The author finds

that regime-switching models outperform GARCH(1,1) and Poisson jump models.

Furthermore, De Jong argues that especially regime-switching models with day-

dependent spikes as suggested by Kosater and Mosler (2006) are very well suited

to capture dynamics in many markets.

In the remainder of the chapter, we discuss and apply selected spot price models

to data from the EEX. In addition, we assess the out-of-sample forecast ability

of some selected Markov regime-switching models. Finally, we give an outlook on

further research.
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2.2 Data and Descriptive Statistics

The European Energy Exchange (EEX) in Leipzig is the largest national power

exchange in Europe. EEX wholesale electricity prices for 24 hours of the follow-

ing day are determined through an auction. These day-ahead prices are typically

referred to as spot prices. Besides hourly prices, so-called baseload and peak-

load prices are traded. The exchange EEX defines baseload prices as an equally

weighted average of the 24 individual hourly prices, while peakload prices are

determined by the equally weighted average of prices from 9 am to 8 pm. For

our investigations on baseload and peakload, we use data including baseload and

peakload price series which range from June 16th 2000 to July 28th 2004. Figure

2.2.1 shows the baseload series that exhibits typical features of power prices like

mean reversion and spikes. Table 2.2.1 presents some descriptive statistics for the

baseload and peakload series given in Euro/MWh, respectively. Obviously, the

descriptive statistics tell us that daily average spot prices are far from being nor-

mally distributed. Spot prices tend to fluctuate around a long term equilibrium.

Table 2.2.1: Descriptive Statistics on Baseload and Peakload in Euro/MWh.

Baseload Peakload

Mean 24.77 30.84

Median 23.62 28.53

Maximum 240.26 445.09

Minimum 3.12 0.80

Std. Dev. 11.872 19.302

Skewness 6.908 10.059

Kurtosis 103.82 180.00

This fluctuation is due to shifts in demand caused by weather, for example. Thus,

the expression mean reversion describes the tendency of spot prices to revert to a

long term equilibrium. Let Pt with time-index t ∈ {1, . . . , T} be the spot price. A

standard mean reverting process has the following specification.

Pt = Pt−1 + ρ · (µ− Pt−1) + εt εt ∼ N (0, σ2) (2.2.1)

In equation (2.2.1) the parameter µ is the long term equilibrium for the spot

price, whereas α measures the speed of reversion from the current to the long

term equilibrium. The parameter ρ can be related to the concept of half-life in

physics. The lower ρ, the longer is the half-life. In time series analysis, we model

mean reversion in the context of autoregressive processes AR(p). Equation (2.2.2)

shows the specification of an AR(p) process for spot prices.

Pt = ρ1 · Pt−1 + ρ2 · Pt−2 + . . . + ρp · Pt−p + εt εt ∼ N (0, σ2) (2.2.2)

The concept of mean reversion in equation (2.2.1) is a special case of an autore-

gressive process with p = 1. Furthermore, we have to include the drift parameter

µM since in equation (2.2.2) we assume a long-run level µM = 0. Power prices
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usually rather seem to follow a lognormal than a normal distribution. Therefore,

most authors, e.g. Escribano et al. (2002), Burger et al.(2004), and de Jong and

Huisman (2003), prefer working with the logarithm of power prices instead of the

original price series. Here, we follow their approach. Furthermore, Figure 2.2.2

shows the quantile-quantile plots of baseload against a normal distribution and a

lognormal distribution, respectively. The superimposed lines in subfigures 2.2.2a

and 2.2.2b pass through the first and third quartile and help to assess the deviation

from the straight line.

According to e.g. Escribano et al. (2002) and de Jong and Huisman (2003) the

logarithm of power prices log(Pt) will be assumed to consist of two parts, a deter-

ministic part denoted by ft and a stochastic part Xt,

log(Pt) = ft + Xt . (2.2.3)

Figure 2.2.3 shows the weekly seasonality. In order to take into account the weekly

seasonality, weekend dummy variables for Saturdays and Sundays as well as a

dummy variable for holidays are included. Moreover, since the range of the data

covers more than four years, we include a deterministic linear trend and a sinu-

soidal term to consider yearly seasonality.

The deterministic part of the logarithm of the power price ft is specified as,

ft = β1 · dummysat + β2 · dummysun + β3 · dummyhol + β4 · t
+γ1 · sin

(
(γ2 + t) · 2π

365

)
. (2.2.4)

More precisely, dummysat is the dummy variable for Saturdays, whereas dummysun

is the dummy variable for Sundays. The dummy variable for holidays is denoted

dummyhol. Finally, t is linear trend measured in days. The deterministic compo-

nent ft is estimated jointly with the parameters of the stochastic model of interest.
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Figure 2.2.1: Plots for baseload spot prices, the logarithm of baseload spot prices,

log(baseload), and the traded volume at the EEX.
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Figure 2.2.2: Quantile-quantile plots for baseload spot prices at the EEX.
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Figure 2.2.3: Weekly seasonality of baseload spot prices at the EEX.
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2.3 Stochastic Models for Power Prices

In this section, we discuss some of the models for the stochastic part of electricity

spot prices with a special focus on Markov regime-switching models.

2.3.1 AR(1) Process with Drift

We include the AR(1) process as a linear benchmark model. Although this process

captures mean reversion, which is a main stylized fact of electricity prices, it cannot

take into account spikes. The mean to which the process reverts is µM . M refers

to mean reversion in the remainder of the thesis.

Xt = ρ · µM + (1− ρ) ·Xt−1 + εM,t , εM,t ∼ N (0, σ2
M ). (2.3.1)

2.3.2 The Jump Model

Stochastic jump diffusion models with mean reversion are a very popular approach

for the modelling of electricity prices. The mean reversion component is used to

force prices to revert to a normal level after a spike has occurred. We find two

procedures to cope with spikes in jump models.

In the first approach, spikes are extracted if they exceed an arbitrarily set thresh-

old. The extracted prices are then replaced by the arithmetic average of the

neighboring prices, for example. This kind of preprocessing procedure is advo-

cated by Cuaresma et al. (2004) and Weron (2006). The extracted spikes are

then exploited to specify a spike distribution. The intensity of the jump process is

determined by the frequency of detected spikes in the data. The data, from which

spikes have been extracted, is used to estimate the remaining parameters.

Secondly, we can simply specify a model which allows to simultaneously estimate

all model parameters by means of maximum likelihood. The second procedure

is applied by Escribano et al. (2002), Huisman and Mahieu (2003) as well as by

Knittel and Roberts (2005). Here, we follow the approach presented in Huisman

and Mahieu (2003). Hence, we model mean reversion similar to equation (2.3.1).

The jumps Jt are assumed to be each the sum of independently and identically dis-

tributed normals Zi,t. In addition, we assume Zi,t ∼ N (µS , σ2
S) with i = 1, . . . , nt,

mean µS and variance σ2
S . The arrival process of the compound jumps is modelled

by a Poisson distribution with intensity λ,

Xt = ρ · µM + (1− ρ) ·Xt−1 + εM,t +
nt∑

i=1

Zi,t , εM,t ∼ N (0, σ2
M ) . (2.3.2)

Let LL denote the logarithmic likelihood,

LL =

−T · λ− T

2
ln(2π) + (2.3.3)

T∑
t=1

ln



∞∑

j=0

λj

j!
1√

σ2
M + jσ2

S

exp
(
− (Xt − ρ · µM + (1− ρ) ·Xt−1 − jµS)2

2(σ2
M + jσ2

S)

)
 .

Following Huisman and Mahieu (2003), we compute the sum
∞∑

j=0

. . . up to j = 10.

Estimation is carried out by maximizing LL with respect to the model parameters.
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We gauge models by means of information criteria. The information criteria of

Akaike (AC) and Schwartz (SC) are computed as follows throughout the thesis,

AC =
−2 · LL + 2k

T
SC =

−2 · LL + k log(T )
T

.

Moreover, k denotes the number of estimated parameters and T the number of

observations. The jump model provides a notably better fit than the AR(1) model

Table 2.3.1: Results on the AR(1) Model, equation(2.3.1), and the Jump Model,

equation (2.3.2).

AR(1) Jump Model

log(baseload) log(peakload) log(baseload) log(peakload)

β1
−0.285
(0.014)

−0.360
(0.021)

−0.270
(0.009)

−0.337
(0.012)

β2
−0.579
(0.014)

−0.682
(0.019)

−0.556
(0.010)

−0.645
(0.012)

β3
−0.597
(0.018)

−0.812
(0.021)

−0.507
(0.017)

−0.638
(0.020)

β4
0.0003

(4.5·10−7)
0.0003

(4.5·10−7)
0.0003

(3·10−7)
0.0003

(3·10−7)

γ1
0.099
(0.020

0.098
(0.022)

−0.124
(0.016)

0.112
(0.015)

γ2
−90.18
(15.341)

−67.57
(14.304)

−87.141
(8.680)

−79.940
(8.680)

µM
3.041

(0.039)
3.259

(0.038)
3.021

(0.026)
3.228

(0.023)

ρ 0.337
(0.011)

0.428
(0.010)

0.327
(0.013)

0.414
(0.014)

σM
0.194

(0.001)
0.237

(0.002)
0.141

(0.003)
0.156

(0.004)

λ - - 0.066
(0.013)

0.091
(0.016)

µS - - 0.036∗

(0.058)
0.079∗

(0.050)

σS - - 0.506
(0.040)

0.556
(0.036)

LL 333.83 32.20 543.68 317.89

AC -0.4322 -0.0309 -0.7075 -0.4070

SC -0.4004 0.0010 -0.6651 -0.3646

Note that ∗ means not significant at the 5 % level.

for the logarithm of baseload and peakload, respectively. Moreover, all param-

eter estimates in table 2.3.1 are highly significant except for the estimate of µs,

which is not significant at the 5 % level. In Figure 2.2.1c, we see that upward and

downward deviations are inherent in the logarithm of daily spot prices. This may

explain why the estimate of µs is not significant at the 5 % level. All results are

presented in table 2.3.1.
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Jump models are a very popular approach with derivative valuation based on spot

prices. However, jump models have certain shortcomings. As pointed out by Huis-

man and Mahieu (2003), it is not easy to disentangle jumps from the estimation

of the parameter ρ which governs the degree of mean reversion. Secondly, these

models are not suitable for forecasting. Albeit, a successful attempt to predict

spot prices with jump models has been undertaken by Cuaresma et al. (2004),

their implemented forecasting procedure is rather heuristic and should be treated

with caution.

2.3.3 A Markov Regime-Switching Model for Spot Prices:

Ethier and Mount(1998)

Besides the jump model, Markov regime-switching approaches are widely consid-

ered as tailor-made to model spot prices. These models are based on the Markov

regime-switching model of Hamilton (1989) which has originally been put forward

to model the business cycle of the economy in the USA. The basic idea of the

model is that the economy switches between one or more different regimes. For

example, we can assume a boom regime and a recession regime. Furthermore in

the basic approach, we assume that the regime-switching mechanism is exogenous

and the prevailing regime is latent. By this, we presume that we do not know

exactly which regime prevails at a certain point in time. However, we can at least

express a certain regime probability. Moreover, we presume to know the probabil-

ity of transition from one regime to another.

Indeed, it seems very convincing to classify occasional spikes and normal prices in

different regimes. To the best of our knowledge, the first attempt to model spot

prices with Markov regime-switching models has been undertaken by Ethier and

Mount (1998). Analogously to the original model, Ethier and Mount specify a

two- regime model. One regime to model normal prices and the second to capture

spikes. Contrary to the basic model proposed by Hamilton (1989), they assume

heteroscedasticity. By this, each regime is assigned its own variance. The prevail-

ing regime at time t is denoted St. In the remainder of the thesis, we set St = M

when power prices are in the normal regime and St = S else. Additionally, we

refer to the normal regime as the stable regime in the remainder of the thesis. We

present the model of Ethier and Mount (1998) in equations (2.3.4 - 2.3.6)

XM,t = µM + (1− ρ) · (X{St−1=i},t−1 − µ{St−1=i}
)

+ εM,t, (2.3.4)

XS,t = µS + (1− ρ) · (X{St−1=i},t−1 − µ{St−1=i}
)

+ εS,t, (2.3.5)

with i ∈ {M,S}, εM,t ∼ N (0, σ2
M ), εS,t ∼ N (0, σ2

S) .Transition between the

regimes is governed by the transition matrix Π,

Π =

(
q 1− p

1− q p

)
, (2.3.6)

where, q denotes the probability to stay in the stable regime, and p denotes the

probability to stay in the spike regime. In addition, XM,t denotes the value of Xt

provided that St = M and XS,t the same with St = S.

22



2.3.4 Two-Regime Model with Independent Spikes : De

Jong and Huisman (2003)

The second attempt to model spot prices with Markov regime-switching models

has been made by Huisman and Mahieu (2003). These authors put forward a three-

regime model. They propose two spike regimes where one spike regime is designed

to pull the price process back to the stable regime after a spike has occured. This

three- regime model is conceived to better disentangle spikes from the stable regime

than a jump model does. A shortcoming of this model is that it does not allow

for consecutive spikes. Hence, the price process cannot stay in the spike regime.

However, consecutive spikes are convenient with the fact that unforced outages can

have a longer impact on spot prices than one day. To overcome this disadvantage

and to allow consecutive spikes, De Jong and Huisman (2003) advocate a two-

regime model with independent spikes. The authors assume one spike regime and

one stable regime. The stable regime is modelled as follows,

XM,t = XM,t−1 + ρ · (µM −XM,t−1 ) + εM,t , εM,t ∼ N (0, σ2
M ) , (2.3.7)

whereas for the spike regime, the authors assume,

XS,t = µS + εS,t , εS,t ∼ N (0, σ2
S) . (2.3.8)

Transition between the states is governed by the same transition matrix Π as in

the Model of Ethier and Mount (1998), which is given in equation (2.3.6).

Up to now, it is not clear why spikes in this model are called independent. This is

the peculiarity of the model. The authors assume that the stable regime latently

evolves untouched through time, while a spike occurs. Hence, they assume two

stochastic processes which independently evolve next to each other through time.

However, at each point in time, we can only observe the realization of one of the

two processes. For example, we may observe a spike at t and a normal price at

t − 1. To obtain an unbiased estimation of the stable regime process, we have to

include the latent value of the stable regime at t, which we did not observe. To

solve the problem, De Jong and Huisman (2003) suggest to go back to t−1, where

we assume the price to originate from the stable regime and to approximate the

latent value of the stable regime at t by its forecast based on the normal price at

t − 1. It sounds easy, but, as a result, a very complex logarithmic likelihood has

to be constructed.

The aim of De Jong and Huisman (2003) is to disentangle spikes from the stable

regime as well as possible, without having to include an additional regime to pull

prices back to the stable regime, as suggested by Huisman and Mahieu (2003).

In fact, if we compare the results of the two regime model of Ethier and Mount

(1998)in table 2.3.2 with the results of De Jong and Huisman (2003), we observe

that the estimate of ρ is smaller in the two regime model of De Jong and Huisman

(2003) than in the model of Ethier and Mount (1998) for both considered time

series. Moreover, the estimate of p is also smaller, whereas the estimate of q is

larger in the De Jong and Huisman (2003) model than in the model of Ethier

and Mount (1998). All these results indicate that the approach of De Jong and

Huisman (2003) is capable of better disentangling spikes from the stable regime
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than the model put forward by Ethier and Mount (1998). This is especially true

for the logarithm of baseload. By contrast, for the logarithm of peakload the

difference between the model results is smaller.

Table 2.3.2: Results on the Two-Regime Switching Models, see equations (2.3.4-

2.3.8).

Ethier and Mount (1998) De Jong and Huisman (2003)

log(baseload) log(peakload) log(baseload) log(peakload)

β1
−0.272
(0.009)

−0.342
(0.011)

−0.279
(0.009)

−0.348
(0.011)

β2
−0.554
(0.009)

−0.648
(0.011)

−0.565
(0.009)

−0.655
(0.011)

β3
−0.482
(0.016)

−0.637
(0.019)

−0.496
(0.015)

−0.634
(0.017)

β4
0.0003

(2.8·10−5)
0.0003

(2.7·10−5)
0.0003

(3.5·10−5)
0.0003

(3.1·10−5)

γ1
−0.123
(0.016

0.107
(0.015

−0.107
(0.018

0.107
(0.017)

γ2
87.031
(8.110)

−80.018
(8.728)

90.815
(11.747)

−77.521
(9.921)

µM
3.018

(0.024)
3.230

(0.022)
3.033

(0.031)
3.234

(0.026)

ρ 0.327
(0.017)

0.397
(0.019)

0.260
(0.017)

0.321
(0.019)

σM
0.134

(0.003)
0.153

(0.003)
0.140

(0.003)
0.154

(0.003)

µS
2.918

(0.061)
3.462

(0.064)
3.057

(0.083)
3.432

(0.073)

σS
0.453

(0.016)
0.584

(0.018)
0.725

(0.054)
0.751

(0.034)

p 0.779
(0.046)

0.758
(0.048)

0.600
(0.076)

0.722
(0.054)

q 0.973
(0.007)

0.973
(0.006)

0.976
(0.005)

0.975
(0.005)

LL 579.92 356.60 544.82 340.15

AC -0.7544 -0.4572 -0.7100 -0.4368

SC -0.7084 -0.4112 -0.6639 -0.3907

2.3.5 Estimation of Markov Regime-Switching Models

Here, we explain how the logarithmic likelihoods for the models of interest can be

constructed. Let LL =
∑T

t=1 ln f(Xt|Ft−1) be the logarithmic likelihood. Here,

Ft−1 denotes the information set at t− 1. The conditional density is expressed as

follows:

f(Xt|Ft−1) = f(Xt, St = M |Ft−1) + f(Xt, St = S|Ft−1) (2.3.9)

= f(Xt|St = M,Ft−1) · f(St = M |Ft−1) +

f(Xt|St = S,Ft−1) · f(St = S|Ft−1)
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Moreover, the density f(St = i|Ft−1), i ∈ {M,S}, has to be determined. It holds

(j ∈ {M, S} ),

f(St = j|Ft−1) = f(St = j, St−1 = M |Ft−1) + f(St = j, St−1 = S|Ft−1)

= f(St = j|St−1 = M) · f(St−1 = M |Ft−1)

+ f(St = j|St−1 = S) · f(St−1 = S|Ft−1). (2.3.10)

The terms f(St = j|St−1 = i) are the one-step transition probabilities.

Conditional probabilities of type f(St−1 = j|Ft−1) are recursively calculated.

Due to Ft−1 = {Ft−2, Xt−1} it holds

f(St−1 = j|Ft−1) = f(St−1 = j|Ft−2, Xt−1) =
f(St−1 = j, Xt−1|Ft−2)

f(Xt−1|Ft−2)
(2.3.11)

=
f(Xt−1|St−1 = j,Ft−2) · f(St−1 = j|Ft−2)∑

i={M,S} f(Xt−1|St−1 = i,Ft−2) · f(St−1 = i|Ft−2)
.

According to Hamilton (1989), we can further decompose the densities in equation

(2.3.9), f(Xt|St = M,Ft−1), f(Xt|St = S,Ft−1), and compute f(Xt|Ft−1) as

given in equation (2.3.12),

f(Xt|Ft−1) =

f(Xt|St = M, St−1 = M |Ft−1) · f(St = M, St−1 = M |Ft−1) (2.3.12)

+ f(Xt|St = M, St−1 = S|Ft−1) · f(St = M, St−1 = S|Ft−1)

+ f(Xt|St = S, St−1 = M |Ft−1) · f(St = S, St−1 = M |Ft−1)

+ f(Xt|St = S, St−1 = S|Ft−1) · f(St = S, St−1 = S|Ft−1) .

Note that in this case spikes enter the stable regime due to f(Xt|St = M, St−1 =

S|Ft−1). De Jong and Huisman (2003) want to avoid this effect. Therefore, they

do not decompose f(Xt|St = M,Ft−1) as in equation (2.3.12) but replace the part

of the conditional density that represents the stable regime f(Xt|St = M,Ft−1)

by an approximation,

f(Xt|St = M,Ft−1) ≈
K∑

i=1

Prob[St−i = M∧St−j 6= M for j < i]·f(Xt|St = M,Ft−i)

The key problem in calibrating this conditional density is the determination of the

value of XM,t−i, where i = 1, . . . K, because the last spot price originating from

the stable regime is not known. K denotes how far we maximally go back to find

the last spot price originating from the stable regime.

f(Xt|St = M,Ft−i) ≈ 1
V ar[XM,t|Ft−i] ·

√
2π

· exp
(
− (XM,t − E[XM,t|Ft−i])2

2 · V ar[XM,t|Ft−i]

)

with

E[XM,t|Ft−i] = ρ · µM + (1− ρ) · E[XM,t−1|Ft−i] , (2.3.13)

V ar[XM,t|Ft−i] = σ2
M + (1− ρ)2 · V ar[XM,t−1|Ft−i] . (2.3.14)
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Applying these equations for the conditional expectations and variances yields

E[XM,t|Ft−i] = (1− ρ)i ·XM,t−i + µM · (1− (1− ρ)i) , (2.3.15)

V ar[XM,t|Ft−i] = σ2
M · (1− ρ)2·i − 1

(1− ρ)2 − 1
. (2.3.16)

The expression Prob[St−i = M ∧ St−j 6= M for j < i] is the probability of the

logarithm of the spot price Xt−i to be the last logarithm of the spot price before Xt

originating from the stable regime. Xt−j with j < i, whereas, are supposed to be

spikes. The remaining problem is to determine the right K. De Jong and Huisman

(2003) propose K = 5. In our calculations, K = 5 appears to be sufficient, too.

2.3.6 Regime-Switching Models with Day-Dependent Spikes:

Kosater and Mosler (2006)

The models proposed by Ethier and Mount (1998) and De Jong and Huisman

(2003) assume that deviations from the stable regime are independent of the type

of the day. However, it seems more sensible to distinguish between working days

on one hand and weekends and holidays on the other. Very low demand is typical

of weekends and holidays. Therefore, upward directed spikes are rather not to be

expected, whereas we can detect downward directed deviations from the stable

regime in our German data. In order to take into account different types of days,

Kosater and Mosler (2006) put forward to distinguish between high spikes and low

spikes.

Practically, they decompose spikes by introducing an indicator function 1H which

takes the value zero on holidays, weekend days, and two days before and after

a holiday. All remaining days are candidates for high spikes only, therefore for

these days the indicator function takes value 1. The decomposition fits well to

observed German data. However, weekends, at least Sundays, and holidays are

days of low demand not only in Germany. In fact, De Jong (2006) finds that the

decomposition put forward by Kosater and Mosler (2006) works well for a number

of international markets, too.

1H =





0 holiday, weekend, two days before and after a holiday ,

1 else .
(2.3.17)

Since for both two-regime models, the authors only modify the spike regime, the

stable regime is left unchanged with respect to the original models. Moreover,

transition between the regimes is assumed to be governed by the transition matrix

Π. The authors extend the spike regime in De Jong and Huisman (2003) as follows,

XS,t = 1H · (µS,H + εS,H,t)+(1− 1H) · (µS,L + εS,L,t) spike regime . (2.3.18)

Additionally, they assume that the disturbances in the high spike regime denoted

εS,H,t and the low spike regime denoted εS,L,t are both normally distributed with

possibly different variances, εS,H,t ∼ N (0, σ2
S,H) and εS,L,t ∼ N (0, σ2

S,L).

Kosater and Mosler (2006) analogously extend the model of Ethier and Mount
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(1998),

XS,t = µS + (1− ρ) · (X{St−1=i},t−1 − µ{St−1=i}
)

+ εS,t, (2.3.19)

µS = 1H · (µS,H) + (1− 1H) · (µS,L) , (2.3.20)

εS,t = 1H · (εS,H,t) + (1− 1H) · (εS,L,t) , (2.3.21)

where j, i ∈ {M, S}, εM,t ∼ N (0, σ2), εS,H,t ∼ N (0, σ2
S,H), εS,L,t ∼ N (0, σ2

S,L) .

The results for the two- regime models with a day-dependent spike regime are

collected in table 2.3.3. More precisely, table 2.3.3 shows that the modified mod-

els put forward by Kosater and Mosler (2006) outperform the original versions

of Ethier and Mount (1998) and De Jong and Huisman (2003) in terms of fit.

This result is also clearly confirmed by both information criteria. All parameter

estimates are significant. Hence, the introduction of day-dependent spikes is a

worthwhile extension.

In addition to the estimation results presented in tables 2.3.2-2.3.3, Figure 2.3.1

presents the smoothed probabilities for the considered Markov regime-switching

approaches. Furthermore, Figure 2.3.2 shows quantile-quantile plots for the log-

arithm of baseload series from which the deterministic effects have been removed

against simulated series from the discussed Markov regime-switching approaches.

In more detail, the smoothed probabilities are computed as follows. Let ξt|t be

the vector of filtered regime probabilities at time t given the information at time

t. We calculate the smoothed regime probabilities at time t given the information

at time T , ξt|T , according to Kim (1994):

ξt|T = ξt|t ¯ {Π
′ [

ξt+1|T ÷ ξt+1|t
]} . (2.3.22)

Note that ¯ is the element by element product, whereas ξt+1|T ÷ ξt+1|t symbolizes

element by element division.

To summarize the results of the in-sample study, the models without independent

spikes provide slightly higher spike probabilities than the models with independent

spikes and outperform their independent counterparts in terms of fit, in particular

for the logarithm of baseload.

Finally, the quantile-quantile plots in Figure 2.3.2 show that the simulated series

generated from the models put forward by Kosater and Mosler (2006) are notably

closer to the empirical series than simulated series from the original models of

Ethier and Mount (1998) as well as De Jong and Huisman (2003). For the loga-

rithm of baseload, the model without independent spikes of Kosater and Mosler

(2006) performs best.
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Table 2.3.3: Results on Two- Regime Models with Day-Dependent Spikes, see

equations (2.3.17-2.3.21).

Modified Ethier and Mount (1998) Modified De Jong and Huisman (2003)

log(baseload) log(peakload) log(baseload) log(peakload)

β1
−0.260
(0.009)

−0.330
(0.011)

−0.273
(0.009)

−0.338
(0.011)

β2
−0.544
(0.009)

−0.638
(0.011)

−0.556
(0.009)

−0.643
(0.011)

β3
−0.477
(0.017)

−0.588
(0.019)

−0.482
(0.016)

−0.608
(0.018)

β4
0.0003

(2.8·10−5)
0.0003

(2.6·10−5)
0.0003

(3.2·10−5)
0.0003

(2.8·10−5)

γ1
0.121
(0.016

0.105
(0.015)

−0.115
(0.017)

0.110
(0.016)

γ2
268.80
(8.247)

−78.839
(8.675)

86.661
(10.100)

−79.033
(9.004)

µM
3.018

(0.024)
3.225

(0.022)
3.033

(0.028)
3.230

(0.024)

µS,H
3.214

(0.066)
3.569

(0.068)
3.496

(0.100)
3.835

(0.083)

µS,L
2.732

(0.078)
2.887

(0.098)
2.526

(0.115)
2.893

(0.124)

ρ 0.322
(0.018)

0.398
(0.019)

0.272
(0.017)

0.338
(0.020)

σM
0.132

(0.003)
0.150

(0.003)
0.137

(0.003)
0.150

(0.003)

σS,H
0.468

(0.023)
0.544

(0.028)
0.537

(0.045)
0.530

(0.033)

σS,L
0.359

(0.026)
0.570

(0.030)
0.451

(0.061)
0.605

(0.042)

p 0.729
(0.054)

0.684
(0.057)

0.681
(0.065)

0.736
(0.049)

q 0.970
(0.007)

0.967
(0.007)

0.976
(0.005)

0.972
(0.006)

LL 596.54 372.84 572.30 369.53

AC -0.7738 -0.4762 -0.7441 -0.4733

SC -0.7208 -0.4231 -0.6909 -0.4202
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Figure 2.3.1: Plots showing smoothed spike regime probabilities for the following

models: (a) Ethier and Mount (1998), (b) De Jong and Huisman (2003), (c)

Kosater and Mosler (2006)(without independent spikes), (d) Kosater and Mosler

(2006) (with independent spikes).
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Figure 2.3.2: Quantile-quantile plots for log(baseload) from which the determinis-

tic effects have been removed against the estimated models: (a) Ethier and Mount

(1998), (b) De Jong and Huisman (2003), (c) Kosater and Mosler (2006)(with-

out independent spikes), (d) Kosater and Mosler (2006) (with independent spikes),

(Note: To guarantee comparability, two elements in each simulated series through-

out the four plots are set equal to 1 and 6, respectively).
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Figure 2.3.3: Forecast horizon : 25th August 2002 to 28th July 2004.

2.4 A Forecast Comparison Study

In this section, we carry out a forecast comparison study to assess the ability of

Markov regime-switching models in forecasting.

To list the models considered in the study, we include the AR(1) with drift model

as a linear benchmark and denote it Model I. Furthermore, we include the two-

regime model with independent spikes of De Jong and Huisman (2003) and its

modified version with day-dependent spikes and denote these models Model II, for

the first mentioned, and Model IIb for the latter. Finally, we include the model

of Ethier and Mount (1998) denoted Model III and its modified version with day-

dependent spikes, which we denote Model IIIb.

In our study, we carry out and evaluate ex- ante forecasts in terms of the root mean

square error ( RMSE ) and the mean absolute error ( MAE ). All given information

available at time T is exploited and, by this, we use all known electricity prices up

to T to estimate the parameter values. This proceeding is reasonable since elec-

tricity prices exhibit strong seasonality and autocorrelation, that are estimated

the better the more data is available. The forecasting procedure is close to that

of Cuaresma et al. (2004) applied to hourly prices and is described below. The

given dataset is divided into an in-sample period which includes observations from

6/16/2000 to 8/24/2002 at the beginning. Moreover, the out-of-sample period

ranges from 8/25/2002 to 7/28/2004, see Figure 2.4.1. The forecasting experi-

ment is designed as follows. We use in-sample data to estimate the parameters

of the model of interest. We, then, make out-of-sample forecasts up to 100 steps

ahead and evaluate them. The in-sample period is then enlarged by one observa-

tion and again forecasts for the out-of-sample period are made and evaluated. We

repeat this procedure 604 times. This forecasting study has been carried out using

the logarithm of baseload and the logarithm of peakload prices, respectively. Fur-
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thermore, the used measures have been computed for each h- step ahead forecast

with h ∈ {1, 2, . . . , 100}. Pt denotes the actual observed price at time t, while P f
t

refers to the predicted price at time t. The measures used for comparison are

RMSE =

√√√√1
k
·

k∑

i=1

(
log(Pt)− log(P f

t )
)2

, (2.4.1)

MAE =
1
k
·

k∑

i=1

∣∣∣log(Pt)− log(P f
t )

∣∣∣ . (2.4.2)

For practical work, we are rather interested in the forecasts of P f
t than in forecasts

of log(P f
t ). However, we aim to compare the models which are designed for the

logarithm of power prices.

2.4.1 Theoretical Preliminaries

We carry out the h-step ahead forecast in the usual way based on conditional

expectation E[XT+h|FT ], where FT denotes the information set at time T . Gen-

erally, there are two ways of carrying out forecasts. Both versions (log(P f
T+h,1) ,

log(P f
T+h,2) ) are depicted below. Moreover, it should be noted that these forecast

procedures yield different forecasts for the logarithm of power prices log(P f
T+h) in

the presence of deterministic components. To clarify this, the stochastic part Xt

is substituted by log(Pt)− ft according to equation (2.2.3),

Xf
T+h,1 = log(P f

T+h,1)− ff
T+h,1 (2.4.3)

= ρ · µM + (1− ρ) ·Xf
T+h−1,1 ,

= ρ · µM + (1− ρ) · (log(PT+h−1)− fT+h−1) ,

or

Xf
T+h,2 = log(P f

T+h,2)− ff
T+h,2 (2.4.4)

= µM · (1− (1− ρ)h) + (1− ρ)h ·XT ,

= µM · (1− (1− ρ)h) + (1− ρ)h · (log(PT )− fT ) .

Preliminary empirical studies suggest that the recursive procedure in equation

(2.4.3), provides better forecasts than the second based on the forecast origin.

Although Models II and IIb apparently go beyond the popular Hamilton (1989)

methodology, nevertheless, these models still fit into the theoretical Hamilton

(1989) framework. Consequently, the forecasting methodology, we use, is based

on Hamilton (1989). How to apply this methodology is described below.

Let ξ(T |FT ) be the vector of posterior densities at time T ,

ξ(T |FT ) =




f(XT , ST = M |FT−1)
f(XT |FT−1)

f(XT , ST = S|FT−1)
f(XT |FT−1)




. (2.4.5)
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Moreover let P be the transition matrix,

P =

(
q 1− p

1− q p

)
. (2.4.6)

The h-step ahead forecasts for the posterior probabilities are computed as follows,

ξf
T+h = P · ξ(T+h−1|FT ). (2.4.7)

VT+h is defined as the vector containing the conditional expectations

E[XT+h|ST+h = j,FT ] j ∈ {M, S} for each regime,

VT+h =

(
E[XT+h|ST+h = M,FT ]

E[XT+h|ST+h = S,FT ]

)
. (2.4.8)

Finally the forecast results as

Xf
T+h = V T

T+h · ξf
T+h. (2.4.9)

In De Jong and Huisman (2003) the two regimes are assumed to be independent.

We aim to avoid spikes in forecasting the stable regime. Therefore, we compute

the conditional expectation E[XT+h|ST+h = M,FT ] as follows,

E[XT+h|ST+h = M,FT ] = µM · (1− (1− ρ)h) + (1− ρ)h · E[XT |ST = M,FT ].

(2.4.10)

Furthermore, we should note that in the framework of De Jong and Huisman

(2003) the problem remains to determine the last spot price originating from the

stable regime. Therefore, an approximation for E[XT |ST = M,FT ] should be used

for forecasting. However, we found that the bias is small when we use the actual

value of XT as forecast origin instead. This kind of error is of minor importance

because spikes rarely occur in the given data. Spot price series which exhibit more

spikes might require an approximation as outlined above.

As opposed to the de framework of De Jong and Huisman (2003), forecasting with

Models III and IIIb is straightforward in spirit to Hamilton (1989).

Let ξ(T |FT ) be the vector of posterior densities at time T,

ξ(T |FT ) =




f(XT , ST = M, ST−1 = M |FT−1)
f(XT |FT−1)

f(XT , ST = M,ST−1 = S|FT−1)
f(XT |FT−1)

f(XT , ST = S, ST−1 = M |FT−1)
f(XT |FT−1)

f(XT , ST = S, ST−1 = S|FT−1)
f(XT |FT−1)




. (2.4.11)

Moreover let Q be the transition matrix,

Q =




q q 0 0

0 0 1− p 1− p

1− q 1− q 0 0

0 0 p p




. (2.4.12)
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We compute the h-step ahead forecasts for the posterior densities as follows,

ξf
T+h = Q · ξ(T+h−1|FT ). (2.4.13)

Let VT+h again be the vector that contains the conditional expectations

E[XT+h|ST+h = i, ST+h−1 = j,FT ], i, j ∈ {M, S} for each regime.

VT+h =




E[XT+h|ST+h = M, ST+h−1 = M,FT ]

E[XT+h|ST+h = M,ST+h−1 = S,FT ]

E[XT+h|ST+h = S, ST+h−1 = M,FT ]

E[XT+h|ST+h = S, ST+h−1 = S,FT ]




(2.4.14)

Then, according to Krolzig and Clements (1998) the following recursion holds,

Xf
T+h = V T

T+h · ξf
T+h, (2.4.15)

As h → ∞ the posterior probability to be in regime j, Prob(ST+h = j|XT ),

converges to the unconditional probability to be in regime j since the Markov

chain is assumed to be ergodic. This also holds in the framework of De Jong and

Huisman (2003),

lim
h→∞

Prob(ST+h = M |FT ) =
1− p

2− p− q
, (2.4.16)

lim
h→∞

Prob(ST+h = S|FT ) =
1− q

2− p− q
. (2.4.17)

2.4.2 Results of the Study

In order to scrutinize the outcome of the study, the linear autoregressive model

performs well in terms of very short-run forecasts, in particular, one up to two steps

ahead. The results are presented in Figure 2.4.2 and Figure 2.4.3, respectively. For

both measures, we cannot observe any clear difference from the remaining models.

With respect to the long- run ability, however, non-linear models outperform the

linear model which is partly due to the position of spikes in the time series. Another

reason is the improved estimation compared to the linear model. Estimation of

important parameters for forecasting like deterministic components and µM is less

influenced by spikes. For short- run forecasting better estimates of ρ are of interest,

too. Moreover, modified Models IIb and IIIb outperform their basic counterparts

II and III with respect to the RMSE. This is a consequence of the modification of

the spike regime, since the direction of spikes is better predicted by the modified

models. Finally, Model IIIb provides better long- run forecasts than model IIb,

while in terms of short- run forecasting, the opposite is true.

Forecasts for the stable regime have to be based on the forecast origin XT in Models

II and IIb. A recursive procedure, like in the pure Hamilton (1989) framework,

is prohibited due to the assumption of independent regimes. However, there is

empirical evidence that in the presence of deterministic components, a recursive

procedure provides better forecasts. Another problem arises if XT is indeed a

spike but treated as originating from the stable regime. Obviously, forecasts for

the stable regime based on a spike are biased. Short run forecasts of Model IIb
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are better than those of Model IIIb. Therefore, the arising prediction bias when

the forecast for the stable regime in Model IIb is based on XT , when XT is indeed

a spike, seems to be of minor importance.

The recursive procedure in forecasting is the advantage of Model IIIb compared

to Model IIb. Additionally, we have only used the stable regime of Models II

and IIb to make forecasts. These forecasts are denoted by II-stable and IIb-

stable in Figures 2.4.2 and 2.4.3. For Model II, we obtain better forecasts if we

renounce to exploit the whole non-linear methodology. However, this holds unless

the modification proposed by Kosater and Mosler (2006) is implemented.

Furthermore, outcomes with respect to the two proposed measures are different.

In terms of MAE, models which perform best with respect to the RMSE are often

nearly or indeed outperformed by their unmodified counterparts. Moreover, the

performance of forecasts if we only use the stable regime is remarkably good and

sometimes even best with respect to the MAE. To understand these results, it is

necessary to bear in mind that deviations due to outliers have much more impact

and are more penalized by the RMSE than by the MAE. Therefore, the advantage

of modified models compared to the unmodified models is of minor importance

with respect to the MAE.

However, we have to stress that prices at the edge of the forecasting sample do

not have the same weight on the outcome of the study as prices which lie rather

in the middle. This aspect must be taken into consideration when the results of

the empirical study are gauged. One consequence is that in our study non-linear

models clearly outperform the linear model in terms of long-run forecasting

( 30-80 steps ahead ). Note that in our study, periods with larger sized spikes are

settled rather in the middle while stable periods prevail at the beginning and at

the end of the whole forecasting sample 8/25/2002 to 7/28/2004.
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Figure 2.4.1: Results of all models for the log(baseload) time series ( RMSE means

root mean square error and MAE means mean absolute error).
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Figure 2.4.2: Results of all models for the log(peakload) time series ( RMSE means

root mean square error and MAE means mean absolute error).
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2.5 Regime-Switching Models and GARCH

Extensions of the three basic models Ethier and Mount (1998), the three- regime

model of Mahieu and Huisman (2003) and the two-regime model with independent

spikes have been restrained to the modification of the spike regime, so far.

Besides the introduction of day-dependent spikes put forward by Kosater and

Mosler (2006), Bierbrauer et al.(2004) suggest to draw spikes from a Pareto distri-

bution instead of a normal distribution. By contrast, De Jong (2006) implements

a Poisson-normal mixture distribution for the spike regime.

Although Escribano et al. (2002) show that autoregressive conditional heteroscedas-

ticity is an important feature of electricity prices, this feature has so far been ne-

glected.

To start with, we present a jump model, which incorporates GARCH(1,1) dy-

namics in spirit to Escribano et al. (2002), in the following equations (2.5.1) and

(2.5.2). Here, we denote the conditional variance at time t by ht, whereas λ,µS

and σS have the same meaning as in subsection 2.3.2.

Xt =

{
(1− ρ)Xt−1 + h

1
2
t ε1t : with Probability 1− λ

(1− ρ)Xt−1 + h
1
2
t ε1t + µS + σSε2t : with Probability λ

(2.5.1)

ht is assumed to follow a GARCH(1,1) process.

ht = ω + αε2t−1 + βht−1 (2.5.2)

An explanation why this feature has been neglected may become evident when we

take into account Figure 2.5.1., where histograms for the logarithm of baseload

from which the deterministic effects have been removed are plotted together with

the estimated normal probability densities for all considered models in the fore-

casting study.

As opposed to econometric models applied to financial time series, the regime-

switching models seem to fairly well capture the leptokurtic behavior displayed

by the logarithm of spot prices. By this, omission of autoregressive conditional

heteroscedasticity seems justified. Another reason for the omission is that pricing

of derivatives can be carried out more easily if conditional variances are not time-

varying.

Recent work of Misiorek et al. (2006) however, highlights the importance of inter-

val forecasting for risk management in the power sector. It is common knowledge

that interval forecasts crucially depend on the specification of the conditional vari-

ance dynamics. Consequently, omission of potential ARCH or GARCH dynamics

may lead to wrong management decisions. Therefore, we investigate how GARCH

models can be integrated into the aforementioned Markov regime-switching frame-

work. Secondly, we examine if this model extension is worthwhile compared with

the basic models in terms of in-sample fit. A comparison of the out-of-sample

interval forecasting performance in spirit to Misiorek et al.(2006) is left for further

research.
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Figure 2.5.1: Histograms for log(baseload) from which the deterministic effects

have been removed are plotted together with the estimated normal probability

densities for the models I to IIIb, according to section 2.4.
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2.5.1 Two-Regime Switching Model with GARCH(1,1) Er-

rors

Hamilton and Susmel (1994) as well as Cai (1994) extend the Markov regime-

switching framework to ARCH models originally proposed by Engle (1982). How-

ever, most popular with modelling of financial and macroeconomic time series is

the GARCH(1,1) model suggested by Bollerslev (1986). Whereas the extension of

the Markov regime-switching framework to ARCH models is straightforward, the

extension to a GARCH(1,1) Markov regime-switching model is more problematic

due to a phenomenon known as path dependence. The notion of path dependence

describes that the conditional variance ht as given in equation (2.5.2) depends

on the full history {Xt−1, Xt−2, . . . , X1, X0, St−1, St−2, . . . , S1, S0}. Let hM,t be

the conditional variance at time t, given the information set Ft−1 and St = M .

Moreover, let hS,t be similarly defined then

ht = E[X2
t |Ft−1]− (E[Xt|Ft−1])

2 (2.5.3)

= P (St = M |Ft−1) ·
(
E[Xt|St = M,Ft−1]2 + hM,t

)

+P (St = S|Ft−1) ·
(
E[Xt|St = SFt−1]2 + hS,t

)

−(P (St = M |Ft−1) · E[Xt|St = M,Ft−1]

+P (St = S|Ft−1) · E[Xt|St = S,Ft−1])2 .

To circumvent the path dependence problem, we follow Gray (1996) and assume

that

hi,t = ω{St=i} + α{St=i} ε2t−1 + β{St=i} ht−1 with i ∈ {M, S}. (2.5.4)

Moreover according to Gray (1996), we assume,

εt−1 = Xt−1 − E[Xt−1|Ft−2] (2.5.5)

= Xt−1 − (P (St−1 = M |Ft−2) · E[XM,t−1|Ft−2]

+P (St−1 = S|Ft−2) · E[XS,t−1|Ft−2]) .

To model the conditional mean, we assume the Markov regime-switching model

with day-dependent and without independent spikes according to equations (2.3.4),

(2.3.5) and (2.3.19) to (2.3.21).

XM,t = µM + (1− ρ) · (X{St−1=i},t−1 − µ{St−1=i}
)

+ εM,t, (2.5.6)

XS,t = µS + (1− ρ) · (X{St−1=i},t−1 − µ{St−1=i}
)

+ εS,t, (2.5.7)

µS = 1H · (µS,H) + (1− 1H) · (µS,L) , (2.5.8)

εS,t = 1H · (εS,H,t) + (1− 1H) · (εS,L,t) , (2.5.9)

with i ∈ {M, S}, εM,t ∼ N (0, hM,t), εS,H,t ∼ N (0, hS,H,t),εS,L,t ∼ N (0, hS,L,t).

This model approach seems to work well in the context of financial time series,

see Gray (1996) and Haas et. al (2004). Unfortunately, it seems not adequate for

German electricity spot prices. We have set αS = αM = α and βS = βM = β

to assure convergence. The results indicate as well for the logarithm of baseload

as for the logarithm of peakload, respectively, that the Markov regime-switching

approach does not fit to the given data. More precisely, parameter estimation
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does not yield significant transition parameters p, for the logarithm of peakload

even p < 0 is obtained. The nonsignificant transition parameters indicate, that

the regime-switching model should be rejected in favor of a simple mixture model

or even a linear model. In addition, the parameters for the low spike regime are

not significant. The results for the jump model outlined above and the discussed

Markov regime-switching model are collected in table 2.5.1.

Ongoing research puts forward to estimate Markov regime-switching ARMA-

GARCH models exploiting Monte Carlo Markov Chain methods. These methods

are computationally burdensome. In addition, simultaneous estimation of deter-

ministic effects and the stochastic part may be hardly feasible. A more compre-

hensive investigation into Markov regime-switching ARMA-GARCH models and

Monte Carlo Markov Chain methods in the field of spot electricity prices is left

for further research.

Table 2.5.1: Results on the Jump Model and the Two-Regime Switching Model

with GARCH(1,1) Errors, see equations(2.5.1-2.5.7).

Jump Model Two- Regime Switching Model

log(baseload) log(peakload) log(baseload) log(peakload)

β1
−0.272
(0.009)

−0.343
(0.011)

−0.268
(0.009)

−0.340
(0.010)

β2
−0.550
(0.009)

−0.640
(0.011)

−0.550
(0.010)

−0.636
(0.012)

β3
−0.484
(0.016)

−0.636
(0.019)

−0.486
(0.018)

−0.623
(0.022)

β4
0.0003

(2.9·10−5)
0.0003

(2.6·10−5)
0.0003

(2.8·10−5)
0.0003

(2.5·10−5)

γ1
0.125
(0.017

0.118
(0.016)

−0.128
(0.017)

0.110
(0.016)

γ2
271.27
(8.324)

−78.742
(7.847)

87.657
(7.990)

−82.000
(7.227)

µM
3.008

(0.024)
3.211

(0.022)
3.009

(0.024)
3.208

(0.022)

µS ∧ µS,H
0.109∗

(0.099)
0.151∗

(0.087)
4.008

(0.423)
4.267

(0.436)

µS,L - - 1.296∗

(0.726)
1.852∗

(0.891)

ρ 0.304
(0.020)

0.380
(0.021)

0.312
(0.019)

0.385
(0.021)

ωM
0.006

(0.001)
0.007

(0.001)
0.003∗

(0.003)
−0.011
(0.003)

σS ∧ ωS,H
0.612

(0.064)
0.662

(0.045)
0.238

(0.048)
0.360

(0.096)

ωS,L - - 0.195∗

(0.149)
0.516

(0.236)

α 0.167
(0.030)

0.149
(0.026)

0.155
(0.034)

0.130
(0.022)

β 0.521
(0.065)

0.562
(0.053)

0.404
(0.076)

0.694
(0.034)

λ ∧ p 0.033
(0.008)

0.049
(0.010)

0.143∗

(0.083)
−0.016∗

(0.024)

q - - 0.967
(0.009)

0.965
(0.009)

LL 600.56 377.72 613.01 394.58

AC -0.7805 -0.4840 -0.7931 -0.5024

SC -0.7310 -0.4345 -0.7330 -0.4423

Note that ∗ means not significant at the 5 % level. Furthermore, instead of ωS,

we denote two distinct parameters ωS,H for the high spike regime and ωS,L for

the low spike regime.
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2.5.2 Two-Regime- Switching Model with ARCH(1) Errors

In this subsection, we include ARCH(1) errors instead of GARCH(1,1) errors as

done in the preceding subsection. The advantage is that we merely have to cope

with path dependence with respect to {Xt−1, Xt−2, St−1, St−2}. We only assume

an ARCH(1) process for the conditional variance of the stable regime.

Here, we furthermore assume equations (2.5.6) to (2.5.9) for the conditional mean.

The conditional variance hM,t is now assumed to be,

hM,t = ωM + αM ε2{St−1=j},t−1 with i, j ∈ {M,S} . (2.5.10)

whereas the conditional variance hS,t is now

hS,t = 1H · σ2
S,H + (1− 1H) · σ2

S,L . (2.5.11)

Moreover, we compute ε{St−1=j},t−1 as follows,

ε{St−1=j},t−1 = X{St−1=j},t−1 − E[X{St−1=j},t−1|Ft−2]. (2.5.12)

Here, as opposed to the Markov regime-switching Model with GARCH(1,1) errors,

we assume the ARCH(1) process to prevail in the stable regime only because our

data does not support the assumption of distinct parameters for the stable regime

and the spike regime. Estimation yields significant estimates around 3 for αS ,

which in other words means that the spike regime possesses a negative uncondi-

tional variance. Therefore, we do not exhibit the estimation results in a table.

Secondly, the assumption of an ARCH(1) process evolving across both regimes

respectively provides a slightly better fit, on one hand. On the other hand, simu-

lations show that the model with the ARCH(1) in the stable regime only performs

better in terms of the quantile-quantile plot.

2.5.3 Two-Regime-Switching Model with Independent Spikes

and ARCH(1) Errors

To conclude this section, we present an extension of the two- regime framework

with independent spikes suggested by De Jong and Huisman (2003).

In our opinion, this model framework does not allow to overcome the problem

of path dependence which emerges if we attempt to incorporate a GARCH(1,1)

process for one or both regimes, respectively. Therefore, we are satisfied with an

ARCH(1) process which can be added to the model specification. However, we

have only the possibility to assume two independent ARCH(1) processes for each

regime or to leave one regime specification unchanged and to assume an ARCH(1)

for the second in this model framework. Spikes are rare and the duration between

two consecutive spikes may be very long. Therefore, we leave the spike regime

unchanged and confine ourselves to include ARCH(1) errors in the stable regime,

exclusively. Consequently, the conditional variance in the spike regime is specified

as in equation (2.5.11). The stable regime can be expressed as follows,

XM,t = XM,t−1 + ρ · (µM −XM,t−1 ) + εM,t , εM,t ∼ N (0, hM,t) ,(2.5.13)

hM,t = ωM + αM · ε2M,t−1 . (2.5.14)
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Consequently, the change in the specification of the stable regime affects the esti-

mation of model parameters. More precisely, the important conditional variance

V ar[XM,t|Ft−i] becomes more sophisticated due to the assumption of ARCH(1)

errors.

V ar[XM,t|Ft−i] = ε2M,t−i·



i−1∑

j=0

αi−j
M · (1− ρ)2j


+

ωM

αM − 1
·
i−1∑

j=0

(αi−j
M −1)·(1−ρ)2j .

(2.5.15)

Equation (2.5.16) can be very easily derived if we bear in mind that

V ar[XM,t|Ft−i] =
i−1∑

j=0

(1− ρ)2j · V ar[εM,t−j |Ft−i] , (2.5.16)

V ar[εM,t|Ft−i] = ωM · αi
M − 1

αM − 1
+ αi

M · ε2M,t−i . (2.5.17)

If we set t = t− j and i = i− j, equation (2.5.18) yields

V ar[εM,t−j |Ft−i] = ω · αi−j
M − 1

αM − 1
+ αi−j

M · ε2M,t−i . (2.5.18)

Consequently, we immediately obtain

V ar[XM,t|Ft−i] =
i−1∑

j=0

(1− ρ)2j · (ωM · αi−j
M − 1

αM − 1
+ αi−j

M · ε2M,t−i)(2.5.19)

= ε2M,t−i · (
i−1∑

j=0

αi−j
M · (1− ρ)2j)

+
ωM

αM − 1
·

i−1∑

j=0

(αi−j
M − 1) · (1− ρ)2j . (2.5.20)

The remaining problem is the determination of εM,t−i. We suggest to approximate

εM,t−i as follows,

εM,t−i ≈
K−1∑

j=0

Prob[St−i−j = M ∧ St−i−l 6= M for l < j] · (XM,t−i − E[XM,t−i|Ft−i−j ]) ,

(2.5.21)

and again K = 5 is assumed. The results of the two- regime models with ARCH(1)

errors are reported in table 2.5.2.

To summarize the in-sample results, we obtain a better fit when the ARCH(1)

process is included, in particular for the logarithm of baseload. This is not com-

pletely true for the logarithm of peakload, since the Schwartz Criterion favors

the model with constant volatility. The quantile-quantile plots in Figure 2.5.2,

however, seem to support the specification with constant volatility except for the

model with independent spikes and ARCH(1) errors, where the opposite seems to

be true.
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Table 2.5.2: Results on Two-Regime Models with ARCH(1) errors, see equations

(2.5.8-2.5.21).

Without Independent Spikes With Independent Spikes

log(baseload) log(peakload) log(baseload) log(peakload)

β1
−0.265
(0.009)

−0.335
(0.011)

−0.272
(0.009)

−0.342
(0.011)

β2
−0.548
(0.009)

−0.642
(0.011)

−0.557
(0.009)

−0.650
(0.011)

β3
−0.481
(0.017)

−0.612
(0.019)

−0.482
(0.017)

−0.618
(0.018)

β4
0.0003

(2.9·10−5)
0.0003

(2.7·10−5)
0.0003

(3.2·10−5)
0.0003

(2.9·10−5)

γ1
−0.120
(0.016

0.107
(0.016)

0.127
(0.018)

0.108
(0.017)

γ2
88.071
(8.533)

−78.071
(8.889)

−91.253
(10.100)

−475307.2
(9.363)

µM
3.019

(0.024)
3.224

(0.022)
3.031

(0.028)
3.234

(0.024)

µS,H
3.186

(0.082)
3.571

(0.079)
3.559

(0.141)
3.886

(0.102)

µS,L
2.667

(0.092)
2.801

(0.123)
2.680

(0.138)
2.817

(0.158)

ρ 0.305
(0.018)

0.373
(0.020)

0.260
(0.018)

0.339
(0.022)

ωM
0.015

(0.001)
0.020

(0.001)
0.015

(0.001)
0.022

(0.001)

σS,H
0.508

(0.030)
0.571

(0.033)
0.556

(0.060)
0.553

(0.041)

σS,L
0.370

(0.035)
0.554

(0.038)
0.372

(0.050)
0.631

(0.054)

αM
0.164

(0.045)
0.135

(0.040)
0.266

(0.039)
0.103

(0.044)

p 0.694
(0.065)

0.604
(0.072)

0.500
(0.090)

0.671
(0.061)

q 0.975
(0.006)

0.969
(0.007)

0.975
(0.006)

0.975
(0.006)

LL 606.84 383.86 585.42 370.22

AC -0.7867 -0.4898 -0.7623 -0.4742

SC -0.7301 -0.4332 -0.7054 -0.4173
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Figure 2.5.2: Smoothed probabilities for the spike regime and quantile-quantile

plots for log(baseload) from which the deterministic effects have been removed

against the estimated models: ((a),(b)) MS Model with GARCH(1,1), ((c)(d))

Two-Regime Model with ARCH(1), ((e)(f)) Two- Regime Model with Independent

Spikes and ARCH(1), (Note: To guarantee comparability, two elements in each

simulated series throughout the three quantile-quantile plots (b,d,f) are set equal

to -0.1 and 5, respectively).
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2.6 Summary

In this chapter, we have started with a discussion of previous Markov regime-

switching approaches, put forward in the literature, to modelling the logarithm

of daily electricity spot prices. Then we have introduced our own models with

day-dependent spikes.

We have assessed the usefulness of the different competing models in terms of in-

sample fit on one hand, and in terms of out-of-sample forecasting quality, on the

other hand. The study has been carried out using the logarithm of German daily

spot prices from the European Energy Exchange in Leipzig.

It turns out that models with day-dependent spikes outperform the previously

presented models with respect to in-sample fit as well as out-of-sample prediction

quality.

In addition, De Jong (2006) applied different models with day-dependent spikes

to daily spot prices from several international electricity exchanges and found this

extension to be worthwhile.

Finally in section 2.5, we have addressed the potential autoregressive conditional

heteroscedasticity dynamics of electricity spot prices. This is an issue which has

so far been neglected in the field of Markov regime-switching models applied to

electricity spot prices.

Here, we have presented model extensions of the models with day-dependent spikes

which include autoregressive conditional heteroscedasticity in the stable regime.
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Chapter 3

The Impact of Weather on

German Hourly Electricity

Prices

3.1 Introduction

Besides Rambharat et al. (2005), Knittel and Roberts (2005) and Mount et

al.(2006) research has yet been focussed on modelling pure stochastic processes

for spot prices and the logarithm of spot prices. In this chapter, we investigate

the relation between temperature and wind on one hand and hourly spot prices

from the EEX in Leipzig on the other hand.

Lower temperatures cause a higher need for heating and therefore, increase the

electricity demand. By contrast, high temperatures can affect demand for electric-

ity due to the need for cooling. Furthermore, also the supply of electricity can be

subject to high temperatures. During the extraordinary hot summer in 2003, for

example, the operation of thermal power plants in Germany was affected due to

poor cooling conditions. German energy policy seeks to promote wind energy by

subsidizing the creation and the operation of windmills. The goal is to substitute

parts of thermal electricity production and to establish wind energy instead. The

trading of emission allowances with the aim to reduce CO2 emissions is supposed

to endorse renewable energy resources and consequently in particular wind energy.

Wind energy, however, is exposed to large uncertainty. Hence, we expect that un-

certainty and risk due to weather will rise and become of crucial importance in

electricity spot markets.

Additionally, short- run forecasting for operational planning will have to explic-

itly take into account weather, in order to provide sensible results. Therefore, we

attempt to specify the general impact of temperature and wind on hourly spot

prices, on one hand. On the other hand, we try to quantify the relation between

weather and the probability of the occurrence of spikes. Our approach is similar to

Mount et al. (2006), whereas we include weather data in the model specification

and make the transition probabilities a function of weather. In a further step,

load and the reserve margin may be included in the specification, too. However,
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there are not yet any time series available for load as well as the reserve margin

for Germany, which we could use.

We proceed in the framework of the Kosater and Mosler (2006) model with day-

dependent and independent spikes. This model is very well suited to achieve our

second goal, which is linking weather and the probability of the occurrence of a

spike. We opt for the version with independent spikes because of the results in the

forecasting study presented in section 2.4, where this version performed slightly

better in terms of short- run forecasting than the model version without indepen-

dent spikes.

Thereinafter, we work in a multi-model framework consisting of 24 distinct hourly

price series. Besides weekly seasonality, hourly prices exhibit a strong intra-day

pattern. We do not exploit this intra-day pattern in our study because there is em-

pirical evidence that a multi-model specification should be preferred in forecasting

instead ; see Bunn (2000), Cuaresma et al.(2004), Misiorek and Weron (2005) and

Misiorek et al. (2006).

We fit our model to each of the 24 hourly price series. Furthermore, we consider

two model versions denoted A and B. Version A is the pure stochastic model and

is included as a benchmark. In version B, we take into account the general impact,

on one hand. Additionally, we attempt to quantify the relation between weather

and spike-occurrence probability, on the other hand.

Decisions of market participants are not based on actual measured weather data

but its forecasts. Unfortunately, providers of weather data merely archive the ac-

tual measured values, whereas weather forecasts are discarded. Therefore, we are

forced to take the actually measured weather data as an approximation of their

forecasts. In the second part of our study, we carry out a study to examine whether

the inclusion of weather data improves forecasting of electricity spot prices.

3.2 Data and Descriptive statistics

In this study, we use data including hourly price series in Euro of the EEX and

hourly temperature time series measured in 0.1 ·C◦ as well as hourly wind velocity

time series measured in 0.1 ·meter/second from four measuring stations Hamburg,

Holzdorf, Mendig and Ulm in Germany. We have chosen these four measuring sta-

tions in order to represent the different parts of Germany. Hamburg is located

in the North, Holzdorf near Leipzig represents the East, whereas Mendig can be

found in the West of Germany. Finally, Ulm is located in the South of Germany.

All data time series range from June 16th 2000 to December 31th 2004. Addi-

tionally, we use temperature forecasts and actually measured values of Ulm from 7

a.m. 05/01/2005 to 6 a.m. 06/01/2005 and wind velocity forecasts as well as actu-

ally measured data of Holzdorf for the same period. The data has been provided

by the Deutscher Wetterdienst. Subfigure 3.2.1a shows the hourly price series,

whereas subfigures 3.2.1b and 3.2.1c present the hourly measured wind velocity of

Holzdorf and the hourly measured temperature of Ulm.

We report some descriptive statistics in table 3.2.1 for the 24 hours of the day.

At first glimpse, we discover that the hourly price series are characterized by high
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standard deviations, high skewness and excess kurtosis. However, this is especially

true for the hours 9 until 20 which are referred to as on-peak. During these hours

demand is usually very high and due to the hockey stick shape of the supply stack,

see Johnson and Bartz (1999), the level of prices can become extremely high. By

contrast, price series from 21 to 7 show a different picture with notably smaller

standard deviations, only slight skewness and a kurtosis which does not deviate

very much from the value 3 which is the value of the kurtosis of a normal distribu-

tion. Indeed, hourly series from 1 to 8 are referred to as off-peak I, whereas prices

from 21 to 24 are referred to as off-peak II. Although price series at hour 8 and hour

21 already display characteristics which are closer to on-peak prices,nevertheless,

they are classified as off-peak prices in trading.

In order to investigate the relation between prices and weather, we have carried

out some preliminary least square regressions. As a result, we obtained that the

fit and the explanatory power of data depends on the measuring station it is taken

from. In our data, we see that among the measuring stations, temperature data

of Ulm provides the best fit. The reason for the good performance of temperature

of Ulm is its geographical location. In the south, industrial electricity demand is

higher than in other parts of Germany. Therefore, electricity demand in this area

is more important than in other areas. However in the case of wind, Hamburg

and Holzdorf perform best. As opposed to Knittel and Roberts (2005), we do not

include the average of the measuring stations, but only include temperature data

from Ulm. In the case of wind velocity, it turned out that the average of Holzdorf

and Hamburg works best. Hamburg performs well because this town is very near

to the North Sea where many off-shore windmills are settled. Holzdorf also offers

good conditions for the operation of windmills. Understanding which conditions

are appropriate for the operation of windmills requires to take into account some

technical facts. A windmill does not start working unless a wind velocity of round

about 4 meter/second has been reached, see Federico (2002). Once this velocity

is exceeded, produced electricity is proportional to the cube of the present wind

velocity. This relation holds unless wind velocity reaches a value of round about

12 meter/second. At this point, we reach the maximal energy output. If wind

velocity exceeds the value of 25 meter/second, windmills are switched off, for the

sake of safety. We shall come back to the choice of the weather variables in section

3.3.

Subfigures 3.2.2a and 3.2.2b show a scatter plot for temperature of Ulm and the

logarithm of power prices as well as a scatter plot for wind velocity of Holzdorf

and the logarithm of power prices. In tables 3.2.2 and 3.2.2, we present some

descriptive statistics for the measured values of the four stations. Table 3.2.3 and

the boxplots presented in subfigure 3.2.1d reveal why Ulm is a bad location for

windmills, whereas Hamburg and Holzdorf offer good conditions. More precisely,

we can see in subfigure 3.2.1d that more than 75% of the wind velocity measured

at Ulm is below the crucial margin of 4 meter/second. To depict this fact, we have

added the red line at the value of 4 meter/second for wind velocity in subfigure

3.2.1d.

For a short time period, we have also collected weather forecasts and compare
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them with the measured values in order to assess the quality of the approximation

of forecasts by measured data. For example, subfigures 3.2.2c and 3.2.2d show

the actually measured weather data and its one day-ahead forecasts for the given

period from Ulm and Holzdorf, respectively. Additionally, we have examined the

relationship between hourly prices and actually measured weather data as well as

hourly prices and the one day-ahead forecasts. Subfigures 3.2.2e and 3.2.2f show

the results. We see that the one day-ahead forecasts are similarly correlated with

the hourly price as the actually measured data, except for some evening hours in

the case of wind velocity.

50



 a 

Month and Year 

E
u

ro
/M

W
h

6/2000 1/2002 1/2003 1/2004 12/2004

0
2
5

0
5

0
0

1
0
0

0
1

5
0

0
1
7

5
0

 Hourly Prices 

 b 

Month and Year 

w
in

d
 v

e
lo

c
it
y
 i
n

 m
e

te
r/

s
e

c
o

n
d

6/2000 1/2002 1/2003 1/2004 12/2004

0
2

4
8

1
2

1
6

2
0

Hourly wind velocity 

 c 

Month and Year 

T
e

m
p

e
ra

tu
re

 i
n

 C
e

ls
iu

s

6/2000 1/2002 1/2003 1/2004 12/2004

−
1

8
−

1
0

0
1

0
2

0
3

0
3

5

Hourly temperature 

Hamburg Holzdorf Ham+Hol Mendig Ulm

0
5

1
0

1
5

2
0

 d 

W
in

d
 v

e
lo

c
it
y
 i
n

 m
e
te

rs
/s

e
c
o
n

d
 

Figure 3.2.1: (a) Hourly power price series of the EEX, (b) Measured hourly wind

velocity of Holzdorf, (c) Measured hourly temperature of Ulm, (d) Boxplot for

hourly wind velocities, all data ranges from June 16th 2000 to December 31th

2004.
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Table 3.2.1: Descriptive Statistics on Hourly Spot Prices at the EEX in

Euro/MWh.

Hour Mean Std. Dev. Skewness Kurtosis

1 18.33 5.990 0.627 4.081

2 15.49 5.745 0.378 3.044

3 13.99 5.643 0.297 2.809

4 13.16 5.465 0.292 2.772

5 13.47 5.424 0.161 2.694

6 15.80 6.336 0.008 2.703

7 19.30 8.964 -0.006 2.607

8 26.09 14.168 3.137 44.675

9 29.24 17.081 5.952 83.199

10 31.43 16.260 5.164 61.357

11 34.00 19.986 10.266 199.225

12 42.36 35.918 6.992 75.505

13 33.85 18.006 5.807 63.129

14 31.58 17.488 7.329 120.006

15 28.90 15.337 6.280 93.314

16 26.83 13.588 8.132 172.239

17 26.68 21.646 20.359 571.203

18 29.84 24.200 14.125 347.799

19 32.01 52.141 25.317 744.903

20 28.58 16.777 15.154 379.727

21 26.86 10.379 6.438 128.525

22 24.39 7.099 0.507 3.258

23 23.78 6.456 0.691 4.312

24 20.20 5.711 0.282 2.901
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Table 3.2.2: Descriptive Statistics on Temperature in C◦.

Ulm Mendig Hamburg Holzdorf

Mean 9.12 10.47 9.82 9.74

Median 9.10 10.3 10.0 9.80

Maximum 35.1 38.6 36.7 36.7

Minimum -17.1 -15.6 -15.6 -21.1

Std. Dev. 8.27 7.93 8.70 8.70

Skewness 0.092 0.152 0.046 0.098

Kurtosis 2.482 2.799 2.644 2.653

Table 3.2.3: Descriptive Statistics on Wind Velocity in meter/second.

Ulm Mendig Hamburg Holzdorf

Mean 2.51 3.15 3.94 3.50

Median 2.20 3.00 3.80 3.00

Maximum 14.00 16.00 17.50 20.00

Minimum 0.00 0.00 0.00 0.00

Std. Dev. 1.33 2.03 2.11 1.98

Skewness 1.028 1.142 0.660 1.009

Kurtosis 4.854 4.555 3.420 4.531
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Figure 3.2.2: Scatter plots for hourly temperature from Ulm and the hourly av-

erage wind velocity of Holzdorf and Hamburg with the logarithm of the hourly

price series (a,b), one day-ahead forecasts for temperature from Ulm and for wind

velocity from Holzdorf (c,d), for 7 a.m. 1/05/2005 until 6 a.m. 1/06/2005, Corre-

lation of measured temperature from Ulm and wind velocity from Holzdorf as well

as its one day-ahead forecasts with the hourly price for 7 a.m. 1/05/2005 until 6

a.m. 1/06/2005 (e,f).

54



3.3 Choice of the Weather Variables

In this section, we explain the choice of the weather variables for the empirical

study. As far as temperature is concerned, we proceed in spirit to Knittel and

Roberts (2005). More precisely, we employ only one weather variable for temper-

ature instead of including all data from the four measuring stations as distinct

variables. For the sake of consistency, we proceed in the same way with wind

velocity. To become more specific, besides temperature, we also add the square

and the cube of temperature as explanatory variables in the descriptive regression

equations below,

Pt = ηtemp
1 + ηtemp

2 · tempt + ηtemp
3 · temp2

t + ηtemp
4 · temp3

t , (3.3.1)

log(Pt) = ηtemp
1,l + ηtemp

2,l · tempt + ηtemp
3,l · temp2

t + ηtemp
4,l · temp3

t . (3.3.2)

For the temperature variable denoted tempt, we employ hourly temperature data

for the hours 1 until 24 of Hamburg, Holzdorf, Mendig and Ulm as well as the

average of Mendig and Ulm, since Mendig and Ulm perform best across the 24

hours, see subfigures 3.3.1a and 3.3.1b. The average of three or even all four

measuring stations yields, especially for the on-peak period, smaller coefficients

of determination than the temperature data of Ulm or the average of Ulm and

Mendig which is depicted in subfigure 3.3.1e, where the results of equation (3.3.2)

are presented. For temperature, the decision on the variable is difficult. While

the average of Ulm and Mendig performs better than data of Ulm in the off-peak

period, for the on-peak hours the opposite is true.

Finally, we have opted for data of Ulm because it provides a higher coefficient of

determination during on-peak hours.

In the case of wind velocity, the specification of the regression equations is not

straightforward since we have no hints how wind velocity and power prices interact.

Due to this uncertainty, we model this relation as simply as possible in equations

(3.3.3) and (3.3.4), respectively.

Pt = ηwind
1 + ηwind

2 · windt , (3.3.3)

log(Pt) = ηwind
1,l + ηwind

2,l · windt . (3.3.4)

Due to the non-linear relation between wind velocity and the produced energy

output, we can expect the relation between power prices and wind velocity to be

non-linear, too. Consequently, equation (3.3.4) may provide at least a reasonable

approximation of this relation.

Analogously to our procedure with temperature, we employ wind velocity data of

the four measuring stations together with the average of Hamburg and Holzdorf

in equations (3.3.3) and (3.3.4). The coefficients of determination R2 are plotted

in subfigures 3.3.1c and 3.3.1d, respectively. Here, the results indicate that apart

from few hours the average of the data of Hamburg and Holzdorf perform best

across the hours of a day. This result is clearly confirmed in subfigure 3.3.1f,

where we present the outcome of equation (3.3.4) for the average of three or four

of the measuring stations.
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Figure 3.3.1: Coefficients of determination R2 : (a) equation (3.3.1), (b) equation

(3.3.2), (c) equation (3.3.3), (d) equation (3.3.4), (e) equation (3.3.2) for the av-

erage of three or four stations, (f) equation (3.3.4) for the average of three or four

stations.
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3.4 The Empirical Study

The empirical study divides into two parts. In the first part, we examine whether

the inclusion of weather data into the stochastic model provides a significant im-

provement in terms of fit compared to the pure stochastic models without weather.

In the second part, we carry out a forecasting study to assess the quality of fore-

casts when weather data is included.

We classify two versions A and B. Version A is the pure approach without weather

and with constant transition probabilities.

In version B, we include temperature and wind as explanatory variables to the

deterministic components.

log(Pt) = Xt + ft + wt . (3.4.1)

Analogously to the procedure in the previous chapter, the strong weekly seasonality

is taken into account through weekend dummy variables for Saturdays and Sundays

as well as a sinusoidal term. Furthermore, we add a dummy variable for public

holidays. Moreover, since the range of the data covers more than four years, we

include a deterministic trend and a sinusoidal term to consider yearly seasonality.

Consequently, ft is specified as

ft = β1 · dummysat + β2 · dummysun + β3 · dummyhol + β4 · t (3.4.2)

+γ1 · sin
(

(γ2 + t) · 2π

365

)
+ γ3 · sin

(
(γ4 + t) · 2π

7

)
.

Furthermore wt is specified as,

wt = δ1 · tempt + δ2 · temp2
t + δ3 · windt + δ4 · temp3

t . (3.4.3)

Additionally, we specify time-varying transition probabilities in terms of a logit

model. For further valid linking functions, see Filardo (1994) and Filardo (1998).

We replace q with
exp(ZφM)

1 + exp(ZφM)
and p with

exp(ZφS)
1 + exp(ZφS)

in equation (3.4.4).

In addition, we assume for the inner product Zφj of the vector of explanatory

variables Z and the vector of parameters φj, j ∈ {M, S},

Zφj = φj,1 + φj,2 · tempt + φj,3 · temp2
t + φj,4 · windt + φj,5 · temp3

t . (3.4.4)

In equations (3.4.3) and(3.4.4), we choose the explanatory variables by testing

their significance at the 5 %-level. Since one goal is to determine the relation

between weather and spikes, we try to be very strict with the inclusion of weather

variables and choose this procedure. A likelihood ratio test or the Schwartz crite-

rion could be used to determine which variables should be included instead.

Only the significant explanatory variables are included in the specification as far

as the specification of equation (3.4.3)is concerned. The results of equation (3.4.3)

are given in table 3.4.8.

However, in the case of time-varying transition probabilities, it happens that none

of the estimates of equation (3.4.4) meet the criterion. This occurs for some hours,

especially for the transition from the spike to the spike regime. In these cases, we

include only the most significant parameter among them. A good example to clar-

ify our procedure with time-varying transition probabilities are the hours from 15
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to 17 in tables 3.4.10 and 3.4.11, where the results for the time-varying transi-

tion probabilities are reported. For these hours, we employ only the constant φS,1

which is actually not significant at the 5 % level.

To conclude, we explain some technical aspects pertinent to the estimation method-

ology of De Jong and Huisman (2003). As shown in subsection 2.3.5, estimation

requires to look for the last logarithm of the spot price originating from the stable

regime. For the sake of computational ease, we maximally go K = 5 steps back in

time.

3.4.1 Results on Model Fit

If spot prices are zero, we replace them by the average of the price at the same

day one week before and the price at the same day one week ahead. Another

possibility to cope with this problem may be to approximate the prices equal to

zero by prices of representative block of hours, such as certain blocks of off-peak

hours or certain blocks of on-peak hours.

In tables 3.4.1 to 3.4.3, we report the results for the stochastic component Xt

together with some model selection criteria for all hours. The results for the de-

terministic component are presented in tables 3.4.4 to 3.4.7. In comparing versions

A and B, we see that version B clearly outperforms version A throughout all 24

hours. The Schwartz information criterion indicates that Model B should be pre-

ferred.

In order to summarize the results of equation (3.4.3) for wt given in table 3.4.8, we

see that the linear temperature specification and wind provide significant negative

estimates throughout all 24 hours. Negative parameter estimates of temperature

indicate that negative temperature causes the demand, and therefore also prices,

to rise due to the need for heating in winter, whereas moderate positive tem-

peratures typically are accompanied by lower demand and therefore lower prices.

Furthermore, we have to keep in mind that these estimates merely represent an

average effect over the year. Therefore, to gain a deeper insight, investigations

should be more detailed distinguishing summer and winter time or even take into

account the monthly differences. A more detailed modelling of the general impact

of weather, however, would increase complexity with regard to our second goal

to link weather and spikes. We leave this more detailed examination for further

research.

The square of temperature mainly provides small and significant positive estimates

in the late afternoon from 16 until the evening hours 24. Moreover, the cube pro-

vides small and significant positive estimates in night hours from 1 up to 5 and

at hour 8 then partly in the early afternoon hours from 12 to 15. Summarizing

the results for the relation between weather and spikes, we can see that there is

only evidence for a significant relation in certain hours across the day as shown in

tables 3.4.10 and 3.4.11. More precisely, whenever estimation provides significant

results for the wind parameter, it turns out that rising wind velocity reduces the

transition probability to stay in the stable regime and augments the transition

probability to stay in the spike except for hours 10 and 14. We also find a relation

between temperature and regime probabilities. The relation is mainly confined to
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temperature in its linear specification. The square rarely and the cube very rarely

provide significant estimates.

The modelling of the relation between wind velocity and spot prices is not straight-

forward. Wind velocities below 4 meter/second are not significant for wind energy

production but for spot prices. The supply side of electricity is affected when

wind energy is not produced. For the main study, we assume that the impact

is different for the wind velocities below 4 meter/second. In an additional short

forecasting study, we assume that all wind velocities below 4 meter/second have

the same impact on spot prices. Moreover, we also examine the case that no wind

is added into the specification. The relation between wind velocity and spot prices

still remains an interesting problem to tackle for further research.

To conclude the discussion, table 3.4.9 presents the estimates for the constant

transition probabilities p and q, respectively, together with their standard errors

in brackets. In addition, we have computed the average transition probabilities for

version B and report them, too. Except for the hours 8, 11, 13, 14 and 18, 19, 24

in which the the average transition probability from spike to spike deviates from

the estimated p for version A, the results for both versions are similar.

Finally, it remains to mention that for the time-varying transition probabilities

from spike to spike, the estimates of the constant φS,1 are significant for only 5 of

the 24 given hours with respect to the 5 % level. This result is due to the approach

with independent spikes.
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Table 3.4.1: Results on the Stochastic Component and Model Selection Criteria.

(I)

Hour Version µM µS,H µS,L σM σS,H σS,L ρ

A 2.597
(0.025)

2.279
(0.044)

2.128
(0.050)

0.143
(0.003)

0.405
(0.018)

0.314
(0.022)

0.292
(0.020)

1
B 2.756

(0.024)
2.477

(0.039)
2.343

(0.046)
0.135

(0.003)
0.351

(0.014)
0.293

(0.018)
0.335

(0.021)

A 2.470
(0.028)

1.954
(0.054)

1.769
(0.100)

0.165
(0.004)

0.483
(0.024)

0.633
(0.018)

0.322
(0.022)

2
B 2.652

(0.027)
2.171

(0.058)
2.011

(0.100)
0.158

(0.003)
0.456

(0.024)
0.613

(0.018)
0.375

(0.023)

A 2.419
(0.029)

1.875
(0.052)

1.659
(0.092)

0.163
(0.004)

0.499
(0.017)

0.679
(0.031)

0.313
(0.023)

3
B 2.640

(0.028)
2.143

(0.049)
1.933

(0.086)
0.160

(0.004)
0.460

(0.016)
0.644

(0.028)
0.370

(0.025)

A 2.414
(0.029)

1.865
(0.048)

1.678
(0.071)

0.176
(0.004)

0.494
(0.013)

0.626
(0.019)

0.354
(0.025)

4
B 2.634

(0.028)
2.142

(0.045)
1.959

(0.071)
0.172

(0.004)
0.469

(0.012)
0.615

(0.018)
0.416

(0.027)

A 2.460
(0.027)

1.961
(0.049)

1.568
(0.122)

0.178
(0.004)

0.460
(0.015)

0.893
(0.029)

0.365
(0.023)

5
B 2.668

(0.026)
2.234

(0.044)
1.855

(0.113)
0.170

(0.004)
0.422

(0.013)
0.858

(0.026)
0.422

(0.027)

A 2.569
(0.024)

2.218
(0.067)

1.533
(0.172)

0.168
(0.004)

0.451
(0.016)

0.971
(0.048)

0.383
(0.023)

6
B 2.751

(0.025)
2.415

(0.064)
1.741

(0.166)
0.163

(0.004)
0.420

(0.016)
0.951

(0.046)
0.453

(0.025)

A 2.871
(0.021)

2.669
(0.039)

1.925
(0.124)

0.155
(0.004)

0.354
(0.013)

0.980
(0.043)

0.401
(0.025)

7
B 3.012

(0.024)
2.806

(0.042)
2.023

(0.127)
0.158

(0.004)
0.344

(0.013)
0.965

(0.044)
0.480

(0.027)

A 3.148
(0.020)

3.229
(0.050)

2.339
(0.130)

0.161
(0.004)

0.461
(0.023)

0.806
(0.041)

0.406
(0.024)

8
B 3.315

(0.025)
3.402

(0.043)
2.633

(0.107)
0.147

(0.004)
0.390

(0.014)
0.792

(0.033)
0.373

(0.023)

A 3.228
(0.022)

3.496
(0.073)

2.555
(0.143)

0.159
(0.004)

0.617
(0.037)

0.708
(0.034)

0.357
(0.020)

9
B 3.385

(0.027)
3.616

(0.071)
2.733

(0.143)
0.155

(0.004)
0.599

(0.034)
0.715

(0.033)
0.387

(0.022)

A 3.277
(0.023)

3.735
(0.081)

2.703
(0.192)

0.160
(0.003)

0.571
(0.043)

0.851
(0.053)

0.349
(0.020)

10
B 3.443

(0.028)
3.874

(0.080)
2.797

(0.205)
0.157

(0.003)
0.559

(0.042)
0.864

(0.058)
0.382

(0.020)

A 3.349
(0.023)

3.996
(0.078)

3.090
(0.150)

0.164
(0.003)

0.494
(0.030)

0.690
(0.065)

0.358
(0.020)

11
B 3.555

(0.027)
4.128

(0.080)
3.251

(0.165)
0.155

(0.003)
0.500

(0.030)
0.712

(0.078)
0.371

(0.020)

A 3.536
(0.025)

4.328
(0.060)

3.421
(0.075)

0.184
(0.004)

0.599
(0.031)

0.486
(0.022)

0.341
(0.019)

12
B 3.740

(0.032)
4.473

(0.061)
3.637

(0.072)
0.173

(0.003)
0.589

(0.029)
0.467

(0.020)
0.353

(0.020)
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Table 3.4.2: Results on the Stochastic Component and Model Selection Criteria

(II).

Hour Version µM µS,H µS,L σM σS,H σS,L ρ

A 3.349
(0.023)

3.996
(0.078)

3.090
(0.150)

0.164
(0.003)

0.494
(0.030)

0.690
(0.065)

0.358
(0.020)

13
B 3.548

(0.029)
3.994

(0.080)
3.372

(0.146)
0.153

(0.003)
0.512

(0.030)
0.647

(0.054)
0.361

(0.020)

A 3.256
(0.020)

3.844
(0.094)

2.904
(0.136)

0.163
(0.003)

0.541
(0.041)

0.647
(0.057)

0.408
(0.022)

14
B 3.472

(0.029)
4.054

(0.099)
3.151

(0.147)
0.159

(0.003)
0.526

(0.047)
0.646

(0.058)
0.430

(0.022)

A 3.158
(0.019)

3.681
(0.088)

2.514
(0.244)

0.164
(0.003)

0.549
(0.042)

0.955
(0.074)

0.430
(0.022)

15
B 3.349

(0.027)
3.840

(0.087)
2.776

(0.228)
0.162

(0.003)
0.545

(0.044)
0.891

(0.064)
0.475

(0.022)

A 3.079
(0.020)

3.366
(0.082)

2.641
(0.090)

0.156
(0.004)

0.571
(0.040)

0.594
(0.040)

0.402
(0.022)

16
B 3.231

(0.026)
3.506

(0.079)
2.822

(0.092)
0.154

(0.004)
0.546

(0.037)
0.592

(0.039)
0.449

(0.023)

A 3.029
(0.024)

3.539
(0.249)

2.527
0.128)

0.160
(0.003)

0.903
(0.126)

0.669
(0.042)

0.347
(0.018)

17
B 3.169

(0.028)
3.687

(0.259)
2.675

(0.132)
0.158

(0.003)
0.901

(0.132)
0.659

(0.042)
0.391

(0.020)

A 3.092
(0.032)

3.682
(0.113)

2.877
(0.066)

0.149
(0.003)

0.676
(0.060)

0.501
(0.047)

0.243
(0.014)

18
B 3.212

(0.035)
3.717

(0.107)
2.994

(0.073)
0.144

(0.003)
0.650

(0.052)
0.479

(0.050)
0.248

(0.015)

A 3.114
(0.027)

3.675
(0.188)

2.829
(0.160)

0.156
(0.003)

0.834
(0.067)

0.809
(0.049)

0.313
(0.017)

19
B 3.229

(0.030)
3.763

(0.190)
2.979

(0.202)
0.155

(0.003)
0.808

(0.065)
0.845

(0.059)
0.342

(0.018)

A 3.065
(0.024)

3.408
(0.152)

2.367
(0.243)

0.153
(0.003)

0.649
(0.066)

0.791
(0.095)

0.340
(0.018)

20
B 3.163

(0.028)
3.450

(0.144)
2.426

(0.271)
0.151

(0.003)
0.638

(0.060)
0.781

(0.106)
0.339

(0.019)

A 3.001
(0.026)

3.248
(0.102)

2.493
(0.231)

0.132
(0.002)

0.530
(0.050)

0.654
(0.088)

0.271
(0.017)

21
B 3.091

(0.028)
3.320

(0.092)
2.626

(0.213)
0.129

(0.002)
0.496

(0.041)
0.628

(0.079)
0.272

(0.018)

A 2.926
(0.027)

2.992
(0.045)

2.412
(0.164)

0.124
(0.003)

0.305
(0.024)

0.490
(0.052)

0.248
(0.016)

22
B 3.001

(0.028)
3.062

(0.044)
2.528

(0.147)
0.122

(0.003)
0.291

(0.022)
0.475

(0.047)
0.254

(0.017)

A 2.902
(0.030)

2.976
(0.044)

2.651
(0.087)

0.114
(0.002)

0.270
(0.019)

0.358
(0.029)

0.209
(0.014)

23
B 2.963

(0.029)
3.031

(0.038)
2.785

(0.073)
0.108

(0.002)
0.241

(0.015)
0.353

(0.026)
0.212

(0.015)

A 2.770
(0.026)

2.513
(0.041)

2.215
(0.081)

0.126
(0.003)

0.227
(0.028)

0.413
(0.027)

0.242
(0.016)

24
B 2.817

(0.024)
2.912

(0.022)
2.390

(0.080)
0.128

(0.003)
0.069

(0.007)
0.417

(0.030)
0.234

(0.016)
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Table 3.4.3: Summary in-sample fit and the Schwartz Criterion (SC) for all 24

hours.

Hour Version LL SC Hour Version LL SC

A 418.74 -0.4299 A 316.08 -0.3058
1

B 496.12 -0.5100
13

B 390.76 -0.3737

A 27.35 0.0431 A 303.87 -0.2911
2

B 117.97 -0.0440
14

B 384.12 -0.3567

A -184.01 0.2985 A 276.91 -0.2585
3

B -95.20 0.2225
15

B 336.14 -0.3122

A -278.74 0.4130 A 333.76 -0.3272
4

B -186.30 0.3192
16

B 373.41 -0.3617

A -301.92 0.4410 A 428.59 -0.4418
5

B -227.52 0.3734
17

B 463.36 -0.4704

A -94.44 0.1903 A 391.34 -0.3968
6

B -34.49 0.1357
18

B 420.04 -0.4180

A -165.64 0.2763 A 399.26 -0.4064
7

B -121.30 0.2362
19

B 429.12 -0.4245

A -59.32 0.1478 A 529.34 -0.5636
8

B 2.39 0.0912
20

B 555.48 -0.5817

A 68.15 -0.0062 A 741.93 -0.8205
9

B 120.19 -0.0557
21

B 772.81 -0.8443

A 238.68 -0.2123 A 822.35 -0.9176
10

B 299.05 -0.2584
22

B 855.88 -0.9403

A 316.08 -0.3058 A 922.44 -1.0386
11

B 397.48 -0.3818
23

B 957.24 -1.0627

A 2.950 0.0726 A 785.17 -0.8727
12

B 62.28 0.0143
24

B 812.88 -0.8928
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Table 3.4.4: Results on the Deterministic Component, see equation (3.4.2), (I).

Hour Version β1 β2 β3 β4

A −0.030
(0.021)

−0.029
(0.012)

−0.030
(0.021)

0.0004
(2.5·10−5)

1
B 0.160

(0.011)
−0.031
(0.012)

−0.041
(0.021)

0.0003
(2.1·10−5)

A 0.168
(0.015)

−0.085
(0.016)

−0.058
(0.026)

0.0003
(2.7·10−5)

2
B 0.166

(0.015)
−0.092
(0.015)

−0.058
(0.025)

0.0003
(2.2·10−5)

A 0.168
(0.015)

−0.119
(0.016)

−0.054
(0.027)

0.0003
(2.9·10−5)

3
B 0.171

(0.016)
−0.127
(0.015)

−0.065
(0.026)

0.0003
(2.4·10−5)

A 0.160
(0.018)

−0.154
(0.018)

−0.110
(0.035)

0.0003
(2.7·10−5)

4
B 0.160

(0.018)
−0.164
(0.017)

−0.127
(0.030)

0.0002
(2.3·10−5)

A 0.087
(0.018)

−0.249
(0.018)

−0.173
(0.033)

0.0003
(2.6·10−5)

5
B 0.087

(0.017)
−0.251
(0.018)

−0.187
(0.030)

0.0002
(2.2·10−5)

A −0.112
(0.016)

−0.523
(0.017)

−0.343
(0.028)

0.0003
(2.5·10−5)

6
B −0.108

(0.016)
−0.529
(0.017)

−0.351
(0.027)

0.0003
(2·10−5)

A −0.403
(0.016)

−1.039
(0.017)

−0.664
(0.033)

0.0003
(2.1·10−5)

7
B −0.405

(0.017)
−1.029
(0.017)

−0.661
(0.031)

0.0003
(1.8·10−5)

A −0.529
(0.016)

−1.162
(0.016)

−0.664
(0.033)

0.0003
(2.1·10−5)

8
B −0.514

(0.015)
−1.151
(0.015)

−0.712
(0.032)

0.0003
(2·10−5)

A −0.443
(0.015)

−0.934
(0.014)

−0.664
(0.025)

0.0003
(2.3·10−5)

9
B −0.443

(0.014)
−0.946
(0.014)

−0.666
(0.027)

0.0003
(2.1·10−5)

A −0.331
(0.014)

−0.740
(0.013)

−0.634
(0.021)

0.0003
(2.4·10−5)

10
B −0.331

(0.014)
−0.749
(0.013)

−0.568
(0.022)

0.0003
(2.2·10−5)

A −0.293
(0.014)

−0.621
(0.014)

−0.625
(0.020)

0.0003
(2.5·10−5)

11
B −0.289

(0.013)
−0.622
(0.013)

−0.608
(0.020)

0.0002
(2.2·10−5)

A −0.331
(0.016)

−0.566
(0.015)

−0.600
(0.026)

0.0002
(2.7·10−5)

12
B −0.324

(0.015)
−0.568
(0.015)

−0.602
(0.026)

0.0002
(2.7·10−5)
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Table 3.4.5: Results on the Deterministic Component, see equation (3.4.2), (II).

Hour Version β1 β2 β3 β4

A −0.293
(0.014)

−0.621
(0.014)

−0.025
(0.017)

0.0003
(2.5·10−5)

13
B −0.288

(0.013)
−0.620
(0.013)

−0.616
(0.021)

0.0003
(2.3·10−5)

A −0.318
(0.014)

−0.623
(0.014)

−0.626
(0.020)

0.0003
(2.2·10−5)

14
B −0.318

(0.014)
−0.652
(0.013)

−0.644
(0.020)

0.0003
(2·10−5)

A −0.318
(0.015)

−0.679
(0.014)

−0.648
(0.021)

0.0003
(2.1·10−5)

15
B −0.317

(0.015)
−0.682
(0.014)

−0.670
(0.020)

0.0003
(1.9·10−5)

A −0.285
(0.014)

−0.661
(0.013)

−0.732
(0.021)

0.0003
(2.2·10−5)

16
B −0.284

(0.014)
−0.664
(0.014)

−0.754
(0.023)

0.0003
(1.9·10−5)

A −0.260
(0.013)

3.539
(0.249)

−0.653
(0.019)

0.0004
(2.6·10−5)

17
B −0.258

(0.013)
−0.601
(0.013)

−0.652
(0.020)

0.0003
(2.2·10−5)

A −0.224
(0.012)

−0.469
(0.012)

−0.572
(0.022)

0.0003
(3.2·10−5)

18
B −0.222

(0.011)
−0.471
(0.011)

−0.593
(0.021)

0.0003
(3.1·10−5)

A −0.171
(0.013)

−0.339
(0.013)

−0.425
(0.021)

0.0003
(2.8·10−5)

19
B −0.172

(0.013)
−0.344
(0.013)

−0.442
(0.021)

0.0003
(2.6·10−5)

A −0.143
(0.012)

−0.241
(0.012)

−0.284
(0.019)

0.0003
(2.5·10−5)

20
B −0.144

(0.012)
−0.242
(0.012)

−0.282
(0.020)

0.0003
(2.5·10−5)

A −0.171
(0.010)

−0.232
(0.010)

−0.257
(0.016)

0.0004
(2.7·10−5)

21
B −0.169

(0.010)
−0.230
(0.010)

−0.264
(0.016)

0.0004
(2.7·10−5)

A −0.149
(0.010)

−0.174
(0.010)

−0.174
(0.016)

0.0003
(2.8·10−5)

22
B −0.146

(0.009)
−0.171
(0.010)

−0.181
(0.016)

0.0003
(2.6·10−5)

A −0.098
(0.009)

−0.088
(0.009)

−0.094
(0.017)

0.0003
(3.1·10−5)

23
B −0.098

(0.009)
−0.086
(0.009)

−0.105
(0.017)

0.0003
(2.8·10−5)

A −0.129
(0.010)

−0.150
(0.010)

−0.116
(0.018)

0.0003
(2.7·10−5)

24
B −0.103

(0.010)
−0.126
(0.011)

−0.115
(0.021)

0.0003
(1.8·10−5)
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Table 3.4.6: Results on the Deterministic Component, see equation (3.4.2), (III).

Hour Version γ1 γ2 γ3 γ4

A −0.128
(0.016)

−33546358
(7.897)

−0.120
(0.008)

−4436609
(0.074)

1
B −0.078

(0.017)
68.74

(11.20)
0.120

(0.008)
1.950

(0.071)

A −0.164
(0.010)

66.28
(6.571)

−0.132
(0.010)

−22.52
(0.080)

2
B 0.089

(0.019)
−103.39
(6.23)

0.133
(0.010)

1.968
(0.077)

A −0.169
(0.019)

55.50
(6.253)

0.119
(0.011)

−180.01
(0.092)

3
B −0.021

(0.018)
0.508

(53.12)
−0.123
(0.011)

1.983
(0.091)

A −0.182
(0.018)

54.830
(5.724)

0.120
(0.012)

−82.022
(0.101)

4
B −0.086

(0.022)
62.11
(8.43)

0.122
(0.011)

−5.001
(0.097)

A −0.185
(0.017)

58.56
(5.547)

0.103
(0.012)

8.974
(0.119)

5
B −0.077

(0.022)
56.96

(10.65)
−0.105
(0.012)

−1.501
(0.114)

A −0.164
(0.016)

7435121
(6.023)

−0.072
(0.011)

976925.5
(0.167)

6
B −0.076

(0.011)
−97.87
(11.83)

−0.076
(0.011)

−1.451
(0.156)

A 0.088
(0.013)

450310.4
(9.251)

−0.014
(0.012)

1782766
(0.777)

7
B 0.035

(0.012)
−37.05
(34.24)

−0.020
(0.012)

−1.174
(0.543)

A 0.102
(0.014)

633.84
(8.497)

−0.016
(0.012)

−21.403
(0.642)

8
B 0.046

(0.015)
−59.40
(0.948)

−0.026
(0.011)

−0.485
(0.363)

A −0.054
(0.015)

−1604080
(17.72)

−0.015
(0.011)

1371334
(0.609)

9
B 0.035

(0.018)
8.49

(31.11)
−0.019
(0.011)

−0.487
(0.483)

A −0.022
(0.016)

492.18
(42.071)

0.011
(0.010)

−304.78
(0.834)

10
B 0.057

(0.020)
41.11

(15.50)
−0.015
(0.010)

−0.140
(0.616)

A −0.025
(0.017)

−3846.8
(36.23)

−0.014
(0.010)

−259.33
(0.659)

11
B 0.075

(0.020)
45.25
(8.93)

−0.021
(0.009)

−0.343
(0.418)

A 0.112
(0.025)

41.63
(9.76)

−0.034
(0.010)

−0.312
(0.335)

12
B 0.115

(0.024)
42.64
(9.16)

−0.034
(0.010)

0.331
(0.336)
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Table 3.4.7: Results on the Deterministic Component, see equation (3.4.2), (IV).

Hour Version γ1 γ2 γ3 γ4

A −0.025
(0.017)

−3846.8
(36.23)

−0.014
(0.010)

−259.33
(0.659)

13
B 0.071

(0.020)
45.09

(12.75)
−0.021
(0.010)

−0.397
(0.405)

A 0.028
(0.014)

2132.69
(29.72)

−0.060
(0.009)

−538.92
(0.166)

14
B 0.042

(0.018)
38.41

(19.75)
−0.067
(0.009)

0.041
(0.145)

A −0.041
(0.014)

−605.65
(19.24)

−0.078
(0.009)

−34.93
(0.130)

15
B 0.042

(0.016)
22.13

(20.48)
−0.084
(0.009)

0.037
(0.118)

A −0.064
(0.014)

−247.31
(12.57)

−0.087
(0.010)

−112.2
(0.110)

16
B 0.046

(0.013)
−13.18
(22.38)

−0.091
(0.010)

−0.004
(0.106)

A −0.141
(0.015)

−263.85
(7.060)

−0.077
(0.010)

−0.097
(0.120)

17
B 0.095

(0.016)
−60.79
(11.36)

−0.082
(0.010)

−0.080
(0.114)

A −0.289
(0.019)

−1001.92
(4.33)

−0.067
(0.008)

−0.169
(0.123)

18
B 0.250

(0.021)
−84.63
(5.05)

−0.070
(0.008)

−0.135
(0.116)

A −0.307
(0.016)

3371.17
(3.438)

−0.071
(0.009)

−0.200
(0.122)

19
B 0.266

(0.019)
−92.53
(3.99)

−0.073
(0.009)

−0.188
(0.122)

A −0.255
(0.016)

−1371.07
(3.610)

−0.067
(0.009)

−0.211
(0.128)

20
B 0.230

(0.020)
−89.84
(4.51)

−0.069
(0.008)

−0.207
(0.123)

A −0.148
(0.017)

−1081403
(6.671)

−0.056
(0.007)

−1160257
(0.129)

21
B 0.121

(0.019)
−81.45
(8.69)

−0.060
(0.007)

−0.175
(0.119)

A −0.071
(0.016)

−290.436
(13.989)

−0.043
(0.007)

48.96
(0.167)

22
B 0.047

(0.018)
−90.09
(21.66)

−0.046
(0.007)

−0.044
(0.153)

A −0.080
(0.017)

−7272566
(13.198)

−0.020
(0.006)

129443.9
(0.332)

23
B −0.064

(0.019)
60.74
(6.05)

−0.022
(0.006)

−0.075
(0.288)

A −0.090
(0.016)

−1900865
(11.714)

−0.018
(0.007)

−268829.4
(0.419)

24
B −0.047

(0.016)
46.19

(16.29)
0.021

(0.007)
−39.79
(0.302)
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Table 3.4.8: Results on the Weather Component wt, see equation (3.4.3) .

Hour δ1 δ2 δ3 δ4

1 −0.002
(0.0002) - −0.002

(0.0002)
3.1·10−7

(4·10−8)

2 −0.002
(0.0002) - −0.002

(0.0003)
5·10−8

(7.4·10−9)

3 −0.003
(0.0002) - −0.002

(0.0003)
4.2·10−8

(8.2·10−9)

4 −0.002
(0.0003) - −0.002

(0.0003)
4.6·10−8

(9.0·10−9)

5 −0.002
(0.0002) - −0.003

(0.0004)
3.2·10−8

(8.8·10−9)

6 −0.001
(0.0002) - −0.003

(0.0003) -

7 −0.001
(0.0003) - −0.002

(0.0003) -

8 −0.001
(0.0002) - −0.002

(0.0003)
1.6·10−8

(4·10−9)

9 −0.001
(0.0002)

4.7·10−6

(9.1·10−7)
−0.002
(0.0003) -

10 −0.003
(0.0002)

1.8·10−5

(3.5·10−6)
−0.002
(0.0003) -

11 −0.001
(0.0002)

2.8·10−6

(8.1·10−7)
−0.003
(0.0003) -

12 −0.001
(0.0002) - −0.003

(0.0003)
7.4·10−9

(2.7·10−9)

13 −0.001
(0.0002) - −0.002

(0.0003)
7.6·10−9

(2.1·10−9)

14 −0.001
(0.0002) - −0.002

(0.0003)
9.1·10−9

(1.9·10−9)

15 −0.001
(0.0002) - −0.002

(0.0003)
9.1·10−9

(1.9·10−9)

16 −0.001
(0.0002)

3.8·10−6

(7·10−7)
−0.002
(0.0002) -

17 −0.001
(0.0003)

4.1·10−6

(7.2·10−7)
−0.001
(0.0003) -

18 −0.001
(0.0002)

3.6·10−6

(7.4·10−7)
−0.001
(0.0002) -

19 −0.001
(0.0002)

4.1·10−6

(8.5·10−7)
−0.001
(0.0002) -

20 −0.001
(0.0002)

2.3·10−6

(9·10−7)
−0.001
(0.0002) -

21 −0.001
(0.0002)

2.4·10−6

(8·10−7)
−0.001
(0.0002) -

22 −0.001
(0.0002)

2.7·10−6

(7.8·10−7)
−0.001
(0.0002) -

23 −0.001
(0.0002)

3.7·10−6

(8.1·10−7)
−0.001
(0.0002) -

24 −0.001
(0.0002)

4.9·10−6

(7.8·10−7)
−0.001
(0.0002) -
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Table 3.4.9: Results on Constant Transition Probabilities, see equation(3.4.4) .

Hour Version p q

A 0.766
(0.040)

0.958
(0.007)

1
B 0.780 0.956

A 0.803
(0.030)

0.957
(0.007)

2
B 0.773 0.954

A 0.847
(0.022)

0.944
(0.008)

3
B 0.849 0.950

A 0.879
(0.020)

0.949
(0.008)

4
B 0.872 0.959

A 0.825
(0.025)

0.941
(0.009)

5
B 0.831 0.949

A 0.724
(0.039)

0.940
(0.008)

6
B 0.764 0.943

A 0.668
(0.043)

0.891
(0.013)

7
B 0.695 0.903

A 0.509
(0.057)

0.893
(0.013)

8
B 0.379 0.864

A 0.434
(0.057)

0.916
(0.010)

9
B 0.418 0.918

A 0.440
(0.065)

0.947
(0.008)

10
B 0.392 0.947

A 0.706
(0.047)

0.974
(0.005)

11
B 0.560 0.964

A 0.861
(0.025)

0.975
(0.005)

12
B 0.856 0.971

Hour Version p q

A 0.706
(0.047)

0.974
(0.005)

13
B 0.774 0.972

A 0.592
(0.062)

0.965
(0.006)

14
B 0.506 0.966

A 0.557
(0.064)

0.966
(0.006)

15
B 0.587 0.970

A 0.500
(0.072)

0.953
(0.008)

16
B 0.500 0.955

A 0.518
(0.075)

0.977
(0.005)

17
B 0.503 0.978

A 0.643
(0.058)

0.962
(0.007)

18
B 0.368 0.947

A 0.661
(0.066)

0.975
(0.005)

19
B 0.400 0.973

A 0.628
(0.075)

0.981
(0.005)

20
B 0.573 0.979

A 0.410
(0.101)

0.971
(0.006)

21
B 0.420 0.970

A 0.562
(0.096)

0.966
(0.008)

22
B 0.580 0.963

A 0.388
(0.104)

0.942
(0.012)

23
B 0.391 0.927

A 0.717
(0.059)

0.972
(0.006)

24
B 0.568 0.936
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Table 3.4.10: Summary of results for the time-varying transition probabilities

(I), see equation (3.4.4) .

Hour φM,1 φM,2 φM,3 φM,4 φM,5

1 3.076
(0.182) - - -

2 4.852
(0.456)

−0.008
(0.003) - −0.034

(0.008) -

3 4.285
(0.518)

−0.018
(0.006) - −0.024

(0.008)
7.7·10−7

(2.9·10−7)

4 3.128
(0.178) - - - -

5 3.583
(0.388) - - −0.019

(0.009) -

6 4.380
(0.457) - −4·10−5

(1.5·10−5)
−0.030
(0.008) -

7 3.595
(0.395) - - −0.034

(0.008) -

8 2.674
(0.318) - - −0.022

(0.007)
1.1·10−7

(5.4·10−8)

9 2.423
(0.133) - - - -

10 3.329
(0.314)

0.023
(0.005)

−0.0006
(2·10−4) - 2.9·10−6

(1.2·10−6)

11 3.403
(0.267)

0.016
(0.004)

−8.2·10−5

(1.8·10−5) - -

12 3.5237
(0.201) - - - -

13 3.306
(0.298)

0.019
(0.005)

−8.8·10−5

(1.8·10−5) - -

14 4.168
(0.321) - −2.6·10−5

(6.8·10−6) - -

15 4.416
(0.064)

−0.006
(0.001) - - -

16 3.040
(0.182) - - -

17 3.794
(0.227) - - - -

18 2.847
(0.165) - - - -

19 3.588
(0.215) - - - -

20 3.837
(0.241) - - - -

21 3.440
(0.219) - - - -

22 4.179
(0.435) - - −0.024

(0.009) -

23 3.042
(0.364) - - −0.015

(0.008) -

24 2.681
(0.188) - - - -
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Table 3.4.11: Summary of results for the time-varying transition probabilities

(II), see equation (3.4.4) .

Hour φS,1 φS,2 φS,3 φS,4 φS,5

1 - - - 0.047
(0.008) -

2 - - - 0.045
(0.007) -

3 - 0.011
(0.002) - 0.041

(0.009) -

4 - 0.011
(0.003) - 0.052

(0.011) -

5 - 0.013
(0.0002) - 0.037

(0.008) -

6 1.171
(0.190) - - - -

7 0.825
(0.192) - - - -

8 - −0.006
(0.003) - - -

9 - −0.003
(0.002) - - -

10 - - - −0.010
(0.006) -

11 - - - - 6.3·10−8

(2.8·10−8)

12 1.785
(0.206) - - - -

13 0.573
(0.259 - - - -

14 - - −0.0002
(6.7·10−5)

−0.048
(0.021)

5.4·10−7

(2.4·10−7)

15 0.399
(0.249) - - - -

16 0.002
(0.287) - - - -

17 0.006
(0.315) - - - -

18 - −0.006
(0.003) - - -

19 - −0.014
(0.005) - 0.025

(0.010) -

20 - - - 0.010
(0.010) -

21 −0.353
(0.413) - - - -

22 - - - 0.011
(0.010) -

23 −0.464
(0.439) - - - -

24 0.274
(0.253) - - - -

70



3.4.2 A Forecasting Experiment

In the preceding first part of this chapter, we have found that there is a significant

relation between weather and spot prices. In the second part of this chapter, we

want to examine whether this relation can be exploited for forecasting the one

day-ahead spot price.

The forecasting methodology is the same as outlined in section 2.4.1 for the models

with independent spikes.

Following Kosater and Mosler (2006), we set E[XT |ST = M,FT ] = XT and use the

actual value XT as forecast origin. In addition, we determine E[XT |ST = M,FT ]

as follows. First, we look for the last logarithm of the spot price which belongs

to the stable regime. Starting at XT , we look for the last logarithm of the spot

price with a smoothed probability smaller than 0.5 to be in the spike regime. Let

XT−i be the stochastic part of such a logarithm of spot price. Then, we replace

the actual value XT by its forecast based on XT−i with i ∈ {0, 1, · · · , T − 1} as

the forecast origin. By this, we approximate the forecast E[XT+1|ST+1 = M,FT ]

with E[XT+1|ST+1 = M,FT−i].

E[XT+1|ST+1 = M,FT−i] = µM · ρ + (3.4.5)

(1− ρ) · ((1− ρ)i ·XT−i + µM · (1− (1− ρ)i)
)

= (1− ρ)i+1 ·XT−i + µM · (1− (1− ρ)i+1).(3.4.6)

The one-step ahead forecast in both cases is thus,

P f
T+1 = exp

(
Xf

T+1 + ff
T+1

)
. (3.4.7)

The advantage of our alternative approach is that we avoid forecasts for the stable

regime based on spikes. However, one drawback is that the prediction error rises.

Secondly, we renounce to exploit the forecast of the deterministic component at

T . A possible procedure to avoid the loss in terms of seasonality could be to first

remove the deterministic components from the actual time series. The stochastic

model could be then fitted to the data from which deterministic components have

been removed, as done by Misiorek et al. (2006).

Anticipating the results of the forecasting study, we found that the new approach

presented in this paper outperforms the methodology in Kosater and Mosler (2006)

for hours from 19 to 6. Spot prices for hours 21 to 6 do not differ much throughout

the different types of days because demand is always low. Therefore, for these

hours the deterministic component is not as important as for the hours from 9 till

20. We always report the best of all forecasts provided by the two methods. We

can proceed this way, because the best performing method performs best for both

versions A and B. Additionally, we have also assessed the performance of version

B including the constant in equation (3.4.4) whenever the constant turned out to

be not significant in the first part of the study. We have only obtained slightly

better forecasts for hours 1 and 5.

Here, we have neglected the intra-day correlations of hourly prices. However,

for many applications, such as risk management, derivative valuation and asset

optimization these correlations are of crucial interest. In addition, Cuaresma et

al. (2004) show that the inclusion of intra-day correlations between hours into
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the model specification improves the forecasting performance. In the presented

stochastic approach, other hourly price series could be included as explanatory

variables similar to temperature or wind velocity to capture relations between

hours during a day. However, the inclusion of lagged regressors of the same price

series in this framework is not possible. In such a case, the original approach of

Hamilton (1989) should be used instead.

3.4.3 Results of the Forecasting Study

In this forecast comparison study, we carry out and evaluate ex- ante forecasts in

terms of the root mean square error ( RMSE ) and the mean absolute error ( MAE

). All given information available at time T is exploited and, by this, we use all

known electricity prices up to T to estimate the parameter values.

The given dataset is divided into an in-sample period which includes observations

from 6/16/2000 to 9/21/2004 at the beginning. The out-of-sample period ranges

from 9/22/2004 to 12/30/2004. The forecasting experiment is designed as follows.

We use in-sample data to estimate the parameters of the model version of interest.

Then, we make out-of-sample one-step ahead forecasts and evaluate them. The

in-sample period is then enlarged by one observation and again forecasts for the

out-of-sample period are made and evaluated. We repeat this procedure 100 times.

This forecasting study is carried out using the logarithm of all hourly 24 price

series. As aforementioned, we use the actually measured values at the day the

forecast is made for, instead of the forecast which we do not possess. PT+1 denotes

the actual observed price at time T + 1, while P f
T+1 refers to the predicted price

at time T + 1.The measures used for comparison are,

RMSE =

√√√√ 1
100

·
100∑

i=1

(
PT+1,i − P f

T+1,i

)2

, (3.4.8)

MAE =
1

100
·

100∑

i=1

∣∣∣PT+1,i − P f
T+1,i

∣∣∣ . (3.4.9)

The two- steps ahead hardly and the three -steps ahead forecasts not at all resemble

the measured values for both temperature and wind velocity, see Figure 3.4.1.

Therefore, we only carry out one-step ahead forecasts. For practical application,

meteorologists provide forecasts up to six days ahead. Table 3.4.12 together with

subfigures 3.4.2a and 3.4.2b present the results of the forecasting study. The

results of the main study suggest to use weather data for forecasting prices for

off-peak hours. For the remaining hours, the incorporation of weather data does

not necessarily provide better forecasts. Furthermore, to understand the results

of the study, we have carried out the following regressions,

Pt = η1 + η2 · tempt + η3 · temp2
t + η4 · temp3

t + η5 · windt , (3.4.10)

log(Pt) = η1,l + η2,l · tempt + η3,l · temp2
t + η4,l · temp3

t + η5,l · windt . (3.4.11)

In subfigure 3.4.2c, we present the results of equations (3.4.9) and (3.4.10). In a

second step, we have extracted some outliers from the electricity spot prices. Then,

we regressed the remaining prices according to equations (3.4.9) and (3.4.10). The
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Figure 3.4.1: Measured temperature from Ulm (a),(c) and measured wind velocity

(b),(d) together with their two and three days ahead forecasts from hour 7 a.m.

1/05/2005 until hour 6 a.m. 1/06/2005.
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results of the confined regressions are plotted in subfigure 3.4.2d. Subfigures 3.4.2c

and 3.4.2d show a very low coefficient of determination R2 for those hours where

versions B fails to clearly outperform version A.

Table 3.4.12: Summary Out-Of-Sample Forecasting Study. (Best results are

emphasized in bold.)

RMSE MAE

Hour A B A B

1 4.957 4.559 3.709 3.518

2 5.179 4.864 4.244 3.983

3 5.014 4.737 3.885 3.748

4 4.815 4.511 3.656 3.390

5 5.000 4.687 3.911 3.586

6 4.550 4.458 3.263 3.328

7 5.574 5.374 3.997 3.986

8 6.449 6.264 4.664 4.712

9 6.317 6.136 4.436 4.353

10 5.844 5.930 4.160 4.191

11 6.023 6.006 4.428 4.231

12 8.218 7.991 5.642 5.499

13 5.653 5.344 4.036 3.809

14 6.008 6.369 4.487 4.492

15 5.411 5.324 4.060 3.953

16 5.079 5.111 3.649 3.677

17 5.396 5.393 3.973 3.857

18 9.252 9.049 6.825 6.608

19 8.540 8.255 6.122 5.884

20 6.611 6.500 4.786 4.524

21 4.664 4.405 3.066 2.880

22 3.940 3.699 2.886 2.747

23 3.154 3.019 2.257 2.117

24 3.499 3.305 2.659 2.577
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Figure 3.4.2: Results of the forecasting study (a,b), (c,d) R2 of equations (3.4.9)

and (3.4.10).
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3.4.4 An Additional Small Forecasting Study

To analyze the relevance of wind velocity for forecasting, we also carry out a small

forecasting study for hours 4,12 and 22. We have chosen hour 4 and hour 22 to

represent the off-peak I and II periods, respectively, whereas hour 12 is thought

to be representative for on-peak hours.

We carry out the study without wind velocity. Secondly, we transform wind ve-

locity in order to take into account that wind velocities below the margin of 4 me-

ter/second are not significant for production. The transformation is implemented

as follows,

windtrans =





0 : wind velocity < 4 ,

wind velocity− 4 : 4 ≤ wind velocity ≤ 12 ,

8 : wind velocity > 12 .

(3.4.12)

Furthermore, we also assess the performance of the unrestricted models incor-

porating all possible regressors for wt as well as for the time-varying transition

probabilities according to equations (3.4.3) and (3.4.4). Wind velocity and tem-

perature are left unchanged compared with the main study. The results of the

additional study are summarized in tables 3.4.13 and 3.4.14. They suggest that

wind velocity is relevant for forecasting.

Additionally, we see that instead of actual wind velocity, we should implement a

transformation which takes into account the technical conditions of the operation

of windmills. Finally, incorporating all regressors may be an asset for forecasting,

on one hand. On the other hand, we run risk of heavy losses due to overfitting.

In a second step, we want to compare the results with results of some linear mod-

els. Therefore, we also carry out one- step ahead forecasts with three further linear

models denoted Models I to III. Model I is an autoregressive model of order one

for the stochastic part of the logarithm of the spot price Xt. In Model II compared

to Model I, we additionally include an autoregressive term of order seven to take

into account the strong weekly seasonality. Finally in Model III, we specify the

most sophisticated among the considered linear models, namely a seasonal autore-

gressive integrated moving average process ARIMA(1,0,1)× SARIMA(1,0,1)7 to

capture mean reversion and weekly seasonality. Additionally, we also examine the

impact of weather on hourly spot prices in the framework of these models I to III.

By this, we again denote two model versions A and B. For the linear models I to

III, we specify version B according to equation (3.4.3).

Model I:

Xt = ρ · µM + (1− ρ) ·Xt−1 + εt , εt ∼ N (0, σ2
M ). (3.4.13)

Model II:

Xt = (ρ1−ρ2) ·µM +(1−ρ1) ·Xt−1 +ρ2 ·Xt−7 + εt , εt ∼ N (0, σ2
M ). (3.4.14)
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Model III:

Xt = ρ1 · (1− ρ2) · µM + (1− ρ1) ·Xt−1 + εt − θ · εt−1 − ω · (εt−7 − θ · εt−8)

+ρ2 · (Xt−7 − (1− ρ1) ·Xt−8) , εt ∼ N (0, σ2
M ). (3.4.15)

The logarithm of the spot price for hour 12 is characterized by alternating periods

of very high volatility due to spiky and calm periods. Therefore, we carry out

forecasting not only in the very calm period from 9/22/2004 to 12/30/2004 but

additionally for the period from 5/30/2003 to 9/8/2003. Estimation of parame-

ters for the second spiky period is based on the sub-sample from 6/16/2000 to

5/29/2003, at the beginning. Tables 3.4.15 and 3.4.16 present the results of the

comparison of the out-of-sample prediction performance of the model with day-

dependent and independent spikes with Models I to III. Results for the first calm

period are denoted I and for the spiky period II.

In order to summarize the outcome of the study, Model III performs very well

across the three hours 4,12 and 22. For the calm period I of hour 12, Model III

even clearly outperforms the non-linear model applied in the main study. For the

spiky period, however, the opposite is true. Furthermore, the study proves that

non-linear models are valuable competing methods to sophisticated linear models

with still hidden potential. This hidden potential lies in linking non-linear Markov

regime-switching models to economic explanatory variables such as load and the

reserve margin as pointed out in Mount et al. (2006).

Table 3.4.13: RMSE for The Three Selected Hours.( Best results are emphasized

in bold.)

Hour without modified all main

wind wind regressors study

4 4.759 4.366 4.729 4.511

12 8.319 7.910 7.412 7.991

22 3.835 3.713 3.682 3.699
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Table 3.4.14: MAE for The Three Selected Hours.( Best results are emphasized

in bold.)

Hour without modified all main

wind wind regressors study

4 3.581 3.304 3.518 3.390

12 5.694 5.397 5.114 5.499

22 2.812 2.719 2.729 2.747

Table 3.4.15: RMSE for The Three Selected Hours.( Best results are emphasized

in bold.)

Hour Version Model Model Model main

I II III study

4 A 5.028 5.264 4.702 4.815

4 B 5.114 4.802 4.354 4.511

12 (I) A 9.168 7.549 6.510 8.218

12 (I) B 8.892 7.324 6.432 7.991

12(II) A 58.501 63.316 59.782 58.759

12 (II) B 59.474 60.428 59.012 59.456

22 A 4.260 4.363 4.195 3.940

22 B 4.188 4.199 3.941 3.699

3.5 Summary

In this chapter, we have examined the relation between hourly prices from the

EEX and weather represented by temperature and wind velocity. On one hand,

we have explored whether a relation can be detected in the given data. On the

other hand, we have examined if this relation can be exploited for forecasting of

future spot prices.

The study has been carried out with the Markov regime-switching model with day-

dependent and independent spikes put forward in section 2.3.6. We try to capture

the general impact of weather on hourly spot prices, on one hand. Additionally,

we model time-varying transition probabilities as functions of temperature and

wind velocity to link weather and spikes.

As a result, we have found that including weather data yields better results in

terms of fit than the pure stochastic models. However, the forecasting experiment

reveals only that weather data should be used for forecasting prices in the hours

from 19 until 6. During the remaining hours, including weather into the model

does not necessarily provide better forecasts.

Due to emission allowances and the tendency towards renewable energy in elec-
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Table 3.4.16: MAE for The Three Selected Hours. ( Best results are emphasized

in bold.)

Hour Version Model Model Model main

I II III study

4 A 3.901 4.186 3.631 3.656

4 B 4.047 3.822 3.408 3.390

12 (I) A 6.067 4.870 4.346 5.642

12 (I) B 6.127 4.990 4.179 5.499

12 (II) A 29.407 30.744 32.022 29.810

12 (II) B 30.032 30.921 30.877 29.121

22 A 3.033 3.247 2.963 2.886

22 B 2.893 3.081 2.781 2.747

tricity production however, inclusion of weather will presumably become an asset

for forecasting hourly prices throughout the whole day in the future. Some ear-

lier results on the topic discussed in this chapter have been published in Kosater

(2006).

For further research, load and the reserve margin should be incorporated in a good

model specification. The general impact of weather on prices should be specified

more precisely taking into account the four seasons or even the different months

of the year. Finally, research should also focus on modelling the relation between

spot prices and wind velocity.
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Chapter 4

Cross-City Hedging with

Weather Derivatives using

Bivariate GARCH Models

with Dynamic Conditional

Correlations

4.1 Introduction and Literature Review

Many sectors of the economy such as energy, agriculture, retail and tourism are

exposed to weather risk. The earnings of producers of ice cream and energy com-

panies, for example, are very much depending on the weather conditions, they are

faced with. To cope with the volumetric risk due to uncertain weather conditions,

weather derivatives have become a common instrument. These instruments al-

low electricity suppliers to protect their earnings from warm winters or ice cream

producers from cold summers. Especially in the USA, the market for weather

derivatives, as well over the counter as exchange-based, is fast growing.

As of September 1999, the Chicago Mercantile Exchange, also referred to as CME,

began listing futures and options on temperature indices of ten cities across the

USA. Today, indices for eighteen U.S. cities are available. Besides, contracts on

indices for nine European and two Japanese cities can be struck. These cities have

been chosen based on population, the variability in their seasonal temperatures

and the activities in over- the- counter markets. The total number of contracts

traded was 4165 in 2002 and 14234 in 2003. Through September 2005, there were

630 000 weather contracts traded with a notional value of 22 billion dollars.

Weather derivative instruments include weather swaps, options, option collars and

short straddles, to mention a few among them. The payoffs of these instruments

may be linked to various underlying meteorological variables such as average tem-

perature, minimum temperature, maximum temperature, heating degree days and

cooling degree days, as well as wind speed, rainfall and sunshine.
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Here, we concentrate on temperature derivatives, since about 90 % of the traded

derivatives are based on temperature. To be more specific, we focus on contracts

written on heating degree day (HDD) and cooling degree day indices (CDD), re-

spectively. HDD indices can be used to protect from a bland winter, whereas CDD

indices are designed to hedge against a cold summer.

A degree day measures how much a day’s average deviates from 65◦ F ( or 18.33◦

C ) a level of outdoor temperature considered to be utmost comfortable by the

utility industry. The idea behind this choice is that, for each degree below 65◦

F, more energy is needed for heating. By contrast, for each degree above 65◦ F,

more energy is needed to power air conditioners. Most contracts are written on

the accumulation of HDDs or CDDs over a calendar month or a season so that

one contract can hedge against revenue fluctuations over the concerned period.

Moreover, so-called energy degree day indices (EDD) are additionally offered by

the CME. These contracts allow for more flexibility. For example, a different level

than 65◦ F can be specified. More precisely, we denote the daily

HDD = max[0, 65◦ F − daily average temperature], whereas for the daily CDD,

we denote, CDD = max[0, daily average temperature − 65◦ F]. Note that daily

average temperature is computed as the average of the maximum and minimum

temperatures on a certain day. Further basic elements of contracts with HDDs or

CDDs as underlyings are the accumulation period and the station which records

temperatures used to construct the underlying variable. Finally, the so-called tick

size has to be determined. The tick size indicates the amount of money attached

to each HDD or CDD, respectively.

However outside the USA, trading develops slowly or does not develop at all. For

example, the Deutsche Börse Group had offered heating degree days (HDD) and

cooling degree days (CDD) indices since December 2000 for thirty European cities.

Among these cities were the German cities Berlin, Essen, Frankfurt and Hamburg.

In the meantime, the Deutsche Börse Group has withdrawn from this market due

to the lack of demand for standardized contracts and liquidity. Moreover, reli-

able and comprehensive weather data is not as easily available as in the USA.

Additionally, the relevance of air conditioning in the summertime is not as pro-

nounced as in the USA. Consequently, the demand for CDDs is much lower than in

the USA. Attempts to establish an exchange-based trading of weather derivatives

have failed in other European countries either. Therefore in Europe, trading of

weather derivatives mainly takes place over the counter.

When we talk about valuation of temperature derivatives, we have to bear in

mind that temperature as underlying has some salient characteristics. Since it is a

meteorological variable rather than a traded asset, the conventional risk-neutral,

arbitrage-free valuation methodology does not apply. By contrast, theoretically

adequate valuation can only be based on an equilibrium model which takes into

account the stochastic dynamics of the underlying as well as the risk aversion of

the investors.

Another open question is whether the HDDs, CDDs should be directly modelled

for each contract. Cao and Wei (2000) argue that direct modelling of the HDDs,

CDDs has certain shortcomings. Instead, modelling the daily temperature enables
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us to handle temperature contracts of any maturity and for any season. Moreover,

estimation of model parameters has to be carried out only once. By contrast,

direct modelling of HDDs and CDDs requires a separate estimation procedure for

each contract taking into account the season and the maturity of the contract due

to the nature of temperature behavior. As a result, modelling temperature rather

than the HDDs and CDDs seems more adequate.

Literature on weather derivatives is rather scanty. In the following paragraphs,

we report some important contributions, at least in our opinion, on temperature

derivatives.

To start with, Dischel (1998) and Brody et al. (2002), propose to simulate future

behavior of temperature as a continuous time or discrete time stochastic process

which takes into account the salient features of temperature such as mean rever-

sion and seasonality. These processes can be then fitted to data and used to value

any contingent claim by taking expectation of the discounted future payoff.

Davis (2001) puts forward to value temperature derivatives based on HDDs and

CDDs in an equilibrium framework. Besides the stochastic dynamics of temper-

ature, the author takes into account optimal consumption and investment rules

when he derives explicit pricing formulas for the valuation of swap rates and option

values. Torro et al. (2003) model air temperature behavior in Spain combining

techniques for the modelling of short-term interest rates with a generalized au-

toregressive conditional heteroscedastic (GARCH) time series approach. They

suggest to create a population-weighted index of daily temperatures from four

different measuring stations to compute HDDs or CDDs. Furthermore, Cao and

Wei (2004) propose an equilibrium framework linking the temperature uncertainty

and the economy’s aggregate output therein. They suggest a serially correlated

bivariate-process for the temperature and the aggregate output. Finally, their

framework allows to address the market price of weather risk. They apply their

framework to temperature from five CME-traded cities in the USA. Campbell and

Diebold (2005) take a simple but systematic time series approach to modelling and

forecasting daily average temperature in 10 U.S. cities. They find strong evidence

that point and density forecasts from their approach prove useful for participants

in the weather derivatives market.

In addition, Taylor and Buizza (2004) and Taylor and Buizza (2005) compare

temperature density forecasts from time series models with atmospheric models

in terms of short-run predictions one up to ten days ahead. They find evidence

that so-called weather ensemble density forecasts of daily midday temperature

data recorded at five locations in the UK outperform forecasts provided by time

series models. Weather ensemble forecasts consist of multiple future scenarios for

a weather variable generated from atmospheric models. In a second step, Taylor

and Buizza (2005) assess forecasts of the conditional mean and quantiles of the

density of the payoff of a 10 day-ahead put option provided by univariate time

series models, on one hand, and from atmospheric models, on the other hand.

Again, the obtained results suggest to use weather ensemble forecasts.

In this chapter, we intend to particularly address aspects of multivariate analysis

and cross-city hedging as put forward by Campbell and Diebold (2005). Trading of
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temperature derivatives requires to fix the station which records the temperature

data that is used to compute the payoff of the derivative. At the CME, contracts

are struck on data from few selected measuring stations to ensure liquidity. Camp-

bell and Diebold (2005) argue that hedging of weather risk in remote locations is

only possible if the risk of the remote location is highly correlated with the risk of

a location for which a liquid market exists. Since HDDs and CDDs are computed

at a daily basis, a multivariate model which captures daily correlation dynamics

between locations may provide a very rich picture of reality and be therefore a very

useful tool for risk management. In previous work of Torro et al (2003), Cao and

Wei (2004) and Campbell and Diebold (2005) on univariate modelling, the authors

have revealed that temperature displays rich dynamics such as yearly seasonality

as well in the conditional mean as in the conditional variance. Consequently, it is

probably naive to assume that the conditional correlation between two locations is

the same in winter as in summer. We may rather expect the opposite to be true.

At the CME, temperature derivatives based on data from nine European cities,

among them Berlin and Essen, can be traded. Henceforth, if EnBW an important

electricity supplier in the south-west of Germany plans to hedge his volume risk in

the area of Stuttgart at the CME, for example, he must be aware of the correlation

dynamics of daily average temperature at Stuttgart and the traded cities. Conse-

quently, the correlation dynamics between the series from Stuttgart-Echterdingen

and Berlin may be of special interest for EnBW. However, the modelling of correla-

tion dynamics between temperature time series has not been paid much attention

to, so far. Maybe this is one possible reason why many investors prefer to negoti-

ate customized contracts over the counter on data from the region of their interest

rather than to engage in standardized contracts on data from traded cities.

A rather neglected aspect of temperature derivatives is its usefulness in terms of

portfolio management. Cao, Wei and Li (2004) stress that in incomplete markets

a new asset class, such as weather derivatives, will always improve the risk-return

trade-off in the perspective of the Markowitz mean-variance efficiency. Moreover,

the relatively lower correlation between weather derivatives and conventional fi-

nancial assets suggests that weather derivatives can be an excellent diversification

vehicle.

Following and extending the previous work of Torro et al (2003) and Campbell

and Diebold (2005) on univariate GARCH models, we choose a bivariate GARCH

framework. In more detail, our focus in this chapter is twofold. On one hand, we

want to assess the ability of bivariate GARCH models with dynamic conditional

correlations in modelling time-varying correlation dynamics between temperature

time series. On the other hand, we aim to apply the elaborated methodology to

help an investor to correlate his own exposure with tradeable cities. As we men-

tioned before, knowledge of these correlation dynamics is the key to constructing

a sensible hedge.

Previous contributions of Campbell and Diebold (2005), Franses et al.(2001), Torro

et al. (2003), Taylor and Buizza (2004) and Tol (1996) show that generalized au-

toregressive conditional heteroscedastic (GARCH) models are useful in modelling

and forecasting of univariate temperature time series.
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Besides two benchmark models, we fit and gauge two univariate GARCH ap-

proaches to our temperature time series. Moreover in a second step, we move on

to a bivariate GARCH framework to examine the correlation dynamics between

different locations. Recently, several multivariate GARCH models have been de-

signed to allow for parsimony or to guarantee a positive definite covariance matrix,

or often both. We should keep in mind, that these models have originally been

conceived to model dynamics of financial time series. Temperature time series

display yearly seasonality in the conditional variance, which is a salient feature

compared with financial time series. Consequently, the incorporation of season-

ality dynamics in the existing multivariate GARCH framework is the main task

that we are faced with the modelling of temperature series.

A thorough analysis of different multivariate GARCH approaches has revealed

that dynamic conditional correlation models, abbreviated DCC, are well suited

for modelling correlations between temperature time series.

DCC models offer a high degree of flexibility in modelling the conditional vari-

ance and conditional correlation dynamics. A further advantage of DCC models

is the numerical stability, also for higher dimensions, due to a two-step estimation

procedure that can be applied.

4.2 Data

The data comprises actually measured daily average temperature ( measured in

C◦ ) from three measuring stations ranging from January 1st 1991 to April 29th

2005.

One of the measuring stations is located at Stuttgart, namely Echterdingen. More-

over, we have decided to take data from Berlin (-Tempelhof) and Hamburg (-

Fuhlsbüttel). The data from Berlin is used to compute European CDDs and HDDs

at the CME. Therefore, this choice is quite natural. Hamburg and Echterdingen,

however, are located in the north and south of Germany. We expect temperature

at other locations to exhibit correlation dynamics in between these two. Daily

average temperature have been computed as the arithmetic mean of daily maxi-

mum and daily minimum temperature series. Finally, according to Campbell and

Diebold (2005) and Taylor and Buizza (2004), we have discarded the 29th Febru-

ary in leap years.

In the original series of Echterdingen, we have found three extremal observations

larger than 43 C◦. In our opinion, these values must be wrong. Therefore, we have

replaced these aberrant observations by the average of temperatures observed one

year before and one year after.

In table 4.2.1, we present some descriptive statistics for the three daily average

temperature time series, whereas table 4.2.2 shows the correlations between the

different temperature series. The estimated Kurtosis ranges between 2.27 and 2.44

and is far below 3 the value for the normal distribution. This is due to the differ-

ent levels of temperature in winter and summer. By this, the distribution of these

temperature series rather resembles a two-component mixture of normals than a

normal distribution. In order to motivate our modelling approach in Section 4.3,
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we analyze the data from Echterdingen. The remaining temperature series ex-

hibit similar time series characteristics. Consequently, we treat them analogously.

Hence, subfigure 4.2.1a shows the series of the station at Echterdingen, while sub-

figure 4.2.1b presents the histogram of this series together with the superimposed

estimated normal density. As aforementioned, the empirical distribution seems

slightly bimodal. The correlations between the temperature time series are posi-

tive and exceed 0.9.

Subfigure 4.2.1c shows the autocorrelation function which resembles a cosine func-

tion. This shape of the autocorrelation function indicates a strong yearly season-

ality in the data. Finally, subfigure 4.2.1d suggests that the conditional mean of

the considered time series should be modelled by a low- ordered autoregressive

moving average process (ARMA).

Table 4.2.1: Descriptive Statistics on Temperature Series in C◦ from The Three

Selected Stations.

S-Echterdingen Berlin Hamburg

Mean 9.58 9.85 9.32

Median 9.70 9.85 9.20

Maximum 27.55 29.55 29.60

Minimum -13.90 -14.50 -15.05

Std. Dev. 7.52 7.87 7.02

Skewness -0.14 -0.09 -0.07

Kurtosis 2.33 2.27 2.44

Jarque-Bera 113.59 122.55 72.88
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Figure 4.2.1: Daily average temperature from Echterdingen( 01/01/1991 until

04/29/2005 (a), Histogram for Echterdingen (b), Autocorrelation function ( ACF

) for Echterdingen (c), Partial autocorrelation function ( PACF )for Echterdingen

(d).
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Table 4.2.2: Correlations of Temperature Series in C◦ from The Three Selected

Stations.

S-Echterdingen Berlin Hamburg

S-Echterdingen 1.000

Berlin 0.942 1.000

Hamburg 0.927 0.975 1.000

4.3 Univariate Modelling

Our modelling approach of the average daily temperature time series is substan-

tially inspired by the work of Franses et al.(2001) and Campbell and Diebold

(2005). At the beginning, we outline the previous two contributions.

Franses et al. (2001) examine weekly Dutch temperature data. They observe a

yearly seasonal pattern in the mean and in the variance, respectively. Furthermore,

they detect conditional heteroscedasticity in the data. Finally, they argue that the

impact on the conditional variance of temperatures higher than expected is dif-

ferent from the impact of temperatures lower than expected. In order to capture

these important features, they suggest a modified version of the following so-called

Quadratic (Q)GARCH(1,1) model, originally put forward by Sentana (1995),

Tt = s(µ0, µ1, µ2, t) + ρ1 · Tt−1 + εt

εt =
√

htut (4.3.1)

ht = s(ω0, ω1, ω2, t) + α · (εt−1 − s(γ1, γ2γ3, t))2 + βht−1 .

Here, Tt denotes daily average temperature, whereas ut is an i.i.d. error term.

The terms of the form s(ξ0, ξ1, ξ2, t) are employed to model seasonality and the

asymmetric impact of lower and higher temperatures on the conditional variances.

More precisely, s(ξ0, ξ1, ξ2, t) is designed as follows,

s(ξ0, ξ1, ξ2, t) = ξ0 + ξ1wt + ξ2w
2
t . (4.3.2)

In this context, wt is a repeating step function that numbers the weeks from 1 to

52 within each year.

Campbell and Diebold (2005) choose a structural approach combined with GARCH

to take into account the conditional variance dynamics. The equations from (4.3.3)
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to (4.3.8) highlight their modelling approach.

Tt = Trendt + Seasont +
L∑

l=1

ρt−lTt−l + εt (4.3.3)

εt =
√

htut (4.3.4)

Trendt =
M∑

m=0

βmtm (4.3.5)

Seasont =
P∑

p=1

(
λc,p cos(2πp

dt

365
) + λs,p sin(2πp

dt

365
)
)

(4.3.6)

ht =
Q∑

q=1

(
λc,q cos(2πq

dt

365
) + λs,q sin(2πq

dt

365
)
)

(4.3.7)

+ω + αε2t−1 + βht−1

ut ∼ N (0, 1) (4.3.8)

dt is a repeating step function that numbers the days from 1 to 365 within each

year. Campbell and Diebold (2005) set P = Q = 3, L = 25 and M = 1.

In the first step, we model the conditional mean of the three daily average temper-

ature time series of interest. Thereby, we take into account the descriptive time

series characteristics depicted in figure 4.2.1. Similar to the work of Taylor and

Buizza (2004) modelling seasonality with a low- ordered Fourier series, equation

(4.3.6), turns out to be better suited for modelling the conditional mean than

the quadratic function in equation (4.3.2). As opposed to Campbell and Diebold

(2005) and Cao and Wei (2004), we do not find any evidence for a linear trend

in any of the examined series. One reason is that we consider shorter time series.

Secondly, the areas that we examine, are not as urbanized as Atlanta or Chicago

where local temperatures have dramatically increased due to air pollution over the

last decades. Furthermore, we do not fit an autoregressive model of order L = 25

as suggested by Campbell and Diebold (2005). On the contrary, we prefer an

autoregressive moving average process ARMA(1,1) for the two temperature series

except for Hamburg. In the case of Hamburg, we opt for an ARMA(2,1). Finally,

we specify the yearly seasonality according to equation (4.3.6) with P = 1. Our

approach for the two locations, except for Hamburg, is summarized in equation

(4.3.9). The specification for Hamburg is presented in equation (4.3.10) and de-

noted Model I∗.

Model I

Tt = λc,1 cos(2π
dt

365
)+λs,1 sin(2π

dt

365
)+ρ1µm +(1−ρ1)Tt−1 + εt +θεt−1, (4.3.9)

Model I∗

Tt = λc,1 cos(2π
dt

365
)+λs,1 sin(2π

dt

365
)+(ρ1−ρ2)µm+(1−ρ1)Tt−1+ρ2Tt−2+εt+θεt−1,

(4.3.10)

where εt ∼ N (0, σ2). Figure 4.3.1 presents some results on model fit for Model I

for data from Echterdingen. Subfigures 4.3.1a and 4.3.1b show that the residuals

do not exhibit any notable pattern of autocorrelation. However, the subfigures

4.3.1c and 4.3.1d suggest that the squared residuals are sligthly autocorrelated.
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Furthermore, subfigure 4.3.1e shows that the residuals are leptokurtic. Hence, the

results put forward to model the conditional variance. Since the introduction of

the (generalized) autoregressive conditional heteroscedasticity model (G)ARCH

by Engle (1982) and Bollerslev (1986), a plethora of GARCH models has been

proposed to take into account volatility clustering and the asymmetric effect of

news on volatility.

For our purposes, we have chosen two among these models which potentially are

capable of modelling the characteristics of temperature time series.

Following Campbell and Diebold (2005), we divide the conditional variance ht into

a seasonal and a GARCH part denoted σ2
t .

ht = Seasonalt + σ2
t (4.3.11)

Seasonalt =
Q∑

q=1

(
λc,q+1 cos(2πq

dt

365
) + λs,q+1 sin(2πq

dt

365
)
)

(4.3.12)

In equation (4.3.12), we set Q = 2 for all three stations. Besides Model I (Model

I∗), we specify three further models which only differ in terms of the specification

of σ2
t . The conditional mean is specified according to equation (4.3.9)(equation

(4.3.10)), while the seasonal part of the conditional variance follows from equation

(4.3.12). Therefore, we confine ourselves, thereinafter, to report the specification

of σ2
t for each model.

Model II

σ2
t = σ2 (4.3.13)

In Model II, which is similar to the specification of the conditional variance in Cao

and Wei (2004), we assume no GARCH-dynamics in the conditional variance.

Model III

σ2
t = ω + αε2t−1 + βσ2

t−1 (4.3.14)

Model III is the basic symmetric specification of the GARCH(1,1) model proposed

by Bollerslev (1986) and suggested by Campbell and Diebold (2005).

Model IV

σ2
t = ω + α

(
εt−1 − γ1 − γ2dt − γ3d

2
t

)2
+ βσ2

t−1 (4.3.15)

In Model IV, we follow Franses et al. (2001) and link the potential asymmetry

to a daily repeating step function dt. At first glimpse, this approach seems most

appealing, since potential asymmetry is directly linked to its seasonal source. Ob-

viously, Model IV nests Model III if we set γ1 = γ2 = γ3 = 0.

We have also examined other asymmetric GARCH models such as the GJR pro-

posed by Glosten, Jagannathan and Runkle (1993) and the EGARCH proposed

by Nelson (1991). However, it turned out that Model IV is best suited for our

subject among the alternative univariate asymmetric GARCH specifications.
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Figure 4.3.1: ACF of the residuals from equation(4.3.9) (a), PACF of the resid-

uals from equation(4.3.9) (b), ACF of the squared residuals from equation(4.3.9)

(c), PACF of the squared residuals from equation(4.3.9)(d), plot of the standard-

ised squared residuals from equation (4.3.9)(e), histogram of the residuals from

equation(4.3.9)(f).
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4.3.1 Results on Model Fit

The aim of the modelling procedure is to capture as much as possible of the

structure in the data. Therefore, we gauge the outcome not only in terms fit, but

additionally consider the deviation of the standardized residuals from normality.

Therefore, we also report skewness, kurtosis and the value of the Jarque-Bera

(1987) statistic. In tables from 4.3.1 to 4.3.3, we report some descriptive statistics

of the standardized residuals for all four models and each time series, whereas

parameter estimates of the four models fitted to each of the three time series

are collected in tables 4.3.4 and 4.3.5. The results indicate that Model II, which

is almost the time series specification proposed by Cao and Wei (2004) already

provides a sufficiently good fit. Model IV outperforms the remaining models in

terms of fit but not with respect to the Jarque-Bera statistic. Especially, for Berlin

and Hamburg the standardized residuals obtained for Models III and IV are more

skewed than those of the benchmark model II. However, the kurtosis is closer

to 3, which is the value of the kurtosis in the case that standardized residuals

are normally distributed. Furthermore, we report the value of the Ljung-Box

statistics for the standardized residuals ut and the squared standardized residuals

u2
t . The standardized residuals pass the test only at a level between 1% and 2%

for Echterdingen and Berlin. We renounced to add an additional AR(2) term

due to the lack of significance. The squared standardized residuals do not exhibit

any notable autocorrelation. Finally, figure 4.3.2 shows the estimated conditional

variance series generated from Models III and IV for the temperature time series

from Echterdingen.

Table 4.3.1: Summary In-Sample Fit : Echterdingen.

Model

I II III IV

Skewness 0.0633 -0.0101 -0.0093 0.0546

Kurtosis 3.3737 3.3046 3.2935 3.2585

Jarque-Bera 33.9040 20.3035 18.8381 17.1549

LL -11450.09 -11400.05 -11394.80 -11372.32

LB Q(7) for ut 18.762 17.054 16.990 16.184

LB Q(7) for u2
t 45.775 12.262 2.6556 2.1367

SC 4.3901 4.3775 4.3788 4.3751
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Table 4.3.2: Summary In-Sample Fit : Berlin.

Model

I II III IV

Skewness 0.1155 0.1077 0.1238 0.1755

Kurtosis 3.2948 3.1855 3.1676 3.1384

Jarque-Bera 30.5579 17.6077 19.4618 31.0090

LL -11452.39 -11418.15 -11407.73 -11384.98

LB Q(7) for ut 16.511 16.263 14.907 13.941

LB Q(7) for u2
t 36.943 23.816 0.8667 1.3347

SC 4.3910 4.3845 4.3837 4.3800

Table 4.3.3: Summary In-Sample Fit : Hamburg.

Model

I II III IV

Skewness 0.1460 0.1507 0.1979 0.2538

Kurtosis 3.2431 3.1942 3.1034 3.1134

Jarque-Bera 31.4344 27.9987 36.4407 58.9014

LL -11424.78 -11391.89 -11366.80 -11325.05

LB Q(7) for ut 11.992 12.093 11.649 12.710

LB Q(7) for u2
t 87.048 59.554 2.1903 2.8629

SC 4.3829 4.3769 4.3706 4.3595
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Table 4.3.4: Estimates of Models I and II (equations (4.3.9),(4.3.10) and (4.3.13)).

Model I Model II

Echterdingen Berlin Hamburg Echterdingen Berlin Hamburg

λs,1
−2.5206
(0.2020)

−2.6495
(0.2120)

−2.6329
(0.2048)

−2.6084
(0.1876)

−2.6902
(0.1942)

−2.6696
(0.1865)

λc,1
−8.8638
(0.2002)

−9.3603
(0.2019)

−8.0895
(0.1948)

−8.8804
(0.2014)

−9.4387
(0.2109)

−8.1662
(0.2065)

µ 9.7103
(0.1424)

9.9798
(0.1471)

9.4409
(0.1420)

9.7215
(0.1385)

9.9973
(0.1436)

9.4515
(0.1384)

ρ1
0.2618

(0.0106)
0.2536

(0.0106)
0.5122

(0.0959)
0.2687

(0.0113)
0.2552

(0.0110)
0.5198

(0.1062)

ρ2 - - 0.2119
(0.0787) - - 0.2166

(0.0865)

θ 0.2183
(0.0154)

0.2257
(0.0152)

0.4024
(0.0927)

0.2217
(0.0159)

0.2178
(0.0155)

0.3992
(0.1028)

σ 4.6759
(0.0870)

4.6800
(0.0872)

4.6347
(0.0871)

4.6633
(0.0914)

4.6705
(0.0900)

4.6280
(0.0900)

λs,2 - - - 0.2934
(0.1138)

0.6498
(0.1185)

0.4717
(0.1130)

λc,2 - - - 1.2007
(0.1360)

0.5106
(0.1320)

0.5585
(0.1347)

λs,3 - - - −0.0669∗

(0.1251)
−0.2795
(0.1241)

−0.2441
(0.1221)

λc,3 - - - 0.4673
(0.1157)

0.5632
(0.1222)

0.6787
(0.1216)

Note that ∗ means not significant at the 5 % level.
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Table 4.3.5: Estimates of Models III and IV, (equations (4.3.14) and (4.3.15)).

Model III Model IV

Echterdingen Berlin Hamburg Echterdingen Berlin Hamburg

λs,1
−2.6142
(0.1860)

−2.7204
(0.1942)

−2.7065
(0.1853)

−2.6569
(0.1882)

−2.7211
(0.1972)

−2.7071
(0.1878)

λc,1
−8.8058
(0.2004)

−9.3269
(0.2111)

−7.9083
(0.2039)

−8.8657
(0.2033)

−9.4561
(0.2124)

−8.1187
(0.2007)

µ 9.7240
(0.1377)

10.0003
(0.1438)

9.4898
(0.1377)

9.7903
(0.1424)

10.0809
(0.1478)

9.5875
(0.1403)

ρ1
0.2679

(0.0115)
0.2510

(0.0112)
0.4965

(0.1164)
0.2649

(0.0115)
0.2502

(0.0113)
0.4817

(0.1146)

ρ2 - - 0.2016
(0.0947) - - 0.1888

(0.0932)

θ 0.2248
(0.0171)

0.2170
(0.0167)

0.3799
(0.1129)

0.2233
(0.0168)

0.2133
(0.0164)

0.3659
(0.1111)

ω 1.6460
(0.8037)

1.1994
(0.5066)

1.2209
(0.3194)

1.1120
(0.3375)

0.8829
(0.2691)

1.2091
(0.2228)

α 0.0348
(0.0135)

0.0434
(0.0137)

0.0714
(0.0133)

0.0370
(0.0110)

0.0342
(0.0106)

0.0682
(0.0133)

γ1 - - - 2.9282
(1.1958)

2.0431∗

(1.2375)
3.6364

(0.8753)

γ2 - - - −0.0753
(0.0201)

−0.0762
(0.0234)

−0.0751
(0.0139)

γ3 - - - 2·10−4

(5.4·10−5)
2·10−4

(6.4·10−5)
2·10−4

(3.8·10−5)

β 0.6121
(0.1800)

0.7001
(0.1171)

0.6650
(0.0756)

0.6665
(0.0796)

0.7083
(0.0649)

0.5994
(0.0580)

λs,2
0.2708

(0.1137)
0.5890

(0.1186)
0.4359

(0.1152)
0.3804

(0.1665)
0.4893

(0.1931)
0.5166

(0.1158)

λc,2
1.0846

(0.1434)
0.4458

(0.1313)
0.4865

(0.1365)
1.9234

(0.3679)
1.6577

(0.5304)
0.9674

(0.2817)

λs,3
−0.0832∗

(0.1260)
−0.3044
(0.1238)

−0.1973∗

(0.1201)
−0.2037∗

(0.1337)
−0.3073
(0.1766)

−0.2640∗

(0.1403)

λc,3
0.4208

(0.1165)
0.4493

(0.1233)
0.4657

(0.1257)
0.1863∗

(0.1661)
0.1319∗

(0.1766)
−0.1751∗

(0.1803)

Note that ∗ means not significant at the 5 % level.
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Figure 4.3.2: σ2
t : Model III (a), σ2

t : Model IV (b), ht : Model III (c), ht : Model

IV (d), all series for Echterdingen.

95



4.3.2 Examining the Departure from Normality

The Jarque-Bera statistic rejects the null hypothesis of normality for all models

and all of the three temperature time series. Therefore, we try to inquire the

source of departure from normality exhibited by the standardized residuals. First,

we have presumed that the standardized residuals follow a student t-distribution

and in the second step a the generalized error distribution instead of the normal

distribution. As opposed to our expectation, the results became even worse.

Finally, we have additionally applied intervention analysis to the three series of

interest and for Models III and IV, as last resort. Thereby, we have modelled

so-called additive outliers in the conditional mean equation to mitigate the impact

of potential aberrant observations. Here, we have included the additive outliers as

follows,

Tt = E[Tt|Ft−1] +
J∑

j=1

djIt=tout + εt (4.3.16)

E[Tt|Ft−1] denotes the conditional mean, conditioned on the information set at

time t − 1 Ft−1. The dummy variable It=tout takes value 1 if at t an aberrant

observation occurs. In this case, we denote t = tout. Furthermore, we assume

J additive outliers. The identification of outliers in the context of autoregressive

moving average models can be done in several ways. For example Chen and Liu

(1993), propose a procedure to identify outliers and to jointly estimate parameters

and outlier effects.

Identification procedures for outliers are in general cumbersome to implement and

slowly proceeding. Moreover, they rely on a test for which critical values are not

known. In more detail, the searching procedure proposed by Chen and Liu (1993)

leads to sequences of decision rules which cause that test-statistics are typically

not distributed as χ2 or standard normal. Henceforth, if we choose a critical value

which is too low, we may detect too many outliers. Vice versa, if we set the critical

value too high, we may not identify any outliers. In empirical work, it is often not

easy to distinguish between extreme observations and outliers.

Since we do not focus on outliers, we have identified the most eye catching outliers

using a heuristic method.

Generally speaking, we simply look for extreme values with respect to the quantiles

of a standard normal distribution among the standardized residuals.

Finally, we jointly estimate the parameters together with dummy variables for the

additive outliers. The results for skewness, kurtosis, the Jarque-Bera statistic and

the value of the logarithmic likelihood together with the number J of included

outlier-related dummy variables are summarized in tables 4.3.6 and 4.3.7. The

results suggest that the departure from normality can be at least to some extent

explained by extreme daily average temperatures on certain days. This seems

especially true for the series from Echterdingen. For the remaining two series, we

observe an improvement in terms of fit and the value of the Jarque-Bera statistic

but this improvement is not sufficient to arrive at normality.

We denote the model versions with outlier-related dummy variables Model IIIb

and Model IVb, respectively.

In Figure 4.3.3, we present the estimated conditional variance series ht for Models

96



III, IIIb, IV and IVb for Echterdingen.

Table 4.3.6: Summary In-Sample Fit: Model IIIb.

Model IIIb

Echterdingen Berlin Hamburg

Skewness 0.0199 0.1231 0.1930

Kurtosis 3.1568 3.0412 2.9702

Jarque-Bera 5.7012 13.5691 32.6384

LL -11360.66 -11376.36 -11336.79

LB Q(7) for ut 17.259 15.285 10.632

LB Q(7) for u2
t 4.9785 2.6652 1.9411

SC 4.3756 4.3848 4.3755

J 6 8 10

Table 4.3.7: Summary In-Sample Fit: Model IVb.

Model IVb

Echterdingen Berlin Hamburg

Skewness 0.0610 0.1613 0.2227

Kurtosis 3.1146 3.0246 2.9693

Jarque-Bera 6.0994 22.8101 43.4210

LL -11334.30 -11349.49 -11290.72

LB Q(7) for ut 17.611 13.664 11.797

LB Q(7) for u2
t 3.3824 2.2804 2.8132

SC 4.3737 4.3795 4.3611

J 8 8 9

4.3.3 Out-of-sample Forecasting Study

For bivariate modelling, we have to choose a univariate specification to model

the conditional variance, first. Model fit and the distribution of the standardized

residuals are two important criteria when choosing a model. Another important

feature, if not even the most important, is the out-of-sample forecasting quality of

a model.
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To start with, the forecasts for the conditional mean can be obtained as follows,

T f
t+1 = λc,1 cos(2π

dt+1

365
) + λs,1 sin(2π

dt+1

365
) + (4.3.17)

(ρ1 − ρ2)µm + (1− ρ1)Tt + ρ2Tt−1 + θεt ,

T f
t+h = λc,1 cos(2π

dt+h

365
) + λs,1 sin(2π

dt+h

365
) + (4.3.18)

(ρ1 − ρ2)µm + (1− ρ1)Tt+h−1 + ρ2Tt+h−2 .

We present the prediction procedure for the more elaborate ARMA(2,1) model fit-

ted to data from Hamburg. Furthermore, we compute forecasts of the conditional

variance,

(σ2
ii,t+h)f = E[ω + α(εt+h−1 − γ1 − γ2dt+h − γ3d

2
t+h)2 + βσ2

t+h−1|Ft]

(4.3.19)

= ω + (α + β) σ2
ii,t+h−1 + α(γ1 + γ2dt+h + γ3d

2
t+h)2

(hii,t+h)f = (σ2
ii,t+h)f + Seasonalfii,t+h . (4.3.20)
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Figure 4.3.3: ht: Model III and IIIb (a), ht: Model III and Model IV (b),ht : Model

IV and IVb (c), ht : Model IIIb and Model IVb (d), all series for Echterdingen.
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Here, we assess the forecasting ability of Models III and IV. Furthermore, we also

examine the performance of these model specifications taking into account the

outlier effects. Outliers can lead to biased estimates, model misspecification and

inaccurate forecasts. Therefore, we want to examine if the inclusion of dummy

variables for additive outliers, in fact, improves out-of-sample forecasts.

The number of actually included additive outliers also depends on numerical sta-

bility. Too many dummy variables slow up likelihood maximization or can, even,

turn it impossible.

In our forecast experiment, we follow Franses et al. (2001) and assess the one-step

ahead forecasts of the conditional variance ht for 150 observations from 08/21/2004

to 01/18/2005. We estimate model parameters beginning with the in-sample from

08/20/2004 to 01/17/2005. For every forecast, we re-estimate the parameters for

the models of interest, using all observations prior to the forecast origin. As a mea-

sure of the true variance, we use the squared residuals ε̂2t from Model I obtained in

each estimation round on the in-sample augmented by one observation.The results

are summarized in table 4.3.8.

We gauge the results by means of the measures RMSE and MAE, see equations

(4.3.21) and (4.3.22).

k denotes the number of results which we take into consideration to compute the

measures RMSE and MAE, respectively. We have obtained k = 150 for Hamburg,

Berlin k = 141 and Echterdingen k = 150. Only results where all of the four

models achieved convergence were taken into consideration. If at least one did not

successfully converge, we discarded the results from all models for this observation

from computation of RMSE and MAE.

Unfortunately in the case of Echterdingen, optimization of the logarithmic likeli-

hood of Model IV often yielded negative parameter estimates for GARCH param-

eters which should be positive. However, this shortcoming did not emerge with

Model IVb. Consequently, we only report the results for Model IVb.

Summarizing the results for Berlin and Hamburg, we see no clear difference be-

tween the QGARCH and the symmetric GARCH model with respect to both

measures RMSE and MAE, except for Echterdingen where the RMSE for Model

IVb is notably larger than for Models III and IIIb, respectively.

Secondly, the inclusion of dummy variables to mitigate the effect of additive out-

liers does not notably improve the point forecast performance. However, we should

bear in mind that the inclusion of dummy variables to mitigate outliers may im-

prove the interval forecasting performance.

RMSE =

√√√√1
k
·

k∑

i=1

(
PT+1,i − P f

T+1,i

)2

, (4.3.21)

MAE =
1
k
·

k∑

i=1

∣∣∣PT+1,i − P f
T+1,i

∣∣∣ . (4.3.22)

As a result of the univariate study, we employ Model IV to model the conditional

variance dynamics. Especially, due to the in-sample fit and the fact that the

QGARCH nests Model III as a special case, we think that this is the right choice.

Furthermore, we renounce to include the additive outliers because the inclusion
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Table 4.3.8: Results on The Out-Of-Sample Forecasting Study.( Best results are

emphasized in bold.)

Echterdingen Berlin Hamburg

RMSE MAE RMSE MAE RMSE MAE

III 6.1091 4.3914 7.1809 4.6736 6.2768 4.2391

IIIb 6.1058 4.3792 7.1930 4.6697 6.2834 4.2276

IV - - 7.1114 4.6383 6.1760 4.1344

IVb 7.4592 4.3601 7.1122 4.6591 6.1985 4.1508

of these outliers may unnecessarily complicate optimization. This may become an

even more severe problem when we turn to bivariate modelling.

However, the role of outliers, especially for interval forecasting, in the present

context may be an interesting issue for further research.

4.4 Bivariate Modelling

Research on multivariate GARCH models is very active due to their relevance for

many financial applications such as asset pricing, portfolio selection, hedging and

risk management. Quite alike the development in univariate GARCH modelling,

we can observe several different more or less sophisticated approaches to multi-

variate GARCH models. For a comprehensive survey on multivariate GARCH

models, we refer to Bauwens et al. (2006).

We continue with our approach from univariate modelling and assume the condi-

tional covariance matrix Ht to consist of a seasonal part and a GARCH(1,1) part

denoted Σt.

Ht = Seasonalt + Σt with Σt =

(
σ2

11,t σ12,t

σ21,t σ2
22,t

)
. (4.4.1)

The seasonal term of hii,t , with i ∈ {1, 2}, is specified as in the univariate case

with Q = 2,

Seasonalii,t =
Q∑

q=1

(
λii,c,q+1 cos(2πq

dt

365
) + λii,s,q+1 sin(2πq

dt

365
)
)

. (4.4.2)

Here, we work in the framework of so-called dynamic conditional correlation mod-

els. Dynamic conditional correlation models have certain advantages. They allow

to include seasonality in the conditional variance specification without running

risk of numerical problems which is neither guaranteed by any version of VEC

models proposed by Bollerslev et al. (1988) nor by any version of BEKK models

advocated by Baba et al.(1991), respectively. Secondly, the specification of the

conditional variance is not confined to be a standard GARCH(1,1) according to

Bollerslev (1986). Therefore, we can take into account the asymmetry displayed by
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the temperature series due to the different impact of temperature higher than ex-

pected and lower than expected on the conditional variance. Orthogonal GARCH

models, see van der Weide (2002), are also flexible with the specification of the

conditional variance. However, orthogonal GARCH models are a special case of

BEKK models. Consequently, these models do not possess distinct parameters,

which exclusively govern the correlation dynamics. However, we opt for utmost

flexibility in modelling. This is especially true with respect to correlation dy-

namics, the main subject of our study. Dynamic conditional correlation models

warrant an utmost flexible modelling compared with the remaining approaches

such as VEC and BEKK models.

4.4.1 The DCC Model Class

Dynamic conditional correlation models allow to separately specify the individual

conditional variances, on one hand, and the conditional correlation matrix or an-

other measure of dependence between the individual series, like a copula of the

conditional joint density, on the other hand.

First attempts to design dynamic conditional correlation models have been under-

taken by Engle (2002), Tse and Tsui (2002), Christodoulakis and Satchell (2002).

The dynamic conditional correlation model class nests the popular constant cor-

relation coefficient model introduced by Bollerslev (1990). The main advantage of

DCC models over VEC or BEKK models is parsimony in parametrization which

alleviates estimation and allows to overcome the curse of dimensionality for higher

than the bivariate case. A disadvantage is that theoretical results on stationarity,

ergodicity and moments cannot be easily derived as for VEC and henceforth also

BEKK models.

The center piece of this model class is the fact that Ht can be decomposed as

follows,

Ht = DtRtDt , (4.4.3)

where Dt is the diagonal matrix of time-varying standard deviations from uni-

variate GARCH models with
√

hii,t on the ith diagonal and Rt is the (possibly)

time-varying correlation matrix. This class of models was originally designed to

allow for two-step estimation of the typically high dimensional matrix Ht in the

context of portfolio optimization, where very many assets are involved.

In the first step univariate volatility models are fitted for each of the assets or tem-

perature series and estimates of hii,t are obtained. In the second step, parameters

of the conditional correlation are estimated given the estimated parameters and

conditional variances from the first step.

Unfortunately, model parameters are not simultaneously estimated by means of

quasi maximum likelihood and therefore inefficient. However, Engle and Sheppard

(2001) show that consistency and asymptotic normality of the parameter estimates

of the two-step DCC estimator closely follow the results for GMM.

For the bivariate DCC model, Ht can be expressed as,

Ht =

( √
h11,t 0

0
√

h22,t

)(
1 r12,t

r21,t 1

)( √
h11,t 0

0
√

h22,t

)
. (4.4.4)
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Since correlations lie between -1 and 1, these models must include a rescaling

procedure. The models of Engle (2002), Tse and Tsui (2002) are very similar.

Therefore, we work only with the model of Engle (2002) for some reasons. This

model is easier to handle in terms of specification and forecasting. In addition,

Capiello et al. (2003) present an asymmetric extension to the model put forward

by Engle (2002). Asymmetry in correlation dynamics between temperature time

series may potentially be a very important feature.

More precisely, the evolution of the correlation in the model of Engle (2002) is

given by,

Qt =

(
q11,t q12,t

q21,t q22,t

)
(4.4.5)

Q∗t =

(√
q11,t 0

0 √
q22,t

)
(4.4.6)

Rt = (Q∗t )
−1Qt(Q∗

t )
−1 (4.4.7)

Qt = (1− φ− ψ)Q̄ + φut−1ut−1
′
+ ψQt−1 , (4.4.8)

where φ and ψ are scalars, whereas Q̄ = E[utu
′
t] is the unconditional correlation

matrix of the ui,t = εi,t√
hii,t

. Obviously, the matrix (Q∗
t )−1 is used for rescaling.

As aforementioned, Capiello et al. (2003) propose an asymmetric extension to the

model of Engle (2002). The evolution of Qt is now supposed to be,

Qt =
(
Q̄− Φ

′
Q̄Φ−Ψ

′
Q̄Ψ−Υ

′
E[ηtη

′
t]Υ

)
(4.4.9)

+Φ
′
ut−1u

′
t−1Φ + Ψ

′
Qt−1Ψ + Υ

′
ηt−1η

′
t−1Υ .

Here, we denote ηi,t = min(ui,t,0). Additionally, we substitute the expectations

Q̄ = E[utu
′
t] and E[ηtη

′
t] with their sample analogues

1
T

∑T
t=1 utu

′
t and

1
T

∑T
t=1 ηtη

′
t, respectively.

Here, we only consider the bivariate scalar asymmetric model version, where φ,

ψ and υ are scalars. In our opinion, this is no shortcoming, since our data does

not support a more elaborate parametrization. The interesting specification is

expressed in equation (4.4.10),

Qt =
(
Q̄− φQ̄− ψQ̄− υE[ηtη

′
t]

)
+ φut−1u

′
t−1 + ψQt−1 + υηt−1η

′
t−1 . (4.4.10)

Dynamic conditional correlation models are still the subject of very active ongoing

research. Here, we only present and exploit very fundamental models and method-

ology.

To name some of the recent contributions in this field, Hafner and Franses (2006)

suggest semi-parametric modelling of conditional correlations. Pelletier (2006)

puts forward to extend the dynamic conditional correlation framework to regime

switching dynamic conditional correlation models. Teräsvirta (2005) considers a

smooth transition conditional correlation model that allows the conditional corre-

lations to vary between two extremes. Other authors pursue the modelling of the

dependence between financial time series rather than the correlation, see Patton

(2000), and Jondeau and Rockinger (2001). The investigation of the more sophis-

ticated approaches and model extensions is left as a challenging task for further

research.
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4.4.2 Flexible Dynamic Correlations models

Due to the rescaling procedure which ensures that conditional correlations lie be-

tween -1 and 1, it is not possible to include a Fourier series to capture potential

yearly seasonality in the conditional correlation series in the framework of Engle

(2002). This is also true for the framework of Tse and Tsui (2002).

Christodoulakis and Satchell (2002) put forward a potential remedy which war-

rants full flexibility in modelling conditional correlation dynamics. The authors

use the Fisher transformation of the correlation coefficient to ensure that −1 ≤
r12,t ≤ 1. More precisely, Christodoulakis and Satchell (2002) suggest

r12,t =
exp(2r∗12,t)− 1
exp(2r∗12,t) + 1

. (4.4.11)

Moreover, Baur (2006) proposes a transformation which is described in equation

(4.4.12),

r12,t =
r∗12,t−1√

1 + (r∗12,t−1)2
, . (4.4.12)

Additionally, we have found that the following transformation works well for the

considered temperature time series in terms of fit.

r12,t =
r∗12,t−1

1 + |r∗12,t−1|
(4.4.13)

Finally, we compute the covariance h12,t according to equations (4.4.14) and

(4.4.15). We determine the correlation r12,t using one of the transformations pre-

sented in equations (4.4.11) to (4.4.13).

r∗12,t = ω12 + φu1,t−1u2,t−1 + ψr∗12,t−1 + υη1,t−1η2,t−1

+λ∗c,1 cos(2π
dt

365
) + λ∗s,1 sin(2π

dt

365
) (4.4.14)

h12,t = r12,t

√
h11,th22,t (4.4.15)

4.4.3 Two-Step Estimation Procedure

The DCC models as well as the FDC models are estimated by means of the two-

step estimation procedure suggested in Engle (2002) and quasi maximum like-

lihood, respectively. Here, we outline the two- step procedure referring to the

original contribution in Engle (2002). The results of the univariate study put for-

ward that assuming εt|Ft−1 ∼ N (0,Ht), where Ft−1 is the information set at time

t − 1, is a possible choice. The logarithmic likelihood L(ϕ, θ) for this estimator

can be expressed as,

L(ϕ, θ) = −1
2

T∑
t=1

(
n log(2π) + log |Ht|+ εt

′
H−1

t εt

)

L(ϕ, θ) = −1
2

T∑
t=1

(
n log(2π) + log |DtRtDt|+ εt

′
D−1

t R−1
t D−1

t εt

)
(4.4.16)

L(ϕ, θ) = −1
2

T∑
t=1

(
n log(2π) + 2 log |Dt|+ log |Rt|+ ut

′
R−1

t ut

)

The parameters in Dt are denoted ϕ, whereas the additional parameters in Rt

are denoted θ. Furthermore n is the number of assets or in our case temperature
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series. Henceforth, in our study n equals 2 (n = 2). To implement the two step

estimation strategy, Engle (2002) suggests to replace Rt by the identity matrix to

obtain a consistent estimator in the first step of the estimation procedure. In such

a case, the univariate quasi logarithmic likelihood function QL1(ϕ) becomes

QL1(ϕ) = −1
2

T∑
t=1

(
n log(2π) +

n∑

i=1

(
log(hii,t) +

ε2i,t
hii,t

))
. (4.4.17)

The first step provides estimates ϕ̂. In the second step of the estimation procedure,

we estimate the remaining parameters θ conditioned on the estimates from the first

step. Since parameters ϕ are determined, the relevant part for estimation in the

second step is the quasi logarithmic likelihood denoted QL2(θ|ϕ̂).

QL2(θ|ϕ̂) = −1
2

T∑
t=1

(
log |Rt|+ ut

′
R−1

t ut

)
(4.4.18)

In the bivariate case, LC(θ) can be quite simply written as,

QL2(θ|ϕ̂) = −1
2

T∑
t=1

(
log(1− r2

12,t) +
(u2

1,t + u2
2,t − 2r12,tu1,tu2,t)
(1− r2

12,t)

)
. (4.4.19)

To compare this two step likelihood with the logarithmic likelihood of other models,

we can compute its value as follows,

L(ϕ, θ) = QL1(ϕ) + QL2(θ|ϕ̂) +
1
2

T∑
t=1

ut
′
ut . (4.4.20)

4.4.4 Results on Model fit

We estimate the logarithmic likelihood given in equation (4.4.21). For simplicity,

standardized residuals are assumed to be normally distributed,

log L(θ, ϕ) = −T

2
log(2π)− 1

2
log(|Ht|)− 1

2
εt
′
Htεt . (4.4.21)

Temperature derivatives based on temperature from Berlin are traded at the CME.

Therefore, we have designed two pairs, Echterdingen-Berlin and Hamburg-Berlin,

for the empirical study. We estimate all five models with the two- step method put

forward by Engle (2002) and described in subsection 4.3.3. Additionally, we take

the estimates of the two-step procedure as starting values and carry out a simulta-

neous quasi maximum likelihood estimation of the likelihood in equation (4.4.21).

Estimates of parameters which enter the correlation equations are collected in ta-

bles 4.4.1 to 4.4.10. Here, the remaining parameters are of minor interest, therefore

we do not explicitly address them, but they can be obtained upon request. How-

ever for the two- step method, the remaining parameters are given in table 4.3.5 .

In addition, figure 4.4.1 shows the estimated conditional correlations for the pairs

Echterdingen-Berlin and Hamburg-Berlin provided by the five considered versions

of dynamic conditional correlation models.

The estimates of the quasi maximum likelihood estimation provide higher values

of the logarithmic likelihood throughout all models compared with the two- step

method. The in-sample results of the five DCC models do not indicate, that any

model version clearly performs best.
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For the pair Echterdingen-Berlin, the symmetric DCC model provides the high-

est in-sample fit. Conditional correlations between the temperature series from

Echterdingen and Berlin only display weak yearly seasonality. Consequently, the

inclusion of seasonality in the flexible dynamic conditional correlation models is

of minor importance. By contrast, conditional correlations between Hamburg and

Berlin seem to display a very pronounced yearly seasonality. As a result, the flex-

ible dynamic correlation models outperform the dynamic conditional correlation

models for the pair Hamburg-Berlin in terms of fit. In our study, we see no ev-

idence that an asymmetric component as suggested by Capiello et al. (2003) is

necessary to model conditional correlation dynamics.

Furthermore, the flexible dynamic correlation models provide very similar results.

The parameter estimates of ψ are very small throughout all five dynamic condi-

tional correlation models. For the three flexible dynamic correlation models, the

parameter estimates of φ are large and significant for the pair Echterdingen-Berlin.

By contrast, they are not significant for the pair Hamburg-Berlin. For the pair

Hamburg-Berlin, it seems, that it is only the yearly seasonality that really counts

throughout the flexible dynamic correlations models.

In practice, an energy supplier may often wish to isolate his volumetric risk to

more than one location. In such a case, the analysis can become trivariate and

even higher dimensional which disqualifies the flexible dynamic correlation models

because they only work in the bivariate case, whereas DCC models in spirit to

Engle (2002) are designed for high dimensional multivariate GARCH, too.

In the bivariate case, conditional correlations can strongly differ across the differ-

ent model versions. This seems to be particularly true if conditional correlations

display strong seasonality patterns as in the case of Hamburg and Berlin.

In such a case, one may wish to base model selection not only on in-sample fit. In

addition, the density of bivariate temperature time series generated by the differ-

ent DCC model versions could be estimated by means of a Monte Carlo simulation.

These estimated densities could be then compared to the empirical density of the

actually measured temperature data.

Diebold, Hahn and Tay (1999)advocate a more sophisticated approach which en-

tails to evaluate multivariate density forecasts using an integral transform dating

back to Rosenblatt (1952).
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Table 4.4.1: Summary In-Sample Fit : DCC Models by Engle (2002) and Capiello

et al. (2003), ( Two- step estimation ).

Symmetric DCC

Echterdingen-Berlin Hamburg- Berlin

φ 0.084
(0.013)

0.091
(0.010)

ψ 0.421
(0.110)

0.398
(0.092)

LL -22189.25 -21078.05

SC 8.5410 8.1190

Note that ∗ means not significant at the 5 % level.

Table 4.4.2: Summary In-Sample Fit : DCC Models by Engle (2002) and Capiello

et al. (2003), ( Two- step estimation ).

Asymmetric DCC

Echterdingen-Berlin Hamburg- Berlin

φ 0.083
(0.014)

0.085
(0.011)

ψ 0.408
(0.110)

0.321
(0.094)

υ 0.011∗

(0.024)
0.041∗

(0.021)

LL -22189.15 -21076.53

SC 8.5426 8.1201

Note that ∗ means not significant at the 5 % level.

Table 4.4.3: Summary In-Sample Fit: DCC Models by Engle (2002) and Capiello

et al. (2003), ( QML ).

Symmetric DCC

Echterdingen-Berlin Hamburg- Berlin

φ 0.068
(0.013)

0.059
(0.018)

ψ 0.473
(0.120)

0.652
(0.078)

LL -22122.79 -20836.03

SC 8.5189 8.0280

Note that ∗ means not significant at the 5 % level.
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Table 4.4.4: Summary In-Sample Fit: DCC Models by Engle (2002) and Capiello

et al. (2003), ( QML ).

Asymmetric DCC

Echterdingen-Berlin Hamburg- Berlin

φ 0.068
(0.014)

0.063
(0.011)

ψ 0.473
(0.120)

0.674
(0.071)

υ −0.002∗

(0.026)
−0.021∗

(0.014)

LL -22122.85 -20835.81

SC 8.5205 8.0296

Note that ∗ means not significant at the 5 % level.

Table 4.4.5: Summary In-Sample Fit : Satchell and Christodoulakis (2002), equa-

tion(4.4.11).

Two- step estimation

Echterdingen-Berlin Hamburg- Berlin

ω12
0.140

(0.048)
0.950

(0.191)

φ 0.042
(0.009)

0.019
(0.007)

ψ 0.662
(0.108)

−0.196∗

(0.228)

υ −0.007∗

(0.019)
0.070

(0.022)

λ∗s,1
0.013∗

(0.007)
0.024∗

(0.018)

λ∗c,1
0.009∗

(0.006)
0.175

(0.040)

LL -22202.82 -21074.280

SC 8.5528 8.1241

Note that ∗ means not significant at the 5 % level.
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Table 4.4.6: Summary In-Sample Fit : Satchell and Christodoulakis (2002), equa-

tion(4.4.11).

QML

Echterdingen-Berlin Hamburg- Berlin

ω12
0.152

(0.061)
1.334

(0.349)

φ 0.033
(0.009)

0.010∗

(0.008)

ψ 0.675
(0.122)

−0.411∗

(0.358)

υ 0.004∗

(0.019)
0.040∗

(0.023)

λ∗s,1
0.013∗

(0.008)
0.054∗

(0.030)

λ∗c,1
0.009∗

(0.007)
0.214

(0.062)

LL -22131.05 -20827.10

SC 8.5286 8.0311

Note that ∗ means not significant at the 5 % level.

Table 4.4.7: Summary In-Sample Fit : Baur (2006), equation(4.4.12).

Two- step estimation

Echterdingen-Berlin Hamburg-Berlin

ω12
0.155

(0.052)
1.040

(0.211)

φ 0.049
(0.011)

0.029
(0.010)

ψ 0.636
(0.111)

−0.177∗

(0.223)

υ −0.004∗

(0.022)
0.095

(0.030)

λ∗s,1
0.010∗

(0.007)
0.034∗

(0.025)

λ∗c,1
−0.004∗

(0.022)
0.230

(0.053)

LL -22202.50 -21074.72

SC 8.5526 8.1243

Note that ∗ means not significant at the 5 % level.
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Table 4.4.8: Summary In-Sample Fit : Baur (2006), equation(4.4.12).

QML

Echterdingen-Berlin Hamburg- Berlin

ω12
0.158

(0.063)
1.479

(0.420)

φ 0.039
(0.011)

0.017∗

(0.012)

ψ 0.674
(0.120)

−0.349∗

(0.368)

υ 0.003∗

(0.021)
0.062

(0.036)

λ∗s,1
0.010∗

(0.008)
0.077∗

(0.044)

λ∗c,1
0.003∗

(0.021)
0.299

(0.093)

LL -22130.92 -20827.83

SC 8.5285 8.0315

Note that ∗ means not significant at the 5 % level.

Table 4.4.9: Summary In-Sample Fit : Kosater (2006), equation(4.4.13).

Two- step estimation

Echterdingen-Berlin Hamburg- Berlin

ω12
0.299

(0.089)
2.265

(0.456)

φ 0.135
(0.028)

0.139
(0.043)

ψ 0.532
(0.120)

−0.143∗

(0.203)

υ 0.017∗

(0.056)
0.349

(0.118)

λ∗s,1
0.104

(0.041)
0.109∗

(0.077)

λ∗c,1
0.045∗

(0.042)
0.709

(0.081)

LL -22201.09 -21075.55

SC 8.5521 8.1246

Note that ∗ means not significant at the 5 % level.
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Table 4.4.10: Summary In-Sample Fit : Kosater (2006), equation(4.4.13).

QML

Echterdingen-Berlin Hamburg- Berlin

ω12
0.299

(0.114)
3.853

(1.139)

φ 0.109
(0.030)

0.081∗

(0.057)

ψ 0.614
(0.130)

−0.340∗

(0.369)

υ 0.023∗

(0.058)
0.263∗

(0.159)

λ∗s,1
0.122

(0.053)
0.264

(0.131)

λ∗c,1
0.057∗

(0.053)
0.967

(0.131)

LL -22130.49 -20828.99

SC 8.5284 8.0319

Note that ∗ means not significant at the 5 % level.
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Figure 4.4.1: Conditional correlations estimated by QML: DCC and Asymmetric

DCC Echterdingen-Berlin (a),FDC Echterdingen-Berlin (b), DCC and Asymmet-

ric DCC Hamburg-Berlin (c), FDC Hamburg-Berlin (d).
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4.5 Forecasting Conditional Correlations

In this section, we discuss forecasting of conditional correlations with the dynamic

conditional correlation models which have been introduced in section 4.4.

Following Engle (2002) the h-step ahead forecast Qf
t+h is,

Qf
t+h = (1− φ− ψ)Q̄ + φE[ut+h−1ut+h−1

′ |Ft] + ψQt+h−1 , (4.5.1)

where E[ut+h−1u
′
t+h−1|Ft] = Rt+h−1 and Rt+h−1 = (Q∗

t+h−1)
−1Qt+h−1(Q∗t+h−1)

−1.

Engle and Sheppard (2001) point out that the h-step ahead forecast of the corre-

lation cannot be directly solved to provide a convenient method for forecasting.

Hence, they suggest two forecasts, each requiring a different set of approximations.

The first technique is to approximate E[ut+iu
′
t+i|Ft] ≈ Qt+i. Consequently, we

obtain the following h-step ahead forecast for the symmetric DCC model,

Qf
t+h = E[Qt+h|Ft] =

h−2∑

i=0

(1− φ− ψ)Q̄(φ + ψ)i + (φ + ψ)h−1Qt+1 . (4.5.2)

The second technique is based on the approximations Q̄ ≈ R̄ and E[Qt+1|Ft] ≈
E[Rt+1|Ft]. This approximation enables us to forecast the correlation Rt+h ex-

ploiting the relationship,

Rf
t+h = E[Rt+h|Ft] =

h−2∑

i=0

(1− φ− ψ)R̄(φ + ψ)i + (φ + ψ)h−1Rt+1 . (4.5.3)

Engle and Sheppard (2001) conduct some Monte Carlo experiments to assess the

forecasts of the two methods. They find that neither of the techniques outperforms

the other. Therefore, they suggest to take the second technique which directly

forecasts Rt, since this method is easier to implement.

The outlined results of Engle and Sheppard (2001) only hold for the symmetric

DCC model. Albeit the asymmetric extension suggested by Capiello et al.(2003)

performs poorly, it may be useful for other temperature time series. Therefore,

we outline our forecasting procedure with the asymmetric DCC model in the next

subsection.

4.5.1 Forecasting Correlations in Asymmetric DCC Models

We put forward to recursively compute the h- step ahead forecast, where h ≥ 2,

as follows,

Qf
t+h =

(
Q̄− φQ̄− ψQ̄− υE[ηtηt

′
]
)

+ φE[ut+h−1ut+h−1
′ |Ft] + ψQt+h−1

+υE[ηt−h+1ηt−h+1
′ |Ft] (4.5.4)

Qf
t+h =

(
Q̄− φQ̄− ψQ̄− υE[ηtηt

′
]
)

+ (φ + ψ + 0.5 · υ)Qt+h−1 . (4.5.5)

Here, we add some explanation why the above relation holds. We assume that the

ui,t i ∈ {1, 2} are symmetric around 0. Therefore it holds,

E[ηt−h+1ηt−h+1
′ |Ft] = 0.5 ·E[ut+h−1ut+h−1

′ |Ft]+0.5 ·0 ≈ 0.5 ·Qt+h−1 . (4.5.6)
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4.5.2 Forecasting Correlations in the Flexible Dynamic Cor-

relation Models.

Due to the transformation which ensures that correlations are in the interval be-

tween -1 and 1, the forecasting procedure is not straightforward. For the sake of

simplicity, we suggest to assume,

E[u1,t+h−1u2,t+h−1|Ft] ≈ r∗12,t+h−1 . (4.5.7)

Consequently, we can further deduce,

E[η1,t−h+1η2,t−h+1|Ft] = 0.5 · E[u1,t+h−1u2,t+h−1|Ft] + 0.5 · 0 (4.5.8)

E[η1,t−h+1η2,t−h+1|Ft] ≈ 0.5 · r∗12,t+h−1 . (4.5.9)

Finally, we can recursively compute forecasts as follows,

r∗,f12,t+h = ω12 + λ∗c,1 cos(2π
dt+h

365
) + λ∗s,1 sin(2π

dt+h

365
) + φE[u1,t+h−1u2,t−1|Ft]

+ψr∗12,t+h−1 − υE[η1,t−1η2,t−1|Ft] (4.5.10)

r∗,f12,t+h = ω12 + λ∗c,1 cos(2π
dt+h

365
) + λ∗s,1 sin(2π

dt+h

365
) (4.5.11)

+ (φ + ψ − 0.5 · υ) r∗12,t+h−1 .

The actual forecast rf
12,t+h is then calculated by applying one of the transforma-

tion functions proposed by Christodoulakis and Satchell (2002), Baur (2006) or

Kosater (2006), see equations (4.4.11-4.4.13).

In figure 4.5.1, we present point forecasts and forecasted 99% two-sided confidence

intervals for temperature from Hamburg for the HDD period from 11/01/2004 un-

til 03/31/2005 based on the 31st of October 2004 as the forecast origin. We have

carried out the study with estimates from quasi maximum likelihood estimation

of the different five bivariate GARCH models to prove that they yield very sim-

ilar results with respect to forecasts of the conditional mean and the conditional

variance, respectively.

Why do we opt for data from Hamburg ? In the univariate study, standardized

residuals of the temperature time series from Hamburg exhibited the largest depar-

ture from normality throughout all four considered univariate models. Therefore,

we expect the data from Hamburg to be the biggest challenge. Indeed, we can see

that more than 1% of the actual data exceeds the confidence bounds. However, we

should bear in mind that also the confidence bounds themselves are only forecasts.

By this, the results are quite encouraging.

Finally, figures 4.5.2 and 4.5.3 present the estimated conditional correlations for

the forecast period together with the point forecasts for the five dynamic condi-

tional correlation models of interest.

The conditional correlations provided by the flexible dynamic correlation models

are less volatile around their long-run mean than those provided by the dynamic

conditional correlation models of Engle (2002) and Capiello (2003). This is es-

pecially true for the pair Hamburg-Berlin and a consequence of the choice of the

transformation function. Despite the good in-sample fit for the pair Echterdingen-

Berlin, the model based on the transformation suggested by Kosater (2006) in
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this thesis yields the worst forecasts of the conditional correlations. The fore-

casted long-run level is too high. The model based on the Fisher transformation

of Christodoulakis and Satchell (2002) seems to perform best with regard to fore-

casting the trend of conditional correlations.

The figures 4.5.2 and 4.5.3 indicate that conditional correlations may notably de-

viate from the long- run mean. Consequently, confidence intervals for the point

forecasts of conditional correlations may help in practical work.
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Figure 4.5.1: Point and interval forecasts ( 99 %) for the HDD period 11/01/2004

until 03/31/2005 for Hamburg from : the symmetric DCC (a), the asymmetric

DCC (b), FDC of Christodoulakis and Satchell (2002) (c), FDC of Baur (2006)

(d), FDC of Kosater (2006)(e).
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Figure 4.5.2: Point forecasts of the conditional correlations for the HDD period

11/01/2004 until 03/31/2005 for Echterdingen-Berlin from : the symmetric DCC

(Forecast Q correponds to equation (4.5.2) and Forecast R corresponds to equation

(4.5.3) )(a), the asymmetric DCC (b), FDC of Christodoulakis and Satchell (2002)

(c), FDC of Baur (2006) (d), FDC of Kosater (2006)(e).
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Figure 4.5.3: Point forecasts of conditional correlations for the HDD period

11/01/2004 to 03/31/2005 for Hamburg-Berlin from : the symmetric DCC (Fore-

cast Q correponds to equation (4.5.2) and Forecast R corresponds to equation

(4.5.3) )(a), the asymmetric DCC (b), FDC of Christodoulakis and Satchell (2002)

(c), FDC of Baur (2006) (d), FDC of Kosater (2006)(e).
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4.6 Cross-City Hedging

In this section, we want to discuss how the presented methodology can be used. We

do this from the angle of an electricity supplier who wants to hedge his volume risk

at non-traded locations such as Echterdingen or Hamburg constructing a hedge

based on HDDs or CDDs computed and accumulated on the temperature measured

in Berlin. Recall, HDDs and CDDs are computed as follows,

HDD(t1, t2) =
t2∑

t=t1

max(18.33◦ − Y1,t, 0) , (4.6.1)

CDD(t1, t2) =
t2∑

t=t1

max(Y1,t − 18.33◦, 0) , (4.6.2)

where t1 denotes the beginning while t2 marks the end of the accumulation period

and Y1,t is the daily average temperature measured at the traded station in Berlin.

Let Y2,t be the non-traded location which, in our case, is Echterdingen or Hamburg.

For the sake of simplicity and according to our preceding assumptions, we assume

that Y1,t and Y2,t are conditional bivariate normal distributed according with,
(

Y1,t

Y2,t

)
=

(
E[Y1,t|Ft−1]

E[Y2,t|Ft−1]

)
+

(
ε1,t

ε2,t

)
(4.6.3)

and (
ε1,t

ε2,t

)
∼ N

((
0

0

)
,

(
h11,t h12,t

h21,t h22,t

))
.

The assumption of bivariate normality is to some extent heroic but not completely

unrealistic given our univariate studies. Furthermore, it offers the advantage that

the distribution of {Y1,t|Y2,t = y2,t} is a univariate normal distribution,

{Y1,t|y2,t} ∼ N

(
E[Y1,t|Ft−1] + r12,t

√
h11,t√
h22,t

(y2,t − E[Y2,t|Ft−1]), h11,t(1− r2
12,t)

)
.

(4.6.4)

The relation in equation (4.6.4) enables the electricity supplier to construct forecast

intervals for Y1,t if he can predict how Y2,t evolves at t. In the preceding section

we have seen that the electricity supplier can predict Y2,t with forecast intervals

obtained from a time series model.

For example, she may expect the temperature to be 6.1◦ on a certain day t. Using

the bivariate GARCH model, she immediately obtains that with probability α,

temperature Y1,t will lie in the interval I1,t,α = [Y1,t,low;Y1,t,high]. Henceforth, she

can estimate the relation between temperature realizations y2,t at the non-traded

locations and HDDs or CDDs based on temperature in Berlin on a daily scale.

More precisely, let us consider a conditional HDD based on Y1,t and conditioned

on Y2,t = y2,t. Moreover, let Z∗t = 18.33◦ − {Y1,t|Y2,t = y2,t}. In addition, we

denote,

Zt =





0 if Z∗t ≤ 0 ,

Z∗t if Z∗t > 0 .
(4.6.5)

Obviously, Zt corresponds to the value of a daily HDD(t1, t1). Moreover, we obtain

Prob(Zt = 0) = Prob({Y1,t|Y2,t = y2,t} ≥ 18.33◦) (4.6.6)

= 1− ΦNorm(18.33◦) .
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Prob(0 ≤ Zt ≤ zt) = Prob(18.33◦ − zt ≤ {Y1,t|Y2,t = y2,t} ≤ 18.33◦)(4.6.7)

= ΦNorm(18.33◦)− ΦNorm(18.33◦ − zt) .

Note that ΦNorm(x) is the value at quantile x of the cumulative conditional normal

distribution given in equation (4.6.4).

Hence, equations (4.6.6) and (4.6.7) directly provide probabilities for the daily

HDD(t1, t1) given a temperature realization y2,t at a non-traded location.

In addition, the tick size, which is the amount attached to each HDD or CDD, has

to be fixed for each contract. The electricity supplier may know that temperature

at Echterdingen is on average 4.1◦ in winter. Moreover, she may also know that

every additional degree above this average temperature is accompanied by a loss

of 5000 Euro on average.

Unfortunately, she has to compute a tick size with respect to the temperature

dynamics in Berlin. Tick sizes are determined by a least square regression of

load on temperature to examine how temperature on average affects demand for

electricity. As a result, we obtain a relation between load and temperature which

enables us to fix a tick size. The tick size for load at Echterdingen and temperature

in Berlin can be determined, analogously.

Although to the best of our knowledge constant tick sizes are typical of temperature

contracts, we think that a time-varying tick size may be more realistic. Demand

and therefore load exhibit different patterns of seasonality such as inter-daily,

weekly and yearly seasonality. As a result, unexpected temperature values can have

a very different impact on electricity demand depending on the hour or the type of

day, for example. Time-varying tick sizes, however, allow more accurate hedging

and can be very easily included in the bivariate GARCH framework. Additionally,

daily load information could be brought into play to determine time-varying tick

sizes.

4.7 Summary

Volumetric risk has become a crucial issue in competitive electricity markets. Es-

pecially in the USA, energy companies seek to hedge their volumetric risk. Weather

derivatives are attractive instruments which allow to protect from volumetric risk

due to unforeseen weather conditions.

In this thesis, we focus on temperature derivatives since over 90 % of weather

contracts are struck on heating degree days or cooling degree days that are trans-

formations of daily average temperature. Exchange-based trading mainly takes

place at the Chicago Mercantile Exchange, abbreviated CME. To ensure liquidity,

contracts at the CME can only be negotiated on temperature from few selected

cities. Consequently, market participants who wish to hedge their volumetric risk

at non-traded locations cannot buy tailor- made contracts. Hence, they have to

correlate their risk with the risk at tradeable cities. Consequently, the correlation

between temperature time series from traded locations with temperature from

non-traded locations is of special interest.

After a thorough analysis, we have found dynamic conditional correlation mod-

els, DCC, to be most appealing among the plethora of competing multivariate
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GARCH models for our purposes.

Our main challenge is to integrate seasonality into bivariate GARCH models. DCC

models allow for an utmost flexibility in modelling the conditional variance and

conditional correlation dynamics, respectively. In addition, the flexible dynamic

correlation models even allow to model yearly seasonality of conditional correla-

tions.Moreover, we also present how correlation dynamics can be predicted. Fi-

nally, we discuss how our presented methodology may be used by an investor to

construct a hedge for a non-traded location.

We think that further research with correlation dynamics should concentrate on

the DCC model class, with a special focus on seasonality. The univariate study has

revealed that a simple ARMA-GARCH cannot completely capture temperature

dynamics. Therefore, in further research the ability of regime-switching models in

modelling and forecasting daily average temperature should be investigated.
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Chapter 5

Conclusion

The subject of this thesis has been the application of non-linear time series models

to power risk management.

The first part of this work is sacrificed to the modelling of daily average prices

baseload and peakload at the spot market of the European Energy Exchange,

EEX. After the presentation of two established models, these models are extended

by the introduction of day-dependent spikes. With the inclusion of day-dependent

spikes, we take into account that large sized upward spikes are not to be expected

on days when demand is usually low.

Additionally, the long- run forecasting ability of the extended models is compared

with the original models and a linear model. As a result, we obtain that the ex-

tended models clearly outperform the original models as well as the linear model

in terms of long-run forecasting. These results have been summarized and recently

published in the article of Kosater and Mosler (2006). Moreover, De Jong (2006)

confirmed that models with day-dependent spikes are worthwhile in modelling spot

prices in several electricity markets in Europe and the USA.

Finally, model extensions of the models with day-dependent spikes are presented

which take into account autoregressive conditional heteroscedasticity dynamics.

In the second part, the relation between weather, represented by temperature and

wind velocity, and hourly electricity prices from the EEX in Leipzig is investigated.

Furthermore, it is assessed whether the relation between weather and prices can

be successfully exploited for short-term forecasting. The study is carried out with

the Markov regime-switching model with day-dependent and independent spikes.

As a result, a strong relationship between weather and hourly prices is detected,

on one hand. On the other hand, the significance of this relation for forecasting

is confined to certain hours.Some earlier results on the topic which is discussed in

the second part have been published in Kosater (2006).

In the third part, cross-city hedging with weather derivatives is addressed. Weather

derivatives can be bought by electricity suppliers to protect from revenue uncer-

tainties due to unexpected weather conditions. The special focus is on temperature

derivatives. Since temperature contracts at the Chicago Mercantile Exchange can

only be negotiated for weather variables measured at few selected locations, elec-

tricity supplier have to correlate their risk at non-traded locations with the risk

at tradeable locations.
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Here, the usefulness of bivariate GARCH models with dynamic conditional corre-

lations in modelling the correlation between non-traded and traded temperature

time series is examined.

Due to their flexibility in modelling the conditional variance and conditional cor-

relation dynamics, the study is carried out with dynamic conditional correlation

models. Moreover, forecasting of conditional correlation dynamics is discussed.

The discussion on constructing a cross-city hedge with the support of bivariate

GARCH models with dynamic conditional correlations concludes the third part.

With regard to the first part, the suggested models with autoregressive condi-

tional heteroscedasticity could be tested on a wider set of electricity markets. In

addition, the usefulness of more sophisticated Markov regime-switching ARMA-

GARCH models could be examined.

Furthermore, we think that aspects of multivariate analysis hold promise for future

work. The European electricity markets tend towards their unification. Multivari-

ate approaches which take into account correlations between the different markets

may be an asset for portfolio management and risk management.

With respect to the second part, the study could be extended to examine the im-

pact of weather on electricity spot prices on a wider set of international electricity

spot markets. Moreover, weather variables such as precipitation could be taken

into consideration. With regard to the Scandinavian exchange Nord Pool, we ex-

pect the impact of precipitation to be very important, since the share of hydro

power on total generation capacity is around 51%.

As aforementioned, load and the reserve margin should be incorporated in a good

model specification. The general impact of weather on prices should be specified

more precisely taking into account the four seasons or even the different months

of the year. Finally, the relation between spot prices and wind velocity may be

worthwhile to examine.

To conclude, with correlation dynamics should concentrate on the DCC model

class, with a special focus on seasonality. The univariate study has revealed that a

simple ARMA-GARCH model cannot completely capture temperature dynamics.

Therefore, in further research the ability of regime-switching models in modelling

and forecasting daily average temperature should be investigated.
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