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Prof. Dr. Nikolaus Rajewsky

Tag der mündlichen Prüfung: 13. Dezember 2006
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Chapter 1

General Introduction

“I have called this principle, by which each slight variation, if useful, is preserved, by the
term Natural Selection.”

Charles Darwin from “The Origin of Species”.

It was Charles Darwin who established evolution as a common descent in order to explain
the emergence of new species as a process of accumulation of slight random variations,
which were preserved if they proved beneficial for the organism.
Darwin’s theory of natural selection, although some 150 years old, is still the basis for
the modern understanding of evolution. However, until the late twentieth century it
remained much less clear how complexity of phenotypical traits is encoded by the genome.
When the human genome was sequenced in the last decade, the small number of protein
coding genes, which is in fact not much higher than in organisms as simple as the fruit
fly, came as a surprise to many researchers who assumed this number to correlate with
the complexity of the species.
This discrepancy was resolved once it was recognized that it is not the protein itself
but rather its regulation, which is mainly affected by evolution. In eukaryotes, the
cis-regulatory region of an average protein coding gene is targeted by a variety of trans-
acting factors, stimulating or repressing transcription of the gene and thus subsequent
protein production. The gene itself could code for another trans-acting factor targeting
another set of genes. One can easily imagine that evolution acts much more efficiently
by modulating and rewiring this intricate gene network than by introducing novel genes.
Importantly, not only the sequence turnover in gene regulatory regions, but also the
evolution of transcription factors has significant impact on the evolution of the gene
regulatory networks. Understanding and deciphering gene regulatory relationships and
their evolution can be considered one of the main goals of genomics.

With the recent availability of whole genome sequence data across many different clades of
life as well as high-throughput methods to measure genomic data such as gene expression
levels on a large scale, sophisticated methods for computational analysis and statistical
evaluation of this wealth of data became indispensable for the field of genomics.
The classical tasks of bioinformatics, i. e. organization and statistical analysis of genomic
data, increasingly merge with the field of systems biology that aims at integrating differ-
ent levels of information to understand how biological systems function. The body of
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6 General Introduction

statistical methods such as those for biological sequence analysis, summarized in Durbin
et al. (1998) [39], needs to keep up with the growing complexity of biological data.
However, to understand how information is encoded by the genome, the first step is
to devise models of genomic interactions, which can be tested statistically as well as
experimentally. Exploring whole genome data, for instance when inferring position weight
matrices of transcription factor binding sites, one typically deals with a large number of
instances of the entity under consideration. It is thus most natural to apply concepts of
statistical physics, which are generally suited to analyze large ensembles of interacting
particles. In the context of genomic data, functional constraints that induce correlations
correspond to the interaction between particles and can be modeled accordingly. For
instance, transcription factor binding sites of particular motif compositions are expected
to be overrepresented in promoter regions of genes co-expressed with the transcription
factor. The validity of specific models can be statistically assessed by a comparison to
uncorrelated background models, which can be interpreted as an analog to ensembles of
non-interacting particles.
The derivation of refined statistical models allows for the development of improved
bioinformatic tools to examine genomic sequences at a higher sensitivity and specificity
with regard to the properties of interest. Thus, with the availability of increasing amounts
of data, progress in analyzing genomic sequence crucially depends on the existence of
sufficiently complex statistical models.
In this thesis, three separate but yet related biological problems are addressed with the
mindset of a physicist.
After the recent discovery of microRNAs in 1993 [81], the ubiquity and physiological
importance of these tiny RNA molecules that regulate protein production by binding
to the mRNA of their target genes, was soon revealed for all multi-cellular eukaryotic
organisms examined so far. However, detection of genes targeted by specific microRNAs
proved rather difficult and only the massive use of cross-species comparison substantially
enhanced the reliability of target predictions. In the first chapter of this work, one of the
first algorithms for the genome-wide detection of microRNA target genes is introduced.
Multiple-sequence-alignments of various species are screened for putative target genes
and a probabilistic method assesses the probability of these loci to be true target genes.
The identification of target sites relies on a thermodynamical model of binding of the
microRNA to the mRNA, which is based on the statistical evaluation of validated instances
of microRNA-regulated genes [110].
A detailed analysis of target predictions is presented for three different clades of life,
vertebrates, insects, and nematodes, yielding a first glimpse at the evolution of microRNAs
and their regulatory relationships.
In the second chapter, evolutionary dynamics of microsatellites, an abundant class of repet-
itive sequence in eukaryotic genomes is addressed. Inspired by the putative functionality
of some of these elements and the difficulty of constructing correct sequence alignments
that reflect the evolutionary relationships between microsatellites, we propose and validate
a neutral model for microsatellite evolution in Drosophila melanogaster. By implementing
specific mutational processes, the model aims at discriminating the sequence composition
of random background and microsatellite sequence. A comparison to evolutionary rates,
independently measured from multiple-sequence-alignments of microsatellite loci, serves
to validate the model. It adds on previously existing studies by providing an improved
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framework for the description of microsatellite evolution and genome-wide application
broken down to sequence classes of different functional annotations in D. melanogaster.
In the third chapter, we propose a general population genetic model in order to compute
the population distribution of functional versus non-functional genotypes at a single
transcription factor binding site across the entire range of a limited set of evolutionary
parameters. The increased conservation of the binding locus versus neutral background
sequence is explained as an equilibrium state of evolutionary forces. More precisely,
the selection pressure that acts on a functional sites prevents the sequence from freely
diffusing in genotype space due to point mutations and genetic drift.
The model is used to explain the loss of binding site stability as a function of effective
population size, such as observed at the evolutionary transition from prokaryotes to
eukaryotes, and the compensatory benefit of multiple sites is assessed by an extension of
the single-site model.
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Chapter 2

Computational identification of
MicroRNA target genes

2.1 Biology of microRNAs

2.1.1 Introduction

MicroRNAs are a novel class of small endogenous non-coding RNAs, typically of length
21-23 nucleotides (nt) in their mature form. They suppress protein production by bind-
ing to the mRNA of their target genes. Genetic screens of mutant phenotypes in the
nematode C. elegans led to the discovery of the first microRNA, lin-4, in 1993 [81]. lin-4
was observed to repress the nuclear protein encoded by lin-14, whose downregulation
is required for the developmental transition between the first two larval stages of the
worm embryo [116]. This kind of post-transcriptional regulation was first considered
to be exceptional, since lin-4 was only found in nematodes. After the discovery of the
second microRNA, let-7, again in C.elegans [113], the view of post-transcriptional control
imposed by these tiny regulators drastically changed, since let-7 was observed to be
conserved in all metazoans [99], suggesting a fundamental role for this class of non-coding
RNAs. In nematodes, expression of let-7 proved responsible for post-transcriptional
down-regulation of the proteins encoded by lin-41 and hbl-1 [113, 129, 87]. Similar to
the lin-4/lin-14 interaction at the end of the first larval stage, the repression of lin-41 by
let-7 induces the developmental transition from the third to the fourth larval stage. The
apparent fundamental role of microRNAs in nematode development together with the
outstanding degree of conservation of let-7 triggered large scale searches for microRNAs
in various organisms and of the order of 100-400 microRNAs per species have already
been identified experimentally in C. elegans, D. melanogaster, H. sapiens, M. musculus, D.
rerio and also in plants, many of them being conserved over large evolutionary distances.
Recent computational searches for microRNA genes in human indicate that the true
number of different microRNAs per species in mammals could exceed 500, including a
substantial fraction of species or lineage specific microRNAs [15]. Already these numbers
suggest that microRNAs serve as an important layer of post-transcriptional control.
Mature microRNAs are specifically expressed at high numbers in various tissues [8, 11],
suggesting substantial regulation in various physiological processes. MicroRNA genes are
typically transcribed by RNA polymerase II as large primary transcripts (pri-microRNA)
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with CAP-structure and poly(A)-tail and are subject to subsequent processing [9]. They
often occur in clusters and clustered microRNAs generally show similar expression profiles
[11], suggesting their transcription as polycistrons. Approximately half of all microRNAs
reside in introns of protein-coding genes and are presumably co-transcribed with their
host genes, although they can also have independent promoters.
The pri-microRNA is processed into a ∼70 nt long hairpin-precursor by the nuclear
ribonuclease III (RNase III) endonuclease Drosha and transported into the cytoplasm
by Exportin5/RanGTP where another RNase III, Dicer, cleaves out a ∼21 nt RNA
duplex. In most of the cases, only the one strand of this duplex with the smaller 5’
end binding energy becomes a mature microRNA and is loaded into the RNA induced
silencing complex (RISC), while the remaining strand is subject to rapid degradation.
RISCs are ribonucleoprotein complexes of various subtypes reflecting probably different
modes of function. As a core component, RISCs always contain one family member of
the Argonaute proteins. Although the composition and structure of these complexes
has been studied in detail, little is known about their biochemical function. However, a
recent study revealed how RISCs guide cleavage of mRNA targeted by small interfering
RNAs (siRNAs) in the RNAi pathway [88]. Here, the siRNA, incorporated into RISC,
binds to a perfectly complementary site in the mRNA of its target gene and induces
cleavage and subsequent degradation of the transcript. In this RISC subtype in animals,
Argonaute2 has been identified as the catalytic center inducing the mRNA cleavage.
However, the biochemical function of RISC loaded with microRNA differs from this
scenario. MicroRNAs guide RISC to target sites of imperfect complementarity and repress
translation without cleaving their targets at a particular catalytic sites. Experimental
examination of post-transcriptional regulation by let-7 revealed that microRNAs could
repress translation initiation by interfering with the recognition of the m7G-cap by the
protein eIF4E [104]. In this mode, RISC presumably primarily blocks translation without
inducing significant degradation of the target gene. The degree of complementarity
between the microRNA and its target thus determines whether RISC induces instability of
the target gene (e. g. by inducing deadenylation and exonucleolytic degradation) or just
blocks translation. While the latter mode is common in animals, target cleavage prevails
in plants. A further difference between these two modes is the typical location of target
sites. Cleavage sites in plants are located mainly inside of coding regions and target
sites of imperfect complementarity typically reside in 3’ untranslated regions (UTRs) of
mRNAs.
Since the predominant targeting mode in animals appears to be translational repression
mediated by imperfect base pairing between the microRNA and the 3’UTR of their target
mRNA [98, 138], it was originally thought that the expression of transcripts targeted in
this mode remains largely unaffected. However, recent studies indicated regulation of
mRNA expression levels also in animals. In C. elegans, degradation of transcripts targeted
by lin-4 and let-7 following the blocking of the translational machinery has been supported
by experimental evidence [6]. It was also shown in mammals, that a single microRNA can
strongly influence the overall mRNA expression profile of a single cell [86]. In this study,
human cells were transfected with miR-1 and miR-124, two microRNAs specifically ex-
pressed in muscles and brain, respectively. Transfection with either microRNA shifted the
overall transcription profile of the cell towards an expression profile characteristic for the
respective tissue. A recent work [71] provided statistical and experimental evidence that
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the mammalian liver expressed microRNA miR-122 could specifically drive the expression
level of roughly 500 genes. The 3’UTRs of genes upregulated upon downregulation of
miR-122 are found to be strongly enriched with miR-122 recognition motifs, whereas
downregulated genes are depleted of these motifs.
In order to assess the physiological importance of microRNA regulation, it is crucial
to identify their target genes. The small number of experimentally validated targets
anticipates microRNA regulation of various processes. As already discussed, the founding
members lin-4 and let-7 control developmental timing in nematodes [81, 113]. The let-7
family comprises three additional microRNAs very similar in sequence to let-7, but with
differing expression patterns. This microRNA family is further implicated in regulation of
the C. elegans gene let-60 and its human homolog, the ras-oncogene [60]. let-60 controls
vulva development in nematodes and activating mutations of let-60 lead to a multivulva
phenotype that can be suppressed by overexpressing the let-7 family member miR-84.
The C. elegans microRNAs lsy-6 and miR-273 control left-right asymmetry of chemosen-
sory neurons by repressing cog-1 and die-1, respectively [61, 28].
In Drosophila, the microRNA bantam was discovered to control cell proliferation. In
particular, the pro-apoptotic gene hid was identified as a likely direct target of bantam
[19]. Furthermore, there is experimental in vivo evidence for miR-14 [147] and the miR-2
family [132] to suppress programmed cell death.
A recent study revealed the expression pattern of miR-1 in the Drosophila embryo and
demonstrated, that knockout of miR-1 leads to lethality of second instar larvae due
to severely deformed musculature [130]. Overexpression assays provided experimental
evidence for regulation of the Notch signaling pathway by microRNAs of the miR-4 and
the miR-2 family [132] and miR-7. These observations together suggest an important
involvement of microRNAs in Drosophila development. In zebrafish, microRNA regulation
appears to be dispensable for early embryonic development, whereas morphogenesis at
later stages was severely affected [46, 143]. Injecting synthetic microRNAs into Dicer
null mutants, depleted of microRNAs, demonstrated a crucial role of miR-430 in early
brain morphogenesis and discarding of maternal transcripts.
In mammals, miR-375 was shown to control insulin secretion by direct interaction with
Myotrophin [105].
Overexpression experiments in mice indicated the regulation of heart organogenesis by
miR-1 [149]. Expression of miR-1 in the developing heart was found to be driven by the
serum response factor (Srf), myocardin, Mef2 and MyoD and the transcription factor
Hand2 was identified as a likely target of miR-1.
Ample evidence for a connection between microRNAs and cancer has been reported
independently by different groups [24, 25, 26, 136, 60, 55, 89, 95]. A common insight of
these works is that misexpression of particular microRNAs is responsible for certain types
of cancer. Lu et al. (2005) [89] reported that different kinds of tumor can be recognized
by the microRNA expression signature of the cancer tissue.
Even viruses seem to produce their own microRNAs [102, 103], opening new ways to
escape the anti-viral defense of the host organism or to regulate their own replication [135].
On the other hand, involvement of cellular microRNAs in repression of viral replication
has been reported [80].
Although the first targets of microRNAs were discovered by genetic screens, experimental
techniques are still too expensive and time-consuming to validate targets of microRNAs
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on a larger scale. Hence, computational prediction based on statistical properties of a
microRNA target site serves as an important first step to filter out likely candidates of
microRNA target genes. A significant fraction of the reported confirmed target genes has
been predicted computationally prior to experimental validation. However, current com-
putational target prediction methods still rely on a rather limited amount of information
that can be deduced from common features of only a handful of experimentally validated
target sites. Even examination of these few examples anticipates different modes of
target recognition. Existing target prediction algorithms are thus restricted to particular
classes of target sites, or operate with rather high false positive rates.

2.1.2 Characteristics of a typical microRNA target sites

The strategy of choice to computationally predict microRNA genes is based on machine
learning. The idea is to train an algorithm with a “training set” of known microRNAs
such that it can assign a score to a new candidate to assess the likelihood of being a true
microRNA. This technique obviously requires enough instances of validated microRNA
genes with somewhat overlapping properties to provide sufficient training data. Due to
the large number of known microRNA genes, machine learning based algorithms became
established as a prediction method of microRNA genes.
As opposed to microRNAs themselves, prediction of their target genes is complicated by
a small training set. Most of the current target prediction algorithms employ an empirical
model of target site recognition based on experimental evidence and statistical properties
deduced from the training set.
The most prominent feature common to nearly all validated sites is the “binding nucleus”

[110] (also addressed as “seed” [82]), a stretch of consecutive base pairings between
the microRNA and the 3’UTR of the targeted transcript, in most cases 6-8 nt long
and located at the 5’ end of the microRNA. The idea of such nuclei has already been
suspected after the discovery that lin-4 partially complementary sites in the 3’UTR of
lin-14 contain a core region of perfect complementarity [144].
After the discovery of numerous vertebrate and invertebrate microRNAs, it was observed
that 3’UTRs in these organisms are often enriched with stretches of nucleotides perfectly
complementary to 5’ segments of microRNAs [76, 145]. A thermodynamical explanation
of the binding nucleus was deduced by introducing a scoring model to obtain the maximum
discrimination between microRNAs binding to known targets versus random background
sequence [110]. This model assigns a score to a stretch of consecutive base pairings
between the microRNA and its target site, defined by the sum of single scores for each
base pair belonging to the nucleus.
The best nucleus score discrimination between microRNAs binding to known sites versus
background sequence yielded single base pair scores corresponding to the relative free
energies of AU- and CG-base pairs. Interestingly, G:U wobble base pairs turned out to
be strongly disfavored. The nucleus could thus be interpreted as a locus of favorable
free energy where a rapid zip-up between the microRNA and the mRNA is guaranteed
by perfect complementarity. This quick zip-up helps to overcome thermal diffusion and
allows for slower binding of the remaining 3’ portion of the microRNA to its target site.
Experimental work by Doench and Sharp [37] yielded deeper insights into the dependence
of the repression efficiency of the target gene imposed by the microRNA on the presence
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Figure 2.1: Secondary structure of microRNA:mRNA duplexes
Examples for secondary structures of a microRNA:mRNA duplex of an experimentally
validated target site with a perfect nucleus (a) and an imperfect nucleus (b). In the
latter case, extensive compensatory binding of the microRNA 3’ end can be recognized,
while in the former case larger loops and bulges at the microRNA 3’ end are permitted.
(Courtesy of N. Rajewsky)

of a minimal nucleus. To test a synergistic effect of multiple sites [36], the authors
implanted two target sites subject to single nucleotide mutations flanked by two original
sites of a particular microRNA into a reporter mRNA and measured the repression efficacy
for each mutant in HeLa cells transfected with the reporter construct. First, only the
nucleus region was mutated in order to examine the mutability of the nucleus without
significant loss of repression. The results suggest a dependence of the repression level
on the free energy of the nucleus section of the microRNA:mRNA duplex, such that
single point mutations of the nucleus region are only allowed if the free energy of the
nucleus does not increase substantially. It was also shown that G:U wobble base pairs in
the nucleus region hinder repression. Mutating the region of the target site predicted
to bind the 3’ end of the microRNA revealed that for a binding site with 7mer nuclei of
perfect complementarity (perfect nuclei) single point mutations in this region only mildly
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affect repression efficiency. Furthermore, the authors examined in how far target sites
are allowed to overlap and observed that for sites with perfect nuclei, repression remains
unaffected as long as the nuclei regions of both sites do not overlap.
Along these lines, a recent study distinguished different classes of microRNA target sites
based on an in vivo assay in the Drosophila wing imaginal disc [20]. A single target site
was implanted in the 3’UTR of a fluorescent reporter gene expressed in the imaginal
disc and the degree of repression was compared for microRNA-expressing and adjacent
microRNA-non-expressing cells. The authors tested various types of mutations and came
up with the definition of two different classes of target site: 5’ dominant sites have suffi-
cient complementarity in the nucleus region and need nearly no support of the microRNA
3’ end binding to the mRNA (fig. 2.1a). Target sites with weak nuclei, i. e. nuclei
shorter than 7 base pairs or nuclei containing mismatches require compensatory binding
of the microRNA 3’ end to its target site above the background level. As opposed to 5’
dominant sites, 3’ compensatory sites form microRNA:mRNA duplexes of free energies
lower than expected by matching the microRNA 3’ end to randomly chosen background
sequence (fig. 2.1b). The contribution of this class of sites leads to a higher specificity,
if minimal free energy requirements are incorporated in target prediction algorithms as it
is the case for nearly all existing ones.
As a prominent example of 3’ compensatory binding, lin-41 was shown to be bound by
let-7 in nematodes in vivo (fig. 2.1b) via two neighboring sites with imperfect nuclei
residing in the 3’UTR of this gene [139]. In accordance with former experiments [36],
which demonstrated that increasing the number of microRNA or siRNA target sites in-
creases the degree of repression of the target gene, the authors observed that only a single
let-7 binding site is insufficient to mediate repression of the target gene. The synergistic
effect of both sites proved necessary to repress translation of lin-41. In case of weak 3’
compensatory binding sites, the synergistic effect is presumably even more crucial than for
multiple sites comprising binding sites with perfect nuclei. However, merely multimerizing
single microRNA binding sites does not necessarily suffice to acquire repression. For the
two lin-41 target sites, the authors showed that also the spacer sequence in between these
sites plays an important role. Repression is significantly diminished if the spacer segment
is mutated or if it is shortened too much. This observation suggests a more complicated
architecture of multiple sites and thus anticipates the involvement of interactions between
different sites mediated by additional proteins similar to the case of multiple transcription
factor binding sites in gene regulatory modules. These details appear to be specific for
each instance of multiple sites residing in a single transcript and are thus difficult to
include in a general model of target recognition.
Beyond this observation, it is not unlikely that microRNA target sites divide in even more
subclasses with target duplexes of each subclass characterized by specific features, e. g.
loops of particular sizes. It has been attempted to determine more elaborate characteristics
of micorRNA:mRNA duplexes by mutation experiments of a single let-7 site in human
and mouse cell lines [67]. From these experiments, a set of rules was deduced, that was
subsequently applied to predict targets of arbitrary microRNAs. However, it remains
unclear to what extent specific rules derived for a single particular microRNA hold for
other microRNAs or different classes of targets. Moreover, one is at risk to loose many
true target sites, which do not obey these rules.
Based on the finding that multiple sites could act synergistically [36], the specificity of



2.1 Biology of microRNAs 15

target prediction algorithms can be increased by searching for multiple target sites of a
particular microRNA or the co-occurrence of binding sites for various microRNAs in the
same transcript [43, 59, 68, 50]. In particular, searching for the co-occurrence of binding
sites for co-expressed microRNAs led to the prediction and subsequent validation of the
common regulation of the insulin-secretion regulating gene Mtpn by miR-375, miR-124
and let-7b in mouse, providing evidence for coordinate microRNA control in mammals
[68].
It is still an open question, in how far the folding structure of the mRNA influences the
accessability of microRNA target sites. It has been attempted in two studies to incor-
porate the secondary structure of the potential target into target prediction algorithms
[114, 149]. In both studies, it was assumed that the nucleus part of a microRNA binding
site residing in the 3’UTR of the target mRNA requires a minimal overlap with single
stranded sub-stretches of the folded transcript, e. g. hairpin-loops or free terminal ends,
since the pairing probability between the microRNA and double-stranded elements is
strongly reduced compared to the pairing probability between the microRNA and such
single stranded elements.
In order to incorporate structural features, either the entire 3’UTR of the putative target
mRNA [114] or a small segment of sequence surrounding the preselected microRNA bind-
ing site [149] was folded. Since mRNA folding software becomes unreliable at a sequence
length comparable to the average 3’UTR length of the organisms under consideration it
is questionable whether predictions should be based on foldings of whole 3’UTRs. On
the other hand, if the mRNA is folded only locally, it is unclear whether this reflects the
true local folding structure, since inclusion of surrounding sequence could entirely change
the folding of a local element. In both studies, the authors provide validations of some of
their target predictions providing supporting evidence for their methods. However, both
methods impose additional filters to extract candidates for target genes. In particular,
both algorithms require the presence of a 7mer binding nucleus which is known to be the
consensus feature for a big class of target sites.
The current amount of information inferred from examination of validated sites is still
too small to search the genome of a single species for target sites of microRNAs. For
many of the current prediction algorithms the first step consists of searching the 3’UTR
of all genes for binding nuclei of microRNAs, i. e. sub-stretches of seven specific
nucleotides. Since a given 7mer occurs roughly every 16,000 bases by chance, this
counting presumably contains many false positives. By using cross-species comparison,
the number of false positives can be significantly reduced. Cross-species comparison
assumes enhanced conservation of true target sites due to selective pressure, while random
3’UTR background sequence is assumed to mutate at a higher rate. Randomly chosen
7mers are thus expected to have on average significantly different conservation levels
than 7mers complementary to the nucleus region of microRNAs. This expectation was
independently confirmed by several studies on a genome-wide scale in vertebrates, fruit
flies and nematodes [145, 68, 50, 83, 79].
However, cross-species comparison only allows for target predictions of microRNAs con-
served between the species under consideration. Furthermore, species- or lineage-specific
target genes even of conserved microRNAs are missed by this technique. Nonetheless, as
will be discussed below, this approach yielded deeper insight into microRNA biology and
led to an increasing number of target validations.
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2.2 PicTar – A probabilistic approach to detect genes
coordinately regulated by microRNAs

In this chapter, an algorithm is introduced, which screens the input sequence, usually the
3’UTR of an mRNA, for binding sites of a given search set of microRNAs and assigns a log
likelihood score for this sequence to be bound by microRNAs drawn from this search set.
In the simplest model, the mere presence of a binding nucleus for a particular microRNA
could be sufficient to assume a regulatory relationship. However, it is crucial to take into
account the possibility of such binding nuclei to emerge by chance without any functional
bearing. In the presence of binding nuclei, the sequence composition of the input sequence
can thus be explained by two competing models, a neutral background model versus a
functional model. We took advantage of evolutionary conservation in order to assign the
probability of a binding nucleus to be functional. Background sequence, on the other
hand, is assumed to be emitted with uncorrelated single nuncleotide probabilities. A
maximum likelihood procedure is then used to determine the probability of the functional
model to explain the occurrence of the binding nucleus in the input sequence. If the
resulting score is low, the binding nucleus is likely to have emerged by chance and the
probability of the gene to be regulated by the corresponding microRNA is low.
To assess the significance of a putatively functional site, it is thus crucial to allow for a
competing neutral model. The competition of overlapping binding nuclei for different
microRNAs is treated analogously.
Hence, a bioinformatic tool for the prediction of microRNA target genes, that goes beyond
a simple pattern search, should ideally reflect the competition of all conceivable options
to explain the observed sequence.
To infer the parameters of the model, the statistical evaluation of a large number of
putative instances of functional and non-functional sequence is needed. The latter seem to
be reasonably well characterized by single letter probabilities. The specificity of functional
sequence, i. e. binding nuclei, was first derived from validated instances [110] and model
parameters were finally inferred using the average level of evolutionary conservation of
binding nuclei in the ensemble of all 3’UTR sequences.

2.2.1 General logic of PicTar

Expression profiling of microRNAs by cloning and sequencing, Northern blotting, or
microarrays has shown that oftentimes a small number of microRNAs (typically 1-10) is
expressed in specific tissues and developmental stages [8]. Many known target genes of
microRNAs contain several microRNA binding sites, and experiments have shown that the
degree of translational repression can be exponential in the number of microRNA binding
sites in the 3’UTR [36]. Thus, similar to transcriptional regulation, the concentrations of
the trans-acting microRNAs in a cell may be read out by cis-regulatory sites and used
to fine-tune gene expression [57]. Hence, to understand biological microRNA function,
it may be important to search for combinations of microRNA binding sites for sets of
co-expressed microRNAs. Previously developed computational algorithms can identify
targets for single microRNAs, but it is unclear how to use them to score common targets
of several microRNAs. Furthermore, they typically have significantly enhanced false
positive rates when the number of binding sites for a given microRNA in a 3’UTR is small
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[2]. PicTar (Probabilistic Identification of Combinations of Target sites) overcomes
these problems by generalizing previous methods and allows the identification of targets
for both single microRNAs and combinations of microRNAs.
Input to PicTar (fig. 2.2a) is a fixed search set of microRNAs and multiple alignments

of orthologous nucleotide sequences (3’UTRs). Output are scores that rank genes by
their likelihood to be a common target of members (subsets) of the search set, and
probabilities for the predicted binding sites in each UTR. The algorithm follows the general
logic of Ahab, a validated probabilistic algorithm for the identification of combinations
of transcription factor binding sites [109, 122]. PicTar tallies all segmentations of a
sequence into binding sites and background, and computes the maximum likelihood
score that the sequence is bound by combinations of microRNAs (fig. 2.2b). In this
probabilistic model, microRNAs compete with each other and background for binding.
The model accounts for synergistic effects of multiple binding sites of one microRNA, or
several microRNAs acting together, as well as for the appropriate scoring of overlapping
sites. Cross-species comparisons are crucial for filtering out false positives: candidate
target genes are defined as UTRs with a minimal (user-defined) number of evolutionarily
conserved putative binding sites. PicTar then scores the candidate sequences for each
species separately. The resulting scores are combined to obtain the final PicTar score for
a gene.

2.2.2 Detailed description of the PicTar algorithm

Definition of nuclei

It has been shown that a key role in both target site recognition and repression of the
target transcript is played by the nucleus, typically a perfectly Watson-Crick base paired
stretch of ∼7 nt in the microRNA:mRNA duplex. The nucleus is usually located in the 5’
end of the microRNA starting at the first or second position of the microRNA 5’ end [2].
According to the already discussed insights gained from the experimental examination of
validated target sites as well as on statistical evidence we define a “perfect nucleus” as
a perfectly W-C base paired stretch of 7 nucleotides either starting at the first, or the
second base of the microRNA (counted from 5’). A single insertion or mutation, unless it
leads to a G:U wobble base pair, in the mRNA sequence of a perfect nucleus is allowed as
long as compensatory binding of the microRNA 3’ end is observed, reducing the overall
free energy. These mutated nuclei are called “imperfect nuclei”. Hence, for imperfect
nuclei we require that the free energy of the entire microRNA:mRNA duplex, calculated
with the standard folding software RNAhybrid [112], is below a cutoff which is set to
a restrictive value of 60% of the optimal free energy of the entire mature microRNA
binding to a perfectly complementary target site.

Definition of anchor sites and identification of target candidates

We first precompute the positions of all possible microRNA nuclei in all UTR sequences.
We check if nuclei for the same microRNA fall into overlapping alignment positions for all
species under consideration. To enhance the sensitivity, the conservation requirement is
alleviated: Whenever a group of species with similar evolutionary distance to the reference
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Figure 2.2: Flowchart of the PicTar algorithm.
See text for details.

species is present in the set of input sequences, but the whole 3’UTR sequence of a
particular species is missing, each target site found in the sequences of the remaining
species is considered to be conserved in the whole group. In case of vertebrates, for
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instance primates (human, chimp) and rodents (mouse, rat) are grouped independently.
This strategy reduces the influence of incomplete alignments, e.g. due to sequencing
gaps. If nuclei are conserved by these criteria, we check if the optimal free energy of their
predicted microRNA:mRNA duplexes passes our filtering criteria (see above). Nuclei that
survive these steps are termed anchors. The number of anchors in a UTR is a parameter
which determines if a transcript will be scored by PicTar. If so, the optimal free energy
of all sites with imperfect nuclei in each UTR sequence is used to filter out improbable
target sites. The remaining sites for each UTR are input to the core hidden Markov
model (HMM) of PicTar to compute a score for each UTR in the multiple alignment.

Scoring target candidates by an HMM

The core algorithm of our target identification procedure scores the statistical likelihood
for each 3’UTR sequence to be targeted for repression by a given set of microRNAs
µi, i = 1, ...,M .
Hidden Markov models can be thought of as sequence-generating models (see Appendix
A). A random sequence of states is generated by a set of independent “drawings”,
governed by the transition probabilities between the states. At each state, a certain
nucleotide is chosen (“emitted”) according to emission probabilities of this particular
state. This way, any sequence can be generated with a certain probability. Given the
particular sequence x, one can calculate the probability P (x) that x was generated by the
specific model (defined by the transition and emission probabilities). Another important
task can be to determine the parameters of the model that will maximize the probability
that x was generated (this procedure is usually referred to as Expectation Maximization,
see Appendix A).
We modeled the 3’UTR of a gene as generated by an HMM whose states are binding
sites of each of the microRNAs from the set and the background. The microRNA
binding sites are represented by the 7-8 nucleotides long nuclei. Different microRNAs, or,
more precisely, their nuclei compete with each other and background for binding (it was
experimentally shown [37] that two overlapping nuclei can not act cooperatively). The
final score of a sequence is the log ratio of the probability of the sequence being generated
by this model, versus the probability that it was generated by background process alone,
after the optimal parameters were found using the Expectation Maximization procedure.
The sequence is generated in the following way: at each step one of the states of the
system is chosen with prior probability (the equivalent of transition probabilities) ρi

(i = 0, ...,M , where ρ0 is the prior probability for the background, and M is the total
number of different microRNAs whose combinatorial effect we are assessing). Depending
on the nature of the state, a certain sequence will be emitted: in the background state,
one nucleotide will be emitted, and in microRNA target site state the 7-mer or 8-mer
will be emitted. The emitted sequence is appended to the sequence previously generated,
and the process proceeds to the next step until the required 3’UTR length is reached.
The sequence of states chosen from positions 1 to L is called the “parse”. Obviously,
the same sequence of nucleotides can be created by different parses. Background is
modeled with the Markov model of order 0. A short 3’UTR (< 300 nt) cannot be used
to reliably estimate its own background nucleotide frequencies. In these cases we take
the linear combination of the background nucleotide frequencies estimated from the UTR
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and background frequencies estimated from all UTRs for the same species in our data
set.
Given the set θ of microRNAs µi and their prior probabilities of binding ρi, i = 1, ...,M ,
the probability for the particular sequence to be generated is the sum of probabilities of
all possible “parses” of this sequence:

P (x | θ) =
∑

π

P (x | θ, π) (2.1)

Here the probability of a particular parse π, P (x | θ, π), is simply a product of transition
probabilities for each of the states in this particular parse and the emission probabilities
of subsequences present in those states (N = total number of states in the parse):

P (x | θ, π) =

N(T )∏
i=1

ρi ·mi(s) (2.2)

The emission probabilities mi(s) for the microRNA binding sites (i.e. the probabilities
that a certain mRNA subsequence will be the microRNA binding site) were modeled to
best discriminate between true and spurious, i. e. non-functional nuclei. The idea is
based on the increased evolutionary conservation of functional sites. For each possible
nucleus, we recorded the number of occurrences in anchor sites conserved in all species of
the search set for each species separately. The ratio of these numbers for the species most
distantly related to the reference species and the total number of occurrences (conserved
and non-conserved instances) of the same nucleus in the reference species itself defines a
“conservation score” that reflects the degree of conservation for each particular nucleus.
We defined the emission probability of a nucleus exactly by this conservation score.
The identification of the emission probability with the conservation score was introduced
only in a second advanced version of the algorithm. The original definition was chosen
according to experimental insights. In this version, imperfect nuclei were only accepted,
if their free energy was lower or equal than the free energy of the corresponding perfect
nucleus duplex. Moreover, the free energy filtering of the whole microRNA:mRNA duplex
was somewhat different: duplexes with perfect nuclei were required to have at least
33% of the free energy of the entire microRNA hybridized to a perfectly complementary
sequence while this threshold was set to 66% for imperfect nuclei. For perfect nulcei this
was a very mild filtering with substantially higher impact in case of imperfect nuclei. A
perfect nucleus that survived the filtering was assigned a probability p to be a binding
site for the microRNA. The probability for imperfect nuclei was (1-p) divided by the total
number of imperfect nuclei (typically in the range of 2-20). We worked with a high p
(p ∼0.8) since most of the known target sites do not have imperfect nuclei. Another
important difference of the original version is, that imperfect nuclei were not accepted in
anchor sites.
In the subsequent discussion of target predictions for vertebrates and flies we refer in part
to results of the original version [68, 50], since not the entire analysis was redone with
the new version [79].
The set of optimal prior probabilities is determined by maximizing the probability P (x)
to observe the sequence we are scoring. Since the prior probabilities in principle represent
the probability that a given microRNA is present in the cell (and sequence emission
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probabilities in the target site state represent the probability that microRNA will actually
bind to this particular subsequence), we can say that by finding the priors that maximize
the likelihood to observe our sequence, we are actually finding the relative effective con-
centrations of different microRNAs in the cell that will maximize the probability that this
gene is translationally repressed. The optimization is performed using the Baum-Welch
algorithm for Expectation Maximization, as described in [127] and [39] (see Appendix A).
This procedure is performed because we in principle do not have sufficient information
about concentrations of all messenger RNA and microRNA molecules present in the cell.
One can imagine, however, that this will change in the future (e.g. availability of more
microarray data), and it can be in a natural way incorporated into the model.
Since the sequence is modeled by the HMM, consecutive steps while generating it are
independent, which means that one can use the forward equation to calculate P (x | θ) in
time proportional to the length of the sequence. Posterior decoding (see Appendix A) is
used to calculate the probability for each of the positions in the sequence to be bound by
a microRNA.
The advantage of the HMM treatment of the microRNA target prediction problem is that
it naturally captures many characteristics of microRNA:mRNA interaction: coordinate
action of several microRNAs, amplification of repression efficacy in case of multiple
binding sites, competition of microRNAs in case of overlapping binding sites etc. In case
of multiple binding sites (either from one or from several microRNAs) the PicTar score
will reflect synergistic action: it will be higher than a simple sum of scores for single sites.
The length of the sequence influences the score as well: the longer UTR containing n
binding sites is statistically less significant than the shorter one with the same number of
sites. Beside the features of translational repression that we described in connection to
our model, different factors in the structure of microRNA binding sites have begun to
emerge that can affect the repression efficacy [139, 67]. In addition, there is a possibility
that the process can be affected by correlations in the positions of the target sites relative
to each other [37, 139]. It was already shown in case of the transcriptional regulation
model described in [127] that these correlations can be incorporated in the HMM.
To obtain a final cross-species score, which reflects the probability that the UTR is
regulated by the given set of microRNAs, we averaged the scores for all species that
were used to define anchor sites. This average should reflect the different evolutionary
distances between species. In vertebrates, for instance, we averaged the human and
chimpanzee score, and, independently, the mouse and rat score, to obtain a primate score
and a rodent score. These scores were then averaged with the dog score to obtain a
score reflecting conservation in all mammals. Similarly, we averaged this mammalian
score, the chicken score, and the averaged score of the zebra- and the pufferfish.

2.3 PicTar target predictions for different clades of
life

We applied the PicTar method to compute genomewide target predictions in three differ-
ent clades of life: vertebrates, insects and nematodes. All target predictions are made
available online (http://pictar.bio.nyu.edu) and are linked to various databases, providing
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information on the microRNA itself and the target gene. The output can be viewed
as a ranked list of target genes for each particular microRNA linked with a detailed
representation of the alignment and information on each particular target site. Moreover,
our most recent target predictions [79] can be accessed at and downloaded from the
widely used UCSC genome browser (http://genome.ucsc.edu/).

2.3.1 Vertebrates

Vertebrate 3’UTR sequences and alignments

We extracted genome-wide multiple alignments of eight vertebrates from the UCSC
Genome Browser (http://www.genome.ucsc.edu/). These alignments were built from
the following genome assemblies: human May 2004 (hg17), chimp Nov. 2003 (panTro1),
mouse May 2004 (mm5), rat Jun. 2003 (rn3), dog Jul. 2004 (canFam1), chicken
Feb. 2004 (galGal2), fugu Aug. 2002 (fr1), and zebrafish Nov. 2003 (danRer1). We
used the UCSC mappings of the human RefSeq mRNA data [106] (Release 6, July 5,
2004) to the human genome to define multiple alignments of 3’UTRs. These alignments
cover 19,971 sequences for human/chimp, 19,289 for human/chimp/mouse, 18,717
for human/chimp/mouse/rat, 18,567 for human up to dog, 11,190 up to chicken,
6,136 up to fugu and 4,355 up to zebra fish. The multiple alignments cover hu-
man/chimp/mouse/rat/dog for 90% of all human 3’UTR sequence nucleotides. Se-
quences of all eight species are aligned for 21% of all human 3’UTRs. The coverage for
human/chimp/mouse/rat/dog/chicken (55%) is consistent with the estimated number
of orthologous human/chicken genes. For generating our statistics, we produced a final
dataset of 3’UTRs by restricting human 3’UTR sequences to unique sequences.
Comparing human/mouse sequence pairings of the alignments to pairings independently
defined via a gene orthology table yielded a low error rate of ∼3%.

Data sets of known and randomized mature microRNA sequences

We downloaded mature microRNA sequences from Rfam [48] (Release 5.0) and added
nine microRNAs [105]. We extracted a subset of microRNAs conserved between hu-
man/chimp/mouse/rat/dog/chicken using Rfam annotations of mature vertebrate mi-
croRNAs homologous to a human microRNA. Whenever no annotation was available,
we used stringent criteria to check conservation of the precursor and for the mature
microRNA. We constructed a set of unique microRNAs by lumping together microRNAs
with identical bases at positions 1 through 7 or 2 through 8 (starting at the 5’ end).
We obtained 58 unique microRNAs that are conserved up to chicken. Similar to Lewis
et al. 2003 [82], we recruited cohorts of unique randomized microRNAs by extracting
8mers with approximately the same abundance (±15%) of the 7mer starting at position
1 and 2 and the corresponding 7mer of the respective real microRNA in all human
3’UTRs. Experimenting with numerous other randomization schemes led to comparable
signal-to-noise ratios. We attached the 3’ end of each microRNA to the corresponding
random 8mer.
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Single microRNA target predictions

The set of 3’UTR alignments served as input sequence. We compute targets at two
different levels of conservation. The mammalian predictions require conservation of
anchor sites between human, chimp, mouse, rat and dog. The vertebrate predictions
require a nucleus to be additionally conserved in chicken. Both human and chimp as well
as mouse and rat are considered to reside on a similar evolutionary level when compared
to all species included in the analysis. Hence, for both pairs of species a nucleus in just
one species was considered sufficient if the sequence of the entire 3’UTR is missing in
the other species. Target predictions were computed for 164 microRNAs conserved in
mammals and 125 microRNAs additionally conserved in chicken.
To compute the signal-to-noise ratio we restrict the predictions only to the 58 microRNAs
with unique nuclei conserved in mammals and in chicken and generated 3 cohorts for
a subset of 23 out of these 58 unique microRNAs. To reduce computation time we
used only half of all 3’UTRs for target predictions of these randomized microRNAs. For
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Figure 2.3: Specificity and sensitivity of target predictions in mammals
signal-to-noise ratio (specificity, solid line) and average number of predicted target genes
(sensitivity, dashed line) as a function of a PicTar score cutoff for the modified PicTar
algorithm in mammals, requiring conservation in human, chimp, mouse, rat and dog.
The signal-to-noise ratio was averaged over three cohorts of randomized microRNAs in
mammals. The standard deviation is indicated by error-bars.

mammals, we predict on average 320 target genes per microRNA at a signal-to-noise
ratio of 1.9. Dependence of the specificity and the sensitivity on the PicTar score of the
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target gene is shown in fig. 2.3. For high score cutoffs, the big error bars are due to the
small numbers of predicted targets for randomized microRNAs. At a PicTar score cut
off of 10 we still predict on average 50 target genes per microRNA at a signal-to-noise
ratio of 5. Requiring conserved anchor sites in mammals and chicken (vertebrates) yields
on average 130 target genes per microRNA at a signal-to-noise ratio of 3. At a score
cutoff of 2 we still predict on average 60 targets per microRNA at a signal-to-noise ratio
of 8. With a score cutoff ranging from 0 to 3, the signal-to-noise ratio increases linearly
from 3 to 10, while the sensitivity decreases from 130 to 30 predicted target genes per
microRNA.
The contribution of imperfect nuclei to conserved anchor sites is found to be very minor.
Among the target predictions for mammals, imperfect nuclei make up for 1.5% of all
nuclei in anchor sites while this fraction raises to 2% when requiring conservation of
anchor sites also in chicken.
We predict that 44% (16%) of all 17,450 unique genes have at least one anchor site
conserved in mammals (vertebrates).
A comparison of the estimated signal-to-noise ratios for mammals and vertebrates demon-
strates the power of cross species comparison to filter out false positives. The more
distantly relates species are included into the analysis the higher becomes the signal-to-
noise ratio already without applying any score cutoff.
The strongly enhanced specificity at the expense of lower sensitivity with increasing
score cutoff supports the hypothesis that the conservation score is in fact biologically
meaningful and provides a good means of discriminating between true and spurious target
sites.

Vertebrate microRNAs are unlikely to target promoter sequence

It has been proposed that microRNAs can target genomic DNA in animals and induce
transcriptional silencing of genes via chromatin modification [9]. To test this hypothesis,
we ran PicTar on genome-wide sets of non-transcribed upstream sequences.
Analogously to the construction of vertebrate 3’UTR sequences, we used UCSC mappings
of human RefSeq mRNA sequences to define 500 base pairs upstream of transcription
start sites (termed promoters). To exclude as best possible overlaps with 3’UTRs, we did
not include sequences, which were overlapping with any transcript, arriving at a total
of 17,883 human sequences. However, in a number of cases our promoters will overlap
with 5’UTRs since transcription start sites are often not known. Multiple alignments for
promoters across vertebrates were constructed as described above.
In striking contrast to our results for 3’UTRs, we found neither correlation of binding site
positions with evolutionary conservation nor significant differences in the conservation
of putative target sites for real or randomized microRNAs. Our data suggest that most
animal microRNAs either recognize targets in genomic DNA by mechanisms not captured
by our algorithm, target sequences other than proximal upstream sequences, or do not
target genomic DNA to a significant extent.
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Multiplicity of sites enhances specificity

We recorded signal-to-noise ratios for the number of transcripts with at least N conserved
anchors for each microRNA separately for random and real microRNAs (fig. 2.4a).
Clearly, the multiplicity of sites in a UTR, which is scored by PicTar, also leads to a
significant increase of signal-to-noise [82]. To provide a crude estimate of the number
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Figure 2.4: Statistics of predicted targets of multiple microRNAs
(a) Multiplicity of target sites boosts the signal-to-noise ratio. The ratio of the number of
transcripts with at least N anchor sites per microRNA for real versus random microRNAs
provides an estimate of the signal-to-noise ratio for sites conserved in human sequences
up to mouse (black bars), up to dog (light grey bars), and up to chicken (dark grey
bars). The multiplicity of target sites (which is scored by PicTar) clearly helps to raise
the signal-to-noise ratio. The plotted results were obtained with the original version of
PicTar [68], but differ only slightly from the same numbers computed with the current
version of PicTar.
(b) Estimate of the number of coordinately regulated targets for sets of three microRNAs.
The probability P(n) that a set of three microRNAs hits at least n transcripts is plotted
on a log scale for real (upper curve) and random (lower curve) microRNAs as a function
of n. P(n) drops off exponentially and much more steeply for random microRNAs,
demonstrating that PicTar runs with random microRNAs will typically yield a vastly
reduced number of predictions. P(25) is ∼0.001 for real microRNAs, thereby indicating
that only ∼30 out of ∼30,000 possible sets of microRNA triples (sampled from our set
of 58 microRNAs) are likely candidates to coordinately regulate at least 25 different
transcripts each.

of microRNAs that may coordinately regulate target genes, we counted how many sets
of three microRNAs have anchor sites in common transcripts. We plot the probability
that a fixed triplet of microRNAs has an anchor site for each microRNA in at least n
different transcripts (fig. 2.4b). The criterion for a “hit” was the presence of at least one
anchor site, conserved between human/chimp/mouse/rat/dog, for each microRNA in
the triplet. The probability of obtaining not a single hit for a triple of real microRNAs is
1-P(1) = 0.35. This probability decays exponentially with n. Roughly two thirds of all
possible microRNA triplets could coordinately regulate transcripts. The probability that a
fixed set of three microRNAs hits more than 10 (25) targets is 0.04 (0.001), respectively.
Roughly 600 triplets out of all triplets drawn from the 58 microRNAs could coordinately
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regulate more than 10 targets each. We also computed the same statistics for randomized
microRNA sequences (fig. 2.4b), which demonstrated that running PicTar with sets of
randomized microRNAs will result in a vastly reduced number of predicted targets.
Along with the genomewide single microRNA target predictions, we also computed pre-
dictions for genes coordinately targeted by microRNAs that are co-expressed in certain
tissues. We assembled these sets of unique co-expressed microRNAs, conserved up to dog,
using published microRNA expression data [8] for brain, thymus, testes and placenta. For
each tissue, we required at least two anchor sites of different microRNAs to be conserved
between mammals.

Experimental validation of PicTar prediction

We hypothesized that the three most highly expressed microRNAs in the murine pancreatic
cell line MIN621, miR-124 (11.5% of the total microRNA profile), miR-375 (6.5%), and
let-7b (6.5%), may act together on a target gene. We used them as input for PicTar,
requiring at least one anchor site to be conserved between human/chimp/mouse/rat/dog
for each microRNA. We examined the results for Mtpn, a known target of miR-375
[105]. When searching ∼18,500 3’UTR alignments with miR-375 only, Mtpn was ranked
102, with one predicted binding site with a nucleus 3135 nt downstream of the stop
codon and a probability of 0.74. Functionality of this site was validated previously [105].
Searching for miR-124 targets only puts Mtpn at rank 727. However, using both miR-124
and miR-375 as the search set boosted the rank to 14. Finally, searching for targets of
miR-124, miR-375, and let-7b resulted in rank 4 for Mtpn. These ranks refer to the
original version of PicTar [68] and have undergone small changes in the current version.
To experimentally validate these predictions, we tested Mtpn regulation by miR-124 and

let-7b using two methods. First, our collaborators from the Stoffel lab at Rockefeller
University transfected neuroblastoma N2A cells with siRNA duplexes that are homologous
in sequence to miR-124 (si-124) and to let-7b (si-let-7b), respectively. We observed in
both cases a decrease in endogenous Mtpn expression by Western blotting (fig. 2.5).
Second, to test if Mtpn is a target of miR-124 or let-7b, we subcloned the Mtpn 3’UTR
downstream of a luciferase reporter gene. Co-transfection of this reporter construct with
si-124 or si-let-7b significantly decreased luciferase activity compared to a control siRNA
targeting eGFP (si-GFP) (fig. 2.5). The down-regulation by si-124 and si-let-7b was
similar to that of si-375. Furthermore, co-transfection of the luciferase reporter with a
pool of si-124, si-let-7b, and si-375 resulted in normalized luciferase activity that was
significantly less than the activity in any of the other co-transfections, suggesting that
Mtpn is regulated by the coordinate action of all three microRNAs. Together, our results
provide evidence for a direct and microRNA concentration-dependent regulation of Mtpn
by miR-375, miR-124 and let-7b and thus establish that Mtpn expression is coordinately
regulated by three highly expressed pancreatic microRNAs.
In addition, we validated 7 out of 13 predicted targets of miR-124 and miR-375 by either
western blotting or luciferase reporter assays, consistent with our false positive estimates
(Table 2.1).
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Figure 2.5: Regulation of Myotrophin by miR-375, miR-124 and let-7b (Experi-
ments were done by the Stoffel lab at Rockefeller University)
a) Immunoblotting. N2A cells were transiently transfected with siRNAs designed against
eGFP (si-GFP), miR-124 (si-124), or let-7b (si-let-7b) and lysed after 48h. Mtpn expres-
sion was assessed following SDS-PAGE, and immunoblotting with anti-Mtpn antibodies.
Tbp (TATA-binding protein) expression (α-Tbp) was analyzed for a loading control.
b) Dual luciferase assay of transfected N2A cells. A Renilla reniformis luciferase (Rr-luc)
construct containing the full length 3’UTR of Mtpn was transiently transfected with either
si-GFP, si-124, si-let-7b, or si-375, or all three si-RNAs for 48h and lysed. A Photinus
pyralis luciferase (Pp-luc) served as an internal transfection control. The ratios of Rr-luc
to Pp-luc expression were normalized to the si-GFP transfections. Error bars represent
the standard error (S.E.) from three independent experiments. Asterisks (*) and (**)
indicate significance levels at a p-value of ≤0.05 and ≤0.01, respectively.

Conclusions

In summary, we have developed a computational approach that not only can successfully
identify microRNA target genes for single microRNAs but also targets, which are likely to
be regulated by microRNAs that are co-expressed or act in a common pathway. We have
shown that massive sequence comparisons utilizing previously unavailable genome-wide
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microRNA RefSeq gene ID Gene functional annotation blot luc

miR-375 NM 013464.2 aryl-hydrocarbon receptor (Ahr) - n.d.
miR-375 NM 010847.1 Max interacting protein 1 (Mxi1) - n.d.
miR-375 NM 016889.1 insulinoma-associated 1 (Insm1) - n.d.
miR-375 NM 008413.1 Janus kinase 2 (Jak2) n.d. +
miR-375 NM 007573.1 compl. comp. 1, q subcomp. binding protein (C1qbp) n.d. +
miR-375 NM 146144.1 ubiquitin specific protease 1 (Usp1) n.d. +
miR-375 NM 008098.2 myotrophin (Mtpn) + +
miR-375 NM 197985 adiponectin receptor 2 (Adipor2) + +

miR-124 NM 009498.3 vesicle-associated membrane protein 3 (Vamp3) - n.d
miR-124 NM 013464.2 aryl-hydrocarbon receptor (Ahr) - n.d.
miR-124 NM 011951.1 mitogen activated protein kinase 14 (Mapk14) + n.d.
miR-124 NM 008098.2 myotrophin (Mtpn) + +
miR-124 NM 197985 adiponectin receptor 2 (Adipor2) - -

Table 2.1: Experimentally validated PicTar predictions
Target validation for miR-124 and miR-375 by immunoblotting and/or luciferase re-
porter assays. The genes tested were selected from the single microRNA target
prediction lists requiring different levels of conservation (human/chimp/mouse or hu-
man/chimp/mouse/rat/dog). Genes indicated in bold were validated by either im-
munoblotting (blot) and/or luciferase (luc) reporter assay (“+”).“-” indicates no de-
tectable decrease of endogenous target protein levels or luciferase reporter activity following
microRNA overexpression. “n.d.”: not determined. Predictions to be tested were not
selected by their PicTar score. The average score of the predicted miR-375 (miR-124)
targets is rather low. Therefore our number of false positives is comparable to the
predicted signal-to-noise ratio. RefSeq identifiers refer to Mus musculus.

alignments across eight vertebrate species strongly decreased the false positive rates
of microRNA target predictions, allowing PicTar to predict (above noise) on average
roughly 200 targeted transcripts per microRNA. PicTar’s combinatorial microRNA target
predictions led to the experimental validation of Mtpn as the first mammalian gene shown
to be regulated coordinately by three microRNAs.

2.3.2 Drosophila

We used PicTar and cross-species comparisons of seven recently sequenced Drosophila
species to predict and analyze microRNA targets in flies. We also computed predictions
for common targets of clustered microRNAs, since recent experiments [125, 11] have
suggested that microRNA genes that reside in clusters spanning roughly 50 kilobases
of genomic DNA tend to be co-expressed. To shed light on the specific function
of microRNAs, we analyzed the functional annotation for predicted target sets using
Gene Ontology (GO) terms [47]. However, to arrive at a more global understanding
of microRNA function we then asked if the extent of microRNA targeting in flies is
comparable to targeting in vertebrates, if certain microRNA:mRNA regulatory relationships
are conserved between both clades, and if individual microRNAs could potentially play a
role in clade-specific gene regulation. We present the results obtained with the original
PicTar version along with a comparison to the improved version, this way demonstrating
the improvements of the new scoring scheme.
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Genome-wide cross-species comparison of seven fly species allow high-specificity
and high-sensitivity microRNA target predictions

It has been widely demonstrated that the success of the computational identification
of microRNA target sites can be significantly boosted by searching for evolutionarily
conserved target sites, which are therefore likely to be functional. Thus we set out
to make use of the very recent whole-genome sequencing of a number of fly species
(fig. 2.6). The genomic sequence for eight of these species, including members of
the melanogaster, obscura, repleta, and virilis groups, have been already assembled (D.
melanogaster, D. simulans, D. yakuba, D. erecta, D. ananassae, D. pseudoobscura, D.
virilis, and D. mojavensis). We discarded the D. simulans assembly since at this point it
still contained large gaps. The estimated divergence time for these species ranges from a
few million years to roughly 40 million years (fig. 2.6).

Two sets of 3’UTR alignments

To identify evolutionarily conserved microRNA target sites in 3’UTR sequences, it was
critical to identify orthologous mRNAs. We experimented with two independently produced
sets of genome-wide alignments of the eight species. The first set of alignments (termed
set 1), which does not contain sequence for D. erecta, was produced by the UCSC
Genome database (http://genome.ucsc.edu/) and is based on pairwise alignments, which
were subsequently multiply aligned. The following assemblies were used to construct
the multiz alignments [17]: D. melanogaster Apr. 2004 (dm2), D. yakuba Apr. 2004
(droYak1), D. ananassae Jul. 2004 (droAna1), D. pseudoobscura Aug. 2003 (dp2), D.
virilis Jul. 2004 (droVir1), D. mojavensis Aug. 2004 (droMoj1), A. gambiae Feb. 2003
(anoGam1), and A. mellifera Jul. 2004 (apiMel1). The detailed amount of nucleotides
and aligned sequence for all flies is shown in Table 2.2. The second set (termed set 2)

Table 2.2: Statistics of 3’UTR alignments
Total number of nucleotides per species in the multiple alignments for set 1 and set 2
(for all genes and for unique genes with both masked and unmasked repeats).

came from true genome-wide multiple alignments generated by the Pachter group at
UC Berkeley [18] using the following assemblies: D. melanogaster Apr. 2004 (dm2),
D. ananassae Jul. 2004 (droAna1), D. yakuba Apr. 2004 (droYak1), D. erecta Oct.
2004, D. pseudoobscura (dp1), D. virilis Jul. 2004 (droVir1), D. mojavensis Dec. 2004.
For both datasets we used FlyBase Release 4.1 to extract 3’UTRs in D. melanogaster.
For both sets, we extracted multiple alignments of D. melanogaster 3’UTRs using the
D. melanogaster FlyBase annotation for 18,892 gene transcripts and obtained 3’UTR
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Figure 2.6: Phylogenetic tree of 12 Drosophila species
Phylogenetic tree of 12 Drosophila species (retrieved from http://species.flybase.net/ ).
Our datasets include 3’UTRs for seven of these species: D. melanogaster, D. yakuba, D.
erecta, D. ananassae, D. pseudoobscura, D. virilis, and D. mojavensis. Species underlined
in solid are present in set 1 and set 2. D. erecta (broken line) is present only in set 2.

alignments across all eight species for 13,465 transcripts (set 1) and 13,030 transcripts
(set 2). We also defined sets of alignments by keeping only the longest 3’UTR from
all transcript variants for the same gene, resulting in ∼9,800 alignments for each set
(termed unique alignments). The coverage of genes is thus roughly comparable between
both sets. Additionally, we masked repeats in the unique alignments using the UCSC
repeat masks for set 1 and using the Tandem Repeat Remover [14] following Rajewsky et
al. [109] for set 2. The nucleotide space of the various alignment sets is listed in Table
2.3 and comprises for each set a total of 2.2-4.1 Mb per species for the repeat-masked
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unique alignments. Masking repeats thus removed substantial amounts of sequence (up
to 22% per species).

Table 2.3: Statistics of 3’UTR alignments
Total number of nucleotides per species in the multiple alignments for set 1 and set 2
(for all genes and for unique genes with both masked and unmasked repeats).

microRNA sequences

We downloaded all D. melanogaster microRNA precursors and mature microRNAs from
the microRNA registry at Rfam [48] (Release 5.0). For each microRNA, we checked
for conservation of the precursor sequence in all fly species, using multiple alignments
retrieved from the UCSC Genome Database. We required the first 8mer of the mature
microRNA to be perfectly conserved, but applied a less stringent conservation constraint,
a percentage identity of 75%, to the precursor sequence. From the 79 mature D.
melanogaster microRNAs we found 69 to be conserved in all flies and 73 to be conserved
in the melanogaster and obscura groups. Statistics were generated with a subset of 46
microRNAs with unique nuclei, i.e. each nucleus is specific for only one microRNA in this
list. To compute signal-to-noise ratio, we produced five cohorts of unique randomized
microRNAs for set 1 and set 2, respectively, in either case both with masked and unmasked
repeats.

Sensitivity-Specificity estimation for different parameter settings

To estimate the extent of microRNA targeting in Drosophila, we used PicTar to count
conserved putative target sites with perfect nuclei (anchors). The microRNAs used for
these searches consisted of all currently known microRNAs that seemed to be conserved
in all species under consideration. To avoid counting of target sites more than once,
we represented all microRNA “families” that share identical nuclei by just one member
of each family. The final set contained 46 microRNAs with unique nuclei conserved in
all flies. As in our previous study [68], we recruited cohorts of randomized microRNA
sequences to estimate the number of false positives. Specifically, we computed all anchor
sites (single conserved nuclei) for set 1 and set 2 with masked and unmasked repeats for
real microRNAs, as well as for five sets of randomized cohorts in each case (fig. 2.7). A
measure for the specificity is the signal-to-noise ratio, which is defined as the ratio of the
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number of anchor sites for real versus randomized microRNAs. In each case, we averaged
the result over five cohorts and computed the mean and the standard deviation of the
signal-to-noise ratio. We computed specificity and sensitivity, requiring different degrees
of evolutionary conservation of anchor sites both with and without free energy filtering of
perfect nuclei (fig. 2.7). Overall, we observed that using the free energy filter or masking
repeats tends to enhance specificity with modest losses in sensitivity. We obtained higher
signal-to-noise ratios with set 2, but a higher sensitivity with set 1. We also found that
requiring different degrees of evolutionary conservation of anchor sites strongly affects
sensitivity and specificity. More precisely, searching for anchor sites conserved between
all flies (at various parameter settings) yielded a signal-to-noise ratio of 2.8-3.6 (set 1)
and 3.3-3.9 (set 2). The sensitivity was, on average, 25-33 (set 1) and 15-29 (set 2)
anchor sites per microRNA above noise. Anchor sites conserved in the melanogaster and
obscura groups yielded signal-to-noise ratios of 2.1-2.4 (set 1) and 2.3-2.7 (set 2) with
a sensitivity of 47-57 (set 1) and 29-40 (set 2) anchor sites per microRNA above noise
(2.7).
A major determinant of sensitivity and specificity is the required level of conservation

of anchor sites. Based on these results we defined three settings, termed S1, S2, and
S3, that allowed us to adjust the trade-off between sensitivity and specificity, and to
generate predictions of high sensitivity, high specificity, and medium specificity/sensitivity,
respectively. Masking repeats and applying free energy filtering of anchor sites serves
to fine-tune the trade-off between sensitivity and specificity for each setting. The high
sensitivity setting (S1) has repeat masked UCSC alignments (set 1) as input sequences,
requires conservation of anchor sites only between species of the melanogaster and obscura
groups and applies no free energy filtering of perfect nuclei. Setting S2, providing high
specificity predictions, uses alignments of set 2 with unmasked repeats as input sequences
and requires conservation of anchors in all flies and free energy filtering of perfect nuclei.
The medium sensitivity/medium specificity setting S3 is equal to setting S1, but uses
conservation of anchors in all flies.

Phylogenetic PicTar score

Given an alignment of a 3’UTRs for all flies, PicTar computes a likelihood score for the
UTR of each species separately. The final score of the whole alignment is a weighted
average of the single species scores, with weights reflecting the phylogenetic grouping
of the species. More precisely, the score of all flies in the melanogaster subgroup is
averaged and the resulting score is further averaged with the score for D. ananassae
and D. pseudoobscura yielding a score for the melanogaster and obscura groups. The
score for D. mojavensis and D. virilis, which have similar evolutionary distances to the
melanogaster group, are averaged. This outgroup score and the score of the melanogaster
and obscura groups are averaged to obtain the final PicTar score for all flies.

Score dependence of specificity/sensitivity

For each of the settings S1-3 we recorded the specificity and number of targeted transcripts
as a function of the PicTar score cutoff, i. e. discarding all predictions with a score lower
than a given threshold (fig. 2.8). We found that high scoring transcripts tend to have a
significantly improved specificity. For example, when using setting S2, the signal-to-noise
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Figure 2.7: signal-to-noise ratios of the PicTar single target site predictions
For both set 1 and set 2 the predicted number of anchor sites for 46 unique microRNAs,
conserved in all flies, and corresponding randomized microRNAs (averaged over five
cohorts) and the respective signal-to-noise ratio (indicated above the bars), are shown
with and without using free energy filtering of anchor sites for UTRs with masked and
unmasked repeats, respectively. (a) Predictions for set 1 with anchor sites conserved in the
melanogaster and obscura groups. (b) Predictions for set 1 with anchor sites conserved
in all flies. (c) Predictions for set 2 with anchor sites conserved in the melanogaster and
obscura groups. (d) Predictions for set 2 with anchor sites conserved in all flies.

ratio can be improved by a factor of 1.7 while retaining a sizable number of predicted
transcripts per microRNA. The positive correlation between specificity and PicTar score
is consistent with our observation that some non-anchor sites make a contribution to the
score. These sites appear to be “scattered”, i.e. are present only in some species or are
not found in all species at the same position in the alignment. We experimented with
relaxing our anchor site definition to include cases where a perfect nucleus is found in all
species under consideration but not necessarily at overlapping positions in the alignments.
The signal-to-noise ratio decreased in all settings S1-3 (for example for S3 from 3.3 to
2.6), at no significant gain in sensitivity. We thus concluded that many scattered sites
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could be functional but should be scored only when they occur in conjunction with anchor
sites, as implemented in the PicTar algorithm. These results, obtained with the original

a

b

c

Figure 2.8: PicTar score dependent sensitivity and specificity.
Shown is the average number of predicted targeted genes as a function of a PicTar score
cutoff (discarding all target genes with a score below this cutoff) for three different PicTar
settings (S1-3, see text): (a) high sensitivity settings (S1), (b) high specificity settings
(S2), (c) medium sensitivity/medium specificity settings (S3). The signal-to-noise ratio
also depends on the score cutoff and is indicated above the curve for certain cutoff values.
All predictions for all settings can be accessed on the PicTar web server (not filtered by
score cutoffs).

algorithm, we can compare to predictions produced with the improved algorithm [79]. We
computed new target predictions based on our UCSC 3’UTR alignments at two different
levels of conservation, corresponding to modified versions of the settings S1 and S3. The
input data, i.e. the datasets of conserved microRNAs and the UTR alignments as well
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as the cohorts of randomized microRNAs remained unchanged compared to the original
version. The modified settings, used for the new predictions are termed S1.2 and S3.2,
respectively. Setting S1.2 requires conservation of target sites between D. melanogaster,
D. yakuba, D. ananassae and D. pseudoobscura. However, since the latter two species
are of similar evolutionary distance to the reference species D. melanogaster we also
consider an anchor site conserved, if a nucleus is found in only one of those species and
the sequence of the entire UTR is missing in the third species. Setting S3.2 requires
an anchor site to be additionally conserved in D. virilis and D. mojavensis, and these
two species are again considered to be of equal evolutionary distance to D. melanogaster
and treated accordingly. As opposed to the original version of PicTar, we do not mask
repeats in both cases anymore in order to maintain the highest possible sensitivity. Hence,
the only remaining difference between settings S1.2 and S3.2 is the different level of
conservation. All additional modifications with respect to free energy filtering and the
treatment of imperfect nuclei were applied as already explained. The conservation score
was determined by the number of occurrences of a particular nucleus in anchor sites
conserved in D. pseudoobscura (for S1.2) and D. mojavensis (for S3.2), respectively,
divided by the number of occurrences in D. melanogaster. For the setting S1.2 we predict
on average 105 target genes per microRNA compared to 95 for the setting S1. We
computed the specificity by averaging the ratio of the number of predicted targets for
real and randomized microRNAs over four cohorts and obtained a signal-to-noise ratio of
2.5 (compared to 2.3 for S1). For the Setting S3.2 PicTar computes on average 49 target
genes per microRNA at a signal-to-noise ratio of 3.6. Compared to the first version of
PicTar this means an increase of ∼5 predicted target genes per microRNA at an enhanced
signal-to-noise ratio (3.2 for setting S3). Compared to setting S1 and S3, respectively,
the specificity of the new PicTar predictions depends much stronger on a PicTar score
cutoff (shown for S1.2 in fig. 2.9a). As can be seen from this Figure, applying a score
cutoff allows us to extract highly specific target predictions without losing too many
predicted targets. For setting S1.2 (S3.2) we obtained a linearly increasing signal-to-noise
ratio, from 2.5 (3.6) with no score cutoff to 6.5 (15) at a score cutoff of 2.5. The
sensitivity drops down linearly from 105 (49) predicted target genes per microRNA with
no score cut off to 45 (15) genes per microRNA at a score cutoff of 2.5. Although the
PicTar modifications result in a less restrictive treatment of imperfect nuclei, the strong
requirement of compensatory binding of the microRNA 3’ end keeps their contribution
very low. Among all nuclei in anchor sites, imperfect nuclei are only observed in 1% of
all cases when using setting S1.2 and 0.5% of all cases when using setting S3.2. The
fraction of genes with at least one predicted microRNA target site also increases by
approximately 10% in the new version. We predict that 29% (16%) of all 9958 unique
genes are predicted targets of microRNAs for setting S1.2 (S3.2) as opposed to 27%(15%)
for setting S1(S3). To assess the influence of the PicTar modifications on the ranks of
microRNA/target gene pairs, we plotted all PicTar ranks of the previous version against
all ranks computed using the new version (fig. 2.9b). Whenever a gene is a predicted
target of a particular microRNA for one PicTar version, but not contained in the target
list of the other it is assigned rank zero for the version missing this prediction. Thus,
all newly predicted targets of the new version reside on the y-axis, while all predictions
present in the old but not in the new version are located on the x-axis. In the new
version, we loose none of our previously predicted targets, while the number of predicted
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Figure 2.9: PicTar score dependent sensitivity and specificity of the new version
and comparison to the old ranks.
(a) Signal-to-noise ratio (specificity, solid line) and average number of predicted target
genes (sensitivity, dashed line) as a function of a PicTar score cutoff for the modified
PicTar algorithm in flies for setting S1.2. The signal-to-noise ratio was averaged over
four cohorts of randomized microRNAs in flies. The standard deviation is indicated by
error-bars. (b) Scatterplot of target gene ranks of the previous list of PicTar predictions
against the PicTar ranks extracted from the new prediction list for setting S1.2 versus
S1, respectively. Each dot represents a particular microRNA/target gene pair. If a
microRNA/target gene pair is absent in the predictions of one version, it is assigned rank
zero for the respective version.

targets grows by ∼10%. For both settings, the plot shows a systematic deviation from
the diagonal. This can be explained by a shift to higher ranks due to the insertion of
new predictions into the list of target genes. Because the new scoring scheme assigns a
distinct probability to each possible nucleus of a particular microRNA, many ranks are
observed to change significantly. To assess the degree of similarity between both versions,
we asked for each microRNA for how many of the predicted targets the difference between
the old and the new rank is less than 25% of the number of targets predicted for the
microRNA under consideration. We found that this is the case for roughly 70% of all
predictions with setting S1.2 and for 74% when using setting S3.2. We conclude, that
the modifications of PicTar strongly enhance the specificity as well as the sensitivity of
the algorithm virtually without discarding any of the previous predictions.

Identifying putative targets of multiple microRNAs

Previous analyses of microRNA targeting in vertebrates [59, 83, 68, 145] and flies [43, 20]
suggested that a substantial fraction (10%-30%) of all protein-coding genes in both
clades is regulated by microRNAs. Using settings S3 (S2), we found that 15% (13%)
of all annotated ∼10,000 unique melanogaster 3’UTR transcripts (corresponding to
∼10,000 genes) have at least one anchor site that is conserved in all seven fly species at a
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signal-to-noise ratio of ∼3 (4). Thus, with settings S3 or S2 roughly 10% of all transcripts
are predicted to be targeted by microRNAs above noise in all flies. To estimate how many
genes could be regulated by more than one microRNA, we counted all transcripts with at
least two anchor sites. Applying the high specificity setting S2, we found that searching
for multiply targeted transcripts further enhances the specificity to a significant degree
(fig. 2.10). For example, we found seven times as many targeted transcripts with at least

Figure 2.10: Specificity of PicTar predictions of genes with multiple putative
target sites.
Number of unique genes as a function of the minimal number of anchor sites for 46
unique, conserved microRNAs and for randomized microRNAs (averaged over 5 cohorts).
The ratio of these numbers, reflecting the specificity, is indicated above each bar.

two anchor sites for real microRNAs compared to randomized microRNAs. With settings
S2 and S3, we predicted that 30% of all targeted transcripts have more than one anchor
site. Finally, for our high sensitivity setting S1 we found that 27% of all transcripts have
at least one anchor site at a single site signal-to-noise ratio of ∼2.2. Of these, 40% are
found to have at least two anchor sites.
In summary, based on our high sensitivity settings, we predicted that at least 15% of all
D. melanogaster genes with currently annotated 3’UTR sequences are regulated by at
least one known microRNA, and that at least one fifth of these Drosophila microRNA
targets could be subject to coordinate control of two or more microRNAs from different
microRNA families (above noise). We provide ranked PicTar target predictions for all
conserved microRNAs, all FlyBase transcripts, and settings S1-3 at our searchable website
http://pictar.bio.nyu.edu. The results, linked to various other public databases, can be
queried for genes of interest or microRNAs of interest.
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Recovery of experimentally validated microRNA targets in Drosophila

To analyze the recovery of experimentally validated targets in Drosophila, we collected
19 microRNA:target regulatory relationships from the literature [132, 114, 20]. The
overlap with PicTar predictions across settings S1-3 is summarized in Table 2.5. The
apoptosis gene hid/wrinkled (W) is targeted by the microRNA bantam [19]. For all
settings S1-3, hid is the top scoring bantam target (PicTar score 17.3) and has five
anchor sites conserved in all flies. Notably, hid targeted by bantam has the second highest
PicTar score within all our target predictions. The only gene with a higher score (40.5) is
nerfin-1, which contains two anchor sites for miR-286 (or equivalently miR-279) conserved
in all flies and many additional sites for the same microRNA (see below). The Notch
signaling gene hairy was recently predicted [132, 110] and validated as a target of miR-7
with a single binding site [132]. PicTar found a miR-7 anchor site conserved in all flies of
the melanogaster and obscura groups, whereas the site in D. virilis appears to be slightly
shifted upstream. Hence, this target is recovered with setting S1 but not with settings
S2-3. There is experimental evidence that miR-7 also targets HLHm3 and E(spl)m4, two
genes located in the E(spl)-complex [132]. For HLHm3, PicTar predicts one miR-7 target
site conserved in all flies (at all settings). The gene E(spl)m4 did not have an annotated
3’UTR but was recovered after adding the likely 3’UTR sequence to our dataset [132].
Another gene of the E(spl)-complex, HLHm5, is the highest ranking target gene of miR-7
when searching for targets conserved in all flies (with setting S2; rank 2 with setting S3).
Target predictions at a reduced level of conservation (setting S1) also yield HLHm5 as
the top-ranking miR-7 target. The Notch gene Bearded is recovered as a target of miR-4
(or miR-79, equivalently). With setting S1 we found three conserved sites in its 3’UTR.
These so called Brd boxes have been shown to mediate repression of a reporter gene with
a Brd 3’UTR in vivo [75]. This gene is again very high scoring (15.6) and is found on
rank 2 in the list of miR-4 target predictions (setting S1). This target is not recovered
with the other settings, because the alignments of this gene do not contain sequence for
D. mojavensis and D. virilis. The same microRNA is thought to repress bagpipe [20],
which is found on rank 2 in the list of miR-4 target predictions (S3).
The proapoptotic genes reaper, grim and sickle are validated targets of the miR-2 family
[132]. For sickle we found one conserved site in all flies for miR-2, miR-13 and miR-6,
which share the same nucleus. For reaper, we recovered one site for the same microRNAs
in the melanogaster and obscura group with setting S1, while the other settings failed to
identify this target because of missing sequence for this gene in D. mojavensis. grim is
the only target of this group not recovered by PicTar, because it has only a 6mer nucleus
for miR-2.
A recent algorithm for the prediction of microRNA targets did not rely on evolutionary
information, but incorporated the 3’UTR secondary structure to compute putative mi-
croRNA targets [114]. Some of the high scoring predictions could then be supported
by luciferase reporter constructs in cell lines. We recovered four targets from this list
(miR-7/HLHm5, miR-279/SP555, miR-124/Gli, miR-310/imd) but failed to locate con-
served nuclei for the other six targets (see comments in Table 2.5). Strikingly, out of nine
computationally predicted targets that were experimentally assayed but did not show any
repression activity (likely false positives) [114], we only predicted one microRNA:target
regulatory relationship (miR-286/boss). In summary, PicTar recovered 8/9 (89%) of all
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Table 2.4: Recovery of published Drosophila microRNA targets with experimen-
tal support.
Experimentally assayed microRNA target sites are listed in the first column, totaling 19
microRNA:gene regulatory relationships with various degrees of experimental support and
9 sites which did not show regulatory activity. Columns labeled by S1-S3 refer to the
recovery of sites at the corresponding PicTar setting.
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known targets with experimental in vivo evidence and 4/10 or 40% of targets with other
experimental support with setting S1, i.e. requiring conservation of anchor sites only in
flies of the melanogaster and obscura groups. Only three of all targets with experimental
support were lost when requiring conservation between all fly species and thus were not
recovered with settings S2 and S3.

Clustered microRNAs are likely to coordinately regulate gene expression

Expression assays have shown that human microRNA genes that are located in the same
genomic region within 50 kilobases of each other are often co-expressed in specific tissues
[125, 11], suggesting the possibility that they may coordinately regulate common target
genes. In D. melanogaster, we identified 7 clusters within 50 kilobase regions that contain
precursors of at least two conserved microRNAs from different families. To identify
common targets of clustered microRNAs in flies, we used PicTar to predict coordinate
targets for each of these microRNA clusters (available on the PicTar server). Table 2.5
gives an overview of all clusters, their location in the Drosophila genome, the abundance
of targeted transcripts and, whenever all microRNA genes of a given cluster are located
in an intron of another gene, the identifier of this gene. To evaluate whether clustered
microRNAs target the same gene more often than expected by chance, we considered
all 1,128 pairwise combinations of all 48 unique conserved microRNAs. While pairs of
microRNAs from the same cluster comprise only 2.1% of these pairs, 132 genes contained
at least one anchor site for each microRNA of these clustered pairs (using setting S1), or
12% of the 1,104 genes that contain at least two different anchor sites for any combination
of these 48 microRNAs. Thus, pairs of microRNAs from clusters are likely to coordinately
regulate a significantly higher proportion of genes (12%) than expected (2.1%). To
assess the significance of targeting by 24 pairs of microRNAs extracted from clustered
microRNA genes, we used 1,000 sets of 24 pairs of microRNAs drawn randomly from the
set of all possible 1,128 distinct pairs (using all 48 unique microRNAs conserved in the
melanogaster and obscura groups). For conservation of anchor sites in the melanogaster
and obscura groups, on average 18(±2) out of 24 random pairs have at least one target
gene, compared to 22 (Z=2) of the co-expressed pairs (Z=2). We obtained on average
70(±21) unique target genes per random set, compared to 132 unique targets of the
clustered pairs with a high Z-value (Z = 3). When requiring conservation between all
flies, the results are more significant: 19 out of 24 clustered pairs target 50 unique genes,
while on average 11 (2) out of 24 randomly drawn doublets (Z=4) are predicted to target
approximately 23(8) unique genes (Z=3.5). These findings support the hypothesis of
coordinate control executed by clustered microRNAs.

Biological and molecular classification of predicted microRNA targets

To gain insights into the function of Drosophila microRNAs, we used GeneMerge [27]
to analyze the over-representation of specific Gene Ontology (GO) terms [47] in the
functional annotation of genes predicted to be targeted by a particular microRNA versus
a background gene set. GeneMerge computes the significance of occurrences of particular
GO terms for a set of genes compared to a background gene set. Briefly, GeneMerge
takes as input the set of genes of interest (predicted targets for a specific microRNA), a
background set representing the universe of genes (all genes that are potential PicTar
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Table 2.5: Clusters of microRNAs and their number of predicted target genes.
Clusters of unique microRNAs, conserved in all flies, with precursor sequences, originating
from a genomic region of less than 50 kilobases. The number of unique genes with at
least two anchor sites for different microRNAs of a given cluster is indicated. Predictions
are computed for both set 1 and set 2, anchors conserved in the melanogaster and obscura
groups and in all seven fly species, respectively. If clustered microRNA precursors reside
in an intron of an annotated FlyBase gene, the identifier is also indicated.
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targets), and an association file containing GO term annotations for each gene. It then
outputs a list of GO terms which are overrepresented in the study set vs. the background
set, using a hypergeometric distribution to compute a p-value, followed by a Bonferroni
correction to account for multiple testing.
To use an extensive background gene set, which captures features of genes targeted by
microRNAs as best possible, we lumped together all genes predicted to be targeted by
all microRNAs (setting S1) or genes, which were hit by the five cohorts of randomized
microRNAs. Finally, we recorded all p-values below a cutoff of 0.1. These p-values are
conservatively corrected for multiple testings, as provided by GeneMerge. We performed
the analysis separately for all GO terms in the“Biological Processes” ontology, and the
most specific “Biological Processes” GO term for each gene, as well as for all GO terms
in the “Molecular Function” ontology. These three classes of GO terms are provided
by GeneMerge. Results from the first two analyses were merged into one output file,
keeping the lower p-value for GO terms which were present twice. To visualize the results,
we used two-way hierarchical clustering based on the linear correlation coefficient of the
negative logarithm of the p-value [56].
From the “Biological Process” ontology, a total of 112 significantly over-represented GO
terms were identified; 70% of the gene sets targeted individually by conserved microRNAs
and two sets of combinatorial target predictions for microRNA clusters contained at least
one over-represented GO term (fig. 2.11a). For the “Molecular Function” ontology, a
total of 25 significantly over-represented GO categories were obtained among 36% of all
individual microRNA target gene sets and one set of microRNA cluster targets (fig. 2.11b).
Consistent with previous estimates [2, 10], our data indicate that microRNAs regulate a
large variety of genes in many different biological processes. Globally prominent GO terms
were morphogenesis, organogenesis, development (including embryonic development,
anterior/posterior and dorsal/ventral axis specification), neurogenesis, signal transduction
(including Notch, Torso, Sevenless, and Frizzled signaling), and transcriptional regulation.
Our overall overlap with another GO analysis for fly microRNA targets in a recent study
was marginal, very likely due not only to the differences in approaches for identifying
over-represented GO terms, but also to the different nature of target site predictions
made by PicTar and the published miRanda algorithm [43].

Our data were consistent with and extended results from a recent study that used GO
functional analysis to predict microRNA target genes [132], in which miR-7 was predicted
to be active in Notch signaling and miR-277 in valine, leucine, and isoleucine degradation.
For miR-277, we recovered all nine predicted targets and found five additional genes
(CG3267, CG4389, CG4600, CG6638, CG8778) at a p-value < 10−7. Targets of miR-7
predicted by PicTar included many Notch pathway genes as well as targets of Notch
signaling, including E(spl)m5, Tom, Bob, E(spl)mγ, Bearded, E(spl)m3, and E(spl)m4,
most of which were very high scoring (using setting S1). Furthermore, many targets of
Notch signaling were also predicted as targets of the Bearded-box microRNAs miR-4 and
miR-79 (E(spl)m5, Bearded, E(spl)mγ, Tom) and of the K-box microRNAs miR-2 and
miR-11 (E(spl)m5, E(spl)m2, E(spl)mδ, E(spl)m3), consistent with previous observations
[77]. Other known Notch targets would have been included in PicTar’s target lists if
their 3’UTRs were annotated in the current FlyBase release (data not shown). We note
that the majority of Notch targets predicted by PicTar would not have been predicted if
stringent free energy filtering was applied for predicted microRNA:target duplexes with
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Figure 2.11: Significant GO-terms among the predicted target genes of all single
microRNAs and clusters of co-expressed microRNAs.
Significantly enriched GO terms for (a) “Biological Processes” and (b) “Molecular
Function” ontologies. Shown are GO terms with p-values smaller than 0.1, corrected
for multiple testing. Hierarchical clustering was performed separately for GO terms and
microRNAs.

perfect nuclei.

Comparison of microRNA targets between flies and vertebrates

Previously, we applied PicTar to exhaustively search 3’UTR alignments of eight vertebrates
(human, chimpanzee, mouse, rat, dog, chicken, pufferfish and zebrafish) for microRNA
target sites [68]. To compare the extent of microRNA targeting in flies and vertebrates,
we first compared length, repeat content, and conservation of 3’UTRs between both
clades, using our datasets derived from the UCSC database for consistency. We focused



2.3 PicTar target predictions for different clades of life 45

on the comparison of 3’UTRs between D. melanogaster and human since 3’UTRs from
these species were extracted based on annotated transcripts. We found that the length
distribution of 3’UTRs and the distribution of repeats within them are very similar between
all mammals and between all flies, respectively, so comparisons between human and D.
melanogaster UTRs should reveal essential differences between the two clades. We found
a much broader distribution of 3’UTR lengths in mammals compared to flies, yielding on
average ∼900 nucleotides per 3’UTR for human and ∼400 nucleotides per 3’UTR in D.
melanogaster (fig. 2.12), consistent with previous results [92]. Examining the contribution

Figure 2.12: Lengths distribution of 3’UTRs in human and D. melanogaster (for
set 1 and set 2, logarithmic scale).
The distribution decays exponentially with increasing length, in human much faster than
in D. melanogaster. The average 3’UTR length in human (D. melanogaster) is ∼900
(∼400) nucleotides.

of repeat elements, we found that repeats constitute 11% of all human 3’UTR sequences
compared to 4% in D. melanogaster (Table 2.6a). Interestingly, for short repeats (up
to ∼50 nucleotides), the length distribution in D. melanogaster and human is similar
(fig. 2.13). For longer elements the distribution in flies continues to decay exponentially
with the same slope, whereas the human distribution displays a broad tail with another
significant peak centered around ∼300 nucleotides. To analyze 3’UTR conservation, we
counted all 7mers that appear to be perfectly conserved in each 3’UTR multiple alignment
and divided these counts by the length of the 3’UTR sequence. We found that the
probability of a nucleotide to reside in a conserved 7mer is comparable between vertebrate
alignments (including human, chimp, mouse, rat, dog, and chicken) and alignments
covering all fly species in our dataset (0.02 and 0.03, respectively). Similarly, 3’UTR
conservation is comparable between mammals and flies in the melanogaster and obscura
groups (0.06 and 0.08, respectively). The contribution of repeat elements to conserved
7mers is substantially different in vertebrates and flies (Table 2.6b). Masking repeats
reduced the number of bases in conserved 7mers by ∼1% in vertebrates and ∼10% in
flies, respectively. Thus, repeats in 3’UTRs appear to be much better conserved in flies
than in vertebrates and thus may be of functional importance in flies.
The extent of microRNA regulation seems roughly comparable between mammals and

flies overall, with several interesting clade-specific differences. In vertebrates, we and
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a

b

Table 2.6: Repeat elements in 3’UTRs of human and D.melanogaster and their
conservation.
(a) Fraction of repeats in the 3’UTRs of human and D. melanogaster. (b) Fraction of
nucleotides residing in 7mers conserved in all flies up to the indicated one (referring to
the order D. melanogaster, D. yakuba, D. erecta, D. ananassae, D. pseudoobscura, D.
virilis, D. mojavensis) with and without the inclusion of repeat elements. Comparison
of Table (a) and (b) demonstrates that in vertebrates (flies) repeat elements share less
(more) nucleotides than expected with conserved 7mers.
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Figure 2.13: Length distribution of repeat elements in 3’UTRs of human and D.
melanogaster (set 1, logarithmic scale).
At a length of 11 nucleotides, the distribution is strongly peaked for both species and
decays exponentially for longer repeat elements in D. melanogaster. Up to a length of
roughly 50 nucleotides, both distributions are very similar, while for longer elements the
distribution for human no longer decays exponentially, but has a broad tail with another
significant peak at a length of approximately 300 nucleotides.

others [59, 83] found that roughly 30% of all genes may be regulated by microRNAs. This
is twice the number we found in flies (15%), but this could be explained by the smaller
number of known microRNAs in flies (Discussion). More interestingly, we checked if
individual microRNAs appear to target similar or significantly different numbers of genes
in mammals compared to flies, since such differences could be indicative of clade-specific
changes in microRNA function. To retain a reasonable sensitivity in target predictions
for this analysis, we used human, chimp, mouse, rat, and dog for target predictions in
mammals and the melanogaster and obscura groups for predictions in flies. We first
defined sets of homologous microRNAs as well as homologous coding genes in mammals
and flies. For microRNAs we applied a relaxed definition of homology according to the
experimental insight that the nucleus is the crucial instance of regulation. Whenever the
first or second 7mer of a microRNA in Drosophila is also present as one of the nuclei in a
human microRNA, these two microRNAs are assumed to be homologs. Comparing all
microRNAs conserved in the melanogaster and obscura groups with all microRNAs con-
served in mammals, we obtained 47 pairs of homologous microRNAs between mammals
and flies. Homologous genes between D. melanogaster and human were extracted from
HomoloGene [142] (ftp://ftp.ncbi.nih.gov/pub/HomoloGene/current/) with annotations
of 3/14/2005. This list contained 19,685 human genes and 7,983 fly genes. Keeping
only pairs of homologous genes for which we were able to assign a FlyBase CG-number
and a RefSeq gene identifier [106], respectively, our final list contained 4,623 pairs of
homologous genes. We then set out to compute the average number of microRNA targets
in both clades and finally calculated the ratio of predicted targets per microRNA to the
average separately for each clade (Table 2.7).
A scatter plot of these ratios (fig. 2.14) demonstrates a correlation between the numbers

of targeted genes for homologous microRNAs in mammals and flies. However, certain
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Table 2.7: Homologous microRNAs between mammals and flies of the
melanogaster and obscura groups and their respective number of target genes.
The ratio of the number of target genes for a particular microRNA to the number of
target genes averaged over all microRNAs is indicated for flies and for vertebrates (termed
relative abundances). The ratio of the relative abundances between flies and mammals is
plotted in fig. 2.14.
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microRNAs appear to have a significantly higher number of target genes in humans
(miR-10, miR-133, miR-125, let-7, miR-285) or in flies (miR-184, miR-210). For example,
for let-7 we found 1.64 as many target genes as expected on average in mammals, but
only around 50% of the average expected number in flies. It is impossible to determine
from this analysis if microRNAs have acquired more targets in one clade or lost targets in
the other, but it is striking that both human homologs of the fly microRNAs miR-184 and
miR-210 are expressed at low abundance across many human tissues, while the homologs
of miR-10, miR-133, miR-125, let-7, and miR-285 are expressed overall at much higher
levels [11]. We stress that the human homologs of miR-10 and miR-133 have average or
below average numbers of predicted targets in human. Our data indicate that the above
seven microRNAs may function in clade-specific modes of gene regulation.
Finally, we computed which regulatory microRNA:mRNA relationships seemed to be con-

Figure 2.14: Number of predicted target genes for homologous microRNAs
between mammals and flies.
Scatter plot for relative numbers of targeted genes predicted for homologous microRNAs
in mammals and flies. The ratio of the number of predicted target genes of a microRNA
and the average number of putative targeted genes per microRNA are plotted in mammals
(y-axis) versus flies (x-axis). Conservation in flies included the melanogaster and obscura
groups. Outliers (with a ratio of relative numbers of predicted target genes larger than 3
or smaller then 0.33) are circled. The microRNA identifiers refer to microRNAs annotated
in D. melanogaster.

served between flies and mammals. From all 4,623 homologous human-D. melanogaster
gene pairs in our dataset, 34 gene pairs were predicted to be targeted by homologous
microRNAs. To asses the significance of the number of conserved microRNA-target
relations of homologous target genes and microRNAs between vertebrates and flies,
we shuffled homology relations in vertebrates and flies in the following way: All non
homologous genes and microRNAs were discarded from our table with microRNA/target
gene assignments. All microRNAs of a given family with equal 7mers at the 5’ end
were represented by one specific member of this family. Similarly, we discarded multiple
transcript variants, keeping only the longest variant for each gene. We constructed a
list with assignments of each microRNA to all its target genes. Shuffling was performed
by permuting the microRNA entries of this list, thereby assigning a new set of target
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genes to each microRNA. We counted the number of homology relationships for these
permuted microRNA-target assignments and averaged the results over 100 runs. We
obtained on average 24(±6) homology relationships for the shuffled lists, while we counted
37 real homology relationships, when only using unique lists of genes and microRNAs.
The described shuffling strategy models a situation of non conserved microRNA-target
relations, but keeps the number of microRNAs targeting a particular gene constant. Thus,
although the numbers are small, the conservation of microRNA/target gene relationships
appears to be significant (Z=2).

Discussion

The extent of post-transcriptional gene regulation in Drosophila mediated by
microRNAs. The sequencing of the genomes of several Drosophila species proved to
be an invaluable resource for the analysis of microRNA targets in flies. Cross-species
comparisons allowed us to arrive at significantly enhanced sensitivity and specificity for
microRNA target predictions in comparison with recent approaches. For example, previous
studies have predicted on average 8 target genes per microRNA (see [20] and references
therein), while our data allow us (with high sensitivity settings S1) to predict 54 target
genes per microRNA above noise in D. melanogaster. Requiring conservation in all flies
(settings S2 and S3), we still predict on average more than 23 and 30 target genes per
microRNA, respectively, at a strongly enhanced specificity.
Based on our target predictions, we found that currently known microRNAs are expected
to regulate a large fraction of all D. melanogaster genes (15%). This number is almost
certainly an underestimate, since (a) the annotation of 3’UTRs is incomplete, and (b) it
is expected that many more microRNAs in fly remain to be discovered. Indeed, using an
approach analogous to that of a recent comparative study of mammals [145], we analyzed
fly 3’UTRs across all seven species and found strong evidence for the existence of a
substantial number of yet undiscovered fly microRNA genes (N. Rajewsky, unpublished
results).
The number of targets per microRNA we predicted is consistent with recent estimates
of the true number of microRNA targets by Brennecke et al. [20]. In that study, the
authors analyzed the statistical significance of conserved 8mer nuclei (starting at position
one at the 5’ end in the mature microRNAs) and conserved 7mer nuclei (starting at
position two) and concluded that the vast majority of computationally detectable target
sites possesses at least one conserved 7mer nucleus according to their definition. Our
method is similar to this approach, but differs in the definition of the nucleus and the
number of species included in the conservation analysis. Regardless of these differences,
similar numbers of target genes per microRNA were predicted by both methods.
The highest scoring gene from all single microRNA target site predictions was nerfin-1,
with two anchor sites for miR-286 conserved in all flies and many additional, non-aligned
sites present in all flies. Errors or ambiguities in the alignment can oftentimes explain the
presence of these “scattered” sites. Additionally, compensatory mutations could lead to
non-aligned and yet functionally conserved target sites in a 3’UTR. At present, PicTar
scores these scattered sites in the same way as it scores conserved sites, as long as both
of them occur in the same UTR. Future refinements of the algorithm should explore
(a) explicit evolutionary models for the evolution of 3’UTR sequences and microRNA
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target sites, (b) improved probabilistic scoring for sites with imperfect nuclei [20], (c)
the incorporation of secondary structure information [114], (d) incorporation of mRNA
expression levels (for example from microarray experiments), and (e) expression levels of
microRNAs.
Our data indicated that clustered microRNAs are likely to coordinately regulate tar-
get genes. In addition, it has been shown that clustered microRNAs are likely to be
co-expressed. Using multiple co-expressed microRNAs to coordinately regulate target
genes could be an efficient way to increase the specificity of target gene regulation, and
may also enhance the robustness of target gene expression levels against fluctuations in
individual microRNA concentrations. We note that our data only suggest that clustered
microRNAs are more likely to coordinately regulate target genes by coordinate binding to
their 3’UTRs than non-clustered microRNAs. Many microRNAs that reside in clusters
also seem to target genes without additional binding sites for microRNAs in the same
cluster. Conversely, there appear to be many possibilities for microRNAs from different
clusters to coordinately bind the same target genes.

The evolution of microRNA function across large evolutionary distance. mi-
croRNAs offer the exciting possibility to study the evolution of trans-acting regulatory
genes together with the evolution of their cis-regulatory target sites using computational
methods. In this study, we have only touched upon this problem by comparing the
estimated number of targeted genes per microRNA in one clade to the predicted number
of targets for the homologous microRNA which, by our definition of homology, is likely
to bind to the same cis-regulatory sites. We caution that our definition of homology
would also refer to microRNAs which may have evolved independently in one or both
clades. However, our comparison yielded a non-trivial correlation between the numbers of
targeted genes per microRNA in flies and vertebrates, indicating that the relative number
of microRNA targets per microRNA tends to be conserved over very large evolutionary
distances. In contrast, only a relatively modest number of specific microRNA:mRNA
regulatory relationships seemed to be conserved between both clades. This scenario could
be explained either by a high degree of combinatorial control mediated by microRNAs
since binding sites could then be subject to compensatory mutations, or by frequently
redundant functional roles of microRNAs.
It was striking that some microRNAs (including let-7) that are likely to have a large
number of target genes in vertebrates seem to have a strongly reduced relative number of
targets in flies, and vice versa. We singled out three microRNAs (miR-184, miR-304, and
miR-210) with a drastically enhanced relative number of targets in flies compared to ver-
tebrates. Our GO term analysis for microRNA targets revealed that one them (miR-210)
had over 70 predicted target genes, which as a group were significantly enriched (p <
0.03 after correcting for multiple testing) for 11 genes with the GO annotation “female
gamete generation” (fig. 2.11a). These 11 predicted miR-210 targets are cut, egghead,
germ cell-less, gurken, lozenge, par-1, Ras oncogene at 85D, rhomboid-4, RNA-binding
protein 9, singed, and slalom. Most of these genes are evolutionarily conserved and
have a known role in Drosophila oogenesis, either in development and patterning of
the oocyte or in differentiation of the somatic follicle cells that surround the developing
egg chamber, and seven of the 11 are implicated in developmentally critical signaling
pathways involving receptor tyrosine kinases, Notch, wingless, or hedgehog. Development
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of a mature Drosophila oocyte involves an elaborate sequence of events that must be
precisely orchestrated in time. A surprising number of the genes in the above list play
roles in important events that must take place within a specific window of time during
oogenesis, many of which involve signaling between the germline and soma. Thus an
important emergent theme of microRNA regulation may revolve around the widespread
need for precise control of spatio-temporally restricted events during development. In
addition, oogenesis in Drosophila occurs through a very different developmental program
than in vertebrates. It is thus intriguing that a single microRNA has potentially evolved to
include a wide array of target genes that are important for this developmentally divergent
process. However, many of these potential targets are not restricted to oogenesis but also
function at other times and places, including the eye, nervous system, and epithelia, and a
number of other predicted miR-210 targets also function in these tissues (e.g. arrowhead,
cacophony, trio, Sema-1b, makorin, Van Gogh, Syntaxin 17, G-oα47A, RhoGAP92B,
cul-2, Apc, and Scm). Thus this microRNA may play more complex pleiotropic roles
in developmental networks. We conclude that some microRNAs could be candidates
for genes that mediate clade-specific differences in gene expression, and could play an
important role in shaping the diversity of life.

2.3.3 Nematodes

We used the improved version of PicTar to predict a global map of conserved C. elegans
microRNA/target interactions. Genomic sequences from three Caenorhabditis species (C.
elegans, C. briggsae, and C. remanei) were used for this analysis.

Genome-wide multiple alignments of nematode sequences

Genome-wide alignments between C. elegans and C. briggsae are already available at
www.wormbase.org and the UCSC database [38, 134, 30]. However, a third Caenorhabditis
species, C. remanei, has been sequenced recently, and since the three species have roughly
the same pairwise evolutionary distances to each other [66], we reasoned that including
C. remanei in the alignments would substantially boost our power to reliably detect
evolutionary conserved 3’UTR sequence elements.
Whole genome alignments of C. elegans (WormBase Release WS120, March 2004), C.
briggsae (cb25.agp8 assembly, July 2002), and C. remanei (Washington University, St.
Louis, December 2004 assembly) were produced by the group of Lior Pachter from
the Universiy of California at Berkeley in a two-step approach that combines orthology
mapping with sequence alignment [79]. In essence, we used two existing programs
(MAVID and MERCATOR) to construct genome-wide multiple alignments between all
three Caenorhabditis species. These alignments covered 74% of the C. elegans genome
and almost 80% of all known and predicted exons in C. elegans. Roughly 90% of
these covered exons are shared between all three species. 14,874 of our C. briggsae gene
annotations had orthologs in C. elegans, very similar to a comparison of the C. elegans and
C. briggsae genomes [134]. The resulting alignments allow us to compare the evolution of
14,874 C. elegans 3’UTRs across all three nematode species. C. elegans 3’UTR sequences
were extracted as described in [68] and mapped to the multiple alignments. Of all 21,623
C. elegans 3’UTRs, 16,965 were aligned between all three species.
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MicroRNA sequences

Target genes were predicted for all 117 C. elegans microRNAs retrieved from Rfam
(Release 6.0) [48]. To compute statistics (such as signal-to-noise ratio) with PicTar, a
reduced set of all 73 microRNAs with unique nuclei was produced, containing the 55
unique microRNAs and one representative for each of 18 families with shared sequence
identity at the 5 end. For these 73 microRNAs, we produced a randomized microRNA as
explained previously.

Genomewide single microRNA target site predictions

Emission probabilities of nuclei were estimated by dividing the number of occurrences of
each nucleus in conserved anchor sites by the total number of occurrences in the 3’UTR
of C.elegans (conserved and non-conserved occurrences). This ratio should reflect the
probability that the site is functional. Notably, only four sites with let-7 imperfect nuclei
had a non-zero probability of being binding sites by this criterion, and three of these
match the validated target sites in lin-41 supporting our hypothesis of a strong correlation
between conservation and functionality. The power of this conservation based approach
is evident as lin-41 ranks 12/57 unique let-7 targets, a rank that would be unattainable
in algorithms that assess perfect complementarity with the 5’ end of the microRNA.
We ran PicTar using all C. elegans microRNAs annotated in Rfam Release 6.0 along
with the orthologous 3’UTR alignments described above. To estimate the signal-to-noise
ratio for target predictions, we selected all 73 microRNAs with a unique binding nucleus
sequence, and recruited four cohorts of randomized microRNAs. The signal-to-noise ratio
was then calculated as the number of all target genes of the 73 unique real microRNAs
with a PicTar score higher than a given score threshold, divided by the number of
predicted target genes averaged over four cohorts of randomized microRNAs (fig. 2.15).
A moderate score cutoff of 1.5 resulted in roughly 35 predicted target genes per microRNA
at a drastically improved signal-to-noise ratio of 7.5. Only 42 of 117 microRNAs are
found to have at least one imperfect target site residing in an anchor site. Altogether,
we estimated that at least 10% of all C. elegans genes may be regulated by at least one
known microRNA.

PicTar let-7 target predictions

We initially chose to test the PicTar predicted targets of the most-studied microRNA,
let-7, whose spatiotemporal expression pattern is known [113, 61]. Since the let-7 mutant
phenotype is suppressed by decreased activity of some of its targets, including lin-41, this
provides an additional assay for testing its predicted targets. Although not specifically
trained to identify let-7 binding sequences, PicTar predicts many of the previously defined
let-7 targets [79]. GO term analysis shows that let-7 targets predicted by PicTar are
enriched for transcription factors, heterochronic genes, and genes involved in ectoderm
development [79], consistent with previous data [49].
The C. elegans genome contains three additional microRNAs that are homologous to
let-7: miR-48, miR-84, and miR-241. As expected given 5’ sequence identity of these
microRNAs, 98% of predicted let-7 targets are also shared by let-7 homologs. However,
PicTar predicts that lin-41 is the target of let-7 alone, consistent with the idea that
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Figure 2.15: Dependence of sensitivity and specificity on the PicTar score.
Shown is the average number of predicted target genes per microRNA (sensitivity, dashed
line) and the signal-to-noise ratio (specificity, solid line) as a function of the PicTar score
cutoff (i.e. all predicted targets with a score lower than this threshold are discarded).
The signal-to-noise ratio was averaged over four cohorts of randomized microRNAs, and
the standard deviation is indicated by error bars. The strong score dependence of the
signal-to-noise ratio reflects the ability of PicTar to distinguish real sites from random
sites. Top scoring predictions will therefore have a much higher signal-to-noise ratio than
the average.

let-7 homologs do not act redundantly to repress lin-41 translation, and suggesting that
the improved PicTar algorithm can distinguish distinct targets of microRNAs that have
highly homologous 5’ binding nucleus sequences. Although cases of distinct targets for
homologous microRNAs represent less than 5% of the predictions, algorithms that focus
only on high complementarity with the most 5’ sequence of the microRNA may not
identify these. Recently, it has been shown that let-7 homologs may have roles in larval
development mediated by hbl-1, but not by lin-41 [1], providing some indication that
the PicTar prediction that lin-41 is not a target of these microRNAs may be biologically
relevant.
We tested all of the predicted let-7 targets from various versions of PicTar for their ability
to suppress the let-7(n2853) vulval bursting phenotype. In all, 74 predicted targets were
tested, 57 of which are conserved across the three nematode genomes and are thus
found by the latest PicTar version. Of the predicted targets tested, RNAi aimed at seven
predicted let-7 targets suppresses vulval bursting significantly (p<0.05 in a one tailed
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t-test). As a negative control, RNAi tests of a control group of 44 non-lethal genes
that are not predicted to be let-7 targets found only one weak suppressor [79]. Novel
suppressors of the let-7 phenotype include F29G9.4, C27D6.4, C48A7.2, uba-1, K08F8.1,
and K07A6.2, though suppression in all these cases is considerably weaker than that
elicited by lin-41. C27D6.4 and F29G9.4 are predicted transcription factors, a result
consistent with previously observed trends [49].

Global analysis of predicted microRNA target functions and evolution of mi-
croRNA targets

We used the predicted target dataset from PicTar to predict functions for each microRNA
using GeneMerge v.1.2 [27]. Despite the diversity of regulation found upon analysis
of particular microRNA targets, our global analysis of the predicted targets of the C.
elegans microRNAs indicates that nearly half of C. elegans microRNAs regulate a set
of genes enriched for particular functions. These functions are diverse, ranging from
adhesion (miR-233, 356, 251) to ATP metabolism (miR-1 and 256). In general, enriched
categories differ from the predicted functions of the Drosophila and human microRNAs
[50]. For example, the C. elegans miR-1 target set is enriched for functions involving ion
transport and ATP metabolism, while D. melanogaster miR-1 targets are enriched for
a number of vesicle transport functional categories. In a systematic search for shared
functions between homologous microRNAs in humans, D. melanogaster and C. elegans,
we found no statistical enrichment for shared functional annotations above random
noise (unpublished data). This suggests that there have been considerable changes in
the functional categories targeted by related microRNAs, even though some microRNA
sequences are highly conserved across phyla. Thus there seems to be selective pressure
to maintain the sequence of some microRNAs across species, but changes in the nature
of their target sets. This may be due to the potentially massive effect of altering a
nucleotide in the 5’ end of the microRNA; indeed a single substitution may subject a
random set of targets to microRNA regulation. Alternatively, the sequence at the 5’
end of the microRNA may be key to activating effector proteins involved in repression,
reducing tolerance for alterations in this sequence.
A simple clustering algorithm that sorts microRNAs based on the enriched GO terms of
their targets also tends to group the microRNAs by family (with some exceptions), as
well as by expression pattern on developmental Northern blots. These rough correlations
are consistent with the co-expression of certain microRNAs, but also suggest that families
of C. elegans microRNAs tend to regulate similar suites of genes. This is evident from a
simple perusal of microRNA target lists: 98% of let-7 targets are also predicted targets
of let-7 homologs.
Although some individual microRNAs are predicted to regulate metabolic and developmen-
tal genes, the pooled targets of all microRNAs show such GO terms as under-represented
categories. One intriguing explanation for this under-representation is that many mi-
croRNAs may regulate ’repressors’ of metabolic and developmental gene function, such
as transcription factors. In this case it would be counter-productive for microRNAs to
also target metabolic genes directly. A major next step will be to analyze the functional
categories suggested in our analysis experimentally, and such an analysis in multiple clades
should shed light on the functions of microRNAs, as well as the evolution of their targets.
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Integration of PicTar predictions with functional genomic data allows explo-
ration of microRNA mediated regulatory networks

PicTar predictions are available from the NYU PicTar website (http://pictar.bio.nyu.edu/).
The server currently provides access to predicted target gene sets for single microRNAs,
listed in rank order based on their PicTar score, as well as links to the tri-nematode
alignment and public databases containing information on the microRNA and gene
(http://microrna.sanger.ac.uk, and http://www.wormbase.org, [30]). In addition a
hyperlink is included pointing to a network view of all predicted microRNA/target
gene links for the microRNA or target in question, generated using the Generic Network
Browser at NYU (N-Browse, http://gnetbrowse.org; H-L Kao, F. Piano and K.C. Gunsalus,
unpublished). These data are available for nematodes as well as vertebrates and flies.
N-Browse is a dynamic, web-based graphical network browser that uses a client-server
system to visualize network data residing in a remote database. The current version
provides access to microRNA target predictions from PicTar and integrates them with
combined functional genomics data from C. elegans, including protein-protein interactions,
gene expression similarity, and phenotypic similarity data (as described [52]). N-Browse
also provides information on gene attributes such as GO terms, RNAi phenotypes, and brief
gene descriptions, and it offers links to external database resources such as WormBase [30],
RNAiDB [51], and WormGenes (http://www.wormgenes.org; D. Thierry-Mieg, J. Thierry-
Mieg and Y. Thierry-Mieg, M. Potdevin, M. Sienkiewicz, V. Simonyan, unpublished).
Local gene neighborhoods in the network can be explored interactively by clicking on
individual genes in the graph, which dynamically expands the current network around
that gene to include all of its nearest neighbors and all their links to other genes in the
current graph. An example of a network generated by querying for a subset of predicted
miR-256 targets is shown in fig. 2.16.
The network illustrates the interactions between genes involved in ATP metabolism,
including multiple C. elegans homologs of the vacuolar ATPase subunits (vha genes).
N-Browse illustrates that miR-256 is predicted to regulate multiple components of this
machinery, indicating that miR-256 targets are enriched for genes involved in ATP
metabolism. In addition both miR-256 and dpy-23 interact with a shared set of genes, a
network whose visualization is facilitated by N-Browse. N-Browse therefore enables the
analysis of integrated gene interaction networks that can be used to generate informed
hypotheses regarding microRNA function.

Conclusions

Our analysis predicts that at least 10% of the transcripts in C. elegans contain conserved
microRNA binding sites. This is likely an underestimate of microRNA regulation as it
does not account for non-conserved microRNA target sites. Furthermore, many 3’UTR
sequences may be missing from our set of 3’UTR sequences due to the lack of available
full-length mRNA sequences and the imposed cutoff in 3’UTR length when predicting
unannotated 3’UTR sequences. Using GO functional annotations, we find that roughly
half of the known C. elegans microRNAs may regulate sets of genes enriched for particular
functional categories. We have integrated our microRNA target predictions into an
accessable network-browsing tool (N-Browse). Together our data therefore elucidate
the functions of microRNAs in terms of the networks of interacting genes that they are
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Figure 2.16: N-Browse allows integration of predicted microRNA-target interac-
tions with genomic datasets into networks.
Shown is an example in which miR-256 is seen to interact with multiple vacuolar
ATPase subunits and other ATP metabolism genes (highlighted in grey circle). Multiple
functional links between these targets, based on phenotypic correlation and protein-protein
interactions, are also shown. miR-256 and dpy-23 both interact with a common set of
genes in the graph, defining an integrated network that emerges facilitated by N-Browse.
Thus N-Browse queries allow probing of interaction networks that can be used to generate
informed hypotheses regarding microRNA biology.

predicted to regulate.

2.4 Outlook

Target prediction algorithms such as PicTar have largely extended the knowledge about
post-transcriptional gene regulation imposed by microRNAs. Insights into the extent of
microRNA dependent regulation across different clades of life as well as the observation
of a statistically significant enrichment of a variety of biological processes with predicted
microRNA target genes are among the main results of computational studies. However,
the successful prediction of a large class of target genes should not draw off the attention
from several caveats.
It is yet unknown, if modes of microRNA targeting other than the mechanisms discussed in
this chapter exist. Although statistical overrepresentation of microRNA nuclei in animals
has not yet been found in genomic sequence other than 3’UTRs, it is not clear if sequence
categories of different functional annotations (such as genomic DNA, or 5’UTRs, or
coding sequences) are targeted by yet unknown mechanisms. Furthermore, current target
prediction algorithms still heavily rely on cross-species comparison, a criterion which is
obviously unsuited for the identification of species-specific target genes. Although several
attempts have been made to infer higher specificity from single target site data, e. g.
by considering the secondary structure of the entire microRNA:mRNA duplex, these
approaches have not improved the quality of single species target predictions. Another
shortcoming is the insufficient understanding of the protein complex, which incorporates
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the microRNA. Future experiments should elucidate the structural constraints on the
microRNA:mRNA duplex imposed by this complex as well as its possible interaction with
the target mRNA. For instance, it is still an open question how it is decided if the mRNA
of a microRNA target gene is degraded and/or only translationally repressed.
Apart from specific features of the target site itself, combined analysis of expression data
of the microRNA and its putative target genes could enhance the specificity of target
predictions. Since large scale expression data become increasingly available, the next
generation of target prediction algorithms should incorporate these data. Correlated
expression data, such as upregulation of sets of genes upon knockdown of specific
microRNAs are particularly helpful in this regard [71, 131].
In summary, although the last few years elucidated many aspects of microRNA biology,
many questions have remained unanswered and considerable scientific effort is still required
in order to fully understand microRNA dependent gene regulation.



Chapter 3

Evolutionary dynamics of
microsatellites in Drosophila

3.1 Introduction

Microsatellites are tandem repeat sequences of motif length 1-6 bases that contribute a
sizable fraction to eukaryotic genomes (reviewed in [85]). As opposed to non-repetitive se-
quence, insertion- and deletion-processes strongly dominate simple base substitutions in mi-
crosatellites producing substantial length variability at homologous loci (e.g.[123, 40, 141]).
The main cause for this observation is thought to be strand slippage during DNA repli-
cation: the nascent strand dissociates and its terminal repeat unit erroneously realigns
to the wrong unit of the template strand, leaving a loop confirmation. If the latter is
missed by the DNA repair mfoachinery the newly synthesized strand is left with an altered
number of repeat units [137, 118, 140].
A strong interest in understanding evolutionary dynamics of repeats emerges from their
widespread use in phylogenetic reconstruction [53], as genetic markers to identify specific
regions under natural selection [119], in population genetics [58], and because of the
implication of certain classes of microsatellites in human cancers and genetic disorders
(reviewed in [85]). Moreover, microsatellites seem to be involved in chromatin organi-
zation, DNA metabolism and regulation of gene activity (reviewed in [85]). Although
microsatellites were claimed to evolve neutrally [120, 121], there are also indications for
non-randomness. For instance, Bachtrog et al. (1999) [4] found that 39% of the analysed
repetitive sequence in Drosophila melanogaster deviates from a random distribution. Fur-
thermore, the identified function of several instances of simple tandem repeats suggests
selective constraint at least on specific repeat sequences.
Compared to the prevailing evolutionary process that shapes non-repetitive sequence,
which is single point mutations, microsatellites obey more complicated evolutionary
dynamics. The genome-wide distribution of microsatellites in a species, if it can be
assumed to be stationary, is the outcome of three different mutational mechanisms:
replication slippage induced growth and decay and single point mutations, disrupting
the ability of a tandem repeat unit to undergo slippage and thus also inducing repeat
decay. Since microsatellites are of relatively short length, and their length distribution is
observed to be decaying, degrading events that comprise backward slippage and point
mutations outweigh slippage induced growth. Therefore, each microsatellite has only a
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limited lifetime and will decay to a state of exclusively mutated repeat units that do not
undergo further slippage. If stationarity holds, this extinction of microsatellites must be
balanced by the emergence of new repeat elements. A single motif duplication, which can
be considered a seed for a new microsatellite can emerge, for instance, by a misalignment
after double stranded nicks or in case of short motifs also by single point mutations. The
ensemble of microsatellites is thus a stationary non-equilibrium system that does not
obey detailed balance.
Formal models of repeat evolution have been introduced in numerous studies. They all
rest on the assumption of stationarity, i. e. the distributions of the current generation
are supposed to be the same as those of the next generation. Another common feature
is the modeling of repeat evolution as a single-stepwise process, which was first proposed
by Jurka and Bell (1997) [13]. This model rests upon the idea that at each generation a
tandem repeat element either grows or decays by one unit due to a single slippage event
with specific backward- and forward-slippage rates. In addition to slippage, single base
substitutions abrogate the ability of the affected repeat unit to undergo slippage, thus
cutting the repeat element into shorter pieces. The most highly debated issue of the
single-stepwise model is the magnitude of the slippage rates and their dependence on the
length of the perfect repeat, i. e. number of adjacent repeat units. Moreover, a minimum
number of repeat units required for slippage mutations to occur has been proposed [91]
and a minimum length of 8 bp irrespective of the motif size has been suggested by a
simple mathematical model [115]. However, the existence of such a threshold size is still
controversial [108].
In several studies the single-stepwise time evolution of microsatellites was modeled by
a Markov chain, following the evolution of a single repeat element consisting only of
perfect adjacent repeat units [69, 70, 126]. Only the longer piece is retained if the perfect
repeat sequence is cut into two pieces by a single point mutation. As an improvement,
Lai et al. (2003) [78] modeled the decay process as a Markov chain multitype branching
process, keeping track of the further evolution of both pieces after a point mutation
event. In all studies, it was either assumed that slippage rates linearly increase with
the repeat length [69, 70] or subsequently demonstrated that slippage rates grow with
the number of repeat units [78] by fitting to data. Sibly et al. (2001) [126] developed
a maximum-likelihood approach for assessing several competing hypotheses and also
conclude that slippage rates are proportional to the repeat locus length. A simple and
intuitive explanation for this behavior could be the possibility of slippage for each pair of
adjacent repeat units. However, a minimum motif length is likely to be required because
of the limited flexibility of the polymer. The linear dependence further outrules the
possibility of multiple-unit-slippage, which would follow from realigning to a more distant
locus and result in an exponential growth of the slippage rate with the number of repeat
units. We conjecture that these higher order processes interfere with the single-stepwise
slippage preferentially at short motif length, i. e. for mono- and dinculeotide repeats,
which have been shown to obey more complicated dynamics [23].
Another degree of freedom is the ratio of forward- and backward-slippage rates. For the
symmetric single-stepwise model that assumes the expansion rate to be the same as the
contraction rate [69, 70, 126] it was shown that it cannot explain human sequence data.
Hence, a mutual dependence of these rates should not be postulated a priori [78].
Although some more subtle length dependencies for particular repeat classes were sug-
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gested by experiments [146, 5, 54], the overall slippage rates predicted by these models
compared reasonably well to experimentally inferred rates suggesting that single-stepwise
mutational events are the predominant driving force microsatellite evolution. However, the
amount of experimental data is still limited and probably insufficient to test more subtle
differences between competing evolutionary models. In this study, we try to overcome
this problem by comparing the rates predicted from our model with rates independently
measured from multiple alignments of closely related Drosophila species. We believe that
such in silico experiments contribute a valuable source of information in the era of whole
genome sequencing.
Using similar comparisons a careful examination of the existing models should be required,
since all these models suffer the shortcoming to neglect the microsatellite structure. A
point mutation inside of a microsatellite cuts the repeat element into two smaller ones.
The spatial vicinity of these neighboring repeat elements, however, is not regarded by
previous models. The length distribution of microsatellites, captured by these models,
thus neglects the spatial correlation of neighboring repeat elements. Hence, it is arguable
whether these models correctly predict slippage rates and repeat length distributions.
Here we introduce a new method for the description of microsatellite evolution that is
based on a novel representation of tandem repeat elements, which are looked upon as
entities comprising perfect as well as mutated instances of the repeat unit. Time-evolution
of the whole object is encoded by a general master equation. Assuming stationarity of the
repeat distribution, we derive two observables, which are easily measurable from genomic
data and which allow for the inference of backward- and forward-slippage rates. This
modeling scheme of repeat evolution seems to be superior to previous methods, since
spatial correlations of “mutationally separated” neighboring perfect repeat elements of a
common origin are not neglected any more. More precisely, a perfect repeat element is
observed with increased likelihood in the neighborhood of another perfect repeat element.
We compute the stationary distribution of tri-, tetra- and pentha-nucleotide microsatellites
in Drosophila melanogaster across sequence classes of diverse functional annotations and
provide strong evidence for the validity of our model in case of putatively neutral sequence
by comparing to optimized three-way alignments of D. melanogaster, D. simulans and
D. yakuba as well as to experimentally measured rates. We further demonstrate that
deviations from the predicted distribution increase with the content of functional sequence.
Hence, we present a new model that, opposed to all existing models, traces the decay of
tandem repeats into smaller parts by base substitutions maintaining the mutated units
and thus its representation as a single object. This obviously increases the amount of
information drawn from the data. Moreover, we present the first whole genome analysis
of microsatellite distribution in D. melanogaster resolved into sequence classes of different
functional annotation and conduct a large scale comparison of our rate predictions to
insertion and deletion rates measured from multiple alignments.
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3.2 Sequence Data

3.2.1 Drosophila alignments

Sequence data were extracted from true genome-wide multiple alignments generated by
the Pachter group at UC Berkeley [18] using the following assemblies: D. melanogaster
Apr. 2004 (dm2), D. yakuba Apr. 2004 (droYak1), D. simulans Sept. 2004. We used
FlyBase Release 4.1 to extract gene annotations in D. melanogaster.
A set of intergenic background sequences was constructed by extracting pairs of or-
thologous RefSeq genes that are neighboring and syntenic in all three fly species under
consideration. To determine orthologous RefSeq genes in D. simulans and D. yakuba
we used the “GeneMapper” program [29]. From these syntenic contigs, that contained
the annotated genes plus the intergenic regions we removed all overlaps with RefSeq
and FlyBase gene annotations together with a region of 20,000 (10,000) bases up-
stream (downstream) of each transcript. The remaining intergenic sequence covered ∼7
megabases (Mb).
We also used the syntenic contigs to extract 1 kilobase (kb) of sequence upstream of the
transcription start site for 2,077 unique FlyBase genes, totaling 2 Mb.
Coding sequence, 3’UTRs and 5’UTRs were extracted for 13,423 unique FlyBase genes
(keeping always only the longest transcript variant), summing up to 21 Mb, 4 Mb and 2
Mb, respectively.
Intronic sequence was extracted for 4,982 unique introns from coding regions of 2,905
unique FlyBase genes, covering altogether 12 Mb. For each intron, the first and the last
100 bases were cut off to discard conserved intron-exon boundaries containing splice sites.

3.2.2 Alignment Optimization

In order to detect insertions and deletions in a set of evolutionary related sequences at a
high level of specificity and sensitivity, the alignment parameters need to be adjusted to
their actual values matching the evolutionary process that generated the sequences under
consideration. In practice, since the true evolutionary process that generated a given pair
of sequences from a common ancestor is unknown, a simple model is postulated that is
based on experimental evidence as well as statistical evaluation of the related sequences.
We started out with the BLASTZ scoring matrix, a scoring scheme derived and evaluated
by Chiaromonte et al. (2002) [31], which was shown to work well for human-mouse
alignments [124]:

A C G T
A 91 -114 -31 -123
C -114 100 -125 -31
G -31 -125 -100 -114
T -123 -31 -114 91

As initial values for the gap-opening cost so and the gap-extension cost se we chose
so = −750 and se = −25, respectively. This choice was motivated by the scoring scheme
of the multiple alignment tool Multi-LAGAN [21], which we used for the computation of



3.2 Sequence Data 63

optimal alignments.
By variation of the gap-opening and gap-extension costs as well as the ratio of match-
and mismatch-probability after initialization with the BLASTZ scoring matrix, we achieve
the optimization of the full probabilistic alignment in order to obtain the most likely
parameters to explain the data with the assumed model.
For the pairwise alignment of two sequences S1 and S2, the full partition sum as a
function of the gap-opening cost so, the gap-extension cost se and the single-letter
(mis-)match-scores s(ai, aj) (ai ∈ {A, C, T,G}) reads

Z =
∑

paths

∏
pairs ai∈S1,aj∈S2

es(ai,aj)/τ
∏

gaps i of length li

e(so+se(li−1))/τ
∏

ai∈S1

q(ai)
∏

aj∈S2

q(aj)

(3.1)
Once an alignment “temperature” τ has been fixed, each score determines a probability
of observing a specific letter pairing or gap, respectively. As shown in Yu and Hwa (2001)
[148], these probabilities are constrained by a normalization condition. Given the scores
s(ai, aj) (ai ∈ {A, C, T,G}) of all letter pairings and the probability q(ai) to observe
letter ai in a single sequence, this condition reads

∑
{i=1,..,4;j,1,..,4}

q(ai)q(aj)e
s(ai,aj)/τ

(
1 +

2eso/τ

1− ese/τ

)
= 1. (3.2)

It ensures that the probabilities of all possible configurations at any alignment grid
point sum up to one. Using (3.2) and our initial choice of parameters, the alignment
temperature τ can be computed numerically. We proceed to compute the alignment
partition sum, divided by the partition sum for an uncorrelated gapless background model.
By this procedure, all single letter emission probabilities cancel out and one obtains

Z

Zb

=
∑

paths

∏
pairs ai∈S1,aj∈S2

es(ai,aj)/τ
∏

gaps i of length li

e(so+se(li−1))/τ . (3.3)

To compute (3.3) recursively, we follow Yu and Hwa (2001) [148]. For a given pair of
evolutionary related sequences, the logarithm of this quantity, i. e. the score gain relative
to the uncorrelated model (see Appendix B) was numerically maximized as a function of
the two gap cost parameters and the relative weight of matches and mismatches under
the constraint (3.2). Introducing the variables

α =
∑

i

q(ai)
2es(ai,ai)/τ (match-probability)

β =
∑
i6=j

q(ai)q(aj)e
s(ai,aj)/τ (mismatch-probability)

γ = eso/τ (gap-opening probability)

δ = ese/τ (gap-extension probability) (3.4)

equation (3.2) reads

(α + β)

(
1 +

2γ

1− δ

)
= 1. (3.5)
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Varying a score parameter corresponds to multiplicative variation of one of the indicated
quantities. The optimization procedure is implemented as a stepwise process. First,
the quantities α and β are varied keeping their sum and thus equation (3.5) constant.
Second, the quantity γ is varied and simultaneous variation of (α + β) (i. e. all letter
pairing scores simultaneously change by the same amount) ensures the condition (3.5).
Similarly, the parameter δ is tuned. These three subsequent steps are repeated until the
parameter values converge.
The optimization procedure was used to compute specific scoring matrices for Multi-
LAGAN with the final goal to produce improved optimal alignments. To obtain good
parameter estimates for the multiple alignment of D. melanogaster, D. simulans and D.
yakuba, we optimized the sum of (3.3) over all possible pairings. Although the ingroup
species D. melanogaster and D. simulans are more closely related to each other than to
the outgroup species D. yakuba, this procedure seems to be a good working compromise,
since the evolutionary distance of D. yakuba is still smaller than twice the evolutionary
distance between D. melanogaster and D. simulans. Multi-LAGAN requires only a single
scoring table and it is thus impossible to assign specific scoring matrices to different
pairings from the set of species to be aligned.
To test the improvement of the optimized scoring versus the default (BLASTZ) param-
eters, we simulated sequences of relative evolutionary distances similar to those of D.
melanogaster, D. simulans and D. yakuba. More precisely, the phylogenetic distance
between the outgroup species and an ingroup species was chosen to be 1.5 times the
distance between the ingroup species. We simulated a uniform mismatch-probability of
10% and uniform insertion/deletion rates of the same order of magnitude. Our parameter
optimization procedure not only recovered these rates with low errors (< 10%), but also
recovered gaps with higher sensitivity when applied to compute the optimal path using
Multi-Lagan: While only 80% of all gapped nucleotides are recovered when BLASTZ
default parameters are used, we recover 94% after the parameter optimization.
In order to optimize alignment scores for our sets of genomic sequences, we randomly
selected 20 alignments of 1,000 nucleotides from each set and ran the optimization
procedure. We obtained the following modifications of the BLASTZ matrix with δMM
(δM) denoting the additive difference to the BLASTZ match-(mismatch-)scores:

so se δMM δM

synt. back. -540 -17 -160 27
upstream -578 -11 -106 25
reg. modules -578 -9 -159 27
3’UTRs -606 -12 -194 31
5’UTRs -558 -15 -158 31
CDS -846 -11 -153 34
intronic -554 -7 -124 26

Note that the alignment temperature in each case is τ ∼ 100 and thus a score dif-
ference of 65 changes the probability by a factor of 2.
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3.2.3 Repeat Data

To identify repeats in the genomic sequence of D. melanogaster, D. simulans and D.
yakuba, we use the Tandem Repeats Finder (TRF) [14], which models tandem repeats
by percentage identity and indel frequency between adjacent pattern copies and uses
parameter dependent statistical recognition criteria. The parameter settings for the TRF
were chosen based on base substitution rates and indel rates of the alignment of the
detected repeat sequence to the perfect run of repeat motifs, which is part of the TRF
output.
With settings match score 2, mismatch cost 5, indel cost 5, match probability 80,
mismatch probability 10, minimal alignment score 15, maximal repeat length 500, one
obtains a mismatch probability of 4%, an insertion rate of 1.6% and a deletion rate of
1.5%. These values are higher than those obtained from the alignment of intergenic
sequence of D. simulans and D. melanogaster but lower than those between the ingroup
species and D. yakuba. Applying these settings we thus focus on repeat elements that
on average emerged on the ingroup branch after the split of D. yakuba and the common
ancestor of D. melanogaster and D. simulans. Although the minimal required alignment
score of 15 is rather low, the TRF will miss the shortest instances of repeat elements
with only two perfect adjacent motifs at short motif length l = 1, 2, 3. However, since we
are interested in repeats with motif length l ≥ 3 and more than just a single duplictaion
this cutoff is appropriate for our purposes.

3.3 Analysis of Microsatellites

3.3.1 Statistical model of microsatellite evolution

Theory of repeat evolution

Elementary processes and rates. The “minimal” sequence evolution model used in
this work contains three elementary molecular processes: (i) Base substitutions act on the
sequence as a uniform Markov process with a substitution rate µ. (ii) Repeat initiation
processes generate a new repeat from non-repetitive (background) sequence. The new
repeat is a perfect doublet, i.e., two adjacent identical units of a sequence motif of length
`. Repeat initiation can take place by base substitutions but may also involve other
processes, such as imperfect lesion repair after double-stranded nicks. Therefore, it is
modeled as a Markov process with an independent rate γi(`) per unit sequence length.
(iii) Slippage processes act independently on each perfect doublet, producing a further
identical unit with rate γ+(`) or reducing the original pair to a single unit with rate γ−(`).
Thus, slippage is assumed to be suppressed whenever two subsequent repeat units are
separated by other sequence elements or if they are an imperfect doublet, i.e., they are
not identical as a result of preceding base substitutions in one of them. These constraints
approximate the observed strong decrease of the slippage rate with the distance between
the units and with the number of base substitutions between them [140]. Repeats
containing at least one perfect doublet are called active, repeats with only imperfect
doublets are silent, since they no longer undergo slippage.

This model contains the main distinguishing feature of repeat evolution, namely the
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coupling between slippage and base substitutions and the resulting breakdown of time
reversal symmetry. There are only four independent parameters, µ, γi, γ+, and γ−, which
can be inferred efficiently from sequence analysis. Of course, the elementary processes
of the minimal model are strong simplifications of the actual molecular evolution of
repeats, which may also involve additional modes such as simultaneous slippage and base
substitutions. Nevertheless, as will be demonstrated below, the minimal model provides a
good statistical description of the observed repeat statistics at least in intergenic regions
of the Drosophila genome, implying that it would be difficult to find statistical evidence
for a more complicated model. Hence, the processes and the inferred parameters of the
minimal model are to be regarded as efficient summaries of the full molecular machinery.

Mean-field approximation. A typical repeat is a sequence of perfect and mutated
units of its sequence motif, as illustrated by the following example:

TTA ATA TTA TTA TTA TAA TTT
1 0 1

1 0 2

These units generate a sequence of perfect and imperfect doublets (marked by the number
within the boxes denoting the Hamming distance to the perfect doublet). The total
slippage rate of a repeat depends only on the number n0 of perfect doublets. Most
base substitutions change perfect into mutated units and, hence, perfect into imperfect
doublets; however, the number of perfect doublets lost depends also on the positioning
of the mutated units within the repeat. To capture the effect of base substitutions in an
approximate way, we classify all doublets by their Hamming distance d = 0, 1, 2, . . . from
a perfect doublet, i.e., by the total number of base substitutions away from the sequence
motif in both its units (marked within the boxes). This is reminiscent of the notion of
error classes for a molecular quasispecies [42], which are defined with the perfect doublet
of the repeat motif as Master sequence. However, here the occupation numbers nd count
fixed sequence states of doublets within one repeat, while a quasispecies is a polymorphic
population and nd are the population numbers of coexisting sequence states (alleles)
at the same genomic locus. In the following, we keep track of the doublet content
(n0, n1, . . . ) of a repeat, but the position of mutated units is taken into account only in
an average way, decoupling their effects on individual doublets. This type of treatment is
known in statistical physics as mean-field approximation. Within the framework of the
model, single doublets are considered as uncorrelated entities evolving independently. In
this approximation we neglect the effect of mutations occurring in single units shared by
two overlapping doublets, e. g. instead of simultaneously mutating two perfect doublets
within the overlapping unit at rate µ` in our model the overlapping unit is subject to two
independent mutations at rate µ` each reducing the number of perfect doublets by one.
However, a specific correlation has to be incorporated since simulation of the system has
shown that it crucially affects the evolutionary dynamics: If a unit is shared by a perfect
doublet and a doublet carrying a single base substitution, a base substitution within
the shared unit changes the occupation number of error class zero while the occupation
number of the first error class remains unchanged: the loss of a doublet in the first error
class is compensated by the simultaneous creation of a novel doublet. With respect to the
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dynamics in the (n0, n1)-plane this process can be summarized as n0 → n0−1∧n1 → n1

and gives rise to an additional term in the Masterequation (3.6) and two constants ρ
and ρ′ reflecting the averaged probabilities to find configurations affected by this process.
The parameter ρ determines the fraction of processes n0 → n0 − 1 with n1 → n1. With
the definitions

ρ ≡ P (0|00|1)
P (00)

= P (1|00|0)
P (00)

: probability for a unit of a perfect doublet to be flanked by a
unit carrying a single base substitution
p1: probability for the process n0 → n0 − 1 ∧ n1 → n1 + 1
p2: probability for the process n0 → n0 − 1 ∧ n1 → n1

we obtain the possible configurations with their respective probabilities:

i0 i1 i2 i3 p1 p2

0/>1 0 0 0/>1 (1− ρ)22µ` 0
1 0 0 1 0 ρ22µ`
1 0 0 0 ρ(1− ρ)2µ` ρ(1− ρ)2µ`∑

2(1− ρ)µ` 2ρµ`

Similarly, with the definitions

ρ′ ≡ P (0|01)
P (01)

= P (10|0)
P (10)

: probability for the perfect unit of a doublet with a single base
substitution to be flanked by another perfect unit
p′1: probability for the process n1 → n1 − 1

we can distinguish all possible configuration and obtain the likelihood that a mutation of
a doublet drawn from the first error class results in a decrease of the occupation number
of this error class:

i0 i1 i2 p′1
0 0 1 ρ′µ(`− 1)

> 0 0 1 (1− ρ′)(2`− 1)µ∑
((2`− 1)− ρ′`)µ

The actual values of ρ and ρ′ are determined directly from the repeat data. However, in
the limit β → 0 it is easy to verify that ρ = β/2 + O(β2) and ρ′ = 1−O(β) which is
supported by the numerical parameter values.

Master equation. We thus arrive at a closed evolution equation for the probabilities
W (n0, n1, . . . ) per unit sequence length to find a repeat with doublet composition
(n0, n1, . . . ) for a given motif length `. Restricting the analysis to perfect and single-
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mutation doublets, this takes the form

∂tW (n0, n1, t) =

J0(n0 − 1, n1, t)− J0(n0, n1, t)

+J01(n0 + 1, n1 − 1, t)− J01(n0, n1, t)

+J1(n0, n1 + 1, t)− J1(n0, n1, t), (3.6)

where

J0(n0, n1, t) ≡ [γ+n0 + γiδn0,0]W (n0, n1, t)

−γ−(n0 + 1)W (n0 + 1, n1, t)

−2ρµ`(n0 + 1)W (n0 + 1, n1, t), (3.7)

J01(n0, n1, t) ≡ 2(1− ρ)µ`n0W (n0, n1, t), (3.8)

J1(n0, n1, t) ≡ ((2`− 1)− ρ′`)µn1W (n0, n1, t) (3.9)

are the probability currents due to repeat initiation and slippage, due to the first mutation
of a perfect (d = 0) doublet, and to the second mutation of a (d = 1)-doublet, respec-
tively, and we have suppressed the dependence of the rate constants on ` in the notation.
Furthermore, we have neglected “backward” mutations, which reduce the Hamming
distance d to a perfect doublet. The approximations underlying eq. (3.6) are justified for
the intermediate motif lengths ` = 3, 4, 5 studied in this work, for which we have verified
the validity of the mean-field approximation by comparison with direct simulations of
sequences evolving by the molecular processes described above (see below). For smaller
motif lengths, backward mutations play a role as well as simultaneous slippage of more
than one unit, which couples the evolution for a given ` with its integer multiples. For
larger values of `, slippage events of (d = 1)-repeats start to become significant.
The majority of novel repeats originates from background at n1 = 0; resurrection of
inactive repeats also contributes only weakly to the ensemble of nascent repeats. However,
a sizable fraction of novel repeats emerges from background with n1 > 0: assuming a
random sequence composition, the probability that a nascent doublet of motif length l

adjoins a single doublet of the first error class reads 2 l!
k!(l−k)!

(
1
4

)l−k 1
4

k
. For instance, the

likelihood of emerging at n1 = 1 for ` = 3, 4, 5 equals 0.28, 0.09, 0.03.

For the genome analysis below, we write the doublet composition distribution W (n0, n1, t)
in the form

W (n0, n1, t) = λ(t) Pa(n0, n1, t)

+[1− λ(t)] P0(n1, t) δn0,0, (3.10)

where λ(t) ≡
∑∞

n0=1

∑∞
n1=0 W (n0, n1, t) measures the density of active repeats per

unit sequence length, Pa(n0, n1, t) ≡ λ−1(t)W (n0, n1, t)(1 − δn0,0) is the normalized
composition distribution of active repeats, and P0(n1, t) is the “background” distri-
bution of silent repeats and non-repetitive sequence. From a computational point of
view, this is a Hidden Markov model containing two ensembles with prior probabilities
λ and 1 − λ, respectively. Of course, the decomposition (3.10) is not unique, and
depending on the sensitivity of genomic repeat finding, one may choose to include silent
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repeats or repeats containing units with multiple mutations (d > 1) in the repeat coverage.

Stationary state. Eq. (3.6) determines a unique time-independent doublet composition
distribution W (n0, n1), which is readily obtained by numerical iteration. It depends
only on the scaled slippage rates γi/µ, γ+/µ and γ−/µ. Furthermore, the normalized
distributions Pa and P0 in the decomposition (3.10) are independent of γi. Fig. 3.1(a)
shows as an example the doublet composition distribution Pa(n0, n1) (with n0 > 0) for
active trinucleotide (` = 3) repeats. The stationary marginal distribution of perfect
doublets, pa(n0) ≡

∑∞
n1=0 Pa(n0, n1), can be computed analytically as

pa(n0) =
C

n0

e−αn0 with α = − ln

(
γ+

γ− + 2`µ

)
(3.11)

and the normalization C =
∑∞

n0=1 n−1
0 e−αn0 , see fig. 3.1(b). A further characteristic

of the full distribution Pa(n0, n1), the expected ratio of single-mutation doublets and
perfect doublets, is numerically observed to be approximately independent of n0, which
defines an independent function of the scaled slippage rates,

β(γ+/µ, γ−/µ) =
〈n1〉(n0)

n0

≡ 1

n0

∞∑
n1=0

n1Pa(n0, n1), (3.12)

see also fig. 3.1(b). Eqs. (3.11) and (3.12) determine the observed exponential decay of
the marginal distribution of the total doublet number n ≡ n0 + n1,

p̃a(n) ∼ 1

n
e−α̃n with α̃ =

α

1 + β
, (3.13)

which is also shown in fig. 3.1(b). Using (3.11), the stationary density λ of active repeats
is then given by flux balance between active repeats and background sequence,

λ =
1

Ce−α

γi

γ− + 2`µ
+ O(γ2

i /γ
2
−). (3.14)

Time-dependent distributions. It is straightforward to analyze the statistics of repeat
life histories by numerical iteration of the time-dependent solution W (n0, n1, t) of eq. (3.6)
with γi = 0 and with the initial condition W (n0, n1, 0) = δn0,1δn1,0 describing an initiation
event at t = 0. This solution can be decomposed in the form (3.10) with a time-dependent
density λ+(t) and composition distribution P (n0, n1, t) of active repeats, which determines
their age-dependent expectation values

〈nd〉(t) ≡
∞∑

n0=1

∞∑
n1=0

ndP (n0, n1, t) (d = 0, 1) (3.15)

shown in fig. 2(b) and the cumulative distribution of their lifetimes τ , Prob(τ < t) = λ+(t)
(see fig. 2(c)).
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Figure 3.1: Repeat composition at stationarity.
(a) Doublet composition distribution Pa(n0, n1) for active trinucleotide repeats (` =
3). Theoretical distribution obtained from the mutation-slippage model with scaled rates
γ+/µ = 4.6, γ−/µ = 2.7, genomic distribution for intergenic regions of Drosophila
melanogaster (contour levels). (b) Marginal doublet number distributions pa(n0) for
perfect doublets and p̃a(n=n0 + n1) for all doublets; conditional expectation value
〈n1〉(n0)/n0 ≈ β. Theoretical curves given by eqs. (3.11), (3.13), and (3.12); genomic
data for the same sequences as in (a) (diamonds, squares and circles).

3.3.2 Numerical simulation of simple tandem repeats

To obtain numerical results for the configuration distribution of microsatellites as a
function of the occupation number of the zeroth and first error class, we performed two
independent computations. Assuming constant emergence of new repeat seeds, thus
enforcing stationarity of the repeat distribution, the stationary state of the general master
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Figure 3.2: Age-dependent repeat characteristics.
(a) Probability flux J(n0, n1) at stationarity, quantifying composition changes during
repeat life histories and expressing the breakdown of time reversal symmetry (arrows not
to scale for better readability). The region of active repeats (n0 > 0) is shown unshaded,
the background region (n0 = 0) shaded, and the repeat initiation current J0(0, 0) is
highlighted (thick arrow). (b) Doublet content. Model predictions of the expectation
values 〈n0〉(t) (dashed line) and 〈n1〉(t) (solid line) with standard deviations (bars) as a
function of the repeat age t for model parameters as in fig. 1. (c) Activity lifetimes τ .
Predicted cumulative age distribution Prob(τ < t).

equation (3.6) was obtained by simulating all processes contributing to (3.6) in the
(n0, n1)-plane in occupation number representation. Transitions were computed, using
a binomial distribution with appropriate rates. The (n0, n1)-plane was limited in size,
reflecting a length limitation of repeat elements. Stationarity was ensured by feeding the
probability flux leaving the size-limited plane into new seeds emerging at (n0 = 0, n1).
The upper length boundary was chosen large enough, such that it was practically never
touched during the simulation.
To infer time dependent repeat properties we further simulated a single repeat element,
starting with a single doublet seed and allowing slippage in either direction and mutation
to occur at the respective rates. Whenever the last perfect doublet became extinct
by mutation or backward slippage, a new seed was created. At each point in time, n0
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and n1 were recorded, yielding a time series for (n0, n1) and a corresponding probability
distribution P (n0, n1). At all tested parameter values both approaches perfectly agree.

3.3.3 Inference of slippage rates from single species sequence
data

We identified tandem repeat content using the Tandem Repeats Finder [14] for all sets
of functionally annotated sequence and intergenic background sequence independently.
From these repeat data, the exponent α and its error was determined by a least square
fit of the logarithm of the repeat distribution 3.11 to the data for l = 3, 4, 5 and all
sequence categories independently (see fig. 3.3). For each category and motif length, β
was measured from the repeat data. Variation of beta at different values of n0 indicated
a statistical error of the order of 10%. Knowing α and β allows for the inference of γ−/µ
and γ+/µ for each sequence category and motif length independently. The error of the
slippage rates was inferred by varying α and β within their respective error intervals and
repeating the data fit. The maximal observed deviation of the rates was then chosen as
the error interval. The results are listed in table 3.1.

l = 3 3’UTR 5’UTR CDS upstream background intronic

α 0.54±0.06 0.51±0.07 0.53±0.09 0.61±0.06 0.62±0.07 0.59±0.08
β 0.50±0.05 0.49±0.05 0.50±0.05 0.44±0.04 0.44±0.04 0.37±0.04
γ+/µ 5.2±1.2 6.0±1.5 5.1±1.5 5.2±0.9 4.6±0.9 6.4±1.2
γ−/µ 3.0±1.5 3.9±1.8 3.0±1.8 3.0±1.2 2.7±1.2 5.7±1.5

l = 4 3’UTR 5’UTR CDS upstream background intronic

α 0.67±0.04 0.64±0.05 1.00±0.10 0.64±0.06 0.75±0.07 0.64±0.03
β 0.33±0.03 0.30±0.03 0.17±0.02 0.35±0.04 0.34±0.03 0.31±0.03
γ+/µ 6.8±0.8 8.8±1.2 4.8±1.2 6.8±1.2 4.8±0.8 7.6±0.8
γ−/µ 6.0±1.2 9.2±2.0 6.4±1.6 4.8±1.2 2.4±1.2 8.0±1.6

l = 5 3’UTR 5’UTR CDS upstream background intronic

α 0.80±0.05 0.86±0.05 1.59±0.09 0.78±0.06 0.88±0.04 0.79±0.06
β 0.23±0.02 0.25±0.03 0.09±0.01 0.26±0.03 0.23±0.02 0.26±0.03
γ+/µ 8.5±1.5 6.0±1.0 1.0±0.5 8.0±1.5 6.5±1.0 8.0±1.5
γ−/µ 10.0±2.5 5.0±2.0 0.5±0.5 8.5±2.0 6.5±1.0 8.5±2.0

Table 3.1: Inferred slippage rates for all sequence categories and motif length
l = 3, 4, 5

Examining fig. 3.3 shows that for l = 4 and l = 5 the observed length distribution is in
good agreement with (3.11), except for the tail of the distribution at very small numbers
of repeat elements.
For l = 3 one observes a significant underrepresentation at n0 = 1, which originates
from the alignment score cutoff of the TRF, selected to be 15. If a matched base pair is
assigned a score of 2, a single perfect repeat of a motif of length l = 3 yields a score of
12 and does not pass the score filter. At higher values of n0, a zik-zak pattern of the
distribution with maxima at even and minima at odd values of n0 can be identified. A
possible reason for this behavior is simultaneous slippage of two motifs in cases where
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Figure 3.3: Stationary distribution of perfect duplications in microsatellites
Number of tandem repeat elements as a function of the number of perfectly duplicated
motifs n0 contained in the tandem repeat element, for all sequence categories. α was
determined by fitting distribution (3.11) to the data (also shown in the plot).

an uninterrupted run of at least four adjacent l = 3-motifs resides in the sequence, a
phenomenon that was expected to complicate repeat dynamics for short motifs (see
above). Since longer uninterrupted motif iterations are expected to be more abundant in
longer repeats, this phenomenon may also account for the more substantial tail at l = 3.
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l = 3 3’UTR 5’UTR CDS upstream background intronic

γ+/µ 3.3 2.1 1.5 2.4 4.2 3.9
γ−/µ 2.7 3.0 1.5 1.8 3.3 2.7

l = 4 3’UTR 5’UTR CDS upstream background intronic

γ+/µ 6.4 3.6 0.4 2.4 6.4 6.0
γ−/µ 3.2 2.4 0.8 3.2 4.0 3.2

l = 5 3’UTR 5’UTR CDS upstream background intronic

γ+/µ 6.0 3.0 1.0 5.0 7.0 6.0
γ−/µ 4.5 2.0 1.0 2.0 4.0 4.0

Table 3.2: Rate estimates from multiple alignments.
Estimated slippage rates inferred from parameter optimized alignments of D. melanogaster,
D. simulans and D. yakuba. The estimates concordant to the rates inferred from the
repeat data within their error intervals are printed in boldface.

Note that the quantities α and β only weakly depend on the TRF parameter settings.
Choosing significantly less restrictive parameters (match score 2, mismatch cost 3, indel
cost 3, match probability 80, mismatch probability 10, minimal alignment score 10,
maximal repeat length 500) only marginally affects the rate measurements.

3.3.4 Comparison of repeat-inferred and alignment-inferred slip-
page rates

To validate our model of repeat dynamics, we measured insertion, deletion and base
substitution rates in three-way alignments of D. melanogaster, D. simulans and D. yakuba.
The score matrix we used was inferred by parameter optimization for each set of functional
sequence separately. From the alignments, we extracted the regions identified as repeats
and counted base substitutions, insertions and deletions based on maximum parsimony.
Phylogenetic criteria to distinguish insertions from deletions were applied following Sinha
and Siggia (2005) [128]. To safeguard against rate biases of very long tandem repeat
elements as well as very short ones, which probably do not undergo slippage at all [108],
we only recorded rates for repeat elements longer than four times and shorter than twenty
times the motif length. Using the entire sets of functional sequence, we measured rates
for repeat elements of different motif length separately (see table 3.2).

Slippage rates measured from the alignment that match the repeat-inferred rates within
their error intervals are printed in boldface. To estimate the error of the rate mea-
surements, we performed the whole alignment procedure again, this time using the
BLASTZ default parameters, which are found to be significantly more restrictive than the
globally optimized parameters. Using the BLASTZ scoring matrix, the number of gaps
decreases by approximately 50%. We take this number as an estimate for the relative
error of the measured rates, although the true error induced by a particular choice of
the scoring matrix remains very uncertain. However, since globally optimized parameters
were used and repeat elements are more permissive with regard to indels compared to
non-repetitive-sequence ([128], our own unpublished observations), the inferred rates are
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very likely to be too low. However, single repeat elements in D. melanogaster are too
short to confidently optimize parameters specifically for repeats. Optimized parameters
are found to vary strongly among different instances of tandem repeat elements.
Another reason for the observation of fewer gaps than expected is the fact that gaps in
particular configurations will never be observed by any alignment algorithm. For instance,
a configuration of a neighboring motif-deletion and -insertion intermitted by any number
of perfect (or even weakly mutated) motifs will always disappear for reasonable alignment
parameters. In general, insertions and deletions tend to get lost at the expense of point
mutations, a phenomenon that becomes particularly pronounced at high ratios of gap
rate over point mutation rate. Importantly, this spurious result is amplified in repeat
elements, since all gaps tend to be of the same size. These limitations of common align-
ment algorithms based on standard gap models demonstrate the need of a sophisticated
algorithm for aligning repeat enriched sequence.
In fig. 3.4 concordance of the two independent measurements can be read from scatter
plots with the repeat-inferred rates on the x-axis and the alignment-inferred rates on
the y-axis for all functional annotations. In order to better visualize the expected linear
relationship, we plotted the slippage rate divided by the single nucleotide mutation rate. If
the two measurements were in perfect agreement, all points would reside on the diagonal.
Within the assigned error intervals, rate estimates from the alignments coincide with
repeat-inferred rates at all motif-lengths only for intergenic background sequence. For
most data points of 3’UTR and intronic sequence, the repeat model is also found to
explain the alignment based rate estimates. For coding sequence, the predictions of
both independent approaches most poorly agree. Also for the other classes of functional
sequence (upstream sequence, 5’UTRs) the two measurements are in bad agreement.
This could indicate functional constraints of a more complicated nature, which cannot be
captured by models as simple as the existing ones and the one presented here. A possible
explanation of the lower correspondence for intronic sequence compared to background
sequence is alternative splicing, i. e. the overlap of introns with exons of different
transcript variants and stronger enrichment with functional sequence elements. We
tried to more precisely assess the nature of the observed deviations across the sequence
categories.
First, we computed Pearson’s correlation coefficient for the set of all forward- and all
backward-slippage rates divided by the single point mutation rate. For the forward-
(backward-) slippage rates we obtained a correlation coefficient of 0.46 (0.49), indicating
a medium positive correlation in either case. The correlation coefficient for the whole
set of all forward- and backward-slippage rates was found to be 0.44. The correlation
coefficients r for the sets of all slippage rates in each category are shown in the table
below. Note, that a medium positive correlation is found for each category except for
coding sequence.
We next tried to classify the systematic deviation by computing the best fit of a straight
line through the origin (also shown in fig. 3.4) for each set separately. The table lists the
slope a of the best fit as well as the shortest correlation coefficient r:
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set a r

background 0.99 0.57
3’UTR 0.63 0.63
intronic 0.59 0.46
upstream 0.43 0.50
5’UTR 0.39 0.26
CDS 0.24 0.03

These data show a hierarchy with the minimum deviation for intergenic background,
followed by 3’UTR, intronic, upstream, 5’UTR, and finally coding sequence. This order
correlates with a putative enrichment with functional elements. Intergenic background
presumably contains the lowest amount of functional sequence. Introns do sometimes
overlap with exonic sequence of alternative splicing variants and oftentimes contain
regulatory elements. To find 5’UTR and upstream sequence at the bottom of the list,
with only coding sequence showing larger deviations, corresponds to the expectation that
these regulatory regions are under strong functional constraint. Deviations for 3’UTR
sequence are of the same order as for intronic sequence. It is further remarkable that the
deviations for 3’UTR and intronic sequence as well as for 5’UTR and upstream sequence,
respectively, have a similar magnitude, suggesting related evolutionary constraints for
microsatellites in the these two pairs of sequence classes. However, further conclusions
require a deeper analysis.
In summary, these observations suggest that our simple repeat model can account for
the repeat distribution only if the sequence under consideration is not strongly enriched
with functional elements, i. e. the overall selective constraint is low. Following our
observations, one could thus rank the sequence by the degree of neutrality with respect
to tandem repeat evolution. In decreasing order, this yields background, 3’UTR, intronic,
upstream, 5’UTR, and coding sequence.

3.3.5 Discussion

We introduced a probabilistic model to compute the stationary distribution of microsatel-
lites as a result of forward- and backward-slippage with independent, motif-length depen-
dent rates as well as single point mutations inhibiting further slippage of the mutated
repeat unit. Although modeling tandem repeat evolutionary dynamics as a single-stepwise
process with repeat-motif length dependent slippage rate is not new (see Introduction),
we exceed previous studies in several regards.
First, we do not restrict the definition of a tandem repeat element only to perfect doublets
of the repeat motif, but also include mutated units in order to increase the evolutionary
information encoded at each microsatellite locus. We therefore increase the amount
of information drawn from the sequence data, enhancing the statistical power to infer
slippage rates (see fig. 3.5). Moreover, as opposed to previous microsatellite evolutionary
models, we do not neglect spatial correlations induced by point mutations that split larger
repeat elements into smaller ones. These correlations can be interpreted as an effective
attractive interaction that couples neighboring perfect tandem repeats. Since we only
rely on the joint distribution of perfectly repeated units and motif duplications mutated
only at a single position, we suppress the inclusion of non-repeat originated background
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Figure 3.4: Comparison of rates, predicted by the repeat model and rate mea-
surements from the alignments
Scatter plots of the rates inferred from the repeat data and inferred from the multiple
alignments. The dashed line indicates the diagonal. The numbers next to the data points
denote the length of the repeat motif.

sequence, i. e. false positive repeat sequence. For this reason and because of our general
concerns regarding the validity of the single-stepwise model for mono- and dinucleotide
repeats, we only measure slippage rates for motif length l ≥ 3.
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Figure 3.5: Gain of statistical power due to the inclusion of mutated repeat
units
The figure demonstrates the increased amount of data, if the distribution P l(n0, n1)
(here, for convenience, in a one-dimensional representation P l(n0 + n1)) is analyzed
instead of the length distribution only of perfect repeat elements, P l

perf (n0). The latter
has not only a reduced statistical power due to a decreased amount of data, but also
neglects spatial correlations of perfect tandem repeats.

It is not really surprising to observe an exponential distribution of microstaellite length.
However, we derive two observables that exhibit a concerted unique dependence on the
effective slippage rates, γ+

R(l)/µ and γ−R(l)/µ. In order to validate our predictions, we
compare to rate measurements from large sets of multiple sequence alignments. We use
the model to predict slippage rates for genomic sequence of various functional annotations
in D. melanogaster and by comparison to multiple alignments of repeat sequence across
three closely related Drosophilids we demonstrate the validity of our model for intergenic
background sequence.
We find that our model appears to be insufficient to explain the repeat distribution for
functional sequence. In this case, varying selective constraint on certain repeat classes
at different loci as well as the possible dependence of slippage rates on the motif’s
sequence composition complicates the description of all microsatellites with fixed motif
length by a simple general model such as the one presented in this work. The degree of
functionality of microsatellites is still highly debated. To this discussion we contribute our
insight that the validity of the single-stepwise model negatively correlates with the degree
of functionality. Our observations supports the assumption of selective constraint on
microsatellites in upstream sequence, UTRs and coding sequence. For intronic sequence,
correspondence of repeat- and alignment-inferred rates is also found to be rather low,
a finding that can be probably accounted for by alternative splicing. The nature of
the systematic deviation of functionally enriched sequence is observed to be a general
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suppression of slippage events compared to the rates predicted by the model. The order
of the functional sequence categories ranked by the magnitude of the systematic deviation
reflects the relative putative fraction of repeat sequence under functional constraint.
However, we point out that current alignment algorithms rely on a simplistic modeling
scheme of gaps that does not reflect the true processes leading to gaps within align-
ments of tandem repeats. Since microsatellites contribute an abundant class of sequence
to eukaryotic genomes, a more reliable alignment tool for these sequences is most desirable.

In summary, we found that backward- and forward-slippage are rather balanced with the
additional action of base substitutions causing a deterministic decay of microsatellites.
The repeat analysis indicates that the slippage probability per base pair is only slightly
bigger than the probability of a point mutation in tandem repeat elements, which is
different from the slippage rates in mammals observed to be about one magnitude higher
[74, 101, 35, 33].

Because of the scarcity of experimental data on microsatellite slippage rates, we can
only present a very limited comparison. Schug et al. (1998) [123] directly measured the
slippage rate of dinucleotide repeats in D. melanogaster and found a forward slippage
rate of 9.3 × 10−6 per locus which corresponds to 7.8 × 10−7 per repeat unit for an
average locus length of 12 repeat units (as it was the case for their data set). Slippage
rates for tri- and tetranucleotide repeats were then theoretically inferred by comparing
the variance of repeat numbers within the population at different motif length. The
ratio of dinucleotide and tri-(tetra-)nucleotide repeats was determined to be 6.4 (8.4),
which corresponds to absolute rates of 1.2× 10−7(9.3× 10−8) for tri- (tetra-) nucleotide
repeats. Since Schug et al. [123] only measured three events of forward slippage, we can
only compare to our predicted forward slippage rate. With an assumed point mutation
rate of µ = 10−8 we predict the forward slippage rate to be ∼ 5 × 10−8 for tri- and
tetranucleotide repeats. The rates predicted in this study are only about half of the rates
measured experimentally. However, in accordance with the experimental result, slippage
rates for tri- and tetra-nucleotides are of the same order of magnitude. Our observations
suggest that this is also the case for penthanucleotide repeats. Since the rates in Schug
et al. (1998) [123] are inferred based on a very small number of events, we consider the
comparison of these rates to our results insufficient to test our model.

3.4 Conclusions

We developed an advanced probabilistic model for the computation of the stationary
microsatellite distribution and succeeded to derive slippage rates for microsatellites in
intergenic background sequence of D. melanogaster. We assessed the validity of our
model by comparing to insertion and deletion rates measured from multiple alignments of
D. melanogaster, D. simulans and D. erecta and observed that the single-stepwise model
is insufficient to explain the microsatellite distribution of functionally enriched sequence.
Since these results strengthen the hypothesis that certain classes of simple tandem re-
peats, or, more precisely, tandem repeats residing in particular sequence classes are under
selective constraint, a deeper understanding of their evolution is essential. To this end,
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current repeat evolutionary models need to be integrated into alignment algorithms, and
more sophisticated models need to be developed for specific classes of tandem repeats,
putatively under functional constraint. Although the final validation of proposed evolution-
ary models requires experiments, in silico analyses such as the comparison to independent
alignment data discussed in this work provide a valuable contribution to model assessment.



Chapter 4

Evolutionary origins of promoter
complexity – the influence of finite
population size

4.1 Introduction

Regulatory gene interactions are believed to be vital for the functional diversity in
eukaryotes. They govern the differentiation between cells and, to some extent, also
between species. Accordingly, the regulatory machinery in eukaryotes is much more
sophisticated than in prokaryotes. A typical eukaryotic promoter is longer and contains
more transcription factor binding sites. The complicated spatial arrangement of these
sites allows for binding cooperativity between factors and for the recruitment of cofactors
[107].
The evolutionary modes of eukaryotic promoters remain largely to be uncovered. In
particular, it is an open question whether growth in promoter complexity is a response
to selection pressures towards functional differentiation. Here, we analyze the evolution
of promoter architecture from a population genetic point of view. We argue that the
growth in complexity from prokaryotes to eukaryotes is a primary process driven by broad
population characteristics, notably the decrease in effective population size. This opens
the stage for functional diversification as a secondary process.
In this picture, changes in promoter architecture appear in the context of broader growth
in overall genomic complexity. Recently, Lynch and Conery have argued on the basis of a
broad population genetic survey that the increase in genome size from prokaryotes to
eukaryotes is caused by the accumulation of slightly deleterious repeat elements, which is
possible due to the smaller eukaryotic population sizes [90].
It is such repeat insertion processes by which eukaryotes may have acquired complex
regulatory modules with groups of adjacent binding sites for the same transcription factor
[128].
Here we analyze how background changes between lower and higher taxa, specifically
the decrease in effective population sizes and the growth of intergenic regions, affect the
architecture and function of transcriptional regulation. We show that generic promoters
with a single binding site are stable in prokaryotes but become unstable to decay by
genetic drift already in unicellular eukaryotes. This transition is due to the decrease in

81
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effective purifying selection pressure as a result of the smaller population size in eukaryotes.
On the other hand, a more complex promoter architecture with multiple loci evolving as
(potential) binding sites for the same factor is seen to stabilize the functionality. Since
multiple active sites are then likely to be present simultaneously, subsequent increase in
gene regulatory complexity is assumed to originate as a secondary consequence, e. g. via
enhancer subfunctionalization [45].
Our results are obtained from a generic evolutionary theory for binding site sequences
containing mutations, genetic drift, and selection. We present a unified theoretical
approach applicable to viruses, prokaryotes, and eukaryotes, i.e., to a range of effective
population sizes and of mutation rates varying over several orders of magnitude. The
product of these two parameters, µN , governs the balance between mutations and genetic
drift. Our general theory contains the known Kimura-Ohta dynamics [65, 96, 97] and the
Eigen-Schuster quasispecies model [41, 42] as its limit cases for µN taking very small
and very large values, respectively.
In a previous study by Rouzine et al. (2005) [117], a mathematical model, valid for all
values of µN , but specific to single-nucleotide loci was already introduced and applied
to viral systems. Although we started out with a different mathematical framework, we
arrive at identical results for the specific case of single-nucleotide loci. However, the
extensions of the model presented here allow for a first application of this population
genetic theory to the evolution of transcription factor binding sites and even to regulatory
modules, containing multiple sites.
To arrive at our conclusions on the compensatory benefit of multiple binding sites in
regulatory modules of higher eukaryotes, we argue along similar lines as Force et al.
(2005) [45]. In this study, it was also proposed that the decaying effective population
size in higher organisms leads to fixation of slightly deleterious sequence and opens the
stage for emergence of complex gene regulatory modules by enhancer duplication with
subsequent subfunctionalization.
However, our own analysis exceeds these conclusions, since we do not restrict our model
to neutral duplication events. More precisely, we demonstrate that a single transcription
factor binding site under constant selection pressure could become unstable at a decay of
effective population size as it can be observed, for instance, at the evolutionary transition
from prokaryotes to eukaryotes. We propose the emergence of additional sites in the same
regulatory region as a necessary mechanism to compensate for the decreased stability of
a single site in order to maintain the regulatory relationship between the gene and the
targeting transcription factor.

4.2 Population genetic model and observables

4.2.1 Definition of the model and derivation of the genotype
distribution

In this methodological section we introduce the general population genetics framework
and define observables. A master equation that describes the evolution of genotypes
driven by mutations and selection serves as a starting point of our analysis. The genotypes
under consideration could be whole genomes of a particular species as well as single genes
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or even smaller genomic loci, e. g. transcription factor binding sites in gene regulatory
models.
Each genotype can be represented by a sequence si = (s1

i , . . . , s
L
i ) of length L with

letters sj
i drawn from the 4-letter-alphabet {A, C, T,G}. The genotypic space can

thus be thought of as a 4L-dimensional hypercubus, with the distance of two points,
i. e. two sequences si and sj, measured by the number of differing entries sk

i 6= sk
j

for k = 0, .., L. This metric is termed Hamming distance d(si, sj). Each genotype si

is assigned a replication rate F (i) to reflect the selective constraint or fitness of an
individual carrying this genotype by its reproductive success. During the process of
genotype replication mutations are assumed to occur at a constant rate µ per nucleotide.
We only allow for single point mutations per sequence per generation, which is justified for
µL � 1. This generally holds true for all organisms and sequences under consideration.
For prokaryotes and eukaryotes, which are subject to our analysis, we assume constant
effective population sizes N determined by a limited availability of resources, such
as nutrients or host organisms. Technically, the population size is kept constant by
requiring the extinction of one individual whenever another one replicates. The probability
distribution P(n) of population states n is then the solution of the genotypic master
equation

∂tP(n) =
∑
n′

A(n,n′)P(n′) (4.1)

with

A(n,n′) =
∑4L

i,j=0(1− δij)
∏4L

k=0
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knk

(
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ini
δn′

jnj
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+n′in
′
jF (j)/N(δn′
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ini
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jnj
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)

.

(4.2)
Since we aim at deducing the population states of transcription factor binding sites in
the promoter region of a gene, we assign appropriate replication rates F (i) in accordance
with known theory [16]. The functionality of a given locus is determined by its ability to
be bound by a particular transcription factor. For each DNA binding protein a particular
DNA motif can be identified that minimizes the thermodynamic protein-DNA binding
energy. Although binding becomes weaker if single nucleotide substitutions occur in the
optimal motif, a certain number of point mutations is tolerated without loosing the ability
of the transcription factor to specifically recognize the motif. Sampling all known binding
sites of a particular transcription factor in individuals belonging to the same population,
yields a consensus motif of length L containing the most likely nucleotide at each position.
Functionality is assumed to get lost if the number of mutations, i. e. the Hamming
distance to the consensus motif, exceeds a certain threshold r. Hence, we projected
the whole 4L-dimensional genotype space onto a one-dimensional subspace centered
around the consensus motif and parametrized by the binding energy or, equivalently,
by the Hamming distance (single point mutations are assumed to contribute additively
to a change in binding energy). For a coarse-grained examination of the underlying
evolutionary dynamics we project the one-dimensional subspace once more onto a two-
state system: All genotypes of a Hamming distance smaller or equal than r to the
consensus motif are considered equally functional and termed master genotypes. Genotyes
at larger Hamming distances are considered non-functional (non-master genotypes). This
classification corresponds to an approximation of the established sigmoid dependence of
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the binding probability on the Hamming distance by a simple step function. The increased
fitness of master genotypes is expressed by their enhanced fitness f0 = 1 compared
to non-master genotypes, replicating at rate f1 = 1 − σ (0 < σ < 1). Introduction
of effective mutation rates (αµ and βµ, respectively) allows for the computation of a
marginal master equation for the probability distribution P (n) of the population n of
functional-sites:

∂tP (n) =

µL [α((n + 1)P (n + 1)− nP (n))

+ β 1
3((N − (n− 1))P (n− 1)− (N − n)P (n))

]
+(f1/N((n + 1)(N − (n + 1))P (n + 1)− n(N − n)P (n))

+f0/N((n− 1)(N − (n− 1))P (n− 1)− n(N − n)P (n))) .

(4.3)

If the maximum Hamming distance to the consensus motif with maintained functionality
is r, µLαn equals the number of individuals with sites at Hamming distance r multiplied
by the probability to increase the Hamming distance by a further mutation. Accordingly,
µL(1/3)β(N − n) is the number of individuals with sites at Hamming distance r + 1
multiplied by the probability to decrease the Hamming distance by a further mutation.
In the first case, mutations lead to a loss of functionality, while in the second case,
functionality is restored by backward mutations. The continuous Fokker-Planck-equation
(see Appendix C) for x = n/N is obtained as an O(1/N)-expansion of (4.3):

∂tP̄ (x) =

−∂x

(
(σx(1− x)− µL(αx− β(1− x)))P̄ (x)

)
+ 1

2N
∂2

x

(
((2− σ)x(1− x) + µL(αx + β(1− x)))P̄ (x)

)
.

(4.4)

Assuming stationarity, the Fokker-Planck-equation (4.4) is analytically solvable. Neglect-
ing contributions of O(σ/N, µL/N) yields,

P̄ (x) = Cx−1+µLβ/3N(1− x)−1+µLαNeσNx, (4.5)

where C is a normalization constant that can be expressed in terms of Bessel- and
Gamma-functions.
The coefficients α and β determine the likelihood that a mutation of a master genotype
leads to a loss of function and that the mutation of a non-master genotype restores
functionality, respectively. Assuming approximately equally distributed genotypes in both
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the master- and the non-master genotype class, respectively, one obtains

α =
L− r

L

(
L
r

)
3r

∑r
k=0

(
L
k

)
3k

(4.6)

β =
r + 1

L

(
L

(r + 1)

)
3r+1

∑L
k=r+1

(
L
k

)
3k

. (4.7)

This approximation appears to be reasonable, because for small r we have α ∼ O(1)
and β � 1 and the exact value of β only becomes important if x ≈ 0. In this case, the
localizing effect of the master genotype population is also lost. Because mutations increase
the Hamming distance with strongly enhanced probability for L � 1, the population will
tend to loose its localization before new master genotype individuals emerge by backward
mutations. Hence, the indicated estimate gives a lower bound for β. An upper boundary
for β results from the assumption that all non-master genotype individuals are found at
Hamming distance r + 1, i. e. β = (r + 1)/L. The true value of β is likely to be closer
to the lower boundary. In the Kimura-Ohta regime at low values of µN the population
stays in a monomorphic state [65] and this approximation becomes even better. Once
the monomorphic population is found at loci other than the master genotypes, it freely
diffuses in genotype space.
To test the quality of our approximations we performed a Monte Carlo simulation of
the evolution of a finite population subject to mutations and selection. More precisely,
the population was parametrized by the Hamming distance to the consensus motif and
all individuals at a given Hamming distance were allowed to change their Hamming
distance by one with the probability µ per time step. Sub-populations at each Hamming
distance were subject to replication probabilites f0 or f1, respectively, per time step and
individual. To keep the population size constant, a death rate was introduced, which
equals the average replication rate of the whole population at every time step. For
three qualitatively different regimes, the comparison of the simulation and the analytical
prediction is shown in fig. 4.1. At high mutation rates (µLN � 1) the assumption
of a flat distribution of master- and non-master genotypes in their respective genotype
sub-space leads to an obvious deviation between the prediction and the actual behavior.
In fact, our results indicate an accumulation of master genotypes at Hamming distance
zero and a linear decay of the population density up to Hamming distance r (data not
shown). At decreasing mutation rate this accumulation is less pronounced and assuming
a flat distribution of master- and non-master genotypes in their respective genotype
sub-spaces yields a good agreement of the distribution (4.5) and the simulated behavior.
Importantly, for any choice of the parameters the theoretical prediction is conservative, i.
e. it slightly underestimates the true number of master genotypes by overestimating the
mutational flux from master genotypes to non-master genotypes.
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Figure 4.1: The probability distribution of master genotype-population.
The probability distribution P (x) of the master genotype population fraction x, analytically
computed (solid line) and simulated (dashed line). In the quasispecies regime (at
σ/(µL) = 2, 1/(µLN) = 0.01 (a)), in the intermediate regime (at σ/(µL) = 20,
1/(µLN) = 1 (b)) and in the Kimura-Ohta regime (at σ/(µL) = 10, 1/(µLN) = 0.4
(c)). L = 10 and r = 3 in all cases.

4.2.2 Definition of observables to characterize the population
state

In order to characterize evolutionary dynamics at arbitrary parameter values, we define
three biologically meaningful observables. Considering a transcription factor binding
site at a particular genomic locus, equation (4.5) gives the long-time distribution of the
fraction of master genotypes in a given population, or equivalently, the distribution over
an ensemble of independent populations (e.g., different species sufficiently distant from
each other in a phylogeny). The probability distribution (4.5) allows for the computation
of the average fraction of working sites:

x̄ =

∫ 1

0

xP̄ (x)dx. (4.8)

In the mean-field limit of infinite population size, this quantity indicates the constant
fraction of working sites in a stationary population. However, in finite populations,
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stochastic fluctuations become increasingly important. In this case, the mean value of
working sites is no longer sufficiently meaningful. Genetic drift becomes a prevalent
evolutionary driving force. Fluctuations of the master genotype population between
different points in time or, equivalently, between independent populations subject to the
same parameters at the same time are quantified by

ν2
1 =

∫ 1

0

(x− x̄)2P̄ (x)dx. (4.9)

These inter-population fluctuations reflect the influence of genetic drift on the population
state.
In order to compute the degree of polymorphism in a given population, we define a third
observable, termed intra-population fluctuations:

ν2
2 =

∫ 1

0

x(1− x)P̄ (x)dx. (4.10)

In a monomorphic population, consisting of either exclusively master genotypes or non-
master genotypes, ν2 becomes zero. The maximal degree of polymorphism coincides with
the maximum of ν2 when all genotypes are equally distributed among functional and
non-functional sites. As it will be shown in the following, these observables provide an
appropriate framework to characterize the stationary population state for any choice of
the parameters.

4.2.3 The known population genetics theories are recovered as
limiting cases of our model.

The probability distribution P̄ (x) is seen to be invariant under the transformation σ → cσ,
µ → cµ and N → N/c, and thus has the form P̄ (σN, µLN). The limiting cases of our
model are found to correspond to well known theories:

(i) Selection-mutation equilibrium for µLN � 1: P̄ (σN, µLN) → P̄ (σ/µL). Evolu-
tionary dynamics in this regime are governed by the interplay of mutation and selection.
Genetic drift becomes negligible. Hence, the fraction of working sites follows the deter-
ministic behavior, predicted by the mean-field limit of our model, which coincides with
the well known traditional quasispecies model [41, 42]. No fixation of single genotypes is
observed and the population is generically polymorphic with a stationary fraction x̄(σ/µL)
of functional sites (see fig. 4.1a). For sufficiently large sequence length and r � L
this model predicts a delocalization transition at αµL = σ, termed error threshold. For
higher µ selection does not localize the population in proximity to the consensus motif in
genotype space anymore.

(ii) Equilibrium between selection and genetic drift for µLN � 1: P̄ (σN, µLN) →
P̄ (σN). In this regime, much less than one mutation per generation is observed on
average. The population is generically monomorphic, i.e. most of the time either all
individuals are master genotypes or non-master genotypes, respectively. If a competing
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allele with macroscopic population emerges from a rare mutation, one allele is driven
to fixation after O(N) generations, while the other one becomes extinct. The fixation
rates are predicted by the Kimura-Ohta theory [65], here for time-independent purifying
selection. The long-term average x̄(σN) between functionality and non-functionality is
determined by the probabilities of the population states x = 0 and x = 1. The ratio of
these probabilities, computed with (4.5), roughly equals eσN−ln(3α/β) in accordance with
the Kimura-Ohta theory (see fig. 4.1b).

(iii) The intermediary regime (µLN ∼ 1) describes a crossover between quasispecies
behavior and Kimura-Ohta fixation dynamics. Population characteristics are more complex
in this case, depending on both variables, σ/µL and µLN (see fig. 4.1c).

The three observables x̄, ν1 and ν2 are convenient quantities to delineate these three
different parameter regimes. In fig. 4.2, x̄, ν1 and ν2 are plotted as a function of µLN
and σN for a sequence of length L = 10 and r = 3.
The long term average of the fraction of master genotypes in fig. 4.2a shows a clear

separation of a parameter regime with a macroscopic population and a delocalized regime
with vanishing population of master genotypes. For small values of µLN the population
state is governed by Kimura-Ohta dynamics. The transition between a monomorphic
population at the master genotype locus and a population freely diffusing in genotype
space is found to obey the Kimura-Ohta predictions: The probabilities of the population
states x = 0 and x = 1 become approximately equal at

σN ∼ ln(3α/β). (4.11)

In fig. 4.2a, this horizontal transition line at constant values of σN is recovered. Hence, it
can already be concluded that a binding site of length L = 10 at r = 3 requires a selection
coefficient of σN ∼ 10 in order to maintain in a population residing in this regime. For
µLN � 0 we approach the quasispecies regime and recover the delocalization transition
at the error-threshold σ = αµL. This equation describes a straight line with slope α
through the origin in fig. 4.2a, delimiting the localized regime.
For a given value of µLN , we define the error threshold as the value σ/(µL), where
the inter-population fluctuations of the master genotype reach their maximum. A
further increase of µ at a constant selection coefficient σ would then lead to decreasing
fluctuations because the average population of the master genotype approaches rapidly
x = 0. The population distribution (4.5) is peaked in proximity to the mean-field value,
predicted by the quasispecies model, but diverges at x = 0. This divergence (with
finite probability) is due to the extinction of the master genotype population caused by
fluctuations. In the absence of backward mutations (for an infinitely long sequence), the
population would remain extinct. The sequence length determines the average waiting
time for a backward mutation to repopulate the master genotype. Given a fixed value
of µLN , the inter-population fluctuations grow with decreasing σ/µL, and become
maximal when the peak of the distribution (4.5) vanishes and the distribution decays
monotonically. The finite population correction of the error-threshold in the quasispecies
regime, σ/(µL) = α, with respect to µLN (at β ∼ 0, i. e. neglecting backward
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Figure 4.2: Parameter dependence of the observables
Shown is (a) the average fraction of master genotypes (black (white) shading corresponds
to a minimal (maximal) value of < 0.1 (1)), (b) the inter-population fluctuations ν1 and
(c) the intra-population fluctuations ν2 as a function of µLN and σN on a logarithmic
scale. In (b) and (c) black (white) shading corresponds to a minimal (maximal) value of
< 0.1 (0.5). As described in the main text a clear separation of localized and non-localized
population states, depending on the parameter values is recovered. The transition line to
the delocalized regimes coincided with maximal inter- and intra-population fluctuations
in the Kimura-Ohta and the quasispecies regime, respectively.

mutations at r � L) is thus the solution of(
σ

αµL
− 1

)2

− 4

αµLN

(
1− 1

αµLN

)
= 0, (4.12)

describing the parameter combination, where maximum and minimum of (4.5) coincide.
At first order in 1

µLN
this yields

σ

µL
= α +

2
√

α√
µLN

, (4.13)

in accordance with an earlier study [94]. The inter-population fluctuations (fig. 4.2b) are
maximal in the Kimura-Ohta regime and decay along the transition to the quasispecies
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regime. At constant values of µLN in the Kimura-Ohta regime, these fluctuations are
found to be maximal, if the population states x = 0 and x = 1 have equal probabilities,
i. e. at the delocalization transition. At constant values of σN , the intra-population
fluctuations (fig. 4.2c) vanish in the Kimura-Ohta regime and grow with increasing
µLN until they become maximal in the quasispecies regime when approaching the
error-threshold. At this point the population is equally distributed among master- and
non-master genotypes. Larger values of µLN lead to a reduction of master genotypes
and therefore to decreasing intra-population fluctuations.
Hence, the parameter regime with a macroscopic fraction of functional sites (fig. 4.2a) is
delineated by the maximum of the intra-population fluctuations in the quasispecies-regime
and by the maximum of the inter-population fluctuations in the Kimura-Ohta regime. In
the intermediate regime µLN ∼ 1 both kinds of fluctuations govern the population state.
Therefore neither the quasispecies nor the Kimura-Ohta theory provides an appropriate
description in such cases.

4.2.4 Modeling population dynamics of promoters with multiple
sites

The condensed gene regulatory regions of prokaryotic organisms exhibit only very few
transcription factor binding sites. With growing complexity of the evolving species,
in particular at the transition from prokaryotes to eukaryotes, the complexity of gene
regulation increases, accomplished by long promoter regions spanning up to thousands
of nucleotides covered with groups of various transcription factor binding sites in higher
eukaryotes. New biological functions are thus assumed to evolve by modulating cell- or
tissue-specific gene expression rather than increasing the number of genes. However, the
growth of promoter regions with organismic complexity and their intricate architecture
could be interpreted as a consequence of decreasing effective population size. Assuming
a transcription factor binding site under constant selection pressure σ, the substitution
probability by a mutated non-functional allele grows with a drop off in µN . If at the
same time the promoter size increases and the positioning of the binding site with respect
to the transcription start site is flexible within certain boundaries, the enhanced risk
to become extinct is compensated by an augmented number of putative loci for this
site. As a consequence, multiple copies of sites for the same and/or for a different
transcription factor may be present simultaneously. It could be imagined that complex
tissue- or cell-type specific expression patterns emerge from these configurations by an
accumulation of neutral evolutionary events. To assess the benefit of many possible loci
over a single locus for a given transcription factor binding site, the single-site model (4.3)
is modified as follows: Considering a gene under the control of a particular transcription
factor, we require at least a single binding site for this factor in the gene regulatory
region in order to maintain a functional allele. However, the motif is allowed to reside
at a number of different loci in the promoter region. We call these loci candidate sites.
Given a typical eukaryotic gene regulatory module of ∼ 500 nucleotides, a number of at
least ten independent candidate sites seems to be a conservative estimate. The whole
population is again divided into two classes, functional genotypes with at least one
working site and non-functional genotypes with a selective disadvantage σ. In order to
allow for multiple candidate sites in (4.3), the effective mutation rates α and β have to
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be modified. Assuming k sites, the quantity β acquires an additional factor k, because
each individual with no working site possesses k candidate sites to restore functionality.
If a certain individual possesses more than one working site, a single mutation cannot
lead to loss of functionality. However, in order to keep the model conservative α is left
unchanged, i. e. every master genotype is assumed to harbour only a single working
site. In the next section, we demonstrate how a higher multiplicity of sites enhances the
fraction of functional alleles in a given population and compensates for a disadvantageous
shift of the delocalization transition due to a reduction in effective population size. It can
be read from (4.11) that in the Kimura-Ohta regime a multiplicity of k shifts the error
threshold to lower values of σN by a factor of ln k. Equivalently, the probability ratio
between the population states at x = 1 and x = 0 in the Kimura-Ohta regime multiplies
by a factor of k.
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Figure 4.3: Fraction of master genotypes at fixed selection coefficient σ
Fraction of master genotypes and inter-population fluctuations across different organisms
(triangle: higher vertebrates, diamonds: unicellular eukaryotes, small squares: prokaryotes,
large square: viruses (see Appendix D for details)), depending on µLN for a single site
and a regulatory module with ten candidate loci (k = 10) subject to a constant selection
pressure. For the selection coefficient we assumed σ ∼ 10−7. Each site is assumed to
have the same length L = 10 with r = 3. Among prokaryotes and unicellular eukaryotes,
the single nucleotide mutation rate µ is roughly 2 · 10−10. For higher vertebrates the
mutation rate is increased by a factor of 100 reflecting the number of germ line divisions
per generation. To represent viral system, a data point with µ ∼ 5 · 10−9 and N ∼ 109

was added. While promoter sites in viral system tend to reside in the quasispecies
regime and have a certain degree of polymorphism, they shift to the intermediate and
the Kimura-Ohta regime for prokaryotic organisms. The transition from prokaryotes to
unicellular eukaryotes is found to coincide with a steep decay of the average fraction of
working sites in a given population. As the plot demonstrates, this trend is significantly
alleviated by introducing multiple sites.

4.3 Application to promoter regions across distant do-
mains of life

In this section we apply the population genetic model for binding site evolution to conduct
a comparative analysis of several domains of life, from viral over prokaryotic to eukaryotic
systems.
The transition from prokaryotes to eukaryotes correlates with a decrease in effective pop-
ulation size. The mutation rate per nucleotide and germline cell division is approximately
equal in eukaryotes and prokaryotes with an average value of ∼ 2.3 · 10−10. To obtain the
mutation rate per generation, this rate needs to be multiplied by the number of germline
cell divisions per generation.
The effective population size for prokaryotic organisms is larger than 108. Effective
population sizes range from 107 to 108 for unicellular eukaryotes, from 105 to 106 for
invertebrates and form 104 to 105 for higher vertebrates.
Mutation rates of DNA-viruses are between 10−7 and 10−10 and an effective population
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size of the order of ∼ 109 is observed.
Using these data, groups of organisms by can be classified by distinct values of the
product of mutation rate and effective population size µN . This quantity is largest in
viruses, it decreases in prokaryotes and is further reduced with increasing complexity of
the organism from unicellular eukaryotes to higher vertebrates.
We applied our model to estimate the average fraction of functional sites for a typical
promoter binding site locus under constant selection pressure across populations of
different representative organisms (see Appendix D).
A recent study in E. coli yielded an estimate for σN of the order of 10, i. e. σ ∼ 10−7 [93].
Although we assumed a similar selection pressure on a single site for all organisms under
consideration, values of σ are expected to vary drastically between essential regulatory
functions (e.g. embryonic development) and typical adult regulatory functions. However,
we suppose this estimate to be reasonable if the regulated gene is dispensable to a certain
degree and therefore a putative target of evolution.
We examine a transcription factor binding site of length L = 10, which tolerates a maxi-
mum number of three point mutations without loosing its ability to attract a sufficient
amount of transcription factors, i. e. all sequences up to a Hamming distance r = 3
from the consensus motif are assumed to be functional. We computed the fraction of
functional sites for a variety of different organisms and plotted the result in fig. 4.3 as a
function of µLN .

Between viral and prokaryotic systems, there is a crossover from generically
polymorphic to monomorphic populations. Compared to prokaryotic and eukaryotic
systems, the population distribution of an average transcription factor binding site in
viral systems resides closest to the quasispecies regime.
For DNA-viruses with effective population sizes of the order of 10−9 the quantity µLN
ranges from 1 to 1000 for a binding site of length 10. As it can be seen from the
intra-population fluctuations, populations residing in this regime are polymorphic. The
data point in fig. 4.3, representing populations of typical DNA-viruses, indicates that
roughly 10% of all sites in individuals of such populations are distributed among non-
functional genotypes at σ ∼ 10−7. This fraction decreases significantly in bacteria.
Binding sites of the same length and subject to the same selection pressure show a
much higher degree of monomorphism in prokaryotes. A transition from DNA-viruses
to prokaryotes with values of µLN between 0.1 and 10 can thus be interpreted as a
crossover from the localized quasispecies to the localized intermediate and Kimura-Ohta
regime, i. e. from generically polymorphic to generically monomorphic populations. This
transition, driven by a decreasing effective population size in prokaryotes compared to
viral systems follows a trajectory inside of the localized regime in fig. 4.2 from high
to low values of µLN . Evolutionary dynamics of viral systems have been described by
the quasispecies theory in previous works [62, 63]. More precisely, both viruses and the
immune system of the host organism can be represented by quasispecies with coupled
selection pressures, co-evolving in permanent competition. The ability of the immune
system to adapt to a particular virus requires the polymorphic population structure of
viral systems to escape the immune system. Prokaryotes, on the other hand, have already
more complex and therefore more conserved genomes with a significantly reduced degree
of polymorphism. These organisms reside in the intermediate regime (µLN ∼ 1) with
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inter-population fluctuations ranging from very small to moderate values (at µLN ∼ 0.1).

Promoters with a single binding sites are generically stable in prokaryotes, but
become unstable to genetic drift in eukaryotes. According to fig. 4.3, a typical
transcription factor binding site with σ ∼ 10−7 is found to be highly monomorphic
and therefore stable among the majority of prokaryotic organisms. It can be read from
this Figure, that the transition from prokaryotes to unicellular eukaryotes at values of
µLN ∼ 0.1 coincides with a decay of the effective population size, which destabilizes
the fraction of functional sites. This evolutionary trajectory drives the population to the
Kimura-Ohta regime, but crosses over to the delocalized regime at the same time. Within
the parameter range of µLN for unicellular eukaryotes from 0.01 to 1 the inter-population
fluctuations reach their maximum and the average fraction of working sites strongly
decays (fig. 4.3). With further increasing genomic complexity in multicellular eukaryotes,
the effective population size is reduced by another order of magnitude and the fraction of
functional sites decays to its neutral value. Hence, a single promoter site under constant
selection pressure could become extinct due to a reduction in effective population size
along the transition from prokaryotes to eukaryotes.

In eukaryotes, multiple binding sites for the same factor increase the stability of
the regulatory function. Comparison of unicellular eukaryotes and prokaryotes reveals
fundamental differences in promoter architecture. Promoter regions in prokaryotes are
short and single transcription factor binding sites are predominant, whereas in promoter
regions of unicellular eukaryotes modules of multiple transcription factor binding sites are
ubiquitous. We devised a simple model to examine the influence of the introduction of
multiple sites on the fraction of functional alleles (promoter regions with at least one
functional site) in a population. Our model is based on the assumption that in eukaryotic
promoter regions cis-regulatory sites are allowed to emerge at various positions, which is
supported by experiments for certain classes of eukaryotic enhancers [72, 73]. For typical
eukaryotic promoters a reasonable estimate of the number of these candidate sites ranges
from 10 to more than 100. If there is no further constraint, the number of candidate
sites can reach the order of the promoter module length. We proceeded to assign the
full fitness advantage to alleles with at least a single functional site. Fig. 4.3 shows the
enhancement of functional alleles if ten candidate sites are present, demonstrating how
an increased multiplicity of sites shifts the delocalization transition to smaller values of
µLN and reduces the slope of the decaying fraction of functional sites with decreasing
µLN . We conclude that the introduction of multiple sites due to neutral inflation of
promoter regions with decreasing effective population size, e. g. by fixation of slightly
deleterious enhancer duplications [90, 45], provide a compensatory mechanism to maintain
a regulatory relationship between a particular gene-transcription factor pair if the selection
coefficient is left unaltered.
The emergence of complex regulatory networks could thus be interpreted as a secondary
consequence of increased multiplicity of promoter sites that originally served to maintain
existing regulatory relationships. This may explain the change in promoter architecture
without changing selection pressure towards functional differentiation as a secondary
process.
It must be stressed again that our model reflects only the lower boundary of the benefit
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of multiple sites. Furthermore, the number of ten candidate sites is likely to be an
underestimate in higher eukaryotes, where promoter regions are very long.
Our hypotheses agree with several recent studies on the interplay of genome expansion
and functionalization with increasing complexity of the organism. Lynch and Conery
(2003) [90] found that the reduced effective population size in higher organisms allows for
the fixation of neutral or even slightly deleterious insertions, arisen by gene duplication or
other transposable elements. The authors observed a significant increase in the number
of transposable elements at the transition from prokaryotes to eukaryotes and argue
that fixation of neutral or slightly deleterious insertions by genetic drift allows for rarely
occurring beneficial mutations.
According to a recent cross-species comparison in three Drosophila species by Sinha and
Siggia [128] and our own analysis, a large fraction of regulatory non-coding sequence
can be explained by insertions of repeat elements which outweigh deletions. However,
Petrov and Hartl [100] predicted a 1:8 ratio between insertions and deletions for neutral
intergenic sequence. This suggests that insertions in regulatory sequence are protected
from deletion to provide a resource for the emergence of functional sites by beneficial
mutations. We conclude that this mechanism could have been crucial at the evolutionary
transition from prokaryotes to eukaryotes in order to maintain functionality of regulatory
relationships and allowed at the same time for the evolution of increasingly complex
regulatory interactions. It is conceivable that in higher eukaryotes integration could
even exist on larger scales, e. g. cooperativity of whole regulatory modules or even
compensatory networks of different genes, opening yet undiscovered paths for the evoltion
of organismal complexity.

4.4 Conclusions

We introduced a general population genetic theory for the computation of the stationary
state population distribution of transcription factor binding sites. Supported by Monte
Carlo simulations we argue that our approximations capture the main evolutionary
characteristics of a single transcription factor binding site and introduce an extension to
this model that allows for lower bound estimates of the fraction of functional regulatory
modules with multiple putative loci for a transcription factor binding site.
The analytical solution of our model allows us to derive a “phase-diagram” of binding site
populations governed by the parameters µN and σN that delineates qualitatively distinct
regimes and knows the well established quasispecies [41, 42] and the theory of neutral
evolution by Kimura and Ohta [65, 96, 97] as two limiting cases of a general distribution.
Parametrizing a variety of taxa by the product of mutation rate and effective population
size, we show that a single binding site under fixed selection pressure could become
unstable at the evolutionary transition from prokaryotes to eukaryotes as a consequence
of decreasing population size. We propose the introduction of multiple putative loci for
binding sites in the same promoter, as a neutral result of a reduction in population size,
as a compensatory mechanism to maintain existing regulatory relationships. Emergence
of a complex promoter architecture can then be easily thought of as a consequence of
this compensatory mechanism, since a higher multiplicity of sites opens the stage for the
evolution of tissue-specific regulation by compensatory mutations [45].
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Appendix A

Hidden Markov Models

Definition. A hidden Markov model assigns a sequence of states to a sequence x =
(x1, ..., xL) of symbols xi ∈ B. In each state k ∈ {1, ..., N} a symbol b drawn from set
B can be emitted with state specific probabilities ek(b). Emitting a sequence of symbols,
the model can switch from state k to state l with transition probability akl. Since the
same symbols can be emitted in different states, a given sequence x can be explained by
a number of different compositions of states, so called paths π = (π1, ..., πL). Given all
transition- and emission-probabilities, the probability of a given path π realizing sequence
x, P (x, π), can be computed,

P (x, π) = a0π1

L∏
i=1

eπi
aπiπi+1

, (A.1)

where a0k can be interpreted as the probability of starting in state k. The total probability
of the model to explain the sequence x is then given by the sum over the probabilities of
all possible paths,

P (x) =
∑

π

P (x, π). (A.2)

The forward algorithm. However, the number of possible paths increases exponentially
and simple enumeration of all paths in order to compute (A.2) becomes impossible already
for short sequences. A solution to this problem is given by the forward algorithm, a dynamic
programming strategy that introduces probabilities fk(i) for the sequence component xi

to be emitted in state k,
fk(i) = P (x1...xi, πi = k), (A.3)

and follows the sequence x from i = 1 to i = L in order to recursively compute all the
probabilities fk(i), which finally allow for the computation of P (x) itself:

Initialization (i = 0): f0(0) = 1, fk(0) = 0 for k > 0.
Recursion (i = 1, ..., L): fl(i) = el(xi)

∑
k fk(i− 1)akl.

Termination: P (x) =
∑

k fk(L)ak0

where ak0 is the probability to end in state k.
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The backward algorithm. What we really want to compute is not only the overall
probability P (x) but the probability that a given sequence position xi was emitted in a
particular state k given the sequence x, P (πi = k|x). This quantity is called the posterior
probability of state k at sequence position i.
To compute this probability we first need to know the quantity

bk(i) = P (xi+1...xL|πi = k) (A.4)

which denotes the probability of the subsequent path j = i + 1, .., L given that position i
was emitted in state k. bk(i) is computed by the backward algorithm:

Initialization (i = L): bk(L) = ak0 for all k.
Recursion (i = L− 1, ..., 1): bk(i) =

∑
l aklel(xi+1)bl(i + 1).

Termination: P (x) =
∑

l a0lel(x1)bl(1).

The joint probability of observing sequence x with the i−th symbol emitted in state k
can then simply be written as

P (x, πi = k) = fk(i)bk(i) (A.5)

and the posterior probability of observing state k at position i given sequence x follows as

P (πi = k|x) =
fk(i)bk(i)

P (x)
. (A.6)

Baum-Welch algorithm. If the parameters akl and/or ek(b) are not known in the
beginning, they also have to be inferred from the data. One particular standard method
to find optimal parameters, i. e. parameters that maximize the log likelihood log P (x, Θ)
of the model to generate the sequence x is the Baum-Welch algorithm [12]. It starts with
a given set Θ of parameters akl and ek(b). It then counts the number of all particular
transition events, Akl and emissions, Ek(b) from the probable paths identified with
parameter set Θ and estimates a new set of parameters,

akl =
Akl∑
l′ Akl′

ek(b) =
Ek(b)∑
b′ Ek(b)

. (A.7)

This iteration proceeds until some stopping criterion is reached. It can be shown that
the log likelihood increases by this iteration and hence it converges to a local maximum.
Since there are usually many local maxima, the parameters Θ must be initialized carefully
to end up in the correct local maximum.
More precisely, the algorithm does not enumerate all transition and emission events
but determines their expectation values using the posterior decoding after applying the
forward- and the backward-algorithm to sequence x,

P (πi = k, πi+1 = l|x, Θ) =
fk(i)aklel(xi+1)bl(i + 1)

P (x, Θ)
. (A.8)



111

The expected number of state transitions from k to l estimated from sequence x can
then be written as

Akl =

∑
i fk(i)aklel(xi+1)bl(i + 1)

P (x, Θ)
. (A.9)

Similarly, the expectation value of emitting symbol b in state k is given by

Ek(b) =

∑
i|xi=b fk(i)bk(i)

P (x, Θ)
(A.10)

where the sum is only taken over those positions i where symbol b is emitted. Using
these expectation values, the new set of parameters is computed according to (A.7).
Since th algorithm converges in a continuous-valued space, the maximum will never in
fact be reached. A possible stopping criterion could be a sufficiently small change of the
log likelihood.
Running the Baum-Welch algorithm on a set of sequences j = 1, ...,M it can be summa-
rized as follows:

Initialization:
Selection of arbitrary model parameters.

Recurrence:
Set all the A and E variables to zero or some pseudocount value r.
For each sequence j = 1, ..,M :

Calculate fk(i) for sequence j.
Calculate bk(i) for sequence j
Add the contribution of sequence j to A (A.9) and E (A.10).

Calculate the new model parameters (A.7).
Calculate the new log likelihood of the model.

Termination:
Stop if the change in log likelihood is smaller then some threshold or the maximum
number of iterations is reached.
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Appendix B

Bayesian approach to model
comparison

Given a pair of sequences x and y without any prior knowledge on their relatedness,
the Bayesian approach provides a means of quantitatively comparing different models
to explain the relation between the two sequences. For convenience, we demonstrate
this approach by comparing two models, an uncorrelated background model B with prior
probability P (B), postulating that the sequences are unrelated, and a correlated model
R with prior probability P (R) that assumes the sequences to be related. If we allow only
for the two competing models, their prior probabilities sum up to one, P (B) + P (R) = 1.
Once we have seen the data, the posterior probability that the correlated model R is
correct is

P (R|x, y) =
P (x, y|R)P (R)

P (x, y)

=
P (x, y|R)P (R)

P (x, y|R)P (R) + P (x, y|B)P (B)

=
P (x, y|R)P (R)/P (x, y|B)P (B)

1 + P (x, y|R)P (R)/P (x, y|B)P (B)
(B.1)

Introducing the quantity

S ′ = S + log

(
P (R)

P (B)

)
, (B.2)

where

S = log

(
P (x, y|R)

P (x, y|B)

)
(B.3)

is the log-odds score of the alignment, the posterior probability can be written as

P (R|x, y) = σ(S ′) (B.4)

with the sigmoid logistic function

σ(x) =
ex

1 + ex
, (B.5)

increasing monotonically from zero to one (fig. B.1). From (B.5) we can see that
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Figure B.1: The logistic function.

maximizing S ′ by testing different correlated models R maximizes the posterior probability
of the model R to explain the data (B.4). If the prior probabilities of the models are
unknown, one could assign equal probabilities to all tested correlated models and the
background model. If a particular model R is then tested against the background model
B, one has P (R) = P (B) = 1/2 and (B.4) simplifies to

P (R|x, y) = σ(S) (B.6)

Under this assumption the optimal model maximizes the log-odds score of the alignment
(B.3).



Appendix C

Derivation of the Fokker-Planck
equation

The Fokker-Planck equation can be derived as an approximation of a general master
equation. The transition probabilities T are first expressed as a function of the size δx of
the jump and of the staring point x′:

T (x|x′) = T (x′; δx), δx = x− x′ (C.1)

The general master equation

∂tP (x, t) =

∫
{T (x|x′)P (x′, t)− T (x′|x)P (x, t)}dx′ (C.2)

can then be written as

∂tP (x, t) =

∫
T (x− δx; δx)P (x− δx, t)d(δx)−

∫
P (x, t)

∫
T (x;−δx)d(δx) (C.3)

If T (x′; δx) is now assumed to be a sharply peaked function of δx and at the same
time slowly varying with x′ and if furthermore P (x, t) is assumed to be a slowly varying
function, one can approximate (C.3) by a Taylor expansion of the first integral up to
second order:

∂tP (x, t) =

∫
T (x; δx)P (x, t)d(δx)−

∫
δx∂x{T (x; δx)P (x, t)}d(δx) (C.4)

+
1

2

∫
(δx)2∂2

x{T (x; δx)P (x, t)}d(δx)− P (x, t)

∫
T (x; δx)d(δx)

The first and fourth term cancel out and the remaining two terms can be written with
the help of jump moments

aν(x) =

∫ ∞

−∞
(δx)νT (x; δx)d(δx) (C.5)

yielding

∂tP (x, t) = −∂x{a1(x)P (x, t)}+
1

2
∂2

x{a2(x)P (x, t)} . (C.6)
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This equation is called the Fokker-Planck equation and it keeps only the terms up to
O(δx)2 of the full Taylor expansion of the master equation,

∂tP (x, t) =
∞∑

ν=1

(−1)ν

ν!
∂ν

x{aν(x)P (x, t)}, (C.7)

which is called the Kramers-Moyal expansion.



Appendix D

List of µLN for various organisms

organism µLN

prokaryotes
Prochlorococcus 10.00
Salmonella enterica 1.5
Legionella pneumophila 1.5
Heliobacter pylori 1.00
Neisseria meningitidis 0.8
Escherichia coli 0.48
Vibrio cholerae 0.4
Enterococcus faecium 0.26
Campylobacter jejuni 0.25
Streptococcus pyogenes 0.13
Pseudomonas aeruginosa 0.11

unicellular eukaryotes
Tetrahymena thermophila 2.00
Cryptococcus neoformans 0.26
Cryptosporidium parvum 0.24
Saccharomyces cerevisia 0.24
Chlamydomonas reinharditii 0.21
Dictyostelium discoideum 0.19
Neurospora crassa 0.16
Giardia lamblia 0.08
Toxoplasma gondii 0.07
Trypanosoma cruzi 0.06
Encephalitozoon cuniculi 0.04

higher vertebrates
Pan troglodytes 0.003
Homo sapiens 0.003
Mus musculus 0.003
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Zusammenfassung

In dieser Arbeit wird die Behandlung dreier separater biologischer Fragestellungen mit
Hilfe aus der statistischen Physik entnommener Methoden vorgestellt.
Ziel des im ersten Kapitel vorgestellten Projektes ist es, ein besseres Verständnis der
Posttranskriptionskontrolle zu erlangen, wie sie von sog. microRNAs, einer Klasse nicht-
kodierender, winziger RNAs, ausgeübt wird. Es wird ein probabilistischer Algorithmus
zur Identifizierung von microRNA-regulierten Genen vorgestellt, entwickelt auf Grundlage
experimentell erlangter Erkentnisse sowie statistischer Analyse genomischer Daten. Die
Anwendung dieses Algorithmus auf Alignments evolutionär verwandter Spezies ermöglicht
die spezifische und sensitive Identifizierung durch microRNA regulierter Gene. Analyse und
Vergleich dieser Daten für verschiedene Tierstämme und daraus resultierende Einsichten
in die microRNA-Biologie sowie erste Erkentnisse über die Evolution von microRNA-
Regulation werden ausführlich diskutiert.
Gegenstand des zweiten Kapitels ist die Modellierung der Evolution von Microsatellites,
einer Klasse repetitiver Sequenz, die häufig im Genom von Eukaryonten anzutreffen
ist. Inspiriert durch die Vermutung, dass derartige Sequenzen in bestimmten Fällen
funktional sein können und der nach wie vor grossen Schwierigkeit, korrekte Alignments von
Microsatellites zu bestimmen, haben wir ein neutrales Modell für Microsatellite-Evolution
entwickelt, das in dieser Arbeit diskutiert wird. Um die durch das Modell gemachten
Vorhersagen der evolutionären Raten im Genom der Fruchtfliege Drosophila melanogaster
zu überprüfen, werden diese mit unabängig gemessenen Raten aus Alignments von drei
nahe verwandten Drosophila-Spezies verglichen. Das Evolutionsmodell wird dabei separat
für Sequenzkategorien unterschiedlicher funktionaler Annotierung analysiert, um den
möglichen Einfluss von Selektionsdruck auf die Microsatellite-Evolution zu untersuchen.
Im letzten Kapitel wird ein populationsgenetisches Modell entworfen, um die Stabilität
von Transkriptionsfaktor-Bindungsstellen als Funktion von Selektionsdruck, Mutationsrate
und effektiver Populationsgrösse für beliebige Werte dieser Parameter vorherzusagen.
Die analystische Lösung dieses Modells beschreibt die Wahrscheinlichkeit, dass eine
gegebene Bindungsstelle funktional ist. Mit Hilfe des Modells wird der Anteil funktionaler
Bindungsstellen unter konstantem Selektionsdruck in Populationen verschiedener Taxone
bestimmt. Die Interpretation der Ergebnisse zeigt, dass eine Abnahme der effektiven
Populationsgrösse, wie beim evolutionären Übergang von Prokaryonten zu Eukaryonten
zu beobachten, den Verlust der Stabilität einer Bindungsstelle bedeuten kann. Eine
Erweiterung des Modells ermöglicht es, den kompensatorischen Effekt des gleichzeitigen
Auftretens einer grösseren Anzahl von Bindungsstellen zu bewerten, der den Erhalt der
Stabilität einer gegebenen regulatorischen Beziehung erleichtern kann.
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Abstract

In this thesis, three separate problems of genomics are addressed, utilizing methods
related to the field of statistical mechanics.
The goal of the project discussed in the first chapter is the elucidation of post-transcriptional
gene regulation imposed by microRNAs, a recently discovered class of tiny non-coding
RNAs. A probabilistic algorithm for the computational identification of genes regulated
by microRNAs is introduced, which was developed based on experimental data and
statistical analysis of whole genome data. In particular, the application of this algorithm
to multiple-alignments of groups of related species allows for the specific and sensitive
detection of genes targeted by microRNAs on a genome-wide level. Examination of
clade-specific predictions and cross-clade comparison yields deeper insights into microRNA
biology and first clues about long-term evolution of microRNA regulation, which are
discussed in detail.
Modeling evolutionary dynamics of microsatellites, an abundant class of repetitive se-
quence in eukaryotic genomes, was the objective of the second project and is discussed
in chapter two. Inspired by the putative functionality of some of these elements and
the difficulty of constructing correct sequence alignments that reflect the evolutionary
relationships between microsatellites, a neutral model for microsatellite evolution is de-
veloped and tested in the fruit fly Drosophila melanogaster by comparing evolutionary
rates predicted by the model to independent measurements of these rates from multiple
alignments of three closely relates Drosophila species. The model is applied separately to
genomic sequence categories of different functional annotations in order to assess the
varying influence of selective constraint among these categories.
In the last chapter, a general population genetic model is introduced that allows for
the determination of transcription factor binding site stability as a function of selection
strength, mutation rate and effective population size at arbitrary values of these param-
eters. The analytical solution of this model indicates the probability of a binding site
to be functional. The model is used to compute the population fraction of functional
binding sites at fixed selection pressure across a variety of different taxa. The results lead
to the conclusion that a decreasing effective population size, such as observed at the
evolutionary transition from prokaryotes to eukaryotes, could result in loss of binding site
stability. An extension to our model serves us to assess the compensatory effect of the
emergence of multiple binding sites for the same transcription factor in order to maintain
the existing regulatory relationship.
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Köln, den 25. September 2006



Teilpublikationen

• Krek, A.*, Grün, D.*, Poy, M.N.*, Wolf, R., Rosenberg, L., Epstein E.J., MacMe-
namin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M. & Rajewsky, N. Combinatorial
microRNA target predictions. Nature Genetics 37, 495–500 (2005).

• Grün, D., Wang, Y.-L., Langenberger, D., Gunsalus, K.C. & Rajewsky, N. microRNA
Target Predictions across Seven Drosophila Species and Comparison to mammalian
Targets. PLoS Computational Biology 1, e13 (2005).

• Lall, S.*, Grün, D.*, Krek, A., Chen, K., Wang, Y.L., Dewey, C.N., Sood, P.,
Colombo, T., Bray, N., MacMenamin, P., Kao, H.L., Gunsalus, K.C., Pachter, L.,
Piano, F. & Rajewsky, N. A genome wide map of conserved microRNA targets in
C. elegans. Current Biology 16, 460-471 (2006).

• Grün, D. & Rajewsky, N. Computational prediction of microRNA targets in verte-
brates, fruitflies and nematodes. in microRNAs: From Basic Science to Disease
Biology edited by Dr. Krishnarao Appasani, (Cambridge University Press, Cam-
bridge) to be published.

*equal contributions



Lebenslauf

Persönliche Daten

Name Dipl.-Phys. Dominic Grün
Anschrift Geburtsdatum 30. September 1977
Geburtsort Bergisch Gladbach
Familienstand verheiratet
Staatsangehörigkeit deutsch

Schulbildung

1984-1988 Grundschule Herkenrath
1988-1997 Gymnasium Herkenrath, Bergisch Gladbach
Juni 1997 Abitur

Hochschulstudium

Oktober 1997 Immatrikulation an der Universität zu Köln
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