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1 Introduction 

 

The spinal muscular atrophies constitute a genetically and clinically heterogeneous group of 

neuromuscular disorders in humans sharing the common pathological feature of degeneration of lower 

motor neurons in the anterior horns of the spinal cord. Other neurologic systems (including brain and 

sensory nerves) or other organs are rarely involved. Intelligence of affected individuals is normal. In all 

spinal muscular atrophy patients, the progressive loss of innervating α-motor neurons causes 

denervation especially of voluntary muscles, leading to weakness and muscle atrophy as central 

disease symptoms. The different forms of lower motor neuron diseases covered by the term ‘spinal 

muscular atrophies’ are classified according to clinical features (including age of onset, disease 

severity and distribution of muscle weakness) and on their modes of inheritance (autosomal or X-

linked, recessive or dominant). However, the majority of patients (80-90%) demonstrate autosomal 

recessive inheritance with proximal manifestation of muscle weakness and atrophy of limbs and trunk, 

which is defined as autosomal recessive proximal spinal muscular atrophy (SMA). 

 

With an incidence of approximately 1 in 6,000-10,000 live births and a heterozygosity frequency of 1 in 

35 among Europeans, proximal SMA is the second most common autosomal recessive disorder after 

cystic fibrosis. Worldwide, it represents the leading genetic cause of death in childhood and early 

youth. In order to analyze the molecular genetic basis and the pathophysiological mechanisms of 

SMA, research focused on the identification of the disease determining gene. In 1990, the application 

of positional cloning strategies and segregation analyses revealed mapping of proximal SMA to a 

candidate region on the long arm of human chromosome 5 (5q11.2-13.3). There was a major 

breakthrough in the understanding of the disease in 1995, when a gene was identified which was 

found to be homozygously deleted in most SMA patients. According to the typical degeneration of α-

motor neurons in SMA, this gene was named survival of motor neuron gene (SMN). There are two 

nearly identical gene copies of SMN located within the ~750 kb SMA region on chromosome 5q13: 

one telomeric copy termed SMN1, and a second copy of the gene closer to the centromer termed 

SMN2. While homozygous deletion or mutation of SMN1 has been determined to cause SMA, each 

patient retains at least one SMN2 copy. SMN2 is the result of duplication events in the human genome 

and differs from SMN1 by five nucleotides, only one of which is located in the translated region. This 

nucleotide exchange in exon 7 has been characterized as a silent mutation without impact on the 

amino acid sequence. Consequently, SMN1 and SMN2 encode identical proteins. However, in 

contrast to SMN1, which exclusively produces full-length mRNA transcripts, SMN2 undergoes 

alternative splicing and mainly generates transcripts lacking exon 7. The latter encode an unstable, 

only partially functional protein. Hence, SMN2 is not able to fully compensate for the loss of SMN1 in 

SMA patients. Insufficient amounts of functional SMN protein lead to α-motor neuron degeneration. 

 

To date, a causal therapy for SMA is not available. SMN2 is the only SMA modifying gene known so 

far. Milder disease phenotypes correlate with increased SMN2 copy numbers. Since SMN2 is present 

in each patient, ubiquitously expressed in all tissues and encodes the same protein like SMN1, it has 

been identified as major target for a potential SMA therapy. 
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1.1 Diagnostic criteria and clinical picture of proximal SMA 

 

1.1.1 Diagnostic criteria 

 

The diagnosis of SMA is carried out by the help of clinical, biochemical, electrophysiological, 

histopathological and molecular genetic criteria (Munsat and Davies 1992; Zerres and Davies 1999). 

The key symptom of proximal SMA is a symmetrical and progressive muscle weakness and atrophy 

affecting the limbs positioned closer to the body, such as upper arms and legs, rather than more 

distant body parts such as hands, feet, fingers, or toes. The weakness in the legs occurs earlier and is 

generally greater than the weakness in the arms. Muscle groups in the face and eyes are not involved. 

 

Serum creatine kinase (CK) activity is a sensitive marker of increased muscle membrane permeability 

for large molecules. CK is a “leakage enzyme” present in high concentrations in the cytoplasm of 

myocytes and is the most widely used enzyme to diagnose and follow muscle disease. In 

neuromuscular disorders like proximal SMA, serum CK values are only mildly to moderately elevated. 

The CK test is used to exclude primary dystrophic processes of the muscle which may lead to 

extensively increased CK values of 10x normal and above. An elevated serum CK activity above 10x 

normal indicates a muscle disorder and is an exclusion criterion for proximal SMA. 

 

One of the main diagnostic tools is electromyography (EMG). Contraction of the voluntary muscles is 

controlled by electrical impulses. They originate from the brain and pass down the motor neurons to 

the connecting muscles, where the contraction is triggered. The EMG records this electrical impulse 

and determines whether the electric current and the speed at which the electric impulse passes down 

the motor neuron are the same as in normal individuals. In SMA patients, EMG demonstrates 

characteristic spontaneous muscle activity with fibrillations and fasciculations of single muscle fibers 

and motor units. Nerve conduction velocity (NCV) in SMA patients is normal or mildly reduced, but not 

lower than 70% compared to age-matched control individuals. A secure diagnosis of proximal SMA 

always includes an adequate muscle biopsy specimen processed with histochemical stains. Typical 

histologic and histochemical features allow separation of SMA from other denervating disorders. The 

vast majority of fibers are atrophic and of both fiber types, with pathologic fiber type grouping the rule. 

An additional distinctive feature is the presence of a small number of scattered hypertrophic type 1 

fibers presumably resulting from physiologic hypertrophy. Normal-appearing fibers may be present. 

Important in histologic diagnosis is the absence of significant necrosis, degeneration, regeneration, 

lipid accumulation, or connective tissue proliferation. However, older patients with long-standing SMA 

may demonstrate some of these features, suggesting a secondary myopathic process. 

 

Since 1995, the clinical diagnosis of SMA can be confirmed by molecular genetic testing. Therefore, 

the SMN1 gene on chromosome 5q is screened for specific mutations (deletions/gene conversions of 

exon 7 or exon 7 and 8). In addition, this molecular investigation is applied in prenatal diagnosis and 

carrier testing, making it a highly important diagnostic tool. 
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In 1992, the International SMA Consortium defined diagnostic criteria which allow the secure 

separation of proximal SMA from other disorders (Munsat and Davies 1992). Due to the gain of 

knowledge regarding SMA, these criteria were modified in 1999 (Zerres and Davies 1999). The most 

important inclusion and exclusion criteria for proximal SMA are summarized in table 1. 

 

Table 1: Diagnostic inclusion and exclusion criteria for proximal SMA (Munsat and Davies 1992), modified 

by the International SMA Consortium in 1999 (Zerres and Davies 1999). “LLN” is the abbreviation for 

“lower limit of normal”. 

Inclusion criteria Exclusion criteria 

Muscle weakness 

symmetrical 

proximal > distal 

legs > arms 

involvement of trunk and intercostals 

 

Denervation 

neurogenic EMG 

atrophic fibers in muscle biopsy 

fasciculation 

involvement of muscle groups of eye and face 

CNS involvement 

involvement of other organs (e.g. ears, eyes) 

disturbance of sensibility 

involvement of diaphragm and myocardium  

creatine kinase activity > 10x normal 

nerve conduction velocity < 70% of the LLN 

 

 

 

 

 

1.1.2 Clinical picture and classification of proximal SMA 

 

The clinical picture of severe infantile proximal SMA was described for the first time by Werdnig in 

1891 (Werdnig 1891) and Hoffmann in 1893 (Hoffmann 1893). Many years later, in 1956, Kugelberg 

and Welander reported a less severe form of SMA. The phenotype of proximal SMA is highly variable. 

In acute cases, first disease symptoms may occur as early as prenatally, whereas milder forms are 

characterized by manifestation in adulthood. Depending on the age of onset and disease severity, the 

International SMA Consortium defined a classification into four types (type I-IV) which is presented in 

table 2 (Munsat and Davies 1992; Zerres and Rudnik-Schoneborn 1995). 

Type I SMA patients (acute infantile SMA, Werdnig-Hoffmann disease; OMIM #253300) are most 

severely affected with generalized muscle weakness and hypotonia (“floppy infants”). Manifestation 

already occurs by decreased fetal movements in the last trimester of pregnancy in about one third of 

cases. However, onset is always noted within six months after birth. Affected infants never achieve the 

ability to sit or walk and normally die before two years of age due to respiratory failure or infection. 

Type II SMA patients (intermediate form, chronic infantile SMA; OMIM #253550) show first clinical 

signs after six months but before 18 months of age. They are able to sit independently but never learn 

to walk. Life expectancy is reduced, the survival rate is about 70% at age 20. 

Type III SMA patients (Kugelberg-Welander disease, juvenile SMA, OMIM #253400) present a 

disease onset after 18 months of age and the symptoms can begin to develop as late as adulthood. 

They are able to sit and walk but often become wheelchair-bound in the course of disease 

progression. Patients with an age of onset before three years are sub-classified as IIIa, those with an 



Introduction 

 

4 

age of onset after three years as IIIb (Zerres and Rudnik-Schoneborn 1995; Wirth et al. 2006). Life 

expectancy is almost normal. 

Type IV SMA patients (adult form of SMA, OMIM #271150) are very rare and characterized by an age 

of onset >30 years and only very mild signs of muscle weakness. So far, only very few patients with 

type IV have been identified with homozygous absence of SMN1 (Brahe et al. 1995; Clermont et al. 

1995; Wirth et al. 2006), while the majority of SMA type IV patients do not show any detectable 

deletions in this gene (Zerres et al. 1995). The life expectancy of SMA type IV patients is not reduced. 

 

Table 2: Proximal SMA is a clinically heterogenous disorder. 

SMA type Age of onset Motor milestone achievements Life expectancy 

I 
(Werdnig-Hoffmann) 

 

≤ 6 months never able to sit or walk < 2 years 

II 
(intermediate form) 

 

≤ 18 months able to sit but never learn to walk youth to adulthood 

III 
(Kugelberg-Welander) 

 

> 18 months able to sit and walk at one time slightly reduced 

IV 
(adult form) 

 

> 30 years normal development normal 

 

Due to the ongoing degeneration of α-motor neurons, motor milestones which have been achieved by 

a patient at one time may be lost again in the course of disease progression. In particular in SMA type 

I and II patients, weakness of the muscles involved in breathing and coughing increases the 

susceptibility for respiratory infections. Thus, respiratory insufficiency is the most frequent cause of 

death. 

Although the clinical spectrum of onset and severity is broad, all autosomal-recessively inherited forms 

of proximal SMA are genetically homogenous (Gilliam et al. 1990). Siblings affected with SMA present 

identical courses of disease progression and are assigned to the same SMA type. The finding of 

siblings with discordant phenotypes is a very rare exception (Brahe et al. 1993; Rudnik-Schöneborn et 

al. 1994; Cobben et al. 1995; Hahnen et al. 1995; Wang et al. 1996; Helmken et al. 2003). 

 

 

1.2 Molecular basis of proximal SMA 

 

1.2.1 Mapping of the SMA region 

 

In 1990, SMA types I, II and III were mapped by linkage analysis to one single region of about 10 cM 

on chromosome 5q (5q11.2-13.3) (Brzustowicz et al. 1990; Gilliam et al. 1990; Melki et al. 1990). The 

development of many new highly polymorphic markers during the following five years allowed the 

critical SMA locus to be refined to a size less than 1 Mb (Melki et al. 1993; Soares et al. 1993; 

DiDonato et al. 1994; Melki et al. 1994; Wirth et al. 1994; Wirth et al. 1995). This region was shown to 

contain a highly complex genomic structure consisting of a duplicated and inverted DNA segment of 

about 500 kb (Lefebvre et al. 1995), which considerably hampered the construction of a uniform 
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TFNR GTF2H2c 

BIRC1c 

SMN2 SMN1 
BIRC1t 

GTF2H2t 

5q13 cen 5q13 ter 
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physical map (Thompson et al. 1993; Melki et al. 1994; Lefebvre et al. 1995; Roy et al. 1995b). As we 

know nowadays, the SMA region is prone to de novo genomic rearrangements including unequal 

crossing-over, inter- and intrachromosomal rearrangements and gene conversions (Melki et al. 1994; 

Wirth et al. 1997; Schmutz et al. 2004). Each of the two 500 kb segments can be present in 0 to 4 

copies per chromosome and contains five genes which were assumed to be candidates for 

determination of SMA (figure 1): the survival motor neuron gene [SMN, (Lefebvre et al. 1995)], the 

baculoviral IAP repeat-containing protein 1 gene (BIRC1), also known as neuronal apoptosis inhibitory 

protein gene [NAIP, (Roy et al. 1995a)], the small EDRK-rich factor 1 gene [SERF1, (Scharf et al. 

1998)], also known as H4F5, the general transcription factor IIH or p44 gene (GTF2H2) which 

encodes a subunit of the transcription factor TFIIH (Burglen et al. 1997; Carter et al. 1997), and the 

occludin gene [OCLN, (Lefebvre et al. 1995; Schmutz et al. 2004)]. The polymorphic region which 

contains the duplicated and inverted five candidate genes is proximally flanked by the unique gene 

RAD17 (Deimling von et al. 1999) and distally flanked by TFNR (Kelter et al. 2000). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic of the duplicated and inverted SMA region on chromosome 5q13. 

 

 

1.2.2 Survival motor neuron (SMN), the SMA determining gene in humans 

 

In 1995, Lefebvre and colleagues identified the survival motor neuron gene 1 (SMN1) as the SMA 

determining gene (Lefebvre et al. 1995). Although each of the genes that are located in the SMA 

region may be deleted in SMA patients (Roy et al. 1995a; Burglen et al. 1997; Scharf et al. 1998), it 

has been conclusively demonstrated that only homozygous mutation of the telomeric SMN1 is 

causative for SMA. The ultimate proof was given by the identification of subtle (and in particular 

missense) mutations located in the SMN1 gene [reviewed in (Wirth 2000)]. The number of centromeric 

SMN2 copies modifies the disease severity (Lefebvre et al. 1995; Burghes 1997; Wirth et al. 1999; 

Brahe 2000; Wirth 2000; Feldkötter et al. 2002; Mailman et al. 2002; Wirth et al. 2006). 

On genomic level, each SMN copy spans a region of about 28 kb (Chen et al. 1998) and consists of 

nine exons (1-2a, 2b-8) with an open reading frame of 882 bp (294 codons). SMN1 and SMN2 are 

almost identical except for five nucleotide differences at their 3’ ends (figure 2): one in exon 7, one in 

exon 8, one in intron 6 and another two in intron 7, respectively (Lefebvre et al. 1995; Burglen et al. 

1996; Chen et al. 1998; Monani et al. 1999a). Applying a PCR-based assay followed by restriction 

digestion or direct sequencing, the genomic differences allow molecular genetic diagnosics of SMA 
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(Lefebvre et al. 1995; van der Steege et al. 1995; Wirth et al. 1999). The vast majority of SMA type I-III 

patients (96%) show homozygous absence of SMN1 exon 7 and 8 or exon 7 only (Wirth 2000). This 

phenomenon is due to two mechanisms: deletions of SMN1 or gene conversion of SMN1 into SMN2 

(Wirth et al. 1997). Deletions are typically observed in type I SMA patients. Conversions of SMN1 into 

SMN2 which result in an increased number of SMN2 genes are predominantly found in type II and III 

SMA patients. Gene conversion is a common mutational mechanism in the SMA region (Lefebvre et 

al. 1995; Hahnen et al. 1996; van der Steege et al. 1996). It may also cause the conversion of SMN2 

into SMN1. In rare cases, it has been described as a de novo event (Raclin et al. 1997; Wirth et al. 

1997; Wirth et al. 1999) and can affect the complete SMN gene as well as only a part of it. Besides 

homozygous absence of SMN1, a minority of SMA patients (~4%) exhibit intragenic SMN1 mutations 

which result in a disturbed gene function. Typically, these patients are compound heterozygotes with a 

deletion on one and a subtle mutation on the other chromosome 5 (Bussaglia et al. 1995; Lefebvre et 

al. 1995; Rodrigues et al. 1995; Hahnen et al. 1997; Simard et al. 1997; Wirth et al. 1999; Wirth 2000; 

Ogino and Wilson 2002; Clermont et al. 2004; Sun et al. 2005). The presence of at least one fully 

functional SMN1 gene is sufficient to protect from SMA. Homozygous absence of SMN2, a genotype 

found in about 3-5% of control individuals, has no apparent phenotypical consequences (Lefebvre et 

al. 1995). 

None of the five nucleotides which allows SMN1 and SMN2 to be distinguished on genomic level 

leads to an amino acid exchange on protein level. While the C to T transition in exon 7 is a silent 

mutation, the nucleotide exchange in exon 8 is located in the 3’ untranslated region of the SMN 

mRNA. 

 

 

1.2.3 Alternative splicing of SMN transcripts 

 

The roughly 1.5 kb SMN1 and SMN2 transcripts are ubiquitously expressed (Lefebvre et al. 1995). 

However, subsequent processing of SMN1 and SMN2 pre-mRNA is markedly different (Gennarelli et 

al. 1995; Lefebvre et al. 1995) (figure 2). The disease determining SMN1 gene almost exclusively 

produces full-length transcripts (FL-SMN1) that contain each single exon (1-2a, 2b-8), whereas SMN2 

undergoes alternative splicing and generates only 10% of FL transcripts (FL-SMN2) but 90% of 

transcripts that lack exon 7 (∆7-SMN2). In the FL transcripts, the translation termination codon is 

located at the end of exon 7. FL-SMN1 transcripts and FL-SMN2 transcripts code for an identical FL-

SMN protein composed of 294 amino acids. The ∆7-SMN2 transcripts lack exon 7 and therefore 

encode a truncated SMN protein of only 282 amino acids. Skipping of exon 7 forces the translation 

machinery to use an alternative stop codon located in exon 8. Thus, a protein is generated with a C-

terminus that lacks the 16 amino acids encoded by exon 7 but contains four amino acids encoded by 

exon 8. This truncated protein is biochemically unstable and shows a reduced oligomerization capacity 

which is essential for proper SMN function (Lorson et al. 1998; Lorson and Androphy 2000). 

Additionally, both SMN genes produce very low amounts of alternatively spliced transcripts lacking 

exon 5 (∆5-SMN) or exon 3 (∆3-SMN) or exons 5 and 7 (∆5,7-SMN) (Gennarelli et al. 1995; Chang et 

al. 2001; Singh et al. 2006). Skipping of these exons leads to the synthesis of an SMN protein which is 

truncated but in frame. The loss of exon 3 is of particular interest, since the corresponding protein 
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sequence contains a so-called Tudor domain that is essential for the interaction with Sm (Smith 

antigen) proteins (see chapter 1.2.5). Absence of the Tudor domain or the presence of missense 

mutations within the encoding genomic region either abolishes or reduces the ability of SMN to 

interact with Sm proteins (Buhler et al. 1999; Mohaghegh et al. 1999; Sun et al. 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The genomic sequences of SMN1 and SMN2 are almost identical except for five nucleotide 

variants: one in intron 6 (44 bp upstream of exon 7: c.835-44G>A), one in exon 7 (bp number 6: c.840C>T), 

two in intron 7 (100 bp downstream of exon 7: c.888+100A>G, and 214 bp downstream of exon 7: 

c.888+214A>G), and one in the 3’ untranslated region in exon 8 (bp 234: c.1121G>A). In contrast to SMN1 

which mainly produces FL transcripts, SMN2 undergoes alternative splicing of exon 7 and generates only 

minor amounts of a FL transcript, but large numbers of truncated ∆7 transcripts. 

 

 

1.2.4 Splicing regulation of SMN exon 7 

 

SMN exon 7 spans 54 nucleotides and harbors a translation termination codon at positions 49 to 51. 

The last nucleotide at the exon/intron border is an adenosine residue, which places exon 7 into the 

minor group of internal exons lacking a guanosine residue at the 3’-end (Burge et al. 1999). Exon 7 is 

characterized by a weak 3’ splice site due to a suboptimal polypyrimidine tract (Lim and Hertel 2001). 

Correct splicing of exon 7 depends on a number of cis-acting elements (splicing enhancers and 

silencers) that are localized within exon 7 itself and the adjacent introns 6 and 7. They are recognized 

by various trans-acting splicing factors which belong to the family of serine(S)–arginine(R)–rich 

proteins (SR and SR-like proteins) as well as to the family of heterogeneous nuclear 

ribonucleoproteins (hnRNPs) (Lorson et al. 1999; Hofmann et al. 2000; Lorson and Androphy 2000; 

Cartegni and Krainer 2002; Hofmann and Wirth 2002; Miyajima et al. 2002; Young et al. 2002b; 

Kashima and Manley 2003; Miyaso et al. 2003). Most of these elements seem to be highly conserved 

and also play a role in processing of the murine Smn pre-mRNA (DiDonato et al. 2001). 

In 1999, it was demonstrated that only the C to T transition in SMN2 exon 7 is responsible for skipping 

of this exon in the majority of SMN2 transcripts, regardless of the cell type or tissue that was 
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investigated (Lorson et al. 1999). Subsequent studies by Cartegni et al. revealed that the C to T 

exchange disrupts the conserved heptamer motif of an exonic splicing enhancer (ESE). In SMN1 

transcripts, this ESE is recognized directly by the SR-rich splicing factor SF2/ASF. Binding of SF2/ASF 

to SMN1 exon 7 facilitates the generation of FL transcripts. However, the altered ESE sequence in 

SMN2 derived transcripts fails to recruit SF2/ASF leading to inefficient exon 7 inclusion (Cartegni and 

Krainer 2002). In contrast to these findings, Kashima et al. demonstrated that the C to T exchange in 

SMN2 creates a new exonic splicing silencer (ESS) for the repressor protein hnRNP A1 rather than 

disrupting an ESE for SF2/ASF (Kashima and Manley 2003). Binding of hnRNP A1 to the ESS in 

SMN2 exon 7 results in skipping of this exon. It was shown that the reduction of hnRNP A1 by RNA 

interference in HeLa cells promotes exon 7 inclusion into SMN2 RNA. Moreover, by using in vitro UV 

cross-linking, hnRNP A1 was found to bind exon 7 of SMN2 but not of SMN1. In 2006, results 

obtained from further extensive testing of the enhancer-loss and the silencer-gain models were 

presented by Cartegni et al. (Cartegni et al. 2006). They support the hypothesis of the enhancer-loss 

model and confirm that SMN2 exon 7 skipping primarily results from the loss of the SF2/ASF-

dependent ESE. It was found that hnRNP A1 indeed has a strong inhibitory effect on exon 7 inclusion, 

but this observation is independent of the C to T transition and, therefore, an indirect event not specific 

to SMN2. The finding that SF2/ASF and hnRNP A1 antagonize each other is well known (Eperon et al. 

2000; Zhu et al. 2001; Black 2003) and may cause tissue-specific differences in the extent of exon 7 

inclusion based on the relative concentration of these two proteins. 

Furthermore, an investigation of the first 16 nucleotides of SMN2 exon 7 revealed that the 5’ end of 

this exon contains a so-called extended inhibitory context (Singh et al. 2004a; Singh et al. 2004b). 

This context covers a larger sequence than the disrupted SF2/ASF-ESE and hnRNP A1-ESS. The 

abrogation of this inhibitory context promotes exon 7 inclusion even in the absence of the SF2/ASF 

binding motif as well as the presence of the hnRNP A1 binding site. Another inhibitory tract consisting 

of seven nucleotides was found near the 3’ end of exon 7 (Singh et al. 2004b). 

In addition to the 5’ end ESE and ESS, another GA-rich ESE is localized in the center of exon 7 of 

SMN1 and SMN2 (Lorson and Androphy 2000). This ESE binds the SR-like splicing factor Htra2-β1, 

the ortholog of Drosophila melanogaster transformer-2 (Tra2) (Hofmann et al. 2000). In Drosophila, 

Tra2 is essential for the regulation of sex-differentiation by alternative splicing (Baker 1989). Mutations 

in the ESE in the center of exon 7 abolish the capacity of SMN1 to produce correctly spliced 

transcripts (Lorson and Androphy 2000). In addition, the SR protein SRp30c as well as hnRNP G and 

RBM (belonging to the group of hnRNPs) directly bind Htra2-β1 and further enhance the inclusion of 

exon 7 (Hofmann and Wirth 2002; Young et al. 2002b). This network of splicing factors binding to the 

central ESE in exon 7 is most likely responsible for the 10-15% of FL mRNA generated by SMN2. 

Over-expression of these splicing factors either separate or in combination restores the splicing 

capacity of SMN2 minigenes up to 80% and substantially increases endogenous SMN protein levels 

(Hofmann et al. 2000; Hofmann and Wirth 2002; Young et al. 2002b). In consideration of the 

regulatory proteins known so far, figure 3 displays two models which summarize the splicing of exon 7 

in SMN1 and SMN2 pre-mRNA. 

Alternative splicing of SMN2 exon 7 is furthermore regulated by an intronic splicing silencer localized 

in intron 6 (element 1; 112 to 68 bp upstream of exon 7) and by an intronic splicing enhancer localized 

in intron 7 (element 2; 59 to 72 bp downstream of exon 7) (Miyajima et al. 2002; Miyaso et al. 2003). 
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However, deletion or mutation of these elements does not affect the correct splicing of wild-type SMN1 

pre-mRNA, suggesting that their function depends on the presence of the C to T transition in SMN2 

exon 7. A 33 kDa protein has been shown to interact with element 1 of SMN2 but not of SMN1. 

Element 2 in intron 7 possesses a characteristic stem-loop structure, in which correct matching of the 

nucleotides within the stem is essential. Data base analysis revealed matching of the nucleotide 

sequence of the stem-loop structure to intronic sequences of several other genes, however, the 

experimental proof for a role in the regulation of splicing still has to be given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Model for the impact of the SMN2 C to T transition on splicing of exon 7 in SMN pre-mRNA 

(Cartegni et al. 2006). (A) In SMN1, binding of U2 snRNP and efficient splicing of exon 7 is due to binding 

of SF2/ASF to the ESE at the 5’ end of the exon which contains the C at position +6. Further splicing 

factors (Htra2-β1, SRp30c, hnRNP G, and yet unknown proteins termed “SR?”) binding to enhancer 

motifs localized downstream additionally promote exon 7 inclusion and the generation of FL transcripts. 

This network of splicing proteins prevents an inhibitory action of hnRNP A1 and/or additional repressor 

proteins (“R?”) on SMN1 exon 7 splicing. (B) In contrast to the SMN1 context, the C to T nucleotide 

exchange and abrogation of the ESE for SF2/ASF in SMN2 allows a markedly increased inhibitory effect 

of hnRNP A1 and/or further suppressors termed “R?”. Thus, exon 7 is skipped in the majority of SMN2 

transcripts. This inhibitory effect can not be overcome by the remaining positive elements which are still 

able to bind downstream in exon 7, except they are over-expressed. 

 

Very recently, another inhibitory element was discovered in intron 7 (Singh et al. 2006). The element 

was called intronic splicing silencer N1 (ISS-N1) and is located 10 to 24 bp downstream of exon 7. 

ISS-N1 is not present in mouse Smn and therefore evolutionary nonconserved. Deletion or mutation of 

ISS-N1 resulted in the correction of the pathologic SMN2 splicing such that substantially increased 

amounts of FL transcript and a splicing pattern similar to that of SMN1 were obtained. 

 

A 

B 
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The existence of different SMN genes that are differently spliced is specific for humans. Mice and rats 

carry only one Smn gene and primates have several SMN gene copies, however, non of these genes 

is subject to alternative splicing and therefore they represent orthologs of the human SMN1 (DiDonato 

et al. 1997; Rochette et al. 2001). 

 

 

1.2.5 The SMN protein 

 

The SMN protein consists of 294 amino acids, is ubiquitously expressed and has a molecular weight 

of 38 kDa. Investigations of adult human tissue revealed high SMN protein levels in spinal cord, 

kidney, liver and brain, whereas skeletal and cardiac muscle tissues, fibroblasts and lymphocytes 

presented lower expression levels (Coovert et al. 1997; Lefebvre et al. 1997). A comparison of SMN 

expression in various human fetal and postnatal tissues reveaIed that protein levels markedly 

decrease during the postnatal period, suggesting a requirement of high SMN levels during embryo-

fetal development (Burlet et al. 1998). A similar expression pattern and developmental regulation of 

Smn, the counterpart to human SMN, was observed in rats and mice (Battaglia et al. 1997; Bergin et 

al. 1997; La Bella et al. 1998; Jablonka et al. 2000). Postnatal down-regulation of the murine Smn 

protein has recently been attributed to a decreased acetylation of histone proteins associated with the 

Smn promoter which in part results in silencing of Smn expression (Kernochan et al. 2005). 

The SMN protein localizes both in the nucleus and the cytoplasm. Immunostaining of various cell 

types demonstrated that cytoplasmic distribution of SMN is diffuse, whereas it is found in prominent 

dot-like structures in the nucleus (Liu and Dreyfuss 1996; Coovert et al. 1997; Burlet et al. 1998). 

These SMN-containing structures are often observed in close proximity to or completely overlapping 

with the coiled bodies [also Cajal bodies; nuclear domains that are enriched in spliceosomal U 

snRNPs (Fakan et al. 1984)], and therefore are termed gemini of coiled bodies (gems) (Liu and 

Dreyfuss 1996; Liu et al. 1997; Young et al. 2000). 

FL-SMN1 and FL-SMN2 transcripts encode an identical SMN protein. Thus, both genes SMN1 and 

SMN2 contribute to the amount of functional SMN protein present in each cell (Coovert et al. 1997; 

Lefebvre et al. 1997). However, due to the skipping of exon 7 during pre-mRNA splicing, SMN2 

produces only minor amounts of FL-SMN protein but predominantly generates a truncated, unstable 

∆7-SMN2 protein (Lorson et al. 1998; Lorson and Androphy 2000). Consequently, SMN2 is unable to 

compensate for the homozygous loss of SMN1 in SMA patients, resulting in a lack of functionable 

SMN protein. This has been confirmed by several studies which demonstrated that SMA patients 

show substantially lower SMN levels in lymphoblastoid cell lines, fibroblasts, liver, muscle and spinal 

cord than control individuals (Coovert et al. 1997; Lefebvre et al. 1997; Helmken et al. 2003). 

Moreover, the number of gems was found to be decreased in subjects affected by SMA. 

SMN forms large multi-subunit macromolecular complexes of ~1MDa that contain numerous SMN-

interacting proteins. The components of the SMN complex are divided into two subgroups. A set of at 

least seven proteins associate with the SMN complex in a stable and stoichiometric manner. They are 

termed ‘core components’. Because they colocalize with SMN in the gems in the nucleus, they are 

also called ‘Gemins2-8’. In addition to these core components, another set of interacting partners 

associates transiently or in a substoichiometric manner with the SMN complex including the Sm 
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proteins which form part of the U snRNPs that are involved in pre-mRNA splicing. A comprehensive 

overview of the SMN complex components known so far is given in table 3. In figure 4, a model for the 

complex of SMN and the core components is presented. In addition to the ability of SMN to bind other 

proteins, it is also known that SMN binds nucleic acids (Lorson and Androphy 1998; Bertrandy et al. 

1999). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The SMN protein forms a functional entity termed SMN complex. The major protein components 

have been grouped as Gemins2-8, and a factor termed unrip. SMN binds directly to Gemin2, Gemin3, 

Gemin5, and Gemin7. The interactions of Gemin3 with Gemin4 and of Gemin7 with Gemin6 mediate the 

close association of these two proteins with the SMN complex. Gemin8 and unrip are bound to the 

complex via direct interaction with the Gemin6-Gemin7 heterodimer. The precise stoichiometry of the 

SMN complex components is not known so far, and with regard to this aspect figure 4 remains a model. 

 

The SMN protein is involved in several essential cellular processes. There are seven main functions of 

the protein known so far: 

1. The SMN complex catalyzes the assembly of spliceosomal U snRNPs (uridine-rich small 

nuclear ribonucleoprotein particles). U snRNPs are composed of one (U1, U2, and U5) or two 

(U4 and U6) uridine-rich RNAs and characteristic sets of proteins (Will and Luhrmann 2001). 

Together with other non-snRNP proteins (Jurica and Moore 2003), the U snRNPs form the 

subunits of the spliceosome, which is the macromolecular machinery that promotes and 

controls the splicing of pre-mRNAs. During the splicing process, U snRNPs are responsible for 

the recognition and activation of intronic sites for splicing (Blencowe 2000). The core structure 

of the U snRNPs is formed by the transfer of seven Sm proteins, which are common to all 

spliceosomal U snRNPs, onto the U snRNA molecule. In several studies, it has been 

demonstrated that this process requires the assistance of the SMN complex in vivo (Meister et 

al. 2001; Meister and Fischer 2002; Pellizzoni et al. 2002). Moreover, the SMN complex is 

also able to promote the maturation of other snRNPs such as U7 snRNP which is involved in 

histone-mRNA processing rather than pre-mRNA splicing, assigning the SMN complex with 

the potential role of ‘master RNP assembler’ (Terns and Terns 2001; Pillai et al. 2003). 

2. Several studies suggest that SMN has a crucial function as recycling factor that regenerates U 

snRNPs after splicing catalysis and thus maintains the U snRNPs in an active form (Pellizzoni 

et al. 1998; Meister et al. 2000; Mourelatos et al. 2001). 

Gemin6

Gemin7

Gemin2
Gemin2 Gemin2

SMN
SMN SMN

Gemin3

Gemin4

Gemin5

unrip

Gemin8

Gemin6Gemin6

Gemin7Gemin7

Gemin2Gemin2
Gemin2Gemin2 Gemin2Gemin2

SMNSMN
SMNSMN SMNSMN

Gemin3

Gemin4

Gemin5

unrip

Gemin8



Introduction 

 

12 

Table 3: The SMN protein is present as part of a large macromolecular complex containing a number of 

common core components and a set of transiently or substoichiometrically interacting partners. 

SMN complex component  

[suggested protein function] 

Direct SMN 

interaction 

Reference 

Core components   

Gemin1 (SMN)  (all references from this table) 

Gemin2 (SIP 1) 

[snRNP biogenesis and pre-mRNA splicing] 

+ (Liu et al. 1997) 

Gemin3 (DP103) 

[snRNP biogenesis and pre-mRNA splicing] 

+ (Charroux et al. 1999; 
Campbell et al. 2000) 

Gemin4 (GIP1) 

[snRNP biogenesis and pre-mRNA splicing] 

- (Charroux et al. 2000; Meister 
et al. 2000) 

Gemin5 (p175) 

[snRNP biogenesis and pre-mRNA splicing] 

+ (Gubitz et al. 2002) 

Gemin6 

[snRNP biogenesis and pre-mRNA splicing] 

- (Pellizzoni et al. 2001b) 

Gemin7 

[snRNP biogenesis and pre-mRNA splicing] 

+ (Baccon et al. 2002) 

Gemin8 

[snRNP biogenesis and pre-mRNA splicing] 

- (Carissimi et al. 2006) 

Unrip 

[snRNP biogenesis and pre-mRNA splicing] 

- (Meister et al. 2001; Grimmler 
et al. 2005b) 

Substoichiometric components   

Sm proteins 

[snRNP biogenesis and pre-mRNA splicing] 

+ (Liu et al. 1997; Friesen and 
Dreyfuss 2000) 

LSm4 

[snRNP biogenesis and pre-mRNA splicing] 

+ (Friesen and Dreyfuss 2000; 
Brahms et al. 2001) 

Fibrillarin 

[assembly of snoRNPs] 

+ (Jones et al. 2001; Pellizzoni 
et al. 2001a) 

GAR1 

[assembly of snoRNPs] 

+ (Pellizzoni et al. 2001a) 

Coilin 

[recruitment of SMN to Cajal bodies] 

+ (Hebert et al. 2001) 

U1-A, U2-A’ 

[snRNP biogenesis] 

unknown (Liu et al. 1997) 

Profilin 

[control of actin dynamics] 

+ (Giesemann et al. 1999) 

ZPR1 (zinc-finger protein 1) 

[caspase activation and apoptosis ; snRNP 
assembly/maturation] 

+ (Gangwani et al. 2001) 

OSF (osteoclast-stimulating factor) 

[regulation of osteoclast formation and activity] 

+ (Kurihara et al. 2001) 

Nucleolin and B23 

[cell growth and control of proliferation; programmed cell 
death, cell surface signal transduction; differentiation and 

maintenance of neural tissues] 

- (Lefebvre et al. 2002) 
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SMN complex component  

[suggested protein function] 

Direct SMN 

interaction 

Reference 

RNA helicase A 

[transcription] 

+ (Pellizzoni et al. 2001c) 

RNA polymerase II 

[transcription] 

- (Pellizzoni et al. 2001c) 

hnRNP Q and R 

[RNA transport along axons] 

+ (Mourelatos et al. 2001; 
Rossoll et al. 2002) 

hsc70 (heat-shock protein 70) 

[posttranslational protein transport] 

unknown (Meister et al. 2001) 

snurportin and importin β 

[transport of snRNPs to nucleus] 

- and + (Narayanan et al. 2002) 

galectin 1 and 3 

[snRNP biogenesis and pre-mRNA splicing] 

- (Park et al. 2001) 

p53 

[apoptosis] 

+ (Young et al. 2002a) 

ISG20 

[degradation of single-stranded RNA] 

unknown (Espert et al. 2006) 

FGF-2 (fibroblast growth factor 2) 

[neurotrophic factor for motor neurons] 

+ (Claus et al. 2004) 

mSin3A 

[transcriptional regulation] 

unknown (Zou et al. 2004) 

EWS (Ewing Sarcoma) 

[transcriptional regulation] 

+ (Young et al. 2003) 

Bcl-2 

[anti-apoptosis] 

+ (Iwahashi et al. 1997) 

FUSE binding protein 

[regulator of transcription, mRNA stability, and RNA 
metabolism] 

+ (Williams et al. 2000; Rothe et 
al. 2006) 

TIA-1 and TIAR 

[RNA metabolism; translation regulation; assemblers of 
stress granules] 

unknown (Hua and Zhou 2004b) 

Rpp20 

[RNA metabolism; component of stress granules] 

+ (Hua and Zhou 2004a) 

PPP4 (protein phosphatase 4) 

[dephosphorylation of serine and threonine residues] 

- (Carnegie et al. 2003) 

TGS1 (trimethylguanosine synthase 1) 

[snRNA cap hypermethylase] 

+ (Mouaikel et al. 2003) 

Viral proteins   

Papilloma virus E2 

[nuclear transcription activation] 

+ (Strasswimmer et al. 1999) 

Minute virus NS1 and NS2 

[viral replication and transcriptional activation] 

unknown (Young et al. 2002c; Young et 
al. 2002d; Young et al. 2005) 

Epstein-Barr virus nuclear antigen 6 

[EBV-induced immortalization of primary human B-
lymphocytes in vitro; transcriptional regulator] 

unknown (Krauer et al. 2004) 
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3. Other studies revealed that SMN is associated with RNA helicase A and RNA polymerase II 

(Strasswimmer et al. 1999; Pellizzoni et al. 2001c; Voss et al. 2001). Over-expression of a 

dominant SMN mutant was shown to inhibit transcription in vivo, whereas wild-type SMN 

stimulated gene transcription (Pellizzoni et al. 2001c). These results raise the possibility that 

the SMN protein plays a role in gene transcription. This hypothesis is further supported by the 

finding that SMN interacts with the protein mSin3A (Zou et al. 2004). mSin3A is a 

transcriptional co-repressor and known to be associated with a number of interacting partners 

in a multiprotein complex, including histone deacetylase (HDAC) 1, HDAC 2, 

methyltransferases, silencing mediator of retinoid and thyroid hormone receptor (SMRT), and 

nuclear receptor co-repressor (N-CoR) (Alland et al. 1997; Hassig et al. 1997; Heinzel et al. 

1997; Laherty et al. 1997). In particular HDACs and methyltransferases are directly involved in 

the regulation of chromatin accessibility and gene expression. Several studies revealed that 

the recruitment of an HDAC-containing complex is a common transcriptional repression 

mechanism used by transcription factors belonging to various functional classes, e.g. nuclear 

hormone receptors (Heinzel et al. 1997; Nagy et al. 1997) and the methyl CpG-binding protein 

MeCP2 (Jones et al. 1998; Nan et al. 1998). All together, these data suggest that the SMN 

protein might play a role in the repression of gene activity via interaction with the co-repressor 

protein mSin3A. 

4. In addition, it has been proposed that SMN is a critical factor involved in axonal mRNA 

transport in neurons. First hints for such an activity of the SMN protein came from the finding 

that SMN interacts with hnRNP R, a protein that binds to the 3’ untranslated region of β-actin 

mRNA (Mourelatos et al. 2001; Rossoll et al. 2002). In a subsequent study, it was 

demonstrated that over-expression either of Smn or of hnRNP R in the rat pheochromocytoma 

cell line PC12 enhances cell differentiation and their axonal outgrowth (Rossoll et al. 2003). In 

addition, motor neurons isolated from an SMA mouse model are characterized by reduced 

levels of β-actin mRNA at the distal axons and growth cones, which underlines the 

assumption that Smn and hnRNP R modulate axonal mRNA transport. Strikingly, it has been 

shown that the SMN protein is indeed localized in dendrites and axons (Bechade et al. 1999; 

Pagliardini et al. 2000). In neuritis and growth cones of cultured neuronal cells, SMN is 

localized in granules that are able to bidirectionally travel along axons which is a prerequisite 

for the function of SMN in axonal trafficking (Zhang et al. 2003). These observations are 

supported by the finding that SMN interacts with profilin II, a neuron-specific factor required for 

actin polymerization (Giesemann et al. 1999; Sharma et al. 2005). Thus, SMN, hnRNP R and 

profilin II all together might be involved in axonal transport processes. 

5. The SMN protein interacts with TIA-1 and TIAR and co-localizes with these proteins in specific 

cellular substructures called stress granules (Hua and Zhou 2004b). This suggests a role for 

SMN in translation regulation. Stress granules are formed in the cytoplasm under stressed 

conditions. In response to stress, about 50% of the total cellular mRNA is actively recruited to 

stress granules (Kedersha et al. 1999). The mRNA in the stress granules is not translated, but 

rather stored and protected. Once the stress is released, stress granules are disassembled, 

and the mRNAs are available for protein synthesis (Nover et al. 1989). It has been clearly 

demonstrated that both TIA-1 and TIAR regulate the translation of various mRNAs in the 
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cytoplasm by binding to AU-rich elements located in the 3’ untranslated regions of these 

molecules (Piecyk et al. 2000; Dixon et al. 2003; Yu et al. 2003; Kandasamy et al. 2005), 

suggesting a similar mechanism of action in the stress granules (Rothe et al. 2006). Moreover, 

the SMN protein is known to interact with FUSE binding protein (Williams et al. 2000). FUSE 

binding protein has also been identified as interaction partner of TIA-1 and TIAR and was 

shown to migrate into TIA-1-containing stress granules upon oxidative stress (Rothe et al. 

2006). These findings suggest the presence of a protein network which includes SMN and 

fulfills key functions in RNA metabolism and translation regulation in the cell. 

6. It is assumed that the SMN protein is involved in the regulation of apoptotic pathways in the 

cell. This idea is based on the finding that the zinc-finger protein ZPR1 belongs to the SMN 

complex components (Gangwani et al. 2001). SMN mutations disrupt the interaction between 

the two proteins, and SMA patients express reduced levels of ZPR1 (Helmken et al. 2003). It 

has been reported that mutation or silencing of the murine Zpr1 gene causes caspase 

activation and apoptosis which results in massive cell death and early embryonic death in 

mice (Gangwani et al. 2005). The interaction between SMN and ZPR1 and the simultaneous 

regulation of the two proteins found in SMA patients suggests that they both may represent 

components of a common functional apoptotic pathway. Additionally, SMN was found to 

interact with the tumor suppressor protein p53 (Young et al. 2002a). p53 can stimulate 

apoptosis through multiple mechanisms (Vousden 2000). It has been suggested that wild-type 

SMN prevents p53-mediated apoptosis, while ∆7-SMN and mutated SMN fail to associate with 

p53, allowing the activation of p53-dependent apoptotic pathways (Young et al. 2002a). The 

idea of a role for SMN in apoptosis is further supported by the finding that SMN can function 

as anti-apoptotic factor in neuronal cells (Kerr et al. 2000) and interacts with the anti-apoptotic 

factor Bcl-2 in a tissue culture model (Iwahashi et al. 1997). 

7. It has been demonstrated that SMN interacts with various viral proteins, including Papilloma 

virus E2, a nuclear regulator of viral gene expression (Strasswimmer et al. 1999), minute virus 

of mice NS1 which performs critical functions in viral gene expression and genome replication 

(Young et al. 2002c), and Epstein-Barr virus nuclear antigen 6, a transcriptional regulator 

which also plays a role in the EBV-induced immortalization of primary B-lymphocytes in vitro 

(Krauer et al. 2004). The association with SMN is assumed to be required to maintain the 

function of these viral proteins. 

 

 

1.3 Animal models of proximal SMA 

 

The use of animal models is a key aspect of scientific research, especially in numerous fields of 

medicine. Animal models of human pathophysiological processes and disorders are desired to 

simulate human conditions and study the cause, nature and cure of human diseases. The advantage 

of animal models is that they represent simpler systems than humans, which often allows a faster 

understanding of the disease underlying molecular mechanisms. Moreover, they are easy to breed 

such that a large number of animals can be obtained within a relatively short period of time. 

Additionally, animal models provide the opportunity to carry out investigations which are essential but 
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unethical to be carried out in humans. However, there is no guaranty that knowledge gained from 

animal models can always be transferred one-to-one to humans. 

In 1997, the murine homolog of the SMN gene was identified and characterized (DiDonato et al. 1997; 

Viollet et al. 1997). In contrast to humans, mice carry only one Smn gene copy which is not subject to 

alternative splicing. To create a mouse model of SMA, Smn was homozygously knocked out (Schrank 

et al. 1997). However, these experiments did not lead to a model of SMA because the mice (genotype: 

Smn
-/-

) displayed massive cell death and lethality during early embryogenesis, indicating that SMN is 

an essential gene required for cellular survival and function. This observation is consistent with the 

finding that each SMA patient carries at least one intact SMN2 gene and the complete absence of 

both SMN1 and SMN2 has never been reported. 

To overcome the embryonic lethality in Smn
-/-

 mice, two approaches were developed. A conditional 

knockout of the murine Smn gene was created by using the Cre-LoxP system. Mice carrying Smn 

exon 7 flanked by LoxP sites were crossbred with mice transgenic for Cre recombinase which is 

expressed under the control of the neuron-specific enolase (NSE) promoter (Frugier et al. 2000). 

These double transgenic mice presented a phenotype with many typical features seen in SMA 

patients, which underlined the fatal consequences of SMN exon 7 skipping in SMA. However, the 

main disadvantage of this mouse model is the continual depletion of FL-Smn in neuronal cells, 

whereas SMA patients display uniformely low levels of FL-SMN2 transcripts. Moreover, depending on 

the number of SMN2 copies, the amount of FL-SMN2 varies among SMA patients, resulting in a 

variation of disease severity. This phenomenon could not be modeled in the conditional Smn exon 7 

knockout mice. Application of a different strategy led to the generation of transgenic mice which are 

characterized by homozygous deletion of the murine Smn gene but express the human SMN2 gene 

(genotype: Smn
-/-

; SMN2) (Hsieh-Li et al. 2000; Monani et al. 2000). In these animals, SMN2 was able 

to prevent the embryonic lethality observed in Smn
-/-

 mice. Smn
-/-

;SMN2 mice carrying one or two 

copies of the transgene showed a substantial degeneration of motor neurons and muscle atrophy by 

postnatal day 5 and subsequently died which closely resembles a severe type I SMA phenotype in 

humans. These mice produce low levels of SMN protein and gems are undetectable in spinal motor 

neurons. An increased number of SMN2 transgenes increased the levels of SMN protein. When eight 

copies of SMN2 were introduced into Smn
-/-

 mice, the transgenes completely rescued the disease 

phenotype, which is consistant with the disease modifying character of SMN2 in humans (Monani et 

al. 2000). 

Additional mouse models were generated which rather resemble the milder type II to III SMA 

phenotypes. Therefore, SMN cDNA lacking exon 7 was placed under the control of an SMN promoter 

and introduced onto a severe SMA genetic background (genotype: Smn
-/-

; SMN2; SMN∆7) (Le et al. 

2005). A similar phenotype was achieved by expression of a known mild SMA missense mutation 

(p.A2G) on the severe SMA mouse background (genotype: Smn
-/-

; SMN2; SMN A2G) (Monani et al. 

2003). Mice heterozygous for endogenous mouse Smn display features which are similar to human 

type III SMA (Jablonka et al. 2000). 

A Drosophila melanogaster model of SMA has been described in 2003 (Chan et al. 2003). Fly larvae 

were identified which contain dSmn missense mutations on both alleles. The mutations are localized 

in a highly conserved region of the encoded protein. Due to the presence of maternal mRNA coding 

for wild-type dSmn protein which is contributed to the embryo by the mother, low levels of wild-type 
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protein will be present in the larvae and thus allow survival up to late larvae stages. The mutant fly 

larvae present severe motor abnormalities and therefore may serve as a very simple invertebrate 

disease model. Another model of SMA was established in zebrafish (Danio rerio) by knockdown of the 

Smn protein using antisense morpholinos (McWhorter et al. 2003). Due to its well-characterized 

nervous system, the relatively simple neuromuscular organization and the transparency of the 

embryos which allows a close inspection of neurons, zebrafish are a well-suited model for the analysis 

of neuromuscular diseases like proximal SMA. Furthermore, Caenorhabditis elegans is known to be a 

powerful model organism to study neurobiology, development, and cell death (Wood 1988; Riddle 

1997). It is easy to grow and maintain, the entire genome has been sequenced (The-C.elegans-

Sequencing-Consortium 1998), and the whole organism consists of a low number of cells (Wood 

1988). The use of RNA interference to down-regulate Smn protein levels in Caenorhabditis elegans 

led to a phenotype that included a marked negative effect on embryonic viability and locomotive 

defects in the progeny, suggesting that the nematode can also serve as model organism for the study 

of SMA (Miguel-Aliaga et al. 1999). 

 

 

1.4 Biology of motor neuron degeneration in proximal SMA 

 

Spinal muscular atrophy is characterized by specific degeneration of α-motor neurons in the anterior 

horns of the spinal cord. Other cell types are not known to be affected in SMA patients. Thus, the 

discovery of the SMN gene in 1995 raised the question whether this gene might have an exclusively 

neuronal function and impairment of this tissue-specific function causes the disease phenotype. If this 

were the case, expression of SMN should also be restricted to α-motor neurons only. However, SMN 

is ubiquitously expressed in all types of cells, rather suggesting that it belongs to the group of 

housekeeping genes which are crucial for the survival of each single cell type in an organism. So the 

question is: Why does the reduced expression of the ubiquitous protein SMN cause a tissue-specific 

phenotype? Considering that spinal cord is one of the tissues showing particularly high levels of SMN, 

it is reasonable to speculate that α-motor neurons are more vulnerable to substantially reduced SMN 

protein levels than other cell types, but the question remains: Which function(s) of the SMN protein is 

so essential for α-motor neurons that only these cells degenerate upon homozygous loss of the SMN1 

gene and not other cell types? 

Based on the current knowledge about the cellular functions of the SMN protein (see chapter 1.2.5), 

several models are proposed which try to give the reason for the specific defect of α-motor neurons in 

SMA patients. Two of these models are considered as most likely to explain the underlying 

pathophysiologic mechanism. One prediction is that SMA indeed is the result from the disruption of a 

neuron-specific function assigned to the SMN protein, such as the essential role in β-actin mRNA 

trafficking along axons (Rossoll et al. 2003; Briese et al. 2005). Insufficient transport of β-actin mRNA 

to neuronal growth cones would lead to defects in axonal outgrowth, i.e. truncation and early 

branching of motor axons, finally resulting in insufficient innervation of muscles, a typical feature in 

SMA patients. This hypothesis is supported by the observation that actin polymerization in axons 

requires the interaction between functionable SMN protein and profilin II (Giesemann et al. 1999; 

Sharma et al. 2005). 
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The second model suggests that the impairment of snRNP biogenesis (which decreases the amount 

of active spliceosomes available for pre-mRNA splicing) is the causative reason for motor neuron 

degeneration. In contrast to mRNA trafficking which is specifically required in motor neurons, snRNP 

biogenesis is a basic function of every cell. However, it is believed that motor neurons are more 

vulnerable to a defect in U snRNP assembly, because they exhibit a high turnover of mRNAs 

encoding proteins with tissue-specific activities (Chisholm and Tessier-Lavigne 1999; Tear 1999). A 

hypothesis suggests that tissue-specific pre-mRNAs are spliced less efficiently than pre-mRNAs of 

constitutive genes (Faustino and Cooper 2003). Thus, a group of tissue-specific mRNAs with 

suboptimal splice sites might be more sensitive to reduced SMN levels and reduced snRNP levels 

than other mRNAs. Consequently, it might be possible that motor neurons are not able anymore to 

meet the demand for such tissue-specific proteins, resulting in specific motor neuron degeneration. 

Both scenarios are attractive and sound convincing. However, further experiments are needed to 

check which of the models gives the reason for the tissue-specific pathology in SMA. It has to be 

carefully evaluated if β-actin mRNA transport and actin-polymerization are linked directly to reduced 

levels of SMN. A direct link between reduced levels of SMN and the impaired ability of these cells to 

promote U snRNP assembly has already been demonstrated in non-neuronal cell cultures (Feng et al. 

2005; Shpargel and Matera 2005; Wan et al. 2005; Winkler et al. 2005) and fibroblasts derived from 

SMA patients (Wan et al. 2005). Moreover, this hypothesis was supported using zebrafish as a model 

for SMA. Silencing of Gemin2, a component of the SMN complex, resulted in the same motor-axon 

phenotype as obtained by knock-down of SMN expression (Winkler et al. 2005). This motor-axon 

phenotype of zebrafish lacking either Gemin2 or SMN could be prevented by addition of purified U 

snRNPs, the end product of the SMN-mediated snRNP biogenesis. However, future studies now have 

to focus on the search for tissue-specific pre-mRNAs with splicing patterns that are offset to prove the 

idea that they are more sensitive to reduced snRNP levels and lead to reduced levels of proteins 

which are specifically required by motor neurons. 

In addition, there is a third model which is based on the findings that (i) the SMN protein is located in 

stress granules, interacts with the TIA-1, the TIAR, and the FUSE-binding proteins and therefore might 

have a role in translation regulation (Williams et al. 2000; Hua and Zhou 2004b; Rothe et al. 2006), 

and (ii) SMN interacts with the transcriptional co-repressor mSin3A and therefore may be involved in 

the regulation of gene activity and transcription (Zou et al. 2004). It is assumed that reduced levels of 

the SMN protein might result in the dysregulation of genes and their transcripts which are specific of 

and essential for α-motor neurons in the spinal cord, subsequently leading to their degeneration. 

However, to confirm this hypothesis, future studies will have to prove whether such genes can indeed 

be identified. 

 

 

1.5 State-of-the-art of SMA treatment and therapeutic prospects 

 

So far, a cure for SMA is not available. Most care for patients is focused on symptomatic control and 

preventive rehabilitation, including physical therapy to maintain joint mobility and to decrease the 

incidence of contractures. However, the extensive knowledge gained about the pathological disease 

mechanisms and the underlying molecular principles allows the development of therapeutic strategies 
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which might lead to an improvement of the SMA phenotype or even prevent disease onset. The 

therapeutic approaches which have been established until now are summarized in figure 5. So-called  

non-targeted strategies aim at the discovery of neuroprotective or neurotrophic agents which are able 

to protect α-motor neurons from degeneration (figure 5f). Another idea is the application of 

replacement therapies to SMA. By the means of embryonic stem cell transfer or gene therapy, motor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Potential therapeutic strategies for the treatment of SMA (Eggert et al. 2006).  

 

neurons containing functional SMN1 genes or functional SMN1 copies per se could be introduced into 

the spinal cord of SMA patients and compensate for the inherited loss of SMN1 (figure 5a). The 

therapeutic approaches considered most promising, however, are so-called targeted strategies which 

focus on the SMN2 gene. SMN2 is ubiquitously expressed and present at least once in each SMA 

patient. Importantly, FL-SMN2 protein is identical to FL-SMN1 protein. Thus, it seems reasonable to 
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believe that increasing the amount of endogenous FL-SMN2 may compensate for the lack of FL-

SMN1, resulting in a clinical benefit for SMA patients. An up-regulation of FL-SMN2 protein levels 

might be achieved by increasing the overall transcription rate of the SMN2 gene (figure 5b) or by 

promoting the inclusion of exon 7 into SMN2 mRNA such that the pathological SMN2 splicing pattern 

shifts toward the wild-type pattern of SMN1 (figure 5c). Moreover, it is assumed that suppression of 

the use of the stop codon in exon 8 of the ∆7-SMN2 transcripts leads to the synthesis of a protein 

containing additional amino acids at the C-terminus, which possibly increases stability and 

oligomerization ability of the ∆7-SMN2 protein (figure 5d). Another idea is to elevate the activity of 

functional FL-SMN2 protein remaining in SMA patients to improve the efficacy of processes catalyzed 

by SMN, e.g. the assembly of snRNPs and axonal mRNA trafficking (figure 5e). 

 

 

1.6 Chromatin structure and epigenetic regulation 

 

The genetic code for proteins is defined by the nucleotide sequence of the DNA. The DNA transfers 

this information to mRNA, which is translated into a protein macromolecule. However, the DNA code 

alone is not sufficient for the generation and regulation of the complex gene expression pattern in 

eukaryotic organisms. Multiple transcription factors bind to specific nucleotide sequences in the 

chromatin, which is the condensed structure of the DNA in the nucleus, and recruit chromatin 

modifiers and further transcription complexes. These modifiers and complexes provide additional 

regulatory information, mainly consisting of the posttranslational modification of histones which are 

proteins complexed to the DNA in the nuclei of all eukaryotic cells. The information is printed on the N-

termini of the histone proteins in the form of acetylation, phosphorylation and/or methylation, thereby 

extending the information given by the nucleotide sequence in the DNA code. One of the major 

differences between the DNA code and the so-called histone code is that the DNA code is permanent 

while the histone code is temporal. Importantly, the DNA encodes the information for printing the 

histone code (Jenuwein and Allis 2001; Agalioti et al. 2002; Richards and Elgin 2002). 

The term epigenetics refers to the study of heritable, potentially reversible changes in the expression 

of genes (e.g. due to histone modification) that occur without a change of the DNA sequence but 

rather provide an “extra” layer of transcriptional control that regulates how genes are expressed 

(Egger et al. 2004; Galm et al. 2006; Rodenhiser and Mann 2006). 

 

 

1.6.1 DNA packaging in the eukaryotic nucleus 

 

In the nuclei of all eukaryotic cells, the genomic DNA is associated with histone proteins and non-

histone proteins, forming a highly folded, complex structure called chromatin (Kornberg 1974; Luger et 

al. 1997; Spotswood and Turner 2002; Felsenfeld and Groudine 2003) (figure 6). The basic repeating 

unit of the chromatin is called nucleosome (Kornberg 1974; Oudet et al. 1975). Nucleosomes are 

composed of approximately 146 bp of two superhelical turns of DNA wrapped around an octamer of 

core histone proteins (Luger et al. 1997). Core histones are among the most highly conserved 

eukaryotic proteins known, presumably because of specific structural properties required for the 
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interaction with DNA, with one another, and with other non-histone proteins (Sandman et al. 1998). 

This histone core consists of pairs of histones H4, H3, H2A, and H2B (Thomas and Kornberg 1975; 

Eickbush and Moudrianakis 1978). The H3 and H4 subunits form a H3-H4 heterotetramer which 

interacts with two H2A-H2B dimers (Burlingame et al. 1985; Arents et al. 1991). The nucleosomes are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Eukaryotes package their DNA inside cells in the nucleus. There, the DNA is associated with 

histone and non-histone proteins to form a highly folded, complex structure called chromatin (Felsenfeld 

and Groudine 2003). 

 

separated by DNA pieces consisting of 10-80 bp which are also called linker-DNA. The resulting 

chromatin fiber is characterized by a diameter of about 10 nm and may also be described as “beads-

on-a-string” arrangement (Olins and Olins 1974) which is folded into even more condensed chromatin 

fibers with a diameter of ~30 nm. These 30-nm fibers are stabilized by binding of a linker histone 

protein H1 to each nucleosome and its adjacent linker. Histone H1 shows a greater degree of 
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evolutionary variability than the core histones and might be expressed in several variants in different 

cell types of an organism (Noll and Kornberg 1977; Widom 1998; Thomas 1999; Felsenfeld and 

Groudine 2003). Further condensation of the DNA occurs in vivo to form 100-400 nm thick interphase 

coiled chromatin fibers or more highly compacted metaphase chromosome structures. Non-histone 

proteins, including the class of high mobility group (HMG) proteins which are ubiquitous in mammalian 

cells, are also able to bind to chromatin, thereby acting as architectural elements that may modify the 

chromatin structure (Bustin and Reeves 1996; Bustin 1999; Bustin 2001a; Bustin 2001b). 

 

 

1.6.2 Epigenetic modification of DNA and histone proteins 

 

The highly condensed DNA which is organized into chromatin fibers is inaccessible for enzymes such 

as RNA polymerases. They are denied access to chromatin, and biochemical reactions such as 

transcription are inhibited. Consequently, the chromatin structure must be dynamic: Genes are silent 

when the chromatin is condensed, and they are transcribed as soon as the chromatin structure is 

(partially) disrupted and unfolded (Felsenfeld and Groudine 2003; Rodenhiser and Mann 2006). 

Consistent with this idea, it has been demonstrated that nucleosomes which are associated with 

transcriptionally active genes are better accessible to enzymes that digest DNA than those associated 

with inactive genes (Weintraub and Groudine 1976). 

The dynamics of the chromatin structure is obtained by specific reversible changes in the epigenetic 

pattern, most importantly including DNA methylation and posttranslational modification of histone 

proteins (Feinberg and Tycko 2004). The methylation of DNA is carried out by covalent addition of a 

methyl group to cytosines within CpG (cytosine/guanine) pairs by a family of cytosine-

methyltransferases (Ehrlich and Wang 1981; Laird and Jaenisch 1994; Feinberg and Tycko 2004; 

Rodenhiser and Mann 2006). DNA methylation occurs almost exclusively at CpG pairs. Clusters of 

CpG pairs are also called CpG islands. Unmethylated CpGs are located in tissue-specific genes and 

genes that are constitutively expressed in all tissues because they are required for the maintenance of 

basic cell functions (housekeeping genes). They are target for proteins that specifically bind to 

unmethylated CpGs and initiate gene transcription. In contrast, methylated CpGs can block binding of 

these proteins, are target for a distinct subset of binding proteins which mediate transcription 

repression and thus play an important role in gene silencing. DNA methylation is a mechanism of high 

relevance for X-chromosome inactivation (Avner and Heard 2001). The disruption of the normal DNA 

methylation pattern is an important epigenetic cause of disease. Already in 1983, DNA extracted from 

normal and cancer tissues was compared by digestion with methylation-sensitive restriction enzymes 

(Feinberg and Vogelstein 1983a). It was demonstrated that a large proportion of CpGs which are 

methylated in normal tissues were unmethylated in cancer cells, suggesting that hypomethylation may 

cause cancer by activation of oncogenes that promote proliferation (Feinberg and Vogelstein 1983b; 

Nakamura and Takenaga 1998; Cho et al. 2001; Akiyama et al. 2003). On the other hand, also 

hypermethylation may lead to cancer by silencing of tumor-suppressor genes. The first link between 

hypermethylation and tumor-suppressor genes was demonstrated on the retinoblastoma gene RB in 

1989 and 1991 (Greger et al. 1989; Sakai et al. 1991). In 1993 and 1994, further studies confirmed 

that RB expression is reduced by 92% in tumors with promoter hypermethylation (Ohtani-Fujita et al. 
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1993; Greger et al. 1994). Today, a large number of tumor-suppressor genes is known to be linked to 

cancer in case of hypermethylation (Rodenhiser and Mann 2006). 

In addition to DNA methylation, posttranslational modification of histone proteins is another factor with 

substantial impact on DNA structure and gene expression. Each of the core histones harbors a 

globular domain which mediates histone-histone interactions within the octamer and a flexible amino-

terminal charged tail that is rich in basic amino acids and protrudes from the surface of the 

nucleosome (Luger et al. 1997; Jenuwein and Allis 2001; Peterson and Laniel 2004). Many amino 

acids of the histone proteins may be chemically modified: lysines may be acetylated, mono-/di-/tri-

methylated, ubiquitylated or sumoylated; arginines may be acetylated or mono-/di-methylated; serine 

and threonine residues are subject to phosphorylation (Grant 2001; Peterson and Laniel 2004). The 

majority of posttranslational modifications occurs at the amino-terminal histone tails, however, a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Histone methylation and acetylation are two key factors that regulate gene expression. 

Deacetylation of histones by histone deacetylases (HDACs) and subsequent methylation by histone 

methyltransferases (HMTs) provides a solid base for highly repressive structures, such as 

heterochromatin (red traffic light). Unmethylated histones which are acetylated by histone 

acetyltransferases (HATs) (yellow traffic light) permit ATP-dependent chromatin remodeling factors to 

open promoters which activates gene transcription activity (green traffic light). Methyl groups (Me) are 

indicated as gray rectangles, and acetyl groups (Ac) are presented as yellow circles (Eberharter and 

Becker 2002). 
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number of marks has also been discovered at the carboxy-terminal tail and even within the central 

histone domains. Histone modifications have long been linked to DNA function and regulation of 

transcription (Allfrey et al. 1964). All histone modifications together constitute the so-called histone 

code (Jenuwein and Allis 2001; Peterson and Laniel 2004). They can affect one another, and they are 

often correlated with each other. A specific combination of single histone marks results in specific 

functional consequences and correlates with certain biological functions. Interestingly, one and the 

same combination of histone marks may lead to different or opposite biological consequences, 

depending on the gene of interest and the cellular context. In contrast, the DNA code is always the 

same, no matter in which cell type or tissue a gene is analyzed. The first enzyme which catalyzes 

histone modifications was identified not earlier than 1996 (Brownell et al. 1996). The yeast protein 

Gcn5, a transcriptional co-activator protein, was demonstrated to possess histone acetyltransferase 

(HAT) activity which provided strong molecular evidence of the link between histone modification and 

regulation of transcription. Today, histone modification enzymes are subdivided into several groups, 

including histone acetyltransferases (HATs), histone deacetylases (HDACs), histone 

methyltransferases (HMTs) and histone kinases. Histone modifying enzymes do not bind directly to 

DNA, but are recruited to DNA by DNA-sequence specific transcription factor protein complexes 

(Cress and Seto 2000; Urnov et al. 2000; Gray and Ekstrom 2001; de Ruijter et al. 2003). A specific 

set of site-specific posttranslational histone modifications is achieved by targeting histone modifying 

enzymes to specific promoter regions and by the specificity of the recruited enzymes themselves for 

individual histone tails and histone residues. Once a pattern of histone modification is established, 

histone tails are able to specifically interact with nonhistone proteins which in turn can also regulate 

chromatin structure and the accessibility of certain DNA regions for further enzymes (Strahl and Allis 

2000; Wu and Grunstein 2000). 

In general, transcriptionally active chromatin regions (euchromatin) are characterized by unmethylated 

DNA and high levels of acetylated histones. In contrast, inactive DNA regions (heterochromatin) show 

deacetylated histones and methylated CpG islands (figure 7). However, this is not an overall rule.  

E.g., although methylated histone H3 recruits the heterochromatin protein 1 (HP1) and is mainly 

associated with transcriptionally silent DNA regions, HP1 also interacts with a number of 

transcriptional coactivators involved in gene regulation in euchromatin (Wallrath 1998; Jones et al. 

2000). Likewise, whereas histone hypoacetylation is commonly found in inactive chromatin regions, 

acetylation of specific lysine residues of histone H4 has been reported to be a characteristic for 

heterochromatin too (Turner et al. 1992; Braunstein et al. 1996; Turner 2000). This suggests that 

histone methylation not exclusively corresponds with gene silencing, and histone acetylation mostly 

stimulates, but may also repress gene transcription (Jenuwein and Allis 2001). 

 

 

1.6.3 Histone deacetylases (HDACs) and histone acetyltransferases (HATs) 

 

The acetylation and deacetylation of the amino groups of lysine residues in histone tails is the most 

intensively studied posttranslational histone modification (Grant 2001). Histone acetylation is catalyzed 

by a category of enzymes called histone acetyltransferases (HATs), whereas deacetylation is carried 

out by a group of enzymes termed histone deacetylases (HDACs). In addition to the specific and 
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targeted acetylation and deacetylation of histone sites which, e.g., takes place throughout the normal 

cell cycle, it is suggested that there is a constant battle among HATs and HDACs in a global, non-

targeted manner to maintain a baseline, equilibrium level of histone acetylation throughout the 

genome (Peterson and Laniel 2004). 

In 1996, HDAC 1 was the first mammalian histone deacetylase to be identified (Taunton et al. 1996). 

Based on their similarity to various yeast histone deacetylases, all mammalian HDACs which have 

been identified so far can be separated into three classes (table 4) (Khochbin et al. 2001; de Ruijter et 

al. 2003; Marks et al. 2003; Yang and Gregoire 2005). Class I includes HDACs 1, 2, 3, and 8. These 

enzymes are related to yeast deacetylase RPD3 (reduced potassium dependency 3) and share 

 

Table 4: Classification of mammalian histone deacetylases (HDACs). The homologous yeast deacetylase 

is given in brackets. 

Class I (RPD3) Class II (HDA1) Class III (Sir2) 

HDAC 1 

HDAC 2 

HDAC 3 

HDAC 8 

(HDAC 11) 

 

 

HDAC 4 

HDAC 5 

HDAC 6 

HDAC 7 

HDAC 9 

HDAC 10 

 

SIRT 1 

SIRT 2 

SIRT 3 

SIRT 4 

SIRT 5 

SIRT 6 

SIRT 7 

 

homologous catalytic sites. Class II includes HDACs 4, 5, 6, 7, 9, and 10. With a molecular mass 

between 120 and 135 kDa, they are larger molecules than class I HDACs which have a mass ranging 

between 22 and 55 kDa. Class II HDACs are homologs of yeast deacetylase HDA1. The class II 

enzymes may be subdivided into members with only one catalytic domain (HDACs 4, 5, 7, 9) and 

members with two catalytic domains (HDACs 6, 10) (Fischer et al. 2002; Hubbert et al. 2002). HDAC 

11 contains conserved residues in the catalytic region which are shared by both class I and II HDACs 

(Gao et al. 2002). Therefore, HDAC 11 has homology to both HDAC classes and is sometimes 

grouped into a separate category termed HDAC class IV (Yang and Gregoire 2005). Class I HDACs 

display some sequence homology to members of class II, but not to those of class III. Class III HDACs 

are enzymes with homology to yeast Sir2 (silent information regulator 2). In contrast to the zinc-

dependent activity of class I and II HDACs, class III acts NAD
+
-dependent. SIRT 1-7 appear not to act 

on histones but rather deacetylate non-histone proteins such as p53, α-tubulin, forkhead and other 

transcription factors (Marks et al. 2004; Marmorstein 2004). HDACs are not redundant in function. 

Class I HDACs are almost exclusively localized in the nucleus, whereas class II HDACs shuttle 

between the nucleus and the cytoplasm (Marks et al. 2004). Among the members of class III, SIRT 1, 

6, and 7 are localized in the nucleus, SIRT 2 in the cytoplasm, and SIRT 3, 4, and 5 in the 

mitochondria (Michishita et al. 2005). 

Proteins with histone acetyltransferase (HAT) activity are more diverse than HDACs (Roth et al. 2001; 

Carrozza et al. 2003). Some of the known HATs are also able to acetylate non-histone proteins 

(Kouzarides 2000; Sterner and Berger 2000) which was first discovered in 1997 when p53 was found 

to be acetylated at specific lysine residues in its C-terminus (Gu and Roeder 1997). Likewise, not all of 
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the proteins which possess lysine acetyltransferase activity are able to acetylate histones (Yang 

2004). Enzymes which are able to acetylate specific lysine residues within histones and/or other 

proteins are termed lysine acetyltransferases (LATs). Mammalian LATs are subclassified into a 

number of families: Hat1, Gcn5/PCAF, p300/CBP, MYST, p160, CIITA, ATFII; TAFII250, TFIIIC, Elp3, 

CDY, TFIIB, MCM3AP, Eco1, and ARD1 (Yang 2004). The majority of proteins known to be modified 

by LATs are histones and transcriptional regulators. Other cellular proteins in which this modification 

has been observed include DNA metabolic enzymes (Hasan et al. 2001; Tini et al. 2002), the signaling 

regulator Smad7 (Gronroos et al. 2002), and α-tubulin (Doenecke and Gallwitz 1982). Most HATs exist 

as multisubunit complexes in vivo. One HAT can be the catalytic subunit of multiple complexes which 

adds another level of complexity to the already diverse superfamily of LATs (Yang 2004). 

 

 

1.6.4 Chemical substances that inhibit the activity of HDACs 

 

In 1990, trichostatin A (TSA, a Streptomyces product) was the first substance reported to have an 

effect on cell proliferation and cell differentiation and to directly inhibit HDACs (Yoshida et al. 1990). 

However, due to its unfavorable bioavailability, TSA was never considered as promising anticancer 

drug. Independent from this discovery, in screens for promising drugs for cancer therapy which were 

carried out a few years later, several novel compounds were identified to inhibit proliferation and 

induce differentiation of tumor cell lines in vitro (Yoshida et al. 1987; Ueda et al. 1994a; Ueda et al. 

1994b; Ueda et al. 1994c; Richon et al. 1996). The mechanism of action of these substances was 

unclear. It was after their identification as potential anticancer agents that these compounds were 

identified as inhibitors of HDACs (Nakajima et al. 1998; Richon et al. 1998). Thus, a novel class of 

agents termed HDAC inhibitors was established. According to their chemical structure, the HDAC 

inhibitors discovered so far are divided into four classes: hydroxamic acids, cyclic peptides, aliphatic 

acids, and benzamids (table 5) (Miller et al. 2003). The structural details of the HDAC inhibitor – 

enzyme interaction have been elucidated in 1999. Crystallographic studies using TSA and SAHA 

indicated that these compounds inhibit HDAC activity by interacting with the catalytic site of HDACs, 

thereby blocking substrate access (Finnin et al. 1999). Thus, HDAC inhibitors consist of a metal-

binding domain which chelates zinc and blocks enzymatic activity; a linker domain which mimics the 

substrate and occupies the enzymatic channel; and a surface domain which makes contacts with the 

rim (Miller et al. 2003). For some of the cyclic peptides, an irreversible action of HDAC inhibition is 

discussed, however, the ultimate proof is still lacking (Kijima et al. 1993; Meinke and Liberator 2001; 

Miller et al. 2003). All HDAC inhibitors known so far work equally well against class I and II HDACs 

(Marks et al. 2004). Only a few compounds (MS-275 and cyclic peptides) seem to be preferential 

inhibitors of class I versus class II HDACs (Furumai et al. 2001; Furumai et al. 2002; Matsuyama et al. 

2002; Miller et al. 2003), none of the compounds known to date is selective for a single enzyme 

(Marks et al. 2004). 

The mechanisms by which HDAC inhibitors facilitate their antitumor activites involve hyperacetylation 

of histone proteins, thereby directly altering the chromatin structure and activating the expression of 

genes. Moreover, the activity of transcription factors can be modulated by acetylation which may exert 

additional effects on gene transcription (Cress and Seto 2000; Marks et al. 2001; Marks et al. 2004). 
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On the basis of promising results obtained in cell cultures in vitro and favorable bioavailability data, a 

small number of HDAC inhibitors which are not toxic has been promoted to clinical trials to prove their 

potency against cancer in vivo (Miller et al. 2003; Marks et al. 2004). 

 

Table 5: Classification of histone deacetylase inhibitors (HDACs). 

Hydroxamic acids Cyclic peptides Aliphatic acids Benzamids 

- Trichostatin A (TSA) 

- Suberoylanilide  

  hydroxamid acid  

  (SAHA) 

- Pyroxamide 

- m-Carboxycinnamic 

  acid bishydroxamide 

  (CBHA) 

- LAQ-824 

- PXD-101 

- Oxamflatin 

- Scriptaid 

- Depsipeptide 

- Apicidin 

- Trapoxin-hydroxamid 

  acid analog 

 

 

 

 

 

 

 

 

- Valproic acid 

- Butyrate 

- Phenylbutyrate 

- MS-275 

- CI-994 

- M344 

 

 

 

 

 

 

 

 

 

 

A substance which has long been known to induce hyperacetylation of chromatin in cell culture and 

also belongs to the earliest discovered HDAC inhibitors is sodium butyrate (Riggs et al. 1977). It has 

been suggested that, at least in part, this observation is due to a suppression of histone deacetylase 

activity (Boffa et al. 1978; Vidali et al. 1978; McCaffrey et al. 1997). Sodium butyrate has been shown 

to stimulate the expression of a number of genes and to induce differentiation in cancer cell lines 

(Leder and Leder 1975; Kruh 1982; Byrd and Alho 1987). It also has been demonstrated that butyrate 

increases the production of fetal-hemoglobin which is able to functionally substitute for the beta-globin 

chains that are defective or absent in patients suffering from beta-thalassemias (Perrine et al. 1993; 

McCaffrey et al. 1997). In 2001, the treatment of Epstein-Barr-Virus transformed lymphoblastoid cell 

lines derived from SMA type I, II, and III patients with sodium butyrate revealed increased full-length 

SMN2 transcript and SMN protein levels (Chang et al. 2001). In addition, when sodium butyrate was 

administered to the pregnant mothers of SMA transgenic mice (Smn
-/-

; SMN2), it improved survival in 

their offspring. This was the first study which suggested that HDAC inhibitors might be able to exert an 

effect on SMN2 expression. However, due to a terminal half-life of only six minutes in human serum 

after systemic administration, butyrate would never reach its potential target in sufficient amounts and 

therefore was never considered as potential candidate neither for a long-term SMA therapy in patients, 

nor for cancer treatment (Miller et al. 1987; Newmark et al. 1994; Newmark and Young 1995; 

Engelhard et al. 2001). 

Interestingly, it was discovered in 2001 that valproic acid is a powerful HDAC inhibitor which causes 

hyperacetylation of histones in cultured cells, relieves HDAC-dependent transcriptional repression, 

activates transcription from diverse exogenous and endogenous promoters and inhibits growth and 

induces differentiation of carcinoma cell lines in vitro, and of tumors in animal experiments in vivo 

(Gottlicher et al. 2001; Phiel et al. 2001). Valproic acid is a well-known drug which is used in long-term 
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treatment of epilepsy, mood disorders and migraine, is characterized by a suitable terminal half-life of 

9-18 h in human serum, rarely shows severe side effects and possesses an excellent bioavailability 

(Johannessen 2000; Johannessen and Johannessen 2003). Thus, the drug is considered as excellent 

candidate for cancer therapy by HDAC inhibition (Gottlicher et al. 2001). 
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2 Aims 

 

Proximal spinal muscular atrophy is the leading genetic cause of death in early childhood. Until now, a 

cure is not available. Since SMN1 was identified as the SMA determining gene in 1995, 

comprehensive knowledge regarding the pathological disease mechanisms and the underlying 

molecular principles was gained, most importantly including the discovery and characterization of the 

SMN2 copy gene in SMA patients. This knowledge about the molecular basis of SMA enables the 

design of therapeutic strategies which might lead to a clinical benefit for patients with SMA. 

 

The aim of this work was to focus on the SMN2 copy gene as a promising target for an SMA therapy. 

The basic question was whether inhibitors of histone deacetylases (HDACs) are able to stimulate the 

transcription of SMN2, thereby increasing the level of FL-SMN2 transcript and SMN2 protein. HDAC 

inhibitors are exogenous compounds that have been previously identified as promising agents for the 

treatment of cancer. They have been demonstrated to activate the expression of genes which 

suppress proliferation and induce cell differentiation. 

 

In a first step, this work was supposed to concentrate on the in vitro investigation of the HDAC inhibitor 

valproic acid (VPA). VPA is a well-known drug used for the long-term therapy of epilepsy in humans. 

To evaluate whether VPA is able to exert an effect on the human SMN2 gene in vitro, an assay was 

planned to be established in which cell lines derived from SMA patients are treated with varying 

amounts of VPA. A potential effect of VPA should be uncovered and characterized in more detail by 

analysis of SMN2 RNA and protein levels in the treated cell lines. Moreover, this work aimed at the 

investigation of a potential ex vivo effect of VPA on SMN2 expression in neuronal tissue, the target 

tissue for an SMA therapy. 

 

In a second step, it was an aim of this work to select additional HDAC inhibitors which are not yet 

available for application to humans but are tested for their anticancer potency in clinical trials, and to 

evaluate whether these drugs are able to elevate FL-SMN2 transcript and protein levels in SMA cell 

lines in vitro. This drug screening should serve as a tool to identify promising candidates which might 

have a chance to be further considered for a potential SMA therapy. 

 

In case the treatment of SMA cell lines with VPA should reveal an up-regulation of the SMN2 protein 

level, it was planned to further investigate VPA in vivo. The existing approval of VPA for the 

application in humans would allow the treatment of a small number of probands within a pilot trial to 

investigate whether the drug exerts an effect on SMN gene expression in vivo. Therefore, this work 

also aimed at the development of bioanalytical methods to reliably detect SMN transcript and SMN 

protein levels in peripheral blood. These methods would not only be essential to analyze the samples 

collected throughout the pilot trial with VPA, but also to establish a clinical biomarker to distinguish 

between drug responders and nonresponders in larger clinical trials and future therapies in SMA 

patients. 
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3 Subjects, Materials, and Methods 

 

3.1 Human material derived from control subjects, SMA carriers, and SMA patients 

 

Whenever human material was collected and a genetic analysis was carried out, informed written 

consent was given by the respective subjects or their legal guardians. All SMA type I, II, and III 

patients who donated human material fulfilled the diagnostic criteria for SMA (Munsat and Davies 

1992), and carry homozygous deletions of SMN1 as determined by routine molecular diagnostic 

testing. The number of genomic SMN1 copies (controls, SMA carriers) and the number of genomic 

SMN2 copies (controls, SMA carriers, SMA type I, II, and III patients) was determined in DNA isolated 

from an EDTA blood sample which has been collected from the respective donor (for details regarding 

the quantitative analysis of SMN1 and SMN2 copies, see also chapter 3.8.9.2). 

 

 

3.1.1 Cell lines derived from SMA patients 

 

In Professor Dr. Brunhilde Wirth’s laboratory, a collection of about 50 primary fibroblast cell lines and 

about 400 Epstein-Barr-Virus (EBV) transformed lymphoblastoid cell lines derived from SMA patients, 

SMA carriers, and controls is available. The fibroblast lines were obtained from skin biopsies. The EBV 

cell lines are derived from EDTA blood samples. 

 

 

3.1.2 Blood samples derived from untreated controls, SMA carriers, and SMA patients 

 

From a number of 41 untreated individuals (including control subjects, SMA carriers and SMA type I, 

II, and III patients), blood samples were collected to serve for the isolation of total RNA or mRNA. 

 

 

3.1.3 Blood samples derived from SMA carriers treated with valproic acid 

 

Twelve SMA carriers were treated with valproic acid within a pilot trial that was approved by the local 

Ethics Committee of the University of Bonn (Approval number 13804). Written informed consent was 

obtained from each subject according to the Declaration of Helsinki. Blood samples were collected to 

serve either for the isolation of total RNA or for the isolation of protein. 

 

 

3.1.4 Blood samples derived from SMA patients treated with valproic acid 

 

A number of 20 SMA patients were treated with valproic acid by their local doctors in individual 

experimental curative approaches throughout Germany according to section 41 of the German Drug 

Act (AMG). Blood samples were collected to serve for the isolation of total RNA. 
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3.1.5 Human Blood Fractions MTC Panel 

 

The Human Blood Fractions Multiple Tissue cDNA (MTC) Panel is a set of nine cDNA samples 

prepared from isolated human blood cell fractions and was obtained from Clontech, Saint-Germain-en-

Laye (France). According to the information provided by the manufacturer, all blood was obtained from 

normal healthy donors tested negative for HIV-1 and -2, hepatitis B and syphilis, the ratio male/female 

being approximately 2:1. Cell fractions were isolated either from whole blood treated with the 

anticoagulant CPDA-1 or from platelet-depleted buffy coats. The purity was more than 98% for each 

cell population, as it was evaluated by staining fixed smears of freshly isolated cells with hematoxylin. 

Activation was performed with pokeweed mitogen and concanavalin A or phytohemagglutinin while 

cells were maintained in culture medium. RNA was prepared by Clontech using the RNeasy Midi Kit 

(Qiagen) followed by DNase treatment with RNase-free DNase (Epicentre). 

 

 

3.2 Organotypic hippocampal slices prepared from rats 

 

Five-day-old Wistar rats were used for the preparation of organotypic hippocampal slice cultures. 

Animals were decapitated, brains were rapidly removed and placed into ice-cold preparation medium 

(see chapter 3.4.2). After dissection of the frontal pole of the hemispheres and the cerebellum, brains 

were continuously kept in preparation medium and cut into 350 µm thick horizontal slices using a 

vibratome (Leica). 

 

 

3.3 Equipment and Chemicals 

 

3.3.1 Equipment 

 

Isolation and analysis of nucleic acids: 

- Centrifuges:  - Polyacrylamide gel electrophoresis chamber: 

 Allegra X22-R, Beckman Coulter  Multigel-long G47, Biometra 

 5415 D, Eppendorf - Agarose gel electrophoresis chamber: 

- Heating block: HTMR-133, HLC  SGE-020-02, CBS Scientific 

- Spectrophotometers: - Power supplies: 

 BioPhotometer, Eppendorf  PowerPac 1000, Biorad 

 NanoDrop ND-1000, Peqlab  PowerPac HC, Biorad 

- Cuvettes: UV-Vette, Eppendorf - Shaker: 3015, GFL 

- Thermocycler: - Imaging systems:  ChemiDoc XRS, Biorad 

 GeneAmp 9600, Perkin Elmer  Gel Doc 2000, Biorad 

 GeneAmp 9700, Applied Biosystems - Sequencer: ABI 3730, Applied Biosystems 

 LightCycler 1.5, Roche - Microplate reader: Safire
2
, Tecan 

 ABI Prism 7700, Applied Biosystems 
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Isolation and analysis of proteins: 

- Centrifuges:  - Power supply: PowerPac 1000, Biorad 

 Allegra X22-R, Beckman Coulter - Shakers: 

 5415 D, Eppendorf  3015, GFL 

 5415 R, Eppendorf  VSR23, Grant BOEKEL 

- Heating block: HTMR-133, HLC - Autoradiography cassette, Agfa 

- Spectrophotometer: BioPhotometer, Eppendorf - Developer machine: CURIX 60, Agfa 

- Cuvettes: UV-Vette, Eppendorf - Imaging system: ChemiDoc XRS, Biorad 

- pH meter: pH Level 1, inoLab - Heat sealer: polystar 423, Rische und Herfurth 

- SDS gel electrophoresis chamber: - Flow cytometer: 

 Mini-Protean 3 Cell, Biorad  FACScalibur, Becton Dickinson 

- Western Blot transfer chamber:  

 Mini Trans-Blot Cell, Biorad  

 

Cell and tissue culture: Further equipment: 

- Tissue culture hood: Hera Safe, Heraeus - Nucleofector II, Amaxa 

- Microscope: Leica DMIL, Leica - MACS Multi Stand, Miltenyi Biotec 

- Centrifuge: Allegra X22-R, Beckman Coulter - MiniMACS Separation Unit, Miltenyi Biotec 

- Incubator: Hera Cell 150, Heraeus - µMACS Separation Unit, Miltenyi Biotec 

- Neubauer counting chamber, Optik-Labor - Vibratome: VT 1000S, Leica 

 

 

3.3.2 Chemicals 

 

Whenever possible, only chemicals with the purity grade “pro analysi” were used for the experiments 

described in this work. All standard chemicals and organic solvents were purchased from the following 

companies: Roche Molecular Biochemicals, Mannheim; Difco Lab., Michigan (USA); Invitrogen, 

Niederlande BV, Leek (Netherlands); Merck, Darmstadt; MWG, Ebersberg; Amersham, Freiburg; 

Promega, Mannheim; Riedel de Haen AG, Seelze; Sigma Chemie, Taufkirchen; Serva, Heidelberg; 

Stratagene, La Jolla (USA); Applichem, Darmstadt; Roth, Karlsruhe. For RNA isolation and analysis, 

only chemicals free of RNases have been used. 
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3.4 Solutions and Media 

 

3.4.1 Frequently used buffers and solutions 

 

10% PAA gel stock solution, native: for 500 ml: 

Acrylamide 49.0 g 

Bisacrylamide 1.0 g 

1 x TBE buffer to a final volume of 500 ml 

TEMED 500 µl 

 store at 4°C; prior to use, add 200 µl APS 

 per 20 ml stock solution 

 

Ammonium Persulfate (APS) solution (10%): for 10 ml: 

APS 1.0 g 

deionized H2O to a final volume of 10 ml 

 store at -20°C 

 

Blocking solution (6%): for 100 ml: 

Nonfat dry milk 6 g 

TBS Tween buffer to a final volume of 100 ml 

 

Bradford solution: for 1l: 

Coomassie Brilliant Blue G250 100 mg 

H3PO4 (85%) 100 ml 

Ethanol (95%) 50 ml 

deionized H2O to a final volume of 1 l 

 store at 4°C 

 

Diethylpyrocarbonate (DEPC) treated H2O: for 1 l: 

DEPC 1 ml 

deionized H2O to a final volume of 1 l 

 mix overnight and autoclave 

(other solutions can be treated with DEPC 

in a similar way, except for Tris solutions) 

 

DNA loading buffer (10 x): for 50 ml: 

100 mM EDTA (pH 7.2-8.5) 10 ml 0.5 M EDTA (pH 7.2-8.5) 

1% SDS 2.5 ml 20% SDS 

50% Glycerol 28.7 ml 87% Glycerol 

0.1% Bromphenol Blue 0.05 g 

deionized H2O to a final volume of 50 ml 
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dNTP mix: for 1 ml: 

dNTP (100 mM) 12.5 µl of each dNTP (total volume: 50 µl) 

deionized H2O to a final volume of 1000 µl 

 

Electrophoresis buffer (10 x): for 1 l: 

Tris-Base  30.29 g 

Glycine 144.13 g 

SDS 10.0 g 

deionized H2O to a final volume of 1 l 

 

Ethidium bromide solution (1%): for 100 ml: 

Ethidium bromide 1.0 g 

deionized H2O to a final volume of 100 ml 

 store at 4°C in the dark 

 

FACS buffer: for 50 ml: 

0.1% Sodium azide 0.05 g 

5% Fetal calf serum 2.5 ml 

1 x PBS to a final volume of 50 ml 

 

Laemmli buffer for SDS PAGE (2x): for 100 ml: 

Tris-Base 0.757 g 

Glycerol 20 ml 

Bromphenol Blue 10 mg 

SDS 6 g 

(prior to use: β-Mercaptoethanol 10 ml) 

deionized H2O to a final volume of 90 ml without 

  β-Mercaptoethanol, store at room temperature 

  (100 ml with β-Mercaptoethanol, store at 4°C and 

  use not longer than 2 weeks) 

 

Lysis buffer (pH 7.4): for 500 ml: 

155 mM NH4Cl 77.5 ml 1 M NH4Cl 

10 mM KHCO3 5 ml 1 M KHCO3 

0.1 mM EDTA 100 µl 0.5 M EDTA 

deionized H2O 400 ml 

 adjust pH to 7.4 with HCl 

deionized H2O to a final volume of 500 ml 

 store at 4°C 
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MACS buffer: for 50 ml: 

2 mM EDTA 0.2 ml 0.5 M EDTA 

0.5% Fetal calf serum 0.25 ml 

1 x PBS to a final volume of 50 ml 

 store at 4°C 

 

Nucleus lysis buffer: for 1000 ml: 

10 mM Tris 10 ml 1 M Tris-HCl (pH 8.0) 

400 mM NaCl 80 ml 5 M NaCl 

2 mM Na2EDTA 4 ml 0.5 M Na2EDTA (pH 7.0) 

deionized H2O 700 ml 

 adjust pH to 8.2 

deionized H2O to a final volume of 1000 ml 

 store at 4°C 

 

PCR buffer (10 x): for 500 ml: 

500 mM KCl 250 ml 1 M KCl 

100 mM Tris-HCl (pH 8.3) 50 ml 1 M Tris (pH 8.3) 

15 mM MgCl2 7.5 ml 1 M MgCl2 

0.1% gelatin 0.5 g gelatin 

deionized water to a final volume of 500 ml 

 adjust to pH 8.3, sterile filtration 

 

Phosphate buffered saline (PBS) (10 x): for 1000 ml: 

NaCl 80.0 g 

KCl 2.0 g 

Na2HPO4 14.4 g 

KH2PO4 (pH 7.3) 2.4 g 

deionized H2O to a volume of 800 ml 

 adjust pH to 7.4 

deionized H2O to a final volume of 1000 ml, autoclave 

 

Ponceau solution: for 100 ml: 

0.5% Ponceau S 0.5 g 

1% Acetic acid glacial 1 ml 

deionized H2O to a final volume of 100 ml 
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RIPA buffer: for 50 ml: 

150 mM NaCl 1.5 ml 5 M NaCl 

1% IGEPAL 5 ml 10% IGEPAL 

0.5% DOC (Deoxycholic acid) 2.5 ml 10% DOC 

0.1% SDS (Sodium Dodecyl Sulfate) 0.5 ml 10% SDS 

50 mM Tris (pH 8.6) 2.5 ml 1 M Tris (pH 8.6) 

deionized H2O deionized H2O to a final volume of 50 ml 

 

RT mix: for 1000 µl: 

5 x buffer (supplied with reverse transcriptase) 400 µl 

DTT (100 mM) 200 µl 

dNTP (100 mM) 25 µl of each dNTP (total volume: 100 µl) 

DEPC treated deionized H2O 300 µl 

 

Separation gel for SDS PAGE 12%: for 1 gel: 

deionized H2O 1.7 ml 

acrylamide-bisacrylamide mix (29:1, 30%) 2.0 ml 

Tris (1.5M, pH 8.8) 1.3 ml 

SDS (10%) 0.05 ml 

APS (10%) 0.05 ml 

TEMED 0.002 ml 

 

Sodium Dodecyl Sulfate (SDS) solution 10%: for 100 ml: 

SDS 10.0 g 

deionized H2O  to a final volume of 100 ml 

 dilute at 65°C, store at room temperature 

 

Stacking gel for SDS PAGE: for 1 gel: 

deionized H2O 0.68 ml 

acrylamide-bisacrylamide mix (29:1, 30%) 0.17 ml 

Tris (1 M, pH 6.8) 0.13 ml 

SDS (10%) 0.01 ml 

APS (10%) 0.01 ml 

TEMED 0.001 ml 

 

TBE buffer (5 x): for 1 l: 

445 mM Tris base 54 g Tris base 

445 mM Borate 27.5 g Boric acid 

10 mM EDTA 20 ml 0.5 M EDTA (pH 8.0) 

deionized H2O to a final volume of 1000 ml 
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TBS Tween buffer: for 5 l: 

20 mM Tris 12.1 g Tris 

137 mM NaCl 40.0 g NaCl 

0.5% Tween 20 25 ml Tween 20 

deionized H2O deionized H2O to a final volume of 5 l 

adjust to pH 7.56 

 

TE
-4

 buffer: for 100 ml: 

Tris (1 M, pH 8.0) 1 ml 

EDTA (0.5 M, pH 8.0) 20 µl 

deionized H2O to a final volume of 100 ml 

 

Transfer buffer: for 5 l: 

Tris-Base 12.1 g 

Glycine 56.3 g 

Methanol 1000 ml 

deionized H2O to a final volume of 5 l 

 

Tris-HCl (1 M, pH 6.8): for 400 ml: 

Tris-HCl 60.0 g 

deionized H2O to a final volume of 400 ml 

 adjust pH to 6.8 with concentrated HCl 

 

Tris-HCl (1.5 M, pH 8.8): for 400 ml: 

Tris-HCl 90.5 g 

deionized H2O to a final volume of 400 ml 

 adjust pH to 8.8 with concentrated HCl 

 

 

3.4.2 Media for eukaryotic cell and tissue culture procedures 

 

Medium for human fibroblasts: for 556.4 ml: 

D-MEM with 4500 mg/l Glucose, L-Glutamine, 

Pyruvate (#41966-029, Invitrogen) 500.0 ml 

Fetal calf serum (Biochrom) 50.0 ml 

Penicillin-Streptomycin (Invitrogen) 5.0 ml 

Amphotericin B (PromoCell) 1.4 ml of a stock with the concentration 250 µg/ml 
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Medium for human EBV-transformed 

lymphoblastoid cells: for 631.4 ml: 

RPMI 1640 Medium without L-Glutamine 

(#31870-025, Invitrogen) 500.0 ml 

Fetal calf serum (Biochrom) 120.0 ml 

Penicillin-Streptomycin (Invitrogen) 5.0 ml 

Amphotericin B (PromoCell) 1.4 ml of a stock with the concentration 250 µg/ml 

L-Glutamine (Invitrogen) 5.0 ml of a stock with the concentration 200 mM 

 

Media for lipofection of human fibroblasts: 

 

OptiMEM I (#31985-047, Invitrogen) 

 

D-MEM with 4500 mg/l Glucose, L-Glutamine, 

Pyruvate (#41966-029, Invitrogen)  500.0 ml 

Fetal calf serum (Biochrom) 50.0 ml 

 

Preparation medium for organotypic 

hippocampal slices from rat: for 540.0 ml 

MEM (#11012-028, Invitrogen) 8.0 g 

deionized autoclaved H2O 500.0 ml 

Tris-Base (1 M, Sigma) 5.0 ml 

L-Glutamine (Invitrogen) 5.0 ml of a stock with the concentration 200 mM 

Glucose (10%, Merck) 5.0 ml 

  sterile filtration 

Horse serum (Biochrom) 25.0 ml 

 

Medium for culture of organotypic 

hippocampal slices from rat: for 105.46 ml: 

MEM (#11012-028, Invitrogen) 0.8 g 

deionized autoclaved H2O 50.0 ml 

HBSS (#24020-091, Invitrogen) 25.0 ml 

Glucose  1.2 ml of 10% Glucose 

L-Glutamine (Invitrogen) 2.0 ml of a stock with the concentration 200 mM 

Penicillin-Streptomycin (Sigma) 1.0 ml 

0.8 µg/ml Vitamin C  

10 µg/ml Insulin-transferrin-sodium selenite 

Sodium bicarbonate (7.5%) 580 µl 

Tris-Base (1 M, Sigma) 500 µl 

   sterile filtration 

25% Horse serum (Biochrom) 25.0 ml 
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3.5 Primers and siRNAs 

 

The primers and probes listed in table 6 were purchased from the companies MWG or Metabion and 

used for semi-quantitative PCRs, quantitative real-time PCRs, or sequencing. They were delivered in 

lyophilized form and subsequently diluted in deionized, autoclaved H2O to achieve primer stock 

solutions with a concentration of 100 pmol/µl. Stock solutions were stored at -20°C and served for the 

preparation of working solutions with the concentration 10 pmol/µl. 

 

Table 6: Primers and probes used for semiquantitative PCRs and quantitative real-time PCRs. “No.” 

indicates the internal laboratory number of the respective primer, “F” and “R” are the abbreviations for 

“forward” and “reverse”, “°C” is the annealing temperature, and “bp” indicates the expected length of the 

PCR product using the respective primer pair. Lowercase letters in the primer sequences indicate 

mutations introduced to obtain adequate gene-specific primer binding. SFRS10 is the human gene 

encoding Htra2-β transcripts. 

Locus No.  °C Sequence 5’→3’ bp 

Human SMN exon 6 

Human SMN exon 8 

1837 

1841 

F 

R 
55 

ATA ATT CCC CCA CCA CCT C 

GCC TCA CCA CCG TGC TGG 

FL: 432 

∆7: 378 

Human GAPDH exon 1 

Human GAPDH exon 4 

1879 

1876 

F 

R 
55 

TCC GCG CAG CCG AGC CA 

ACG CCA GTG GAC TCC ACG 
334 

Human SFRS10 exon 1  

Human SFRS10 exon 4 

1093 

1094 

F 

R 
55 

 

 

CCA GGA GTC ATG AGC GAC AG 

GAC CGG GTA TAA TGC CTT CG 

Htra2-β1: 

222 

Htra2-β3: 

87 

Htra2-β4: 

303 

Human SFRS10 exon 1 

Human SFRS10 exon 2 

1970 

1986 

F 

R 
55 

GCG ACA GCG GCG AGC AG 

CAC TTA TTC CTG AGC TTC AAA T 

Htra2-β2: 

112 

Human SFRS10 exon 1 

Human SFRS10 exon 3 

1970 

1971 

F 

R 
55 

 

GCG ACA GCG GCG AGC AG 

TAG ATT CAG ATC GGA CCT G 

Htra2-β1: 

165 

Htra2-β4: 

246 

Rat Smn exon 5 

Rat Smn exon 6 

Rat Smn probe 

 

- 

F 

R 

 

 

60 

GGA TGC CTC CGT TCC CTT 

TCC AGA CAG TCG GGA GAT ATG G 

FAM-AGG ACC ACC AAT AAT TCC TCC 

ACC CCC T-TAMRA 

59 

Rat β-actin exon 3 

Rat β-actin exon 4 

Rat β-actin probe 

 

- 

F 

R 

 

 

60 

AGG CCC CTC TGA ACC CTA AG 

CCA GAG GCA TAC AGG GAC AAC 

FAM-TTT GAG ACC TTC AAC ACC CCA 

GCC A-TAMRA 

118 
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Locus No.  °C Sequence 5’→3’ bp 

Human SMN1 

intron 6/exon 7 

Human SMN1 intron 7 

 

1127 

1133 

 

F 

R 

58 

 

TTT ATT TTC CTT ACA GGG TTT C 

GTG AAA GTA TGT TTC TTC CAC gTA 

307 

Human SMN2 

intron 6/exon 7 

Human SMN2 intron 7 

 

1263 

1268 

 

F 

R 

58 

 

TTT ATT TTC CTT ACA GGG TTT TA 

GTG AAA GTA TGT TTC TTC CAC gCA 

307 

Human CTLA1 exon 2 

Human CTLA1 exon 3/4 

2048 

2049 

F 

R 
60 

TGA TAC GAG ACG ACT TCG TGC 

CTT TCT CTC CAG CTG CAG TA 
194 

Human RPLP0 exon 2/3 

Human RPLP0 exon 4 

2939 

2940 

F 

R 
63 

GAC CTG GAA GTC CAA CTA CTT C 

GTC CCT GAT CTC AGT GAG GTC 
258 

Human PPIB exon 2/3 

Human PPIB exon 4 

2935 

2936 

F 

R 
65 

CTT AGC TAC AGG AGA GAA AGG A 

GCC TGC GTT GGC CAT GCT C 
199 

Human B2M exon 2 

Human B2M exon 3 

1967 

1968 

F 

R 
61 

TGT CTT TCA GCA AGG ACT GG 

GAT GCT GCT TAC ATG TCT CG 
148 

Human GUSB exon 10 

Human GUSB exon 11 

2937 

2938 

F 

R 
69 

CTA CTA CTC TTG GTA TCA CGA C 

TCT TCA GTG AAC ATC AGA GGT G 
174 

Human SMN exon 7 

Human SMN exon 8 

2075 

2076 

F 

R 
62 

GAA GGT GCT CAC ATT CCT TAA AT 

ATC AAG AAG AGT TAC CCA TTC CA 
186 

Human SMN exon 5 

Human SMN exon 6/8 

1449 

1450 

F 

R 
61 

CCA CCA CCC CAC TTA CTA TCA 

GCT CTA TGC CAG CAT TTC CAT A 
183 

Human SFRS10 exon 4 

Human SFRS10 exon 5 

2690 

2691 

F 

R 
68 

CTC CCG AAG GCA TTA TAC CCG GTC 

GTA CAA GCT CAG CCC AAA TAC T 
196 

 

In addition, a number of small interfering RNAs (siRNAs) have been used for transfection experiments 

of human fibroblasts. They are listed below (SFRS10 is the human gene encoding Htra2-β 

transcripts): 

 

- Hs_SFRS10_3_HP siRNA, #SI00065807, Qiagen (target: Htra2-β transcripts; target 

  sequence located in exon 4/5: TCG GGC AAA TCC TGA TCC TAA) 

- Hs_SFRS10_5_HP validated siRNA, #SI02653252, Qiagen (target: Htra2-β transcripts; target 

  sequence located in exon 7: CGG GAC TAC TAT AGC AGA TCA) 

- siCONTROL Non-Targeting siRNA, Dharmacon (control siRNA) 

- siCONTROL TOX Transfection Control, Dharmacon (siRNA to check transfection efficiency) 

- siCONTROL Cyclophilin B siRNA, Dharmacon (target: Cyclophilin B transcripts) 

 

All siRNAs were pre-designed by the respective company. The siRNAs purchased from Qiagen were 

delivered in lyophilized form. To obtain a 20 µM stock solution, 250 µl siRNA Suspension Buffer 

(Qiagen) were added to 5 nmol siRNA. Subsequently, the dilution was incubated at 90°C for 1 min and 

at 37°C for another 60 min according to the manufacturer’s protocol to disrupt higher aggregates. 
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Stocks were stored at -20°C and further diluted with siRNA Suspension Buffer to obtain 1 µM working 

dilutions prior to use. 

The siRNAs purchased from Dharmacon were also delivered in lyophilized form and dissolved in 1 x 

siRNA Buffer (Dharmacon) to obtain a stock dilution of 20 µM. Stocks were stored at -20°C. Prior to 

transfection of fibroblasts, stocks were further diluted with siRNA Buffer to obtain working dilutions with 

a concentration of 1 µM. 

 

 

3.6 Software, internet programs, and databases 

 

Microsoft® Office Professional Edition 2003, Microsoft Corporation (word processing, data analysis) 

Adobe Photoshop 8.0.1, Adobe Systems Inc. (image editing) 

EndNote 9, Thomson ResearchSoft (organization of references) 

SigmaPlot 9.0, Systat Software, Inc. (creation of graphs) 

OneDScan, Scanalytics (densitometric analysis of PAA gels and western blots) 

Quantity One 4.5.1, Biorad (scanning and densitometric analysis of gels and western blots) 

FinchTV Version 1.3.1, Geospiza Inc. (analysis of DNA sequencing results) 

Editseq/PrimerSelect/SeqBuilder, DNASTAR Inc. (DNA/protein sequence analysis, primer selection) 

BioEdit 7.0.4.1, Tom Hall (DNA sequence alignment and analysis) 

LightCycler Software, Roche (documentation/analysis of real-time PCR data) 

Sequence Detection Software, Applied Biosystems (documentation/analysis of real-time PCR data) 

Multi-Analyst Version 1.1, Biorad (scanning and densitometric analysis of gels and western blots) 

XFluor4SafireII software, Tecan (analysis of absorption/fluorescence using microtiter plates) 

BD CellQuest software Version 3.3, Becton Dickinson (flow cytometry analysis) 

 

NCBI, www.ncbi.nlm.nih.gov 

ENSEMBL, www.ensembl.org 

UCSC Genome Browser, www.genome.ucsc.edu/cgi-bin/hgGateway 

Medline, www.ncbi.nlm.gov/PubMed 

OMIM, www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM 

Gene Expression Atlas database, expression.gnf.org 

 

 

3.7 Cell culture and tissue culture procedures 

 

To avoid any contaminations with fungi or bacteria, all cell culture work was carried out under a tissue 

culture hood using only sterile solutions and materials. To further increase the protection of the cells 

and tissues from contamination, amphotericin B and/or penicillin and streptomycin were added to the 

culture medium. Fetal calf serum or horse serum served as important sources of essential growth 

factors. 
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3.7.1 Cell culture of primary fibroblasts derived from SMA patients 

 

Fibroblasts were routinely grown as adherent cultures in medium described in chapter 3.4.2. Cells 

were kept in an atmosphere with 5% CO2 at 37°C using tissue culture flasks of either 25 cm
2
 or 75 cm

2
 

surface. Medium was changed once or twice a week depending on the cell division rate of the 

respective fibroblast line. The requirement of fresh medium was indicated by a color change of the 

medium in the cell culture flasks which occurs as soon as the nutrients are used up and the metabolic 

products of the cells cause a change of the pH in the medium. 

When the fibroblasts in the culture flasks were confluent, they were washed with PBS and released 

from the bottom of the flask by treatment with trypsin. Trypsinization was stopped by addition of fresh 

culture medium and cells were split into several new flasks. Depending on the cell division rate of the 

respective cell line, the fibroblasts from one 75 cm
2
 flask were split in two to four new 75 cm

2
 flasks. 

To store the fibroblasts, cells were washed with PBS and trypsinized. After addition of culture medium 

and centrifugation at 1200 rpm for 10 min, the cell pellet was suspended in a sterile mix consisting of 

90% FCS and 10% dimethylsulfoxide (DMSO) and frozen at -196°C in liquid nitrogen. At any time, 

these aliquots can be thawed and cells can be grown again in culture medium using the conditions 

described above. 

 

 

3.7.2 Stimulation of primary fibroblast cell lines with chemical substances 

 

Fibroblast cultures derived from SMA patients were grown in tissue culture flasks to a confluence of 

~80%. Cells were washed with PBS and released with trypsin. After addition of culture medium and 

vigoros mixing to obtain a homogeneous suspension; cells were counted and the cell number adjusted 

 

Table 7: Drug solvents, final drug concentrations used in cell cultures, and incubation time of the cells 

with the respective drug. For clarification: Throughout this thesis, the common term “valproic acid” and 

the corresponding abbreviation “VPA” are used. However, all in vitro and ex vivo experiments were 

carried out with a solution of the salt sodium valproate. 

Drug Solvent 
Final drug concentrations 

in fibroblast cultures 
Incubation time 

Sodium valproate 

(#P4543, Sigma) 
H2O 0, 0.5, 5, 50, 500, 1000 µM 

16 h 

(no pre-incubation) 

Sodium butyrate 

(#B-5887, Sigma) 
H2O 0, 0.5, 5, 50, 500, 1000 µM 

24 h 

(no pre-incubation) 

SAHA 

(#270-288, Alexis) 
DMSO 0, 0.05, 0.5, 1, 5, 10 µM 

24 h 

(24 h pre-incubation) 

MS-275 

(#382147, Calbiochem) 
DMSO 0, 0.05, 0.25, 0.5, 1, 5 µM 

24 h 

(no pre-incubation) 
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with additional culture medium to some 2x10
5
 cells / 8 ml. 

Subsequently, some 2x10
5
 cells of fibroblasts from SMA patients were transferred into 10 cm petri 

dishes. The respective drug was dissolved either in deionized and autoclaved H2O or DMSO and 

added dropwise to each dish. For each experiment, to one of the dishes only solvent (deionized and 

autoclaved H2O or DMSO) was added to serve as a control (mock). Cells were incubated with the 

respective drug at 5% CO2 and 37°C. For details about the solvent for the respective drug, the final 

drug concentrations used in the fibroblast cultures, and the incubation times used, see table 7. Each 

drug treatment experiment was always repeated at least twice in different passages of the respective 

fibroblast cell line and the final results are given as mean ± SEM. 

 

 

3.7.3 Cell culture of EBV-transformed lymphoblastoid lines derived from SMA patients 

 

EBV-transformed lymphoblastoid cell lines were maintained as suspension cultures in medium 

described in chapter 3.4.2. Cells were grown in an atmosphere with 5% CO2 at 37°C using tissue 

culture flasks of 25 cm
2
 surface which were kept in an upright position. Cultures were fed with 4 ml of 

medium twice a week. 

 

 

3.7.4 Stimulation of lymphoblastoid cell lines with chemical substances 

 

EBV cell lines derived from SMA patients were maintained in tissue culture flasks. To obtain well-

growing suspension cultures with a medium cell density, a part of the stock cell culture was transferred 

to a new flask and fed with fresh culture medium two days before setting up the experiment. 

On the day of the experiment, the cell culture was mixed vigorosly to obtain a homogeneous 

suspension. Subsequently, cells were counted, the cell number adjusted by addition of fresh culture 

medium, and aliquots containing the respective number of cells were transferred into new culture 

flasks. Valproic acid or butyrate were dissolved in deionized and autoclaved H2O and added dropwise 

to each flask. For each experiment, to one of the flasks only solvent was added to serve as a control 

(mock). Cells were incubated with the respective drug at 5% CO2 and 37°C for varying time periods. 

 

 

3.7.5 MTT assay 

 

Thiazolyl blue tetrazolium bromide (MTT) is converted into violet formazan crystals by living cells, but 

not by dead cells. The absorption maxima of MTT and formazan are different. Thus, MTT can be 

added to cell cultures treated with a chemical substance, and subsequent photometric measurement 

of the newly synthesized formazan can give evidence of cell survival under drug treatment and the 

cytotoxicity of the drug (Mosmann 1983). 

 

In each well of a 96-well plate, some 8000 fibroblasts were plated in 250 µl culture medium and 

incubated with different drugs at 5% CO2 and 37°C. The solvent for the respective drug, the final drug 
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concentrations, and the incubation times are identical to the conditions used for the stimulation 

experiments described in chapter 3.7.2 (table 7). After incubation of the cells with the drug, old 

medium was removed and replaced by 225 µl of fresh culture medium and 25 µl MTT stock solution 

(50 mg MTT in 10 ml PBS). Cells were incubated for another 3 h to induce the production of formazan 

crystals. After replacing the medium with 100 µl iso-stock [50 ml Isopropanol (100%) + 165 µl HCl 

(37%)], photometric absorption was measured at 550 nm using a microplate reader (Safire
2
, Tecan). 

For each drug concentration, results were averaged from a number of eight wells. To evaluate the 

mock values, a number of sixteen wells were used. Results are always given as mean ± standard 

error of the mean (SEM). 

 

 

3.7.6 Transient transfection of primary human fibroblasts 

 

The technique of transient transfection is applied to (over-)express a desired protein or to knock-down 

specific target RNA transcripts in cell cultures. For protein expression, a so-called mammalian 

expression vector has to be delivered to the cells. This vector contains a strong promoter [e.g. the 

human Cyto-Megalo-Virus (CMV) promoter] and the cDNA of the desired protein to be expressed. To 

knock-down target RNA transcripts in cell cultures, small interfering RNAs (siRNAs) have to be 

introduced into the cells. They are able to specifically silence gene expression via a pathway called 

RNA interference (RNAi). RNAi has originally been discovered as cellular defense mechanism against 

double-stranded viral RNA which is present in the cell upon viral invasion. However, introduction of 

long double-stranded RNAs (>30 nucleotides) initiates a general antiviral response, including 

nonspecific inhibition of protein synthesis and RNA degradation. In contrast, delivery of the functional 

intermediates in the RNAi pathway, small interfering RNAs (siRNAs) which are usually generated from 

long double-stranded RNAs by an RNase III-like enzyme called Dicer, is able to achieve specific gene 

silencing of the target without a general cellular response. Double-stranded siRNAs are 19-25 bp in 

length, and assemble into endoribonuclease-containing complexes known as RNA-induced silencing 

complexes (RISCs) after entering the cell. There, they are unwinded. The siRNA strands subsequently 

guide the RISCs to complementary RNA transcripts, which are cleaved and destroyed. 

To transiently transfect cells, the calcium phosphate method is frequently used. This method is simple 

and cost-saving, however, transfection efficiency reached in primary human fibroblasts is very low. 

Therefore, different approaches have to be applied for this type of cells. 

 

Electroporation of fibroblasts derived from SMA patients was carried out using the Nucleofector 

technique (Amaxa). During electroporation, cells are treated with a current pulse that temporarily 

disrupts the cell membrane and electrophoreses DNA into cells. According to the information provided 

by the manufacturer, plasmids are directly delivered to the nucleus of treated cells, resulting in a very 

fast protein expression which is already visible a few hours after the transfection procedure. The same 

technique can be applied to transfect siRNA oligos into the target cells. To transiently transfect 

fibroblasts, the Human Dermal Fibroblast Nucleofector Kit (Amaxa) and the Basic Nucleofector Kit for 

Primary Fibroblast Cells (Amaxa) were used according to the manufacturer’s protocols. In brief, 

fibroblasts were harvested, counted, and a volume containing the required amount of cells was 
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centrifuged at 1200 rpm for 10 min. For each single transfection reaction, a number of 0.5 x 10
6
 cells 

were used. Cell pellet was suspended in Nucleofector Solution (100 µl for each 0.5 x 10
6
 cells), and 

after addition of 2 µg pmaxGFP expression vector (Amaxa) for each 0.5 x 10
6
 cells, aliquots of 100 µl 

were transferred to cuvettes and treated with the respective electroporation program (A24, T16, U12, 

U23, V13). After electroporation in cuvettes, aliquots were added to 1.5 ml of culture medium which 

was pre-warmed in 6-well plates. A number of additional control transfection reactions was performed: 

(i) cells suspended in Nucleofector Solution without adding vector were treated with a strong program 

to check the reaction of cells to the electroporation program, and (ii) cells suspended in Nucleofector 

Solution with vector were not treated with any program to check for a potential toxicity of the vector. 

Cells were kept at 37°C and 5% CO2 up to 48 h. 

Lipofection is another way to deliver plasmids or siRNAs to cells in culture. Lipofection is a technique 

which injects genetic material into cells by means of liposomes which are vesicles that can easily 

merge with the cell membrane since they are both made of a phospholipid bilayer (Felgner et al. 

1987). They are able to complex DNA or RNA in their inner space and deliver these molecules to the 

cell upon merge with the membrane. 

For lipofection experiments, fibroblasts were grown to a confluency of ~80% in tissue culture flasks, 

washed with PBS, and released with trypsin. After addition of culture medium, cells were counted, and 

an aliquot containing the required amount of fibroblasts was transferred to a 50 ml Falcon tube. Cells 

were centrifuged at 1200 rpm for 10 min, the supernatant was removed, and the cell pellet was 

suspended in culture medium to obtain a concentration of 1 x 10
5
 cells / 2 ml. A number of 1 x 10

5
 

cells were transferred to each well of a 6-well plate and maintained at 5% CO2 and 37°C for 24 h. 

Prior to transient transfection, siRNA stocks (see chapter 3.5) were diluted in suspension buffer to a 

final concentration of 1 µM. Dharmafect 1 (Dharmacon) was used for all transfection experiments. This 

agent is optimized for the delivery of siRNAs into cells. Transfection was carried out according to the 

manufacturer’s protocol. In brief, 100 µl of each 1 µM siRNA dilution was mixed with 100 µl OptiMEM I 

in a 1.5 ml tube. In a 2 ml tube, 4 µl of Dharmafect 1 were mixed with 196 µl OptiMEM I. After 

incubation for 5 min, the contents of both tubes were mixed, followed by another incubation period of 

20 min. Subsequently, 1.6 ml of fibroblast culture medium without antibiotics was added to the 0.4 ml 

mixture containing the respective siRNA and Dharmafect 1 to a final volume of 2 ml. After removal of 

old medium, the 2 ml transfection preparation was added to the fibroblasts of one well. Cells were kept 

at 5% CO2 and 37°C for another 72 h to allow for delivery of siRNAs into fibroblast cells and knock-

down of RNA transcripts. During the last 16 h of incubation, a part of the cells was treated with an 

aqueous dilution of valproic acid for a final drug concentration of 1000 µM. After cell harvest, RNA was 

isolated as described in chapter 3.8.3, and protein was isolated as described in chapter 3.9.1. For 

each combination of a specific siRNA with/without drug treatment, experiments were performed in 

triplicates and results are given as mean ± standard error of the mean (SEM). Whenever the analysis 

of RNA and protein was required for a specific combination of siRNA with/without drug treatment, two 

triplicates were performed (corresponding to six wells). The cells from each two wells were pooled, 

mixed and separated again into two equal parts for subsequent RNA or protein isolation. 
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3.7.7 Tissue culture of organotypic hippocampal slices from rat 

 

A number of three 350 µm thick hippocampal brain slices from rat were transferred into a culture plate 

insert membrane dish (BD Biosciences) and thereafter into 6-well culture dishes (BD Biosciences) 

containing 1.2 ml culture medium (chapter 3.4.2), according to the interface technique described by 

Stoppini et al. (Stoppini et al. 1991) and modified by Savaskan et al. (Savaskan et al. 2000). The 

slices were cultivated at 35°C and 5% CO2. The medium was changed one day after preparation and 

every second day thereafter. 

(These experiments have been performed in collaboration with Prof. Dr. I. Blümcke from the Institute 

of Neuropathology and Dr. I.Y. Eyüpoglu from the Department of Neurosurgery at the University 

Erlangen-Nuremberg in Erlangen). 

 

 

3.7.8 Stimulation of rat hippocampal slices with chemical substances 

 

After six days in vitro, sodium valproate (diluted in deionized, autoclaved H2O) was added to the 

culture medium of the organotypic hippocampal slice cultures from rat to obtain final drug 

concentrations of 0, 50, 500 and 2000 µM. For each concentration, a number of three slices was 

treated with the drug. The slices were incubated with the drug for 12, 24, 36, and 48 h and 

subsequently harvested and snap-frozen in liquid nitrogen. 

 

 

3.8 Molecular biology methods 

 

3.8.1 Isolation of genomic DNA from whole blood 

 

Human genomic DNA can be extracted from leukocytes which are nucleated and present in whole 

blood. Extraction can be performed applying either the phenol/chloroform method or the salting out 

procedure (Miller et al. 1988). Due to the toxicity of phenol, the salting out procedure is more 

commonly used and is also preferred in our lab. This method includes the collection of blood in tubes 

containing EDTA as anticoagulant, lysis and removal of erythrocytes, subsequent lysis of leukocytes, 

removal of cell debris including proteins by enzymatic digestion, and precipitation of the leukocyte 

DNA. 

A volume of 5-10 ml whole blood was transferred to a 50 ml Falcon tube and supplemented with lysis 

buffer to a final volume of 50 ml. After mixing and incubation on ice for 15 min, samples were 

centrifuged at 4°C and 2000 rpm for 15 min. The supernatant was discarded and the remaining 

leukocyte pellet was suspended in 10 ml of nucleus lysis buffer. After addition of 0.7 ml 10% SDS 

solution (denaturation of DNA-binding proteins) and 400 µl Pronase E solution (20 mg/ml), samples 

were shaken at 37°C in a water bath overnight. On the next day, digested cell lysates were 

supplemented with 3.2 ml saturated NaCl solution, vigorosly mixed and centrifuged two times at 4000 

rpm for 10 min. The supernatant was transferred to a new 50 ml Falcon tube, the protein pellet was 
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discarded. After precipitating the DNA from the supernatant using isopropanol, the DNA was fished 

with a glass stick, washed with 70% ethanol, air dried, and finally diluted in 200 to 600 µl TE
-4

. 

 

 

3.8.2 Determination of the DNA concentration 

 

The DNA concentration was determined by measuring the absorption at a wave length of 260 nm 

(A260) on a photometer (Eppendorf). The absorption is expected to be 1 when measuring a dilution of 

double-stranded DNA with a concentration of 50 µg/ml, using a cuvette with a path length of 1 cm  

(Current Protocols in Molecular Biology, 2001, Appendix A.3D.1). To determine the concentration of 

the DNA stocks, dilutions (e.g. 1:10, 1:20) with a volume of 50 µl were prepared prior to photometric 

analysis. Purity of the DNA was determined by measuring the ratio of the absorption at 260 nm and 

the absorption at 280 nm. The ratio is recommended to range between 1.8 and 2.0. Higher values 

suggest contamination with RNA, while lower values point to contamination with proteins or ethanol. 

After measuring the background absorption of the solvent, the absorption of the DNA dilutions was 

determined and the concentration (in µg DNA/ml) was calculated as follows: factor of the dilution x 

(absorption at 260 nm – background) x 50 µg. Measurements were performed in triplicates and the 

concentration calculated as mean of the single values. 

Alternatively, a NanoDrop ND-1000 Spectrophotometer (Peqlab) was used to determine the DNA 

concentration. Therefore, a 1 µl DNA sample was pipetted onto the end of a fiber optic cable and a 

second fiber optic cable was brought into contact with the liqid. Absorption was measured at wave 

lengths of 260 nm and 280 nm utilizing a pathlength of 0.2 mm, and the DNA concentration and purity 

was calculated by the software based on the same principles as described above. Measurements 

were performed in triplicates and the concentration calculated as mean of the single values. 

 

 

3.8.3 Isolation of total RNA from primary fibroblast cell cultures 

 

From fibroblast cultures treated with various drugs, total RNA was isolated using the EZNA Total RNA 

Kit (Peqlab) according to the manufacturer’s protocol. 

 

To isolate total RNA from fibroblasts used for siRNA transfection experiments, the RNeasy Kit 

(Qiagen) and the QIAshredder (Qiagen) were used according to the manufacturer’s protocols. The 

QIAshredder reduces viscosity of the samples which is due to the presence of DNA in the cell lysates 

and may disturb the RNA isolation with the RNeasy Kit. As recommended for RNA samples which are 

planned to be investigated by quantitative real-time PCR, a DNase digest was carried out by use of 

the RNase-Free DNase set (Qiagen) according to the protocol included in the RNeasy Kit. 
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3.8.4 Isolation of total RNA from organotypic hippocampal slice cultures (OHSCs) from rat 

 

Total RNA was extracted from every three pooled rat OHSCs using the RNeasy Kit (Qiagen) and the 

QIAshredder (Qiagen) according to the manufacturer’s protocols. Again, the QIAshredder was applied 

to reduce viscosity of the tissue lysates before proceeding with the RNA isolation (see chapter 3.8.3). 

 

 

3.8.5 Isolation of total RNA from peripheral whole blood 

 

A volume of 2.5 ml of peripheral whole blood was collected in PAXgene Blood RNA tubes 

(PreAnalytiX). These tubes contain 6.9 ml of a liquid additive which stabilizes the cellular RNA profile 

in blood cells up to five days. After blood sampling, the tubes were stored at room temperature as 

recommended by the manufacturer. Total RNA isolation from blood samples was carried out on day 

three after blood sampling using the PAXgene Blood RNA Kit (PreAnalytiX) according to the 

manufacturer’s protocol with two exceptions: Digestion of the proteins in the sample after addition of 

Proteinase K was carried out for 15 min (instead of 10 min) in a shaker-incubator, and subsequent 

centrifugation was performed for 10 min (instead of 3 min). Only 2 ml reaction tubes were used during 

the RNA isolation procedure. Because the RNA samples were planned to be analyzed by quantitative 

real-time PCR, a DNase digest was included by use of the RNase-Free DNase set (Qiagen) according 

to the protocol included in the PAXgene Blood RNA Kit. 

 

 

3.8.6 Isolation of mRNA from peripheral blood mononuclear cells (PBMCs) 

 

PBMCs were obtained from 4 ml peripheral whole blood which was collected in BD Vacutainer® CPT 

Cell Preparation Tubes with Sodium Citrate (Becton Dickinson). After separation of monocytes and 

lymphocytes (see chapter 3.9.9), mRNA was isolated from each of the two cell fractions using the 

µMACS mRNA Isolation Kit (Miltenyi) according to the manufacturer’s protocol. The procedure is 

based on magnetic labeling of polyA-mRNA with MACS Oligo(dT) MicroBeads. After binding, bound 

mRNA is washed, eluted and may then serve for downstream applications. 

 

 

3.8.7 Determination of the RNA concentration 

 

The most commonly used technique for measuring nucleic acid concentration is the determination of 

absorbance at 260 nm (A260). The major disadvantages of this method are the large relative 

contribution of proteins and free nucleotides to the signal, the interference caused by contaminants 

commonly found in nucleic acid preparations and the relative insensitivity of the assay (an A260 of 0.1 

corresponds to a 4 µg/ml RNA solution). The use of RiboGreen® RNA quantitation reagent alleviates 

many of these problems. It allows detection and quantification of small amounts of RNA without 

detecting proteins, free nucleotides or other contaminants. 
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3.8.7.1 Photometric RNA concentration analysis 

 

The concentration of the RNAs isolated from fibroblast cultures treated with various drugs and from 

organotypic hippocampal rat brain slices treated with valproic acid was determined by measuring the 

absorption at a wave length of 260 nm on a photometer (Eppendorf). The absorption is expected to be 

1 when measuring an aqueous dilution of single-stranded RNA with a concentration of 40 µg/ml using 

a cuvette with a path length of 1 cm (Current Protocols in Molecular Biology, 2001, Appendix A.3D.1). 

However, a concentration of 44 µg/ml is expected when measuring a dilution of RNA in 10 mM Tris-

HCl. According to the manufacturer’s protocol provided with the PAXgene Blood RNA Kit 

(PreAnalytiX), dilution of the RNA sample in RNase-free water may lead to inaccurately low values. 

To determine the concentration of the RNA stocks, 1:16 dilutions with a final volume of 80 µl were 

prepared prior to photometric analysis. Purity of the RNA was determined by measuring the ratio of 

the absorption at 260 nm and the absorption at 280 nm. The ratio is recommended to range between 

1.8 and 2.1. Higher values suggest presence of degraded RNA or free nucleotides, lower values point 

to contamination with protein. After measuring the background absorption of the solvent, the 

absorption of the RNA samples was determined and the concentration (in µg RNA / ml) calculated as 

follows: factor of the dilution x (absorption at 260 nm – background) x 44 µg. Measurements were 

performed in triplicates and the concentration calculated as mean of the single values. 

 

 

3.8.7.2 Fluorimetric RNA concentration analysis with RiboGreen® dye 

 

Fluorimetric determination of the exact RNA concentration was carried out on all RNA samples 

extracted from peripheral whole blood derived from controls, SMA carriers, and SMA type I, II, and III 

patients, on mRNA samples isolated from PBMCs, and on RNA samples isolated from fibroblast 

cultures used for siRNA transfection experiments. This method is ~1000fold more sensitive than 

photometric absorption measurement at 260 nm, and therefore more appropriate for the relatively 

small amounts of RNA isolated from the blood samples. Importantly, the concentration of RNA can be 

determined very precisely without detecting contaminants, proteins or free nucleotides. This is 

essential if normalization of target transcript numbers measured by real-time PCR is performed with 

the amount of total RNA used for reverse transcription. For fluorimetric measurement, the RiboGreen® 

RNA Quantitation Kit (Molecular Probes) was used according to the manufacturer’s protocol. All 

samples were pre-treated with RNase-free DNase (see chapter 3.8.3 and 3.8.5) to ensure that the 

entire sample fluorescence is due to dye bound to RNA. The kit is using the phenomenon that 

RiboGreen is non-fluorescent when free in solution. Upon binding RNA, the fluorescence of the 

RiboGreen reagent increases more than 1000fold. The RNA bound to RiboGreen reagent has an 

excitation maximum of ~500nm and an emission maximum of ~525nm similar to Fluorescein. Based 

on an estimated RNA concentration of the samples ranging between ~40 to 150 ng/µl, the high-range 

assay and high-range standard curve were performed. The assay was set up in 96-well plates (FIA-

Plate, Black, flat bottom, medium binding, #655076, Greiner bio-one). Fluorescence of the RNA-

RiboGreen®-complexes was determined on a TECAN Safire
2
 monochromator-based microplate 
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reader (Tecan). All RNA stocks were analyzed in triplicates and the concentration calculated as 

average of these measurements. 

 

 

3.8.8 Reverse transcription (cDNA synthesis) 

 

Reverse transcription is a tool to generate double-stranded complementary DNA (cDNA) from single-

stranded RNA templates using an RNA-dependent DNA polymerase. 

Each reverse transcription was performed in a 1.5 ml tube. The total reaction volume was 10 µl, 

containing an amount of 150 ng total RNA (or 8 ng mRNA), 5 µl RT mix (see chapter 3.4.1), 0.5 µl 

oligo-dT primer (0.5 mg/ml, Operon), 0.25 µl RNase Inhibitor (40 U/µl, Invitrogen), 0.25 µl Superscript 

II Reverse Transcriptase (50 U/µl, Invitrogen), and DEPC-treated H2O. The reaction mix was 

incubated at 42°C for 60 min and subsequently used for PCR. The use of oligo-dT primers allowed the 

specific reverse transcription of mRNA molecules. They are all characterized by a polyA-tail, providing 

the complementary sequence for oligo-dT primers. 

 

 

3.8.9 Polymerase chain reaction (PCR) 

 

The polymerase chain reaction (PCR) is a method which allows the enzymatic amplification of specific 

single-stranded DNA regions (Mullis and Faloona 1987). The reaction uses a DNA-dependent DNA 

polymerase which synthesizes copies from a denatured, single-stranded DNA template, starting from 

sequence specific oligonucleotides (primers). The primers specifically hybridize to the complementary 

sequence in the DNA template and are elongated at their free 3’-hydroxy group. The program of 

cycles including repeated DNA denaturation, primer hybridization, and DNA synthesis is performed in 

a thermocycler. 

 

 

3.8.9.1 Analysis of gene expression by semi-quantitative multiplex PCR  

 

During PCR, an increase of the amount of newly synthesized DNA can be observed. Theoretically, 

there should be a quantitative relationship between the amount of starting target sample and the 

amount of PCR product at any given cycle number. However, a basic PCR can be broken up into 

three phases. During the exponential phase, exact doubling of product is occurring with every cycle 

(assuming 100% reaction efficiency). The reaction is very specific and precise in all samples, all 

reagents are fresh and available. This phase is followed by the linear phase in which the PCR reaction 

already slows down, PCR components are being consumed as a result of amplification, and products 

start to degrade. In the linear phase, the PCR is not as precise anymore because the slow down of the 

reaction might be different among all samples. Thus, samples are not completely comparable 

anymore. During the final plateau phase, the reaction eventually has stopped, a saturation is reached, 

and a further increase of the DNA amount is barely visible. This is due to a lack of primers, 

nucleotides, and functionable DNA polymerase at higher PCR cycle numbers. Moreover, products 
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undergo degradation. Due to different reaction kinetics, each PCR sample will plateau at a different 

point, making a quantitative comparison impossible. 

Thus, to compare samples in a semi-quantitative manner, the PCR has to be stopped at lower cycle 

numbers during the exponential phase. The optimal number of cycles depends on the respective 

template and the primer combinations and has to be determined for each PCR setup. 

In addition, semi-quantitative PCR requires amplification not only of the target transcript (target cDNA), 

but also of a transcript (cDNA) derived from a gene which is assumed to be equally expressed in 

different samples. Such a gene is called housekeeping gene or endogenous control gene. The 

resulting PCR product serves as loading control and ensures that equal amounts of template have 

been used to compare the expression of target transcripts in different samples. The use of several 

primer pairs within one and the same PCR reaction is termed multiplex PCR. 

 

After synthesis of cDNA, semi-quantitative multiplex PCR was performed on all samples derived from 

repeated experiments in different passages of each fibroblast cell line treated with various drugs. Each 

reaction was set up in a final volume of 25 µl, containing 12.2 µl deionized and autoclaved H2O, 2.5 µl 

10 x PCR buffer, 4 µl dNTP mix, a total volume of 2 µl primer working dilutions (target and 

endogenous control, see table 8), 0.3 µl Taq polymerase (5 U/µl, Invitrogen), and 4 µl of the cDNA 

generated as described in chapter 3.8.8. As endogenous control, the glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) gene was co-amplified in all PCR reactions. The PCR conditions were as 

follows: 95°C for 5 min, followed by 23 cycles to ensure quantitative PCR conditions before reaching 

saturation (95°C for 15 s, 55°C for 30 s, 72°C for 45 s), and final extension at 72°C for 10 min. 

 

Table 8: Primer combinations and amounts of the 10 pmol/µl primer working dilutions used for multiplex 

PCRs. For more details on primers, see chapter 3.5. 

Amplified transcripts 

(target + endogenous control) 

Numbers of 

forward and reverse primers 

Volume 

of primer working dilutions 

FL-SMN2/∆7-SMN2 

+ 

GAPDH 

1837 and 1841 

 

1879 and 1876 

1.7 µl each 

 

0.3 µl each 

Htra2-β1 

+ 

GAPDH 

1093 and 1094 / 1970 and 1971 

 

1879 and 1876 

1.7 µl each 

 

0.3 µl each 

Htra2-β2 

+ 

GAPDH 

1970 and 1986 

 

1879 and 1876 

1.8 µl each 

 

0.2 µl each 

 

 

3.8.9.2 Analysis of the number of genomic SMN1 and SMN2 copies by quantitative 

real-time PCR 

 

Real-time PCR makes quantitation of genomic DNA or RNA (cDNA) easier and much more precise 

than traditional PCR (see also chapter 3.8.9.1). Real-time PCR detects the accumulation of amplicon 
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after each PCR cycle. Thus, for each PCR sample, the exponential, linear, and plateau phases are 

detected, summarized as amplification plot (amount of PCR product versus number of PCR cycles), 

and analyzed. Consequently, the exponential phase of each PCR reaction can be detected much 

more accurate than with traditional PCR and quantitative comparison of several samples is much more 

precise. Real-time PCR can be performed with a dye (SYBR Green I) that is non-fluorescent when 

free in solution, but forms fluorescent complexes with double-stranded PCR products. Another way to 

detect the amount of PCR product is the use of fluorescently labeled probes. 

 

To characterize individuals regarding their SMN1 and/or SMN2 copy numbers, a quantitative test can 

be applied which includes the analysis of genomic DNA isolated from an EDTA blood sample by 

quantitative real-time PCR (Feldkötter et al. 2002). The procedure is based on the exact measurement 

of the DNA concentration of each sample. Each real-time PCR reaction contains an amount of 7.5 ng 

DNA with unknown SMN1 or SMN2 copy number. DNAs from individuals with a known number of 

SMN1 or SMN2 copies which are prepared in the same way as the unknown samples are used to 

create standard curves. The standard curve serves to determine the SMN1 or SMN2 copy number in 

the unknown DNA samples. 

Prior to the measurement of the SMN1 or SMN2 copy number, the genomic DNA isolated from EDTA 

blood samples was stored at room temperature for five days to allow for complete dilution of the DNA 

in TE
-4

 buffer. Subsequently, the DNA concentration was measured in triplicates on a photometer 

(Eppendorf) and a DNA dilution of 20 ng/µl was prepared. After storage of the 20 ng/µl dilution at room 

temperature for another 24h, this dilution was measured on a photometer (Eppendorf or Peqlab) and 

served for the preparation of two independent 5 ng/µl dilutions. They were analyzed by real-time PCR 

at least twice on a LightCycler 1.5 instrument (Roche) using the Fast Start DNA Master SYBR Green I 

Kit (Roche). Each single real-time PCR reaction was set up in a 20 µl LightCycler Capillary (Roche) 

and performed in a total volume of 10 µl, containing 4.3 µl H2O, 1.2 µl 4 mM MgCl2, 1.0 µl of each 

primer working dilution, 0.833 µl SYBR Green I reaction mix, 0.166 µl polymerase, and 1.5 µl of the 

5 ng/µl DNA sample. Primers were able to distinguish between SMN1 and SMN2, ending on or very 

close to the nucleotide differences between the two copies in exon 7 at position +6 and intron 7 at 

 

Table 9: Conditions for the analysis of the number of genomic SMN1 and SMN2 copies by quantitative 

real-time PCR. 

PCR step SMN1 SMN2 

Heating 95°C for 10 min 

Amplification 

95°C for 15 s 

58°C for 5 s 

72°C for 25 s 

76°C for 1 s 

Melting curve 

95°C for 15 s 

65°C for 15 s 

Temperature increase to 85°C, hold for 0 s 

Cooling 40°C for 30 s 
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position +214. For primer sequence and localization, see table 6 (SMN1 primers: #1127 and #1133; 

SMN2 primers: #1263 and #1268). Standard curves for SMN1 or SMN2 were performed using 1.5 µl 

of genomic DNA in concentrations of 1.25, 2.5, 5, and 7.5 ng/µl. The PCR conditions are given in table 

9. The quantification program was followed by a melting step to detect the melting points for every 

PCR product. Analysis of the PCR curves was performed with the second derivative maximum method 

of the LightCycler software (Roche). 

 

 

3.8.9.3 Analysis of gene expression by quantitative real-time PCR 

 

According to the principles and advantages of real-time PCR explained in chapter 3.8.9.2, the 

comparative analysis of gene expression in a set of samples by real-time PCR is more exact than the 

application of semi-quantitative multiplex PCR. Moreover, real-time PCR is a high-throughput method 

which allows analysis of a large number of samples in a relatively short period of time. Thus, real-time 

PCR was applied to quantitatively investigate the expression of various transcripts in peripheral whole 

blood samples, in PBMCs, in the blood fractions included in the Human Blood Fractions MTC Panel 

(Clontech), and in fibroblast cells used for siRNA transfection experiments. The transcripts (cDNA 

templates) which have been amplified together with the primers and PCR conditions are given in table 

10. For primer sequences and localization, see table 6. 

 

Table 10: Transcripts that were investigated by quantitative real-time PCR. For each transcript, the 

respective primer pair and the PCR conditions are given. 

 FL-SMN ∆7-SMN GUSB PPIB B2M RPLP0 CTLA1 Htra2-β 

Primer 

numbers 

2075 

2076 

1449 

1450 

2937 

2938 

2935 

2936 

1967 

1968 

2939 

2940 

2048 

2049 

2690 

2691 

PCR 

conditions 

 

Heating 95°C for 10 min 

Ampli-

fication 

95°C,10s 

62°C,10s 

72°C,10s 

78°C,1s 

95°C,10s 

61°C,15s 

72°C,12s 

80°C,1s 

95°C,10s 

69°C,12s 

72°C,12s 

82°C,1s 

95°C,10s 

65°C,15s 

72°C,12s 

85°C,1s 

95°C,10s 

61°C,15s 

72°C,10s 

76°C,1s 

95°C,10s 

63°C,15s 

72°C,12s 

86°C,1s 

95°C,10s 

60°C,15s 

72°C,12s 

82°C,1s 

95°C,10s 

68°C,15s 

72°C,12s 

84°C,1s 

Melting 

curve 

95°C,15s 

65°C,15s 

92°C,0s 

95°C,15s 

65°C,15s 

92°C,0s 

95°C,15s 

65°C,15s 

94°C,0s 

95°C,15s 

65°C,15s 

95°C,0s 

95°C,15s 

65°C,15s 

95°C,0s 

95°C,15s 

65°C,15s 

95°C,0s 

95°C,15s 

65°C,15s 

95°C,0s 

95°C,15s 

65°C,15s 

95°C,0s 

Cooling 40°C for 30s 

 

Samples were measured on a Lightcycler 1.5 machine (Roche) using the Fast Start DNA Master 

SYBR Green I Kit (Roche). Prior to analysis, cDNAs to be analyzed were diluted in TE
-4

 buffer. For 

each amplified transcript (cDNA template), a standard curve was established using RNA prepared in 

the same way as the unknown samples. Reactions were performed in 20 µl LightCycler Capillaries 

(Roche) in a total volume of 10 µl, containing 2.8 µl H2O (∆7-SMN: 1.3 µl), 1.2 µl 4 mM MgCl2, 1.0 µl of 
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each primer working dilution, 0.833 µl SYBR Green I reaction mix, 0.166 µl polymerase, and 3.0 µl 

(∆7-SMN: 4.5 µl) of the cDNA dilution. The quantification program was followed by a melting step to 

detect the melting points for every PCR product. Analysis of the PCR curves was performed with the 

second derivative maximum method of the LightCycler software (Roche). Correct identity of all PCR 

products was confirmed by sequencing (see chapter 3.8.13). Controls (RNA without reverse 

transcription step) were included to rule out any unspecific binding of primers to remaining DNA or 

RNA. All sample measurements were repeated at least twice and results are given as mean ± 

standard error of the mean (SEM). 

 

 

3.8.9.4 Analysis of gene expression by one-step reverse transcription - quantitative real-time 

PCR 

 

Reverse transcription of RNA into cDNA and quantitative real-time PCR using cDNA as template can 

be combined and performed in one and the same tube. Therefore, RNA is incubated with all reagents 

required for reverse transcription (including the reverse transcriptase) and all reagents required for 

subsequent PCR (including the DNA-dependent DNA polymerase). The reaction mix is incubated at 

conditions which allow the reverse transcriptase to become active and to synthesize cDNA. Then, by 

heating up the reaction mix, the reverse transcriptase is inactivated. Thereafter, the DNA-dependent 

DNA polymerase is activated and the quantitative real-time PCR takes place. One-step reverse 

transcription - quantitative real-time PCR is less time-consuming than separate reactions and 

minimizes pipette steps. 

 

One-step reverse transcription - quantitative real-time PCR was performed on RNA samples derived 

from organotypic hippocampal rat brain slices treated with VPA. The TaqMan EZ RT-PCR Core 

Reagents Kit (Applied Biosystems) was used according to the manufacturer’s protocol. Each reaction 

used 100 ng of total RNA, 300 nM primers and 100 nM probe. Rat Smn was amplified as the target 

transcript. In a separate reaction, rat β-actin was amplified as the endogenous control which was 

expected to be equally expressed in all of the samples. For probes, primer sequences, and primer 

localization, see table 6. Cycling conditions were 50°C for 2 min, 60°C for 30 min (reverse transcription 

step), 95°C for 5 min followed by 40 cycles of 94°C for 20 s and 60°C for 1 min. Analysis of the real-

time raw data and normalization of Smn data with β-actin data for each sample was performed using 

the Sequence Detection Software, version 1.7 (Applied Biosystems). All sample measurements were 

repeated at least twice and results are given as mean ± standard error of the mean (SEM). 

 

 

3.8.10 Gel electrophoresis for separation of DNA fragments 

 

Gel electrophoresis is based on the migration of charged molecules across the gel when an electric 

current is applied. The negative charge of DNA fragments is mainly due to the phosphate groups 

which are part of the alternating sugar-phosphate-backbone. Depending on their size, the DNA 

fragments will move differently through the gel matrix: short fragments will more easily fit through the 
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pores of the gel and migrate faster, while larger ones will have more difficulty and thus migrate slower. 

Additionally, the speed of migration depends on the current applied to the gel and the size of the pores 

of the gel. To separate DNA fragments which have different size, gel electrophoresis can be 

performed using an agarose gel matrix or a polyacrylamide (PAA) gel matrix. 

 

 

3.8.10.1 Agarose gel electrophoresis 

 

Whenever a new real-time PCR assay with new primers was developed to investigate the expression 

of a particular transcript (chapter 3.8.9.3), the real-time PCR product was sequenced (chapter 3.8.13) 

to confirm the correct identity before a large number of samples was analyzed with the new method. 

Therefore, the real-time PCR product was run on an 1.5% agarose gel to separate it from remaining 

PCR reagents like nucleotides and enzyme. An amount of 4.5 g agarose was dissolved in 300 ml TBE 

buffer by boiling in a microwave. After a short cool down and addition of 15 µl ethidium bromide 

solution (1%), agarose solution was transferred into a chamber supplied with an appropriate comb. 

After solidifying of the agarose solution, the gel was transferred to a gel electrophoresis chamber. TBE 

buffer was added, PCR samples were supplemented with DNA loading buffer and pipetted into the gel 

slots. Separation was carried out at 100 V for ~1 h. In a separate lane on the gel, a 100 bp DNA ladder 

(Invitrogen) was run together with the samples to estimate the length of the real-time PCR products. 

DNA fragments were finally visualized with UV light (wavelength 254 nm) on a ChemiDoc XRS 

Imaging system (Biorad). 

 

 

3.8.10.2 Polyacrylamide (PAA) gel electrophoresis 

 

PAA gel electrophoresis was performed to separate the PCR products in the samples derived from 

different passages of each fibroblast cell line treated with various drugs. PAA gels are formed by co-

polymerization of acrylamide and N,N’-methylenbisacrylamid. Polymerization is initiated by ammonium 

persulfate and TEMED: TEMED accelerates the rate of formation of free radicals from persulfate, and 

these in turn catalyze polymerization. The persulfate free radicals convert acrylamide monomers to 

free radicals which react with unactivated monomers to begin the polymerization chain reaction (Shi 

and Jackowski 1998). The elongating polymer chains are randomly crosslinked, resulting in a gel in 

which the pore size depends on the polymerization conditions and monomer concentrations. In this 

work, only native 10% PAA gels (without urea) were prepared between glass plates (supplied with an 

appropriate comb) using 20 ml PAA gel stock solution and 200 µl APS to start polzmeriyation. After 

solidifying, the glass plates with the gel in between were transferred to a gel electrophoresis chamber. 

TBE buffer was added, PCR samples were supplemented with DNA loading buffer and inserted into 

the gel slots. Separation was carried out at 20 mA for ~3 h. In a separate lane on the gel, a 100 bp 

DNA ladder (Invitrogen) was run together with the samples to estimate the length of the PCR 

products. After electrophoresis, PAA gels were stained in 100 ml TBE buffer supplemented with 15 µl 

ethidium bromide solution (1%) for 30 min. DNA fragments were finally visualized with UV light 

(wavelength 254 nm) on a Gel Doc 2000 Imaging system (Biorad). 
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3.8.11 Densitometric analysis of DNA bands 

 

Densitometric analysis of the separated PCR products obtained from the samples derived from 

repeated drug treatment of fibroblast cell lines was carried out using the ONE-DScan program 

(Scanalytics) and the gel scans obtained from the Gel Doc 2000 Imaging system (see chapter 

3.8.10.2). With the help of the ONE-DScan program, a densitometric value was calculated for each 

single PCR band. Resulting data are given as mean (average of repeated experiments) ± SEM. 

 

 

3.8.12 Extraction of DNA from agarose gels 

 

Prior to sequencing of PCR products separated on a 1.5% agarose gel, bands were visualized with 

UV light (wave length 302 nm), cut with a scalpel, and the piece of gel containing the respective PCR 

product was transferred to a 2 ml reaction tube. Extraction of the PCR product was carried out 

according to the manufacturer’s protocol out using the QIAquick Gel Extraction Kit (Qiagen). DNA was 

eluted from the column with deionized autoclaved H2O. 

 

 

3.8.13 Automatic, non-radioactive sequencing of DNA (Sanger 1977) 

 

DNA was sequenced with chain-terminating inhibitors (Sanger et al. 1977) using the BigDye® 

Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems). Each sequencing reaction contained ~30 

ng PCR product to be sequenced, 3 µl 5 x sequencing buffer, 1 µl primer working dilution, 1 µl reaction 

mix and deionized, autoclaved H2O to a final volume of 20 µl. Cycle sequencing was performed on a 

thermocycler using the following conditions: 95°C for 30 s, followed by 25 cycles of 95°C for 10 s, 

50°C for 5 s, and 60°C for 4 min. The annealing temperature was set up to 50°C which is low enough 

to be universal for all primers used. The separation of the fragments which were synthesized 

throughout the cycle sequencing was performed on an ABI 3730 sequencer machine (Applied 

Biosystems). Results were analyzed using the Finch TV or BioEdit software. 

 

 

3.9 Proteinbiochemical and immunological methods 

 

3.9.1 Extraction of proteins from primary fibroblast cell cultures 

 

After incubation of different passages from each fibroblast line with various drugs, the culture medium 

was removed, and cells were washed twice in 1 x PBS buffer. Thereafter, fibroblasts in each petri dish 

were lysed by addition of 50 µl RIPA buffer. Dishes were kept on ice for 20 min to complete lysis. 

Subsequently, cell lysates were harvested, transferred to 1.5 ml reaction tubes, and protein extracts 

prepared by centrifugation at 4°C and 12,000 rpm for 20 min. The pellet containing cell debris was 

discarded, and the supernatant containing the protein was frozen at -80°C. 
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Fibroblasts used for siRNA experiments underwent a similar protocol for protein extraction. After 

pooling and aliquoting the cells, a volume of 20 µl RIPA buffer was used for each cell pellet obtained 

from the respective well of the culture plate. 

 

3.9.2 Extraction of proteins from organotypic hippocampal slice cultures (OHSCs) from rat 

 

Proteins were extracted from rat OHSCs by homogenization of three pooled slices for each 

experiment in 100 µl lysis buffer containing 50 mM Tris (pH 8.0), 150 mM NaCl, 1% Triton-X 100, 

1 mM EDTA (pH 8.0), 0.1% SDS, 1 mM PMFS, and 1 pill Complete-Mini (Roche) per 10 ml. After lysis, 

samples were centrifuged at 4°C and 12,000 rpm for 20 min. The pellet containing cell debris was 

discarded, and the supernatant containing the protein was frozen at -80°C. 

 

 

3.9.3 Extraction of proteins from peripheral blood mononuclear cells (PBMCs) 

 

An amount of 4 ml peripheral whole blood was collected in BD Vacutainer® CPT Cell Preparation 

Tubes with Sodium Citrate (Becton Dickinson). Tubes are intended for the collection of whole blood 

and the separation of mononuclear cells. The cell separation medium is comprised of a polyester gel 

and a density gradient liquid. This configuration permits cell separation during a single centrifugation 

step. 

Tubes were centrifuged at room temperature and 1500-1800 x g for 20 min. After aspiration of the 

plasma layer, the layer containing lymphocytes and monocytes (peripheral blood mononuclear cells, 

PBMCs) was collected with a Pasteur pipette, transferred to a 15 ml Falcon tube, and PBS was added 

to a final volume of 10 ml. Tubes were inverted 5 times, and centrifuged at 430 x g for 15 min. 

Supernatant was aspirated, and the cell pellet washed by addition of 10 ml PBS and centrifugation at 

430 x g for another 10 min. To the resulting cell pellet, 50 µl RIPA buffer were added. Tubes were kept 

on ice for 20 min to complete lysis. Subsequently, cell lysates were transferred to 1.5 ml reaction 

tubes, and protein extracts prepared by centrifugation at 4°C and 12,000 rpm for 20 min. The pellet 

containing cell debris was discarded, and the supernatant containing the protein was frozen at -80°C. 

 

 

3.9.4 Protein contents determined according to the Bradford method 

 

The quantitative determination of the protein concentration was carried out according to the method 

described by Bradford (Bradford 1976). The method is based on different absorption maxima of 

unbound Coomassie Brilliant Blue G250 and Coomassie Brilliant Blue G250 which is bound to 

proteins. 

A volume of 2 µl (siRNA experiments: 1 µl) of each protein sample to be analyzed was incubated in 

500 µl (siRNA experiments: 100 µl) Bradford solution for 15 min. Subsequently, absorption of the 

samples was measured at a wavelength of 595 nm. To calculate the protein concentrations in the 

unknown samples, values obtained for absorption were compared to the values obtained from a 

standard curve which was prepared from bovine serum albumin (BSA). 
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3.9.5 Discontinuous denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

 

The separation of proteins in denaturing polyacrylamide gels occurs primarily by length (primary 

protein structure, number of amino acids) because the use of the anionic detergent SDS linearizes the 

proteins and applies a negative charge to each protein in proportion to its mass (Laemmli 1970). 

Without SDS, different proteins with similar molecular weights would migrate differently due to 

differences in folding, as differences in folding patterns would cause some proteins to better fit through 

the gel pores than others. 

In a first step, the 12% PAA separation gel was prepared between two glass plates (distance 0.5 mm). 

70% ethanol was added on top of the gel until solidification. After polymerization, the ethanol was 

removed and the stacking PAA gel was added on top of the separation gel between the two glass 

plates. The stacking gel contains less PAA than the separation gel which results in larger gel pores. 

Moreover, the stacking gel is prepared with a Tris-buffer that differs from the Tris-buffer used for the 

separation gel in its concentration and pH. The main function of the stacking gel is to focus all of the 

proteins into a single sharp band shortly after penetration into the gel. Proteins are then resolved in 

the separation gel which possesses much smaller pores. As soon as an electric current is applied 

across the gel, the negatively charged proteins start to migrate. Short proteins will more easily fit 

through the pores in the gel, while larger ones will have more difficulty and migrate slower. The usage 

of a system with discontinuous buffers and gel pores enhances the sharpness of the protein bands. 

Before 7.5 µg of each protein sample were transferred into the slots of the PAA gel, samples were 

supplemented with Laemmli buffer and boiled at 95°C for 5 min to enhance denaturation. In a 

separate lane, marker proteins of known molecular weight were run (Precision Plus Protein All Blue 

Standards, Biorad) to estimate the molecular weight of the unknown proteins in the samples. Gel 

electrophoresis was performed at 60-80 V in an electrophoresis chamber using 1 x electrophoresis 

buffer. 

 

 

3.9.6 Transfer of proteins to nitrocellulose membrane by wet blotting (western blot) 

 

To make proteins available for antibody detection, they were moved from within the gel onto a 

nitrocellulose membrane [Protran BA 83 Cellulosenitrat (E), Whatman]. The membrane was 

equilibrated in transfer buffer, placed face-to-face with the gel, and a gel sandwich was prepared 

together with two fiber pads and two filter pads all soaked in transfer buffer. The gel sandwich was put 

into a cassette which then was placed into a module of a Mini Trans-Blot Cell (Biorad). Additionally, a 

frozen cooling unit and transfer buffer were added to the Trans-Blot Cell. Wet blotting was carried out 

at a current of 30 V overnight. Thus, charged proteins moved onto the membrane while maintaining 

the organization they had within the gel. As a result of this blotting process, proteins were exposed on 

a thin surface layer for detection. 
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3.9.7 Ponceau staining of proteins on nitrocellulose membranes 

 

After wet blotting overnight, correct protein transfer was checked by incubation of the membrane in 

Ponceau solution for 30 s. Subsequently, the membrane was washed in TBS Tween buffer several 

times to remove Ponceau dye again. 

 

 

3.9.8 Immunostaining of membranes with antibodies and detection of signals with 

chemiluminescence reagent 

 

Nitrocellulose membranes bind proteins non-specifically. Interactions between the membrane and the 

antibodies used for detection were prevented by blocking the membrane in 6% blocking solution 

containing non-fat dry milk for 3 h (after Ponceau staining). Subsequently, the membrane was probed 

with the primary antibody diluted in 10 ml 1-2% non-fat dry milk in TBS Tween. The primary antibody 

binds the target protein directly. This was followed by 5 x 5 min washing steps in TBS Tween to 

remove unbound primary antibody, exposure to the secondary antibody diluted in 10 ml 1-2% non-fat 

 

Table 11: Conditions used to probe nitrocellulose membranes with primary and secondary antibodies. 

Primary antibody Dilution and incubation time 

anti-SMN, monoclonal mouse 

(BD Transduction Laboratories) 

1:5,000 for 1 h 

1:1,000 for 1 h (blots with carrier proteins) 

anti-β-Tubulin, monoclonal mouse (Sigma) 1:2,000 for 1 h 

anti-Htra2-β1, polyclonal rabbit 

(Hofmann et al. 2000) 
1:1,000 for 1 h 

anti-SF2/ASF, monoclonal mouse 

(kindly provided by A. Krainer, 

Cold Spring Harbor Laboratories) 

1:200 for 4 h 

anti-SRp20, monoclonal mouse (Santa Cruz) 1:100 for 24 h 

anti-β-Actin, monoclonal mouse (Sigma) 
1:5,000 for 1 h 

1:40,000 for 1 h (blots with carrier proteins) 

Secondary antibody Dilution and incubation time 

Goat anti-mouse IgG, peroxidase-conjugated 

(Dianova) 
1:2,500 for 1 h 

Goat anti-rabbit IgG, peroxidase-conjugated 

(Pierce) 
1:10,000 for 1 h 

 

dry milk in TBS Tween, and another 5 x 5 min washing steps in TBS Tween to remove unbound 

secondary antibody. The secondary antibody was linked to a reporter enzyme (horseradish 

peroxidase) and binds to the primary antibody. The conditions used for incubation of the membrane 

with various primary and secondary antibodies are given in table 11. Detection of the probes that are 
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labeled and bound to the protein of interest was performed via chemiluminescent detection. Western 

blots were incubated with 8 ml SuperSignal® West Pico Chemiluminescent Substrate (Pierce) for 

5 min. This is a substrate which will fluoresce when exposed to horseradish peroxidase on the 

secondary antibody. The light was then detected by photographic film (Hyperfilm ECL, Amersham) 

and the image analyzed by densitometry to evaluate the relative amount of protein staining and to 

quantify the results in terms of optical density. Western blot results obtained from different passages of 

each fibroblast line treated with various drugs and from triplicates of siRNA transfection experiments 

are given as mean ± standard error of the mean (SEM). 

 

 

3.9.9 Separation of monocytes and lymphocytes from peripheral whole blood by magnetic 

cell sorting (MACS) 

 

An amount of 4 ml peripheral whole blood was collected in BD Vacutainer® CPT Cell Preparation 

Tubes with Sodium Citrate (Becton Dickinson). Within two hours after blood drawing, tubes were 

centrifuged at room temperature and 1500-1800 x g for 20 min. After aspiration of the plasma layer, 

the layer containing lymphocytes and monocytes (peripheral blood mononuclear cells, PBMCs) was 

collected with a Pasteur pipette, transferred to a 15 ml Falcon tube, and PBS was added to a final 

volume of 10 ml. Tubes were inverted 5 times, and centrifuged at 430 x g for 15 min. Supernatant was 

aspirated, the cells were suspended in 10 ml of PBS and counted. After centrifugation at 430 x g for 

another 10 min, cell pellet was suspended in MACS buffer (80 µl buffer for each 1 x 10
7
 PBMCs). 

Subsequently, the fraction of monocytes was separated by magnetic labeling using CD14 MicroBeads 

(Miltenyi) according to the manufacturer’s protocol. The beads are conjugated to a monoclonal mouse 

antibody against the human protein CD14 which is only present on monocytes but not on other 

PBMCs. After binding of monocytes to the beads, lymphocytes are obtained in the column flow-

through. Purity of the two cell fractions was checked by flow cytometry (see chapter 3.9.11). 

 

 

3.9.10 Immunohistochemistry staining of peripheral blood mononuclear cells (PBMCs) 

 

An amount of 4 ml peripheral whole blood was collected in BD Vacutainer® CPT Cell Preparation 

Tubes with Sodium Citrate (Becton Dickinson). Tubes were centrifuged at room temperature and 

1500-1800 x g for 20 min. After aspiration of the plasma layer, the layer containing lymphocytes and 

monocytes (peripheral blood mononuclear cells, PBMCs) was collected with a Pasteur pipette, 

transferred to a 15 ml Falcon tube, and PBS was added to a final volume of 10 ml. Tubes were 

inverted 5 times, and centrifuged at 430 x g for 15 min. Supernatant was aspirated, the cells were 

suspended in 10 ml of PBS and counted. After centrifugation at 430 x g for another 10 min, cell pellet 

was suspended in PBS to obtain a concentration of 2.5 x 10
6
 cells / ml. 

Cells were fixed and permeabilized using the Fix&Perm Cell Permeabilization Kit (Caltag). 100 µl cell 

suspension were incubated with 100 µl fixation medium for 15 min. After centrifugation at 430 x g for 5 

min, washing with FACS buffer and centrifugation at 430 x g for 5 min, the cell pellet was suspended 

in 100 µl permeabilization medium. Addition of 2 µg anti-SMN FITC-conjugated antibody (BD 
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Transduction Laboratories) or 2 µg of the isotype control (mouse IgG1 FITC-conjugated, Becton 

Dickinson) to check for background staining was followed by short vortexing and incubation at 2-8°C 

for 1 h. Subsequently, cells were centrifuged at 430 x g for 5 min, the pellet was washed once with 

FACS buffer, and then reconstituted with 0.2 ml FACS buffer. An aliquot was transferred onto a 

microscope slide together with DAPI-Mounting-Medium (Vector) to stain cell nuclei and analyzed on 

an Axioskop 2 fluorescence microscope (Zeiss). 

 

 

3.9.11 Analysis of peripheral blood mononuclear cells (PBMCs) by flow cytometry 

 

Isolation of PBMCs was carried out as described in chapter 3.9.10. After adjusting the cell suspension 

to a concentration of 2.5 x 10
6
 cells / ml, cells were fixed (and permeabilized for SMN stainings) using 

the Fix&Perm Cell Permeabilization Kit (Caltag). After pipetting 0.125 µg PE-conjugated anti-CD14 

(Becton Dickinson) and 0.125 µg PerCP-conjugated anti-CD45 (Becton Dickinson) into a FACS tube, 

100 µl cell suspension were added and the tubes vortexed and incubated in the dark for 15 min. To 

set up parameters for analysis on the flow cytometer and to check background staining, one sample 

was incubated with the respective isotype controls (0.125 µg PE-conjugated IgG2a and 0.125 µg 

PerCP-conjugated IgG1, Becton Dickinson). CD14 and CD45 are surface markers present on PBMCs. 

While CD45 is found on monocytes and lymphocytes, CD14 is present exclusively on monocytes. The 

antibodies are labeled with different dyes which allow for differentiation of the cell fractions by flow 

cytometry. Subsequently, 100 µl fixation medium were added followed by incubation for 15 min. Cells 

were centrifuged at 430 x g for 5 min, washed with FACS buffer and again centrifuged at 430 x g for 

5 min. To check the purity of the fractions after separation of monocytes and lymphocytes (chapter 

3.9.9), the cell pellet was reconstituted with 0.2 ml FACS buffer and measured on a FACScalibur flow 

cytometer (Becton Dickinson). For SMN protein analysis, cell pellet was suspended in 100 µl 

permeabilization medium. Addition of 2 µg anti-SMN FITC-conjugated antibody (BD Transduction 

Laboratories) or 2 µg of the isotype control (mouse IgG1 FITC-conjugated, Becton Dickinson) to check 

for background staining was followed by short vortexing and incubation at 2-8°C for 1 h. Subsequently, 

cells were centrifuged at 430 x g for 5 min, the pellet was washed once with FACS buffer, 

reconstituted with 0.2 ml FACS buffer and measured on a FACScalibur flow cytometer (Becton 

Dickinson). To compare SMN measurements at different time points, Sphero Rainbow Calibration 

Particles (8 peaks, 3.0 – 3.4 µM, Becton Dickinson) were used to perform a standard curve together 

with each SMN analysis. Rainbow beads are a mixture of particles that are dyed to eight different 

fluorescent intensities and may be used for the calibration of flow cytometers. 

 

 

3.9.12 Analysis of pmaxGFP-transfected fibroblasts by flow cytometry 

 

Fibroblasts were harvested 24 h after transfection, transferred to a FACS tube, washed once with 

PBS, centrifuged at 1200 rpm for 10 min, washed once with FACS buffer, and centrifuged again at 

1200 rpm for 10 min. Subsequently, the cell pellet obtained from one well of a 6-well plate was 

reconstituted with 0.2 ml FACS buffer and analyzed on a FACScalibur flow cytometer (Becton 
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Dickinson). Due to similar emission maxima, GFP fluorescence was detected in the channel 

commonly used for the detection of green FITC fluorescence. 

 

 

3.10 Specific methods applied to evaluate the in vivo effect of valproic acid in 

human subjects 

 

3.10.1 Pilot trial with SMA carriers 

 

3.10.1.1 Recruitment of probands 

 

Initially, 17 SMA carriers (parents of patients with SMA) were recruited for participation in the VPA pilot 

trial. The project was approved by the local Ethics Committee of the University of Bonn (Approval 

number 13804) and written informed consent was obtained from each subject according to the 

Declaration of Helsinki. Because it is well known that VPA is teratogenic in the first trimester of 

pregnancy, only males and postmenopausal women were included. Each of the recruited SMA 

carriers (13 males, four postmenopausal or sterilized females; mean age ± SD: 47.3±9.3 years) 

presented 1 SMN1 copy and 1-3 SMN2 copies as determined by real-time quantitative PCR described 

in chapter 3.8.9.2. A number of five potential probands had to be rejected since they did not meet the 

strict inclusion criteria of normal blood values before drug treatment: four subjects revealed slightly 

elevated GPT and/or GGT levels above the normal range and one individual was diagnosed with 

Gilbert’s syndrome. Based on the fact that VPA rarely causes severe side effects involving liver and 

pancreas function, only SMA carriers with normal liver function values were included in the protocol.  

 

 

3.10.1.2 Design of the pilot trial 

 

The remaining eight heterozygous men and four heterozygous women were enrolled in the study. 

Drug treatment was started with an initial dose of 300 mg/day VPA (Ergenyl® chrono 300, Sanofi-

Synthelabo). Probands were seen every two weeks and, by gradually increasing the administered 

VPA dose up to 1200–1800 mg/day, VPA serum levels were individually adjusted to 70–100 mg/l. This 

is the therapeutic range for epilepsy treatment. After maintaining serum levels at 70–100 mg/l for 

about five weeks, VPA dose was gradually decreased and medication finally discontinued. Another 

two probands (one male and one female) quit the study prior to reaching the final VPA serum level 

due to compliance problems and leg edema, respectively. Consequently, results from a total number 

of ten carriers finally served as basis for evaluating the study outcome. For clarification: Throughout 

this thesis, the common term “valproic acid” and the corresponding abbreviation “VPA” are used. 

However, all in vivo investigations in SMA carriers were carried out with sodium valproate which is the 

active agent in Ergenyl® chrono 300. 
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3.10.1.3 Blood sampling 

 

For analysis of gene expression under VPA treatment, peripheral whole blood was collected from 

each participant using the PAXgene blood RNA system (PreAnalytiX). The first three blood samples 

were taken prior to VPA medication. In order to evaluate baseline transcript levels, the three 

measurements for each transcript were averaged and set to 1.0 corresponding to 100%. Blood 

sampling was then continued throughout the VPA dose escalation period, followed by three samples 

taken while VPA serum levels were determined to be in the therapeutic range. A final sample was 

collected from each carrier several weeks after discontinuing VPA medication. All measured values 

were calculated as multiples of 1.0. 

 

In addition, 9/10 carriers agreed to donate an additional amount of 4 ml peripheral whole blood for 

SMN protein analysis. From each of these individuals, blood was taken once before VPA treatment 

and once under therapeutic VPA serum levels and collected in BD Vacutainer® CPT Cell Preparation 

Tubes with Sodium Citrate (Becton Dickinson). 

 

 

3.10.2 Individual experimental curative approaches in SMA patients 

 

3.10.2.1 Patient collective 

 

Blood samples in PAXgene blood RNA tubes (PreAnalytiX) were obtained from five patients with type 

I (four males, one female; mean age ± SD: 1.6±0.9 years), 11 patients with type II (seven males, four 

females; mean age ± SD: 10.3±7.1 years), and four patients with type III SMA (three males, one 

female; mean age ± SD: 20.8±6.9 years) treated with VPA in individual experimental curative 

approaches throughout Germany according to section 41 of the German Drug Act (AMG). Informed 

written consent for genetic analysis of samples was given by all subjects or their legal guardians. All of 

these patients presented homozygous absence of SMN1 and varying numbers of SMN2 copies 

measured by real-time quantitative PCR as described in chapter 3.8.9.2. 

 

 

3.10.2.2 Blood sampling 

 

In each of the individual experimental curative approaches described above, analysis of FL- and ∆7-

SMN2 mRNA levels was carried out in a total of five blood samples. We obtained two samples taken 

before VPA treatment within a time period of several weeks allowing us to determine transcript 

baseline levels by averaging the two measurements and setting the mean to 1.0 corresponding to 

100%. Then, at intervals of about four weeks, we received another three samples under drug 

treatment together with the corresponding VPA serum level. All determined values were calculated as 

multiples of 1.0. 
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3.11 Statistical methods 

 

A directional student’s t-test for uncorrelated samples was carried out to check for differences between 

data obtained from mock-treated and drug-treated cell cultures and organotypic hippocampal slice 

cultures, respectively. The same statistical test was applied to evaluate the significance of knocked 

down RNA and protein levels after siRNA treatment of fibroblasts. A non-directional student’s t-test for 

uncorrelated samples was performed to compare the FL-SMN2 transcript level, the ∆7-SMN2 

transcript level, and the FL / ∆7 ratio in siRNA-treated cells, the corresponding mock, and the negative 

siRNA control. 

To analyze the differential expression of genes in lymphocytes and monocytes, a non-directional 

student’s t-test for uncorrelated samples was applied. 

In all cases, three levels of statistical significance were distinguished: p<0.05, p<0.01, and p<0.001. 

Significant differences are indicated with different numbers of asterisks within the respective figures 

and/or are given within the text. 

 

Analysis of variance (ANOVA, F-test) was carried out to check for differences between untreated 

controls, carriers and SMA types I, II, and III regarding their baseline FL- and ∆7-SMN transcript levels 

and the FL/∆7-SMN ratios. A significant ANOVA (p<0.05) was followed by a post-hoc analysis 

applying the Tukey-Kramer procedure (multiple pairwise comparisons of data sets containing unequal 

sample sizes). Post-hoc analysis distinguished three levels of statistical significance: p<0.05, p<0.01 

and p<0.001. Significant differences are given within the text. 

To evaluate the significance of increased/decreased SMN transcript levels in each single carrier and 

SMA patient treated with VPA, individual data were subdivided into values without drug treatment and 

values obtained under drug therapy. Subsequently, the two data groups were compared by analysis of 

variance (ANOVA for two data groups, equivalent to a non-directional t-test with F=t
2
). Statistically 

significant values were considered p<0.05. Significant differences are given within the text. 
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4 Results 

 

Proximal spinal muscular atrophy (SMA) results from homozygous loss of the survival motor neuron 

gene 1 (SMN1) and pathological splicing of the remaining SMN2 copy genes. Consequently, SMA 

patients suffer from a lack of functionable full-length (FL)-SMN protein which results in degeneration of 

the α-motor neurons in the anterior horns of the spinal cord, subsequently leading to progressive 

muscle weakness and atrophy. Each SMA patient retains one or more SMN2 genes. The number of 

SMN2 copies inversely correlates with the disease severity. 

One of the major challenges in SMA research is to increase the level of FL-SMN2 transcripts/FL-

SMN2 protein derived from the SMN2 gene. This goal might be achieved by stimulating the 

transcriptional activity of SMN2 and/or by correcting the SMN2 splicing pattern. 

In 2001, it was demonstrated for the first time that treatment of EBV-transformed lymphoblastoid cell 

lines derived from SMA patients with a compound, sodium butyrate, results in elevated FL-SMN2 

transcript and FL-SMN2 protein levels (Chang et al. 2001). Moreover, butyrate treatment prolonged 

the survival of SMA transgenic mice (Smn
-/-

, SMN2). It was suggested that butyrate exerts its effects 

on SMN2 expression through the inhibition of histone deacetylases (HDACs). However, the striking 

disadvantage of butyrate is its very short terminal half-life of only 6 min in human serum, which makes 

the drug inadequate for SMA therapy. 

Independently, valproic acid (VPA) was identified as a powerful HDAC inhibitor with anti-cancer 

activity in 2001 (Gottlicher et al. 2001). In contrast to butyrate, VPA is a well-known FDA-approved 

drug with a terminal half-life of 9-18 hours in human serum. The compound has successfully been 

used in long-term epilepsy therapy for more than three decades. Interestingly, both drugs butyrate and 

VPA not only share the ability to inhibit HDACs, but they also have similar chemical structures that 

assign them to the class of short-chain fatty acids. Hypothesizing a connection between the chemical 

structure of butyrate, it’s inhibitory effect on HDACs and the elevated levels of FL-SMN2 RNA and 

protein in butyrate-treated lymphoblastoid cell lines, we assumed that the closely related compound 

VPA could show a similar impact on SMN2 expression and started to investigate the drug in cell 

cultures in vitro. 

 

 

4.1 In vitro experiments with histone deacetylase (HDAC) inhibitors in cell lines 

derived from SMA patients 

 

4.1.1 Treatment of EBV-transformed lymphoblastoid cell cultures with valproic acid 

 

EBV-transformed lymphoblastoid cell lines can be obtained without difficulty from human EDTA blood 

samples. The cultures are relatively easy to maintain and show rapid growth. In Dr. Brunhilde Wirth’s 

laboratory, a large number of EBV-transformed cell lines are available. To check whether VPA is able 

to regulate FL-SMN2 protein expression, four different EBV-cell lines were selected for treatment with 

the compound: cell line B6100a (SMA I, 3 SMN2 copies), cell line T56/91 (SMA I, 1 SMN2 copy), cell 
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line BW332 (SMA IIIb, 3 SMN2 copies), and cell line BW231 (SMA I, 1 SMN2 copy). In parallel, 

experiments were set up to incubate these cell lines with butyrate. Since it had been demonstrated 

already that butyrate has an impact on SMN2 expression in EBV cell lines (Chang et al. 2001), these 

experiments served as positive control. The conditions used for drug treatment were based on those 

which had revealed best results for histone hyperacetylation and anticancer activity of VPA (Gottlicher 

et al. 2001) and for the regulation of SMN2 expression with butyrate [(Chang et al. 2001) and personal 

communication Jan-Gowth Chang], respectively. 

The selected EBV cell lines were treated with solvent, 50, 500, and 1000 µM VPA for 16 and 24 h or 

with solvent, 5, 10, 50, 500, 1000, 2000, 3000, 5000, and 10000 µM butyrate for 16 and 24 h. For 

each drug concentration, various cell numbers were tested: 2x10
5 

cells/2 ml culture medium, 

4x10
5
 cells/4 ml culture medium, 1x10

6 
cells/2 ml or 5 ml culture medium, 1.5x10

6 
cells/2 ml or 5 ml 

culture medium, and 2x10
6
 cells/2 ml or 5 ml culture medium. The respective drug was added 

dropwise either immediately after cell counting or 6 to 24 h later. After incubation of the cultures with 

butyrate or VPA, cells were harvested. Since the ultimate goal of the experiments was an increase of 

the SMN2 protein level, protein extracts were prepared for analysis, and western blots were performed 

to stain the SMN protein and β-tubulin. The protein β-tubulin was assumed to be similarly expressed in 

all cells and therefore served as control to confirm loading of equal protein amounts onto the 

nitrocellulose membrane. However, regardless of the experimental conditions and despite of multiple 

repetition of each set up, neither the positive control experiments carried out with butyrate nor the 

experiments performed with VPA revealed an up-regulation of the SMN protein level (data not shown). 

 

 

4.1.2 Treatment of SMA fibroblast cultures with valproic acid 

 

It has been clearly demonstrated that butyrate is able to stimulate FL-SMN2 expression in EBV-

transformed lymphoblasts (Chang et al. 2001). However, the results could not be reproduced, 

suggesting that the experimental conditions did not meet all of the requirements. Consequently, a 

conclusion regarding the ability of VPA to exert an effect on SMN2 expression could not be drawn 

from the experiments performed in lymphoblastoid cell lines either. Therefore, a different strategy was 

applied to investigate a potential impact of VPA on SMN2 expression in vitro. Besides of EBV-

transformed lymphoblastoid cell lines, primary fibroblast cell lines derived from SMA patients were 

available in the laboratory. These cell lines are obtained from skin biopsies, are also relatively easy to 

maintain, and show medium to rapid growth as adherent cultures. Several fibroblast cell lines from 

SMA patients were selected and used for drug treatment experiments. 

 

 

4.1.2.1 Impact of valproic acid on SMN2 protein levels 

 

Fibroblast cultures from three SMA patients with homozygous absence of SMN1 were used to 

determine the influence of VPA on SMN2 expression. One of the cell lines is derived from a type I 

SMA patient with two SMN2 copies (ML-17), another cell line is from a type I SMA patient with three 

SMN2 copies (ML-16), and the third selected fibroblast line is from a type II SMA patient with three 
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SMN2 copies (ML-5). Again, the conditions used for the treatment of the cells with VPA were based on 

those which had revealed best results for histone hyperacetylation and anticancer activity of VPA 

(Gottlicher et al. 2001). Moreover, the drug concentrations should cover a broad range which is well 

tolerated by the cells and not toxic. Thus, fibroblast cultures were treated with solvent (mock) or 0.5, 5, 

50, 500, and 1000 µM of VPA for 16 h. The optimal time period of treatment (16h) was evaluated by a 

time course experiment which covered 12, 16, 24, 36 and 48 h. The result correlated well with the 

maximum histone acetylation in F9 teratocarcinoma cells and HeLa cells observed ~12-16 h after 

addition of VPA (Gottlicher et al. 2001). 

Protein extracts of untreated (mock) and treated fibroblasts were analyzed by western blotting. In a 

first step, all blots were verified for equal amounts of loaded protein by staining with an anti-β-tubulin 

antibody. In a second step, nitrocellulose membranes were probed with anti-SMN antibody. After VPA 

treatment, in each of the investigated fibroblast lines a significant up-regulation of the SMN protein 

level was observed with highest values ranging between 2.7-fold and 3.3-fold compared to untreated 

cells (mock). Mean values ± SEM for SMN protein levels relative to β-tubulin obtained from the 

treatment of three different passages of each fibroblast line with increasing amounts of VPA are 

summarized in table 12 and presented as bar graphs in figure 8 A-C. Additionally, representative 

western blots for each VPA-treated fibroblast culture are presented in figure 8 A-C. 

In each fibroblast line, the cumulative data from repeated drug treatment experiments revealed a peak 

of the SMN protein level either at 5 µM VPA (ML-16), at 50 µM VPA (ML-17) or at 500 µM VPA (ML-

5), but never at 1000 µM VPA. In ML-17 and ML-5, the peak is followed by a slight decrease of the 

SMN protein level under increasing concentrations of VPA. In ML-16, a fluctuation was visible. After 

reaching a maximum at 5 µM VPA, the SMN protein level decreased at 50 µM VPA. At 500 µM, a 

second maximum was obtained, followed by another decrease at 1000 µM VPA. Importantly, even the 

lowest concentration of VPA used (0.5 µM) still increased the SMN protein level 1.6-fold to 2.3-fold in 

each treated fibroblast culture (figure 8A-C, table 12).  

 

 

Table 12: SMN protein levels (relative to β-tubulin) in SMA fibroblasts after VPA treatment. Average data 

(± SEM) from repeated experiments are shown and highest levels are marked in bold. 

 

Concentration of VPA (µM) Human SMA fibroblast 

culture Mock 0.5 5 50 500 1000 

ML-17 (SMA I, 2 SMN2 copies) 1.0±0.0 1.6±0.1 1.8±0.2 2.7±0.1 2.3±0.3 2.4±0.3 

ML-16 (SMA I, 3 SMN2 copies) 1.0±0.0 2.1±0.3 3.1±0.6 2.2±0.3 2.9±0.4 2.2±0.4 

ML-5 (SMA II, 3 SMN2 copies) 1.0±0.0 2.3±0.6 2.7±0.7 2.8±0.9 3.3±0.8 2.6±0.6 
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Figure 8: Increase of the SMN protein level in fibroblast cultures derived from SMA patients treated with 

solvent (mock) or increasing concentrations of VPA (0.5, 5, 50, 500, and 1000 µM) for 16 h. For the treated 

fibroblast lines ML-17 (A), ML-16 (B), and ML-5 (C), a representative western blot is given which was 

probed with antibodies against β-tubulin (loading control) and SMN. Mean values ± SEM for the SMN 

protein level relative to β-tubulin obtained from repeated experiments are summarized in bar graphs. 

Significant changes are indicated by asterisks (* p<0.05; ** p<0.01; *** p<0.001). 

β-tubulin 

SMN 

fibroblast line ML-17 

(SMA I, 2 SMN2 copies) 

A 

 M
o

c
k

 

  
 0

.5
 µ

M
 

  
  

  
5

 µ
M

 

  
  

5
0

 µ
M

 

  
5

0
0

 µ
M

 

1
0

0
0

 µ
M

 

M
ock

0.
5µ

M
5µ

M
50

µM

50
0µ

M

10
00

µM

S
M

N
 p

ro
te

in
 l
e

v
e
l

re
la

ti
v

e
 t

o
 ββ ββ

-t
u

b
u

li
n

0

1

2

3

SMN 

** 
** 

** 
** *** 

Concentration of VPA 

B 

β-tubulin 

SMN 

 M
o

c
k

 

  
 0

.5
 µ

M
 

  
  

  
5

 µ
M

 

  
  

5
0

 µ
M

 

  
5

0
0

 µ
M

 

1
0

0
0

 µ
M

 

fibroblast line ML-16 

(SMA I, 3 SMN2 copies) 

M
ock

0.
5µ

M
5µ

M
50

µM

50
0µ

M

10
00

µM

S
M

N
 p

ro
te

in
 l
e
v
e
l

re
la

ti
v
e
 t

o
 ββ ββ

-t
u

b
u

li
n

0

1

2

3

4

SMN 

** 

** 

*** 

* ** 

Concentration of VPA 

C 

β-tubulin 

SMN 

 M
o

c
k

 

  
 0

.5
 µ

M
 

  
  

  
5

 µ
M

 

  
  

5
0

 µ
M

 

  
5

0
0

 µ
M

 

1
0

0
0

 µ
M

 

fibroblast line ML-5 

(SMA II, 3 SMN2 copies) 

Concentration of VPA

M
ock

0.
5µ

M
5µ

M
50

µM

50
0µ

M

10
00

µM

S
M

N
 p

ro
te

in
 l
e

v
e
l 

re
la

ti
v
e

 t
o

 ββ ββ
-t

u
b

u
li
n

  
  

0

1

2

3

4

5

SMN

* 

* 

* 



Results 

 

69 

Similar to the protocol which was used for the drug treatment experiments in EBV-transformed cell 

lines (chapter 4.1.1), one of the fibroblast lines was also incubated with butyrate. This drug has been 

proven already to increase SMN2 expression in lymphoblastoid cells and therefore can be used as a 

positive control. Based on the published information regarding the most effective butyrate 

concentrations and the incubation time (Chang et al. 2001), fibroblast experiments were performed 

with solvent (mock) or 0.5, 5, 50, 500, and 1000 µM butyrate for 24 h. Butyrate treatment of ML-5 

revealed significantly elevated SMN protein levels compared to untreated cells (mock). The cumulative 

data (mean ± SEM) for the SMN protein level relative to the loading control β-tubulin obtained from 

incubation of different passages with the drug are presented in table 13. 

 

Table 13: SMN protein level (relative to β-tubulin) in SMA fibroblast line ML-5 after butyrate treatment. 

Average data (± SEM) from repeated experiments are shown and the highest level is marked in bold. 

Concentration of sodium butyrate (µM) Human SMA fibroblast 

culture Mock 0.5 5 50 500 1000 

ML-5 (SMA II, 3 SMN2 copies) 1.0±0.0 1.9±0.1 2.1±0.4 2.4±0.4 2.4±0.0 2.7±0.5 

 

With increasing concentrations of butyrate, the level of the SMN protein in ML-5 was found to be 

elevated, peaking in a 2.7-fold increase at 1000 µM. Together with the findings for VPA, this result 

confirmed that suitable conditions were found to treat fibroblasts with drugs and this assay can be 

used to screen for drugs which exert an effect on SMN protein expression. A representative western 

blot together with a bar graph that displays the cumulative data for the treatment of ML-5 with 

increasing amounts of butyrate is given in figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Increase of the SMN protein level in fibroblast line ML-5 treated with solvent (mock) or 

increasing concentrations of butyrate (0.5, 5, 50, 500, and 1000 µM) for 24 h. A representative western blot 

is given which was probed with antibodies against β-tubulin (loading control) and SMN. Mean values ± 

SEM for the SMN protein level relative to β-tubulin obtained from repeated experiments are summarized 

as bar graph. Significant changes are indicated by asterisks (* p<0.05; ** p<0.01; *** p<0.001). 
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4.1.2.2 SMN2 RNA expression under valproic acid treatment 

 

To identify the mechanism(s) by which VPA causes the SMN2 protein increase, analysis of SMN2 

mRNA was performed by determining the FL-SMN2 versus ∆7-SMN2 transcript ratio and by 

investigating the total amount of SMN2 transcripts (FL-SMN2 plus ∆7-SMN2) relative to an internal 

control. 

The FL-SMN2/∆7-SMN2 ratio is a parameter which measures an effect on exon 7 inclusion and 

therefore indicates a reversion of the SMN2 splicing pattern. If inclusion of exon 7 is promoted, the 

amount of FL-SMN2 transcripts is increased, whereas the amount of ∆7-SMN2 is decreased at the 

same time. This would result in elevated FL-SMN2/∆7-SMN2 ratios. Conversely, a preferential exon 7 

skipping would lower the amount of FL-SMN2 and increase the level of ∆7-SMN2 transcripts, leading 

to a decreased FL-SMN2/∆7-SMN2 ratio. The total amount of SMN2 transcripts is a parameter for the 

gene transcription rate. Increased levels of total SMN2 transcripts would indicate a stimulation of the 

SMN2 transcription. 

 

Table 14: Levels of FL-SMN2 RNA, ∆7-SMN2 RNA, total SMN2 transcripts FL+∆7 (relative to GAPDH) and 

the FL/∆7 ratio in the SMA fibroblast lines ML-17, ML-16, and ML-5 which were treated with solvent (mock) 

or increasing concentrations of VPA. Average data (± SEM) from repeated experiments are shown and 

highest values are marked in bold. 

Concentration of VPA (µM) Human SMA 

fibroblast culture  Mock 0.5 5 50 500 1000 

FL-SMN2 0.38±0.1 0.38±0.1 0.55±0.1 0.63±0.0 0.59±0.1 0.70±0.2 

∆7-SMN2 0.24±0.0 0.24±0.0 0.30±0.0 0.31±0.1 0.35±0.1 0.44±0.2 

ratio FL/ ∆7 1.58±0.0 1.58±0.1 1.83±0.1 2.03±0.3 1.69±0.1 1.59±0.0 

ML-17 

(SMA I, 2 SMN2 copies) 

FL+ ∆7 0.62±0.1 0.62±0.1 0.85±0.1 0.94±0.1 0.94±0.2 1.14±0.4 

FL-SMN2 0.30±0.0 0.55±0.2 0.91±0.2 1.12±0.2 1.24±0.1 1.55±0.5 

∆7-SMN2 0.29±0.0 0.44±0.1 0.72±0.1 0.80±0.2 0.84±0.1 0.96±0.2 

ratio FL/ ∆7 1.03±0.0 1.25±0.1 1.26±0.1 1.40±0.2 1.48±0.0 1.61±0.2 

ML-16 

(SMA I, 3 SMN2 copies) 

FL+ ∆7 0.59±0.0 0.99±0.3 1.63±0.3 1.92±0.4 2.08±0.2 2.51±0.7 

FL-SMN2 0.40±0.0 0.55±0.1 0.85±0.1 0.73±0.3 0.66±0.1 0.74±0.0 

∆7-SMN2 0.37±0.1 0.43±0.1 0.56±0.0 0.47±0.1 0.42±0.1 0.52±0.1 

ratio FL/ ∆7 1.08±0.2 1.28±0.1 1.52±0.2 1.55±0.1 1.57±0.4 1.42±0.3 

ML-5 

(SMA II, 3 SMN2 copies) 

FL+ ∆7 0.77±0.1 0.98±0.2 1.41±0.1 1.20±0.4 1.08±0.2 1.26±0.1 
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After treatment of fibroblast cultures with VPA, RNA was isolated, transcribed into cDNA using oligo-

dT primers, and subsequently, a multiplex PCR was carried out under semi-quantitative conditions (23 

cycles) using primers within exon 6 and exon 8 of SMN2 (primers #1837 and #1841). Values for both 

FL-SMN2 and ∆7-SMN2 mRNA as well as the ratio among them and the total amount of SMN2 

transcripts were calculated relative to the internal control (GAPDH). Similar to the analysis of protein 

extracts by western blotting, GAPDH was assumed to be equally expressed in all cells and therefore 

served as loading control. A summary of the results obtained from different passages of each 

investigated SMA fibroblast culture is shown in table 14. A representative gel analysis of the multiplex 

PCR together with the corresponding bar graphs showing the average data from repeated 

experiments is given for each fibroblast line in figure 9 A-C. 

The data obtained from semi-quantitative RT-PCRs clearly demonstrate that VPA treatment of primary 

fibroblasts derived from SMA patients resulted in a significant increase of FL-SMN2 mRNA levels 

(table 14, figure 9). The maximum level ranged between 1.8-fold (ML-17) and 5.2-fold (ML-16). In ML-

17 and ML-16, FL-SMN2 levels continuously increased with increasing drug concentrations and 

peaked at 1000 µM VPA. Treatment of ML-5 revealed the maximum FL-SMN2 level already at 5 µM 

VPA, followed by slightly lower levels at higher drug concentrations. 

The augmentation of FL-SMN2 transcript levels was only partially achieved by preferential inclusion of 

SMN2 exon 7 and a correction of the SMN2 splicing pattern, since the FL-SMN2 versus ∆7-SMN2 

ratio increased up to ~1.5-fold only in each VPA-treated fibroblast line (significant in ML-17 and ML-

16) (figure 9, table 14). Moreover, treatment of ML-17 revealed the highest FL-SMN2 level at 1000 µM 

VPA, although at this drug concentration the FL-SMN2 / ∆7-SMN2 ratio was unchanged compared to 

mock cells (figure 9 A, table 14). This suggested that another mechanism substantially contributed to 

the up-regulation of FL-SMN2 transcripts. 

Importantly, in each of the fibroblast cultures, VPA treatment led to an increase of both the ∆7-SMN2 

transcript levels (significant in ML-16) and the levels of total SMN2 transcripts (significant in ML-16 and 

ML-5) (figure 9, table 14).The respective maximum was always observed together with the peak of the 

FL-SMN2 transcript levels. These observations clearly indicated that the SMN2 gene transcription 

activity was stimulated by VPA, resulting in elevated levels of total SMN2 transcripts. 

Thus, a synergistic effect of transcription activation and reversion of the SMN2 splicing pattern was 

responsible for the increase of FL-SMN2 mRNA after treatment of SMA fibroblasts with 0.5-1000 µM 

VPA. 

 

 

4.1.2.3 Effect of valproic acid on the level of SR and SR-like splicing factors 

 

Recently, it has been demonstrated that increased levels of the SR-like splicing factor Htra2-β1 

restore the splicing pattern of SMN2 pre-mRNA (Hofmann et al. 2000). Over-expression of Htra2-β1 in 

HEK293 cells and NIH 3T3 murine fibroblasts carrying an SMN2 minigene dramatically increased the 

production of FL-SMN2 transcript. Inclusion of exon 7 was facilitated by specific binding of Htra2-β1 to 

an AG-rich exonic splicing enhancer in SMN exon 7. To explain the preferred processing of SMN2 

pre-mRNA to FL-SMN2 transcripts and the increased FL-SMN2/∆7-SMN2 ratio observed in the  
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Figure 9: SMN2 RNA analysis in SMA fibroblast cultures ML-17 (A, first column), ML-16 (B, second 

column), and ML-5 (C, third column) after treatment with solvent or increasing concentrations of VPA (0.5, 

5, 50, 500, and 1000 µM). For each cell line, a representative gel analysis of the semi-quantitative multiplex 

RT-PCR is given, showing FL-SMN2, ∆7-SMN2 and the internal standard GAPDH. In the bar graphs, mean 

± SEM values from repeated experiments are given for the FL-SMN2 level, the ∆7-SMN2 level, the level of 

total SMN2 transcripts (all of the parameters relative to GAPDH), and the FL-SMN2/∆7-SMN2 ratio. 

Significant changes are indicated by asterisks (* p<0.05; ** p<0.01; *** p<0.001). 
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fibroblast cultures treated with VPA, another quantitative western blot analysis was performed on 

protein extracts isolated from cell cultures after incubation with the drug. Membranes were restained 

with an antibody against the SR-like splicing factor Htra2-β1. The protein β-tubulin was used as 

loading control as already described (4.1.2.1). The levels of Htra2-β1 were found significantly up-

regulated under increasing concentrations of VPA. The highest levels varied between the 2.7-fold (at 

50 µM VPA in ML-17 and ML-16) and the 4.1-fold (at 1000 µM VPA in ML-5) as compared to 

untreated mock cells (figure 10 and table 15). 

 

Table 15: Levels of the splicing factors Htra2-β1, SF2/ASF, and SRp20 (relative to β-tubulin) in SMA 

fibroblasts treated with solvent (mock) or increasing concentrations of VPA (0.5, 5, 50, 500, and 1000 µM). 

Average data (± SEM) from repeated experiments with different passages of each fibroblast culture are 

shown with highest values marked in bold. 

Concentration of VPA (µM) Human SMA 

fibroblast culture 

Splicing 

factor Mock 0.5 5 50 500 1000 

Htra2-β1 1.0±0.0 1.7±0.3 1.7±0.7 2.7±0.3 2.7±1.4 2.2±0.6 

SF2/ASF 1.0±0.0 3.1±1.5 3.1±1.4 4.0±1.3 4.1±2.3 3.4±1.8 

ML-17 

(SMA I, 2 SMN2 copies) 

SRp20 1.0±0.0 2.2±0.7 1.6±0.7 2.0±0.5 1.6±0.9 1.9±0.9 

Htra2-β1 1.0±0.0 1.9±1.1 2.3±0.3 2.7±0.9 1.5±0.3 2.3±0.6 

SF2/ASF 1.0±0.0 1.9±0.8 2.6±0.6 2.9±1.0 1.8±0.5 1.9±0.3 

ML-16 

(SMA I, 3 SMN2 copies) 

SRp20 1.0±0.0 2.0±1.0 3.0±1.1 3.3±1.4 2.1±0.9 2.1±0.9 

Htra2-β1 1.0±0.0 2.9±1.0 3.1±0.5 3.3±1.1 3.2±1.2 4.1±1.9 

SF2/ASF 1.0±0.0 1.4±0.4 1.2±0.1 1.2±0.3 1.4±0.1 1.1±0.2 

ML-5 

(SMA II, 3 SMN2 copies) 

SRp20 1.0±0.0 2.4±0.7 3.1±0.5 3.1±0.7 3.0±1.3 1.7±0.7 

 

To investigate whether this effect is specific for Htra2-β1 (because an increased amount of SMN2 pre-

mRNA eventually requires higher levels of Htra2-β1, the most important trans-acting splicing factor 

shown to restore FL-SMN2 mRNA) or whether VPA treatment of fibroblasts leads to a rather 

unspecific elevation of the levels of a number of SR/SR-like proteins, the western blot membranes 

were restained with antibodies against two additional SR splicing factors, SF2/ASF and SRp20. 

SF2/ASF has been shown to be involved in splicing regulation of SMN1 pre-mRNA (Cartegni and 

Krainer 2002), whereas SRp20 was excluded to act in that way (Hofmann et al. 2000; Hofmann and 

Wirth 2002). Analysis revealed that the levels of both splicing proteins were elevated in fibroblasts 

after incubation with VPA (table 15, figure 10). In ML-17, an up to 4.1-fold elevation of SF2/ASF was 

observed at 500 µM VPA. The maximum up-regulation in ML-16 was 2.9-fold compared to untreated 

cells (mock) and was reached at 50 µM VPA. In contrast, a very weak increase of SF2/ASF levels was 

observed in ML-5, peaking in a 1.4-fold elevation at 0.5 and 500 µM VPA. SRp20 levels reached an up 
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Figure 10: Levels of the splicing factors Htra2-β1, SF2/ASF, and SRp20 in SMA fibroblast cultures treated 

with solvent (mock) or increasing concentrations of VPA (0.5, 5, 50, 500, and 1000 µM) for 16 h. For each 

fibroblast line, a representative western blot is given with β-tubulin serving as loading control. Mean 

values ± SEM for the level of each splicing factor relative to β-tubulin obtained from repeated experiments 

are summarized in bar graphs. Two bands for Htra2-β1 on the western blot result from the 

phosphorylated and the unphosphorylated form of the protein. Significant changes are indicated by 

asterisks (* p<0.05; ** p<0.01). 
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to 2.2-fold increase at 0.5 µM VPA in ML-17, a 3.3-fold increase at 50 µM VPA in ML-16, and a 3.1-

fold augmentation at 5 µM VPA in ML-5. The levels of all three investigated splicing factors, however, 

varied between the passages of one particular fibroblast cell line as demonstrated by the high SEM 

values in table 15. Moreover, particularly for the splicing factor SF2/ASF, a different response of the 

fibroblast lines to VPA treatment was observed. While a marked up-regulation was measured in ML-17 

and ML-16, ML-5 barely revealed an increase of SF2/ASF levels under drug treatment (table 15, figure 

10). 

These data obtained from VPA-treated fibroblasts demonstrate that the drug stimulates expression of 

some SR and SR-like splicing factors regardless whether they are involved in SMN pre-mRNA splicing 

or not. However, based on the data from in vitro and in vivo splicing experiments published so far, only 

over-expressed Htra2-β1 is able to restore the splicing pattern of SMN2 (Hofmann et al. 2000; 

Hofmann and Wirth 2002). 

 

To elucidate the mechanism which triggers the increase of Htra2-β1 protein levels in VPA-treated 

SMA fibroblasts, an analysis of the transcripts derived from the SFRS10 gene was carried out on RNA 

prepared from fibroblast cultures incubated with increasing drug concentrations for 16h. The SFRS10 

gene consists of ten exons and encodes five different Htra2-β transcripts which arise from alternative 

splicing, alternative polyadenylation and alternative promoter usage: Htra2-β1 (exons 1 and 3-10), 

Htra2-β2 (exons 1-2), Htra2-β3 (exons 1 and 4-10), Htra2-β4 (exons 1-10), and Htra2-β5 (part of 

intron 2 and exons 3-10). Only Htra2-β1 and Htra2-β3 are translated into protein (Stoilov et al. 2004). 

Two of the mRNA isoforms (Htra2-β1 and Htra2-β2) are ubiquitously expressed, whereas expression 

of Htra2-β3 and Htra2-β4 appears to be tissue-specific and developmentally regulated (Nayler et al. 

1998). Htra2-β5 was firstly described in 2004 (Stoilov et al. 2004), however, this was exclusively 

based on in silico analysis without any evidence for its existence in vivo so far. 

In a first step, it was checked whether the tissue-specific mRNA isoforms Htra2-β3 and Htra2-β4 are 

expressed in untreated and/or VPA-treated primary human SMA fibroblasts. Treated cells were 

included for investigation because it was demonstrated already that VPA may exert an effect on 

transcription and splicing (see chapter 4.1.2.2). A multiplex RT-PCR was carried out on RNA isolated 

from fibroblasts treated with solvent (mock) or VPA using primers located in exons 1 (#1093) and exon 

4 (#1094) of the SFRS10 gene. An additional RT-PCR was carried out using another pair of primers 

located in exon 1 (#1970) and exon 3 (#1971). Since GAPDH was checked already to be sufficiently 

expressed in fibroblasts (see chapter 4.1.2.2), it was co-amplified, and served as positive control in 

each PCR reaction. The analysis revealed that Htra2-β3 and Htra2-β4 were not expressed in SMA 

fibroblast cultures, regardless if they were treated with VPA or not (figure 11 A). Thus, subsequent 

experiments focused on the ubiquitously expressed Htra2-β1 and Htra2-β2 transcripts. On RNA from 

each of the three fibroblast lines treated with increasing amounts of VPA, a semi-quantitative multiplex 

PCR was performed. Htra2-β1 transcripts were amplified using the primers located in exon 1 and 4. 

GAPDH was co-amplified and served as internal control. The gel analysis clearly revealed an 

elevation of Htra2-β1 transcripts under VPA treatment (figure 11 B-D, for corresponding data see 

appendix page IX, table A.1) which explains the increase of Htra2-β1 protein levels under drug 

treatment. An additional experiment was performed on the sample set derived from 
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Figure 11: Analysis of Htra2-β transcripts in SMA fibroblasts. 

(A). RT-PCR analysis in untreated/VPA-treated SMA 

fibroblasts using primers located in exon 1 and 3 (lanes 1-6) 

or exons 1 and 4 (lanes 7-12) of the SFRS10 gene. Htra2-β1 

and GAPDH could be amplified. In contrast, Htra2-β3 and 

Htra2-β4 were not expressed in the cells. 

(B-D). Levels of Htra2-β1 mRNA in fibroblast cultures ML-17 

(B), ML-16 (C), and ML-5 (D) after treatment with solvent or 

increasing concentrations of VPA (0.5, 5, 50, 500, and 

1000 µM). For each cell line, the gel analysis of the semi-

quantitative multiplex RT-PCR is given together with the 

corresponding bar graph which displays the level of Htra2-

β1 relative to the internal standard GAPDH. 

(E). Level of Htra2-β2 transcripts in fibroblast line ML-5 after 

treatment with solvent or increasing concentrations of VPA 

(0.5, 5, 50, 500, and 1000 µM). After semi-quantitative 

multiplex RT-PCR, samples were analyzed on a PAA gel. The 

corresponding bar graph shows the level of Htra2-β2 relative 

to the internal standard GAPDH. 
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fibroblast line ML-5 and revealed that the levels of the Htra2-β2 isoform were similarly increased when 

the cells were treated with VPA (figure 11 E and appendix page IX, table A.1). This suggested that 

VPA stimulates the transcription of the SFRS10 gene in SMA fibroblasts resulting in increased levels 

of total Htra2-β transcripts. However, an additional effect of VPA on the splicing pattern could not be 

excluded since both transcripts could not be amplified within the same multiplex RT-PCR reaction 

using one and the same primer pair. 

 

The drug treatment experiments in SMA fibroblasts were not only performed with VPA, but also with 

butyrate, which was included as positive control (chapter 4.1.2.1). Consistent with the results obtained 

in EBV-transformed lymphoblastoid cell lines (Chang et al. 2001), incubation of fibroblasts with 

butyrate led to increased SMN2 protein levels. Moreover, it was demonstrated already that butyrate 

increases the FL-SMN2/∆7-SMN2 ratio, and the level of SR proteins (Chang et al. 2001). 

Consequently, it seemed reasonable to check whether butyrate acts similarly to VPA and is able to 

increase the levels of Htra2-β1, but also of SF2/ASF and SRp20 in fibroblast cultures. Analysis was 

performed on the protein extracts isolated from cell cultures after incubation with increasing amounts 

of butyrate for 24 h. As already described, β-tubulin was used as loading control (chapter 4.1.2.1). 

Western blot membranes were restained with antibodies against each of the three splicing factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Levels of Htra2-β1, SF2/ASF, and SRp20 in fibroblast line ML-5 treated with solvent (mock) or 

increasing concentrations of butyrate (0.5, 5, 50, 500, and 1000 µM) for 24 h. A representative western blot 

is given with β-tubulin serving as loading control. Mean values ± SEM for the splicing factor levels relative 

to β-tubulin obtained from repeated experiments are summarized as bar graph. Two bands for Htra2-β1 

on the western blot result from the phosphorylated and the unphosphorylated form of the protein. 

Significant changes are indicated by asterisks (* p<0.05; ** p<0.01; *** p<0.001). 

 

Indeed, as in case of VPA, butyrate treatment of fibroblasts led to significantly increased Htra2-β1, 

SF2/ASF, and SRp20 protein levels (table 16, figure 12), demonstrating that both drugs VPA and 

butyrate share similar pathways of activation and supporting the assumption that elevated amounts of 

Htra2-β1 are responsible for the change of the SMN2 splicing pattern observed in fibroblasts under 

drug treatment. 
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Table 16: Htra2-β1, SF2/ASF, and SRp20 protein levels (relative to β-tubulin) in SMA fibroblast line ML-5 

treated with solvent (mock) or increasing concentrations of sodium butyrate (0.5, 5, 50, 500, and 1000 µM). 

Average data (± SEM) from repeated experiments with different passages are shown with highest values 

marked in bold. 

Concentration of sodium butyrate (µM) Human SMA 

fibroblast culture 

Splicing 

factor Mock 0.5 5 50 500 1000 

Htra2-β1 1.0±0.0 1.5±0.5 1.5±0.3 1.8±0.4 1.9±0.0 0.5±0.2 

SF2/ASF 1.0±0.0 1.4±0.1 2.4±0.3 1.9±0.1 2.0±0.0 1.1±0.1 

ML-5 

(SMA II, 3 SMN2 copies) 

SRp20 1.0±0.0 1.2±0.1 1.5±0.4 2.0±0.1 1.6±0.3 1.2±0.7 

 

 

4.1.2.4 Cytotoxicity of valproic acid in SMA fibroblast cultures 

 

To investigate the cytotoxicity of VPA in primary SMA fibroblasts, MTT assays were performed and the 

viability of cells was measured under drug treatment. Therefore, ML-17, ML-16, and ML-5 were 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: MTT assays with fibroblast lines ML-17, ML-16, and ML-5. Cells were treated with solvent 

(mock) or increasing concentrations of VPA (0.5, 5, 50, 500, and 1000 µM). Values for the absorption are 

given as mean ± SEM. Significant changes are indicated by asterisks (* p<0.05). 
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incubated with solvent (mock) or increasing amounts of VPA for 16 h. Subsequently, the number of 

surviving cells was analyzed using their ability to convert thiazolyl blue tetrazolium bromide into 

detectable violet formazan crystals. As displayed in figure 13, fibroblast line ML-17 did not show any 

decreased absorption with increasing concentrations of VPA, indicating that the survival of these cells 

was not affected during incubation with VPA. Similarly, the values measured for the absorption in cell 

line ML-16 did not reveal significant changes either, suggesting that VPA was well tolerated by these 

fibroblasts. Only in ML-5, a significantly decreased absorption (corresponding with a slightly lower cell 

survival) was observed at 1000 µM VPA. These data indicate that the VPA concentrations used to 

stimulate SMN2 expression in primary fibroblasts derived from SMA patients cover a range which is 

well tolerated by the cells without severely affecting their survival. However, the highest VPA 

concentration caused significant cell death in 1/3 cell lines, suggesting that treatment of the fibroblasts 

with even higher VPA concentrations to achieve elevated SMN protein levels would probably be 

limited by toxic effects. 

 

 

4.1.2.5 Knock-down of Htra2-β1 in primary SMA fibroblast cells 

 

A reasonable experiment to directly approach the correlation between increased Htra2-β1 protein 

levels and elevated FL-SMN2 / ∆7-SMN2 ratios in SMA fibroblasts treated with VPA is the knock-down 

of Htra2-β1 by siRNA oligos. If elevated Htra2-β1 levels are indeed responsible for the change of the 

SMN2 splicing pattern, knock-down of the protein in SMA fibroblasts should prevent the elevation of 

the FL-SMN2 / ∆7-SMN2 ratio observed upon VPA treatment. 

In addition, regardless of any drug treatment experiments, it would be interesting to investigate if the 

knock-down of Htra2-β1 has any consequences for the SMN2 splicing pattern in SMA fibroblasts 

(which have not been treated with any drugs). Despite the knowledge about increasing FL / ∆7 ratios 

in case of Htra2-β1 over-expression, which was gained from studies in HEK293 cells and NIH 3T3 

murine fibroblasts (Hofmann et al. 2000; Hofmann and Wirth 2002), a knock-down experiment has not 

been carried out so far. 

 

To knock down Htra2-β1, siRNA oligos directed against Htra2-β1 mRNA have to be incorporated into 

the cells. Since primary fibroblasts are very difficult to transfect with conventional methods, in a first 

approach electroporation was applied by using the Amaxa Nucleofector technology. To establish a 

procedure which results in a high transfection efficiency, fibroblasts were transfected with pmaxGFP, a 

plasmid encoding the green fluorescent protein (GFP) from Pontenilla p. To optimize the transfection 

process, initial experiments were performed with two different nucleofector solutions which are 

required to electroporate the cells [Human Dermal Fibroblast Nucleofector Kit (NHDF) and Basic 

Nucleofector Kit for Primary Fibroblast Cells], and five different electroporation programs (A24, T16, 

U12, V13, U23). From A24 to U23, the current applied for electroporation is increasing. This results in 

a higher electroporation efficiency, however, the number of dead cells might also be increased. Thus, 

an electroporation program which balances between these two factors had to be identified. At 24 h 

after electroporation of ML-16, the cells were checked under the microscope to evaluate if any of the 

electroporation programs led to massive cell death. However, all of the programs were well tolerated 
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by the fibroblasts. Subsequently, cells were harvested and the transfection efficiency determined by 

flow cytometry. Cells expressing GFP were detected by their green fluorescence. Fibroblasts which 

were treated with program U23 but not transfected with pmaxGFP served as mock to determine the 

baseline fluorescence level of the cells. Data analysis revealed that the highest transfection efficiency 

of ML-16 fibroblasts was obtained after electroporation with the Basic Nucleofector Kit for Primary 

Fibroblast Cells using program U23 and 2 µg of the pmaxGFP plasmid. Depending on the number of 

the respective cell passage, transfection efficiency varied between 60 and 85% (see appendix page 

IX, table A.2 for complete data obtained with different kits, different passages, different programs, and 

different amounts of pmaxGFP plasmid). The highest value of 85% was obtained for the youngest 

fibroblast passage, and the efficiency of 60% was obtained for the oldest passage, suggesting that 

younger fibroblast passages are more suitable and easier to electroporate. Electroporation with the 

Basic Kit and program V13, and the NHDF Kit and program U23 or V13, respectively, also revealed 

transfection efficiencies above 50%, suggesting that they might be used as alternative programs for 

transfection. 

However, despite the relatively high transfection efficiency of ML-16, electroporation with the Amaxa 

Nucleofector technology was not considered further to knock-down Htra2-β1. Western blot analysis 

using an antibody against Htra2-β1 protein revealed that the electroporation procedure itself caused a 

knock-down of Htra2-β1 protein levels such that the protein was not detectable anymore. This was first 

observed in initial experiments which aimed at the evaluation of a suitable siRNA oligo directed 

against Htra2-β1 and the evaluation of the suitable incubation time required to obtain a sufficient 

knock-down of the Htra2-β1 protein level. Cell extracts derived from these experiments were used to 

perform western blotting. In all of the samples, β-tubulin and SMN were detected. In contrast, a signal 

for Htra2-β1 was not obtained in any of the samples, regardless if they were treated with a siRNA oligo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Western blot analysis of protein extracts obtained from ML-16 using an antibody against Htra2-

β1. The protein was only detected in extracts prepared from cells which were not treated with an 

electroporation program. In contrast, electroporated cells did not show Htra2-β1 expression 24 h after 

treatment, regardless of the strength of the electroporation program used. “w/o” indicates “without”; 

“Basic” and “NHDF” are two different nucleofector solutions, and “A24”, “U23”, “U22”, “U09”, and “V13” 

indicate electroporation programs. 
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against Htra2-β1, a negative control siRNA, or with solvent (see appendix page X, figure A.3). 

However, all of the samples had in common that they were treated with the electroporation program 

U23, suggesting that this might be the critical factor which led to a down-regulation of Htra2-β1 protein 

levels. To confirm this hypothesis in a subsequent experiment, ML-16 fibroblasts were treated with the 

electroporation programs U23 (strongest program), U22, U09, V13 (slightly milder programs) or A24 

(mildest program) without adding pmaxGFP or any siRNA oligos, were subsequently grown at 37°C 

for 24 h, and finally harvested. Only in the positive control (without nucleofector solution, not treated 

with any program) and in the cells suspended in nucleofector solution (NHDF Kit or Basic Kit) but not 

treated with any program, Htra2-β1 was detectable (figure 14). Even five days after electroporation 

treatment, the splicing factor was undetectable on western blots performed on protein extracts of the 

cells. This was confirmed using fibroblast line ML-5 (see appendix page XI, figure A.4). 

Since the observed knock-down of Htra2-β1 after electroporation without using siRNAs was most 

likely stress-dependent and therefore unspecific, a similar downregulation had to be assumed for 

additional proteins (including other splicing factors). This made the electroporation procedure 

inappropriate to investigate the consequences of an Htra2-β1 knock-down on the SMN2 splicing 

pattern in primary fibroblasts. Thus, further methods were evaluated to identify a suitable transfection 

procedure to deliver siRNAs against Htra2-β1 to SMA fibroblasts. Recently, a new class of lipofection 

reagents (Dharmafect 1, 2, and 3) has been developed by Dharmacon. These reagents were 

optimized for the transfection of siRNA oligos, and are not recommended to deliver plasmids to cells. 

There were no existing protocols for the transfection of primary human fibroblasts with siRNAs, 

however, the manufacturer recommended to check Dharmafect 1 and 3. Thus, in a first step, the 

ability to achieve a silencing effect in fibroblasts was tested by transfecting the positive control silencer 

siCONTROL Cyclophilin B siRNA into ML-16 and ML-5 cells. This control siRNA has been validated 

by Dharmacon to achieve an efficient knock-down of Cyclophilin B transcripts. Cells were harvested at 

24, 48, and 72 h after transfection, RNA was extracted, and Cyclophilin B (PPIB) transcript levels 

measured by real-time PCR. In both cell lines, a clear down-regulation of PPIB transcripts by more 

than 50% was observed at 48 h and at 72 h after transfection, which gave a first hint that the 

Dharmafect 1 and 3 reagents might be useful to deliver siRNAs to primary fibroblasts (see appendix 

page XI, table A.5, and page XII, table A.6). A comparison of the results obtained for Dharmafect 1 

and those for Dharmafect 3 revealed a similar efficiency for both reagents. Dharmafect 1 was selected 

for all further experiments. 

In a second step, siRNAs directed against Htra2-β1 mRNA were transfected into ML-16 to evalute 

whether they would exert an effect on the Htra2-β1 protein level. Two different siRNA oligos were 

used: oligo number 3 (target sequence in exon 4/5 of the human SFRS10 gene), and oligo number 5 

(target sequence in exon 7 of the human SFRS10 gene). Both siRNAs would target not only Htra2-β1 

transcripts, but also any other splice variant except for Htra2-β2. However, expression of SFRS10 in 

fibroblasts is restricted to the isoforms Htra2-β1 and Htra2-β2, and Htra2-β2 is not translated into a 

corresponding protein such that a potential loss of Htra2-β1 in these cells can not be compensated by 

the replacement of an isoform (chapter 4.1.2.3). Using Dharmafect 1, ML-16 was transfected either 

with oligo 3 or with oligo 5. Cells were harvested at 48, 72, and 96 h after transfection, protein extracts 

were prepared and western blot analysis performed using antibodies against Htra2-β1 and β-tubulin. 

The latter served as control to confirm equal loading of the membrane with protein from each sample. 
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Data analysis revealed that both delivery of oligo 3 and delivery of oligo 5 led to a knock-down of 

Htra2-β1 protein levels which was most pronounced at 72 h after transfection (see appendix pages 

XII-XIV, A.7 to A.10). However, the knock-down was more prominent using oligo 5 (knock-down by 

69% with oligo 3 versus knock-down by 91% with oligo 5). Consequently, oligo 5 was selected for 

further experiments. 

 

To perform the final Htra2-β1 knock-down experiments, ML-16 was selected because this cell line 

presented the most prominent increase of the SMN2 splicing pattern among the VPA-treated 

fibroblasts (chapter 4.1.2.2). The experiment was divided into four different parts: Fibroblasts were (i) 

incubated without siRNA oligo, without VPA, (ii) transfected with siRNA oligo 5, without addition of 

VPA, (iii) incubated without siRNA oligo, with VPA, and (iv) transfected with siRNA oligo 5, and 

incubated with VPA. According to the conditions used to treat fibroblasts with VPA (chapter 4.1.2.1), 

the drug was added to the respective samples 16 h before harvest. A concentration of 1000 µM was 

used because this amount induced the most substantial augmentation of the FL-SMN2 / ∆7-SMN2 

ratio in ML-16 (chapter 4.1.2.2). The following control transfection experiments were included: (i) 

transfection of the cells with the validated positive control silencer siCONTROL Cyclophilin B siRNA, 

and (ii) transfection with the siCONTROL Non-Targeting siRNA (negative control which binds to RISC 

but does not have an mRNA target; used to check for any side effects that are caused exclusively by 

the presence of an unspecific siRNA oligo in the cell). To validate the transfection efficiency, 

fibroblasts were transfected with the siCONTROL TOX siRNA. This oligo induces apoptosis as soon 

as it is delivered to the cell. The rate of apoptosis (corresponding to the transfection efficiency) was 

determined by an MTT assay. Each of the experimental parts described above was performed in 

triplicates. Cells were harvested 72 h after transfection, and protein and/or RNA was isolated. The 

MTT assay was also carried out at 72 h after transfection. 
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Figure 15: Knock-down of Htra2-β1 in SMA 

fibroblast line ML-16 (first experiment). Cells were 

transfected with siRNA 5 directed against Htra2-β1 

mRNA (with and without VPA) and compared with 

untransfected cells (with and without VPA). All 

set-ups were performed in triplicates. The western 

blot analyis is given in (A), and the corresponding 

bar graph presenting the mean Htra2-β1 protein 

levels ± SEM is shown in (B). The transfection 

efficiency was 59%, and Htra2-β1 protein levels 

were knocked down by 54% (+ siRNA 5, - VPA) and 

59% (+ siRNA 5, + VPA), respectively. Significant 

changes are indicated by asterisks (** p<0.01, and 

*** p<0.001). 
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Figure 16: Knock-down of Htra2-β1 in SMA fibroblast line ML-16 (second experiment). Cells were treated 

with siRNA 5 directed against Htra2-β1 mRNA and compared with untreated cells (mock) or cells treated 

with a negative control siRNA. All set-ups were performed in triplicates. The transfection efficiency was 

81%, and Htra2-β1 protein levels were knocked down by 94%. All transcript levels were determined by 

real-time PCR on a LightCycler and recorded per 150 ng total RNA used for the reverse transcription 

reaction. Significant changes are indicated by asterisks (*p<0.05, ** p<0.01, *** p<0.001). 
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In the first knock-down experiment, a transfection efficiency of only 59% was reached. Western blot 

analysis was carried out with the protein extracts obtained from the cells treated with siRNA oligo 5 

and/or VPA. Htra2-β1 was stained together with β-actin which served as loading control. Data analysis 

revealed a clear knock-down of Htra2-β1 protein levels in all samples transfected with siRNA oligo 5 

(figure 15 A and B). However, the treatment of VPA (without addition of siRNA oligo 5, figure 15 B, 

third bar) did not lead to increased Htra2-β1 protein levels compared to VPA-untreated cells (figure 15 

B, first bar). This suggested that the assay which was established for siRNA treatment (6-well plates, 

1 x 10
5
 cells per well in 2 ml medium) was not suitable to stimulate gene expression with VPA. In 

comparison, the assay which was successfully applied to increase SMN and Htra2-β1 protein levels 

with VPA used 10 cm petri dishes and 2 x 10
5
 cells in 8 ml medium. However, in terms of siRNA 

studies, the latter conditions are too large-scale. They would be unreasonably expensive, reliability 

most likely would be questionable, and therefore these conditions could not be applied for the knock-

down experiments. Consequently, the final proof for the correlation between elevated Htra2-β1 and 

increased FL-SMN2 / ∆7-SMN2 ratios in SMA fibroblasts under VPA treatment could not be given. 

 

To investigate if the knock-down of Htra2-β1 has any consequences for the SMN2 splicing pattern in 

SMA fibroblasts which have not been treated with any drugs, ML-16 fibroblasts were used to perform 

a second siRNA experiment. The first experiment was not considered further because the transfection 

efficiency was rather low and thus, a knock-down of Htra2-β1 protein levels by only 54% was achieved 

(figure 15 B, compare first and second bar for results obtained without VPA treatment). In a second 

siRNA experiment performed with siRNA oligo 5, a higher transfection efficiency of 81% was obtained. 

Proteins were extracted for western blotting and/or RNA was isolated to be reverse transcribed, and to 

carry out quantitative real-time PCR in a second step. Htra2-β1 protein levels were knocked down by 

94% (figure 16 A and B), which was a much more pronounced effect than observed in the first 

experiment. 

A subsequent analysis of the FL-SMN2 / ∆7-SMN2 transcript ratio in the cell extracts lacking Htra2-β1 

applying quantitative real-time PCR (using primers #2075 and #2076 for FL-SMN2, and #1449 and 

#1450 for ∆7-SMN2) revealed a slight but significant increase compared to the mock (p<0.05) (figure 

16 C). The negative control (performed with siCONTROL Non-targeting siRNA) appeared to be 

marginally elevated, however, this was not significant. 

Moreover, the cells in which Htra2-β1 was knocked down surprisingly presented a significant increase 

of the FL-SMN2 transcript level (p<0.01) (figure 16 D). FL transcripts were also slightly augmented in 

the negative control, although this effect was less pronounced. However, compared to the mock, 

significance was reached (p<0.05). In contrast, ∆7-SMN2 transcript levels were found unaffected in 

both the negative control and the siRNA 5 - transfected cells (figure 16 D). 

Quantification of PPIB transcript levels by real-time PCR revealed that PPIB was efficiently knocked 

down in the positive control experiment (transfection of fibroblasts with the validated positive control 

silencer siCONTROL Cyclophilin B siRNA) (figure 16 E). As expected, PPIB levels remained 

unregulated in the negative control. The specificity of the Htra2-β1 knock-down by siRNA oligo 5 was 

confirmed by real-time PCR analysis of Htra2-β1 transcript levels (using primers #2690 and #2691). 

Compared to the mock, Htra2-β1 transcript levels were found down-regulated in the cells transfected 

with the siRNA oligo 5, but not in the cells transfected with the negative control siRNA (figure 16 F). 
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However, these data have to be considered as preliminary and further experiments including the 

knock-down of Htra2-β1 in other cell lines are required to validate these findings. 

The corresponding data for the first and the second Htra2-β1 knock-down experiment are given in the 

appendix (pages XIV-XVI, tables A.11 to A.14). 

 

 

4.1.3 Treatment of SMA fibroblast cultures with SAHA 

 

The discovery of the propensity of HDAC inhibitors to initiate growth arrest, differentiation, and/or 

apoptosis of neoplastic cells fostered the systematic development of novel and highly potent 

compounds which are able to inhibit HDACs at low micromolar concentrations. Some of these 

substances are already under clinical investigation for cancer treatment, including suberoylanilide 

hydroxamic acid (SAHA), which belongs to the hydroxamic acid class of HDAC inhibitors, or M344, 

which is a benzamide (Marks et al. 2004). Early clinical trials in small numbers of subjects could 

demonstrate that intravenous administration of SAHA is safe and adequate plasma concentrations can 

be obtained that showed antiproliferative activity in cell culture. Moreover, an inhibition of histone 

deacetylases was observed in normal and malignant cells, antitumor effects were seen and drug 

administration revealed that SAHA has a good bioavailability, a favorable pharmacokinetic profile, and 

is well tolerated (Kelly et al. 2003). To evaluate experimentally whether SAHA is also able to stimulate 

SMN2 expression in vitro and might be another potential candidate for an SMA therapy, the drug was 

tested using the fibroblast assay described in chapter 4.1.2.1. 

 

 

4.1.3.1 Impact of SAHA on SMN2 protein levels 

 

Two SMN1-deleted fibroblast cell lines (ML-16 and ML-5) derived from patients with SMA were used 

to investigate the capacity of SAHA to affect human SMN2 protein expression. ML-16 is from a type I 

SMA patient, and ML-5 is from a type II SMA patient, both of them carrying three SMN2 copies. Since 

it has been shown that SAHA is a nanomolar inhibitor of partially purified HDACs, and therefore by far 

more potent than the aliphatic acids like butyrate and VPA (Richon et al. 1996; Richon et al. 1998), the 

drug concentrations for fibroblast treatment were chosen to be much lower than those used for the  

 

Table 17: SMN protein levels (relative to β-tubulin) in SMA fibroblast lines ML-16 and ML-5 after treatment 

with the second-generation HDAC inhibitor SAHA. Average data (± SEM) from repeated experiments are 

shown and highest levels are marked in bold. 

Concentration of SAHA (µM) Human SMA fibroblast 

culture Mock 0.05 0.5 1 5 10 

ML-16 (SMA I, 3 SMN2 copies) 1.0±0.0 1.9±0.4 2.4±0.4 2.4±0.6 3.0±0.6 2.8±0.8 

ML-5 (SMA II, 3 SMN2 copies) 1.0±0.0 1.7±0.1 2.3±0.2 2.4±0.7 2.0±0.5 1.6±0.3 
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experiments with VPA. To cover a broad range, ML-16 and ML-5 were incubated with 0.05, 0.5, 1, 5, 

and 10 µM SAHA. For each experiment, one of the petri dishes with cells was treated only with the 

solvent DMSO (mock). The optimal treatment time was evaluated by a time course experiment which 

was performed in cell line ML-16 and covered 16, 24, 36, and 48 h. A clear effect was only observed 

at 24 h after SAHA treatment. Consequently, this condition was selected for all further experiments. 

Like already described for the screening of VPA, after incubation of SMA fibroblasts with SAHA, 

protein extracts of untreated (mock) and treated fibroblasts were prepared and analyzed by western 

blotting. The protein β-tubulin served as internal control to confirm equal loading of the membranes. 

Mean values ± SEM for SMN protein levels relative to β-tubulin obtained from the treatment of 

different passages of ML-16 and ML-5 with increasing amounts of SAHA are summarized in table 17, 

and presented as bar graphs in figure 17. Additionally, representative western blots for each SAHA-

treated fibroblast culture are presented in figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Increase of the SMN protein level in SMA fibroblast cultures ML-16 and ML-5 treated with 

solvent (mock) or increasing concentrations of SAHA (0.05, 0.5, 1, 5, and 10 µM) for 24 h. For each cell 

line, a representative western blot is given which was probed with antibodies against β-tubulin (loading 

control) and SMN. Mean values ± SEM for the SMN protein level relative to β-tubulin obtained from 

repeated experiments are summarized in bar graphs. Significant changes are indicated by asterisks 

(* p<0.05; *** p<0.001). 
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Treatment of ML-16 and ML-5 with SAHA resulted in a significant increase of SMN protein levels in 

both cell cultures. The maximum level achieved in ML-16 was 3-fold compared to mock at 5 µM 

SAHA. At 10 µM, a similar increase of the SMN protein level was observed. ML-5 revealed an up to 

2.4-fold increase at 1 µM SAHA. In contrast to ML-16, SMN protein levels decreased again when the 

cells were incubated with higher drug concentrations (5 µM and 10 µM). 

 

 

4.1.3.2 SMN2 RNA levels under SAHA treatment 

 

To elucidate the pathway SAHA uses to elevate SMN2 protein levels in SMA fibroblasts, and to 

compare both drugs SAHA and VPA, ML-16 was incubated with SAHA and RNA was isolated 24 h 

later. After transcription of RNA into cDNA, a semi-quantitative multiplex PCR was carried out to 

amplify FL-SMN2 transcripts, ∆7-SMN2 transcripts, and GAPDH as internal standard. Data analysis 

was performed (i) by determining the FL-SMN2 versus ∆7-SMN2 transcript ratio as a parameter for an 

effect on exon 7 inclusion and therefore a reversion of the splicing pattern, and (ii) by determining the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: SMN2 RNA analysis in SMA fibroblast culture ML-16 after treatment with solvent or increasing 

concentrations of SAHA (0.05, 0.5, 1, 5, and 10 µM). A representative gel analysis of the semi-quantitative 

multiplex RT-PCR is given, showing FL-SMN2, ∆7-SMN2, and the internal standard GAPDH. In the bar 

graphs, mean ± SEM values from repeated experiments are given for the FL-SMN2 level, the ∆7-SMN2 

level, the level of total SMN2 transcripts (all of the parameters relative to GAPDH), and the FL-SMN2/∆7-

SMN2 ratio. Significant changes are indicated by asterisks (* p<0.05; ** p<0.01; *** p<0.001). 
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total amount of SMN2 transcripts (FL-SMN2 plus ∆7-SMN2) relative to the internal control as 

parameter for the stimulating effect of VPA on the SMN2 transcription rate. A representative gel 

analysis of the RT-PCR and bar graphs which summarize the results obtained for FL-SMN2, ∆7-

SMN2, the FL-SMN2 versus ∆7-SMN2 transcript ratio, and the total amount of SMN2 transcripts is 

given in figure 18. The corresponding data are given in table 18. Incubation of ML-16 with increasing 

concentrations of SAHA led to an elevated expression of FL-SMN2 and ∆7-SMN2 transcripts, 

although the changes for ∆7-SMN2 did not reach significance. FL-SMN2 levels continuously increased 

with increasing drug amounts and peaked in an ~1.9-fold up-regulation at 10 µM SAHA. The level of 

∆7-SMN2 reached its maximum at the same concentration showing a ~1.7-fold elevation compared to 

mock-treated fibroblasts. Consequently, the level of total SMN2 transcripts was also observed to be 

significantly elevated under SAHA treatment, suggesting that the overall transcription of the SMN2 

gene was stimulated by the drug. 

 

Table 18: Levels of FL-SMN2 RNA, ∆7-SMN2 RNA, total SMN2 transcripts FL+∆7 (relative to GAPDH), and 

the FL/∆7 ratio in the SMA fibroblast line ML-16. Cells were treated with solvent (mock) or increasing 

concentrations of SAHA. Average data (± SEM) from repeated experiments are shown, and highest values 

are marked in bold. 

Concentration of SAHA (µM) Human SMA 

fibroblast culture  Mock 0.05 0.5 1 5 10 

FL-SMN2 0.60±0.0 0.60±0.0 0.75±0.1 0.83±0.0 1.04±0.0 1.15±0.1 

∆7-SMN2 0.48±0.1 0.50±0.2 0.62±0.1 0.66±0.2 0.69±0.2 0.80±0.1 

ratio FL/ ∆7 1.00±0.0 1.04±0.2 0.94±0.1 1.00±0.0 1.20±0.1 1.10±0.0 

ML-16 

(SMA I, 3 SMN2 copies) 

FL+ ∆7 1.00±0.0 1.01±0.1 1.29±0.2 1.37±0.0 1.61±0.0 1.83±0.3 

 

Analysis of the FL-SMN2 versus ∆7-SMN2 ratio revealed slightly increased values at 5 µM and 10 µM 

SAHA (significant only at 10 µM), whereas the ratio was found unchanged or minimally decreased at 

the lower drug concentrations. Thus, there is an effect of SAHA on the splicing pattern of SMN2, even 

if the impact is rather weak. This suggests that – at least at the higher SAHA concentrations used in 

the experiment – two mechanisms contribute to the increase of SMN protein levels in fibroblasts: a 

stimulation of the SMN2 transcription rate, and in part a preferential inclusion of SMN2 exon 7 and a 

reversion of the SMN2 splicing pattern toward more FL-SMN2. 

 

 

4.1.3.3 Levels of the splicing factor Htra2-β1 under SAHA treatment 

 

The treatment of primary SMA fibroblasts with VPA resulted in an increased transcription of the 

SFRS10 gene and elevated levels of the encoded SR-like splicing factor Htra2-β1 (chapter 4.1.2.3). 

Since Htra2-β1 is able to promote the inclusion of SMN2 exon 7, this up-regulation might be the cause 

for the moderate reversion of the pathological SMN2 splicing pattern obtained under VPA treatment. 

To check whether SAHA is also able to stimulate the expression of Htra2-β1 and to further investigate 

if there is a correlation with the weak impact of higher SAHA concentrations (5 µM and 10 µM) on the 
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FL-SMN2/∆7-SMN2 transcript ratio, a quantitative western blot analysis was performed on the protein 

extracts isolated from fibroblast lines ML-16 and ML-5 after treatment with increasing concentrations of 

SAHA for 24 h. Membranes were re-probed with an anti-Htra2-β1 antibody. As already described, β-

tubulin staining was used to confirm loading of the gels with equal protein amounts. The results 

including representative western blots, and the cumulative data obtained from repeated experiments in 

different passages of each fibroblast line are given in figure 19 and table 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Level of the splicing factor Htra2-β1 in SMA fibroblast cultures ML-16 (A) and ML-5 (B) treated 

with solvent (mock) or increasing concentrations of SAHA (0.05, 0.5, 1, 5, and 10 µM) for 24 h. For each 

fibroblast line, a representative western blot is given with β-tubulin serving as loading control. Mean 

values ± SEM for the level of Htra2-β1 relative to β-tubulin obtained from repeated experiments are 

summarized in bar graphs. Two bands for Htra2-β1 on the western blot result from the phosphorylated 

and the unphosphorylated form of the protein. Significant changes are indicated by asterisks (** p<0.01; 

*** p<0.001). 
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markedly elevated levels at all concentrations used throughout the experiment and significant changes 

at 0.05, 5, and 10 µM SAHA. Thus, the augmentation of Htra2-β1 might be responsible for the 

increase of the FL-SMN2/∆7-SMN2 transcript ratio observed at higher SAHA concentrations in ML-16. 
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However, at lower SAHA concentrations (0.05 µM to 1 µM), the SMN2 splicing was not shifted toward 

FL-SMN2 (chapter 4.1.3.2), although Htra2-β1 levels were clearly increased (figure 19 and table 19). 

In contrast to ML-16, fibroblast line ML-5 revealed Htra2-β1 levels which peaked at 0.5 µM SAHA and 

decreased at SAHA concentrations of 1 µM and above. Moreover, the variation between the different 

investigated passages of ML-5 was much higher than that between the passages of ML-16 as 

indicated by the much higher SEM values, and the lack of significance in ML-5. 

 

Table 19: Levels of Htra2-β1 (relative to β-tubulin) in SMA fibroblast lines ML-16 and ML-5 after treatment 

with the second-generation HDAC inhibitor SAHA. Average data (± SEM) from repeated experiments are 

shown, and highest levels are marked in bold. 

Concentration of SAHA (µM) Human SMA fibroblast 

culture Mock 0.05 0.5 1 5 10 

ML-16 (SMA I, 3 SMN2 copies) 1.0±0.0 3.5±0.2 2.3±0.6 2.5±0.9 3.2±0.4 2.9±0.2 

ML-5 (SMA II, 3 SMN2 copies) 1.0±0.0 3.0±1.3 3.9±2.5 2.5±1.1 1.8±0.7 1.6±0.4 

 

 

4.1.3.4 Cytotoxicity of SAHA in SMA fibroblast cultures 

 

To elucidate whether SAHA exerts any toxic effect on SMA fibroblasts during the incubation period, an 

MTT assay was performed and the viability of cells was measured using the ability of living cells to 

convert thiazolyl blue tetrazolium bromide into detectable violet formazan crystals. Fibroblasts were 

incubated with solvent (mock) or increasing concentrations of SAHA including 0.05, 0.5, 1, 5, and 

10 µM for 24 h. As it is visible in the diagram in figure 20, survival of the cells did not appear to be 

affected under SAHA treatment, suggesting that the drug was well tolerated by the cells. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: MTT assay with fibroblast line ML-16. Cells were treated with solvent (mock) or increasing 

concentrations of SAHA (0.05, 0.5, 1, 5, and 10 µM). Values for the absorption (corresponding to cell 

survival) are given as mean ± SEM. 
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4.1.4 Treatment of SMA fibroblast cultures with MS-275 

 

Another second-generation HDAC inhibitor which evolved from the systematic development of and 

screening for promising compounds which are able to induce histone hyperacetylation and thus act as 

antitumor agents is MS-275 (Jung et al. 1999; Saito et al. 1999). Structurally, MS-275 is characterized 

as benzamide. Like SAHA, the compound is very potent, and able to inhibit HDACs at low micromolar 

concentrations (Saito et al. 1999; Prakash et al. 2001). MS-275 has been shown to have a 

considerably higher inhibitory activity against class I versus class II HDACs (Miller et al. 2003). 

Moreover, it inhibits HDAC 1 much more effectively than HDAC 3 (Hu et al. 2003). Similar to SAHA, 

MS-275 has entered into phase I clinical trials in patients with solid tumors and lymphoma. An 

increased accumulation of acetylated histones in peripheral blood mononuclear cells was observed at 

all dose levels after oral administration (Ryan et al. 2005). Further studies are ongoing to optimize the 

oral treatment schedule. 

To check if MS-275 is a candidate for an SMA therapy and able to increase the level of SMN protein 

derived from the SMN2 gene in vitro, the fibroblast assay described in chapter 4.1.2.1 was applied 

again. Additionally, due to the facts that MS-275 belongs to another structural class of HDAC inhibitors 

than VPA and SAHA, and that MS-275 appears to have at least some HDAC selectivity, the 

investigation of MS-275 was considered as promising to gain general knowledge about the principles 

that underlie the stimulation of SMN2 expression. 

 

 

4.1.4.1 Impact of MS-275 on SMN2 protein levels 

 

Similar to SAHA, MS-275 is known to be active at low micromolar levels (Saito et al. 1999; Marks et al. 

2004). Therefore, in comparison to the experiments carried out with VPA and butyrate, much lower 

drug concentrations were selected for the treatment of fibroblast cells including 0.05, 0.25, 0.5, 1, and 

5 µM MS-275. Additionally, these concentrations covered a broad range. Each experiment also 

included mock-treated cells which were incubated with solvent (DMSO) only. Fibroblast line ML-16 

(derived from an SMA type I patient with 3 SMN2 copies) was treated with increasing concentrations 

of MS-275 for varying time periods including 16 h, 20 h, 24 h, and 48 h. Subsequently, protein extracts  

 

Table 20: SMN protein levels (relative to β-tubulin) in SMA fibroblast line ML-16 after 24 h - treatment with 

the second-generation HDAC inhibitor MS-275, a drug from the benzamide class that shows partial HDAC 

selectivity. Average data (± SEM) from repeated experiments are shown and highest level is marked in 

bold. 

Concentration of MS-275 (µM) Human SMA fibroblast 

culture Mock 0.05 0.25 0.5 1 5 

ML-16 (SMA I, 3 SMN2 copies) 1.0±0.0 1.2±0.1 1.3±0.1 1.4±0.1 1.3±0.2 0.7±0.1 
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were prepared and western blot analysis was performed using antibodies against SMN and β-tubulin. 

The latter served as control to confirm that the gels were loaded with equal amounts of each protein 

sample. The up-regulation of the SMN protein level under MS-275 treatment was significant, but never 

very pronounced, suggesting that the potential of MS-275 to stimulate the expression of SMN protein 

derived from the SMN2 gene is very limited, and by far not sufficient to further consider the drug for a 

potential SMA therapy. The highest SMN protein level achieved under MS-275 treatment was a 1.4-

fold increase at 0.5 µM MS-275 after 24 h of incubation. Treatment of the fibroblasts with 5 µM MS-

275 for 24 h even revealed a minimal decrease of the SMN protein level. A representative western blot 

together with a bar graph for the average data obtained from repeated treatment of different fibroblast 

passages of ML-16 with MS-275 for 24 h is displayed in figure 21. The corresponding values for the 

means ± SEM are given in table 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Treatment of ML-16 with solvent (mock) or increasing concentrations of MS-275 (0.05, 0.25, 0.5, 

1, and 5 µM) for 24 h. A representative western blot is given which was probed with antibodies against β-

tubulin (loading control) and SMN. Mean values ± SEM for the SMN protein level relative to β-tubulin 

obtained from repeated experiments in different cell passages are summarized in the bar graph. 

Significant changes are indicated by asterisks (* p<0.05). 

 

 

4.1.4.2 SMN2 RNA expression under MS-275 treatment 

 

To confirm that MS-275 indeed is not able to stimulate the expression or regulate the splicing pattern 

of the SMN2 gene in SMA fibroblasts, and to exclude that the lack of an elevated SMN2 protein level 

under MS-275 treatment is due to an effect on translational processes which inhibits the translation of 

FL-SMN2 transcripts, RNA was isolated from ML-16 after treatment with MS-275 for 16 h, 20 h, and 

24 h. After reverse transcription, a semi-quantitative PCR was performed to amplify FL-SMN2 

transcripts, ∆7-SMN2 transcripts, and GAPDH as internal control. Regardless of the treatment time 

and the concentration of MS-275, data analysis revealed neither an increase of the FL-SMN2 versus 

∆7-SMN2 transcript ratio, nor of the level of FL-SMN2, ∆7-SMN2 or the level of total SMN2 transcripts. 

The results rather suggested a down-regulation in particular of FL-SMN2 and the total SMN2  
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Figure 22: SMN2 RNA analysis in SMA fibroblast culture ML-16 after treatment with solvent or increasing 

concentrations of MS-275 (0.05, 0.25, 0.5, 1, and 5 µM) for 24 h. A representative gel analysis of the semi-

quantitative multiplex RT-PCR is given, showing FL-SMN2, ∆7-SMN2, and the internal standard GAPDH. In 

the bar graphs, mean ± SEM values from repeated experiments are given for the FL-SMN2 level, the ∆7-

SMN2 level, the level of total SMN2 transcripts (all of the parameters relative to GAPDH), and the FL-

SMN2/∆7-SMN2 ratio. Significant changes are indicated by asterisks (* p<0.05; ** p<0.01). 

 

 

Table 21: Levels of FL-SMN2 RNA, ∆7-SMN2 RNA, total SMN2 transcripts FL+∆7 (relative to GAPDH), and 

the FL/∆7 ratio in the SMA fibroblast line ML-16. Cells were treated with solvent (mock) or increasing 

concentrations of MS-275 (0.05, 0.25, 0.5, 1, and 5 µM) for 24 h. Average data (± SEM) from repeated 

experiments are shown, and lowest values are marked in bold. 

Concentration of MS-275 (µM) Human SMA 

fibroblast culture  Mock 0.05 0.25 0.5 1 5 

FL-SMN2 0.52±0.0 0.43±0.1 0.40±0.0 0.41±0.1 0.48±0.1 0.34±0.0 

∆7-SMN2 0.59±0.1 0.52±0.0 0.57±0.1 0.65±0.2 0.68±0.2 0.53±0.1 

ratio FL/ ∆7 0.90±0.1 0.83±0.1 0.71±0.1 0.67±0.1 0.74±0.1 0.66±0.1 

ML-16 

(SMA I, 3 SMN2 copies) 

FL+ ∆7 1.11±0.1 0.95±0.1 0.96±0.1 1.06±0.3 1.16±0.3 0.87±0.0 
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transcripts after 24 h of drug treatment which was most visible at 5 µM MS-275. This corresponds with 

the decrease of the SMN protein level observed at 5 µM MS-275. Since the down-regulation was more 

pronounced for the FL-SMN2 transcript and not visible for the ∆7-SMN2 transcript, a slight decrease 

of the transcript ratio was measured. This was not significant, but a tendency was visible with 

increasing concentrations of MS-275, suggesting a negative impact of the drug on SMN2 exon 7 

inclusion. The RT-PCR data obtained after treatment of fibroblasts with MS-275 for 24 h are given in 

figure 22 and table 21. 

 

 

4.1.4.3 Level of the splicing factor Htra2-β1 under MS-275 treatment 

 

To further characterize the effect of MS-275 on SMA fibroblasts, and to compare the drug with the 

HDAC inhibitors SAHA, VPA, and butyrate, the level of the splicing factor Htra2-β1 was investigated in 

protein extracts obtained after incubation of ML-16 with increasing drug concentrations for 24 h. 

Western blot membranes were re-probed with an antibody against Htra2-β1, and β-tubulin was used  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Level of the splicing factor Htra2-β1 in SMA fibroblast culture ML-16 treated with solvent 

(mock) or increasing concentrations of MS-275 (0.05, 0.25, 0.5, 1, and 5 µM) for 24 h. A representative 

western blot is given with β-tubulin serving as loading control. Mean values ± SEM for the level of Htra2-

β1 relative to β-tubulin obtained from repeated experiments are summarized in the bar graph. Significant 

changes are indicated by asterisks (* p<0.05). 

 

 

Table 22: Level of Htra2-β1 (relative to β-tubulin) in SMA fibroblast line ML-16 after treatment with the 

benzamide MS-275. Average data (± SEM) from repeated experiments are shown, and the lowest level is 

marked in bold.  

Concentration of MS-275 (µM) Human SMA fibroblast 

culture Mock 0.05 0.25 0.5 1 5 

ML-16 (SMA I, 3 SMN2 copies) 1.0±0.0 0.67±0.3 0.85±0.3 0.74±0.3 0.60±0.4 0.46±0.2 
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as loading control. As demonstrated in figure 23 and table 22, Htra2-β1 levels show the tendency to 

be slightly decreased under drug treatment, which was most obvious and significant at 5 µM MS-275. 

This correlates well with the decreased transcript ratio seen on RNA level (chapter 4.1.4.2). 

 

 

4.1.4.4 Cytotoxicity of MS-275 in SMA fibroblast cultures 

 

ML-16 fibroblasts were incubated with increasing concentrations of MS-275 for 24 h to examine 

whether the drug exerts any toxic effects on these cells. After incubation with the drug, an MTT assay 

was performed, and cell survival was measured using the ability of viable cells to convert thiazolyl blue 

tetrazolium bromide into detectable violet formazan crystals. The average data are summarized in 

figure 24. They clearly demonstrate that MS-275 was not causing increased cell death. Even the 

highest drug concentration of 5 µM was well tolerated by the cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: MTT assay with fibroblast line ML-16. Cells were treated with solvent (mock) or increasing 

concentrations of MS-275 (0.05, 0.25, 0.5, 1, and 5 µM). Values for the absorption (corresponding to cell 

survival) are given as mean ± SEM. 
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4.2 Ex vivo experiments with valproic acid in organotypic hippocampal slice 

cultures (OHSCs) from rat 

 

4.2.1 Treatment of OHSCs with valproic acid 

 

SMA is a neuromuscular disorder which is caused by degeneration of α-motor neurons in the spinal 

cord. Thus, when developing a drug for a potential SMA therapy, it has to be considered that this 

compound must be able to pass the blood-brain-barrier to reach its therapeutic target, and to stimulate 

SMN protein expression in neuronal cells. So far, it is unclear whether SAHA and MS-275 are able to 

cross the blood-brain-barrier in humans. VPA is among a very few HDAC inhibitors which are known 

to reach the central nervous system (CNS) after oral or intravenous administration. This is also one of 

the basic requirements for the successful use of the drug in epilepsy therapy. In SMA fibroblasts, it 

was clearly demonstrated that VPA elevates the level of SMN protein by increasing the transcription of 

SMN2 and a partial reversion of the pathological SMN2 splicing pattern. To investigate in more detail 

whether VPA is also able to up-regulate SMN protein levels in neuronal tissue would be another 

important step to further consider the drug as promising for a potential SMA therapy. Most of the 

native tissues derived from the CNS, however, hardly survive in culture, are not well established and 

very fragile, or do not provide enough material to perform western blotting and RT-PCR after drug 

treatment. An extremely potent drug screening and drug validation tool available for CNS disorders is 

the use of organotypic hippocampal slice cultures (OHSCs) from rat (Stoppini et al. 1991; Savaskan et 

al. 2000). In contrast to humans, rodents carry one Smn gene only, which is not subject to alternative 

splicing. However, rat OHSCs provide an excellent ex vivo system to study the impact of VPA on rat 

Smn (rSmn) transcription and rSmn protein levels. 

 

 

4.2.1.1  Transcriptional activity of rSmn under valproic acid treatment 

 

Since humans and rats are known to metabolize VPA differently [the terminal half-life of VPA in 

humans is 9-18 h and in rats 2-5 h, respectively (Johannessen 2000; Sands et al. 2000)], the 

experimental conditions used for the treatment of human SMA fibroblasts with VPA (chapter 4.1.2) 

could not be applied to the treatment of rat tissue. Thus, the optimal drug concentrations and time 

periods for the stimulation of the OHSCs were initially determined in a set of pilot experiments. Due to 

the shorter terminal-half life of VPA in rats than in humans, it was most likely that higher drug 

concentrations are required to achieve a potential effect on rSmn transcription. Moreover, in 

comparison to the experiments performed in fibroblasts, the incubation time of rat OHSCs with VPA 

was increased, since the drug was expected to need more time for penetration into the tissue slices 

than into cell monolayers. Consequently, different concentrations of VPA (50 µM, 500 µM, and 

2000 µM) were added to the OHSCs which were harvested after 48 h. RNA was isolated and the 

expression of rSmn was analyzed by quantitative real-time RT-PCR using the level of β-actin 

transcripts as internal reference. Since the rSmn gene is not subject to alternative splicing, a potential 
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Figure 25: Level of rat Smn (rSmn) transcripts in organotypic hippocampal slice cultures from rats after 

treatment with VPA. RNA analysis was carried out by quantitative real-time RT-PCR on an ABI Prism 7700 

TaqMan machine using β-actin transcripts as internal control. For each experiment, average data ± SEM 

from repeated measurements are given. Significant changes are indicated by asterisks (* p<0.05; 

** p<0.01; *** p<0.001). (A). Within a dose-finding experiment, OHSCs were treated with solvent (mock) or 

increasing concentrations of VPA (50, 500, and 2000 µM) for 48 h. Analysis revealed that 2 mM VPA was 

the most effective drug concentration to stimulate rSmn expression. (B). Incubation of OHSCs with 2 mM 

VPA for different time periods (12, 24, 36, and 48 h). For each single incubation time, control OHSCs were 

included and treated with solvent only (mock). A period of 48 h was determined to achieve best results for 

the treatment of OHSCs with VPA. 

 

 

Table 23: Evaluation of the optimal drug concentration and the optimal incubation period for the 

treatment of rat OHSCs with the HDAC inhibitor VPA. Average data ± SEM from repeated measurements 

are shown, and highest levels are marked in bold. For each experiment, control OHSCs were included and 

treated with solvent only (mock). 

Concentration 

of VPA 

Mock 50 µM 500 µM 2000 µM 

Dose-finding experiment 

rSmn 1.00±0.1 1.09±0.1 1.45±0.1 2.01±0.1 

Incubation time 

with 2 mM VPA 
12 h 24 h 36 h 48 h 

Evaluation 

optimal time period rSmn 

(Control vs. VPA) 

1.00±0.1 

vs. 

1.46±0.1 

1.00±0.1 

vs. 

1.42±0.1 

1.00±0.0 

vs. 

1.58±0.1 

1.00±0.1 

vs. 

1.61±0.1 
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VPA-dependent up-regulation of rSmn transcripts in rat OHSCs would solely be triggered by 

transcriptional activation. A significant increase in the expression of rSmn mRNA was observed at 

VPA concentrations of 500 and 2000 µM (figure 25 A and table 23). The maximum increase of the 

rSmn level was 2.0fold compared with mock-treated OHSCs and achieved at 2 mM VPA. After 

determining the most effective VPA concentration (2 mM), OHSCs were stimulated with this 

concentration for different time periods (12, 24, 36, and 48 h). Compared with the data obtaind after 12 

h, the rSmn expression was slightly increased at 36 and 48 h, with a maximum elevation of about 

1.6fold compared to untreated OHSCs at 48 h (figure 25 B and table 23). 

(These experiments were kindly performed by Dr. E. Hahnen at the Institute of Neuropathology, 

University Erlangen-Nuremberg, Erlangen, Germany. Since 2004, Dr. E. Hahnen is working in our 

laboratory at the Institute of Human Genetics.) 

 

 

4.2.1.2  Impact of valproic acid on rSmn protein levels 

 

To validate the experiments described above on protein level, OHSCs were stimulated with the 

optimal concentration of 2 mM VPA for 48 h in a final experiment and analysis of the rSmn protein was 

performed. Protein extracts were prepared from OHSCs and used for western blotting. The membrane 

was probed with an antibody against rSmn and an antibody against β-actin. The latter protein served 

as control to confirm that the gels were loaded with equal amounts of each protein sample. As 

displayed in figure 26, VPA treatment induced a clear up-regulation of rSmn protein levels in rat 

OHSCs. Compared to the average rSmn level in the three untreated mock slices (1.00±0.1), an 

average elevation of 1.8fold±0.0 was achieved after incubation with VPA. This result confirmed the 

data obtained on RNA level and strongly suggested that VPA is able to increase SMN/rSmn protein 

levels not only in fibroblasts, but also in neuronal tissue. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Treatment of OHSCs with solvent (mock, controls) or 2 mM VPA for 48 h. The western blot 

shows the analysis of the protein extracts derived from three single rat OHSCs. The membrane was 

probed with antibodies against β-actin (loading control) and rSmn. The average data ± SEM for the rSmn 

protein levels in the slices (relative to β-actin) are summarized in the bar graph. Significant changes are 

indicated by asterisks (** p<0.01). 
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4.2.1.3  Effect of valproic acid on the level of the splicing factors Tra2-β1 and SF2/ASF in 

OHSCs 

 

Although rSmn is not alternatively spliced and thus a potential over-expression of the splicing factor 

Htra2-β1 by HDAC inhibitors is of lower interest in rats than in humans, the levels of rat Tra2-β1 and 

SF2/ASF were studied in VPA-treated OHSCs to compare their regulation with the results obtained in 

primary human SMA fibroblasts. Western blot membranes obtained from protein extracts of OHSCs 

incubated with 2 mM VPA for 48 h were re-probed with antibodies against Htra2-β1 (also detects rat 

Tra2-β1) and SF2/ASF. As described above, β-actin was used as loading control to confirm equal 

loading of the membranes with protein of each sample. The analysis revealed a moderate increase of 

the rat Tra2-β1 levels (mock: 1.00±0.1 versus VPA: 1.42±0.2), and a much more pronounced 

significant elevation of the levels of SF2/ASF (mock: 1.00±0.1 versus VPA: 3.1±0.1). The results are 

summarized in figure 27. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Treatment of OHSCs with solvent (mock, controls) or 2 mM VPA for 48 h. The western blot 

shows the analysis of the protein extracts derived from three single rat OHSCs. The membrane was 

probed with antibodies against β-actin (loading control), Htra2-β1, and SF2/ASF. The average data ± SEM 

for the splicing factor levels in the rat slices (relative to β-actin) are summarized in the bar graph. 

Significant changes are indicated by asterisks (* p<0.05; *** p<0.001). 
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4.3 In vivo effect of valproic acid on SMN gene expression in SMA carriers and 

SMA patients 

 

Among the investigated compounds, VPA and SAHA markedly elevated the SMN2 protein levels in 

SMA fibroblasts in vitro and thus evolved as promising candidates for a potential SMA therapy. 

Moreover, it was demonstrated in organotypic hippocampal slice cultures from rat that VPA increases 

the rSmn protein level in neuronal tissue ex vivo. Following the standard protocols for the development 

of novel therapeutics, the investigation of the in vivo effect of these compounds on SMN gene 

expression in an animal model (e.g., an SMA mouse model) would be the next step to follow the in 

vitro and ex vivo experiments. However, the terminal half-life of VPA in mice (0.8 h) is completely 

different compared with that in humans (9-18 h) (Johannessen 2000) which makes the treatment of 

mice with VPA rather inappropriate to evaluate the in vivo drug efficiency. Importantly, VPA is not a 

novel drug, but a compound which is approved by the Food and Drug Administration (FDA) for 

application to humans. It is clinically well known and successfully used in long-term therapy of epilepsy 

as well as for the treatment of mood disorders and migraine (Spina and Perugi 2004). Thus, based on 

the results obtained with VPA in vitro and ex vivo, a very straight-forward approach is possible and the 

drug can directly be administered to humans to study its effect on SMN gene activity. 

To evaluate whether VPA exerts an effect on SMN expression in humans in vivo, the collection of 

tissue samples from drug-treated individuals is required. The only biological material which can easily 

be collected in sufficient amounts and several times throughout treatment is native blood. This is a 

tissue not affected by SMA, but both genes SMN1 and SMN2 are expressed in blood cells. 

One of the most important challenges regarding the analysis of SMN RNA levels in blood collected 

from humans treated with VPA is the evaluation of a suitable endogenous control for the normalization 

of target transcripts. The comparison of SMN transcript levels in blood collected before and throughout 

drug treatment requires an endogenous control which is stable over time (at least over several weeks). 

Moreover, expression of the endogenous control gene must not be influenced by VPA. Finally, if the 

comparison of SMN transcript levels among different individuals is planned, the endogenous control 

gene must be expressed at equal levels in these subjects. 

 

 

4.3.1 Screening for a suitable endogenous control: Expression analysis of selected 

(housekeeping) genes in blood 

 

To investigate whether VPA or any other HDAC inhibitor is able to increase human SMN RNA 

expression in blood, SMN transcript levels have to be compared in samples taken before and 

throughout drug treatment. A common method to normalize target transcript levels is the simultaneous 

measurement of the transcript levels of an endogenous control gene in each sample. Subsequently, 

the levels of the target transcript are calculated relative to those of the endogenous control. To 

evaluate an endogenous control which is stably expressed over time, stably expressed in different 

individuals, and whose expression is not influenced by VPA, several candidates have been 

investigated in more detail. 
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4.3.1.1 Applicability of CTLA1 transcript levels for the normalization of SMN transcripts in 

peripheral blood 

 

In 2003, a genome-wide genetic analysis of the natural variability in gene expression was carried out 

in human lymphoblastoid cell lines (Cheung et al. 2003). To identify the genes with the most variable 

and least variable transcript levels, cDNA microarrays containing about 5,000 randomly selected 

cDNA clones were used. Based on the data obtained from the cell lines of 35 unrelated individuals, 

two rankings were composed: one with the top 100 variant genes, and a second one with the top 100 

nonvariable genes (personal communication Vivian Cheung). 

Although the study was performed in EBV-transformed lymphoblastoid cell lines and not in native 

blood, the ranking with the nonvariable genes was screened for potential candidates that might serve 

as endogenous control to normalize SMN transcript levels before/throughout VPA treatment during a 

clinical trial in humans. A housekeeping gene was not identified among the top 100 nonvariable 

genes. Housekeeping genes are constitutively expressed in all tissues and commonly applied as 

endogenous controls. However, another promising candidate among the least variable genes was 

CTLA1 (cytotoxic T-lymphocyte-associated serine esterase 1). CTLA1 does not belong to the class of 

housekeeping genes, but is highly expressed in native whole blood (Gene Expression Atlas 

database). Thus, it was selected to be investigated in more detail. 

Since native blood would be the only tissue to be investigated during a clinical trial with HDAC 

inhibitors, high expression of CTLA1 in native blood would be sufficient to use this gene as 

endogenous control. Expression in all human tissues – comparable to a housekeeping gene – is not 

necessarily required. However, an important prerequisite is the expression of CTLA1 in all types of 

blood cells. Thus, expression of the gene was checked in various blood cell fractions using the Human 

Blood Fractions MTC Panel. The panel contains cDNA preparations from nine different human blood 

cell fractions together with human placenta control cDNA. Real-time PCR analysis of CTLA1 

expression revealed that two cell populations (resting CD4-positive cells and resting CD19-positive 

cells) do not express CTLA1 (figure 28, see appendix page XVII, table B.1 for corresponding data). 

This result was confirmed with the control cDNA from placenta which is known to be negative for 

CTLA1 expression. Consequently, CTLA1 transcripts are not suitable as endogenous control, because 

cell type heterogeneity between blood samples collected throughout a clinical trial might become a 

potential source of variability. 

The remaining cell populations clearly expressed CTLA1. The transcript levels appeared to be 

different, however, a quantitative conclusion about the expression level cannot be drawn from the 

investigated panel. The cDNAs are normalized with three different housekeeping genes (GAPDH, β-

actin, and α-tubulin) by the manufacturer, such that from each cell fraction roughly the same cDNA 

amount was used for investigation of expression. However, according to the manufacturer’s 

information, the normalization of the cDNAs only allows qualitative studies, but is not exact enough to 

allow for a quantification and comparison of transcript levels. Moreover, the single cDNA fractions are 

obtained from different donors and different numbers of donors which further restricts the use of the 

panel only to qualitative purposes. 
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Figure 28: Real-time PCR analysis of CTLA1 transcript levels in human blood cell fractions. Measurement 

of each sample was repeated at least twice, and the resulting data are given as mean ± SEM. “+” is the 

abbreviation for “positive”. The investigation was carried out using the Human Blood Fractions MTC 

Panel which contains cDNAs from nine different blood cell fractions together with a control cDNA derived 

from human placenta. CTLA1 is not expressed in resting CD4+ cells, resting CD19+ cells, and human 

placenta. Thus, CTLA1 cannot be used as endogenous control to normalize SMN target transcripts in 

whole blood samples collected throughout a clinical trial with HDAC inhibitors, because cell type 

heterogeneity between the collected blood samples might become a source for variability. 

 

 

4.3.1.2 Natural expression variation of the housekeeping genes RPLP0, B2M, PPIB, and GUSB 

in peripheral whole blood 

 

Another approach to identify a suitable endogenous control for the normalization of SMN target 

transcripts in whole blood samples collected throughout a clinical trial covered the investigation of a 

selected number of housekeeping genes. The application of housekeeping genes for normalization is 

very common, however, data about the stability of their expression in certain tissues over time and 

among different individuals are rather rare. Thus, an expression study was set up, including human 

acidic ribosomal phosphoprotein P0 (RPLP0), cyclophilin B (PPIB), and β-glucuronidase (GUSB), all 

of which have been reported previously to be stably expressed in human peripheral whole blood and 

cultured peripheral blood mononuclear cells, respectively (Loseke et al. 2003; Dheda et al. 2004; 

Pachot et al. 2004). Furthermore, β2-microglobulin (B2M) was included since it is one of the most 

frequently used endogenous controls. Analysis was performed on RNA isolated from peripheral whole 

blood using the PAXgene Blood RNA system. The system allows to draw 2.5 ml of blood into a tube 

which contains a liquid that stabilizes the gene expression pattern in the blood cells at the time point of 
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collection. The samples were taken from ten control individuals on day 1 and 15. After determination 

of the RNA concentration with RiboGreen® dye on a microplate reader, equal amounts of RNA were 

transcribed into cDNA. Subsequently, quantitative real-time PCR was carried out. As presented in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Expression variation of human acidic ribosomal phosphoprotein P0 (RPLP0), cyclophilin B 

(PPIB), β2-microglobulin (B2M) and β-glucuronidase (GUSB) in peripheral whole blood. Analysis of the 

various transcript levels was performed on a total number of 20 blood samples, all of which were 

collected in PAXgene blood RNA tubes (PreAnalytiX) from ten control individuals who donated blood 

twice over a period of several weeks. All measurements are repeated at least twice and given as mean ± 

SEM. The lowest variability was observed for PPIB and GUSB. 

 

summary for the 20 blood samples in figure 29, expression levels ranged from 1.00±0.03 to 2.07±0.05 

(RPLP0), 1.00±0.01 to 1.54±0.22 (PPIB), 1.00±0.01 to 3.50±0.04 (B2M), and 1.00±0.04 to 1.57±0.09 

(GUSB), respectively (values are given as mean ± SEM; the data for each single individual are given 

in the appendix on pages XVII-XVIII, tables B.2 and B.3). Thus, transcript levels of B2M revealed the 

highest variability, followed by RPLP0. In comparison, the lowest expression variation among the four 

investigated housekeeping genes was determined for PPIB and GUSB. 

 

 

4.3.1.3 Comparison of the expression levels of PPIB, GUSB, FL-SMN, and ∆7-SMN in 

monocytes and lymphocytes 

 

The quantitative analysis of a particular transcript in total RNA samples isolated from whole blood 

requires that the expression level is about to be equal in the different cell types which contribute to the 

RNA yield. Differential gene expression in the cell populations might become a source for variability as 

soon as cell type heterogeneity between the collected blood samples occurs. 

Since monocytes and lymphocytes are two major cell fractions which contribute to the amount of total 

RNA isolated from whole blood, these subpopulations were investigated in more detail to get an idea 

about how equal the expression level of certain transcripts is. PPIB and GUSB were selected for 

analysis because they showed the lowest natural expression variability in previous studies (chapter 
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4.3.1.2), and to further analyze their suitability as endogenous controls in blood RNA samples. 

Additionally, the levels of the target transcripts FL-SMN and ∆7-SMN were checked. The investigation 

included the collection of whole blood in BD Vacutainer® CPT Cell Preparation Tubes from a number 

of nine control subjects. Subsequently, peripheral blood mononuclear cells (PBMCs, monocytes and 

lymphocytes) were isolated, and separated into a fraction containing monocytes and a fraction 

containing lymphocytes applying magnetic cell sorting (MACS) using an antibody against the 

monocyte surface marker CD14. This method resulted in a high purity of the two separated cell 

fractions as confirmed by flow cytometry (see appendix page XVIII, table B.4). After cell separation, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Quantitative real-time PCR analysis of various transcript levels in monocytes and lymphocytes 

after isolation of PBMCs from peripheral whole blood, separation of the cell fractions by magnetic cell 

sorting, mRNA isolation, and reverse transcription. For each subject, investigation included PPIB 

transcripts (A), GUSB transcripts (B), FL-SMN transcripts (C), and ∆7-SMN transcripts (D). A table 

containing the means ± SEM for each single transcript level is given in the appendix (page XIX, tables B.5 

and B.6). 
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mRNA was isolated from each of the two fractions using the µMACS mRNA Isolation Kit which is 

based on magnetic labeling of polyA-mRNA with magnetic MACS Oligo(dT) MicroBeads. Eluted 

mRNA was measured with RiboGreen® dye on a microplate reader and equal amounts of each 

sample were used to perform a reverse transcription followed by measurements of the respective 

transcript level by quantitative real-time PCR. As demonstrated in figure 30 C and D, in most cases, 

corresponding fractions of lymphocytes and monocytes presented very similar levels of FL-SMN and 

∆7-SMN transcript, respectively. There were only marginal differences between the two cell fractions, 

suggesting that a potential cell type heterogeneity between collected blood samples would not lead to 

extensively variable measurements. A more pronounced difference between the FL-SMN transcript 

levels was observed only in subject 56, however, this difference was not significant. For the ∆7-SMN 

levels, a slightly higher variation between monocytes and lymphocytes was measured for subjects 54 

(p<0.01), 56 (p<0.05), and 59 (not significant). 

Analysis of PPIB transcript levels in monocytes and lymphocytes (figure 30 A) also revealed a very 

similar expression pattern with minimal differences between most of the corresponding cell fractions, 

which further argued for the suitability of PPIB as endogenous control. Only in the individuals 57 and 

58, a more substantial difference was determined (p<0.01 for subject 57, and p<0.05 for subject 58). 

In both cases, PPIB transcript levels were higher in monocytes than in lymphocytes. In contrast, the 

analysis of GUSB transcripts (figure 30 B) revealed a significantly different expression in 

corresponding monocyte and lymphocyte fractions in most of the investigated cases, including 

subjects 52 (p<0.05), 54 (p<0.01), 55 (p<0.01), 57 (p<0.01), 58 (p<0.05), and 63 (p<0.001). A less 

substantial variation between the two cell fractions was determined only in individuals 56, 59, and 62. 

In comparison, these results suggested that the application of GUSB as endogenous control would 

bear a higher risk for data variability caused by cell type heterogeneity between collected blood 

samples than the use of PPIB. 

 

 

4.3.1.4 Impact of valproic acid on the expression of PPIB and GUSB in peripheral whole blood 

 

Another major issue that has to be considered when dealing with VPA is its potential to unspecifically 

up- or down-regulate the activity of a number of genes. About 2-5% of the expressed genes are 

estimated to show increased or decreased activity induced by the class of HDAC inhibitors (Pazin and 

Kadonaga 1997; Butler et al. 2002; Glaser et al. 2003). This might also include housekeeping genes. 

Thus, a major requirement for an endogenous control to be used for the normalization of RNA data 

throughout a clinical trial with VPA is the stable expression even under drug treatment. Any positive or 

negative influence of VPA on the expression of the endogenous control gene would subsequently 

result in the misinterpretation of the data obtained for SMN target transcript levels. 

Therefore, further evaluation experiments were carried out with PPIB and GUSB. The expression of 

these two genes was analyzed in blood samples received from ten SMA carriers (C1 to C10) treated 

with VPA within a clinical pilot trial. Compared to the baseline transcript level determined before drug 

treatment, PPIB expression was only little affected by drug therapy in the carriers C6, C7, C9, and 

C10 (figure 31 A). However, VPA markedly elevated PPIB activity in four individuals (carriers C1, C3, 
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Figure 31: Analysis of PPIB (A) and GUSB (B) transcript levels in peripheral whole blood from ten SMA 

carriers treated with VPA to evaluate potential drug effects on housekeeping gene activity. For each 

individual, the dotted line indicates the baseline expression determined in three blood samples taken 

every two weeks before drug treatment (1.0). All transcript levels measured throughout VPA medication 

are calculated as multiples of 1.0. Values are given as mean ± SEM. A table containing the corresponding 

data for each single transcript level is given in the appendix (page XX, table B.7). 

 

C4, and C8), whereas C2 and C5 showed up- or down-regulation of PPIB transcript levels under 

varying VPA serum levels. Analysis of GUSB expression revealed an almost unchanged activity in the 

carriers C1, C6, and C7 (figure 31 B). In a number of four probands (C2, C5, C9 and C10), GUSB 

transcription was stimulated or inhibited during the VPA dosage scheme, and increased mRNA levels 

were detected in another three carriers (C3, C4, and C8), clearly indicating the potential impact of VPA 

on the activity of housekeeping genes. 

 

 

4.3.2 Normalization of SMN target transcripts as copy number per total RNA amount used for 

reverse transcription 

 

Among the housekeeping genes RPLP0, B2M, PPIB, and GUSB, the latter two showed the lowest 

natural expression variation. However, between the lowest and the highest respective transcript level 

a roughly 1.5fold difference was observed which would restrict reliable detection of SMN transcript 

fluctuations to changes more pronounced than that variation. Moreover, in particular GUSB was 

demonstrated to be differentially expressed in monocytes and lymphocytes which might become a 

source for data variability as soon as cell type heterogeneity between the collected blood samples 

occurs. Importantly, in vivo expression of both GUSB and PPIB is regulated by VPA as demonstrated 

in blood taken from SMA carriers which were treated with the drug. Thus, in order to avoid any 

misinterpretation resulting from the natural variation in housekeeping gene expression and the 

possibility of altered activity of the endogenous control gene under drug treatment, the normalization 
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by PPIB or GUSB was found unsuitable to assess the impact of VPA on human SMN gene expression 

in vivo. 

An alternative normalization method which is not based on the expression of an endogenous control 

has been described in 2000 (Bustin 2000). Instead, this method refers to the total RNA amount used 

for reverse transcription (RT) of each single sample. It was recommended as preferred normalization 

method for in vivo studies dealing with human tissues and is independent of gene expression variation 

and regulation of endogenous controls. Therefore, the method was selected as first choice to 

investigate a potential in vivo effect of VPA on human SMN transcript levels in blood. In a first step, 

total RNA was isolated from blood using the PAXgene system. DNase digest was included to remove 

DNA which would interfere with subsequent RNA measurements and the real-time PCR reaction. The 

exact RNA concentration of each sample was determined in triplicates on a microplate reader using 

RiboGreen® dye. Subsequently, an amount of 150 ng RNA was used for reverse transcription and FL-

SMN (primers #2075 and #2076) and ∆7-SMN (primers #1449 and #1450) transcript levels were 

detected by quantitative real-time PCR on a LightCycler machine. For each analyzed sample, results 

were normalized by recording the copy numbers for FL- and ∆7-SMN target transcripts as copy 

number per ng total RNA used in the RT reaction. 

 

 

4.3.3 Flow cytometric analysis of SMN protein levels in peripheral blood mononuclear cells 

(PBMCs) 

 

Besides of the analysis of SMN RNA levels in blood collected from individuals treated with VPA, it 

would be of additional interest to study the level of SMN protein under drug treatment. It has been 

proven in SMA fibroblasts in vitro that VPA triggers elevated FL-SMN2 RNA levels followed by an 

increase of SMN2 protein. However, RNA is the intermediate product and only analysis of the 

encoded functional protein in blood taken from drug-treated subjects would provide the final proof 

whether VPA is also able to regulate SMN levels in vivo. 

A very common method to quantify protein levels is western blotting. This procedure is well 

established, but inconvenient and highly time-consuming whenever a large number of samples has to 

be investigated. Thus, the development of a high-throughput method would be of major benefit to 

perform SMN protein analysis in blood samples collected from individuals before and throughout the 

treatment with VPA within a clinical trial. A suitable approach to establish such a procedure is the 

application of flow cytometry. It would be conceivable to isolate PBMCs from peripheral whole blood 

samples, to subsequently label the SMN protein within the cells using an antibody which is conjugated 

to a fluorescent dye, and to finally measure the fluorescence signal (which directly correlates with the 

SMN protein level) in a certain number of cells on a flow cytometer. In comparison to western blotting, 

such a method would be faster and require less time to analyze multiple samples derived from 

different individuals. 

To evaluate a method for the quantification of SMN protein levels in blood based on flow cytometry, an 

immunohistochemistry staining procedure was developed in a first step. Blood was collected in BD 

Vacutainer® CPT Cell Preparation Tubes, and PBMCs were isolated. Cells were fixed and 

permeabilized using the Fix&Perm Cell Permeabilization Kit. After subsequent incubation with a 
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monoclonal anti-SMN FITC-conjugated antibody, successful staining of the SMN protein was checked 

under a fluorescent microscope. As demonstrated in figure 32 A and B, incubation with the anti-SMN 

FITC-conjugated antibody resulted in a diffuse staining of the SMN protein in the PBMCs. Additionally, 

intensively fluorescent dot-like structures called gems were visible. Since gems are exclusively present 

in the nucleus, this observation indicated that the procedure was able to permeabilize not only the cell 

membrane, but also the nuclear membrane, and that the anti-SMN FITC-conjugated antibody reached 

the inner nucleus and bound to the SMN protein localized in the gems. These were two major 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Immunohistochemistry staining of the SMN protein in PBMCs isolated from peripheral whole 

blood. Cells were fixed, permeabilized, and subsequently incubated either with a monoclonal anti-SMN 

FITC-conjugated antibody (A and B), or with an equal amount of the isotype control to check for 

background staining (C). Analysis by fluorescence microscopy revealed a diffuse staining of SMN 

together with a staining of the nuclear gems (A and B). Incubation with the isotype control (labeled with 

FITC but not directed against an antigen) resulted in a weak background staining only (C). The 

corresponding nucleus from the cell visible in (C) was additionally stained with DAPI (D) to prove that the 

background staining was indeed obtained from one of the PBMCs. 
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requirements to subsequently apply the method for quantification of SMN protein levels by flow 

cytometry. In a second step, PBMCs were analyzed on a flow cytometer to check whether this 

technical equipment is able to distinguish between the fluorescence signal obtained after staining with 

the anti-SMN FITC-conjugated antibody and the weak signal derived from background staining. 

Therefore, blood was taken from several individuals, and PBMCs were isolated, fixed, and 

permeabilized as described above. Incubation was performed with the monoclonal anti-SMN FITC-

conjugated antibody, the corresponding isotype control to determine the background staining, and 

without any antibody to analyze the autofluorescence signal of the cells. Moreover, during the analysis 

of the PBMCs on the flow cytometer, cells were separated into lymphocytes and monocytes by using 

fluorescently labeled antibodies against the surface markers CD45 (present on monocytes and 

lymphocytes) and CD14 (present on monocytes, but not on lymphocytes). Thus, any events counted 

and analyzed on the flow cytometer could be exactly identified as PBMCs. Additionally, the separation 

into two cell fractions would allow to check for any potential differences in the regulation of the SMN 

protein by VPA. Flow cytometric analysis of PBMC samples incubated without antibody, with isotype 

control, or with anti-SMN FITC-conjugated antibody revealed a moderate but sufficient difference 

between the detected fluorescence signals (figure 33 and table 24 display the results for one of the 

blood samples). Figure 33 A presents the autofluorescence results for a PBMC sample, figure 33 B 

shows the background staining results obtained after incubation of PBMCs from the same individual 

with the isotype control antibody, and figure 33 C gives the data obtained after incubation with anti-

SMN FITC-conjugated antibody. As it is visible in the dot plots, lymphocytes and monocytes could be 

clearly separated in each sample based on side scatter, forward scatter, and incubation with 

antibodies against CD45 and CD14 (lymphocytes are positive for CD45 and negative for CD14; 

monocytes are positive for both CD45 and CD14). The third dot plot in each column analyzes the 

CD14-PE signal versus the green fluorescence (autofluorescence and signal derived from FITC). 

Compared to the autofluorescence of the PBMCs, the green fluorescence marginally increases in the 

isotype control (third dot plot and histograms column A versus third dot plot and histograms column B). 

However, the increase is much more pronounced in the PBMCs incubated with anti-SMN FITC-

conjugated antibody (third dot plot and histograms in column C versus those in columns A and B). 

This observation was made for lymphocytes and monocytes, suggesting that the flow cytometry 

equipment is able to distinguish between background staining and specific SMN protein staining. The 

corresponding data are given in table 24. 

 

Table 24: Intensity of green fluorescence measured in PBMCs incubated without antibody 

(autofluorescence), with the respective isotype control, or with the monoclonal anti-SMN FITC-conjugated 

antibody. Autofluorescence was measured once. The samples to detect the background staining and the 

specific SMN signal were performed in triplicates, and the results are given as mean ± SEM. The 

corresponding dot plots and histograms are presented in figure 33. 

  Autofluorescence Isotype control 
Anti-SMN FITC 

antibody 

Lymphocytes 5.0 10.9±0.2 25.3±1.0 Signal for 

green 

fluorescence Monocytes 7.9 30.4±1.0 58.2±2.7 
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Figure 33: Flow cytometric analysis of PBMCs after isolation from peripheral whole blood and 

immunohistochemistry staining of the SMN protein. Column (A) is a representative analysis of the 

autofluorescence of the cells, column (B) demonstrates the results for background staining after 

incubation with an isotype control antibody, and (C) presents the data obtained after incubation with a 

monoclonal anti-SMN FITC-conjugated antibody. Lymphocytes (red in the dot plots and green in the 

histogram) and monocytes (green in the dot plots and red in the histogram) were separated using 

antibodies against the surface markers CD45 and CD14. In each column, the first diagram is a side scatter 

(SSC) versus forward scatter (FSC) dot plot, the second dot plot shows the fluorescence signal obtained 

from the CD14-PE labeled antibody versus the signal from the CD45-PerCP labeled antibody, and the third 

dot plot presents the signal for CD14-PE versus the green fluorescence determined in the samples. The 

histograms show the cell counts for lymphocytes/monocytes versus the green fluorescence signal. 
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Another challenge was the comparability of the data which would be obtained for one and the same 

individual before and throughout the treatment with VPA. In contrast to RNA samples which can be 

isolated, stored at -80°C, and analyzed together within the same real-time PCR run, it would probably 

be complicated to store intact PBMCs, and keep the SMN protein level constant. Thus, a reliable 

quantitative analysis of SMN protein levels requires immediate sample measurement. As a suitable 

tool to compare flow cytometric results obtained at different time points, Sphero Rainbow Calibration 

Particles were identified. This is a mixture of particles that are dyed to eight different fluorescent 

intensities. Every Rainbow particle contains a mixture of fluorophores that are excited at any 

wavelength from 365 to 650 nm. The Rainbow particles have emission spectra that are compatible 

with many common fluorophores used for immunofluorescent stainings with flow cytometric analysis, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Measurement of Sphero Rainbow Calibration Particles on a flow cytometer to enable 

comparability of the data obtained for SMN protein levels in PBMCs at different time points. The particles 

are identified by their size in the side scatter/forward scatter dot plot (A). They consist of eight different 

particle fractions, each of which is labeled with a standardized amount of dye that is able to emit green 

fluorescence similar to the fluorophore FITC. Seven of these fractions were detected by the flow 

cytometer (B). The mean fluorescence intensity which was measured for each particle fraction and the 

molecules of equivalent fluorescein which is a standardized value and given by the manufacturer are 

used to create a standard curve (C). The standard curve serves to transform the green fluorescent 

intensity measured in the respective PBMC sample into molecules of equivalent fluorescein, a value 

which makes the samples comparable regardless at which time point they were measured. 
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including FITC. Thus, whenever PBMC samples would be measured to determine the SMN protein 

level in the cells, the particle mixture would be suitable to calibrate the flow cytometer, and to create a 

standard curve. Subsequently, the standard curve would serve to calculate the SMN protein levels and 

make them comparable with the data obtained at different time points (figure 34 and appendix page 

XXI table B.8). 

 

Another problem which, however, could not be solved at the time when the experiments were carried 

out is the evaluation of an internal standard. To quantify SMN protein levels in PBMCs, the 

permeabilization of the nuclear membrane is required since a major amount of SMN is localized in the 

gems. This is a major disadvantage of intracellular stainings, because there is no real guaranty that 

the degree of permeabilization is always the same. A different degree of permeabilization would most 

likely have an impact on the amount of anti-SMN FITC-conjugated antibody which is able to diffuse 

into the nucleus and bind to SMN protein. This would result in a variability of the data obtained for 

SMN protein levels and quantification would be unreliable. To overcome this problem, a protein which 

is constitutively expressed exclusively in the nucleus could be detected in parallel. To make sure that 

the diffusion behavior of the anti-SMN antibody and the antibody against the control protein is as 

similar as possible, the detection of such a protein requires an antibody which is directly conjugated to 

FITC. Several proteins were taken into account, including histone H1, emerin, the retinoblastoma 

protein, and lamin proteins. However, retinoblastoma protein is undetectable in normal PBMCs by flow 

cytometry, and a primary FITC-conjugated antibody was not available for any constitutively expressed 

nuclear protein at this time. A primary monoclonal antibody to histone H1 was purchased from Acris 

and the FluoReporter ® FITC Protein Labeling Kit (Molecular Probes) was used to label the antibody 

with FITC. Since the reaction failed, and thus a suitable internal control could not be established, the 

flow cytometric quantification of SMN protein levels in blood samples collected throughout a clinical 

trial with VPA was canceled. 

 

 

4.3.4 Comparison of baseline SMN transcript levels in peripheral whole blood from controls, 

SMA carriers, and SMA patients 

 

Prior to a clinical trial with VPA, the expression of SMN RNA was characterized in a sample set 

collected from a total number of 41 untreated subjects including control persons, SMA carriers, and 

patients with SMA. Native blood is a tissue not affected by SMA and represents the only biological 

material which can easily be collected from individuals in sufficient amounts to directly monitor the 

effect of a drug on SMN expression. However, studies investigating SMN expression in native blood 

have not been carried out so far. 

The cohort under study included ten controls (nine with 2 SMN1 and one with 3 SMN1 copies, all of 

them presenting 0–2 SMN2 copies), ten SMA carriers (carrying 1 SMN1 copy and 1–3 SMN2 copies), 

six patients with type III SMA (two with 4 SMN2 and four with 3 SMN2 copies), ten patients with type II 

SMA (all of them presenting 3 SMN2) and five patients with type I SMA (presenting 2 SMN2 copies 

except for one case with 3 SMN2 copies). To analyze FL-SMN and ∆7-SMN baseline levels as well as 
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Figure 35: Comparison of FL-SMN (A) and ∆7-SMN (B) mRNA baseline levels together with an analysis of 

the FL-SMN/∆7-SMN ratio (C) in blood collected from 41 untreated subjects in PAXgene blood RNA tubes. 

From each subject, blood was taken twice over a time period of several weeks. The average values 

calculated after repeated real-time PCR measurements of the two blood samples from each individual are 

given as mean ± SEM. The arrow in (A) indicates the FL-SMN2 level determined for the SMA type I patient 

with 3 SMN2 copies. As expected, analysis of the control subject with 2 SMN1 copies and 0 SMN2 copies 

yielded a ∆7-SMN transcript amount close to 0 [indicated by the arrow in (B)]. The arrow in (C) indicates 

the transcript ratio calculated for the same control, presenting a value of 55.74 ± 3.21 (mean ± SEM) due to 

almost complete absence of ∆7-SMN transcript. The corresponding data and the genotype of each single 

individual are given in the appendix (page XXI, table B.9). 

 

the corresponding transcript ratio without drug treatment, peripheral whole blood was taken twice over 

a time period of several weeks. The average values calculated from the two measurements are 

compared in figure 35. Unexpectedly, although controls, SMA carriers, and SMA patients differ in the 

number of functional SMN1 genes (2-3 SMN1, 1 SMN1, and homozygous absence of SMN1, 

respectively) and their SMN2 copy numbers (0-4 SMN2), only the type I SMA patients with 2 SMN2 
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copies revealed a significant reduction of FL-SMN levels compared to the control and the carrier 

groups (p always <0.01) (figure 35 A). However, the type I SMA patient with 3 SMN2 copies stood out 

from those with 2 SMN2 copies. Inclusion of this patient into statistical analysis failed to reveal a 

significant difference between type I SMA patients, carriers, and controls (p=0.052). Controls and 

carriers (with 2-3 SMN1 and 1 SMN1, respectively) yielded similar amounts of FL-SMN transcript with 

only minor variations among the recruited subjects. In comparison, patients with type I, II, and III SMA 

(carrying 2-4 SMN2 copies) displayed a much higher inter-individual variation in FL-SMN expression. 

FL-SMN levels measured in peripheral whole blood derived from type I, II, and III patients were not 

significantly different from each other. Compared to controls, their mRNA levels ranged from lower to 

even higher values. 

In SMA carriers, ∆7-SMN mRNA levels were in the range of those observed in controls or higher, with 

higher levels corresponding to an increased SMN2 copy number (figure 35 B). Thus, a significant 

difference between controls and carriers was not observed. The level of ∆7-SMN did not discriminate 

between type I, II, and III SMA patients. However, compared to controls, ∆7-SMN levels were 

significantly higher in SMA patients (p<0.05 for type I patients, and p<0.01 for type II and III patients). 

The FL-SMN/∆7-SMN transcript ratios in controls overlapped with the values for SMA carriers, which 

represented similar or slightly lower values, the latter restricted to the individuals carrying 3 SMN2 

genes (figure 35 C). Although a high interindividual variation of the FL- and ∆7-SMN2 transcript levels 

was detected in SMA patients even in the presence of identical numbers of SMN2 (e.g. 3 SMN2 in all 

investigated SMA type II patients), the respective FL/∆7 ratios were in an equal range, and therefore 

not significantly different from each other. This suggested a varying transcriptional activity of SMN2 

among different subjects. However, the transcript ratios in SMA patients were significantly lower than 

the ratios determined for controls (p always <0.01; the control without SMN2 was excluded for 

analysis) and for carriers (p always < 0.05). 

For every investigated parameter (FL-SMN, ∆7-SMN, and FL/∆7 ratio), low SEM values demonstrate 

that there were only marginal differences between the two collected samples of each individual (figure 

35). 

 

 

4.3.5 Pilot trial with valproic acid in SMA carriers 

 

4.3.5.1 Impact of valproic acid on SMN mRNA levels in peripheral whole blood from SMA 

carriers 

 

To address the question if VPA is able to increase SMN gene expression in vivo, ten SMA carriers 

were enrolled in a clinical pilot trial and treated with VPA. Peripheral whole blood was used to assess 

FL- and ∆7-SMN transcript levels. Among the subjects investigated, VPA treatment resulted in 

elevated FL-SMN mRNA amounts in a number of seven probands, namely C1, C2, C3, C4, C5, C6, 

and C8 (figure 36 A and table 25). Compared to the baseline FL-SMN transcript level determined 

before VPA medication, a 1.6fold (C6) to 3.4fold (C3) increase was reached. Several weeks after 

discontinuing VPA medication, FL-SMN transcript levels in all drug responders were back on the  
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Table 25: Expression of FL-SMN, ∆7-SMN, and the FL/∆7 ratio in peripheral whole blood from ten SMA 

carriers (C1 to C10) treated with VPA. Values are given as mean ± SEM together with the corresponding 

VPA serum level determined in the same blood sample (n.d. = not detected). Varying total number of 

values obtained for each parameter among the probands resulted from varying time periods required to 

adapt VPA serum levels to the therapeutic range. The highest value detected for FL-SMN, ∆7-SMN and the 

FL/∆7 ratio in the respective SMA carrier is indicated in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  SMA 
Carrier 

 SMN transcript levels, FL/∆7 ratio, and corresponding VPA serum level 

C1 
1xSMN1 

1xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 
1.0±0.1 
baseline 

0.8±0.0 
0.8±0.0 
1.0±0.0 

n.d. 

1.5±0.0 
1.2±0.0 
1.3±0.1 

53.9 

1.0±0.0 
1.0±0.1 
1.0±0.0 

65.7 

1.6±0.0 
1.4±0.1 
1.1±0.0 

79.5 

0.8±0.0 
0.7±0.2 
1.1±0.3 
104.0 

1.8±0.1 
1.5±0.0 
1.2±0.0 

84.8 

0.8±0.0 
0.7±0.0 
1.1±0.1 

after 

 

C2 
1xSMN1 

1xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 
1.0±0.1 
baseline 

0.8±0.0 
0.8±0.0 
1.0±0.0 

n.d. 

1.7±0.1 
1.6±0.1 
1.1±0.0 

26.7 

0.9±0.0 
1.1±0.0 
0.8±0.0 

45.9 

0.4±0.0 
0.4±0.0 
1.0±0.1 

62.6 

0.9±0.1 
0.8±0.1 
1.1±0.2 

75.6 

1.4±0.0 
1.2±0.0 
1.2±0.0 

57.3 

1.6±0.0 
1.5±0.0 
1.1±0.0 

61.0 

0.9±0.1 
1.0±0.1 
0.9±0.1 

after 

C3 
1xSMN1 

2xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 
1.0±0.0 
baseline 

1.4±0.0 
1.5±0.0 
0.9±0.0 

30.1 

1.9±0.0 
1.6±0.0 
1.2±0.0 

64.3 

2.2±0.1 
2.1±0.0 
1.0±0.0 

48.6 

1.8±0.1 
1.8±0.0 
1.0±0.1 

60.0 

1.3±0.0 
1.3±0.0 
1.0±0.0 

58.7 

3.4±0.0 
2.8±0.0 
1.2±0.0 

53.9 

1.0±0.0 
0.9±0.0 
1.1±0.1 

after 

 

C4 
1xSMN1 

2xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 
1.0±0.0 
baseline 

1.2±0.0 
1.2±0.0 
1.0±0.0 

41.4 

1.9±0.0 
1.7±0.0 
1.1±0.0 

69.7 

2.3±0.0 
2.0±0.1 
1.1±0.1 

80.5 

1.8±0.1 
1.8±0.0 
1.0±0.1 

83.3 

1.4±0.0 
1.3±0.0 
1.1±0.0 

78.8 

1.1±0.1 
1.2±0.0 
0.9±0.1 

after 

  

C5 
1xSMN1 

2xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

 

1.0±0.0 
1.0±0.1 
1.0±0.1 
baseline 

1.0±0.0 
1.0±0.0 
1.0±0.0 

n.d. 

1.7±0.1 
1.7±0.0 
1.0±0.1 

33.2 

1.6±0.1 
1.6±0.2 
1.0±0.1 

32.7 

0.4±0.0 
0.5±0.1 
0.8±0.1 

56.2 

1.2±0.1 
1.4±0.0 
0.9±0.0 

53.1 

1.6±0.0 
1.7±0.0 
0.9±0.0 

50.7 

2.0±0.0 
2.4±0.1 
0.8±0.0 

64.3 

1.2±0.1 
1.2±0.0 
1.0±0.1 

after 

C6 
1xSMN1 

2xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 
1.0±0.0 
baseline 

1.4±0.0 
1.4±0.1 
1.0±0.0 

51.7 

0.9±0.1 
0.9±0.0 
1.0±0.1 

70.3 

1.6±0.1 
1.5±0.1 
1.1±0.1 

80.1 

1.3±0.0 
1.4±0.0 
0.9±0.0 

74.3 

1.0±0.0 
1.2±0.1 
0.8±0.1 

82.3 

1.1±0.1 
1.0±0.0 
1.1±0.1 

after 

  

C7 
1xSMN1 

2xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 
1.0±0.0 
baseline 

0.7±0.1 
0.7±0.0 
1.0±0.1 

n.d. 

1.3±0.0 
1.5±0.0 
0.9±0.0 

76.9 

1.1±0.0 
1.2±0.1 
0.9±0.0 

92.0 

0.6±0.1 
0.8±0.0 
0.8±0.1 
128.5 

0.7±0.0 
0.8±0.0 
0.9±0.0 

80.7 

0.9±0.0 
1.0±0.0 
0.9±0.1 

after 

  

C8 
1xSMN1 

3xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 
1.0±0.0 
baseline 

1.4±0.0 
1.2±0.1 
1.2±0.0 

10.0 

1.2±0.0 
1.0±0.0 
1.2±0.0 

58.5 

1.4±0.1 
1.4±0.1 
1.0±0.1 

79.9 

0.9±0.0 
0.8±0.0 
1.1±0.1 

63.6 

1.7±0.0 
1.5±0.0 
1.1±0.0 

67.8 

0.9±0.1 
1.0±0.0 
0.9±0.1 

after 

  

C9 
1xSMN1 

3xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

 

1.0±0.2 
1.0±0.1 
1.0±0.1 
baseline 

0.7±0.0 
0.8±0.0 
0.9±0.0 

30.7 

1.2±0.0 
1.2±0.0 
1.0±0.0 

59.9 

1.3±0.0 
1.4±0.1 
0.9±0.0 

69.1 

1.0±0.0 
1.1±0.0 
1.0±0.0 

64.3 

1.0±0.0 
1.3±0.1 
0.8±0.1 

62.4 

0.8±0.1 
0.9±0.1 
0.9±0.0 

after 

  

C10 
1xSMN1 

3xSMN2 

 

 
FL-SMN 
∆7-SMN 

FL/∆7 ratio 
VPA (mg/l) 

1.0±0.0 
1.0±0.1 
1.0±0.0 
baseline 

1.1±0.0 
1.1±0.1 
1.0±0.0 

n.d. 

1.1±0.1 
1.0±0.0 
1.1±0.1 

45.3 

0.7±0.0 
0.7±0.0 
1.0±0.1 

65.9 

0.9±0.0 
1.1±0.0 
0.8±0.0 

58.9 

1.2±0.1 
1.3±0.0 
0.9±0.1 

84.2 

1.1±0.0 
1.2±0.0 
0.9±0.0 

75.6 

1.1±0.0 
1.2±0.0 
0.9±0.0 

61.6 

0.5±0.0 
0.6±0.0 
0.8±0.1 

after 
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respective baseline level as shown by the very last value given for each of these carriers in table 25. 

This measurement proved that the observed elevated SMN gene expression in the seven probands 

can indeed be attributed to the treatment with VPA. Interestingly, the degree of up-regulation 

determined for the FL-SMN transcript levels was not clearly correlated to the number of SMN2 genes 

present in each carrier (see table 25). The strongest drug response was detected in probands C3, C4, 

and C5 who all carry 2 SMN2 copies. C1, C2, C6, and C8, who possess 1 SMN2 copy and 3 SMN2 

copies, respectively, revealed a weaker increase. Furthermore, fluctuations in the VPA serum level of 

the responders throughout dose escalation and after reaching the therapeutic range were not clearly 

reflected by the change of FL-SMN mRNA amounts (table 25). Except for C2, who reached the 

maximal gain of the FL-SMN transcript level in an early stage of drug treatment at a relatively low VPA 

serum level of 26.7 mg/l, the highest elevation was detected in all responders after several weeks of 

medication and at VPA levels between 53.9 and 84.8 mg/l. However, even while the drug was present, 

FL-SMN transcript levels decreased in between, so that in none of the carriers who responded to the 

drug a clear correlation between FL-SMN mRNA levels and VPA dosage was observed. Due to this 

fluctuation of transcript levels observed throughout therapy, the increase of FL-SMN transcript levels 

was significant only in the subjects C3 and C4 (p<0.05). 

Out of the ten SMA carriers investigated, three subjects did not show markedly changed FL-SMN 

transcript levels upon VPA treatment (figure 36 B). In the blood samples derived from C7, C9, and 

C10, a maximal elevation of only 1.2fold or 1.3fold was detected, although drug levels in each of these 

individuals throughout the protocol were similar to those in the responding group. The observation of 

slight variations including minimal decreases in presence of VPA followed by re-increases of the FL-

SMN amount corresponds to the behavior already described for the responders. 

In each of the ten SMA carriers enrolled in the clinical protocol, up-regulation of the ∆7-SMN transcript  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: FL-SMN transcript levels in ten SMA carriers treated with VPA in a clinical pilot trial. Transcript 

measurements (A, B) were performed using quantitative real-time PCR, are given as mean ± SEM, and 

presented as a function of the day of VPA treatment. The baseline FL-SMN transcript level was 

determined for each subject in three blood samples collected in PAXgene blood RNA tubes every two 

weeks before drug therapy. The mean of these measurements was normalized to 1.0 (dotted line) and is 

displayed on day 0 of medication. All other values are shown as multiples of the baseline level. For 

corresponding data and the genotype of each carrier, see also table 25. 
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level occurred in parallel with the respective FL-SMN transcript level (table 25). Maximal rise of the ∆7-

SMN mRNA amount in each subject of the responder group (C1, C2, C3, C4, C5, C6, and C8) was 

detected at the same time point when FL-SMN levels peaked and ranged between 2.8fold (C3) and 

1.5fold (C1, C6, and C8). In agreement with the results for the FL transcript, significance was reached 

only for C3 and C4 (p<0.05). The simultaneous gain of both FL- and ∆7-SMN transcript levels clearly 

suggested a general activation of SMN transcription processes in peripheral whole blood by VPA. 

Elevation of the truncated transcript in the responders mostly appeared slightly lower than that of the 

FL transcript, although these differences were marginal. Consequently, the FL-SMN versus ∆7-SMN 

transcript ratio as a parameter for an effect on exon 7 inclusion and therefore a reversion of the 

splicing pattern was altered only weakly without reaching significance (table 25). In the non-

responding group including the probands C7, C9, and C10, almost unchanged FL-SMN transcript 

levels went along with only minimally modified ∆7-SMN transcript amounts. The resulting FL-SMN/∆7-

SMN transcript ratio never increased in these subjects throughout VPA medication. 

 

 

4.3.5.2 Impact of valproic acid on SMN protein levels in peripheral whole blood from SMA 

carriers 

 

It has been demonstrated in cell culture systems in vitro, that VPA is able to elevate both, FL-SMN 

RNA and protein. To prove that VPA acts in the same way in humans in vivo, the potential of VPA to 

increase SMN protein levels in the SMA carriers enrolled in the pilot trial was analyzed. With the 

exception of proband C6, for 9/10 subjects protein analysis in PBMCs was feasible. From each 

individual, peripheral whole blood was collected in BD Vacutainer® CPT Cell Preparation Tubes twice: 

once prior to VPA treatment and once after the VPA serum level was adjusted to the therapeutic  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Analysis of SMN protein levels in nine SMA carriers treated with VPA. Protein extracts were 

prepared from PBMCs collected once before starting VPA medication and once after individual VPA 

serum levels were adapted to the therapeutic range. Western blotting was performed with β-actin serving 

as loading control. For each subject, the baseline SMN protein level is shown in the left lane and the 

corresponding SMN protein level determined under VPA treatment is presented in the right lane. Two 

bands visible for SMN result from the FL (upper band) and the ∆7 isoform (lower band). The change in FL 

protein levels is given as n-fold increase compared to baseline. 
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range. PBMCs were isolated and proteins extracted to perform western blotting since flow cytometry 

analysis could not be applied. Staining of β-actin was used to verify equal protein loading on the blot 

followed by detection of SMN in a second step. In seven subjects, VPA treatment generated clearly 

raised FL-SMN protein levels ranging from 1.8fold to 13.7fold as compared to the corresponding 

control protein sample (figure 37). In agreement with the observations on RNA level, the degree of 

augmentation did not correspond to the number of SMN2 copies present in each subject (see table 

25). With the exception of C9, all of the individuals showing increased SMN protein levels also 

revealed a rise of their FL-SMN transcript amounts under VPA treatment. In the SMA carriers C7 and 

C10, VPA therapy did not induce any change of the SMN protein level which matched the respective 

FL-SMN mRNA data. Interestingly, exclusively in C2 and C5, VPA caused a higher rise of the ∆7-SMN 

protein amount than of the FL-SMN. In contrast, neither for C5 nor for C2 a pronounced effect on 

splicing was seen on RNA level. 

 

 

4.3.6 Analysis of SMN2 mRNA levels in peripheral whole blood from patients with type I, II, 

and III SMA treated with valproic acid 

 

Because shipping of blood samples from the patients’ homes to the laboratory was necessary and a 

collection system that stabilizes proteins was not available, investigations were restricted to RNA 

analysis. Peripheral whole blood from a total number of 20 patients with SMA who were taking VPA in 

individual experimental curative approaches was used to investigate SMN2 activity in vivo. Each of the 

sample sets included two blood samples before starting VPA medication and three additional samples 

obtained after the VPA dose was adjusted to therapeutic drug serum levels. FL-SMN2 and ∆7-SMN2 

transcript levels and the corresponding FL-SMN2/∆7-SMN2 ratio were analyzed and are given in 

tables 26 to 28 and figure 38. 

Among the four patients with type III SMA, subjects P1 and P3 revealed FL-SMN2 mRNA amounts 

peaking in a 1.7fold increase upon drug therapy. The remaining two patients surprisingly presented 

decreased transcript levels as low as 0.4fold (P4) and 0.3fold (P2), respectively, compared to baseline 

(table 26 and figure 38 A). Similar results were obtained in patients with type II SMA: While 4/11 

subjects responded with a considerable elevation of FL transcript levels up to a maximum between 

1.9fold (P5 and P6) and 1.5fold (P8), in a number of five patients (P11 to P15) FL-SMN2 dropped 

down to amounts ranging between 0.7fold and 0.4fold compared to the values determined before 

medication (table 28 and figure 38 B). In P9, a fluctuation of FL-SMN2 above and below baseline level 

was determined. P10 did not appear to respond to VPA therapy. Analysis of the data obtained from 

the five patients with SMA type I revealed that subject P16 responded to the drug with an up to 1.9fold 

augmentation. FL-SMN2 levels of P17 and P18 remained unchanged, while in P19 and P20 a 

fluctuation comparable to P9 was obtained (table 27 and figure 38 C). Due to fluctuations of the values 

throughout therapy, significance was reached only in a single SMA patient, P6 (p<0.05). 

According to the observation in SMA carriers, a comparison between the seven clearly responding 

patients with SMA did not reveal a correlation between FL-SMN2 elevation and the individual number 

of SMN2 genes or the severity of the SMA phenotype (tables 26 to 28). The degree of increase in P1  
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Figure 38: FL-SMN2 transcript levels in blood obtained from 20 SMA patients treated with VPA in 

individual experimental curative approaches throughout Germany according to section 41 of the German 

Drug Act (AMG). The cohort included four type III SMA patients (A), 11 type II SMA patients (B), and five 

type I SMA patients (C). All measurements are given as mean ± SEM. For each subject, they include the 

mean baseline FL-SMN2 transcript level determined in two blood samples before drug therapy 

(normalized to 1.0, also indicated by the dotted line) and three additional values obtained throughout 

medication, shown as multiples of the baseline level. 

 

and P3 (SMA III, 3 and 4 SMN2, respectively) is in a similar range (1.5fold to 1.9fold) like in P5, P6, 

P7, P8 (SMA II, 3 SMN2), and P16 (SMA I, 2 SMN2). Furthermore, fluctuations of the VPA serum level 

throughout therapy were not always correspondingly reflected in the FL-SMN2 levels which partly 

varied, and were subject to decreases under VPA treatment. Regulation of the ∆7-SMN2 transcript 

levels in the investigated patients with SMA occurred in parallel with the FL-SMN2 levels, again 

significant only for P6 (p<0.05) (tables 26 to 28). Consequently, changes in the FL/∆7 ratio were not 

detected (tables 26 to 28). Among the responders, only in P1, P5, and P16, FL-SMN2 appeared to be 

more strongly elevated than ∆7-SMN2, resulting in a maximum increase in ratio by 1.3fold to 1.6fold 

(significant for P1, p<0.05). This indicates a weak impact of VPA on SMN2 splicing in these subjects, 

although the observed effect is rather weak. 
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Table 26: Expression of FL-SMN2, ∆7-SMN2, and FL/∆7 ratio in peripheral whole blood from four patients 

with type III SMA (P1 to P4) treated with VPA. Values are given as mean ± SEM together with the 

corresponding VPA serum level determined in the same blood sample (n.d. = not detected). The most 

extensively increased/decreased value detected for FL-SMN2, ∆7-SMN2, and the FL/∆7 ratio in the 

respective patient with SMA is indicated in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 27: Expression of FL-SMN2, ∆7-SMN2, and FL/∆7 ratio in peripheral whole blood from five patients 

with type I SMA (P16 to P20) treated with VPA. Values are given as mean ± SEM together with the 

corresponding VPA serum level determined in the same blood sample (n.d. = not detected). The most 

extensively increased/decreased value detected for FL-SMN2, ∆7-SMN2, and the FL/∆7 ratio in the 

respective patient with SMA is indicated in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMA Patient  SMN2 transcript levels and corresponding VPA serum levels 

 
P1 

SMA III 
3xSMN2 

 

 
FL-SMN2 
∆7-SMN2 

FL/∆7 ratio 
VPA (mg/l) 

 

 
1.0±0.1 
1.0±0.0 
1.0±0.1 
baseline 

 
1.1±0.0 
0.9±0.0 
1.2±0.0 

61.0 

 
1.6±0.1 
1.2±0.1 
1.3±0.0 

99.0 

 
1.7±0.0 
1.3±0.0 
1.3±0.0 

84.3 

 
P2 

SMA III 
3xSMN2 

 

 
FL-SMN2 
∆7-SMN2 

FL/∆7 ratio 
VPA (mg/l) 

 

 
1.0±0.0 
1.0±0.0 
1.0±0.0 
baseline 

 
0.7±0.0 
0.7±0.1 
1.0±0.1 

78.0 

 
0.3±0.0 
0.3±0.1 
1.0±0.3 

84.0 

 
0.5±0.0 
0.5±0.0 
1.0±0.2 

84.0 

 
P3 

SMA III 
4xSMN2 

 

 
FL-SMN2 
∆7-SMN2 

FL/∆7 ratio 
VPA (mg/l) 

 

 
1.0±0.1 
1.0±0.0 
1.0±0.1 
baseline 

 
1.7±0.1 
1.8±0.0 
0.9±0.1 

82.4 

 
1.0±0.1 
1.1±0.1 
0.9±0.0 

62.0 

 
0.9±0.1 
1.0±0.0 
0.9±0.0 

79.9 

 
P4 

SMA III 
4xSMN2 

 

 
FL-SMN2 
∆7-SMN2 

FL/∆7 ratio 
VPA (mg/l) 

 

 
1.0±0.1 
1.0±0.0 
1.0±0.0 
baseline 

 
0.9±0.1 
0.9±0.1 
1.0±0.0 

58.5 

 
0.8±0.0 
0.8±0.0 
1.0±0.1 

82.8 

 
0.4±0.0 
0.5±0.0 
0.8±0.1 

n.d. 

 

 

SMA Patient  SMN2 transcript levels and corresponding VPA serum levels 

 
P16 

SMA I 
2xSMN2 

 

 
FL-SMN2 
∆7-SMN2 

FL/∆7 ratio 
VPA (mg/l) 

 

 
1.0±0.1 
1.0±0.0 
1.0±0.1 
baseline 

 
1.4±0.0 
0.9±0.1 
1.6±0.1 

n.d. 

 
1.9±0.0 
1.4±0.0 
1.4±0.0 

79.0 

 
1.3±0.0 
1.0±0.1 
1.3±0.1 

99.0 

 
P17 

SMA I 
2xSMN2 

 

 
FL-SMN2 
∆7-SMN2 

FL/∆7 ratio 
VPA (mg/l) 

 

 
1.0±0.0 
1.0±0.0 
1.0±0.1 
baseline 

 
1.2±0.0 
1.1±0.1 
1.1±0.1 

53.0 

 
1.1±0.0 
1.0±0.1 
1.1±0.1 

38.0 

 
0.9±0.1 
0.8±0.1 
1.1±0.1 

58.0 

 
P18 

SMA I 
2xSMN2 

 

 
FL-SMN2 
∆7-SMN2 

FL/∆7 ratio 
VPA (mg/l) 

 

 
1.0±0.1 
1.0±0.1 
1.0±0.1 
baseline 

 
1.0±0.1 
1.0±0.0 
1.0±0.0 

81.3 

 
1.0±0.1 
1.0±0.0 
1.0±0.1 

72.2 

 
0.9±0.0 
0.7±0.0 
1.3±0.1 

67.6 

 
P19 

SMA I 
3xSMN2 

 

 
FL-SMN2 
∆7-SMN2 

FL/∆7 ratio 
VPA (mg/l) 

 

 
1.0±0.1 
1.0±0.0 
1.0±0.1 
baseline 

 
0.9±0.0 
1.0±0.0 
0.9±0.0 

38.0 

 
1.3±0.1 
1.2±0.0 
1.1±0.0 

99.0 

 
0.6±0.0 
0.7±0.0 
0.9±0.0 

44.0 

 
P20 

SMA I 
3xSMN2 

 

 
FL-SMN2 
∆7-SMN2 

FL/∆7 ratio 
VPA (mg/l) 

 

 
1.0±0.1 
1.0±0.1 
1.0±0.0 
baseline 

 
1.3±0.1 
1.0±0.0 
1.3±0.1 

76.2 

 
0.5±0.0 
0.6±0.0 
0.8±0.0 

n.d. 

 
0.9±0.1 
0.8±0.0 
1.1±0.1 

n.d. 
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Table 28: Expression of FL-SMN2, ∆7-SMN2, and FL/∆7 ratio in peripheral whole blood from 11 patients with type II SMA (P5 to P15) treated with 
VPA. Values are given as mean ± SEM together with the corresponding VPA serum level determined in the same blood sample (n.d. = not 
detected). The most extensively increased/decreased value detected for FL-SMN2, ∆7-SMN2, and the FL/∆7 ratio in the respective patient with 
SMA is indicated in bold. 
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5 Discussion 

 

SMN1, the disease determining gene in SMA, was identified in 1995. This provided the basis for the 

development of a fast molecular genetic diagnostic test that is available today (Lefebvre et al. 1995; 

Scheffer et al. 2001). Since the same deletion mutation is found in approximately 94% of all SMA 

cases (Wirth 2000), identification of the vast majority of patients is relatively easy, and highly reliable. 

This is one of the most important prerequisites for a successful treatment of SMA. 

Meanwhile, comprehensive knowledge regarding the pathological disease mechanisms and the 

underlying molecular principles was gained, most importantly including the discovery and 

characterization of the SMN2 copy gene. SMN2 is present at least once in each SMA patient. 

Elevating the activity of SMN2 and/or altering its splicing pattern by promoting exon 7 inclusion is 

considered a major target for a causative SMA therapy. However, up to present a cure for SMA is not 

yet available. The development of a therapy is an exceptional challenge in SMA research. 

 

 

5.1 In vitro and ex vivo investigations of the first-generation HDAC inhibitor 

valproic acid 

 

The identification of chemical compounds that inhibit HDACs was a major step toward the 

development of a therapy for SMA. Initially, HDAC inhibitors were exclusively considered as promising 

drugs for cancer. They inhibit proliferation and induce differentiation of tumor cells in vitro and in vivo. 

These activities are mainly facilitated by hyperacetylation of histone proteins which subsequently leads 

to an altered chromatin structure and activated gene expression (Cress and Seto 2000; Marks et al. 

2001; Marks et al. 2003; Marks et al. 2004). 

Importantly, the stimulation of SMN2 gene expression has been hypothesized to be of benefit for SMA 

patients. Thus, it seemed reasonable to investigate whether the potency of HDAC inhibitors is not only 

limited to the regulation of genes that are involved in cancer, but if they are also able to elevate the 

expression of the SMN2 gene. The first HDAC inhibitor which was tested in cell lines derived from 

SMA patients was butyrate, a drug that has long been known to induce hyperacetylation of chromatin 

in cell culture in vitro (Riggs et al. 1977). Incubation of EBV-transformed lymphoblastoid cell lines 

derived from SMA type I, II, and III patients resulted in increased FL-SMN2 transcript and SMN protein 

levels (Chang et al. 2001). It was demonstrated that this augmentation is due to an efficient reversion 

of the SMN2 splicing pattern and exon 7 inclusion by butyrate. Moreover, it was shown that the 

compound elevates the level of SR proteins in the treated cell lines, however, this was not studied in 

more detail. Administration of butyrate to pregnant mothers of SMA transgenic mice (Smn
-/-

; SMN2) 

improved the survival in their offspring. The authors suggested that the drug exerts its effect on SMN2 

splicing via an indirect pathway. They assumed that butyrate might hyperacetylate histones such that 

factors are released which finally regulate the alternative splicing of SMN2 exon 7. It remained unclear 

whether butyrate also directly affects SMN2 expression. A quantification of the total amount of SMN2 
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transcripts in butyrate-treated cell lines was not included in the study, leaving it open whether the 

transcription of the SMN2 gene was activated. 

This was the first study which suggested that HDAC inhibitors might be able to influence SMN2 

expression. However, butyrate is characterized by a very short terminal half-life of only six minutes in 

human serum. Thus, after systemic administration, butyrate would never reach a target in the human 

organism in sufficient amounts (Miller et al. 1987; Newmark et al. 1994; Newmark and Young 1995; 

Engelhard et al. 2001). This includes α-motor neurons in the spinal cord, although the drug would be 

able to cross the blood-brain barrier (Tsuji 2005). Consequently, butyrate is not suitable for a long-

term therapy in SMA patients and was not considered further. 

When the results obtained with butyrate were published in 2001, it was also discovered that VPA 

belongs to the class of drugs which are able to inhibit HDAC activity (Gottlicher et al. 2001; Phiel et al. 

2001). In vitro experiments with VPA revealed that the compound efficiently hyperacetylates histone 

proteins in numerous cell culture systems, relieves HDAC-dependent transcriptional repression, and 

activates the transcription from diverse promoters. Together with these findings, it was observed that 

VPA inhibits proliferation and induces differentiation in cancer cell lines. Therefore, the drug was 

suggested as candidate for the treatment of cancer. 

However, given the fact that the HDAC inhibitor butyrate was demonstrated to increase FL-SMN2 

transcript and SMN protein levels in vitro and in mice in vivo, it appeared very exciting to investigate if 

the HDAC inhibitor VPA possesses a similar potency. In addition, both compounds are short-chain 

fatty acids and therefore share similar chemical structures. This increases the probability that both 

drugs target similar classes of enzymes and trigger similar effects. Although in 2001, nothing was 

known about the HDACs which are responsible for deacetylation of histones in the SMN2 promotor 

region and butyrate and VPA do not specifically inhibit one single HDAC, the close relationship 

between the two compounds seemed very promising that they both might act on SMN2 expression. 

Importantly, VPA is a very well-known drug which is approved by the Food and Drug Administration 

(FDA) and has been used in the treatment of epilepsy for more than three decades (Johannessen and 

Johannessen 2003). Additionally, VPA is used in the therapy of bipolar disorders, neuropathic pain, 

and migraine prophylaxis (Johannessen 2000). Currently, the mechanism of action is not completely 

understood, although especially the antiepileptic effects have been related mainly to γ-aminobutyric 

acid (GABA), and the interaction of VPA with sodium and calcium channels (Johannessen 2000; 

Isoherranen et al. 2003). However, based on the finding that only some but not all antiepileptic drugs 

are able to inhibit HDACs and to hyperacetylate histones (Eyal et al. 2004), it is unlikely that the 

anticonvulsant activity of VPA is exclusively due to HDAC inhibition, whereas a partial contribution can 

not be excluded. VPA is characterized by a suitable terminal half-life of 9-18 h in human serum, it 

rarely shows severe adverse events, crosses the blood-brain-barrier, and possesses an excellent oral 

bioavailability. This makes VPA adequate for the use in humans and made the drug even more 

interesting to be investigated for a potential activity on SMN2 expression. 

To study whether VPA is able to regulate SMN2 expression, the initial experiments were carried out in 

EBV-transformed lymphoblastoid cell lines derived from SMA patients. They were used because a 

large number of different cell lines were available in our laboratory. Moreover, EBV cell lines grow very 

fast, providing enough material for experiments within a relatively short period of time, and conditions 

that are suitable for drug treatment were given already by Chang and co-workers (Chang et al. 2001). 
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However, in our hands, treatment of EBV cell lines with VPA did not reveal any regulation of the SMN 

protein level, regardless of the drug concentration, the cell number, and the incubation time. The 

results which were already published for butyrate could not be reproduced either. The reason for this 

observation remains unclear. It is known that the SMN protein interacts with the EBV nuclear antigen 

6, a viral protein which is required for the EBV-induced immortalization of primary human B-

lymphocytes in vitro (Krauer et al. 2004). This viral protein is also known to be a transcriptional 

regulator. Given the fact that the EBV-transformed cell lines used by Chang et al. and in our lab were 

not purchased from a certain company, but established in the respective lab, it is possible that the 

immortalization of the lymphocytes was performed with EBV stocks that are not completely identical. 

Any mutation or other difference related to the EBV nuclear antigen 6 (EBNA-6) could interfere with its 

interaction with the SMN protein or its function as transcriptional regulator, and result in a differential 

regulation of SMN expression. Mutations have been demonstrated already for EBNA-4 (Chu et al. 

1999). This might finally have impact on the results obtained after drug treatment of the immortalized 

cell lines. However, these are speculations and a proof cannot be given. 

As alternative tool to study whether VPA is able to influence SMN2 expression in vitro, primary 

fibroblast cultures derived from SMA patients were selected. Due to their origin, these cell lines also 

provide the genotypic background typical for SMA including homozygous loss of SMN1, and one or 

more SMN2 copies. Primary SMA fibroblasts do not grow as fast as EBV-transformed lymphoblastoid 

cell lines, but still they are relatively easy to maintain, and divide with sufficient frequency within a 

certain time period. The cells are not immortalized by a virus. 

The application of primary fibroblasts for drug treatment experiments turned out to be more successful 

than the use of EBV cell lines as the incubation with butyrate resulted in significantly increased SMN 

protein levels. Thus, the results from Chang and co-workers were confirmed and butyrate served as 

positive control to ensure that the fibroblast assay is suitable to investigate the potential impact of a 

drug on SMN2 expression. To study VPA, three different primary fibroblast cell lines were treated with 

the drug, including two cell lines from type I SMA patients with two or three SMN2 copies and one cell 

line from a type II SMA patient with three SMN2 copies. The VPA doses used for the experiments 

were 0.5, 5, 50, 500, and 1000 µM. Except for 500 and 1000 µM, all concentrations are within the 

therapeutic range common in epilepsy treatment. Therapy of epilepsy patients with VPA usually 

requires serum levels of 480-700 µM VPA (corresponding to about 70-100 µg/ml). About 15% of the 

VPA present in serum cross the blood-brain-barrier, leading to a concentration of 72-105 µM VPA 

(10.5-15 µg/ml) in brain and spinal liquor (Wieser 1991). The concentrations 0.5-50 µM VPA which 

were applied to treat primary fibroblasts with VPA correspond to 0.072-7.2 µg VPA/ml. Such 

concentrations can be reached in human liquor which surrounds the spinal cord and α-motor neurons. 

Importantly, these concentrations are even lower than the therapeutic VPA serum level, suggesting 

that they are not toxic and well tolerated. Only 500 and 1000 µM VPA are above the therapeutic 

range, which has to be considered for interpretation of the results obtained in vitro. 

In the SMA fibroblast lines incubated with VPA, it was conclusively demonstrated that the compound is 

able to significantly increase the SMN2 protein level. Compared to untreated cells, drug treatment 

resulted in a maximum increase ranging between 2.7fold and 3.3fold. The 3.3fold increase was 

observed at 500 µM VPA in ML-5, however, already at lower concentrations between 0.5 and 50 µM 

VPA, the cell line presented markedly elevated SMN protein levels. The maximum increase in ML-17 
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and ML-16 was observed at 50 µM and 5 µM VPA, respectively. Also in these two cell lines, treatment 

with 0.5 µM VPA already revealed significantly elevated SMN protein levels. Compared to the VPA 

level common in epilepsy treatment, these data clearly show that an efficient increase of the SMN 

protein level was achieved even at lower drug concentrations in each of the investigated SMA 

fibroblast lines. Based on the favorable characteristics of VPA regarding the clinical use in humans 

and the chance for a causative pharmacological treatment of SMA which arises from the possibility to 

elevate SMN2-derived protein levels, this was an exciting and very promising finding. A more than 

2fold increase of the SMN protein level which was achieved in each VPA-treated fibroblast line at 

50 µM or a lower drug concentration in vitro is assumed to be of benefit to impede the onset or the 

progression of SMA in vivo. Depending on the number of SMN2 copies, FL-SMN2 RNA levels in 

lymphoblastoid cell lines derived from SMA patients range between 20 and 50% compared to controls 

(Helmken et al. 2003). A similar degree of reduction was observed for the SMN protein level in spinal 

cord tissue when comparing SMA type I and III fetuses with control fetuses (Lefebvre et al. 1997). In 

comparison, SMA carriers with one SMN1 copy and usually 1-3 SMN2 copies produce about 60-80% 

FL-SMN RNA and protein compared to controls and therefore are asymptomatic (Feldkötter et al. 

2002). Thus, doubling of SMN2 protein in SMA patients could be enough to stop or slow down disease 

progression. However, the experiments with VPA were performed in fibroblasts although α-motor 

neurons are the affected tissue in SMA patients and therefore present the target for an up-regulation 

of the SMN2 protein level. It remains to be determined whether the observed effect can also be 

achieved in these cells and whether this would indeed be sufficient to protect the α-motor neurons 

from degeneration in SMA patients. 

A comparison of the results obtained for VPA with those obtained for butyrate revealed only marginal 

differences. Both drugs share the ability to increase SMN protein levels at concentrations as low as 

0.5 µM, and the maximum up-regulation achieved in the fibroblasts was in a similar range, suggesting 

that the potency of VPA and butyrate to increase SMN protein levels is very similar. 

Among the three human fibroblast lines treated with VPA, the maximum SMN2 protein level was 

observed at different VPA concentrations (5, 50, and 500 µM VPA, respectively). This is consistent 

with the inter-individual variability of the VPA metabolism observed among epilepsy patients during 

therapy (Cloyd 1991). After reaching the maximum, SMN protein levels dropped in ML-17 and ML-5. In 

ML-16, a second maximum was observed, before protein levels also dropped down at 1000 µM. 

However, in each of the fibroblast lines, the decrease was marginal. Compared to the respective 

untreated cells, the SMN protein level was still significantly increased. This suggested that all VPA 

doses used in the experiment were well tolerated by the cells, which was consistent with the data 

obtained from the MTT assays showing that cell viability was not significantly affected by VPA. The 

only exception was incubation of ML-5 with 1000 µM VPA which resulted in a significant decrease of 

cell viability. Although the corresponding SMN protein level in ML-5 was not severely reduced, this 

observation might indicate that treatment of the fibroblasts with 1000 µM VPA is the upper 

concentration limit which is well tolerated by the cells. This also correlates with the fact that 1000 µM 

VPA is a concentration above the therapeutic range known from epilepsy therapy. 

The three fibroblast cell lines incubated with VPA are characterized by different numbers of SMN2 

copies. One cell line carries only 2 SMN2 copies, while two cell lines have 3 SMN2 copies. However, 

an overall correlation between the number of SMN2 copies and the degree of elevated SMN protein 
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level was not observed. While such a correlation could be proposed for 0.5, 5, and 500 µM VPA, it is 

not true at 50 and 1000 µM. This indicates that a direct correlation between the SMN2 copy number 

and the percentage increase in SMN levels is either restricted to low VPA concentrations not 

exceeding 5 µM, or it rather suggests that different factors may act on SMN2 transcription and/or 

translation which vary among the drug concentrations and the cell lines. Treatment of a larger number 

of cell lines with varying SMN2 copy numbers would be required to clearify this observation. 

The expression analysis of SMN2 in primary SMA fibroblasts after treatment with VPA revealed that 

augmented SMN protein levels are caused by an increased production of FL-SMN2 transcripts. 

Nowadays, the quantification of RNA levels would be performed applying quantitative real-time PCR 

(Riessland et al. 2006), however, at the time point of investigation, this tool was not yet available in the 

laboratory. Thus, semi-quantitative multiplex PCR was carried out followed by separation of the PCR 

products on a gel and densitometric measurement of the bands. The significant elevation of FL-SMN2 

transcripts in each of the three investigated fibroblast lines was facilitated by two different processes: 

an elevated SMN2 transcription rate (proven by the augmented amount of total SMN2 transcripts), and 

a reversion of the SMN2 splicing pattern (demonstrated by elevated FL-SMN2 / ∆7-SMN2 transcript 

ratios). VPA is known to influence the expression of a large variety of genes through different 

pathways (Blaheta and Cinatl 2002). Two of these pathways are most likely responsible for the 

stimulation of SMN2 gene transcription. On the one hand, VPA is a powerful inhibitor of histone 

deacetylases and causes the accumulation of hyperacetylated histones H3 and H4 which releases 

DNA from the histone proteins. This allows access for transcription factors and activates gene 

transcription as is was demonstrated already in vitro and in vivo (Gottlicher et al. 2001; Phiel et al. 

2001). Thus, by directly increasing the acetylation status of histones in the SMN promoter region, VPA 

could increase SMN RNA expression. On the other hand, the DNA binding activity of the transcription 

factors AP1 and Sp1 has been proven to be stimulated by VPA (Wlodarczyk et al. 1996; Chen et al. 

1997; Chen et al. 1999; Arinze and Kawai 2003). Strikingly, the SMN2 promoter contains putative 

binding motifs for both proteins (Echaniz-Laguna et al. 1999; Monani et al. 1999b) which additionally 

could explain the augmented SMN2 transcription rate in SMA fibroblasts upon incubation with VPA. 

Moreover, it is well known that the activity of transcription factors can be modulated by acetylation 

which subsequently exerts and effect on gene transcription (Cress and Seto 2000; Marks et al. 2001; 

Marks et al. 2004). VPA could acetylate such a critical transcription factor involved in SMN2 

expression regulation and thereby change its activity. Since the SMN1 and the SMN2 promoter are 

essentially identical (Echaniz-Laguna et al. 1999; Monani et al. 1999b), these observations are not 

likely to be an SMN2 promoter-specific effect. 

However, the increase in FL-SMN2 transcript in VPA-treated primary fibroblasts is not purely a 

function of an activated SMN2 promoter. If this were the case, the percentage increase of FL-SMN2 

transcript levels and ∆7-SMN2 transcript levels would be equal, and the transcript ratio would remain 

unchanged. In contrast, the total amount of SMN2 transcripts (FL and ∆7) would be unaffected if a 

drug exerts an effect exclusively on exon 7 inclusion without influencing the promoter activity. 

Consequently, the data rather suggest that both mechanisms transcriptional stimulation of the SMN2 

gene and reversion of the SMN2 splicing pattern contribute to the elevated FL-SMN2 transcript levels 

observed under VPA treatment. However, due to the observation that the increase in FL / ∆7 transcript 

ratios in the three investigated SMA cell lines is only moderate and not significant in one of the 
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fibroblast lines, it can be concluded that the augmented transcriptional activity of SMN2 is the main 

mechanism that triggers elevated FL-SMN2 transcript levels, whereas the impact of VPA on exon 7 

inclusion is the secondary effect. 

The preferred inclusion of SMN2 exon 7 in VPA-treated SMA fibroblasts could be a consequence of 

elevated levels of Htra2-β1 protein. Htra2-β1 is an SR-like splicing factor. It has been demonstrated 

that in vitro over-expression leads to a reversion of the SMN2 splicing pattern and most importantly 

also to an increase of the endogenous SMN protein level (Hofmann et al. 2000; Hofmann and Wirth 

2002). Since Htra2-β1 was efficiently up-regulated by VPA in all three SMA fibroblast lines reaching 

maximum levels ranging between 2.7fold and 4.1fold, it most likely explains the achieved reversion of 

the SMN2 splicing pattern. However, a comparison of the transcript ratio and the corresponding Htra2-

β1 level at each single VPA dose did not reveal a clear correlation between the two parameters. 

Although the level of Htra2-β1 protein was increased whenever the corresponding FL / ∆7 ratio was 

found elevated, the maximum for each parameter was observed at different VPA concentrations in 

ML-16 and ML-5. Such a correlation was obtained only for ML-17. Moreover, increased Htra2-β1 

levels did not always trigger an augmented transcript ratio, as demonstrated at 1000 µM VPA in ML-17 

(transcript ratio unchanged, Htra2-β1 level increased up to 2.2fold). This suggests that Htra2-β1 might 

not be the only critical factor which exerts an effect on the SMN2 splicing pattern in VPA-treated 

fibroblasts. It is possible that another yet unknown SR or SR-like protein is regulated by VPA and 

additionally interferes with exon 7 inclusion. However, the splicing factors SF2/ASF and SRp20 which 

were investigated together with Htra2-β1 and found elevated under VPA treatment are most likely not 

responsible for this observation. While SF2/ASF binds to SMN1 RNA and facilitates the correct 

splicing, the C to T transition in exon 7 abolishes the ability of SF2/ASF to bind SMN2 RNA (Cartegni 

and Krainer 2002). For SRp20, only an effect on its own splicing has been shown so far (Jumaa and 

Nielsen 1997); other genes regulated by SRp20 are yet unknown. 

Another observation which could explain the absence of a clear correlation between the elevation of 

Htra2-β1 protein levels and the increased FL / ∆7 transcript ratio is the high variation of the splicing 

factor levels obtained in different cell passages from a particular fibroblast line under VPA treatment. 

The variability of up-regulated Htra2-β1 levels is demonstrated by the high SEM values at each single 

VPA concentration. Since separate experiments had to be performed to isolate RNA (for SMN2 

expression analysis) and to isolate protein (for an analysis of Htra2-β1 protein levels), it can not be 

excluded that due to the highly variable up-regulation of Htra2-β1 in different fibroblast passages the 

data for Htra2-β1 do not exactly reflect the Htra2-β1 level in the passages which were used to isolate 

RNA and to analyze the transcript ratio. 

To approach the correlation between Htra2-β1 and the SMN2 splicing pattern under VPA treatment in 

more detail, a procedure was established which allowed knocking down Htra2-β1 protein levels in 

VPA-treated fibroblasts. This experiment could give the final proof whether the increase in FL-SMN2 / 

∆7-SMN2 transcript ratios in VPA-treated SMA cell lines is indeed triggered by elevated Htra2-β1 

levels. If this were the case, an efficient and specific knock-down of Htra2-β1 should prevent any 

increase of the transcript ratio. However, the experiment failed. Using the conditions required to knock 

down Htra2-β1, VPA was unable to stimulate fibroblasts. This was due to the fact that both assays use 

different cell numbers to work properly (the siRNA assay required 1 x 10
5
 cells, and the VPA assay in 

fibroblasts required the double amount of cells). It was not possible to use the VPA assay with 2 x 10
5
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cells to knock down Htra2-β1, because this was too large-scale for a siRNA experiment. Thus, a final 

conclusion regarding the correlation between elevated Htra2-β1 and increased SMN2 transcript ratios 

could not be drawn, because the Htra2-β1 knock-down and the stimulation of fibroblasts with VPA 

could not be simultaneously achieved in the SMA fibroblasts. 

Interestingly, an efficient knock down of Htra2-β1 protein levels by more than 90% in primary SMA 

fibroblasts which are not treated with VPA revealed a moderate increase of the FL-SMN2 / ∆7-SMN2 

transcript ratio. In addition, slightly increased FL-SMN2 transcript levels were observed, while ∆7-

SMN2 levels remained unchanged, suggesting that the amount of total SMN2 transcripts and the 

SMN2 transcription rate was increased. To a lower degree, the latter result was also obtained in the 

negative control, indicating that increased transcriptional activity might also be an unspecific effect due 

to siRNA delivery to the cells. The finding of a slightly increased transcript ratio upon knock down of 

Htra2-β1 protein levels was very unexpected. Given that Htra2-β1 binds to a specific motif in SMN2 

exon 7 and over-expression of Htra2-β1 efficiently promotes exon 7 inclusion and facilitates a 

reversion of the SMN2 splicing pattern (Hofmann et al. 2000), it seems reasonable to assume that the 

splicing factor Htra2-β1 is responsible for the low amount of ~10-20% FL-SMN2 transcript produced by 

the SMN2 gene. Thus, the lack of Htra2-β1 should further promote exon 7 skipping and result in a 

substantial decrease of the FL-SMN2 / ∆7-SMN2 transcript ratio. However, this was not the case, 

suggesting that either the very low amount of remaining Htra2-β1 is still sufficient to maintain the 

generation of FL-SMN2 transcripts, or mainly other splicing factors are responsible for the ~10-20% of 

FL-SMN2 transcripts produced by SMN2. Moreover, both scenarios do not explain the slight increase 

of the transcript ratio. Further experiments in other cell lines are necessary to confirm this observation, 

and to further elucidate the splicing regulation of the SMN2 gene. 

A comparison of the data for elevated FL-SMN2 transcript levels with the corresponding data for 

elevated SMN protein levels revealed that the degree of up-regulation is different in each of the SMA 

cell lines treated with VPA. In two cell lines, FL-SMN2 transcript levels were increased up to a 

maximum of ~2fold, whereas the corresponding SMN protein level peaked in a roughly 3fold elevation. 

The third fibroblast line presented ~5fold augmented FL-SMN2 levels versus a ~3fold increase in SMN 

protein. Additionally, for each fibroblast line, there was a discrepancy between the VPA concentrations 

required for the maximum FL-SMN2 RNA level and the maximum SMN protein level. This suggests 

that VPA differently stimulates transcription and translation of SMN2, and that the drug might also 

interfere with protein stability. Consistent with this observation, a modulated transcription of genes 

encoding translation factors has already been described for the HDAC inhibitors butyrate and 

trichostatin A (Goncalves et al. 2005). Furthermore, recent experiments demonstrated that both 

substances may enhance protein stability such that levels increase without any change of the 

transcriptional activity of the encoding gene (Chen and Faller 2005), giving rise to the assumption that 

VPA might act in a similar manner. 

It was clearly demonstrated that various SR and SR-like splicing factors (including SF2/ASF, SRp20, 

and Htra2-β1) are up-regulated by VPA in SMA fibroblasts. Similar effects were achieved with 

butyrate. The latter finding is consistent with the observation of increased SR proteins in EBV-

transformed lymphoblastoid cell lines treated with the drug (Chang et al. 2001). However, SRp20 was 

found unregulated in the EBV cell lines. This is in contrast to the findings in primary fibroblasts and 

might be due to a differential regulation of the expression of this protein in different cell lines. For the 
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increased levels of splicing factors, several explanations can be given. (i) The expression of the 

splicing factors is activated through inhibition of HDACs by VPA which causes histone 

hyperacetylation and results in elevated gene transcription. (ii) Transcription factor Sp1 binding motifs 

are also present in the promoter of Htra2-β1 (Nayler et al. 1998). Thus, increased DNA binding activity 

of Sp1 under VPA treatment may lead to an increase in Htra2-β1 expression. (iii) Another yet unknown 

transcription factor might be acetylated by VPA, leading to a modulation of its activity on the SMN2 

promoter (Cress and Seto 2000; Marks et al. 2001; Marks et al. 2004). (iv) It has been demonstrated 

that SMN regulates its own splicing factor Htra2-β1 such that reduced levels of SMN protein lead to 

reduced levels of Htra2-β1 but not of other splicing factors, although no protein-protein interaction 

between SMN and Htra2-β1 occurs (Helmken et al. 2003). One plausible explanation would be that 

the increase of target transcripts, in this case SMN2 pre-mRNA, triggers the demand for splicing 

factors in order to guarantee correct pre-mRNA splicing (Misteli et al. 1997). (v) The altered activity of 

roughly 2% of the expressed genes observed after VPA treatment (Pazin and Kadonaga 1997) leads 

to increased levels of a large number of different transcripts in general which requires an elevated 

level of various splicing factors. (vi) A common pathway (e.g. activation of a kinase or phosphorylation 

of SR-domains) may be responsible for an elevation of splicing factors containing an SR-domain. The 

exact mechanism of action remains to be elucidated. In the SMA cell lines treated with VPA, it was 

shown that the level of Htra2-β1 and Htra2-β2 transcripts is elevated under drug treatment. This leads 

to the conclusion that the expression of the encoding SFRS10 gene is activated by VPA, which is the 

trigger for increased Htra2-β1 protein levels. However, to elucidate the pathway responsible for 

transcriptional activation of SFRS10, to investigate the mechanism by which SRp20 and SF2/ASF 

protein levels are increased, and to check whether even several of the above mentioned possibilities 

contribute to the augmented splicing factor levels, further experiments are required. The finding that 

VPA is able to increase the level of various splicing factors opens the perspective that this drug may 

also have therapeutic implications for diseases other than SMA which are caused by a pathological 

splicing pattern. 

The variability of elevated splicing factor levels obtained upon treatment of different passages from 

each SMA fibroblast line with a particular VPA concentration was also observed in the experiments 

with butyrate. Recently, similar results were presented for M344, another HDAC inhibitor (Riessland et 

al. 2006). This suggests that the variability is either triggered by a pathway specific of substances 

which belong to the class of HDAC inhibitors, or by the fact that the constant expression of splicing 

factors is very vulnerable to a critical parameter. It has been demonstrated that splicing is regulated by 

stress (Shin et al. 2004; Meshorer et al. 2005; Marin-Vinader et al. 2006). This is also true for 

fibroblasts, as demonstrated by the failure to detect Htra2-β1 protein after electroporation treatment of 

the cells. Thus, even if the viability of the cells was shown to be unaffected in the MTT assays, it is still 

conceivable that treatment of fibroblasts with drugs is a stress factor which causes variability in the 

expression and a variable up-regulation of splicing factor levels. However, this remains speculation. 

Remarkably, as already discussed above, the transcription of approximately 2% of expressed genes is 

regulated by histone acetylation and deacetylation (Van Lint et al. 1996; Pazin and Kadonaga 1997). 

Consequently, the same number of genes is estimated to show altered activity induced by the class of 

HDAC inhibitors (Pazin and Kadonaga 1997; Butler et al. 2002; Glaser et al. 2003). Thus, the effect 

VPA and other HDAC inhibitors exert on the SMN2 gene is rather unspecific. Exemplarily, this is 
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confirmed by the transcriptional activation of the SFRS10 gene in VPA-treated fibroblasts. However, 

although the expression of a large number of genes is regulated by VPA, the observed severe 

adverse events observed in long-term therapies are rare (Johannessen 2000). 

The results obtained for the treatment of SMA fibroblast lines with VPA were confirmed by Sumner 

and colleagues in 2003 (Sumner et al. 2003). A number of four fibroblast lines derived from SMA type 

I patients (two with 1 SMN2 copy and two with 2 SMN2 copies, respectively) were used and treated 

with the drug. Significantly increased FL-SMN2 transcript and SMN protein levels were obtained in all 

cell lines 24 h after single drug treatment and after three days of daily drug treatment. The 

simultaneous measurement of FL-SMN2 and ∆7-SMN2 transcripts in one cell line applying 

quantitative real-time PCR revealed that both transcripts are increased, but the extent of increase in 

FL transcripts was greater and the SMN2 transcript ratio was found to be augmented. This matches 

the results obtained in our laboratory, although Sumner and co-workers used VPA concentrations 

between 1 and 10 µM which is above the therapeutic range common in epilepsy therapy. Additionally, 

after a 5-day incubation with daily VPA doses, the number of gems in the nucleus was demonstrated 

to be increased in all patient cell lines. By a β-lactamase assay in NSC34 cells (neuroblastoma spinal 

cord cell line derived from mouse) transfected with an SMN2 promoter-β-lactamase reporter gene 

vector, Sumner et al. also demonstrated that VPA indeed activates the SMN2 promoter at doses 

starting at 10 µM. This is consistent with the idea that VPA activates SMN2 transcription via the 

inhibition of HDACs and hyperacetylation of histones. 

Meanwhile, it was also demonstrated by chromatin immunoprecipitation that rather low levels of the 

enzyme HDAC 1 and high levels of HDAC 2, but not HDACs 3, 4, or 5 are associated with the human 

SMN gene promoter (Kernochan et al. 2005). This suggests that HDAC 1 and in particular HDAC 2 

play an important role in transcriptional regulation of SMN. The development of drugs that specifically 

inhibit HDAC 2 is therefore a future goal in SMA research. Moreover, it was clearly proven that the 

HDAC inhibitors VPA and SAHA indeed activate the SMN2 promoter in human fibroblasts via an 

increase of histone H3 and H4 acetylation levels at the SMN gene (Kernochan et al. 2005). 

Unexpectedly, the greatest increase in acetylation was observed in different regions than those which 

are associated with HDAC 1 and HDAC 2. This implies that VPA and SAHA have only minimal impact 

on HDAC 1 and HDAC 2 and mainly act on other HDAC enzymes, although this would be in contrast 

to the efficient inhibition of HDAC 1 by VPA which was demonstrated earlier (Phiel et al. 2001). 

However, another suggestion is that the drugs modulate the activity of a transcription factor by 

acetylation. The transcription factor could subsequently recruit a histone acetyltransferase (HAT) 

which finally hyperacetylates histones H3 and H4 at the SMN2 promoter. 

Another interesting finding was that VPA, in addition to inhibiting the activity of class I HDAC enzymes, 

selectively induces proteasomal degradation of HDAC 2, thereby reducing HDAC 2 protein levels 

(Kramer et al. 2003). VPA induces expression of the Ubc8 E2 ubiquitin conjugase which increases the 

degradation rate for HDAC 2 at the proteasome. Again, this is inconsistent with the observation that 

the region in the SMN2 promoter which binds HDAC 2 does not show a substantial change in histone 

acetylation upon VPA treatment (Kernochan et al. 2005), but the use of different cell culture systems 

may be a reasonable explanation to explain the discrepancies. However, the up-regulated expression 

of the Ubc E2 ubiquitin conjugase under VPA treatment underscores the fact that VPA has impact on 

the activity of a large number of genes. 
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Since the results obtained with VPA in SMA fibroblasts in vitro were very promising, the drug was 

considered for further investigations to gain additional knowledge how suitable VPA is for a potential 

SMA therapy. SMA is caused by degeneration of the α-motor neurons in the spinal cord. 

Consequently, to reach its therapeutic target, any drug must be able to cross the blood-brain-barrier. It 

is well known that VPA fulfills this requirement and about 15% of the VPA present in serum reach the 

brain and spinal liquor (Wieser 1991; Johannessen 2000). Additionally, VPA must be able to stimulate 

SMN protein expression in neuronal cells. However, further in vitro experiments with the drug in motor 

neuron cultures were not performed because primary human motor neuron cultures that are suitable 

for drug treatment experiments are not available, and primary motor neuron cultures derived from 

SMA mice have been described (Rossoll et al. 2003) but are too fragile and would not provide enough 

material for western blotting (personal communication S. Jablonka and M. Sendtner). An extremely 

potent ex vivo drug screening and drug validation tool available for CNS disorders is the use of 

organotypic hippocampal slice cultures (OHSCs) from rat (Stoppini et al. 1991; Savaskan et al. 2000). 

The treatment of OHSCs from early postnatal rats resulted in a significant increase of rSmn transcript 

and rSmn protein levels. Compared to the data from human fibroblasts, the degree of up-regulation 

appeared to be slightly lower. However, in contrast to humans, rodents carry one rSmn gene only 

which is not subject to alternative splicing. Thus, the observed effect was solely triggered by 

transcriptional activation of the rSmn gene and splicing did not contribute to the augmentation in rSmn 

protein. To explain the activation of the rSmn gene by VPA, the same mechanisms which were 

discussed for primary fibroblasts have to be taken into account. This includes the hyperacetylation of 

histones through inhibition of HDACs which are extremely conserved enzymes (Gregoretti et al. 2004) 

and thus can be inhibited by one and the same drug in different mammalian species. Also, the activity 

of a transcription factor might be modulated by acetylation. Moreover, in accordance with the human 

SMN promoter, the rat Smn promoter containes several putative AP1 and Sp1 binding sites, such that 

the increased DNA binding activity of AP1 and Sp1 transcription factors under VPA treatment is 

another possible pathway. The VPA concentration required to achieve the described augmentation of 

rSmn transcripts and rSmn protein was much higher than the drug concentration used to treat 

fibroblasts. This is due to the extremely different terminal half-lives of VPA in different species 

(humans: 9-18 h versus rats: 2-5 h) (Johannessen 2000; McCabe 2000; Sands et al. 2000). 

A recent investigation further strengthened the data obtained for VPA in rat OHSCs (Hahnen et al. 

2006). After drug administration, the cytotoxicity risk was investigated by measuring the propidium 

iodide (PI) uptake. The incubation of rat OHSCs with 2 mM VPA for 48 h did not show increased PI 

incorporation, suggesting that the drug was well tolerated by the neuronal tissue. Furthermore, two 

novel models were applied to validate the activity of VPA. It was demonstrated in motor neuron-

enriched cell cultures isolated from rat embryos (Haastert et al. 2005), that 2.6 mM and 6.8 mM VPA 

increased rSmn protein levels up to 3fold (Hahnen et al. 2006). In human OHSCs which were obtained 

after surgery from epilepsy patients, 2 mM VPA significantly increased the SMN protein level up to 

2fold. The drug concentration in the latter experiment was by far above the therapeutic range, 

however, recently it has been demonstrated that a lower VPA concentration of 0.2 mM is enough to 

significantly up-regulate the SMN protein level by more than 40% in human OHSCs (Hauke 2006). 

These data clearly imply that VPA has the potential to increase SMN protein levels also in human 

neuronal tissue. 
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Taken together, the findings from the in vitro and ex vivo experiments with VPA suggested that the 

drug is well tolerated in all tested systems, and is able to efficiently increase the SMN / rSmn protein 

level in SMA fibroblasts and OHSCs derived from rats. In humans, VPA mediates its effect via two 

pathways, including a transcriptional activation of the SMN gene and a reversion of the SMN2 splicing 

pattern. These findings were very promising and opened a first realistic possibility for a causative 

pharmacological treatment of SMA. In the field of human genetics, this would be the first example for a 

therapy of a monogenic inherited disease by activation of a copy gene through drugs. 

 

 

5.2 In vitro investigations of the second-generation HDAC inhibitors SAHA and MS-

275 

 

To identify further compounds which have the potency to stimulate SMN2 expression and therefore 

are candidates for a potential SMA therapy, two other HDAC inhibitors, SAHA and MS-275, were 

tested in vitro. The design of new substances evolved from the exciting discovery of the correlation 

between HDAC inhibition and anticancer activity. Additionally, promising in vitro results obtained with 

the first-class HDAC inhibitors (e.g. sodium butyrate, VPA, and phenylbutyrate) in numerous cancer 

cell lines and the knowledge about critical structural elements which are required by compounds to 

bind to the catalytic center of HDAC enzymes further moved the field into a new phase of 

development. Up to present, the second generation HDAC inhibitors are by far not as well studied as 

VPA. However, in contrast to VPA and butyrate, SAHA and MS-275 need only low micromolar 

amounts to inhibit HDACs and therefore are much more potent (Richon et al. 1996; Richon et al. 1998; 

Saito et al. 1999; Prakash et al. 2001; Marks et al. 2004). Although the finding that VPA increases 

SMN protein levels in vitro and ex vivo is promising, the clinical potential to increase muscle strength 

in SMA patients awaits confirmation. Moreover, it is possible that unexpected adverse events will be 

observed in such a fragile population like SMA patients, and it is conceivable that not all patients 

respond to the drug in a similar manner. Therefore, drug screening projects aiming at the identification 

of further promising compounds for a potential SMA therapy are crucial. 

The treatment of SMA fibroblasts derived from a type I and a type II SMA patient with SAHA resulted 

in a significant increase in SMN protein. Levels peaked in a 2.4fold (ML-5) to 3.0fold (ML-16) elevation 

which is a very similar degree of up-regulation like observed for VPA. In ML-16, the maximum effect 

was achieved at SAHA concentrations of 5 µM. Interestingly, this is no difference to the treatment of 

fibroblasts with VPA where SMN levels peaked in a 3.1fold elevation at 5 µM. In ML-5, the 2.4fold 

elevated SMN level was obtained at 1 µM SAHA. In contrast, 500 µM VPA were required to achieve 

the maximum SMN increase of 3.3fold. However, treatment of ML-5 with 0.5 and 5 µM VPA, 

respectively, revealed a 2.3fold to 2.7fold increase in SMN protein which equals the effect observed 

after incubation of the cells with SAHA. These data suggest that at least in SMA fibroblast cultures 

similar amounts of the first-generation HDAC inhibitor VPA and of the second-generation HDAC 

inhibitor SAHA are required to trigger a similar maximum degree of SMN elevation. Only the results for 

0.05 µM SAHA suggested that the drug is more potent than VPA because an effect on SMN2 can be 

seen already at lower drug concentrations. At 0.05 µM SAHA, a 1.9fold to 1.7fold increase in SMN 

protein levels was observed. This is approximately in the range that was achieved with the 10fold VPA 
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concentration of 0.5 µM, however, it was not the maximum up-regulation, and a concentration of 0.05 

µM VPA was not investigated such that the outcome of this experiment remains open. 

The treatment of fibroblasts with SAHA concentrations higher than 10 µM would most likely not lead to 

a more pronounced effect on the SMN level. Whereas ML-16 revealed the same up-regulation at 5 

and 10 µM SAHA, SMN protein levels appeared to decrease in ML-5 after peaking in the maximum at 

1 µM SAHA, implying that the optimal drug concentration for stimulation of the cells was exceeded. 

Similar to the data obtained for VPA, the maximum SMN protein level in the two cell lines incubated 

with SAHA was observed at different drug concentrations, indicating that the drug is differently 

metabolized by the cell lines. As demonstrated in an MTT assay, the drug was well tolerated by the 

cells as the viability of the fibroblasts was not affected by any of the SAHA concentrations applied. 

It remains to be elucidated whether the concentrations of SAHA which were used in the fibroblast 

assay are within the therapeutic range which has to be maintained in humans to achieve a sufficient 

drug concentration in the CNS. After intravenous administration of SAHA to humans, it was 

demonstrated that histones are hyperacetylated in PBMCs at plasma levels exceeding 2.5 µM (Kelly 

2003). Lower concentrations were not tested. Moreover, it is still unclear whether and to which extent 

the drug is able to cross the blood-brain-barrier in humans, although earlier studies in rodents 

demonstrated an accumulation of acetylated histones in brain tissue following oral SAHA 

administration (Hockly et al. 2003). 

Given the fact that both compounds VPA and SAHA are HDAC inhibitors, and based on the results 

obtained for VPA, it was hypothesized that increased SMN protein levels under SAHA treatment are 

triggered by the same pathways. Indeed, SMN2 RNA analysis revealed a significant up-regulation of 

FL-SMN2 transcript levels after incubation with the drug which explains the augmented generation of 

SMN protein. Similar to VPA, SAHA activated the transcription of the SMN2 gene, as clearly 

demonstrated by augmented amounts of both transcripts FL-SMN2 and ∆7-SMN2. This was confirmed 

by the increased amount of total SMN2 transcripts (FL-SMN2 and ∆7-SMN2) measured under SAHA 

treatment. As discussed earlier, transcriptional activation of SMN2 can be explained by the inhibition 

of HDACs and subsequent histone hyperacetylation, together with the possibility of an altered activity 

of a yet unknown transcription factor by acetylation. Moreover, it was demonstrated that Sp1 and Sp3 

proteins can mediate SAHA-induced gene activation (Huang et al. 2000) 

Together with the stimulation of SMN2 expression, SAHA exerted a slight effect on the SMN2 splicing 

pattern in SMA fibroblasts treated with 5 and 10 µM of the drug. Again, this correlates with the data for 

VPA and suggests that both mechanisms transcriptional activation and reversion of the splicing 

pattern act in concert to increase FL-SMN2 transcript levels. However, the stimulation of SMN2 activity 

appeared to be the main trigger, while preferential SMN2 exon 7 inclusion was the minor effect and 

not seen at all drug concentrations. Summarizing the data collected for HDAC inhibitors so far, it 

seems like all of the compounds which have been demonstrated to increase the SMN protein level in 

vitro act via transcriptional activation of SMN2 and a reversion of the SMN2 splicing pattern. In 

addition to VPA and SAHA, this was also seen for the treatment of SMA fibroblasts with the second 

generation HDAC inhibitor M344 (Riessland et al. 2006), but even with a more substantially 

augmented FL-SMN2 / ∆7-SMN2 transcript ratio. Furthermore, an extensive promotion of SMN2 exon 

7 inclusion was shown for butyrate in SMA EBV-transformed cell lines, although a potential impact of 

the drug on SMN2 transcription was not investigated (Chang et al. 2001). Thus, it can be concluded 
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that HDAC inhibitors with impact on SMN2 share similar mechanisms of action to trigger an increase 

in SMN protein, but there are differences between the drugs to which degree the two single pathways 

contribute to the final outcome. The differences might result from the unspecific regulation of a number 

of genes by HDAC inhibitors (Van Lint et al. 1996; Pazin and Kadonaga 1997). It is known that the 

various drugs do not regulate exactly the same pattern of genes (Pazin and Kadonaga 1997; Butler et 

al. 2002; Glaser et al. 2003) which most likely includes a different impact on the expression regulation 

of SR and SR-like proteins. Assuming that not all of the splicing factors which are involved in 

inclusion/skipping of SMN2 exon 7 are known up to present, it is possible that in addition to Htra2-β1 

other splicing factors are regulated by some of the drugs, leading to a different impact of each 

compound on exon 7 inclusion. However, this remains speculation for now. 

Similar to earlier observations with VPA, treatment of fibroblasts with SAHA also resulted in a different 

degree of elevated FL-SMN2 transcript and elevated SMN protein. Moreover, the respective maximum 

was measured at different SAHA concentrations. While FL-SMN2 transcript levels in ML-16 were 

increased up to 1.9fold at 10 µM SAHA, SMN levels peaked at 5 µM and were augmented 3fold. At 

10 µM, SAHA still increased SMN levels approximately 3fold, however, there is a discrepancy 

between RNA and protein levels. Additionally, this is in contrast to the treatment of ML-16 with VPA 

which revealed a higher increase in transcripts than in protein. This can be interpreted as another hint 

for a different regulation of transcription and translation by HDAC inhibitors, in particular VPA and 

SAHA. Differences between the two drugs might occur because they regulate different gene patterns. 

The exact mechanism for this observation still has to be elucidated and requires further experiments. 

The regulation of Htra2-β1 is another characteristic which butyrate, VPA, and SAHA have in common. 

The treatment of SMA fibroblast line ML-16 with SAHA revealed a maximum of 3.5fold elevated Htra2-

β1 protein levels at a concentration as low as 0.05 µM. Compared to treatment of ML-16 with VPA, 

this effect was achieved with much lower drug amounts. An up-regulation of Htra2-β1 was also seen in 

ML-5 with a maximum at 5 µM SAHA, although the differences between the results obtained from 

different passages of ML-5 did not allow to reach significance. Again, increased Htra2-β1 levels and 

the reversion of the SMN2 splicing pattern were observed at the same SAHA concentrations. This 

further argues for the correlation between both parameters. On the other hand, Htra2-β1 was also 

elevated at SAHA concentrations which did not lead to a preferred SMN2 exon 7 inclusion, leaving it 

open whether additional factors with impact on the SMN2 splicing pattern are regulated by the drug. 

Taken together, the in vitro results for SAHA in primary SMA fibroblasts clearly demonstrated that the 

drug efficiently increases SMN protein levels and therefore is another promising candidate for SMA 

therapy. Recently, it was shown that SAHA elevates the rSmn protein level in OHSCs (Hahnen et al. 

2006). The same tool was used to prove that the compound is not cytotoxic for neuronal tissue. 

Importantly, the treatment of three human OHSCs obtained from epilepsy surgery revealed that SAHA 

did not alter SMN protein levels in one of the OHSCs, but 32 µM and 64 µM SAHA significantly 

increased the SMN protein level between 1.6fold and 2.1fold in the OHSCs from the two other 

individuals. This underscores that SAHA is an HDAC inhibitor which has to be further considered for 

SMA therapy. However, the present knowledge about adverse events, pharmacokinetics, toxicity, and 

bioavailability in humans is still sparse, although early clinical trials in a small number of probands has 

demonstrated good bioavailability, in vivo biological activity to inhibit HDACs and hyperacetylate 

histones, low toxicity and antitumor activity in solid and hematological tumors (Kelly et al. 2003). 
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Phase II clinical trials in patients with cancer are ongoing (Marks et al. 2004). Profound data in a large 

number of subjects are required to further validate the suitability of SAHA for the use in humans.  

The treatment of SMA fibroblasts with the benzamide MS-275, another second-generation HDAC 

inhibitor, revealed that the drug is not a candidate for a potential SMA therapy. Although the 

compound was well tolerated by the cells as demonstrated by an MTT assay, MS-275 failed to 

efficiently increase the SMN protein level. The maximum up-regulation observed was 1.4fold. 

Compared to butyrate, VPA, and SAHA, this is only a minimal effect on SMN levels and demonstrated 

that the drug will not have a chance to move forward to SMA clinical trials. The concentrations used to 

treat SMA cells ranged between 0.05 and 5 µM MS-275. It is unlikely that these amounts were too low 

and higher concentrations would elevate the SMN protein level, because a slight but significant 

decrease below the level of untreated cells was already seen at 5 µM. This was confirmed by 

significantly down-regulated FL-SMN2 transcript levels at the same drug concentration. 

On RNA level, the FL-SMN2 transcript levels were found decreased under MS-275 treatment. In 

contrast, the ∆7-SMN2 transcript was either unchanged or slightly increased, and an analysis of the 

amount of total SMN2 transcripts revealed either no change or a moderate decrease. Due to the lack 

of a clear tendency and a lack of significance for these observations at any MS-275 concentrations, a 

clear conclusion regarding the impact of MS-275 on SMN2 transcription could not be drawn. 

Moreover, this observation is in contrast to the marginal elevation in SMN protein, however, both 

effects are minimal and it remains open whether this is indeed due to a differential impact of MS-275 

on transcription and translation.  

Interestingly, the FL-SMN2 / ∆7-SMN2 transcript ratio appeared to decrease with increasing 

concentrations of MS-275. This is moderate and not significant either, but a clear tendency was seen. 

Again, the lowest ratio was determined at 5 µM MS-275. Surprisingly, the levels of Htra2-β1 protein 

decreased in SMA fibroblast line ML-16 incubated with MS-275 which was most pronounced and 

significant at 5 µM VPA. This could imply that decreasing Htra2-β1 protein levels lead to an increase in 

SMN2 exon 7 skipping which may be the reason for decreased FL-SMN2 transcript levels, augmented 

∆7-SMN2 transcript levels, and the decrease of the transcript ratio. However, this is in contrast the 

results obtained from the knock-down of Htra2-β1 by the means of siRNA in the same cell line which 

rather suggested that decreased Htra2-β1 protein levels do not promote SMN2 exon 7 skipping and a 

decrease in SMN2 transcript ratio. Further experiments, in particular additional siRNA studies, are 

necessary to clarify these contradictory observations. 

Recent studies investigated MS-275 using rat OHSCs and the F98 rat glioma cell line (Hahnen et al. 

2006). The experiments revealed that MS-275 is not cytotoxic in OHSCs and therefore well tolerated 

by neuronal rat tissue, however, an increase of rSmn transcript levels was neither measured after 

treatment of rat OHSCs with 4 µM MS-275, nor after incubation of F98 cells with 4 µM of the drug, 

which confirms the data obtained in SMA fibroblasts. 

The comparison of VPA, butyrate, SAHA, and MS-275 underscores once more that different sets of 

genes are regulated by different HDAC inhibitors. Whereas the first three drugs increase SMN 

expression, MS-275 is unable to do so. Similar observations were made for the regulation of Htra2-β1. 

This can be explained by a slightly different specificity of the drugs for a subset of HDAC enzymes. 

Among the three classes of HDACs, only class I (HDACs 1-3, 8) and class II (4-7, 9-11) enzymes are 

susceptible to HDAC inhibitors (Marks et al. 2004). Both enzyme classes have been shown to be 
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generally expressed in all tissues examined (de Ruijter et al. 2003). It has been reported earlier that at 

least in part VPA is able to distinguish between HDAC enzymes and is more selective for class I 

HDACs (Gottlicher et al. 2001). This is consistent with the finding that VPA only partially inhibits the 

activity of an HDAC enzyme mix isolated from rat liver (Hahnen et al. 2006). In contrast, SAHA almost 

completely diminished HDAC activity in the same assay, suggesting that the drug is not specific for a 

subset of enzymes and acts on both class I and class II HDACs. This was also reported by others 

(Richon et al. 1998). MS-275 was demonstrated to inhibit the activity of an HDAC mix isolated from rat 

liver even less than VPA (Hahnen et al. 2006) which indicates pronounced isoenzyme specificity of the 

drug. Additionally, MS-275 has been shown to have a considerably higher inhibitory activity against 

HDAC 1 than HDAC 3 (Hu et al. 2003) and an approximately 40,000fold higher inhibitory activity 

against HDAC 1 than HDAC 8 (Hu et al. 2003; Miller et al. 2003). Thus, it becomes clear that the 

investigated drugs differ in their ability to inhibit certain subsets of HDAC enzymes. Since not all of the 

HDACs are associated with each gene promoter, but only a specific combination of enzymes is 

involved in the deacetylation of histones in a certain promoter region, this explains why some drugs 

are able to increase the expression of a particular gene, and others are not. Based on the findings that 

(i) MS-275 is a potent inhibitor of HDAC 1 at submicromolar doses (Hu et al. 2003), (ii) MS-275 is not 

able to increase SMN2 / rSmn expression levels, and (iii) a clear association between mouse Smn 

/SMN2 gene promoters and low levels of HDAC 1 has been shown (Kernochan et al. 2005), it can be 

hypothesized that HDAC 1 does not serve as major target for epigenetic SMA therapy which is 

important for the future design of isoenzyme-specific drugs for SMA therapy.  

 

 

5.3 In vivo effect of valproic acid on SMN gene expression in SMA carriers and 

SMA patients 

 

Given the exciting and promising finding that HDAC inhibitors such as butyrate, VPA, and SAHA are 

able to increase SMN protein levels in SMA cell lines in vitro and in neuronal tissue ex vivo, SMA 

emerges as a very particular example in the field of human genetics providing the therapeutic 

opportunity of activating a copy gene through pharmacologic drug-based pathways. The features that 

make SMA a unique therapeutic disease model include: (i) Approximately 94% of all patients with 

SMA show the same mutation which can be easily identified by simple molecular genetic testing. (ii) 

Although SMN1 is homozygously deleted in patients with SMA, a copy gene (SMN2) is present in all 

patients producing minor amounts of a protein completely identical to SMN1. (iii) Several drugs have 

the potential to significantly elevate the FL-SMN2 mRNA/protein level. (iv) In particular VPA is a well-

known drug approved by the FDA for the treatment of epilepsy and several other diseases. The drug 

is clinically well experienced, characterized by favorable pharmacological properties, and rarely shows 

severe adverse events in long-term therapy of epilepsy patients except for teratogenic effects during 

the first trimenon of pregnancy (Lindhout and Omtzigt 1992; Johannessen and Johannessen 2003). 

This makes VPA available for a straightforward application to humans. The treatment of mice with 

VPA to investigate drug safety is not required anymore. Additionally, in mice it may be difficult to 

evaluate the in vivo efficacy of VPA to increase SMN levels, because VPA pharmacokinetics in the 

mouse is considerably different compared with humans. Although it has been demonstrated that 
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global histone acetylation is altered after subcutaneous administration of 150 mg VPA to mice 

(Tremolizzo et al. 2002), this effect is short-lived. Compared with the terminal half-life of VPA in 

humans (9-18 h), the terminal half-life of VPA in mice is extremely short (0.8 h) (Johannessen 2000). 

There is a much higher clearance rate for VPA in mice which is due to the low plasma protein binding 

of the drug (mice ~10% versus humans ~90%), the high metabolic capacity (Nau and Loscher 1982), 

and the higher relative volume of distribution (Loscher and Esenwein 1978). Consequently, it might be 

difficult to achieve sufficiently high VPA level in mice which might be required to increase SMN levels. 

Based on these facts, the effect of VPA on SMN gene expression was studied in blood from ten SMA 

carriers and 20 SMA patients to address the following two questions: (i) Is VPA capable of acting on 

the in vivo FL-SMN transcript and protein level, and (ii) how suitable is the use of peripheral whole 

blood for the development of a biomarker that would allow fast and easy monitoring of the drug 

response in VPA-treated SMA patients? Since exclusively motor function tests are available so far to 

detect the clinical outcome of drug treatment (Swoboda et al. 2005), a biomarker would be of high 

relevance for future clinical trials as well as potential therapies in patients with SMA. 

In a first step, a method was established to reliably measure SMN transcript levels in human blood 

samples in vivo. In particular the search for a suitable endogenous control which was needed to 

normalize SMN transcript samples was very time-consuming and demonstrated that the quantification 

of gene expression might be tricky. Analysis gets even more difficult when samples collected from 

different individuals or collected within a larger period of time have to be compared with each other. 

The use of various housekeeping genes is very common to normalize target transcript levels, but there 

are only a few studies dealing with the inter-individual and intra-individual stability of the expression of 

these genes. After CTLA1 was excluded as suitable endogenous control, four more genes were 

investigated in detail. Recent studies suggested that GUSB, PPIB, and RPLP0 might be attractive 

candidates because they were reported to be stably expressed in human peripheral whole blood and 

cultured PBMCs, respectively (Loseke et al. 2003; Dheda et al. 2004; Pachot et al. 2004). In addition, 

B2M is a housekeeping gene which is very frequently used for the normalization of target transcripts. 

Therefore, these four genes were selected to be analyzed under the experimental conditions 

established to study SMN RNA expression. The re-investigation of GUSB, PPIB, and RPLP0 was 

required, because each experimental protocol is unique, including the blood collection system, 

handling of samples, the procedure to extract RNA, and subsequent real-time PCR. The expression 

analysis demonstrated that only PPIB would be a suitable endogenous control. Transcript levels 

showed the lowest natural expression variability, although a ~1.5fold difference between the lowest 

and highest transcript level still would restrict the reliable detection of SMN transcript fluctuations to 

changes more pronounced than that. This was considered as major disadvantage, because it was 

unclear whether an increase in SMN transcript levels could be expected in vivo and if so, to which 

degree. PPIB also appeared to be equally expressed in the two investigated blood cell fractions which 

further argued for its suitability as endogenous control. However, as it was also seen for GUSB, the 

expression of PPIB was regulated by VPA in blood in vivo. This finding was unexpected, but on a 

second glance it is not too surprising considering that HDAC inhibitors have impact on ~2% of 

expressed genes (Van Lint et al. 1996; Pazin and Kadonaga 1997). The rather unspecific regulation of 

a large number of genes is a major issue that comes into the play when dealing with HDAC inhibitors. 

Importantly, it is most likely impossible to make a prediction about the expression regulation of a 
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particular gene in a certain individual by a drug. Consequently, PPIB was not used as endogenous 

control. Instead, SMN transcripts were normalized by the total RNA amount used for reverse 

transcription. In 2000, this method has been described for normalization of RNA data and was strongly 

recommended to be preferred over the use of housekeeping genes as endogenous controls whenever 

in vivo studies are performed dealing with human tissue samples (Bustin 2000). Although the method 

lacks any endogenous control which corrects pipetting or other errors and therefore requires that all 

samples to be compared are processed with extreme care and in exactly the same way, the method is 

independent from any impact of HDAC inhibitors and even independent from natural variations in gene 

expression. These are major advantages. Thus, given that the use of housekeeping genes for 

normalization bears a high risk for data misinterpretation, they should not be used as endogenous 

controls for in vivo studies, in particular when dealing with VPA or other HDAC inhibitors. 

To investigate the effect of VPA in vivo, SMN gene expression was studied in blood, although α-motor 

neurons represent the affected target tissue for a potential SMA therapy. However, α-motor neurons 

are not available to evaluate an in vivo effect of VPA on SMN in humans. Based on the observation 

that VPA increases SMN RNA and protein levels in primary fibroblast cultures, on a first glance, the 

collection of small skin samples from each subject appears to be an alternative. However, due to the 

surgical procedure which is required to take a skin sample, it would be highly unethical to repeatedly 

perform skin biopsies in one and the same individual throughout a clinical trial. Even if skin samples 

were collected before and throughout drug treatment, it is questionable whether enough RNA/protein 

were extractable for subsequent analysis. Culturing of skin samples following biopsy to achieve more 

material for analysis would not conserve the gene expression status at time of collection. 

Consequently, the only tissue accessible in sufficient amounts for repeated analyses is blood. This 

tissue can serve to explore the general ability of VPA to act on SMN gene expression in vivo, although 

the question remains open whether the data obtained from blood reflect the situation in α-motor 

neurons. 

The analysis of baseline SMN transcripts in blood derived from a number of 41 untreated individuals 

revealed no clear difference between the FL-SMN transcript levels in controls, SMA carriers, and SMA 

patients. Regardless whether SMN1 was present or absent and regardless of the SMN2 copy number, 

the FL-SMN transcript levels could not be clearly discriminated between patients, carriers, and 

controls. Only type I SMA patients with 2 SMN2 copies presented significantly lower FL-SMN levels 

compared with controls and carriers. This observation most likely reflects the fact that nucleated blood 

cells as a cell type are not affected in SMA. Similar results have already been described for SMN 

protein in several other unaffected tissues including lung, adrenal gland, kidney, and eye after 

comparison of control fetuses and fetuses with SMA by the means of immunohistochemistry (Soler-

Botija et al. 2005). Thus, an in vivo regulation mechanism must exist to force SMN2 in patients with 

SMA to compensate for the loss of SMN1 and to produce large numbers of the FL transcript. Another 

independent study which was recently carried out in a different cohort including a number of 85 

controls, SMA carriers, and SMA patients confirmed that only type I SMA patients with 2 SMN2 copies 

show reduced FL-SMN transcript levels compared with controls and carriers (Sumner et al. 2006). The 

finding was further validated by an analysis of SMN protein levels in blood derived from a number of 

57 subjects. Again, only SMN protein levels in type I SMA patients with 2 SMN2 copies were 

significantly lower than those in controls. In contrast to native blood, a clear correlation between SMA 
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phenotype and SMN protein expression level was reported for Epstein-Barr-Virus transformed 

lymphoblastoid cell lines as well as for primary fibroblasts and spinal cord (Coovert et al. 1997; 

Lefebvre et al. 1997; Helmken et al. 2003). However, studies investigating FL- and ∆7-SMN RNA 

expression in lymphoblastoid cell lines revealed a less pronounced correlation (Gavrilov et al. 1998; 

Helmken et al. 2003). Further investigations are definitely required for clarification. Interestingly, a 

clear discrimination between patients with type I, II, and III SMA based on the amount of FL-SMN2 

was not possible either. This seems reasonable, given that one SMN2 copy produces about 10% of 

FL-SMN2 transcript and 90% of ∆7-SMN2 transcript. Two, three, or even more copies should still 

generate 10% of FL-SMN2 and 90% of ∆7-SMN2. However, in EBV-transformed cell lines it was 

observed that, with increasing numbers of SMN2 genes, the percentage amount of FL transcript 

increases, whereas the percentage amount of ∆7 transcript decreases (Helmken et al. 2003). In 

addition, a high inter-individual variation of the FL- and ∆7-SMN2 transcript levels was detected in 

native blood even in the presence of identical numbers of SMN2 (e.g. 3 SMN2 in all investigated 

patients with type II SMA). In contrast, the respective FL/∆7 ratios in all patients were in a similar 

range. This rather implies a varying transcriptional activity of SMN2 among different patients and 

would correlate with the hypothesis that not all SMN2 genes are functionally equivalent (Coovert et al. 

1997; Soler-Botija et al. 2005). However, many more investigations are needed to further elucidate 

these observations. 

The highly significant increase of ∆7-SMN transcript levels in SMA type II and III patients compared 

with controls can be explained by the higher number of SMN2 genes in these groups of patients. As 

expected, within the control and the carrier group, ∆7 levels decrease with decreasing SMN2 copies. 

This was also seen by Sumner and colleagues (Sumner et al. 2006). Different results were obtained 

for the comparison of ∆7 levels in controls with those in type I patients. Whereas the cohort 

investigated in our laboratory revealed a difference, Sumner et al. did not observe that. Therefore, the 

comparison of ∆7 transcript levels in controls and type I patients should be repeated with a cohort 

including a larger number of type I SMA patients than only five. 

Whereas controls and SMA type II and III patients could not be distinguished based on the amount of 

FL-SMN transcript, they revealed different levels of ∆7-SMN transcripts. This explains the significantly 

different FL-SMN / ∆7-SMN transcript ratios obtained in controls compared with type II and III patients. 

Due to the above described observation that also in type I patients ∆7 levels were found to be higher 

than in controls, this cohort revealed the same finding for the transcript ratio like type II and III patients. 

Thus, the transcript ratio could serve to clearly discriminate between SMA patients and the control 

group. However, a comparison of the ratios obtained in type I, II, and III patients did not show any 

differences among these groups, suggesting that splicing efficacy of SMN2 pre-mRNA transcripts in 

these cohorts is comparable. 

Following the investigation of SMN transcript levels in native blood from untreated subjects, blood 

samples were analyzed from the SMA carriers treated with VPA in a clinical pilot trial and from SMA 

patients treated with the drug in individual experimental curative approaches all over Germany 

according to section 41 of the German Drug Act (AMG). Importantly, the lack of a clear difference 

obtained for FL-SMN transcript and protein levels in native blood derived from untreated individuals 

does not exclude a potential regulation of SMN gene expression by VPA. Among the ten SMA carriers 

that were recruited for the clinical pilot study, VPA treatment revealed elevated FL-SMN transcript 
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levels in seven subjects peaking in maxima ranging from 1.6fold to 3.4fold relative to baseline. In 

seven out of 20 patients with SMA, a maximal FL-SMN2 mRNA increase between 1.5fold and 1.9fold 

was detected. These effects were achieved at therapeutic, well tolerated VPA serum levels and clearly 

prove that VPA has the potential to act on SMN not only in vitro, but also in humans in vivo. This 

finding should be very encouraging for the performance of large multicenter clinical trials with VPA in 

SMA patients. Higher augmentations of FL-SMN transcript levels observed for SMA carriers suggest a 

contribution of both SMN1 and SMN2 while slightly milder effects achieved in patients with SMA are 

most likely due to the presence of SMN2 only. This led to the conclusion that functional SMN1 is able 

to support a drug response, but is not necessarily required to achieve considerable effects. From 

experiments performed in SMA fibroblasts, it is known that VPA activates SMN2 transcription and 

promotes exon 7 inclusion at the same time, thus regulating two mechanisms which eventually cause 

elevated FL transcript levels. Since the majority of responding carriers and patients displayed constant 

or only slightly changed FL-SMN / ∆7-SMN ratios, an induction of SMN transcription appears to be the 

main mechanism of action for VPA in native blood cells in vivo. However, in particular with respect to 

the ratios in P1, P5, and P16, an impact on in vivo splicing of SMN pre-mRNA cannot be excluded. 

Fluctuations of the FL-SMN transcript levels detected in the responding carriers and patients with SMA 

throughout the period of VPA medication were similar to observations made using phenylbutyrate 

(Brahe et al. 2005). Phenylbutyrate is another HDAC inhibitor with a very short terminal half-life of 0.8 

to 1 h in humans (Gilbert et al. 2001). It was administered to a very small number of six SMA patients 

for only seven days within a very preliminary trial to measure SMN transcript levels under drug 

treatment (Brahe et al. 2005). However, the fluctuations are an unexpected finding which can not be 

conclusively explained up to present. A phenomenon which has been well-known for a long time and 

might give at least a hint for this observation is nitrate tolerance (Abrams 1980). The treatment of 

patients suffering from heart failure with organic nitrates may lead to a tolerance and loss of 

effectiveness of medication in the individual e.g. when the drug is given constantly over a long period. 

This is due to the down-regulation of enzymes, in particular of the CYP450 group which are needed to 

release NO from the administered nitrate (Minamiyama et al. 2002). In comparison, VPA was 

administered to the SMA carriers and patients in retarded form to achieve constant serum levels 

around the clock. Given that an increase of SMN expression requires efficient inhibition of HDAC 

enzymes by VPA, it could be assumed that constant VPA levels trigger an up-regulation of the 

targeted HDAC enzymes in certain intervals, thus decreasing the effect on SMN gene activity. This is 

only a hypothesis and remains speculation, however, future clinical trials should include VPA-free 

intervals to check whether such a dose regimen is able to overcome the observation of fluctuating 

SMN transcript levels. 

The elevation of FL-SMN protein in seven SMA carriers up to levels as high as 13.7fold relative to 

baseline clearly corroborated the response to VPA observed on RNA level and further proved that 

VPA is not only capable of acting on the SMN protein level in vitro, but also in vivo. This was the first 

demonstration for an HDAC inhibitor to be capable of elevating in vivo SMN protein levels in humans. 

The different augmentation degree of FL-SMN mRNA and FL-SMN protein in most of the responding 

subjects is similar to the data obtained with VPA and SAHA, but also other HDAC inhibitors in cell 

culture (Riessland et al. 2006) and implicates that VPA interferes with transcriptional processes, but 

also appears to regulate translation and/or stability of SMN. This hypothesis is strongly supported by 
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the measurements for SMA carrier C9 whose FL transcript levels did not change throughout VPA 

medication whereas western blot analysis revealed extensively increased FL-SMN protein amounts. 

Consistent with this observation, a modulated transcription of genes encoding translation factors has 

already been described for the HDAC inhibitors butyrate and trichostatin A (Goncalves et al. 2005). 

Furthermore, recent experiments demonstrated that both substances may enhance protein stability 

such that levels increase without any change of the transcriptional activity of the encoding gene (Chen 

and Faller 2005), giving rise to the assumption that VPA might act in a similar manner. 

The extensive increase of the ∆7-SMN protein in C5 and C2 remains unclear. However, it has been 

shown that this isoform of the SMN protein is not detrimental and even extends the survival in an SMA 

mouse model (Le et al. 2005). 

In terms of developing a reliable biomarker to monitor the drug response in treated individuals based 

on the investigation of native blood, the application of PAXgene blood RNA tubes allowed the 

uncomplicated collection of a relatively small volume of blood (2.5 ml) from each subject. RNA was 

stabilized in these tubes for several days enabling transport of the samples. Yields were sufficient for 

many RT-PCR reactions. In order to precisely quantify FL-SMN and ∆7-SMN transcript levels, 

LightCycler real-time PCR technology was utilized which allows exact quantification of transcript 

levels. However, fluctuation of FL-SMN transcript levels would clearly hamper reliable monitoring of a 

drug effect on RNA level. Conclusions could not be drawn from a single blood sample, but only after a 

whole series of samples from one individual was analyzed. In comparison, protein analysis in general 

seems to be both more certain and more promising than RNA analysis with PAXgene tubes. Results 

obtained from the SMA carriers imply that the effect detectable on protein level is much more 

pronounced. Moreover, as demonstrated in case of proband C9, exclusive RNA analysis might lead to 

a false negative conclusion which would not happen when focus were on the protein level. 

Nevertheless, focusing on protein levels as diagnostic tool is much more complicated due to 

unavailability of a blood collection system which guarantees sample stability and the relatively large 

amounts of blood required. Thus, diagnostic analysis of proteins is more complicated. Moreover, the 

collection of 4 ml of blood in BD Vacutainer® CPT Cell Preparation Tubes and subsequent western 

blot analysis is not applicable as a high-throughput method for a large number of probands enrolled in 

a protocol. Therefore, another method is needed. At the time of investigation, the development of a 

flow cytometric method for analysis of SMN protein levels failed which was mainly due to the lack of a 

directly labeled antibody against a nuclear control protein. When such an antibody becomes available, 

it would allow to further work on the validation of this bioanalytical method. In addition, another very 

similar high-throughput method was described recently (Kolb et al. 2006). This approach uses cryo-

preserved PBMCs, which are fixed, permeabilized, and subsequently incubated with an anti-SMN 

antibody. This is followed by incubation with a secondary peroxidase-conjugated goat-anti-mouse 

antibody, addition of chemiluminescence, and fluorescence signal detection on a microplate reader. 

The method seems to be suitable for application, although it still has to be validated in a larger number 

of PBMC samples. 

The observation of non-responders among the VPA-treated SMA carriers and the identification of 

patients with unchanged or decreased FL-SMN transcript levels underscores the need for a 

biomarker. It is well known that HDAC inhibitors are able to decrease gene activity (Marks et al. 2004) 

which can obviously occur among individuals even when others present gene activation. The 
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identification of such cases would be of paramount importance in order to restrict drug medication only 

to responders. However, so far it is not established whether SMN expression in blood reflects SMN 

expression in α-motor neurons and correlates with muscle strength in SMA patients. Therefore, large 

long-term clinical trials in SMA patients that correlate SMN expression in blood with individual motor 

function tests are required to confirm a link between these two parameters. 

 

 

5.4 Future directions 

 

As a result of the progress in understanding the genetic basis and pathophysiology of SMA, several 

potential strategies to the treatment of SMA have been hypothesized (see figure 5 in chapter 1.5). 

Below, the different pathways which have been considered as target are listed together with the 

therapeutic approaches suggested up to present: 

1. Elevation of endogenous FL-SMN protein levels generated by SMN2 

 a) Transcriptional activation of SMN2 via the gene promoter 

- HDAC inhibitors, including butyrate, VPA, phenylbutyrate, SAHA, and M344  

 (Chang et al. 2001; Brichta et al. 2003; Sumner et al. 2003; Andreassi et al. 2004; 

 Kernochan et al. 2005; Brichta et al. 2006; Hahnen et al. 2006; Riessland et al. 

 2006) 

- compounds that regulate DNA methylation of the SMN2 promoter, including VPA, 

  and 5-Aza-2’-deoxycytidine 

 (Detich et al. 2003; Hauke 2006) 

- interferon, hydroxyurea, quinazolines 

 (Baron-Delage et al. 2000; Grzeschik et al. 2005; Jarecki et al. 2005) 

 b) Exon 7 inclusion in SMN2 transcripts 

  - HDAC inhibitors, including butyrate, VPA, SAHA, and M344 

  (Chang et al. 2001; Brichta et al. 2003; Sumner et al. 2003; Hahnen et al. 2006; 

  Riessland et al. 2006) 

  - small synthetic antisense molecules 

  (Lim and Hertel 2001; Cartegni and Krainer 2003; Skordis et al. 2003; Singh et al. 

  2006) 

  - aclarubicin, sodium vanadate 

  (Andreassi et al. 2001; Zhang et al. 2001) 

 c) Translational activation and stabilization of the SMN protein 

  - phosphatases and kinases 

 (Grimmler et al. 2005a) 

  - indoprofen 

 (Lunn et al. 2004) 

  - aminoglycosides 

 (Wolstencroft et al. 2005) 

  - proteasome inhibition 

 (Chang et al. 2004) 
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2. Prevention of α-motor neuron degeneration by neuroprotection 

 a) Neuroprotective drugs 

  - riluzole, gabapentin 

 (Miller et al. 2001; Haddad et al. 2003) 

 b) Neurotrophic factors 

  - cardiotrophin-1 

 (Lesbordes et al. 2003) 

3. Gene therapy and cell replacement 

  - replacement of the SMN1 gene 

 (Azzouz et al. 2004) 

  - stem cell therapy 

 (Harper et al. 2004) 

However, currently there are only a very few strategies under clinical investigation in humans. This is 

mainly due to problems regarding toxicity, bioavailability, and adverse events. The most advanced 

therapeutic drug candidates which have been or are considered for completed, ongoing, and planned 

clinical trials are VPA, phenylbutyrate, hydroxyurea, riluzole, and gabapentin [reviewed in (Sumner 

2006)]. Gabapentin was demonstrated to have no or only minimal effect in type II and III SMA patients 

(Miller et al. 2001; Merlini et al. 2003). Riluzole was tested to be safe in a small number of type I SMA 

patients, while an improvement of motor abilites was not seen (Russman et al. 2003). However, further 

studies in a larger number of patients are ongoing. The major disadvantage of phenylbutyrate is the 

very short terminal half-life of about 1 h in human serum (Gilbert et al. 2001). Hydroxyurea, a drug 

which has been demonstrated to be benefitial for patients with sickle cell disease, is cytotoxic, and 

long-term therapy may carry the risk of inducing leukemia (Meyappan et al. 2005). Thus, VPA appears 

to be the most attractive drug candidate for therapy at present. Based on the in vitro, ex vivo, and in 

vivo findings for the drug, two large clinical trials are in preparation in the US and in Germany 

(www.fsma.org and www.initiative-sma.de). For the trial in the US, the enrollment of type II and III 

SMA patients has already been started. In Germany, the investigation of VPA in type I SMA patients is 

planned and enrollment is expected to start in fall 2006. These trials will have to elucidate whether the 

drug is potent enough to prevent α-motor neurons from degeneration and to maintain or to improve 

motor function in SMA patients. Very recently, the treatment of a small cohort of SMA patients 

(including seven patients with SMA type III and type IV) with VPA for a mean duration of eight months 

was reported (Weihl et al. 2006). The treated SMA patients revealed increased quantitative muscle 

strength and subjective function which is a first hint that VPA might indeed be of clinical benefit. 
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6 Summary 

 

Proximal spinal muscular atrophy (SMA) is a common neuromuscular disorder causing infant death in 

50% of all patients. Homozygous absence of the survival motor neuron gene (SMN1) is the primary 

cause of SMA, while SMA severity is mainly determined by the number of SMN2 copies. One SMN2 

copy produces only about 10% of full-length (FL) protein identical to SMN1, whereas the majority of 

SMN2 transcripts are aberrantly spliced due to a silent mutation within an exonic splicing enhancer in 

exon 7. However, correct splicing can be restored by over-expression of the SR-like splicing factor 

Htra2-β1. 

In the present work, it is demonstrated that in fibroblast cultures derived from SMA patients treated 

with therapeutic doses (0.5-50 µM) of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) the 

level of SMN protein increased ~3fold. Augmented SMN protein levels could be attributed to elevated 

FL-SMN2 transcript levels which were triggered by two different mechanisms: a transcriptional 

activation of the SMN2 gene, and a preferred exon 7 inclusion in SMN2 transcripts. The latter 

observation was most likely due to increased levels of the splicing factor Htra2-β1. In addition to 

Htra2-β1, VPA increased the expression of further SR proteins which may have important implications 

for other disorders affected by alternative splicing. Importantly, the drug was able to elevate rSmn 

transcript and protein levels ex vivo through transcriptional activation in organotypic hippocampal brain 

slices from rats. This demonstrated that VPA also exerts an effect on neuronal tissue, the target for a 

potential SMA therapy.  

Since VPA is a drug highly successfully used in long-time epilepsy therapy, these findings opened the 

exciting perspective for a first causal therapy of an inherited disease by elevating the SMN2 

transcription level and restoring its correct splicing. 

The evaluation of two second-generation HDAC inhibitors in SMA fibroblasts in vitro revealed that 

SAHA, a drug that belongs to the hydroxamic acids, also efficiently elevated SMN protein levels 

2.4fold to 3fold. Therefore, SAHA was identified as another attractive candidate for SMA therapy. In 

contrast, the data obtained for MS-275, an HDAC inhibitor of the benzamide class, demonstrated that 

the drug does not possess enough potency to substantially elevate SMN protein levels in vitro. Thus, 

MS-275 will not have a chance to move forward to SMA clinical trials. 

Based on the promising data for VPA in vitro and ex vivo and given that VPA is already approved for 

application to humans, a first pilot trial with VPA was carried out in ten SMA carriers (parents of 

patients with SMA) aiming to evaluate drug potency to increase SMN transcript and protein levels in 

vivo. In order to further validate the outcome of the study, SMN2 gene expression was analyzed in 

peripheral whole blood derived from 20 patients with SMA (5x type I, 11x type II, 4x type III) treated 

with VPA in individual experimental curative approaches all over Germany according to section 41 of 

the German Drug Act (AMG). Moreover, the value of these screenings was determined for the 

development of a clinical biomarker to monitor the response to VPA and other HDAC inhibitors in 

treated individuals. Such a biomarker would be highly useful for clinical trials and future therapies in 

SMA patients. 

Drug treatment revealed elevated full-length SMN RNA and protein levels in blood from 7/10 SMA 

carriers. Importantly, SMN protein levels increased far more substantially (up to 13.8fold) than the 
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levels of the intermediate product, FL-SMN RNA, that showed an increase of up to 3.4fold. These 

observations provided first proof of the in vivo activation of a therapeutic target gene by VPA in an 

inherited disease. Among the investigated SMA patients, FL-SMN2 RNA levels were increased 1.5fold 

to 1.9fold in seven subjects, whereas 13 patients presented unchanged or even decreased transcript 

levels. This data suggested that some individuals are responders to VPA, while others are most likely 

nonresponders or even negative-responders. 

However, so far it is unknown whether SMN expression in blood reflects SMN expression in α-motor 

neurons and correlates with muscle strength. Therefore, systematic long-term clinical trials in SMA 

patients that correlate SMN expression in blood with individual motor function tests are required in the 

future to address the question whether SMN transcript and protein levels in blood may serve as 

biomarker, and to study the effect of VPA on motor function. 
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7 Zusammenfassung 

 

Die proximale spinale Muskelatrophie (SMA) ist eine häufige neuromuskuläre Erkrankung, die bei der 

Hälfte aller Patienten bereits im Kindesalter zum Tod führt. Die Krankheit entsteht durch homozygoten 

Verlust des survival motor neuron Gens (SMN1). Der Schweregrad der SMA wird vor allem durch die 

Anzahl der SMN2-Kopien bestimmt. Eine SMN2-Kopie produziert nur zu etwa 10% ein Volllänge-

Protein, welches mit SMN1 identisch ist. Der größte Anteil der SMN2-Transkripte wird auf Grund einer 

stillen Mutation innerhalb eines exonischen Spleißverstärkers in Exon 7 alternativ gespleißt. Durch 

Überexpression des SR-ähnlichen Spleißfaktors Htra2-β1 kann das korrekte Spleißmuster von SMN2 

jedoch fast vollständig wiederhergestellt werden. 

In der vorliegenden Arbeit wird gezeigt, dass in Fibroblastenkulturen von SMA-Patienten, die mit dem 

Histondeacetylase (HDAC) - Inhibitor Valproinsäure (VPA) behandelt wurden, der SMN-Proteinspiegel 

~3-fach ansteigt. Dieser Anstieg des SMN-Proteinspiegels konnte auf die vermehrte Produktion von 

Volllänge-SMN2-Transkripten zurückgeführt werden, welche durch zwei Mechanismen bedingt war: 

eine gesteigerte Transkriptionsaktivität des SMN2-Gens und den vermehrten Einschluss von Exon 7 

in SMN2-Transkripte. Die letztere Beobachtung ließ sich mit hoher Wahrscheinlichkeit durch eine 

Erhöhung des Htra2-β1-Proteinspiegels erklären. Zusätzlich zu Htra2-β1 steigerte VPA auch die 

Expression weiterer SR-Proteine, was möglicherweise von großer Bedeutung für andere durch 

alternatives Spleißen hervorgerufene Erkrankungen sein könnte. In einem weiteren äußerst wichtigen 

Experiment konnte gezeigt werden, dass VPA auch ex vivo in organotypischen hippokampalen 

Hirnschnittkulturen der Ratte durch transkriptionelle Aktivierung den rSmn-Transkript- und 

Proteinspiegel erhöht. Damit konnte bewiesen werden, dass die Substanz auch in neuronalem 

Gewebe – dem Zielgewebe bei einer potentiellen SMA-Therapie – einen Effekt auf den SMN-

Proteinspiegel erzielen kann. 

Da VPA ein Arzneistoff ist, der erfolgreich in der Langzeittherapie der Epilepsie eingesetzt wird, 

eröffneten diese Ergebisse eine interessante Perspektive für eine erste kausale Therapie einer 

Erbkrankheit durch Steigerung der Transkriptionsrate und Wiederherstellung des korrekten Spleißens 

des SMN2-Gens. 

Die Untersuchung zweier HDAC-Inhibitoren der zweiten Generation in SMA-Fibroblastenkulturen in 

vitro führten zu dem Ergebnis, dass SAHA, eine Substanz aus der Klasse der Hydroxamsäuren, 

ebenfalls in der Lage ist, den SMN-Proteinspiegel 2,4-fach bis 3-fach zu erhöhen. Damit konnte SAHA 

als weitere attraktive Kandidatensubstanz für eine SMA-Therapie identifiziert werden. Im Gegensatz 

dazu ließen die Daten zu MS-275, einem HDAC-Inhibitor der Benzamid-Klasse, erkennen, dass diese 

Substanz nicht das Potenzial hat, den SMN-Proteinspiegel in vitro beträchtlich zu erhöhen. Daraus 

konnte geschlussfolgert werden, dass MS-275 für klinische Studien bezüglich SMA nicht in Frage 

kommen wird. 

Basierend auf den vielversprechenden Daten zu VPA in vitro und ex vivo sowie auf Grund der 

Tatsache, dass VPA für die Anwendung am Menschen bereits zugelassen ist, wurde eine erste 

Pilotstudie mit VPA bei 10 SMA-Anlageträgern (Eltern von SMA-Patienten) durchgeführt, um zu 

untersuchen, ob VPA den SMN-Transkript- und Proteinspiegel auch in vivo zu erhöhen vermag. Um 

das Ergebnis dieser Studie zu untermauern, wurde zudem die Expression des SMN2-Gens in Blut von 
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20 SMA-Patienten (5x Typ I, 11x Typ II, 4x Typ III) analysiert, die in Deutschland im Rahmen 

individueller Heilversuche entsprechend Paragraph 41 des Arzneimittelgesetzes (AMG) mit VPA 

behandelt wurden. Die resultierenden Daten wurden außerdem im Hinblick auf die Entwicklung eines 

klinischen Biomarkers untersucht, welcher Auskunft darüber geben kann, ob Patienten, die mit VPA 

oder andere HDAC-Inhibitoren behandelt werden, auf diese Substanzen ansprechen oder nicht. Ein 

Biomarker dieser Art wäre extrem wichtig für klinische Studien und zukünftige Therapien in SMA-

Patienten. 

Die Behandlung mit VPA führte bei 7 von 10 SMA-Anlageträgern zu erhöhten Volllänge-SMN-RNA- 

und Proteinspiegeln im Blut. Von großer Bedeutung war die Beobachtung, dass die SMN-

Proteinspiegel weitaus stärker anstiegen (bis zu 13,8-fach) als die Spiegel des Intermediärproduktes, 

der Volllänge-SMN-RNA. Für letztere konnte ein bis zu 3,4-facher Anstieg gemessen werden. Diese 

Ergebnisse lieferten den ersten Beweis dafür, dass VPA auch in vivo die Aktivität eines Genes zu 

steigern vermag, welchem eine essentielle Rolle bei der möglichen Therapie einer Erbkrankheit 

zukommt. Die Analyse der Blutproben der behandelten SMA-Patienten ergab 1,5-fach bis 1,9-fach 

erhöhte Volllänge-SMN2-RNA-Spiegel bei 7 Individuen, während 13 Patienten unveränderte oder 

sogar erniedrigte Transkriptspiegel zeigten. Diese Daten führten zu der Schlussfolgerung, dass einige 

Personen auf VPA ansprechen, andere allerdings keine Reaktion oder sogar einen negativen Effekt 

zeigen. 

Bisher ist allerdings nicht untersucht worden, ob die Expression des SMN-Gens im Blut die Expression 

des SMN-Gens in den α-Motoneuronen reflektiert und mit der Muskelkraft korreliert. In der Zukunft 

sind deshalb klinische Langzeitstudien mit SMA-Patienten erforderlich, in denen die Expression des 

SMN-Gens im Blut mit Muskelkraftmessungen korreliert wird, so dass geklärt werden kann, ob die 

SMN-Transkript- und Proteinspiegel im Blut tatsächlich als Biomarker dienen können, und ob VPA 

einen positiven Einfluss auf die Muskelkraft hat. 
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Appendix 

 

IX 

 

A. In vitro experiments with histone deacetylase (HDAC) 

inhibitors in cell lines derived from SMA patients 

 

A.1: Levels of Htra2-β1 transcripts and Htra2-β2 transcripts in SMA fibroblast lines treated with VPA. 

Concentration of VPA (µM) Human SMA 

fibroblast culture  Mock 0.5 5 50 500 1000 

ML-17 

(SMA I, 2 SMN2 copies) 
Htra2-β1 1.00 2.95 1.98 2.06 1.40 1.45 

ML-16 

(SMA I, 3 SMN2 copies) 
Htra2-β1 1.00 2.76 3.02 4.00 3.43 2.66 

Htra2-β1 1.00 1.58 1.80 1.86 0.99 0.93 ML-5 

(SMA II, 3 SMN2 copies) Htra2-β2 1.00 1.82 2.79 3.76 0.98 0.84 

 

 

A.2: Transfection efficiencies obtained for different passages of SMA fibroblast line ML-16 after 

electroporation using the Amaxa Nucleofector technology. Various electroporation programs were 

applied to deliver the pmaxGFP plasmid (encoding green fluorescent protein) into the cells. Transfected 

cells were subsequently identified by their green fluorescence on a flow cytometer. P11 was the youngest 

investigated cell passage, and P13 the oldest investigated cell passage. 

Passage of 

ML-16 
Nucleofector Kit 

Electroporation 

program 

Amount of 

pmaxGFP (µg) 

Transfected 

cells (%) 

Basic U23 2 85.3 

Basic A24 1 35.3 

Basic T16 1 45.3 

Basic U12 1 52.0 

Basic V13 1 75.7 

Basic U23 1 65.5 

NHDF V13 1 49.8 

P 11 

NHDF U23 1 62.7 

Basic V13 2 63.2 

Basic U23 2 70.7 

NHDF V13 2 71.1 
P 12 

NHDF U23 2 65.5 

Basic V13 2 54.6 

Basic U23 2 59.6 

NHDF V13 2 62.9 
P 13 

NHDF U23 2 55.5 
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A.3: Western blot analysis of protein extracts prepared from fibroblast line ML-16 at 24, 48, and 72 h after 

electroporation (Amaxa Nucleofector technology) using the electroporation program U23 and the Basic 

Nucleofector Kit for Primary Mammalian Fibroblasts. (A) Initial experiments to evaluate a suitable siRNA 

oligo directed against Htra2-β1 (siRNA oligo 3 or siRNA oligo 5) and to evaluate a suitable incubation time 

(24, 48, or 72 h) to obtain a sufficient knock-down of the Htra2-β1 protein level. Fibroblasts incubated 

without any siRNA oligo and incubated with Non-targeting siRNA were included as controls. All of the 

samples were treated with Nucleofector Solution (Basic Kit) and the electroporation program U23. 

Western blot analysis revealed signals for β-tubulin and SMN, however, Htra2-β1 could not be detected. 

(B) The threefold amount of each protein extract used in (A) was loaded on a gel and a western blot 

analysis was carried out including a positive control (protein extract derived from ML-16 fibroblasts 

which were neither treated with Nucleofector solution, nor with an electroporation program). Htra2-β1 

protein was clearly detected in the positive control, whereas the protein was undetectable in all the other 

samples. Ponceau staining of the nitrocellulose membranes was performed to ensure that approximately 

equal protein amounts of each sample were loaded onto the gel and transferred to the membrane. 
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A.4: Western blot analysis of protein extracts prepared from ML-16 and ML-5 at 1, 2, 3, 4, and 5 days after 

electroporation (Amaxa Nucleofector technology) using the electroporation program U23 and the Basic 

Nucleofector Kit for Primary Mammalian Fibroblasts. Fibroblasts from the same respective cell passage 

of ML-16 or ML-5 that were neither treated with Nucleofector solution nor with an electroporation program 

served as positive control (first lane in each Western blot). Staining of the nitrocellulose membranes with 

Ponceau was performed to ensure that approximately equal protein amounts of each sample were loaded 

onto the gel and transferred to the membrane. 

 

 

A.5: Levels of PPIB (Cyclophilin B) transcripts in the SMA fibroblast lines ML-16 and ML-5 after 

transfection with the validated positive control silencer siCONTROL Cyclophilin B siRNA using the 

Dharmafect 1 lipofection reagent. Transcript levels were repeatedly measured by quantitative real-time 

PCR at 24, 48, and 72 h after transfection, and are given as mean ± SEM. Lowest PPIB levels are marked 

in bold. 

PPIB transcript level 

24 h 

after transfection 

48 h 

after transfection 

72 h 

after transfection 

Human SMA 

fibroblast culture 

Mock +siRNA Mock +siRNA Mock +siRNA 

ML-16 

(SMA I, 3 SMN2 copies) 
1.00±0.03 1.01±0.01 1.00±0.02 0.34±0.01 1.00±0.05 0.41±0.03 

ML-5 

(SMA II, 3 SMN2 copies) 
1.00±0.03 0.73±0.00 1.00±0.12 0.44±0.06 1.00±0.02 0.47±0.03 
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A.6: Levels of PPIB (Cyclophilin B) transcripts in the SMA fibroblast lines ML-16 and ML-5 after 

transfection with the validated positive control silencer siCONTROL Cyclophilin B siRNA using the 

Dharmafect 3 lipofection reagent. Transcript levels were repeatedly measured by quantitative real-time 

PCR at 24, 48, and 72 h after transfection, and are given as mean ± SEM. Lowest PPIB levels are marked 

in bold. 

PPIB transcript level 

24 h 

after transfection 

48 h 

after transfection 

72 h 

after transfection 

Human SMA 

fibroblast culture 

Mock +siRNA Mock +siRNA Mock +siRNA 

ML-16 

(SMA I, 3 SMN2 copies) 
1.00±0.03 1.45±0.04 1.00±0.02 0.38±0.01 1.00±0.05 0.46±0.03 

ML-5 

(SMA II, 3 SMN2 copies) 
1.00±0.03 0.99±0.04 1.00±0.12 0.44±0.06 1.00±0.02 0.39±0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.7: Western blot analysis of protein extracts prepared from ML-16 at 48 h after transfection with the 

siRNA oligos 3 and 5 using Dharmafect 1. Both siRNA oligos target Htra2-β1 mRNA. Controls included 

ML-16 fibroblasts which were neither treated with Dharmafect 1 nor with siRNA (first lane), fibroblasts 

which were treated with oligo 3 / oligo 5 without addition of Dharmafect 1 (second and third lane), and 

fibroblasts which were treated with Dharmafect 1 but not with siRNA oligos (fourth lane). 
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A.8: Western blot analysis of protein extracts prepared from ML-16 at 72 h after transfection with the 

siRNA oligos 3 and 5 using Dharmafect 1. Both siRNA oligos target Htra2-β1 mRNA. Controls included 

ML-16 fibroblasts which were neither treated with Dharmafect 1 nor with siRNA (first lane), fibroblasts 

which were treated with oligo 3 / oligo 5 without addition of Dharmafect 1 (second and third lane), and 

fibroblasts which were treated with Dharmafect 1 but not with siRNA oligos (fourth lane). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.9: Western blot analysis of protein extracts prepared from ML-16 at 96 h after transfection with the 

siRNA oligos 3 and 5 using Dharmafect 1. Both siRNA oligos target Htra2-β1 mRNA. Controls included 

ML-16 fibroblasts which were neither treated with Dharmafect 1 nor with siRNA (first lane), fibroblasts 

which were treated with oligo 3 / oligo 5 without addition of Dharmafect 1 (second and third lane), and 

fibroblasts which were treated with Dharmafect 1 but not with siRNA oligos (fourth lane). 
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A.10: Levels of Htra2-β1 protein in the SMA fibroblast line ML-16 after transfection with the siRNA oligos 3 

and 5 using Dharmafect 1 lipofection reagent. Both siRNA oligos target Htra2-β1 mRNA. Cells were 

harvested at 48, 72, and 96 h after transfection, protein extracts were prepared, and western blot analysis 

was performed using β-tubulin as loading control. Lowest Htra2-β1 protein levels are marked in bold. 

Htra2-β1 protein level Human SMA 

fibroblast culture 

 
Mock 

48 h after 

transfection 

72 h after 

transfection 

96 h after 

transfection 

Oligo 3 1 1.16 0.31 0.60 
ML-16 

(SMA I, 3 SMN2 copies) 
Oligo 5 1 0.51 0.09 0.38 

 

 

 

 

 

 

A.11: Absorption data obtained from MTT assays in fibroblast line ML-16 after transfection with 

siCONTROL TOX siRNA using Dharmafect 1 compared to untransfected cells (mock). The experiment 

served to determine the transfection efficiency. Cells transfected with the siCONTROL TOX siRNA 

underwent apoptosis. Thus, the rate of apoptosis corresponds to the transfection efficiency. Experiments 

were performed in triplicates and data are given as mean ± SEM. 

Absorption Human SMA 

fibroblast culture 

 Mock + siCONTROL TOX 

1
st

 experiment 0.080±0.003 0.033±0.002 
ML-16 

(SMA I, 3 SMN2 copies) 
2

nd
 experiment 0.075±0.003 0.014±0.007 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

XV 

A.12: Htra2-β1 protein levels determined after western blotting of protein extracts obtained from the first 

knock-down experiment in fibroblast line ML-16. Cells were transfected with or without siRNA oligo 5 

against Htra2-β1 mRNA and harvested at 72 h after transfection. Prior to harvest, a part of the cells was 

additionally incubated with VPA for 16 h. Experiments were performed in triplicates and results are given 

as mean ± SEM. 

Human SMA 

fibroblast culture 
Htra2-β1 protein level 

- siRNA, - VPA 1.00±0.03 

+ siRNA, - VPA 0.46±0.03 

- siRNA, + VPA 1.03±0.14 

ML-16 

(SMA I, 3 SMN2 copies) 

+ siRNA, + VPA 0.41±0.08 

 

 

 

 

 

 

A.13: Htra2-β1 protein levels determined after western blotting of protein extracts obtained from the 

second knock-down experiment in fibroblast line ML-16. Cells were transfected with or without siRNA 

oligo 5 against Htra2-β1 mRNA and harvested at 72 h after transfection. Experiments were performed in 

triplicates and results are given as mean ± SEM. 

Human SMA 

fibroblast culture 
Htra2-β1 protein level 

- siRNA (Mock) 1.00±0.11 ML-16 

(SMA I, 3 SMN2 copies) + siRNA 0.06±0.03 
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A.14: SMN2, PPIB, and Htra2-β1 transcript levels determined by real-time PCR in RNA samples obtained 

from the second knock-down experiment in fibroblast line ML-16. Cells were incubated without siRNA 

(Mock) or transfected with the respective silencing siRNA or the siCONTROL Non-targeting siRNA and 

harvested at 72 h after transfection. The values given for FL-SMN2, ∆7-SMN2, FL / ∆7 ratio, and Htra2-β1 

were determined in the samples transfected with siRNA oligo 5 directed against Htra2-β1 mRNA, and the 

PPIB transcript levels were determined after transfection of the fibroblasts with the positive control 

silencer siCONTROL Cyclophilin B siRNA. Experiments were performed in triplicates and results are 

given as mean ± SEM. 

Transcript levels 
Human SMA 

fibroblast culture 
 

- siRNA (Mock) 
+ silencing 

siRNA 

+ Non-targeting 

siRNA 

FL-SMN2 7.16±0.10 10.17±0.51 8.67±0.38 

∆7-SMN2 5.50±0.38 6.08±0.39 6.04±0.15 

FL / ∆7 ratio 1.31±0.09 1.68±0.03 1.44±0.03 

PPIB 9.11±0.63 0.30±0.02 9.67±0.22 

ML-16 

(SMA I, 3 SMN2 copies) 

Htra2-β1 7.78±0.26 2.53±0.24 8.03±0.40 
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B. In vivo effect of valproic acid on SMN gene expression in SMA 

carriers and SMA patients 

 

B.1: Analysis of CTLA1 expression in different blood cell fractions which are delivered with the Human 

Blood Fractions MTC Panel. Human placenta control served as negative control. Values from repeated 

measurements are given as mean ± SEM. “+” is the abbreviation for “positive”. 

Blood cell fraction CTLA1 transcript level 

Mononuclear cells 21.13±1.68 

Resting CD8+ cells 47.62±2.30 

Resting CD4+ cells 1.38±0.08 

Resting CD14+ cells 7.65±0.29 

Resting CD19+ cells 0.67±0.05 

Activated CD19+ cells 15.01±0.78 

Activated mononuclear cells 65.57±4.67 

Activated CD4+ cells 46.67±0.14 

Activated CD8+ cells 46.42±0.13 

Human placenta control 0.66±0.03 

 

B.2: RPLP0 and PPIB transcript levels in 20 blood samples obtained from ten control individuals who 

donated blood twice over a period of several weeks. Values from repeated measurements are given as 

mean ± SEM.  

RPLP0 PPIB 
Subject No. 

Sample 1 Sample 2 Sample 1 Sample 2 

50 1.05±0.01 2.00±0.26 1.15±0.03 1.54±0.22 

51 1.00±0.02 1.26±0.04 1.06±0.07 1.17±0.01 

52 1.31±0.03 1.18±0.00 1.34±0.00 1.18±0.06 

53 1.22±0.00 1.46±0.00 1.00±0.01 1.15±0.01 

54 1.21±0.07 1.18±0.04 1.30±0.06 1.13±0.06 

56 1.29±0.02 1.63±0.04 1.15±0.01 1.38±0.06 

57 1.42±0.05 1.53±0.07 1.32±0.01 1.19±0.06 

58 1.07±0.04 1.26±0.01 1.22±0.07 1.30±0.00 

59 1.19±0.01 1.35±0.02 1.04±0.00 1.17±0.01 

60 1.00±0.03 2.07±0.05 1.04±0.02 1.39±0.01 
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B.3: B2M and GUSB transcript levels in 20 blood samples obtained from ten control individuals who 

donated blood twice over a period of several weeks. Values from repeated measurements are given as 

mean ± SEM.  

B2M GUSB 
Subject No. 

Sample 1 Sample 2 Sample 1 Sample 2 

50 1.84±0.00 3.50±0.04 1.34±0.05 1.29±0.23 

51 1.62±0.12 2.36±0.04 1.00±0.04 1.11±0.13 

52 1.30±0.05 2.01±0.06 1.47±0.01 1.22±0.00 

53 1.54±0.02 2.72±0.09 1.19±0.02 1.21±0.03 

54 2.09±0.00 1.78±0.06 1.40±0.05 1.25±0.03 

56 1.45±0.01 2.19±0.01 1.39±0.04 1.39±0.06 

57 2.39±0.07 2.26±0.01 1.54±0.00 1.38±0.08 

58 1.00±0.01 1.28±0.00 1.50±0.00 1.41±0.05 

59 1.77±0.01 2.30±0.01 1.27±0.01 1.23±0.01 

60 1.61±0.05 3.14±0.03 1.34±0.00 1.57±0.09 

 

 

B.4: Purity of the lymphocyte and the monocyte fraction after isolation of PBMCs from peripheral whole 

blood and separation of two the cell fractions by magnetic cell sorting (MACS). The fractions were 

analyzed on a flow cytometer using anti-CD14 and anti-CD45 fluorescently labeled antibodies. Whenever 

enough material was available, 10,000 events were counted and analyzed. The table presents the number 

of lymphocytes / monocytes together with the number of contaminating cells that were identified among 

the counted events within one sample. Due to the very limited number of PBMCs obtained from 

individuals 57 and 63, the purity was not checked in the corresponding separated cell fractions. 

Fraction of lymphocytes Fraction of monocytes 

Subject 

No. 
Number of 

lymphocytes 

Number of 

monocytes 

(contamination) 

Number of 

lymphocytes 

(contamination) 

Number of 

monocytes 

52 9318 171 126 7866 

54 8243 49 162 2470 

55 9331 118 239 7122 

56 8678 270 37 8204 

58 9527 29 58 8602 

59 8729 59 60 416 

62 9515 74 435 3443 
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B.5: PPIB and GUSB transcript levels in corresponding monocytes and lymphocytes fractions derived 

from nine control individuals. Levels were measured after isolation of PBMCs from peripheral whole 

blood, separation of the cells by magnetic cell sorting, mRNA isolation, and reverse transcription. Values 

obtained after repeated measurements are given as mean ± SEM.  

PPIB GUSB 
Subject No. 

Lymphocytes Monocytes Lymphocytes Monocytes 

52 11.78±0.28 13.96±0.67 8.31±0.78 15.27±1.33 

54 11.55±0.17 11.61±0.34 9.49±0.07 13.31±0.24 

55 14.96±0.25 15.96±0.08 14.07±0.19 23.93±0.50 

56 9.23±0.02 8.48±0.16 7.21±0.22 10.39±0.33 

57 9.07±0.46 14.98±0.32 8.44±0.45 21.92±0.05 

58 9.69±0.16 13.01±0.53 10.82±0.00 19.27±1.81 

59 8.88±0.19 7.18±0.16 6.86±0.43 7.16±0.26 

62 8.32±0.08 10.04±0.70 9.41±1.27 13.47±0.15 

63 7.17±1.11 9.46±0.30 9.85±0.07 16.83±0.00 

 

 

 

B.6: FL-SMN and ∆7-SMN transcript levels in corresponding monocytes and lymphocytes fractions 

derived from nine control individuals. Levels were measured after isolation of PBMCs from peripheral 

whole blood, separation of the cells by magnetic cell sorting, mRNA isolation, and reverse transcription. 

Values obtained after repeated measurements are given as mean ± SEM.  

FL-SMN ∆7-SMN 
Subject No. 

Lymphocytes Monocytes Lymphocytes Monocytes 

52 9.32±0.07 9.81±0.19 7.65±0.56 8.22±0.43 

54 10.47±0.13 9.26±0.40 10.19±0.27 7.11±0.13 

55 10.42±0.13 10.73±0.13 10.24±0.16 12.22±0.42 

56 14.03±0.10 9.63±1.25 13.16±0.10 10.31±0.00 

57 5.92±0.27 6.08±0.09 3.88±0.10 3.99±0.18 

58 13.21±0.10 13.15±0.29 10.30±0.49 9.85±0.23 

59 9.64±0.19 8.24±0.22 9.16±0.98 6.36±0.27 

62 7.95±0.10 7.01±0.19 7.80±0.86 5.92±0.14 

63 6.50±0.19 8.19±0.26 7.58±0.26 8.83±0.58 
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B.7: Expression levels of PPIB and GUSB in peripheral whole blood from ten SMA carriers (C1 to C10) 

treated with VPA. Values are given as mean ± SEM together with the corresponding VPA serum level 

determined in the same blood sample (n.d. = not detected). Varying total number of values obtained for 

each parameter among the probands resulted from varying time periods required to adapt VPA serum 

levels to the therapeutic range. The most extensively increased/decreased value detected for PPIB and 

GUSB in the respective SMA carrier is indicated in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  SMA 
Carrier 

 
PPIB and GUSB transcript levels 

together with the corresponding VPA serum level 

C1 
1xSMN1 

1xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 

 
baseline 

1.0±0.0 
0.7±0.1 

 
n.d. 

1.2±0.0 
1.0±0.0 

 
53.9 

1.0±0.0 
0.9±0.0 

 
65.7 

1.4±0.1 
1.0±0.0 

 
79.5 

1.0±0.0 
0.7±0.0 

 
104.0 

1.2±0.0 
1.1±0.0 

 
84.8 

 

C2 
1xSMN1 

1xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 

 
baseline 

0.8±0.0 
0.7±0.0 

 
n.d. 

1.6±0.1 
1.4±0.1 

 
26.7 

1.0±0.0 
0.8±0.0 

 
45.9 

0.5±0.0 
0.5±0.0 

 
62.6 

0.8±0.0 
0.7±0.0 

 
75.6 

0.9±0.0 
1.0±0.0 

 
57.3 

1.1±0.0 
1.2±0.0 

 
61.0 

C3 
1xSMN1 

2xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 

 
baseline 

1.4±0.0 
1.4±0.0 

 
30.1 

1.3±0.0 
1.1±0.0 

 
64.3 

1.7±0.0 
1.5±0.0 

 
48.6 

1.9±0.0 
1.9±0.0 

 
60.0 

1.5±0.0 
1.4±0.0 

 
58.7 

2.4±0.1 
2.2±0.0 

 
53.9 

 

C4 
1xSMN1 

2xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 

 
baseline 

1.2±0.0 
1.1±0.0 

 
41.4 

1.1±0.0 
1.2±0.0 

 
69.7 

1.6±0.0 
1.6±0.0 

 
80.5 

1.6±0.0 
1.7±0.0 

 
83.3 

1.5±0.0 
1.5±0.0 

 
78.8 

  

C5 
1xSMN1 

2xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 

1.0±0.0 
1.0±0.0 

 
baseline 

0.8±0.0 
0.8±0.0 

 
n.d. 

1.3±0.0 
1.4±0.0 

 
33.2 

1.0±0.0 
1.1±0.0 

 
32.7 

0.6±0.0 
0.6±0.0 

 
56.2 

1.0±0.0 
1.2±0.0 

 
53.1 

0.9±0.0 
1.0±0.0 

 
50.7 

1.4±0.0 
1.7±0.0 

 
64.3 

C6 
1xSMN1 

2xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 

1.0±0.0 
1.0±0.0 

 
baseline 

1.1±0.0 
1.0±0.0 

 
51.7 

0.8±0.1 
1.0±0.0 

 
70.3 

1.0±0.1 
1.1±0.0 

 
80.1 

0.9±0.0 
1.2±0.1 

 
74.3 

0.7±0.0 
0.9±0.1 

 
82.3 

  

C7 
1xSMN1 

2xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 

 
baseline 

0.8±0.0 
0.6±0.0 

 
n.d. 

1.0±0.0 
1.1±0.0 

 
76.9 

1.2±0.1 
1.0±0.0 

 
92.0 

0.8±0.0 
0.7±0.0 

 
128.5 

0.9±0.0 
0.7±0.0 

 
80.7 

  

C8 
1xSMN1 

3xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 

1.0±0.0 
1.0±0.0 

 
baseline 

1.2±0.1 
1.3±0.0 

 
10.0 

1.2±0.1 
1.5±0.0 

 
58.5 

1.5±0.0 
1.4±0.1 

 
79.9 

1.0±0.0 
1.1±0.0 

 
63.6 

1.4±0.0 
1.6±0.1 

 
67.8 

  

C9 
1xSMN1 

3xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 

1.0±0.1 
1.0±0.1 

 
baseline 

0.9±0.0 
0.7±0.0 

 
30.7 

1.2±0.0 
1.2±0.1 

 
59.9 

1.0±0.0 
1.3±0.0 

 
69.1 

1.2±0.0 
1.4±0.0 

 
64.3 

1.0±0.0 
0.9±0.1 

 
62.4 

  

 
C10 

1xSMN1 

3xSMN2 

 

 
PPIB 

GUSB 

 
VPA (mg/l) 

 
1.0±0.0 
1.0±0.0 

 
baseline 

 
0.9±0.0 
0.8±0.1 

 
n.d. 

 
0.9±0.0 
0.8±0.0 

 
45.3 

 
0.7±0.0 
0.5±0.0 

 
65.9 

 
0.9±0.0 
0.8±0.0 

 
58.9 

 
1.0±0.0 
1.1±0.0 

 
84.2 

 
1.0±0.0 
0.9±0.0 

 
75.6 

 
1.2±0.0 
1.2±0.0 

 
61.6 
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B.8: Values obtained from the measurement of Sphero Rainbow Calibration particles on a flow cytometer. 

The Molecules of Equivalent Fluorescein are given and correspond to one of eight different particle 

fractions, each of which is labeled with a standardized amount of dye that is able to emit green 

fluorescence similar to the fluorophore FITC. Seven of these fractions were detected by the flow 

cytometer such that the mean fluorescence intensity of the respective fraction was analyzed. 

Molecules of 

Equivalent 

Fluorescein 

(MEFL, given) 

600 1,800 4,700 15,000 40,000 140,000 330,000 

Mean 

Fluorescence 

(FL-1, measured) 

2.83 6.77 16.93 49.19 126.26 419.27 926.57 

 

 

 

B.9: Comparison of FL-SMN and ∆7-SMN mRNA baseline levels together with an analysis of the FL-

SMN/∆7-SMN ratio in blood collected from 41 untreated subjects. From each subject, blood was taken 

twice over a time period of several weeks. The average values calculated after repeated measurements of 

the two blood samples are given as mean ± SEM. The order of the individuals used in this table 

corresponds to the order of the individuals in figure 35 in the results section. 

 Genotype FL-SMN ∆7-SMN FL / ∆7 ratio 

3 SMN1, 2 SMN2 7.26±0.17 6.65±0.28 1.10±0.05 

2 SMN1, 2 SMN2 6.42±0.53 7.18±0.70 0.90±0.03 

2 SMN1, 2 SMN2 6.06±0.26 6.85±0.16 0.88±0.02 

2 SMN1, 2 SMN2 5.62±0.50 6.17±0.58 0.92±0.10 

2 SMN1, 2 SMN2 5.65±0.45 6.97±0.23 0.81±0.04 

2 SMN1, 1 SMN2 5.95±0.19 4.32±0.30 1.41±0.14 

2 SMN1, 1 SMN2 6.13±1.01 4.15±0.48 1.46±0.13 

2 SMN1, 1 SMN2 5.89±0.13 3.95±0.11 1.49±0.04 

2 SMN1, 1 SMN2 6.97±0.53 4.40±0.59 1.61±0.17 

Controls 

2 SMN1, 0 SMN2 5.57±0.32 0.10±0.10 55.74±3.21 

1 SMN1, 3 SMN2 6.41±0.42 9.60±0.52 0.67±0.03 

1 SMN1, 3 SMN2 7.45±1.13 10.94±1.85 0.70±0.05 

1 SMN1, 3 SMN2 7.31±0.35 10.96±0.75 0.68±0.04 

1 SMN1, 2 SMN2 5.19±0.64 6.49±0.51 0.79±0.06 

1 SMN1, 2 SMN2 6.47±0.51 8.67±0.79 0.76±0.05 

Carriers 

1 SMN1, 2 SMN2 5.73±0.43 7.18±0.50 0.80±0.05 
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XXII 

 Genotype FL-SMN ∆7-SMN FL / ∆7 ratio 

1 SMN1, 2 SMN2 6.38±0.50 8.31±0.76 0.77±0.02 

1 SMN1, 2 SMN2 5.77±0.43 6.76±0.44 0.85±0.04 

1 SMN1, 1 SMN2 4.82±0.72 4.41±0.48 1.08±0.07 
Carriers 

1 SMN1, 1 SMN2 5.50±0.64 5.36±0.34 1.01±0.07 

4 SMN2 9.61±0.20 16.51±0.65 0.59±0.04 

4 SMN2 4.90±0.39 9.49±0.74 0.52±0.05 

3 SMN2 6.80±0.64 10.84±1.38 0.64±0.04 

3 SMN2 4.08±0.23 7.83±0.21 0.52±0.03 

3 SMN2 6.02±0.61 12.14±0.96 0.50±0.03 

SMA III Patients 

3 SMN2 3.25±0.16 7.60±0.26 0.43±0.02 

3 SMN2 4.04±0.30 9.56±0.78 0.42±0.01 

3 SMN2 6.80±0.75 11.31±1.19 0.60±0.02 

3 SMN2 9.06±1.30 13.32±1.18 0.67±0.04 

3 SMN2 3.24±0.61 6.96±0.34 0.46±0.07 

3 SMN2 5.40±0.56 10.96±0.52 0.49±0.03 

3 SMN2 4.77±0.39 11.01±0.54 0.43±0.02 

3 SMN2 5.68±0.82 12.09±1.70 0.47±0.02 

3 SMN2 7.40±1.32 14.71±1.35 0.49±0.05 

3 SMN2 5.36±0.56 11.20±1.82 0.49±0.03 

SMA II Patients 

3 SMN2 7.22±0.47 14.35±1.14 0.51±0.01 

3 SMN2 7.73±0.50 11.21±0.50 0.69±0.04 

2 SMN2 4.11±0.17 9.07±0.32 0.45±0.02 

2 SMN2 3.66±0.09 7.45±0.55 0.50±0.03 

2 SMN2 4.72±0.51 9.55±0.97 0.50±0.03 

SMA I Patients 

2 SMN2 4.16±0.55 8.11±0.42 0.51±0.05 
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