View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Kdlner UniversitatsPublikationsServer

Galleries and g-analogs in combinatorial
representation theory

INAUGURAL — DISSERTATION

Zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultat

der Universitat zu Koln

vorgelegt von
CHRISTOPH SCHWER

aus Laupheim

Hundt Druck GmbH, Koln
2006


https://core.ac.uk/display/12009723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Berichterstatter: Prof. Dr. P. Littelmann
Prof. Dr. S. Konig

Tag der miindlichen Priifung: 30. Juni 2006






Abstract

Schur functions and their g-analogs constitute an interesting branch of combinatorial
representation theory. For Schur functions one knows several combinatorial formulas
regarding their expansion in terms of monomial symmetric functions, their structure
constants and their branching coefficients. In this thesis we prove g-analogs of these
formulas for Hall-Littlewood polynomials. We give combinatorial formulas for the
expansion of Hall-Littlewood polynomials in terms of monomial symmetric functions,
for their structure constants and their branching coefficients. Specializing these formulas
we get new proofs for the formulas involving Schur functions. As a combinatorial tool
we use the gallery model introduced by Gaussent and Littelmann and show its relation
to the affine Hecke algebra. All assertions are then proven in the more general context
of the Macdonald basis of the spherical Hecke algebra.

We show a commutation formula in the affine Hecke algebra with which we obtain a
Demazure character formula involving galleries. We give a geometric interpretation of
Kostka numbers and Demazure multiplicities of a complex reductive algebraic group
using the affine Grassmanian of its Langlands dual group. As a further application we
prove some first results regarding the positivity of Kostka—Foulkes coefficients.

Kurzzusammenfassung

Schur Polynome und ihre g-Analoga sind ein interessantes Gebiet der kombinatorischen
Darstellungstheorie. Kombinatorische Formeln fiir die Koeffizienten der Schur Poly-
nome beziiglich der monomialen symmetrischen Funktionen, fiir ihre Strukturkonstan-
ten und fiir die Verzweigungskoeffizienten sind wohlbekannt. In dieser Dissertation
werden ¢-Analoga dieser Formeln fiir die Hall-Littlewood Polynome bewiesen. Es
werden kombinatorische Formeln fiir die Koeffizienten der Hall-Littlewood Polynome
beziiglich der monomialen symmetrischen Polynome, fiir ihre Strukturkonstanten und
ihre Verzweigungskoeffizienten gezeigt. Spezialisiert man diese Formeln, erhalt man
neue Beweise fiir die klassischen Formeln beziiglich der Schur Polynome. Als kombi-
natorisches Hilfsmittel wird das Galerienmodell von Gaussent und Littelmann benutzt
und mit der affinen Hecke Algebra in Verbindung gebracht. Die Aussagen iiber die
Hall-Littlewood Polynome werden allgemeiner fiir die Macdonald Basis der sphérischen
Hecke Algebra bewiesen.

Es wird eine Vertauschungsformel in der affinen Hecke Algebra gezeigt, die sich zu einer
Demazure Charakterfomel spezialisieren lasst. Kostka Zahlen und Demazure Multi-
plizitdten von komplexen reduktiven algebraischen Gruppen werden mit Hilfe der affinen
Grassmannschen der Langlands dualen Gruppe geometrisch interpretiert. Auch werden
erste Resultate hinsichtlich der Positivitat der Kostka—Foulkes Koeffizienten erzielt.






Introduction

The symmetries of many systems in mathematics and physics are governed by the rep-
resentation theory of groups and algebras. The aim of combinatorial representation
theory is to give combinatorial models for such representations and to obtain combina-
torial formulas for interesting invariants. This both gives a way for calculating these
invariants and leads to a better understanding of the representations. A detailed expo-
sition of this area of mathematics can be found in the survey article [BR99|] of Barcelo
and Ram.

One interesting class of representations which is quite well understood and where there
are good combinatorial models is the category of finite dimensional complex represen-
tations of a complex reductive algebraic group GV. Here one is interested in weight
multiplicities, tensor product decompositions and branching rules for the restriction to
a Levi subgroup. Applying the character with respect to a maximal torus yields an
isomorphism from the representation ring to the algebra of symmetric functions of the
associated root datum. This isomorphism sends irreducible representations to Schur
polynomials. So the above mentioned problems transform in giving formulas for the
expansion of Schur polynomials with respect to monomial symmetric functions, calcu-
lating the structure constants with respect to Schur polynomials and describing their
coefficients with respect to Schur polynomials of smaller rank.

For the special case of the general linear group the combinatorics of Young tableaus
solves all these problems. All the mentioned entities are expressed as number of tableaus
with certain additional properties. The path model of Littelmann [Lit94] is a model
for general GV. It replaces tableaus with piecewise linear paths in the dual of a Cartan
subalgebra of the Lie algebra of GV.

Many modern developments in combinatorics, representation theory and in the theory of
reductive groups over local fields yield g-analogs of symmetric functions which specialize
for certain values of ¢ to the Schur polynomials. So it is a natural question to ask for
generalizations of the combinatorial models to these ¢g-analogs.

In [GLO5] Gaussent and Littelmann introduce the gallery model as a tool for the
geometric-combinatorial analysis of the affine Grassmanian associated to the Langlands
dual group G of GV. They show that it is a combinatorial model of the representa-
tions of GV equivalent to the path model. Moreover, they associate to these galleries
explicitly given subsets of Mirkovi¢—Vilonen cycles, which by the work of Mirkovi¢ and
Vilonen [MV00, MV04] on the geometric Langlands duality are geometric models for
the representations of GV. As a byproduct of their work one gets a combinatorially de-
fined polynomial for each gallery which reflects the geometric structure of the associated
subset.

In this thesis we show that the gallery model together with these polynomials yields
a combinatorial model for certain g-analogs of Schur polynomials, the Hall-Littlewood
polynomials. To be more precise, we describe the expansion of Hall-Littlewood polyno-
mials in terms of monomial symmetric functions, we calculate their structure constants
and describe their coefficients with respect to Hall-Littlewood polynomials of smaller
rank. The moral of this should be that the gallery model is a good model to calculate
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g-analogs, not only the ones considered here in this thesis.

Specializing our results we get new proofs for the formulas involving Schur functions
in [GLO5]. In contrast to their approach (and the approach in [Lit94] based on paths) we
do not use the combinatorics of root operators. But we show that their root operators
are in some sense compatible with our approach. All of our arguments are based on
calculations in affine Hecke algebras and certain specialization arguments and do not
rely on results of [GL05]. It should be mentioned that our approach, despite of giving
formulas for the Schur polynomials, does not work without introducing ¢g-analogs. So
in some sense working with g-analogs is easier than the classical case.

We use the Satake isomorphism to identify g¢-analogs of symmetric functions with
the spherical Hecke algebra with equal parameters. Under this isomorphism, Hall-
Littlewood polynomials correspond (up to some factor) to the Macdonald basis and the
monomial symmetric functions correspond to the monomial basis of the spherical Hecke
algebra. All assertions are then proven in the more general setting of spherical Hecke
algebras with arbitrary parameters. We calculate the expansion of the Macdonald basis
in terms of the monomial basis, the structure constants of the spherical Hecke algebra
with respect to the Macdonald basis and their restriction coefficients. For doing this
we introduce the alcove basis of the affine Hecke algebra and show its intimate relation
to galleries.

In type A the expansion of (modified) two parameter Macdonald polynomials in terms of
monomial symmetric functions for equal parameters was described by Haglund, Haiman
and Loehr in [HHLO5| using Young diagrams. Specializing their formula yields the
expansion of Hall-Littlewood polynomials in this case.

It is well known that the Satake coefficients form a triangular matrix. With our combi-
natorial description of the Satake coefficients we can show that all remaining entries are
in fact nonzero. This yields a new proof of a positivity result of Rapoport [Rap00] in
the case of a spherical Hecke algebra of a reductive group over a local field since these
geometrically defined spherical Hecke algebras arise as specializations of the combina-
torially defined ones.

There are various other attempts to calculate the structure constants with respect to
Hall-Littlewood polynomials (respectively to the Macdonald basis) when all parameters
are specialized to a power of some prime number p. In type A, where up to normalization
the Hall-Littlewood polynomials are the Hall polynomials known from the theory of
p-groups, there exists an algorithm due to Macdonald [Mac95] calculating them using
certain sequences of Young diagrams. But this algorithm is not very explicit. An
improved version is given by Malley in [Mal96]. In [KM04] Kapovic and Millson proved
the saturation conjecture. As a byproduct of their investigation [KMO04), corollary 6.16]
they prove a formula similar to ours (for equal parameters) for general type using
folded geodesics in an affine building of G. As part of his thesis Parkinson [ParQ6]
showed that for arbitrary parameters these structure constants can be interpreted as the
number of certain intersections in a regular building. Using a geometric interpretation
as the number of points in certain intersections in the affine Grassmanian of G Haines
calculated the degree and the leading coefficients of the structure constants in [Hai03].
Using our results they can be expressed by a statistic very similar to the one used
in [GLO5]. This suggests that these intersections can be parameterized by galleries in
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the same way as in [GLO5].

Calculating Demazure characters for GY was another challenge for combinatorial rep-
resentation theory which was solved by the path model. Using our approach we can
explicitly determine subsets of the galleries describing a Schur character which describe
the corresponding Demazure characters and thus arrive at an explicit Demazure char-
acter formula involving galleries.

In [BD94] Billig and Dyer describe intersections of Iwahori and Iwasawa orbits in the
affine flag variety of G. Their results can be formulated using galleries as in [GLO5].
Using these results we show that the entries of the transition matrix from the alcove
basis to the standard basis of the affine Hecke algebra (specialized at some prime power)
can be described as the number of points of these intersections over a finite field.
Using specialization arguments we give explicit formulas for the dimension of certain
intersections in the complex affine Grassmanian of G and we show that Demazure
multiplicities of GV are given by the number of top dimensional irreducible components
of these intersections. This is a slight extension of the results in [GLO5]. We get an
indexing of these irreducible components by galleries counting Demazure multiplicities
as in [GLO5| for Kostka numbers. In contrast to [MV04] we have only a numerical
coincidence and we do not prove (or conjecture) any deeper result explaining this. We
compare our result with a similar result of Ton [Ion04, Ton05] obtained by specializing
nonsymmetric two parameter Macdonald polynomials.

As a further result we get a commutation rule for the Bernstein representation of
the affine Hecke algebra. This is a g-analog of a commutation formula of Pittie and
Ram [PR99] in terms of galleries. As an application one recovers by specialization their
Pieri-Chevalley rule in the equivariant K-theory of the generalized flag variety of GV.
This specialized formula is the same as the one obtained by Lenart and Postnikov [LP04]
by different methods.

One of the most interesting g-analogs of weight multiplicities occurring in combinatorial
representation theory are the Kostka—Foulkes polynomials. In our context they can be
defined as entries of the transition matrix from Hall-Littlewood symmetric functions
to Schur polynomials. But they have various other interpretations: For instance, they
are special Kazhdan—Lusztig polynomials for the extended affine Weyl group and they
encode the local intersection cohomology of the affine Grassmanian (see Lusztig’s arti-
cle [Lus83]). In particular, they have nonnegative coefficients. A combinatorial proof
for type A of this nonnegativity was obtained by Lascoux and Schiitzenberger [LS7S]
using the charge function on tableaus. It is conjectured, that such a function exists
for all types. We do not get such a function for the gallery model. But we calculate
the expansion of certain sums of Schur polynomials with respect to Hall-Littlewood
polynomials and show how it supports this conjecture.

Parts of the results of this thesis are available in the preprint [Sch05]. A more conceptual
treatment of galleries and their relation to the affine Hecke algebra and ¢-analogs is
given by Ram |[Ram06]. The formulas for the structure constants and the restriction
coefficients are there proven by introducing g-crystals.

This thesis is organized as follows: In section [1| we give a brief overview on symmetric
functions, their g-analogs and the relation to representation theory. We give a precise
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definition of the coefficients we want to calculate and a first statement of some of our
results. In section [2] we introduce the concept of generalized alcoves and show its
relation to the extended affine Weyl group. In the following section several versions of
affine Hecke algebras and their relation to Hall-Littlewood polynomials are discussed.
Then we introduce galleries and various polynomials associated to them. This enables
us to state the above mentioned formulas in the theorems and [4.13] We prove
these theorems in the sections [}, [7] and [§] The commutation formula for the affine
Hecke algebra and its specialization are proven in being followed by the proof of the
Demazure character formula. In section [9] we show that the root operators of [GL05]
are compatible with our approach, at least after specialization. In the following two
sections we show what happens when one regards the affine Hecke algebra as Hecke
algebra of a reductive group over a local field. First we show that we do get these
geometrically defined Hecke algebras and thus prove the above mentioned result of
Rapoport in[10.2] Then we restrict to the case of split groups and give the geometric
interpretations promised above. In the last section we give some first results relating
the gallery model to the positivity of Kostka—Foulkes coefficients.

Acknowlegdements. I want to thank everyone who made this thesis possible. I am
profoundly grateful to my advisor Prof. Dr. Peter Littelmann for his interest in my
research and encouraging support. I want to express my gratitude to the Cusanuswerk
for their (not only financial) support.
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1 Symmetric functions 2

1 Symmetric functions

In this section we introduce the algebra of symmetric functions associated to a root
datum. We describe its relations to the representation theory of complex algebraic
reductive groups and give a more precise meaning to our results.

Let ® = (X, ¢, XV, ¢Y) be a reduced root datum, i.e.

e X and XV are finitely generated free abelian groups with given subsets ¢ C X
and ¢V C XV.

e We have a perfect pairing (-,-) : X x XV — Z.

There is a bijection ¢ — ¢¥, o — «" such that for each a € ¢ we have (o, a") = 2.

For any « € ¢ the reflection s, : XV — XV, 2 — x — (o, z)a" leaves ¢ invariant.

For any o € ¢" the reflection s,v : X — X,z — x — (z,a")« leaves ¢ invariant.

If a € ¢ then the only other multiple of o in ¢ is —a.

Let V=X ®R and V* = X" ® R such that the natural pairing (-,-) : V x V* — R is
induced by the pairing between X and XV. Let Q C X (respectively Q¥ C XV) be the
subgroup generated by ¢ (respectively ¢¥). Then (Q ® R, ¢) and (Q¥ @R, ¢¥) are dual
root systems in the sense of [Bou81]. For details on the combinatorics of root systems
and Coxeter groups see also Humphreys’ book [Hum90].

The Weyl group W of & is the subgroup of GL(V*) generated by the reflections s, for
a € ¢. Choose a set of simple roots A and denote by ¢t C ¢ the positive roots with
respect to A. Denote by S = {s,|a € A} C W the set of simple reflections. Then
(W, S) is a Coxeter system. Denote the corresponding length function by [ : W — N.

A fundamental domain for the W-action on XV is given by the dominant cone
XY ={reXV|{a,z) >0 foralla € ¢"}.

The W-action on X induces a natural action on the group algebra Z[X"]. For p € XV
denote by z# € Z[XV] the corresponding basis element. The algebra of symmetric
polynomials A = Z[X V]V is the algebra of invariants under this action. If the underlying
root system of ® is of type A,, then A consists of symmetric Laurent polynomials in
the usual sense.

Now let A; C A and denote by ¢; C ¢ its span. Then ®; = (X, ¢;, XV, ¢Y) is a sub
root datum of ®. All entities with index J are the induced ones for ®; of the ones
with the same name for . We get an inclusion of algebras A < A; and W; C W is a
parabolic subgroup.

1.1 Classical situation

There are many interesting bases of A (as Z-module) indexed by X7. The simplest one
is given by the monomial symmetric functions {m,}, where my = -y, «# is just the
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orbit sum. Another one is given by the Schur polynomials {sy}. They are defined as
follows: Define J : Z[XV] — Z[X"] by J(z#) = Y co (— 1)@ a®#. Then one has

sy =J (@) [T (@)

where p¥ = £33 sa". Replacing W by W in the definitions yields monomial sym-
metric functions my and Schur polynomials s{ for all A\ € /XY where

XY ={r € X¥|{a,z) >0 for all « € A,}.

Now define integers ky, for A, € XY (the Kostka numbers), cx for A v € X7 (the
Littlewood-Richardson coefficients) and b5, for A € X and p € /XY (the branching
coefficients) by

® 5\ = ZueXYr Raummy,
j— 174
o 5)\S, = Zuexi cX,uSv and
_ J oJ
® S\ = ZNGJXX b)\MS#.

So the Kostka numbers are the entries of the transition matrix from monomial sym-
metric functions to Schur polynomials, the Littlewood—Richardson coefficients are the
structure constants of A with respect to the Schur polynomials and the branching coef-
ficients give the expansion of the s, with respect to Schur polynomials of the sub root
datum & .

The relation to representation theory is as follows (see [Hum?75]). Let G¥ be the unique
complex reductive linear algebraic group with Borel subgroup BY and maximal torus 7"V
such that the associated root datum together with the choice of simple roots is the dual
of ®. One is interested in the category of finite dimensional complex representations
of GV. Tt is well known that this category is semisimple and that the irreducible objects
are given by highest weight modules V' (\) with highest weight A € X. Assigning to
such a representation its 7TV-character yields an isomorphism from the Grothendieck
ring of finite dimensional representations of GV to A. In the same way the whole
algebra Z[X"] is the representation ring of TV. By Weyl’s character formula the Schur
polynomial sy for A € X is the character of V().

The Kostka number ky, for A, € X7 is the weight multiplicity of g in V(X), i.e.
the dimension of the p-weight space V/(A),. The Littlewood-Richardson coefficient c§ ,
for A\, pu,v € XY is the multiplicity of V(v) in V(A) ® V(u), i.e. the dimension of
Homegv (V(v), V(p) @ V(N)).

Now let P} C G be the standard parabolic subgroup of type A; and denote by
LY its Levi part. Then BY N LY is a Borel subgroup of LY and TV a maximal torus
of LY. The root datum associated to this choice is ®; with simple roots A ;. Now any
representation of GV restricts to a representation of LY. The branching coefficient biu
for A € XY and p € XY is the multiplicity (as a LY representation) of V*/(u) in V (),
i.e. the dimension of Hompy(V7(u), V().

Other numbers of representation theoretical interest are weight multiplicities of De-
mazure modules. Let w € W and denote by V(A),n C V(A) the one dimensional
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extremal weight space with weight w. Let V,,(A\) C V(\) be the BY-module generated
by V(A)wr. It is called the Demazure module associated to A and w. Again one is
interested in its TV-character which is in general only an element of Z[X"] and not
of A. Denote by dy, for u € XV the weight multiplicity of x in V,,(A). Of course we
have Vi,,(A) = V(A) and thus dy = ky, for the longest element wy € W. There is a
formula (the Demazure character formula [Dem74]) describing this character. But it it
is more convenient to introduce it in the context of the nil affine Hecke algebra so we
postpone it to section [3

As already mentioned in the introduction it was one of the main tasks of combinatorial
representation theory to give combinatorial formulas for all these coefficients and it was
solved in [Lit94].

1.2 g-analogs

Extending the base ring to £~ := Z[q!] one gets new interesting bases. The Hall-
Littlewood polynomials {Py(¢~*)} are a basis for A, := L7[XV]" (as £L7-module). For
A € X they are defined by

PA(Cfl) = m j(III’\+pV al;£(1 — qilaﬁ*av))/j(xpv)

where Wy C W is the stabilizer of A\ and Wx(¢™") = > o, ¢ '™ is its Poincaré
polynomial. From the definition it is not clear that Py(¢~') is indeed an element of A,,.
For this and other properties see the survey article [NRO3] of Nelsen and Ram. But it
is clear that the Hall-Littlewood polynomials are g-analogs of the Schur polynomials
in the sense that P)(0) = s). Moreover, one has P\(1) = m,. As above, we get the
Hall-Littlewood polynomials P (q~!) of ®; by replacing W by W in all the definitions.

Having these g-analogs one asks the same questions as in the classical case, i.e. one looks
for a combinatorial description of the transition matrix from the monomial symmetric
functions to the Hall-Littlewood functions, for the structure constants of A, with respect
to them and for their branching coefficients. Specialization at ¢~! = 0 then yields new
proofs for the classical formula regarding the ky,, the ¢, and the b{u.

Define Laurent polynomials Ly, for A, u € X by

Pgh) =Y ¢ Lym,

\%
pEXY

where p = %Zae¢+ . Since Py(0) = sy we have ¢~»*# L, , € £~ and the constant
term of q*<p’)‘+“>L,\M is ky,. For non-dominant p € XV we define L), = q<p’”*“+>L)\M+,
where p1* € X7 is the unique dominant element in the W-orbit of p. In section {| we
introduce galleries and a monic polynomial L, for each positively folded gallery o. We
prove in section [}

Theorem 1.1. For A € XY and p € XV we have Ly, = ¢ "N " g/ w0l L where
the sum is over all positively folded galleries o of type t* and weight p with (o) € W,
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Remark 1.2. For A\, € X7 the exponent (p, A + p) is not always in Z. But it follows
from the definition of galleries, that if Ly, # 0 then X — pu € QY. And under this
hypothesis one has {(p, A + ) € Z since 2p € Q.

From this we get a description of the k,, in terms of galleries by evaluation at ¢~! = 0.
We introduce LS-galleries (roughly speaking these are the galleries which survive the
specialization ¢~' = 0) and get as in [GLO03]

Corollary 1.3. For A\, i € X the Kostka number ky,, is the number of LS-galleries of
type t* and weight p.

In section [4] we also introduce a second monic polynomial C,, for each gallery o which is

closely related to L,. We prove that with this statistic one can calculate the structure

constants of A, with respect to the Hall-Littlewood polynomials. More precisely, define
Y, for A, p,v € XY by

Pyg " )Pu(q") = > g "MICK B,

v
l/GXJr

Theorem 1.4. Let \,pu,v € X. Then = ¢ W) 3~ gl o, W,fﬁg . Here the
sum is over all positively folded galleries of type t* and weight v starting in A such that
they are contained in the dominant chamber and (o) € W,W™o!  The correction factor

W;’iﬁ") is contained in L.

For ¢~! = 0 this yields a Littlewood-Richardson rule in terms of galleries.

Corollary 1.5. For A, u,v in X7 the Littlewood-Richardson coefficient 5, 18 the num-
ber of LS-galleries o of type t* and weight v — X such that the translated gallery A\ + o
s contained in the dominant chamber C.

Remark 1.6. From [GL05] one would expect that the sum is over all galleries which
are contained in the interior of the translated dominant chamber —pY + C. But the
galleries leaving C are not LS. This is explained in remark[4.13

We also introduce monic polynomials C for each gallery o which specialize to the
above C, for A; = A. This statistic describes the branching coefficients of the Hall-
Littlewood polynomials. Define B;\]u for A € X} and p € XY by

= 2 T UBLBI.

peIXy

Theorem 1.7. For A € XY and p € XY we have B/\u = g W) 3~ quodo) JW)\ ,
where the sum is over all positively folded galleries of type t* and weight v contained
in the dominant chamber C’ with respect to ®; such that (o) € WMJ Wwor Again the

correction factor JWflgg) is in L.

As above we can specialize at ¢* = 0 and get the following formula for the classical
branching coefficients (where a remark similar to the one above applies).
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Corollary 1.8. For A € XY and p € "X the branching coefficient biu is given as the
number of all LS-galleries of type t* contained in C”.

Remark 1.9. Now one might ask why the Ly, are not called K,. But the last symbol
is in general reserved for the Kostka—Foulkes polynomials which describe the transition
matriz from Hall-Littlewood polynomials to Schur polynomials. See section [13

The combinatorial descriptions in the corollaries and are more or less the
same as the above mentioned descriptions in [GL05]. Although the results on the
Littlewood—Richardson coefficients and the branching coefficients are not stated explic-
itly there, they follow quite immediately from the description of the crystal operators.

By our approach one also gets g-analogs of the Demazure characters dY, in which
one can describe using galleries. Specialization yields

Corollary 1.10. Let A € X/, p € XV and w € W. Then dy, is the number of
LS-galleries of type t* and weight p such that (o) < w.

The condition on the initial alcove seems not to reflect the fact that V,(A) = V() for
any w € W). But from the precise definition of L.S-galleries and remark it follows
that the condition indeed depends only on wW).

2 Affine Weyl group and alcoves

In this section we recall some facts on the (extended) affine Weyl group and on alcoves
as in [Bou81l, Hum90]. Furthermore, we introduce the notion of generalized alcoves.

The group QY acts on V* by translations. The affine Weyl group is defined as the
semidirect product W* =W x Q. It acts on V* by affine transformations. For A € QV
denote by 7, € W*? the associated translation. The affine Weyl group is generated by
its affine reflections. Let H® be the union of all reflection hyperplanes of reflections
in We  Then H* = U,cp+ mez Ham, where Hyp = {2 € V*[(a,2) = m}. Let
H,, ={z € V*|(a,z) 2 m} be the associated affine half spaces.

The connected components of V*\ H® are called open alcoves. Their closures are the
alcoves in V*. Denote by A the set of all alcoves. The action of W*® on A is free and
transitive. The fundamental alcove Ay = {z € V*|0 < (a,z) < 1foralla € 97} € A
is a fundamental domain for the W®action on V*. We get a bijection W — A, w —
Ay == wAy. One also writes A + A for the alcove 73 A where A € Q¥ and A € A.

A face F of an alcove A is an intersection F' = AN H such that H C H® is a reflection
hyperplane and (F).g = H. Here (F),g is the affine subspace spanned by F. A wall of
A is some hyperplane H C H® such that H N A is a face of A.

The walls of Ay are of particular interest. They are given as follows: For each a € A
one has the wall H, N Ay. Let © C & be the set of maximal elements with respect to
the usual dominance ordering on XV. By this we mean g < XN iff A —p =37 naa”
for nonnegative integers n,. So the number of elements in © equals the number of
irreducible components of the Dynkin diagram of ®. Then each intersection Hy; N Ay
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with 0 € © is a wall of Ay. For 0 € © let sg; be the affine reflection at Hy;. Then we
have the following

Lemma 2.1. The group W* is generated by the reflections S at the walls of Ay. One
has S* = S U {sp1|0 € ©}. Moreover, (W*®, S is a Coxeter system.

Let F be a face of Af. The type of F is the reflection at (F).4. Extend this definition
to all faces by demanding that the W ®-action preserves types.

Remark 2.2. More generally, the hyperplanes H, ,, define the structure of a labelled
chamber complex on Q¥ @ R which is a realization of the Cozeter complex of (W9, S%).

Right multiplication of W*® induces an action of W on A from the right. For A € A
and s € S® the alcove As is the unique alcove not equal to A having a common face of
type s with A. Let Fy C A be the face of type s and (Fy).g = Ha,y for some o € ¢
and m € Z. The hyperplane H,,, is called the separating hyperplane between A and
As. Call A negative with respect to s if A is contained in H,,, and denote this by

A < As. Of course A is called positive with respect to s if As is negative with respect
tos. We have A < Asiff A\+ A < \+ As for all A € QV.

Example 2.3. e for A, and A, in the dominant chamber A, < Ays iff w < ws,
where <’ s the usual Bruhat order on W*©.

o LetweW and s € S. Then A, < Aws iff w > ws.

o Letw €W and s = sgq with§ € ©. Then A, < Ays iff wd € ¢F. The wall H in
Ay belonging to the face of type s is Hyp1 and Ay, € H 4. This is the negative
half space of H iff w € ¢t and this is equivalent to A, < Ays.

There is also a natural action of X on V* by translations. So we can extend the above
definition and get the extended affine Weyl group W¢ := W x XV. Extending the
above notation write 7, for the translation by p € XV. The action of Weon A is no
longer free and type preserving. The stabilizer € of A; is isomorphic to XV /QY. The
isomorphism is given by sending g € Q to the class of g(0). So a set of representatives
is given by XV N A;. We have We = O x W* and every element v € W* can be
written as v = wg for unique w € W*® and ¢ € Q. Although W* is no longer a Coxeter
group, we can extend the definition of the length function by setting I(v) = l(w). So
multiplication by elements of {2 does not change the length. This length function has
many of the important properties of the length function of a Coxeter group. We have
I(vw) < 1(v)+1(w) for any v,w € W and I(ws) = I(w) +1 for any w € W and s € S°.
We also can extend the Bruhat order on W* as follows: Let v = wg and v/ = w'g’ € W*®
such that w,w’ € W*® and ¢,¢" € Q. Then define v < v' iff ¢ = ¢’ and w < w' (in the
usual Bruhat order on W°).

As mentioned above, the action of W* on A is no longer free. So we have to introduce
the new notion of a generalized alcove in order to work with the extended affine Weyl
group. This can be done as follows: Take an alcove A € A. Then some conjugate of
Q2 acts transitively on A N X" and this intersection is in natural bijection to X /QV.
So if we define A = {(A, ) € Ax XV |pu € A} 2 A x Q then there is a natural free
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We-action on A. In the same way as above we also get a right W®action on A where
Q) acts only on the second factor. The action of W® on A changes just the first factor
but depends also on the second. The definitions of face and type of a face carry over
to this situation by demanding that W acts type preserving. The elements of A are
called generalized alcoves. Every generalized alcove is of the form u + A, for unique
pw € XY and w € W. Then p is called the weight of A and w its direction. Denote
this by wt(A) := p and 6(A) := w. The alcoves A can then be identified with the
generalized alcoves with weight in QV.

Here one has to be a aware of the fact that the type of a wall of a generalized alcove
(A, ) depends not only on the wall itself (as a subset of V*), but also on the chosen p.
But the right multiplication of S on A has the same geometrical interpretation in V*
as before and one has in general wt(As) = wt(A) iff s € S.

Example 2.4. In order to give an idea how generalized alcoves look like we include a
description of the rank one case. So let V = R? with standard basis {e1,es} and dual
basis {€1,€2}. Define a =e; —ey € V and ¥ = €1 —ea € V*. Defined = €1 + €3 € V™.
Let X = Za C V and XV = Za¥/2 C V*/Rd. Then ® = (X,{xa}, XV, {£a"})
1s a root datum with pairing induced by the standard pairing between V and V*. The
corresponding algebraic group GV is SLy(C). As usual we identify V. and V* via the
standard scalar product on V. So we can and will identify roots and coroots. The simple
reflections are S® = {s1,s0} where s1 = s, € S and sy = sa1 s the additional affine
reflection. Moreover, Q = {id, g} = 7Z/2 where g = 5412 is the affine reflection at the
affine hyperplane a/4 and We =W*LUW?%. One has gs1g = so. The extended affine
Weyl group, the generalized alcoves and the types of their walls can be visualized as in
the following picture.

Any open unit interval in this picture is a generalized alcove. Above each generalized
alcove we have its representation as usual alcove together with an element in XV. We
abbreviated the elements of W in the indexing of the alcoves by a sequence of 0 and 1
corresponding to a reduced expression. Under each generalized alcove there is the cor-
responding element in W*®. The thick endpoints are the ones of type so. The bottom
row consists of the alcoves respectively W*e. The top row consists of the coset Weg. It
represents the alcoves (A, ) with p € p+ QY. We also indicated the right cosets T\W
for A e XV.

T_,W T,W

T~ T

. (A101, —3P) . (Am, —P) . (Al, —P) (Af,p) . (A07p) . (A01,3P)

gs05150 gSoS1 ' gso g gs1 v gs150
—Q 0 P «

(A1017_a) . (A107—C¥) (Aho) . (Af,O) . (AO,OZ) . (A01704)

T
515051 5150 S1 id

T_oaW W T W

S0 ' 5051 v

One may replace ® by the root datum & = (53X, {£a},2XY, {+a"}). In this case the
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extended affine Weyl group coincides with the affine Weyl group. The corresponding
group is PGLy(C). There is one great difference which will be important later on: In
We the simple affine reflections so and sy are mot conjugate, whereas they are in the
extended affine Weyl group of ® as noted above.

Replacing SLy(C) by GLy(C) we get the root datum & = (Z*, {+a},Z? {+aV}) where
a and o are as above. The inclusion of SLy(C) in GLo(C) induces a morphism of
root data ® — ® which is the inclusion X C Z* and the projection Z? — XV induced
by V* — V*/Rd. The picture now is as follows: Alcoves are of the form A x Rd for an
alcove A of ® and ) is the free group generated by g = So17e,. Observe that g* = 74

and l(14) = 0.

This is the general picture: Alcoves for the root datum of a reductive group GV are
always products of alcoves of its derived group by R* where k is the rank difference
between GV and its derived group.

In various circumstances we will deal with stabilizer subgroups of W. We use the
following notation for some notions related to them.

Definition 2.5. Let p € XV and W, C W its stabilizer. The mazimal element of W, is
denoted by w,,, the minimal representatives of W/W, by W* and the minimal element
in the coset 7,W by n*.

In particular, W = W, and wy is the longest element in W.

The dominant Weyl chamber is defined as C = {z € V*| (a, z) > 0 for all € ¢}, the
® j-dominant chamber is given by C’ = {zx € V*|{(a,z) > 0 for all a € ¢7}.

We will frequently use some facts about the length function on W summarized in

Lemma 2.6. Let \ € Xi.

(i) We have I(1y) = 2(p, \). In particular, | is additive on X7 .

(i) One has Tywy = n*wy and I(1y) + L(wy) = U(n*) + l(wy). Moreover, n* € Wr\W
is manimal.

Remark 2.7. The inclusion of Cozeter systems (W, Sy) C (W, S) induces an inclusion
WJ C W*. But the last inclusion is not an inclusion of Cozeter systems. The affine
simple reflections S§ of @ are not necessarily contained in S®. In particular, the length
function on W* is not induced by the one of W¢.

Remark 2.8. At the beginning we started with a reduced root datum. Of course the
construction makes sense also for any nonreduced root datum ® = (X, ¢, XV, ¢V), i.e
there exists o € ¢ such that %oz € ¢. As above one constructs the affine Weyl group
and the extended affine Weyl group with explicitly given generators.

But there exists a reduced root datum leading to the same extended affine Weyl group
as follows: Let ¢V = {a¥ € ¢" | s & ¢V} be the set of indivisible coroots of ®. Define
b= {a€egla’ e gbv} ={a € ¢|2a ¢ ¢}. In particular, all the mazimal roots of ¢ are
contained in ¢. Then ® = (X, ¢, XV, ¢Y) is a reduced root datum (see [BouS1]) having
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the same Weyl group as ®. Moreover, the Coxeter generators for ® are also Cozeter
generators for ® and QY (D) = Qv(i)) One gets an isomorphism of Coxeter systems
(W (D), S9(P)) = (W(D),SYP)) and an isomorphism of the corresponding extended
affine Weyl groups. So in order to study affine Hecke algebras of arbitrary root datums
it 15 enough to consider reduced root datums.

Be aware that this works only since we allowed root data and not only root systems in
which case X = Q and XV is the set of coweights. Here one gets more extended affine
Weyl groups when one allows non reduced root systems. The choice of XV essentially
gives more freedom in choosing the parameters of the affine Hecke algebra.

3 Hecke algebras

In this section we introduce the various Hecke algebras (extended affine Hecke algebra,
spherical Hecke algebra and nil affine Hecke algebra) we want to work with. Details on
affine Hecke algebras with unequal parameters can be found in Lusztig’s article [Lus89).
For the spherical Hecke algebra (with equal parameters) and relations to Kazhdan—
Lusztig polynomials see the survey article [NRO3| of Nelsen and Ram where a slightly
different notation is used. For the relation between the nil affine Hecke algebra and
Demazure operators see [GR04] of Griffeth and Ram.

3.1 Affine Hecke algebra

We first have to fix parameters. Let d : S* — N be invariant under conjugation by
elements of We. Let L := Z[qiﬂ and define ¢, = ¢%®) for s € S® For v € W*° we set

G = Hle Qs;, where v = s;, - ...+ s;, is a reduced decomposition of v. For arbitrary
v e W?let ¢, = g where v = v'g with v" € W% and g € Q.

Often we will need some normalization factors. So define H(q) = ) .y ¢w and
H(qg™') =3 ,cn ' for asubset HC W.

The standard representation of the extended affine Hecke algebra H® associated to the
root datum ® and the above choice of d is as follows: As a L-module it is free with
basis {Ti},erp« and multiplication is given by

o T2 =¢qTq+ (qs — 1)T for all s € S* and

o T,T, = T,, for all v,w € W such that [(vw) = I(v) + I(w).

From this it follows immediately that for any w € W*® and s € S® we have

T Tows if [(ws) =l(w) +1
) g Tws + (gs — DT if L(ws) = 1(w) — 1.

So H® is a ¢-deformation of the group algebra of W which we get by specializing at
q = 1, i.e. taking the quotient by the ideal generated by ¢ — 1.
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Remark 3.1. Usually Hecke algebras are only defined for Cozeter systems. But it is
enough to have a set of generators together with a compatible length function as in the

case of W¢.

On H*® there is a natural Z-algebra involution ~ : H® — H®. It is given by T, = Tuj_ll
for w € W® and ¢/ = ¢~7. Later on we will use the following formulas:

e For s € S* we have T, = ¢; (T + (1 — ¢5)Tiq)-

e For s € S* and w € W* we have

T {qSTws +(gs = V)T if l(ws) = I(w) + 1

T ws if [(ws) = l(w) — 1.

k
For A € X define ¢\ = q% 25=195) where 1y, = Siy - .. Si, g is a reduced decomposition
with ¢ € Q. So we have ¢; = ¢,,. For arbitrary u € XV define ¢, = qkq;l where
A, A € XY such that g = A — X. Clearly g, is independent of the particular choice of
A, X' because of the additivity of the length function on XY (see lemma [2.6)).

There is a second presentation of H® due to Bernstein which is closer to the definition of
W as a semi-direct product and also yields a large commutative subalgebra. For each
1 € XY define an element X, € H® by X, := q;lTTATT;l where as above pt = XA — X
with A\, X' € XY. So for dominant A\ we have X, = q)flTTA. By the same reason as
above X, does not depend on the choice of A and X" and we have X, X, = X,,, for
A, o in XV, Using this, H® is generated (as a L-algebra) by {X,} for p € XV together
with {T,,} for w € W. There are formulas relating the two presentations (see [Lus89,
proposition 3.6] for details). But they are quite technical to state in the case of unequal
parameters, for the case of equal parameters see below. However, they can be proven
by our approach with galleries, see [6.1]

Using the commutativity of the X, one gets an inclusion of L-algebras

L[XV] — H"

¥ — X,

We identify £[XV] with its image. The image of L[X"]" under this inclusion is the
center of H® (see [Lus89, proposition 3.1]).

3.2 Spherical Hecke algebra

In H® one has the symmetrizer 1 = > wew Lw- It has the following properties:

e For w € W we have T,, 15 = q,1¢ and 13 = W(q)1,.

° ]__0 = q;ol]_o
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The spherical Hecke algebra H*"" is defined by

1 ~
HP = {h € ——H*| Twh = hT,, = q,h for all w € W}.

Wiq)
The Macdonald basis of H*"* is given by {Mx}rexy where
j{: T, ! — 1,11,
weWnW W(g)Wa(q)
- Mlo)mo.

W(gWalg™)

For the second equality observe that by lemma we have X, = ¢ z\T; Ty Tw, and
Wix(g™") = ¢ Wi(g). One obtains an isomorphism

LxV =S —

The restriction of this morphism to £[XV]" yields an isomorphism to H*"" the com-
binatorial Satake isomorphism. In particular, H**" is commutative. For A € X define
Y, to be the image of m) under this isomorphism.

So we have two bases for H*?": The Macdonald basis and the monomial basis {Y}} given
by the images of the monomial symmetric functions under the Satake isomorphism.
We are interested in the transition matrix from the monomial basis to the Macdonald
basis. (Re)define Ly, for A, 1 € XY as modified entries of this transition matrix. More
precisely, we have

My= )" q LY.

\
HEXY

For arbitrary p € XV and dominant A € XY we set Ly, = ¢,_,+Ly,+ where as before
p* is the unique dominant element in the W-orbit of u.

Of course one can also ask for the structure constants of the spherical Hecke algebra with
respect to the Macdonald basis. For this, (re)define CY, for A, u, v € X7 as modified
structure constants by

M)\MN = Z qg\—uOKuM

\
veXy

As for symmetric functions one can also ask for the branching coefficients. For this one
first has to define restricted versions My for A € XY of the Macdonald basis. Define
them by
B 0w,
MJ = ¢1JX)\10.
P WleW(g)

Here qj is the J-analog of gy defined starting with a reduced decomposition of 7 in
W$ 1, = ZweWJ T, and wy € W is the element of maximal length. By definition we
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have Mj € %7:(“10. Now (re)define BY, for A € XY and p € /XY by

My = Z G- 0", B3 M/

IxV
pHeEXY

In the next section we give a description of the coefficients Ly,, C¥, and B;\IM using
galleries.

Remark 3.2. Now we want to clarify the relations of this section to symmetric polyno-
mials and their q-analogs. In particular, we describe the relation between the coefficients
defined above and the ones with the same names in section [1]

For this regard the case of equal parameters, i.e. d(s) = 1 for all s € S In this
case we have ¢, = ¢'® for v € W* and Qu = = ¢\»" for p € XV. It is known (see for
exzample [NR0O3, theorem 2.9]) that the image of Px(q¢™') under the Satake isomorphism
is q_\My. This 1s Macdonald’s formula. So comparing the definitions of the Ly, and
C3, wn section (1| with the ones given here shows that the first ones are special cases of
the latter ones. So the theorems stated there will follow from theorems [4.8 and [{.10
given in the next section.

For the branching coefficients one has to be more careful. We can identify the Hecke
algebra HJ of ®; with the subalgebra of He generated by T, for w € Wy and X for
A € XV, The Satake morphisms of H* and HJ are compatible in the sense that the
diagram

~

LIXVre—s LIXY] — i’y

J |

LIX LIX 1(q)7'(“10

IIZ

commutes. Here the mghtmost arrow from top to bottom 15 given by sending W, ( )X 1,

Wl(q) X,1o, @ w1 where W7 is the set of

minimal representatives of W/W . So the image of Py in mﬂalg is given by q’ \ My

and the Mj are the images of the Macdonald basis of ®;. In particular, the branching
coefficients B}\IM of this section coincide with the ones of section .

Remark 3.3. This is not the most general choice of parameters the affine Hecke algebra
is defined for and where theorems[[.5 and[{. 10} are true. One important example is the
following: Replace L by the image of the morphism L — C evaluating the variable q at
some fixed prime power. Hecke algebras of reductive groups over local fields are of this
form (see sections [10] and [11] for more details on this).

3.3 Nil affine Hecke algebra

In this section we introduce the nil affine Hecke algebra and its relations to the repre-
sentation theory of GV and to the extended affine Hecke algebra.
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For doing this we start with the affine Hecke algebra with equal parameters. Let o € A
and s = s,. Then the commutation formula between the T and the X, is well known.

We have
X)\ - Xs)\

TSX/\ = Xs/\Ts -+ (q — 1)ﬁ

(3.1)

Remark 3.4. The quatzent 93 is in Z|XY]. This can be seen easily by looking at

the geometric series l—X i Zk:o X _kav. Setting k = (a, \) one gets the explicit

relations

o [f k>0 then T, Xy = X\T, —|—(q—1)z X,\ jav -

o [fk <0 then T,X\ = X T, — (¢ — 1) X470 Xorjav.

Now we change the generators to obtain the nil affine Hecke algebra. For doing this let
T = q,'T, for w € W. Then we get the relations

T2=q'"Ta+ (1-¢ T,
for s € S and
X — X
1—X o
for s € S and A € XV. These relations involve only negative powers of g.
So we can define H* C H® to be the £~ = Z[g~']-module with basis X,T,, for u € XV

and w € W. By the above relations it is a £ -algebra and T, X, for p € XV and

w € W is also a £ -basis. The nil affine Hecke algebra H™! is the spemahzatlon of H®
—1

T Xy = X T+ (1—q 7Y

at ¢ = 0, i.e. the quotient of H® by the principal ideal generated by ¢~!. Thus in
H™! we get the relations

o T2 =T, for s € S and

[ TSX)\ = Xs)\Ts + —‘1)(3‘);)(5/\

_aV

As in the case of the affine Hecke algebra we get an inclusion of algebras Z[X V] «— H™!,
a# +— X,,. This inclusion commutes with the various projections, i.e the diagram

LT[ XV]—— L[XV]

l\\

Ha(—>Ha

Ny

Hnil

is commutative. Here 7~ denotes both the projection £~ — Z and H® — HO i
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Similar to the morphism above we get an isomorphism
Z[Xv] N HnilTwO
x xTwO.

whose restriction to A yields an isomorphism to Ty, H"' 7T, .

So we get two diagrams where the vertical arrows are the respective Satake isomor-
phisms.

A= Z[XV] AS—— L[XY]
TwOHnilTw()( S HnilTwO Hsphc—> 7:[5110

These two diagrams commute in the sense of the above diagram thanks to the following
observation which also explains the normalizing factor %: Since W(q) = qu,W(q™")

we get
1 qw Z
W(Q) N : 4T = —1 E:Qwow we

wGW

Thus we have 1o € H® and its image in H™! is T, wo -

W()

Let w € W and A € XY. As promised in section [I| we also give combinatorial formulas
for the Demazure weight multiplicities dY,. For this we first identify these numbers
with coefficients appearing in H™!. We claim that

T XoTuy = ¥, X, T

HEXV

This can be seen as follows: Via the isomorphism Z[X"] — H“ﬂTwO left multiplication
by Ts for s € S induces operators on Z[X"]. By the explicit description above one
sees that they are nothing else than the usual Demazure operators on Z[X"] and the
statement made is nothing else than the Demazure character formula. For calculating
the dy, in we calculate the coefficient of X1y in the expansion of T,,X,1, and
specialize at ¢! = 0.

Remark 3.5. For s = sg; € S* we have T, = T;,, T,, = ¢'** VX T,,. Soq T, € H®
iff (p,0¥) =1 i.e. 0 € A. But this is only the case if the irreducible component of ®
containing 0 is of rank one.

There is a second way to specialize at ¢-* = 0. Therefore define T, = ¢' )T, for any
vewe (and not only for elements of W ). Then one can define the L™ -subalgebra of
H® generated by the T,. This is in general not H® since Ty for s € S* would always be
in this subalgebra.

Bringing this together we can conclude: For H™ we do not have a good standard basis
labelled by W* which behaves nicely with respect to multiplication by the basis elements
labelled by S®. The lack of such a basis is why our approach using galleries does not
work directly in H™!.
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4 Galleries

In this section we introduce galleries and some polynomials associated to them. We
then give a precise meaning to the theorems stated in the introduction in the general
setting of the last section. The galleries used here are a slight generalization of the usual
galleries in a Coxeter complex since we regard generalized alcoves instead of alcoves.

Definition 4.1. Let t = (t1,...,t;) witht; € S*UQ. Let s € S*.

o A gallery o of type t connecting generalized alcoves A and B is a sequence (A =
Ao, ..., B = Ay) of generalized alcoves such that A;vy = Aitivy if tiv1 € Q and
Air € {A; At} if tig € S% In the case of t;1 € S® this means that A; and
Air1 have a common face of type t;y1.

o The initial direction 1(c) is defined to be the direction d(Ap) of the first generalized
alcove. The weight wt(c) of o is wt(Ag), the ending e(o) is Ay and the final
direction (o) is 0(Ag).

e The gallery o has a positive s-direction at i if t;x1 = s, Ajy1 = Ajs and A; is
negative with respect to s, i.e. A; < A;jy1. The separating hyperplane is the wall
of A; corresponding to the face of type s.

o The gallery o is s-folded at i if t;x1 = s and A;y1 = A;. The folding hyperplane
s the wall of A; corresponding to the face of type s. The folding is positive if
A; = A;s.

We call o positively folded, if all foldings occurring are positive. A gallery is said to be
manimal if it s of minimal length among all galleries connecting the same generalized
alcoves.

For the precise statement on the L,,, the C}, and the B;\’M we need some statistics on
galleries.

Definition 4.2. Let o be a positively folded gallery of type t. For s € S® define

e my(o) the number of positive s-directions.
e ny(o) the number of positive s-folds.

e 15(0) the number of positive s-folds such that the folding hyperplane is not a wall
of the dominant chamber C.

e ps(0) the number of positive s-folds such that the folding hyperplane is a wall of C.

o 7 (a) the number of positive s-folds such that the folding hyperplane is not a wall
of the J-dominant chamber C”.

e pJ(0) the number of positive s-folds such that the folding hyperplane is a wall
of C7.
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In particular, r5(o) + ps(o) = ns(o). Now we can define

L4 LO’ = HSESG q;nsw)(qs - 1)ns(a')’
° Cg — Hsesu qgns(U)—i-ps(O) (qs _ 1)7’5(0') and

o O =[Lese ¢4 (g — 1))

The polynomials C somehow interpolate between the L, and the C,: For A; = () we
have C7 = L, and for A; = A we have C! = C,. By definition we have (in the case of
equal parameters) deg L, = deg C, = deg C/.

Fix some type t = (t1,...,t;). For A € A and p € XV let T/ (A, 1) be the set
of all positively folded galleries of type t starting in A with weight p. Further let
I'Y (1) = [Hyew I (Aw, 1) be the set of all positively folded galleries of weight p starting
in the origin and let I'; be the set of all positively folded galleries starting in the origin.

Define
Lt(:u) = Z QwoL(U)LU-

o€l (n)

So there is an additional contribution measuring the distance from —A; to the initial
alcove.

Remark 4.3. There is an alternative way of defining Ly(1): For any w € W choose
a minimal gallery o, of type t,, which connects —A; and A,,. Then o, is a nonfolded
gallery of length l(wow) = l(wo) —l(w) and it has only positive directions. The positively
folded galleries of type t., = (tw,t) beginning in —Ay correspond to the positively folded
galleries of type t starting in A,. We get

Li(u) = ) ( > La>-

weW  gel, (—Af,p)
w

Remark 4.4. Let w € W*®. The choice of a minimal gallery o connecting Ay and A,
is equivalent to the choice of a reduced expression for w. Let t = (t1,...,ty) be the
type of 0. Then we have the reduced expression w = ty - ...-tx. In particular, the
length of a minimal gallery connecting Ay and A, is l(w). This is no longer true if we
allow w € W*: Take for example w = g € Q. Then a minimal gallery from Ays to A,
has type (g) and thus is of length length 1 but l(w) = 0. But this example reflects the
general behavior: The length of a minimal gallery connecting Ay and A, is either [(w)
or l(w)+ 1. Moreover, since any w € W has a unique expression w = vg withv € W*e
and g € ), one can always arrange that at most the last entry of its type is in 2.

Now we can give the formula for the Ly,. Let A € X and n* be the element of minimal
length in 7, W. Denote by W? the minimal representatives of W/W) as introduced
in 2.5l Let 0* be a minimal gallery connecting A; and A,» and denote its type by t*.
Using the last definition we get polynomials L (p) for all € XVY. Up to some factor
these are the Ly,. More precisely we prove in section [5}
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Theorem 4.5. For u € XV we have

1

L f—
M7 W (q)

L ().

Furthermore,
L)\,u = q1;/\1 Z q’LU[)L(O')LO"

o€l ()
t(o)ew?

In particular the Ly (p) do not depend on the choice of the minimal gallery o and
Lix(1) = quewpLir(wp) for allw e W.

Remark 4.6. One of the surprising implications of the last theorem is the W -invariance
of the Ly (p) up to some power of q. This is surprising because even the cardinality of
the sets T\ (wp) depends on w.

Now it is quite natural to ask when F:& () # 0. Although the definition of galleries is a
combinatorial one, it seems hard to give a combinatorial proof for the existence (or non
existence) of a gallery of given type and weight. Let o be any gallery of type t* starting
in 0, ending in A, of weight u. Since the folding hyperplanes are root hyperplanes we
always have A — wt(A,) € QY. Moreover, v < 1(o)n* by definition of the Bruhat order
on W¢. This implies ut < A. This also follows from the well known fact that the
transition matrix from the monomial basis to the Macdonald basis is triangular with
respect to the dominance ordering on XY.

The question of the existence of a gallery in I’:& (1) does not depend on the choice of
parameters d. So we can take d = 1 as in remark Since P and m,, are contained
in A, we have ¢~ # [, € £7. Moreover, ¢"{®»W,(q) = Wi(¢~!) € L~ and thus
g \PAT=wN L, (1) € £L7. So we get the upper bound

deg(Lo) + l(wor(0)) < (p, pp+ A) + 1(wn) (4.1)
for all o € '\ (11). The galleries with maximal degree are of special interest. So define

Definition 4.7. A gallery o € F:; is a LS-gallery if we have equality in the above
equation, i.e. deg(L,) + l(wot(0)) = (p, wt(a) + A) + [(w)).

Since all L, are monic we get the following corollary by evaluating theorem at
¢! = 0 which answers the above question, proves corollary and sharpens the

triangularity.

Corollary 4.8. The number of LS-galleries in I’:&(,u) is kxy+. In particular we have
LS(w) # 0 iff p occurs as a weight in V(X), i.e. p™ < X Moreover, we have (for
arbitrary parameters) Ly, # 0 iff p < .

The assertion on the triangularity (for the case of spherical Hecke algebras of a reductive
group over a local field) was shown by Rapoport [Rap00].
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Remark 4.9. For regular \ the definition of galleries coincides with the one given
in [GLO5]. Instead of using generalized alcoves they regard galleries of alcoves together
with an initial and final weight in X contained in the first respectively last alcove. This
18 equivalent to our definition since we can always arrange such that at most the last
component of t* is in Q (compare remark . For nonregular \ they regard degenerate
alcoves. This is more or less the same as our choice of the initial direction. See also

remark [5.10 and section[9 for a discussion of this choice.

We now give the formula for the C¥, replacing L, with C,. So let A € XY and t be
any type. Define Fg/\ as the set of all positively folded galleries of type ¢ starting in A
which are contained in the dominant chamber. Here we allow that folding hyperplanes
are contained in the walls of C. For v € XY let I'f\(v) C T'{, be the subset of galleries
ending in v. Define

C)\t(y) = Z qwoL(U)OO"

Fi/\(u)

Now let A\, p € XY and let ¢* be the type of a minimal gallery connecting Ay and A,
where n* € 7,WW is the minimal representative in 7,/#//. The above definition yields
Chw(v) for any v € XY. Define W = qu Y, cppwonaw,w @o - for p,v € XY and w € W.
In section [7] we prove:

Theorem 4.10. For A\, u,v € X we have

WV(q_l)

=W

O)\tu (V)

Furthermore,
CK“ = QQ;i Z qwoL(O’)CUW;](/U)'

aef‘fﬂ’)\(y)

In particular, the Cyu(v) do not depend on the choice of the minimal gallery.

So in contrast to theorem we have a condition on the final direction since W}, = 0
iff w ¢ W, WWwor,

It does not follow immediately from the theorem that the structure constants of H*P"
are indeed polynomials in ¢. This is shown in theorem [6.4]

As above we can give an estimate for the degree of the Cy () and prove corollary .
From the last theorem we get ¢~ P+ =lwu)Cy . (1) € £~ and thus for any o € Te ()
we have

deg Cy + 1(wo(0)) < (po i — A+ 1) + I(uwy).

Since deg L, = deg C,, and translating a gallery by an element of XV does not change L,
and the initial direction, corollary [I.5]is proven and we get

Corollary 4.11. For A, pu,v € X we have C%, # 0 if 5, # 0.
For equal parameters the last corollary was proven by Haines in [Hai03] by geometric

arguments using the affine Grassmanian of the Langlands dual G of GV to calculate the
degree and the leading coefficients of C5,,.
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Remark 4.12. Looking at the results in [GL0OS|] one would expect the following: 5, i
the number of LS-galleries o in 'L (v — \) such that the translated gallery is contained
in the interior of —p" 4+ C which means that the folding hyperplanes are not of the form
H, 1 for some a € A. But a gallery o leaving C with this property is not LS. In fact,
one can apply one of the operators é, from [GLOJ] to o (compare section @

In the same way we now proceed for the branching coefficients replacing C, with C?.
So again let ¢ be any type and let A\ € XY. Let '/ C '} by the subset of galleries
contained in C” and for p € 'XY define I'/ (1) C I’/ to be the subset of galleries with
weight p. Define By(u) = 3, cry(,) Co. Define Wy = g, Zvewwoxﬂw}{w q, ' where
W,] C Wy is the stabilizer of y in W;. We prove in section (where t* is as above)

Theorem 4.13. For A € XY and i € "X we have
B, = —t*—~=

Furthermore,
By =tu Y. GunioC WL

UGF;])\ (w)

and the By (p) do not depend on the choice of t*.

Since W(q) = quw, Wa(g™') one gets corollary by specialization at ¢~! = 0.

Example 4.14. In this example we want to illustrate theorem [{.5 in the case of not
necessary equal parameters. So let ® be of rank one as in and thus W* = W®. As
observed there, sy and sy are not conjugate in W*°. So we have two parameters qy := qs,
and q = qs,. Let 0 = (Ay, As,) be the minimal gallery of type (so) from 0 to a¥. Then

F?;O) and the corresponding G- Lo can be seen in the following picture.

——— (oq1
— g —1
. 1

1 1
Since gov = q3 qf we get
11 _1
qfaVMaV = XaV1O + q1 : <Qg — 4 2>)(010 + X*CMV]'O

This shows that if one defines Py for arbitrary parameters as in the case of equal param-
eters, then the resulting symmetric polynomials are in general not in A,. See Knop’s
article [Kno(3, section 6] for a discussion of the relation between the choice of d and
the existence and uniqueness of Kahzdan—Lusztig elements.

Example 4.15. In the following we are in the case of equal parameters. Let X € X7 .
Then F:& 1s more or less as in the last example. There are two nonfolded galleries of
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weight X and —\ and for any —\ < p < X\ we have a gallery o(p) starting in —Ay of
weight p with one positive fold and Ly = (q — 1) =1 This yields

¢ IMy=Po=ma+ Y (=g )my.

peEXY u<A

In this case all galleries are LS-galleries and we get the well known sy = ZMGXLMS/\ my,.

5 Satake coefficients

In this section we introduce the alcove basis of the extended affine Hecke algebra and
show that right multiplication of this alcove basis by elements of the standard basis can
be calculated using positively folded galleries. From this theorem follows. We also
show that one can replace positively folded galleries by negatively folded galleries.

Definition 5.1. Let A € A. Define X 4 = q_wt(A)q(;(A)th(A)T(g(A).

The set {Xa} 44 is a basis of H®. Before we proceed, we need some properties of this
basis. First let A € X" and A € A. One calculates

X)\XA == qAX)H_A. (51)

Now assume A = A, to be dominant such that \ := wt(A) is regular. Then v = 7\0(A).
Moreover, 7y is of maximal length in 7\W by lemma [2.6|and I(v) = I(7x) — 1(6(A)). So
we get T, T'54) = Tr,5(4) = Tp, and thus

Xa= Q—A%(A)X)\T&(A) = qT_AIQzS(A)TT/\TU(A) =q,'T,. (5.2)

Multiplying the elements of the alcove basis with T from the right can be expressed in
terms of the alcove order. It is a g-analog of the WW®action on A.

Lemma 5.2. Let A€ A. In 'H® we have

Qs X As if A< As
X AT, = .
Xas+ (g —1)X4  if A= As.

Proof. By the assertion is invariant under translation, i.e. under left multiplication
with some X,. So it is enough to show the assertion for generalized alcoves A = A, such
that wt(A) — o is dominant and regular for all & € ¢. By we have X = ¢, 'T,
and the multiplication law in H® yields

TT — Tvs if Z(U) < l(US)
U @ Tos + (g — DT, if 1(v) > (vs).

But for generalized alcoves in the dominant chamber increasing in the alcove order is
equivalent to increasing the length of the corresponding elements of we (see exam-
ple . Moreover, by the choice of A we get X4, = ¢,/ T,s as elements in H® again
by and the assertion follows. O
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Remark 5.3. The last lemma can also be restated as follows. In [Lus80] Lusztig intro-
duced the periodic Hecke module with equal parameters. It has a basis indexed by alcoves
and the multiplication is given (up to some power of the parameters) by the relations
of the last lemma. So what we really did was the following: We extended the periodic
Hecke module to generalized alcoves and to arbitrary parameters and gave an explicit
realization of an isomorphism (of right ﬂ“—modules} from the periodic Hecke module

to H°.

Using the same arguments and the fact that multiplying by 7}, for g € € does not
change the length we get

Lemma 5.4. For A € A we have XsT, = X, as elements in H°.

For later use we need the following: For w € W@ deﬁne qw by replacing ¢, with qs
in the definition of ¢,. For A € A define g4 = ¢_ wt(A)Q5( A)- Since gy;4 = q_xqa for

A€ XVand A€ Aand ¢4 = g, for A, dominant with wt(4,) regular we get with
the same arguments as in the proof of lemma

Lemma 5.5. For A€ A and s € S* one has

. qus if A< As
A qus if A= As.

Now we can connect the multiplication in H® to the L-polynomials. For generalized
alcoves A and B and any type ¢ define T’} (A, B) to be the set of all positively folded
galleries of type t connecting A and B and set L;(A, B) = ZUGF?( ap) Lo

Lemma 5.6. Lett = (ty,...,tx),s € S, t' = (t1,...,1,s), and fix generalized alcoves
A and B. We have

Ly(A. Bs) {Lt(A, B) z.fB >~ Bs

qsL:(A, B) + (gs — 1)Li(A, Bs) if B < Bs.
Proof. Let o' = (A,...,C,Bs) € T/ (A, Bs). Then C € {B, Bs}. We have C' = Bs iff
o' is s-folded at k + 1. Let 0 = (A,...,C) and distinguish two cases:
B = Bs: We then have C' = B and ¢’ is negative at k + 1. So o € '/ (A, B) and
L, = L,. Moreover, all galleries in I} (A, B) are obtained this way.
B < Bs: If C = B we have 0 € I'; (A, B) and ¢’ is positive at k + 1. So L, = ¢,L,
and one gets all galleries in '} (A, B) this way. If C' = Bs we have o € '}/ (A, Bs),
Lo = (¢s — 1)L, and one obtains all galleries in '} (A, Bs) this way.
The lemma follows. O

Let v € W@ and ¢ be a minimal gallery of type ¢ connecting Ay and A,.

Theorem 5.7. Given A € A one has XaT, =Y p. i Li(A, B)X
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Proof. Because of lemma and since the L-polynomials are not affected by elements
of €2 in the type it is enough to show the theorem for v € W% The proof is done by
induction on [(v).

Let first v = s € S* Distinguish two cases.

A < As: In this case L()(A,A) =0, L((A, As) = ¢, and L4 (A, B) = 0 for all other
B and XATS = qSXAs

A = As: In this case L)(A,A) = qs — 1, L()(A, As) = 1 and L(5)(A4, B) = 0 for all
other B and X T = Xas + (¢s — 1) X a.

Now let v € W, s € S* such that [(v) < [(vs) and ¢’ = (Ao, ..., Ay, Ays) is a minimal
gallery of type t. Using the last lemma we get

XaTos = XaT,To = (> LA, B)Xp )T,

Bewa
= > LA B)Xp+ Y LA B)Xp,+ Y (g, — 1)Li(A B)Xp
B<Bs B>Bs B»>Bs
= Y (¢ L4(A B) + (g — 1) Ly(A, Bs)) Xpo + > Li(A, B) X,
B<Bs B>Bs
=Y Lu(A Bs)Xp, =Y  Ly(A,B)X
BeA BeA

]

In particular we get that L;(A, B) does not depend on ¢ and ¢ but only on v. So
we define L,(A, B) := L;(A, B). For later use we also define I to be the set of all
positively folded galleries starting in the origin of the type of some minimal gallery
joining Ay and A,.

From this we get as a corollary (by setting A = Ay) the expansion of the standard basis
in terms of the alcove basis.

Corollary 5.8. Let v € W*® and fix some minimal gallery of type t connecting Ay and
A,. Then

T, = Z LUX@(U) - Z Q;,gl(g)q€(0) Lant(o)Ta(a)‘

oelf u(o)=id el u(o)=id

With these results we now can prove proposition [4.5]

Lemma 5.9. For A € X we have

10Tn>‘10 = Z q_,uLtA([,L)XM]_Q.
neXV

Proof. We use the last theorem and the facts that 1o = ¢,,'1o and T, 1o = ¢, 1o for
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all w € W. So one calculates

LT 1o = quy Z TwTon 1o = Guy Z G X4, T 1o

weW wew
= Guo Z @' Z Q—wi(0)4=(0) Lo Xwt(o) T =(0) Lo
weW O’EF:_)\,L(O'):’UJ
= Z Guow Z q—wi(o) Lo Xuwi(o) 1o
weWw aeF;; (o)=w
= Z Quoi(0)—wi(o) Lo Xwi(o) Lo = Z q-p Lo (1) X 1o
ael“t*A HEXV
where the last equality holds by the definition of L (u) in section [4] ]

From this we get
1
My=—F—— q_p L (1) X, 1.
A W(q)W)\(q) MEZXV pn-t ( ) ©-0

But on the other hand ¢_, Ly, for dominant 1 is the coefficient of M, with respect to
Y,,. Moreover, for arbitrary v € XV we defined Ly, = q,_,+Ly,+. So we get

My = Z Q—uLAuYu = @ Z ( Z Q—I/LAVXul())

peXy peXy veWu

1
= T Z q*#L/\HXM]‘O'
q neXxv

Comparing coefficients of these two expansions we get

1
Ly, = WLM ()

which proves the first statement in 4.50 The second statement can be obtained as
follows: Every w € W can be written as w = w,ws for unique w; € W and w, € Wy
such that I(w) = I(w1) + [(ws) (using the notation introduced in definition [2.5)). Define
1y = > uew, Tw. Since T,Ty = Ty, for v,w € W with I(v) + I(w) = I(vw) and
1y = g, 1y we get
]—O = Guy Z Tw]-_/\: Quowy, Z Tw]-)\-
weW? weW?

If v € Wy, we have [(v) + I(n*) = [(vn?). Moreover, vn* = vT\w \wy = TAVW AWy = N’
with v/ = wowyvwywy by lemma . Then [(v") = I(v) and ¢, = qy. Thus T, T,n1p =

T Ty1ly = q,T,»19 and we get
10757 1o = Guguw, Wa(q) Z Toy Tpn1o.
weWA

Now the second statement follows the same way as in the proof of lemma [5.9| using
Quwow, ZwewA T, = q;i ZwéW* qwowXAw-
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Remark 5.10. In the above considerations there are various other choices for the con-
dition on the initial alcove. Let v € Wy. We have 1o = Guywyw ZweWA Twoly since
T,1, = q; 1 and the last equation becomes 1T 1o = GuguwsoWa(q) Y wew e Ty T 1.
Thus one gets

L}\/,L = Q;Alv Z qwol,(o')LO"
oel'ly ()
(o)W
The case considered above was v = id. In the case of equal parameters we get for any
gallery o € F:& such that v(c) € Wv the upper bound

deg L, + l(wot(a)) < (p, A + wt(o)) + l(wyv).

One could define LS-galleries to be the ones such that 1(c) € W v and where there is
equality in the last equation. But only with the choice v = id it s enough to impose this
equality. The condition on the initial direction follows from this. In particular, for a
LS-gallery o we have 1(o) € W*. See also section@for a connection of this choice to
the crystal operators defined in [GL0OJ].

For the definition of the Ly (i) we started with the minimal representative n® and we
showed that L, (p) is independent of the initially chosen minimal gallery. One can
allow even more freedom in this initial choice. Let v € W, W and let w,w' € W) such
that v = wn*w' and l(w) + [(n*) + [(w') = I(v). If instead of t* we use the type t of a
minimal gallery from Ay to A, we get from the proof of[5.9 that Ly(1t) = ququ Lix (1) for
any i € XV. It is clear that the number of LS-galleries in I'; (1) (with the appropriate
changes of the degree condition in the definition) is the same as in F:&(,u) since they
always encode sy. One also has a canonical bijection between these different sets of
LS-galleries. But the total number of galleries in Ty (1) really depends on the choice
of v and this number is minimal if we choose n*. There is another fact that singles
out n*: All the nonfolded galleries are LS-galleries, which is false if we replace n* by v
as can be seen in the following example.

Example 5.11. As an ezample for this we regard the case of a rank one root datum
® as in example and continue the example [{.15 So let again N = « and take
t = (s0,51). Instead of the three galleries in the picture there we now have four galleries
in Ty, two of them of weight —a: The nonfolded gallery oo starting in —A; and the
gallery oy starting in —Ay and having a si-fold. Then L,, =0 and L,, =q—1, so oy
1s LS and oy is not despite of being nonfolded.

This is also the smallest example where one can see that |T} (u)| is not W -invariant in
contrast to |LS;(p)| and |T'y(p)].

Remark 5.12. In deﬁm’tz’on one can replace positive (respectively positively folded)
by negative (respectively negatively folded), i.e. one gets m_ (o) and n; (o) for each
negatively folded gallery o. With the obvious changes this yields polynomials L nonzero
only for negatively folded galleries. Going further, one gets I'y (A, B), L; (A, B) and
recursions (using the same notations as in

L; (A, B) if B < Bs

b4, Be) = {qsLt‘(A, B)+(¢s — 1)Ly (A,Bs) if B> Bs.
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Since Ty = q7 (T, + (1 — q,)Tiq) for s € S® we get from lemma that

_ Xas+ (g1 —=1) if A< As
@ X if A As

for any A€ A and s € S®. Under the hypotheses of theorem we get

XuT, =) L;(A B)Xp.

BeA

If one defines
Lt_(:u) = Z qL(U)L;

oel'y (1)

we also can express the Ly, with negatively folded galleries. For this note that left
multiplication by wy on A induces a type preserving bijection ¢ - It — Ty for any
type t. Obuviously we have Ly, = L, and u(¢(0)) = wot(0). In particular, we get the
equality Li(p) = Ly (wop). Combining this with the semi-invariance of the Ly, with
respect to u we get

2 2
ap

q .
Ly = Qu-wopLirwou = W‘@)Lt* (wop) = W% (1)

which gives an expression of Ly, in terms of negatively folded galleries by the definition

of Lx(1)-

6 Commutation and Demazure character formula

In this section we prove a commutation rule for the affine Hecke algebra, i.e. a formula
in terms of galleries for the coefficients appearing in 7., X, = > R\, X, T,. Specializing
this formula extends the Pieri-Chevalley formula of Pittie and Ram [PR99] using the
path model to the non-dominant case. This specialization is equivalent to the formula of
Lenart and Postnikov [LP04]. See the end of this section for the geometric significance
of these coefficients. In the same way we calculate g-analogs of Demazure multiplicities
and thus prove the Demazure character formula [1.10]

6.1 Commutation formula

Using corollary we can express any element T, of the standard basis in terms of
the alcove basis. So we get a formula for 7;, X, = ¢_»T,, 7T, for dominant X in terms of
the alcove basis. But this method does not work for non-dominant A since only for the
dominant A we have a good description of X, in terms of the standard generators T
(which we need to apply . Using remark we could derive a similar formula for
antidominant A using negatively folded galleries since there we have a description as a
product of T,. In the general case one has to mix these two notions.
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We first consider a slightly more general situation. Let ¢t = (¢1,...,%;) be a type and
let N C {j|t; € S°} be any subset. Define ¢(j) = —1if j € N and £(j) = 1 otherwise.

We then define T; y = Tfl(l) o TEW and gy = qfl(l) e qfk(k).

k

Let o be a gallery of type t. Then o is called N-folded if the following holds: If o is
positively (respectively negatively) folded at j then j ¢ N (respectively 7 € N). So
for N = () we get positively folded galleries and for N = {j|j € S%} we get negatively
folded galleries. Define T'Y to be the set of N-folded galleries starting in the origin. For
a N-folded gallery o and s € S® we define

e m} (o) the number of j ¢ N such that o is s-positive at j.
e m; (o) the number of j € N such that o is s-negative at j.
e n} (o) the number of j ¢ N such that o has a positive s-fold at j.

e n_ (o) the number of j € N such that ¢ has a negative s-fold at j.

Of course all these entities depend on N, but in order to simplify notation we suppress
this dependency. The corresponding N should be clear from the context. Now define

LY :=Tl,cqe g ()= (@) (g — 1) @ (g~! — 1) @) In particular we have L? = L.
Combining lemma [5.2] its negative counterpart in remark and lemma we get

by induction on k the following

Lemma 6.1. For A € A we have

XAE,N = Z L(]j-VXE(O')J

[

where the sum is over all N-folded galleries starting in A.

In particular we get the following: Let A, B € A and o a nonfolded gallery connecting
A and B. Denote its type by t and define N = {j| o is negative at j} to be its set of
negative directions. Then the last lemma reads

XaTin =LY Xp = s nXp (6.1)

since in this case no foldings are allowed and LY = ¢, 5 by definition of LY. Moreover,

by lemma [5.5| we know that
_1

4l n = 4B (6.2)
where qf v is defined as ¢; y replacing all ¢, by qs% .

Now we want to apply this to compute T;, X, for A € XV and w € W. For doing this
choose a gallery v connecting A,,, with A + A,,,. Denote by ¢ its type and define N as
above to be the set of negative directons of v. By (/6.1]) we have X Auy TtN = QN Xt a,,

and g,y = qiwo 4 Ay = g3 by (6.2). Again using the last lemma we calculate

TwX)\JrAwO == q;]{[TwXAMOE,N = q;’]{/QwXAwwOCTt,N = q;]{[Qw Z L,];VXe(U)-

o€l u(o)=wwq
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Moreover, X, AwOT wo = QuoXatA; = Quod—rXx- So multiplying from the right by T,
yields

QonwX)\ = 4-2\Quw Z LnyXe(o')Two = q-\Quw Z Q*wt(U)QE(U)LZ])—Vth(O')TE(O')wO

where the sum is over o € 'V starting in Ay,

Summarizing we get

Theorem 6.2. Let w € W and A € XV. Let t be the type of a non-folded gallery ~
connecting Ay, and A+ Ay, and denote by N the set of negative directions of v. Then

TuXn = ooy D Greu D G L XuTe(oyu

pnexy wt(o)=p
where the sum is over all galleries o € TN starting in wwy.

Example 6.3. We include some examples which we will use subsequently. These results
are well known (see [Lus89, proposition 3.6]). The usual proofs (at least for unequal
parameters) use that H® is a quotient of the group algebra of the affine braid group.

Let « € A and A € XV such that (a,\) = 0. Let s = s,. Then s € Wy. Let o be
a minimal gallery from Ay, to N+ Ay, of type t and let N be as above. Then o is
completely contained in H, oM H} . In particular, no separating hyperplane of o is
of the form H, . Let ~y be the nonfolded gallery of type t starting in swq, i.e. v = so.
So wt(y) = X\ and £(y) = swy. Since s only changes directions where the separating
hyperplane is of the form H, ;, o is positive at j iff v is positive at j. In particular, in y
no foldings are allowed and thus vy is the only gallery in TV starting in swo. Moreover,
we have szv = L(],V =qN= q/Q\ and so the last theorem yields Ts X\ = X)\T.

Assume now {(a, Ay = 1. Then sA = A — «”. Define s’ = woswy € S. So we have
s = qy. Let o' be a minimal gallery from Ayu,s to X + Ay, and denote by t' its
type. Then o’ is contained in H:ZO N H, . So again no separating hyperplane is of the
form H, ;. Extend o' to a minimal gallery from A, to A + Ay, by adding A,, at the
beginning. Then the type t of o is the concatenation of s’ and t'. Denote by N the set
of negative directions of o. This time there are two galleries in TY starting in swy: As
above there is v = so with wt(y) = s\ and (o) = swy. In contrast to the situation
there v has a negative s'-direction at the beginning whereas o is positive there. All other
directions remain as in o and thus LY = q;'LY = ¢;'q}. Moreover, one can fold
between the first two alcoves Agy, and A, of”y and obtains v with wt(y') = A and
e(y) = wo. All other directions in ' are as in y and so LY = (q. —1)LY = (1—q¢;")q3.
Using the last theorem we have Ty X\ = qovq; * X Ts + (s — 1) Xx. In this case we have
Jov = s which can be seen as follows: so' is a nonfolded gallery of type t' from Ay, to
S\ + Aguwy. Denote by N’ its set of negative directions. Then qu xv = ¢; qin = ¢5 @5
_1 _1

by and quOqt,j\,, = (st Awy = Qavqs “q-2qA,,- We obtain qov = qs and thus
T X\ = XonTs + (¢ — 1) X

In general it is not true that qov = qs. See example [{.14)

A general formula for Ts X, can be obtained with the same methods. But in the case of
unequal parameters it is quite hard to get the correct coefficients. In the case of equal
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parameters it is merely a calculation as in the rank one case and one arrives easily at

the formula (3.1)).

Before we proceed and specialize the last theorem to obtain a commutation rule in H™!
we provide some results on the relation between positive and negative directions needed
for a more precise analysis of the structure constants of H*"".

—mg (o)

Let ¢ be any type and o € I'f". Define ¢, := [], g ngj(a) and ¢_ = [],cqa s . So
¢+ is the contribution of the positive directions to L, and ¢_ its negative counterpart.
Deleting all entries in ¢ corresponding to foldings of o yields a new type t'. Let o’
be the nonfolded gallery of type t’ starting in the same alcove as o and denote by
N’ its negative directions. Then e(0) = e(o’) and gy nv = ¢+q_. Using we get
Chroy Bt = Qo) = T or(o)de(o) and thus

qzwt(o’)qwoL(O’)Q'i‘ = Qwoa(a)q:l € Z[Q] (63)

Now let A\, pu,v € X and #* a minimal gallery from A; to A,. as in the situa-
tion before theorem .10l Recall that the coefficient of M, in MM, is given by

q;i Za’EFd (v) q?\—quob(U)CUW/il(’g) Where W,lill}/ = Quw ZUEW’“OHQWV'LU qv_l Let (S Ff#,k(”)'

tHoX
Then the translated gallery —A+ ¢ is in T}, (—=A+v). Since translation does not change

¢+ and ¢_ we get from ([6.3) that

G Do G 4+ W) € Z[g]

since q;iqwoew)Wi,(f’) = Guowy, S vewvonriv,e(o) G- € Zla). So we get

Theorem 6.4. The structure constants of H*P" with respect to the Macdonald basis are
polynomials in q. Moreover, regarded as polynomaials in the qs— 1 they have nonnegative
coefficients.

This theorem is one of the results in [Par06]. He shows it by interpreting the structure
constants as intersections in a regular affine building but does not give a combinatorial
formula.

Now we want to specialize the commutation formula of H® to obtain a commutation
formula for the nil affine Hecke algebra. So we assume from now on that all parameters
are equal. Rewrite the assertion of theorem [6.2] as

TwX)\ = Z q*<,07/\+u> Z L(]TVXHTE(O')’U)O

peXxy UEF,{V
t(o)=wwo

The coefficients of the right hand side in the last equation are Laurent-polynomials in
q, i.e. we get the estimate
deg LY < {p, A\ + wt(0)).

In contrast to the case of positively folded galleries the leading term of LY can be —1.
So before specializing one has to think about the sign. Since LY is by definition of the
form ¢*(q — 1)#(¢7' — 1) (©) where n~ () is the total number of negative foldings, the
leading term is (—1)" () if it is nonzero. So we get



6 Commutation and Demazure character formula 30

Theorem 6.5. Under the hypotheses of the last theorem
T’wX)\ = Z(_1>n_(U)th(o)Ts(o)wo

where the sum is over all o € TN starting in wwq such that deg L, = {p, A + wt(o)).

Remark 6.6. This formula is positive in the case where N = (). This can be achieved if
A is dominant. In this case any minimal gallery from Ay, to A+ Ay, has only positive
directions. There is one special choice for this minimal gallery: First take a minimal
gallery from Ay to Ay, and then one (with type t*) to X\ + Ay,

The assertion of the last theorem is exactly the commutation formula [LP04, theo-
rem 6.1]. The translation between these two formulations is given by introducing the
companion of a gallery defined in [GL05, definition 22]. For a discussion of the equiv-
alence between these formulas see the appendix of [LP04] and |GLO5, remark 12]. But
their approach is quite different from ours. Instead of labeling the walls crossed by the
initial gallery with the simple affine reflections corresponding to right multiplication
they label them by the root of the separating hyperplane corresponding to left multi-
plication. Then they define operators Rs for any root (3, show that they satisfy certain
compatibility conditions and use this to calculate the coefficients of the last theorem.
They work entirely in the nil affine Hecke algebra and so do not get any g-analogs.

There is a close connection of this formula to the TV-equivariant K-theory of the flag
variety GV /BY. Tt is an algebra over the representation ring R(T") = Z[X "] and has a
natural basis over R(T") given by the classes of the structure sheaves O,, for w € W of
the Schubert varieties. One is interested in the following question: Given the class of a
structure sheaf O,, with w € W and a line bundle £, of weight A\. Then one asks for the
expansion of the class of the tensor product £, ® O, in terms of the structure sheaves.
By [PR99] the coefficients appearing are exactly the ones from the last corollary. So
these coefficients do have an interesting geometric interpretation.

Now one may ask for a geometric interpretation of the g-analogs of the last two theorems.
It is known by the work of Lusztig that there is an isomorphism from the affine Hecke
algebra to the equivariant K-theory of the Steinberg variety associated to G and BVY.
But it is not clear, if there is any nice geometric interpretation for the coefficients in
this context.

6.2 Demazure character formula

In this section we calculate Demazure characters and thus give a proof for corollary [1.10]
For this we again regard H® with equal parameters. Of course we could multiply the
formula of theorem from the right by 7, wo- But in order to get the connection with
LS-galleries it is more convenient to restart.

Let A € XY and w € W. By lemma [2.6] we have T,, = T,xT\,u,. Using corollary
we get
TwXalo = ¢ VT T Tuguy 1o = ¢/ > g7 AUV L X0 1o,

oery
t(o)=id
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where t = (t,,t") is the concatenation of a type t,, of a minimal gallery from A; to A,
and t*. Rewriting this in terms of the basis T}, one gets

TwX/\]-NO = ql(wowx)*l(w) Z q7<p,)\+wt(0)>LUth(U)1~0.

GGF?
t(o)=1id
In particular we get the estimate
deg L, < (p, A+ wt(o)) — l(wowy) + l(w) (6.4)

for any o € I'} with (o) = id. We can regard the image of the equation above in H!
and get

T XoTuwo = Y Xutie) Ty (6.5)

where the sum is over all galleries 0 € T’} with «(0) = id such that the degree of L, is
maximal.

But we would like to get rid of the initial part of type t,, to get formulas with galleries
of a type depending only on A. This can be achieved as follows: Within the t,-part o
stays at the origin, i.e. the alcoves A have wt(A) = 0. Let A, be the ending alcove of
the t,-part, i.e. v € W. The t*-part of o thus starts at A,. The polynomial L, can be
split the same way to get L, = LivL!. For the t,-part we have

Lemma 6.7. Let v € W. Then ¢! L, (A;A,) € 1+ ¢ 'L if v < w and 0
otherwise.

The proof is done by induction on [(w) using lemma For v,w € W the polynomials
L;, (Af, A,) coincide with the R-polynomials R, , of Deodhar [Deo85] by example .

From the last lemma we get that for v < w there is exactly one gallery o, of type t,,
from Ay to A, with deg L,, = [(w) — [(v). But on the other hand we know from (4.1
that deg Lt < (p, A + wt(0)) — l(wowy) + I(v) and that we have equality iff o is a
LS-gallery. So in order to have equality in the t,-part has to be o, and the t*-part
has to be a LS-gallery. Bringing this together we get that in it is enough to sum
over all LS-galleries ¢ in I'} such that «(¢c) < w. This proves corollary m

Now we can refine the discussion on the existence of LS-galleries with a given weight.
Let o € 'S\ () with ¢(0) < w. Then wA < (o)X < p. But we also have the general
condition p* < A. These two conditions together are equivalent to dy, > 0. So with
the last corollary we know that there is a gallery o € I'/; (1) with (o) < w iff dy, > 0.

See also section [L1] for a geometric interpretation of these multiplicities.

7 Structure constants

In this section we calculate the structure constants of the spherical Hecke algebra with
respect to the Macdonald basis and prove theorem and thus theorem and its
corollary.
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Therefore we need some preparation. For a generalized alcove A and a type t define
F: 4 to be the set of all positively folded galleries of type ¢ with initial alcove A.

Lemma 7.1. Let A = p + Ay be a dominant generalized alcove such that As is no
longer dominant. Let H, o be the hyperplane separating A and As with o € A. Then
we have X Ty =T, X 4.

Proof. We have s,A = As and A = As. So s, and s are conjugate in W® and thus
ds, = @s- Distinguish two cases:

If s = spy with # € © we have (a;,u) = 1 and thus s,(1) = p — o) and s, A =
Sa(ft)+ As,w- But on the other hand we have As = (u+wb))+ Ays, and so wf” = —aV.
In particular, s,w < w. From example [6.3| we know that g,v = ¢, in this case and

Tschu = Xu—aiVTsa + (an - 1)XN'

Together with s,w < w this yields

To X, T = Xy o T + (@5 — DX, T
and thus
To, Xa=Xa, +(qs, — 1) X4 = X4T,

where the last equality follows from A > As.
If s = sg € S we have s,(p) = p and w(a) = B. So here s,w > w. Using
T,,X, = X,T;, one obtains the desired equality as above. O

We keep the notation of the last lemma and get 10 X475 = 1075, X4 = ¢s19Xa (recall
that g, = ¢s).

Let t = (t1,...,tx) be a type and define T, =T}, - ... T}, . From theoremwe get

k

XaTy = ) LeXe(o)

UEFiA

This yields

Setting t' = (s,t) we obtain by the same arguments

10XATSE: Z LU]-OXe(J)-

UEF;,A
Since 10 X AT,T; = qs10 X AT; we get the following

Lemma 7.2. Let t be any type and let A be a dominant generalized alcove such that
As is no longer dominant. Setting t' = (s,t) we have

qs Z LO']'OXe(O') = Z La]-OXe(U)'

+ +
UEFt’A aGFt,YA
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Now let A € XY. Then the generalized alcove A := X + A,, is dominant iff w™" € W2,
Let w=t € W* and v € Wy. Then we get

T, Xa=q, " Xosa,, = Xoa.

v

Since v € W), we get the equality (using the notation introduced before the last lemma)
10X7)A7_;f = qv]-OTvXA,I;i = 1OXAT‘t'
For later use observe that vA = A + A,,, and thus vA is no longer dominant. We get

Lemma 7.3. Let A € XY, w™' € W* and v € Wy. Let A= X+ A,. For any type t we

have
Z LU]-OXe(U): Z L010X6(0)~

+ +
oel’y 4 S|

Now let A\, p € XY. Let w, € W, and n* € 7,W as in definition Let t* denote
the type of a minimal gallery from Ay to A,.. As in the proof of lemma we get by
lemma [5.§]

]—OX)\ ]-OTn# = ]-OX)\ Z qwoL(a‘)LO'Xe(O) (71)
UEF:L
= Z Guou(o) Lo Lo Xe(o)- (7.2)
UEF;L‘A

Here F;Z’ ) is the set of all galleries of type t# starting in A and the last equality holds
since translating a gallery ¢ by A does not change L,. So we have an expansion for
the product in terms of X4 for A € A. But we need the expansion in terms of X 4 for
dominant A to compute the structure constants.

Theorem 7.4. For A\, 1 € XY we have

10 X210 = Walg ™) Z Quwoi(0)ColoXe(o)-
UEFZLY N
Proof. For the proof of this theorem we use lemmas and to show that the
contribution of the galleries with non-dominant weights in the formula is exactly
the contribution of the p,.
First assume A is regular. Then the first generalized alcove of every gallery starting in
A is dominant. Let n € F;Z’ ) be a gallery leaving the dominant chamber. Let v be the
maximal initial subgallery of 1 contained in C and let A be e(y). Then 7 is not folded
after A and the next generalized alcove in 7 is of the form As for some s € S Denote
by Fﬁ; C FZ@ ), the set of galleries starting with 7. By lemma we have that

y qj : Z Ls19X o) = Z Ls10Xc(5).

JEF,J{,J folded at A UEF?YL
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So the contribution of all galleries starting with ~ is the same as the contribution of the
galleries starting with v and staying in C at A, if the contribution of the folding at A
is qs instead of q; — 1. Iteration of this procedure eventually yields

Z L ]_0Xe(g = Z C ]-OXe(U)

oerd oelt ,ocC

which proves the theorem for regular .

If A\ is non-regular we have to apply lemma to obtain the theorem because in this
case the first alcove of a gallery starting in A can be non-dominant. In this case its
contribution has a part coming from the initial direction, which we did not need to
consider in the regular case. But lemma tells us that the contribution arising from
these alcoves is the same as the contribution from the dominant ones. More precisely
we have for w™' € W and v € W,

Z QwowLo’]-OXe(a) = dy Z Qwovaa]-OXe(o)

O'EF;L)\,L(U)Z’LU UEF;)A,L(U):UW
and thus
W)\(q_1> Z QwowLU]-OXe(J) = Z Guoi(o) ]-OXe(a)
UGFL,)\,L(U):IU O’GFL»\,L(O’)EW)\IU

Since the sum over all w™! € W? of the left hand side of the last equation is exactly
the contribution of the galleries starting in C, the theorem follows. m

Remark 7.5. The proofs for multiplying Schur polynomials using paths are of a similar
type as above (see for example [Lit9), section 6]). First one gets a formula involving
also Schur polynomials associated to paths leaving the dominant chamber. Then one
shows that the contributions of the leaving paths cancel each other. This is done by
combinatorial arqguments, i.e. one can see which paths cancel each other. In contrast to
this we do not have any concrete information about this cancellation process.

Now we can prove the first part of theorem [4.10] respectively theorem [1.4. We multiply
the equation of the last theorem from the right by 1o and get by the definition of the
Macdonald basis

-1
N 1
MM, = 2 10 X,10 107,41
YW (g)Walg™) W(g)Wu(q) '
Q,Q\q_ol Z 10X
=0 _ Guoc(o 010 e(o 10
W(q)W#(q) : ot(o) (o)
o€l
2 —1
q)\qwo
= 17 NTi” TN q—wt(o)Quoi(c CO']-Oth o 10
W(@)W,(q) Z O ”
EAE VI
2
= Y @t Buoito) Co Waat() (47 Mast(o)
W) 45

tHOX

"N Cw A (V)M

VGXv



7 Structure constants 35

To prove the second part of theorem [4.10| and thus theorem we need one more step.
It is not possible to impose conditions on the initial direction as in theorem Instead
we impose conditions on the final direction to get rid of the fraction m. For doing
this we need some preparation. The situation is more difficult than the case of Satake
coefficients since now two stabilizers instead of one are involved. So we first need some

information on the interplay between them.

We use the notation for stabilizer subgroups introduced in definition 2.5 Moreover,
for any v € XV let 1, = > .. T be the corresponding symmetrizer. Note that
W = woW,wo and thus q,, = qu,,, and W,(q) = Wieu(q).

Let Y = cw Ru T, € H* with R, € £. Assume Y € ﬂ“lwo# Then R, = Ry, for
any w € W and v € Wiy, and thus Y = ¢,;' 37 cypuwen RuTwlug, since for w € Weor
we have T, 1y, = ZveWwou T and 1, = qillwou

Now let v € XV and take Y of a special form, namely let Y =" ;. R,1,T,. For
w € W denote by w” the minimal element of the coset W, w. In particular (w”)~" € W".
Expanding Y in terms of the T, yields

Y =qu, Y RuTo.

weW
So if in addition Y € ﬂ“lww we get Y = qwuq;i ZweW”O" Rquwlww by the consider-
ations above.

We want to calculate Y'15. We get Y1 = quq;iWM(q) > wewwor Gy Ruvlo and thus

Y1 = qu, W, Z ¢, W Ryl (7.3)
1€WV

where W% = qu Y cmworaw, w q;!. Observe that Wwor N W,w # () iff w € W, Wwor,
In particular, we get for regular v that Wi, =1 if w € W*°* and 0 else.

Now we relate this to our problem. We have W,(q)1oX, = 10X, 1, since T, X, = X, T,
for any w € W,. Moreover,

W (@) 1oTow = 101,15, Ty, Troy = 1075, Ty, 1, Ty = 10T Ty 1, T -

But T, T Ty = Taspw, for all w € W and thus Ty 1, Twy = Lugp: S0 1oTpe € HL .
Consider the contribution of X, in theorem [7.4] given by

d—v
Z Quoi(o C ]-OX (o) — W (q) ]-OX Z Quoi(o) e O’)C ]- T (o)

UEFW N EFZU A)

As already observed before, v + A, C C with v € W iff v™! € W". So the final

directions of the galleries o occurring in the last equation satisfy (c(0))~" € W". If we

define Y := Zoel—\du ) Quou(0)0e(0) Co 1,1 e(») then Y is of the kind considered above. So
th,

we can apply (7.3)) and get

Y Gt ColiTe0lo = quWald™) D duntr)CaWil L.

O'GF?#V/\(V) UGFW NI
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Bringing all this together we can multiply the assertion of theorem from the right
by 1y and get

10X010Tw 1o = o Wia(g HWa(g ™) Z Wq_,,

-1
VEX¥ l/(q )

Z qwob(a)CaW,f,(,U)l()Xula
oGFfu NI
Now we can calculate the coefficient of M, in the product MM, as above. It is equal
to
By D, Gwo) CoWi

UGFW NG

which proves the second part of theorem [£.10] and thus [T.4]

Remark 7.6. Consider the case of equal parameters and let w=' € WY. Then we
have W, = g™ D oW BOR AW, w ¢ '), By definition of W" we have l(v) > l(w) for all
v € Wyw and thus Wy, € L™. Moreover, the constant term of Wy, is 1 iff w € W™k,

Remark 7.7. One can proceed the same way to obtain a formula for the Satake coeffi-
cients as in the second part of theorem [{.8 with a condition on the final direction. For
stating the results we consider again the situation of section @ So X € XY and t s
the type of a minimal gallery from Ay to A,x. Applying the above considerations (for
A instead of p) yields 1oT € He Tyon- A formula for 107> is given by (see the proof

of lemmaﬂ) ZJGF+ Q—wi(0) (o) Qwor(o) Lo Xuwt(o) T e(o). S0 we get
]-OTn)‘ - Q;i Z q—wt(J)QE(J)QwoL(U)Lant(a)Ta(a)1wo)\-
O'EF:_)\
e(o)eEWwor

Multiplying by 1o from the right then yields

= qu Z q— " Z QwoL(U)LUXH]‘O

HEXV GF:A (1)
e(o)eWwor

and thus Ly, = q;i > o€l (u) Guoi(o) Lo -
e(o)eWwor

Moreover, we see that for a LS-gallery o we have (o) € WA,

8 Restriction coefficients

In this section we prove theorem and thus the restriction formula [I.7 The proof
is quite similar to the proof of in the last section so we omit the details.

Let A € XY and denote by t* the type of a minimal gallery from A; to A, as in
section |5, We start with the observation W;(q)1y = 1,1y. So we have

Wi(q) 1T = 1;10T 0 = Z Quou(o) Lol1Xe(o)-

+
UEFt/\
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As in the case of the C}, we now have to reduce the galleries appearing in the formula
to galleries having the final alcove in the J-dominant chamber by replacing L, with
some other polynomial. For this we use the lemmas and and apply them as in
the proof of theorem but this time only for the walls of C”, i.e. for the walls H,
with & € A;. Recall that I'}} is the set of positively folded galleries of type t* contained
in C’. Repeating the steps in this proof we eventually get

Theorem 8.1. For A € XY we have

]-OTn)‘ = QEI Z quL(U)C(}]]-JXe(O')'

J
GGFM

From this the first part of theorem follows since (where as before W[f is the stabilizer
of pin Wy)

1 Th J
M)\ 10Tn>\ 10 = —l q—wi(o)Quoi(o Oo' ]-JXw o 10
W(a)Wa(q) W(a)Wa(q) Z oot "
o} t>‘
1 _
= W Z q*“’t(g)qiwt(a)cz;] Wu{t(a)(q l)M{i{t(a)‘

)\(Q) el

A

Now observe that since e(o) C €’ we have (g(0))™t € W¥"? where by WY we
denote the minimal representatives of W/ W{U]t(a). Applying the considerations after

theorem with W) instead of W, and Wl‘] instead of W, leads to

1 — q— o
10Tn/\ = qwiQJl Z J—# Z QwoL(U)JW)i(L )Cz;]]-JXu]-O-

W7 (g1
pelxy o H (a7 o€l (n)
e(o)eWwwor
where WY, = g, Z'DGW“’OAQWMJU) ¢, . So the second part of theorem [4.13| and theo-

rem follow as above.

Similar to the situation in the last section we have that JW}\‘,{L € L~ and the constant
term is 1 iff w € WwoX,

9 Crystals

In this section we want to show the relationship between our approach and the root
operators defined in [GL05].

Let t be any type and denote by I'; the set of all galleries of type ¢ starting in 0.
In [GLOB, section 6] they define root operators e, and f, on I'; for any o € A and show
that this makes I'; into a crystal in the sense of Kashiwara [Kas95]. If t = t* for regular
A then the set of LS-galleries is closed under the root operators and it is the highest
weight crystal for \. However, for non-regular )\ they regard degenerate galleries, i.e.
not galleries of alcoves but of simplices of smaller dimension. But using some of their
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general results on properties of the root operators and the additional operators é, for
a € A one can show that the LS-galleries for non-regular A are closed under the root
operators and define the highest weight crystal for A.

For stating these results we recall the notion of dimension of a gallery. For ¢ € T'; it is
defined by dim o := l(woi(0)) + Y ,cq0 Ms(0) +14(0), i.e. if we regard the case of equal
parameters we have dim o = [(wot(0)) + deg L.

Now let A € XY. We know from sectionthat dimo < (p, \+wt(0))+1(w,) for o € T
and the galleries of maximal dimension are precisely the LS-galleries. The result we
need regarding the operators é, is the following.

Theorem 9.1 ([GLO5, lemma 7]). Let 0 € T} and a € A.
(i) If éo(0) is defined, then wt(én(c)) = wt(o). Moreover, é,(c) € T} and we have
dimé, (o) = dimo + 1.
(i) If eq(0) is defined, then wt(e,(0)) = wt(o) + a¥ and dime, (o) = dimo + 1.
(i) 1f éa(o)

Let 0 € F:& be a LS-gallery such that e, (o) is defined. By and the maximality of
dim o one gets that é,(o) is not defined. So yields that e, (o) is again positively
folded and from we know that e, (o) is again a LS-gallery. This shows that the set
of LS-galleries is closed under the root operators e,. Since the sum over the weights of
all LS-galleries is sy by they yield the highest weight crystal for A.

is not defined but e, (o) is, then e,(0) is again positively folded.

Remark 9.2. This assertion makes the definition of LS-galleries more plausible. Recall
that we had many choices for the definition and we chose the ones having maximal di-
mension. For any other suitable definition of LS-galleries (in the sense of remark
the last assertion does not have to be true. There exist choices, where the correspond-
ing LS-galleries are not closed under the root operators. In these cases the image of a
LS-gallery under a root operator is not necessarily positively folded.

We want to relate the root operators to H™!. We recall the definition of the root
operator f, for & € A. Let 0 = (Ao, ..., A4;) be a gallery of type t. For 1 <i <[ with
t; € S denote by H; the wall of A; of type t; and set Hy = wt(Ap) and Hy 1 = wt(A;).
Let m € Z be minimal such that there exists H, C H,,. Let j be maximal with
H; C Hypm. If 5 =141 then f,o is not defined. Else let £ > j be minimal such that
Hy, C Hy 1. Then

Jao = (Ao, A1, SamAjy ooy SamAr—1, —a’ + Ap, ..., —a’ + A)).
A careful case by case analysis (we omit the details) yields the following

Lemma 9.3. Let o € T} such that fo(0) is defined. Let ¢ = e(0), eq = e(fa0) and
S = S4-

(i) Assume m = 0. Let k <1+ 1. Then we have ¢, = €. If moreover j =0, h =1
and o € LSy then se > ¢ and f20 is not defined.
Let k =1+ 1. In this case one has e, = se < € and f20 is not defined.
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(ii) Assume m < 0. Ifk <1+ 1 then e, = . Moreover, h = m + 1 iff f20 is not
defined and if h =m + 1 then se > ¢.
Ifk=1+1 thene, = sc < e and f20 is not defined.

Now let o be a LS-gallery such that e,o is not defined, i.e. m = 0. Define pu = wt(o)
and w = (o). Let h = (a, p). Since e, (o) is not defined we have h > 0. The a-string
of o is the set {o, fa0,..., fio} and f**1 is not defined. From the last lemma we get
the following: ¢(fio) = e(o) for all i < h and (f"0) = (o) if s4e(0) > &(0) and
e(flo) = s,6(0) if sae(0) < (o). By the multiplication rules in H™! this yields

h h—1
XWt(faG)T€(fa Z Xy ]aVTwwo + X T Twwo
j:O j= =0

which proves the following theorem using the commutation rule for 7, X -

Theorem 9.4. Under the above hypotheses we have

h
T Xt Tetoywn = D X1y Lot o
=0

Here one should be aware of the fact that the last theorem does not follow immedi-
ately from the existence of root operators since from this existence one gets only the
expansions of the symmetrized versions T}, X Tw

Now one may ask for g-analogs for the last theorem using the L, and replacing T, by
Cy = ¢ YT, + 1) (so C? = C, and the image of C, in H"! is T,) and thus for some
sort of g-analogs of the crystal operators. It does not follow from the commutation
rules in H® that such g-analogs exist. In general it is not true that (under the above
hypotheses)

Cyq H(wot(o ))L X Zq wou(flo ))Lf] Xe(ff Y
7=0

Multiplying this formula from the right by 7., and specializing it would imply the last
theorem. But it is almost true. If one examines the L i asin the lemma above one can
see, that if the formula does not hold, it can be corrected by adding summands at the
beginning or at the end of the a-string. By case by case considerations it can be shown
that these additional summands come from non LS-galleries. But it is far from being
clear how general g-analogs of root operators could be defined so we omit the details
and give just one example in the rank one case. Ram defines such g-analogs in [Ram06]
and introduces g-crystals.

Example 9.5. We continue the examples|{.15 and|5.11 Let again X\ € X7 and start
with t = t*. Denote s = s;. Then the final direction of o(u) is s for u # —\ and the
final direction of o(—\) is id. This yields

gC.X\To=X_\+(¢—-1) Y X,T,+¢X,T..

=A<<
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After multiplying by ¢ the left hand side gets C’sqwo‘("(’\))LU(A)XG(U(A)) and the right
hand side of this equation corresponds term by term to

l (o
> LX) = Loy Xeooan + D Lo Xe(o) + Lo Xeo(r)-

oery —A<p<A

So in this case the above equation really holds since all these galleries are LS-galleries
and constitute a single a-string.

Now start with a minimal gallery from Ay to A;, as in example[5.11. Then one has
for each =\ < p < X a LS-gallery o(p) as above and the additional gallery & which
is nonfolded of weight —\. One has that the final direction of o(u) is id for all u and
e(6) = s. The equation

gCXn = X a(qTs+ (¢ = DTi) + (= 1) Y X+ qX,

=A< <A

then corresponds after multiplying by ¢'»N*1 term by term to

Y VLX) = 4L Xe@)TaLo-nXew-nt Y Lot Xetoy Lo Xeto -

oery —A<p<A

So in this case the above equation does not hold if we restrict to the a-string, i.e. to
LS-galleries. The q-a-string should include also &.

10 Geometric spherical Hecke algebras

In this section we consider spherical Hecke algebras of reductive groups over local fields.
We show that these arise as spherical Hecke algebras of some root datum specialized
at a prime power q. So using theorem we get a new proof of a positivity result
of Rapoport obtained in [Rap00]. For details on reductive groups over local fields see
Tits” survey article [Tit79).

Let IC be a local field with finite residue field k. Denote by w its valuation and let q
be the cardinality of k. For any algebraic group H defined over K denote by H(K) the
group of K-valued points. Let G be a quasi-split connected reductive group over I, i.e.
there exists a Borel subgroup B defined over K. Let S C B be a maximal K-split torus
of G and denote by N its normalizer. Then T' = Z5(S) C B is a maximal torus and
B =T x U where U C B is the unipotent radical. Let ® = (X(S),cﬁ, XV(S),¢~V) be
the restricted root datum of (G, S), i.e. X(S) = Homg(S,G,,) is the character group,
XVY(S) = Homg(G,,, S) the cocharacter group of S and (-,-) : X(5) x XV(S) — Z the
natural pairing. Denote by ¢ (respectively ¢V) the roots (respectively coroots) of G
with respect to S and let V = X(S) ® R. In general, é may be non reduced.

Define X (7T') and XV(T') as above. Then X(7') is a subgroup of finite index in X (S5). We
get amap v : T(K) — XY(T) by demanding that (3,v(t)) = —w(3(t)) for all t € T(K)
and § € X(T). The image X" of v is a free abelian group of rank dimS = dim V.
One has inclusions XV(S) ¢ XV € XY(T). If S is a maximal torus, i.e. G is split,
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then all inclusions are equalities. If G splits over some unramified extension of K then
XY = XY(S). Define X = Homgz(X",Z) C X(S) and denote the pairing between X
and XV induced by (-,-) with the same symbol.

The valuation w induces a filtration on all root subgroups of GG. Using this filtration one
gets a configuration H of hyperplanes in the affine space A underlying V* which is locally
finite. The group W generated by the affine reflections at the hyperplanes in H is called
the affine Weyl group of the pair (G, S). It can also be described as W = N(K)/ker(v)
and one has W = W x XV. Similar as in section [2| one gets a polysimplicial structure
on A. It is the apartment of the Bruhat-Tits building of G(K). Identify V* with A
such that the origin gets a special point for the induced polysimplicial structure on V*.

The Borel subgroup B defines a fundamental alcove containing 0. One gets a set of
reflections S¢ which together with the stabilizer of the fundamental alcove generates .

In general W is neither the extended affine Weyl group of the root datum of (G,S) nor
of the root datum (X, ¢, XV, #"). But there exists a unique reduced set of roots ¢pCX
such that the extended affine Weyl W® group of (X, ¢, XY, ¢") is isomorphic to W, the
collection of hyperplanes H coincides with {H, ., |« € <z§+, m € Z} and the generators
S correspond to S¢ under this isomorphism.

Remark 10.1. Any coroot in ¢V is a positive multiple of a coroot in @Y. But this
multiple may depend on the coroot, even zf¢ 18 reduced and irreducible. But ¢ and q§
give rise to an échelonnage in the sense of Bruhat and Tits [BT72] or an affine root
system in the sense of Macdonald [Mac03].

Let K C G(K) be the stabilizer of the origin of V* in the Bruhat-Tits building of G(K).
It is a special, good, maximal compact subgroup of G. We have the Cartan decompo-
sition G(K) = H)\eXV KAK and the Iwasawa decomposition G(K) = [],cxv U(K)uK.

The spherical Hecke algebra of (G(K), K) is the set of K-biinvariant functions on G(K)
with multiplication given by convolution using a Haar measure giving volume 1 to K.
As a consequence of the Cartan decomposition the spherical Hecke algebra is isomorphic
to the abstract spherical Hecke algebra of W* specialized at q. In this setting M) is the
characteristic function on the double coset KAK. Up to some normalizing factor the
Satake isomorphism is given by integration over U(K) and so the coeflicients L), are
(up to normalization) the measure of the intersections KAK NU(K)uK. In particular,
KXKNU(K)u # 0 iff Ly, # 0. So by our considerations we get a new proof of the
following theorem [Rap00], theorem 1.1].

Theorem 10.2. Let A\, € X such that n < X. Then Ly, > 0. In particular,
KXKNU(K)p # 0 in this case.

Moreover, our approach yields an algorithm to calculate the measure of KAKNU (K) K
explicitly. In contrast to the case of equal parameters we do not get an explicit formula
for the degree of this measure (as a polynomial in q).

Remark 10.3. In this geometric setting the parameters of the Hecke algebra have the
following interpretation: Let I C G be an Iwahori subgroup (i.e. I is the stabilizer of the
fundamental chamber as subset of the affine building of G ). Choose a Haar measure on
G giving volume 1 to I. Then the double cosets Twl have measure gy, for any w € W*.
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The structure constants of H*""* have the following interpretation in this setting: Let
A p,v € XY, Then the coefficient of M, in MyM, is the volume of the intersection
MK K N KvK with respect to a Haar measure giving volume 1 to K. By theorem
it is given by a polynomial in q.

11 Geometric interpretations

In this section we give geometric interpretations of the L-polynomials with equal pa-
rameters and of Demazure multiplicities using the affine flag variety of the Langlands
dual group G of GV. For this we regard a special case of the setting of the last section,
the split case, which in turn yields equal parameters. All Hecke algebras considered in
this section are specialized at a prime power q.

For any linear algebraic group H defined over some field F' and any F-algebra A denote
by H(A) the group of its A-valued points. More explicitly let F|[H] be the coordinate

algebra of H over F'. Then H(A) = Homp_aigebras(F[H], A). Let FF C F’ be a field
extension. Then denote by Hp the linear algebraic group over I’ obtained from H.

Details of the following constructions and their relation to affine Kac-Moody algebras
can be found in Kumar’s book [Kum02]. Let k& be any field and K its algebraic closure.
Let G be the connected reductive algebraic group over K with Borel subgroup B and
maximal torus 7' C B such that the associated root datum is ® and the associated
simple roots are given by A. Let U~ be the unipotent radical of the opposite Borel of
B. Assume that all groups are defined and split over k.

Let K = k((t)) be the field of Laurent series and denote by O = k[[t]] C K the ring
of formal power series. Then K is a local field with residue field k. The valuation
w : K — Z is given by the order in 0. Moreover, O is the corresponding valuation
ring and t is a uniformizing element. The map O — k induces a morphism of groups
ev : G(O) — G(k). Define B = ev™(B(k)). Further we set G = G(K) and let N' C G
be the normalizer of T'(k) in G. Then (G, B,N,T(k)) is a Tits system with Weyl group
We. For all & € ¢ one has a root subgroup U, of Gx together with an isomorphism
Yo : G, — U, defined over K from the additive group. For each n € Z we denote by
U, the image of kt" under ¢, (KC).

The filtration on U, (k) mentioned in the last section is given by the image of the
standard filtration on G,(K) = K, i.e. K, = {f|f € t"O} which corresponds to
Ut = Ilwsn Uam under ¢,. The hyperplane configuration of the last section in this
special case is really {H,., | € ¢,m € Z}.

There are two decompositions of G into double cosets. The first one is given by the
Iwahori decomposition G = [[,, i« BwB. In this case one has the additional property
that for each w € W one gets a subgroup U, C B as a product of certain U, (K)
isomorphic to k“*) such that for any = € BwB there exist unique v € U, and b € B
such that = uwb. If s € S then U; = U,o(K) if s € S and Uy = U_p; if s = s
with § € ©. We denote by ¢, : k — U; the corresponding isomorphism.

On the other hand there is the Iwasawa decomposition G = [], .« U™ (K)wB. Again
one can strengthen this decomposition to obtain uniqueness in the decomposition. But
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this time the resulting subgroups are affine spaces of infinite dimension. These two
decompositions are compared in [BD94].

Theorem 11.1 ([BD94]). For w € W*® and s € S* one has

U~ (C)wl.sB {U_(IC)U)SB i Z:fw < ws
U (K)wBU U (K)wsB if w > ws.

More precisely for w > ws:

U-(K)wsB ifx=0
wps(z)sB € (K Jws z.fx
U-(KywB ifx #0.
Now we can connect these geometric results to the combinatorics. Let w € W® and

let o be a minimal gallery of type ¢t = (¢1,...,t;) which connects A; and A,,. Define a
map 7 : U, — '} as follows: For u € U, define

77<U’> = (Af7Aw17~--7Awk) iff Utl teen tj € Ui(IC)w]B for allj € {1,,]{]}

It follows from the last theorem that n is well defined. For a positively folded gallery o
let m(o) be the total number of positive directions and n (o) the total number of positive
folds. The connection of our combinatorics with geometry is given by

Theorem 11.2 ([BD94]). (i) If o € I} then n~' (o) = k™) x (k*)™),
(ii) If v e W then Bw - BOU(K)v - B = |,ers(a;,a,) nt(o)w - B.

Remark 11.3. In [BD9/|] the cited results are shown for any Kac—Moody group and any
generalized system of positive roots. Theorem 1s then formulated with distinguished
subexpressions instead of positively folded galleries. It should be mentioned that they
prove the above results just in the case that G is semisimple and simply connected since
in this case G(K) fits in the general theory of affine Kac—Moody groups. But the results
one needs for the proof are valid for any reductive group.

All the results above are more or less contained in [GL0J] since one can lift their methods
from the affine Grassmanian to the affine flag variety. Compare also [GL0S, section 3]
for a discussion of the reduction to the simply connected case.

11.1 Geometric interpretation of the L-polynomials

Now let q be any prime power and let £ = [Fy be the finite field with q elements. So we
have a special case (the split case) of the situation of the last section (with G there being
G here). In this case K = G(O) and the resulting Hecke algebra is the specialization
at q of the abstract Hecke algebra of its root datum ® with equal parameters. For any
subset M C G denote by M - B its image in the quotient G/B and by |M - B| the number
of elements. From the last theorem we get

Corollary 11.4. If v,w € W* then |Bw - BN U~ (K)v - B| = Ly(Af, A,).



11  Geometric interpretations 44

Remark 11.5. Looking at positively folded galleries starting in —Ay one can calculate
the number of elements in the intersections B~w - BN U™ (K)v - B in the same way as
in the last corollary. Here B~ is obtained from the opposite Borel B~ of B in the same
way as B from B.

Now we want to give interpretations of the coefficients appearing in the expansion of
TwX)\1p for w € W* and A € XY. Recall that I} is the set of all positively folded
galleries starting in 0 of the type of a minimal gallery joining Ay and A, for v € we.
We showed in [6.2 that

T, X\l = qom) y" g oA N LoX 1, (11.1)
peEXY UGFInA(,u)
t(o)=td

By corollary we have

> Ly=|]]Buwn-BNU (K)ruv-Bl.
UGFITR\ (w) veW
t(o)=1d

The last equation can be stated better considering intersections in the affine Grassma-
nian G/G(O). For v,y € XV define X, = Br, - G(O) N U~ (K)71, - G(O). The group
G(0O) is the parabolic subgroup of G associated to the classical Weyl group W C W¢,

ie. G(O) = |yew BwB. Let m: G/B — G/G(O) be the canonical projection. From
general theory of Tits systems we know that

TBe-s : Bu - B — Bv-G(O)

is an isomorphism iff v is of minimal length in vW and that Bv - G(O) = Bvx - G(O)
for all z € W. Moreover, we have

T (U (K)7, - G(O) = [T U (K)ruz - B.

zeW

A

Since w € W* we have that v = wn? is minimal in vW. Moreover, 7,,, € vW and thus

we get an isomorphism

W‘Bw”A'BmHzeW U= (K)ruz-B . B’UJTL)\ . B N H U~ (IC)T#.f . B — Xw)\,,u
xeW

and thus
| T Bun? - BAU(K)ru0 - Bl = | X .
veW

Combining corollary [11.4] and (11.1)) this yields

TwX21g = g0y Z q7<p’/\+“>|Xw,\,u‘Xu10-
neXxv
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To give a geometric interpretation to the polynomials Ly, we proceed as above. For
A€ XY and p € XV define Z,, = G(O)75 - G(O)NU~ (K)7, - G(O). Using remark
and G(O) = [[,ew B~ wB we get

Zoul = ) 1B wown - BAU(K)7,0 - B

weW?
veW

= Z Lwn/\(_AfaT,uU> = Z Lwnk(_Af’lu)

weW weEWA
veW

= > "L (Av )= Y VL, = Ly,

woweWA gel‘:& (1)
wot(o)EW™

The last equalities follow from the remarks and with v = wy. So in this
geometric setting it is more natural to regard galleries o € F; with «(o) € Whw, =
woW? instead of 1(o) € WA

Here we also see the meaning of the correction factor m: The restriction of the
projection 7 induces a map G(O)7y-B — G(O)7,-G(O) with fibers isomorphic to Py /B
where P, is the parabolic subgroup of G associated to A\. By the Bruhat decomposition

for G we know that |P\/B| = W,(q).
So we obtain as in [GLO5]

Corollary 11.6. For all A € XY and p € XV we have

|Z>\u| = Z ql(wOL(o))Lo-

o€l'ly (n)
L(o)EW A wy,

Of course we would not need the results of this section to prove this corollary. By the
very definition of the geometric Satake isomorphism given by integration over U~ (K)
one knows that the coefficients Ly, are given by the number of points in Z),,.

11.2 Geometric interpretation of dy, and ky,

Now take & = K = C and identify varieties with their closed points. The affine
flag variety G/B and the affine Grassmanian X := G/G(O) can be interpreted as the
set of closed points of an ind-variety defined over C. All isomorphisms mentioned
above then become isomorphisms of complex algebraic varieties. A filtration of X by
finite dimensional projective varieties is given by the generalized Schubert varieties
Xy = G(O)1y-G(O) for X € XY. One knows that dim X, = 2(p, ). Using the
above results we now can give some information on the dimension and the number of
irreducible components of the intersections Xy, and Z,, and relate this to Demazure
multiplicities and Kostka numbers.

Let A € XY and w € W*. Recall the formula (11.1) for the expansion of 7,,X,. We
associate the locally closed irreducible subvariety X, = 7(n~!(c)wn* - B) of X, to a
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gallery o € I'} \(11). By theorem we know that dim X, = deg L,. In particular,
the dimension of dim X, is given by the maximum of {deg L, |0 € T’} (1)} and
the irreducible components of maximal dimension are the closures of the X, such that
deg L, is maximal. But by we know that for o € I'" (1) we have

deg Ly < (p, A + p) — l(wowy) + l(w)

and the number of galleries where we have equality is the Demazure multiplicity dy),.
Moreover, if dy, = 0 then I’:&(u) = (). Bringing this together yields a proof of the

Theorem 11.7. For A € XY, w € W and u € XV the dimension of the intersection
X 18 (p, A+ p) — l(wowy) +1(w) and the Demazure multiplicity dY), is the number of
top dimensional irreducible components of Xy, . These components are given by the
closures X, for o € It (1) such that deg L, is mazimal.

This theorem is some refinement of the geometric results in [GL05]. They associate to
each o € T\ (1) a locally closed subset Y, of Z,, and they show that the closures of
the Y, for o a LS-gallery are the irreducible components of this intersection. Here one
does not have to emphasize the maximality of the dimension since these intersections
are of pure dimension by [MV04].

In we have seen that there is a bijection between the galleries o such that deg L, is
maximal (as in the last theorem) with LS-galleries ¢’ such that «(¢") < w. So one may
ask for the connection between X, and Y, where ¢’ is the corresponding LS-gallery. By
the construction of the bijection o and ¢’ are almost the same, they differ only at the
beginning. So it is enough to compare the contribution of the beginning part of ¢ with
the contribution of the initial direction y of o and thus we work in G(O)/B which we
can identify with the flag variety G/B. Under this identification the contribution of y is
given by B~y- B, an affine space of dimension [(wgy). If we take w € W in corollary
then Bw-B C G(O)/B and identifies to Bw - B and the intersection Bw-BNU~ (K)v-B
for v € W corresponds to Bw - BN B~v - B. This again is the statement that the
L-polynomials for W are nothing else than Deodhar’s R-polynomials which calculate
the last intersection [Deo85]. Applying this to o we get, that the contribution of its
initial part is contained in Bw - BN B~y - B. Moreover, it is open and dense there. So
we have X, C Y,/. In the case w = wy we even get that X, is dense in Y.

Ion showed in [Ton05] a very similar result. Define Y, := G(O)r_, - BNU~(K)1_,, - B
for v, u € XV. He shows

Theorem 11.8 ([Ion05]). For A € XY, w € W* and p € X the dimension of the
intersection Yy . s (p, A — p) + 1(w) +1(wy) and the Demazure multiplicity dY, is the
number of top dimensional irreducible components of Yy .-

The approach in [Ion05] is quite different from ours. We are again in the case of a finite
residue field k& with q elements. There he shows, using his results obtained in [Ton04],
that the numbers |Y,, ,| occur as coefficients of specialized non-symmetric Macdonald
polynomials. He calculates the asymptotic behavior of |Y,, | considered as a function
in q. Using the Lefschetz fixed point formula and results from Deligne’s proof of the
WEeil conjectures he calculates the dimension and the number of irreducible components
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of maximal dimension. In contrast to our approach he does not get a description of the
irreducible components (or some open part of them).

How does this compare to the theorem before? In the same way as above one can
calculate Yy, .| using galleries. For this observe first that G ((’))v B G(O)wv - B for
any v € W and w € W. Since 7_, = wwywo(wn)~! by lemma [2.6{ we get

|Yw>\,u| — Z ql(wob(”))La.

O—GF?—wnA)_l (—p)
e(o)=id

Now let o € I'f (1) with «(0) = id. Recall that these are the galleries describing the
coefficients of X1y in T, X. Translate it by —u and reverse its direction. This yields
a positively folded gallery ¢’ of weight —u with initial direction £(o). Moreover, the
type of o’ is (wn*)~!. We also have L, = ¢~ %»#+(@) [, wwhich can be seen as follows:
The number of foldings is the same for o and o', so it is enough to look at the positive
directions. But the positive directions of ¢’ are the negative directions of o. So if we
denote by m™* and m~ the number of positive respectively negative directions of o we

get Ly = g™ ™" L,. Applying (6.3) to o we get

gt = ewt(@)—U@) 2o -I(E(@)

since (o) = id.

We get a bijection {o € I\ (1) |1(0) =id} — {vy € F(MA) (=p)|ely) =id},o— o

such that
S L=t 3 gleong,
UGFIH)\(IJ‘) O'EF?—wn)\)il(—/l)
t(o)=id e(o)=id
This ylelds agaln for k = Fq) that | X, | = w=lwo)|y,,\ .| and thus it follows from
theorem [11.7) and (6.4) that g~ »*—#~ i(w) ““ ]Y ul =dy —|— R(q) where R € ¢~ L.
This is tle main ingredient in the proof of the last theorem in [Ton05].

Now one may ask for the dimension and the number of irreducible components of
maximal dimension of general intersections Bv - BN U~ (K)w - B. Using corollary
one can calculate these for given v and w by calculating all the corresponding galleries.
But one is interested in formulas not involving galleries as in Such a formula was
asked for by Gortz, Haines, Kottwitz and Reuman [GHKRO5| in the context of affine
Deligne-Lusztig varieties. Unfortunately, our approach cannot yield such a formula.
The difference of this general case to the ones consideres in [11.7]is as follows: There we
had an expansion in the affine Hecke algebra which we could specialize in the nil affine
Hecke algebra. This yields upper bounds on the degrees of the involved galleries (and
works in general). But then we used the fact (following from representation theory)
that a coefficient in H® is non-zero iff the corresponding coefficient in H™' is non-zero
to show that there exist galleries attaining the maximal degree. And the last argument
fails in general.
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11.3 Geometric interpretation of the alcove basis

Now return to the situation & = [Fq. In this case it is well known that the affine Hecke
algebra for specialized q can be interpreted as the algebra of B-invariant functions with
finite support on the affine flag variety with the convolution product (see [IM65]). Using
the second part of theorem one can interpret the U~ (K)-invariant functions as a
module over the Hecke algebra which is a known to be a free H%module of rank one.
This module can be identified explicitly with H® using the alcove basis.

Let F = {f: X — Z} and define H C F as the subset of B-(left)-invariant functions
with finite support. There is a natural action of H on F by right convolution. More
precisely (f *h)(z - B) = 3 g5 f(y)h(y 'x) for all f € F and h € H. Restricting
this action yields an algebra structure on H. Then it is known that H is isomorphic
to the affine Hecke algebra specialized at q. Under this isomorphism the generator T,
corresponds to the characteristic function on Bw - B. Thus F' gets a right H®module.

Let t, € F be the characteristic function on U~ (K)w - B (which in general does not
have finite support) and let M C F' be the subspace spanned by all ,,. Let s € S°
In the same way as one uses the Bruhat decomposition for calculating the structure
constants of I one now can use the second part of theorem to show that M is
closed under the right H®operation and that

tws if w < ws
tyxTs = ]
qlws + (@ — 1)t, if w = ws.

So by lemma [5.2] the map

M — H"
t’U — q<p’wt(Av)>th(AU)Té(Av) = qE?,XA'U

is an isomorphism of right H®modules.

The realization of H® by functions was lifted (via the ’faisceaux-fonctions’ correspon-
dence of Grothendieck) by Springer [Spr82] to a algebra-geometric realization using
sheaves on G/B over C. The characteristic function T, corresponds to the constant
sheaf on the Bruhat cell Bw - B which is a finite dimensional subvariety of G/B. A
similar construction for M is not known.

12 Kostka—Foulkes polynomials

In this section we want to describe a first result concerning the positivity of the co-
efficients of Kostka—Foulkes polynomials. It supports a conjecture concerning these
polynomials. This approach can be seen as a symmetrized version of the approach of
Deodhar in [De0o90]. Consider the case of equal parameters.

Before we proceed, let us shortly describe the conjecture. The Kostka—Foulkes poly-
nomials K, for A\, u € XY are defined as the entries of the transition matrix from
Hall-Littlewood polynomials to Schur polynomials, i.e. s\, = ZueXi K\.P.,(q"). So
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we have K),(1) = ky, since P,(1) = m,. It is known that the coefficients of the
K, are nonnegative |[Lus83|]. Except for type A where there is the formula of Las-
coux and Schiitzenberger, there is no combinatorial proof showing this positivity. Since
K,(1) = k), one is led to the following conjecture. Of course this can be stated using
any combinatorial model for the highest weight representations, but in our case it is
convenient to use galleries. For A € X define LS;x to be the set of LS-galleries in F
where t is the type of a minimal gallery from Ay to A, as in section |4 I

Conjecture 12.1. Let X € XY. There exists a function ¢ : LS;x — 7Z such that
K = ZaeLStA (1) ¢ for any p € XY.

In type A this conjecture is solved by Lascoux and Schiitzenberger using the charge
statistics on semistandard Young tableaus (for a detailed proof see [NR03]). However,
for general type this remains open. We do not solve this conjecture here, but we show
in theorem that certain sums of the K, are given as in the conjecture. However,
we do not have any idea how to split this up.

To state the theorem we need some preparation. Let ¢ be any type. As already
mentioned before there is a crystal structure on I'; introduced in [GL05]. Denote by
HW,; C T'; the set of highest weight galleries with respect to this crystal structure. So
for 0 € HW, we have that ZW Wt = Swi(s) Where the sum is over the irreducible
component of I'; containing ¢. For the statement of the theorem we need one more
statistic on galleries introduced by Deodhar in [Deo90).

Definition 12.2. For a gallery o = (Ao, ..., Ax) of type t the defect d(o) is defined as
d(O’) = {] ‘ tj € S and Aj > Ajtj+1}.

Remark 12.3. If o is completely contained in the interior of the dominant chamber,
then d(o) is the number of positive foldings plus the number of negative directions of o.
In [Deo90] the statistic is more generally defined on subexpressions of a reduced expres-
sion in a Coxeter group. But in our special case suberpressions are nothing else than
galleries of a fized type.

For a gallery o define p(0) = I(e(0)) — I(n*"?)). In particular, p(c) = l(wee(o)) if
wt(o) is dominant and regular. We also need the dimension of a gallery as introduced
in section |4} Recall that dim(o) = l(wt(0)) + deg L,.

Now we can state the theorem. The proof will be given later.

Theorem 12.4. For \,v € XY we have

Z q {p,wt(o ))+dln’l(0’)K o) Z q o)+d(o

o€HW, g€l (v)

This shows that the conjecture is true after replacing the K, by an appropriate sum
and LS-galleries by all galleries. Now the problem remains to split up this equation,
i.e. to identify subsets of I';x such that the corresponding summands sum up to a Schur
polynomial.
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One might hope, that for a highest weight gallery ¢ one has

g lpte b o Z g +d) (12.1)
Y

where the sum on the right hand side is over all galleries in I';»(v) which are in the
irreducible component of ¢ in I';x. But this already fails in type Aj.

But the theorem above gives us a reduction of the conjecture to the following

Conjecture 12.5. There is a second crystal structure on Ty such that (12.1)) holds for
this new crystal structure.

As one can see already in type A; this new structure is by no means unique. This
rephrases the statement that the function ¢ asked for in the first conjecture is not
unique, too.

We now prove theorem [12.4] Define Cs := T + 1 for s € S This is up to a power of
q the Kahzdan-Lusztig element associated to s. For g € Q define Cy = T,. Now let
t = (t1,...,tx) be any type. Define C; = Cy, - ... C;,. We calculate the Schur and
Macdonald expansions of 15C;1, using galleries. Setting ¢t = t* will prove the theorem.

Remark 12.6. Even if w = t1 - ...t is a reduced expression, C; does not depend
only on w but on t. Consider for example t = (s1, S9,81) and t' = (sg, 51, $2) in a root
system of type As, i.e. W = S3. Then t and t' are both reduced expressions for wg,
but Cy = 19 + Tfl and Cy = 19 + Ts22. Howewver, it is not yet clear, if the symmetrized
version does depend only on w. In the example, 1,Ci1y = (W(q)? + ¢*)1o = 1,Cy1y.

We first calculate the Schqr expansion of 15C;1g using the crystal structure on I';. For
a generalized alcove A € A and s € S* we have (using lemma

gXas+Xa ifA<As
XACS: .
Xas+qXa if A= As.

By induction on the length of ¢ we obtain

XaCr= Y ¢ X, (12.2)

UEFtﬂA

where m(o) = > o ms(0) is the number of positive directions and n(o) = > . ns(0)
is the number of positive foldings. Thus we get as in the proof of lemma [5.9

1001y = ¢ T041, = ¢! Z ¢ WX, Cily
weW

=3 e ST gy 1,

weW o€l ,i(o)=w

e Z q_<pth(0)>+dim(a)th(o_) 10

O'Ert
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From theorem 9.1| we know that for any gallery o and any a € A such that f,(o) is
defined one has dim(f,(¢)) = dimo — 1. Since we also have wt(f,(0)) = wt(c) — "
we conclude that —(p, wt(o)) +dim(o) is constant on the irreducible components of the
crystal [';. We thus get

]-OCtlﬂ = Z q—<p,wt(0)>+dim(U)th(U)10 = W(Q) Z q—<p,wt(a)>+dim(U)SWt(o_) ]-0- (123)
el occeHW,

Now we Calcglate the expansion of 1yC;1y with respect to the M,. First observe that
for any v € W* we have

T.0, = Tys, + T, %f vS; > U
q(Tys, +T,) ifvs; <w.

By induction on the length of ¢ we get for v € W* that

T,Cy = Z qd(g)Te(U) - Z ( Z qd(G))Tm‘

o€l xeWe oc€l(v,x)
o starting in A,

where by I';(v,z) we mean the set of all galleries of type ¢ connecting A, and A,.

Remark 12.7. For v = id we have that dert(id@) q™9) is the number of points of the

fiber over x of the Bott-Samelson variety associated to t as stated in [Deo90, proposition
3.9]. A detailed proof can be found in [Gau0l).

We calculate

101 =3 Tl = 3 OO 1= 3 ( 3 qp(o)+d(0))TnH10_
)

oely oel'y neXY  oely(u

But on the other hand 1,C;1, € H*"*. So the coefficients of T},.1, have to be W-
invariant and we can rewrite the last equation as

1
]—OCt]-O = Z W (q)< Z qp(a)+d(a)>10Tnu10
iz

peXY o€l (1)

—W(g) Y ( S qp(a>+d<a>> M,.

peXY oeli(p)

Using the Schur expansion (12.3)) we get the following equation in A, for any type t:

Z q_<p’wt(0)>+dim(a)3wt(0) _ Z q(ﬂ,wt(a))ﬂ)(a)—i—d(a)Pwt(g) (q—l)' (12.4)

ceHW; o€l wt(o) dominant

Setting ¢ = t* this yields theorem by the definition of the K, .

In [De090] Deodhar regards the following general situation. He compares the expansion
of C; in terms of Kahzdan-Lusztig polynomials with the expansion in terms of the
standard basis using subexpressions. In contrast to our situation he does not have
the combinatorial positivity result regarding the KL-expansion of C; and one has no
formula for this expansion.
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Example 12.8. In type Ay the condition for a gallery to be a highest weight gallery is
quite simple. A gallery o is a highest weight gallery iff o is contained in the dominant
half line. In particular, it has to start in Ay.

Let A\ € XY and define k = (p,\). Denote by t* the type of a minimal gallery joining
0 and n*. One calculates that for any o € Ty we have —(p,wt(o)) + dim(c) = k.

So (12.4) in this case is

Z Swt(o) = Z q—<p,>\—wt(a)>+p(a)+d(a)PM(U)(q_l)‘

c€EHW, ) o€l \,wt(o) dominant

But we know s, =3 <, g PP P, (g7Y). Now in the last equation there is only one
summand sy on the left hand side. The corresponding summands on the right hand side
then must satisfy p(o)+d(c) = 0. But the galleries o with p(c)+d(c) = 0 are precisely
the following: Either o starts in Ay, then o has to have some consecutive foldings at the
beginning and no foldings afterwards. Or o starts in —Ay. Then it is non-folded. For
each weight in V(\) there is exactly one such gallery ending there. So the summands
corresponding to them on the right hand side are exactly those summing up to sy and
this is the only possible choice. Fven in this case we do not get a good combinatorial
description of a possible new crystal structure in the sense of the last conjecture.

In [Dye88] Dyer showed a similar result (in the general setting mentioned above) for
universal Cozeter systems.

There is some geometric content hidden in . For this assume ¢ = t* for \ € XY It
encodes two different ways to calculate the number of points (over k = Fy) in the fiber
over U~ (K)v - G(O) of the Bott—Samelson resolution associated to t*. For explaining
this let m» : BS; — G/G(O) the Bott—Samelson resolution, i.e. BS;» is smooth, m is
G(O)-equivariant and the image is X,. For more details see [GLO5].

There are two ways to calculate this fiber: Since 7, is G(O)-invariant, one can calculate
the fiber over all ¢ € X7} and multiply it with |Z,,| = L,,. Then the sum over all x of
these products gives the whole fiber. As mentioned above Gaussent showed in [Gau(1]
that the number of points of the fiber 7rt§1 (1) is given by > 1 ) qX@)+P(@)  This way
of calculating the fiber is contained in the right hand side of ((12.4)) since the sum there
may be written as

22 d )= 30 (30 @) (L a )

peXY oel(w) peXY o€l (w) v<p

=3 g (ZLW Y q a)+pa))y - Y q (pV)<Z| | 17! |>yy
I/EXv u>v o€l x (1) vexy u>v
=Y q I U (O - GO
veXy

The second way to calculate the fiber is as follows: To each gallery o € I';»(v) one can
associate an affine cell B, of dimension dim ¢ in the fiber over 7, (U~ (K)v-G(O)) and
the whole fiber is the disjoint union all these cells [GL05]. So the left hand in (12.4)
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can be rewritten as

S S o S 5 )(Sh)

peXY o€ HWy (1) peXxy oc€HW,» (1) v<p
=3 g (Z 3 qdim<a>+<p,w> kﬂy)yy =5 g ( D a))
veXy u2v o€HW, 5 (p veXy o€l \(v)
=Y g ( 3 \Bgy)yy =3 a P U (K- GO))Y..
veXy g€l (V) veXy

This geometric interpretation seems quite interesting. It leads to he geometric coun-
terpart of the problem of the correct distribution of the summands above: The left
hand side in theorem [12.4] encodes the stalks of the push-forward of the constant sheaf
on BS;». By the decomposition theorem it decomposes as a direct sum of intersection
cohomology complexes ZC, on X, C X, for 1 < X\ whose stalks are given by Kostka—
Foulkes polynomials. Instead of looking at the stalks one can look at the cohomology
of the fiber. This has a natural basis indexed by galleries by [Gau0l] coming from a
Bialynicki—Birula decomposition. Now the question is, if this basis is compatible with
the decomposition in intersection cohomology complexes and how it splits.
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