
 
 
 
 

 
Functional Analysis of the D- and E- subunits 

of photosystem I in Arabidopsis thaliana 

 
 
 
 
 
 
 

Inaugural - Dissertation 
zur 

Erlangung des Doktorgrades 
der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 
 
 
 
 
 
 
 
 
 
 

vorgelegt von 
 

Anna Ihnatowicz 
 

aus Danzig, Polen 
Köln 
2005 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kölner UniversitätsPublikationsServer

https://core.ac.uk/display/12009591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
Die vorliegende Arbeit wurde am Max-Planck-Institut für Züchtungsforschung, Köln-
Vogelsang, in der Abteilung Pflanzenzüchtung und Ertragsphysiologie (Prof. Dr. F. Salamini) 
in der Arbeitsgruppe von PD Dr. D. Leister angefertigt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Berichterstatter: Prof. Dr. Francesco Salamini 
                           Prof. Dr. Ulf-Ingo Flügge 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tag der mündlichen Prüfung: 11. 07. 2005 
 
 
 
 
 
 
 



ABBREVIATIONS 
 
 

 
A. thaliana   Arabidopsis thaliana 
ATP    Adenosine triphosphate 
bp    basepair(s) 
BLAST   basic local alignment search tool 
cDNA    complementary deoxyribonucleic acid 
Chl    chlorophyll 
Ci    curie 
Col-0    Columbia 0 
cTP    chloroplast transit peptide 
d    day 
DNA    deoxyribonucleic acid 
dNTP    deoxynucleotide triphosphoate 
dSpm    defective Suppressor-mutator 
F    fluorescence 
h    hour 
hcf    high chlorophyll fluorescence 
LHCI    light harvesting complex I 
LHCII   light harvesting complex II 
MALDI-TOF  matrix-assisted laser desorption ionization-time of flight 
M    molarity 
min    minute 
mol    mole 
mRNA   messenger ribonucleic acid 
MS    mass spectometry 
NADP(H/+)   nicotinamide adenine dinucleotide phosphate (reduced/oxidised) 
oC    degree Celsius 
PAGE   polyacrylamide gel electrophoresis 
pam   photosynthesis affected mutant 
PAM    pulse amplitude modulation 
PCR    polymerase chain reaction 
PFD    photon flux density 
PSI    photosystem I 
PSII    photosystem II 
qT    state transition quenching 
RNA    ribonucleic acid 
RT-PCR   reverse transcrition-polymerase chain reaction 
rpm    rounds per minute 
s    second 
SDS    sodium dodecyl sulphate 
w/v    weight per volume 
WT    wild-type 
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1. INTRODUCTION 
 
 
 
Life on earth depends on photosynthesis. This is the process, by which light energy is captured 

and subsequently converted to chemical energy. Oxygenic photosynthesis is carried out by 

plants and some algae as well as by cyanobacteria and their relatives. In plants and algae the 

photosynthetic processes are performed in a specialized organelle called chloroplast. It is 

commonly accepted that chloroplasts originated from an ancestral cyanobacterium living in 

symbiosis with a primitive eukaryotic cells (Douglas, 1998).  In addition to photosynthesis 

chloroplasts also carry out other functions such as the synthesis of amino acids, fatty acids and 

lipids, plant hormones, nucleotides, vitamins and secondary metabolites. Moreover, 

chloroplasts are involved in the assimilation of nitrogen and sulphur as well as hosting the 

transcriptional and translational machinery necessary for the expression of their own genome 

(Pesaresi et al., 2001). It can be estimated that about 10 percent of genes in plants are involved 

in photosynthesis (Scheller et al., 2004). Many of these genes have originated from 

cyanobacteria, but plants have also recruited a number of additional proteins for chloroplast 

functions (Abdallah et al., 2000). 
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1.1 Composition of thylakoid membranes 

 
The primary reactions of the oxygen-evolving photosynthesis are performed by four large 

protein complexes: photosystem I (PSI), photosystem II (PSII), ATPase and cytochrome b6/f 

(Figure 1.1). 
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Figure 1.1  
Composition of the thylakoid membrane complexes: Photosystem II (PSII), cytochrome b6/f (Cyt b6/f) 
Photosystem I (PSI), ATP Synthase complex and the soluble electron carriers (plastocyanin, PC; ferredoxin, Fd) 
involved in the light-driven production of ATP and NADPH. The formation of a proton (H+) gradient is also 
shown. Nulear-encoded subunits are indicated in dark-green, while subunits encoded by plastome are indicated in 
light-green color.  
 

In plants and some green algae, these complexes are integrated into the thylakoid membrane of 

the chloroplast. The thylakoid membranes are structurally inhomogeneous. They consist of two 

main domains: the grana, which are stacks of thylakoids, and the stroma lamellae, which are 

unstacked thylakoids and connect the grana stacks (Dekker and Boekema, 2005) (Figure 1.2).  
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                  Reproduced from Staehelin and Arntzen (1986) 
Figure 1.2  

(a) Ultrastructure of young tobacco chloroplast. Two envelope membranes (EM) surround the chloroplast stroma 
(S), where the stacks of thylakoids (grana) (GT) and the stroma lamellae (ST), can be recognized. (PG) 
plastoglobuli are also indicated. (b) Grana (GT) and the stroma lamellae (ST) of a spinach thylakoid membranes.  
 

 

The two domains differ in protein composition and biochemical properties (Albertson, 1995). 

The grana are enriched in photosystem II (PSII) (Figure 1.3), which uses light energy to drive 

two chemical reactions - the oxidation of water and the reduction of plastoquinone. The 

photosystem II complex is composed of more than 25 structurally and functionally distinct 

subunits organized hierarchically (Hankamer et al., 1997 and 1998). Most of the PSII subunits 

are encoded in the chloroplast genome, including the core D1/D2 heterodimer, the chlorophyll-

containing CP43 and CP47 proteins, as well as Cyt b559.  PSII is closely associated with six 

chlorophyll a/b binding proteins which form the light harvesting antenna of PSII (Lhcb1-6) and 

are encoded by the nuclear CAB genes (Jansson, 1994 and 1999). The major light-harvesting 

complex II (LHCII) is trimeric and consists of the Lhcb1-3 proteins containing chlorophyll a/b 

and carotenoids. The minor Lhcb proteins, Lhcb4 (CP29), Lhcb5 (CP26), and Lhcb6 (CP24) 

are monomeric and also contain chlorophyll a/b and carotenoids. Their function is transfer of 

excitation energy from LHCII trimers to the PSII core complex (Yakushevska et al., 2001). 
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                     Reproduced from Trends Plant Sci. 6, 317-26 (2001) 
Figure 1.3  
The topography of thylakoid stacks and heterogeneity in the distribution of photosynthetic complexes. LHCII-rich 
regions of thylakoid are tightly appressed, forming grana. The lateral separation of PSI and PSII arises from the 
interaction of PSII with the membrane-'adhesive’ antenna complex, LHCII. The cyt b6/f complex is present in all 
parts of the thylakoid membrane (Allen and Forsberg, 2001).  
 
 
Protein complexes which contain extended, stromal-phase projections into the aqueous phase 

are excluded from the interior of grana stacks: these are photosystem I (PSI) and ATPase 

(Allen and Forsberg, 2001) (Figure 1.3).  The composition of plant PSI is described more in 

details in Chapter 1.2. Most components of the chloroplast ATP synthase (cpATPase) are 

plastome-encoded, in Arabidopsis, only subunits b', δ, and γ are encoded by nuclear genes 

(Maiwald et al., 2003). ATP synthase produces ATP from adenosine diphosphate (ADP) and 

inorganic phosphate using energy from a transmembrane proton-motive force. Location of PSI 

and ATPase in the stroma lamellae and the surface exposed grana membranes allows NADPH 

and ATP to be immediately released into the stroma. Cytochrome b6/f complex (cyt b6/f) is 

mediating electron transport between the two photosystems by transferring electrons from 

plastoquinol to plastocyanin. In Arabidopsis, cyt b6/f contains at least eight subunits, of which 

six are plastome-encoded. 
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1.2 Structure and function of photosystem I 

Photosystem I (PSI) catalyzes the light-induced transfer of electrons from plastocyanin on the 

lumenal side to ferredoxin (Fd) on the stromal side. The further electron transfer from Fd to 

NADP+, generating NADPH, is catalysed by the Fd: NADP+-oxidoreductase (Haldrup et al., 

2003). The PSI complexes of cyanobacteria and plants are functionally and structurally similar. 

The crystal structures of cyanobacterial (Jordan et al., 2001) and plant PSI (Ben-Shem et al., 

2003) (Figure 1.4) have recently been established. Plant PSI is slightly larger than its 

cyanobacterial pendant (Kitmitto et al., 1997), and trimer formation has been observed only in 

cyanobacteria (Chitnis and Chitnis, 1993).  

 

      
 

                  Reproduced from Nature 426, 630-5 (2003) 

Figure 1.4  
The structural model of plant PSI at 4.4 A°. A view from the LHCI side. Subunits F, G and D are indicated. The 
helix–loop–helix N-terminal domain of subunit F and the N terminus of subunit D unique to plant photosystem I 
are coloured red (Ben-Shem et al., 2003). 
. 
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Eukaryotic PSI is composed of a core complex and a light-harvesting complex (LHC). The 

light-harvesting complex I (LHCI) in plants is composed of four different subunits denoted 

Lhca1 to Lhca4 (Jansson, 1999). However, in the sequenced  genome of Arabidopsis thaliana 

there are additional open reading frames coding for two more LHC type proteins (Lhca5-6) that 

are presumably associated with PSI (Ganeteg et al., 2004). 

In plants, the PSI core complex is formed by 14 different subunits denoted PSI-A to -L and 

PSI-N to -O (Knoetzel et al., 2002; Scheller et al., 2001). Four of them (G, H, N and O) have 

no counterpart in cyanobacteria. In flowering plants, no homologue of the cyanobacterial PSI-

M has yet been discovered. The three subunits PSI-A, -B and -C, which bind the electron 

acceptors, are crucial for PSI function. In Arabidopsis, these proteins together with PSI-I and -J 

are encoded by plastid DNA, whereas all other subunits are encoded by the nuclear genome.  

The stromal ridge of PSI, on which emphasis was put in this thesis, is composed of the PSI-D, -

E and –C subunits. As it was shown by Varotto et al. (2000) Arabidopsis plants lacking one of 

the two PsaE genes show a general decrease in the polypeptide level of the whole stromal ridge 

of PSI, a marked increase in light sensitivity and photoinhibition, as well as significant 

reduction in size. Cynobacterial mutants lacking PSI-E are deficient in ferredoxin-mediated 

NADP+ photoreduction but interestingly they do not differ from wild type when grown under 

normal photoautotrophic conditions (Chitnis et al., 1989). The growth rate of cyanobacterial 

mutants lacking PSI-E is reduced as compared to wild type strain only when grown under low-

light or low-CO2 conditions (Zhao et al., 1993). In contrast, the growth of cynobacterial 

mutants lacking PSI-D is significantly affected (Xu et al., 1994). In Arabidopsis, both PSI-E 

and PSI-D subunits together with PSI-H are encoded by two functional genes. Interestingly, 

there are three subunits in the PSI complex PSI-D, -E and -F, which contain the N-terminal 

extensions specific only for eukaryotes (Figure 1.4). 

Downregulation of individual PSI subunits by antisense or co-suppression strategies together 

combined with the identification of insertion mutants, have provided the basis for the functional 

analysis of almost all nucleus-encoded PSI polypeptides (Haldrup et al., 1999 and 2000; Jensen 

et al., 2000 and 2002; Lunde et al., 2000; Naver et al., 1999; Varotto et al., 2000a and 2002b).  
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1.3 Overview of electron transport 

 
In higher plants, photosynthesis is driven by light-induced electron transfer from the water-

oxidising photosystem II (PSII) to the ferredoxin-reducing photosystem I (PSI). Light energy 

utilized in the primary reactions of the oxygen-evolving photosynthesis is absorbed by a 

number of different chlorophyll-containing proteins. Most of the light energy is absorbed by the 

light harvesting complexes (LHC), which contain the majority of the chlorophylls. The antenna 

pigments transfer excitation energy to the reaction centers that are special chlorophyll 

cofactors, at which a photochemical reaction traps the energy (Heathcote et al., 2002). The 

resulting electrons are transferred through a series of redox reactions to acceptors at 

progressively lower electrochemical potential (Figure 1.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                                    Based on Horton (2003) 

Figure 1.5  
Z-scheme, showing the reduction potentials and electron flow during photosynthesis. Z, electron donor to P680; 
Pha, pheophytin a, electron acceptor of P680; QA, plastoquinone tightly bound to PSII; QB, pool made up of PQ 
and PQH2; Ao, chlorophyll a, the primary electron acceptor of PSI; A1, phylloquinone; FX, FB and FA, iron sulfur 
clusters; Fd, soluble ferredoxin; Fd-NADP+, ferredoxin-NADP+ oxidoreductase; NADP+, oxidised nicotinamide 
adenine dinucleotide phosphate.  
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In the PSII reaction centre, electrons are transferred from the photo-excited primary electron 

donor, chlorophyll P680, to the electron-stabilizing acceptor, plastoquinone QA via a rapid 

oxidoreduction of a phaeophytin molecule. Plastoquinone (PQ) is a small molecule, which 

functions as a mobile electron carrier within the hydrophobic core of the thylakoid membrane. 

The electron of QA is then transferred to a further plastoquinone molecule named QB. The 

reduction of plastoquinone by PSII requires two electrons and two protons creating PQH2. The 

reduced plastoquinone molecule transfers the electrons to the cytochrome b6/f complex, which 

is a membrane-bound protein complex containing four electron carriers. It is made up of 6 

polypeptides which do not bind any chlorophyll. In this complex, electrons are then passed to 

plastocyanin, a small copper-containing protein. The photo-oxidized P680+ species is re-

reduced by an electron coming from the oxidized molecules of water in a reaction that as a by-

product sets free molecular oxygen (Durrant et al., 1995). 

 

In the PS I reaction center the absorbed photon induces charge separation of the primary donor 

of PSI, P700, and the primary chlorophyll A acceptor defined as A0 (Rutherford and Heathcote, 

1985). Each electron is then transported by a series of secondary electron acceptors (the 

phylloquinone molecule named A1 and the (4Fe-4S) center named A2) to the stromal surface, 

where soluble ferredoxin (an Fe-S protein) transfers the electron to FAD and finally to NADP+. 

The oxidised PSI reaction center (P700+) is subsequently re-reduced by plastocyanin (Gross, 

1993). As a net result of the light reaction molecules of NADPH and ATP are synthesized, 

which subsequently provide the energy for the dark reactions of photosynthesis, known as the 

Calvin cycle.  

 

 

 

 
1.4 Chlorophyll fluorescence parameters 
 

The measurement of chlorophyll fluorescence kinetics provides an important and useful tool, as 

to gain information on the organization and function of the photosynthetic apparatus. Light 

energy absorbed by chlorophyll molecules in a leaf can be lost by a number of different 

mechanisms. First of all, it can drive photosynthesis (photochemistry) and excess energy can be 
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dissipated as heat or it can be re-emitted as light-chlorophyll fluorescence. All theses processes 

occur in competition, in a way that any increase in the efficiency of one will result in a decrease 

in the yield of the other two (Maxwell and Johnson, 2000). Generally, fluorescence yield is 

highest when photochemistry and heat dissipation are lowest.  But under normal conditions, 

dissipation as heat represents only a minor contribution to chlorophyll de-excitation. Therefore, 

changes in the fluorescence yield reflect mainly changes in photochemical efficiency.  

The spectrum of fluorescence is different than the spectrum of absorbed light. Therefore, 

fluorescence yield can be quantified by exposing leaves to light of a defined wavelength and 

measuring the amount of light re-emitted at longer wavelengths than that of the absorbed light. 

To quantify chlorophyll fluorescence, the Pulse Amplitude Modulation (PAM) fluorometer 

system has been developed (Schreiber et al., 1986). In this system, the measuring light is 

modulated (high frequency pulses of light) and the detector is tuned in a way that it detects 

fluorescence excited only by the measuring light.  

If the plant is dark-adapted, all functionally competent PSII reaction centers are able to trap 

excitation energy; the reaction centers are in their open state. Under these conditions, the 

energy is transferred from the antennae system to the reaction centers and the fluorescence 

emission is quenched due to the photochemical reactions. This process is called photochemical 

quenching (qP).  

The measurement of chlorophyll fluorescence is started by switching on the measuring light 

and the minimal level of fluorescence (F0) is measured. This light (↑MB, Figure 1.5) is 

sufficiently weak not to drive photosynthetic electron transport. A saturating flash of light is 

then applied (↑ST) which allows measuring the maximum fluorescence level in the dark-

adapted state (Fm). After that the actinic light (↑AL) is switch on in order to drive 

photosynthesis, and at appropriate intervals, further saturating flashes are applied. Values for 

the fluorescence maximum in the light (Fm') can be measured. The level of fluorescence which 

is measured immediately before the next saturating flash is (Ft). At the end of the measurement 

turning off the actinic light (↑AL) allows to measure the minimal fluorescence level (F0') in the 

presence of far-red light. 
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Figure 1.6  
Fluorescence parameters measured by the Pulse Amplitude Modulation fluorometer system (PAM). ↑MB: 
measuring light; ↑ST: saturating flash of light; ↑AL: actinic light. Fluorescence levels and parameters are defined 
more in details in Table 1, Table 2 and in the text. 

 

Table 1.1 

        Fluorescence levels 

F0  the minimal fluorescence level of a dark-adapted leaf 

Fm  the maximum fluorescence level of a dark-adapted leaf 

Fm'  the maximum fluorescence level of a light-adapted leaf 

Ft  the transient fluorescence of light-adapted leaf  

F0'  the minimal fluorescence level in the presence of far-red light 
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Table 1.2 

   Commonly used fluorescence parameters 

ΦII  Quantum yield of PSII  (Fm' – F0')/ Fm' 

qP  Photochemical quenching  (Fm' – Ft)/ (Fm' - F0') 

Fv/Fm  Maximum quantum yield of PSII (Fm – F0)/ Fm 

qN  Non-photochemical quenching 1 - (Fm' – F0')/( Fm – F0) 

 

Photochemical quenching parameters always relate to the relative value of Fm' and Ft (Maxwell 

and Johnson, 2000). One of the most useful parameter in plant physiology research is ΦII. This 

parameter is the quantum yield of PSII that measures the efficiency of PSII and represent the 

fraction of photons used to perform photochemistry. Therefore, it can be used in the research as 

an indicator of the photosynthetic efficiency. 

 

 

1.5 Redox-controlled thylakoid protein phosphorylation  

 

The thylakoid membranes contain several polypeptides that are reversibly phosphorylated. 

Chloroplast phosphoproteins were first found in thylakoid membranes by Bennett (1977, 1980). 

Later, presence of protein phosphorylation was also identified in the soluble stroma (Foyer, 

1985), in the lumen between the inner and outer envelopes of chloroplast (Soll and Bennett, 

1988), in the envelope membranes (Sveshnikova et al., 2000) and recently in soluble plastid 

proteins (Carlberg et al., 2003). 

Phosphorylation of thylakoid membrane proteins is caused by a unique light-induced and 

redox-controlled system (Allen and Bennett, 1981). This redox-dependent thylakoid protein 
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phosphorylation regulates both short- and long-term acclimation of the photosynthetic 

apparatus to changes in environmental conditions.  

On the one hand, plants have to acclimate to long-term light changes by altering the ratio of 

PSII to PSI. The reducing power produced by photosynthetic electron transfer controls the 

translation of main chloroplast-encoded proteins (Danon and Mayfield, 1994). On the other 

hand, short-term changes in light intensity create an imbalance between the excitation and 

electron flow of PSI and PSII. This imbalance results in rapid changes in the redox state of the 

plastoquinoine pool and as a consequence the photosynthetic apparatus might be damaged. 

Reduced PQ promotes back electron flow to PSII resulting in the generation of the harmful 

singlet oxygen and causing photo-inactivation and degradation of its D1 core protein 

(Rutherford and Faller, 2001). Oxygen-evolving organisms have overcome this problem by a 

short-term response called state transition. This mechanism allows plants to balance the 

distribution of absorbed light energy between the two photosystems by moving a mobile pool 

of light harvesting complex from photosystem II (PSII) to photosystem I (PSI) (Haldrup et al., 

2001). LHCII is phosphorylated by thylakoid-bound protein kinase(s) (Bennett, 1991; Depege, 

2003; Bellafiore, 2005) and in its phosphorylated form dissociates from PSII, migrates towards 

the stroma membranes and then finally associates with PSI. After dephosphorylation LHCII 

returns to PSII.  

 

Several studies have been performed in order to identify the redox sensor regulating protein 

phosphorylation in the thylakoid membranes. It was shown that light regulates thylakoid 

protein phosphorylation in at least three different ways. Firstly, several studies which have been 

conducted on the redox-controlled protein phosphorylation of PSII and LHCII proposed that 

plastoquinone functions as a key regulator of thylakoid protein kinase(s) (Bennett, 1991; Allen; 

1992). These studies demonstrated that the membrane protein kinases are activated upon 

reduction of the plastoquinol and its binding to the quinol-oxidation site of a cytochrome b6/f 

complex, which serves as a redox sensor (Vener et al., 1995 and 1997) (Figure 1.7). Secondly, 

also the thiol disulfide redox state has been shown to influence strongly phosphorylation of the 

thylakoid protein, via the chloroplast ferredoxin-thioredoxin system (Carlberg et al., 1999; 

Rintamäki et al., 2000). Thirdly, regulation of thylakoid protein phosphorylation occurs at the 

substrate level. The light-induced conformational changes in the chlorophyll-binding 

membrane proteins expose their respective sites for phosphorylation as it was shown by Zer 
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et al. (1999, 2003). Up to now all of the phosphopeptides in thylakoid membranes were shown 

to be involved either in the regulation of the light energy distribution between the two 

photosystems or in the light-induced turnover of PSII reaction center subunits (Figure 1.7).  

 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              Based on Trends Biochem Sci. 28, 467-70 (2003) 
 
Figure 1.7 
Redox control of kinase(s) activation, thylakoid protein phosphorylation, state transition and signaling gene 
expression. (a) In state 1 LHCII bound to photosystem II. (b) Kinase activation is related to the plastoquinol 
(PQH2): plastoquinone (PQ) ratio. (c) The dimeric cytochrome b6/f complex. Blue arrows indicate protein kinase 
activation [inactivated form (Ki) to activated form (Ka)] via conformational changes of the complex during PQH2 
oxidation. (d) Plastocyanin (Pc) is reduced by cytochrome b6/f and is oxidized by photosystem I (PSI). PSI reduces 
ferredoxin (Fr). (e) Thioredoxins reduced by electron flow from PSI. (f) Activated protein kinase(s) (Ka) 
phosphorylate (light-gray arrows) thylakoid- bound proteins: chlorophyll–protein complexes (green) and 
membrane-bound or extrinsic proteins (cyan). Ka reverts back to Ki. (g) Thylakoid-bound protein TSP9 is released 
from the thylakoid membrane when its three threonine sites are phosphorylated (P3-TSP9) and might signal for 
gene expression. (h) Dissociation of phosphorylated LHCII (P-LHCII) from PSII. (i) P-LHCII binds to PSI (state 
2). (j) Dephosphorylation of P-LHCII and release of inorganic phosphate (P) allows return and binding of LHCII 
to PSII (state 1). Red arrows indicate the state-transition process. Black arrows indicate electron flow (Zer and 
Ohad, 2003).  
 

 
 

Recently, protein phosphorylation was found in PSI for the first time. The phosphorylation site 

identified in vivo in thylakoid membranes of Arabidopsis thaliana by mass spectrometry, is 

localized to the first threonine in the N-terminus of PSI-D1 protein (Hansson and Vener, 2003). 
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In the same study two other phosphorylation sites were identified: one in the acetylated N-

terminus of the minor chlorophyll a-binding protein CP29 and a second, previously 

uncharacterized, nuclear encoded protein, named thylakoid membrane phosphoprotein of 14 

kDa (TMP14). These results extend involvement of the protein phosphorylation in thylakoid 

membranes beyond the photosystem II and LHCII and open a new direction in studies of 

possible PSI regulation by the redox-controlled protein phosphorylation (Hansson and Vener, 

2003).  

 
 
 
1.6 Functional genomics 
 
 
The commonly used term ‘functional genomics’ represents a new phase of genome analysis, in 

which the fundamental strategy is to expand the scope of biological investigation from studying 

single genes or proteins to studying all genes or proteins at once in a systematic fashion (Hieter 

and Boguski, 1997). It involves several modern, high throughput and large-scale techniques 

combined with statistical and computational analysis of the results.  

There is the whole range of current strategies which can be used and which cover the fields of 

genomics, transcriptomics and proteomics (Figure 1.8). The most important procedures are: 

forward genetics, reverse genetics, microarray-based measurements of gene expression, two-

dimensional electrophoresis of proteins, mass spectrometry and bioinformatics (Richmond and 

Somerville, 2000; Somerville and Somerville, 1999). 

The small mustard species Arabidopsis thaliana was the first plant to be completely sequenced 

(Arabidopsis Genome Initiative, 2000). Arabidopsis thaliana has been adopted as a model 

organism in the study of plant biology because of many advantages like: small size, short 

generation time, and high efficiency of transformation (Meinke et al., 1998). It was also chosen 

for sequencing, because it has a highly compact genome of about 130 Mb with little 

interspersed repetitive DNA. It is closely related to many food plants such as canola, cabbage, 

cauliflower, broccoli, turnip, rutabaga, kale, Brussels sprouts, kohlrabi, and radish (Somerville 

and Somerville, 1999). With continued progress in the area of genomics, new molecular 

technologies, and database management, the model plant Arabidopsis thaliana is becoming an 
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important tool for the comparison of conserved processes in eukaryotes and the identification 

of plant specific genes, which might be important for crop improvement. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1.8 
Overview of methods and steps involved in functional genomics analysis. Methods for forward and reverse 
genetics, which link phenotypes with genes, or vice versa, are also indicated.  
 
 
 

There are several collections of mutagenised Arabidopsis populations, which are available 

through public stock centers. The isolation of Arabidopsis mutants via forward and reverse 

genetics linking phenotypes with genes, and vice versa (Figure 1.8), has become the common 

strategy to investigate the biological processes in higher plants.  

 
 
Forward Genetics 
 
The functional analysis of photosynthesis can be carried out by isolating mutants with 

alteration in photosynthetic performance. Identification of photosynthetic mutants can be 

performed in several ways. The most common are based on alteration in pigmentation and 

chlorophyll fluorescence parameters, preferentially on photochemical quenching (Meurer et al., 

1998). Nevertheless it is know that mutation affecting photosynthesis do not necessarily have to 
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show strong and obvious phenotypes. For this class of mutants, other basic parameters of 

chlorophyll fluorescence were used, like non-photochemical quenching (Bradbury and Baker, 

1981) and the effective quantum yield of PSII (Genty et al., 1989).  

 

Reverse Genetics 

Photosynthetic mutants can be also identified by screening large collections of Arabidopsis 

lines mutagenised by random insertions of transposons (Speulman et al., 1999; Tissier et al., 

1999; Meissner et al., 1999) or T-DNA (Krisan et al., 1999).  Their screening in order to obtain 

an insertion in a particular gene of interest is usually performed using PCR-based approaches; 

in which one of the primers is complementary to the target gene and the other to the insertional 

mutagen (Parinov and Sundaresan, 2000). 
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AIM OF THE THESIS 
 
 
 

The aim of this thesis was to understand the function of PSI-D and PSI-E subunits, which are 

located on the stromal face of photosystem I, as well as to uncover the biological significance 

of duplication of genes coding for these subunits. For this purpose knock-out alleles for each 

gene have been identified and approaches of forward and reverse genetics have been used.  

 

In algae and cynobacteria both PSI-D and PSI-E have been shown to play an important role 

during photosynthesis. Consequences of the corresponding mutations in Arabidopsis on general 

thylakoid composition and protein regulation have been investigated by using different 

biochemical techniques, like proteomics and mass spectrometry.  

 

The impact of each PsaD gene, as well as the effect of a complete lack of PSI-D on PSI-D 

function, is characterized in detail in Chapter 3. The structural and functional alterations of PSI 

caused by these mutations are described. 

 

Possible function of PSI-D1 phosphorylation is discussed in Chapter 4. Effects of psad1-1 and 

psae1-3 mutations on protein phosphorylation are described in Chapter 5. The sixth chapter 

describes the effect of a complete lack of PSI-E subunit on growth and fitness of plants. 
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2. MATERIALS AND METHODS 
 

 

2.1 Plant propagation and growth measurement 
Seeds of Arabidopsis thaliana lines were placed on wet Whatman paper in Petri dishes and 

incubated for 3 d at 2-5°C in the dark. This stratification was done in order to break dormancy 

and improve germination rate and synchrony. After cold treatment, seeds were sown in plastic 

trays with Minitray soil (Gebr. Patzer GmbH & co. KG, Sinntal-Jossa, Germany).  Plants were 

grown in the greenhouse under following conditions: day period of 16 h with 20°C and PFD of 

80 µmol photons m-2 s-1; night period of 8 h with 15°C. Fertilisation with “Osmocote plus” 

(15% N, 11% P2 O5, 13% K2O, 2% MgO; Scotts Deutschland GmbH, Nordhorn, Germany) 

was performed according to the manufacturer’s instructions. 

For the analysis of plants after transformation and of psad1-1 psad2-2 double mutants, plants 

were grown on Murashige and Skoog medium containing 2% (for double mutant) or 1% (for 

transformant plants) sucrose in a culture chamber on a 16-h-day period (PFD = 15 µmol 

photons m-2 sec-1 for double mutants, and PFD = 80 µmol photons m-2 sec-1 for transformant 

plants) at 22°C. 

Plant growth was measured by using an integrated digital video image analysis system 

(Abington Partners, Bath, UK) as reported in Leister et al. (1999). 

For the mutant screening, plant trays were transferred 3-4 weeks after germination into a 

climate chamber under short day conditions (day period of 10.5 h with 20°C and constant PAR 

of 200 µmol sec-1 m-2; night period of 13.5 h with 15°C). Plants stayed under these conditions 

for at least 2 d and then the effective quantum yield of PSII was measured.  

 

 

2.2 Automatic screening for photosynthetic mutants of Arabidopsis thaliana 
Screening of a collection of Arabidopsis lines carrying independent insertions of the dSpm 

transposon (the Sainsbury Laboratory Arabidopsis Transposants (SLAT) collection (Tissier et 

al., 1999)) for alterations in the effective quantum yield of PSII (ΦII) was performed by Erik 

Richly as described previously (Varotto et al. 2000b). This screening resulted in the 

identification of the mutant line photosynthesis-affected mutant 62 (pam62). 
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2.3 Isolation of dSpm insertion-flanking sequences 
Isolation of genomic sequences flanking the termini of the dSpm insertion was achieved by 

inverse PCR as described by Tissier et al. 1999 and the insertion site was identified by Erik 

Richly. To amplify regions flanking the dSpm insertions, the primer pair dspm1 and dspm11 

(Tissier et al. 1999) was used. On the basis of this screening the insertion site in psad1-1 was 

identified. 

 

 

2.4 Isolation of T-DNA insertion mutants 
The T-DNA insertion lines for PsaD2, PsaE1 and PsaE2 were identified by screening the T-

DNA populations by PCR using gene specific primers in combination with different T-DNA 

specific primers. Amplifications were performed with Taq polymerase (Roche) and the 

following cycling conditions: initial denaturation for 3 min at 93°C, followed by 35 cycles of 

15 sec denaturation at 93°C, 45 sec annealing at 55°C and 1 min 30 sec elongation at 72°C. The 

PCR products were then separated by a 1% agarose gel. Positive lines were confirmed by 

sequencing the PCR-amplified T-DNA flanking regions and homozygous plants were obtained 

in the T3 progeny also using this PCR based approach. T-DNA populations and primers used 

for screening are listed below; for primers sequences (5´-3´orientation) see Table 2.1. 

The mutant psad2-1 was identified in the SALK collection, (http://signal.salk.edu/; Alonso 

et al., 2003) which is consist of flank-tagged ROK2 T-DNA lines (ecotype Col-0), by using the 

insertion flanking database signal (http://signal.salk.edu/cgi-bin/tdnaexpress). The psad2-2 

mutant was identified in the SALK collection by PCR-screening of the hierarchically pooled 

plant DNA with following primers: PsaD2-226s, PsaD2-185as and for T-DNA: 

pROK2/pBIN19-460as. 

The T-DNA insertion line for PsaE2 was obtained by screening the AFGC population 

(Arabidopsis Functional Genomics Consortium; http://afgc.stanford.edu/), performed by 

Claudio Varotto according to the guidelines described at: http://www.biotech.wisc.edu/New 

ServicesAndResearch/Arabidopsis/ GuidelinesIndex.html. The primers used for this screening 

of the AFGC collection in order to obtain psae2-1 mutants were: E2--923s, E2-1556as and for 

T-DNA left border: JL-202. 
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Insertions within the PsaE1 gene were identified in UWBC collection 

(http://www.biotech.wisc.edu/NewServicesandResearch/Arabidopsis/) by using following 

primers: E1-51539s, E1-53150as, T-DNA right border: Taq3. 
 
 
 
 
 
 Table 2.1 
 
 Primer Name   Sequence (5' 3' orientation) 
 

 PsaD2-226s   GTGGCATGTGGGAAACATATCC 

 PsaD2-185as   CACGTAAAATTCCTCTACTTGTGCT 

 pROK2/pBIN19-460as GTGCCCAGTCATAGCCGAATAGC 

 E2--923s   AATCCAGGGGAAAGCCAAGCAAACACTAT 

 E2-1556as   TTAGCC ACTACATTTGCTATGACCATCAC 

 JL-202   CATTTTATAATAACGCTGCGGACATCTAC 

 E1-51539s    TTTTCGGTAGAAATTTGCACAGA 

 E1-53150as   CAACGTTCTTGAACCAATAGGA 

 Taq3    CTGATACCAGACGTTGCCCGCATAA 

 

 

 

2.5 Sequence analysis 
Sequence data were analysed with the Wisconsin Package Version 10.0, Genetics Computer 

Group, Madison, Wisconsin (GCG; Devereux et al., 1984) and amino acid sequences were 

aligned using ClustalW (Thompson et al., 1994). Chloroplast import sequence predictions were 

carried out using the TargetP program (Emanuelsson et al., 2000). 

For the protein and nucleotide sequence comparison the databases at NCBI 

(http://www.ncbi.nlm.nih.gov) and MIPS (http://mips.gsf.de) were employed. 
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2.6 Analysis of nucleic acids 
 

 

2.6.1 Nucleic acids preparation 

Isolation of Arabidopsis DNA was performed as described in Liu et al., 1995. For RT-PCR 

analysis total plant RNA was extracted from 100 mg of fresh tissues using the RNeasy Plant 

System (Qiagen). Total plant RNA used in Northern analyses was extracted with the TRIzol 

method (InvitrogenTM, life technologies). 

 

 

2.6.2 cDNA single strand synthesis 

First-strand cDNA was synthesized, with oligo (dT) 12-18 primers, using the SuperScript Pre-

amplification System (Invitrogen, Karlsruhe, Germany).  

 

 

2.6.3 Reverse-transcription PCR (RT-PCR) 

Two microliters of first-strand cDNA mixture in a total volume of 20 µl were used for RT-PCR 

amplification. Products obtained by a PCR of 30 cycles with the PsaD1/PsaD2 and 

PsaE1/PsaE2-specific primers as well as control primers for the ACTIN1 gene were analyzed 

on either 4.5% (w/v) polyacrylamide gel or 2% agarose gel. The polyacrylamide gels were 

visualized by silver staining. PsaD gene specific primers used for RT-PCR were: PsaD1/2-

22/22s and PsaD1/2-230/218as. For amplification of PsaE-specific regions the following 

primers were used: PsaE1/2-248/257s, PsaE1/2-395/404as, and PsaE1-53499as. As a control 

primers for the ACTIN1 gene were used: ACTIN1-33s, ACTIN1-994as. See Table 2.2 for the 

sequences of the primers.  

 

 

2.6.4 Northern analysis 

RNA gel blot analysis was performed under stringent conditions (Sambrook et al., 1989) using 

a 32P-labelled PsaD1/PsaD2-specific probe and control probe for the ACTIN1 gene. Signals 

were quantified by using a phosphorimager (Storm 860; Molecular Dynamics, Sunnyvale, CA, 
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USA) and the program image quant for Macintosh (version 1.2; Molecular Dynamics). 

Following primers that anneal to both PsaD genes were used for amplification of the 

PsaD1/PsaD2-specific Northern probe: PsaD1/2-22/22s and PsaD1/2-441/429-as. The 

ACTIN1-specific primers: ACTIN1-33s and ACTIN1-994as were used to obtain control probe. 

See Table 2.2 for the sequences of the primers.  

 
 
 Table2.2 
 
 Primer Name   Sequence (5' 3' orientation) 
 

 PsaD1/2-22/22s  ATCTTCA(A/G)C(C/T)CCGCCATAACAACC 
  
 PsaD1/2-230/218as  GGTGTGTTTGGGTCTAGCTGCGG 
 
 PsaD1/2-441/429-as  CACTCTGTAAAACTGGTAAGTGATC 
 
 PsaE1/2-248/257s  GAGG(G/A)TC(T/C)AAGGTCAAGATTCTA 
  
 PsaE1/2-395/404as  ACTA(T/C)GCATTGGA(T/C)GAGGT(C/G)GAAGA 
 
 PsaE1-53499as  CCTCATCTGAATCTCGAGCC 
 
 ACTIN1-33s   TGCGACAATGGAACTGGAATG 
 
 ACTIN1-994as  GGATAGCATGTGGAAGTGCATACC 
 

 

 

2.7 Complementation of Arabidopsis mutants 
The GATEWAY Technology based on the bacteriophage lambda site-specific recombination 

system was used for cloning and subcloning DNA fragments into an Entry and Destination 

Vectors (http://www.invitrogen.com/content.cfm?pageid= 4072&e=452,440). 

 

 

2.7.1 Complementation of the psad1 mutants 

The binary expression vector pJAN33 (MPIZ) was used to perform the complementation tests 

with PsaD1 and PsaD2 sequences. The vector carries the cauliflower mosaic virus 35S 



Chapter 2  MATERIALS AND METHODS 
   

 23

promoter, a β-lactamase gene providing ampicillin and carbenicillin resistance for selection in 

E.coli and Agrobacterium, and a kanamycin resistance gene as plant selectable marker. To 

amplify full length cDNAs for subcloning, the following primers with 5’-terminal attB sites 

were used: PsaD1-GATEs, PsaD1-GATEas for PsaD1 gene and PsaD2-GATEs, PsaD2-

GATEas for PsaD2 gene (Table 2.3).  
 
 
 
 
 Table 2.3 
 
 Primer Name   Sequence (5' 3' orientation) 
 

 PsaD1-GATEs GGGGACAAGTTTGTACAAAAAAGCAGGCTATG 
GCAACTCAAGCCGCCGGGATCT 

 PsaD1-GATEas GGGGACCACTTTGTACAAGAAAGCTGGGTTTAC 
AAATCATAACTTTGTTTGCCA 
 

 PsaD2-GATEs GGGGACAAGTTTGTACAAAAAAGCAGGCTATG  
   GCAACTCAAGCCGCCGGAATCT 
 
 PsaD2-GATEas GGGGACCACTTTGTACAAGAAAGCTGGGTTTAC 
   AAATCATAAGATTGTTTCCCA 
 
 
 
 
 
 
 
Table 2.4 
 
 Primer Name   Sequence (5' 3' orientation) 
 
 
 
 PsaD1_ala  GCAATCCGCGCCGAGAAAGCTGATTCCTCCGCCG 
 
 PsaD1_asp  GCAATCCGCGCCGAGCCCGATGATTCCTCCGCCG 
 
 PsaD1_mutag_as TTTCTCGGCGCGGATTGCGGTTTTGGTGAA 
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In vitro site-directed mutagenesis was performed by using GeneTailorTM Site-Directed 

Mutagenesis System (InvitrogenTM, Life technologies). For generation of the mutated version 

of the entry clones the following primers were used: PsaD1_ala, PsaD1_asp, and 

PsaD1_mutag_as (Table 2.4). 

 

 

 

2.7.2 Agrobacterium strain 

Agrobacterium tumefaciens genotype GV3101, carrying the helper plasmid pMP90RK, was 

used for Arabidopsis transformation. This strain contains a chromosomal rifampicillin 

resistance gene. The pMP90RK helper plasmid carries a kanamycin resistance gene for 

selection and the vir (virulence) genes, which act in trans to mediate gene transfer into plants 

(Koncz et al., 1990). 

 

 

2.7.3 Agrobacterium-mediated transformation 

Arabidopsis thaliana plants were transformed according to Clough and Bent (1998). Flowers 

were immersed in Agrobacterium suspension containing 5% sucrose and the surfactant Silwet-

77 (0.0005% v/v) for 20 sec. After this dipping, plants were transferred to the greenhouse and 

seeds were collected after 3 weeks. 

 

 

2.7.4 Selection of transformed plants 

After transformation plants were grown on Murashige and Skoog medium containing 1% 

sucrose in a culture chamber under 16-h-day conditions (PFD = 80 µmol photons m-2 sec-1) at 

22°C. Transgenic plants were selected on the basis of their resistance to kanamycin or 

hygromycin and then transferred to soil. Successful complementation was confirmed by the 

measurement of chlorophyll fluorescence and plant growth. In addition, the presence and 

overexpression of the transgene in the complemented mutant plants were confirmed by PCR 

and RT-PCR. 
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2.8 Biochemical Analysis 
 

 

2.8.1 Total protein isolation 

Leaves were harvested in eppendorf tubes, frozen immediately in liquid nitrogen and ground. 

Total proteins were isolated by subsequently grinding in extraction buffer (100 mM Tris pH 

8.0, 50 mM EDTA pH 8.0, 0.25 M NaCl, and 1 mM DTT, 0.75% SDS). Samples were 

vortexed for 10 sec, incubated at 68°C for 10 min and after centrifugation at 15000g for 10 min 

frozen in -80°C. Protein concentration was determined using BIORAD Protein Assay.  

 

 

2.8.2 Preparation of thylakoid membranes 

Leaves from 4-week-old plants were harvested in the middle of the light period and thylakoids 

were prepared as described by Bassi et al. (1985). Leaf material was homogenized in blender in 

cold T1 buffer (0.5% milk powder, 0.4 M Sorbitol, 0.1 M Tricine pH 7.8), sieved through 

nylon membrane into glass beaker and centrifuged at 4°C, 4500 rpm for 10 min. Subsequently, 

pellet was resuspended with a brush in cold T2 buffer (20 mM HEPES pH 7.8, 10 mM EDTA 

pH 8.0) and sample was centrifuged at 10000 rpm for 10 min. Pellet was resuspended in small 

volume of T3 buffer (50% glycerol, 10 mM HEPES pH 7.5, 1 mM EDTA pH 8.0) and the 

thylakoid membrane concentration amount was calculated according to the total chlorophyll 

content as described in Porra et al. (1989). 

 

 

2.8.3 Native and 2D PAGE  

Thylakoid membranes extracted from WT and psad1-1 plants, corresponding to 30 µg of 

chlorophyll, were first fractionated on a non-denaturing lithium dodecyl sulfate polyacrylamide 

(LDS-PA) gradient gels and then on a denaturing SDS-PA gradient (10-16% gel) as a second 

dimension, as described by Pesaresi et al., 2001 and 2002). Proteins were visualized by 

Coomassie staining, and densitometric analyses of the protein gels were performed by using the 

Lumi Analyst 3.0 (Boehringer Mannheim/Roche). Because of the limited amount of psad1-1 
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psad2-1 samples, 2-D gel analysis was performed by using thylakoid membrane samples 

corresponding to 20 µg of chlorophyll. Proteins were visualized by silver staining. 

 

 

2.8.4 Immunoblot analysis 

Protein amounts equivalent to 5 µg of chlorophyll (for psad single-gene mutants; and psae 

single and double mutants), or to 40 µg of total protein (for psad1 psad2 double mutants) were 

loaded for each genotype. Decreasing amounts of WT proteins were loaded in parallel lanes 

(0.8x WT, 0.6x WT and 0.4x WT for psad1-1, psad2-1, and psae single and double mutants; 

0.75x WT, 0.5x WT and 0.25x WT for psad1-1 psad2-1). For immunoblot analyses, proteins 

were transferred to Immobilon-P membranes (Millipore, Eschborn, Germany) and incubated 

with antibodies specific for individual polypeptides of PSI, PSII and LHCI. Phosphorylated 

threonine residues were identified using a phosphothreonine-specific antibody raised in rabbits 

(Cell Signaling Technology Inc.). Signals were detected using the Enhanced 

Chemiluminescence Western Blotting Kit (Amersham Biosciences, Sunnyvale, CA, USA) and 

quantified using the Lumi Analyst 3.0 (Boehringer Mannheim/Roche, Basel, Switzerland). 

 

 

2.8.5 PSI complex isolation 

Thylakoid membranes prepared according to Bassi et al. (1985) were washed twice with 5 mM 

EDTA pH 7.8, spun down at 12000 rpm for 5 min and resuspended in ddH2O. Thylakoids were 

diluted to 2mg/ml with ddH2O, stirred for 10 min at 0°C with an equal volume of 2% β-

Dodecyl maltoside, spun down at 13000 rpm for 5 min and loaded on a 0.4 M sucrose gradient 

(20 mM Tricine-NaOH pH 7.5, 0.06% β-DM, 0.4 M sucrose). After centrifugation at 39000 

rpm for 22 h fractions from the sucrose gradient were collected, frozen and stored at -80°C. 

 

 

2.8.6 Phosphorylation analysis 

 

In vivo phosphorylation 

For the determination of thylakoid proteins phosphorylation in vivo, WT and psad1-1 plants 

were dark-adapted for 16 h. Single leaves were harvested from plants and then placed in Micro 



Chapter 2  MATERIALS AND METHODS 
   

 27

plates with 5 µl of 1mM Tricine-NaOH (pH 10.0 → final pH 7.8) and 10 µCi of [P33] 

orthophosphoric acid. Then leaves were left in the dark for 30 min to incorporate radioactivity. 

Following the incorporation, leaves were exposed to varying light conditions (80 µmol photons 

m-2 s-1, 2 h for low light adaptation, 800 µmol photons m-2 s-1, 2 h for high-light stress and dark 

adaptation). Thylakoids were prepared as described by Haldrup et al. (1999) in the presence of 

the phosphatase inhibitor NaF (10 mM) and separated on SDS-PAGE. Incorporation of 

radioactivity was detected by phosphoimager (Storm 860, Molecular Dynamics). 

 

Detection of phosphoproteins in polyacrylamide gels 

PSI complexes from WT, psad1-1 and psae1-3 mutant leaves were isolated in the presence of 

10 mM NaF (see 2.8.5). Proteins corresponding to 5µg of chlorophyll were separated by a 16-

23% gradient SDS-PAGE as reported by Knoetzel et al. (2002). Proteins were visualized by 

Coomassie staining and Pro-Q® Diamond Phosphoprotein Gel Stain (Molecular Probes). 

Stained gels were visualized using phosphoimager (Storm 860, Molecular Dynamics). 

 

 

2.9 Mass spectrometry 
 

LC-ESI MS/MS 

A Dual Gradient System HPLC pump (Dionex, Amsterdam) including a Famos auto sampler 

and Switchos was connected to a Finnigan LTQ (linear quadrupole ion trap) mass spectrometer 

(Thermo Electron Corp., San Jose, CA). The LTQ was operated via Instrument Method files of 

Xcalibur to acquire a full MS scan between 350 and 2000 m/z followed by full MS/MS scans of 

the three most intensive ions from the preceding MS scan. The heated desolvation capillary was 

set to 180°C. The relative collision energy for collision induced dissociation was set to 35%, 

dynamic exclusion was enabled with a repeat count of 2, a repeat duration of 0.5 min, and a 3 

minutes exclusion duration window. Samples were loaded onto a 15 cm fused silica column. 

The fritless 100 µm capillary was packed in house with Eclipse XDB C18 (Hewlett Packard, 

Palo Alto, CA). The column flow rate was set to 0.15-0.25 µL / min and a spray voltage of 1.8 

kV was used.  
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The buffer solutions used for the chromatography were 5% ACN (acetonitrile); 0.012% HFBA 

(heptafluorobutyric acid); 0.5% acetic acid (buffer A), 80% ACN; 0.012% HFBA; 0.5% acetic 

acid (buffer B). After equilibration for 5 min with buffer A, a linear gradient was generated 

within 60 min.  

 

Protein Identification 

The SEQUEST algorithm was used to interpret MS/MS spectra. Results were interpreted on the 

basis of a conservative criteria set, i.e. only results with DCn (delta normalized correlation) 

scores greater than 0.1 were accepted, all fragments had to be at least partially tryptic and the 

cross-correlation scores (Xcorr) of single charged, double charged or triple charged ions had to 

be greater than 1.8, 2.5, or 3.5. Spectra were manually evaluated to match the following 

criteria: Distinct peaks with signals clearly above noise levels, differences of fragment ion 

masses in the mass range of amino acids, and fulfilment of consecutive b and y ion series.  

 

 

2.10 Chlorophyll fluorescence measurements 

The procedure used to identify mutants that showed a change in ΦII, the effective quantum 

yield of PSII (ΦII = (Fm' - F0')/Fm'), has been described before by Varotto et al. (2000a and 

2000b). In vivo Chl a fluorescence of single leaves was measured using PAM 101/103 (Walz, 

Effeltrich, Germany) as described by Varotto et al. (2000a). To determine the maximum 

fluorescence (Fm) and the (Fm - F0)/ Fm ratio (=Fv/Fm) 0.8-sec pulses of white light (6000 µmol 

photons m-2 sec-1) were used. A 15-min illumination with actinic light (65 µmol photons m-

2 sec-1 for single-gene mutants and WT grown on soil; 15 µmol photons m-2 sec-1 for double 

mutants and WT grown in sterile culture) was used to drive electron transport between PSII and 

PSI before measuring ΦII, qN (non-photochemical quenching = 1 - (Fm' - F0')/(Fm - F0)), and qP 

(photochemical quenching = (Fm' -  Fs)/( Fm' -  F0')). 

State transitions were also measured with the PAM 101/103 fluorometer (Walz, Effeltrich, 

Germany). After 30-min incubation in the dark, the maximum fluorescence (Fm) of leaves was 

measured by using a saturating light pulse (0.8 sec, 6000 µmol photons m-2 sec-1). Leaves were 

subsequently illuminated for 20 min with blue light (80 µmol photons m-2 sec-1) from a Schott 

KL-1500 lamp equipped with a Walz BG39 filter. The maximum fluorescence in state 2 (Fm
2), 
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was then measured. Next, state 1 was induced by switching to far-red light (Walz 102-FR; peak 

emission 730 nm, 90 µmol photons m-2 sec-1), and Fm
1 was recorded 20 min later. qT was 

calculated according to the equation: qT = (Fm
1-  Fm

2)/ Fm
2 (Jensen et al., 2000). 

A dual-wavelength pulse-modulation system (ED-P700DW; Walz, Effeltrich, Germany) was 

used to record changes in the absorbance of P700+. Leaves were illuminated with background 

far-red light, and immediately after full oxidation of P700, a saturating blue-light pulse 

(50 msec) was applied (XMT-103; Walz, Effeltrich, Germany) to reduce P700+. Parameters 

t1/2red and t1/2ox were calculated from the recorded kinetics of P700 reduction and re-oxidation. 

 

 

2.11 Pigment analyses 
Pigments analyses performed by Dr. Peter Jahns were analyzed by reversed-phase HPLC as 

described previously by Färber et al. (1997). For pigment extraction, leaf discs were frozen in 

liquid nitrogen and disrupted in a mortar in the presence of acetone. After a short 

centrifugation, pigment extracts were filtered through a 0.2-µm membrane filter and either used 

directly for HPLC analysis or stored for up to 2 d at -20°C. 

 

 

2.12 Expression profiling 
The 3292-GST array, representing genes known or predicted to encode proteins featuring a 

chloroplast transit peptide (cTP), has been described previously by Richly et al. (2003). At least 

three experiments with different filters and independent cDNA probes derived from plant 

material corresponding to pools of at least 50 individuals were performed for each condition or 

genotype tested, thus minimizing variation between individual plants, filters or probes. cDNA 

probes were synthesized by using a mixture of oligonucleotides matching the 3292 genes in 

antisense orientation as primer, and hybridized to the GST array as described by Kurth et al. 

(2002) and Richly et al. (2003). Images were read using the Storm phosphorimager (Molecular 

Dynamics). Hybridization images were imported into the arrayvision program (version 6; 

Imaging Research Inc.), where artefacts were removed, background correction was performed 

and resulting values were normalized with reference to intensity of all spots on the array (Kurth 
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et al., 2002; Richly et al., 2003). In the next step, those data were imported into the arraystat 

program (version 1.0 Rev. 2.0; Imaging Research Inc.) and a z-test (nominal αset to 0.05) was 

performed to identify statistically significant differential expression values as described by 

Pesaresi et al. (2003a). The above DNA array analyses were performed by Angela Dietzmann, 

Alexander Biehl and Erik Richly.  
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3. CHARACTERIZATION OF PSI-D MUTANTS  
    
 
In Arabidopsis thaliana, the D-subunit of photosystem I (PSI-D) is encoded by two functional 

genes, PsaD1 and PsaD2, which are highly homologous. Knock-out alleles for each locus have 

been identified by a combination of forward and reverse genetics. The impacts of each PsaD 

gene, as well as the effect of a complete lack of PSI-D, on PSI-D function have been 

characterized in detail on the basis of the molecular, physiological and biochemical approaches. 

The structural and functional alterations of PSI caused by these mutations are described. 

 
 
 
RESULTS 
 
3.1 Identification and phenotype of PSI-D mutants  
 
 
A mutant line for the PsaD1 gene was identified by screening the SLAT collection of T-DNA 

insertion lines (the Sainsbury Laboratory Arabidopsis Transposants collection; Tissier et al., 

1999) for alterations in the effective quantum yield of PSII (ΦII; Varotto et al., 2000b). This 

line carrying independent insertion of the dSpm transposon was named photosynthesis-affected 

mutant 62 (pam62). The photosynthetic lesion was inherited as a recessive trait, which was 

confirmed by segregation analysis. Isolation of genomic sequences flanking the termini of the 

dSpm insertion was achieved by inverse PCR as described by Tissier et al. (1999), and the 

insertion site was identified. The dSpm transposon insertion is located in the unique exon of the 

PsaD1 gene (At4g02770) coding for PSI-D (Figure 3.1a). Accordingly the mutant pam62 was 

designated psad1-1. 

 

In Arabidopsis thaliana there is second gene coding for PSI-D (PsaD2, At1g03130), which is 

highly homologous to PsaD1. The amino acid sequences of two Arabidopsis proteins, PSI-D1 

and -D2, share 96% of similarity and 95% identity (Figure 3.2). The N-terminal chloroplast 

transit peptide of higher plant and Chlamydomonas PSI-D, which is shown in Figure 3.2 

(domain I) was either experimentally determined (spinach, tomato, barley, Chlamydomonas) or 

predicted by the TargetP program (Arabidopsis, rice). After cleavage of predicted chloroplast 

transit peptides the proteins PSI-D1 and -D2 differ only in the highly variable plant-specific N-
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terminal extension (domain II in Figure 3.2). This N-terminal extension of the higher-plant 

proteins is rich in alanine and proline and highly diversified. The C-terminal domain of PSI-D 

from higher plants is highly similar to the corresponding segment of algal and cyanobacterial 

PSI-D proteins (domain III in Figure 3.2).  

 

In order to establish the photosynthetic functions of both PsaD genes, the database signal 

(http://signal.salk.edu/cgi-bin/tdnaexpress; Alonso et al., 2003) was searched for insertions in 

the PsaD2 gene. Firstly, a line was identified that carried a copy of the 5.2-kbp ROK2 T-DNA 

inserted 36 bp 5' to the ATG of the PsaD2 gene, and this mutant line was designated psad2-1 

(Figure 3.1b). During the screening of the SALK collection of T-DNA lines for insertions in 

the PsaD2 locus, using the PCR approach described in Materials and Methods, a second psad2 

mutant allele was identified. This line was isolated from the pool CS61661, and designated 

psad2-2. This second mutation also derived from a ROK2 T-DNA inserted 107 bp 5' to the 

ATG of the PsaD2 gene (Figure 3.1b).  

 

 
 

 
                                                                 

WILDTYPE  GCCGCCGCT GCAGCCCGCT
psad1-1   GCCGCCGCT ( ) GCAGCCCGCT gctdSpm

627

psad1-1

166

dSpm 3’5’

PsaD1

(a)

615

psad2-1

psad2-2

-36

-107

ROK2

ROK2

LB

LB

RB

RB

PsaD2

(b)

 
 
 
 

 
Figure 3.1 
Tagging of the PsaD1 and PsaD2 genes. (a) In psad1-1, the PsaD1 gene (At4g02770) is disrupted by an insertion 
of the non-autonomous dSpm element (Tissier et al., 1999). Upper case letters indicate plant DNA sequences 
flanking the dSpm element, bold uppercase letters indicate the transposon target site in WT and the duplicated 
target site is indicated by bold lowercase letters. (b) The psad2-1 and psad2-2 mutants carry insertions of the 5.2-
kbp pROK2 T-DNA (http://www.signal.salk.edu) in the promoter region of the PsaD2 gene (At1g03130).The 
dSpm and T-DNA insertions are not drawn to scale.  
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(I) (II) 
  

 
     AtPSI-D1       --MATQAAGIFNSAIT---TAATSGVKKLHFFSTTHRPKSLSFTKTAIR--44  -AEKTDSSAAAAAAP-ATKEAPVGFTPP70 
     AtPSI-D2       --MATQAAGIFSPAIT---TT-TSAVKKLHLFSSSHRPKSLSFTKTAIR--43  -AEKTESSS---AAP-AVKEAPVGFTPP66 
     spinach        MAMATQATLFSPSSLSSAKPIDTRLTTSFKQPSALSFASKPASRHHSIRA-50  -AAAAEGKA---ATPTETKEAPKGFTPP74 
     tomato         MAMATQASLFTPPLSV-PKSTTAPWKQSLVSFSTPKQLKSTVSVTRPIRAM50  -AEEAPAAT-------EEKPAPAGFTPP70 
     barley         MAMATQASAATRHLIT---AAWSPSAK--PRPATLAMPS-SARGPAPLF--43  -AAAPDTPAP--AAPP-AEPAPAGFVPP67 
     rice           MAMATQASAAKCHLL----AAWAP-AK--PRSSTLSMP--TSRAPTSLR--40  -AAAEDQPAA--AATEEKKPAPAGFVPP65 
     Chlamydomonas  --MAVMMRTQAPAATR------AS--S---RVAVAARP--AARRAVVVRA-35  EAEAAPAAA---K---KAAEKPAWTVP-56 
 
                                                       (III)                                         
 
                                                                                    ┌────────o─o── 
     AtPSI-D1       ---QLDPNTPSPIFAGSTGGLLRKAQVEEFYVITWNSPKEQIFEMPTGGAAIMREGPNLLKLARKEQCLALGT-RLRS--KYK 
     AtPSI-D2       ---QLDPNTPSPIFAGSTGGLLRKAQVEEFYVITWNSPKEQIFEMPTGGAAIMREGPNLLKLARKEQCLALGT-RLRS--KYK 
     spinach        ---ELDPNTPSPIFAGSTGGLLRKAQVEEFYVITWESPKEQIFEMPTGGAAIMREGPNLLKLARKEQCLALGT-RLRS--KYK 
     tomato         ---QLDPNTPSPIFGGSTGGLLRKAQVEEFYVITWESPKEQIFEMPTGGAAIMRQGPNLLKLARKEQCLALGT-RLRS--KYK 
     barley         ---QLDPSTPSPIFGGSTGGLLRKAQVEEFYVITWTSPKEQVFEMPTGGAAIMREGPNLLKLARKEQCLALGN-RLRS--KYK 
     rice           ---QLDPNTPSPIFGGSTGGLLRKAQVEEFYVITWTSPKEQVFEMPTGGAAIMREGPNLLKLARKEQCLALGT-RLRS--KYK 
     Chlamydomonas  ---TLNPDTPSPIFGGSTGGLLRKAQTEEFYVITWEAKKEQIFEMPTGGAAIMRQGPNLLKFGKKEQCLALTT-QLRN--KFK 
     Guillardia     MSETLNLQIPSPTFEGSTGGWLRAAETEEKYAITWTSPKEQVFEMPTGGAAIMRKGENLLYLARKEQCLALGT-QVKT--SFK 
     Odontella      --MTLNLQTPFPTFGGSTGGWLRAAEVEEKYAITWTSKKEQIFEMPTGGAAIMRNGENLLYLARKEQCLALGT-QLRT---FK 
     Porphyra       MPDTINLNMPSPTFGGSTGGWLRAAEVEEKYAITWTGKNESKFEMPTGGTATMRDGENLLYLAKKEQCLALGT-QLKG--KFK 
     Mastigocladus  --MAETLSGQTPIFGGSTGGLLKKAEVEEKYAITWTSPKEQVFEMPTGGAAKMRQGQNLLYLARKEQCIALGS-QLR---RLK 
     Nostoc         --MAEQLSGKTPLFAGSTGGLLTKANVEEKYAITWTSPKAQVFELPTGGAATMNQGENLLYLARKEQGIALGG-QLR---KFK 
     Synechococcus  ---MTTLTGQPPLYGGSTGGLLSAADTEEKYAITWTSPKEQVFEMPTAGAAVMREGENLVYFARKEQCLALAAQQLR---PRK 
     Synechocystis  ---MTELSGQPPKFGGSTGGLLSKANREEKYAITWTSASEQVFEMPTGGAAIMNEGENLLYLARKEQCLALGT-QLRTKFKPK 
                                                                                    └───────────── 
                                               (III)                                         
 
                    ─ basic domain ─┐ +  +    ++  + +                      
     AtPSI-D1       IT-YQFYRVFPNGEVQYLHPKDGVYPEKANPGREGVGLNMRSIGKNVSPIEVKFTGKQSYDL---208 
     AtPSI-D2       IT-YQFYRVFPNGEVQYLHPKDGVYPEKANPGREGVGLNMRSIGKNVSPIEVKFTGKQSYDL---204 
     spinach        IK-YQFYRVFPSGEVQYLHPKDGVYPEKVNPGRQGVGLNMRSIGKNVSPIEVKFTGKQPYDL---212 
     tomato         IN-YQFYRVFPNGEVQYLHPKDGVYPEKVNPGREGVGQNFRSIGKNKSAIEVKFTGKQVYDI---208 
     barley         IA-YQFYRVFPNGEVQYLHPKDGVYPEKVNAGRQGVGQNFRSIGKNVSPIEVKFTGKNSFDI---205 
     rice           IN-YQFYRVFPNGEVQYLHPKDGVYPEKVNAGRQGVGQNFRSIGKNVSPIEVKFTGKNVFDI---203 
     Chlamydomonas  LT-PCFYRVFPDGKVQYLHPADGVYPEKVNAGRVGANQNMRRIGQNVNPIKVKFSGRMMSPAEI-196 
     Guillardia     ITDYKIYRIFPSGEVQYLHPKDGVFPEKVNPGRIGVGNVSHSIGKNLNPAQIKFTNKSFCD----141 
     Odontella      INDYKIYRIFPSGEVQYLHPKDGVFPEKVNPGRTSVNSRGFSIGKNPNPASIKFSGITTYES---139 
     Porphyra       ISDYKIYRVFPNGEVQYLHPKDGVFPEKVNAGRASINSVDHSIGKNVNPINVKFTNKATYD----141 
     Mastigocladus  ITDYKIYRIYPNGETAYIHPADGVFPEKVNPGRQKVRYNDRRIGQNPDPAKLKFSGVATYDAPNP142 
     Nostoc         ITDYKIYRIFPNGETTFIHPADGVFPEKVNEGREKVRFVPRRIGQNPSPAQLKFSGKYTYDA---139 
     Synechococcus  INDYKIYRIFPDGETVLIHPKDGVFPEKVNKGREAVNSVPRSIGQNPNPSQLKFTGKKPYDP---139 
     Synechocystis  IQDYKIYRVYPSGEVQYLHPADGVFPEKVNEGREAQGTKTRRIGQNPEPVTIKFSGKAPYEV---141 

                    ────────────────┘ 

 
 
 
 
Figure 3.2 
Comparison of PSI-D protein sequences from higher plants, algae and prokaryotes. The amino acid sequences of 
the Arabidopsis PSI-D1 and -D2 proteins (Accession numbers: At4g02770 and At1g03130) were compared with 
those of PSI-D from spinach (GI:19855891), tomato (GI:82100), barley (GI:478404), rice (GI:29367391) and with 
PSI-D sequences from the green alga Chlamydomonas reinhardtii (GI:498824), the red alga Porphyra purpurea 
(GI:2147918), the cryptophyte alga Guillardia theta (GI:3603032), the chlorophyll a/c containing alga Odontella 
sinensis (GI:7443141) and from four cyanobacterial species: Nostoc sp. PCC 8009 (GI:5052771), Synechocystis 
sp. PCC 6803 (GI:16329280), Synechococcus sp. (GI:47576) and Mastigocladus laminosus PCC 7605 
(GI:2160762). Black boxes indicate strictly conserved amino acids; shaded boxes closely related amino acids. The 
symbol '+' refers to amino acid residues involved in the binding of ferredoxin (Bottin et al., 2001; Hanley et al., 
1996; Lagoutte et al., 2001); circles highlight lysine residues of the basic domain, which are important for the 
interaction of PSI-D with other PSI subunits (Chitnis et al., 1997).   
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Under greenhouse conditions, psad1-1 plants had light-green leaves and were notably reduced 

in size compared to wild type (WT) plants; in contrast, both psad2 lines showed WT-like 

growth and leaf coloration (Figure 3.3a). When the growth rates of the two single-gene mutants 

psad1-1 and psad2-1 were compared to that of WT plants (Leister et al., 1999), growth of 

psad1-1 plants was found to be substantially reduced compared to the mutants psad2-1 and 

psad2-2 (data not shown), and WT plants (Figure 3.3b).  
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Figure 3.3 
Phenotypes of psad1-1 and psad2-1, psad2-2. (a) WT, psad1-1, psad2-1 and psad2-2 plants (4 weeks old) were 
grown in the greenhouse under long-day conditions. (b) Growth kinetics of psad1-1 and psad2-1 mutants 
compared to WT. Thirty-six plants of each genotype were measured during the period from 8 to 20 days after 
germination. Mean values ± SDs (bars) are shown.  

 

Crosses were carried out between psad1-1 and psad2-1 and homozygous F2 double-mutant 

plants were identified. The psad1-1 psad2-1 double mutants were lethal when grown on soil, 

but could be propagated in axenic culture on medium supplemented with sucrose (Figure 3.4a). 

Heterotrophically grown double mutants had yellowish leaves, remained very small and 

exhibited a high-chlorophyll-fluorescence (hcf) phenotype, similar to the mutant phenotypes 
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previously observed by Meurer et al. (1996). This indicates that the absence of PSI-D causes a 

block in photosynthetic electron flow (Figure 3.4b). In addition, double mutants were highly 

photosensitive and could only be propagated under low-light conditions (photon flux density, 

PFD = 15 µmol photons m-2 sec-1). 

 

       

Col-0 d1 d2
(a)

(b)

 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 3.4  
WT and psad1-1 psad2-1 
double mutant plants (d1 d2) 
grown on sucrose-containing 
MS medium and illuminated 
with white light (a) or UV light 
(b). 

 

3.2 Expression of PsaD in wild-type, single and double mutant plants 

 

Northern analysis using a PsaD specific probe revealed a marked decrease in the level of PsaD 

mRNA in psad1-1, and a slighter decrease in psad2-1 (Figure 3.5a). In order to discriminate 

between PsaD1 and PsaD2 transcripts reverse-transcription PCR (RT-PCR) analyses were 

performed. Products obtained after PCR for 30 cycles with PsaD1/PsaD2 specific primers and 

control primers for the ACTIN1 gene in the same reactions were analysed on a 4.5% (w/v) 

polyacrylamide gel. The products derived from transcripts of the two PsaD genes differ in size 
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by 12 bp. After visualization by silver staining it have been shown that in psad1-1 mutant, 

PsaD1 transcript accumulation was completely suppressed, and that in psad2-1 and psad2-2, 

the transcript of PsaD2 was not detectable (Figure 3.5b). In the psad1-1 psad2-1 double 

mutant, the accumulation of both forms of PsaD transcripts was completely suppressed (Figure 

3.5c). As a control, PCR with genomic WT-DNA was performed. The difference in size of the 

ACTIN1 WT (DNA) band is because of the presence of two introns in the genomic amplicon.  
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Figure 3.5 
Expression of PsaD mRNA in mutant and WT plants. (a) Northern analysis of PsaD transcripts. Aliquots (20 µg) 
of total RNA were hybridized with a mixture of PsaD1 and PsaD2 cDNA fragments. To control for variation in 
loading, the blots were probed with a cDNA fragment derived from the ACTIN1 gene. (b) Detection of PsaD1 and 
PsaD2 transcripts by RT-PCR. WT and mutants single strand cDNA were amplified with PsaD1/D2 specific 
primers and analysed on a 4.5% (w/v) polyacrylamide gel. (c) Detection of PsaD transcripts by RT-PCR. Products 
amplified with primers recognizing both PsaD transcripts were analysed on a 2.0% agarose gel. As a control, PCR 
with genomic WT-DNA was performed.  



Chapter 3      PSI-D KNOCKOUTS 
   

 37

3.3 Increased dosage of the PsaD2 gene can complement the psad1-1 mutation 
 

The almost identical sequence of the two mature PSI-D proteins suggested that PSI-D1 and -D2 

have redundant functions. An experiment was carried out to complement the psad1-1 mutation 

by introducing into the mutant background either the PsaD2 (Figure 3.6) or the PsaD1 (Figure 

3.7) gene under transcriptional control of the 35S promoter.  
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cDNA DNA

(b)

 
 
 
Figure 3.6 
Complementation test. (a) 4-week-old WT plants, psad1-1 mutants and T2 generation of WT control and psad1-1 
mutant plants transformed with PsaD2-cDNA fused to the 35S promoter. (b) Presence and overexpression of the 
transgene in the complemented mutant and WT control plants was confirmed by PCR and RT-PCR. Products 
obtained after PCR for 30 cycles with primers specific for transgene (PsaD1/2-441as and pJAN33) were analysed 
on a 2.0% agarose gel. The differences in size between cDNA and DNA are because of the presence of one intron 
in the vector which was used for complementation test. As a control, PCR with control primers for the ACTIN1 
gene were performed.  
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Figure 3.7  
Complementation test. (a) 4-week-old WT plants, psad1-1 mutants and T2 generation of WT control and psad1-1 
mutant plants transformed with PsaD1-cDNA fused to the 35S promoter. (b) Presence and overexpression of the 
transgene in the complemented mutant and WT control plants was confirmed by PCR and RT-PCR (see Figure3. 
6b for details).  
 
 
Increased dosage of either PsaD1 or PsaD2 in psad1-1 could, in fact, restore the WT 

phenotype. In particular, the effect of the psad1-1 mutation on effective quantum yield of PSII 

(WT, 0.76 ± 0.01; psad1-1, 0.52 ± 0.03; 35S::PsaD1 psad1-1, 0.76 ± 0.03; 35S::PsaD2 psad1-

1, 0.77 ± 0.02), growth and leaf coloration could be fully reversed, demonstrating that PsaD1 

and PsaD2 encode proteins with redundant functions. Successful complementation and 

expression of the transgene in the transformed plants were confirmed by RT-PCR analysis 

(Figures 3.6b, 3.7b). 
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3.4 PSI composition, accumulation of other thylakoid proteins and leaf pigments 

 

Western analyses of thylakoids demonstrated that the psad1-1 mutant had 40% of WT PSI-D 

levels, while in psad2-1 plants PSI-D was reduced by only 10% (Figure 3.8a; Table 3.1). In the 

double mutant psad1-1 psad2-1, no PSI-D was detected (Figure 3.8b; Table 3.1). Due to the 

prediction, PSI-D1 and PSI-D2 proteins differ slightly in the lengths of the mature proteins 

(PSI-D1, 164 amino acids; PSI-D2, 161 amino acids). Closer inspection of the D-specific 

immunoblot signals revealed that the gene products of PsaD1 and PsaD2 indeed differed 

slightly in molecular mass in the two single-gene mutants. In agreement with the transcription 

data, in psad1-1, only PSI-D2, and in psad2-1, only PSI-D1 was detectable. 

 

When a mix of psad1-1 and psad2-1, or of psad1-1 and WT, or of psad2-1 and WT thylakoid 

proteins was analyzed, WT-like bands were detected (data not shown). This indicates that the 

two PSI-D forms can be discriminated only in the corresponding mutant backgrounds. Because 

residual PSI-D level in the two single mutants added up to more than WT levels, it was 

concluded that- at least in psad2-1- the effects of the single-gene mutations were partially 

compensated by increased accumulation of the alternative PSI-D form. But still this 

compensation was not enough to restore WT phenotype in psad1-1 mutant plants. The decrease 

in the amount of PSI-D in the psad1-1 mutant was paralleled accompanied by the decrease in 

the levels of several PSI polypeptides, particularly of PSI-F, -H and -L, as well as of the four 

LHCI proteins (Figure 3.8a; Table 3.1). In the case of the psad1-1 mutant, because of its 

reduced chlorophyll content, relatively more proteins were loaded. Relative values for the 

mutant genotypes, reflecting the ratio of expression between the mutant and WT (see Table 

3.1), were normalized on the basis of their chlorophyll content (see Table 3.2). 

 

In the double mutant psad1-1 psad2 1 no accumulation of PSI core proteins, with the 

exception of traces of PSI-F, were detectable. LHCI proteins were present but to a much lesser 

extent than in the WT (Figure 3.8b; Table 3.1), which is consistent with previous studies of 

barley (Hordeum vulgare) mutants that only can accumulate LHCI but no PSI core proteins 

(Hoyer-Hansen et al., 1988; Nielsen et al., 1996). 
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Figure 3.8 
Levels of PSI polypeptides in mutant and WT plants. Aliquots of thylakoid proteins corresponding to 5 µg of 
chlorophyll (psad1-1, psad2-1 and WT plants; panel (a)), or 40 µg of total protein (psad1-1 psad2-1 and WT 
plants; panel (b)) were loaded in each lane, and decreasing amounts of WT proteins were added to lanes 0.8x, 0.6x 
and 0.4x WT in panel (a), or to lanes 0.75x, 0.5x and 0.25x WT in panel (b). Replicate filters were 
immunolabelled with antibodies raised against individual PSI or LHCI polypeptides. Three independent 
experiments were performed, and representative results are shown. Signals obtained in three independent 
experiments were quantified using lumi analyst 3.0 (Boehringer Mannheim/Roche).  
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To test whether mutations in PsaD genes influence also the accumulation of other thylakoid 

proteins, 2-D PAGE analyses were performed (Figure 3.9) and the intensity of signals was 

quantified (Table 3.1). Thylakoid proteins were first separated by LDS PAGE (see Figure 3.9a, 

c) and then fractionated on a denaturing SDS-PAGE gel. Positions of WT thylakoid proteins 

have been previously identified by Western analyses with appropriate antibodies (Figure 3.9b, 

d). Considering the different leaf chlorophyll contents of the two genotypes, quantification was 

performed as described in the legend of Figure 3.8 and listed in Table 3.1.  

In psad1-1, the level of PSI proteins was decreased, whereas PSII dimers accumulated to higher 

levels than in the WT (PSIID band in Figure 3.9a; spot 12 in Figure 3.9b). This accumulation 

was at the cost of monomeric forms (spots 2-4 in Figure 3.9b), suggesting that such dimeric 

forms are more stable in the mutant, possibly because of an altered pigment composition (see 

Table 3.2). 

 In psad1-1 psad2-1 double mutant plants, no bands indicative for PSI complexes or for PSII 

dimers could be observed (Figure 3.9c, d), suggesting a drastic reduction of PSII and pointing 

again to the absence of PSI complexes in this genotype. Relative accumulation of proteins in 

the double mutant was not quantified because of non-linearity of silver staining. 

Immunoblot analyses of proteins separated by denaturing 1-D PAGE (Figure 3.9e) revealed 

that in psad1-1 thylakoids the accumulation of the Rieske protein, a subunit of the cyt b6f 

complex, was increased. The concentration of the α- and β-subunits of the ATPase complex 

appeared unchanged in psad1-1 plants. This finding was in contrast to the results of 2-D PAGE 

analysis (Figure 3.9b), where a marked reduction of the α- and β-subunits of the chloroplast 

ATPase was detected. This discrepancy between the results of immunoblot analysis and 2-D 

gel analysis was reported before for another photosynthetic mutant (Varotto et al., 2002b), and 

was interpreted as the result of a decreased stability of mutant ATPase during 2-D PAGE.  

In contrast to the psad1-1 mutant, the accumulation of the Rieske protein and of the ATPase 

(α- and β-subunits) was decreased in the psad1-1 psad2-1 double mutant (Figure 3.9e).  
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Figure 3.9 
Protein composition of thylakoid membranes in mutant and WT plants. (a, c) Thylakoid membranes corresponding 
to 30 µg of chlorophyll from WT and psad1-1 (grown in the greenhouse) (a), or corresponding to 20 µg of 
chlorophyll from WT and psad1-1 psad2-1 (grown in sterile culture) (c), were fractionated by electrophoresis on a 
LDS-PA gel. The bands were assigned to PSI, photosystem II dimers (PSIID), LHCII trimers (LHCIIT) and 
monomers (LHCIIM). (b, d) Positions of WT thylakoid proteins are indicated by numbers to the right of the 
corresponding spots: 1, α- and β-subunits of the ATPase complex; 2, D1 D2; 3, CP47; 4, CP43; 5, oxygen-
evolving complex (OEC); 6, LHCII monomer; 7, LHCII trimer; 8, PSI-D; 9, PSI-F; 10, PSI-C; 11, PSI-H; 12, PSII 
dimers.  
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(e) Aliquots of thylakoid proteins corresponding to 5 µg of chlorophyll (psad1-1 and WT plants; left panel), or 40 
µg total protein (psad1-1 psad2-1 and WT plants; right panel) were analysed as in Figure 5. Immunolabelling was 
performed with antibodies raised against the Rieske protein and the chloroplast ATPase (α- and β-subunits). Note 
that in the electrophoresis conditions used the α- and β-subunits of the chloroplast ATPase could not be 
discriminated. 
 
 
 
In order to understand additional consequences of PsaD mutations, leaf pigment composition 

of single and double mutants were studied by HPLC (Table 3.2). In the psad1-1 single mutant 

plants a disproportionate increase in the abundance of xanthophylls violaxanthin, 

antheraxanthin and zeaxanthin (VAZ) with respect to neoxanthin and lutein was observed. 

Chlorophyll content (Chl a + b) decreased by about 25% in psad1-1, which is consistent with 

the reduced amount of PSI and- to a less extent- of PSII complexes. In contrast, WT levels of 

leaf pigments were detected in psad2-1 single mutant plants.  

 

The psad1-1 psad2-1 double mutant resulted in a drastic decresae of chlorophyll (Chl a + b) 

and β-carotene content. Together with the lower chlorophyll a/b ratio, the data highlights a 

significant reduction of PSII and, in particular, of PSI complexes. The relative increase of the 

VAZ pool size supports the extreme photosensitivity of the double mutant. 
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Table 3.1 Levels of thylakoid polypeptides in psad1-1, psad2-1 and psad1-1 psad2-1 relative to WT in [%] 
 
 
      psad1-1    psad2-1     psad1-1 psad2-1* 
 

  

 C      50       100   nd 

 D     40                  90   nd 

 E             40       100   0 

 F     20       100   2 

            G     40       90   0 

  H     50       100   0 

 L     20       100   0 

 N     50       100   0 

 O     70       100   0 

 Lhca1     70       100   1 

 Lhca2     50       100   30 

 Lhca3     50       100   5 

 Lhca4     70       100   20 

 Rieske     120       110   50 

 ATPase (α+β)    100       100   70 

 ATPase (α+β) *   20        nd   nd 

 PSII core*    70        nd   nd 

 OEC*     70        nd   nd 

 LHCII*    70        nd   nd 

 PSI*     40        nd   nd  
 

 
Signals from three independent experiments were quantified using lumi analyst 3 (Boehringer Mannheim/Roche). 
Quantifications of proteins based on 2-D gel analysis are indicated by an asterisk (*). Relative values for the single 
mutant genotypes, reflecting the ratio of expression between the mutant and WT, were normalized on the basis of 
total chlorophyll content (see Table 3.2). Standard deviations were all within ±10%. Relative accumulation of 
proteins in the double mutant were not quantified after 2-D gel analysis (Figure 3.9d), because of non-linearity of 
silver staining. nd = data not determined. 
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Table 3.2 Pigment composition of leaves from psad single mutants compared to WT 
 
 
         
         Leaf pigments    psad1-1  psad2-1    WT    
      

 
      
        Nx    36 ± 1    33 ± 1    33 ± 1 

 
        VAZ    80 ± 2    39 ± 0    36 ± 3 

 
        Lu                     121 ± 2             116 ± 1             111 ± 2 

 
        β-Car    67 ± 1    76 ± 2    79 ± 3 

 
        Chl a/b                  3.41 ± 0.03           3.46 ± 0.06           3.50 ± 0.06 

 
        Chl a + b                    681 ± 121                    883 ± 24                      907 ± 115  

 
          
    
         Leaf pigments                          psad1-1 psad2-1*                              WT*       
        

     
         Nx                       58 ± 1                                        40 ± 1   

 
        VAZ                       57 ± 3                                        24 ± 1   

 
        Lu                                239 ± 43                                    130 ± 1  

 
        β-Car                       25 ± 3                                        86 ± 1   

 
        Chl a/b                               2.38 ± 0.03                                3.05 ± 0.02  

 
        Chl a + b                               223 ± 71                                  1797 ± 275 

 
 

 
 
Pigment content was determined by HPLC of three plants for each genotype. The carotenoid content is given in 
mmol per mol Chl (a + b), and the Chl content is expressed as nmol Chl (a + b) per g FW. Mean values ± SD are 
shown. Nx, neoxanthin; VAZ, xanthophyll cycle pigments (violaxanthin + antheraxanthin + zeaxanthin); Lu, 
lutein; β-Car, β-carotene. The asterisk indicates genotypes grown on MS medium supplemented with sucrose. 
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3.5 Photosynthetic electron flow 
 
 

Photosynthetic electron flow was characterized by measuring parameters of chlorophyll 

fluorescence and of P700+ absorbance (Table 3.3). In psad1-1 plants, the maximum quantum 

yield of PSII (Fv/Fm) was reduced when compared to psad2-1 and WT plants. Moreover, the 

effective quantum yield of PSII (ΦII) was substantially decreased in psad1-1, but not in psad2-1 

plants. Similarly, psad2-1 showed normal photochemical (qP) and non-photochemical (qN) 

quenching. In contrast, in psad1-1 the fraction of QA- the primary electron acceptor of PSII- 

present in the reduced state (1-qP), was increased by about sixfold, indicating a partial block in 

the electron transfer steps downstream of QA.  

Also, qN slightly increased, supporting the conclusion that, as a consequence of the 

perturbation in photosynthetic electron flow, the thermal dissipation of excitation energy in the 

antenna of PSII was higher in psad1-1 than in WT. Only negligible alterations in the reduction 

rate of P700 were found in the two single-gene mutants: t1/2ox was not altered in psad2-1, but a 

pronounced delay in P700 oxidation was noted for psad1-1, suggesting an impairment of 

electron transfer from PSI to ferredoxin. 

State transition quenching were followed by measuring maximum PSII fluorescence signals in 

states 1 (Fm
1) and 2 (Fm

2), after irradiating plants at wavelengths that target PSII and PSI, 

respectively, and normalizing the values to the maximum PSII fluorescence of dark-adapted 

leaves (Fm). In the WT, Fm
1/Fm and Fm

2/Fm differed significantly (0.84 ± 0.02 versus 

0.75 ± 0.02), while in the psad1-1 mutant, the two values were essentially the same 

(0.76 ± 0.02 versus 0.74 ± 0.02). This corresponds to a reduction of 70% in state transition 

quenching (qT) in the psad1-1 mutant (Table 3.3), indicating a severe impairment in the re-

distribution of excitation energy between the photosystems. In psad2-1, state transition 

quenching was similar to that in the WT (Fm
1/Fm versus Fm

2/Fm: 0.82 ± 0.02 versus 

0.75 ± 0.01). 
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In psad1-1 psad2-1 double mutants, photosynthetic electron flow was severely perturbed 

(Table 3.4). Fv/Fm was substantially decreased as expected from a drastic reduction in the 

amount of active PSII centers. Moreover, the strong reduction in ΦII was consistent with the 

high photosensitivity of the double mutant. The drastic increase of reduced QA (1 - qP) 

suggested that electron flow through PSII still occurred, while it was blocked at a later electron 

transfer step.  

In summary, concerning single mutants of psad only a mutation in psad1-1 alters 

photosynthetic electron flow, while it remains unchanged in psad2-1 mutants. Complete lack of 

PSI-D in psad1-1 psad2-1 double mutants abolished photosynthetic electron flow and resulted 

in a dramatically increased photosensitivity. 

 
 
Table 3.3 Spectroscopic data for psad single mutant and WT leaves 
 
 

Parameter  psad1-1  psad2-1    WT         
 

 
 
Fv/Fm                      0.77 ± 0.02           0.82 ± 0.01        0.83 ± 0.01 

 

ΦII                     0.52 ± 0.03           0.75 ± 0.02        0.76 ± 0.01 

 
1  qP                      0.30 ± 0.05           0.06 ± 0.02        0.05 ± 0.01 

 
qN                      0.23 ± 0.03           0.14 ± 0.01        0.17 ± 0.01 

 
qT                      0.03 ± 0.02           0.09 ± 0.03        0.12 ± 0.01 

 
t½red (msec)             63 ± 4                          59 ± 2                       57 ± 2 

 
t½ox (sec)          1.43 ± 0.16           0.54 ± 0.06        0.47 ± 0.06 

  
 
 
Mean values for five plants (±SD) are shown. t1/2red and t1/2ox were calculated from the recorded kinetics of P700 
reduction and re-oxidation. For greenhouse-grown plants, an actinic light intensity of 65 µmol photons m-2 sec-1 
was used to drive electron transport before measuring. nd: not determined. 
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Table 3.4 Spectroscopic data for psad1-1 psad2-1 double mutant and WT leaves 
 
 

Parameter             psad1-1 psad2-1*                 WT*       
 

 
Fv/Fm                            0.40 ± 0.07                  0.80 ± 0.01 

 
ΦII                            0.07 ± 0.01                  0.76 ± 0.01 

 
1  qP                             0.78 ± 0.03                  0.03 ± 0.01          

 
qN                             0.22 ± 0.08                  0.05 ± 0.02 

 
qT                                    nd                                nd 

 
t½red (msec)                        nd                                nd 

 
t½ox (sec)                        nd                                nd          
 

 
Mean values for five plants (±SD) are shown. t1/2red and t1/2ox were calculated from the recorded kinetics of P700 
reduction and re-oxidation. Because of its high photosensitivity, the double mutant and WT control plants were 
grown under low-light conditions (15 µmol photons m-2 sec-1) on MS + sucrose (indicated by an asterisk ( *)), and 
an actinic light intensity of 15 µmol photons m-2 sec-1 was applied to drive electron transport before measuring. nd: 
not determined. 
 
 
3.6 Expression of nuclear genes encoding chloroplast proteins in psad1-1 mutants       
 

To test further effects of the absence of PSI-D on photosynthesis and other chloroplast 

functions, the expression of nuclear genes contributing to the chloroplast proteome was 

determined at mRNA level by using the technique of DNA array analysis. This method was 

carried out on the psad1-1 mutant, using a set of 3292 nuclear genes spotted on nylon 

membranes, of which 81% were coding for chloroplast-targeted proteins. The observed mRNA 

expression patterns were compared to those of WT as described by Kurth et al. (2002), Pesaresi 

et al. (2003a) and Richly et al. (2003). Differential gene expression values (psad1-1 versus 

WT) were determined by comparing hybridization signals. Of the 1101 genes resulting in 

differential expression, 574 were up- and 527 downregulated. The differentially expressed 

genes were grouped in 13 major functional categories, including photosynthesis (dark or light 

reaction), metabolism, secondary metabolism, transcription, protein synthesis, protein 

phosphorylation, protein modification and fate, sensing, signalling and communication, stress 
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response and transport (Figure 3.10). In general, genes for secondary metabolism, protein 

modification and fate, as well as for stress response, were upregulated more than others, 

supporting the conclusion that the impaired function of the thylakoid electron transport chain 

has profound effects on plant functions not directly related to photosynthesis. Preferentially, 

genes involved in the light reaction of photosynthesis and transcription were downregulated, 

implying that a response of the plant exists, which is aiming to limit and/or compensate the 

perturbation in the photosynthetic electron flow by downregulating both chloroplast- and 

nucleus-encoded photosynthetic genes. 
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Figure 3.10 
Effects of the psad1-1 mutation on the accumulation of nuclear transcripts encoding chloroplasts proteins.  The 
fraction of up- and downregulated genes in 13 major functional categories is shown. A complete list of 
significantly differentially expressed genes is available at GEO (http://www.ncbi.nlm.nih.gov/geo/), Accession 
number GSM11018. 
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DISCUSSION 
 

Photosystem I subunit D is a hydrophilic subunit of PSI exposed to the stromal side and known 

to interact with ferredoxin in both eukaryotes and cyanobacteria (Andersen et al., 1992; Merati 

and Zanetti, 1987; Zilber and Malkin, 1988). Together with PSI-C and -E, PSI-D forms a 

compact interconnected structure, the so-called stromal ridge (Jordan et al., 2001; Klukas et al., 

1999; Kruip et al., 1997).  

Among single-gene mutations only a lack of PSI-D1 leads to general alteration in the 

polypeptide composition. The characterization of psad1-1 and psad1-1 psad2-1 indicates that 

PSI-D is necessary for the stability of PSI in Arabidopsis, although it was shown in 

Synechocystis that PSI without PSI-D can still reduce flavodoxin (Xu et al., 1994). But in 

Arabidopsis, complete lack of the D subunit leads to seedling lethality under photoautotrophic 

conditions. The instability of Arabidopsis PSI without PSI-D can be explained either by an 

increase in degradation of the incomplete PSI complex or by downregulation of the synthesis of 

PSI subunits. 

The N-terminal extension of PSI D stabilizes the interaction of PSI-C with the rest of PSI core 

(Naver et al., 1995). Cross-linking experiments carried out in barley have suggested that PSI-D 

exerts its stabilizing effect via an interaction with PSI-H, an integral membrane protein located 

near PSI-I and PSI-L (Naver et al., 1995). This is also supported by the analysis of transgenic 

Arabidopsis lines showing co-suppression of the gene encoding the PSI-H subunit, in which 

PSI-C is not as tightly bound to the PSI core as in the WT (Naver et al., 1999). Our data are 

compatible with the hypothesis that PSI-D is in physical contact with PSI-H: in the psad1-1 and 

psad1-1 psad2-1 mutants, the decrease of PSI-D is, in fact, associated with a parallel reduction 

in the level of PSI-H. Similar decrease in the level of PSI-H was observed in psae1-1 mutant 

plants, affected in another stromal subunit of PSI, PSI-E. 

But unlike the psae1-1 mutant (Varotto et al., 2000a), psad1-1 plants show also a reduction in 

the level of PSI-F and -N proteins (Table 3.1); a similar behaviour has been reported for 

antisense F lines (Haldrup et al., 2000), supporting the observation that PSI-N co-varies with 

PSI-F (Pesaresi et al., 2003b). 
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In summary, the changes of PSI polypeptide levels in psad1-1 are comparable to those 

observed in the psae1-1 mutant (Pesaresi et al., 2002; Varotto et al., 2000a) and in PsaF 

antisense plants ( F; Haldrup et al., 2000).   

Available results indicate that an alteration in the expression of any of the peripheral stromal 

subunits de-stabilizes the entire stromal domain of PSI. In this context, it is not surprising that 

as shown by Maiwald et al. (2003) in the psad1-1 mutant background the mRNA expression 

pattern of 3292 nuclear genes, most of them coding for chloroplast proteins, is very similar to 

that of psae1-1 mutants. This supports the conclusion that a decreased accumulation of either 

PSI-E or -D induces similar changes in the physiological state of the chloroplast.  

Interestingly, the chlorophyll fluorescence parameters of psad1-1 were also similar to those 

observed for psae1-1 (Pesaresi et al., 2002; Varotto et al., 2000a), supporting the fact that a 

reduction in the level of either of these stromal proteins which interact directly (Klukas et al., 

1999) has similar effects on PSI function.  

The suppression of state transitions in psad1-1 is probably associated with a decrease in the 

abundance of PSI-H, the presumed docking site of LHCII (Lunde et al., 2000). In psae1-1, a 

stable LHCII-PSI aggregate seems to be responsible for the suppression of state transitions 

(Pesaresi et al., 2002). 

Recently, the analysis of antisense lines with 5-60% of PSI-D showed that downregulation of 

PSI-D de-stabilizes PSI, results in increased photosensitivity and further in an altered thiol 

disulphide redox state of the stroma (Haldrup et al., 2003), which is in accordance with our 

data. 

The complementation of the psad1-1 mutant by increasing the dosage of the PsaD2 gene 

indicates that the two corresponding proteins are functionally redundant. The psad1-1 

phenotype is the result of a dosage effect of the two genes encoding the D subunit, where 

PsaD2 seems to be expressed at lower level. The presence of two functional Arabidopsis PsaD 

genes raises the question of why these and other PSI genes have duplicated in the nuclear 

genome of A. thaliana. All these gene pairs for PSI-E, -H and -D appear to have originated 

from relatively recent segmental duplications (between 24 and 40 million years ago; Blanc 
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et al., 2003). The persistence of two functional genes for the same protein might have been 

under positive selection because it might have enabled responses of the same subunit to 

different signal transduction pathways. This opportunity of differential regulation would allow 

the plant cell to react more flexibly to varying environmental stimuli. An example has been 

shown for the PsaD gene family in Nicotiana sylvestris, where the PsaD1 and PsaD2 genes are 

differentially expressed during leaf development (Yamamoto et al., 1993). 
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4. FUNCTIONAL ANALYSIS OF PSI-D1 PHOSPHORYLATION  
 
 
Recently, protein phosphorylation was found in photosystem I. Hannsson and co-workers 

identified phosphorylation site at the first threonine in the N-terminus of PSI-D1, which is the 

first thylakoid protein shown to be phosphorylated not belonging to PSII and LHCII. This 

finding opens a new direction of studies in terms of possible PSI regulation by redox-controlled 

protein phosphorylation. In this chapter impact of PSI-D1 phosphorylation was investigated by 

complementing psad1-1 mutants with the PsaD1 gene mutated at the phosphorylation site. 

 
 
 
 
RESULTS 
 
 
4.1 Detection of PSI-D1 phosphorylation by mass spectrometry 

 
 
To confirm the presence of a phosphorylation site at the N-terminus of the PSI-D1 protein, 

mass spectrometric analyses of isolated PSI fractions were performed.  

Thylakoids were isolated from greenhouse-grown wild-type plants and loaded on a 0.4 M 

sucrose gradient. After overnight centrifugation thylakoids were separated in three fractions: 

upper LHC with free pigments, medium PSII and lower PSI. As shown in Figure 4.1a, 0.4 M 

sucrose gives a clear separation of the PSI and PSII band. In order to test the purity of the 

fractions obtained by sucrose gradient centrifugation, each of them were separated by SDS-

PAGE, which were later stained with Coomassie (Figure 4.1b).  

After separation of the fractions dialysis of the PSI phases were performed and samples were 

concentrated. It has been demonstrated before that all protein phosphorylation sites in thylakoid 

membranes are restricted to surface-exposed regions of membrane proteins. This was 

experimentally shown by the removal of all phosphopeptides from the membrane when treated 

with trypsin (Vener et al., 2001; Bennett, 1980).  Therefore, the isolated and concentrated PSI 

phases were digested with trypsin in order to release the surface-exposed peptides and remove 

the hydrophobic segments of the proteins.  
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Figure 4.1  
PSI, PSII and LHC fractions obtained after separation of thylakoid membranes on the sucrose gradient (a) were 
separated by SDS-PAGE and stained with Coomassie (b) in order to test purity of the isolation. 
 

The mixtures of released hydrophilic peptides from the PSI phases were then analyzed by mass 

spectrometry using multidimensional protein identification technology (MudPIT) (Link et al., 

1999; Wu et al., 2003). The ESI-ion trap instrument was employed and the SEQUEST 

algorithm was used to interpret the MS/MS spectra, which were subsequently Blasted against 

the Arabidopsis thaliana protein database. The presence of a PSI-D1 phosphorylation that had 

before been identified by Hannsson et al. (2003) was confirmed. The phosphorylation site was 

present in the detected B fragment ions (N-terminal) (Figure 4.2a). The fragmentation spectrum 

of detected PSI-D1 peptide ions is shown in Figure 4.2b. Additionally to previous results, two 
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other phosphorylation sites at serine residues belonging to the following N-terminal peptide of 

the PSI-D1 protein- T#DS#S#AAAAAAPATK- were detected (Figure 4.2a). 

 

        (a) 
                          -           13           12          11           10   9     8     7    6     5      4      3      2      1 Y Ions 

                          T            D           S            S             A    A    A   A    A    A      P     A     T.    K 

     B Ions   1            2            3            4             5    6     7     8    9     10    11   12    13     - 

 

       (b) 

 
 
Figure 4.2 
Identification of the phosphorylation sites (T and S) present in the N-terminal domain of the PSI-D1 protein. The 
product ion spectrum obtained by MudPIT is shown. (a) The detected B (N-terminal) and Y (C-terminal) fragment 
ions. (b) The fragmentation spectrum of detected PSI-D1 peptide ion. 

 
 
 

4.2 Complementation of psad1-1 mutants with the PsaD1 gene mutated at the 

        phosphorylation site 

 

In order to understand possible functions of the phosphorylation site present in the PSI-D1 

protein, complementation of the psad1-1 mutants with a PsaD1 gene mutated at the 

phosphorylation site was attempted. This construct was under transcriptional control of the 35S 

promoter. 
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Col-0
35S :: ::Thr1Asp 
          
  

35S :: :: Thr1Ala 
psad1-1

psad1-1
psad1-1

 
 
   (b) 
 

               

ACTIN1

pJAN33 +
PsaD1/2

cDNADNA

Col-0 psad1-1 Thr1Ala Thr1Asp

cDNADNA cDNADNA cDNADNA

 
 
 
 
Figure 4.3  
Complementation test of psad1-1 mutants with the PsaD1 gene mutated at the phosphorylation site. (a) 4 week-
old WT plants, psad1-1 mutants and T2 generation of psad1-1 mutant plants transformed with the mutated PsaD1-
cDNA fused to the 35S promoter. (b) Presence and overexpression of the transgene in the complemented mutant 
plants was confirmed by PCR and RT-PCR. Products obtained after PCR for 35 cycles with primers specific for 
the transgene (PsaD1/2-441as and pJAN33) were analysed on a 2.0% agarose gel. The differences in size between 
cDNA and DNA are due to the presence of an intron in the vector used for the complementation test. As a control, 
PCR with control primers for the ACTIN1 gene was performed. 
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In the mutated PSI-D1 protein the residue Thr-1 had been replaced by either alanine or aspartic 

acid. Alanine is a neutral amino acid lacking the hydroxyl group required for the attachment of 

a phosphate group. Aspartic acid is an acidic residue, which has been shown to mimic 

phosphorylated serine in some systems (Wang, 1992). 

Under greenhouse conditions both transformed psad1-1 mutants, 35S::Thr1Ala::psad1-1 and 

35S::Thr1Asp::psad1-1, behaved like WT; they showed normal growth and leaf coloration 

(Figure 4.3a). Successful complementation and overexpression of the transgene were confirmed 

by RT-PCR analysis (Figures 4.3b). 

Substitutions of the threonine by either alanine or aspartic acid were confirmed by sequencing 

DNA fragments isolated from psad1-1 transformed plants, which covered the point mutations 

(Figure 4.4).  

 
 
   
 

 
WT                 5’GCC GAG AAA ACA GAT TCC TCC GCC GCC 3’    

                            Ala  Glu  Lys  Thr  Asp  Ser  Ser  Ala  Ala   
 
 

Thr1Ala         5’GCC GAG AAA GCT GAT TCC TCC GCC GCC 3’    
                            Ala  Glu  Lys  Ala  Asp  Ser  Ser  Ala  Ala  
 
 

Thr1Asp        5’GCC GAG AAA GAT GAT TCC TCC GCC GCC 3’    
                            Ala  Glu  Lys  Asp  Asp  Ser  Ser  Ala  Ala  
 
 
 
 
Figure 4.4 
Sequences of the PsaD1 codon mutations (underlined) and the corresponding N-terminal region of the PsaD1 
protein. Mutated nucleotides and amino acids are indicated in boldface.  
 
 
 
 
In plants, protein phosphorylation plays a role in response to environmental signals such as 

wounding (Usami et al., 1995), light (Allen, 1992) or cold stress (Bergantino et al., 1995). It is 

also involved in protein degradation and many other processes. 
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To test if phosphorylation of the PSI-D1 protein is involved in response to one of those cues, 

the influence of high light on transformed plants was investigated. Therefore, psad1-1 plants 

transformed with mutated PsaD1, psad1-1 mutants and Col-0 plants were grown for 5 weeks 

under high light stress. As shown in Figure 4.5 there were no visible differences between WT 

plants and psad1-1 mutants transformed with the mutated PsaD1 gene. 

 

 
 

Col-035S :: ::Thr1Asp 
          
   
    

35S :: :: Thr1Ala 
psad1-1

psad1-1
psad1-1

 
 
 
 
Figure 4.5 
Phenotypes of 35S::Thr1Ala::psad1-1 and 35S::Thr1Asp::psad1-1 transformed plants. WT, psad1-1 and T2 
generation of psad1-1 mutant plants transformed with the mutated PsaD1 gene (6 weeks old) were grown in the 
growth chamber under high-light conditions. 
 
 
 
For determination of thylakoid protein phosphorylation in vivo, photosynthetic membranes 

were isolated from WT as well as from psad1-1 mutant leaves. These were first labeled with 

[P33] orthophosphoric acid and then exposed to different light conditions (80 µmol photons m-2 

s-1, 2 h for low light adaptation, 800 µmol photons m-2 s-1, 2 h for high-light stress and dark 

adaptation).  Thylakoid proteins were then separated by SDS-PAGE and incorporation of 

radioactivity was detected by phosphoimager (Figure 4.6) (data shown only for low-light 

adaptation). According to the high sensitivity of this method and the lack of clear detection of 

the PSI-D1 phosphopeptide, it can be assumed that the level of PSI-D1 phosphorylation is 

relatively low. 
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Figure 4.5 
In vivo phosphorylation of thylakoid proteins from WT plants, psad1-1 mutants transformed with PsaD1-cDNA 
fused to the 35S promoter (35S::PsaD1::psad1-1) and psad1-1 mutants grown under low light. Thylakoids were 
separated by SDS-PAGE. Incorporation of radioactivity was detected by phosphoimager (Storm 860, Molecular 
Dynamics). 
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DISCUSSION 
 
 
PSI-D is a key subunit in the assembly and functionality of PSI. It was shown that the Ycf3 

protein, which is essential for the accumulation of the PSI complex, interacts directly with the 

PSI-D subunit (Naver, 2001). It has been also demonstrated that PSI-D is the first nuclear-

encoded subunit, accumulating in the thylakoid membranes during the greening of etiolated 

seedlings (Lotan, 1993). Together with the two other subunits exposed to the stromal side of 

PSI, which are PSI-E and PSI-C, it is directly involved in the binding of ferredoxin. As it was 

shown in this thesis, the complete lack of the D subunit in Arabidopsis thaliana leads to 

seedling lethality under photoautotrophic conditions (see Chapter 3). 

 

As compared to its cyanobacterial orthologue, the mature PSI-D subunit from eukaryotic 

species contains an N-terminal extension of 20-30 amino acid residues. It was shown before by 

Hannsson and Vener (2003) and confirmed in this work that the N-terminus of the PSI-D1 

protein contains phosphorylated serine/threonine residues. In order to verify presence of 

phosphorylation sites in PSI-D1 protein the ESI-ion trap instrument was employed and the 

SEQUEST algorithm was used to interpret the MS/MS spectra. Series of detected B fragment 

(N-terminal) and Y fragment (C-terminal) ions indicated that the N-terminus of PSI-D1 protein 

is very likely to be phosphorylated. Additionally to previous results, two other phosphorylation 

sites at serine residues belonging to the following N-terminal peptide of the PSI-D1- 

T#DS#S#AAAAAAPATK- were detected. 

 

Protein phosphorylation, which is one of the most widespread and not arguably best understood 

posttranslational modifications, is involved in regulation of many cellular processes in plants. 

The identification of phosphorylation sites is necessary for functional analysis of particular 

phosphoproteins. Following reasons contribute to the relevance of the discovery of PSI-D1 

phosphorylation. Firstly, it is the first phosphopeptide found in photosystem I. All 

phosphopeptides identified so far belong to photosystem II and its antenna complex. These 

phosphopeptides were shown to be involved either in the regulation of the light energy 

distribution between the two photosystems or in the light-induced turnover of PSII reaction 

center subunits.  
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Secondly, phosphorylation sites that have been identified in PSI-D1 protein are located in the 

N-terminal domain that is specific for eukaryotes and not present in its cyanobacterial 

counterpart.  This N-terminus of PSI-D is exposed to the stromal side of PSI as has recently 

been demonstrated by Ben-Shem et al. (2003). In agreement with this finding is that all of the 

phosphorylation sites, which have been detected so far, are restricted to stromal-exposed 

regions of membrane proteins. This stromal exposure of the N-terminus allows attachment of 

phosphate groups by kinase signaling pathways from the stroma.   

 

In order to understand possible functions of the PSI-D1 phosphorylation, complementation 

analysis were performed. No differences were observed when phosphorylated threonine (Thr-1) 

was replaced by alanine, which lacks the hydroxyl group required for attachment of a 

phosphate group. The psad1-1 phenotype was also complemented when PsaD1 instead of Thr-

1 contained aspartic acid; residue that was shown previously to mimic phosphorylated serine in 

some systems (Wang, 1992). Under greenhouse conditions both 35S::Thr1Ala::psad1-1 and 

35S::Thr1Asp::psad1-1 expressed in psad1-1 background, showed normal growth and leaf 

coloration. Also when grown under high light conditions no differences have been observed 

between psad1-1 containing above described transgenes, psad1-1 mutants and WT plants. Even 

though phosphorylation of PSI-D1 protein does not seem to be involved in adaptation to high 

light stress, it can not be excluded that it plays a role in adaptation to other environmental 

conditions not tested in these analyses. In general, it can be assumed that the level of PSI-D1 

phosphorylation is relatively low, as PSI-D1 phopshopeptide can not even be detected by such 

highly sensitive method as in vivo labeling with [P33] orthophosphoric acid.  

 

Another interesting aspect is that the biogenesis and assembly of PSI-D with PSI was found to 

proceed in a rather unusual way (Cohen et al., 1992; Minai et al., 1996 and 2001). One open 

question is if phosphorylation is involved in this process. The precursor PSI-D (pre-PSI-D) is 

first assembled with PSI and then the precursor protein is processed, yielding mature PSI-D 

associated with PSI. This processing, which form the mature PSI-D is most probably 

accompanied by a conformational change that allows the formation of electrostatic interactions 

between PSI-D and PSI. Protein phosphorylation has been proposed to be involved in 

conformational changes of proteins located in thylakoid membranes (Croce, 1996).   
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Most probably these electrostatic interactions between PSI-D and PSI also play a role in PSI-D 

protection from proteolytic digestion, while mature PSI-D is resistant to proteolysis only when 

located in the thylakoid membranes (Minai et al., 1996).  

 

The PsaD protein has only a few elements of secondary structure and no stable three-

dimensional structure in solution, whereas it forms a well defined three-dimensional structure 

after assembling with PSI- with an antiparallel four-stranded β-sheet followed by a second two-

stranded β-sheet and a short loop connecting the fourth β-strand to the only α-helix (Antonkine, 

2003; Fromme, 2001). It has already been suggested by Hansson et al. (2003) that “significant 

structural changes and flexibility of PSI-D together with its control position at the electron 

acceptor site of PSI may be employed by regulatory mechanisms operating via protein 

phosphorylation”.  

 

Overall, due to our complementation analysis of psad1-1 mutant plants with the mutated 

PsaD1, it can be assumed that phosphorylation of PSI-D1 protein does not play a key function 

in the PSI regulation. Anyhow, it can not be excluded that PSI-D1 phosphorylation might play 

a role, if plants are grown under particular environmental conditions, not tested in these 

analyses.  

 

The distinct function of the additional N-terminus sequence of the eukaryotic PSI-D1 protein, 

in which phopshorylation sites have been detected, is unknown. Some authors have suggested 

that the N-terminal extension of PSI-D is required for an efficient cleavage of the transit peptide 

(Cohen et al., 1992). In other studies this N-terminal domain was shown to stabilize the 

interaction of PSI-C with the rest of the PSI core (Naver et al., 1995). PSI-D is not the only PSI 

subunit containing the N-terminal extension that is specific for eukaryotes. Also PSI-E, which 

is another stromal subunit of PSI contain such extension. In order to understand the functions of 

these N-terminal extensions, as well as clarify the role of PSI-D1 phosphorylation, further 

molecular, biochemical and physiological studies are in progress. The biological consequences 

of a lack of these N-terminal domains and their importance for photosynthesis in plants are 

being analysed.  
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5. EFFECTS OF psad1-1 AND psae1-3 MUTATIONS ON THE LEVEL     
    OF THYLAKOID PROTEIN PHOSPHORYLATION 
 
 
 
The changes of PSI polypeptide levels in psad1-1 are similar to those observed in the psae1-1 

mutant (Pesaresi et al., 2002; Varotto et al., 2000a). Moreover, available results indicate that 

alterations in the expression of any of the peripheral stromal subunits de-stabilize the entire 

stromal domain of PSI. The mRNA expression pattern of 3292 nuclear genes, most of them 

coding for chloroplast proteins, is very similar for the psad1-1 and psae1-1 mutants (Maiwald 

et al., 2003). Additional similarities between these two mutations concern alterations in the 

photosynthetic electron flow, state transition and general polypeptide composition of thylakoid 

membranes. Further interesting effects of psad1-1 and psae1-3 mutations concerning changes 

in phosphorylation level of thylakoid proteins are described in this chapter. 

 

 
RESULTS 
 

5.1 The level of thylakoid protein phosphorylation is significantly higher in 

       psad1-1 and psae1-3 mutants 

          
For the determination of thylakoid protein phosphorylation in psad1-1 mutants, in vivo 

labelling with 33P-orthophosphate has been performed (see Chapter 4). Interestingly, in psad1-1 

mutants significantly higher levels of thylakoid protein phosphorylation as compared to WT 

plants were observed. As several similarities in physiological/biochemical properties exist 

between psad1-1 and psae1-3 mutants, and as both subunits PSI-D and PSI-E are located on the 

stromal side of PSI, experiments were carried out to investigate if these mutations also have a 

comparable effect on the level of thylakoid protein phosphorylation. In order to examine level 

of thylakoid protein phosphorylation, thylakoid membranes from WT, psad1-1 and psae1-3 

mutant leaves were isolated in the presence of an inhibitor of dephosphorylation and then 

separated by gradient SDS-PAGE (Figure 5.1). When filters were hybridized with 

phosphothreonine antibodies, significantly higher levels of protein phosphorylation were 
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detected in psad1-1 and psae1-3 mutants. Furthermore, some additional phoshopeptides were 

detected in both mutants, which could not be observed in WT (Figure 5.1b). 
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Figure 5.1  
Level of protein thylakoid phosphorylation in WT, psad1-1 and psae1-3 mutant plants. Thylakoid proteins 
corresponding to 5 µg of chlorophyll from WT, psad1-1 and psae1-3 mutants were separated by SDS-PAGE. 
Corresponding amounts of loaded thylakoid proteins were checked by Coomassie-blue staining (a). 
Immunolabelling was performed with antibodies against phosphothreonine (b). Three independent experiments 
were performed and representative results are shown.   
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5.2 Identification of Lhca4 phosphorylation 
 

With respect to the above mentioned increase in overall thylakoid protein phopshorylation in 

psad1-1 and psae1-3 mutants the question arised, if these mutations also show an effect on the 

phosphorylation state of PSI proteins.  
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Figure 5.2 
PSI complexes from WT, psad1-1 and psae1-3 mutant plants, corresponding to 5 µg of chlorophyll, were 
separated by SDS-PAGE. Corresponding amounts of loaded PSI proteins were checked by Coomassie-blue 
staining (a). Immunolabelling was performed with antibodies raised against the phosphothreonine (b), Lhcb2 (c) 
and Lhcb1 (d). Three independent experiments were performed, and representative results are shown. 



Chapter 5 THYLAKOID PROTEIN PHOSPHORYLATION 
    

 66

To answer this, thylakoid membranes were isolated from WT, psad1-1 and psae1-3 mutants 

and subsequently PSI complexes were separated on a 0.4 M sucrose gradient (see Chapter 4). 

Immunological analyses with antibodies raised against phosphothreonine were performed. 

Interestingly and surprisingly some new, unknown phosphopeptides could be detected in PSI 

complexes isolated from psad1-1 and psae1-3 mutants (Figure 5.2 b). So far, the only protein in 

PSI that has been reported to be phosphorylated was PSI-D1 (see Chapter 4). 

It was shown before by Pesaresi et al. (2002) that a stable LHCII-PSI aggregate exists in psae1-

1 mutants, which causes suppression of state transitions observed in that mutation. When 

thylakoid membranes from psad1-1 mutants were separated by LDS-PAGE, only a slight band 

was observed indicating that small amount of such aggregate might also exist in this mutant 

(band indicated by an asterisk (*) in Figure 5.3).  
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Figure 5.3 
Native gel analysis. Thylakoid membranes 
corresponding to 30 µg of chlorophyll from WT and 
psad1-1 were fractionated by electrophoresis on a 
LDS-PA gel. The bands were assigned to PSI, 
photosystem II dimers (PSIID), LHCII trimers 
(LHCIIT) and monomers (LHCIIM). Asterisk (*) 
indicate the position of the mutant-specific band that 
have previously been detected in psae1-1 mutant by 
Pesaresi et al. (2002). 
 
 

 

 

Accordingly, it is possible that some of phosphopeptides, detected with phosphotreonine 

antibodies in psad1-1 and psae1-3 mutants, belong to LHCII. Previously it has been 

demonstrated that when the mobile pool of LHCII becomes phosphorylated, it migrates from 

PSII-containing grana to the PSI-rich stromal lamellae and attaches to PSI (Lunde et al., 2000). 

In this project Western analyses were performed using antibodies against Lhcb1 and Lhcb2, 

two major subunits of the mobile pool of LHCII. In accordance to previous data (Pesaresi et al., 

2002) significant amounts of Lhcb2 and also of some Lhcb1, were present in the PSI isolated 
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from psae1-3 mutants (Figure 5.2c, d). Even after saturation of the signals (data not shown) 

only weak bands of Lhcb1 and Lhcb2 were observed in psad1-1 mutants. Regarding the above 

mentioned immunoblot analysis with Lhcb1 and Lhcb2 antibodies, it seems very likely that 

some of the phoshopeptides (band 3 in Figure 5.2) detected in psae1-3 mutants belong to 

LHCII. Might be that small amount of phosphorylated mobile pool of LHCII is attached to PSI 

also in psad1-1 mutants (band 3 in Figure 5.2 and band indicated by an asterisk in Figure 5.3).  

The phosphopeptides detected by immunoblot analyses were further analysed by mass 

spectrometry using multidimensional protein identification technology (MudPIT). PSI fractions 

isolated from psad1-1 and psae1-3 mutants were digested with trypsin to release the surface-

exposed peptides and remove the hydrophobic segments of the proteins. After digestion, 

samples were analysed by LC-ESI MS/MS- method in which peptide ions are introduces to the 

mass spectrometer in the gas phase. The SEQUEST algorithm was used to interpret the MS/MS 

spectra. In PSI fractions isolated from both psad1-1 and psae1-3 mutants, phosphorylation sites 

have been identified in peptides belonging to a 22-kDa protein - Lhca4. The fragmentation 

spectra of chosen Lhca4 phosphopeptides are shown in Figure 5.4 and 5.5.  
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Figure 5.4 
Identification of phosphopeptide belonging to the N-terminus of Lhca4 protein. Phosphopeptide was detected in 
PSI phase isolated from psad1-1 mutants. Shown is the product ion spectrum obtained by MudPIT and detected B 
(N-terminal) and Y (C-terminal) fragment ions. The exact phosphorylation site (T or S) is unclear. 
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(a)            
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Figure 5.5 
Identification of threonine (T) (a) and serine (S) (b) phosphorylation present in N-terminus of Lhca4 protein. 
Phosphopeptides were detected in PSI phase isolated from psae1-3 mutants. Shown are the product ion spectra 
obtained by MudPIT and detected B (N-terminal) and Y (C-terminal) fragments ions.  
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The series of B (N-terminal) and Y (C-terminal) fragment ions revealed the peptides sequences 

belonging to Lhca4 protein. The spectrum shown in Figure 5.4 indicates that peptide, which has 

been detected in psad1-1 mutant, is very likely to be phosphorylated, but also that the exact 

phosphorylation site remains unclear. In the PSI fraction isolated from psae1-3 mutants also 

some phosphopeptides were detected, all belonging to Lhca4 protein. Both serine and threonine 

residues were shown to be likely phosphorylated (Figure 5.5). In both mutants these novel 

phosphorylation sites were detected in the N-terminal part of Lhca4 protein. Peptides detected 

in PSI fraction isolated from psad1-1 mutants cover 26.7% of the amino acid sequence of the 

Lhca4 protein (Figure 5.6a); in psae1-3 mutants sequence coverage is even higher - 50.6% 

(Figure 5.6b).  
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Figure 5.6  
The amino acid sequences of the Arabidopsis Lhca4 protein (Accession numbers: At3g47470). Peptides which 
were detected in PSI fraction from psad1-1 mutants cover 26.7% of the sequence of Lhca4 protein (a), in psae1-3 
mutants sequence coverage is 50.6% (b). 
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Figure 5.7 
PSI complexes isolated from WT, psad1-1 and psae1-3 mutant plants, corresponding to 5 µg of chlorophyll, were 
separated by SDS-PAGE. Corresponding amounts of loaded PSI proteins were checked by Coomassie-blue 
staining and stained with Pro-Q® Diamond phosphoprotein gel stain (a). Immunolabelling was performed with 
antibodies raised against PsaD and Lhca4 (b). In psad1-1 and psae1-3 mutants, additional SDS-PAGE bands 
appeared when filters were hybridized with antibodies against Lhca4 protein.  
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Furthermore, mass spectrometry results are in agreement with the Western analysis. Filters 

hybridized with antiphosphothreonine antibodies showed bands slightly bigger than 22 kDa in 

both psad1-1 and psae1-3 mutants that were not present in WT (Figure 5.2b). 

Moreover, double bands were detected in psad1-1 and psae1-3 mutants by immunoblotting 

with the Lhca4 antibody (Figure 5.7b). This could be explained by a slower-migrating, 

phosphorylated form of the Lhca4 protein, additional to a faster-migrating non-phosphorylated 

one. These results were confirmed by the Pro-Q® Diamond phosphoprotein gel stain – 

technology, which uses a novel fluorophore that recognizes phosphate groups on proteins and 

peptides directly on the gels. When PSI complexes isolated from psad1-1 and psae1-3 mutants 

were separated by gradient SDS-PAGE and stained with Pro-Q® Diamond, again bands of 

about 22-kDa were visible on the gel (Figure 5.7a). 
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DISCUSSION 
 

Although light-induced phoshorylation of thylakoid proteins has already been intensively 

studied, there are many open questions still to be answered. The most abundant 

phosphoproteins in thylakoids belong to PSII and its light-harvesting complex. Among them 

are the D1 and D2 reaction center proteins, the 43-kDa chlorophyll a-binding protein, PsbH, as 

well as Lhcb1, Lhcb2 and Lhcb4, of which the latter ones are part of LHCII. Recently, protein 

phosphorylation was found in thylakoid membranes outside of PSII and LHCII (see 

Introduction, Chapter 4).  

 

During this work an immunological approach using a polyclonal phosphothreonine antibody 

was applied for the analysis of thylakoid protein phosphorylation in vivo. Using this approach 

the same PSII core and LHCII phosphoproteins earlier identified by radiolabeling experiments 

were recognized, which is in accordance to other studies (Rintamäki et al., 1997, see also 

Chapter 4). But interestingly, the levels of thylakoid protein phosphorylation were significantly 

higher in psad1-1 and psae1-3 mutants as compared to WT plants. Not only phosphorylation of 

already known proteins was increased, but also new phosphoproteins were shown to exist in 

psad1-1 and psae1-3 mutants. Even the level of PSI phosphorylation was affected by these 

mutations, which is striking as the only PSI phosphopeptide detected so far was the PSI-D1 

protein (see Chapter 4). In this work presence of other unknown phopshopeptides belonging to 

the PSI complex have been shown.  

 

A possible explanation for the high levels of protein phosphorylation in both mutants could be 

an over-reduction of the plastoquinone pool. The reduction of the plastoquinone pool together 

with its binding to the quinol-oxidation site of a cytochrome b6/f complex was shown to play a 

key role in the regulation of protein phosphorylation in thylakoid membranes (see 

Introduction). It is also well known that oxidation of the plastoquinone pool is caused by excess 

stimulation of PSI. Biochemical data of psad1-1 and psae1-3 mutants indicate that several 

alterations exist in the polypeptide composition of PSI complexes. Moreover, it was shown that 

mutations in both psad1-1 and psae1-3 cause similar alterations in photosynthetic electron 

flow. Spectroscopic data indicate an impairment of electron transfer from PSI to ferredoxin (see 

Chapter 3), supporting the view that a reduction in amount of either of these stromal-exposed 
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proteins has a similar effects on PSI functions. Taken together these data, it can be assumed 

that in psad1-1 and psae1-3 plants, PSII reduces more plastoquinone than can be reoxidized by 

PSI. As a result, the plastoquinone pool is over-reduced and a significantly higher level of 

thylakoid protein phopshorylation is observed. It was already suggested by Haldrup et al. 

(2003) that a lower content of PSI in the antisense D plants leads to over-reduction of the 

plastoquinone pool and therefore to PSII photoinhibition in plants.  

  

A striking feature of psae1 mutants is the presence of a stable LHCII-PSI complex, which is 

associated with an almost complete suppression of state transition, a drastic increase in the 

levels of phosphorylated LHCII and a permanent reduction in PSII antenna size (Pesaresi et al., 

2002). The presence of Lhcb1 and Lhcb2 proteins associated with the PSI complex were 

confirmed in these studies by Western analysis of PSI isolated from psae1-3 mutants. 

Regarding the native gel and immunoblot analyses, it seems very likely that at least two 

phoshopeptides detected in psae1-3 mutants belong to the major subunits of the mobile LHCII 

pool and that most probably small amounts of Lhcb1 and Lhcb2 are also attached to PSI in 

psad1-1 mutants.   

  

The recent progress in mass spectrometry (MS) techniques and methods of proteomics allowed 

the successful identification and analysis of one previously unknown phosphoprotein Lhca4 

detected in psad1-1 and psae1-3 mutants. This is the first phosphorylated light-harvesting 

protein outside of LHCII. Some peptides belonging to Lhca4, which were detected by MS in 

psad1-1 and psae1-3 mutants, are very likely to be phosphorylated. The novel phosphorylation 

sites were detected in the N-terminal part of the protein. This N-terminus contains two residues 

in near vicinity, serine (Ser-2) and threonine (Thr-1), which are possible targets of 

phosphorylation. In the case of phosphopeptides detected in psae1-3 PSI, it seems likely that 

both serine (Ser-2) and threonine (Thr-1) residues are phosphorylated. Since the threonine 

(Thr-1) was the first residue of the detected phosphopeptide in psad1-1 PSI, MS was unable to 

detect this signal. Therefore, the exact phosphorylation site in the phosphopeptide identified in 

psad1-1 mutant has not been determined. There is a hint that the serine residue might be the 

phosphorylated one.  
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The localization of serine/threonine phosphorylation sites at the N-terminal of the Lhca4 

protein is in agreement with previous studies. All PSII and LHCII phosphopeptides identified 

so far belong to the N-terminus of the protein located at the stromal surface of the thylakoid 

membranes (Michael and Bennett, 1987 and 1989), mostly at threonine residues. 

Phosphorylation of other residues, like serine and tyrosine, were also reported (Garcia and 

Lucero, 1990; Tullberg et al., 1998) but those phosphoproteins were not well characterized. 

Peptides detected in the PSI fraction isolated from psad1-1 mutants cover 26.7% of the amino 

acid sequence of the Lhca4 protein while even 50.6% of sequence was covered in psae1-3 PSI. 

 

The Western analysis conducted in this thesis supports the above mass spectrometry data. 

Using antibody against Lhca4, two bands could be detected in psad1-1 and psae1-3 mutants. 

This could be explained by a slower-migrating, phosphorylated form of the Lhca4 protein, 

additional to a faster-migrating non-phosphorylated one. Moreover, by immunoblotting with 

antiphosphothreonine antibodies bands slightly bigger than 22 kDa were detected in both 

psad1-1 and psae1-3 mutants. Furthermore, these results are in agreement with Pro-Q® 

Diamond phosphoprotein gel stain. Using this approach phosphorylated proteins of about 22 

kDa were detected in PSI isolated from psad1-1 and psae1-3 mutants. 

 

Lhca4 was the first LHCI protein that was functionally investigated, employing antisense 

plants, in Arabidopsis thaliana (Zhang et al., 1997). Because transgenic plants of undetectable 

Lhca4 level did not show any phenotype it was suggested that Lhca4 is not essential for 

photosynthesis in plants. The unique feature of all LHCI compared to those of other 

chlorophyll-a/b binding proteins is their red-shifted absorbance and their formation of dimers. 

Stoichiometric determination performed by Ballottari et al. (2004) suggested that in higher 

plants one Lhca polypeptide is present per one PSI core. These results are in agreement with 

the recently resolved PSI crystal structure (Ben Shem, 2003). LHCI was shown to be composed 

of hetero dimers of Lhca1 and Lhca4 that in this form show a fluorescence emission maximum 

at 730 nm (LHCI-730), and hetero or homo dimers of Lhca2 and Lhca3 with a maximum at 680 

nm (LHCI-680) (Haworth et al., 1983; Jansson et al., 1996; Schmid et al., 1997). In general, 

the demand for four different LHCI genes is not obvious as all LHCI proteins share high 

sequence homology and spectral properties. But the discovery of Lhca4 phosphorylation adds a 

new aspect to the analyses of its specific functions.  
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Plants are exposed to constant fluctuations in their growth environment, in terms of light 

quantity and quality. Such environmental changes occur on varying timescales, ranging from 

seconds to days or even weeks. To improve photosynthetic parameters and protect themselves 

against damages caused by excess light, a number of mechanisms to accommodate these 

differing levels of irradiance have evolved in plants. Photosynthetic acclimation of Arabidopsis 

thaliana in response to varying light levels during growth has been investigated by Bailey and 

coworkers (2001). Some distinct strategies for acclimation to low and high irradiance were 

revealed. One observation was that when Arabidopsis plants were grown under extreme low 

light conditions, PSI content increased dramatically. Interestingly, this was not accompanied by 

an increase in any of the LHCI light-harvesting polypeptides, but drastic increases in the levels 

of major and minor LHCII were observed. When exposed to high light conditions, changes in 

the composition of all PSI light-harvesting antenna could be observed in the plant. The most 

spectacular change in the protein levels was a striking decline of Lhca4 during growth at 

600 µmol m-2 s-1.  

 

As it was shown in several studies, posttranslational modification like phosphorylation can 

regulate the activity of the protein or the ability of its interaction to other proteins. Distinct 

strategies for acclimation to extreme high or low light conditions may involve major structural 

and functional changes of one or both photosystems (Bailey et al., 2001), in which protein 

phosphorylation might be employed as one regulatory mechanism. The observed 

phosphorylation of Lhca4 could be involved in a photo-protection of PSI under particular stress 

conditions as found in the psae1-3 and psad1-1 mutants. The additional phosphate group might 

cause conformational changes of the Lhca4 protein leading to a modification of its chlorophyll 

organization and thus changes in its spectroscopic properties. This could lead to a decrease of 

reduced plastoquinone pool and thus release partly the photoinhibition. It has already been 

demonstrated that CP29, which is the minor light-harvesting protein of PSII, is phosphorylated 

under heavy stress conditions. Consequently a conformational change occurs that through 

modifying chlorophyll organization leads to an increase in non-radiative energy dissipation 

(Croce, 1996). Similarly, it was proposed by Bergantino et al. (1998) that phosphorylation of 

CP29 could be involved in decreasing over-reduction of the plastoquinone pool and thus 

photoinhibition.  
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Another interesting experiment was performed by Andersson and coworkers (2003). They 

showed that antisense plants lacking Lhcb1 and Lhcb2 were markedly reduced in fitness under 

field conditions, although they were largely unaffected in some aspects of photosynthesis. Even 

thought, these antisense plants were lacking the two major LHCII protein subunits, only small 

parallel reductions in the relative levels of Lhcb3 and PsbS were observed. Interestingly, plants 

lacking Lhcb1 and Lhcb2 showed increased amounts of two other antenna proteins  CP26 and 

Lhca4. Nevertheless, the increase in CP26 and Lhca4 does not complement for the loss of these 

proteins in antisense plants (Andersson et al., 2003). The elevated level of Lhca4 detected in 

asLhcb2 plants indicates that LHCII indeed is important for PSI. It was suggested that 

increased amount of an LHCI protein observed in asLhcb2 plants grown in constant moderate 

light intensity, could mean that PSI senses a decrease in antenna size which initiates an increase 

in Lhca4 (Andersson et al., 2003). 

 

In summary, above data indicate that the photosynthetic acclimation to growth under different 

light levels is more complex than it was previously reported. Further analysis of psad1-1 and 

psae1-3 mutants might proof helpful in answering some of the remaining questions. Anyhow, a 

distinct role for Lhca4 phosphorylation present in psad1-1 and psae1-3 mutants has not been 

clarified yet. Further studies are needed in order to elucidate the reason for Lhca4 

phosphorylation and to get further insight into the consequences of high level of thylakoid 

protein phosphorylation observed in psad1-1 and psae1-3 mutants.   
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6. FUNCTIONAL ANALYSIS OF PSI-E 
 
 

PSI-E is a hydrophilic subunit located on the stromal side of PSI that plays a significant role in 

photosynthesis. The PSI-E subunit shows a high degree of conservation from cyanobacteria to 

higher plants. In Arabidopsis thaliana, there are two copies of the PsaE gene that are highly 

homologues.  

As it was shown by Varotto et al. (2000), Arabidopsis plants in which one of the two PsaE 

genes is inactivated have reduced amounts of PSI-E and show a more general decrease in the 

polypeptide level of the whole stromal ridge of PSI. Plants with less PSI-E also show a marked 

increase in light sensitivity, photoinhibition and have an almost 50% decrease in growth rate. 

An interesting feature of psae1 mutant is the formation of a stable LHCII-PSI aggregate the 

existence of which is associated with an almost complete suppression of state transitions, a 

drastic increase in the levels of phosphorylated LHCII and a permanent reduction in PSII 

antenna size. In order to understand the biological significance of a complete lack of PSI-E 

subunits, a double mutant was generated and characterized. 

 

 

 
RESULTS 
 
6.1 Generation of psae1-3 psae2-1 double mutant 
 
 
The psae1-1 mutant used in previous studies (Varotto et al., 2000; Pesaresi et al., 2002) was 

identified on the basis of a decrease in the effective quantum yield of photosystem II, in a 

collection of plants subjected to transposon tagging with the Enhancer element. Because of the 

high activity of the transposon in this psae1-1 mutant line, some PsaE1 transcript was still 

present in small groups of wild-type cells resulting from somatic reversions. As a consequence, 

slight amounts of PsaE1 protein were still present in the mutant.  

To obtain plants with a complete lack of PSI-E subunits, additional stable mutant alleles of the 

PsaE1 gene had to be identified, as well as mutant lines for the second PsaE2 gene. 

Populations of T-DNA insertion lines were screened by conducting PCR with gene specific 

primers in combination with different T-DNA specific primers. For the PsaE1 allele, a mutant 
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line was found in the INRA-Versailles collection of Arabidopsis T-DNA insertion lines 

(http://weedsworld.arabidopsis.org.uk/Vol2ii/pelletier.html). This mutant line that carries a 

copy of the pGKB5 T-DNA inserted in the first exon of the PsaE1 gene, 122 bp downstream of 

the ATG codon, was designated psae1-3.  

A mutated line for the second allele was identified by screening the AFGC population 

(Arabidopsis Functional Genomics Consortium; http://afgc.stanford.edu/). This line that carries 

a copy of the pD991-AP3 T-DNA inserted in the first exon of the PsaE2 gene, 44 bp 

downstream of ATG, was designated psae2-1.  
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Figure 6.1 
Tagging of the PsaE1 and PsaE2 genes. (a) In psae1-3, the first exon of PsaE1 gene (At4g28750) is disrupted by 
an insertion of the pGKB5 T-DNA. (b) The psae2-1 mutant carry insertion of the pD991-AP3 T-DNA in the first 
exon of the PsaE2 gene (At2g20260).The T-DNA insertions are not drawn to scale.  
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The psae1-3 psae2-1 double mutant was constructed by crossing the two respective single 

mutant lines.  Homozygous double mutant plants were identified by genotyping F2 progenies 

obtained after crosses.  

 

6.2 Growth of the psae1-3 psae2-1 double mutant is significantly reduced  

The double mutants were able to survive on soil but the growth rate was significantly reduced 

compared to single mutants and WT plants (Figure 6.2). Additionally, double mutants had pale 

green leaves that were turning more yellowish during development. 

 

 

  Wspsae1-3 psae2-1e1 e2  
 
 
Figure 6.2 
Phenotypes of psae1-3 and psae2-1 and psae1-3 psae2-1 double mutants. WT and mutant plants (4 weeks old) 
were grown in the greenhouse under long-day conditions. 
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The psae1-3 psae2-1 double mutant remained very small and exhibited high-chlorophyll 

fluorescence (hcf) phenotype (Figure 6.3), similar to the phenotype of the psad1-1 psad2-1 

double mutant described previously (see Chapter 3). This indicates that the absence of the PSI-

E subunit causes severe alterations in photosynthetic electron flow. In addition, double mutants 

were photosensitive. The necrosis of the leaves could be observed appearing after a few weeks 

of growth under green-house conditions. The double mutants were able to produce some seeds, 

but these failed to germinate. 

 
 
                           (a) 

                                  (b)    

   Wse1 e2

 
 
 
 
 
Figure 6.3  
WT and psae1-3 psae2-1 double mutant plants (e1 e2) grown on soil and illuminated with white light (a) or UV 
light (b). Plants (4 weeks old) were grown in the greenhouse under long-day conditions. 
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6.3 Accumulation of both PsaE transcripts is completely suppressed in psae1-3 

       psae2-1 double mutant 

 

Reverse-transcription PCR (RT-PCR) was performed to investigate the presence of PsaE 

transcripts in single and double mutants. Selected primers were complementary to either a 

sequence conserved between both PsaE1 and PsaE2 or a sequence existing only in PsaE1. RT-

PCR analyses indicated that accumulation of PsaE1 transcript was completely suppressed in 

psae1-3 mutants (Figure 6.4b). When the primer combination specific for both transcripts was 

used, the presence of PsaE1 transcript in psae2-1 mutants and PsaE2 transcript in psae1-3 

plants was detected. 
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Figure 6.4 
Detection of PsaE mRNA in mutant and WT plants. Detection of PsaE transcripts by RT-PCR. Products obtained 
after PCR of 30 cycles with primers recognizing both PsaE transcripts (PsaE1/2-248/257s and PsaE1/2-395/404as) 
(a), with primers recognizing only the PsaE1 transcript (PsaE1/2-248/257s and PsaE1-53499as) (b) and control 
primers for the ACTIN1 gene (c) were analysed on a 2.0% agarose gel. As a control, PCR with genomic WT-DNA 
was performed. The difference in size of the ACTIN1 WT (DNA) band is duo to the presence of two introns in the 
genomic amplicon.  
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Using both combinations of primers we were able to confirm the complete lack of PsaE 

transcript in the psae1-3 psae2-1 double mutant (Figure 6.4a, b). As a control, RT-PCR with 

the ACTIN1- specific primers was performed. The difference in size of the ACTIN1 WT (DNA) 

band is because of the presence of two introns in the genomic amplicon (Figure 6.4 c).  

 

6.4 PSI-E does not accumulate in psae1-3 psae2-1 double mutant  

 

Western analyses of thylakoids demonstrated that level of PSI-E subunit was significantly 

reduced in psae1-3 mutant, while no alteration was observed in psae2-1 as compared to WT 

plants. Accumulation of PSI-E was completely suppressed in the psae1-3 psae2-1 double 

mutant (Figure 6.5b). 
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Figure 6.5 
Immunoblot analysis of psae single and double mutants, as well as WT control. Aliquots of thylakoid proteins 
corresponding to 5 µg of chlorophyll were loaded in each lane, and decreasing amounts of WT proteins were 
added to lanes 0.8x, 0.6x and 0.4x WT. Accurate loading was confirmed by staining SDS-PAGE with Coomassie 
(a). Filter was immunolabelled with antibodies raised against PSI-E (b). In the case of the psae1-3 single mutant 
and psae1-3 psae2-1 double mutant, because of its reduced chlorophyll content, relatively more proteins were 
loaded. 
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DISCUSSION 
 
 
 
The consequences of a mutation in the PsaE1, which is one of the genes coding for PSI-E 

subunit, were intensively studied by Varotto et al. (2000) and Pesaresi et al. (2002). The 

phenotype of Arabidopsis plants lacking PSI-E1 includes a light-green pigmentation, delayed 

growth and alterations in photosynthetic electron flow in both PSII and PSI. Western analyses 

demonstrated that a significant reduction in the amount of the three extrinsic subunits PSI-E, -C 

and -D existed in the psae1 mutant. 

 

During this work, the biological consequences of a lack of both PsaE genes have been 

investigated. The psae1-3 psae2-1 double mutants were generated and characterized. The 

complete lack of both PsaE transcript and PSI-E protein in the psae1-3 psae2-1 double mutants 

was confirmed. Arabidopsis plants missing the PSI-E subunit showed a severe phenotype 

including significant reduction in plant size and pale green leaf pigmentation, which is turning 

more yellowish during development. The psae1-3 psae2-1 double mutant remains very small 

and exhibits the hcf phenotype observed before in the psad1-1 psad2-1 double mutant plants. 

But even though the absence of the PSI-E subunit most probably causes severe alterations in 

photosynthetic electron flow as conducted from the phenotype, psae1-3 psae2-1 double mutant 

are able to grow under normal photoautotrophic conditions. Anyhow, the observed phenotype 

is severe and after a few weeks of growth under green-house conditions necrosis of leaves 

could be observed, which indicates that this double mutant is photosensitive. Plants lacking the 

PSI-E subunit are able to produce some seeds, but these fail to germinate. 

 

In contrast, cyanobacterial mutants lacking PSI-E do not obviously differ in growth rate from 

wild type when grown under normal photoautotrophic conditions (Chitnis et al., 1989; Zhao et 

al., 1993). However, it was shown that fast electron transfer between PsaC and the soluble 

electron acceptor was impaired when PSI-E was missing (Rousseau et al., 1993). Moreover, the 

PSI-E-less membranes were severely deficient in ferredoxin-mediated NADP+ photoreduction 

(Xu et al., 1994). It was suggested that the PSI-E subunit might be involved in cyclic electron 

flow. Subsequently, more careful physiological investigations revealed that the growth rate of 
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cyanobacterial mutants lacking PSI-E was reduced as compared to the wild-type strain under 

low-light or low-CO2 conditions (Zhao et al., 1993). Some possibilities were suggested in order 

to explain the normal growth of cynobacterial PSI-E-less mutant strains under photoautotrophic 

conditions (Xu et al., 1994). Firstly, the ability of flavodoxin to accept electrons from PSI in 

the absence of PSI-E could explain the observed normal growth. Secondly, the small amount of 

ferredoxin-mediated NADP+ photoreduction activity that was detected in the PSI-E-less 

mutants could be sufficient to support growth. Finally, there might be an undetected electron 

transfer protein that plays a role in electron flow in cyanobacteria. 

 

Concerning these data and the fact that plants lacking PSI-E exhibit a significantly increased 

chlorophyll fluorescence phenotype, complete spectroscopic measurement should be 

performed, including chlorophyll fluorescence induction, the absorbance kinetics of P700 and 

state transition. 

 

Further biochemical and physiological studies are necessary in order to understand the 

biological consequences of a complete lack of PSI-E subunit and its importance for 

photosynthesis in plants. The open question is if other PSI subunits can compensate the absence 

of PSI-E. This interesting possibility that one or more of the remaining PSI subunits can 

perform the function of the lacking proteins was already studied in cyanobacteria. The 

biochemical activities and organization of PSI in single- and multiple-mutant strains were 

compared (Xu et al., 1994). Interestingly, these different multiple-mutant strains grew normally 

under photoautotrophic conditions with no obvious alterations in photosynthetic electron flow 

as compared to wild-type strain. It was demonstrated that the loss of PSI-E, -F, -J, and -L or 

their loss in several combinations did not change the photochemical activity of individual 

photosystems. In contrast, all strains lacking functional PSI-D were shown to grow slower as 

compared to WT. Moreover, double mutants lacking both PSI-D and PSI-E could hardly grow 

under photoautotrophic conditions. It was suggested that the absence of significant defects in 

some of the above mentioned multiple-mutant strains could be due to the compensatory 

changes in the PSI organization (Xu et al., 1994). On the other hand, PSI isolated from the 

multiple-mutant strains were stable assembled, they lacked the deleted subunits but the 

remaining subunits were present in normal amounts. 
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In Arabidopsis, both subunits PSI-D and PSI-E are involved in the binding of ferredoxin. Also 

both of them are encoded by two functional genes and contain the N-terminal extensions that 

are specific for eukaryotes. Moreover, several similarities in physiological and biochemical 

properties exist between Arabidopsis plants lacking PSI-D1 and PSI-E1. Taken together these 

data, the PSI-D subunit could be the one that perform the function of the lacking PSI-E subunit 

in plants. In contrary to this hypothesis is decreased amount of PSI-D1 protein in psae1 single 

mutant. Immunoblot analysis testing level of all PSI polypeptides, in particular PS-D1 and PSI-

D2 in psae1-3 psae2-1 double mutant, might proof helpful in answering those open questions 

remaining, concerning functions of the subunits located on the stromal side of PSI.  
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SUMMARY 
 
Although photosynthesis has been intensively studied, many open questions remain, which still 

need to be answered. The aim of this thesis was to further investigate the PSI complex, which 

in the course of the light reaction of photosynthesis catalyzes the light-induced transfer of 

electrons from plastocyanin on the lumenal side to ferredoxin on the stromal side. In this thesis 

emphasis was put on the reducing side of PSI, so-called stromal ridge of PSI, which is 

composed of the subunits D, E and C. Functional analyses of Arabidopsis plants carrying 

disrupted genes for PSI-E and PSI-D subunits were performed. Analyzing PSI-D, it was shown 

that of the two genes coding for this subunit only a mutation in PSI-D1 led to a general 

alteration in the polypeptide composition of PSI and thus also in the photosynthetic electron 

flow. The characterization of psad1-1 psad2-1 double mutant indicated that PSI-D is necessary 

for the stability of PSI in Arabidopsis. A complete lack of the D subunit led to seedling lethality 

under photoautotrophic conditions. The instability of Arabidopsis PSI without PSI-D can be 

explained either by an increase in degradation of the incomplete PSI complex or by 

downregulation of the synthesis of PSI subunits. In contrast, Arabidopsis plants lacking the 

PSI-E subunit were able to grow under photoautotrophic conditions. However, they showed 

severe phenotype including a significant reduction in size and pale green pigmentation, which 

was turning more yellowish during development. The psae1-3 psae2-1 double mutant exhibited 

a high-chlorophyll fluorescence phenotype, which had already been observed in the psad1-1 

psad2-1 double mutant. This indicates that photosynthetic electron flow is severely altered also 

in Arabidopsis plants lacking PSI-E subunit. Further spectroscopic, biochemical and 

physiological studies are in progress in order to understand the biological consequences of a 

complete lack of PSI-E subunit and its importance for photosynthesis in plants. An unexpected 

feature observed in both psad1-1 and psae1-3 single mutants, was a significantly increased 

level of thylakoid protein phosphorylation and therefore the presence of some new 

phosphopeptides that could not be detected in WT. A striking feature was that even the level of 

PSI phosphorylation was affected by these mutations. The only PSI phosphopeptide detected so 

far had been the PSI-D1 protein. Regarding the complementation analysis performed in this 

thesis it seems that phosphorylation of PSI-D1 does not play a key function in the PSI. 

Anyhow, it can not be excluded that this phosphorylation might play a role, if plants are grown 

under particular environmental conditions, not tested in this work. Mass spectrometry 
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techniques and methods of proteomics allowed the successful identification and analysis of one 

previously unknown phosphoprotein Lhca4. This was the first light-harvesting protein outside 

of LHCII to be phosphorylated. However, a distinct role for Lhca4 phosphorylation remains 

unknown. Further studies are needed in order to elucidate the cause and consequences of Lhca4 

phosphorylation and to get further insight into the implication of a high level of thylakoid 

protein phosphorylation as observed in psad1-1 and psae1-3 mutants.   
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ZUSAMMENFASSUNG 
 

Obwohl Photosynthese bereits in der Wissenschaft detaillierter untersucht wurde, bleiben noch 

viele Fragen offen, die zu beantworten sind. Ziel dieser Arbeit war eine vertiefte Analyse des 

Photosystems I (PSI), das während der Lichtreaktion den Elektronentransfer vom luminal 

gelegenen Plastocyanin  zum stromal gelegenen Ferredoxin katalysiert. Im Vordergrund dieser 

Arbeit stand die reduzierende Seite von PSI, die sog. stromal ridge.  Diese besteht aus den 

Untereinheiten D, E und C. Hierzu wurden Analysen an transgenen Arabidopsispflanzen 

durchgeführt, bei denen die Expression der funktionalen Gene, die für die PSI-Untereinheiten E 

und D kodieren, unterdrückt war. Während der Untersuchungen von PSI-D zeigte sich, dass nur 

das Fehlen von PSI-D1 zu einer beträchtlichen Veränderung der Polypeptidzusammensetzung 

von PSI, wie auch des photosynthetischen Elektronenflusses führt. Die Charakteristik der 

Doppelmutanten psad1-1 psad2-1 ließ erkennen, dass PSI-D für die Stabilität von PSI in 

Arabidopsis notwendig ist. Das vollständige Fehlen der Untereinheit D führte zur Letalität der 

Keimlinge unter photoautrophen Bedingungen. Für die Instabilität von PSI ohne die PSI-D-

Untereinheit konnte entweder durch einen Anstieg der Degradationsrate des unvollständigen 

PSI oder durch eine herunterregulierte Synthese der Untereinheiten von PSI ursächlich sein. Im 

Gegensatz dazu waren Arabidopsispflanzen ohne die Untereinheit PSI-E in der Lage unter 

photoautrophen Bedingungen zu wachsen. Jedoch wiesen diese Pflanzen einen stark 

veränderten Phänotyp auf.  Dieser war gekennzeichnet durch eine beachtliche Reduktion des 

Wuchses und der Pigmentation. Diese psae-Mutanten werden im Laufe ihrer Entwicklung gelb. 

Wie auch die Doppelmutante psad1-1 psad2-1 zeigte auch die Doppelmutante psae1-3 psae2-1 

eine erhöhte Chlorophyllfluoreszenz. Dies deutete darauf hin, dass der photosynthetische 

Elektronenfluss auch in Arabidopsispflanzen ohne die Untereinheit PSI-E stark gestört ist. 

Weitere spektroskopische, biochemische und physiologische Untersuchungen wurden 

durchgeführt um die biologischen Konsequenzen des vollständigen Fehlens der Untereinheit 

PSI-E zu verstehen und seine Bedeutung für die Photosynthese zu erkennen. Gemeinsam für 

beide Mutanten psad1 und psae1-3 ist eine erhebliche Zunahme der Phosphorylierung von 

Proteinen der Thylakoidmembran. Darüber hinaus konnten in den Mutanten psad1 und psae1-3 

neben dem bereits bekannten Phosphopetid PSI-D1 weitere, bislang unbekannte 

Phosphopeptide in der PSI-Fraktion nachgewiesen werden. Auf Grund von 
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Komplementationsanalysen konnte angenommen werden, dass die PSI-D1 Phosphorylierung 

unter den getesteten Bedingungen keine Schlüsselrolle einnimmt. Weiterhin ungeklärt blieb, ob 

die Phosphorylierung dieses Proteins eine Rolle unter speziellen Wachstumsbedingungen 

spielen könnte. Massenspektrometrie-Techniken und Proteomics-Methoden erlaubten die 

erfolgreiche Identifizierung und die Analyse des bislang unbekannten Phosphoproteins Lhca4. 

Dieses Protein ist das erste phosphorylierte Protein eines Lichtsammelkomplexes außerhalb 

LHCII. Die Funktion von Lhca4-Phosphorylierung ist noch unbekannt. Weitere 

Untersuchungen sind notwendig, um die Funktion Lhca4-Phosphorylierung zu erklären und die 

Ursache der erhöhten Phosphorylierung der anderen Proteine der Thylakoidmembran der 

Mutanten psad1 und psae1-3 zu analysieren. 
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