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1 INTRODUCTION 

 

 

1.1 CONSTANS is a regulator of photoperiodic flowering 

 

A major decision in the life of flowering plants is the switch from 

vegetative development to reproductive development. Arabidopsis, for 

example, initially produces leaf after leaf, and then switches to producing 

stalk-borne flowers upon flowering. In order to achieve reproduction in the 

most favourable conditions, flowering is controlled by both environmental and 

endogenous stimuli. In Arabidopsis, environmental cues include day length, 

light quality and temperature, whereas endogenous signals include 

developmental age and the hormone gibberellic acid (Boss et al., 2004). At 

the molecular level, each type of signal is transmitted through its own distinct 

flowering pathway, only to converge upon integration by the so-called floral 

pathway integrators, FLOWERING LOCUS T (FT), SUPPRESSOR OF CONSTANS 

1 (SOC1), and LEAFY (LFY)  (Parcy, 2005). These genes convert the 

heterogeneous inputs from different flowering pathways into an induction of 

the so-called meristem identity genes, the action of which results in the 

conversion of the shoot apical meristem (SAM) from a vegetative, to an 

inflorescence and finally to a floral meristem (Lohmann and Weigel, 2002). 

An important environmental signal that influences flowering is day 

length, or photoperiod. Because at intermediate and higher latitudes, 

photoperiod changes dramatically during the course of the year, plants use it 

to sense seasonal progression and regulate their reproductive strategies 

accordingly. Arabidopsis, for example, is a facultative long-day plant, which 

means that flowering is very much accelerated under long days, although it 

will eventually also flower under short days. Over the years, a large number 

of Arabidopsis mutants have been characterised that are impaired in proper 

day length dependent flowering. Some mutants fail to promote flowering 

under inductive photoperiod (long days), whereas others promote flowering 

constitutively, also under non-inductive photoperiod (short days). As the 

corresponding genes were cloned and their hierarchy of action dissected, it 

was revealed that a gene named CONSTANS (CO) occupies the most basal 
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position in the signalling cascade of the photoperiod flowering pathway (Figure 

1). As such, CO relays the day length signal to the floral pathway integrators 

FT and SOC1, which on turn integrate it with signals from the other flowering 

pathways. In particular the direct activation of FT expression by CO is 

established as the decisive step in the day length dependent transition to 

flowering. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Genetic pathway 
that controls flowering of 
Arabidopsis in response to 
photoperiod. Genes are 
shown as white rectangles 
with a black line to represent 
their promoter. Proteins are 
shown as black circles or 
ovals; proteins known or 
believed to perceive light are 
indicated by an additional 
grey star. The grey U boxes 
represent ubiquitin; 
degradation of that protein is 
indicated by a dashed line. 
Arrows represent promotive 
effects; T-bars represent 
repressive effects. Adapted 
from Ausin et al. (2005). 

 

 

 

Early grafting experiments showed that photoperiod is sensed by the 

leaves, consistent with their evolutionary function to harvest light for 

photosynthesis. The expression of CO and FT specifically overlaps in the 

vascular tissue of leaves (Takada and Goto, 2003; An et al., 2004). Yet, 

photoperiod affects flowering and the fate of the SAM; therefore the flowering 

signal generated by CO and FT must be transmitted to the SAM. CO activates 

FT and promotes flowering cell-autonomously in the phloem of leaves, 

whereas FT promotes flowering in a non cell-autonomous fashion (An et al., 
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2004; Ayre and Turgeon, 2004). In fact, recent evidence suggests that FT 

mRNA may be part of the mobile floral stimulus (Huang et al., 2005), and that 

the FT protein acts in the shoot apex through interaction with a bZIP 

transcription factor called FD (FD) (Abe et al., 2005; Wigge et al., 2005). 

Nevertheless, the flowering signal generated by CO in the leaves is likely to be 

more complex, because phloem specific expression of CO still accelerated 

flowering in the absence of a functional FT allele (An et al., 2004). 

Already a long time ago it was recognised that photoperiodism must be 

associated with the workings of a circadian clock (Bünning, 1936). At the 

molecular level, the role of the circadian clock becomes apparent in the 

circadian fluctuations in CO transcript abundance (Figure 2). Moreover, 

several mutations that disrupt circadian clock function also impair proper 

circadian expression of CO, as well as proper day length dependent flowering. 

These include mutations in genes that constitute the core of the circadian 

clock, such as TIMING OF CHLOROPHYLL A/B BINDING PROTEIN 1 (TOC1), 

EARLY FLOWERING 4 (ELF4), LATE ELONGATED HYPOCOTYL (LHY), and 

CIRCADIAN CLOCK ASSOCIATED (CCA1), or genes that are required for 

regulating the input from the photoreceptors to the clock, such as EARLY 

FLOWERING 3 (ELF3) (Figure 1) (Hicks et al., 1996; Schaffer et al., 1998; 

Wang and Tobin, 1998; Somers et al., 2000; Strayer et al., 2000; Doyle et 

al., 2002). Two genes mediate between the circadian clock and CO: 

GIGANTEA (GI) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) 

(Figure 1). GI encodes a protein of unknown biochemical function that 

localises to the nucleus (Huq et al., 2000; Mizoguchi et al., 2005). In the late 

flowering gi mutant, abundance of CO mRNA is severely reduced, in long days 

as well as in short days (Figure 2) (Suarez-Lopez et al., 2001; Mizoguchi et 

al., 2005). Besides its role as a clock output gene in photoperiodic flowering, 

GI has an additional and unrelated role in circadian clock regulation 

(Mizoguchi et al., 2005). The other gene, FKF1, encodes a multidomain 

protein. The presence of a functional light-sensing LOV domain indicated that 

the protein may function as a blue-light receptor (Nelson et al., 2000; 

Imaizumi et al., 2003), whereas the F-box domain suggested a role in 

ubiquitinating proteins for degradation (Vierstra, 2003). The latter was 

confirmed when the FKF1 protein was found to target a repressor of 

CONSTANS, the Dof transcription factor CYCLING DOF FACTOR 1 (CDF1), for 

degradation, allowing CO mRNA levels to rise at the end of the day (Imaizumi 
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et al., 2005). Together, GI and FKF1 are required to generate the typical 

circadian rhythm of CO mRNA abundance, resulting in high levels of CO mRNA 

coinciding with light in long days, but with darkness in short days (Figure 2). 

 

 

 

Figure 2 Current working 
model for the photoperiodic 
control of flowering in 
Arabidopsis. Top row: 
circadian profile of CO 
transcript abundance in 
WT, fkf1 and gi plants. 
Bottom row: circadian 
profile of CO protein 
abundance. Left column: 
long days. Right column: 
short days. Adapted from  
Imaizumi et al. (2003), and 
Searle and Coupland 
(2004). 

 

 

 

 

 

The importance of light perception for photoperiodic flowering is 

illustrated by the flowering time phenotypes of Arabidopsis photoreceptor 

mutants. Specifically, proper photoperiodic flowering depends on functional 

red/far-red light absorbing phytochromes and blue light absorbing 

cryptochromes (Koornneef et al., 1991; Halliday et al., 1994; Devlin et al., 

1998; Guo et al., 1998). Although photoreceptors play an important role in 

synchronising the circadian clock to environmental light/dark cycles (Figure 

1), it is not through an effect on circadian clock function that they influence 

flowering time (Suarez-Lopez et al., 2001; Yanovsky and Kay, 2002; Cerdan 

and Chory, 2003). Instead, they were shown to have a direct, post-

transcriptional effect on the stability of the CONSTANS protein. Whereas 

signalling through PHYTOCHROME B (PHYB) targets CO for degradation by the 

proteasome, signalling through PHYTOCHROME A (PHYA), CRYPTOCHROME 1 

(CRY1) and CRYPTOCHROME 2 (CRY2) stabilises the protein (Figure 1) 

(Valverde et al., 2004). How these antagonistic effects are balanced is not 
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entirely clear, but shifts in the light spectrum throughout the day might play a 

role, as well as distinct circadian cycles of photoreceptor abundance, due to 

transcriptional (Toth et al., 2001; Sharrock and Clack, 2002; Mockler et al., 

2003), or post-transcriptional effects (El-Din El-Assal et al., 2001). 

In conclusion, the current data support that flowering is triggered by 

coincidence of light and a light inducible phase of the circadian cycle, which is 

provided by CO expression. Only when a peak in CO expression coincides with 

light, as is the case in long days but not in short days, will the protein 

accumulate and act to promote flowering (Figure 2). As such, this confirms 

one of the classical models of photoperiodic responses, the so-called external 

coincidence model, at the molecular level (Pittendrigh and Minis, 1964). 

 

1.2 CONSTANS contains two conserved domains 

 

Functionally, the CONSTANS protein is perceived to be a transcription 

factor, because it quickly and directly activates the expression of several 

genes, including the floral pathway integrators FT and SOC1 (Samach et al., 

2000). This is in agreement with the protein being located in the nucleus 

(Robson et al., 2001; Valverde et al., 2004). However, there is as yet no 

demonstration of CONSTANS binding DNA. Hence CO is thought to be 

recruited to target promoters through interaction with one or more DNA-

binding proteins. Although the nature of this DNA-binding protein has 

remained elusive to date, the two conserved regions of CONSTANS, amino 

terminal B-box zinc fingers and carboxy terminal CCT (CO, CO-like, and 

TOC1) domain have both been implicated in protein-protein interactions.  

The B-box is a class of zinc finger that was originally identified in a 

variety of animal proteins, participating in a wide range of cellular processes 

including regulation of gene expression, differentiation, and/or control of cell 

growth (Torok and Etkin, 2001). In these proteins, B-boxes are found in 

conjunction with various other motifs, such as the RING finger, coiled-coil, rfp, 

or NHL motif (Torok and Etkin, 2001). In Arabidopsis, B-box zinc fingers were 

also found in SALT TOLERANCE (STO) and SALT TOLERANCE HOMOLOGOUS 

(STH), proteins that lack the CCT domain and that have been suggested to 

link light signalling with Ca2+-signalling (Lippuner et al., 1996; Holm et al., 

2001). Therefore, the B-box zinc finger seems to be an element with an 
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independent function, which has been combined with other domains in both 

the animal and plant kingdoms. Although no function has been clearly 

assigned, in animal proteins it is believed to function in protein-protein 

interactions, either directly, or indirectly by orienting the true interaction 

domain (Cao et al., 1997; Cao et al., 1998; Cainarca et al., 1999). Four 

residues that were shown to bind zinc in the B-box structure of the XENOPUS 

NUCLEAR FACTOR 7 (XNF7) protein (Borden et al., 1995) are found at these 

positions in the CONSTANS B-boxes as well. The importance of the B-boxes 

for CONSTANS function was demonstrated by the fact that five out of seven 

classical co mutant alleles contain mutated B-box residues (Robson et al., 

2001). According to the InterPro database of protein domains 

(www.ebi.ac.uk/interpro), B-box type zinc fingers are also found in the 

kingdoms of archaea and fungi, indicating very ancient origins of this motif. 

The CCT domain on the other hand, is found exclusively in plant 

proteins, according to the InterPro database (www.ebi.ac.uk/interpro). 

Because it is found in conjunction with domains other than B-boxes, this 

domain seems to have an independent function as well. It has been combined 

with the GATA-type zinc finger, a DNA-binding domain (Reyes et al., 2004; 

Shikata et al., 2004), as well as with the pseudo-receiver domain of 

ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 1/TIMING OF CAB 1 

(APRR1/TOC1) family proteins (Matsushika et al., 2000; Strayer et al., 2000). 

Recently, a more diverged version of the motif was found to be conserved in 

eight unrelated Arabidopsis proteins called ACTIVATOR OF SPOMIN::LUC2 

(ASML2) family proteins (Masaki et al., 2005). The domain could have a 

conserved function in nuclear localisation, because it is required for nuclear 

import of CONSTANS as well as APRR1/TOC1 (Makino et al., 2000; Robson et 

al., 2001). In addition, the domain has been implicated to be involved in 

protein-protein interaction (Kurup et al., 2000). The domain’s importance for 

CONSTANS function is reflected by the fact that two further classical co alleles 

map to this region, although one of the two does not impair nuclear 

localisation, indicating that the domain serves additional purposes (Robson et 

al., 2001). 
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1.3 CONSTANS is the founder of a plant-specific gene family 

 

To date, CONSTANS homologues have been found in several flowering 

plants, but not in yeast and animals. In Arabidopsis as well as in rice, 

CONSTANS is part of a large gene family with seventeen and sixteen 

members, respectively (Robson et al., 2001; Griffiths et al., 2003). In 

Arabidopsis, the 17-member family of CO-like genes consists of three broad 

clades, referred to as Group 1, Group 2, and Group 3 (Robson et al., 2001; 

Griffiths et al., 2003). Group 1 genes (CO and COL1-COL5) have two B-boxes 

and share the same exon-intron structure (Figure 3). Group 2 genes (COL6-8 

and COL16) have only a single B-box and the same exon-intron structure as 

Group 1 genes. Finally, in Group 3 genes (COL9-COL15) the second B-box is 

replaced by a more divergent zinc-finger, and these genes have a different 

exon-intron structure altogether. The same three groups were found in the 

16-member family of rice, indicating that their evolution predates 

monocot/dicot divergence (Griffiths et al., 2003). 

 

 
 
 

 
 
 
 

Figure 3 Conserved regions of CO that it shares with other Group 1a CO-like proteins. 
Grey rectangles depict conserved domains (Robson et al., 2001; Griffiths et al., 
2003). The position of the intron is indicated by a white triangle. Feature properties 
are given in the arrowed boxes. 
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Group 1 CO-like proteins have additional conserved motifs that are not 

found in Group 2 or Group 3 proteins, including the so-called T motif, a 

distinctive motif of six amino acids at the protein’s carboxy terminus (Figure 

3) (Griffiths et al., 2003). The middle region of CO-like proteins is the most 

diverged, but comparison of monocot and dicot proteins identified four small 

conserved motifs that are specific to Group 1 proteins. These motifs are 

referred to as M1 to M4 (Figure 3), and they helped define a further 

subdivision within Arabidopsis Group 1 genes: CO, COL1 and COL2 constitute 

Group 1a and contain middle region motifs M1, M2, M3 and M4, whereas 

COL3, COL4 and COL5 constitute Group 1c and contain motifs M1 and M4 only 

(Griffiths et al., 2003). The same subgroups are present in rice and barley, 

with the same distinctive conserved motifs. However, three additional 

subgroups of Group 1 CO-like genes are described for barley and rice and may 

be monocot specific (Griffiths et al., 2003). 

Apart from CO itself, little is known about the function of CO-like genes. 

No function in photoperiodic flowering, or any other function, could be 

assigned to the two most closely related paralogues in Arabidopsis, COL1 and 

COL2 (Ledger et al., 2001). Only for Arabidopsis COL9 has a function been 

suggested, most interestingly in photoperiodic flowering (Cheng and Wang, 

2005). All the other Arabidopsis paralogues have not yet been studied.  

Analysis of the rice orthologue of CONSTANS, HEADING DATE 1 (HD1), 

indicated that the Arabidopsis GI-CO-FT signalling cascade is generally 

conserved between the long-day plant Arabidopsis and the short-day plant 

rice (Hayama and Coupland, 2004). The variation in flowering responses is 

probably achieved by a variation in the effect of coincidence of light on CO 

protein function; coincidence of light, as signalled through particular 

photoreceptors, targets CO for degradation in Arabidopsis, whereas in rice, it 

turns CO into a transcriptional repressor (Izawa et al., 2002; Hayama and 

Coupland, 2004). Nonetheless, the role of CO as an integrator of internal 

circadian rhythms and external factors (light) appears to be conserved 

between dicotyledonous and monocotyledonous species. 

CO homologues from Brassica, Pharbitis, and ryegrass successfully 

promoted flowering when expressed in Arabidopsis from the Cauliflower 

Mosaic Virus (CaMV) 35S promoter, suggesting that they share the functional 

properties of the CO protein (Robert et al., 1998; Liu et al., 2001; Martin et 

al., 2004). In addition, several homologues have been isolated from a variety 
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of other flowering plants, such as wheat, meadow fescue, poplar, and several 

legume species (Yuceer et al., 2002; Nemoto et al., 2003; Martin et al., 2004; 

Hecht et al., 2005). Although present in flowering plants and not in animals in 

yeast, it is unknown whether CO homologues are more widely conserved in 

the plant kingdom.   

 

1.4 Physcomitrella patens as a plant model organism 

 

The non-vascular, multicellular land plant Physcomitrella patens is only 

distantly related to Arabidopsis and rice. It is a member of the bryophytes, 

which are thought to have diverged from the vascular plants about 700 million 

years ago (Mya) (Hedges et al., 2004). Although all plants have a common life 

history that involves the alteration of a haploid and a diploid generation, these 

generations have taken different evolutionary routes during the long 

separation of bryophyte and vascular plant lineages (Graham et al., 2000). In 

extant mosses, the haploid gametophyte is the dominant generation, superior 

to the diploid sporophyte in size as well as complexity, whereas extant 

angiosperms possess a dominant diploid generation, with unprecedented 

levels of complexity and tissue differentiation.  

The haploid, gametophytic phase of Physcomitrella starts with the 

germination of a haploid spore and consists of two developmental stages with 

very different morphologies (Figure 4). The first stage, called protonema, is 

filamentous, arising through division of an apical cell and division of sub-apical 

cells, resulting in branching. Initially, protonema consists of a single cell type, 

called chloronema. These cells contain many chloroplasts and seem to be 

specialised in energy production. After a few days’ growth however, they may 

give rise to a new cell type, called caulonema. Thse cells are longer, divide 

more rapidly, and contain fewer chloroplasts. Therefore, caulonema cells seem 

to have differentiated towards a role in vegetative habitat colonisation. The 

cell types can switch back and forth, and the balance between the two is 

known to be influenced by light and by phytohormones such as auxin and 

cytokinin (Cove, 1992). Sub-apical, caulonemal side branch initials may have 

a developmental fate other than filamentous growth, marking the start of the 

second stage of gametophyte development. Under the influence of light and 

phytohormones, the initials may develop into a bud which divides three-
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dimensionally and gives rise to the so-called gametophores (Cove, 1992). 

Gametophores produce leaf-like structures called leaflets, consisting of a 

single cell layer, and root-like structures called rhizoids. As their name 

implies, gametophores are the organs that produce the gametes. 

Physcomitrella patens is monoecious; male gametes, or antherozoids, are 

produced within antheridia, and female gametes, or oogonia, within 

archegonia on the same gametophore. The male gametes affect fertilisation 

by swimming to the archegonia through a surface water film. After 

fertilisation, zygotes are formed, marking the starting point of the next 

generation, the diploid sporophyte (Figure 4). The Physcomitrella sporophyte 

is small and largely dependent on the gametophytic generation. Nevertheless, 

it shows some degree of tissue differentiation: sporangium, seta and foot are 

formed. After maturation, sporangia or spore capsules generally contain 

~4000 haploid spores (Cove, 1992). The entire life cycle can be completed in 

~3 months in culture. 

 

 

Figure 4 Schematic 
representation of the 
Physcomitrella patens life 
cycle. Gametophytic (1n) 
development starts with the 
germination of spores and 
the outgrowth of the 
filamentous protonema 
tissue. Bud formation gives 
rise to the adult moss plant 
(gametophore), which carries 
the sex organs (antheridia 
and archegonia). After 
fertilisation of the egg cell, 
the diploid sporophyte 
develops (spore capsule). 
Drawing courtesy of Dr. B. 
Chrost; adapted from Decker 
and Reski (2004). 

 
 

 

Compared with Arabidopsis, mosses are small and slow growing plants. 

This potential problem of limited availability of plant material can readily be 

overcome thanks to vigorous powers of vegetative regeneration; almost any 

tissue of Physcomitrella patens is capable of regeneration (Cove, 1992). As 

such, Physcomitrella is propagated in the lab by repeated blending and 
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regeneration of protonemal tissue, generally on a weekly basis. These cultures 

are grown axenically, on simple solid medium containing only inorganic salts 

and agar, with the potential of being supplemented with an external carbon 

source for more vigorous growth. 

In spite of the dramatic differences in morphology and life cycle, mosses 

and vascular plants do share some general themes of plant physiology. These 

include responsiveness to phytohormones (i.e. auxin, cytokinin, abscisic acid) 

(Cove, 1992; Knight et al., 1995; Imaizumi et al., 2002), phototropic 

responses (Knight and Cove, 1989), chloroplast movement (Wada et al., 

2003; Kasahara et al., 2004), and photomorphogenesis (i.e. signalling 

through phytochromes, cryptochromes, phototropins) (Imaizumi et al., 2002; 

Kasahara et al., 2004; Mittmann et al., 2004). Furthermore, even underlying 

molecular mechanisms are sometimes preserved, like the ABA-mediated 

desiccation stress response network (Knight et al., 1995), or the GLK-

mediated regulatory pathway for chloroplast development (Yasumura et al., 

2005). Also gene regulation through microRNAs seems to be conserved 

between several Physcomitrella and Arabidopsis homologues (Floyd and 

Bowman, 2004; Arazi et al., 2005), as well as the general mechanisms by 

which small interfering RNAs (siRNA) cause gene silencing, because RNA 

interference (RNAi) has successfully been applied in Physcomitrella (Bezanilla 

et al., 2003). 

All the differences and similarities between Arabidopsis and 

Physcomitrella should be reflected in their genomes. Comparative studies 

have suggested that the haploid transcriptome of Physcomitrella and the 

genome of Arabidopsis largely overlap, and that >90% of the most closely 

related homologues of Physcomitrella transcripts occur in vascular plants 

(Nishiyama et al., 2003). As yet, Physcomitrella has proven instrumental in 

studying the ancestry of gene families like the MADS-box (Krogan and Ashton, 

2000; Henschel et al., 2002; Riese et al., 2005), HD-ZIP (Sakakibara et al., 

2001), and KNOX genes (Champagne and Ashton, 2001). Such studies have 

contributed to the general understanding of these genes as well as the 

evolutionary development of the corresponding regulatory pathways. Several 

extensive EST sequencing efforts have been undertaken and have resulted in 

substantial, publicly available resources for gene discovery (Nishiyama et al., 

2003; http://moss.nibb.ac.jp). Furthermore, Physcomitrella offers a unique 
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opportunity among plants to study the function of such genes by gene 

targeting (Schaefer, 2001). 

 

1.5 Objectives of this work 

 

In the work presented here, the first analysis of CONSTANS homologues 

outside of the realm of flowering plants is conducted, in the distantly related 

moss species Physcomitrella patens. Apart from CO itself, little is known about 

the function of other CO-like genes, therefore the focus is on identifying 

putative orthologues of CO. Physcomitrella EST databases are searched in 

order to identify and isolate the most closely related homologues of 

CONSTANS. Efforts are undertaken to confirm that these genes represent the 

closest homologues of CO in Physcomitrella. Functional conservation between 

the Physcomitrella proteins and CO is tested by expression studies in 

Arabidopsis. Because diurnal or circadian regulation of transcription appears 

to be a conserved feature among CO-like genes of flowering plants, it is 

analysed to what extent this regulation is conserved in moss CO-like genes. 

Finally, the feasibility of gene targeting is exploited in order to investigate the 

biological function of the Physcomitrella CO-like genes. 
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2 MATERIALS AND METHODS 

 

 

2.1 Materials 

 

2.1.1 Chemicals, enzymes, oligonucleotides, cloning vectors 

 

Chemicals used for this work were purchased from Sigma-Aldrich 

(Steinheim), Merck (Darmstadt), Serva (Heidelberg), Duchefa (Haarlem, The 

Netherlands), Biozym (Hamburg), Roth (Karlsruhe), Eppendorf (Hamburg), 

FMC Bioproducts (Brussels, Belgium), Gibco BRL (Karslruhe), and Invitrogen 

(Karlsruhe). Enzymes were purchased from Roche (Penzberg), New England 

Biolabs (Frankfurt am Main), Fermentas (St. Leon-Rot), Stratagene 

(Heidelberg), and Invitrogen (Karlsruhe). Oligonucleotides were synthesised 

at Metabion (Martinsried) and Invitrogen (Karlsruhe). Cloning vectors used 

were pGEM-T easy (Promega), pBLUESCRIPT SK- (Stratagene), pDONR-201 

(Invitrogen), and pJAN33 (Weigel et al., 2003). 

 

2.1.2 Buffers, solutions, media 

 

Standard buffers, solutions and media were prepared as described (Sambrook 

et al., 1989). 

 

2.1.3 Bacterial strains 

 

E. coli DH5α  supE44 ∆lacU169 (Φ80 lacZ∆M15) hsdR17 

recA1 endA1 gyrA96 thi-1 relA1 

E. coli DH10B  F- mcrA D (mrr -hsdRMS- mcrBC) 

F80dlacZDM15 DlacX74 endA1 recA1 D 

(ara, leu) 7697 araD139 galU galK nupG 

rpsL T1R 
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E. coli SCS110  rpsL (Strr) thr leu endA thi-1 lacY galK galT 

ara tonA tsx dam dcm supE44D (lac-

proAB) [F' traD36 proAB lacI q Z∆M15] 

A. tumefaciens GV3101:pMP90-RK (Koncz and Schell, 1986) 

 

2.1.4 Plant materials 

 

Physcomitrella patens  Gransden Wood strain (Ashton and Cove, 

1977) 

Arabidopsis thaliana    Columbia ecotype (Col-0) 

Arabidopsis thaliana   35S::AtCO (Col-0) (Samach et al., 2000) 

     (kindly provided by Dr. Wim Soppe) 

 

2.1.5 Database sequences 

 

Accession numbers of protein sequences: AtCO (Q39O57), AtCOL1 

(O50055), AtCOL2 (Q96502), AtCOL3 (Q9SK53), AtCOL4 (Q940T9), AtCOL5 

(Q9FHH8), AtCOL6 (Q8LG76), AtCOL7 (Q9C9A9), AtCOL8 (Q9M9B3), AtCOL9 

(Q9SSE5), AtCOL10 (Q9LUA9), AtCOL11 (O23379), AtCOL12 (Q9LJ44), 

AtCOL13 (O82256), AtCOL14 (O22800), AtCOL15 (Q9C7E8), AtCOL16 

(Q8RWD0), AtSTO (Q96288), AtTOC1 (Q9LKL2), OtCOL (Q5IFM9), PpCOL1 

(Q5H7P0), PpCOL2 (Q4W1E9), PpCOL3 (Q4W1E8); accession numbers of 

Physcomitrella EST sequences are given in the text in Table 1. 

 

2.1.6 Plasmids 

 

pUC18/sul   B. Reiss, unpublished 

pUC18/Hyg   idem 

pUC/NPT   idem 

pUC18,12,26.5.88   idem 

pUC19,13/1,20.11.91   idem 
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2.1.7 Oligonucleotides 

 

Name    Sequence (5’-3’) 

5dCO    GGYGGTGWWSTGYYGDGCRG 

3dCO    GGMACCACYCCRAAACYTGARTC 

5-ATG-AX   ATGCCGAAGCCTTGTGATG 

3-Stop-AX   TCAAAAACTTGGAACCACTCC 

5-ATG-101/351  ATGCCGAAGTCATGCGATG 

3-Stop-101   TCAGAAAGAAGGCACCACTCC 

3-Stop-351   TCAACAAGAAGAAGGAACCACC 

5-AXRT-II   CATGGACCCTTCGTTTACTAAA 

3-AXRT-II   TCCATTTCAGATGACCTTGC 

5-101RT-II   CCTTCACAACTGATTTTCATCTG 

3-101RT-II   ACTCAACTTGATTGAAGCAAGG 

5-351RT-I   ACATCCATTCTGCCAACCC 

3-351RT-I   TGTGTGAGAGTAGAAGTGCC 

5-AXRT-I   ATGATCTGCTGAAGGGCTG    

3-AXRT-I   GGAAATGTCGCTGAGACTG 

5-101RT-I   CCACATCCCAAAATACCTACC 

3-101RT-I   TCTCCTTGTACCTCATCACTC 

pp18for    AGGAATTGACGGAAGGGCAC 

pp18rev    GGACATCTAAGGGCATCACA 

5-AX180961   TCTCTCGGCGAAGAGCG 

3-AX180961   AACTTGGAACCACTCCGAAAC 

5-BJ166101   ACCCACAGCATTTCGTGC 

3-BJ166101   CAGAAAGAAGGCACCACTCC 

5-BJ166351   CAAGATTTGTCAGGTGCGC 

3-BJ166351   TCAACAAGAAGAAGGAACCACC 

5-AtCO-CCT   GGCTCCTCAGGGACTCACTAC 

3-AtCO-CCT   GAATGAAGGAACAATCCCATATC 

UP5-101-NotI   GCGGCCGCTTCTAGCACGCATT 

UP3-101-XmaI  CCCGGGAGTGCTCAGCACAGACC 

DOWN5-101-SacI  GAGCTCACAGTGGATCGGGAAGCTC 

DOWN3-101-ApaI  GGGCCCTGGAACAAAAGAAGACTACATC 

UP5-AX-NotI   GCGGCCGCGAGTTGGCTCA 

UP3-AX-BamHI  GGATCCATACCACGGCACAACACAAC 
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DOWN5-AX-SacI  GAGCTCGTATTGGAGTCTCCATCGAGC 

DOWN3-AX-ApaI  GGGCCCATCAAGAGAGAGGGATTG 

UP5-351-NotI   GCGGCCGCTGCCAGACTCTATTAAAG 

UP3-351-BamHI  GGATCCTCTCCCGAGGGCTCAGC 

DOWN5-351-HindIII  AAGCTTCGGACTCTGATGTGGAGCAG 

DOWN3-351-ApaI  GGGCCCTTGGCACGAACCTC 

5-SpeI-AX   GACTAGTATGCCGAAGCCTTGTGATG 

3-Sac1-AX   CCCGAGCTCTCAAAAACTTGGAACCACTCCG 

5-SpeI-101-351  GACTAGTATGCCGAAGTCATGCGATG   

3-SacI-101   CCCGAGCTCTCAGAAAGAAGGCACCACTCC 

3-SacI-351   CCCGAGCTCTCAACAAGAAGAAGGAACCACCC 

5-AX-GW   GYF-ATGCCGAAGCCTTGTGAT 

3-AX-GW   GYR-TCAAAAACTTGGAACCACTCC 

5-351and101-GW  GYF-ATGCCGAAGTCATGCGAT    

3-101-GW   GYR-TCAGAAAGAAGGCACCACTCC 

3-351-GW   GYR-TCAACAAGAAGAAGGAACCACC 

5-AX-anti-I   GGGTCAGATCCAAGGAGAGAT 

3-AX-anti-I   CGCTGCAACCGCATAAC 

5-101-anti-I   GAAATGAACATTGAACAACTTGC 

3-101-anti-I   AATTCCTTCTCATTGACATAAGATG 

5-101-anti-III  CAGCACAGGAGTCCATTCG 

3-101-as-I-bis2  TGCTTGGCTTCGTCAGC 

5-351-anti-I   GGGAATGCAAGTATGTGATGAG 

3-351-anti-I   GGGCATTACAGAGGCTGG 

5-iAX    CGTGGACCTTCCCATCG 

3-iAX    CCGAGGATCAAAGGAAGGT 

5-i101EcoHind  CGGTCAGGGCAGTTGTCA 

3-i101EcoHind  CGCTCGCTTCGCCTGT 

5i10-EH-3UTR  CGTCAGGCGCTTTCAACA 

3i10-EH-3UTR  GCAGGAGGTTCCGGTAGTG 

5-i351    CATGCACCTTTCCGTCG 

3-i351    GAATCAAAGGCAGGTTCACC 

5-M-AX180961  TTCGAGAGTGCGAGTCCTTT 

3-M-AX180961  CTTCGCCGAGAGAGGAAAT 

5-M-BJ166101  CTAGCTCCGCAAGAGAAGC 

3-M-BJ166101  GCTCTTCTCCGACAGATGAA 
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5-M-BJ166351  CGTGAGCCAGTTTAGAGGGA 

3-M-BJ166351  CTTCTGCGAGGCACGGA 

GUS-1877   CTGCATCGGCGAACTGAT 

pcrsulout1-2   GCTATTGGTCTCGGTGTCGC 

HPT-1167   CTCGATGAGCTGATGCT 

NPT-706   AAGCCGGTCTTGTCGATC 

GYF = Gateway attB1 extension 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3’ 

GYR = Gateway attB2 extension 5’-GGGGACCACTTTGTACAAGAAAGCTGGGT-3’ 

 

2.2 Methods 

 

2.2.1 Plant growth conditions 

 

Physcomitrella protonema cultures were routinely propagated in 

growth cabinets at 26°C in continuous light on cellophane covered minimal 

medium (0,8 g/l Ca[NO3]2 x 4H2O, 0,25 g/l MgSO4 x 7H2O, 1ml KH2PO4/KOH 

[250 g/l KH2PO4 adjusted to pH 6,5 with KOH], 0,0125 g/l FeSO4 x 7 H2O, 1 

ml alt TES [55 mg CoSO4 x 5 H2O, 614 mg H3BO4, 55 mg CoCl2 x 6H2O, 25 mg 

Na2MoO4 x 2H2O, 55 mg ZnSO4 x 7 H2O, 393 mg MnCl2 x 4 H2O, 28 mg KI, ad 

1l with H2O], 7 g/l agar, autoclaved for 20 min at 121°C) supplemented with 

0,5 g/l diammonium tartrate. For in vitro propagation, 4 cultures were 

collected in water, blended for 90 s with a Miccra homogeniser D8 equipped 

with a P8 homogeniser tool (ART-Moderne Laborgeräte, Hügelheim), diluted 

with equal volume water and 1/20th plated. For growth in white light, the 

following growth cabinets were used: Rumed 1301 from Rubarth Apparate 

(Laatzen) equipped with Osram L36W/860 Lumilux Daylight lamps; Rumed 

1200 and 5001 from Rubarth Apparate (Laatzen) equipped with Osram 

L36W/11-860 Lumilux Plus Daylight lamps; Percival CU-365/D from CLF 

Laborgeräte (Emersacker) equipped with Philips F17T8/TL741 17 Watt lamps. 

Light intensities are given in the text. For growth in red, far-red, and blue 

light, the following growth cabinet was used: Percival E-30 LED from CLF 

Laborgeräte (Emersacker). Light intensities are 240 Lux, 206 Lux, and 30 Lux 

for red light (600-700 nm), far-red light (700-750 nm), and blue light (400-

500 nm), respectively. 



MATERIALS AND METHODS 

 26 

Arabidopsis was grown on soil in the protected environment of the 

greenhouse, at 20°C, in long-day conditions of 18 hrs light and 8 hrs darkness 

(16L:8D) and short-day conditions of 8 hrs light and 16 hrs darkness 

(8L:16D). 

 

2.2.2 Nucleic acid techniques 

 

2.2.2.1 DNA and RNA isolation 

 

Plasmid DNA was routinely isolated by alkaline lysis method (Birnboim 

and Doly, 1979); large amounts were isolated using the Plasmid Midi/Maxi Kit 

from Qiagen (Hilden). Electrophoretic separation of DNA fragments was 

carried out according to standard procedures (Sambrook et al., 1989). Plant 

DNA was isolated as described (Markmann-Mulisch et al., 2002). Plant total 

RNA was prepared as described (Markmann-Mulisch et al., 1999). 

Concentration of isolated DNA was determined by electrophoretic 

comparison with a λ-DNA standard, by standard spectrophotometric 

measurement (Sambrook et al., 1989), or by fluorometric measurement using 

the PicoGreen double-stranded DNA quantitation reagent (Molecular Probes), 

according to the manufacturer’s instructions. Concentration of isolated RNA 

was determined by standard spectrophotometric measurement (Sambrook et 

al., 1989). 

 

2.2.2.2 Digestion and ligation 

 

Digestion and ligation of DNA fragments with restriction enzymes and 

ligases, respectively, were carried out according to the manufacturer’s 

instructions and in the provided buffers. 

For cloning of Physcomitrella transforming constructs pKOcol1, pKOcol2 

and pKOcol3, digestions were performed using only minimally required 

enzyme amounts and incubation times for complete digestion, as indicated by 

the enzyme manufacturer’s instructions. The fragments were separated on a 

1% low-melting agarose gel and excised from the gel. Low-melting agarose 

was melted by incubation at 65°C for 10 min, and a 1 µl aliquot of each 
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fragment was used in a ligation reaction, which additionally included 1 µl 

ligase, 1 µl 10x buffer, 1 µl 50% PEG4000 (all Fermentas) and 2 µl H2O. 

Ligation was carried out overnight at 15°C. 

 

2.2.2.3 Polymerase chain reaction (PCR) amplification 

 

Standard PCR amplifications were carried out with Taq polymerase 

(Roche) or with Pfu cloned polymerase (Stratagene) using the following PCR 

mixture composition and cycling profile. 

 

 

Components 

40,5 µl H2O 

5 µl 10x Buffer 

1 µl 10 mM dNTPs mix (dATP, dTTP, dCTP and dGTP)  

1 µl 25 µM sense primer 

1 µl 25 µM anti-sense primer 

1 µl DNA template 

0,5 µl polymerase 

 

 

Thermal profile 

1. 95°C  5 min 

2. Ta  2 min 

3. 72°C  5 min 

4. 93°C  1 min 

5. Ta  1 min        n 

6. 72°C  2 min 

7. 72°C  10 min 

8. 4°C  ∞ 

Note: Typically, values for Ta and n were 60°C and 30x, respectively, 

although they were sometimes optimised for individual reactions. 

 

Long template PCR amplifications were performed with the Expand Long 

Template PCR system (Roche) according to the manufacturer’s instructions. 
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2.2.2.4 cDNA synthesis 

 

cDNA was synthesised using Superscript II (Invitrogen) and random 

primers (Invitrogen) according to the manufacturer’s instructions, except that 

the reaction temperature was raised from 37 to 42°C after 10 min. 

 

2.2.2.5 Nucleid acid sequencing 

 

DNA sequences were determined by the MPIZ DNA core facility on 

Applied Biosystems (Weiterstadt) Abi Prism 377, 3100 and 3730 sequencers 

using BigDye-terminator v3.1 chemistry. Premixed reagents were from 

Applied Biosystems (Darmstadt). Oligonucleotides were purchased from 

Metabion (Martinsried). 

 

2.2.3 Sequence analysis 

 

Standard sequence analysis was performed using components of Vector 

NTI Suite 9 (Invitrogen). Database searches were routinely carried out using 

the BLAST algorithm (Altschul et al., 1997) at GenBank 

(http://www.ncbi.nlm.nih.gov). For the identification of CO-like genes from 

Physcomitrella patens, database searches were performed using TBLASTN 

(Altschul et al., 1997) with the CONSTANS protein sequence as a query 

sequence at GenBank (release 131.0; http://www.ncbi.nlm.nih.gov), at 

Physcobase (Nishiyama et al., 2003; http://moss.nibb.ac.jp), and at a 

proprietary EST collection (Rensing et al., 2002b). Sequences were aligned 

using ClustalW (Thompson et al., 1994) in AlignX, a component of Vector NTI 

Suite 9 (Invitrogen), and the alignments adjusted manually. Phylogenetic 

trees were calculated from the alignments using the Neighbour Joining 

method (Saitou and Nei, 1987); construction and bootstrapping of the trees 

was performed using programs from the Phylip3.62 software package 

(Felsenstein, 1989). 
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2.2.4 Isolation of PpCOL1, PpCOL2 and PpCOL3 

 

2.2.4.1 Cloning of genomic and coding DNA gene sequences 

 

The identification and isolation of PpCOL1, PpCOL2, and PpCOL3 genes 

from EST database sequences is described in the text. Initially, incomplete 

gene sequences of PpCOL1, PpCOL2, and PpCOL3 were amplified by PCR from 

cDNA (Roche Taq polymerase) with degenerate primers 5dCO and 3dCO. Four 

differently sized PCR products were isolated from an agarose gel by using 

Qiagen’s (Hilden) Gel Extraction Kit, and used as a template in an identical 

PCR reaction. Three bands were successfully reamplified and cloned in pGEM-

T easy according to the manufacturer’s instructions. The three genes were 

named PpCOL1, PpCOL2, and PpCOL3. Full-length genomic and cDNA clones 

were amplified from genomic DNA or cDNA by PCR (Roche Taq polymerase) 

with the following primers: 5-ATG-AX and 3-Stop-AX for PpCOL1, 5-ATG-

101/351 and 3-Stop-101 for PpCOL2, and 5-ATG-101/351 and 3-Stop-351 for 

PpCOL3. Fragments from two independent PCR reactions were cloned in 

pGEM-T easy according to the manufacturer’s instructions. The genomic 

clones were named pGcol1, pGcol2, and pGcol3, for PpCOL1, PpCOL2, and 

PpCOL3, respectively; the cDNA clones were named pCcol1, pCcol2, and 

pCcol3, for PpCOL1, PpCOL2, and PpCOL3, respectively. One clone was 

isolated for each of the two independent PCR reactions, and the inserts were 

sequenced on both DNA strands. The consensus sequence of the resulting four 

sequences was calculated using Vector NTI Suite 9 (Invitrogen). Conflicts 

were resolved by the majority rule; if no majority was found for a nucleotide, 

it was kept as N for “any nucleotide”. 

 

2.2.4.2 Cloning of flanking genomic sequences 

 

The genomic sequences flanking the PpCOL1, PpCOL2 and PpCOL3 

genes were isolated by inverse PCR. Physcomitrella genomic DNA was 

digested with BamHI or EcoRI. The DNA was re-ligated and used as a 

template in a long template PCR (Roche Expand Long Template polymerase) 

according to the manufacturer’s instructions. The primers were 5-iAX and 3-

iAX for PpCOL1, 5-i101EcoHind and 3-i101EcoHind for PpCOL2 upstream 
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genomic sequence, 5i10-EH-3UTR and 3i10-EH-3UTR for PpCOL2 downstream 

genomic sequence, and 5-i351 and 3-i351 for PpCOL3. Fragments from two 

independent PCR reactions were cloned in pGEM-T easy according to the 

manufacturer’s instructions. One clone was isolated for each reaction and the 

inserts were sequenced on both strands. Sequences were assembled using 

Vector NTI Suite 9 (Invitrogen), and the consensus sequence of the four 

resulting sequences was calculated using the same software. Conflicts were 

resolved by the majority rule; if no majority was found for a nucleotide, it was 

kept as N for “any nucleotide”. 

The gene sequences and flanking genomic sequences of PpCOL1, 

PpCOL2, and PpCOL3 were assembled into continuous contigs using Vector 

NTI Suite 9 (Invitrogen). The complete contigs were separately amplified from 

Physcomitrella genomic DNA by PCR (Roche Expand Long Template 

polymerase) using primers 5-AX-anti-I and 3-AX-anti-I for PpCOL1, 5-101-

anti-I and 3-101-anti-I for PpCOL2, and 5-351-anti-I and 3-351-anti-I for 

PpCOL3. Fragments were cloned in pGEM-T easy according to the 

manufacturer’s instructions. The clones were named pGCcol1, pGCcol2, and 

pGCcol3 for PpCOL1, PpCOL2, and PpCOL3, respectively. 

 

2.2.5 Southern blotting  

 

2.2.5.1 Preparation of probes 

 

The probes used for probing of the Physcomitrella genome for additional 

CO-like genes were generated as follows. The PpCOL1 probe was amplified by 

PCR (Roche Taq polymerase) from pCcol1 with primers 5-AX180961 and 3-

AX180961; the PpCOL2 probe from pCcol2 with primers 5-BJ166101 and 3-

BJ166101; the PpCOL3 probe from pCcol3 with primers 5-BJ166351 and 3-

BJ166351; the AtCO probe from Arabidopsis cDNA (prepared as described 

earlier for Physcomitrella cDNA) with primers 5-AtCO-CCT and 3-AtCO-CCT. 

The PCR products were separated on a 1% low-melting agarose gel and the 

bands cut out. The agarose was melted for 10 min at 65°C, and an aliquot 

was used for labelling. 

The probes used for Southern blot analysis of Physcomitrella 

transformants were generated as follows. The PpCOL1 probe was obtained by 
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digestion of pGcol1 with DraII and NotI, separation of the fragments on a 1% 

low-melting agarose gel, and cutting out the 1231 bp fragment. The PpCOL2 

probe was obtained by digestion of pGcol2 with ApaI and NotI, separation of 

the fragments on a 1% low-melting agarose gel, and cutting out the 1347 bp 

fragment. The PpCOL3 probe was obtained by digestion of pGcol3 with ApaI 

and NotI, separation of the fragments on a 1% low-melting agarose gel, and 

cutting out the 915 bp fragment. The agarose was melted for 10 min at 65°C, 

and equal amounts of each probe were mixed and used for labelling. 

The procedures for preparation of radioactively labelled probes were as 

described (Markmann-Mulisch et al., 2002). 

 

2.2.5.2 Blotting procedures 

 

Genomic DNA was digested with restriction endonucleases, the 

fragments separated on an agarose gel and alkaline blotted to Zeta-Probe 

blotting membranes (Bio-Rad). The blot was pre-hybridised in hybridisation 

buffer (0,25 M sodium phosphate, pH 7, 0,25 M sodium chloride, 7% [w/v] 

SDS, 1 mM EDTA) and then hybridised in the same buffer containing 

radioactively labelled probe overnight at 65°C (high stringency), 55°C 

(medium stringency), or 45°C (low stringency). The membrane was washed 

once with 2X SSC (0,3 M sodium chloride, 0,03 M sodium citrate, pH 7), 0,1% 

SDS at 65°C for 10 min, twice with 0,5X SSC, 0,1% SDS at 65°C for 20 min 

and then exposed to Kodak Biomax MS film with intensifying screens. 

 

2.2.6 Quantitative RT-PCR 

 

2.2.6.1 Analysis of Physcomitrella RNA 

 

A 1 µl aliquot of Physcomitrella cDNA was amplified by PCR in a mixture 

with Taq polymerase (Roche), gene-specific sense and anti-sense primers, 

and Physcomitrella 18S rDNA primers and 18S rDNA competimers as internal 

standard. 18S rDNA primers are pp18for and pp18rev (product length 320 

bp). Their sequence identical 18S rDNA competimers are blocked by a 3’-

phosphate. The PpCOL1 gene-specific primers are 5-axRT-II and 3-axRT-II 
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(product length 455 bp), the PpCOL2 gene-specific primers are 5-101RT-II 

and 3-101RT-II (product length 520 bp), and the PpCOL3 gene-specific 

primers are 5-351RT-I and 3-351RT-I (product length 520 bp). Primer 

specificity was confirmed by restriction analysis of the resulting PCR products 

with gene-specific restriction endonucleases: NdeI for PpCOL1, HindIII for 

PpCOL2, and PstI for PpCOL3. The cycle numbers were adjusted to the linear 

range of the PCR reaction. For this, PCR amplification of Physcomitrella cDNA 

was performed according to the scheme below with 25, 27, 29, 31, 33, and 35 

cycles. A 5 µl aliquot of the PCR reaction mixture was separated by 

electrophoresis on a 2,5% low-melting agarose gel (Invitrogen Agarose 1000) 

in 0,5x TBE buffer, followed by staining with SYBR green (Molecular Probes) 

and destaining, according to the manufacturer’s instructions. Bands were 

quantified using a Kodak DC290 camera and Kodak 1D Image analysis 

software. The highest cycle number that resulted in a signal strength that was 

still in the logarithmic phase was chosen for quantitative RT-PCR analysis. The 

strength of the 18S rRNA signal was adjusted to the strength of the gene-

specific signal, by adding appropiate amounts of 18S rRNA competimers as 

described (Ambion Quantum kit). The optimised PCR conditions for each gene 

are given below the thermal profile.  

 

 

 

Components 

36,5 µl H2O 

5 µl 10x Taq Buffer (Roche) 

1 µl 10 mM dNTPs mix (dATP, dTTP, dCTP and dGTP)  

1 µl 25 µM sense primer 

1 µl 25 µM anti-sense primer 

1 µl cDNA template 

4 µl 5 µM 18S rDNA primer:competimer (0,3:9,7) 

0,5 µl Taq polymerase (Roche) 
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Thermal profile 

1. 94°C  3 min 

2. Ta  1 min 

3. 72°C  2 min 

4. 93°C  1 min 

5. Ta  1 min        n 

6. 72°C  2 min 

7. 4°C  ∞ 

PpCOL1: Ta= 60°C, n=26x; PpCOL2: Ta= 64°C, n=24x; PpCOL3: Ta= 65°C, 

n= 26x 

 

2.2.6.2 Analysis of Arabidopsis RNA  

 

Analysis was carried out as described previously for Physcomitrella, 

albeit with the following modifications: 5-axRT-I and 3-axRT-I were used as 

PpCOL1 gene-specific primers (product length 467 bp); 5-101RT-I and 3-

101RT-I were used as PpCOL2 gene-specific primers (product length 463 bp). 

The 18S rDNA primer:competimer ratio in the PCR mixture was 1,25:8,75 for 

PpCOL1; 0,4:9,6 for PpCOL2; 0,6:9,4 for PpCOL3. The annealing temperature 

(Ta) and cycle number (n) were 68°C and 23x for PpCOL1; 65°C and 23x for 

PpCOL2; 65°C and 20x for PpCOL3. 

 

2.2.7 Generation of plant transformation constructs 

 

2.2.7.1 Constructs for Arabidopsis transformation 

 

The transforming constructs were generated by using Gateway cloning 

technology (Invitrogen). The coding sequences of PpCOL1, PpCOL2 and 

PpCOL3 were amplified by PCR (Stratagene Cloned Pfu polymerase) from 

pCcol1 with primers 5-AX-GW and 3-AX-GW, from pCcol2 with primers 5-

351and101-GW and 3-101-GW, and from pCcol3 with primers 5-351and101-

GW and 3-351-GW, respectively. They were integrated into the pDONR-201 

entry vector, and then transferred to the pJAN33 destination vector, all 
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according to the instructions of the Gateway cloning manual (Invitrogen). The 

inserts were confirmed to be error-free by sequencing. The resulting plasmids, 

pJAN33-PpCOL1, pJAN33-PpCOL2, and pJAN33-PpCOL3, carry the CaMV 35S 

promoter in front of the coding sequence of the respective gene. 

 

2.2.7.2 Constructs for Physcomitrella transformation 

 
The PpCOL1 gene-specific gene replacement vector pKOcol1 was 

constructed by ligation of five fragments. The first fragment, containing the 

upstream flanking sequence of PpCOL1, was amplified by PCR (Roche Expand 

Long Template polymerase) from pGCcol1 with the primers UP5-AX-NotI and 

UP3-AX-BamHI, subcloned in pGEM-T easy, and released by digestion with 

NotI and BamHI. The second fragment, containing the GUS reporter gene, 

was released from pUC18,12,26.5.88 by digestion with BamHI and EcoRI. The 

third fragment, containing the sulfadiazine resistance gene (sul) under control 

of the CaMV 35S promoter, was released from pUC18/sul by digestion with 

EcoRI and SacI. The fourth fragment, containing the downstream flanking 

sequence of PpCOL1, was amplified by PCR (Roche Expand Long Template 

polymerase) from pGCcol1 with the primers DOWN5-AX-SacI and DOWN3-AX-

ApaI, subcloned in pGEM-T easy, and released by digestion with SacI and 

ApaI. The fifth fragment was the pBLUESCRIPT SK- vector, linearised by 

digestion with NotI and ApaI. Ultimately, clones were characterised by 

restriction analysis, confirming release of every cloning fragment with the 

respective restriction endonucleases. 

The PpCOL2 gene-specific gene replacement vector pKOcol2 was 

constructed by ligation of five fragments. The first fragment, containing the 

upstream flanking sequence of PpCOL2, was amplified by PCR (Roche Expand 

Long Template polymerase) from pGCcol2 with the primers UP5-101-NotI and 

UP3-101-XmaI, subcloned in pGEM-T easy, and released by digestion with 

NotI and XmaCI. The second fragment, containing the GUS reporter gene, 

was released from pUC19,13/1,20.11.91 by digestion with XmaCI and HindIII. 

The third fragment, containing the hygromycin phosphotransferase gene (hpt) 

under control of the Agrobacterium nopaline synthase (nos) promoter, was 

released from pUC18/Hyg by digestion with HindIII and SacI. The fourth 

fragment, containing the downstream flanking sequence of PpCOL2, was 

amplified by PCR (Roche Expand Long Template polymerase) from pGCcol2 
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with the primers DOWN5-101-SacI and DOWN3-101-ApaI, subcloned in 

pGEM-T easy, and released by digestion with SacI and ApaI. The fifth 

fragment was the pBLUESCRIPT SK- vector, linearised by digestion with NotI 

and ApaI. The remaining manipulations are as described for pKOcol1, with the 

only difference that pKOcol2 was finally propagated in E.coli strain SCS110. 

The PpCOL3 gene-specific gene replacement vector pKOcol3 was 

constructed by ligation of five fragments. The first fragment, containing the 

upstream flanking sequence of PpCOL3, was amplified by PCR (Roche Expand 

Long Template polymerase) from pGCcol3 with the primers UP5-351-NotI and 

UP3-351-BamHI, subcloned in pGEM-T easy, and released by digestion with 

NotI and BamHI. The second fragment, containing the GUS reporter gene, 

was released from pUC18,12,26.5.88 by digestion with BamHI and EcoRI. The 

third fragment, containing the neomycin phosphotransferase II gene (nptII) 

under control of the CaMV 35S promoter, was released from pUC/NPT by 

digestion with EcoRI and HindIII. The fourth fragment, containing the 

downstream flanking sequence of PpCOL3, was amplified by PCR (Roche 

Expand Long Template polymerase) from pGCcol3 with the primers DOWN5-

351-HindIII and DOWN3-351-ApaI, subcloned in pGEM-T easy, and released 

by digestion with HindIII and ApaI. The fifth fragment was the pBLUESCRIPT 

SK- vector, linearised by digestion with NotI and ApaI. The remaining 

manipulations are as described for pKOcol1. 

 
 

2.2.8 Transformation and selection procedures 

 

2.2.8.1 Bacterial transformation and selection 

 

Electrocompetent E.coli cells were either purchased from the strain’s 

manufacturer, or prepared according to the RbCl2-method (Hanahan, 1983). 

Electrocompetent A. tumefaciens cells were a kind gift from Drs. F. Turck and 

Y. F. Fu. The cells were stored at -70°C. Transformation and selection 

procedures were as described (Sambrook et al., 1989). 
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2.2.8.2 Arabidopsis transformation and selection 

 

The plasmids pJAN33-PpCOL1, pJAN33-PpCOL2, and pJAN33-PpCOL3 

were transformed into Agrobacterium tumefaciens strain GV3101:pMP90-RK. 

A single colony resistant to 50 mg/l carbenicilline, 25 mg/l kanamycin, 25 

mg/l gentamycine and 50 mg/l rifampicine was inoculated for preculture in 

liquid LB medium (Sambrook et al., 1989) supplemented with the same 

antibiotics at the same concentrations, apart from the concentration of 

rifampicine which was reduced to 10 mg/l. The presence of the pJAN33-

PpCOL1, pJAN33-PpCOL2, or pJAN33-PpCOL3 plasmid in each preculture was 

confirmed by PCR amplification (Roche Taq polymerase) from a 1 µl culture 

aliquot with the primers 5-SpeI-AX and 3-Sac1-AX, 5-SpeI-101-351 and 3-

SacI-101, and 5-SpeI-101-351 and 3-SacI-351, respectively. A 1/200 aliquot 

of preculture was used to inoculate 300 ml YEB medium (Sambrook et al., 

1989) supplemented with 100 mg/l carbenicilline. Cultures were grown 

overnight under shaking at 28°C. When the cultures had reached an OD600nm 

of ~0.5 60 µl Silwet Copolymer L-77 (OSI Specialties, Düsseldorf) was added, 

the culture stirred, and then directly used to transform Arabidopsis plants as 

described (Clough and Bent, 1998). Transformed plants were selected on the 

basis of kanamycin resistance (Hadi et al., 2002) and were self-pollinated to 

generate T2 populations that segregate the transgenes. 

 

2.2.8.3 Physcomitrella transformation and selection 

 

To release the targeting fragments from plasmids pKOcol1, pKOcol2, and 

pKOcol3, they were digested with NotI and ApaI prior to transformation. For 

transformation, protonema was grown on minimal medium supplemented with 

0,5 g/l diammonium tartrate and 0,5% glucose, in a Rumed 5001 growth 

cabinet under conditions of continuous light (light intensity ~250 Lux). 5 day 

old tissue was harvested, protoplasts isolated and 450.000 protoplasts 

transformed with 15 µg linearised DNA as described previously (Schaefer and 

Zryd, 1997). For double transformants, the transformation procedure was 

scaled up six times, transforming 2,7 x 106 protoplasts with 45 µg linearised 

DNA of each targeting fragment. For triple transformants, the transformation 

procedure was scaled up 18 times, transforming 8,1 x 106  protoplasts with 60 
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µg linearised DNA of each targeting fragment. Protoplasts were regenerated in 

liquid minimal medium supplemented with 0,5 g/l diammonium tartrate and 

66 g/l mannitol (transformation experiments I, II, IV and V) (Hohe et al., 

2004), or embedded in low-melting agarose (transformation experiment III) 

(Schaefer and Zryd, 1997). Regeneration was carried out in a Rumed 1301 

growth cabinet under long-day conditions of 16L:8D (light intensity ~100 

Lux). Transformants were selected by tentatively 4 cycles of growth on 

selective and non-selective media as described (Schaefer et al., 1991), under 

continuous light conditions in Rumed 5001, Rumed 1200 or Percival CU-365/D 

growth cabinets (light intensity 250-300 Lux). Selection was carried out on 25 

mg/l sulfadiazine for pKOcol1, 15 mg/l hygromycin for pKOcol2, and 50 mg/l 

G418 for pKOcol3 single transformants during the first round of selection; the 

concentration of sulfadiazine and hygromocine was increased to 50 mg/l and 

25 mg/l, respectively, during consecutive rounds of selection. Double and 

triple transformants were selected accordingly, by employing the respective 

combinations of antibiotics. Stable transformants were grown up and total 

DNA was prepared as soon as sufficient plant material had been obtained. 

 

2.2.9 PCR analysis of Physcomitrella transformants 

 

Targeting of the PpCOL1 locus was analysed by PCR amplification (Roche 

Taq polymerase) with primers 5-M-AX180961 and 3-M-AX180961 (“gene” 

PCR), 5-AX-anti-I and GUS-1877 (“5’ targeting” PCR), pcrsulout1-2 and 3-AX-

anti-I (“3’ targeting” PCR), and by PCR amplification (Roche Expand Long 

Template polymerase) with primers 5-AX-anti-I and 3-AX-anti-I (“across 

locus” PCR). Targeting of the PpCOL2 locus was analysed by PCR amplification 

(Roche Taq polymerase) with primers 5-M-BJ166101 and 3-M-BJ166101 

(“gene” PCR), 5-101-anti-III and GUS-1877 (“5’ targeting” PCR), HPT-1167 

and 3-101-as-I-bis2 (“3’ targeting” PCR), and by PCR amplification (Roche 

Expand Long Template polymerase) with primers 5-101-anti-III and 3-101-

as-I-bis2 (“across locus” PCR). Targeting of the PpCOL3 locus was analysed by 

PCR amplification (Roche Taq polymerase) with primers 5-M-BJ166351 and 3-

M-BJ166351 (“gene” PCR), 5-351-anti-I and GUS-1877 (“5’ targeting” PCR), 

NPT-706 and 3-351-anti-I (“3’ targeting” PCR), and by PCR amplification 

(Roche Expand Long Template polymerase) with primers 5-351-anti-I and 3-
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351-anti-I (“across locus” PCR). 

 

2.2.10 Histochemical detection of GUS activity 

 

Physcomitrella tansformants and the untransformed wild type were 

grown on minimal medium, in a Rumed 5001 growth cabinet (light intensity 

~250 Lux) under long-day conditions (16L:8D). Protonema and gametophore 

tissue were harvested after 19 days. Histochemical reactions with the 

indigogenic substrate, X-Gluc, were performed by vacuum infiltration for 3 x 5 

min in 10ml 100mM NaH2PO4 (pH 7,0) with 0,638 mM substrate, followed by 

overnight incubation at 37°C under continuous shaking. After staining, the 

material was rinsed twice with 96% ethanol, then photographed. 

 

2.2.11 Phenotypical analysis of transgenic plants 

 

2.2.11.1 Flowering time analysis of Arabidopsis transformants 

 

Arabidopsis seeds were distributed on moist filter paper in a petri dish, 

seed dormancy was broken by incubation for four days in a refrigerator at 

4°C, and germination was induced by incubation for four more days in a 

growth cabinet at 21°C under long-day (16L:8D) or short-day (8L:16D) 

conditions. After germination, 20 seedlings of each line were transferred to 

soil and continued growing in the greenhouse under the same day length 

conditions. The total numbers of leaves (rosette and cauline) was counted 

until the appearance of the inflorescence bud. Average flowering time and 

standard deviation were calculated for each line. 

 

2.2.11.2 Growth analysis of Physcomitrella disruptants 

 

Routinely propagated Physcomitrella material was used for inoculation on 

on minimal medium supplemented with 0,5 g/l diammonium tartrate, in a 

Rumed 5001 growth cabinet under conditions of continuous light (light 

intensity ~250 Lux). 5 day old protonemal tissue was harvested and 
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protoplasts were isolated as described (Schaefer and Zryd, 1997). Protoplasts 

were regenerated in liquid minimal medium supplemented with 0,5 g/l 

diammonium tartrate and 66 g/l mannitol (Hohe et al., 2004), in a Rumed 

1301 growth cabinet under long-day conditions of 16L:8D (light intensity 

~100 Lux). When protoplasts had regenerated and had started dividing, they 

were plated on solid minimal medium supplemented with 0,5 g/l diammonium 

tartrate, and the plates transferred to long-day (16L:8D) growth conditions in 

a Rumed 5001 growth cabinet (light intensity ~150 Lux). The growth of the 

cultures was documented photographically. 





ISOLATION OF PpCOL GENES  

 41 

3 ISOLATION AND CHARACTERISATION OF PPCOL1, 

PPCOL2 AND PPCOL3 

 

 

3.1 Introduction 

 

Available Physcomitrella genomic resources were exploited for the 

identification of CO-like genes. The public Physcomitrella EST collections 

promise to cover a wide range of the genome, because transcript samples 

originate from various tissue types and growth conditions. The public 

collection is an ongoing project, and new sequences have been added 

throughout the course of this study. At the onset, about 50.000 ESTs had 

been deposited to GenBank (release 131.0, Sep. 2002). During a later stage, 

a new exhaustive EST sequencing effort culminated in a new Physcomitrella 

EST database: Physcobase (Nishiyama et al., 2003; http://moss.nibb.ac.jp). 

Herein, 85.191 new ESTs were combined with previously available ESTs, 

amounting to a total of >102.000. In addition, the new database had two 

major improvements. Firstly, redundant sequences had been substituted by 

their consensus sequence, facilitating data mining as well as improving 

sequence quality. Secondly, more than 40.000 cDNA clones had been 

sequenced from both ends. As a result, almost 40% of the 15.883 putative 

transcripts of the database contained sequence information from both ends. 

Finally, an independent, proprietary Physcomitrella cDNA collection has been 

produced (Rensing et al., 2002b). RNAs had been collected from all stages of 

the life cycle, to produce a sequence database that was estimated to cover 

the Physcomitrella transcriptome to at least 95% (Rensing et al., 2002b; 

Rensing et al., 2002a). Each of these databases was searched for CO-like 

genes. 
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3.2 Results 

 

3.2.1 Identification of CO homologues in Physcomitrella 

 

Physcomitrella EST sequences deposited to GenBank (release 131.0; 

Sep. 2002), translated in all six reading frames, were searched for sequences 

showing homology to the CONSTANS protein sequence. In total, 65 5’- and 3’-

EST sequences were retrieved. The 5’- and 3’-EST sequences were aligned 

separately and those with identical, overlapping nucleotide sequences were 

identified. For each group of redundant sequences, the EST that yielded the 

most protein sequence information - typically but not necessarily the longest - 

was selected as a representative (data not shown). As a result, the dataset 

was reduced to 12 unique 5´-EST sequences and 10 unique 3´-EST 

sequences (Table 1). Both defining domains of CO or a CO homologue are 

located at the extremities of the gene product. Therefore, 5’-ESTs represent 

Physcomitrella transcripts that possess one or two B-boxes, whereas 3’-ESTs 

represent Physcomitrella transcripts that possess a CCT domain. Because in 

Arabidopsis, B-box and CCT domains also occur in unrelated proteins, it was 

unclear how many ESTs represent true CONSTANS homologues. In addition, 

because CONSTANS is a member of a multi-gene family in Arabidopsis, 

transcripts that do contain both domains are not said to be CONSTANS 

homologues. For these reasons, it was decided to focus on those ESTs that 

are most similar to CONSTANS, then to verify whether they correspond to a 

transcript that contains both domains. Two alignments were generated. The 

first one included the predicted protein sequences of the 12 unique 5’-EST 

representatives and the corresponding amino terminal sequences of the 17 

Arabidopsis CONSTANS paralogues. The second one included the predicted 

protein sequences of the 10 unique 3’-EST representatives and the 

corresponding carboxy terminal sequences of the 17 Arabidopsis CONSTANS 

paralogues. From these alignments, phylogenetic trees were constructed and 

the ESTs that are most closely related to CONSTANS were identified. Three 5’-

ESTs were found to be most similar to CONSTANS: BJ195918, BJ194188 and 

BJ190646 (data not shown). They encode two canonical B-boxes, just like CO 

and its most closely related paralogues, COL1 to COL5. Besides, three 3’-ESTs  
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Unique representatives of 
redundant ESTs identified in 

GenBank 

Gene / 
Putative 
transcript 

5’-EST 3’-EST 

cDNA clones identified in Physcobase 

PpCOL1 BJ195918 BJ167752 
pph16d03, pph16d22, pph21b18, pphn25b07, 
pphn41d16, pphn41f20, pphb10g17, pphb16k16, 
pphb19d15, ppspm1m15 

PpCOL2 BJ194188 BJ166101 

pph23i08, pph6n05, pphn20k02, pphb11i03, 
pphb24j02, pphb28k14, pphb30a03, pphb43g01, 
pphb5i15, pphb7j16, ppsp13k22, ppsp1c23, 
ppsp44a18 

PpCOL3 BJ190646 BJ166351 pphn10j02, ppsp1n21 

4 BJ162754 BJ170770 pph26n04 

5 - BJ170770 pphn23m24, pphn43b23, pphn47n05, pphn50m18 

6 BJ178325 BQ827011 pphb22j04 

7 - BQ827011 pphn22b20, pphn27f15, pphn49n19 

8 BJ180416 - 
pph19e07, pph27d19, pphn48h22, pphb28p10, 
pphf23d06, pphf17l18, ppsp12i06 

9 BJ202256 - pphn30k18, pphnx45b15, pphf18o23, ppsp22i05 

10 BJ191256 - 
pphn12e26, pphn12k14, pphn24l20, pphn28j15, 
pphn31p18, ppsp31e06, ppsp3k16 

11 BJ183144 - pphb36i07 

12 BJ174254 - pphb11m01 

13 BJ174595 - 
pph25e0, pphn18p07, pphn29a06, pphb12c08, 
pphf9b14 

14 BJ201954 - 
pph11a15, pph16j12, pph17k06, pph31m21, 
pph32j08, pph35j02, pphn39d21, pphn44e15, 
pphn44g16, pphn44n08, pphb8i01, pphf17h12 

15 - BJ173170 
pph29a02, pphn44b15, pphn49f03, pphb32l11, 
pphb37o04, pphb39i01, pphb4e07, pphf8d19 

16 - - pphn22e05, pphn29h18 

17 - BI437331 - 

18 - BQ827714 - 

 

Table 1 Physcomitrella patens transcripts showing significant homology to the 
CONSTANS protein sequence. Listed are the accession numbers of unique 
representatives of redundant ESTs found in the public EST database (Sep. 2002, 
GenBank Release 131.0), and accession numbers of all cDNA clones identified in 
Physcobase (Jan. 2005) (Nishiyama et al., 2003; http://moss.nibb.ac.jp). The 
nomenclature of Physcobase cDNA clones refers to the different libraries that the 
clones originate from: pphXXXXX (clone from non-treated library), pphnXXXXX (clone 
from auxin-treated library), pphbXXXXX (clone from cytokinin-treated library), 
pphfXXXXX (clone from first protoplast cell division library), and ppspXXXXX (clone 
from sporophyte library) (http://moss.nibb.ac.jp). 
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were identified as most similar to CONSTANS: BJ167752, BJ166101 and 

BJ166351 (data not shown). They were the only ESTs to contain the carboxy 

terminal T motif in addition to the CCT domain, similarly indicating a close 

relationship with CO and COL1 to COL5. Degenerate primers were designed in 

order to amplify the genes corrseponding to the three 5’-ESTs and three 3’-

ESTs. The upstream primer was designed to hybridise to all three 5’-ESTs in a 

region that corresponds in the protein to the highly conserved B-box domain, 

whereas the downstream primer was designed to hybridise to all three 3’-

ESTs in a region that corresponds to the T motif, which is specific for Group 1 

CO homologues. Using these two primers, three discrete products were 

amplified from Physcomitrella cDNA, reamplified, cloned, and sequenced. This 

revealed that the fragments represent three unique genes, and that each 

corresponds to one of the three 5’- and 3’-EST pairs. In conclusion, three 

unique genes had been identified that together represent the most closely 

related CONSTANS homologues that are contained in the public EST database. 

Moreover, the fact that they possess two canonical B-boxes as well as a T 

motif indicates that they are members of Group 1 of CO-like genes, and that 

they possibly represent CONSTANS orthologues. Based on the sequences of 

these ESTs, new gene-specific primers were designed, and complete coding 

and genomic sequences were cloned for each gene. The gene corresponding 

to ESTs BJ195918 and BJ167752 was called PpCOL1, the gene corresponding 

to BJ194188 and BJ166101 was called PpCOL2, and the gene corrsponding to 

BJ190646 and BJ166351 was called PpCOL3. PpCOL1 and PpCOL2 correspond 

to a gene and an EST, respectively, that were reported during the course of 

this work (Griffiths et al., 2003; Shimizu et al., 2004). 

The search for CONSTANS homologues was later repeated on the 

enhanced EST database, Physcobase (Nishiyama et al., 2003; 

http://moss.nibb.ac.jp), in the same way as before. This analysis identified 

seventeen putative transcripts. The nucleotide sequences of the transcripts 

were aligned with the 5’- and 3’-EST sequences that had been identified in the 

previous database search. Identical sequences were removed (data not 

shown). As such, altogether eighteen unique sequences were retained from 

both databases for further analysis (Table 1).  
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Figure 5 Schematic representation of 18 unique Physcomitrella genes and putative 
transcripts that show homology to the CO protein sequence. Black lines represent 
relevant sequences showing no homology to CO, whereas boxes represent conserved 
domains of the CO protein. Canonical CO-like B-box domains are shown as white 
rectangles, similar but different domains as dashed rectangles. Grey rectangles 
represent CCT domains, whereas T domains are shown as black rectangles. 

 

 

For sixteen out of eighteen transcripts, sequence information was 

available from both ends of the transcript, which allowed distinguishing 

between those that contain both conserved domains of a CO-like gene and 

those that contain only one of them, or put differently, between those that are 

likely to represent CO homologues, and those that represent unrelated 

proteins. Three transcripts corresponded to PpCOL1, PpCOL2, and PpCOL3. 

Two transcripts encoded a B-box and a CCT domain (transcripts 4 and 6) 

(Figure 5). However, the 3’-ESTs of the latter were also found concatenated 

with 5’-ESTs that did not encode a B-box (transcripts 5 and 7) (Figure 5). 

PpCOL1, PpCOL2,  
PpCOL3 



ISOLATION OF PpCOL GENES 

 46 

They either represent splice variants or aberrant transcripts. Several 

transcripts encoded only a B-box (transcripts 8 to 14) or only a CCT domain 

(transcripts 15 and 16) (Figure 5). Finally, two transcripts encoded a CCT 

domain, with no sequence information from the other end of the transcript 

(transcripts 17 and 18) (Figure 5). Taken together, among eighteen putative 

transcripts with significant homology to CONSTANS, at least five and not more 

than seven transcripts represent CO-like genes, as judged by the presence of 

a B-box region and a CCT domain. 

Finally, the search for CONSTANS homologues was repeated in the 

proprietary Physcomitrella EST database (Rensing et al., 2002b). This 

database is estimated to cover the Physcomitrella transcriptome to at least 

95% (Rensing et al., 2002b; Rensing et al., 2002a). The search retrieved 

PpCOL1, PpCOL2, and PpCOL3, but no more genes that are more closely 

related to CONSTANS (data not shown). 

The isolated B-box1, B-box2, B-box1+2, and CCT domain protein 

sequences encoded by the Physcomitrella transcripts were identified. They 

were aligned with the corresponding motifs from all CO-like proteins of 

Arabidopsis and from unrelated Arabidopsis proteins STO and TOC1, to 

construct the phylogenetic trees shown in Figure 6A-D. The analysis with each 

separate motif placed the predicted proteins at comparable positions of the 

tree, and identified PpCOL1, PpCOL2, and PpCOL3 as the only Group 1 CO-like 

genes and thus as the genes with highest similarity to CONSTANS. The 

proteins encoded by transcripts 4/5 and 11 grouped more closely to Group 2 

CO-like proteins AtCOL6-8 and AtCOL16 (Figure 6A,D), whereas the proteins 

encoded by transcript 6 (Figure 6B), and transcripts 6/7 and 18 (Figure 6D) 

grouped more closely to Group 3 CO-like proteins AtCOL9-15. The B-box 

containing proteins encoded by transcripts 8, 9 and 10 grouped more closely 

to Arabidopsis STO (Figure 6A,B,C). As they were also found to be 

homologous to STO at the carboxy terminus (data not shown), these 

transcripts likely represent homologues of STO. The proteins encoded by 

transcripts 15, 16 and 17 grouped more closely to Arabidopsis TOC1 (Figure 

6D), although at least for transcripts 15 and 16 no homology to TOC1 or any 

other member of the APRR1/TOC1 gene family was found at the other end of 

the protein (data not shown). Transcript 12 was shorter than the other 

transcripts and therefore revealed only part of a canonical B-box, and could 
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Figure 6 Phylogenetic analysis of isolated domains of CO-like proteins from 
Physcomitrella and Arabidopsis. The trees shown are unrooted and based on 
alignments of (A) B-box 1, (B) B-box 2, (C) B-box 1 and 2, and (D) CCT domain 
protein sequences predicted for CO-like genes from Physcomitrella and Arabidopsis. 
The line length indicates genetic distance. The accession numbers of Physcomitrella 
transcripts can be found in Table 1. The accession numbers of Arabidopsis sequences 
are given in the chapter Materials and methods. 
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not be included in the phylogenetic analysis. However, the other end of the 

protein was not homologous to CONSTANS or any other protein in the 

database (data not shown). Finally, the proteins encoded by transcripts 13 

and 14 harbour a motif that is related to, but distinct from a B-box zinc finger 

motif (Figure 7). The two first, metal-binding cysteine residues of the B-box 

consensus sequence were absent (Borden et al., 1995; Borden, 1998), 

although other differently spaced cysteine and histidine residues are present 

(Figure 7). No similar motifs were found in the PROSITE directory of protein 

families and domains (http://www.expasy.org/prosite), or in GenBank 

(release 150.0) by BLAST search (data not shown). Therefore, it possibly 

represents a novel type of zinc finger. 

  

 

   ↓  ↓                     ↓    ↓ 
   *  *          *       *  *    *        * 
   AtCO  CDTCRSNACT..VYCHADSAYLCMSCDAQVHSANRVASRHKRVRV        
   transcript13 CGGVRQEDASNLLWCDHCSIALCFDCDTNLHNSKNLNHGHLRVLL 
   transcript14 CGGGREEDASNLLWCQHCGIALCFDCDTYLHNLKSSKHGHLRVLL 
  

Figure 7 Alignment of the amino acid sequence of B-box1 of AtCO and related 
domains found in Physcomitrella putative transcripts 13 and 14. The consensus 
cysteine and histidine residues of B-box zinc fingers are indicated by stars, those that 
have been shown to bind zinc in the NMR structure of the XNF7 B-box (Borden et al., 
1995) are additionally indicated by arrows. Identical amino acids are highlighted in 
black. 

 

 

3.2.2 Isolation and characterisation of PpCOL1, PpCOL2, and PpCOL3 

 

The genomic and coding DNA sequences of PpCOL1, PpCOL2, and 

PpCOL3 were aligned to each other and to the original EST sequences to 

determine the exon-intron structure and the transcript boundaries. Around 5 

kb of flanking genomic sequence was obtained for each gene by inverse PCR, 

information that was also required for targeted gene replacement (see 

Chapter 5). All sequences were assembled to deduce the gene structures that 

are shown in Figure 8. The fully annotated genomic sequences are available in 

GenBank/EMBL with accession numbers AJ890106, AJ890107, and AJ890108 

for PpCOL1, PpCOL2 and PpCOL3, respectively. 
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PpCOL1 (5534 bp) 

 
 
PpCOL2 (5434 bp) 

 
 
PpCOL3 (5559 bp) 

 
 

Figure 8 Schematic representation of the genomic sequence of PpCOL1, PpCOL2, and 
PpCOL3. Coding regions are shown as white rectangles, the 5’- and 3’-untranslated 
regions, as defined by the ESTs, are shown as black bars. Restriction sites of 
restriction endonucleases used for Southern blot analysis (Figure 9, Figure 10) are 
indicated. The regions of the three genes used as probe in the Southern blot analysis 
are shown as black arrows.  

 

 

In contrast to CONSTANS, which contains one intron, the PpCOL1, 

PpCOL2, and PpCOL3 genes contain two introns. The first intron of 

PpCOL1/PpCOL2/PpCOL3 is found at a location that is not observed for any 

CO-like gene of Arabidopsis, shortly after the M1 motif of the middle region 

(Figure 12, page 55). The second intron is located between the M3 and M4 

motifs of the middle region, a position that corresponds to the position of the 

single intron in CONSTANS and other Arabidopsis Group 1 and Group 2 CO-

like genes (Griffiths et al., 2003). 
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Although the introns of PpCOL1, PpCOL2, and PpCOL3 are at highly 

conserved positions relative to the protein sequence, they differ in length. The 

first introns of PpCOL1, PpCOL2, and PpCOL3 are 243, 269, and 280 bp long, 

respectively; the second introns are 125, 205 and 115 bp long, respectively. 

The sequences of the first intron are moderately related to each other (47 to 

57% identity), whereas the sequences of the second intron appear to be more 

diverged, largely due to the more significant size differences between them 

(24 to 68% identity). In contrast, the nucleotide sequences of the three 

genes’ coding regions are rather uniformly and well related to each other: 

74% (PpCOL1-PpCOL3), 77% (PpCOL1-PpCOL2), and 82% (PpCOL2-PpCOL3) 

sequence identity. The flanking 5’- and 3’-untranslated regions (UTRs) were 

deduced from the predicted open reading frames of the cDNA sequences, and 

the sequences were found to be quite diverged, although a block of sequence 

identity of 32 bp immediately preceding the start codon exists between 

PpCOL2 and PpCOL3, while the corresponding region is entirely absent from 

PpCOL1 (data not shown). 

A Southern blot analysis was undertaken to confirm the gene structures 

and to try to identify additional CO homologues. This involved two restriction 

endonucleases (EcoRI and HindIII), as well as probes from PpCOL1, PpCOL2, 

PpCOL3, and AtCO. Probes were designed such that the chance of cross-

hybridisation was highest, among PpCOL genes as well as between PpCOL 

genes and other CO homologues. Therefore, probes corresponded roughly to 

the second exon of AtCO and the third exon of PpCOL genes (Figure 8), all of 

which encode the highly conserved CCT domain as well as the T motif. 

Inclusion of the latter is intended to increase the probes’ affinity for Group 1 

CO-like genes. Shown in Figure 9 are four similar blots, each hybridised at low 

stringency with a different probe. Hardly any discrete bands could be 

observed when the blot was hybridised with the AtCO probe, even though 

stringency was low, as can be seen by the appearance of the bands of the 

λxPstI size marker (Figure 9). However, hybridisation with the PpCOL1, 

PpCOL2 and PpCOL3 probes indicated considerable cross hybridisation 

between the three genes (shown as arrowheads in Figure 9). The gene 

structures shown in Figure 8 were confirmed by the Southern blots. In 

addition to the gene-specific bands, few additional bands were observed. 

These either represent more distantly related CO homologues, or are the 
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result of unspecific hybridisation, a possibility that is suggested by the 

appearance of the bands of the λxPstI size marker (Figure 9). 

 

 

 
 
 
Figure 9 Southern blot analysis. Genomic DNA of Physcomitrella was digested with the 
enzymes indicated and the blot hybridised under low stringency conditions with the 
probes indicated (PpCOL1, PpCOL2, PpCOL3 and AtCO). The fragments that were used 
as PpCOL1, PpCOL2 and PpCOL3 probes are shown in Figure 8. White, grey and black 
arrowheads indicate the position of the bands corresponding to PpCOL1, PpCOL2 and 
PpCOL3, respectively. Black arrows indicate bands that do not correspond to any of 
these genes. The sizes of the DNA size marker (λxPstI) are given on the right. 
 
 
 

Similar blots were hybridised with one of the three probes, the PpCOL2 

probe, at decreasing stringencies: high, medium, and low stringency. Also, 

two additional resitriction endonucleases were used (BglII and PstI). This 

showed that at high stringency, cross hybridisation was retained between the 

three PpCOL genes, and that no other bands could be observed with the 

additional resitriction endonucleases (Figure 10). At low stringency (45°C), 

bands were observed in addition to the bands corresponding to the PpCOL 

genes. However, hybridisation was also observed to fragments of the λxPstI 

size marker, indicating that specificity had been lost at this temperature. 

When the Southern blot was compared with the original ethidium bromide 

stained agarose gel that was used for blotting, it was found that all additional 

bands, in λxPstI DNA as well as in Physcomitrella genomic DNA, corresponded 

to positions of high DNA concentration (indicated by stars, Figure 10). Finally, 
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hybridisation was repeated at medium stringency (55°C). Although most 

unspecific bands had disappeared at this temperature four faint bands could 

still be observed (indicated by stars, Figure 10). Comparison with the low-

stringency blot and the agarose gel suggests that these bands represent 

unspecific hybridisation to high concentrations of DNA, although it cannot be 

excluded that they represent more distantly related CONSTANS homologues. 

 

 

 
 

Figure 10 Southern blot analysis. Genomic DNA of Physcomitrella was digested with 
the enzymes indicated and the blot hybridised with the PpCOL2 probe (shown in Figure 
8) under conditions of low (45°C), medium (55°C) and high stringency (65°C). 
Pictured are the ethidium bromide stained agarose gel before blotting, as well as the 
resulting Southern blots. Stars indicate presumed unspecific hybridisation in the 
Southern blots, and the DNA bands that they correspond to in the ethidium bromide 
stained agarose gel. White, grey and black arrowheads indicate the position of the 
bands corresponding to PpCOL1, PpCOL2 and PpCOL3, respectively, in the rightmost 
lane (PstI digest) of the high stringency blot (65°C). The sizes of the DNA size marker 
(λxPstI) are given on the left of the agarose gel and of the low stringency blot (45°C). 

 

 

The PpCOL1, PpCOL2, and PpCOL3 predicted protein sequences were 

aligned with the predicted protein sequences of all Arabidopsis CO-like 

proteins to construct the phylogenetic tree shown in Figure 11. Consistent 

with the previous analysis of isolated B-box and CCT domains (Figure 6, page 
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47), PpCOL1, PpCOL2, and PpCOL3 proteins were placed into Group 1. Within 

this clade, bootstrap support was high for a closer relatedness to Group 1c 

CO-like proteins than to Group 1a CO-like proteins (Figure 11). Closer 

inspection of the alignment consistently showed that PpCOL1/PpCOL2/PpCOL3 

are more similar to AtCOL3/AtCOL4/AtCOL5, than to AtCO/AtCOL1/AtCOL2 

(Figure 12). Thus, PpCOL1, PpCOL2, and PpCOL3 are likely to be 

representatives of the Group 1c CO-like isoform. Furthermore, a comparison 

of protein sequence identities shows that the Physcomitrella Group 1c proteins 

are rather similar to one another, whereas the Arabidopsis representatives of 

Group 1a as well as Group 1c are more diverged (Table 2). 

 

 

 

Figure 11 Phylogenetic analysis of CO-like proteins from Physcomitrella and 
Arabidopsis. The phylogenetic tree is unrooted and based on the alignment of full 
length protein sequences predicted for Physcomitrella and Arabidopsis CO-like genes. 
Indicated are the bootstrap values obtained from 1000 replicates above a cut off of 
690. The domain structures of different groups of CO-like proteins according to 
Griffiths et al. (2003) are shown in black. Additions and changes to the scheme made  
in this study are shown in red. B1 and B2 are the first and second B-box zinc finger, 
respectively; the black rectangle indicates a divergent B-box zinc finger. M1 to M4 are 
conserved middle region motifs. CCT and T are CCT domain and T motif, respectively. 
Intron positions are shown as solid arrowheads. The accession numbers of the 
Arabidopsis sequences that were used to generate the alignment are given in the 
chapter Materials and methods. 
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The distinction between Group 1a and Group 1c CO-like genes is 

reflected in conserved motifs of the middle region. While Group 1a genes 

encode M1, M2, M3, and M4 motifs, Group 1c genes only contain M1 and M4 

motifs (Griffiths et al., 2003). However, as shown in the alignment of Figure 

12, the M3 domain of Group 1a genes is clearly also present in Group 1c 

proteins of Arabidopsis (AtCOL3/AtCOL4/AtCOL5) and Physcomitrella 

(PpCOL1/PpCOL2/PpCOL3). Moreover, although no M2 motif was detected in 

Group 1c proteins previously, a different motif is detected at this position in 

the alignment. Thus, while Arabidopsis Group 1a proteins possess a clear 

motif defined as M2, Group 1c proteins of Arabidopsis and Physcomitrella 

possess a different one at a similar position (Figure 12). To account for this 

finding, the M2 motif was redefined as shown in Figure 12; the M2 region 

found in Group 1a genes was designated M2a and the corresponding motif in 

Group 1c genes M2c. The similarity of this motif is particularly apparent 

between PpCOL1/PpCOL2/PpCOL3 and AtCOL4 (Figure 12).  

 

 

 AtCO AtCOL1 AtCOL2 AtCOL3 AtCOL4 AtCOL5 PpCOL1 PpCOL2 PpCOL3 
AtCO 100 66 63 37 32 34 31 30 28 
AtCOL1  100 66 41 36 33 35 35 34 
AtCOL2   100 42 36 36 34 35 33 
AtCOL3    100 54 47 41 40 37 
AtCOL4     100 44 45 46 42 
AtCOL5      100 39 39 36 
PpCOL1       100 82 76 
PpCOL2        100 81 
PpCOL3         100 

 

Table 2 Percentage amino acid identity between representatives of Physcomitrella 
and Arabidopsis Group 1 CO-like proteins. 

 

 

 

 

Figure 12 Alignment of AtCO, AtCOL1 to AtCOL5, and PpCOL1 to PpCOL3 predicted 
protein sequences. Boxed regions indicate conserved domains as defined by Griffiths et 
al. (2003) and this study. Amino acids conserved in all sequences are highlighted in 
black, similar amino acids are highlighted in grey. Conserved cysteine and histidine 
residues of the B-box zinc finger (Borden, 1998; Robson et al., 2001) are shown below 
the alignment. Residues affected in co mutant alleles (Robson et al., 2001) are 
indicated by stars above the alignment. Intron positions in the corresponding 
nucleotide sequences are indicated by a white triangle for AtCO and AtCOL1 to 
AtCOL5, and by black triangles for PpCOL1, PpCOL2 and PpCOL3. The Arabidopsis 
sequence accession numbers are given in the chapter Materials and methods. 
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       B-box1 
AtCO    ..MLKQESNDIGSGENNRARPCDTCRSNACTVYCHADSAYLCMSCDAQVHSANRVASRHKRVRVCESCER 68   
AtCOL1  ..MLKVES........NWAQACDTCRSAACTVYCRADSAYLCSSCDAQVHAANRLASRHERVRVCQSCER 60   
AtCOL2  ..MLKEESNESG....TWARACDTCRSAACTVYCEADSAYLCTTCDARVHAANRVASRHERVRVCQSCES 64   
AtCOL5  MGFGLESIKSISGGWGAAARSCDACKSVTAAVFCRVDSAFLCIACDTRIHSF....TRHERVWVCEVCEQ 66   
AtCOL3  ..............MASSSRLCDSCKSTAATLFCRADAAFLCGDCDGKIHTANKLASRHERVWLCEVCEQ 56   
AtCOL4  ................MASKLCDSCKSATAALYCRPDAAFLCLSCDSKVHAANKLASRHARVWMCEVCEQ 54   
PpCOL1  .................MPKPCDACHVSSAAVFCRADAAYLCVGCDGKVHGANKLASRHERVWMCEVCEV 53   
PpCOL2  .................MPKSCDACHISSAVVYCRADAAYLCAGCDGKVHGANKLASRHERVWMCEVCEV 53   
PpCOL3  .................MPKSCDACQASSAVVYCRADAAYLCLGCDGKVHGANKLASRHERLWMCEVCEV 53   
                             C..C........C.......C..C....H........H.....C..C.. 

     B-box2 
AtCO    APAAFLCEADDASLCTACDSEVHSANPLARRHQRVPILPISGNSFSSMTTTHHQSEKTMTDPEKRLVVDQ 138  
AtCOL1  APAAFFCKADAASLCTTCDSEIHSANPLARRHQRVPILPISEYSYSSTATNHS.CETTVTDPENRLVLGQ 129  
AtCOL2  APAAFLCKADAASLCTACDAEIHSANPLARRHQRVPILPLSANSCSSMAPSET..............D.A 119  
AtCOL5  APAAVTCKADAAALCVSCDADIHSANPLASRHERVPVETFFDSAETAVAKISASSTFGILGS...STTVD 133  
AtCOL3  APAHVTCKADAAALCVTCDRDIHSANPLSRRHERVPITPFYDAVGPAKSASSSVN...........FVDE 115  
AtCOL4  APAHVTCKADAAALCVTCDRDIHSANPLARRHERVPVTPFYDSVSSDGSVKHTAVNFLDDCY....FSDI 120  
PpCOL1  APAVVTCKADAASLCVACDTDIHSANPLAQRHERVPVTPLFESASPLRGPDFCVLVSENGCH.DLLKGCE 122  
PpCOL2  AVAVVTCKADAASLCVSCDTDIHSANPLAQRHERVPVQPLFDCASSAREAHISVPFPESECH.ETLKGVE 122  
PpCOL3  AAAVVTCKADAASLCVSCDTDIHSANPLAQRHERVPVQPLFDCVSQFRGTHFSVLAPKNECNNNLLKGDE 123  
        ......C.......C..C....H........H..... 

   M1             M2a 
AtCO    EEGEEGDKDAKEVASWLFPNSDKNNNNQ....................NNGLLFSDEYLNLVDYNSSMDY 188  
AtCOL1  EEE...DEDEAEAASWLLPNSGKNSGN.....................NNGFSIGDEFLNLVDY.SSSDK 174  
AtCOL2  DN....DEDDREVASWLLPNPGKNIGNQ....................NNGFLFGVEYLDLVDYSSSMDN 165  
AtCOL5  LTAVPVMADDLGLCPWLLPNDFN............EPAKIEIGTENMKGS.........SDFMFSDFDRL 182  
AtCOL3  DGG.......DVTASWLLAKEG...................................IEITNLFSDLDYP 143  
AtCOL4  DGNGSREEEEEEAASWLLLPNPKTTTTATAGIVAVTSAEEVPGDSPEMNTG........QQYLFSDPDPY 182  
PpCOL1  DASVV......EAVSWLLPHPKISTNSIIRGSAAADEMGSSPFHDRPFSPKPKKQKVELPADIFSDVDPF 186  
PpCOL2  DSCVA......EAGSWLLPHPKIPTNAIIRGSAAADEAPDSPFRARPFSPKLKKQKVDLAADIFSDVDPF 186  
PpCOL3  DPAVA......EAVSWLLPHPKTLSSAILRGIAAADEAPAFPFRERPFSPKLKKLKVEQAADIYSDVDPF 187  

                M2c 
       M3 
AtCO    KFTGEYSQHQQNCSVPQTSYGGDRVVPLKLEESRGHQCHN..QQNFQFNIKYG.SSGTHYNDN..GSINH 253  
AtCOL1  QFTDQSNQYQLDCNVPQRSYGEDGVVPLQIEVSKGMYQE...QQNFQLSINCG.SWGALRSSN..GSLSH 238  
AtCOL2  QFEDN......QYTHYQRSFGGDGVVPLQVEESTSHLQQS..QQNFQLGINYGFSSGAHYNNNSLKDLNH 227  
AtCOL5  IDFEFPNSFNHHQ....NNAGGDSLVPVQTKTEP....LPLTNNDHCFDIDFCRSK....LS.AFTYPSQ 239  
AtCOL3  KIEVTSE.........ENSSGNDGVVPVQNKLF.........LNEDYFNFDLSASK...ISQQGFNFINQ 192  
AtCOL4  LDLDYGNVDPKVESLEQNSSGTDGVVPVENRTVR....I.PTVNENCFEMDFTGGSKGFTYGGGYNCISH 247  
PpCOL1  LDLDDATVTGIQP.........DSLVPVHMPECSEDTDSLAHSMDPSFTK.FPLSAKS.GYSYGTSTLTQ 245  
PpCOL2  LELDDATVTGIQP.........DSLVPVHIPEGSEDSPSLAHSMEPSFTTDFHLSEKS.GYSFGTSTLTH 246  
PpCOL3  LVLDGGNGTGFQP.........DSLVPVHIPEGPDDSPSLANSTAPSSAINFRASQKS.GCSYGTSTLTH 247  

 
        M4      CCT 
AtCO    NAYISSMETGVVPESTACVTTASHPR..TPKGTVEQQPDPASQMITVTQLSPMDREARVLRYREKRKTRK 321  
AtCOL1  MVNVSSMDLGVVPESTTSDATVSNPR..SPKAVTDQPPYPPAQML.....SPRDREARVLRYREKKKMRK 301  
AtCOL2  SASVSSMDISVVPESTASDITVQHPR..TTKETIDQLSGPPTQVVQ..QLTPMEREARVLRYREKKKTRK 293  
AtCOL5  SVSTSSIEYGVVPDGNTN......N.......SVNRSTITSSTTGGDHQASSMDREARVLRYREKRKNRK 296  
AtCOL3  TVSTRTIDVPLVPES..................GGVTAEMTNTETPAVQLSPAEREARVLRYREKRKNRK 244  
AtCOL4  SVSSSSMEVGVVPDGGSVADVSYPY.......GGPATSGADPGTQRAVPLTSAEREARVMRYREKRKNRK 310  
PpCOL1  SISCSSLDAAVVPDS.SLSDISTPYL...DSQSSQDMS.ARLPHQTGGPIDTVDREARVLRYKEKRQKRK 310  
PpCOL2  SISCSSVDAAVVPDS.SLSDISTPYP..LDSQGAQELSGTRMPQQVSGPIDTVDREARVMRYKEKRQKRK 313  
PpCOL3  SMSCSSVDAAVVPDS.SLSDISTPYSKALDSQDSQDLSGALVPHQASKPIDTVDREARVMRCKEKRQKRK 316  
 

    CCT      T 
AtCO    FEKTIRYASRKAYAEIRPRVNGRFAKREIEAEEQ...GFNTMLMYNTGYGIVPSF. 373  
AtCOL1  FEKTIRYASRKAYAEKRPRIKGRFAKKKDVDEEANQ.AFSTMITFDTGYGIVPSF. 355  
AtCOL2  FDKTIRYASRKAYAEIRPRIKGRFAKRIETEAEAEE.IFSTSLMSETGYGIVPSF. 347  
AtCOL5  FEKTIRYASRKAYAESRPRIKGRFAKRTETENDDIFLSHVYASAAHAQYGVVPTF. 351  
AtCOL3  FEKTIRYASRKAYAEMRPRIKGRFAKRTDSREN..DGGDVGVYGG...FGVVPSF. 294  
AtCOL4  FEKTIRYASRKAYAEMRPRIKGRFAKRTDTNESNDVVGHGGIFSG...FGLVPTF. 362  
PpCOL1  FEKTIRYASRKAYAESRPRIKGRFAKRTDSDMEQFG.......SVDSSFGVVPSF. 358  
PpCOL2  FEKTIRYASRKAYAESRPRIKGRFAKRTDSDVEQLFSS....CSMDSSFGVVPSF. 364  
PpCOL3  FEKTIRYASRKAYAESRPRIKGRFTKRTDSDVEQMFSS....CTADSGFGVVPSSC 368  

 
 



ISOLATION OF PpCOL GENES 

 56 

3.2.3 Constitutive expression of PpCOL genes in Arabidopsis 

 

The most closely related CO paralogues of Arabidopsis, COL1 and COL2, 

were found not be able to substitute CO function in Arabidopsis, in spite of 

strong sequence conservation (Ledger et al., 2001). Since particularly the B-

box regions and the CCT domain are highly similar between the three 

proteins, it appears that functional specificity might reside in other parts of 

the protein.  

It was investigated whether functional properties are generally 

conserved between the PpCOL proteins and CONSTANS. Overexpression of 

the CONSTANS gene from the CaMV 35S promoter has a dominant effect on 

flowering time in Arabidopsis (Onouchi et al., 2000), resulting in significantly 

earlier flowering than the wild type, both under long days and short days 

(Samach et al., 2000). This characteristic was used to assay functional 

conservation between CONSTANS and the PpCOL genes. A transcriptional 

fusion was constructed between the CaMV 35S promoter on one hand, and 

the PpCOL1, PpCOL2, and PpCOL3 cDNAs on the other. Transgenic 

Arabidopsis plants containing these constructs were generated. The presence 

of the transgene was confirmed, and the expression level quantified by 

quantitative RT-PCR, in T1 plants of several independent transgenic lines 

(Figure 13). For each transgene, the three highest expressing lines were 

selected (marked by stars in Figure 13). The presence of the transgenic 

protein could not be confirmed, because no commercially available CONSTANS 

antibodies were found that crossreact with the PpCOL1, PpCOL2, and PpCOL3 

proteins.  

Segregating T2 progeny of the selection of highly overexpressing lines 

was analysed for flowering time under both long-day and short-day 

conditions. For 35S::PpCOL1, three lines were analysed (1.41, 1.42, and 

1.45), as well as for 35S::PpCOL2 (2.42, 2.43, and 2.44). Only two lines were 

analysed for 35S::PpCOL3 (3.43 and 3.44), because the germination rate of 

line 3.41 was too low. The average flowering time was calculated from 

tentatively 20 segregating plants. Whereas the AtCO overexpressing line 

flowers significantly earlier than the wild type under long days, and 

dramatically earlier than the wild type under short days, the average 

flowering time of PpCOL1, PpCOL2 and PpCOL3 overexpressing lines was 

similar to that of the wild type, in both long days and short days (Table 3). 
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Although a strong effect of the transgene on flowering time should become 

apparent in the average flowering time of a segregating population, 

particularly under short day conditions, it cannot be excluded that the 

35S::PpCOL1, 35S::PpCOL2 or 35S::PpCOL3 transgene might have a smaller 

effect on flowering time. However, the fact that, in long days as well as in 

short days, no 3-to-1 segregation in flowering time could be observed among 

individuals of a segregating 35S::PpCOL1, 35S::PpCOL2 or 35S::PpCOL3 

population, but rather showed similar variation as a population of wild type 

individuals, at least suggests that this is not the case (data not shown). 

 

 

 

 

 
 
 

Figure 13 Quantification of PpCOL1, PpCOL2, and PpCOL3 expression in transgenic 
Arabidopsis plants by quantitative RT-PCR. The caption above each lane refers to a 
transgenic T1 plant from which leaf material was harvested and RNA isolated. Plants of 
lines 1.xx are hemizygous for 35S::PpCOL1, plants of lines 2.xx are hemizygous for 
35S::PpCOL2, and plants of lines 3.xx are hemizygous for 35S::PpCOL3. The 
uppermost caption indicates which gene was analysed (PpCOL1, PpCOL3 or PpCOL2). 
The positions of the internal 18S rRNA standard and the gene-specific product are 
marked by white and black triangles, respectively. The sizes of the DNA size marker 
(λxPstI) are given on the right. Quantification of transcript abundance, relative to the 
internal 18S rRNA standard, is shown under the gel picture. The highest relative 
intensity among lines with the same transgene was taken as 100; others were 
calculated relative to that. For each transgene, the three lines that have the highest 
transcript abundance are marked by stars. 
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Total leaf number at flowering 
Genotype 

Long days Short days 

ColO 10,3 ± 0,6 39,2 ± 2,8 

35S::AtCO 4,5 ± 0,5 5,7 ± 0,7 

35S::PpCOL1 (1.41) 10,7 ± 1,0 39,2 ± 3,1 

35S::PpCOL1 (1.42) 9,6 ± 0,8 38,6 ± 4,1 

35S::PpCOL1 (1.45) 9,7 ± 0,7 38,8 ± 5,0 

35S::PpCOL2 (2.42) 10,1 ± 1,3 38,5 ± 3,9 

35S::PpCOL2 (2.43) 9,6 ± 0,9 40,3 ± 4,1 

35S::PpCOL2 (2.44) 9,7 ± 0,8 36,9 ± 2,6 

35S::PpCOL3 (3.43) 10,1 ± 1,2 38,4 ± 3,4 

35S::PpCOL3 (3.44) 10,2 ± 0,9 39,3 ± 4,2 

  

Table 3 Effect of overexpression of PpCOL1, PpCOL2, PpCOL3, and AtCO on flowering 
time in Arabidopsis. Flowering time is represented as the total number of leaves 
(rosette and cauline) formed on the main shoot; plants that flower later form more 
leaves. Given are the average value and the standard deviation for a population of 20 
individuals. Individuals carrying the 35S::AtCO transgene are homozygous for the 
transgene; individuals carrying the 35S::PpCOLx transgene are segregating. The 
names of different, independent transgenic lines are given between brackets. 

 
 
 

3.3 Conclusions 

 

A search was performed for CO in Physcomitrella, which involved 

searching Physcomitrella EST libraries for CO homologues. For the first time, 

CONSTANS-like genes were identified outside of the realm of flowering plants. 

At least five and not more than six CO-like genes were identified in a database 

that covers the Physcomitrella transcriptome to 60%. One gene belongs to a 

class of CO-like genes called Group 2, two genes belong to Group 3, and three 

genes belong to Group 1, the class that also CO is a member of. The latter 

three genes were cloned and called PpCOL1, PpCOL2, and PpCOL3. In 

addition, more than 5kb of flanking genomic sequence was cloned by inverse 

PCR and the gene structures were confirmed by Southern blotting. Searches 

of an additional EST database that almost completely covers the 

Physcomitrella transcriptome, and Southern blotting, identified no other Group 

1 genes, indicating that PpCOL1, PpCOL2, and PpCOL3 represent the most 

closely related homologues of CO. Further analysis revealed that the three 

Physcomitrella homologues are most similar to AtCOL3/AtCOL4/AtCOL5, a 

class of Group 1 genes closely related to, but distinct from CO. These findings 
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indicate that CONSTANS was not present in the last common ancestor of 

mosses and flowering plants. By sequence alignment, two conserved motifs 

were identified in the middle regions of PpCOL1/PpCOL2/PpCOL3 and 

AtCOL3/AtCOL4/AtCOL5, of which the M2c motif was an entirely novel one. 

Overexpression studies with PpCOL1, PpCOL2, and PpCOL3 in Arabidopsis 

thaliana indicated that inherent functional qualities had diverged between 

CONSTANS and the Physcomitrella homologues, consistent with their 

phylogeny and the observations made with closely related CO homologues 

from Arabidopsis.  
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4 TRANSCRIPTIONAL REGULATION OF PPCOL1, 

PPCOL2, AND PPCOL3 

 

 

4.1 Introduction 

 

Circadian regulation of transcription is an essential feature of CONSTANS 

function in Arabidopsis (Suarez-Lopez et al., 2001). Interestingly, rhythmic 

fluctuations in transcript abundance are conserved among CO-like genes from 

flowering plants. The COL1, COL2, COL5 and COL9 genes of Arabidopsis all 

oscillate throughout the day. The cycling profiles of COL1 and COL2 are 

similar to each other, but very different to that of CO (Ledger et al., 2001), 

whereas the cycling profile of COL9 largely resembles that of CO (Cheng and 

Wang, 2005). COL5 was found to be expressed diurnally in a study that used 

microarray technology to identify cycling genes on a genome wide scale 

(Schaffer et al., 2001). Also, any homologue from any other species that was 

analysed to date showed diurnal/circadian fluctuations of transcript 

abundance. The expression profile of the functional orthologue from rice is 

almost identical, that of the putative orthologue from barley very similar, to 

the expression profile of Arabidopsis CO (Suarez-Lopez et al., 2001; Hayama 

et al., 2003; Nemoto et al., 2003). Homologues from Pharbitis, rice, wheat, 

and potato on the other hand, display a variety of expression profiles, each 

with its own characteristic phase, amplitude, and peak width (Liu et al., 2001; 

Martinez-Garcia et al., 2002; Kim et al., 2003; Nemoto et al., 2003; Shin et 

al., 2004). Whether this regulatory mechanism is also shown by CO-like genes 

of Physcomitrella patens was examined. 

The circadian clock is an endogenous timekeeper that allows an 

organism to keep track of daily and seasonal time. The importance of this 

mechanism is underscored by its ubiquity; clocks are present in organisms 

ranging from prokaryotic and eukaryotic microbes to plants, insects and 

animals (Gillette and Sejnowski, 2005). The clock has been conceptualised as 

a series of three components: an entrainment pathway that transmits 

environmental signals to entrain the central oscillator to environmental time; 

the central oscillator is the core component of the circadian clock that keeps 
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time and also operates in the absence of environmental cues; output 

pathways receive temporal information from the central oscillator to regulate 

rhythmic clock-controlled gene expression and rhythmic biological activity 

(Bell-Pedersen et al., 2005). An entrainable circadian system is proposed to 

be advantageous over a purely driven one by providing the possibility of 

anticipation, that is, preparing physiology before the external environmental 

changes occur. The ability of the clock to persist in constant conditions is 

classically regarded as one of the defining characteristics of a circadian 

rhythm (Roenneberg and Merrow, 2002). In the case of transcriptional 

regulation, this led to the distinction between genes with a circadian and a 

diurnal rhythm, because the latter do not persist in constant conditions. In a 

particular species of cyanobacteria, the circadian clock controls gene 

expression globally (Liu et al., 1995). In Arabidopsis, the number of clock-

controlled genes (ccgs) is estimated to be much lower, between 2% (Schaffer 

et al., 2001) and 6% (Harmer et al., 2000). 

 

4.2 Results 

 

4.2.1 Investigation of diurnal and circadian expression patterns 

 

In order to determine the expression patterns of PpCOL1, PpCOL2, and 

PpCOL3, mRNA abundance was analysed by quantitative RT-PCR. In our 

experimental setup, quantification is achieved through an internal 18S rRNA 

standard. Gene-specific primers were designed to span an intron, such that 

amplification of possible contaminating genomic DNA will result in a differently 

sized fragment. The specificity of the primers was confirmed by restriction 

analysis. The positions of the primers are shown in Figure 21 (page 76). 

Young protonema was cultured in a long-day regime (16 hrs of light, 8 

hrs of darkness), and RNA was sampled at 4 hr intervals throughout the day. 

When RT-PCR products were analysed, a third, larger band was observed for 

PpCOL1, PpCOL2, and PpCOL3, in addition to the gene-specific band and the 

internal reference band (Figure 14). For each gene, the band corresponded in 

size to an intron-containing transcript. These fragments did not originate from 

contaminating genomic DNA, because they were not observed in a mock- 
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Figure 14 Expression of PpCOL1, PpCOL2, and PpCOL3, under diurnal conditions of 
light/dark and in continuous light conditions. Expression levels of PpCOL1, PpCOL2, 
and PpCOL3 in protonema were determined by quantitative RT-PCR. Cultures were 
growing in long days (16 hrs of light, 8 hrs of darkness). The white or black bars at the 
top indicate light or darkness. Samples were taken every 4 hours, starting 2 hours 
after dusk (time point 1). Time points 7, 8, 13 and 14 were taken in subjective nights 
but with lights on. The positions of the internal 18S rRNA standard, the gene-specific 
product and unspliced gene-specific product are marked by white, black, and grey 
triangles, respectively. The sizes of the DNA size marker (λxPstI) are given on the 
right. Quantification of transcript abundance, relative to the internal standard, is 
shown under each gel picture. Intensities are the average of two technical replicates, 
the values of which are represented by error bars. The lowest intensity (time point 1) 
was taken as 1; the intensity of every other time point was calculated relative to that. 
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reaction without reverse transcriptase (data not shown). Therefore, they likely 

represent a pool of unspliced transcripts. Quantification of the spliced and 

unspliced fragments in Figure 14 revealed that as much as 15% of the PpCOL2 

and PpCOL3 mRNA pools might consist of unprocessed transcripts (data not 

shown). PpCOL1 appears to be more efficiently spliced (Figure 14). 

Under diurnal conditions of light/dark, the PCR product corresponding in 

size to correctly spliced PpCOL1, PpCOL2, or PpCOL3 transcript was found to 

be present at high levels in all samples exposed to light, and at much lower 

levels in the dark (Figure 14). The unspliced transcript was found to be cycling 

in the same way as the spliced transcript, supporting the fact that it does not 

originate from contaminating genomic DNA. PpCOL1, PpCOL2 and PpCOL3 all 

showed very similar patterns of expression. Expression levels strongly 

increased at dawn and remained high throughout the day. The increase in 

expression did not start before dawn, but occurred after exposure to light. The 

increase in expression after light irradiation was twice as high for PpCOL1 as it 

was for PpCOL2 and PpCOL3 (Figure 14). Quantification of the levels of 

expression 2 hrs before and 2 hrs after dawn revealed a 12-fold, 5-fold, and 

4-fold increase of expression for PpCOL1, PpCOL2, and PpCOL3, respectively 

(Figure 14).  

In order to distinguish between diurnal and circadian regulation of 

expression, the expression was analysed in free running light conditions. At 

the end of one day of sampling, the cultures were shifted to continuous light 

conditions, and sampling was continued for 48 hrs. Again, PpCOL1, PpCOL2, 

and PpCOL3 displayed very similar expression patterns. The expression levels 

did not decrease in the subjective night when light was present. Instead, 

expression levels for all three genes remained high throughout the light period 

(Figure 14). Although fluctuations in transcript could be observed during this 

time, no circadian periodicity could be identified. Therefore, it was concluded 

that under conditions of constant light the expression of PpCOL1, PpCOL2, and 

PpCOL3 is arrhythmic. 

Other rhythmically expressed genes from Physcomitrella were previously 

shown to become arrhythmic in constant light, and only displayed weak 

cycling in constant darkness (Aoki et al., 2004; Ichikawa et al., 2004). 

Therefore, the expression of PpCOL1, PpCOL2 and PpCOL3 was tested in 

conditions of extended darkness. Young protonema was cultured, as before, in 

a long-day regime (16 hrs of light, 8 hrs of darkness). A first RNA sample was 
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taken in darkness, 2 hours before dawn. At the beginning of day (time = 0), 

one set of cultures was exposed to light, whereas another set was kept in 

darkness. Then, samples were taken from each set of cultures, 2 hrs and 6 

hrs after actual sunrise (light cultures) or subjective sunrise (dark cultures). 

The expression was analysed as before, by quantitative RT-PCR (Figure 15). 

Analysis of the PCR products revealed the presence of faint additional bands 

that were previously not observed, and that could not be explained. For this 

reason, the data were not quantified. Consistently, the PpCOL1, PpCOL2 and 

PpCOL3 gene-specific bands showed a similar response to light at the 

beginning of day as they did in the previous experiment (Figure 14). It was 

observed that the expression of each gene increases also in cultures that are 

kept in darkness (Figure 15). Whereas expression of PpCOL2 increased in the 

absence of light almost as rapidly as it did in the presence of light, the 

expression of PpCOL3 was significantly delayed in darkness. PpCOL1 showed 

an intermediary response. 

 
 
 

 

 

Figure 15 Influence of extended darkness on expression of PpCOL1, PpCOL2, and 
PpCOL3. Expression levels of PpCOL1, PpCOL2, and PpCOL3 in protonema were 
determined by quantitative RT-PCR. Cultures were growing in long days (16 hrs of 
light, 8 hrs of darkness). At respective dawn (time = 0), cultures were either irradiated 
with white light (top row), or kept in darkness (bottom row). The black bar above each 
picture indicates darkness during nighttime; the white and grey bars represent light 
and darkness, respectively, during subjective daytime. The positions of the internal 
18S rRNA standard and the gene-specific product are marked by white and black 
triangles, respectively. The sizes of the DNA size marker (λxPstI) are given on the 
right. 
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4.2.2 Analysis of the effect of light quality on expression 

 

Our findings indicated that although PpCOL mRNA levels do rise at dawn 

in the absence of light, they do so more slowly than if light were present. 

Therefore, during the first hours of the morning, light has a direct effect on 

gene expression. Experiments were designed to investigate whether this 

response depends on light of a particular wavelength. Response to a particular 

wavelength might indicate a link between PpCOL expression and light 

signalling through a particular photoreceptor. This could provide an indication 

of the function of PpCOL1, PpCOL2, and PpCOL3, because Physcomitrella 

photoreceptors have established roles in distinct developmental and 

physiological processes (Imaizumi et al., 2002; Kasahara et al., 2004; 

Mittmann et al., 2004). Again, young protonema was cultured in a long-day 

regime (16 hrs of light, 8 hrs of darkness). RNA was sampled 90 min and 30 

min before sunrise, and 30 min and 90 min after sunrise (samples 5, 6, 9, and 

10; Figure 16A). At the same time points, RNA samples were taken from 

cultures that had been deprived of light at the subjective morning (samples 7 

and 8; Figure 16A), as well as from cultures that were not irradiated with 

white light at sunrise, but with blue light (samples 3 and 4, Figure 16A), red 

light (samples 11 and 12, Figure 16A), or far-red light (samples 13 and 14, 

Figure 16A). The expression was analysed as before, by quantitative RT-PCR 

(Figure 16B), and the results were quantified (Figure 17). 

In line with the previous finding of PpCOL1 showing the sharpest 

increase in transcript abundance at dawn (Figure 14), the clearest 

observations could be made for this gene. Cultures that had been kept in 

darkness at subjective dawn showed no or hardly any increase in PpCOL1 

expression, up to 90 minutes after subjective sunrise (Figure 17). However, a 

4- to 6-fold increase in expression could already be observed half an hour 

after sunrise in white, blue, red, and far-red light (Figure 17). An hour later, a 

6- to 10-fold increase was observed for the different light qualities.  
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A) 

 

 
 
B)  

 
 
 
Figure 16 Influence of light and light quality on expression of PpCOL1, PpCOL2, and 
PpCOL3 at dawn. (A) Schematic representation of the sampling regime around dawn. 
The grey bar indicates nighttime, whereas the dashed bar represents subjective day; 
sampling times are indicated underneath. The time of subjective sunrise is 0. Samples 
1, 2, 5 and 6 were taken in darkness during nighttime; other samples were taken 
during the subjective morning, in the absence of light (samples 7 and 8), and in the 
presence of blue light (samples 3 and 4), white light (samples 9 and 10), red light 
(samples 11 and 12), or far-red light (samples 13 and 14). (B) Expression levels of 
PpCOL1, PpCOL2, and PpCOL3 in protonema determined by quantitative RT-PCR at the 
time points and light conditions schematised in (A). D, BL, WL, RL, and FRL indicate 
darkness, blue light, white light, red light, and far-red light, respectively. Sample 
numbers correspond to the numbers in (A). The positions of the internal 18S rRNA 
standard, the gene-specific product, and the unspliced gene-specific product are 
marked by white, black, and grey triangles, respectively. The sizes of the DNA size 
marker (λxPstI) are given on the left. 
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Figure 17 Quantification of transcript abundance shown in Figure 16. Intensities of the 
gene-specific spliced product are calculated relative to the intensity of the internal 18S 
rRNA standard. Shown is the average of two technical replicates, the values of which 
are represented by error bars. For each set of samples, the lowest intensity (sample 1 
or sample 5) was taken as 1; the intensity of every other sample was calculated 
relative to that. Columns represent the transcripts of three different genes: PpCOL1, 
PpCOL2, and PpCOL3; rows represent the different light conditions at dawn: darkness, 
white light, blue light, red light, and far-red light. Sample numbers correspond to the 
numbers in Figure 16. 
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The data on PpCOL2 expression indicated that a culture that had been 

kept in darkness displayed a 2-fold increase in expression 90 minutes after 

subjective dawn (Figure 17). Also, a culture exposed to white light did not 

show a significantly stronger increase in PpCOL2 expression than a dark-kept 

culture. Both these findings were in agreement with the previous experiment, 

where expression levels were compared 2 and 6 hours after actual and 

subjective sunrise (Figure 15). Strikingly, the increase in expression was 

slightly stronger in cultures irradiated with blue, red, and far-red light, as 

compared to the white light-exposed cultures (Figure 17).  

The PpCOL3 transcript levels did not rise in the absence of light, whereas 

a 2- to 3-fold increase could be observed 30 and 90 minutes after irradiation 

with white light (Figure 17). In cultures kept in blue and red light, a 4- to 5-

fold increase was detected already 30 minutes after sunrise, whereas cultures 

kept in far-red light reached such an increase only about one hour later 

(Figure 17). 

Summarising, the results for PpCOL1 were clearest, indicating a strong 

transcriptional response to light of every quality. Results for PpCOL2 and 

PpCOL3 were at times hard to interpret, due to low amplitudes of the 

responses. However, expression levels of both genes appeared to be higher in 

blue, red, and far-red light than in darkness. Therefore it can be concluded 

that at least no support was found for a transcriptional response of these 

genes to light of a particular wavelength. 

 
 

4.3 Conclusions 

 

The expression patterns of CO-like genes of Arabidopsis and other 

flowering plant species consistently show circadian or diurnal regulation. All 

three Physcomitrella CO homologues were found to be diurnally expressed as 

well, with a broad peak in mRNA abundance during the day and a trough 

during the night. The observed diurnal rhythm appears to result mainly from a 

direct responsiveness to light signalling, because mRNA levels increase rapidly 

at dawn and remain high when cultures are irradiated with light during 

subjective night. However, when cultures are deprived of light at dawn, mRNA 

levels increase also in the absence of light, indicating an underlying regulation 

by the circadian clock. The acute response to light at dawn was dissected into 
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responses to particular wavelengths. The expression of each gene responded 

to white light, blue light, red light, and far-red light, suggesting 

responsiveness to integrated light signalling, rather than light signalling 

through a particular photoreceptor. Although the expression of PpCOL1, 

PpCOL2 and PpCOL3 showed largely similar responses to light and darkness, 

and to light of different qualities, small variations were observed in the speed 

and the amplitude of these responses. Expression of PpCOL1, for example, 

showed the strongest light response at dawn, with a 12-fold increase in mRNA 

levels compared to a 4- to 5-fold increase in PpCOL2 and PpCOL3 mRNA 

levels. Expression of PpCOL2 on the other hand was found to be more 

responsive to an endogenous timekeeper than the other two genes, as 

PpCOL2 mRNA abundance increased more rapidly in extended darkness. 
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5 INACTIVATION OF PPCOL1, PPCOL2, AND PPCOL3 

 

 

5.1 Introduction 

 

Physcomitrella is unique among plants in that the rate of homologous 

recombination is high enough to make gene targeting a feasible approach to 

study gene function (Schaefer et al., 1991; Schaefer and Zryd, 1997). The 

targeting efficiency in Physcomitrella is significantly higher than in the 

classical plant model, Arabidopsis, making Physcomitrella an attractive 

alternative plant model organism for gene functional studies. In fact, 

efficiencies can be compared with those observed in yeast, a finding that 

tempted enthusiasts to call Physcomitrella the “new green yeast” (Schaefer 

and Zryd, 1997). 

The double-strand breakage (DSB) repair machinery has been implicated 

in the regulation of homologous recombination in plants, as well as in animals 

and yeast (Dudas and Chovanec, 2004; Puchta, 2005). Double-strand 

breakage is a type of DNA damage that can be repaired via two pathways, 

either by obtaining instructions from the sister or homologous chromosome, a 

process which is called homologous recombination (HR), or via joining of ends 

that do not share sequence similarity, a process which is called non-

homologous end-joining (NHEJ) (Paques and Haber, 1999). The preferential 

use of the HR pathway over the NHEJ pathway is generally considered to 

result in efficient gene targeting (Reiss, 2003). 

Two general strategies for the generation of Physcomitrella gene 

disruptants have been reported (Schaefer, 2001). Firstly, a gene of interest 

has been targeted with an insertion vector, based on the insertion of a circular 

molecule through a single HR event (Figure 18A) (Schaefer and Zryd, 1997; 

Hofmann et al., 1999; Mittmann et al., 2004). Secondly, a gene of interest 

has been targeted with a replacement vector, which is based on the insertion 

of a linear molecule through a double HR event. For the latter strategy, a 

distinction can be made between two different designs. If the regions of 

homology between the genome and the targeting construct are located within 

the gene of interest, a double HR event will result in a gene insertion (Figure 
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18B) (Imaizumi et al., 2002; Mittmann et al., 2004; Thelander et al., 2004; 

Tanahashi et al., 2005; Yasumura et al., 2005). On the other hand, if the 

regions of homology are located outside of the gene of interest, a double HR 

event will result in gene removal (Figure 18C) (Lee et al., 2005). Targeting 

with a replacement vector is currently the strategy of choice, since it results in 

a modification without sequence duplication (Hohe et al., 2004). 

 

 

 

Figure 18 Gene targeting designs in 
Physcomitrella. The targeting strategy with 
an insertion vector (Schaefer, 2001) results 
in gene disruption due to a single HR event 
(A). The targeting strategy with a 
replacement vector (Schaefer, 2001) results 
in gene disruption (B) or gene removal (C) 
due to a double HR event; the difference 
between the two is the location of 
homologous regions. Represented is in each 
case the introduced targeting construct 
(above) and the genomic locus of the gene 
of interest (below). Exons of the gene of 
interest are shown as rectangles marked 
with E. The circle and square indicate 
putative start and stop codon, respectively. 
Regions of homology where HR takes place 
are shown in grey; an HR event is 
symbolised by interconnecting lines. The 
black rectangle indicates the recombinant 
selection cassette. The circle in (A) 
represents unlinearised vector sequence. 

 

 

It has been observed that gene targeting in Physcomitrella might involve 

different types of targeting events (Kamisugi et al., 2005). “One-end gene 

targeting” is the result of an HR event at one end of the construct 

accompanied by a NHEJ event at the other (HR/NHEJ). True allele 

replacement occurs by two HR events (HR/HR): this may involve insertion of 

multiple copies of the targeting construct or single-copy allele replacement. In 

fact, it was recently found that in Physcomitrella not more than 7% of a 

population of transformants consists of single-copy allele replacements 

(Yasumura et al., 2005). Both “one-end gene targeting” and true allele 

replacement may additionally be accompanied by non-targeted insertions of 

the targeting construct (NHEJ/NHEJ) (Kamisugi et al., 2005). It has to be 

A) 

B) 

C) 
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noted that in the case of gene targeting through gene removal (Figure 18C), 

which is the strategical gene targeting design employed in this study, one-end 

gene targeting events will not result in gene removal (HR/NHEJ in Figure 19). 

Only a HR/HR event will result in gene removal (Figure 19). 

 

 

 

 
 

Figure 19 Different outcomes of targeting with a replacement vector (Schaefer, 
2001), in the case of a gene removal design. A double HR event (HR/HR) will result in 
gene removal, whereas a combination of HR and NHEJ (HR/NHEJ) will not. A 
combination of NHEJ and NHEJ, resulting in random integration in the genome, is not 
depicted. Exons of the gene of interest are shown as white rectangles marked with E. 
The circle and square indicate putative start and stop codon, respectively. Regions of 
homology at the 5’- and 3’-end are shown as light grey and dark grey rectangles, 
respectively. The black rectangle indicates the recombinant selection cassette. 

 
 

Different selection cassettes have been used for the selection of 

Physcomitrella transformants. Genes that were used include those that confer 

resistance to geneticin (nptII), hygromycin (hph, aphIV), zeocine (zeo) and 

sulphonamide (sul), driven by the CaMV 35S promoter or the nopaline 

synthase (nos) promoter (Cove, 2005). Also reporter genes commonly used in 

seed plants function well in Physcomitrella: the uidA (GUS) gene and the gene 

coding for green fluorescent protein (GFP) (Cove, 2005). The transformation 

procedure in Physcomitrella gives rise to two classes of antibiotic-resistant 

transformants: stable and unstable transformants. Stable transformants have 

the transgenic DNA inserted in the genome. Unstable transformants lose the 

antibiotic-resistance phenotype when selection is relaxed, suggestive of 

extrachromosomal replication of the transformed DNA (Ashton et al., 2000). It 

has been reported that after two rounds of selection and relaxation more than 

98% of surviving transformants are stable (Schween et al., 2002). Others 
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routinely use four rounds of selection and relaxation to obtain stably 

transformed lines (Cove, 2000). 

 

5.2 Results 

 

5.2.1 Targeting strategy used for inactivation of PpCOL genes 

 

A replacement vector was used, such that the target gene starting with 

the start codon would be replaced either completely (PpCOL1 and PpCOL2), or 

almost entirely (PpCOL3), with a GUS reporter gene and a selectable marker. 

The selectable marker is expressed from the 35S plant viral promoter or the 

T-DNA nos promoter. Allele replacement will result in the GUS reporter gene 

being inserted in the original genomic context of the target gene in such a 

way as it should be expressed from the regulatory sequences of the target 

gene (Figure 21). 

 

 

 

 
 

Figure 20 Targeting constructs for PpCOL1, PpCOL2, and PpCOL3. Grey bars 
represent the flanking regions of homology where crossover will take place, resulting 
in gene replacement. The sizes of these regions are indicated. The coding region of the 
GUS reporter gene and the coding regions of the selectable marker genes (sul, hpt, 
and nptII) are shown as white rectangles. Promoters (35S, nos) are shown as block 
arrows. NotI and ApaI are the restriction endonucleases that were used to excise the 
targeting constructs from the cloning vector to enable transformation with linear 
fragments. 
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The large degree of sequence identity between the PpCOL1, PpCOL2, 

and PpCOL3 proteins suggested that functional redundancy might compromise 

the study of gene function in single gene disruptants. Therefore attempts 

were made to generate double and triple disruptant lines. Previously, multiple 

disruptants were generated by successive single-gene targeting experiments 

(Imaizumi et al., 2002; Thelander et al., 2004; Tanahashi et al., 2005; 

Yasumura et al., 2005). However, a novel procedure of simultaneous 

targeting of multiple loci was attempted, as this would be significantly less 

time-consuming (Hohe et al., 2004). 

The constructs that were used to target PpCOL1, PpCOL2 and PpCOL3 

are shown in Figure 20. The up- and downstream flanking sequences of the 

genes, where HR events between the targeting construct and the genome will 

take place, were obtained from the Physcomitrella genome by inverse PCR 

(Figure 8, page 49). In order to allow simultaneous selection of targeting of 

two or three PpCOL genes, three different selectable markers were used for 

targeting of PpCOL1, PpCOL2, and PpCOL3. The three markers were the 

sulfadiazine resistance gene (sul), the hygromicin phosphotransferase gene 

(hpt), and the neomycin phosphotransferase II gene (nptII), respectively. The 

flanking regions of homology that were used were as large as possible, 

because targeting efficiency strongly depends on homology length (Kamisugi 

et al., 2005). 

 

5.2.2 Generation of transformants 

 

The transformation method of polyethylene glycol (PEG)-mediated DNA 

transfer to Physcomitrella protoplasts was used (Schaefer and Zryd, 1997), 

with the constructs depicted in Figure 20. Transformation experiments were 

carried out with every targeting construct individually, with every combination 

of two constructs and with all three constructs. The scale of the 

transformation experiment used for targeting with single constructs was 

increased 6 times and 18 times for double and triple targeting experiments, 

respectively (see Materials and Methods). For double transformations the lines 

were selected simultaneously with two selectable agents, and for triple 

transformations with three agents. After transformation, repeated rounds of 

selection and relaxation were applied in order to retain stably transformed 
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lines. Plants surviving the second round of selection were considered as 

putative stable transformants. Five transformation experiments resulted in a 

total of 125 stably transformed lines (Table 4, page 78). The single 

transformation experiments resulted in 4, 10, and 6 stable transformants for 

PpCOL1, PpCOL2, and PpCOL3, respectively. Double transformation 

experiments resulted in 21 stably transformed lines for PpCOL2 and PpCOL3, 

16 for PpCOL1 and PpCOL2, and 28 for PpCOL1 and PpCOL3. The 

transformation experiment with all three targeting constructs resulted in 40 

stably transformed lines. DNA was isolated from each transformant as soon as 

enough plant material was obtained. For different transformants, this was 

after two, three, or four rounds of selection (Table 4, page 78), depending on 

the timing of the experiments and the growth of the cultures.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Genomic loci of PpCOL1 (A), PpCOL2 (B), and PpCOL3 (C), before targeting 
(WT locus) and after targeting (altered locus). Grey bars represent the regions of 
homology that had been cloned into the respective targeting construct (Figure 20); 
crossover will take place in these regions. White rectangles represent PpCOL1, PpCOL2 
and PpCOL3 coding regions in the wild type loci. In targeted loci, white rectangles 
represent the GUS reporter gene and the selectable marker gene (sul, hpt, and nptII); 
block arrows represent the promoters (35S, nos) of the selectable marker genes. The 
probes that were used in the Southern blot analysis of transformants are shown as a 
black line under the WT locus of each gene. All BglII restriction sites that are present 
in wild type loci are marked with B; their respective positions on the sequence are 
shown between brackets. Primers are shown as arrows. Black primers were used in the 
quantitative RT-PCR analysis of Figure 27. Coloured primers were used in the PCR 
analysis of transformed lines (Figure 24, Figure 25B, Figure 26). Primers in blue were 
used to verify removal of the target gene (“gene”). Primers in red were used to verify 
whether the WT locus was altered (“across locus”). Primers in green were used in 
combination with red primers as depicted, to verify homologous recombination at the 
5’-end (“5’-targeting”) and at the 3’-end (“3’-targeting”) of the target gene. Accolades 
depict all the primer combinations that were used in a PCR reaction, as well as the 
names by which they are referred to in the text; the expected product size for each 
primer combination is shown between brackets. 
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5.2.3 High-throughput screen for PpCOL mutants 

 

5.2.3.1 Strategy 

 

A Southern blot-based procedure was devised as a high-throughput 

screen to test the structure of the targeted genes in the transformants. 

Probes were used that hybridise to the gene sequence that is targeted for 

removal (shown as a black line under WT loci in Figure 21). This approach 

allows identification of two different targeting events: a shifted band reflects a 

“one-end gene targeting” event, whereas disappearance of the band 

corresponds to allele replacement, either through single-copy or multi-copy 

insertion (Kamisugi et al., 2005). By using the restriction endonuclease BglII 

for digestion of genomic DNA, wild type copies of the three genes appear as 

differently sized bands (~2,0 kb and ~1,5 kb for PpCOL1; >11,5 kb for 

PpCOL2; ~8,0 kb for PpCOL3). This approach enables three probes to be used 

together and therefore multiple targeting events can be analysed 

simultaneously (Figure 22, Figure 23, Figure 25A). Wild type DNA was always 

included as control. The Southern blots were used as a first, high-throughput 

screening method to eliminate transformants that certainly did not harbour 

disruptants. Whenever the Southern blot data could not be unambiguously 

interpreted, additional analysis was carried out by PCR, by using gene-specific 

primers to verify removal of the target gene from the genome (blue arrows in 

Figure 21). This PCR is hereafter referred to as “gene” PCR. 

 

 

 

 

 

Table 4 Summary of results of high-throughput screen for PpCOL mutants from single, 
double, and triple targeting experiments. The transformation experiment, the number 
of rounds of selection and relaxation that the line had gone through at the time of 
molecular analysis, and the type of molecular analysis that was performed (Southern 
blot or “gene” PCR) are shown. If a field is grey, the gene was not targeted in that 
experiment; if a field is blank, the analysis was not performed. Observations are given 
for individual loci (PpCOL1, PpCOL2, and PpCOL3). + indicates unsuccessful targeting 
(Southern) or unsuccessful allele replacement (“gene” PCR); ? indicates ambiguity in 
interpretation; - indicates successful targeting and/or allele replacement (Southern) or 
successful allele replacement (“gene” PCR). 
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Southern blot “gene” PCR 
transformant 

transf. 
expt. 

# sel.  
rounds 

PpCOL1 PpCOL2 PpCOL3 PpCOL1 PpCOL2 PpCOL3 

COL1-2 IV 3 -      

COL1-6 IV 3 +      

COL1-7 IV 3 -      

COL1-8 IV 2 +      

COL2-1 IV 3  -     

COL2-2 IV 3  -     

COL2-3 IV 3  -     

COL2-4 IV 3  -     

COL2-5 IV 3  -     

COL2-6 IV 3  -     

COL2-8 IV 3       

COL2-9 IV 3  +     

COL2-10 IV 2  -     

COL2-29 IV 2  -     

COL3-11 IV 3   +    

COL3-23 IV 3   +    

COL3-83 IV 3   +    

COL3-98 IV 3   +    

COL3-111 IV 3   -    

COL3-112 IV 3   -    

COL2/3-1 I 4  + +    

COL2/3-2 I 4  + -    

COL2/3-3 I 4  - +    

COL2/3-4 I 4  ? -  +  

COL2/3-5 I 4  ? -  +  

COL2/3-6 III 3  + +    

COL2/3-7 III 3  + -    

COL2/3-8 III 3  + -    

COL2/3-11 III 3  ? +    

COL2/3-13 III 3  + +    

COL2/3-14 III 3  ? +    

COL2/3-18 V 2  ? +    

COL2/3-19 V 2  ? -  +  

COL2/3-20 V 2  ? +    

COL2/3-21 V 2  ? +    

COL2/3-22 V 2  ? -  +  

COL2/3-23 V 2  ? +    

COL2/3-24 V 2  ? +    

COL2/3-27 V 2  ? +    

COL2/3-28 V 2  + +    

COL2/3-30 V 2  ? +    

COL1/2-1 I 4 ? +     

COL1/2-2 III 3 - +     

COL1/2-3 III 3 + -     

COL1/2-4 III 3 + +     

COL1/2-6 V 2 + -     

COL1/2-7 V 2 + +     

COL1/2-8 V 2 + +     

COL1/2-9 V 2 + -     

COL1/2-10 V 2 + ?     

COL1/2-12 V 2 + -     

COL1/2-14 V 2 ? +     

COL1/2-15 V 2 - +     

COL1/2-16 V 2 + -     

COL1/2-17 V 2 + +     

COL1/2-18 V 2 ? +     

COL1/2-19 V 2 + ?     
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Southern blot “gene” PCR 
transformant 

transf. 
expt. 

# sel.  
rounds 

PpCOL1 PpCOL2 PpCOL3 PpCOL1 PpCOL2 PpCOL3 

COL1/3-1 I 4 ?  - +   

COL1/3-2 I 4 ?  - +   

COL1/3-3 III 3 ?  +    

COL1/3-4 III 3 ?  - +   

COL1/3-5 III 3 ?  - +   

COL1/3-6 III 3 ?  - +   

COL1/3-7 III 3 ?  - +   

COL1/3-8 III 3 ?  +    

COL1/3-9 III 3 ?  - +   

COL1/3-10 III 3 ?  + +   

COL1/3-13 III 3 ?  + +   

COL1/3-14 III 3    +  + 

COL1/3-15 V 2    +  + 

COL1/3-17 V 2    +  + 

COL1/3-18 V 2    +  + 

COL1/3-19 V 2    +  + 

COL1/3-20 V 2    +  + 

COL1/3-21 V 2    +  + 

COL1/3-22 V 2    -  + 

COL1/3-23 V 2    +  - 

COL1/3-24 V 2    +  - 

COL1/3-25 V 2    +  + 

COL1/3-25 V 2    +  + 

COL1/3-26 V 2    +  + 

COL1/3-27 V 2    +  + 

COL1/3-28 V 2    +  + 

COL1/3-29 V 2    +  + 

COL1/3-30 V 2    +  + 

COL1/2/3-1 II 4 + + -    

COL1/2/3-2 II 4 + + +    

COL1/2/3-5 II 4 + - +    

COL1/2/3-6 II 4 + + +    

COL1/2/3-17 II 4 - + +    

COL1/2/3-18 II 4 + + +    

COL1/2/3-22 II 4 + ? -    

COL1/2/3-26 II 4 - + +    

COL1/2/3-27 II 4 - + +    

COL1/2/3-30 II 4 + + +    

COL1/2/3-32 II 4 + + +    

COL1/2/3-33 II 4 ? ? -  +  

COL1/2/3-40 II 4 - ? +    

COL1/2/3-41 II 4 + ? +    

COL1/2/3-46 II 4 + + +    

COL1/2/3-50 II 4 ? ? -  +  

COL1/2/3-51 II 4 + - +    

COL1/2/3-52 II 4 + + +    

COL1/2/3-54 II 4 ? + +    

COL1/2/3-64 II 4 ? + +    

COL1/2/3-65 II 4 ? + +    

COL1/2/3-69 II 4 ? ? -  +  

COL1/2/3-70 II 4 ? + -    

COL1/2/3-71 II 4 - ? +    

COL1/2/3-72 II 4 ? + +    

COL1/2/3-76 II 4 + + +    

COL1/2/3-83 II 4 + + +    

COL1/2/3-89 II 4 ? ? +    

COL1/2/3-92 II 4 ? + +    
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Southern blot “gene” PCR 
transformant 

transf. 
expt. 

# sel.  
rounds 

PpCOL1 PpCOL2 PpCOL3 PpCOL1 PpCOL2 PpCOL3 

COL1/2/3-96 II 4 + + +    

COL1/2/3-97 II 4 ? + +    

COL1/2/3-112 II 4 ? - +    

COL1/2/3-117 II 4 ? ? +    

COL1/2/3-121 II 4 ? ? +    

COL1/2/3-122 II 4 + + +    

COL1/2/3-125 II 4 ? + +    

COL1/2/3-127 II 4 + + +    

COL1/2/3-128 II 4 + + +    

COL1/2/3-135 II 4 + - +    

COL1/2/3-136 II 4 + - +    

 
 
 
 

5.2.3.2 Analysis 

 

One-hundred-and-seven stable transformants were analysed by 

Southern blotting, followed by PCR analysis in case of ambiguity. The 

remaining 18 transformants were analysed by PCR only. The findings of these 

analyses are summarised in Table 4. 

All 40 stable triple transformants were analysed by Southern blotting 

(Figure 22). This analysis indicated that 13 transformants had not undergone 

recombination at any of the three loci, reflecting random integration of all 

three targeting constructs through NHEJ/NHEJ events (Table 4). Sixteen 

transformants were found not to be altered at two loci, with the third locus 

either altered or not clearly interpretable (Table 4). Another 8 transformants 

were not altered at one locus, with the other two loci either altered or not 

clearly interpretable (Table 4). The remaining 3 lines possessed one altered 

locus, with remaining ambiguity concerning the targeting of the other two loci 

(Table 4). Therefore they were additionally analysed by PCR for gene removal 

at one of the latter two loci. This revealed that in each of these lines, at least 

the PpCOL2 gene had not been removed by targeted gene replacement 

(Figure 24). In conclusion, the Southern analysis indicated that at least 16 

lines possibly represent single gene disruptants, whereas no evidence was 

found for the presence of transformants that had 2 or 3 target genes altered. 
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Figure 22 Southern blot analysis of stable triple transformants. Genomic DNA was 
digested with BglII. The blots were hybridised, under stringent conditions, with 
PpCOL1, PpCOL2, and PpCOL3 probes  (shown in Figure 21) simultaneously. The 
caption above each lane corresponds to a stably transformed line listed in Table 4; WT 
refers to the untransformed wild type strain. Positions that correspond to unaltered 
PpCOL1, PpCOL2, and PpCOL3 loci are indicated by black, white, or grey triangles, 
respectively. The sizes of the DNA size marker (λxPstI) are given on the right. 

 

 

Forty-eight out of 65 stable double transformants were analysed by 

Southern blotting (Figure 23). Among these, 8 lines were found not to be 

altered at any of the two loci (Table 4). Twenty-nine lines were not altered at 

one locus, with the other locus either altered or not clearly interpretable 

(Table 4). The remaining 11 lines included lines that possessed one altered 

locus with remaining ambiguity concerning the targeting of the other locus, as 

well as lines that had not been analysed by Southern blotting (Table 4). These 

were analysed for target gene removal by “gene” PCR. This indicated that in 

each of these lines, at least one of the targeted genes had not been removed 
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by targeted gene replacement (Figure 24). In conclusion, no double 

transformant was found that had both targeted loci altered, whereas as many 

as 25 lines were identified that possibly represent single gene disruptants. 

 

 

 

 

 

 

Figure 23 Southern blot analysis of stable double transformants. Genomic DNA was 
digested with BglII. The blots were hybridised, under stringent conditions, with 
PpCOL1, PpCOL2, and PpCOL3 probes (shown in Figure 21) simultaneously. The 
caption above each lane corresponds to a stably transformed line listed in Table 4; WT 
refers to the untransformed, wild type strain. Positions that correspond to unaltered 
PpCOL1, PpCOL2, and PpCOL3 loci are indicated by black, white, or grey triangles, 
respectively. The sizes of the DNA size marker (λxPstI) are given on the right. 
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Figure 24 PCR analysis of stably transformed lines from double and triple 
transformation experiments. A positive PCR signal reflects the presence of the target 
gene. The primer combinations that were used are depicted as blue arrows in Figure 
21 (dubbed “gene”). The gene that was analysed is given on the left of each picture. 
Approximate product sizes are given on the right of each picture. The caption above 
each lane corresponds to a stably transformed line listed in Table 4; WT refers to the 
untransformed, wild type strain. Product sizes are given on the right of each picture. 

 

 

All 20 single transformants were analysed by Southern blotting as well 

(Figure 25A). Among the 4 PpCOL1 transformants, 2 lines were found to 

possess an altered PpCOL1 locus (lines COL1-2 and COL1-7), because they 

lacked the 1,5 kb and 2 kb fragments characteristic of PpCOL1. Among 9 

PpCOL2 transformants, 8 were found to possess an altered PpCOL2 locus 

(lines COL2-1 to -6, COL2-10 and COL2-29), as they lacked the >11,5 kb 

fragment characteristic of PpCOL2, whereas one contained an unaltered 

PpCOL2 locus (line COL2-9). Finally, 2 out of 6 PpCOL3 transformants 

possessed an altered PpCOL3 locus (lines COL3-111 and COL3-112), because 

they lacked the 8 kb fragment characteristic of PpCOL3. 

 

5.2.4 Identification of single disruptants 

 

As it was clear from the Southern blot analysis that multiple gene 

disruptants were not present among the multiple transformants, a more 

thorough PCR-based analysis of gene targeting events was focused on the 

identification of single gene disruptants. Therefore, this analysis was carried 

out on all single transformants, and on a few selected multiple transformants 
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that were identified as likely single gene disruptants in the Southern blot 

analysis (COL1/2-2, COL1/3-6, COL1/2/3-5 and COL1/2/3-135; Table 4).  

 

 

 

 

Figure 25 Analysis of stable single transformants by Southern blot and by PCR. (A) 
Southern blot analysis. Genomic DNA of each transformed line was digested with BglII. 
Each blot was hybridised, under stringent conditions, with PpCOL1, PpCOL2, and 
PpCOL3 probes (shown in Figure 21) simultaneously. The caption above each lane 
corresponds to a stably transformed line listed in Table 4; WT refers to the 
untransformed, wild type strain. In each case, the position of the wild type band that 
corresponds to a targeted gene is indicated by a triangle. Positions that correspond to 
unaltered PpCOL1, PpCOL2, and PpCOL3 loci are indicated by black, white, or grey 
triangles, respectively. The sizes of the DNA size marker (λxPstI) are given on the 
right. (B) PCR analysis. The name on the left of each row of pictures refers to the 
primer combination (Figure 21) that was used in the corresponding PCR reactions. In 
each case, primers were used that are specific for the targeted gene of that line. The 
caption above each lane corresponds to a transformed line given in Table 4; WT refers 
to the untransformed, wild type strain. Product sizes are given on the right of each 
picture. 

 

 

5.2.4.1 Strategy 

 

A thorough PCR-based analysis was designed that used different 

combinations of primers, adequately positioned on the targeting construct and 

on the target locus, allowing the probing of distinct aspects of a gene 

targeting event. Figure 21 (page 76) illustrates the PpCOL1, PpCOL2 and 

A) 

B) 
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PpCOL3 loci, before and after a single-copy allele replacement. The positions 

of the primers employed in the analysis are indicated, as well as their 

resulting PCR products. Gene-specific primers are used to verify gene removal 

(dubbed “gene” PCR; blue arrows in Figure 21). Another set of primers, 

annealing outside of the regions of homology where HR will take place, is used 

to reveal an HR event at the target locus (dubbed “across locus” PCR; red 

arrows in Figure 21). If the targeting construct integrated randomly through a 

NHEJ/NHEJ event, the DNA of the transformant will support amplification of a 

product that is identical in size to the product obtained with wild type DNA. If 

the locus was altered, the PCR will support amplification of a larger product of 

a particular size in the case of an HR/HR event with single-copy allele 

replacement (Figure 21), or no product at all in the case of an HR/HR event 

with multiple-copy insertions, because the locus then likely got too large to 

support PCR amplification. Possibly, a one-end gene targeting event 

(NHEJ/HR) might also result in a locus that is too large to support PCR 

amplification, even by long-template PCR. Finally, two other sets of primers 

separately reveal correct HR events on each side of the gene. Primers that 

anneal to either side of the marker cassette (the GUS gene or the selectable 

marker gene; green arrows in Figure 21) are combined with primers that 

anneal outside of the region of homology (the same were used in the “across 

locus” PCR; red arrows in Figure 21). These PCRs are hereafter referred to as 

“5’ targeting” PCR and “3’ targeting” PCR (Figure 21). Finally, ultimate and 

necessary proof of a gene disruptant was the absence of the target gene 

transcript, as analysed by quantitative RT-PCR (primers are shown as black 

arrows in Figure 21). 

 
 

5.2.4.2 Analysis 

 

5.2.4.2.1 PpCOL1 disruptants 

 

The Southern blot data suggested that the PpCOL1 locus might have 

been altered and removed in lines COL1-2 and COL1-7 (Figure 25A). 

However, both lines supported amplification of the PpCOL1 gene (“gene”; 

Figure 25B), and of the PpCOL1 transcript (Figure 27), indicating that the 
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gene was present and expressed. In line COL1-2, an HR event had occurred at 

the 5’-end (“5’-targeting”; Figure 25B), resulting in the failed support for PCR 

amplification of the target locus (“across locus”; Figure 25B). Together with 

the finding that the 3’-end had not been altered (“3’-targeting”; Figure 25B), 

it fits with a one-end gene targeting event. As shown in Figure 19 on page 73, 

such an event does not result in gene removal. In line COL1-7, HR events had 

occurred at the 5’-end, as well as the 3’-end of the PpCOL1 gene (“5’-

targeting” and “3’-targeting”; Figure 25B), resulting in single-copy allele 

replacement (“across locus”, Figure 25B). The phenomena of break-induced 

recombination and gene conversion (Haber, 1999) could explain the fact that 

the PpCOL1 gene is nevertheless still present and expressed. However, further 

investigations of this matter were not considered, as they go beyond the goal 

of the analysis, which was to identify gene disruptants. Therefore, our focus 

shifted to the analysis of double transformants for the identification of an 

unambiguous PpCOL1 disruptant, which could then be used for the analysis of 

PpCOL1 gene function. Line COL1/2-2 was found to exhibit all the PCR-based 

diagnostics of a PpCOL1 disruptant line. The PpCOL1 gene had been removed 

(“gene”; Figure 26) through a double HR event (“5’-targeting” and “3’-

targeting”; Figure 26) with multi-copy allele replacement (“across locus”; 

Figure 26), resulting in absence of expression of the mRNA of the gene 

(Figure 27). This line was used for the phenotypical analysis of PpCOL1 gene 

function, which is the subject of section 5.2.5. 

 

 
 
 
 
 

Figure 26 PCR analysis of a selection of stable 
double and triple transformants. The name on 
the left of each picture refers to the primer 
combination (Figure 21) that was used in the 
corresponding PCR reactions. The top captions 
refer to the gene analysed in the corresponding 
lanes (PpCOL1, PpCOL2, and PpCOL3). The 
caption directly above each lane corresponds to a 
transformed line given in Table 4; WT refers to 
the untransformed, wild type strain. Product 
sizes are given on the right of each picture. 
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Figure 27 Quantitative RT-PCR analysis of targeted genes in protonema of stably 
transformed lines. The top captions refer to the gene analysed in the corresponding 
lanes (PpCOL1, PpCOL2, and PpCOL3). The caption directly above each lane 
corresponds to a transformed line given in Table 4; WT refers to the untransformed, 
wild type strain. The primers that were used are shown as black arrows in Figure 21. 
The positions of the 18S rRNA product, the gene-specific product, and putatively 
unspliced gene-specific product are marked by white, black, and grey triangles, 
respectively. The sizes of the DNA size marker (λxPstI) are given on the left. 

 
 

5.2.4.2.2 PpCOL2 disruptants 

 

The Southern blot analysis of 9 PpCOL2 single transformants had 

indicated that as many as 8 of these might have been altered at the PpCOL2 

locus (Figure 25A). However, PCR analysis of all PpCOL2 transformants 

revealed that only 3 lines failed to support amplification of the PpCOL2 gene: 

lines COL2-4, COL2-5 and COL2-10 (“gene”; Figure 25B). In line COL2-10, HR 

events had occurred at both ends of the PpCOL2 gene (“5’-targeting” and “3’-

targeting”; Figure 25B), resulting in multi-copy allele replacement (“across 

locus”; Figure 25B). Lines COL2-4 and COL2-5 appeared to have undergone 

an HR event at the 3’-end of the PpCOL2 gene (“3’-targeting”; Figure 25B), 

but not at the 5’-end (“5’-targeting”; Figure 25B). However, this does not 

reflect a one-end gene targeting event, as this would not have resulted in the 

observed removal of the PpCOL2 gene (Figure 19, page 73). It seems that 

instead of an HR event, a larger deletion occurred at the 5’-end that includes 

at least part of the PpCOL2 gene, resulting in a failed “gene” PCR, as well as 

the region upstream of the PpCOL2 gene that includes the binding site of the 

forward primer of the “5’-targeting” PCR (red arrow in Figure 21, page 76). In 

fact, similar growth aberrations were observed for lines COL2-4 and COL2-5. 
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Both lines formed colonies that were significantly reduced in size because cells 

are unable to expand as in the wild type (Figure 28). However, this phenotype 

was not observed in two other lines, COL2-10 and COL1/2/3-135, both of 

which were shown to have lost the PpCOL2 gene and transcript (Figure 26 and 

Figure 27). Therefore, the growth phenotype of lines COL2-4 and COL2-5 was 

not connected to the lack of PpCOL2 gene function, but probably the result of 

a larger chromosomal deletion at the 5’-end of the target gene. It has 

previously been observed that transformation-induced growth aberrations are 

common occurrences in Physcomitrella transformation experiments, possibly 

due to such deletion events (U. Markmann-Mulisch and B. Reiss, personal 

communication). The PCR analysis further revealed that the remaining lines 

from the PpCOL2 targeting experiment still possess the PpCOL2 gene, possibly 

due to one-end gene targeting events (e.g. lines COL2-1, COL2-2, COL2-29; 

Figure 25B), break-induced recombination or gene conversion (e.g. lines 

COL2-3, COL2-6, COL2-8; Figure 25B), or random integration events (e.g. 

line COL2-9; Figure 25B). Again, further investigation of these lines was 

beyond the goal of this analysis, and only line COL2-10 was retained for 

phenotypical analysis of PpCOL2 gene function, which is the subject of section 

5.2.5. 

 

5.2.4.2.3 PpCOL3 disruptants 

 

The Southern blot data indicated that lines COL3-111 and COL3-112 

might represent PpCOL3 disruptants (Figure 25A). However, both lines 

supported amplification of the PpCOL3 gene (“gene”; Figure 25B), and of the 

PpCOL3 transcript (Figure 27), indicating that the gene was present and 

expressed. As in line COL1-7, HR events had occurred at both ends of the 

target gene (“5’-targeting” and “3’-targeting”; Figure 25B), this time resulting 

in multi-copy allele replacement (“across locus”, Figure 25B). The phenomena 

of break-induced recombination and gene conversion (Haber, 1999) could 

explain the fact that the PpCOL3 gene is still present and expressed. Again, 

further investigations of this matter were not considered. Instead, 

transformants from the double and triple targeting experiments were 

screened for PpCOL3 disruptants. Line COL1/3-6 was found to exhibit all the 

PCR-based diagnostics of a PpCOL3 disruptant line. The PpCOL3 gene had 

been removed (“gene”; Figure 26) through a double HR event (“5’-targeting” 
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and “3’-targeting”; Figure 26) with multi-copy allele replacement (“across 

locus”; Figure 26), resulting in absence of expression of the mRNA of the gene 

(Figure 27). This line was used for the phenotypical analysis of PpCOL3 gene 

function, as described in the next section. 

 

 

 
 

             
 

        
 
 

Figure 28 Growth of four potential PpCOL2 disruptant lines, compared to the wild 
type. Shown are colonies (top row) and chloronema cells (bottom row) from 
cultures that had been growing in a long-day regime (16L:8D) for 19 days. Scale 
bars: 2mm (top row); 125nm (bottom row). 
 

 

5.2.5 Phenotypical analysis of disruptants 

 

The single disruptant lines COL1/2-2 (PpCOL1 disruptant), COL2-10 

(PpCOL2 disruptant), and COL1/3-6 (PpCOL3 disruptant) were used in a 

phenotypical analysis. Cultures were compared with the wild type in order to 

look for general growth aberrations. Furthermore, given the importance of 

light signalling in the transcriptional regulation of PpCOL1, PpCOL2, and 

PpCOL3, it was decided to analyse the disruptant lines for an easily tractable 

light response, namely phototropism of caulonema and chloronema cells. Both 

cell types show distinct phototropic responses (Cove et al., 1978; Cove, 

1992). Caulonemal filaments spread from the central part of the culture, 

COL2-4 COL2-5 COL2-10 COL1/2/3-5 WT 
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growing fast, and at right angle to, or at a small angle away from the 

direction of light. Almost all caulonemal sub-apical cells of such a filament 

divide and give rise to side branch initials. The majority of these develop into 

chloronemal filaments which show a positive phototropic response. 

Cultures were initiated from a common starting point, the regenerating 

protoplast stage. When a protoplast starts dividing, it grows into a protonemal 

filament, much like a germinating spore. Growth of the cultures was observed 

during four weeks’ growth on standard medium, in long days (16L:8D). Each 

disruptant line was found to progress through gametophyte development 

much like the wild type did, from regenerating protoplasts, to protonemal 

filaments, and finally to the stage of gametophores (Figure 29A). The 

morphology of mature gametophores appeared normal, with normally 

developing leaflets and rhizoids (Figure 29B). The PpCOL1, PpCOL2, and 

PpCOL3 disruptant lines were concluded not to be affected in development of 

the gametophyte, which represents the dominant generation in mosses. After 

19 days’ growth, both protonemal cell types were present and displayed their 

characteristic phototropic responses, in the wild type as well as in disruptant 

lines. Caulonemal filaments spread from the central part of the culture, 

growing slightly away from the light, whereas chloronemal side-branches are 

formed only on one side, as they grow towards the light (Figure 30, Figure 

31). Therefore, the phototropic light response of protonemal filaments 

appeared unaffected by the lack of PpCOL1, PpCOL2, or PpCOL3 function. 
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Figure 29 Broad culture morphology (A) and isolated gametophores (B) of 
disruptant lines of PpCOL1 (COL1/2-2), PpCOL2 (COL2-10), and PpCOL3 
(COL1/3-6), and of the wild type after 30 days’ growth on standard medium in 
long days (16L:8D). Scale bars: 2mm in (A), 1mm in (B). 
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Figure 30 Phototropic responses of disruptant lines of PpCOL1 (COL1/2-2), PpCOL2 
(COL2-10), PpCOL3 (COL1/3-6), and of the wild type. Black arrows indicate the 
direction of light. White arrowheads indicate the slightly negative phototropism of 
caulonemal filaments; grey arowheads indicate the positive phototropism of 
chloronemal filaments. Shown are colonies from cultures that had been growing in a 
long-day regime (16L:8D) for 19 days. Scale bars: 2mm 
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Figure 31 Phototropic responses of disruptant lines of PpCOL1 (COL1/2-2), PpCOL2 
(COL2-10), PpCOL3 (COL1/3-6), and of the wild type. Black arrows indicate the 
direction of light. White arrowheads indicate the slightly negative phototropism of 
caulonemal filaments; grey arowheads indicate the positive phototropism of 
chloronemal filaments. Shown are colonies from cultures that had been growing in a 
long-day regime (16L:8D) for 19 days. Scale bars: 0,5mm 
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5.2.6 Analysis of spatial expression patterns of PpCOL genes 

 

The generation of disruptants was designed in such a way that the 

entire coding sequence of PpCOL1 and PpCOL2, and almost the entire coding 

sequence of PpCOL3, would be replaced by the GUS reporter gene (Figure 21, 

page 76). In the PCR analysis of single disruptants, several lines had been 

identified that supported amplification in the “5’-targeting” PCR, indicating 

that the GUS gene had been inserted at the target locus and may therefore be 

assumed to be expressed in a similar way to the target gene (Figure 21, page 

76). These lines included two PpCOL1 transformants (COL1-2 and COL1-7), 

five PpCOL2 transformants (COL2-2, COL2-3, COL2-8, COL2-9 and COL2-10), 

and three PpCOL3 transformants (COL3-11, COL3-111 and COL3-112) (Figure 

25B, page 85). These lines were used for histochemical detection of GUS 

activity. Protonemata and gametophores were harvested during the day from 

19 day old cultures grown in long days with 16 hrs of light and 8 hrs of 

darkness. The GUS expression patterns were the same in all lines, with a 

strong GUS signal found throughout protonema filaments and gametophores 

(Figure 32). The untransformed wild type was devoid of any GUS activity.  

As discussed earlier, most lines probably contain multiple copies of the 

GUS gene. Nevertheless, it seems likely that the GUS expression pattern does 

reflect the true pattern of expression of the wild type genes. Firstly, each 

transformation construct contained between 1.000 and 1.500 bp of promoter 

sequence in front of the GUS gene, therefore ectopically integrated copies 

likely included these promoting elements as well. Secondly, the same 

ubiquitous expression pattern was observed for all twenty single 

transformants (data not shown), whereas if the expression was due to 

genomic flanking sequences derived from other genes then the expression of 

GUS should have varied between lines. Finally, the RT-PCR analysis confirmed 

the expression of PpCOL1, PpCOL2, and PpCOL3 in protonemata, where GUS 

expression was detected, and another study confirmed the expression of 

PpCOL1 in gametophores (Shimizu et al., 2004). 
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A) PpCOL1           D) Wild type 

         
 
 
B) PpCOL2 
 

    
 

   
 
 
C) PpCOL3   
 

                 
 
 
 
Figure 32 Histochemical detection of GUS activity in selected PpCOL1 transformants 
(A), PpCOL2 transformants (B), PpCOL3 transformants (C), and the untransformed 
wild type (D). Shown are protonemata and gametophores from cultures that had been 
growing in a long-day regime (16L:8D) for 19 days. Scale bars: 1mm. 
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5.3 Conclusions 

 

Gene targeting was exploited to inactivate the PpCOL genes in 

Physcomitrella patens, and to replace the target gene with a GUS reporter 

gene. A total of 107 transformants was generated. Although a newly 

described procedure for the generation of double and triple gene disruptants 

was unsuccessful, several single gene disruptants were generated for PpCOL1, 

PpCOL2, and PpCOL3. In each line, abolition of the PpCOL gene and gene 

function was confirmed by PCR and RT-PCR. Expression analysis with the GUS 

reporter gene indicated that PpCOL1, PpCOL2 and PpCOL3 are expressed 

throughout the gametophyte stage, which is the dominant generation in 

mosses. However, none of the disruptants was found to display changes in 

development of the gametophyte, as they progressed normally from the 

single-celled protoplast stage, to the filamentous protonema stage, and finally 

to the three-dimensional gametophore stage, without any observable changes 

in morphology. Furthermore, lack of PpCOL1, PpCOL2, or PpCOL3 function had 

no effect on the phototropic response of protonemal filaments. Possibly, the 

genes have redundant functions and inactivation of all three genes may be 

necessary to elucidate their function. 
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6 DISCUSSION 

 

 

6.1 The evolution and divergence of CO-like genes 

 

CO-like genes have been found in plants, but not in animals and yeast. 

In this study, CO homologues were found for the first time outside of the 

realm of flowering plants. Three CO homologues were isolated from the moss 

Physcomitrella patens: PpCOL1, PpCOL2, and PpCOL3. Analysis revealed that 

PpCOL1, PpCOL2 and PpCOL3 represent Group 1 genes, one of three classes 

of CO-like genes that also CO belongs to. Based on overall protein sequence 

homology and the presence of conserved motifs in the region between B-

boxes and CCT domain, a further subdivision is made within Group 1 between 

Group 1a and Group 1c, both of which are represented by three genes in 

Arabidopsis (Griffiths et al., 2003). Phylogenetic analysis indicated that 

PpCOL1, PpCOL2, and PpCOL3 are members of Group 1c of CO-like genes, 

and as such more closely related to AtCOL3/AtCOL4/AtCOL5 than to 

AtCO/AtCOL1/AtCOL2. 

No more genes as closely related to CO as PpCOL1, PpCOL2, and 

PpCOL3 were detected in Physcomitrella by Southern blotting, or analysis of 

EST libraries that are estimated to cover the transcriptome to at least 95% 

(Rensing et al., 2002a). Therefore, Group 1a genes are likely to be absent 

from Physcomitrella and probably evolved only in the lineage leading to extant 

angiosperms, from Group 1c genes that were present in the progenitor of 

bryophytes and tracheophytes. Thus, CO itself appeared later in evolution 

than Group 1c genes AtCOL3, AtCOL4, and AtCOL5, and was likely recruited 

by flowering plants to take on a conserved role in photoperiodic flowering 

(Griffiths et al., 2003; Hayama et al., 2003). These findings indicate that 

Arabidopsis Group 1c genes COL3, COL4 and COL5 should be considered for 

functional studies, as they promise to throw light on more anciently diverged 

functions of CO-like genes than the function of CO orthologues in 

photoperiodic flowering. The functions of Group 1c genes have possibly been 

retained from the last common ancestor of bryophytes and tracheophytes.  
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Previous analysis of CO-like genes concluded that they evolve rapidly, 

particularly in the middle region between B-box zinc fingers and CCT domain 

(Lagercrantz and Axelsson, 2000). In agreement with this, it was found that 

the middle region of PpCOL1/PpCOL2/PpCOL3 were almost equally dissimilar 

to the middle region of AtCO/AtCOL1/AtCOL2 as to the middle region of 

AtCOL3/AtCOL4/AtCOL5 (data not shown), in spite of the closer phylogenetic 

relationship with the latter. Nevertheless, conserved peptide stretches were 

found in the middle region and at the carboxy terminus, most of which had 

already been identified in Arabidopsis, rice and barley Group 1 proteins 

(Griffiths et al., 2003). The fact that these motifs have been retained in even 

more distantly related homologues, adds additional weight to the functional 

relevance of these regions. Between 7 and 25 residues long, they are 

probably too short to constitute an independently folding structural unit 

(Doolittle, 1995), as the ~43 residue long B-box zinc finger does (Borden et 

al., 1995) and possibly also the 47 residue long CCT domain. Rather, they 

may represent a site of post-translational modification, or of cofactor binding. 

All conserved motifs of the middle region (M1 to M4) and carboxy 

terminus (T) of Group 1 CO-like proteins were originally not noticed in 

sequence alignments of Arabidopsis paralogues (Robson et al., 2001), only to 

be recognised upon inclusion of orthologues from two monocot species, rice 

and barley (Griffiths et al., 2003). Originally, motifs M2 and M3 were not 

found in Group 1c CO-like genes of Arabidopsis, rice, and barley (Griffiths et 

al., 2003). However, in this study the M3 motif was detected in Group 1c 

genes of Arabidopsis and Physcomitrella, and the entirely novel M2c motif was 

identified and found to be conserved between Arabidopsis and Physcomitrella 

Group 1c genes. Together, this illustrates that an even higher resolution can 

be obtained with respect to motif detection when orthologues from more 

distantly related species are compared, as expected from the fact that 

increased sequence erosion of functionally unconstrained regions makes 

regions that are constrained even more apparent. Such findings may provide 

important experimental leads for subsequent functional analyses.  

The identification of the conserved M2c motif and the overall higher 

degree of amino acid identity strongly suggest a closer functional relationship 

of PpCOL1/PpCOL2/PpCOL3 to AtCOL3/AtCOL4/AtCOL5 than to CO or any 

other CO-like protein. Consistently, the PpCOL overexpression studies in 

Arabidopsis showed that the CONSTANS protein acquired distinct functional 
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features as it evolved towards a specialised function in photoperiodic 

flowering. Although the only conserved motifs that are recognised to diverge 

between Group 1a genes and Group 1c genes are the M2a and M2c motifs, 

the functional specificity of CO likely resides in other parts of the protein, 

because even the closely related Group 1a genes AtCOL1 and AtCOL2 failed to 

complement CO function (Ledger et al., 2001). 

In addition to PpCOL1, PpCOL2, and PpCOL3, one other Physcomitrella 

CO-like gene was identified that is likely to be a member of Group 3, because 

orthology to this clade was found separately in the B-box region and the CCT 

domain. Furthermore, the presence of one more Group 3 gene and one Group 

2 gene has been implicated by orthology of isolated B-box and CCT domains. 

These findings suggest that the major isoforms of Arabidopsis CO-like genes, 

Groups 1, 2 and 3, are all present in Physcomitrella. Thus, the three isoforms 

seem to predate the bryophyte/tracheophyte divergence and to have retained 

distinctive B-box and CCT domain characteristics. The existence of common 

classes of CO-like genes in bryophytes and tracheophytes clearly suggests 

that CO-like genes have an ancient origin. In fact, when sequence databases 

were searched, an mRNA from the green alga Ostreococcus tauri was found 

that encodes a B-box near its amino terminus and a CCT domain near its 

carboxy terminus. Although phylogenetically, the predicted protein sequence 

of this gene, called OtCOL, clustered within the Group 2 clade of Arabidopsis 

CO-like proteins (data not shown), no sequence homology was found outside 

the B-box and CCT domain regions, and also the exon-intron structure was 

different (Figure 33). Therefore, instead of reflecting an orthologous 

relationship, the clustering with Group 2 genes might be the result of a shared 

single B-box region, as opposed to Group 1 and Group 3 genes which encode 

two B-boxes. It is possible that the B-box and CCT domain combination was 

the result of convergent evolution, in which case organisms from both 

lineages evolved proteins with the same combination of domains 

independently. Alternatively, relationships have been blurred by excessive 

sequence change outside of functionally constrained regions. Unlike the green 

algal CO-like gene, orthology of the PpCOL genes to distinct classes of 

Arabidopsis CO-like genes could readily be identified. Besides, alignment of 

Arabidopsis and Physcomitrella CO-like orthologues led to the discovery of the 

conserved M2c motif, as described previously, whereas comparison of 

monocot and dicot orthologues had failed to do so (Griffiths et al., 2003). 
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Together, these findings suggest that, relative to Arabidopsis, Physcomitrella 

occupies a phylogenetically unique position for the study of gene ancestry, as 

well as for the detection of conserved peptide motifs of potential functional 

importance. The fact that >66% of Arabidopsis genes have homologues in 

Physcomitrella gametophytes (Nishiyama et al., 2003) indicates that 

Physcomitrella may give such insights for many other genes and gene 

families. 

In addition to CO homologues, three putative Physcomitrella STO 

homologues were identified in this study. Phylogenetic analysis revealed that 

the B-boxes of Arabidopsis CO- and STO-homologues were orthologous to the 

B-boxes of Physcomitrella CO- and STO-orthologues, respectively. Therefore, 

distinct B-box zinc fingers had already become locked in both classes of 

proteins before the divergence of bryophytes and tracheophytes, and have 

retained orthologous sequence resemblances since, probably due to functional 

constraints. In addition, Physcomitrella transcripts were identified that 

possess a CCT domain that is more similar to the CCT domain of TOC1 than to 

that of CO, suggesting that also the divergence of this domain is of ancient 

origin. Together, these findings further corroborate the notion that B-box zinc 

fingers and CCT domains are evolutionary mobile modules with independent 

functions. Furthermore, they indicate that the modular shuffling of B-box zinc 

fingers and CCT domains has been exploited in the plant kingdom long before 

the separation of bryophytes and vascular plants.  
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               B-box 
AtCOL6  MMKSLASAVGGKT.....ARACDSCVK...RRARWYCAADDAFLCHACDGSVHSANPLARRHERVRLKSA 62   
AtCOL16 MMKSLANAVGAKT.....ARACDSCVK...RRARWYCAADDAFLCQSCDSLVHSANPLARRHERVRLKTA 62   
AtCOL7  MVVDVESRTASVTGEKMAARGCDACMK..RSRASWYCPADDAFLCQSCDASIHSANHLAKRHERVRLQSS 68   
AtCOL8  MISKYQEDVKQPR.......ACELCLN...KHAVWYCASDDAFLCHVCDESVHSANHVATKHERVCLRTN 60   
OtCOL   ....MATGALDPR........CESCPTAAARAATWFCAQDEAYLCDACDAMVHAANGIASKHERRPVRGM 58   
                             C..C...........C.......C..C....H........H...... 
 
AtCOL6  SAGKYRH.....ASPPHQ.ATWHQGFTRKARTPRG.....GKKSHTMVFH......DLVPEMSTEDQAES 115  
AtCOL16 SPAVVKHSNHSSASPPHEVATWHHGFTRKARTPRGS....GKKNNSSIFH......DLVPDISIEDQTDN 122  
AtCOL7  SP.........TETADKTTSVWYEGFRRKARTPRSKSCAFEKLLQIESND......PLVPELGGDEDDGF 123  
AtCOL8  EISN......DVRGGTTLTSVWHSGFRRKARTPRSR...YEKKPQQKIDDERRREDPRVPEIGGEVMFFI 121  
OtCOL   ERDVD.......SADSRRLSKLTRGEVHVDVTTDDVIGMCDEYLHSSLMP........SSSFPVDTLDGA 113  
 
 
AtCOL6  Y......EVEEQLIFEVPVMNSMVEEQC..FNQSLEKQNEFPMMPLSFKSSDEEDDDNAESCLNGLFPTD 177  
AtCOL16 Y......ELEEQLICQVPVLDPLVSEQF..LNDVVEPKIEFPMIRSGLMIEEEED..NAESCLNGFFPTD 182  
AtCOL7  FSFSSVEETEESLNCCVPVFDPFSDMLIDDINGFCLVPDEVNNTTTNGELGEVEKAIMDDEGFMGFVPLD 193  
AtCOL8  P.....EANDDDMTSLVPEFEGFTEMGF.....FLSNHNGTEETTKQFNFEEEADT.MEDLYYNG..... 175  
OtCOL   F.......WDETIGELDDETEQFLRDEP..FGGDVHDGIDTSSPRDGATLIRGVVKPNSSDSHSGEFSGG 174  
 
 
AtCOL6  MELAQFTADVETLLG.GGDREFHSIEELGLG..EMLKIEK....EEVEEEGVVTREVHDQD..EGDETSP 238  
AtCOL16 MELEEFAADVETLLGRGLDTESYAMEELGLSNSEMFKIEKDEIEEEVEEIKAMSMDIFDDDRKDVDGTVP 252  
AtCOL7  MDLEDLTMDVESLLE.........EEQLCLG............FKEPNDVGVIK..........EENKVG 232  
AtCOL8  .EEEDKTDGAEACPG..................................................QYLMS 194  
OtCOL   SDGRSQKSDISRSDM.................................................ERLRRI 195  
 
 
AtCOL6  FEISFDYEYTHKTTFDEGEEDEKEDVMKNVMEMGVNEMSGGIKEEKKEKALMLRLDYESVISTWGGQGIP 308  
AtCOL16 FELSFDYESSHKTS........EEEVMKNVESSGECVVK..VKEEEHKNVLMLRLNYDSVISTWGGQGPP 312  
AtCOL7  FEINCKDLKRVKDE......DEEEEEAKCENGGSKDSDREASNDKDRKTSLFLRLDYGAVISAWDNHGSP 296  
AtCOL8  CKKDYDNVITVSEK........TEEIEDCYENNAR.................HRLNYENVIAAWDKQESP 239  
OtCOL   GREDFDSSFLGPIL........DDSAVKFLEANPTYGVFG......SPSPESRGIGAKALAAKFGSTSVR 251  
 

         CCT 
AtCOL6  WTARVPSEIDLDMVCFPTHTMGESGAEAHHHNHFRGLGLHLGDAGDGGREARVSRYREKRRTRLFSKKIR 378  
AtCOL16 WSSGEPPERDMDISGWPAFSMVENGGESTHQKQYVGGCLPSSGFGDGGREARVSRYREKRRTRLFSKKIR 382  
AtCOL7  WKTGIKPECMLGGNTCLPHVVGGYEKLMSSDGSVTRQQGRDGGGSDGEREARVLRYKEKRRTRLFSKKIR 366  
AtCOL8  R......DVKNNTSSFQLVPPGIEEKRVRSE.................REARVWRYRDKRKNRLFEKKIR 286  
OtCOL   FE...RDDGLMNGVGPKEETDDASKPATRFDAPPSGSDTYSGMPQPQTRLERLKRWKEKRKNRNFNKVIR 318  
 

      CCT 
AtCOL6  YEVRKLNAEKRPRMKGRFVKRSSIGVAH.......................................... 406  
AtCOL16 YEVRKLNAEKRPRMKGRFVKRASLAAAASPLGVNY................................... 417  
AtCOL7  YEVRKLNAEQRPRIKGRFVKRTSLLT............................................ 392  
AtCOL8  YEVRKVNADKRPRMKGRFVRR.SLAIDS.......................................... 313  
OtCOL   YQSRKACADSRPRVKGKFVRVSSVPDLSKIREEGIDSEDEDEKDVGRDKIKELGLDMGMRAPPSMRAIKT 388  
 
 
AtCOL6  .................. 406  
AtCOL16 .................. 417  
AtCOL7  .................. 392  
AtCOL8  .................. 313  
OtCOL   GLVGSASMPDFSVYNMDD 406  
 
 
 

Figure 33 Alignment of predicted protein sequences of AtCOL6, AtCOL7, AtCOL8, 
AtCOL16, and OtCOL. Conserved domains are boxed. Amino acid residues conserved in 
all sequences are highlighted in black, similar amino acids are marked in grey. 
Conserved cysteine and histidine residues of the B-box zinc finger (Borden, 1998; 
Robson et al., 2001) are shown below the alignment. Intron positions in the 
corresponding nucleotide sequences are indicated by a white triangle for AtCOL6, 
AtCOL7, AtCOL8 and AtCOL16, and by a black triangle for OtCOL. The sequence 
accession numbers are given in the chapter Materials and methods. 
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Group 1 and Group 2 CO-like genes of Arabidopsis contain one intron at 

a highly conserved position relative to the protein sequence, whereas Group 3 

genes contain three introns at different positions. The three Physcomitrella 

Group 1 genes contain two introns, the second of which has a position relative 

to the protein sequence that is similar to the position of the single intron of 

Arabidopsis Group 1 genes. Therefore, this intron was likely inherited from a 

common ancestral Group 1 gene. The second intron of PpCOL1, PpCOL2, and 

PpCOL3 was either gained specifically in the lineage leading to Physcomitrella 

(Babenko et al., 2004), or lost in the lineage leading to Arabidopsis. Possibly, 

the introns of PpCOL genes have a regulatory function, because the 

expression analysis by quantitative RT-PCR identified transcripts that are 

likely to represent unspliced PpCOL1, PpCOL2 and PpCOL3 mRNA. Whereas 

unspliced PpCOL1 transcripts were found to be less abundant, unspliced 

PpCOL2 and PpCOL3 transcripts might represent as much 15% of the total 

mRNA pools of those genes. Although strictly speaking the analysis identified 

the presence of the first intron in unspliced PpCOL3 transcripts, and the 

presence of the second intron in unspliced PpCOL1 and PpCOL2 transcripts, it 

seems likely that also the latter will have retained the first intron. For each 

gene, the first intron introduces an in-frame stop codon that would 

prematurely terminate translation, resulting in proteins that contain the two 

B-boxes but are truncated between motifs M1 and M2c. In theory, such 

proteins could be functional, because B-boxes appear to constitute 

independently functional modules, as described previously. The unspliced 

transcripts may reside in the nucleus as an RNA intermediate, for example, of 

slowly processed hnRNA, without being translated. Alternatively, they may 

represent transcripts present in the cytoplasm in association with ribosomes, 

in the process of being translated. It is known that intron retention is a major 

phenomenon in Arabidopsis and in humans; about 2-3% of Arabidopsis 

transcripts contain retained introns (Ner-Gaon et al., 2004), and the rate of 

intron retention is similar in humans (Kan et al., 2002). In Arabidopsis, at 

least a subset of unspliced transcripts was associated with ribosomes, 

indicating that intron retention is a functional alternative transcript form (Ner-

Gaon et al., 2004). Whereas no evidence was found for intron retention in the 

CO transcript, the intron from a likely CO orthologue, PnCO from Pharbitis nil, 

is not efficiently spliced either (Liu et al., 2001). The PnCO gene contains a 

single intron, at a similar position as the single intron of AtCO and the second 
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intron of PpCOL1, PpCOL2, and PpCOL3. As many as 16 out of 18 PnCO cDNA 

clones isolated from a cDNA library contained this intron, indicating that the 

unspliced form, theoretically resulting in a truncated protein, constitutes a 

major fraction of the PnCO mRNA pool (Liu et al., 2001). Together with our 

findings, this suggests that intron retention in CO-like transcripts of 

Physcomitrella and Pharbitis nil either represents a shared regulatory 

mechanism of alternative splicing, or reflects a slow processing of hnRNA in 

general (or of CO-like hnRNA in particular) in both organisms. The fact that to 

date no other report was made of intron retention in Physcomitrella seems to 

disfavour a general inefficiency of hnRNA processing in this organism. 

 

6.2 Transcriptional regulation of PpCOL genes 

 

Our data demonstrated diurnal regulation of PpCOL1, PpCOL2, and 

PpCOL3 expression, with a broad peak in expression during the day and a 

trough during the night. The expression of all three genes showed a rapid 

response to light. The first increase in transcript abundance was observed 

within 30 minutes after dawn, and maximum levels were reached within 2 

hours, for PpCOL1, PpCOL2, as well as PpCOL3. Differences were observed 

between the three genes in the strength of the light response, which was 

about twice as strong for PpCOL1 as it was for PpCOL2 and PpCOL3. 

The strong and rapid increase in PpCOL1, PpCOL2, and PpCOL3 

transcript abundance at dawn, together with the absence of any anticipatory 

increase shortly before dawn, suggests a direct response to light. 

Nevertheless, the pattern could also be the result of circadian clock regulation. 

The most reliable diagnostic feature of circadian rhythms is that they persist 

under constant conditions (Johnson, 2001). In continuous light conditions, 

expression levels of PpCOL1, PpCOL2 and PpCOL3 remained high and became 

arrhythmic, consistent with a direct and positive responsiveness to light. 

However, in extended darkness, expression levels increased, albeit more 

slowly than they did in the presence of light. Taken together, the data indicate 

that the diurnal expression pattern of PpCOL1, PpCOL2, and PpCOL3 is 

achieved mainly by a direct response to light signalling, which overlies a 

weaker response to an endogenous timekeeper that becomes apparent only in 
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the absence of light. A recent publication confirmed these findings for PpCOL1 

(Shimizu et al., 2004).  

It is well established that rhythmic expression under control of the 

circadian clock is an essential feature of CO function (Suarez-Lopez et al., 

2001). However, microarray analyses have indicated that under particular 

conditions, CO expression can also display a direct and acute response to 

light, namely in seedlings that have been kept in darkness for several days 

and then exposed to light (Tepperman et al., 2001; Jiao et al., 2003; 

Tepperman et al., 2004). Therefore, CO appears to display an underlying 

acute response to light that becomes apparent only in the absence of 

entraining light/dark cycles. Interestingly, the PpCOL genes seem to show the 

opposite dependency on light and circadian clock signals. 

The convergence of light and circadian clock signalling at the 

transcriptional level has been studied in considerable detail for the Arabidopsis 

circadian marker gene Lhcb1*1. The promoter of this gene shows an acute 

response to red light that is mediated by phytochromes, as well as regulation 

by the circadian clock (Anderson et al., 1997). However, phytochrome and 

clock signalling are unlikely to converge only at the promoter level, but rather 

form a network upstream of the promoter (Anderson et al., 1997). In fact, it 

is established that a close association between light input and the oscillator 

itself is a common feature of circadian systems (Devlin, 2002). The output 

from the clock feeds back on the input, by modulating the responsiveness to 

photoreceptor signalling, a mechanism which is referred to as gating. In 

Arabidopsis, gating has been shown to be mediated by the ELF3 gene (Figure 

1, page 10). Whereas normally, Lhcb1*1 expression levels oscillate in 

constant light and in constant darkness (Millar and Kay, 1996), in the elf3 

mutant, rhythmicity is maintained in constant darkness (Covington et al., 

2001), but lost in constant light (Hicks et al., 1996). Thus ELF3 is required for 

inhibiting light induction of Lhcb1*1 expression during darkness.  

Although the molecular identity of a putative Physcomitrella circadian 

clock is unknown, a few clock-controlled genes have been analysed to date. 

Interestingly, the expression of each clock-controlled gene, PpLhcb2, PpSig5, 

and psbD, only showed significant rhythmicity in constant darkness, not in 

constant light (Aoki et al., 2004; Ichikawa et al., 2004). This is in contrast 

with their respective Arabidopsis homologues, the transcript levels of which 

continue oscillating in constant light for several cycles (Millar and Kay, 1996; 
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Nakahira et al., 1998; Morikawa et al., 1999). Now, our analysis offers three 

additional examples of Physcomitrella clock-controlled genes whose 

expression reveals circadian control only in conditions of constant darkness. 

This is again in contrast with related genes in Arabidopsis, CO, COL1, COL2, 

and COL9, which all continue cycling in constant light conditions (Ledger et 

al., 2001; Suarez-Lopez et al., 2001; Cheng and Wang, 2005). Taken 

together, these observations possibly reflect fundamental differences in the 

responses of the Physcomitrella and Arabidopsis clocks to light. Interestingly, 

all the above mentioned Physcomitrella clock-controlled genes, including 

PpCOL1, PpCOL2 and PpCOL3, respond to constant light and dark conditions 

in a similar way as Lhcb1*1 and another circadian marker gene, COLD-

CIRCADIAN RHYTHM-RNA BINDING 2 (CCR2), in the Arabidopsis elf3 mutant. 

Possibly, the Physcomitrella clock resembles the clock of the Arabidopsis elf3 

mutant in its inability to modulate light signalling in constant light conditions. 

However, other clock-controlled genes will have to be investigated to confirm 

this. Homologues of the Arabidopsis CCR2 gene would be good candidates, 

because in Arabidopsis expression of the gene shows a robust circadian 

rhythm in both constant light and constant darkness (Kreps and Simon, 1997; 

Strayer et al., 2000). 

The light perceiving photoreceptors of Physcomitrella have been cloned 

and were shown to belong to the same three major classes of photoreceptors 

that are found in Arabidopsis: the red/far-red light perceiving phytochromes 

and the blue/UV-A light perceiving cryptochromes and phototropins. Each of 

the Physcomitrella photoreceptors has been functionally studied by gene 

targeting. Phytochromes were implicated in mediating phototropism, 

polarotropism and chloroplast movement (Mittmann et al., 2004). 

Phototropins were shown to be involved in chloroplast movement (Kasahara 

et al., 2004). Cryptochromes were found to regulate many steps in moss 

development, e.g. branching of protonema filaments and gametophore 

development, partly by controlling auxin signal transduction (Imaizumi et al., 

2002). Taken together, the same classes of photoreceptors that regulate 

light-dependent processes in Arabidopsis are also key regulators of light-

dependent developmental and physiological processes in Physcomitrella.  

Experiments were designed to dissect the light induction of PpCOL gene 

expression into responses to light of different wavelengths. This revealed that 

light signalling to the transcriptional control of PpCOL1, PpCOL2, and PpCOL3 
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is unlikely to depend on a photoreceptor activated by particular wavelengths 

of light, but rather on an integrated light signal. Further investigation of this 

matter may include analysing the expression of PpCOL genes in the different 

Physcomitrella photoreceptor mutants.  

Previously, global gene expression analysis in Arabidopsis found massive 

light-regulated reprogramming of the transcriptome (Jiao et al., 2005), 

whereby light perceived through distinct photoreceptors regulates distinct 

signalling pathways, as well as overlapping pathways (Ma et al., 2001; Jiao et 

al., 2003; Tepperman et al., 2004). Direct interaction of photoreceptors 

(Ahmad et al., 1998; Mas et al., 2000) has been suggested to be one of the 

means to achieve regulation of a shared transcription cascade (Jiao et al., 

2003). In addition, Arabidopsis transcription factors like the HYPOCOTYL 5 

(HY5) bZIP protein and the PHYTOCHROME INTERACTING FACTOR 3 (PIF3) 

bHLH were shown to regulate the expression of large sets of genes by light 

(Casal and Yanovsky, 2005). By analogy, our data suggest that PpCOL1, 

PpCOL2 and PpCOL3 may act in a light signalling transcription cascade, 

downstream of a transcription factor that integrates signalling of red, far-red 

and blue light. Remarkably, microarray analyses indicated that in dark-grown 

seedlings, CO expression also shows an acute response to light of any 

wavelength (Tepperman et al., 2001; Jiao et al., 2003; Tepperman et al., 

2004). 

Every CO-like gene from a flowering plant that has been analysed to 

date displayed diurnal or circadian fluctuations in transcript abundance 

(Ledger et al., 2001; Liu et al., 2001; Hayama et al., 2002; Martinez-Garcia et 

al., 2002; Kim et al., 2003; Nemoto et al., 2003; Shin et al., 2004). Together 

with the findings for PpCOL1, PpCOL2 and PpCOL3, it is suggested that 

circadian/diurnal regulation of transcription is a generally conserved feature of 

CO-like genes. These observations are consistent with the notion that CO-like 

genes may have widely conserved roles in light signal transduction, and that 

during flowering plant evolution CO has taken on a specialised light signalling 

role controlling floral induction. Because CO-like genes were found in green 

algae, mosses, and flowering plants, but not in animals and yeast, the 

ancestral role of a CO-like gene may have been in light signalling to the 

control of a process that is restricted to photosynthetic organisms. 
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6.3 Functional analysis of PpCOL genes 

 

CO is the only one of six Arabidopsis Group 1 CO-like genes for which a 

mutant has been reported to date (Koornneef et al., 1991; Putterill et al., 

1995). The closely related COL1 and COL2 genes of Arabidopsis have been the 

subject of studies of overexpression, but not of inactivation (Ledger et al., 

2001). In the work presented here, the feasibility of gene targeting was 

exploited to generate disruptants of PpCOL1, PpCOL2, and PpCOL3. As such, 

mutants have been generated of every Group 1 gene present in 

Physcomitrella. This illustrates the value of Physcomitrella for functional 

studies of genes that belong to larger gene families, as gene families 

generally tending to be smaller in Physcomitrella than in Arabidopsis (Rensing 

et al., 2002a). 

The function of PpCOL1, PpCOL2, and PpCOL3 was analysed in the 

respective disruptant lines, COL1/2-2, COL2-10, and COL1/3-6. The lack of 

PpCOL1, PpCOL2, or PpCOL3 gene function did not result in any observable 

developmental defects in the haploid gametophyte stage. Cultures progressed 

normally through gametophyte development, and no morphological defects 

could be observed. The transcriptional analysis had indicated that the 

expression of PpCOL genes is induced by blue, red, as well as far-red light. 

Whereas Physcomitrella phytochrome and phototropin disruptants are not 

affected in development (Kasahara et al., 2004; Mittmann et al., 2004), 

abolition of blue light signalling through cryptochromes was shown to result in 

severe developmental defects, namely side branch induction and gametophore 

development (Imaizumi et al., 2002). Such aberrations were not detected in 

PpCOL disruptants, consistent with the notion that these genes act in a light 

signalling cascade that can be activated by any wavelength of light.  

Furthermore, the PpCOL disruptants were analysed for an easily 

tractable light response, namely the phototropic light response of 

protonemata. It was found that chloronemal filaments grow away from the 

light, and caulonemal filaments at slight angle away from the light, in 

disruptant cultures as well as in the wild type.  

It is unlikely that there is residual gene activity after gene targeting, 

since gene targeting was designed in such a way that the targeted gene 

starting with the start codon would be replaced either completely (PpCOL1 
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and PpCOL2), or almost entirely (PpCOL3). Furthermore, RT-PCR analysis 

confirmed that the mRNA was absent in each of the disruptants.  

Possibly, PpCOL1, PpCOL2 and PpCOL3 play a role in more subtle light 

responses that are elicited by light of different wavelengths. For example, 

chloroplast movements have been reported to be mediated by red light as 

well as blue light, through phytochrome and phototropin ligh signalling 

(Kasahara et al., 2004; Mittmann et al., 2004). However, the regulatory link 

between PpCOL gene expression on one hand, and phytochrome or 

phototropin light signalling on the other, should be established first, for 

example by analysis of PpCOL expression in the respective photoreceptor 

mutants, before embarking on such technically demanding phenotypical 

analyses. Finally, as the analysis of sporophyte development did not fit in the 

time frame of this work, a role in the sporophyte cannot be excluded. 

Nevertheless, since each of the genes was found to be expressed throughout 

the gametophyte stage, they may also be functional in the gametophyte. 

Another possibility is that the PpCOL genes have redundant functions, in 

agreement with the high degree of sequence conservation and the very 

similar expression patterns. To address the problem of functional redundancy, 

attempts were undertaken to inactivate two or three PpCOL genes 

simultaneously, as recently reported (Hohe et al., 2004). A total of 95 double 

and triple transformant lines was analysed, and targeting could be observed 

at single loci, but not at multiple loci. Even double disruptants were not 

obtained, which was surprising since our setup directly selected for double 

targeting, whereas the setup by Hohe et al. (2004) used the same selection 

marker for both targeting events. The double targeting efficiencies in this 

study were below 1,5%, in contrast to the rate of 5% reported by Hohe et al. 

(2005). Until this matter is further investigated, it can only be speculated that 

differences in the transformation procedure (e.g. preculturing of plant 

material for protoplast isolation) or in the intrinsic qualities of the target loci 

might be responsible for these discrepancies. 

Whereas the Arabidopsis Group 1a and Group 1c proteins show only 

moderate sequence identity (~65% and ~50%, respectively), the Group 1c 

proteins from Physcomitrella possess a high degree of sequence identity 

(~80%). This suggests that PpCOL1, PpCOL2, and PpCOL3 experienced higher 

functional constraints than related homologues from Arabidopsis, or that they 

are of more recent origin. Interestingly, similar observations were made for 
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another well-studied family of transcription factors, the MADS-box gene 

family. While MIKC*-type MADS-box genes from Arabidopsis show only 

moderate sequence similarity, the MIKC*-type genes from Physcomitrella 

possess a high degree of sequence identity (Riese et al., 2005). At the 

nucleotide level, PpCOL1, PpCOL2, and PpCOL3 are rather uniformly and well 

related to each other (74-82%). And although some degree of homology 

exists in the 5’ and 3’ untranslated leader sequences, this does not continue 

beyond the transcript boundaries, nor is it observed in intron sequences. 

These observations disfavour a relatively recent evolutionary origin of 

PpCOL1, PpCOL2, and PpCOL3, but instead suggest that their strong sequence 

conservation is the product of functional constraints.  

It is generally believed that expression divergence is a major reason for 

conserving duplicated genes (Blanc and Wolfe, 2004; Duarte et al., 2005; 

Moore and Purugganan, 2005). However, no differences could be observed in 

the spatial expression pattern of PpCOL genes in the gametophyte, by 

analysis with the GUS reporter gene. Furthermore, the quantitative RT-PCR 

analysis revealed that at least in protonemata also the temporal expression 

patterns of the three genes are broadly similar, with smaller variations in the 

kinetics of expression. Therefore, other functional constraints seem to have 

been at work. 

To date, several functional studies in Physcomitrella have identified pairs 

of very similar, functionally redundant genes. Examples include homologues of 

LEAFY (LFY) (Tanahashi et al., 2005), SNF1-RELATED KINASE 1 (SNRK1) 

(Thelander et al., 2004), GOLDEN2-LIKE (GLK) (Yasumura et al., 2005), 

CRYPTOCHROME 1 (CRY1) (Imaizumi et al., 2002) and PHOTOTROPIN 1-2 

(PHOT1-2) (Kasahara et al., 2004). Besides, phylogenetic analysis of 

homologues of the widely conserved gene RAD51 has prompted the 

suggestion of a rather recent duplication event for at least part of the 

Physcomitrella genome (Markmann-Mulisch et al., 2002). The analysis of 

increasing amounts of genomic sequence has revealed that large-scale 

duplication events are common occurrences in the evolution of plant genomes 

(Blanc and Wolfe, 2004; Wessler and Carrington, 2005). And although the 

vast majority of duplicate genes suffer degenerative mutations that destine 

them for extinction (Presgraves, 2005), it has been suggested that genes that 

function in haploid tissue, like the gametophyte of Physcomitrella patens, 

might experience additional selective pressure to maintain duplicate copies, 
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particularly if the genes are essential for cell function (Yasumura et al., 2005). 

Although this might explain the retention of functionally redundant doublets, 

like the homologues mentioned earlier, it does not explain the retention of 

functionally redundant triplets, like the PpCOL genes. Alternatively, only two 

PpCOL genes might have overlapping and redundant functions, with the third 

one having a divergent function. However, the fact that all three genes are 

rather uniformly related to each other at the nucleotide as well as at the 

amino acid level does not support this possibility. Simultaneous inactivation of 

two or three PpCOL genes may be necessary to answer these questions of 

functional redundancy, and of function altogether. 
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7 SUMMARY - ZUSAMMENFASSUNG 

 

 

7.1 Summary 

 

The CONSTANS (CO) gene plays a central role in the regulation of 

flowering time in Arabidopsis, and is the founding member of a family of 17 

CO homologues. CO and CO homologues have been found in flowering plants, 

but not in yeast and animals. To address the question of the origin of CO, this 

gene family was analysed in the moss Physcomitrella patens, a 

phylogenetically distant organism. 

 

In Arabidopsis and rice, three classes of CO homologues exist. The same 

three classes were found in Physcomitrella, suggesting that this gene family 

has ancient origins in the plant kingdom. In Arabidopsis, CO and 5 other 

genes belong to Group 1. Since only three Group 1 genes were identified in 

Physcomitrella, the family of CO homologues appears to be smaller in 

Physcomitrella than in Arabidopsis, in agreement with observations made with 

other gene families. Further analysis demonstrated that the Physcomitrella 

Group 1 genes are most similar to Arabidopsis Group 1 genes 

COL3/COL4/COL5, which are closely related to, but distinct from CO. An 

essential feature of CO function in Arabidopsis is a circadian controlled rhythm 

of transcript abundance. The three closely related Physcomitrella Group 1 

genes have diurnal expression patterns that are distinct from the pattern of 

CO expression, and that are mainly caused by direct light induction. Distinct 

diurnal expression patterns are also observed for CO homologues that are not 

involved in control of flowering time. Consistently, the Physcomitrella CO 

homologues are unable to promote flowering upon expression in Arabidopsis. 

Together, the findings indicate that the CO branch of Group 1 genes does not 

exist in Physcomitrella. The role of CO in flowering time control was possibly 

derived from an ancestral function of Group 1 genes in light signal 

transduction. 
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The function of the three Physcomitrella CO homologues was studied by 

exploiting the feasibility of gene targeting. A disruptant was generated for 

each Group 1 CO homologue in Physcomitrella, whereas in Arabidopsis only 

CO has been inactivated to date. Phenotypical analysis of the disruptants 

revealed no developmental defects, nor an alteration of the phototropic 

growth response. The high degree of sequence conservation between the 

three genes and the similar expression patterns suggest redundancy. 

Therefore, simultaneous inactivation of all three genes may be necessary to 

elucidate their function. 

 

7.2 Zusammenfassung 

 

Das CONSTANS Gen (CO) spielt eine zentrale Rolle in der Regulation der  

Blühzeit von Arabidopsis. Es war das erste identifizierte Gen von einer  

Familie von 17 CO-homologen Genen. Das CO Gen und CO-homologe Gene 

wurden in Blütenpflanzen, aber nicht in Hefe oder Säugetieren nachgewiesen. 

Um die Herkunft des CO Gens herauszufinden, wurde die CO Genfamilie in 

dem Moos Physcomitrella patens, einem phylogenetisch weit von Arabidopsis 

entfernten Organismus, analysiert. 

 

In Arabidopsis und in Reis gibt es drei Gruppen von CO-homologen 

Genen. Dass dieselben drei Gruppen auch in Physcomitrella nachgewiesen 

werden konnten, deutet auf einen sehr alten Ursprung der CO Genfamilie im 

Pflanzenreich hin. In Arabidopsis gehören CO und fünf andere Gene zur 

Gruppe 1. Da in Physcomitrella nur drei Gene der Gruppe 1 identifiziert 

werden konnten, ist vermutlich auch die Familie der CO-homologen Gene, wie 

schon für andere Genfamilien beobachtet, in Physcomitrella kleiner als in 

Arabidopsis. Weitere Untersuchungen zeigten, dass die Physcomitrella Gruppe 

1 Gene eine höhere Homologie zu Arabidopsis Gruppe 1 Genen 

COL3/COL4/COL5 haben. Diese Gene sind zwar mit CO eng verwandt, aber 

unterscheiden sich von CO. Ein wichtiges Merkmal der CO Funktion in 

Arabidopsis ist das circadian regulierte Transkriptvorkommen. Die drei Gruppe 

1 Gene von Physcomitrella zeigen diurnale Expressionsmuster die sich vom 

Expressionsmuster von CO unterscheiden, und die hauptsächlich durch direkte 

Lichtinduktion hervorgerufen werden. CO-homologe Gene die nicht an der 
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Kontrolle der Blühzeit beteiligt sind, zeigen ebenfalls unterschiedliche diurnale 

Expressionsmuster. Damit übereinstimmend löst auch die Expression der CO-

homologen Gene aus Physcomitrella in Arabidopsis kein Blühen aus. 

Zusammengenommen deuten die Ergebnisse daraufhin, dass der CO-Zweig 

der Gruppe 1 Gene in Physcomitrella nicht vorhanden ist. Die Rolle von CO in 

der Blühzeitkontrolle ist vermutlich auf eine ältere Funktion der Gruppe 1 

Gene in der Lichtsignalweiterleitung zurückzuführen.  

 

Um die Funktion der drei zu CO homologen Gene von Physcomitrella zu 

untersuchen, wurde die Methode des Gen-Targeting verwendet. Dazu wurde 

in Physcomitrella jedes der CO-homologen Gene der Gruppe 1 einzeln 

ausgeschaltet, während in Arabidopsis bisher ausschließlich CO inaktiviert 

wurde. Bei der Analyse des Phänotyps konnten weder Entwicklungsdefekte 

noch eine Änderung der phototropen Wachstumsantwort detektiert werden. 

Die hohe Konserviertheit der Gene und ähnliche Expressionsmuster deuten 

auf eine redundante Funktion der drei Gene hin. Um die Funktion der drei CO-

homologen Gene herauszufinden, könnte es notwendig sein, alle drei Gene 

gleichzeitig zu inaktivieren. 
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