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1. Introduction 

 

Coronins constitute an evolutionarily conserved family of WD-repeat actin-

binding proteins, which can be clearly classified into two distinct groups based 

on their structural features. All coronins possess a conserved basic N-terminal 

motif and three to ten WD repeats clustered in one or two core domains. 

Dictyostelium and mammalian coronins are important regulators of the actin 

cytoskeleton, while the fly Dpod1 and the yeast coronin proteins crosslink both 

actin and microtubules. Apart from that, several coronins have been shown to be 

involved in vesicular transport. C. elegans POD-1 and Drosophila coro regulate 

the actin cytoskeleton, but also govern vesicular trafficking as indicated by 

mutant phenotypes. In both organisms, defects in cytoskeleton and trafficking 

lead to severe developmental defects ranging from abnormal cell division to 

aberrant formation of morphogen gradients. 

   

 
WD-repeat (WD-40-domain-repeat) proteins are defined by the presence of at least four 

WD repeats located centrally in the protein. These repeats were discovered in 1986 (Fong et al., 

1986) and are defined by a partially conserved domain of 40–60 amino acids starting with a 

glycine-histidine (GH) dipeptide 11–24 residues away from the N-terminus and ending with a 

tryptophane-aspartic acid (WD) dipeptide at the C terminus. The WD domain has no intrinsic 

catalytic activity and is thought to serve as a stable platform for simultaneous interactions with 

other proteins.  

WD-repeat proteins have extremely diversified cellular functions. They play central 

roles in a variety of cellular events including, but not limited to, signal transduction, 

transcriptional regulation, remodeling the cytoskeleton and regulating vesicular trafficking. 

Several WD-repeat proteins have been linked to human diseases (Li and Roberts, 2001).  
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Coronin proteins constitute one of the more than thirty subfamilies (Yu et al., 2000) 

among the WD-repeat proteins and contain three to five clustered WD repeats forming the 

characteristic coronin core domain (de Hostos, 1999; Neer and Smith, 1996). Apart from the core 

domain, common structural features include a short conserved N-terminal motif and a 70 amino 

acid-region located C-terminally to the WD repeats. Furthermore, each coronin contains a unique, 

divergent region of about 100 amino acids, which follows the conserved C-terminal extension. 

This sequence may confer specific functions to any individual coronin protein while, in contrast, 

it differs between the species. A second region of variability is present in the fourth β-strand of 

the third WD repeat (de Hostos, 1999).  

The first coronin protein was identified in Dictyostelium discoideum (de Hostos et al., 

1991). Its name resulted from the location in the actin-rich crown-shaped cell surface projections. 

The Dictyostelium protein was indirectly shown to participate in the regulation of the actin 

cytoskeleton and vesicular trafficking. Early findings on structures and functions of coronin 

proteins, especially that of Dictyostelium, have been reviewed (de Hostos, 1999, see also A. 

Schulze, Diploma thesis, Univesity of Cologne, 2001). Meanwhile, more than 20 coronins have 

been identified in vertebrates and invertebrates (de Hostos, 1999; Okumura et al., 1998). In mice 

and men, the coronin family of proteins comprises at least seven members (Table 1).  

Most mammalian representatives typically demonstrate tissue-specific distribution 

patterns, whereas some are rather ubiquitous. Coronin 3 is the most-widely expressed mammalian 

member (Iizaka et al., 2000; Okumura et al., 1998; Spoerl et al., 2002). Coronin proteins clearly 

form two distinct subfamilies, short ‘‘conventional’’ coronins and longer proteins, respectively 

(Fig. 1). The first subfamily consists of approximately 450–650 amino acid proteins harboring a 

very carboxy-terminal coiled-coil region of 30–40 amino acids mediating homophilic 

dimerization and/or oligomerization of coronins (Asano et al., 2001; Spoerl et al., 2002), whereas 
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the second subfamily contains the closely related mammalian Crn7 and C. elegans and 

Drosophila POD-1 proteins, which are clearly distinct from the first group in that they possess 

two core domains rather than one.  

 

coronin synonyms protein accession # main tissue expression references 

1 
coronin 1A, 

clabp, 
clipinA, 

TACO, p57 

461 aa NP_009005 
thymus, spleen, bone 

marrow, lymph nodes, 
peripheral leukocytes 

(Okumura et al., 1998; 
Suzuki et al., 1995) 

2 
coronin 1B, 
coroninse, 

p66 
489 aa NP_065174 gastrointestinal mucosa, 

liver, spleen, kidney, lung (Parente et al., 1999) 

3 coronin 1C, 
CORO1C 474 aa NP_055140 Brain, lung, intestine, 

kidney 

(Hasse et al., 2005; Iizaka et 
al., 2000; Spoerl et al., 2002) 
 

4 
coronin 2A, 

clipinB , 
IR10 

525 NP_438171 colon, prostate, testis, 
brain, lung, epidermis 

(Nakamura et al., 1999; 
Okumura et al., 1998; 

Zaphiropoulos and 
Toftgard, 1996) 

5 coronin 2B, 
clipinC 475 NP_006082 brain (Nakamura et al., 1999) 

6 
ClipinE 

3 splicing  
variants 

471 aa 
431 aa 

NP_624354,6 
NP_624355 brain NP_624354−6 

7 Crn7 925 aa NP_078811 ubiquitous (Rybakin et al., 2004), this 
work 

Table 1. Summary of the mammalian coronin proteins, their nomenclature, sizes, and major 

expression sites. 

 

A recently discovered novel Dictyostelium long coronin/POD-1 homologue (A. A. 

Noegel and F. Rivero, personal communication) is also classified into the same subfamily. It is 

important to note that all known coronins belonging to the second group lack coiled-coil 

domains. However, harboring two core domains, longer coronin proteins may indeed be 

considered dimers with regard to the core domain functions.  
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Fig. 1. Comparison of domain structures of representative coronins and POD-1 proteins and 

their phylogenetic relationships. Phylogenetic analysis was performed using ClustalW algorithm 

(European Bioinformatics Institute, Hinxton, UK), and the phylogenetic tree was build using the 

Phylodendron server at the University of Indiana, Bloomington, IN. Right to the phylogram, 

abbreviations indicating organisms, and protein names are given: F, Drosophila melanogaster; 

H, Homo sapiens; W, Caenorhabditis elegans; D, Dictyostelium discoideum; Y, Saccharomyces 

cerevisiae. On the right, domain structures and amino acid numbers for each protein are given. 

 

All known short coronins are characterized by the presence of an extremely highly basic 

N-terminal 12-amino acid motif (pI 12.5 for human coronin 1), which can be taken as a novel 

coronin signature (Table 2A), as it is only present in coronin proteins. In the longer coronins, this 
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sequence is reduced to a 5-amino acid core motif (Table 2B) that appears in front of each coronin 

core domain. A recent study suggests that this coronin signature is involved in actin binding (Oku 

et al., 2003), although this sequence is also present in coronin proteins that have not been 

associated with the actin cytoskeleton.  

 

 

 

 

 

 

 

 

 

 

A  
D coronin    1   mskvvrsskyrhvfaaqpkk 20 
H coronin 1   1   msrqvvrsskfrhvfgqpak 20 
H coronin 3    1   mrrvvrqskfrhvfgqavkn 20 
F coro   1   msfrvvrsskfrhvygqalk 20 
Y crn1p   1   msgkfvraskyrhvfgqaak 20 
B  
W POD-1 (1)    1   mawrfaaskfknttpkvpkk 20 
W POD-1 (2)       551 gqitskfrhvdgqqgtksga 570 
F Dpod1 (1)    1   mawrfkaskyknaapivpka 20 
F Dpod1 (2)    611 stvfgkvskfrhlkgtpghk 630 
D POD-1 (1)      1    mfkvskyrhtvgkidkrelw 20 
D POD-1 (2) 482  givpkvvrsskyrhisgsa 500 

 

Table 2. Coronin signatures present in short and long coronins. A, short coronins contain a 

stretch of 12 conserved basic amino acids at the very N-terminus. B, long coronins / POD-1 

proteins harbor two copies of a 5-amino acid degenerated core signature at the N-terminus and 

in the intermediate region. Identical amino acids are indicated in red, similar amino acids in 

blue. Single-letter organism abbreviations as in Fig. 1. 

 

1.1. Coronin proteins as actin regulators  

Actin is one of the most-abundant cellular proteins executing multiple structural and 

regulatory functions (Cvrckova et al., 2004). The protein is conserved and ubiquitous, and exists 
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in α, β- and γ-isoforms in mammals. Monomeric actin (G-actin) is predominantly present in the 

cytosol. G-actin has the potential to polymerize into filamentous actin (F-actin) in vitro and in 

vivo given the appropriate conditions. Actin filaments are polarized dynamic structures 

characterized by the presence of the slow growing (-) and fast growing (+) ends. Actin 

polymerization is initiated by nucleation of a G-actin trimer. This process, along with filament 

branching, relies on a variety of regulators, among others, the Arp2/3 complex activated by N-

WASP, Rho- GTPases and other factors.  

The diversity of F-actin structures and associated cellular functions depends not only on 

polymerization and depolymerization, but on a variety of actin-binding proteins, which can be 

grouped in G-actin sequestering or associated proteins (e.g. ADF, cofilin, profilin), F-actin 

capping and severing proteins (e.g. gelsolin, capping protein, severin), actin filament crosslinking 

and bundling proteins (i.e. fimbrin, α-actinin, filamin), motor proteins (myosins), and membrane 

anchoring proteins (i.e. ponticulin, talin, vinculin). Most coronins that have been characterized so 

far belong to the group of actin filament-crosslinking and bundling proteins.  

 

1.1.1. Yeast coronin regulates the actin cytoskeleton by directly interacting with Arp2/3 

complex  

Crn1p, the only yeast coronin, was independently isolated by two groups using 

homology cloning and microtubule affinity chromatography, respectively (Goode et al., 1999; 

Heil-Chapdelaine et al., 1998). The 651-amino-acid protein comprises five WD-repeats, a coiled-

coil carboxyl terminus and a central region enriched in proline and charged amino acids. 

Additionally, it includes a predicted microtubule-binding domain similar to that of the 

microtubule-binding protein MAP1B. Crn1p was shown to localize to cortical actin patches in a 

latrunculin A-sensitive manner (Goode et al., 1999; Heil-Chapdelaine et al., 1998), implying that 
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crn1p localization is dependent on F-actin. Crn1p is an abundant protein indicating a high-affinity 

binding to F-actin at a 1:1 molar ratio suggesting that the binding appears at the sides of actin 

filaments (Goode et al., 1999). When added to F-actin in vitro, crn1p bundles the actin filaments. 

However, if added to actin monomers, yeast coronin instead induces a three-dimensional network 

formation as shown by electron microscopy and falling ball viscosimetry. Moreover, crn1p 

accelerates the filament assembly at the barbed end if added to a G-actin solution (Goode et al., 

1999). It also binds to microtubules, although considerably weaker than to actin, and can 

therefore directly crosslink actin filaments with microtubules. 

F-actin binding and assembly were mapped to the WD repeats, microtubule binding to 

the MAP1B homology domain, and actin bundling to the coiled-coil region (Goode et al., 1999). 

As the coiled coil was shown to participate in dimerization and oligomerization in other coronins 

(Asano et al., 2001; Spoerl et al., 2002), it may be argued that F-actin bundling depends on crn1p 

present in the di- or oligomeric state. In vivo, crn1p localization to the cortical actin patches 

requires both, coiled-coil and actin-binding domains (Humphries et al., 2002). Moreover, crn1p 

directly associates with the Arp2/3 complex in vitro and in vivo. Crn1p inhibited the actin 

nucleation activity of the Arp2/3 complex although crn1p alone has a slightly stimulating effect 

in an actin polymerization assay (Goode et al., 1999; Humphries et al., 2002). The mechanism for 

the crn1p inhibition of the Arp2/3 complex was explained by a direct interaction between crn1p 

and the Arp2/3 complex, as was the case in yeast two-hybrid experiments in which the C-

terminus of crn1p interacted with Arc35, the subunit responsible for the binding of the Arp2/3 

complex to the sides of actin filaments.  

The interaction of crn1p and Arp2/3 was considered to regulate the filament branching 

and thus the formation of complex actin networks important for cell movement and intracellular 

transport. No pronounced phenotype was reported for the crn1 mutant (Goode et al., 1999; Heil-
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Chapdelaine et al., 1998). However, the absence of crn1p appears to enhance the phenotypes of 

cofilin and actin (ATP-binding pocket) mutants (Goode et al., 1999). Overexpression of crn1p 

leads to abnormalities in the cytoskeleton organization resulting in swollen cells with actin 

patches depolarized from the bud region, as well as in the accumulation of spiral or loop actin 

structures in the cytoplasm (Humphries et al., 2002). These defects were due to the 

overproduction of crn1p coiled-coil regions, as a truncated form of crn1p lacking the coiled coil 

does not cause such a phenotype.  

 

1.1.2. Drosophila Dpod1: an actin–tubulin linker regulating the development of the 

nervous system 

Drosophila dpod1 encodes a novel double-core domain 1074-amino acid coronin 

strongly expressed in the developing nervous system (Rothenberg et al., 2003). In addition to the 

two core domains, the Drosophila protein possesses a predicted microtubule-binding domain 

similar to that of the microtubule-binding protein MAP1B. In adherent S2 cells derived from 

mixed Drosophila embryonic tissues, Dpod1 co-localizes with both microfilaments and 

microtubules and is re-localized to microtubules upon the disruption of the actin cytoskeleton. In 

vitro, Dpod1 crosslinks microtubules as well as microfilaments. Apart from being able to 

crosslink actin filaments as well as microtubules, Dpod1 is capable of forming bundles 

containing both microfilaments and microtubules. Co-sedimentation of microtubules with F-

actin-coronin bundles has been previously demonstrated in yeast (Goode et al., 1999).  

Although Dpod1 is not essential for cytoskeletal organization in S2 cells as shown by 

the absence of any pronounced phenotype in dpod1 RNAi cells, overexpression of GFP-tagged 

protein leads to development of highly dynamic neurite-like cell surface projections (Rothenberg 

et al., 2003). The formation of these projections was further shown to be actin-, but not tubulin-
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dependent. Dpod1 acts as an important regulator of neural development in the fly. dpod1 mutant 

flies are characterized by an aberrant axonal guidance resulting in failures in the target 

innervation. In particular, axonal fine routing at choice points and turns, but not neurite 

outgrowth or extension is affected. Overproduction of Dpod1 protein also results in multiple 

neural phenotypes (Rothenberg et al., 2003). As Dpod1 regulates both microfilament and 

microtubule architecture, these phenotypes can be explained by aberrant cytoskeleton-related 

morphogenetic processes in mutant cells, leading to structural abnormalities like axonal breaks, 

defects in lateral branching and stalling at important decision-making points and thus to defects 

in target innervation. A model has been proposed linking Dpod1 to scaffolding signalling 

molecules at the cytoskeleton (Rothenberg et al., 2003), albeit more experimental evidence is 

necessary to support such a role.  

 

1.1.3. Mammalian short coronin proteins and the actin cytoskeleton  

Most of the mammalian coronins belong to the group of actin filament crosslinking and 

bundling proteins. Coronin 1 is the best-characterized mammalian coronin and is the closest 

relative of Dictyostelium discoideum coronin (Suzuki et al., 1995). It is most strongly expressed 

in human immune tissues and immune cells and, to a lesser extent, in the lung and brain. On the 

mRNA level, the skeletal muscle species is larger in size. During the process of murine thymic 

cell development, peak expression levels of coronin 1 are found in early thymocytes and in adult 

CD4+CD8- and CD4-CD8+ thymocytes. In thymocytes, the protein localizes to the cytoplasm 

and to F-actin-rich membrane protrusions especially in stimulated T-cells (Nal et al., 2004). 

ActA-positive Listeria monocytogenes, among other proteins, recruits coronin 1 to their F-actin 

tails in infected host cells (David et al., 1998).  
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Two regions that mediate binding to F-actin were determined. One is the N-terminally 

located KXRHXX-motif conserved in all coronin proteins (Table 1); a second F-actin binding 

site in coronin 1 was mapped within the domain containing the WD repeats (Oku et al., 2003). A 

leucine zipper region of the C-terminus mediates homophilic dimerization of coronin 1 (Oku et 

al., 2005). Human phagocytic leukocytes contain coronin 1 in cytosolic as well as in cytoskeletal 

fractions. During the course of phagosome formation the peripheral cytoskeletal and cytosolic 

coronin 1 staining is lost and an association with F-actin around early phagocytic vacuoles can be 

observed. Dissociation of coronin 1 from the phagosome is accompanied by phosphorylation on 

serine residues involving PKC. Without the dissociation, the subsequent formation of 

phagolysosomes is inhibited (Itoh et al., 2002). Recently, coronin 1 has been demonstrated to link 

the actin cytoskeleton to the plasma membrane in leukocytes (Gatfield et al., 2005). According to 

the authors, coronin 1 trimerizes using a linker region between the core domain and the C-

terminus, while the amino-terminus mediates interaction with plasma membrane (Gatfield et al., 

2005). It is unclear whether such coronin 1-mediated interaction between the cytoskeleton and 

plasma membrane is of biological significance.  

Soluble coronin 1 elutes together with phox components in a complex of higher 

molecular mass from gel filtration, as it binds C-terminally to p40phox, a cytosolic subunit of the 

NADPH oxidase complex involved in the generation of the microbicidal superoxide burst in 

neutrophils (Grogan et al., 1997). Furthermore, PKC activation leads to the redistribution of 

coronin 1 in a phox-protein-dependent manner from the cell cortex to the perinuclear region. A 

second soluble pool of coronin 1 in human phagocytic leukocytes forms high-molecular-weight 

complexes independently of the phox proteins. These complexes are solubilized by PI3-kinase 

activity and may be involved in forming the F-actin structures in early phagosome formation 

(Didichenko et al., 2000).  
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In addition, coronin 1 is detected on phagocytic vacuoles of macrophages. Upon 

internalization of mycobacteria, coronin 1 is transiently recruited to the site of the bacterial entry 

(Schuller et al., 2001). Moreover, clumps of 10–20 living mycobacteria in phagosomes inhibit the 

dissociation of coronin 1 and the continued transport of the phagosomes to lysosomes. Retaining 

coronin 1 on the early phagosome prevents the mycobacterial clumps from lysosomal 

degradation (Ferrari et al., 1999). Using a dominant-negative approach, Yan and colleagues 

recently demonstrated that coronin 1 is required for the accumulation of Arp3 on phagosomes, as 

well as for receptor capping and actin remodeling at forming and early phagosomes (Yan et al., 

2005). 

Coronin 2 was first described as a phosphoprotein in HCl-secreting gastric parietal cells 

(rabbit coroninse, (Brown and Chew, 1989; Chew et al., 1997) and is generally found in the 

gastrointestinal mucosa, but also highly expressed in secretory cells of the kidney and lung, and 

in smaller amounts in spleen, adrenal and other tissues (Parente et al., 1999). In the kidney 

coronin 2 primarily localizes to cortical F-actin structures (Parente et al., 1999). The homologous 

mouse coronin 2 differs from coroninse in a short part of the unique C-terminal region and is 

ubiquitously expressed and most prominent in the kidney, lung, spleen and liver (de Hostos, 

1999; Morrissette et al., 1999; Okumura et al., 1998). On the subcellular level, coronin 2 shows a 

perinuclear punctate pattern and is localized to early phagosomes (Morrissette et al., 1999). PKC-

dependent serine phosphorylation of coronin 2 leads to a partial redistribution of coronin 2 from 

vesicular structures, which are neither Golgi membranes nor mitochondria, to the leading edge of 

the induced actin-rich filopodia (Parente et al., 1999). Recently, coronin 2 was shown to co-

localize and interact with Arp2/3 complex (Cai et al., 2005). This interaction is mediated by 

PKC-dependent phosphorylation of serine-2 on coronin 2, and is important for the leading edge 

dynamics in fibroblasts (Cai et al., 2005). 
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Coronin 3 is ubiquitously expressed and is most prominent in the brain, lung, intestine 

and kidney (Hasse et al., 2005; Iizaka et al., 2000; Spoerl et al., 2002). An additional band of 

higher molecular weight (60 kDa) is detected in the brain and heart, while in the skeletal muscle 

this band is the only one present. A single RNA species has been described. Coronin 3 is 

localized to F-actin-rich punctate structures in the cytosol, which are most pronounced around the 

nucleus and at the cell cortex, especially in lamellipodia and membrane ruffles (Spoerl et al., 

2002). Both N and C termini of coronin 3 are required for its cytoskeletal localization and for 

coronin-3-mediated regulation of cell morphology. The C terminus (aa 315–474) confers 

membrane association, and removal of its coiled-coil part (aa 444–474) abolishes membrane 

localization. In vitro, F-actin binding and bundling occurs through the C-terminal fragment 

preceding the coiled coil (aa 315–444). This fragment interacts with the N terminus and can lead 

to decreased binding of the C-terminal fragment to F-actin. Conversely, the entire C terminus can 

recruit the purified N-terminal region to actin filaments probably reflecting the folding pattern of 

coronin 3 bound to actin. The dissociation constants of both coronin 3 C-terminal fragments 

binding to F-actin were evaluated at about 8 mM. F-actin binding was saturated at a 1:3 molar 

ratio for both fragments.  

Surprisingly, the C terminus (aa 315–474) forms trimers while the non-coiled-coil C 

terminus (aa 315–444) forms dimers. The oligomerization is non-ionic and does not require other 

proteins. Also, endogenous coronin 3 is extracted as trimer from cytosol and membrane fraction 

(Spoerl et al., 2002). The coiled-coil region of the C terminus contributes to a simultaneous 

binding of the N-terminal domain and F-actin and to a trimerization of coronin 3, properties 

which seem to be essential for cellular membrane localization.  

Generally, cytosolic, but not particle-associated coronin 3 indicated a high degree of 

phosphorylation (Spoerl et al., 2002), and coronin 3 can be dephosphorylated in vitro 
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(A. Rosentreter and C. Clemen, personal communication). PKC activation did not influence the 

subcellular distribution, but resulted in a decreased level of the coronin 3 protein. This reduction 

may be due to the 30 UTR of the coronin 3 mRNA containing 14 CUUU repeats similar to the 

(CUUU)11(U)8 repeats of MARCKS mRNA (Spoerl et al., 2002). This CUUU14- repeat element 

is not found in any other mammalian coronin mRNA. In MARCKS mRNA, the element mediates 

rapid mRNA degradation upon treatment with growth factors or PKC activators (Wein et al., 

2003).  

 

1.2. Coronin and POD-1 proteins at the interface of cytoskeleton and trafficking  

Intracellular membrane organelles form a highly dynamic continuum intimately 

connected by means of two major trafficking routes. The membrane flow from the endoplasmic 

reticulum through the Golgi complex to the cell surface, lysosomes and other organelles is 

generally described as a biosynthetic pathway. Another trafficking route, the endocytic pathway, 

connects the plasma membrane with the endosomal system, lysosomes and the Golgi/ER 

membranes. Subcellular localization and trafficking of the membrane compartments have been 

shown to rely on the interaction of these structures with cytoskeletal components. Formation of 

endocytic vesicles at the plasma membrane depends on the interaction of the membrane with 

cortical actin and several actin-binding proteins including dynamin and cortactin (Cao et al., 

2003; Sauvonnet et al., 2005; Yarar et al., 2005). Dynamics of cargo vesicles are mediated by 

both actin cytoskeleton and microtubules. The interference with any of these systems leads to 

multiple defects in vesicular trafficking such as an impairment of the formation of the trans-Golgi 

network and ER export carriers (Waguri et al., 2003; Watson et al., 2005), or of the formation 

and cytoplasmic progression of the vesicles (Mundy et al., 2002; Yarar et al., 2005). Several 
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studies hinted at a possible function of coronin proteins at the interface of the cytoskeleton and 

intracellular membrane transport. 

 

1.2.1. Drosophila coro possibly acts as a linker between the actin cytoskeleton and 

membrane transport  

Recently, a novel conventional coronin gene has been identified in Drosophila 

(Bharathi et al., 2004). coro encodes a predicted 528-amino-acid protein harboring a core domain 

and a C-terminal coiled-coil region. The coro gene is ubiquitously expressed at high levels in all 

cell types with the exception of the larval CNS. Mutations in the gene are lethal at early to late 

pupal stages and exhibit a number of appendage phenotypes including shortened, ventralized, 

thick legs, defective wing margins and malformed eyes with improper ommatidial organization. 

On the cellular level, coro mutations result in a disruption of the cytoskeleton in the wing 

imaginal discs. Actin filaments appear retracted and the cortical actin reduced, leading to 

abnormal cell morphology (Bharathi et al., 2004).  

Importantly, it has been suggested that the coro gene genetically interacts with the 

syx1A gene encoding a Drosophila SNARE protein participating in secretion and calcium channel 

functions (Schulze et al., 1995; Wu et al., 1999). The coro mutant phenotype is similar to that of 

syx1A. Furthermore, overexpression of syx1A on a background of coro mutation by imprecise P-

element excision enhances lethality and also causes enhancement of the coro phenotype implying 

an interaction of the syntaxin 1A and coronin genes (Bharathi et al., 2004). In coro mutants, the 

GFP-fused morphogen Dpp accumulates in endocytic vesicles docked at the inner side of the 

plasma membrane. Further, Dpp degradation is slowed down, resulting in uniform Dpp presence 

along the anteroposterior wing disc axis and in disc overgrowth (Bharathi et al., 2004). 
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Drosophila coro thus participates in establishment of the Dpp morphogen gradient by regulating 

the intracellular routing of Dpp.  

It may well be that the defect in the cortical actin structures reported for coro mutants 

(Bharathi et al., 2004) causes abnormal subplasmalemmal vesicle transport resulting in 

accumulation of Dpp-containing vesicles. Such an accumulation by interfering with actin 

structures was also demonstrated in cytochalasin-D-treated acinar epithelial cells (Da Costa et al., 

2003) and in the case of loading actin filaments with N-ethylmaleimide-treated myosin S1 in 

lamprey reticulospinal synapses (Shupliakov et al., 2002).  

 

1.2.2. C. elegans POD-1, an actin-binding protein participating in vesicular trafficking  

A POD-1 protein was first purified in a screen designed to isolate C. elegans actin-

binding proteins (first named CABP11) (Aroian et al., 1997). In early worm embryos, the protein 

co-localizes with actin in the cortical region and, in addition, exhibits a punctate cytoplasmic 

staining pattern. Loss of pod-1 gene activity results in defects in anteroposterior polarity in early 

embryos in that the second AB and P1 cell division occurs synchronously and in parallel 

orientations, instead of the wild-type pattern, which is characterized by the P1 cell dividing after 

AB and having a division plane perpendicular to that of AB (Rappleye et al., 1999). Furthermore, 

mutant embryos do not separate polar bodies. Additional defects appear in vesicular trafficking 

processes. Firstly, the polar granules are found throughout the cytoplasm of mutant embryos, 

whereas normal embryos transport the polar granules towards the posterior pole. Secondly, 

mutant cells accumulate abnormally large intracellular membrane structures as shown by staining 

with an antibody recognizing plasma membrane and vesicles of endocytic origin. Finally, a defect 

in the inner eggshell layer formation also indicates abnormal exocytic functions. This defect has 
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been illustrated by an increased dye permeability and osmotic sensitivity of the eggshell 

(Rappleye et al., 1999).  

C. elegans POD-1 co-localizes with cortical actin and cytoplasmic structures and 

facilitates trafficking processes. The function of POD-1 may be to regulate the attachment of 

vesicular structures to the actin microfilaments and thus facilitating oriented trafficking. The 

accumulation of abnormal cytosolic membrane structures in pod-1 mutants can be explained by 

the absence of such vesicle-microfilament binding. Based on the information available on yeast 

crn1p (see above), it might be reasonable to speculate that such binding is Arp2/3-dependent. 

However, the absence of the coiled-coil domain required for Arp2/3 regulation in the yeast 

protein makes this less likely (Humphries et al., 2002). The eggshell phenotype can be explained 

by the lack of proper interaction of exocytic vesicles with the cortical actin cytoskeleton or by 

abnormal intracellular trafficking of such vesicles resulting in misdirection of the Golgi–plasma 

membrane flow.  

 

1.3. Mammalian coronins with unexplored functions  

To date, seven mammalian genes with several transcriptional products have been 

identified (Table 1). Except for isoform C of coronin 6 lacking the fourth WD-repeat domain, all 

short coronins contain five predicted central WD repeats. Functional data or biochemical 

properties are not available for coronins 4, 5 and 6. Coronin 4 is restricted to colon, prostate and 

testis, but also described in brain tissue (Nakamura et al., 1999; Okumura et al., 1998; 

Zaphiropoulos and Toftgard, 1996). Coronin 5 is also present in neuronal tissue and to a lesser 

degree in heart and ovary (Nakamura et al., 1999). Coronin 6 (accession number NP_624354-6) 

was detected in the brain.  
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1.4. Clinical implications  

Recent data suggest that coronin proteins participate in such processes as an 

antimicrobial defense and neuronal development and function. Coronin 1 has been shown to 

participate actively in the innate defense reactions on the cellular level (Gatfield et al., 2005; Itoh 

et al., 2002). The functional connection between the actin cytoskeleton, coronin 1 protein and 

phagocytosis of pathogenic mycobacteria has already been discussed above. Clinical 

investigations have revealed that coronin 1 and the Arp2/3 complex 20 kDa subunit are 

downregulated in the fetal Down syndrome brain cortex (Weitzdoerfer et al., 2004). Both are 

proteins apparently involved in the dysgenesis of the brain and the associated mental disabilities. 

In murine brain all areas express coronin 3 during embryogenesis and the first postnatal stages 

(Hasse et al., 2005). Postnatally, the expression in the gray matter decreases, except for 

hippocampal and cerebellar Purkinje neurons, while levels in the white matter increase in the 

course of myelination (Hasse et al., 2005).  

Cultured neuro-2a and PC-12 cells transfected with various GFP-tagged coronin 3 

versions favor a role for coronin 3 in neuronal function, morphogenesis and possibly migration. 

Truncated proteins efficiently suppress neurite formation and either stimulate or inhibit 

noradrenaline (norepinephrine) secretion of PC-12 cells (A. Hasse and C. Clemen, personal 

communication). Coronin 5 accumulates at neurite growth cones and co-localizes with focal 

adhesions as well as with stress fibers. It co-precipitates with vinculin, a major component of 

focal contacts and also binds directly to F-actin in vitro (Nakamura et al., 1995). Coronins 3 and 

5 may be involved in neuronal migration, neurite extension and synapse formation by means of 

rearranging F-actin and linking it to the plasma membrane.  
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Coronin 1 is abundantly expressed in T- and B-lymphocytes and macrophages 

(Didichenko et al., 2000; Goode et al., 1999; Itoh et al., 2002; Okumura et al., 1998; Schuller et 

al., 2001). Apart from an expression in thymic cells, coronin 1 was shown to be involved in 

processes of membrane organization of nascent phagosomes and associated with their F-actin 

coat. Later, a dissociation of coronin 1 seems to be necessary for further phagosome processing. 

Clumps of phagocytosed mycobacteria cause the retention of coronin 1 on the early phagosome 

and inhibit their delivery to lysosomal degradation (Ferrari et al., 1999). The recruitment of 

coronin 1 to the phagosome may be regulated endogenously by PKC and PI3-kinase activity, and 

exogenously by factors like that of living mycobacteria. Soluble coronin 1 is involved in 

generating focal microbicidal superoxide bursts. These data strongly suggest an important 

contribution of coronin 1 to innate defense reactions.  

Coronin proteins play important roles in development and disease: In Drosophila and C. 

elegans, coronin and POD-1 mutants exhibit a number of developmental defects ranging from 

abnormal determination of cell polarity and formation of morphogenetic gradients to aberrant 

axonal guidance and target innervation (Bharathi et al., 2004; Rappleye et al., 1999; Rothenberg 

et al., 2003). Several mammalian coronins are strongly expressed in the CNS and possibly 

involved in the development of the nervous system. Coronin 3 demonstrates a highly dynamic 

expression pattern in the embryonic brain implying that differential activity of this proteins may 

participate in the regulation of brain development, probably together with other coronins 

expressed in the developing brain (Hasse et al., 2005). Although some coronins have been studied 

in detail, biochemical and functional properties of their majority is unclear. Future experiments 

need to be directed at functional properties of coronin proteins. There are still significant gaps in 

our understanding of the regulation of coronin genes and proteins, too. The positions of coronin 

proteins in the complex protein interaction networks have not yet been characterized. Functions 
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of the central core domain particularly require further investigation. Clearly, based on the well-

established functions in the regulation of the actin cytoskeleton and membrane trafficking as well 

as being implicated in many developmental processes and in disease, this protein family deserves 

further investigation.   
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2. Aims of the work 

 

 

Recently, a novel mammalian coronin family member was identified and designated 

coronin 7 (A. Schulze, diploma thesis, Cologne University, 2001). My primary aims were: 

 

 To analyze the cellular localization and dynamics of coronin 7 (Crn7) using 

biochemical methods, immunofluorescence and electron microscopy;  

 To characterize Crn7 interaction partners; 

To reveal the function of Crn7 in mammalian cells using gene interference (RNAi).
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3. RESULTS 

Crn7 is a ubiquitous mammalian coronin family member. The protein is 

distributed between the cytosol and Golgi, where it is present at the outer side of 

the membrane. Golgi localization of Crn7 depends on tyrosine phosphorylation 

and the integrity of ER-to-Golgi transport. The protein intimately associates 

with the Golgi membrane and does not require coatomer for its localization. 

Crn7 is an essential protein, as its knockdown by RNAi leads to a dramatic time- 

and concentration-dependent decrease in cell viability. Crn7 RNAi cells display 

scattered Golgi morphology, as demonstrated by electron and light microscopy. 

Most importantly, the knockdown leads to the block of protein export from the 

Golgi complex, while the import into the organelle, both anterograde and retro-

grade, remains unaffected. Further, I established that Crn7 interacts with AP-1 

adaptor protein complex participating in the Golgi export by linking cargoes to 

the clathrin coat.  

 

3.1. Crn7 sequence analysis. 
 
3.1.1. Crn7 is a mammalian long coronin and POD-1 homologue. 
 

A complete cDNA for human a novel human WD-repeat protein has been previously 

cloned by reverse transcription PCR from a HEPG2 cDNA clone HEP08253 (accession number 

AK025674, obtained from the MRC Centre, Cambridge, UK) using information from the EST 

database (A. Schulze, Diploma thesis, University of Cologne, 2001). The obtained sequence 

contains a single open reading frame encoding a 925-amino acid protein (Fig. 2) with a predicted 

molecular weight of 100.5 kDa and a predicted isoelectric point of 5.6. T he protein is 

characterized by the presence of six to ten WD repeats depending on the prediction algorithm. 

The WD repeats are clustered in two groups. Sequence alignment (see A. Schulze, Diploma 

thesis, University of Cologne, 2001) allowed us to postulate that the protein belongs to the 
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coronin family, and to name it coronin 7 (Crn7). As all coronins, Crn7 possesses a characteristic 

…SKFRH… motif upstream of both WD repeat clusters.  

 
1    mnrfrvskfr htearpprre swisdiragt apscrnhiks scsliafnsd rpgvlgivpl 
61   qgqgedkrrv ahlgchsdlv tdldfspfdd fllatgsadr tvklwrlpgp gqalpsapgv 
121  vlgpedlpve vlqfhptsdg ilvsaagttv kvwdaakqqp ltelaahgdl vqsavwsrdg 
181  alvgtackdk qlrifdprtk prasqstqah ensrdsrlaw mgtwehlvst gfnqmrerev 
241  klwdtrffss alasltldts lgclvplldp dsgllvlagk gerqlycyev vpqqpalspv 
301  tqcvlesvlr gaalvprqal avmscevlrv lqlsdtaivp igyhvprkav efhedlfpdt 
361  agcvpatdph swwagdnqqv qkvslnpacr phpsftsclv ppaeplpdta qpavmetpvg 
421  dadasegfss ppssltspst psslgpslss tsgigtspsl rslqsllgps skfrhaqgtv 
481  lhrdshitnl kglnlttpge sdgfcanklr vavpllssgg qvavlelrkp grlpdtalpt 
541  lqngaavtdl awdpfdphrl avagedarir lwrvpaegle evlttpetvl tghtekicsl 
601  rfhplaanvl asssydltvr iwdlqagadr lklqghqdqi fslawspdgq qlatvckdgr 
661  vrvyrprsgp eplqegpgpk ggrgarivwv cdgrcllvsg fdsqserqll lyeaealagg 
721  plavlgldva pstllpsydp dtglvlltgk gdtrvflyel lpespfflec nsftspdphk 
781  glvllpktec dvrevelmrc lrlrqsslep vafrlprvrk effqddvfpd taviwepvls 
841  aeawlqgang qpwllslqpp dmspvsqapr eaparrapss aqyleeksdq qkkeellnam 
901  vaklgnredp lpqdsfegvd edewd 

 

Fig. 2. Predicted amino acid sequence of human Crn7 protein. Core domains containing WD repeats are 

shown in blue, coronin signature motifs (Rybakin and Clemen, 2005) are highlighted in black, a serine, 

proline and threonine-enriched sequence is underlined. YxxФ motifs are highlighted in yellow. 

 

The predicted WD repeats of Crn7 are grouped in characteristic two coronin core 

domains, as in C. elegans POD-1 and dPOD-1 from Drosophila. Crn7 protein is 46% and 47% 

homologous and 30% and 29% identical to Dpod-1 and POD-1, respectively as predicted by 

NCBI BLAST server using BLOSUM62 matrix. Similarly to the worm and fly homologues, 

Crn7 lacks the C-terminal coiled-coil region. Phylogenetic analysis using cluster algorithm 

clearly positions Crn7 and both previously described POD-1 proteins in a group distinct from 

other coronins (Fig. 3).  

A structural peculiarity of Crn7 is the presence of a 47-amino acid long proline, serine 

and threonine-enriched stretch upstream of the second group of WD repeats designated a PST 
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motif (Fig. 2). Such sequence is not found in any other coronin proteins, and its function (if any) 

remains unclear. 

 

 

Fig. 3. Phylogenetic analysis of the coronin family members, including POD-1 proteins, performed using 

the cluster algorithm. dmPOD-1 – Drosophila dPOD-1 protein, cePOD1 – C. elegans POD-1, ddPOD-1 

– POD-1 protein from Dictyostelium discoideum, hsCrn1, 3, 7 – human coronins 1, 3 and 7, respectively, 

ddCrn – Dictyostelium coronin, scCrn – yeast (Saccharomyces cerevisiae) coronin, ddVLDN – 

Dictyostelium villidin, hsβ'-COP – human β'-COP. Multiple WD-repeat proteins villidin and β'-COP are 

clearly forming outgroups with regard to both coronins and POD-1 proteins. The bar corresponds to 10% 

of amino acid substitution within the branch.  

 

Additionally, Crn7 harbours two putative copies of a classical tyrosine-based sorting 

signal downstream of each core domain (Fig.1). This feature is also unique for Crn7, and will be 

discussed later. 
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3.2. Tissue distribution and developmental dynamics of Crn7 

 

Using a monoclonal antibody K37-142-1 raised against the C-terminus of Crn7 (Rybakin 

et al., 2004), we analyzed the distribution of the protein in murine tissues by western blot. Crn7 

was found to be ubiquitously expressed in all studied tissues, except for the heart and skeletal 

muscle (Fig. 4). These findings are in good agreement with Northern blot data shown previously 

(A. Schulze, Diploma thesis, University of Cologne, 2001). K37-142-1 mAb is used in all further 

experiments to visualize Crn7. 

 

 

Fig. 4. Tissue distribution of the Crn7 mRNA and protein. Top panel, tissue lysates were separated on 

10% SDS-polyacrylamide gels, blotted onto a nitrocellulose filter and probed with monoclonal anti-Crn7 

antibody. 1 - brain, 2 - heart, 3 - liver, 4 - lung, 5 - kidney, 6 - testis, 7 - muscle, 8 - thymus. Anti-β-actin 

monoclonal antibody was used to confirm equal loading (not shown).  

 

Using indirect immunofluorescence, we studied the expression pattern of the Crn7 protein 

in the mouse. The strongest expression is found in the early postembryonic brain, thymus, 

intestine, skin and in the eye (Fig. 5). In the brain cortex, the Crn7 protein is restricted to the most 

apical cell layers before postembryonic day 10 and shifted to a population of more basal cells 

thereafter, whereas in the hypothalamus the protein is detected in the same set of profound big 

neurons throughout development. In addition, the protein is found in the bodies and dendrites of 
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Purkinje cells in the cerebellum. In the skin, Crn7 is only present in the apical epidermis layers 

(Fig. 5). The differentiating cells in the embryonic eye are also found to be Crn7 positive. Here, 

Crn7 is found in developing lens fibers. In adult mice, the protein is strongly expressed in the 

outer plexiform layer of the retina, where the rods are located (data not shown). Interestingly, in 

the intestine, the protein is found not only in terminally differentiated epithelial cells, but also in 

the crypt epithelium were the stem cells are located (Fig. 5J).  

 

 

 

Fig. 5. Immunolocalization of the Crn7 protein in paraformaldehyde-fixed murine early postembryonic 

tissues. A-D, sections through the brain cortex at the postembryonic days 5, 10, 20 and 30, respectively. 

E-G, section through the hippocampus at the postembryonic days 10, 20 and 30, respectively. H, 

localization of the Crn7 protein in the Purkinje cell bodies (arrows) and dendrites (arrowheads). I-K, 

embryonic skin, intestine and lens, respectively, at the day 16 of development. Top of the images A-G and 
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I correspond to the apical side of the corresponding organs. Immunostaining was performed using 

monoclonal anti-Crn7 antibody (green in I-K). Sections were counter-stained with DAPI (blue in I-K). 

 

3.3. Subcellular localization of Crn7 

3.3.1. Crn7 is present in the cis-Golgi and in the cytosol 
 

Using indirect immunofluorescence, we analyzed the cellular distribution of Crn7. The 

protein was found in vesicle-like structures and in a Golgi-like perinuclear compartment (Fig. 6). 

The characteristic Crn7-positive perinuclear structure was prominent in NIH 3T3 fibroblasts, 

HeLa, Vero and other cell types. Crn7 protein co-localizes with cis-Golgi markers β-COP and 

Erd2p in the Golgi region as shown by indirect immunofluorescence (Fig. 6). It is noteworthy 

that (a) in both cases the Crn7 antibody stains a broader region than both Golgi marker antibodies 

(Fig. 6C, F, arrows), and (b) the cytosolic Crn7-positive vesicles are clearly distinct from the 

Erd2p- or β-COP-positive ones (not shown). Cis-Golgi localization of Crn7 was further 

confirmed by immunostaining NIH 3T3 fibroblasts expressing GFP-fused cis-Golgi markers p23 

and GM130 with Crn7 antibody (data not shown). Importantly, although we were able to observe 

a certain co-localization of Crn7 with the trans-Golgi marker TGN38, such co-localization was 

restricted to the proximal Golgi region and almost absent in the trans-most cisternae (Fig. 6I).  
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Fig. 6. Immunolocalization of the Crn7 protein in NIH 3T3 cells. Paraformaldehyde-fixed cells were 

stained with monoclonal anti-Crn7 antibody (B, E, H) and rabbit polyclonal antibodies against either 

Erd2p (A), β-COP (D), or TGN38 (G). Primary antibodies were detected with goat anti-mouse antibody 

conjugated with Cy3 (red) and sheep anti-rabbit antibody conjugated with FITC (green). C, F, I, merged 

false color images. Insets in C, F, I correspond to the areas marked in A-C, D-F and G-I, respectively. 

Bar, 10 µm. 

 

Using differential centrifugation, we established that only a minor pool of Crn7 is 

localized to intracellular membranes. The protein is unequally distributed between the cytosol 

and membrane fractions, the bulk of it being found in the cytosol (Fig. 7A), where it is present in 

a free state (200,000g supernatant) as well as in large protein complexes (200,000g pellet). The 
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membrane-associated Crn7 protein can be extracted from the 10,000g fraction upon treatment 

with Triton X-100 (Fig. 7B). As a control, we used anti-β-actin antibody (Fig. 7B, lower panel), 

showing that only the detergent-sensitive membrane components have been extracted, but not 

cytoskeletal elements. 

 

Fig. 7. Crn7 is present on Triton-soluble membranes. A, differential centrifugation experiment showing 

the presence of the Crn7 protein in heavy membrane / cytoskeletal fraction (10,000g pellet, lane 1), light 

membrane fraction (100,000g pellet, lane 2), cytosolic protein complexes (200,000g pellet, lane 3) and 

cytosol (200,000g supernatant, lane 4). B, solubilization of membrane compartments from the 10,000g 

pellet with Triton X-100. The 10,000g pellet was resuspended in homogenization buffer (Spoerl et al., 

2002)  and separated into two aliquots. One aliquot was treated with 0.5% Triton X-100 for 30 min at 

4oC, the other served as control. Both aliquots were centrifuged again and pellets and supernatants 

analyzed by western blot. P - 10,000g pellet, S – supernatant. Left, control pellet; right, Triton X-100-

treated pellet. Top panels, western blot with anti-Crn7 antibody, bottom panels, with anti-β-actin 

antibody. C, Crn7 is extracted from membrane fraction by incubation with sodium carbonate (see 3.3.2). 

Upper panel, sodium carbonate was added to PNS of HeLa cells for 30 min on ice to make 100 mM. PNS 

was then centrifuged at 100,000g to separate membranes from cytosol. Lower panel, PNS was incubated 

with equal volume of PBS and fractionated as above.   

 33



To localize the protein more precisely within the Golgi complex, we used confocal 

microscopy to study its co-localization with cis- and the trans-Golgi markers in HeLa cells 

treated with nocodazole, which is known to partially disrupt Golgi stacks leading to the formation 

of ministacks where the positions of cis- and the trans-Golgi proteins can be microscopically 

distinguished (Neubrand et al., 2005). Upon application of 20 µg ml-1 nocodazole for 2 hrs, Crn7 

co-localized with a fraction of the cis-Golgi compartments positive for GM130 (Fig. 8A-C), but 

not with TGN38-positive trans-Golgi-derived compartments (Fig. 8D-F). Thus, Crn7 labels a 

subcompartment of the cis-Golgi.  

 

Fig. 8. Crn7 is localized to the outer side of the cis-Golgi membranes. A – F, HeLa cells were treated with 

nocodazole at 20 µg ml-1 for 2 hrs, fixed and stained for Crn7 (A, D), GM130 (B) or TGN38 (E). C, F – 

merged images corresponding to areas highlighted in A, B and D, E. Size bar, 10 µm. G, Electron 
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micrograph demonstrating Crn7 immunostaining (red circles) at the outer side of Golgi membranes in 

HeLa cells. Size bar, 200 nm. 

 

The cytoplasmic Crn7-labelled structures (see Fig. 7) do not correspond to the 

intermediates of the endocytic pathway, as they do not co-localize with transferrin-positive 

compartments after 1, 5, 10, 30 or 60 minutes of the internalization of FITC-labelled transferrin 

in Triton-permeabilized cells (Fig. 9 and not shown) and do not show any Rab5 or LIMP-1 

staining (data not shown). We assume that these structures represent large protein complexes 

constituting the cytosolic pool of the Crn7 protein.  

 

 

 

Fig. 9. Crn7 is not present in early and late endosomal compartments positive for transferrin. HeLa cells 

were allowed to internalize Tf-FITC for 10 (A) or 30 (B-D) min on ice, then fixed and stained for Crn7 

(red). C, D, - areas highlighted in B. C  - Crn7 antibody staining, D, Tf-FITC signal. Note the exclusion of 

Crn7 from the late endosome/lysosome accumulation zone (C, D). Golgi Crn7 staining is absent due to 

permeabilization with Triton X100.  

 

3.3.2. Crn7 is localized to the outer side of Golgi membranes 

Further, we exploited the topology of Crn7 - Golgi membrane interactions. We 

hypothesized that the protein is present at the outer side of Golgi membranes, as it does not 
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possess predicted signal sequences, signal cleavage or transmembrane sites (as predicted by 

PSORTII algorithm, (Nakai and Horton, 1999). To prove this hypothesis, we first used the Crn7 

antibody and 5-nm immunogold detection to visualize the protein in rat Purkinje cells.  Crn7 

could be found only at the outer side of Golgi membranes, but not at the inner side or in the 

lumen (Fig. 8G). The conclusion that Crn7 is localized to the cytosolic side of the Golgi 

membrane was additionally confirmed by carbonate extraction (Fig. 7C) and proteinase K 

protection experiments, where Crn7 could not be protected by membranes from proteinase added 

to membrane fraction (not shown). 

 

3.3.3. Stabile association of Crn7 with the Golgi requires the integrity of ER-to-Golgi transport 

Brefeldin A (BFA) causes the GTP-to-GDP exchange on Arf1 GTPase and rapid 

dissociation of Arf1 (Fig. 10) and COPI coat from the membranes (Peyroche et al., 1999). 

Following this, Golgi membranes start fusing with the ER, and resident Golgi proteins are 

gradually redistributed to the ER (Lippincott-Schwartz et al., 1989). We treated cells with 

brefeldin A and assayed βCOP and Crn7 dynamics (Fig. 11A-F). Already after one minute of 

BFA treatment, no typical βCOP Golgi staining could be observed by immunofluorescence (Fig. 

11E), well in agreement with published data on Arf1 dynamics (Presley et al., 2002).  

 

 

Fig. 10. Effect of Brefeldin A (BFA) on 

the presense of small GTPAse Arf1 on 

Golgi membranes (from Presley et al., 

2002). 
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Fig. 11. Crn7 is a structural Golgi protein, and depends on ER-to-Golgi transport in its 

localization. A – F, HeLa cells were treated with 5 µg ml-1 brefeldin A for 1 min (B, E) or 20 min (C, F), 

fixed and stained for Crn7 (A-C) or βCOP (D-F). Size bar, 20 µm. G, Fixed HeLa cell demonstrating the 

presence of Crn7 on an ER-Golgi intermediate (arrowheads) formed upon the application of BFA for 15 

min. H, I, HeLa cells overexpressing GFP-Syn5 (asterisks) are characterized by reduced presence of Crn7 

at Golgi membranes. H, Merged image, red, Crn7, green, GFP-Syn5. I, Crn7. Size bar, 20 µm. 

 

Although Crn7 Golgi staining was gradually reducing upon application of BFA, βCOP 

dissociation did not result in the same rate of dissociation of Crn7, and some protein was present 
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on the collapsing Golgi even 20 min after the beginning of treatment (Fig. 11C). Such dynamics 

of Crn7 dissociation upon the application of BFA suggest that Crn7 is a structural protein 

intimately connected to the Golgi membrane. Interestingly, Crn7 was present at chimaeric tubular 

intermediates apparently connecting Golgi remnants with the ER (Fig. 11G). This finding 

additionally confirms the presence of Crn7 on Golgi membranes, rather than in the Golgi matrix. 

Next, we tested whether Crn7 localization on Golgi membranes depends on the integrity 

of the ER-to-Golgi trafficking system. Recently, a cis-Golgi t-SNAREs complex was shown to 

participate in the late stages of ER-to-Golgi transport (Zhang and Hong, 2001). The complex 

consists of four SNARE proteins, syntaxin 5 (Syn5), GS28, Bet1 and Ykt6. Syntaxin 5 was 

previously shown to specify docking sites for both COPI and COPII vesicles in the Golgi 

complex (Hui et al., 1997, and references therein). In particular, Syn5 inhibits the import of the 

vesicular stomatitis virus G-glycoprotein (VSVG) into the Golgi complex if overexpressed, 

leading to accumulation of cargo in pre-Golgi intermediates (Dascher et al., 1994). We 

overexpressed GFP-Syn5 in HeLa cells and examined Crn7 localization by immunostaining. The 

cells expressing GFP-Syn5 exhibit a substantial increase in cytosolic Crn7 staining, and reduced 

amount of Crn7 on Golgi membranes (Fig. 11H,I). Thus, Crn7 requires the intact influx of certain 

ER-derived material to be localized to the Golgi.  

Because Crn7 lacks any signal peptide and is present in both cytosol and Golgi (see 

above), we imply that it is recruited to the outer side of Golgi membrane from the cytosol rather 

than to the Golgi lumen or inner membrane side from the ER. This implication is confirmed by 

our studies on Crn7 topology using biochemical methods and electron microscopy. Thus, the 

observed inhibitory effect of Syn5 overexpression on the Golgi localization of Crn7 can hardly be 

due to the direct block of its import from the ER. It is intriguing to speculate that the Golgi 

localization of Crn7 is driven by another protein imported form the ER in a Syn5-dependent 
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manner. Interaction of Crn7 with this unidentified partner might be dependent on its tyrosine 

phosphorylation, as the membrane-associated Crn7 is phosphorylated on tyrosine residues, while 

the cytosolic protein is not (see above). 

 

3.3.4. Properties of cytosolic and membrane-associated forms of Crn7 

We analyzed the Crn7 protein in membrane and cytosolic fractions by means of 2D gel 

electrophoresis. Our results evidence that the pI values of the cytosolic form of the protein range 

between 5.2 and 6.0 with a peak corresponding to the predicted value of 5.6, whereas the 

membrane-associated form has pI values ranging from 4.5 to 6.0 (Fig. 12A), inferring that the 

membrane bound form is phosphorylated. Furthermore, when we immunoprecipitated Crn7 from 

the cytosol and membrane fractions (10,000g pellet) using Crn7 antibody coupled to protein G-

sepharose beads in the presence of phosphatase inhibitors the precipitated protein specifically 

reacted with an anti-tyrosine antibody. No labeling was observed with phosphoserine / threonine 

specific antibodies (data not shown). Moreover, our results indeed confirm that it is the 

membrane-associated, but not cytosolic form of Crn7, which is phosphorylated on tyrosine 

residue(s) (Fig. 12B). Importantly, tyrosine phosphorylation does not only correlate with Crn7 

presence in the membrane pellet, but also is required for it. We incubated HeLa cells in the 

presence of tyrosine kinase inhibitor genistein (1 hr, 100 µg/ml, 37oC), prepared PNS and 

subfractionated it by centrifugation at 100,000g. Fig. 12C demonstrates that inhibition of tyrosine 

phosphorylation led to a decrease in Crn7 abundance in the membrane fraction.  

There are several conserved tyrosines in the protein sequence that might be the targets 

for phosphorylation. Y738 is conserved among both Crn7, POD-1, Dpod-1 and mammalian 

coronins 2A and 3, Y712 is conserved in Crn7, and both POD-1 proteins. Several other tyrosine 

residues are present in Crn7 and one or several coronins or POD-1 proteins.  
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Fig. 12. Crn7 present in the membrane pellet of HeLa cells is phosphorylated on tyrosine residues. A, two-

dimensional gel electrophoresis of the proteins present in the 10,000g supernatant and pellet. After 

separation, the gel was blotted onto a nitrocellulose membrane and probed with Crn7 antibody. B, 

analysis of tyrosine phosphorylation of the Crn7 protein. The protein was immunoprecipitated from the 

10,000g pellet (P) and supernatant (S) using Crn7 antibody. After separation, the gel was blotted onto the 

nitrocellulose membrane and probed with anti-phosphotyrosine (left) or anti-Crn7 (right) antibody. C, 

Tyrosine phosphorylation is required for the Crn7 targeting to membranes. Application of tyrosine kinase 

inhibitor genistein lowers the amount of Crn7 in the membrane pellet (P). 

 

3.4. Analysis of Crn7 function by RNAi 

3.4.1. Use of siRNA duplexes to silence Crn7 
 

To reveal the in vivo function of Crn7 in the Golgi, we used the small interfering RNA 

(siRNA) methodology allowing a specific and powerful knockdown of the mRNA and 

corresponding protein (Novina and Sharp, 2004). We used eight siRNA oligonucleotides (see 

Methods). 48 and 72 h after transfection, cells were harvested and analyzed by Western blotting. 
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All siRNA constructs were capable of downregulating Crn7 protein at both treatment terms (Fig. 

13A). As the construct siRNA(8)2454
 consistently showed the highest degree of downregulation 

after 48 and 72 hrs, this construct was used in further experiments. siRNA timescale experiments 

demonstrated that knocking down Crn7 mRNA and protein leads to a dramatic decrease in cell 

viability, as compared to mock-transfected cells. This effect was both time- and concentration-

dependent (Fig. 13B). Thus, Crn7 is an essential protein in HeLa cells.  

 

 

 

Fig. 13. Downregulation of Crn7 by RNAi results in reduced cell viability and profound changes in Golgi 

architecture. A, The use of eight individual RNA duplexes to downregulate Crn7 (see Methods). Upper 

panel, 48 h of RNAi application, Western blot using Crn7 antibody. Middle panel, 72 h of RNAi 

application, Western blot using Crn7 antibody. Lower panel, 72 h of RNAi application, Western blot using 

a mixture of coronin 3 (Crn3) and actin antibodies. B, Reduced cell viability upon the application of Crn7 

siRNA(8)2454. Filled diamonds, mock-transfected cells, open squares, 1.5 nM siRNA, filled triangles, 5 nM 
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siRNA, open circles, 15 nM siRNA. Cells were counted 24, 48, 72 and 96 h after the application of siRNA. 

Note logarithmic y-scale. 

 

3.4.2. Influence of Crn7 RNAi on the Golgi architecture 
 

To evaluate the effect of Crn7 knockdown by RNAi on the architecture of the Golgi 

complex, we treated HeLa cells with siRNA(8)2454
 for 24 h and processed them for electron 

microscopy along with mock-treated cells as described in Methods. Mock-transfected cells 

displayed the expected Golgi morphology, characterized by the presence of several flat cisternae 

surrounded by transport intermediates (Fig. 14, left). In contrast, HeLa cells treated with 

siRNA(8)2454
 demonstrated different degrees of the Golgi scattering. In most cells, the Golgi was 

present as a dense accumulation of vesicles still containing one or several cisternae-like structures 

(Fig. 14, right). In the most extreme cases, no cisternae are observed, and the density of Golgi 

remnant vesicles decreases. These data suggest that Crn7 is indeed required for the maintenance 

of the Golgi stability. 

 

 

Fig. 14, Ultrastructure of the Golgi complex in mock- (left) and Crn7 siRNA-transfected (right) cells. 

Bars, 100 nm.  
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To better understand the effect of Crn7 knockdown on the Golgi architecture, we 

studied the distribution of cis- and the trans-Golgi markers in fixed mock- and Crn7 siRNA-

transfected HeLa cells (Fig. 15). After 24 h of RNAi application, the Golgi ribbon was not 

present anymore, and smaller Golgi fragments were scattered in the perinuclear area. The trans-

Golgi protein TGN38 and the cis-Golgi marker GM130 were still present in predominantly non-

overlapping domains localized close to each other, some of them being organized in ministacks 

(Fig. 15, right), reminiscent of those forming upon nocodazole treatment (Trucco et al., 2004). 

Importantly, we could not register any vesicles positive of TGN38 in Crn7 RNAi cells. The 

absence of TGN38 carriers combined with the accumulation of TGN38 in the Golgi remnants 

rather than at the cell periphery indirectly indicates an RNAi effect on anterograde, but not 

retrograde transport of TGN38. At later RNAi terms, the overall structure of the cis-Golgi did not 

further change, but the trans-Golgi collapsed completely, and TGN38 was only labelling several 

round-shaped dense compartments per cell (not shown). 

 

 

Fig. 15. Mock- (left) and Crn7 siRNA-transfected HeLa cells stained with GM130 (red) and TGN38 

(green) antibodies. Note TGN38 carrier vesicles (arrows, and a magnification inserted in E, 

corresponding to the highlighted area). Size bars, 2 µm. 
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3.4.3. Block of protein export from the Golgi in Crn7 RNAi cells. 
 

As we found the formation of TGN38 carrier intermediates to be blocked upon the Crn7 

knockdown, we wanted to know whether such effect of Crn7 downregulation on the Golgi export 

can be reproduced and quantified using the VSV envelope G glycoprotein. VSVG is known to 

hijack the anterograde transport system to reach the cell surface after proceeding through the ER 

and Golgi. A VSVG-tsO45 mutant carries a single point mutation F204S (Gallione and Rose, 

1985) rendering it temperature-sensitive with regard to its intracellular trafficking. The mutant 

protein can be accumulated in the ER at 39.5oC, and released to the Golgi complex upon 

temperature switch to 32oC (see Methods). This mutant is widely used to study the dynamics of 

protein trafficking along the biosynthetic pathway (Hirschberg et al., 1998; Presley et al., 1997).  

 

Fig. 16. Block of Golgi export in Crn7 RNAi HeLa cells. Cells were transfected in liquid phase 

with siRNA and plated for 14 hrs at 37oC, then transfected with VSVG-GFP, kept at 37oC for 2 hrs and at 

39.5oC for 8 hrs. For imaging, cells were kept at 32oC to allow VSVG exit from the Golgi. A, Export of 

GFP-VSVG-tsO45 from the Golgi complex in a mock-transfected cell. Note the formation of Golgi-to-
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plasma membrane carriers (arrowheads) and Golgi-derived vesicles (arrows). B, Stability of VSVG-GFP 

signal pattern in a Crn7 RNAi cell. Note the absence of GPCs and carrier vesicles. Size bars, 10 µm. 

 

In mock-transfected HeLa cells, VSVG-tsO45 gradually accumulated in the Golgi 

complex upon the temperature shift (not shown). Starting at 10 minutes after the shift, formation 

of characteristic tubular compartments originating from the Golgi was observed. These 

intermediates, Golgi-to-plasma membrane carriers (GPC), released vesicles targeted to the 

plasma membrane (Fig. 16A). Apart from vesicles derived from GPC, we observed direct 

formation of vesicular transport intermediates leaving the Golgi in the direction of the plasma 

membrane. Already 10 minutes after the temperature shift, VSVG-tsO45 GFP fluorescence could 

be observed at the plasma membrane. Cells treated with Crn7 RNAi selected by scattered CFP-

GalT pattern and imaged under the same conditions demonstrated a similar rate of accumulation 

of VSVG in the Golgi apparatus (not shown). However, we did not observe any release of VSVG 

in GPC or vesicles from the Golgi even 120 minutes after the temperature shift. At all times, the 

VSVG GFP signal was present in scattered Golgi remnants (Fig. 16B). 

 

Fig. 17. Relative GFP fluorescence intensity at the plasma membrane of mock-transfected (blue 

line) and Crn7 RNAi (red line) cells. 100 frames spanning 30 min were quantified. X-axis, time, min; Y-

axis, relative GFP fluorescence level at the plasma membrane. 
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These data infer that the cargo exit from the Golgi complex is completely blocked by 

Crn7 knockdown. To prove this finding, we measured the VSVG-GFP signal at the plasma 

membrane in 100 images spanning 30 minutes of time in mock-transfected and Crn7 RNAi cells 

using MetaMorph software. Fig. 17 demonstrates that in control cells, the GFP fluorescence 

gradually increases to nearly double the initial value, reflecting the delivery of VSVG from the 

Golgi complex, whereas in RNAi cells, the GFP fluorescence at the plasma membrane remains at 

basic threshold level, which is twice lower than that of mock-transfected cells.   

 

 

 

Fig. 18. Block of Golgi export in Crn7 RNAi Vero cells. Experimental conditions as in Fig. 17. A-D, 

Export of GFP-VSVG-tsO45 from the Golgi complex in a mock-transfected cell. Note the formation of 

Golgi-derived vesicles (arrows). E-H, Stability of VSVG GFP signal pattern in a Crn7 RNAi cell. Note the 

absence of GPCs and carrier vesicles. Cell nuclei are marked with asterisks (A, E). Size bars, 10 µm. 

 

 

 46



The block of Golgi export was also observed in Vero cells. This cell line is 

characterized by the delivery of VSVG-tsO45 to the plasma membrane exclusively in Golgi-

derived vesicles rather than GPC (Fig. 18A-D). The fact that VSVG export was also blocked in 

Vero cells (Fig. 18E-H) implies that it is not the cargo progression, but rather cargo selection 

defect that leads to the export block in both HeLa and Vero cells, as physical movement of 

vesicles and membrane evaginations require fundamentally different machineries.  

We further utilized the vector-based RNAi strategy to follow long-term effects of Crn7 

downregulation. DNA fragments encoding siRNA hairpins were cloned into a pSilencer3.1 

vector according to manufacturer’s guidelines, and HeLa cells were transfected with resulting 

plasmids. Cells were kept in culture without selection, fixed and processed for 

immunofluorescence. Knockdown was assessed by Crn7 staining. After one week of vector-

based RNAi, dramatic changes were seen in the Golgi structure. As shown by TGN38 staining 

(Fig. 19A-C), the trans-Golgi was collapsed. Most interestingly, we have observed a strong 

lysosomal phenotype. In Crn7 RNAi(VB) cells, we could not register any cytoplasmic lysosomes, 

and the LAMP1 staining was restricted to the Golgi zone (Fig. 19D-F). This implies that the 

defects in surface-targeted trafficking of TGN38 and VSVG are also characteristic for the 

lysosomal delivery pathway.  
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Fig. 19. Localization of TGN and lysosomal markers in HeLa cells transfected with pSilencer3.1 vector 

encoding Crn7-targeting siRNA. A-C, cells stained with Crn7 (green) and TGN38 (red) antibodies. Note 

scattered TGN38 staining in a Crn7 knockdown cell (arrow). D-F, cells stained with Crn7 (green) and 

LAMP1 (red) antibodies. Note the absence of cytoplasmic LAMP-1 structures in the cytoplasm of the Crn7 

knockdown cell (arrow), and the accumulation of LAMP-1 in the Golgi area. 

 

We established that the anterograde transport through the biosynthetic pathway is 

blocked at the Golgi export stage upon downregulation of Crn7. We were interested whether the 

Golgi import, along with the export, relies on Crn7. That the Golgi entry in anterograde direction 

is not affected by Crn7 RNAi is evident from the accumulation of VSVG in the Golgi (Figs. 16, 

18).  

There is another Golgi entry route. A retrograde trafficking pathway connects the 

endosomal system with the TGN. To test whether the Golgi import from the endosomal system 

requires Crn7, we compared the intracellular dynamics of CTxB, a non-toxic B-subunit of the 

cholera toxin (Sandvig et al., 2004). In control cells, Alexa633-labeled CTxB (CTxB-633) was 
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internalised by cells, and reached the Golgi complex approx. 30 minutes after the beginning of 

treatment (Fig. 20), well in agreement with literature data. CTxB-633 treatment of Crn7 RNAi 

cells resulted in a comparable rate of its delivery to the scattered perinuclear Golgi remnants (Fig. 

20). Thus, the dynamics of the TGN protein import do not rely on the presence of Crn7 on the 

cis-Golgi membranes.  

 

 

Fig. 20. CTxB delivery to the Golgi complex is not affected by the Crn7 knockdown. Left, Crn7 antibody 

staining; right, Alexa633-CTxB signal. Note the accumulation of CTxB in the Golgi zone of the cell 

lacking Crn7 (asterisk). 

 

Our results clearly indicate that Crn7 affects the mammalian Golgi architecture and its 

function in anterograde protein transport, but not retrograde transport. Based on the localization 

of the protein at the outer side of the cis-Golgi membrane, we assume that its function can hardly 

be directly associated with the cargo processing. We anticipate that Crn7 may provide a link 

between transmembrane cargoes (cargo receptors) lacking own adaptor-interacting sequences 

with adaptor proteins. Directly downstream of each coronin core domain, the Crn7 protein 

harbors a copy of a classical YxxФ motif, known to directly interact with µ-chains of AP adaptor 
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complex species (Robinson, 2004). Because the Crn7 core domains consist of WD repeats, well 

known promiscuous protein interaction modules, we anticipated that they may act as cargo- or 

cargo receptor-binding sites. Disconnection of this link should lead to the accumulation of 

cargoes in the cis-Golgi. 

To address this hypothesis, we tested whether Crn7 is capable of interacting with 

adaptor protein complexes. We performed immunoprecipitation experiments using α- and γ-

adaptin antibodies recognizing parts of AP-2 and -1 adaptor complexes, respectively. Crn7 could 

be pulled down by the antibody against γ-adaptin, but was not precipitated by α-adaptin antibody 

(Fig. 21), inferring its interaction with AP-1, but not AP-2. Thus, it does interact with the sorting 

machinery facilitating the Golgi exit of many cargo proteins. It remains to be established whether 

WD repeats in the Crn7 core domains are capable of interacting with cytosolic portions of cargo 

proteins.   

 

 

Fig. 21. Crn7 is found in a protein complex immunoprecipitated by γ-, but not α-adaptin antibody. Left, 

detection of Crn7 in total HeLa cell lysate (left), protein A-sepharose beads incubated with HeLa cell 

lysate in the absence (middle) or presence (right) of the α-adaptin antibody. Right, detection of Crn7 in 

total HeLa cell lysate (left), protein A-sepharose beads incubated with HeLa lysate in the absence 

(middle) or presence (right) of the γ-adaptin antibody.  
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4. DISCUSSION 

 

The Golgi complex is the central protein sorting organelle in eukaryotic cells. 

The Golgi architecture varies significantly between species and cell types, but 

the organelle executes principally the same function. Upon the cargo protein 

entry from the endoplasmic reticulum, resident Golgi enzymes modify the cargo 

in a way that proteins destined to take different transport routes can be 

biochemically distinguished between and selectively recruited to the corres-

ponding export carriers. We suggest that Golgi-localized Crn7 can function by 

regulating the cargo export from the Golgi, and thus affect protein sorting and 

trafficking along the biosynthetic pathway. We anticipate that Crn7 is recruited 

to the Golgi membranes by cytosolic portions of non-YxxФ cargoes and cargo 

receptors, and interacts with AP-1 to allow the Golgi export of such 

cargoes/receptors. 

 

4.1. Physical structure and inheritance of the Golgi complex. 

The mammalian Golgi complex is one of the largest cellular organelles. In the majority of 

cells the interphase Golgi is present in form of a single wide perinuclear ribbon comprised of 

several flattened membrane cisterns, typically around seven and minimally three in number (Fig. 

22). Neighboring the two Golgi poles are cis- and trans- Golgi networks (CGN or cis-Golgi and 

TGN, respectively), the tubulovesicular continua acting as Golgi input and output portals. While 

cis-Golgi receives biosynthetic input from the endoplasmic reticulum, the TGN is a final sorting 

organelle. As an organelle, the Golgi complex is polarized physically and biochemically (see 

below). Cis-, medial and trans-cisternae can be defined according to their morphology, protein 

composition and function. In mammalian cells, all three parts of the Golgi complex are packed 
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into the common ribbon and intimately being connected by means of tubular membrane 

intermediates upon the formation of a trafficking wave (Trucco et al., 2004, and Fig. 22). 

 

 

 

Fig. 22. The mammalian Golgi complex. Top panel, a reconstruction of a typical mammalian 

Golgi ribbon, as seen by EM tomography. Individual cisternae are shown in green to red, COP vesicles – 

in white (from Mogelsvang et al., 2004). Bottom panel, reconstruction of serial EM tomography images 
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demonstrates a formation of direct membrane channels (arrows) connecting individual cisternae upon the 

induction of trafficking wave. Individual cisternae are shown in red to purple (from Trucco et al., 2004). 

 

The Golgi undergoes dramatic structural changes during mitosis (Rossanese and Glick, 

2001). In the early prophase, the Golgi complex is broken down into a “haze”, a collection of 

clusters, vesicles and small cisternae of different size spread around the cytoplasm (Fig. 4.1.C). 

Dispersal of the Golgi complex is considered to be required for proper division of its 

subcomponents between daughter cells. This process is dependent on Polo-like kinase (Lin et al., 

2000; Sutterlin et al., 2001) and Mitogen-activated protein kinase kinase I MAPKK or MEK1 

(Acharya et al., 1998; Colanzi et al., 2000). At a later stage, Golgi material is further dispersed, 

and few or no pronounced Golgi structures are distinguishable by light microscopy (Jesch and 

Linstedt, 1998; Zaal et al., 1999). This process relies on another kinase, Cdc2, but not MEK 

(Lowe et al., 1998). Shortly after cytokinesis, the Golgi reassembly takes place, relying on a 

common membrane fusion machinery - NSF, SNAP and p97 (Acharya et al., 1995; Rabouille et 

al., 1995), as well as on certain resident Golgi proteins like p115, GRASP55 and others 

(Rossanese and Glick, 2001; Shorter and Warren, 1999; Shorter et al., 1999). The distinct Golgi 

ribbon is later reconstructed by directed microtubule-based transport of pre-formed Golgi clusters 

(Moskalewski and Thyberg, 1992; cited after Rossanese and Glick, 2001).  

Apparently, although the cellular distribution of Golgi markers at late stages of the mitotic 

Golgi disassembly resembles that of ER components, and these even often co-localize, the two 

compartments nevertheless preserve their structural identity throughout the cell cycle. Elegant 

experiments performed by several groups provided solid evidence that Golgi membranes do not 

fuse to the ER at any stage of the cell cycle (Axelsson and Warren, 2004; Jesch and Linstedt, 

1998; Jokitalo et al., 2001; Pecot and Malhotra, 2004; Terasaki, 2000).  
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In the yeast S. cerevisiae, small single cisternae are scattered around the cytoplasm, 

usually in a close proximity of cytoskeletal elements. Cis-, medial and trans-Golgi cisternae are 

not packed together and can be spatially far separated. The perinuclear ribbon is never formed, 

and there are no direct membrane intermediates connecting individual cisternae. Mitotic 

inheritance of the Golgi complex in S. cerevisiae relies on myosin V-dependent transport of 

individual cisternae to the forming bud along the actin cables (Rossanese et al., 2001). 

4.2. Protein import and progression in the Golgi. 

The total protein output from the endoplasmic reticulum is destined to reach the Golgi 

complex at its cis-pole. The biochemistry of cargo selection in the ER is not yet understood. It is 

however generally accepted that transport between the endoplasmic reticulum and cis-Golgi pole 

is mediated by COPII-coated vesicles. COPII coatomer consists of five proteins, Sec23/24, 

Sec13/31 and Sar1 GTPase (Sec13 being a WD-repeat protein). Type II coatomer assembly is 

restricted to the ER membrane as activation of Sar1 to Sar1-GTP requires an ER-membrane 

bound GEF Sec12 (Barlowe, 2002; Springer et al., 1999). Selective recruitment of cargo into the 

COPII carriers mediating ER-to-Golgi transport can be based on cargo interaction with the COPII 

coat through diacidic ExD amino acid motifs or pairs of hydrophobic residues like FF or LL 

(Barlowe, 2002). Cargo proteins have been shown to interact either with Sar1 or Sec24 (Aridor et 

al., 1998; Belden and Barlowe, 2001a; Belden and Barlowe, 2001b; Dominguez et al., 1998; 

Giraudo and Maccioni, 2003; Springer and Schekman, 1998; Votsmeier and Gallwitz, 2001).  

In the lumen of the Golgi complex, cargo proteins undergo subsequent glycosylation, 

sugar moieties acting as sorting signals for further progression along the biosynthetic route. Golgi 

glycosyltransferases are strictly compartmentalized, and their action is achieved by sequential 

presentation of cargo proteins transported through the Golgi system to different enzymes. Initial 
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steps of cargo protein glycosylation are taken while still in the lumen of the endoplasmic 

reticulum. ER glycosylation is important for proper folding of the cargo and for successful 

transition through the ER quality control system (Buck et al., 2004; Shi and Elliott, 2004; Vuillier 

et al., 2005; Wujek et al., 2004).  

4.3. Golgi export. 

Export from the Golgi complex is based on the interaction of cargo molecules or cargo 

receptors with cytosolic sorting machinery elements, such as GGA proteins and AP (adaptor 

protein) complexes. GGA proteins 1-3 are known to directly interact with the mannose-6-

phosphate cargo receptors (MPR) and hand them over to adaptor proteins in forming clathrin 

vesicles for the Golgi export (Bonifacino, 2004; Gleeson et al., 2004). AP complexes are 

heterotetramers consisting of subunits called adaptins. They participate in vesicular trafficking 

between different cellular organelles (Figs. 23, 24).  

 

Fig. 23. Membrane specificities of AP and GGA proteins (from Robinson, 2004). 
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In case of AP-1, the complex is constituted of two large subunits, γ and β1, a medium µ1 

and a small σ1 subunit. β-adaptins are known to interact with clathrin (Ahle and Ungewickell, 

1989; Dell'Angelica et al., 1998), and, along with α- and γ-adaptins, to bind several accessory 

proteins (Page et al., 1999; Slepnev and De Camilli, 2000). µ-subunits of AP complex tetramers 

in turn interact with YxxΦ motifs of cargo proteins (Ohno et al., 1995). Another sorting motif 

known to be recognized by AP complex proteins is a dileucine signal, interacting with γ- and δ-

subunits of AP-1 and -3 (Janvier et al., 2003).  

 

 

Fig. 24. Adaptor proteins (in color) connect Golgi cargoes (top) to clathrin (bottom). Green, the AP-1 

recognizes a YxxФ-containing cargo and interacts with clathrin and other adaptors (blue and red). Numb-

like adaptors (blue) can bind cargoes but require AP-1 to connect to clathrin. Epsin-like adaptors (red) 

can bind both cargoes and clathrin. The formation of the clathrin coat is based on a first level protein 

network formed by adaptors connected to sorting signals of cargo proteins. (Robinson, 2004). 

 

Recognition of sugar trees and protein sorting into distinct export routes takes place at the 

trans-Golgi pole and in the TGN. It is best understood in case of the lysosomal pathway based on 

mannose-6-phosphate receptor (M6PR) function. In brief, M6PR recognizes sugar moieties 

specific for proteins destined to be transported to the endolysosomal system. Ligand-bound 

 56



receptors clusters are packed into clathrin-coated vesicles, probably depending on Golgi-

localized, γ-earcontaining, Arf-binding (GGA) family of proteins family proteins (Puertollano et 

al., 2001a; Puertollano et al., 2001b).  

4.4. Models of Golgi dynamics. 

Protein sorting in the Golgi requires constant cargo progression through the ribbon from 

its cis- to trans-pole allowing sequential modification of glycoprotein sugar moieties. At least 

three distinct hypotheses were proposed in order to explain how the cargo flow progresses 

through the Golgi complex (reviewed in Griffiths, 2000; Elsner et al., 2003).  

 

 According to the vesicular trafficking model, the Golgi cisternae are stable 

immobile compartments maintaining constant enzyme compositions. Cargo 

protein progresses through the stack by sequential retrieval into carrier vesicles 

connecting individual cisternae. Retrograde flow is required to achieve 

membrane homeostasis.  

 The cisternal maturation theory suggests that tubulovesicular carriers derived 

from the endoplasmic reticulum gradually fuse to form the cis-most cistern that 

is later displaced in the trans-direction by the cistern to form next. Maintenance 

of Golgi enzyme compartmentalization is achieved by constant retrograde 

vesicular traffic returning the resident Golgi material to the proper cistern.  

 The most recent model suggests that protein trafficking through the Golgi stack 

relies on formation of transient connections between neighboring cisternae. 

Such membrane channels allow immediate unidirectional cargo flow from one 

cistern to another.  
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The last two models have been initially based on an assumption that many cargoes are too 

bulky too be packed into small carrier vesicles. Examples of such cargoes are surface scales 

produced by algae or vertebrate procollagens (Melkonian et al., 1991; Bonfanti et al., 1998).  

Probably the best understood anterograde trafficking model system utilizes ts045-VSVG, 

the thermostable variant of the vesicular stomatitis virus G-glycoprotein (VSVG; Gallione and 

Rose, 1985). Under standard conditions, cultured cells stably or transiently expressing ts045-

VSVG transport the glycoprotein from the ER to the cell surface through the Golgi complex. 

However, upon the temperature shift to 40oC, the same cells accumulate the glycoprotein in the 

ER, and within approx. 20 hrs of incubation in this conditions, ts045-VSVG is present in bulk 

amounts exclusively in the ER (Presley et al., 1997; Hirschberg et al., 1998). Lowering the 

temperature to 32 degrees releases a massive synchronized wave of ts045-VSVG from the ER to 

the Golgi complex and downstream compartments allowing to precisely assess trafficking 

dynamics of this process. This system was utilized successfully to study protein trafficking 

between the endoplasmic reticulum and Golgi (Presley et al., 1997) and between the Golgi 

complex and the plasma membrane (Hirschberg et al., 1998). A recent study utilized a VSVG 

trafficking wave to assess the intra-Golgi trafficking mechanics (Trucco et al., 2004). Using 

separated stacks derived from the Golgi ribbon upon nocodazole treatment, Trucco et al. were 

able to directly demonstrate by electron microscopy tomography that induction of a VSVG wave 

results in development of transient intercisternal connections bridging the adjacent cisterns. This 

finding provided the first experimental evidence for the transient connections model that 

remained purely theoretical until then.  

The same group earlier demonstrated that Golgi enzymes are not present in COPI vesicles 

mediating retrograde membrane flow within the Golgi stack and between the Golgi and ER 

(Kweon et al., 2004). This evidence together with other (Orci et al., 2000a, b) is however in odds 
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with data obtained by other groups (Lanoix et al., 2001; Martinez-Menarguez et al., 2001) 

showing clear accumulation of resident Golgi proteins in COPI carriers. This discrepancy is 

probably due to using different cell types, cargo models and experimental conditions. It is 

reasonable to argue that in most cases, protein trafficking through the Golgi occurs as a 

combination of vesicular trafficking and direct intercysternal bridging events. 

4.5. Crn7 is a novel WD-repeat protein localized to the Golgi complex. 

Coronin family proteins have been shown to regulate the cytoskeleton in a variety of 

systems (see Introduction). A systematic database research was earlier performed in the 

laboratory (A. Schulze, Diploma thesis, University of Cologne, 2001) to find out whether the 

human family is restricted to six 400-500 kDa coronins known previously (reviewed in de 

Hostos, 1999). An additional putative EST was identified, encoding a protein harboring two 

typical coronin core domains, as the related C. elegans POD-1 and Dpod-1 from Drosophila do. 

A complete cDNA for human Crn7 by reverse transcription PCR was cloned using information 

from the EST database (A. Schulze, Diploma thesis, University of Cologne, 2001). The sequence 

encodes a 925-amino acid protein with a predicted molecular weight of 100.5 kDa and a 

predicted isoelectric point of 5.6. A structural peculiarity of Crn7 is the presence of a 47-amino 

acid long proline, serine and threonine-enriched stretch preceding the second group of WD 

repeats designated a PST motif. Crn7 protein is 46% and 47% homologous and 30% and 29% 

identical to Dpod-1 and POD-1, respectively as predicted by NCBI BLAST server using 

BLOSUM62 matrix. Phylogenetic analysis using cluster algorithm clearly positions Crn7 and 

both previously described POD-1 proteins in a group distinct from other coronins. Like both 

POD-1 proteins, Crn7 does not possess a C-terminal coiled coil dimerization domain typical for 

short coronins.   
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Our subcellular fractionation data strongly infer that the protein is distributed between 

cytosol and membrane fractions. The bulk of the protein is present in the cytosol, where almost 

equal proportions are found in a free state or in small protein complexes (200,000g supernatant) 

and in large complexes (200,000g pellet). Separation of postnuclear supernatants on sucrose 

gradients resulted in two prominent peaks of Crn7, corresponding to approx. 10-15% and 40-50% 

of sucrose suggesting that the protein is present in two distinct compartments. These data are in 

good agreement with differential centrifugation results implying that Crn7 is localized on both 

light and heavy membranes. Immunofluorescent analysis of fixed permeabilized cells 

demonstrated that the bulk of membrane-associated Crn7 is localized in the Golgi complex. By 

electron microscopy, we could confirm our biochemical and immunofluorescence data by 

showing Crn7 to be present on the outer side of the Golgi membrane.   

4.6. Targeting of Crn7 to the Golgi. 

Golgi proteins can be transported to the organelle either via the biosynthetic pathway 

(luminal and transmembrane proteins) or from the cytosol (peripheral membrane proteins of the 

outer side). In order to be transported to the Golgi via the biosynthetic route, the proteins in 

question first arrive in the lumen of the ER. ER import is a multi-step process requiring the 

docking of a polyribosome synthesizing the polypeptide at the ER membrane, recognition of the 

newly synthesized hydrophobic amino terminus by the signal recognition particle (SRP), 

pumping the molecule into the lumen and finally cleavage of signal peptides by the ER signal 

peptidase. The “rule-of-thumb” in predicting whether the protein in question will or will not be 

physically capable of being inserted into the ER is that a well-defined hydrophobic N-terminus is 

absolutely required.  
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The analysis of Crn7 N-terminus hydrophobicity using SignalP-HM algorithm (available 

at http://www.cbs.dtu.dk/services/SignalP/) demonstrates that although Crn7 does indeed possess 

weakly hydrophobic amino acid environments close to its amino terminus, still the 

hydrophobicity values are well below threshold, and a cumulative probability of any region to 

represent a signal cleavage site is close to zero (Fig. 25). 

 

 

 

 

Fig. 25. Analysis of hydrophobicity and signal peptide cleavage site probabilities of Crn7 (left) and a 

bona fide secretory protein Txn4 (right). Green line, hydrophobicity of individual amino acids starting 

from the most N-terminal (see sequences below). Red bars, probability of each individual amino acid 

being the most C-terminal of a cleaved signal peptide. Blue line, cumulative value predicting a border 

between the most C-terminal amino acid of a signal peptide and the most N-terminal amino acid of the 

mature secretory protein. Dashed horizontal line, threshold (0.5). 

 

Thus, it is very improbable that Crn7 reaches the Golgi from the ER lumen. This 

assumption is well in agreement with our biochemical and EM data. Firstly, we showed that Crn7 

is found on the outer side of Golgi membranes by electron microscopy (Fig.  8G). Secondly, the 

protein was shown to be extracted from membrane pellets by treatment with sodium carbonate 

known to solubilize peripheral membrane proteins, and it could not be protected from proteinase 

cleavage by compartment membranes. Thus, we conclude that Crn7 is synthesized in the cytosol 

and attached to the outer side of Golgi membranes. 
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Now, what drives Crn7 to the Golgi membrane? Our data suggest that it is tyrosine 

phosphorylation. Not only is Crn7 phosphorylated on tyrosine residues in the membrane fraction, 

but also interfering with tyrosine phosphorylation using short-term genistein treatment leads to a 

reduction of Crn7 on membranes. Phosphorylation is an important signal regulating membrane 

targeting of many proteins. For example, it has been established that phosphorylation 

dramatically increases the binding of AP-2 adaptors to sorting signals (Fingerhut et al., 2001; 

Ricotta et al., 2002).  

A second requirement for Crn7 attachment to Golgi membranes is the protein import from 

the ER. We demonstrated that upon short-term overexpression of syntaxin 5, a cis-Golgi t-

SNARE known to negatively regulate ER-to-Golgi transport, the amount of Crn7 on Golgi 

membranes significantly decreased. These findings imply that the Golgi cargoes (short-term 

storage proteins retrieved from the ER to Golgi) are necessary for the Crn7 targeting to the Golgi.  

4.7. Possible function of Crn7 in the Golgi complex. 

Our data suggest that Crn7 is attracted to Golgi cargoes in a phosphorylation-dependent 

manner and interacts with AP-1 complex mediating Golgi export. The Crn7 RNAi phenotype is 

characterized by the block of Golgi exit of several proteins. TGN38, a Golgi protein cycling 

between the compartment and the plasma membrane, a lysosomal marker LAMP-1 and an 

anterograde trafficking model protein VSVG all accumulate in the Golgi and fail to reach their 

final cellular destinations. Together with the localization pattern, this phenotype suggests that 

Crn7 is indeed required for the Golgi export of cargoes.  

How can such effect be achieved? 

A first possibility is that in Crn7 knockdown cells Golgi cargoes are not properly 

modified (e.g. glycosylated) in a way that is required for export. For example, lack of mannose 
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residues attached to luminal Golgi cargo molecules might in principle affect cargo recognition by 

mannose-6-phosphate receptors and the subsequent interaction between M6PR and the sorting 

machinery required for export. However, direct participation of Crn7 in glycosylation in the 

Golgi would require the presence of Crn7 in the lumen of the Golgi/ER system, which is indeed 

not the case.   

A second possibility is that Crn7 is a co-adaptor linking cargoes or cargo receptors to the 

AP complex species to facilitate the export. Such bipolar interaction may, for example, assist 

cargoes lacking their own sorting signals to be linked to AP. To execute such a function, Crn7 

would have to (a) bind transmembrane cargoes (receptors), and (b) interact with AP-1 or -3 or -4, 

adaptors present in the Golgi. Although we did not demonstrate any direct interaction between 

Crn7 and cargoes, we were able to establish that it does require cargo efflux for its Golgi 

localization, as interfering with cargo entry by overexpressing Syn5 dramatically reduced the 

amount of Crn7 on the Golgi membranes. On the other side, we clearly demonstrated the 

interaction of Crn7 with AP-1, but not AP-2.  

Importantly, there is no indication that any known AP complex species (AP-1 – AP-4) or 

GGA proteins mediates direct transport between the Golgi complex and the plasma membrane 

(see Fig. 23), which is indeed the major Golgi export route taken by surface receptors, 

components of extracellular matrix and soluble secretory proteins. Thus, the third and most 

speculative way Crn7 may act in the Golgi complex is to take over a role of “AP-5” to connect 

Golgi cargoes to plasma membrane in a clathrin-dependent or independent process. 

4.8. Crn7 is an essential mammalian protein. 

Our data suggest that Crn7 is a ubiquitous protein abundantly expressed in most cell types 

and tissues. RNAi experiments showed that Crn7 knockdown results in dramatic, time- and 
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concentration-dependent decrease in cell viability. Taken together, these findings imply that the 

function of Crn7 in the Golgi, e.g. providing the functional connection between Golgi cargoes 

and export machinery, is indeed biologically significant.  

Importantly, not all organisms possess predicted Crn7 homologues. For example, in yeast 

S. cerevisiae there is a single coronin family member, and its function appears to be restricted to 

Arp2/3-mediated cytoskeleton regulation. Thus, the function of mammalian Crn7 is probably 

executed by another protein, for example an epsin-like protein (Duncan et al., 2003). An 

alternative is that yeast cargoes do not require co-adaptors and interact directly with AP-1 and/or 

GGAs.  

In Drosophila and C. elegans, proteins homologous to Crn7 are present. Importantly, both 

POD-1s interact with actin and tubulin, in contrast to Crn7. The C. elegans POD-1 mutant 

phenotype might suggest a role in Golgi export as mutant worms display an accumulation of 

giant vacuoles (Golgi-derived? Swollen Golgi?) in the cytoplasm, and the formation of the 

eggshell is impaired. However, Golgi localization of the worm POD-1 (Crn7) was never 

observed. In the case of Drosophila Dpod1, the Golgi localization was never observed either. 

It is important to emphasize that a wide variety of coronins was probably first established 

by mammals. Evolutionary older phyla are characterized by the presense of either one (short) or 

two (one long and one short) coronins. It is reasonable to speculate that the functions of 

mammalian coronins are more diverse than those of yeast, Drosophila or C. elegans. Crn7 

appears to be unique with regard to its Golgi localization, function and essential nature. 
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5. Materials and methods 

 

“If you can’t do it using imaging, there is no reason for doing it at all…” 

- overheard at a conference 

 

Methods not included in this section were standard methods (Sambrook, J., Fritsch, E.F., 

and Maniatis, T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor 

Laboratory Press, NY, Vols. 1-3 (1989). Buffer solutions not described were standard (ibid.) 

Fine chemicals were from Sigma, unless indicated otherwise. Standard laboratory reagents 

were from local suppliers.  

 

4.1. Acquired Reagents.  

Drs. Mark McNiven, Toshitaka Tanaka and Martin Lowe generously provided rabbit 

polyclonal antibodies against TGN38, LAMP1 and GM130, respectively. Antibodies against 

Crn7 and Crn3 (monoclonal), βCOP and Erd2p (polyclonal) were reported previously (Majoul et 

al., 1998; Rybakin et al., 2004; Spoerl et al., 2002). GFP-Syn5 was a gift from Drs. Rainer Duden 

and Irina Majoul. GFP-VSVG(ts-045) plasmid was from Dr. Jennifer Lippincott-Schwartz. 

Alexa633-labelled CTxB was from Molecular Probes (Utrecht, the Netherlands).  

 

4.2. Mammalian Cell Culture 

HeLa, NIH 3T3 and Vero cells were from ATCC. Cells were grown in a Dulbecco’s 

modified Eagle’s medium containing 4.5 g/liter glucose (Sigma), supplemented with 10% fetal 

calf serum (Biochrom), 2 mM L-glutamine (Biochrom), 1 mM sodium pyruvate (Biochrom), 

100 U/ml penicillin G, and 100 µg/ml streptomycin (Invitrogen). For transfections, we used the 

Lipofectamin Plus system (Invitrogen) or FuGENE6 reagent (Roche) according to the 
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manufacturers' guidelines. For immunofluorescence, cells were grown on coverslips to approx. 

50% confluency, fixed with 3,7% paraformaldehyde, rinsed twice with 20 mM glycine, blocked 

with 0,045% fish gelatine in the presence 0,2% saponin and incubated with primary antibodies 

diluted in blocking buffer. Where indicated, brefeldin A or nocodazole were added to the cell 

culture medium at the indicated concentrations. Latrunculin B was used at 1 µg/ml for 30 min, 

brefeldin A at 20 µg/ml for 5-120 min, colchicine at 5 µg/ml for 30 min, nocodazole at 33 µM for 

30-120 min. 

 

4.3. Protein electrophoresis, immunoblotting, immunoprecipitation. 

Protein samples were separated by SDS-PAGE (10% acrylamide) and blotted onto 

nitrocellulose filters. Unspecific binding of the antibodies was blocked with 4% skimmed milk, 

1% BSA in TBS-T (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.2% Tween 20). The following 

primary antibodies were used: monoclonal anti-Crn7 42-137-1 (hybridoma supernatant) at 1:5, 

beta-actin specific mAb AC74 (Sigma) at 1:10,000, rabbit polyclonal anti-Rab5 (Transduction 

Laboratories) at 1:250, anti-phosphotyrosine mAb at 1:50, rabbit anti-phosphoserine / 

phosphothreonine at 1:1000, rabbit polyclonal anti-PDI antibody (StressGen) at 1:2,000. 

Horseradish peroxidase-conjugated secondary antibodies against murine and rabbit IgG (Pierce) 

were used at 1:7500 and 1:10,000, respectively.  

Immunoprecipitation using protein A-Sepharose (Amersham) was performed as described 

(Neubrand et al., 2005). In brief, cells were grown on ten 15-cm plastic dishes until 90% 

confluency, scraped and homogenized in 1% NP-40 buffer. Lysates were precleared with protein 

A-Sepharose and incubated with 20 µg of the antibody of interest overnight at 4oC. Protein 

complexes recognized by the antibody were pulled down by protein A-Sepharose beads. Beads 

were then washed five times with ice-cold NP-40 buffer and boiled in SDS-PAGE probe buffer. 
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Mouse monoclonal antibody against γ-adaptin antibody was from Sigma, rabbit polyclonal 

antibody against α-adaptin was from Santa Cruz Biotechnologies. 

 

4.4. Immunostaining and imaging 

The cells were washed briefly with PBS, fixed with 4% paraformaldehyde at room 

temperature, rinsed with 20 mM glycine and permeabilized with 0.2% saponin in PBS. Saponin 

was present in the buffers at all later stages of staining at the concentration of 0,02%. Unspecific 

binding of the antibodies was blocked with 0.045% fish gelatine, 0.5% BSA, in PBS. The 

following primary antibodies were used: anti-Crn7 mAb 42-137-1 at 1:75, anti-Erd2p polyclonal 

antibody at 1:50, polyclonal anti-TGN38 at 1:150, polyclonal anti-LAMP1 at 1:50, and 

polyclonal anti-β-COP at 1:50. Secondary goat anti-mouse antibody conjugated with Cy3 

(Sigma) was used at 1:500-1:2000, sheep anti-rabbit antibody conjugated with FITC (BioRad) at 

1:1000. Coverslips were mounted in gelvatol and analyzed using fluorescent and confocal 

microscopes (Leica and Olympus). Digital images were acquired using SensiControl 4.03 

software (PCO Computer Optics, Germany). Immunohistochemical analysis was performed on 

paraffin-embedded 5-µm sections of paraformaldehyde-fixed murine tissues. The deparaffinized 

sections were treated with a 1:75 dilution of affinity purified anti-Crn7 antibody overnight at 4 °C 

and a 1:500 dilution of Alexa 488-conjugated anti-IgG1 secondary antibody (Molecular Probes) 

for 2 h at room temperature. Sections were counterstained with DAPI and visualized by 

fluorescence microscopy. 

For transferrin uptake experiments, FITC-labelled transferrin (Sigma) was added to the 

cell culture medium for 10 min on ice at 50 µg/ml. The cells were then washed and allowed to 

internalise transferrin for the indicated periods of time at 37oC. 
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4.5. Subcellular fractionation and two-dimensional gel electrophoresis 

Subcellular fractionation experiments were performed as described (Spoerl et al., 2002), 

except for cell homogenization which was performed by passing the cells through a 21G 1½ 

needle 15 times. For phosphorylation assays, all the steps were performed in the presence of 

1 mM sodium orthovanadate and 25 nM okadaic acid (BioChemika). Separation of membrane 

organelles on discontinuous sucrose gradients and two-dimensional gel electrophoresis were 

performed as described (Spoerl et al., 2002). 

 

4.6. RNA interference. 

Following short interfering RNA oligonucleotides targeted against human Crn7 were 

designed and supplied by Qiagen: siRNA(1)123, siRNA(2)+520, siRNA(3)1452, siRNA(4)163, 

siRNA(5)2639, siRNA(6)2055, siRNA(7)+60, siRNA(8)2454. Lower indices indicate the starting 

positions of the corresponding sequences in the Crn7 mRNA; oligonucleotides 2 and 7 target 

fragments of the 3’ region of Crn7 mRNA starting 520 and 60 bases after the last coding base, 

respectively. “Fast forward” transfection of HeLa using HiPerFect reagent (Qiagen) was 

performed according to the manufacturer’s protocol. For immunofluorescence, siRNA were used 

to transfect 50%-confluent cells on 12-mm (5 nM RNA) or 25-mm  (30 nM RNA) coverslips in 

all experiments. Cells were analyzed 24 or 48 h after transfection. For electron microscopy, 3 nM 

siRNA were used to transfect 90%-confluent HeLa cells on 12-mm coverslips, and cells were 

fixed 24 h after transfection. For Western blotting, fresh cells were plated onto 6-well plates at 

50% confluency, and analyzed 48 and 72 h after transfection. As controls, mock-transfected and a 

scrumbled RNA-transfected cells were used.  
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For vector-based RNAi, pSilencer3.1 vector (Ambion) was used. Following sense and 

antisense oligonucleotides targeting the region of Crn7 coding region positions 106 and 115 were 

annealed and cloned into pSilencer: 

106> 5'-GATCCGCCACATCAAATCAAGCTGCTTCAAGAGAGCAGCTTGATTTGATGTGGTTTTTTGGAAA-3' 
106< 5'-AGCTTTTCCAAAAAACCACATCAAATCAAGCTGCTCTCTTGAAGCAGCTTGATTTGATGTGGCG-3' 
 
115> 5'-GATCCATCAAGCTGCAGCTTGATCTTCAAGAGAGATCAAGCTGCAGCTTGATTTTTTTGGAAA-3' 
115< 5'-AGCTTTTCCAAAAAAATCAAGCTGCAGCTTGATCTCTCTTGAAGATCAAGCTGCAGCTTGATG-3' 

 

The pSilencer plasmid was introduced into HeLa cells as described in 2.3. 

 

4.7. Electron microscopy. 

For immunoelectron microscopy, three 25-day old black-hooded Lister rats were used. 

Animal husbandry and Methods were approved by the Ethics Committee on Animal 

Experimentation, University of Groningen, the Netherlands. Animals were deeply anaesthetized 

with sodium pentobarbital (NembutalR, i.p., 50 mg/kg) and perfused transcardially, first with a 

solution containing 2% polyvinylpyrrolidone (MW 30 000), 0.4% NaNO3 in phosphate buffer 

(PB; 0.1 M, pH7.4) for 1 min, and then with 4% paraformaldehyde in PB for 10 min. Whole 

brains were removed and stored overnight in the fixative at 4°C. Fifty-micrometer sagittal 

sections of the cerebellum were taken using a vibratome. The sections were washed with 0,05 M 

PB, pH7.4, and incubated sequentially in (1) 1% sodium borohydride in PB (0,05 M, pH7.4) for 

30 min; and (2) 25% sucrose and 3.5% glycerol in PB (0,05 M, pH7.4) overnight. Sections were 

rapidly frozen in liquid propane, washed in 0,1 M PB and incubated with monoclonal anti-Crn7 

antibody diluted 1:50 (in PB, with 0.5% BSA, 0.1% coldwater fish gelatine) at 4°C for 48 h 

(control sections were stained without primary antibodies). The primary antibody was visualized 

using goat anti-mouse antibody Fab fragments coupled to 5 nm gold particles (Amersham, 

Arlington Heights, IL). Subsequently sections were equilibrated in 0.1 M cacodylate buffer 
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pH7.6 and fixed in 2% glutaraldehyde in the same buffer for 30 min. Sections were then 

osmicated in 1% OsO4, 1.5% potassium hexacyanoferrate in cacodylate buffer for 15 min, 

dehydrated in ethanol and embedded in Epon. Serial ultrathin sections were counterstained with 

uranyl acetate and lead citrate, and examined using a Philips CM 100 transmission electron 

microscope. 

For the electron microscopy analysis of the Crn7 knockdown phenotype, mock- and 

siRNA-transfected HeLa cells were fixed for 10 min at room temperature in 100 mM PB 

containing 4% paraformaldehyde and stored at 4oC in PB containing 1% paraformaldehyde until 

further use. Cells were osmicated, dehydrated and embedded as described above. Ultra-thin 

sections were cut and counterstained with uranyl acetate and lead citrate. 

 

4.8. VSVG and CTxB trafficking assays. 

Trafficking assays were performed essentially as described (Hirschberg et al., 1998; 

Majoul et al., 1996). In brief, for VSVG trafficking assay, HeLa or Vero cells were co-transfected 

with GFP-VSVG-tsO45 and CFP-GalT plasmids, kept at 37oC for 2 hrs, and at 40oC for 16 hrs. 

Cells were then shifted to 32oC in the presence of 150 µg ml-1 cycloheximide in phenol red-free 

DMEM high-glucose medium supplemented with 10% serum and 20 mM HEPES to allow the 

synchronous export of VSVG from the ER. Where indicated, cells were transfected with siRNA 6 

h prior to transfection with VSVG. For CTxB trafficking assay, Alexa633-labelled CTxB (from 

Molecular Probes, 500 ng ml-1) was added to the cell culture medium for 3 min at room 

temperature, followed by washing, internalisation at 37oC, fixation and immunolabeling. 
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4.9. Histology. 

Immunohistochemical analysis was performed on paraffin-embedded 5-µm sections of 

paraformaldehyde-fixed murine tissues. The deparaffinized sections were treated with a 1:75 

dilution of affinity purified anti-crn7 antibody overnight at 4°C and a 1:500 dilution of Alexa 

488-conjugated anti-IgG1 secondary antibody (Molecular Probes) for 2 h at room temperature. 

Sections were counterstained with DAPI and visualized by fluorescence microscopy. 
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6. Abbreviations 

 
AP   Adaptor protein or Assembly polypeptide; both relate to the same complex 

BFA   Brefeldin A 

BSA   Bovine serum albumin 

CGN   Cis-Golgi network 

CNS   Central nervous system 

CTxB   Cholera toxin B-subunit 

DAPI   4',6-Diamidino-2-phenylindole 

ER   Endoplasmic reticulum 

EST   Expressed sequence tag 

FITC   Fluorescein-isothiocyanate 

GFP   Green fluorescent protein 

GGA   Golgi-localized, γ-ear-containing, Arf-binding protein 

MPR, M6PR  Mannose-6-phosphate receptor 

NADPH  Reduced nicotinamide adenine dinucleotide phosphate 

siRNA   Short interfering RNA   

(v/t)SNARE (vesicular/target) soluble N-ethylmaleimid-sensitive factor attachment protein 

receptor 

PBS Phosphate-buffered saline 

PCR   Polymerase chain reaction 

PKC   Protein kinase C 

PNS   Postnuclear supernatant 

RNAi   Ribonucleic acid-based gene interference 

RNAi(VB)  Vector-based RNA interference 

Tf   Transferrin 

TGN   Trans-Golgi network 

VSVG   G-glycorotein of the vesicular stomatitis virus 

WD   Tryptophan-Aspartic Acid (dipeptide) 
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Abstract 

 
 

Coronins constitute an evolutionarily conserved family of WD-repeat actin-binding 
proteins, which can be clearly classified into two distinct groups based on their structural 
features. All coronins possess a conserved basic N-terminal motif and three to ten WD repeats 
clustered in one or two core domains. Dictyostelium and mammalian coronins are important 
regulators of the actin cytoskeleton, while the fly Dpod1 and the yeast coronin proteins crosslink 
both actin and microtubules. Apart from that, several coronins have been shown to be involved in 
vesicular transport. C. elegans POD-1 and Drosophila coro regulate the actin cytoskeleton, but 
also govern vesicular trafficking as indicated by mutant phenotypes. In both organisms, defects in 
cytoskeleton and trafficking lead to severe developmental defects ranging from abnormal cell 
division to aberrant formation of morphogen gradients. 

 
Crn7 is a ubiquitous mammalian coronin family member. The protein is distributed 

between the cytosol and Golgi, where it is present at the outer side of the membrane. Golgi 
localization of Crn7 depends on tyrosine phosphorylation and the integrity of ER-to-Golgi 
transport. The protein intimately associates with the Golgi membrane and does not require 
coatomer for its localization. Crn7 is an essential protein, as its knockdown by RNAi leads to a 
dramatic time- and concentration-dependent decrease in cell viability. Crn7 RNAi cells display 
scattered Golgi morphology, as demonstrated by electron and light microscopy. Most 
importantly, the knockdown leads to the block of protein export from the Golgi complex, while 
the import into the organelle, both anterograde and retrograde, remains unaffected. Further, I 
established that Crn7 interacts with AP-1 adaptor protein complex participating in the Golgi 
export by linking cargoes to the clathrin coat. 

 
The Golgi complex is the central protein sorting organelle in eukaryotic cells. The Golgi 

architecture varies significantly between species and cell types, but the organelle executes 
principally the same function. Upon the cargo protein entry from the endoplasmic reticulum, 
resident Golgi enzymes modify the cargo in a way that proteins destined to take different 
transport routes can be biochemically distinguished between and selectively recruited to the 
corresponding export carriers. We suggest that Golgi-localized Crn7 can function by regulating 
the cargo export from the Golgi, and thus affect protein sorting and trafficking along the 
biosynthetic pathway. We anticipate that Crn7 is recruited to the Golgi membranes by cytosolic 
portions of non-YxxФ cargoes and cargo proteins, and interacts with AP-1 to allow the Golgi 
export of such cargoes/receptors. 
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ZUSAMMENFASSUNG 

 
Die Coronine stellen eine evolutionär konservierte Proteinfamilie innerhalb der Aktin-

bindenden WD-Repeat Proteine dar. Sie können aufgrund ihre Struktureigenschaften in zwei 
Gruppen eingeteilt werden. Alle Coronine besitzen ein konserviertes basisches N-terminales 
Motiv und drei bis zehn WD-Repeats, die in einer oder zwei Zentraldomänen angeordnet sind. 
Coronine aus Dictyostelium und Säugetieren sind wichtige Regulatoren des Aktin-Zytoskelettes, 
wohingegen Dpod1 aus Drosophila und Coronin der Hefe Aktin-Filamente mit Mikrotubuli 
verknüpfen. Darüberhinaus wurde gezeigt, dass verschiedene Coronine eine Rolle im 
Vesikeltransport spielen. POD-1 aus C. elegans und Coro aus Drosophila regulieren sowohl das 
Aktin-Zytoskelett als auch den Vesikeltransport, wie in Mutanten gezeigt werden konnte. In 
beiden Organismen führen Defekte in Zytoskelett und Vesikeltransport zu schweren 
Entwicklungsstörungen in Form von abnormaler Zellteilung bis hin zu Abweichungen in der 
Bildung von morphogenetischen Gradienten. 

 
Crn7 ist ein in Säugetieren ubiquitär vorkommendes Coronin. Das Protein ist in Zytosol 

und Golgi-Apparat lokalisiert, wobei es an die Außenseite der Golgi-Membranen bindet. Die 
Lokalisation von Crn7 an Golgi-Membranen hängt ab von Tyrosinphosphorylierung wie auch der 
Integrität des Vesikeltransportes vom ER zum Golgi-Apparat. Crn7 bindet mit hoher Affinität an 
Golgi-Membranen, ohne dafür COP-Adaptorproteine zu benötigen. Dass Crn7 ein essentielles 
Protein ist, zeigen RNAi-Experimente, die Zeit- und Konzentrationsabhängig zu einer sehr 
deutlichen Verminderung des Zellüberlebens führen. Zellen, die mit siRNA gegen Crn7 
behandelt werden, zeigen eine ungeordnete Golgi-Morphologie, die mittels Licht- und 
Elektronenmikroskopie nachgewiesen wurde. Insbesondere führt die Herunterregulation von 
Crn7 zu einer Blokade des allgemeinen Proteinexports aus dem Golgi-Komplex, wohingegen der 
Import in diese Organelle, sowohl anterograd als auch retrograd, unverändert bleibt. 
Darüberhinaus interagiert Crn7 mit dem AP-1 Adaptorproteinkomplex, der eine zentrale Rolle in 
Golgi-Exportprozessen hat, indem er die zum Export bestimmten Proteine mit Clathrin verbindet. 

 
Der Golgi-Komplex ist die zentrale proteinsortierende Organelle. Die Architektur des 

Golgi-Apparates variiert deutlich zwischen den Spezies und Zelltypen, wobei sie aber 
grundsätzlich die gleiche Funktion erfüllt. Wird ein Protein aus dem ER in den Golgi-Apparat 
transportiert, wird es von Golgi-Enzymen so modifiziert, dass Proteine, die für unterschiedliche 
Transportwege bestimmt sind, effektiv unterschieden und für die entsprechenden Exportvesikel 
rekrutiert werden können. Wir stellten fest, dass das Golgi-lokalisierte Crn7 eine Funktion in der 
Regulation des Exportes von Transitproteinen hat. Dadurch wird der anterograde biosynthetische 
Transport in der späten Golgi-Phase unterbrochen. Wir nehmen an, dass Crn7 durch zytosolische 
Anteile von nicht-YxxФ Transitproteinen und ihren Rezeptoren an die Golgi-Membran gebunden 
wird und dort mit AP-1 interagiert, sodass der Export solcher Transitproteine/Rezeptoren 
ermöglicht wird.  
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