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I. ABSTRACT 

 
 

Across the animal kingdom, specialized sensory epithelia are used for 

photoreception, allowing individuals to interact with their environment based on 

visual cues. Generally, neuronal photoreceptor cells (PRs) are organized in the 

retina, a specialized part of body tissue exposed to the outside world, and 

transform the energy of incoming electromagnetic radiation into neuronal 

excitation. This process depends on the large family of opsin proteins which are 

required in PRs of all animal species. This lead to the theory, that the very 

divergent eye structures may share a common ancestor, although they most 

likely arose several times independently during evolution. PRs transmit their 

electrical excitation to higher order neurons, which are organized in the brain of 

the animal. How the brain then integrates the incoming signals from a multitude 

of PRs to reproduce a reliable representation of the world remains one of the 

central questions of neurobiology.  

Most animals can extract different kinds of visual information from their 

environment. Besides detecting the shape and movement of objects, additional 

qualities like color or degree of polarization can also be distinguished. In most 

cases, different classes of PRs are used for each of these visual tasks. For 

instance, color discrimination is achieved by comparing the outputs of PRs 

having different spectral sensitivity, as they express different opsin molecules. In 

humans, three different subclasses of so-called cone PRs, are specialized to 

absorb light of either short, medium or long wavelengths, corresponding to blue, 

green or red colors, respectively. Loss of any one of these PR classes leads to a 

dramatic impairment in the ability to discriminate between colors. Cones are most 

highly concentrated in the center of the retina (fovea), where the three 

subclasses form a random mosaic. Much remains to be understood about how 

different PR subtypes choose expression of their opsin and how they distribute in 

the retina. 
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The developing eye of the fruitfly Drosophila melanogaster was used here 

as a model system to investigate both nature and regulation of the different 

strategies involved in retinal patterning. The adult Drosophila eye consists of 

~800 stereotypical unit eyes (ommatidia), each containing exactly 8 PRs (R1-

R8). The six ‘outer PRs’ (R1-R6) are molecularly identical in all ommtidia as they 

always express the same opsin. They form a separate visual system contributing 

to the detection of shapes and motion. The morphological and molecular 

differences between inner PRs (R7 and R8) from different ommatidia leads to the 

formation of a retinal mosaic in Drosophila. Three ommatidial subtypes can be 

distinguished: while the ommatidia of the ‘dorsal rim area’ (DRA) are always 

found precisely localized in the dorsal periphery, the remaining ‘pale’ and yellow’ 

ommatidia are distributed stochastically through the rest of the retina. Only DRA 

ommatidia can be identified based on morphologic criteria, as these ommatidia 

form a polarizing filter which the fly uses to measure e-vector orientation of 

polarized sunlight for navigational purposes. The remaining two ommatidial 

subtypes are believed to serve color discrimination. They can only be identified 

based on the combination of opsins their inner PRs express. In order to identify 

genes and pathways involved in generating the retinal mosaic in Drosophila, a 

GAL4 enhancer trap screen was performed. Genes exhibiting expression 

patterns similar to inner PR opsins were analyzed genetically. 

The homeodomain transcription factor Homothorax (Hth) was identified as 

the key regulator of DRA specification. Hth is both necessary and sufficient for 

the formation of the polarization sensors. During pupal development, positional 

information provided by the diffusible morphogen Wingless (Wg), as well as the 

dorsal selector genes of the Iroquois complex (IRO-C) and the gene 

optomotorblind (omb) get integrated, leading to the specific induction of Hth 

expression in inner PRs of prospective DRA ommatidia. In contrast to this 

localized specification approach, stochastic expression of the Drosophila 

arylhydrocarbon receptor Spineless (Ss) in a large subset of pupal R7 cells is 

responsible for the specification of color ommtidia. Ss is both necessary and 

sufficient to induce the ‘yellow’ R7 fate (yR7). Ss was therefore identified as the 
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key effector of a stochastic specification approach. How stochastic expression of 

Ss is regulated, remains obscure. However, an activating effect of the Notch (N) 

pathway on yR7 specification indicates that retinal patterning in Drosophila might 

combine the inductive effects of both wg and N signaling once again during pupal 

development. 

Further investigation of the regulatory relationship between Hth and Ss (or 

Wg and N) will provide a better understanding how retinal patterning contributes 

to the integration of different kinds of visual information. 
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I. ZUSAMMENFASSUNG 

 

 

 Das Tierreich bietet eine Vielzahl von Beispielen, wie es spezialisiserte 

Sinnesepithelien einem Individuum erlauben, aufgrund optischer Eindrücke mit 

seiner Umgebung zu interagieren. Neuronale Photorezeptorzellen (PRs) sind 

grundsätzlich in der Retina organisiert - einem spezialisierten Teil der 

Körperoberfläche, welcher der Aussenwelt ausgesetzt ist - und wandeln die 

Energie der einfallenden elektromagnetischen Strahlung in neuronale Erregung 

um. Dieser Prozess involviert die grosse Familie der Opsinproteine, welche in 

den PRs aller Lebewesen benötigt werden. Dies begründete die Theorie, dass 

sich die sehr vielgestaltigen Augenstrukturen auf einen gemeinsamen Vorfahren 

zurück führen lassen, obwohl sie im Laufe der Evolution aller Wahrscheinlichkeit 

nach mehrfach unabhängig voneinander entstanden. PRs übertragen ihre 

elektrische Erregung auf Neuronen höherer Ordnung, welche im Gehirn des 

Tieres organisiert sind. Wie das Gehirn dann die eintreffenden Signale einer 

Vielzahl von PRs integriert, um eine zuverlässige Reproduktion der Welt zu 

erzeugen, bleibt eine der zentralen Fragen der Neurobiologie. 

 Die meisten Tiere können verschiedene Arten visueller Information von 

ihrer Umgebung ableiten. Neben der Detektion von Form und Bewegung von 

Objekten, können auch zusätzliche Qualitäten wie Farbe und Polarisierungsgrad 

unterschieden werden. In den meisten Fällen werden unterschiedliche Klassen 

von PRs für jede visuelle Augabe eingesetzt. Das Unterscheiden von Farben, 

zum Beispiel, wird durch Vergleich der Ausgangssignale von PRs verschiedener 

spektraler Sensitvität erreicht, da diese unterschiedliche Opsinmoleküle 

exprimieren. Beim Menschen sind drei unterschiedliche Subklassen der 

sogenannten Zapfen darauf spezialisiert, entweder Licht kurzer, mittlerer oder 

langer Wellenlänge zu absorbieren, was blauer, grüner oder roter Farbe 

entspricht. Verlust einer dieser PR Subklassen führt zu einer dramatischen 
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Einschränkung der Fähigkeit, Farben unterscheiden zu können. Zapfen treten in 

höchster Konzentration in der Fovea (dem ‘gelben Fleck’) auf, wo die drei 

Subklassen ein zufälliges Mosaik bilden. Bisher ist nicht klar, wie 

unterschiedliche PR Unterarten die Expression ihres Opsins wählen, oder wie sie 

sich in der Retina verteilen. 

 Das sich entwickelnde Auge der Fruchtfliege Drosophila melanogaster 

wurde hier benutzt, um die Art, sowie die Regulation der unterschiedlichen 

Strategien zu untersuchen, welche in der retinalen Musterbildung  involviert sind. 

Das adulte Auge von Drosophila besteht aus ca. 800 Komplexaugen 

(Ommatidien), von welchen jedes genau acht PRs enthält (R1 bis R8). Die sechs 

‘äusseren PRs’ (R1 bis R6) sind molekular identisch in allen Ommatidien, da sie 

immer das selbe Opsin exprimieren. Sie bilden ein abgesondertes visuelles 

System, welches zur Wahrnehmung von Formen und Bewegung beiträgt. Die 

morphologischen, sowie molekularen Unterschiede zwischen den ‘inneren PRs’ 

(R7 und R8) unterschiedlicher Ommatidien führen zur Bildung eines retinalen 

Mosaiks in Drosophila. Drei Subtypen von Ommatidien können unterschieden 

werden: Während die Ommatidien der ‘dorsal rim area’ (DRA, dorsale 

Randregion) immer präzise lokalisiert, in der dorsalen Peripherie angetroffen 

werden, sind die verbleibenden ‘pale’ (‘blass’) und ‘yellow’ (‘gelb’) Ommatidien 

stochastisch über den Rest der Retina verteilt. Lediglich DRA Ommatidien 

können aufgrund morphologischer Kriterien identifiziert werden, da diese 

Ommatidien einen Polarisationsfilter bilden, welchen die Fliege zu 

Navigationszwecken zur Bestimmung der Orientierung des e-Vektors 

polarisierten Sonnenlichts benutzt. Es wird angenommen, dass die beiden 

verbleibenden Ommatidien-Subtypen der Unterscheidung von Farben dienen. 

Sie können nur aufgrund der Opsine, welche ihre inneren PRs exprimieren, 

identifiziert werden. Um Gene und Signalwege zu identifizieren, welche bei der 

Bildung des retinalen Mosaiks in Drosophila eine Rolle spielen, wurde ein GAL4 

‘enhancer trap screen’ durchgeführt. Gene, welche Expressionsmuster 

vorweisen die denen der inner PR Opsinen ähneln, wurden weiter genetisch 

untersucht. 
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 Der Homeodomänen-Transkriptionsfaktor Homothorax (Hth) wurde 

identifiziert als der zentrale Regulator der Spezifikation von DRA Ommatidien. 

Hth is sowohl notwendig als auch hinreichend für die Bildung der Polarisations-

Sensoren. Während des Puppenstadiums werden verschiedene Aspekte 

räumlicher Information, welche vom diffundierenden Morphogen Wingless (Wg), 

den dorsalen Selektor-Genen des Iroquois Komplexes (IRO-C) und dem Gen 

optomotorblind (omb) bereit gestellt werden, in einer Weise integriert so dass Hth 

spezifisch in den inneren PRs der sich entwickelnden DRA Ommatidien 

exprimiert wird. Im Gegensatz zu diesem lokalisierten Spezifikationsansatz ist die 

stochastische Expression des Drosophila Arylhydrocarbonrezeptors Spineless 

(Ss) in einer grossen Subpopulation pupaler R7 Zellen zuständig für die 

Spezifikation jener Ommatidien, welche dem Farbensehen dienen. Ss ist sowohl 

notwendig als auch hinreichend für die Spezifikation von ‘yellow’ R7 Zellen (yR7). 

Ss wurde somit als zentraler Effektor eines stochastischen 

Spezifikationsansatzes identifiziert. Wie die stochastische Expression von Ss 

reguliert wird, bleibt ein Rätsel. Die aktivierende Wirkung des 

Signaltransduktionsweges um den Notch Rezeptor (N) auf die Spezifikation von 

yR7 Zellen birgt nichtsdestotrotz den Hinweis, dass retinale Musterbildung in 

Drosophila die induktiven Effekte der wg und N Signalwege während des 

Puppenstadiums aufs Neue kombiniert. 

 Eine weitere Untersuchung der regulativen Zusammenhänge zwischen 

Hth und Ss (oder Wg und N) wird ein besseres Verständnis davon ermöglichen, 

wie retinale Musterbildung zur Integration verschiedener Arten von visueller 

Information beiträgt. 
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II. INTRODUCTION 
 

Despite the broad range of eye structures across the animal kingdom, all 

visual systems use similar cellular mechanisms to respond to environmental 

cues. For instance, all animals use related opsin proteins in their photoreceptor 

cells (PRs) to capture photons (for review: Arendt and Wittbrodt, 2001). In 

addition, the eyes of most animals can be used to perform two distinct visual 

tasks: They not only form images of the surrounding environment, but they can 

also detect the 'quality' of the visual stimulus, e.g. color or skylight polarization, 

through the use of specialized PR subclasses. These PR subclasses exhibit 

important morphological and molecular differences as well as characteristic 

distribution patterns through the retina in order to maximize the amount of 

information extracted from the environment. Emerging data indicate that retinal 

patterning includes a series of highly coordinated and organized processes. 

Several recent works in the fly eye have begun to identify many of the factors 

involved, and interestingly, similar patterning events occur in the vertebrate retina 

that are sometimes regulated by orthologous factors. These data further imply 

that the vertebrate single lens eye and the insect compound eye use similar 

strategies to achieve their function and to control the development of the retina.  

Rather than reflecting common ancestry of the visual systems, this might 

represent convergent mechanisms used to control opsin expression in different 

PR subtypes and may provide insight into understanding how the complexity of 

the retina is created and maintained. 

 

1. Retinal mosaics in humans and flies 
Humans use rod PRs (‘rods’) for detecting objects under low-light 

conditions, while the cone PRs (‘cones’) participate in color discrimination as well 

as high resolution vision. To serve these purposes most efficiently, the different 

subclasses of cones (called S, M and L, indicating their maximal sensitivity to 

short, medium or long wavelengths) are highly concentrated in the center of the 

retina, the fovea. Interestingly, their distribution there appears to be stochastic, 



II. INTRODUCTION 

 8

resulting in a cone mosaic that can be visualized in vivo (Fig 1A). This allows the 

fovea to serve as the color and high acuity center for the eye. Rods, on the other 

hand, are concentrated towards the periphery of the eye which specializes in 

shape and motion vision under low light conditions. 

 

A BA B

 

Even species as distantly related to humans as flies share important similarities 

in the organization of their retina. For instance, specialized groups of PRs are 

used to discriminate between colors (in analogy to cones), whereas other PRs 

have been optimized for the detection of shapes and for motion detection (in 

analogy to rods). As in the human retina, the different fly PRs also exhibit specific 

distribution (Fig 1B). For instance, despite the dramatic differences in retinal 

organization, both fly and human color PR subtypes show a similar random 

distribution through the retina or the fovea, repectively. Additionally, another 

group of fly PRs is highly concentrated in a certain part of the retina, thereby 

forming a specialized eye region similar to the human fovea. The retinal mosaic 

of the fruitfly therefore represents an attractive model system for the study of 

both stochastic and localized specification events occurring during retinal 

patterning (for review: Wernet and Desplan, 2004). 

 

Fig II.1 Retinal mosaics in humans and flies 
(A) Pseudocolor image of the trichromatic cone mosaic from a living human retina. Blue, green and red colors represent the S, M, 
and L cones, respectively. 
(B) Visualization of the ommatidial mosaic in the housefly, Musca domestica, using epifluorescence and water immersion 
microscopy. 
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2. The Drosophila compound eye 
The Drosophila eye consists of ~800 stereotypical unit eyes (ommatidia), 

each containing 8 light-sensing PRs (called R1-8) as well as accessory cells 

involved in forming the lens or in shielding PRs from light coming from other 

ommatidia (Fig 2A, B and C; for review: Hardie, 1985). The light gathering 

membranes (rhabdomeres) of the six outer PRs (R1-R6) are organized in a chiral 

trapezoid. The center of each ommatidial trapezoid is occupied by the two inner 

PRs, R7 and R8. The rhabdomere diameter of these two inner PRs is 

significantly reduced as compared to outer PRs and they span only half of the 

Fig II.2 The Drosophila compound eye 
(A) Scanning electron micrograph of an adult Drosophila eye, composed of ~800 unit eyes (ommatidia). 
(B) Cross section through an adult Drosophila ommatidium. The light gathering structures (rhabdomeres) of seven photoreceptors 
are visible (R8 is below focal plane). The Rhabdomere diameter is larger for outer PRs (R1-R6) which are aligned as a chiral 
trapezoid. R7 has a smaller rhabdomere diameter and is located in the center of the trapezoid. 
(C) Schematic representation of an adult ommatidium. In the center of the ommatidium, R7 (pink) is located distally on top of R8 
(blue) in the same path of light. Outer PRs (grey) span the entire retina from the apical to the basal side. Pigment cells Green and 
red) shield the ommatidium from light received by neighboring ommatidia, while cone cells (yellow) secrete the lens. 
(D) PRs get specified during third instar larval stages from a pool of undifferentiated cells. Top: third instar larval eye-antennal 
disc (anterior to the left). Bottom: posterior to the morphogenetic furrow (MF), neuronal PR cells get recruited sequentially. First 
R8 (blue), then R2+R5, then R3+R4, then R1+R6 and finally R7.
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retina, with the R7 rhabdomere located distally on top of that of R8: they are 

therefore in the same path of light, providing the ideal configuration to compare 

their outputs. This is absolutely required for the two functions of inner PRs, color 

vision and detection of the vector of polarized light. During third instar larval life, 

the eight Drosophila PRs of each ommatidium (R1-R8) are selected from an 

undifferentiated pool of cells (Fig 2D; for review: Brennan and Moses, 2000). 

Through a process that is now fairly well understood, the interplay of the Notch, 

EGFR and Sevenless signaling pathways at the ‘morphogenetic furrow’ (MF) 

leads to a sequential recruitment of PRs into evenly spaced clusters. R8 is the 

first PR to be determined. This ‘founder cell’ then recruits all six outer PRs in a 

pair-wise fashion (first R2 and R5, then R3 and R4, finally R1 and R6). R7 is the 

last PR to be recruited (Freeman, 1996; Wolff, 1993). 

 

3. The Drosophila ommatidium: outer photoreceptors 
According to their morphology, axonal projections and opsin expression, 

the fly PRs of every adult ommatidium can be grouped into two functional 

categories: The outer PRs are the fly equivalent of the vertebrate rods and are 

involved in motion detection and image formation (Fig 3A). Computation of their 

outputs begins in the first optic lobe of the fly, the lamina (L), where the outer 

PRs project their axons. Inner PRs project to the second optic lobe, the medulla 

(M), where the neuronal processing  both color and polarized light vision begins 

(for review: Meinertzhagen and Hanson, 1993; Morante and Desplan, 2004). The 

outer PRs have been shown to be both molecularly and morphologically identical 

in all ommatidia. They capture photons with high efficiency, due to the expression 

of their broad spectrum rhodopsin Rh1, as well as the large diameter of their 

rhabdomeres which extend from the basal to the apical side of the retina (Zuker 

et al., 1985); Fig 3B). Different techniques have been used to characterize the 

adult Drosophila visual system and the first PR subclass to be studied 

molecularly in detail was the outer PR system. Cloning of the rh1/ninaE gene 

allowed the visualization of Rh1 expression using antibodies against the Rh1 

protein (Fig 3C, top). Furthermore, axon projections of the outer 



II. INTRODUCTION 

 11

M

R1 R6
R7

R8

L

rh1 rh1

A B

R

L

M

rh1-lacZ

Rh1

L

Rh1

outer PRs

C D E

M

R1 R6
R7

R8

L

rh1 rh1

M

R1 R6
R7

R8

L

rh1 rh1

A B

R

L

M

rh1-lacZ

Rh1

L

Rh1

outer PRs

C D E

PR axons to the lamina could be visualized by fusing the ninaE promoter to 

reporter genes like lacZ (Sheng et al., 1997); Fig 3C, bottom). These new 

histological techniques proved to be significantly more reliable than the 

previously developed water immersion microscopy, under which auto-

fluorescence of Rh1 could be observed in outer PRs (Fig 3D). The use of this 

technique was limited due to the rapid bleaching of the visual pigment (Pichaud 

and Desplan, 2001). Finally, visualization of the ommatidal mosaic was 

revolutionized by the development of multi-colored fluorescent antibodies as well 

as whole mount and thin section techniques (Fig 3E). 

Fig II.3 The Drosophila ommatidium: outer photoreceptors 
(A) Schematic representation of an adult ommatidium. The outer PRs R1-R6 are identical in all ommatidia.. They express the 
broad band opsin Rh1 (ninaE) and project to the first layer of the optic lobe, the lamina (L). 
(B) Silver-stained section through the Drosophila visual system. Outer PRs are highlightened in green. Their rhabdomeres span 
the entire retina. L=lamina; M=medulla. 
(C)-(E) Expression of rh1 in outer PRs. Top: Frozen sections (10 µm) through adult heads from wildtype flies stained with an 
antibody against Rh1 (green). Bottom: Expression of rh1-lacZ visualized on frozen sections, using X-Gal. βGal activity is 
detectable in the entire retina as well as in axonal projections to the lamina (L). (D) Visualization of Rh1 using autofluorescence 
under UV illumination. (E) Thin section (1 µm) through through an adult wildtype eye double labeled with Anti-Rh1 (green) and 
an antibody labeling a subset of inner PRs (pink). 
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4. The Drosophila retinal mosaic: inner photoreceptors 
Although the general external morphology of the fly eye does not indicate 

heterogeneity among ommatidia, three ommatidial subtypes have been 

described in Drosophila (Fig 4A). In all three cases, molecular and sometimes 

morphological features of the inner PRs have been used to categorize the 

ommatidial subtypes. Detailed morphological analysis of adult eyes from different 

fly species has revealed a first subset of ommatidia always found in one or two 

rows at the dorsal rim of the fly eye, called the ‘dorsal rim area’ (DRA, shown in 

pink in Fig 4A; (Hardie, 1984; Wada, 1971; Wada, 1974). These ommatidia 

exhibit an enlarged rhabdomere diameter as well as specialized rhabdomeric 

microvilli, making them strongly polarization sensitive (Fig 4B and C). It is 

believed that DRA ommatidia are used to improve navigation by measuring the 

oscillation plane of polarized skylight (Wolf et al., 1980)for review: Labhart and 

Meyer, 1999; Labhart and Meyer, 2002). The remaining two ommatidial subtypes 

have first been characterized in elegant studies by Franceschini and Kirschfeld 

(Franceschini et al., 1981). Fluoroscopy revealed the existence of two separate 

classes of ommatidia interspersed randomly within the fly retina: inner PRs 

appeared either pale (p) or yellow (y), with 30% being p and the remaining 70% 

being y. Based on their different spectral sensitivities, p and y ommatidia were 

proposed to contribute to the discrimination between different colors. 

 Approximately 25 years later, the cloning of the rhodopsin genes (rh) from 

Drosophila has provided a molecular basis for all three ommatidial subtypes. 

Inner PRs in DRA ommatidia were found to be monochromatic as they express 

the UV opsin Rh3 in both R7 and R8 (Fig 4D left; (Fortini and Rubin, 1990; 

Fortini and Rubin, 1991; Fryxell and Meyerowitz, 1987; Fryxell and Meyerowitz, 

1991). Outside of the DRA, ommatidia with monochromatic inner PRs have never 

been reported, suggesting that this situation developed to specifically avoid 

confusion between color and polarization. The p ommatidia were found to always 

contain the UV-sensitive Rh3 in R7 and the blue-sensitive Rh5 in R8 (middle). A 

different UV-sensitive Rh4, was found in the R7 of y ommatidia, which always 

express the green-sensitive Rh6 in R8 (Chou et al., 1996; Huber et al., 1997; 
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Papatsenko et al., 1997). Therefore, expression of the rhodopsin genes is always 

coupled between R7 and R8, leading to the formation of only two ommatidial 

subtypes (p and y) in the main part of the retina (for review: (Cook and Desplan, 

2001). It is believed that the differences in opsin expression play a crucial role for 

the fly’s ability to discriminate between colors, with the p ommatidia 

discriminating among shorter wavelengths (UV to blue) while the y ommatidia are 

specialized in the perception of longer wavelengths, reaching into the green part 

of the spectrum. Interestingly, the human cones, which express blue-, red- or 

green-specific opsins are also distributed stochastically in the fovea, but there is 

no tight coupling of the opsin expression between different cells (for review: 

Nathans, 1999). Taken together, the retinal mosaic of the fruitfly is composed of 

three ommatidial subtypes, which are found either localized (DRA) or randomly 

distributed (p and y) throughout the retina (Fig 4E). 

 

5. Visualization of the p and y ommatidial subtypes 
 Cloning of the genes encoding the 4 Drosophila inner PR Rhodopsins 

(rh3-rh6) allowed a more precise characterization of p and y ommatidia (Chou et 
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Fig 4. The Drosophila retinal mosaic: inner photoreceptors 
(A) Three ommatidial subtypes are distributed throughout the Drosophila retina. Scanning electron micrograph illustrating the 
fact that, although they look identical from this point of view, ommatidia fall into three categories. 
(B)+(C) DRA ommatidia were identified morphologically. The vast majority of ommatidia manifests a small inner PR 
rhabdomere diameter. (C) In the one or two dorsal-most rows of ommatidia, the ‘dorsal rim area’ ( DRA), however, inner PRs R7 
and R8 have a dramatically enlarged rhabdomere diameter. 
(D) Based on opsin expression and rhabdomere morphology, three ommatidial subtypes can be distinguished. Inner PRs of 
ommatidia located in the DRA always both express the UV-specific opsin Rh3 (left). So-called ‘pale’ (p) ommatidia always 
express Rh3 in R7 and Rh5 in R8 cells (middle) whereas ‘yellow’ (y) ommatidia express Rh4 in R7 and Rh6 in R8 cells (right). 
(E) DRA ommatidia are always found in 1-2 rows at the dorsal periphery of the adult retina, whereas p (~30%) and y (~70%) 
ommatidia are distributed randomly through the retina (eq = equator). 
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al., 1996; Chou et al., 1999; Fryxell and Meyerowitz, 1987; Huber et al., 1997; 

Montell et al., 1987; Papatsenko et al., 1997). Fusion of the rh3 and rh4 

promoters with lacZ allowed the visualization of the p and y subtypes in R7 cells 

(Fig 5A). Expression of these reporter transgenes was shown to faithfully re-

produce the expression pattern of the endogenous opsin proteins: expression of 

rh3-lacZ was restricted to the DRA inner PRs (arrow) as well as to the pR7 cells, 

whereas rh4-lacZ expression is specific to the yR7 cells. Due to the cytoplasmic 

localization of the βGal protein, these transgenes have also been used to 
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Fig II.5 Visualization of the p and y ommatidial subtypes 
(A)-(C) Visualization o p and y subtypes in R7 cells. Frozen sections through an adult head from wildtype flies carrying the opsin 
reporter constructs rh3-lacZ (left) and rh4-lacZ (right). βGal activity is detectable in the DRA (rh3, arrow) and in subsets of R7 
cells with cell bodies in the distal half of the retina and projections to the medulla (M). (B) Frozen section double labeled with 
antibodies against Rh3 (red) and Rh4 (cyan) allows simultaneous visualization of both R7 subtypes. pR7 and yR7 are non-
overlapping. (C) Whole mounted retina double labeled with Anti-Rh3 and Anti-Rh4 reveales ~70 of yR7 and ~30% of pR7. 
(D)-(F) Visualization o p and y subtypes in R7 cells. Opsin reporter constructs rh5-lacZ (left) and rh6-lacZ (right)are expressed in 
subsets of R8 cells with cell bodies in the proximal half of the retina and projections to the medulla (M). (E) Double labeled with 
antibodies against Rh5 (blue) and Rh6 (green) allows simultaneous visualization of both R8 subtypes. (F) Whole mounted retina 
double labeled with Anti-Rh5 and Anti-Rh6 reveales ~70 of yR8 and ~30% of pR8. 
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visualize the axonal projections of inner PRs to the medulla (M). Furthermore, 

antibodies raised against the Rh3 and Rh4 proteins have been used on frozen 

sections to simultaneously visualize exclusive expression of these opsins in pR7 

and yR7 cells, respectively (Fig 5B). Recently, this technique has been applied 

to whole mounted retinas from adult flies (Cook et al., 2003), thereby specifically 

visualizing the ommatidial mosaic in R7 cells (Fig 5C). 

 Similar techniques have recently been applied to visualize p and y 

subtypes in the R8 cells. Fusions of the rh5 and rh6 promoters with lacZ were 

used to specifically visualize pR8 and yR8 cells and their axonal projections to 

the medulla (Fig 5D). Antibodies against Rh5 and Rh6 were used on frozen 

sections to visualize exclusion between both subsets in R8 cells (Fig 5E). Finally, 

the ommatidial mosaic in R8 cells has only recently been visualized by applying 

these antibodies on whole mounted adult retinas (Fig 5F). 

 

6. Maturation and re-organization of pupal ommatidia 
 During third instar larval life, the eight Drosophila PRs of each 

ommatidium (R1-R8) are selected from an undifferentiated pool of cells (Fig 
6A+B; for review: Brennan and Moses, 2000). Based on their order of 

recruitment and the combination of transcription factors that they express, the 

eight larval PRs represent at least 5 different cells types (R8, R2+R5, R3+R4, 

R1+R6, and R7). It should be noted that the larval R3 and R4 cells can also be 

viewed as individual cell types as they respond differently to the positional 

information that establishes the chirality of the ommatidium in a process called 

planar polarity (see below; for review: Tree et al., 2002). During the next four 

days of pupal development, the PRs undergo dramatic morphological changes, 

with the formation of the rhabdomeres as well as the onset of opsin expression  

(Fig 6C+D). At the end, only three functional classes of PRs can be distinguished 

in the adult ommatidium: the outer PRs R1-R6 and the two inner PRs R7 and R8 

(Fig E+F; for review: Wolff, 1993). The outer PRs have now become virtually 

identical. They all express the same opsin gene (rh1/ninaE) and their 

rhabdomere morphology as well as axon projection pattern allows the fly to use 
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this group of PRs as a separate visual system for shape and motion vision (Lee 

et al., 2001). The two inner PRs, which, interestingly were the first (R8) and the 

last (R7) PR to be recruited into the ommatidium, are now grouped together to 

form the second visual system. They have become morphologically similar, with 

both rhabdomeres spanning opposite halves of the retina (R8 proximally and R7 

distally). Both inner PRs from a given ommatidium always project to the same 

position in the medulla. However, terminations of R7 and R8 are found at slightly 

different layers (with R8 terminating before R7; for review: Clandinin and 

Zipursky, 2002). Adult R7 and R8 cells therefore provide the optimal 

configuration for comparing stimuli, both by working together in the same optical 

Fig II.6 Maturation and re-organization of pupal ommatidia 
(A)+(B) Third instar larval PRs develop in the eye imaginal disc, posterior to the morphogenetic furrow. They can be grouped 
into at least 5 categories, based on the order of their recruitment and the combination of transcription factors they express. R7 and 
R8 are already distinguishable based on their axon projection to the same layer of the brain, the medulla (M).. 
(C)+(D) The pupal retina starts to re-organize. Approximately 48 hrs later, the disc has everted and a flat retina is visible. PRs 
start to move apart. Opsin expression and rhabdomere formation are about to begin. 
(D)+(E) The adult retina: another 2-3 days later, the re-organization is complete. The eye and the head capsule are fused. PRs 
have developed elongated rhabdomeres and R7 has moved on top of R8. Outer PRs express rh1, whereas inner PR opsin 
expression and rhabdomere morphology dictate the subtype of the ommatidium.  
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path and by allowing further processing in the brain. Taken together, all pupal 

ommatidia have to re-organize their PRs by grouping them into the two functional 

categories represented in the adult eye. 

 

7. Specification of inner PRs: the role of spalt 
An important first step towards understanding ommatidial maturation came 

with the description of the role of the spalt gene complex, which encodes two 

homologous zinc finger transcription factors (Kuhnlein et al., 1994). The spalt 

genes are specifically expressed in R7 and R8   (Fig 7A) and loss of spalt leads 

M

R1 R6
R7

R8

spalt

L

rh1 rh1

R1 R6

R8

PR ‘ground state’

spalt -

rh1 rh1
rh1

rh1

R7

Rh1

Rh1

6

4

3 2 1

7

1

3
5 6

78

5

2

4

A. wildtype

B.Loss of spalt

(Mollereau et al, 2001)

(Mollereau et al, 2001)

(Mollereau et al, 2001)

(Mollereau et al, 2001)

M

R1 R6
R7

R8

spalt

L

rh1 rh1

M

R1 R6
R7

R8

spalt

L

rh1 rh1

R1 R6

R8

PR ‘ground state’

spalt -

rh1 rh1
rh1

rh1

R7

Rh1

Rh1

6

4

3 2 1

7

1

3
5 6

78

5

2

4

A. wildtype

B.Loss of spalt

(Mollereau et al, 2001)

(Mollereau et al, 2001)

(Mollereau et al, 2001)

(Mollereau et al, 2001)

Fig II.7 Specification of inner PRs: the role of spalt 
(A) Spalt is expressed specifically in inner PRs R7 and R8, in the wildtype (purple). 
(B) In spalt mutants, inner PRs get mis-specified. Electron microscopy revealed loss of the typical inner PR rhabdomeres with 
small diameter, in sal (-/-) eyes. (compare to A,left). (B) Antibody staining on thin sections revealed that all 8 PRs express Rh1 
(green) in the absence of Sal (compare to A, center: Only six outer PRs per ommatidium express Rh1, in the wildtype). Right: 
schematic representation of the spalt (-/-) phenotype: Both molecular as well as morphological features of inner PRs are lost. 
Instead, these PRs gain all characteristica of outer PRs, except their axon projection pattern: R7 and R8 still project to the medulla 
(m), whereas R1-R6 terminate in the lamina (L). This indicates that, in the absence of Spalt, inner PRs got originally specified 
correctly, but then failed to maturate into adult inner PRs. Instead, they seem to be stuck in an outer-PR-like PR ‘ground state’. 
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to a loss of inner PR characteristics, both morphologically and molecularly, i.e. 

loss of Rh3, Rh4, Rh5 and Rh6. Instead, R7 and R8 gain outer PR markers, like 

rhabdomere morphology and rh1 expression (Fig 7B). However, the axonal 

projections of these transformed inner PRs to the medulla are maintained 

(Domingos et al., 2004; Mollereau et al., 2001). It was therefore concluded that, 

in spalt mutants, inner PRs are initially properly specified but then lose their 

identity and instead terminally differentiate into outer PRs. Spalt, is therefore 

necessary to distinguish differentiating inner PRs from an otherwise outer PR-like 

‘ground state’ toward which all PRs tend to develop (right). This provided a 

molecular basis to the existence of two overlapping visual systems in the adult. 

This is also particularly interesting as it might provide a simple explanation of 

how the originally very divergent outer PRs R1-R6 adopt their uniform cell fate 

simply by being denied further differentiation signals like spalt expression. The 

presence of the two distinct genetic programs of specification, followed by 

differentiation, might illustrate the dual function of Drosophila PRs: They are first 

specified as neurons that must find their appropriate target in the optic lobes. 

They subsequently differentiate as light sensing cells. In contrast, the vertebrate 

retina has two cell types to perform these roles: rods and cones to detect light, 

and retinal ganglion cells to project out of the retina into the brain.  

 

8. Distinguishing between R7 and R8 cell fates 
Both inner PRs require spalt to adopt their appropriate cell fate (Domingos 

et al., 2004). Nevertheless, R7 or R8 represent different PRs, both 

morphologically (position within the retina) and molecularly (different rhodopsins), 

and other factors are therefore necessary to further distinguish between the two 

inner PR cell fates. By screening for factors that bind to conserved sequences in 

the Drosophila opsin promoters, the gene prospero was recently shown to be 

necessary for distinguishing R7 from the R8 cell fate (Cook et al., 2003). 

Prospero is a homeodomain transcription factor that is known to be important for 

peripheral nervous system development as well as asymmetric cell division 

(Kauffmann et al., 1996). In the adult eye, Prospero is expressed specifically in 
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the R7 cell in response to the signaling pathways responsible for R7 

specification, Notch, EGFR and Sevenless (Fig 8A, left and center). It has been 

shown that Prospero binds to conserved sequences in the R8 opsin promoters 

(rh5 and rh6), thereby leading to their repression in R7. Loss of prospero indeed 

leads to a de-repression of rh5 and rh6 in adult R7 cells, creating a second R8-

like cell per ommatidium (R8*, right). Interestingly, loss of prospero also results in 

repression of the proper R7 rhodopsins, most likely to avoid co-expression of 

opsin genes, a situation that is generally not observed in sensory receptors (for 

review: Celik et al., in press). These observations suggested that prospero is 

able to act on the generic inner PR fate and to push cells toward and R7 fate and 

away from an R8 fate. However, although R7 cells mis-express R8 rhodopsins in 

prospero mutants, they do not gain all R8 markers and their rhabdomeres are still 

positioned correctly in the distal part of the retina. This observation can be 

interpreted as a reversion of R7 back to a generic inner PR fate, which favors 

expression of R8 rhodopsins. This suggests that other genes are necessary to 

fully push the generic inner PR fate toward the R8 cell type. 

One gene necessary for both specification and maturation of R8 cells 

encodes the Zn finger transcription factor Sensless (sens; (Nolo et al., 2000). 

Sens had been shown to be specifically expressed in R8 cells, throughout eye 

development (Fig 8B): PRs get mis-specified in sens mutants: Although R8 cells 

are originally specified correctly, they then develop into outer PRs and loose their 

inner PR identity (Frankfort et al., 2001). Consequently, R7 cells are not recruited 

in sens (-/-) mutants, due to the loss of the R8-specific Boss signal required for 

Sevenless receptor activation in potential R7 cell precursors (Cooper and Bray, 

2000; Reinke and Zipursky, 1988; Tomlinson and Struhl, 2001). Fewer PRs are 

therefore counted in ommatidia lacking Sens function (right). Sens has recently 

been shown to be sufficient for activation of rh6 expression when ectopically 

expressed in developing PRs, further suggesting that Sens is both necessary 

and sufficient to induce R8 cell maturation (Domingos et al., 2004). Finally, 

expression of both Pros and Sens has been shown to be lost in sal 
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(-/-) PRs (Domingos et al., 2004). This suggested that inner PRs undergo a 

series of consecutive determination steps, by gaining expression of different 

combinations of transcription factors. It appears therefore that R7 cells (Sal + 

Pros) and R8 cells (Sal + Sens) are the products of such a combinatorial code. 

 

9. Dorso-ventral development of the Drosophila eye 

All developing Drosophila ommatidia rotate by 90 degrees. Interestingly, 

the clusters rotate into opposite directions in the ventral and dorsal half of the eye 

Fig II.8 Distinguishing between R7 and R8 cell fates 
(A) The transcription factor Prospero (Pros) is expressed specifically in R7 cells, as seen on frozen sections double labeled for 
Pros (red) and Sal (green). Only R7 cells co-stain for Pros and Sal (top arrow). Loss of Pros results in R7 cells losing their typical 
adult characteristica (opsin expression, nuclear position - not shown); instead, these cells now resemble R8 cells (R8*; bottom, 
right). This suggests that Pros is necessary to distinguish the fate of R7 cells from an R8-like ‘generic inner PR fate’, in particular 
by repressing R8 opsin expression. 
(B) The transcription factor Senseless (Sens) is expressed specifically in R8 cells, as seen on frozen sections double labeled for 
Sens (blue) and Sal(green). Only R8 cells co-stain for Sens and Sal (bottom arrow). Loss of Sens results in the R8 cell developing 
into an outer PR (R0); consequently, R7 cells never get specified due to the lack of the Boss signal. 
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(Fig 9A; (Cooper and Bray, 1999); for review: Strutt and Strutt, 2003). In the 

adult eye, two compartments can therefore be distinguished within which all 

chiral ommatidia point towards the nearest pole (Fig 9B; (Tomlinson and Struhl, 

1999). Ommatidia of the dorsal and ventral compartments meet at a sharp 
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Fig II.9 Dorso-ventral development of the Drosophila eye 
(A)+(B) Larval ommtidia rotate by 90 degrees. Dorsal and ventral ommatidia rotate in opposite directions (blue arrows). The two 
ommatidial forms meet at the ventral midline, the equator (Eq). (B) Left: Dorsal ommatidia point with R3 towards the dorsal pole 
(up), while ventral ommatidia point with R3 towrds the ventral pole (bottom). Dorsal ommatidia (red) and ventral ommatidia 
(blue) have opposite chirality. Right: In the wildtype, all ommmtidia on either side of the equat have the same chirality. 
(C) Expression of the IRO-C complex is specific to the dorsal compartment. Thord instar larval eye disc from flies carrying a lacZ 
enhancer trap in IRO-C. βGal activity is specific to the dorsal half of the developing eye (d=dorsal, v=ventral, 
MF=morphogenetic furrow). 
(D)+(E) The IRO-C complex is essential for generating the equator. IRO-C contributes to generating Notch (N) pathway activity a 
the equator, by restricting fringe (fng) expression to the ventral eye. N activity is crucial for establishment of ommatidial polarity 
as well as eye growth. The wingless (wg) pathway represses growth from the poles (DL=Delta, SER=Serrate). (E) Ectopic 
equators form at the boundary of IRO-C (-/-) clones. 
(F) The N pathway serves as an amplification system in R4, to read small local differences in the Wg morphogen gradient (= 
Frizzled/Fz receptor activity gradient). N responsive genes (mδ) get specifically activated in R4 (dsh=disheveled). 
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boundary at the midline of the adult eye, called the equator (Eq). Very early 

during eye development, the undifferentiated cells of the Drosophila eye imaginal 

disc anterior to the morphogenetic furrow are subdivided into dorsal and ventral 

compartments. The dorsal selector genes araucan (ara), caupolican (caup), and 

mirror (mirr) encode homologous homeodomain transcription factors and form 

the Iroquois complex (IRO-C; for review, see (Cavodeassi et al., 2001). During 

early larval stages these genes become specifically expressed in the territory that 

will give rise to the dorsal eye and head capsule (Fig 9C; (Brodsky and Steller, 

1996). The IRO-C complex is activated very early during eye development by the 

diffusible morphogen Wingless (wg; (Lee and Treisman, 2001). At this stage, the 

most important function of IRO-C is the repression of the gene fringe, whose 

expression is thereby limited to the ventral eye tissue (Fig 9D left; for review: 

Irvine, 1999). This was shown to be crucial for the generation of localized Notch 

(N) pathway activation at the developing equator, through a complicated interplay 

of the proteins Fringe, Serrate and Delta (center). N activity at the equator is 

essential for both growth of the eye as well as for the establishment of 

ommatidial polarity (right; (Cho and Choi, 1998). At later stages, wg expression 

becomes restricted to the peripodial membrane at the dorsal and ventral poles of 

the imaginal disc, from where the Wg morphogen is believed to form two 

gradients towards the equator (Heberlein et al., 1998; Treisman and Rubin, 

1995). The IRO-C complex is therefore particularly important for dorsoventral 

development and ectopic equators form at the border of clones of eye tissue 

lacking IRO-C function (Fig 9E; (Cavodeassi et al., 1999; McNeill et al., 1997). 

The interplay of the N and wg pathways during the establishment of ommatidial 

polarity has been studied in great detail. In this context, the two outer PRs R3 

and R4 proved to be a particularly interesting model system, as their position 

within the ommatidium determines its chirality. Using sophisticated Drosophila 

genetics, the N pathway was shown to serve as an amplification system in R4 

that allows the decoding of tiny local differences in the Wg gradient over the 

distance of only one cell diameter (Fig 9F). Important wg pathway components 

like the receptor Frizzled and the effectors Armadillo, Disheveled and TCF were 
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shown to be required in this process, as well as the N pathway components mδ 

and suppressor of Hairless / su(H) (Cooper and Bray, 1999); for review: Irvine, 

1999). Mutations in these genes will be used in this report, to test a possible role 

of the N and wg pathways during ommatidial subtype specification.  

 

10. The current model for ommatidial subtype specification 
Outside of the DRA, p and y ommatidia are found in a ratio of 30:70, 

distributed randomly through the fly retina (Chou et al., 1996; Fortini and Rubin, 

1990; Franceschini et al., 1981). Although an elegant model has been proposed 

to explain the distribution of M and L cones in humans (Nathans, 1999), it is still 

not clear how stochastic choices are made between different PR cell fates in 

humans, or in flies. Nevertheless, two simple mutant backgrounds were used in 

Drosophila to build a mechanistic model describing the instructive signals 

specifying p and y ommatidia. In the absence of R7 cells (sevenless), R8 cells 

always express the yR8 opsin rh6 (Banerjee et al., 1987; Hafen et al., 1987; 

Tomlinson et al., 1987). It was therefore proposed that rh6 represents the 

‘ground state opsin’ expressed in R8 cells (Fig 10A; (Chou et al., 1999). 

Furthermore, a signal from those R7 cells that have chosen to express the p 

opsin rh3 (pR7) is necessary for R8 to acquire the p fate (rh5). Chou and 

colleagues (1999) have further elaborated on this model; they generated adult 

ommatidia lacking R8 cells and found that both rh3 and rh4 were expressed 

randomly in the R7 cells of these retinas, suggesting that R8 is not necessary for 

the stochastic choice to occur in R7 cells. Similarly, when several R7 cells were 

induced within one ommatidium (seven-up), these extra R7 were found to choose 

randomly between the p and y fates (Chou et al., 1999; Mlodzik et al., 1990); Fig 
10B). The model for stochastic specification of p and y ommatidia that was 

drawn from these experiments can therefore be divided into two steps (Fig 10C). 

First, the stochastic, but biased choice between p and y fates appears to be 

made in R7 cells (left), which then impose the corresponding fate onto the 

underlying R8 cells  (right; (Chou et al., 1999). The result is the fly color vision 

system: a mosaic of two ommatidial subsets with the R8 cells exhibiting highest 
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spectral sensitivity in the blue (p) or green (y) part of the spectrum, comparing 

their inputs with UV-sensitive R7 cells. 
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11. GFP in living flies: the GAL4 enhancer traps screen 
 A multitude of enhancer trap screens has been performed in Drosophila. 

In most cases, transgenic P-elements carrying the cDNA of a reporter gene 

(lacZ, GFP, GAL4) under the control of a weak enhancer were remobilized to 

new, unknown genomic locations (Brand and Perrimon, 1993; O'Kane and 

Gehring, 1987). The expression pattern of nearby genes was then reproduced by 

the reporter gene. Recently, we reported a GAL4/UAS-GFP enhancer trap 

screen to identify new genes expressed in subsets of PRs of the living fly 

(Mollereau et al., 2000). In this context, the phenomenon of the "deep 

pseudopupil" was used as a natural amplification system for GFP-expression in 

PRs. The pseudopupil is a virtual image in the center of the fly eye, which is 

created by the superimposition of 20-30 ommatidia, due to the curvature of the 

cornea (Fig 11A+B; (Franceschini and Kirschfeld, 1971). By remobilizing a GAL4 

P-element, we have shown that living flies could be analyzed in F1 for PR-

specific GFP expression in the pseudopupil (Fig 11C). By this technique, genes 

expressed in different photoreceptor cell subsets (inner PR, outer PR or all PR) 

have been identified in F1 after P-element remobilization, by quickly screening 

the eyes of anesthetized adult flies under blue illumination (Fig 11D). However, 

as the "deep pseudopupil" is the product of the superimposition of signals 

emanating from different ommatidia, isolation of genes specifically expressed in y 

or p subsets of inner PRs required an additional step in the screening procedure. 

By neutralizing the refraction of the cornea using water immersion microscopy on 

Fig II.10 The current model for ommatidial subtype specification 
(A) R8 cells express rh6 in sevenless mutants. Left: schematic representation of the sev mutant situation. R7 cells are not 
specified due to the inability to receive the boss signal from R8. Center: In the wildtype, Rh3 (red) and Rh4 expression (cyan) are 
found distributed stochastically through the retina, while DRA inner PRs (R7/R8m) always express Rh3. In sev mutants, however, 
Rh4 expression is completely gone and only R8m expression of Rh3 persists (Feiler et al., 1992). Right: Double labeling of 
whoile mounted adult sev retinas with Ph6 (green) and the rhabdomere marker Phalloidin (blue) reveals expression of Rh6 in all 
R8 cells. Due to the lack of instruction by R7 cells in sev mutants, rh6 has therefore been called the ‘R8 ground state’ opsin. 
(B) Extra R7 cells choose stochastically between p and y fates. Left: schematic representation of the seven up (svp) loss-of-
fuction phenotype. Loss of svp leads to the specification of extra R7 cells. Center: Mitotic svp (-/-) clones induced using the  ey-
flip/FRT technique. Outer PRs were marked by Rh1 autofluorescence. Co-staining with rh3-GFP (green) allows assessing the cell 
fate decisions within svp(-/-) clones under water immersion. Right: Both pR7 (green circles) as well as yR7 (redcircles) were 
induced within the same mutant ommatidia, indicating that extra R7 cells choose autonomously. 
(C) The current model for specification of color-esensitive ommatidia. The available data on opsin regulation has previously been 
integrated into a two-step model for p/y specification. In a first step, p and y subtypes get specified in R7 cells (choice). In a 
second step, this choice gets transmitted to the underlying R8 cell via an unknown signal transduction pathway (instruction). 
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Fig II.11 Expression of GFP in living flies: enhancer traps screen and corneal neutralization 
(A)-(C) Deep pseudopupil in the living fly. A virtual image is created in the center of the curved eye, due to the superposition of 
several neighboring ommatidia. Deep pseudopupil of a fly expressing GFP in outer PRs under the control of rh1-GAL4, 
visualized by blue illumination. Note that inner PRs – in the center of the trapezoid – are negative. (C) Deep pseudopupil of a 
GAL4 enhancer trap (#008, see appendix) visualized with GFP under blue illumination. Expression is also specific to outer PRs. 
(D) Schematic representation of the GAL4 / UAS-GFP enhancer trap technique. A transgenic P-element GAL4 (red triangles) 
carrying a GAL4 cDNA (grey box) comes under the influence of a tissue specific genomic enhancer (blue). GAL4 expression  
(orange) activates GFP (green) in cis via binding to pentamerized GAL UAS sites (white circles). 
(E)-(H) Cornea neutralization using water immersion microscopy. Anesthetized flies are immobilized in agarose, covered with 
water and a water immersion objective (20x) is placed onto their eye. Using this technique, signals emanating from single 
ommatidia can be visualized. Examples are rh1-GFP (F), with expression of GFP in R1-R6 in every ommatidium, rh3-GFP (G) 
with GFP being retricted to a small subset of inner PRs and finally rh4-GFP (H) with GFP expression in a clearly larger subset of 
ommatidia. 
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the eyes of living, immobilized flies, the signals emanating from individual 

ommatidia could be visualized (Fig 11E; (Pichaud and Desplan, 2001). In this 

context, opsin reporter constructs driving the expression of GFP under the 

control of different opsin promoters (rh1-GFP, rh3-GFP, rh4-GFP) proved to be 

valuable tools for the investigation of ommatidial subtype specification (Fig 11F-
H).  
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III. RESULTS 
 
1. The GAL4 enhancer trap screen 

The GAL4 enhancer trap technique was used to identify genes involved in 

opsin gene regulation and late retinal patterning. Genomic enhancers directing 

the expression of nearby transcripts in subsets of photoreceptors (PR) were 

targeted using the GAL4 enhancer trap P-element pGawB (Brand and Perrimon, 

1993) and special UAS-GFP reporter constructs (see below). To improve the 

efficiency of a previously performed GAL4/GFP enhancer trap screen in adult 

PRs (Mollereau et al., 2000), both the jump start insertion as well as the reporter 

system were changed. For the jump start, we chose a molecularly mapped, as 

well as homozygous lethal insertion of pGawB in the gene apterous (Bourgouin 

et al., 1992; Calleja et al., 1996; Cohen et al., 1992). The jump frequency of this 

line was calculated as being ~12% (M.F. Wernet, Diplomarbeit). To improve the 

efficiency of the UAS-GFP reporter flies, the „green fluorescent protein“ cDNA 

was fused „in frame“ to the last 26 amino acids of the PR-specific kinase NINAC 

(Montell and Rubin, 1988); M.F. Wernet, Diplomarbeit). Such NINAC fusion 

proteins have previoulsly been shown to be localized into the PR rhabdomeres, 

thereby concentrating them in the path of light (Porter et al., 1992). When driven 

under UAS-control, these reporters were significantly (~2-fold) more effective as 

the original UAS-GFP system (M.F. Wernet, Diplomarbeit). 

Large numbers of flies (> 500’000) were generated (for the crossing 

scheme, see materials and methods), about ~3% of which carried new, stable 

insertions of pGawB at unknown genomic locations. Due to the nature of this 

phenotypic F1 enhancer trap screen, only a subset of new insertions was 

detectable: ~20% of all 13 000 genes are believed to be expressed in the eye 

(Mollereau et al., 2000). Furthermore, only those lines showing striking 

expression of GAL4/GFP:NinaC in PRs were retained. This allow us to keep the 

number of retained stocks extremely low, but it also made a more detailed 

statistical analysis of the enhancer trap screen impossible.  
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line# 
 

inserted near 
gene… 

nature of trapped gene expression pattern chr. map pos. 

002 CG14408 SH3 domain binding protein inner PR specific X 12F7 
008 19F-20A Unknown, inserted in repetitive sequences beautiful outer PRs X 19F 
010 Elbow transcription factor (Zn-finger) subsets of inner PRs 2 35A1 
012 α-Man-IIb mannosyl-oligosaccharide 1,3-1,6-α-mannosidase all PRs 3 89A 
013 CG9602 ubiquitin conjugating enzyme lamina and ocellar lobe 3 87F 
015 CG2991 EGF-domain containing protein very weak all PRs 2 23B 
016 rh1 outer PR opsin outer PRs + ocelli 3 92B 
021 Kekkon-1 TM molecule, negative regulator of DER signaling all PRs 2 34A 
022 slamdance alanyl (membrane) aminopeptidase outer PRs 3 97D6 
030 Dlats Ser-/Thr-kinase involved in cell-cycle regulation  subsets of inner&outer PRs 3 100A 
033 no ocelli transcription factor (Zn-finger) subsets of inner PRs 2 35A4 
040 dachsous Cadherin-family TM cell-adhesion molecule ocelli 2 21CD 
041 rdgB Ca-transporting ATPase all PRs X 12B8 
043 CG30159 No homolgies inner PRs and cone cells 2 42D 
046 CG4449 Ubiquitin-like very weak inner PRs 3 94E 
053 homothorax homeodomain transcription factor DM inner PRs 3 86BC 
056 CG32767 DNA binding very weak inner PRs X 4D5 
058 PRK2 CG2049, a novel PKC family kinase all PRs 2 45C 
062 Tsp42Ec cell-surface molecule of the tetraspan family very weak all PRs 2 42E 
063 CG10600 predicted nuclear protein outer PRs 2 37B 
069 bunched transcription factor, TSC22-homologue weak PRs, strong dorsally 2 33E 
072 Slit Robo ligand, inner PR specific inner PRs 2 52D 
073 combgap transcription factor with 10 Zn fingers all PRs 2 50E 
075 hybrid male rescue transcription factor subset of antenna cells X 9D2 
077 CG6424 nuclear; homologue of human KIAA0914  very weak PRs 2 54E3 
078 CG30428 No homologies weak PRs 2 60F3 
092 CG6241 Metalloendopeptidase lamina and ocellar lobe 3 85F 
098 CG6499 predicted (methyl) ammonium transporter subset of antennal cells 3 88E 
100 l(3)06951 no gene near GAL4 promoter, but lethal P l(3)06951 second antennal segment 3 88C5 
103 CG5735 RRM domain RNA binding protein all PRs 3 66E4 
112 CG14045 Cdc42 RhoGEF, PDZ domain, C2 domain R7 cells X 2F6 
114 CG14186 No homologies PRs,inners very strong 3 76F2 
116 Lama “lamina ancestor”; no homologies Ocelli, optic lobes 3 64D2 
123 no ocelli transcription factor (Zn-finger) subsets of inner PRs 2 35A4 
128 CG11732 odorant binding protein 85b Inner PRs and CCs 3 85A1 
129 unknown Repetitive sequences; copia element Weak PRs ? ? 
134 CG7145 δ-1-Pyrrolidine-5-Carboxylate Dehydrogenase) weak PRs 3 79A5 
137 CG2264 EF-hand cell adhesion molecule ocelli 2 46D8 
139 CG3130 Immunoglobulin protein All PRs 3 99C7 
141 methuselah-like 8 G-protein coupled receptor  PRs, strong DRA 3 61A1 
142 no ocelli transcription factor (Zn-finger) subsets of inner PRs 2 35A4 
145 Coronin Actin binding Inner PRs + PCs 2 42D4 
147 Lola “longitudinals missing”; Zn-finger TF All PRs, weak 2 47A9 
148 polyhomeotic “polyhomeotic distal” Weak PRs X 2D1-5 
149 Unknown inserted in repetitive sequences inner PRs and retina 1,2,3 ? 
154 CG6024 LDL-receptor ligand binding domain protein All PRs 3 68D1 
155 Gilgamesh drosophila casein kinase I  All PRs 3 89B17 
156 RhoGAP18b no homologies outer PRs X 18B2 
158 CG1847 Tetraspan TM protein Inner PRs? 2 42D5 
163 CG8005 Deoxyhyposine synthase All PRs? 3 66C1 
173 Doa "darkener of abricot", LAMMER kinase R7 cells 3 98F1 
175 CG14408 SH3 domain binding protein inner PRs X 12F7 
181 no ocelli Zn finger transcription factor Inner PRs 2 35A4 
184 Mindmelt nuclear Cys3His-type zinc-finger protein inner PRs and cone cells 2 54B8 
185 CG3927 RNA-binding; p62 tumor suppr. homologue All PRs 2 58E10 
186 Stich1 RNA polymerase II transcription factor Inner PRs and CCs 3 86B1 
190 Syndecan Cytoskeletal anchor protein All PRs 2 57D11 
193 CG31038 Immunoglobulin protein strong all PRs 3 99C7 
194 RhoGAP18b Predicted GTPase activating protein All PRs? X 18B2 
196 methuselah-like 8 G-protein coupled receptor  Inner PRs 3 61A1 
197 Mindmelt nuclear Cys3His-type zinc-finger protein Inner PRs and cone cells 2 54B8 
Table III.1: enhancer trap lines retained from the pGawB/UAS-GFP screen. 
61 lines were molecularly mapped based on their expression pattern in photoreceptors or the optic lobes. 
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About ~200 individual insertion lines showing interesting GAL4/GFP 

expression in adult PRs were retained for further characterization (for a short 

summary, see Appendix). Out of these lines, 61 P-elements were localized 

molecularly by „inverse PCR“ (see Table III.1; materials and methods). 

 The targeted genes fell into different functional categories (Table III.2). 

Very large fractions were nuclearly localized genes / transcription factors (27%) 

and cell surface proteins (receptors, transporters; 24%). Howeverer, 

cytoplasmatic proteins (signal transduction molecules, cytoskelletal proteins), 

kinases and other enzymes represented an even larger fraction (30%), when 

grouped together. Only three genes were identified that encoded secreted / 

extracellular proteins (5%). Finally, 14% of the genes (N=8) either did not map 

near a known (or predicted) gene, were inserted in repetitive genomic sequences 

or their transcript manifested no homologies to previously characterized genes. 
 

Gene product N (genes) % Enhancer traps 

Nuclear / TF 15 27 10, 33 (123, 142, 182), 53, 56, 63, 69, 73, 75, 

77, 103, 147, 148, 184 (197), 185, 186  

Kinase 4 7 30, 58, 155, 173 

cytoplasmic  7 13 02 (175), 46, 056 (194),112, 145, 190 

Enzyme 5 9 12, 13, 92, 134, 163 

cell surface / receptors 13 24 16, 21, 22, 40, 41, 62, 98, 137, 139, 141 (196), 

154, 193 

Extrcellular 3 5 15, 72, 128 

no homologies / annotation 4 7 43, 78, 114, 116 

Unknown gene product 4 7 08, 100, 129, 149 

 
Table III.2: Screen results: targeted genes grouped into functional categories. 
The total number of genes listed is lower than the number of enhancer traps retained, as several genes were 
targeted multiple times independently. More than half of the identified genes (51%) were either nuclear 
proteins (transcription factors) or cell surface molecules (cell surface receptors). 

 

It was therefore concluded that the GAL4/GFP screen in living flies 

represented a powerful tool to identify genes specifically expressed in adult PRs. 

The identified genes fall into all major protein classes, none of which was 

significantly under-represented (for review: Celniker and Rubin, 2003). The 

sensitivity of the gene identification system was therefore not limited to a 

subgroup of potential targets, like strongly expressed structural proteins. 
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2. Specification of the polarization sensitive 
ommatidia in the ‘dorsal rim area’ 
 
2.1. A GAL4 enhancer trap insertion in homothorax 

One of the insertions of the P-element pGawB (line #053, see appendix) 

was studied in greater detail due to its particularly interesting expression pattern. 

When crossed to UAS-GFP reporter flies, strong expression was visible in the 

antennae as well as in the proboscis and the body of the fly (Fig 1A and 1B). 

When viewed from the side, no GFP expression was detectable in the eye, 

especially not in PRs as there was no GFP-signal in the pseudopupil (see 

material and methods). However, when viewed from the top, strong GFP 

expression was detected in the pseudopupil of both eyes, when looking close to 

the head tissue (white arrows in Fig 1C). GFP staining disappeared when the fly 

was moved so that the pseudopupil formed further away from the dorsal margin 

of the eye. No GFP pseudopupil was detectable at the ventral rim. As the 

pseudopupil is an optical phenomenon based on the superposition of the 

individual signals coming from a population of ~20 neighboring ommatidia it was 

concluded that only ommatidia in the dorsal periphery of the adult eye expressed 

GAL4 (Franceschini and Kirschfeld, 1971b; Pichaud and Desplan, 2001). 

Genomic sequences flanking the P-element #053 were identified by 

nested inverse PCR (Fig 1D, see material and methods). A BLAST search, using 

224 bp of genomic sequence (shown in black letters), was performed at the 

Berkeley Drosophila Genome Project (BDGP). The BLAST search resulted in an 

unambiguous molecular localization of the P-element insertion site (Fig 1E). 

Insertion #053 was found to be inserted in intron 3 of the gene homothorax (hth) 

which encodes a TALE-class homeodomain transcription factor (Pai et al., 1998; 

Rieckhof et al., 1997); Pai et al., 1998). 
Neutralization of the cornea by using water immersion microscopy in living 

flies (Franceschini and Kirschfeld, 1971a); (Pichaud and Desplan, 2001) revealed 

that hth-GAL4 was expressed in a single row of ommatidia along the dorsal head 
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FigIII.2.1 A GAL4 enhancer trap insertion in homothorax 
(A)-(C) Expression of #53-GAL4 in a living anesthetized fly: #53-GAL4 expression visualized with UAS-GFP constructs. Strong 
expression was observed in the antenna (A) and the proboscis (B). (C) A pseudopupil signal was only detectable when flies were 
observed from above (white arrows), suggesting that only PRs at the dorsal rim of the eye expressee GAL4. (D) Genomic DNA 
sequence flanking #53-GAL4 at the 3’ end, obtained by inverse nested PCR. P-element sequences are shown in green. (E) 
Schematic diagram of the pGawB insertion #53 localized in the homothorax (hth) gene, encoding a homeomdomain transcription 
factor. (F) Expression of hth-GAL4 (#53-GAL4) in living flies: Individual ommatidia in the DRA of a living fly were visualized 
using cornea neutralization by water immersion microscopy. Combining hth-GAL4 and UAS-GFP transgenes allowed detection 
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cuticle in the adult eye (Fig 1F). At most dorsal locations, two (but never more) 

positive rows of ommatidia were observed (data not shown). Changing the 

reporter to UAS-lacZ (Brand and Perrimon, 1993) allowed the visualization of the 

projections of GAL4-positive cells to the optic lobe (Fig 1G). Frozen sections (10 

µm) through adult heads (hth-GAL4 > UAS-lacZ) were double labeled with 

antibodies against βGal and the PR-specific cell-surface antigen 24B10 

(Chaoptin; (Van Vactor et al., 1988). All βGal-expressing axons (shown in green) 

terminated at the dorsal-most edge of the medulla (marked in red) with 

projections to both R7 and R8 layers (white arrows). Projections to the lamina, 

where outer PRs project their axons, were never observed. It was concluded that 

hth-GAL4 was expressed exclusively in inner PRs located at the dorsal rim of the 

adult eye.  
 
2.2. Inner photoreceptors in the DRA express Homothorax 

To verify that the observed GAL4 expression pattern in developing DRA 

inner PRs was indeed that of endogenous Hth protein, pupal retinas (~48 hours 

after puparium formation, APF) were dissected. These were then double stained 

with antibodies against Hth and the the neuronal marker ElaV (Fig 2A). A band 

of Hth-positive ommatidia (shown in green) was visualized in the dorsal half of 

the developing eye. Hth expression was always detected in one, at most two 

rows of ommatidia and only at the dorsal rim of the pupal retina. This observed 

expression pattern was highly reminiscent of the well-described ommatidia of the 

‘dorsal rim area’ (DRA, Fig 2B; for review:(Labhart and Meyer, 1999; Labhart 

and Meyer, 2002). A lacZ enhancer trap insertion in the gene seven-up (svp-lacZ 

is strongly expressed in the photoreceptors R3 and R4 and only faintly in R1 and 

R6 at these later stages; (Mlodzik et al., 1990b) was introduced as a reference to 

allow identification of the Hth-positive PRs (Fig 2C). Triple labeling using 

antibodies against Hth, βGal and ElaV was performed on pupal retinas (48 hrs 

APF). The majority of ommatidia located in the two dorsal-most rows expressed 

Hth in two cells per cluster, which were identified as R7 and R8 because of their 

stereotypical positioning as compared to the landmark svp-lacZ (for review: 
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Fig III.2.2 Inner photoreceptors in the DRA express Homothorax 
(A) Expression of Hth in pupal PRs: Flat mounted pupal retinas (~48 hrs after puparium formation, APF) dissected from wildtype 
flies. Double-labeling of ElaV (blue) and Hth (green) showed specific expression of Hth in one row of ommatidia at the dorsal 
rim. A sharp boundary between DRA and non-DRA ommatidia was always observed. (B) Schematic representation of Hth 
expression in the pupal retina (dorsal is up). This expression pattern was highly reminiscent of the DRA ommatidia. 
(C)+(D) Hth is specifically expressed in R7 and R8 at the dorsal rim: Flat mounted pupal retinas (~48 hrs APF). Using the svp-
lacZ landmark (weak expression in R1 and R6; strong expression in R3 and R4), triple-labeling of ElaV (blue), Hth (green) and 
βGal (red) revealed Hth expression to be specific to R7 and R8 cells in DRA ommatidia (dashed line). (D) Specific expression of 
Hth in inner PRs of the DRA (dashed line) was confirmed by triple-labeling ElaV (blue), Hth (green) and the inner PR marker 
Spalt (red), expressed in all R7 and R8. 
(E)+(F) Expression of Hth in the adult DRA: Frozen sections Frozen sections (10 µm) along the D/V axis (D to the left) through 
adult heads of yw flies (R= retina, L= lamina, M=medulla). Hth (green) was always found co-expressed with the inner PR marker 
Sal (red), expressed in R7 and R8 (white arrows). (F) Frozen sections through adult yw heads (R= retina, L= lamina, M=medulla). 
Double labeling of the DRA rhodopsin Rh3 (red) and Hth (green) revealed specific co-expression in DRA inner PRs (arrows).
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(Wolff, 1993). Ommatidia with only one Hth expressing cell per ommatidium 

could also rarely be observed (white arrows) without showing any obvious 

preference towards R7 or R8. To confirm this result, pupal retinas were also triple 

stained using antibodies against the inner PR marker Spalt (Sal), Hth and ElaV 

(Fig 2D). Hth-positive PRs (shown in green) always co-stained with Sal (shown 

in red) which was also expressed in Hth-negative ommatidia throughout the rest 

of the retina. It was concluded from these experiments, that Hth is specifically 

expressed in both inner PRs R7 and R8 in one or two rows of ommatidia located 

at the dorsal margin of the developing retina. 

Characterization of Hth expression in PRs was concluded by staining of 

frozen sections (10 µm) through adult heads of wildtype flies. First, a double 

labeling with Anti-Sal and Anti-Hth was performed (Fig 2E). This staining 

revealed that in the adult, Hth (shown in green) also co-localized with the inner 

PR marker Sal (shown in red). Hth expression was therefore maintained in 

dorsal-most inner PRs throughout adulthood. Finally, another staining of Anti-Hth 

was performed, double labeling with an antibody against the R7 opsin Rh3, 

which is the only rhodopsin expressed by both inner PRs of the DRA (Fortini and 

Rubin, 1990); Fig 2F). It was observed that inner PRs of the DRA (marked by 

Rh3 in red) always co-expressed Hth (shown in green), whereas Rh3-expressing 

pale R7 cells outside of the DRA were always negative for Hth (white arrows). 

It was concluded from these experiments, that Hth is a highly specific 

marker for the developing inner PRs in the DRA, as well as for the terminally 

differentiated polarization-sensitive inner PRs of the adult DRA. 

 

2.3. Molecular characterization of the DRA 
In order to better understand the possible signaling pathways involved in 

DRA development, the time-course of Hth expression in PRs was characterized. 

The role of hth in early eye development has been studied in detail. However, hth 

expression has never been detected in developing PRs of third instar eye 

imaginal discs (Pichaud and Casares, 2000); (Bessa et al., 2002). Instead, Hth 

expression has been shown in un-differentiated cells anterior to the MF as well 
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as in non-neuronal ‘posterior progenitor cells’, which give rise to pigment cells 

(Pichaud and Casares, 2000). 

The absence of Hth expression in larval PRs was confirmed by dissecting 

third instar larval eye imaginal discs and double labeling them with antibodies 

against Hth and ElaV (Fig 3A). No co-staining between Hth (shown in green) and 

ElaV (shown in blue) was detectable. Early pupal retinas (~ 24 hrs APF) were 

also dissected and stained for Hth and ElaV (Fig 3B). This staining revealed 

strong expression of Hth in both inner PRs of the the DRA ommatidia (white 

arrows) at this early pupal stage (rarely, only one positive cell was observed), 

where it remained expressed until adulthood. Additionally, weaker expression of 

Hth was detectable in pigment cells. This pigment cell expression of Hth was 

transient, following a wave-like pattern, with no detectable Hth expression 

remaining in these cells after 50% pupation. As previously described for Hth and 

Rh3 expression in the adult DRA, a sharp boundary between Hth-positive 

ommatidia and those in the rest of the eye was always observed throughout DRA 

development. Finally, mid-pupal retinas (48 hrs APF) were dissected. Using the 

asymmetric expression pattern of svp-lacZ as well as the symmetric distribution 

of ommatidia on either side of the equator, we assessed the extent of the DRA 

these retinas (Fig 3C). Triple labeling of Hth, svp-lacZ and ElaV revealed that 

Hth expression (shown in green) extended from the posterior end of the equator 

(marked with a straight line) all the way to the dorsal pole of the eye and 

continued to the anterior limit of the equator, therefore spanning the entire rim of 

the dorsal compartment. This contrasts with the more restricted DRAs that have 

been described for most insect species (for review: Labhart and Meyer, 1999). It 

was found that, in most of the cases, Hth expression was excluded from the most 

equatorial ommatidia (anterior and posterior) of the dorsal compartment (white 

arrow), indicating that equatorial ommatidia bear information which excludes 

DRA formation. In fact, these ommatidia at the equator are made of cells that 

come from both dorsal and ventral compartments. It was concluded that Hth 

expression could be used to characterize the extent of the DRA, which appears 

rather large in Drosophila. Expression of Hth in DRA inner PRs had its onset very 
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arly during pupation and remained expressed there, whereas pigment cell 

expression vanished during late pupation. 

The molecular Characterization of the DRA was extended by focusing on 

the individual cell fates of R7 and R8 cells in the DRA. First, frozen sections 

through adult heads from wildtype flies were stained for the R7 marker Prospero 

(Pros) and Hth (Fig 3D). It was found that only R7 cells in the DRA co-stained for 

both Hth (shown in green) and Pros (shown in blue), whereas R8 cells only 

Fig III.2.3 Molecular characterization of the DRA 
 (A)-(C) Characterization of DRA development using Hth: Whole mounted larval third instar eye disc (anterior to the left) stained 
with antibodies against Hth (green) and ElaV (blue). Hth is not detectable in PRs at this stage, but in non-neuronal posterior cells. 
(B) Early pupal Hth expression in the DRA and in pigment cells: Flat mounted pupal retina dissected from yw flies. Double-
labeling of ElaV (blue) and Hth (green) revealed two rows of developing DRA ommatidia with inner PRs co-expressing Hth and 
ElaV (arrow heads) and additional Hth staining in pigment cells surrounding all PR clusters (DRA and non-DRA). (C) The DRA 
does not cross the equator of the eye: Flat mounted pupal retina (~48 hrs APF). Triple-labeling of ElaV (blue), Hth (green) and 
svp-lacZ (red) revealed one row of developing DRA ommatidia (dashed line) in the dorsal half of the eye, stopping one cluster 
before the equator (white line). 
(D) R7 cells in the DRA co-express Pros and Hth: Frozen sections (10 µm) along the D/V axis (dorsal to the left) through adult yw 
heads. Double labeling of the R7 marker Prospero (blue) and Hth (green) revealed co-expression only in DRA R7 cells. 
(E)-(F) Exclusion of the R8 marker Senseless from the DRA: Frozen sections (10 µm) through adult heads. Double labeling of the 
R8 marker Senseless (red) and hth-lacZ (green) revealed specific exclusion of Sens expression from DRA R8 cells as well as an 
elevated position of the DRA R8 nuclei (arrows). (F) Flat mounted pupal retina (~48 hrs APF). Triple-labeling of ElaV (blue), 
Hth (green) and Sens (red) revealed specific exclusion of Sens from R8 cells located within the DRA (dashed line). 
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stained for Hth. It was therefore concluded that R7 cells in the DRA are true R7 

cells based on the combination of transcription factors they express. Frozen 

section were also stained with antibodies against the R8-marker Senseless (sens 

or Lyra) and co-labeled with a hth-lacZ transgene (Fig 3E). It was found that R8 

cells in the DRA represent a special cell type as hth-lacZ positive R8 cells 

(shown in green) specifically lacked expression of Sens (shown in red) which is 

expressed by all other R8 cells outside the DRA. To confirm this result, pupal 

retinas (48 hrs APF) were dissected and triple-labeled with antibodies against 

hth-lacZ, Sens and ElaV (Fig 3F). While Sens (shown in red) was expressed in 

all R8 cells outside of the DRA (marked by a dashed line), it was specifically 

excluded from the inner PRs of the DRA (marked in green). Taking into account 

that DRA R8 cells also express an otherwise R7-specific opsin (Rh3) and 

manifest morphological features not found in non-DRA R8 cells, like the enlarged 

rhabdomere diameter or the distal position of their nucleus (white arrows), it 

appears that R8 cells in the DRA are highly atypical. In contrast, DRA R7 cells 

resemble much more regular R7 cells: Although these cells exhibit special 

enlarged rhabdomeres, their nuclei are located in the same layer as those of 

other R7 cells outside of the DRA they express an R7 rhodopsin (Rh3) as well as 

R7-specific markers like Prospero (Kauffmann et al., 1996); Cook et al., 2003). 

It was therefore concluded, that the R8 cell of the DRA can be classified 

as a new inner PR cell fate, marked by expression of the inner PR marker Spalt, 

lacking expression of both R7 (Pros) and R8 markers (Sens) and expressing an 

R7 rhodopsin. 

 

2.4. Development of the DRA 
Coordinated inner PR rhodopsin expression in the main part of the fly 

retina results from a two-step process involving pale versus yellow subtype 

choice in R7 followed by an instructive signal from R7 to R8 (Chou et al., 1996), 

1999; (Papatsenko et al., 1997). It was therefore assessed whether a signal from 

R7 cells was needed in the DRA for the underlying R8 cells to differentiate 

properly, by analyzing the development of the DRA in sevenless (sev) mutants 
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both molecularly and morphologically (Banerjee et al., 1987; Hafen et al., 1987; 

Tomlinson et al., 1987). 

First, pupal retinas (48 hrs APF) were dissected from sev mutants, which 

lack all R7 cells, and triple stained using antibodies against Hth, the inner PR 

marker Sal and ElaV (Fig 4A). Throughout the retina, only one PR per 

ommatidium stained for Sal (shown in red) and this cell always co-stained for Hth 

(shown in green) in the DRA. This suggested that in pupae, the DRA develops 

normally, although being limited to R8 cells. To test whether the DRA maturated 

correctly, frozen sections through adult heads of sev mutants were double 

labeled using antibodies against Rh3 and Hth (Fig 4B). At the dorsal rim of these 

eyes, Rh3 (shown in red) and Hth (shown in green) were found co-staining one 

or two rows of R8 cells, suggesting that the DRA developed normally in these 

flies. Inner PR rhabdomere morphology was also assessed by performing Epon 

thin sections on adult heads of sev mutants (Fig 4C). Light microscopic analysis 

of these sections revealed that sev mutants manifested a sharp boundary 

(marked by a red line) between DRA ommatidia in which R8 had an enlarged 

rhabdomere diameter (marked by yellow arrows), and non-DRA ommatidia with 

narrow R8 rhabdomeres. 

It was therefore concluded, that unlike in the main part of the retina, no 

inductive signal from R7 cells was needed for the DRA R8 cells to correctly 

differentiate into the DRA fate, as the DRA is present in sev mutants based on 

both molecular, as well as morphlogical criteria. 

It has previously been reported that ommatidia at the edge of the eye, 

which often lack the full complement of photoreceptors and support cells, 

undergo apoptosis during early pupation (Lin et al., 2004). This cell death was 

shown to be triggered by the morphogen Wingless and the pro-apoptotic factors 

head involution defective (hid;(Grether et al., 1995). Apoptosis might therefore 

play a role in defining the correct number of DRA ommatidial rows. 

To show that the morphogen Wingless is expressed in the developing 

head tissue surrounding the developing eye, pupal retinas (48 hrs APF) were 

dissected and triple stained for a wg-lacZ transgene as well as Hth and ElaV (Fig 
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4D). Strong wg-lacZ staining (shown in red) was obtained all around the eye, 

including dorsally, adjacent to the DRA (marked by Hth in green). Frozen 

sections through adult fly heads carrying the wg-lacZ transgene were also 

stained for βGal activity (Fig 4E). Strong X-Gal staining was detectable in cells 

adjacent to peripheral PRs (black arrows), demonstrating that Wg remains 

expressed in the head tissue until adulthood. Wg could therefore play a role in 

limiting the number of ommatidial rows contributing to the DRA. To test this, a 

transgene over-expressing the anti-apoptotic viral protein P35 under the control 

Fig III.2.4 Development of the DRA 
(A)-(C) The DRA develops normally in sevenless mutants: Flat mounted pupal retina (~48 hrs APF) dissected from sev mutants 
and triple-labeled for ElaV (blue), Hth (green) and the inner PR marker Sal (red). One Sal-positive cell (R8) per omatidium was 
observed, always co-expressing Hth in the developing DRA ommatidia (dashed line). (B) Frozen section (10 µm) along the D/V 
axis (D to the left, equator runs horizontally) through an adult head of a sev mutant. Double labeling of Rh3 (red) and Hth (green) 
identified the DRA in the two dorsal-most rows of R8 cells (arrows). (C) Rhabdomere morphology of sevenless mutants: Epon 
thin section through the dorsal-most part of an adult sev eye at a level where the rhabdomeres of R8 first appear. The presence of 
only one inner PR rhabdomere per ommatidium was verified by serial sections. The R8 cells of the DRA exhibit enlarged 
rhabdomere diameters (arrows) and a sharp boundary between DRA and non-DRA ommatidia can be observed (red line). Mis-
positioning of R8 cells was observed as peviously reported (Campos-Ortega et al., 1979).  
(D)-(F) Extent of the DRA is not regulated by Wg-induced apoptosis: Flat mounted pupal retina (~48 hrs APF) triple-labeled for 
ElaV (blue), Hth (green) and wg-lacZ (red). βGal expression was detectable in the developing head cuticle all around the eye. 
Expression of wg was never observed in the DRA (dashed line). (E) Expression of wg-lacZ in the adult fly visualized by X-Gal 
staining on frozen sections. βGal expression was restricted to the head cuticle adjacent to the eye (arrows). (F) Blocking apoptosis 
in PRs using a GMR-P35 transgene had no effect on PRs. Expression of Hth (green) and ElaV (red) on frozen sections revealed 
one (sometimes two) rows of DRA ommatidia at the dorsal rim of the adult eye. 
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of the GMR promoter was used to rescue the eliminated ommatidia. Frozen 

sections of GMR-P35 flies were then double labeled for Hth and ElaV (Fig 4F). 

Based on co-expression of Hth (shown in green) and ElaV (red), no change in 

the number of ommatidial rows of the DRA fate could be detected (white arrows). 

It was therefore concluded that Wg-induced apoptosis occurring at the eye 

margins does not drastically influence the appearance of the DRA. 

 

2.5. Genetic manipulation of the DRA: cell fate decisions at the dorsal rim 
The R8 cell, founder of the ommatidial cluster, cannot be removed 

experimentally from ommatidia without destroying the eye (Mlodzik et al., 1990a). 

Therefore, a different strategy had to be used to differentiate between two 

possible scenarios to explain how inner PRs develop into into the DRA fate. The 

possibility remained that an inductive signal from R8 to R7 existed, unless the 

mere location of both cells within the dorsal-most clusters of the retina provided 

the necessary positional information. To differentiate between these two models, 

three different mutant backgrounds were used to induce extra inner PRs 

throughout the retina and cell fate decisions of inner PRs located within the DRA 

were then assessed. 

In the wildtype, the two inner PRs R7 and R8 represent very distinct cell 

types whereas the remaining six outer PRs develop into virtually identical PRs 

(Fig 5A). In flat pupal retinas (48 hrs APF), R7 cells were visualized using an 

antibody against the R7 marker Prospero (Pros) and the DRA was marked with 

Ant-Hth (Fig 5B). By triple-labeling with Elav (shown in red) it was possible to 

specifically mark both R7 and R8 in the DRA, as only one Hth-positive cell 

(shown in green) co-stained with Pros (shown in blue). As a second control, the 

DRA was also visualized in the adult by double-labeling frozen sections (10 µm) 

with antibodies against Hth and ElaV (Fig 5C). Usually between 2 and 4 nuclei 

expressing both Hth (shown in green) and ElaV (shown in red) were observed. 

The three mutant backgrounds used to induce extra inner PRs throughout 

the retina were a constitutively activated form of Ras driven by the sevenless 

promoter (sev>RasVal12; (Gaul et al., 1992), as well as mutants in the genes 
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seven-up (svp) and rough (ro) (Fig 5D; (Tomlinson et al., 1988). Over-expression 

of RasVal12 by the sev promoter leads to the transformation of outer PRs R1, 

R3, R4, and R6 into R7 cells. Pupal retinas from these sev>RasVal12 flies were 

dissected and triple labeled for Hth, Pros and ElaV (Fig 5E). Multiple Hth-positive 

cells per ommatidium were observed in the DRA of these flies (shown in green). 

As expected, all Hth-positive cells, except for one (the R8 cell), also co-

expressed the R7 marker Pros (shown in blue). Multiple Pros-positive cells per 

cluster were also observed outside of the DRA, but those always lacked Hth 

expression. As in the wild type, only one or two rows of DRA ommatidia were 

found (marked by a dashed line). An increased number of Hth-positive PRs was 

also detected in the adult as seen on frozen sections (Fig 5F), suggesting that 

these extra inner PRs are not sorted out and later eliminated by apoptosis. 

Between 8-10 Hth-positive nuclei (shown in green) co-staining for ElaV (shown in 

red) were observed per section in the adult. It was concluded that extra inner 

PRs induced by over-expression of activated Ras always chose the DRA fate 

when located within one or two rows distance to the dorsal head tissue. 

Fig III.2.5 Genetic manipulation of the DRA: cell fate decisions at the dorsal rim 
 (A)-(C) Expression of Hth, Pros and ElaV in wildtype flies: schematic diagram of the three cell types in a wildtype ommatidium: 
outer PRs R1-R6 (grey), R7 (blue) and R8 (red). (B) Flat mounted pupal retinas (~48 hrs APF) dissected from yw flies labeled for 
ElaV (red), Hth (green) and Pros (blue). Within the DRA (dashed line) both inner PRs (R7 and R8) stained for Hth. One of these 
cells (R7) co-expressed Pros (white cells) whereas R8 did not express this R7 marker (yellow cells). (C) Frozen sections (10 µm) 
along the D/V axis (dorsal to the left, equator runs horizontally) through adult heads of yw flies: double labeling of ElaV (red) and 
Hth (green) revealed 2-4 Hth-positive inner PR nuclei per section co-expressing ElaV. 
(D) Schematic diagrams of the different mutation used to induce extra inner PRs. In sev>RasVal12 mutants, R1, R3, R4 and R6 
get transformed in R7 cells (blue), by over-activation of the Ras pathway. In seven up (svp) mutants, the same cells R1, R3, R4 
and R6 choose the R7 fate (blue). In rough (ro) mutants, R2, R3, R4 and R5 get specified as R8 cells (red). 
(E)-(F) Cell fate decisions in a DRA with extra R7 cells induced by activated Ras: in pupal retinas (48 hrs APF) dissected from 
sev>RasVal12 flies, multiple Pros-positive cells (blue) are obtained per cluster (marked with ElaV, in red) throughout the retina. 
Within the DRA (dashed line), multiple cells (3-4) expressed Hth (green), all except one (R8, yellow cell) co-expressing Pros 
(white cells). Therefore, extra R7 cells born within the DRA always chose the DRA R7 cell fate. (F) This situation was 
maintained until adulthood: an increased number (7-9) of Hth positive cells (green) were observed in the DRA, by double labeling 
Hth and ElaV (red) on frozen sections. 
(G)-(J) Cell fate decisions of extra R7 cells in the DRA of svp mutants: Pupal retinas with mitotic svpE22 (-/-) clones triple 
labeled for Hth (green) Arm-lacZ (blue) and ElaV (red). Clones were marked by the absence of βGal and the number of Hth 
positive cells was always specifically increased within clones touching the DRA (dashed line). (H) In whole mutant svpE22 (-/-) 
pupal retinas, multiple Pros-positive cells (blue) are obtained per cluster (red) throughout the retina. Within the DRA (dashed 
line), multiple cells (3-4) expressed Hth (green), some of which co-expressing Pros (white cells). Therefore, extra R7 cells born 
within the DRA always chose the DRA inner PR fate. However, not all extra inner PRs chose the R7 fate, suggesting that the 
remaining cells developed into R8 cells. (F) DRA of svp mutants in the adult: an increased number (7-9) of Hth positive cells 
(green) was observed in the DRA, by double labeling Hth and ElaV (red) on frozen sections. 
(K)-(M) Cell fate decisions of extra R8 cells in the DRA of ro mutants: Pupal retinas with mitotic roX63 (-/-) clones triple labeled 
for Hth (green) Arm-lacZ (blue) and ElaV (red). The number of Hth positive cells was always specifically increased within clones 
(lacking βGal expression) touching the DRA (dashed line). (L) In whole mutant roX63 (-/-) pupal retinas, multiple cells (3-4) 
expressed Hth (green) within the DRA (dashed line), most of which excluded expression of the R7 marker Pros (white cells). 
Therefore, extra R7 cells born within the DRA always chose the DRA inner PR fate. However, not all extra inner PRs seemed to 
choose the R8 fate, suggesting that some cells developed into R7-like cells. (M) Adult DRA of ro mutants: a slightly increased 
number (5-6) of Hth positive cells (green) was observed in the DRA, by double labeling Hth and ElaV (red) on frozen sections. 
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The development of extra R7 cells was also induced by following an 

alternative strategy. In seven-up mutants, outer PRs R1, R3, R4, and R6 also 

wrongly adopt the R7 fate (Mlodzik et al., 1990b). First, mitotic clones of eye 

tissue homozygous for the svp null allele svpE22 were created using the ey-

flip/FRT system (see material and methods). Pupal retinas (48 hrs APF) were 

dissected and triple labeled with antibodies against Hth, ElaV and Gal, as the 

clones were marked by the absence of Armadillo-lacZ (Fig 5G). Within svpE22 (-

/-) clones (marked by the absence of blue) that touched the dorsal rim, more than 

two Hth-positive cells (shown in green) were observed, while the DRA developed 

normally outside of the clones. This suggested that extra inner PRs always 

expressed Hth when located in the DRA. In a similar experiment, whole mutant 

eyes lacking svp function were generated by introducing the GMR-hid system 

(Stowers and Schwarz, 1999)see material and methods). Pupal retinas (48hrs 

APF) were then triple labeld with Anti-Hth, Anti-Pros and Anti-ElaV (Fig 5H). 

These retinas looked virtually identical to the sev>RasVal12 mutants, with 

multiple Hth-positive cells at the dorsal rim (green), most of which expressed 

Pros (blue). However, sometimes more than one R8 cell (Hth+, Pros-) per 

ommatidium was observed, indicating that both R7- and R8-like cells might get 

induced in svp mutants (also: T. Cook, in preparation. Extra Hth-positive cells 

were also detected in the adult DRA of whole mutant svpE22 eyes (Fig 5J) with 

8-10 cells per section positive for both Hth (green) and ElaV (red). This data 

supported the hypothesis, that extra inner PRs always chose the DRA fate when 

located closse to the developing dorsal head tissue.  

In a third approach, rough mutants were used to create several extra R8 

cells per ommatidium (Tomlinson et al., 1988). Mitotic clones homozygous for the 

null allele roX63 were induced using the ey-flip/FRT system. Pupal retinas (48 

hrs APF) were then labeled for Arm-lacZ, Hth and ElaV (Fig 5K). Like in svpE22 

clones, several Hth positive cells per ommatidium (shown in green) were 

obtained in roX63 clones touching the dorsal rim (marked by absence of blue). 

Similar results were obtained by triple-labeling pupal retinas of homozygous 

roX63 flies with Anti-Hth, Anti-Pros and Anti-ElaV (Fig 5L). Due to the strong 
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disorganization of ommatidia in roX63 (-/-) mutants, the ratio of Hth-positive cells 

per ommatidium was difficult to count. It was clear, however, that more than two 

cells expressing Hth (shown in green) were obtained in the DRA of these flies. 

Interestingly, a high ratio of Pros-positive cells (shown in blue) indicated that, like 

in svp mutants, the extra inner PRs induced in ro mutants, seemed to fall into 

both R7-like and R8-like categories (T. Cook, in preparation). Finally, a slightly 

elevated number of Hth-positive cells was also detected in the adult DRA of 

roX63 (-/-) mutants (Fig 5M). Again, the strong eye phenotype made it difficult to 

count nuclei co-staining for Hth (green) and ElaV (red). 

It was concluded from these experiments that, when extra inner PRs are 

induced ectopically, R7 or R8 always choose the DRA fate independently from 

each other as long as they are located in close proximity to the dorsal head 

capsule. This fits well with previous observations of wildtype omkmatidia 

expressing Hth in only on inner PR. Furthermore, it suggests the existence of a 

factor emanating from this tissue that induces DRA cell fate in inner PRs over a 

range of a few cell diameters. 

 

2.6. Extradenticle co-localizes with Homothorax during DRA development  
 Homothorax was shown to be specifically expressed in DRA inner PRs 

and provides a reliable marker for DRA development in various mutant situations. 

Homothorax acts as a co-factore for Drosophila HOX proteins together with 

another homeodomain protein, Extradenticle (Exd). Exd transcription is 

pleiotropic but its nuclear localization depends on the presence of Hth (Pai et al., 

1998; Rieckhof et al., 1997). According to the current model, Hth and Exd 

depend on each other for nuclear translocation and form a sequence-specific 

transcriptional complex on genomic DNA (Rossel and Wehner, 1986) . It was 

therefore tested whether Exd was expressed in the DRA and whether Exd is 

necessary and eventually its nuclear localization sufficient for DRA development. 

Pupal retinas (48 hrs APF) were dissected and triple labeled using antibodies 

against Hth, Exd and ElaV (Fig 6A). It was found that every cell expressing Hth 

(shown in green) also showed nuclear Anti-Exd staining (shown in red), which 
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Fig III.2.6 Extradenticle co-localizes with Homothorax during DRA development  
(A)-(B) DRA inner PRs express Exd: Pupal retinas (48 hrs APF) triple labeled for Hth (green), Exd (red) and ElaV (blue). DRA 
inner PRs always co-expressed Hth and Exd, although sometimes very faintly (arrow). (B) Expression of Exd in the adult DRA, 
visualized by double labeling Exd (red) and DRA-rhodopsin Rh3 (green) on frozen sections through wildtype eyes (dorsal left, 
equztor runs horizontally). Exd always co-localized with Rh3 in DRA R7 cells (upper arrow) as well as DRA R8 cells (bottom 
arrows). 
(C) Over-expression of Hth leads to nuclear localization of Exd: Frozen sections through adult eyes from flies expressing Hth 
under GMR-GAL4 control (GMR > hth) double labeled against Hth (green) and Exd (red). Hth was sufficient to localize Exd into 
the nucleus, when ectopically expressed. 
(D) Ectopic Exd does not affect Hth expression: Frozen sections through adult eyes from flies expressing Exd under GMR-GAL4 
control (GMR > Exd) double labeled against Hth (green) and Exd (red). Hth edxpression remained restricted to DRA iner PRs 
(arrows). 
(E)+(F) Over-expression of Exd has no effect on ommatidial subtype specification: (F) Opsin expression in R7 cells of GMR > 
Exd flies was normal as expression of Rh3 (red) and Rh4 (cyan) was unaffected on frozen sections. (F) Frozen sections through 
GMR > Exd eyes: Expression of R8 opsins Rh5 (blue) and Rh6 (green) was also unaffected. 
(G) Nuclear localization of Exd is lost in absence of Hth: Pupal retinas with hthP2 (-/-) clones marked by the absence of Arm-lacZ 
(green). Nuclear Exd (red) was specifically lost in clones lacking Hth, touching the DRA (dashed line). 
(H) Hth expression is lost in Exd clones: Pupal retinas with exd1 (-/-) clones, triple labeled for Hth (green), Arm-lacZ (red) and 
ElaV (blue). Hth expression was specifically lost ion clones touching the DRA (dashed line). 
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was sometimes rather faint (white arrow). Outside of the DRA, cytoplasmatic Exd 

was not observed, although this is generally attributed to the dilution of Exd 

protein when distributed throughout the cytoplasm. 

Nuclear localization of Exd was also visualized in the adult DRA by 

performing frozen sections through adult eyes and using antibodies against Exd 

and Rh3 (Fig 6B). Strong nuclear staining for Exd (shown in red) was always 

detectable in the DRA inner PRs R7 and R8 (white arrows), both expressing Rh3 

(shown in green). Outside of the DRA, Exd was again not detectable in the 

cytoplasm. 

It was therefore concluded that Exd is co-expressed with Hth in the nuclei 

of DRA inner PRs. As no cytsoplasmic staining outside of the DRA was 

detectable and as no reporter constructs or in-situ hybridizations were performed, 

it could not be excluded that exd shows the same expression pattern than hth. 

 Over-expression of Hth in all larval PRs is sufficient to translocate Exd to 

the larval PR nuclei (Jaw et al., 2000). This result was reproduced in the adult 

retina, by over-expressing Hth using the GAL4/UAS-system (see material and 

methods). Hth was ectopically expressed in all PRs posterior to the 

morphogenetic furrow, using GMR-GAL4 (LGMR > hth). Frozen sections through 

adult eyes from LGMR > hth flies were then performed and were double labeled 

with Anti-Hth and Anti-Exd (Fig 6C). Every PR expressing Hth (shown in green) 

was also positive for nuclear Exd (shown in red). Hth is therefore sufficient to 

translocate Exd into the nucleus of adult PRs. However, the possibility remains, 

that ectopic Hth transcriptionally activates Exd expression. In a similar 

experiment, Exd was over-expressed using GMR-GAL4 to test whether it would 

induce Hth expression. Frozen sections through adult eyes from LGMR > exd 

flies were then double labeled for Hth and Exd (Fig 6D). Ectopic Exd (shown in 

red) had no effect on Hth expression (shown in green), as it remained specifically 

expressed in DRA inner PR nuclei (white arrows). Furthermore, GAL4-induced 

Exd expression outside of the DRA was largely cytoplasmic, again confirming 

that Exd requires the presence of Hth to be nuclearly localized in adult PRs. 
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 As Exd and Hth are both required for transcriptional activation of their 

target genes, ectopic Exd alone should not be able to induce any phenotype 

outside of the DRA in LGMR > exd flies. This was tested by assessing opsin 

gene epression in these flies. Frozen sections through adult eyes from LGMR > 

exd flies were first labeled with antibodies against Rh3 and Rh4 (Fig 6E). It was 

found that expression of Rh3 (shown in red) and Rh4 (shown in cyan) were 

indistinguishable from the wildtype, confirming that ectopic Exd has no effect on 

R7 opsin expression or DRA development. Analysis of the LGMR > exd flies was 

completed by assessing R8 opsin gene expression using antibodies against Rh5 

and Rh6 on frozen sections (Fig 6F). No phenotype was observed as Rh5 

expression (shown in blue) and Rh6 expression (shown in green) were normal. It 

was therefore concluded that over-expression of Exd in developing PRs has no 

effect on their development in the absence of Hth. 

 To investigate nuclear localization of both Exd and Hth in developing inner 

PRs of the DRA, their localization was analyzed in clones of tissue lacking the 

dimerization partner. First, Exd localization in clones of homozygous eye tissue 

lacking Hth protein was investigated. Mitotic clones were induced using the ey-

flip/FRT technique (see material and methods) and the hth null allele hthP2. Pupal 

retinas exhibiting hthP2 (-/-) clones, marked by the absence of Armadillo-lacZ 

(Arm-lacZ) were then dissected and triple labeled for Exd, βGal and ElaV (Fig 
6G). Nuclear staining of Exd (shown in red) was lost in hthP2 (-/-) clones touching 

the dorsal rim of the eye (shown by the absence of green βGal staining). In the 

absence of Hth, Exd could therefore not translocate to the nucleus of DRA inner 

PRs. It could therefore be excluded that exd showed the same expression 

pattern than Hth. However, transcriptional activation of exd by Hth still remaines 

a possibility. Finally, Hth localization was assessed in clones of eye tissue 

lacking Exd function, by using the exd null allele exd1 recombined onto an FRT19 

chromosome. Pupal retinas (48 hrs APF) with exd1 (-/-) clones marked by the 

absence of Arm-lacZ were then dissected and triple stained for Hth, βGal and 

ElaV (Fig 6H). Nuclear Hth staining (shown in green) was also lost in exd1 (-/-) 

clones (marked by the absence of red staining) touching the dorsal rim of the 
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eye. Therefore, the presence of Exd is necessary for Hth to translocate to the 

nucleaus, as had been suggested before in other model systems. 

 It was concluded from these experiments that Hth and Exd are both 

expressed in DRA inner PRs, where they co-localize in the nucleus. Exd is not 

sufficient to induce Hth expression or to influence PR development. Finally, both 

Hth and Exd rely on each other’s presence to correctly translocate into the 

nucleus of developing PRs. While Hth is specifically expressed in the DRA inner 

PRs, Exd expression seems to be at low levels and to be pleiotropic. 

 

2.7. Expression of Hth/Exd is conserved between Musca and Drosophila 
 The homeodomain transcription factors Homothorax (Hth) and 

Extradenticle (Exd) specifically co-localize in inner PRs of the DRA. Dorsal rim 

areas, specialized in the detection of polarized light, have been described in 

many insect species (Labhart and Meyer, 1999). However, after morphologic 

analysis of these very polymorphic DRAs, the hypothesis was presented that 

different polarization sensors have arisen independently during insect evolution. 

Strikingly, a very similar group of PRs specialized in the detection of e-vector 

orientation have even been described at the ventral rim of the principal eyes of 

Wolf spiders (Lycosidae; (Dacke et al., 2001). Although the principal eyes of 

spiders and flies are clearly not homologous structures, they appear to use 

similar molecular programs (PAX6) in different animal species to create 

analogous structures (for review: Gehring, 2002). A similar model has been 

proposed for the eyes of vertrebrates and flies. Antibodies against Hth were 

therefore used to begin an investigation of evolutionary conservation of 

transcription factor expression in the DRA of other insect species, beginning with 

the housefly, Musca domestica. 

 The ommatidial mosaic of the housefly (Musca domestica) has been 

investigated in much detail, by using water immersion microscopy (Franceschini 

et al., 1981; Kirschfeld and Franceschini, 1968). Eye morphology of this species 

is very similar to Drosophila, which is also a higher dipteran. The pale and yellow 

ommatidial subtypes were in fact first characterized in Musca, based on 
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autofluorescence of their visual pigments (Franceschini et al., 1981). To date, PR 

cell fate decisions and ommatidial subtype specification have not been analyzed 

molecularly in Musca. Testing eventual cross-reaction of antibodies generated 

against Drosophila proteins was technically difficult due to very dark pigmentation 

of Musca adult eyes. All Musca experiments were therefore performed in white 

mutants (w5), lacking eye pigmentation (Fig 7A; (Hediger et al., 2001). 

Specification of inner PRs R7 and R8 was investigated   first by double labeling 

frozen sections through adult Musca w5 mutant eyes with antibodies raised 

against Drosophila Spalt (Sal) and ElaV proteins (Fig 7B). Sal expression in 

Musca (shown in cyan) was found to be indistinguishable from Drosophila, as all 

Fig III.2.7 Expression of Hth/Exd is conserved between Musca and Drosophila 
(A) Musca domestica white mutants (w5) used for antibody stainings on frozen sections. 
(B) Frozen section (16-18 µm) through adult w5 Musca eyes, double labeled with antibodies against Drosophila inner PR marker 
Sal (cyan) and ElaV (red). R7 and R8 cells were also specifically marked in Musca. 
(C) Frozen section through adult w5 Musca eyes, double labeled with antibodies against Drosophila DRA marker Hth (green) and 
ElaV (red). Between 3-4 Hth-positive PR nuclei were detected at the dorsal rim, very similar to Drososphila. 
(D) Frozen section through adult w5 Musca eyes, double labeled with antibodies against Drosophila Exd (blue) and ElaV (red). 
As for Hth, specific nuclear expression of Exd was detected in 2-4 nuclei at the dorsal rim of Musca. 
(E) Double labeling of Hth (red) and Sal (cyan) on frozen sections revealed specific co-expression in the DRA inner PRs. Like in 
Drosophila, only inner PRs at the DRA therefore express Hth and Exd in Musca domestica.
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R7 and R8 cells were found to express Sal. Specification of inner PRs in the 

DRA was assessed next by double labeling frozen sections through adult Musca 

heads with antibodies against the Drosophila proteins Hth and ElaV (Fig 7C). Hth 

expressing nuclei (shown in green) were detected exclusively at the dorsal rim of 

the adult eye. As in Drosophila, DRA R8 nuclei could be identified due to their 

more apical location as compared to non-DRA R8 nuclei (bottom white arrow). 

R7 nuclei also stained for Hth (top white arrows), however, they could not be 

specifically marked, as the Drosophila antibodies against the R7 marker 

Prospero did not cross-react in Musca (data not shown). It was striking that, 

although the adult eye of Musca is significantly larger than the one of Drosophila, 

and contains a much higher number of ommatidia, only one or two rows of 

ommatidia were found to be Hth-positive in Musca, like in Drosophila. Nuclear 

localization of the Hth dimerization partner Extradenticle (Exd) was also 

visualized on frozen sections through adult Musca eyes, using the antibodies 

against Drosophia Exd and ElaV (Fig 7D). Nuclear localization of Exd (shown in 

blue) was detected specifically in DRA inner PRs, suggesting that the role of Hth 

and Exd in the DRA is conserved between Musca and Drosophila. Finally, the 

identity of DRA inner PRs was confirmed in Musca, by double labeling frozen 

sections through adult w5 eyes with antibodies against Drosophila Sal and Hth 

(Fig 7E). Hth-expressing cells in the DRA (shown in red) were always Sal-

positive (shown in cyan), clearly demonstrating that Hth expression in the adult 

DRA of Musca is specific to inner PRs R7 (top arrows) and R8 (bottom arrow). 

 It was concluded from these experiments, that Hth/Exd expression in DRA 

inner PRs is conserved between Musca and Drosophila. The DRAs of more 

distantly related species could in the future be analyzed using these antibodies, if 

they cross-react and this might allow a further investigation of the evolutionary 

relationship between the DRA structures in these species. 

 

4.2.8. Homothorax is sufficient to induce DRA ommatidia 
Homothorax is specifically expressed in the inner PRs of the DRA. A 

potential role of hth in inducing the DRA-specific inner PR cell fate was tested by 
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Fig III.2.8 Homothorax is sufficient to induce the DRA fate in inner PRs 
(A) Over-expression of hth expands Rh3 expression: Frozen section (10 µm) along the D/V axis (D to the left) through an adult 
head of flies over-expressing hth under the control of ‘Long’GMR-GAL4 (GMR>hth; see Experimental Procedures). Double 
labeling of Rh3 (red) and Hth (green) revealed co-expression of Hth and Rh3 in all inner PRs (R= retina, L= lamina, M=medulla). 
(B) Axonal projections of rh3 expressing fibers to the optic lobes: Frozen sections along the D/V axis (dorsal to the left) through 
adult heads of GMR>hth flies carrying rh3-lacZ transgenes. All inner PRs projecting to the medulla express the DRA opsin rh3 as 
seen by double labeling of the PR marker 24B10 (red) and Anti-βGal (green). Projections to both R7 and R8 layers (white 
arrows), but not to the Lamina were observed, suggesting that all inner PRs were driven into the DRA fate (R=Retina, L=Lamina, 
M=Medulla). 
(D) Homothorax gain-of-function: schematic diagram of ectopic induction of DRA ommatidia (red) by Hth. 
(E) Over-expression of Hth results in loss of rh4, rh5 and rh6 expression: Frozen sections through adult heads of wildtype flies 
immuno stained for Rh4 (top left), Rh5 (top center) and Rh6 (right). All expression of these non-DRA inner PR rhodopsins is lost 
in flies over-expressing Hth (GMR>hth): Rh4 (bottom left), Rh5 (bottom center) and Rh6 (bottom right) are not detectable, 
further suggesting that all ommatidia were transformed into DRA. 
(E) Expression of Hth is sufficient to ectopically induce DRA morphology: In Epon thin sections through non-DRA ommatidia 
located dorsally from the equator in GMR>hth flies, all ommatidia exhibit DRA morphology (compare Fig 1F) showing the 
enlarged diameter of their inner PR rhabdomeres. 
(F) Rhabdomere morphology in ectopic DRA ommatidia: Further analysis of rhabdomere morphology in GMR>hth flies using 
electron microscopy revealed occasional malformations, like kidney-shaped inner PR rhabdomeres (top). Nevertheless, the 
ommatidia are virtually identical to DRA ommatidia of wildtype flies (bottom, compare Fig 1E). 
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assessing whether its over-expression was sufficient to induce ectopic DRA 

development. Hth was mis-expressed in all developing PRs posterior to the 

morphogenetic furrow using UAS-hth (Ryoo et al., 1999) under the control of 

LGMR-GAL4 (LGMR>hth; (Moses and Rubin, 1991).  This resulted in slightly 

rough adult eyes, but without severely disrupting the retina. Frozen sections (10 

µm) through adult eyes of LGMR > hth flies were double labeled using antibodies 

against Hth and Rh3 (Fig 8A). Unlike in the wildtype, Rh3 expression (shown in 

red) was now dramatically expanded throughout the whole retina. To test 

whether rh3 transcription was also induced by over-expression of hth, expression 

of rh3-lacZ was analyzed on frozen sections (Fig 8B). This transgene is normally 

expressed in 30% of R7 cells as well as in all DRA inner PRs and was visualized 

using Anti-βGal antibodies (shown in green). Additionally, all axonal projections 

to the optic lobes were visualized using antibodies against the PR-specific cell-

surface antigen 24B10 (Zipursky et al., 1984). Double labeling revealed that in 

GMR>hth flies, all inner PRs project to the medulla and express rh3-lacZ. 

Although the morphology of the medulla was somewhat disturbed, both R7 and 

R8 termination layers could be distinguished (white arrows). No overshooting of 

fibers or dramatic mis-projections were observed. The outer PRs projected 

correctly to the lamina and never expressed rh3. Alternatively, rh3 expression 

was visualized in living LGMR > hth flies using a rh3-GFP transgene and corneal 

neutralization by water immersion microscopy (Franceschini and Kirschfeld, 

1971a). While rh3-GFP was correctly expressed in ~30% of non-DRA ommatidia 

in wild type flies (Pichaud and Desplan, 2001), its expression was expanded to 

all ommatidia in flies expressing hth under GMR control (data not shown).  

Ectopic hth therefore lead to the expression of rh3 in all inner PRs. 

Expression of all other inner PR rhodopsins (Rh4, Rh5 and Rh6) in LGMR 

> hth flies was also tested (Fig 8C). While these opsins showed correct subtype-

specific expression in wildtype R7 and R8 (top row), expression of all three 

opsins was completely lost in LGMR > hth flies (bottom row). Expression of the 

outer PR opsin Rh1, however, remained normal since expression of a rh1-GFP 

transgene (Pichaud and Desplan, 2001) was not affected (not shown). It was 
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concluded that Rh3 is the only opsin expressed in inner PRs in these hth gain-of-

function flies. As Rh3 is the only rhodopsin expressed in the Drosophila DRA, it is 

thus likely that hth was sufficient to induce the DRA fate in all ommatidia (Fig 
8D). 

To test this hypothesis, PR morphology was evaluated in LGMR > hth flies 

by performing Epon thin sections (1 µm) through the adult retina (Fig 8E). Light 

microscopic analysis revealed that the rhabdomere diameter of all inner PRs was 

considerably enlarged in GMR>hth flies compared to the wildtype. As a 

significant number of inner PR rhabdomeres over-expressing Hth were found to 

have severely deformed, their morphology was analyzed in more detail by 

electron microscopy (Fig 8F, see material and methods). Cross-sections of some 

inner PR rhabdomeres exhibited a kidney-like shape and some were split in two 

(data not shown). However, the area of inner PR rhabdomere cross sections was 

always significantly enlarged. 

Therefore, expression of Hth is sufficient to force any inner PR, 

independent of its location within the retina, into choosing the fate of a 

polarization-sensitive DRA cell. Outer PRs do not get transformed 

morphologically or molecularly.  
 

2.9. Mutual exclusion between Sens expression and DRA development 
Homothorax is specifically expressed in the inner PRs of the DRA and it is 

sufficient to induce the DRA fate in all ommatidia when ectopically expressed. 

Expression of the R8 marker Senseless (Sens) is specifically excluded from the 

dorsal rim, suggesting that absence of Sens is important for these cells to 

acquire their specialized function. It was therefore tested whether Hth and Exd 

are sufficient to repress Sens in R8, when ectopically expressed. 

As Sens is one of the first markers expressed in R8 cells, it was first 

tested whether Hth was able to efficiently repress Sens expression early in third 

instar larvae. Eye imaginal discs from flies over-expressing a GFP:hth fusion 

protein under GMR-GAL4 control (LGMR > GFP:hth) were dissected and triple 

stained with antibodies against GFP, Sens and ElaV (Fig 9A). Strong expression 
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of Sens (shown in red) was detected in R8 cells starting right posterior to the 

morphogenetic furrow (MF, white arrow). Hth expression, induced in all 

developing PRs by GMR-GAL4 (shown in green) started ~3-5 rows posterior to 

the furrow. Clear co-staining of Sens and Hth was found all the way to the 

posterior edge of the eye imaginal disc, suggesting that Hth is not sufficient to 

repress larval Sens expression. However, it was tested whether late Sens 

expression, which has been proposed to be required for the terminal 

differentiation of color-sensitive R8 cells, was affected by ectopic Hth. Pupal 

retinas (48 hrs APF) were dissected from LGMR > GFP:hth and triple stained for 

GFP, Sens and ElaV (Fig 9B). At this developmental stage, strong GFP:Hth 

expression (shown in green) was detectable in all PRs (shown in blue), as well 

as in non-PR cells. No Sens expression was detectable in these flies, suggesting 

that ectopic over-expression of Hth is sufficient to repress Sens at this 

developmental stage. Frozen sections through adult heads from LGMR > hth flies 

were also double stained for Sens and ElaV (Fig 9C). Sens expression (shown in 

green) was not detectable in PRs (shown in red). It was therefore concluded that, 

similar to the DRA of wildtype flies, induction of ectopic DRA ommatidia in LGMR 

> hth flies results in the total loss of Sens expression. 

As the DRA fate and Sens expression seemed to efficiently exclude each 

other, it was tested whether over-expression of Sens was sufficient to repress 

DRA development. Sens was therefore over-expressed in all developing PRs 

using GMR-GAL4, and pupal retinas were triple stained using antibodies against 

Sens, Exd and ElaV (Fig 9D). In the DRA of sGMR > sens flies (shown as a 

dashed line), Sens (shown in red) was found to be co-expressed with Exd 

(shown in green). This suggested that Sens was not able to repress nuclear 

localization of Exd. Sens and Exd were also double labeled in frozen sections 

through adult sGMR > sens eyes (Fig 9E). As in pupae, strong co-expression of 

Sens (shown in red) and Exd (shown in green) was observed. Nuclear 

localization of Exd in sGMR > sens flies suggested that Hth expression was 

unaffected. Hth expression was visualized in frozen sections using antibodies 

against Hth and ElaV (Fig 9F). As expected, Hth expression (shown in green) 
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was found to be unaffected in adult sGMR > sens flies. Therefore, nuclear 

localization of both Hth and Exd is not affected by ectopic over-expression of 

Fig III.2.9 Mutual exclusion between Sens expression and DRA development 
(A)-(C) Repression of Sens by ectopic Hth: Third instar eye imaginal discs fro flies over-expressing Hth under GMR-GAL4 
control (LGMR > hth) triple labeled for Hth (green), Sens (red) and ElaV (blue). Hth did not reperess Sens expression in larvae 
(white nuclei). (B) Pupal retinas (48 hrs APF) dissected from LGMR > hth flies and triple labeled for Hth (green), Sens (red) and 
ElaV (blue). At this developmental stage, no SEns expression was detectable, suggesting that ectopic Hth was sufficient to repress 
the R8 marker. (C) Frozen sections through adult eyes from LGMR > hth flies, double stained for Sens (green) and ElaV (red). 
No Sens expression was detectable at this stage. 
(D)-(F) Over-expression of Sens does not repress Hth or Exd: Pupal retinas from flies over-expressing Sens under GMR-GAL4 
control (sGMR > sens) triple labeled for Exd (green), Sens (red) and ElaV (blue). Exd expression in the DRA (dashed line) 
persisted and co-expression with Sens was observed. (E) Co-expression of Exd (green) and Sens (red) on frozen sections through 
adult sGMR > sens eyes. (F) Expresion of Hth (green) was unaffected on frozen sections through adult sGMR > sens eyes (ElaV 
in red). 
(G)-(H) Over-expression leads to a loss of the DRA: Frozen sections through adult eyes from LGMR > sens flies carrying a rh3-
lacZ transgene. βGal expression (green) in PR axon fibers was completely lost (L, lamina; M, medulla). (H) Frozen sections 
through adult eyes from LGMR > sens flies carrying a rh6-lacZ transgene. βGal expression (green) in PR axon fibers was 
dramatically expanded into all PRs, with rh6-lacZ expr4essing fibers terminating in the lamina (L) as well as the medulla (M). 
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Sens. Based on these markers, DRA development appears to proceed normally 

under these conditions. 

To complete the analysis of Sens gain-of-function flies, it was tested 

whether the forced co-expression of Hth/Exd and Sens leads to an interruption of 

DRA maturation by blocking the transcriptional network downstream of Hth. As 

GMR > Sens flies have dramatic adult eye phenotypes, it was impossible to 

assess inner PR rhabdomere diameter. However, rh3 expression was tested by 

introducing rh3-lacZ transgenes into a LGMR > sens background and double 

labeling with Anti-βGal and the PR-specific cell-surface-antigen 24B10 (Fig 9F). 

Expression of rh3-lacZ (shown in green) was completely lost in adult LGMR > 

sens eyes, as no βGal-expressing axonal fibers were detectable in the optic lobe 

(labeled in red). This result suggested that DRA development was indeed 

perturbed in these flies as Rh3 is always found in DRA inner PRs. Finally, 

introduction of rh6-lacZ into the LGMR > sens background allowed to determine 

the fate of the DRA, by double labeling frozen sections with antibodies against 

βGal and 24B10 (Fig 9G). Expression of rh6-lacZ (shown in green) was 

expanded into all PRS, staining axonal projections to both the lamina (L) as well 

as the medulla (M) layers of the optic lobe (labeled in red). Ectopic expression of 

Sens therefore has a strong activating effect on rh6 expression whereas rh3 

expression is completely repressed. Interestingly, expression of rh1-lacZ was not 

affected by ectopic Sens (data not shown), suggesting that Sens is not sufficient 

to fully transform outer PRs into yR8 cells. 

It was concluded from these experiments that Sens expression and DRA 

development exclude each other. Over-expression of Hth leads to the loss of 

Sens expression, thereby providing the first pupal marker for DRA induction. 

Futhermore, over-expression of Sens leads to a mis-specification of DRA 

ommatidia: although Hth and Exd remain properly expressed, forced co-

expression of Exd leads to a loss of the DRA-type rh3 expression while inducing 

yR8-like expression of rh6 in all PRs. It appears therefore that in the wildtype, 

Sens has to be excluded from DRA R8 cells, due to its strong ability to induce the 

yR8 fate. 
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2.10. Transcriptional activity of Hth is required for DRA development 
 Tissue-specific expression of Hth is required for nuclear localization of 

pleiotropic Exd (Pai et al., 1998; Rieckhof et al., 1997). One model proposes that 

Hth’s unique function is to translocate the transcription factor Exd into the 

nucleus (Kurant et al., 2001). However, it has been suggested, that DNA binding 

of Hth via its homeodomain is required for most of Hth’s functions. It had 

therefore been proposed that a ternary complex consisting of Hth, Exd and a Hox 

factor is activating the transcription of target genes (Ryoo et al., 1999). To date, 

no Hox factor has been shown to be required for eye development. In developing 

DRA R8 cells, however, the R8 marker Senseless (Sens) was shown to be 

repressed by Hth/Exd. Using the exclusion of Sens from the DRA as a marker, it 

was therefore tested whether Hth and Exd behave during DRA development as 

has previously been described in other model systems. 

 To test whether nuclear localization of Exd is sufficient to induce the DRA 

ommatidial subtype, the Exd protein fused to an additional ‘nuclear localization 

sequence’ (NLS) was ectopically expressed in developing PRs using the 

GAL4/UAS-system (Ryoo et al., 1999); see material and methods). Frozen 

sections through adult eyes of flies over-expressing UAS-exd:NLS under the 

control of GMR-GAL4 (LGMR > exd:NLS) were then double labeled with 

antibodies against Sens and Exd (Fig 10A). Sens expression (shown in green) 

was not lost in these retinas, unlike when wildtype Hth is over-expressed. 

However, Exd was found to be nucler in all PRs. Therefore, nuclear localization 

of Exd is not sufficient for the repression of Sens. To confirm this result, DRA 

development was assessed in the adult eye by double labeling frozen sections 

with antibodies against Rh3 and Rh4 (Fig 10B). Rh3 expression (shown in red) 

and Rh4 (shown in green) were unaffected in LGMR > exd:NLS, again 

suggesting that the DRA was indistinguishable from the wildtype (white arrow). 

Finally, it was confirmed that ectopic nuclear Exd did not affect Hth expression in 

LGMR > exd:NLS flies by double labeling frozen sections with Anti-Exd and Anti-

Hth (Fig 10C). Hth expression (shown in green) remained specific to the DRA 

inner PR nuclei (white arrows), whereas Exd was expressed in all PR nuclei 
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Fig III.2.10 Transcriptional activity of Hth is required for DRA development 
(A)-(C) Nuclear localization of Exd is not sufficient to induce DRA development: Frozen sections through adult eyes from flies 
over-expressing nuclearly localized Exd (exd:NLS) under GMR-GAL4 control (LGMR > exd:NLS). Co-expression of Exd (red) 
and Sens (green) suggested that nuclear Exd was not sufficient to induce DRA development. (B) Frozen sections through LGMR 
> exd:NLS eyes double labeled for Rh3 red) and Rh4 (cyan). DRA-type Rh3 expression in R8 cells (white arrow) was not 
expanded outside of the DRA. (C) Expression of Hth (green) remained specific to inner PR nuclei in the DRA and was therefore 
not affected by ectopic expression of exd:NLS, as seen on frozen sections (white arrows). 
(D)-(F) Mutation of the Homeodomain abolishes Hth function: Frozen sections through adult eyes from flies over-expressing Hth 
with a point-mutated Homeodomain (Hth51A) under GMR-GAL4 control (LGMR > hth51A). Sens expression (green) was not 
repressed by Hth51A (ElaV in red), probably due to its impaired ability to bind DNA. (E) DRA-type Rh3 expression (red) in R8 
cells (white arrows) is not expanded in LGMR > hth51A flies. However, some ventral R8 cells were found to express Rh3 (not 
shown), suggesting some residual transforming potential for Hth51A. (F) Double labeling of frozen sections through LGMR > 
hth51A eyes with antibodies against Hth (green) and Exd (red) revealed that Hth51A was sufficient to localize Exd the nucleus. 
(G) Deletion of the Hth homeodomain has a dominant negative effect: Pupal retinas (48 hrs APF) dissected from flies aver-
expressing a from of Hth lacking the entire homeodomain (HthHM) under the control of GMR-GAL (LGMR > hthHM). Triple 
labeling of Exd (red), Sens (green) and ElaV (blue) revealed, that Sens was no longer excluded from the dorsal-most ommatidia. 
(H) Constitutively active Exd acts as a dominant negative: Pupal retinas dissected from flies aver-expressing a Exd fused to the 
transcriptional activator VP16 from yeast (Exd:VP16) under GMR-GAL control (LGMR > exd:VP16). Triple labeling of Exd 
(red), Sens (green) and ElaV (blue) revealed that Sens was no longer excluded from the dorsal-most ommatidia, very similar to 
LGMR > hthHM flies. 
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(shown in red). Nuclear translocation of Exd without Hth is therefore not sufficient 

to induce DRA development. 

 In similar experiments, it was tested whether binding of Hth to target DNA 

was required for its function in DRA development. A mutant form of Hth that was 

impaired in its ability to bind DNA due to the mutation of amino acid Asn51 to Ala 

(Hth51A; (Ryoo et al., 1999), was ectopically expressed. Frozen sections through 

adult eyes from LGMR > hth51A flies were then double labeled with antibodies 

against Sens and ElaV (Fig 10D). Sens expression (shown in green) was not lost 

in these flies, suggesting that DNA-binding of Hth is required for Sens repression. 

However, some R8 cells in the ventral half of the eye (labeled by ElaV, shown in 

red) were found to lack Sens expression, suggesting that Hth51A has a very 

weak DRA-inducing potential. To confirm this result, Rh3 and Rh4 expression 

were visualized in adult LGMR > hth51A flies (Fig 10E). Rh3 expression (shown 

in red) was not induced in R8 cells and Rh4 expression remained unchanged in 

R7, suggesting that Hth51A has no significant DRA-inducing potential. Some 

ventral R8 cells were found to express Rh3 (data not shown), again suggesting 

that mutation of Asn51 does not abolish all of Hth’s function. Finally it was tested 

whether Hth51 had lost its ability to localize Exd into the nucleus, by double 

labeling adult LGMR > hth51A eyes for Hth and Exd (Fig 10F). Strong co-

staining for both Hth (shown in green) and Exd (shown in red) was detected in all 

adult PRs. It was therefore concluded that although Hth51A has lost most of its 

potential to repress Sens, it is still able to correctly translocate Exd to the 

nucleus. 

 The repression of Sens by Hth/Exd was further studied by over-expressing 

another mutant form of Hth which lacks the whole homeodomain. However, this 

truncated protein still contains the Exd-interacting HM domain and is therefore 

called hthHM (Ryoo et al., 1999). Over-expression of HthHM acts as a dominant 

negative in some cases, by translocating Exd in the nucleus and keeping it 

bound into an inactive complex. Pupal retinas were dissected from LGMR > 

hthHM flies and triple labeled for Sens, Exd and ElaV (Fig 10G). Sens 

expression (shown in green) was not excluded from the dorsal-most row of 
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ommatidia and instead, all PRs co-expressed nuclear Exd (shown in red) and 

Sens. Therefore, HthHM acts as a dominant negative in the developing DRA, as 

ectopic over-expression leads to the expansion of Sens expression into all R8 

cells although it is still able to localize Exd to the nucleus. Due to the phenotype 

described above for Exd/Sens co-expression in sens gain-of-function flies (sGMR 

> sens), DRA development should be impaired in LGMR > hthHM flies and their 

R8 cells should express Rh6. 

 To complete the analysis of Sens repression by Hth/Exd, another mutant 

form of Exd was over expressed, in which the activation domain from the yeast 

transcription factor VP16 was fused to the ORF (VP16:Exd; Culi and Mann, 

unpublished). In different model systems, such VP16-fusion proteins transform 

transcription factors into constitutive activators. Pupal retinal from LGMR > 

VP16:exd were dissected and triple labeled using antibodies against Sens, Exd 

and ElaV (Fig 10H). Surprisingly, the phenotype observed was identical to the 

over-expression of HthHM: Sens expression (shown in green) was expanded into 

the R8 cells of the dorsal-most ommatidia. Sens was always found to be co-

expressed with Exd:VP16 (shown in red) which was detected in the cytoplasm as 

well as in the nucleus. Therefore, ectopic expression of constitutively active Exd 

results in a dominant negative loss of DRA development, potentially due to the 

direct activation of Sens expression in DRA R8 cells. 

 It was concluded from these experiments that nuclear localization of both 

Hth and Exd is required for inducing the DRA ommatidial subtype. Furthermore, 

DNA-binding of Hth was required, suggesting that needs to be transcriptionally 

active. Finally, the transformation of Exd into a constitutively active form leads to 

a dominant negative effect on DRA development, raising the possibility that 

Hth/Exd directly repress sens expression in DRA R8 cells. Exd and Hth therefore 

behave very similarly to what has been described in other model systems. 

However, it remains to be shown whether a Hox factor is required for Exd/Hth 

function in DRA development. 
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2.11. Only inner PRs are competent to become DRA: the role of Spalt 
 Homothorax is sufficient to induce the DRA subtype throughout the eye 

when extopically expressed. However, outer PRs are not transformed into Rh3-

expressing cells by Hth, suggesting that only inner PRs are competent to 

respond to Hth over-expression. Furthermore, generation of extra inner PRs at 

the dorsal rim results in induction of Hth only in the inner PRs R7 and R8, but 

never in outer PRs. Therefore, it appears that only PRs that have previously 

commited to the inner PR fate are competent to both induce Hth expression as 

well as provide the genetic environment for Hth to unfold its transforming 

potential. The spalt complex encodes the two homologous transcription factors 

Spalt major (salm) and Spalt related (salr) that are indispensable for inner PR 

maturation (Kuhnlein et al., 1994; Mollereau et al., 2001). It was therefore tested 

whether sal is required for Hth’s role in DRA development. 

 To confirm that all Spalt-positive cells located at the dorsal rim induce Hth 

expression, when extra R7 cells were induced throughout the retina, pupal 

retinas from flies over-expressing activated Ras under the control of the 

sevenless promoter (sev > RasVal12; (Gaul et al., 1992) were dissected and 

triple labeled using antibodies against Sal, Hth and ElaV (Fig 11A). In this mutant 

background, many extra Spalt-positive cells (shown in red) were counted per 

ommatidium throughout the retina, suggesting that extra R7 cells induced by 

RasVal12 were real inner PRs. Furthermore, Sal-positive cells in the DRA 

(marked by a dashed line) were always found to co-express Hth (shown in 

green). It was therefore concluded that only cells marked with Spalt are 

competent to respond to the DRA-inducing signal emanating from the dorsal 

head cuticle. 

 It was tested whether Sal expression in a given PR was sufficient to 

induce the DRA fate at the DRA, by over-expressing Salm in all PRs, using the 

GAL4/UAS-system (see material and methods). Over-expression of Salm using 

GMR-GAL4 drivers (LGMR > salm) resulted in a very rough eye phenotype. 

However, pupal retinas were dissected and triple labeled for Sal, Hth and ElaV 

(Fig 11B). Retinal organization was rather perturbed and Salm expression levels 
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Fig III.2.11 Only inner PRs are competent to become DRA: the role of Spalt 
(A) PRs choosing the DRA fate are always Spalt positive: Pupal retinas dissected from flies over-expressing activated Ras 
(RasVal12) under control of the sev promoter (sev > RasVal12). Triple labeling with antibodies against Hth (green), inner PR 
marker Sal (red) and ElaV (blue) revealed that all the induced inner PRs at the DRA (dashed line) co-expressed Hth and Sal. 
(B)-(C) Ectopic Spalt is not sufficient to induce the DRA fate at the dorsal rim: Pupal retina dissected from flies over-expressing 
Sal under GMR-GAL4 control (LGMR > Sal). Triple labeling with antibodies against Hth (green), Sal (red) and ElaV (blue) 
revealed that no extra Hth-positive cells were induced at the DRA (dashed line) as compared to the wildtype. 
(D) Nuclear Exd is lost in sal clones: Pupal retinas from flies inducing mitotic clones lacking sal function were triple labeled for 
Exd (red), Arm-lacZ (green) and ElaV (blue). Nuclear Exd was specifically lost in sal (-/-) clones (marked by the absence of Arm-
lacZ) touching the DRA (dashed line). 
(E)-(F): Hth expression is lost in sal clones: Pupal retinas from flies inducing mitotic clones lacking sal function were triple 
labeled for Hth (green), Arm-lacZ (red) and ElaV (blue). Hth expression was specifically lost in sal (-/-) clones (marked by the 
absence of Arm-lacZ) touching the DRA (dashed line). 
(G) Specification of inner PRs is required for Hth function: Expression of the opsin reporter constructs rh1-lacZ and rh3-lacZ 
visualized by X-Gal staining on frozen sections in the wildtype (first column), sal mutants (second column), hth gain-of-function 
flies (LGMR > hth) and flies ectopically expressing hth in a sal (-/-) mutant background (last column). It was found that the opsin 
phenotype of sal(-/-) + LGMR > hth flies was identical to sal mutants: expression of rh1-lacZ was expanded into all PRs, while 
rh3-lacZ expression was completely lost. Hth was therefore not able to ectopically induce the rh3-expressing DRA fate in inner 
PRs, in the absence of sal function. 
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(shown in red) seemed to be variable. However, Hth expression (shown in green) 

was not expanded into all the Sal-expressing nuclei located within the DRA 

(marked by a dashed line), suggesting that Salm over-expression is not sufficient 

to induce Hth expression there. This result was confirmed by double labeling 

frozen sections through adult LGMR > salm eyes with antibodies against Hth and 

ElaV (Fig 11C). As in pupae, it was observed that the number of Hth-expressing 

nuclei (shown in green) was not significantly increased compared to the wildtype  

(white arrows). It was therefore concluded that ectopic Salm over-expression in 

developing PRs is not sufficient to induce Hth expression and therefore DRA 

development in outer PRs at the dorsal margin of the eye. 

 It was tested next whether Sal was necessary for DRA development by 

assessing Hth expression in mitotic clones of eye tissue homozygous for a null 

mutation in the sal locus. Clones were induced using the ey-flip/FRT technique 

(Xu and Rubin, 1993) see material and methods) and pupal retinas with sal (-/-) 

clones (marked by the absence of Arm-lacZ) were triple labeled using antibodies 

against Exd, βGal and ElaV (Fig 11D). Nuclear Exd expression (shown in red) 

was absent from sal (-/-) clones (marked by the absence of green staining) 

touching the DRA (marked by a dashed line). Nuclear localization of Exd was 

therefore lost in the absence of sal function, probably due to the loss of Hth 

expression. This was tested by triple labeling pupal retinas with sal (-/-) clones 

with antibodies against Hth, βGal and ElaV (Fig 11E). Hth expression (shown in 

green) was absent from sal (-/-) clones (marked by the absence of red staining) 

touching the DRA (marked by a dashed line). Both Hth and Exd expression are 

therefore lost in the absence of sal. To test whether this situation persists 

throughout PR maturation, frozen sections through whole mutant adult eyes 

lacking sal function were created using the ey-flip/FRT/GMR-hid technique (see 

material and methods) and double labeled for Hth and ElaV (Fig 11F). No Hth 

expression (shown in green) was detectable in adult PRs (marked in red) in the 

absence of sal. It was concluded that Hth/Exd expression, and therefore DRA 

development, depend on sal function. Ommatidia cannot develop into the DRA 

subtype without prior commitment of their inner PRs to the correct fate. 
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 Finally, it was tested whether Hth was still able to induce DRA 

ommmatidia when ectopically over-expressed in sal (-/-) omatidia. Flies with 

whole mutant eyes lacking sal function, simultaneously over-expressing hth 

under the control of GMR-GAL4, were created using a combination of the ey-

flip/FRT/GMR-hid and GAL4/UAS systems (see material and methods). The two 

different opsin-lacZ reporter constructs rh1-lacZ and rh3-lacZ were then 

introduced to assess ommatidial specification (Fig 11G). βGal activity was 

visualized on frozen sections through four different genotypes: wt, sal (-/-), LGMR 

> hth and sal (-/-) + LGMR > hth, using X-Gal staining (see material and 

methods). In the wildtype, expression of rh3-lacZ was detected in pale R7 cells 

as well as DRA R7 and R8 (top left), whereas expression of rh1-lacZ was specific 

to the outer PRs (bottom left). Due to the loss of inner PR identity, rh3-lacZ 

expression was totally lost in sal (-/-) mutants, whereas rh1-lacZ expression was 

expanded into all PRs, as seen by staining of axonal projections to both layers of 

the optic lobe (black arrow). As previously described, rh3-lacZ expression was 

expanded into all inner PRs in LGMR > hth flies, due to ectopic DRA formation. 

Expression of rh1-lacZ, however, was unaffected, as only inner PRs were 

transformed. Finally, flies lacking sal function as well as over-expressing hth in all 

PRs phenocopied sal (-/-) mutants: rh3-lacZ expression was completely lost (top 

right) and rh1-lacZ was expanded into all PRs (bottom right) as judged by their 

axonal projections (black arrow). It was therefore concluded that DRA ommatidia 

cannot be induced by Hth in the absence of sal. 

 Therefore, in order for DRA development to proceed, specification of inner 

PRs by Sal must have occurred in ommatidia at the dorsal rim. Sal expression in 

inner PRs is necessary but ectopic over-expression is not sufficient to induce Hth 

expression in outer PRs in the DRA. Establishment of the Sal-induced cell fate is 

furthermore crucial for the ability of Hth to develop its transforming potential. 

 

2.12. Loss of Homothorax results in loss of the Dorsal Rim Area 
Homothorax is expressed specifically in the inner PRs of the DRA and 

ectopically expressed Hth is able to induce DRA ommatidia in the entire retina. 
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To test whether hth is also necessary for DRA development, the Flip/FRT system 

(Golic, 1991; Xu and Rubin, 1993) was used to induce mitotic clones of 

homozygous eye tissue carrying the hypomorphic mutation hthB2. Epon thin 

sections (1µm) were performed and the iner PR rhabdomere diameter was 

analyzed under the light microscope (Fig 12A). Ommatidia located in such 

hthB2(-/-) clones touching the dorsal eye margin lost their typical enlarged inner 

PR rhabdomere morphology (black arrows) while the DRA ommatidia outside of 

the clones retained their morphology (yellow arrows). It was therefore proposed 

that hth was necessary for DRA ommatidia to form (Fig 12B). According to this 

model, loss of hth would lead to the loss of typical DRA-type omatidia (white 

circles). However, Hth is could be recovered (Bessa et al., 2002). These clones 

were difficult to analyze in the adult eye, and the observed rhabdomere 

phenotype could therefore be explained by ‘morphological stress’ within the 

clone. To further test the hypothesis, the dominant negative Hth transgene hthHM, 

containing the Exd-interacting ‘HM domain’ but lacking the entire homeodomain 

(hthHM; (Ryoo et al., 1999), was over-expressed. Adult flies expressing HthHM 

under GMR control (GMR>hthHM) exhibited no obvious external eye phenotype 

(data not shown). As expected, this HthHM could not transform inner PRs into 

DRA: Frozen sections through adult heads revealed that expression of the inner 

PR rhodopsins Rh3 and Rh4 was normal outside of the DRA (Fig 12C). In the 

DRA however, Rh3 was no longer expressed in R8 cells (white arrows), 

suggesting a loss of DRA fate, at least in the R8 cell layer. A lacZ enhancer trap 

insertion in hth was introduced to specifically mark the DRA in frozen sections 

through GMR>hthHM eyes (Fig 12D). R8 cells in the DRA of wildtype flies are a 

specialized cell type because they express neither the R8 marker Senseless 

(Sens) nor the R7 marker Prospero (Pros). However, hth-lacZ (shown in green) 

and Senseless (shown in pink) were co-expressed in the presence of 

GMR>hthHM (both arrows). Additionally, the nuclei of DRA R8 cells were now 

located significantly more basal (white arrow) as is typical for regular R8 cells. 

This further suggested that R8 cells had lost DRA identity and chosen the regular 

R8 cell fate. Axonal projections of rh3-lacZ expressing fibers were also visualized 
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in GMR> hthHM flies (Fig 12E). Double labeling of βGal (shown in green) and the 

PR-specific cell-surface antigen 24B10 (shown in red) on frozen sections 

revealed that projections of rh3-lacZ expressing fibers to the R8 cell layer of the 

medulla were lost (top arrow), whereas rh3-lacZ expressing R7 terminations 

remained (bottom arrow): over-expession of dominant negative hthHM leads to a 
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clear loss of DRA identity only in R8 cells, as R7 cells in the DRA maintain rh3-

expression. 

To assess whether rh3-expressing R7 cells in the DRA of GMR>hthHM flies had 

lost their DRA identity, their inner PR rhabdomere morphology was analyzed (Fig 
12F). Epon thin sections (1µm) were performed on these retinas and analyzed 

under the light microscope. All central PR cells (R7 and R8) at the dorsal rim of 

adult GMR>hthHM retinas had lost their typical large rhabdomere diameter (red 

arrows). Morphologically, these flies had therefore completely lost their DRA. 

  Finally, analysis of opsin expression of dorsal-most ommatidia in 

GMR>hthHM flies was completed by double labeling all four inner PR opsins and 

hth-lacZ. First, frozen sections were double labeled for Anti-Rh3 and hth-lacZ 

(Fig 12G). It was clear that all hth-lacZ expressing R7 cells (shown in green) had 

retained Rh3 expression (shown in red) as suggested by previous stainings 

(white arrows). In a similar experiment, hth-lacZ was co-labeled with Anti-Rh6 on 

frozen sections (Fig 12H). All Hth-positive R8 cells (green) always expressed 

Rh6 (shown in blue), resulting in DRA ommatidia with an ‘odd-coupled’ Rh3/Rh6 

expression (white arrows). Rh4 or Rh5 were never found to be expressed in hth-

lacZ positive DRA inner PRs of these flies (data not shown). In wildtype flies, a 

Fig III.2.12 Loss of Homothorax results in loss of the Dorsal Rim Area 
 (A) Loss of hth leads to a loss of DRA morphology: Epon thin section through adult eyes of flies with clones of eye tissue 
homozygous for the hth hypomorph B2, labeled by absence of white pigment (left). Analysis of inner PR rhabdomere morphology 
in clones touching the DRA revealed that mutant ommatidia (black arrows) located at the dorsal eye rim lose the enlarged inner 
PR rhabdomere phenotype (yellow arrows) and resemble non-DRA ommatidia instead. 
(B) Schematic diagram depicting the specific loss of DRA ommatidia (shown in white) in retinas lacking hth function. 
(C)-(E) Dominant negative Hth leads to loss of DRA fate in R8 cells: Frozen section (10 µm) along the D/V axis (dorsal to the 
left, equator runs horizontally, L=Lamina) through adult heads of flies over-expressing dominant negative Hth under the control 
of ‘Long’GMR-GAL4 (GMR>hthHM). Double labeling of Rh3 (red) and Rh4 (cyan) revealed a loss of Rh3 expression in R8 
cells of the DRA (white arrows). 
(D) Double-labeling of hth-lacZ (green, both arrows) and Sens (red) in GMR>hthHM flies revealed that R8 cells in the DRA 
maintain Sens expression (white arrow) and that the position of their nuclei is almost at the same level as those of non-DRA R8 
(compare Fig 3F). In some instances the nuclear position was even identical to non-DRA R8 cells (data not shown). This suggests 
they have lost their DRA identity, as Sens is usually strictly excluded from DRA R8 cells (compare Fig 3F). 
(E) Projections of rh3-lacZ expressing cells to the R8 layer in the medulla is lost in GMR>hthHM flies. Double labeling of lacZ 
(green) and the PR marker 24B10 (red) reveals no projections of the dorsal-most fibers to the R8 layer (top arrow) whereas rh3-
lacZ expressing fibers still are seen to project to the corresponding R7 layer (bottom arrow) indicating that R8 cells clearly lost 
the DRA fate. 
(F)+(G) Loss of Hth transforms the DRA into ‘atypical’ color-sensitive ommatidia: Double labeling of the DRA (hth-lacZ) and 
inner PR opsins in frozen sections through adult heads of GMR>hthHM flies (dorsal to the left, equator runs horizontally). DRA R7 
cells marked by lacZ expression (E, arrows) still expressed Rh3 (red), but the underlying R8 cells marked by lacZ (F, arrows) 
always expressed Rh6 (blue) suggesting that loss of hth function leads to transformation of the DRA into a color-sensitive eye 
region containing atypical Rh3/Rh6 ommatidia.  
(H) Dominant negative hth leads to loss of DRA morphology in R7 and R8: Epon thin sections through adult eyes of flies over-
expressing dominant negative Hth in all PRs (GMR>hthHM) revealed a loss of DRA morphology in both R7 and R8. The typical 
increase of the rhabdomere diameter in central PRs observed in the wildtype DRA is lost in GMR>hthHM flies, resulting in 
otherwise normal eyes, completely lacking a specialized DRA (black arrows). 
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low ratio (~6%) of ‘atypical’ odd-coupled Rh3/Rh6 ommatidia exists outside of the 

DRA, whereas R4/Rh5 ommatidia never occur (Chou et al., 1996). Therefore, 

over-expression of dominant-negative Hth appears to prevent DRA development 

and atypical color-sensitive ommatidia are always formed instead. 

It was concluded from these experiments that hth is necessary for inner 

PRs in the DRA to induce development into polarization detectors. Interestingly, 

loss of Hth function always results in the formation of atypical color-sensitive 

(Rh3/Rh6) ommatidia rather than in a stochastic choice between correctly 

specified p and y subtypes. As this effect was independent of Hth, the high levels 

of wg pathway activity at the dorsal rim might be directly repressing stochastic 

choice of color sensitive ommatidial fates. 
 

2.13. The DRA forms normally in orthodenticle and prospero mutants 
 It was shown that Homothorax is part of the regulatory network specifying 

PR cell fate decisions during ommatidial substype specification. Hth is both 

necessary and sufficient for inducing the DRA ommatidial subtype. Furthermore, 

definition of inner PRs by the spalt (sal) complex is necessary for Hth expression 

in DRA inner PRs. The genes propspero (pros) and orthodenticle (otd) play 

important roles in inner PR maturation downstream of sal. DRA development was 

therefore assessed in these mutants. 

 Both, loss of Hth and Sal, lead to a loss of DRA ommatidia. Genetic 

experiments have further shown that hth is most likely required downstream of 

sal, as hth expression is lost in sal (-/-) mutant clones and hth is no longer able to 

induce DRA ommatidia in the absence of sal function. According to this model, 

specification of inner PRs should proceed normally in hth (-/-) mutant clones. To 

test this, mitotic clones of mutant eye tissue lacking hth function were induced, 

using the ey-flip/FRT-system (see material and methods). Pupal retinas with 

clones homozygous for the hth null allele hthP2 were dissected and triple labeled 

with antibodies against the inner PR marker Spalt (Sal), βGal and ElaV (Fig 
13A). Sal expression (shown in red) was unaffected by the loss of Hth (marked 

by the absence of βGal, shown in green) in clones touching the DRA. This 
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suggested that inner PR sepecification is normal in the absence of hth, 

supporting a role of hth downstream of sal. 

 The gene pros had previously been shown to play a crucial role for R7 

maturation, by directly repressing rh5 and rh6 expression in R7 cells, where Pros 

was found to be specifically expressed (Cook and Desplan, 2001). Recently, pros 

function has been shown to be required downstream of sal, as pros expression 

was found to be lost in sal clones (Domingos et al., 2004). As R7 cells in the 

DRA co-expressed Hth and Pros, it was tested whether pros was required for 

DRA development. Whole mutant eyes lacking pros function were created using 

the ey-flip/FRT/GMR-hid technique (Stowers and Schwarz, 1999; Xu and Rubin, 

1993) Stowers and Schwarz, 1999) and the pros null allele pros17.17. Frozen 

sections through pros (-/-) mutant eyes were then double labeled with antibodies 

against Rh3 and Rh4 (Fig 13B). It was found that Rh3 expression (shown in red) 

was lost in most R7 cells, whereas Rh4 expression (shown in cyan) appeared to 

be unaffected by the loss of pros. However, Rh3 expression was always 

detectable in the DRA inner PRs (white arrow), suggesting that the DRA 

develops normally in pros (-/-) mutant eyes. This was tested by double labeling 

frozen sections through pros17.17 mutant eyes with antibodies against Hth and 

ElaV (Fig 13C). Hth expression (shown in green) was found to be 

indistinguishable from wildtype in R7 cells (top arrows) as well as R8 cells 

(bottom arrow). It was therefore concluded that, although loss of pros affects rh3-

expressing pale-type R7 cells, it has no effect on Hth expression and DRA 

development. 

 Ommmatidial specification had been shown to be severely affected in flies 

lacking the homeodomain transcription factor Orthodenticle (Finkelstein et al., 

1990; Vandendries et al., 1996). Otd had been shown to regulate inner PR opsin 

expression by directly binding to the rh3, rh5 and rh6 promoters (Tahayato et al., 

2003). As DRA inner PRs always expressed Rh3, it was tested whether DRA 

development was affected in the absence of Otd. Whole mutant eyes lacking otd 

function were generated by usig the ey-flip/FRT/GMR-hid technique (Stowers 

and Schwarz, 1999; Xu and Rubin, 1993) and the otd null allele otd2. 
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Frozen sections through otd (-/-) eyes were then double labeled with antibodies 

against Rh3 and Rh4 (Fig 13D). Rh3 expression (shown in red) was completely 

lost in the absence of otd, whereas Rh4 expression (shown in cyan) was still 

Fig III.2.13 The DRA forms normally in orthodenticle and prospero mutants 
(A) Inner PRs get specified correctly in hthP2 (-/-) clones: Pupal retina (48 hrs APF) dissected from flies inducing mitotic clones 
lacking hth function triple labeled for the inner PR marker Sal (red), Arm-lacZ(green) and ElaV (blue). No change in Sal 
expression was detected within or outside of hthP2 (-/-) clones (marked by the absence of Arm-lacZ) touching the DRA. 
(B)-(C) The DRA develops normally in pros mutants: Frozen sections through whole mutants eyes lacking pros function, double 
labeled for Rh3 (red) and Rh4 (cyan). While Rh3 expression was lost in pR7 cells, expression persisted in the DRA (arrow). 
Expression of Rh4 was not affected by the loss of pros. (C) Hth expression is unaffected in pros17.17 (-/-) mutant eyes, as 
visualized on frozen sections double labeled with antibodies against Hth (green) and ElaV (red). 
(D)-(E) otd mutants have a dramatic opsin phenotype: Frozen sections through whole mutants eyes lacking otd function were 
double labeled for Rh3 (red) and Rh4 (cyan). Rh3 expression was completely lost, while some expression of Rh4 persisted in otd2 
(-/-) eyes. (E) Expression of R8 opsins Rh5 (blue) and Rh6 (green) was severely affected on frozen sections through otd2 (-/-) 
eyes. While Rh5 was completely lost, Rh6 expression was dramatically expanded throughout the retina. 
(F) The DRA develops normally in otd mutants: Pupal retina dissected from flies inducing mitotic clones lacking otd function 
were triple labeled for Hth (green), Arm-lacZ(red) and ElaV (blue). Hth expression persisted within otd2 (-/-) clones (marked by 
the absence of Arm-lacZ) touching the DRA. However, the extent of the DRA (dashed line) seemed reduced to one row as 
compared to two rows in the surrounding wildtype tissue. 



III. RESULTS 

 73

detectable. However, only few Rh4-positive cells were detectable. This had 

previously been explained by the strong rhabdomere degeneration phenotype 

observed in otd2 (-/-) eyes. It was therefore concluded that Rh3 expression is 

specifically lost in the absence of Otd.  Frozen sections through otd2 (-/-) eyes 

were also labeled with antibodies against the R8 opsins Rh5 and Rh6 (Fig 13E). 

As in R7 cells, the pale opsin Rh5 (shown in blue) seemed to be specifically lost 

in R8 cells. Expression of the yellow R8 opsin Rh6 (shown in green), however, 

was dramatically expanded throughout the retina. This was consistent with the 

model that Otd acts as an activator for rh3 and rh5 transcription in pale 

ommatidia and as a repressor of rh6 exprerssion in outer PRs (Tahayato et al., 

2003). Differentiatin of the DRA was therefore severely affected in otd2 (-/-) eyes, 

as Rh3 expression was lost. However, secific binding of Otd to the opsin 

promoters suggested a role for Otd as a terminal effector downstream of hth in 

DRA development. This was tested by inducing mitotic clones of otd2 (-/-) eye 

tissue, negatively marked by the absence of Arm-lacZ (see material and 

methods). Pupal retinas (48 hrs APF) were then dissected and triple labeled with 

antibodies against Hth, βGal and ElaV (Fig 13F). Hth expression (shown in 

green) clearly persisted in otd2 (-/-) clones (marked by the absence of βGal, in 

red) touching the DRA (marked by a dashed line). Interestingly, the number of 

ommatidial rows seemed to be reduced from two to one inside the clone, 

suggesting that there might be some role for otd in regulating hth expression. 

However, as Hth expression was not lost in these clones, it was concluded that 

the DRA was still developing in the absence of otd, supporting a late role for this 

gene during the terminal differentiation of DRA ommatidia. 

 Therefore, DRA development is not affected by the loss of prospero, 

whereas loss of orthodenticle results in loss of Rh3 expression, but not in loss of 

Hth, thereby affecting terminal differentiation of DRA ommatidia.  

 

2.14. Orthodenticle is required downstream of hth in DRA development 
 It has been shown that Rh3 expression is lost in otd2 mutants. However, 

Hth expression persisted in these null mutants, suggesting that otd might play an 
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important role in DRA development downstream of hth. A homozygous viable, 

eye-specific otd mutant had previously been reported, called otdUVI (Vandendries 

et al., 1996). This mutant was used to further investigate the relationship 

between hth and otd in DRA development. 

Frozen sections through adult heads from homozygous otdUVI mutants 

were double labeled using antibodies against Rh3 and Rh4 (Fig 14A). The R7 

opsin phenotype obtained was virtually identical to the one observed for otd2 

flies: Rh3 expression (shown in red) was completely lost, including in the DRA, 

and Rh4 expression (shown in cyan) was persistent, but weak, due to a 

rhabdomere degeneration phenotype. It was therefore concluded that otdUVI 

mutants were lacking all otd function in the eye. Development of the DRA was 

then characterized in more detail in otdUVI mutants, by dissecting pupal retinas 

(48 hrs APF) and triple labeling with antibodies against Exd, Sens and ElaV (Fig 
14B). In wildtype flies, expression of the R8 marker Sens (shown in green) was 

always found to be excluded from the DRA (marked by Exd, shown in red), at 

this developmental stage. In otdUVI mutants, most Exd-expressing DRA 

ommatidia were also found to exclude Sens expression. However, some 

ommatidia co-expressing Exd and Sens in R8 cells were observed in these 

mutants (white arrows). This suggested that DRA development might be slightly 

affected in the absence of otd. Interestingly, a reduced number of ommatidial 

rows of the DRA subtype has been observed in otd2 mutants. Due to the 

relatively strong dis-organization of the otdUVI retina, detection of Hth expression 

in the adult DRA was rather difficult. Frozen section were performed and double 

labeled for Hth and ElaV (Fig 14C). Hth expression (shown in green) was 

detectable in the DRA of otdUVI mutants, suggesting that DRA was initially 

specified in these mutants. 

As rh3 expression was completely lost and rh4 expression did not seem to 

expand in the different otd mutants, it was asked which opsin genes the inner 

PRs were expressing in otdUVI mutants, within or outside the DRA. First, rh1-lacZ 

reporter constructs were introduced and frozen sections through adult heads 

were stained with antibodies against βGal and the PR-specific cell-surface 
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antigen 24B10 (Fig 14D). In wildtype flies, expression of this reporter was always 

found to be restricted to outer PRS, with axonal projections exclusively 

terminating in the lamina part of the optic lobe. In otdUVI mutants, however, some 

axon fibers expressing βGal (shown in green) were found to terminate in the 

medulla (M), where inner PRs usually terminate. It was concluded that some 

inner PRs lacking otd could therefore be expressing Rh1. However, the small 

numer of rh1-expressing R7 cells did not account for all the cells having lost rh3 

expression. Strong expansion of rh6 expression into outer had been shown 

before for otd2 mutants. It was therefore tested whether rh6 expression had also 

expanded into R7 cells, by introducing rh6-lacZ reporter constructs and double 

labeling frozen sections through adult otdUVI heads with antibodies against βGal 

and 24B10 (Fig 14E). Strong expansion of βGal expression (shown in green) 

was observed in outer PRs (terminating in the lamina, L) and R8 cells 

(terminating in the upper layer of the medulla, M). However, several R7 cells 

were found to express rh6, based on βGal expression (white arrows). It was 

therefore concluded that R7 cells in otdUVI mutants expressed either rh1, rh4 or 

rh6.  The inner PRs projecting to the dorsal-most edge of the medulla did not 

seem to show any preference among the three opsins suggesting that they 

behave like regular inner PRs. 

The ability of Hth to induce DRA ommatidia in an otdUVI mutant 

background was finally tested. The opsin drivers rh1-lacZ, rh3-lacZ and rh6-lacZ 

were introduced and βGal activity was visualized on frozen sections, using X-Gal 

(Fig F). Four different genotypes were compared: wt, otdUVI, LGMR>hth and 

otdUVI + LGMR>hth. In the wildtype (first column), rh1-lacZ was restricted to the 

outer PRs, projecting to the Lamina (L). The two inner PR-specific transgenes 

rh3-lacZ and rh6-lacZ were specifically expressed in medulla-projecting subsets 

of R7 cells or R8 cell, repectively. In otdUVI mutants (second clumn), opsin-lacZ 

constructs behaved as previously described: rh1-lacZ expression was expanded 

to the medulla (black arrow), rh3-lacZ was lost and rh6-lacZ expression 

expanded with βGal-expressing axons terminating in both lamina and medulla. 

Opsin-lacZ expression in LGMR > hth (third column) had previously been 
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described: while rh1-lacZ expression was unaffected, rh3-lacZ was expanded to 

all inner PRs projecting to the medulla and rh6-lacZ was completely lost. Opsin 

expression in flies over-expressing hth in a otdUVI mutant background (otdUVI, (Fig 
(Fig 14F). Four different genotypes were compared: wt, otdUVI, LGMR>hth and 

otdUVI + LGMR>hth. In the wildtype (first column), rh1-lacZ was restricted to 
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the outer PRs, projecting to the Lamina (L). The two inner PR-specific 

transgenes rh3-lacZ and rh6-lacZ were specifically expressed in medulla-

projecting subsets of R7 cells or R8 cell, repectively. In otdUVI mutants (second 

clumn), opsin-lacZ constructs behaved as previously described: rh1-lacZ 

expression was expanded to the medulla (black arrow), rh3-lacZ was lost and 

rh6-lacZ expression expanded with βGal-expressing axons terminating in both 

lamina and medulla. Opsin-lacZ expression in LGMR > hth (third column) had 

previously been described: while rh1-lacZ expression was unaffected, rh3-lacZ 

was expanded to all inner PRs projecting to the medulla and rh6-lacZ was 

completely lost. Opsin expression in flies over-expressing hth in a otdUVI mutant 

background (otdUVI, LGMR>hth) was examined last (fourth column). Rh1-lacZ 

expression was found to be expanded into all PRs, judging by projections to both 

lamina and medulla (black arrow) and rh3-lacZ expression was completely lost 

despite ectopic hth. Based on these results, it was therefore concluded that 

otdUVI, LGMR>hth flies phenocopied otdUVI mutants, demonstrating that otd acted 

downstream of hth. However, rh6-lacZ expression (bottom right) was lost in these 

flies, demonstrating that ectopic hth was able to induce repression of rh6 in all 

PRs. 

Fig III.2.14 Orthodenticle is required downstream of hth in DRA development 
(A) Expression of Rh3 is lost in otdUVI mutants: Frozen sections through adult eyes from otdUVI mutants double labeled with 
antibodies against Rh3 (red) and Rh4 (cyan). Rh3 expression was completely lost, including in the DRA; some Rh4 expression 
persisted. 
(B)-(C) The DRA gets specified in otdUVI mutants: Triple labeling of pupal retinas (48 hrs APF) from otdUVI mutants for Exd 
(red), Sens (green) and ElaV (blue). Nuclear Exd was detected in the DRA (dashed line). In some cases, co-expression between 
Exdand Sens was detected (arrows) suggesting that DRA development is perturbed in otdUVI mutants. (C) Double labeling of 
frozen sections through otdUVI mutant eyes with antibodies against Hth (green) and ElaV (red): Hth expression in the DRA 
persisted in these mutants (white arrows). 
(D) Some Inner PRs express rh1 in otdUVI mutants: Frozen sections through adult eyes from otdUVI mutants carrying a rh1-lacZ 
reporter transgene. Double labeling with antibodies against βGal (green) and the PR-specific cell-surface marker 24B10 (red) 
revealed that some inner PRs, projecting axon projections into the medulla (M) expressed rh1-lacZ (white arrows). Most of the 
βGal–positive axons were found to terminate in the deeper level of the medulla, suggesting that rh1-lacZ was expressed in R7 
cells. 
(E) Some R7 cells express rh6 in otdUVI mutants: Frozen sections through adult eyes from otdUVI mutants carrying a rh6-lacZ 
reporter transgene. Double labeling with antibodies against βGal (green) and 24B10 (red) revealed that βGal expression was 
dramatically expanded into outer PRs, projecting axons into the lamina (L). Furthermore, some R7 cells, projecting axon 
projections into the lower level of the medulla (M) had also gained expression of rh6-lacZ (white arrows). 
(F) Otd is required for DRA induction by hth: expression of the opsin reporter constructs rh1-lacZ, rh3-lacZ and rh6-lacZ was 
visualized by X-Gal staining on frozen sections in the wildtype (first column), otdUVI mutants (second column), hth gain-of-
function flies (LGMR > hth) and flies ectopically expressing hth in a otdUVI mutant background (last column). It was found that 
the opsin phenotype of otdUVI + LGMR > hth flies was largely identical to otdUVI mutants: expression of rh1-lacZ was 
expanded into inner PRs (black arroe), while rh3-lacZ expression was completely lost. Hth was therefore not able to ectopically 
induce the rh3-expressing DRA fate in inner PRs, in the absence of otd function. However, rh6-lacZ expression was lost in 
otdUVI + LGMR > hth flies, suggesting that hth was still able to repress rh6 expression in these flies. 
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It was concluded from these experiments that otd is required downstream 

of hth for activation of rh3 expression in the DRA ommatidia. 

 

2.15. The dorsal selector genes are not necessary for DRA formation 
Homothorax is necessary as well as sufficient to induce formation of the 

DRA ommatidia which are always found in a band of maximally two rows along 

the head cuticle throughout the dorsal eye compartment. Regulatory 

mechanisms therefore seem to exist, limiting the extent of the DRA to the dorsal 

eye. One group of genes representing ideal candidates for providing such 

positional information are the members of the IRO-C complex (Gomez-Skarmeta 

et al., 1996; McNeill et al., 1997). These genes are required to specify the dorsal 

region of the eye imaginal disc and to define the D/V pattern organizer, the 

equatorial region of the disc that is critical for growth and patterning of the eye 

(for review: Cavodeassi et al., 2000). The IRO-C genes mirror (mirr), araucan 

(ara) and caupolican (caup) have been shown to be expressed dorsally anterior 

to the morphogenetic furrow from where their their expression faded away after 

late 3rd instar stages (Dominguez and de Celis, 1998); (Kehl et al., 

1998);(Cavodeassi et al., 1999). Therefore, no role had yet been assigned to 

these genes in developing PRs posterior to the MF. Since the DRA is restricted 

to the dorsal retina, it was tested whether the IRO-C complex played a role in its 

development. 

Several enhancer traps inserted in the IRO-C complex have been 

reported. In some of them, the reporter gene white (w) comes under the influence 

of adjacent genomic enhancers, leading to an expression of w which was limited 

to the dorsal eye (Fig 15A; (Brodsky and Steller, 1996). Although this dorsal-

specific w expression could have been reminiscent of an early expression in 

PRs, it was tested whether IRO-C genes were expressed in PRs during late 

phases of eye development. As there were no reliable antibodies available, IRO-

C expression was assessed at time points when hth expression had been 

observed before, by using several available IRO-C lacZ enhancer trap lines. 

First, expression of the the nuclear lacZ enhancer trap caup-lacZ (rF209) was 
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visualized in the adult. Frozen sections (10 µm) through adult heads form rF209 

flies were double labeled for βGal as well as the DRA opsin Rh3 (Fig 15B). It 

was found that βGal (shown in cyan) was strongly expressed in all cells in the 

dorsal retina, including the DRA (white arrow). Expression of several enhancer 

trap insertions in mirr were also tested but showed no expression at this stage. 

Although Mirr protein might behave differently,  differences in the expression of 

ara and caup versus mirr had previously been reported (Pichaud and Casares, 

2000). It was concluded that at least one of the IRO-C genes shows dorsal-

specific expression in the adult eye. 

The onset of Homothorax expression in DRA inner PRs was found to be in 

early pupation. We therefore assessed expression of rF209 (caup) in pupal 

retinas (48 hrs APF) by triple labeling Hth, rF209 and ElaV (Fig 15C). Consistent 

with previously reported down-regulation of IRO-C genes posterior to the 

morphogenetic furrow in larvae, rF209 (caup) expression (shown in blue) was 

much weaker but still present in dorsal PRs at in pupae, resulting in co-

expression with Hth (shown in green). Expression was strongest in the most 

dorsal ommatidia and faded away few rows away from the dorsal cuticle rather 

than manifesting uniform expression levels in the dorsal compartment. The 

observed expression pattern therefore remained specific to the dorsal retina but 

manifested important changes in its expression level over time, since we found 

these genes to be strongly expressed in all dorsal PRs of the dorsal eye in the 

adult. It was concluded that caup (and maybe ara and mirr), was transiently 

down-regulated during pupation as it showed only weak co-expression with Hth 

in DRA inner PRs at that time. 

Co-expression of caup (rF209) and Hth was then assessed in the adult 

eye, by double labeling frozen sections with antibodies against βGal and Hth (Fig 
15D). As before, strong caup expression was detected in all dorsal PRs (shown 

in cyan), however, expression in DRA inner PRs was significantly down-

regulated as only weak co-expression with Hth (shown in red) was observed. 

This suggested that low levels of IRO-C might specifically be required in DRA 

inner PRs, or that Hth was able to repress IRO-C expression. To test the 
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Fig III.2.15 The dorsal selector genes are not necessary for DRA formation 
(A)-(D) The IRO-C complex is specifically expressed in the dorsal eye: In several enhancer traps, the selection marker white (w) 
has come under the influence of genomic enhancers belonging to the IRO-C comlex. Eye pigmentation had been reported to be 
specific to the dorsal compartment of the adult eye. (B) Adult expression of caup-lacZ: Frozen section (10 µm) along the D/V axis 
(dorsal to the left) through adult heads of flies carrying the caup (rF209) enhancer trap. Double-labeling using antibodies against 
Rh3 (red) and βGal (cyan) revealed strong lacZ expression throughout the adult dorsal eye. (C) Weak pupal expression of IRO-C 
genes in dorsal PRs: Flat mounted pupal retina (~48 hrs APF) dissected from flies carrying the caup (rF209) insertion. Triple-
labeling against ElaV (red), Hth (green) and βGal (blue) revealed weak rF209 expression in all PRs of dorsal ommatidia, fading 
towards the equator but clearly co-expressed with Hth in the developing DRA ommatidia (dashed line). (D) IRO-C expression is 
low in inner PRs of the adult DRA, as visualized on frozen sections double labeled with Anti-Hth (red) and rF209 (cyan). 
(E) Over-expression of Hth has no effect on IRO-C expression: Frozen sections through adult eyes from flies ectopically 
expressing Hth (LGMR > hth) were double labeled for rF209 (cyan) and ElaV (red). 
(F) Over-expression of dominant negative HthHM has no effect on IRO-C expression: Frozen sections through adult eyes from 
flies ectopically expressing dominant negative HthHM (LGMR > hthHM) were double labeled for rF209 (cyan) and ElaV (red). 
(G)+(H) Loss of IRO-C complex does not lead to loss of the DRA: Epon thin section through adult eyes of flies with clones of 
eye tissue homozygous for the IRO-C deficiency DMF3 were labeled by absence of white pigment (left). Analysis of inner PR 
rhabdomere morphology in clones touching the DRA revealed that mutant ommatidia (black arrows) located at the dorsal rim did 
not lose the enlarged inner PR rhabdomere phenotype of adjacent wildtype ommatidia (yellow arrows). (H) Flat mounted pupal 
retina (~48 hrs APF) dissected from flies where clones of tissue homozygous for DMF3 were labeled by absence of Arm-lacZ 
expression (shown in blue). Triple-labeling of ElaV (red), Hth (green) and βGal (blue) revealed that Hth expression (arrows) 
persisted in DMF3(-/-) clones located in the DRA (dashed line).
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latter possibily, caup (rF209) expression was visualized in adult flies over-

expressing Hth in all developing PRs under control of the GMR promoter (Fig 
15E). Strong expression of caup-lacZ (shown in cyan) was observed in dorsal 

PRs (labeled by ElaV in red), suggesting that Hth was not able to repress IRO-C 

expression. Alternatively, caup expression was visualized in flies over-expressing 

dominant negative HthHM (Fig 15F). No change in caup-lacZ expression (shown 

in cyan) within or outside the DRA was observed in these flies, suggesting that 

hth had no influence on adult IRO-C expression. 

As IRO-C expression remained specific to the dorsal eye throughout eye 

development, it was tested whether the IRO-C complex was necessary for DRA 

formation. Mitotic clones of eye tissue lacking IRO-C function were induced using 

the ey-flip/FRT system (Stowers and Schwarz, 1999; Xu and Rubin, 1993). The 

deletion DMF3 was used, which had been reported to cover all three IRO-C 

genes (Cavodeassi et al. 1999). First, inner PR rhabdomere morphology was 

assessed in clones touching the dorsal rim, by performing Epon thin sections 

(Fig 15G). Ommatidia located in DMF3 (-/-) mutant tissue (marked by the 

absence of w pigment) and located within the DRA (marked by a red line) always 

retained the typical enlarged inner PR rhabdomere morphology similar to those 

outside the clone (yellow arrows). This suggested that the IRO-C complex was 

not necessary for DRA development. To confirm this, DMF3 (-/-) clones were 

investigated in pupal retinas (Fig 15H). Triple labeling of Hth (shown in green), 

Arm-lacZ (blue) and Elav (red) revealed that Hth expression persisted (white 

arrows) within DMF (-/-) clones (marked by the absence of Arm-lacZ). It was 

therefore concluded that the IRO-C complex is not necessary for DRA 

development to proceed. 

 The IRO-C complex provides an attractive model system for studying how 

dorsal-specific positional information gets transduced during late eye 

development. However, the loss-of-function data suggest that the available IRO-

C deficiencies do not remove all activity of the dorsal selector genes (Tomlinson, 

2003). It can therefore not be excluded that the IRO-C complex is still necessary 

for DRA development. 
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2.16. The IRO-C complex is sufficient to induce DRA formation ventrally 
As it had been reported that the only available IRO-C deletions (DMF3) 

might not fully remove all IRO-C function (Diez del Corral et al., 1999), it still 

remained a possibility that IRO-C genes play a role in DRA development. It was 

therefore tested whether IRO-C was sufficient to induce DRA development. 

IRO-C genes were ectopically mis-expressed in developing PRs posterior 

to the morphogenetic furrow using a weaker insertion of GMR-GAL4 (sGMR-

GAL4, see material and methods) as high levels of expression led to strong 

disruptions in PR development (not shown).  

First, pupal retinas (48 hrs APF) were dissected from flies expressing the 

IRO-C complex member araucan (ara) under sGMR-GAL4 control (GMR>ara) 

and double labeled with antibodies against Hth and ElaV (Fig 16A). Unlike in the 

wildtype, DRA-type expression of Hth (shown in green) in two cells per cluster 

was detected in a band of ommatidia all around the pupal eye. This suggested 

that ectopic Ara induces DRA development in the ventral eye, leading to the 

hypothesis that IRO-C is sufficient for DRA development at the eye margins (Fig 
16B). To confirm expansion of Hth expression into the ventral domain in sGMR > 

ara flies, an enhancer trap indsertion in seven-up (svp-lacZ) was introduced as a 

landmark to visualize the equator (Fig 16C). Using the asymmetric expression of 

svp-lacZ (shown in blue), the equator could be localized (shown as a white line). 

Hth expression (shown in green) was clearly detectable in marginal R7 and R8 

on both sides of the equator (white arrows), a situation that is never observed in 

the wildtype. Interestingly, Hth expression was also induced in the equatorial 

ommatidia themselves. 

Development of the ‘ventral rim area’ induced in sGMR > ara was then 

analyzed in the adult eye by introducing rh3-lacZ transgenes and visualizing βGal 

activity on frozen sections (Fig 16D). In the wildtype, rh3-lacZ is expressed in 

pR7 cells as well as the R7 and R8 cells in the DRA. However, in sGMR > ara 

flies, βGal-activity was clearly detectable in both inner PRs at the dorsal as well 

as the ventral margins (black arrows). This suggested that the whole genetic 

program of DRA development proceeds all around the eye in IRO-C gain-of-
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function flies. To further test the fate of ventrally induced DRA ommatidia, inner 

PR rhabdomere morpohology was investigated in sGMR > ara flies by performing 

ectopic IRO-C
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1 µm Epon thin sectins (Fig 16E). Rhabdomere morphology was generally very 

perturbed in all PRs in this genetic background, which made analysis of ‘vetral 

rim area’ development extremely difficult. However, sections from the ventral rim 

were obtained, clearly showing the existence of a hight ratio of DRA-like 

ommatidia with inner PRs exhibiting large rhabdomere diameters (yellow arrows). 

It was therefore concluded that over-expression of the IRO-C gene Ara is 

sufficient to induce an unusual ‘ventral rim area’ morphology. 

Analysis of adult ‘ventral rim areas’ was completed by assessing Hth 

expression in frozen sections through adult sGMR > ara eyes (Fig 16F). While 

Hth expression (shown in green) was restricted to few inner PRs at the doral rim 

in the wildtype  (top row), inner PRs co-staining for Hth and ElaV (shown in red) 

were obtained both at the dorsal and ventral margins in sGMR > ara eyes 

(bottom row). Hth expression of Hth in the ‘ventral rim area’ therefore persisted 

until adulthood. Finally, it was investigated whether Rh3 was correctly expressed 

in inner PRs of the unsusual ‘ventral rim areas’ (Fig G). First, it was confirmed 

that Rh3 (shown in red) and Hth expression (shown in green) were 

indistinguishable in the DRA of wildtype, sGMR > ara, sGMR > caup and sGMR 

> mirr flies (top row). Furthermore, co-expression of Hth and Rh3 was observed 

at the ventral rim in all three cases when IRO-C members were ectopically 

expressed (white arrows), whereas Rh3 and Hth were never detected in the 

ventral rim of the wildtype control (bottom left). 

Fig III.2.16 The IRO-C complex is sufficient to induce DRA formation ventrally 
(A)-(C) Ectopic IRO-C is sufficient to induce DRA all around the eye: Flat mounted pupal retina (~48 hrs APF) dissected from 
flies over-expressing araucan using GMR-GAL4 (sGMR>ara). Double-labeling of ElaV (red) and Hth (green) revealed DRA 
formation all around the developing eye. (B) Schematic representation of the IRO-C gain-of-function phenotype: DRA ommatidia 
(red) are found all around the developing eye. (C) Introduction of svp-lacZ (blue) into the sGMR > ara background allowed 
marking the equator (white line). Triple labeling of pupal retinas (48 hrs APF) further showed that DRA-specific Hth expression 
(green) clearly crosses the equator into the ventral compartment, including the equatorial ommatidia (arrows). 
(D)-(G) Mis-expression of IRO-C genes induces ‘Ventral Rim Areas’ in the adult: Using X-Gal stainings, rh3-lacZ expression 
was visualized on frozen sections through adult eyes from flies over-expressing the IRO-C member araucan (ara) under GMR-
GAL4 control (sGMR > ara). At the ventral rim, unusual βGal expression was detected in R7 and R8 cells (black arrows). (E) 
Epon thin section through the ventral rim of adult eyes from sGMR > ara flies. Analysis of inner PR rhabdomere morphology 
was very difficult due to strong rhabdomere degeneration. However, inner PRs in several ommatidia at the ventral rim manifested 
the typical DRA-like enlarged rhabdomere phenotype (yellow arrows). (F) Frozen section (dorsal to the left) through adult heads 
of wildtype flies (top) and sGMR > ara flies (bottom) were double-labeled with antibodies against Hth (green) and ElaV (red). 
Additionally, to the expression in DRA inner PRs, Hth-positive nuclei were detectable at the ventral rim, in sGMR > ara flies 
white arrows). (G) Frozen sections through wildtype eyes (first column), sGMR > ara eyes (second column), sGMR > caup eyes 
(third column) and sGMR > mirr eyes (fourth column) were double-labeled for Rh3 (red) and Hth (green). In addition to the DRA 
(top row), an unusual ‘ventral rim area’ (VRA) was induced in all three cases were IRO-C members were over-expressed (bottom 
row). Both R7 and R8 in these VRAs co-expressed Hth and Rh3 (white arrow heads), a situation never observed in wildtype flies 
(bottom left). 
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It was concluded from these experiments that, when ectopically 

expressed, each of the three IRO-C members is sufficient to induce an unusual 

‘ventral rim area’ with enlarged inner PR rhabdomeres as well as expression of 

Rh3 and Hth. The lack of a DRA pnenotype in IRO-C mutant clones has been 

explained by residual IRO-C activity in the DMF3 deficiency used. These results 

therefore indicate for the first time that the IRO-C complex plays an important 

role in developing PRs posterior to the morphogenetic furrow. 

 
2.17. Expansion of the DRA in optomotorblind Quadroon mutants 
 The DRA forms as one or two rows of specialized ommmatidia all along 

the dorsal head cuticle. The IRO-C complex is important for providing crucial 

positional information that limits the DRA to the dorsal side of the eye. Little was 

known, however, how the DRA is limited to one or two ommatidial rows in the 

wildtype, as well as in GMR > IRO-C flies. Recently, a gain-of-function mutant in 

the optomotorblind (omb) locus has been published, that shows a dramatic 

expansion of the DRA (Pflugfelder et al., 1992; Tomlinson, 2003). This mutant, 

called ombQUADROON, was analyzed in more detail using Hth as a marker for 

DRA development. 

 Pupal retinas (48 hrs APF) were dissected from ombQUADROON mutants 

(ombQd[For]) were stained with antibodies against Hth and ElaV (Fig 17A). The 

number of ommatidial rows expressing Hth (shown in green) was dramatically 

increased throughout the dorsal eye. Hth-positive ommatidia were not detected 

at the ventral margin, however, and Hth expression was never observed in more 

than 2 cells per cluster. Therefore, the DRA is expanded through most of the 

dorsal half of the eye, in ombQUADROON mutants (Fig 17B). It was tested 

whether the DRA ommatidia reached all the way to the equator by introducing a 

lacZ enhancer trap insertion in the gene seven up (svp-lacZ) to visualize the 

equator. Pupal retinas were then dissected and triple labeled for Hth, svp and 

ElaV (Fig 17C). Hth-expressing ommatidia (shown in green) did not reach the 

equator (shown as a white line). Instead, the expanded DRA terminated ~4-6 

ommatidia before reaching the equator. Interestingly, most of the extra DRA 
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ommatidia closest to the equator exhibited expression of Hth only in one cell per 

ommatidium. Using svp-lacZ as a landmark, this cell was identified as R7. It was 

concluded from these experiments that the DRA is dramatically expanded in 

ombQUADROON mutants throughout most of, but not the entire, dorsal half of 

the eye. 

 Hth expression was further analysized in the DRA ommatidia of adult 

ombQUADROON flies. First, frozen sections were double stained for Hth and the 

inner PR marker Spalt (Fig 17D). Like in the wildtype, all Hth-positive cells 

(shown in green) co-stained with Spalt (shown in red). However, the DRA was 

dramatically expanded through the dorsal eye as had been observed in pupae. 

Expansion of nuclear Exd expression in ombQUADROON flies was also 

visualized by double labeling frozen sections through adult eyes with antibodies 

against Exd and Hth (Fig 17E). As expected, Exd (shown in red) co-localized 

with Hth (shown in green) in all inner PR nuclei of the expanded DRA of 

QUADROON mutants. Exclusion of Sens expression by Hth/Exd is important for 

the proper specification of DRA ommatidia. Exclusion of Sens from the expanded 

DRA in ombQUADROON mutants was therefore assessed next by were triple 

staining pupal retinas with antibodies against Exd, Sens and ElaV (Fig 17F). Exd 

expression (shown in red) was clearly expanded throughout the dorsal 

compartment of the pupal eye and very effectively excluded the expression of the 

R8 marker Sens (shown in green), as was observed in the much more restricted 

DRA of wildtype flies. Based on these molecular markers, the extra DRA 

ommatidia in these flies were therefore indistinguishable from the wildtype. 

Terminal differentiation of DRA ommatidia in ombQUADROON flies was 

assessed in the adult, by visualizing Sens exclusion by Exd on frozen sections 

(Fig 17G). Exclusion of Sens (shown in green) clearly persisted until adulthood. 

R8 cells in the expanded DRA expressed Exd (shown in red) and manifested the 

typical elevated position of their nuclei also observed in the wildtype DRA. 

Interestingly, expression of Hth/Exd in R7 cells expanded further towards the 

center of the eye as it did in R8 cells, as previously observed in pupae. Finally, 

analysis of ombQUADROON was completed by assessing Rh3 expression in the 
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Fig III.2.17 Expansion of the DRA in optomotorblind Quadroon mutants 
(A)-(C) Expansion of the DRA in pupae: Flat mounted pupal retina (~48 hrs APF) dissected from ombQUADROON mutants 
(ombQd[For]). Double-labeling of ElaV (red) and Hth (green) revealed that DRA ommatidia were dramatically expanded through 
most of the dorsal eye. 
(B) Schematic representation of the ombQUADROON phenotype: multitple  DRA ommatidia (red) are found in the dorsal eye. 
(C) Introduction of svp-lacZ (blue) into the ombQUADROON background allowed marking the equator (white line). Triple 
labeling of pupal retinas (48 hrs APF) further showed that DRA-specific Hth expression (green) was daramtically expanded 
throughout the dorsal compartment. However, DRA ommatidia did not reach the equator. 
(D)+(E) Expansion of the adult DRA: Frozen sections through adult ombQUADROON eyes double labeled with antibodies 
against Hth (green) and the inner PR marker Sal (red). Expansion of Hth expression was specific to inner PRs, as Hth always co-
localized with Sal. (E) Frozen sections double labeled with antibodies against Hth (green) and Exd (red). Exd was localized to the 
nucleus of all Hth-expressing inner PRs throughout the expanded DRA of ombQUADROON mutants. 
(F)+(G) Exclusion of Sens from the epanded DRA. Flat mounted ombQUADROON pupal retina triple labeled for Exd (red), Sens 
(green) and ElaV  (blue).  Exd expression is dramatically expanded through most of the dorsal eye, while Sens is excluded. (G) 
Frozen section double labeled for Exd (red) and Sens (green). Co-exprression of Exd and Sens was never observed. 
(H) Frozen sections through adult ombQUADROON eyes double labeled for Hth (green) and the DRA opsin Rh3 (red). Extra 
DRA ommatidia in these mutants expressed both DRA markers Hth and Rh3 in R7 and R8.
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expanded DRA. Rh3 is the only opsin found in the Drosophila DRA and this 

marker was therefore used to confirm that extra DRA ommatidia maturated 

correctly in this mutant situation. Frozen sections were double labeled using 

antibodies against Hth and Rh3 (Fig 17H). Expansion of Rh3 expression (shown 

in red) in R7 and R8 cells throughout the dorsal eye suggested that extra DRA 

ommatidia in ombQUADROON mutants did correctly maturate into polarization 

sensors. This result was confirmed by double labeling with antibodies against all 

other Drosophila opsin genes which are not expressed in this domain (data not 

shown). Rhabdomere morphology of the extra DRA ommatidia in 

ombQUADROON was not tested. However, an enlarged rhabdomere diameter 

had recently been reported for most dorsal ommatidia in these mutants 

(Tomlinson, 2003). 

 Taken together, ombQUADROON mutants exhibit a dramatically enlarged 

DRA throughout eye development. This phenomenon could be visualized using 

antibodies against Hth and is most likely due to the gain-of-function in the 

optomorblind (omb) locus. These results suggest that hth and omb might interact 

and that hth might be required downstream of omb for DRA development to 

occur. 

 

2.18. optomotorblind is not required for DRA develpoment 
 The DRA is dramatically expanded in ombQUADROON mutants. It was 

therefore tested whether Omb is expressed in PRs during eye development. The 

omb locus encodes a T-box transcription factor which had previously been 

shown to be required for correct development of Drosophila appendages as well 

as for the establishment of planar polarity in the abdomen (Grimm and 

Pflugfelder, 1996; Kopp and Duncan, 1997; Pflugfelder et al., 1992). Using 

genetic techniques it was further tested whether Omb was necessary and 

sufficient for DRA development. 

 Several enhancer trap elements inserted into the omb locus have been 

reported, in which the transformation marker white (w) comes under the influence 

of adjacent genomic sequences (Fig 18A; (Tsai et al., 1997). In these flies (omb-
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lacZ), eye pigmentation is found exclusively at the dorsal and ventral poles of the 

eye (white and black arrows), suggesting that Omb is specifically expressed at 

the dorsal and ventral eye margins. Expression of omb was first visualized in 

developing PRs of wandering third instar larvae, using the lacZ reporter construct 

pomb19-lacZ (Sivasankaran et al., 2000). Eye imaginal discs were dissected and 

triple labeled with antibodies against βGal, the inner PR marker Spalt (Sal) and 

ElaV (Fig 18B). Very weak omb expression (shown in blue) was observed in a 

narrow band of 1-2 omatidial rows at the disc margins. Co-staining with Sal 

(shown in green) suggested that omb expression was not restricted to inner PRs. 

Expression was detected in all PRs and quickly faded away with increasing 

distance to the rim. Expression of omb was next visualized in the DRA of pupal 

retinas (48 hrs APF) by using antibodies against Hth, βGal and ElaV (Fig 18C). 

Strong expression of omb (shown in blue) was detectable in pigment cells. In the 

DRA (marked by a dashed line), however, expression in Hth-positive PRs (shown 

in green) was extremely faint and thus hardly detectable. Analysis of omb 

expression was completed by staining frozen sections through adult heads from 

flies expressing nuclearly localized lacZ under the control of omb-GAL4 (Fig 
18D). Double labeling of Hth (shown in green) and βGal (shown in blue) revealed 

clear co-expression in dorsal rim inner PRs (white arrows). As observed in 

larvae, expression of omb was not restricted to inner PRs. Interestingly, the 

expression domain of omb was always larger in the ventral eye, suggesting that 

the number of ommatidial rows expressing Omb is higher at the ventral rim. 

Therefore, omb seems to be weakly expressed in few rows of marginal 

ommatidia, starting at pupal stages. Co-staining with Hth suggested that omb 

might indeed play an important role in DRA development together with Hth. 

However, additional positional information must be required to restrict the DRA to 

the dorsal half of the eye rim, as omb expression was detected to be even 

stronger at the ventral margin. It has been shown before that dorsal-specific 

expression of the of the IRO-C complex genes is most likely used to provide this 

additional information. 
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It was tested next whether omb was necessary for the DRA to develop. 

Mitotic clones of homozygous eye tissue lacking omb function were created 

using the ey-flip/FRT technique (see material and methods). Pupal retinas 

exhibiting homozygous clones for the omb null alleles omb3198 and biD4 were 

dissected and triple stained using antibodies against Hth, βGal and ElaV (Fig 
18E). Hth expression (shown in green) inside these omb (-/-) clones (marked by 

the absence of Arm-lacZ, shown in blue) was unchanged as compared to the 

adjacent heterozygous tissue (white arrows). As the DRA (marked by a dashed 

line) developed normally in these clones, omb is apparently not necessary for 

DRA development. 

 It had been reported that the phenotype of ombQUADROON flies was due 

to a gain-of-function mutation in the omb promoter. Unfortunately, there are no 

Anti-Omb antibody available to test an expansin of Omb expression in these 

mutants. Investigation of the role of omb in DRA development was therefore 

completed by testing whether it was sufficient to induce DRA development when 

over-expressed in developing PRs (Fig 18F). Over-expression of Omb in all 

developing PRs using strong GAL4 drivers resulted in partial lethality and 

deleterious eye phenotypes in the few survivers obtained. Omb was therefore 

mis-expressed with a weak GMR-GAL4 driver (sGMR > omb) and a rh3-lacZ 

transgene was introduced to assess the development of the DRA. Frozen 

sections through adult heads were stained for βGal activity using X-GAL (see 

material and methods). As controls, rh3-lacZ expression was compared to 

wildtype flies as well as to the ‘positive controls’ GMR > hth and 

ombQUADROON, two mutant situation in which rh3-lacZ expression has been 

shown to be expanded due to a gain of DRA ommatidia. No visible DRA 

phenotype was detected in sGMR > omb flies (picture far right), as rh3-lacZ 

expression looked similar to the wildtype (picture far left). Therefore, the DRA 

does not seem to be expanded by over-expression of Omb. 

 Although omb seems to be expressed in marginal ommatidia at the dorsal 

and ventral rim throughout eye development, it is neither necessary nor sufficient 

for DRA development. However, discovery of homologous T-box genes resulting 
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Fig III.2.18 optomotorblind is not required for DRA develpoment 
(A)-(D) Omb is expressed in PRs at the eye margins: In several enhancer traps, the selection marker white (w) has come under the 
influence of genomic enhancers belonging to the omb locus. Eye pigmentation had been reported to be specific to the dorsal and 
ventral poles of the adult eye. (B) Expression of omb visualized in eye imaginal discs of wandering third instar larvae, using the 
reporter construct pomb19-lacZ. Triple labeling with antibodies against βGal (blue), the inner PR marker Sal (green) and ElaV 
(red) revealed weak omb expression at few larval PRs at the eye margins. (C) Expression of omb was visualized in pupal retinas 
(48 hrs) dissected from pomb19-lacZ flies and triple labeling for βGal (blue), Hth (green) and ElaV (red). Expression in marginal 
ommatidia was extremely faint at this developmental stage. (D) Expression of omb-GAL4 was visualized on frozen sections 
through adult eyes, using UAS-lacZ:NLS reporter constructs and double labeling with Anti-βGal (blue) and Anti-Hth (green). 
Omb expression was detected in PR nuclei at the dorsal and ventral rim. More ommatidia were found to express omb-GAL4 on 
the ventral side. 
(E) Hth expression persist in omb (-/-) clones: Pupal retina (48 hrs APF) from flies inducing mitotic clones for the omb null allele 
biD4 (marked by the absence of Arm-lacZ) were triple labeled with antibodies against βGal (blue), Hth (green) and ElaV (red). 
Hth expression in DRA inner PRs (dashed line) clearly persisted in biD4 (-/-) clones (white arrows). 
(F) Omb is not sufficient to induce DRA evelopment. Using X-Gal stainings, rh3-lacZ expression was visualized on frozen 
sections through adult eyes from flies over-expressing the Omb under GMR-GAL4 control (sGMR > omb). DRA-type expression 
of rh3-lacZ had been shown to be expanded in ombQUADROON mutants, as well as in flies over-expressing Hth (LGMR > hth), 
while rh3 expression was restricted to pR7 cells and DRA inner PRs in the wildtype (left). In sGMR > omb flies, however, rh3-
lacZ expression was not expanded. 
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in very similar abdominal phenotypes than ombQUADROON (Scruffy) raises the 

possibility of several redundant factors. Similarly, mis-expression of omb might 

be required earlier, right posteriour (or even anterior) to the morphogenetic 

furrow, before the onset of GMR-GAL4 expression, to be sufficient. The 

possibility remains therefore, that the ombQUADROON phenotype is due to an 

expansion of early Omb expression. 

 

2.19. Interaction of IRO-C and optomotorblind Quadroon mutants 
The number of ommatidial rows belonging to the DRA subtype is 

dramatically increased in ombQUADROON mutants. Moreover, the IRO-C 

complex is sufficient to induce the formation of an unusual ‘ventral rim area’. It 

was therefore tested what effect the ectopic expression of IRO-C would have in 

an ombQUADROON background. As omb was shown to be expressed at both 

eye margins, an expansion of induced ‘ventral rim area’ was expected. 

 Using the lacZ enhancer trap rF209 (caup-lacZ), co-expression of IRO-C 

and Hth was visualized in frozen sections through adult ombQUADROON eyes, 

using antibodies against Hth and βGal (Fig 19A). Hth expression (shown in 

green) seemed to be expanded through the whole IRO-C expression domain, 

which, in the adult, spans ~a third of the eye (shown in cyan), starting from the 

dorsal rim (see introduction). It was therefore concluded that DRA ommatidia 

expand throughout the adult expression domain of IRO-C in this mutant situation. 

This result was confirmed by double labeling Rh3 and rF209 expression in frozen 

sections through adult ombQUADROON eyes (Fig 19B). DRA-type expression of 

Rh3 in R8 cells (shown in red) was only detectable within the IRO-C expression 

domain (white arrow). However, some gaps seemed to remain, that did not 

express Rh3. As it had previously been shown that the dorsal third of the adult 

ombQUADROON eye has a rough eye phenotype and that rh3-lacZ is expanded 

throughout this expression domain, it was concluded that the observed gaps in 

Rh3 expression were due to rhabdomere degeneration. This could be confirmed 

by the fact that no other rhodopsin was found to be expressed within the 

expanded DRA in ombQUADROON mutants (data not shown). Therefore, the 
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DRA is expanded throughout the dorsal third of the eye in adult 

ombQUADROON flies, which seems to corresponded to the adult expression 

domain of IRO-C. 

The IRO-C gene araucan (ara) was over-expressed in an  ombQUADROON 

mutant background using the Gal4/UAS-system (see material and methods). 

Pupal retinas from these ombQd[For] + sGMR > ara flies were then double 

labeled with antibodies against Hth and ElaV (Fig 19C). The phenotype obtained 

at the ventral eye margin was dramatically different from the simple IRO-C gain-

of-function (sGMR > ara). Instead of inducing Hth expression (shown in green) in 

merely one or two ommatidial rows, Hth expression was now detectable in many 

additional ommatidial rows. This suggested that ombQUADROON has an 

enhancing effect on the IRO-C gain-of-function phenotype. The ‘ventral rim area’ 

is therefore expanded in ombQd[For] + sGMR > ara flies, similar to the DRA in 

ombQUADROON mutants, creating a mirror-image duplication of its DRA 

expansion phenotype (Fig 19D). Frozen sections through adult eyes from 

ombQd[For] + sGMR > ara were also double labeled with antibodies against Hth 

and ElaV to confirm that this phenotype persisted until adulthood (Fig 19E). 

Indeed, expanded Hth expression (shown in green) was detectable in both the 

dorsal and ventral compartments. Hth expression always seemed to be excluded 

from the center of the eye. Expression of Exd was also expanded in these flies, 

as visualized by double labeling frozen sections with antibodies against Hth and 

Exd (Fig 19F). As expected, every Hth-positive nucleus (shown in green) in both 

the expanded DRA as well as the ‘ventral rim area’ also co-expressed Exd 

(shown in red). Finally, Maturation of the expanded ‘ventral rim’ ommatidia 

induced by ectopic Ara was assessed by double labeling Rh3 and Hth (Fig 19G). 

Strong Rh3 expression (shown in red) and Hth expression (shown in green) were 

detected throughout the dorsal and ventral thirds of the eye (white arrows), 

suggesting that the extra DRA ommatidia formed at both eye margins in 

ombQd[For] + sGMR > ara flies indeed maturate correctly into polarization 

sensors. 
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Fig III.2.19 Interaction of IRO-C and optomotorblind Quadroon mutants 
(A)+(B) IRO-C expression is normal in ombQUADROON mutants: Frozen section through adult eyes from  ombQUADROON 
mutants double labeled with antibodies against Hth (green) and the IRO-C enhancer trap rF209 (cyan). DRA-type Hth expression 
was found expanded throughout the adult IRO-C expression domain. (B) Co-labeling of Rh3 (red) and rf209 (cyan) on frozen 
sections through ombQUADROON eyes revealed the expansion of Rh3 expression of Rh3 in R8 cells in the domain of expression 
of IRO-C. 
(C)-(G) Ectopic IRO-C induces an expanded VRA in ombQUADROON mutants: Pupal retina from flies over-expressing the 
IRO-C member Araucan (ara) under GMR-GAL4 control in a ombQUADROON mutant background (ombQd[For] + sGMR > 
ara), double labeled with antibodies against Hth (green) and ElaV (red). The ‘ventral rim area’ (VRA) induced by ara is 
dramatically expanded in this mutant background (equator runs vertically), creating a mirror image of the ombQUADROON 
phenotype ventrally. (D) Schematic representation of the ombQd[For] + sGMR > ara phenotype: a multitude of DRA-type 
ommatidia (red) are found in the dorsal eye as well as ventrally. (E) Frozen section through adult eyes from (ombQd[For] + 
sGMR > ara flies double labeled for Hth (green) and ElaV (red). The dramatically expanded ‘ventral rim area’ (VRA) induced by 
ara in this mutant background persists until adulthood. (F) Frozen section double lebeled with antibodies against Exd (red) and 
Hth (green). Nuclear Exd co-localizes with Hth throughout both the expanded DRA and VRA. (G) Double labeling of frozen 
sections through adult ombQd[For] + sGMR > ara eyes with antibodies against Rh3 (red) and Hth (green) confirmed the correct 
maturation of the expanded VRA, expressing both DRA-type Hth and Rh3 in inner PRs. 
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It was concluded from these experiments that the optomotorblind gain-of-function 

mutation ombQUADROON has a strong inducing effect on DRA development at 

both the dorsal as well as ventral margin, as revealed by over-expression of IRO-

C. Based on these findings, an expansion of Omb expression at both margins 

would be expected in ombQUADROON mutants. 

 

2.20. The DRA develops in response to wingless signaling 
DRA ommatidia form as one or two rows right adjacent to the dorsal head 

cuticle. The gene encoding the morphogen Wingless (Wg) is strongly expressed 

in the developing head cuticle all around the eye (Treisman and Rubin, 1995). It 

was therefore tested whether activation of the wingless pathway in developing 

PRs had an activating effect on DRA development. 

The wg pathway was activated in PRs by ectopically expressing a 

constitutively active form of the wg effector protein Armadillo (ArmS10) under the 

control of GMR-GAL4 drivers (van de Wetering et al., 1997). These 

GMR>ArmS10 flies had rough eyes, with some ommatidia losing PRs when 

strong drivers were used. However, pupal retinas (~48 hrs APF) were dissected 

and double labeled for Hth and ElaV (Fig 20A). Hth expression (shown in green) 

was dramatically expanded through the entire dorsal half of the eye. This DRA 

expansion phenotype was highly reminiscent of the ombQUADROON phenotype. 

However, DRA ommatidia seemed to populate a slightly larger portion of the 

pupal eye. This result suggested that activation of the wg pathway in all PRs 

leads to a specific transformation of all dorsal ommatidia into the DRA subtype 

(Fig 20B). 

This hypothesis was tested by dissecting GMR>ArmS10 pupal retinas carrying 

svp-lacZ to visualize the equator (Fig 20C). Triple labeling of Hth, βGal and ElaV 

revealed that DRA ommatidia, marked by Hth (shown in green) extended all the 

way to the equator (marked with a white line). Ventral ommatidia were never 

found expressing Hth in GMR>ArmS10 flies. Interestingly, one row of dorsal 

ommatidia often remained unmarked (white arrow), a situation similar to what we 

observed for the much more restricted DRA of wild type flies. Therefore, the DRA 
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expansion phenotype caused by wg pathway activation in all developing PRs is 

significantly different from the one observed for ombQUADROON mutants. 

DRA Expansion was next assessed in adult GMR>ArmS10 flies by double 

labeling frozen section with antibodies against Hth and the inner PR marker Spalt 

(Fig 20D). Spalt (shown in red) was expressed in inner PRs throughout the 

whole eye, and Hth-expressing dorsal PRs (shown in green) always costained for 

both Hth and Spalt. This suggested that although ArmS10 was expressed in all 

PRs, only inner PRs located dorsally showed a molecular response by turning on 

Hth expression. As expression of Hth is sufficient to localize its dimerization 

partner Exd to the nucleus, the expansion of Exd expression throughout the 

dorsal eye was assessed by double labeling frozen sections with antibodies 

against Exd and Hth (Fig 20 E). As expected, Exd (shown in red) was found co-

expressed with Hth (shown in green) in the nuclei of all dorsal inner PRs. In 

wildtype flies, as well as ombQUADROON mutants, expression of Hth/Exd in the 

DRA excludes the expression of the R8 marker Sens. Pupal retinas from LGMR 

> ArmS10 flies were dissected to test the exclusion of Sens from the expanded 

DRA and triple labeled with antibodies against Exd, Sens and ElaV (Fig F). 

Expression of Exd (shown in red) was specific to all dorsal inner PRs (R7 and 

R8), while Sens expression (shown in green) was specifically detected in ventral 

R8 cells. The expression domains of Exd/Hth and Sens were therefore separated 

by the equator, as the DRA had expanded throughout the dorsal eye in these 

flies. The exclusion of Sens from the dorsal eye persisted until adulthood, as 

revealed by double labeling frozen sections through LGMR > ArmS10 eyes for 

Exd and Sens (Fig G). As observed in pupae, dorsal expression of Exd/Hth and 

ventral expression of Sens excluded each other. 

Finally, terminal differentiation of the ectopic DRA ommatidia in the dorsal 

eye was tested by double labeling frozen sections through GMR>ArmS10 eyes 

with antibodies against Hth and Rh3 (Fig 20E). Although rhabdomere 

morphology was severely affected by wg pathway activation, it was found that 

Rh3 (shown in red) was the only inner PR Rhodopsin expressed in the dorsal 

half of the eye labeled by Hth (shown in green).  
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Fig III.2.20 The DRA develops in response to wingless signaling 
 (A)-(C) Activating the wingless pathway transforms all dorsal PRs into DRA: Flat mounted pupal retinas (~48 hrs APF) 
dissected from flies over expressing an activated form of the wg pathway effector Armadillo (ArmS10) under GMR-GAL4 
control (LGMR > ArmS10) flies were double-labeled against ElaV (red) and Hth (green). DRA-specific Hth expression spanned 
the entire dorsal half of the developing eye. (B) Schematic representation of the LGMR > ArmS10 phenotype: DRA ommatidia 
(red) are found in the entire dorsal eye (C) Introduction of svp-lacZ (blue) into the LGMR > ArmS10 background further showed 
that DRA-specific Hth expression almost reached the equator (white line) in pupal retinas, most of the times Hth expression was 
only excluded from the equatorial ommatidia.  
(D)+(E) The expanded DRA in adult flies: Frozen section (10 µm) along the D/V axis (D to the left) through adult heads of 
LGMR > ArmS10 flies. Double labeling using antibodies against Hth (green) and the inner PR marker Sal (red) clearly showed 
that only inner PRs gained Hth expression throughout the dorsal eye. (E) Frozen section through adult LGMR > ArmS10 heads 
double labeled with antibodies against Exd (red) and Hth (green). Nuclear localization of Exd was detected in all dorsal, Hth-
positive inner PR nuclei of the extended DRA. 
(G)+(H) Exclusion of Sens expression from the expanded DRA. Frozen section double labeled with antibodies against Exd (red) 
and Sens (green). Expression of the R8 marker Sens was restricted to the ventral half of the eye, whereas Exd was expressed in all 
dorsal R7 and R8 nuclei. Co-expression was never observed. (H) Pupal retina from LGMR > ArmS10 flies triple labeled for Exd 
(red) Sens (green) and ElaV (blue). Exd-expressing inner PRs in dorsal half of the eye were separated by the equator (eq) from 
Sens-expressing R8 cells in the ventral eye. 
(E) Maturation of DRA omatidia in the expanded DRA: Frozen section through adult heads of LGMR > ArmS10 flies double-
labeled for Rh3 (red) and Hth (green) revealed that Rh3 was the only inner PR opsin expressed in the adult dorsal eye. The 
expaned DRA ommatidia of therefore maturated correctly into polarization sensors.
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It was concluded from these experiments that only dorsal ommatidia are 

transformed into the DRA subtype when the wg pathway is ectopically activated, 

suggesting that these ommatidia rely on positional information provided by the 

IRO-C complex. Furthermore, only inner PRs are competent to respond to the 

DRA inducing signal, indicating that a prior commitment to the Spalt-induced 

inner PR-fate is necessary for a response. 

 

2.21. Optomotorblind and IRO-C expression in the expanded DRA 
 Gain-of-function situations for both the optomotorblind and IRO-C loci 

have dramatic effects on DRA development. Interestingly, both genes have 

previously been shown in the eye to be under the control of the wg pathway, 

which also had a strong DRA-inducing effect (Maurel-Zaffran and Treisman, 

2000; Zecca et al., 1996). It was therefore tested whether omb and IRO-C 

expression were affected by ectopic over-activation of the wg pathay in 

developing PRs. 

 First, IRO-C expression (rF209) was visualized in frozen sections through 

adult LGMR > ArmS10 eyes using antibodies against βGal and Hth (Fig 21A). 

IRO-C expression (shown in cyan) was not affected as it was still specific to the 

same dorsal portion of the eye. It was also obvious that expanded Hth 

expression (shown in green) co-localized with IRO-C expression in LGMR > 

ArmS10 flies, again suggesting that only ommatidia located within the IRO-C 

compartment could become transformed into the DRA fate. IRO-C expression 

was also shown to be unaffected by double labeling adult LGMR > ArmS10 eyes 

with antibodies against Rh3 and βGal (Fig 21B). DRA-type expression of Rh3 in 

R8 cells (shown in red) was always restricted to ommatidia located within the 

IRO-C expression domain (shown in cyan), suggesting that IRO-C expression 

had not expanded into ventral PRs due to over-activation of the wg pathway. 

Finally, IRO-C expression was assessed in pupal retinas (48 hrs APF) as only 

weak expression had been detectable under wildtype condition, at this 

developmental stage. Pupal retinas from LGMR > ArmS10 flies were therefore 

triple labeled with antibodies against Hth, βGal and ElaV (Fig 21C). As in the 
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adult, no change in IRO-C expression was observed, as βGal expression (shown 

in blue) was still weak and only detectable in a few rows of ommatidia, quickly 

fading away with growing distance to the dorsal rim. Most Hth-positive ommatidia   

(shown in green) located in the expanded DRA did therefore not seem to express 

IRO-C at this stage. IRO-C expression is therefore not affected by the late over-

activation of the wg pathway in developing PRs posterior to the morphogenetic 

furrow. It appears therefore that some important aspects of the positional 

information provided by IRO-C are executed very early during eye development. 

 Similar experiments were performed to assess omb expression in LGMR > 

ArmS10 flies. First, pupal retinas (48 hrs APF) carrying the omb reporter 

construct pomb19-lacZ (LGMR > ArmS10, pomb19-lacZ) were dissected and 

triple-stained with antibodies against βGal, Hth and ElaV (Fig 21D). It was found 

that omb expression (shown in blue) was not expanded in PRs (shown in red), 

within or outside of the expanded DRA (visualized by Hth, shown in green). 

Furthermore, omb expression in marginal PRs remained extremely faint (Fig 
21E). Pupal expression of omb in PRs was strikingly similar to that of IRO-C as it 

was only expressed in very few PRs, fading away quickly. Furthermore, it did not 

seem to be affected by wg pathway activation at this develoipmental stage, 

leaving the vast majority of Hth-positive DRA ommatidia negative for omb 

expression. It has previously been reported, however, that clones of eye tissue 

expressing an activated from of Armadillo induce the expression of omb in third 

instar larvae. It must be noted that these clones had been induced much earlier, 

anterior to the morphogenetic furrow and could therefore influence PRs as early 

as at their time of birth. omb expression was visualized in the eye imaginal discs 

of LGMR > ArmS10 wandering third instar larvae by triple labeling for βGal, Spalt 

and ElaV (Fig 21F). As for the wildtype, omb expression (shown in blue) was 

only detectable in few marginal PRs of the eye disc, including inner PRs (marked 

by Spalt, shown in green). Therefore, larval as well as pupal expression of omb is 

not influenced by the late ectopic activation of wg signaling in developing PRs. 

 It was concluded from these experiments, that neither the expression 

pattern of IRO-C nor that of omb are affected by the late ectopic activation of the 
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wg pathway in developing PRs. This was particularly interesting for IRO-C, as 

reporters seemed to become re-expressed at later stages of PR development 

and late over-expression of IRO-C genes is sufficient to induce DRA ommatidia 

ventrally. Regulation of late IRO-C function therefore remains to be understood. 

An inducing effect of wg on the omb complex, however, seems to be required 

very early during eye development. 

 

2.22. DRA development requires unusual wg signal transduction 
Over-activation of the wg pathway in all developing PRs has a strong 

DRA-inducing effect in all dorsal ommatidia. Wingless can act through different 

Fig III.2.21 IRO-C and optomotorblind expression in the expanded DRA 
(A)-(C) Expression of IRO-C is not affected by late ectopic wg pathway activation: IRO-C expression was visualized on frozen 
sections through adult eyes from flies over-expressing activated Armadillo (ArmS10), using the enhancer trap rF209. Double 
labeling with antibodies against βGal (cyan) and Hth (green) revealed the expansion of DRA-type Hth expression in inner PRs to 
span the entire IRO-C expression domain. IRO-C expression appeared not to be affected by ectopic wg pathway activation. (B) 
Frozen sections through adult eyes from LGMR > ArmS10 + rF209 were double labeled with antibodies against βGal (cyan) and 
Rh3 (red). Expression of rF209 remained specific to the dorsal comp[artment as visualized by DRA-type Rh3 expression in R8 
cells, expanded in this mutant background. (C) IRO-C expression in pupal retinas (48 hrs APF) dissected from LGMR > ArmS10 
+ rF209 flies and triple labeled with antibodies against Hth (green), βGal (blue) and ElaV (red). Ectopic wg pathway activation in 
developing PRs had no effect on pupal rF209 expression, which was weak and faded away few rows from the dorsal rim; a 
situation also observed for the wildtype. 
(D)-(F) Expression of omb is not affected by ectopic wg pathway activation: Pupal retinas dissected from LGMR > ArmS10 flies 
also carrying the pomb19-lacZ reporter transgene. Triple labeling using antibodies against Hth (green), βGal (blue) and ElaV 
(red) revealed no change in pupal omb expression. (E) As seen in the blowup, βGal expression in marginal ommatidia was still 
faint and not expanded into a higher number of dorsal ommatidia. (F) Eye imaginal discs dissected from wandering third instar 
larvae carrying the pomb19-lacZ transgene. Triple staining using antibodies against Sal (green), βGal (blue) and ElaV (red) 
revealed no change in larval omb expression. As in the wildtype, only very few marginal ommatidia expressed βGal. 
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receptors as well as different signal transduction cascades. It was therefore 

tested whether DRA cells respond directly to Wg through either of the two well 

characterized pathways (‘canonical’ and ‘non-canonical’ signaling; for review: 

Veeman et al., 2003) by following three different approaches. 

First, mitotic clones of eye tissue lacking both well-characterized Wingless 

receptors, Fz and DFz2 (Chen and Struhl, 1999) were induced using the ey-

flip/FRT technique. Pupal retinas (48 hrs APF were dissected and triple labeled 

with antibodies against Hth, GFP and ElaV (Fig 22A). Only very few and very 

small clones (labeled by the absence of ubi-GFP (shown in blue) were obtained 

touching the DRA. However, Hth expression (shown in green) persisted in such 

clones (white arrow heads), suggesting that Wg receptors Fz and DFz2 are not 

required in PRs for DRA development. 

To confirm this result, mitotic clones of eye tissue lacking the signal 

transduction molecule Disheveled (dsh) were induced using the ey-flip/FRT 

technique. Dsh is absolutely required most cellular responses to Wg 

(Klingensmith et al., 1994; Noordermeer et al., 1994). Pupal retinas (48 hrs APF) 

were dissected and triple labeled with antibodies against Hth, βGal and ElaV (Fig 
22B). Very large clones were obtained and eye morphology was visibly affected 

resulting in large clonal outgrowths due to the loss of Dsh-mediated inhibition of 

the morpgogenetic furrow. Similarly to Fz + DFz2 (-/-) clones, no loss of Hth 

expression (shown in green) was observed in dshV26 (-/-) clones (marked by the 

absence of Arm-lacZ, shown in blue). Hth expression was sometimes partially 

lost in small clones that did not extend into the head cuticle. However, it clearly 

persisted in the large clones and in several cases more than two additional DRA 

rows were detected in the adjacent wildtype tissue. Although eye development is 

somewhat disturbed, DRA development proceeds normally in the absence of 

Dsh. 

A final strategy was used to make DRA ommatidia un-responsive to Wg, 

by over-expressing a dominant negative form of TCF/Pangolin in all developing 

PRs. TCF, the main transcriptional effector of the wingless pathway, was over-

expressed using GMR-GAL4 (TCF∆N; (van de Wetering et al., 1997). Depending 
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on the strength of the GMR driver used, adult GMR> TCF∆N flies had eye 

phenotypes ranging from wild type to very rough. First, a weaker driver (sGMR-

GAL4) was used and frozen sections from sGMR > TCF∆N flies were double 

labeled for Rh3 and Hth (Fig 22C). Hth-positive inner PR nuclei (shown in green) 

co-staining for Rh3 (shown in red) were datectable at the DRA, indicating the 

DRA development was not affected by expression of dominant negative TCF. A 

strong GAL4 driver (LGMR-GAL4) was used next, to rule out the possibility that 

TCF∆N expression levels ghad been too low. Double labeling of frozen sections 

Fig III.2.22 DRA development requires unusual wg signal transduction 
(A)+(B) DRA ommatidia do not directly respond to wingless: (A) Flat mounted pupal retinas (~48 hrs APF) dissected from flies 
with small ey-Flip induced clones of eye tissue homozygous mutant for both wg receptors Fz and Fz2 (fzH51 fz2C1 -/-): triple 
labeling of Hth (green) and ElaV (red) in clones marked by loss of fluorescence from a ubiquitin-GFP transgene (shown in blue) 
and located in the DRA revealed Hth expression was not lost in fzH51 fz2C1 double mutant tissue (white arrows). (B) Larger 
homozygous mutant clones of a null allele of disheveled (dsh), marked by the absence of Arm-lacZ (shown in blue) were 
analyzed in pupal retinas (~48 hrs APF). Triple labeling with Hth (green) and ElaV (red) revealed DRA-specific Hth expression 
to persist in dshV26-/- mutant tissue (top). Additional DRA rows were obtained in wildtype tissue adjacent to dshV26 clones 
(center) probably due to over-proliferation. 
(C)-(E) Dominant negative TCF does not block DRA development: Frozen section (10 µm) along the D/V axis (D to the left) of 
adult heads of flies over-expressing a dominant negative form of Dtcf (pangolin) using GMR-GAL4 (sGMR > dTCF∆N). Double 
labeling of Rh3 (red) and Hth (green) revealed that the DRA remains unaffected in these flies (arrows). (D) Frozen sections 
through adult eyes from flies over-expressing Dtcf∆N under control of a stronger GMR-GAL4 driver (LGMR > dTCF∆N). 
Double labeling using antibodies against Hth (green) and ElaV (red) revealed normal DRA development in these flies,although 
eye morphology was severely affected. (E) Pupal retinas (48 hrs APF dissected from flies co-over-expressing both ‘activated 
Armadillo’ (ArmS10) and dTCF∆N using GMR-GAL4 (LGMR > ArmS10 + dTCF∆N). Double labeling with antibodies against 
Hth (green) and ElaV (red) revealed that dTCF∆N did not neutralize DRA-inducing activity of ArmS10. 
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through LGMR> TCF∆N eyes with antibodies against Hth and ElaV were 

performed (Fig 22D). Although eye development was severely affected, Hth-

positive PR nuclei (labeled by co-staining of Hth in green and Elav in red) were 

detected in the DRA in LGMR> TCF∆N retina (white arrows), confirming that 

dominant negative TCF does not abolish DRA development. 

A factor downstream of activated Armadillo might be non-cell-

autonomously required for DRA induction. It remained therefore possible that Wg 

expression was primarily restricted to the head cuticle, inducing the expression of 

a second diffusible protein there, in an autocrine way. According to this model, 

diffusion of such unknown factor over a short range into the eye would then be 

responsible for induction of Hth and therefore DRA development. This factor has 

not been identified yet. However, it has been reported that wg induced its own 

expression in those marginal ommatidia that are to be eliminated by apoptosis. It 

was therefore tested whether the unknown factor was Wg itself by over-

expressing both UAS-ArmS10 and UAS-TCF∆N under the control of LGMR-

GAL4. Pupal retinas (48 hrs APF) from LGMR> ArmS10 + TCF∆N flies were 

double labeled with antibodies against Hth and ElaV (Fig 22E). Eye morphology 

of these flies was dramatically affected. However, dominant negative TCF was 

not able to efficiently prevent expansion of Hth expression (shown in green) 

caused by activated Armadillo. It was concluded that the DRA does not develop 

in direct response to Wg via TCF. 

Together, these data indicate that ectopic activation of the wingless 

pathway is sufficient to induce DRA development dorsally, but reception of the 

Wg signal through the Fz/DFz2, dsh, TCF pathway is not absolutely necessary in 

PRs for DRA development to proceed, suggesting the involvement of a 

redundant DRA inducing factor and/or additional Wnt receptor pathway(s). 

 

2.23. Removing Hth function in the expanded DRA: odd coupled ommatidia 
The DRA is dramatically expanded in gain-of-function mutants affectiung 

wg signaling in the developing eye, like ombQUADROON and LGMR > ArmS10. 

Over-expression of dominant negative Homothorax (hthHM) in these mutant 
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backgrounds was used to confirm that removing Hth function in the DRA always 

leads to formation of odd-coupled Rh3/Rh6 ommatidia. First, HthHM was over-

expressed in all developing PRs in an ombQUADROON background. Frozen 

sections from adult ombQUADROON + LGMR > hthHM eyes were double labeled 

with antibodies against Rh3 and Rh6 (Fig 23A). Indeed, all ommatidia located in 

the dorsal third of the eye expressed Rh3 (shown in red) in R7 and Rh6 (shown 

in green) in R8. Expression of Rh4 and Rh5 was specifically excluded from the 

expandd DRA (not shown).  Therefore, ectopic expression of dominant negative 

Hth had transformed the entire expanded DRA in ombQUADROON mutants into 

odd-coupled ommatidia, confirming previous observations in the more restricted 

DRA (Fig 23B). 

The dominant negative form of Homothorax (hthHM) was also over-

expressed in all developing PRs, together with the constitutively active Form of 

Armadillo. In these LGMR > hthHM + ArmS10 flies, the dorsal half of the eye 

should be driven into the specification as DRA ommatidia. However, due to the 

co-expression of hthHM, terminal differentiation of these DRA ommatidia should 

be blocked. Therefore, differentiation of the whole dorsal eye into unusually 

coupled Rh3/Rh6 expressing ommatidia was predicted. To test this hypothesis, 

frozen sections through adult LGMR > ArmS10 + hthHM eyes were dauble labeled 

with antibodies against Rh3 and Rh6 (Fig 23C). Although rhabdomere 

morphology was quite affected, Rh3 (shown in red) and Rh6 (shown in green) 

were clearly the only inner PR opsins expressed in the dorsal eye. Therefore, 

removing Hth function downstream of activated Armadillo indeed leads to the 

transformation of the whole dorsal eye into odd-coupled ommatidia (Fig 23D). To 

further confirm this result, opsin-lacZ reporter constructs were introduced and 

frozen sections through adult eyes were performed (Fig 23A). By visualizing 

βGal activity using X-Gal, rh1-lacZ expression was not affected in LGMR > 

hthHM + ArmS10 (top left). However, inner PR expression was severely affected: 

For instance, rh4-lacZ and rh5-lacZ were never expressed in the dorsal half of 

the eye (black arrows), a situation reminiscent of LGMR > ArmS10 flies. 

However, clear expression of rh3-lacZ in R7 cells throughout the dorsal eye was 
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observed (black arrow). Simultaneously, strong rh6-lacZ expression was 

observed in R8 cells throughout the dorsal half of the adult eye (black arrow), 

confirming the formation of rh3/rh6 expressing ommatidia dorsally (Fig 23F). 

Finally, inner PRs in the dorsal half of the eye of LGMR > ArmS10 + hthHM flies 

were specifically marked with hth-lacZ, whose expressein was expanded in these 

flies. Frozen sections were then double labeled for βGal and Rh3 (Fig 23F). Hth-

positive inner PRs (shown in green) always expressed Rh3 (shown in red), while 

Rh4 was never expressed in this domain (not shown). Frozen sections were also 

double labeled for βGal and Rh6 (Fig 23G). Similarly, dorsal inner PRs 

expressing hth (shown in red) always expressed Rh6 (shown in green), but never 

Rh5 (not shown), confirming that all dorsal ommatidia were transformed into odd-

coupled ommtidia. Frozen sections were also double labeled for βGal and the R8 

marker Sens (Fig 23G). In the wildtype, Sens is always specifically excluded 

from DRA R8 cells while over-expression of hthHM is sufficient to de-repress it in 

the DRA. Strong co-expression of Sens (shown in pink) and hth-lacZ (shown in 

green) was detected in all dorsal R8 cells, confirming that all dorsal ommatidia 

have lost their DRA identity. 

Taken together, these results clearly show that removing Hth function from 

DRA ommatidia always leads to the formation of odd-coupled Rh3/Rh6 

expressing ommatidia. Therefore, hth acts downstream of wg to specify the DRA.  

Fig III.2.23 Removing Hth function in expanded DRAs: odd coupled ommatidia 
(A)+(B) Transformation of the expanded DRA in ombQUADROON mutants in odd-coupled ommatidia: Frozen section through 
adult eyes from flies over-expressing dominant negative Hth (HthHM) in an  ombQUADROON mutant background. Double 
labeling with antibodies against Rh3 (red) and Rh6 (green) revealed odd-coupled ommatidia throughout the dorsal part of the eye. 
(B)  Schematic representation of of the ombQdFor + LGMR > hthHM phenotype: The extra DRA ommatidia induced throughout 
the dorsal eye by the gain-of-function effect of Omb are transformed into odd-coupled ommatidia expressing the ‘default’ opsins 
Rh3 and Rh6, due to the inactivation of Hth function. 
(C)-(G) Transformation of the whole dorsal eye into ‘odd-coupled’ Rh3/Rh6 ommatidia: Frozen section through adult eyes from 
flies co-over-expressing activated Armadillo and dominant negative Hth (HthHM). Double labeling with antibodies against Rh3 
(red) and Rh6 (green) revealed odd-coupled ommatidia throughout the dorsal half of the eye. (D) Schematic representation of the 
LGMR > Arms10 + hthHM phenotype: Due to the interaction of activated Armadillo and dominant negative Hth, odd coupled 
(Rh3/Rh6) ommatidia (white) are found covering the entire dorsal eye. (E) Expression of the opsin reporter constructs rh1-lacZ, 
rh3-lacZ, rh4-lacZ, rh5-lacZ and rh6-lacZ visualized by X-Gal staining on frozen sections through adult eyes from flies co-over-
expressing both ‘activated Armadillo’ (ArmS10) and dominant negative HthHM (LGMR > ArmS10 + hthHM). While rh1-lacZ 
expression was not affected, rh4-lacZ and rh5-lacZ were excluded from the expanded DRA, as in ombQUADROON mutants. 
However, rh3-lacZexpression was found expressed in all dorsal R7 cells, whereas all underlying R8 cells expressed rh6-lacZ. (F) 
All dorsal R7 cells express Rh3: Frozen section through adult LGMR > Arms10 + hthHM eyes double labeled for Rh3 (red) and 
Hth-lacZ (green). Rh3 was the only R7 opsin expressed in this domain. (G) All dorsal R8 cells express Rh6: Frozen section 
through adult LGMR > Arms10 + hthHM eyes double labeled for Rh6 (green) and Hth-lacZ (red). Rh6 was the only R8 opsin 
expressed in this domain. (H) Expansion of Sens expression into dorsal R8 cells: Frozen section through adult LGMR > Arms10 
+ hthHM eyes double labeled for Sens (pink) and Hth-lacZ (green). Co-expression of Hth-lacZ and Sens was detected throughout 
the dorsal eye.
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2.24. Homothorax, IRO-C and Wingless interact to form the DRA 
 One concluding experiment was performed to demonstrate the power of 

the DRA model system. Combination of the DRA phenotypes obtained by ectopic 

expression of ArmS10, IRO-C and Hth allowed a better understanding of how 

these genes co-operate. 

 The IRO-C gene araucan (ara) was ectopically over-expressed together 

with ArmS10. It has been shown that activating the wg pathway is sufficient to 

transform the IRO-C expressing dorsal ommatidia into the DRA subtype. 

Furthermore, as providing ectopic IRO-C was sufficient to induce atypical ‘ventral 

ectopic wg
and IRO-C

A B

sGMR > ArmS10 + ara
ectopic wg
and IRO-C

A B

sGMR > ArmS10 + ara

rim areas’. It was therefore expected that ectopic expression of both ara and 

ArmS10 should transform the whole retina into DRA omatidia, a situation that 

would be identical to Hth over-expression. Pupal retinas (sGMR > ara + ArmS10) 

were dissected and double labeled using antibodies against Hth and ElaV (Fig 
24A). As predicted, Hth expression (shown in green) was detected in inner PRs 

of virtually all ommatidia throughout the retina. Sometimes, only one PR per 

ommatidia seemed to express Hth. This partial transformation was due to the 

relatively weak GMR-GAL4 driver that had to be used to avoid the excess cell 

Fig III.2.24 Homothorax, IRO-C and Wingless interact to form the DRA 
(a)+(B) Transformation of the whole retina into DRA ommatidia: Pupal retina dissected from flies co-over-expressing both 
ArmS10 and the IRO-C member Ara (sGMR > ArmS10 + ara). Double labeling with antibodies against Hth (green) and ElaV 
(red) revealed transformation of the whole retina into DRA-type ommatidia, expressing Hth. 
(B) Schematic representation of the sGMR > ArmS10 + ara phenotype: DRA ommatidia (red) are found throughout the entire 
dorsal eye, a situation identical to the hth gain-of-funbction (LGMR > hth). 
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death observed in LGMR > ara flies (data not shown). It was concluded from this 

experiment that ectopic expression of activated Armadillo and IRO-C is sufficient 

to transform the whole retina into DRA ommatidia, thereby mimicking the effect of 

hth gain-of-functin (Fig 24B). 

  DRA ommatidia therefore provide a powerful model system to study the 

interaction of the dorsal selector genes with the wg pathway as well as its target 

genes. 
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3. Generating the ommatidial mosaic required for color 
vision: Specification of pale and yellow ommatidia 
 

Following a candidate approach, the gene spineless (ss) was identified as 

essential for the establishment of the retinal mosaic of pale and yellow 

ommatidia. It was found that ss is specifically expressed in a large subset of R7 

cells where it is necessary and sufficient to induce rh4 expression and 

consequently, to impose the yellow fate onto the whole ommatidium. The most 

striking ss phenotype is the transformation of antenna into distal leg structures, 

leading to the aristapedia phenotype (Burgess and Duncan, 1990). ss is the 

homologue of the human arylhydrocarbon (‘Dioxin’) receptor and encodes a 

bHLH-PAS transcription factor (Duncan et al., 1998). Like other factors in this 

class (e.g. Sim or Sima/Hif), Ss usually acts by nuclearly localizing its obligatory 

hetero-dimerization partner, the pleiotropic protein Tango (Crews and Fan, 1999; 

Emmons et al., 1999). 

 
3.1. spineless mutants show a dramatic opsin phenotype in R7 cells 

Viable mutants in the gene spineless/aristapedia (ss) show a partial 

transformation of the antennae into distal leg structures, which is very similar to 

the loss of homothorax (Burgess and Duncan, 1990; Casares and Mann, 1998). 

However, the precise regulatory relationship between hth and ss in the antennae 

is not known. Following a candidate gene approach, spineless mutants were 

therefore tested for ommatidial specification and opsin expression. As spineless 

null mutants are homozygous lethal, whole mutant eyes in otherwise 

heterozygous animals had to be generated using the flip/FRT system. The ss null 

allele ssD115.7, recombined onto an FRT82B chromosome (gift from I. and D. 

Duncan, Washington University), the eye-specific flipase ey-flp and the FRT82B 

GMR-hid technique were used. The resulting flies showed the previously 

described antenna-to-leg transformation, due to the activity of ey-flip in the 

antennal part of the eye-antennal imaginal disc (Fig 1A). The eye morphology of 
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these flies, however, was indistinguishable from the wild type. It should be noted 

that the lack of bristles on the vertex of the fly’s head (arrow in Fig) indicates a 

possible role of ss in the patterning of the head cuticle. However, a possible role 

of ss in this process was not pursued. Instead, the 
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homozygous mutant eyes were analyzed for more subtle morphological 

abnormalities by inducing mitotic clones of eye tissue homozygous for ssD115.7 

using the Flip/FRT system (Xu and Rubin, 1993). Several eyes exhibiting such 

clones which were marked by the absence of red eye pigment were fixed and cut 

into 1 µm thin sections. Light microscopic analysis of these sections did not 

reveal any morphological abnormalities of the mutant (= unpigmented) tissue, like 

rhabdomere malformation or ommatidial misrotation and was instead 

indistinguishable from the adjacent pigmented (w+) heterozygous tissue (Fig 1B). 

The phenotypic characterization of ss mutants was completed by assessing inner 

PR opsin expression in whole mutant eyes (ey-flip, FRT82-GMR-hid, FRT82B-

ssD115.7). The pale and yellow ommatidia were visualized on frozen sections 

(10 µm) by using antibodies against the R7 opsins Rh3 and Rh4. In the wildtype, 

~30% of R7 cells as well those R7 and R8 located in the DRA express Rh3  

(shown in red in Fig 1C) while the remaining ~70% express Rh4 (shown in cyan). 

Eyes lacking ss function, however, manifested a dramatic change in opsin 

expression: They completely lacked Rh4 expression while Rh3 was expanded 

into apparently all R7 cells (Fig 1D). This result strongly suggested that all 

ommatidia had chosen the pale fate in ss mutants (shown schematically in Fig 
1E). However, this could not be tested further, as there are no pale or yellow 

subset-specific markers besides the opsin genes themselves. Instead, it was 

teste whether indeed all R7 cells expressed Rh3 by co-staining frozen sections of 

Fig III.3.1 spineless mutants show a dramatic opsin phenotype in R7 cells 
(A)+(B) Eye morphology is unaffected by loss of ss: Scanning electron micrograph of an adult head from a fly with homozygous
ssD115.7 (-/-) eyes in an otherwise herterozygous animal. The distal part of the antenna was transformed into leg structures
(arrow), as previously reported. (B) Plastic sections through the adult retina from a fly inducing mitotic ssD115.7 (-/-) clones
(marked by the absence of pigment) using the flip/FRT technique. Rhabdomere morphology and ommatidial polarity were
identical within and outside the clones. 
(C)+(D) Rh3 expresion is lost in ss whole mutant eyes: Frozen sections through adult eyes double labeled with antibodies against
Rh3 (red) and Rh4 (cyan). In the wildtype, 30% of R7 cells as well as DRA R7 and R8 express Rh3, while the remaining R7
express Rh4. (D) R7 opsin expression was dramatically altered in flies with ssD115.7 (-/-) whole mutant eyes. Rh4 expression
was completely lost and expression of Rh3 was expanded into all R7 cells. 
(E) Schematic representation of the ss (-/-) phenotype: rh4 expressing y ommatidia (originally green) are lost and replaced by p
ommatidia (blue). 
(F) Rh4 expression is expanded into all R7 cells in ss mutants: Frozen sections through whole mutant ssD115.7 (-/-) eyes double
labeled with antibodies against Rh3 (red) and the R7 marker Pros (green). No Rh4-negative R7 cell was detected. 
(G) Cell-autonomous loss of Rh4 expression in ss clones: Whole mounted adult retina from flies inducing mitotic clones of
homozygous ssD115.7 (-/-) tissue (marked by the absence of Arm-lacZ) were triple labeled with antibodies against βGal (blue),
Rh3 (red) and Rh4 (green). Expression of Rh4 was completely lost within the mutant clones, whereas the p/y mosaic was intact in
heterozygous wildtype tissue outside and right adjacent to the clones. 
(H)+(J) Opsin gene transcription is altered in ss mutants: Expression of the opsin reporter transgenes rh3-lacZ and rh4-lacZ was
visualized on  frozen sections through ssD115.7 (-/-) whole mutant eyes, using X-Gal staining. Expression of rh3-lacZ was
dramatically expanded into all R7 cells. (J) Expression of rh4-lacZ was completely lost in ssD115.7 mutant eyes. 
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whole mutant eyes with antibodies against Rh3 and the R7 marker Prospero (Fig 
1F). Every Pros-positive R7-nucleus (shown in green) was right adjacent to a 

rhabdomere expressing Rh3 (shown in red), demonstrating that indeed all R7 

cells expressed Rh3 in the absence of ss function. Opsin expression in 

Drosopphila is regulated at the transcriptional level. It was therefore tested 

whether the strong R7 opsin phenotype observed in ss mutants was due to 

altered opsin transcription rather than to mis-localization or transport of the two 

R7 opsin proteins. The R7 opsin reporters rh3-lacZ and rh4-lacZ were introduced 

into flies with whole ss mutant eyes (ey-flip, FRT82-GMR-hid, FRT82B-

ssD115.7) and frozen sections of their heads were stained for βGal activity using 

X-Gal (Stowers and Schwarz, 1999). It was observed that, in these mutants, rh3-

lacZ expression was dramatically expanded to all R7 cells (Fig 1G), as had been 

observed for the corresponding opsin protein. Simultaneously, rh4-lacZ 

expression was completely lost in the same mutant background (Fig 1H). It was 

concluded from these observations that loss of ss activity in the eye leads to the 

loss of rh4 transcription and to the transcription of rh3 in all yR7 cells. Finally, the 

cell-autonomy of the ss phenotype was tested by inducing mitotic clones 

homozygous for ssD155.7 and marked by the absence of the reporter construct 

Armadillo-lacZ (Arm-lacZ). Triple labeling of whole mounted adult retinas (see 

material and methods) using antibodies against βGal, Rh3 and Rh4 confirmed 

the extreme opsin phenotype within the clones, whereas a normal Rh3/Rh4 ratio 

was observed in the heterozygous tissue marked by Arm-lacZ (shown in white in 

Fig). Furthermore, the R7 opsin ratio was not affected in the wildtype ommatidia 

right adjacent to mutant clones, indicating that ss is required cell-autonomously. 

It was therefore concluded that spineless is necessary for the activation of 

rh4 expression in ~70% of the R7 cells, as well as for the repression of rh3 in 

these cells, possibly by cell-autonomously inducing the yellow fate in these 

ommatidia. Besides its role in ommatidial subtype specification, no other role was 

found for ss in eye development. 
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3.2. spineless mutants show a less dramatic opsin phenotype in R8 cells 
R8 opsin expression in ss mutants was assessed next, by double labeling 

frozen sections with antibodies against the R8 opsins Rh5 and Rh6. In the 

wildtype, ~30 of the R8 cells express the pale opsin Rh5 (shown in blue) while 

the remaining R8 express the yellow opsin Rh6 (shown in green; Fig 2A). The 

pale R8 cells were visualized by labeling all R8 nuclei with the R8 marker 

Senseless (sens; (Nolo et al., 2000); (Frankfort et al., 2001) and the yR8 cells 

with Anti-Rh6 (Fig 2B). Pale ommatidia could therefore be identified due to the 

lack of co-staining of Sens and Rh6 expression (white arrows). Frozen sections 

(10 µm) through spineless whole mutant eyes (ey-flip, FRT82-GMR-hid, 

FRT82B-ssD115.7) were also double labeled for Rh5 and Rh6 (Fig 2C). The vast 

majority of R8 cells now expressed the pale opsin Rh5 and only very few cells 

expressed Rh6.  However, the ss phenotype in R8 cells was variable: while in 

most cases ~80-90% of R8 expressed Rh5, rare cases were observed where 

both Rh5 and Rh6 were expressed in ~50% of the ommatidia. The R8 phenotype 

was therefore significantly different from the loss of Rh4 in R7 cells, which always 

occurred with 100% penetrance. The ss (-/-) opsin phenotype in R8 cells was 

further characterized by double labeling frozen sections for Sens and Rh6 (Fig 
2D). In the vast majority of the cases, the number of Sens-positive cells (shown 

in pink) not co-expressing Rh6 (show in green) was dramatically increased. 

Therefore, the p ommatidial subtype (with paired expression of Rh3/Rh5) was 

dramatically expanded throughout the retina, but that a significant amount of mis-

coupled ommatidia (with paired expression of Rh3/Rh6) were created in ss 

mutant eyes as well. 

 A low ratio of odd-coupled (Rh3/Rh6) ommatidia (~7%) can be observed 

in wildtype flies. However, in most of the cases, Rh3 expressing R7 cells are not 

located on top of Rh6 expressing R8 cells, in the same ommatidium. This 

situation was visualized on frozen sections through adult eyes from wildtype flies 

using antibodies against Rh3 and Rh6 (Fig 2E). The pR7 opsin Rh3 (shown in 

red) was always found in R7 cells located above a gap between yR8 cells 

expressing Rh6 (shown in green). Due to the different ss (-/-) opsin phenotypes 
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in R7 and R8 cells, increased mis-coupling in ss was tested by double labeling 

frozen sections through spineless whole mutant eyes (ey-flip, 

yw

ss -/-

A

Rh5 Rh6

Rh5 Rh6

yw

ss -/-

C D
Sens Rh6

Sens Rh6

B

E F

G H
Rh3 Rh6 Rh3 Rh6

rh5-lacZ rh6-lacZ

yw ss -/-

ss -/- ss -/-

yw

ss -/-

A

Rh5 Rh6

Rh5 Rh6

yw

ss -/-

C D
Sens Rh6

Sens Rh6

B

E F

G H
Rh3 Rh6 Rh3 Rh6

rh5-lacZ rh6-lacZ

yw ss -/-

ss -/- ss -/-

 



III. RESULTS 

 115

FRT82-GMR-hid, FRT82B-ssD115.7) with antibodies against Rh3 and Rh6 (Fig 
2F). While Rh3   (shown in red) was detected in all R7 cells, Rh6 (shown in 

green) was always found in a subset of R8 cells. Depending on the Rh6 ratio of 

the individual fly, between 10-50% of mis-coupled ommatidia were observed. It 

was therefore concluded that, while the majority of ommatidia in ss mutant eyes 

were of the p subtype, a significant number of Rh3/Rh6 ommatidia were also 

created. 

 Finally, it was tested whether the ss (-/-) opsin phenotype in R8 cells was 

due to altered gene transcription. First, a rh5-lacZ transgene was introduced into 

the ey-flip, FRT82-GMR-hid, FRT82B-ssD115.7 background and βGal activity 

was visualized on frozen sections using X-Gal stainings (Fig 2G). The numer of 

rh5-lacZ expressing R8 cells was dramatically increased, as had previously been 

observed with Anti-Rh5 antibodies. Finally, expression of a rh6-lacZ transgene 

was visualized on frozen sections through adult ss (-/-) eyes (Fig 2H). The 

number of βGal expressing R8 cells was significantly reduced, supporting 

previous observations. It was therefore concluded that the dramatic re-

organization of the R8 opsin mosaic in favor of the p subset was regulated at the 

transcriptional level. 

 Therefore, loss of ss leads to a dramatic gain of pR8 cells. However, the y 

subtype is not completely lost in R8 cells, resulting in a significant number of odd-

coupled ommatidia expressing Rh3 in R7 and Rh6 in R8. 

Fig III.3.2 spineless mutants show a less dramatic opsin phenotype in R8 cells 
(A)+(B) Pale and yellow subtypes in wildtype R8 cells: Frozen section through adult eyes from wildtype flies double labeled with
antibodies against Rh5 (blue) and Rh6 (green). A large subset of R8 cells (~70) always expressed Rh6, the rest expressed Rh5.
(B) Double labeling of wildtype eyes with antibodies against Rh6 (green) and the R8 marker Sens (pink). Pale ommatidia could
be identified by the absence of Rh6 on top of Sens-positive nuclei (white arrows). 
(C)+(D) Strong R8 opsin phenotype in ss mutants: Frozen section through ssD115.7 (-/-) whole mutant eyes double labeled with
antibodies against Rh5 (blue) and Rh6 (green). Rh6 expression was dramatically reduced and the number of Rh5 expressing R8
cells increased. (B) Double labeling of ssD115.7 (-/-) whole mutant eyes with antibodies against Rh6 (green) and the R8 marker
Sens (pink). The number of p ommatidia identified by the absence of Rh6 on top of Sens-positive nuclei was dramatically
increased. 
(E) Exclusion of Rh3 and Rh6 from the same wildtype ommatidium: Frozen sections through adult eyes from wildtype flies
double labeled with antibodies against Rh3 (red) and Rh6 (green). pR7 cells (rh3) were always found above gaps between yR8
(rh6) cells (white arrows). 
(F) Mis-coupling of Rh3 and Rh6 in ss mutants: Frozen sections through adult eyes from ssD115.7 (-/-) flies double labeled for
Rh3 (red) and Rh6 (green). As all R7 cells expressed rh3, mis-coupling of Rh3 and those R8 cells expressing Rh6 was found
within several ommatidia. 
(G)+(H) Transcriptional up-regulation of the pR8 subtype in ss mutants: Expression of the opsin reporter transgenes rh5-lacZ and 
rh6-lacZ was visualized on  frozen sections through ssD115.7 (-/-) whole mutant eyes, using X-Gal staining. Expression of rh5-
lacZ was dramatically expanded into most R8 cells. (H) The number of rh6-lacZ expressing R8 cells was dramatically reduced in 
ssD115.7 mutant eyes. However, rh6 expression was not completely lost. 
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3.3. spineless is required in R7 cells 
The current model of how opsin expression is co-ordinated in Drosophila 

in order to result in the two ommatidial classes (pale and yellow) includes two 

consecutive events: first, the choice between rh3 and rh4 expression in R7 and 

then the consecutive instruction of the underlying R8 cell by R7 to choose 

expression of the same class opsin (rh5 or rh6; (Chou et al., 1999). Spineless 

mutants exhibited a strong opsin phenotype both in R7 cells as well in R8 cells, 

both cell types dramatically increasing their pale opsin ratio (see above). It was 

therefore tested whether the R8 opsin phenotype was due to the loss of ss in R8 

cells rather than to the loss of ss in R7 cells (choice of rh3 over rh4), followed by 

the instruction of underlying R8 cells to express rh5 instead of rh6. 

First, expression of Rh5 and the inner PR marker Spalt (Sal) was 

visualized on frozen sections through adult eyes from wildtype flies (Fig 3A). Sal 

expression (shown in red) was detected in all R7 and R8 cells throughout the 

retina and Rh5 (shown in blue) was expressed in a relatively small subset of the 

R8 cells. Homozygous viable sevenless (sev) mutants lacking all R7 cells were 

then characterized by performing the same double staining (Fig 3B). Sal 

expression (shown in red) remained in R8 cells, none of which expressed Rh5 

(shown in blue). This loss of Rh5 expression in sev mutants has previously been 

reported. In a next step, double mutants for both sev and ss were generated 

(sev, ey-flip, FRT82-GMR-hid, FRT82B-ssD115.7) and further analized. First, the 

genotype of sev + ss (-/-) was confirmed by double labeling frozen sections with 

Anti-Rh3 and Anti-Rh4 (Fig 3C). While Rh4 expression (shown in cyan) was 

completely lost, expression of Rh3 (shown in red) only persisted in the R8 cells of 

the DRA (white arrows). These flies therefore clearly had no R7 cells. Next, 

frozen sections through adult eyes from ss + sev (-/-) flies were double stained 

for Sal and Rh5 (Fig 3C). The R8 cells were marked by Sal (shown in red) and 

Rh5 expression (shown in blue) was completely lost, as is observed in sev 

mutants. Double mutants (ss + sev) therefore phenocopied sev mutants (loss of 

Rh5) rather than ss mutants (dramatically increased 



III. RESULTS 

 117

sev -/-

sev & ss -/-

E

Rh5 Rh6

Rh5 Rh6

G H
Sens Rh6

Sens Rh6

sev -/-

sev & ss -/-

F

yw sev -/-

sev & ss -/-sev & ss -/-

A B

DC
Rh5 Sal Rh5 Sal

Rh5 SalRh3 Rh4

R7

R8
R8

R8

sev -/-

sev & ss -/-

E

Rh5 Rh6

Rh5 Rh6

G H
Sens Rh6

Sens Rh6

sev -/-

sev & ss -/-

F

yw sev -/-

sev & ss -/-sev & ss -/-

A B

DC
Rh5 Sal Rh5 Sal

Rh5 SalRh3 Rh4

R7

R8
R8

R8

Fig III.3.3 spineless is required in R7 cells 
(A) Expression of Spalt and Rh5 in wildtype flies: Frozen sections through adult eyes from wildtype flies were double labeled
using antibodies against Rh5 and the inner PR marker Spalt (Sal). Sal expression (red) was detected in R7 and R8 cells. Rh5
expression (blue) was restricted to a small subset of R8 cells.  
(B) Expression of Spalt and Rh5 in sev mutants: Frozen sections through adult eyes from sev mutants were double labeled for Rh5
and Sal. Due to the loss of R7 cells, Sal expression (red) was specific to the R8 cells (arrow). Rh5 expression (blue) was
completely lost. 
(C) Characterization of ss + sev double mutants: Flies were generated with whole mutant eyes lacking both ss and sev (ss + sev).
First, the genotype was tested by double labeling frozen sections with antibodies against Rh3 and Rh4. Expression of Rh4 was
completely lost, while Rh3 remained specific to the R8 cells in the DRA (white arrows). 
(D) Expression of Spalt and Rh5 in ss + sev double mutants: Frozen sections through adult eyes from ss + sev mutants double
labeled with Anti-Rh5 and Anti-Sal. Sal expression (red) was specific to the R8 cells (arrow) and Rh5 expression (blue) was
completely lost. The ss + sev double mutants therefore phenocopied sev mutants. 
(E)+(F) Loss of p ommatidia in sev mutants: Frozen section through adult eyes from sev mutants double labeled for Rh5 (blue)
and Rh6 (green). Rh6 was detected in all R8 cells, whereas Rh5 was almost always lost. (B) Double labeling of sev eyes with
antibodies against Rh6 (green) and the R8 marker Sens (pink). All Sens-positive nuclei could be associated with a Rh6-positive
R8 rhabdomere, suggesting that the p subtype was lost. 
(G)+(H) Loss of both ss and sev phenocopies sev: Frozen section through adult eyes from sev + ss double mutant eyes double 
labeled for Rh5 (blue) and Rh6 (green). As in sev mutants, Rh6 was detected in all R8 cells, whereas Rh5 was almost always lost. 
(B) Double labeling of sev + ss (-/-) eyes with antibodies against Rh6 (green) and the R8 marker Sens (pink). All Sens-positive R8
cells co-expressed Rh6. This phenotype was identical to sev mutants, suggesting that ss is required in R7 cells. 
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number of Rh5 expressing R8 cells). 

Comparison of sev mutants and sev + ss double mutants was completed 

by double labeling frozen sections through adult heads from both genotypes with 

antibodies against Rh5 and Rh6 (Fig 3E). A strong opsin phenotype was 

observed in sev mutants: as previously described, virtually all R8 cells expressed 

Rh6 (shown in green), which was consistent with the loss of Rh5 expression 

already reported above. It had therefore been proposed that Rh6 represented the 

‘ground state’ opsin in these cells, as they did not receive any instructive signal 

from R7 (see introduction). This phenotype was further confirmed by double 

labeling sev mutants for Sens and Rh6 (Fig 3F). The vast majority of R8 cells 

(marked by Sens in pink) expressed Rh6 (shown in green). Next, frozen sections 

through ss + sev double mutant eyes were double labeled with Anti-Rh5 and 

Anti-Rh6 (Fig 3G). All R8 cells in the double mutant co-expressed Rh6 (Fig 3G), 

which was consistent with the loss of Rh5 expression already reported above. 

Exclusive expression of Rh6 in the ss + sev double mutant was then confirmed 

by labeling of Rh6 and Sens (Fig 3H). No R8 cell (marked by Sens in pink) was 

found to lack Rh6 expression (shown in green). It was therefore concluded that 

ss + sev double mutants clearly phenocopied sev mutants, and not ss (-/-). 

It was concluded from these genetic experiments, that spineless activity is 

only required in R7 cells and that the dramatic up-regulation of pR8 is most likely 

a secondary effect following the instruction by pR7 cells. Interestingly, this 

instructive process does not seem to be 100% effective, as a significant amount 

of mis-coupled ommatidia (Rh3/Rh6) are observed. 

 

3.4. Spineless is specifically expressed in a large subset of R7 cells 
The spineless gene is a complex locus of >50kb that has been studied 

extensively (Duncan et al., 1998). Dissection of its enhancer regions has lead to 

the identification of short DNA fragments driving expression in different tissues (I. 

and D. Duncan, unpublished). In this context, a ~1.6 kb fragment of genomic 

DNA reported to drive expression of the reporter gene beta-galactosidase in the 

eye imaginal disc was discovered and therefore called ‘eye enhancer’. 
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Expression of this ‘eye enhancer’ (E1.6) was studied in more detail. As all 

pre-existing enhancer-lacZ lines showed extremely weak expression in the eye, 

the 1.6 kb genomic DNA fragment was used to generate a new ss[E1.6]-GAL4 

construct (sseye-GAL4). The promoter-less E1.6 fragment was combined with the 

TATA box sequence of the Drosophila hsp70 gene, fused to the GAL4 cDNA 

from yeast and ligated into a Drosophila injection vector pCasper4 (see material 

and methods). Transgenic flies carrying insertions of this GAL4 construct were 

obtained and stable stocks were established. 

Several different sseye-GAL4 transgenic lines were crossed to UAS-

lacZ::NLS reporter flies expressing a βGal protein fused to a nuclear localization 

signal, under the control of GAL4 UAS-sites. GAL4 expression was first 

examined in the eye imaginal discs of wandering third instar larve (see material 

and methods). Triple labeling of these eye discs (sseye-GAL4 > UAS-lacZ::NLS) 

with antibodies against βGal, the R7 marker Prospero (Pros) as well as the 

neuronal marker ElaV revealed no expression of sseye-GAL4 in larval PRs (Fig 
4A). However, at the posterior end of the eye imaginal disc, expression of βGal 

was observed in non-neuronal cells, most likely developing cone and pigment 

cells (Fig 4B). Expression of sseye-GAL was then examined in the adult eye by 

double labeling frozen sections (10 µm) through the eyes of sseye-GAL4 > UAS-

lacZ::NLS flies with antibodies against βGal and Pros (Fig 4C). No co-staining of 

βGal (shown in green) with Pros (shown in red) or ElaV (not shown) was 

detectable. As in the larval visual system, strong of βGal staining was observed 

in non-neuronal cells. Therefore, the ss ‘eye enhancer’ does not drive significant 

expression of GAL4 in larval or adult PRs. 

 To complete the expression pattern analysis of sseye-GAL4, flat pupal 

retinas (48 hrs APF) were double labeled with Anti-βGal and Anti-ElaV (Fig 4D). 

At this developmental stage, robust expression of βGal (shown in red) was 

detectable in PRs (shown in blue). The expression pattern of sseye-GAL4 

consisted of single PRs that appeared to be randomly ‘sprinkled’ through  the 

retina. Only one positive PR per ommatidium was observed and many ommatidia 

did not stain for βGal at all. Expression levels appeared to be variable, which 
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made a statistical analysis (ratio of stained ommatidia vs. unstained, 
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see below) difficult. Interestingly, βGal-positive PRs seemed to be more 

abundant in the dorsal half of the pupal retina (left in Fig D). Y ommatidia also 

occur at a higher ratio (>70%) in the dorsal half of the eye, whereas p ommatidia 

preferentially populate the ventral part (>30%). The observed pupal expression 

pattern of sseye-GAL4 as well as the loss-of-function data presented above 

therefore lead to the hypothesis that ss might be transiently expressed in PRs, 

and specific to the y subset of ommatidia at this stage (Fig 4E).  

 As genetic experiments have shown that ss function is required in R7 

cells, it was tested whether sseye-GAL4 was expressed specifically in R7 cells. 

Pupal retinas (48 hrs APF; sseye-GAL4 > UAS-lacZ::NLS) were triple labeled for 

βGal, Anti-Pros and ElaV (Fig 4G). It was observed that βGal-positive PRs 

always co-stained for Pros, demonstrating that sseye-GAL4 was indeed 

expressed in a subset of R7 cells during pupal development. Furthermore, a 

rough statistical analysis of sseye-GAL4 expression was performed on these 

retinas by calculating the ratio of βGal-positive R7 cells. As a representative 

example, a field of 84 ommatidia at an equatorial location is shown (Fig 4H). 

~71% of the ommatidia (59/25) had βGal-expressing R7 cells (negative 

ommatidia are marked with white arrow heads), a ratio which is virtually identical 

to the ratio measured for y ommatidia (70%). Finally, it was tested whether sseye-

GAL4 expression extended into the dorsal rim area. DRA ommatidia develop in 

response to high wg signaling emanating from the dorsal head cuticle and that p 

Fig III.3.4 Spineless is specifically expressed in a large subset of R7 cells 
(A)-(C) sseye-GAL4 is not expressed in larval or adult PRs: Eye imaginal discs dissected fom wandering third instar larvae driving
lacZ:NLS under control of sseye-GAL4, triple labeled with antibodies against βGal (red), the R7 marker Pros (green) and ElaV
(blue). Expression of βGal was detectable at the posterior end of the disc (top), but no co-localization with ElaV was detectable,
suggesting that sseye-GAL4 is not expressed in PRS at this developmental stage. (B) Expression of sseye-GAL4 was detected in
develoiping cone cells (arrow) in third instar eye imaginal discs. (C) Adult expression of sseye-GAL4 detected by double labeling
frozen sections through the eyes from sseye-GAL4 > lacZ:NLS flies uisn g antibodies against βGal (red) and Pros (green). No βGal
expression was detected in R7 cells or other ElaV-positive PRs (not shown).  
(D) Pupal expression of sseye-GAL4 in PRs (top): Pupal retina (48 hrs APF) from flies driving lacZ:NLS under control of sseye-
GAL4, double labeled with antibodies against βGal (red) and ElaV (blue). Strong expression of βGal was detectable in one cell
per cluster in a subset of ommatidia. Overview over the location of the E1.6 ss eye enhancer within the ss gene (bottom): The
E1.6 enhancer is a short ~1.6 kb stretch of genomic DNA in the 5’ regulatory sequence of the ss gene. 
(E) Schematic representation of the sseye-GAL4 expression pattern (top): GAL4 expression driven by the ss E1.6 eye enhancer
(red) was specific to a large subset of R7 cells, highly reminiscent of the yR7 subtype. Proposed time course of sseye-GAL4 in
developing PRs (bottom): Onset of GAL4 expression (red) was observed during pupation and no remaining expression was
detectable at the onset of opsin expression (blue), shortly before eclosion. 
(F)+(G) sseye-GAL4 expression in a large subset of pupal R7 cells: Pupal sseye-GAL4 > lacZ:NLS retina riple labeled with
antibodies against βGal (red), Pros (green) and ElaV (blue). All cells expressing βGal were Pros-positive. (G) Ratio of R7 cells
negative for βGal expression (white arrows) was ~21%. However, false positives may have been counted due to faint signals. 
(H) Expression of sseye-GAL4 is excluded from the DRA: Pupal retina from sseye-GAL4 > lacZ:NLS flies triple labeled with
antibodies against βGal (red), the DRA marker Hth (green) and ElaV (blue). Expression of βGal was never observed in Hth-
posiitive inner PRs of the DRA. 
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or y ommatidia never occur in the dorsal-most row of ommatidia. Pupal retinas 

(48 hrs APF; sseye-GAL4 > UAS-lacZ::NLS) were therefore triple labeled for βGal, 

Anti-Hth and ElaV (Fig 4J). Hth (shown in green) never co-stained with βGal 

(shown in red), indicating that ss expression, just like p and y ommatidia, might 

be specifically excluded form the DRA. 

 It was concluded from these experiments, that GAL4 expression driven by 

the previously identified ss ‘eye enhancer’ shows a very specific expression 

pattern in PRs, both temporally as well as spatially. Expression is restricted to the 

pupal phase of eye development and is specific to a large subset of R7 cells very 

likely to be the y subset. 

 

3.5. Photoreceptor cell fates are specified correctly in spineless mutants 
 The dramatic opsin phenotypes described above, as well as the sseye-

GAL4 expression pattern, suggested that ss might play an important role in the 

specification of the color-sensitive y ommatidia. As it is not known when p and y 

ommatidia are first determined, it was tested whether all basic cell fate 

determination steps occur normally in spineless mutants: specification of outer 

versus inner PRs, of R7 versus R8, as well as specification of the DRA. 

Expression of sseye-GAL4 suggested that p and y could be specified relatively 

late, at mid-pupation. It was therefore hypothesized that ss would be epistatic to 

the genes required for proper ommatidial development, like sal and pros and that 

loss of ss would not affect expression of these genes. Furthermore, expression of 

genes necessary for DRA or R8 maturation (Hth, Sens) should also not be 

affected by the loss of ss. 

To test whether R7 cells are properly specified in ss mutants, mitotic 

clones of mutant eye tissue homozygous for ssD115.7, marked by the absence 

of Arm-lacZ, were created using the ey-flip/FRT system. Flat pupal retinas (48 

hours after puparium formation, APF) were collected, fixed and labeled with 

antibodies against the R7 marker Prospero (Pros), which is essential for correct 

specification of adult R7 cells, as well as the neuronal marker ElaV and βGal (Fig 
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FigIII.3.5 Photoreceptor cell fates get specified correctly in spineless mutants 
(A)+(B) R7 cells get correctly specified in ss mutants: Pupal retina from flies inducing mitotic clones of ssD115.7 (-/-) tissue
(marked by the absence of Arm-lacZ) triple labeled with antibodies against βGal (red), the R7 marker Pros (green) and ElaV
(blue). Pros expression was indistinguishable in R7 cells inside and outside of ss (-/-) mutant clones. (B) Frozen sections through
whole mutant ssD115.7 (-/-) eyes double labeled with antibodies against Pros (green) and ElaV (red). Adult Pros expression was
unaffected by the loss of ss. 
(C)+(D) R8 cells get correctly specified in ss mutants: Pupal retina from flies inducing mitotic clones of ssD115.7 (-/-) tissue
(marked by the absence of Arm-lacZ) triple labeled with antibodies against βGal (red), the R8 marker Sens (green) and ElaV
(blue). Sens expression was indistinguishable in R8 cells inside and outside of ss (-/-) mutant clones. (B) Frozen sections through
whole mutant ssD115.7 (-/-) eyes double labeled with antibodies against Sens (green) and ElaV (red). Adult Sens expression was
unaffected by the loss of ss. 
(E)+(F) Inner PRs get correctly specified in ss mutants: Pupal retina from flies inducing mitotic clones of ssD115.7 (-/-) tissue
(marked by the absence of Arm-lacZ) triple labeled with antibodies against βGal (red), the inner PR marker Sal (green) and ElaV
(blue). Sal expression was indistinguishable in R7 and R8 cells inside and outside of ss (-/-) mutant clones. (B) Frozen sections
through whole mutant ssD115.7 (-/-) eyes double labeled with antibodies against Sal (green) and ElaV (red). Adult Sal expression in
R7 and R8 cells was unaffected by the loss of ss. 
(G)+(H) The DRA gets correctly specified in ss mutants: Pupal retina from flies inducing mitotic clones of ssD115.7 (-/-) tissue
(marked by the absence of Arm-lacZ) triple labeled with antibodies against βGal (red), the DRA marker Hth (green) and ElaV
(blue). Hth expression was indistinguishable in inner PRs inside and outside of ss (-/-) mutant clones touching the DRA (dashed
line). (B) Frozen sections through whole mutant ssD115.7 (-/-) eyes double labeled with antibodies against Hth (green) and ElaV
(red). Adult Hth expression was unaffected in the DRA of flies lacking ss expression (arrows). 
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5A). No difference in Pros expression (shown in green) was visible inside and 

outside the clone. Alternatively, Pros expression was visualized in eyes lacking 

ss function (ey-flip, FRT82-GMR-hid, FRT82B-ssD115.7): Frozen sections (10 

µm) through these heads were labeled with AntiPros as well as ElaV (Fig 5B). As 

in pupae, Pros expression (shown in green) in R7 cells was unaffected in the 

adult. It was therefore concluded that ss most likely acts downstream or in 

parallel with Pros as loss of ss does not affect its expression. 

 Specification of R8 cells was studied in pupae (Fig 5C) as well as in the 

adult (Fig 5D) using an antibody against the R8 marker Senseless (Sens) which 

is indispensable for R8 cell maturation (Frankfort et al., 2001). No difference in 

Sens expression (shown in green) was observed inside the ss (-/-) pupal clones 

as well as in whole clonal adult eyes. The same studies were performed for the 

transcription factor Spalt (Salm), which is essential for the specification of both 

inner PRs R7 and R8: labelling of ss (-/-) homozygous clones in pupae (Fig 5E) 

as well as whole clonal eyes (Fig 5F) with Anti-Salm did not reveal any changes 

of Salm expression (shown in green) in the absence of ss function. Finally, the 

specification of the DRA was assessed in ss(-/-) clones (Fig 5G) as well as in the 

adult (Fig 5H), by staining pupal retinas as well as frozen sections with an 

antibody against Hth (shown in green). Again, no change in hth expression was 

observed in ss mutant tissue. 

It was concluded from these experiments, that all basic PR cell fate 

determination steps occur normally in the absence of ss. The results described 

ndicate that ss acts downstream of, or in parallel with these genes (sal, pros) or 

that it is not required in the cells that depend on the determination events 

investigated (sens, hth). 

 

3.6. spineless is sufficient to induce the yellow R7 fate 
The Drosophila gene spineless is transiently expressed in a large subset 

of R7 cells and is necessary for the development of the yellow ommatidial 

subset, by leading to the activation rh4 expression and repression of rh3. It was 
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therefore tested, whether ss also was sufficient to induce the yellow R7 fate 

when mis-expressed in other PRs. 

Transgenic flies ectopically over-expressing Spineless in all developing 

PRs under the control of a strong GMR-GAL4 driver (LGMR > ss) had rough 

eyes and were analyzed for opsin expression. First, rh4-lacZ transgenes were 

introduced and frozen sections (10 µm) through adult heads were stained for 

βGal activity (see materials and methods). In the wildtype, rh4-lacZ is expressed 

in a large subset of R7 cells (Fig 6A). In flies over-expressing ss under the 

control of the LGMR promoter, expression of rh4-lacZ was dramatically 

expanded (Fig 6B). A multitude of projections from βGal-expressing PRs to the 

medulla, as well as to the lamina part of the optic lobe were observed (black 

arrows), whereas in the wildtype only a subtype of PRs projecting to the R7 layer 

of the medulla are stained. Over-expression of ss therefore leads to the 

expansion of rh4-lacZ expression into all PRs. 

An antibody against Rh4 was used to test whether over-expression of ss 

also led to the expansion of Rh4 protein into outer PRs. Whole mounted retinas 

from adult ss gain-of-function flies (LGMR > ss) were double-labeled with 

antibodies against Rh3 and Rh4 (Fig 6C). These flies also showed a dramatic 

opsin phenotype, expressing Rh4 (shown in cyan) in every PR cell. Furthermore, 

expression of Rh3 was not detectable. It was therefore concluded that ss is 

sufficient to induce Rh4 expression as well as to repress Rh3 expression, when 

over-expressed in developing PRs. Therefore, ss is not only necessary for the y 
subtype to develop, but is also sufficient to induce this ommatidial subtype (Fig 
6D). It must be noted that the ommatidia induced throughout the retina of LGMR 

> ss were not real y ommatidia (shown in green) as they expressed Rh4 in all 

PRs. However, as ss seemed to be specifically expressed in y R7 cells under 

wildtype conditions (see above), it was concluded that ss is necessary as well as 

sufficient to induce the y fate.  

 Due to the rough eye phenotype described for LGMR > ss flies, the 

possibility remained that some PRs escaped an analysis of Rh expression due to 
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the collapse of their opsin-baring rhabdomeres. An alternative stategy was 

therefore chosen to confirm the ss gain-of-function results. The rh4-lacZ reporter 

construct was introduced into the LGMR > ss background and frozen sections 

through adult heads were stained with antibodies against the PR-specific cell-

surface antigen 24B10 (Chaoptin; (Van Vactor et al., 1988) as well as βGal (Fig 
6E). All PR axons (labeled in red) were co-labeling with βGal (shown in green), 

indicating that indeed all PRs, outer PRs projecting to the lamina (L) as well as 

inner PRs projecting to the medulla (M), expressed rh4 in this mutant situation. 

Interestingly, a very small population of inner PRs at the dorsal rim of the eye did 

not express rh4-lacZ (white arrow). ss is thus sufficient to induce rh4 expression 

in all PRs, except in DRA inner PRs - possibly due to an antagonistic effect of  

high wg signaling levels and dorsal-specific IRO-C genes, in response to which 

the DRA inner PRs are specified (Tomlinson, 2003; Wernet and Desplan, 2004). 

 Using the same technique, rh3-lacZ expression was visualized in the optic 

lobes of adult ss gain-of-function flies (Fig 6F). Double-labeling of βGal (shown in 

green) and 24B10 (shown in red) confirmed the absolute loss of rh3 expression 

in all R7 cells (white arrow) that had been observed before in whole mounted 

retinas. Finally, rh5-lacZ and rh6-lacZ expression (Fig 6G) were assessed using 

the same technique. While rh5-lacZ expression was lost in LGMR > ss retinas 

(not shown), rh6-lacZ expression was detectable. A subset of R8 axons (upper 

Fig III.3.6. spineless is sufficient to induce the yellow R7 fate 
(A)+(B) Ectopic Ss induced rh4 expression in all PRs: Expression of the reporter construct rh4-lacZ visualized by X-Gal
stainaing on frozen sections through adult eyes from wildtype flies. βGal expression was detected exclusively in the y subtype of
R7 cells, projecting axons to the medulla (M). (B) Frozen sections through adult eyes from flies over-expressing ss under GMR-
GAL4 control (LGMR > ss) manifested a dramatic expansion of rh4-lacZ expression into all PRs, with rhabdomeres spanning the
entire retina and axon projections to both the lamina (L) and medulla (M). 
(C) All rhabdomeres express Rh4 in the ss gain-of-function: Corneal neutralization (water immersion microscopy) of living
LGMR > ss flies carrying rh4-GFP reporter constructs. Expression of GFP was detected in all PRs, suggesting that rh4 ws
expressed in all PRs in every ommatidium. 
(D) Schematic representation of the ss gain-of-function phenotype: All ommatidia throughout the retina had chosen the yR7-like,
Rh4-expressing fate (green). However, this situation was unusual as outer PRs also expressed rh4. Furthermore, the fate of DRA
omatidia (grey) in this background had to be determined. 
(E) ss induced rh4 expression in all PRs, except in the DRA: Frozen sections through adult heads from LGMR > ss flies also
carrying the opsin reporter rh4-lacZ double labeled with antibodies against βGal (green) and the PR-specific cell-surface marker
24B10 (red). Expression of rh4-lacZ was expanded into all PRs, with projections to both the lamina (L) and the medulla (M).
However, inner PRs in the DRA, projecting axons to the dorsal-most medulla (white arrow) did not express rh4. 
(F) Repression of rh3 expression by ss: Frozen sections through adult heads from LGMR > ss flies also carrying the opsin
reporter rh3-lacZ double labeled with antibodies against βGal (green) and 24B10 (red). Expression of rh3-lacZ was completely
lost in flies ectopically expressing ss, including in the DRA. 
(G) ss does not repress rh6 expression: Frozen sections through adult heads from LGMR > ss flies also carrying the opsin reporter 
rh6-lacZ double labeled with antibodies against βGal (green) and 24B10 (red). Expression of rh6-lacZ was specifically detected 
in a subset of R8 cells, and was therefore unaffected by ectopic expression of ss. 
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arrow) co-expressed βGal (shown in green) and 24B10 (shown in red), indicating 

that these R8 cells had to be co-expressing rh4 and rh6. Therefore, gain of ss 

(and rh4) does not simultaneously exclude all other inner PR opsins. 

It was concluded from these experiments that expression of ss in 

developing PRs was sufficient to induce Rh4 expression as well as to repress 

Rh3. Interestingly, DRA ommatidia were immune to the activating effect of ss and 

the y R8 opsin rh6 was not repressed by ss. 

 

3.7. Spineless does not depend on spalt 
 The spalt gene complex is required for the specification of inner PRs. In 

the absence of sal, PRs are tranformed into outer PRs, both morphologically as 

well as molecularly (gain of rh1 expression; (Mollereau et al., 2001). 

Furthermore, the crucial differentiation markers of R7 (Pros) and R8 (Sens) are 

also lost in the absence of sal. It was shown before that the DRA marker Hth is 

lost in sal (-/-) clones, and that only those PRs that have previously committed to 

the inner PR fate gain Hth expression at the dorsal rim. Furthermore, only the 

inner PRs are competent to execute the developmental program imposed by Hth 

when ectopically expressed. It was shown that Spineless is capable of inducing 

rh4 expression (and possibly the true yR7 cell fate) in any developing PR, when 

mis-expressed there. This suggested that prior commitment to the inner PR fate 

by sal was not necessary for ss function. This hypothesis was therefore tested in 

more detail. 

 First, pupal retinas (48 hrs APF) were dissected from flies driving 

expression of lacZ:NLS under the control of sseye-GAL4 (sseye > lacZ:NLS) and 

then triple labeled using antibodies against βGal, Sal and ElaV (Fig 7A). Strong 

ss expression (shown in red) was detected in a subset of R7 cells, as described 

before. More importantly, ss-positive cells always co-expressed Sal (shown in 

green). This situation was therefore similar to the DRA, where Hth always co-

expressed Sal. To further demonstrate the close relationship between ss and sal, 

expression of sseye-GAL4 was visualized on pupal retinas from sev mutants (Fig 

B). Triple staining of these sev + sseye > lacZ:NLS pupal retinas with antibodies 
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against βGal, Sal and ElaV revealed a complete loss of ss expression (shown in 

red), while expression of Sal (shown in green) persisted in R8 cells. It was 

therefore concluded that ss always co-localizes with the inner PR marker Sal. 
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It was then tested whether Ss was still able to induce yR7-like cells when 

ectopically over-expressed in sal (-/-) omatidia. Flies with whole mutant eyes 

lacking sal function, simultaneously over-expressing ss under the control of 

Fig III.3.7 Spineless does not depend on spalt 
(A) A subset of Spalt-positive cells express ss: Pupal retina (48 hrs APF) dissected from flies driving lacZ:NLS under sseye-GAL
control (sseye > lacZ:NLS) triple labeled using antibodies against βGal (red), the inner PR marker Spalt (green) and ElaV (blue). A
subset of Sal-positive cells was found co-expressing ss. 
(B) Co-expression of Sal and ss is lost in sev mutants: Pupal retina dissected from sseye > lacZ:NLS flies additionally carrying the
sev mutation. Triple labeling with antibodies against βGal (red), Sal (green) and ElaV (blue) revealed a complete loss of ss
expression. 
(C) ss and sal: Expression of the opsin reporter constructs rh1-lacZ and rh4-lacZ visualized by X-Gal staining on frozen sections
in the wildtype (first column), sal mutants (second column), ss gain-of-function flies (LGMR > ss) and flies ectopically
expressing ss in a sal (-/-) mutant background (last column).
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GMR-GAL4, were generated using a combination of the ey-flip/FRT/GMR-hid 

and GAL4/UAS systems (see material and methods). The two different opsin-

lacZ reporter constructs rh1-lacZ and rh4-lacZ were then introduced to assess 

ommatidial specification (Fig 7C). βGal activity was visualized on frozen sections 

through four different genotypes: wt flies (first column), sal (-/-) flies (second 

column), LGMR > ss flies (third column) and sal (-/-) + LGMR > ss flies (last 

column), using X-Gal staining (see material and methods). In the wildtype, 

expression of rh4-lacZ was detected exclusively in yR7 cells (top left), whereas 

expression of rh1-lacZ was specific to the outer PRs (bottom left). Due to the loss 

of inner PR identity, rh4-lacZ expression was totally lost in sal (-/-) mutants, 

whereas rh1-lacZ expression was expanded into all PRs, as seen by staining of 

axonal projections to both layers of the optic lobe (black arrow). As previously 

described, rh4-lacZ expression was expanded into all PRs in LGMR > ss flies. 

Expression of rh1-lacZ, however, was unaffected. Finally, flies lacking sal 

function over-expressing ss in all PRs phenocopied the ss gain-of-function 

phenotype: expression of rh4-lacZ was expanded into all PRs (projections of 

βGal-positive fibers are marked with black arrows) while rh1-lacZ expression was 

unaffected. It was therefore concluded that ss can induce rh4 expression even in 

the absence of sal, which is consistent with the strong rh4-inducing of ss in 

wildtype outer PRs. 

 Therefore, specification of inner PRs by sal is not absolutely required for 

ss to unfold its transcriptional program, when over-expressed. Specification of 

color ommatidia therefore follows a strategy which is different from the 

specification of DRA ommatidia by Hth. It remains likely, however, that ss 

expression is lost in sal (-/-) tissue, as indicated by the total loss of rh4 

expression in sal mutant eyes. It appears that, in this case, ss activity would be 

regulated exclusively on a transcriptional level downstream of sal. 

 

3.8. Spineless over-expression does not alter photoreceptor cell fates 
 The gene spineless is necessary as well as sufficient to induce the yellow 

R7 cell fate. Its expression pattern suggests that this cell fate decision occurs 
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rather late, during pupal development. Basic cell fate determination steps 

(specification of outer versus inner PRs, R7 vs R8 and DRA) occur normally in ss 

mutants, supporting this model. It was tested whether basic cell fate 

determination steps occur normally in flies over-expressing ss. 

 To test whether specification of outer and inner PRs proceeds normally in 

ss gain-of-function flies (LGMR > ss), the genes spalt and seven-up were chosen 

as markers (Fig 8A). The spalt complex (sal) is necessary for the maturation of 

inner PRs R7 and R8, where it is specifically expressed (shown in red). The gene 

seven-up (svp) is expressed in outer PRs R1, R3, R4, and R6 (shown in green) 

where it is indispensable for establishing the outer PR cell fate by repressing 

development into R7 cells. As a control, pupal retinas (48 hrs APF) were 

dissected from wildtype flies and triple labeled with antibodies against Sal, svp-

lacZ and the neuronal marker ElaV (Fig 8B). As svp expression in R1 and R6 is 

very weak at this developmental stage (M. Mlodzik, personal communication), 

two svp-positive cells and two Sal-positive cells were counted per ommatidium. 

The same staining was performed on pupal retinas from LGMR > ss flies (Fig 
8C). Although the retinal morphology was somewhat disturbed due to the over-

expression of ss using such a strong driver, two svp-positive cells as well as two 

sal-positive cells per ommatidium could clearly be identified. It was therefore 

concluded that induction of rh4 expression by ss does not result from the 

induction of extra inner PRs. 

 Specification of R7 cells and R8 cells was tested using antibodies against 

the R7 marker Prospero (Pros) and against Senseless (Sens), which is specific 

to R8 cells (Fig 8D; (Frankfort et al., 2001; Kauffmann et al., 1996). Using Anti-

Pros, Anti-Sal and Anti-ElaV on pupal retinas (48hrs APF) from wildtype flies, a 

stereotypical pattern was obtained, with one Sens-positive PR per ommatidium 

being separated from the Pros-positive cells by one outer PR, R1 (Fig 8E). The 

same pattern was observed in retinas dissected from LGMR > ss flies (Fig 8F), 

although a considerable number of ommatidia (white arrows) consisted of only 

seven cells, missing the R8 cell. This effect was due to the toxicity of GAL4 and 

has previously been described. It was 
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Fig III.3.8 Spineless over-expression does not alter photoreceptor cell fates 
(A)-(C) Ectopic ss does not affect inner vs outer PR specification: Expression of the genes spalt (sal) and seven up (svp) was
assed in wildtype flies as well as flies over-expressing ss under GMR-GAL4 control (LGMR > ss). While Sal was specifically
expressed in inner PRs R7 and R8 (red), svp was specific to a subset of outer PRs (R1&R6 weak; R3&R4 strong, shown in
green). (B) Pupal retina (48 hrs APF) dissected from wildtype flies carrying a lacZ enhancer trap In svp (svp-lacZ) and triple
labeled using antibodies against βGal (green), Sal (red) and ElaV (blue). Two Sal-positive cells and two cells with strong svp-lacZ
expression were detectable in each wildtype ommatidium. (C) Pupal retina dissected from LGMR > ss flies also carrying the svp-
lacZ enhancer trap triple labeled using antibodies against βGal (green), Sal (red) and ElaV (blue). Although PR morphology was
affected, expression of Sal and svp was not altered. 
 (D)-(F) Ectopic ss does not affect specification of R7 and R8: Expression of the genes prospero (pros) and senseless (sens) was
assed in wildtype and LGMR > ss flies. While Pros was specifically expressed in R7 cells (red), Sens was specific to the R8 cells
(green). (B) Pupal retina dissected from wildtype flies and triple labeled using antibodies against Sens (green), Pros (red) and
ElaV (blue). One Sens-positive cells and one cell expressing Pros were detectable in each ommatidium in the wildtype. (C) Pupal
retina dissected from LGMR > ss flies triple labeled using antibodies against Sens (green), Pros (red) and ElaV (blue). PR
morphology was so affected that several ommatidia lost the R8 cell due to toxicity of GAL4 and/or ss. However, expression of
Sens and Pros was not altered in most ommatidia. 
 (G)-(J) Ectopic ss does not disrupt specification of DRA ommatidia: Expression of the genes homothorax (hth) and spalt (sal)
was assed in wildtype and LGMR > ss flies. Hth was specifically expressed in inner PRs of the DRA (yellow), while Sal was
expressed in all inner PRs (red). (B) Pupal retina dissected from LGMR > ss flies triple labeled using antibodies against Hth
(green), Sal (red) and ElaV (blue). Expression of Hth was detected in more than two cells per ommatidium in the DRA (dashed
line). (C) This induction of Hth was not due to extra inner PRs, as Sal expression was not expanded in these ommatidia (white
arrows). Ss therefore had the ability to induce Hth expression in outer PRs of the DRA. 
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concluded that R7 and R8 cells develop normally in flies over-expressing ss. The 

gain of rh4 expression is therefore not due to the induction of extra R7 cells.  

 Finally, the specification of DRA ommatidia in LGMR > ss was assessed, 

using the gene hth as a DRA-specific marker marker (Fig 8G). Inner PRs 

(expressing sal, shown in red) also express hth in the DRA (shown in green). 

Interestingly, more than two cells expressing Hth were detected in the DRA of ss 

gain-of-function flies (Fig 8H). This was particularly interesting as previous 

experiments had suggested that ss was incapable of acting as an activator in the 

DRA (see above). The inner PR marker was therefore used to test whether the 

extra Hth-positive cells were true inner PRs. However, only two Sal-positive cells 

were always in the DRA of LGMR > ss flies (Fig 8J). It was therefore concluded 

that over-expression of ss in the DRA (where it is usually not expressed) most 

likely leads to the direct activation of hth, rather than leading to the creation of 

extra inner PRs in the DRA. 

 It was concluded from these experiments that induction of the yR7 fate by 

ss is a relatively late event during PR development that can be placed 

downstream of the basic PR specification events, like specification of outer PRs, 

inner PRs (R7 and R8) as well as DRA. Interestingly, ss is able to activate hth 

expression in outer PRs, under the influence of high wg signaling. 

 

3.9. Genetic manipulation of pale and yellow ommatidia 
 Although rare exceptions exist, co-expression of different sensory receptor 

molecules (opsins, olfactory receptors) within the same cell is prevented by most 

animals, using special molecular mechanisms (for review: Celik et al., 2004). As 

ectopic spineless very potently activates rh4 expression, it was tested in more 

detail, expression of which other opsins was excluded by Rh4. For this purpose, 

a weak GMR-Gal4 driver leading to variegated expression of GAL4 in subsets of 

PRs (sGMR-GAL4, see material and methods) was used to randomly over-

express ss. 

The eyes of adult flies over-expressing Ss under the control of sGMR-

GAL4 (sGMR > ss) were cut into 10 µm frozen sections and double stained with 
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antibodies against Rh3 and Rh4 (Fig 9A). As observed with stronger drivers, 

expression of Rh4 (shown in cyan) was dramatically expanded. Some Rh3-

expressing R7 cells (shown in red) remained, which, however, never seemed to 

co-express Rh4 (white arrows). To confirm this exclusion of Rh3 and Rh4, whole 

mounted retinas were dissected from adult flies of the same genotype (sGMR > 

ss) and stained with antibodies against Rh3 and Rh4 (Fig 9B). In these retinas, 

Rh4 expression was randomly expanded into variable numbers of outer PRs in 

all ommatidia. It was clearly visible in inner PRs, however, that those ommatidia 

that had retained Rh3, never co-expressed Rh4 in the same R7 cell (white 

arrows). It was therefore concluded that in R7 cells, activation of Rh4 expression 

by Ss always lead to the loss of Rh3 expression. 

Over-expression of ss using sGMR-GAL4 driver is an efficient way to 

activate Rh4 in outer PRs. For instance, sevenless flies were generated 

expressing the yR7 opsin Rh4 (shown in cyan) in many outer PRs (Fig 9C). As 

these flies had no R7 cells, Rh3 expression remained completely lost, further 

demonstrating how Ss mis-expression could be used to generate transgenic flies 

expressing novel combinations of opsin genes. Outer PRs normally express 

rh1/ninaE. As specification of outer PRs is not affected in flies over-expressing 

Ss, it was tested whether gain of Rh4 expression excludes Rh1 expression. 

Whole mounted retinas from sGMR > ss flies were therefore double stained for 

Rh1 and Rh4 (Fig 9D). In contrast to the exclusion observed between Rh3 and 

Rh4, expansion of Rh4 expression by ss (shown in cyan) in these flies did not 

affect Rh1 expression (shown in red), leading to many PRs co-expressing the 

two opsins. Therefore, co-expression of Rh1 and Rh4 is tolerated by Drosophila 

outer PRs. 

Another mutant background was used to assess previously described co-

expression of rh4 and rh6. In the eye-specific mutant of the gene encoding the 

transcription factor orthodenticle (otdUVI; (Vandendries et al., 1996), expression 

of Rh3 and Rh5 is specifically lost, whereas expression of Rh6 expands into 

outer PRs (Tahayato et al., 2003). Ss was over-expressed in a otdUVI mutant 

background, using sGMR-GAL4 (otdUVI, sGMR > ss). Double labeling of frozen 
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Fig III.3.9 Genetic manipulation of the pale and yellow ommatidia 
(A)+(B) Gain of Rh4 expression by ss excludes Rh3: Frozen section through adult eyes from flies over-expressing ss under the
control of a weak GMR-GAL4 transgene (sGMR > ss) double labeled with antibodies against Rh3 (red) and Rh4 (cyan).
Expression of Rh4 was dramatically expanded through the whole retina while some expression of Rh3 persisted. (B) Whole
mounted adult retina from sGMR > ss flies double labeled with antibodies against Rh3 (red) and Rh4 (cyan). Due to variegated
expression of GMR-GAL4, Rh4 was expressed in a variable number of PRS in each ommatidium. However, co-expression of
Rh3 and Rh4 was never observed, suggesting that gain of Rh4 was sufficient to exclude Rh3 expression. 
(C) Ss is sufficient to activate Rh4 expression in sev mutants: Frozen section through adult eyes from flies over-expressing ss
under sGMR-GAL4 control in a sev mutant background (sev + sGMR > ss). Double labeling with antibodies against Rh3 (red)
and Rh4 (cyan) revealed strong expression of Rh4 throughout the retina. Due to the absence of R7 cells, Rh3 expression was
limited to the R8 cells of the DRA (arrow). 
(D) Gain of Rh4 expression by ss does not exclude Rh1: Whole mounted adult retina from sGMR > ss flies double labeled with
antibodies against Rh1 (red) and Rh4 (cyan). Rh4 was expressed in a variable number of PRs in each ommatidium and co-
expression of Rh1 and Rh4 was observed in many cases (arrows). This suggested that ectopic expression of ss did not affect rh1
expression and that expression of Rh4 did not exclude expression of Rh3 within the same PR. 
(E)+(F) Gain of Rh4 expression by ss does not exclude Rh6 in otdUVI mutants: Frozen section through adult eyes from flies over-
expressing ss under sGMR-GAL4 control in a otdUVI mutant background (otdUVI + sGMR > ss). Double labeling with
antibodies against Rh3 (red) and Rh4 (cyan) revealed a strong activation of Rh4 expression while Rh3 was completely lost. (F)
Frozen sections through adult otdUVI + sGMR > ss eyes double labeled with antibodies against Rh4 (cyan) and Rh6 (red). Co-
expression of Rh4 and Rh6 was observed in some cases (arrows) confirming that expression of Rh4 did not exclude Rh6
expression within the same PR. 



III. RESULTS 

 136

sections through adult heads from these flies (Fig 9E) using Anti-Rh3 (shown in 

red) and Rh4 (shown in cyan) revealed that expansion of Rh4 into outer PRs 

appeared weaker that in a wildtype flies. It should be noted, however, that this 

could be due to the degeneration of PR rhabdomeres as observed in otdUVI 

flies, an effect which was possibly worsened by the morphological stress induced 

by the over-expression of ss. Nevertheless, eye morphology in otdUVI, sGMR > 

ss was good enough to assess co-expression of Rh4 and Rh6, by performing 

antibody stainings on frozen sections (Fig 9F). Clear co-expression of Rh4 

(shown in cyan) and Rh1 (shown in red) was observed in these flies, confirming 

that gain of Rh4 did not exclude Rh1. 

It was concluded from these experiments, that induction of the yellow R7 

fate by Ss very efficiently represses p-type Rh3 expression, avoiding a situation 

where Rh3 and Rh4 are co-expressed. In contrast, over-expression of Ss, which 

was shown not to affect establishment of the outer PR fate, also does not repress 

its final marker Rh1, resulting in Rh1/Rh4 co-expression. Finally, it was confirmed 

that no exclusion mechanism seems to exist in Drosophila that avoid co-

expression of both y opsins Rh4 and Rh6. 

 

3.10. Spineless acts in a limited window of time 
The expression pattern described for the spineless ‘eye enhancer’ (sseye-

GAL4) suggests that ss acts during pupation to specify the yellow subset of R7 

cells. Furthermore, the R8 opsin phenotype observed in ss mutants is the 

consequence of the lack of an instructive signal coming from mutant R7 cells. 

Specific GAL4 drivers with different opsin-based promoters driving GAL4 

expression during late PR development were used to examine the time window 

in which ss was able to induce both the choice of y identity in R7 cells as well as 

well as the instruction of R8 cells. 

First, rh1-GAL4 drivers were used to specifically mis-express ss at a later 

time point in outer PRs (Fig 10A). Expression of this driver begins around 60% 

pupation and therefore significantly later than both GMR-GAL4 as well as sseye-

GAL4. Frozen sections through adult rh1 > ss eyes (10 µm) were double-labeled 
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with antibodies against Rh3 (shown in red) and Rh4 (shown in cyan). Since the 

rh1 promoter is specific to outer PRs, expression of both opsins was unaffected 

in R7 cells as well as in the DRA. However, expansion of Rh4 expression into the 

outer PRs was observed (white arrows). Therefore, Ss is sufficient to induce rh4 

expression when mis-expressed late in outer PRs. In a similar experiment, rh3-

GAL4 drivers were used to mis-express ss in the pale R7 subtype (Fig 10B). 

Double labeling of Rh3 (red) and (Rh4) revealed co-expression of both R7 opsins 

in most R7 cells as well as the DRA (white arrows). This was particularly 

interesting as over-expression of Ss using GMR-GAL4 drivers (whose expression 

starts over 3 days earlier) always resultes in the choice of Rh4 over Rh3. Late 

over-expression of Ss in the pR7 subtype therefore leads to the co-expression of 

Rh3 and Rh4. 

A different GAL4 driver that is expressed in all R7 cells was used to over-

express ss late in all R7 cells ([rh3+rh4]-GAL4, see material and methods). The 

promoter of this GAL4 driver consists of a fusion of rh3 and rh4 promoters. 

Frozen sections through adult heads of [rh3+rh4] > ss flies were double stained 

with Anti-Rh3 and Anti-Rh4 (Fig 10C). Rh4 expression (shown in cyan) was 

found to be expanded into apparently all R7 cells as well as the DRA (white 

arrow), whereas Rh3-expressing R7 cells (shown in red) were not detectable. 

Co-stainings using antibodies against the R7 marker Prospero and Rh4 were 

used to assess whether all R7 cells expressed Rh4 (Fig 10D). Indeed, no R7 cell 

marked by the presence nuclear Pros staining (shown in red) was observed to be 

negative for Rh4 (shown in cyan), suggesting that ss had induced the y fate in all 

R7 cells. It was concluded from these experiments that R7 cells could be 

completely transformed by Ss, when over-expressed late. 

The expression of Rh4 in the DRA of [rh3+rh4] > ss flies was particularly 

interesting as wildtype Drosophila always expresses the UV-opsin Rh3 in these 

cells. Other insect species, however, have been shown to express green- , blue-

as well as UV-sensitive opsins in their DRAs (for review: Labhart and Meyer, 

1999). Expression of Rh4 in the DRA of [rh3+rh4] > ss flies was confirmed by 

double-labeling frozen sections with an antibody against the DRA inner PR 
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Fig III.3.10 Spineless acts in a limited window of time 
(A) Late mis-expression of ss in outer PRs: Frozen section through adult eyes from flies over-expressing ss under the control of
the outer PR-specific opsin driver rh1-GAL4 (rh1 > ss) double labeled with antibodies against Rh3 (red) and Rh4 (cyan).
Expression of Rh4 was expanded into outer PRs spanning the entire retina (arrows), while Rh3 expression was unaffected. 
(B) Late mis-expression of ss in pR7 cells: Frozen section through adult eyes from flies over-expressing ss under the control of
the subset-specific R7 opsin driver rh3-GAL4 (rh3 > ss) double labeled with antibodies against Rh3 (red) and Rh4 (cyan).
Strong expression of Rh4 was detected in yR7 cells. However, weak Rh4 expression was induced in most pR7, leading to co-
expression with Rh3 (arrows). 
(C)-(H) Late mis-expression of ss in all R7 cells: Frozen section through adult eyes from flies over-expressing ss under the
control of the artificial opsin driver [rh3+rh4]-GAL4, expressed in all R7 cells ([rh3+rh4] > ss). Double labeling with
antibodies against Rh3 (red) and Rh4 (cyan) revealed expansion of Rh4 expression into all R7 cells, while Rh3 expression was
completely lost. (D) Double labeling of Rh4 (cyan) and the R7 marker Pros (red) on frozen sections through [rh3+rh4] > ss
eyes revealed that Rh4 expression had indeed expanded into all R7 cells. (E) DRA inner PRs expressed Rh4 in [rh3+rh4] > ss)
flies, as visualized by double labeling Rh4 (cyan) and Hth (red) on frozen sections. (F) Expression of ss in the DRA did not
prevent repression of Sens by Hth/Exd: Double labeling of Exd (green) and Sens (pink) on frozen sections through [rh3+rh4]
> ss eyes. DRA inner PRs (arrows) never co-expressed Exd and Sens. (G) R8 opsin expression was unaffected by late over-
expression of ss in all R7 cells: Whole mounted adult retina from [rh3+rh4] > ss flies double labeled with antibodies against
Rh5 (blue) and Rh6 (green) revealed no change in R8 opsin expression. Frozen section through adult eyes from [rh3+rh4] > ss
flies double labeled with Anti-Rh4 (cyan) and Anti-Rh5 (blue) revealed that all Rh5-expressing ommatidia were mis-coupling
expression of Rh4 in R7 and Rh5 in R8 (arrows).
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marker Hth, whose expression was unaffected in these flies (Fig 10E). It was 

confirmed that, unlike in rh3 > ss flies, all DRA inner PRs expressed exclusively 

Rh4 and that Rh3 had been lost due to ss over-expression  (white arrows). To 

complete the analysis of inner PR cell fate decisions in the DRA of [rh3+rh4] > ss 

flies, frozen sections were stained for the R8 marker Senseless, which is usually 

excluded from DRA R8 cells, and the other DRA marker Extradenticle (Fig 10F). 

Like in wildtype flies, Sens (shown in pink) did not co-stain with Exd (shown in 

green) in this mutant situation. It was concluded that, despite induction of Rh4 

and repression of Rh3 by ss, the presence of Hth/Exd still provides some crucial 

aspects of DRA identity. 

Finally, R8 opsin expression in [rh3+rh4] > ss flies was visualized in whole 

mounted adult retinas, using antibodies against Rh5 and Rh6 (Fig 10G). Unlike 

in R7 cells, both pale and yellow subtypes seemed to be properly specified in R8 

cells, as expression of both Rh5 (shown in blue) and Rh6 (shown in green) were 

indistinguishable from the wildtype. This result suggested that a large number of 

ommatidia had to manifest unusually coupled expression of Rh4 in R7 and Rh5 

in R8 cells, a situation that never occurs in wildtype flies. Adult frozen sections 

from [rh3+rh4] > ss flies were therefore stained with antibodies against Rh4 and 

Rh5 (Fig 10H). As the previous result suggested, every R8 cell expressing Rh5 

(shown in blue) was located underneath an R7 cell expressing Rh4 (shown in 

cyan), leading to Rh4/Rh5 expressing ommatidia. Therefore, late over-

expression of ss in all R7 cells using [rh3+rh4]-GAL4 is sufficient to induce the 

yR7 fate in all GAL4-expressing cells, but although all R7 cells exclusively 

expressed Rh4, instruction of Rh6 expression in the underlying R8 cells was not 

successful. This indicates that the instruction of pR8 cells to express Rh5 had 

already occurred before the onset of [rh3+rh4]-GAL4 expression. 

It was concluded from these mis-expression experiments using late opsin 

promoter-derived GAL4 drivers that R7 cells, as well as DRA inner PRs, could be 

transformed by Ss into cells exclusively expressing Rh4. However, this 

transformation was successful only when the rh4 promoter-portion was present in 

the GAL4 driver. Interestingly, newly induced y-like R7 cells were not able to 
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instruct the formation of yellow R8 cells in the same ommatidium. This suggested 

that while the p / y choice in R7 is reversible, instruction of R8 cells could not be 

reverted by forcing Ss expression late in R7 cells. 

 

3.11. The PAS HLH dimerization partner Tango is not required in the eye 
All Drosophila PAS HLH proteins have been shown to require the hetero-

dimerization partner Tango (Tgo) during a multitude of developmental processes 

(Sonnenfeld et al., 1997; Ward et al., 1998). Tgo expression is pleiotropic and the 

presence of another PAS domain protein like Ss was required for Tgo 

translocation into the nucleus. The Ss/Tgo system of transcriptional regulation is 

therefore strikingly similar to the one described for Exd and Hth, whose role in 

developing PRs was described above (Pai et al., 1998; Rieckhof et al., 1997). 

Hth depends on its co-factor Exd to correctly specify the ommatidial subtype 

located in the DRA (Wernet et al., 2003). It was therefore tested whether Tgo 

was required for the induction of the y R7 fate by Ss. 

Strong hypomorphic alleles of tgo are homozygous lethal. Heterozygous 

flies with whole mutant eyes lacking tgo function were therefore created using the 

ey-flip/FRT/GMR-hid technique (Stowers and Schwarz, 1999) and the two 

hypomorphic mutations tgo1 and tgo5. These mutants manisfest very strong 

phenotypes in different model systems and are therefore classified as ‘almost 

null’ (S. Crews, personal communication). Flies with tgo (-/-) mutant eyes 

exhibited a strong aristapedia phenotype, due to the actificty of ey-flip in the 

antennal part of the eye imaginal disc. The eyes, however, developed normally in 

these mutants as described earlier for ss (-/-) flies. Frozen sections through adult 

heads from tgo1 mutants were then double labeled with antibodies against Rh3 

and Rh4 (Fig 11A). R7 opsin expression was indistinguishable from the wildtype, 

as Rh4 expression (shown in cyan) was found in a subset of R7 cells, whereas 

the remaining R7 and DRA R8 expressed Rh3 (shown in red). tgo1 mutants did 

therefore not phenocopy ssD115.7, suggesting that tgo is not required for ss 

function. This hypothesis was confirmed by double labeling frozen sections 

through adult eyes from tgo5 (-/-) flies using antibodies against Rh3 and Rh4 (Fig 
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Fig III.3.11 The PAS HLH dimerization partner Tango is not required in the eye 
(A)+(B) Opsin expression is normal in tango mutants: Frozen section through whole mutant adult eyes lacking the ss dimerization
partner tango (tgo1), double labeled with antibodies against Rh3 (red) and Rh4 (cyan). Expression of both R7 opsins was identical
to wildtype flies. (B) Frozen section through tgo5 (-/-) whole mutant eyes double labeled for Rh3 (red) and Rh4 (cyan) also
revealed no change in opsin expression. 
(C) ss induces rh4 expression in tango mutants: Frozen section through adult eyes from flies over-expressing ss under GMR-
GAL4 control in a tgo5 (-/-) mutant background. Double labeling with antibodies against Rh3 (red) and Rh4 (cyan) revealed a
dramatic expansion of Rh4 expression throughout the retina. 
(D) Dominant negative tango has no effect on ommatidial subtype specification: Frozen section through adult eyes from flies
over-expressing dominant negative tango (tgoDN) under GMR-GAL4 control (LGMR > tgoDN) double labeled with antibodies
against Rh3 (red) and Rh4 (cyan). No change in Rh3 and Rh4 expression was detectable. 
(E)+(F) Expression of Ss in PRs does not localize Tango into the nucleus: Pupal retina (48 hrs APF) dissected from flies
expressing lacZ:NLS under sseye-GAL4 control (sseye > lacZ:NLS) triple labeled with antibodies against βGal (red), Tango (green)
and ElaV (blue). Nuclear localization of Tango was not detectable in yR7 cells expressing sseye-GAL4. (F) Similarly, Tgo (green)
was not localized to the PR nuclei in eye imaginal discs of LGMR > ss) third instar larvae (ss was labeled by βGal in red. 
(G)+(H) Characterization of tango mutants and Anti-Tango: Eye imaginal discs dissected from wandering third instar larvae
inducing mitotic tgo5 (-/-) clones marked by the absence of Arm-lacZ. Triple labeling with antibodies against βGal (red), Tango
(green) and ElaV (blue) revealed no change in Tgo expression within the clone, suggesting that tgo5 is not a null allele or that
Anti-Tgo staining is unspecific. (H) Strong Anti-Tgo staining was detected in larval developing PRs in LGMR > tgo flies,
suggest8ing that the Anti-Tgo antibody is specific.
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11B). Rh4 expression (shown in cyan) as well as Rh3 (shown in red) also 

persisted in these mutant eyes. Based on this genetic data, it was therefore 

concluded that tgo function is not required for ss function in developing PRs. 

To further test whether tgo was required for the development of y R7 cells, 

ss was over-expressed in a tgo mutant background. Frozen sections through 

adult eyes from flies with whole mutant tgo5 (-/-) eyes over-expressing Ss under 

the control of GMR-GAL4 were then double labeled for Rh3 and Rh4 (Fig 11C). 

Rh4 expression (shown in cyan) was expanded throughout the whole retina in 

these tgo5 (-/-) + GMR > ss flies, whereas few Rh3-expressing R7 cells 

remained. This phenotype was identical to the gain-of-function previously 

described for ss (sGMR > ss). It was therefore concluded that tgo function is not 

required for Ss to transform PRs into Rh4-expressing yR7 cells. 

As the possibility remained that residual tgo activity persisted in tgo1 and 

tgo5 (-/-) mutant eyes, a different approach was chosen to abolish Tgo function in 

the developing eye. A dominant negative form of Tgo, in which a 13 amino acid 

basic region (SRENHCEIERRRR) was replaced by the sequence GIL, was 

ectopically expressed using GMR-GAL4 (LGMR > tgoDN; (Ohshiro and Saigo, 

1997). This truncated from of Tgo has been shown to act as a dominant negative 

in the developing trachea of Drosophila larvae. Frozen sections though adult 

eyes from LGMR > tgoDN flies were double labeled using antibodies against Rh3 

and Rh4 (Fig 11D). Rh4 expression (shown in cyan), as well as Rh3 (shown in 

red) were unaffected, confirming previous observations. 

So far, the activity of Ss and its other Drosophila homologues has been 

shown to be completely dependent on Tgo. Due to the absence of an opsin 

phenotype in tgo5 mutant eyes, this strong hypomorphic allele was tested for 

persisting Tgo expression. Third instar eye imaginal discs from flies inducing 

clones of tgo5 (-/-) homozygous tissue, labeled by the absence of Arm-lacZ, were 

triple labeled for βGal, Tgo and ElaV (Fig 11E). Diffuse cytoplasmic Anti-Tgo 

staining was detectable throughout the eye disc, within as well as outside the 

mutant clones. This is consistent with previous reports that Tgo expression is 

pleiotropic. It appears therefore, tgo5 is not a null-allele. However, the possibility 
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remained that Tgo is not expressed at all in the developing visual system and 

that the detected cytoplasmic staining is unspecific. Eye imaginal discs from flies 

over-expressing Tgo under the control of GMR-GAL4 (LGMR > tgo) were 

therefore double labeled with antibodies against Tgo and ElaV (Fig 11F). 

Specific Anti-Tgo staining (shown in green) was detectable in developing PRs, 

starting several rows posterior to the morphogenetic furrow (MF, runs horizontally 

at the bottom). An increasing number of PRs per ommatidial cluster expressed 

Tgo, with growing distance to the MF, as previously described for GMR-GAL4. 

Interestingly, Tgo seemed to be localized in the nucleus, possibly due to the high 

level of over-expression. Strong staining was also detected in PR axons, 

suggesting that Tgo was also expressed in the cytoplasm of developing PRs. 

Therefore, the Anti-Tgo antibody specifically recognizes its epitope and was used 

for a more detailed analysis of Tgo expression in the Drosophila visual system. 

Expression of Ss is necessary for the nuclear translocation of Tgo in 

different model systems. It was therefore tested whether Tgo localization is 

nuclear in those pupal R7 cells specifically expressing sseye-GAL4. Pupal retinas 

from sseye-GAL4 > lacZ:NLS flies were triple labeled with antibodies against 

βGal, Tgo and ElaV (Fig 11G). No anti-Tgo signal (green) was detected, while 

strong ss expression (red) was visible in a large subset of R7 cells. It appears 

therefore that Tgo is not localized to the nucleus of pupal R7 cells. The ability of 

Ss to localize Tgo into the nucleus of developing PRs was further tested by 

labeling Tgo expression in eye imaginal discs from flies ectopically expressing Ss 

under the control of GMR-GAL4 (Fig 11H). Again, no Tgo expression (green) 

was detectable in PRs, while the expression domain of GAL4 was labeled by 

βGal (shown in red). Therefore, Tgo is not expressed developing Drosophila 

PRs, explaining the absence of an opsin phenotype in tgo mutants. 

It was therefore concluded from these experiments, that the role of 

spineless in specifying y ommatidia does not require tango. Nuclear localization 

of Tango was not detectable in developing PRs. This is particularly surprising as 

all Drosophila PAS HLH proteins have previously been shown to depend on Tgo. 
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3.12. Antagonism between spineless and homothorax 
 The hoeodomain transcription factor Homothorax is sufficient to 

ectopically induce the DRA subtype when over-expressed in all ommatidia 

(Wernet et al., 2003). Furthermore, homothorax was shown to be specifically 

expressed in DRA inner PRs and was therefore never found to be co-expressed 

with yR7-specific spineless. Ommatidial subtype scecification was therefore 

assessed in flies co-over-expressing both hth and ss. 

 Co-over-expression using GMR-GAL4 drivers (LGMR > hth + ss) resulted 

in a relatively severe rough eye phenotype with considerable rhabdomere 

degeneration (not shown). Ommatidial subtype specification was therefore 

visualized by introducing inner PR opsin-lacZ reporter constructs and detecting 

βGal activity on frozen sections through adult eyes, using X-Gal (Fig 12A). Four 

different genotypes were compared: wt, LGMR > ss, LGMR > hth and LGMR > 

hth + ss. Both ss and hth gain-of-function phenotypes were described before: 

Compared to the wildtype (first column), rh4-lacZ expression was dramatically 

expanded in LGMR > ss flies (second column), as concluded from βGal–

expressing fibers terminating in both the lamina and medulla (black arrows). rh3-

lacZ and rh5-lacZ were completely lost and rh6-lacZ expression persisted. Over-

expression of hth (LGMR > hth) resulted in a very different phenotype (third 

column), with rh3-lacZ expression specifically expanded into all inner PRs 

projecting to the medulla (black arrow), while expression of all other inner PR 

opsins (rh4-lacZ, rh5-lacZ and rh6-lacZ) was lost. It was found that the opsin 

phenotyope in LGMR > hth + ss flies (fourth column) phenocopied ss over-

expression: rh4-lacZ was expanded into all PRs (black arrows), whereas rh3-lacZ 

and rh5-lacZ expression were lost and rh6-lacZ persisted. It was therefore 

concluded that the cell fate change induced by Ss dominated over hth-depended 

DRA-induction, when co-expression of these two proteins was forced in the same 

PR. 

 Although Homothorax was present in inner PRs, it was no longer able to 

repress rh4 expression when Ss was present. First, frozen sections through adult 

heads from LGMR > hth flies were double labeled for Hth and Rh4 (Fig 12B). As 
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Fig III.3.12 Antagonism between spineless and homothorax 
(A) Ectopic Ss neutralizes ectopic Hth: Expression of the opsin reporter constructs rh3-lacZ, rh4-lacZ, rh5-lacZ and rh6-lacZ
visualized by X-Gal staining on frozen sections in the wildtype (first column), in ss gain-of-function flies (second column), in hth
gain-of-function flies (third column) and flies ectopically expressing both ss and hth (last column). Over-expression of ss lead to
the very characteristic expansion of rh4 expression into all PRs (black arrows), whereas ectopic hth resulted in the expression of
rh3 in all inner PRs, as described above. The opsin phenotype of LGMR > ss + hth flies was identical to the ss gain-of-function:
rh4-lacZ was expressed in all PRs (black arrows), while rh3 and rh5 were completely lost and rh6-lacZ persisted. 
(B)+(C) Co-expression of Ss abolishes repression of Rh4 by Hth: Frozen section through adult heads from LGMR > hth flies
double labeled with antibodies against Hth (green) and Rh4 (red). As previously described, Rh4 expression was completely
repressed by ectopic Hth. (C) Double labeling of frozen sections through adult heads from LGMR > ss+ hth flies with Anti-Hth
(green) and Anti-Rh4 (red) revealed strong co-expression of Hth and Rh4, suggesting that Ss overcame the repressive role of Hth.
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was reported before, ectopic Hth (shown in green) led to a complete loss of Rh4 

expression (shown in red). Co-over-expression of Ss, however, resulted in strong 

co-expression of these two proteins within the entire retina (Fig 12C). The 

possibility could therefore be excluded, that over-expression of Ss directs 

degradation of the Hth protein.  

It was therefore concluded that cell fate changes induced by Hth and Ss 

excluded each other, as co-expressin of Rh3 and Rh4 was prevented. Instead 

Ss-mediated induction of the y R7 fate was found to be dominant over Hth 

function. 

 

3.13. Analysis of the spineless ‘eye enhancer’ using Bioinformatics 
 Spineless is necessary and sufficient to induce the rh4-expressing yellow 

R7 fate. Furthermore, a 1.6 kb fragment of genomic DNA is sufficient to visualize 

specific reporter gene expression in a large subset of R7 cells and was therefore 

called ‘spineless eye enhancer’. The signaling pathways responsible for subset-

specific expression of Spineless therefore seemed to converge onto the identified 

piece of regulatory DNA. The Matinspector software from Genomatix Inc was 

used for a preliminary bioinformatics analysis to locate potential transcription 

factor binding sites within the ss ‘eye enhancer’ (Quandt et al., 1995). A more 

precise analysis was impossible due to the high probability of unspecific hits in 

such a relatively long sequence. However, four different consensus sites were 

detected multiple times with high scores (see table III.3.1). 

Binding sites for Pax6 were obtained twice, STAT (signal transcucers and 

activators of transcription) binding sites were detected four times, as were dTCF 

binding sites. Finally, three binding sites for the effector of the Notch (N) 

pathway, Suppressor of Hairless / su(H) were found. These sites were distributed 

within the ss ‘eye enhancer’ (Fig 13). Site-directed mutagenesis of these sites 

has not been performed yet and the ss eye anhencer sequences from other 

Drosophila species remain to be identified in order to perform a conservation 

analysis. However, they provide interesting clues for candidate genes 

approaches. 
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                      PAX6 
gaattcttac attttttaat aattctattg actattctga ctatatcgat gcaataaaac    60 
cgaataccta aataactacg ttccacgcgc ttatcccagc ctccaactaa taagtggagc   120 
acaaccattg gctaattagg aaaactgttg ggtaagattt gccagtcggg cgtcggctaa   180 
ttgcaattaa ttattgctgt aatccatcat acatactcag agccgttttc gagtgtgagt   240 
ttttcagttt gggccgactt gccatcatcg tagtcgtctg catggcgacg gcggcggctt   300 
ctttttggca acgaaaataa tggaggcgga aaactttgga gggccaaaca cgcgaatgtc   360 
gtataagcaa ttgtttttgt cccttaattt gttcttgggc tggttgcttt tataatgcaa   420  
                                                           STAT 
aatgcaaatt agagcagcca acgagcgaca gctgaaggag aataagcgcc ataaaattct   480 
ggcaaagtca tatgggattt gggattgcat catgtaggaa acttggcatg gcaagataag   540  
       STAT               PAX6 
aaatgaccgg gaaatgtaca caattcactt agagtacttg taaagtaatt ttaccattaa   600 
gtaataaagt ttttaaagaa attcggctat tagtagatga ttcatttaag tacgcatacc   660  
                          su(H) 
atgattttta atagcaatcg atattcccac gcccgaaatg aaagtacata acgcagcacg   720  
                                      TCF 
ttaattttga actatgcgtg tctttcccat agaagttcaa agtttttacg aacttgtgaa   780 
aagtgcggac ccgaaatgaa atgttattta atgttgtgac gtgtacttaa gtccgaaaga   840 
gaagcaaaaa gcgaaaaacg caacgaacac cgtcgatgat gaagattaac aattgtgtgc   900 
gacaattgtc aactttaatt atttactaat tgtgtctgaa ttatgaagaa ctgtggcggc   960  
                                                           STAT 
cgcttaattg tcgggtaatt aagcagcaac aacaaacggt tggcttcact tttttcggtt  1020  
                                   TCF 
aaaaaagtga aaaagtcgta ctttacacga cctcaaaggg aaaaagctat gctccgccca  1080 
caaagtcgtt gcttttacaa gtgtgagcga gtgagtgagt gagcgaatga aacaacatgg  1140  
              su(H) 
cgttgttcca gttcccactt tttccaagca ctggaagttg agtggaaccc atccactcac  1200 
actcgcactc actcacactc atagaagttg agtggaccaa aacaatgcaa cttcaacgcc  1260  
                                  TCF 
tcgcaaagtg cagacatcgc agaagaatgg aacaaaggta acaattgcaa ttgcacatca  1320  
                   su(H) 
acagcaacaa cagagtgtga gtacctgtgt tccctgttcc ccagttatta attattctag  1380  
                                                     TCF 
tttggttccc ccacaaatgc tctccgagtg taaacacatt taaccacgtc aaagggtccg  1440  
                   STAT 
gagaacttgg gctattacgg gaatagggga accgaaagct ctgcatcttg ataagaaaat  1500 
gccactgcga aacattgggc tcttgctgct taatgcagcg caaattgctg gtgttacctg  1560 
gacaaaaacg gggacaatgg gaggggtcac aggataagtg tccacataat aagggacaca  1620 
agataccagg atccaaaaat gaatgctgcc aaattcactt taggtgtata ttcttaacaa  1680 
ggtctgttga attc                                                    1694 
 
 
Fig III.3.13 Analysis of the spineless ‘eye enhancer’ using Bioinformatics 
Bioinformatic analysis of the ~1.6 kb genomic ‘eye enhancer’ identified of ss: several potential transcription factor binding sites were 
identified using Genomatic Matinspector software (see table). 
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site /pathway number position core sim. Matrix sim. Sequence 

14-34 0.758 0.785 ttttaaTAAttctATTGaPAX6 2 

557-577 0.578 0.800 gtactcTAAgtgaATTG

472-490 0.769 0.872 taaaaTTctgGCAAagt

540-558 1.000 0.765 tacatTTCCcGGTCattt

1011-1025 1.000 0.825 tttttaagcGAAAaa

STAT 4 

1450-1468 1.000 0.986 ggctattacgGGAAtag

753-763 0.750 0.807 ACTTtgaactt

1049-1059 1.000 0.752 CCTTtgaggtc

1288-1298 1.000 0.746 CCTTtgttcca

TCF / wg 4 

1425-1435 1.000 0.752 CCTTtgacgtg

681-693 1.000 0.895 ggcGTGGgaatat

1149-1161 1.000 0.917 aaaGTGGgaactg

Su(H) / Notch 3 

1334-1346 0.891 0.825 agtGTGAgtacct
 
Table III.3 Putative transcription factor binding sites in the ss eye enhancer 
The ~1.6 kb ss eye enhancer was analyzed using the Matinspector software fomr Genomatix. Four different binding sites were 
detetced multiple times: Binding sites for Drosophila PAX6 (eyless/twin of eyless) in blue, binding sites for ‘signal transducers and 
activators of transcription’ (STAT), effectors of the JAK/STAT pathway (in yellow), binding sites for dTCF (pangolin), the 
transcriptional effector of wg signaling and finally, three putative binding sites for suprressor of Hairless / su(H), a transcriptional 
effector of the N pathway (in green). Core sim = core similarity; Matrix sim. = Matrix similarity 
 

All six Drosophila opsin genes have previously been shown to contain 

highly conserved PAX6 binding sites within their basic promoters (Papatsenko et 

al., 2001; for review: Cook and Desplan, 2001). These sequences were shown to 

be crucial for Rhodopsin expression in the adult eye and site-directed mutation of 

these sites always lead to a loss of reporter gene expression. Pax6 sites were 

therefore expected in the ss eye enhancer, as ss expressed late in PR 

development. However, functionality of these sites was proven in the following 

experiments. 

It was concluded from these experiments that bioinformatics tools could 

be used to analyze the ss eye enhancer. However, the results obtained remain 

purely speculative for now. A possible role of JAK/STAT, Wingless and Notch 

signaling were therefore tested using fly genetics. 
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3.14. JAK/STAT signaling and ommatidial subtype specification  
 Bioinformatic analysis of the ss eye enhancer using Matinspector revealed 

four potential binding sites for STATs (signal transducers and activators of 

transcription; for review: Hou et al., 2002) within the ~1.6 kb sequence. This 

raised the possiblity that the JAK/STAT pathway could be regulating ss 

expression. STAT proteins have previously been shown to activate transcription 

in vertebrates as well as in invertebrates, after phosphorylation-induced nuclear 

translocation in response to cytokine receptor activation. In Drosophila, one such 

receptor exists (domeless; (Brown et al., 2001), and its ligand is Unpaired 

(outsretched, os; Harrison et al., 1998). Sequencing of the Drosophila genome 

further revealed the presence of only one STAT gene (stat92E; Yan et al., 1996), 

thereby dramatically reducing the problem of redundancy reported in vertebrate 

model systems. A possible role for JAK/STAT signaling in ommatidial subtype 

specification was tested by over-expressing Unpaired as well as analyzing Upd / 

os and stat92E mutants. 

 Expression of Drosophila STAT is negatively regulated by the JAK/STAT 

pathway (Zeidler et al., 1999). STAT-lacZ expression was reported to be absent 

from the equatorial region of the eye imaginal disc (Fig 14A), where JAK/STAT 

signaling is required for the establishment of ommatidial polarity. Expression of 

STAT-lacZ was visualized in the adult eye by double labeling frozen sections with 

antibodies against βGal and ElaV (Fig 14B). Weak expression of STAT-lacZ 

(shown in green) was detected in all PRs throughout the eye, but Anti-βGal 

staining was particularly strong in the inner PRs of the DRA (white arrows). This 

suggested a possible role for JAK/STAT signaling in DRA specification, possibly 

by repressing ss expression in the inner PRs. As stat92E mutants are 

homozygous lethal, whole mutant eyes were created in otherwise heterozygous 

animals, using the ey-flip/FRT/GMR-hid technique (Stowers and Schwarz, 1999) 

and the hypomorphic allele stat92E06346. These stat92E (-/-) mutant flies 

manifested a rough eye phenotype and were further analyzed by double labeling 

frozen sections using antibodies against Rh3 and Rh4 (Fig 14C). Expression of 

Rh3 (shown in red) and Rh4 (shown in cyan) were found to be indistinguishable 
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from the wildtype in the main part of the eye, as well as in the DRA (white arrow). 

It was therefore concluded that loss of stat92E does not result in mis-

specification of Drosophila ommatidia. 

Fig III.3.14 JAK/STAT signaling and ommatidial subtype specification  
(A)+(B) Expression of STAT-lacZ in developing PRs: Expression of STAT-lacZ visualized in developing PRs by X-Gal staining 
on of eye imaginal discs from wandering third instar larvae. βGal activity was detected at the dorsal and ventral poles of the eye 
disc, as well as in macrophages (arrow). (B) Adult expression of STAT-lacZ visualized by double labeling frozen sections with 
antibodies against βGal (green) and ElaV (red). Weak expression of STAT-lacZ was detected in all PRs. However, slightly 
stronger expression was observed in DRA inner PRs (arrows). 
(C) Loss of STAT92E has no effect on ommatidial subtypes: Frozen section through a whole mutant eye lacking stat92E function 
double labeled with antibodies against Rh3 (red) and Rh4 (cyan). Expression of both R7 opsins was indistinguishable from the 
wildtype, in R7 cells as well as in the DRA (arrow). 
(D)-(F) Loss of Unpaired / outstretched has no effect on ommatidial subtypes: Loss of Unp / os function had previously been 
shown to result in a small eye phenotype. (E) Frozen section through os1A (-/-) whole mutant eyes double labeled with antibodies 
against Rh3 (red) and Rh4 (cyan). No change in expression was detectable in R7 cells and the DRA (arrow). (F) Frozen section 
through os1A (-/-) whole mutant eyes double labeled with antibodies against Rh5 (blue) and Rh4 (green). No change in 
expression was detectable in R8 cells. 
(G)-(J) Ectopic Unpaired does not alter ommatidial subtype specification: Flies over-expressing Unp under GMR-control (GMR-
Unp) had previously been shown to manifest a dramatic eye overgrowth phenotype. (H) Frozen section through GMR-Upd eyes 
double labeled with antibodies against Rh3 (red) and Rh4 (cyan). No change in expression was detectable in R7 cells and the 
DRA (arrow). (F) Frozen section through GMR-Unp eyes doublelabeled with antibodies against Rh5 (blue) and Rh4 (green). No 
change in expression was detectable in R8 cells.
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 As the stat92E allele used was not a null allele, residual stat activity could 

have persisted in the whole mutant eyes. Mutants in the JAK/STAT ligand 

Unpaired (os) were therefore analyzed. Eye growth had previously been shown 

to be affected in os mutants (Fig 14D; (Bach et al., 2003), suggesting a role for 

the JAK/STAT pathway in regulating growth in the eye imaginal discs. However, 

no role has been reported for Unp in ommatidial subtype specification. Flies with 

homozygous whole mutant eyes for the strong os allele os1A were therefore 

generated using the GMR-hid technique. Mutant eyes were rough and reduced in 

size and frozen sections were labeled using antibodies against Rh3 and Rh4 (Fig 
14E). Rh3 expression (shown in red) and Rh4 expression (shown in cyan) were 

not affected in os1A mutants, when compared to the wildtype. To complete the 

analysis of os mutants, R8 opsin expression was also tested by double labeling 

frozen sections with antibodies against Rh5 and Rh6 (Fig 14F). However, Rh5 

expression (shown in blue) as well as Rh6 (shown in green) were 

indistinguishable from the wildtype), suggesting that loss of os function does not 

have an effect on ommatidial subtype specification. 

   Over-exppression of the JAK/STAT ligand Unpaired in all developing PRs 

using the GMR-promoter (GMR-Upd) has a dramatic growth-promoting effect, 

resulting in the massive bulging of eye tissue (Fig 14G; (Bach et al., 2003). This 

effect is thought to be the result of Unp diffusion from developing PRs posterior 

to the morphogenetic furrow into the anterior domain of the disc, where eye 

growth was taking place in a population of un-committed mitotic cells. Ommatidial 

specification was tested in the enlarged GMR-Upd eyes by double labeling 

frozen sections using antibodies against Rh3 and Rh4 (Fig 14H). It was found 

that Rh3 expression (shown in red) and Rh4 expression (shown in cyan) were 

not affected by ectopic exprerssion of Upd, suggesting that Upd was not 

sufficient to induce changes in the ommatidial pattern. Analysis of GMR-Upd 

retinas was completed by double labeling frozen sections with antibodies against 

the R8 opsins Rh5 and Rh6 (Fig 14J). However, the expression patterns of Rh5 

(shown in blue) and Rh6 (shown in green) were found to be unaffected in flies 

ectopically over-expressing Upd. 
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 It was therefore concluded from these experiments, that the JAK/STAT 

pathway does not play a role in specifying Drosophila ommatidia. It appears 

therefore, that the four STAT binding sites that have been found in the ss eye 

enhancer should not be required for yR7-specific expression of ss in response to 

this signal transduction pathway.  

 

3.15. The wingless pathway antagonizes spineless function 
 The wingless pathway was shown to have a very strong inducing effect on 

the formation of DRA ommatidia throughout the dorsal half of the eye 

(Tomlinson, 2003; Wernet et al., 2003). Homothorax was found to be a key 

player, both necessary as well as sufficient to induce these DRA ommatidia 

downstream of Wg, whereas Spineless was shown to be crucial for the 

specification of yR7 cells. Hth and Ss were never found co-expressed in the 

wildtype and cell fate changes induced by Ss were dominant over Hth, when co-

expression was induced. Furthermore, four binding sites for an important wg 

pathway effector, the transcription factor TCF were found within the ~1.6 kb eye 

enhancer of ss. It was therefore tested at whether the wg pathway was 

repressing ss function independently of Hth. 

 The DRA was shown to be expanded in two different mutant backgrounds, 

the optomotorblind gain-of-function allele ombQUADRRON and the wg gain-of-

function induced by using over-expression of activated Armadillo (LGMR > 

ArmS10). Although both phenotypes were very similar, slight differences were 

detectable (Fig 15A). Expression of the opsin reporter rh3-lacZ, expressed 

specifically in pale R7 cells as well as DRA inner PRs in the wild type (top left) 

was expanded into a multitude of dorsal inner PRs, in both mutant situations (top 

row). It had been shown that this expansion was due to induction of the DRA fate 

in most dorsal ommatidia (ombQUADRRON) or the whole dorsal compartment 

(LGMR > ArmS10), respectively (bottom row). It was further shown that these 

transformation events were marked by an expansion of Hth, the DRA-inducing 
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factor in inner PRs. By introducing the rh4-lacZ transgene into the same mutant 

backgrounds, it was shown that the y R7 fate was always repressed in those 

dorsal ommatidia acquiring the DRA fate (middle row). As it had been shown that 

Hth efficiently represses Rh4 expression in inner PRs, this effect was attributed 

to Hth function. However, ss gain-of-function experiments (LGMR > ss) revealed 

that ss was not able to induce rh4-lacZ expression in DRA inner PRs, where Hth 

expression persisted (white arrow). However, the inability of Ss to activate rh4 

was not due to Hth, as rh4-lacZ expression was expanded to all PRs in flies 

ectopically expressing both proteins (LGMR > hth + ss). It seemed therefore 

likely that the wg pathway is repressing ss function independently of Hth. 

 This hyopothesis was tested by comparing the projection of their inner PR 

axon projections to the medulla in three different gain-of-function phenotypes. 

The three phenotypes were: expression of both Ss and Hth (LGMR > ss + hth), 

ectopic expression of both Ss and dominant negative Hth (LGMR > ss + hthHM) 

and ectopic expression of Ss and activated Armadillo (LGMR > ss + ArmS10). 

 First, opsin reporter constructs rh3-lacZ or rh4-lacZ were introduced into 

the LGMR > ss + hth background and frozen sections through adult eyes were 

double labeled using antibodies against βGal and the PR-specific cell-surface 

Fig III.3.15. The wingless pathway antagonizes spineless function 
(A) The wingless pathway influences ommatidial specification events: Two mutant situations linked to the wg pathway had been 
reported to influence ommatidial subtype specification. Induction of extra DRA ommatidia by ombQUADROON (second 
column) as well as ectopically expressed activated Armadillo (third column) always resulted in suppression of p and y ommatidia 
formation. Furtjermore, ectopic ss was incapable of inducing rh4 expression in DRA inner PRs, where high wg levels are present 
(fourth column). Finally, co-over-expresion of both ss and hth (LGMR > ss + hth) abolished DRA-induction by hth and ss 
dominated (last column). 
(B) Co-over-expression of ss and hth. LEFT: Frozen sections through adult heads from LGMR > ss + hth flies also carrying the 
opsin reporter rh3-lacZ double labeled with antibodies against βGal (green) and the PR-specific cell-surface marker 24B10 (red). 
Expression of rh3-lacZ was completely lost in flies ectopically expressing both ss and hth, including in the DRA. RIGHT: Frozen 
sections through adult heads from LGMR > ss + hth flies also carrying the opsin reporter rh4-lacZ double labeled with antibodies 
against βGal (green) and 24B10 (red). Expression of rh4-lacZ was expanded into all PRs, with projections to both the lamina (L) 
and the medulla (M). However, inner PRs in the DRA, projecting axons to the dorsal-most medulla (white arrow) did not express 
rh4 (arrow). 
(C) Co-over-expression of ss and dominant negative hth: LEFT: Frozen sections through adult heads from LGMR > ss + hthHM 
flies also carrying the opsin reporter rh3-lacZ double labeled with antibodies against βGal (green) and 24B10 (red). Expression of 
rh3-lacZ was completely lost in flies ectopically expressing both ss and hthHM, including in the DRA. RIGHT: Frozen sections 
through adult heads from LGMR > ss + hthHM flies also carrying the opsin reporter rh4-lacZ double labeled with antibodies 
against βGal (green) and 24B10 (red). Expression of rh4-lacZ was expanded into all PRs, with projections to both the lamina (L) 
and the medulla (M). However, inner PRs in the DRA, projecting axons to the dorsal-most medulla (white arrow) did not express 
rh4 (arrow). 
(D) Co-over-expression of ss and activated Armadillo: LEFT: Frozen sections through adult heads from LGMR > ss + ArmS10 
flies also carrying the opsin reporter rh3-lacZ double labeled with antibodies against βGal (green) and 24B10 (red). Expression of 
rh3-lacZ was completely lost in flies ectopically expressing both ss and ArmS10,  including in the DRA. RIGHT: Frozen sections 
through adult heads from LGMR > ss + ArmS10 flies also carrying the opsin reporter rh4-lacZ double labeled with antibodies 
against βGal (green) and 24B10 (red). Expression of rh4-lacZ was expanded into many PRs, with projections to both the lamina 
(L) and the medulla (M). However, most inner PRs of the expanded DRA, projecting axons into the entire dorsal half of the 
medulla (white bracket) did not express rh4. 
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antigen 24B10 (Fig 15B). As previously observed, rh3-lacZ expression (shown in 

green) was completely lost, including in DRA inner PRs (left). Instead, rh4-lacZ 

expression (shown in green) was expanded into all PRs with βGal-expressing 

fibers projecting to both the lamina (L) and the medulla (M). However, rh4-lacZ 

expression was still expluded from the DRA inner PRS (white arrow), as had 

been observed in LGMR > ss flies, suggesting that only the DRA inner PRs were 

able to neutralize ss function. These results therefore supported the hypothesis 

that high wg signaling levels antagonize Ss function. 

 Expression of rh3-lacZ or rh4-lacZ was also visualized in LGMR > ss + 

hthHM flies by double labeling frozen sections using antibodies against βGal and 

24B10 (Fig 15C). DRA development is blocked in flies ectopically expressing 

dominant negative Hth (LGMR > hthHM), resulting in the formation of unusually 

Rh3/Rh6-coupled ommatidia at the dorsal rim. However, rh3-lacZ expression 

(shown in green) was completely lost in LGMR > ss + hthHM retinas (left). 

Expression of rh4-lacZ (shown in green) was found to be expanded into all PRs 

except the DRA inner PRs (white arrow). The observed phenotype was therefore 

identical to the co-over-expression of Ss and wildtype Hth. It was therefore 

concluded that disruption of DRA development had no effect on the inability of Ss 

to repress rh4 expression there, suggesting that high wg signaling levels 

upstreamn of hth were responsible for this neutralizing effect. 

 Finally, rh3-lacZ or rh4-lacZ expression was also visualized in LGMR > ss 

+ ArmS10 flies by double labeling frozen sections using antibodies against βGal 

and 24B10 (Fig 15D). Ectopic expression of activated Armadillo results in the 

expansion of the DRA through the whole dorsal eye, with all dorsal ommatidia 

expressing Hth and Rh3 in their inner PRs. In LGMR > ss + ArmS10 retinas, 

however, rh3-lacZ expression (shown in green) was completely lost, as no βGal-

expressing fibers were detectable (left). Expression of rh4-lacZ was found to be 

dramatically exopanded into outer PRs, based on the projection of βGal-

expressing fibers to the Lamina (L). In inner PRs, however, expansion of rh4-lacZ 

seemed to be limited largely to the ventral half of the eye. It was found that most 

inner PRs projecting to the dorsal half of the medulla (white brackets) were 
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unable to activate rh4-lacZ expression in response to Ss over-expression. It was 

therefore concluded that high levels of wg signaling antagonized Ss function in 

developing PRs. 

 It was concluded from these experiments, that the ability of ss to induce 

the y R7 subset was antagonized by the wg pathway. As Ss and Hth were never 

seen co-expressed in the DRA, the neutralization off ss may be achieved by 

transcriptional repression of ss by Hth or TCF. However, it was shown that Ss 

function is even repressed, when co-expression of Hth and Ss is forced. It 

therefore appears likely that DRA inner PRs create a a transcriptional 

environment which is unfavorable to Ss, most likely by involving other wg-

responsive genes, 

 
3.16. Notch signaling might induce formation of y ommatidia  

Spineless was shown to be necessary and sufficient for the rh4-

expressing yR7 cell fate. Furthermore, using a reporter construct driven by the ss 

eye enhancer, specific expression was detected in a large subset of R7 cells. 

Bioinformatic analysis of the ~1.6 kb ss eye enhancer sequence revealed three 

putative binding sites for the crucial Notch pathway effector suppressor of 

Hairless [su(H)], encoding a transcriptional repressor (Fortini and Artavanis-

Tsakonas, 1994; Schweisguth and Posakony, 1992). The Notch (N) pathway 

plays a crucial role in many developmental processes in flies as well as in 

vertebrates (for review: Lai, 2004). In Drosophila, the current model involves the 

membrane-bound protein Delta as the ligand for the transmembrane protein 

Notch, whose intracellular domain (Nintra) gets cleaved upon activation and 

translocates in the nucleus to induce transcriptional response (Kopczynski et al., 

1988; Struhl and Adachi, 1998). In Drosophila PRs, Notch signaling is required to 

select the founder neuron of the ommatidial cluster, in a process called lateral 

inhibition (Baonza and Freeman, 2001). Additionally, the Notch pathway had 

recently been identified to provide an important additional signal required for R7 

specification, co-operating with EGFR and sev signaling (Cooper and Bray, 2000; 

Tomlinson and Struhl, 2001). It was therefore tested whether Notch activity was 
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also required for a later step in R7 differentiation, the segregation of p and yR7 

cells by differential expressin of ss. 

Expression of the gene mδ was shown to be induced in R7 in response to 

N pathway activation (Cooper and Bray, 2000). It was therefore tested whether 

mδ expression in R7 cells persisted until the time point of ss expression and 

whether the Notch pathway was necessary and sufficient to induce the y 

ommatidial subtype. The enhancer fusion constructs mδ0.5–lacZ and mδ0.5–

GAL4 had previously been used as reporters to visualize N pathway activation in 

the two developing PRs R4 and R7 (Fig 16A). Double labeling of larval eye 

imaginals discs with antibodies against βGal (shown in red) and the cell surface 

marker Coracle (shown in green) have been used to show expression of mδ0.5–

lacZ in R4, starting in the very first rows posterior to the morphogenetic furrow, 

as well as a later onset of expression several ommatidial rows more posteriorly, 

in R7 cells (white arrows). The onset of ss expression was found to be later, 

during pupation. It was therefore tested whether mδ0.5–lacZ was expressed at 

that time by dissecting pupal retinas (48 hrs APF) and triple labeling them with 

antibodies against βGal, the R7 marker Prospero (Pros) and ElaV (Fig 16B). 

Strong βGal expression was detectable in one PR per ommatidium, which was 

not the R7 cell, marked by Pros (shown in green). Due to the stereotypical 

arrangement of ommatidial PRs, the βGal-expressing was identified as R4. It was 

therefore concluded that, during pupal development, the N pathway no longer 

activates mδ–lacZ expression in R7 cells. Characterization of mδ expression in 

PRs was completed by visualizing expression of mδ0.5–GAL4 driving the 

expression of nuclear lacZ. Frozen sections through adult eyes from these mδ0.5 

> lacZ:NLS flies were then double labeled using antibodies against βGal and 

Pros (Fig 16C). Strong GAL4 expression (shown in red) was detected in nuclei at 

the surface of the retina. However, no co-staining with Pros (shown in green) was 

observed, excluding the possibility that mδ becomes re-expressed in R7 cells at 

later stages, when opsin genes were turned on. Co-staining with ElaV revealed 

that the vast majority of βGal–positive nuclei were not neuronal PRs (data not 

shown), suggesting that mδ fades away in adult PRs. Therefore, reporter 
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Fig III.3.16 Notch signaling might induce formation of y ommatidia  
(A)-(C) Expression of the N pathway reporter mδ0.5 in PRs: Eye imaginal discs from third instar wandering larvae carrying the N 
pathway reporter mδ0.5-lacZ had previously been double labeled with antibodies against βGal (red) and the cell-surface marker 
Coaracle (green). Strong N pathway activity was detectable in R4, while weaker activity was detectable in R7 cells (arrows). (B) 
Pupal retinas (48 hrs APF) were dissected from wildtype flies carrying the mδ0.5-lacZ transgene and triple labeled with 
antibodies against βGal (red), the R7 marker Pros (green) and ElaV (blue). N pathway activity was only detectable in R4, at this 
developmental stage. (C) Frozen sections through adult heads from flies carrying the mδ0.5-lacZ transgene double labeled with 
antibodies against βGal (red) and the R7 marker Pros (green). No expression of βGal was detectable in R7 cells. mδ0.5-lacZ 
expression was specific to non-PR cells, as no co-expression with ElaV was observed in the adult (data not shown). 
(D)+(E) Activated Su(H) induces Rh4 expression: Frozen sections through adult heads from flies over-expressing a fusion 
between the N effectors u(H) and the transcriptional activator domain from yeast VP16 (su(H):VP16) under GMR-GAL4 control 
(sGMR > su(H):VP16). Double labeling with antibodies against Rh3 (red) and Rh4 (cyan) revealed. (E) Frozen sections through 
adult heads from sGMR > su(H):VP16 flies double labeled with antibodies against Rh5 (blue) and Rh6 (green). 
(F)-(H) Activated Su(H) induces rh4 transcription: Frozen sections through adult eyes from sGMR > su(H):VP16 flies carrying 
different opsin-lacZ reporter constructs. Expansion of rh1-lacZ into inner PRs was observed, as βGal expressing fibers were 
found projecting to both layers of the optic lobe, the lamina (L) and the medulla (M). (G) Expression of rh3-lacZ was unaffected 
on frozen sections through sGMR > su(H):VP16 eyes: strong expression was detected in pR7 cells and DRA inner PRs. (H) 
Expression of rh4-lacZ was expanded throughout the retina on frozen sections through sGMR > su(H):VP16 eyes: strong 
expression was detected in rhabdomeres spanning the entire retina and projecting to both layers of the optic lobe, the lamina (L) 
and the medulla (M). 
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constructs visualizing N pathway activation via the gene mδ are expressed in 

both larval PRs R4 and R7 cells. Expression in R7 is vanishes quickly, whereas 

expression in R4 persists throughout pupal stages. 

Three putative binding sites of the N pathway effector suppressor of 

Hairless had been identified in the eye enhancer of spineless. It was therefore 

tested whether the N pathway activated yR7 development via Su(H). Over-

expression of a fusion protein between the suppressor of hairless transcriptional 

repressor from Drosophila and the activation domain of the yeast transcritptional 

activator VP16 has previously been shown to effectively mimic N pathway 

activation (Furriols and Bray, 2000; Kidd et al., 1998). The fusion su(H):VP16 

was therefore ectopically expressed in developing PRs, using the GAL4/UAS-

system (see material and methods). However, ectopic N pathway activation had 

a deleterious effect on PR development, as flies died at late pupal stages, when 

su(H):VP16 was over-expressed at room temperature. However, attenuating 

GAL4-expression at lower temperatures (18°C) resulted in survival of few flies 

until adulthood. These sGMR  > su(H):VP16 flies had very disorganized eyes and 

were so severely paralyzed that they died after only a few days. Frozen sections 

through adult eyes from sGMR > su(H):VP16 flies were labeled with antibodies 

against Rh3 and Rh4 (Fig 16D). While expression of Rh3 (shown in red) 

remained specific to very few cells, expression of Rh4 (shown in cyan) seemed 

unusually frequent. Expression of Rh4 in rhabdomeres spanning the entire retina 

was observed. This was particularly interesting, as it suggested that Rh4 

expression was specifically expanded into outer PRs. To test such a possible 

specific effect of N pathway activation on rh4 expression, frozen sections were 

also double labeled with antibodies against Rh5 and Rh6 (Fig 16E). Expression 

of Rh5 (shown in blue) and Rh6 (shown in green) seemed normal in sGMR > 

su(H):VP16 flies, confirming that only rh4 expression might be expanded in these 

flies. 

To confirm a possible activation of rh4 expression by su(H):VP16, the 

opsin-lacZ transgenes rh1-lacZ, rh3-lacZ and rh4-lacZ were introduced into the 

sGMR > su(H):VP16 background and βGal activity was visualized on frozen 
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sections through adult eyes using X-Gal (see material and methods). Expression 

of rh1-lacZ was analyzed first (Fig 16F). βGal expression was expanded into all 

PRs as axon fibers expressing rh1-lacZ were found to terminate in both layers of 

the optic lobe, the lamina (L) as well as the medulla (M). It was therefore 

concluded that either development of outer PR was affected in these mutants, or 

that some inner PRs had gained expression of rh1. Development of R7 cells was 

therefore assessed by visualizing rh3-lacZ expression (Fig 16G). βGal 

expression was indistinguishable from wildtype flies. Over-expression of 

su(H):VP16 therefore does not influence rh3 expression or pR7 development. 

Finally, rh4-lacZ expression was investigated in sGMR > su(H):VP16 flies (Fig 
16H). βGal activity was expanded through the whole retina. Rhabdomeres 

spanning the whole retina were found to express rh4-lacZ and axon projections 

to the lamina (L) were observed (black arrow), suggesting that outer PRs had 

gained expression of the yR7 opsin. 

It was concluded from these experiments that the N pathway is active in 

R7 cells clearly before ss expression becomes induced in the y subset. Ectopic 

activation of the N pathway using over-expression of VP16:su(H) is sufficient to 

induce yR7-like expression of rh4 in outer PRs. However, inner PRs are also 

affected, as they seem to gain rh1 expression. 

 

3.17. The activated Notch receptor induces yR7 specification 
The N pathway was shown to be active in developing R7 cells and over-

activating it using a VP16:su(H) fusion protein resulted in the specific activation 

of rh4 expression. Over-expression of the intracellular domain of Notch (Nintra) 

using the GAL4/UAS-system (see material and methods) had previously been 

shown to be sufficient for Notch pathway activation (Giraldez and Cohen, 2003; 

Struhl and Adachi, 1998; Struhl and Greenwald, 2001). To test a possible role for 

Notch in ommatidial subtype specification, Nintra was over-expressed using GMR-

GAL4 drivers (GMR > Nintra). As for sGMR > su(H):VP16 flies, over-expression 

had to be performed at low temperatures (18° C) using weak GMR-Gal4 

insertions. Frozen sections through adult eyes from sGMR > Nintra flies were 
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Fig III.3.17 The activated Notch receptor induces yR7 specification 
(A)+(B) Activated Notch receptor induces Rh4 expression: Frozen sections through adult heads from flies over-expressing the 
intracellular domain of the N receptor (Nintra) under GMR-GAL4 control (sGMR > Nintra). Double labeling with antibodies against 
Rh3 (red) and Rh4 (cyan) revealed expansion of rh4 expression into several rhabdomeres spoanning the entire retina (arrows). (B) 
Frozen sections through adult heads from sGMR > Nintra flies double labeled with antibodies against Rh5 (blue) and Rh6 (green). 
No obvious phenotype was detected in R8 cells. 
(C)-(E) Activated Notch receptor induces rh4 transcription: Frozen sections through adult eyes from sGMR > Nintra flies carrying 
different opsin-lacZ reporter constructs. Expansion of rh1-lacZ into inner PRs was observed, as βGal expressing fibers were 
found projecting to both layers of the optic lobe, the lamina (L) and the medulla (M). (D) Expression of rh3-lacZ appeared 
unaffected on frozen sections through sGMR > Nintra eyes as βGal expression was detected in a subset of R7 cells. (E) Expression 
of rh4-lacZ was expanded throughout the retina on frozen sections through sGMR > Nintra eyes: strong expression was detected in 
rhabdomeres spanning the entire retina and projecting to both layers of the optic lobe, the lamina (L) and the medulla (M). 
(F)+(G) Ectopic Nintra specifically induces several rh4 positive cells per ommatidium: Corneal neutralization (water immersion 
microscopy) of living sGMR > Nintra flies carrying opsin-GFP reporter constructs. No change in rh3-GFP expression was 
detectable as strong fluorescence was always observed in only PR in a subset of ommatidia. (G) Expression of rh4-GFP was 
expanded into more than one PR per ommatidium, confirming that outer PRs had gained expression of rh4. 
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generated and double labeled using antibodies against Rh3 and Rh4 (Fig 17A).  

Rh3 expression (shown in red) seemed unaffected, whereas Rh4 expression 

(shown in cyan) appeared to be expanded, when compared to the wildtype. 

Particularly interesting was Rh4 expression in rhabdomeres spanning the whole 

retina (white arrows), suggesting that Rh4 expression had expanded into outer 

PRs. R8 opsin expression was also assessed in sGMR > Nintra flies, by double 

labeling frozen sections through adult retinas for Rh5 and Rh6 (Fig 17B). 

However, taking in account the considerable retinal disorganization, it appeared 

that expression of Rh5 (shown in blue) and Rh6 (shown in green) was 

indistinguishable from the wildtype. It was therefore concluded that ectopic N 

pathway activation might have an activating effect on rh4 expression. 

This hypothesis was further tested by introducing the opsin-lacZ reporter 

constructs rh1-lacZ, rh3-lacZ and rh4-lacZ into the sGMR > Nintra background. 

Expression of these transgenes was then visualized on frozen sections through 

adult eyes, using X-GAL. First, rh1-lacZ expression was found to be severely 

affected in sGMR > Nintra flies (Fig 17C). In wildtype flies, rh1-lacZ is expressed 

exclusively in the outer PRs R1-R6, projecting to the lamina (L). In sGMR > Nintra 

flies, however, βGal activity was detectable in all PRs as rh1-lacZ expressing 

fibers were detected to terminate in both layers of the optic lobe (black arrows), a 

situation very similar to sGMR > su(H):VP16 flies. This suggested that either 

outer PRs mis-projected some axons to the medulla, or that inner PRs now 

expressed rh1. Expression of rh3-lacZ was tested next (Fig 17D). Despite the 

severe eye phenotype, a low ratio of R7 cells was found to express βGal, a 

situation comparable to the wildtype. Based on previous observations with Anti-

Rh3 antibodies, it was therefore concluded that rh3 expression is not affected by 

ectopic N pathway activation, as had previously been observed in sGMR > 

su(H):VP16 flies. Finally, rh4-lacZ expression was assessed in sGMR > Nintra flies    

(Fig 17E). βGal expression was significantly increased throughout the retina, 

confirming previous observations with Anti-Rh4 antibodies. Furthermore, βGal 

expression was detected in rhabdomeres spanning the whole retina, again 

suggesting that outer PRs had become rh4-lacZ expressing. This result was 
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again highly reminiscent of the opsin phenotype described for sGMR > 

su(H):VP16 flies. Expression of rh4-lacZ was weaker compared to rh1-lacZ 

expression levels, and strength of βGal staining in the lamina (top black arrow) 

was also fairly low. It was therefore concluded that only a subset of outer PRs 

have become rh4 expressing in sGMR > Nintra flies. 

 To confirm expression of rh4 in multiple PRs per ommatidium, opsin-GFP 

reporter transgenes were introduced into the sGMR > Nintra background and 

analyzed by water immersion microscopy (Pichaud and Desplan, 2001). This 

technique allows the visualization of GFP signals emanating from individual 

ommatidia by neutralizing the curvature of the retina (see material and methods). 

First, expression of rh3-GFP was analyzed in sGMR > Nintra flies (Fig 17F). 

Strong GFP signals were detected emanating from a subset of ommatidia. Only 

one PR per ommatidium was found to be expressing GFP. This expression 

pattern was virtually identical to the expression of rh3-GFP in wildtype flies. It 

was therefore concluded that N pathway activation does not lead to the 

expansion of rh3 expression. However, expression of rh4-GFP in sGMR > Nintra 

flies was different (Fig 17G). Strong GFP signals were found emanating from a 

large subset of ommatidia. Interestingly, more than one GFP-expressing cell was 

observed in many ommatidia (white arrows). Such a phenotype had never been 

observed before. Therefore, ectopic over-expression of Nintra leads to a specific 

expansion of rh4 expression into outer PRs. 

It was concluded from these experiments, that ectopic activation of the 

Notch pathway in developing PRs appears to have an activating effect on rh4 

expression.This effect is specific, as rh3 expression is not altered. If the observed 

phenotype was the product of N-induced late re-specification of outer PRs into 

extra R7 cells, these new R7 cells then always choose the y fate. However, 

sGMR > Nintra flies remained to be analyzed in more detail, as inner PR identity 

also seemed to be affected. 
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3.18. Activated Notch specifically induces rh4 in sevenless mutants 
 Ectopic activation of the Notch pathway in all developing PRs was shown 

to have a specific activating effect on rh4 expression. However, analysis of N-

induced yR7 opsin expression in outer PRs was difficult as endogenous rh3 and 

rh4 expression persisted in R7. The effect of Notch pathway activation was 

therefore studied in sevenless (sev) mutants, lacking all R7 cells. 

 Opsin expression had previously is severely altered in sev mutants. As a 

control, expression of Rh3 and Rh4 was visualized on frozen sections through 

adult sev eyes (Fig 18A). It was obvious that Rh4 expression (shown in cyan) 

was totally lost, consistent with the fact that induction of R7 cells had failed in 

these mutants. Rh3 expression (shown in red), persisted in R8 cells of the DRA 

(white arrow), whereas Rh3 expression in DRA R7 cells and pale R7 cells was 

totally lost. This observation again confirmed the sev phenotype. Expression of 

R8 osins was visualized next by labeling frozen sections through adult sev eyes 

with antibodies against Rh5 and Rh6 (Fig 18B). It was found that Rh5 expression 

(shown in blue) was lost in most of the cases (rarely, very few Rh5-expressing 

ommatidia remained, data not shown), while Rh6 expression (shown in green) 

was expanded into all R8 cells. It was therefore concluded that R8 cells 

expressed the ‘ground state’ opsin Rh6, due to the lack of an instructive signal 

from pale R7 cells. Alternatively, opsin expression in sev mutants was visualized 

by introducing the opsin-lacZ reporter transgenes rh1-lacZ, rh3-lacZ and rh4-lacZ 

and detecting βGal activity on frozen sections using X-Gal (see material and 

methods). It was found that removing R7 cells did not affect expression of rh1-

lacZ (Fig 18C). As in wildtype flies βGal activity was detected in rhabdomeres 

spanning the entire retina and projecting their axons to the lamina (L), 

exclusively. Expression of rh3-lacZ was only detectable in DRA R8 cells 

spanning the basal half of the dorsal-most retina (Fig 18D). Finally, rh4-lacZ was 

completely lost in sev mutants (Fig 18E). Occasionally, some unspecific βGal 

activity was detected in the head cuticle. It was therefore concluded that antibody 

staining as well as opsin-lacZ transgenes were a powerful way to visualize the 

sev background. 
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Fig III.3.18 Activated Notch specifically induces rh4 in sevenless mutants 
(A)-(E) Inner PR opsin expression in sev mutants: Frozen sections through adult heads from sev mutants. Double labeling with 
antibodies against Rh3 (red) and Rh4 (cyan) revealed a complete loss of Rh4 expression, while Rh3 persisted only in R8 cells in 
the DRA (arrows). (B) Frozen sections through adult heads from sev mutants double labeled with antibodies against Rh5 (blue) 
and Rh6 (green). Expression of Rh5 was completely lost in the majority of the cases, while Rh6 expression was expanded into all 
R8 cells. (C) Frozen sections through adult eyes from sev mutants also carrying different opsin-lacZ reporter constructs. No 
change in rh1-lacZ was observed. (D) In sev mutants, expression of rh3-lacZ was detectable only in DRA R8 cells. (E) 
Expression of rh4-lacZ was completely lost in sev mutants (background βGal activity can be seen in the head cuticle). 
(F)-(K) Ectopic Nintra alters opsin expression in sev mutants: Frozen sections through adult heads from flies over-expressing Nintra 
under GMR-GAL4 control in a sev mutant background (sev + sGMR > Nintra). Double labeling with antibodies against Rh3 (red) 
and Rh4 (cyan) revealed expansion of Rh4 expression into several rhabdomeres spanning the entire retina, while Rh3 expression 
always remained restricted to the R8 of the DRA (arrow). (G) Frozen sections through adult heads from sev + sGMR > Nintra flies 
double labeled with antibodies against Rh5 (blue) and Rh6 (green). Several R8 cells were found to express Rh5 (arrows). (H) 
Frozen sections through adult eyes from sev + sGMR > Nintra flies carrying different opsin-lacZ reporter constructs. Expansion of 
rh1-lacZ into inner PRs was observed, as βGal expressing fibers were found projecting to both layers of the optic lobe, the lamina 
(L) and the medulla (M). (J) Expression of rh3-lacZ appeared unaffected on frozen sections through sev + sGMR > Nintra eyes as 
βGal expression was only detectable in DRA R8 cells. (K) Expression of rh4-lacZ was expanded into several ommatidia 
throughout the retina on frozen sections through sev + sGMR > Nintra eyes: strong expression was detected in rhabdomeres 
spanning the entire retina and projecting to both layers of the optic lobe, the lamina (L) and the medulla (M).
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Mutant flies over-expressing activated Notch (Nintra) under the control of sGMR-

GAL4 in a sevenless background (sev + sGMR > Nintra) were generated. Eye 

morphology was identical to sGMR > Nintra flies. Frozen sections through adult 

eyes were double labeled using antibodies against Rh3 and Rh4 (Fig 18F). Rh3 

expression (shown in red) was completely lost, except in the DRA R8 cells (white 

arrow). However, expression of Rh4 (shown in cyan) was detectable in numerous 

rhabomeres throughout the sev + sGMR > Nintra retinas. Interestingly, these Rh4-

positive rhabdomeres appeared to span the whole retina, suggesting that outer 

PRs were expressing Rh4. Extra Rh3-expressing rhabdomeres outside the DRA 

were never observed in these flies. It was therefore concluded that ectopic 

activation of the N pathway leads to a specific activation of Rh4 expression in 

outer PRs, as visualized in sev mutants. R8 opsin expression was then assessed 

next in sev + sGMR > Nintra flies, by double labeling frozen sections through adult 

heads with antibodies against Rh5 and Rh6 (Fig 18G). Expression of Rh6 

(shown in green) was detected in many short rhabdomeres in the basal half of 

the retina, suggesting that many R8 cells retained rh6 expression in sev + sGMR 

> Nintra flies. An unusually high number of PRs with short rhabdomeres expressed 

Rh5 (shown in blue). As rhabdomere morphology was affected, a clear 

identification of the cell type that expressed Rh5 was difficult. However, the Rh5-

expressing cells appeared to be R8 cells, altough many of their rhabdomeres had 

moved distally. This R8 rhabdomere phenotype typical for sev mutants and is 

most likely due to the extension of R8 rhabdomeres into the part of the retina that 

is usually occupied by R7 rhabdomeres, in the wildtype. As Rh5-positive 

rhabdomeres always appeared in gaps between Rh6-expressing R8 cells (white 

arrows), it appeared that an unusually high ratio of R8 cells chose expression of 

Rh5 in these flies. It was therefore concluded, that ectopic activation of the N 

pathway in sev mutants lead to the specification of more pR8 cells than normally 

observed in sev mutants. Expression of rh5 was never observed in outer PRs. It 

appears therefore that the N pathway may influence both the induction of yR7 

cells as well as the instruction of pR8 cells. 
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The opsin phenotypes observed in sev + sGMR > Nintra flies were 

reproduced by introducing the opsin-lacZ reporter transgenes rh1-lacZ, rh3-lacZ 

and rh4-lacZ and detecting βGal activity on frozen sections using X-Gal. First, 

expression of rh1-lacZ was visualized in sev + sGMR > Nintra flies (Fig 18H). The 

phenotype observed looked identical to sGMR > Nintra flies: rh1-lacZ expression 

was expanded into all PRs, as βGal expressing fibers were found to terminate in 

both the lamina (L) as well as the medulla (M). The partial mis-specification of 

inner PRs by Nintra was therefore reproduced in this background. Next, rh3-lacZ 

expression was assessed in sev + sGMR > Nintra flies (Fig 18J). The only βGal 

expressing cells detectable were the R8 cells of the DRA (black arrow), 

confirming the previous observation, that no extra rh3-expressing cells were 

induced in these mutants. Finally, rh4-lacZ expression was expanded into a 

considerable number of rhabdomeres spanning the entire retina, a situation 

never observed in sev mutants. Activation of the N pathway therefore leads to a 

specific gain of rh4 expression in outer PRs. 

It was concluded from these experiments that ectopic activation of the N 

pathway in sev mutants results in an opsin phenotype both in outer PRs and R8 

cells. An unusually high number of pR8 cells is induced while expression of the 

yR7 opsin Rh4 is expanded into outer PRs. It appears therefore, that the N 

pathway might influence both the instruction of R8 cells as well as the choice of 

the y ommatidial subtype in R7, possibly by directly specifying yR7 cells. This 

effect could be mediated by regulating ss expression, as three putative su(H) 

binding sites had been identified in the ss eye enhancer. 

 

3.19. Activated Ras induces both rh3 and rh4 in sevenless mutants 
A consitutively active form of the small G-Protein Ras is sufficient to force 

developing PRs into the R7 cell fate by mimicking Sev- and EGF receptor 

activation (sev > RasVal12; (Gaul et al., 1992). It has been shown that both pR7 

and yR7 cells get stochastically induced in sev > RasVal12 flies (Chou et al., 

1996). In contrast, over-activation of the N pathway leads to the specific gain of 

rh4 expression. To further demonstrate the specific activation of yR7-like rh4 
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expression by N, cell fate decisions were assessed in outer PRs of flies over-

expressing RasVal12 in a sev mutant background. 

Fig III.3.19 Activated Ras induces both rh3 and rh4 in sevenless mutants 
(A)-(C) Inner PR opsin expression is altered by activated Ras: Frozen sections through adult eyes from flies over-expressing 
activated Ras (RasVal12) under the control of the sev promoter (sev > RasVal12) also carrying different opsin-lacZ reporter 
constructs. Expression of rh1-lacZ was normal, as βGal positive rhabdomeres spanned the whole retina and their axon fibers were 
found projecting to the lamina (L). (B) Expression of rh3-lacZ appeared up-regulated in sev > RasVal12 eyes. However, βGal 
expression remained specific to R7 cells, with rhabdomeres in the distal half of the retina and axons projecting to the medulla 
(M). (C) Expression of rh4-lacZ was also expanded throughout the R7 layer of the adult retina on frozen sections through sev > 
RasVal12 eyes: strong expression was detected in rhabdomeres spanning the distal half of the retina and projecting to the medulla 
(M). 
(D)-(H) Inner PR opsin expression is altered by activated Ras in sev mutants: Frozen sections through adult heads from flies over-
expressing activated Ras in a sev mutant background (sev + sev > RasVal12). Double labeling with antibodies against Rh3 (red) 
and Rh4 (cyan) revealed expression of both Rh3 and Rh4 throughout the retina. A higher ratio of Rh4 expressing PRs was 
observed. (G) Frozen sections through adult heads from sev + sev > RasVal12 flies double labeled with antibodies against Rh5 
(blue) and Rh6 (green). Few R8 cells expressing Rh5 were observed. (H) Frozen sections through adult eyes from sev + sev > 
RasVal12 flies carrying different opsin-lacZ reporter constructs. Expression of rh1-lacZ was unaffected, as βGal expression was 
detected in rhabdomeres spanning the whole retina with axons projecting to the lamina (L). (J) On frozen sections through sev + 
sev > RasVal12 eye, expression of rh3-lacZ was detected in R7-like cells, with βGal expressing rhabdomeres spanning the distal 
half of the retina and axons projecting to the medulla (M). (K) Expression of rh4-lacZ was also detected in R7-like cells on frozen 
sections through sev + sev > RasVal12 eyes. Interestingly, a higher number of extra R7 cells was found to express rh4, similar to 
the p / y distribution in wildtype R7 cells. 
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Opsin expression was visualized in flies over-expressing RasVal12 in a 

subset of PRs (R1, R3, R4, R6 and R7) under the control of the sev promoter 

(sev > RasVal12; (Gaul et al., 1992). The opsin-lacZ reporter constructs rh1-lacZ, 

rh3-lacZ and rh4-lacZ were introduced and βGal activity was visualized on frozen 

sections through adult heads using X-Gal (see material and methods). 

Expression of rh1-lacZ seemed to be unaffected in sev > RasVal12 flies (Fig 
19A). The rhabdomeres of PRs expressing rh1-lacZ spanned the whole retina 

and axonal fibers were always found to terminate in the Lamina (L, black arrow) 

showing that most outer PRs retain their original cell in this mutant situation. 

Expression of rh3-lacZ was also visualized on frozen sections through sev > 

RasVal12 eyes (Fig 19B). The number of βGal-expressing PRs detected 

throughout the retina was significantly higher than in wildtype flies. Based on the 

distal location of their cell bodies and the termination of their axon fibers in the 

medulla (M), they could be identified as extra R7 cells. Extra pR7 cells were 

induced in these transgenic flies. Finally, expression of rh4-lacZ was visualized in 

sev > RasVal12 flies (Fig 19C). Again, the number of βGal-expressing PRs was 

significantly higher than in wildtype flies. Cell bodies were located distally and 

axons projected into the medulla (M), confirming that a large number of extra 

yR7 cells had also been created in these flies. Therefore, over-expression of 

activated Ras in outer PRs leads to the specification of extra R7 cells that belong 

to both subtypes, p as well as y. 

To remove the regular R7 cells, activated Ras was over-expressed in sev 

mutants (sev + sev > RasVal12). Opsin expression in R7 cells was then 

visualized on frozen sections using antibodies against Rh3 and Rh4 (Fig 19D). In 

sev mutants, Rh3 expression had been shown to be restricted to the DRA R8 

cells (see above). In sev + sev > RasVal12 retinas, however, Rh3 expression 

(shown in red) was detectable in several ommatidia outside of the DRA. Strong 

expression of Rh4 was also observed, while this opsin was always absent from 

sev retinas. Therefore, extra R7 cells induced by Ras pathway activation indeed 

fell into either of the two subtypes, p or y. Interestingly, more yR7 cells than pR7 

cells were induced, suggesting that choice between these two fates might have 
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occurred stochastically in a 70:30 ratio, as in wildtype R7 cells. R8 opsin 

expression was also visualized in sev + sev > RasVal12 by double labeling 

frozen sections with antibodies against Rh5 and Rh6 (Fig 19E). Expression of 

both Rh5 (shown in blue) and Rh6 (shown in green) were detected in R8 cells in 

the basal half of the retina. Occasionally, rhabdomeres moved distally, as 

previously described for sev mutants. The vast majority of R8 cells expressed the 

‘ground state’ opsin Rh6 found almost exclusively in sev mutants. However, a 

low ratio of R8 cells expressing Rh5 was detectable, suggesting that some of the 

pR7 cells induced by activated Ras are able to properly instruct R8 cells in these 

flies. 

Finally, opsin expression in sev + sev > RasVal12 flies was confirmed by 

instroducing the opsin-lacZ reporter constructs rh1-lacZ, rh3-lacZ and rh4-lacZ 

visualizing βGal activity on frozen sections using X-Gal (see material and 

methods). Expression of rh1-lacZ seemed unaffected in sev + sev > RasVal12 

flies (Fig 19F). This suggested that many outer PRs remained untransformed, 

which is consistent with the fact that the sev promoter is not expressed in the 

outer PRs R2 and R5. Expression of rh3-lacZ was also visualized in sev + sev > 

RasVal12 flies (Fig 19G). While expression of rh3-lacZ was only detectable in 

DRA R8 cells in sev mutants, several βGal expressing ommatidia were 

detectable in presence of sev > RasVal12. Positive cell bodies were always 

found distally and their axons projected to the medulla (M), clearly identifying 

these cells as R7 cells. This observation further confirms the previously 

described induction of pR7 cells by activated Ras. Finally, expression of rh4-lacZ 

was assessed in sev + sev > RasVal12 flies (Fig 19H). A large number of βGal 

expressing cells were detected, whose cell bodies were located distally and 

projected axons into the medulla (M). While expression of rh4-lacZ is totally lost 

in sev mutants, activation of the Ras pathway induces a large number of yR7 

cells. As described before, the number of yR7 cells induced by RasVal12 always 

clearly exceeded the number of induced pR7 cells. 

Therefore, it was concluded from these experiments that new R7 cells 

induced by Ras pathway activation in sev mutants fall into both categories 
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described for the wildtype: pR7 and yR7. These extra R7 cells seem to respect 

the 70:30 ratio and are, in some cases, able to instruct R8 cells to express Rh5. 

This phenotype is clearly different from the specific induction of yR7 cells 

observed when the Notch pathway is ectopically activated in sev retinas. 

 

3.20. The Notch receptor might not necessary for retinal patterning  
 Notch signaling has been shown to be required at different stages during 

eye development (Cagan and Ready, 1989). Blocking N signaling results in 

dramatically impaired eye growth and phenotypes are usually too dramatic to 

reliably analyze ommatidial subtype specification (Baker et al., 1990). Two 

different approaches were therefore chosen to assess N loss-of-function. First a 

dominant negative form of Notch, lacking the intracellular domain, was 

ectopically expressed in developing PRs, using GMR-GAL4 (LGMR > NDN). 

Notch loss-of-function phenotypes have been reported for this construct, when 

over-expressed early during wing or eye development (Kumar and Moses, 2001; 

Llimargas, 1999). However, LGMR > NDN flies did not have a very strong eye 

phenotype. Nevertheless, frozen sections through adult eyes were double 

labeled using antibodies against Rh3 and Rh4 (Fig 20A. Expression of both Rh3 

(shown in red) and Rh4 (shown in cyan) were found to be indistinguishable from 

wildtype flies, suggesting that over-expression of this version of dominant 

negative Notch has no effect on late R7 development. Expression of R8 opsins 

was also assessed by double labeling frozen sections through adult eyes using 

antibodies against Rh5 and Rh6 (Fig 20B). Expression of Rh5 (shown in blue) 

and Rh6 (shown in green) were also unaffected, suggesting that over-expression 

of NDN has no effect on ommatidial subtype specification. These results were 

confirmed by introducing the opsin-lacZ reporter constructs rh1-lacZ, rh3-lacZ 

and rh4-lacZ into the LGMR > NDN background and visualizing βGal activity on 

frozen sections using X-Gal   (see material and methods). Expression of rh1-lacZ 

was unaltered, restricted to outer PRs projecting to the Lamina (Fig 20C). 

Expression of rh3-lacZ was specific to a subset of R7 cells projecting to the 

medulla (M) as well as DRA inner PRs (black arrows) and therefore 
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Fig III.3.20 The Notch rerceptor might not necessary for retinal patterning  
(A)-(E) Inner PR opsin expression is not affected by dominant negative Notch: Frozen sections through adult heads from flies 
over-expressing dominant negative N under the control of GMR-GAL4 (LGMR > NDN). Double labeling with antibodies against 
Rh3 (red) and Rh4 (cyan) revealed revealed no change in R7 opsin expression. (B) Frozen sections through adult heads from 
LGMR > NDN flies double labeled with antibodies against Rh5 (blue) and Rh6 (green). Both R8 opsins were expressed normally. 
(C) Frozen sections through adult eyes from LGMR > NDN flies also carrying different opsin-lacZ reporter constructs. No change 
in rh1-lacZ was observed. (D) Expression of rh3-lacZ was detectable in pR7 cells and in inner PRs of the DRA, as in the 
wildtype. (E) Expression of rh4-lacZ was not affected by dominant negative N. 
(F)-(K) RNA interference against N has no effect on inner PR opsin expression: Frozen sections through adult heads from flies 
over-expressing NdsRNA under GMR-GAL4 (LGMR > NdsRNA). Double labeling with antibodies against Rh3 (red) and Rh4 (cyan) 
revealed noi change in R7 opsin expression. (G) Frozen sections through adult heads from LGMR > NdsRNA flies double labeled 
with antibodies against Rh5 (blue) and Rh6 (green). R8 opsin expression was indistinguishable from the wildtype. (H) Frozen 
sections through adult eyes from LGMR > NdsRNA flies carrying different opsin-lacZ reporter constructs. Expression of rh1-lacZ in 
outer PRs was normal, as βGal expressing fibers were found projecting to the lamina (L) and the medulla (M). (J) Expression of 
rh3-lacZ appeared unaffected on frozen sections through LGMR > NdsRNA eyes as βGal expression was only detectable in pR7 
cells as well as the DRA, both projecting to the medulla (M). (K) Expression of rh4-lacZ was unchanged in LGMR > NdsRNA flies:  
βGal was detected in a large subset of R7 cells projecting axons to the medulla (M). 
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indistinguishable from wildtype flies. Finally, rh4-lacZ expression was found 

unaltered (Fig 20D). It was therefore concluded that ectopic expression of NDN 

posterior to the morphogenetic furrow has no effect on opsin expression and 

therefore ommatidial subtype specification. 

As these results suggested that NDN might not be very efficient in 

developing PRs, another dominant negative construct was tested. In this case, 

double stranded notch RNA was produced under the control of GAL UAS sites 

(UAS-NdsRNA), leading to the hydrolysis of notch mRNA by RNA interference 

(RNAi). Behavioral loss-of-function phenotypes have also been reported for this 

construct when mis-expressed (Presente et al., 2002). However, LGMR > NdsRNA 

flies did not have a very strong eye phenotype. Nevertheless, frozen sections 

through adult eyes were double labeled using antibodies against Rh3 and Rh4 

(Fig 20F). Expression of Rh3 (shown in red) and Rh4 (shown in cyan) was found 

to be unaffected by NdsRNA. Similarly, no phenotype was observed for R8 opsion 

(Llimargas, 1999) expression (Fig 20G). Expression of Rh5 (shown in blue) and 

Rh6 (shown in green) was identical to the wildtype. These negative results were 

again confirmed by introducing the opsin-lacZ reporter constructs rh1-lacZ, rh3-

lacZ and rh4-lacZ into the LGMR > NdsRNA background and visualizing βGala 

activity on frozen sections using X-Gal. Outer PRs were unaffected by over-

expression of NdsRNA, as expression of rh1-lacZ was indistinguishable from the 

wildtype (Fig 20H). Similarly, expression of rh3-lacZ (Fig 20J) and rh4-lacZ (Fig 
20K) was unaltered. Therefore, over-expression of different dominant negative 

Notch constructs in developing PRs does not result in any phenotype.  

It was therefore concluded from these experiments that, while activating 

the N pathway is sufficient to induce expression of rh4, dominant-negative 

constructs fail to produce opsin phenotypes. Over-expression of dominant 

negative Notch might have been induced late enough for initial specification of 

R7 to occur. Later events, however, like ommatidial subtype specification might 

not depend on the Notch receptor itself. A clear role for N signaling in specifying 

y ommatidia therefore remains to be shown. 
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IV. DISCUSSION 
 
Homothorax provides new insights into PR development 

It was shown here that the transcription factor Homothorax specifies those 

PRs that provide input to the polarization compass by distinguishing them from 

prospective color-sensitive PRs. With the onset of pupation, the inner PRs R7 

and R8 along the dorsal rim specifically turn on expression of Hth and maintain it 

through adult life (Fig 1A). This late onset of Hth expression in DRA ommatidia is 

particularly interesting since a gradient of PR maturation still exists at these early 

pupal stages: ommatidial clusters have continuously been recruited in the MF 

progressing along the A/P axis and therefore, differ in age by several days (for 

review: (Wolff, 1993). It is unclear why specification of DRA ommatidia by Hth 

does not occur immediately posterior to the MF, especially as the morphogen Wg 

that is able to induce it is already expressed in the peripodial membrane at the 

dorsal and ventral poles of the imaginal disc (Treisman and Rubin, 1995). 

Additional temporal triggers such as the pulses of ecdysone occurring at the 

onset of metamorphosis might therefore be necessary to induce Hth expression 

and consequently the important morphological and physiological changes in DRA 

inner PR cells. The ecdysone receptor (EcR) of Drosophila is a member of the 

large superfamily of ligand-activated nuclear receptors (for review: (Thummel, 

1996). The role of both EcR and its hetero-dimerization partner RXR 

(ultraspiracle) in early eye development has been studied in some detail (Koelle 

et al., 1991; Oro et al., 1990). However, a possible riole in later events like DRA 

specification remains to be tested. Although wg pathway activation was shown to 

have a strong DRA inducing effect throughout the dorsal eye, all attempts to 

demonstrate specification of DRA inner PRs in direct response to the Wg 

morphogen failed (Wernet and Desplan, 2004). The DRA developed normally in 

mutants lacking Wg receptors (Fz + DFz), cytoplasmic wg pathway transducers 

(dsh) or transcriptional effectors (dTCF). These results can be explained by two 

alternative hypothesis (Fig 1B). The possibility remains that Wg directly induces 

the DRA fate in inner PRs at the dorsal rim, by using a different receptor / signal 
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transduction system (dashed line). For instance, the transmembrane protein 

Derailed (drl) has recently been shown to act as a Wnt receptor in the developing 

embryonic nervous system of Drosophila (Yoshikawa et al., 2003). Employment 

of different signal transduction cascades by Drl and Fz/DFz would therefore 

explain the lack of DRA-phenotypes in dsh (-/-) as well as LGMR > tcfDN mutant 

backgrounds. However, as all Wg effects on early eye development (repression 

of eye growth, establishment of ommatidial polarity) have been shown to be 

dependent on the Fz/DFz receptors, it remains unclear why DRA specification 

would act through a different system. Alternatively, the DRA-inducing effect of 

Wg can be explained by the deployment of a secondary signal. According to this 

hypothesis, expression of a second diffusible signal (X) would be induced by Wg 

in the head cuticle. Diffusion of this factor into the developing eye would therefore 

be responsible for DRA development downstream of wg. This model certainly 

appears more complicated and less likely due to the current lack of precedents. 

However, cell non-autonomous inductive effects downstream of both wg and Arm 

have now been reported to influence cell fate determination at the periphery of 

the fly retina, including the DRA (Tomlinson, 2003). 

Two genes expressed in developing PRs were shown to play an important 

role in the specification of DRA ommatidia. Expression of both the Iroquois 

complex IRO-C and optomotorblind (omb) was shown to be restricted to either 

dorsal (IRO-C) or marginal (omb) PRs (Tomlinson, 2003; Wernet et al., 2003). 

Combination of the positional information provided by these two genes therefore 

seemed an adequate strategy for restricting the generation of DRA ommatidia to 

the dorsal rim of the eye. Although the IRO-C genes have been suggested to act 

exclusively in undifferentiated cells anterior to the MF (McNeill et al., 1997); 

(Heberlein et al., 1998), a later role during ommatidial rotation of developing PRs 

posterior to the MF has been suggested (Cavodeassi et al., 1999). The data 

presented revealed that IRO-C genes indeed act as selector genes to specify the 

dorsal compartment of the developing eye, by fulfilling at least two typical 

features proposed for such selector genes: persistence of expression and 

induction of transformations when mis-expressed in the ventral compartment. It 
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Fig IV.1: Overview over the specification of DRA ommatidia 
(A) Schematic representation of a developing retina (dorsal is up).  DRA ommatidia (red) are always found in one or two rows 
along the dorsal rim. 
(B) The DRA develops in response to wg signaling and requires positional information. The diffusible morphogen Wingless (Wg) 
is expressed in the head cuticle, but not in the retina. It is not clear whether Wg directly (dashed arrow) induces DRA ommatidia 
(symbolized by a red inner PR with enlarged rhabdomere diameter) or whether a second diffusible Factor (X) gets activated 
downstream of wg (straight arrow). Ommatidia at the ventral rim do not choose the DRA fate (symbolized by blue inner PRs with 
a small inner PR rhabdomere diameter) as they lack expression of the dorsal selector gene complex IRO-C (orange). Additional 
positional information is provided by omb (blue) expressed in photoreceptors at the dorsal and ventral eye margins. 
(C) Inner PR cell types in the DRA. Schematic representation showing a cross section through an adult retina (dorsal to the left). 
The iner PR marker Spalt (Sal) is specifically expressed in all R7 and R8. In R7 cells, Sal is co-expressed with Prospero (Pros) 
within and outside of the DRA (red cells). In R8 cells outside of the DRA, Sal co-localizes with Senseless (Sens). IN the DRA 
however, Sens is specifically excluded from the DRA, resulting in the unusual DRA R8 cells type (blue nuclei). Wingless (Wg) is  
still expressed both in the dorsal and ventral head cuticle. IRO-C expression is specific to the dorsal compartment in the adult, and 
omb expression is specific to the dorsal and ventral poles. 
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was shown that expression of the IRO-C reporter rF209 persists at very low 

levels during pupal stages before returning to high levels in adults. One possible 

explanation for such transient down-regulation could be that high levels of IRO-C 

genes are toxic for the developing PRs. Indeed, massive cell death was 

observed when either Araucan, Caupolican or Mirror were over-expressed under 

the control of strong GAL4 drivers. However, over-expression at weaker levels 

resulted in the formation of ‘ventral rim areas’. The IRO-C complex therefore 

provides crucial positional information to the developing ommatidia. The exact 

role of the omb locus in this process remains more obscure. In the eye imaginal 

disc, as well as in the developing optic lobes, omb expression is induced upon 

activation of the wg pathway. Expansion of DRA ommatidia and Hth expression 

in the omb gain-of-function mutant QUADROON (see below) suggests a role of 

Omb in DRA development upstream of Hth. However, neither loss nor gain of 

omb resulted in DRA phenotypes. The interplay between wg, IRO-C and omb 

therefore remains to be described in more detail. 

The role of Hth in DRA development represents a unique example 

illustrating how late PR differentiation events specify one of the three ommatidial 

subtypes. Furthermore, it provides evidence that establishment of ommatidial 

subtypes in Drosophila is achieved fairly late by shaping the different PR cell 

fates using consecutive determination steps. Different PR cell types can 

therefore be identified by the combination of transcription factors they express 

(Fig 1C). In a simple model, basic PR cell fate decisions (i.e. determination of the 

8 types of PRs) occur early during third instar larval stage. The distinction 

between inner and outer PRs is controlled by the spalt (sal) complex (salm and 

salr) and is believed to occur shortly after, as Sal expression is already 

detectable in developing larval R7 and R8 of the eye imaginal disc (Domingos et 

al., 2004; Mollereau et al., 2001). Loss of both salm and salr results in 

transformation of adult inner into outer PRs: The inner PR rhodopsin genes (rh3-

rh6) are replaced by the outer PR rh1, although most  axons still maintain their 

projections to the medulla (Mollereau et al., 2001). Following this specification of 

inner PRs by Sal (shown in blue), R7 and R8 are then further distinguished from 
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each other by expression of Prospero (yellow) and Senseless (red), respectively. 

This segregation of inner cell fates occurs early during larval stages and Pros as 

well as Sens have been shown to be lost in Sal (-/-) mutant tissue, confirming 

their role downstream of Sal (Domingos et al., 2004). The specification of DRA 

ommatidia appears to be a specification event occurring significantly later. We 

found that the onset of Salm expression precedes Hth by several days: While Sal 

is expressed early in both R7 and R8 of all ommatidia, Hth expression in the 

DRA is only initiated during early pupation, and remains co-expressed with Sal 

until adulthood. It appears that in a first step during 3rd instar larval life, R7 and 

R8 cells commit to the inner PR fate by expressing Sal. Only these cells are then 

competent to face another cell fate decision at the beginning of pupation: the 

inner PRs of ommatidia close to the dorsal rim come under the influence of a 

DRA inducing signal that includes Wg and start expressing Hth. In all other 

ommatidia the inner PRs develop into two different pairs of color-sensitive PRs in 

a stochastic manner. Consistent with this model, the outer PRs, which do not 

express Sal, are not transformed by forced expression of Hth, and Hth 

expression is lost in Sal (-/-) mutant eyes.  

Adult R7 cells located in the DRA express the combination of the three 

crucial transcription factors Sal, Pros and Hth. This situation can be viewed as a 

recapitulation of the cell fate decisions these cells have taken by choosing the 

inner PR fate (Sal), the R7 fate (Pros) and the DRA fate (Hth). It must be pointed 

out that both DRA inner PRs always express the pR7 opsin Rh3 and therefore 

manifest a closer molecular resemblance to R7 cells than to R8. Persistence of 

Pros expression in DRA R7 cells therefore suggests that these cells represent 

true R7 cells that have adopted the additional cell fate decision of becoming DRA 

inner PRs. The situation of R8 cells in the DRA is significantly different, as DRA 

R8 cells specifically exclude the R8 marker Sens and do not express Pros. Adult 

DRA R8 cells therefore express the unusual combination of the markers Sal 

(inner PRs) and Hth (DRA). Ectopic over-expression of Hth is sufficient to induce 

DRA ommatidia and leads to a complete repression of Sens in all R8 cells. It 

appears therefore that loss of Sens expression is essential for DRA R8 cells to 
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escape the typical color-sensitive p and y R8 cell fates and for switching to the 

DRA R8 fate with its R7-type rh3 expression. This is in agreement with the strong 

gain-of-function phenotype observed for Sens, when ectopically over-expressed: 

As Sens very potently activates rh6 expression and represses rh3, exclusion 

from the DRA by Hth appears to be an efficient way to push these cells away 

from the ordinary R8 cell fate. It seems likely that a transcriptional complex 

involving Hth and Exd directly represses Sens expression. Furthermore, based 

on the dissection of the rh3 promoter, it has been proposed that different factors 

might be responsible for expression of Rh3 in pR7 and in the DRA. However, 

promoter deletion analysis has not yet proven this hypothesis. Nevertheless, the 

Hth/Exd transcription complex also seems an attractive candidate for the 

activation of rh3 expression in DRA R8 cells. 

Taken together, the inner PRs R7 and R8 get specified by Sal, Pros and 

Sens and serve as color sensors throughout the main part of the eye. However, a 

sub-population at the dorsal rim takes the crucial decision to form highly 

specialized detectors of e-vector polarization by gaining Hth expression. As Hth 

expression results from combining wg pathway activity with the positional 

information provided by IRO-C and omb, formation of DRA ommatidia therefore 

depends uniquely on their location within the retina.  

 

DRA ommatidia as a model system for wingless pathway activity 
 DRA ommatidia were the only ommatidial subtype discovered based on 

morphological criteria (Wada, 1974). Since their discovery in Calliphora, DRA 

ommatidia have also been described morphologically in a multitude of other 

insect species (Labhart and Meyer, 1999). Furthermore, the axon projection 

pattern of DRA inner PRs has been described and a detailed model has been 

built describing how polarization-sensitive PRs and higher order POL neurons 

integrate e-vector information in order to improve navigation of the animal 

(Hardie, 1984; Labhart, 1988; Labhart and Meyer, 2002). In Drosophila, the DRA 

forms a band of 1-2 ommatidial rows along the dorsal head cuticle, spanning the 

whole dorsal compartment from equator to equator (Fig 2A, top). Cloning of the 
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rhodopsin genes has allowed an even more detailed description of DRA 

ommatidia in Drosophila, like their unusual monochromatic rhodopsin expression 

in inner PRs (Fortini and Rubin, 1990; Fortini and Rubin, 1991). However, 

development of DRA ommatidia was not understood at all. Using Drosophila 

genetics, the discovery of Hth’s role in DRA development has now allowed a 

detailed analysis of the development of DRA ommatidia, revealing the genes and 

signaling pathways involved in their specification (Tomlinson, 2003; Wernet et al., 

2003). 

The homeodomain transcription factor Hth is both necessary and sufficient 

for DRA development. Ectopic over-expression of Hth in all developing PRs lead 

to a transformation of the whole retina into DRA ommatidia (Fig 2B, top left). 

Ommatidia are completely transformed into polarizartion sensors in these LGMR 

> hth flies, both molecularly (Rh3 expression, Sens exclusion from DRA R8) as 

well as morphologically (inner PR rhabdonmere diameter, elevated nuclear 

position of DRA R8). This is particularly interesting, as axon projections of all 

inner PRs to the medulla remain unchanged. In the wildtype, inner PRs form 

DRA ommatdia always project to the dorsal-most part of the medulla, while the 

rest of the medulla receives information relevant for color discrimination from the 

remaining non-DRA ommatidia. It is therefore tempting to speculate how the 

information coming from ectopic DRA ommatidia gets computed in the brain of 

LGMR > hth flies. Due to the PR-specificity of the GMR driver used, mis-

expression of Hth should not have any effect on brain development. It is 

therefore possible that e-vector information is interpreted as color by these flies. 

Behavioral paradigms have been set up for different dipterans to investigate 

behavioral responses to polarized light (von Philipsborn and Labhart, 1990; Wolf 

et al., 1980). Although color discrimination has been proven to be a rather difficult 

behavior to study, behavioral paradigms also exist and are currently being 

refined for Drosophila. It will therefore be extremely interesting to study the 

behavior of GMR > hth flies, under different light conditions. 

An important new role for the dorsal selector genes of the IRO-C complex 

was revealed in developing PRs posterior to the morphogenetic furrow, by using 
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the DRA as a model system. Strong expression of IRO-C exists in all adult dorsal 

PRs and ectopic over-expression of any IRO-C member using weak GMR-GAL4 

drivers gives rise to an unusual ‘ventral rim area’. A circular band of DRA 

ommatidia was now observed in these sGMR > ara flies (top right). Therefore, 

during early pupal stages, low levels of the dorsally expressed IRO-C genes 

might be employed to restrict formation of DRA ommatidia to the dorsal half of 

the eye rim. These results further indicate that all other factors required for DRA 

induction are also present at the ventral rim and that positional information 

provided by IRO-C is the only component missing there. However, loss of all 

three IRO-C genes does not result in a loss of the DRA. One possible 

explanation is that there exists a fourth unknown factor which is functionally 

redundant with the IRO-C genes. Alternatively, the deficiency used to eliminate 

activity of the three IRO-C genes might bear some residual activity. Recent 

results published on late dorsoventral eye development support this second 

hypothesis (Tomlinson, 2003). The IRO-C system is a striking example of how 

genetic modules are combined to give rise to localized morphological structures. 

It is possible that the more restricted DRAs of different insect species were 

developed by slight changes in the IRO-C expression pattern.  

Activation of the Wg pathway has a strong DRA inducing potential 

throughout the dorsal half of the eye. DRA ommatidia are dramatically expanded 

in flies ectopically activating the wg pathway in developing PRs (center left). 

Strikingly, formation of DRA ommatidia is limited to the IRO-C compartment in 

LGMR > ArmS10 flies. This result supports an important role of the IRO-C 

complex in transducing the effects of wg pathway activity onto ommatidial 

development. Interestingly, early larval expression of the IRO-C complex itself 

had been shown to be activated by the wg pathway. In developing PRs, however, 

IRO-C expression is not affected by wg pathway over-activation. The transient 

down-regulation observed for the IRO-C reporter rF209 at pupal stages therefore 

remains mysterious as the signaling mechanism driving re-expression of IRO-C 

remains unknown. It is possible, however, that dorsal-specific expression of IRO-

C genes is epigenetically locked using modification of the local chromatin and 
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Fig IV.2. DRA ommatidia as a model system for wingless pathway activity 
(A) The wildtype DRA. Top: Schematic of the ommatidial pattern (dorsal is up). DRA ommatidia are found localized as a band 
along the dorsal head cuticle (red) while pale ommatidia (blue) and yellow ommatidia (green) are distributed stochastically , and 
un-evenly (30:70) throughout the rest of the retina. Bottom: Drawing of a wildtype DRA ommatidium. DRA ommatidia manifest 
a dramatically enlarged rhabdomere diameter as well as monochromatic Rh3/Rh3 expression in both inner PRs. 
(B) Different mutant backgrounds affecting wg signaling lead to an expansion of DRA ommatidia. Top left: ectopic over-
expressionj of Hth in all PRs leads to the expansion of DRA ommatidia throughout the whole eye. Top right: Ectopic IRO-C leads 
to the induction of an atypical ‘ventral rim area’, suggesting all other factors required for DRA formation are preent at the ventral 
rim. Center left: Over-expression of activated Armadillo (ArmS10) activates the wg pathway in al PRs and leads to the expansion 
into the whole dorsal compartment, supporting the requirement of IRO-C. Center right: Co-over-expression of both ArmS10 and 
IRO-C  leads to a phenotype identical to the Hth gain-of-function, suggesting that combination of high wg activity and IRO-C are 
sufficient to induce DRA development. Bottim left: DRA ommatdia are expanded in QUADROON gain-of-function alleles of the 
optomotorblind (omb) locus. During early eye development, omb expression had previously been shown to be be activated by wg 
signaling. Bottom right: Expansion of the ‘ventral rim area’ in ombQUADROON mutants ectopically over-expressing IRO-C.



IV. DISCUSSION 

 184

that the expression strength gets merely modulated over time. Only ommatidia 

located within the IRO-C expression domain are competent to respond to the wg 

signal. Therefore, ectopically providing both IRO-C and wg pathway activation 

induce DRA ommatidia throughout the eye (center right). Over-expression of 

both ArmS10 and ara posterior to the morphogenetic furrow was sufficient to 

induce Hth expression in inner PRs throughout the retina. This phenotype is 

strikingly similar to the ectopic expression of Hth itself. Combination of the 

Wingless and IRO-C signals therefore appears to be sufficient to restrict 

specification of DRA ommatidia at the right place in the eye.  

Another mutant affecting the specification of DRA ommatidia provides 

further insight into the regulatory network involving wg and IRO-C (Tomlinson, 

2003). The Quadroon phenotype is due to a gain-of-function in the optomotor-

blind (omb) locus (Kopp and Duncan, 1997). omb encodes a T-box transcription 

factor and plays an important role in the development of Drosophila appendages 

as well as in the establishment of planar polarity in the abdomen (Grimm, 1996; 

Lawrence, 2002). ombQuadroon flies show a dramatic expansion of DRA 

ommatidia which is very reminiscent of over-activation of the wg pathway, 

although the DRA does not quite extend through the entire dorsal eye (bottom 

left; Tomlinson 2003). omb might therefore play an important role in transducing 

the effect of wg onto the DRA ommatidia. In the wildtype, omb expression is 

limited to the dorsal and ventral poles of the eye. It appears therefore that Omb is 

used to limit the extent of the DRA to only few ommatidial rows. Expression of 

omb itself is induced by the wg pathway in developing PRs. However, omb 

expression is not affected in LGMR > ArmS10 flies, suggesting that omb 

expression has to be induced early during larval stages. Therefore, DRA 

expansion in LGMR > ArmS10 flies occurrs independently of omb, suggesting 

that boosting wg activity overcame the requirement of Omb. This points towards 

a model where wg-dependent expression of Omb in the most marginal PRs is 

used to raise responsiveness of these cells to the wg pathway activity. This effect 

of omb is particularly interesting from an evolutionary standpoint, as modulation 

of the omb activity domain (as seen in ombQUADROON mutants) provides yet 
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another possibility to achieve the wide variety of DRA morphologies observed in 

different insect species. However, only in the IRO-C compartment, this 

mechanism results in the specification of a limited number of DRA ommatidia. 

The requirement of IRO-C for the omb-mediated induction of DRA ommatidia 

was indirectly confirmed by ectopically providing IRO-C in an ombQUADROON 

mutant background. In these flies, both the DRA as well as the IRO-C induced 

‘ventral rim area’ are dramatically expanded (top right). This clearly demonstrates 

that adding the positional information of IRO-C to the marginal information 

provided by Omb is sufficient to specify DRA ommatidia. 

Taken together, the DRA ommatidia represent a powerful new model 

system for further study of the wg/wnt signal transduction pathway in greater 

detail. 

 

The localized specification strategy of DRA ommatidia 
DRA ommatidia form in one or two rows at the dorsal rim of the Drosophila 

eye (Fig 3A, left). The homeodomain transcription factor Hth was is a crucial key 

regulator both necessary and sufficient to induce DRA development in inner PRs. 

Through combination of positional information provided by the IRO-C complex 

and the omb locus, Hth expression is specifically induced in inner PRs of those 

dorsal ommatidia exposed to the highest levels of wg pathway activity (Fig 3A, 

right). Based on this model, any Spalt-positive inner PR located within close 

proximity to the dorsal head cuticle is expected to autonomously choose the Hth-

expressing DRA fate. However, cell fate decisions of inner PRs from non-DRA 

ommatidia are tightly linked between R7 and R8 (Chou et al., 1999; Papatsenko 

et al., 1997). Analysis of different mutant background suggests that R7 cells 

instruct the underlying R8 cells to always choose the fate belonging to the same 

subtype (p or y). In order to build a complete mechanistic model for the localized 

specification strategy used for DRA ommatidia, the individual cell fate decisions 

of inner PRs can be analyzed in the DRA. Two simple mutant backgrounds that 

affect the initial cell fate specification of individual inner PRs were used to reveal 

the nature of the underlying instructive processes. For instance, in ommatidia 
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lacking R7 cells (sevenless), R8 always chose the DRA fate correctly, as long as 

they were located in close proximity to the dorsal head cuticle (Fig 3B, left). 
Reciprocally, extra inner PRs, induced by different genetic manipulation 

(mutation in seven-up, rough or by constitutively activating the Ras pathway) 

always acquire the DRA fate when induced at the dorsal rim (Fig 3B, right). 

Fig IV.3: The localized specification strategy of DRA ommatidia 
(A) Left: Scanning electron micrograph depicting the fronto-dorsal part of an adult Drosophila eye (kindly provided by T. 
Labhart). DRA ommatidia are arbitrarily highlightened in pink. Right: Schematic representation of a developing retina (dorsal is 
up). DRA ommatidia (shown in red) seem to form where expression of the dorsal selector gene complex IRO-C (orange) overlaps 
with the marginal expression domain of omb (blue). 
(B) Cell fate decisions of individual inner PRs located in the DRA. The DRA develops normally in sevenless (sev) mutants 
lacking all R7cells, indicating that R8 does not require instruction by R7 cells in order to choose the Hth-expressing DRA fate 
(shown in red). Specification of extra R7 cells using different approaches (ectopic Ras pathway activation, loss of seven up) 
always results in super-numerary Hth-positive cells (shown in red) in the DRA, indicating that R7 cells also can autonomously 
choose  the DRA fate when located close to the dorsal head cuticle. 
(C) Model proposed for specification of DRA ommatidia. Ommatidia get recruited into the DRA fate simply based on their 
location close to the head cuticle. Only marginal ommatidia in the dorsal half receive both high wg signaling levels and the 
positional information of IRO-C. Wg-dependednt expression of Omb in few marginal ommatidia might be required to limit the 
extent of the DRA by specifically enhancing their responsiveness to Wg.
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Therefore, It appears that both inner PRs can choose autonomously to acquire 

the DRA fate when located close to the dorsal head cuticle. These observations 

fit very well with a localized specification model involving a diffusible signal, like 

Wg, emanating from the developing dorsal head and reaching both R7 and R8 

independently. (Fig 3C).  

However, it must be noted that the DRA develops normally when both Wg 

receptors Fz and DFz2, the crucial intracellular signal transducer dsh or the 

transcriptional effector TCF are inactivated in PRs. It is possible that low levels of 

wild type protein could persist long enough for DRA development to proceed in 

homozygous Fz/DFz2 or dsh clones generated with ey-flip or Wg could act 

through a different receptor pathway like the Derailed receptor (Yoshikawa et al., 

2003). Alternatively, another diffusible factor could act in parallel with the Wg/Fz 

pathway to induce the DRA. Such a factor could even act downstream of Wg as 

a ‘relay signal’. This certainly appears more complicated and less likely due to 

the current lack of precedents. However, cell non-autonomous inductive effects 

downstream of both wg and Arm have now been reported to influence cell fate 

determination at the periphery of the fly retina (Tomlinson, 2003). This data 

indeed suggests that Wg might not directly induce the DRA fate in R7 and R8, 

but rather require a second, diffusible downstream factor. 

Taken together, specification of DRA ommatidia follows a strategy which 

is fundamentally different from that used for specification of p and y ommatidia. 

Inner PRs choose the DRA fate without communication between R7 and R8. 

Instead, they acquire expression of Hth solely based on their location within the 

IRO-C / omb territory. However, the exact nature of the diffusible signal inducing 

the DRA fate as well as the signal transduction machinery involved remain to be 

cleared up. 

 

Loss of Homothorax and odd-coupled ommatidia 
Inactivation of Hth function results in the transformation of the DRA into 

atypical color-sensitive ommatidia with unusual odd-coupled inner PR opsin 

expression. Over-expression of a dominant negative form of Hth (hthHM) leads to 
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the mis-specification of DRA ommatidia, based on loss of the typically enlarged 

inner PR rhabdomere morphology as well as loss of Rh3 expression in R8 (Fig 
4A). Interestingly, R8 cells in the DRA of LGMR > hthHM flies always express 

Rh6, while R7 maintain expression of Rh3 (Fig 4B, left). Expression of Rh4 and 

Rh5 was never detected at the dorsal rims of flies over-expressing hthHM. This 

suggests that loss of Hth function does not allow the full program of color PR 

specification to be activated at the dorsal rim. In the dorsal-most ommatidia of 

GMR>hthHM flies, p and y subtypes are not distinguished stochastically as R7 

cells always choose the pR7 fate, while R8 cells choose the opposite yR8 fate. 

Expression of Rh6 in R8 is particularly interesting, as R8 cells in sev mutants 

choose expression of the same ‘ground state’ opsin (Chou et al., 1999; 

Papatsenko et al., 1997). It appears therefore that in the absence of hth function, 

R8 cells at the dorsal rim do not get properly instructed by the pR7 cells and 

choose the ‘naïve’ expression of Rh6 instead. This is further explained by the fact 

that these cells gain expression of the non-DRA R8 marker Sens, which was 

shown to be sufficient to have a strong inductive effect on rh6 expression when 

ectopically expressed. Maintenance of rh3 expression in R7 cells at the dorsal 

rim of LGMR > hthHM eyes, however, was unexpected. Since Rh6 was found to 

be the default state in R8 cells, rh4 had previously been suggested by 

extrapolation to be the ground state in R7 (Chou et al., 1999). However, it is 

unclear why R7 cells at the dorsal rim should actively acquire the p fate in 

absence of hth function and then be unable to transmit this cell fate decision to 

the underlying R8 cell. Instead, these results suggest that Rh3 might in fact 

represent the ground state opsin expressed in R7 lacking the appropriate signals 

for terminal differentiation. This hypothesis is supported by the loss-of-function 

phenotype described for the gene spineless (ss). Loss of ss results in the 

complete loss of rh4 expression and the simultaneous expansion of rh3 into all 

R7 cells (see below). As ss is expressed specifically in yR7 cells and is sufficient 

to induce the yR7 cell fate, it appears that the ‘default state’ of R7 cells is indeed 

rh3-expressing pR7. 
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Fig IV. 4: Loss of Homothorax and odd-coupled ommatidia 
(A) The wildtype DRA. Top: Schematic of the ommatidial pattern (dorsal is up). DRA ommatidia are found localized as a band 
along the dorsal head cuticle (red) while pale ommatidia (blue) and yellow ommatidia (green) are distributed stochastically , and 
un-evenly (30:70) throughout the rest of the retina. Bottom: Drawing of a wildtype DRA ommatidium. DRA ommatidia manifest 
a dramatically enlarged rhabdomere diameter as well as monochromatic Rh3/Rh3 expression in both inner PRs. The nucleus of 
DRA R8 cells is located significantly more distal as other R8 nuclei Sens exprerssion is specifically excluded (white circle). 
(B) Loss of Hth leads to the formation of odd-coupled ommatidia. Top left and bottom left: Over-expression of dmominnant 
negative Hth (hthHM) leads to a complete loss of DRA morphology. Furthermore, expression of Rh3 is lost in R8. Instead, R6 
expands into the DRA R8, resulting in coupled expression of Rh3 and Rh6 within the DRA ommatidia. Sens expression (pink 
circle) also expands into the nucleus of DRA R8, confirming the loss of DRA fate. Top right: Over-expression of hthHM in 
ombQUADROON mutants leads to the formation of many odd-coupled ommatidia in the dorsal compartment (data not shown). 
Center right: Co-over-expression of ArmS10 and hthHM leads to the transformation of the whole dorsal eye into odd coupled 
ommatidia. Bottom right: Triple over-expression of ArmS10, IRO-C and hthHM should therefore transform the whole eye into 
odd coupled omatidia. 
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The hypothesis about inner PR opsin ground states was further tested by 

transforming the whole dorsal half of the eye into odd coupled (Rh3/Rh6) 

ommatidia. Over-expression of both activated Armadillo and dominant negative 

Hth (GMR>ArmS10+hthHM) has a dramatic effect on ommatidial specification. All 

dorsal R7 cells express Rh3 and their underlying R8 cells express Rh6 (right 

center). Rh4 and Rh5 are never detected in dorsal ommatidia, in these flies. This 

suggests that ectopic activation of the wg pathway directs dorsal ommatidia 

towards the DRA program, but without Hth function, the DRA program cannot be 

executed. Rh3 expression is therefore lost in all R8 cells, and odd-coupled 

ommatidia populate the whole dorsal eye. Based on these findings, it should be 

possible to create an adult fly eye composed exclusively of odd coupled 

ommatidia. Over-expression of both activated Armadillo and IRO-C is sufficient to 

induce DRA ommatidia throughout the entire eye. Intruduction of additional hthHM 

transgenes into a LGMR > ArmS10 + ara background should abolish the DRA 

inducing program downstream of Hth, resulting in all R7 cells expressing Rh3 

and Rh6 being the only opsin expressed in R8 (bottom right). Technically, this 

experiment has not been possible yet, due to the high toxicity of IRO-C genes 

when mis-expressed at high levels. 

Taken together, it appears that the Rh3/Rh6 pair represents the 

combination of independent R7 and R8 ‘ground states’ upon which PR subtype 

decisions are imposed: the stochastic choice made by R7 cells outside the DRA 

is usually linked to communication from these R7 to R8, resulting in coupling of 

rh3/rh5 in p and rh4/rh6 in y subtypes. This communication is suppressed in 

DRA inner PRs even when Hth function is lacking, suggesting that the high levels 

of wg pathway activity inducing Hth at the dorsal rim might also repress all the 

subtype decisions of color-sensitive ommatidia, including communication 

between R7 and R8. Interestingly, ss was found to be incapable of inducing rh4 

expression in DRA inner PRs, when ectopically expressed. Furthermore, ectopic 

expression of activated Armadillo neutralized ss function  in the whole dorsal half 

of the eye (loss of rh4), confirming that, in the dorsal eye, high wg levels indeed 

suppress stochastic specification of p and y ommatidia. 
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Different default opsins in R7 and R8: Spalt gain-of-function 
 The spalt complex (sal) encodes two homologous zinc finger transcription 

factors (Spalt major and Spalt related) and loss of sal results in loss of inner PR 

identity: based on rhabdomere morphology as well as opsin expression, inner 

PRs become virtually identical to R1-R6 (Mollereau et al., 2001). Furthermore, 

inner PR-specific markers like the R7 marker Pros, the R8 marker Sens and the 

DRA marker Hth are lost in Sal (-/-) eye tissue. However, R7 and R8 still project 

to the medulla in sal (-/-) mutants, suggesting that inner PRs get initially specified 

correctly and project their axons to the right layer of the optic lobe, but then fail to 

maturate correctly into adult R7 and R8. Sal also induces important inner PR-like 

features in R1-6 when ectopically over-expressed. Interestingly, Sal is sufficient 

to repress rh1 and to activate rh3 and rh6 expression in outer PRs (see below). It 

appears therefore that mis-expression of Sal specifically induces the two inner 

PR ‘default state’ opsins in outer PRs. This observation confirms the hypothesis 

presented before, that naïve inner PRs expressing Sal, but lacking additional 

inner PR specification markers (Pros, Sens, Hth, Ss), always choose expression 

of these two default state opsins. To illustrate this argument, the Sal gain-of-

function data will be briefly reviewed. 

Expression of Salm becomes specific to R7 and R8 rather early during 

third instar larval stages. Several rows posterior to the morphogenetic furrow 

(MF), R8 cells already start co-expressing Sal and Sens (Fig 5A). The role of Sal 

in R8 cells is particularly interesting as the R8 marker Sens was found genetically 

to be placed both upstream and downstream of Sal: It appears that very early 

during inner PR specification, Sens plays an important role upstream of Sal in 

specifying the R8 cell. Loss of Sens results in the loss of inner PRs and therefore 

the loss of Sal expression. Later, however, Sens is indispensable for the correct 

maturation of R8 cells, as reflected by its strong ability to activate expression of 

the R8 default state opsin rh6. This late role of Sens has been shown to be 

dependent on Sal, as late Sens expression is lost in Sal clones. Onset of Sal 

expression therefore represents an important event during PR development, the 

transition between PR specification and PR maturation. As R7 cells are the last 
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Fig IV.5: Different default opsins in R7 and R8: Spalt gain-of-function 
(A)-(C) Summary of Spalt (Sal) expression in larval inner PRs. Eye imaginal disc dissected from wandering third instar larvae 
and triple stained with antibodies against Sal (red), the R8 marker Sens (green) and ElaV (blue). R8 begins to co-express Sal and 
the early marker Sens approx. 6 rows posterior to the morphogenetic furrow. (B) Eye imaginal disc triple stained with antibodies 
against Sal (red), the R7 marker Pros (green) and ElaV (blue). Developiong R7 cells co-express Sal and Pros from the very 
beginning. (C) Eye imaginal disc triple stained with antibodies against Sal (red), the early inner PR marker Runt (green) and ElaV 
(blue). Both R7 and R8 (marked by Run) start expressing Sal during larval stages. 
(D)+(E) Ectopic Sal specifically expands rh3 and rh6 expression. Frozen section through an adult eye from flies ectopically over-
expressing Sal in all developing PRs. Expression of the pR7 reporter rh3-lacZ, stained with X-Gal, is dramatically expanded into 
all PRs (sGMR > sal), with projections to both the lamina (L) and the medulla (M). (E) Expression of the yR8 reporter rh6-lacZ is 
also dramatically expanded into all PRs as seen on frozen sections through sGMR > sal eyes stained with X-Gal. Projections to 
both the lamina (L) and the medulla (M) are clearly stained. 
(F) Expansion of rh3 and rh6 expression visualized in whole mounted adult sGMR > sal retinas. Co-expression of rh3-GFP 
(green), Rh6 (blue) and the rhabdomeric marker Phalloidin (red) is frequently observed. 
(G)-(J)  Expression of rh1 is completely lost in LGMR > sal flies, sup[porting the loss of in outer PR identity. Instead, expression 
of rh3 and rh6 is expanded into outer PRs as seen by labeling expression of lacZ reporter constructs on frozen sections with 
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cell to be recruited into the ommatidial cluster, these cells co-express Pros and 

Sal from the very beginning (Fig 5B). Recently, the gene runt (run) has also been 

reported to play an important role in inner PR development. Run encodes a  

transcription factor homologous to the Acute Myeloid Leukemia 1 protein (AML-1) 

and is required for correct segmentation of the early Drosophila embryo. 

Interestingly, early over-expression of Run in all developing PRs results in the 

mis-projection of outer PR axons into the medulla, suggesting that these cells 

have acquired an inner PR-like identity. Indeed, Run was found to be specifically 

expressed in larval inner PRs R7 and R8. However, the onset of Run expression 

in these cells precedes Sal, resulting in co-expression of Run and Sal only in 

larval inner PRs in the posterior part of the eye imaginal disc (Fig 5C). Based on 

both the Run gain-of-function phenotype and the expression pattern of Run and 

Sal, these two proteins could act sequentially in the same process of inner PR 

development. This hypothesis was tested by ectopically over-expressing Sal in 

developing PRs, under GMR-GAL4 control. Sal specifically activates expression 

of rh3 and rh6 in outer PRs, while rh4 and rh5 are not expanded (Fig 5D-H). This 

is particularly interesting as these are the two opsins expressed in inner PRs at 

the dorsal rim of flies over-expressing dominant negative Hth. Finally, expression 

of rh1 was completely lost in LGMR > Sal flies, supporting the model, that the 

gaining Sal expression was sufficient to repress this terminal marker of outer PRs 

(Fig 5J). It should be noted that axon projection of outer PRs to the lamina was 

not affected in these LGMR > Sal flies. This suggests that mis-expression of Sal 

in outer PRs results in a partial re-programinng of their cell fate, away from the 

outer PR fate (loss of rh1) and towards a naïve inner PR fate (expression of inner 

PR default opsins). The Sal gain-of-function phenotype therefore confirms the 

hypothesis of the two inner PR ‘default states’ belonging to different ommatidial 

subtypes. 

Taken together, the gain-of-function phenotype observed for Sal confirms 

the hypothesis that the rh3-expressing pR7 cell fate is indeed the default state of 

R7 cells. R7 and R8 default states therefore belong to different ommatidial 

subtypes, as R8 express the yR8 opsin rh6 in sev mutants. 
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Spineless provides new insights into the formation of a retinal mosaic 
 Loss of the gene spineless (ss) results in a dramatic change in the 

ommatidial subtype pattern. In the wildtype, 30% of all ommatidia outside of the 

DRA express the p opsin Rh3 in R7 and Rh5 in R8, while the remaining 70% of y 

ommatidia show coupled expression of Rh4 in R7 and Rh6 in R8 (Fig 6A). Prior 

to this study, mutants affecting expression of rh4 were not known. In ss (-/-) 

mutants eyes, expression of Rh4 is completely lost and Rh3 expression is 

expanded into all R7 cells (Fig 6B). The ss mutant phenotype is even more 

surprising, considering that it seems to clearly contradict the previous model of 

how co-ordinated opsin expression in p and y ommatidia its achieved. As 

described before, rh4 was proposed to be the default opsin in R7 cells, from 

which pR7 cells have to are distinguished, by switching to the expression of rh3 

(Chou et al., 1999; Wernet et al., 2003). Although the question of which opsin 

gene represents a true ‘default state’ might indeed be argued, the ss phenotype 

strongly supports a model in which yR7 cells get distinguished from a rh3 

expressing default state by gaining ss expression. Using a ~1.6 kb of genomic 

DNA from the ss locus, expression of ss was visualized in developing PRs. 

Expression of this ‘eye enhancer’ is specific to a large subset of pupal R7 cells, 

highly reminiscent of the yR7 subtype (Fig 6C). However, no ss expression is 

detectable at later stages, when Rh4 protein begins to be expressed. It appears 

therefore, that a relatively short pulse of Ss might be used in yR7 cells to induce 

their final cell fate decision. This situation seems very different from the induction 

of specialized inner PR cell fates in DRA ommatidia by Hth. Hth expression 

becomes detectable early during pupation and remains in DRA inner PRs until 

the end of the animal’s life, suggesting that Hth is also required for maintaining 

the DRA fate, possibly by regulating opsin expression directly. A short window of 

ss expression in yR7 supports a role of ss as a regulatory switch inducing the y 

fate and repressing the p fate. The expansion of Rh3 expression into all R7 cells 

observed in ss (-/-) mutant eyes supports such a model. Additional factors are 

therefore required downstream of ss to maintain the cell fate decisions in R7, for 

instance by regulating Rh4 expression throughout the 
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Fig IV.6: Spineless provides new insights into the formation of a retinal mosaic 
(A) The retinal mosaic in wildtype Drosophila. Left: schematic representation of a developing wildtype retina (dorsal is up). DRA 
ommatidia are shown in red, pale and yellow ommatidia in blue and green, respectively. Right: Schematic representation of inner 
PR opsin expression in a wildtype retina. Coupled expression of Rh3 (red) in R7 and Rh5 (blue) in R8 is seen in a small subset of 
ommatidia, whereas a larger subset expresses Rh4 (cyan) in R7 and Rh6 (green) in R8. Inthe DRA, both R7 and R8 express Rh3. 
(B) Spineless loss-of-function phenotype. Left: The ommatial mosaic is severely altered in ss (-/-) retinas as y ommatidia are 
comepletely lost. Specification of DRA ommatidia (red), however, appears to be normal. Right: Expression of rh4 is completely 
lost in ss mutant eyes and expression of rh3 is expanded into all R7 cells instead. As a result, the ratio of p ommatidia is 
dramatically increased. In the R8 layer, however, a varying number cells retain expression of Rh6, resulting in ~5-50% of odd-
coupled (Rh3/Rh6) ommatidia. 
(C) Spineless expression pattern. Left: Using the sseye-GAL4 reporter construct, specific expression was detected in a large subset 
of ommatidia (red), strongly resembling the y subset of ommatida. Right: Expression of sseye-GAL4 was found to be specific to a 
large subset of R7 cells (shown in red), supporting the model that ss might specifically induce the yR7 fate in these cells. 
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adult life of the fly. Unfortunately, no antibodies against Ss are available to 

confirm the pulse of Ss protein expression in yR7 cells. Several attempts have 

been made to generate anti-Ss antibodies, but none of them has been successful 

yet. In situ hybridizations using antisense RNA probes against the ss cDNA have 

also been performed in the developing visual system, but no clear result has 

been obtained yet. For now, the sseye-GAL4 driver therefore represents the only 

way to investigate ss expression, with a significantly limited use. For instance, 

sseye-GAL4 expression remains to be analyzed in different mutant backgrounds 

like sal (-/-) tissue. Furthermore, sseye-GAL4 can be used in ‘memory 

experiments’, in which the flip/FRT system is used to sustain subset-specific ss 

expression in PRs until adulthood. Several FRT-constructs have already been 

tested (Act-FRT-CD2-FRT-lacZ:NLS, gift from Gary Struhl; Act-FRT-CD2-FRT-

GAL4, from Jessica Treisman) in combination with sseye-GAL4 and UAS-flip. 

However, the efficiency of flip/FRT recombination appears to be extremely low 

during later stages of PR development, as even positive controls (rh4-GAL4, 

UAS-flip, Act-FRT-CD2-FRT-lacZ:NLS) resulted in negative results (no co-

expression of βGal and Rh4 in the adult; data not shown). Taken together, it 

must be concluded that these experiments are quite difficult to perform, partly 

due to technical problems as well as the high number of transgenes that have to 

be introduced. Furthermore, expression of sseye-GAL4 cannot be visualized at all 

in mutant backgrounds involving GAL4 mis-expression, like LGMR > hth or 

LGMR > ArmS10, thereby clearly limiting the use of this reporter construct. 

Antibodies against Ss therefore represent a very high priority for the near future. 

 The retinal mosaic of Drosophila seems to be generated in mid-pupal PRs 

(~48 hrs APF), when ~70% of the R7 cells stochastically express ss. Expression 

of ss results in the induction of the yR7 fate, whereas the remaining R7 cells fall 

into the default fate pR7. It is unknown how stochastic expression of ss is 

regulated, but a relatively short piece of genomic DNA has been isolated which 

seems to faithfully reproduce the ss expression pattern. Further analysis of ss 

expression will hopefully allow a better understanding of how stochastic choices 

are regulated to create retinal mosaics. 
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Transcriptional control of R7 opsin expression in color ommatidia 
Loss of the Drosophila aryhydrocarbon receptor Spineless results in a 

complete loss of rh4 expression and currently represents the only mutation to 

specifically affect specification of the y subtype of R7 cells. Based on different 

lines of evidence, a new model for R7 ‘default state’ opsins was proposed in 

which ~70% of R7 cells stochastically gain expression of ss, which then drives 

these cells into the y fate and away from the pR7 fate. Expansion of rh3 

expression into all R7 cells in ss mutants argues that Ss does not simply act on a 

transcriptional level, by directly or indirectly activating rh4 transcription (Fig 7A). 

Instead, data seem to point toward a role for Ss as a key regulator placed 

upstream of the regulators of opsin transcription. This appears to be confimed by 

the pulse of yR7-like ss expression observed in pupal PRs. As no ss expression 

is detectable in adult PRs, it appears therefore that ss does not directly 

participate in the activation of rh4 expression. 

Recently, we have reported that mutations in the homeodomain 

transcription factor Orthodenticle (otd) result in a dramatic opsin phenotype which 

is characterized by the specific loss of p opsin expression (Tahayato et al., 

2003). For instance, eyes lacking otd function completely lose rh3 expression, 

whereas rh4 seems to persist. However, in contrast to the phenotype observed in 

ss mutant eyes, rh4 expression does not expand into all R7 cells (Fig 7B). As 

Rh4 expression is still specific to a subset of R7 cells in otd mutants, the 

specification of p and y ommatidia must occur correctly. Otd was shown to 

directly bind to the rh3 promoter to acting as a direct opsin regulator downstream 

of the p / y decision, in which Ss plays a crucial role. It must be pointed out that 

the choice of p and y subtypes in R7 cells can therefore be dissociated from R7 

opsin gene expression. In the olfactory system, expression of a given sensory 

receptor was shown to influence cell fate decisions by excluding expression of all 

other odorant receptors by allelic exclusion. Loss of Rh3, however, does not lead 

to the automatic gain of Rh4 expression in otd mutants. Conversely, late 

induction of Rh4 in the pR7 subtype using over-expression of Ss under rh3-GAL4 
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control resulted in co-expression of Rh3 and Rh4. These findings indicate that 

opsin proteins are not involved in p / y subtype decisions in Drosophila. 

As Otd is expressed in all PRs (Vandendries et al., 1996), its activating 

effect on rh3 expression has to be neutralized in cells that have adopted the yR7 

fate in response to Ss. As transcriptional regulation of otd can be excluded, it 

seems most likely that additional factors are recruited by Ss to neutralize otd 

function in yR7 cells. However, these transcription factors remain to be identified. 

Interestingly, the vertebrate Estrogen receptor, a member of the superfamily of 

nuclear receptors, and the Arylhydrocarbon receptor have been shown to interact 

at the transcriptional level (Klinge et al., 2000). The Drosophila homologue of the 

nuclear receptor dimerization partner RXR, Ultraspiracle (Usp), has been shown 

to play a role in eye development (Oro et al., 1990) and might be required 

together with the Ecdysone receptor for the induction of Hth expression in the 

DRA. Specification of R7 cells was reported to be affected in usp mutants, as a 

loss of rh4-lacZ expression was reported (Oro et al., 1992). A possible role of 

Usp in concert or downstream of both Hth and Ss is currently being tested. 

The generation of antibodies against Ss has very high priority. They will 

allow to rule out the possibility that Ss itself remains expressed in yR7 cells to 

antagonize Otd and activate rh4 transcription. Mutational screens are currently 

being performed to identify the potential factors regulating rh4 expression 

downstream of Ss. It is particularly interesting to speculate whether a phenotype 

similar to that of otd will be discovered, in which rh4 expression is lost without rh3 

expanding into all R7 cells (Fig 7C). Such ‘Factor Y’ phenotype would indicate 

that activation of rh4 transcription and neutralization of Otd downstream of Ss are 

dependent on different factors. However, it also possible that the putative rh4 

activator is the same factor that antagonizes Otd. In this case, mutants should 

resemble ss mutants in R7 cells. Both Ss and Otd play an important role in 

regionalizing the head tissue. It is therefore tempting to speculate that these two 

genes also genetically interact in different model systems and that antagonism 

between ss and otd are more widely used molecular mechanism to regulate 

specification of different cell fates. Identification of more mutants affecting opsin 
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Fig IV.7: Transcriptional control of R7 opsin expression in color ommatidia 
(A) Loss of rh4 transcription in ss mutants. Top: schematic representation of a mutant retina lacking ss function (dorsal is up). 
Yellow ommatidia are completely lost due to the loss of rh4 expression. Instead, p omatidia are dramatically expanded. It should 
be noted that a varying number of odd coupled ommatidia (Rh3/Rh6) was also found replace the lost y ommatidia. Bottom: 
Depiction of a p ommatidium as found dramatically expanded in ss mutants. 
(B) Loss of p opsin expression in orthodenticle (otd) mutants. Top: Schematic representation of a developing retina lacking otd 
(dorsal is up). Specification of p ommatidia (white circles) as well as the DRA (grey circles) is affected in otd mutants, due to the 
loss of rh3 and rh6 transcription. However, y ommatidia do not expand. Bottom: Transcription of both p opsins rh3 and rh5 is lost 
in otd mutants (white cells). It is unclear which opsins are expressed in p ommatidia in these mutants as rh4 expression does not 
expand. Instead, expansion of both rh1 and rh6 into R7 cells was observed. 
(C) Predicted mutant ‘Factor Y’. As Ss was shown to play a role in subtype choice rather than opsin gene transcription, mutant 
phenotypes are predicted which affect yR7 specification downstream of ss, for instance by regulation expression of rh4 (‘Factor 
Y’). Top: Mutant phenotype predicted for a ‘Factor Y’ mutant retina, I which specification of y ommatidia is specificaslly 
affected without p ommatidia expanding. Bottom: ‘Factor Y’ mutant ommatidium, with rh4 expression being los. R8, however is 
expected to express Rh6 as in sev mutants. 
(D) Conserved sequences in the rh4 promoter. Cloning and sequence comparison of rh4 promoters from both Drosophila 
melanogaster (top) and D. virilis (bottom) has revealed several conserved boxes which are believed to be bound by opsin 
regulators. Using one-hybrid techniques, these sequences might reveal factors acting downstream of Ss (‘Factor Y’). 
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expression in pR7 and yR7 will therefore allow a refinement of the epistatic 

relationships within the transcriptional network regulating the specification of 

ommatidial subtypes. 

Until recently, no mutations in inner PR opsin genes were identified. Using 

P-element excision mutagenesis, a null mutation in the rh5 gene was recently 

generated (S. Yamaguchi, unpublished). Interestingly, pR8 PRs seem to be void 

of any opsin gene, indicating that neither Rh6 expression expands into all R8 

cells, nor any other ‘default opsin’ (rh1) expands into these cells. These findings 

further confirm the independence of ommatidial subtype decisions from opsin 

gene expression. Furthermore, they allow the prediction that at least one mutant 

should exist with a phenotype similar to the above postulated ‘Factor Y’. Mutants 

in the yR7 opsin rh4 should not expand rh3 expression due to all the findings 

described so far and attempts to mutate rh4 are currently undertaken. 

Cloning of the rh4 promoters from different Drosophila species, as well as 

promoter dissection analysis have revealed several short, conserved stretches of 

promoter DNA absolutely required for rh4 expression (Fig 7D; (Fortini and Rubin, 

1990). No factors have yet been shown to bind to these sequences in vitro or in 

vivo, but it appears likely that factors required downstream of ss, like the putative 

‘Factor Y’, should be acting through these sequences. It should be noted, that 

one of the previously identified boxes (RUS4A III) has a high resemblance to the 

consensus binding sites of AHR/Arnt arylhydrocarbon receptors (CACGT; for 

review: (Crews and Fan, 1999). Recently, RUS4A III has been mutated in a rh4-

lacZ reporter transgene (T. Cook, unpublished). However, expression of is 

indistinguishable from wildtype rh4-lacZ. It appears therefore, that the RUS4A III 

sequence is not absolutely required for rh4 expression.  This result fits very well 

with previous observations that Ss is not expressed at times when rh4 is 

activated. Furthermore, the Drosophila AHR dimerization partner Tango does not 

seem to be required for induction of the yR7 fate by Ss. It is therefore unclear to 

what consensus sequence Ss is binding to activate downstream genes. It is 

possible that Ss binds to DNA as a homodimer or in co-operation with other PAS 

HLH proteins. However, either of these scenarios has not yet been described in 
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any other model system. The yeast one-hybrid technique has recently been 

successfully used to identify the trans-activating factor (Pros) that binds to 

conserved sequences in the rh5 and rh6 promoters. The same technique is 

currently applied to the conserved sequences identified from the rh4 promoter. 

The factors required in terminal differentiation of yR7 cells downstream of Ss 

might therefore soon be known. 

Taken together, comparison of the ss and otd loss-of-function phenotypes 

place Ss as the regulator of p / y cell fate decisions in R7 upstream of opsin 

regulators like Otd and additional yet unknown factors. 

 

Ommatidial subtype specification as a transcriptional model system 
The genetic programs induced by Hth and Ss controlling the complex 

morphological changes in DRA inner PRs and yR7 remain largely unknown. 

However, both Hth and Ss have conserved counterparts in vertebrates which are 

the subjects of intense research (for review: (Sagerstrom, 2004); (Aoki, 2000). 

The advantages of modern Drosophila genetics therefore make ommatidial 

subtype specification an attractive new model system to study how both Hth/Meis 

and Ss/AHR proteins regulate transcription. The fact that Hth and Ss seem to 

antagonize each other to some extent in order to ensure clear distinction 

between DRA and color ommatidia makes this model system even more 

interesting, as it allows the study of more complex transcriptional networks. 

A better understanding of Hth function in vivo is of great importance as 

mammalian homologues of Hth (Meis1a) cooperate with HOX factors to induce 

acute myeloid leukemia (AML; (Moskow et al., 1995); (Nakamura et al., 1996b); 

(Nakamura et al., 1996a). It has been proposed however, that direct association 

with HOX factors is not always necessary (Calvo et al., 2001). Since no HOX 

proteins have yet been implicated in Drosophila eye development, DRA 

development represents an attractive model system for identifying new factors 

interacting with Hth and Exd in vivo. In the Drosophila embryo as well as in 

developing appendages, Hth acts in concert with its crucial co-factor Exd and 

with HOX proteins by forming transcriptional complexes. One of the major roles 
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of Hth is to translocate Exd into the nucleus (Jaw et al., 2000); (Kurant et al., 

2001). Consistent with this, Exd was found to be exclusively localized to the 

nuclei in inner PRs of the DRA, but not in color-sensitive ommatidia, suggesting 

that Hth and Exd function together as key regulators in DRA development. 

From the GAL4 / GFP enhancer trap screen, we have recently identified 

new factors involved in cell fate regulation downstream, or together with, 

Hth/Exd. Loss of the two homologous Zn finger transcription factors encoded by 

the elbow / no ocelli complex (elB/noc; (Dorfman et al., 2002; Weihe et al., 2004) 

results in a molecular phenotype identical to the loss of Hth. Inner PRs in the 

DRA always express Rh3 in R7 and Rh6 in R8. Expression of Hth/Exd in the 

DRA persists in these mutants, indicating that these genes act downstream of 

Hth (M.F. Wernet and C. Desplan, in preparation). Loss of elB and noc also 

results in co-expression of the R8 marker Sens and Hth in DRA R8 cells. As 

presented before, repression of Sens by Hth represents another important 

example of how this transcriptional system specifies the individual cell types of 

the different ommatidial subtypes. Interestingly, conserved homologues for both 

Elb and Noc have been identified in worms, fish and humans (Andreazzoli et al., 

2001). The role of the worm homologue TLP-1 is particularly interesting as it 

induces cell fate changes in the male tail tip in response to wnt signaling, a 

situation very similar to the role of elB / noc in the DRA of Drosophila (Zhao et al., 

2002). Further experiments using the DRA as a model system will therefore 

reveal to what extent the role of these proteins is conserved.  

The transcription factor Orthodenticle (Otd) represents another member of 

the transcriptional network regulating ommatidial subtype specification and its 

interaction with Hth and Ss was presented in detail. For instance, Otd was shown 

to be required as an activator of Rh3 in DRA inner PRs downstream of Hth. 

Ectopic expression of Hth does not induce Rh3 expression in an otduvi mutant 

background. Furthermore, Otd is indispensable for expression of the R7 ‘default 

state’ opsin rh3, which is repressed by Ss very efficiently. The analysis of the 

transcriptional interaction between Hth/Exd, Otd and Ss will provide new insights 

into the molecular function of these genes. 
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The role of the Sal complex in specifying inner PRs has been introduced 

in some detail. All inner PR markers like Pros (R7), Sens (R8) and Hth (DRA) are 

under the control of Sal. Expression of these genes is lost in Sal (-/-) tissue and 

Hth is not able to induce DRA development in cells which have not been ‘primed’ 

by Sal. However, the competence to execute the yR7-inducing genetic program 

imposed by Ss is not limited to inner PRs and Ss is capable to induce rh4 

expression in sal mutants. It appears therefore that Hth and Ss act in a different 

transcriptional context. However, it seems likely that Ss still acts downstream of 

sal. Based on the data presented, Ss activity appears to be regulated by a tight 

control of its expression over both time and space: only very restricted 

expression of Ss in a large subset of R7 cells is observed during pupation. 

Furthermore, both loss of Rh4 in ss mutants as well as the strong rh4-inducing 

effect of Ss indicates that expression of Rh4 is completely dependent on ss. As 

rh4 expression is lost in sal mutants, expression of ss should therefore also be 

lost in sal (-/-) tissue. This hypothesis has not yet been tested using sseye-GAL4. 

However, generation of Anti-Ss antibodies will allow to further test the epistatic 

relationship of the different factors involved in maturation of R7 cells: Sal, Pros 

and Ss. 

Both Ss and its homologue, the vertebrate arylhydrocarbon receptor, play 

an important role in regulating transcription (for review: (Crews and Fan, 1999; 

Kewley et al., 2004). However, the mechanisms of transcriptional regulation by 

these proteins seem to be significantly different. In vertebrates, the AHR is 

stabilized in the cytoplasm by binding to hsp90 proteins as well as the 

‘arylhydrocarbon interacting protein’ (AIP). Upon binding of the arylhydrocarbon 

ligand (Dioxin, for instance), AHR frees itself from its binding partners and 

translocates alone into the nucleus. In the nucleus, AHR associates to its binding 

partner, the ‘aryl hydrocarbon receptor nuclear translocator’ (Arnt, the homologue 

of Drosophila Tango) to activate transcription. In Drosophila, it is unknown 

whether Ss requires binding of an arylhydrocarbon-like ligand. Unlike in 

vertebrates, its mandatory co-factor Tango (Tgo, D-Arnt) is localized in the 

cytoplasm and transcription of Ss is absolutely required for translocating Tgo into 
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the nucleus. Within the nucleus, the Ss/Tgo complex activates transcription by 

sequence-specific binding to well-characterized response elements. The 

mechanism by which Ss/Tgo function as transcription factors in flies is therefore 

astonishingly similar to Hth and Exd. However, it was shown that tgo does not 

seem to be required to specify yR7 cells, indicating that the molecular 

mechanism of ss function might be different in developing PRs. In this context, 

the existence of a Drosophila homologue of the vertebrate AIP is particularly 

interesting. Further experiments will reveal how Ss (and possibly Tgo or 

Drosophila AIP) interact with the factors involved in the transcriptional network of 

ommatidial subtype specification. 

Taken together, both Hth and Ss are part of a complex, steadily growing 

transcriptional network regulating retinal pattering in Drosophila. This model 

system will not only lead to a better understanding of their molecular function in 

the fly, but might also provide further insight into what roles their vertebrate 

counterparts play in carcinogenesis and drug resistance.  
 

Instruction of opsin expression in R8 cells 
 Opsin expression in color sensitive ommatidia was shown to be tightly 

linked between R7 and R8 cells. Although inner PRs express 4 different opsins, 

only two large ommatidial subtypes are distinguishable: ~30 % the ommatidia 

form the p subtype and express Rh3 in R7 and Rh5 in R8, whereas the 

remaining ~70% of y ommatidia express Rh4 in R7 and Rh6 in R8 (Fig 8A). 

Analysis of ss expression pattern and loss-of-function phenotype has lead to a 

refined model of how p and y subtypes get specified in R7 cells. However, little is 

known about how R7 cells impose their subtype decision onto the underlying R8 

cell. The ss loss-of-function phenotype observed in R8 cells as well as mis-

expression of Ss in developing PRs has allowed some insight into this process. 

 In ss mutants, the y subtype is completely lost in R7 cells, as visualized by 

the complete loss of rh4 expression and the expansion of rh3 into all R7 cells. 

(Fig 8B). However, this phenotype is less penetrant in R8 cells, as a varying ratio 

of R8 cells retains expression of Rh6. Although the ratio of Rh5 vs Rh6 is 
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dramatically altered in favor of Rh5 (sometimes reaching over 95% of Rh5), 

almost equal distribution (50:50) of Rh5 and Rh6 was observed in some cases in 

ss mutant eyes. Interestingly, ss is only in R7 cells, which is in agreement with its 

observed expression pattern in a large subset of pupal R7 cells. Dramatic up-

regulation of the pR8 subtype is therefore a consequence of the loss of ss in R7 

cells. However, the ss phenotype in R8 cells also clearly illustrated that 

instruction of R8 cells is not 100% effective, resulting in a varying amount of odd-

coupled Rh3/Rh6 ommatidia. Interestingly, a low amount (~7%) of odd coupled 

ommatidia occurs in the wildtype, suggesting that correct instruction of pR8 cells 

also frequently fails in wildtype ommatidia (Chou et al., 1999). Based on different 

lines of evidence, Rh6 has been shown to be the ‘default state’ opsin expressed 

in R8 cells. It appears therefore that odd coupled ommatidia in the wildtype as 

well as in ss mutants are the result of un-instructed R8 cells located below pR7 

cells, getting stuck in their default state. 

 Early ectopic over-expression of Ss in all developing PRs, starting few 

ommatidial rows posterior to the morphogenetic furrow, results a dramatic 

phenotype. Expression of rh4 expands into virtually all PRs (Fig 8C). 

Interestingly, inner PRs in the DRA do not gain expression of rh4, indicating that 

high wg pathway activity antagonizes ss function. In the main part of the retina, 

however, Ss is sufficient to induce the yR7 fate in every PR, as expression of 

Rh3 is completely lost. Consequently, no expression of rh5 was detectable in 

LGMR > ss flies. Ss is therefore provided early enough to all R7 cells to avoid the 

formation of pR7 cells.  As a consequence, instruction of underlying pR8 cells 

also does not occur. This was not unexpected, as the onset of GMR-GAL4 

expression in developing PRs precedes expression of endogenous ss by several 

days. Interestingly, a significant number of yR8-like cells seemed to be specified, 

as rh6 expression was detectable in R8 cells. Furthermore, these cells were 

found to co-express rh4 and rh6. It is therefore unclear, which cell type these R8 

represent. However, it was shown that the R8 marker Sens is not affected in 

LGMR > ss flies. Taking into account that Sens is sufficient to induce rh6 

expression when over-expressed, it appears that these cells are R8 cells lacking 
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any instructive signal, therefore choosing expression of their default opsin Rh6. 

However, rh4 and rh6 do not exclude each other in this case. While Ss prevents 

ambiguity between the pR7 and yR7 fates by excluding expression of rh3, no 

comparable molecular exclusion mechanism exists therefore for rh4 and rh6. 

 Late over-expression of Ss in all R7 cells and the DRA using a GAL4 

driver controlled by the hybrid [rh3+rh4] (‘panR7’) promoter resulted in a very 

different phenotype. In this case, rh4 expression was expanded into all R7 cells, 

but not into R8 or outer PRs (Fig 8D). Rh3 expression was completely lost in R7 

cells outside of the DRA, suggesting that all R7 cells had indeed chosen the yR7 

fate. This result was also very different from the phenotype obtained by over-

expressing Ss under the control of rh3-GAL4. In the latter case, expression of 

Rh4 was expanded without affecting Rh3, resulting in co-expression of Rh3 and 

Rh4 in pR7 and the DRA. The rh4 portion of the panR7 promoter was therefore 

necessary in these late mis-expression experiments, for the R7 cells to choose 

the yR7 fate completely. This can be explained by the fact that cell fate changes 

induced by Ss were shown to ultimately repress rh3 expression. Over-expression 

of Ss under rh3 control should therefore have a negative feed-back effect on the 

GAL4 driver itself. As a result, relatively low expression of Rh4 was observed in 

pR7 cells of rh3 > ss flies. However, by adding rh4 promoter sequences to the 

GAL4 driver, R7 cells can be pushed completely towards the yR7 fate, as the rh4 

portion of the hybrid promoter becomes active in these newly transformed cells 

thereby confirming the transformation event. Interestingly, co-expression of Rh3 

Fig IV.8: Instruction of opsin expression in R8 cells 
(A) Ommatidial mosaic and opsin expression in the wildtype retina. Rh5 expression gets induced in ~30 of p ommatidia (right). 
(B) Spineless loss-of-function. Expression if rh4 is completely lost. A varying number of ommatidia (average ~30%) have odd 
coupled expression of Rh3 in R7 and Rh5 in R8. 
(C) Early ectopic expression of ss. Ectopic over-expression of Ss in all developing PRs using GMR-GAL4 drivers (LGMR > ss) 
results in a dramatic opsin phenotype. All PRs express rh4, including outer PRs. In the DRA, however, rh4 expression is 
specifically excluded from inner PRs (white cells). Expression of rh3 is completely repressed by ss over-expression and rh5 
expression does not get induced due to the lack of instruction by pR7 cells. Interestingly, some R8 cells co-express rh4 and rh6 
(striped cells), indicating that no molecular mechanism exists to exclude expression of these two opsins within the same cell. The 
cell afte of these cells is therefore ambiguous as they manifest both yR7 and R8 characteristica. 
(D) Late mis-expression of ss in all R7 cells. Left: schematic representation of a developing retina mis-expressing Ss late under 
the control of the hybrid [rh3+rh4] ospin-GAL4 driver (dorsal is up). All ommatidia seem to have adopted the y fate as 
expression of rh4 is expanded  into all R7 cells and the inner PRs of the DRA (center). However, pR8 and yR8 fates are not 
affected in R8, suggesting that instruction of R8 cells has been successful in these flies. As a result, ~30% of the ommatidia 
manifest verey unusual odd coupled expression of Rh4 in R7 and Rh5 in R8 (right). Interestingly, rh3 and Rh4 were occasionally 
found co-expressed in DRA inner PRs (striped cells), confirming that the ability of Ss to induce rh4 in the DRA is reduced. 
(E) Phenotype predicted for ‘Factor Y’. Mutants affecting opsin regulation in the yR7 subtype downstream of Ss will provide 
important tools to further study the instruction of R8 cells. For instance, R8 opsin expression should be indistinguishable from the 
wildtype, in mutants specifically lacking expression of Rh4 (‘Factor Y’). 
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and Rh4 was occasionally observed the DRA. This finding again demonstrates 

the reduced ability of Ss to induce the yR7 fate in the DRA, when mis-expressed 

there. Surprisingly, the p / y ratio is normal in R8 cells of [rh3+rh4] > ss flies, 

although transformation of all R7 cells into yR7 is complete outside of the DRA. 

As a result, unusual pairing of Rh4 and Rh5 within the same ommatidium is 

observed in [rh3+rh4] > ss flies. This kind of odd coupled ommatidia is never 

observed in wildtype flies. The presence of rh5 expressing pR8 cells of [rh3+rh4] 

> ss flies indicates that these cells have previously received an instructive signal, 

probably from overlying pR7 cells which were then later transformed into the yR7 

fate due to late Ss mis-expression. It appears therefore that subtype choice in R7 

cells and instruction of R8 cells are two separate events that can be dissociated 

using late mis-expression of Ss. Furthermore, the p / y cell fate decision in R7 

appears to be a process which can be reverted within a certain window of time, 

clearly reaching through late pupation until the onset of opsin expression. 

Instruction of R8, however, does not seem to be reversible, due to the inability of 

pR8 cells to change the identity of the whole ommatidium back to a true y fate. 

This inability of R8 cells might be due to a molecular consolidation mechanism by 

which the R8 cell fate becomes frozen once a decision is taken. Indeed, two 

genes have recently been identified to be expressed specifically in pR8 and yR8, 

mutually antagonizing each other and thereby consolidating the subtype of R8 

cells (T. Mikeladze-Dvali , MF Wernet and C Desplan, in preparation). Although 

such a system would seem surprisingly elaborate, it appears that a correct ratio 

between pR8 and yR8 subtypes is particularly important for the animal, as these 

cells contain the blue- and green-specific opsins required for color vision. 

According to this model, mutants lacking terminal differentiation of the y subtype 

downstream of Ss (‘Factor Y’) should have a subtype distribution in R8 cells that 

resembles the wildtype (Fig 8E). 

 Taken together, instruction of R8 cells by R7 is a non-reversible process 

occurring before the onset of opsin expression. This process can be dissociated 

from the original subtype choice in R7, which appears to be reversible and more 
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plastic. Establishment of a correct p / y ratio in R8 cells therefore seems to be 

essential for color vision. 

 

The stochastic specification strategy for color ommatidia  
 A localized specification strategy was proposed for DRA ommatidia, in 

which inner PRs autonomously choose the Hth-expressing DRA fate when 

exposed to high levels of wg pathway activity in close proximity to the head 

cuticle (for review: (Wernet and Desplan, 2004). Specification of DRA ommatidia 

is highly dependent on positional cues, as their location within the IRO-C / omb 

territory is necessary for correct specification. In contrast to this specification 

strategy, recruitment of p and y ommatidia clearly does not follow such a 

localized approach. Instead, color ommatidia are found in a stochastic, but un-

even distribution throughout the main part of the retina (Fig 9A). The results 

obtained by manipulating the gene spineless have revealed serious 

inconsistencies in the current model for specification of p and y ommatidia. A 

new model has therefore been drawn based on the results discussed so far. 

The current model for specification of p and y ommatidia was divided into 

two steps. The identity of an ommatidium was proposed to be defined in a first 

step by the R7 cell choosing between the pR7 and yR7 fates. In a second step, 

only the pR7 cells were then proposed to actively instruct the underlying R8 to 

ensure expression of the pR8 opsin Rh5 within the same ommatidia. The 

remaining R8 cells, however, were believed to choose the expression of the 

‘default opsin’ Rh6, as this opsin is the opsin of choice in  R8 cells of sev 

mutants, clearly lacking any instructive signal. In this model, expression of the 

yR7 opsin Rh4 was considered the default state of R7 cells, from which pR7 had 

to be distinguished. This model seemed to harmonize well with the experimental 

data, as expression of both rh3 and rh5 were specifically lost in otd mutants. 

Furthermore, it seemed reasonable that both default states in R7 and R8 would 

belong to the same ommatidial subtype. However, several lines of evidence were 

presented here supporting the hypothesis that instead, rh3-expressing pR7 cells 

represent the true R7 default state. The expression pattern of ss, as well as the 
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loss-of-function and gain-of-function phenotypes discussed for ss support a new 

model, in which yR7 gets distinguished from the default pR7, by gaining the 

expression of Ss (Fig 9B). Interestingly, the role of rh6-expressing yR8 as the 

default state in R8 was confirmed. Creation of naïve ommatidia (sal gain-of-

Fig IV.9: The stochastic specification strategy for color ommatidia 
(A) Left: three ommatidial subtypes are distributed throughout the Drosophila retina. Scanning electron micrograph (kindly 
provided by T. Labhart) with the three ommatidial subtypes arbitrarily labeled. DRA ommatidia are shown in pink, pale and 
yellow subtypes are shown in blue and yellow, respectively. Right: Schematic representation of the stochastic distribution 
observed for p and y ommatidia in a developing retina (dorsal is up).  
(B) The new specification model proposed for color ommatidia. Left: in contrast to previous models describing specification of p 
and y ommatidia, data obtained for ss indicates that yR7 cells get distinguished from the pR7 ‘default state’, by specifically 
gaining expression of ss. According to this model, Rh3 (red) therefore represents the ground state opsin in R7 cells, and 
expression of Rh4 gets induced in the first step. Right: Only rh3-expressing pR7 cells are capable to instruct underlying R8 cells 
to express Rh5 (second step). Rh4 expressing yR7 cells that had been specified by Ss do not instruct R8, which therefore 
expresses its ‘default opsin’ Rh6. It appears therefore that gaining Ss expression makes the R7 cell incapable of instructing 
underlying R8 cells. 
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function / loss of hth / loss of elB&noc) always resulted in expression of rh6 in 

R8, suggesting that instruction of R8 (or R8-like cells) was defective in these 

ommatidia. 

In the new model, different default states in R7 and R8 can simply be 

explained by Ss preventing the instruction of pR8 cells. Loss of Ss therefore 

results in all R7 remaining in the default state (rh3) capable of instructing R8 to 

express Rh5. In some cases (~7%) this instruction is not successful and odd 

coupled ommatidia are generated, even in the wildtype (Chou et al., 1999). This 

might be due to the relatively short time window available for this process, as well 

as to the consolidation mechanism making subtype choice in R8 an irreversible 

process. Interestingly, this model might have the logical advantage that the 

likelihood of errors can be reduced due to the fact that both active decisions 

(choice and instruction) are not performed by the same subtype. It seems more 

efficient to determine the number of yR7 cells with tightly regulated ss expression 

and then freeze these cells by abolishing their instructive potential. It must be 

noted that all consecutive cell fate decisions then occur automatically and can be 

performed by pleiotropic signaling components: signaling from pR7 to pR8 and 

the default determination of yR8. 

 
Retinal patterning in Drosophila: combination of two strategies 

In many species, the retinal mosaic is the result of a nearly perfect 

adaptation to the challenges that the environment imposes onto the animal. For 

instance, one necessity is the regional specification of certain parts of the retina: 

patches of retinal tissue which exhibit an optimal exposure to an important 

stimulus develop a heightened sensitivity to it. Examples for such localized 

specifications are the fovea in vertebrates, used when the subject fixes an object 

and the DRA ommatidia in Drosophila, which faces the sky which reflects 

polarized light. Specification of such parts of the retina requires the use of short-

range patterning mechanisms like the diffusible morphogens, as well as 

patterning genes providing positional information within the retina. As the animal 

depends on many different visual stimuli and therefore has to ‘multi-task’ most of 
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the time, it is most effective to limit the expanse of such highly specialized retinal 

regions. For instance, this is very obvious in the very limited surface area of 

DRA’s in most insects. Throughout the remaining retina, a second approach is 

used by both humans and Drosophila to stochastically distribute PRs with 

different spectral sensitivity, as only comparison between their inputs will allow 

effectively discrimination between colors. Interestingly, although the distribution is 

stochastic, there are biases in the proportion of the different subtypes: For 

instance there are fewer S cones in the human fovea and fewer p ommatidia in 

the fly mosaic, presumably to accommodate their function. Relatively few 

mutations in genes affecting retinal patterning have been described in the fly as 

well as in vertebrates. Furthermore, it is not understood on a molecular level, 

how regional and stochastic specification strategies are combined. However, the 

work presented here allows drawing some general conclusions about how 

morphogens, signaling molecules and transcription factors interact to pattern the 

developing retina. 

The morphogen Wingless (Wg) was shown to have a strong inducing 

effect on the localized DRA ommatidia. Based on genetic experiments, a 

diffusible morphogen emanating from the developing head cuticle was predicted 

to induce localized spezification of DRA omatidia.  Both Wg expression pattern 

as well as the DRA expansion phenotype observed after ectopic activation of wg 

signaling pathway confirmed the crucial role of Wg in this process. Furthermore, 

positional information provided by the IRO-C and omb genes is crucial for limiting 

DRA specification to the most marginal dorsal ommatidia exposed to the highest 

levels of wg pathway activity. It appears therefore that this relatively simple 

combination of factors allows the decoding of a gradient in wg activity existing at 

the eye margins. As a result, the key regulator Hth is specifically activated in 

inner PRs of the DRA to execute the molecular specification program (Fig 10A). 

Using this molecular mechanism, specification of DRA ommatidia is efficiently 

limited to the dorsal rim of the eye. However, to avoid ambiguity between 

ommatidial fates, it appears logical that the factors inducing DRA ommatidia 

would also have a repressive effect on the induction of p and y fates. Indeed, in 
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the absence of Hth function, DRA ommatidia do not stochastically choose 

between the two color-sensitve fates. Instead, these ommatidia are immune to 

any instructive signals, with their inner PRs expressing ‘default state’ opsins. A 

Fig IV.10: Retinal patterning in Drosophila: combination of two strategies 
(A) Exclusion of DRA and color fates by Wingless (Wg). The morphogen Wg is expressed in the developing head cuticle around 
the retina (pink). Left: It was shown that Wg has a strong inducing effect of DRA ommatidia (red), which form along the dorsal 
head cuticle. Right: It was also shown that high wg signaling activity at the dorsal rim prevents formation of p and y ommatidia. 
This probably occurs by several different meachanisms, like repression of ss expression through Hth as well as independent of 
Hth. Furthermore, Wg can repress Ss function even when its expression is forced in the DRA. 
(B) Possible selection of the yR7 subtype by Notch (N). Using ectopic over-expression of constitutively active forms of N and 
suppressor of Hairless / su(H), expression of rh4 was specifically induced in outer PRs. The N pathway therefore represents an 
attractive cabndidate pathway for the stochastic activation of ss expression in yR7 cells (left). However, activity of N signaling in 
these cells at the time of ommatidial subtype specification has not been shown yet. Furthermore, dominant negative forms of N 
were not able to disrupt retinal patterning. Right: In a preliminary model, ommatidial subtype specification in Drosophila might 
be regulated by the interplay of wg and N signaling pathways. Specification of DRA and color ommatidia was always found to 
exclude each other, which is represented by the strong antagonism of the two key regulators Hth and Ss, and possibly by the 
antagonism of wg and N signaling during pupal eye development.
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new specification model was proposed for p and y ommatidia, in which 

stochastic expression of the key regulator Spineless in ~70% induces the yR7 

fate. Interestingly, wg signaling seems to have a strong antagonizing effect on Ss 

function. Expression of ss is never observed in DRA ommatidia, suggesting that 

high wg pathway activity represses its expression, either directly of via Hth. As 

Rh4 expression is completely lost when Hth is ectopically expressed, it seems 

likely that Hth itself can effectively repress ss expression. However, even in the 

absence of hth function, y Rh4 does not expand into the DRA (see above), 

suggesting that the wg pathway still excludes ss from the DRA. Furthermore, Ss 

was found to be incapable of inducing rh4 expression in DRA inner PRs, even 

when ectopically mis-expressed, suggesting that cells exposed to high wg levels 

are made incompetent to execute the genetic grogram imposed by Ss. It appears 

therefore, that wg signaling can exclude specification of color ommatidia from the 

DRA, by using several different strategies. Considering the different perceptive 

tasks that these ommatidia are involved in, it appears that localized and 

stochastic specification strategies have to be seperated very effectively, in 

Drosophila. Interestingly, the combination of both strategies is used in humans to 

create the cone mosaic in the fovea. This further demonstrates the creative 

possibilities arising from different combination of these approaches. 

Little is known about how stochastic cell fate decisions are taken in 

different model systems. Cell fate decisions of color sensitive PRs are even more 

obscure as their choice is biased, most of the times, resulting in PR subtype 

populations of different size. In Drosophila, distribution of p and y ommatidia was 

found to show important differences along the D/V axis of the eye. While p 

ommatidia are found at a higher ratio ventrally, y ommatdia prefer the dorsal 

compartment. It appears therefore that the same genes providing positional 

information to the DRA ommatidia (IRO-C, omb) might also influence the cell fate 

decision in color ommatidia. However, all statistical attempts to predict the 

formation of p and y ommatidia based on their location or based on the identity of 

neighboring ommatidia have failed so far. The Notch (N) pathway has a very 

specific inducing effect on rh4 expression. Weak ectopic over-expression of both 
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constitutively active su(H):VP16 as well as Nintra was sufficient to induce rh4 

expression in outer PRs. Raising N activity levels in ~70% of pupal R7 cells might 

therefore be responsible for the formation of yR7 cells (Fig 10B). The Notch 

pathway has been shown before to be required in all larval R7 cells in order for 

these cells to properly acquire their cell fate (Cooper and Bray, 2000; Tomlinson 

and Struhl, 2001). It is therefore possible that during later eye development this 

specification strategy is re-utilized in R7 cells to further sub-divide this cell type. 

However, an activating effect of the N pathway on ss expression has not yet 

been shown due to technical difficulties. Furthermore, the yR7-inducing potential 

of N remains obscure due to the fact that two different dominant negative 

approaches to abolish N signaling late during eye development had no effect on 

ommatidial specification. Clearly, more sophisticated genetic experiments have 

to be performed to investigate the role of N. Due to the important roles the N 

pathway plays during early eye development, ommatidial specification cannot be 

analyzed in N mutant eyes generated using the ey-FLIP/FRT system. However, 

temperature sensitive loss-of-function alleles have been described for N. Shifting 

these mutants to the restrictive temperature during early pupation should allow a 

detailed analysis of the role of N signaling. It is unclear how the N pathway would 

be stochastically activated in a subset of R7 cells as N signals have been shown 

to be exchanged amongst populations of cells, in most cases. During lateral 

inhibition, for instance, one cell out of a pool of cells mutually repressing each 

other’s ability to change their fate, gets promoted randomly into a new cell fate. 

Furthermore, expression of the N ligand Delta (Dl) is believed to be rather 

pleiotropic. It can therefore not be excluded that constitutive activation of the N 

pathway mimics the yR7-inducing effect of another signaling pathway, maybe 

through the use of similar signaling components. 

Taken together, the interplay of localized and stochastic specification 

strategies is used in the Drosophila eye to generate the retinal mosaic. 

Antagonism between the key regulators Hth and Ss is particularly interesting as 

these factors have been to positively different mode systems, like the developing 

antennae. Furthermore, the wg and N pathways, which might be responsible for 
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the induction of localized and stochistc cell fates, have been shown to both co-

operate (planar cell polarity) as well as antagonize each other (early: growth) 

during eye development. Further experiments will hopefully clarify this emerging 

picture of how retinal patterning is regulated. 

 
Similarities to retinal patterning in vertebrates 

The retinal mosaic in Drosophila, like that of vertebrates, reflects a set of 

complex events that lead to the specification of different types of PRs within one 

adult ommatidium (inner vs. outer PRs, R7 vs. R8) as well as to 3 subtypes of 

ommatidia within the same retina (p vs. y vs. DRA). The data discussed here 

already point towards a model in which the fate of a given PR becomes 

increasingly restricted by a series of consecutive cell fate decisions, through the 

recruitment of transcription factors. Further genetic experiments, as well as the 

precise time course of expression of the genes involved in this process will allow 

a detailed description of their epistatic relationship. For instance, expression of 

Prospero or Homothorax is lost in spalt mutants, suggesting that the 

establishment of the inner PR fate by spalt is necessary for all further ommatidial 

specification steps to occur. The vertebrate retina similarly seems to use related 

strategies (for review: (Cepko, 1999; Harpavat and Cepko, 2003). Although the 

initial recruitment of retinal cells follows a different strategy with multipotent 

progenitor cells being restricted in their fate by both intrinsic and extrinsic events, 

it is clear that cascade of transcription factors are able to sequentially refine the 

fate of cells from the multipotent fate to a highly differentiated state. The example 

of rods cells best illustrates this: rod cells are distinguished from the ‘ancestral’ 

cone fate by the gene Nrl (Mears et al., 2001), whose function is similar to that of 

spalt, which, in Drosophila, distinguishes inner from outer PRs. In mammals, Crx 

plays a role similar to that of otd in controlling rhodopsin expression in a subset 

of PRs (Furukawa et al., 1997). Finally, the regionalization of the fly retina by hth 

can be compared to the function of the Thyroid hormone receptor TR2β which, in 

mice, affects the distribution of S and M cones along the dorso-ventral axis of the 

retina (Ng et al., 2001). It appears therefore that both similar strategies, as well 
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as similar factors are involved in retinal patterning in flies and vertebrates.  

Many animals generate their retinal mosaic by combining localized and 

stochastic specification strategies as shown in some detail for Drosophila. 

Nevertheless, it should also be noted that some species form particularly 

stereotypical PR mosaics by purposely avoiding stochastic or localized 

mechanisms. The retina of most fishes for instance, is organized as a very 

regular lattice of the different types of cones. Furthermore, salmonid fish have the 

ability to considerably re-organize their retinal mosaic with developmental time. It 

has been shown that sexually mature salmonids regenerate their previously lost 

UV-sensitive cones and therefore their ability to detect polarized light (for review: 

(Hawryshyn, 2000). This represents a striking example for the metamorphosis of 

a retinal mosaic as the animal enters a new developmental phase: In order to 

reproduce, the animals have to leave the ocean and to migrate back to their 

place of birth, a task for which they have to re-gain an increased ability to 

navigate. 

It appears that the instructive and permissive cell fate choices underlying 

the localized vs. biased-stochastic choice between DRA, p and y ommatidial 

fates in Drosophila represent rather fundamental neurobiological problems. A 

more complete understanding of the fly retinal mosaic might therefore allow us to 

get a clearer view on how our own retina helps us to enjoy our environment with 

all its shapes and colors. 
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V. MATERIAL AND METHODS 
 
 
1. Genetic procedures 
1.1. Drosophila strains and crosses 

Flies were raised on standard corn-meal-molasses-agar medium and 

grown at room temperature (24 ± 1˚C) unless otherwise noted. All genetic 

symbols not described in the text are in the Drosophila reference works [Lindsley, 

1992 #2180]. 

 
Several previously established fly strains carrying mutations or reporter 

constructs were used. In table 1 these strains are listed and described. 

 

Name of line   Description  Chromosome 
 
1. lacZ reporters 

 
arm-lacZ Armadillo enhancer driving E.Coli lacZ-armadillo fusion cDNA 1,2,3 
hth-lacZ PZ (lacZ) enhancer trap l(3)06762 in homothorax 3 
IroC-lacZ PZ (lacZ) enhancer trap rF209 in caupolican 3 

pomb19-lacZ optomotorblind eye enhancerdriving E.Coli lacZ 3 
pros-lacZ PZ (lacZ) enhancer trap in prospero 3 
rh1-lacZ rh1 promoter (-926 to +32) driving E.Coli lacZ 2,3 
rh3-lacZ rh3 promoter (-345 to +18) driving E.Coli lacZ 2,3 
rh4-lacZ rh4 promoter (-359 to +85) driving E.Coli lacZ 2,3 
rh5-lacZ rh5 promoter (-690 to +50) driving E.Coli lacZ 2,3 
rh6-lacZ rh6 promoter (-555 to +121) driving E.Coli lacZ 2,3 

stat92E-lacZ PZ (lacZ) enhancer trap 06346 in caupolican 3 
svp-lacZ PZ (lacZ) enhancer trap in seven-up 3 

 
2. GAL4 drivers 
 

hth-GAL4 pGawB (GAL4) enhancer trap in homothorax 3 
panR7-GAL4 fusion of rh3 and rh4 promoters driving S.cerevisiae GAL4 2,3 

Rh1-GAL4 rh1 promoter (-926 to +32) driving S.cerevisiae GAL4 1,2,3 
Rh3-GAL4 rh3 promoter (-345 to +18) driving S.cerevisiae GAL4 2,3 
Rh4-GAL4 rh4 promoter (-359 to +85) driving S.cerevisiae GAL4 2,3 

LGMR-GAL4 (5x) LONG glass 38 bp binding site driving S.cerevisiae GAL4 2,3 
Mδ4-GAL4 E(spl) complex member Mδ4 enhancer driving S.cerevisiae GAL4  

sGMR-GAL4 (5x) SHORT glass 29 bp binding site driving S.cerevisiae GAL4 2 
ss[E1.6]-GAL4 Spineless eye enhancer (1.6 kb) driving S.cerevisiae GAL4 3 

 
3. UAS-constructs 

 
UAS-ara (5x)GAL4 UAS fused to an araucan cDNA 3 

UAS-ArmS10 (5x)GAL4 UAS fused to a cDNA of activated Armadillo 2 
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UAS-caup (5x)GAL4 UAS fused to a caupolican cDNA 2 
UAS-lacZ (5x)GAL4 UAS fused to E.Coli lacZ 2,3 

UAS-lacZ::NLS (5x)GAL4 UAS fused to E. Coli lacZ with a NLS 2,3 
UAS-eGFP (5x)GAL4 UAS fused to eGFP (Clonetech) 2,3 

UAS-eGFP:hth (5x)GAL4 UAS fused to an eGFP-homothorax fusion cDNA 3 
UAS-exd (5x)GAL4 UAS fused to an extradenticle cDNA 3 

UAS-exd:NLS (5x)GAL4 UAS fused to an extradenticle cDNA with NLS 3 
UAS-hth51A (5x)GAL4 UAS fused to an point-mutated homothorax cDNA 3 

UAS-mirr (5x)GAL4 UAS fused to a mirror cDNA 1,3 
UAS-myc:hth (5x)GAL4 UAS fused to an myc-homothorax fusion cDNA 2 
UAS-N(DN) (5x)GAL4 UAS fused to cDNA of dominant negative Notch 2 
UAS-Nintra (5x)GAL4 UAS fused to the cDNA of Notch intracellular domain 2 

UAS-eGFP:hthHM (5x)GAL4 UAS fused to an eGFP-homothorax (HM) fusion cDNA 3 
UAS-sal (5x)GAL4 UAS fused to a spalt cDNA 2 

UAS-sens (5x)GAL4 UAS fused to a senseless cDNA 1,2,3 
UAS-ss (5x)GAL4 UAS sites fused to the spineless cDNA 2,3 

UAS-tcf∆N (5x)GAL4 UAS fused to a cDNA of dominant negative dTCF 3 
UAS-tgo (5x)GAL4 UAS fused to a tango cDNA 3 

UAS-tgo(DN) (5x)GAL4 UAS fused to an dominant negative tango cDNA 3 
UAS-VP16:exd (5x)GAL4 UAS fused to an VP16-extradenticle fusion cDNA 3 

UAS-VP16:su(H) (5x)GAL4 UAS fused to an VP16-su(H) fusion cDNA 2 
 

4. Other transgenes 
 

CyOHoP2 Carries transposase HoP2 on balancer chromoseome CyO W. Gelbart 
ey-Flip ey promoter driving flip recombinase B. Dickson 

FRT19A P[FRT; neo+] insertion at map position 19 FlyBase 
FRT2A P[FRT; neo+] insertion at map position 79 FlyBase 
FRT80 P[FRT; neo+] insertion at map position 80 FlyBase 

FRT82B P[FRT; neo+] insertion at map position 82B FlyBase 
GMR-hid (5x) glass 29 bp binding site driving head involution defective 1,2,3 
GMR-Upd (5x) glass 29 bp binding site driving Unpaired (os) 3 
rh1-eGFP rh1 promoter (-926 to +32) driving eGFP 2,3 

rh3-Rh:eGFP Rh3 promoter (-345 to +18) driving a Rh3-eGFP fusion cDNA 2,3 
Rh4-GFP Rh3 promoter (-359 to +85) driving a Rh3-eGFP fusion cDNA 2,3 

sev-RasVal12 Sevenless promoter driving activated Ras 2 
ubi-eGFP:NLS ubiquitin promoter driving eGFP cDNA with an NLS 1,2,3 

 
5. Mutants 

 
cn bw Cinnabar brown double mutants 2 
DFzC1 dFz (Fz2) null mutant 3 
DMF3 Deficiency covering the IRO-C (Iroquois) locus 3 

dshV26 dishevelled null mutant 1 
exd1 extradenticle null mutant 1 
fzH51 frizzled null mutant 3 
hthB2 homothorax hypomorph (point mutant) 3 
hthP2 homothorax null mutant (P-element insertion) 3 

omb3198 Optomotorblind null mutant (point mutant) 3 
ombQd[For] Optomotorblind Quadroon gain-of-function mutant 1 

os1A Outstretched null mutant 1A 1 
roX63 rough null mutant (X-ray mutant) 3 

Sal[Def] Deficiency covering the spalt locus 2 
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sev sevenless null mutant 1 
ssD105.7 spineless null mutant (point mutant) 3 
stat06346 STAT92E hypomorph 06346 3 
svpE22 seven-up null mutant 3 

tgo1 strong tango hypomorph (point mutant) 3 
tgo5 Close-to-null tango mutant (point mutant) 3 

wr135 flies carrying balancer chromosomes CyO / Sp ; TM2 / MKRS E. Wimmer 
yw122; QB flies carrying balancer chromosomes CyO / Sp ; TM2 / TM6B A. Tomlinson 

Table V.1 Fly strains used.  
 

1.2. Generation of transgenic flies by germ line transformation 
Transgenic lines were generated by injection of freshly purified plasmid 

DNA (see 2.3.6.) at a concentration of 0.3 µg/µl into ~250 embryos of 0-10 

minutes of age using standard procedures [Rubin, 1982 #279]. Single G0 flies 

were separately crossed with the balancer stock wr135 and transgenic flies were 

selected in F1 according to their eye color. Insertions were mapped and 

balanced again using wr135 flies and following the standard balancer 

chromosome markers. 

 

1.3. The pGawB / UAS-EGFP enhancer detection screen 

New insertions were generated by remobilizing the previously described 

GAL4 enhancer trap element pGawB (gift from Brand and Perrimon, Fig V.1). A 

lethal insertion in the gene apterous was chosen as a jump start. The P-element 

was mobilized using a transposase source inserted on the CyO balancer 

chromosome on an immobile hobo element (CyOHoP2, gift from W. Gelbart 

Harvard University). These F0 flies were then crossed to UAS-GFP reporter flies. 

(see crossing scheme, Fig V.2). 
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Fig V.1 Map of the P-Element pGawB built by Brand et al. (Brand et al., 1993). The GAL4 cDNA is represented as a 
blue box. The position of restriction enzyme recognition sites used for plasmid rescue of flanking genomic DNA are 
indicated. 
 

Flies carrying new pGawB insertions were enriched by introducing a lethal 

point mutation in the gene apterous (ap4) which does not complement lethality 

caused by ap-GAL4. After pre-schreening for straight-winged flies under the 

binocular, adult F1 flies were anesthetized using CO2 and analyzed for GFP 

fluorescence under blue illumination using a standard dissecting microscope. 

Flies showing GFP signals in the "deep pseudopupil" coming from 

photoreceptors were collected, separated and amplified by crossing with the 

reporter flies (UAS-GFP). 

 

 



V. MATERIAL & METHODS 

 223

Fig V.2 The pGawB /UAS-GFP crossing scheme. 
A high ratio of F1 survivers with straight wings carried new pGawB insertions at unknown genomic locations. Unwanted genotypes 
were eliminated based on lethality (ap-GAL4 / ap4 or CyO/CyO) or based on wing morphology (Cy). 
 

Lines expressing GFP in photoreceptors were further analyzed by the "cornea 

neutralization" technique, to check for expression in subtypes of PRs. All 

insertions were mapped to their chromosome by following their phenotype using 

standard genetic methods. The flies used carried different combinations of 

balancers and UAS-GFP reporter constructs: w-/y ; UAS-GFP / CyO; UAS-GFP / 

MKRS and w- / w-; UAS-EGFP / CyO; UAS-EGFP / TM2, respectively. The 

GAL4 expression pattern of the obtained enhancer trap lines was characterized 

in more detail by introducing different reporter constructs like UAS-lacZ and UAS-

lacZ:NLS. 

 
 
2. Immuno Histochemistry and other staining techniques 
2.1. Antibody stainings on eye imaginal discs 

Cerebral complexes of Drosophila late third instar larvae were dissected in 

PBS (1x) and fixed in PBS + 4 % Formaldehyde for 20 min at RT. After four 

washes in PBT The first antibody was added overnight at 4˚C. After four washes 

with PBT, the primary antibody was added overnight at 4˚C. After four washes 

with PBT, the secondary antibody was then added for at least 2 hours at RT. 

After another four washes in PBT, each eye imaginal disc was separated from 

the head skeleton by using two Thungsten needles and then mounted in 

Aquamount (Lerner Laboratories). 

 

2.2. Antibody stainings on mid-pupal retinas 
Pupal cases were collected ~40 hrs after puparium formation and the 

head was dissected under ice cold PBS(1x). Several eye-brain complexes were 

extracted by gentle pipetting and collected in PBS (1x) on ice. After 20 min of 

fixation using PBS(1x) + 4% Formaldehyde, the samples were washed four times 

with PBT. The first antibody was added overnight at 4˚C. After four washes with 

PBT, the secondary antibody was added for at least 2 hours at RT. After another 
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four washes in PBT, each retina was separated from the brain by using two 

Thungsten needles and then mounted in Aquamount (Lerner Laboratories).  

 

2.3. Antibody stainings on frozen fly head sections 

10 µm horizontal eye sections were performed using a cryostat (Zeiss) 

and deposited on superfrost Plus slides (Fisher). The slides were then fixed 15 

minutes in PBS(1x) + 4% Formaldehyde. Fixation was slightly different for Anti-

24B10 (chaoptin) stainings: Heads of anesthetized flies were cut, the proboscis 

was removed and the heads were fixed in PBS(1x) + 2% Formaldehyde for 90 

minutes at 4˚C. The heads were washed and incubated in PBS(1x) + 12% 

sucrose overnight. After four washes with PBT, the first antibody was added 

overnight at 4˚C. After four washes with PBT, the secondary antibody was added 

for at least 2 hours at RT. After four washes with PBT, the slides were mounted 

in Aquamount (Lerner Laboratories). 

 

 Name antigen species dilution 
 
1. Primary antibodies 

 
24B10 chaoptin Guinea pig 1:10 
cappel Beta Gal rabbit 1:5000 
ElaV1 ElaV mouse 1:10 
ElaV2 ElaV rat 1:10 
Exd Extradenticle rabbit 1:1000 
GFP GFP rabbit 1:500 
Hth Homothorax Guinea pig 1:500 

Promega beta Gal mouse 1:500 
Pros Prospero mouse 1:4 
Rh1 Rhodopsin1 mouse 1:10 

Rh3 a Rhodopsin3 mouse 1:10 
Rh3 b Rhodopsin3 rabbit 1:10 
Rh3 c Rhodopsin3 chicken 1:10 
Rh4 Rhodopsin4 rabbit 1:300 
Rh5 Rhodopsin5 mouse 1:100 
Rh6 Rhodopsin6 rabbit 1:5000 
Sal Spalt rabbit 1:100 

Sens Senseless guinea pig 1:10 
Tgo Tango mouse pure 

 
2. Secondary antibodies 
 

Cy3 goat rabbit 1:800 
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Cy3 donkey mouse 1:200 
Cy3 goat chicken 1:200 

Alexa555 goat guinea pig 1:200 
Alexa488 goat rabbit 1:200 
Alexa488 goat mouse 1:200 
Alexa488 goat rat 1:200 
Alexa488 goat Guinea pig 1:200 

Cy5 goat mouse 1:200 
Cy5 goat rat 1:200 

 

Table V.2 Antibodies used 

 
 
2.4. X-Gal stainings on frozen sections of adult fly heads  

10 µm horizontal eye sections were performed using a cryostat microtome 

(Zeiss) and deposited on superfrost Plus slides (Fisher). Slides were fixed 5-10 

minutes in PBS 1X + 0.25% gluteraldehyde. They were then stained in a solution 

of 7.2mM Na2HPO4, 2.8mM NaH2PO4, 150mM NaCl, 1mM MgCl2, 3mM 

K3[Fe(CN)6], 3mM K4[Fe(CN)6], containing a 1/30 dilution of X-Gal (30 mg/ml 5-

Bromo-4-chloro-3-indoyl β-D-galactoside in dimethyl formamide). After washing 

several times in PBS(1x), slides were mounted in aquamount (Lerner 

Laboratories, Fischer). 

 

2.5. The "cornea neutralization" technique 
Although not a real staining reaction, this technique was used as a 

complementary tool in addition to the stainings mentioned above to further 

analyze EGFP patterns emanating from photoreceptors. Photoreceptor signals 

can normally only be seen as a virtual, superimposed image in the "deep 

pseudopupil" due to the curvature of the cornea. This was neutralized by using 

water immersion so that EGFP signals coming from every individual ommatidium 

could be resolved [Franceschini, 1981 #283]. For immobilization, flies were 

anesthetized and poured into warm agarose (~50˚C). After solidification of the 

agarose, the flies were covered with a film of water. The eyes were analyzed 

under blue illumination using an immersion microscope with blue light source. 
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2.6. Plastic sections of adult fly heads 
For the morphological examinations with transmission light and electron 

microscopy, the eyes were fixed with 2% glutaraldehyde (sometimes plus 1% 

OsO4) in 0.05 M Na-cacodylate buffer (pH 7.2) for 2 h at 4˚C. Following post-

fixation with 2% OsO4 in 0.05 M Na-cacodylate buffer (pH 7.2) for 2h at 4˚C, the 

tissue was dehydrated with 2,2-dimethoxypropane and embedded in Epon 812. 1 

µm sections for light microscopy were stained with methylene blue. Silver 

sections for electron microscopy were stained with uranyl acetate and lead 

citrate. 

 

2.7. Scanning electron microscopy of adult fly heads 
Fly heads were dehydrated by a series of ethanol washes (12-24 hours 

each): 25%, 50%, 75% and 100% (2x). Samples were then dried using a critical 

point drier.  Samples were then mounted and analyzed using a standard 

scanning electron microscope. 

 

3. Molecular Biology Techniques 
3.1. Standard recombinant DNA techniques 

A. Restriction: All generation of recombinant DNA was performed by 

creating the cloning fragments by cutting 1 to 10 µg of plasmid DNA with 10-20 

units of the appropriate restriction endonuclease(s) in a final volume of 10 to 100 

µl at 37˚C for 2 hours using the appropriate restriction enzyme buffer (New 

England Biolabs). Purification of cloning fragments was performed by 

electrophoresis using 1% agarose gels and subsequent gel extraction using the 

"QIAQUICK gel extraction kit" (Qiagen). 

B. Ligation: Vector DNA was treated with 20 units of alcaline phosphatase 

in a final volume of 20 µl for 20 minutes at 37˚C. Every ligation reaction was 

performed using 100 ng to 1 µg of linearized insert and vector DNA as well as 

400 units T4 DNA Ligase (New England Biolabs) at 16˚C overnight. 
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C. Transformation: 10-50 ng of ligated DNA were transformed into 

competent DH5α bacteria using a standard CaCl2 transformation protocol (20 

minutes incubation on ice, 2 minutes heat-shock at 42˚C, 2 minutes on ice). 

Bacteria were plated on agar plates containing Ampicilline (50 µg / ml) after 

adding 250 µl LB medium and 60 minutes incubation at 37˚C. 

 
 
3.2. Ligation of the sseye-GAL4 injection construct 
 The ss ‘eye enhancer’ / ss(E1.6) had previously been identified as a ~1.6 

kb EcoR1 fragment (D. Duncan and I. Duncan, in preparation). This DNA 

fragment was ligated into the previously designed fly injection vector 

pCasper[hs43-GAL4-SV40]. Into this plasmid, promoterless enhancer sequences 

can be sub-cloned 5’ to the GAL4 cDNA, which is flanked by an hs43 TATA box 

sequence (T. Cook, unpublished). Additionally, the GAL4 sequence is flanked by 

SV40 polyadenylation signal sequences at its 3’ end (Fig V.3). pCasper[hs43-

GAL4-SV40] was cut with EcoR1, and ligation of pCasper[ss(E1.6)-hs43-GAL4-

SV40] was performed as described before. 

 
Fig V.3 Ligation of sseye-GAL4 
The ~ 1.6 kb eye enhancer fragment from ss (E1.6) was ligated EcoR1/EcoR1 into the pCasper[ss(E1.6)-hs43-GAL4-SV40] injection 
vector. (white = minigine w, transformation marker; Casper4 = plasmid backbone; ampR = ampicilline resistence gene). 
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 Injections into fly embryos were performed by following standard 

transformation protocols, with DNA concentrations being 0.3 µg/µl (injection 

construct) and 0.05 µg/µl (helper plasmid), respectively. 

 Transformands were identified based on eye color and the insertions were 

localized to their chromosome using combinations of dominant markers (yw ; 

CyO / Sp ; TM2 / TM6B). 

 Expression of sseye-GAL4 was analyzed by crossing different transgenic 

lines to reporter flies like UAS-GFP, UAS-lacZ or UAS-lacZ:NLS. 

 
3.3. Plasmid Rescue of genomic DNA flanking P-Element insertions 

Three flies were homogenized in an 1,5 ml eppendorf reaction tube 

containing 150 µl DNA homogenization buffer using a disposable pestle. After 

adding 150 µl Lysis buffer [Ashburner, 1989 #2187], the tubes were incubated for 

15 minutes at 70˚C. 45 µl of Potassium Acetate (8M) were added and the tubes 

were incubated on ice for 30 minutes. After Spinning down debris, the 

supernatant was extracted using phenol/chloroform (1:1), precipitated and the 

pellet of genomic DNA was resuspended in 20 µl of water. The genomic DNA 

was digested with the appropriate restriction endonucleases (Pst1, Sal1 or Cla1), 

ligated in a final volume of 600 µl and transformed into ultra competent bacteria 

(Epicurian Coli XL 10-Gold) following the Stratagene transformation protocol. 

Clones were analyzed by mini-preparation of plasmid DNA using the QIAPREP 

miniprep Kit (Qiagen) and digestion with restriction endonucleases. Plasmid DNA 

containing flanking genomic DNA were amplified by doing DNA maxi 

preparations using the QIAFILTER maxi prep Kit (Qiagen) and sequenced. 

 
3.4. Rescue of genomic DNA flanking P-Elements by inverse PCR 

A. Genomic DNA extraction, restriction and ligation: 15 flies were 

homogenized in an 1,5 ml eppendorf reaction tube containing 200 µl of 

homogenization buffer A using a disposable pestle. After 30 min incubation at 

65˚C, 400 µl of a mix (1:2.5) of Lithium Chloride (6M) and Potassium Acetate 

(5M) solutions was added and the tubes were incubated on ice for at least 10 
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minutes. After Spinning down debris for 15 min at RT, the supernatant was 

extracted using phenol/chloroform (1:1) and precipitated using 600 µl of 

Isopropanol. The pellet of genomic DNA was washed with 70% Ethanol, air dried 

and ultimately resuspended in 20 µl of distilled water. 5 µl of genomic DNA 

solution were then digested with 10 units of either one of the three appropriate 

restriction endonucleases (Sau3A1, Msp1 or Dra1) in a volume of 25 µl. After 

heat inactivation (20 min at 65˚C), 10 µl of the restriction mix were ligated in a 

final volume of 400 µl, using 40 µl of T4 DNA ligase buffer (10x) and 2 µl of T4 

DNA Ligase (NEB) at 16 degrees, overnight. The ligation mix was then 

precipitated by adding 40 µl Sodium Acetate (5M, pH 5.2) and 1 ml of pure 

Ethanol. The DNA pellet was washed with 70& ethanol, air dried and 

resuspended in 60 µl of distilled water. 

 B. Inverse PCR on circularized DNA: Genomic DNA sequences flanking 

the 3’ end of the P-element were rescued (see figure). A first PCR was 

performed in a total volume of 50 µl using 10 µl of the ligated genomic DNA mix, 

20 pmol of the two divergent primers located closest to each other (Pry5 and 

Pry6, see below), 5 nmol of dNTPs, as well as 5 µl of (10x) Boehringer taq buffer 

and 5 units of taq polymerase (boehringer). The PCR program used was: 94°C: 

5' / (94°C for 1min / 53°C for 2min / 72°C for 3min) * 40 / 72°C for 10 min. 2 µl of 

the PCR mix were then used as template for a second PCR, without further 

purification. Similar conditions were used, except that this time,  the two 

outermost excentric primers (Pry2 and Rry7, see below) were used: 94°C: 5' / 

(94°C for 1min / 55°C for 1min / 72°C for 1min) * 35 / 72°C for 10 min. The result 

of both PCRs was run on a 1% Agarose Gel, PCR bands excised using a scalpel 

and DNA extracted using the ‘DNA Extraction Kit’ (Qiagen). ~20 ng of the 

obtained DNA solution were then sequenced using the PCR primer Pry1. 

Primers: Pry2: CCT TAG CAT GTC CGT GGG GTT TGA AT, Pry5: CTG AGT 

GAG ACA GCG ATA TGA TTG TT, Pry6: CAC TCG CAC TTA TTG CAA GCA 

TAC GT, Pry7: GAG TAC GCA AAG CTC TAG CTA GAG GAT. 
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Figure V.4 Inverse PCR rescue of genomic DNA flanking a P-element. 2 PCRs were performed on previously 
circularized DNA consisting of  known P-element sequences (green) and unknown genomic DNA (black). The product 
of the first PCR (red primers) served as a template for PCR #2 (blue primers). 
 
 

Pry7 Pry2 
Pry5 Pry6 
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X 
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line #002: insertion of pGawB in gene CG14408

12F7

pGawB

~1.5kb

gene #008: inserted in X-chromosome heterochromatin

?

whole fly water immersion002 > lacZ

008 > lacZwhole fly water immersion

SH3 domain binding protein

002 expression is inner PR specific

R7
R8

008 expression is outer PR specific

gene product/enhancer unknown
19F

pGawB
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line #010: Insertion of pGawB in the gene elbow

010 > lacZ water immersion
R8

R7

DRA

whole fly

transcription factor (Zn-finger)

subsets of inner PRs: DRA and R8

line #012: insertion of pGawB in gene α-Man-IIb

89A8

20 kb

14 kb

35A1

012> lacZ water immersionwhole fly
all PRs
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~1.2kb

gene #013: insertion of pGawB in gene CG9602

~1kb

87F

line #015: insertion of pGawB in gene CG2991

23B

11 kb

ubiquitin conjugating enzyme

expression in: lamina (LL) and ocellar (OL) lobes

OL

LL

whole fly closeup013 > lacZ

whole fly water immersion015 > lacZ

EGF-domain containing protein

very weak PRs, antennae, maxillary palps
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gene #016: insertion of pGawB in rhodopsin1/ninaE

92B8-9

gene #021: insertion of pGawB in gene kekkon-1 

34A1

0 kb 1 kb 5 kb

whole fly

whole fly

water immersion

water immersion

outer PR opsin

expressed in: outer PRs + ocelli

TM molecule, negative regulator of DER signaling

all PRs, variegated
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gene #022: insertion of pGawB in gene slamdance

97D

~1.8 kb~ 3 kb

gene #030: insertion in the gene lats (warts)

100A6

DRA

R7

whole fly

whole fly

water immersion

water immersion

022 > lacZ

030 > lacZ

'alanyl (membrane) aminopeptidase

expressed in:outer PRs

Ser-/Thr-kinase involved in cell-cycle regulation 

subsets of PRs: DRA, R8, R7 and outer PRs (ventrally)
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line#033: insertion of pGawB in the gene no ocelli  

35A4

pGawB

R8
R7

line#40: insertion of pGawB in dachsous

21C7

pGawB

whole fly

whole fly

water immersion

blowup

033 > lacZ

040 > lacZ

transcription factor (Zn-finger)

expressed in: subsets of inner PRs (R7, R8)

Cadherin-family TM cell-adhesion molecule

expressed in:ocelli
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line #041: insertion of pGawB in gene retinal degeneration B 

12B8

13 kb

line #043: insertion of pGawB in gene CG3364

42D

~1.8 kb

pGawB

pGawB

whole fly

whole fly

water immersion

water immersion

041 > lacZ

043 > lacZ

Ca-transporting ATPase

expressed in: all PRs

gene product shows no homologies

inner PRs and cone cells
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line #046: insertion of pGawB in gene CG4449

94E9

2 kb

line#53: insertion of pGawB in the gene homothorax

86B1-C1

R7 R8

pGawB

~8kb

pGawB

whole fly water immersion046 > lacZ

046 > lacZ
water immersionpseudopupil

Ubiquitin-like

very few inner PRs R7 and R8

homeodomain transcription factor

DRA inner PRs
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gene #056: insertion of pGawB in CG32767 

4D5

gene #058: insertion of pGawB in gene CG2055 

45C1-3

whole fly

whole fly

water immersion

water immersion

056 > lacZ

058 > lacZ

transcription factor (7 predicted Zn fingers)

expressed extremely weak in inner PRs (R7, R8

PKC family kinase

very specific, all PRs

pGawB

pGawB
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gene #062: insertion of pGawB in gene Tsp42Ec

42E1

~5 kb

gene #063: insertion of pGawB in gene CG10600

pGawB

pGawB

whole fly

whole fly

water immersion

water immersion

062 > lacZ

063 > lacZ

cell-surface molecule of the tetraspan family

expressed very weak all PRs

predicted nuclear protein

outer PR specific
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gene #069: insertion of pGawB in gene bunched 

80 kb

33E

gene #072: insertion of pGawB in the gene slit

52D9

~30kb

pGawB

pGawB

whole fly

whole fly

blowup

water immersion

069 > lacZ

072 > lacZ

transcription factor, TSC22-homologue

weak PRs, stronger in the periphery

Robo ligand

specific to inner PRs R7 and R8
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gene #73: insertion of pGawB in gene combgap 

4.3 kb

50E4

1 kb

gene #75: insertion of pGawB near the gene hybrid male rescue 

CG1619
9D2

3 kb 6 kb

pGawB

pGawB

whole fly water immersion

antennae maxillary palpswhole fly

transcription factor with 10 Zn fingers

expressed in all PRs

transcription factor

subset ofolfactory & taste cells
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line #077: insertion of pGawB in gene CG6424 

~0.4kb

54E3

~ 12 kb

60F3

4 kb

pGawB

pGawB

nuclear; homologue of human KIAA0914 

expressed very weak in all PRs

protein with no known homologies

very weak inner PR expression

whole fly

whole fly

water immersion

water immersion

077 > lacZ

078 > lacZ
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line #092: insertion of pGawB in gene CG6241 

85F13

2.1 kb 3.3 kb

line #098: insertion of pGawB in gene CG6499 

88E9

Metalloendopeptidase

lamina and ocellar lobes

predicted (methyl) ammonium transporter

subset of antennal cells

whole fly

whole fly

blowup

blowup blowup

092 > lacZ
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gene #100: insertion of pGawB at 88C5 

88C5

~30 kb

gene #103: insertion of pGawB in gene CG5735

66E4

alt1 alt2 alt3
12 kb

whole fly

whole fly

antennae legs

water immersion103 > lacZ

no gene ~GAL4 promoter, but lethal P l(3)06951

second antennal segment

RRM domain RNA binding protein

pGawB

pGawB
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gene #112: insertion of pGawB in gene CG14045 

2F6

gene #114: insertion of pGawB in gene CG14185 

76F2

pGawB

~2.3kb

pGawB

Cdc42 RhoGEF, PDZ domain, C2 domain

very strong in R7 cells
whole Fly

whole Fly

water immersion

water immersion

112 > lacZ

114 > lacZ

no known homologies

all PRs,inners very strong
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line #116: insertion of pGawB in gene lamina ancestor 

64D2

line #123: insertion of pGawB in gene no ocelli 

35A4

pGawB

pGawB

whole fly

whole fly

water immersion

water immersion

116 > lacZ

123 > lacZ

no homologies to other proteins

expressed in the ocelli and optic lobes

transcription factor (Zn-finger)

subsets of inner PRs: DRA and R8
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line #128: insertion of pGawB in the genes CG11731 and CG11732 

CG11732
odorant binding protein

CG11731
Immunglobulin protein

85A1

pGawB

line #129: insertion of pGawB in repetitive sequences 

?
gene product/enhancer unknown

?

pGawB

expressed in inner PRs and cone cells
whole fly

whole fly

water immersion

water immersion

128 > lacZ

129 > lacZ
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gene #134: insertion of pGawB in gene CG7145

79A5

pGawB

gene #137: insertion of pGawB in gene CG2264

46D8

pGawB

whole fly

whole fly

water immersion

water immersion

134 > lacZ

137 > lacZ

d-1-Pyrrolidine-5-Carboxylate Dehydrogenase

weak expression in all PRs

EF-hand cell adhesion molecule

expressed in the ocelli
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line #139: insertion of pGawB in gene CG15512 

pGawB

99C7

line #141: insertion of pGawB near methuselah-like 8

61A1

pGawB

whole fly

whole fly

water immersion

water immersion

139 > lacZ

141 > lacZ

Immunoglobulin protein

rxpressed in all PRs

rxpressed in all PRs

G-protein coupled receptor
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line #142: insertion of pGawB in gene  no ocelli

35A4

pGawB

line #145: insertion of pGawB in gene coronin 

42D4

pGawB

~0.5kb

whole fly

whole fly

water immersion

water immersion

142 > lacZ

145 > lacZ

transcription factor (Zn-finger)

subsets of inner PRs: DRA, R7 and R8

actin binding protein

expressed in Inner PRs and pigment cells
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line #147: insertion of pGawB in gene longitudinals lacking 

47A11

line #148: insertion of pGawB in gene polyhomeotic distal 

2D2-3

~1.5 kb~4.5 kb

pGawB

pGawB

whole fly

whole fly

water immersion

water immersion

147 > lacZ

148 > lacZ

Zn-finger transcription factor

weak expression in all PRs

transcription factor

weak expression in all PRs
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line #149: insertion of pGawB in repetitive sequences 

line #154: insertion of pGawB in gene CG6024 

68D1

CG7303
gustatory

receptor 68D.1

?
gene product/enhancer unknown?

pGawB

pGawB

whole fly

whole fly

water immersion

water immersion

149 > lacZ

154 > lacZ
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line #155: insertion of pGawB in gene gilgamesh

89B17

gene #156: insertion of pGawB in gene RhoGAP18b 

18B2
CG7502

~20kb

pGawB

pGawB

whole fly

whole fly

water immersion

water immersion

155 > lacZ

156 > lacZ

drosophila casein kinase I 

expressed in all PRs

small GTPase activating protein

expressed in outer PRs
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line #158: insertion of pGawB in gene CG18742

42D5

line #163: insertion of pGawB near gene CG8005 

66C1

CG7357 CG8005 CG7366

whole fly

whole fly

water immersion

water immersion

158 > lacZ

163 > lacZ

Tetraspan family transmembrane protein

weak expression in inner PRs and other cells

Deoxyhyposine synthase

weak expression in all PRs
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line #173: insertion of pGawB in darkener of apricot 

98F1

pGawB

line #175: insertion of pGawB in gene CG14408

12F7

~1.9kb

pGawB

whole fly

whole fly

water immersion

water immersion

173 > lacZ

175 > lacZ

Ser-, Thr- LAMMER kinase

expressed in R7 cells

no homologies to other proteins

expressed in inner PRs
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line #181: insertion of pGawB in gene no ocelli 

35A4

line #184: insertion of pGawB mindmelt 

54B9

pGawB

pGawB

whole fly

whole fly

water immersion

water immersion

181 > lacZ

184 > lacZ

Zn finger transcription factor

expressed in inner PRs

nuclear Cys3His-type zinc-finger protein

expressed in inner PRs and cone cells
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line #185: insertion of pGawB in gene CG3927 

58E10

~1.6kb

line #186: insertion of pGawB in gene sticky ch1 

86B1

pGawB

RNA-bindingprotein / p62 tumor suppr. homologue

expressed in all PRs

RNA polymerase II transcription factor

expressed in inner PRs and cone cells

whole fly

whole fly

water immersion

water immersion

185 > lacZ

186 > lacZ
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line #190: insertion of pGawB in gene syndecan 

57D12

~5k
b

~66 kb

line #193: insertion of pGawB in gene CG31038 

pGawB
99C7

pGawB

whole fly

whole fly

water immersion

water immersion

190 > lacZ

193 > lacZ

Cytoskeletal anchor protein

expressed in all PRs

no homologies to other proteins

strong expression in all PRs  
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line #194: insertion of pGawB in gene RhoGAP18b

18B2
CG7502

~20kb

pGawB

small GTPase activating protein

line #196: insertion of pGawB near gene methuselah-like 8 

61A1

pGawB

G-protein coupled receptor

whole fly

whole fly

water immersion

water immersion

194 > lacZ

196 > lacZ

weak expression in all PRs

expressed in inner PRs
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54B9

pGawB

line #197: insertion of pGawB in gene mindmelt

whole fly water immersion197 > lacZ

nuclear Cys3His-type zinc-finger protein

expressed in all PRs  
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