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Zusammenfassung

Die Anzahl bekannter Proteinstrukturen wéchst exponentiell und sogenannte ,,Structural
Genomics* Projekte haben es sich zum Ziel gesetzt, die Strukturen aller Proteine aufzukliren,
um dadurch deren Funktionen zu bestimmen. Ich habe in meiner Dissertation eine Methode
zum Vergleich lokaler struktureller Muster, wie zum Beispiel katalytischer Zentren von
Enzymen, entwickelt. Die Methode berechnet die statistische Signifikanz von
Suchergebnissen und erlaubt dadurch die Unterscheidung von bedeutsamen und zufillig
auftretenden Ahnlichkeiten. Sie stellt eine wichtige Ergéinzung zu Methoden dar, die Proteine
anhand deren Gesamtstruktur vergleichen (,,Structural Alignment®), da signifikante
Suchergebnisse sowohl Funktionen bestdtigen konnen, die aufgrund &hnlicher
Gesamtstrukturen vermutet werden, als auch funktionelle Ahnlichkeiten in Proteinen
unterschiedlicher Gesamtstruktur vorhersagen oder erkldaren konnen. Im Internet ist eine
einfach zu bedienende Benutzeroberfliche fiir die Funktionsuntersuchung von

Proteinstrukturen verfligbar (http://pints.embl.de).

Im zweiten Teil meiner Dissertation prisentiere ich eine systematische computerbasierte
Suche nach Drosophila Genen, die von microRNAs (miRNAs) reguliert werden (,, Targets®).
miRNAs sind kurze RNA Molekiile, die in Tieren die Translation ihrer Targets blockieren,
indem sie an komplementére Stellen in deren 3’ untranslatierten Bereichen binden. Methoden
zur Vorhersage von miRNA Targets wurden dringend bendtigt, da Targets fiir nur drei der
insgesamt 700 bekannten miRNAs beschrieben waren. Sechs meiner Target-Vorhersagen
wurden experimentell bestitigt und viele weitere sind mit hoher Wahrscheinlichkeit ebenfalls
zutreffend, so dass die Ergebnisse eine wertvolle Hilfe zur Erforschung von miRNAs
darstellen. Die Studie erweitert die bislang bekannten Funktionen von miRNAs um die
Kontrolle ganzer Signaltransduktions- und Stoffwechselwege sowie ihre Beteiligung an der
Entwicklung des Nervensystems. Weiterhin zeigte sich, dass eine miRNA oft mehrere Targets

kontrolliert, umgekehrt aber auch ein Gen von mehreren miRNAs reguliert werden kann.
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Abstract

The number of protein three-dimensional structures is increasing steeply, and structural
genomics projects aim to solve the structures for all proteins as a means to understanding
function. In the first part of my thesis, I developed a method for the comparison of local
structural patterns (e.g. enzyme active sites) that provides a reliable statistical measure to
discern meaningful matches from noise. The method is complementary to structural alignment
as it is able to confirm functional similarities suggested by an overall similar structure but also
detects functional similarities between different folds. An easy-to-use interface is available on

the Internet for functional annotation of protein structures (http://pints.embl.de).

In the second part of my thesis, I present a computational screen for microRNA (miRNA)
targets in Drosophila. miRNAs are short RNAs that inhibit translation of target messenger
RNAs in animals by binding to complementary sites in their 3’ untranslated regions. Target
predictions were urgently needed as targets were known for only three of the more than 700
miRNAs. Of my predictions, six were validated experimentally and others are likely to be
functional, making the results a useful resource for miRNA research. The screen extended
miRNA function to pathway control, nervous system development and regulation of
metabolism, and revealed that one miRNA typically regulates several targets but also that one

gene is likely to be targeted by several miRNAs.
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1 Introduction

During the last decade, the number of known biological sequences has increased dramatically
and complete genome sequences of many prokaryotes and some eukaryotes including human
are now available. The key problem of today’s biology is to make sense of these sequences
and to understand their function and functional interplay. Traditionally, genes and their
functions were identified in laborious and time-consuming experiments prior to the
knowledge of the genes’ sequence. Bioinformatics tries to infer function directly by means of
comparisons, as high sequence or structure similarity between two proteins is often indicative
of a common function. However, some similarities required for detecting specific functions

can also be quite subtle and may comprise only a few residues.

For my thesis, I worked on two types of subtle similarities. Both are difficult to detect but can
be sufficient to infer function. In the first part of the thesis, I describe a new method for
functional annotation of protein structures by the comparison of active sites. In the second, I
present a screen for short sequence motifs indicative of microRNA target genes in
Drosophila. 1 then, summarize four other projects to which I contributed. In the introductory
section that follows, I review methods typically used to compare protein sequences and
structures and discuss the problem of statistical significance. I then introduce microRNAs as a

novel class of genes and discuss the importance of microRNA target prediction.

1.1 Protein Structure, Function and Evolution

Proteins are central to all biological processes, including metabolism, immune response,
signal transduction and gene expression, and defective proteins have been implicated in many
human diseases. It is thus crucial to know the functions of the growing number of proteins
identified from genome sequencing. Many proteins (especially large eukaryotic proteins) are
modular: they consist of several domains that are able to fold independently into stable
structures. Domains also frequently contribute distinct molecular functions to the overall
protein. Sequence and structural similarity (see next sections) have shown that domains are
often re-used by nature: a domain may occur in different contexts and combinations and
prediction of function must thus take the overall domain structure into account (e.g. Apic et
al., 2001; Chervitz et al., 1998; Copley et al., 2002a; Copley et al., 2002b; Gerstein & Levitt,

1997; Koonin et al., 2002). Evolutionary and structural classifications of proteins are often
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domain-centric (e.g. Pfam and SCOP; see below) and here, I will use the terms protein and

domain interchangeably.

Proteins evolve via point mutations or insertion/deletion events in their corresponding genes,
or less frequently through duplications of partial or whole genes. This process of
accumulating changes that ultimately results in new functions or species is called divergent
evolution. All proteins that diverged from a common ancestor (i.e. have a shared evolutionary
history) are homologous irrespective of current similarity or function. However, our ability to
reliably assign homology to two proteins is dependent on the remaining similarity that is
preserved from the ancestor. Over short evolutionary distances, this is possible through
sequence comparison (see Chapter 1.2). Proteins then typically have the same structure and a
similarity in function and are thus often clustered into (homologous) families. However, over
long distances eventually too many mutations accumulate and these methods fail as the
similarity between homologous proteins becomes indistinguishable from the similarity

between two random sequences.

Protein three-dimensional (3D) structures can be similar in the absence of detectable sequence
similarity and structure is thus often said to be more conserved than sequence. Proteins
structures are typically compared or classified according to their folds, the spatial
arrangements of secondary structure elements and their connectivity (e.g. Blundell &
Johnson, 1993; Murzin et al., 1995b). Structural alignment methods (see Chapter 1.4.1) are
often able to detect remote homologies not evident from the sequence. However, not all
proteins that adopt a similar fold are homologous. For instance, despite the large number of
protein sequences sampled during evolution, it has been estimated that all naturally occurring
proteins belong to only a few thousand folds (Blundell & Johnson, 1993; Chothia, 1992;
Koonin et al., 2002; Orengo et al., 1994a) suggesting that independent convergence is
prevalent. A more theoretical approach enumerated all possible sequences for an average
sized domain (150 residues) and predicted that about 10* different sequences with less than
20% sequence identity might adopt one common fold (Branden & Tooze, 1999). Proteins with
the same fold that are not thought to share a common ancestor but rather believed to have
evolved independently and converged to a stable structure are often referred to as analogs
(Fitch, 1970). Analogy is a more general term in biology, used to describe convergent
evolution: classical examples of analogy are fly and bird wings that arose independently to

serve the same function. Interestingly, the population of different folds varies greatly with
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only a few folds accounting for more than half of all protein structures. One of these so-called
superfolds (Orengo et al., 1994b) is the (fa)s-(TIM)-barrel adopted by many metabolic
enzymes and first named after triosephosphate isomerase (TIM, see for example Farber &
Petsko, 1990). Remote homology has been discovered between many of these enzyme
families but for others independent evolution seems more likely (Copley & Bork, 2000;
Nagano et al., 2002).

Protein function is largely determined by structure and some highly specialized structures
have consequently been developed. Some proteins such as collagen or keratin form elongated
fibres to withstand mechanical stress; others are globular and suitable for transport (e.g.
albumin or haemoglobin). The immunoglobulin (Ig) fold is common to many proteins in the
immune system and is well suited as a general template for recognition and binding of a
variety of molecules (e.g. Bork et al., 1994). Specialized structures are also apparent on the
level of domains or motifs: domains that mediate protein-protein interactions are important
components of many signal transduction proteins (e.g. SH2 and SH3; see Pawson & Gish,
1992) and structural motifs such as helix-loop-helix (HLH) motifs or zinc-fingers are often
common to otherwise different proteins to mediate protein-DNA interactions (e.g. Nelson,

1995).

In many cases, only a small part of the protein — the active site — is directly involved in a
specific function and the rest serves other functions (e.g. regulation, interactions, etc.) or acts
only as a scaffold. For example, the active site of the serine proteases is a characteristic
arrangement of a serine, histidine and an aspartate residue (catalytic triad; e.g. Dodson &
Wlodawer, 1998). Other proteins often rely on cofactors such as metal ions or small
molecules (also called coenzymes) to carry out their function. Some cofactors are only
transiently associated with the enzyme and function as cosubstrates (e.g. ATP, NAD) whereas
prosthetic groups such as heme or FAD are permanently bound to the enzyme. Catalytic
residues or cofactor binding sites can be common to unrelated proteins and comparisons of
active sites can thus give clues about function independent of overall sequence or structural
similarity (see Chapter 1.4.2.2 and Denessiouk et al., 1998; Kobayashi & Go, 1997a/b; Nobeli
etal.,2001).



14

Sequence —»  Structure ——»
i} Active Site

Comparison
WORKINGINEBIOINFORMATICSIS-

L'e [ .
REALLYCOOLYOUCANHAVECOFFEE r
ALLDAYLOHNGANDLEAVEATEOURTO &. ‘-4 ‘
kg‘ ,.,.,, Y

FOTOTHEFPOOLI NSUMMER

Sequence Fold
Comparison Comparison
(Str. Alignment)

Homologs

Figure 1.1: Computational methods for assigning functions to proteins: sequence comparison (left), fold
comparison or structural alignment (middle), and active site comparison (right). Examples shown are
Rossmann-type NAD(P)-binding domains (middle) and the catalytic triad in Clp and trypsin (right).

Computational methods to assign functions to proteins compare sequences (Chapter 1.2),
overall structures (folds, 1.4.1) or structural details such as active site residues (1.4.2.2, see
Figure 1.1 for an overview). A sufficiently non-random similarity that covers the whole length
of a protein can be used to establish homology and often to infer function. In contrast,
functional similarities can be common to unrelated proteins and can thus reside in completely
different sequence or structural contexts. The residues involved are typically close in
sequence or structure and comprise only a very small fraction of the overall protein. Examples
include independently evolved enzyme active sites or short linear motifs that are recognized
by cellular receptors. If this type of similarity is reliably detected, it can be used directly for

functional annotation.
1.2 Protein Sequence Comparison

1.2.1 Pairwise Sequence Alignments and Sequence Searches

Protein sequence searches are generally performed as pairwise comparisons of a query
sequence to each sequence in a database. For this, each pair of sequences is aligned so that a
maximal number of identical or similar residues match, while mismatches or gaps are

penalized. All algorithms to perform this rely on schemes to score amino acid
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substitutions/changes between the sequences (e.g. Durbin et al., 1998). The simplest scheme
considers only identical residues and gives a percent identity value for a pair of sequences.
Others try to weight the differences by considering the physico-chemical properties of the
amino-acids (for a review see Vogt et al., 1995). However, empirical substitution matrices
that are derived from observed substitution frequencies in multiple sequence alignments of
homologous sequences are now used almost exclusively (PAM (Dayhoff et al., 1978) or

BLOSUM (Henikoff & Henikoff, 1992)).

Exact alignment algorithms based on dynamic programming (Needleman-Wunsch
(Needleman & Wunsch, 1970) or Smith-Waterman algorithm (Smith & Waterman, 1981)) are
guaranteed to find the optimal alignment according to a particular scoring scheme but are
often too slow for comparisons involving large databases. Therefore, heuristic algorithms
have been developed that allow much faster searches but sacrifice some sensitivity, i.e. they

may miss distantly related sequences or lead to errors in ranking of remote matches.

Fasta (Pearson & Lipman, 1988) and BLAST (Altschul et al., 1990) are the most widely used
programs for sequence similarity searches. Both search first for identical short stretches in
both sequences to align (also called words or k-tuples) and then extend and join these words
into an alignment. Whereas Fasta searches for all possible words of a given length, BLAST is
based on the observation that alignments for true matches likely contain short stretches of
very high similarity and thus considers only the most significant of these. The speed of the
programs increases and sensitivity decreases from the Smith-Waterman algorithm to Fasta
and BLAST (Pearson, 1995). Both programs allow searches with protein or nucleic acid
queries against databases containing either sequence type and associate matches with
measures for statistical significance that allow the user to compare results from different

searches and distinguish true from random matches (see Chapter 1.5).

1.2.2 Multiple Sequence Alignments

When a database search reveals several matches, a logical next step is to create a multiple
sequence alignment (MSA). MSAs are powerful tools when looking for residues that are
especially important for structural or functional reasons. Whereas they may not be revealed in
a pairwise alignment (e.g. when the two sequences are too divergent or too similar), important

residues usually stand out in an MSA containing several related sequences.
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Three widely used programs for multiple sequence alignments are PileUp (Feng & Doolittle,
1987), ClustalW (Thompson et al., 1994), and T-Coffee (Notredame et al., 2000). These
programs use a progressive alignment algorithm that first calculates all pairwise sequence
alignments and similarities and builds a guidance tree (dendrogram). It then starts joining the
two most similar sequences and extends the alignment by adding single or multiple sequences

with decreasing similarity according to the dendrogram until all sequences are aligned.

1.2.3 Sequence Profiles and Hidden Markov Models

In a multiple sequence alignment of homologous proteins, some positions are typically more
conserved or show higher preferences for some type of amino acid (e.g. hydrophobic) than
others. This is due to structural requirements (e.g. disulphide bonds, hydrophobic core) or
functional features (e.g. catalytic residues) specific to that family. Sequence profiles (also
called weight matrices or position specific score matrices (PSSM) (Henikoff & Henikoff,
1994)) capture these features by specifying for each position the frequency that each amino
acid appears (Gribskov et al., 1987). A profile not only captures the different amino acid
preferences at different positions but also highlights positions of particular importance or
weights down others that are not conserved. Profiles are thus more sensitive than the
traditional methods used to search databases that assign equal weight to each position along

the sequence (e.g. Brenner et al., 1998; Park et al., 1998).

Position-Specific Iterated BLAST (PSI-BLAST, Altschul ef al., 1997) makes use of sequence
profiles to allow more sensitive sequence searches. It first compares a query sequence to a
database and builds a profile from the matches. It then iteratively searches the database with
the profile and adds all new matches to the profile until no new sequence is detected. By
successively incorporating more sequences, the method efficiently detects remote homologs,

hence the general usage of PSI-BLAST in genome annotation and structure prediction.

Although sequence profiles capture some conservation features, they are inadequate to
represent all the information in an MSA of a protein family. One must still rely on (arbitrary)
gap penalties as in pairwise sequence alignment, or combine multiple ungapped blocks
described below for BLOCKS. Hidden Markov models (HMMs) provide a full probabilistic
model for all sequences in a sequence family (e.g. Baldi et al., 1994; Eddy, 1998; Krogh et
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al., 1994). They consist of a repetitive structure of different states, typically match, insertion
and deletion. For each position in the alignment, the probabilities for the transition between
the states (e.g. match—insertion or match—match) and for the value of the matches (i.e. the
amino acid preferences) are different. Given a collection of sequences that need not be
aligned, all probabilities are adjusted so that sequences similar to those in the training set
score best. This also means that a random walk through the states of the model considering
the different probabilities most likely leads to a sequence from the training set (this is why it
is said that HMMs emit sequences and match states are sometimes called emission states).
HMMs thus provide a complete statistical framework for sequence searches and alignments
including a consistent treatment of gaps (insertions) and deletions. If enough sequences are
known to train an HMM for a given family, it allows the most sensitive sequence searches
possible and provides reliable significance scores to all matches. The most widely used HMM
software packages are HMMer (http://hmmer.wustl.edu, Eddy, 1998), and SAM (Karplus et
al., 1998).

Several pattern databases store conserved features from multiple sequence alignments and
derived sequence profiles. The evolutionary information of individual protein families can be
used to infer family membership for new sequences. The most widely used include PROSITE
(Hulo et al., 2004) that uses patterns (regular expressions) and sequence profiles characteristic
for a protein family or domain, the BLOCKS database (Henikoff & Henikoff, 1991) that
stores ungapped multiple alignments (blocks) that correspond to the most conserved regions
of documented protein families, and PRINTS-S (Attwood et al., 2003) that uses the most
conserved regions of multiple sequence alignments to build signatures (fingerprints)
diagnostic for family membership. The databases and analysis tools Pfam (Bateman et al.,
2002) and SMART (Letunic et al., 2004; Schultz et al., 1998) make use of the great value of
MSAs and their representation as HMMs. Both are essentially collections of carefully
constructed MSAs for different protein domain families. Sequences can be searched against
HMMs built for each family to detect domain recurrences, help classifying the protein, or aid
in functional annotation. The metasite InterPro combines many resources of this type and
provides a consensus view that overcomes the specific weaknesses of the individual databases

(Apweiler et al., 2001).
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1.2.4 Limits of Sequence Comparison

1.2.4.1 Thresholds for Inference of Homology

In 1986, Cyrus Chothia and Arthur Lesk reported the first systematic comparison of structures
from different protein families and showed that the extent of structural changes is directly
related to the extent of sequence changes. Specifically, the overall structural divergence
measured by the root mean square deviation (RMSD) of the superimposed backbone Ca
atoms increased exponentially with decreasing residue identity (Chothia & Lesk, 1986), a
trend that was later confirmed on a much larger scale and for different measures of sequence

similarity (Russell & Barton, 1994; Russell et al., 1997; Wilson et al., 2000).

However, it became clear that shorter alignments require a higher degree of similarity for
structural significance. A systematic comparison of protein sequence and structure determined
the sequence identity required to infer structural similarity dependent on the length of the
alignment, allowing the authors to quantify the notion that “two protein sequences are
sufficiently similar to be considered homologous” (homology cutoff; Sander & Schneider,
1991). This cut off is at 25% sequence identity for long alignments whereas for alignments
shorter than 70-80 residues, the structural significance of a given sequence identity drops
sharply and at 10 or fewer residues, even 100% sequence identity is not sufficient to infer
homology and/or structural information. Indeed, identical pentapeptides have been found to
adopt completely different structures (Kabsch & Sander, 1984). Sequences with similarities
below this threshold are in the so-called twilight zone: they are not necessarily unrelated but
their homology remains uncertain. Modern methods for sequence comparison take the length
of the sequences into account and provide reliability scores for the likelihood that matches are

meaningful (see Chapter 1.5).

1.2.4.2 Thresholds for Reliable Inference of Function

Divergent evolution implies that the descendents of a given ancestral protein (i.e. homologs
by definition) have adapted to perform different functions. This is clear for remote homologs
where 10% were found to have completely different functions (Hegyi & Gerstein, 1999;
Russell et al., 1998). However, depending on the number of changes necessary to achieve
this, proteins can still exhibit remarkable sequence similarities despite functional differences.

Functional similarities cannot be measured with a simple metric but instead rely on
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classifications schemes. The Nomenclature Committee of the International Union of
Biochemistry and Molecular Biology (NC-IUBMB) assigns a four-digit EC (Enzyme
Commission) number to all enzymes to classify them according to the nature of chemical
reactions they catalyze. The first digit denotes the class of reaction (i.e. oxidoreductases,
transferases, hydrolases, lyases, isomerases, ligases) and the remaining levels specify the
reaction more precisely (i.e. substrates, etc. — but the exact meaning of each level depends on
the primary number, Webb et al., 1992). The EC classification system is used by all major
databases specializing in protein sequences (e.g. SwissProt; Boeckmann et al., 2003),
enzymes (e.g. BRENDA; Schomburg et al., 2004, IntEnz; Fleischmann et al., 2004), or
complete metabolic pathways (e.g. KEGG; Kanehisa et al., 2004).

In the last few years, several groups used this system to examine the relationship between
sequence similarity and similarity in function and to establish thresholds for reliable inference
of function (Rost, 2002; Tian & Skolnick, 2003; Todd et al., 2001; Wilson et al., 2000). The
thresholds reported in these publications vary greatly: Todd et al. (2001) and Wilson et al.
(2000) found that 40% sequence identity was sufficient to transfer precise function reliably or
30% sequence identity to transfer the first 3 digits of the EC number with 90% accuracy,
whereas Rost reported that less than 30% of the sequence pairs above 50% identity have
entirely identical EC numbers and that even BLAST E-values below 10’ did not allow
transfer of enzyme function without errors (Rost, 2002). Indeed, even the most cautious
thresholds do not account for outliers, such as the extreme example of melamine deaminase
and atrazine chlorohydrolase, which have different overall function despite 98% sequence
identity (Seffernick ef al., 2001). More general examples include the so-called non-catalytic
enzymes that are similar to active enzymes but have lost their catalytic function (e.g.
crystallins in vertebrate lenses that are homologous to glutathione S-transferases and other
enzymes (Tomarev & Zinovieva, 1988; Wistow & Piatigorsky, 1987), carboxypeptidase 11
that has homologous catalytic and non-catalytic domains (Aloy ef al., 2001a), the similarity
between the signalling factor sonic hedgehog and the transthyretin domain of
carboxypeptidase (Gomis-Ruth ez al., 1999), significant similarity between a-lactalbumin and
lysozyme, or more recently Mycobacterium tuberculosis MPT51 as a founding member of a
new family of non-catalytic a/p hydrolases (Wilson et al., 2004; for a review see Murzin,

1993a; Murzin, 1998; Todd et al., 2002).
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1.2.5 Sequential Motifs

Some important functional parts of proteins such as post-translational modification sites
(Yaffe et al., 2001), targeting signals for specific cellular compartments (Emanuelsson et al.,
2000), and protein interaction or cleavage sites (Nielsen ef al., 1997) consist of only a few
residues. They often occur in exposed loops or unstructured regions outside globular domains
and can be common to unrelated proteins. Whilst consensus sequences (motifs) have been
experimentally determined for many such sites (e.g. phosphorylation sites), others show only
preferences for certain residue types such as the positively charged residues found in nuclear

targeting signals (Cokol et al., 2000).

Predictions based on sequence searches with motifs are usually not specific and give a high
number of false positive matches (i.e. they tend to overpredict) because short sequences often
match by chance (the same problem exists for miRNA target prediction, see below and
Chapter 3.5). Protein kinase C for example recognizes the tripeptide SVK, but searches for
that motif match about every tenth protein and the vast majority of the matches are not
functional. The largest resource for linear motifs is the ELM (eukaryotic linear motif) server
(Puntervoll et al., 2003), followed by PROSITE (Hulo ef al., 2004) and Scansite (Yaffe et al.,
2001). ELM tries to reduce overprediction using different filters such as a cellular
compartment filter, a globular domain filter or a taxonomy filter that remove sequence
matches unlikely to be functional. Scansite is specific for motifs involved in signalling
pathways (e.g. kinase recognition motifs, protein interaction motifs) and scores matches with

a sequence profile around the putative sites to enhance the specificity.

1.3 Structure Prediction

The structure of a protein is ultimately determined by its sequence, and scientists have long
tried to predict protein structure from sequence. Resulting models can provide a more detailed
picture of protein function but can also reveal similarities not apparent from the sequence. I
will review three types of methods that are applicable depending on the similarity of the

protein of interest to proteins of known structure.

1.3.1 Homology Modelling

Homology modelling (or comparative modelling) is based on the observation that

homologous proteins have a common fold. It uses experimentally defined protein structures as
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templates to predict the conformation of other proteins with similar sequence (targets). The
first modelling studies were carried out in the late 1960s and early 1970s for a-lactalbumin

(Browne et al., 1969) and the a-lytic protease (McLachlan & Shotton, 1971).

Today, obtaining 3D structures by homology modelling can be achieved with an accuracy
approaching that of a low-resolution X-ray structure or a medium resolution NMR structure
for protein sequences that have at least 35-40% sequence identity to a known structure (Sali,
1998; Sanchez et al., 2000). This vastly increases the number of proteins for which reasonable
structural information can be inferred and facilitates the design of experiments and functional

annotation (Vitkup et al., 2001).

All current methods are based on four steps. The first is to identify the templates, i.e. proteins
with known structure that exhibit significant sequence similarity to the target sequence. Then
target and template sequences are aligned and the most suitable template is chosen. The third
step is to build the structural model for the target based on the alignment to the template and
the template structure. Finally, the model is evaluated by several criteria and the alignment
and model building is improved until a satisfactory model is obtained (for a review, see Marti-
Renom et al., 2000). At present, the main problems in homology modelling are template
selection and alignment, modelling insertions and deletions (i.e. regions without template

structure), and predicting the side-chain packing (Tramontano & Morea, 2003).

1.3.2 Threading or Fold Recognition

There are many examples where proteins share a similar 3D structure despite having no
apparent sequence similarity. Threading programs make use of this observation by testing
how well a sequence fits a particular fold. After “threading” the sequence through a collection
of 3D template folds, the programs evaluate the fit by energetic or statistical potentials (e.g.
Sippl, 1995). The original methods created the sequence-to-structure alignment purely by
optimizing these potentials using time-consuming algorithms (Godzik et al., 1992; Jones et
al., 1992). Newer approaches like GenTHREADER (Jones, 1999a) or 3D-PSSM (Kelley et
al., 2000) align the target sequences to profiles derived from sequence or structure
alignments. The statistical potentials are only used to score the different fits, often in
combination with other measures such as solvent exposure or secondary structure. In the past

three years, several consensus prediction methods or meta-predictors were developed to
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combine predictions from a variety of available methods and are often more accurate than any
individual server (Bujnicki et al., 2001). Pcons (Lundstrom et al., 2001) ranks predictions
generated by a set of servers with a scoring function that takes the confidence of the servers’
predictions into account. 3D-SHOTGUN (Fischer, 2003) reassembles high-scoring fragments
taken from different predictions into a new model that can be closer to the native structure
than any of the original models. Another approach (3D-Jury) assumes that the most abundant
model (i.e. a structure that is predicted by many methods) is closer to the native structure than
any single model and thus re-ranks the models according to their abundance (Ginalski et al.,

2003).

Threading is able to identify similarities that are not found by conventional sequence
comparison. Although the more sensitive methods like PSI-BLAST or HMMer are often able
to identify remote similarities and bridge the gap between comparative modelling and
threading, threading methods (e.g. Kelley et al. 2000) can often successfully detect structural
similarity for proteins where PSI-BLAST and HMMer fail.

1.3.3 Ab initio Methods

When homology modelling and threading methods fail, hints about protein structure can come
from ab initio or template-free methods. One class of these methods predicts the secondary
structure, i.e. whether local segments adopt an a-helix, B-sheet or a coiled structure. Knowing
something about the secondary structure of a protein is often seen as a necessary step towards
determining the full structure. It has indeed been used for fold prediction (e.g. Koretke ef al.,
1999; Russell et al., 1996; Sheridan et al., 1985) and fragment-based methods described
below). The first generation of methods such as those by Chou & Fasman (1974) or Garnier et
al. (1978) was developed during the 1970s. They averaged the empirical propensities of
residues to adopt one of the three secondary structure states over segments with a typical
length of 11-21 residues but seldom achieved accuracies better than 60%. This was greatly
improved by incorporating evolutionary information derived from MSAs with artificial neural
networks into methods like PhD (Rost & Sander, 1993) or PSI-PRED (Jones, 1999b), which
could reach accuracies above 70%. New consensus methods (meta-predictors) such as Jpred
(Cuff et al., 1998) combine several methods and are currently the most accurate. However, the

improvements in performance tend to plateau at around 80% accuracy (Aloy et al., 2003b),
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which is expected given the conservation of secondary structure in homologous proteins

(Kabsch & Sander, 1983b; Rost et al., 1994; Russell & Barton, 1993).

During the last few years, methods have been developed that show remarkable success in
predicting overall structures for novel folds (Aloy et al., 2003b; Lesk et al., 2001). They are
based on the assumption that all possible structures that can be adopted by small fragments
(e.g. 3 and 9 residues) are sufficiently sampled in known folds (Bystroff & Baker, 1998;
Jones, 1997). For structure prediction, the sequence of interest is first compared to sequence
profiles created from structurally similar fragments (fragment library) and high-scoring
fragments are then assembled considering secondary structure prediction, hydrophobic burial
and steric clashes. Recently, one of these methods (Rosetta, Bonneau et al., 2002) was used to
predict structures for major protein families with no structural information. Interestingly,
some predictions showed structural similarity to known folds with similar functions that was
not found by either sequence comparisons or fold recognition. This establishes a priori

structure predictions as a new means for the annotation of function.

1.3.4 CASP

Since 1994, the performance of protein structure prediction methods has been assessed every
two years in CASP (Critical Assessment of Structure Prediction). In this blind test, target
sequences are released for structure prediction prior to the availability of the experimentally
solved protein structure (Moult et al., 1995). This forces predictors to exercise caution when
making claims of success and CASP has thus played a major role in charting the progress of
the field. In autumn 2002, our group assessed the predictions in the CASPS new fold
(formerly ab initio) category and presented the results in the subsequent meeting at Asilomar

in California (USA). I will summarize our assessment in Chapter 3.6.3.

1.4 Assigning Function from Protein Structure

The 3D structure of a protein provides a much more detailed view of its properties and
function than the sequence alone. Residues can for example form spatial clusters that are not
seen in the sequence but might have certain characteristics indicative of function such as
positively charged surface crevices for binding DNA (e.g. Boggon et al., 1999). Furthermore,
catalytic mechanisms and active site residues have been determined by careful examination

and comparison of structures for many enzymes. Protein structures are also much more



24

conserved than sequences so that remote homology can often only be detected by structure

comparison.

Recent improvements in structural biology have greatly increased the number of protein
structures in the public Protein Data Bank (PDB, Berman et al., 2000). Today, the PDB holds
more than 24,000 structures and is growing exponentially. In addition, several structural
genomics projects aim to systematically solve the structures for all proteins as a means to
understanding function (Burley, 2000; Burley & Bonanno, 2002; Hurley et al., 2002; Kim et
al., 2003; Vitkup et al., 2001; Zhang & Kim, 2003). Because of the increasing availability of
structures and the advantages above, methods to annotate function through structure are now
of growing importance. These methods belong to two classes: structural alignment or fold

comparison (next section), and structural pattern matching (Chapter 1.4.2.2).

1.4.1 Structural Alignment

As mentioned above, remote homologs and analogs can adopt very similar structures
indicative of specific functions even in the absence of detectable sequence similarity. Methods
have thus been developed to compare or align protein structures independent of their
sequence. They use the pairwise distances between Ca atoms (e.g. Dali (Holm & Sander,
1993; Holm & Sander, 1995), STAMP (Russell & Barton, 1992), SSAP (Orengo & Taylor,
1996)), the geometry of secondary structure elements (e.g. VAST (Gibrat et al., 1996)) or a
combination of different information (CE (Shindyalov & Bourne, 1998), GRATH (Harrison et
al., 2002)) to find proteins with a similar fold, i.e. common spatial arrangements of secondary

structure elements in the same order along the sequence.

Such similarities can identify ancient evolutionary relationships that are not always apparent
when only sequences are known, but that are often associated with a similarity in function.
Indeed, the location of active sites, binding surfaces or substrate type is often conserved and
their function can be easily tested by further experiments. Highly populated protein folds
(superfolds) often have a common location for substrate binding sites between remote
homologs or even analogs. The best-known examples are the TIM-barrels, that are known to

bind substrates at the C-terminal end of the barrel-forming B-strands (Russell et al., 1998).
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Based on manual inspection and automated structure comparison, several structure
classification systems are available, in particular SCOP (Structural Classification of Proteins),
CATH (Class Architecture Topology Homology) and FSSP (Families of Structurally Similar

Proteins).

SCOP (Murzin et al., 1995a) organizes protein domains into a hierarchy consisting of class,
fold, superfamily, family and species. Proteins are first broadly grouped into classes by their
secondary structure content (i.e. all a, all B, a/p, a+p) or unique features (i.e. small proteins,
coiled coil proteins). Proteins within one fold share a common core as determined by manual
inspection of the number, arrangement and connectivity of secondary structure elements. This
structural similarity might have evolved convergently and different folds might thus represent
analogous folds, although distant evolutionary links may exist. Proteins that are grouped in
the same superfamily often have no detectable sequence similarity but show some evidence of
a common ancestor, based on high structural similarity, conservation of unusual structural
features or functions, or significant sequence identity after structural superimposition. Close
homologs with high structural similarity and detectable sequence similarity are grouped into

one family.

CATH (Orengo ef al., 1997) uses a semi-automated method to classify proteins into a
hierarchy consisting of the levels class, architecture, topology and homology. Whereas class,
topology and homology are comparable to class, fold and family in SCOP, the manually
annotated architecture level is unique to CATH. It encapsulates broad features of the protein
shape such as the orientation of secondary structure elements independent of connectivity or

direction.

FSSP (Holm & Sander, 1996) presents the results of pairwise structural comparisons rather
than a structural classification. Proteins with greater than 25% sequence identity are first
grouped together and representatives of all groups are compared to one another using the
structural alignment program Dali. The user can retrieve all significant matches of these
comparisons and browse a fold tree that is computed from the results. FSSP also assigns a six-
character fold index at different similarity cutoffs that do not correspond to the hierarchy

levels of the other databases.
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A systematic comparison of these protein structure classifications revealed that approximately
two-thirds of the proteins in each database are common to all three databases and that the
classifications agree in the majority of cases. No database was found to be distinctly superior
and it was suggested that all three should be used in combination. The great strength of SCOP
is the careful manual assignment of evolutionary relationships - even in the absence of
sequence similarity - with drawbacks being update frequency and limited coverage. In
contrast, FSSP is updated continuously and covers all structures in the PDB but the data are
left to the users’ own assessment (Hadley & Jones, 1999). We mainly used SCOP during our

work as we its manual curation most reliable and useful for our purposes.

1.4.2 Active Site Identification and Comparison

Sequence similarity does not always imply a common function (see above) and structural
alignment-based search methods do not always provide functional clues. This is clear if a
protein adopts a new fold (i.e. does not resemble any known structure), but problems can also
arise when proteins adopt very common folds like TIM-barrels, ferredoxins or Ig-like
structures that perform many different functions, (e.g. Orengo et al., 1994a). Here, functional
inferences are difficult to make, since structural alignments can show an equal degree of
similarity between functionally similar and dissimilar proteins. Two types of methods thus
concentrate on the functional parts of proteins and aim to detect the active sites by means of

sequence conservation or local structural similarities.

1.4.2.1 Identification of Active Sites using Conservation

Functionally important residues are typically more conserved than the overall protein
sequence because they are under evolutionary pressure to maintain their functional integrity.
Furthermore, one expects a higher degree of conservation of the catalytically active residues
directly involved in the reaction mechanism whereas the substrate binding residues are only

conserved among close homologs but then altered to allow for different substrate specificities.

The Evolutionary Trace (ET) method (Lichtarge et al., 1996) is based on these observations
and “traces” conserved residues within an MSA by following an evolutionary tree. When
residue conservation across different numbers of tree branches is required, universally

conserved catalytic site residues (high selectivity) or intermediately conserved binding sites
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(high sensitivity) can be detected. Projection of the selected residues onto the protein structure
helps to manually select solvent accessible clusters of conserved residues that are potentially
important for function. Many other groups published work on the identification of active sites
using evolutionary conservation similar to the original ET method (Aloy ef al., 2001b; Armon
et al., 2001; Landgraf et al., 2001; Lichtarge & Sowa, 2002; Madabushi et al., 2002; Oliveira
et al., 2003; Ota et al., 2003). The main differences are in automation and large-scale
benchmarking (Aloy et al., 2001b), more careful construction of evolutionary trees and
consideration of physicochemical properties of amino acids (Armon et al., 2001) and the
assessment of significance for spatial clusters of conserved residues (Madabushi et al., 2002).
Recently, various characteristics of catalytic residues were carefully examined (Bartlett ez al.,

2002) and used to predict catalytic residues (Gutteridge et al., 2003).

1.4.2.2 Comparison of Active Site 3D Patterns

Although the methods described above are sometimes able to detect active site residues by
their evolutionary conservation, they do not provide further functional annotation or allow
comparisons between sites, but merely highlight centres of conservation. One class of
methods makes use of the growing number of known protein structures and tries to obtain
functional clues by directly comparing functional sites, which can be common to proteins
with different folds. Residues within these spatial patterns are not necessarily adjacent in the
protein sequence and can occur in any order. A classic example of this phenomenon is the
trypsin-like catalytic triad, which nature has reinvented more than ten times (Dodson &
Wlodawer, 1998), although several other examples have been reported (e.g. Denessiouk et al.,
1998; Endicott & Nurse, 1995; Russell, 1998). Methods to detect the functional similarities
must thus be independent of the overall sequence or fold similarity and the sequence order of
the residues. This prevents the use of alignments and instead requires a view of protein
structures as collections of unconnected points or atoms in space. Most of the available
methods use search algorithms adapted from computer vision (geometric hashing) or
mathematical graph theory. Geometric hashing requires the transformation of the coordinates
to many internal reference frames and performs searches by directly comparing the coordinate
values. Graph theory algorithms use the distances between atoms or residues that are
independent of the absolute coordinates, i.e. the orientation of the structures. The structures
are represented as graphs: the atoms or residues correspond to nodes and the distances

between them to edges. The search algorithms aim to detect common patterns, i.e. sub-graphs
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or cliques and are often named accordingly, although all essentially perform recursive depth-
first searches (see Chapter 2.3.3). They were first successfully applied to small molecules in

pharmacophoric pattern matching (see Willett (1987) for a review).

Once equivalent patterns are found, a score to assess their similarity (i.e. the quality of the
match) is calculated. Most methods use the RMSD, which accurately scores the (geometrical)
difference between two sets of coordinates and is often used in structure comparison. The
definition and properties of RMSD are critical to assess its statistical significance and are

discussed below (Chapter 3.1).

Artymiuk et al. (1994) developed a method (ASSAM) to search protein structures for the
recurrence of user-defined side-chain patterns using a subgraph isomorphism algorithm.
Residues are represented by one, two or three pseudo-atoms and patterns are characterised by
the distances between these atoms. Matches are required to consist of the same type of
residues with equal inter-atom distances although a distance tolerance for near-exact matches
is allowed. The method successfully detected recurrences of the serine protease catalytic triad,
the two-arginine active site from staphylococcal nuclease, and a zinc-binding site. However,
depending on the distance tolerance, different numbers of matches are reported, that are also
not associated with a similarity score and require visual inspection for ranking or separation
from noise. In addition, inter-atom distances do not reflect the chirality of biological

structures and discrimination of true matches from mirror images is not possible.

Fischer and co-workers used a geometric hashing algorithm (originally developed by
Nussinov & Wolfson, 1991) to compare spatial patterns of Ca. atoms (Fischer ef al., 1994).
Matching Co atoms are optimally superimposed and the RMSD is reported. In addition, an
empirical similarity score is calculated from the number of equivalent Co. atoms normalized
to the overall size of the two proteins. The authors detected similarities between trypsin and
subtilisins (i.e. across folds) and extended their work to the comparison of protein surfaces
(Lin et al., 1994; Norel et al., 1994). The method requires intensive pre-calculations and lacks
specificity as information about the residue type or the orientation of the residue within a
pattern is lost when only Cow atoms are considered. This is reflected in the large number of Ca

atoms common to all matches (more than about 100 atoms or 50% of the query).
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Wallace et al. (1996) derived a 3D template for the catalytic sites of serine proteases and
demonstrated its use for finding novel examples. Subsequently, the authors introduced a
geometric hashing algorithm (TESS) for the construction of templates and databases searches
and created a template database PROCAT (Wallace et al., 1997). Matches were evaluated by
the RMSD, and the number of matches at different RMSD cutoffs was compared. A two-
residue active site template from lysozyme, for example, had low specificity as many false
positive matches were reported. The authors found that the number of matches for a given
RMSD generally depended on the number of atoms or residues in the template but did not
provide a measure for the statistical significance (i.e. the meaning, see Chapter 1.5) of the

matches.

Fetrow and Skolnick (1998) also defined structural templates for active sites. Their templates
(fuzzy functional forms or FFFs) contain information about the residue type, Ca atom
distances, residue conformations (e.g. cis versus trans-proline) and the sequence context.
They found matches to FFFs from glutaredoxin/thioredoxin and ribonuclease active sites in
experimentally-determined and predicted protein structures. However, the different nature of
information used made the manual template definition difficult and often inapplicable and

prevented a score that would allow ranking of the matches.

Russell (1998) uses a recursive depth-first search to find residues in similar spatial
arrangements as assessed by similar pairwise distances between Ca, Cp and functional atoms
of the residues. Matches are evaluated by a weighted RMSD that renders the contribution of
each amino acid independent of the number of atoms used for fitting. For each pattern size
(i.e. number of residues or atoms), the RMSD distribution of random patterns is calculated to
assess the statistical significance of the matches in the form of a P-value (see Chapter 1.5).
The recurrence of several known side-chain patterns was analyzed and an all-against-all
search with conserved hydrophilic residues found several significant similarities in proteins

from different folds.

SPASM and RIGOR (Kleywegt, 1999) are essentially based on the same algorithm and were
designed to find occurrences of a small pattern in proteins or to scan a protein against a
collection of small patterns, respectively. The programs allow similar amino acids to

substitute for each other and purely geometrical searches considering only Co atoms are
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possible. Matches are evaluated by the RMSD as in (Russell, 1998), however no measure of

statistical significance is given.

During the course of my work, several new methods were developed that search for
recurrences of predefined patterns or templates in protein structures. One method is restricted
to three-residue patterns, which allows the representation of inter-atomic distances as vectors
that can be efficiently searched using multidimensional index-trees (Hamelryck, 2003).
Barker and Thornton (2003) use a tree-based backtracking algorithm similar to other methods
(e.g. Kleywegt, 1999; Russell, 1998) to search for patterns of different sizes. Both methods
evaluate matches by RMSD and provide measures of statistical significance that are estimated
by fitting empirical background distributions (similar to Russell, 1998). Jambon and co-
workers represent protein structures by stereochemical groups independent of amino acids.
Recurrences of at least three of these groups are scored by the RMSD and the differences in
local atom density (Jambon et al., 2003). Another method searches for cavities with similar
arrangements of functional groups to detect ligand binding sites and scores the overall surface
overlap of matching cavities (Schmitt et al., 2002). However, neither method assesses the

significance of the matches.

To detect novel active sites, Wangikar et al. (2003) searched for local patterns shared between
members of one family or superfamily, which merely combines sequence conservation with
the requirement for spatial proximity and shape similarity. All matches that satisfied distance
and RMSD requirements were reported but were not associated with a measure of
significance. This work was extended to find patterns characteristic for groups of proteins and

to classify proteins according to these spatial fingerprints (Tendulkar et al., 2003).

1.5 Statistics for Sequence and Structure Comparison

If two entities are compared, similarity is expressed using a score with a value and an entity.
For everyday life comparisons, we immediately understand the meaning of this score and
judge whether a similarity is significant. However, having only the score is insufficient if the
nature of the compared entities is not known and the same score can have very different
meanings. A price difference of one Euro for example is high when considering a packet of

cigarettes but is negligible for a computer or a car.
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The meaning of scores for protein sequence or structure comparisons is also highly dependent
on the proteins under consideration. Whether a particular sequence identity (or indeed any
measure of sequence similarity) is meaningful greatly depends on sequence length (see above
and Sander & Schneider, 1991). A similar effect is seen when comparing protein structures
using RMSD, which measures the difference between two sets of atoms. Two proteins with an
RMSD of 2 Angstroms (A) over 150 Ca atoms are normally homologous, while the same
value observed between two Asp-His-Ser patterns can easily occur by chance (e.g. Russell,
1998). The number of matches to active site templates are dependent on the number and type

of atoms in the template (see above and Wallace et al., 1997).

Statistical significance directly addresses this problem by assessing whether a particular
similarity is different from a random similarity between unrelated proteins or whether it could
have arisen by chance. This is especially important for searches in large databases that
typically produce many matches and require separation of biologically relevant matches from
noise (i.e. random matches, Vingron, 2001). As scores cannot be compared for different
searches and do not allow a reliable assessment of significance, specific measures for
statistical significance have been developed. Z-scores, P- and E-values are the most

commonly used in bioinformatics.

The Z-score is the number of standard deviations o above the mean x of a distribution:

X—-Xx
o(x)

To assess the significance of search results, Z-scores are used to normalize observed
similarities to the average of a background distribution (i.e. consisting of random matches)
and are thus a measure of non-randomness. An average random similarity would score Z=0,
and better similarities have positive Z-scores. For normal distributions, Z-scores are directly
related to the number of expected random matches. For example, 50% of random matches are

better than Z=0, 5% are better than Z=2, and 0.3% achieve Z=3 or better.

However, most scores in sequence or structure comparison are not distributed normally:
Because they are calculated from optimal rather than random pairwise alignments or

superimpositions, their distribution is enriched in good (i.e. extreme) scores and is thus called
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an extreme value distribution (EVD) (Gumbel, 1958). The EVD can be used to calculate the
expectation value (E-value), i.e. the number of expected random matches with equally good or
better scores. Highly significant matches have E-values close to 0, whereas matches with high

E-values are insignificant.

For an alignment of two sequences with a similarity S, the E-value depends on the lengths m

and n and on two parameters K and A (Karlin & Altschul, 1990):

E = Kmne™

Many groups have worked on adjusting these parameters for searches involving biological
sequences so that E-values can be calculated a priori without the need for fitting empirical
background distributions (Altschul & Gish, 1996; Karlin & Altschul, 1990; Mott et al., 1990;
Pearson, 1998; Waterman & Vingron, 1994). However, it is important to note that they are not
always valid and that E-values for matches with uncommon features (e.g. low complexity

regions consisting of only a few types of amino acids) are typically overestimated.

A P-value is the probability [0 — 1] that at least one equally good or better score occurs by
chance (e.g. Karlin & Altschul, 1990; Mott et al., 1990). Highly significant matches will not
occur by chance and thus have very small P-values (close to 0) whereas P-values close to 1
correspond to insignificant matches. Because the number of random matches with scores
equal or better than a particular score follows a Poisson distribution, P-values can be

calculated from E-values as:

P=1-¢F

Many search programs report E-values as they allow an easier comparison of insignificant
similarities: for example, E-values of 5 and 10 correspond to P-values of 0.993 and 0.99995.
However, for E < 0.01, P- and E-values are nearly identical. For database searches, statistical
significance not only depends on the query but also on the size of the database that is
searched: in huge databases, the number of individual comparisons (trials) is sufficiently high
for any pattern to be found by chance. This is equivalent to lotteries: there are lottery
millionaires each week although the success rate for an individual participant is close to

nothing. As the chance of getting random matches increase with that database size (i.e. the
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number of entries in the database), search programs also appropriately adjust the E- and P-

values.

Today, measures of statistical significance are an integral part of all commonly used sequence
or structure alignment methods. For example, BLAST, Fasta and HMMer report E-values,
Vast reports P-values and Dali uses Z-scores for all matches. I used all three measures for

protein active site comparison (Chapters 3.1 — 3.4) and miRNA target prediction (3.5).

The statistical significance of RMSD has been considered previously when comparing
continuous protein backbone segments (or even entire structures), either during structural
alignment (e.g. Levitt & Gerstein, 1998) or assessment of prediction quality (e.g. Cohen &
Sternberg, 1980; Reva et al., 1998). During these studies, significance was estimated by
comparison with various background distributions derived from real or artificial proteins.
Other methods to evaluate overall structural similarity often lack statistical evaluation and
results are therefore difficult to compare or often even interpret (for an overview see Cristobal
et al., 2001). However, when I started my thesis, only one method provided empirically
derived P-values to assess the significance for structural comparison of active sites (Russell,
1998), and the methods developed since also rely on fitting empirical background
distributions (Barker & Thornton, 2003; Hamelryck, 2003). The relationship between pattern
size, amino acid composition and the statistical parameters remained unknown and P- or E-

values could not be calculated a priori. In addition, the statistics reported by Russell (1998)

sometimes overestimated significance.

1.6 Scope: PINTS—Patterns in Non-homologous Tertiary Structures

Although active site comparison has the potential to directly detect functional similarities and
aid in functional annotation of protein structures, structural biologists seldom use the methods
described above. Indeed, whereas new protein structures are routinely compared to others by
structural alignment (often with Dali), results from active site comparison are almost never
mentioned. This may be due to three main reasons: the lack of a measure for statistical
significance that would allow inexperienced users to interpret search results, the non-existence
of a large up-to-date database of functional patterns and the absence of an easy-to-use Internet
service such as Dali, to perform comparisons. Only PROCAT, the method by Fischer ef al.
(1994), and SPASM are available on the Internet. PROCAT allows searches against a small
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number of templates, SPASM only detects recurrences of user-defined patterns in protein
structures (Madsen & Kleywegt, 2002), and Fischer’s method lacks specificity as described

above.

For my thesis, I developed a method (PINTS; Patterns in Non-homologous Tertiary
Structures) to compare local structural patterns typical of active sites. I used PINTS to derive
a statistical model for such similarities, that allows the significance to be estimated for any
local similarity with a particular RMSD a priori, without requiring a fit to background data
(Chapter 3.1). I then assessed the potential of active site comparison for functional annotation
of proteins on a large number of structures solved by structural genomics projects (3.2) and
during a detailed case study for an archaeal fructose-bisphosphate aldolase (3.3). Finally, I

built a user-friendly Internet server for PINTS that includes several pattern databases (3.4).

1.7 MicroRNAs: A Novel Class of Genes

A second major part of my thesis was the prediction of microRNA (miRNA) function.
miRNAs are a class of 21-22 nucleotide non-protein-coding RNAs. They are excised from
longer precursor transcripts that fold locally into 70-100 nucleotide-long hairpin-like
structures. They are found in all higher eukaryotes and are thought to play major regulatory
roles in post-transcriptional gene regulation. Although the first miRNA was identified more
than ten years ago, the general abundance and importance of miRNAs has been discovered
only during the last three years. They represent a novel class of genes and add a new level of

regulatory complexity to gene expression.

1.7.1 miRNAs regulate post-transcriptional gene expression

The first miRNAs (/in-4 and let-7) were identified in the nematode Caenorhabditis elegans by
their mutant phenotypes in 1993 and 2000, respectively (Lee et al., 1993; Reinhart et al.,
2000; Wightman et al., 1993). Because of their temporally regulated expression, they were
originally called small temporal RNAs or stRNAs. Genetic interactions suggested that both
miRNAs negatively regulate protein-coding genes (target genes) involved in developmental
timing. Inspection of the target messenger RNA (mRNA) sequences revealed sites
complementary to the miRNAs within the 3° untranslated region (UTR). Reporter gene assays

showed that these sites were sufficient to infer miRNA-dependent regulation, supporting a
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direct mechanism that acts through a miRNA-mRNA duplex. However, at that time, it was
not clear whether miRNAs were peculiarities of C. elegans development or if they existed

beyond nematodes.

1.7.2 General Importance of miRNAs

The picture changed dramatically when the Ruvkun lab reported that /et-7 was found in a
wide range of animals (e.g. C. elegans, Drosophila, and human) and showed that its temporal
regulation and the complementary sites in known targets were conserved (Pasquinelli et al.,
2000). Since then, hundreds of plant and animal miRNAs have been isolated and sequenced in
systematic large-scale studies (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee & Ambros,
2001; Reinhart et al., 2002). Combining this data with computational cross-genome
comparison predicts 100-120 miRNA genes in C. elegans and Drosophila and about 250 in
mouse and human, and miRNAs are thought to comprise about 1% of all genes in each of
these species (Ambros et al., 2003; Grad et al., 2003; Lai et al., 2003; Lim et al., 2003a; Lim
et al., 2003b). Their abundance and the evolutionary sequence conservation of many miRNAs

suggest that they have ancient and important biological functions.

1.7.3 miRNA Biogenesis and Function

Post-transcriptional regulation of gene expression by RNA also occurs in RNA interference
(RNAI) that is known for most eukaryotes. RNAi and translational inhibition by miRNAs are
both mediated by short RNAs of similar length and both pathways are now known to share
core components (see Figure 1.2 for an overview). In RNAI, double stranded RNA (dsRNA)
causes a rapid and sequence-specific depletion of the corresponding mRNA by
endonucleolytic cleavage. According to the current model, the RNAse III endonuclease Dicer
cuts the long dsRNA into pieces of about 22 nucleotides. These siRNA (small interfering
RNA) duplexes have a 2-3 nucleotide 3’ overhang characteristic of RNAse III cleavage
products and can mediate RNAi when introduced into mammalian cells (Elbashir et al.,
2001). The two strands are separated and the siRNAs are incorporated into the RNA-induced
silencing complex (RISC). RISC then specifically recognizes target mRNAs that are
complementary to the siRNA template and cleaves them between residue 10 and 11 from the
5’ end of the siRNA. RISC has been purified from insect and mammalian cells, but most of its

components and their functions are still unknown. One core component, apart from the
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uncharacterized RNAse III
responsible for target cleavage, is
made up of the highly basic
Argonaute proteins that can bind
single and double stranded RNA by
a conserved PAZ-domain and might
be involved in RNA incorporation
and/or target recognition (Lingel et
al., 2003; Song et al., 2003; Yan et
al., 2003).
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probably evolved as a potent
defense mechanism rather than for

Figure 1.2: Biogenesis of miRNAs (left) and siRNAs (righty | general regulation of gene

after (Bartel, 2004). See text for details.

expression. Its involvement in viral

defense and silencing of endogenous parasitic elements such as transposons is supported by
several findings: Certain viruses for example express viral suppressors of gene silencing that
specifically target the RNAi machinery and mutations in these genes can be rescued by
inhibiting the RNAi pathway (Kasschau et al., 2003). Some C. elegans strains have increased
mutation rates caused by defects in the RNAi machinery that lead to unusually high
transposon activity (mutator-strains; Ketting et al., 1999; Tabara et al., 1999). Some recent
evidence establishes a link between siRNAs in RNAi and transcriptional silencing or

chromatin maintenance (Hall et al., 2002; Wassenegger et al., 1994).

In contrast to siRNAs, miRNAs are genes themselves and not derived from transcripts of
other genes. miRNAs act in #rans on sequences different from their origin and are thought to
regulate or fine-tune gene expression. Nevertheless, the biogenesis that is common to all
miRNAs has some similarities to the RNAi pathway such as the involvement of Dicer and

RISC.

According to the current model, miRNAs are transcribed as long primary transcripts (pre-

miRNAs) that can contain several miRNAs. The pre-miRNAs fold locally into a 60-70
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nucleotide stemloop or hairpin structure that contains the miRNA in one arm. In the nucleus,
the RNAse IIl Drosha liberates this stemloop precursor (pre-miRNA) with a staggered cut
that defines one end of the miRNA (Lee et al., 2003). The pre-miRNAs are then exported
from the nucleus by Ran-GTP and the export receptor Exportin-5 (Lund et al., 2004; Yi et al.,
2003). In the cytosol, Dicer cuts an RNA:RNA duplex from the pre-miRNA that consists of
the miRNA paired to the opposing RNA fragment in the stemloop. These fragments, that are
called miRNA*, occur with much lower frequencies than the miRNA itself, which is
preferentially incorporated into RISC. This asymmetry was recently explained by the relative
stability of the 5 ends of the two opposing RNAs: typically, the strand with the less stable
(i.e. more loose) 5’ end is preferably incorporated into RISC and thus found as the miRNA
(Khvorova et al., 2003; Schwarz et al., 2003).

Extensive complementarity in Short complementary segments in 2-UTR Slmllar to RNAI, the

coding region or UTR i L
L TR, T miRNA in RISC is used as a

template to recognize

complementary sites in the

Figure 1.3: Mechanism of mRNA-cleavage in RNAi and miRNA | target mRNA. However,
mediated translational repression. After (Bartel, 2004).

depending on the degree of

miRNA target complementarity, two different modes of miRNA-directed target inhibition
have been demonstrated (see Figure 1.3): Target RNAs containing sequences with perfect or
near-perfect complements of the miRNA are cleaved by RISC similar to RNAi1 (Hutvagner &
Zamore, 2002; Martinez et al., 2002). Endogenous plant miRNAs have been shown to
regulate target RNAs by RNAI involving perfect or near-perfect target site complementarity
(Kasschau et al., 2003; Llave et al., 2002; Martinez et al., 2002; Palatnik et al., 2003; Tang et
al., 2003; Xie et al., 2003). In contrast, all animal miRNAs tested until now pair imperfectly
with their targets and systematic analysis has confirmed the absence of targets with perfect or
near-perfect sequence complementarity for all C. elegans miRNAs (Ambros ef al., 2003). The
mismatches, bulges and loops are thought to prevent cleavage of the target but instead inhibit
translation, leading to reduced protein levels without affecting the mRNA of the target protein
(Brennecke et al., 2003; Doench et al., 2003; Lee et al., 1993; Reinhart et al., 2000; Zeng et
al., 2002). Interestingly, the loading of target mRNA with ribosomes does not change during
translational inhibition (Olsen & Ambros, 1999) and many miRNAs have recently been found
to be associated with polysomes, suggesting a mechanism where ribosomes are stalled on the

mRNA (Kim et al., 2004).
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The two different outcomes seem to be independent of the miRNA itself as the same small
RNA can cause degradation of its target mRNA or block its translation solely depending on
the degree of miRNA target sequence complementary (Doench et al., 2003; Hutvagner &
Zamore, 2002). It is currently speculated that different types of RISCs may be involved in
RNAi, miRNA mediated target cleavage or translational inhibition. For example there are
several different Argonaute proteins that exhibit a tendency towards siRNA (dAgol) or
miRNA (dAgo?2) substrates, respectively (Caudy et al., 2002). In addition, some of the
unknown core components or only transiently associated proteins are likely to differ between

the RISC complexes in different mechanisms.

1.7.4 Assigning Function to miRNAs

Although more than 700 miRNAs have been deposited in central databases (Griffiths-Jones et
al., 2003) and their abundance and conservation suggest highly important functions, the
assignment of these and the identification of target genes lag far behind. For some miRNAs,
expression profiles suggest an involvement in organ or tissue development. Mouse miR-290
and miR-295 are for example expressed in embryonic stem cells but not differentiated cells,
whereas miR-1 is preferentially expressed in the mammalian heart and miR-122 in the liver
(Lagos-Quintana et al., 2002). For other miRNAs, their genomic organization indicates
interesting regulatory connections and networks. About one quarter of human miRNAs are
located in introns of protein-coding genes leading to co-expression of protein and miRNA,
potentially allowing antagonistic regulation of genes or pathways (e.g. miR-7 is located in an
intron of AnRNP K; Aravin et al., 2003). Others are clustered in the genome and probably co-

transcribed as multi-cistronic transcripts, suggesting broad effects on gene expression.

However, prior to this thesis, specific functions were known only for four animal miRNAs
that are required for correct timing of developmental events (/in-4 and let-7), to regulate
apoptosis and cell proliferation (bantam), or to prevent cell-death and take part in fat
metabolism (miR-14) (Brennecke et al., 2003; Lee et al., 1993; Moss et al., 1997; Reinhart et
al., 2000; Wightman et al., 1993; Xu et al., 2003). Direct targets were experimentally
validated for only three of them: the /in-4 targets /in-14 (Wightman et al., 1993) and /in-28
(Moss et al., 1997), the let-7 targets lin-41 (Reinhart et al., 2000) and lin-57/hbl-1 (Abrahante
et al., 2003; Lin et al., 2003) and the bantam target hid (see below and Brennecke et al.,
2003).
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1.7.4.1 Genetic Approaches

Traditional genetic loss-of-function screens were critical to determine the functions of /in-4
and /et-7 and subsequently their target genes. They remained however restricted to these
examples, probably because the small miRNAs are difficult to target for mutagenesis or
because a clear loss-of-function phenotype is prevented by functional redundancy that is
expected for some groups of miRNAs with similar sequences. Overexpression of miRNAs (or
the corresponding genomic region) in gain-of-function screens does not suffer from these
limitations and was successfully used to identify bantam. However, visual assessment of
mutants might still miss certain phenotypes that are less severe or fall outside the range of
interest. In addition, even when a specific phenotype is observed, the target gene itself often
remains elusive: Although Drosophila miR-14 has a clear anti-apoptotic effect, no direct

target gene has yet been identified (Xu et al., 2003).

1.7.4.2 Computational Approaches

The increasing number of known miRNA sequences and

AAA large databases of genome and transcript sequences
u 2U UCUCAGGA suggests more direct approaches for target discovery,
AG %EAGUC?CU e.g. experimental tests of candidates resulting from

cué" computational screens (Ambros, 2001). Given that
miRNAs interact with their target through sequence
AU g g q

AU
A AAC CUOACCDCA
U UuUG GAUGGAGU
G U

complementarity, the prediction of putative target genes

from miRNA sequence alone seems feasible and very

promising. Simple sequence searches indeed revealed
Figure 1.4: miRNA target complexes
for lin-4/lin-14 (top) and let-7/lin-14
(bottom) as proposed by (Banerjee &
Slack, 2002). miRNAs are the bottom
strands and G:U base paris are
highlighted.

perfectly complementary sites in putative target genes
for plant miRNAs (Llave et al., 2002; Rhoades et al.,

2002). However, for the known miRNAs in animals no

target sites with perfect or near-perfect sequence
complementarity could be found (Ambros et al., 2003; Rhoades et al., 2002). The RNA:RNA
duplexes for the known targets are discontinuous and contain mismatches, gaps and G:U base
pairs at different positions. Even allowing for G:U base pairs, the longest contiguous
alignments in these examples range from 8-10 nucleotides. Such limited information content

makes it difficult to identify targets within whole genome or transcriptome databases, since
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standard alignment methods produce many false positives with such short variable sequences.
Furthermore, the small number of validated examples makes the development and

benchmarking of a generally applicable computational method problematic at present.

1.7.5 Scope: A Screen for miRNA Targets in Drosophila

For my thesis, I developed a method to screen for miRNA targets in Drosophila that
combines a lenient sequence search with an RNA secondary structure prediction algorithm. It
identifies all of the previously known miRNA targets and successfully predicts new targets,
some of which were validated experimentally. The bantam target hid was identified with a

preliminary version of the screen described below (Chapter 3.6.2, Brennecke et al., 2003).
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2 Materials and Methods

2.1 General Equipment

For all studies, I used personal computers with Intel Pentium processors and the SuSe Linux
operating system. I typically automated all sequence or structural comparisons and data

collection with scripts in the Perl programming language.

2.2 Programs

For sequence comparisons, I used BLAST (Altschul ef al., 1990; Altschul et al., 1997) or
HMMer (Eddy, 1998) as indicated. Multiple sequence alignments were created with ClustalW
(Thompson et al., 1994) and usually edited manually with Jalview (Clamp et al., 2004). We
used STAMP (Russell & Barton, 1992) for all structural alignments or searches for similar
folds in local databases. PINTS (described below and in Stark & Russell, 2003; Stark et al.,
2003b) was used for all comparisons involving active sites or other local residue patterns. For
visual inspection protein structures or matching patterns were displayed with RasMol (Sayle
& Milner-White, 1995). Images were created using Molscript (Kraulis, 1991) and Raster3D
(Merritt & Murphy, 1994). For colourful displays of multiple sequence alignments, I used
Alscript (Barton, 1993).

2.3 The PINTS Program

For the structural comparison of biological molecules, I developed the program PINTS
(Patterns of Non-homologous Tertiary Structures). It finds all possible patterns of residues (or
atoms or points defined by other criteria) common to two sets of coordinates. For protein
structure comparison, I used PINTS to compare residue patterns (e.g. active sites) to proteins,
proteins to collections (databases) of such patterns, or two protein structures against each
other. Comparisons can take single atoms such as Cas or several atoms per residue into
account. PINTS uses the common PDB format without the need for pre-computation and can
also read residue accessibility to restrict searches to the protein surface. It is implemented in
the C programming language to achieve high search performance. Below, I discuss the basic
data-type used (points), the input format, the search algorithm, the RMSD score, E-value and

the output formats.
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2.3.1 Representing Structure Data: Points

Functionally important patterns such as protein active sites can occur in any sequence order,
which prevents the use of alignment methods and requires treating the structure as
independent (or unconnected) points in space (see Introduction). Typically, the chemical
nature and physicochemical properties of the atoms or residues are important for function. In
protein active sites for example, different types of amino acids are not functionally equivalent
and cannot freely replace each other. PINTS thus represents all macromolecules and patterns
internally with points consisting of 3D coordinates and a fype (i.e. an integer value) that
summarizes their properties. All points with the same type are regarded as equivalent and are
allowed to substitute for one another. The core of the program is thus independent of the
concepts of atom or amino-acid residue and can handle any kind of structural data (e.g. grid
points with physicochemical properties, atoms or functional units of drug-like molecules,

etc.).

2.3.2 Data Input

Structural data is read and translated

A B C D

A CA O ACA 050 |E (OEL,CD,0E2[F) 0 | * N 0 | into points by input modules. The
CCAO cca 1 0 D (OD1,CG,0OD2|F) O *C 1

D CA O DCA 2 O S (0G,CB) 1 * 0 2 1

E a0 Eca 5 0 |y (coi,om co2lE) 2 module currently implemented reads
F CAO F CA 4 50 T (OG1l,CB,CG2) 3 . .

G ca 0 GCA 550 | R (NHL,NE,NH2|F) 4 coordinate files in PDB text format and
HCA O HCA 6 0 K (CD,NZ) 5 . o .

I CAO ICA 750 |C (SG,CB) 6 atom or residue accessibility (i.e.
K CA O KCA 8 0 F (CE1l,CG,CE2|F) 7

L CA 0 L CA 950 | W (CD1,CE3,C22) 8 surface exposure) from NACCESS (Lee
M CA O M CA 10 50 H (CG,ND1,NE2) 9

N CA O N CA 11 O N (OD1,ND2,CB) 10 .

P CA 0 P CA 12 50 | Q (OEL,NE2,CG) 10 & Richards, 1971) or DSSP (Kabsch &
Q CA O Q CA 13 0 G CA 11 .

R CA 0 R CA 14 0 Sander, 1983a) files. PINTS can load
S CA O S CA 15 O .

T CA 0 T CA 16 0 and compare all types of residues or
V CA O V CA 17 50

W CA O W CA 18 O :

Y a0 Y ca 19 0 atoms (ATOM or HETATM section of

Table 2.1: Examples of Definition files. A. All amino PDB -files).

acids have type 0 (purely geometrical matching of Ca-
atoms). B. All amino acids are distinguished (types 0 —
19), and non-polar residues are required to be at least 50% | Definition files (see Table 2.1) specify

solvent accessible. C. Different side-chain atoms are ) ) )
considered for each amino acid. Alternative matching is | how the coordinates in the coordinate

allowed for carboxyl-, guanidino-, and aromatic ring . .
atoms (Syntax: (OE1,CD.OE2[F) means ‘allow flipping file should be translated into points and

about CD’. (OE1,CD,0E2;0E2,CD,0OE21) is equivalent).
D. Atoms (N, C, O) are considered irrespective of the
residue or ligand they belong to. considered. The files consist of three

which residues or atoms should be
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mandatory and two optional columns separated by spaces (blanks). The first column specifies
the residue name (corresponding to columns 18 — 20 of the PDB file). Standard amino acids
can be specified in three- or one-letter code (e.g. ALA or A for alanine, etc.) and a wildcard
“*> can be used. The second column defines the individual atom(s) for each residue that
should be considered (PDB file columns 13 — 16). When several atoms per residue are
specified, the average coordinate is used during the search but all atoms can be used for the
RMSD calculation (see below). The PDB format requires a unique labelling of all atoms for
each residue, even in cases where the atoms are equivalent (e.g. in carboxyl- and guanidino-
groups or the ring-carbons in phenylalanine and tyrosine) or cannot be distinguished easily in
the electron density (e.g. amides); PINTS allows alternative matching for these atoms when
specified (see legend to Table 2.1). Column three specifies the type of the points. Types are
integer numbers and all points with identical numbers can be superimposed. Columns four
and five specify the minimal relative or absolute solvent exposure of a residue to be
considered according to DSSP or NACCESS, that can be used to compare solvent-accessible

surface patterns only.

2.3.3 The Search Algorithm

The search must detect all matches,

1 @ L] 3 ] L )
i . .-.:' e o i.e. patterns common to two
® ®

o o °%ee e ° "&- structures. Matches can either be

e '_.T' e © .
. . complete (i.e. one structure matches
2 ° °*e® o, & e ..' @ completely within the other) or

e % ° L P Y

o ®

o o ° .'. . M. partial when only a part of one
» e® a1 structure is similar to a part of the

Figure 2.1: The PINTS search algorithm. A pattern (left) is | second. To achieve this, essentially
found within a larger structure (right) by extending smaller
patterns (steps 1-4). New points are only added when the all possible combinations of points
distances to other points are similar (black lines) and not Lo
otherwise (e.g. red line in (1)). similar to the two sets are generated

recursively. As a measure of
similarity, the distances between the points in set (1) and those between points in set (2) are

compared and required to differ by no more than a given tolerance cutoff.

The algorithm (recursive depth-first search) is based on the fact that all matches of a given

size (i.e. consisting of N points) contain smaller matches with N-1 points and can thus be
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found as extensions of those (see Figure 2.1). It starts by equivalencing one point from set (1)
with each point in set (2), given that their types match. Then, the match is recursively
extended by checking, for each of the remaining (i.e. unmatched) points in set (1), whether
points in set (2) can be found with similar distances to all previously found points. Comparing
the distances prevents the need for superimpositions at each step but cannot distinguish mirror
images. A chirality-check is thus performed once four points are found to discard matches
with wrong handedness. The sensitivity of the search can be altered by changing the distance

tolerance cutoff (-mt option).

2.3.4 The RMSD Score and Statistical Significance

Once similar patterns are found, their similarity or quality is measured with the RMSD after
optimal superimposition by least-squares fitting (McLachlan, 1979), which also provides the
transformations needed for optimal superimposition. The RMSD can be calculated on the
points (i.e. the average coordinates when several atoms are specified) or on all atoms of a
given residue. The user can choose whether all atoms or all residues should be given equal

weight (-rf or -wf option).

As the RMSD value that implies a meaningful similarity varies between searches, PINTS
provides E-values (see Chapter 3.1 and Stark et al., 2003b) similar to those used in sequence
searches that assess the probability that the obtained matches occurred just by chance without
further functional implications (e.g. Altschul & Gish, 1996; Karlin & Altschul, 1990). It is
this feature that sets PINTS most apart from previous methods (Artymiuk et al., 1994; Fetrow
& Skolnick, 1998; Fischer ef al., 1994; Kleywegt, 1999; Russell, 1998; Wallace et al., 1997;
Wallace et al., 1996) or servers (Madsen & Kleywegt, 2002) that perform such searches.

2.3.5 Output formats

Matches are reported in three different output formats (-of option) that are readable (short, 0),
can serve as input of programs from the STAMP package (stamp, 1), or can be easily parsed
as one line per match is printed (/ine, 3). In addition, PINTS can directly print the

superimposed coordinates in PDB format (pdb, 2) for visual inspection of the matches.
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2.3.6 Other Parameters or Command Line Options

The user can change the behaviour and many parameters of PINTS by command-line options.

An overview of all parameters is given in Table 2.2.

Modes Default
-r Residue-based search +
-a Atom-based search -
Input
-d <file> Domain-file (STAMP-package)
-db <file> PINTS-Database
-ex <file> Exclude Database entries
-c <file> Coordinate File (PDB- or NACCESS-format)
—-def <file> Definition File (PINTS)
Output
-0 <file> Redirect output to file -
-of <string> Output format (0,1,2,3) 0
-gfa <float> Combine matches with x shared atoms -
-gfp <float> Combine matches with x % shared atoms -
-rb <integer> Report only x best matches -
-rbe <integer> Report only x best matches per DB entry -
-vp Report Permutations -
-Vs Report Subpatterns -
Search
-ma <integer> Minimum number of points required for match 5/ 10
-mt <float> Maximum distance tolerance allowed during search 3 /1
-ms <float> Maximum pattern diameter 15
-md <integer> Maximum search depth 20
-mr <float> Maximum pattern RMSD 3 /1
-me <float> Maximum E-value 10
-mes <float> Maximum standard E-value (E700) -
-mh <integer> Maximum number of matches during search -
-all [<float>] Pattern has to be found entirely or to x % -
Special
-wf Weighted RMSD (equal weight for all residues) -
-rf RMSD calculation on multiple atoms per residue -
-rs [<int>] Minimum relative surface accessibility (x%) -
-as [<int>] Minimum absolute surface accessibility -
-v Verbose -
-ha Load hetero-atoms -
-pf <float> Factorial Parameter for Statistics -
-ef <float> Exponential Parameter for Statistics -
-1lr <integer> Long-range filter (sequential separation of x residues -
required)
-linear Requires same sequential order -
-aaa All-against-all comparison -
-help Prints Help
Table 2.2: Command line options for PINTS and default values (+/- for on/off).

2.4 PINTS Databases

2.4.1 PINTS Databases of Functional Patterns

For functional annotation of protein structures, a database of functionally relevant side-chain
patterns would be ideal (Thornton et al., 2000; Wallace et al., 1997), though no sufficiently
complete database is currently available. We thus decided to automatically collect residue
patterns likely to be of functional importance. Although manual curation is more accurate,

automation allows us to cover all structures and to update our databases constantly. The
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ligand binding sites database, contains residues that have at least one atom within 3.0 A of a
HETATM entry (excluding waters), and the SITE annotations database those defined by
structural biologists to form a functional site (SITE entries in PDB files). We update the
databases on a weekly basis with every PDB release. Currently, the ligand binding sites and
SITE annotations database contain 15200 and 7500 patterns respectively (21.03.2004). I
noticed, that many patterns include residues not directly related to or required for function.
The databases can thus be seen as reducing the search space to potentially interesting parts of
proteins and we allow for partial matches where only part of the database entry is found in the
query. Recently, the Thornton group at the European Bioinformatics Institute (EBI) in
Hinxton published a large set of manually annotated catalytic sites (Bartlett et al., 2002;
Porter et al., 2004) and made the data available to be searched with PINTS.

2.4.2 Non-Redundant Databases of Protein Structures

For some proteins, the PDB contains many structures that are nearly identical (e.g. lysozyme,
myoglobin). For searches, it is crucial to avoid such redundancy and consider only
representatives for groups of similar structures. I thus created databases of entire protein
structures for different levels of redundancy by collecting one representative of each SCOP
(Murzin et al., 1995a) fold, superfamily, family or protein but also used a representative set of

protein structures suggested by PDB-select (Hobohm & Sander, 1994b).

2.5 The Development of a Statistical Model

2.5.1 Background database

To avoid any bias of the parameters, background databases (BDs) must be non-redundant, i.e.
consist of database entries that are unrelated and do not share functional or structural
similarities. I thus used one member of each of the 723 folds in SCOP version 1.55 as a BD

for all searches to determine the statistical parameters.

2.5.2 Parameter Determination

To determine the parameters A, B, C, and D in our statistical model, I compared random
patterns of two to eight residues to the BD and fit the number of matches with RMSD<RM to

the function ARy> (least squares). Each data point was calculated as the average of 9
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independent searches with three patterns from each of three structures that were not in the BD
(labm, 4rhv, 5p21) For the independence model, I represented residues by their Co atoms and

for the dependence model with one, two or three atoms (e.g. Ca, Cyl and Cy2) as indicated.

2.5.3 Cumulative Distribution of P-values

I randomly split the BD into 10 test databases and searched 6 of the patterns used above
against these databases and calculated the P-value of the best match with a corrected
parameter Ay/10="/10A. The cumulative distribution of these is plotted and compared to a linear

function with the slope of 1.

2.5.4 Search with the Trypsin Catalytic Triad

I searched the BD and all structures in the PDB with the catalytic residues from trypsin (1mct:
His 57 CPB, N&1, Ne2; Asp 102 061 0982 Cy; Ser 195 CB Oy) and derived P-values derived by

fitting the cumulative distribution of of matches against the BD.

2.5.5 Comparing Proteins to Pattern Databases

I compared the unliganded structure of Trypanosoma cruzi PEPCK (1ii2) to the ligand
binding sites database and the structure of LuxS (1j98) to the SITE annotations database using
the default settings of PINTS that consider multiple side-chain atoms per residue (Table 2.1,

Column C), disregard hydrophobic residues and require the pattern diameter to be within 12A.

2.5.6 Over-represented Patterns

I collected one representative structure from each fold in SCOP (classes 1-8, version 1.61)
and compared all 706 structures to each other with PINTS requiring an E-value < 10 and
restricted the pattern diameter to 4 (5, 6, 7, or 8) A depending on whether the pattern
contained 2 (3, 4, 5, or 6) residues. I ignored sequential matches by requiring at least two
residues per pattern to be at least 5 residues apart. I clustered all matches to identical patterns
into groups by recursive single-linkage clustering and kept only those groups with at least 10
patterns. To determine the abundance of each pattern without the constraints required above, I
searched the same database for recurrences of each pattern and calculated the number of

matches for E < 10, 1, or 0.1 and the average, median, and maximum number for all groups.
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For the ranking of the patterns, I required the highest similarity in side-chain arrangements (E

<0.1), but also inspected the lists for the other (less stringent) cutoffs.

2.6 Analysis of Structural Genomics Proteins

We considered 254 structures labeled as structural genomics with release dates up to October

2003. The PDB accessions were:

2mjp, luth, ludk, lucr, luan, Iqwk, 1qu9, 1q8c, 1953, 1q2y, lpug, 1pt8, 1pt7, 1ptS, 1pqy, 1pm3, 1pgv, 1pav,
1p9v, 1p8c, 1p5f, 1plm, 1pll, 10z9, loyz, loyl, lovq, lotk, loru, loql, looj, looe, lon0, 1o5n, 105j, 105h,
1054, 1051, 1050, 104w, 104t, 103u, 1022, lolz, loly, 1013, 100u, 100i, Inza, 1nyn, Iny4, Inyl, Inxz, 1nxu,
Inxj, 1nxi, 1nx8, 1nx4, Inwb, 1nvo, 1ns5, lnri, 1nr9, Inr3, Ingn, Ingm, Ingk, Inpy, Inpd, Inog, Innw, 1nn4,
Inkv, Injk, Injh, 1nij, 1nig, 1ni9, Ini7, 1ng6, Inf2, 1ne8, Ine2, Inc7, IncS, 1n91, In81, 1n6z, Inlq, 1mzh,
Imzg, lmw7, 1mtp, 1mog, 1mo0, Iml8, 1mk4, Imjh, Im98, 1m9%4, 1m68, 1m65, Im3s, Im33, 1m25, 1mls,
1mOs, 1ly7, 11xn, 11xj, 11v3, 1lur, 1iql, 11pl, 11kn, 1ljo, 117, 1lel, 11dq, 11do, llcz, llew, 1lcv, 117y, 117b, 117a,
116r, 115x, 111s, 110b, 1kyt, 1kyh, 1kuu, lkut, 1ktn, 1ks2, 1kr4, 1kq4, 1kq3, 1kon, 1kkg, 1kk9, 1kjn, 1k8v, 1k8f,
1k7k, 1k7j, 1k77, 1kdn, 1k3r, 1k2e, 1k26, 1jzt, 1jyh, 1jyg, 1jx7, 1jw3, 1jsx, 1jsb, 1jru, 1jrm, 1jrk, 1jri, 1jov,
Ljop, 1jog, 1jo0, 1jnl, 1je3, 1jdq, ljcu, 1jbm, 1jbi, ljay, 1jax, 1jal, 1j91, 1j9k, 1;9j, 1j8c, 1j8b, 1j7h, 1j7d, 1j74,
1jé6r, 1j6p, 1j60, 1j5x, 1j5u, 1j5p, liyg, lixl, liw5, livz, 1iv0, liuy, liur, liul, liuk, liuj, 1in0, lilv, lilo, 1ij8,
liio, lihn, lie0, 1i9h, 1i8f, 1i81, 1i6n, 1160, 1i36, 1117, 1hy2, 1hxz, lhxl, 1hu7, 1hu6, 1hu5, lhtw, lhru, lhqq,
1h2h, 1gtd, 1gh9, 1g9x, 1g6y, 1gbw, 1g6p, 1g2r, 1g04, 1fux, 119, 1£89, 1f30, lexc, lex2, lew4, leol, leiw,
lehx, 1dus, 1dm9, 1dmS, 1di7, 1di6, 1dcj, 1dbx, 1dbu, 1d1r, 1ct5, 178, lapa.

I compared all proteins to the sequences in the using BLAST. Proteins that matched any other
sequence in the database with an E-value < 10" were not considered further. Although this
degree of sequence similarity is not always associated with a similarity in function (Rost,
2002; Tian & Skolnick, 2003; Todd et al., 2001), our threshold ensures that the analysis
excludes all cases where functional similarities are obvious from sequence comparison and is
thus reliable in assessing the added value of structure comparison. Altering this threshold does
not greatly affect the overall findings. I then used these structures to search for similarities in
the ligand-binding site and SITE annotations databases of side-chain patterns using PINTS.
For comparison, I also compared the structure to PDB representatives in the FSSP database

using the Dali server (Holm & Sander, 1993) with default options.

2.6.1 Structural similarity thresholds

PINTS usually detects binding site similarities for chemically similar ligands with E-values
between 10 - 10 whereas negative matches generally have E>0.1 (see Chapter 3.1). We

thus expect reliable functional clues to come from matches with E<10”. However, I also
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manually inspected the best matches for each structure. The accuracy of inferring a functional
relationship for a given Dali Z-score is case-specific. For example, TIM-barrels can have
different functions at comparatively high Z-score values (e.g. Z=18; Lorentzen et al., 2003),
while Rossman-type NAD-binding domains are reliably detected with values as low as Z=6.
A general threshold above which function can be reliably assigned based on fold comparison
is not possible (Liisa Holm, personal communication). However, earlier observations showed
that fewer than 10% of functionally unrelated structures have values above 10 (Holm &
Sander, 1997). We thus decided to use this as the threshold for our study. I report and discuss
only the best matches for PINTS or Dali and only consider one representative for groups of

structures sharing 90% sequence identity.

2.7 Analysis of Archaeal FBPA IA

2.7.1 Structural Alignments

I compared the Tt FBPA monomer to representatives of all families with a TIM-barrel fold
(according to SCOP) using STAMP, which also reports the number of structurally equivalent
residues. I then calculated the percent sequence identity for structurally equivalent residues
and the probability (P-value) that the percent identity arose independently (i.e. by chance,
Murzin, 1993b).

2.7.2 Comparison of FBPA Active-Site

I compared the active site of FBPA to all proteins classified as TIM-barrels by SCOP (SCOP
fold c.1.) and the FBPA structure against all TIM-barrel active-site patterns in the PINTS

databases.

2.8 miRNA Target Prediction

2.8.1 Accession numbers

miRNAs:

lin-4 NR_000799; let-7 NR_000938; bantam AJ550546, Rfam MI0000387; miR-2a RF00047, AJ421757; miR-4
AJ421762; miR-7 AJ421767; miR-9 AJ421769; miR-11 AJ421771 ; miR-13a AJ421773; miR-14 AJ421776;
miR-277 RFAM MI0000360.
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Target genes:

lin-14 NM_077516; lin-28 NM_059880; lin-41 NM_060087; lin-57 NM_076575; hid, NM_079412; reaper
NM_079414; grim NM_079413; sickle AF460844; dpld NM_080033; m4 NM_079786; HLHm3 NM_079785;
Tom NM_079349; drice NM_079827; hairy NM_079253; D. simulans hairy AY055843; T. castaneum hairy
AJ457831; Lyra NM_080079; CG5599 NM_132772; CG1673 NM_132656; CG8199 NM_141648; CG1140
NM_167928; scu NM_078672; CG15093 NM_166306; CG17896 NM_130489.

2.8.2 Conserved 3' UTR-database

Drosophila melanogaster 3’ untranslated regions (UTRs) were obtained from the Berkeley
Drosophila Genome Project (BDGP, www.fruitfly.org/annot/release3.html) and those of
>50nt were selected. Duplicate UTRs from different splice variants of the same transcript
were removed. For each of the resulting 10196 non-redundant 3’ UTRs, I mapped the last 50
amino acids of the corresponding ORF to the D. pseudoobscura genome sequence with
TBLASTN (Altschul ez al., 1990) (E<107; http://hgsc.bcm.tme.edu/projects/drosophila). I
selected UTR matches that included the last 10 residues and had a sequence identity >80% or
E<10'” and compared these UTRs to the 3000 nucleotides downstream of the putative D.
pseudoobscura ortholog with BLASTN (word-size 7; E<10000, assuming a database the size
of the whole D. pseudoobscura genome). Non-conserved nucleotides or those outside the
matched regions were replaced by Ns in the D. melanogaster 3> UTR database to produce the

conserved 3° UTR database.

The D. pseudoobscura genome has not been fully assembled. This means that some D.
pseudoobscura genes are located close enough to the end of a contig that the UTR sequences
may be missed. 386 D. melanogaster genes mapped to the D. pseudoobscura genome less
than 1 Kb from a contig end; 189 mapped less than 500nt from a contig end. UTR
conservation may be underestimated for these genes. For 3564 genes I did not detect a
suitable ortholog using this protocol. 571 of these are known genes, the others are predicted
genes about which little is known. For the 4662 D. melanogaster genes lacking annotated
UTRs I assumed 3” UTRs of 2 Kb after the stop codon and built a separate database of
predicted UTRs. The search for Anopheles orthologs was done using TBLASTN for the last
50 amino acids of each D. melanogaster ORF. Due to the more extensive sequence
divergence, a lower cutoff threshold was allowed (E<0.05) if the last exon of the predicted

ORF mapped to the same location (+/- 1 Kb) in the annotated genome as the orthologous gene
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(Zdobnov et al., 2002). If not, the cutoff was E<10” as for D. pseudoobscura. The second

more stringent step of comparing the last 10 amino acids was omitted.

2.8.3 miRNA-Screen

HMMer (Eddy, 1998) profiles were constructed for each of two alignments per miRNA
containing copies of the reverse complement of the first (5”) 8 nucleotides of the miRNA. The
first alignment contained 5 copies of the exact complement, the second had an additional 5
copies with C replaced by T and A replaced by G to allow for G:U mismatches. I searched the
conserved 3’UTR database with both profiles and a lenient domain bit score threshold
(domT=>3) and combined the results. Sequence matches were extended to miRNA length+5nt,
the hairpin loop and miRNA sequence were added and the sequence was evaluated using
Mfold (Mathews et al., 1999; Zuker et al., 1999). Mfold uses dynamic programming to
predict RNA secondary structure by free energy minimization. It includes experimentally
determined thermodynamic parameters and knowledge about available RNA structures to
account for sequence dependencies revealed in some RNA motifs (Mathews et al., 1999). For
Anopheles, predicted UTRs were searched for the presence of residues 2-7 of the predicted
target site. The target sequences were extended and evaluated using Mfold. Only the best site

in the Anopheles UTR was reported.

2.8.4 Statistics

For each miRNA, we calculated the mean and standard deviation of a background
distribution, i.e. the Mfold free energy AG of 10,000 randomly selected sequences from the
conserved UTR database with lengths of miRNA+5nt. For each prediction I calculated the Z-
score as the number of standard deviations above the mean (see Introduction). To compute E-
values, I fit an exponential function to the cumulative background distributions and
extrapolated it to give a value for any observed energy and database size. E-values are not
restricted to normal distributions and can scale with database size, so different searches can be

compared.
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3 Results and Discussion

The comparison of local spatial patterns like active sites in protein structures is
complementary to sequence or fold comparison and can be used to annotate protein function.
Prior to this thesis however, this type of comparison lacked a model to assess the statistical
significance of matches. Specifically, although it had been recognized that the meaning of a
specific RMSD value depended on the size and amino acid composition of the matches, this
relation had not been investigated and remained unknown (see Introduction). I developed the
program PINTS (Patterns In Non-homologous Tertiary Structures) to search for recurrences
of residue or atom patterns in protein structures (see Materials and Methods). In the following
chapter, I present a statistical model for the significance of local patterns in protein structure
that I developed for my thesis. I used PINTS and the statistics to compare protein structures
solved by structural genomics projects to databases of functionally relevant patterns to assess
the use of active site comparisons on a large sample (Chapter 3.2). I also performed a detailed
comparison of an archaeal fructose-bisphosphate aldolase using PINTS and the structural
alignment program STAMP (3.3). Finally, I describe the development and current use of a
server that allows for PINTS searches via the Internet (3.4). The following publications

resulted from the results presented below.

A. Stark, S. Sunyaev, R.B. Russell; A Model for Statistical Significance of Local Similarities in Structure. J.
Mol. Biol., 326, 1307-1316, 2003.

A. Stark, A. Shkumatov, R.B. Russell; Finding Functional Sites in Structural Genomics Proteins. Structure,

submitted, 2004.

E. Lorentzen, E. Pohl, P. Zwart, A. Stark, R.B. Russell, T. Knura, R. Hensel, B. Sievers; Crystal structure of an
Archaeal Class I Aldolase and the Evolution of (Ba)g Barrel Proteins. J. Biol. Chem., 278(47), 47253-47260,
2003.

A. Stark, R.B. Russell; Annotation in three dimensions. PINTS: Patterns in Non-homologous Tertiary

Structures. Nucleic Acids Res., 31(13), 3341-3344, 2003.
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3.1 Statistical Model for Local Structural Patterns

Most methods to compare protein active sites — including PINTS — report RMSD values that
accurately score the quality in terms of geometrical similarity. However, as outlined in the
Introduction, the value that implies a meaningful similarity is highly dependent on the number
and type of atoms being compared. To avoid ambiguities, or the choice of an arbitrary RMSD
cutoff for any particular pattern, PINTS provides P- and E-values as a measure of statistical
significance. For this, I derived a rigorous model for the behaviour of RMSD. Following
previous work on statistical models for sequence comparison (Altschul & Gish, 1996; Karlin
& Altschul, 1990; Mott et al., 1990; Pearson, 1998), I use P-values to derive and present the

model below, that can be easily converted to E-values (see Introduction).

3.1.1 Rationale for a Statistical Model of RMSD

For database searches, statistical significance is generally assessed by an extreme value
distribution (EVD). This allows the calculation of a significance P-value from an expectation
function (EF) that predicts the number of matches with an equally good or better score found

in a database (i.e. cumulative distribution (CD) of scores):

P(x) =1-¢"

P(x) is the probability of finding a score equal or better than x by chance, thus scores with

high P-values are not meaningful.

For any CD there are just three models for the asymptotic behaviour of the EVD. If the CD
decreases quickly with good scores, the EVD is a double exponent widely used in sequence
comparison. However if it has a slowly decreasing tail or a finite terminal (i.e. bound by a
lower value such as zero for RMSD), the EVDs are exponents of power functions that differ
only in the sign of the exponent (Aldous, 1989; Gumbel, 1958; Kendall et al., 1977). The
choice of the correct model is critical for accurate statistics and must precede parameter

estimation by fitting or calculation.

I performed searches of query patterns against a database using PINTS that optimally
superimposed the matches according to the method of McLachlan (1979) and used the
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associated RMSDs for the calculations below. For all searches I used lenient distance

constraints that did not affect the range of the RMSD distribution considered.

250000, Figure 3.1 shows the background distribution
200000 5 of RMSDs for a typical local structural pattern.
%50000— § ! We considered only the increasing region of the
%;00000 - e curve, as the form of the distribution depends
o] ____ - only on the tail of the CD for good scores (i.e.
) i low values) and we believe that the decrease of

o 0 RI\?:IDSD o s e the curve for high RMSDs is due to limitations

Figure 3.1: Example distribution of RMSDs | in protein size. A closer view of this region
(number of matches versus RMSD) for a typical
query (3 Ca atoms from PDB entry 1a6m). The | (Figure 3.1, inset) shows a slow increase (slope

inset shows a magnification for RMSD=4A.

approaches 0) for small RMSDs as is typical

for power but not exponential functions.

When compared to a database, a query can be considered to have all (V) atoms in ideal
positions, with deviations of other patterns scored by RMSD. RMSD? is the average squared
distance between equivalent atoms and RMSD itself can be seen as an approximation of the

average distance error (indeed if all deviations are equal, it is exactly this):
1

1 2 2 2 2
RMSD=|— X (A" + Ay" + AZ")
N

A perfect match thus has an RMSD=0 and increasing RMSDs correspond to an increasing
dissimilarity. Restricting this to a maximum (RMSD<R},) requires atoms to be in a sphere
around the ideal positions with an allowed volume proportional to R)/. Calculating RMSD
involves finding the best superimposition of equivalenced sets of atoms by translation and
rotation (McLachlan, 1979), which reduces these constraints on the positions for the first three
atoms in a pattern. The first atom can be moved into the ideal position without any volume
restriction. The second can be placed anywhere within a shell defined by two spheres and the

third can lie in a ring-like volume as shown in Figure 3.2A.
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3.1.2 Model assuming independence of atoms

We first develop an independence model where we consider only one atom per residue and
assume they are independent and randomly distributed in space. We expect the probability of
a residue from the database to match one from the query to increase with the allowed volume
(above), and to be proportional to the database size (D) and residue abundance (¢). Thus for a

query with N residues:

N
EF(R,) = AR,’ = D¢1H¢[pVi

_ v 1 for N =2
with A= DPp" and B= (1)
3N -6 for N =3

where V; is the allowed volume for the i residue (see Figure 3.2A), @ is the product of all

residue abundances and p is a constant.

The simple power function EF=AR,/ is monotonously increasing as expected for a
cumulative distribution and correctly assigns a probability of zero to perfect matches
(RMSD=0). We expect 4 to be correlated with residue abundance, to increase linearly with
database size and to decrease exponentially with the number of residues in the query pattern.
We expect B to increase linearly with the query size and to be independent of database size or
residue abundance. The linear behaviour for N=2 is expected since for two atoms RMSD

merely describes a deviation from an ideal distance.

I searched a background database with random patterns of between 2 and 8 Ca atoms, and
found the function above to fit the observed CDs accurately (Figure 3.2B). Plots of CDs in
logarithmic scale (Figure 3.2C) show logarithmic behaviour typical of power but not
exponential functions, which would be linear. The curves cross because high Rus resemble
random choices of N atoms from the database, which creates an increasing number of
permutations and combinations. The power function 4R, naturally accounts for this

behaviour as larger exponents always overtake smaller.
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I used searches with random queries of three residues of one type to explore the relationship
between 4 and B and residue abundance. I fit the EF'(R),) function and calculated 4 and B. As
expected (Eq. 1), the cubic root of 4 increases linearly with abundance (Figure 3.2C) and B
shows no dependency (Figure 3.2D). I also explored the dependence of 4 and B on N (Eq. 1)
with random queries of various sizes (N=2-8). Here, I divided calculated values for 4 by
residue abundance to remove the dependency above. log(4) versus N shows a decreasing
linear behaviour for N>3 as expected (Figure 3.2F). For N=2, the values are below the
extrapolated line due to the volume allowances in 4. Linear regression gives a function to

calculate 4 for any pattern:

a,Pa, forN =2
= N )
a,da; forN =3

with @=2.678x10°, a ,=1.277x107 and a;=1.790x10”. The above also confirms our
predictions (Eq. 1) about the behaviour of B: it increases linearly with N for N=3 (Figure
3.2G), with observed slope and intercept (2.93, 5.88) close to expected values (3, 6). For the
special case of N=2, B is 0.97+0.01 (i.e. close to 1).

The power function EF(Ryy) =AR,” models the behaviour of RMSD for searches with simple
queries against a database. In the independence model, 4 and B for any query can either be
obtained by fitting the function EF(Ry)=AR," to the CD or estimated with the equation above

given only N and residue abundance.

3.1.3 Accounting for dependency of covalently linked atoms

For protein functional sites the correct relative orientation of residues rather than their simple
presence is crucial for activity. Moreover, representing a residue by only one atom (i.e. simple
presence) is not sufficient to separate true matches from background (e.g. Russell (1998);
Wallace ef al. (1997) and below). One can account for this by considering multiple atoms per
residue when calculating the RMSD. However, as these atoms are linked by covalent bonds
they violate the assumption of random and independent atom distribution in the model above.
We thus modified our geometrical arguments to account for the effect of atoms that depend on

one another (dependence model).
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The position of a second atom for a residue is constrained to the surface of sphere with a
radius equal to its distance (d) from the first (Figure 3.3A). If Ry<2d then the position is
restricted to a cap on this sphere. For each second atom we use the ratio of the two areas,
Ry’/(4d}), to correct EF(Ryy). Similar arguments can be applied to a third atom per residue.
This is constrained to a circle around an axis formed by the first and second atoms, with small
Ryss restricting this to an arc (Figure 3.3A), roughly proportional to Ry. We correct for both of
these effects by adding two terms for each query residue with 2 or 3 atoms: c,Ry/ and ¢3R)7,
respectively. These corrections predict an abrupt transition around Ry=2d where the
restriction for the second atom no longer applies and the model assuming independence holds.
Differences in RMSD when considering more than 3 atoms per residue are due to
conformational differences (i.e. rotamers). In practice, 3 atoms is sufficient to define residue

orientations, though our model is normally conservative when more than 3 are used.

We now have a modified EF:
S T '
EF(R,)=AR,"[c,R, '] [c.R,'] =AR,” 3)

where S and T are the numbers of query residues where 2 and 3 atoms are used, respectively;

A’=Ac c;’, and B’=B+2S+3T.

To test this modified model, I searched with random patterns with N=2-4 gradually increasing
the number of residues with second or third atoms and fit the above function. The effect of
dependent atoms is clear in the CDs for N=2 with 2 or 3 atoms per residue (Figure 3.3B):
there are fewer matches with low Ry, (i.e. flattened curves). At about Ry =2A, the CDs show

the predicted transition to the independence model.

The effect of dependent points is also evident in the behaviour of the variables. Figure 3.3C
shows the effect of an increasing number of dependent atoms on log(4 ’), which the model
predicts to decrease linearly. The initially flat curves for N=2 are due to the transition from 2-
3 residues discussed above for the independence model. The curves for N=4 are just above
those for N=3, which reflects a lack of data for small Ry;. From these curves we determined

¢2=0.196+0.026 and ¢3=0.094x0.024. ¢, corresponds to an atom distance d=2.3A which is the

range of intra-residue distances observed between Ca and Cy/Oy atoms.
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Figure 3.3D shows the effect of an increasing number of dependent atoms on B’, which the
model predicts will increase by 2 or 3 for each residue in the query containing 2 or 3 atoms,
respectively. The slopes of the curves are indeed close to 2 and 3, though the 4-residue queries
are hampered by a lack of data for small Ry, and we see an initial effect similar to that above

for N=2.

3.1.4 Final P-value for Local Structural Pattern Comparison

We can now calculate the P-value for any RMSD observed for a query pattern:

P(RMSD < R,,) =1-¢ %)

aoq)azRM0'97|:c2RMZ]S_I[QRM3]T_1 for N=2
EF(R,)= 4)
a0d>a3NRM 2OIN-38 [CZRMz]S[c3RM3]T for N=3

where N is the number of residues, S and 7 the numbers of query residues where 2 and 3
atoms are used in fitting, @ is the product of all abundances and ay, a», a3, c> and c; are
empirically determined constants (see above). The corrections in square brackets apply only if
their values are <1, corresponding to Ry<d;... We emphasise that a key step in the derivation
of this function is the demonstration above that the EVD for RMSD is the exponent of a

power and not an exponential function.

i) P(x) normalizes a distribution of scores (x),
2 e - a property that can be used to test a model.
5 sl it Specifically, if a model to predict EF(x) is
= e . . .

5 . T valid then a cumulative histogram of P(x)
. L 2 for the best scores in a series of searches
0ol should give a straight line with a slope of 1.

T T T T T T

0.0 02 04 , 08 0.8 10 P(x) indeed shows this behaviour, providing
M

Figure 3.4: P-value plot. The cumulative | confidence in our model for the behaviour
distribution of P-values for the best match (Py) of

each of 60 searches is close to a straight line with | of RMSD (Figure 3.4).
the slope of 1 (goodness of fit %’=0.28426).
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3.1.5 Comparing Patterns to Databases of Proteins

To demonstrate how the above formula can be applied to detecting recurrences of a known
functional site, I compared the trypsin catalytic triad to all structures in the PDB (Figure 3.5).
Triads from homologous proteases have RMSD<0.6A (associated with P<0.009) with the

exception of distorted sites owing to bound inhibitors, and the distribution of triads from

Lag

B s
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Fitted P-value

o
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Background

Trypsin-like proteases

Number of Matches
o
=]

@
=]
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0.0 0.2 0.4 06 0.8 1.0 12 14 16
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Figure 3.5: Comparing patterns to databases of proteins: search with a trypsin catalytic triad. Left: P-values
derived by fitting the CD of background matches (blue) and from parameters calculated using the statistical
model (green) are compared against the distribution of matches in the PDB classified as trypsin-like proteases
(black), other hydrolases (yellow) and other proteins (background, red). Right: Top scoring matches are to
trypsin (1mct, A, E=0), the subtilisin-like fold (E=0.4, lcse, subtilisin), the o/B-hydrolases (E=0.8, 1jkm,
carboxylesterase) and the flaxodoxin-like cutinases (E=0.8, 1cex, cutinase).

different folds peaks at around 0.9A (P=0.0009-0.9). Plots for calculated and observed (i.e.

fitted) P-values superimpose very well and show a sharp transition from small values to 1 at
an RMSD of 0.9A where the first false matches appear. Top scoring matches are to the
subtilisin-like fold, the o/pB-hydrolases, and the flaxodoxin-like cutinases (Figure 3.5).

During these searches, I also detected a previously undescribed Ser-His-Glu triad in the yeast
proteasome o-subunit (1gOu (Groll et al., 2000); Ser144, His147, Glul59; P=0.03 when
compared to thrombin or cutinase). The location of these residues on the surface of the
structure near to the pore, and their conservation in many homologs, suggests a possible

catalytic function.

I was also able to detect all patterns studied or reported by other methods (Artymiuk et al.,
1994; Fetrow & Skolnick, 1998; Fischer et al., 1994; Kleywegt, 1999; Russell, 1998; Wallace
et al., 1997; Wallace et al., 1996). For nearly all patterns true matches had significant P-
values (e.g. ribonuclease A and T, thermolysin, Zn-fingers, heme binding sites,

cellobiohydrolase). However, for three examples matches were insignificant according to our
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formula and were indeed found among background matches. These were active sites of just
two residues from lysozyme (Wallace ef al., 1997) and staphylococcal nuclease (Artymiuk et
al., 1994) and a putative three-residue disulphide oxidoreductase site in a phosphatase
(Fetrow et al., 1999). For the lysosome and nuclease examples the insignificance was
expected as other methods were also unable to discern them from noise, and to our knowledge

the oxidoreductase site has not yet been verified.

3.1.6 Comparing Proteins to Databases of Patterns

I also tested the formula in a reverse situation: that is to compare an entire protein structure to
databases of functional patterns (see Materials and Methods). As our database entries include
residues not directly related to function, I allowed for partial matches where only part of the
database entry is found in the query. To correct EF to account for this, it is multiplied by the
total number of possible partial matches of the same size (i.e. consisting of any residues) that

are contained in the database entry (correction for multiple testing).

I compared the phosphoenolpyruvate carboxykinase (PEPCK) structure (without bound
ligands) to the /igand-binding sites database. PEPCK contains a P-loop but adopts a structure
that is otherwise quite different from other P-loop containing nucleotidyl transferases
(Marquez et al., 2002; Russell et al., 2002). Indeed, if one ignores homologs, the most similar
protein according to FSSP (Holm & Sander, 1996) is hydrogenase-2-maturation protease
(1cfz, Z=4.0), which performs a very different function. In contrast, our search identified
nucleotide-binding sites with high significance in proteins of different folds that are
structurally dissimilar from PEPCK (DALI Z<3). As expected, the best matches were to sites
from P-loop proteins (top rank, elongation factor Tu, left, P<10®) where the nucleotide binds
in a very similar orientation (Figure 3.6). These were followed by matches containing residues
from the ATP binding site of GroEL-like proteins (best, GroEL, l1der, P=4x10~) and the FMN
binding site in flavodoxin (6nul, P=6x10?). Here the residues common to the matches make
similar contacts to phosphates attached to nucleotides in otherwise different conformations
(Figure 3.6). The first negative match (P=0.88) comprises 5 residues from a large heme-

binding site.

We also compared the bacterial quorum-sensing protein LuxS to the database and found

highly significant matches to Zn-binding active sites across folds and no other site among the
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GroEL Matrix Mcta]]uﬁrotcasc Class IT Aldolase

Figure 3.6: Comparing Proteins to Databases of Patterns. Representatives from the top scoring folds are
shown; Residues in ball-and-stick are matches found during the search. Left: Matches found after comparing
the unliganded structure of Trypanosoma cruzi PEPCK (1ii2) to the ligand binding sites database. Figures
showing matches to elongation factor EF Tu (E=1x10°, left), GroEL (4x107, lder), and flavodoxin (E=6x10"
?, 6nul). The location of ATP within E. Coli PEPCK (layl; superimposed on 1ii2) is shown as a broken line,
and the location of bound ligands in the matches are shown as continuous lines. Right: Matches found after
comparing LuxS (1j98) to the SITE annotations database are: peptide deformylase (E=2x10, 1bs6), the
zincin-like matrix-metalloprotease stromelysin-1 (E=8x10”, Islm) and the class II aldolase rhamnulose-1-
phosphate aldolase (E=0.2, 1gt7). Matches to sites within proteins of the LuxS/MPP-like metallohydrolase
(i.e. proteins similar to LuxS), cysteine rich, dioxygenase and classical C2H2,C2HC zinc finger folds are not
shown for clarity.

top 100 matches (P<0.97). Representatives of the different folds were peptide deformylase,
the zincin-like matrix-metalloprotease stromelysin-1 and the class II aldolase rhamnulose-1-
phosphate aldolase, all suggestive of a hydrolytic activity (see Figure 3.6). Indeed, LuxS was
found to cleave S-ribosylhomocysteine to homocysteine and the autoinducer molecule 5-
dihydroxy-2,3-pentadione (Schauder et al., 2001). A structure with the putative substrate
bound and noticeable clustering of conserved residues suggests that we identified the correct

active site in the absence of overall sequence or structural similarity to known structures

(Hilgers & Ludwig, 2001; Ruzheinikov ef al., 2001).

3.1.7 Comparing Entire Protein Structures

It is possible to apply our formula when comparing entire protein structures, with no prior
definition of active or functional sites. A pairwise comparison of two proteins that share a

biochemical or cellular function (e.g. catalytic activity, specific binding characteristics, etc.)
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can suggest the molecular basis for the common feature. For example, when cytochrome c6 is
compared to the non-homologous multiheme cytochrome c7 three similarities were detected.
All involve the CxxCH heme attachment site, of which one is present in cytochrome c6 and
three in c7. One of these matches also identified an additional serine common to both proteins

(Figure 3.7).

- Generally however, the greatly increased search

A ';. a1 -.\ B & space has a critical effect on the statistics:
’ _ﬁ , ; \ ’3";1“ searching more amino acids increases the number
&3‘: t _I:= — of random matches, and can render true matches

' kg' St | . insignificant i.e. bury them in noise. For example,

C > )ﬁ a protein versus pattern search comparing trypsin
-J;%'h ..! - JIE'- to a database of functional patterns, or a pattern

T "' 5 { versus protein database search comparing only

% ;'; -':h_l""-.Q the catalytic triad (His57, Asp102, Ser195) to a

database of whole structures identifies true

Figure 3.7: Pairwise comparison of entire | functional similarities to be significant. However
proteins: we compared cytochrome c6 (1c¢75) o . .
and the multiheme cytochrome ¢7 (1hh5). Three a pairwise comparison between trypsin and
similarities were detected, of which

one is present in cytochrome c6 (residues
32,35,36) and three in ¢7 (1: 26,29,30, E=1x10'6;
2: 49,52,53, E=0.18; 3: 62,65,66, E=3.6x10™").
The match to site 2 also identified an additional background matches with equivalent RMSD and
serine (residue 44 in c6 and 55 in ¢7) common to
both proteins. size introduced by the comparison of two whole

subtilisin detects the similarity, but does not find

it to be significant owing to the large number of

proteins (of 223 and 275 amino acids
respectively). This is not a limitation of the method, but a fact of life when searching for
similarities within large databases (see Jones & Swindells, 2002) for a similar discussion

about sequence searches).

3.1.8 Deviations from predicted E-Values

Searches with a salt bridge and disulphide bond show curious differences between the
observed and calculated distributions (Figure 3.8) due to their unusually high frequency in
proteins with different folds. Here our model has a clear advantage over an empirical fit to the
observed distribution as it does not down-weight the importance of these structural features.

For example, the observed distribution would suggest that an RMSD of 0.18A between two
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Arg-Glu salt bridges is insignificant (P>0.99), though our model gives P=0.0014. This
difference is even more pronounced for a disulphide bond: Pg=1 versus Ppode=0.001 for
RMSD=0.08A. We can thus assess significance for highly abundant, but still functionally or

structurally important patterns.

To investigate the possible correlation between deviation from our model and contribution to
protein stability, I specifically searched for residue patterns overrepresented in unrelated
proteins (see Materials and Methods). For two residue patterns, we expected results similar to
the widely used pair potentials (e.g. Bahar & Jernigan, 1997; Hendlich et al., 1990; Miyazawa
& Jernigan, 1996; Sippl, 1990). However, while pair potentials are derived from merely
measuring residue-residue distances in proteins, we required a precise relative orientation of
the residues and thus expected to gain a more precise understanding. In addition, the search
also found higher order patterns (i.e. with more than two residues) to be overrepresented
suggesting, cooperative effects not captured by pair potentials (e.g. Carter et al., 2001;

Kannan & Vishveshwara, 1999).

For two-residue patterns, I found an equal number of polar or charged and hydrophobic
interactions in the top 20 in agreement with previous studies of stabilization centres
(Dosztanyi et al., 1997) or residue pairs (Bahar & Jernigan, 1997). The most abundant two-
residue patterns, that are about 2000-fold more frequent than expected, were arginine-
aspartate/glutamate salt bridges and disulphide bonds (see Figure 3.8). I thus found pairs of
residues known to be beneficial for protein stability: a disulphide bond for example
contributes 17 kJ/mol and buried salt bridges 12 — 20 kJ/mol (Fersht, 1999). An interacting
leucine pair that is part of a larger hydrophobic cluster was 1500-fold overrepresented
followed by aspartate-serine/threonine hydrogen bonds (800-fold). This changed dramatically
to predominantly hydrophobic interactions when I relaxed the requirement for residue
orientation. Polar interactions seem to occur with well-defined residue orientations, whereas

hydrophobic contacts appear more flexible, a trend also seen by (Bahar & Jernigan, 1997).

When I inspected top ranking interactions for the individual amino acids, I found that charged
residues (including histidine) are mainly involved in salt bridges, cysteine forms disulphide
bonds, and hydrophobic residues preferably cluster together. The polar non-charged serine,
threonine, asparagine and glutamine most frequently form hydrogen bonds to aspartate and

glutamate. Proline often binds to aromatic residues, which generally make hydrophobic
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Figure 3.8: Deviations from predicted E-values. Top: Comparison of observed and calculated P-values and
cumulative distributions (CDs) for searches with an Arg-Glu salt bridge (left, 1xel, Argl76, Glul57) and a
disulphide bond (3ckb, Cys9, Cys86) against the background database. Bottom: Residue patterns found to be
overrepresented (representatives): Asp-Arg salt bridge (A: 2350x overrepresented, 1ckq, residues 135,187),
disulphide bond (B: 1900x, 9wga, 17,35), Asp-Ser hydrogen bond (C: 860x, 1pys, 247,226), Leu-Leu pair (D:
1560x, 2end, 24,67). Top-scoring partner of Pro are Tyr (E: 240x, l1gof, 88,99) and Phe (F: 140x, lkek,
448,474). A 4 leucine cluster (G: 1870x, le8c, 5,8,21,36), a 4 residue disulphide cross (H: lafp, 1460x,
26,28,49,51), and a 6 residue hydrophobic cluster (I: 1210x, 2bnh, leucines 47,53,56,75,85, valine 71) are
examples of larger patterns found to be overrepresented.

contacts. This is particularly interesting as aromatic residues have been shown to be critical
for proline-binding in SH3- and WW-domains, or other proteins (e.g. Bjorkegren et al., 1993;
Carl et al., 1999; de Beer et al., 2000; Lim & Richards, 1994; Macias ef al., 1996; Wang et
al., 2003; Yu et al., 1992). It remains to be seen whether some interactions that seem to be
beneficial in the protein interior are also important for protein-protein or protein-ligand
binding, despite generally different pair potentials for these cases (see for example Aloy &

Russell, 2002).

The most frequent among the patterns consisting of 3-6 residues are hydrophobic clusters with
the exception of a four residue disulphide cross (Harrison & Sternberg, 1996) and a six
cysteine pattern common to different folds such as the knottin-, metallothionein-, or
disintegrin-fold (e.g. Mas et al., 1998) shown in Figure 3.8. The prevalence of hydrophobic

clusters was observed in previous studies examining spatial clustering (Kannan &
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Vishveshwara, 1999) or nearest-neighbours relations (Carter et al., 2001) and emphasizes

their importance for protein stability and folding.

3.1.9 Concluding Remarks Regarding the Statistical Model

We have presented a formula to calculate the significance of any local protein structural
similarity, and have shown that it can discern meaningful similarities from noise. There are
likely many undetected similarities between protein structures, related to protein function,
stability or transport. Reliable statistics are pivotal if patterns consisting of as few as two

residues from disparate parts of the polypeptide chain are to be distinguished from noise.

For all searches, I inspected the ranking of matches and found that our P-values not only
distinguish true positives from noise, but also permit the comparison of results involving
patterns of different sizes. The RMSD required for a given significance (e.g. P=10"") varies
with the pattern as is clearly seen using the examples above: whereas Arg-Glu salt bridges (2
residues, 6 atoms) have to be within 0.02A, catalytic triads (3 residues, 8 atoms) can deviate
up to 0.4A and the PEPCK ATP-binding site (7 residues, 16 atoms) up to 1.5A according to
our model. RMSD alone places insignificant matches with few residues or atoms above those
that are larger and significant. For the comparison of a large set of protein structures
determined by structural genomics projects (e.g. Teichmann, et al., 2001; see Chapter 3.2) to
pattern databases, I found that P-values for true matches typically have P<107”, those with
similar chemical groups P=10"* - 10 and negatives P>0.1. Our statistical formula is thus able
to discern significant similarities from noise when entire protein structures are searched

against databases of functional patterns, even when matches are only parts of larger structures.

We confirm that active site descriptors using only the positions or distances of Ca or Cf
atoms are generally not sufficient to reach an appropriate level of specificity while retaining
sensitivity (Russell, 1998; Wallace et al., 1997). For example, when searching with Cas from
the trypsin catalytic triad, negative matches have RMSDs as low as 0.5A. This value is
comparable to those seen between close trypsin homologs, and true triads from subtilisins
have values as high as 2.0A (data not shown). Previous approaches recognised this limitation
and used constraints on sequence and secondary structure context (Fetrow & Skolnick, 1998)
or Co atom geometry around the active site (Fischer ef al., 1994) to reduce the number of
false matches (i.e. increase specificity). This approach can fail if only catalytic residues are

common and might thus restrict methods to proteins with similar folds. Other methods
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considered residue orientation (Artymiuk et al., 1994; Kleywegt, 1999; Russell, 1998) or
concentrated on functionally important atoms (Wallace et al., 1997; Wallace et al., 1996). Our
formula permits searches to be made without requiring manual definitions of queries (Fetrow
& Skolnick, 1998; Wallace et al., 1997), and provides a general basis to separate true matches
from background without the need to define query-specific RMSD or distance thresholds.

To compare our statistic to previous work on the significance of RMSD, I extrapolated our
results to larger numbers of residues, considering only Cas. In this situation our model is
conservative: for example, to give a significance of P=10" when comparing two 70 residue
proteins one previous study required an RMSD=6 (Reva ef al., 1998), whereas our model
needed RMSD=4. We suspect that this discrepancy is due to differences in background
models. The covalently linked amino acids and the tendency of proteins to form regular
secondary or super-secondary structures create additional dependencies. We did not wish to
consider these in a model for similarities involving a few residues close in space, but not

necessarily adjacent in sequence.

More generally, robust methods for structure comparison are key to the success of structure-
based functional annotation required for structural genomics (e.g. Burley, 2000).
Identification of common local structural patterns is highly complementary to fold
comparison (e.g. DALI, Holm & Sander, 1993): it can both confirm functional similarities
suggested by a common fold and identify instances of convergent evolution where common
local patterns are found in different folds. Like the sequence comparison methods used to
annotate genomes, these methods can be applied automatically to thousands of new structures

and provide initial functional predictions without human intervention.

3.2 Assigning Function to Protein Structures — Examples

We wanted to get a general picture of the applicability of PINTS for functional assignment of
novel proteins based on an analysis of a large test set. I thus probed for functional site
similarities in the 254 currently available structures from structural genomics projects and
compared this to overall fold similarities reported by Dali. We could confirm functional
similarities suggested by an overall similar fold but also found examples of functional
similarities despite no sequence or overall fold similarity demonstrating the complementarity

of this approach to those based on structural alignment.
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3.2.1 Overall Performance of Functional Site Comparison

We considered 254 structures labelled as structural genomics with release dates up to October
2003 but excluded all cases where functional similarities were obvious from sequence
comparison (see Materials and Methods). This filter left 157 of the original 254 structures for
further analysis. I compared these structures to representative structures in the FSSP database
with Dali and to databases of functionally relevant patterns with PINTS applying thresholds
usually associated with a similarity in function (i.e. Dali: Z>10; PINTS: E<107; see Materials
and Methods). Dali finds matches with Z>10 for 61 (39%) and PINTS reports matches with
E<10~ for 29 (18%). For 17 (11%) both methods find significant matches, 44 (28%) were
only found by Dali and 12 (8%) only by PINTS. The proportions are similar when structures
labeled as “unknown function” are used instead (Dali: 41%, PINTS: 21%; Overlap: 12%;
Dali-only 29%, PINTS-only 8%).

There are several reasons why similarities are found by Dali and not by PINTS. For example,
active sites can sometimes be distorted by binding to other molecules and cannot be detected
with statistical significance. This effect is most pronounced for similarities involving a small
number of residues. For example, our best match for Tm1158 (1oly) is to three residues from
the active site of a glutamine amidotransferase domain (1a9x). Although the E-value of 0.035
is above the threshold used here, the match is from the same family as the best Dali match
(1qdl; Z=20.4). Other missed similarities include those lacking common small-ligand binding
sites, such as scaffolding proteins (e.g. loyz/1b3u; Dali Z=15), or DNA/RNA binding
proteins (1jyh/1dSy, Z=14; 11jo/1d3b, Z=12). Some Dali similarities are to other proteins that
are also of unknown function, where no functional pattern is present in any database (e.g.
1013/1p90; Z=11.5) or involve fold matches without a similarity in function (e.g. helical
bundles (Inlq/1bcf, Dali Z=18) or a periplasmic divalent cation tolerance protein with fold

similarity to anthranilate isomerase (1p11/2pii; Z=10).

The 12 structures matched only by PINTS were mostly novel folds where a functional
similarity was found between proteins with different overall folds. Of these 5 were metal
binding sites, 2 were ligand binding sites, 3 were anion binding sites and 2 were short linear
motifs with similar conformations probably due to their secondary structure context but

lacking an apparent functional role.
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Using a large number of structural genomics targets without sequence similarity to known
structures, we can find functional centres within an overall similar fold for 11% and detect
functional similarities across folds that cannot be detected by structural alignment methods for
an additional 6% of all structures. Specific examples of how functional site similarity can aid

structure-based annotation of function are discussed in the sections that follow.

3.2.2 Confirmation of Superfamily, or Resolution of Ambiguity

Overall sequence or fold similarity does not always reveal the correct function. For example,
the archaeal fructose-1,6 bisphosphate aldolase shows the highest fold similarity to a
triosephosphate isomerase (1hg3, Dali Z=17.7) high above the FBPAs from eukaryotes (Dali
7=7.4 for 1fbp) (see below and Lorentzen et al., 2003). Functional site comparison methods
have already shown some promise in resolving these situations (e.g. TIM-barrels, Lorentzen

et al., 2003), or o/p hydrolases (Wilson et al., 2004; Sanishvili et al., 2003), see Babbitt, 2003

for a general discussion).

Tml643 Yiee

Figure 3.9: Functional site conservation within superfamily or fold. Structural genomics proteins (query) are
shown in light grey and the match in dark grey cartoons. Matched residues are shown in ball-and-stick, with
the ligand of the database structure in red (magnified in insets). (A) Similarity between cephalosporin
deacetylase (117a) and the catalytic triad of prolyl-oligopeptidase (1h2x; E=1x10"). (B) Residues Gly63,
Asp84 and Aspl13 from the hypothetical protein (HP) Mj0882 (1dus) matched to the S-adenosylmethionine
binding site from isoflavone o-methyltransferase (1fpx; E=3x10"; Dali Z=13.2). Here Dali’s first match
(1nv8; Z=18.2) ranks 2nd in PINTS (E=9x107). (C) Residues Thr78, Ser79, Ser147, Thr150 from the HP
Hi0754 (1nri) match to the glucosamine 6-phosphate binding site in the isomerase domain of glucosamine 6-
phosphate synthase (Imoq; E=6x107; Dali Z=12.6). Dali's best match (1jeo, Z=14.2) belongs to the same
superfamily (c.80.1). (D) Residues Gly7, Gly9, Gly12, Asp28, Lys32 and Cys55 from HP Tm1643 (1j5p)
match the NAD binding site in Lactate dehydrogenase (21db, E=3x10*; Z=9.3). (E) Residues Gly43 and 45-48
from Yjee (1f19, unliganded, left (Teplyakov ef al., 2002)) match the Ran GDP binding site (1a2k, E=2x107).
Superposition of the ADP-bound form of Yjee (1htw, right) showing the similar position of the nucleotide.
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There are several structures for which we could support functional similarity also inferred by
Dali in addition to highlighting the functional centre. These include the similarities between
cephalosporin ¢ deacetylase and o/f hydrolases (PINTS E=1x10"; Dali Z=20; Figure 3.9A),
between Mj0882 and methyltransferases (E=3x10"; Z=13.2; B), between Hi0754 and
glucosamine 6-phosphate synthase (E=6x107; Z=14.2; C) or between Tm1643 and lactate
dehydrogenase (E=3x10"; Dali Z=9.3; D).

For Yjee (Teplyakov et al., 2002) (Figure 3.9E), the best Dali match is marginal (RecA;
7=6.3), not readily allowing any functional conclusions. However, the functional site found
here is highly significant, involving 5 residues from the GDP binding sites of Ran (E=2x107)
or other P-loop nucleotide hydrolases from the same superfamily. The subsequently
determined ADP-bound form of Yjee (deposited six months later) shows that the two

nucleotides superimpose perfectly (Figure 3.9E, right).

3.2.3 Sites Found by Similarities Between Different Folds

Functional sites found across different folds are both intriguing and useful: they can suggest
aspects of convergent evolution or can suggest functional details for proteins adopting folds

not seen before. Those detected here fall into broad classes that we discuss below.

Metal or phosphate binding sites

Nature frequently reinvents similar metal-binding sites (Russell, 1998), and unsurprisingly
several similarities observed across folds involve metals. For example, Tm1083 has a highly
significant similarity with the calcium-binding site of staphylococcal nuclease (E=5x107),
despite an obvious difference in fold (Figure 3.10A). Aq 1354 contains a site similar to the
Zn containing active site of carbonic anhydrase (E=8x107) and other Zn-binding sites (Figure
3.10B). Although no metal is present in the structure, the conservation of the histidine
residues suggests that the site is real, Zn being absent from the structure owing to EDTA in
the purification protocol (Oganesyan et al., 2003). The Dali server in contrast, reported only a
marginal match to glucuronidase (Imqp; Z=3.3) that did not allow reliable functional

inferences.



72

TmlO0&3 SurE homolog ~ Phosphate-binding Protein

Aq 1354 Carbonic Anhydrase

Figure 3.10: Functional similarities between different folds (details are as in Fig. 3.9). (A) Residues Aspl6,
Aspl129 and Thr130 from the hypothetical protein (HP) Tm1083 (1jSu) match to a Ca-binding site in
staphylococcal nuclease (1sty; E=5x107). B) His115, His125 and His119 of HP Aq_1354 (10z9) match to the
zinc-binding active site of carbonic anhydrase (Ithj; E=9x107). (C) Ser106, Gly107 and Thr108 of the
survival protein Ea (SurEa) homolog (115x) match to the phosphate-binding site of a phosphate-binding
periplasmic protein (1a40; E=2x107%).

Phosphate site similarities also arise convergently. For example, the survival protein Ea
(SurEa) has a site similar to the active site of a phosphate-binding periplasmic protein
(E=2x10""*; Figure 3.10C). Although SurEa is not liganded itself, a homolog (SurE; 1j91)
contains a vanadate ion (VO4”) at the corresponding site. Conserved residues lining this
surface lead to the protein being identified as a putative phosphatase site with a preferred

specificity towards purine nucleotides (Mura ef al., 2003).

Active Site in Ribose-5-Phosphate Isomerase

The alternate Ribose-5-Phosphate Isomerase (RpiB/AlsB) catalyses the conversion of ribose
5-phosphate to ribulose-5-phosphate. Structure comparison confirmed the similarity to
Rossman-fold proteins but did not reveal any insights into the reaction, though the authors
used their knowledge about preferred binding sites, residue conservation and surface
curvature (i.e. surface cavity) to locate a putative active site pocket (Zhang et al., 2003). The

best match for this protein in our study is the similarity between three residues that line one
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side of this pocket and the substrate bound active site of phosphoglycerate mutase (E=3x107;
Figure 3.11). Although the similarity does not comprise the full active site pocket, it is useful

for determining the location and specificity for phosphorylated ligands.

A predicted Phosphotyrosine-binding site in an archaeal protein

Structure comparison revealed that Mth1187 adopted a ferrodoxin-like fold, and the authors
speculated that it might be a protein-protein interaction module (Tao et al., 2003). They noted
however that the residues lining the binding site of a sulfate ion showed enhanced
conservation indicative of a functional site or a binding site for an unknown ligand. We found
a highly significant similarity to the phosphotyrosine-binding sites in SH2 domains (1fyr;
E=3x10"*; Figure 3.11). The similarity includes residues contacting the sulfate ion in addition

to others that contact the tyrosine ring.

Indeed, a reverse search of the Mth1187
binding site against all phosphate/sulphate

binding sites or against a representative

set of complete structures (Hobohm &
Sander, 1994a) finds no other significant
similarities. Phosphotyrosine is thus an

excellent candidate for the natural ligand.

Rpib/Alsh Mihl 187 This is especially interesting, as tyrosine

specific protein kinases and phosphatases
Figure 3.11: New functional convergences. (Left) p P phosp

Residues HISIO, Arg133 and Arg40 of Alternate Ribose- have Only recently been recognized to
5-Phosphate Isomerase Rpib/Alsb (1nn4) match to the
active site of phosphoglycerate mutase (1098 and 1099; | play important roles in prokaryotic and
2-phosphoglycerate bound; E=3x107). The inset shows . .
the residues that line the putative active site pocket with | archaeal organisms and key proteins

the matching residues in red. (Right) Residues Serl7, . . .
Ser19, Argl081, Argl086 and Serl094 of Mth11g7 | Might still be unknown (Bakal & Davies,

(11xn) match to the phosphotyrosine-binding site of an . . .
SH2-domain (1fyr: E=3x10°). 2000; Kennelly, 2002; Kennelly, 2003;
Shi et al., 1998).

3.2.4 Discussion

We have tested the applicability of functional site comparison on a large dataset of new
proteins with unknown function. Many structures show similarities between functional
residues to those solved previously, which can lead to functional hypotheses being tested

further. The examples show a variety of situations, ranging from confirmation of a similarity



74

inferred by overall structural similarity to detecting a convergently evolved mode of ligand

binding.

Overall, the results demonstrate how searches for similar functional sites complement those
for similar folds. A combined strategy where both types of searches are used for structure-
based functional annotation can help overcome problems inherent to each when applied
separately. Even when structural alignment searches reveal fold similarities, active site
comparison can highlight the presence (Sanishvili ef al., 2003) or absence (Wilson et al.,
2004) of an active site, and can sometimes resolve functional ambiguities (Lorentzen ef al.,
2003). It can also help to identify "migrating" catalytically equivalent residues that are located
on different parts of homologous structures (e.g. Todd et al., 2001). Moreover, newly
determined active sites can be sought in previously existing structures regardless of any

similarity in overall fold.

The complementarity can also work in reverse: a similarity in fold as revealed by structural
alignment can boost confidence in a marginally significant functional site match. This is
particularly relevant for matches involving only a few residues that require too narrow
geometrical constraints (i.e. small RMSD) to be distinguishable from noise (see Chapter 3.1)
or those involving residues distorted by bound ligands. Functional site matches involving
proteins of the same fold can be more believable even when the matches themselves are

marginal.

Both approaches will benefit from the increasing number of functionally annotated protein
structures. There are also recent efforts to catalogue active sites in structures based on studies
of their function (Bartlett ez al., 2002; Porter et al., 2004). These will increase the coverage,
sensitivity and specificity of our searches or methods similar to ours. Investigating both types
of similarities discussed here, while the number of structures and known functional sites
grows, will also complete the picture of how nature evolves or reinvents proteins to perform

different functions with a diverse array of ligands.
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3.3 Structural Analysis of the Archaeal Class | FBP-Aldolase

Fructose-1,6-bisphosphate aldolase (FBPA, EC4.1.2.13) catalyzes the reversible cleavage of
fructose-1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate
and is central to the reversible Embden-Meyerhof-Parnas pathway (i.e glycolysis and
glyconeogenesis) and the Calvin cycle. Two classes of FBPAs with different catalytic
mechanisms are known: The eukaryotic class I enzymes use an active site lysine to form a
Schiff-base with the substrate, whereas the bacterial class II FPBAs stabilize the intermediate
with divalent metal ions (Lebherz & Rutter, 1969). Both adopt the common TIM-barrel fold
and might share a common ancestor despite insignificant overall sequence similarity (Copley
& Bork, 2000; Nagano et al., 2002). Archaeal organisms appear to rely solely on a recently
identified third class of archaeal FBPAs (FBPA IA or aFBPA). This family was identified as a
divergent group, comprising of members from almost all sequenced archaeal organisms, some
eubacteria but no eukaryotes (Gamblin ef al., 1990; Siebers et al., 2001). Although they share
the catalytic mechanism with the classical eFBPAs, they do not show any significant overall

sequence similarity to this or other TIM-barrel superfamilies (Siebers et al., 2001).

Esben Lorentzen from Ehmke Pohl’s (EMBL-Hamburg) solved the structure for archaeal
FBPA from Thermoproteus tenax (Tt) to 1.9A resolution and I performed a detailed structural
analysis with other TIM-barrel enzymes that allowed us to establish evolutionary links
between the archaeal and the classical FBPAs, and the triosephosphate isomerases (TIMs)

(Lorentzen et al., 2003).

3.3.1 Overall Structure of FBPA IA

The Tt-FBPA forms a homo-decamer where each monomer adopts a TIM-barrel fold (Figure
3.12). Due to the wide range of reactions catalyzed and the low sequence similarity often
observed between them, it is believed that the simple barrel architecture might have arisen
multiple times during evolution. SCOP for example currently distinguishes 26 superfamilies,
which may represent individual convergences although it has been suggested that many of
them might share a common ancestor (Copley & Bork, 2000; Farber & Petsko, 1990; Nagano
et al.,2002).



76

Figure 3.12: Structure of the archaeal FBPA from Thermoproteus tenax (Tt). (Left) The Tt-FBPA momomer
adopts a TIM-barrel fold (helices shown in blue, strands in red). The substrate binding site (bound DHAP) and
the unusual structural features (N-terminal helix a0, cyan; small f3-sheet, purple; for details see text) are
highlighted. (Right) Active sites of FBPA TA from Tt (light grey) and classical FBPA I from rabbit muscle
(dark grey) after the active site residues, found to be equivalent by PINTS (E=3x10"), have been
superimposed. Residues are labeled according to the Tt-FBPA sequence.

3.3.2 Comparison to the classical FBPA |

The classical FBPA I and aFBPA adopt the same fold and catalyze identical reactions but
share no overall sequence identity. It was thus of particular interest to see if a detailed
structural comparison could unravel their evolutionary relationship. I first performed a
structural alignment of the Tt-FBPA subunit and the subunit of a human FBPA I (Dalby et al.,
1999) using STAMP (Russell & Barton, 1992). The structures superimpose with an RMSD of
1.9 A over 250 residues and the sequence identity for the 154 residues that occupy equivalent
structural positions is 13% (Figure 3.13). This value is not sufficient to infer homology
directly (P=1; see Material and Methods and Murzin, 1993b). However, two unusual
structural features are observed in both types of FBPAs (Figure 3.12). The first is the presence
of an additional N-terminal helix, which precedes the first $-strand of the barrel. As seen for
the classical FBPA 1 (Gamblin ef al., 1990) and for the KDPG aldolase (Mavridis et al.,
1982), this helix runs across the N-terminal part of the barrel and closes it. The second
structurally equivalent feature is the insertion of a small two-stranded anti-parallel -sheet
between strand 33 and helix a3. This loop is involved in one of the dimer interfaces of the

tetrameric classical FBPA I (Gamblin ef al., 1990). In Tt-FBPA, however, the loop is turned
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Figure 3.13: Structure-based sequence alignment of Tt-FBPA and rabbit muscle FBPA. The numbering and
the secondary structure assignment are shown according to Tt-FBPA. Residues identical to both sequences are
surrounded by boxes, conserved catalytic residues are colored in magenta, substrate binding residues in green,
and the proposed catalytic proton donor Tyr-146 in cyan.

and moved about 10 A from the position seen in the classical FBPA I. Different positions
allow the same loop to be involved in dimer interactions in the classical FBPA I and in
pentamer formation in Tt-FPBA. Such unusual features are the key to assigning ancient

relationships to structures as in SCOP.

The strongest evidence for a common evolutionary origin between the archaeal type and the
classical FBPA I is based on the comparison of the two active sites. PINTS detected six
residues in a similar spatial arrangement in both aldolases with an RMSD of 1.1 A and an E-
value of 3x10™* (Figure 3.12). The residues form equivalent structural substrate binding sites
as seen in structures with covalently bound DHAP (Choi et al., 2001; Lorentzen et al., 2003)
and furthermore occupy the same positions in the protein sequence (Figure 3.13). In contrast,
no significant similarities between aFBPA and active site patterns from other TIM-barrel
enzymes were found as expected based on the known function. The similarity extends beyond
the core of catalytically active residues required for function but is not a general feature of all
TIM-barrel enzymes. Such similarities are very unlikely to arise independently and we thus

conclude that the classical and the archaecal FBPA 1 share a common ancestor.
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Despite highly conserved active site residues, one important difference is found between
FBPA I and aFBPA. A glutamic acid (Glul87 in rabbit FBPA corresponding to Trp144 in Tt-
FBPA, see Figure 3.13), positioned at the end of strand 85 in all classical FBPA 1, acts as an
acid in the catalytic mechanism by donating a proton in the dehydration of the carbinolamine
to form the imine (Choi et al., 2001). The carboxyl is located 3.9 A from the Schiff-base-
forming carbon of the substrate (2.5-3.0 A from the proton-accepting hydroxyl of the
substrate). Of the 27 genes identified to date as belonging to the FBPA IA family (Siebers et
al., 2001), only two encode a glutamic acid at this position. The other 25 genes code for a
hydrophobic residue, which cannot participate in proton donation. In the structure of the
liganded Tt-FBPA, Tyr146 is positioned with a distance of 3.7 A from its hydroxyl to the
Schiff-base-forming carbon of the substrate and is the only plausible candidate for a proton
donor. This residue is a tyrosine in 20 of the archaeal FBPA sequences and we propose it to
be the catalytic proton donor in these proteins. As the proton donor differs with respect to type
of amino acid as well as sequence position between FBPA I and FBPA IA and within the
FBPA TA family it is reasonable to assume that it is of recent evolutionary origin. Other
important catalytic and substrate binding residues seem to be of more ancient origin. The
active site lysine (Lys177 in Tt-FBPA) is conserved in all FBPA Is as well as [As (FBPA
I/TA) and is therefore likely to have been present in an ancestor protein common to all FBPA
I/TAs. The phosphate moiety of the substrate is tightly bound by the main-chain nitrogens of
the two glycines in loops f7-a7 and $8-a8’ (Gly204 and Gly231) and by the side-chain of an
arginine (Arg232). As these three residues are conserved in all FBPA 1/IAs identified to this
date, they probably represent an ancestral phosphate-binding site. In addition, Asp24, which
acts as a base in the catalytic mechanism (Choi et al., 2001; Wilmanns et al., 1991), is
conserved in all FBPA I/IAs and might be of ancestral origin. Ala22 is found to make
hydrophobic contacts to the carbon atoms of the substrate, but is not conserved in all FBPA

IAs.

In conclusion, we have identified and described similar active sites for the archaeal type and
the classical FBPA I. This common site contains many of the catalytic and substrate binding
residues conserved with respect to structure as well as sequence. It is thus very likely that the

classical and the archaeal type FBPA I share a common evolutionary origin.
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3.3.3 TIM and the aldolase superfamilies are homologous

Triosephosphate isomerases (TIMs) and aldolases are usually grouped into different
superfamilies (e.g. by SCOP), but the presence of a common phosphate binding site and
recent results from stepping-stone or transitive PSI-BLAST approaches provided some
indication for divergent evolution (Banner et al., 1975; Copley & Bork, 2000; Nagano et al.,
2002).

When we compared human FBPA Is and

Arch. TIM Similar active sites Eu. TIM
e Prine=10° | TIMs, we did not find convincing structural
oo i evidence for a common ancestor: Only 10
i out of the 126 residues (8%) found to be
PP B Hisk p=1 i structurally equivalent are identical between
omro i human muscle FBPA (Gamblin et al., 1990)
P=10° i and TIM (Mande et al., 1994), which is not
Pone=10% I sufficient to infer homology reliably (P=1).

Arch. FBPA | Eu. FBPA

Similar active sites .
) , , However, as it has been suggested
Figure 3.14: Summary of the evolutionary links

between different families of TIM barrel proteins | previously that hyperthermophilic archaea
discussed (Arch., archaeal; Bac., bacterial; Eu.,
eukaryotic; broken line: link in eukaryotes not | have slower evolutionary rates than bacteria
significant on its own).

or eukaryotes (Kollman & Doolittle, 2000;

Pace, 1991; Woese, 1987), we wondered whether we could establish a evolutionary link

between the two superfamilies using the archaeal structures as a bridge.

Indeed, we found that the structure of the Tt-FBPA monomer is, from a structural perspective,
closer to archaeal TIMs (from P. woesei (Walden et al., 2001) and 7. tenax (Tt-TIM;
Lorentzen, submitted)) than to any other structure in the PDB: the structures of Tt-TIM and
Tt-FBPA superimpose with an RMSD of 1.7 A and 30 of the 149 structurally equivalent
residues are identical (20%). Except for the common phosphate-binding site, no catalytic or
substrate binding residues are shared by the two proteins. Most are hydrophobic residues in
the cores of the proteins and involved in similar hydrophobic contacts (e.g. Leul27, Val143,
Alal68 and Leul71; numbering according to the Tt-FBPA sequence), or other structurally
important residues such as salt bridges (e.g. Argl29 that contacts Glul26 in Tt-FBPA or
Asp102 in Tt-TIM). Although this similarity is not detected by sequence comparisons but is

only found after structure-based alignment, it provides strong evidence for a common origin
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between the aldolase and TIM superfamilies as the probability to observe it between unrelated
proteins is small (P=3.7x10", Murzin, 1993b). In addition, Tt-TIM also shares the extended
loop with a small anti-parallel 3-sheet between B3 and a3 that is also seen in the classical and

the archaeal FBPA I (see above).

The possibly slower evolutionary rate is also indicated by the fact that both Tt-TIM and Tt-
FBPA are more reminiscent of the HisA protein from eubacteria (Lang et al., 2000) than the
eukaryotic proteins. Although still controversial, the HisA protein has been suggested to be
reminiscent of a putative common ancestor for all TIM-barrel enzymes (Copley & Bork,
2000). After structural alignment, HisA shows a highly significant sequence identity to both
Tt-FBPA (22 out of 123 structurally equivalent residues (18%); P=1.4x10") and Tt-TIM
(23/152 residues (15%); P=1.2x10™. In contrast, the similarities for the human enzymes are
much less pronounced (11% corresponding to P=1x10%; Figure 3.14). An indication for the
common evolutionary origin of HisA and Tt-FBPA is the identical positions of essential

catalytic residues at the end of B-strand 1 and 5 in both enzymes.

Figure 3.14 summarizes the evolutionary links we were able to establish between TIMs and
FBPAs using the significant structural similarity between the archaeal enzymes, which is not
apparent when comparing sequences or structures of the eukaryotic enzymes. We can also
link the archaeal enzymes from both superfamilies to HisA that has been placed near the root
of the evolutionary tree of TIM-barrel proteins. The greater degree of similarity found in
archae furthermore supports the hypothesis that these organisms undergo fewer evolutionary
changes and that the last common ancestor might have been a hyperthermophilic or

thermophilic organism (Pace, 1991).
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3.4 The PINTS Server

One of the reasons why active site comparisons are far less frequently used by structural
biologists than structural alignment (e.g. Dali) might be the lack of an easy-to-use Internet
service. As I wanted PINTS to be most useful, I implemented a web interface that is
accessible on the Internet (http://pints.embl.de) (Stark & Russell, 2003). The server offers
several databases of complete protein structures or patterns and contains detailed information
about its uses (Info, Help and FAQs (Frequently Asked Questions) pages). We currently allow

for three types of searches described in the following:

3.4.1 Searches

We distinguish between three types of searches as a single, all-encompassing, all-against-all
search would have a critical effect on the statistics (see Chapter 3.1). In addition, patterns in
our databases are more directly related to an individual molecular function (e.g. catalytic
activity or ligand-binding) than the overall protein.

Protein versus pattern database: For a new protein structure (e.g. from structural genomics
projects), hints about function or the location of a functional site can come from searches
against databases of patterns likely to be of functional importance (see Chapter 3.2).

Pattern versus protein database: The recurrence of a known functional or an interesting
new pattern in other structures can suggest common properties. We therefore allow patterns of
up to 100 residues to be compared to protein databases (i.e. containing complete structures) at
different levels of redundancy (see Materials and Methods) or the pattern databases above.
Pairwise comparison: We also allow a pairwise comparison of two structures. This can
suggest the molecular basis for the common biochemical or cellular function (e.g. catalytic

activity, specific binding characteristics, see Chapter 3.1.7).

For all searches, the user can either upload files in PDB text format or specify the four-letter
PDB identifiers for publicly available structures. The query can be restricted to specific

residues (i.e. a pattern) within the submitted or specified PDB file by an easy syntax.
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3.4.2 Output

For all searches, matches up to a user-defined E-value maximum and that contain at least
three residues are reported (Figure 3.15). We allow for partial matches to be detected, which
is particularly important if an active site is not fully understood or when the similarity may
not cover the whole of a pre-defined site. Automatically or manually annotated patterns (such
as the ligand binding sites or the SITE annotations database entries in PINTS) often contain

additional residues that are not absolutely required for function.

E-value RMSD Match N VIS Equivalent Residues
1.35e-05 0.311 1kxf b47.1.3 WEEI BL H57=H141; D102=D163; 5195 = 5215
0.000167 0.392 larb b47.11 WEA3 BL H57=H57; D102=D113; S519895= 5184
0.446 0.807 1cse cd41.11 HhEE3 BL H57 =H64; D102=D32; S5195= 5221
1.36 0.894 1gfim c69.1.4 WEEE3 BL H57=HB80; D102 =D641; S5195= 5554
1.81 0.917 1gk9 d15312WE&E3 BL H57=H26; D102=D23; S5195=55
1.88 0.921 16w _c.B69.1.18 WE@E3 AL H57=HI156; D102=D133; S5195=577
2.02 0.927 1kcf ©553.7 WEA3 BL HS57=HE8; D102=E207; 5195 =558
2.28 0.937 lauo c.B69.114WEE3 AL HS57=H199; D102=D168; S195=S114
2.32 0.939 1jkm c.B69.1.2 %hWEF3 BL H57=H338; D102=D308; S5195= 5202

10 2.43 0.943 1jfr c.69.1.16 HEF3 BL H57=H209; D102=D177; S195=S5131

11 2.47 0.944 1tca c69.1.17 WEE3I BL H57=H224; D102 = D187 ; S5195= 5105

12 2.62 0.949 1cex c.2391 WEZ3 BL H57=H188; D102=D175; S1985= 5120

13 2.76 0.954 ht c69.15 WEZ3 AL H57=H397; DI102=D338; S5195=S146

14 2.99 0.961 1dfa bB6.1.2 WEEZ3 BL H57=H59; D102=EB6;: S5195= 561

153.24 0.968 1gi4 c69.1.20 t%hEF3 BL H57=H235; D102=D207; S5195= SA0
Figure 3.15: Example of a PINTS Server results page. Shown are the top 15 matches (and their SCOP
classification) for a search with the trypsin catalytic triad (1mct, 57, 102, 195) against one representative of
each SCOP family. The three buttons are links to NCBI-Entrez, SCOP and PDBsum and the two buttons in the
VIS column link to the superimposed coordinates as explained in the text.

L= I - I A

%

=

i
[x¥]

Matches are ranked by their statistical significance and the equivalent residues and associated
RMSDs are provided, as are cross-references to useful Internet resources: SCOP (Murzin et
al., 1995a), NCBI-Entrez (http://www.ncbi.nlm.nih.gov/Entrez/), and PDBsum (Laskowski,
2001; Laskowski et al., 1997; Luscombe et al., 1998). For visual inspection with RasMol
(Sayle & Milner-White, 1995), we provide superimposed coordinates for both the matched
patterns alone (i.e. the equivalent residues) and within the whole protein context. For an
example of the PINTS results page, see Figure 3.15. Search results are kept for 8 days and can

be retrieved by an identifier, E-mail or IP address as preferred.
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3.4.3 Settings

We exclude hydrophobic aliphatic residues (Ala,lle,Leu,Met,Val) from the search as proteins
often contain hydrophobic centres that are structurally very similar (see Chapter 3.1.8) and
would lead to false positive matches comparable to low complexity regions in sequence
comparison. We regard only the amide (Asn,Gln) and acidic (Asp,Glu) residues to be similar
enough to be equivalenced generally (see the corresponding PINTS definition file (Table 2.1,
Column 3). The search parameters are currently restricted to standard settings that we know
would be applicable to a wide variety of different submissions (maximum pattern diameter 15
A, distance tolerance during the depth-first search 3 A, minimum and maximum number of

residues per pattern 3 and 100, respectively).

As PINTS was specifically designed to find spatial patterns in non-homologous proteins, its
algorithm suffers heavily if two very similar proteins are compared. Especially in database
searches, most of the search time would be spent on database entries with high sequence
similarity and the output would be swamped with many patterns from these. The PINTS
server therefore removes all database entries with high sequence similarity to the query (i.e.
detected by BLAST with high confidence E<Ix10"'’) from the search and reports them

separately.

3.4.4 PINTS-Weekly

In addition to the service above for individual structures, we now constantly monitor the PDB
for new functional similarities. With each weekly update of the PDB, we compare all new
structures to our pattern databases. Updates to the PDB often contain structures that are either
slight variants (e.g. different bound small molecules, mutants, etc.) or close homologs of
proteins already present in the database. We thus classify the structures into two categories (in
addition to A/l Structures) to facilitate browsing or finding formerly unknown similarities.
Structural Genomics are structures that are labeled as “Structural Genomics” or “Unknown
Function” by the authors of the PDB file. Unique Sequences are those that do not match any
previously known structure using BLAST (E-value <10, sequence identity >80%, and
length difference of <90% or <50 residues. This service is available at

http://www.russell.embl.de/pints-weekly (Stark, et al., submitted).
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3.4.5 Access Statistics

We announced the PINTS server on the PDB mailing list (pdb-1) on January, 29" 2003
(http://www.rcsb.org/pdb/lists/pdb-1/200301/000412.html). Since then, our site has been
accessed nearly 50,000 times by more 3300 different non-EMBL users identified by their IP-
addresses. There were on average 130 unique searches per month or nearly 2000 altogether

(Figure 3.16).
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Figure 3.16: Access statistics for the PINTS-Server. Shown are unique searches from non-EMBL
users between January 2003 and February 2004. The announcement on the PDB-mailing list
(01/2003) and the publication (06/2003, Stark, et al., 2003) are seen as maxima, but the server
usage was highest from September-November 2003.
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3.5 miRNA Target Prediction

Although miRNAs are thought to play major regulatory roles in all higher organisms, not
much is known about their functions or the target genes they regulate. The limited sequence
complementarity between miRNAs and their targets means that target prediction is difficult
and requires careful statistical evaluation (see Introduction). In close collaboration with Julius
Brennecke in the group of Stephen M. Cohen (EMBL-Heidelberg), I developed a
computational screen for miRNA targets in Drosophila. 1 examined properties of valid
miRNA targets such as their structures or conservation that I then used to predict targets for
miRNAs. I showed that the method identifies all known miRNA targets and predicted new
targets that Julius Brennecke validated experimentally. An earlier version of the method was
used to predict the bantam target hid (see Chapter 3.6.3 and Brennecke et al., 2003). The

screen presented in the following section has been published:

A. Stark, J. Brennecke, R.B. Russell, S. M Cohen; Identification of Drosophila miRNA Targets. PLoS Biology,
1(3), E60, 2003.

3.5.1 Conserved 3’ UTR Database

For each of the validated miRNA/target pairs, functional target sites are located in the 3’
untranslated region (UTR) of the mRNA and are conserved in the 3° UTRs of the homologous
genes from related species (Abrahante et al., 2003; Brennecke et al., 2003; Lee et al., 1993;
Lin et al., 2003; Moss et al., 1997; Reinhart et al., 2000; Wightman et al., 1993). I used
pairwise comparison of the 3> UTRs of orthologous genes in related genomes to identify
conserved 3° UTR sequences. Figure 3.17A shows the resulting pattern of 3° UTR
conservation for the known targets in worms and flies. The vast majority of miRNA target
sites (red bars) are located in blocks of conserved sequence (white blocks). Figure 3.17B
shows cross-genome conservation of these miRNA target sites. A striking pattern of
uninterrupted conservation emerges at the end of the target sequences that pair with the 5* end

of the miRNA:s.



rd [ THHATEETIN B EENITFESSEIE BN 2§

let-7

lin57-1 T T T A T T A C A& A CCOG T T OCOCALCTCTC A
lin57-3 cC T T c.T b T & A& T G C ﬂ T T CT & 0CCTOGCC
lin57-5 A COT Il C A G T &4 C A T G T A G T & C C T C C
lin57-6 T T T c T R NN © T 4 C C T C n
lin37-7 & CT o RN T T C 4 TREC T & C C T C A
linS7-9 T LB R R s - T T A4 T G T A C C T C A
lind1-1 Iy c T T & T &4 C & & CCOGTTOCT ACALCTC A
lind1-2 COEC I T T T 4T A C A& & CC AT TOCTBGLCCLCTOECT
lin-4

lin14-1 llc C T C T C & G G A& A
lin14-2 A A A A C T C A& G G & A
lin14-3 CC A A CTC & G G G A
lin14-4 T G & &4 C T C & G G A A
lin14-5 C T & CCTOGC & G G G A
lin14-6 I - 4~ T C &4 G G A A
lin14-7 CC A& A& C T OC & G G G A
lin2B-1 C A C T C T C &G G G A
bantam

hid-1 4 T T G G T C T C A
hid-2 4 & T G A& T C T C T
hid-3 & T T G A& T C T C A
hid-4 A A T G A T C T C G
hid-5 A T T G A T C T C A

Figure 3.17: Features of known miRNA targets. (A) miRNA target sites (red bars) are
generally in conserved regions of 3° UTRs of known miRNA targets (white background).
Comparison was done according to conditions used to construct the 3> UTR database (see
Materials and Methods) between D. melanogaster and D. pseudoobscura (for hid), or
between C. elegans and C. briggsae (otherwise). Most UTRs contain multiple predicted
target sites and function for individual sites not been tested generally. (B) Sequence
conservation within the predicted miRNA binding sites that are conserved (shown is miRNA
length plus 5 nts). All residues that pair with positions 2-8 of the miRNA are identical in the
conserved sites in both genomes compared (white background).
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To permit genome-wide searches for targets of Drosophila miRNAs, a conserved 3> UTR
database was prepared by comparison of D. melanogaster and D. pseudoobscura 3’ UTRs. As
very few 3’ UTRs are defined by cDNA sequence data in D. pseudoobscura, 1 used genomic
sequence following the last exon of the D. pseudoobscura gene as the orthologous UTR (see
Materials and Methods). Last exons were reliably detected in D. pseudoobscura for about
two-thirds of D. melanogaster genes. On average 22% of the D. melanogaster 3° UTR
sequence is conserved in the predicted D. pseudoobscura 3° UTR. Much of this reflects
isolated blocks of very high conservation interspersed among less conserved sequence. Use of
conserved 3 UTRs reduces the expected number of sequence matches that would occur at
random by 4 to 5 fold in relation to full-length 3° UTRs, and several fold further compared to
the full transcriptome. We considered using the Anopheles gambiae genome to extend the
cross species comparison. Although genome annotation identifies orthologs for two-thirds of
D. melanogaster genes (Zdobnov et al., 2002) 1 was unable to identify the last D.
melanogaster exon for approximately half of these and therefore chose not to require
conservation in Anopheles, but to use it as an additional level of validation for predicted

Drosophila targets where possible.

3.5.2 Screening strategy

We have adopted a two step approach to target identification that combines a sensitive
sequence database search with an RNA folding algorithm to evaluate the quality of the RNA
duplex formed between the miRNA and its predicted targets. We examined the known target
sites for lin-4, let-7 and bantam for common features. All of these sites showed better
complementarity to the 5’ end of the miRNA, with no obvious common features elsewhere
(Figure 3.18 A and B). There were few sequence mismatches or G:U base pairs in the
alignment of the first eight residues at the 5’ end of the miRNA. I used HMMer (Eddy, 1998)
to search for sequences complementary to the first eight residues of the miRNA, allowing for
G:U mismatches. Where possible the corresponding sites were also identified in the D.
pseudoobscura 3° UTR and the sites from both genomes were considered, since the regions
outside of the sequence match can vary between the two organisms, leading to difference in

subsequent steps (see below).

The identified sequences were extended to the length of the miRNA plus five residues to

allow for bulges and were evaluated for their ability to form energetically favorable RNA-
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Figure 3.18: miRNA target prediction strategy. (A) let-7, lin-4 and bantam miRNA sequences showing the
pattern of base pairing to their known targets (yellow: conventional base pair; orange: G:U base pair; blue:
mismatch, black bars: insertions in the target; all sequences at the length of the miRNA). (B) Quantitation of
the data from (A): the 5° ends of the miRNA are always well paired to the target, suggesting searches for
complementarity to the first 8 residues of the miRNA. (C) Graphical representation of the Mfold output for
bantam and a target site from the 3> UTR of its target hid. To use Mfold it is necessary to join the predicted
target site (red) and the miRNA (blue) into a single sequence using a hairpin-forming linker sequence. In this
example the target sequence and the miRNA are the same length, so the additional 5 nt in the tail of the
predicted target sequence are not shown. (D) Plot of the Mfold free energy distribution for 10,000 random
sequences (green) and for predicted targets of the bantam miRNA (red). X-axis: DG calculated for each site by
Mfold.

RNA duplexes with the miRNA using Mfold, which combines knowledge of known RNA
structures with thermodynamic parameters, such as those involved in base-pairing to evaluate
the free energy of folding (AG; Mathews et al., 1999; Zuker et al., 1999). Mfold requires a
single linear sequence as input, so each predicted target was linked to the miRNA using a
standard hairpin-forming linker sequence (GCGGGGACGC). An example of the Mfold
output is shown in Figure 3.18C for the top scoring bantam miRNA target site that we had
previously identified in the 3° UTR of hid (Brennecke et al., 2003).

The Mfold free energy of folding (AG) was determined for each predicted target, which
allows predicted sites to be ranked according to AG. However, AG depends on miRNA length
and GC content, so it is not possible to distinguish systematically real targets from random
matches using the raw AG score, or to compare different miRNAs. Instead, we calculated Z-

scores as a measure of non-randomness, with an average random site scoring Z=0. Figure
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3.18D shows the distribution of folding energies for predicted targets of the bantam miRNA

compared to 10,000 randomly selected target sequences.

Most of the previously validated targets have more than one predicted miRNA-binding site in
their 3> UTRs. The use of Z-scores allows us to add the scores of several sites within one
UTR by selecting only those scores that are different from background matches. This is not
possible with AG alone because even average random matches have favorable energy values
(Figure 3.18D) and the sum of several average random matches in a UTR could score better
than a single true site. We selected Z=3 as a cutoff value as folding energies of more than
three standard deviations above the mean (Z>3) are expected to occur for only 0.3% of
random matches. Use of a higher Z-score increases the likelihood that predictions are correct,
but also increases the risk of missing out contributions from real sites of lower folding energy.
For example, only three of the five conserved bantam sites previously identified in the Aid 3'
UTR score Z>3 (with the best site at Z=7.4). We evaluated our predictions by the best single
site in the 3° UTR (Zmax) and by the sum of sites with Z > 3 (Zyrr).

3.5.3 Tests with previously validated targets

Table 3.1 summarizes the performance of the method in predicting the known targets of the C.
elegans miRNAs lin-4, let-7 and the Drosophila miRNA bantam. The Drosophila hid gene
was ranked first of all predicted bantam targets sorted by the single best site (Zmax) or by the
sum of sites (Zyrr). All of the known targets of /in-4 and let-7 were found when their 3’
UTRs were added to the Drosophila 3° UTR database. Like Aid, the let-7 target lin-57 ranked
near the top of the list by both measures: /in-57 ranked first by Zyrr due to several predicted
sites with Z>3 and its best single site ranked in position 2 (Z=6.8). C. elegans lin-14 was
predicted to contain multiple /in-4 sites (Lee et al., 1993; Wightman et al., 1993). Three of
these scored Z>3. /in-14 was ranked first when the list of predicted /in-4 targets was sorted for
Zytr although the best single site in lin-14 placed it in position 20 (Z=4.3). The /in-4 target
lin-28 and the let-7 target lin-41 ranked highly when the lists were sorted for the best single
site, but ranked lower when multiple sites were combined because they had few high-scoring
sites. The Drosophila homolog of lin-41, dpld, also ranked high among let-7 targets (Z=5.6,
see below). We compared our results with previous target predictions from the literature that
have not been experimentally validated (Table 3.1). Our screen supports some of them (e.g.

let-7 regulating lin-14), but we consider others unlikely because they rank very low on their
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miRNA/target pair AG Znvax Rank Zy,, # 723 Rank Zytr References
Confirmed Pairs
lin-4/lin-14 299 43 20 3 1 (Wightman et al., 1993)
lin-4/lin-28 -30.9 4.6 8 1 15 (Moss et al., 1997)
let-7/lin-41 323 64 3 2 20 (Reinhart et al., 2000)
let-7/lin-57 (hbl-1) -334 6.8 2 14 1 (Abrahante et al., 2003;
Lin et al., 2003)
bantam/hid 374 74 1 3 1 (Brennecke et al., 2003)
Predicted Pairs
lin-4/lin-41 -289 4.0 32 1 36 (Slack et al., 2000)
lin-4/lin-57 21,6 1.7 361 0 - (Abrahante et al., 2003;
Lin et al., 2003)
let-7/lin-14 351 7.2 1 13 2 (Reinhart ef al., 2000)
let-7/lin-28 -20.6 2.8 861 0 - (Moss & Tang, 2003)
miR-13a/hb - - - 0 - (Abrahante et al., 2003)
miR-4/hb - - - 0 - (Abrahante et al., 2003)
miR-3/hb - - - 0 - (Abrahante et al., 2003)
miR-11/HLHmS 294 4.7 27 1 46 (pred. UTR)  (Lai, 2002)
miR-4/m4 215 2.1 272 0 - (Lai, 2002)
miR-7/HLHm3 -37.3 7.0 2 1 16 (Lai, 2002)
miR-7/Tom -345 6.1 5 2 1 (Lai, 2002)
miR-14/Drice - - - 0 (not conserved)  (Xu et al., 2003)

Table 3.1: Assessment of predictions for known and predicted miRNA Targets (see text for details).
Confirmed pairs are experimentally validated, predicted pairs are predicted in the cited reference. The
predicted pairs let-7/lin-14, lin-4/lin-41, miR-11/HLHmS, and the two miR-7 targets seem plausible whereas
miR-14/Drice and predictions for hunchback (hb) seem unlikely according to our method.

lists or have no sites of Z>3 (e.g. let-7 and [in-28 or miR-4 and m4. The predicted miR-14
target Drice (Xu et al., 2003) is unlikely to be valid because the site is not conserved in the

predicted Drice 3’ UTR from D. pseudoobscura.

This analysis shows that all known targets were detected and ranked among the top scoring
predictions in genome-wide searches. This suggests that other valid targets should rank
among the small number of best predictions that can be tested experimentally. Of particular
interest were three miRNAs for which we predicted clusters of functionally related targets:
miR-7, the miR-2 family and miR-277 (Table 3.2 and Table 3.3). Clustering of top-scoring
sites in a group of related genes is likely to be significant when it arises from an unbiased

genome-wide analysis. miR-7 and miR-2 were selected for target validation.

3.5.4 miR-7 regulates Notch targets

Among the top ten predictions for miR-7, we found Enhancer of split (E(spl)) and Bearded
(Brd) complex genes (Figure 3.19A). HLHm3 encodes a basic-helix-loop-helix (bHLH)

transcriptional repressor; Tom and m4 encode Brd family proteins. The bHLH repressor hairy
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Figure 3.19: Experimental validation of miR-7 targets. (A) Schematic representation of the E(spl/) and Brd
gene complexes highlighting bHLH-type transcriptional repressors (red) and Brd-type proteins (blue). Black
asterisks indicate likely valid miR-7 targets with no mismatch in the first 8 residue. (B) miR-7 miRNA
sequence showing the pattern of base pairing with target sites in E(sp/) and Brd complex genes ranked
according to folding energy (details as in Figure 3.18). (C-G) Experimental validation (J. Brennecke, see Stark
et al., 2003a for details) (C) Expression of the miR-7 sensor transgene (both panels, green) is lost when miR-7
is present (left, red). Right panel shows the miR-7 sensor alone. (D, E) Expression of the m4 3° UTR and hairy
3' UTR sensor transgenes (green) are down-regulated by miR-7 (red). Cut protein (top: blue, botton: white)
was down-regulated in miR-7 expressing cells. (F) Alignment of miR-7 target sites in the 3 UTRs of hairy
from several species (asterisks: identical nucleotides (nts); black type: nts paired to the miRNA; grey shading:
miRNA binding site conserved in all species. (G) Cuticle preparations of a wild type adult wing and a wing
expressing miR-7 under ptc-Gal4 control in the region between veins 3 and 4. Note the notching of the wing,
and the reduction of the region between veins 3 and 4 leading to partial fusion proximally. The size of the
posterior compartment was increased apparently to compensate for reduction of the vein 3-4 region.

was also among the top ten. These sites were conserved in the orthologous genes from
Anopheles, when those could be identified (e.g. for m4, hairy, HLHm3) or even found in two

additional insects: Drosophila simulans and the flour beetle Tribolium castanaeum (hairy).

This prompted us to examine all the genes in E(spl) and Brd complexes for miR-7 sites. We
found possible target sites in many of them. Alignment of these sites showed a pattern of 5’
end conservation quite similar to that for validated targets, with no mismatches and few G:U
base pairs for about half of these genes (Figure 3.19B). Julius Brennecke assessed the validity
of some of these predictions experimentally (see Stark et al., 2003a). Expression of miR-7 in
transgenic flies caused a clear downregulation of an EGFP (enhanced green fluorescent
protein) reporter bearing either the m4, hairy, or HIHm3 3’UTR suggesting that all three are

valid targets. In addition, we observed phenotypes reminiscent of Notch mutant flies such as
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notching of the wing margin or a reduced spacing of veins 3 and 4 (Baonza & Garcia-Bellido,
2000; de Celis & Garcia-Bellido, 1994; Diaz-Benjumea & Cohen, 1995; Micchelli et al.,
1997; Rulifson & Blair, 1995) and noticed reduced levels of Cut protein, whose expression is
dependent on bHLH transcription factors and Brd-like genes of the E(spl) complex
(Ligoxygakis et al., 1999). miR-7 expression could provide a means to simultaneously down-
regulate these and other proteins, that might otherwise function redundantly to mediate Notch
activity in the wing margin. Taken together, these findings support the prediction that the
miR-7 miRNA regulates expression of bHLH and Brd-like proteins encoded by hairy and the
E(spl) and Brd complex genes and implicates miR-7 as a possible regulator of Notch target
gene expression. A more detailed analysis of the physiological function of miR-7 will require

isolation of lack-of-function mutations in the miR-7 gene.

Lai has reported complementarity between some miRNAs and sequence elements known as K
boxes, Brd boxes and GY boxes in the 3’ UTRs of E(sp/) and Brd complex genes (Lai, 2002).
K boxes and Brd boxes have been implicated in post-transcriptional regulation, though no
function was assigned to the miR-7 complementary GY boxes (Lai et al., 1998; Lai &
Posakony, 1997). The presence of GY boxes in several E(spl) and Brd complex genes as well
as in hairy and extramachrochatae (emc) has been reported (Lai & Posakony, 1998). Based
on the presence of these boxes, Lai predicted miR-7 target sites in HLHm3 and in Tom (Lai &
Posakony, 1998). We extend these predictions to a much larger gene family and provide
experimental validation for some of them, indicating that GY boxes participate in the

regulation of Notch target genes.
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Kk Kk ok k ko kkkkkkkkkk

GUUCAA-UAAAAGUGCUGGCUGUG---
CGAGU-AGUUU---CGACCGACACUAU

gk k Kk o fkkk ok ok k ok ok ok ko k

mispairing -

5’helix NF

5’helix -

9 -32.549

1

4.9 grim

GCUCAAUCAAAGCGCA---UUGUGAU-
CGAGU-AGUUUCG---ACCGACACUAU

kokk ok ok kokkkkkk Rk Kk ok ok

- NF

10 -32.1 4.78

8.01 CG7187-RA

GCUUUGAU----GAGC--GCUGUGGUG
CGAG----UAGUUUCGACCGACACUAU

kkk g ko k ko k ok ok ok ok

5’cons NF
mispairing

Table 3.2: Top Ten Predictions for miR-7 and miR-2a AG, Z,.x and Zyrr are explained in the text. Alignment:
top: target site; middle: miRNA; bottom: *, conventional base pair; +, G:U base pair, -, mismatche or gap.

Flags: The “5’ conservation” flag identifies sites that differ in the two genomes at any residue complementary
to positions 2 to 7 of the miRNA (5’cons). The “5’ helix” flag identifies sites that do not have at least 6
contiguous base pairs in positions 1-8. The “CDS+” flag indicates that the predicted site overlaps coding
sequence on the same strand; “CDS-" indicates that the overlap is on the opposite strand. In some cases Mfold
structures include base pairs that are not between the miRNA and its target. “Mispairing” flags sites with
artificially high folding energies. Ag (Z>3): Anopheles genes that cannot be reliably identified by our criteria
are indicated “NF”. For the cases where the orthologous Anopheles gene was found, the presence of a target
site with Z>3 is indicated (+, otherwise -). Heavy outlining indicates those loci that would pass stringent

filtering of the lists using the flags and lack of a conserved target in an Anopheles ortholog.
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Figure 3.20: Experimental validation of miR-2 targets. (A) 3’UTRs
of reaper, grim and sickle highlighting blocks of high sequence
similarity between D. melanogaster and D. pseudoobscura
(underlined: pedicted miR-2/13 target sites). (B) Alignment of
predicted miR-2/13 target sites in the reaper, grim and sickle 3’
UTRs with associated Z-scores. (C-E) Experimental validation (J.
Brennecke, for details see Stark et al., 2003a) (C) Immunoblot
probed for GFP and Tubulin of S2 cells transfected to express an
EGFP-reaper 3' UTR construct (lane 2) or a comparable construct
from which the miR-2a site has been deleted (lane 3; lane 1: control
with empty vector). (D, E) Expression of the grim and sickle 3’
UTR sensor transgenes (green) were down-regulated by miR-2b
(red).
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The pro-apoptotic genes reaper
and grim were among the top
predictions for miR-2a and miR-2b
(Table 3.2). reaper, grim and the
third pro-apoptotic gene sickle are
clustered in the genome and show
blocks of high conservation in
their 3> UTRs, which include the
miR-2 family target sites (Figure
3.20A). The putative miRNA-
binding site is very similar
between the three genes
suggesting an identical RNA-
complex structure (Figure 3.20B).
The corresponding sites are highly
similar in D. pseudoobscura, but
the orthologous genes cannot be
identified in Anopheles. We could
again show a miRNA dependent

downregulation of a 3’UTR EGFP-reporter by miR-2 in transgenic flies (grim, sickle) or

Drosophila Schneider S2 cells (reaper, Figure 3.20). The miR-13 family is similar in

sequence to the miR-2 family. Experimental validation will be needed to determine if reaper,

grim and sickle are also regulated by miR-13. Identification of reaper, grim and sickle as

targets suggests that miR-2 family miRNAs may be involved in control of apoptosis.

3.5.6 Statistical Evaluation of Target Predictions

Although a number of the top-ranking sites identified in our screen have been experimentally

validated, we wanted to assess the likelihood that sites with equivalent scores can be found by

chance. To do so I calculated E-values for the bantam miRNA based on the tail of the

cumulative distribution of AG values for 10,000 random matches. An E-value predicts the

number of background matches with a similar or better score (E-values scale with database
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size and are applicable to any distribution

[ I profile; see Introduction). The results are

e ' presented on a logarithmic scale for UTRs
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Figure 3.21: Statistical evaluation of predicted targets. matches reach RNA-duplex energies
Plot of E-values as a function of free energy of folding
predicted by Mfold. E-value plots are shown for one,
two, and four sites of equal energy. The position of the
best bantam site in hid is shown for reference.

similar to the best sites, even in the

smaller conserved 3> UTR database.

Indeed, target sites predicted using

shuffled bantam miRNA sequences give folding energy distributions very similar to the
native sequence (not shown). Although single sites are not statistically significant, the
presence of multiple sites within a single UTR can greatly increase the significance of the
prediction. Combining the three bantam sites (Z>3) predicted in the hid 3° UTR gives an E-
value of 1.8x10°. Some single sites are sufficient to mediate regulation by a miRNA,
however, we emphasize that the lack of statistical significance for even the best single site

means that they require experimental validation.

3.5.7 Additional validation by cross genome comparison

One means to improve the significance of the predictions would be to require conservation in
a third genome. The two Drosophila species are separated by an estimated 30 million years.
The mosquito Anopheles gambiae is separated from Drosophila by 250 million years.
Orthologous mosquito genes have been defined for approximately two-thirds of Drosophila
genes, however, systematic comparison showed great differences in length between
orthologous gene pairs (Zdobnov et al., 2002). Indeed we were able to identify orthologous
last exons with confidence for only half of these pairs, or one-third of D. melanogaster genes.
We have therefore chosen to use conservation in Anopheles to provide a more stringent
evaluation of target site conservation, instead of requiring it generally. The presence of a
conserved site with a high Z-score across all three genomes increases the confidence that the
site is functional. To illustrate the utility and limitations of this we examine the top 100
predictions for miR-7 and miR-2. The Anopheles orthologs were identified for 52 of the top
100 predicted miR-7 targets. Eleven of these had conserved target sites (Z>3), including four
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of the top ten predictions, hairy, Tom, m4 and CG14989 (Table 3.2). For miR-2a 40 of the top
100 predictions had a detectable ortholog in Anopheles. Five of these sites were conserved in
Anopheles (Z=3), and none of these were among the top ten predictions. Conservation in
Anopheles can thus be used to find sites with a higher probability of being valid, but increases
the risk of missing real targets. It is only useful in cases where the orthologous UTR region
can be identified, which is not the case for the validated miR-2a targets grim, reaper and

sickle.
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Figure 3.22: Valine, Leucine, and Isoleucine Catabolic Pathway (adopted from KEGG). Predicted miR-277
targets conserved in Anopheles are boxed (red: Z>3, blue: Z>2), other enzymes that are known in
Drosophila are shaded in green.
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3.5.8 miR-277 is a putative metabolic switch

Table 3.3 shows predicted miR-277 targets that are conserved (Z>3) in Anopheles. Seven of
the top eleven are enzymes involved in branched chain amino acid degradation and two
additional enzymes were identified at more relaxed stringency (Z>2), along with a number of
unrelated loci (Figure 3.22). This striking clustering of functionally-related enzymes suggests
that miR-277 regulates the pathway for valine, leucine and isoleucine degradation by down-
regulating many of its enzymes and thus acts as a metabolic switch. The degradation of these
essential amino acids is presumably regulated under conditions of starvation or excess dietary
intake. miR-277 expression has so far only been detected in adult flies (Aravin ef al., 2003;
Lai et al., 2003) suggesting a role in regulating metabolic responses to environmental
conditions. Interestingly, the human homolog of CG8/99 is mutated in maple syrup urine

disease. It remains to be determined if these enzymes are regulated by miRNAs in vertebrates.

Rank Gene Function Enzyme #7>3 Zyrr
1 CG31651 Protein GalNAc transferase EC:2.4.1.41 2 7.31
2 CG5599 Val Leu Ile degradation EC:2.3.1- 2 6.53
3 CG1673 Val Leu Ile degradation EC:2.6.1.42 1 5.75
4 fz Cell polarity 1 4.89
5 CG8199 Val Leu Ile degradation EC:1.2.44 1 4.53
CG18549 - 1 4.23
7 CG1140 Val Leu Ile degradation EC:2.8.3.5 1 3.9
8 scu Val Leu Ile degradation EC:1.1.1.35 1 3.81
9 CG15093 Val Leu Ile degradation EC:1.1.1.31 1 3.79
10 CG7740 Membrane protein 1 3.64
|1 1 CG17896 Val Leu Ile degradation EC:1.2.1.27 1 3.61

Table 3.3: Top miR-277 targets include many enzymes from the valine, leucine, isoleucine degradation
pathway (required: Z>3 D. melanogaster, D. pseudoobscura, Anopheles).

3.5.9 Features shared by validated targets

Comparison of the five previously validated targets and the six new targets validated here
revealed three features shared by all sites. (1) Cross-genome comparison showed perfect
sequence identity in the target site residues that base pair with residues 2-8 of the miRNA
(Figure 3.17). This was also true for the newly validated target sites (data not shown). (2) The
pattern of base pairing between the miRNAs and their targets shown in Figure 3.18A
suggested that a continuous helix of at least six of the first eight base pairs might be required

(allowing for G:U base pairs). This was also true for the newly validated target sites (Figures
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3.19B and 3.20B). (3) Many transcripts in the D. melanogaster genome overlap other
transcripts on the same strand or on the opposite strand of the DNA. There are many examples
of alternate splicing that produces alternate 3' UTRs, so that one UTR variant may include
coding exons from another variant. In such cases the basis for the sequence conservation
between genomes is unclear. None of the validated sites from Drosophila overlaps coding

sequence on either strand (this feature was not examined for the C. elegans sites).

Target sites that do not share these features are indicated in Table 3.2. These features can be
used to increase the stringency of the screen, by discounting sites that differ from validated
targets. For miR-7 this would eliminate two of the top ten predictions so that the validated
targets would constitute three of the remaining top eight predictions. For miR-2a this would
eliminate four of the top ten predictions, so that the validated targets reaper and grim would
rank in positions two and six. We have chosen not to implement the flags as filters to exclude
predictions because they are based on a relatively small set of eleven validated targets.
Although, we note that all nine predicted miR-277 targets would pass such a filter. When

more targets are validated we will learn if these features have a general predictive value.

3.5.10 Discussion

One of the major limitations in studying animal miRNA function is the difficulty in
identifying their targets. Our screening strategy has proven to be useful for predicting new
miRNA targets. Three new targets have been experimentally validated for miR-7 and for miR-
2, bringing the total number of validated targets of animal miRNAs to eleven. In addition we
predict a number of miRNA/target pairs or target families that seem likely to be valid, but
require experimental validation. Our study depended on the high quality annotation of the D.
melanogaster genome and the availability of the D. pseudoobscura genome sequence. Where
possible we have extended the analysis to include evaluation of predicted sites in the
Anopheles gambiae genome. More complete annotations of the fly and mosquito genomes,
aided by cDNA sequencing projects, will increase the number of genes for which orthologous
UTR sequences can be defined. This will permit more sensitive and more extensive cross

genome comparison.

We have made a number of assumptions based on the inspection of known targets in

designing the screen and it remains to be determined if all of them will prove to be generally
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applicable. For example, as all previously known animal miRNA target sites are located in 3’
UTRs of protein coding genes, we restricted our screen to these sequences (as were all similar
approaches, see below). However, we also find sites with similar scores in coding sequences,
in 5> UTRs and indeed through DNA sequence in general. It remains to be determined
whether miRNAs can act to control translation via these sites such as RNAi can act via sites
in the coding region (e.g. Kasschau et al., 2003; Llave et al., 2002; Tang et al., 2003). The use
of whole transcriptome or whole genome databases would greatly increase the search space,
which might bury valid targets among background matches. Based on the observation that
miRNA target complementarity was best for the first eight residues of the miRNA in the
previously known examples, we searched for complementarity only to these residues.
However, we noticed that miRNA-mRNA duplexes with preferential pairing in the 3’ end or
middle regions had Mfold energies similar to our predictions (not shown) but it is currently
unknown whether such sites function with a given miRNA, or more importantly, whether
some miRNAs might indeed favor them. On the other hand, the unknown requirements for
functional pairing also mean that some of our predictions might not be functional and we
expect improvements in specificity to come from a more precise understanding of the

structural requirements for miRNA/target pairing.

In designing the screening strategy we considered the balance between sensitivity and
specificity. We chose a search strategy that was based on the known examples, but
generalized to allow detection of similar targets. By doing so, we risk missing fewer valid
targets at the expense of including more false positives, as indicated by our statistical analysis
(Figure 3.21). This enabled us to detect all known miRNA targets and to predict clusters of
functionally related targets, not detected by other methods with more stringent requirements
(see below). To help distinguish false positives from potentially valid targets we identify
features shared by valid targets and, where possible, test predictions for conservation in a
third, more distantly related, genome. Both positive and negative results in tests of new
predictions will provide a better understanding of how miRNAs bind their targets, perhaps
highlighting positions that are particularly critical, which will permit high sensitivity and

specificity for future target prediction methods.

Complete tables of target site predictions are available on the web at www.miRNA.embl.de.
These tables report Z-scores and sequences for the D. melanogaster, D. pseudoobscura target

sites and where possible for the Anopheles target site. The tables contain flags to identify sites
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that share the features described above. We recommend using these flags to filter the lists, but
note that this may exclude valid targets. We recommend making use of the Anopheles data to
discount predictions where the orthologous gene is identified and the site is absent or has a

low Z-score (Z<2).

The presence of a conserved site in all three genomes increases the confidence that a predicted
site is valid, as in the case of the miR-7 sites in hairy and Tom. Also, dpld, the Drosophila
homolog of the /let-7 target /in-41, ranks second among Drosophila let-7 targets when
conservation in Anopheles was required. A number of other target predictions that meet these
requirements look quite promising. We have high confidence that the cluster of enzymes in
the branched-chain amino-acid degradation pathway will prove to be valid miR-277 targets.
Another promising candidate is the predicted miR-9a target Lyra. Lyra contains two predicted
miR-9a sites. The best Lyra site ranks first among all predicted miR-9a targets that are
conserved in Anopheles. Intriguingly, mutations affecting the Lyra 3’ UTR lead to a dominant
phenotype and to increased Lyra protein levels, an observation that strongly suggests that
Lyra is subject to translational regulation. miR-9 is an excellent candidate to mediate this
regulation. Many other miRNA/target pairs are identified with sites of a similar quality to
those mentioned here (examples include four conserved sites for miR-309 in Ets65a at Z>2).
Interestingly, we found that many genes are predicted to be regulated by different miRNAs.
An outstanding example is nerfin-1, which has binding sites in its 3> UTR for bantam, miR-
9b, miR-5, miR-279, and miR-286, many of which are conserved in Anopheles. Regulation of
nerfin-1 by miRNAs is also expected from the observation that nerfin-1 mRNA is
ubiquitously present during the embryonic development of the central nervous system,
whereas the protein is only expressed in neuronal precursor cells (A. Kuzin et al.,
unpublished). This shows, that miRNAs are probably involved in nervous system
development and that miRNAs seem to form complex regulatory networks as one miRNA can

regulate several targets, but one gene can also be regulated by several miRNAs.

Although it is more difficult to distinguish functional sites from false positives in the cases
where only two genomes are compared, we have made use of clustering of related genes to
identify real targets. reaper grim and sickle have been validated as miR-2 targets. We note
that the Netrin receptor unc-5 and Netrin-A rank second and fourth among predicted miR-288
targets. We observe an abundance of transcription factors among the predicted targets of miR-

9, miR-279 and miR-286 for which orthologous UTRs were not identified in Anopheles.
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Our statistical analysis shows that the very best single predicted target sites are not
statistically significant, even though we have used a reduced database consisting of conserved
3> UTR sequences. This means that prediction of any single target site cannot be taken as
evidence for regulation of a transcript by a miRNA without experimental validation. Sites that
are not statistically significant alone can be significant when combined. For example,
although none of the bantam sites are significant individually, their combined scores are
highly significant and supported by experimental validation. 3> UTRs with multiple predicted
target sites are likely to be valid targets for regulation by the miRNA, particularly if their best
single sites also rank high in the lists of predicted targets. Despite the advantages conferred by
multiple sites, single miRNA target sites can mediate regulation in vivo. The C. elegans lin-4
miRNA appears to regulate its target /in-28 through a single site (Moss et al., 1997). We have
presented evidence that miR-2 family miRNAs can regulate expression of transgenes
containing the 3° UTRs of reaper and grim, which have one predicted target site, as well as
the sickle 3° UTR, which has two predicted sites. Similarly, miR-7 can regulate expression of
transgenes containing the HLHm3, m4 and hairy 3° UTRs, which have one predicted target
site. Further work will be needed to gain insight into what makes some single sites functional
and others not. One possibility is that a single site for one miRNA might function in
conjunction with independent target sites for other miRNAs in the same UTR. Indeed, a
survey of our lists of target prediction