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Zusammenfassung

Die Anzahl bekannter Proteinstrukturen wächst exponentiell und sogenannte „Structural

Genomics“ Projekte haben es sich zum Ziel gesetzt, die Strukturen aller Proteine aufzuklären,

um dadurch deren Funktionen zu bestimmen. Ich habe in meiner Dissertation eine Methode

zum Vergleich lokaler struktureller Muster, wie zum Beispiel katalytischer Zentren von

Enzymen, entwickelt. Die Methode berechnet die statistische Signifikanz von

Suchergebnissen und erlaubt dadurch die Unterscheidung von bedeutsamen und zufällig

auftretenden Ähnlichkeiten. Sie stellt eine wichtige Ergänzung zu Methoden dar, die Proteine

anhand deren Gesamtstruktur vergleichen („Structural Alignment“), da signifikante

Suchergebnisse sowohl Funktionen bestätigen können, die aufgrund ähnlicher

Gesamtstrukturen vermutet werden, als auch funktionelle Ähnlichkeiten in Proteinen

unterschiedlicher Gesamtstruktur vorhersagen oder erklären können. Im Internet ist eine

einfach zu bedienende Benutzeroberfläche für die Funktionsuntersuchung von

Proteinstrukturen verfügbar (http://pints.embl.de).

Im zweiten Teil meiner Dissertation präsentiere ich eine systematische computerbasierte

Suche nach  Drosophila Genen, die von microRNAs (miRNAs) reguliert werden („Targets“).

miRNAs sind kurze RNA Moleküle, die in Tieren die Translation ihrer Targets blockieren,

indem sie an komplementäre Stellen in deren 3’ untranslatierten Bereichen binden. Methoden

zur Vorhersage von miRNA Targets wurden dringend benötigt, da Targets für nur drei der

insgesamt 700 bekannten miRNAs beschrieben waren. Sechs meiner Target-Vorhersagen

wurden experimentell bestätigt und viele weitere sind mit hoher Wahrscheinlichkeit ebenfalls

zutreffend, so dass die Ergebnisse eine wertvolle Hilfe zur Erforschung von miRNAs

darstellen. Die Studie erweitert die bislang bekannten Funktionen von miRNAs um die

Kontrolle ganzer Signaltransduktions- und Stoffwechselwege sowie ihre Beteiligung an der

Entwicklung des Nervensystems. Weiterhin zeigte sich, dass eine miRNA oft mehrere Targets

kontrolliert, umgekehrt aber auch ein Gen von mehreren miRNAs reguliert werden kann.
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Abstract

The number of protein three-dimensional structures is increasing steeply, and structural

genomics projects aim to solve the structures for all proteins as a means to understanding

function. In the first part of my thesis, I developed a method for the comparison of local

structural patterns (e.g. enzyme active sites) that provides a reliable statistical measure to

discern meaningful matches from noise. The method is complementary to structural alignment

as it is able to confirm functional similarities suggested by an overall similar structure but also

detects functional similarities between different folds. An easy-to-use interface is available on

the Internet for functional annotation of protein structures (http://pints.embl.de).

In the second part of my thesis, I present a computational screen for microRNA (miRNA)

targets in Drosophila. miRNAs are short RNAs that inhibit translation of target messenger

RNAs in animals by binding to complementary sites in their 3’ untranslated regions. Target

predictions were urgently needed as targets were known for only three of the more than 700

miRNAs. Of my predictions, six were validated experimentally and others are likely to be

functional, making the results a useful resource for miRNA research. The screen extended

miRNA function to pathway control, nervous system development and regulation of

metabolism, and revealed that one miRNA typically regulates several targets but also that one

gene is likely to be targeted by several miRNAs.
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1 Introduction

During the last decade, the number of known biological sequences has increased dramatically

and complete genome sequences of many prokaryotes and some eukaryotes including human

are now available. The key problem of today’s biology is to make sense of these sequences

and to understand their function and functional interplay. Traditionally, genes and their

functions were identified in laborious and time-consuming experiments prior to the

knowledge of the genes’ sequence. Bioinformatics tries to infer function directly by means of

comparisons, as high sequence or structure similarity between two proteins is often indicative

of a common function. However, some similarities required for detecting specific functions

can also be quite subtle and may comprise only a few residues.

For my thesis, I worked on two types of subtle similarities. Both are difficult to detect but can

be sufficient to infer function. In the first part of the thesis, I describe a new method for

functional annotation of protein structures by the comparison of active sites. In the second, I

present a screen for short sequence motifs indicative of microRNA target genes in

Drosophila. I then, summarize four other projects to which I contributed. In the introductory

section that follows, I review methods typically used to compare protein sequences and

structures and discuss the problem of statistical significance. I then introduce microRNAs as a

novel class of genes and discuss the importance of microRNA target prediction.

1.1 Protein Structure, Function and Evolution

Proteins are central to all biological processes, including metabolism, immune response,

signal transduction and gene expression, and defective proteins have been implicated in many

human diseases. It is thus crucial to know the functions of the growing number of proteins

identified from genome sequencing. Many proteins (especially large eukaryotic proteins) are

modular: they consist of several domains that are able to fold independently into stable

structures. Domains also frequently contribute distinct molecular functions to the overall

protein. Sequence and structural similarity (see next sections) have shown that domains are

often re-used by nature: a domain may occur in different contexts and combinations and

prediction of function must thus take the overall domain structure into account (e.g. Apic et

al., 2001; Chervitz et al., 1998; Copley et al., 2002a; Copley et al., 2002b; Gerstein & Levitt,

1997; Koonin et al., 2002). Evolutionary and structural classifications of proteins are often
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domain-centric (e.g. Pfam and SCOP; see below) and here, I will use the terms protein and

domain interchangeably.

Proteins evolve via point mutations or insertion/deletion events in their corresponding genes,

or less frequently through duplications of partial or whole genes. This process of

accumulating changes that ultimately results in new functions or species is called divergent

evolution. All proteins that diverged from a common ancestor (i.e. have a shared evolutionary

history) are homologous irrespective of current similarity or function. However, our ability to

reliably assign homology to two proteins is dependent on the remaining similarity that is

preserved from the ancestor. Over short evolutionary distances, this is possible through

sequence comparison (see Chapter 1.2). Proteins then typically have the same structure and a

similarity in function and are thus often clustered into (homologous) families. However, over

long distances eventually too many mutations accumulate and these methods fail as the

similarity between homologous proteins becomes indistinguishable from the similarity

between two random sequences.

Protein three-dimensional (3D) structures can be similar in the absence of detectable sequence

similarity and structure is thus often said to be more conserved than sequence. Proteins

structures are typically compared or classified according to their folds, the spatial

arrangements of secondary structure elements and their connectivity (e.g. Blundell &

Johnson, 1993; Murzin et al., 1995b). Structural alignment methods (see Chapter 1.4.1) are

often able to detect remote homologies not evident from the sequence. However, not all

proteins that adopt a similar fold are homologous. For instance, despite the large number of

protein sequences sampled during evolution, it has been estimated that all naturally occurring

proteins belong to only a few thousand folds (Blundell & Johnson, 1993; Chothia, 1992;

Koonin et al., 2002; Orengo et al., 1994a) suggesting that independent convergence is

prevalent. A more theoretical approach enumerated all possible sequences for an average

sized domain (150 residues) and predicted that about 1026 different sequences with less than

20% sequence identity might adopt one common fold (Branden & Tooze, 1999). Proteins with

the same fold that are not thought to share a common ancestor but rather believed to have

evolved independently and converged to a stable structure are often referred to as analogs

(Fitch, 1970). Analogy is a more general term in biology, used to describe convergent

evolution: classical examples of analogy are fly and bird wings that arose independently to

serve the same function. Interestingly, the population of different folds varies greatly with
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only a few folds accounting for more than half of all protein structures. One of these so-called

superfolds (Orengo et al., 1994b) is the ( )8-(TIM)-barrel adopted by many metabolic

enzymes and first named after triosephosphate isomerase (TIM, see for example Farber &

Petsko, 1990). Remote homology has been discovered between many of these enzyme

families but for others independent evolution seems more likely (Copley & Bork, 2000;

Nagano et al., 2002).

Protein function is largely determined by structure and some highly specialized structures

have consequently been developed. Some proteins such as collagen or keratin form elongated

fibres to withstand mechanical stress; others are globular and suitable for transport (e.g.

albumin or haemoglobin). The immunoglobulin (Ig) fold is common to many proteins in the

immune system and is well suited as a general template for recognition and binding of a

variety of molecules (e.g. Bork et al., 1994). Specialized structures are also apparent on the

level of domains or motifs: domains that mediate protein-protein interactions are important

components of many signal transduction proteins (e.g. SH2 and SH3; see Pawson & Gish,

1992) and structural motifs such as helix-loop-helix (HLH) motifs or zinc-fingers are often

common to otherwise different proteins to mediate protein-DNA interactions (e.g. Nelson,

1995).

In many cases, only a small part of the protein – the active site – is directly involved in a

specific function and the rest serves other functions (e.g. regulation, interactions, etc.) or acts

only as a scaffold. For example, the active site of the serine proteases is a characteristic

arrangement of a serine, histidine and an aspartate residue (catalytic triad; e.g. Dodson &

Wlodawer, 1998). Other proteins often rely on cofactors such as metal ions or small

molecules (also called coenzymes) to carry out their function. Some cofactors are only

transiently associated with the enzyme and function as cosubstrates (e.g. ATP, NAD) whereas

prosthetic groups such as heme or FAD are permanently bound to the enzyme. Catalytic

residues or cofactor binding sites can be common to unrelated proteins and comparisons of

active sites can thus give clues about function independent of overall sequence or structural

similarity (see Chapter 1.4.2.2 and Denessiouk et al., 1998; Kobayashi & Go, 1997a/b; Nobeli

et al., 2001).
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Computational methods to assign functions to proteins compare sequences (Chapter 1.2),

overall structures (folds, 1.4.1) or structural details such as active site residues (1.4.2.2, see

Figure 1.1 for an overview). A sufficiently non-random similarity that covers the whole length

of a protein can be used to establish homology and often to infer function. In contrast,

functional similarities can be common to unrelated proteins and can thus reside in completely

different sequence or structural contexts. The residues involved are typically close in

sequence or structure and comprise only a very small fraction of the overall protein. Examples

include independently evolved enzyme active sites or short linear motifs that are recognized

by cellular receptors. If this type of similarity is reliably detected, it can be used directly for

functional annotation.

1.2 Protein Sequence Comparison

1.2.1 Pairwise Sequence Alignments and Sequence Searches

Protein sequence searches are generally performed as pairwise comparisons of a query

sequence to each sequence in a database. For this, each pair of sequences is aligned so that a

maximal number of identical or similar residues match, while mismatches or gaps are

penalized. All algorithms to perform this rely on schemes to score amino acid

Figure 1.1: Computational methods for assigning functions to proteins: sequence comparison (left), fold
comparison or structural alignment (middle), and active site comparison (right). Examples shown are
Rossmann-type NAD(P)-binding domains (middle) and the catalytic triad in Clp and trypsin (right).
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substitutions/changes between the sequences (e.g. Durbin et al., 1998). The simplest scheme

considers only identical residues and gives a percent identity value for a pair of sequences.

Others try to weight the differences by considering the physico-chemical properties of the

amino-acids (for a review see Vogt et al., 1995). However, empirical substitution matrices

that are derived from observed substitution frequencies in multiple sequence alignments of

homologous sequences are now used almost exclusively (PAM (Dayhoff et al., 1978) or

BLOSUM (Henikoff & Henikoff, 1992)).

Exact alignment algorithms based on dynamic programming (Needleman-Wunsch

(Needleman & Wunsch, 1970) or Smith-Waterman algorithm (Smith & Waterman, 1981)) are

guaranteed to find the optimal alignment according to a particular scoring scheme but are

often too slow for comparisons involving large databases. Therefore, heuristic algorithms

have been developed that allow much faster searches but sacrifice some sensitivity, i.e. they

may miss distantly related sequences or lead to errors in ranking of remote matches.

Fasta (Pearson & Lipman, 1988) and BLAST (Altschul et al., 1990) are the most widely used

programs for sequence similarity searches. Both search first for identical short stretches in

both sequences to align (also called words or k-tuples) and then extend and join these words

into an alignment. Whereas Fasta searches for all possible words of a given length, BLAST is

based on the observation that alignments for true matches likely contain short stretches of

very high similarity and thus considers only the most significant of these. The speed of the

programs increases and sensitivity decreases from the Smith-Waterman algorithm to Fasta

and BLAST (Pearson, 1995). Both programs allow searches with protein or nucleic acid

queries against databases containing either sequence type and associate matches with

measures for statistical significance that allow the user to compare results from different

searches and distinguish true from random matches (see Chapter 1.5).

1.2.2 Multiple Sequence Alignments

When a database search reveals several matches, a logical next step is to create a multiple

sequence alignment (MSA). MSAs are powerful tools when looking for residues that are

especially important for structural or functional reasons. Whereas they may not be revealed in

a pairwise alignment (e.g. when the two sequences are too divergent or too similar), important

residues usually stand out in an MSA containing several related sequences.
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Three widely used programs for multiple sequence alignments are PileUp (Feng & Doolittle,

1987), ClustalW (Thompson et al., 1994), and T-Coffee (Notredame et al., 2000). These

programs use a progressive alignment algorithm that first calculates all pairwise sequence

alignments and similarities and builds a guidance tree (dendrogram). It then starts joining the

two most similar sequences and extends the alignment by adding single or multiple sequences

with decreasing similarity according to the dendrogram until all sequences are aligned.

1.2.3 Sequence Profiles and Hidden Markov Models

In a multiple sequence alignment of homologous proteins, some positions are typically more

conserved or show higher preferences for some type of amino acid (e.g. hydrophobic) than

others. This is due to structural requirements (e.g. disulphide bonds, hydrophobic core) or

functional features (e.g. catalytic residues) specific to that family. Sequence profiles (also

called weight matrices or position specific score matrices (PSSM) (Henikoff & Henikoff,

1994)) capture these features by specifying for each position the frequency that each amino

acid appears (Gribskov et al., 1987). A profile not only captures the different amino acid

preferences at different positions but also highlights positions of particular importance or

weights down others that are not conserved. Profiles are thus more sensitive than the

traditional methods used to search databases that assign equal weight to each position along

the sequence (e.g. Brenner et al., 1998; Park et al., 1998).

Position-Specific Iterated BLAST (PSI-BLAST, Altschul et al., 1997) makes use of sequence

profiles to allow more sensitive sequence searches. It first compares a query sequence to a

database and builds a profile from the matches. It then iteratively searches the database with

the profile and adds all new matches to the profile until no new sequence is detected. By

successively incorporating more sequences, the method efficiently detects remote homologs,

hence the general usage of PSI-BLAST in genome annotation and structure prediction.

Although sequence profiles capture some conservation features, they are inadequate to

represent all the information in an MSA of a protein family. One must still rely on (arbitrary)

gap penalties as in pairwise sequence alignment, or combine multiple ungapped blocks

described below for BLOCKS. Hidden Markov models (HMMs) provide a full probabilistic

model for all sequences in a sequence family (e.g. Baldi et al., 1994; Eddy, 1998; Krogh et
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al., 1994). They consist of a repetitive structure of different states, typically match, insertion

and deletion.  For each position in the alignment, the probabilities for the transition between

the states (e.g. match insertion or match match) and for the value of the matches (i.e. the

amino acid preferences) are different. Given a collection of sequences that need not be

aligned, all probabilities are adjusted so that sequences similar to those in the training set

score best. This also means that a random walk through the states of the model considering

the different probabilities most likely leads to a sequence from the training set (this is why it

is said that HMMs emit sequences and match states are sometimes called emission states).

HMMs thus provide a complete statistical framework for sequence searches and alignments

including a consistent treatment of gaps (insertions) and deletions. If enough sequences are

known to train an HMM for a given family, it allows the most sensitive sequence searches

possible and provides reliable significance scores to all matches. The most widely used HMM

software packages are HMMer (http://hmmer.wustl.edu, Eddy, 1998), and SAM (Karplus et

al., 1998).

Several pattern databases store conserved features from multiple sequence alignments and

derived sequence profiles. The evolutionary information of individual protein families can be

used to infer family membership for new sequences. The most widely used include PROSITE

(Hulo et al., 2004) that uses patterns (regular expressions) and sequence profiles characteristic

for a protein family or domain, the BLOCKS database (Henikoff & Henikoff, 1991) that

stores ungapped multiple alignments (blocks) that correspond to the most conserved regions

of documented protein families, and PRINTS-S (Attwood et al., 2003) that uses the most

conserved regions of multiple sequence alignments to build signatures (fingerprints)

diagnostic for family membership. The databases and analysis tools Pfam (Bateman et al.,

2002) and SMART (Letunic et al., 2004; Schultz et al., 1998) make use of the great value of

MSAs and their representation as HMMs. Both are essentially collections of carefully

constructed MSAs for different protein domain families. Sequences can be searched against

HMMs built for each family to detect domain recurrences, help classifying the protein, or aid

in functional annotation. The metasite InterPro combines many resources of this type and

provides a consensus view that overcomes the specific weaknesses of the individual databases

(Apweiler et al., 2001).
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1.2.4 Limits of Sequence Comparison

1.2.4.1 Thresholds for Inference of Homology

In 1986, Cyrus Chothia and Arthur Lesk reported the first systematic comparison of structures

from different protein families and showed that the extent of structural changes is directly

related to the extent of sequence changes. Specifically, the overall structural divergence

measured by the root mean square deviation (RMSD) of the superimposed backbone C

atoms increased exponentially with decreasing residue identity (Chothia & Lesk, 1986), a

trend that was later confirmed on a much larger scale and for different measures of sequence

similarity (Russell & Barton, 1994; Russell et al., 1997; Wilson et al., 2000).

However, it became clear that shorter alignments require a higher degree of similarity for

structural significance. A systematic comparison of protein sequence and structure determined

the sequence identity required to infer structural similarity dependent on the length of the

alignment, allowing the authors to quantify the notion that “two protein sequences are

sufficiently similar to be considered homologous” (homology cutoff; Sander & Schneider,

1991). This cut off is at 25% sequence identity for long alignments whereas for alignments

shorter than 70-80 residues, the structural significance of a given sequence identity drops

sharply and at 10 or fewer residues, even 100% sequence identity is not sufficient to infer

homology and/or structural information. Indeed, identical pentapeptides have been found to

adopt completely different structures (Kabsch & Sander, 1984). Sequences with similarities

below this threshold are in the so-called twilight zone: they are not necessarily unrelated but

their homology remains uncertain. Modern methods for sequence comparison take the length

of the sequences into account and provide reliability scores for the likelihood that matches are

meaningful (see Chapter 1.5).

1.2.4.2 Thresholds for Reliable Inference of Function

Divergent evolution implies that the descendents of a given ancestral protein (i.e. homologs

by definition) have adapted to perform different functions. This is clear for remote homologs

where 10% were found to have completely different functions (Hegyi & Gerstein, 1999;

Russell et al., 1998). However, depending on the number of changes necessary to achieve

this, proteins can still exhibit remarkable sequence similarities despite functional differences.

Functional similarities cannot be measured with a simple metric but instead rely on
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classifications schemes. The Nomenclature Committee of the International Union of

Biochemistry and Molecular Biology (NC-IUBMB) assigns a four-digit EC (Enzyme

Commission) number to all enzymes to classify them according to the nature of chemical

reactions they catalyze. The first digit denotes the class of reaction (i.e. oxidoreductases,

transferases, hydrolases, lyases, isomerases, ligases) and the remaining levels specify the

reaction more precisely (i.e. substrates, etc. – but the exact meaning of each level depends on

the primary number, Webb et al., 1992). The EC classification system is used by all major

databases specializing in protein sequences (e.g. SwissProt; Boeckmann et al., 2003),

enzymes (e.g. BRENDA; Schomburg et al., 2004, IntEnz; Fleischmann et al., 2004), or

complete metabolic pathways (e.g. KEGG; Kanehisa et al., 2004).

In the last few years, several groups used this system to examine the relationship between

sequence similarity and similarity in function and to establish thresholds for reliable inference

of function (Rost, 2002; Tian & Skolnick, 2003; Todd et al., 2001; Wilson et al., 2000). The

thresholds reported in these publications vary greatly: Todd et al. (2001) and Wilson et al.

(2000) found that 40% sequence identity was sufficient to transfer precise function reliably or

30% sequence identity to transfer the first 3 digits of the EC number with 90% accuracy,

whereas Rost reported that less than 30% of the sequence pairs above 50% identity have

entirely identical EC numbers and that even BLAST E-values below 10-50 did not allow

transfer of enzyme function without errors (Rost, 2002). Indeed, even the most cautious

thresholds do not account for outliers, such as the extreme example of melamine deaminase

and atrazine chlorohydrolase, which have different overall function despite 98% sequence

identity (Seffernick et al., 2001). More general examples include the so-called non-catalytic

enzymes that are similar to active enzymes but have lost their catalytic function (e.g.

crystallins in vertebrate lenses that are homologous to glutathione S-transferases and other

enzymes (Tomarev & Zinovieva, 1988; Wistow & Piatigorsky, 1987), carboxypeptidase II

that has homologous catalytic and non-catalytic domains (Aloy et al., 2001a), the similarity

between the signalling factor sonic hedgehog and the transthyretin domain of

carboxypeptidase (Gomis-Ruth et al., 1999), significant similarity between -lactalbumin and

lysozyme, or more recently Mycobacterium tuberculosis MPT51 as a founding member of a

new family of non-catalytic /  hydrolases (Wilson et al., 2004; for a review see Murzin,

1993a; Murzin, 1998; Todd et al., 2002).
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1.2.5 Sequential Motifs

Some important functional parts of proteins such as post-translational modification sites

(Yaffe et al., 2001), targeting signals for specific cellular compartments (Emanuelsson et al.,

2000), and protein interaction or cleavage sites (Nielsen et al., 1997) consist of only a few

residues. They often occur in exposed loops or unstructured regions outside globular domains

and can be common to unrelated proteins. Whilst consensus sequences (motifs) have been

experimentally determined for many such sites (e.g. phosphorylation sites), others show only

preferences for certain residue types such as the positively charged residues found in nuclear

targeting signals (Cokol et al., 2000).

Predictions based on sequence searches with motifs are usually not specific and give a high

number of false positive matches (i.e. they tend to overpredict) because short sequences often

match by chance (the same problem exists for miRNA target prediction, see below and

Chapter 3.5). Protein kinase C for example recognizes the tripeptide SVK, but searches for

that motif match about every tenth protein and the vast majority of the matches are not

functional. The largest resource for linear motifs is the ELM (eukaryotic linear motif) server

(Puntervoll et al., 2003), followed by PROSITE (Hulo et al., 2004) and Scansite (Yaffe et al.,

2001). ELM tries to reduce overprediction using different filters such as a cellular

compartment filter, a globular domain filter or a taxonomy filter that remove sequence

matches unlikely to be functional. Scansite is specific for motifs involved in signalling

pathways (e.g. kinase recognition motifs, protein interaction motifs) and scores matches with

a sequence profile around the putative sites to enhance the specificity.

1.3 Structure Prediction

The structure of a protein is ultimately determined by its sequence, and scientists have long

tried to predict protein structure from sequence. Resulting models can provide a more detailed

picture of protein function but can also reveal similarities not apparent from the sequence. I

will review three types of methods that are applicable depending on the similarity of the

protein of interest to proteins of known structure.

1.3.1 Homology Modelling

Homology modelling (or comparative modelling) is based on the observation that

homologous proteins have a common fold. It uses experimentally defined protein structures as
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templates to predict the conformation of other proteins with similar sequence (targets). The

first modelling studies were carried out in the late 1960s and early 1970s for -lactalbumin

(Browne et al., 1969) and the -lytic protease (McLachlan & Shotton, 1971).

Today, obtaining 3D structures by homology modelling can be achieved with an accuracy

approaching that of a low-resolution X-ray structure or a medium resolution NMR structure

for protein sequences that have at least 35-40% sequence identity to a known structure (Sali,

1998; Sanchez et al., 2000). This vastly increases the number of proteins for which reasonable

structural information can be inferred and facilitates the design of experiments and functional

annotation (Vitkup et al., 2001).

All current methods are based on four steps. The first is to identify the templates, i.e. proteins

with known structure that exhibit significant sequence similarity to the target sequence. Then

target and template sequences are aligned and the most suitable template is chosen. The third

step is to build the structural model for the target based on the alignment to the template and

the template structure. Finally, the model is evaluated by several criteria and the alignment

and model building is improved until a satisfactory model is obtained (for a review, see Marti-

Renom et al., 2000). At present, the main problems in homology modelling are template

selection and alignment, modelling insertions and deletions (i.e. regions without template

structure), and predicting the side-chain packing (Tramontano & Morea, 2003).

1.3.2 Threading or Fold Recognition

There are many examples where proteins share a similar 3D structure despite having no

apparent sequence similarity. Threading programs make use of this observation by testing

how well a sequence fits a particular fold. After “threading” the sequence through a collection

of 3D template folds, the programs evaluate the fit by energetic or statistical potentials (e.g.

Sippl, 1995). The original methods created the sequence-to-structure alignment purely by

optimizing these potentials using time-consuming algorithms (Godzik et al., 1992; Jones et

al., 1992). Newer approaches like GenTHREADER (Jones, 1999a) or 3D-PSSM (Kelley et

al., 2000) align the target sequences to profiles derived from sequence or structure

alignments. The statistical potentials are only used to score the different fits, often in

combination with other measures such as solvent exposure or secondary structure. In the past

three years, several consensus prediction methods or meta-predictors were developed to
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combine predictions from a variety of available methods and are often more accurate than any

individual server (Bujnicki et al., 2001). Pcons (Lundstrom et al., 2001) ranks predictions

generated by a set of servers with a scoring function that takes the confidence of the servers’

predictions into account. 3D-SHOTGUN (Fischer, 2003) reassembles high-scoring fragments

taken from different predictions into a new model that can be closer to the native structure

than any of the original models. Another approach (3D-Jury) assumes that the most abundant

model (i.e. a structure that is predicted by many methods) is closer to the native structure than

any single model and thus re-ranks the models according to their abundance (Ginalski et al.,

2003).

Threading is able to identify similarities that are not found by conventional sequence

comparison. Although the more sensitive methods like PSI-BLAST or HMMer are often able

to identify remote similarities and bridge the gap between comparative modelling and

threading, threading methods (e.g. Kelley et al. 2000) can often successfully detect structural

similarity for proteins where PSI-BLAST and HMMer fail.

1.3.3 Ab initio Methods

When homology modelling and threading methods fail, hints about protein structure can come

from ab initio or template-free methods. One class of these methods predicts the secondary

structure, i.e. whether local segments adopt an -helix, -sheet or a coiled structure. Knowing

something about the secondary structure of a protein is often seen as a necessary step towards

determining the full structure. It has indeed been used for fold prediction (e.g. Koretke et al.,

1999; Russell et al., 1996; Sheridan et al., 1985) and fragment-based methods described

below). The first generation of methods such as those by Chou & Fasman (1974) or Garnier et

al. (1978) was developed during the 1970s. They averaged the empirical propensities of

residues to adopt one of the three secondary structure states over segments with a typical

length of 11-21 residues but seldom achieved accuracies better than 60%. This was greatly

improved by incorporating evolutionary information derived from MSAs with artificial neural

networks into methods like PhD (Rost & Sander, 1993) or PSI-PRED (Jones, 1999b), which

could reach accuracies above 70%. New consensus methods (meta-predictors) such as Jpred

(Cuff et al., 1998) combine several methods and are currently the most accurate. However, the

improvements in performance tend to plateau at around 80% accuracy (Aloy et al., 2003b),
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which is expected given the conservation of secondary structure in homologous proteins

(Kabsch & Sander, 1983b; Rost et al., 1994; Russell & Barton, 1993).

During the last few years, methods have been developed that show remarkable success in

predicting overall structures for novel folds (Aloy et al., 2003b; Lesk et al., 2001). They are

based on the assumption that all possible structures that can be adopted by small fragments

(e.g. 3 and 9 residues) are sufficiently sampled in known folds (Bystroff & Baker, 1998;

Jones, 1997). For structure prediction, the sequence of interest is first compared to sequence

profiles created from structurally similar fragments (fragment library) and high-scoring

fragments are then assembled considering secondary structure prediction, hydrophobic burial

and steric clashes. Recently, one of these methods (Rosetta, Bonneau et al., 2002) was used to

predict structures for major protein families with no structural information. Interestingly,

some predictions showed structural similarity to known folds with similar functions that was

not found by either sequence comparisons or fold recognition. This establishes a priori

structure predictions as a new means for the annotation of function.

1.3.4 CASP

Since 1994, the performance of protein structure prediction methods has been assessed every

two years in CASP (Critical Assessment of Structure Prediction). In this blind test, target

sequences are released for structure prediction prior to the availability of the experimentally

solved protein structure (Moult et al., 1995). This forces predictors to exercise caution when

making claims of success and CASP has thus played a major role in charting the progress of

the field. In autumn 2002, our group assessed the predictions in the CASP5 new fold

(formerly ab initio) category and presented the results in the subsequent meeting at Asilomar

in California (USA). I will summarize our assessment in Chapter 3.6.3.

1.4 Assigning Function from Protein Structure

The 3D structure of a protein provides a much more detailed view of its properties and

function than the sequence alone. Residues can for example form spatial clusters that are not

seen in the sequence but might have certain characteristics indicative of function such as

positively charged surface crevices for binding DNA (e.g. Boggon et al., 1999). Furthermore,

catalytic mechanisms and active site residues have been determined by careful examination

and comparison of structures for many enzymes. Protein structures are also much more
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conserved than sequences so that remote homology can often only be detected by structure

comparison.

Recent improvements in structural biology have greatly increased the number of protein

structures in the public Protein Data Bank (PDB, Berman et al., 2000). Today, the PDB holds

more than 24,000 structures and is growing exponentially. In addition, several structural

genomics projects aim to systematically solve the structures for all proteins as a means to

understanding function (Burley, 2000; Burley & Bonanno, 2002; Hurley et al., 2002; Kim et

al., 2003; Vitkup et al., 2001; Zhang & Kim, 2003). Because of the increasing availability of

structures and the advantages above, methods to annotate function through structure are now

of growing importance. These methods belong to two classes: structural alignment or fold

comparison (next section), and structural pattern matching (Chapter 1.4.2.2).

1.4.1 Structural Alignment

As mentioned above, remote homologs and analogs can adopt very similar structures

indicative of specific functions even in the absence of detectable sequence similarity. Methods

have thus been developed to compare or align protein structures independent of their

sequence. They use the pairwise distances between C  atoms (e.g. Dali (Holm & Sander,

1993; Holm & Sander, 1995), STAMP (Russell & Barton, 1992), SSAP (Orengo & Taylor,

1996)), the geometry of secondary structure elements (e.g. VAST (Gibrat et al., 1996)) or a

combination of different information (CE (Shindyalov & Bourne, 1998), GRATH (Harrison et

al., 2002)) to find proteins with a similar fold, i.e. common spatial arrangements of secondary

structure elements in the same order along the sequence.

 Such similarities can identify ancient evolutionary relationships that are not always apparent

when only sequences are known, but that are often associated with a similarity in function.

Indeed, the location of active sites, binding surfaces or substrate type is often conserved and

their function can be easily tested by further experiments. Highly populated protein folds

(superfolds) often have a common location for substrate binding sites between remote

homologs or even analogs. The best-known examples are the TIM-barrels, that are known to

bind substrates at the C-terminal end of the barrel-forming -strands (Russell et al., 1998).
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Based on manual inspection and automated structure comparison, several structure

classification systems are available, in particular SCOP (Structural Classification of Proteins),

CATH (Class Architecture Topology Homology) and FSSP (Families of Structurally Similar

Proteins).

SCOP (Murzin et al., 1995a) organizes protein domains into a hierarchy consisting of class,

fold, superfamily, family and species. Proteins are first broadly grouped into classes by their

secondary structure content (i.e. all , all , / , + ) or unique features (i.e. small proteins,

coiled coil proteins). Proteins within one fold share a common core as determined by manual

inspection of the number, arrangement and connectivity of secondary structure elements. This

structural similarity might have evolved convergently and different folds might thus represent

analogous folds, although distant evolutionary links may exist. Proteins that are grouped in

the same superfamily often have no detectable sequence similarity but show some evidence of

a common ancestor, based on high structural similarity, conservation of unusual structural

features or functions, or significant sequence identity after structural superimposition. Close

homologs with high structural similarity and detectable sequence similarity are grouped into

one family.

CATH (Orengo et al., 1997) uses a semi-automated method to classify proteins into a

hierarchy consisting of the levels class, architecture, topology and homology. Whereas class,

topology and homology are comparable to class, fold and family in SCOP, the manually

annotated architecture level is unique to CATH. It encapsulates broad features of the protein

shape such as the orientation of secondary structure elements independent of connectivity or

direction.

FSSP (Holm & Sander, 1996) presents the results of pairwise structural comparisons rather

than a structural classification. Proteins with greater than 25% sequence identity are first

grouped together and representatives of all groups are compared to one another using the

structural alignment program Dali. The user can retrieve all significant matches of these

comparisons and browse a fold tree that is computed from the results. FSSP also assigns a six-

character fold index at different similarity cutoffs that do not correspond to the hierarchy

levels of the other databases.
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A systematic comparison of these protein structure classifications revealed that approximately

two-thirds of the proteins in each database are common to all three databases and that the

classifications agree in the majority of cases. No database was found to be distinctly superior

and it was suggested that all three should be used in combination. The great strength of SCOP

is the careful manual assignment of evolutionary relationships - even in the absence of

sequence similarity - with drawbacks being update frequency and limited coverage. In

contrast, FSSP is updated continuously and covers all structures in the PDB but the data are

left to the users’ own assessment (Hadley & Jones, 1999). We mainly used SCOP during our

work as we its manual curation most reliable and useful for our purposes.

1.4.2 Active Site Identification and Comparison

Sequence similarity does not always imply a common function (see above) and structural

alignment-based search methods do not always provide functional clues. This is clear if a

protein adopts a new fold (i.e. does not resemble any known structure), but problems can also

arise when proteins adopt very common folds like TIM-barrels, ferredoxins or Ig-like

structures that perform many different functions, (e.g. Orengo et al., 1994a). Here, functional

inferences are difficult to make, since structural alignments can show an equal degree of

similarity between functionally similar and dissimilar proteins. Two types of methods thus

concentrate on the functional parts of proteins and aim to detect the active sites by means of

sequence conservation or local structural similarities.

1.4.2.1 Identification of Active Sites using Conservation

Functionally important residues are typically more conserved than the overall protein

sequence because they are under evolutionary pressure to maintain their functional integrity.

Furthermore, one expects a higher degree of conservation of the catalytically active residues

directly involved in the reaction mechanism whereas the substrate binding residues are only

conserved among close homologs but then altered to allow for different substrate specificities.

The Evolutionary Trace (ET) method (Lichtarge et al., 1996) is based on these observations

and “traces” conserved residues within an MSA by following an evolutionary tree. When

residue conservation across different numbers of tree branches is required, universally

conserved catalytic site residues (high selectivity) or intermediately conserved binding sites
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(high sensitivity) can be detected. Projection of the selected residues onto the protein structure

helps to manually select solvent accessible clusters of conserved residues that are potentially

important for function. Many other groups published work on the identification of active sites

using evolutionary conservation similar to the original ET method (Aloy et al., 2001b; Armon

et al., 2001; Landgraf et al., 2001; Lichtarge & Sowa, 2002; Madabushi et al., 2002; Oliveira

et al., 2003; Ota et al., 2003). The main differences are in automation and large-scale

benchmarking (Aloy et al., 2001b), more careful construction of evolutionary trees and

consideration of physicochemical properties of amino acids (Armon et al., 2001) and the

assessment of significance for spatial clusters of conserved residues (Madabushi et al., 2002).

Recently, various characteristics of catalytic residues were carefully examined (Bartlett et al.,

2002) and used to predict catalytic residues (Gutteridge et al., 2003).

1.4.2.2 Comparison of Active Site 3D Patterns

Although the methods described above are sometimes able to detect active site residues by

their evolutionary conservation, they do not provide further functional annotation or allow

comparisons between sites, but merely highlight centres of conservation. One class of

methods makes use of the growing number of known protein structures and tries to obtain

functional clues by directly comparing functional sites, which can be common to proteins

with different folds. Residues within these spatial patterns are not necessarily adjacent in the

protein sequence and can occur in any order. A classic example of this phenomenon is the

trypsin-like catalytic triad, which nature has reinvented more than ten times (Dodson &

Wlodawer, 1998), although several other examples have been reported (e.g. Denessiouk et al.,

1998; Endicott & Nurse, 1995; Russell, 1998). Methods to detect the functional similarities

must thus be independent of the overall sequence or fold similarity and the sequence order of

the residues. This prevents the use of alignments and instead requires a view of protein

structures as collections of unconnected points or atoms in space. Most of the available

methods use search algorithms adapted from computer vision (geometric hashing) or

mathematical graph theory. Geometric hashing requires the transformation of the coordinates

to many internal reference frames and performs searches by directly comparing the coordinate

values. Graph theory algorithms use the distances between atoms or residues that are

independent of the absolute coordinates, i.e. the orientation of the structures. The structures

are represented as graphs: the atoms or residues correspond to nodes and the distances

between them to edges. The search algorithms aim to detect common patterns, i.e. sub-graphs
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or cliques and are often named accordingly, although all essentially perform recursive depth-

first searches (see Chapter 2.3.3). They were first successfully applied to small molecules in

pharmacophoric pattern matching (see Willett (1987) for a review).

Once equivalent patterns are found, a score to assess their similarity (i.e. the quality of the

match) is calculated. Most methods use the RMSD, which accurately scores the (geometrical)

difference between two sets of coordinates and is often used in structure comparison. The

definition and properties of RMSD are critical to assess its statistical significance and are

discussed below (Chapter 3.1).

Artymiuk et al. (1994) developed a method (ASSAM) to search protein structures for the

recurrence of user-defined side-chain patterns using a subgraph isomorphism algorithm.

Residues are represented by one, two or three pseudo-atoms and patterns are characterised by

the distances between these atoms. Matches are required to consist of the same type of

residues with equal inter-atom distances although a distance tolerance for near-exact matches

is allowed. The method successfully detected recurrences of the serine protease catalytic triad,

the two-arginine active site from staphylococcal nuclease, and a zinc-binding site. However,

depending on the distance tolerance, different numbers of matches are reported, that are also

not associated with a similarity score and require visual inspection for ranking or separation

from noise. In addition, inter-atom distances do not reflect the chirality of biological

structures and discrimination of true matches from mirror images is not possible.

Fischer and co-workers used a geometric hashing algorithm (originally developed by

Nussinov & Wolfson, 1991) to compare spatial patterns of C  atoms (Fischer et al., 1994).

Matching C  atoms are optimally superimposed and the RMSD is reported. In addition, an

empirical similarity score is calculated from the number of equivalent C  atoms normalized

to the overall size of the two proteins. The authors detected similarities between trypsin and

subtilisins (i.e. across folds) and extended their work to the comparison of protein surfaces

(Lin et al., 1994; Norel et al., 1994). The method requires intensive pre-calculations and lacks

specificity as information about the residue type or the orientation of the residue within a

pattern is lost when only C  atoms are considered. This is reflected in the large number of C

atoms common to all matches (more than about 100 atoms or 50% of the query).
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Wallace et al. (1996) derived a 3D template for the catalytic sites of serine proteases and

demonstrated its use for finding novel examples. Subsequently, the authors introduced a

geometric hashing algorithm (TESS) for the construction of templates and databases searches

and created a template database PROCAT (Wallace et al., 1997). Matches were evaluated by

the RMSD, and the number of matches at different RMSD cutoffs was compared. A two-

residue active site template from lysozyme, for example, had low specificity as many false

positive matches were reported. The authors found that the number of matches for a given

RMSD generally depended on the number of atoms or residues in the template but did not

provide a measure for the statistical significance (i.e. the meaning, see Chapter 1.5) of the

matches.

Fetrow and Skolnick (1998) also defined structural templates for active sites. Their templates

(fuzzy functional forms or FFFs) contain information about the residue type, C  atom

distances, residue conformations (e.g. cis versus trans-proline) and the sequence context.

They found matches to FFFs from glutaredoxin/thioredoxin and ribonuclease active sites in

experimentally-determined and predicted protein structures. However, the different nature of

information used made the manual template definition difficult and often inapplicable and

prevented a score that would allow ranking of the matches.

Russell (1998) uses a recursive depth-first search to find residues in similar spatial

arrangements as assessed by similar pairwise distances between C , C  and functional atoms

of the residues. Matches are evaluated by a weighted RMSD that renders the contribution of

each amino acid independent of the number of atoms used for fitting. For each pattern size

(i.e. number of residues or atoms), the RMSD distribution of random patterns is calculated to

assess the statistical significance of the matches in the form of a P-value (see Chapter 1.5).

The recurrence of several known side-chain patterns was analyzed and an all-against-all

search with conserved hydrophilic residues found several significant similarities in proteins

from different folds.

SPASM and RIGOR (Kleywegt, 1999) are essentially based on the same algorithm and were

designed to find occurrences of a small pattern in proteins or to scan a protein against a

collection of small patterns, respectively. The programs allow similar amino acids to

substitute for each other and purely geometrical searches considering only C  atoms are
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possible. Matches are evaluated by the RMSD as in (Russell, 1998), however no measure of

statistical significance is given.

During the course of my work, several new methods were developed that search for

recurrences of predefined patterns or templates in protein structures. One method is restricted

to three-residue patterns, which allows the representation of inter-atomic distances as vectors

that can be efficiently searched using multidimensional index-trees (Hamelryck, 2003).

Barker and Thornton (2003) use a tree-based backtracking algorithm similar to other methods

(e.g. Kleywegt, 1999; Russell, 1998) to search for patterns of different sizes. Both methods

evaluate matches by RMSD and provide measures of statistical significance that are estimated

by fitting empirical background distributions (similar to Russell, 1998). Jambon and co-

workers represent protein structures by stereochemical groups independent of amino acids.

Recurrences of at least three of these groups are scored by the RMSD and the differences in

local atom density (Jambon et al., 2003). Another method searches for cavities with similar

arrangements of functional groups to detect ligand binding sites and scores the overall surface

overlap of matching cavities (Schmitt et al., 2002). However, neither method assesses the

significance of the matches.

To detect novel active sites, Wangikar et al. (2003) searched for local patterns shared between

members of one family or superfamily, which merely combines sequence conservation with

the requirement for spatial proximity and shape similarity. All matches that satisfied distance

and RMSD requirements were reported but were not associated with a measure of

significance. This work was extended to find patterns characteristic for groups of proteins and

to classify proteins according to these spatial fingerprints (Tendulkar et al., 2003).

1.5 Statistics for Sequence and Structure Comparison

If two entities are compared, similarity is expressed using a score with a value and an entity.

For everyday life comparisons, we immediately understand the meaning of this score and

judge whether a similarity is significant. However, having only the score is insufficient if the

nature of the compared entities is not known and the same score can have very different

meanings. A price difference of one Euro for example is high when considering a packet of

cigarettes but is negligible for a computer or a car.
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The meaning of scores for protein sequence or structure comparisons is also highly dependent

on the proteins under consideration. Whether a particular sequence identity (or indeed any

measure of sequence similarity) is meaningful greatly depends on sequence length (see above

and Sander & Schneider, 1991). A similar effect is seen when comparing protein structures

using RMSD, which measures the difference between two sets of atoms. Two proteins with an

RMSD of 2 Angstroms (Å) over 150 C  atoms are normally homologous, while the same

value observed between two Asp-His-Ser patterns can easily occur by chance (e.g. Russell,

1998). The number of matches to active site templates are dependent on the number and type

of atoms in the template (see above and Wallace et al., 1997).

Statistical significance directly addresses this problem by assessing whether a particular

similarity is different from a random similarity between unrelated proteins or whether it could

have arisen by chance. This is especially important for searches in large databases that

typically produce many matches and require separation of biologically relevant matches from

noise (i.e. random matches, Vingron, 2001). As scores cannot be compared for different

searches and do not allow a reliable assessment of significance, specific measures for

statistical significance have been developed. Z-scores, P- and E-values are the most

commonly used in bioinformatics.

The Z-score is the number of standard deviations  above the mean x of a distribution:

Z =
x x 

(x)

To assess the significance of search results, Z-scores are used to normalize observed

similarities to the average of a background distribution (i.e. consisting of random matches)

and are thus a measure of non-randomness. An average random similarity would score Z=0,

and better similarities have positive Z-scores. For normal distributions, Z-scores are directly

related to the number of expected random matches. For example, 50% of random matches are

better than Z=0, 5% are better than Z=2, and 0.3% achieve Z=3 or better.

However, most scores in sequence or structure comparison are not distributed normally:

Because they are calculated from optimal rather than random pairwise alignments or

superimpositions, their distribution is enriched in good (i.e. extreme) scores and is thus called
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an extreme value distribution (EVD) (Gumbel, 1958). The EVD can be used to calculate the

expectation value (E-value), i.e. the number of expected random matches with equally good or

better scores. Highly significant matches have E-values close to 0, whereas matches with high

E-values are insignificant.

For an alignment of two sequences with a similarity S, the E-value depends on the lengths m

and n and on two parameters K and  (Karlin & Altschul, 1990):

E = Kmne S

Many groups have worked on adjusting these parameters for searches involving biological

sequences so that E-values can be calculated a priori without the need for fitting empirical

background distributions (Altschul & Gish, 1996; Karlin & Altschul, 1990; Mott et al., 1990;

Pearson, 1998; Waterman & Vingron, 1994). However, it is important to note that they are not

always valid and that E-values for matches with uncommon features (e.g. low complexity

regions consisting of only a few types of amino acids) are typically overestimated.

A P-value is the probability [0 – 1] that at least one equally good or better score occurs by

chance (e.g. Karlin & Altschul, 1990; Mott et al., 1990). Highly significant matches will not

occur by chance and thus have very small P-values (close to 0) whereas P-values close to 1

correspond to insignificant matches. Because the number of random matches with scores

equal or better than a particular score follows a Poisson distribution, P-values can be

calculated from E-values as:

P =1 e E

Many search programs report E-values as they allow an easier comparison of insignificant

similarities: for example, E-values of 5 and 10 correspond to P-values of 0.993 and 0.99995.

However, for E < 0.01, P- and E-values are nearly identical. For database searches, statistical

significance not only depends on the query but also on the size of the database that is

searched: in huge databases, the number of individual comparisons (trials) is sufficiently high

for any pattern to be found by chance. This is equivalent to lotteries: there are lottery

millionaires each week although the success rate for an individual participant is close to

nothing. As the chance of getting random matches increase with that database size (i.e. the
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number of entries in the database), search programs also appropriately adjust the E- and P-

values.

Today, measures of statistical significance are an integral part of all commonly used sequence

or structure alignment methods. For example, BLAST, Fasta and HMMer report E-values,

Vast reports P-values and Dali uses Z-scores for all matches. I used all three measures for

protein active site comparison (Chapters 3.1 – 3.4) and miRNA target prediction (3.5).

The statistical significance of RMSD has been considered previously when comparing

continuous protein backbone segments (or even entire structures), either during structural

alignment (e.g. Levitt & Gerstein, 1998) or assessment of prediction quality (e.g. Cohen &

Sternberg, 1980; Reva et al., 1998). During these studies, significance was estimated by

comparison with various background distributions derived from real or artificial proteins.

Other methods to evaluate overall structural similarity often lack statistical evaluation and

results are therefore difficult to compare or often even interpret (for an overview see Cristobal

et al., 2001). However, when I started my thesis, only one method provided empirically

derived P-values to assess the significance for structural comparison of active sites (Russell,

1998), and the methods developed since also rely on fitting empirical background

distributions (Barker & Thornton, 2003; Hamelryck, 2003). The relationship between pattern

size, amino acid composition and the statistical parameters remained unknown and P- or E-

values could not be calculated a priori. In addition, the statistics reported by Russell (1998)

sometimes overestimated significance.

1.6 Scope: PINTS–Patterns in Non-homologous Tertiary Structures

Although active site comparison has the potential to directly detect functional similarities and

aid in functional annotation of protein structures, structural biologists seldom use the methods

described above. Indeed, whereas new protein structures are routinely compared to others by

structural alignment (often with Dali), results from active site comparison are almost never

mentioned. This may be due to three main reasons: the lack of a measure for statistical

significance that would allow inexperienced users to interpret search results, the non-existence

of a large up-to-date database of functional patterns and the absence of an easy-to-use Internet

service such as Dali, to perform comparisons. Only PROCAT, the method by Fischer et al.

(1994), and SPASM are available on the Internet. PROCAT allows searches against a small
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number of templates, SPASM only detects recurrences of user-defined patterns in protein

structures (Madsen & Kleywegt, 2002), and Fischer’s method lacks specificity as described

above.

For my thesis, I developed a method (PINTS; Patterns in Non-homologous Tertiary

Structures) to compare local structural patterns typical of active sites. I used PINTS to derive

a statistical model for such similarities, that allows the significance to be estimated for any

local similarity with a particular RMSD a priori, without requiring a fit to background data

(Chapter 3.1). I then assessed the potential of active site comparison for functional annotation

of proteins on a large number of structures solved by structural genomics projects (3.2) and

during a detailed case study for an archaeal fructose-bisphosphate aldolase (3.3). Finally, I

built a user-friendly Internet server for PINTS that includes several pattern databases (3.4).

1.7 MicroRNAs: A Novel Class of Genes

A second major part of my thesis was the prediction of microRNA (miRNA) function.

miRNAs are a class of 21-22 nucleotide non-protein-coding RNAs. They are excised from

longer precursor transcripts that fold locally into 70-100 nucleotide-long hairpin-like

structures. They are found in all higher eukaryotes and are thought to play major regulatory

roles in post-transcriptional gene regulation. Although the first miRNA was identified more

than ten years ago, the general abundance and importance of miRNAs has been discovered

only during the last three years. They represent a novel class of genes and add a new level of

regulatory complexity to gene expression.

1.7.1 miRNAs regulate post-transcriptional gene expression

The first miRNAs (lin-4 and let-7) were identified in the nematode Caenorhabditis elegans by

their mutant phenotypes in 1993 and 2000, respectively (Lee et al., 1993; Reinhart et al.,

2000; Wightman et al., 1993). Because of their temporally regulated expression, they were

originally called small temporal RNAs or stRNAs. Genetic interactions suggested that both

miRNAs negatively regulate protein-coding genes (target genes) involved in developmental

timing. Inspection of the target messenger RNA (mRNA) sequences revealed sites

complementary to the miRNAs within the 3’ untranslated region (UTR). Reporter gene assays

showed that these sites were sufficient to infer miRNA-dependent regulation, supporting a
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direct mechanism that acts through a miRNA-mRNA duplex. However, at that time, it was

not clear whether miRNAs were peculiarities of C. elegans development or if they existed

beyond nematodes.

1.7.2 General Importance of miRNAs

The picture changed dramatically when the Ruvkun lab reported that let-7 was found in a

wide range of animals (e.g. C. elegans, Drosophila, and human) and showed that its temporal

regulation and the complementary sites in known targets were conserved (Pasquinelli et al.,

2000). Since then, hundreds of plant and animal miRNAs have been isolated and sequenced in

systematic large-scale studies (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee & Ambros,

2001; Reinhart et al., 2002). Combining this data with computational cross-genome

comparison predicts 100-120 miRNA genes in C. elegans and Drosophila and about 250 in

mouse and human, and miRNAs are thought to comprise about 1% of all genes in each of

these species (Ambros et al., 2003; Grad et al., 2003; Lai et al., 2003; Lim et al., 2003a; Lim

et al., 2003b). Their abundance and the evolutionary sequence conservation of many miRNAs

suggest that they have ancient and important biological functions.

1.7.3 miRNA Biogenesis and Function

Post-transcriptional regulation of gene expression by RNA also occurs in RNA interference

(RNAi) that is known for most eukaryotes. RNAi and translational inhibition by miRNAs are

both mediated by short RNAs of similar length and both pathways are now known to share

core components (see Figure 1.2 for an overview). In RNAi, double stranded RNA (dsRNA)

causes a rapid and sequence-specific depletion of the corresponding mRNA by

endonucleolytic cleavage. According to the current model, the RNAse III endonuclease Dicer

cuts the long dsRNA into pieces of about 22 nucleotides. These siRNA (small interfering

RNA) duplexes have a 2-3 nucleotide 3’ overhang characteristic of RNAse III cleavage

products and can mediate RNAi when introduced into mammalian cells (Elbashir et al.,

2001). The two strands are separated and the siRNAs are incorporated into the RNA-induced

silencing complex (RISC). RISC then specifically recognizes target mRNAs that are

complementary to the siRNA template and cleaves them between residue 10 and 11 from the

5’ end of the siRNA. RISC has been purified from insect and mammalian cells, but most of its

components and their functions are still unknown. One core component, apart from the
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uncharacterized RNAse III

responsible for target cleavage, is

made up of the highly basic

Argonaute proteins that can bind

single and double stranded RNA by

a conserved PAZ-domain and might

be involved in RNA incorporation

and/or target recognition (Lingel et

al., 2003; Song et al., 2003; Yan et

al., 2003).

As siRNAs always target the gene

they are derived from, RNAi

probably evolved as a potent

defense mechanism rather than for

general regulation of gene

expression. Its involvement in viral

defense and silencing of endogenous parasitic elements such as transposons is supported by

several findings: Certain viruses for example express viral suppressors of gene silencing that

specifically target the RNAi machinery and mutations in these genes can be rescued by

inhibiting the RNAi pathway (Kasschau et al., 2003). Some C. elegans strains have increased

mutation rates caused by defects in the RNAi machinery that lead to unusually high

transposon activity (mutator-strains; Ketting et al., 1999; Tabara et al., 1999). Some recent

evidence establishes a link between siRNAs in RNAi and transcriptional silencing or

chromatin maintenance (Hall et al., 2002; Wassenegger et al., 1994).

In contrast to siRNAs, miRNAs are genes themselves and not derived from transcripts of

other genes. miRNAs act in trans on sequences different from their origin and are thought to

regulate or fine-tune gene expression. Nevertheless, the biogenesis that is common to all

miRNAs has some similarities to the RNAi pathway such as the involvement of Dicer and

RISC.

According to the current model, miRNAs are transcribed as long primary transcripts (pre-

miRNAs) that can contain several miRNAs. The pre-miRNAs fold locally into a 60-70

Figure 1.2: Biogenesis of miRNAs (left) and siRNAs (right)
after (Bartel, 2004). See text for details.
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nucleotide stemloop or hairpin structure that contains the miRNA in one arm. In the nucleus,

the RNAse III Drosha liberates this stemloop precursor (pre-miRNA) with a staggered cut

that defines one end of the miRNA (Lee et al., 2003). The pre-miRNAs are then exported

from the nucleus by Ran-GTP and the export receptor Exportin-5 (Lund et al., 2004; Yi et al.,

2003). In the cytosol, Dicer cuts an RNA:RNA duplex from the pre-miRNA that consists of

the miRNA paired to the opposing RNA fragment in the stemloop. These fragments, that are

called miRNA*, occur with much lower frequencies than the miRNA itself, which is

preferentially incorporated into RISC. This asymmetry was recently explained by the relative

stability of the 5’ ends of the two opposing RNAs: typically, the strand with the less stable

(i.e. more loose) 5’ end is preferably incorporated into RISC and thus found as the miRNA

(Khvorova et al., 2003; Schwarz et al., 2003).

Similar to RNAi, the

miRNA in RISC is used as a

template to recognize

complementary sites in the

target mRNA. However,

depending on the degree of

miRNA target complementarity, two different modes of miRNA-directed target inhibition

have been demonstrated (see Figure 1.3): Target RNAs containing sequences with perfect or

near-perfect complements of the miRNA are cleaved by RISC similar to RNAi (Hutvagner &

Zamore, 2002; Martinez et al., 2002). Endogenous plant miRNAs have been shown to

regulate target RNAs by RNAi involving perfect or near-perfect target site complementarity

(Kasschau et al., 2003; Llave et al., 2002; Martinez et al., 2002; Palatnik et al., 2003; Tang et

al., 2003; Xie et al., 2003). In contrast, all animal miRNAs tested until now pair imperfectly

with their targets and systematic analysis has confirmed the absence of targets with perfect or

near-perfect sequence complementarity for all C. elegans miRNAs (Ambros et al., 2003). The

mismatches, bulges and loops are thought to prevent cleavage of the target but instead inhibit

translation, leading to reduced protein levels without affecting the mRNA of the target protein

(Brennecke et al., 2003; Doench et al., 2003; Lee et al., 1993; Reinhart et al., 2000; Zeng et

al., 2002). Interestingly, the loading of target mRNA with ribosomes does not change during

translational inhibition (Olsen & Ambros, 1999) and many miRNAs have recently been found

to be associated with polysomes, suggesting a mechanism where ribosomes are stalled on the

mRNA (Kim et al., 2004).

Figure 1.3: Mechanism of mRNA-cleavage in RNAi and miRNA
mediated translational repression. After (Bartel, 2004).
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The two different outcomes seem to be independent of the miRNA itself as the same small

RNA can cause degradation of its target mRNA or block its translation solely depending on

the degree of miRNA target sequence complementary (Doench et al., 2003; Hutvagner &

Zamore, 2002). It is currently speculated that different types of RISCs may be involved in

RNAi, miRNA mediated target cleavage or translational inhibition. For example there are

several different Argonaute proteins that exhibit a tendency towards siRNA (dAgo1) or

miRNA (dAgo2) substrates, respectively (Caudy et al., 2002). In addition, some of the

unknown core components or only transiently associated proteins are likely to differ between

the RISC complexes in different mechanisms.

1.7.4 Assigning Function to miRNAs

Although more than 700 miRNAs have been deposited in central databases (Griffiths-Jones et

al., 2003) and their abundance and conservation suggest highly important functions, the

assignment of these and the identification of target genes lag far behind. For some miRNAs,

expression profiles suggest an involvement in organ or tissue development. Mouse miR-290

and miR-295 are for example expressed in embryonic stem cells but not differentiated cells,

whereas miR-1 is preferentially expressed in the mammalian heart and miR-122 in the liver

(Lagos-Quintana et al., 2002). For other miRNAs, their genomic organization indicates

interesting regulatory connections and networks. About one quarter of human miRNAs are

located in introns of protein-coding genes leading to co-expression of protein and miRNA,

potentially allowing antagonistic regulation of genes or pathways (e.g. miR-7 is located in an

intron of hnRNP K; Aravin et al., 2003). Others are clustered in the genome and probably co-

transcribed as multi-cistronic transcripts, suggesting broad effects on gene expression.

However, prior to this thesis, specific functions were known only for four animal miRNAs

that are required for correct timing of developmental events (lin-4 and let-7), to regulate

apoptosis and cell proliferation (bantam), or to prevent cell-death and take part in fat

metabolism (miR-14) (Brennecke et al., 2003; Lee et al., 1993; Moss et al., 1997; Reinhart et

al., 2000; Wightman et al., 1993; Xu et al., 2003). Direct targets were experimentally

validated for only three of them: the lin-4 targets lin-14 (Wightman et al., 1993) and lin-28

(Moss et al., 1997), the let-7 targets lin-41 (Reinhart et al., 2000) and lin-57/hbl-1 (Abrahante

et al., 2003; Lin et al., 2003) and the bantam target hid (see below and Brennecke et al.,

2003).



39

1.7.4.1 Genetic Approaches

Traditional genetic loss-of-function screens were critical to determine the functions of lin-4

and let-7 and subsequently their target genes. They remained however restricted to these

examples, probably because the small miRNAs are difficult to target for mutagenesis or

because a clear loss-of-function phenotype is prevented by functional redundancy that is

expected for some groups of miRNAs with similar sequences. Overexpression of miRNAs (or

the corresponding genomic region) in gain-of-function screens does not suffer from these

limitations and was successfully used to identify bantam. However, visual assessment of

mutants might still miss certain phenotypes that are less severe or fall outside the range of

interest. In addition, even when a specific phenotype is observed, the target gene itself often

remains elusive: Although Drosophila miR-14 has a clear anti-apoptotic effect, no direct

target gene has yet been identified (Xu et al., 2003).

1.7.4.2 Computational Approaches

The increasing number of known miRNA sequences and

large databases of genome and transcript sequences

suggests more direct approaches for target discovery,

e.g. experimental tests of candidates resulting from

computational screens (Ambros, 2001). Given that

miRNAs interact with their target through sequence

complementarity, the prediction of putative target genes

from miRNA sequence alone seems feasible and very

promising. Simple sequence searches indeed revealed

perfectly complementary sites in putative target genes

for plant miRNAs (Llave et al., 2002; Rhoades et al.,

2002). However, for the known miRNAs in animals no

target sites with perfect or near-perfect sequence

complementarity could be found (Ambros et al., 2003; Rhoades et al., 2002). The RNA:RNA

duplexes for the known targets are discontinuous and contain mismatches, gaps and G:U base

pairs at different positions. Even allowing for G:U base pairs, the longest contiguous

alignments in these examples range from 8-10 nucleotides. Such limited information content

makes it difficult to identify targets within whole genome or transcriptome databases, since

Figure 1.4: miRNA target complexes
for lin-4/lin-14 (top) and let-7/lin-14
(bottom) as proposed by (Banerjee &
Slack, 2002). miRNAs are the bottom
strands and G:U base paris are
highlighted.
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standard alignment methods produce many false positives with such short variable sequences.

Furthermore, the small number of validated examples makes the development and

benchmarking of a generally applicable computational method problematic at present.

1.7.5 Scope: A Screen for miRNA Targets in Drosophila

For my thesis, I developed a method to screen for miRNA targets in Drosophila that

combines a lenient sequence search with an RNA secondary structure prediction algorithm. It

identifies all of the previously known miRNA targets and successfully predicts new targets,

some of which were validated experimentally. The bantam target hid was identified with a

preliminary version of the screen described below (Chapter 3.6.2, Brennecke et al., 2003).
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2 Materials and Methods

2.1 General Equipment

For all studies, I used personal computers with Intel Pentium processors and the SuSe Linux

operating system. I typically automated all sequence or structural comparisons and data

collection with scripts in the Perl programming language.

2.2 Programs

For sequence comparisons, I used BLAST (Altschul et al., 1990; Altschul et al., 1997) or

HMMer (Eddy, 1998) as indicated. Multiple sequence alignments were created with ClustalW

(Thompson et al., 1994) and usually edited manually with Jalview (Clamp et al., 2004). We

used STAMP (Russell & Barton, 1992) for all structural alignments or searches for similar

folds in local databases. PINTS (described below and in Stark & Russell, 2003; Stark et al.,

2003b) was used for all comparisons involving active sites or other local residue patterns. For

visual inspection protein structures or matching patterns were displayed with RasMol (Sayle

& Milner-White, 1995). Images were created using Molscript (Kraulis, 1991) and Raster3D

(Merritt & Murphy, 1994). For colourful displays of multiple sequence alignments, I used

Alscript (Barton, 1993).

2.3 The PINTS Program

For the structural comparison of biological molecules, I developed the program PINTS

(Patterns of Non-homologous Tertiary Structures). It finds all possible patterns of residues (or

atoms or points defined by other criteria) common to two sets of coordinates. For protein

structure comparison, I used PINTS to compare residue patterns (e.g. active sites) to proteins,

proteins to collections (databases) of such patterns, or two protein structures against each

other. Comparisons can take single atoms such as C s or several atoms per residue into

account. PINTS uses the common PDB format without the need for pre-computation and can

also read residue accessibility to restrict searches to the protein surface. It is implemented in

the C programming language to achieve high search performance. Below, I discuss the basic

data-type used (points), the input format, the search algorithm, the RMSD score, E-value and

the output formats.
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2.3.1 Representing Structure Data: Points

Functionally important patterns such as protein active sites can occur in any sequence order,

which prevents the use of alignment methods and requires treating the structure as

independent (or unconnected) points in space (see Introduction). Typically, the chemical

nature and physicochemical properties of the atoms or residues are important for function. In

protein active sites for example, different types of amino acids are not functionally equivalent

and cannot freely replace each other. PINTS thus represents all macromolecules and patterns

internally with points consisting of 3D coordinates and a type (i.e. an integer value) that

summarizes their properties. All points with the same type are regarded as equivalent and are

allowed to substitute for one another. The core of the program is thus independent of the

concepts of atom or amino-acid residue and can handle any kind of structural data (e.g. grid

points with physicochemical properties, atoms or functional units of drug-like molecules,

etc.).

2.3.2 Data Input

Structural data is read and translated

into points by input modules. The

module currently implemented reads

coordinate files in PDB text format and

atom or residue accessibility (i.e.

surface exposure) from NACCESS (Lee

& Richards, 1971) or DSSP (Kabsch &

Sander, 1983a) files. PINTS can load

and compare all types of residues or

atoms (ATOM or HETATM section of

PDB -files).

Definition files (see Table 2.1) specify

how the coordinates in the coordinate

file should be translated into points and

which residues or atoms should be

considered. The files consist of three

A B C D

A CA 0

C CA 0

D CA 0

E CA 0

F CA 0

G CA 0

H CA 0

I CA 0

K CA 0

L CA 0

M CA 0

N CA 0

P CA 0

Q CA 0

R CA 0

S CA 0

T CA 0

V CA 0

W CA 0

Y CA 0

A CA  0 50

C CA  1  0

D CA  2  0

E CA  3  0

F CA  4 50

G CA  5 50

H CA  6  0

I CA  7 50

K CA  8  0

L CA  9 50

M CA 10 50

N CA 11  0

P CA 12 50

Q CA 13  0

R CA 14  0

S CA 15  0

T CA 16  0

V CA 17 50

W CA 18  0

Y CA 19  0

E (OE1,CD,OE2|F) 0

D (OD1,CG,OD2|F) 0

S (OG,CB)        1

Y (CD1,OH,CD2|F) 2

T (OG1,CB,CG2)   3

R (NH1,NE,NH2|F) 4

K (CD,NZ)        5

C (SG,CB)        6

F (CE1,CG,CE2|F) 7

W (CD1,CE3,CZ2)  8

H (CG,ND1,NE2)   9

N (OD1,ND2,CB)  10

Q (OE1,NE2,CG)  10

G CA            11

* N 0

* C 1

* O 2

Table 2.1: Examples of Definition files. A. All amino
acids have type 0 (purely geometrical matching of C -
atoms). B. All amino acids are distinguished (types 0 –
19), and non-polar residues are required to be at least 50%
solvent accessible. C. Different side-chain atoms are
considered for each amino acid. Alternative matching is
allowed for carboxyl-, guanidino-, and aromatic ring
atoms (Syntax: (OE1,CD,OE2|F) means ‘allow flipping
about CD’. (OE1,CD,OE2;OE2,CD,OE21) is equivalent).
D. Atoms (N, C, O) are considered irrespective of the
residue or ligand they belong to.
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mandatory and two optional columns separated by spaces (blanks). The first column specifies

the residue name (corresponding to columns 18 – 20 of the PDB file). Standard amino acids

can be specified in three- or one-letter code (e.g. ALA or A for alanine, etc.) and a wildcard

‘*’ can be used. The second column defines the individual atom(s) for each residue that

should be considered (PDB file columns 13 – 16). When several atoms per residue are

specified, the average coordinate is used during the search but all atoms can be used for the

RMSD calculation (see below). The PDB format requires a unique labelling of all atoms for

each residue, even in cases where the atoms are equivalent (e.g. in carboxyl- and guanidino-

groups or the ring-carbons in phenylalanine and tyrosine) or cannot be distinguished easily in

the electron density (e.g. amides); PINTS allows alternative matching for these atoms when

specified (see legend to Table 2.1). Column three specifies the type of the points. Types are

integer numbers and all points with identical numbers can be superimposed. Columns four

and five specify the minimal relative or absolute solvent exposure of a residue to be

considered according to DSSP or NACCESS, that can be used to compare solvent-accessible

surface patterns only.

2.3.3 The Search Algorithm

The search must detect all matches,

i.e. patterns common to two

structures. Matches can either be

complete (i.e. one structure matches

completely within the other) or

partial when only a part of one

structure is similar to a part of the

second. To achieve this, essentially

all possible combinations of points

similar to the two sets are generated

recursively. As a measure of

similarity, the distances between the points in set (1) and those between points in set (2) are

compared and required to differ by no more than a given tolerance cutoff.

The algorithm (recursive depth-first search) is based on the fact that all matches of a given

size (i.e. consisting of N points) contain smaller matches with N-1 points and can thus be

Figure 2.1: The PINTS search algorithm. A pattern (left) is
found within a larger structure (right) by extending smaller
patterns (steps 1-4). New points are only added when the
distances to other points are similar (black lines) and not
otherwise (e.g. red line in (1)).
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found as extensions of those (see Figure 2.1). It starts by equivalencing one point from set (1)

with each point in set (2), given that their types match. Then, the match is recursively

extended by checking, for each of the remaining (i.e. unmatched) points in set (1), whether

points in set (2) can be found with similar distances to all previously found points. Comparing

the distances prevents the need for superimpositions at each step but cannot distinguish mirror

images. A chirality-check is thus performed once four points are found to discard matches

with wrong handedness. The sensitivity of the search can be altered by changing the distance

tolerance cutoff (-mt option).

2.3.4 The RMSD Score and Statistical Significance

Once similar patterns are found, their similarity or quality is measured with the RMSD after

optimal superimposition by least-squares fitting (McLachlan, 1979), which also provides the

transformations needed for optimal superimposition. The RMSD can be calculated on the

points (i.e. the average coordinates when several atoms are specified) or on all atoms of a

given residue. The user can choose whether all atoms or all residues should be given equal

weight (-rf or -wf option).

As the RMSD value that implies a meaningful similarity varies between searches, PINTS

provides E-values (see Chapter 3.1 and Stark et al., 2003b) similar to those used in sequence

searches that assess the probability that the obtained matches occurred just by chance without

further functional implications (e.g. Altschul & Gish, 1996; Karlin & Altschul, 1990). It is

this feature that sets PINTS most apart from previous methods (Artymiuk et al., 1994; Fetrow

& Skolnick, 1998; Fischer et al., 1994; Kleywegt, 1999; Russell, 1998; Wallace et al., 1997;

Wallace et al., 1996) or servers (Madsen & Kleywegt, 2002) that perform such searches.

2.3.5 Output formats

Matches are reported in three different output formats (-of option) that are readable (short, 0),

can serve as input of programs from the STAMP package (stamp, 1), or can be easily parsed

as one line per match is printed (line, 3). In addition, PINTS can directly print the

superimposed coordinates in PDB format (pdb, 2) for visual inspection of the matches.
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2.3.6 Other Parameters or Command Line Options

The user can change the behaviour and many parameters of PINTS by command-line options.

An overview of all parameters is given in Table 2.2.

2.4 PINTS Databases

2.4.1 PINTS Databases of Functional Patterns

For functional annotation of protein structures, a database of functionally relevant side-chain

patterns would be ideal (Thornton et al., 2000; Wallace et al., 1997), though no sufficiently

complete database is currently available. We thus decided to automatically collect residue

patterns likely to be of functional importance. Although manual curation is more accurate,

automation allows us to cover all structures and to update our databases constantly. The

Modes Default

-r Residue-based search +

-a Atom-based search -

Input

-d <file> Domain-file (STAMP-package)

-db <file> PINTS-Database

-ex <file> Exclude Database entries

-c <file> Coordinate File (PDB- or NACCESS-format)

-def <file> Definition File (PINTS)

Output

-o <file> Redirect output to file -

-of <string> Output format (0,1,2,3) 0

-gfa <float> Combine matches with x shared atoms -

-gfp <float> Combine matches with x % shared atoms -

-rb <integer> Report only x best matches -

-rbe <integer> Report only x best matches per DB entry -

-vp Report Permutations -

-vs Report Subpatterns -

Search

-ma <integer> Minimum number of points required for match 5 / 10

-mt <float> Maximum distance tolerance allowed during search 3 / 1

-ms <float> Maximum pattern diameter 15

-md <integer> Maximum search depth 20

-mr <float> Maximum pattern RMSD 3 / 1

-me <float> Maximum E-value 10

-mes <float> Maximum standard E-value (E700) -

-mh <integer> Maximum number of matches during search -

-all [<float>] Pattern has to be found entirely or to x % -

Special

-wf Weighted RMSD (equal weight for all residues) -

-rf RMSD calculation on multiple atoms per residue -

-rs [<int>] Minimum relative surface accessibility (x%) -

-as [<int>] Minimum absolute surface accessibility -

-v Verbose -

-ha Load hetero-atoms -

-pf <float> Factorial Parameter for Statistics -

-ef <float> Exponential Parameter for Statistics -

-lr <integer> Long-range filter (sequential separation of x residues

required)

-

-linear Requires same sequential order -

-aaa All-against-all comparison -

-help Prints Help

Table 2.2: Command line options for PINTS and default values (+/- for on/off).
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ligand binding sites database, contains residues that have at least one atom within 3.0 Å of a

HETATM entry (excluding waters), and the SITE annotations database those defined by

structural biologists to form a functional site (SITE entries in PDB files). We update the

databases on a weekly basis with every PDB release. Currently, the ligand binding sites and

SITE annotations database contain 15200 and 7500 patterns respectively (21.03.2004). I

noticed, that many patterns include residues not directly related to or required for function.

The databases can thus be seen as reducing the search space to potentially interesting parts of

proteins and we allow for partial matches where only part of the database entry is found in the

query. Recently, the Thornton group at the European Bioinformatics Institute (EBI) in

Hinxton published a large set of manually annotated catalytic sites (Bartlett et al., 2002;

Porter et al., 2004) and made the data available to be searched with PINTS.

2.4.2 Non-Redundant Databases of Protein Structures

For some proteins, the PDB contains many structures that are nearly identical (e.g. lysozyme,

myoglobin). For searches, it is crucial to avoid such redundancy and consider only

representatives for groups of similar structures. I thus created databases of entire protein

structures for different levels of redundancy by collecting one representative of each SCOP

(Murzin et al., 1995a) fold, superfamily, family or protein but also used a representative set of

protein structures suggested by PDB-select (Hobohm & Sander, 1994b).

2.5 The Development of a Statistical Model

2.5.1 Background database

To avoid any bias of the parameters, background databases (BDs) must be non-redundant, i.e.

consist of database entries that are unrelated and do not share functional or structural

similarities. I thus used one member of each of the 723 folds in SCOP version 1.55 as a BD

for all searches to determine the statistical parameters.

2.5.2 Parameter Determination

To determine the parameters A, B, C, and D in our statistical model, I compared random

patterns of two to eight residues to the BD and fit the number of matches with RMSD RM to

the function ARM
B (least squares). Each data point was calculated as the average of 9
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independent searches with three patterns from each of three structures that were not in the BD

(1a6m, 4rhv, 5p21) For the independence model, I represented residues by their C  atoms and

for the dependence model with one, two or three atoms (e.g. C , C 1 and C 2) as indicated.

2.5.3 Cumulative Distribution of P-values

I randomly split the BD into 10 test databases and searched 6 of the patterns used above

against these databases and calculated the P-value of the best match with a corrected

parameter A1/10=
1/10A. The cumulative distribution of these is plotted and compared to a linear

function with the slope of 1.

2.5.4 Search with the Trypsin Catalytic Triad

I searched the BD and all structures in the PDB with the catalytic residues from trypsin (1mct:

His 57 C , N 1, N 2; Asp 102 O 1 O 2 C ; Ser 195 C  O ) and derived P-values derived by

fitting the cumulative distribution of of matches against the BD.

2.5.5 Comparing Proteins to Pattern Databases

I compared the unliganded structure of Trypanosoma cruzi PEPCK (1ii2) to the ligand

binding sites database and the structure of LuxS (1j98) to the SITE annotations database using

the default settings of PINTS that consider multiple side-chain atoms per residue (Table 2.1,

Column C), disregard hydrophobic residues and require the pattern diameter to be within 12Å.

2.5.6 Over-represented Patterns

I collected one representative structure from each fold in SCOP (classes 1–8, version 1.61)

and compared all 706 structures to each other with PINTS requiring an E-value  10 and

restricted the pattern diameter to 4 (5, 6, 7, or 8) Å depending on whether the pattern

contained 2 (3, 4, 5, or 6) residues. I ignored sequential matches by requiring at least two

residues per pattern to be at least 5 residues apart. I clustered all matches to identical patterns

into groups by recursive single-linkage clustering and kept only those groups with at least 10

patterns. To determine the abundance of each pattern without the constraints required above, I

searched the same database for recurrences of each pattern and calculated the number of

matches for E  10, 1, or 0.1 and the average, median, and maximum number for all groups.
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For the ranking of the patterns, I required the highest similarity in side-chain arrangements (E

 0.1), but also inspected the lists for the other (less stringent) cutoffs.

2.6 Analysis of Structural Genomics Proteins

We considered 254 structures labeled as structural genomics with release dates up to October

2003. The PDB accessions were:

2mjp, 1ufh, 1udk, 1ucr, 1uan, 1qwk, 1qu9, 1q8c, 1q53, 1q2y, 1pug, 1pt8, 1pt7, 1pt5, 1pqy, 1pm3, 1pgv, 1pav,

1p9v, 1p8c, 1p5f, 1p1m, 1p1l, 1oz9, 1oyz, 1oy1, 1ovq, 1otk, 1oru, 1oq1, 1ooj, 1ooe, 1on0, 1o5n, 1o5j, 1o5h,

1o54, 1o51, 1o50, 1o4w, 1o4t, 1o3u, 1o22, 1o1z, 1o1y, 1o13, 1o0u, 1o0i, 1nza, 1nyn, 1ny4, 1ny1, 1nxz, 1nxu,

1nxj, 1nxi, 1nx8, 1nx4, 1nwb, 1nvo, 1ns5, 1nri, 1nr9, 1nr3, 1nqn, 1nqm, 1nqk, 1npy, 1npd, 1nog, 1nnw, 1nn4,

1nkv, 1njk, 1njh, 1nij, 1nig, 1ni9, 1ni7, 1ng6, 1nf2, 1ne8, 1ne2, 1nc7, 1nc5, 1n91, 1n81, 1n6z, 1n1q, 1mzh,

1mzg, 1mw7, 1mtp, 1mog, 1mo0, 1ml8, 1mk4, 1mjh, 1m98, 1m94, 1m68, 1m65, 1m3s, 1m33, 1m25, 1m1s,

1m0s, 1ly7, 1lxn, 1lxj, 1lv3, 1lur, 1lql, 1lpl, 1lkn, 1ljo, 1lj7, 1lel, 1ldq, 1ldo, 1lcz, 1lcw, 1lcv, 1l7y, 1l7b, 1l7a,

1l6r, 1l5x, 1l1s, 1l0b, 1kyt, 1kyh, 1kuu, 1kut, 1ktn, 1ks2, 1kr4, 1kq4, 1kq3, 1kon, 1kkg, 1kk9, 1kjn, 1k8v, 1k8f,

1k7k, 1k7j, 1k77, 1k4n, 1k3r, 1k2e, 1k26, 1jzt, 1jyh, 1jyg, 1jx7, 1jw3, 1jsx, 1jsb, 1jru, 1jrm, 1jrk, 1jri, 1jov,

1jop, 1jog, 1jo0, 1jn1, 1je3, 1jdq, 1jcu, 1jbm, 1jbi, 1jay, 1jax, 1jal, 1j9l, 1j9k, 1j9j, 1j8c, 1j8b, 1j7h, 1j7d, 1j74,

1j6r, 1j6p, 1j6o, 1j5x, 1j5u, 1j5p, 1iyg, 1ixl, 1iw5, 1ivz, 1iv0, 1iuy, 1iur, 1iul, 1iuk, 1iuj, 1in0, 1ilv, 1ilo, 1ij8,

1iio, 1ihn, 1ie0, 1i9h, 1i8f, 1i81, 1i6n, 1i60, 1i36, 1i17, 1hy2, 1hxz, 1hxl, 1hu7, 1hu6, 1hu5, 1htw, 1hru, 1hqq,

1h2h, 1gtd, 1gh9, 1g9x, 1g6y, 1g6w, 1g6p, 1g2r, 1g04, 1fux, 1fl9, 1f89, 1f3o, 1exc, 1ex2, 1ew4, 1eo1, 1eiw,

1ehx, 1dus, 1dm9, 1dm5, 1di7, 1di6, 1dcj, 1dbx, 1dbu, 1d1r, 1ct5, 1b78, 1apa.

I compared all proteins to the sequences in the using BLAST.  Proteins that matched any other

sequence in the database with an E-value  10-10 were not considered further. Although this

degree of sequence similarity is not always associated with a similarity in function (Rost,

2002; Tian & Skolnick, 2003; Todd et al., 2001), our threshold ensures that the analysis

excludes all cases where functional similarities are obvious from sequence comparison and is

thus reliable in assessing the added value of structure comparison. Altering this threshold does

not greatly affect the overall findings. I then used these structures to search for similarities in

the ligand-binding site and SITE annotations databases of side-chain patterns using PINTS.

For comparison, I also compared the structure to PDB representatives in the FSSP database

using the Dali server (Holm & Sander, 1993) with default options.

2.6.1 Structural similarity thresholds

PINTS usually detects binding site similarities for chemically similar ligands with E-values

between 10-4 - 10-2 whereas negative matches generally have E 0.1 (see Chapter 3.1).  We

thus expect reliable functional clues to come from matches with E 10-3.  However, I also
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manually inspected the best matches for each structure. The accuracy of inferring a functional

relationship for a given Dali Z-score is case-specific. For example, TIM-barrels can have

different functions at comparatively high Z-score values (e.g. Z=18; Lorentzen et al., 2003),

while Rossman-type NAD-binding domains are reliably detected with values as low as Z=6.

A general threshold above which function can be reliably assigned based on fold comparison

is not possible (Liisa Holm, personal communication). However, earlier observations showed

that fewer than 10% of functionally unrelated structures have values above 10 (Holm &

Sander, 1997). We thus decided to use this as the threshold for our study. I report and discuss

only the best matches for PINTS or Dali and only consider one representative for groups of

structures sharing 90% sequence identity.

2.7 Analysis of Archaeal FBPA IA

2.7.1 Structural Alignments

I compared the Tt FBPA monomer to representatives of all families with a TIM-barrel fold

(according to SCOP) using STAMP, which also reports the number of structurally equivalent

residues. I then calculated the percent sequence identity for structurally equivalent residues

and the probability (P-value) that the percent identity arose independently (i.e. by chance,

Murzin, 1993b).

2.7.2 Comparison of FBPA Active-Site

I compared the active site of FBPA to all proteins classified as TIM-barrels by SCOP (SCOP

fold c.1.) and the FBPA structure against all TIM-barrel active-site patterns in the PINTS

databases.

2.8 miRNA Target Prediction

2.8.1 Accession numbers

miRNAs:

lin-4 NR_000799; let-7 NR_000938; bantam AJ550546, Rfam MI0000387; miR-2a RF00047, AJ421757; miR-4

AJ421762; miR-7 AJ421767; miR-9 AJ421769; miR-11 AJ421771 ; miR-13a AJ421773; miR-14 AJ421776;

miR-277 RFAM MI0000360.
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Target genes:

lin-14 NM_077516; lin-28 NM_059880; lin-41 NM_060087; lin-57 NM_076575; hid, NM_079412; reaper

NM_079414; grim NM_079413; sickle AF460844; dpld NM_080033; m4 NM_079786; HLHm3 NM_079785;

Tom NM_079349; drice NM_079827; hairy NM_079253; D. simulans hairy AY055843; T. castaneum hairy

AJ457831; Lyra NM_080079; CG5599 NM_132772; CG1673 NM_132656; CG8199 NM_141648; CG1140

NM_167928; scu NM_078672; CG15093 NM_166306; CG17896 NM_130489.

2.8.2 Conserved 3' UTR-database

Drosophila melanogaster 3’ untranslated regions (UTRs) were obtained from the Berkeley

Drosophila Genome Project (BDGP, www.fruitfly.org/annot/release3.html) and those of

>50nt were selected. Duplicate UTRs from different splice variants of the same transcript

were removed. For each of the resulting 10196 non-redundant 3’ UTRs, I mapped the last 50

amino acids of the corresponding ORF to the D. pseudoobscura genome sequence with

TBLASTN (Altschul et al., 1990) (E 10-5; http://hgsc.bcm.tmc.edu/projects/drosophila). I

selected UTR matches that included the last 10 residues and had a sequence identity 80% or

E 10-10 and compared these UTRs to the 3000 nucleotides downstream of the putative D.

pseudoobscura ortholog with BLASTN (word-size 7; E 10000, assuming a database the size

of the whole D. pseudoobscura genome). Non-conserved nucleotides or those outside the

matched regions were replaced by Ns in the D. melanogaster 3’ UTR database to produce the

conserved 3’ UTR database.

The D. pseudoobscura genome has not been fully assembled. This means that some D.

pseudoobscura genes are located close enough to the end of a contig that the UTR sequences

may be missed. 386 D. melanogaster genes mapped to the D. pseudoobscura genome less

than 1 Kb from a contig end; 189 mapped less than 500nt from a contig end. UTR

conservation may be underestimated for these genes. For 3564 genes I did not detect a

suitable ortholog using this protocol. 571 of these are known genes, the others are predicted

genes about which little is known. For the 4662 D. melanogaster genes lacking annotated

UTRs I assumed 3’ UTRs of 2 Kb after the stop codon and built a separate database of

predicted UTRs. The search for Anopheles orthologs was done using TBLASTN for the last

50 amino acids of each D. melanogaster ORF. Due to the more extensive sequence

divergence, a lower cutoff threshold was allowed (E 0.05) if the last exon of the predicted

ORF mapped to the same location (+/- 1 Kb) in the annotated genome as the orthologous gene
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(Zdobnov et al., 2002).  If not, the cutoff was E 10-5 as for D. pseudoobscura. The second

more stringent step of comparing the last 10 amino acids was omitted.

2.8.3 miRNA-Screen

HMMer (Eddy, 1998) profiles were constructed for each of two alignments per miRNA

containing copies of the reverse complement of the first (5’) 8 nucleotides of the miRNA. The

first alignment contained 5 copies of the exact complement, the second had an additional 5

copies with C replaced by T and A replaced by G to allow for G:U mismatches. I searched the

conserved 3’UTR database with both profiles and a lenient domain bit score threshold

(domT 3) and combined the results. Sequence matches were extended to miRNA length+5nt,

the hairpin loop and miRNA sequence were added and the sequence was evaluated using

Mfold (Mathews et al., 1999; Zuker et al., 1999). Mfold uses dynamic programming to

predict RNA secondary structure by free energy minimization. It includes experimentally

determined thermodynamic parameters and knowledge about available RNA structures to

account for sequence dependencies revealed in some RNA motifs (Mathews et al., 1999). For

Anopheles, predicted UTRs were searched for the presence of residues 2-7 of the predicted

target site. The target sequences were extended and evaluated using Mfold. Only the best site

in the Anopheles UTR was reported.

2.8.4 Statistics

For each miRNA, we calculated the mean and standard deviation of a background

distribution, i.e. the Mfold free energy G of 10,000 randomly selected sequences from the

conserved UTR database with lengths of miRNA+5nt. For each prediction I calculated the Z-

score as the number of standard deviations above the mean (see Introduction). To compute E-

values, I fit an exponential function to the cumulative background distributions and

extrapolated it to give a value for any observed energy and database size. E-values are not

restricted to normal distributions and can scale with database size, so different searches can be

compared.
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3 Results and Discussion

The comparison of local spatial patterns like active sites in protein structures is

complementary to sequence or fold comparison and can be used to annotate protein function.

Prior to this thesis however, this type of comparison lacked a model to assess the statistical

significance of matches. Specifically, although it had been recognized that the meaning of a

specific RMSD value depended on the size and amino acid composition of the matches, this

relation had not been investigated and remained unknown (see Introduction). I developed the

program PINTS (Patterns In Non-homologous Tertiary Structures) to search for recurrences

of residue or atom patterns in protein structures (see Materials and Methods). In the following

chapter, I present a statistical model for the significance of local patterns in protein structure

that I developed for my thesis. I used PINTS and the statistics to compare protein structures

solved by structural genomics projects to databases of functionally relevant patterns to assess

the use of active site comparisons on a large sample (Chapter 3.2). I also performed a detailed

comparison of an archaeal fructose-bisphosphate aldolase using PINTS and the structural

alignment program STAMP (3.3). Finally, I describe the development and current use of a

server that allows for PINTS searches via the Internet (3.4). The following publications

resulted from the results presented below.

A. Stark, S. Sunyaev, R.B. Russell; A Model for Statistical Significance of Local Similarities in Structure. J.

Mol. Biol., 326, 1307-1316, 2003.

A. Stark, A. Shkumatov, R.B. Russell; Finding Functional Sites in Structural Genomics Proteins. Structure,

submitted, 2004.

E. Lorentzen, E. Pohl, P. Zwart, A. Stark, R.B. Russell, T. Knura, R. Hensel, B. Sievers; Crystal structure of an

Archaeal Class I Aldolase and the Evolution of ( )8 Barrel Proteins. J. Biol. Chem., 278(47), 47253-47260,

2003.

A. Stark, R.B. Russell; Annotation in three dimensions. PINTS: Patterns in Non-homologous Tertiary

Structures. Nucleic Acids Res., 31(13), 3341-3344, 2003.
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3.1 Statistical Model for Local Structural Patterns

Most methods to compare protein active sites – including PINTS – report RMSD values that

accurately score the quality in terms of geometrical similarity. However, as outlined in the

Introduction, the value that implies a meaningful similarity is highly dependent on the number

and type of atoms being compared. To avoid ambiguities, or the choice of an arbitrary RMSD

cutoff for any particular pattern, PINTS provides P- and E-values as a measure of statistical

significance. For this, I derived a rigorous model for the behaviour of RMSD. Following

previous work on statistical models for sequence comparison (Altschul & Gish, 1996; Karlin

& Altschul, 1990; Mott et al., 1990; Pearson, 1998), I use P-values to derive and present the

model below, that can be easily converted to E-values (see Introduction).

3.1.1 Rationale for a Statistical Model of RMSD

For database searches, statistical significance is generally assessed by an extreme value

distribution (EVD). This allows the calculation of a significance P-value from an expectation

function (EF) that predicts the number of matches with an equally good or better score found

in a database (i.e. cumulative distribution (CD) of scores):

P(x) =1 e EF( x )

P(x) is the probability of finding a score equal or better than x by chance, thus scores with

high P-values are not meaningful.

For any CD there are just three models for the asymptotic behaviour of the EVD. If the CD

decreases quickly with good scores, the EVD is a double exponent widely used in sequence

comparison. However if it has a slowly decreasing tail or a finite terminal (i.e. bound by a

lower value such as zero for RMSD), the EVDs are exponents of power functions that differ

only in the sign of the exponent (Aldous, 1989; Gumbel, 1958; Kendall et al., 1977). The

choice of the correct model is critical for accurate statistics and must precede parameter

estimation by fitting or calculation.

I performed searches of query patterns against a database using PINTS that optimally

superimposed the matches according to the method of McLachlan (1979) and used the
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associated RMSDs for the calculations below. For all searches I used lenient distance

constraints that did not affect the range of the RMSD distribution considered.

Figure 3.1 shows the background distribution

of RMSDs for a typical local structural pattern.

We considered only the increasing region of the

curve, as the form of the distribution depends

only on the tail of the CD for good scores (i.e.

low values) and we believe that the decrease of

the curve for high RMSDs is due to limitations

in protein size. A closer view of this region

(Figure 3.1, inset) shows a slow increase (slope

approaches 0) for small RMSDs as is typical

for power but not exponential functions.

When compared to a database, a query can be considered to have all (N) atoms in ideal

positions, with deviations of other patterns scored by RMSD. RMSD2 is the average squared

distance between equivalent atoms and RMSD itself can be seen as an approximation of the

average distance error (indeed if all deviations are equal, it is exactly this):

RMSD =
1

N
( x2 + y 2 + z2 )

N

 

 
 
 

 

 
 
 

1

2

A perfect match thus has an RMSD=0 and increasing RMSDs correspond to an increasing

dissimilarity. Restricting this to a maximum (RMSD RM) requires atoms to be in a sphere

around the ideal positions with an allowed volume proportional to RM
3. Calculating RMSD

involves finding the best superimposition of equivalenced sets of atoms by translation and

rotation (McLachlan, 1979), which reduces these constraints on the positions for the first three

atoms in a pattern. The first atom can be moved into the ideal position without any volume

restriction. The second can be placed anywhere within a shell defined by two spheres and the

third can lie in a ring-like volume as shown in Figure 3.2A.

Figure 3.1: Example distribution of RMSDs
(number of matches versus RMSD) for a typical
query (3 C  atoms from PDB entry 1a6m). The
inset shows a magnification for RMSD 4Å.
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3.1.2 Model assuming independence of atoms

We first develop an independence model where we consider only one atom per residue and

assume they are independent and randomly distributed in space. We expect the probability of

a residue from the database to match one from the query to increase with the allowed volume

(above), and to be proportional to the database size (D) and residue abundance ( ). Thus for a

query with N residues:

=

=
N

i

ii

B

MM
VDARREF

2

1)(

3

2

63

1 =
=

N

N

for

for

N
BandDAwith N (1)

where Vi is the allowed volume for the ith residue (see Figure 3.2A),  is the product of all

residue abundances and  is a constant.

The simple power function EF=ARM
B is monotonously increasing as expected for a

cumulative distribution and correctly assigns a probability of zero to perfect matches

(RMSD=0). We expect A to be correlated with residue abundance, to increase linearly with

database size and to decrease exponentially with the number of residues in the query pattern.

We expect B to increase linearly with the query size and to be independent of database size or

residue abundance. The linear behaviour for N=2 is expected since for two atoms RMSD

merely describes a deviation from an ideal distance.

I searched a background database with random patterns of between 2 and 8 C  atoms, and

found the function above to fit the observed CDs accurately (Figure 3.2B). Plots of CDs in

logarithmic scale (Figure 3.2C) show logarithmic behaviour typical of power but not

exponential functions, which would be linear. The curves cross because high RMs resemble

random choices of N atoms from the database, which creates an increasing number of

permutations and combinations. The power function ARM
B naturally accounts for this

behaviour as larger exponents always overtake smaller.
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I used searches with random queries of three residues of one type to explore the relationship

between A and B and residue abundance. I fit the EF(RM) function and calculated A and B. As

expected (Eq. 1), the cubic root of A increases linearly with abundance (Figure 3.2C) and B

shows no dependency (Figure 3.2D). I also explored the dependence of A and B on N (Eq. 1)

with random queries of various sizes (N=2-8). Here, I divided calculated values for A by

residue abundance to remove the dependency above. log(A) versus N shows a decreasing

linear behaviour for N 3 as expected (Figure 3.2F). For N=2, the values are below the

extrapolated line due to the volume allowances in A. Linear regression gives a function to

calculate A for any pattern:

A =
a0 a2
a0 a3

N

 
 
 

  

for

for

N = 2

N 3
(2)

with a0=2.678x10
9
, a 2=1.277x10

-7
 and a 3=1.790x10

-3
. The above also confirms our

predictions (Eq. 1) about the behaviour of B: it increases linearly with N for N 3 (Figure

3.2G), with observed slope and intercept (2.93, 5.88) close to expected values (3, 6). For the

special case of N=2, B is 0.97±0.01 (i.e. close to 1).

The power function EF(RM)=ARM
B
 models the behaviour of RMSD for searches with simple

queries against a database. In the independence model, A and B for any query can either be

obtained by fitting the function EF(RM)=ARM
B
 to the CD or estimated with the equation above

given only N and residue abundance.

3.1.3 Accounting for dependency of covalently linked atoms

For protein functional sites the correct relative orientation of residues rather than their simple

presence is crucial for activity. Moreover, representing a residue by only one atom (i.e. simple

presence) is not sufficient to separate true matches from background (e.g. Russell (1998);

Wallace et al. (1997) and below). One can account for this by considering multiple atoms per

residue when calculating the RMSD. However, as these atoms are linked by covalent bonds

they violate the assumption of random and independent atom distribution in the model above.

We thus modified our geometrical arguments to account for the effect of atoms that depend on

one another (dependence model).
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The position of a second atom for a residue is constrained to the surface of sphere with a

radius equal to its distance (d) from the first (Figure 3.3A). If RM 2d then the position is

restricted to a cap on this sphere. For each second atom we use the ratio of the two areas,

RM
2
/(4di

2
), to correct EF(RM). Similar arguments can be applied to a third atom per residue.

This is constrained to a circle around an axis formed by the first and second atoms, with small

RMs restricting this to an arc (Figure 3.3A), roughly proportional to RM. We correct for both of

these effects by adding two terms for each query residue with 2 or 3 atoms: c2RM
2 and c3RM

3,

respectively. These corrections predict an abrupt transition around RM=2d where the

restriction for the second atom no longer applies and the model assuming independence holds.

Differences in RMSD when considering more than 3 atoms per residue are due to

conformational differences (i.e. rotamers). In practice, 3 atoms is sufficient to define residue

orientations, though our model is normally conservative when more than 3 are used.

We now have a modified EF:

EF (RM ) = ARM
B
c2RM

2[ ]
S

c3RM
3[ ]
T

= A'RM
B '

(3)

where S and T are the numbers of query residues where 2 and 3 atoms are used, respectively;

A’=Ac2
S
c3

T, and B’=B+2S+3T.

To test this modified model, I searched with random patterns with N=2-4 gradually increasing

the number of residues with second or third atoms and fit the above function. The effect of

dependent atoms is clear in the CDs for N=2 with 2 or 3 atoms per residue (Figure 3.3B):

there are fewer matches with low RM (i.e. flattened curves). At about RM=2Å, the CDs show

the predicted transition to the independence model.

The effect of dependent points is also evident in the behaviour of the variables. Figure 3.3C

shows the effect of an increasing number of dependent atoms on log(A’), which the model

predicts to decrease linearly. The initially flat curves for N=2 are due to the transition from 2-

3 residues discussed above for the independence model. The curves for N=4 are just above

those for N=3, which reflects a lack of data for small RM. From these curves we determined

c2=0.196±0.026 and c3=0.094±0.024. c2 corresponds to an atom distance d=2.3Å which is the

range of intra-residue distances observed between C  and C /O  atoms.
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Figure 3.3D shows the effect of an increasing number of dependent atoms on B’, which the

model predicts will increase by 2 or 3 for each residue in the query containing 2 or 3 atoms,

respectively. The slopes of the curves are indeed close to 2 and 3, though the 4-residue queries

are hampered by a lack of data for small RM, and we see an initial effect similar to that above

for N=2.

3.1.4 Final P-value for Local Structural Pattern Comparison

We can now calculate the P-value for any RMSD observed for a query pattern:

P(RMSD RM ) =1 e EF(RM )

EF (RM ) =

a0 a2RM
0.97

c2RM
2[ ]

S 1

c3RM
3[ ]
T 1

for N = 2

a0 a3
NRM

2.93N 5.88 c2RM
2[ ]

S
c3RM

3[ ]
T

for N 3

 

 

 
 

 

 
 

 (4)

where N is the number of residues, S and T the numbers of query residues where 2 and 3

atoms are used in fitting,  is the product of all abundances and a0, a2, a3, c2 and c3 are

empirically determined constants (see above). The corrections in square brackets apply only if

their values are <1, corresponding to RM<dintra. We emphasise that a key step in the derivation

of this function is the demonstration above that the EVD for RMSD is the exponent of a

power and not an exponential function.

P(x) normalizes a distribution of scores (x),

a property that can be used to test a model.

Specifically, if a model to predict EF(x) is

valid then a cumulative histogram of P(x)

for the best scores in a series of searches

should give a straight line with a slope of 1.

P(x) indeed shows this behaviour, providing

confidence in our model for the behaviour

of RMSD (Figure 3.4).

Figure 3.4: P-value plot. The cumulative
distribution of P-values for the best match (PM) of
each of 60 searches is close to a straight line with
the slope of 1 (goodness of fit 2=0.28426).
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3.1.5 Comparing Patterns to Databases of Proteins

To demonstrate how the above formula can be applied to detecting recurrences of a known

functional site, I compared the trypsin catalytic triad to all structures in the PDB (Figure 3.5).

Triads from homologous proteases have RMSD 0.6Å (associated with P 0.009) with the

exception of distorted sites owing to bound inhibitors, and the distribution of triads from

different folds peaks at around 0.9Å (P=0.0009-0.9). Plots for calculated and observed (i.e.

fitted) P-values superimpose very well and show a sharp transition from small values to 1 at

an RMSD of 0.9Å where the first false matches appear. Top scoring matches are to the

subtilisin-like fold, the / -hydrolases, and the flaxodoxin-like cutinases (Figure 3.5).

During these searches, I also detected a previously undescribed Ser-His-Glu triad in the yeast

proteasome -subunit (1g0u (Groll et al., 2000); Ser144, His147, Glu159; P=0.03 when

compared to thrombin or cutinase). The location of these residues on the surface of the

structure near to the pore, and their conservation in many homologs, suggests a possible

catalytic function.

I was also able to detect all patterns studied or reported by other methods (Artymiuk et al.,

1994; Fetrow & Skolnick, 1998; Fischer et al., 1994; Kleywegt, 1999; Russell, 1998; Wallace

et al., 1997; Wallace et al., 1996). For nearly all patterns true matches had significant P-

values (e.g. ribonuclease A and T, thermolysin, Zn-fingers, heme binding sites,

cellobiohydrolase). However, for three examples matches were insignificant according to our

Figure 3.5: Comparing patterns to databases of proteins: search with a trypsin catalytic triad. Left: P-values
derived by fitting the CD of background matches (blue) and from parameters calculated using the statistical
model (green) are compared against the distribution of matches in the PDB classified as trypsin-like proteases
(black), other hydrolases (yellow) and other proteins (background, red). Right: Top scoring matches are to
trypsin (1mct, A, E=0), the subtilisin-like fold (E=0.4, 1cse, subtilisin), the / -hydrolases (E=0.8, 1jkm,
carboxylesterase) and the flaxodoxin-like cutinases (E=0.8, 1cex, cutinase).
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formula and were indeed found among background matches. These were active sites of just

two residues from lysozyme (Wallace et al., 1997) and staphylococcal nuclease (Artymiuk et

al., 1994) and a putative three-residue disulphide oxidoreductase site in a phosphatase

(Fetrow et al., 1999). For the lysosome and nuclease examples the insignificance was

expected as other methods were also unable to discern them from noise, and to our knowledge

the oxidoreductase site has not yet been verified.

3.1.6 Comparing Proteins to Databases of Patterns

I also tested the formula in a reverse situation: that is to compare an entire protein structure to

databases of functional patterns (see Materials and Methods). As our database entries include

residues not directly related to function, I allowed for partial matches where only part of the

database entry is found in the query. To correct EF to account for this, it is multiplied by the

total number of possible partial matches of the same size (i.e. consisting of any residues) that

are contained in the database entry (correction for multiple testing).

I compared the phosphoenolpyruvate carboxykinase (PEPCK) structure (without bound

ligands) to the ligand-binding sites database. PEPCK contains a P-loop but adopts a structure

that is otherwise quite different from other P-loop containing nucleotidyl transferases

(Marquez et al., 2002; Russell et al., 2002). Indeed, if one ignores homologs, the most similar

protein according to FSSP (Holm & Sander, 1996) is hydrogenase-2-maturation protease

(1cfz, Z=4.0), which performs a very different function. In contrast, our search identified

nucleotide-binding sites with high significance in proteins of different folds that are

structurally dissimilar from PEPCK (DALI Z<3). As expected, the best matches were to sites

from P-loop proteins (top rank, elongation factor Tu, 1eft, P<10-6) where the nucleotide binds

in a very similar orientation (Figure 3.6). These were followed by matches containing residues

from the ATP binding site of GroEL-like proteins (best, GroEL, 1der, P=4x10-3) and the FMN

binding site in flavodoxin (6nul, P=6x10-2). Here the residues common to the matches make

similar contacts to phosphates attached to nucleotides in otherwise different conformations

(Figure 3.6). The first negative match (P=0.88) comprises 5 residues from a large heme-

binding site.

We also compared the bacterial quorum-sensing protein LuxS to the database and found

highly significant matches to Zn-binding active sites across folds and no other site among the
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top 100 matches (P 0.97). Representatives of the different folds were peptide deformylase,

the zincin-like matrix-metalloprotease stromelysin-1 and the class II aldolase rhamnulose-1-

phosphate aldolase, all suggestive of a hydrolytic activity (see Figure 3.6). Indeed, LuxS was

found to cleave S-ribosylhomocysteine to homocysteine and the autoinducer molecule 5-

dihydroxy-2,3-pentadione (Schauder et al., 2001). A structure with the putative substrate

bound and noticeable clustering of conserved residues suggests that we identified the correct

active site in the absence of overall sequence or structural similarity to known structures

(Hilgers & Ludwig, 2001; Ruzheinikov et al., 2001).

3.1.7 Comparing Entire Protein Structures

It is possible to apply our formula when comparing entire protein structures, with no prior

definition of active or functional sites. A pairwise comparison of two proteins that share a

biochemical or cellular function (e.g. catalytic activity, specific binding characteristics, etc.)

Figure 3.6: Comparing Proteins to Databases of Patterns. Representatives from the top scoring folds are
shown; Residues in ball-and-stick are matches found during the search. Left: Matches found after comparing
the unliganded structure of Trypanosoma cruzi PEPCK (1ii2) to the ligand binding sites database. Figures
showing matches to elongation factor EF Tu (E=1x10-6, 1eft), GroEL (4x10-3, 1der), and flavodoxin (E=6x10-

2, 6nul). The location of ATP within E. Coli PEPCK (1ayl; superimposed on 1ii2) is shown as a broken line,
and the location of bound ligands in the matches are shown as continuous lines.   Right: Matches found after
comparing LuxS (1j98) to the SITE annotations database are: peptide deformylase (E=2x10-6, 1bs6), the
zincin-like matrix-metalloprotease stromelysin-1 (E=8x10-5, 1slm) and the class II aldolase rhamnulose-1-
phosphate aldolase (E=0.2, 1gt7). Matches to sites within proteins of the LuxS/MPP-like metallohydrolase
(i.e. proteins similar to LuxS), cysteine rich, dioxygenase and classical C2H2,C2HC zinc finger folds are not
shown for clarity.
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can suggest the molecular basis for the common feature. For example, when cytochrome c6 is

compared to the non-homologous multiheme cytochrome c7 three similarities were detected.

All involve the CxxCH heme attachment site, of which one is present in cytochrome c6 and

three in c7. One of these matches also identified an additional serine common to both proteins

(Figure 3.7).

Generally however, the greatly increased search

space has a critical effect on the statistics:

searching more amino acids increases the number

of random matches, and can render true matches

insignificant i.e. bury them in noise. For example,

a protein versus pattern search comparing trypsin

to a database of functional patterns, or a pattern

versus protein database search comparing only

the catalytic triad (His57, Asp102, Ser195) to a

database of whole structures identifies true

functional similarities to be significant.  However

a pairwise comparison between trypsin and

subtilisin detects the similarity, but does not find

it to be significant owing to the large number of

background matches with equivalent RMSD and

size introduced by the comparison of two whole

proteins (of 223 and 275 amino acids

respectively). This is not a limitation of the method, but a fact of life when searching for

similarities within large databases (see Jones & Swindells, 2002) for a similar discussion

about sequence searches).

3.1.8 Deviations from predicted E-Values

Searches with a salt bridge and disulphide bond show curious differences between the

observed and calculated distributions (Figure 3.8) due to their unusually high frequency in

proteins with different folds. Here our model has a clear advantage over an empirical fit to the

observed distribution as it does not down-weight the importance of these structural features.

For example, the observed distribution would suggest that an RMSD of 0.18Å between two

Figure 3.7: Pairwise comparison of entire
proteins: we compared cytochrome c6 (1c75)
and the multiheme cytochrome c7 (1hh5). Three
similarities were detected, of which
one is present in cytochrome c6 (residues
32,35,36) and three in c7 (1: 26,29,30, E=1x10-6;
2: 49,52,53, E=0.18; 3: 62,65,66, E=3.6x10-4).
The match to site 2 also identified an additional
serine (residue 44 in c6 and 55 in c7) common to
both proteins.
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Arg-Glu salt bridges is insignificant (P>0.99), though our model gives P=0.0014. This

difference is even more pronounced for a disulphide bond: Pfit=1 versus Pmodel=0.001 for

RMSD=0.08Å. We can thus assess significance for highly abundant, but still functionally or

structurally important patterns.

To investigate the possible correlation between deviation from our model and contribution to

protein stability, I specifically searched for residue patterns overrepresented in unrelated

proteins (see Materials and Methods). For two residue patterns, we expected results similar to

the widely used pair potentials (e.g. Bahar & Jernigan, 1997; Hendlich et al., 1990; Miyazawa

& Jernigan, 1996; Sippl, 1990). However, while pair potentials are derived from merely

measuring residue-residue distances in proteins, we required a precise relative orientation of

the residues and thus expected to gain a more precise understanding. In addition, the search

also found higher order patterns (i.e. with more than two residues) to be overrepresented

suggesting, cooperative effects not captured by pair potentials (e.g. Carter et al., 2001;

Kannan & Vishveshwara, 1999).

For two-residue patterns, I found an equal number of polar or charged and hydrophobic

interactions in the top 20 in agreement with previous studies of stabilization centres

(Dosztanyi et al., 1997) or residue pairs (Bahar & Jernigan, 1997). The most abundant two-

residue patterns, that are about 2000-fold more frequent than expected, were arginine-

aspartate/glutamate salt bridges and disulphide bonds (see Figure 3.8). I thus found pairs of

residues known to be beneficial for protein stability: a disulphide bond for example

contributes 17 kJ/mol and buried salt bridges 12 – 20 kJ/mol (Fersht, 1999). An interacting

leucine pair that is part of a larger hydrophobic cluster was 1500-fold overrepresented

followed by aspartate-serine/threonine hydrogen bonds (800-fold). This changed dramatically

to predominantly hydrophobic interactions when I relaxed the requirement for residue

orientation. Polar interactions seem to occur with well-defined residue orientations, whereas

hydrophobic contacts appear more flexible, a trend also seen by (Bahar & Jernigan, 1997).

When I inspected top ranking interactions for the individual amino acids, I found that charged

residues (including histidine) are mainly involved in salt bridges, cysteine forms disulphide

bonds, and hydrophobic residues preferably cluster together. The polar non-charged serine,

threonine, asparagine and glutamine most frequently form hydrogen bonds to aspartate and

glutamate. Proline often binds to aromatic residues, which generally make hydrophobic



66

contacts. This is particularly interesting as aromatic residues have been shown to be critical

for proline-binding in SH3- and WW-domains, or other proteins (e.g. Bjorkegren et al., 1993;

Carl et al., 1999; de Beer et al., 2000; Lim & Richards, 1994; Macias et al., 1996; Wang et

al., 2003; Yu et al., 1992). It remains to be seen whether some interactions that seem to be

beneficial in the protein interior are also important for protein-protein or protein-ligand

binding, despite generally different pair potentials for these cases (see for example Aloy &

Russell, 2002).

The most frequent among the patterns consisting of 3-6 residues are hydrophobic clusters with

the exception of a four residue disulphide cross (Harrison & Sternberg, 1996) and a six

cysteine pattern common to different folds such as the knottin-, metallothionein-, or

disintegrin-fold (e.g. Mas et al., 1998) shown in Figure 3.8. The prevalence of hydrophobic

clusters was observed in previous studies examining spatial clustering (Kannan &

Figure 3.8: Deviations from predicted E-values. Top: Comparison of observed and calculated P-values and
cumulative distributions (CDs) for searches with an Arg-Glu salt bridge (left, 1xel, Arg176, Glu157) and a
disulphide bond (3ckb, Cys9, Cys86) against the background database. Bottom: Residue patterns found to be
overrepresented (representatives): Asp-Arg salt bridge (A: 2350x overrepresented, 1ckq, residues 135,187),
disulphide bond (B: 1900x, 9wga, 17,35), Asp-Ser hydrogen bond (C: 860x, 1pys, 247,226), Leu-Leu pair (D:
1560x, 2end, 24,67). Top-scoring partner of Pro are Tyr (E: 240x, 1gof, 88,99) and Phe (F: 140x, 1kek,
448,474). A 4 leucine cluster (G: 1870x, 1e8c, 5,8,21,36), a 4 residue disulphide cross (H: 1afp, 1460x,
26,28,49,51), and a 6 residue hydrophobic cluster (I: 1210x, 2bnh, leucines 47,53,56,75,85, valine 71)  are
examples of larger patterns found to be overrepresented.
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Vishveshwara, 1999) or nearest-neighbours relations (Carter et al., 2001) and emphasizes

their importance for protein stability and folding.

3.1.9 Concluding Remarks Regarding the Statistical Model

We have presented a formula to calculate the significance of any local protein structural

similarity, and have shown that it can discern meaningful similarities from noise. There are

likely many undetected similarities between protein structures, related to protein function,

stability or transport. Reliable statistics are pivotal if patterns consisting of as few as two

residues from disparate parts of the polypeptide chain are to be distinguished from noise.

For all searches, I inspected the ranking of matches and found that our P-values not only

distinguish true positives from noise, but also permit the comparison of results involving

patterns of different sizes. The RMSD required for a given significance (e.g. P=10-4) varies

with the pattern as is clearly seen using the examples above: whereas Arg-Glu salt bridges (2

residues, 6 atoms) have to be within 0.02Å, catalytic triads (3 residues, 8 atoms) can deviate

up to 0.4Å and the PEPCK ATP-binding site (7 residues, 16 atoms) up to 1.5Å according to

our model. RMSD alone places insignificant matches with few residues or atoms above those

that are larger and significant. For the comparison of a large set of protein structures

determined by structural genomics projects (e.g. Teichmann, et al., 2001; see Chapter 3.2) to

pattern databases, I found that P-values for true matches typically have P<10-5, those with

similar chemical groups P 10-4 - 10-2 and negatives P 0.1. Our statistical formula is thus able

to discern significant similarities from noise when entire protein structures are searched

against databases of functional patterns, even when matches are only parts of larger structures.

We confirm that active site descriptors using only the positions or distances of C  or C

atoms are generally not sufficient to reach an appropriate level of specificity while retaining

sensitivity (Russell, 1998; Wallace et al., 1997). For example, when searching with C s from

the trypsin catalytic triad, negative matches have RMSDs as low as 0.5Å. This value is

comparable to those seen between close trypsin homologs, and true triads from subtilisins

have values as high as 2.0Å (data not shown). Previous approaches recognised this limitation

and used constraints on sequence and secondary structure context (Fetrow & Skolnick, 1998)

or C  atom geometry around the active site (Fischer et al., 1994) to reduce the number of

false matches (i.e. increase specificity). This approach can fail if only catalytic residues are

common and might thus restrict methods to proteins with similar folds. Other methods
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considered residue orientation (Artymiuk et al., 1994; Kleywegt, 1999; Russell, 1998) or

concentrated on functionally important atoms (Wallace et al., 1997; Wallace et al., 1996). Our

formula permits searches to be made without requiring manual definitions of queries (Fetrow

& Skolnick, 1998; Wallace et al., 1997), and provides a general basis to separate true matches

from background without the need to define query-specific RMSD or distance thresholds.

To compare our statistic to previous work on the significance of RMSD, I extrapolated our

results to larger numbers of residues, considering only C s. In this situation our model is

conservative: for example, to give a significance of P=10-5 when comparing two 70 residue

proteins one previous study required an RMSD=6 (Reva et al., 1998), whereas our model

needed RMSD=4. We suspect that this discrepancy is due to differences in background

models. The covalently linked amino acids and the tendency of proteins to form regular

secondary or super-secondary structures create additional dependencies. We did not wish to

consider these in a model for similarities involving a few residues close in space, but not

necessarily adjacent in sequence.

More generally, robust methods for structure comparison are key to the success of structure-

based functional annotation required for structural genomics (e.g. Burley, 2000).

Identification of common local structural patterns is highly complementary to fold

comparison (e.g. DALI, Holm & Sander, 1993): it can both confirm functional similarities

suggested by a common fold and identify instances of convergent evolution where common

local patterns are found in different folds. Like the sequence comparison methods used to

annotate genomes, these methods can be applied automatically to thousands of new structures

and provide initial functional predictions without human intervention.

3.2 Assigning Function to Protein Structures – Examples

We wanted to get a general picture of the applicability of PINTS for functional assignment of

novel proteins based on an analysis of a large test set. I thus probed for functional site

similarities in the 254 currently available structures from structural genomics projects and

compared this to overall fold similarities reported by Dali. We could confirm functional

similarities suggested by an overall similar fold but also found examples of functional

similarities despite no sequence or overall fold similarity demonstrating the complementarity

of this approach to those based on structural alignment.
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3.2.1 Overall Performance of Functional Site Comparison

We considered 254 structures labelled as structural genomics with release dates up to October

2003 but excluded all cases where functional similarities were obvious from sequence

comparison (see Materials and Methods). This filter left 157 of the original 254 structures for

further analysis. I compared these structures to representative structures in the FSSP database

with Dali and to databases of functionally relevant patterns with PINTS applying thresholds

usually associated with a similarity in function (i.e. Dali: Z 10; PINTS: E 10-3; see Materials

and Methods). Dali finds matches with Z 10 for 61 (39%) and PINTS reports matches with

E 10-3 for 29 (18%).  For 17 (11%) both methods find significant matches, 44 (28%) were

only found by Dali and 12 (8%) only by PINTS. The proportions are similar when structures

labeled as “unknown function” are used instead (Dali: 41%, PINTS: 21%; Overlap: 12%;

Dali-only 29%, PINTS-only 8%).

There are several reasons why similarities are found by Dali and not by PINTS. For example,

active sites can sometimes be distorted by binding to other molecules and cannot be detected

with statistical significance. This effect is most pronounced for similarities involving a small

number of residues.  For example, our best match for Tm1158 (1o1y) is to three residues from

the active site of a glutamine amidotransferase domain (1a9x). Although the E-value of 0.035

is above the threshold used here, the match is from the same family as the best Dali match

(1qdl; Z=20.4). Other missed similarities include those lacking common small-ligand binding

sites, such as scaffolding proteins (e.g. 1oyz/1b3u; Dali Z=15), or DNA/RNA binding

proteins (1jyh/1d5y, Z=14; 1ljo/1d3b, Z=12). Some Dali similarities are to other proteins that

are also of unknown function, where no functional pattern is present in any database (e.g.

1o13/1p90; Z=11.5) or involve fold matches without a similarity in function (e.g. helical

bundles (1n1q/1bcf, Dali Z=18) or a periplasmic divalent cation tolerance protein with fold

similarity to anthranilate isomerase (1p1l/2pii; Z=10).

The 12 structures matched only by PINTS were mostly novel folds where a functional

similarity was found between proteins with different overall folds. Of these 5 were metal

binding sites, 2 were ligand binding sites, 3 were anion binding sites and 2 were short linear

motifs with similar conformations probably due to their secondary structure context but

lacking an apparent functional role.
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Using a large number of structural genomics targets without sequence similarity to known

structures, we can find functional centres within an overall similar fold for 11% and detect

functional similarities across folds that cannot be detected by structural alignment methods for

an additional 6% of all structures. Specific examples of how functional site similarity can aid

structure-based annotation of function are discussed in the sections that follow.

3.2.2 Confirmation of Superfamily, or Resolution of Ambiguity

Overall sequence or fold similarity does not always reveal the correct function. For example,

the archaeal fructose-1,6 bisphosphate aldolase shows the highest fold similarity to a

triosephosphate isomerase (1hg3, Dali Z=17.7) high above the FBPAs from eukaryotes (Dali

Z=7.4 for 1fbp) (see below and Lorentzen et al., 2003). Functional site comparison methods

have already shown some promise in resolving these situations (e.g. TIM-barrels, Lorentzen

et al., 2003), or /  hydrolases (Wilson et al., 2004; Sanishvili et al., 2003), see Babbitt, 2003

for a general discussion).

Figure 3.9: Functional site conservation within superfamily or fold. Structural genomics proteins (query) are
shown in light grey and the match in dark grey cartoons. Matched residues are shown in ball-and-stick, with
the ligand of the database structure in red (magnified in insets). (A) Similarity between cephalosporin
deacetylase (1l7a) and the catalytic triad of prolyl-oligopeptidase (1h2x; E=1x10-8). (B) Residues Gly63,
Asp84 and Asp113 from the hypothetical protein (HP) Mj0882 (1dus) matched to the S-adenosylmethionine
binding site from isoflavone o-methyltransferase (1fpx; E=3x10-5; Dali Z=13.2). Here Dali’s first match
(1nv8; Z=18.2) ranks 2nd in PINTS (E=9x10-3). (C) Residues Thr78, Ser79, Ser147, Thr150 from the HP
Hi0754 (1nri) match to the glucosamine 6-phosphate binding site in the isomerase domain of glucosamine 6-
phosphate synthase (1moq; E=6x10-9; Dali Z=12.6).  Dali's best match (1jeo, Z=14.2) belongs to the same
superfamily (c.80.1). (D) Residues Gly7, Gly9, Gly12, Asp28, Lys32 and Cys55 from HP Tm1643 (1j5p)
match the NAD binding site in Lactate dehydrogenase (2ldb, E=3x10-4; Z=9.3). (E) Residues Gly43 and 45-48
from Yjee (1fl9, unliganded, left (Teplyakov et al., 2002)) match the Ran GDP binding site (1a2k, E=2x10-5).
Superposition of the ADP-bound form of Yjee (1htw, right) showing the similar position of the nucleotide.
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There are several structures for which we could support functional similarity also inferred by

Dali in addition to highlighting the functional centre.  These include the similarities between

cephalosporin c deacetylase and /  hydrolases (PINTS E=1x10-8; Dali Z=20; Figure 3.9A),

between Mj0882 and methyltransferases (E=3x10-5; Z=13.2; B), between Hi0754 and

glucosamine 6-phosphate synthase (E=6x10-9; Z=14.2; C) or between Tm1643 and lactate

dehydrogenase (E=3x10-4; Dali Z=9.3; D).

For Yjee (Teplyakov et al., 2002) (Figure 3.9E), the best Dali match is marginal (RecA;

Z=6.3), not readily allowing any functional conclusions. However, the functional site found

here is highly significant, involving 5 residues from the GDP binding sites of Ran (E=2x10-5)

or other P-loop nucleotide hydrolases from the same superfamily. The subsequently

determined ADP-bound form of Yjee (deposited six months later) shows that the two

nucleotides superimpose perfectly (Figure 3.9E, right).

3.2.3 Sites Found by Similarities Between Different Folds

Functional sites found across different folds are both intriguing and useful: they can suggest

aspects of convergent evolution or can suggest functional details for proteins adopting folds

not seen before. Those detected here fall into broad classes that we discuss below.

Metal or phosphate binding sites

Nature frequently reinvents similar metal-binding sites (Russell, 1998), and unsurprisingly

several similarities observed across folds involve metals. For example, Tm1083 has a highly

significant similarity with the calcium-binding site of staphylococcal nuclease (E=5x10-5),

despite an obvious difference in fold (Figure 3.10A).  Aq_1354 contains a site similar to the

Zn containing active site of carbonic anhydrase (E=8x10-3) and other Zn-binding sites (Figure

3.10B). Although no metal is present in the structure, the conservation of the histidine

residues suggests that the site is real, Zn being absent from the structure owing to EDTA in

the purification protocol (Oganesyan et al., 2003). The Dali server in contrast, reported only a

marginal match to glucuronidase (1mqp; Z=3.3) that did not allow reliable functional

inferences.
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Phosphate site similarities also arise convergently.  For example, the survival protein Ea

(SurEa) has a site similar to the active site of a phosphate-binding periplasmic protein

(E=2x10-4; Figure 3.10C). Although SurEa is not liganded itself, a homolog (SurE; 1j9l)

contains a vanadate ion (VO4
3-) at the corresponding site. Conserved residues lining this

surface lead to the protein being identified as a putative phosphatase site with a preferred

specificity towards purine nucleotides (Mura et al., 2003).

Active Site in Ribose-5-Phosphate Isomerase

The alternate Ribose-5-Phosphate Isomerase (RpiB/AlsB) catalyses the conversion of ribose

5-phosphate to ribulose-5-phosphate. Structure comparison confirmed the similarity to

Rossman-fold proteins but did not reveal any insights into the reaction, though the authors

used their knowledge about preferred binding sites, residue conservation and surface

curvature (i.e. surface cavity) to locate a putative active site pocket (Zhang et al., 2003). The

best match for this protein in our study is the similarity between three residues that line one

Figure 3.10: Functional similarities between different folds (details are as in Fig. 3.9). (A) Residues Asp16,
Asp129 and Thr130 from the hypothetical protein (HP) Tm1083 (1j5u) match to a Ca-binding site in
staphylococcal nuclease (1sty; E=5x10-5). B) His115, His125 and His119 of HP Aq_1354 (1oz9) match to the
zinc-binding active site of carbonic anhydrase (1thj; E=9x10-3). (C) Ser106, Gly107 and Thr108 of the
survival protein Ea (SurEa) homolog (1l5x) match to the phosphate-binding site of a phosphate-binding
periplasmic protein (1a40; E=2x10-4).
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side of this pocket and the substrate bound active site of phosphoglycerate mutase (E=3x10-2;

Figure 3.11). Although the similarity does not comprise the full active site pocket, it is useful

for determining the location and specificity for phosphorylated ligands.

A predicted Phosphotyrosine-binding site in an archaeal protein

Structure comparison revealed that Mth1187 adopted a ferrodoxin-like fold, and the authors

speculated that it might be a protein-protein interaction module (Tao et al., 2003). They noted

however that the residues lining the binding site of a sulfate ion showed enhanced

conservation indicative of a functional site or a binding site for an unknown ligand. We found

a highly significant similarity to the phosphotyrosine-binding sites in SH2 domains (1fyr;

E=3x10-4; Figure 3.11). The similarity includes residues contacting the sulfate ion in addition

to others that contact the tyrosine ring.

Indeed, a reverse search of the Mth1187

binding site against all phosphate/sulphate

binding sites or against a representative

set of complete structures (Hobohm &

Sander, 1994a) finds no other significant

similarities. Phosphotyrosine is thus an

excellent candidate for the natural ligand.

This is especially interesting, as tyrosine

specific protein kinases and phosphatases

have only recently been recognized to

play important roles in prokaryotic and

archaeal organisms and key proteins

might still be unknown (Bakal & Davies,

2000; Kennelly, 2002; Kennelly, 2003;

Shi et al., 1998).

3.2.4 Discussion

We have tested the applicability of functional site comparison on a large dataset of new

proteins with unknown function. Many structures show similarities between functional

residues to those solved previously, which can lead to functional hypotheses being tested

further.  The examples show a variety of situations, ranging from confirmation of a similarity

Figure 3.11: New functional convergences. (Left)
Residues His10, Arg133 and Arg40 of Alternate Ribose-
5-Phosphate Isomerase Rpib/Alsb (1nn4) match to the
active site of phosphoglycerate mutase (1o98 and 1o99;
2-phosphoglycerate bound; E=3x10-2). The inset shows
the residues that line the putative active site pocket with
the matching residues in red. (Right) Residues Ser17,
Ser19, Arg1081, Arg1086 and Ser1094 of Mth1187
(1lxn) match to the phosphotyrosine-binding site of an
SH2-domain (1fyr; E=3x10-4).
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inferred by overall structural similarity to detecting a convergently evolved mode of ligand

binding.

Overall, the results demonstrate how searches for similar functional sites complement those

for similar folds. A combined strategy where both types of searches are used for structure-

based functional annotation can help overcome problems inherent to each when applied

separately. Even when structural alignment searches reveal fold similarities, active site

comparison can highlight the presence (Sanishvili et al., 2003) or absence (Wilson et al.,

2004) of an active site, and can sometimes resolve functional ambiguities (Lorentzen et al.,

2003). It can also help to identify "migrating" catalytically equivalent residues that are located

on different parts of homologous structures (e.g. Todd et al., 2001).  Moreover, newly

determined active sites can be sought in previously existing structures regardless of any

similarity in overall fold.

The complementarity can also work in reverse: a similarity in fold as revealed by structural

alignment can boost confidence in a marginally significant functional site match. This is

particularly relevant for matches involving only a few residues that require too narrow

geometrical constraints (i.e. small RMSD) to be distinguishable from noise (see Chapter 3.1)

or those involving residues distorted by bound ligands. Functional site matches involving

proteins of the same fold can be more believable even when the matches themselves are

marginal.

Both approaches will benefit from the increasing number of functionally annotated protein

structures. There are also recent efforts to catalogue active sites in structures based on studies

of their function (Bartlett et al., 2002; Porter et al., 2004). These will increase the coverage,

sensitivity and specificity of our searches or methods similar to ours. Investigating both types

of similarities discussed here, while the number of structures and known functional sites

grows, will also complete the picture of how nature evolves or reinvents proteins to perform

different functions with a diverse array of ligands.
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3.3 Structural Analysis of the Archaeal Class I FBP-Aldolase

Fructose-1,6-bisphosphate aldolase (FBPA, EC4.1.2.13) catalyzes the reversible cleavage of

fructose-1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate

and is central to the reversible Embden-Meyerhof-Parnas pathway (i.e glycolysis and

glyconeogenesis) and the Calvin cycle. Two classes of FBPAs with different catalytic

mechanisms are known: The eukaryotic class I enzymes use an active site lysine to form a

Schiff-base with the substrate, whereas the bacterial class II FPBAs stabilize the intermediate

with divalent metal ions (Lebherz & Rutter, 1969). Both adopt the common TIM-barrel fold

and might share a common ancestor despite insignificant overall sequence similarity (Copley

& Bork, 2000; Nagano et al., 2002). Archaeal organisms appear to rely solely on a recently

identified third class of archaeal FBPAs (FBPA IA or aFBPA). This family was identified as a

divergent group, comprising of members from almost all sequenced archaeal organisms, some

eubacteria but no eukaryotes (Gamblin et al., 1990; Siebers et al., 2001). Although they share

the catalytic mechanism with the classical eFBPAs, they do not show any significant overall

sequence similarity to this or other TIM-barrel superfamilies (Siebers et al., 2001).

Esben Lorentzen from Ehmke Pohl’s (EMBL-Hamburg) solved the structure for archaeal

FBPA from Thermoproteus tenax (Tt) to 1.9Å resolution and I performed a detailed structural

analysis with other TIM-barrel enzymes that allowed us to establish evolutionary links

between the archaeal and the classical FBPAs, and the triosephosphate isomerases (TIMs)

(Lorentzen et al., 2003).

3.3.1 Overall Structure of FBPA IA

The Tt-FBPA forms a homo-decamer where each monomer adopts a TIM-barrel fold (Figure

3.12). Due to the wide range of reactions catalyzed and the low sequence similarity often

observed between them, it is believed that the simple barrel architecture might have arisen

multiple times during evolution. SCOP for example currently distinguishes 26 superfamilies,

which may represent individual convergences although it has been suggested that many of

them might share a common ancestor (Copley & Bork, 2000; Farber & Petsko, 1990; Nagano

et al., 2002).
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3.3.2 Comparison to the classical FBPA I

The classical FBPA I and aFBPA adopt the same fold and catalyze identical reactions but

share no overall sequence identity. It was thus of particular interest to see if a detailed

structural comparison could unravel their evolutionary relationship. I first performed a

structural alignment of the Tt-FBPA subunit and the subunit of a human FBPA I (Dalby et al.,

1999) using STAMP (Russell & Barton, 1992). The structures superimpose with an RMSD of

1.9 Å over 250 residues and the sequence identity for the 154 residues that occupy equivalent

structural positions is 13% (Figure 3.13). This value is not sufficient to infer homology

directly (P=1; see Material and Methods and Murzin, 1993b). However, two unusual

structural features are observed in both types of FBPAs (Figure 3.12). The first is the presence

of an additional N-terminal helix, which precedes the first -strand of the barrel. As seen for

the classical FBPA I (Gamblin et al., 1990) and for the KDPG aldolase (Mavridis et al.,

1982), this helix runs across the N-terminal part of the barrel and closes it. The second

structurally equivalent feature is the insertion of a small two-stranded anti-parallel -sheet

between strand 3 and helix 3. This loop is involved in one of the dimer interfaces of the

tetrameric classical FBPA I (Gamblin et al., 1990). In Tt-FBPA, however, the loop is turned

Figure 3.12: Structure of the archaeal FBPA from Thermoproteus tenax (Tt). (Left) The Tt-FBPA momomer
adopts a TIM-barrel fold (helices shown in blue, strands in red). The substrate binding site (bound DHAP) and
the unusual structural features (N-terminal helix 0, cyan; small -sheet, purple; for details see text) are
highlighted. (Right) Active sites of FBPA IA from Tt (light grey) and classical FBPA I from rabbit muscle
(dark grey) after the active site residues, found to be equivalent by PINTS (E=3x10-4), have been
superimposed. Residues are labeled according to the Tt-FBPA sequence.
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and moved about 10 Å from the position seen in the classical FBPA I. Different positions

allow the same loop to be involved in dimer interactions in the classical FBPA I and in

pentamer formation in Tt-FPBA. Such unusual features are the key to assigning ancient

relationships to structures as in SCOP.

The strongest evidence for a common evolutionary origin between the archaeal type and the

classical FBPA I is based on the comparison of the two active sites. PINTS detected six

residues in a similar spatial arrangement in both aldolases with an RMSD of 1.1 Å and an E-

value of 3x10-4 (Figure 3.12). The residues form equivalent structural substrate binding sites

as seen in structures with covalently bound DHAP (Choi et al., 2001; Lorentzen et al., 2003)

and furthermore occupy the same positions in the protein sequence (Figure 3.13). In contrast,

no significant similarities between aFBPA and active site patterns from other TIM-barrel

enzymes were found as expected based on the known function. The similarity extends beyond

the core of catalytically active residues required for function but is not a general feature of all

TIM-barrel enzymes. Such similarities are very unlikely to arise independently and we thus

conclude that the classical and the archaeal FBPA I share a common ancestor.

Figure 3.13: Structure-based sequence alignment of Tt-FBPA and rabbit muscle FBPA. The numbering and
the secondary structure assignment are shown according to Tt-FBPA. Residues identical to both sequences are
surrounded by boxes, conserved catalytic residues are colored in magenta, substrate binding residues in green,
and the proposed catalytic proton donor Tyr-146 in cyan.
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Despite highly conserved active site residues, one important difference is found between

FBPA I and aFBPA. A glutamic acid (Glu187 in rabbit FBPA corresponding to Trp144 in Tt-

FBPA, see Figure 3.13), positioned at the end of strand 5 in all classical FBPA I, acts as an

acid in the catalytic mechanism by donating a proton in the dehydration of the carbinolamine

to form the imine (Choi et al., 2001). The carboxyl is located 3.9 Å from the Schiff-base-

forming carbon of the substrate (2.5-3.0 Å from the proton-accepting hydroxyl of the

substrate). Of the 27 genes identified to date as belonging to the FBPA IA family (Siebers et

al., 2001), only two encode a glutamic acid at this position. The other 25 genes code for a

hydrophobic residue, which cannot participate in proton donation. In the structure of the

liganded Tt-FBPA, Tyr146 is positioned with a distance of 3.7 Å from its hydroxyl to the

Schiff-base-forming carbon of the substrate and is the only plausible candidate for a proton

donor. This residue is a tyrosine in 20 of the archaeal FBPA sequences and we propose it to

be the catalytic proton donor in these proteins. As the proton donor differs with respect to type

of amino acid as well as sequence position between FBPA I and FBPA IA and within the

FBPA IA family it is reasonable to assume that it is of recent evolutionary origin. Other

important catalytic and substrate binding residues seem to be of more ancient origin. The

active site lysine (Lys177 in Tt-FBPA) is conserved in all FBPA Is as well as IAs (FBPA

I/IA) and is therefore likely to have been present in an ancestor protein common to all FBPA

I/IAs. The phosphate moiety of the substrate is tightly bound by the main-chain nitrogens of

the two glycines in loops 7- 7 and 8- 8’ (Gly204 and Gly231) and by the side-chain of an

arginine (Arg232). As these three residues are conserved in all FBPA I/IAs identified to this

date, they probably represent an ancestral phosphate-binding site. In addition, Asp24, which

acts as a base in the catalytic mechanism (Choi et al., 2001; Wilmanns et al., 1991), is

conserved in all FBPA I/IAs and might be of ancestral origin. Ala22 is found to make

hydrophobic contacts to the carbon atoms of the substrate, but is not conserved in all FBPA

IAs.

In conclusion, we have identified and described similar active sites for the archaeal type and

the classical FBPA I. This common site contains many of the catalytic and substrate binding

residues conserved with respect to structure as well as sequence. It is thus very likely that the

classical and the archaeal type FBPA I share a common evolutionary origin.
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3.3.3 TIM and the aldolase superfamilies are homologous

Triosephosphate isomerases (TIMs) and aldolases are usually grouped into different

superfamilies (e.g. by SCOP), but the presence of a common phosphate binding site and

recent results from stepping-stone or transitive PSI-BLAST approaches provided some

indication for divergent evolution (Banner et al., 1975; Copley & Bork, 2000; Nagano et al.,

2002).

When we compared human FBPA Is and

TIMs, we did not find convincing structural

evidence for a common ancestor: Only 10

out of the 126 residues (8%) found to be

structurally equivalent are identical between

human muscle FBPA (Gamblin et al., 1990)

and TIM (Mande et al., 1994), which is not

sufficient to infer homology reliably (P=1).

However, as it has been suggested

previously that hyperthermophilic archaea

have slower evolutionary rates than bacteria

or eukaryotes (Kollman & Doolittle, 2000;

Pace, 1991; Woese, 1987), we wondered whether we could establish a evolutionary link

between the two superfamilies using the archaeal structures as a bridge.

Indeed, we found that the structure of the Tt-FBPA monomer is, from a structural perspective,

closer to archaeal TIMs (from P. woesei (Walden et al., 2001) and T. tenax (Tt-TIM;

Lorentzen, submitted)) than to any other structure in the PDB: the structures of Tt-TIM and

Tt-FBPA superimpose with an RMSD of 1.7 Å and 30 of the 149 structurally equivalent

residues are identical (20%). Except for the common phosphate-binding site, no catalytic or

substrate binding residues are shared by the two proteins. Most are hydrophobic residues in

the cores of the proteins and involved in similar hydrophobic contacts (e.g. Leu127, Val143,

Ala168 and Leu171; numbering according to the Tt-FBPA sequence), or other structurally

important residues such as salt bridges (e.g. Arg129 that contacts Glu126 in Tt-FBPA or

Asp102 in Tt-TIM). Although this similarity is not detected by sequence comparisons but is

only found after structure-based alignment, it provides strong evidence for a common origin

Figure 3.14: Summary of the evolutionary links
between different families of TIM barrel proteins
discussed (Arch., archaeal; Bac., bacterial; Eu.,
eukaryotic; broken line: link in eukaryotes not
significant on its own).
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between the aldolase and TIM superfamilies as the probability to observe it between unrelated

proteins is small (P=3.7x10-8, Murzin, 1993b). In addition, Tt-TIM also shares the extended

loop with a small anti-parallel -sheet between 3 and 3 that is also seen in the classical and

the archaeal FBPA I (see above).

The possibly slower evolutionary rate is also indicated by the fact that both Tt-TIM and Tt-

FBPA are more reminiscent of the HisA protein from eubacteria (Lang et al., 2000) than the

eukaryotic proteins. Although still controversial, the HisA protein has been suggested to be

reminiscent of a putative common ancestor for all TIM-barrel enzymes (Copley & Bork,

2000). After structural alignment, HisA shows a highly significant sequence identity to both

Tt-FBPA (22 out of 123 structurally equivalent residues (18%); P=1.4x10-5) and Tt-TIM

(23/152 residues (15%); P=1.2x10-4). In contrast, the similarities for the human enzymes are

much less pronounced (11% corresponding to P=1x10-2; Figure 3.14). An indication for the

common evolutionary origin of HisA and Tt-FBPA is the identical positions of essential

catalytic residues at the end of -strand 1 and 5 in both enzymes.

Figure 3.14 summarizes the evolutionary links we were able to establish between TIMs and

FBPAs using the significant structural similarity between the archaeal enzymes, which is not

apparent when comparing sequences or structures of the eukaryotic enzymes. We can also

link the archaeal enzymes from both superfamilies to HisA that has been placed near the root

of the evolutionary tree of TIM-barrel proteins. The greater degree of similarity found in

archae furthermore supports the hypothesis that these organisms undergo fewer evolutionary

changes and that the last common ancestor might have been a hyperthermophilic or

thermophilic organism (Pace, 1991).
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3.4 The PINTS Server

One of the reasons why active site comparisons are far less frequently used by structural

biologists than structural alignment (e.g. Dali) might be the lack of an easy-to-use Internet

service. As I wanted PINTS to be most useful, I implemented a web interface that is

accessible on the Internet (http://pints.embl.de) (Stark & Russell, 2003). The server offers

several databases of complete protein structures or patterns and contains detailed information

about its uses (Info, Help and FAQs (Frequently Asked Questions) pages). We currently allow

for three types of searches described in the following:

3.4.1 Searches

We distinguish between three types of searches as a single, all-encompassing, all-against-all

search would have a critical effect on the statistics (see Chapter 3.1). In addition, patterns in

our databases are more directly related to an individual molecular function (e.g. catalytic

activity or ligand-binding) than the overall protein.

Protein versus pattern database: For a new protein structure (e.g. from structural genomics

projects), hints about function or the location of a functional site can come from searches

against databases of patterns likely to be of functional importance (see Chapter 3.2).

Pattern versus protein database: The recurrence of a known functional or an interesting

new pattern in other structures can suggest common properties. We therefore allow patterns of

up to 100 residues to be compared to protein databases (i.e. containing complete structures) at

different levels of redundancy (see Materials and Methods) or the pattern databases above.

Pairwise comparison:  We also allow a pairwise comparison of two structures. This can

suggest the molecular basis for the common biochemical or cellular function (e.g. catalytic

activity, specific binding characteristics, see Chapter 3.1.7).

For all searches, the user can either upload files in PDB text format or specify the four-letter

PDB identifiers for publicly available structures. The query can be restricted to specific

residues (i.e. a pattern) within the submitted or specified PDB file by an easy syntax.
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3.4.2 Output

For all searches, matches up to a user-defined E-value maximum and that contain at least

three residues are reported (Figure 3.15). We allow for partial matches to be detected, which

is particularly important if an active site is not fully understood or when the similarity may

not cover the whole of a pre-defined site.  Automatically or manually annotated patterns (such

as the ligand binding sites or the SITE annotations database entries in PINTS) often contain

additional residues that are not absolutely required for function.

Matches are ranked by their statistical significance and the equivalent residues and associated

RMSDs are provided, as are cross-references to useful Internet resources: SCOP (Murzin et

al., 1995a), NCBI-Entrez (http://www.ncbi.nlm.nih.gov/Entrez/), and PDBsum (Laskowski,

2001; Laskowski et al., 1997; Luscombe et al., 1998). For visual inspection with RasMol

(Sayle & Milner-White, 1995), we provide superimposed coordinates for both the matched

patterns alone (i.e. the equivalent residues) and within the whole protein context. For an

example of the PINTS results page, see Figure 3.15. Search results are kept for 8 days and can

be retrieved by an identifier, E-mail or IP address as preferred.

Figure 3.15: Example of a PINTS Server results page. Shown are the top 15 matches (and their SCOP
classification) for a search with the trypsin catalytic triad (1mct, 57, 102, 195) against one representative of
each SCOP family. The three buttons are links to NCBI-Entrez, SCOP and PDBsum and the two buttons in the
VIS column link to the superimposed coordinates as explained in the text.
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3.4.3 Settings

We exclude hydrophobic aliphatic residues (Ala,Ile,Leu,Met,Val) from the search as proteins

often contain hydrophobic centres that are structurally very similar (see Chapter 3.1.8) and

would lead to false positive matches comparable to low complexity regions in sequence

comparison. We regard only the amide (Asn,Gln) and acidic (Asp,Glu) residues to be similar

enough to be equivalenced generally (see the corresponding PINTS definition file (Table 2.1,

Column 3). The search parameters are currently restricted to standard settings that we know

would be applicable to a wide variety of different submissions (maximum pattern diameter 15

Å, distance tolerance during the depth-first search 3 Å, minimum and maximum number of

residues per pattern 3 and 100, respectively).

As PINTS was specifically designed to find spatial patterns in non-homologous proteins, its

algorithm suffers heavily if two very similar proteins are compared. Especially in database

searches, most of the search time would be spent on database entries with high sequence

similarity and the output would be swamped with many patterns from these. The PINTS

server therefore removes all database entries with high sequence similarity to the query (i.e.

detected by BLAST with high confidence E 1x10-10) from the search and reports them

separately.

3.4.4 PINTS-Weekly

In addition to the service above for individual structures, we now constantly monitor the PDB

for new functional similarities. With each weekly update of the PDB, we compare all new

structures to our pattern databases. Updates to the PDB often contain structures that are either

slight variants (e.g. different bound small molecules, mutants, etc.) or close homologs of

proteins already present in the database. We thus classify the structures into two categories (in

addition to All Structures) to facilitate browsing or finding formerly unknown similarities.

Structural Genomics are structures that are labeled as “Structural Genomics” or “Unknown

Function” by the authors of the PDB file. Unique Sequences are those that do not match any

previously known structure using BLAST (E-value 10-20, sequence identity 80%, and

length difference of 90% or 50 residues. This service is available at

http://www.russell.embl.de/pints-weekly (Stark, et al., submitted).
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3.4.5 Access Statistics

We announced the PINTS server on the PDB mailing list (pdb-l) on January, 29th 2003

(http://www.rcsb.org/pdb/lists/pdb-l/200301/000412.html). Since then, our site has been

accessed nearly 50,000 times by more 3300 different non-EMBL users identified by their IP-

addresses. There were on average 130 unique searches per month or nearly 2000 altogether

(Figure 3.16).
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Figure 3.16: Access statistics for the PINTS-Server. Shown are unique searches from non-EMBL
users between January 2003 and February 2004. The announcement on the PDB-mailing list
(01/2003) and the publication (06/2003, Stark, et al., 2003) are seen as maxima, but the server
usage was highest from September-November 2003.



85

3.5 miRNA Target Prediction

Although miRNAs are thought to play major regulatory roles in all higher organisms, not

much is known about their functions or the target genes they regulate. The limited sequence

complementarity between miRNAs and their targets means that target prediction is difficult

and requires careful statistical evaluation (see Introduction). In close collaboration with Julius

Brennecke in the group of Stephen M. Cohen (EMBL-Heidelberg), I developed a

computational screen for miRNA targets in Drosophila. I examined properties of valid

miRNA targets such as their structures or conservation that I then used to predict targets for

miRNAs. I showed that the method identifies all known miRNA targets and predicted new

targets that Julius Brennecke validated experimentally. An earlier version of the method was

used to predict the bantam target hid (see Chapter 3.6.3 and Brennecke et al., 2003). The

screen presented in the following section has been published:

A. Stark, J. Brennecke, R.B. Russell, S. M Cohen; Identification of Drosophila miRNA Targets. PLoS Biology,

1(3), E60, 2003.

3.5.1 Conserved 3’ UTR Database

For each of the validated miRNA/target pairs, functional target sites are located in the 3’

untranslated region (UTR) of the mRNA and are conserved in the 3’ UTRs of the homologous

genes from related species (Abrahante et al., 2003; Brennecke et al., 2003; Lee et al., 1993;

Lin et al., 2003; Moss et al., 1997; Reinhart et al., 2000; Wightman et al., 1993). I used

pairwise comparison of the 3’ UTRs of orthologous genes in related genomes to identify

conserved 3’ UTR sequences. Figure 3.17A shows the resulting pattern of 3’ UTR

conservation for the known targets in worms and flies. The vast majority of miRNA target

sites (red bars) are located in blocks of conserved sequence (white blocks). Figure 3.17B

shows cross-genome conservation of these miRNA target sites. A striking pattern of

uninterrupted conservation emerges at the end of the target sequences that pair with the 5’ end

of the miRNAs.



A

B

Figure 3.17: Features of known miRNA targets. (A) miRNA target sites (red bars) are

generally in conserved regions of  3’ UTRs of known miRNA targets (white background).

Comparison was done according to conditions used to construct the 3’ UTR database (see

Materials and Methods) between D. melanogaster and D. pseudoobscura (for hid), or

between C. elegans and C. briggsae (otherwise). Most UTRs contain multiple predicted

target sites and function for individual sites not been tested generally. (B) Sequence

conservation within the predicted miRNA binding sites that are conserved (shown is miRNA

length plus 5 nts). All residues that pair with positions 2-8 of the miRNA are identical in the

conserved sites in both genomes compared (white background).
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To permit genome-wide searches for targets of Drosophila miRNAs, a conserved 3’ UTR

database was prepared by comparison of D. melanogaster and D. pseudoobscura 3’ UTRs. As

very few 3’ UTRs are defined by cDNA sequence data in D. pseudoobscura, I used genomic

sequence following the last exon of the D. pseudoobscura gene as the orthologous UTR (see

Materials and Methods). Last exons were reliably detected in D. pseudoobscura for about

two-thirds of D. melanogaster genes. On average 22% of the D. melanogaster 3’ UTR

sequence is conserved in the predicted D. pseudoobscura 3’ UTR. Much of this reflects

isolated blocks of very high conservation interspersed among less conserved sequence. Use of

conserved 3’ UTRs reduces the expected number of sequence matches that would occur at

random by 4 to 5 fold in relation to full-length 3’ UTRs, and several fold further compared to

the full transcriptome. We considered using the Anopheles gambiae genome to extend the

cross species comparison. Although genome annotation identifies orthologs for two-thirds of

D. melanogaster genes (Zdobnov et al., 2002) I was unable to identify the last D.

melanogaster exon for approximately half of these and therefore chose not to require

conservation in Anopheles, but to use it as an additional level of validation for predicted

Drosophila targets where possible.

3.5.2 Screening strategy

We have adopted a two step approach to target identification that combines a sensitive

sequence database search with an RNA folding algorithm to evaluate the quality of the RNA

duplex formed between the miRNA and its predicted targets. We examined the known target

sites for lin-4, let-7 and bantam for common features. All of these sites showed better

complementarity to the 5’ end of the miRNA, with no obvious common features elsewhere

(Figure 3.18 A and B). There were few sequence mismatches or G:U base pairs in the

alignment of the first eight residues at the 5’ end of the miRNA. I used HMMer (Eddy, 1998)

to search for sequences complementary to the first eight residues of the miRNA, allowing for

G:U mismatches. Where possible the corresponding sites were also identified in the D.

pseudoobscura 3’ UTR and the sites from both genomes were considered, since the regions

outside of the sequence match can vary between the two organisms, leading to difference in

subsequent steps (see below).

The identified sequences were extended to the length of the miRNA plus five residues to

allow for bulges and were evaluated for their ability to form energetically favorable RNA-
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RNA duplexes with the miRNA using Mfold, which combines knowledge of known RNA

structures with thermodynamic parameters, such as those involved in base-pairing to evaluate

the free energy of folding ( G; Mathews et al., 1999; Zuker et al., 1999). Mfold requires a

single linear sequence as input, so each predicted target was linked to the miRNA using a

standard hairpin-forming linker sequence (GCGGGGACGC). An example of the Mfold

output is shown in Figure 3.18C for the top scoring bantam miRNA target site that we had

previously identified in the 3’ UTR of hid (Brennecke et al., 2003).

The Mfold free energy of folding ( G) was determined for each predicted target, which

allows predicted sites to be ranked according to G. However, G depends on miRNA length

and GC content, so it is not possible to distinguish systematically real targets from random

matches using the raw G score, or to compare different miRNAs. Instead, we calculated Z-

scores as a measure of non-randomness, with an average random site scoring Z=0. Figure

Figure 3.18: miRNA target prediction strategy. (A) let-7, lin-4 and bantam miRNA sequences showing the
pattern of base pairing to their known targets (yellow: conventional base pair; orange: G:U base pair; blue:
mismatch, black bars: insertions in the target; all sequences at the length of the miRNA). (B) Quantitation of
the data from (A): the 5’ ends of the miRNA are always well paired to the target, suggesting searches for
complementarity to the first 8 residues of the miRNA. (C) Graphical representation of the Mfold output for
bantam and a target site from the 3’ UTR of its target hid.  To use Mfold it is necessary to join the predicted
target site (red) and the miRNA (blue) into a single sequence using a hairpin-forming linker sequence. In this
example the target sequence and the miRNA are the same length, so the additional 5 nt in the tail of the
predicted target sequence are not shown. (D) Plot of the Mfold free energy distribution for 10,000 random
sequences (green) and for predicted targets of the bantam miRNA (red). X-axis: DG calculated for each site by
Mfold.
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3.18D shows the distribution of folding energies for predicted targets of the bantam miRNA

compared to 10,000 randomly selected target sequences.

Most of the previously validated targets have more than one predicted miRNA-binding site in

their 3’ UTRs. The use of Z-scores allows us to add the scores of several sites within one

UTR by selecting only those scores that are different from background matches. This is not

possible with G alone because even average random matches have favorable energy values

(Figure 3.18D) and the sum of several average random matches in a UTR could score better

than a single true site. We selected Z=3 as a cutoff value as folding energies of more than

three standard deviations above the mean (Z 3) are expected to occur for only 0.3% of

random matches. Use of a higher Z-score increases the likelihood that predictions are correct,

but also increases the risk of missing out contributions from real sites of lower folding energy.

For example, only three of the five conserved bantam sites previously identified in the hid 3'

UTR score Z 3 (with the best site at Z=7.4). We evaluated our predictions by the best single

site in the 3’ UTR (Zmax) and by the sum of sites with Z  3 (ZUTR).

3.5.3 Tests with previously validated targets

Table 3.1 summarizes the performance of the method in predicting the known targets of the C.

elegans miRNAs lin-4, let-7 and the Drosophila miRNA bantam. The Drosophila hid gene

was ranked first of all predicted bantam targets sorted by the single best site (Zmax) or by the

sum of sites (ZUTR). All of the known targets of lin-4 and let-7 were found when their 3’

UTRs were added to the Drosophila 3’ UTR database. Like hid, the let-7 target lin-57 ranked

near the top of the list by both measures: lin-57 ranked first by ZUTR due to several predicted

sites with Z 3 and its best single site ranked in position 2 (Z=6.8). C. elegans lin-14 was

predicted to contain multiple lin-4 sites (Lee et al., 1993; Wightman et al., 1993). Three of

these scored Z 3. lin-14 was ranked first when the list of predicted lin-4 targets was sorted for

ZUTR although the best single site in lin-14 placed it in position 20 (Z=4.3). The lin-4 target

lin-28 and the let-7 target lin-41 ranked highly when the lists were sorted for the best single

site, but ranked lower when multiple sites were combined because they had few high-scoring

sites. The Drosophila homolog of lin-41, dpld, also ranked high among let-7 targets (Z=5.6,

see below). We compared our results with previous target predictions from the literature that

have not been experimentally validated (Table 3.1). Our screen supports some of them (e.g.

let-7 regulating lin-14), but we consider others unlikely because they rank very low on their
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lists or have no sites of Z 3 (e.g. let-7 and lin-28 or miR-4 and m4. The predicted miR-14

target Drice (Xu et al., 2003) is unlikely to be valid because the site is not conserved in the

predicted Drice 3’ UTR from D. pseudoobscura.

This analysis shows that all known targets were detected and ranked among the top scoring

predictions in genome-wide searches. This suggests that other valid targets should rank

among the small number of best predictions that can be tested experimentally. Of particular

interest were three miRNAs for which we predicted clusters of functionally related targets:

miR-7, the miR-2 family and miR-277 (Table 3.2 and Table 3.3). Clustering of top-scoring

sites in a group of related genes is likely to be significant when it arises from an unbiased

genome-wide analysis. miR-7 and miR-2 were selected for target validation.

3.5.4 miR-7 regulates Notch targets

Among the top ten predictions for miR-7, we found Enhancer of split (E(spl)) and Bearded

(Brd) complex genes (Figure 3.19A). HLHm3 encodes a basic-helix-loop-helix (bHLH)

transcriptional repressor; Tom and m4 encode Brd family proteins. The bHLH repressor hairy

miRNA/target pair G ZMax Rank ZMax #  Z 3 Rank ZUTR References

Confirmed Pairs

lin-4/lin-14 -29.9 4.3 20 3 1 (Wightman et al., 1993)
lin-4/lin-28 -30.9 4.6 8 1 15 (Moss et al., 1997)
let-7/lin-41 -32.3 6.4 3 2 20 (Reinhart et al., 2000)
let-7/lin-57 (hbl-1) -33.4 6.8 2 14 1 (Abrahante et al., 2003;

Lin et al., 2003)
bantam/hid -37.4 7.4 1 3 1 (Brennecke et al., 2003)

Predicted Pairs

lin-4/lin-41 -28.9 4.0 32 1 36 (Slack et al., 2000)
lin-4/lin-57 -21.6 1.7 361 0 - (Abrahante et al., 2003;

Lin et al., 2003)
let-7/lin-14 -35.1 7.2 1 13 2 (Reinhart et al., 2000)
let-7/lin-28 -20.6 2.8 861 0 - (Moss & Tang, 2003)
miR-13a/hb - - - 0 - (Abrahante et al., 2003)
miR-4/hb - - - 0 - (Abrahante et al., 2003)
miR-3/hb - - - 0 - (Abrahante et al., 2003)
miR-11/HLHm8 -29.4 4.7 27 1 46 (pred. UTR) (Lai, 2002)
miR-4/m4 -21.5 2.1 272 0 - (Lai, 2002)
miR-7/HLHm3 -37.3 7.0 2 1 16 (Lai, 2002)
miR-7/Tom -34.5 6.1 5 2 1 (Lai, 2002)
miR-14/Drice - - - 0 (not conserved) (Xu et al., 2003)

Table 3.1: Assessment of predictions for known and predicted miRNA Targets (see text for details).
Confirmed pairs are experimentally validated, predicted pairs are predicted in the cited reference. The
predicted pairs let-7/lin-14, lin-4/lin-41, miR-11/HLHm8, and the two miR-7 targets seem plausible whereas
miR-14/Drice and predictions for hunchback (hb) seem unlikely according to our method.
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was also among the top ten. These sites were conserved in the orthologous genes from

Anopheles, when those could be identified (e.g. for m4, hairy, HLHm3) or even found in two

additional insects: Drosophila simulans and the flour beetle Tribolium castanaeum (hairy).

This prompted us to examine all the genes in E(spl) and Brd complexes for miR-7 sites. We

found possible target sites in many of them. Alignment of these sites showed a pattern of 5’

end conservation quite similar to that for validated targets, with no mismatches and few G:U

base pairs for about half of these genes (Figure 3.19B). Julius Brennecke assessed the validity

of some of these predictions experimentally (see Stark et al., 2003a). Expression of miR-7 in

transgenic flies caused a clear downregulation of an EGFP (enhanced green fluorescent

protein) reporter bearing either the m4, hairy, or HlHm3 3’UTR suggesting that all three are

valid targets. In addition, we observed phenotypes reminiscent of Notch mutant flies such as

Figure 3.19: Experimental validation of miR-7 targets. (A) Schematic representation of the E(spl) and Brd

gene complexes highlighting bHLH-type transcriptional repressors (red) and Brd-type proteins (blue). Black
asterisks indicate likely valid miR-7 targets with no mismatch in the first 8 residue. (B) miR-7 miRNA
sequence showing the pattern of base pairing with target sites in E(spl) and Brd complex genes ranked
according to folding energy (details as in Figure 3.18). (C-G) Experimental validation (J. Brennecke, see Stark
et al., 2003a for details) (C) Expression of the miR-7 sensor transgene (both panels, green) is lost when miR-7

is present (left, red). Right panel shows the miR-7 sensor alone. (D, E) Expression of the m4 3’ UTR and hairy
3' UTR sensor transgenes (green) are down-regulated by miR-7 (red). Cut protein (top: blue, botton: white)
was down-regulated in miR-7 expressing cells. (F) Alignment of miR-7 target sites in the 3’ UTRs of hairy

from several species (asterisks: identical nucleotides (nts); black type: nts paired to the miRNA; grey shading:
miRNA binding site conserved in all species. (G) Cuticle preparations of a wild type adult wing and a wing
expressing miR-7 under ptc-Gal4 control in the region between veins 3 and 4. Note the notching of the wing,
and the reduction of the region between veins 3 and 4 leading to partial fusion proximally. The size of the
posterior compartment was increased apparently to compensate for reduction of the vein 3-4 region.
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notching of the wing margin or a reduced spacing of veins 3 and 4 (Baonza & Garcia-Bellido,

2000; de Celis & Garcia-Bellido, 1994; Diaz-Benjumea & Cohen, 1995; Micchelli et al.,

1997; Rulifson & Blair, 1995) and noticed reduced levels of Cut protein, whose expression is

dependent on bHLH transcription factors and Brd-like genes of the E(spl) complex

(Ligoxygakis et al., 1999). miR-7 expression could provide a means to simultaneously down-

regulate these and other proteins, that might otherwise function redundantly to mediate Notch

activity in the wing margin. Taken together, these findings support the prediction that the

miR-7 miRNA regulates expression of bHLH and Brd-like proteins encoded by hairy and the

E(spl) and Brd complex genes and implicates miR-7 as a possible regulator of Notch target

gene expression. A more detailed analysis of the physiological function of miR-7 will require

isolation of lack-of-function mutations in the miR-7 gene.

Lai has reported complementarity between some miRNAs and sequence elements known as K

boxes, Brd boxes and GY boxes in the 3’ UTRs of E(spl) and Brd complex genes (Lai, 2002).

K boxes and Brd boxes have been implicated in post-transcriptional regulation, though no

function was assigned to the miR-7 complementary GY boxes (Lai et al., 1998; Lai &

Posakony, 1997). The presence of GY boxes in several E(spl) and Brd complex genes as well

as in hairy and extramachrochatae (emc) has been reported (Lai & Posakony, 1998). Based

on the presence of these boxes, Lai predicted miR-7 target sites in HLHm3 and in Tom (Lai &

Posakony, 1998). We extend these predictions to a much larger gene family and provide

experimental validation for some of them, indicating that GY boxes participate in the

regulation of Notch target genes.



miR-7 G Z(max) # Z  3 Z(UTR) Gene Alignment Flags Ag Z 3

1 -38.7 7.47 1 7.82 CG14989-RB ACAGCAGAAUCACGC-AGGG-CUUCCA

UGUUGUUUUAGUG--AUC--AGAAGGU

***+**+******---**---******

- +

2 -37.3 7.03 1 7.40 HLHm3 GCAACAAGAUCCGUU----GUCUUCCA

UGUUGUUUUAG----UGAUCAGAAGGU

+******+***--------********

- NF

3 -35.3 6.39 1 6.81 CG17657-RA ACAACGGUUAAG---CGCUGCGUCUUCCA

UGUUGUU-----UUAGUGAU-CAGAAGGU

*****++--------*+**+-********

- NF

4 -35.0 6.29 1 6.72 hairy ACAGCAAAUCAG--CAAA--AGUCUUCCA

UGUUGUUU----UAGU--GAUCAGAAGGU

***+****------**----*********

- +

5 -34.5 6.13 2 11.78 Tom -UAGCC-GAAUCAUU-GUCUUCCA

UGUUG-UUUUAGUGAUCAGAAGGU

-+*+*--+*****+*-********

- +

6 -33.9 5.94 1 6.39 hep GCAGCAACAGUCGC-AGUUUUUCA

UGUUGUU-UUAGUGAUCAGAAGGU

+**+***-*+**+*-***+**+**

5’cons

CDS+

NF

7 -33.8 5.91 1 6.36 CG8944-RA ACGACAAGAUCAAGCGCUACGUCUG-CCA

UGUUGUUUUAG----UGAU-CAGA-AGGU

**+****+***----+***-****--***

5’helix

CDS+

NF

8 -33.1 5.68 1 6.15 CG10540-RA -CGACAAAGCG--GCCCAAUAGUCUUCCA

UGUUGUUUU--AGUG----AUCAGAAGGU

-*+*****+----+*----**********

- -

9 -31.8 5.27 1 5.76 CG10444-RA GCGACC-AAAA-CAG--AGUCUUCCA

UGUUG-UUUU-AGU-GAUCAGAAGGU

+*+**--***--**---*********

- NF

10 -31.5 5.17 1 9.29 m4 -CAGCUUU--AAUCAAC---GUCUUCCG

UGUUG---UUUUAGU--GAUCAGAAGGU

-**+*-----*****-----*******+

- +

miR-2a G Z(max) # Z  3 Z(UTR) Gene Alignment Flags Ag Z 3

1 -39.0 6.78 2 11.85 CG1969-RB ----------GCUGGCUGGC-GGUG

CGAGUAGUUUCGACCGAC--ACUAU

----------********---*+*+

5’cons

5’helix

mispairing

NF

2 -38.6 6.66 1 6.66 CG4269-RA GCUCCUG--CAU-GGAUUGGCUGUGAUA

CGAG---UAGU-UUC-GACCGACACUAU

****-----**--+*-+***********

- -

3 -38.0 6.49 1 6.49 reaper -CUCAUCAAAGCGA---UUGUGAUA

CGAGUAGUUUCG--ACCGACACUAU

-***********-----+*******

- NF

4 -34.3 5.42 1 5.42 GLaz GCUUUGAU----GAGC--GCUGUGAUA

CGAG----UAGUUUCGACCGACACUAU

***+--------+***--*********

mispairing -

5 -33.5 5.19 1 5.19 BG:DS05899.3 GUUCAUCCCUU--GGCGUUG-GGCUGUGU-UA

CGAGUAG----UUUCG----ACCGACAC-UAU

*+*****------+**-----*******--**

5’helix NF

6 -33.2 5.1 1 5.1 Scr GCUCGGUG-GGAGUG-GGUG-GUGGUG

CGAGU-A-GUUUCG-ACCG-ACACUAU

****+-*--++**+--**+--***+*+

- -

7 -33.0 5.04 1 5.04 hbs ---CAUGCGGC-GCUCGAAGGCUGUGAUA

CGAGUA-GUU-UCGA----CCGACACUAU

---***-*++--***----**********

- -

8 -32.8 4.99 1 4.99 amon GUUCAA-UAAAAGUGCUGGCUGUG---

CGAGU-AGUUU---CGACCGACACUAU

*+***--+***---**********---

5’helix -

9 -32.5 4.9 1 4.9 grim GCUCAAUCAAAGCGCA---UUGUGAU-

CGAGU-AGUUUCG---ACCGACACUAU

*****-*******------+******-

- NF

10 -32.1 4.78 2 8.01 CG7187-RA GCUUUGAU----GAGC--GCUGUGGUG

CGAG----UAGUUUCGACCGACACUAU

***+--------+***--******+*+

5’cons

mispairing

NF

Table 3.2: Top Ten Predictions for miR-7 and miR-2a G, Zmax and ZUTR are explained in the text. Alignment:

top: target site; middle: miRNA; bottom: *, conventional base pair; +, G:U base pair, -, mismatche or gap.

Flags: The “5’ conservation” flag identifies sites that differ in the two genomes at any residue complementary

to positions 2 to 7 of the miRNA (5’cons). The “5’ helix” flag identifies sites that do not have at least 6

contiguous base pairs in positions 1-8. The “CDS+” flag indicates that the predicted site overlaps coding

sequence on the same strand; “CDS-” indicates that the overlap is on the opposite strand. In some cases Mfold

structures include base pairs that are not between the miRNA and its target. “Mispairing” flags sites with

artificially high folding energies. Ag (Z 3): Anopheles genes that cannot be reliably identified by our criteria

are indicated “NF”. For the cases where the orthologous Anopheles gene was found, the presence of a target

site with Z 3 is indicated (+, otherwise -). Heavy outlining indicates those loci that would pass stringent

filtering of the lists using the flags and lack of a conserved target in an Anopheles ortholog.
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3.5.5 miR-2 regulates pro-apoptotic genes

The pro-apoptotic genes reaper

and grim  were among the top

predictions for miR-2a and miR-2b

(Table 3.2). reaper, grim and the

third pro-apoptotic gene sickle are

clustered in the genome and show

blocks of high conservation in

their 3’ UTRs, which include the

miR-2 family target sites (Figure

3.20A). The putative miRNA-

binding site is very similar

between the three genes

suggesting an identical RNA-

complex structure (Figure 3.20B).

The corresponding sites are highly

similar in D. pseudoobscura, but

the orthologous genes cannot be

identified in Anopheles. We could

again show a miRNA dependent

downregulation of a 3’UTR EGFP-reporter by miR-2 in transgenic flies (grim, sickle) or

Drosophila Schneider S2 cells (reaper, Figure 3.20). The miR-13 family is similar in

sequence to the miR-2 family. Experimental validation will be needed to determine if reaper,

grim and sickle are also regulated by miR-13. Identification of reaper, grim and sickle as

targets suggests that miR-2 family miRNAs may be involved in control of apoptosis.

3.5.6 Statistical Evaluation of Target Predictions

Although a number of the top-ranking sites identified in our screen have been experimentally

validated, we wanted to assess the likelihood that sites with equivalent scores can be found by

chance. To do so I calculated E-values for the bantam miRNA based on the tail of the

cumulative distribution of G values for 10,000 random matches. An E-value predicts the

number of background matches with a similar or better score (E-values scale with database

Figure 3.20: Experimental validation of miR-2 targets. (A) 3’UTRs
of reaper, grim and sickle highlighting blocks of high sequence
similarity between D. melanogaster and D. pseudoobscura

(underlined: pedicted miR-2/13 target sites). (B) Alignment of
predicted miR-2/13 target sites in the reaper, grim and sickle 3’
UTRs with associated Z-scores. (C-E) Experimental validation (J.
Brennecke, for details see Stark et al., 2003a) (C) Immunoblot
probed for GFP and Tubulin of S2 cells transfected to express an
EGFP-reaper 3' UTR construct (lane 2) or a comparable construct
from which the miR-2a site has been deleted (lane 3; lane 1: control
with empty vector). (D, E) Expression of the grim and sickle 3’
UTR sensor transgenes (green) were down-regulated by miR-2b

(red).
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size and are applicable to any distribution

profile; see Introduction). The results are

presented on a logarithmic scale for UTRs

containing 1, 2 or 4 sites of a given G

value (Figure 3.21). The best single

bantam site in the hid UTR had an E-

value of 1.3. This means that background

matches reach RNA-duplex energies

similar to the best sites, even in the

smaller conserved 3’ UTR database.

Indeed, target sites predicted using

shuffled bantam miRNA sequences give folding energy distributions very similar to the

native sequence (not shown). Although single sites are not statistically significant, the

presence of multiple sites within a single UTR can greatly increase the significance of the

prediction. Combining the three bantam sites (Z>3) predicted in the hid 3’ UTR gives an E-

value of 1.8x10-5. Some single sites are sufficient to mediate regulation by a miRNA,

however, we emphasize that the lack of statistical significance for even the best single site

means that they require experimental validation.

3.5.7 Additional validation by cross genome comparison

One means to improve the significance of the predictions would be to require conservation in

a third genome. The two Drosophila species are separated by an estimated 30 million years.

The mosquito Anopheles gambiae is separated from Drosophila by 250 million years.

Orthologous mosquito genes have been defined for approximately two-thirds of Drosophila

genes, however, systematic comparison showed great differences in length between

orthologous gene pairs (Zdobnov et al., 2002). Indeed we were able to identify orthologous

last exons with confidence for only half of these pairs, or one-third of D. melanogaster genes.

We have therefore chosen to use conservation in Anopheles to provide a more stringent

evaluation of target site conservation, instead of requiring it generally. The presence of a

conserved site with a high Z-score across all three genomes increases the confidence that the

site is functional. To illustrate the utility and limitations of this we examine the top 100

predictions for miR-7 and miR-2. The Anopheles orthologs were identified for 52 of the top

100 predicted miR-7 targets. Eleven of these had conserved target sites (Z 3), including four

Figure 3.21: Statistical evaluation of predicted targets.
Plot of E-values as a function of free energy of folding
predicted by Mfold. E-value plots are shown for one,
two, and four sites of equal energy. The position of the
best bantam site in hid is shown for reference.
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of the top ten predictions, hairy, Tom, m4 and CG14989 (Table 3.2). For miR-2a 40 of the top

100 predictions had a detectable ortholog in Anopheles. Five of these sites were conserved in

Anopheles (Z 3), and none of these were among the top ten predictions. Conservation in

Anopheles can thus be used to find sites with a higher probability of being valid, but increases

the risk of missing real targets. It is only useful in cases where the orthologous UTR region

can be identified, which is not the case for the validated miR-2a targets grim, reaper and

sickle.

Figure 3.22: Valine, Leucine, and Isoleucine Catabolic Pathway (adopted from KEGG). Predicted miR-277
targets conserved in Anopheles are boxed (red: Z>3, blue: Z>2), other enzymes that are known in
Drosophila are shaded in green.
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3.5.8 miR-277 is a putative metabolic switch

Table 3.3 shows predicted miR-277 targets that are conserved (Z 3) in Anopheles. Seven of

the top eleven are enzymes involved in branched chain amino acid degradation and two

additional enzymes were identified at more relaxed stringency (Z 2), along with a number of

unrelated loci (Figure 3.22). This striking clustering of functionally-related enzymes suggests

that miR-277 regulates the pathway for valine, leucine and isoleucine degradation by down-

regulating many of its enzymes and thus acts as a metabolic switch. The degradation of these

essential amino acids is presumably regulated under conditions of starvation or excess dietary

intake. miR-277 expression has so far only been detected in adult flies (Aravin et al., 2003;

Lai et al., 2003) suggesting a role in regulating metabolic responses to environmental

conditions. Interestingly, the human homolog of CG8199 is mutated in maple syrup urine

disease. It remains to be determined if these enzymes are regulated by miRNAs in vertebrates.

3.5.9 Features shared by validated targets

Comparison of the five previously validated targets and the six new targets validated here

revealed three features shared by all sites. (1) Cross-genome comparison showed perfect

sequence identity in the target site residues that base pair with residues 2-8 of the miRNA

(Figure 3.17). This was also true for the newly validated target sites (data not shown). (2) The

pattern of base pairing between the miRNAs and their targets shown in Figure 3.18A

suggested that a continuous helix of at least six of the first eight base pairs might be required

(allowing for G:U base pairs). This was also true for the newly validated target sites (Figures

Rank Gene Function Enzyme # Z 3 ZUTR

1 CG31651 Protein GalNAc transferase EC:2.4.1.41 2 7.31

2 CG5599 Val Leu Ile degradation EC:2.3.1- 2 6.53

3 CG1673 Val Leu Ile degradation EC:2.6.1.42 1 5.75

4 fz Cell polarity 1 4.89

5 CG8199 Val Leu Ile degradation EC:1.2.4.4 1 4.53

6 CG18549 - 1 4.23

7 CG1140 Val Leu Ile degradation EC:2.8.3.5 1 3.9

8 scu Val Leu Ile degradation EC:1.1.1.35 1 3.81

9 CG15093 Val Leu Ile degradation EC:1.1.1.31 1 3.79

10 CG7740 Membrane protein 1 3.64

11 CG17896 Val Leu Ile degradation EC:1.2.1.27 1 3.61

Table 3.3: Top miR-277 targets include many enzymes from the valine, leucine, isoleucine degradation
pathway (required: Z 3  D. melanogaster, D. pseudoobscura, Anopheles).
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3.19B and 3.20B). (3) Many transcripts in the D. melanogaster genome overlap other

transcripts on the same strand or on the opposite strand of the DNA. There are many examples

of alternate splicing that produces alternate 3' UTRs, so that one UTR variant may include

coding exons from another variant. In such cases the basis for the sequence conservation

between genomes is unclear. None of the validated sites from Drosophila overlaps coding

sequence on either strand (this feature was not examined for the C. elegans sites).

Target sites that do not share these features are indicated in Table 3.2. These features can be

used to increase the stringency of the screen, by discounting sites that differ from validated

targets. For miR-7 this would eliminate two of the top ten predictions so that the validated

targets would constitute three of the remaining top eight predictions. For miR-2a this would

eliminate four of the top ten predictions, so that the validated targets reaper and grim would

rank in positions two and six. We have chosen not to implement the flags as filters to exclude

predictions because they are based on a relatively small set of eleven validated targets.

Although, we note that all nine predicted miR-277 targets would pass such a filter. When

more targets are validated we will learn if these features have a general predictive value.

3.5.10 Discussion

One of the major limitations in studying animal miRNA function is the difficulty in

identifying their targets. Our screening strategy has proven to be useful for predicting new

miRNA targets. Three new targets have been experimentally validated for miR-7 and for miR-

2, bringing the total number of validated targets of animal miRNAs to eleven. In addition we

predict a number of miRNA/target pairs or target families that seem likely to be valid, but

require experimental validation. Our study depended on the high quality annotation of the D.

melanogaster genome and the availability of the D. pseudoobscura genome sequence. Where

possible we have extended the analysis to include evaluation of predicted sites in the

Anopheles gambiae genome. More complete annotations of the fly and mosquito genomes,

aided by cDNA sequencing projects, will increase the number of genes for which orthologous

UTR sequences can be defined. This will permit more sensitive and more extensive cross

genome comparison.

We have made a number of assumptions based on the inspection of known targets in

designing the screen and it remains to be determined if all of them will prove to be generally
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applicable. For example, as all previously known animal miRNA target sites are located in 3’

UTRs of protein coding genes, we restricted our screen to these sequences (as were all similar

approaches, see below). However, we also find sites with similar scores in coding sequences,

in 5’ UTRs and indeed through DNA sequence in general. It remains to be determined

whether miRNAs can act to control translation via these sites such as RNAi can act via sites

in the coding region (e.g. Kasschau et al., 2003; Llave et al., 2002; Tang et al., 2003). The use

of whole transcriptome or whole genome databases would greatly increase the search space,

which might bury valid targets among background matches. Based on the observation that

miRNA target complementarity was best for the first eight residues of the miRNA in the

previously known examples, we searched for complementarity only to these residues.

However, we noticed that miRNA-mRNA duplexes with preferential pairing in the 3’ end or

middle regions had Mfold energies similar to our predictions (not shown) but it is currently

unknown whether such sites function with a given miRNA, or more importantly, whether

some miRNAs might indeed favor them. On the other hand, the unknown requirements for

functional pairing also mean that some of our predictions might not be functional and we

expect improvements in specificity to come from a more precise understanding of the

structural requirements for miRNA/target pairing.

In designing the screening strategy we considered the balance between sensitivity and

specificity. We chose a search strategy that was based on the known examples, but

generalized to allow detection of similar targets. By doing so, we risk missing fewer valid

targets at the expense of including more false positives, as indicated by our statistical analysis

(Figure 3.21). This enabled us to detect all known miRNA targets and to predict clusters of

functionally related targets, not detected by other methods with more stringent requirements

(see below). To help distinguish false positives from potentially valid targets we identify

features shared by valid targets and, where possible, test predictions for conservation in a

third, more distantly related, genome. Both positive and negative results in tests of new

predictions will provide a better understanding of how miRNAs bind their targets, perhaps

highlighting positions that are particularly critical, which will permit high sensitivity and

specificity for future target prediction methods.

Complete tables of target site predictions are available on the web at www.miRNA.embl.de.

These tables report Z-scores and sequences for the D. melanogaster, D. pseudoobscura target

sites and where possible for the Anopheles target site. The tables contain flags to identify sites
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that share the features described above. We recommend using these flags to filter the lists, but

note that this may exclude valid targets. We recommend making use of the Anopheles data to

discount predictions where the orthologous gene is identified and the site is absent or has a

low Z-score (Z<2).

The presence of a conserved site in all three genomes increases the confidence that a predicted

site is valid, as in the case of the miR-7 sites in hairy and Tom. Also, dpld, the Drosophila

homolog of the let-7 target lin-41, ranks second among Drosophila let-7 targets when

conservation in Anopheles was required. A number of other target predictions that meet these

requirements look quite promising. We have high confidence that the cluster of enzymes in

the branched-chain amino-acid degradation pathway will prove to be valid miR-277 targets.

Another promising candidate is the predicted miR-9a target Lyra. Lyra contains two predicted

miR-9a sites. The best Lyra site ranks first among all predicted miR-9a targets that are

conserved in Anopheles. Intriguingly, mutations affecting the Lyra 3’ UTR lead to a dominant

phenotype and to increased Lyra protein levels, an observation that strongly suggests that

Lyra is subject to translational regulation. miR-9 is an excellent candidate to mediate this

regulation. Many other miRNA/target pairs are identified with sites of a similar quality to

those mentioned here (examples include four conserved sites for miR-309 in Ets65a at Z 2).

Interestingly, we found that many genes are predicted to be regulated by different miRNAs.

An outstanding example is nerfin-1, which has binding sites in its 3’ UTR for bantam, miR-

9b, miR-5, miR-279, and miR-286, many of which are conserved in Anopheles. Regulation of

nerfin-1 by miRNAs is also expected from the observation that nerfin-1 mRNA is

ubiquitously present during the embryonic development of the central nervous system,

whereas the protein is only expressed in neuronal precursor cells (A. Kuzin et al.,

unpublished). This shows, that miRNAs are probably involved in nervous system

development and that miRNAs seem to form complex regulatory networks as one miRNA can

regulate several targets, but one gene can also be regulated by several miRNAs.

Although it is more difficult to distinguish functional sites from false positives in the cases

where only two genomes are compared, we have made use of clustering of related genes to

identify real targets. reaper grim and sickle have been validated as miR-2 targets. We note

that the Netrin receptor unc-5 and Netrin-A rank second and fourth among predicted miR-288

targets. We observe an abundance of transcription factors among the predicted targets of miR-

9, miR-279 and miR-286 for which orthologous UTRs were not identified in Anopheles.
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Our statistical analysis shows that the very best single predicted target sites are not

statistically significant, even though we have used a reduced database consisting of conserved

3’ UTR sequences. This means that prediction of any single target site cannot be taken as

evidence for regulation of a transcript by a miRNA without experimental validation. Sites that

are not statistically significant alone can be significant when combined. For example,

although none of the bantam sites are significant individually, their combined scores are

highly significant and supported by experimental validation. 3’ UTRs with multiple predicted

target sites are likely to be valid targets for regulation by the miRNA, particularly if their best

single sites also rank high in the lists of predicted targets. Despite the advantages conferred by

multiple sites, single miRNA target sites can mediate regulation in vivo. The C. elegans lin-4

miRNA appears to regulate its target lin-28 through a single site (Moss et al., 1997). We have

presented evidence that miR-2 family miRNAs can regulate expression of transgenes

containing the 3’ UTRs of reaper and grim, which have one predicted target site, as well as

the sickle 3’ UTR, which has two predicted sites. Similarly, miR-7 can regulate expression of

transgenes containing the HLHm3, m4 and hairy 3’ UTRs, which have one predicted target

site. Further work will be needed to gain insight into what makes some single sites functional

and others not. One possibility is that a single site for one miRNA might function in

conjunction with independent target sites for other miRNAs in the same UTR. Indeed, a

survey of our lists of target predictions indicates that many 3’ UTRs are predicted to contain

binding sites for more than one miRNA.

Recently, other studies on miRNA target prediction in Drosophila and mammals have been

reported (Enright et al., 2003; Lewis et al., 2003; Rajewsky & Socci, 2004). Enright et al.

(2003) use a sequence alignment algorithm to find sites complementary to the miRNA in 3’

UTRs from D. melanogaster and D. pseudoobscura. The algorithm allows for G:U pairing,

rewards complementarity in the 5’ region of the miRNA and applies empirical filters similar

to our flags. For conserved sites, the miRNA:target duplex energy is evaluated with an RNA

secondary structure program. The authors used shuffled sequences to estimate that their

screen has a false positive rate of about 35% that however improves when multiple sites per

target UTR are required (see our statistical evaluation). They found that genes involved in

transcriptional and translational control, cell adhesion, enzyme regulation and apoptosis were

overrepresented among the predicted targets and discussed implications for body axis

specification, ecdysone signalling and development. However, as none of the putative targets
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have been validated experimentally, predictions have to be treated with caution. Rajewsky and

Socci (2004) directly hybridised Drosophila miRNAs to 31 developmental genes involved in

body patterning and found (unsurprisingly) that the genes are probably targeted by some of

the 74 known miRNAs. Lewis and co-workers predicted miRNA targets that are conserved

across three mammalian species (human, mouse, and rat) using a method that combines

sequence comparison and evaluation of RNA-binding energy similar to ours (Lewis et al.,

2003). Because of more stringent criteria during the search, they cannot detect all known

targets but achieve a statistical signal indicating that two-thirds of their predictions should be

correct. Indeed, experimental tests in cell culture showed that 11 out of 15 predicted sites had

an influence on the expression levels of a reporter gene. Although the authors found many

genes involved in transcription and regulation of transcription among their predictions, their

prevalence was not as pronounced as in plants where nearly all known miRNAs target

transcription factors. This indicated that animal miRNAs act in a broad diversity of biological

processes.

All methods are very similar to the one described here and all together, they show that

miRNA targets can be predicted computationally, which will be of great help for miRNA

research. Ongoing work to refine the structural requirements (e.g. Doench, et al., unpublished;

Brennecke, et al., unpublished) will improve the sensitivity and specificity of these methods

and lead to a better understanding of miRNA function.
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3.6 Other Projects

For my thesis, I also worked on other projects in collaboration with people from our group or

other groups at the EMBL-Heidelberg. As these are not directly related to my main projects

and the collaborators contributed more to the overall results, I will only summarize the main

findings and refer to the resulting publications for further information. The publications

corresponding to the following chapters are:

R. Metivier, A. Stark, G. Flouriot, M.R. Huebner, H. Brand, G. Penot, D. Manu, S. Denger, G. Reid, M. Kos,

R.B. Russell, O. Kah, F. Pakdel, F. Gannon; A Dynamic Structural Model for Estrogen Receptor-alpha

Activation by Ligands, Emphasizing the Role of Interactions between Distant A and E Domains. Molecular Cell,

10, 1019-1032, 2002.

J. Brennecke, D.R. Hipfner, A. Stark, R.B. Russell, S.M. Cohen; Bantam encodes a developmentally regulated

microRNA that controls cell proliferation and regulates the pro-apoptotic gene hid in Drosophila. Cell, 113, 25-

36 , 2003.

P. Aloy, A. Stark, C. Hadley, R.B. Russell; Predictions without templates: New folds, secondary structure and

contacts in CASP5.  PROTEINS: Struct. Funct. Genet., 53, 436-456, 2003 (CASP5 special issue).

P. Aloy, H. Ceulemans, A. Stark, R.B. Russell; The relationship between sequence and inteaction divergence in

proteins.  J. Mol. Biol., 332, 989-998, 2003.

3.6.1 Estrogen receptor: a case study

Estrogen receptors (ER  and ER ) are cellular receptors for the steroid hormone estradiol that

plays a pivotal role in the female reproductive tract physiology and is important for the

homeostasis of other tissues (Feigelson & Henderson, 1996; Nilsson et al., 2001). They

belong to the superfamily of nuclear receptors and are composed of six modular domains, A

to F. ERs bind to DNA at specific estrogen response elements with the C domain (DNA

binding domain) and two activation functions (AFs) are located in the B-domain and the C-

terminal D – F domains; the E domain is the ligand-binding domain (LBD). In contrast, a

specific role for the N-terminal A domain was unknown. Some evidence for its function came

from a short ER  variant expressed in fish but also in some human cell types that lacked the

A domain and showed transcriptional activity in the absence of ligand (Flouriot et al., 2000;

Pakdel et al., 2000). Previous work demonstrated that the A domain interacted with the LBD
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in the absence of ligand suggesting a possible mechanism for a function in silencing ligand-

independent ER  activities (Metivier et al., 2000).

I used the available sequence and structural data to detect possible determinants for the

interaction of the A domain and the LBD that were then tested experimentally. We showed

that the interaction depended on charged residues and on a hydrophobic helix that were

conserved in multiple sequence alignments of A domains from different species. Inspection of

the LBD structure suggested that the A domain might compete with the ER  C-terminal helix

and corepressors for the same binding site. R. Metivier (F. Gannon’s group) experimentally

validated this model and showed that mutations in the identified interaction sites had

consistent effects on the A domain binding and on ER  activity. We could thus propose a

model that integrates different domain functions and provides insight into the dynamic

structure of the full-length ER  when bound to different ligands (Metivier et al., 2002).

3.6.2 The miRNA Oncogene Bantam

The Drosophila bantam locus was identified in a gain-of-function screen for genes that affect

tissue growth. Artificial overexpression of the genomic region leads to tissue overgrowth by

an increase in cell number. Conversely, flies lacking about 21 kb in this region grew poorly

and died as early pupae (Hipfner et al., 2002). The bantam region does not contain any

predicted protein coding genes, but we found a highly significant similarity (30/31

nucleotides) to the Anopheles gambiae genome. An alignment of the two genomic sequences

showed a block of about 90 nucleotides with considerable similarity. Both sequences were

predicted to form stable hairpin structures characteristic for miRNA-precursors (see

Introduction). Experiments showed that the mature miRNA and the precursor are indeed

present in flies and that a short sequence containing the predicted precursor could rescue

bantam mutants and reproduce the overexpression phenotype. J. Brennecke (Stephen Cohen’s

group) also showed that the spatial expression of bantam correlates with cell proliferation and

that bantam can rescue cells from undergoing apoptosis. Using an earlier version of the target

prediction method described in this thesis, I predicted the pro-apoptotic gene hid to be a

potential bantam target and J. Brennecke showed experimentally that this is true. bantam was

the first miRNA found outside nematodes and extended miRNA function from developmental

timing to regulation of cell proliferation and apoptosis. As it is able to stimulate proliferation

and also prevents apoptosis, it is the first miRNA oncogene to be discovered.
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3.6.3 CASP5 – Assigning Structures to Sequences

In Autumn 2002, our group assessed the CASP5 (Critical Assessment of Structure Prediction)

predictions in the new fold category, i.e. for proteins that adopt a structure not observed

before. We considered a total of 4840 models from 165 groups for five targets with new folds

and eight lying on the borderline to fold recognition or threading (see Introduction). Our

detailed visual and numerical inspection showed that the quality of the best predictions was

very good: for nearly every target at least one group predicted a structure close to the correct

one. The group of David Baker that used a method based on fragment assembly (Bradley et

al., 2003; Chivian et al., 2003, see Introduction), proved to be best overall, but we also saw

high quality and consistency from others, suggesting that the community is moving toward

general procedures to predict accurate structures for proteins showing no resemblance to

anything seen before. We did not find secondary structure predictions significantly improved

since CASP4 (Lesk et al., 2001) and the good performance of most groups suggests that the

limits of accuracy for a priori secondary structure prediction may be reached (Kabsch &

Sander, 1983b; Rost et al., 1994; Russell & Barton, 1993).

3.6.4 The Relationship Between Sequence and Interaction Divergence

Protein interactions and complexes have recently been the subject of great interest. Methods

like the yeast-two-hybrid system or affinity purifications have identified many interactions

and complexes (von Mering et al., 2002). The 3D structure of complexes can provide a deeper

understanding of the function and has become the focus of much of experimental structural

biology. However, there is currently a gap in knowledge between complexes of known

structure and those known from other experimental methods. Modeling interactions based on

a homologous complex structure assumes that the components will interact in the same way

(e.g. Aloy & Russell, 2002). Several studies have explored the nature of different protein-

interaction types (Chakrabarti & Janin, 2002; Jones & Thornton, 1997; Ofran & Rost, 2003),

how domain orientations can vary within specific superfamilies (e.g. Bashton & Chothia,

2002), or the possibility of transferring interface information to homologous (Aloy & Russell,

2002; Lu et al., 2002). However, no study of the general relationship between similarity in

interaction and sequence has been performed.
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We used pairs of interacting domains of known 3D structure to explore the relationship

between sequence divergence and similarity in interaction (Aloy et al., 2003a). We compared

the relative orientations of different instances of the same interacting domain pair with a

newly devised measure, interaction RMSD (iRMSD). iRMSD is a purely geometric difference

between domain orientations related to the RMSD used in this thesis and accounts for both

translational differences (i.e. different location of the centre of masses) and domain rotations

over a wide range of differences in domain orientation.

We observed that interactions tend to be generally similar when sequence identity is above 30

– 40%, which is just above the traditional twilight zone for the relationship between sequence

and structural similarity (Chothia & Lesk, 1986). Domains from the same family or

superfamily are more likely to interact similarly than domains from different superfamilies in

the same fold. Here, exceptions were found to mainly due to crystal contacts that are probably

not biologically meaningful or domains from the immune system such as immunoglobulins.

We identified the few instances where unrelated proteins that share a common fold interact

similarly such as trypsin and trypsin inhibitors from different superfamilies or similarities

between homo- or pseudohomo-dimers.  We also saw that interactions between domains in

separate proteins compared to intramolecular interactions of similar domains (i.e. in one

protein after fusion events) are rarely similar. One should thus exercise caution when inferring

a domain-domain interaction between separate proteins based on a similar pair of domains in

a single polypeptide (Apic et al., 2001; Enright & Ouzounis, 2001).
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5 Ausführliche Zusammenfassung

Die Anzahl bekannter Proteinstrukturen wächst exponentiell und sogenannte „Structural

Genomics“ Projekte haben es sich zum Ziel gesetzt, die Strukturen aller Proteine aufzuklären,

um dadurch deren Funktionen zu bestimmen. Dies wird oft durch Vergleiche der

Gesamtstrukturen von Proteinen erreicht, da ähnliche Strukturen oft auf Homologie der

Proteine und auf funktionelle Gemeinsamkeiten schließen lassen. Hinweise auf bestimmte

Funktionen lassen sich aber auch durch Vergleiche lokaler struktureller Muster – zum

Beispiel katalytischer Zentren – bekommen, die in Proteinen mit unterschiedlichen

Gesamtstrukturen auftreten können. Ich habe in meiner Dissertation eine Methode zum

Vergleich dieser Muster entwickelt und ein Modell zur Berechnung der statistischen

Signifikanz von Suchergebnissen hergeleitet, das die Unterscheidung von bedeutsamen und

zufällig auftretenden Ähnlichkeiten erlaubt. Im Internet ist eine einfach zu bedienende

Benutzeroberfläche meiner Methode für die Funktionsuntersuchung von Proteinstrukturen

verfügbar (http://pints.embl.de). Dieser Server erlaubt dem Nutzer Strukturen von Proteinen

unbekannter Funktion mit Datenbanken funktionell wichtiger Muster zu vergleichen, nach

dem Auftreten eines bestimmten Musters in verschiedenen Proteinen zu suchen aber auch alle

gemeinsamen Muster zweier Proteine zu bestimmen. Um eine Vorstellung der praktischen

Anwendbarkeit dieser Methode zu bekommen, habe ich über 250 Proteinstrukturen

untersucht, die von den oben genannten „Structural Genomics“ Projekten aufgeklärt wurden.

Signifikante Suchergebnisse haben dabei sowohl Funktionen bestätigt, die aufgrund ähnlicher

Gesamtstrukturen vermutet wurden, als auch funktionelle Ähnlichkeiten in Proteinen

unterschiedlicher Gesamtstruktur vorhergesagt. Die Methode stellt daher eine wichtige

Ergänzung zu dem oben genannten Vergleich von Gesamtstrukturen dar. Durch eine

detaillierte Analyse der Struktur der Fruktose-1,6-Bisphosophat Aldolase von Archaea,

konnte ich zusätzlich die Homologie  einiger Enzymfamilien zeigen.

Im zweiten Teil meiner Dissertation präsentiere ich eine systematische computerbasierte

Suche nach  Drosophila Genen, die von microRNAs (miRNAs) reguliert werden („Targets“).

miRNAs sind kurze RNA Moleküle mit einer Länge von ungefähr 22 Nukleotiden, die in

Tieren die Translation ihrer Targets blockieren, indem sie an komplementäre Stellen in deren

3’ untranslatierten Bereichen binden. Methoden zur Vorhersage von miRNA Targets wurden

dringend benötigt, da Targets für nur drei der insgesamt 700 bekannten miRNAs beschrieben
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waren. Meine Suche basiert auf einer systematischen Untersuchung der bekannten miRNA-

Target Komplexe, und kombiniert Sequenzvergleiche mit Methoden zur Vorhersage von

RNA-Strukturen. Zusätzlich wurde angenommen, dass biologisch wichtige miRNA-Target

Interaktionen in den eng verwandten Spezies Drosophila melanogaster und Drosophila

pseudoobscura identisch und miRNA Bindestellen daher konserviert sind. Dadurch konnte

ich alle bekannten Targets in einer Datenbank aller Drosophila Gene zuverlässig detektieren

und Target-Vorhersagen treffen, von denen sechs experimentell bestätigt wurden und viele

andere mit hoher Wahrscheinlichkeit ebenfalls zutreffend sind. Da eine statistische Analyse

jedoch zeigte, dass das vorhandenen Signal oft zu gering für zuverlässige Aussagen war,

wurde als unabhängige Bestätigung Anopheles gambiae systematisch auf das Vorhandensein

entsprechender Bindestellen untersucht. Spezifische Funktionen konnten den miRNAs miR-7

(Kontrolle von Notch-aktivierten Genen), miR-2 (Inhibierung von Apoptose) und miR-277

(Regulation des Abbaus einiger essentieller Aminosäuren) zugeschrieben werden. miRNAs

scheinen zudem generell Transkriptionsfaktoren zu regulieren und an der Entwicklung des

Nervensystems beteiligt zu sein. Sowohl die Ergebnisse der Untersuchung von miRNA-

Target Komplexen und die getroffenen Target Vorhersagen stellen eine wertvolle Hilfe zur

Erforschung von miRNAs dar.
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