Zur Umsetzung von Platin und Platinverbindungen mit konzentrierter Schwefelsäure bei hohen Temperaturen Mit einem Anhang zur Struktur von (UO₂)₂(SO₄)(HSO₄)₂ -

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von Martin Pley aus München

Dezember 2004

Tag der mündlichen Prüfung:	10. Dezember 2004
Berichterstatter:	Prof. Dr. Mathias Wickleder Prof. Dr. Gerd Meyer
Prüfungsvorsitzender:	Prof. Dr. Ladislav Bohatý
Schriftführer:	Dr. Klaus Müller-Buschbaum

Die experimentellen Untersuchungen zu dieser Arbeit wurden in der Zeit von Oktober 2003 bis Juni 2004 am Institut für Anorganische Chemie der Universität zu Köln und von Juli 2004 bis September 2004 am Department of Chemistry der Colorado State University in Fort Collins (Colorado, USA) durchgeführt.

If I have been able to see farther than the others, it was because I stood on the shoulders of giants. Sir Isaac Newton

Zusammenfassung

Durch Umsetzung von Schwefelsäure mit elementaren Platin konnte das erste binäre, saure Sulfat des Platins, $Pt_2(SO_4)_2(HSO_4)_2$, dargestellt und strukturell charakterisiert werden. In der Verbindung liegen [$Pt_2(SO_4)_4$]-Baueinheiten vor, die zu Schichten verknüpft sind. Die Schichten werden durch Wasserstoffbrückenbindungen zusammengehalten.

Durch die Umsetzung von Oleum mit elementarem Platin konnte ein weiteres binäres Sulfat, $Pt_3(SO_4)_4$, dargestellt werden. In diesem Sulfat sind $[Pt_2(SO_4)_4]$ -Baueinheiten durch $SO_4^{2^2}$ -Ionen zu Schichten verknüpft. Zwischen diesen Schichten liegen die Pt^{2^+} -Ionen, die eine oktaedrische Koordination aufweisen. $Pt_3(SO_4)_4$ zeichnet sich durch seine hohe Löslichkeit in Wasser und durch eine niedrige Zersetzungstemperatur von 516 °C aus. Das Zersetzungsprodukt ist ein sehr fein strukturierter Platinschwamm, dessen Poren eine Größe bis hinab zu 25 nm aufweisen.

Aus der wässrigen Lösung von $Pt_3(SO_4)_4$ konnte ein weiteres Sulfat, $(H_3O)_2[Pt_2(SO_4)_4(H_2O)_2]\cdot 4H_2O$, durch Rekristallisation erhalten werden. Im Gegensatz zu den beiden binären Sulfaten, in denen die $[Pt_2(SO_4)_4]$ -Einheiten zu Schichten verknüpft sind, liegen hier monomere $[Pt_2(SO_4)_4(H_2O)_2]$ -Gruppen vor, in denen die H_2O Moleküle die terminalen Positionen der Pt_2 -Hantel einnehmen.

Den gleichen Aufbau weist die Verbindung $(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$ auf, die durch die Umsetzung von Pt(NO₃)₂ mit Schwefelsäure darstellbar ist.

Die Umsetzung der bereits seit längerem bekannten Verbindung $K_2[Pt_2(SO_4)_4(H_2O)_2]$ mit Schwefelsäure führt zu $K_3[Pt_2(SO_4)_4(HSO_4)_2]$, welches als Substitutionsprodukt des Hydrates angesehen werden kann, in dem die H₂O-Moleküle gegen HSO₄⁻-Gruppen ersetzt sind. Die monomeren [Pt₂(SO₄)₄H(HSO₄)₂]-Einheiten werden über ein zusätzliches Proton unter Ausbildung von [H(HSO₄)₂]-Gruppen verbunden.

Die Umsetzung von K₂PtCl₄ mit Schwefelsäure führt zu dem Sulfat K₄[Pt₂(SO₄)₅], in dem die [Pt₂(SO₄)₄]-Baueinheiten über SO₄²⁻-Gruppen zu unendlichen Ketten gemäß [Pt₂(SO₄)_{4/1}(SO₄)_{2/2}]⁴⁻ verknüpft sind.

Die Umsetzung von Rb_2PtCl_4 und Cs_2PtCl_4 führt zu den Verbindungen $Rb[Pt_2(SO_4)_3(HSO_4)]$ und $Cs[Pt_2(SO_4)_3(HSO_4)]$. In beiden Verbindungen sind die Pt_2 -Hanteln über tetraedrische Anionen zu Schichten verknüpft. Die Schichten werden über Wasserstoffbrückenbindungen miteinander und den Rb^+ - bzw. Cs^+ -Ionen verknüpft.

Mit den Verbindungen $A_4[Pt_{12}(SO_4)_{12}O_8]$ (A = NH₄⁺, K⁺, Rb⁺, Cs⁺) konnten erstmals Oxidsulfate des Platins dargestellt werden. Diese zeichnen sich durch das bislang beispiellose Clusteranion $[Pt_{12}(SO_4)_{12}O_8]^{4-}$ aus, in dem sechs Pt_2^{6+} -Hanteln über acht O²⁻-Ionen zu einem verzerrten Pt_{12} -Ikosaeder verknüpft sind. In den kleinen Dreiecksflächen des Ikosaeders liegen acht O²⁻-Ionen und über den verbleibenden zwölf großen Dreiecksflächen stehen zwölf dreizählig angreifende SO_4^{2-} -Gruppen.

Durch die Umsetzung von UO₃ mit Schwefelsäure konnte ein neues Uranylsulfat $(UO_2)_2(SO_4)(HSO_4)_2$ dargestellt und strukturell charakterisiert werden. In diesem Uranylsulfat werden die UO₂⁺-Kationen durch fünf Sulfatgruppen koordiniert, so dass sich eine pentagonale Bipyramide als Koordinationspolyeder ergibt.

Abstract

The reaction of elemental platinum with conc. sulfuric acid yields the binary platinum sulfate $Pt_2(SO_4)_2(HSO_4)_2$. This sulfate was prepared und structurally characterized for the first time within this thesis. In the crystal structure $[Pt_2(SO_4)_4]$ cores are connected to layers. These layers are connected with each other by hydrogen bonds.

The reaction of elemental platinum with fuming sulfuric acid yields another binary platinum sulfate, $Pt_3(SO_4)_4$. Here, $[Pt_2(SO_4)_4]$ cores are also connected to layers. Between these layers Pt^{2+} ions reside in octahedral coordination. This sulfate shows a high solubility in water and a low decomposition temperature of 516°. The decomposition product is a very capillarily structured platinum sponge with micro-pores of about 25 nm.

Recrystallization of an aqueous solution of $Pt_3(SO_4)_4$ yields another platinum sulfate $(H_3O)_2[Pt_2(SO_4)_4(H_2O)_2]\cdot 4H_2O$. Compared to the binary platinum sulfates, with layer-connected $[Pt_2(SO_4)_4]$ cores, the main building blocks of this compound are monomeric $[Pt_2(SO_4)_4(H_2O)_2]$ cores with two H_2O molecules at the terminal positions of the Pt_2 dumbbell.

The same assembly is found in $(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$, which is gained by the reaction of $Pt(NO_3)_2$ and sulfuric acid.

The reaction of the well known sulfate $K_2[Pt_2(SO_4)_4(H_2O)_2]$ with sulfuric acid yields $K_3[Pt_2(SO_4)_3H(HSO_4)]$, which can be seen as a substitution product of the hydrate. Thus, the H₂O molecules have been replaced by HSO_4^- groups. An additional proton links the units under formation of the rarely seen [H(HSO_4)_2] unit.

The reaction of K₂PtCl₄ with sulfuric acid yields $K_4[Pt_2(SO_4)_5]$, where $[Pt_2(SO_4)_4]$ cores are connected to chains by SO₄²⁻ groups according to ${}^{1}_{\infty}[Pt_2(SO_4)_{4/1}(SO_4)_{2/1}]^{4-}$.

In **Rb**[**Pt**₂(**SO**₄)₃(**HSO**₄)] and **Cs**[**Pt**₂(**SO**₄)₃(**HSO**₄)], which are prepared by the reaction of Rb₂PtCl₄ and Cs₂PtCl₄ with sulfuric acid, the Pt₂⁶⁺ dumbbells are connected to layers by the tetrahedral anions. The cations are located between these layers.

With the compounds $A_4[Pt_{12}(SO_4)_{12}O_8]$ (A = NH₄⁺, K⁺, Rb⁺, Cs⁺), platinum oxide sulfates are prepared for the first time. In the unprecedented cluster anion $[Pt_{12}(SO_4)_{12}O_8]^{4-}$ six Pt₂⁶⁺dumbells are arranged to form a disordered Pt₁₂ icosahedron. In the eight small triangles O²⁻-atoms are located in trigonal planar coordination of platinum atoms. Above the twelve remaining large triangles of the icosahedron SO₄²⁻ ions are located and act as tridentate ligands. The reaction of UO₃ with sulfuric acid yields a new uranyl sulfate $(UO_2)_2(SO_4)(HSO_4)_2$ which was structurally characterized for the first time. In the crystal structure, $UO_2^{2^+}$ cations are coordinated by five $SO_4^{2^-}$ groups.

Inhaltsverzeichnis

1	Ein	leitung	1
2	Rön	tgenstrukturanalyse	3
	2.1	Grundlagen	3
	2.1.1	Bragg'sche Gleichung	3
	2.1.2	Ewald'sche Konstruktion	3
	2.2	Rechenmethoden	5
	2.2.1	Lösung des Phasenproblems	6
	2.3	Praktische Aspekte der Kristallstrukturbestimmung	8
	2.3.1	Messung	8
	2.3.2	Aufarbeitung der Daten	8
	2.3.3	Strukturverfeinerung	8
	2.3.4	Extinktion	9
	2.3.5	Absorption	10
	2.3.6	Lorentzkorrektur	10
	2.3.7	Polarisationskorrektur	10
	2.3.8	Temperaturfaktoren	10
3	Arb	eitsmethoden und Geräte	12
	3.1	Reaktionen unter solvothermalen Bedingungen	12
	3.2	Schwefelsäure bei hohen Temperaturen	13
	3.3	Mikroskopie und Auswahl von Kristallen	14
	3.4	Einkristalldiffraktometrie	14
	3.5	Pulverdiffraktometrie	14
	3.6	Infrarot-Spektroskopie	14
	3.7	Differenzthermoanalyse	15
	3.8	Rasterelektronenmikroskop	16
4	Dar	stellung der Ausgangsverbindungen	17
	4.1	(H ₃ O) ₂ PtCl ₆	17
	4.2	Platinmohr	17
	4.3	$A_2 PtCl_6 (A = K, Rb, Cs)$	18
	4.4	H ₂ PtCl ₄	18

4.5	K ₂ PtCl ₄	19	
4.6	A ₂ PtCl ₄ (A=Rb, Cs)	19	
4.7	A ₂ Pt(NO ₂) ₄ (A=K, Rb, Cs)	19	
4.8	$K_2[Pt_2(SO_4)_4(H_2O)_2]$	20	
4.9	UO ₃	20	
Sulf	ate des dreiwertigen Platins	21	
5.1	Allgemeines zu Sulfaten der Platinmetalle	21	
5.2	Synthese von Pt(III)sulfaten	22	
5.3	Platinsulfate mit monomeren [Pt ₂ (SO ₄) ₄]-Einheiten	25	
531	$(H_2O)_2[Pt_2(SO_4)_4(H_2O)_2]\cdot 4H_2O$	25	
532	$(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$	25	
5.3.3	$K_3[Pt_2(SO_4)_4H(HSO_4)_2]$	20 28	
5.4	Platinsulfate mit verknüpften [Pt ₂ (SO ₄) ₄]-Einheiten	31	
5.4.1	$K_4[Pt_2(SO_4)_5]$	31	
5.4.2	$Pt_2(SO_4)_2(HSO_4)_2$	33	
5.4.3	Pt ₃ (SO ₄) ₄	35	
5.4.4	$Cs[Pt_2(SO_4)_3(HSO_4)]$	37	
5.4.5	Rb[Pt ₂ (SO ₄) ₃ (HSO ₄)]	39	
5.5	Oxidsulfate des dreiwertigen Platins mit [Pt ₁₂ (SO ₄) ₁₂ O ₈] ⁴⁻ -Anionen	41	
5.5.1	Einleitung	41	
5.5.2	Zum Aufbau des Clusteranions [Pt ₁₂ (SO ₄) ₁₂ O ₈] ⁴⁻	41	
5.5.3	Zur Anordnung der Kationen	45	
5.6	Vergleich der Platin(III)sulfate	46	
Aus	gewählte Schwingungsspektren	49	
6.1	Schwingungsspektrum von K ₄ [Pt ₂ (SO ₄) ₅]	50	
6.2	Schwingungsspektrum von Pt ₃ (SO ₄) ₄	51	
6.3	Schwingungsspektrum zu K ₂ (NH ₄) ₂ [Pt ₁₂ (SO ₄) ₁₂ O ₈]	52	
6.4	Zusammenstellung der beobachteten Schwingungsenergien	53	
The	rmische Zersetzung von Pt ₃ (SO ₄) ₄	54	
Zusammenfassung5			
Ausblick			
	4.5 4.6 4.7 4.8 4.9 <i>Sulf</i> 5.1 5.2 5.3 5.3 5.4 5.4.1 5.4.2 5.4.3 5.4.3 5.4.4 5.4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	4.5 K ₂ PtCl ₄ (A=Rb, Cs) 4.6 A ₂ PtCl ₄ (A=Rb, Cs) 4.7 A ₂ Pt(NO ₂) ₄ (A=K, Rb, Cs) 4.8 K ₂ [Pt ₃ (SO ₄) ₄ (H ₂ O) ₂] 4.9 UO ₃ Sulfate des dreiwertigen Platins 5.1 Allgemeines zu Sulfaten der Platinmetalle 5.2 Synthese von Pt(III)sulfaten 5.3 Platinsulfate mit monomeren [Pt ₂ (SO ₄) ₄]-Einheiten 5.3.1 (H ₄ O) ₂ [Pt ₃ (SO ₄) ₄ (H ₅ O) ₂] 4H ₂ O 5.3.2 (NH ₄) ₂ [Pt ₃ (SO ₄) ₄ (H ₅ O) ₂] 5.3.3 K ₃ [Pt ₂ (SO ₄) ₄ (H ₅ O) ₂] 5.3.4 Platinsulfate mit verknüpften [Pt ₂ (SO ₄) ₄]-Einheiten 5.4.1 K ₄ [Pt ₅ (SO ₄) ₄ (HSO ₄) ₂] 5.4.2 Pt ₂ (SO ₄) ₄ (HSO ₄) ₂] 5.4.3 Pt ₃ (SO ₄) ₄ 5.4.4 Cs[Pt ₂ (SO ₄) ₄ (HSO ₄)] 5.4.5 Rb[Pt ₂ (SO ₄) ₄ (HSO ₄)] 5.5.1 Einleitung 5.5.2 Zum Aufbau des Clusteranions [Pt ₁₂ (SO ₄) ₁₂ O ₈] ⁴ 5.5.3 Zur Anordnung der Kationen 5.5.4 Vergleich der Platin(III)sulfate Ausgewählte Schwingungsspektrem	

10	Anhang zur Kristallstruktur von (UO ₂) ₂ (SO ₄)(HSO ₄) ₂	62
10.1	Bedeutung und Anwendung der Actinide	62
10.2	Übersicht zu bekannten Sulfaten des Urans	62
10.3	Synthese	63
10.4	Kristallstruktur	63
10.5	Zusammenfassung	64
11	Danksagung	66
12	Literaturverzeichnis	68
13	Tabellen	71
13.1	Tabellen zu (H ₃ O) ₂ [Pt ₂ (SO ₄) ₄ (H ₂ O) ₂]·4H ₂ O	71
13.2	Tabellen zu (NH ₄) ₂ [Pt ₂ (SO ₄) ₂ (H ₂ O) ₂]	78
13.3	Tabellen K ₃ [Pt ₂ (SO ₄) ₄ H(HSO ₄) ₂]	81
13.4	Tabellen zu K4[Pt2(SO4)5]	84
13.5	Tabellen zu Pt ₂ (SO ₄) ₂ (HSO ₄) ₂	93
13.6	Tabellen zu Pt ₃ (SO ₄) ₄	96
13.7	Tabellen zu Rb[Pt ₂ (SO ₄) ₃ (HSO ₄)]	99
13.8	Tabellen zu Cs[Pt ₂ (SO ₄) ₃ (HSO ₄)]	102
13.9	Tabellen zu den Pt ₁₂ -Clustern	107
13	.9.1 Tabellen zu $(NH_4)_4[Pt_{12}(SO_4)_{12}O_8]$	108
13	.9.2 Tabellen zu $K_2(NH_4)_2[Pt_{12}(SO_4)_{12}O_8]$	110
13	.9.3 Tabellen zu $Rb_4[Pt_{12}(SO_4)_{12}O_8]$	112
13	.9.4 Tabellen $K_2Cs_2[Pt_{12}(SO_4)_{12}O_8]$	114
13.10) Tabellen zu (UO ₂) ₂ (SO ₄)(HSO ₄) ₂	116

1 Einleitung

Das Element Platin zeichnet sich durch eine hohe chemische Beständigkeit aus. Nur starke Oxidationsmittel vermögen es anzugreifen, so dass es sich vielfach als Reaktionsgefäß für chemische Reaktionen bewährt hat. Trotz dieser Beständigkeit ist die Zahl der bekannten Verbindungen des Platins beträchtlich. Abgesehen von dem prinzipiellen Reiz für den Chemiker, auch von den edlen und reaktionsträgen Metallen Verbindungen zu synthetisieren, hat dies mit den oft besonderen Eigenschaften dieser Spezies zu tun. Erinnert sei hier nur an die elektronischen Eigenschaften gemischtvalenter Platinverbindungen, z. B. den "Krogmann'schen Salzen" ^[1], oder aber die herausragende Bedeutung von *cis*-Platinkomplexen in der Medizin ^[2]. Eine weitere Eigenschaft des Platins von zunehmender Bedeutung ist seine katalytische Aktivität, insbesondere wenn das Metall in nanokristalliner Form vorliegt ^[3]. Letztere lässt sich vorzugsweise durch die Thermolyse eines geeigneten Precursors erhalten.

Obwohl die Chemie des Platins schon sehr umfassend untersucht worden ist und viele Eigenschaften von Platinverbindungen gut bekannt sind, stellt man mit Erstaunen fest, dass es oft die vermeintlich einfachen Substanzen sind, etwa die dem Anorganiker so geläufigen Stoffklassen der "Sulfate" und "Nitrate", die bisher in höchst charakterisiert Maße sind. Auf unzureichendem worden diesem Gebiet Aufklärungsarbeit zu leisten war daher das zentrale Anliegen der vorliegenden Arbeit. Sie tut dies am Beispiel der Platinsulfate, auch wenn die präparativen Arbeiten durchaus breiter angelegt waren. Wie sich im Zuge der Untersuchungen herausgestellt hat, zeigen bereits die Sulfate für sich eine erstaunlich reichhaltige Strukturchemie, dessen Kernstück immer eine Pt26+-Hantel ist, die von vier chelatisierend angreifenden tetraedrischen Anionen koordiniert wird. Diese Baueinheit kann monomer vorliegen oder auf unterschiedliche Weise verknüpft werden. Die Art dieser Verknüpfung liefert den roten Faden für den Aufbau der vorliegenden Arbeit. Nach der obligatorischen kurzen Beschreibung der analytischen Methoden (Kapitel 2) und der handwerklichen Vorgehensweise (Kapitel 3) wird die Darstellung der Ausgangsverbindungen dokumentiert (Kapitel 4), bevor in Kapitel 5 die Platinsulfate vorgestellt werden. Auf eine kurze Einführung (5.1) und Angaben zur Synthese (5.2) folgt die Beschreibung der Sulfate mit monomeren $[Pt_2(SO_4)_4]$ -Einheiten (5.3). Anschließend werden Sulfate vorgestellt, in denen diese Einheiten zu Ketten oder Schichten verknüpft sind (5.4) oder sogar, durch Austausch einiger Sulfatgruppen durch Oxidionen, zu dem Cluster-Anion

 $[Pt_{12}(SO_4)_{12}O_8]^{4-}$ verbunden werden (5.6). Die Kapitel 6 und 7 sind ausgewählten Eigenschaften einiger Verbindungen gewidmet. Hierbei ist vor allem das in Kapitel 7 dokumentierte thermische Verhalten von $Pt_3(SO_4)_4$ von Interesse, weil dieses Sulfat als ein viel versprechender Precursor für Platinnanopartikel angesehen werden kann. Kapitel 8 fasst die Befunde zu den Platinsulfaten zusammen und Kapitel 9 gibt einen kurzen Ausblick auf künftige Fragestellungen.

Mit Kapitel 10 wird in einem ausführlichen Anhang das Uranylsulfat UO₂(SO₄)(HSO₄)₂ beschrieben. Es ist dieser Arbeit als Anhang angegliedert, da die Verbindung auf den ersten Blick nichts mit den vorangegangenen Sulfaten zu tun zu haben scheint. Es soll hierbei jedoch auch nicht auf strukturelle Gemeinsamkeiten oder Unterschiede mit den Platinverbindungen abgehoben werden, die naturgemäß sehr groß sind, sondern es soll das Potenzial der Synthese-Methode, d.h. die Reaktion in sehr heißer Schwefelsäure unter bestimmten Bedingungen dokumentiert werden. Es kann als ein weiteres wichtiges Resultat dieser Arbeit gesehen werden, dass die Präparationsmethode soweit etabliert ist, dass sie in größerem Umfang, unabhängig von der Art der Metalle, eingesetzt werden kann und sicher zu interessanten neuen Verbindungen führen wird.

Da die wichtigste Methode der vorliegenden Arbeit die Röntgenstrukturanalyse ist, müssen sehr viele Daten, wie Atomkoordinaten, Abstände usw. dokumentiert werden, damit sie dem Leser im Bedarfsfall zur Verfügung stehen. Um den Textfluss nicht unnötig zu unterbrechen, sind diese Daten am Ende der Arbeit in tabellarischer Form umfangreich zusammengestellt worden.

2 Röntgenstrukturanalyse ^{[32],[33]}

2.1 Grundlagen

Ein Kristall wird durch eine dreidimensionale periodische Anordnung von Atomen bzw. Ionen im Festkörper charakterisiert. Auf Grund dieser Eigenschaft kann elektromagnetische Strahlung im Kristall gebeugt werden, wenn die Wellenlänge der elektromagnetischen Strahlung in der gleichen Größenordnung wie die interatomaren Abstände im Kristall liegt. Solche Wellenlängen findet man im Bereich der Röntgenstrahlung vor. Dieser 1912 von *Max von Laue* entdeckte Beugungseffekt begründet die moderne Kristallographie, die es möglich macht, Strukturen kristalliner Verbindungen sehr exakt zu bestimmen.

2.1.1 Bragg'sche Gleichung

Die Beugung von Röntgenstrahlung muss man als Reflexion des Röntgenstrahls an Netzebenenscharen sehen. Auf einer Netzebenenschar, deren Ebenen im gleichen Abstand *d* in paralleler Lage aufeinander folgen, trifft ein kohärenter monochromatischer Röntgenstrahl unter dem Glanzwinkel θ auf. Die *Bragg*'sche Gleichung beschreibt dann ein Interferenzmaximum, das nur bei ganzzahligen Vielfachen von λ auftritt:

$$(2.1) n\lambda = 2d\sin\theta$$

2.1.2 Ewald'sche Konstruktion

Zur Beschreibung der Beugung von Röntgenstrahlen genügt i.A. die *Bragg*'sche Gleichung. Will man jedoch den Zusammenhang zwischen Beugung und reziprokem Gitter herstellen, so greift man auf die *Laue*-Gleichungen zurück. Die *Laue*-Gleichungen lassen sich nach *P.P. Ewald* leicht in eine geometrische Konstruktion umsetzen, aus der man ohne weitere Rechnung ablesen kann, wie ein Kristall zum einfallenden Strahl ausgerichtet werden muss, damit sich eine bestimmte Netzebenenschar (hkl) in Reflexionsstellung befindet und in welcher Richtung dann der gebeugte Strahl zu finden ist.

Man konstruiert dazu das reziproke Gitter und lässt den einfallenden Strahl im Ursprung enden. Um den Anfangspunkt des einfallenden Strahls konstruiert man eine Kugel mit dem Radius der reziproken Wellenlänge. Diese Kugel bezeichnet man als Ewaldkugel und geht immer durch (000). Alle Drehungen des Kristalls lassen den Ursprung des reziproken Gitters an unveränderter Stelle.

Abbildung 1: Projektion der Ewaldkugel auf die Ebene

die Netzebenenschar (hkl) auf der Ewaldkugel befindet. Der Vektor des gebeugten Strahls zeigt vom Mittelpunkt der Ewaldkugel zur Netzebenenschar (hkl) auf der Kugel. Für reziproke Netzebenenscharen (hkl), die nicht auf der Ewaldkugel liegen, kann man leicht die Drehung um den Ursprung ablesen, die nötig ist, um den Punkt (hkl) auf die Kugeloberfläche zu bringen. Reziproke Netzebenenscharen, die weiter als $2/\lambda$ vom Ursprung entfernt sind, können nie in Reflexionsstellung gebracht werden. Sie liegen außerhalb der Grenzkugel um den Ursprung mit dem Radius $2/\lambda$. Dieser Zusammenhang ist in Abbildung 1 graphisch dargestellt.

2.2 Rechenmethoden

Neben der Metrik und den Gitterkonstanten der Elementarzelle erhält man aus der Einkristallmessung auch die Intensität jedes Beugungsreflexes. Da diese Intensität gebeugter Röntgenstrahlung von der Art (Abhängigkeit des Beugungsvermögens von der Elektronenzahl) und Anordnung der Atome im Kristall abhängt, werden diese Informationen zur Bestimmung der Kristallstruktur verwendet. Die Beziehung zwischen der Anordnung der Atome im Kristalls und der Intensität der gebeugten Röntgenstrahlung wird durch den Strukturfaktor F_{hkl} ausgedrückt:

(2.2)
$$F_{hkl} = \sum_{j=1}^{j} f_j \exp\left(-2\pi i \left(h x_j + k y_j + l z_j\right)\right) = |F_{hkl}| \exp\left(i\phi\right)$$

 f_j Atomformfaktor des j-ten AtomshklMiller'sche Indizes x_j, y_j, z_j Koordinaten des j-ten Atoms ϕ Phasenwinkel

Da die Intensitäten der Beugungsreflexe dem Quadrat des Strukturfaktors proportional sind, gilt:

(2.3)
$$I_{hkl} = \left| F_{hkl} \right|^2 \exp(i\phi)$$

Da die Elektronen die Röntgenstrahlung beugen, lässt sich der Strukturfaktor über eine Elektronendichtefunktion beschreiben:

(2.4)
$$F_{hkl} = \int_{V} \rho(x, y, z) \exp(2\pi i (hx + ky + lz)) d\tau$$

VVolumen der Elementarzelle $\rho(x, y, z)$ Elektronendichte

 $d\tau$ Volumenelement

Durch Fouriertransformation kann man Gleichung (2.4) nach der Elektronendichteverteilung, deren Maxima den gesuchten Atomlagen entsprechen, auflösen:

(2.5)
$$\rho(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{hkl} \exp\left(-2\pi i \left(hx + ky + lz\right)\right)$$

Man erkennt, dass aus den Röntgenbeugungsdaten nicht direkt die Strukturfaktoren, sondern nur Intensitäten und Strukturamplituden erhalten werden können. Die in der komplexen Exponentialfunktion eingebettete Phaseninformation geht durch das Quadrieren bei der Intensitätsmessung verloren. Folglich können die Atomkoordinaten nicht unmittelbar durch Intensitätsmessungen von Beugungsreflexen erhalten werden. Zur Bestimmung der Kristallstruktur ist die Lösung des "Phasenproblems" notwendig. Hierzu gibt es verschiedene Verfahren.

2.2.1 Lösung des Phasenproblems

Ausgangspunkt zur Lösung des Phasenproblems ist die Elektronendichte-verteilung (Gleichung (2.5)). Die Elektronen-dichte eines Kristalls lässt sich demnach als Fourierreihe darstellen. Dabei kann man zeigen, dass die Strukturfaktoren Fourierkoeffizienten sind. Es treten nun zwei Probleme auf. Komplexe Zahlen sind experimentell nicht zugänglich. Dadurch lässt sich Gleichung (2.3) nicht analytisch lösen. Ein weiteres Problem ist der Phasenwinkel, der bei der Messung verloren geht.

Abbildung 2: Graphische Darstellung des Phasenproblems

2.2.1.1 Patterson Methode

Die Patterson Methode stellt eine modifizierte Fourierreihenentwicklung dar. Dabei werden nicht die komplexen Strukturamplituden, sondern deren Quadrate als Fourierkoeffizienten eingesetzt:

(2.6)
$$P(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} |F_{hkl}|^2 \cos(2\pi (hx + ky + lz))$$

Aus der Patterson-Synthese ergeben sich nicht die Atomlagen, sondern die Intensitätsmaxima, welche an den Endpunkten von Vektoren zwischen Atomschwerpunkten liegen. Die Anwendung der Patterson Methode ist nur dann zuverlässig, wenn sich in der Elementarzelle nur wenige Schweratome befinden und deren Streuvermögen jenes der anderen Atome deutlich übersteigt, so dass anhand dessen eine Unterscheidung dieser möglich ist.

2.2.1.2 Direkte Methoden

Die Entwicklung der Direkten Methoden ist auf *Hauptmann* und *Karle* zurückzuführen, deren Leistungen mit dem Nobelpreis im Jahr 1985 prämiert wurden.

Ziel der Anwendung der Direkten Methode ist die Umwandlung von I_{hkl} in F_{hkl} . In zentrosymetrischen Strukturen kann der Phasenwinkel 0° oder 180° betragen. Somit kann das Vorzeichen des Phasenproblems nur positiv oder negativ sein. Eine Variation der Vorzeichen für alle Messwerte ist jedoch rechnerisch unmöglich. Die Trippelproduktbeziehung von Sayre reduziert die Vorzeichenbestimmung auf 10 bis 20 Möglichkeiten.

(2.7)
$$\operatorname{sign}(F_{hkl}) \approx \operatorname{sign}(F_{h'k'l'}) \operatorname{sign}(F_{h-h'k-k'l-l'})$$

Durch die systematische Variation des Vorzeichens lassen sich die Gleichungen (2.4) und (2.5) lösen. Als Ergebnis erhält man die Koordinaten aller Atome.

2.3 Praktische Aspekte der Kristallstrukturbestimmung

2.3.1 Messung

Zur Messung wird ein Kristall in einer Glaskapillare auf einem Goniometerkopf befestigt und in den Röntgenstrahl justiert. Im Gang der Messung werden einzelne Bilder (*frames*) unter verschiedenen Orientierungen des Kristalls bezüglich des Primärstrahls und des Detektors aufgenommen. Während der Messung werden die Reflexe des Kristalls durch einen Flächenzähler (*Image Plate*) detektiert und mittels eines Lasers ausgelesen. Diese *Image Plate* besteht aus einer Schicht BaBrF, die mit Eu²⁺ dotiert ist. Ein auftreffendes Röntgenquant oxidiert das Eu²⁺ zu Eu³⁺, so dass die Informationen durch sog. Elektronen-Loch-Paare gespeichert werden. Durch Abtasten der Image Plate mit einem Laser lassen sich diese Informationen auslesen. Bei diesem Abtasten kommt es zu einer Rekombination der Paare und zu einer induzierten Emission von elektromagnetischer Strahlung im blaugrünen Bereich. Diese emittierte Strahlung wird durch eine Photodiode registriert. Aus diesen Daten lässt sich die Intensität der Reflexe bestimmen.

2.3.2 Aufarbeitung der Daten

Die einzelnen aufgenommenen Bilder enthalten Informationen bezüglich der Lage und der Intensität eines Reflexes. Die gespeicherten Informationen bezüglich der Lage, Intensität und Orientierung des Kristalls zum Primärstrahl und Detektor werden zusammenfassend gespeichert. Aus dieser Sammlung von Informationen lassen sich die Reflexe in Intensität und Lage der Ewaldkugel zuordnen. Hier lassen sich nun die einzelnen Netzebenenscharen erkennen. Jeweils drei von Ihnen werden ausgewählt um aus deren Beziehung zueinander die Laue-Symmetrie und die Dimension der Zellkonstanten ableiten zu können. Nach Auswahl der Lauesymmetrie und der zugehörigen Zellkonstanten werden alle Reflexe indiziert und ihre Intensität wird durch Integration ermittelt. Als Ergebnis erhält man abschließend den sog. hkl-Datensatz der alle benötigten Informationen zur Strukturlösung und -verfeinerung enthält.

2.3.3 Strukturverfeinerung

Ein erstes mit den Methoden unter 2.2 erstelltes Strukturmodell ist zumeist unvollständig und enthält noch Fehler, die aus Unzulänglichkeiten der Lösungsmethoden, der Bestimmung von Elektronendichtemaxima aus Fouriersynthesen und natürlichen Fehlern im Datensatz resultieren.

Bei der Strukturverfeinerung wird die Methode der kleinsten Fehlerquadrate angewandt. Infolge dieser wird das Strukturmodell durch wiederholtes Durchlaufen des Verfeinerungsprozesses mit geänderten Parametern optimiert. Ausgangspunkt ist dabei das Strukturprinzip und die zugehörige Strukturfaktorgleichung (2.2). Dabei werden die Werte für $F_c(hkl)$ jeweils berechnet und mit jenen für $F_0(hkl)$ verglichen. Daraus ergibt sich die folgende Gleichung für die Fehlerquadrate:

(2.8)
$$D = \sum \left(\left| F_0(hkl) \right|^2 - \left| F_c(hkl) \right|^2 \right)^2$$

Kriterium hierbei ist die Minimalisierung der Fehlerrate *D*. Qualitätsmerkmal hierfür ist der Übereinstimmungsfaktor *R*:

(2.9)
$$R = \frac{\sum_{hkl} ||F_0| - |F_c||}{\sum_{hkl} |F_0|}$$

Die Wichtungen sind im wR-Wert enthalten, in den direkt die bei der Verfeinerung minimalisierten Fehlerquadratsummen eingehen. Dieser wird zumeist gegen F_0^2 verfeinert:

(2.10)
$$wR_{2} = \sqrt{\frac{\sum_{hkl} wD_{2}^{2}}{\sum_{hkl} w(F_{0}^{2})^{2}}} = \sqrt{\frac{\sum_{hkl} w(F_{0}^{2} - F_{c}^{2})^{2}}{\sum_{hkl} w(F_{0}^{2})^{2}}}$$

Ein weiteres Qualitätsmerkmal ist der sog. "Goodness of Fit".

(2.11)
$$GooF = \sqrt{\frac{\sum_{hkl} wD^e}{m-n}}$$

2.3.4 Extinktion

Die Abschwächung des Röntgenstrahls beim Durchdringen des Kristalls wird nicht nur durch Absorptionseffekte hervorgerufen. Im Kristall weisen die einzelnen Elementarzellen eine Mosaizität auf. Die Energie des Primärstrahls überträgt sich dadurch auf den gebeugten Strahl.

In der Strukturverfeinerung kann dieser Effekt durch Einbeziehen des Extinktionskoeffizienten ε berücksichtigt werden:

(2.12)
$$F_c(korr) = \frac{F_c}{\sqrt[4]{1 + \varepsilon \cdot \frac{F_c^2 \lambda^3}{\sin 2\theta}}}$$

2.3.5 Absorption

Die Absorption des Röntgenstrahls beim Durchdringen des Kristalls kann mit einer einfachen Absorptionsgleichung beschrieben werden.

$$(2.13) I = I_0 \exp(-\mu x)$$

Neben dem linearen Absorptionskoeffizienten gibt es auch eine Abhängigkeit von der durchstrahlten Strecke x, welche wiederum vom Beugungswinkel θ abhängt.

Zu dieser Absorption tragen verschiedene physikalische Effekte bei. Dazu zählen der photoelektrische, der Auger- und der Compton-Effekt. Diese Effekte wachsen mit der 4. Potenz der Ordnungszahl der im Kristall enthaltenen Elemente und mit der 3. Potenz der Wellenlänge der Röntgenstrahlung.

Bei der numerischen Absorptionskorrektur werden für jeden Reflex die Wellenlänge für den ein und ausfallenden Strahl aus dem Kristallformat und seiner Orientierung berechnet.

2.3.6 Lorentzkorrektur

Eine konstante Winkelgeschwindigkeit ω bei der Kristalldrehung hat für verschiedene reziproke Gitterpunkte unterschiedliche Verweildauern beim Durchdringen der Ewaldkugel zur Folge. Dies hat einen Einfluss auf die Reflexintensität. Daher müssen die Reflexe entsprechend ihrer effektiven Bahngeschwindigkeit skaliert werden.

$$(2.14) L = \sin(2\theta)^{-1}$$

2.3.7 Polarisationskorrektur

Wie die Lorentzkorrektur, so wirkt auch die Polarisation des Primärstrahls auf die Intensität des gebeugten Strahls in Abhängigkeit vom Beugungswinkel.

$$(2.15) P = \frac{1}{2} \left(\cos^2 2\theta \right)$$

2.3.8 Temperaturfaktoren

Durch den Atomformfaktor wird das Streuvermögen eines ruhenden Atoms oder Ions beschrieben. Durch die Wärmebewegung der Atome und deren daraus resultierenden Schwingungen um ihre Ruhelage wird der Atomformfaktor beeinflusst. Der Atomformfaktor f_j hängt vom Streuvermögen der Atome, welcher proportional zur Elektronendichte ist, vom Beugungswinkel θ und von der Wellenlänge λ ab. Der Einfluss der thermischen Schwingung der Gitterteilchen auf die Schwingungsamplitude wird durch den Debye-Waller-Faktor B_j, der dem mittleren Auslenkungsquadrat u_j² des Atoms j senkrecht zur reflektierenden Netzebene proportional ist, berücksichtigt.

$$(2.16) B_j = 8\pi u_j^2$$

Dieser Ausdruck für den Debye-Waller-Faktor gilt jedoch nur für den Fall, dass die rücktreibenden Kräfte in allen Richtungen gleich groß sind – diese sind im allgemeinen jedoch richtungsabhängig, so dass die thermische Bewegung eines Atoms durch ein Ellipsoid beschrieben werden kann.

(2.17)
$$F_{hkl} = \sum_{j} f_{j} \exp\left(-B_{j} \frac{\sin^{2} \theta}{\lambda^{2}}\right) \exp\left(2\pi i \left(hx_{j} + ky_{j} + lz_{j}\right)\right) = \sum \left|F_{hkl} \exp\left(i\phi\right)\right|$$

x_j, y_j, z_j Atomkoordinaten des Atoms j

F_{hkl} Strukturfaktor

B_j Debey-Waller-Faktor des Atoms j

Anstelle von B wird häufig der Temperaturfaktor U benutzt.

(2.18)
$$U = u^2 = \frac{B}{8\pi^2}$$

Zur Berücksichtigung der Anisotropie der thermischen Bewegung der Gitteratome wird der Exponentialausdruck durch den anisotropen Temperaturfaktor (T_{anis}) ersetzt, der die Temperaturkoeffizienten U in sechs richtungsabhängige Tensorkomponenten U_{ij} aufgliedert.

$$(2.19) T_{anis} = \exp\left(-2\pi^2\left(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{23}klb^*c^* + 2U_{13}lhc^*a^*\right)\right)$$

Neben den isotropen und anisotropen Temperaturfaktoren werden häufig auch äquivalente Temperaturfaktoren verwendet.

$$(2.20) \quad U_{eq} = \frac{1}{3} \Big(U_{11} \Big(aa^* \Big)^2 + U_{22} \Big(bb^* \Big)^2 + U_{33} \Big(cc^* \Big)^2 + 2U_{23} bcb^* c^* \cos \alpha + 2U_{13} aca^* c^* \cos \beta + 2U_{12} aba^* b^* \cos \gamma \Big)$$

3 Arbeitsmethoden und Geräte

3.1 Reaktionen unter solvothermalen Bedingungen

Unter solvothermalen Bedingungen versteht man die Umsetzung von Verbindungen mit Lösemitteln in einem abgeschlossenen System ^[55]. Die Reaktionstemperatur liegt dabei meist oberhalb des Siedepunktes des Lösemittels, wodurch sich der damit verbundene erhöhte Druck im Reaktionsgefäß positiv auf den Reaktionsverlauf auswirkt. Je nach den Eigenschaften der Reaktanden und der gewählten Reaktionstemperatur kann man diese Reaktionsbedingungen auf verschiedene Arten realisieren:

Bei einer Reaktionstemperatur unterhalb von 250 °C ist die Verwendung von Stahlautoklaven mit einer Teflonauskleidung möglich. Die Teflonauskleidung erlaubt es sogar, sehr aggressive Medien wie Fluorschwefelsäure o.ä. einzusetzen, da Teflon eines der chemisch resistenten Materialien ist. Jedoch ist zu berücksichtigen, dass Teflon druckflüssig werden kann und bei Temperaturen oberhalb von 250 °C langsam erweicht. Bei Reaktionstemperaturen unterhalb von 550 °C bieten sich abgeschmolzene Duran®-Glasampullen als Reaktionsgefäß an. Diese lassen sich einfach aus dickwandigen Glasrohren herstellen. Dazu wird ein Glasrohr auf die gewünschte Länge zugeschnitten und an einem Ende mittels eines Erdgas-Sauerstoff-Brenners verschlossen. Am anderen Ende verjüngt man das Glasrohr. Die Reaktanden werden eingefüllt und bei 200 °C für 48 h in einen Trockenschrank gestellt. Dadurch stellt man sicher, dass eventuell vorhandene oder bei der Reaktion gebildete leicht flüchtige Verbindungen nicht mehr in der Reaktionsmischung vorliegen. Anschließend wird die Reaktionsmischung mit flüssigem Stickstoff ausgefroren und man evakuiert die Glasampulle für ca. 1 h. Die Ampulle wird dann an der Verjüngung mittels eines Brenners verschlossen und mit der leuchtenden Flamme getempert. So lassen sich eventuelle Risse oder Verspannungen vermeiden. Die Abschmelzstelle muss unter einem Mikroskop abschließend überprüft werden.

Duran®-Glasampullen halten einem Druck bis ca. 30 bar stand, wenn sie verspannungsfrei verschlossen wurden. D. h. es muss bei der Auswahl der Länge der Ampulle der Siedepunkt und die Menge des Lösemittels berücksichtigt werden. Fluoridische Substanzen und Reaktanden, die HF bilden können, scheiden bei dieser Methode aus, da die Bildung von SiF₄ die Ampulle in kürzester Zeit zerstören kann. Die Umsetzungen in einem elektrischen Röhrenofen müssen in einem Abzug stattfinden, da

12

die Ampullen platzen können und umher fliegende Glassplitter oder überhitzte Reaktionsgemische eine große Gefahr darstellen.

Zum Öffnen der Ampullen wird mittels eines Glasschneiders eine Sollbruchstelle markiert. Es ist ratsam, den Inhalt der Ampulle vor dem Öffnen auszufrieren, da sich während der Reaktion ein Überdruck gebildet haben kann. Nach dem Ausfrieren wird die Ampulle an der Sollbruchstelle geöffnet und unverzüglich in ein "Shuttle" überführt und dieses evakuiert. Es empfiehlt sich den Inhalt der Ampulle generell unter Schutzgasatmosphäre zu handhaben, wenn die gebildeten Produkte hydrolyseempfindlich sein können und sich außerhalb einer Schutzgasatmosphäre schnell zersetzen.

3.2 Schwefelsäure bei hohen Temperaturen

Im Rahmen der experimentellen Arbeiten hat sich herausgestellt, dass Schwefelsäure unter solvothermalen Bedingungen ein Oxidationspotential aufweist, welches ausreicht, Platin zu oxidieren. Schwefelsäure hat einen Siedepunkt von 340 °C und zersetzt sich dort bereits zu H₂O und SO₃. Unter Normaldruck ist diese Reaktion bei 450 °C vollständig abgelaufen, so dass in der Gasphase nur noch H₂O und SO₃ vorliegen. Wie die Reaktion hingegen in einem abgeschlossenen System verläuft lässt sich nur vermuten. Allen Überlegungen liegt das folgende Gleichgewicht zu Grunde:

$$H_2SO_4 \longrightarrow H_2O + SO_3$$

In einem abgeschlossenen System wirkt sich der Druck oberhalb des Siedepunktes auf dieses Gleichgewicht aus. Nach dem Prinzip von *LeChatelier* wird das Gleichgewicht dabei wieder auf die linke Seite verschoben. Somit wirken Temperatur und Druck in diesem Fall gegenläufig. Weiterhin ist zu berücksichtigen, dass Schwefelsäure eine sehr starke Säure ist. Somit kommt noch ein weiteres Gleichgewicht zu tragen:

$$2H_2SO_4 \longrightarrow H_3SO_4^+ + HSO_4^-$$

Es lassen sich demnach keine Aussagen über die Zusammensetzung von Schwefelsäure in einem abgeschlossenen System oberhalb des Siedepunktes treffen. Auch in der Literatur finden sich keine thermodynamischen oder spektroskopischen Daten zum Verhalten von Schwefelsäure unter Nicht-Standardbedingungen.

Betrachtet man eine abgeschmolzene Ampulle bei einer Temperatur von 400 °C, so lässt sich immer noch eine Flüssigkeit am Boden dieser erkennen. Diese Flüssigkeit zeigt in unregelmäßigen, jedoch kurzen Intervallen Siedeverzüge. Oberhalb der Flüssigkeit findet man eine gasförmige Phase vor, die starke Fluktuationen zeigt, was man an Schlierenbildung erkennen kann.

3.3 Mikroskopie und Auswahl von Kristallen

Reaktionsgemische werden nach Abschluss der Reaktion unter Verwendung eines Lichtmikroskopes begutachtet. Unter verschiedenen Vergrößerungen lassen sich gebildete Kristalle im Auflicht erkennen. Diese Kristalle können im Durchlicht unter Verwendung von Polarisatoren weitergehend begutachtet werden. Einkristalle lassen sich an Ihrem Habitus erkennen. Alle Flächen der Kristalle müssen durch scharfe Kanten begrenzt sein. Im polarisierten Durchlicht müssen die Kristalle unter gekreuzten Polarisatoren bei einer Drehung um die eigene Achse der Kristalle eine Auslöschung zeigen, wenn die Symmetrie der Kristalle nicht kubisch ist oder die Blickrichtung der c-Achse im hexagonalen (trigonalen) oder tetragonalen System entspricht.

3.4 Einkristalldiffraktometrie

Ausgewählte Einkristalle werden in eine Glaskapillare eingeschmolzen. Diese Kapillare wird auf einen Goniometerkopf befestigt und zusammen mit diesem auf eine Einkristalldiffraktometer gebracht. Der Kristall wird anschließend in den Primärstrahl des Diffraktometers justiert. Durch Aufnahme weniger (ca. 10) Bildplatten wird die Zelle bestimmt und anhand des Beugungsbildes die Güte des Einkristalls begutachtet. Sind sowohl die Zellbestimmung als auch die Güte des Einkristalls zufrieden stellend, so wird von diesem ein Intensitätsdatensatz erstellt.

3.5 Pulverdiffraktometrie

Pulverdiffraktogramme dienen zur Untersuchung feinkristalliner Pulver. Da alle möglichen Orientierungen von Netzebenen vorkommen, entstehen Beugungskegel vom halben Öffnungswinkel 20. Zur Aufnahme von Pulverdiffraktogrammen wird die zu untersuchende Probe auf einen Flächenträger aufgebracht oder in eine Glaskapillare gefüllt und in die Mitte des Aufnahmekreises gesetzt. Als Detektor in dem verwendeten Pulverdiffraktometer Stadi P der Fa. Stoe dient ein Flächenzähler.

3.6 Infrarot-Spektroskopie^[34]

In einem Molekül und einem Festkörper kann man durch elektromagnetische Strahlung im Bereich zwischen etwas 4000 und 40 cm⁻¹ Schwingungen anregen. Dabei wird die elektromagnetische Strahlung in der Probe absorbiert. Bei der Infrarotspektroskopie detektiert man die Intensität der austretenden Strahlung direkt. Damit eine Probe IRaktiv ist, muss die Symmetrie einer Schwingung gleich der von x, y, z aus der Charaktertafel der Punktgruppe sein. Ist eine Probe Raman-aktiv, so muss die Normalschwingung die gleiche Symmetrie besitzen wie eine der quadratischen Terme x^2 , xy, etc. aus der Charaktertafel der Punktgruppe sein. In beiden Fällen zeigen bestimmte Gruppen in einem Molekül charakteristische Absorptionsbanden, aus denen sich wichtige strukturelle Informationen ableiten lassen.

3.7 Differenzthermoanalyse ^[35]

Bei der Differenzthermoanalyse wird die zu untersuchende Substanz in einen kleinen Tiegel eingewogen und mit diesem auf den Probenträger gesetzt. Nun wird die Temperatur mit einem bestimmten Gradienten gesteigert und dabei die Änderung der Masse und der Temperatur registriert. Aus der graphischen Auftragung der Temperatur gegen die Massenänderung kann man auf den Reaktionsfortschritt während der Temperaturänderung schließen. Die Änderung der Temperatur liefert hingegen einen Aufschluss darüber, ob Prozesse endo- oder exotherm verlaufen. Daraus kann man lassen sich Umwandlungen wie z.B. Phasenübergänge erkennen.

Abbildung 3: Schematischer Aufbau einer DTA/DSC-Apparatur^[31]

3.8 Rasterelektronenmikroskop

Bei der Rasterelektronenmikroskopie wird ein Elektronenstrahl erzeugt und mit und Unterschied Magnetspulen abgelenkt gebündelt. Der zu der Transmissionselektronenmikroskopie besteht nun darin, dass die Probe nicht durchstrahlt wird, sondern die Oberfläche Punkt für Punkt, Zeile für Zeile von dem gebündelten Elektronenstrahl abgetastet wird. Durch das Auftreffen des Elektronenstrahls werden die Atome in der Probe angeregt. Die dadurch austretenden Signale werden punktweise gesammelt, verstärkt und auf einen Fernsehbildschirm geleitet. So entsteht ein Abbild der Oberfläche des zu untersuchenden Objektes. Diese Technik bietet den Vorteil, große Objektbereiche scharf abzubilden. Dadurch entsteht der für rasterelektronenmikroskopische Bilder typische bildhaft plastische Eindruck.

In der Lichtmikroskopie wird die zu untersuchende Probe häufig mit einem breiten Spektrum an Farben beleuchtet. In der Rasterelektronenmikroskopie ist dies aus technischen und praktischen Gründen nicht sinnvoll. Stattdessen beleuchtet man das zu untersuchende Objekt mit einer fest eingestellten "Farbe" (Energie der einfallenden Elektronen). Zwischen der Aufnahme verschiedener Bilder lässt sich diese Energie aber verändern. Treffen Elektronen auf das Material eines Objektes, so werden diese zwischen den Atomen der Probe "hin und her" gestoßen (gestreut). Sie verlieren dabei nach und nach ihre Energie (Geschwindigkeit) bis sie vollständig in der Probe abgebremst sind oder aber das Objekt mit einer gewöhnlich geringeren Geschwindigkeit wieder verlassen. Da in der Regel viele Elektronen auf eine Probenstelle einfallen, die alle unterschiedliche Bahnen im Objekt durchlaufen, spricht man auch von einer Streubirne, die sich in einer oberflächennahen Schicht der Probe ausbildet. Verwendet man nun Elektronen mit einer großen Energie (Geschwindigkeit), so können sie tiefer in das Material eindringen als bei einer niedrigeren Energie. Wie sich dieser Effekt auf ein rasterelektronenmikroskopisches Bild auswirkt, ist in den Bildern zu sehen.

4 Darstellung der Ausgangsverbindungen

4.1 (H₃O)₂PtCl₆^[36]

10 g Platinschwamm werden zu einer Mischung von 30 ml Salpetersäure und 90 ml Salzsäure gegeben. Diese Mischung wird zum Sieden erhitzt. Der Platinschwamm löst sich langsam unter Verfärbung der Lösung von gelb nach orange. Zum Vertreiben aller nitrosen Gase wird auf 30 ml eingeengt und erneut 50 ml Salzsäure hinzugefügt. Nach erneutem Einengen auf 30 ml wird die orange Lösung in einen 100 ml Einhalskolben überführt und am Rotationsverdampfer bei einer Temperatur von 95 °C für vier Stunden bis zur Kristallisation eingedampft. Zur vollständigen Entfernung des Lösemittels wird der Kolben über Nacht an eine Hochvakuumpumpe angeschlossen. (H₃O)₂PtCl₆ ist merklich hygroskopisch und muss in einem dicht verschlossenen Gefäß aufbewahrt werden. Zur Bestimmung der Reinheit wurde ein Pulverdiffraktogramm aufgenommen. Dieses entspricht der Simulation auf Basis der publizierten Einkristalldaten ^[38].

Ausbeute: 24,8 g (96,7 %)

$$\Pr_{grau}^{0}(s) + \frac{4^{+3}}{4^{N}}OCl(aq) + 2HCl(aq) \xrightarrow{\Delta} H_2PtCl_6(aq) + \frac{4^{+2}}{N}O(g)$$

4.2 Platinmohr^[36]

Zur Darstellung von Platinmohr werden eine 10 %ige Lösung von (H₃O)₂PtCl₆ und eine 10 %ige Lösung von Natriumformiat hergestellt. Beide Lösungen werden zum Sieden erhitzt. Man lässt nun unter ständigem Rühren die Platin enthaltende Lösung langsam in die Natriumformiatlösung einfließen. Unter Gasentwicklung verfärbt sich die Lösung schwarz. Nach der vollständigen Vereinigung der beiden Lösungen erhitzt man für eine weitere Stunde zum Sieden. Anschließend wird die Lösung über Nacht ruhen gelassen, damit sich der Platinmohr am Boden des Becherglases absetzten kann. Die klare Lösung über dem schwarzen Bodensatz wird vorsichtig durch einen Papierfilter gegossen. Anschließend wird der Rest der Lösung mit dem Platinmohr langsam durch diesen Filter gegossen und einmal mit 100 ml Wasser gewaschen. Den Filter mit dem Rückstand lässt man bei Raumtemperatur trocknen und entnimmt anschließend den feinen Platinmohr.

Bei dieser Reaktion sind einige Dinge zu beachten. Zum einen müssen die beiden Lösungen, die vereinigt werden, zwingend sieden. Ansonsten tritt zunächst keine Reaktion ein. Erhitzt man das Gemisch weiter zum Sieden, so startet die Reduktion schlagartig, wodurch sich der Inhalt des Becherglases in der gesamten Umgebung verteilt.

Platinmohr ist katalytisch sehr aktiv. Den Rückstand im Filter sollte man niemals mit organischen Lösemitteln waschen oder den Filter samt Rückstand bei erhöhter Temperatur trocknen. In beiden Fällen kommt es zu einer thermischen Zersetzung der Lösemittel bzw. des Filterpapiers.

Die Reinheit des Platinmohrs wurde mittels einer EDX-Messung bestätigt.

$$H_{2} \overset{+4}{Pt} Cl_{6}(aq) + 2Na \overset{+2}{C}OOH(aq) \xrightarrow{100^{\circ}C} \overset{0}{\longrightarrow} \overset{0}{Pt} (s) + 2\overset{+4}{C}O_{2}(g) + 4HCl(aq) + 2NaCl(aq)$$

4.3 $A_2PtCl_6 (A = K, Rb, Cs)^{[36]}$

5 g (H₃O)₂PtCl₆ werden in 100 ml Wasser gelöst. Zu dieser Lösung werden 10 g des entsprechenden Alkalichlorides hinzugefügt. Die Mischung wird kurz erhitzt und anschließend auf Raumtemperatur abgekühlt. Der intensiv gelbe Feststoff wird über eine Filterfritte abgetrennt und zweimal mit 50 ml Wasser gewaschen. Das Produkt wird bei 80 °C für 8h getrocknet.

Von allen Produkten wurden zur Bestimmung der Reinheit Pulverdiffraktogramme aufgenommen und mit den unter ^{[39] - [41]} publizierten Daten verglichen. Demnach sind alle Proben röntgenographisch phasenrein.

Ausbeute: quantitativ

$$H_{2}PtCl_{6}(aq) + 2ACl(aq) \longrightarrow A_{2}PtCl_{6}(s) + 2HCl(aq)$$

4.4 H₂PtCl₄^[36]

H₂PtCl₄ lässt sich durch Reduktion einer wässrigen Lösung von H₂PtCl₆ mit Hydrazin herstellen.

5 g $(H_3O)_2PtCl_6$ werden in 50 ml Wasser gelöst und zum Sieden erhitzt. Nun werden 1,08 g N_2H_4 ·2HCl portionsweise hinzugefügt. Dabei ändert sich die Farbe allmählich von orange nach dunkel rot. Die vollständige Reduktion lässt sich an einer Schwarzfärbung durch elementares Platin erkennen. Die Lösung wird abschließend filtriert.

H₂PtCl₄ ist nur in Lösung stabil und zersetzt sich bei vorsichtigem eindampfen zu PtCl₂.

$$H_2 \overset{+4}{\underset{orange}{Pt}} Cl_6(aq) + \frac{1}{2} \overset{+2}{N_2} H_4(aq) \xrightarrow{\Lambda} H_2 \overset{+2}{\underset{rot}{Pt}} Cl_4(aq) + \frac{1}{2} N_2 + 2HCl$$

4.5 K₂PtCl₄^[36]

K₂PtCl₄ lässt sich durch Reduktion von K₂PtCl₆ in wässriger Lösung darstellen.

4.86 g K₂PtCl₆ werden in 100 ml Wasser suspendiert und zum Sieden erhitzt. Zu dieser Suspension wird solange festes N₂H₄·2HCl hinzugefügt (ca. 1,04 g), bis sich die rote Lösung leicht schwarz färbt. Die Lösung wird filtriert und auf 20 ml eingeengt. Nach Überführung in einen 50 ml Einhalskolben wird die Lösung am Rotationsverdampfer vollständig eingedampft. Der rote Feststoff wird fein zerteilt und über Nacht im Hochvakuum getrocknet.

Der Vergleich des aufgenommenen Pulverdiffraktogramms mit den von *Staritzky* ^[42] veröffentlichten Daten bestätigt die Reinheit des Produktes.

Ausbeute: quantitativ

$$K_2 \underset{gelb}{\overset{+4}{Pt}} Cl_6(s) + \frac{1}{2} \overset{+2}{N}_2 H_4(aq) \xrightarrow{\Lambda} K_2 \underset{rot}{\overset{+2}{Pt}} Cl_4(aq) + \frac{1}{2} N_2 + 2HCl$$

4.6 A_2PtCl_4 (A=Rb, Cs)

Die Tetrachlorplatinate von Rubidium und Cäsium lassen sich nicht durch Reduktion der entsprechenden Hexachloroplatinate darstellen, da die Löslichkeit der entsprechenden Hexachloroplatinate zu gering ist.

Wie unter 4.4 beschrieben, stellt man sich eine Lösung von H₂PtCl₄ mit definierter Stoffmenge her. Anschließend wird zu dieser Lösung die stöchiometrische Menge des entsprechenden Alkalichlorids hinzugefügt. Die Kristallisation erfolgt analog wie unter 4.5 beschrieben.

Von beiden Produkten wurde ein Pulverdiffraktogramm aufgenommen und mit den unter ^[43] und ^[44] veröffentlichten Daten verglichen. Auf Grund von Abweichungen zu den publizierten Diffraktogrammen wurden Einkristalle dieser Verbindungen gezüchtet und diese strukturell charakterisiert ^{[45],[46]}. Die aus diesen Datensätzen simulierten Diffraktogramme wurden mit den aufgenommenen Diffraktogrammen verglichen und stimmten mit diesen überein.

Ausbeute: quantitativ

$$H_2PtCl_4(aq) + 2ACl(aq) \longrightarrow A_2PtCl_4(aq) + 2HCl_{rot}$$

4.7 A₂Pt(NO₂)₄ (A=K, Rb, Cs) ^[36]

Die Alkalitetranitritoplatinate lassen sich durch Umsetzung der entsprechenden Tetrachloroplatinate mit Alkalinitriten darstellen.

Man löst 5 g des Alkalitetrachloroplatinats in 50 ml Wasser und erwärmt auf 60 °C. Unter ständigem Rühren gibt man nun die stöchiometrische Menge des entsprechenden Alkalinitrits hinzu. Dabei entfärbt sich die Lösung. Die Lösung wird nun langsam auf ca. 25 ml eingedampft und zur Kristallisation ruhen gelassen. Das kristallisierte farblose Alkalitetranitritoplatinat wird abfiltriert und mit 10 ml kaltem Wasser gewaschen. Das Filtrat wird erneut zur Kristallisation einer zweiten Fraktion ruhen gelassen.

Von K₂Pt(NO₂)₄ wurde ein Pulverdiffraktogramm aufgenommen, das mit dem nach den Daten aus ^[47] simulierten Diffraktogramm übereinstimmt.

Die Tetranitritoplatinate des Cäsium und Rubidium wurden mittels Elementaranalyse und AAS untersucht. Die daraus gewonnenen Daten stimmen mit den berechneten im Rahmen der Standardabweichungen überein.

Ausbeuten: ca. 80%

$$A_2 PtCl_4(aq) + 4ANO_2(aq) \xrightarrow{60^{\circ}C} A_2 Pt(NO_2)_4(aq) + 4ACl_{farblos}$$

4.8 $K_2[Pt_2(SO_4)_4(H_2O)_2]^{[37]}$

5 g K₂Pt(NO₂)₄ werden in 50 ml verdünnter Schwefelsäure gelöst (5 mol/l). Die Mischung wird langsam auf 120 °C erwärmt. Dabei ändert sich die Farbe von farblos über blau und grün nach braun. Nach einer Stunde lässt man das Reaktionsgemisch auf 60 °C abkühlen und verdünnt mit weiteren 30 ml Wasser. Nach einer weiteren Stunde lässt man das Reaktionsgemisch auf Raumtemperatur abkühlen und filtriert den entstandenen gelben Feststoff ab und wäscht zweimal mit kaltem Wasser.

Das aufgenommene Pulverdiffraktogramm deckt sich mit der Simulation nach den unter ^[48] publizierten Daten.

4.9 UO₃^[38]

3 g UO₂(NO₃)₂·5H₂O werden in eine offene Ampulle aus Quarzglas gefüllt. Diese Ampulle wird auf 500 °C aufgeheizt und verweilt dort für 72 h. Nach dem Abkühlen auf Raumtemperatur wird der braune Feststoff aus der Ampulle entnommen.

Die Analyse der Pulvers mittels Pulverdiffraktometrie zeigt, dass neben dem Hauptprodukt UO_3 noch Spuren von U_3O_8 enthalten sind.

$$UO_2(NO_3)_2 \cdot 5H_2O \xrightarrow{500^\circ C} UO_3 + 2NO_2 + 5H_2O$$
5 Sulfate des dreiwertigen Platins

5.1 Allgemeines zu Sulfaten der Platinmetalle

Erstmals werden zu Beginn des letzten Jahrhunderts Sulfate des Platins in der Literatur erwähnt^[4]. Diese wurden durch Umsetzung von oxidischen Platinverbindungen mit Schwefelsäure erhalten. Auf Grundlage von elementaranalytischen Methoden sind unterschiedliche Zusammensetzungen dieser Platinsulfate postuliert worden. Besonders erwähnenswert ist die Delfine et. al. beschriebene von Verbindung $H_2Pt_2(SO_4)_4(H_2O)_2 \cdot 9\frac{1}{2} H_2O$, die in späteren Arbeiten ^{[5],[6]} in abgewandelter Zusammensetzung eingehend untersucht und auch strukturell charakterisiert wurde. Spätere Untersuchungen zur Synthese von Platinsulfaten ^[6, 7, 8] gehen immer wieder von der Umsetzung geeigneter Platinverbindungen mit Schwefelsäure aus. Die Strukturen isolierten Verbindungen werden dabei auf Grundlage schwingungsvon spektroskopischer Methoden abgeleitet ^[6,7]. In jüngerer Zeit wurde die bei der Schwefelsäure gebildete Umsetzung von $K_2Pt(NO_2)_4$ Verbindung mit K₂[Pt₂(SO₄)₄(H₂O)₂] strukturell charakterisiert und bezüglich der Substitution der H₂O-Moleküle untersucht ^[4, 5]. Ein binäres Sulfat des Platins wird erstmals 1977 thermochemisch untersucht ^[9], jedoch nicht strukturell charakterisiert.

Palladium ist das erste Platinmetall, für das ein binäres Sulfat strukturell charakterisiert wurde. Die bereits 1966 von *Eskenazi* et. al. beschriebenen und schwingungsspektroskopisch untersuchten Verbindungen $PdSO_4$ und $PdSO_4 \cdot 2 H_2O$ sind durch *Dahmen* et. al. ^[10] strukturell am Einkristall charakterisiert worden.

Eine röntgenographische Untersuchung von $Rh_2(SO_4)_3$ am Einkristall liegt bis zum heutigen Tage nicht vor. Es existieren jedoch zwei Pulverdiffraktogramme ^[11, 12], sowie eine aktuelle Patentschrift ^[13] zur Synthese von $Rh_2(SO_4)_3$, in der auf Grundlage von Schwingungsspektren zwei verschiedene Strukturen vorgeschlagen werden. Ternäre Sulfate des Rhodiums und abgewandelter Derivate sind vereinzelt dargestellt, aber nur unzureichend charakterisiert worden ^[14-17].

Auch bei den restlichen Elementen der Platinmetalle, Iridium, Ruthenium und Osmium, lassen sich nur wenige Beispiele für dargestellte und charakterisierte Sulfate finden ^[16, 18-26]. Auch hier stehen strukturelle Analysen noch aus.

Die Untersuchungen, die im Rahmen dieser Arbeit durchgeführt wurden, sind auf die Darstellung neuer Sulfate des Platins fokussiert. Es konnte gezeigt werden, dass die Umsetzung von Platin und Platinverbindungen zu Sulfaten des dreiwertigen Platins führt, die eine große strukturelle Vielfalt zeigen. Alle dargestellten Sulfate sind durch $[Pt_2(SO_4)_4]$ -Einheiten aufgebaut, die durch entweder monomer in der Kristallstruktur vorliegen, zu Ketten und Schichten, oder im Falle der Oxidsulfate des Platins zu Clusteranionen verknüpft sind.

5.2 Synthese von Pt(III)sulfaten

Schlüsselpunkt zur Darstellung von Pt(III)sulfaten ist die Entwicklung einer Synthesemethode, die es erlaubt Platin oder Platinverbindungen bei hohen Temperaturen mit Schwefelsäure umzusetzen. Wie unter (3.2) bereits erläutert, hat sich die Umsetzung von Platin und Platinverbindungen mit Schwefelsäure bei Temperaturen zwischen 350 °C und 400 °C in abgeschmolzenen Duran®-Glasampullen als eine sehr effektive Methode herausgestellt. Dazu wird die entsprechende Ausgangsverbindung

Abbildung 4: Quickfit und verwendete Ampullen

Abbildung 5: An Vakuumlinie angeschlossene Ampulle

zusammen mit Schwefelsäure in eine verjüngte Ampulle eingefüllt und für 48 h bei 200 °C in einen Trockenschrank gestellt. Hier kann die Mischung vorreagieren, so dass sich eventuell bildende Gase verflüchtigen. Es wurden bei den Umsetzungen zwei unterschiedliche Ampullen verwendet. Zur Umsetzung mit Schwefelsäure wurden Ampullen von 100 mm Länge, einem Innendurchmesser von 5 mm und einer Wandstärke von 2,5 mm verwendet (Abbildung 4). Zur Umsetzung mit Oleum wurden spezielle Ampullen angefertigt, die mit einem Schliff versehen sind, so dass man nach der Reaktion und dem Öffnen der Ampulle das Überschüssige Oleum abziehen kann.

Diese haben eine Länge von 280 mm, 5 mm Innendurchmesser und 2,5 mm Wandstärke.

Abbildung 7: Elektrischer Röhrenofen in Seitenansicht

Abbildung 8: Elektrischer Röhrenofen in Aufsicht

Nach der Vorreaktion werden die Ampullen mittels eines Quickfits an eine Vakuumapparatur angeschlossen und für 30 min evakuiert (Abbildung 5). Die Reaktionsmischung wird währenddessen mit flüssigem Stickstoff ausgefrohren. Nach dem Evakuieren wird die Ampulle an der verjüngten Stelle mittels eines Erdgas-Sauerstoffbrenner verschlossen und vorsichtig mit diesem getempert. Man lässt die Ampulle langsam auftauen und begutachtet die Abschmelzstelle unter dem Mikroskop. Zur Reaktion wird die Ampulle senkrecht in einen elektrischen Röhrenofen gestellt und

das Temperaturprogramm wird gestartet (Abbildung 7Abbildung 8). Die Kontrolle der Temperatur wird dabei von einem Ni/CrNi-Thermoelement übernommen. Das Temperaturprogramm wird über einen programmierbaren Regler (Eurotherm) gesteuert.

Nach der Reaktion wird die Ampulle aus dem Ofen genommen und unter einem Lichtmikroskop betrachtet. Leicht lassen sich gebildete Produkte anhand der Farbe von nicht reagierten Ausgangsver-

Abbildung 6: Ampulle nach Reaktion unter dem Lichtmikroskop bei 30facher Vergrößerung

bindungen oder aber elementaren Platin unterscheiden (Abbildung 6). Alle Umsetzungen wurden nach der beschriebenen Methode durchgeführt. In Tabelle 1 sind die Umsetzungen mit den jeweiligen Bedingungen zusammengefasst.

Ausgangsvorbindung	Menge	Medium	Menge	Heizrate	Zieltemperatur	Haltezeit	Abkühlrate	Produkt(e)	
Ausgangsverbindung	[g]		[g]	$[^{\circ}C/h]$	[°C]	[°C]	[°C/h]		
Pt(NO ₃) ₂	0,7	H_2SO_4	2	30	400	72	3	$(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$	
								$(NH_4)_4[Pt_{12}(SO_4)_{12}O_8]$	
K ₂ Pt(NO ₂) ₄	0,7	H_2SO_4	2	30	400	72	3	$K_2[Pt_2(SO_4)_4(H_2O)_2]$	
								$K_2(NH_4)_2[Pt_{12}(SO_4)_{12}O_8]$	
$K_2[Pt_2(SO_4)_4(H_2O)_2]$	0,5	H_2SO_4	2	30	400	72	3	$K_3[Pt_2(SO_4)_4H(HSO_4)_2]$	
Rb ₂ Pt(NO ₂) ₄	0,7	H_2SO_4	2	30	400	72	3	$Rb_4[Pt_{12}(SO_4)_{12}O_8]$	
$K_2Pt(NO_2)_4$	0,4		2	20	400	72	3	$Cs_2K_2[Pt_{12}(SO_4)_{12}O_8]$	
$Cs_2Pt(NO_2)_4$	0,4	$\Pi_2 3 O_4$	2	30					
K ₂ PtCl ₄	0,5	H_2SO_4	2	30	400	72	3	$K_4[Pt_2(SO_4)_5]$	
Rb ₂ PtCl ₄	0,5	H_2SO_4	2	30	400	72	3	$Rb[Pt_2(SO_4)_3(HSO_4)]$	
Cs_2PtCl_4	0,5	H_2SO_4	2	30	400	72	3	$Cs[Pt_2(SO_4)_3(HSO_4)]$	
Pt	0,7	H_2SO_4	2	30	350	72	3	$Pt_2(SO_4)_2(HSO_4)_2$	
Pt	0,7	H_2SO_4	2	30	400	72	3	$(H_3O)_4[Pt_{12}(SO_4)_{12}O_8]$	
Pt	1,0	H_2SO_4 · SO_3	2	30	350	72	3	Pt ₃ (SO4) ₄	
PtO ₂	0,5	H_2SO_4	2	30	400	72	3	Keine Reaktion	
Pt(NH ₃) ₄ Cl ₂	0,5	H_2SO_4	2	30	400	72	3	Pt	
PtCl ₂	O,5		2	30	400	72	3	D+C1	
$Ce(SO_4)_2$	0,5	$H_2 S O_4$						rici ₃	
$(H_3O)_2[PtCl_6]$	0,5	$\mathrm{H}_2\mathrm{SO}_4$	2	30	400	72	3	PtCl ₄ ^[58]	

Tabelle 1: Tabellarische Zusammenstellung der Umsetzungen von Platin- und Platinverbindungen mit Schwefelsäure bei hohen Temperaturen

5.3 Platinsulfate mit monomeren [Pt₂(SO₄)₄]-Einheiten

5.3.1 $(H_3O)_2[Pt_2(SO_4)_4(H_2O)_2]\cdot 4H_2O$

 $(H_3O)_2[Pt_2(SO_4)_4(H_2O)_2]\cdot 4H_2O$ erhält man durch Auflösen von $Pt_3(SO_4)_4$ (siehe 5.4.3) in dest. Wasser und isothermen Verdampfen des Lösemittels bei Raumtemperatur. $(H_3O)_2[Pt_2(SO_4)_4(H_2O)_2]\cdot 4H_2O$ kristallisiert triklin mit der Raumgruppe PT in Form dünner, transparenter, oranger Plättchen, die zu größeren Aggregaten verwachsen sind. Der Aufbau des komplexen Anions $[Pt_2(SO_4)_4(H_2O)_2]^{2-}$ ist analog zu dem von *Muraveiskaya* et al. ^[5] für K₂[Pt₂(SO₄)₄(H₂O)₂] beschriebenen. Zwei Pt³⁺-Ionen bilden ein hantelförmiges Pt₂⁶⁺-Kation.

In (H₃O)₂[Pt₂(SO₄)₄(H₂O)₂]·4H₂O liegt der Abstand zwischen den Platinatomen in den vier kristallographisch unterschiedlichen Pt₂-Hanteln bei ca. 247 pm und entspricht

jenem, der von *Muraveiskava* et al.^[5] bestimmt wurde. Die Pt2-Hanteln werden chelatisierend von vier SO_4^{2-} -Gruppen koordiniert (Abbildung 9). Dabei liegen die Bindungslängen S-O Platin koordinierenden der am Sauerstoffatome in einem Bereich 149 pm – 160 pm. von Diese Bindungslängen S-O sind länger als jene für die nicht koordinierenden Sauerstoffatome der SO₄²⁻-Gruppen, welche einem Bereich von 140 pm -150 pm überstreichen. Die Sauerstoffatome O(34) und O(74)

fallen jedoch mit einer Bindungslänge von 137 pm bzw. 152 pm deutlich aus diesem Bereich heraus. Die terminalen H₂O-Liganden koordinierenden mit einem Abstand von 208 pm – 217 pm an die Pt₂-Hanteln. Diese Abstände sind erwartungsgemäß länger als jene zu den koordinierenden Sauerstoffatomen der SO_4^{22} -Gruppen.

Die Koordination um die Platinatome entspricht einer nahezu idealen oktaedrischen Koordination, wenn man das benachbarte Platinatom als Liganden betrachtet. Der Ladungsausgleich für die $[Pt_2(SO_4)_4(H_2O)_2]^{2-}$ -Anionen erfolgt durch H_3O^+ -Ionen. Pro $[Pt_2(SO_4)_4(H_2O)_2]^{2-}$ -Anion müssen demnach zwei H_3O^+ -Ionen in der Verbindung

vorzufinden sein. Im Rahmen der Strukturverfeinerung findet man jedoch sechs Sauerstoffatome pro $[Pt_2(SO_4)_4(H_2O)_2]^2$ -Anion. Vier dieser Sauerstoffatome müssen demnach H₂O-Molekülen und zwei den H₃O⁺-Ionen zuzuordnen sein. Eine Lokalisierung von Wasserstoffatomen ist im Rahmen der Strukturverfeinerung nicht möglich, so dass die einzige Möglichkeit der Zuordnung eine Betrachtung der O-O-Abstände und ein damit verbundener Hinweis auf eine Wasserstoff-

brückenbindung ist. Typische O-O-Abstände bei vorliegenden Wasserstoffbrückenbindungen liegen in einem Bereich von 240 pm bis 290 pm ^[51, 52]. Eine eindeutige Einteilung der "freien" Sauerstoffatome in H₂O- oder H₃O⁺-Moleküle ist in diesem Fall nicht möglich, da die Abstände alle in einem Bereich von 260 pm bis 290 pm liegen.

5.3.2 $(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$

 $(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$ kristallisiert triklin mit der Raumgruppe PT (Nr. 2) und einer Formeleinheit in der Elementarzelle. $(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$ ist isotyp zu $K_2[Pt_2(SO_4)_4(H_2O)_2]$ ^[5], was auf Grund der sehr ähnlichen Radien von K⁺ und NH₄⁺ zu erwarten ist.

Die Verbindung enthält wiederum das komplexe Anion $[Pt_2(SO_4)_4(H_2O)_2]^{2^-}$. Der Abstand zwischen den beiden Platinatomen der Pt₂-Hantel liegt bei 246,3 pm und liegt damit in dem erwarteten Bereich. Die vier Sulfatgruppen greifen chelatisierend an die Pt₂-Hantel an (Abbildung 12), wobei Abstände Pt-O von ca. 200 pm beobachtet werden. Die Abstände S-O innerhalb der SO₄²⁻-Gruppen liegen in einem Bereich von 142,1 pm – 154,7 pm. Die Sauerstoffatome, die an die Pt₂-Hantel gebunden sind, weisen eine Bindungslänge S-O von 151,2 pm und 154,7 pm auf. Jene zu den Sauerstoffatomen die nicht koordinieren, sind mit Bindungslängen von 142,1 pm und 144,3 pm deutlich kürzer. Die H₂O-Liganden O(1) in der axialen Position der Pt₂⁶⁺-Hantel sind mit einem Abstand Pt-O von 209,9 pm deutlich schwächer gebunden als die Sauerstoffatome der Sulfatgruppen. Der Winkel O-Pt-Pt[#] liegt bei 179,3° und weicht damit nur geringfügig von der Linearität ab. Entsprechend der Symmetrie der Raumgruppen gehört das Anion $[Pt_2(SO_4)_4(H_2O)_2]^{2-}$ zu der Punktgruppe C_i, wobei das Inversionszentum genau im Mittelpunkt der Pt₂-Hantel liegt. Es ist bemerkenswert, dass das Anion nahezu D4h-Symmetrie zeigt, wenn man nur die erste Koordinationssphäre um die Platinatome in Betracht zieht. Das NH₄⁺-Ion gleicht die Ladung innerhalb der Verbindung aus. Es ist dabei neunfach koordiniert und die

Abbildung 11: Ausschnitt aus der Kristallstruktur von (NH₄)₂[Pt₂(SO₄)₄(H₂O)₂] entlang [010]

Abstände N-O liegen in einem Bereich von 282 pm – 333 pm. Im Vergleich mit der Koordination um das K⁺-Ion in der Kristallstruktur von $K_2[Pt_2(SO_4)_4(H_2O_2)_2]^{[5, 53]}$, in der die Bindungslängen zu den Sauerstoffatomen einem Bereich von 279 pm - 309 pm überstreichen, ist die Koordinationssphäre um das NH_4^+ -Ion demnach merklich aufgeweitet.

Abbildung 12: Koordination der Pt2⁶⁺-Hantel in der Kristallstruktur von (NH4)2[Pt2(SO4)4(H2O)2]

Abbildung 13: Koordination des NH4⁺-Ion in der Kristallstruktur von (NH4)2[Pt2(SO4)4(H2O)2]

5.3.3 $K_3[Pt_2(SO_4)_4H(HSO_4)_2]$

 $K_3[Pt_2(SO_4)_4H(HSO_4)_2]$ kristallisiert monoklin mit der Raumgruppe C2/m und vier Formeleinheiten in der Elementarzelle. Das Hauptbauelement ist eine Pt2⁶⁺-Hantel, die chelatisieren von vier Sulfatgruppen koordiniert wird. Der Abstand zwischen den beiden Platinatomen beträgt dabei 247,4 pm. Die Koordination der Sauerstoffatome um Platinatom ist jedes quadratisch planar. Die Bindungslängen Pt-O

liegen in einem Bereich von 198,9 pm bis 201,0 pm. Die Bindungslängen innerhalb der Sulfatgruppen liegen bei ca. 154 pm für jene Sauerstoffatome, die an die Platinatome SO_4^{2-} -Gruppen, die Sauerstoffatome der koordinieren. Für die als freie Koordinationsstellen verbleiben, liegen die Abstände S-O zwischen 141,7 pm und 145,8 pm. Die Winkel O-S-O in den SO₄²⁻-Gruppen liegen nahe dem idealen Tetraederwinkel. Die terminalen Positionen der Pt2⁶⁺-Hantel werden von weiteren tetraedrischen Anionen besetzt (Abbildung 14). Durch das Inversionszentrum im Mittelpunkt der Pt₂⁶⁺-Hantel sind diese Anionen kristallographisch identisch. Die Anionen agieren als einzähnig angreifenden Liganden und die Bindungslänge Pt-O ist mit 214,3 pm deutlich länger als jene zu den chelatisierend angreifenden. Die Bindungslängen innerhalb der Tetraeder zeigen, dass diese HSO₄-Gruppen sind: Die Bindungslänge S(1)-O(13) liegt bei 153,9 pm und damit im erwarteten Bereich für eine S-OH-Bindung. Das Sauerstoffatom O(13) hat zudem noch einen mit 258,1 pm kurzen Abstand zu einem weiteren Sauerstoffatom O(33), der das Vorhandensein einer starken Wasserstoffbrückenbindung belegt. Innerhalb der SO_4^{2-} -Gruppe S(3) hat das Sauerstoffatom O(33) einen Abstand S-O von 145,3 pm und fungiert somit als Akzeptor.

HSO₄-Ionen in Die der Kristallstruktur sind über Wasserstoffbrücken mit weiteren HSO4-Ionen von Pt₂⁶⁺-Ionen benachbarten verknüpft. Obwohl die Wasserstoffatome im Rahmen der Strukturverfeinerung nicht gefunden werden konnten, deuten die O-O-Abstände eindeutig darauf hin. Der O-O-Abstand zwischen den benachbarten, kristallographisch aber

Abbildung 15: Verknüpfung der [Pt(SO₄)₄]-Einheiten über [H(HSO₄)₂]-Gruppen

identischen Sauerstoffatomen O(12) ist mit 242,6 pm sehr kurz und steht damit für eine sehr starke Wasserstoffbrücke (Abbildung 15). In diesem Fall fungiert das Sauerstoffatom O(12) sowohl als Akzeptor, als auch als Donor. Diese Situation findet man häufig in sauren Sulfaten vor, in denen SO_4^{2} -Ionen über ein Wasserstoffatom zu [H(SO₄)₂]-Einheiten verbunden sind, jedoch existiert bislang nur eine publizierte für Verbindung eine derartige Verknüpfung von HSO₄⁻-Ionen. In Li[H(HSO₄)₂](H₂SO₄)₂ ^[54] konnte das Wasserstoffatom durch die Klärung einer Fehlordnung lokalisiert werden. Die für $K_3[Pt_2(SO_4)_4H(HSO_4)_2]$ beobachteten Bindungslängen innerhalb der [H(HSO₄)₂]-Baugruppe entsprechen jenen, die auch für $Li[H(HSO_4)_2](H_2SO_4)_2$ beschrieben sind.

Die Ketten ${}^{1}_{\infty}$ [Pt₂(SO₄)₄H(HSO₄)₂]³⁻, welche durch Wasserstoffbrückenbindungen aufgebaut werden, sind untereinander durch zwei kristallographisch verschiedene K⁺-Ionen verbunden (Abbildung 16). Das K⁺-Ion K(1) ist achtfach von Sauerstoffatomen koordiniert und die Bindungslängen liegen in einem Bereich von 271,5 pm - 309,0 pm. Das zweite K⁺-Ion, K(2), liegt auf der Wyckofflage 4*e* und wird ebenfalls achtfach von Sauerstoffatomen in einem Abstand von 268,4 pm bis 301,9 pm koordiniert.

Anzumerken ist noch, dass die Verbindung $K_2[Pt_2(SO_4)_4(H_2O)_2]$ weitläufig bezüglich ihres Substitutionsverhaltens untersucht wurde ^[56, 48]. Die axialen Wassermoleküle wurden dabei durch Halogenidionen oder organische Liganden ausgetauscht.

 $K_2[Pt_2(SO_4)_4H(HSO_4)_2]$ ist jedoch das erste bisher belegte Beispiel für eine Substitution der axialen Wassermoleküle durch SO_4^{2-} - bzw. HSO_4^{-} -Ionen.

Abbildung 16: Projektion der Kristallstruktur von K₃[Pt₂(SO₄)₄H(HSO₄)₂] auf [010]

5.4 Platinsulfate mit verknüpften [Pt₂(SO₄)₄]-Einheiten

5.4.1 $K_4[Pt_2(SO_4)_5]$

 $K_4[Pt_2(SO_4)_5]$ kristallisiert triklin mit der Raumgruppe P $\overline{1}$ (Nr. 2) und zwei Formeleinheiten in der Elementarzelle.

In der Elementarzelle liegen vier kristallographisch verschiedene $Pt_2^{6^+}$ -Hanteln vor. Diese werden chelatisierend von je vier Sulfatgruppen koordiniert. Dabei liegen die Bindungslängen Pt-O in einem Bereich von 200 pm – 203 pm. Die Abstände innerhalb der Sulfatgruppen betragen etwa 143 pm für die nicht koordinierenden Sauerstoffatome und 153 pm für jene, die an die $Pt_2^{6^+}$ -Hantel koordinieren.

Die Abstände Pt-O für die axialen Sauerstoffatome der einzähnig angreifenden Sulfatgruppen liegen in einem Bereich von 211 - 213 pm und sind damit etwas größer als jene, die zu den axial koordinierenden Wassermolekülen in $(NH_4)_2[Pt_2(SO_4)_2(H_2O)_2]$ beobachtete werden. Die Winkel Pt-Pt[#]-O zu den axialen Sauerstoffatomen weichen mit Werten von 172° und 174° deutlich von den Linearität ab, wie sie in $(NH_4)_2[Pt_2(SO_4)_2(H_2O)_2]$ beobachtet wird.

Die axialen Sauerstoffatome gehören zu den $SO_4^{2^-}$ -Gruppen S(8) und S(10). Diese verknüpfen die [Pt₂(SO₄)₄]-Baueinheiten zu zwei kristallographisch unterschiedlichen, unendlichen Ketten, die sich gemäß ${}^{1}_{\infty}$ [Pt₂(SO₄)_{4/1}(SO₄)_{2/2}]⁴⁻ formulieren lassen (Abbildung 17). Diese Ketten sind entlang [110] ausgerichtet (Abbildung 18). Die verbrückenden SO₄²⁻-Gruppen weisen bezüglich der Bindungslängen S-O den gleichen charakteristischen Trend auf, wie die chelatisierend koordinierenden Sulfatgruppen: Die Bindungslängen zu den nicht koordinierenden O-Atomen ist deutlich kürzer (~10 pm) als jene zu den koordinierenden.

Abbildung 17: Anionische Ketten gemäß ${}^{1}{}_{\infty}$ [Pt₂(SO₄)_{4/1}(SO₄)_{2/2}]⁴⁻ in der Kristallstruktur von K₄[Pt₂(SO₄)₅]

Der Ladungsausgleich zu den ${}^{1}_{\infty}$ [Pt₂(SO₄)_{4/1}(SO₄)_{2/2}]⁴⁻-Ketten erfolgt durch acht kristallographisch unterschiedliche K⁺-Ionen. Diese weisen Koordinationszahlen

zwischen 7 und 11 auf, wenn man Bindungslängen bis 340 pm berücksichtigt. Die K⁺-Ionen K(1) und K(6) weisen eine Koordinationszahl von 7 auf und die Atomabstände K-O liegen in einem Bereich von 262 - 301 pm. Das K⁺-Ion K(7) ist achtfach Koordiniert und die Abstände überstreichen einen Bereich von 267 pm bis 340 pm. Die K⁺-Ionen K(2) und K(8) sind neunfach koordiniert mit Abständen K-O zwischen 256 und 336 pm. K(3) und K(5) sind zehnfach koordiniert und die Sauerstoffatome sind in einem Abstand von 267 - 335 pm gebunden. Das K⁺-Ion K(4) weist eine Koordinationszahl von 11 auf und die Abstände liegen in einem Bereich von 283 -332 pm. Alle K⁺-Ionen sind unregelmäßig umgeben, so dass man kein Koordinationspolyeder festlegen kann.

Abbildung 18: Kristallstruktur von K₄[Pt₂(SO₄)₅] mit Blick entlang der anionischen Ketten

5.4.2 Pt₂(SO₄)₂(HSO₄)₂

 $Pt_2(SO_4)_2(HSO_4)_2$ ist das bisher einzige charakterisierte binäre Platinsulfat. Es bildet sich entgegen der bisher vertretenen Lehrmeinung aus Platinmetall und konz. Schwefelsäure. $Pt_2(SO_4)_2(HSO_4)_2$ kristallisiert mit der monoklinen Raumgruppe $P2_1/c$ mit zwei Formeleinheiten in der Elementarzelle. Die verdoppelte Summenformel soll verdeutlichen, dass die Hauptbaugruppen in der Struktur Pt_2^{6+} -Hanteln sind, die durch zwei Pt^{3+} -Ionen (d⁷-Konfiguration) aufgebaut werden. Der Abstand zwischen den beiden Pt^{3+} -Ionen beträgt 247,3 pm.

Abbildung 19: Pt₂⁶⁺-Hantel in vollständiger Koordination

Abbildung 20: erweiterte Koordination der Pt2⁶⁺-Hantel

Jede $Pt_2^{6^+}$ -Hantel wird chelatisierend von zwei Sulfatgruppen S(1) und zwei Hydrogensulfatgruppen S(2), sowie zwei einzähnig angreifenden Sulfatgruppen S(1), koordiniert (Abbildung 19). Die Bindungslängen Pt-O liegen zwischen 201 und 203 pm für die Sauerstoffatome O(11) und O(13) der chelatisierend angreifenden Sulfatgruppen und 215 pm für jene der einzähnig angreifenden Sulfatgruppen. Jedes Platinatom ist verzerrt oktaedrisch koordiniert, wenn das jeweils zweite Platinatom als Ligand aufgefasst wird.

Die Winkel O-S-O innerhalb der Sulfat- bzw. Hydrogensufattetraeder liegen zwischen 103° und 113°. Speziell die Winkel O-S-O der koordinierenden Sauerstoffatome (O(11), O(13), O(21), O(22)) und dem zugehörigen Schwefelatom weisen einen nahezu idealen Tetraederwinkel von 109,2° und 109,7° auf. Die Bindungslängen S-O liegen in einem Bereich von 141 pm – 153 pm.

Über die Sulfatgruppen S(1) werden die $[Pt_2(SO_4)_4(HSO_4)_2]$ -Einheiten mit weiteren $Pt_2^{6^+}$ -Hanteln verknüpft. Dabei bleibt das Sauerstoffatom O(14) unkoordiniert. Die Hydrogensulfatgruppen S(2) verknüpfen zu keinen weiteren $Pt_2^{6^+}$ -Hanteln, es verbleiben damit zwei freie Koordinationsstellen. Die Bindungslängen S-O der freien

Koordinationsstellen in den S(2) Tetraedern liegen bei 141 pm (O(24)) und 153 pm (O(23)). Darüber hinaus weist das Sauerstoffatom O(23) einen Abstand von 260 pm zur freien Koordinationsstelle der Sulfatgruppe S1 auf. Dieser Abstand liegt im typischen Bereich einer Wasserstoffbrückenbindung, so dass das Sauerstoffatom O(23) als Träger des Protons identifiziert werden kann und O(14) als H-Akzeptor agiert. Auch die Bindungslängen in den Sulfattetraedern S(1)-O(14) mit 143 pm und S(2)-O(23) mit 153 pm stützen diese Vermutung.

Die $Pt_2^{6^+}$ -Hanteln ordnen sich innerhalb der Struktur zu Schichten gemäß ${}^2_{\infty}[Pt_2(SO_4)_{4/2}(HSO_4)_{2/1}]^{2^-}$ an. Diese werden über die Wasserstoffbrücken miteinander verknüpft (Abbildungen 21 und 22).

Abbildung 21: Schichten gemäß $^2{}_{\infty}$ [Pt₂(SO₄)_{4/2}(HSO₄)_{2/1}]²⁻ in der Kristallstruktur von Pt₂(SO₄)₂(HSO₄)₂

Abbildung 22: Blick entlang der Schichten in [010] in der Kristallstruktur von Pt₂(SO₄)₂(HSO₄)₂

5.4.3 Pt₃(SO₄)₄

Pt₃(SO₄)₄ kristallisiert in der monoklinen Raumgruppe P2₁/c und 2 Formeleinheiten in der Elementarzelle. In der Struktur lassen sich kristallographisch zwei Platinatome unterscheiden. Das Platinatom Pt(1) liegt in der Oxidationsstufe +3 vor und bildet mit einem weiteren Pt(1)-Atom eine Pt₂⁶⁺-Hantel, welche von vier chelatisierend und zwei einzähnig angreifenden Sulfatgruppen koordiniert wird. Der Abstand zwischen beiden Pt-Atomen in der Pt₂⁶⁺-Hantel liegt mit 247,7 pm im erwarteten Bereich. Jedes dieser Platinatome ist für sich gesehen verzerrt oktaedrisch koordiniert. Dabei liegt der Abstand Pt-O zwischen 197 pm und 203 pm für die Sauerstoffatome der chelatisierend angreifenden Sulfatgruppen und bei 212 pm für die einzähnig, terminal koordinierenden Sulfatgruppen. Die Winkel O-Pt-Pt liegen in einem Bereich von 88,8° - 89,7° bzw. 173,3°, die Winkel O-Pt-O zwischen 84,5° - 96,5°.

Das Platinatom Pt(2) liegt in der Oxidationsstufe +2 (d⁸-Koniguration) vor und wird von sechs einzähnig angreifenden Sulfatgruppen koordiniert. Die Bindungslängen Pt-O liegen bei 247 pm (O24), 251 pm (O22) und 258 pm (O13). Aufgrund der geringen Unterschiede in den Bindungslängen kann man hier nicht von einer [4+2]-Koordination, sondern muss von einer leicht verzerrten oktaedrischen Koordination, sprechen. Die Winkel O-Pt-O innerhalb des Oktaeders weichen mit Werten von 91,1°, 88,9° und 180° nur geringfügig von den idealen Winkeln ab.

Die Bindungslängen innerhalb der beiden Sulfatgruppen liegen zwischen 143,8 pm und 154,5 pm. Die Abstände innerhalb der Sulfatgruppen, deren Sauerstoffatome an das Platinatom Pt(2) koordinieren sind im Vergleich zu den anderen größer. Die Winkel O-S-O innerhalb der Sulfatgruppen liegen alle nahe dem idealen Tetraederwinkel.

Innerhalb der Gesamtstruktur sind die beiden Baueinheiten in Schichten zueinander angeordnet. Diese Schichten werden durch die Sulfatgruppen miteinander verknüpft.

Abbildung 23: Koordination um das Pt²⁺-Ion in der Kristallstruktur von Pt₃(SO₄)₄ (Abstände in pm)

Abbildung 24: Projektion der Kristallstruktur von Pt₃(SO₄)₄ auf [100]

5.4.4 $Cs[Pt_2(SO_4)_3(HSO_4)]$

Cs[Pt₂(SO₄)₃(HSO₄)] kristallisiert monoklin mit der Raumgruppe P2₁/c und vier Formeleinheiten in der Elementarzelle. In der Struktur werden [Pt₂(T)₄]-Baueinheiten (T = tetraedrische Anionen SO₄²⁻ und HSO₄⁻) zu Schichten verknüpft. Dabei lassen sich zwei unterschiedliche Schichten unterscheiden. Beide Schichten werden wiederum von Pt₂⁶⁺-Hanteln aufgebaut, die jeweils von vier chelatisierend und zwei terminal einzähnig angreifenden Tetraedern umgeben sind. Die Abstände Pt-O liegen in einem Bereich von 199,2 pm und 202,0 pm für die chelatisierend angreifenden Gruppen und 212,2 pm und 215,6 pm für die einzähnig angreifenden. Die einzähnig angreifenden SO₄²⁻-Gruppen S(1) und S(3) verknüpfen chelatisierend zu weiteren Pt₂⁶⁺-Hanteln und zwei der chelatisierend angreifenden SO₄²⁻-Gruppen ihrerseits einzähnig an die terminale Position weiterer Hanteln. Es lassen sich zwei Tetraeder, die nur an eine Hantel angreifen, unterscheiden. S(2) kann einer SO₄²⁻-Gruppe zugeordnet werden und bildet zusammen mit den Platinatomen Pt(1) und den verbrückenden SO₄²⁻-Gruppen S(1) eine anionische Schicht der Zusammensetzung ²_∞[Pt₂(SO₄)_{4/2}(SO₄)_{2/1}]²⁻ aus (Abbildung 25). S(4) trägt ein Proton am Sauerstoffatom O(42) in einem Abstand von 102 pm.

gemäß²_∞[Pt₂(SO₄)_{4/2}(SO₄)_{2/1}]²⁻

Abbildung 25: Die anionische Schicht Pt(1) Abbildung 26: Die

Abbildung 26: Die neutrale Schicht Pt(2) gemäß $^2_{\infty}$ [Pt₂(SO₄)_{4/2}(HSO₄)_{2/1}]

Zusammen mit den Platinatomen Pt(2) und den $SO_4^{2^2}$ -Gruppen S(3) bilden sich neutrale Schichten der Zusammensetzung ${}^2_{\infty}$ [Pt₂(SO₄)_{4/2}(HSO₄)_{2/1}].

Das Vorhandensein einer $HSO_4^{2^2}$ -Gruppe lässt sich an den Unterschieden in den Bindungslängen S(4)-O belegen. Die Bindungslängen S-O liegen in einem Bereich von 140,7 pm bis 147,8 pm für die Sauerstoffatome, die keine Bindung zu Platinatomen ausbilden und zwischen 150,1 pm und 152,7 pm für jene, die an Platinatome binden.

Das Sauerstoffatom O(42) weicht mit einer Bindungslänge S-O von 150,9 pm deutlich von diesem Trend ab. Auch der Abstand zwischen den Sauerstoffatomen O(42) und

O(21) deutet auf eine starke Wasserstoffbrückenbindung hin, für die auch der Winkel O(42)-H-O(21) von 167° spricht.

Abbildung 27: Alternierende Anordnung der neutralen und anionischen Schichten

Diese neutralen Schichten Pt(2) sind identisch zu den Schichten aufgebaut, die bereits in $Pt_2(SO_4)_2(HSO_4)_2$ gefunden wurden: Daher kann die Struktur von $Cs[Pt_2(SO_4)_3(HSO_4)]$ formal auch als eine Mischung von $Pt_2(SO_4)_2(HSO_4)_2$ und dem bislang unbekannten " $Cs_2[Pt_2(SO_4)_4]$ " aufgefasst werden.

Die Schichten sind in [100]-Richtung alternierend angeordnet und zwischen ihnen ordnen sich die Cs⁺-Ionen an. Diese weisen eine Koordinationszahl von 10 auf und der Abstand Cs-O liegt in einem Bereich von 295,2 pm bis 366,9 pm.

5.4.5 $Rb[Pt_2(SO_4)_3(HSO_4)]$

Rb[Pt₂(SO₄)₃(HSO₄)] kristallisiert orthorhombisch mit der Raumgruppe Pnma und vier Formeleinheiten in der Elementarzelle. Die Struktur ist ähnlich zu der von Cs[Pt₂(SO₄)₃(HSO₄)] aufgebaut. In der Struktur von Cs[Pt₂(SO₄)₃(HSO₄)] liegen gemäß $^{2}_{\infty}$ [Pt₂(SO₄)_{4/2}(SO₄)_{2/1}]²⁻ und $^{2}_{\infty}$ [Pt₂(SO₄)_{4/2}(HSO₄)_{2/1}] zwei unterschiedliche Schichten vor. In der Struktur von Rb[Pt₂(SO₄)₃(HSO₄)] findet man hingegen nur eine Schicht.

Die Bindungslängen Pt-O liegen in einem Bereich von 199,3 pm und 199,9 pm für die Sauerstoffatome der chelatisierend angreifenden SO_4^{2-} -Gruppen und bei 213,9 pm für die terminal angreifenden.

Abbildung 29: Aufsicht auf die Schichten in der Kristallstruktur von Rb[Pt₂(SO₄)₃(HSO₄)]

Abbildung 30: Projektion der Kristallstruktur von Rb[Pt₂(SO₄)₃(HSO₄)] entlang [001]

Die Bindungslängen innerhalb der SO_4^{2-} -Gruppe S(1) liegen in einem Bereich von 144,1 pm und 153,4 pm. Die SO_4^{2-} -Gruppe S(2) greift nur chelatisierend an die Pt_2^{6+} -Hantel an. Die Bindungslängen innerhalb dieses Ions liegt zwischen 151,8 pm und 153,6 pm für die an die Pt_2^{6+} -Hantel koordinierenden Sauerstoffatome und bei 142,5 pm für das nicht koordinierende Sauerstoffatom O(23). Das ebenfalls nicht koordinierende Sauerstoffatom O(24) weist eine Bindungslänge S-O von 149,3 pm auf. In der Struktur weist dieses Sauerstoffatom einen mit 230 pm sehr kurzen Abstand zu einem symmetrieäquivalenten O(24)-Atom auf. Die beiden Atome werden durch eine Spiegelebene ineinander überführt.

Die thermischen Auslenkungsparameter der Sauerstoffatome der SO_4^{2-} -Gruppe S(2) weisen eine starke Elongation auf, die auf eine Fehlordnung der Tetraeder schließen lassen. Diese lässt sich auch nicht durch einen Abstieg in die niedersymmetrische Raumgruppe Pn2₁a aufheben. Die Fehlordnung kann in dem unrealistisch kurzen

Abstand O(24)-O(24) von 230 pm gesehen werden. Ein realistischer Abstand zwischen Sauerstoffatomen beim Vorliegen einer sehr starken Wasserstoffbrücke liegt bei ca. 240 pm. Es ist daher wahrscheinlich, dass sich beide Sauerstoffatome statistisch zu verschiedenen Richtungen entlang der thermischen Auslenkungsparameter verschieben und sich der Abstand somit auf einen erwarteten Wert um 240 pm vergrößert. Zwischen diesen beiden O(24)-Atomen befindet sich das Proton, gewissermaßen unter Bildung einer [H(SO₄)₂]³⁻-Gruppe.

Zwischen den Schichten ordnen sich die Rb⁺-Ionen an. Diese weisen eine zehnfache Koordination auf. Dabei liegen die Bindungslängen Rb-O zwischen 283,1 pm und 372,4 pm.

Abbildung 31: Wasserstoffbrückensystem in der Kristallstruktur Rb[Pt₂(SO₄)₃(HSO₄)]

5.5 Oxidsulfate des dreiwertigen Platins mit [Pt₁₂(SO₄)₁₂O₈]⁴⁻-Anionen

5.5.1 Einleitung

Bei der Reaktion von K₂[Pt(NO₂)₄] mit Schwefelsäure bildet sich bei einer Reaktionstemperatur von 120 °C die Verbindung K₂[Pt₂(SO₄)₄(H₂O)₂]. Führt man die Reaktion hingegen unter solvothermalen Bedingungen in einer abgeschmolzenen Glasampulle bei einer Reaktionstemperatur von 400 °C durch, so bildet sich als Hauptprodukt das Oxidsulfat K₂(NH₄)₂[Pt₁₂(SO₄)₁₂O₈] und nur als Nebenprodukt das bereits bekannte K₂[Pt₂(SO₄)₄(H₂O)₂]^[5].

Wie weitere Untersuchungen zeigen, wird das Clusteranion $[Pt_{12}(SO_4)_{12}O_8]^{4-}$ auch in verschiedenen anderen Reaktionen gebildet. So reagiert $Pt(NO_3)_2$ mit Schwefelsäure zu $(NH_4)_4[Pt_{12}(SO_4)_{12}O_8]$ und $(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$ als Nebenprodukt. Der Einsatz von $Rb_2[Pt(NO_2)_4]$ führt ausschließlich zu $Rb_4[Pt_{12}(SO_4)_{12}O_8]$. Eine Mischung von $K_2[Pt(NO_2)_4]$ und $Cs_2[Pt(NO_2)_4]$ ergibt unter gleichen Reaktionsbedingungen eine Verbindung der Zusammensetzung $K_2Cs_2[Pt_{12}(SO_4)_{12}O_8]$.

Die Bildung des Clusteranions $[Pt_{12}(SO_4)_{12}O_8]^{4-}$ in unterschiedlichsten Reaktionen deutet auf dessen hohe Stabilität hin. Alle isolierten und strukturell charakterisierten Verbindungen sind jedoch empfindlich gegenüber Feuchtigkeit zersetzen sich außerhalb einer Schutzgasatmosphäre langsam.

5.5.2 Zum Aufbau des Clusteranions [Pt₁₂(SO₄)₁₂O₈]⁴⁻

Das komplexe Cluster-Anion wird im Folgenden exemplarisch für die Verbindung $(NH_4)_4[Pt_{12}(SO_4)_{12}O_8]$ beschrieben.

Das Hauptbauelement des Clusteranions $[Pt_{12}(SO_4)_{12}O_8]^{4-}$ ist wiederum die Pt_2^{6+} -Hantel, die aus den Platinatomen Pt(1) und Pt(2) aufgebaut ist. Im Gegensatz zu den bisher beschriebenen Verbindungen ist der Abstand zwischen den beiden Platinatomen mit 253,1 pm deutlich länger. Jedes Platinatom wird von fünf Sauerstoffatomen koordiniert. Somit ergibt sich wieder eine sechsfache Koordination um jedes Pt-Atom.

Das Platinatom Pt(1) wird von den Sauerstoffatomen O(14), O(23), O(24) und O(2) umgeben. Das Sauerstoffatom O(16) nimmt die terminalen Positionen der Hantel ein. Die Bindungslänge Pt-O(16) beträgt 216 pm. Verglichen mit den Bindungslängen zu den Sauerstoffatomen der in terminaler Position koordinierenden SO_4^{2-} -Gruppen in K₃[Pt₂(SO₄)₄H(HSO₄)₂] und K₄[Pt₂(SO₄)₅] ist die Bindung Pt-O hier deutlich länger.

Die Sauerstoffatome O(23) und O(14) befinden sich in einem Abstand von 202 - 203 pm am Platinatom Pt(1) und sind damit nur geringfügig länger als die bisher beobachteten. Die symmetrieäquivalenten Sauerstoffatome O(2) zeigen einen Abstand von 199,5 pm. Das Pt-Atom Pt(2) wird in analoger Weise koordiniert. Das terminale Atom O(11) weist einen Abstand von 214 pm auf. Die beiden Atome O(12) und O(21) haben einen Abstand von 202,5 pm zu Pt(1), und die beiden Atome O(1) und O(2) zeigen mit 200 pm einen vergleichbaren Wert.

Alle Sauerstoffatome lassen sich in zwei unterschiedliche Klassen einteilen: Die Sauerstoffatome O(11), O(12), O(14), O(21), O(23) und O(24) sind $SO_4^{2^2}$ -Gruppen zuzuordnen, O(1) und O(2) repräsentieren die O²⁻-Ionen.

Abbildung 32: Sauerstoffkoordination um die Pt2⁶⁺-Hantel in der Kristallstruktur von (NH₄)4[Pt₁₂(SO₄)₁₂O₈] (Abstände in pm)

Die Winkel O(11)-Pt(2)-Pt(1) und O(24)-Pt(1)-Pt(2) liegen bei 168° bzw. 169°, d. h. im Gegensatz zu den bisherigen Befunden wird eine merkliche Abweichung der O-Pt-Pt-O-

Einheit von der Linearität beobachtet. Die Winkel O(12)-Pt(2)-O(2), O(14)-Pt(1)-O(2), O(21)-Pt(2)-O(1) und O(23)-Pt(1)-O(2)liegen im Rahmen der Standardabweichung bei 175°. Die Abstände $O(2)-O^{\#}(2)$ und O(1)-O(2)liegen bei 285 pm. Im Gegensatz dazu liegen die Abstände zwischen den Atomen O(21)-O(23) und O(12)-O(14) bei 246 pm. Vereinfacht lässt sich diese Verzerrung so beschreiben, dass die

Abbildung 34: Anordnung der SO₄²⁻-Gruppen um die Pt₂⁶⁺-Hantel

Atome O(21), O(23), O(12) und O(14) aufeinander zurücken und die Atome O(2) und

O(1) bewegen sich von einander weg. Die terminalen Sauerstoffatome O(24)und O(11) bewegen sich im Rahmen dieser Verzerrung auf den Mittelpunkt einer hypothetischen Verbindungslinie zwischen den Atomen O(21)-O(12) und O(23)-O(12) zu (Abbildung 33). Die Sauerstoffatome O(11), O(12), O(14), O(21), O(23) und O(24) sind den Sulfattetraedern S(1) und S(2)zugeordnet.

Bindungslängen innerhalb Die der Anionen liegen in einem Bereich von 146 pm bis für 153 pm die Sauerstoffatome, die an die Pt⁶⁺-Hantel koordinieren und zwischen 142 pm und 144 pm für die Sauerstoffatome, die als freie Koordinationsstellen verbleiben. Über die Sulfattetraeder und die Sauerstoffatome O(1) und O(2) erfolgt die Verknüpfung zu weiteren Pt₂-Hanteln. Dabei bildet sich um die Sauerstoffatome O(1) und O(2) eine trigonal planare Koordinationssphäre

Abbildung 35: Koordination Pt₂⁶⁺-Hantel

Abbildung 36: Der β-W-Typ (A15-Typ)

aus. Die Sulfatgruppen S(1) und S(2) agieren innerhalb der Struktur als dreizähnig angreifende Liganden. Insgesamt werden auf diese Weise sechs Pt₂-Hanteln über acht O^{2} -Ionen und zwölf SO₄²-Gruppen verknüpft. Die Platinatome sind dabei in Form eines Ikosaeders angeordnet.

Zwischen den Pt₂-Hanteln beträgt der Abstand jeweils 345 pm, während innerhalb der Hanteln 253 pm beobachtet werden Durch diese Verknüpfung liegen in dem Ikosaeder acht kleine und zwölf große Dreiecksflächen vor (Abbildung 37). Im Mittelpunkt der kleinen Dreiecksflächen liegen die Oxidionen O(1) und O(2) (Abbildung 38). Über den verbleibenden zwölf großen Dreiecksflächen stehen dreizähnig angreifende Sulfatgruppen S(1) und S(2). Die Struktur lässt sich vom β -W-Typ (A15-Typ) ableiten (Abbildung 36). In dessen kubischer Elementarzelle liegen zwei kristallographisch verschiedene W-Atome vor. Das Atom W(1) (blau, Abbildung 36) liegt auf den Ecken und im Mittelpunkt der Elementarzelle und bildet damit eine kubisch innenzentrierte Kugelpackung. Das Atom W(2) (pink) liegt auf der Wyckofflage 6c mit den Koordinaten $\frac{1}{4}$, 0, $\frac{1}{2}$. Die W-Atome W(2) ordnen sich dabei in Form eines verzerrten Ikosaeders an, in dem die kurzen Abstände bei 253 pm und die langen bei 310 pm liegen. Die Struktur der (Pt₂)₆-Cluster lässt sich demnach von diesem Typ ableiten, indem man die Oxidionen aus den Dreiecksflächen heraushebt und in den Mittelpunkt des Clusters ein weiteres Atom legt. Innerhalb der trigonal-rhomboedrischen Elementarzelle liegen acht Clusteranionen auf den Ecken der Elementarzelle und zwei weitere entsprechend der R-Zentrierung auf den Lagen $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ und $\frac{1}{3}$, $\frac{2}{3}$, $\frac{2}{3}$ (Abbildung 39).

Abbildung 37: Anordnung der Platinatome zu einem Ikosaeder mit alternierenden Pt-Pt-Abständen

Abbildung 38: Verknüpfung von sechs Pt₂⁶⁺-Hanteln über acht O²⁻Ionen

Abbildung 39:Anordnung der Clusteranionen in der trigonalen Elementarzelle der Oxidsulfate A₄[Pt₁₂(SO₄)₁₂O₈] (A = NH₄⁺, K⁺, Rb⁺, Cs⁺)

5.5.3 Zur Anordnung der Kationen

Der Ladungsausgleich innerhalb der Gesamtstruktur wird durch einwertige Kationen übernommen. Dabei stehen die Lagen 6c der Raumgruppe $R\overline{3}$ zur Verfügung. In der folgenden Tabelle sind die beiden Lagen mit den entsprechenden Kationen, deren Koordinationszahl und dem beobachteten Abstandsbereich.

 Tabelle 2: Tabellarische Zusammenstellung der Kationenlagen und deren Koordinationszahlen

 (C.N.)

Verbindung	Lage 1	C.N.	d/pm	Lage 2	C.N.	d/pm
$Cs_2K_2[Pt_{12}(SO_4)_{12}O_8]$	Cs1	15	309-397	K1	13	280-326
$Rb_4[Pt_{12}(SO_4)_{12}O_8]$	Rb1	12	302-366	Rb2	13	289-330
$K_2(NH_4)_2[Pt_{12}(SO_4)_{12}O_8]$	N2	12	297-391	K1	12	286-330
$(NH_4)_4[Pt_{12}(SO_4)_{12}O_8]$	N1	12	296-385	N2	13	280-330

Aus dieser Aufstellung wird ersichtlich, dass durch die Clusteranionen ein relativ starres Gerüst vorgegeben wird, indem sich die Kationen auf zwei Lagen mit unterschiedlicher Umgebung und Abständen zu den Liganden anordnen können. Die Lage 1 stellt mit Abständen von 297 pm bis 397 pm eine große Lücke dar, während die Lage 2 mit Abständen von 280 pm bis 330 pm kleiner ist. Die Besetzung der Lagen mit unterschiedlich großen Kationen wird vor allem in der gemischten Verbindung $K_2Cs_2[Pt_{12}(SO_4)_{12}O_8]$ deutlich, in der sich das Cs⁺-Kation auf der Lage 1 wieder findet und das wesentlich kleinere K⁺-Kation die Lage 2 einnimmt.

Abbildung 40: Perspektivische Darstellung der Kristallstruktur von (NH₄)₄[Pt₁₂(SO₄)₁₂O₈]

5.6 Vergleich der Platin(III)sulfate

Alle dargestellten Platinsulfate weisen eine sehr interessante Strukturchemie auf. Die unter 5.3 und 5.4 beschriebenen Verbindungen haben alle als Hauptbauelement die Einheit [Pt₂(T)₄], wobei T für das tetraedrische Anion SO₄²⁻ oder das ebenfalls tetraedrische HSO₄⁻-Ion steht. In den Verbindungen (H₃O)₂[Pt₂(SO₄)₄(H₂O)₂]·4H₂O (5.3.1) und (NH₄)₂[Pt₂(SO₄)₄(H₂O)₂] (5.3.2) ist diese Baueinheit an den freien Koordinationsstellen der Platinatome durch H₂O-Moleküle ergänzt. Die gleiche Situation findet man in der bereits von *Muraveiskaya* ^[5] strukturell charakterisierten Verbindung K₂[Pt₂(SO₄)₄(H₂O)₂] vor, die isotyp zur Ammoniumverbindung ist. Diese terminalen H₂O-Moleküle lassen sich durch andere Donoratome ^{[56][48]} oder -gruppen substitutionsprodukt K₃[Pt₂(SO₄)₄H(HSO₄)₂] (5.3.3). Diese Verbindung ist das zweite Beispiel einer strukturell charakterisierten Verbindung, in der Hydrogensulfatgruppen untereinander über ein H-Atom verbrückt werden. Unabhängig von den terminalen Liganden in K₃[Pt₂(SO₄)₄H(HSO₄)₂] liegen die substituierten [Pt₂(SO₄)]-Baueinheiten in der Kristallstruktur isoliert voneinander vor.

Eine Verknüpfung der [Pt(SO₄)₄]-Einheiten findet man in K₄[Pt₂(SO₄)₅] (5.4.1). Die einzelnen Einheiten werden dabei durch weitere SO₄²⁻-Gruppen zu Ketten gemäß ${}^{1}_{\infty}$ [Pt₂(SO₄)_{4/1}(SO₄)_{2/2}] verknüpft. Diese Ketten verlaufen innerhalb der triklinen Kristallstruktur entlang [111].

In der Verbindung Rb[Pt₂(SO₄)₃(HSO₄)] (5.4.5) sind die [Pt(SO₄)₄]-Einheiten zu Schichten verknüpft. Die Verknüpfung findet durch SO₄²⁻-Gruppen statt, wodurch sich Schichten gemäß $^{2}_{\infty}$ [Pt₂(SO₄)_{4/2}(HSO₄)_{2/1}] ergeben. Diese Schichten stapeln sich entlang [010] und werden durch Wasserstoffbrückenbindungen und Rb⁺-Ionen zusammengehalten. Die Wasserstoffbrücke innerhalb dieser Verbindung ist mit 230 pm unrealistisch, was in der Struktur offenbar durch eine leichte Fehlordnung der SO₄²⁻- Gruppen kompensiert wird.

In Cs[Pt₂(SO₄)₃(HSO₄)] (5.4.4) sind die [Pt₂(SO₄)₄]-Einheiten ebenfalls über SO₄²-Gruppen zu Schichten verknüpft. Im Gegensatz zu Rb[Pt₂(SO₄)₃(HSO₄)] lassen sich hier jedoch zwei kristallographisch unterschiedliche Schichten finden. Eine neutrale Schicht lässt sich gemäß $^{2}_{\infty}$ [Pt₂(SO₄)_{4/2}(HSO₄)_{2/1}] formulieren und entspricht jener, die man in der Kristallstruktur von Pt₂(SO₄)₂(HSO₄)₂ (5.4.2) vorfindet. Die zweite Schicht ist gemäß $^{2}_{\infty}$ [Pt₂(SO₄)_{4/2}(SO₄)_{2/1}]²⁻ formulieren und zweifach negativ geladen. Diese beiden Schichten ordnen sich innerhalb der Kristallstruktur alternierend an und werden durch Wasserstoffbrückenbindungen bzw. Cs⁺-Ionen zusammengehalten. Dabei ist der Donor-Akzeptor-Abstand mit 247 pm länger als in der Rubidiumverbindung, so dass hier keine Fehlordnung der Tetraeder auftritt. Die Schichten stapeln sich entlang [100].

Auch die Verbindung $Pt_2(SO_4)_2(HSO_4)_2$ (5.4.2) ist aus Schichten gemäß ${}^2_{\infty}[Pt_2(SO_4)_{4/2}(HSO_4)_{2/1}]$ aufgebaut, die sich entlang [100] in der monoklinen Zelle anordnen. Auch hier werden die Schichten durch H-Brückenbindungen zusammengehalten. Der Donor-Akzeptor-Abstand liegt bei 260 pm und spricht für eine mittelstarke Wasserstoffbrückenbindung.

In der Verbindung $Pt_3(SO_4)_4$ (5.4.3) liegen ebenfalls zu Schichten verknüpfte [$Pt_2(SO_4)_4$]-Einheiten vor, die gemäß $^2_{\infty}$ [$Pt_2(SO_4)_{4/2}(SO_4)_{2/1}$]²⁻ zu formulieren sind. Hier werden diese Schichten durch ein weiteres Pt^{2+} -Ion miteinander verknüpft. Dieses Pt^{2+} -Ion ordnet sich dabei zwischen den Schichten so an, dass es oktaedrisch von sechs Sauerstoffatomen umgeben ist. Dies ist die bislang erste strukturell charakterisierte Verbindung in der ein Pt^{2+} -Ion (d⁸-Konfiguration) oktaedrisch koordiniert wird.

In den Oxidsulfaten des Platins (5.5) sind sechs $Pt_2^{6^+}$ -Hanteln zu einem Pt_{12} -Ikosaeder verknüpft. Auffällig ist dabei, dass die Bindungslänge zwischen den beiden Pt-Atomen mit 253 pm deutlich länger ist, als in den anderen strukturell charakterisierten

Platinsulfaten, die dieses Strukturelement aufweisen. Eine einfache Betrachtung Bindungszustände der innerhalb dieser Hantel liefert eine Erklärung. Jedes Platinatom ist oktaedrisch umgeben. Durch Hybridisierung werden aus den 6s, 6p und 5d-Orbitalen sechs d²sp³-Hybridorbitale gebildet. Drei 5d-Orbitale verbleiben unverändert. Jedes Sauerstoffatom als

Abbildung 41: Schematische Darstellung der Bindungsverhältnisse in der Pt2⁶⁺-Hantel

Ligand liefert nochmals ein 2p-Orbital zum Aufbau der Bindungen. Dieser Zusammenhang ist in Abbildung 41 schematisch dargestellt. Jedes Platinatom innerhalb

der Clusteranionen wird von drei Sauerstoffatomen, die einer SO₄²⁻-Gruppe zugeordnet sind und von zwei weiteren Sauerstoffatomen oxidischer Natur koordiniert. Diese Sauerstoffatome können wesentlich mehr Elektronendichte in die Bindung einfließen lassen. Dieses resultiert in der Schwächung der Bindung zwischen den Platinatomen und damit zu einem größeren Abstand.

Im folgenden Diagramm sind nochmals die strukturellen Zusammenhänge der Platinsulfate und deren Syntheserouten schematisch zusammengefasst. Die grün unterlegten Verbindungen symbolisieren Platinsulfate mit monomeren $[Pt_2(T)_4]$ -Baueinheiten, die rot unterlegten stellen die Platinsulfate dar, in denen die $[Pt_2(T)_4]$ -Baueinheiten zu Ketten verknüpften sind und die in den türkis unterlegten Platinsulfaten sind diese Baueinheiten zu Flächen verknüpft.

Abbildung 42: Schematische Darstellung der strukturellen Zusammenhänge der Platinsulfate (grün: monomere Baueinheiten, rot: zu Ketten verknüpfte Baueinheiten, türkis: zu Flächen verknüpfte Baueinheiten, gelb: Pt₁₂-Cluster)

6 Ausgewählte Schwingungsspektren

Von ausgewählten Verbindungen , vor allem solche, deren Hydrolyseempfindlichkeit nicht zu groß ist, wurden exemplarisch Schwingungsspektren aufgenommen, um Kenntnis über die Schwingungsenergie der $SO_4^{2^2}$ -Gruppe unter den gegebenen Koordinationen zu erhalten.

Das freie $\mathrm{SO_4^{2-}}$ -Ion gehört der Punktgruppe T_d an. Es werden nur zwei IR aktive Schwingungen beobachtet. Die asymmetrische Deformationsschwingung v_3 ist dreifach entartet, wird bei 1104cm⁻¹ beobachtet und ist sehr intensiv. Die asymmetrische Deformationsschwingung v_4 ist ebenfalls dreifach entartet, liegt bei 613 cm^{-1} und ist intensiv. Die symmetrische Deformationsschwingung v_1 und die symmetrische Deformationsschwingung v_2 sind nicht beobachtbar. Wird die Symmetrie innerhalb der SO₄²⁻-Gruppen erniedrigt, wird zum einen die Entartung der Energieniveaus aufgehoben. Zum anderen werden die Schwingungsbanden der symmetrischen Schwingungen IR aktiv, so dass im Extremfall neun Schwingungen zu beobachten sind. Die Art und Weise der Koordination der SO₄²-Gruppe an die Metallzentren macht sich in einem Shift der Banden zu höheren oder niedrigeren Wellenzahlen bemerkbar. So muss zwischen z.B. bei einer zweizähnigen Koordination zwischen einer verbrückenden und einer chelatisierend angreifenden SO_4^{2-} -Gruppe unterschieden werden, wobei die Bande der verbrückende bei höheren Wellenzahlen und die chelatisierend angreifende bei kleineren Wellenzahlen liegt. Auch die Anzahl kristallographisch verschiedener SO₄²⁻-Gruppen spiegelt sich in der Aufspaltung der der Banden wieder.

6.1 Schwingungsspektrum von K₄[Pt₂(SO₄)₅]

In der Kristallstruktur von K₄[Pt₂(SO₄)₅] findet man acht chelatisierende und zwei zweizähnig verbrückende SO42-Tetraeder vor. Diese gehören nicht mehr der Punktgruppe T_d an, sondern haben nur noch C₁-Symmetrie. Die unterschiedliche Koordination der SO₄²⁻-Tetraeder an die Pt₂⁶⁺-Hanteln spiegelt sich auch im Schwingungsspektrum wieder. Die Schwingungsbanden um 1290cm⁻¹ und jene um 1168 cm⁻¹ sind der asymmetrischen Valenzschwingung v₃ zuzuordnen. Das Verhältnis beider Banden zueinander beträgt 1:4, so dass man jene bei 1290 cm⁻¹ den verbrückenden und jene um 1168 cm⁻¹ den chelatisierend koordinierenden SO₄²⁻-Tetraedern zuordnen kann. Beide Banden zeigen eine Feinstruktur, die auf die SO₄²⁻-Tetraeder kristallographisch verschiedenen zurückzuführen ist. Die 990 cm^{-1} und 895 cm^{-1} Schwingungsbanden um sind der symmetrischen Valenzschwingung v_1 zuzuordnen. Die Schwingungsbanden um 675 cm⁻¹ und 619 cm⁻¹ gehören zur asymmetrischen Deformationsschwingung v_4 und jene um 497 cm⁻¹ und 464 cm⁻¹ zur symmetrischen Deformationsschwingung v_2 . Auch diese Banden zeigen das Aufspaltungsmuster wie gleiche die Banden der asymmetrischen Valenzschwingung v_3 .

6.2 Schwingungsspektrum von Pt₃(SO₄)₄

In der Kristallstruktur von $Pt_3(SO_4)_4$ lassen sich kristallographisch zwei $SO_4^{2^2}$ -Tetraeder unterscheiden. Der Tetraeder S(1) koordiniert über die Sauerstoffatome zweizähnig chelatisierend an eine Pt2⁶⁺-Hantel, einzähnig terminal an eine Pt2⁶⁺-Hantel und einzähnig an ein Pt²⁺-Kation. Der Tetraeder S(2) koordiniert über zwei seiner O-Atome an das Pt²⁺-Kation und zweizähnig chelatisierend an die Pt₂⁶⁺-Hantel. Die Symmetrie innerhalb der beiden Tetraeder ist erniedrigt, was sich wieder in der Aufhebung der Entartung der Schwingungsniveaus zeigt. Die Banden um 1230 cm⁻¹ und 1024 cm⁻¹ sind den asymmetrischen Valenzschwingung v3 zuzuordnen. Dabei ist die Bande bei 1230 cm⁻¹ dem Tetraeder S(1) und jene bei 1024 cm⁻¹ dem Tetraeder S(2) zuzuordnen. Die 885 cm⁻¹ Schwingungsbanden um gehören symmetrischen zu der Valenzschwingung v_1 . Diese ist deutlich weniger stark aufgespalten als die Schwingung v_3 . Die Banden um 574 cm⁻¹ und 482 cm⁻¹ gehören zu der asymmetrischen Deformationsschwingung v_4 und der symmetrischen Deformationsschwingung v_2 . Auch hier spaltet die zu v_4 gehörenden Schwingungsbande stärker auf als jene zu v_2 .

6.3 Schwingungsspektrum zu K₂(NH₄)₂[Pt₁₂(SO₄)₁₂O₈]

Im Schwingungsspektrum von $K_2(NH_4)_2[Pt_{12}(SO_4)_{12}O_8]$ lassen sich die Schwingungsbanden bei 3216 cm⁻¹ und 2958 cm⁻¹ den Valenzschwingungen v_3 und v_1 im NH₄⁺-Ion zuordnen. Die asymmetrische Deformationsschwingung v_4 wird von der breiten Bande der v₃ Schwingung der SO₄²⁻-Gruppe überlagert, jedoch lässt sich eine Schulter bei 1407 cm⁻¹ erkennen. Die Banden um 1168 cm⁻¹ gehören zu den asymmetrischen Valenzschwingungen v_3 und jene bei 885 cm⁻¹ zu der symmetrischen Valenzschwingung v_1 . Die Aufspaltung der Banden hier ist geringer als bei den beiden vorherig beschriebenen Schwingungsspektren, da die Umgebung der SO42-Tetraeder nahezu identisch ist. Jedoch lässt sich wieder die typische Aufspaltung der Schwingungsbanden für verbückende und chelatisierende SO42-Gruppen finden. Die Schwingungsbanden um 574 cm⁻¹ und 453 cm⁻¹ sind den Deformationsschwingungen v_4 und v_2 zuzuordnen.

6.4 Zusammenstellung der beobachteten Schwingungsenergien

In der folgenden Tabelle sind die in den untersuchten Sulfaten beobachteten Bandenlagen noch einmal mit Ihrer Zuordnung zusammengestellt.

Verbindung	ν_1	v_2	ν ₃	ν_4
$V \left[\mathbf{D} \left\{ \left(\mathbf{S} \mathbf{O} \right) \right\} \right]$	990	497	1290	675
$K_4[Pt_2(5O_4)_5]$	895	464	1168	619
$\mathbf{D}_{\mathbf{f}}(\mathbf{SO})$	995	493	1230	574
$Pl_3(SO_4)_4$	885	482	1024	574
$K_2(NH_4)_2[Pt_{12}(SO_4)_{12}O_8]$	885	452	1168	574

Tabelle 3: Zusammenstellung der beobachteten Schwingungsenergien in cm⁻¹

7 Thermische Zersetzung von Pt₃(SO₄)₄

Pt₃(SO₄)₄ ist leicht aus Platin und Oleum herzustellen und zeichnet sich durch eine sehr hohe Löslichkeit in wässrigen Medien aus. Zur Beurteilung des thermochemischen Verhaltens und des Abbauproduktes wurde die Verbindung einer DTA-Messung und einer elektronenmikroskopischen Analyse des Rückstandes unterzogen.

Zur Vorbereitung der Messungen wurde die Probe zunächst durch eine Filtration vom überschüssigen Oleum getrennt. Anschließend wurde die Probe bei 200 °C unter Vakuum von anhaftendem Oleum weitestgehend befreit. Zur Messung sind 8,300 mg des erhaltenen Produktes in einen Korundtiegel eingewogen worden.

Aus der DTA-Kurve wird erkenntlich, dass der Abbau der vermessenen Substanz in zwei Schritten abläuft. Der erste Schritt ist mit einem Massenverlust von 28,30% verbunden. Die onset-Temperatur liegt bei 242,2 °C, der Wendepunkt bei 274,2 °C und der Endpunkt bei 276 °C. Dieser Prozess verläuft endotherm. Im zweiten Schritt erfolgt eine Massenänderung von 21,59%, die ebenfalls endotherm verläuft. Die onset-Temperatur liegt hier bei 486,6 °C, der Wendepunkt bei 511,7 °C und der Endpunkt bei 526,3 °C.

Aus dem beobachteten Abbau-Verhalten lässt sich schließen, dass die Probe noch merkliche Mengen an Oleum enthielt. Der Siedepunkt von Schwefelsäure erniedrigt sich dramatisch mit dem Anteil an gelösten SO₃ (Abbildung 43). Es ist wahrscheinlich,

dass im ersten Schritt gibt das Oleum langsam mit steigender Temperatur abgegeben wird. Im zweiten Schritt erfolgt ein Masseverlust von 30%. Dies entspricht im Rahmen der Standardabweichung und Fehler in den Messgrößen der Abgabe von vier Equivalenten SO₂ und O₂. Unter chemischen Gesichtspunkten kann man folgende Reaktionsgleichung formulieren:

$$Pt_{3}(SO_{4})_{4} + xH_{2}SO_{4} \cdot SO_{3} \xrightarrow{242^{\circ}C - 276^{\circ}C}{xH_{2}SO_{2} \cdot SO_{4}} \rightarrow Pt_{3}(SO_{4})_{4} \xrightarrow{486^{\circ}C - 516^{\circ}C}{-4SO_{2} - 4O_{2}} \rightarrow 3Pt$$

Die Angaben beziehen sich auf die Stoffmengen der Substanzen. Der Anteil an gelöstem SO₃ in der Schwefelsäure wurde aus den Temperaturen zu Beginn der ersten Stufe und am Ende diese, sowie aus dem Diagramm in Abbildung 43 abgeschätzt. Als Rückstand verbleibt ein fein sehr strukturierter Platinschwamm. Dessen Poren weisen teilweise eine Größe von nur 25 nm auf

Abbildung 44: REM-Aufnahme des Rückstandes bei 4000facher Vergrößerung

(Abbildung 44). . Vergleicht man den Platinschwamm, der durch die thermische Zersetzung von $Pt_3(SO_4)_4$ entsteht mit jenen, die bei der Platinherstellung durch die Zersetzung von $(NH_4)_2PtCl_6$ anfallen, so ist letzterer wesentlich gröber strukturiert und die Porengröße liegt bei 500 nm bis 130 nm. Die Zersetzungstemperatur von $Pt_3(SO_4)_4$ ist im Vergleich zu jener von $(NH_4)_2PtCl_6$ höher. Jedoch ist $Pt_3(SO_4)_4$ in wässrigen Medien löslich und in diesen auch über mehrere Wochen unzersetzt haltbar. Auf Grund dieser Eigenschaften sollte sich $Pt_3(SO_4)_4$ zur Herstellung galvanischer Bäder und als Precursor zur Abscheidung von Platinnanopartikeln eignen.

8 Zusammenfassung

Die Umsetzung von Platin und Platinverbindungen mit Schwefelsäure bei hohen Temperaturen führt zu einer Vielzahl neuer Sulfate des Platins, deren Hauptbauelement eine Pt_2^{6+} -Hantel (d⁷-Konfiguration) ist.

Die Umsetzung von elementarem Platin mit siedender Schwefelsäure in einem Becherglas führt nach mehreren Stunden zu einer leicht rötlichen Verfärbung der Lösung. Führt man diese Reaktion in einer abgeschmolzenen Glasampulle oberhalb der Siedepunktes der Schwefelsäure (350 °C) zu, so ist die Reaktion vollständig und es lassen sich aus der roten Lösung rote Einkristalle von $Pt_2(SO_4)_2(HSO_4)_2$ isolieren (5.4.2).

Verwendet man anstelle der Schwefelsäure Oleum, so bildet sich bei 350 °C ein gänzlich anderes Produkt, $Pt_3(SO_4)_4$ (5.4.3). Es fällt in Form eines rot-orangen Feststoffs an, der sich seinerseits nicht im Oleum löst. Diese Verbindung ist hervorragend in Wasser löslich. Es konnten Lösungen hergestellt werden, die 800 mg Pt pro ml der schwefelsauren Lösung enthalten. Im Gegensatz zu der rot-orangen Farbe dieser Verbindung sind deren Lösungen intensiv gelb. Auch bei starken Verdünnungen von 1/1000 lässt sich die gelbe Farbe der Lösung noch immer mit dem Auge erkennen. $Pt_3(SO_4)_4$ zersetzt sich bei einer Temperatur von 516 °C in einem Schritt zu elementarem Platin (7). Dabei bleibt ein sehr fein strukturierter Platinschwamm zurück. Aus elektronenmikroskopischen Aufnahmen ist erkenntlich, dass die Partikelgröße und die Poren im Schwamm eine Größe zwischen 300 nm und 25 nm aufweisen.

Aus den wässrigen Lösungen von $Pt_3(SO_4)_4$ lässt sich eine weitere Verbindung durch Kristallisation erhalten, $(H_3O)_2[Pt_2(SO_4)_4(H_2O)_2]\cdot 4H_2O$ (5.3.1). Sie kann als "freie Säure" zu der von bereits 1984 publizierten Verbindung $K_2[Pt_2(SO)_4(H_2O)_2]$ ^[5] aufgefasst werden. Die bei der Umsetzung von $Pt(NO_3)_2$ als Nebenprodukt erhaltene Verbindung $(NH_4)_2[Pt_2(SO_4)_2(H_2O)_2]$ (5.3.2) ist hingegen isotyp zu $K_2[Pt_2(SO)_4(H_2O)_2]$, was auf Grund der sehr ähnlichen Ionenradien von NH_4^+ und K^+ auch zu erwarten ist.

Die Umsetzung der Alkalitetrachloroplatinate mit Schwefelsäure bei 400 °C liefert unterschiedliche Produkte. K₂PtCl₄ reagiert zu K₄[Pt₂(SO₄)₅], Rb₂PtCl₄ zu Rb[Pt₂(SO₄)₃(HSO₄)] und Cs₂PtCl₄ zu Cs[Pt₂(SO₄)₃(HSO₄)]. K₄[Pt₂(SO₄)₅] ist auch außerhalb einer Schutzgasatmosphäre beständig gegenüber Feuchtigkeit, wogegen sich Rb[Pt₂(SO₄)₃(HSO₄)] und Cs[Pt₂(SO₄)₃(HSO₄)] binnen weniger Sekunden zu einem gelben, röntgenamorphen Pulver zersetzen. Führt man diese drei Reaktionen unter anderen Bedingungen durch, d. h. heizt man die Tetrachloroplatinate zusammen mit der
Schwefelsäure schnell auf 400 °C und kühlt dann sofort wieder auf Raumtemperatur ab, so lassen sich aus allen Ansätzen große, tief dunkel-rote Kristalle von PtCl₂ isolieren.

Die Umsetzung von A₂[Pt(NO₂)₄] (A = K, Rb, Cs) mit Schwefelsäure in einer abgeschlossenen Ampulle bei einer Temperatur von 400 °C liefert eine neue Substanzklasse, die Oxidsulfaten des Platins mit dem Anion $[Pt_{12}(SO_4)_{12}O_8]^{4-}$. $K_2[Pt(NO_2)_4]$ reagiert dabei, neben etwas $K_2[Pt_2(SO_4)_4(H_2O)_2]$, zu dem Oxidsulfat $K_2(NH_4)_2[Pt_{12}(SO_4)_{12}O_8]$ (5.5) als Hauptprodukt. Erstaunlich ist hier die Reduktion von NO_2^- zu NH_4^+ im Verlauf der Reaktion. Die Verbindungen Rb₂[Pt(NO₂)₄] ergibt unter gleichen Reaktionsbedingungen das Oxidsulfat Rb₄[Pt₁₂(SO₄)₁₂O₈] (5.5). Setzt man gleiche Anteile von $K_2[Pt(NO_2)_4]$ und $Cs_2[Pt(NO_2)_4]$ mit Schwefelsäure unter gleichen Bedingungen um, so erhält man $K_2Cs_2[Pt_{12}(SO_4)_{12}O_8]$ (5.5).

Auch die Umsetzung von Pt(NO₃)₂ mit Schwefelsäure bei 400 °C liefert neben $(NH_4)_2[Pt_2(SO_4)_2(H_2O)_2]$ ein weiters Oxidsulfat, $(NH_4)_4[Pt_{12}(SO_4)_{12}O_8]$ (5.5). Auch hier wird wieder die Reduktion des NO₃⁻-Ions zu NH₄⁺ beobachtet. Möglicherweise sind die Clusteranionen in den unter 5.5 beschriebenen Verbindungen einfache Kondensationsprodukte der Verbindungen A₂[Pt₂(SO₄)₄(H₂O)₂]. Die Umsetzung von K₂[Pt₂(SO₄)₄(H₂O)₂] mit Schwefelsäure liefert jedoch eine anders aufgebaute Verbindung, $K_3[Pt_2(SO_4)_4H(HSO_4)_2]$ (5.3.3). Diese Verbindung kann als einfaches Substitutionsprodukt von K₂[Pt₂(SO₄)₄(H₂O)₂] analog der von Cotton et. al. ^{[56],[48]} beschriebenen Verbindungen angesehen werden. In Abbildung 45 ist die Darstellung der verschiedenen Platinsulfate schematisch zusammengefasst. Tabelle 4 informiert über die kristallographischen Daten der erhaltenen Verbindungen.

Abbildung 45: Schematische Darstellung der Umsetzungen von Platin und Platinverbindungen mit Schwefelsäure bei hohen Temperaturen

Summenformel	Raum- gruppe	a/pm	b/pm	c/pm	α/°	β/°	γ/°	V/10 ⁶ pm ³	R ₁
$(H_3O)_2[Pt_2(SO_4)_4(H_2O)_2]\cdot 4H_2O$	ΡĪ	994,57(14)	1525,0(2)	1578,0(2)	112,94(1)	107,58(1)	99,15(1)	1994,0(5)	0,0899
$(NH_4)_2[Pt_2(SO_4)_2(H_2O)_2]$	ΡĪ	749,8(3)	753,8(3)	765,2(3)	102,14(4)	110,23(3)	100,83(3)	380,4(3)	0,0669
$K_3[Pt_2(SO_4)_3H(HSO_4)]$	C2/c	1809,4(2)	957,1(1)	1233,0(1)		107,227(1)		2038,8(5)	0,0755
$K_4[Pt_2(SO_4)_5]$	ΡĪ	975,6(10)	1331,8(1)	1491,0(1)	101,156(8)	96,278(8)	102,849(8)	1829,3(3)	0,0459
$Pt_2(SO_4)_2(HSO_4)_2$	$P2_1/c$	868,6(2)	826,2(1)	921,8(2)		116,32(1)		592,9(2)	0,0348
$Pt_3(SO_4)_4$	$P2_1/c$	953,2(5)	826,4(1)	933,0(5)		115,73(4)		662,1(6)	0,0989
$Rb[Pt_2(SO_4)_3(HSO_4)]$	Pnma	923,1(1)	1762,9(3)	843,6(2)				1372,9(4)	0,0875
$Cs[Pt_2(SO_4)_3(HSO_4)]$	$P2_1/c$	1724,82(2)	881,28(9)	935,1(1)		100,397(8)		1398,1(32)	0,0299
$(NH_4)_4 [Pt_{12}(SO_4)_{12}O_8]$	R3	1189,74(18)		2796,5(5)				3428,1(10)	0,0587
$K_2(NH_4)_2[Pt_{12}(SO_4)_{12}O_8]$	R3	1195,5(3)		2793,6(10)				3445,9(18)	0,1576
$Rb_4[Pt_{12}(SO_4)_{12}O_8]$	R3	1184,59(18)		2825,1(6)				3433,2(10)	0,1210
$K_2Cs_2[Pt_{12}(SO_4)_{12}O_8]$	R3	1198,9(3		2768,0(10)				3445,4(18)	0,1176

Tabelle 4: Tabellarische Übersicht zu den neu dargestellten Platin(III) sulfaten

9 Ausblick

Im Rahmen dieser Arbeit konnte gezeigt werden, das die Umsetzung von Platin und Platinverbindungen mit Schwefelsäure eine sehr effektive Methode zur Darstellung neuer Sulfate des Platins ist. Sicherlich sind hier noch weitere Verbindungen zu erhalten, die die Strukturchemie dieser Substanzklasse bereichern. Wichtiger erscheint jedoch zum einen, die Reaktionsabläufe unter den gegebenen Bedingungen aufzuklären und zum anderen, die Eigenschaften der erhaltenen Verbindungen intensiver zu studieren. Mit der thermischen Analyse von $Pt_3(SO_4)_4$ ist damit bereits begonnen worden und die Ergebnisse deuten das Potential der Platinsulfate im Hinblick auf die Bildung von Metallnanopartikeln bereits an.

Bei der Umsetzung von elementarem Platin mit Schwefelsäure bei einer noch höheren Temperatur (400 °C) lässt sich neben $Pt_2(SO_4)_2(HSO_4)_2$ noch ein weiteres Produkt in Form kleiner dunkelroter Würfel von $(H_3O)_4[Pt_{12}(SO_4)_{12}O_8]$ isolieren. Die Einkristalle sind hierbei sehr klein (ca. 0.05x0.05x0.05mm) und die Güte des Datensatzes der Röntgenstrukturanalyse ist nicht zufrieden stellend. Der Vergleich dieser Verbindung mit den unter 5.5 beschriebenen Oxidsulfaten des Platins stützt jedoch die im Rahmen der Strukturverfeinerung bestimmte Struktur. Hierbei wäre es sehr interessant eine insitu-NMR Messung während der Reaktion durchzuführen um den Verlauf der Reaktion genauer beobachten zu können.

Auch die Isolierung von PtCl₂ als Zwischenprodukt bei der Umsetzung der Tetrachloroplatinate mit Schwefelsäure ist noch ein interessanter Aspekt, der weiter untersucht werden kann. Die Vermutung liegt nun nahe, dass die Reaktion eines beliebigen Chlorids oder Sulfats mit PtCl₂ und Schwefelsäure eine Verbindung ergeben sollte, die Vergleichbar zu den drei beschriebenen ternären Sulfaten des Platins sind. Bislang haben die Untersuchungen zur Darstellung neuer ternärer Platinsulfate durch Umsetzung Schwefelsäure von PtCl₂ mit Erdalkaliunter und Übergangsmetallchloriden bzw. Sulfaten keine Ergebnisse erbracht. Aus Pulverdiffraktogrammen ist ersichtlich, dass die Reaktanden auch nach der Reaktion nebeneinander vorliegen. Vermutlich stellt das Zersetzungsprodukt der Tetrachloroplatinate unmittelbar nach der Zersetzung eine sehr reaktive Spezies dar, die die Bildung der ternären Sulfate erst ermöglicht. Dem entgegen spricht jedoch die Bildung großer Einkristalle von PtCl₂ unter diesen Bedingungen. Dennoch ist

60

erwähnenswert, dass die Umsetzung von $PtCl_2$ mit $Ce(SO_4)_2$ und Schwefelsäure bei 400 °C quantitativ $PtCl_3$ ergibt.

Als weiteres lohnendes Betätigungsfeld bietet sich die Umsetzung von Platin und Platinverbindungen mit anderen Oxosäuren der 16. Gruppe an. Vor allem die Selen(VI)säure erscheint hier auf Grund ihres höheren Oxidationspotentials und Siedepunktes interessant. Darüber hinaus sollte die Übertragung der Erkenntnisse aus dieser Arbeit auf die anderen Elemente der Platinmetalle verfolgt werden. Dies ist ohne ohne Veränderung der Methoden weiteres nicht möglich. Ruthenium Ruthenium(IV)oxid, Osmium, Iridium und Iridium(III)chlorid reagieren selbst bei Temperaturen von 490 °C nicht mit Schwefelsäure. Zur Darstellung der Sulfate des Rutheniums und Osmiums bietet es sich an, die entsprechenden Tetroxide dieser in Schwefelsäure mit H₂O₂ zu reduzieren. Wie man beobachten kann, verfärbt sich die Lösung von RuO₄ ^[59] nach der Reduktion grün und jene von OsO₄ ^[59] gelb-gold. Schlüsselpunkt hier wird die Kristallisationsmethode sein, da eine Übersättigung der Lösungen bei höheren Temperaturen auf Grund der explosionsartigen Zersetzung der Tetroxide ab 180 °C nicht möglich ist. Zur Kristallisation muss eine Methode entwickelt werden, die es ermöglicht, Schwefelsäure bei moderaten Temperaturen langsam aus der Reaktionsmischung zu entfernen. Hier bietet es sich möglicherweise an, die Schwefelsäure in einem geeigneten Glasgefäß bei einer Temperatur von 150 °C und vermindertem Druck langsam in eine Kühlfalle einzukondensieren.

Die Oxidation von Iridium stellt eine wirkliche Herausforderung dar. Es konnte bereits gezeigt werden, dass die Oxidation von elementarem Iridium mit $S_2O_6F_2$ in Fluorschwefelsäure zu Ir(SO₃F)₃ und Ir(SO₃F)₄ führt ^{[61][62]}. Ausgehend von diesen Verbindungen könnte man durch einfache Hydrolyse vielleicht zu Sulfaten des Iridiums gelangen.

Von großem Interesse, auch aus technologischem Hinblick, ist noch die strukturelle Charakterisierung des Rhodiumsulfates. Dieses entsteht bei der Reaktion von Rhodiummetall mit Schwefelsäure bei 350 °C im Rückfluss. Auch hier stellt sich die Frage nach einer geeigneten Kristallisationsmethode. Die Umsetzung von Rhodiummetall mit Schwefelsäure in einer geschlossenen Ampulle scheidet aus, da sich während der Reaktion ein zu hoher Überdruck durch entstehende Gase bildet und die Ampulle dadurch platzt.

10 Anhang zur Kristallstruktur von (UO₂)₂(SO₄)(HSO₄)₂

10.1 Bedeutung und Anwendung der Actinide

Die Elemente der Actinide haben an Bedeutung gewonnen, seitdem am 9. August 1945 die erste Atombombe detoniert ist. In der zweiten Hälfte des 20. Jahrhunderts war die Forschung mehrheitlich auf die Darstellung kernwaffenfähiger Materialien und Verbindungen zur Anwendung als Brennelemente in Kernreaktoren konzentriert. Dabei wurden Untersuchungen zur Chemie der Actinide in wässriger Lösung, ihrer Metallurgie und die Darstellung von oxidischen Verbindungen durchgeführt.

Mit dem Ende des kalten Krieges und der damit verbundenen Abrüstung fokussierte sich die Erforschung der Chemie der Actinide mehr und mehr auf die Möglichkeit der Endlagerung radioaktiver Materialien. Dies wird im Allgemeinen unter dem Schlagwort "Nuclear Waste Management" zusammengefasst.

Die Forschung erstreckt sich heute mehrheitlich auf die Darstellung neuer Verbindungen der Actinide mit dem Ziel, Informationen über deren Stabilität und vor allem deren geochemischen Migration zu sammeln. Unter geochemischer Migration versteht man die Verbreitung von endgelagertem radioaktivem Abfall auf Grund äußerer Einflüsse. Im einfachsten Fall besteht diese Verbreitung durch Auflösen des endgelagerten Materials im Grundwasser und einer damit verbundenen Kontamination der Umgebung. Jedoch lässt sich das Prinzip der geochemischen Migration auch auf die Verbreitung radioaktiver Elemente ausgehend von natürlichen Lagerstätten erweitern.

Daher ist es von großer Bedeutung, mehr Wissen über die Chemie der Actinide zu erlangen, um auf dieser Grundlage zukünftig eine sichere Endlagerung zu gewährleisten.

10.2 Übersicht zu bekannten Sulfaten des Urans

Einfache strukturell charakterisierte Sulfate des Urans gibt es bislang nur wenige. Im Jahre 1956 publizierte *Kierkegaard* ^[27] die Kristallstruktur von U(SO₄)₂·4H₂O. Diese kristallisiert orthorhombisch in der Raumgruppe Pnma. In den Jahren 1973, 1974 und 1978 wurden von *Loopstra* et. al. die Strukturen von UO₂SO₄ ^[28] und dessen Hydrathen UO₂SO₄·2,5H₂O ^[29] und UO₂SO₄·3,5H₂O ^[30] publiziert. Weitere strukturelle Charakterisierungen von Uran- oder Uranylsulfaten liegen bislang noch nicht vor,

obwohl im Rahmen der Urangewinnung die gerösteten Erze mit Schwefelsäure aufgeschlossen werden ^[31] und die Kenntnis solcher Phasen sehr wichtig ist

10.3 Synthese

200 mg UO₃ (4.9) und 500 mg H_2SO_4 werden in ein kleines (5 ml) Becherglas gefüllt und auf einer Heizplatte auf 335 °C erhitzt. Die Lösung verfärbt sich dabei gelb. Man engt die Lösung stark ein und lässt diese anschließend auf Raumtemperatur abkühlen. Beim Abkühlen muss das Becherglas luftdicht verschlossen werden. Währen des Abkühlens kristallisiert ein gelber fluoreszierender Feststoff aus. Die Kristalle zersetzen sich an der Luft binnen weniger Sekunden und müssen daher unter Feuchtigkeitsausschluss gehandhabt werden.

10.4 Kristallstruktur

 $(UO_2)_2(SO_4)(HSO_4)_2$ kristallisiert in der tetragonalen Raumgruppe P $\overline{4}2_1$ m (Nr. 113) und zwei Formeleinheiten in der Elementarzelle. Die U⁶⁺-Ionen werden von zwei Sauerstoffatomen in einem Abstand von 177 pm (O(1), O(2)) und von fünf weiteren Sauerstoffatomen in einem Abstand von 231 pm (O(21)) bis 241 pm (O(22)) koordiniert.

Der Koordinationspolyeder ist eine pentagonale Bipyramide. In der Elementarzelle befinden sich zwei kristallographisch verschiedene $SO_4^{2^-}$ -Gruppen, S(1) und S(2). S(1) liegt auf der Lage 2b und zeigt einen Abstand zu O(11) von 144,8 pm. Die Winkel liegen in einem Bereich von 109,0° bis 110,4°. Die $SO_4^{2^-}$ -Gruppe S(2) wird von den Atomen S(2), O(21), O(22)

und O(23) aufgebaut. Die Abstände S-O liegen bei 143 pm O(23), 145,2 pm O(22) und 154 pm O(21). Dabei weicht die Bindungslänge S(2)-O(21) deutlich von den anderen Werten ab. Das Sauerstoffatom O(21) trägt das Proton und das Tetraeder S(2) ist demnach die HSO_4^{2-} -Gruppe. Bemerkenswert ist es, dass das Proton nicht an der freien Koordinationsstelle des Tetraeders befindet. Dieses Koordinationsverhalten ist recht selten. Man findet ein analoges Koordinationsverhalten z.B. in der Kristallstruktur von

Gd(HSeO₄)(SeO₄) ^[60], in der die HSeO₄-Gruppe ebenfalls über das protonierte Sauerstoffatom koordiniert.

Im Mittelpunkt der Elementarzelle befindet sich die Sulfatgruppe S(1). Diese wird von vier $UO_2^{2^+}$ -Ionen koordiniert. Die SO₄²⁻-Gruppe S(2) ist jeweils zwischen zwei $UO_2^{2^+}$ -Ionen angeordnet, so dass die über die Sauerstoffatome O(21) und O(22) in äquatorialer Position an diese koordiniert. Über das symmetrieäquivalente Sauerstoffatom O(22) wird eine weitere $UO_2^{2^+}$ -Einheit koordiniert. Das Sauerstoffatom O(23) verbleibt als freie Koordinationsstelle.

Jedes $UO_2^{2^+}$ -Ion koordiniert über eine der zwei freien Koordinationsstellen an weitere $SO_4^{2^-}$ -Gruppen S(1), die sich auf dem Mittelpunkt der a-Achse befinden. Über die andere freie Koordinationsstelle werden weitere $SO_4^{2^-}$ Gruppen S(2) koordiniert.

Abbildung 47: Ausschnitt aus der Kristallstruktur von (UO₂)₂(SO₄)(HSO₄)₂

10.5 Zusammenfassung

Die Anwendung der entwickelten Synthesemethoden konnte im Rahmen von Untersuchungen an den Elementen Thorium und Uran zur Darstellung neuer Sulfate und Selenate dieser an diesen Elementen erprobt werden.

So liefert die Umsetzung von UO_3 mit Schwefelsäure die Verbindung $(UO_2)_2(SO_4)(HSO_4)_2$. Diese konnte erstmals strukturell charakterisiert werden. Die

Reaktion von UO₃ mit Schwefelsäure kommt beim sog. Rösten in der Urangewinnung aus Uranerzen zum Einsatz.

Die Metalle Uran und Thorium selbst reagieren sehr langsam mit Schwefelsäure, so dass man davon ausgehen kann, dass diese passiviert sind. Die Umsetzung von Uran und Thorium mit Schwefel- und Selensäure in abgeschmolzenen Glasampullen bei 350 °C liefert nach mehreren Tagen für Uran in beiden Fällen einen grünen Feststoff, der unlöslich in der Säure selbst, jedoch auch in Wasser ist. Im Falle Thorium fällt in beiden Fällen ein weißer Feststoff an, der ebenfalls unlöslich in der Säure und in Wasser ist. Für Uran deutet die Farbe des Feststoffes auf U⁴⁺ hin. Dieser Feststoff konnte bislang noch nicht in einkristalliner Form gewonnen werden und das Pulver selbst ist röntgenamorph. Von dem weißen kristallinen Pulver, das bei der Umsetzung von Thorium mit Selensäure anfällt, konnte ein Diffraktogramm aufgenommen werden. Es fehlen jedoch auch hier noch Einkristalle zur strukturellen Charakterisierung. Der Vergleich des Pulverdiffraktogramms mit Verbindungen aus Datenbanken zeigt, dass es sich vermutlich um eine neue Verbindung des Thoriums mit Selensäure handelt.

11 Danksagung

Wie schon Sir Isaac Newton, der im Jahre 1669 auf den *Lucasischen Lehrstuhl* der Universität Cambridge berufen wurde, in all seiner Weisheit erkennen musste, erlangt man ohne die Unterstützung anderer keinen Einblick in unbekannte Welten. Ich möchte mich an dieser Stelle herzlich bei all denen bedanken, die mir diese Arbeit erst ermöglicht haben.

Meinem verehrten Doktorvater Herrn Prof. Dr. Mathias Wickleder möchte ich meinen herzlichen Dank für die gesamte Betreuung meiner Arbeit ausdrücken. Trotz einer räumlichen Trennung von einigen hundert Kilometern hat er mir mich in Theorie und Praxis durch seine Erklärungen, Hinweise und auch Kritiken zu einer selbständigen Arbeitsweise geführt, in der ich immer genügend Freiheit zur Umsetzung meiner eigenen Vorstellungen hatte.

Danken möchte ich auch meinem "Doktorgroßvater" Herrn Prof. Dr. Gerd Meyer. Durch die Aufnahme in seinen Arbeitskreis und die hervorragende Ausstattung in seinem Lehrstuhl hat auch er maßgeblich zum Gelingen dieser Arbeit beigetragen. Durch seine ab und an recht barsche, aber immer konstruktive Kritik an "nicht beabsichtigt" dargestellten Verbindungen und deren Charakterisierungen hat er mir immer wieder neue Anregungen und auch Hinweise zu meiner Arbeit gegeben und dadurch sein Interesse an meinen Ergebnissen bekundet.

Dr. Ingo Pantenburg und Ingrid Müller danke ich für die vielen Messungen, die beide für mich durchgeführt haben.

In den Aufnahmen und Auswertungen haben mich Frau PD Dr. Angela Möller und Regina Schulz maßgeblich unterstützt. Auch hierfür meinen herzlichen Dank.

Die REM- und EDX-Aufnahmen wären ohne Herrn Prof. Dr. Walter Jung und Horst Schumacher nicht möglich gewesen. Auch diese vielen Hilfestellungen haben zu dieser Arbeit beigetragen.

During my visit at the Colorado State University at Ft. Collins I met some really great persons. Prof. Dr. Peter Dorhout received me in a wonderful way. All his workgroup, Dr. Benny C. Chan, Dr. Jackie Knaust, Larisa Polyakova, Ian McQueen and Mary Fisher, have introduced me into the chemistry of actinide elements and into the "American Way of Life". Since this time the words "politeness" and "responsibility" have a new acceptation for me. Stellvertretend für alle Dozenten im Graduiertenkolleg "Azentrische Kristalle" danke ich Herrn Prof. Dr. Ladislav Bohatý für die interdisziplinäre Ausbildung, die ich im Rahmen von Vorlesungen und Seminaren bekommen habe.

Allen Mitarbeitern des Arbeitskreises von Prof. Meyer danke ich für das angenehme Arbeitsklima und die Hilfestellungen und Anregungen, insbesondere natürlich meinen Laborkollegen Oliver Büchner, Holger Flemig, Makram Ben Hamida, Pavlina Choleva, Dr. Sven Grupe und Dr. Peter Amann.

Die Finanzierung dieser Arbeit erfolgte durch die DFG im Rahmen des Graduiertenkollegs "Azentrische Kristalle". Auch hierfür meinen herzlichen Dank. Meinen Eltern und Großvätern gilt mein besonderer Dank dafür, dass sie mir und meiner Familie jegliche Unterstützung gewährt haben.

Last but not least danke ich meiner Familie, insbesondere meiner geliebten Ehefrau Manuela und meinen Kindern Lucas und Linus, für die moralische Unterstützung und die Tolerierung meiner häufigen Abwesenheit.

12 Literaturverzeichnis

- [1] Krogmann, K.; Hausen, H.-D., Z. Anorg. Allg. Chem. (1968), 358, 67-81.
- [2] Milburn, G. H. W.; Truter, M.R., J. Chem. Soc. (1966), 1966, 1609-1616.
- [3] a) Wang, X.; Sigmon, S.; Spivey, J. J.; Lamb, H. H., Catalysis Today (2004), 96, 11-20.
 - b) Chen, C; Akashi, M., Langmuir (1997), **13**, 6465-6472.
- [4] a) Blondel, M., Ann. Chim. Phys. (1905), 6, 125.
 - b) Ruer, R., Z. phys. Chem. (1903), 44, 95.
 - c) Delfine, M., Bl. Soc. Chim. (1910), 7, 103.
- [5] a) Zhilyaev, A.; Shikhaleiva, E. V.; Katser, S. B.; Baranoovskii, I. B., *Zhur. Neorg. Khim.* (1994), **39(4)**, 595-598.
 - b) Orlava, V.S.; Muraveiskaya, G. S.; Evstaf'eva, O. N., *Zhur. Neorg. Khim.* (1975), 20(5), 1340-1346.
- [6] Kukushkin, Y. N.; Anabtova, I. A.; Gur'yanova, G. P., *Zhur. Neorg. Khim.* (1974), 19(4), 1020-1030.
- [7] Ginzburg, S. I.; Sofronkova, G. M., Zhur. Neorg. Khim. (1969), 14(12), 3337-3343.
- [8] Ginzburg, S. I.; Sofronkova, G. M., Zhur. Neorg. Khim. (1970), 15(3), 723-727.
- [9] Timonova, R. I.; Ivashetsev, Y. I., Zhur. Neorg. Khim. (1977), 22(8), 2303-2304.
- [10] Dahmen, T.; Rittner, P.; Boeger-Seidel, S.; Gruehn, R.; J. Alloys Comp. (1994), 216(1), 11-19.
- [11] Perret, R.; J. Less Com. Met. (1975), 42, 43.
- [12] Holzer, J.; McCarthy, G.; North Dakota State University (1991), Fargo, North Dakota, USA.
- [13] Abys, J. A.; Dullaghan, C. A.; Epstein, P.; Maisano, J. J., US-Patent (2001), US 6,241,870 B1.
- [14] Beatti, J. K.; Best, S. P.; Moore, F. H.; Skelton, B. W.; White, A. H., Aust. J. Chem. (1993), 49(9), 1337-1345.
- [15] Dikareva, I. M.; Zefirov, Y. V.; Zhilyaev, A. N.; Baranovskii, I. B.; Porai-Koshits, M. A., *Zhur. Neorg. Khim.* (1987), 32(1), 118-125.
- [16] Amstrong, R. S.; Beatti, J. K.; Best, S. P.; Skelton, B. W.; White, A. H.; J. Chem. Soc. (1983) Dalton Trans., 9, 1973-1975.
- [17] Ginzburg, S. I.; Chalisova, N. N., Zhur. Neorg. Khim. (1968), 13(5), 1239-1244.
- [18] Best, S. P.; Amstrong, R. S.; Beatti, J. K., J. Chem. Soc. (1992) Dalton Trans., 2, 299-304.
- [19] Sinitsyn, N. M.; Borisov, V. V.; Shorikov, Y. S., Zhur. Neorg. Khim. (1975), 20(5), 1319-1327.
- [20] Simanova, S. A.; Timoshin, A. D.; Bashmakov, V. I., *Zhur. Obs. Khim.* (1995), **65(6)**, 889-893.
- [21] Kuz'menko, I. V.; Zhilyaev, A. N.; Fomina, T. A.; Porai-Koshits, M. A.; Baranovskii, I. B., *Zhur. Neorg. Khim.* (1989), **34(10)**, 2548-2553.
- [22] Joenson, F.; Schaffer, C. E., Acta Chem. Scan. (1984), A38(4), 819-820.
- [23] Ginzburg, S. I.; Yuz'ko, M. I.; Fomina, T. A.; Evstaf'eva, O. N.; Zhur. Neorg. Khim. (1975), 20(7), 1941-1946.
- [24] Ginzburg, S. I.; Yuz'ko, M. I.; Fomina, T. A. Zhur. Neorg. Khim. (1966), 11(11), 2554-2559.
- [25] Hepworth, M. A.; Robinson, P. L., J. Chem. Soc. (1953), 3330-3332.

- [26] Zhilyaev, A. N.; Katser, S. B.; Fomina, T. A.; Kurnakov, N. S., *Zhur. Neorg. Khim.* (1996), 41(5), 759-765.
- [27] Kierkegaard, P., Acta Chem. Scand. (1956), 10, 599-616.
- [28] Brandenburg, N.P.; Loopstra, B.O., Acta Cryst. B (1978), 34, 3734-3736.
- [29] van der Putten, N.; Loopstra, B.O., Cryst. Struct. Comm. (1974), 3, 377-380.
- [30] Brandenburg, N.P.; Loopstra, B.O., Cryst. Struct. Comm. (1973), 2, 243-246.
- [31] Holleman-Wiberg, Lehrbuch der anorganischen Chemie (1995), 101. Aufl., 1796.
- [32] W. Massa, Kristallstrukturbestimmung (1996), 2. Aufl., Teubner Verlag, Stuttgart.
- [33] a) G. M. Sheldrick, SHELXS-97, A Program for Crystal Structure Solution, Universität Göttingen 1997.
 - b) G. M. Sheldrick, SHELXL-97, *A Program for Crystal Structure Refinement*, Universität Göttingen 1997.
- [34] a) K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, J. Wiley & Sons, 2nd Edit., New York 1970.
 - b) J. Weidlein, U. Müller, K. Dehnicke; *Schwingungsspektroskopie*, 2. Aufl. 1988, Thieme Verlag, Stuttgart, New York.
- [35] W. F. Hemminger, H. K. Cammenga, Methoden der thermischen Analyse, 1980, Springer Verlag.
- [36] Brauer, G., Handbuch der präperativen Anorganischen Chemie, Ferdinand Encke Verlag, Stuttgart.
- [37] Muraveiskaya, G. S.; Orlova, V. S.; Evstafe'eva, O. N., Russ. J. Inorg. Chem. (1974), 19(4), 561.
- [38] Rau, F.; Klement, U.; Range, K-J, Z. Kristallogr. (1995), 210, 684.
- [39] Natl. Bur. Stand. (U.S.), Circ. 539 (1955), 5, 14.
- [40] Natl. Bur. Stand. (U.S.), Circ. 539 (1955), 5, 53.
- [41] Natl. Bur. Stand. (U.S.), Monogr. 25 (1976), 13, 34.
- [42] Stritzkiy, Anal. Chem. (1956), 28, 915.
- [43] Technisch Physische Dienst, Delft, The Netherlands, ICDD Grant-in-Aid, 1974.
- [44] Rodek, E.; Bartel, H.; Sterzel, W.; Platte, C., Neues Jahrb. Mineral., Monatsh. (1979), 81.
- [45] Pley, M.; Meyer, G.; Wickleder, M. S., Kristallstruktur von Rb_2PtCl_4 , unveröffentlicht: RG P4/mmm, Z=1, a = 716,6(1) pm, c = 441,3(2) pm, V = 226,6(2) \cdot 10^6 pm^3, $R_{int} = 0,0964$, $R_{\sigma} = 0,0367$, $wR^2 = 0,1180$, $R_1 = 0,0454$, GooF = 1,145
- [46] Pley, M.; Meyer, G.; Wickleder, M. S., Kristallstruktur von Cs_2PtCl_4 , unveröffentlicht: RG Cmcm, Z = 4, a = 1043,9(4), b = 1011,0(3), c = 961,9(3), V = 1015,2(5) \cdot 10^6 pm^3, $R_{int} = 0,0796$, $R_{\sigma} = 0,0367$, $wR^2 = 0,1234$, $R_1 = 0,0547$, GooF = 1,154
- [47] Porai-Koshits, M. A.; Kukina, G.A.; Nikolaev, V. P., Koord. Khim. (1978), 4, 1435.
- [48] D. P. Bancroft, F. A. Cotton, L. R. Falvello, S. Han, W. Schwotzer, *Inorg. Chim. Acta* (1984), 87, 147.
- [49] Tsvigunov, A.; Kuznetsov, L., Radiokhimiya (1979), **21**, 747.
- [50] Tsvigunov, A.; Kovba, L.; Kudin, O.; Zubova, E., Sov. Radiochem. (1970), 12, 813.
- [51] Steiner, Th., Angew. Chem. (2002) 114, 50.

- [52] Choudhary, R. N. P.; Nelmes, R. J.; Rouse, K. D., Chem. Phys. Lett. (1981), 78, 102.
- [53] Pley, M.; Wickleder M. S., Neubestimmung der Kristallstruktur von $K_2[Pt_2(SO_4)_4(H_2O)_2]$, unveröffentlicht: RG PT, Z = 2, a = 747,2(1), b = 753,7(3), c = 763,7(1), α = 102,22(3), β = 110,46(4), γ = 100,68(3), V = 377,8(5)·10⁶ pm³, R_{int} = 0,0771, R_{\sigma} = 0,0879, wR² = 0,1269, R₁ = 0,0629, GooF = 1,042
- [54] Werner, C.; Troyanov, S. I.; Worzala, H.; Kemnitz, E., Z. Anorg. Allg. Chem. (1996), 622, 332.
- [53] a) Fa. STOE & Cie, X-RED 1.07, Data Reduction for STADI4 and IPDS, Darmstadt 1996.
 - b) Fa. STOE & Cie, X-SHAPE 1.01, Crystal Optimisation for Numerical Absorption Correction, Darmstadt 1996.
- [54] International Tables for Crystallography, Vol. C, The International Union of Crystallography, D. Reidel Publishing Company (1983).
- [55] Rabenau, A., Angew. Chem. (1985), 97, 1017.
- [56] a) F. A. Cotton, L. R. Falvello, S. Han, *Inorg. Chem.* (1982), 21, 2889.
 - b) H. L. Conder, F. A. Cotton, L. R. Falvello, S. Han, R. A. Walton, *Inorg. Chem.* (1983), 22, 1887.
 - c) A. Zipp, Coord. Chem. Rev. (1988), 84, 47.
 - d) J. D. Woollins, P. F. Kelly, Coord. Chem. Rev. (1985), 65, 115.
 - e) D. M. Roundhill, H. B. Gray, C.-M. Che, Acc. Chem. Res. (1989), 22, 55
 - f) R. El-Mehdawi, F. R. Fronczek, D. M. Roundhill, Inorg. Chem. (1986), 25, 1155
 - g) R. J. H. Clark, Chem. Soc. Rev. (1990), 19, 107.
- [57] a) G. A. Jeffrey, *An Introduction to Hydrogen Bonding*, Oxford University Press, Oxford, 1997.
 b) Th. Steiner, *Angew. Chem.* (2002), **114**, 50.
- [58] Pley, M.; Meyer, G.; Wickleder, M. S., Kristallstrukturbestimmung von PtCl₄, unveröffentlicht: RG Pbca, Z=8, a = 597,85(9) pm, b = 1132,8(2), c = 1363,1(3) pm, V = 923,2(3) \cdot 10^6 pm³, $R_{int} = 0,0835, R_{\sigma} = 0,0510, wR^2 = 0,0775, R_1 = 0,0662, GooF = 0,079$
- [59] Pley, M.; Wickleder, M. S., Kristallstruktur von MO₄ (M = Ru, Os) bei tiefen Temperaturen (170 K), unveröffentlich:
 - a) RuO₄: RG P43n, Z=8, a = 850,92(10) pm, V = 612,12(2) $\cdot 10^6$ pm³, R_{int} = 0,0674, R_{\sigma} = 0,0141, wR² = 0,0600, R₁ = 0,0345, GooF = 1,112
 - b) OsO₄: RG P43n, Z=8, a = 856,84(11) pm, V = 629,07(2)·10⁶ pm³, R_{int} = 0,1319, R_σ = 0,0268, wR² = 0,0616, R₁ = 0,0337, GooF = 1,358
- [60] Goehausen, I.; Wickleder, M. S., Z. Anorg. Allg. Chem. (2001), 627, 1115-1117.
- [61] Cady, G. H.; Shreeve, J. M., Inorg. Synth. (1976), 7, 124.
- [62] Lee, K. C.; Aubke, F., J. Fluorine Chem. (1982), 19, 501.
- [63] BASF AG, Physikalische Daten zu Oleum,
 http://www.basf.de/de/produkte/chemikalien/anorganika/schwefel/oleum.htm, Extrapolation
 unter Berücksichtigung der Siedepunkte von SO₃ und H₂SO₄ mit kubischer Funktion.

13 Tabellen

13.1 Tabellen zu (H₃O)₂[Pt₂(SO₄)₄(H₂O)₂]·4H₂O

Tabelle 5: Kristallographische und deren Bestimmung zu (H₃O)₂[Pt₂(SO₄)₄(H₂O)₂]·4H₂O

Zellparameter	a = 994,57(14) pm
	b = 1525,0(2) pm
	c = 1578,0(2) pm
	$\alpha = 112,94(1)^{\circ}$
	$\beta = 107,58(1)^{\circ}$
	$\gamma = 99,15(1)^{\circ}$
Zellvolumen	1994,0(5) · 10 ⁶ pm ³
Anzahl der Formeleinheiten	4
Kristallsystem	triklin
Raumgruppe	P1 (Nr, 2)
Diffraktometer	Stoe IPDS II
Strahlung	Mo-K _{α} (Graphit Monochrom., $\lambda = 71,07 \text{ pm}$)
Messtemperatur	170 K
Theta Bereich	$4,2^{\circ} < 2\theta < 56^{\circ}$
Indexbereich	$-12 \le h \le 12$
	$-19 \le k \le 19$
	$-20 \le 1 \le 19$
ω-Bereich; ω-Inkrement; φ-Werte	$0^{\circ} < \omega < 180^{\circ}; 2^{\circ}; \phi = 0^{\circ}, 90^{\circ}$
Anzahl der Bilder	180
Belichtungszeit	10 min
Detektorabstand	100 mm
Datenkorrektur	Polarizations und Lorentz Faktoren
Absorptionskorrektur	numerisch ^[53]
Absorptionskoeffizient µ	14,54 mm ⁻¹
Anzahl gemessener Reflexe	22229
Anzahl symmetrieunabhängiger Reflexe	8699
Anzahl beobachteter Reflexe mit $I_0 > 2\theta(I)$	3737
R_{int} / R_{σ}	0,0712 / 0,0610
Benutzte Programme	SHELXS-97 und
	SHELXL-97 ^[33]
Streufaktoren	Intern. Tables Vol.C ^[54]
Goodness of fit	0,840
$R_1; wR_2 I_0 > 2\sigma(I)$	0,0374; 0,0888
R ₁ ; wR ₂ (alle Daten)	0,0899; 0,1080

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	O81	195,1(17)	S2	O21	140,1(18)
	O43	195,9(16)		O24	145,7(14)
	O42	197,6(14)		023	147,3(18)
	O83	203,7(12)		022	155,2(17)
	O001	209,5(15)	S3	O31	146,3(12)
	Pt1 [#]	246,90(18)		O34	149,1(17)
Pt2	052	193,2(15)		O33	150,8(15)
	O51	203,1(15)		032	152,7(17)
	032	204,3(15)	S4	O44	139,8(18)
	O33	204,9(10)		O41	141,8(17)
	O002	216,9(15)		O42	151,8(17)
	Pt2 [#]	247,17(18)		O43	157,2(17)
Pt3	072	195,6(18)	S5	O54	143,7(16)
	O74	197,3(15)		053	145,2(18)
	022	199,2(13)		O51	148,5(16)
	O24	201,1(13)		052	158,4(16)
	O003	208,6(13)	S6	O62	143,5(18)
	Pt3 [#]	247,41(19)		O64	145,2(15)
Pt4	O14	199,6(17)		O63	148,9(17)
	012	201,3(18)		O61	153,5(18)
	O63	204,3(16)	S7	O71	144(2)
	O61	204,9(14)		073	146,2(16)
	O004	218,9(17)		072	155,2(15)
	Pt4 [#]	247,38(19)		O74	158,3(15)
S1	013	142,5(17)	S8	O84	143,6(16)
	011	147,2(18)		082	146,4(15)
	012	151(2)		O81	155,5(17)
	O14	159,1(15)		083	156,1(11)

Tabelle 6: Atomabstände in der Kristallstruktur von (H₃O)₂[Pt₂(SO₄)₄(H₂O)₂]·4H₂O

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
O81	Pt1	O43	90,9(7)	013	S1	011	115,8(11)
O81	Pt1	O42	88,2(7)	O13	S1	O12	108,7(11)
O43	Pt1	O42	178,9(7)	011	S 1	O12	108,4(10)
O81	Pt1	O83	177,7(6)	013	S1	O14	108,6(10)
O43	Pt1	O83	91,5(6)	011	S 1	O14	106,6(10)
O42	Pt1	O83	89,5(6)	012	S1	O14	108,5(10)
O81	Pt1	O001	88,8(7)	O21	S2	O24	107,9(10)
O43	Pt1	O001	88,7(5)	O21	S2	O23	113,9(11)
O42	Pt1	O001	91,9(6)	O24	S2	O23	111,7(10)
O83	Pt1	O001	91,4(5)	O21	S2	O22	107,4(11)
O81	Pt1	Pt1	89,0(5)	O24	S2	O22	106,8(9)
O43	Pt1	Pt1	89,6(5)	O23	S2	O22	108,9(10)
O42	Pt1	Pt1	89,8(5)	O31	S3	O34	115,9(10)
O83	Pt1	Pt1	90,9(3)	O31	S3	O33	104,4(9)
O001	Pt1	Pt1	177,2(4)	O34	S 3	O33	111,2(9)
O52	Pt2	O51	178,8(6)	O31	S 3	O32	108,1(9)
O52	Pt2	O32	90,5(6)	O34	S 3	O32	107,3(9)
O51	Pt2	O32	90,3(6)	O33	S 3	O32	109,9(8)
O52	Pt2	O33	88,8(6)	O44	S4	O41	115,3(10)
O51	Pt2	O33	90,4(6)	O44	S4	O42	112,0(11)
O32	Pt2	O33	179,2(6)	O41	S4	O42	106,4(9)
O52	Pt2	O002	88,2(6)	O44	S4	O43	107,9(9)
O51	Pt2	O002	90,9(6)	O41	S4	O43	110,0(10)
O32	Pt2	O002	89,1(6)	O42	S4	O43	104,8(9)
O33	Pt2	O002	90,5(6)	O54	S 5	O53	113,1(9)
O52	Pt2	Pt2	91,2(4)	O54	S 5	O51	113,0(10)
O51	Pt2	Pt2	89,7(4)	O53	S5	O51	107,1(10)
O32	Pt2	Pt2	90,8(4)	O54	S5	O52	104,2(9)
O33	Pt2	Pt2	89,5(4)	O53	85	O52	110,0(9)
O002	Pt2	Pt2	179,5(5)	O51	85	O52	109,3(8)
072	Pt3	O74	178,4(5)	O62	S 6	O64	113,0(10)
072	Pt3	O22	90,4(7)	O62	S 6	O63	111,5(10)
O74	Pt3	O22	88,1(6)	O64	S 6	O63	108,6(9)
072	Pt3	O24	88,9(6)	O62	S 6	O61	111,7(9)
O74	Pt3	O24	92,6(6)	O64	S 6	O61	104,2(9)
O22	Pt3	O24	178,2(6)	O63	S 6	O61	107,4(8)
072	Pt3	O003	89,4(6)	O71	S 7	O73	116,6(10)
O74	Pt3	O003	90,0(6)	O71	S 7	O72	109,7(12)
O22	Pt3	O003	91,0(6)	073	S 7	O72	109,3(9)
O24	Pt3	O003	90,7(6)	O71	S 7	O74	106,6(9)
072	Pt3	Pt3	90,6(4)	073	S 7	O74	108,5(9)
O74	Pt3	Pt3	90,1(4)	072	S 7	O74	105,6(9)
O22	Pt3	Pt3	90,7(4)	O84	S8	O82	115,3(9)
O24	Pt3	Pt3	87,7(4)	O84	S8	O81	108,5(10)
O003	Pt3	Pt3	178,4(4)	082	S 8	O81	108,9(9)
O14	Pt4	O12	178,8(7)	O84	S8	O83	106,0(8)
O14	Pt4	O63	90,2(6)	082	S8	O83	112,7(9)

Tabelle 7: Winkel in der Kristallstruktur von (H₃O)₂[Pt₂(SO₄)₄(H₂O)₂]·4H₂O

012	Pt4	O63	90,0(7)	O81	S8	O83	104,8(8)
O14	Pt4	O61	90,1(7)				
012	Pt4	O61	89,7(7)				
O63	Pt4	O61	178,9(6)				
014	Pt4	O004	87,3(6)				
012	Pt4	O004	91,5(7)				
O63	Pt4	O004	92,3(6)				
O61	Pt4	O004	88,8(6)				
014	Pt4	Pt4	91,4(4)				
012	Pt4	Pt4	89,8(5)				
O63	Pt4	Pt4	89,2(5)				
O61	Pt4	Pt4	89,8(4)				
O004	Pt4	Pt4	178,0(4)				

Atom	x/a	y/b	z/c	U _{eq}
Pt1	0,02296(9)	0,98769(6)	0,07533(6)	0,03307(19)
Pt2	0,02291(9)	0,51234(6)	0,07540(6)	0,03346(19)
Pt3	0,47804(9)	0,07777(6)	0,42461(6)	0,03368(19)
Pt4	0,47833(9)	0,42233(7)	0,42463(6)	0,03408(19)
S 1	0,1939(6)	0,4525(4)	0,4484(4)	0,0342(11)
011	0,0553(18)	0,4654(12)	0,3945(12)	0,044(4)
012	0,2591(19)	0,4043(13)	0,3742(12)	0,046(4)
O13	0,1804(19)	0,3949(13)	0,4998(12)	0,043(4)
O14	0,3050(18)	0,5621(11)	0,5281(12)	0,041(4)
S2	0,1942(6)	0,0473(5)	0,4512(5)	0,0407(13)
O21	0,0638(17)	0,0348(13)	0,3983(14)	0,042(4)
O22	0,2602(14)	0,0989(11)	0,3747(12)	0,034(3)
O23	0,1709(18)	0,1087(11)	0,5013(13)	0,042(4)
O24	0,3009(14)	0,0519(11)	0,5224(11)	0,034(3)
S3	0,3054(6)	0,4489(4)	0,0454(4)	0,0369(12)
O31	0,4437(13)	0,3651(11)	0,0962(12)	0,039(4)
O32	0,2468(16)	0,4501(10)	0,1241(11)	0,035(3)
O33	0,2011(11)	0,4234(10)	0,0264(10)	0,031(3)
O34	0,3172(19)	0,5504(11)	0,0080(12)	0,043(4)
S4	0,3052(6)	0,0512(4)	0,0473(4)	0,0356(11)
O41	0,4409(19)	0,1314(12)	0,1023(12)	0,045(4)
O42	0,2382(15)	0,0521(13)	0,1222(12)	0,042(4)
O43	0,1912(18)	0,0738(12)	0,0288(11)	0,045(4)
O44	0,3165(14)	0,9571(12)	0,0064(13)	0,041(4)
S5	0,0298(6)	0,6998(4)	0,1135(4)	0,0371(12)
O51	0,0056(17)	0,3749(11)	0,1503(10)	0,034(3)
052	0,0369(14)	0,6442(11)	0,0054(11)	0,048(4)
O53	0,0478(15)	0,7701(12)	0,1486(13)	0,044(4)
O54	0,1843(17)	0,7479(10)	0,1423(11)	0,041(4)
S 6	0,5224(6)	0,3932(5)	0,6115(5)	0,0406(13)
O61	0,4956(16)	0,4953(12)	0,6487(10)	0,036(3)
O62	0,6780(18)	0,4038(11)	0,6477(12)	0,042(4)
O63	0,4517(15)	0,3424(12)	0,4997(12)	0,041(3)
O64	0,4409(16)	0,3384(10)	0,6475(9)	0,035(3)
S 7	0,4778(6)	0,1035(4)	0,3864(4)	0,0324(11)
O71	0,5610(19)	0,1624(14)	0,3558(14)	0,057(5)
072	0,5007(17)	0,0012(10)	0,3523(12)	0,046(4)
073	0,3187(15)	0,0907(12)	0,3536(11)	0,040(4)
074	0,5507(15)	0,1570(10)	0,5052(11)	0,038(4)
S8	0,0314(6)	0,2039(4)	0,1139(4)	0,0359(12)
O81	0,0076(16)	0,1204(11)	0,1462(13)	0,046(4)
082	0,1911(15)	0,2518(12)	0,1498(11)	0,040(4)
083	0,0480(14)	0,1481(8)	0,0030(8)	0,032(3)
O84	0,0498(17)	0,2700(9)	0,1483(10)	0,037(3)
O001	0,0544(12)	0,9703(10)	0,2046(10)	0,031(3)
O002	0,0635(19)	0,5353(11)	0,2070(12)	0,046(4)
O003	0,4476(16)	0,2082(10)	0,2990(9)	0,038(3)

Tabelle 8: Atomlagen in der Kristallstruktur von (H₃O)₂[Pt₂(SO₄)₂(H₂O)₂]·4H₂O

O004	0,4462(19)	0,2877(12)	0,2906(12)	0,044(4)
O005	0,2751(16)	0,3594(11)	0,2113(11)	0,039(3)
O006	0,356(2)	0,1544(10)	0,1331(13)	0,060(5)
O007	0,3549(17)	0,8007(11)	0,0441(9)	0,047(4)
O008	0,3566(14)	0,3459(14)	0,1252(12)	0,055(5)
O009	0,3528(14)	0,7029(12)	0,0380(14)	0,053(5)
O010	0,2326(18)	0,1589(13)	0,2789(14)	0,056(5)
O011	0,2195(19)	0,3398(14)	0,2860(13)	0,051(4)
O012	0,1333(19)	0,0835(14)	0,6674(13)	0,049(4)
O013	0,135(2)	0,4245(14)	0,6639(14)	0,047(4)
O014	0,8823(18)	0,3158(14)	0,5817(18)	0,068(6)
O015	0,136(2)	0,1881(11)	0,4266(16)	0,067(6)
O016	0,278(2)	0,1307(17)	0,7912(17)	0,068(6)

Tabelle 9: Anisotrope Temperaturfaktoren in der Kristallstruktur von $(H_3O)_2[Pt_2(SO_4)_4(H_2O)_2]\cdot 4H_2O$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	0,0333(4)	0,0338(4)	0,0289(4)	0,0149(3)	0,0096(3)	0,0074(3)
Pt2	0,0351(4)	0,0330(4)	0,0284(4)	0,0140(3)	0,0097(3)	0,0077(3)
Pt3	0,0348(4)	0,0338(4)	0,0288(4)	0,0147(3)	0,0095(3)	0,0076(3)
Pt4	0,0353(4)	0,0338(4)	0,0281(4)	0,0134(3)	0,0092(3)	0,0079(3)
S1	0,040(2)	0,034(2)	0,027(2)	0,0181(19)	0,0105(17)	0,0048(19)
O11	0,047(8)	0,038(7)	0,032(7)	0,012(6)	0,004(6)	0,007(6)
012	0,056(9)	0,048(8)	0,027(7)	0,016(6)	0,010(6)	0,017(7)
013	0,047(8)	0,059(9)	0,031(7)	0,028(7)	0,019(6)	0,013(7)
O14	0,050(8)	0,027(5)	0,036(7)	0,007(5)	0,019(6)	0,001(5)
S2	0,028(2)	0,045(3)	0,042(3)	0,017(2)	0,0091(19)	0,012(2)
O21	0,031(6)	0,052(9)	0,051(9)	0,029(7)	0,017(6)	0,015(6)
O22	0,023(5)	0,032(6)	0,037(7)	0,011(6)	0,009(5)	0,001(5)
O23	0,044(7)	0,030(6)	0,052(9)	0,023(6)	0,017(6)	0,005(5)
O24	0,029(6)	0,033(6)	0,032(6)	0,013(5)	0,007(4)	0,013(4)
S3	0,035(2)	0,036(3)	0,032(3)	0,013(2)	0,009(2)	0,006(2)
O31	0,016(5)	0,037(7)	0,047(8)	0,018(6)	0,002(5)	-0,004(4)
O32	0,045(7)	0,030(6)	0,031(7)	0,020(5)	0,008(5)	0,015(5)
O33	0,007(4)	0,044(6)	0,041(7)	0,020(5)	0,009(4)	0,008(4)
O34	0,058(8)	0,033(6)	0,034(7)	0,008(5)	0,022(6)	0,019(6)
S4	0,034(2)	0,039(3)	0,035(3)	0,019(2)	0,013(2)	0,012(2)
O41	0,067(9)	0,044(7)	0,035(6)	0,024(6)	0,026(6)	0,018(6)
O42	0,024(6)	0,061(9)	0,032(7)	0,017(6)	0,012(5)	0,008(5)
O43	0,066(9)	0,042(8)	0,032(7)	0,023(6)	0,020(6)	0,013(6)

O44	0,022(5)	0,048(7)	0,051(8)	0,027(6)	0,012(5)	0,005(5)
S5	0,035(2)	0,030(2)	0,037(3)	0,010(2)	0,0113(19)	0,0099(19)
O51	0,055(8)	0,031(6)	0,025(5)	0,013(5)	0,026(5)	0,016(5)
O52	0,030(5)	0,052(7)	0,068(9)	0,044(7)	0,000(5)	0,021(5)
O53	0,028(6)	0,053(9)	0,048(9)	0,025(7)	0,011(6)	0,016(6)
O54	0,049(8)	0,026(5)	0,032(6)	0,002(5)	0,019(5)	0,000(5)
S6	0,040(3)	0,047(3)	0,041(3)	0,027(2)	0,015(2)	0,012(2)
O61	0,043(7)	0,053(8)	0,030(6)	0,032(6)	0,018(5)	0,017(6)
O62	0,056(8)	0,030(6)	0,044(8)	0,016(6)	0,025(6)	0,018(5)
O63	0,035(6)	0,051(8)	0,046(8)	0,031(7)	0,009(5)	0,027(6)
O64	0,050(7)	0,037(7)	0,024(6)	0,015(5)	0,023(5)	0,013(6)
S7	0,035(2)	0,028(2)	0,027(2)	0,0105(18)	0,0077(17)	0,0057(17)
O71	0,046(8)	0,055(10)	0,060(10)	0,035(8)	0,004(7)	0,001(7)
072	0,043(7)	0,027(6)	0,046(8)	0,005(5)	0,003(6)	0,016(5)
073	0,029(6)	0,050(8)	0,028(6)	0,021(6)	-0,003(5)	-0,001(5)
074	0,037(7)	0,034(6)	0,026(6)	0,010(5)	0,006(5)	-0,008(5)
S 8	0,042(3)	0,034(2)	0,028(2)	0,017(2)	0,0104(19)	0,004(2)
O81	0,035(7)	0,035(7)	0,061(9)	0,025(6)	0,005(6)	0,011(5)
082	0,028(6)	0,054(8)	0,034(6)	0,027(6)	0,001(5)	0,011(5)
O83	0,046(6)	0,024(5)	0,018(4)	-0,001(4)	0,023(4)	0,003(4)
O84	0,061(8)	0,021(5)	0,024(6)	0,006(5)	0,017(6)	0,012(5)
O001	0,012(4)	0,043(6)	0,030(6)	0,014(5)	0,002(4)	0,008(4)
O002	0,075(9)	0,036(6)	0,040(7)	0,027(6)	0,031(6)	0,013(6)
O003	0,043(7)	0,032(6)	0,010(4)	-0,005(4)	-0,001(4)	0,004(5)
O004	0,061(9)	0,045(8)	0,048(8)	0,033(7)	0,032(6)	0,020(6)
O005	0,040(7)	0,039(5)	0,034(6)	0,014(5)	0,016(5)	0,011(5)
O006	0,084(11)	0,033(5)	0,053(8)	0,008(5)	0,037(7)	0,009(6)
O007	0,066(9)	0,051(8)	0,023(5)	0,016(5)	0,014(5)	0,027(6)
O008	0,021(5)	0,106(12)	0,054(8)	0,055(8)	0,014(5)	0,014(6)
O009	0,024(6)	0,061(9)	0,089(11)	0,051(8)	0,025(6)	0,007(5)
O010	0,038(7)	0,053(8)	0,046(8)	0,016(6)	-0,003(6)	-0,006(6)
O011	0,053(8)	0,060(9)	0,049(8)	0,025(7)	0,029(6)	0,026(7)
O012	0,054(8)	0,055(8)	0,043(8)	0,023(7)	0,028(6)	0,018(7)
O013	0,049(8)	0,051(7)	0,048(8)	0,034(7)	0,012(6)	0,016(6)
O014	0,033(6)	0,064(10)	0,109(15)	0,035(9)	0,039(8)	0,011(6)
O015	0,073(10)	0,027(6)	0,064(9)	0,005(6)	0,008(7)	0,009(6)
O016	0,068(11)	0,084(13)	0,060(11)	0,042(10)	0,023(9)	0,028(9)

13.2 Tabellen zu (NH₄)₂[Pt₂(SO₄)₂(H₂O)₂]

Zellparameter	a = 749,8(3) pm
	b = 753,8(3) pm
	c = 765,2(3) pm
	$\alpha = 102, 14(4)^{\circ}$
	$\beta = 110,23(3)^{\circ}$
	$\gamma = 100,83(3)^{\circ}$
Zellvolumen	380,4(3) · 10 ⁶ pm ³
Anzahl der Formeleinheiten	1
Kristallsystem	triklin
Raumgruppe	PT (Nr, 2)
Diffraktometer	Stoe IPDS II
Strahlung	Mo-K _{α} (Graphit Monochrom., $\lambda = 71,07 \text{ pm}$)
Messtemperatur	170 K
Theta Bereich	$5^\circ < 2\theta < 56^\circ$
Indexbereich	$-9 \le h \le 9$
	$-8 \le k \le 8$
	$-9 \le 1 \le 10$
ω-Bereich; ω-Inkrement; φ-Werte	$0^{\circ} < \omega < 180^{\circ}; 2^{\circ}; \phi = 0^{\circ}, 90^{\circ}$
Anzahl der Bilder	180
Belichtungszeit	5 min
Detektorabstand	80 mm
Datenkorrektur	Polarizations und Lorentz Faktoren
Absorptionskorrektur	numerisch ^[53]
Absorptionskoeffizient µ	19,01 mm ⁻¹
Anzahl gemessener Reflexe	3497
Anzahl symmetrieunabhängiger Reflexe	1667
Anzahl beobachteter Reflexe mit $I_0 > 2\theta(I)$	1302
R_{int} / R_{σ}	0,0817 / 0,1103
Benutzte Programme	SHELXS-97 und
	SHELXL-97 ^[33]
Streufaktoren	Intern. Tables Vol.C ^[54]
Extinktionskoeffizient	0,008(1)
Goodness of fit	0,967
R_1 ; $wR_2 I_0 > 2\sigma(I)$	0,0474; 0,1044
R ₁ ; wR ₂ (alle Daten)	0,0669; 0,1147

Tabelle 10: Kristallographische Daten und deren Bestimmung zu (NH₄)₂[Pt₂(SO₄)₂(H₂O)₂]

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	011	199,4(12)	S1	O14	142,0(12)
	O21	200,3(10)		O13	143,8(13)
	012	200,3(13)		O12	153,6(14)
	022	200,8(10)		011	155,1(11)
	01	210,6(10)	S2	O24	142,6(13)
	Pt1 [#]	246,21(17)		023	143,8(12)
				022	151,7(11)
				O21	154,5(11)

Tabelle 11: Atomabstände in der Kristallstruktur von (NH₄)₂[Pt₂(SO₄)₄(H₂O)₂]

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
011	Pt1	O21	90,6(4)	014	S 1	O13	115,8(8)
O11	Pt1	012	178,9(5)	014	S1	012	110,3(8)
O21	Pt1	012	90,3(5)	013	S1	012	106,7(7)
O11	Pt1	O22	91,1(5)	014	S1	011	111,0(7)
O21	Pt1	O22	178,3(6)	013	S1	011	105,3(7)
O12	Pt1	O22	88,0(5)	012	S1	011	107,4(7)
O11	Pt1	01	90,8(5)	S 1	O11	Pt1	119,8(7)
O21	Pt1	01	89,3(4)	S1	O12	Pt1	118,4(7)
O12	Pt1	01	88,5(5)	O24	S2	O23	116,9(7)
O22	Pt1	01	91,1(4)	O24	S2	O22	110,7(7)
O11	Pt1	Pt1	89,5(3)	O23	S2	O22	106,9(7)
O21	Pt1	Pt1	90,4(3)	O24	S2	O21	110,9(7)
O12	Pt1	Pt1	91,2(4)	O23	S2	O21	104,6(7)
022	Pt1	Pt1	89,2(3)	O22	S2	O21	106,2(6)
01	Pt1	Pt1	179,6(3)	S2	O21	Pt1	119,6(6)
				S2	O22	Pt1	120,4(6)

Atom	x/a	y/b	z/c	U _{eq}
Pt1	0,37174(9)	0,04285(11)	0,87878(9)	0,0170(2)
S 1	0,2808(6)	0,3818(6)	0,8232(6)	0,0238(8)
011	0,4484(16)	0,3047(17)	0,0315(15)	0,023(2)
012	0,1902(17)	0,2205(18)	0,7831(19)	0,029(3)
013	0,1311(17)	0,524(2)	0,8349(19)	0,034(3)
O14	0,3561(18)	0,4437(19)	0,6819(17)	0,032(3)
S2	0,3004(6)	0,0403(6)	0,2507(5)	0,0228(8)
O21	0,2559(15)	0,1177(16)	0,0732(15)	0,019(2)
022	0,5160(15)	0,0406(18)	0,3175(15)	0,021(2)
O23	0,2876(19)	0,1830(19)	0,3999(17)	0,030(3)
O24	0,1743(18)	0,1463(18)	0,1979(19)	0,030(3)
O1	0,1509(15)	0,1155(19)	0,6723(14)	0,024(3)
N1	0,276(4)	0,472(4)	0,274(4)	0,078(9)

Tabelle 13: Atomlagen in der Kristallstruktur von (NH₄)₂[Pt₂(SO₄)₄(H₂O)₂]

Tabelle 14: Anisotrope Temperaturfaktoren in der Kristallstruktur von (NH₄)₂[Pt₂(SO₄)₄(H₂O)₂]

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	0,0188(3)	0,0180(4)	0,0170(3)	0,00531(19)	0,00990(19)	0,00619(18)
S 1	0,0272(17)	0,021(2)	0,0265(18)	0,0059(15)	0,0152(15)	0,0067(14)
011	0,031(6)	0,020(7)	0,020(5)	0,006(4)	0,013(4)	0,009(5)
012	0,029(6)	0,020(7)	0,042(7)	0,003(5)	0,020(5)	0,008(5)
O13	0,026(5)	0,030(8)	0,041(7)	0,006(6)	0,014(5)	0,001(5)
O14	0,039(6)	0,030(8)	0,026(6)	-0,002(5)	0,017(5)	0,010(5)
S2	0,0285(18)	0,028(2)	0,0233(17)	0,0107(15)	0,0194(15)	0,0124(15)
O21	0,029(5)	0,016(6)	0,017(5)	0,005(4)	0,013(4)	0,010(4)
O22	0,025(5)	0,027(7)	0,016(5)	0,006(4)	0,010(4)	0,014(4)
O23	0,047(7)	0,030(8)	0,026(5)	0,010(5)	0,024(5)	0,023(5)
O24	0,041(6)	0,021(7)	0,041(6)	0,010(5)	0,029(6)	0,011(5)
01	0,022(5)	0,039(8)	0,011(4)	0,007(5)	0,003(4)	0,012(5)
N1	0,110(17)	0,15(2)	0,100(16)	0,112(18)	0,098(16)	0,120(19)

13.3 Tabellen K₃[Pt₂(SO₄)₄H(HSO₄)₂]

Zellparameter	a = 1809,4(2) pm
	b = 957,1(1) pm
	c = 1233,0(1) pm
	$\beta = 107,277(1)^{\circ}$
Zellvolumen	$2038,8(5) \cdot 10^6 \text{pm}^3$
Anzahl der Formeleinheiten	4
Kristallsystem	monoklin
Raumgruppe	C2/c (Nr, 15)
Diffraktometer	Stoe IPDS II
Strahlung	Mo-K _{α} (Graphit Monochrom., $\lambda = 71,07$ pm)
Messtemperatur	170 K
Theta Bereich	$4,6^{\circ} < 2\theta < 56^{\circ}$
Indexbereich	$-23 \le h \le 23$
	$-12 \le k \le 12$
	$-16 \le 1 \le 16$
ω-Bereich; $ω$ -Inkrement; $φ$ -Werte	$0^{\circ} < \omega < 180^{\circ}; 2^{\circ}; \phi = 0^{\circ}, 90^{\circ}$
Anzahl der Bilder	159
Belichtungszeit	7 min
Detektorabstand	100 mm
Datenkorrektur	Polarizations und Lorentz Faktoren
Absorptionskorrektur	numerisch ^[53]
Absorptionskoeffizient μ	15,05 mm ⁻¹
Anzahl gemessener Reflexe	14911
Anzahl Symmetrieunabhängiger Reflexe	2476
Anzahl beobachteter Reflexe mit $I_0 > 2\theta(I)$	1603
R_{int} / R_{σ}	0,1335 / 0,0749
Benutzte Programme	SHELXS-97 und
	SHELXL-97 [33]
Streufaktoren	Intern. Tables Vol.C ^[54]
Extinktionskoeffizient	0,00025(4)
Goodness of fit	1,050
R_1 ; $wR_2 I_0 > 2\sigma(I)$	0,0383; 0,0586
R_1 ; w R_2 (alle Daten)	0,0755; 0,0647

Tabelle 15: Kristallographische Daten und deren Bestimmung zu K₃[Pt₂(SO₄)₄H(HSO₄)₂]

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	O21	198,9(7)	S1	011	142,5(7)
	O22	199,5(7)		012	146,5(8)
	O32	200,1(7)		O14	147,0(6)
	O31	201,0(7)		O13	153,9(11)
	O14	214,3(5)	S2	O23	142,2(7)
	Pt1 [#]	247,42(6)		O24	143,2(8)
K1	O23	271,5(7)		O21	154,7(7)
	O24	283,3(7)		O22	154,9(6)
	O34	286,2(7)	S3	O34	141,7(8)
	O23	286,5(7)		O33	145,8(7)
	O11	287,5(7)		O31	152,7(7)
	O31	299,1(7)		032	154,4(7)
	O22	300,7(7)	K2	O24	268,4(7)
	O33	309,0(8)		011	272,6(6)
	O34	336,8(7)		032	289,2(7)
				O33	301,9(7)

Tabelle 16: Atomabstände in der Kristallstruktur von K₃[Pt₂(SO₄)₄H(HSO₄)₂]

Tabelle 17: Winkel in der Kristallstruktur von K₃[Pt₂(SO₄)₄H(HSO₄)₂]

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
O21	Pt1	O22	178,8(3)	011	S1	O12	108,5(5)
O21	Pt1	O32	89,5(3)	011	S1	O14	116,3(4)
O22	Pt1	O32	89,4(3)	012	S1	O14	108,9(5)
O21	Pt1	O31	90,7(3)	011	S1	O13	109,3(6)
O22	Pt1	O31	90,5(3)	012	S1	O13	105,8(7)
O32	Pt1	O31	179,3(3)	O14	S1	O13	107,5(5)
O21	Pt1	O14	90,6(3)	O23	S2	O24	117,3(5)
O22	Pt1	O14	89,2(3)	O23	S2	O21	108,0(4)
O32	Pt1	O14	93,2(3)	O24	S2	O21	109,5(4)
O31	Pt1	O14	87,5(2)	O23	S2	O22	105,7(4)
O21	Pt1	Pt1	90,27(17)	O24	S2	O22	109,2(4)
O22	Pt1	Pt1	89,96(17)	O21	S2	O22	106,6(4)
O32	Pt1	Pt1	90,08(18)	O34	S 3	O33	116,6(4)
O31	Pt1	Pt1	89,24(17)	O34	S 3	O31	111,5(4)
O14	Pt1	Pt1	176,6(2)	O33	S 3	O31	105,6(4)
				O34	S3	O32	112,3(4)
				O33	S 3	O32	104,1(4)
				O31	83	O32	105,8(4)

Atom	x/a	y/b	z/c	U_{eq}
Pt1	0,196998(17)	0,25380(6)	0,04430(2)	0,01220(11)
K1	0,32491(12)	0,2170(2)	0,41058(17)	0,0241(5)
K2	0,0000	0,3080(3)	0,2500	0,0230(6)
S1	0,02449(10)	0,2557(4)	0,08400(16)	0,0204(4)
O11	0,0091(4)	0,2826(9)	0,0341(5)	0,031(2)
012	0,0111(5)	0,3495(10)	0,1480(7)	0,037(2)
O13	0,0032(6)	0,1067(12)	0,1110(12)	0,068(4)
O14	0,1091(3)	0,2691(9)	0,1281(5)	0,0191(16)
S2	0,31168(13)	0,0127(3)	0,1321(2)	0,0143(4)
O21	0,2284(4)	0,0673(7)	0,1139(5)	0,0169(13)
O22	0,3363(4)	0,0610(7)	0,0280(6)	0,0172(13)
O23	0,3085(4)	0,1357(7)	0,1259(6)	0,0187(15)
O24	0,3625(4)	0,0737(8)	0,2329(6)	0,0186(14)
S 3	0,16165(14)	0,0694(3)	0,1678(2)	0,0146(4)
O31	0,2309(4)	0,1516(7)	0,1806(5)	0,0176(14)
O32	0,1262(4)	0,1600(8)	0,0924(5)	0,0208(15)
O33	0,1040(4)	0,0733(8)	0,2792(6)	0,0206(15)
O34	0,1840(4)	0,0646(8)	0,1206(6)	0,0195(15)

Tabelle 18: Atomlagen in der Kristallstruktur von K₃[Pt₂(SO₄)₄H(HSO₄)₂]

Tabelle 19: Anisotrope Temperaturfaktoren in der Kristallstruktur von K₃[Pt₂(SO₄)₄H(HSO₄)₂]

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	0,01061(12)	0,01413(17)	0,01318(14)	0,0001(2)	0,00556(9)	0,0002(2)
K1	0,0202(9)	0,0296(16)	0,0257(9)	0,0050(8)	0,0116(8)	0,0022(8)
K2	0,0155(13)	0,0316(17)	0,0238(14)	0,000	0,0086(11)	0,000
S1	0,0142(8)	0,0266(12)	0,0216(9)	0,0052(15)	0,0071(7)	0,0018(14)
011	0,021(3)	0,051(7)	0,019(3)	0,001(3)	0,001(3)	0,004(3)
O12	0,019(4)	0,065(7)	0,033(4)	-0,002(4)	0,016(3)	0,017(4)
O13	0,031(5)	0,036(6)	0,115(10)	0,035(6)	-0,011(6)	-0,003(4)
O14	0,011(3)	0,030(5)	0,021(3)	-0,002(3)	0,011(2)	-0,001(3)
S2	0,0129(10)	0,0147(13)	0,0158(11)	-0,0014(10)	0,0049(9)	-0,0014(9)
O21	0,016(3)	0,017(4)	0,018(3)	-0,002(3)	0,005(3)	0,000(3)
O22	0,019(3)	0,013(3)	0,022(3)	0,001(3)	0,009(3)	0,000(3)
O23	0,021(3)	0,012(4)	0,027(4)	0,000(3)	0,014(3)	0,000(3)
O24	0,013(3)	0,024(4)	0,019(4)	0,000(3)	0,005(3)	-0,004(3)
S3	0,0113(9)	0,0168(12)	0,0152(11)	-0,0022(10)	0,0033(9)	-0,0002(9)
O31	0,020(3)	0,019(4)	0,015(3)	0,001(3)	0,007(3)	-0,003(3)
O32	0,021(3)	0,026(4)	0,016(3)	-0,006(3)	0,006(3)	-0,004(3)
O33	0,017(3)	0,024(4)	0,020(3)	-0,008(3)	0,004(3)	-0,001(3)
O34	0,018(3)	0,013(4)	0,028(4)	0,008(3)	0,008(3)	0,007(3)

13.4 Tabellen zu K₄[Pt₂(SO₄)₅]

Zellparameter	a = 975,6(10) pm
	b = 1331,8(1) pm
	c = 1491,0(1) pm
	$\alpha = 101,156(8)^{\circ}$
	$\beta = 96,278(8)^{\circ}$
	$\gamma = 102,849(8)^{\circ}$
Zellvolumen	1829,3(3) · 10 ⁶ pm ³
Anzahl der Formeleinheiten	2
Kristallsystem	triklin
Raumgruppe	P1 (Nr, 2)
Diffraktometer	Stoe IPDS II
Strahlung	Mo-K _{α} (Graphit Monochrom., $\lambda = 71,07$ pm)
Messtemperatur	170 K
Theta Bereich	$5^\circ < 2\theta < 56^\circ$
Indexbereich	$-12 \le h \le 12$
	$-17 \le k \le 17$
	$-19 \le 1 \le 19$
ω-Bereich; ω-Inkrement; φ-Werte	$0^{\circ} < \omega < 180^{\circ}; 2^{\circ}; \phi = 0^{\circ}, 90^{\circ}$
Anzahl der Bilder	270
Belichtungszeit	1 min
Detektorabstand	80 mm
Datenkorrektur	Polarizations und Lorentz Faktoren
Absorptionskorrektur	numerisch ^[53]
Absorptionskoeffizient µ	16,86 mm ⁻¹
Anzahl gemessener Reflexe	24347
Anzahl symmetrieunabhängiger Reflexe	8830
Anzahl beobachteter Reflexe mit $I_0 > 2\theta(I)$	6882
R_{int} / R_{σ}	0,0623 / 0,0544
Benutzte Programme	SHELXS-97 und
	SHELXL-97 ^[33]
Streufaktoren	Intern. Tables Vol.C ^[54]
Extinktionskoeffizient	0,00066(4)
Goodness of fit	0,933
$R_1; wR_2 I_0 > 2\sigma(I)$	0,0311; 0,0678
R ₁ ; wR ₂ (alle Daten)	0,0459; 0,0719

Tabelle 20: Kristallographische Daten und deren Bestimmung zu K₄[Pt₂(SO₄)₅]

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	O62	200,8(5)	S 1	012	143,8(6)
	O34	201,8(5)		O14	144,1(6)
	O31	201,9(5)		O13	152,3(5)
	O61	202,6(5)		011	153,1(5)
	083	210,9(5)	S2	O24	142,5(7)
	$Pt1^{\#}$	247,60(6)		023	144,1(7)
Pt2	O21	200,6(6)		O21	151,9(6)
	O91	201.4(6)		022	152.4(6)
	022	201.4(5)	S 3	032	142.8(6)
	092	202.2(6)		033	143.1(5)
	0102	213.2(5)		031	152.6(6)
	Pt2 [#]	248.02(6)		034	154.2(5)
Pt3	072	201.0(5)	S 4	044	142.5(6)
1.0	071	201,3(5)	5.	043	143 3(6)
	052	201,3(5)		041	153.0(5)
	051	201,3(5)		042	153,2(5)
	082	201, 4(5)	\$5	053	142.8(6)
	Dt3 [#]	211,0(5)	65	053	142,8(6)
D+4	042	247,02(0)		054	143,4(0)
F 14	042	201,3(3)		051	151,8(0)
	013	201,7(3)	87	032	133,4(3)
	041	201,9(5)	80	064	142,9(6)
	011	202,0(5)		063	143,7(5)
	0101	212,7(4)		061	152,2(6)
	Pt4"	248,96(6)		062	154,3(6)
K1	073	261,8(6)	S 7	073	143,1(6)
	044	275,5(6)		074	144,2(7)
	0102	275,8(6)		072	151,8(6)
	O103	278,8(6)		071	153,5(5)
	O103	282,2(6)	S8	O81	139,6(8)
	013	288,9(6)		O84	143,7(6)
	O14	290,1(6)		082	149,4(6)
K2	O24	260,1(7)		O83	150,4(5)
	O53	271,4(6)	S9	O94	142,1(7)
	O32	274,6(6)		093	143,3(6)
	O33	286,7(6)		O91	153,0(6)
	O34	291,5(6)		092	153,4(6)
	O93	292,9(8)	S10	O103	144,0(6)
	O62	304,1(6)		O104	144,8(5)
	O83	329,7(6)		O102	150,5(5)
	O92	333,3(6)		O101	151,2(5)
K3	O104	267,1(7)	K6	073	276,4(7)
	O43	278,6(7)		012	277,4(7)
	O33	280,0(6)		053	279,1(7)
	O61	283,6(5)		O84	282,0(7)
	O63	289,5(7)		O24	283,5(7)
	071	291,2(6)		O43	297,2(7)
	051	294,1(6)		O71	300,9(6)

Tabelle 21:	Atomabstände	in der	Kristallstruktur	von K ₄	$[Pt_2(SO_4)_5]$	l
-------------	--------------	--------	------------------	--------------------	------------------	---

	O74	303,5(6)	K7	O104	266,6(7)
	082	323,2(7)		O54	266,9(6)
	O103	335,2(6)		O64	272,0(7)
K4	093	283,3(8)		O32	278,6(6)
	O23	294,3(7)		O101	297,7(5)
	072	301,3(5)		O34	305,7(5)
	O14	305,2(6)		O33	330,8(6)
	O31	309,1(6)		O92	339,5(6)
	094	315,6(8)	K8	O81	256,0(8)
	O62	322,1(6)		O52	268,5(5)
	O83	325,2(7)		O12	268,5(6)
	082	327,2(8)		O84	275,5(7)
	O84	329,2(10)		O54	282,2(6)
	O64	332,2(7)		O42	283,8(5)
K5	O14	282,0(6)		O74	286,6(7)
	O23	282,1(7)		O13	327,5(5)
	O94	289,2(7)		O43	336,1(7)
	O11	293,9(6)			
	O63	295,2(7)			
	O23	308,3(7)			
	O22	311,5(7)			
	O64	326,7(7)			
	O44	326,9(7)			
	O94	328,3(7)			

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
O62	Pt1	O34	90,4(2)	012	S1	O14	114,1(4)
O62	Pt1	O31	89,5(2)	012	S1	O13	110,1(3)
O34	Pt1	O31	179,8(2)	O14	S 1	O13	106,3(3)
O62	Pt1	O61	178,7(2)	012	S1	O11	110,5(3)
O34	Pt1	O61	88,4(2)	O14	S1	O11	107,1(3)
O31	Pt1	O61	91,8(2)	013	S1	O11	108,4(3)
O62	Pt1	O83	82,4(2)	O24	S2	O23	113,4(4)
O34	Pt1	O83	86,9(2)	O24	S2	O21	109,6(4)
O31	Pt1	O83	93,3(2)	O23	S2	O21	107,6(4)
O61	Pt1	O83	97,9(2)	O24	S2	O22	112,0(4)
O62	Pt1	Pt1	90,58(16)	O23	S2	O22	105,9(4)
O34	Pt1	Pt1	90,85(15)	O21	S2	O22	108,1(3)
O31	Pt1	Pt1	88,98(15)	O32	S 3	O33	115,0(4)
O61	Pt1	Pt1	89,11(15)	O32	S 3	O31	108,0(3)
O83	Pt1	Pt1	172,55(16)	O33	S 3	O31	110,6(3)
O21	Pt2	O91	90,5(3)	O32	S 3	O34	106,6(3)
O21	Pt2	O22	178,6(3)	O33	S 3	O34	109,0(3)
O91	Pt2	O22	90,7(3)	O31	83	O34	107,2(3)
O21	Pt2	O92	88,8(3)	O44	S4	O43	116,6(4)
O91	Pt2	O92	179,3(3)	O44	S4	O41	110,1(3)
O22	Pt2	O92	89,9(3)	O43	S4	O41	106,7(3)
O21	Pt2	O102	87,8(2)	O44	S4	O42	109,5(3)
O91	Pt2	O102	82,7(2)	O43	S4	O42	106,0(3)
O22	Pt2	O102	92,9(2)	O41	S4	O42	107,5(3)
O92	Pt2	O102	97,5(2)	O53	S5	O54	115,3(4)
O21	Pt2	Pt2	90,68(17)	O53	S5	O51	110,6(3)
O91	Pt2	Pt2	89,41(16)	054	S5	O51	106,5(3)
022	Pt2	Pt2	88,83(16)	053	S 5	O52	110,1(3)
O92	Pt2	Pt2	90,44(16)	O54	S 5	O52	106,5(3)
O102	Pt2	Pt2	171,92(14)	051	S 5	O52	107,5(3)
072	Pt3	071	179,6(2)	O64	S 6	O63	115,0(4)
072	Pt3	052	90,7(2)	O64	S6	O61	111,1(4)
071	Pt3	052	89,1(2)	063	S6	061	106,5(3)
072	Pt3	051	89,5(2)	064	S6	062	109,6(4)
071	Pt3	051	90,8(2)	063	S6	062	107,2(4)
052	Pt3	051	179,5(2)	O61	S6	062	107,1(3)
072	Pt3	082	87,2(3)	073	S7	074	115,9(4)
071	Pt3	082	93,2(3)	073	S7	072	107,3(3)
052	Pt3	082	97,3(2)	074	S7	072	109,6(4)
051	Pt3	082	83,1(2)	073	S7	071	106,1(4)
072	Pt3	Pt3	91,23(16)	074	S7	071	110,0(3)
071	Pt3	Pt3	88,43(15)	072	87	071	107,6(3)
052	Pt3	Pt3	88,88(15)	081	88	084	115,1(6)
051	Pt3	Pt3	90,67(16)	081	88	082	109,8(5)
082	Pt3	Pt3	173,59(17)	084	88	082	109,8(5)
042	Pt4	013	87,9(2)	081	88	083	111,7(5)
042	Pt4	041	179,0(2)	084	S8	083	105,6(4)
013	Pt4	041	91,3(2)	082	S 8	083	104,2(3)

Tabelle 22: Winkel in der Kristallstruktur von K₄[Pt₂(SO₄)₅]

O42	Pt4	011	90,7(2)	O94	S9	O93	115,1(4)
013	Pt4	011	178,6(2)	O94	S9	O91	110,6(4)
O41	Pt4	011	90,1(2)	093	S9	O91	106,5(4)
O42	Pt4	O101	83,7(2)	O94	S9	O92	111,0(4)
O13	Pt4	O101	93,2(2)	O93	S 9	O92	105,5(4)
O41	Pt4	O101	96,9(2)	O91	S 9	O92	107,7(3)
O11	Pt4	O101	87,0(2)	O103	S10	O104	115,2(4)
O42	Pt4	Pt4	90,40(14)	O103	S10	O102	105,8(3)
O13	Pt4	Pt4	88,66(14)	O104	S10	O102	110,9(3)
O41	Pt4	Pt4	89,01(14)	O103	S10	O101	110,7(3)
O11	Pt4	Pt4	90,96(14)	O104	S10	O101	105,7(3)
O101	Pt4	Pt4	173,74(15)	O102	S10	O101	108,4(3)

	- 1
Pt1 0,98916(3) 0,586278(19) 0,484774(18)	0,01910(7)
Pt2 0,48542(3) 0,413990(19) 0,022874(17)	0,01856(7)
Pt3 0,38104(3) 0,94060(2) 0,495763(18)	0,01934(7)
Pt4 0,10577(3) 0,070269(19) 0,043407(17)	0,01820(7)
K1 0,4213(2) 0,89063(15) 0,05831(12)	0,0345(4)
K2 0,6316(3) 0,57957(19) 0,34303(16)	0,0476(5)
K3 0,6695(2) 0,20266(13) 0,31482(13)	0,0326(4)
K4 0,1349(2) 0,68802(17) 0,27446(14)	0,0433(5)
K5 0,9556(3) 0,37602(17) 0,06117(15)	0,0494(5)
K6 0,7612(2) 0,84809(19) 0,27175(17)	0,0493(5)
K7 0,3116(3) 0,34869(17) 0,30806(15)	0,0478(5)
K8 0,8827(2) 0,95419(15) 0,68736(12)	0,0376(4)
S1 0,9301(2) 0,14351(14) 0,89688(12)	0,0235(4)
011 0,0361(6) 0,1799(4) 0,9874(4)	0,0261(11)
O12 0,0038(7) 0,1302(5) 0,8187(4)	0,0370(14)
O13 0,8285(6) 0,0392(4) 0,8986(3)	0,0244(11)
014 0,8453(6) 0,2193(4) 0,8970(4)	0,0311(12)
S2 0,2322(2) 0,42082(14) 0,88501(12)	0,0252(4)
O21 0,2822(6) 0,3679(5) 0,9596(4)	0,0350(13)
022 0,3118(6) 0,5372(4) 0,9113(4)	0,0327(13)
023 0,0845(7) 0,4184(5) 0,8883(5)	0,0415(15)
024 0,2568(8) 0,3691(5) 0,7974(4)	0,0446(16)
S3 0,70487(19) 0,44549(13) 0,50900(12)	0,0222(3)
031 0,8106(5) 0,3877(4) 0,5446(4)	0,0258(11)
032 0,6056(6) 0,4524(4) 0,5722(4)	0,0325(12)
033 0,6426(6) 0,3963(4) 0,4149(4)	0,0317(13)
O34 0,7888(5) 0,5597(4) 0,5139(3)	0,0236(10)
S4 0,8376(2) 0,06938(14) 0,13189(12)	0,0235(4)
O41 0,7896(6) 0,9615(4) 0,0641(3)	0,0255(11)
042 0,0006(5) 0,0993(4) 0,1508(3)	0,0229(10)
043 0,7926(7) 0,0545(5) 0,2178(4)	0,0364(14)
O44 0,7888(6) 0,1467(5) 0,0922(4)	0,0324(13)
S5 0,6222(2) 0,82767(14) 0,50713(13)	0,0247(4)
O51 0,4711(6) 0,8256(4) 0,5239(4)	0,0261(11)
O52 0,7074(6) 0,9437(4) 0,5320(4)	0,0258(11)
053 0,6236(6) 0,7818(5) 0,4125(4)	0,0358(14)
054 0,6810(6) 0,7774(4) 0,5733(4)	0,0336(13)
S6 0,9478(2) 0,41373(15) 0,30700(12)	0,0265(4)
061 0,9397(6) 0,3469(4) 0,3792(3)	0,0262(11)
062 0,9144(6) 0,5187(4) 0,3507(3)	0,0268(11)
063 0,8340(7) 0,3592(5) 0,2321(4)	0,0385(15)
O64 0,0866(7) 0,4349(5) 0,2815(4)	0,0383(14)
S7 0,4642(2) 0,94833(15) 0,30607(12)	0,0265(4)
071 0,6088(6) 0,0001(4) 0,3682(3)	0,0245(11)
072 0,3717(6) 0,8824(4) 0,3598(3)	0,0272(12)
073 0,4916(7) 0,8769(5) 0,2292(4)	0,0370(14)

Tabelle 23: Atomlagen in der Kristallstruktur von K₄[Pt₂(SO₄)₅]

0,03970(19)	0,83455(13)	0,47148(12)	0,0226(3)
0,0058(10)	0,8884(8)	0,5527(6)	0,077(3)
0,1899(6)	0,8255(5)	0,4880(5)	0,0434(17)
0,9526(6)	0,7219(4)	0,4430(4)	0,0345(14)
0,0182(9)	0,8790(6)	0,3921(5)	0,060(2)
0,3593(2)	0,57237(15)	0,14507(12)	0,0263(4)
0,4498(7)	0,6461(4)	0,0951(4)	0,0331(13)
0,4182(7)	0,4742(4)	0,1405(4)	0,0344(13)
0,3870(8)	0,6250(5)	0,2410(4)	0,0437(16)
0,2138(7)	0,5443(5)	0,1034(5)	0,0434(15)
0,42848(19)	0,21044(14)	0,12394(12)	0,0218(3)
0,2711(5)	0,1969(4)	0,1266(4)	0,0272(12)
0,4640(6)	0,2573(4)	0,0427(4)	0,0274(12)
0,4629(6)	0,1095(4)	0,1070(4)	0,0321(12)
0,5004(6)	0,2824(5)	0,2103(4)	0,0362(14)
	0,03970(19) 0,0058(10) 0,1899(6) 0,9526(6) 0,0182(9) 0,3593(2) 0,4498(7) 0,4182(7) 0,3870(8) 0,2138(7) 0,42848(19) 0,2711(5) 0,4640(6) 0,4629(6) 0,5004(6)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c cccc} 0,03970(19) & 0,83455(13) & 0,47148(12) \\ 0,0058(10) & 0,8884(8) & 0,5527(6) \\ 0,1899(6) & 0,8255(5) & 0,4880(5) \\ 0,9526(6) & 0,7219(4) & 0,4430(4) \\ 0,0182(9) & 0,8790(6) & 0,3921(5) \\ 0,3593(2) & 0,57237(15) & 0,14507(12) \\ 0,4498(7) & 0,6461(4) & 0,0951(4) \\ 0,4182(7) & 0,4742(4) & 0,1405(4) \\ 0,3870(8) & 0,6250(5) & 0,2410(4) \\ 0,2138(7) & 0,5443(5) & 0,1034(5) \\ 0,42848(19) & 0,21044(14) & 0,12394(12) \\ 0,2711(5) & 0,1969(4) & 0,1266(4) \\ 0,4640(6) & 0,2573(4) & 0,0427(4) \\ 0,4629(6) & 0,1095(4) & 0,1070(4) \\ 0,5004(6) & 0,2824(5) & 0,2103(4) \\ \end{array}$

Pt1 0.01797(13) 0.01616(12) 0.02300(12) 0.00520(9) 0.00357(10) 0.003057 Pt2 0.01634(13) 0.01689(12) 0.02077(12) 0.004143(12) 0.00211(9) 0.00134 Pt4 0.01635(13) 0.01703(12) 0.01517(9) 0.00221(9) 0.00134 K1 0.0444(10) 0.0414(12) 0.00517(9) 0.0022(7) 0.0133(8) K2 0.0479(13) 0.0440(10) 0.0318(8) 0.0007(7) 0.0023(7) K3 0.0340(9) 0.0249(8) 0.0338(9) 0.0015(8) 0.015(9) 0.0065(8) K4 0.0443(11) 0.0440(10) 0.0051(8) 0.015(9) 0.0025(7) 0.0016(8) 0.0072(8) K5 0.0440(12) 0.0560(13) 0.0666(14) 0.0299(11) 0.0238(10) 0.0216(8) 0.0022(1) 0.0216(8) 0.0022(1) 0.0216(8) 0.0022(1) 0.0216(8) 0.0022(1) 0.0012(1) 0.0022(2) 0.0022(2) 0.0022(2) 0.0022(2) 0.0022(2) 0.0022(2) 0.0022(2) 0.0022(2) 0.002(2) <	Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pi2 0.01634(13) 0.01669(12) 0.02072(12) 0.00462(8) 0.00331(9) 0.00331(9) Pi3 0.01634(13) 0.01888(12) 0.02141(12) 0.00117(9) 0.00221(9) 0.00149(Pi4 0.01634(13) 0.011703(12) 0.01121(12) 0.00188(8) 0.00221(9) 0.00138(K1 0.0344(10) 0.0404(10) 0.0318(8) 0.0016(6) 0.0075(7) 0.0035(7) K4 0.0446(12) 0.0436(11) 0.0404(10) 0.0005(8) 0.0105(9) 0.0055(7) K4 0.0446(12) 0.0436(11) 0.0404(10) 0.0021(8) 0.0105(9) 0.0025(1) K5 0.0446(12) 0.056(13) 0.0668(14) 0.0299(11) 0.0238(10) 0.0021(1) K8 0.0333(1) 0.042(2) 0.0223(2) 0.0026(7) -0.001(8) 0.0022(2) C11 0.023(3) 0.022(2) 0.022(3) 0.001(2) -0.002(2) 0.002(2) C11 0.023(3) 0.024(3) 0.012(3) 0.001(2) -0.002(2) 0.002(2)	Pt1	0,01797(13)	0,01616(12)	0,02300(12)	0,00520(9)	0,00357(10)	0,00305(9)
P43 0.01634(13) 0.01888(12) 0.002143(12) 0.00037(79) 0.00221(9) 0.00199 K1 0.0134(10) 0.01173(12) 0.01188(8) 0.00221(9) 0.00199 K1 0.0348(10) 0.0404(10) 0.0313(8) 0.0089(7) 0.0082(7) 0.0035(7) K2 0.0479(13) 0.0600(13) 0.0510(11) 0.0316(10) 0.0110(10) 0.0238(10) K3 0.0340(9) 0.0249(8) 0.0388(9) 0.0076(6) 0.0075(7) 0.0059(1) K4 0.0436(12) 0.0436(11) 0.04029(11) 0.0202(1) 0.0120(10) 0.0212(1) K6 0.0401(12) 0.0356(10) 0.0421(8) 0.0022(7) -0.0016(8) 0.0072(8) K1 0.023(3) 0.042(3) 0.031(3) 0.009(2) 0.001(2) 0.0002(2) 0.0022(2) 0.0023(8) 0.0012(2) -0.002(2) 0.009(2) 0.001(2) 0.009(2) 0.001(2) 0.009(2) 0.001(2) 0.009(2) 0.001(2) 0.009(2) 0.001(2) 0.0004(3) 0.009(2) 0.001(2)	Pt2	0,01804(13)	0,01669(12)	0,02072(12)	0,00462(8)	0,00353(9)	0,00331(9)
Pi4 0.01635(13) 0.01703(12) 0.01921(12) 0.00188(8) 0.0027(19) 0.00199(K1 0.0348(10) 0.0404(10) 0.0318(8) 0.0088(7) 0.0082(7) 0.0133(8) K2 0.0479(13) 0.0600(13) 0.0510(11) 0.00316(10) 0.0210(10) 0.0233(1) K3 0.0436(12) 0.0430(11) 0.0404(10) 0.0051(8) 0.0150(1) 0.0165(1) K4 0.0436(12) 0.0560(13) 0.0668(14) 0.0292(11) 0.0238(10) 0.0216(1) K6 0.0441(12) 0.0550(13) 0.0648(14) 0.0238(10) 0.037(2) K1 0.0370(10) 0.0321(8) 0.0055(6) 0.0034(7) 0.0037(2) C11 0.023(3) 0.022(3) 0.012(2) 0.0074(19) 0.0042(2) 0.0042(2) C12 0.037(3) 0.042(3) 0.038(3) 0.009(2) 0.001(2) 0.0062(2) C14 0.033(3) 0.024(3) 0.0042(3) 0.001(2) 0.0022(2) 0.0022(2) 0.0022(2) 0.0002(2) 0.0002(2) </td <td>Pt3</td> <td>0,01634(13)</td> <td>0,01888(12)</td> <td>0,02143(12)</td> <td>0,00517(9)</td> <td>0,00201(9)</td> <td>0,00149(9)</td>	Pt3	0,01634(13)	0,01888(12)	0,02143(12)	0,00517(9)	0,00201(9)	0,00149(9)
K1 0.0348(10) 0.0404(10) 0.0313(8) 0.0089(7) 0.0082(7) 0.0133(8 K2 0.0479(13) 0.0500(11) 0.0316(10) 0.0210(10) 0.0238(1) K3 0.0340(9) 0.0249(8) 0.0388(9) 0.0076(6) 0.015(10) 0.0055(1) K4 0.0445(12) 0.0366(10) 0.0432(11) -0.009(8) 0.0150(10) 0.0125(1) K5 0.0646(15) 0.0356(10) 0.0432(11) 0.0209(7) 0.0238(10) 0.021(8) K6 0.0438(11) 0.0357(10) 0.0432(1) 0.0026(7) -0.0016(8) 0.0072(1) K8 0.023(3) 0.0022(2) 0.022(3) 0.0012(2) -0.002(2) 0.0062(2) V11 0.023(3) 0.022(3) 0.031(3) 0.009(2) 0.011(3) 0.0004(2) 0.13 0.022(3) 0.024(3) 0.0062(7) 0.0022(7) 0.0022(7) 0.14 0.033(3) 0.024(3) 0.0062(7) 0.0002(2) 0.0012(2) 0.0002(2) 0.14 0.033(3) 0.024(3) </td <td>Pt4</td> <td>0,01635(13)</td> <td>0,01703(12)</td> <td>0,01921(12)</td> <td>0,00188(8)</td> <td>0,00271(9)</td> <td>0,00199(9)</td>	Pt4	0,01635(13)	0,01703(12)	0,01921(12)	0,00188(8)	0,00271(9)	0,00199(9)
K2 0,0479(13) 0,0600(13) 0,0510(11) 0,0316(10) 0,0210(10) 0,0238(1) K3 0,0340(9) 0,0249(8) 0,0388(9) 0,0076(6) 0,0075(7) 0,0059(7) K4 0,0445(12) 0,0430(11) 0,0444(10) 0,0051(8) 0,015(9) 0,0056(1) K5 0,0646(15) 0,0356(11) 0,0439(11) 0,0038(8) 0,0146(10) 0,02216(1) K6 0,0437(15) 0,0429(11) 0,0439(11) 0,0036(8) 0,0146(10) 0,0225(1) K8 0,0338(11) 0,037(10) 0,0232(8) 0,0035(7) 0,0031(7) 0,0037(7) C11 0,024(9) 0,0215(8) 0,0232(8) 0,001(2) 0,004(2) 0,004(2) O11 0,023(3) 0,024(3) 0,012(2) 0,001(2) 0,0007(2) 0,0007(2) C11 0,033(3) 0,024(3) 0,012(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2)	K1	0,0348(10)	0,0404(10)	0,0313(8)	0,0089(7)	0,0082(7)	0,0133(8)
K3 0,0340(9) 0,0249(8) 0,0388(9) 0,0076(6) 0,0075(7) 0,0059(7) K4 0,0436(12) 0,0430(11) 0,0404(10) 0,0051(8) 0,0159(1) 0,0065(7) K5 0,0646(15) 0,0356(13) 0,0668(14) 0,0238(10) 0,0216(1) K6 0,0637(15) 0,0429(11) 0,0439(11) 0,0080(8) 0,0146(10) 0,0235(1) K8 0,0338(11) 0,0321(8) 0,0026(7) -0,0016(8) 0,0072(8) S1 0,0249(9) 0,0215(8) 0,0323(8) 0,0055(6) 0,0034(7) 0,006(2) O11 0,023(3) 0,022(2) 0,029(3) 0,001(2) -0,002(2) 0,006(2) O13 0,023(3) 0,024(3) 0,031(3) 0,009(2) 0,001(2) 0,0027(2) O21 0,025(3) 0,031(3) 0,042(3) 0,012(2) 0,002(2) 0,002(2) O22 0,022(3) 0,031(3) 0,044(3) 0,012(3) 0,0063(3) 0,011(3) C21 0,025(3) 0,014(3) <td< td=""><td>K2</td><td>0,0479(13)</td><td>0,0600(13)</td><td>0,0510(11)</td><td>0,0316(10)</td><td>0,0210(10)</td><td>0,0238(10)</td></td<>	K2	0,0479(13)	0,0600(13)	0,0510(11)	0,0316(10)	0,0210(10)	0,0238(10)
K4 0,0436(12) 0,0430(11) 0,0404(10) 0,0051(8) 0,0159(9) 0,0065(3) K5 0,0646(15) 0,0356(10) 0,0432(11) -0,0009(8) 0,0159(10) 0,0105(1) K6 0,0401(12) 0,0560(13) 0,0668(14) 0,0299(11) 0,0238(10) 0,0216(1) K7 0,037(15) 0,0429(11) 0,00490(1) 0,0029(7) -0,001(6) 0,0077(2) S1 0,0249(9) 0,0215(8) 0,0232(3) 0,001(2) -0,002(2) 0,004(2) O11 0,023(3) 0,024(3) 0,031(3) 0,009(2) 0,011(3) 0,004(2) O13 0,023(3) 0,024(3) 0,038(3) 0,009(2) 0,011(7) 0,0027(7) O14 0,033(3) 0,024(3) 0,042(3) 0,0012(2) 0,000(2) 0,000(2) O12 0,025(3) 0,041(3) 0,043(3) 0,012(2) 0,0002(2) 0,000(2) 0,006(3) O14 0,025(3) 0,041(3) 0,012(2) 0,001(2) 0,0006(3) 0,001(3)	K3	0,0340(9)	0,0249(8)	0,0388(9)	0,0076(6)	0,0075(7)	0,0059(7)
K5 0,0646(15) 0,0366(10) 0,0432(11) -0,0009(8) 0,0150(10) 0,015(1) K6 0,0401(12) 0,0550(13) 0,0668(14) 0,0299(11) 0,0238(10) 0,0216(1) K7 0,0637(15) 0,0429(11) 0,0332(18) 0,0026(7) -0,0016(8) 0,0072(8) S1 0,0249(9) 0,0215(8) 0,0232(8) 0,001(2) -0,002(2) 0,0037(7) O11 0,023(3) 0,022(2) 0,023(3) 0,001(2) -0,002(2) 0,004(2) O12 0,037(3) 0,042(3) 0,031(3) 0,009(2) 0,011(3) 0,004(2) O13 0,023(3) 0,024(3) 0,003(3) 0,009(2) 0,001(2) 0,009(2) S2 0,013(3) 0,024(3) 0,012(2) 0,001(2) 0,009(2) O12 0,025(3) 0,014(3) 0,044(3) 0,011(2) 0,001(2) 0,005(7) O12 0,025(3) 0,014(3) 0,024(3) 0,012(2) 0,000(3) 0,003(3) 0,001(1) 0,006(3) 0,011(2) <t< td=""><td>K4</td><td>0,0436(12)</td><td>0,0430(11)</td><td>0,0404(10)</td><td>0,0051(8)</td><td>0,0105(9)</td><td>0,0065(9)</td></t<>	K4	0,0436(12)	0,0430(11)	0,0404(10)	0,0051(8)	0,0105(9)	0,0065(9)
K6 0.0401(12) 0.0560(13) 0.0668(14) 0.0239(11) 0.0238(10) 0.0216(1) K7 0.0637(15) 0.0429(11) 0.0439(11) 0.0080(8) 0.0146(10) 0.0226(1) K8 0.0388(11) 0.0370(10) 0.0521(8) 0.0026(7) -0.0016(8) 0.0072(8) S1 0.0249(9) 0.0215(8) 0.0232(8) 0.0055(6) 0.0034(7) 0.0037(7) O11 0.023(3) 0.022(2) 0.029(3) 0.001(2) 0.004(2) 0.004(2) O13 0.023(3) 0.024(3) 0.038(3) 0.009(2) 0.001(2) 0.002(2) S2 0.0197(9) 0.0254(9) 0.0281(8) 0.0063(7) -0.0014(7) 0.002(2) O21 0.025(3) 0.031(3) 0.041(3) 0.013(2) -0.002(2) 0.002(2) O22 0.022(3) 0.031(3) 0.041(3) 0.013(2) -0.002(2) 0.005(2) O23 0.022(3) 0.041(4) 0.034(3) 0.002(2) 0.002(2) 0.002(2) 0.005(7) 0.0035(3)	K5	0,0646(15)	0,0366(10)	0,0432(11)	-0,0009(8)	0,0150(10)	0,0105(10)
K7 0.0637(15) 0.0429(11) 0.0439(11) 0.0080(8) 0.0146(10) 0.0265(1) K8 0.0388(11) 0.0370(10) 0.0321(8) 0.0026(7) -0.0016(8) 0.0072(6) S1 0.0249(9) 0.0215(8) 0.0232(8) 0.0055(6) 0.0034(7) 0.0037(7) O11 0.023(3) 0.022(2) 0.029(3) 0.001(2) -0.002(2) 0.004(2) O13 0.023(3) 0.026(3) 0.024(2) 0.0077(19) 0.004(2) 0.004(2) O14 0.033(3) 0.024(3) 0.038(3) 0.009(2) 0.001(2) 0.0002(2) S2 0.0197(9) 0.0254(9) 0.0281(8) 0.0063(7) -0.0014(7) 0.0027(7) O21 0.025(3) 0.041(3) 0.058(4) 0.012(3) 0.006(3) 0.0016(2) O224 0.025(3) 0.041(3) 0.058(4) 0.012(3) 0.006(3) 0.0013(3) O113 0.0198(8) 0.0292(8) 0.0021(6) 0.0057(7) 0.0033(3) O33 0.016(2) 0	K6	0,0401(12)	0,0560(13)	0,0668(14)	0,0299(11)	0,0238(10)	0,0216(10)
K8 $0.0388(11)$ $0.0370(10)$ $0.0321(8)$ $0.0026(7)$ $-0.0016(8)$ $0.0072(6)$ S1 $0.0249(9)$ $0.0215(8)$ $0.0232(8)$ $0.0055(6)$ $0.0034(7)$ $0.0037(7)$ O11 $0.023(3)$ $0.022(2)$ $0.029(3)$ $0.001(2)$ $-0.002(2)$ $0.006(2)$ O13 $0.023(3)$ $0.026(3)$ $0.024(2)$ $0.007(19)$ $0.004(2)$ $0.004(2)$ O14 $0.033(3)$ $0.024(3)$ $0.005(7)$ $-0.0014(7)$ $0.0027(7)$ S2 $0.0197(9)$ $0.0254(9)$ $0.0281(8)$ $0.0063(7)$ $-0.0014(7)$ $0.0027(7)$ O21 $0.025(3)$ $0.034(3)$ $0.042(3)$ $0.012(2)$ $0.002(2)$ $0.002(2)$ O22 $0.025(3)$ $0.031(3)$ $0.012(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$ $0.002(2)$	K7	0,0637(15)	0,0429(11)	0,0439(11)	0,0080(8)	0,0146(10)	0,0265(10)
S1 $0.0249(9)$ $0.0215(8)$ $0.0232(8)$ $0.0055(6)$ $0.0034(7)$ $0.0037(7)$ O11 $0.023(3)$ $0.022(2)$ $0.029(3)$ $0.001(2)$ $-0.002(2)$ $0.006(2)$ O12 $0.037(3)$ $0.042(3)$ $0.031(3)$ $0.009(2)$ $0.011(3)$ $0.004(2)$ O14 $0.033(3)$ $0.024(3)$ $0.038(3)$ $0.009(2)$ $0.001(2)$ $0.0007(2)$ O21 $0.025(3)$ $0.034(3)$ $0.042(3)$ $0.001(2)$ $-0.002(2)$ $0.000(2)$ O22 $0.022(3)$ $0.031(3)$ $0.044(3)$ $0.012(3)$ $0.006(3)$ $0.000(2)$ O22 $0.022(3)$ $0.031(3)$ $0.044(3)$ $0.012(3)$ $0.000(2)$ $0.005(3)$ O23 $0.025(3)$ $0.041(3)$ $0.058(4)$ $0.012(3)$ $0.000(3)$ $0.001(3)$ O33 $0.017(3)$ $0.040(4)$ $0.033(3)$ $0.0023(3)$ $0.0002(3)$ $0.0002(3)$ $0.0002(3)$ $0.0005(7)$ O31 $0.016(2)$ $0.003(3)$ 0.0	K8	0,0388(11)	0,0370(10)	0,0321(8)	0,0026(7)	-0,0016(8)	0,0072(8)
011 0,023(3) 0,022(2) 0,029(3) 0,001(2) -0,002(2) 0,006(2) 012 0,037(3) 0,042(3) 0,031(3) 0,009(2) 0,011(3) 0,004(2) 013 0,023(3) 0,024(3) 0,038(3) 0,009(2) 0,001(2) 0,009(2) 021 0,025(3) 0,034(3) 0,042(3) 0,012(2) -0,002(2) 0,000(2) 021 0,025(3) 0,041(3) 0,012(2) -0,002(2) 0,000(2) 022 0,025(3) 0,041(3) 0,018(4) 0,013(2) -0,002(2) 0,006(3) 024 0,057(4) 0,040(4) 0,034(3) 0,0023(3) 0,008(3) 0,011(3) S3 0,0173(8) 0,0198(8) 0,0292(8) 0,0054(6) 0,0057(7) 0,0033(3) 031 0,016(2) 0,029(3) 0,031(3) 0,011(2) 0,010(2) 0,006(2) 032 0,029(3) 0,031(3) 0,031(3) 0,001(2) 0,006(1) 0,009(2) 034 0,020(3) 0,022(2) 0,002(S1	0,0249(9)	0,0215(8)	0,0232(8)	0,0055(6)	0,0034(7)	0,0037(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011	0,023(3)	0,022(2)	0,029(3)	0,001(2)	-0,002(2)	0,006(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	012	0,037(3)	0,042(3)	0,031(3)	0,009(2)	0,011(3)	0,004(3)
O14 0.033(3) 0.024(3) 0.038(3) 0.009(2) 0.001(2) 0.001(2) S2 0,0197(9) 0.0254(9) 0,0281(8) 0.0063(7) -0.0014(7) 0.0027(7) O21 0.025(3) 0,034(3) 0,042(3) 0,012(2) -0.002(2) 0,000(2) O22 0.022(3) 0,031(3) 0,044(3) 0,013(2) -0.002(2) 0,005(2) O23 0,025(3) 0,041(3) 0,058(4) 0,012(3) 0,006(3) 0,006(3) O24 0,057(4) 0,040(4) 0,034(3) 0,002(3) 0,008(3) 0,011(3) S3 0,0173(8) 0,0198(8) 0,0292(8) 0,0054(6) 0,0057(7) 0,0033(3) O31 0,016(2) 0,029(3) 0,035(3) 0,011(2) 0,006(2) 0,009(2) O33 0,030(3) 0,031(3) 0,031(3) 0,001(2) 0,006(1) S4 0,020(3) 0,022(2) 0,022(8) 0,0021(6) 0,0065(7) 0,0006(1) S4 0,020(3) 0,024(3) 0,	013	0,023(3)	0,026(3)	0,024(2)	0,0074(19)	0,004(2)	0,004(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	014	0,033(3)	0,024(3)	0,038(3)	0,009(2)	0,001(2)	0,009(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S2	0.0197(9)	0.0254(9)	0,0281(8)	0,0063(7)	-0,0014(7)	0,0027(7)
O22 0.022(3) 0.031(3) 0.044(3) 0.012(3) 0.002(2) 0.005(2) O23 0.025(3) 0.041(3) 0.058(4) 0.012(3) 0.006(3) 0.006(3) O24 0.057(4) 0.040(4) 0.034(3) 0.002(3) 0.008(3) 0.011(3) S3 0.0173(8) 0.0198(8) 0.0292(8) 0.0054(6) 0.0057(7) 0.0033(3) O31 0.016(2) 0.029(3) 0.035(3) 0.011(2) 0.014(2) 0.008(2) O32 0.029(3) 0.033(3) 0.031(3) 0.001(2) -0.003(2) 0.009(2) O34 0.020(3) 0.022(2) 0.029(2) 0.0026(19) 0.011(2) 0.0060(1 S4 0.020(3) 0.022(4) 0.0223(8) 0.0021(6) 0.0065(7) 0.0050(7) O41 0.023(3) 0.024(3) 0.025(2) -0.0003(19) 0.011(2) 0.001(2) O42 0.020(3) 0.028(3) 0.019(2) 0.0016(18) 0.0062(19) 0.002(3) O44 0.029(3) <t< td=""><td>O21</td><td>0,025(3)</td><td>0,034(3)</td><td>0,042(3)</td><td>0,012(2)</td><td>-0,002(2)</td><td>0,000(2)</td></t<>	O21	0,025(3)	0,034(3)	0,042(3)	0,012(2)	-0,002(2)	0,000(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	022	0.022(3)	0.031(3)	0.044(3)	0.013(2)	-0.002(2)	0.005(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O23	0.025(3)	0.041(3)	0.058(4)	0.012(3)	0.006(3)	0.006(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	024	0.057(4)	0.040(4)	0.034(3)	0.002(3)	0.008(3)	0.011(3)
O31 O,016(2) O,029(3) O,035(3) O,012(2) O,010(2) O,005(2) O32 0,029(3) 0,033(3) 0,039(3) 0,011(2) 0,014(2) 0,008(2) O33 0,030(3) 0,030(3) 0,031(3) 0,000(2) -0,003(2) 0,009(2) O34 0,020(3) 0,022(2) 0,029(2) 0,0026(19) 0,011(2) 0,0060(1 S4 0,0208(9) 0,024(3) 0,025(2) -0,0003(19) 0,011(2) 0,001(2) O41 0,023(3) 0,028(3) 0,019(2) 0,0016(18) 0,0062(19) 0,004(2) O42 0,020(3) 0,028(3) 0,012(2) 0,011(2) 0,002(3) O44 0,029(3) 0,033(3) 0,035(3) -0,002(2) 0,011(2) 0,002(3) O44 0,029(3) 0,033(3) 0,035(3) -0,002(2) 0,001(2) 0,001(2) S5 0,021(6) 0,0228(8) 0,031(3) 0,002(2) 0,001(2) 0,001(2) O51 0,021(3) 0,021(2) 0,03	S 3	0.0173(8)	0.0198(8)	0,0292(8)	0,0054(6)	0,0057(7)	0,0033(6)
0.32 $0,029(3)$ $0,033(3)$ $0,039(3)$ $0,011(2)$ $0,014(2)$ $0,008(2)$ 0.33 $0,030(3)$ $0,030(3)$ $0,031(3)$ $0,000(2)$ $-0,003(2)$ $0,009(2)$ 0.34 $0,020(3)$ $0,022(2)$ $0,029(2)$ $0,0026(19)$ $0,011(2)$ $0,0060(1)$ 84 $0,0208(9)$ $0,0224(9)$ $0,0223(8)$ $0,0021(6)$ $0,0065(7)$ $0,0050(7)$ 041 $0,023(3)$ $0,024(3)$ $0,025(2)$ $-0,0003(19)$ $0,011(2)$ $0,001(2)$ 042 $0,020(3)$ $0,028(3)$ $0,019(2)$ $0,0016(18)$ $0,0062(19)$ $0,004(2)$ 044 $0,029(3)$ $0,033(3)$ $0,028(3)$ $0,002(2)$ $0,017(2)$ $0,002(3)$ 044 $0,029(3)$ $0,033(3)$ $0,035(3)$ $-0,002(2)$ $0,001(2)$ $0,006(2)$ 85 $0,0216(9)$ $0,0228(8)$ $0,0301(9)$ $0,0065(7)$ $0,0042(7)$ $0,0058(7)$ 051 $0,021(3)$ $0,029(3)$ $0,031(3)$ $0,008(2)$ $0,004(2)$ $0,011(2)$ 052 $0,023(3)$ $0,021(2)$ $0,034(3)$ $0,008(2)$ $0,004(2)$ $0,001(2)$ 053 $0,032(3)$ $0,027(3)$ $0,045(3)$ $0,003(6)$ $0,000(2)$ $0,006(2)$ 054 $0,031(3)$ $0,027(3)$ $0,045(3)$ $0,003(6)$ $0,0050(7)$ $0,0055(7)$ 064 $0,034(3)$ $0,027(3)$ $0,022(2)$ $0,001(2)$ $0,006(2)$ $0,006(2)$ 063 $0,042(4)$ $0,038(3)$ $0,022(2)$ $0,0012(1)$ </td <td>O31</td> <td>0.016(2)</td> <td>0.029(3)</td> <td>0.035(3)</td> <td>0.012(2)</td> <td>0.010(2)</td> <td>0.005(2)</td>	O31	0.016(2)	0.029(3)	0.035(3)	0.012(2)	0.010(2)	0.005(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	032	0.029(3)	0.033(3)	0.039(3)	0.011(2)	0.014(2)	0.008(2)
Old Openation Openation Openation Openation Openation 034 0,020(3) 0,022(2) 0,029(2) 0,0026(19) 0,011(2) 0,0060(1 S4 0,0208(9) 0,0224(9) 0,0223(8) 0,0021(6) 0,0065(7) 0,0050(7) O41 0,023(3) 0,024(3) 0,025(2) -0,0003(19) 0,011(2) 0,001(2) O42 0,020(3) 0,028(3) 0,019(2) 0,0016(18) 0,0062(19) 0,0042(2) O43 0,037(3) 0,041(3) 0,028(3) 0,002(2) 0,017(2) 0,002(3) O44 0,029(3) 0,033(3) 0,035(3) -0,002(2) 0,001(2) 0,016(2) S5 0,021(3) 0,029(3) 0,031(3) 0,008(2) 0,004(2) 0,011(2) O51 0,021(3) 0,029(3) 0,031(3) 0,008(2) 0,000(2) 0,006(2) O53 0,032(3) 0,021(2) 0,033(3) 0,012(2) 0,003(3) 0,011(2) O54 0,031(3) 0,0259(9)	033	0.030(3)	0.030(3)	0.031(3)	0.000(2)	-0.003(2)	0.009(2)
S4 $0,0208(9)$ $0,0264(9)$ $0,0223(8)$ $0,0021(6)$ $0,0065(7)$ $0,0050(7)$ O41 $0,023(3)$ $0,024(3)$ $0,025(2)$ $-0,0003(19)$ $0,011(2)$ $0,001(2)$ O42 $0,020(3)$ $0,028(3)$ $0,019(2)$ $0,0016(18)$ $0,0062(19)$ $0,004(2)$ O43 $0,037(3)$ $0,041(3)$ $0,028(3)$ $0,002(2)$ $0,017(2)$ $0,002(3)$ O44 $0,029(3)$ $0,033(3)$ $0,035(3)$ $-0,002(2)$ $0,001(2)$ $0,016(2)$ S5 $0,0216(9)$ $0,0228(8)$ $0,0301(9)$ $0,0065(7)$ $0,0042(7)$ $0,0058(7)$ O51 $0,021(3)$ $0,029(3)$ $0,031(3)$ $0,008(2)$ $0,004(2)$ $0,011(2)$ O52 $0,023(3)$ $0,021(2)$ $0,034(3)$ $0,008(2)$ $0,000(2)$ $0,006(2)$ O53 $0,032(3)$ $0,027(3)$ $0,045(3)$ $0,012(2)$ $0,007(3)$ $0,007(2)$ O54 $0,031(3)$ $0,027(3)$ $0,045(3)$ $0,012(2)$ $0,003(3)$ $0,011(2)$ S6 $0,0283(10)$ $0,0259(9)$ $0,0237(8)$ $0,0030(6)$ $0,0050(7)$ $0,0055(7)$ O61 $0,030(3)$ $0,023(3)$ $0,022(2)$ $0,0012(19)$ $0,002(2)$ $0,009(2)$ O62 $0,032(3)$ $0,029(3)$ $0,019(2)$ $0,002(2)$ $0,009(2)$ O63 $0,042(4)$ $0,038(3)$ $0,026(3)$ $0,000(2)$ $-0,008(3)$ $0,003(3)$ O64 $0,034(3)$ $0,044(4)$ $0,042(3)$ $0,012(3)$ $0,002(2)$ $0,003(2)$	034	0.020(3)	0.022(2)	0.029(2)	0.0026(19)	0.011(2)	0.0060(19)
April (c) April (c) <t< td=""><td>S4</td><td>0.0208(9)</td><td>0.0264(9)</td><td>0.0223(8)</td><td>0.0021(6)</td><td>0.0065(7)</td><td>0.0050(7)</td></t<>	S4	0.0208(9)	0.0264(9)	0.0223(8)	0.0021(6)	0.0065(7)	0.0050(7)
Oth Oth (c) Oth (c) <thoth (c)<="" th=""> <thoth (c)<="" th=""> <thoth (<="" td=""><td>041</td><td>0.023(3)</td><td>0.024(3)</td><td>0.025(2)</td><td>-0.0003(19)</td><td>0.011(2)</td><td>0.001(2)</td></thoth></thoth></thoth>	041	0.023(3)	0.024(3)	0.025(2)	-0.0003(19)	0.011(2)	0.001(2)
O12 O,226(2) O,226(2) O,026(2) O,017(2) O,001(2) O,017(2) O,001(2) O43 0,037(3) 0,041(3) 0,028(3) 0,002(2) 0,017(2) 0,002(3) O44 0,029(3) 0,033(3) 0,035(3) -0,002(2) 0,001(2) 0,016(2) S5 0,021(6) 0,0228(8) 0,0301(9) 0,0065(7) 0,004(2) 0,011(2) O51 0,021(3) 0,029(3) 0,031(3) 0,008(2) 0,004(2) 0,011(2) O52 0,023(3) 0,021(2) 0,034(3) 0,008(2) 0,000(2) 0,006(2) O53 0,032(3) 0,027(3) 0,045(3) 0,012(2) 0,003(3) 0,011(2) O54 0,031(3) 0,027(3) 0,045(3) 0,012(2) 0,005(7) 0,0055(7) O61 0,030(3) 0,023(3) 0,022(2) 0,0012(19) 0,000(2) 0,006(2) O62 0,032(3) 0,029(3) 0,012(2) 0,001(2) 0,009(2) O63 0,042(4) 0,038(3) </td <td>042</td> <td>0.020(3)</td> <td>0.028(3)</td> <td>0.019(2)</td> <td>0.0016(18)</td> <td>0.0062(19)</td> <td>0.004(2)</td>	042	0.020(3)	0.028(3)	0.019(2)	0.0016(18)	0.0062(19)	0.004(2)
0.13 0,01(0) 0,01(0) 0,01(0) 0,01(0) 0,01(0) 0,01(0) 0,01(0) 044 0,029(3) 0,033(3) 0,035(3) -0,002(2) 0,001(2) 0,016(2) S5 0,021(6) 0,0228(8) 0,0301(9) 0,0065(7) 0,0042(7) 0,0058(7) 051 0,021(3) 0,029(3) 0,031(3) 0,008(2) 0,004(2) 0,011(2) 052 0,023(3) 0,021(2) 0,034(3) 0,008(2) 0,004(2) 0,011(2) 053 0,032(3) 0,031(3) 0,007(3) 0,007(2) 0,006(2) 054 0,031(3) 0,027(3) 0,045(3) 0,012(2) 0,003(3) 0,011(2) S6 0,0283(10) 0,0259(9) 0,0237(8) 0,0030(6) 0,0050(7) 0,0055(7) 061 0,030(3) 0,022(3) 0,012(2) 0,001(2) 0,006(2) 0,006(2) 062 0,032(3) 0,022(3) 0,012(1) 0,000(2) 0,006(2) 0,003(3) 064 0,034(3) 0,044(4) <td>043</td> <td>0.037(3)</td> <td>0.041(3)</td> <td>0.028(3)</td> <td>0.002(2)</td> <td>0.017(2)</td> <td>0.002(3)</td>	043	0.037(3)	0.041(3)	0.028(3)	0.002(2)	0.017(2)	0.002(3)
State State <th< td=""><td>044</td><td>0,029(3)</td><td>0.033(3)</td><td>0.035(3)</td><td>-0.002(2)</td><td>0.001(2)</td><td>0.016(2)</td></th<>	044	0,029(3)	0.033(3)	0.035(3)	-0.002(2)	0.001(2)	0.016(2)
0510,021(3)0,029(3)0,031(3)0,008(2)0,004(2)0,011(2)0520,023(3)0,021(2)0,034(3)0,008(2)0,000(2)0,006(2)0530,032(3)0,033(3)0,037(3)-0,003(2)0,007(3)0,007(2)0540,031(3)0,027(3)0,045(3)0,012(2)0,003(3)0,011(2)0540,031(3)0,027(3)0,045(3)0,012(2)0,003(3)0,011(2)0540,031(3)0,027(3)0,045(3)0,012(2)0,003(3)0,011(2)0610,030(3)0,023(3)0,022(2)0,0012(19)0,000(2)0,005(7)0620,032(3)0,029(3)0,019(2)0,002(6(19)0,002(2)0,009(2)0630,042(4)0,038(3)0,026(3)0,000(2)-0,008(3)0,003(3)0640,034(3)0,044(4)0,042(3)0,012(3)0,020(3)0,011(3)870,0258(9)0,0306(9)0,0213(8)0,0040(7)0,0029(7)0,0051(7)0710,024(3)0,030(3)0,018(2)0,0045(19)0,006(2)0,003(2)0720,028(3)0,026(3)0,021(2)0,0001(19)0,001(2)0,001(2)0730,042(4)0,042(3)0,022(3)-0,001(2)0,006(2)0,007(3)	S5	0.0216(9)	0.0228(8)	0.0301(9)	0.0065(7)	0.0042(7)	0.0058(7)
0,21(2) 0,21(2) 0,01(2) 0,001(2) 0,001(2) 0,011(2) 052 0,023(3) 0,021(2) 0,034(3) 0,008(2) 0,000(2) 0,006(2) 053 0,032(3) 0,033(3) 0,037(3) -0,003(2) 0,007(3) 0,007(2) 054 0,031(3) 0,027(3) 0,045(3) 0,012(2) 0,003(3) 0,011(2) 86 0,0283(10) 0,0259(9) 0,0237(8) 0,0030(6) 0,0050(7) 0,0055(7) 061 0,030(3) 0,023(3) 0,022(2) 0,0012(19) 0,000(2) 0,006(2) 062 0,032(3) 0,029(3) 0,019(2) 0,0026(19) 0,002(2) 0,009(2) 063 0,042(4) 0,038(3) 0,026(3) 0,000(2) -0,008(3) 0,003(3) 064 0,034(3) 0,044(4) 0,042(3) 0,012(3) 0,020(3) 0,011(3) 87 0,0258(9) 0,0306(9) 0,0213(8) 0,0040(7) 0,0029(7) 0,0051(7) 071 0,024(3) 0,026(3) <	051	0.021(3)	0.029(3)	0.031(3)	0.008(2)	0.004(2)	0.011(2)
OS2 0,025(2) 0,021(2) 0,031(2) 0,031(2) 0,005(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,005(2) 0,000(2) 0,006(2) 0,006(2) 0,006(2) 0,005(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,0055(7) 0,005(2) 0,006(2) 0,006(2) 0,006(2) 0,006(2) 0,006(2) 0,006(2) 0,006(2) 0,006(2) 0,003(3) 0,011(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) 0,001(2) </td <td>052</td> <td>0.023(3)</td> <td>0.021(2)</td> <td>0.034(3)</td> <td>0.008(2)</td> <td>0.000(2)</td> <td>0.006(2)</td>	052	0.023(3)	0.021(2)	0.034(3)	0.008(2)	0.000(2)	0.006(2)
OSS 0,051(2) 0,051(2) 0,051(2) 0,051(2) 0,001(2) 0,001(2) 0,001(2) O54 0,031(3) 0,027(3) 0,045(3) 0,012(2) 0,003(3) 0,011(2) S6 0,0283(10) 0,0259(9) 0,0237(8) 0,0030(6) 0,0050(7) 0,0055(7) O61 0,030(3) 0,023(3) 0,022(2) 0,0012(19) 0,000(2) 0,006(2) O62 0,032(3) 0,029(3) 0,019(2) 0,0026(19) 0,002(2) 0,009(2) O63 0,042(4) 0,038(3) 0,026(3) 0,000(2) -0,008(3) 0,003(3) O64 0,034(3) 0,044(4) 0,042(3) 0,012(3) 0,020(3) 0,011(3) S7 0,0258(9) 0,0306(9) 0,0213(8) 0,0040(7) 0,0029(7) 0,0051(7) O71 0,024(3) 0,030(3) 0,018(2) 0,0045(19) 0,006(2) 0,003(2) O72 0,028(3) 0,026(3) 0,021(2) 0,0001(19) 0,001(2) 0,001(2) O73	053	0.032(3)	0.033(3)	0.037(3)	-0.003(2)	0.007(3)	0,000(2)
S6 0,021(5) 0,021(5) 0,045(5) 0,012(2) 0,005(5) 0,011(2) S6 0,0283(10) 0,0259(9) 0,0237(8) 0,0030(6) 0,0050(7) 0,0055(7) O61 0,030(3) 0,023(3) 0,022(2) 0,0012(19) 0,000(2) 0,006(2) O62 0,032(3) 0,029(3) 0,019(2) 0,0026(19) 0,002(2) 0,009(2) O63 0,042(4) 0,038(3) 0,026(3) 0,000(2) -0,008(3) 0,003(3) O64 0,034(3) 0,044(4) 0,042(3) 0,012(3) 0,020(3) 0,011(3) S7 0,0258(9) 0,0306(9) 0,0213(8) 0,0040(7) 0,0029(7) 0,0051(7) O71 0,024(3) 0,030(3) 0,018(2) 0,0045(19) 0,006(2) 0,003(2) O72 0,028(3) 0,026(3) 0,021(2) 0,0001(19) 0,001(2) 0,001(2) O73 0,042(4) 0,042(3) 0,022(3) -0,001(2) 0,006(2) 0,007(3)	054	0.031(3)	0.027(3)	0.045(3)	0.012(2)	0.003(3)	0,007(2)
0.1 0.022(0) 0.022(0) 0.022(0) 0.000(0) <th0< td=""><td>S6</td><td>0.0283(10)</td><td>0.0259(9)</td><td>0.0237(8)</td><td>0.0030(6)</td><td>0.0050(7)</td><td>0.0055(7)</td></th0<>	S6	0.0283(10)	0.0259(9)	0.0237(8)	0.0030(6)	0.0050(7)	0.0055(7)
0,000(2) 0,000(2) 0,000(2) 0,000(2) 0,000(2) 062 0,032(3) 0,029(3) 0,019(2) 0,0026(19) 0,002(2) 0,009(2) 063 0,042(4) 0,038(3) 0,026(3) 0,000(2) -0,008(3) 0,003(3) 064 0,034(3) 0,044(4) 0,042(3) 0,012(3) 0,020(3) 0,010(3) S7 0,0258(9) 0,0306(9) 0,0213(8) 0,0040(7) 0,0029(7) 0,0051(7) 071 0,024(3) 0,030(3) 0,018(2) 0,0045(19) 0,006(2) 0,003(2) 072 0,028(3) 0,026(3) 0,021(2) 0,0001(19) 0,001(2) 0,001(2) 073 0,042(4) 0,042(3) 0,022(3) -0,001(2) 0,006(2) 0,007(3)	061	0.030(3)	0.023(3)	0.022(2)	0.0012(19)	0.000(2)	0.006(2)
OC2 0,022(3) 0,025(3) 0,012(2) 0,002(17) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,002(2) 0,003(3) 0,003(3) 0,003(3) 0,003(3) 0,001(3) 0,002(3) 0,001(3) 0,010(3) 0,010(3) 0,010(3) 0,010(3) 0,010(3) 0,0051(7) 0,0029(7) 0,0051(7	062	0.032(3)	0.029(3)	0.019(2)	0.0026(19)	0.002(2)	0.009(2)
Oct 0,012(1) 0,050(2) 0,000(2) 0,000(2) 0,000(3) 0,000(3) O64 0,034(3) 0,044(4) 0,042(3) 0,012(3) 0,020(3) 0,010(3) S7 0,0258(9) 0,0306(9) 0,0213(8) 0,0040(7) 0,0029(7) 0,0051(7) O71 0,024(3) 0,030(3) 0,018(2) 0,0045(19) 0,006(2) 0,003(2) O72 0,028(3) 0,026(3) 0,021(2) 0,0001(19) 0,001(2) 0,001(2) O73 0,042(4) 0,042(3) 0,022(3) -0,001(2) 0,006(2) 0,007(3)	063	0.042(4)	0.038(3)	0.026(3)	0.000(2)	-0.008(3)	0.003(3)
S7 0,0258(9) 0,0306(9) 0,0213(8) 0,0040(7) 0,0029(7) 0,0051(7) O71 0,024(3) 0,030(3) 0,018(2) 0,0045(19) 0,006(2) 0,003(2) O72 0,028(3) 0,026(3) 0,021(2) 0,0001(19) 0,001(2) 0,001(2) O73 0,042(4) 0,042(3) 0,022(3) -0,001(2) 0,006(2) 0,007(3)	064	0.034(3)	0.044(4)	0.042(3)	0.012(3)	0.020(3)	0,000(3)
O71 0,024(3) 0,030(3) 0,018(2) 0,0045(19) 0,006(2) 0,003(2) O72 0,028(3) 0,026(3) 0,021(2) 0,0001(19) 0,001(2) 0,001(2) O73 0,042(4) 0,042(3) 0,022(3) -0,001(2) 0,006(2) 0,007(3)	S7	0,037(3)	0,077(4)	0.0213(8)	0,012(3)	0,020(3)	0.0051(7)
O72 0,028(3) 0,026(3) 0,010(2) 0,0001(19) 0,001(2) 0,003(2) O73 0,042(4) 0,042(3) 0,022(3) -0,001(2) 0,006(2) 0,003(2)	071	0.024(3)	0.030(3)	0.018(2)	0.0045(10)	0.006(2)	0,0031(7)
OT3 0,022(3) 0,021(2) 0,001(19) 0,001(2) 0,001(2) O73 0,042(4) 0,042(3) 0,022(3) -0,001(2) 0,006(2) 0,007(3)	072	0.027(3)	0.026(3)	0.021(2)	0,00+3(19)	0.001(2)	0.003(2)
0,075 $0,072(7)$ $0,072(5)$ $0,022(5)$ $-0,001(2)$ $0,000(2)$ $0,00/(5)$	073	0.042(4)	0.042(3)	0,021(2)	-0.001(19)	0.006(2)	0.001(2)
074 0.025(2) 0.046(2) 0.022(2) 0.020(2) 0.004(2) 0.000(2)	074	0,042(4)	0,042(3)	0,022(3)	-0,001(2)	0,000(2)	0,007(3)

Tabelle 24: Anisotrope Temperaturfaktoren in der Kristallstruktur von K₄[Pt₂(SO₄)₅]

S 8	0,0202(8)	0,0186(8)	0,0285(8)	0,0054(6)	0,0032(7)	0,0039(6)
O81	0,069(6)	0,080(6)	0,071(5)	-0,018(5)	0,030(5)	0,020(5)
082	0,016(3)	0,023(3)	0,089(5)	0,022(3)	0,002(3)	-0,004(2)
O83	0,027(3)	0,015(2)	0,061(4)	0,020(2)	-0,005(3)	0,002(2)
O84	0,058(5)	0,050(4)	0,063(4)	0,041(4)	-0,020(4)	-0,013(4)
S9	0,0285(10)	0,0271(9)	0,0257(8)	0,0049(7)	0,0113(7)	0,0093(7)
O91	0,042(3)	0,030(3)	0,033(3)	0,010(2)	0,020(3)	0,010(2)
O92	0,050(4)	0,031(3)	0,029(3)	0,011(2)	0,018(3)	0,015(3)
O93	0,059(4)	0,040(3)	0,033(3)	0,006(3)	0,012(3)	0,012(3)
O94	0,033(3)	0,042(4)	0,057(4)	0,016(3)	0,008(3)	0,009(3)
S10	0,0173(8)	0,0235(8)	0,0241(8)	0,0072(6)	0,0023(6)	0,0032(6)
O101	0,012(2)	0,022(2)	0,038(3)	-0,006(2)	0,000(2)	-0,0028(19)
O102	0,042(3)	0,013(2)	0,031(3)	0,0107(19)	0,013(2)	0,007(2)
O103	0,032(3)	0,029(3)	0,046(3)	0,021(2)	0,012(3)	0,016(2)
O104	0,025(3)	0,049(4)	0,025(3)	0,001(2)	-0,005(2)	-0,001(3)
13.5 Tabellen zu Pt₂(SO₄)₂(HSO₄)₂

Zellparameter	a = 868.6(2) pm
r	b = 826.2(1) pm
	c = 921.8(2) pm
	$\beta = 116.32(1)^{\circ}$
Zellvolumen	$592.9(2) \cdot 10^{6} \text{pm}^{3}$
Anzahl der Formeleinheiten	2
Kristallsystem	monoklin
Raumgruppe	$P2_{1}/c$ (Nr,14)
Diffraktometer	Stoe IPDS II
Strahlung	Mo-K _{α} (Graphit Monochrom., $\lambda = 71,07$ pm)
Messtemperatur	170 K
Theta Bereich	$5^\circ < 2\theta < 56^\circ$
Indexbereich	$-11 \le h \le 11$
	$-10 \le k \le 10$
	$-12 \le 1 \le 12$
ω-Bereich; ω-Inkrement; φ-Werte	$0^{\circ} < \omega < 180^{\circ}; 2^{\circ}; \phi = 0^{\circ}, 90^{\circ}$
Anzahl der Bilder	180
Belichtungszeit	5 min
Detektorabstand	100 mm
Datenkorrektur	Polarizations und Lorentz Faktoren
Absorptionskorrektur	numerisch ^[53]
Absorptionskoeffizient µ	24,37 mm ⁻¹
Anzahl gemessener Reflexe	8044
Anzahl symmetrieunabhängiger Reflexe	1427
Anzahl beobachteter Reflexe mit $I_0 > 2\theta(I)$	1296
R_{int} / R_{σ}	0,0924 / 0,0491
Benutzte Programme	SHELXS-97 and
	SHELXL-97 ^[33]
Streufaktoren	Intern. Tables Vol.C ^[54]
Extinktionskoeffizient	0,0043(4)
Goodness of fit	1,050
R_1 ; $wR_2 I_0 > 2\sigma(I)$	0,0306; 0,0712
R ₁ ; wR ₂ (alle Daten)	0,0348; 0,0712

Tabelle 25: Kristallographische und deren Bestimmung zu Pt₂(SO₄)₂(HSO₄)₂

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	O11	200,9(5)	S1	O14	142,7(6)
	O22	201,0(5)		012	147,5(5)
	O21	201,6(5)		O11	151,1(5)
	O13	202,6(5)		O13	151,4(5)
	O12	215,0(4)	S2	O24	140,7(5)
	Pt1 [#]	247,27(6)		022	149,5(6)
				O21	151,0(5)
023	O14	259,7(6)		O23	152,9(6)

Tabelle 26: Atomabstände in der Kristallstruktur von Pt₂(SO₄)₂(HSO₄)₂

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
011	Pt1	O22	89,7(2)	022	Pt1	012	91,09(19)
O11	Pt1	O21	92,1(2)	O21	Pt1	O12	89,5(2)
O22	Pt1	O21	178,2(2)	013	Pt1	O12	94,77(19)
O11	Pt1	013	178,3(2)	011	Pt1	Pt1	89,81(15)
O22	Pt1	013	88,6(2)	O22	Pt1	Pt1	89,84(14)
O21	Pt1	013	89,7(2)	O21	Pt1	Pt1	89,69(14)
O11	Pt1	012	85,5(2)	013	Pt1	Pt1	89,95(13)
O12	Pt1	Pt1	175,21(13)	O24	S2	O22	110,7(3)
O14	S1	012	113,2(3)	O24	S2	O21	112,5(3)
O14	S1	011	109,7(3)	O22	S2	O21	109,7(3)
O12	S1	011	108,3(3)	O24	S2	O23	113,3(4)
O14	S1	013	108,3(3)	O22	S2	O23	107,5(3)
O12	S1	013	108,1(3)	O21	S2	O23	102,8(3)
O11	S1	013	109,2(3)	S2	O21	Pt1	121,1(3)
S1	011	Pt1	120,3(3)	S2	O22	Pt1	121,0(3)
S1	012	Pt1	121,2(3)	O24	S2	O22	110,7(3)
S1	O13	Pt1	120,0(3)	O24	S2	O21	112,5(3)

Atom	x/a	y/b	z/c	U _{eq}
Pt1	0,03890(3)	0,44380(3)	0,13614(3)	0,01224(14)
S 1	0,7860(2)	0,72713(18)	0,0475(2)	0,0132(3)
011	0,1463(8)	0,0779(5)	0,3487(7)	0,0170(11)
012	0,0931(7)	0,3614(5)	0,3752(6)	0,0155(10)
013	0,2202(7)	0,3035(5)	0,1169(6)	0,0152(10)
O14	0,6157(7)	0,7607(6)	0,0252(6)	0,0173(10)
S2	0,2733(2)	0,72157(19)	0,1314(2)	0,0146(3)
O21	0,2141(8)	0,6213(6)	0,2343(6)	0,0175(10)
O22	0,1307(7)	0,7367(5)	0,9641(6)	0,0164(10)
O23	0,4122(8)	0,6152(6)	0,1212(7)	0,0208(11)
O24	0,3333(8)	0,8753(6)	0,1983(7)	0,0237(12)

Tabelle 28: Atomlagen in der Kristallstruktur von Pt₂(SO₄)₂(HSO₄)₂

Tabelle 29: Anisotrope Temperaturfaktoren in der Kristallstruktur von Pt₂(SO₄)₂(HSO₄)₂

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	0,0202(2)	0,00690(17)	0,01403(18)	-0,00012(8)	0,01154(14)	-0,00020(8)
S1	0,0193(9)	0,0085(6)	0,0152(7)	-0,0010(5)	0,0109(7)	-0,0006(6)
O11	0,028(3)	0,009(2)	0,019(3)	-0,0031(17)	0,014(2)	-0,0041(19)
O12	0,027(3)	0,010(2)	0,015(2)	0,0039(16)	0,014(2)	0,0035(19)
O13	0,025(3)	0,008(2)	0,016(2)	-0,0008(17)	0,013(2)	0,0021(18)
014	0,021(3)	0,013(2)	0,022(3)	0,0016(18)	0,013(2)	0,0039(18)
S2	0,0195(9)	0,0107(7)	0,0171(8)	-0,0010(6)	0,0112(7)	-0,0018(6)
O21	0,028(3)	0,011(2)	0,020(2)	-0,0036(18)	0,016(2)	-0,005(2)
O22	0,022(3)	0,009(2)	0,021(3)	0,0014(17)	0,012(2)	-0,0013(18)
O23	0,025(3)	0,016(2)	0,028(3)	0,001(2)	0,017(3)	0,000(2)
O24	0,036(4)	0,009(2)	0,028(3)	-0,0051(19)	0,016(3)	-0,007(2)

13.6 Tabellen zu Pt₃(SO₄)₄

Zellparameter	a = 953,2(5) pm
•	b = 826,4(4) pm
	c = 933,0(5) pm
	$\beta = 115.73(4)^{\circ}$
Zellvolumen	$662,1(6) \cdot 10^{6} \text{pm}^{3}$
Anzahl der Formeleinheiten	2
Kristallsystem	monoklin
Raumgruppe	$P2_{1}/c$ (Nr,14)
Diffraktometer	Stoe IPDS II
Strahlung	Mo-K _{α} (Graphit Monochrom., $\lambda = 71,07 \text{ pm}$)
Messtemperatur	170 K
Theta Bereich	4,72° < 20 < 53,98°
Indexbereich	$-11 \le h \le 12$
	$-10 \le k \le 10$
	$-11 \le 1 \le 11$
ω-Bereich; ω-Inkrement; φ-Werte	$0^{\circ} < \omega < 180^{\circ}; 2^{\circ}; \phi = 0^{\circ}, 90^{\circ}$
Anzahl der Bilder	151
Belichtungszeit	10 min
Detektorabstand	100 mm
Datenkorrektur	Polarizations und Lorentz Faktoren
Absorptionskorrektur	numerisch ^[53]
Absorptionskoeffizient µ	32,34(2) mm ⁻¹
Anzahl gemessener Reflexe	8390
Anzahl symmetrieunabhängiger Reflexe	1438
Anzahl beobachteter Reflexe mit $I_0 > 2\theta(I)$	1044
R_{int} / R_{σ}	0,2434 / 0,1318
Benutzte Programme	SHELXS-97 and
	SHELXL-97 ^[33]
Streufaktoren	Intern. Tables Vol.C ^[54]
Extinktionskoeffizient	0,0026(7)
Goodness of fit	1,039
R_1 ; $wR_2 I_0 > 2\sigma(I)$	0,0719; 0,1518
R_1 ; w R_2 (alle Daten)	0,0989; 0,1622

Tabelle 30: Kristallographische Daten und deren Bestimmung zu Pt₃(SO₄)₄

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	O23	198(2)	S1	013	143,7(18)
Pt1	O21	199(2)	S1	011	148,7(19)
Pt1	O14	201,3(16)	S1	O14	150,4(19)
Pt1	011	203,3(17)	S1	012	151,2(19)
Pt1	O12	212,2(15)			
Pt1	Pt1	247,8(2)			
Pt2	O24	246,6(17)	S2	022	144(2)
Pt2	O24	246,6(17)	S2	O24	147,3(19)
Pt2	O22	250,8(18)	S2	O23	151(2)
Pt2	022	250,8(18)	S2	O21	154,5(18)

Tabelle 31: Atomabstände in der Kristallstruktur von Pt₃(SO₄)₄

Tabelle 32: Winkel in der Kristallstruktur von Pt₃(SO₄)₄

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
O23	Pt1	O21	177,1(7)	O13	S1	011	106,1(12)
O23	Pt1	O14	86,9(7)	O13	S1	O14	111,1(11)
O21	Pt1	O14	90,5(7)	O11	S1	014	109,2(10)
O23	Pt1	011	90,3(7)	013	S1	012	112,3(11)
O21	Pt1	O11	92,2(7)	011	S1	012	109,5(10)
O14	Pt1	011	177,0(7)	014	S1	012	108,6(10)
O23	Pt1	O12	93,0(8)	O22	S2	O24	114,4(11)
O21	Pt1	O12	88,7(7)	O22	S2	O23	108,6(11)
O14	Pt1	O12	96,8(7)	O24	S2	O23	110,2(10)
O11	Pt1	O12	84,5(7)	O22	S2	O21	107,4(10)
O23	Pt1	Pt1	88,8(6)	O24	S2	O21	110,4(11)
O21	Pt1	Pt1	89,8(5)	O23	S2	O21	105,3(10)
O14	Pt1	Pt1	89,7(5)	O24	Pt2	O24	180,000(3)
O11	Pt1	Pt1	89,1(5)	O24	Pt2	O22	88,9(6)
012	Pt1	Pt1	173,3(5)	O24	Pt2	O22	91,1(6)
				O24	Pt2	O22	88,9(6)
				O22	Pt2	O22	180,000(3)

Atom	x/a	y/b	z/c	U_{eq}
Pt1	0,46295(10)	0,05712(12)	0,10149(10)	0,0188(4)
Pt2	0	0	0,5	0,0241(4)
S1	0,6926(7)	0,2265(8)	0,2239(7)	0,0220(12)
011	0,633(2)	0,079(2)	0,2696(19)	0,022(4)
012	0,4147(18)	0,133(3)	0,2929(18)	0,023(4)
013	0,847(2)	0,252(3)	0,348(2)	0,030(4)
O14	0,3038(19)	0,198(2)	0,066(2)	0,024(4)
S2	0,7539(7)	0,2129(8)	0,1026(7)	0,0230(13)
O21	0,3057(19)	0,117(3)	0,0552(18)	0,025(4)
O22	0,803(2)	0,370(2)	0,0742(19)	0,025(4)
O23	0,614(2)	0,234(2)	0,136(2)	0,027(4)
O24	0,876(2)	0,121(3)	0,232(2)	0,029(4)

Tabelle 33: Atomlagen in der Kristallstruktur von Pt₃(SO₄)₄

Tabelle 34: Anisotrope Temperaturfaktoren in der Kristallstruktur von Pt₃(SO₄)₄

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	0,0252(5)	0,0190(6)	0,0135(5)	0,0000(3)	0,0096(3)	-0,0004(3)
Pt2	0,0282(7)	0,0271(8)	0,0160(6)	0,0003(5)	0,0087(5)	0,0040(5)
S1	0,023(3)	0,023(3)	0,020(3)	0,005(2)	0,009(2)	0,000(2)
011	0,039(9)	0,019(10)	0,013(7)	0,004(6)	0,017(7)	-0,004(7)
012	0,024(8)	0,038(11)	0,013(7)	-0,007(7)	0,014(6)	0,002(7)
013	0,022(8)	0,042(12)	0,020(8)	0,018(8)	0,005(7)	0,003(7)
014	0,024(8)	0,026(11)	0,017(8)	0,005(7)	0,005(7)	0,007(7)
S2	0,028(3)	0,024(3)	0,017(3)	-0,002(2)	0,009(2)	-0,004(2)
O21	0,027(8)	0,036(11)	0,009(7)	0,008(7)	0,005(6)	0,008(8)
O22	0,037(9)	0,021(10)	0,017(7)	-0,014(7)	0,013(7)	-0,010(7)
O23	0,035(9)	0,022(10)	0,024(9)	0,007(7)	0,012(8)	0,006(7)
O24	0,028(8)	0,039(11)	0,014(7)	0,003(7)	0,005(6)	0,002(8)

13.7 Tabellen zu Rb[Pt₂(SO₄)₃(HSO₄)]

Zellparameter	a = 923,1(1) pm
	b = 1762,9(3) pm
	c = 843,6(2) pm
Zellvolumen	$1372,9(4) \cdot 10^{6} \text{pm}^{3}$
Anzahl der Formeleinheiten	4
Kristallsystem	orthorhombisch
Raumgruppe	Pnma (Nr. 62)
Diffraktometer	Stoe IPDS II
Strahlung	Mo-K _{α} (Graphit Monochrom., $\lambda = 71,07$ pm)
Messtemperatur	170 K
Theta Bereich	$5^{\circ} < 2\theta < 56^{\circ}$
Indexbereich	$-10 \le h \le 1$
	$-22 \le k \le 23$
	$-11 \le 1 \le 11$
ω-Bereich; $ω$ -Inkrement; $φ$ -Werte	$0^{\circ} < \omega < 180^{\circ}; 2^{\circ}; \phi = 0^{\circ}, 90^{\circ}$
Anzahl der Bilder	180
Belichtungszeit	10 min
Detektorabstand	100 mm
Datenkorrektur	Polarizations und Lorentz Faktoren
Absorptionskorrektur	numerisch ^[53]
Absorptionskoeffizient μ	24,58 mm ⁻¹
Anzahl gemessener Reflexe	10582
Anzahl symmetrieunabhängiger Reflexe	1715
Anzahl beobachteter Reflexe mit $I_0 > 2\theta(I)$	1110
R_{int} / R_{σ}	0,1293 / 0,0694
Benutzte Programme	SHELXS-97 und
	SHELXL-97 ^[33]
Streufaktoren	Intern. Tables Vol.C ^[54]
Extinktionskoeffizient	0,00003(3)
Goodness of fit	1,010
R_1 ; $wR_2 I_0 > 2\sigma(I)$	0,0477; 0,0759
R ₁ ; wR ₂ (alle Daten)	0,0875; 0,0884

Tabelle 35: Kristallographische Daten und deren Bestimmung zu Rb[Pt₂(SO₄)₃(HSO₄)]

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	O13	199,9(11)	S1	O14	144,1(12)
	022	199,3(10)		012	147,6(10)
	011	199,6(10)		011	152,2(10)
	O21	199,8(10)		013	153,4(9)
	012	213,9(8)	S2	O23	142,5(11)
	Pt1	246,81(9)		O24	149,3(14)
Rb1	O23	283,2(11)		022	151,8(14)
	O14	291,3(12)		O21	153,6(11)
	O14	308,8(11)			
	O13	328,8(11)	O24	O24 [#]	230,6(11)

Tabelle 36: Atomabstände in der Kristallstruktur von Rb[Pt₂(SO₄)₃(HSO₄)]

Tabelle 37: Winkel in der Kristallstruktur von Rb[Pt₂(SO₄)₃(HSO₄)]

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
O13	Pt1	O22	87,3(5)	014	S 1	012	114,7(7)
O13	Pt1	011	177,7(4)	014	S1	011	108,7(6)
022	Pt1	011	90,4(4)	012	S1	011	108,7(6)
O13	Pt1	O21	90,5(4)	014	S1	O13	109,0(6)
O22	Pt1	O21	177,8(5)	012	S1	O13	107,1(6)
O11	Pt1	O21	91,8(4)	011	S1	O13	108,5(6)
O13	Pt1	O12	94,6(4)	O23	S2	O24	113,5(7)
022	Pt1	O12	91,4(4)	O23	S2	O22	110,1(9)
O11	Pt1	O12	85,2(4)	O24	S2	O22	107,7(8)
O21	Pt1	O12	88,3(4)	O23	S2	O21	109,7(7)
O13	Pt1	Pt1	89,8(3)	O24	S2	O21	106,8(9)
O22	Pt1	Pt1	90,1(3)	O22	S2	O21	108,9(6)
O11	Pt1	Pt1	90,4(2)				
O21	Pt1	Pt1	90,3(3)				
O12	Pt1	Pt1	175,4(3)				

Atom	x/a	y/b	z/c	U_{eq}
Pt1	0,12008(4)	0,51266(3)	0,05859(6)	0,02813(15)
Rb1	0,0961(2)	0,75	0,3851(2)	0,0387(5)
S1	0,1337(4)	0,5885(2)	0,2347(5)	0,0336(7)
011	0,2092(8)	0,5657(5)	0,0816(12)	0,031(2)
012	0,1643(8)	0,5304(6)	0,3563(12)	0,036(2)
O13	0,0303(10)	0,5880(6)	0,2060(13)	0,038(2)
014	0,1782(11)	0,6642(7)	0,2765(15)	0,047(3)
S2	0,0264(5)	0,3721(2)	0,1926(6)	0,0509(12)
O21	0,1551(10)	0,4058(6)	0,1014(12)	0,038(3)
022	0,0832(11)	0,4344(8)	0,2243(14)	0,053(4)
O23	0,0757(15)	0,3404(8)	0,3384(17)	0,075(5)
O24	0,0432(16)	0,3154(7)	0,0854(18)	0,080(5)

Tabelle 38: Atomlagen in der Kristallstruktur von Rb[Pt₂(SO₄)₃(HSO₄)]

Tabelle 39: Anisotrope Temperaturfaktoren in der Kristallstruktur von Rb[Pt₂(SO₄)₃(HSO₄)]

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Pt1	0,01084(18)	0,0322(2)	0,0413(3)	0,0078(2)	0,0004(2)	0,0001(2)
Rb1	0,0240(8)	0,0682(15)	0,0240(8)	0,000	0,0022(7)	0,000
S1	0,0133(13)	0,0343(17)	0,053(2)	0,0023(15)	0,0017(14)	-0,0020(18)
011	0,015(4)	0,036(5)	0,041(6)	0,009(4)	0,002(4)	-0,002(4)
012	0,008(3)	0,043(7)	0,059(6)	0,012(5)	0,003(4)	0,001(4)
013	0,015(4)	0,052(7)	0,047(6)	-0,001(5)	0,004(4)	-0,003(4)
014	0,020(4)	0,044(7)	0,077(8)	-0,013(6)	0,007(5)	-0,006(5)
S2	0,047(2)	0,035(2)	0,071(3)	0,032(2)	0,036(2)	0,0189(19)
O21	0,026(5)	0,037(6)	0,052(6)	0,003(4)	0,021(4)	-0,005(4)
O22	0,026(5)	0,073(9)	0,060(7)	0,043(6)	0,013(5)	0,015(6)
O23	0,071(9)	0,063(8)	0,091(10)	0,057(8)	0,059(8)	0,035(7)
O24	0,085(9)	0,048(7)	0,106(12)	0,038(8)	0,073(9)	0,032(7)

13.8 Tabellen zu Cs[Pt₂(SO₄)₃(HSO₄)]

Zellparameter	a = 1724,82(2) pm
	b = 881,28(9) pm
	c = 935,1(1) pm
	$\beta = 100,397(8)^{\circ}$
Zellvolumen	$1398,1(32) \cdot 10^{6} \text{pm}^{3}$
Anzahl der Formeleinheiten	2
Kristallsystem	monoklin
Raumgruppe	$P2_1/c$ (Nr, 14)
Diffraktometer	Stoe IPDS II
Strahlung	Mo-K _{α} (Graphit Monochrom., $\lambda = 71,07 \text{ pm}$)
Messtemperatur	170 K
Theta Bereich	$5^\circ < 2\theta < 56^\circ$
Indexbereich	$-22 \le h \le 22$
	$-11 \le k \le 11$
	$-12 \le 1 \le 12$
ω-Bereich; $ω$ -Inkrement; $φ$ -Werte	$0^{\circ} < \omega < 180^{\circ}; 2^{\circ}; \phi = 0^{\circ}, 90^{\circ}$
Anzahl der Bilder	180
Belichtungszeit	3 min
Detektorabstand	80 mm
Datenkorrektur	Polarizations und Lorentz Faktoren
Absorptionskorrektur	numerisch [53]
Absorptionskoeffizient μ	23,24 mm ⁻¹
Anzahl gemessener Reflexe	13324
Anzahl symmetrieunabhängiger Reflexe	3383
Anzahl beobachteter Reflexe mit $I_0 > 2\theta(I)$	2971
R_{int} / R_{σ}	0,0507 / 0,0327
Benutzte Programme	SHELXS-97 und
	SHELXL-97 ^[33]
Streufaktoren	Intern. Tables Vol.C ^[54]
Extinktionskoeffizient	0,00104(5)
Goodness of fit	1,039
R_1 ; w $R_2 I_0 > 2\sigma(I)$	0,0232; 0,0458
R_1 ; w R_2 (alle Daten)	0,0299; 0,0473

Tabelle 40: Kristallographische Daten und deren Bestimmung zu Cs[Pt₂(SO₄)₃(HSO₄)]

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	012	199,2(4)	S 1	O13	143,5(4)
	O23	200,6(4)		O14	147,8(4)
	O11	201,1(4)		O12	150,1(4)
	O22	202,0(3)		O11	152,7(4)
	O14	212,2(4)			
	Pt1	246,84(4)	S2	O24	143,0(4)
Pt2	O44	200,0(4)		O21	146,8(5)
	O43	200,7(4)		O22	152,3(4)
	O34	201,1(4)		O23	152,4(4)
	O33	201,4(4)	S3	O32	143,2(4)
	O31	215,6(4)		O31	147,6(4)
	Pt2	247,66(4)		O34	151,7(4)
Cs1	O13	295,2(4)		O33	152,2(4)
	O24	309,9(4)	S4	O41	140,7(4)
	032	311,3(4)		O43	150,9(4)
	O41	313,6(4)		O42	150,9(4)
	032	318,2(4)		O44	151,8(4)
	011	327,7(4)	O42	H1	102(15)
	022	335,5(3)	O21	H1	146(15)
	O13	338,7(4)	O42	O21	246,7(6)
	O33	345,9(4)			
	O21	366,9(5)			

Tabelle 41: Atomabstände in der Kristallstruktur von Cs[Pt₂(SO₄)₃(HSO₄)]

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
012	Pt1	O23	88,93(16)	013	S1	O14	114,3(2)
012	Pt1	011	178,29(16)	O13	S1	O12	110,1(2)
O23	Pt1	011	89,36(16)	014	S1	O12	106,0(2)
012	Pt1	O22	89,44(16)	013	S1	O11	107,5(2)
O23	Pt1	O22	178,28(17)	014	S1	O11	109,3(2)
011	Pt1	O22	92,26(16)	012	S1	011	109,6(2)
012	Pt1	O14	87,89(16)	O24	S2	O21	115,2(3)
O23	Pt1	014	86,64(15)	O24	S2	O22	108,4(2)
O11	Pt1	014	91,89(16)	O21	S2	O22	106,4(3)
O22	Pt1	014	93,86(15)	O24	S2	O23	108,9(2)
012	Pt1	Pt1	91,02(11)	O21	S2	O23	110,6(2)
O23	Pt1	Pt1	91,35(11)	O22	S2	O23	107,0(2)
O11	Pt1	Pt1	89,14(11)	S2	O21	H1	137(6)
O22	Pt1	Pt1	88,12(11)	O32	S 3	O31	114,6(2)
O14	Pt1	Pt1	177,72(11)	O32	S 3	O34	108,9(2)
O44	Pt2	O43	179,55(16)	O31	S3	O34	109,2(2)
O44	Pt2	O34	89,96(16)	O32	S 3	O33	108,9(2)
O43	Pt2	O34	89,68(16)	O31	S 3	O33	106,5(2)
O44	Pt2	O33	91,73(16)	O34	S 3	O33	108,6(2)
O43	Pt2	O33	88,62(16)	O41	S4	O43	111,9(3)
O34	Pt2	O33	178,28(16)	O41	S4	O42	113,3(3)
O44	Pt2	O31	89,43(15)	O43	S4	O42	104,8(2)
O43	Pt2	O31	90,82(15)	O41	S4	O44	110,0(2)
O34	Pt2	O31	86,46(15)	O43	S4	O44	109,2(2)
O33	Pt2	O31	93,83(15)	O42	S4	O44	107,4(2)
O44	Pt2	Pt2	89,40(11)	S4	O42	H1	114(8)
O43	Pt2	Pt2	90,33(11)				
O34	Pt2	Pt2	90,40(11)				
O33	Pt2	Pt2	89,35(11)				
O31	Pt2	Pt2	176,64(10)				

Tabelle 42: Winkel in der Kristallstruktur von Cs[Pt₂(SO₄)₃(HSO₄)]

Atom	x/a	y/b	z/c	U _{eq}
Pt1	0,494437(11)	0,62501(2)	0,43952(2)	0,00904(6)
Pt2	0,009312(11)	0,56523(2)	0,38704(2)	0,00908(6)
Cs1	0,26359(2)	0,61100(4)	0,00351(4)	0,01879(9)
S1	0,42448(8)	0,88984(15)	0,22225(14)	0,0117(3)
011	0,4287(2)	0,8024(5)	0,0829(4)	0,0142(8)
O12	0,4376(2)	0,0557(5)	0,1988(4)	0,0129(8)
O13	0,3474(2)	0,8660(5)	0,2557(5)	0,0177(8)
O14	0,4898(2)	0,8409(4)	0,3379(4)	0,0152(8)
S2	0,35059(8)	0,41800(16)	0,35296(15)	0,0132(3)
O21	0,3065(2)	0,4861(5)	0,4572(5)	0,0208(9)
O22	0,3990(2)	0,5454(4)	0,3027(4)	0,0129(8)
O23	0,4087(2)	0,2999(4)	0,4276(4)	0,0138(8)
O24	0,3032(3)	0,3507(5)	0,2277(5)	0,0213(9)
S 3	0,08697(7)	0,77349(15)	0,16906(13)	0,0105(2)
O31	0,0227(2)	0,6672(4)	0,1834(4)	0,0117(7)
O32	0,1638(2)	0,7244(5)	0,2379(4)	0,0156(8)
O33	0,0860(2)	0,7919(5)	0,0069(4)	0,0136(8)
O34	0,0699(2)	0,9264(4)	0,2313(4)	0,0130(8)
S4	0,13565(8)	0,32338(16)	0,49493(14)	0,0121(2)
O41	0,1663(2)	0,1901(5)	0,4435(4)	0,0183(8)
O42	0,1978(2)	0,4214(5)	0,5850(5)	0,0171(8)
H1	0,247(9)	0,438(17)	0,541(16)	0,11(5)
O43	0,0776(2)	0,2891(5)	0,5935(4)	0,0134(8)
O44	0,0954(2)	0,4187(5)	0,3678(4)	0,0139(8)

Tabelle 43: Atomlagen in der Kristallstruktur von Cs[Pt₂(SO₄)₃(HSO₄)]

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	0,01106(10)	0,00819(10)	0,00790(10)	0,00005(7)	0,00177(7)	-0,00048(7)
Pt2	0,01095(10)	0,00895(10)	0,00762(9)	0,00031(7)	0,00246(6)	0,00032(7)
Cs1	0,01821(16)	0,0235(2)	0,01519(17)	0,00266(13)	0,00446(13)	-0,00056(14)
S1	0,0146(6)	0,0104(6)	0,0109(6)	0,0017(4)	0,0050(5)	0,0001(5)
011	0,0174(18)	0,015(2)	0,0118(17)	-0,0018(14)	0,0068(14)	-0,0026(16)
O12	0,0179(18)	0,0103(19)	0,0125(18)	0,0016(14)	0,0084(14)	-0,0012(15)
O13	0,019(2)	0,015(2)	0,021(2)	0,0011(16)	0,0099(16)	-0,0001(16)
O14	0,023(2)	0,0087(19)	0,0133(18)	0,0059(14)	0,0022(15)	-0,0027(16)
S2	0,0116(5)	0,0126(7)	0,0142(6)	0,0004(5)	-0,0008(5)	-0,0025(5)
O21	0,0177(19)	0,022(2)	0,024(2)	0,0004(18)	0,0065(16)	0,0018(18)
O22	0,0143(17)	0,013(2)	0,0103(17)	0,0006(14)	-0,0006(14)	-0,0035(15)
O23	0,0172(18)	0,0084(19)	0,0135(17)	0,0001(14)	-0,0035(14)	-0,0009(15)
O24	0,022(2)	0,016(2)	0,021(2)	-0,0018(16)	-0,0088(17)	-0,0076(17)
S3	0,0125(5)	0,0103(6)	0,0090(5)	0,0006(4)	0,0028(4)	0,0003(5)
O31	0,0152(17)	0,0123(19)	0,0081(16)	0,0040(14)	0,0032(13)	-0,0028(15)
032	0,0133(17)	0,019(2)	0,0139(18)	0,0015(15)	0,0018(15)	0,0032(16)
O33	0,0119(17)	0,019(2)	0,0102(17)	0,0031(14)	0,0022(13)	0,0024(15)
O34	0,0168(18)	0,0099(19)	0,0107(18)	0,0009(14)	-0,0016(14)	0,0014(15)
S4	0,0125(5)	0,0118(6)	0,0121(6)	-0,0004(5)	0,0026(4)	0,0023(5)
O41	0,022(2)	0,016(2)	0,0195(19)	-0,0010(16)	0,0102(16)	0,0066(17)
042	0,0104(17)	0,022(2)	0,018(2)	-0,0032(16)	0,0016(15)	-0,0021(16)
O43	0,0153(17)	0,012(2)	0,0137(17)	0,0036(14)	0,0058(14)	0,0012(15)
O44	0,0169(18)	0,014(2)	0,0123(18)	0,0020(14)	0,0052(15)	0,0044(16)

Tabelle 44: Anisotrope Temperaturfaktoren in der Kristallstruktur von Cs[Pt₂(SO₄)₃(HSO₄)]

13.9 Tabellen zu den Pt₁₂-Clustern

Summenformel	$(NH_4)_4[Pt_{12}(SO_4)_{12}O_8]$	K ₂ (NH ₄) ₂ [Pt ₁₂ (SO ₄) ₁₂ O ₈]	Rb ₄ [Pt ₁₂ (SO ₄) ₁₂ O ₈]	$K_2Cs_2[Pt_{12}(SO_4)_{12}O_8]$
Zellparameter	a = 1189,74(18) pm	1195,5(3)	1184,59(18)	1198,9(3)
	c = 2796,5(5) pm	2793,6(10)	2825,1(6)	2768,0(10)
Zellvolumen [10 ⁶ pm ³]	3428,1(10)	3445,9(18)	3433,2(10)	3445,4(18)
Anzahl der		2		
Formeleinheiten		3		
Kristallsystem		trigonal		
Raumgruppe		R-3 (Nr. 1-	48)	
Diffraktometer		Stoe IPDS	п	
Strahlung		Mo- K_{α} (Graphit Monochro	om., $\lambda = 71,07 \text{ pm}$)	
Messtemperatur		170 K		
Theta Bereich	$5^\circ < 2\theta < 56^\circ$	$4^\circ < 2\theta < 56^\circ$	$4^\circ < 2\theta < 56^\circ$	$4^\circ < 2\theta < 56^\circ$
Indexbereich	$\text{-}15 \leq h \leq 15$	$\text{-13} \leq h \leq 15$	$\text{-15} \le h \le 15$	$\text{-}15 \leq h \leq 15$
	$-15 \le k \le 15$	$-15 \le k \le 15$	$\text{-}15 \leq k \leq 15$	$-15 \le k \le 15$
	$-36 \le l \le 36$	$-34 \le l \le 34$	$-35 \le l \le 36$	$-36 \le l \le 36$
ω-Bereich; ω-Inkrement;		09 < < 1909. 29.		
φ-Werte		$0^{-1} < \omega < 180^{-1}; 2^{-1};$	$\phi = 0^{-3}, 90^{-3}$	
Anzahl der Bilder	180	80	165	172
Belichtungszeit	5 min	20 min	10 min	10 min
Detektorabstand	100 mm	120 mm	120 mm	100 mm
Datenkorrektur		Polarizations und Lor	entz Faktoren	
Absorptionskorrektur		numerisch	[53]	
Absorptionskoeffizient $\boldsymbol{\mu}$	37,27 mm ⁻¹	37,44	41,437	38,667
Anzahl gemessener	16108	8031	16108	19264
Reflexe	10198	8051	10196	19204
Anzahl				
Symmetrieunabhängiger	1845	1665	1709	1853
Reflexe				
Anzahl beobachteter	1494	694	1072	1526
Reflexe mit $I_0 > 2\theta(I)$	1171	071	1072	1520
R_{int} / R_{σ}	0,1848 / 0,0667	0,2268 / 0,1926	0,1915 / 0,0985	0,2813 / 0,0839
Benutzte Programme		SHELXS-97 and SH	ELXL-97 ^[33]	
Streufaktoren		Intern. Tables V	/ol.C [54]	
Extinktionskoeffizient	0,000013(9)	0,0018(2)	0,000045(19)	0,000072(16)
Goodness of fit	1,064	0,856	1,051	1,107
$R_1; wR_2 I_0 > 2\sigma(I)$	0,0451; 0,1006	0,0624 / 0,1127	0,0686 / 0,1296	0,1055 / 0,1439
R_1 ; w R_2 (alle Daten)	0,0587; 0,1081	0,1576 / 0,1428	0,1210 / 0,1536	0,1176 / 0,1506

Tabelle 45: Kristallographische Daten und deren Bestimmung

13.9.1 Tabellen zu (NH₄)₄[Pt₁₂(SO₄)₁₂O₈]

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	02	199,6(10)	Pt2	02	199,6(10)
	02	199,7(10)		01	200,04(15)
	O14	201,9(10)		O21	202,3(10)
	O23	203,0(11)		012	202,4(11)
	O24	216,4(10)		011	213,5(10)
	Pt2	253,18(9)	S2	022	144,2(11)
S1	O13	142,1(12)		O24	145,9(12)
	O11	148,1(11)		023	152,1(11)
	012	152,2(12)		O21	152,6(12)
	O14	152,7(11)	02	Pt2	199,6(10)
01	Pt2	200,04(15)	02	Pt1	199,6(10)

Tabelle 46: Atomabstände in der Kristallstruktur von (NH₄)₄[Pt₁₂(SO₄)₁₂O₈]

Tabelle 47: Winkel in der Kristallstruktur von (NH₄)₄[Pt₁₂(SO₄)₁₂O₈]

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
02	Pt1	O2	90,4(5)	O13	S1	011	113,1(7)
O2	Pt1	O14	175,7(4)	O13	S1	O12	109,5(7)
02	Pt1	O14	92,2(4)	011	S1	012	107,3(7)
02	Pt1	O23	93,4(5)	O13	S1	O14	111,3(7)
02	Pt1	O23	174,5(5)	O11	S1	O14	107,4(6)
O14	Pt1	O23	83,7(5)	O12	S1	O14	108,0(6)
02	Pt1	O24	94,8(4)	O22	S2	O24	112,5(7)
02	Pt1	O24	91,7(4)	O22	S2	O23	111,1(7)
O14	Pt1	O24	81,8(5)	O24	S2	O23	109,2(7)
023	Pt1	O24	84,2(4)	O22	S2	O21	107,4(7)
02	Pt1	Pt2	93,9(3)	O24	S2	O21	108,8(7)
02	Pt1	Pt2	94,8(3)	O23	S2	O21	107,7(7)
O14	Pt1	Pt2	89,2(3)	Pt2	01	Pt2	119,33(13)
O23	Pt1	Pt2	88,8(3)	Pt2	01	Pt2	119,33(13)
O24	Pt1	Pt2	169,1(3)	Pt2	01	Pt2	119,33(13)
02	Pt2	01	92,3(5)	Pt2	02	Pt1	119,7(5)
02	Pt2	O21	90,8(4)	Pt2	02	Pt1	119,0(5)
01	Pt2	O21	174,3(5)	Pt1	02	Pt1	120,4(5)
02	Pt2	O12	175,5(4)	S1	011	Pt2	126,7(6)
01	Pt2	O12	89,8(5)	S1	O12	Pt2	119,4(6)
O21	Pt2	O12	86,7(5)	S1	O14	Pt1	119,1(6)
02	Pt2	O11	94,3(4)	S2	O21	Pt2	118,9(6)
01	Pt2	O11	92,4(4)	S2	O23	Pt1	117,9(6)
O21	Pt2	011	82,7(4)	S2	O24	Pt1	126,1(7)
012	Pt2	O11	81,7(4)	O21	Pt2	Pt1	89,1(3)
02	Pt2	Pt1	94,8(3)	O12	Pt2	Pt1	88,9(3)
01	Pt2	Pt1	95,2(3)	011	Pt2	Pt1	167,9(3)

Atom	x/a	y/b	z/c	Ueq
Pt1	0,11917(6)	0,28573(6)	0,03229(2)	0,03023(19)
Pt2	0,06636(6)	0,12422(6)	0,08395(2)	0,02997(19)
S 1	0,1840(4)	0,3030(4)	0,13915(14)	0,0335(8)
S2	0,0992(4)	0,3472(4)	0,04526(14)	0,0330(8)
01	0	0	0,0898(6)	0,027(3)
02	0,2075(10)	0,1807(11)	0,0289(3)	0,030(2)
O11	0,2364(11)	0,2134(10)	0,1365(4)	0,034(2)
O12	0,0370(11)	0,2200(11)	0,1426(4)	0,037(2)
013	0,5101(11)	0,5651(11)	0,1544(4)	0,039(3)
014	0,2169(11)	0,3779(11)	0,0921(4)	0,035(2)
O21	0,1388(11)	0,2461(11)	0,0848(4)	0,035(2)
022	0,1309(12)	0,4433(11)	0,0613(4)	0,040(3)
023	0,0461(11)	0,4072(10)	0,0374(4)	0,037(3)
O24	0,2824(11)	0,4499(10)	0,0014(4)	0,038(3)
N1	0,33	0,33	0,0637(18)	0,088(13)
N2	0,33	0,33	0,1284(9)	0,067(9)

Tabelle 48: Atomlagen in der Kristallstruktur von (NH₄)₄[Pt₁₂(SO₄)₁₂O₈]

Tabelle 49: Anisotrope Temperaturfaktoren in der Kristallstruktur von (NH₄)₄[Pt₁₂(SO₄)₁₂O₈]

Atom	U11	U22	U33	U23	U13	U12
Pt1	0,0329(3)	0,0316(3)	0,0257(3)	-0,0005(2)	0,0002(2)	0,0157(2)
Pt2	0,0329(3)	0,0320(3)	0,0250(3)	-0,0004(2)	0,0004(2)	0,0162(2)
S1	0,0361(19)	0,038(2)	0,0259(19)	-0,0037(15)	-0,0022(15)	0,0181(16)
S2	0,039(2)	0,0351(19)	0,028(2)	0,0012(15)	0,0019(16)	0,0217(17)
01	0,033(5)	0,033(5)	0,015(8)	0,000	0,000	0,016(3)
02	0,041(6)	0,042(6)	0,016(5)	0,002(4)	0,006(4)	0,028(5)
011	0,045(6)	0,038(6)	0,022(5)	-0,008(4)	-0,006(5)	0,023(5)
O12	0,035(6)	0,045(6)	0,026(6)	-0,006(5)	-0,001(5)	0,017(5)
O13	0,043(6)	0,042(6)	0,033(6)	0,002(5)	0,001(5)	0,022(5)
O14	0,041(6)	0,045(6)	0,018(5)	-0,004(4)	-0,012(4)	0,021(5)
O21	0,043(6)	0,038(6)	0,028(6)	-0,001(5)	0,000(5)	0,024(5)
O22	0,051(7)	0,036(6)	0,044(7)	0,000(5)	0,008(6)	0,030(5)
O23	0,038(6)	0,037(6)	0,039(7)	-0,003(5)	0,008(5)	0,022(5)
O24	0,037(6)	0,028(5)	0,034(6)	0,001(5)	0,007(5)	0,005(5)
N1	0,061(13)	0,061(13)	0,14(4)	0,000	0,000	0,030(6)
N2	0,096(15)	0,096(15)	0,010(12)	0,000	0,000	0,048(8)

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	02	196(3)	S1	O13	136(3)
	O14	201(2)		011	148(2)
	02	203(2)		O12	151(2)
	O23	205,6(19)		O14	154(2)
	O24	215(2)	S2	O22	136(3)
	Pt2	253,0(2)		O24	146(3)
Pt2	012	198(2)		O23	148(2)
	O21	199(2)		O21	153(3)
	02	200(3)	K1	01	320(5)
	01	200,8(5)		O12	300(3)
	011	221(2)		011	330(3)
				O21	325(2)
				O22	287(3)
			N2	O14	314(3)
				O23	339(4)
				O24	297(2)

13.9.2 Tabellen zu K₂(NH₄)₂[Pt₁₂(SO₄)₁₂O₈]

Tabelle 50: Atomabstände in der Kristallstruktur von K₂(NH₄)₂[Pt₁₂(SO₄)₁₂O₈]

Tabelle 51: Winkel in der Kristallstruktur von $K_2(NH_4)_2[Pt_{12}(SO_4)_{12}O_8]$

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
O2	Pt1	O14	177,1(9)	013	S 1	011	110,7(16)
O2	Pt1	O2	87,8(12)	013	S1	O12	114,4(16)
O14	Pt1	O2	93,3(9)	011	S1	O12	107,3(14)
O2	Pt1	O23	93,7(10)	013	S1	O14	110,1(14)
O14	Pt1	O23	85,0(9)	011	S1	O14	108,3(14)
O2	Pt1	O23	176,5(9)	012	S1	O14	105,9(14)
02	Pt1	O24	95,1(9)	O22	S2	O24	112,7(19)
O14	Pt1	O24	82,2(9)	O22	S2	O23	108,9(14)
O2	Pt1	O24	91,2(9)	O24	S2	O23	107,1(15)
O23	Pt1	O24	85,6(8)	O22	S2	O21	111,4(17)
012	Pt2	O21	88,9(11)	O24	S2	O21	108,0(15)
O12	Pt2	O2	178,1(10)	O23	S2	O21	108,6(13)
O21	Pt2	O2	90,0(10)	012	Pt2	Pt1	88,5(7)
O12	Pt2	01	87,6(13)	O21	Pt2	Pt1	89,3(7)
O21	Pt2	01	173,5(15)	02	Pt2	Pt1	93,1(8)
02	Pt2	01	93,4(12)	01	Pt2	Pt1	96,1(7)
O12	Pt2	011	81,3(10)	011	Pt2	Pt1	166,9(6)
O21	Pt2	011	82,4(10)	02	Pt1	Pt2	93,8(7)
O2	Pt2	011	97,0(10)	O14	Pt1	Pt2	88,7(6)
O1	Pt2	011	91,6(11)	02	Pt1	Pt2	94,7(7)
				O23	Pt1	Pt2	88,3(5)
				O24	Pt1	Pt2	169,4(7)

Atom	x/a	y/b	z/c	U_{eq}
Pt1	0,11871(13)	0,28493(13)	0,03242(6)	0,0532(5)
Pt2	0,06600(14)	0,12416(14)	0,08413(6)	0,0522(5)
S 1	0,1828(9)	0,3014(9)	0,1403(4)	0,052(2)
011	0,238(2)	0,215(2)	0,1395(10)	0,061(7)
012	0,038(2)	0,216(2)	0,1412(8)	0,055(6)
O13	0,512(3)	0,566(2)	0,1561(10)	0,068(7)
O14	0,215(2)	0,375(2)	0,0925(9)	0,051(6)
S2	0,0992(8)	0,3456(8)	0,0454(4)	0,052(2)
O21	0,139(2)	0,241(2)	0,0840(10)	0,062(7)
022	0,125(3)	0,439(2)	0,0591(12)	0,083(10)
O23	0,042(2)	0,4049(17)	0,0368(9)	0,047(6)
O24	0,282(2)	0,447(2)	0,0011(9)	0,056(6)
01	0	0	0,0919(17)	0,051(11)
02	0,206(2)	0,176(2)	0,0277(10)	0,057(6)
K1	0,33	0,33	0,1270(7)	0,087(5)
N2	0,33	0,33	0,063(2)	0,066(18)

Tabelle 52: Atomlagen in der Kristallstruktur von K₂(NH₄)₂[Pt₁₂(SO₄)₁₂O₈]

Tabelle 53: Anisotrope Temperaturfaktoren in der Kristallstruktur von K₂(NH₄)₂[Pt₁₂(SO₄)₁₂O₈]

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	0,0506(8)	0,0517(8)	0,0569(11)	-0,0001(7)	0,0001(7)	0,0252(7)
Pt2	0,0498(8)	0,0489(8)	0,0568(10)	-0,0011(7)	-0,0001(7)	0,0239(7)
S1	0,054(5)	0,051(5)	0,051(7)	-0,007(4)	-0,003(4)	0,026(4)
011	0,075(16)	0,044(12)	0,07(2)	-0,028(13)	-0,023(14)	0,036(12)
012	0,055(14)	0,058(14)	0,032(16)	-0,013(11)	-0,013(11)	0,014(11)
013	0,078(17)	0,079(18)	0,06(2)	-0,003(14)	0,013(15)	0,049(15)
014	0,047(12)	0,041(12)	0,067(18)	0,006(12)	0,009(12)	0,025(10)
S2	0,055(5)	0,047(5)	0,059(7)	-0,006(4)	-0,002(5)	0,029(4)
O21	0,041(13)	0,062(15)	0,09(2)	-0,008(13)	0,006(12)	0,030(12)
O22	0,080(18)	0,037(13)	0,13(3)	0,011(14)	0,033(18)	0,025(12)
O23	0,058(13)	0,028(10)	0,055(18)	0,006(10)	0,025(11)	0,021(10)
O24	0,070(15)	0,064(15)	0,042(17)	0,002(12)	0,003(13)	0,039(13)
01	0,028(11)	0,028(11)	0,10(4)	0,000	0,000	0,014(5)
02	0,054(13)	0,063(14)	0,060(18)	0,005(13)	-0,006(13)	0,033(12)
K1	0,095(8)	0,095(8)	0,072(14)	0,000	0,000	0,047(4)
N2	0,024(13)	0,024(13)	0,15(6)	0,000	0,000	0,012(6)

13.9.3 Tabellen zu Rb₄[Pt₁₂(SO₄)₁₂O₈]

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	02	198(2)	S1	O13	142(2)
	O2	198(2)		O11	149(3)
	O14	201(2)		O12	150(3)
	O23	204(2)		O14	152(2)
	O24	216(3)	S2	O22	142(3)
	Pt2	253,33(18)		O24	148(3)
Pt2	O1	200,2(4)		O21	154(2)
	O21	201(2)		O23	155(2)
	012	202(2)	Rb2	O22	289(3)
	O2	203(2)		O12	305(2)
	011	218(2)		O21	321(2)
Rb1	O14	302(2)		01	324(4)
	O24	319(3)		O11	330(3)
	O23	335(2)			

Tabelle 54: Atomabstände in der Kristallstruktur von Rb₄[Pt₁₂(SO₄)₁₂O₈]

Tabelle 55: Winkel in der Kristallstruktur von Rb₄[Pt₁₂(SO₄)₁₂O₈]

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
O2	Pt1	O2	91,3(10)	013	S 1	011	110,9(14)
O2	Pt1	O14	93,2(9)	013	S1	O12	110,5(14)
O2	Pt1	O14	174,8(9)	011	S1	O12	107,6(14)
O2	Pt1	O23	173,1(9)	013	S1	O14	111,8(14)
O2	Pt1	O23	92,7(9)	011	S1	O14	109,9(14)
O14	Pt1	O23	82,6(9)	012	S1	O14	105,8(14)
O2	Pt1	O24	90,8(9)	O22	S2	O24	111,3(16)
O2	Pt1	O24	94,7(9)	O22	S2	O21	109,6(14)
O14	Pt1	O24	82,5(9)	O24	S2	O21	108,6(14)
O23	Pt1	O24	83,2(9)	O22	S2	O23	110,5(15)
O1	Pt2	O21	173,2(11)	O24	S2	O23	108,5(14)
O1	Pt2	012	89,0(11)	O21	S2	O23	108,2(13)
O21	Pt2	O12	87,2(9)	02	Pt1	Pt2	96,1(6)
O1	Pt2	O2	93,8(10)	02	Pt1	Pt2	94,2(6)
O21	Pt2	O2	89,7(9)	O14	Pt1	Pt2	88,1(7)
012	Pt2	O2	175,8(9)	O23	Pt1	Pt2	89,2(6)
O1	Pt2	011	91,7(10)	O24	Pt1	Pt2	168,6(7)
O21	Pt2	011	82,2(9)	01	Pt2	Pt1	95,7(6)
012	Pt2	011	81,2(9)	O21	Pt2	Pt1	89,8(6)
02	Pt2	011	95,5(9)	012	Pt2	Pt1	88,4(7)
				02	Pt2	Pt1	94,5(6)
				011	Pt2	Pt1	167,1(7)

Atom	x/a	y/b	z/c	U _{eq}
Pt1	0,12328(12)	0,28658(12)	0,03224(4)	0,0394(4)
Pt2	0,06413(12)	0,12665(12)	0,08361(4)	0,0393(4)
S 1	0,1875(8)	0,3038(8)	0,1385(3)	0,0386(15)
O11	0,240(2)	0,213(2)	0,1379(8)	0,048(5)
012	0,042(2)	0,223(2)	0,1409(8)	0,046(5)
O13	0,514(2)	0,570(2)	0,1555(8)	0,045(5)
O14	0,218(2)	0,377(2)	0,0919(8)	0,045(5)
S2	0,0943(8)	0,3526(8)	0,0453(3)	0,0427(17)
O21	0,136(2)	0,249(2)	0,0843(7)	0,039(5)
O22	0,124(3)	0,449(3)	0,0593(9)	0,054(6)
O23	0,054(2)	0,413(2)	0,0373(7)	0,040(5)
O24	0,288(2)	0,451(3)	0,0008(9)	0,050(6)
01	0	0	0,0909(12)	0,037(8)
02	0,212(2)	0,182(2)	0,0281(7)	0,039(4)
Rb1	0,33	0,33	0,0762(3)	0,085(2)
Rb2	0,33	0,33	0,1277(2)	0,0570(14)

Tabelle 56: Atomlagen in der Kristallstruktur von Rb₄[Pt₁₂(SO₄)₁₂O₈]

Tabelle 57: Anisotrope Temperaturfaktoren in der Kristallstruktur von Rb₄[Pt₁₂(SO₄)₁₂O₈]

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	0,0393(6)	0,0387(6)	0,0401(6)	-0,0007(5)	0,0001(5)	0,0192(5)
Pt2	0,0380(6)	0,0380(6)	0,0416(6)	-0,0002(5)	-0,0002(5)	0,0188(5)
S1	0,045(4)	0,040(4)	0,035(3)	0,002(3)	0,000(3)	0,022(3)
011	0,049(13)	0,047(12)	0,053(13)	-0,041(11)	-0,029(11)	0,023(11)
012	0,053(13)	0,079(17)	0,021(9)	-0,009(10)	0,000(8)	0,039(13)
013	0,065(15)	0,033(11)	0,036(10)	0,005(8)	0,011(10)	0,019(11)
O14	0,043(12)	0,054(13)	0,031(10)	-0,009(9)	-0,010(9)	0,020(11)
S2	0,047(4)	0,047(4)	0,038(4)	0,000(3)	0,000(3)	0,026(4)
O21	0,032(10)	0,052(13)	0,036(10)	0,007(9)	-0,002(8)	0,020(10)
O22	0,047(13)	0,058(15)	0,059(15)	0,003(11)	-0,002(11)	0,032(12)
O23	0,045(12)	0,037(11)	0,040(11)	-0,001(8)	-0,004(9)	0,021(10)
O24	0,075(17)	0,033(11)	0,052(13)	0,010(10)	0,005(12)	0,026(12)
01	0,044(13)	0,044(13)	0,035(18)	0,000	0,000	0,022(6)
O2	0,047(12)	0,053(13)	0,029(9)	0,003(9)	0,005(9)	0,031(10)
Rb1	0,064(3)	0,064(3)	0,133(8)	0,000	0,000	0,0318(14)
Rb2	0,060(2)	0,060(2)	0,052(3)	0,000	0,000	0,0302(11)

13.9.4 Tabellen K₂Cs₂[Pt₁₂(SO₄)₁₂O₈]

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
Pt1	02	198,6(15)	S1	013	144,4(19)
	O14	200,3(16)		O11	146,9(18)
	O2	203,3(15)		O14	151,0(19)
	O23	204,2(15)		012	152(2)
	O24	216,7(17)	S2	022	144,0(18)
	Pt2	252,75(14)		O24	147,8(19)
Pt2	02	196,7(17)		O23	151,4(17)
	012	200,6(19)		O21	153,5(18)
	O21	200,8(17)	K1	022	280(2)
	01	200,9(3)		012	303(2)
	011	216,8(17)		01	317(3)
Cs1	O14	308,7(17)		O21	323,9(18)
	O24	327,1(18)		011	326(2)
	013	352,1(18)			
	O23	352,2(17)			

Tabelle 58: Atomabstände in der Kristallstruktur von K₂Cs₂[Pt₁₂(SO₄)₁₂O₈]

Tabelle 59: Winkel in der Kristallstruktur von K₂Cs₂[Pt₁₂(SO₄)₁₂O₈]

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
02	Pt1	O14	91,6(7)	013	S1	011	112,0(10)
O2	Pt1	O2	90,4(8)	013	S1	O14	109,5(10)
O14	Pt1	O2	176,1(7)	011	S1	O14	108,9(10)
O2	Pt1	O23	174,7(7)	O13	S1	012	111,4(11)
O14	Pt1	O23	83,9(7)	O11	S1	012	108,5(10)
O2	Pt1	O23	93,9(7)	O14	S1	012	106,3(10)
O2	Pt1	O24	93,1(7)	O22	S2	O24	110,6(11)
O14	Pt1	O24	81,1(7)	O22	S2	O23	110,6(11)
O2	Pt1	O24	95,5(7)	O24	S2	O23	109,8(11)
O23	Pt1	O24	83,6(7)	O22	S2	O21	108,5(11)
O2	Pt1	Pt2	94,0(5)	O24	S2	O21	109,8(11)
O14	Pt1	Pt2	88,8(5)	O23	S2	O21	107,5(9)
O2	Pt1	Pt2	94,3(5)	02	Pt2	011	94,5(7)
O23	Pt1	Pt2	88,6(5)	O12	Pt2	011	81,9(7)
O24	Pt1	Pt2	167,8(5)	O21	Pt2	011	83,3(7)
O2	Pt2	012	175,8(7)	01	Pt2	011	91,2(8)
O2	Pt2	O21	91,5(7)	02	Pt2	Pt1	95,0(4)
012	Pt2	O21	86,0(7)	O12	Pt2	Pt1	88,3(5)
O2	Pt2	01	92,0(8)	O21	Pt2	Pt1	89,4(5)
012	Pt2	O1	90,2(9)	01	Pt2	Pt1	95,5(5)
O21	Pt2	01	173,7(9)	011	Pt2	Pt1	168,2(5)

Atom	x/a	y/b	z/c	U _{eq}
Pt1	0,11802(8)	0,28280(8)	0,03270(3)	0,0204(3)
Pt2	0,06589(9)	0,12375(8)	0,08500(3)	0,0206(3)
S 1	0,1825(6)	0,3008(6)	0,1402(2)	0,0223(11)
S2	0,0986(6)	0,3440(6)	0,0453(2)	0,0230(11)
Cs1	0,33	0,33	0,08126(13)	0,0363(7)
K1	0,33	0,33	0,1268(5)	0,043(3)
01	0	0	0,0920(11)	0,018(5)
02	0,2034(16)	0,1774(16)	0,0305(6)	0,019(3)
011	0,2338(18)	0,2123(17)	0,1394(6)	0,025(3)
012	0,0363(19)	0,2216(17)	0,1431(7)	0,029(4)
O13	0,5102(16)	0,5687(17)	0,1538(7)	0,024(3)
O14	0,2138(15)	0,3726(16)	0,0928(6)	0,021(3)
O21	0,1377(16)	0,2434(16)	0,0856(6)	0,023(3)
O22	0,1304(19)	0,4397(18)	0,0604(7)	0,028(4)
O23	0,0453(16)	0,4042(15)	0,0378(6)	0,019(3)
O24	0,2808(18)	0,4480(17)	0,0002(7)	0,028(4)

Tabelle 60: Atomlagen in der Kristallstruktur von K₂Cs₂[Pt₁₂(SO₄)₁₂O₈]

Tabelle 61: Anisotrope Temperaturfaktoren in der Kristallstruktur von K₂Cs₂[Pt₁₂(SO₄)₁₂O₈]

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	0,0199(4)	0,0192(4)	0,0217(5)	-0,0011(3)	-0,0001(3)	0,0095(3)
Pt2	0,0199(4)	0,0189(4)	0,0227(5)	-0,0001(3)	0,0006(3)	0,0096(3)
S1	0,023(3)	0,020(3)	0,022(3)	0,000(2)	0,002(2)	0,009(2)
S2	0,024(3)	0,023(3)	0,023(3)	0,000(2)	-0,001(2)	0,012(2)
Cs1	0,0318(9)	0,0318(9)	0,0453(18)	0,000	0,000	0,0159(4)
K1	0,045(4)	0,045(4)	0,040(6)	0,000	0,000	0,0223(19)
01	0,015(7)	0,015(7)	0,025(14)	0,000	0,000	0,008(4)
O2	0,028(8)	0,027(8)	0,014(7)	-0,004(6)	0,001(6)	0,021(7)
011	0,031(9)	0,024(8)	0,022(8)	-0,007(7)	-0,010(7)	0,015(7)
O12	0,032(9)	0,022(8)	0,030(10)	0,002(7)	0,002(8)	0,013(7)
O13	0,017(7)	0,023(8)	0,025(9)	0,004(7)	0,003(6)	0,006(6)
O14	0,015(7)	0,025(8)	0,021(8)	-0,007(6)	-0,005(6)	0,008(6)
O21	0,022(8)	0,021(8)	0,027(9)	0,004(7)	-0,003(7)	0,011(7)
O22	0,032(9)	0,027(9)	0,032(10)	-0,002(7)	0,002(8)	0,020(8)
O23	0,019(7)	0,020(7)	0,025(8)	0,004(6)	0,005(6)	0,013(6)
O24	0,027(9)	0,019(8)	0,031(10)	0,001(7)	0,015(7)	0,006(7)

13.10 Tabellen zu (UO₂)₂(SO₄)(HSO₄)₂

Zellparameter	a = 977.2(7) pm
L	c = 840,2(5) pm
Zellvolumen	$802,4(9) \cdot 10^{6} \text{pm}^{3}$
Anzahl der Formeleinheiten	2
Kristallsystem	tetragonal
Raumgruppe	P42 ₁ m (Nr, 113)
Diffraktometer	Bruker CCD
Strahlung	Mo-K _{α} (Graphit Monochrom., $\lambda = 71,07$ pm)
Messtemperatur	170 K
Theta Bereich	$5^\circ < 2\theta < 56^\circ$
Indexbereich	$-12 \le h \le 12$
	$-12 \le k \le 12$
	$-10 \le 1 \le 10$
ω-Bereich; ω-Inkrement	$0^{\circ} < \omega < 180^{\circ}; 1^{\circ}$
Anzahl der Bilder	1600
Belichtungszeit	40 sec
Detektorabstand	80 mm
Datenkorrektur	Polarizations und Lorentz Faktoren
Absorptionskorrektur	numerisch [53]
Absorptionskoeffizient µ	20,62 mm ⁻¹
Anzahl gemessener Reflexe	7293
Anzahl symmetrieunabhängiger Reflexe	1043
Anzahl beobachteter Reflexe mit $I_0 > 2\theta(I)$	628
R_{int} / R_{σ}	0,2575 / 0,1485
Benutzte Programme	SHELXS-97 und
	SHELXL-97 ^[33]
Streufaktoren	Intern. Tables Vol.C ^[54]
FlackX-Parameter	0,0110
Extinktionskoeffizient	0,0040(8)
Goodness of fit	0,958
R_1 ; w $R_2 I_0 > 2\sigma(I)$	0,0650; 0,1386
R_1 ; w R_2 (alle Daten)	0,1047; 0,1509

Tabelle 62: Kristallographische Daten und deren Bestimmung zu (UO₂)₂(SO₄)(HSO₄)₂

Tabelle 63: Bindungsabstände in der Kristallstruktur von (UO₂)₂(SO₄)(HSO₄)₂

Atom 1	Atom 2	d/pm	Atom 1	Atom 2	d/pm
U1	01	177(2)	S1	O11 (4x)	144,8(16)
	O2	177,5(19)	S2	O23	143(3)
	O21	231(2)		O22 (2x)	145,2(17)
	O11 (2x)	238,3(16)		O21	154(2)
_	O22 (2x)	240,8(17)			

Atom 1	Atom 2	Atom 3	Winkel/°	Atom 1	Atom 2	Atom 3	Winkel/°
01	U1	02	178,1(11)	011	S1	011	110,4(14)
O1	U1	O21	94,1(10)	011	S1	011	109,0(7)
02	U1	O21	87,8(9)	011	S1	011	109,0(7)
O1	U1	011	84,4(5)	011	S1	O11	109,0(7)
02	U1	011	96,1(5)	011	S1	O11	109,0(7)
O21	U1	011	73,4(4)	011	S1	011	110,4(14)
O1	U1	011	84,4(5)	O23	S2	O22	110,4(11)
02	U1	011	96,1(5)	O23	S2	O22	110,4(11)
O11	U1	011	143,9(8)	022	S2	O22	109,1(18)
O1	U1	O22	89,6(7)	O23	S2	O21	111,8(18)
02	U1	O22	88,8(7)	O22	S2	O21	107,5(11)
O21	U1	O22	144,4(5)	022	S2	O21	107,5(11)
O11	U1	O22	142,2(7)				
O11	U1	O22	71,8(6)				
O1	U1	O22	89,6(7)				
02	U1	O22	88,8(7)				
022	U1	O22	70,8(10)				

Tabelle 64: Winkel in der Kristallstruktur von (UO₂)₂(SO₄)(HSO₄)₂

Tabelle 65: Atomlagen in der Kristallstruktur von (UO₂)₂(SO₄)(HSO₄)₂

Atom	x/a	y/b	z/c	U_{eq}
U1	0,30234(8)	0,19766(8)	0,37264(18)	0,0381(5)
01	0,2245(15)	0,2755(15)	0,206(3)	0,038(6)
02	0,3838(15)	0,1162(15)	0,536(2)	0,035(5)
S 1	0	0	0,5	0,043(3)
011	0,0841(17)	0,0880(17)	0,598(2)	0,060(6)
S2	0,1578(6)	0,3422(6)	0,7348(12)	0,043(2)
O21	0,1775(18)	0,3225(18)	0,555(2)	0,043(6)
022	0,187(2)	0,4847(18)	0,771(2)	0,064(6)
O23	0,245(2)	0,255(2)	0,825(4)	0,107(13)

Tabelle 66: Anisotrope Temperaturfaktoren in der Kristallstruktur von (UO₂)₂(SO₄)(HSO₄)₂

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
U1	0,0330(5)	0,0330(5)	0,0481(8)	0,0061(5)	-0,0061(5)	0,0011(5)
01	0,033(8)	0,033(8)	0,047(14)	0,001(7)	-0,001(7)	0,002(10)
O2	0,045(8)	0,045(8)	0,016(11)	0,009(7)	-0,009(7)	0,014(11)
S1	0,028(4)	0,028(4)	0,075(11)	0,000	0,000	0,000
011	0,043(9)	0,050(10)	0,087(18)	-0,013(12)	-0,002(12)	0,015(8)
S2	0,039(3)	0,039(3)	0,052(6)	0,007(3)	-0,007(3)	0,000(3)
O21	0,054(9)	0,054(9)	0,020(11)	-0,005(8)	0,005(8)	0,005(13)
O22	0,089(14)	0,040(10)	0,063(12)	0,008(9)	-0,035(12)	-0,029(11)
O23	0,094(16)	0,094(16)	0,13(3)	0,028(14)	-0,028(14)	0,051(19)

LEBENSLAUF

PERSÖNLICHE DATEN

NAME	Martin Pley		
ANSCHRIFT	von-Bodelschwingh-Str. 8		
	D-51469 Bergisch Gladbach		
GEBOREN AM	02. April 1977 in München		
FAMILIENSTAND	verheiratet (18. Mai 2001)		
Ehefrau	Manuela Pley geb. Damasck (*25. August 1975)		
KINDER	Lucas Pley (*27. Juli 2001)		
	Linus Pley (*24. Juni 2003)		
BILDUNGSWEG			
ALLG. HOCHSCHULREIFE	10. Juni 1998		
	Städtisches Abendgymnasium Köln		
	Gesamtnote: 2,6		
IMMATRIKULATION	01. Oktober 1998		
	Universität zu Köln		
	Fachbereich Chemie		
VORDIPLOM	14. Mai 2001		
	Gesamtnote: gut		
DIPLOMARBEIT	01. Juni 2003 - 15. September 2003		
	"Neue Untersuchungen an Osmaten"		
DIPLOM	15. September 2003		
	Gesamtnote: sehr gut		
PROMOTIONSSTUDIUM	seit 01. Oktober 2003		
AUSZEICHNUNGEN	seit 01. Januar 2004		
	DFG-Stipendiat im Graduiertenkolleg 549		
	"Azentrische Kristalle"		
	15. September 2004		
	Posterpreis der GDCH		
	Fachgruppe "Festkörperchemie und Materialforschung"		
FORSCHUNGSAUFENTHALT	27. Juli 2004 - 10. September 2004		
	Colorado State University, Ft. Collins, CO		
	Prof. Dr. Peter K. Dorhout		

PRAKTISCHE ERFAHRUNG

19. Juli 1999 - 27. August 1999	
	Praktikum
	Bayer AG Werk Leverkusen
16. Februar 2000 - 07. September 20	01
	studentische Hilfskraft
	Verband der privaten Krankenversicherung e.V.
05. März 2001 - 01. Juni 2002	
	studentische Hilfskraft
	Akzo Nobel Chemicals GmbH Werk Köln
01. Februar 2001 - 31. Oktober 2002	
	studentische Hilfskraft
	Institut für physikalische Chemie der Universität Köln
01. Oktober 2002 - 26. Oktober 2002	2
	Organisation und Leitung der Exkursion nach
	Berlin im Rahmen der "Summer School 2002"
	für Chemie Dozenten der Universität Kabul
01. Oktober 2002 - 31. September 20	003
	studentische Hilfskraft
	Institut für anorganische Chemie der Universität Köln
01. Oktober 2003 - 31. Dezember 20	03
	wissenschaftliche Hilfskraft
	Institut für anorganische Chemie der Universität Köln

KENNTNISSE UND PERSÖNLICHE INTERESSEN

FREMDSPRACHE	Englisch
SOFTWARE	Windows, Office XP, SPSS, Macromedia Studio MX
INTERESSEN	Bergsport, Allradfahrzeuge

Bergisch Gladbach, 20. Dezember 2004

ht. 3

PUBLIKATIONEN

- "[Ag(NH₃)₂]Ag[OsO₃N]₂: A new Nitridoosmate(VIII)" Wickleder, M.S.; Pley, M., J. Sol. State Chem. **177** (2004), 2073-2078.
- "*Pt*₂(*SO*₄)₂(*HSO*₄)₂: *The first binary Sulfate of Platinum*" Pley, M.; Wickleder, M.S., Z. Anorg. Allg. Chem. **630** (2004), 1036-1039.
- ,,Das Clusteranion $[Pt_{12}(SO_4)_{12}O_8]^{4-"}$

Pley, M.; Wickleder, M.S., Angew. Chem. 116 (2004), 4262-4264.
Pley, M.; Wickleder, M.S., Angew. Chem. Int. Ed. 43 (2004), 4168-4170.

,, $K_4[Pt_2(SO_4)_5]$: Das erste Pt(III)sulfat mit Ketten gemäß ${}^{l}_{\sim}[Pt(SO_4)_{4/l}(SO_4)_{2/2}]^{4-n}$ Pley, M.; Wickleder, M.S., Z. Anorg. Allg. Chem. **630** (2004), 1753.

"Platinchemie mit Oxo-Anionen"

Pley, M.; Wickleder, M.S., Z. Anorg. Allg. Chem. 630 (2004), 1769.

"Monomers, Chains, and Layers of $[Pt_2(SO_4)_4]$ -units in the Crystal Structures of the Platinum(III)sulfates $(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$, $K_4[Pt_2(SO_4)_5]$, and $Cs[Pt_2(SO_4)_3(HSO_4)]$ "

Pley, M.; Wickleder, M.S., Eur. J. Inorg. Chem. (2004), im Druck.

"*K*₃[*Pt*₂(*SO*₄)₄*H*(*HSO*₄)₂]: *A platinum*(*III*)-*sulfate wit* [*Pt*₂(*SO*₄)₄] *cores linked by* [*H*(*HSO*₄)₂]⁻ *units* " Pley, M.; Wickleder, M.S., Z. Anorg. Allg. Chem. (2004), im Druck.