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Kurzzusammenfassung

Kurzzusammenfassung
Photorefraktive (PR) Polymere gelten als vielversprechende reversible optisch-

holographische Speichermedien, die eine mit den besten derzeit bekannten anorganischen
Materialien vergleichbare PR Performanz aufweisen, ja diese sogar in einigen Belangen
übertreffen. Zusätzlich bieten PR Polymere gegenüber anorganischen oder auch organischen
PR Kristallen eine Reihe wichtiger Vorteile. Bei gleichzeitig geringen Kosten zeichnen sich PR
Polymere durch hohe optische Qualität und gute Reproduzierbarkeit aus, sind strukturell
flexibel, einfach herzustellen und leicht zu verarbeiten. 

Im Rahmen dieser Dissertation wurden auf dem photoleitenden Polymer Poly(N-
vinylcarbazol) aufbauende PR Polymere untersucht, wobei den speziellen Eigenschaften
besonderes Augenmerk zuteil wurde, die eine mögliche Anwendung dieser vergleichsweise
neuen Materialien als holographische Massenspeichermedien erfordern. Zu diesem Zweck
wurde die Zusammensetzung des untersuchten Materialtyps systematisch variiert, ohne die
Grundzusammensetzung nenneswert zu verändern, und die Materialien wurden verschiedenen
experimentellen Bedingungen ausgesetzt. Dabei war das vorrangige Ziel dieser Arbeit, einen
möglichst umfassenden Eindruck vom dynamischen Verhalten des untersuchten Materialtyps
bezüglich Hologrammaufbau, Löschen der Hologramme, sowie Zerfall der Hologramme im
Dunklen zu erhalten. Weiterhin sollten wichtige Details offen gelegt und die dahinter stehenden
physikalischen Ursachen ermittelt, oder auf der Basis bekannter theoretischer Ansätze
konkretisiert werden. In diesem Zusammenhang wurden auch Fragen des stationären
Verhaltens der untersuchten Materialien behandelt, da sich daraus wertvolle Erkenntnisse über
allgemeine Eigenschaften des PR Raumladungsfeldes bei den unterschiedlichen
Materialzusammensetzungen und unter den unterschiedlichen experimentellen Bedingungen
ableiten lassen, die hier untersucht bzw. verwendet wurden. Zum Abschluß wurden die
allgemeinen Multiplexingfähigkeiten des untersuchten Typs PR Polymere experimentell
getestet.

Mit Hilfe einer stark vereinfachten Modellrechnung wurden die allgemeinen
Beugungseigenschaften eines dicken holographischen Gitters bei gleichzeitigem Auftreten
starker Zweiwellenkopplung untersucht. Dabei wurde die typische geometrische Konfiguration
für Beugungsexperimente an PR Polymeren zugrunde gelegt. Es konnte gezeigt werden, daß
starke Zweiwellenkopplung, die eine Verbiegung der Gitterebenen des Bragg-Gitters zur Folge
hat, die Beugungseigenschaften des Gitters bei entarteter Vierwellenmischung im
experimentell zugänglichen Bereich nicht nennenswert beeinflußt.

Die Ausprägung der stationären und der dynamischen PR Eigenschaften der im Rahmen
dieser Dissertation behandelten Materialien wurde in Abhängigkeit von der Glastemperatur und
in Abhängigkeit vom Gehalt an nichtlinear optischem Farbstoff erforscht. Dabei wurde
festgestellt, daß der reduzierten Temperatur eine entscheidende Bedeutung zukommt. Die
reduzierte Temperatur ist die Glastemperatur bezogen auf die Umgebungstemperatur als
Nullpunkt. Es wurde beobachtet, daß die stationäre PR Performanz der Materialien mit hohem
Farbstoffgehalt in Abhängigkeit von der reduzierten Temperatur ein absolutes Maximum
durchläuft. Dies konnte auf den Einfluß zweier gegenläufiger Effekte zurückgeführt werden.
Einerseits wird in Richtung abnehmender reduzierter Temperatur die
Orientierungsbeweglichkeit der Farbstoffmoleküle in der Polymermatrix größer und deren
Ausrichtung entlang des Summenvektors der elektrischen Felder in einem PR Polymer
erleichtert. Somit sind kleinere externe elektrische Felder erforderlich, um ein gegebenes Maß
an elektrischer Polung des Materials zu erreichen. Andererseits nimmt das PR Raumladungsfeld
in Richtung abnehmender reduzierter Temperatur ab, sobald die reduzierte Temperatur negativ



Kurzzusammenfassung

wird. Dies ist eine Folge langsamer langreichweitiger Konformationsänderungen der
Polymermatrix, die dazu führen, daß sich die energetischen Positionen der einzelnen
molekularen Einheiten, die sich für den Ladungsträgertransport verantwortlich zeichnen,
ständig verändern. Da diese molekularen Einheiten zugleich auch potentielle
Ladungsträgerfallen repräsentieren, werden darin gefangene Ladungsträger wieder
freigelassen, wenn die obengenannte Änderung der energetischen Postion zu einer
Verringerung der energetischen Tiefe der betroffenen Falle führt. Im Mittel wird dadurch die
effektive Anzahldichte an PR Ladungsträgerfallen und damit das PR Raumladungsfeld
reduziert. Um diesen Effekt zu kompensieren, muß das externe Feld erhöht werden um eine
gegebene PR Brechungsindexmodulation zu erreichen. Es läßt sich ableiten, daß dieses
Wechselspiel der zwei vorgenannten gegenläufigen Effekte prinzipiell nicht vom
Farbstoffgehalt abhängt, jedoch für verschiedene Farbstoffgehalte unterschiedlich gewichtet
ist, so daß ein Optimum der PR Performanz für alle untersuchten Farbstoffkonzentrationen zu
erwarten ist, auch wenn es bei den Materialien mit geringem Farbstoffgehalt im experimentell
untersuchten Bereich nicht mehr nachgewiesen werden konnte. 

In Bezug auf das dynamische Verhalten der untersuchten Materialien ergab sich, daß die
Geschwindigkeit des Hologrammaufbaus bei positiver reduzierter Temperatur durch die
Orientierungsbeweglichkeit der Farbstoffmoleküle innerhalb der Polymermatrix begrenzt wird
und demzufolge mit steigender reduzierter Temperatur abnimmt. In diesem Bereich hängt die
Geschwindigkeit des Hologrammaufbaus außerdem stark vom Farbstoffgehalt ab: sie sinkt mit
steigender Konzentration an Farbstoffmolekülen. Dieser Effekt läßt sich durch eine
gegenseitige Behinderung der Farbstoffmoleküle während der Orientierung im anliegenden
elektrischen Summenfeld erklären, die mit steigender Farbstoffkonzentration an Bedeutung
gewinnt (“Backstein”-Effekt). Im Bereich negativer reduzierter Temperaturen wird die
Dynamik der Materialien von der Dynamik des PR Raumladungsfeldes bestimmt.
Dementsprechend läßt sich dann auch keine Abhängigkeit vom Farbstoffgehalt beobachten. 

Außerdem wurden Experimente zum Einfluß der Sensibilisatorkonzentration auf das
stationäre und das dynamische photorefraktive Verhalten des untersuchten Materialtyps
durchgeführt. Diese lieferten insbesondere wertvolle Informationen zu den
Ladungsträgerfallen, die zum PR Effekt beitragen. Es ergaben sich eindeutige Hinweise, daß in
PR Polymeren zwei grundsätzlich verschiedene Typen von Ladungsträgerfallen auftreten,
nämlich konformative Fallen, die im unbesetzten Zustand elektrisch neutral sind, und Coulomb-
Fallen, die im unbesetzten Zustand entgegengesetzt zur beweglichen Ladungsträgersorte
geladen sind. Erstere sind von Anfang an vorhanden, und ihre Anzahldichte hängt nicht von der
Konzentration an Sensibilisatormolekülen ab. Die Anzahldichte der Coulomb-Fallen dagegen
hängt systematisch von der Sensibilisatorkonzentration ab, was eine Zuordnung dieser Fallen
zu ionisierten Sensibilisatormolekülen erlaubt. Diese Fallen werden erst erzeugt, während das
Hologramm geschrieben wird, ihre Anzahldichte ist also zusätzlich zeitabhängig. Die
Gesamtzahl aktiver Ladungsträgerfallen für den PR Prozeß ergibt sich aus der Summe beider
Fallentypen und nimmt daher für gegebene Betriebsbedingungen mit steigender
Sensibilisatorkonzentration zu. Dies führt ab einer gewissen Mindestkonzentration an
Sensibilisatormolekülen einerseits zu einer verbesserten stationären PR Performanz, jedoch
andererseits zugleich zu einem komplizierteren Ansprechverhalten der Materialien. Schließlich
wurden deutliche Anzeichen dafür gefunden, daß die Aufbaudynamik des PR
Raumladungsfeldes in den untersuchten Materialien von der Beweglichkeit der freien
Ladungsträger bestimmt wird und nicht von deren Erzeugungsrate. Diese Aussage ist gültig für
typische Sensibilisatorkonzentrationen in PR Polymeren, wogegen davon auszugehen ist, daß
es eine untere Konzentrationsschwelle gibt, ab der die Erzeugungsrate den Ausschlag gibt. 
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Unter Berücksichtigung verschiedener Glastemperaturen wurde ferner das
Löschverhalten von photorefraktiven Brechungsindexgittern in Materialien des untersuchten
Typs eingehend untersucht. Als geschwindigkeitsbestimmende Schritte für den Löschvorgang
der Hologramme ergaben sich bei positiven reduzierter Temperaturen (d.h. die Glastemperatur
ist größer als die Umgebungstemperatur) erneut die dipolare Relaxation der Materialien und bei
negativen reduzierter Temperaturen wiederum die Dynamik (d.h. hier der Abbau) des PR
Raumladungsfeldes. Bei allen untersuchten Materialien wurde eine ausgeprägte Korrelation
zwischen der Löschdynamik und der Schreibdauer der Hologramme gefunden, wobei der
Löschvorgang bei länger geschriebenen Hologrammen langsamer verlief. Im Falle positiver
reduzierter Temperaturen läßt sich dieses Verhalten damit erklären, daß die Polymermatrix
unter dem Einfluß der bei der Reorientierung der Farbstoffmoleküle auftretenden inneren
Spannung viskos zu fließen beginnt. Das Ausmaß der dadurch beim Schreiben der Hologramme
auftretenden Änderung der inneren mechanischen Struktur nimmt mit der Schreibzeit zu und
muß beim Löschen weitestgehend revidiert werden, was zu einer schreibzeitabhängigen
Löschdynamik führt. Im Falle negativer reduzierter Temperaturen konnte bewiesen werden,
daß die optische Aktivierung von tiefen Fallenzuständen für die beobachtete Verlangsamung
des Löschprozeß in Abhängigkeit zunehmender Schreibdauer der Hologramme verantwortlich
zu machen ist. Es konnten zwei grundsätzlich verschiedene Typen von optisch aktivierten
Ladungsträgerfallen identifiziert werden, nämlich erneut Coulomb-Fallen und elektrisch
neutrale Fallenzustände. Von diesen bestimmen erstere die Löschgeschwindigkeit der
Hologramme zu Anfang des Löschvorganges, während sich letztere für die langsame
Komponente des Löschvorganges verantwortlich zeichnen. 

Während das Auftreten von optisch aktivierten Coulomb-Fallen bereits zuvor gezeigt
wurde und somit zu erwarten war, überraschte der Befund optisch aktivierter neutraler
Fallenzustände und wurde daher eingehender betrachtet. Die ermittelten Eigenschaften dieser
Fallenzustände legen die Annahme nahe, daß es sich um Carbazol Dimere handeln könnte,
deren optische Aktivierung indirekt erfolgt, d.h sie bilden sich erst in Anwesenheit eines optisch
erzeugten freien Ladungsträgers und liegen im gefüllten Zustand als Radikalkationen vor. Wird
eine solche Falle geleert, löst sich der Fallenzustand vollständig auf. Entscheidende Indikatoren
für diese Annahmen sind die experimentellen Befunde einer vollständigen Reversibilität der
optischen Aktivierung und eine ausgeprägte Abhängigkeit des Prozesses der optischen
Aktivierung von der reduzierten Temperatur. Mit Hilfe der bereits besprochenen
langreichweitigen Konformationsänderungen der Polymermatrix bei negativen reduzierten
Temperaturen würden solche Fallenzustände mechanisch zerstört. 

Zuletzt konnte gezeigt werden, daß von der Existenz einer optimalen reduzierten
Temperatur für die Anwendung der untersuchten Materialien für holographisches Multiplexen
auszugehen ist.

Auf Basis der Erkenntnisse der vorangehenden Untersuchungen wurden die untersuchten
Materialien mit extrinsischen tiefen Ladungsträgerfallen für Löcher dotiert, um eine
Stabilisierung der Löschdynamik zu erreichen. Jedoch zeigten die so modifizierten, neuartigen
Materialien ein noch komplizierteres Löschverhalten. Es wurde festgestellt, daß die
photorefraktive Brechungsindexmodulation (d.h. die Stärke des Hologrammes) bei Anwendung
von kurzen Schreibzeiten und geringer Lichtenergie in der Anfangsphase des Löschprozesses
weiter zunimmt. Diese Ergebnisse konnten phänomenologisch gedeutet werden, wobei die
besonderen Ladungstransporteigenschaften fallendotierter ungeordneter organischer
Festkörper und die spezifische räumliche Verteilung der elektrischen Felder in einem PR Gitter
in Betracht gezogen wurden. Mit Hilfe dieses phänomenologischen Modells konnten auch alle
weiteren experimentellen Beobachtungen qualitativ erklärt werden, die in Bezug auf die
fallendotierten Materialien gemacht wurden. 
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Ferner wurde der Dunkelzerfall von Hologrammen in den untersuchten Materialien
eingehend untersucht. Dabei wurden sowohl unterschiedliche reduzierte Temperaturen
berücksichtigt als auch Materialien mit und ohne Dotierung mit extrinsischen tiefen
Ladungsträgerfallen. Im Rahmen des untersuchten Bereiches sowohl negativer als auch
positiver reduzierter Temperaturen wurde als geschwindigkeitsbestimmender Schritt im
Dunkelzerfalls der Hologramme in allen Fällen der Zerfall des PR Raumladungsfeldes
identifiziert. Ferner konnte gezeigt werden, daß die Phasenverschiebung zwischen dem
hologrammerzeugenden Interferenzmuster und dem PR Gitter für die Geschwindigkeit des
Dunkelzerfall der Hologramme von herausragender Bedeutung ist. Die
Dunkelzerfallsgeschwindigkeit der Hologramme wird mit zunehmender Phasenverschiebung
deutlich verlangsamt. Dieses Ergebnis ist von besonderer Bedeutung, da es für
bildinformationstragende Hologramme einen inhomogenen Dunkelzerfall impliziert.

Schließlich wurde experimentell untersucht, ob holographisches Multiplexen mit
Materialien des untersuchten Typs generell möglich ist. Dazu wurde ein erweiterter
numerischer Formalismus für einen Belichtungsplan für holographisches Multiplexen
entwickelt, der den Besonderheiten des dynamischen Verhaltens der untersuchten
holographischen Speichermedien Rechnung trägt. Anhand von peristrophischen Multiplex-
Experimenten konnte gezeigt werden, daß die untersuchten Materialien holographisches
Multiplexen zwar grundsätzlich zulassen, jedoch mit schwerwiegenden Mängeln bezüglich
eines möglichen Einsatzes als Speichermedium in holographischen Massenspeichern behaftet
sind.

Zusammenfassend läßt sich feststellen, daß die Materialien des untersuchtes Typs als
Speichermedien in holographischen Massenspeichern nicht anwendbar sind. Dies ist
hauptsächlich auf ihr kompliziertes und für Massenspeicher unvorteilhaftes dynamisches
Verhalten zurückzuführen, das eine inhärente Eigenschaft das untersuchten Materialtyps oder
gar der gesamten Materialklasse zu sein scheint und eine sinnvolle Anwendung holographischer
Multiplex-Techniken vereitelt. Darüberhinaus sind sowohl die vergleichweise kurze
Dunkelspeicherzeit als auch das inhomogene Dunkelzerfallsverhalten informationstragender
Hologramme für einen holographischen Massenspeicher ungeeignet. Stattdessen könnte diese
Klasse von optischen Speichermaterialien als Medium für flüchtige holographische Speicher
Anwendung finden (Echtzeit-Anwendungen). Beispiele hierfür wären Anwendungen als
assoziative Speicher, als holographische Pufferspeicher, oder als Speichermedium für
zeitgetaktete holographische Bilderzeugung (TGHI, time gated holographic imaging).
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Abstract
Photorefractive (PR) polymers are considered as highly promising reversible optical

holographic storage media, which compete and in some aspects even surpass the performance
of the best currently known PR inorganic materials. In contrast to inorganic or organic PR
crystals, PR polymers offer significant advantages like good optical quality, high structural
flexibility, good reproducibility, easy processing and low cost.

In the frame of this work poly(N-vinylcarbazole)-based PR polymer composites were
investigated focussing on the particular features required for a potential application of this
relatively new class of materials as optical holographic storage media in mass data storage
devices. Therefore, the composition of the investigated type of material was systematically
altered, and various experimental conditions were applied. The main objective of this work was
to get a more detailed insight into and a better understanding of the dynamic recording, erasure
and dark decay behavior of holograms in this type of PR polymer. Steady-state performance
issues were also addressed as they yield important information on the general properties of the
PR space-charge field for the varying material compositions and experimental conditions
applied. Finally, the general holographic multiplexing capabilities of the investigated type of
material were examined. 

By means of a simplified model calculation the general diffraction properties of a
hologram in PR polymers in the presence of strong beam coupling were examined. It could be
proven that hologram bending due to strong beam coupling does not notably affect the
diffraction properties of a holographic grating in organic PR devices within the range of the
externally applied field experimentally possible.

The dependence of the steady-state and the dynamic PR performance of the considered
materials on the glass-transition temperature as well as on the doping level of electro-optic
chromophores was investigated. The reduced temperature, which is the glass-transition
temperature relative to the ambient temperature, was identified as a factor of outstanding
importance. A steady-state performance optimum in the highly-doped materials as a function of
the reduced temperature was observed, which is a result of two counteracting effects: On the
one hand, the orientational mobility of the chromophores increases with decreasing reduced
temperature, leading to a reduction of the external field required to achieve a certain degree of
electrical poling. On the other hand, for negative and further decreasing reduced temperatures
the PR space-charge field is more and more reduced as a result of a decrease of the effective PR
trap density due to slow collective motion of the photoconducting polymer matrix. The
hologram build up speed was found to be limited by the orientational mobility of the electro-
optic chromophores for positive reduced temperatures. In this regime, the grating build-up time
also depends strongly on the chromophore density due to sterical effects. For negative reduced
temperature the formation of the space-charge field was identified as the rate-limiting step in
the onset dynamics of the refractive index modulation. In this regime the chromophore doping
level turned out to be insignificant for the hologram build-up dynamics. 

Considering the influence of the sensitizer concentration on the steady-state and the
dynamic PR behavior of the investigated type of materials, strong indication was found that the
active PR trap manifold consists of conformational traps on the one hand and of coulombic traps
formed by charged sensitizers on the other. The first exist ab initio and their number density
does not depend on the sensitizer content. The latter are formed during the grating recording
process (i.e., their number density is a function of time) and add to the conformational traps.
This leads to improved steady-state PR performance on the one hand but to a more complicated
build-up dynamics of the hologram on the other. Both effects are not observed until a certain
threshold concentration of sensitizer moieties is provided. Furthermore, strong indication was
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found that the hologram build-up dynamics in the investigated type of PR polymers is limited
by the charge carrier mobility as long as the sensitizer concentration is not too low.

The general erasure behavior of PR gratings in the considered type of materials was
investigated in detail taking into account different glass-temperatures. In general the PR grating
erasure was found to be determined by the relaxation dynamics of the orientational order of the
chromophores for the case of positive reduced temperatures (i.e., for glass-transition
temperatures above the ambient temperature), whereas the decay of the PR space-charge field
governed the hologram erasure dynamics in the case of negative reduced temperatures. For all
materials investigated, a strong correlation between the erasure dynamics of a hologram and its
corresponding recording time was observed. In all cases, the grating erasure process was found
to slow down as a function of increasing recording time. For positive reduced temperatures this
can be attributed to a viscous flow of the polymer matrix, whereas optical activation of trapping
sites was identified to cause this effect, if the reduced temperature is negative. Two
fundamentally different types of optically activated traps could be identified, which are
coulombic traps ruling the initial grating erasure and deep traps of non-coulombic nature ruling
the erasure behavior on longer time scale. The latter trap species might be carbazole dimer
radical cations. It could be shown that an optimum reduced temperature must be anticipated for
a potential application of the investigated materials in holographic multiplexing.

Doping the investigated materials with large amounts of extrinsic deep traps in an attempt
to stabilize the erasure dynamics led to an even more complicated erasure behavior. Applying
short recording times and low recording as well as low erasure intensity, a further increase of
the hologram strength was observed during the initial erasure process. A phenomenological
mechanistic picture of the recording and the erasure process of a hologram in a material showing
trap controlled charge transport was developed taking into account the spatial distribution of
electrical fields within the PR grating. This model can qualitatively explain the experimental
observations made for this novel type of material.

The dark decay of holograms in the considered materials was investigated in detail taking
into account different glass-transition temperatures as well as extrinsic trap doping. Within the
range of reduced temperatures investigated (i.e., even for positive reduced temperatures) the
dark decay was found to be governed by the decay of the PR space-charge field. Furthermore,
the phase shift of the PR grating turned out to be a crucial parameter yielding fast dark decay
for small PR phase shifts, whereas the dark decay was increasingly retarded as the phase shift
became larger.

Eventually the general feasibility of holographic multiplexing in the investigated type of
materials was investigated. An expanded numerical formalism for a multiplexing exposure
schedule was devised, which accounts for the complicated dynamic behavior of the type of
holographic storage media investigated. By means of peristrophic multiplexing experiments the
general feasibility of holographic multiplexing in the investigated materials could be
demonstrated as well as the shortcomings of this new class of materials for potential application
as storage medium in mass data storage devices. 

In conclusion, the investigated type of holographic storage medium was found to be
inapplicable in holographic mass data storage devices. This is mainly due to the complicated
and unfavorable dynamic behavior, which appears to be an inherent feature of the investigated
type of material, or possibly even the entire class of materials, and which prevents a reasonable
application of holographic multiplexing techniques as well as long time storage. However, this
class of holographic storage materials may find application in any kind of volatile holographic
storage like, among others, associative memories, buffer holograms, or time gated holographic
imaging.
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1.)Introduction
The human society of the 20. century was formed by the achieved enormous technical and

scientific progress. In particular, traffic engineering, which dramatically facilitated the covering
of long distances, has been a key technology enabling the development of an industrialized
human society. A traffic infrastructure has been built, which is still the basis of welfare and
success in the industrialized countries. Therefore, the twentieth century is often referred to as
the “age of transportation”. However, within the past decade information technology has
emerged as the new key technology, which is going to form the human society of the 21. century.
A new infrastructure, known as the “Internet”, has emerged, which enables the transportation,
processing and storage of information. Thus, today’s human society and the current era are
already referred to as the “modern information society” and the “age of information”,
respectively.

The amount of digital data to be transported, processed and stored worldwide has recently
been estimated to be in order of magnitude of 1020 Bits (12 Exabytes) and is expected to
increase exponentially in the future [1]. Therefore, great research and engineering efforts have
been made in order to provide sufficiently powerful technologies, which can be expected to be
able to handle such an enormous amount of data. 

These efforts already led to the introduction of optical technologies in digital
communication. Today’s optical fibre digital communication technologies enable transmission
bandwidths of several tens of Gigagbits per second and have been the technological basis for
the rapid development of the Internet during the last decade. Today it is a matter of course that
(almost) everybody can easily connect to the Internet and down- or upload Megabytes of data
within minutes. Only ten years ago this was mere fiction.

In data storage technologies the Compact Disc (CD) and the Digital Versatile Disc (DVD)
are state of the art for removable read only digital data storage media. On both media data is
stored optically in two dimensions (on DVD’s additionally on multiple layers). The storage
densities of these media is physically limited by the optical diffraction limit for a single
recording spot. Up to 2x109 Bits/cm2 may theoretically be achieved utilizing blue laser light of
480nm. Today’s optical disk drives, however, still work with red laser light of about 650nm
wavelength, which quarters the maximum achievable storage density. Despite there are
’rewritable’ CD’s and DVD’s available, both types of storage media actually cannot be
considered as ’real’ rewritable storage media, since the possible number of read/write cycles is
strongly limited to several hundreds. For real rewritable mass data storage media, magnetic
media like hard disc drives (HDD) and tape drives are still state of the art. These media store
data by means of micro-domains of defined magnetic orientation on the surface of the medium,
i.e. also in two dimensions. Their maximum storage density is physically limited by the super-
paramagnetic limit, which describes the minimum size of a magnetized area being stable against
thermal demagnetization. Today’s HDD’s achieve storage densities of up to 15x109 Bits/cm2.
However, the physical limits of digital mass data storage on magnetic storage media already
loom at the horizon of further development.

Finally, data processing is still done purely electronically and there is no alternative
technology in sight, which may count out the traditional data processing devices based on
semiconductors. The general feasibility of purely optical logical devices has been proven in the
laboratory, however, this technology is still in its very childhood [2].

A very promising technology for a new class of high density mass data storage devices is
optical holographic data storage [B8, B13, B16]. In holographic data storage, whole pages of
digital data are imprinted into a laser light beam by means of a spatial light modulator and are
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stored as an interference pattern in a suitable storage medium. Therewith data are stored in three
instead of two dimensions. The theoretical storage density limit for holographic data storage
was estimated to 1/λ3 [19] corresponding to about 1012Bits/cm3 for wavelengths of visible light.
The stored data are retrieved by diffracting an undisturbed reference laser beam at the stored
hologram. Therewith the original object beam carrying the digital information of the stored
hologram is reconstructed. Since the thus retrieved digital information is a whole data page,
retrieval of holographically stored data is intrinsically of parallel nature, which allows for fast
data rates. 

The special nature of the holographic data retrieval process furthermore allows for
associative comparison of data inside the holographic storage medium. Therefore a reference
beam is used for read out of a stored hologram, which is not undisturbed but already carries
some information. In this case, the reconstructed object beam will only contain data, which are
correlated to the information “imprinted” in the reference beam (optical correlation, associative
memories [B8, B13, B16]). Thus, holographic storage media may also actively participate in
data processing. 

Besides the above discussed applications in information technology, there are numerous
applications of holographic techniques, which utilize the special nature of the holographic
recording and retrieval process [B8, B13, B16]: Among others, phase-conjugation of light
waves can be performed and laser beams can be cleaned and reshaped. Holographical
interferometry techniques allow for non-destructive material testing including contact-free
vibrational analysis and deformation testing. Recording a hologram at a certain wavelength and
retrieving it using a shorter wavelength may be used for purely optical coherent image
magnification. Finally, holographic techniques may improve optical coherence tomography
(OCT) [3]. OCT enables in-depth optical imaging in strongly scattering media like biological
tissues and, thus, is an important non-invasive method for medical diagnosis. In contrast to
conventional OCT scanning a medium pointwise, the introduction of holographic techniques
would allow for fast imaging of complete layers of the medium, which would be a significant
progress. Recently, the technique of time gated holographic imaging (TGHI) has been
developed, which promises significant progress in this field [4 to 7].

Besides the special case of read-only holographic mass data storage devices, for all the
aforementioned applications of holography, reversible holographic storage media are highly
preferable or even indispensable. The currently most promising reversible holographic storage
media are photorefractive (PR) materials. In these materials, the hologram to be stored is
reversibly translated into a spatially non-uniform electrical field, the so called PR space charge
field, which modulates the refractive index of the medium via electro-optic effects. The PR
effect is known since 1969, when it was discovered in inorganic crystals [8, 9]. Great research
efforts in the field of PR inorganic crystals have recently led to first attempts to realize
commercial holographic mass data storage systems promising highly persistent high density
data storage.

In 1990, the PR effect was also discovered in organic crystals [10, 11] and soon thereafter
in amorphous organic polymers [12]. Finally, the development of the first high performance PR
polymer in 1994 [13], which competes and in some aspects even surpasses the performance
levels of the best currently known inorganic materials initiated considerable research efforts in
this field. In contrast to PR inorganic or organic crystals, PR polymers offer significant
advantages like good optical quality, high structural flexibility, good reproducibility, easy
processing and low cost.

In this work, PVK-based amorphous organic PR polymers derived from the
aforementioned first high performance PR polymer [13] were investigated. Their steady-state
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and dynamic PR performance was considered. The details of the dynamic behavior was mainly
focussed upon in order to investigate the potential applicability of the considered type of PR
polymers as holographic mass data storage media. 

As a first objective of this work, the chemical composition of the investigated materials
was systematically altered in order to optimize their holographic performance. The glass-
transition temperature (Tg) was altered by varying the ratio of polymer and plasticizer.
Additionally, different concentrations of NLO chromophores were taken into account. The
influence of Tg and of the concentration of chromophores on the steady-state and the dynamic
PR performance was investigated. 

The second goal of this work was to get a deeper insight into the physical processes
determining the steady-state and dynamic performance of the investigated type of PR polymers.
Therefore, the role of the sensitizer in the PR process was considered by means of holographic
experiments on materials containing different concentrations of sensitizer molecules. The
erasure behavior as well as the dark decay behavior of the holographic gratings were
investigated in detail using different material compositions, including materials extrinsically
doped with deep trapping sites, and applying various experimental conditions. The formation of
charge carrier traps turned out to be highly important and was, therefore, elaborated upon in
detail. Established experimental techniques were refined and novel experimental methods were
devised in order to obtain new information on the stability of the recorded holograms in the dark
and their behavior during recording and erasure. The obtained results may serve as a theoretical
basis for future development of materials meeting the requirements of holographic mass data
storage media.

Finally, the general mass data storage capabilities of the investigated class of materials
were experimentally tested by means of peristrophic holographic multiplexing experiments.
These experiments clearly demonstrated the shortcomings of PVK based PR polymers for this
potential application. 
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2.)Theory

2.1.)Theoretical aspects of elementary optics
Optics is one of the oldest natural sciences. The laws of geometrical optics date back for

over 2000 years. The wave concept of Christian Huygens (1690) has been a milestone in the
development of optical sciences, which finally led to the assignment of optics to
electrodynamics, which in turn was initiated by the electro-magnetic theory developed by James
Clark Maxwell between 1855 and 1862. Heinrich Hertz was finally successful in proving the
electro-magnetic nature of light experimentally in 1887.

However, the electro-magnetic theory neither takes the fact into account, that light has to
be described as a stream of particles in certain experiments, nor is the basic understanding and
the quantitative description of the impact of the propagation medium on the propagation of
electro-magnetic waves included. The latter is introduced in Maxwell’s theory only
phenomenologically as “refractive index“ and “permittivity“. These parameters are explained
in a satisfactory way by quantum mechanics and quantum electrodynamics, which were
developed, among others, by Heisenberg, Schrödinger and Dirac in the 1920’s.

The following chapter concerns some basic aspects of elementary optics as far as they are
directly relevant to the framework of this theses.

2.1.1.) The electro-magnetic theory of light
The electromagnetic theory of light is based on Maxwell’s equations, which cannot be

derived, but are postulated as the basic equations of electrodynamics. Maxwell’s equations
consist of two field equations and two constraints, which may be expressed both in integral or
in differential form. Hereafter, the physically more ostensive integral form will be used for the
basic discussion. Both forms can be transferred into one another by applying the integral laws
of vector analysis (Gauss and Stokes integral laws). 

The first field equation is based on Faraday’s induction law and connects a time dependent
varying magnetic induction (flux density)  through an open surface A, limited by a closed
contour C, with an electrical rotational field  in C:

 eq. (2.1 - 1)

where  is the line vector of C and  is the surface vector to A. It states, that a temporally
varying magnetic field changing as a function of time always generates an electrical rotational
field encircling the magnetic field lines. The differential form of eq. (2.1 - 1) may be written as:

 eq. (2.1 - 2)

The second field equation is Ampere’s law, which was extended by Maxwell. This new
formulation of Ampere’s law correlates a current density  through an open surface A limited
by a closed contour C including the total current (old form of Ampere’s law) as well as a time
dependent dielectric displacement  through A (Maxwell’s extension) with a magnetic
rotational field  within C, according to:

B
E

E ds•
C
∫° t∂

∂ B
A
∫∫ dn•–=

s n

rotE E∇×
t∂

∂ B–= =

j

D
H
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 eq. (2.1 - 3)

where  is the line vector of C and  is the surface vector to A. This relation states in particular
that (besides a flowing current) an electrical field changing as a function of time always
generates a magnetic rotational field encircling the electrical field lines. The differential form
of this law may be written as:

 eq. (2.1 - 4)

The well known Gaussian laws of the magnetic and the electrical field are the constraints
to the field equations. The Gaussian law of the electrical field states, that an electrical field may
(not must) have sources, whereas the Gaussian law of the magnetic field defines it solenoidal in
any case. The Gaussian law of the electrical field may be written as:

 eq. (2.1 - 5)

where  is the surface vector to the closed surface F and  is oriented away from the enveloped
volume for each surface element dF of the closed surface F; ρ is the charge density inside the
volume V. Since the magnetic field is always solenoidal, the Gaussian law of the magnetic field
may be expressed as:

.  eq. (2.1 - 6)

The corresponding differential forms are:
 eq. (2.1 - 7)

and:
.  eq. (2.1 - 8)

Considering light propagating in free space or insulators, eq. (2.1 - 7) simplifies to:
.  eq. (2.1 - 9)

The dielectric displacement  is related to the electrical field  and the magnetic
induction  is related to the magnetic field  according to: 

,  eq. (2.1 - 10)

with ε0 as permittivity of the free space, εr as relative permittivity, µ0 as permeability of the free
space, and µr as relative permeability. The quantities εr and µr are material parameters.

From Maxwell’s equations, the wave equation for electro-magnetic waves can be derived
(see standard literature of optics). It has become common practice to consider only the electrical
component, which writes for the case of free space:

,  eq. (2.1 - 11)

where:
  eq. (2.1 - 12)

is the propagation velocity of electro-magnetic waves in free space. An important solution of
the differential equation eq. (2.1 - 11) is a monochromatic plain wave, which may be expressed

H ds•

C
∫° j

t∂
∂ D+ 

 

A
∫∫ dn•–=

s n

rotH H∇×
t∂

∂ D j+= =

D df•

F

∫° ρdV∫
V

∫∫=

f df

B df•

F

∫° 0=

divD D∇• ρ= =

divB B∇• 0= =

divD D∇• 0= =
D E

B H
D ε0εrE=

B µ0µrH=

E 1
c0

2
-------

t2

2

∂

∂ E–∇2 0=

c0 1 ε0µ0⁄=
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as:

,  eq. (2.1 - 13)
or in complex notation:

.  eq. (2.1 - 14)
with:

,  eq. (2.1 - 15)
where ω, ν, λ0 and  are the circular frequency, free space wavelength and wave number
= modulus of the wave vector, respectively.  is the real amplitude of the wave and ϕ is a
phase addend. The plus/minus-signs in eq. (2.1 - 13) and eq. (2.1 - 14) denote arbitrary
propagation directions or phasings. Hereafter and throughout the rest of this work complex
expressions will be denoted by a subscript tilde as far as the complex character of an expression
is not self-evident or irrelevant. 

The time derivation in eq. (2.1 - 11) may be eliminated by separating eq. (2.1 - 14) in a
time dependent component and a position dependent component according to:

 eq. (2.1 - 16)
with:

.  eq. (2.1 - 17)
Now eq. (2.1 - 11) may be rewritten as:

,  eq. (2.1 - 18)
which is known as the Helmholtz equation and is commonly applied to problems, which do not
require the consideration of the time dependence. 

Only the real part of the complex wave according to eq. (2.1 - 14) is physically relevant.
The complex notation is only a formalism, which facilitates the mathematical handling for many
problems. The physically relevant part of eq. (2.1 - 14) can be extracted by adding the complex
conjugate  according to:

.  eq. (2.1 - 19)

However, only linear operations can be performed using the complex notation. Any operation,
which mixes up the real part and the imaginary part is inadmissible, if the problem under
consideration has been formulated from the beginning in complex notation. Hence, if nonlinear
operations are part of the problem under consideration, the problem initially must not be
formulated in complex notation, however, may then be transferred into complex notation using
eq. (2.1 - 19). 

 By inserting eq. (2.1 - 14) and its magnetic equivalent into eq. (2.1 - 2), the relation
between the electrical field and the magnetic flux amplitude is obtained to:

.  eq. (2.1 - 20)

When considering the electrical and the magnetic field amplitude:

 eq. (2.1 - 21)

is obtained, where  is the unit vector in propagation direction of the wave and Z is called wave
resistance, since it corresponds to the ratio of the electrical and the magnetic field strength
(“voltage/current“). The wave resistance is defined by:

E E0 ωt k r• ϕ±±( )cos=

E
˜

E0e
i ωt k r• ϕ±±( )

=

ω 2πν 2π c0 λ 0⁄( ) kc0= = =
k k=

E0

E
˜

r t,( ) E
˜

r( )e
iωt

=

E
˜

r( ) E0e
i± k r• ϕ+−( )

=

E
˜

r( ) k2E
˜

r( )+∇2 0=

E
˜
∗

E 1
2
--- E

˜
E
˜
∗+( )=

B0
ek E0×

c0
-----------------=

H0
ek E0×

Z
-----------------=

ek
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 eq. (2.1 - 22)

and amounts to about 377Ω for the case of free space propagation ( ). 

The vector product of the electrical and magnetic field vectors defines a vector pointing
in propagation direction of the electro-magnetic wave. This vector has the dimension of a power
density, represents the energetic flux and is referred to as the Poynting-vector :

.  eq. (2.1 - 23)
Hereby free space is presumed. The power density emitted by a source is called specific
emission and the power density incident onto a surface is referred to as (irradiation) intensity. 

Calculating the Poynting vector for a plain wave according to eq. (2.1 - 13) one obtains
from eq. (2.1 - 23):

.  eq. (2.1 - 24)
According to , the Poynting-vector oscillates in the time
domain with twice the frequency of the wave between zero and its maximum value. However,
due to the very short oscillation period usually not the current magnitude of the Poynting-vector
is of interest, but its time average yielding the intensity I:

 eq. (2.1 - 25)

with  for . Applying eq. (2.1 - 20) leads to:

,  eq. (2.1 - 26)

where E0 is the amplitude of the electrical field component. 
Calculating the steps from eq. (2.1 - 23) to eq. (2.1 - 26) using the complex notation, one

must take into account that the vector product is not a linear operation. Hence, the problem has
to be formulated initially in real notation but can then be transferred into complex notation
according to eq. (2.1 - 19) as already mentioned before:

 eq. (2.1 - 27)
with:

.  eq. (2.1 - 28)

With eq. (2.1 - 19) one obtains:

.  eq. (2.1 - 29)

For time averaging, it is convenient to introduce a complex amplitude containing the spatial
term of the wave as well as the physical (real) amplitude resulting in:

.  eq. (2.1 - 30)

By time averaging according to:
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 eq. (2.1 - 31)

one obtains:

.  eq. (2.1 - 32)

This is a general expression, which transfers into eq. (2.1 - 25) when taking the modulus and
presuming free space. According to eq. (2.1 - 26) the intensity may be expressed in complex
notation as:

.  eq. (2.1 - 33)

Formulating this relation using the wave resistance Z according to eq. (2.1 - 22) yields:

.  eq. (2.1 - 34)

Please note that eq. (2.1 - 20) and eq. (2.1 - 21) imply perpendicular orientation of the
propagation direction, of the electrical field vector and of the magnetic field vector relative to
each other. Therefore, commonly electro-magnetic waves are referred to as TEM-waves
(transversal, electrical and magnetic). It must be pointed out that only infinitely vast plain
waves propagating in free space can be pure TEM waves. Real light beams are always laterally
restricted, leading to distortions of the wave fronts and thus to deviations from the TEM nature.
However, the assumption of pure TEM waves is a good approximation in many cases, which
also applies to all problems considered in the frame of this work. 

2.1.2.) Superposition of electro-magnetic waves
This section deals with the superposition of electro-magnetic waves and some related

phenomena including polarization, coherence, and the basic concepts of diffraction.
Hereafter, the superposition principle shall be valid, i.e. the electrical field strengths

involved shall be small enough to avoid any nonlinear effects, which are discussed later in a
separate paragraph. Furthermore ideal TEM waves are presumed.

2.1.2.1.)Polarization
Due to the transversal nature of electro-magnetic waves, the electrical field vector shows

time resolved and position resolved a well defined orientation, which is perpendicular to the
propagation direction of the wave. This feature is generally described by the concept of the
polarization. In the frame of this work, the spatial oscillation direction of the electrical field
vector will be referred to as the polarization direction. (It should be noted, that one can find
different definitions in the literature.) 

In this context the polarization plane of an electro-magnetic wave is defined by the
polarization direction and the propagation direction or, in other words, by the wave vector  and
the real electrical field vector , which oscillates in the polarization plane. As far as there is a
clearly defined reference, the polarization state of an electro-magnetic wave is sometimes
denoted as “s-polarized“, if the polarization plane is oriented perpendicular (germ.: senkrecht)
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to the reference plane, and as “p-polarized“, if the polarization plane is oriented parallelly to
the reference plane. This notation will hereafter always be used in this theses. 

Considering the polarization states of an electro-magnetic wave, one has to distinguish
basically two limiting polarization states. Any possible polarization state in-between can be
formed by suitable superposition of waves in these two states. Furthermore each limiting state
can be formed by suitable superposition of two waves in the other limiting polarization state.
These limiting polarizations states are: 

A) LINEAR polarization
In this case, the polarization direction is neither a function of time nor a function of 
the position. The electrical field vector oscillates parallelly to a constant straight line 
perpendicular to the propagation direction of the wave. 

B) CIRCULAR polarization
In the case of circular polarization, the electrical field shows a constant modulus but 
rotates around the propagation direction as a function of the wave propagation.
For an interval of exactly one period of the wave oscillation along the propagation 
direction, the projection of the end point of the electrical field vector onto a plane per-
pendicular to the propagation direction forms just a closed circle.

The cases A and B are illustrated in figure (2.1 - 1). All further polarization states are
mixed states of A and B and count to the group of elliptic polarization states. For example, the
in-phase superposition of two linearly polarized waves propagating in identical directions
results in an as well linearly polarized wave (figure (2.1 - 1), left). In contrast, if the
superposition is performed phase-shifted by π/2, a circularly polarized wave (figure (2.1 - 1),
right) will result if the amplitudes of the waves are identical. Phase shifts in-between 0 and π/2
and/or different amplitudes in turn yield some elliptic polarization state. Finally, the
superposition of two circularly polarized waves, which are identical, but their polarization
vectors rotating in opposite directions, results in a linearly polarized wave.

The mathematical procedure of superposing electro-magnetic waves is discussed in the
forthcoming section. Mixing of polarization states is not further considered, since the
mathematical modelling would be very extensive not revealing new aspects. Please note, that
there are particular mathematical formalisms for handling the polarization of electro-magnetic
waves. The modern representation of the polarization has been introduced by G.G. Stokes in
1852 and was improved by R. Clark Jones and Hans Müller during the 1940ies.

 Figure (2.1 - 1): Linear (left) and circular (right) polarization. Redrawn after [B1].
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2.1.2.2.)Interference
As long as the superposition principle is valid, electro-magnetic waves can be superposed

by simply adding the electrical field vectors. Since forming a sum is a linear operation, the
problem can be formulated initially in complex notation.

Considering two plain electro-magnetic waves of the general complex form:

 eq. (2.1 - 35)

where ϕ1,2 are phase addends, one obtains for the superposition of the waves:

.  eq. (2.1 - 36)

Depending on the problem under consideration a more or less complicated analytical expression
for the sum wave can be extracted from eq. (2.1 - 36), which will here be demonstrated for two
simple examples. 

At first the superposition of two waves, which differ only slightly in frequency but are
otherwise identical will be considered. For this case eq. (2.1 - 35) simplifies to:

 eq. (2.1 - 37)

introducing the complex amplitude  with . For the superposition one
obtains after some trigonometric manipulations:

.  eq. (2.1 - 38)

This represents a wave with the average frequency , the amplitude of which,
however, is modulated with the average modulation frequency . This behavior is
called “beat“ and characteristic for all wave phenomena.

The second example is of essential importance for this work and will, therefore, be
discussed in more detail. Considering the intersection of two linearly polarized plain waves of
identical frequency but different propagation directions, a stationary sinusoidal intensity
distribution will be observed if some basic conditions are fulfilled. This phenomenon is called
interference.

According to eq. (2.1 - 35), plain waves of identical frequency but different propagation
directions, amplitudes, and phasings may be expressed as:

.  eq. (2.1 - 39)

The phasings are constant in time. In order to obtain the intensity distribution of the sum of these
waves, eq. (2.1 - 33) is applied to the sum of the amplitudes:

 eq. (2.1 - 40)
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or:

 eq. (2.1 - 41)

where cc stands for the “complex conjugate“. If the intensities of the superposed individual
waves are denoted I1 and I2,  can be expressed by:

,  eq. (2.1 - 42)
where I12 is referred to as interference term and writes:

.  eq. (2.1 - 43)
Here αp12 is the angle, which is enclosed by the polarization directions (not the vectors) of the
intersecting waves. Please note that the polarization geometry must be read so that 0 ≤ αp12 ≤
90°. The observed intensity distribution, called interference pattern, is stationary as long as the
relative phasing of the intersecting waves is constant in time. I12 vanishes for αp12 = π/2, i.e. if
the interfering waves are polarized orthogonally. 

Thus, the term interference is defined as follows:

Any deviation from the additivity of the intensities by considering the superposition of 
waves is called interference.

“Maximum” interference is observed for  and . The intensity of the so called
interference fringes varies between zero and two times the total intensity of the two interfering
waves. The interference pattern may be considered as an interference grating and a grating
vector  can be assigned according to:

 eq. (2.1 - 44)
and:

,  eq. (2.1 - 45)

where λ is the wavelength of the interfering waves, Λ is the grating spacing (i.e. the wavelength
of the grating) and 2Θ is the angle enclosed by the wave vectors of the interfering waves.

The most common expression to describe the interference of two beams is obtained
merging eq. (2.1 - 42) to eq. (2.1 - 45) suitably and setting the phasings to zero. This yields:

,  eq. (2.1 - 46)
with:

 eq. (2.1 - 47)

and  according to eq. (2.1 - 44) and eq. (2.1 - 45). The variable m is called contrast factor and
is a measure for the modulation depth of the interference pattern.

The two beam interference discussed above is representative for any interference
phenomenon. As already noted, there are three interference conditions, which must be fulfilled
by the intersecting waves in order to yield a stationary interference pattern:

1) identical frequency
2) polarization directions not perpendicular to each other
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3) phasing with respect to each other constant in time

The violation of condition 2) leads to vanishing (intensity) contrast of the interference pattern
(m = 0 due to αp12 = 90°). Instead of a stationary intensity distribution showing the sequence:
“bright-average-dark-average-bright“, then a stationary polarization distribution is formed as
long as the other conditions are fulfilled. The corresponding polarization sequence is: “linear1-
circularI-linear2-circularII-linear1“, whereby linear1 and linear2 are orthogonal and circularI
and circularII rotate in opposite directions. For 0° < αp12 < 90° both intensity pattern and
polarization pattern exist simultaneously in the intersection area. Violation of the conditions 1)
and/or 3) leads to an interference pattern changing as a function of time (i.e. spatially moving).
Condition 3) is closely related to the concept of coherence, which will be outlined in the
following section.

2.1.2.3.)Coherence
Coherence is a general term, which concerns the predictionability of phase relations

within and in-between waves. The forthcoming discussion will be limited to visible light
without loss of generality as far as the basic aspects are concerned. Subsequently, the basic
phenomenology and terminology will be explained.

Visible light is usually generated by random electron transitions in atoms, molecules or
semiconductors, which by principle are strongly limited in duration. Light sources, in which
these processes dominate are called thermal emitters. The particular emission events are
independent from each other and thus, light generated by thermal emitters consists of many
independent individual light wave trains showing randomly distributed phasings. The length of
the particular wave trains is determined by the duration of the underlying emission process. 

Accordingly, in a light beam emitted by a thermal emitter, prediction of phase relations is
only possible within the time scales of a particular emission event. The average length of a
particular wave train in the time domain is called coherence time ∆tc, the reciprocal of which is
the frequency bandwidth ∆ν of the wave train. Accordingly, a short coherence time is correlated
with a broadband light pulse. In contrast, for hypothetically ideal monochromatic light the
coherence time diverges to infinity. The propagation velocity of the wave under consideration
links the coherence time with a spatial length, the so called coherence length. On this basis, the
term longitudinal coherence has become generally common for denoting this property in
english speaking literature. In contrast, coherence in time is more commonly used in german
speaking literature. The latter is more general, since it is independent from the propagation
medium, which determines the propagation velocity. The coherence length may simply be
interpreted as the length of a particular continuous wave train.

Considering a real light source as opposed to the hypothetical point source often used in
the literature for simplified discussions, the source has a finite size and consists of a huge
number of single emitters, which are again independent from each other, provided that the
considered light source is a thermal emitter. Accordingly, a light beam emitted by such a source
laterally consists of many independent particular wave trains, showing randomly distributed
phasings. In order to denote the phase relations between particular wave trains perpendicular to
the propagation direction of a light beam, the terms spatial coherence or lateral coherence have
been commonly adopted. However, this terminology is not clear cut, since it is related to the
light source and its properties but it actually depends on the geometry of the considered
problem. For example in Young’s double gap experiment interference effects will be observed
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if illumination of both gaps is possible by one and the same emitter of a spatially incoherent
source. On the other hand, no interference will occur if the light passing through the gaps stems
definitely from different lateral areas of the source. For these two cases, the source is one and
the same, but the geometry of the experiment defines the result. Hence, definite statements
about spatial coherence require deeper insight into the problem under consideration. 

The coherence of traditional light sources is poor and accordingly the study of coherence
has been neglected for a long time despite the fact, that basic work has already been done about
150 years ago by Emile Verdet. He reported the observation of interference effects with sun
light, which before was commonly considered as completely incoherent. However, with the
invention of the laser this situation changed dramatically. In a laser, coupled emission of many
single emitters is enforced, leading to high grade partial coherence in the light generated. Today,
optical coherence theory is a very active research area but beyond the scope of this work.

2.1.2.4.)Phase- and group-velocity
Up to now, the terms “light velocity“ or “propagation velocity of a wave“ have been used

several times without looking deeper into their physical meaning, which will be discussed now.

The term “propagation velocity of a wave“ usually refers to the propagation of a state of
constant phase angle of the considered wave through space or some medium. Considering a
wave e.g. according to eq. (2.1 - 13) or eq. (2.1 - 14), the phase angle ϑ of the wave is defined
by the argument of the trigonometric function or the complex exponential function,
respectively: 

.  eq. (2.1 - 48)
Here ϕ is a constant and may be disregarded. Accordingly, the propagation of a state of constant
phase angle can be expressed as:

.  eq. (2.1 - 49)

by applying the partial derivatives to eq. (2.1 - 48). Accordingly, vp is the propagation velocity
of a wave, referred to as phase-velocity. 

However, the situation becomes more complicated if the propagation of wave groups or
pulses of restricted expansion is considered, which, due to Fourier analysis, can be expressed as
superposition of several harmonic waves. The simplest example for this situation is the
superposition of two waves, yielding a sum wave according to eq. (2.1 - 38). This wave
oscillates with the average frequency of the two superposed waves. The amplitude however, is
additionally modulated by the beat frequency. For further consideration eq. (2.1 - 38) is
rewritten as:

,  eq. (2.1 - 50)

where  is the beat frequency and  is the corresponding beat wave vector,
while

 eq. (2.1 - 51)

represents the unmodulated wave with the average frequency  and with  as
the corresponding average wave vector. 
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Obviously, eq. (2.1 - 50) describes a situation containing two different propagation
processes, the propagation of the unmodulated wave, which may be considered as carrier wave,
and the propagation of the amplitude modulation of the carrier wave. The propagation velocity
of the unmodulated wave is  according to eq. (2.1 - 49), which is the phase velocity.
However, the modulation propagates with a velocity, which depends on the phase angle

 of the modulation function. Therefore, the propagation velocity is:

.  eq. (2.1 - 52)

The parameter vg is referred to as group velocity. The group velocity drops to zero, if 
and , which corresponds to a standing wave. Please note, that the group velocity
corresponds to the actual transport speed of information.

As for the phase velocity, the dispersity of the propagation medium has to be taken into
account. In dispersive media, ω is a function of k (this will be discussed in more detail in section
“2.1.3.) Light in linear media” on page 16). If ∆ω is small with respect to the average frequency,
the group velocity equals the derivative of the dispersion relation:

.  eq. (2.1 - 53)

This equation is generally valid for each group of superposed waves, provided that ∆ω is small
with respect to the average frequency. With eq. (2.1 - 49), one obtains:

.  eq. (2.1 - 54)

Accordingly,  in dispersion-free media, since  in this case. However,
in dispersive media,  and one obtains:

.  eq. (2.1 - 55)

In dispersive optical media and at normal dispersion the refractive index increases as a function
of frequency and, hence, vg < vp. Therefore, sometimes a “group refractive index“ is introduced
in order to account for the difference of the two propagation velocities.

Finally, it should be noted, that a third kind of velocity occurs in regions of anomalous
dispersion, where  (e.g. in the absorption band of a medium). This velocity is called
signal velocity and is identical to the group velocity in areas of normal dispersion. The signal
velocity accounts for the fact, that information cannot be transported at velocities exceeding
vacuum light velocity c0. For the same reason, the group velocity never exceeds c0 in media of
normal dispersion, whereas the phase velocity may do, however, without transporting any
information.

2.1.2.5.)Diffraction
Diffraction phenomena occur, if parts of a wave are blocked, e.g. by a pin hole, or at the

edge of a light beam, even without an obstacle in the beam path. They are due to the
superposition of the elementary waves existing at the edge of the obstacle or the light beam and,
hence, diffraction phenomena may be interpreted as a special class of interference phenomena.

Please note that “Bragg-diffraction“ is a special diffraction phenomenon, which will be
discussed in context with refraction and reflection.
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2.1.2.5.1.)The Huygens-Fresnel principle
Before proceeding, the term “elementary waves“ must be clarified. The concept of the

elementary waves is based on a principle first formulated by Christian Huygens and improved
by Jean Augustin Fresnel (Huygens-Fresnel principle):

All non-shielded points of a wave-front must at any time be considered as sources of 
spherical elementary waves of identical frequency as the primary wave. The ampli-
tude of the optical field at any sequencing point is then determined by the superposi-
tion of all elementary waves reaching this point and taking into account their 
individual amplitude and relative phasing.

The meaning of this very important basic optical principle
is illustrated in figure (2.1 - 2). The arrow points in the
propagation direction of the wave. The elementary waves
are indicated for three points on the wave fronts. The dotted
circles indicate the elementary waves, generated by the
points on the very left wave front, which after a certain time
superpose to generate the next wave front in propagation
direction. This wave front in turn is origin of elementary
waves, which now, after a superposition with each other as
well as with the elementary waves of the formal “first“
wave front (all dashed circles) generate the third wave front
and so on. Taking into account that there is actually an
infinite number of points generating elementary waves on
each wave front, plain wave fronts generate plain wave
fronts propagating in propagation direction of the wave.
However, the components of the elementary waves running
into the opposite direction must vanish, which actually is
not proposed by the Huygens principle. Fresnel solved this
problem proposing obliquity factors making the radiation characteristics of the elementary
waves directional. The obliquity factors finally were analytically formulated by Kirchhoff.
However, the details of the theoretical validation of the Huygens-Fresnel principle is beyond the
scope of this work. Hereafter, the principle is taken for valid and will be applied, disregarding
components of the elementary waves propagating in “wrong“ directions. The elementary waves
from the edge of the light beam interfere in some way, leading to diffraction effects as
mentioned above. 

2.1.2.5.2.)Fraunhofer and Fresnel diffraction
It turned out convenient to distinguish between two subgroups of diffraction phenomena,

the near-field diffraction (also referred to as Fresnel’s diffraction) on the one hand, and the far-
field diffraction (also referred to as Fraunhofer’s diffraction) on the other. The near-field
diffraction concerns the area more or less directly behind and/or before the diffracting object.
This applies to either the light source or the observation screen or both. In contrast, the far-field
diffraction describes diffraction phenomena observed at sufficient distance from the diffracting
object, so that the involved light beams are approximately parallel to the optical axis, which, in
simple terms, is the center line connecting the (diffracting) object with the observation plane.
The same condition must be met by the distance of the light source to the diffracting object.
Note, that ideal far-field diffraction, thus, only occurs for infinite distance between source,
object and observation plane and consequently all considerations of real diffraction phenomena

 Figure (2.1 - 2)
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using the far-field diffraction formalism are approximations.
The basic situation is sketched in figure (2.1 - 3),

where the source was assumed to be at infinite distance
for the sake of simplicity. Hence, the light incident on
the obstacle “O“ is parallel and “S“ is the screen for
observation of the transmitted light. In the case of near-
field diffraction (no lens), light beams passing through
the aperture in the obstacle and meeting in one and the
same point on “S“ obviously cannot be parallel (dashed
lines). If a lens “L“ is introduced at focus distance to
“S“, parallel beams passing through O meet in one
point on S. This represents the situation of far-field
diffraction. 

It is beyond the scope of this work to discuss the
theory of Fraunhofer and Fresnel diffraction in detail as well as to demonstrate the calculation
of diffraction patterns and reference is made to the standard literature of optics.

2.1.3.) Light in linear media
In this section, the basic principles of the interaction between light and matter will be

outlined. The oscillator model will be worked out as classical consideration of the linear
interaction between light and a homogenous, non-conducting and loss-free medium. Then the
basic approach for the treatment of wave propagation in loss-free and lossy media will be
outlined. Although the concepts outlined here will apply to isotropic as well as anisotropic
media, wave propagation in the latter will be discussed in more detail in context with
birefringence in section “2.1.4.3.6.) Wave propagation in anisotropic media - the index
ellipsoid” on page 35. Furthermore, waves in nonlinear media will be considered separately in
section “2.2.1) Nonlinear interaction between light and matter” on page 40. The influence of the
homogeneity of the medium will not be considered. 

Please note, that this section is restricted to dielectric media, i.e. the presence of free
charge carriers shall a priori be excluded and, accordingly, the conductivity σ = 0 shall be
presumed.

2.1.3.1.)Material equations
External electrical and magnetic fields induce associated atomar or molecular dipoles in

matter. The dipole moments induced per unit volume are referred to as (complex) electrical
 and magnetic  polarization (rarely also “electrization“ and “magnetization“,

respectively). Therefore, the dielectric displacement  and the magnetic induction  in matter
is described by: 

.  eq. (2.1 - 56)

These relations represent the material equations for arbitrary media. 
The polarizations are not proportional to the inducing fields, since the medium will react

with a time delay to the inducing fields. However, the magnitude of the material’s response may

 Figure (2.1 - 3): Far- and Near-Field 
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be proportional to the inducing fields. In this case, the medium is called linear and it is:

,  eq. (2.1 - 57)

where  and  are tensorial material constants depending on the particular behavior of the
fields as a function of time and are referred to as dielectric and magnetic susceptibility,
respectively. In the case of non-linear media, eq. (2.1 - 57) becomes a virial equation containing
terms of higher order in E. This will be discussed later in a dedicated section. Inserting eq. (2.1
- 57) into eq. (2.1 - 56) leads to the relative permittivity  and permeability  according to:

,  eq. (2.1 - 58)

with:

.  eq. (2.1 - 59)

Accounting for the tensorial character of the material constants, eq. (2.1 - 58) may be rewritten
in terms of its components as:

,  eq. (2.1 - 60)

with a,b = x, y, z. Accordingly,  and  in general consist of 9 elements.
In linear media, each field as a function of time may be expressed by superposition of

monochromatic fields using Fourier transformation. In this case, the material constants become
frequency dependent and dispersion has to be taken into account.

In loss-free linear media, the reaction of the medium on the fields occurs simultaneously.
In this case, the material constants are independent from time and the - and -tensors
become real and symmetric, as will be shown later. 

2.1.3.2.)The oscillator model (Lorentz-model)
The material constants  and  can only be derived correctly by means of a quantum

mechanical description of the interaction between light and matter. The Lorentz-model, on the
other hand, is a classical model, which only gives a qualitative picture. 

The Lorentz-model is based on the perception, that the material response to the interaction
with a light wave is due to a displacement of the electron cloud of an atom or molecule with
respect to its nucleus or manifold of nuclei, induced by the electrical field component of the
wave. The nuclei are considered as fixed due to their large mass relative to the electrons. Thus,
an oscillating electrical dipole is induced, which, in turn, is subjected to energy dissipation by
electro-magnetic radiation damping the induced oscillation. Without loss of generality, this
model can be reduced to the most simple system, which is represented by an electron in the
central field of a proton. In order to ensure linear response, small elongation is presumed.
Furthermore, relativistic effects shall be excluded.

Taking into account, that the driving force for the oscillation is the Coulomb force F:
,  eq. (2.1 - 61)
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with e0 as elementary charge and presuming an incident monochromatic wave at frequency ω:

,  eq. (2.1 - 62)
the vibration equation of the electron with respect to the atomic nucleus will be:

.  eq. (2.1 - 63)
Here m is the electron mass, γ is the damping constant, ω0 is the resonance frequency of the
system and u is the magnitude of the displacement. The solution of this classical problem is:

 eq. (2.1 - 64)

Presuming, that the individual dipoles do not interact with each other (i.e. the density of dipole
is assumed small), the electrical polarization per unit volume may be expressed as the product
of the dipole density n0 and the induced dipoles:

.  eq. (2.1 - 65)

Comparison of eq. (2.1 - 65) with eq. (2.1 - 57) yields an expression for the complex
electrical susceptibility :

 eq. (2.1 - 66)

with the real part:

 eq. (2.1 - 67)

and the imaginary part:

.  eq. (2.1 - 68)

The dependence of  and  on the frequency in the region of a resonance point is illustrated
in figure (2.1 - 4).

Finally it should be noted that the electrical polarization according to eq. (2.1 - 65)
represents a wave by its own, called polarization wave. This polarization wave experiences a
phase delay relative to the stimulating electro-magnetic wave, which starts at φ = 0° for ω → 0,
is 90° at the resonance point (ω = ω0) and ends up at φ → 180° for ω → ∞. The phase delay
around the resonance point is depicted in the inset of figure (2.1 - 4).
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2.1.3.3.)Loss-free and lossy media

2.1.3.3.1.)Energetic considerations
If an electrical or a magnetic field affects a polarizable medium, the fields perform work.

The electro-magnetic work per unit volume wem is identical to the energy density:

.  eq. (2.1 - 69)

Inserting the material equations eq. (2.1 - 56) yields:

 eq. (2.1 - 70)

and thus, the energy density consists of a field contribution and a contribution of the polarizable
medium. 

If the medium is linear and the waves involved are monochromatic, eq. (2.1 - 69) yields:

,  eq. (2.1 - 71)

where we is the electrical and wm is the magnetic energy density.
Furthermore, the field energy in a volume V enclosed by the surface F is  and

the energetic flux escaping from V is the surface integral of the Poynting vector.
Thus, applying Gauß’ integral law yields:

,  eq. (2.1 - 72)

where  is the normal vector to an infinitesimal element of the surface F.
If some electro-magnetic field energy in the volume is transformed into another form of

energy, power dissipation Pv occurs inside the volume, which can be expressed as the volume
integral of the power dissipation density pv:

 Figure (2.1 - 4): Real part (refractive index) and imaginary part (absorption coefficient) of the electri-
cal susceptibility as a function of frequency near a resonance point. The inset shows the phase delay φ 

between the stimulating wave and the material response.
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.  eq. (2.1 - 73)

Accordingly, the power dissipation density is:

.  eq. (2.1 - 74)

Inserting eq. (2.1 - 23) and eq. (2.1 - 71) finally results in:

,  eq. (2.1 - 75)

where σ is the conductivity of the medium. As already mentioned above this paragraph shall be
restricted to dielectric media. Accordingly, the last term is only included for the sake of
completeness and will be disregarded hereafter.

2.1.3.3.2.)Loss-free media
If there is no loss of electro-magnetic field energy in the medium, the power dissipation

density vanishes, which requires according to eq. (2.1 - 75):

.  eq. (2.1 - 76)

Inserting eq. (2.1 - 62) (i.e. a monochromatic plain wave) into eq. (2.1 - 58), extracting the
physically relevant real part and writing the Cartesian components separately results in:

,  eq. (2.1 - 77)

with a = x, y, z and b = x, y, z. Expressing furthermore eq. (2.1 - 62) in the same way yields:
.  eq. (2.1 - 78)

Since the requirements according to eq. (2.1 - 76) must be met for loss-free media, it becomes
clear, that:

.  eq. (2.1 - 79)

Accordingly, the components of the permittivity tensor εr are real and symmetric in loss-free
media, and a coordinate system (principal axes system) can be found, where:

, (a = x, y, z).  eq. (2.1 - 80)

The same applies for magnetic fields and magnetically polarizable media.
The wave equation and its solution for free space has already been discussed in “2.1.1.)

The electro-magnetic theory of light” on page 4. Since the relative permittivity for loss-free
media is real, the solution for free space can easily be expanded to loss-free media. Removing
the restriction to the free space (however, not allowing for the presence of free charges) the
wave equation eq. (2.1 - 11) may be rewritten as:

,  eq. (2.1 - 81)

with the complex notation already introduced. The solution for the wave equation provided
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before will apply here as well (eq. (2.1 - 14)) and will fulfill the wave equation for:

,  eq. (2.1 - 82)
which is the dispersion relation for the wave in the medium.

The propagation velocity cph of the wave in the medium is according to eq. (2.1 - 12):

,  eq. (2.1 - 83)

and is different from the propagation velocity c0 in free space. The variation of the propagation
velocity in the medium relative to the free space is:

.  eq. (2.1 - 84)

The quantity n is the refractive index of the medium. Its frequency dependence is depicted in
figure (2.1 - 4). According to eq. (2.1 - 15), it is:

,  eq. (2.1 - 85)

where λ0 is the free space wave length and k0 is the modulus of the free space wave vector. 
The wave resistance of the medium is real and defined by:

 eq. (2.1 - 86)

according to eq. (2.1 - 22), which also effects the energy relations, e.g. see eq. (2.1 - 34).

2.1.3.3.3.)Lossy media
In lossy media power dissipation occurs and the permittivity is complex, as is the

susceptibility. According to eq. (2.1 - 84), the refractive index is then complex, too. However,
the wave equation (eq. (2.1 - 81)) accounts also for complex material constants. Accordingly, a
possible solution is again a plain wave. However, since the refractive index is now complex,
according to eq. (2.1 - 85) the wave vector will also be complex (note, that the vacuum wave
vector is always real). The plain wave thus writes:

,  eq. (2.1 - 87)
with:

.  eq. (2.1 - 88)
Here  is the complex refractive index resulting from eq. (2.1 - 84) and the complex material
constants. Note, that one may as well formulate a complex wavelength, but (in linear media) not
a complex frequency. It depends on the particular problem, which formulation is most
appropriate. 

According to the equations eq. (2.1 - 84), eq. (2.1 - 68), eq. (2.1 - 67) and eq. (2.1 - 59)
the complex refractive index can be expressed as:

,  eq. (2.1 - 89)
where µr = 1 (i.e. the medium is not magnetizable) was presumed for the sake of simplicity. If
the loss is small (i.e. ), eq. (2.1 - 89) may be approximated by:

 eq. (2.1 - 90)

and thus be separated into a real and an imaginary refractive index. Inserting eq. (2.1 - 90) into
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eq. (2.1 - 87) yields the plain wave:

,  eq. (2.1 - 91)
where  is the unit vector in propagation direction of the wave, nr is the real refractive index:

 eq. (2.1 - 92)
and α is the absorption coefficient:

.  eq. (2.1 - 93)

The qualitative frequency dependence of nr and α in the region of a resonance point is depicted
in figure (2.1 - 4). Usually, α is positive and the wave according to eq. (2.1 - 91) will decrease
exponentially in amplitude while propagating. However, α may be negative in some cases,
which are not subject of the present discussion (e.g. in the case of stimulated emission). It should
furthermore be pointed out, that the separation of the complex refractive index into the real
refractive index and the absorption coefficient performed as above will not hold, if the
approximation  is not valid.

The wave resistance of a lossy medium is complex as well:

,  eq. (2.1 - 94)

which, according to eq. (2.1 - 21), leads to a dephasing ϕ of the magnetic component of the
electro-magnetic wave relative to the electrical component:

.  eq. (2.1 - 95)

The energy relations (see page 7 ff) are effected as well and the intensity now depends on the
penetration depth of the wave in the medium according to:

.  eq. (2.1 - 96)

2.1.4.) Reflection and refraction
In this paragraph, the phenomenological and the electro-magnetic treatment of reflection

and refraction of light at interfaces will be outlined. Fresnel’s equations will be derived, but not
interpreted in detail. Thereafter, birefringence will be treated with restriction to uniaxial
systems. The special features of inner total reflection as well as reflection and refraction at
metallic surfaces will be disregarded. 
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2.1.4.1.)Phenomenological treatment of reflection and refraction
The phenomenological description of

reflection and refraction can be illustrated using
the Huygens-Fresnel principle, which has
already been formulated above in “2.1.2.5.1.)
The Huygens-Fresnel principle” on page 15.
Assuming that a plain wave front passes
through an interface between two media (which
shall be assumed at first to be air and some
dielectric) the wave front will be scattered by
the atoms at the interface, generating
elementary waves at each atom in accordance
with the Huygens-Fresnel principle. If the wave
front does not pass perpendicularly through the
interface, different areas of the wave front will
pass at different times through the interface
generating delayed elementary waves, which
emanate to the outside as well as to the inside of the dielectric. The superposition of the
elementary waves outside the dielectric will then form a new wave front propagating outside the
dielectric in a different direction than the incident one. This situation is depicted in figure (2.1
- 5). The incident wave front is denoted by “A“ (= “A1 + A2“) and half of the wave front (“A2“)
has already passed through the interface generating delayed elementary waves outside the
dielectric, which form the emerging wave front “B“. As soon as the rest of front “A“ (i.e. “A1“)
has passed through the interface, the new wave front “B“ will be complete. “B“ is the reflected
part of “A“. However, the elementary waves inside the dielectric will propagate with reduced
velocity (provided the refractive index inside the dielectric is larger than outside) as compared
to the elementary waves outside the dielectric. They, in turn, form another wave front “C“
propagating inside the dielectric. Since the elementary waves exhibit a different propagation
velocity than the elementary waves outside, the propagation direction of the wave front “C“ is
different from the original wave front “A“. “C“ will also be complete as soon as “A“ has
completely passed through the interface and is the refracted part of “A“. 

2.1.4.1.1.)Fermat’s least-time principle
In order to quantify the relations described above, it is more convenient to apply another

fundamental principle of elementary optics, the least-time principle, which was already
formulated in its present form 1657 by Pierre de Fermat:

The path taken by a light beam between any two points in a system is always the path 
that takes the least time. 

However, this (original) formulation is not unequivocal, since it does not account for the
possibility of fundamentally different paths between two points, e.g one direct path and another
longer path including reflections. The least time principle in the above formulation would
exclude the latter one. This problem is solved by the following (modern) formulation, allowing
for different optical paths and defining the “least-time“ condition for each possible path:

A light-beam going from one point to another must traverse an optical path length
which is stationary with respect to small variations of that path.

 Figure (2.1 - 5): Reflection and refraction of a 
wave front according to the Huygens-Fresnel 

principle
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2.1.4.1.2.)Reflection law and Snellius’ refraction law
According to Fermat’s principle, the time tAB

for the light to traverse from A to B and tAC from A
to C has to be “stationarized“ as a function of xA and
xB for tAB and xA and xC for tAC, respectively. The
geometry of the arrangement is illustrated in figure
(2.1 - 6). The traversing times may be expressed as:

 eq. (2.1 - 97)

and:

 eq. (2.1 - 98)

where ci,t are the propagation velocities of the light
in the media with the associated refractive index ni,t,
respectively. In order to eliminate one of the x-
components in the above equations:

 eq. (2.1 - 99)

is introduced and the traversing time is minimized
with respect to the remaining x-component, yielding:

 eq. (2.1 - 100)

and:

.  eq. (2.1 - 101)

Introducing the correlated trigonometric functions, eq. (2.1 - 100) finally results in:
,  eq. (2.1 - 102)

which is known as the reflection law and eq. (2.1 - 101) yields:

.  eq. (2.1 - 103)

With eq. (2.1 - 84) one obtains Snellius’ refraction law from the above equation:

.  eq. (2.1 - 104)

It becomes clear from the modern formulation of Fermat’s principle, that “stationarizing“
a light beam path allows for local minima as well as turning points for the traversing time as a
function of the path. The original least-time principle in its strict interpretation only refers to the
absolute minimum of the traversing time.

 Figure (2.1 - 6): Fermat’s least-time principle 
applied on reflection and refraction.
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2.1.4.2.)The electro-magnetic approach to reflection and refraction
The electro-magnetic approach leads to a much more complete description of reflection

and refraction known as Fresnel’s equations. Based on these equations predictions of the
reflected and transmitted relative intensities as well as the phase relations between the incident,
the reflected and the refracted wave can be made. Subsequently, the basic equations will be
derived and discussed as far as advisable within the frame of this work. 

The derivation of Fresnel’s equations bases on the continuity conditions for electro-
magnetic waves at dielectric interfaces without surface charge density and surface current
density, which read:

 eq. (2.1 - 105)

 eq. (2.1 - 106)

 eq. (2.1 - 107)

,  eq. (2.1 - 108)
where index “i” denotes the physical quantity incident on a dielectric interface, index “t”
denotes the transmitted part of the quantity and  is the surface normal vector of the interface
under consideration. For a detailed discussion of the continuity conditions reference is made to
the standard literature of theoretical electrodynamics.

2.1.4.2.1.)Fresnel’s equations
According to the continuity conditions, the electro-magnetic consideration of reflection

and refraction must be divided into two parts for the two limiting cases of the orientation of the
field vectors relative to the interface considered. A randomly polarized light beam actually will
be split into these two components, which then behave differently in refraction as well as
reflection. It is common practice to consider only the electrical field component of the electro-
magnetic wave. Furthermore, non-absorbing media are assumed for the derivation, however,
the results are valid for absorbing media as well if complex refractive indices are used.

Please note, that there are two possible notations, which differ by the reference plane.
Usually, the polarization states are referred to the plane of incidence, which is defined as the
plane in which the incident and the reflected beams propagate. Referring instead the
polarization states to the considered interface is uncommon, since the situation becomes quickly
puzzling, if more than one interface is involved. In this work, the plane of incidence serves as
reference plane in all cases. 

2.1.4.2.1.1.) s-polarization

For s-polarization, the electrical field vector of the considered plain wave is oriented
tangentially to the interface (figure (2.1 - 7)).

In order to derive Fresnel’s equations one has to realize, that this is a problem with two
unknown parameters, which are the reflected and the refracted wave, whereas the incident wave
is known. Accordingly, two linearly independent equations are required, which can be obtained
by using the continuity conditions of eq. (2.1 - 105) to eq. (2.1 - 108). The continuity conditions
are linked via eq. (2.1 - 20), which is generally valid:

,  eq. (2.1 - 109)
where  is the unit vector of the wave propagation direction and c is the propagation velocity
of the wave. For the notation used from now on reference is made to figure (2.1 - 7). 

n Et Ei–( )× 0=

n Dt Di–( )• 0=

n Ht Hi–( )× 0=

n Bt Bi–( )• 0=

n

ek E× cB=
ek



2.1.)Theoretical aspects of elementary optics

26

Accounting for the continuity condition eq. (2.1 -
105), the relation between the electrical fields is:

.  eq. (2.1 - 110)
Please note already here, that  is oriented anti-parallel to

 and , which will be shown later. Furthermore, the
continuity of the tangential component of the magnetic field

 (eq. (2.1 - 107)) requires:

.  eq. (2.1 - 111)
Inserting  and eq. (2.1 - 109) (or eq. (2.1 - 20))
while accounting only for the modula of the field vectors,
accounting for ci = cr, applying eq. (2.1 - 84) and eq. (2.1 -
102), and choosing an appropriate origin for the coordinate
system (see figure (2.1 - 7)) finally yields:

 eq. (2.1 - 112)

and:

,  eq. (2.1 - 113)

where rs and ts are referred to as amplitude reflection coefficient and amplitude transmission
coefficient, respectively. These equations are generally valid for arbitrary media.

In most cases, dielectrics are considered, which meet the approximation:
.  eq. (2.1 - 114)

Then, the permeabilities in eq. (2.1 - 112) and eq. (2.1 - 113) fall apart and two equations are
obtained, which are referred to as Fresnel’s equations (for s-polarized light). By means of
Snellius’ refraction law (eq. (2.1 - 104)), eq. (2.1 - 112) and eq. (2.1 - 113) finally rewrite as:

 eq. (2.1 - 115)

and:

,  eq. (2.1 - 116)

respectively.

2.1.4.2.1.2.)p-polarization

For p-polarization, the magnetic field vector of the considered plain wave is oriented
tangentially to the interface (figure (2.1 - 7) with the polarization of the sketched waves rotated
by +90° around the propagation vector).

The continuity condition eq. (2.1 - 105) for the tangential component of the electrical field

 Figure (2.1 - 7): electrical field vector
tangential to the interface
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vector reads here:
.  eq. (2.1 - 117)

Furthermore, the continuity of the dielectric displacement (eq. (2.1 - 106) requires:
,  eq. (2.1 - 118)

which, with eq. (2.1 - 104), eq. (2.1 - 102) and eq. (2.1 - 84), transforms to:

 eq. (2.1 - 119)

where n is the refractive index of the corresponding medium and µ is its permeability. With eq.
(2.1 - 117) the amplitude reflection rp and transmission tp coefficients are finally given by:

 eq. (2.1 - 120)

and:

.  eq. (2.1 - 121)

These equations are generally valid for arbitrary media.
In analogy to the above, eq. (2.1 - 120) and eq. (2.1 - 121) are strongly simplified if the

medium under consideration is purely dielectric, i.e., eq. (2.1 - 114) applies. Then, with eq. (2.1
- 104), eq. (2.1 - 120) and eq. (2.1 - 121) rewrite as:

 eq. (2.1 - 122)

and:

,  eq. (2.1 - 123)

respectively.

2.1.4.2.2.)Interpretation of Fresnel’s equations
Two different situations must be considered, which are the outer reflection (nt > ni) and

the inner reflection (nt < ni). A detailed discussion is beyond the scope of this work. The
objective of this paragraph is to give a quick and qualitative overview over the basic results,
which is best performed graphically. The classical example of an air (n = 1) / glass (n = 1.5) -
interface forms the basis for the graphics. 
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At first the amplitude coefficients will be considered, which determine the reflectance and
the transmittance of an interface. The amplitude coefficients for outer reflection are real over
the whole interval of possible angles of incidence. At the so called polarization angle (θp) or
Brewster angle (the latter is the more common notation) the amplitude reflection coefficient for
p-polarized light drops to zero, whereas the other coefficients remain finite. This feature can be
used for generating polarized light. At an incident angle of 90° (incidence “parallel“ to the
interface), the light is completely reflected.

The amplitude coefficients for inner reflection are real up to a
limiting angle θc which marks the onset of total inner reflection. For
angles of incidence greater than the limiting angle, the amplitude
coefficients become complex. There is also a polarization angle, which
is smaller then the limiting angle. The fact, that the transmission
amplitude coefficients do not drop to zero in the area of total inner
reflection is demanded by the electro-magnetic theory (the continuity
conditions forbid a singular situation at the interface). However, the
transmitted wave “propagates“ in the medium of smaller refractive
index parallel to the interface (i.e., the refraction angle formally becomes 90°). This wave is
called evanescent wave (figure (2.1 - 9)). Its amplitude decreases exponentially as a function of
the distance from the interface. 

Please note, that the sum of the amplitude coefficients need not equal one, but rather the
sum of the reflectance R and transmittance T in order to ensure energy preservation.

The reflectance is defined by:

,  eq. (2.1 - 124)

where Ii is the incident- and Ir the reflected intensity, and r is the amplitude reflection
coefficient. The transmittance is defined by:

,  eq. (2.1 - 125)

where t is the transmission amplitude coefficient. The index “t“ denotes parameters for the
transmitted wave, and θ is the angle, which the wave vector encloses with the normal to the
interface.

Secondly, the phase relations between the incident, the reflected, and the transmitted wave

 Figure (2.1 - 8): Amplitude coefficients according to Fresnel’s equations for an air/glass-interface for outer 
reflection (left) and inner reflection (right)
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will be discussed. The situation of the total inner reflection will not be elaborated upon, since it
is fairly complicated and beyond the scope of this work.

The transmitted wave generally does not experience any phase change with respect to the
incident wave, which can readily be derived from the fact, that the amplitude transmission
coefficient is never negative.

The phase relation between the incident wave and the reflected wave is illustrated in
figure (2.1 - 10) as a function of the incidence angle θi.

2.1.4.3.)Uniaxial birefringence
Birefringence is a phenomenon, which occurs in homogenous, but optically anisotropic

media. Optical anisotropy covers the general feature of direction-dependent optical properties
of matter. This may refer to various optical parameters, of which the refractive index leads to
birefringence. Accordingly, birefringent media feature a direction dependent refractive index.
Depending on the symmetry of the medium there are two types of birefringence, uniaxial and
biaxial birefringence. While the basic concepts of birefringence apply to both types, biaxial
media are less symmetric than uniaxial and, thus, biaxial birefringence is mathematically much
more difficult to treat. Since photorefractive polymers only show uniaxial birefringence, biaxial
birefringence will be disregarded. Hereafter, all terms concerning birefringence will refer
exclusively to uniaxial birefringence unless explicitly noted otherwise.

The birefringence will at first be discussed semi-empirically and in terms of the Huygens-
Fresnel principle in order to get a detailed ostensible picture of the wave propagation in
birefringent media. After that, a treatment in terms of propagation of plane waves in anisotropic
media will be outlined leading to the important general term of the index ellipsoid. 

2.1.4.3.1.)Optical axis
Uniaxial birefringent media exhibit exactly one at least threefold crystallographic

principal axis, which is the axis of highest symmetry of the system. Please note, that the
principal axis needs not be purely rotational, but may include translation or inversion. Due to its

 Figure (2.1 - 10): Phase relations for outer and inner reflection. θP is the Brewster angle.
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symmetry, the crystallographic principal axis defines also a preferred optical direction in the
system along of which the medium is optically isotropic. Therefore, this direction is called the
optical axis of the system. Please note, that the term “axis“ does not refer to a spatially fixed
line but rather to a spatial direction.

It should also be noted, that the above conclusion from a crystallographic principal axis
to an optical axis cannot be reversed. Thus, biaxial birefringence does not imply the existence
of two crystallographic principal axes.

2.1.4.3.2.)Phenomenology of uniaxial birefringence
If a transparent birefringent medium is illuminated with natural light in normal incidence

but tilted by 0° < α < 90° with respect to the optical axis, the light beam is split into two beams
inside the medium, each of which having half of the incident intensity. One beam is transmitted
straightly through the medium in accordance with Snellius’ refraction law, whereas the other
beam is spatially separated from the first as a function of the thickness of the medium violating
Snellius’ refraction law. By rotating the medium around the incident (and straightly transmitted)
beam, the second beam describes an envelope of cone around the incident beam inside the
medium and a cylinder casing behind (i.e., outside) the medium without changing the intensity
relations.

Checking for the polarization states, the straightly transmitted beam is found to be s-
polarized with respect to the plane defined by the optical axis and the incident beam, whereas
the spatially separated beam turns out to be p-polarized. Generally, the plane defined by the
optical axis and the perpendicular of incidence of the incident beam is called main section (of
the incident beam) and is of utmost significance for the description of the birefringence. On the
basis of this definition, the two beams now can be denoted unequivocally by means of their
polarization state relative to the main section:

→ s-polarized: ordinary beam (o-beam) 
→ p-polarized: extraordinary beam (e-beam)

The two polarization states are sometimes referred to as “eigen polarizations“ of a wave.

2.1.4.3.3.)Wave and beam velocity

The concept of the wave and beam velocity has been developed by Huygens on the basis
of his famous principle. He concluded from the experimental observations known at his time
(i.e. the polarization states and their relation were not known, yet), that a point source placed in
an uniaxial medium will generate two wave fronts, one of which is spherical (o-beam) and the
other (e-beam) is an ellipsoid of revolution. The two surfaces touch at two diametrically
opposite points, the connection of which coincides with the optical axis of the system. This
picture allows for two different geometrical constructions, which are illustrated in figure (2.1 -
11).
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In order to get a more detailed insight, an incident wave is considered in terms of this
concept in figure (2.1 - 12).

From figure (2.1 - 12) it becomes clear that the e-beam experiences a spatial separation
from the o-beam in the illustrated case, which also has been described before
phenomenologically. The key of the spatial separation in the concept of Huygens is the
proposition of two velocities differing in direction as well as magnitude, which describe the
propagation of the e-beam. The so called wave velocity v describes the actual propagation of a
state of constant phase and is oriented normal to the wave fronts of the considered beam,
whereas the so called beam velocity V describes the propagation of the radiation energy and is
oriented along the direction  (or ) in figure (2.1 - 12). The latter is as well the direction
of the Poynting vector, which, in this case, is no more normal to the wave fronts. Please note,
that the electro-magnetic theory explains this by the permittivity tensor applying for anisotropic
media, which causes the electrical field vector and the dielectric displacement to be no more
parallel. This may be made more ostensible considering a parallel plate capacitor in which a
wire is brought in with an angle of e.g 45° relative to the electric field lines. The electrical field

 Figure (2.1 - 11): Wave front surface for optical positive (left) and optical negative (right) uniaxial
birefringence. The optical axis is the z-axis. Left, the wave front surface of the e-beam is hatched, whereas 

the wave front surface of the o-beam is hatched in the right figure. Pictures taken from [B1]

 Figure (2.1 - 12): Beam and wave propagation in optical negative birefringent medium for 
normal incidence onto the medium and tilted incidence with respect to the optical axis in 2-
dimensional representation. The main section is the picture plane. Pictures taken from [B1].
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will cause dielectric displacement in the wire, which will basically be oriented along the wire
and, thus, not be parallel to the electrical field vector. In contrast, for the o-beam, these two
velocities are identical, however, may be separated formally for the sake of consistency, as
shown in figure (2.1 - 12). 

While the wave and the beam velocity for the o-beam are always identical and not a
function of the angel of incidence onto the optical axis, these velocities are always a function of
the angel of incidence onto the optical axis for the e-beam and only identical for two important
limiting cases:

a) For incidence parallel to the optical axis, the wave and the beam velocity of the e-
beam as well as the o-beam are all identical and the medium is isotropic. 
b) For incidence perpendicular to the optical axis, the wave and the beam velocity of 
the e-beam are identical, however, different to the corresponding velocities of the o-
beam and the medium behaves isotropic but actually is not.

These two limiting cases represent two characteristic constants of a birefringent medium,
namely the two principal propagation velocities Vo and Ve. Vo is the propagation velocity
referring to limiting case a). Ve is the propagation velocity referring to the e-beam in limiting
case b).

In terms of the principal propagation velocities, the two principal refractive indices no and
ne of the medium under consideration are defined according to eq. (2.1 - 84) by:

,  eq. (2.1 - 126)

where no is the ordinary and ne is the extraordinary principal refractive index.
In terms of the principal refractive indices, the character of the birefringence is commonly

defined as:
ne - no < 0 ⇒ optical negative
ne - no > 0 ⇒ optical positive 

According to the occurrence of two different velocities (beam velocity and wave velocity)
in birefringent media, it is possible to derive two types of refractive indices for the e-beam (the
refractive index for the o-beam is always no).

2.1.4.3.4.)Beam refractive index
According to eq. (2.1 - 126), a beam refractive index nB may be defined as:

,  eq. (2.1 - 127)

with the beam velocity V of the e-beam. In order to derive an expression for V, the wave front
surfaces according to figure (2.1 - 11) are expressed conjointly in Cartesian coordinates as:

.  eq. (2.1 - 128)

The rotational symmetry of the problem suggests an expression in polar coordinates:

,  eq. (2.1 - 129)

with:
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,  eq. (2.1 - 130)

where Φ is the elevation angle. Due to the rotational symmetry there is no dependence on the
azimuth angle. From eq. (2.1 - 129), an expression for the beam velocity of the e-beam can be
deduced:

,  eq. (2.1 - 131)

which enters into the beam refractive index according to eq. (2.1 - 127). Despite the
consideration of the beam refractive index and the beam velocity may be convenient for some
problems, it is not possible to derive a simple refraction law from the beam refractive index,
since the angle and distance relations are not adaptable to Snellius’ refraction law because the
propagation direction of the beam in the medium does not coincide with the wave front normal.
Employing Fermat’s principle to derive the refraction law as performed above, this is not as
clear as it is in the derivation using the Huygens principle. However, the problem is similarly
essential, since Fermat’s principle simply does not apply to the e-beam. Considering figure (2.1
- 12), it becomes ostensibly clear, that the actual e-beam path length is not stationary against
small variations of the path. This applies only to the formal path of the wave fronts along their
normal, showing on the other hand, that this problem can be solved by considering the wave
refractive index.

2.1.4.3.5.)Wave refractive index
In analogy to eq. (2.1 - 127) the wave refractive index nW is defined as:

,  eq. (2.1 - 132)

with the wave velocity v of the e-beam representing the propagation velocity of the wave fronts
along their normal in the medium. Furthermore in analogy to the wave front surfaces in figure
(2.1 - 11) representing the beam velocities for the o- and the e-beam in different directions
relative to the optical axis, “normal front surfaces“ can be defined, which may be interpreted as
phase surfaces (and will hereafter be called so) representing the corresponding velocities of the
wave fronts along their normals (wave velocities). It is easy to see, that the phase surface and
the wave front surface are identical for the o-beam and different for the e-beam. The phase
surface for the e-beam is a surface of fourth order enveloping the corresponding wave front
surface and has the shape of an ovaloid of revolution. The derivation of the mathematical
expression for the phase surface of the e-beam is extensive and beyond of the scope of this work.
The conjoint expression for the phase surfaces in polar coordinates will turn out to be:

 eq. (2.1 - 133)

with:

,  eq. (2.1 - 134)

where φ is the elevation angle. Due to the rotational symmetry there is no dependence on the
azimuth angle. Please note, that φ here and Φ in eq. (2.1 - 130) are different for all 0° < φ,
Φ < 90°. Furthermore, the extrema of the radius vectors of the phase surfaces and the wave front
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surfaces are identical and, thus, the parameters of the wave front surfaces have already been
used in eq. (2.1 - 133). 

Inserting eq. (2.1 - 132), an expression for the wave refractive index of the e-beam can be
extracted from eq. (2.1 - 133):

.  eq. (2.1 - 135)

With nW, Snellius’ refraction law can be applied to the e-beam for arbitrary incidence on
a birefringent medium:

,  eq. (2.1 - 136)

with θi as the angle of incidence relative to the interface normal, θt,e as the angle of transmission
of the wave front normal of the e-beam and ni as the refractive index outside the birefringent
medium under consideration. It is self-evident, that the wave refractive index and the
corresponding angle has to be used for reflection as well as transmission for interfaces between
two birefringent media. 

In order to solve for the actual beam propagation, a relation between φ and Φ must be
found. In the x-z-plane in figure (2.1 - 11), the wave front surface for the e-beam will reduce to
an ellipse described by:

,  eq. (2.1 - 137)

which may be expressed in terms of the principal refractive indices using eq. (2.1 - 126):

.  eq. (2.1 - 138)
Solving this equation for z(x) and differentiating in x results in:

.  eq. (2.1 - 139)

Since z’ is the slope of the wave front WF as sketched in figure
(2.1 - 13), it is:

.  eq. (2.1 - 140)
By furthermore accounting for:

 eq. (2.1 - 141)

the desired relation between φ and Φ is obtained to:

.  eq. (2.1 - 142)

Furthermore, it follows from figure (2.1 - 13), that:

.  eq. (2.1 - 143)

Applying eq. (2.1 - 126) and eq. (2.1 - 132) to eq. (2.1 - 133) yields another pair of
characteristic surfaces, the wave refractive index surfaces (or in short terms: “index surfaces“):
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,  eq. (2.1 - 144)

or in Cartesian coordinates using eq. (2.1 - 134) and eq. (2.1 - 132):

.  eq. (2.1 - 145)

Please note, that the index surfaces have basically the same shape as the wave front surfaces (see
eq. (2.1 - 128)) but have exchanged their appearance concerning the optical character due to the
reciprocal relation between the wave velocity and its corresponding refractive index. The index
surfaces for a birefringent medium of optical negative character will correlate with the left
picture in figure (2.1 - 11) and optical positive character will correlate with the right picture.
This is also qualitatively illustrated in figure (2.1 - 15).

Since the refractive index surfaces are defined in the “k-space“ (i.e. they refer to the wave
propagation direction), a beam propagating “through“ the refractive index surfaces will sense a
refractive index which correlates to the RADIUS VECTOR of the particular surfaces,
depending on its polarization, i.e. the left (right) term on the left hand side of eq. (2.1 - 144) or
eq. (2.1 - 145) accounts for the ordinary (extraordinary) beam. This is a fundamental difference
to the so called “index ellipsoid“, which will be discussed in the next section.

2.1.4.3.6.)Wave propagation in anisotropic media - the index ellipsoid
Above, uniaxial birefringence was discussed semi-empirically using the Huygens-Fresnel

principle. Now, the wave propagation in (linear) anisotropic media will be outlined more
generally in terms of the electro-magnetic approach assuming monochromatic waves and a loss-
free medium with µr = 1. Please note, that the subsequent discussion is neither restricted to
uniaxial birefringent media nor restricted to a special polarization of the considered wave. This
is an important point, since in this section another “surface“, the so called “index ellipsoid“
(also: “indicatrix”) will be derived, which exhibits a formal similarity to the refractive index
surface according to the above eq. (2.1 - 145), but is defined in “another space“, thus, being
different in interpretation. 

As already discussed above, wave and beam propagation direction differ in anisotropic
media, which will be introduced by the permittivity tensor. Thus, now,  (eq. (2.1 - 7))
does no more imply . Rewriting eq. (2.1 - 21) in complex form for arbitrary media
and inserting complex plain waves according to eq. (2.1 - 14) for the magnetic field and the
dielectric displacement in eq. (2.1 - 4) results in:

 eq. (2.1 - 146)

and:

,  eq. (2.1 - 147)

respectively, with Z0 according to eq. (2.1 - 22). Inserting eq. (2.1 - 146) into eq. (2.1 - 147)
finally yields:

,  eq. (2.1 - 148)
which is known as the wave equation of crystal optics. Please note, that this equation refers to
the propagation of the wave front normals with  as the unit propagation vector, not the
propagation of the beam and, hence, n is the wave refractive index according to eq. (2.1 - 132).
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 A corresponding expression for the propagation of the beam can be derived from eq. (2.1
- 148) and would be:

,  eq. (2.1 - 149)

with  as the unit beam propagation vector and nB as the beam refractive index according to
eq. (2.1 - 127). However, this approach will not be pursued any more hereafter. Please recall,
that there is a simple refraction law for an arbitrary incident wave on the basis of the wave
refractive index. Therefore the wave refractive index will be the parameter of choice for by far
most problems concerning wave propagation in anisotropic media.

In principal axes representation and already expressed in terms of its Cartesian
components eq. (2.1 - 148) writes:

,  eq. (2.1 - 150)
where:

 eq. (2.1 - 151)

resulting:

,  eq. (2.1 - 152)

where  are the unit vectors in direction of the principal axis with a = x, y, z. The refractive
indices  are the so called principal refractive indices and correlate with the permittivity
tensor in principal axes representation according to eq. (2.1 - 80) and eq. (2.1 - 84) for µr =1, i.e.:

.  eq. (2.1 - 153)
According to eq. (2.1 - 9):

,  eq. (2.1 - 154)

which yields together with eq. (2.1 - 152):

.  eq. (2.1 - 155)

This equation is called Fresnel’s equation of wave normals. Eq. (2.1 - 155) may be transformed
into eq. (2.1 - 133) by replacing the inverse refractive indices by the corresponding velocities of
the wave front normals according to eq. (2.1 - 132), multiplying eq. (2.1 - 155) with each
denominator in the sum and then (not before!) setting

 eq. (2.1 - 156)

(this correlation is explained by eq. (2.1 - 163)). In accordance with eq. (2.1 - 130) it is
furthermore:

,  eq. (2.1 - 157)

which finally results in:
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,  eq. (2.1 - 158)
i.e. eq. (2.1 - 133).

Eq. (2.1 - 155) is a quadratic equation in 1/n2 resulting in two refractive indices (the
negative solutions are physically meaningless) for a certain given , which correspond to the
ordinary and the extraordinary refractive index in an uniaxial birefringent system sensed by the
beam defined by . Please note, that the na in eq. (2.1 - 155) are the corresponding principal
refractive indices, which, however, must not be inserted ab initio for an uniaxial birefringent
system, since then eq. (2.1 - 155) reduces to a simple quadratic form and a part of the solutions
will get lost. 

Besides the above analytical solution of such a problem based on Maxwell’s equations
there is a convenient geometric solution, which is more ostensible than the way discussed
above. Since the energy density does not depend on the isotropy of the medium, eq. (2.1 - 71)
is still valid and thus, the electrical energy density is:

,  eq. (2.1 - 159)

where the real fields must be used, since the scalar product is a nonlinear operation. In principal
axes representation eq. (2.1 - 151) applies and, already written in components of the principal
axes system, eq. (2.1 - 159) becomes:

.  eq. (2.1 - 160)

By introducing a new normalized vector  with:

,  eq. (2.1 - 161)

eq. (2.1 - 160) rewrites to:

,  eq. (2.1 - 162)

which represents an ellipsoid in the “d-space“ (!), expressing the anisotropic properties of the
medium. This construction is called index ellipsoid and widespread applied in crystal optics. 

Since the index ellipsoid is defined in
in the “d-space“, its interpretation is
different as compared to the refractive
index surface discussed before (which is
defined in the “k-space“) and is illustrated
in figure (2.1 - 14).  denotes an arbitrarily
polarized propagating wave in the principal
axis system and nx, y, z are the principal
refractive indices along the corresponding
axis. For evaluation, the intersection curve
of a plane normal to  and the index
ellipsoid is taken and the oscillation
direction of the electrical field vector (i.e.
the polarization) is projected onto the axis
of the intersection curve, defining by that
the two eigen polarizations of the wave. The length of these axis (n1 and n2 in figure (2.1 - 14))
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denote the refractive indices sensed by the eigen polarizations in the considered geometry. 
Applying this concept to an uniaxial birefringent material, it is clear, that

 eq. (2.1 - 163)

must apply, so that a wave propagating along z-direction will sense a polarization-independent
refractive index, preserving the z-axis as optical axis. Hence, the index ellipsoid for uniaxial
birefringent media writes according to eq. (2.1 - 162):

.  eq. (2.1 - 164)

Comparing this equation with the ellipse term in eq. (2.1 - 145) reveals, that the ordinary and
the extraordinary refractive index in the denominator are exchanged, which is due to the
consideration in different “spaces“. 

The relations between the beam velocity surface,
the index surface (both defined in the “k-space“) and the
index ellipsoid (defined in the “d-space“) are depicted as
intersections in the x-z-plane for the case of uniaxial
birefringence in figure (2.1 - 15). Please note in this
context, that eq. (2.1 - 155) as well refers to the “d-space“
but is “transformed“ into the “k-space“ by multiplying
with each denominator in the sum and inserting eq. (2.1
- 156), then resulting in eq. (2.1 - 133), which refers to
the “k-space“.

The index ellipsoid according to eq. (2.1 - 162)
does contain more information than the refractive index surface, which is due to its definition
in d-space. Thus, usually the index ellipsoid is used as basis for the consideration of anisotropic
media.

2.1.4.4.)Bragg diffraction
Bragg-diffraction is a combined multi-

reflection and interference phenomenon and is of
essential importance in the framework of this
theses. It defines the fundamental geometrical
condition for wave mixing experiments in thick
hologram gratings. The basic principle is depicted
in figure (2.1 - 16). A light beam passes through a
periodic phase grating (i.e. refractive index
grating), enclosing an angle of 

 eq. (2.1 - 165)
with the grating planes. The beam will experience
multiple external and internal reflection and
refraction processes as will each individual
reflected and transmitted portion of the original
beam while passing through the grating. All of these beam portions will finally superimpose.
This process may be described accurately applying Fresnel’s equations and considering the
occurring interference phenomena. The calculations quickly become fairly cumbersome
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 Figure (2.1 - 15): Exemplarily qualita-
tive sketch of a beam velocity surface 
(A)) with the corresponding index sur-
face (B)) and the index ellipsoid (C)).
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depending on the demanded accuracy and the number of grating planes to account for.
However, such an approach is only necessary for a small number of grating planes and is not
referred to as Bragg-diffraction. 

The problem simplifies strongly presuming a large number of grating planes. Then, the
number of reflected beams is high enough to presume constructive interference of the total
number of the reflected beams only for the case when the optical path length difference between
neighboring individually reflected beams meets the condition for constructive interference. In
any other case the interference will be destructive. If this consideration is valid, the problem is
referred to as Bragg-diffraction. The condition for constructive interference may be found
employing a simple geometrical consideration depicted in figure (2.1 - 17). It is not relevant
which individual beams are considered, since the condition will apply to all reflection processes
occurring.

Two neighboring beams reflected at similar
interfaces (outer reflection or inner reflection) may be
considered or two neighboring beams reflected at different
interfaces (outer reflection and inner reflection), however,
the phase relations according to figure (2.1 - 10) must be
accounted for. Here the reflection at similar interfaces
shall be considered. The refractive index modulation of
the phase grating is assumed small, i.e. 

.  eq. (2.1 - 166)

According to figure (2.1 - 17) the optical path length
difference between the reflected beams R1 and R2 is 2a
where:

.  eq. (2.1 - 167)
Accordingly, the following condition must be met for constructive interference:

,  eq. (2.1 - 168)
where n is the average bulk refractive index inside the grating, d is the grating spacing (i.e. the
grating constant), λ0 is the wavelength in free space, Θ is the angle between the incident beam
and the grating planes, and Φ is the angle between the incident beam and the grating wave vector
(by definition perpendicular to the grating planes). The parameter b is an arbitrary integer
number. Eq. (2.1 - 168) is called Bragg-condition, which must be met in order to observe Bragg-
diffraction. If the condition is violated, the incident beam is not diffracted. The Bragg-condition
can be very sharp for thick gratings. The question of the grating thickness will be discussed in
“2.3.1.2.) Types of holograms” on page 52. Please note, that a Bragg grating need not be
holographic, however, the term “thick grating“ as discussed in the before mentioned section is
a general definition, which accounts for all types of diffraction gratings.

Additionally it should be mentioned here, that Bragg-diffraction is not a nonlinear optical
process. This is important, since wave mixing in thick holograms is often explained in terms of
Bragg-diffraction presuming the validity of the nonlinear phase matching condition eq. (2.2 -
39) without notification. However, eq. (2.2 - 39) is not a necessary condition for Bragg
diffraction in general although wave mixing in thick hologram gratings obeys eq. (2.1 - 168) as
well as eq. (2.2 - 39).

 Figure (2.1 - 17): Bragg condition
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2.2.)Basic aspects of non-linear optics
The evolution of nonlinear optics (NLO) is closely connected with the development of the

laser, since nonlinear phenomena usually require high light intensity. However, most of the
theoretical work in NLO has been done before the invention of the laser. Experimental proof so
far has only been possible for effects describing the interaction between an electro-magnetic
radiation field and an electrical or a magnetic dc-field. The laser with its particular features as
a light source, however, enabled the observation of NLO effects based on interaction of pure
optical fields and, thus, not only allowed for experimental proof of already theoretically
anticipated NLO effects, but even led to the discovery of new effects and promoted the field of
NLO from some curios side field into the focus of interest in today’s optical sciences.

As discussed in the preceding chapter, propagation of light in matter is described by the
frequency dependent optical constants „refractive index“ and „absorption coefficient“, which
are not a function of the intensity of the incident light in linear optics. Thus, in linear optics,
there are two important principles:

a) Superposition principle
Light waves do not affect each other and, thus, can be distortion-free superposed. A 
light wave in matter propagates independently of any other light wave existing simul-
taneously in the same area. 
b) Principle of frequency conservation
No new light frequencies are generated by interaction of light with matter. The light 
frequencies inside and outside the medium are identical. (Exception: Raman effect).

However, both these basic principles of linear optics are no more valid for irradiation with
sufficiently high intensities. This paragraph concerns the mutual influence of interacting light
waves at high intensities. Subsequently, the phenomenology of the nonlinear interaction
between light and matter will be discussed qualitatively for an incident monochromatic plain
wave. The basic principles outlined in this context, however, will apply generally. Subsequently
the electro-optic effects (Pockels effect and Kerr effect) will be discussed in more detail, since
these effects occur in photorefractive polymers. Thereafter, a short consideration of degenerate
four wave mixing as an NLO effect will follow, which additionally will serve for the
introduction of the NLO phase matching condition. The paragraph will close with a brief
discussion of the position of photorefraction in the systematics of nonlinear optics. 

The physics of the photorefractive effect as well as four wave mixing in thick hologram
gratings will each be discussed in detail in a separate section later on, since these issues concern
the core of this work.

2.2.1) Nonlinear interaction between light and matter 
The basic material equations for the interaction between light and matter, eq. (2.1 - 56) to

eq. (2.1 - 60), as derived in “2.1.3.1.) Material equations” on page 16, will basically hold for
nonlinear optics as well. 

However, out of this set of equations, eq. (2.1 - 57) will not suffice to describe the
polarizations induced by nonlinear interaction between light and matter. This is the fundamental
difference between linear and nonlinear optics and will be considered qualitatively in more
detail now. In order to illustrate the interaction between light and matter, the oscillator model
was first employed in “2.1.3.2.) The oscillator model (Lorentz-model)” on page 17 presuming
small elongation in order to ensure linear response of the system. For small elongations, the
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potential of an electron in the central field of an atom or molecule may well be approximated
by a parabolic potential function resulting in linear response. However, for high irradiance
intensity, the elongation of the electron will exceed the area of the parabolic approximation and
the response of the system will be nonlinear. This is illustrated in figure (2.2 - 1), where the ideal

parabolic potential function and a more realistic example of a potential function as a function of
the elongation from the equilibrium distance r0 are sketched. The area of linear response is
enlarged in the inset. Outside the area of linear response, the characteristic of the induced dipole
moment (which is proportional to the electron displacement) as a function of the incident
electrical field is nonlinear as illustrated together with the transformation behavior on an
incident wave in figure (2.2 - 2). It is clear, that the polarization response must be non-harmonic
and that higher harmonics appear in the polarization wave, which results in the polarization to
be a complicated function of the electrical field containing terms of higher order.

 Figure (2.2 - 1): Illustration of the parabolic and a non-harmonic potential function.
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2.2.1.1.)Nonlinear polarization
Since terms of higher order in the incident field represent nonlinear operations, the first

approach to this problem must be real as discussed in “2.1.1.) The electro-magnetic theory of
light” on page 4:

.  eq. (2.2 - 1)
Here χ(1), (2), (3) are the susceptibilities of first, second and third order, respectively, and their
index “t“ denotes a dependence of the susceptibilities on the particular time history of the
electrical field. Usually it is not necessary to consider terms of fourth or even higher order, since
the susceptibilities decrease dramatically with increasing order (typically already about 17
orders of magnitude from first to third order). Thus, effects of higher order than three are usually
negligible. The above eq. (2.2 - 1), however, only accounts for loss-free media. In lossy media,
a phase delay between the polarization and the electrical field will occur, and it would be
convenient to express eq. (2.2 - 1) in complex form. This can be achieved by applying eq. (2.1
- 19) to the electrical field as well as to the polarization and taking the non-conjugate complex
form of the polarization. Since the resulting expression for the entire eq. (2.2 - 1) is very long,
this procedure will be demonstrated on the term of second order:

.  eq. (2.2 - 2)

Please note, that this equation cannot be simplified furthermore without knowing more about
the specific problem under consideration, since a nth order susceptibility (here second order) is
in general a tensor of (n+1)th rank (i.e., here of third rank), preventing the electrical field vectors
on the right hand side of eq. (2.2 - 2) to be simply multiplied. Therefore, eq. (2.2 - 2) is expressed
in terms of its vector components:

.  eq. (2.2 - 3)

This equation can easily be separated in: 

 eq. (2.2 - 4)

and:

.  eq. (2.2 - 5)

Please note that the susceptibility is not the same for the two types of products in the sum (as
indicated by the index „t“), since the complete real (or complete complex conjugate) product
represents frequency doubling, whereas the mixed products represents optical rectification and
the susceptibility depends on the particular time history of the product of the fields.

As an example for higher order polarization equations, the complex third order
polarization equation corresponding to the complex second order polarization equation eq. (2.2
- 4) is analogously obtained and writes:

P t( ) ε0 χt
1( )E t( ) χt

2( )E t( )( )E t( ) χt
3( )E t( )( )E t( )( )E t( ) …+ + +[ ]=

P 2( ) t( ) 1
2
--- P

˜
2( ) t( ) P

˜
2( )∗ t( )+( )

ε0
4
----- χ

˜ t
2( ) E

˜
t( ) E

˜
∗ t( )+[ ] E

˜
t( ) E

˜
∗ t( )+[ ]

 
 
 

= =

P
˜ i

2( ) t( ) P
˜ i

2( )∗ t( )+
ε0
2
----- χ

˜ ijk t,
2( ) E

˜ j t( ) E
˜ j∗ t( )+[ ] E

˜ k t( ) E
˜ k∗ t( )+[ ]

j k,
∑

 
 
 

=

P
˜ i

2( ) t( )
ε0
2
----- χ

˜ ijk t,
2( ) E

˜ j t( )E
˜ k t( ) E

˜ j∗ t( )E
˜ k t( )+[ ]

j k,
∑

 
 
 

=

P
˜ i

2( )∗ t( )
ε0
2
----- χ

˜ ijk t,
2( ) E

˜ j∗ t( )E
˜ k∗ t( ) E

˜ j t( )E
˜ k∗ t( )+[ ]

j k,
∑

 
 
 

=



2.2.)Basic aspects of non-linear optics

43

,  eq. (2.2 - 6)

with (i, j, k = x, y, z). The third order susceptibility tensor  is of fourth rank and, thus, has
81 element.

Please note that the susceptibility of first order has already been discussed to be a second
rank tensor in the context of “2.1.3.) Light in linear media” on page 16.

Combining the nonlinear polarization with Maxwell’s equations leads to the wave
equation of nonlinear optics, which writes in general form:

.  eq. (2.2 - 7)

For its derivation reference is made to the standard literature of nonlinear optics.

2.2.1.2.)Kleinman’s symmetry rule
An important simplification of the second order susceptibility tensor is obtained, if the

medium is loss-free for all (!) radiation fields involved in the nonlinear optical process. In this
context, loss-free means that the electrical work per period of the light wave vanishes:

.  eq. (2.2 - 8)
This closed line integral vanishes for:

,  eq. (2.2 - 9)

where  is the unit vector in k-direction and i, j, k = x, y, z, which yields for the elements of the
susceptibility tensor:

.  eq. (2.2 - 10)
Furthermore but trivial, the tensor is real.

Eq. (2.2 - 9) may be applied to all electrical field components, which finally results in
three permutation relations, the first of which is eq. (2.2 - 10) and the remaining two of them
write:

 eq. (2.2 - 11)
and:

.  eq. (2.2 - 12)
This is known as Kleinman’s symmetry rule. Usually eq. (2.2 - 11) is applied in order to get a
first simplification of the second order susceptibility tensor, since the sequence of the field
components in eq. (2.2 - 3) is physically insignificant in the majority of cases. Therefore, eq.
(2.2 - 11) does not necessarily require the validity of Kleinman’s symmetry rule. However, the
appropriate approach depends on the particular problem considered.

Please note finally that further reduction of the number of independent tensor elements
may result from more sophisticated symmetry considerations for a particular system with
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respect to a particular problem of nonlinear optics. However, this is too specific to be discussed
here. For example, the second order susceptibility vanishes completely for systems exhibiting
an inversion center.

2.2.2) Electro-optic effects
The generic term “electro-optic effects“ covers nonlinear optical effects, where a single

light wave is affected by static or quasi-electrostatic (see below) electrical fields. These effects
can be described by nonlinear polarizations containing an optical field and electrostatic fields.
In this context it becomes clear, what is meant by a “quasi-electrostatic“ field. An electrical field
can be considered as quasi-electrostatic, when its frequency is sufficiently small to be neglected
in mixed terms of the nonlinear polarization, i.e., the sum and difference frequency generation
with the optical wave does not change the frequency of the optical wave perceivably.

In more practical terms, electro-optic effects describe the change of an optical anisotropy
or the generation of it from optical isotropy by means of an electrostatic field externally applied
to the system under consideration. I.e., the refractive indices of the system are affected by an
externally applied field. This may be due to deformations of the electron orbitals in the material,
induced by the applied field, to orientation of molecular dipoles by the external field or to other
mechanisms of similar nature. In this paragraph, the static electrical field is always assumed to
be a dc-field without loss of generality.

There are two electro-optic effects. The Pockels effect is a quadratic effect which
describes the variation of the real part of the permittivity as a linear function of the external
field:

.  eq. (2.2 - 13)
Therefore, the Pockels effect is also referred to as the linear electro-optic effect.

The Kerr effect is a cubic effect, which describes the variation of the real part of the
permittivity as a quadratic function of the external field:

.  eq. (2.2 - 14)
Therefore, the Kerr effect is also referred to as the quadratic electro-optic effect. 

Since in general:
,  eq. (2.2 - 15)

the Kerr effect is usually negligible in systems, where the Pockels effect occurs.
It is generally possible to consider the electro-optic effects from the point of view of wave

propagation. In this case, an expression for the nonlinear polarization  in the system
considered must be found as a function of the optical wave . This may be necessary for
particular applications, however, in many cases it is sufficient to consider simply the spatially
resolved refractive index changes as a function of the external field vector, which can be
performed on basis of the index ellipsoid (eq. (2.1 - 162)).

Please note, that the Kerr effect is particularly interesting in liquids and solutions, but
usually not so much in crystal optics. However, polymeric systems of the kind investigated in
the frame of this work consist of low mass molecular components dissolved in a low glass-
transition polymer matrix, representing a preferable system for the occurrence of the Kerr effect
or of related phenomena. This will be picked up again in the context with the nonlinear optical
properties of low glass-transition polymers, which are discussed later in more detail.
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2.2.2.1.)Pockels effect
The Pockels effect requires an optically anisotropic medium, the optical behavior of

which may be described by the index ellipsoid according to eq. (2.1 - 162), which writes in
principal axis representation:

,  eq. (2.2 - 16)

where n1, 2, 3 are the principal refractive indices. By applying an electrical
dc-field to the system refractive index changes occur, which result in a
new and slightly rotated index ellipsoid as depicted in figure (2.2 - 3),
which may be described by:

 ,  eq. (2.2 - 17)

where the mixed components vanish and the  become
, respectively, for zero external field. Introducing the

refractive index changes according to:

 eq. (2.2 - 18)

and accounting for their linear change as a function of the external field according to eq. (2.2 -
13), the refractive index changes may be expressed as:

,  eq. (2.2 - 19)

with i = 1, 2, 3 for the electro-optic coefficients and j = x, y, z for the applied field. The
correlation of the index i with Cartesian coordinates can be derived from eq. (2.2 - 17). In terms
of a matrix equation eq. (2.2 - 19) writes:

.  eq. (2.2 - 20)
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The rij-matrix is called the electro-optic matrix. Please note, that the electro-optic coefficients
depend on the frequency of the light wave as well as on the frequency of the applied field, if the
latter is quasi-electrostatic.

For small changes of the refractive indices, eq. (2.2 - 19) may be approximated by:

.  eq. (2.2 - 21)

2.2.2.2.)Kerr effect
The Kerr effect can be considered the same way as the Pockels effect and, hence, eq. (2.2

- 16) to eq. (2.2 - 18) are valid as well. However, according to eq. (2.2 - 14), the refractive index
changes due to the Kerr effect are expressed as:

,  eq. (2.2 - 22)

where the electro-optic tensor Rijk is a third rank tensor and, thus, eq. (2.2 - 22) can not be
expressed as a matrix equation according to eq. (2.2 - 20). However, eq. (2.2 - 22) is incomplete,
since the Pockels effect may not only contribute as well to the total refractive index changes but
usually will be predominant. Hence, the actual refractive index changes are:

.  eq. (2.2 - 23)

Since the electro-optic matrix rij vanishes for media exhibiting an inversion center, only then
eq. (2.2 - 22) describes the total refractive index changes.

Considering the Kerr effect for loss-free isotropic media with µr = 1 in terms of wave
propagation, the third order nonlinear polarization will be:

,  eq. (2.2 - 24)
where χ(3) is the only remaining independent tensor element of the third order susceptibility
tensor for isotropic media. The time average of the external fields depicts their quasi-
electrostatic nature as discussed before, and i = x, y, z.

Assuming for example a linearly polarized wave running in x-direction:

 eq. (2.2 - 25)
and an external field applied in z-direction (i.e. the wave according to eq. (2.2 - 25) is s-
polarized):

,  eq. (2.2 - 26)
the total field in the system will be the sum of both and yields for the polarization of third order:

,  eq. (2.2 - 27)

where only components of the frequency ω were considered.
Furthermore, the incident radiation field will generate a polarization of first order

according to:

,  eq. (2.2 - 28)
where χ is the real linear susceptibility. 

Thus, the total polarization in the medium at frequency ω will be:
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,  eq. (2.2 - 29)

where χNL is an intensity dependent nonlinear constant, which allows for the determination of
the refractive index (with eq. (2.1 - 59) and eq. (2.1 - 84)) sensed by the wave according eq. (2.2
- 25):

 for .  eq. (2.2 - 30)

The same procedure performed for a p-polarized wave results in:

 for .  eq. (2.2 - 31)

Thus, the refractive index is affected by the incident light as well as by the externally applied
field. The isotropic medium has become birefringent, as already depicted by assigning eq. (2.2
- 30) and eq. (2.2 - 31) to an ordinary and an extraordinary refractive index. The “crystal axis“
of the considered system is the direction of the applied field, i.e. it is the z-axis of the coordinate
system chosen here.

For normal light,  and, furthermore, the variation of the refractive indices
as a function of the external field is small due to the in general small third order susceptibility.
Thus, approximating  eq. (2.2 - 30) and eq. (2.2 - 31) simplify to:

 eq. (2.2 - 32)

and:

.  eq. (2.2 - 33)

In order to quantify the quality of the Kerr effect in a particular medium, a characteristic
constant, the Kerr constant, is defined as:

.  eq. (2.2 - 34)

2.2.3) Degenerate four wave mixing and NLO phase matching
NLO effects of third order stand for the interaction of four waves, since the third order

polarization will generate a fourth wave. A special case of this situation is the interaction of four
waves of identical frequency ω but different propagation vectors :

,  eq. (2.2 - 35)
where i = 1, 2, 3, 4 is the running index for the four waves. The polarization states of all four
waves shall be identical without loss of generality. 

The total field interacting with the nonlinear medium will be:
 eq. (2.2 - 36)

and the resulting third order polarization regarding only terms in ω will be:
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.  eq. (2.2 - 37)

Subsequently, the most common case of the described situation will be considered, where
a weak signal wave  interacts with two counterpropagating pump waves of high intensity 
and  (this configuration is known as phase conjugate mirror). In this case the relation
between the propagation vectors of the pump waves will be:

.  eq. (2.2 - 38)
The interaction can be interpreted ostensibly as diffraction of a signal wave at a periodic
refractive index grating resulting from the interference pattern generated by the pump waves.
Hence, the diffracted wave must meet the phase matching condition. The phase matching
condition is the result of the basic law of impulse conservation, with:

 and  eq. (2.2 - 39)

where p is the photon impulse and h is Planck’s constant. In this case, the phase matching
condition will write:

.  eq. (2.2 - 40)
Please note, that the impulse balance must be interpreted correctly to derive the correct phase
matching condition accounting as well for energy conservation. Thus, e.g. in frequency
doubling the phase matching condition will write , where the index 2 denotes
the generated wave of 2ω.

Accounting for eq. (2.2 - 38), the phase matching condition eq. (2.2 - 39) requires:
,  eq. (2.2 - 41)

which yields according to eq. (2.2 - 37) with eq. (2.2 - 36):

 eq. (2.2 - 42)

and with eq. (2.2 - 35):

.  eq. (2.2 - 43)

Inserting this equation into the wave equation eq. (2.2 - 7) yields for the diffracted wave:

,  eq. (2.2 - 44)
with ϑ as reflection coefficient. Accordingly, the diffracted wave in the discussed case is the
phase conjugate to the signal wave, which may be considered as a wave „running back in time“.
Hence, the reflection law is not valid here. 

The procedure as exemplarily demonstrated above will as well apply to an arbitrary
geometry of the setup, not only for counterpropagating pump waves. 

Please note that the pump waves and the signal wave need not have the same frequency
and even the pump waves themselves may vary in frequency. However, the analytical treatment
then becomes much more complicated. In the case of different frequencies of the pump waves,
the diffracted signal wave will exhibit another frequency than the signal wave itself. Since eq.
(2.2 - 40) accounts for all cases, it may serve for a qualitative estimation of the direction and
frequency relations of the involved waves.

Please note furthermore that the mutual interaction between all waves present in the
medium taking into account their polarization states may lead to the occurrence of multiple
phase gratings. A comprehensive treatment of this problem may become rather cumbersome.
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However, some phase gratings may be neglected depending on the intensities of the involved
beams as performed above, where the interaction between the pump beams and the signal beam
was therefore disregarded. Another way to avoid a multiple phase grating problem would be to
use orthogonal polarization states for the pump beams and the signal beam. Furthermore, if the
medium is lossy, absorption gratings may occur as well and contribute to the diffraction.

Degenerate four-wave-mixing (DFWM) is one of the key measurement techniques
applied in the frame of this work and will be elaborated upon in much more detail in terms of
the coupled wave theory in “2.3.2.) Coupled wave theory for thick hologram gratings” on
page 53. The treatment of DFWM in terms of the nonlinear optical polarization will not be
pursued any longer hereafter.

2.2.4) Photorefraction
The photorefractive (PR) effect will not be discussed here, but elaborated upon in detail

in a separate chapter: “2.5.) The photorefractive effect” on page 118. However, here it seems
advisable to discuss briefly the position of the photorefractive effect in the systematics of NLO.

Photorefraction is an optical effect representing an outstanding position. The magnitude
of the PR effect does not depend on the intensity but on the energy of the involved fields, i.e.
the PR effect is an integral effect. By contrast the buildup speed of the effect depends on the
intensity. This is unique for a NLO effect and questions the attribution of the PR effect to NLO
in general. However, undoubtedly NLO effects are involved in the PR effect, e.g. the Pockels
effect. Furthermore, the response of PR media may be described by reasonably applying the
physical schemes of nonlinear optics, however, accounting for the nature of the particular
experiment to be considered. Thus, the general attribution of the PR effect to nonlinear optics
seems reasonable, however, somewhat oblique.

Due to the fact that four-wave-mixing experiments may be carried out in photorefractive
media, photorefraction is often referred to as a cubic NLO effect. However, the order of a NLO
effect is defined by the number of electrical fields involved. In the case of the PR effect, this
number varies between 2 and 5 depending on the type of PR medium and the particular
experiment performed (two-wave-mixing or four-wave-mixing). Therefore, a clear attribution
of the PR effect to a certain order of nonlinearity is unreasonable. In fact, the PR effect cannot
be categorized this way at all. In contrast, the PR effect must be considered as a stand-alone
mechanism enabling nonlinear optical response of various order, depending on the particular
experiment and medium
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2.3.)Holography
The principle of holography has been discovered and demonstrated by D. Gabor in 1948

[14]. However, since there was no sufficiently coherent light source available at this time, the
first holograms were realized using mercury vapor lamps in inline recording configuration,
which is restricted to at least semi-transparent objects. The initially intolerable technical
problems prevented a noticeable further development of holography during the 1950ies. This
situation changed with the first realization of an “optical“ Laser by T. Maiman in 1960 [15]
based on the work of C. Towns, N. Bassow and A. Prochorow. In 1962, E.N. Leith and J.
Upatnieks suggested a significantly improved holographic recording technique known as off-
axis recording [16] and, in the same year, J.N. Denisjuk suggested the recording of holograms
in three dimensional media, which is known today as volume holographic recording. Finally, in
1963 Leith and Upatnieks were the first to record an off-axis hologram using Laser beams [17],
which initiated intense research in this field, which is still ongoing.

This paragraph deals with the basic principles of holography and its application in
holographic data storage. Holography has been utilized basically for the purpose of material
characterization in the framework of this theses and not for imaging. Therefore, the holographic
process will be outlined only phenomenologically neither considering the extensive field of
holographic imaging in detail nor discussing the holographic process in terms of wave
mechanics. However, since the diffraction properties of holographic volume gratings are basic
characteristics of photorefractive materials, the diffraction properties of thick hologram gratings
will be discussed in detail using the coupled-wave theory. 

Holography offers a variety of possibilities for application like pattern recognition, data
storage, optical correlation, non-destructive characterization of materials, determination of the
normal modes of vibrating objects, and others. Out of the various potential applications,
holographic multiplexing will be outlined as a technique enabling holographic mass data
storage. Different multiplexing techniques will be described and the basic requirements for
potential holographic storage media, enabling holographic multiplexing will be discussed. 

2.3.1.) The holographic process
The spatial percipience of human beings is due to the stereoscopic parallax, which results

in slightly different images of an object observed by each eye. These two images are combined
to a stereoscopic picture by the human brain. Nature must use this trick, because there is no way
to detect the absolute phasing of an electromagnetic wave. The phasing of a wave can only be
defined relative to some reference. This statement is the key to the holographic process. The
holographic process enables the recording of both phase and intensity distribution of an optical
field in some suitable medium by providing a phase reference and formally recording it together
with the optical field. Thus, by reconstructing the optical field from the hologram, the phase
normal is as well “reconstructed“ and the phasing of each wave of the optical field relative to
the reference is the same as in the original field. Accordingly, also the relative phasings of each
wave with respect to one another will be the same as in the original field. Since the absolute
phasing of the phase reference is irrelevant, but only the relative phasings of the “individual“
waves of the optical field counts, the original field as a whole is reproduced, containing all its
information in phasing and intensity. It is clear, that the a human being observing the
reconstructed optical field from a hologram will perceive a stereoscopic picture applying
nature’s parallax technique. This recording and retrieval process is subsumed by the term
„holography“, originating from the greek term „holos“, which means „the whole“.
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2.3.1.1.)Holographic recording and retrieval
As already described above, holographic recording requires basically two optical fields,

the optical field of the object, referred to as “object wave (or beam)”, or, more common, as
“signal wave (or beam)” and an undisturbed (i.e. carrying no image information) reference wave
(or beam) as phase normal. Both waves must be coherent in time with respect to each other for
the duration of the recording process. Lateral coherence over the whole beam diameter is
presumed.

In order to provide the phase normal for the optical field of the object, the object wave is
superimposed with the reference wave yielding an interference pattern. The latter contains the
intensity information of the object wave as well as the relative phasing of each individual wave
train of the signal wave in form of a specific periodic intensity distribution. Thus, the phase
information of the object wave has been transformed into an intensity pattern, which now can
be stored together with the basic intensity information in a suitable storage medium. The
recording process for off-axis recording is depicted in figure (2.3 - 1).

The recorded hologram must be illuminated with a reconstruction wave of equal
orientation (relative to the hologram) like the reference wave in order to retrieve the stored
information. An observer will then notice a virtual image of the object in the same position
relative to the hologram like the object has been for recording (i.e. for the viewer the image
occurs “behind” the hologram). Please note, that the reconstruction wave need not fulfill any
kind of coherence condition, since the absolute phasing of the reconstruction wave is irrelevant.
The projection of its beam diameter onto the hologram normal will be the lower coherence limit,
which is very illustrative, since it is necessary to reconstruct at least one complete wave front of
the object wave in order to obtain the complete information stored. The retrieval process for an
off-axis hologram is depicted in figure (2.3 - 2). Please note, that not the complete hologram is
necessary to reconstruct the complete object wave. Theoretically, each infinitesimal volume
element carries the complete information of the hologram. However, there is a practical limit
due to diffraction at dust, impurities in the material, surface roughness of the medium, and
others, which will considerably decrease the reconstruction quality of the object wave if the
portion of the hologram for retrieval is chosen too small.

Inline holography will basically follow the same principles as described above. However,
the object as well as the virtual image will be positioned in line with the reference beam, which
is indicated by a solid line cross and a dotted cross in figure (2.3 - 1) and figure (2.3 - 2),
respectively. It is clear, that this technique is not preferable. 

 Figure (2.3 - 1): Holographic recording  Figure (2.3 - 2): Holographic retrieval

lower limit of the

coherence length
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2.3.1.2.)Types of holograms
Depending on the recording geometry, basically transmission holograms and reflection

holograms must be distinguished. The determining parameter is the angle 2Θ between the
propagation vectors of the object wave, the reference wave, and the conditions write:

      .  eq. (2.3 - 1)

There is no fundamental difference between a transmission hologram and a reflection hologram.

The hologram generated in the recording medium may be an amplitude hologram or a
phase hologram or both. Which kind of hologram is dominant depends on the individual
medium. Amplitude and phase holograms differ significantly in the achievable diffraction
efficiency, which is generally limited to about 6-7% for amplitude holograms, but may reach
100% or even overmodulation for phase holograms.

Furthermore, plane holograms and volume holograms must be distinguished. The
determining parameter in this case is the relation between the fringe spacing of the interference
pattern and the thickness of the hologram. A sort of threshold criterion, which defines a volume
hologram can be estimated to:

,  eq. (2.3 - 2)

where d is the hologram thickness, Λ is the fringe spacing (grating constant) of the interference
pattern, n is the average bulk refractive index, and λ0 is the operating wavelength in vacuum.

There are some fundamental differences between plane holograms and volume
holograms. The diffraction properties of plane holograms correlate basically to the diffraction
properties of a simple-line grating, whereas the diffraction by volume holograms is of Bragg-
type. This has important consequences. Diffraction by plane holograms yields a strong zero
order intensity maximum, which carries no information as well as higher positive and negative
diffraction orders, carrying the holographically stored information (Raman-Nath regime). The
diffraction orders decrease quickly in intensity with increasing order number and usually only
diffraction of first order yields significant diffraction efficiency. The diffraction efficiencies of
plane holograms are generally strongly limited, since a huge amount of light intensity is lost in
the zero order maximum. In contrast, the Bragg-type diffraction by volume holograms yields
only one diffraction maximum, which carries the stored information and may achieve high
diffraction efficiency. Please note, that ideal Bragg diffraction does not yield “diffraction
orders”, which, however, cannot be realized in a real world experiment. Therefore, the
diffraction maximum corresponding to ideal Bragg diffraction is sometimes referred to as zero
order diffraction, whereas higher order numbers are used to denote additional diffraction
maxima, occurring due to deviations of the considered Bragg-type diffraction grating from the
ideal case. It is important to understand that this notation does not correspond to Raman-Nath
diffraction orders. In fact, the “zero order” Bragg maximum formally corresponds to a first
order diffraction maximum in the Raman-Nath regime.

 It is important to point out, that an ideal volume hologram is either strictly wavelength or
strictly direction selective, but not both of these simultaneously, as may easily be seen from the
Bragg condition eq. (2.1 - 168). However, since only holograms with infinite thickness are ideal
volume holograms, each real hologram has limited selectivity with respect to direction or
wavelength, which worsens increasingly by approaching the condition formulated in eq. (2.3 -
2). Finally, plane holograms are neither wavelength nor direction selective and, therefore, not
suitable for multiplexing purposes. 

0 2Θ 90° transmission geometry→<<
90° 2Θ 180° reflection geometry→<<

d 1.6Λ2n
λ0

---------≥



2.3.)Holography

53

The simplest possible hologram is generated by two undisturbed waves. Provided the
waves are ideally plain, the resulting hologram will be an ideal sinusoidal interference pattern
according to eq. (2.1 - 46). Such a hologram will suffice to examine the performance and the
diffraction properties of some holographic recording medium, since the diffraction properties
of a hologram do not depend on its information content.

2.3.2.) Coupled wave theory for thick hologram gratings
In this paragraph, the basic concepts of the coupled-wave theory describing the Bragg

diffraction by thick hologram gratings according to [18] will be outlined. This theory predicts
the maximum possible diffraction efficiency as well as its angular and wavelength dependence.
The theory allows for phase as well as amplitude gratings and additionally for slanted geometry.
Strictly speaking, the analysis is restricted to sinusoidal hologram gratings. However, each
periodic hologram may be expressed as a superposition of sinusoidal holograms, which allow
for the application of the coupled-wave theory.

Subsequently, the derivation of the coupled-wave equations will be summarized, and
important solutions will be discussed, which are required for the analytical evaluations
performed in the framework of this thesis.

2.3.2.1.)The coupled-wave equations
The theoretical formulation assumes at first s-polarized

monochromatic light, incident on the hologram grating at or
near the Bragg angle and will be generalized to p-polarization
later on.

Only the two waves, which obey the Bragg condition
(eq. (2.1 - 168)) at least approximately are assumed to be
present in the medium, which limits the analysis to volume
holograms. The basic model of a hologram grating used for
this analysis is depicted in figure (2.3 - 3).  is the grating
vector according to eq. (2.1 - 44), Λ is the fringe spacing
according eq. (2.1 - 45),  and  are the diffracted wave and
the transmitted wave, respectively, and d is the grating
thickness. The slant of the grating is denoted by ψ, and θB is
the angle of incidence of the transmitted beam. The angles are
valid inside the medium. The hologram is assumed to be
infinite in y-direction, and the fringes shall be parallel to the
y-axis.

2.3.2.1.1.)s-Polarization
Since the polarization state of the considered waves has been defined a priori as s-

polarized, the wave propagation in the grating may be expressed in scalar form by applying eq.
(2.1 - 18):

.  eq. (2.3 - 3)
A solution for this wave equation taking absorption into account will have a basic form

 Figure (2.3 - 3): Model of a 
thick slanted hologram grating.
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according to eq. (2.1 - 91), which yields the spatially modulated propagation constant k for a
non-resonant situation (see figure (2.1 - 4)) as:

,  eq. (2.3 - 4)
where k0 is the propagation constant in free space, n is the refractive index, α is the absorption
coefficient, and µr = 1 is presumed.

By setting:

,  eq. (2.3 - 5)

the fringes of the hologram will be represented by the spatial modulation of n and α with the
modulation amplitudes denoted by a preceding “∆” and the average values marked by subscript
“0“. The first equation refers to a phase grating and the second term to an amplitude grating.
Furthermore, an average propagation constant ß describing the propagation in the medium
without a phase grating is introduced with:

,  eq. (2.3 - 6)

where λ0 is the wavelength in free space. By inserting eq. (2.3 - 5) in eq. (2.3 - 4) one obtains:

.  eq. (2.3 - 7)
The parameter κ is defined as:

 eq. (2.3 - 8)

and represents the basic parameter of the coupled-wave theory, the
coupling constant, which describes the coupling between the
transmitted and the diffracted wave. For  the
approximation  can be applied if ∆ is interpreted as
total differential of n, and eq. (2.3 - 8) simplifies to:

.  eq. (2.3 - 9)

The grating formed by ∆n and ∆α couples the two waves  and 
leading to energy exchange between them. 

The coordinate system and geometrical configuration
depicted in Figure (2.3 - 3) will be used for the subsequent
considerations. The waves may then be described by z-dependent
complex amplitudes  and  in order to account for the
energy interchange as well as for energy loss due to absorption. The
total electrical field in the grating is the superposition of the two
waves:

,  eq. (2.3 - 10)
where  is the propagation vector of the freely transmitted wave in absence of a grating and

 is the propagation vector of the diffracted wave. The modulus of the first is the average
propagation constant according to eq. (2.3 - 6). The propagation vectors and the grating vector
must fulfill the phase matching condition eq. (2.2 - 39), which determines . Since the grating
has to take on the impulse difference between the two waves, the phase matching condition
writes:

.  eq. (2.3 - 11)

k2 r( ) k0
2n2 2ik0nα–=

n x z,( ) n0 ∆n K r•( )cos+=

α x z,( ) α0 ∆α K r•( )cos+=

β k0n0
2πn0

λ0
------------= =

k2 β2 2iα0β– 4κβ K r•( )cos+=

 Figure (2.3 - 4): Vector 
diagram of diffraction by a 

slanted thick hologram 
grating

K

kT

kD

z

x

θB
ψ

ßcTßcD

κ 1
4n0
-------- k0∆n2 2in0∆α–( )=

∆n n0«
∆n2 2n0∆n≈

κ 1
2
--- k0∆n i∆α–( )=

T D

T
˜

z( ) D
˜

z( )

E
˜

T
˜

z( )e ikT r•– D
˜

z( )e ikD r•–+=
kT

kD

kD

kT kD– K=



2.3.)Holography

55

The vectorial representation of the problem considered is depicted in figure (2.3 - 4). Obviously,
the components of the individual propagation vectors are given by:

 eq. (2.3 - 12)

and (applying eq. (2.3 - 11)):

,  eq. (2.3 - 13)

where .
The Bragg condition eq. (2.1 - 168) can be expressed in terms of the grating vector and

the average propagation constant in the medium according to eq. (2.3 - 6):

.  eq. (2.3 - 14)

It is clear, that the left hand side of eq. (2.3 - 14) will not yield zero, if the Bragg condition is
not met. Therefore, it is feasible to account for a deviation from the Bragg condition by
introducing a dephasing measure ϑ, which refers to this behavior:

.  eq. (2.3 - 15)

The dephasing measure thus defined is independent from the grating spacing. This can easily be
reproduced regarding the derivation of the Bragg condition in section “2.1.4.4.) Bragg
diffraction” on page 38. Eq. (2.3 - 15) may be expressed in terms of the waves involved:

.  eq. (2.3 - 16)

Any violation of the Bragg condition may occur in terms of an angular mismatch for a
fixed wavelength or a wavelength mismatch for a fixed angle of incidence. This may be
expressed by writing:

.  eq. (2.3 - 17)

Inserting eq. (2.3 - 17) into eq. (2.3 - 15) and performing a Taylor series expansion yields:

.  eq. (2.3 - 18)

Now eq. (2.3 - 10) is inserted into eq. (2.3 - 3), and eq. (2.3 - 7) is introduced by means of
eq. (2.3 - 11). Furthermore, all higher diffraction orders (i.e. all waves not fulfilling eq. (2.3 -
11)) are neglected. Comparing then terms with equal exponential order yields a set of
differential equations:

,  eq. (2.3 - 19)

which is further simplified by assuming slow energy interchange between  and  as
well as “slow” depletion due to absorption, which allows to neglect second derivatives of the
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waves’ amplitudes. (Please note that “slow” must be understood in the sense of “slowly
changing for the waves propagating in z-direction”.) Finally introducing the dephasing measure
according to eq. (2.3 - 16) yields the coupled wave equations:

,  eq. (2.3 - 20)

with cT and cD representing obliquity factors according to figure (2.3 - 4), which account for the
slant of the grating:

.  eq. (2.3 - 21)

2.3.2.1.2.)p-Polarization
In contrast to s-polarization, the inherent vectorial nature of electromagnetic waves

cannot be disregarded considering the interaction of p-polarized waves in the frame of the
coupled wave model. Accordingly, eq. (2.1 - 18) must be applied in its vectorial form:

,  eq. (2.3 - 22)
where the constant k is defined by eq. (2.3 - 7). The total electrical field in the grating may be
expressed as before, i.e. by the vectorial equivalent of eq. (2.3 - 10). The waves considered are
assumed to be ideally transversal, which is expressed by the conditions:

.  eq. (2.3 - 23)

Following now the procedure outlined in the preceding section, one arrives at the vectorial
equivalent for eq. (2.3 - 19):

 .  eq. (2.3 - 24)

Now, the vectorial amplitudes of the transmitted and the diffracted waves are separated into
scalar amplitudes, which are a function of z, and corresponding polarization unit vectors  and

, which are assumed here to be independent of z:

.  eq. (2.3 - 25)

Multiplying the first equation of eq. (2.3 - 24) with  and the second with  yields:

 eq. (2.3 - 26)

and finally the coupled wave equations in analogy to the above:

.  eq. (2.3 - 27)

Thus, the coupled wave model yields identical results for s- and p-polarizations of the
involved waves, if the coupling constant is adapted to the actually interacting (i.e. parallel)
polarization components. 
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2.3.2.2.)Solution of the coupled wave equations
The solution of the coupled wave equations is obtained by applying the standard

approach, which may be written in this case:

.  eq. (2.3 - 28)

In order to determine the constants γj (j = 1, 2), eq. (2.3 - 28) is inserted into eq. (2.3 - 20),
and the coefficients of the different exponentials are compared, finally yielding:

.  eq. (2.3 - 29)

Multiplication of equations with identical j = 1, 2 from eq. (2.3 - 29) with each other results in
two identical quadratic equations:

,  eq. (2.3 - 30)
having the solution:

.  eq. (2.3 - 31)

In order to determine the constants tj and dj, boundary conditions must be introduced into
the model. It is clear, that:

 eq. (2.3 - 32)

accounts for a transmission hologram, where the diffracted wave is zero before being diffracted
and the transmitted wave is accordingly still undepleted. The undepleted wave is set to unity,
since some absolute fields are not of interest here, but rather the relative energy interchange due
to diffraction. In order to account for a reflection hologram, the diffracted wave
counterpropagates the transmitted wave, which will change the boundary condition for a
reflection grating to:

,  eq. (2.3 - 33)

where d is the grating thickness. Please note, that the difference between transmission and
reflection grating also shows up in the sign of the obliquity factor cT, which is positive for the
first and negative for the latter. Since reflection gratings have not been investigated in the frame
of this work, the subsequent considerations will be restricted to transmission gratings. 

Entering with eq. (2.3 - 32) into eq. (2.3 - 29) yields:

.  eq. (2.3 - 34)

The amplitudes of the transmitted and the diffracted wave in a transmission grating are obtained
by introducing these constants into eq. (2.3 - 28). 
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However, usually only the diffracted wave is of interest, the amplitude of which reads:

.  eq. (2.3 - 35)

The diffraction efficiency of the grating is defined as the diffracted fraction of the incident
light power showing up in the diffracted wave:

,  eq. (2.3 - 36)

where the input wave is presumed to have unit amplitude.
The parameter cTD is the slant factor, given by:

.  eq. (2.3 - 37)

2.3.2.3.)Transmission holograms
In order to obtain an analytical expression for the diffraction efficiency, eq. (2.3 - 35) must

be combined with eq. (2.3 - 31). This results in a fairly cumbersome expression, which can be
expressed more conveniently by separating the coupling constant from the other parameters
determining the grating behavior. Therefore, two new parameters ν and ξ are introduced
according to:

 eq. (2.3 - 38)

and:

,  eq. (2.3 - 39)

where d is the grating thickness, κ the coupling constant according to eq. (2.3 - 9), ϑ the
dephasing parameter according to eq. (2.3 - 18) and cT and cD are the obliquity factors according
to eq. (2.3 - 21). These parameters can easily be redefined in order to account for the individual
properties of a grating considered. 

The amplitude of the diffracted wave in terms of ν and ξ writes:

.  eq. (2.3 - 40)

This equation is a general expression for the diffraction efficiency due to phase and absorption
gratings and accounts for loss in the medium, slant of the grating and deviations from the Bragg
condition. Accordingly, it simplifies dramatically by excluding some of these effects.

The first restriction accounts for the particular properties of the materials investigated
within the frame of this work. Although these materials cannot a priori be assumed to be loss-
free, the occurrence of a notable absorption grating can safely be excluded. Accordingly, only
phase (i.e. dielectric) gratings must be accounted for.
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2.3.2.3.1.)Loss-free phase grating
In the case of a loss-free phase grating, the parameters ν and ξ may be rewritten as:

 eq. (2.3 - 41)

and the absorption term in eq. (2.3 - 40) becomes unity. Applying eq. (2.3 - 36) yields the
diffraction efficiency:

.  eq. (2.3 - 42)

Eq. (2.3 - 42) further simplifies by assuming an non-slanted grating and the Bragg condition
obeyed:

,  eq. (2.3 - 43)

where θ0B is the Bragg angle relative to the grating planes according to the well known form of
the Bragg condition according to eq. (2.1 - 168).

2.3.2.3.2.)Lossy phase grating
Eq. (2.3 - 40) is not notably simplified, if a slanted and lossy phase grating is considered

allowing for deviations from the Bragg condition. Therefore, Bragg incidence shall be
presumed here. Then, the parameters ν and ξ may be rewritten as:

 eq. (2.3 - 44)

and one obtains for the diffraction efficiency:

,  eq. (2.3 - 45)

which simplifies for the case of an unslanted grating to:

.  eq. (2.3 - 46)
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2.3.3.) Holographic data storage
Holographic data storage has been an issue since the invention of the laser, which has

promoted holography in general from a barely realizable theoretical concept to actual physical
application. The basic concepts of holographic data storage have been established by van
Heerden in 1963 [19]. Holographic data storage promises various advantages as compared to
other storage techniques. 

In this paragraph the basic techniques will be outlined, which may be applied in
holographic mass data storage. Therefore, the principles of holographic data storage are
described briefly in the frame of optical data storage in general leading to “multiplexing“ as a
key technique to meet the demand for high storage densities. Subsequently, the different
multiplexing techniques are described schematically. The paragraph closes with a consideration
of the system metrics for holographic multiplexing. In this context, at first a recording schedule
is derived, which allows for holographic multiplexing in erasable media like photorefractives.
Secondly, the M/# (read: „m - number“) is introduced, which currently is on the way to be
commonly accepted as a figure of merit, which describes the multiplexing performance of a
holographic storage medium. The recording and erasure dynamics of an erasable holographic
medium will be shown to have major impact on the possible application in holographic
multiplexing. Please note, that this essential question has motivated a great deal of the work
presented here.

Technical, engineering and physical aspects concerning the details of holographic
memory devices will not be considered, since this work focuses on a particular holographic
medium rather than the practical realization of a holographic memory device.

2.3.3.1.)The principle of holographic data storage
Information is stored in today’s commercially

available optical storage media (CD and DVD) in
terms of a reflection code representing the 1s and 0s
of the binary code. In principle, the reflection code
is printed or burnt into a rotating medium in the form
of one-dimensional strings of longer and shorter
reflecting areas arranged in concentric circles
around the rotation axis of the medium. Thus, the
information is stored two-dimensionally in a serial
manner, and the individual bits are spatially located
on the data carrier (CD) making them vulnerable to
possible damage of the storage medium (e.g.
scratches). A very limited number of these
information layers may be stacked “mechanically“
in a single disc in order to achieve a higher storage
density of the complete device (DVD). The principle is depicted in figure (2.3 - 5). The stored
data is read out by a focused laser beam, which is modulated in intensity by the string of
reflecting dots while the CD or DVD rotates. 

For holographic storage, on the other hand, the information is provided in terms of images
of two-dimensional pixel arrays. Holograms are formed from these images by means of a spatial
light modulator which imprints a corresponding intensity pattern into the signal beam. A
hologram is then stored in a holographic medium. For retrieval, the hologram is illuminated
solely with the reference beam and the image of the data page will then show up in the diffracted

 Figure (2.3 - 5): Storage scheme for CD and 
DVD
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portion of the reference beam. It can be evaluated by a detector array (charge coupled device,
CCD). The information is distributed over the entire recording volume and may be retrieved
even from only a small portion of the hologram as already mentioned before. Thus, the
information is insensitive against partial damage of the recording medium, which will reduce
the signal to noise ratio rather than cause bit errors. 

If the recording medium allows for storage of
volume holograms, many holograms can be stored
in a single volume using slightly different Bragg
conditions. This technique is called multiplexing and
will be discussed subsequently in more detail. Using
multiplexing, high storage densities of up to several
TBit/cm3 are theoretically possible. During retrieval
only the hologram will be detected, which obeys the
current Bragg condition. The parallel nature of
holography in general shows up in the inherent
feature of storage and retrieval of whole pages
instead of single bits, which promises high data
transfer rates. Holographic data storage moreover
offers the possibility of associative retrieval. In this
case, the holograms are illuminated with a reference
beam carrying some information to compare with
the hologram considered. The reference beam will
then only be diffracted if the stored hologram is at
least very similar to the information imprinted in the
reference beam. The diffraction efficiency depends
on the quality of the congruence. If the medium
carries multiple holograms, all Bragg conditions applied for storage can be tested and, thus, the
data page can be found, which correlates best to the information contained in the reference
beam. 

2.3.3.2.)Holographic multiplexing
Subsequently, the principle of multiplexing will be outlined, followed by a schematic

description of the multiplexing methods established today. Finally, the basic scheme will be
depicted, which has to be followed in order to reasonably apply the multiplexing methods. In
this context, the M-number (M/#) in introduced, which provides a measure to trade off the
multiplexing capability of some holographic medium considered in terms of its applicability as
holographic mass storage medium.

2.3.3.2.1.)The principle of holographic multiplexing
Holographic multiplexing is based on the inherent property of volume holograms to

require a specific geometrical configuration, depending on the wavelength for read-out, which
is given by the Bragg condition eq. (2.3 - 14) (or eq. (2.1 - 168)). The diffraction efficiency of
a particular hologram vanishes if the Bragg condition is not met, which is referred to as Bragg
selectivity. The Bragg selectivity is theoretically infinite for an ideal infinitely thick grating, but
depends on various factors for a real grating of limited thickness, the most important of which
are the grating thickness and the grating spacing. One may get an idea of the relations by

 Figure (2.3 - 6): Scheme of holographic data 
storage. Angular multiplexing of three data 

pages is depicted. 
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calculating the expected normalized diffraction efficiency as a function of the dephasing with
respect to the Bragg condition for various parameters by means of eq. (2.3 - 36) and eq. (2.3 -
40). An example is depicted in figure (2.3 - 7).

Thus, appropriately applying different Bragg conditions in recording allows to record
many holograms in a single volume element of the recording medium, which can be
individually retrieved without cross-talk between each other. Consequently, the number of
holograms to be multiplexed is in principle limited by the Bragg selectivity of the considered
system. The recording of many holograms should not be misconceived as recording of
holograms at different depth in the volume. In fact, the holograms are superimposed in the same
volume element by intermixing their holographic structures. 

While intermixing the holographic structures of many holograms does not affect the
information stored in an individual hologram, it is clear, that there will be an effect on the
strength of the individual holograms. All holographic recording media actually provide a
limited dynamic range, i.e. the achievable absolute refractive index modulation is limited. Thus,
by storing a great number of holograms, the refractive index modulation per hologram and
accordingly also the diffraction efficiency of each hologram will decrease. Please note, that the
diffraction efficiency η is approximately proportional to the square of the index modulation (for
η << 1) resulting in a fast decrease of the diffraction efficiency as a function of the multiplexed
number of holograms. This is a further limiting factor for the maximum number of holograms
to be multiplexed in a system considered.

There are some other factors, which may limit the maximum number of holograms to be
multiplexed. However, these factors are related to technical requirements and engineering
aspects for real storage devices rather than to physical limitations. In particular, an appropriate
control of a storage device requires all stored holograms to exhibit equal or at least very similar
diffraction efficiency. These factors will not be discussed here in detail, although they are
important as well, if the potential applicability of some holographic medium for multiplexing
purposes is considered. 

 Figure (2.3 - 7): Angular Bragg selectivity of transmission holograms of different thickness d recorded with 
different intersection angles 2θ of the recording beams (i.e. different grating spacing).
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2.3.3.2.2.)Holographic multiplexing methods
In order to multiplex holograms for storage purposes, the Bragg conditions must be varied

somehow by varying some physical property of either the signal, or the reference beam, or the
storage medium. Furthermore, an appropriate addressing mechanism must be provided, which
maps memory addresses to values of the physical properties varied. The physical property used
for addressing the Bragg condition for a particular hologram defines the multiplexing method.
Please note, that different multiplexing methods may be combined for technical application.

A) Angular multiplexing 

 Angular multiplexing generally describes all methods to address
different Bragg conditions by variation of the angle of incidence of the
involved laser beams. This may be performed by changing the angel of
incidence of only the reference beam, which is the most common way and
already depicted in figure (2.3 - 6). There are alternative possibilities,
which are, however, afflicted with unfavorable technical problems. For
example the medium may be rotated around its central axis perpendicular
to the plane of incidence of the beams, however, the diffracted beam may
then move as well due to changing refraction. Angular multiplexing is
well established for photorefractive crystals, where a 90° configuration
can be applied as sketched in figure (2.3 - 8). When applying angular
multiplexing, the holographic grating vector is varied either only by
length or by length and direction, the latter which is the case if only the
reference beam is manipulated. 

Please note, that angular multiplexing may be performed in
orthogonal directions, which then is referred to as “in-plane“ and “out-of-
plane“. Figure (2.3 - 8) depicts in-plane angular multiplexing. Rotating the variation direction
for the angle of incidence of the reference beam by 90° leads to the out-of-plane equivalent. 

C) Shift multiplexing

Shift multiplexing [20, 21] basically
uses the concept of angular multiplexing,
however without explicitly changing the angle
of incidence of one of the beams. The signal
beam is a plane wave, whereas the reference
beam is transformed into a spherical wave by
a pinhole or a a lens of high numerical
aperture. Then the beams are intersected
inside the medium to record a hologram. The
direction and the length of the holographic
grating vector in this hologram is not constant
but a function of its spatial location in the
hologram. Accordingly, this particular hologram can only be read out again, if the position of
the spherical reference beam relative to the hologram is exactly reproduced in the lateral
position as well as in the distance to the focal point of the reference beam. For recording the next
hologram, the medium is then shifted by a portion of the hologram diameter in a plane
perpendicular to the plane, which includes the propagation vectors of the signal beam and the

 Figure (2.3 - 8): 
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reference beam before its transformation into the spherical reference wave. 
Usually the shift is small, so that the

holograms overlap significantly. The
configuration is depicted in figure (2.3 - 9).
Figure (2.3 - 10) illustrates the grating planes,
which result from the intersection of the plain
signal wave and the spherical reference wave.
It is clear, that there is a spatially varying
distribution of grating wave vectors, which
only can be Bragg-matched by the exact
equivalent of the reference wave fronts
applied for generating the hologram. Please
note, that the shift direction may be chosen
arbitrarily, provided it is within the plane
described above.

Shift multiplexing is in particular
preferable for disk-shaped holographic media, e.g. organic polymer systems.

B) Wavelength multiplexing

The wavelength of both the signal and the reference beam is varied in wavelength
multiplexing. The geometrical configuration of the setup remains unchanged, otherwise, which
is in principle favorable. Variation of the wavelength alters the length of the holographic grating
vector. Wavelength multiplexing has gained importance during the last years, which is due to
the tremendous progress achieved in semiconductor laser technology providing nowadays
multi-color tunable semiconductor Lasers at relatively low cost. However, the tunability is still
limited which renders wavelength multiplexing still less flexible than other multiplexing
methods.

D) Peristrophic multiplexing

Peristrophic multiplexing [22] represents a
special case, since the Bragg condition is only
altered “spatially“ in this multiplexing method. The
individual holograms are recorded in the medium
under identical conditions, however, the medium is
rotated a bit around its center normal between two
recording processes. Thus, the grating vectors of the
individual holograms may be interpreted as lying in
a conic envelope around the axis of rotation of the
medium depending on the particular recording
geometry (i.e., the bisector between the recording
beams need not coincide with the rotation axis).
Therefore, all holograms will be always addressed
simultaneously during readout and the reconstructed
signal beams will occur as well simultaneously but
spatially resolved on a half circle around the axis of rotation. The particularly addressed
hologram must then be separated from the others, e.g. by an iris. On the other hand, this feature

 Figure (2.3 - 10): Sketch of some grating planes 
resulting from interference of a plain with a spherical 
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may allow for fast associative retrieval not requiring mechanical repositioning of the
holographic recording medium.

Please note, that the axis of rotation is not restricted to be normal to the holographic
medium, however, this case is most ostensive. If the axis of rotation is not normal to the
medium, the medium will wobble during rotation, which makes the spatial situation more
complicated. 

In analogy to shift multiplexing, peristrophic multiplexing is in particular preferable for
disk-shape holographic media, e.g. organic polymer systems.

E) Phase-encoded multiplexing

Phase-encoded multiplexing [23, 24] does not use a plain reference beam, but a reference
beam with modulated phase, i.e. the wave fronts of the reference beam carry some particular
pattern. If the functions underlying the phase patterns are orthogonal, holograms can be stored
and retrieved without significant cross-talk when applying the different phase patterns to the
reference beam. The phase patterns can be imprinted into the reference beam by means of a
phase only spatial light modulator (pSLM). The principle may be illustrated by means of the
shift multiplexing described before, which may be regarded as a special case of phase
multiplexing. By recording a hologram with a reference beam carrying some specific phase
pattern, the resulting distribution of holographic grating vectors can only be Bragg-matched by
a reference beam carrying an identical phase pattern. However, as mentioned before, the phase
pattern functions must be orthogonal, since otherwise portions of the grating vector
distributions may coincide for different holograms leading to strong cross-talk.

Phase-encoded multiplexing additionally offers the possibility of arithmetic operations on
a stored hologram by means of subsampling of phase codes.

Although this method sounds favorable, since the geometrical configuration of the setup
remains unchanged like in wavelength multiplexing and it offers the feature of possible
arithmetical operations on stored holograms, it suffers from the lack of high precision pSLM’s.

2.3.3.3.)System metrics for holographic multiplexing in erasable media
Technical application of holographic mass data storage by means of holographic

multiplexing requires all holograms to exhibit at least very similar diffraction efficiency once
the multiplexing recording procedure is finished. This is proximate, since a technical device
must not be expected to adapt its detection sensitivity for read out to the individual holograms.
Accordingly, it is necessary to multiplex holograms in a way, that the diffraction efficiency of
all holograms finally levels off. In erasable media, however, a hologram previously recorded
will be partially erased while recording the next hologram. In order to account for this
circumstance, an appropriate exposure schedule has to be found, which ensures, that the
holograms recorded earlier are erased to just the strength of the last hologram recorded [25]. The
derivation of the exposure schedule furthermore results in a figure of merit, which characterizes
the dynamic range performance of a holographic memory system, the so called M-number (M/
#).
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2.3.3.3.1.)The exposure schedule
The particular expression for such an erasure schedule will be recursive and account for

the particular recording and erasure dynamics of the medium used. Extensive research efforts
have been focused on multiplexing in photorefractive crystals during the last decades, which are
regarded as the most promising systems for the application in question. Therefore,
photorefractive crystals shall be employed here for discussing the system metrics for
holographic multiplexing in erasable media. Photorefractive crystals will be discussed later in
more detail. However, in order to proceed in the present considerations, the dynamic behavior
of these holographic storage media will be anticipated here. Photorefractive crystals basically
exhibit a mono-exponential recording and erasure behavior of the photorefractive space-charge
field, which determines the strength of the holographic grating, i.e., the refractive index
modulation. Thus, the recording behavior may be expressed by:

,  eq. (2.3 - 47)

where A0 denotes the maximum grating strength, and τr is the recording time constant. Eq. (2.3
- 47) assumes, that the diffraction efficiency is small, i.e. , which allows to approximate
eq. (2.3 - 43) by . The erasure behavior may be expressed by:

,  eq. (2.3 - 48)
where τe is the erasure time constant.

Thus, for multiplexing e.g. M = 10 holograms, the
recording process will look like depicted in figure (2.3
- 12). It is convenient to derive an analytical expression
for the schedule starting with the exposure time tM for
the last hologram and calculating the exposure times for
the other holograms tm inversely in a recursive
procedure. The choice of the exposure of the last
hologram is conducted semi-empirically and will be
discussed later in this section. 

The derivation of the exposure schedule is
straight forward although the indices count backwards,
while the reasoning counts forwards. For a very large
number of holograms (actually ), most of the holograms are recorded to very small
strength . Thus, there will be some hologram number m0 >1 with , which allows
for the approximation of eq. (2.3 - 47) by:

 eq. (2.3 - 49)

for m > m0, i.e., the exponential law of growth is linearly approximated by its initial slope.
Now some mth hologram and the corresponding (m-1)th hologram are considered with m

> m0+1. The (m-1)th hologram has been recorded for the time tm-1 and has subsequently been
erased for the time tm while the mth hologram has been recorded. According to figure (2.3 - 12),
both holograms shall end up at the same strength, i.e.:

.  eq. (2.3 - 50)
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 Figure (2.3 - 12): Multiplexing schedule

ηend

tm-1
tM

tm-8

 

η 
[a

.u
.]

time [a.u.]

M ∞→
η 0→ tm0

τr«

η A0
tm
τr
-----∝

A0
τr
------tm

A0
τr
------tm 1– e

tm

τe
----–

=



2.3.)Holography

67

Accordingly, the inverse recursive expression for the schedule reads:

.  eq. (2.3 - 51)
However, this schedule has been derived applying approximations, which must be accounted
for. 

This will be done, by choosing an appropriate exposure time for the last hologram and
additionally introducing an empirical correction factor. Eq. (2.3 - 51) may be rewritten as:

 eq. (2.3 - 52)

and the approximation used to obtain Eq. (2.3 - 49) can be applied once more yielding:

.  eq. (2.3 - 53)

Now the recording time for the mth hologram may be defined in terms of the erasure time
constant: 

,  eq. (2.3 - 54)
where ρm is some real number with  following the constraints preceding eq. (2.3 - 49).
Inserting this into eq. (2.3 - 53) results in:

.  eq. (2.3 - 55)

In order to get rid of the recursive character of eq. (2.3 - 55), the hologram number m0 is referred
to, which is a constant, marking the formal beginning for the validity of the applied
approximations. Counting forward from m0, i.e. in direction of increasing hologram number, eq.
(2.3 - 55) may be rewritten as:

.  eq. (2.3 - 56)

The next step in the direction of increasing hologram number will read:

.  eq. (2.3 - 57)

Thus, it follows by induction m > m0:

.  eq. (2.3 - 58)

As m grows very large with m0 fixed:

 eq. (2.3 - 59)

and with eq. (2.3 - 54):

.  eq. (2.3 - 60)

Referring now to the last hologram M, which shall also define the grating strength finally
achieved for all holograms (see figure (2.3 - 12)), the resulting grating strength of the
multiplexed holograms will be:

 eq. (2.3 - 61)
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for  for some m0 satisfying the constraints preceding eq. (2.3 - 49).
However, applying the last exposure time tM according to eq. (2.3 - 60) and calculating

the previous recording times according to eq. (2.3 - 51) will lead to unreasonably long initial
exposure times (and even an infinite first exposure time), which are not practical, and result in
too small diffraction efficiencies for the first holograms due to the performed linear
approximation of the growth behavior. In turn, this is only valid for small exposure times.
Therefore, the exposure of the last hologram must be chosen somewhat smaller than indicated
from eq. (2.3 - 60), which is taken into account by introducing an empirical factor f with f < 1and
choosing the last exposure according to:

.  eq. (2.3 - 62)

By reasonable selection of f, the recording sequence will be finite and of practical total length.
A reasonable value for f cannot be calculated but has to be identified by trial and error. Typical
values for common photorefractive crystals are about 0.5 < f < 0.8. If f is chosen too small, the
dynamic range of the medium is not completely used and if f is chosen too large, the exposure
schedule will not be practical as discussed above.

It must be pointed out, that the entire preceding derivation bases on the assumption of a
simple mono-exponential dynamic behavior of the holographic medium for both the recording
process and the erasure process. Furthermore, both processes are assumed to be independent
from each other. If these basic assumptions do not apply, it will be no longer possible to derive
an analytical expression for the exposure schedule. As will be shown in the section devoted to
the experimental results, both problems apply to PR polymers.

2.3.3.3.2.)The M-number (M/#)
The M/# is a direct result of eq. (2.3 - 61) [26]. Since M is a very large number, whereas

τr and τe are usually of at least similar magnitude, the exponential growth term in eq. (2.3 - 61)
can again be approximated linearly yielding:

.  eq. (2.3 - 63)

This expression relates the essential system parameters, i.e. saturation grating strength A0,
recording time constant τr and erasure time constant τe to the desired number of holograms M
to be multiplexed and the maximum achievable diffraction efficiency η. It is clear, that it would
be very convenient to separate the material parameters and merge them into a new parameter,
which may serve as figure of merit for the dynamic range performance of a holographic memory
system. Therefore, the above expression is rewritten as:

 eq. (2.3 - 64)

with M/# as the desired material parameter, called „M-number“. Accordingly, the M/# is defined
as:

.  eq. (2.3 - 65)

The M-number was originally only used in photorefractive crystals. However, it offers more
extensive application, since it may be determined on the basis of its original definition according
to eq. (2.3 - 65) as well as on basis of eq. (2.3 - 64), which is applicable for arbitrary holographic
storage media. To do so, the medium in question must simply be experimentally tested by
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multiplexing a sufficiently high number M of holograms (i.e. at least 10; the significance of M/
# increases with increasing hologram number) meeting the condition of similar strength. Then
M/# can be obtained by:

,  eq. (2.3 - 66)

where m is the hologram number.
Accordingly, M/# may serve as an indicator to compare the performance of arbitrary

holographic storage media. A higher M/# directly indicates better system performance.
However, the M/# cannot account for outreaching problems e.g. concerning complicated
dynamic behavior of a holographic medium as found in photorefractive polymers. This will be
discussed in more detail in the section devoted to the experimental results. Typical values of M/
# for some representative holographic storage systems are given in Appendix A.
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2.4.)Physical aspects of organic polymers
This paragraph deals with theoretical aspects of polymer physics. Aspects of relaxation

processes in polymers will be outlined. A phenomenological overview over the main transitions
in polymers will be given. The glass-transition and the underlying theory will be briefly
discussed. Thereafter the oriented gas model describing the electrical poling of organic
polymers will be outlined including the nonlinear optical properties of poled polymers. Finally
in the last section in this paragraph the electrical properties of organic polymers will be
elaborated upon. 

2.4.1.) Relaxation and thermodynamics in polymers
 Relaxation and thermodynamics in amorphous polymers is a wide field, which covers the

entire range of physical states from the glassy state to the melt. Nowadays, polymers are well
established materials for an enormous variety of technical applications, and numerous
theoretical approaches have been developed to describe the behavior of polymers in their
different states. However, all theories developed up to now cover only a small portion of the
complete range of physical states a polymer can take on. Moreover, long time scale and short
time scale behavior must be distinguished, since the time scale of a particular experiment is a
crucial parameter for defining the physical state of the polymer in the experiment. The situation
is furthermore complicated by the fact, that on the one hand the physical states of a polymer are
not clearly separated and on the other hand different aspects of a particular state may be
approached from different points of view. In fact there are solely smooth transitions existing
rather than clear limitations and some unifying treatment is still out of sight. Therefore, it is
impossible to give a consistent overview in the frame of this work, and the subsequent
consideration will only cast spot-lights upon some aspects, which are of major interest for the
class of materials under investigation here.

In order to perform a preselection one must anticipate a few points to be discussed later
in more detail. Photorefractive polymers are statistically center-symmetric and require poling
by an external electrical field in order to become photorefractive, i.e. polar molecules or
moieties must be oriented within the polymer matrix. This is the fundamental reason why
relaxation and thermodynamics of polymers are important for this class of materials. However,
here not the bulk properties shall be focussed upon, but rather the impact of the rigidity of the
matrix on the orientational ability of some small molecule. This makes the consideration of
some movement or manipulation of whole polymer chains dispensable. In fact, basically the
thermodynamical point is of interest, when some tens of chain segments become mobile
enabling them to evade when set under stress by the small molecule in its attempt to orient itself
along an externally applied field. This leads directly to the glass-transition, which may be
considered as the transition from the glassy state, where the matrix is highly rigid to a state,
where just some tens of polymer chain segments are mobile enabling some collective motion of
the polymer backbone. As soon as this state is reached, the orientational mobility of the small
molecule may be considered as approximately unimpeded, which is the basic assumption for the
oriented gas model to be discussed in “2.4.2.) Electrical poling of organic polymers - the
oriented gas model” on page 83. Furthermore, the case must be considered, when the matrix is
still rigid and the small molecule experiences mechanical repulsion from the matrix while
attempting to orient. This situation refers to the glassy state, which, however, shows viscoelastic
contributions depending on the time scale applied. Therefore, viscoelastic response behavior in
non periodic stress-relaxation experiments will be considered. This consideration will be
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restricted to the macroscopic phenomenology and will not cover aspects of molecular dynamics,
which would go far beyond the scope of this work.

Subsequently a phenomenological overview over the main viscoelastic transitions in
polymers is provided. Thereafter, the glass-transition will be elaborated upon followed by a
brief discussion of the viscoelastic response behavior. A consideration of the effect of physical
aging in amorphous organic polymers will conclude this section. 

2.4.1.1.)Phenomenology of viscoelastic transitions
Macromolecular systems like organic polymers usually react viscoelastically on

mechanical stress, which means that there is an elastic as well as a viscous response. In first
approximation this behavior is described by a serial connection of an elastic and a viscous
element, which is called a Maxwell-element. 

The elastic element behaves according to Hook’s law, which describes a linear
proportionality between mechanical stress σ and a resulting deformation ε of a material under
the approximation of small deformations. The proportionality factor in the case of linear
deformation is Young’s modulus of elasticity E#. (Alternatively and without loss of generality
one may consider shearing instead of linear deformation.)

 eq. (2.4 - 1)
The viscous element is described by Newton’s equations, which describes a linear

proportionality between mechanical stress and the speed of deformation. The proportionality
factor is the viscosity η (Please note that η is typically used in this work for denoting the DFWM
diffraction efficiency of a hologram. However, η is commonly used to denote the viscosity in
the literature concerning the mechanical properties of materials. Therefore this notation will be
adopted here, however, restricted to this section.): 

 eq. (2.4 - 2)

For a serial connection of these elements (then called a Maxwell-
element), both contributions to the deformation (eq. (2.4 - 1) has to be
derived with respect to the time before) can be added and a mechanical
relaxation time τmax of the system can be defined as:

.  eq. (2.4 - 3)
One ends up with the following relation:

 eq. (2.4 - 4)

Hence, important basic mechanical properties of an organic polymer
may be represented qualitatively by simply considering the modulus of
elasticity. This applies especially to the consideration of the temperature
dependency of the states of aggregation.

In order to display the different states of aggregation such a system may take on, figure
(2.4 - 2) shows qualitatively the modulus of elasticity of a typical organic polymer for a wide
range of temperatures. There are five different areas of mechanical relaxation behavior, which
are correlated with significantly different behavior in stress-relaxation experiments of any kind
and, consequently, are correlated with very different physical states of the system:
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 1) Range of the glassy state

The modulus of elasticity is high and
only slightly temperature dependent.
The polymer is hard and brittle.
Molecular motions are basically
restricted to vibrations and short range
rotational motions (typically 1-4 chain
atoms).

2) Range of the glass-transition

In the range of the glass-transition the
modulus of elasticity is extraordinarily
temperature dependent. Typically,
area 2 has a width of 20 - 30°C and
while passing over this area by heating up a glassy polymer, E# decreases by about
three orders of magnitude. For quasi-static measurements the point of maximum slope
of this part of the curve is usually defined as the point of the glass-transition. The
temperature, which is related to the glass-transition point is defined as the glass-
transition temperature (Tg). Qualitatively, the glass-transition region can be
interpreted as the onset of long range coordinated molecular motion (typically 10-50
chain atoms). 

3) Range of the rubber-like plateau 

In this area E# depends only weakly on the temperature, if at all, and the polymer is
highly elastic. The width of this plateau strongly depends on the molecular mass and/
or the degree of crosslinking. Non crosslinked polymers may already show
viscoelastic tendencies. Crosslinked systems remain in this state as the temperature
further increases until they decompose. 

4) Range of the rubber-like flux

At further increasing temperature, the modulus of elasticity starts decreasing again
with increasing slope. The polymer starts to flow under the influence of mechanical
stress and behaves increasingly viscous. This is the area of dominant viscoelastic
behavior.

5) Range of the melt

E# is very small (about three orders of magnitude smaller than in area 3), and the
polymer behaves like a more or less viscous fluid.

 Figure (2.4 - 2): Modulus of elasticity as a 
function of temperature. Tg indicates the glass- 

transition „point“.
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It is important to be aware, that the observed mechanical behavior of the systems depends
on the relation between the measurement time and the relaxation times (viscous and elastic) of
the system over the entire range discussed above. This will be expressed hereafter by using the
term “time scale“ of an experiment. An experiment operating on “short (long) time scale“ is thus
correlated to an experiment extending over a short (long) time period as compared to the
relaxation times of the system. 

For example even in the glassy state viscous behavior may be observed, if the time scale
of the applied stress-relaxation experiment is sufficiently long. Hence, the curve in figure (2.4
- 2) refers to an experiment carried out on a constant and relatively short time scale, however,
parametric in the temperature. On the other hand, one may determine E# as a function of the
time scale of the experiment at constant temperature and will obtain a similar curve, where the
time increases as well from left to right. It is important to understand, that E# at constant
temperature is not a function of time, but rather of the time scale of the experiment. Thus, in this
case each point of the curve represents the modulus of elasticity determined for a duration of the
experiment represented by its corresponding time value in the diagram.

Hence, distinction between a static glass-transition temperature and a dynamic glass
transition temperature may be made (however, these are not „different temperatures“ but they
rather represent the behavior under different experimental conditions).

2.4.1.2.)Static and dynamic glass-transition temperatures
The static glass-transition temperature refers to the glass-transition temperature obtained

by experiments operating on a relatively long time scale, so that the system in question may be
approximately considered in thermodynamic equilibrium at any time. Hence, one may also say,
that the static glass-transition temperature is basically defined thermodynamically, which as
well represents the basis for a theoretical approach to be discussed later in “2.4.1.3.2.)
Thermodynamic approaches” on page 78. However, this definition has to be handled with care,
since the glass-transition actually is a relaxation process and accordingly of kinetic nature,
which is not questioned by the thermodynamic approach. The static glass-transition temperature
may be measured for example dilatrometrically, by differential scanning calorimetry (DSC), or
by mechanical or dielectric loss experiments at very low frequency. It describes the temperature,
where slowly charged amorphous matter changes its mechanical behavior from brittle to stringy.
As already mentioned before, the experimental results of the static glass-transition temperature
will depend on the time scale applied in the particular experiments. However, a
thermodynamically well-defined so called ideal glass-transition temperature is implied by the
thermodynamic interpretation, which is independent from any measurement parameter. On the
other hand, since the ideal glass-transition temperature is only a theoretical parameter, which
does not have practical significance in contrast to the experimental value, it is common practice
that experimentally determined Tg’s are presented in the literature together with the
experimental parameters applied in order to allow for reasonable comparison. 

The dynamic glass-transition temperature, on the other hand, is related to the mechanical
behavior of amorphous matter, which is charged on short time scale, e.g. by mechanical shots
or hits. The dynamic glass-transition temperature can be measured by stress-relaxation
experiments like repercussion-elasticity and mechanical or dielectric loss experiments at high
frequency. The dynamic glass-transition temperature experimentally obtained will increase with
decreasing time scale of the underlying experiment. In classical linear organic polymers (e.g.
polystyrene), the increase of Tg amounts to about 5-7° per order of magnitude decrease in time
scale of the experiment.
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The dynamic and the experimentally obtainable static glass-transition temperatures can be
converted into one another by an empirical expression, which is generally valid for arbitrary
relaxation processes and known as Williams-Landel-Ferry (WLF) equation, which reads:

 eq. (2.4 - 5)

The shift factor αT corresponds to the relation τ /τ0 of two relaxation times of the system
at two different temperatures T and T0, whereby T0 and τ0 are reference values obtained by any
arbitrary measurement technique for the glass-transition temperature. The WLF scaling factors

 and  are empirical values, specific for each type of polymer and a certain reference
temperature. The WLF equation is an approximation, which is only reasonably valid within a
limited temperature interval around T0. The width of this interval is neither well defined, nor
necessarily symmetric around T0 and, accordingly, some experience is required for the WLF
scaling to be successfully applied. 

The experimental static glass-transition point is often referred to as a proper reference
point in the literature, with the validity of the WLF scaling then being restricted to an interval
of roughly . According to [B9, p. 300] and [B21, p. 341] average values of
c1

0 = 17.44K and c2
0 = 51.6K have been found for this case as well as for nearly all polymers.

A conceptual derivation of the WLF equation will be presented in Appendix I in terms of
the free-volume theory.

2.4.1.3.)Theoretical approaches to the glass-transition
The theoretical understanding of the glassy state or of the glass-transition, respectively, is

still incomplete. Basically, there are three different approaches to this problem, each of which
focuses on a different aspect of the phenomenon:

→ Free-volume theory
→ Kinetic approach
→ Thermodynamic approach

It is beyond the scope of this work to discuss all three theoretical approaches to the glass-
transition phenomenon in detail. Only the free-volume theory will be outlined in more detail
subsequently, since it is more closely related to the problems elaborated upon in the frame of
this work than the other approaches. The thermodynamic approach will only be outlined
verbally. The kinetic approach will not be discussed separately, since the kinetic elements
included in the free volume theory are sufficient for covering the kinetic aspects of interest in
this work.

2.4.1.3.1.)Free-volume theory
The free-volume theory (FVT) is based on the perception, that a glass is a supercooled

liquid in which the molecular mobility is extremely slowed down as compared to the liquid
state. This is assumed to be due to a drastic reduction of the internal free volume available for
the molecules to move, preventing the formation of an ordered crystal lattice and freezing in the
instantaneous “liquid“ configuration. 

Figure (2.4 - 3) qualitatively depicts the total volume V of some matter as a function of
the temperature T. For the discussion a sample shall be assumed, which is heated up. The lower
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solid curve represents a V(T)-trend of matter in the crystalline state. As soon as the melting
temperature Tm is reached, V increases at constant T = Tm. The upper curve to the right of Tm
represents the V(T)-trend for the corresponding liquid. The upper curve to the left of Tm
represents the V(T)-trend of matter in the glassy state. Tg is the “real“ (experimentally
obtainable) glass-transition temperature, which depends on the cooling rate previously applied
to the liquid (i.e. the history of the sample) as does the V(T)-curve. T∞ represents the ideal glass-
transition temperature. Please note, that the volume of a glass at T = 0K cannot be as small as
the volume of a corresponding crystal at T = 0K, since a state of negative entropy would result.
This aspect leads to the ideal glass-transition temperature, which will be discussed in the
framework of the thermodynamic theories. V’g

f(Tg) and V’fl
f(Tm) are the free volumes of the

glass at Tg and of the liquid at Tm, respectively, related to the volume of the crystalline state at
T∞. This definition of the free volume is derived from the aforementioned entropy problem and
will be discussed in the section devoted to the thermodynamic theory. 

Generally speaking the total free volume is defined as the excess volume with respect to
the volume of the ideal crystalline state at the ideal glass transition temperature. 

However, not the total free volume is
used for the theoretical treatment of the free-
volume conception, but rather the fractional
free volume f, which is defined as the free
volume Vf normalized by the volume V of the
considered phase:

.  eq. (2.4 - 6)

Expressing small changes of the fractional free
volume in the form:

,  eq. (2.4 - 7)

one readily concludes from the general thermal
expansion coefficient α: 

,  eq. (2.4 - 8)

that the fractional free volume f increases linearly with temperature, however, for a limited
temperature range only, since the total volume of the phase is regarded as constant in eq. (2.4 -
7):

.  eq. (2.4 - 9)
Here, f0 is the fractional volume at the reference temperature T0 and αf may be considered as
the thermal expansion factor of the free volume, which, in the case of the liquid to glass
transition, is the difference between the thermal expansion coefficients of the liquid phase αli
and the glassy phase αg:

 eq. (2.4 - 10)
Accordingly, the free volume can be expressed by the thermal expansion coefficients αli and αg:

.  eq. (2.4 - 11)

Introducing now P as a measure of the probability that the barrier to some cooperative
motion in the system be surmounted, an Arrhenius-type relationship may be assumed for P:

 Figure (2.4 - 3): Change of the free volume as a 
function of temperature
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,  eq. (2.4 - 12)
where  is the activation energy of the process and the denominator of the exponential is the
thermal energy.

Furthermore, the time (scale) t of the experiment must be considered as several times
mentioned before. The theory assumes, that the product tP must reach a certain value for the
collective motion to start and, hence, for the transition to be observed. Thus:

 eq. (2.4 - 13)
and it follows:

,  eq. (2.4 - 14)

which correlates the logarithm of time with the inverse of the temperature.
The activation energy  will be associated with the free volume and qualitatively may

be expected to decrease as the fractional free volume increases. This may be expressed as:

,  eq. (2.4 - 15)

where B’ is a constant. Accounting for eq. (2.4 - 3), which correlates the viscosity with a
relaxation time, eq. (2.4 - 15) shows similarity with the Doolittle equation, which describes the
viscosity η as a function of the free volume

.  eq. (2.4 - 16)

A and B are empirical factors. Therefore, B’ is taken as equal to B and the differential of eq. (2.4
- 14) reads:

,  eq. (2.4 - 17)

which correlates the logarithm of time with the inverse of the fractional free volume. Rewriting
the differential on the right hand side of eq. (2.4 - 17) as:

 eq. (2.4 - 18)

and inserting eq. (2.4 - 9) yields, after some simple arithmetic manipulations, the WLF equation
in log base e form:

 eq. (2.4 - 19)

with αT as shift factor according to:

.  eq. (2.4 - 20)

Comparing eq. (2.4 - 19) with eq. (2.4 - 5) shows, that the WLF scaling factors  and  can
be expressed as:

 and ,  eq. (2.4 - 21)

with e1 ≈ 2.303.
As already noted above, the WLF equation is restricted to a limited temperature interval

around T0, which is due to the linear approximation of αf according to eq. (2.4 - 9).
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Viscosities shift as well with temperature, which may be expressed by the same shift
factor as implied by the similarity between the Doolittle equation and eq. (2.4 - 17):

.  eq. (2.4 - 22)

The densities ρ0 (at T0) and ρ (at Τ ) and the temperatures T0 and T correct for the thermal
expansion and the subscript “0“ denotes the reference state. The viscosity is correlated with a
relaxation time by eq. (2.4 - 3), which identifies the modulus of elasticity as proportionality
factor. For relating the shift factor for the relaxation times to the viscosities, the correction for
thermal expansion in eq. (2.4 - 22) is introduced. The relaxation times correspond directly to the
time (scale) t of the experiment. It is clear, that the same argumentation applies for the modulus
of elasticity, allowing the application of the shift factor as well for E#. Please note, that the
thermal expansion is considered as very small for any kind of solids anyway (as implied already
for eq. (2.4 - 7)), making the correction introduced dispensable in most cases. 

The WLF equation is well-suited to introduce some kinetic aspects. It was mentioned
before, that the measured glass-transition temperature increases with decreasing time scale of
the experiment applied for its determination. This relation may be deduced from the WLF
equation giving also an indication of the orders of magnitude to be expected. For example one
obtains from eq. (2.4 - 5) with the parameter values given subsequent to eq. (2.4 - 5):

,  eq. (2.4 - 23)

yielding for T near Tg an increase of about 3° in Tg per decade of αT, however, for αT covering
at maximum a range of about 3 orders of magnitude. For larger changes in the time frame, the
average increase in Tg is even higher. For example, solving eq. (2.4 - 5) explicitly for αT = 10-
10 yields T −Tg ≈ 69, i.e. in average about 7° per decade. However, the relation can no longer be
approximated as linear for such large changes. 

In conclusion, according to the free-volume conception, the glass-point is defined as the
point, when the contraction of a melt while rapidly cooling down leads to the subsidence of the
free volume below a critical value. Below this value, conformation changes of the molecules are
suppressed by a lack of space and the diffusion mobility is frozen. 

Expressing this statement in terms of non-crosslinked polymers, one has to account for a
possibly significant difference between the diffusion mobility and the ability of conformation
changes in polymers around the glass transition due to the relatively large average size of the
molecules. Therefore a relative wide plateau area of viscoelastic behavior between the melt and
the glassy state occurs, where the diffusion mobility is already almost completely frozen, but a
significant ability for conformation changes is still persistent. The latter decreases if the
temperature (and free volume) is further reduced until the polymer becomes hard and brittle.

As already mentioned in the introduction above, the free volume conception is a
preferable approach for consideration of the problems regarded in the frame of this work, since
the free volume may be considered as the determining factor for the orientational mobility of
small molecules embedded in the polymer matrix. For temperatures below the glass-transition
temperature, the free volume is to small to provide enough space for small molecules to orient
freely under the influence of an externally applied field. On the other hand, for temperatures
above the glass-transition temperature, the free volume is sufficient for the small molecules to
behave approximately like free molecules. In the frame of this work, where the small molecules
to be oriented have similar size as about 10 chain segments, the glass-transition may be taken
as the onset temperature for approximately free orientational mobility. However, if larger
molecules shall be oriented, the onset temperature for approximately free orientational mobility
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and the glass transition temperature may differ. The orientation of free (in the sense described
above) small molecules by an external field will be discussed in detail in “2.4.2.) Electrical
poling of organic polymers - the oriented gas model” on page 83.

2.4.1.3.2.)Thermodynamic approaches
The thermodynamic approach to the glass-transition

temperature is known as the Gibbs and DiMarzio theory. Gibbs and
DiMarzio took for granted, that kinetic aspects may affect the
experimental determination of the glass-transition temperature.
However, they argued that the underlying true transitions may be
difficult to realize, but nevertheless be of equilibrium nature. This
argumentation is based on the observation, that the apparent glass-
transition temperature decreases as the experiment for its
determination is carried out on longer time scales. Gibbs and
DiMarzio postulated, that the material will finally reach equilibrium
after infinitely long time, ending up in a true second order transition.
According to the Ehrenfest-rule, transitions of second order are
defined as transitions involving a discontinuity of the second
derivative of the Gibbs free energy to the temperature (and/or the
pressure) at the coexistence point of the two phases considered,
whereas the first derivative is continuous, i.e., for example, the heat
capacity will be discontinuous at the transition point. In contrast, a
first order transition (e.g. boiling) is defined by a discontinuity of
already the first derivation of the Gibbs free energy and the second
derivation (e.g. the heat capacity) will show a singularity at the
transition point. Please note, that the transition on limited time scale is
only of quasi second order, i.e. the heat capacity will actually not be
discontinuous, but will somehow “jump“ significantly. The difference is illustrated in figure
(2.4 - 4). 

Hence, when cooling the system down infinitely slowly, it will finally reach a glassy state,
the configurational entropy of which approaches zero. The temperature, which is correlated to
the transition point to zero entropy is the ideal thermodynamic glass-transition temperature T∞,
which has been mentioned before in the frame of the free volume theory and is depicted in figure
(2.4 - 3). The key problem of the Gibbs and DiMarzio theory is to find the appropriate
configurational partition function, from which the configurational entropy can be calculated.
However, a discussion of this aspect would exceed the frame of this work.

The ideal glass transition temperature may be estimated by means of the Adams and
Gibbs theory, which represents some kind of unifying treatment attempting to merge the WLF
equation with the Gibbs and DiMarzio theory. A “cooperatively rearranging region“ is defined
as the smallest region capable of allowing for conformational changes without being
accompanied by changes outside this region. At T∞ the size of this region is just the size of the
sample, since only one conformation per molecule is available. Based on their concept, Adams
and Gibbs re-derived the WLF equation suitably and found the following relationship between
T∞ and Tg, valid for a wide range of glass-forming systems [B21, p. 352]:

.  eq. (2.4 - 24)

 Figure (2.4 - 4): True 
(solid lines) and quasi 
(dotted lines) second 
order transition. H: 
enthalpy; cp: heat 
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2.4.1.3.3.)General trends in influencing the glass-transition temperature
Since the glass transition point is an essential parameter for the class of material

investigated in the frame of this work, it seems advisable to give a qualitative overview over
possibilities to influence Tg of organic polymer systems. This section is not intended to be
comprehensive, but it rather focuses on methods being viable for the systems considered in the
frame of this work.

A) Chain length

The influence of the chain length may easily be understood in the context of the free
volume conception. The argumentation is based on the reasonable assumption, that a chain end
will on the average require a larger free volume for movements than some segment within the
chain. On the other hand, when increasing the thermal energy a chain end will rotate sooner than
a segment within the chain, i.e. the contribution of the chain ends to the free volume will set on
at lower temperature. Thus, the glass-transition temperature will decrease as a function of
increasing density of chain ends and accordingly with decreasing chain length, i.e. with
decreasing molecular weight. This has been expressed by [B21, p. 352]:

,  eq. (2.4 - 25)

where M is the molar mass, αf is the thermal expansion coefficient of the fractional free volume
according to eq. (2.4 - 10) and K is a constant given by [B9, p. 303f]:

,  eq. (2.4 - 26)
where ρ is the specific density of the polymer, NA is the Avogadro number, Ξ is the contribution
of a chain end to the free volume, and n(Ξ) is the number of chain ends per molecule (i.e. 2 for
linear polymers).

B) Internal chain mobility

It is clear, that the internal chain mobility has a tremendous impact on Tg. Making the
chain more rigid by introducing e.g. p-phenyle segments, will increase Tg considerably. An
extreme case is represented by poly-p-phenylene itself, which does not soften at all for
increasing temperature before decomposing.

C) Chemical configuration

The tacticity of a polymer may have a considerable effect on Tg, however, the magnitude
of the impact depends on the side group. Generally speaking, a tacticity, which relieves changes
of the conformation decreases Tg. Therefore, syndiotactical polymers show higher Tg than
isotactical.

A similar trend is observed for cis-trans isomers in polydienes. The isomery affects the
internal chain mobility.
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D) Sterical effects

Side groups attached to the polymer backbone may have tremendous impact on Tg. As a
rule of thumb, Tg increases with size, polarity, and internal rigidity of the side group. The effect
of side groups is basically of sterical nature, but may be significantly enhanced by bonding
effects like hydrogen bridges. On the other hand, short linear alkyle side groups may even
decrease Tg in some cases (see next point).

E) Plasticization

A very common and easy way to control Tg of a polymer system is plasticization by
addition of plasticizers, which are small molecules soluble in the polymer matrix, but which do
not vaporize easily. This method is referred to as external plasticization or external softening.
The effect of the plasticizer may be interpreted in the sense of a lubricant increasing the mobility
of the polymer chains by separating them with respect to each other. The resulting degree of
reduction in Tg as a function of the plasticizer content may be roughly estimated by [B9, p. 370]:

,  eq. (2.4 - 27)

where (m) denotes the mixture, (p) the pure polymer, (s) the plasticizer, and φ the corresponding
molar fractions. The temperatures must be related to the Kelvin scale. It must be emphasized,
that eq. (2.4 - 27) represents only a rule of thumb, which may fail dramatically for particular
systems. 

In this context is necessary to have some knowledge about the Tg of the plasticizer. Since
the plasticizer is often a compound tending to crystallize rather than to form a glass, Tg is often
not easily available. However, a very rough relation between the melting temperature Tm and Tg
has been experimentally found for linear homopolymers as being “valid“ for about 80% of the
systems investigated so far [B9, p. 364; B21, p. 363]:

.  eq. (2.4 - 28)

This relation also holds for smaller organic molecules within its inherent „range of validity“. It
must be pointed out, that this relation has no physical background, since Tm is correlated with a
first order transition and Tg with a second order transition, excluding a simple relation between
these two transition temperatures. Nevertheless, together with eq. (2.4 - 27) it may serve as a
first rough estimate of what may be expected when adding some plasticizer to a polymer.
However, the actual significance of the results must be kept in mind.

A plasticizer need not necessarily be added physically but may as well be attached
covalently, then acting as spacers between the polymer chains rather than as a “Lubricant”.
These spacers reduce the packing density of the polymer chains leading to plasticization of the
material. In contrast to external softening, the latter is referred to as internal softening. It is clear,
that these two kinds of plasticization are fundamentally different and that a plasticizer suitable
for external softening usually must not be attached covalently (see point D)). Typically, suitable
side chain groups for internal softening are simple structures, which are not able to jam with
each other. 
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2.4.1.4.)Viscoelastic response in a creep-relaxation experiment
In the introduction to this section on page 70 it has already been anticipated, that orienting

small polar molecules embedded in a polymer matrix under the influence of an electrical dc field
will be the problem which this entire section is actually focused upon. In the framework of the
above discussion of the glass-transition it has been concluded, that this orientational process
may be considered as approximately independent from the surrounding polymer matrix for
some temperature at or above the glass-transition temperature, depending on the size of the
polar molecule to be oriented (see page 78). Now the case will be considered, that this
approximation is definitely not valid, which applies if the orientation is hindered by the polymer
matrix. For the materials investigated in the frame of this work this case will occur for ambient
temperatures below Tg, i.e. in the glassy state of the polymer matrix. The matrix will then
counteract the orientational process. According to the general model of viscoelasticity, this
counteraction will be of elastic nature on a short time scale and increasingly viscous when the
time scale increases. Thus, it seems reasonable to assume that the orientational process as a
function of time will then contain contributions as encountered in a simple creep-relaxation
experiment. Therefore, the basic behavior of a viscoelastic system in such an experiment will
be outlined subsequently.

The Maxwell element according to eq. (2.4 - 4) is usually much too
simple to describe viscoelastic behavior. Therefore a more complex system
is usually employed, which is represented by the four-element model (also
called “Burger’s element“ [B7, p. D45f]). Please note, that the four element
model is in most cases actually also too simple for quantitative
considerations, however, it provides all contributions of the viscoelastic
response in qualitative manner. The four-element model is depicted in
figure (2.4 - 5). If some constant stress σ is applied to Burger’s element, the
resulting elongation will basically have three contributions, an elastic εe, a
viscoelastic εr and a viscous contribution εv. The first writes according to
eq. (2.4 - 1):

 eq. (2.4 - 29)

and the third results from eq. (2.4 - 2):

.  eq. (2.4 - 30)

Both the above contributions are due to the “Maxwell part“ of the four-
element model. The viscoelastic contribution is represented by the parallel connection of a
spring and a dash-pot, which is called Voigt-Kelvin-element. The elongation due to the Voigt-
Kelvin-element is:

,  eq. (2.4 - 31)

where Er
# is a modulus of relaxation and τr a correlated relaxation time, called retardation time,

both of which may experimentally obtained by from measurements of the strain as a function of
time. Please note, that the modulus of relaxation is different from the modulus of elasticity and
that the correlated relaxation time is not the relaxation time defined by eq. (2.4 - 3). Please note
furthermore, that in practice a viscoelastic system will show numerous retardation times, which
may be expressed by a distribution function as discussed in the section devoted to the
experimental results. 

Merging all three contributions, the total deformation writes:

 Figure (2.4 - 5): 
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 eq. (2.4 - 32)

and, depicted as a function of time, will qualitatively look like illustrated in figure (2.4 - 6).

Deformations due to viscous behavior (eq. (2.4 - 30), εv) are usually irreversible.
However, if a counter force is applied, the deformation may be completely reversed. 

It should be noted, that the viscoelastic behavior of polymers may be described in terms
of molecular dynamics, which leads to the Rouse-Zimm-Bueche theory and the reptation model.
These modern approaches have been successfully applied to describe in detail several aspects
of the viscoelastic behavior of organic polymers. However, there are still a lot of open questions.
A reasonably detailed consideration of these theories by far exceeds the frame of this work.

2.4.1.5.)Physical aging
According to the free volume theory, the extent of molecular motion in a polymer in the

glassy state depends on the free volume. On the other hand, it is clear, that the free volume in
the glassy state will depend on the thermal history of the polymer. By cooling down a polymer
below Tg, the instantaneous configuration will be frozen. If the cooling process is performed
with a very high cooling rate, a high degree of conformational disorder will be frozen and, thus,
the free volume will be accordingly high. In contrast, if the polymer is cooled down very slowly
(in the limiting case infinitely slowly), the system will have enough time to approach its
equilibrium state and the conformational disorder will be small (the conformational entropy will
approach zero in the limiting case of infinitely slow cooling rate - see “2.4.1.3.2.)
Thermodynamic approaches” on page 78) and so will be the free volume. 

However, even in the glassy state, there is some molecular mobility, enabling the system
to further relax slowly after the cooling process is completed, i.e. when the system is held at
constant temperature below Tg. Hence, as long as the extent of the free volume is higher than it
would be in the case of infinitely slow down-cooling, it will slowly decrease further on even in
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 Figure (2.4 - 6): Scheme of a typical macroscopic viscoelastic behavior
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the glassy state, which affects the mechanical properties of the system. This process is referred
to as physical aging since it does not involve any chemical degradation. Physical aging basically
leads to a densification of the system and, thus, will cause a considerable change of all the
relevant mechanical parameters like viscosity or some mechanical modulus slowly in time. In
general, the viscosity and the elasticity will decrease by physical aging. The rate of change will
decrease with decreasing temperature below Tg and increase with increasing free volume (i.e.
with increasing cooling rate in the thermal history of the system). The range of the change
depends as well on the amount of the free volume.

Figure (2.4 - 7)
exemplarily illustrates the
relations described above for
poly(vinyle chloride). The
material was annealed at a
temperature of 10° above Tg and
thereafter quenched to 40° below
Tg and stored at this temperature
for at maximum 4 years. The
curves are the results of creep-
relaxation experiments obtained
for different times after the
elapsed quench. 0.03 days after
the quench a tensile creep
compliance (this may be
interpreted as the inverse of the
modulus of relaxation in eq. (2.4
- 31)) of 5x10-10 m2N-1 was
reached after about 103sec and
1000days after the quench 107sec were required to reach the same value.

2.4.2.) Electrical poling of organic polymers - the oriented gas model
The oriented gas model to be elaborated upon in this section is a

relatively simple model describing the linear and second order optical
properties of glassy polymer systems doped with nonlinear optical
molecules [27, 28]. Classical representatives of the latter are
intramolecular charge-transfer (CT) molecules, which usually exhibit a
large permanent dipole moment and highly anisotropic polarizability. A
general scheme of the structure of a CT-molecule consisting of an
electron-accepting group “A“ and an electron-donating group “D“
connected by a π-bridge is depicted in figure (2.4 - 8). The basic geometry of this structure, i.e.
rod-like shape and rotational symmetry around the long molecule axis, will be used for the
forthcoming discussions. The inherent statistical centro-symmetry of glassy polymers doped
with CT-molecules, which prevents second order nonlinear optical response, may be broken by
applying an external dc-field. This interacts with the dipole moment of the nonlinear optical
dopants forming a torque, which forces the dopants to take on a preferred orientation component
on the average. This process is referred to as „electrical poling“. The orientational process is
counteracted by the thermal energy and the repulsion of the glassy matrix. For the oriented gas

 Figure (2.4 - 7): Small-strain tensile creep curves for glassy PVC. 
Partly redrawn after [B21, p. 478]
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model the latter is considered negligible, if the poling is performed at temperatures at least at,
or even better, above the glass-transition temperature of the system. The macroscopic system
thus emerging will usually be uniaxial birefringent with the direction of the external field
representing the optical axis.

The oriented gas model enables the deduction of the macroscopic optical nonlinearity of
the considered electrically poled system from the molecular optical nonlinearity of the dopants,
their orientational distribution for a given field and their density. The molecular polarization p
in the dipole approximation may be described by:

,  eq. (2.4 - 33)
where the indices i, j, k = 1, 2, 3 refer to coordinates of the
molecular frame, αij and βijk are tensor quantities commonly
referred to as “(molecular) polarizability“ and “(molecular)
hyper-polarizability“, respectively, and Ej and Ek are
components of the electrical field. The macroscopic
polarization P may be expressed according to eq. (2.2 - 1):

,  eq. (2.4 - 34)
where the indices I, J, K = x, y, z refer to coordinates of the
laboratory frame, EJ and EK are components of the electrical
field and χIJ

(1) and χIJK
(2) denote the susceptibility tensors of

first and second order, respectively. 
The correlation between the molecular frame and the

laboratory frame is illustrated in figure (2.4 - 9).

As will be shown later in this section, the orientational order can be described by average
quantities of the form:

 eq. (2.4 - 35)

where θ is the angle according to figure (2.4 - 9), f(Ω) is an orientational distribution function
to be discussed later in this section, Ω is the steradian corresponding to θ, a is a dimensionless
parameter to be discussed later in this section as well, and n is a natural number. Ln(a) are the
Langevin functions. The (first, i.e. n = 1) Langevin function, after which the whole group of
functions is named is defined as:

.  eq. (2.4 - 36)

The higher Langevin functions may be found by solving the integral ratio:

,  eq. (2.4 - 37)

which yields e.g. for n = 2:

.  eq. (2.4 - 38)

Expanding the exponentials in eq. (2.4 - 37) up to the second term one obtains as approximation
for n = 1 valid for a << 1:
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.  eq. (2.4 - 39)

By expanding the exponentials to the third term (this is necessary, since the second term will
vanish by solving the resulting integral making the approximating too crude), one obtains for n
= 2:

,  eq. (2.4 - 40)

which may be rewritten by means of polynomial division:

,  eq. (2.4 - 41)

where the second term of the sum in the denominator to 2a2/45 was neglected.
In order to obtain an approximation for the third Langevin function, the first two terms of the
expansion of the exponentials will again be sufficient yielding:

.  eq. (2.4 - 42)

The above approximations actually will lead to an acceptable agreement with the original
Langevin functions for up to a ≤ 1. For example, this corresponds to about 125V/µm poling field
strength applied to a system containing a nonlinear optical dopant with a permanent dipole
moment of µ = 10 Debye = 3.3336x10-29 Cm. The admissible poling field strength is an inverse
function of the dopant’s dipole moment, thus, the admissible field increases with decreasing
dipole moment. 

Hereafter and throughout the rest of this work the dopant will simply be referred to as
(NLO) „chromophore“. 

2.4.2.1.)Steady-state solutions of the oriented gas model

2.4.2.1.1.)Steady-state distribution function
A random orientational distribution of the chromophores will result in a centro-symmetric

system showing isotropic macroscopic susceptibility, i.e. the material is not birefringent.
However, in the presence of an electrical dc-field, the chromophores will take on a preferred
orientational component along the applied field, and the orientational distribution will no more
be random. Assuming, that the orientational mobility of the chromophores in the glassy polymer
matrix is not restricted by the matrix, the statistical orientational distribution may then be
described by a Maxwell-Boltzmann distribution. This assumption is considered a valid
approximation for sufficiently high temperature, i.e. in particular T ≥ Tg. Conveniently, the
orientational distribution function G(Ω) may then be written in normalized form:

 eq. (2.4 - 43)

with Ω as the steradian from a given axis defined by the external field direction, which usually
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is chosen to be oriented along the z-axis of the laboratory frame (see figure (2.4 - 9)).
The function f(Ω) is the Maxwell-Boltzmann distribution:

,  eq. (2.4 - 44)
where kBT is the thermal energy and Utot is the total dipole interaction energy of the polarizable
dipoles, which is given by:

.  eq. (2.4 - 45)

The total dipole interaction energy consists of two contributions, resulting from the interaction
of the externally applied field  with the permanent dipole moment  of the chromophores on
the one hand (UE) and with the field induced dipole moment  of the chromophores (Uµ*) on
the other. Assuming, as mentioned before, that the external field is oriented along the z-axis of
the laboratory frame:

,  eq. (2.4 - 46)
where  is the unit vector along this axis, the field components must be projected into the
molecular frame in order to calculate the induced dipole moment. The field components of the
external field in the molecular frame then induce a dipole moment according to 

 eq. (2.4 - 47)

and (according to eq. (2.4 - 33)):
,  eq. (2.4 - 48)

where αij are components of the polarizability tensor . In the molecular principal axis system
(which is identical to the molecular frame “1, 2, 3“ by convenient choice of the latter) the latter
writes:

,  eq. (2.4 - 49)

where  and  are the polarizability perpendicular and parallel to the molecular principal
axis (3), respectively, according to the presumed geometry of the chromophore as mentioned
before (figure (2.4 - 8)). The field components along the molecular principal axis result from
eq. (2.4 - 46) considering figure (2.4 - 9) and write:

,  eq. (2.4 - 50)

where θ is the elevation angle and φ is the azimuth angle according to figure (2.4 - 9). Then, one
obtains for the induced dipole moment in the molecular frame:

.  eq. (2.4 - 51)
Please note, that the projection according to eq. (2.4 - 50) may as well be expressed by
employing direction cosines, reading then:

,  eq. (2.4 - 52)
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which may be more convenient to handle in some cases. The relation between the direction
cosines and the angular expressions according to eq. (2.4 - 50) results from the comparison with
eq. (2.4 - 52). 

In the molecular (principal axes) frame, the permanent dipole moment of the
chromophore will be:

 eq. (2.4 - 53)
and the total dipole interaction energy may be expressed as:

.  eq. (2.4 - 54)

In order to express Utot in the laboratory frame, the components of the dipole moments
according to eq. (2.4 - 51) and eq. (2.4 - 47) and the field components according to eq. (2.4 - 50)
are inserted into eq. (2.4 - 54) yielding:

 eq. (2.4 - 55)

Please note, that the dependence on the azimuth angle vanishes here for mathematical reasons.
However, accounting for the rotational symmetry of the chromophore the azimuth angle may be
freely chosen. Choosing φ = π/4 = constant will therefore yield identical results in a more
straight forward manner. This procedure will be applied hereafter.

The expression may be rewritten in terms of two dimensionless quantities a and b:

 eq. (2.4 - 56)

with:

 eq. (2.4 - 57)

and:

.  eq. (2.4 - 58)

Parameter a corresponds to the interaction of the permanent dipole of the chromophore with the
external field and b corresponds to the interaction of the induced dipole of the chromophore with
the external field. The relation between a and b is basically a question of the chromophore
structure. In all cases considered in the frame of this work, the approximation

 eq. (2.4 - 59)
will hold.

Please note, that the quantity a according to eq. (2.4 - 57) is identical to the a occurring in
the equations eq. (2.4 - 35) to eq. (2.4 - 42).

2.4.2.1.2.)Linear optical properties of poled polymers
In order to calculate the linear optical properties of a poled polymer, the macroscopic

polarization in the system induced by an optical field must be considered. The basic approach
will be similar to the procedure outlined in the previous section for the induced dipole moment,
however, the quantities involved may now be frequency dependent, which will be indicated by
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superscripting (ω) in the case of possible confusion. 
Presuming at first an optical field polarized in z-direction in the laboratory frame, i.e.

,  eq. (2.4 - 60)
the macroscopic polarization along the z-axis of the laboratory frame Pz

ω will be the projection
of the orientationally averaged induced dipole moments of the chromophores into the laboratory
frame:

.  eq. (2.4 - 61)

Here N is the number density of chromophores, χzz
(1) is the corresponding macroscopic

susceptibility and G(Ω) is the orientational distribution function according to eq. (2.4 - 43). It is
clear that the macroscopic susceptibility is as well frequency dependent, which is often
indicated by writing χzz

(1)(−ω; ω) in order to express the “incoming“ frequency (positive) and
the frequency of the “outgoing“ polarization wave (negative), however, this notation will not be
used here. Please note, that the laboratory frame is conveniently chosen to be identical to the
principal axis frame of the macroscopic system.

In a similar way one will obtain a corresponding expression for the macroscopic
polarization along the x-axis of the laboratory frame Px

ω for an optical field polarized in x-
direction of the laboratory frame, i.e.

,  eq. (2.4 - 62)
while the external field is still given by eq. (2.4 - 46). An accurate coordinate transformation in
this case would be rather cumbersome, however, may be avoided when accounting for the
rotational symmetry of the chromophores, which allows a free choice of the azimuth angle as
already mentioned before. Choosing φ = π/4 = constant, the direction cosines involved may be
expressed as:

.  eq. (2.4 - 63)

and the polarization reads:

.  eq. (2.4 - 64)

According to eq. (2.1 - 59) and eq. (2.1 - 84), the refractive index n may be expressed as:

.  eq. (2.4 - 65)
The change in the refractive index due to electrical poling will be due to a change in the
orientational distribution function and therefore:

 eq. (2.4 - 66)
with:

.  eq. (2.4 - 67)
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G0(Ω) is the distribution function without external field where a = 0. Therefore, the second term
of the difference in eq. (2.4 - 66) yields according to eq. (2.4 - 35):

.  eq. (2.4 - 68)

With eq. (2.4 - 35) one obtains finally:

.  eq. (2.4 - 69)

In order to solve eq. (2.4 - 64), eq. (2.4 - 63) is taken into account as well as a relation
equivalent to eq. (2.4 - 35) in terms of the sinus function:

,  eq. (2.4 - 70)

yielding in analogy to eq. (2.4 - 69):

 eq. (2.4 - 71)

which may be rewritten as:

.  eq. (2.4 - 72)

In conclusion, by application of an external electrical dc field the system has become uniaxial
birefringent. The relation between the refractive index changes for the extraordinary and for the
ordinary beam relative to the isotropic refractive index with no field applied is obtained from
comparing eq. (2.4 - 69) and eq. (2.4 - 72). Assuming furthermore small index changes, which
allows for the approximation (i.e., the difference is considered as a differential expression):

 eq. (2.4 - 73)
and applying eq. (2.4 - 35), eq. (2.4 - 41), and eq. (2.4 - 57), finally yields:

 eq. (2.4 - 74)

with:

.  eq. (2.4 - 75)

Please note, that E in eq. (2.4 - 75) is the external electrical dc field oriented in z-direction, which
is self-evident since the direction of this field defines the z-direction.

2.4.2.1.3.)Nonlinear optical properties of poled polymers
In this section the second order nonlinear properties of a poled polymer system will be

considered. The discussion will be restricted to the linear electro-optic response, since only this
is the relevant one for this work. Frequency dependent quantities will again be indicated by a
superscript (ω) if confusion may be caused otherwise. According to eq. (2.4 - 33), the second
order nonlinear molecular polarization p is described by:
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,  eq. (2.4 - 76)
where i, j, k = 1, 2, 3 denote coordinates of the molecular principal axis system and Ek represents
some electrical dc field determining the electro-optic response. For the subsequent
considerations shall be assumed, that Ek is not the poling field and the poling process and the
electro-optic process will be treated independently. The corresponding macroscopic
polarization P writes according to eq. (2.4 - 34):

,  eq. (2.4 - 77)
where I, J, K = x, y, z denote coordinates of the laboratory frame, which are chosen to be
identical with the principal axis frame of the macroscopic system. Please note, that the second
order nonlinear susceptibility χ(2) and the hyperpolarizability β depend on the particular effect
considered and that the complete notation usually applied for the linear electro-optic response
would be χ(2)(−ω; ω, 0) and β(−ω; ω, 0). However, since no other second order effect is
considered, this notation will not be used here.

In order to simplify the forthcoming discussion, the only non vanishing component of the
hyperpolarizability tensor is assumed to be β333, which is in fact a good approximation for rod-
like chromophores. Hence, only a molecular polarization along the 3-direction will remain:

.  eq. (2.4 - 78)
Accordingly, for some dc field according to eq. (2.4 - 46) (still not the poling field as

mentioned before) and an optical field according to eq. (2.4 - 60) one obtains for the
macroscopic polarization:

,  eq. (2.4 - 79)

whereby eq. (2.4 - 52), eq. (2.4 - 77) and eq. (2.4 - 78) have been used as well. 
Applying the same procedure for the case of some dc field according eq. (2.4 - 46) and an

optical field according to eq. (2.4 - 62) yields:

.  eq. (2.4 - 80)

Please note that the second order nonlinear optical susceptibility, which is the quantity in
question, does not depend on the electrical dc field introduced before in order to formulate the
electro-optic response. Hence, this field is now identified as being only a supplement quantity
for the discussion on hand.

As before, the change of the second order nonlinear susceptibility will be the result of a
changing orientational distribution function due to the applied field. Therefore, one obtains
from eq. (2.4 - 79):

,  eq. (2.4 - 81)
where G0(Ω) is the distribution function for zero external dc-field (i.e. a = 0). The second term
of the sum to the right hand side of the above equation will be zero according to:
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 eq. (2.4 - 82)

and one finally obtains with eq. (2.4 - 35) for the term with a ≠ 0:

,  eq. (2.4 - 83)

where E is the poling field and µ the permanent dipole moment of the chromophore.
When solving eq. (2.4 - 80) analogously, an expression similar to eq. (2.4 - 81) will be

obtained, which contains the product of the two direction cosines from eq. (2.4 - 80). According
to eq. (2.4 - 63) this product may be rewritten as:

.  eq. (2.4 - 84)

Accounting for eq. (2.4 - 82), which will solve identically for cosθ to the power one, from eq.
(2.4 - 80) with eq. (2.4 - 35) for the term with a ≠ 0 one finally obtains:

,  eq. (2.4 - 85)

with E being the poling field.

Having found expressions for the susceptibility, it is straight forward to relate them to the
corresponding elements of the second order susceptibility tensor. Poled polymers belong to the
C∞v symmetry group, which reduces the number of independent tensor elements to three. If
Kleinman’s symmetry rule (“2.2.1.2.) Kleinman’s symmetry rule” on page 43) applies
additionally, the third rank second order susceptibility tensor may be expressed as a 3 x 6
matrix, which will read:

 eq. (2.4 - 86)

with:

 eq. (2.4 - 87)

and is related to the electro-optic (i.e. rij-) matrix (often misleadingly called electro-optic tensor,
however, it does not represent a vector operation and, thus, is a matrix) according to eq. (2.2 -
20) by:

.  eq. (2.4 - 88)

2.4.2.1.4.)Local field correction
The above discussion presumed without explicit notation, that the polymer matrix

surrounding the chromophores will not affect the electrical fields at the location of the
chromophores in the matrix. It is clear, that this cannot be true. Since this influence of the matrix
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simply acts on the fields sensed by the chromophores, this problem may be accounted for by
introducing local field correction factors.

The local field correction factor for a dc or a low frequency electrical field is:

 eq. (2.4 - 89)

and the local field correction factor for an optical electrical field is:

,  eq. (2.4 - 90)

where ε is the static dielectric constant of the system and ε∞ is the dielectric constant at the
frequency of the optical field involved, which determines the refractive index of the system.

In order to introduce the local field correction factors correctly into eq. (2.4 - 75), eq. (2.4
- 83) and eq. (2.4 - 85), one simply must consider, that these factors are meant to correct for the
electrical fields which polarize optical chromophores for the optical response. In other words,
one may as well correct the polarizability or the hyperpolarizability for the local fields
beforehand performing the discussion in the above two sections instead of introducing
correction factors afterwards. This means, that only the fields responsible for the optical
response in question must be considered by having a look at eq. (2.4 - 33).

In the case of the linear optical properties (eq. (2.4 - 75)) only the optical field must be
corrected and accordingly, the corrected form of eq. (2.4 - 75) will be:

.  eq. (2.4 - 91)

In the case of the considered nonlinear optical response, i.e. electro-optic response, there is an
optical field to be corrected and a dc field. However, since the local field correction is actually
related to the dielectric displacement vector, which responds to the optical as well as the static
electrical field, the local field correction for the second order susceptibility is additionally
superposed with the local field correction for the linear response. Hence, F∞ appears to the
square and the corrected forms of eq. (2.4 - 83) and eq. (2.4 - 85) are respectively:

 eq. (2.4 - 92)

and:

.  eq. (2.4 - 93)

2.4.2.2.)Transient solutions of the oriented gas model
The mathematical efforts to obtain the transient solutions are extensively high and will not

be elaborated upon in similar detail as conducted before for the steady state solutions.
Subsequently, the basic approach will briefly be outlined and then the results will be presented.

The treatment of the transients for the linear and the nonlinear optical properties is based
on the rotational diffusion equation for a system with axial symmetry, which is given by:

,  eq. (2.4 - 94)

where D is the diffusion constant and U is the dipole interaction energy, which is approximated
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the same way as for the steady state solutions, i.e.:
 eq. (2.4 - 95)

with a given by eq. (2.4 - 57). Eq. (2.4 - 95) is the steady-state solution for eq. (2.4 - 94).
The distribution function f(θ) according to eq. (2.4 - 44) may be expanded in terms of

Legendre polynomials, which is proximate, since rotational diffusion in an axially symmetric
system is considered with the symmetry axis defined by the direction of the external field.
Hence, Legendre polynomials will be the eigen functions of the system. The (first four)
Legendre polynomials are given by:

.  eq. (2.4 - 96)

After inserting eq. (2.4 - 95) into eq. (2.4 - 44) the expansion in terms of Legendre polynomials
results in:

,  eq. (2.4 - 97)

where the expansion coefficient in(a) is the spherically modified Bessel function of n-th order
satisfying the following recurrence relation:

 eq. (2.4 - 98)

The number index n here stands for a natural number. The refractive index (which is usually
denoted by n in the frame of this work) is identified by a superscript (ω) in this section.
Normalization of the distribution function eq. (2.4 - 97) yields:

,  eq. (2.4 - 99)

where gn(t) was introduced in order to account for the time dependence. The average value of
each Legendre polynomial is thus given by:

 eq. (2.4 - 100)

and the time dependence of the average value is accounted for by gn(t), hence:

.  eq. (2.4 - 101)

The behavior of gn(t) will be determined by the boundary conditions of the particular cases
considered below (i.e turning on or off the poling field). Inserting eq. (2.4 - 99) into the
rotational diffusion equation eq. (2.4 - 94) will result in a differential equation for gn(t), which
then can be solved taking the particular boundary conditions into account. The transient
solutions are obtained by expressing the steady state solutions for the linear and the nonlinear
optical response, eq. (2.4 - 69), eq. (2.4 - 83) and eq. (2.4 - 85) also in terms of Legendre
polynomials by means of eq. (2.4 - 96):

,  eq. (2.4 - 102)
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, and  eq. (2.4 - 103)

,  eq. (2.4 - 104)

and inserting eq. (2.4 - 101) into these expressions. 

2.4.2.2.1.)Turning on the poling field
Since without poling field, i.e. at t = 0 the distribution must be isotropic, and, after turning

the poling field on, must become Boltzmannian for t → ∞, the boundary conditions for gn(t) for
n ≠ 0 are:

.  eq. (2.4 - 105)

The condition for n = 0 is trivial; the expression in the sum to the right of eq. (2.4 - 99) must be
the first expansion term of the exponential function, i.e. unity. Accordingly, gn(t) for n = 0 is:

.  eq. (2.4 - 106)
Substitution of eq. (2.4 - 99) into eq. (2.4 - 94) leads to the differential equation to be satisfied
by gn(t):

.  eq. (2.4 - 107)

Approximate solutions for gn(t) associated with some low orders of Legendre polynomials and
satisfying the conditions defined in eq. (2.4 - 105) and eq. (2.4 - 106) are:

,  eq. (2.4 - 108)

 and  eq. (2.4 - 109)

,  eq. (2.4 - 110)

where:
,  eq. (2.4 - 111)

with D as the rotational diffusion coefficient. Please note, that the related time constants for the
exponentials will be:

.  eq. (2.4 - 112)

Hence, since n > 0 (and a natural number), the process is slower for higher n.
Now it is straightforward to obtain the transients of the optical properties by combining

eq. (2.4 - 101) to eq. (2.4 - 104) with eq. (2.4 - 108) to eq. (2.4 - 110), which results for the case
of the linear properties in:
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.  eq. (2.4 - 113)

Please note, that a in eq. (2.4 - 113) accounts for the state of the system to be approached
after turning on the poling field!

2.4.2.2.2.)Turning off the poling field
For turning off the poling field, the situation is opposite to turning on the poling field. For

n ≠ 0 and t = 0, the distribution may be assumed to be Boltzmannian and for t → ∞ the
distribution approaches the isotropic case, hence:

.  eq. (2.4 - 114)

For n = 0, eq. (2.4 - 106) holds. Furthermore, the rotational diffusion equation simplifies
considerably when taking into account, that the dipole interaction energy is zero without poling
field as is its time derivative. For n ≠ 0, one obtains the differential equation to be satisfied by
gn(t):

 eq. (2.4 - 115)

and its simple solution:

.  eq. (2.4 - 116)
The combination of eq. (2.4 - 101) to eq. (2.4 - 104) with eq. (2.4 - 116) yields the

expressions for the decay of the optical properties, which writes for the linear case:

.  eq. (2.4 - 117)

Please note, that a in eq. (2.4 - 117) accounts for the initial state of the system before turning off
the poling field! 

2.4.3.) Electrical conduction in organic polymers
The electrical conduction in disordered organic solids has been in the focus of interest for

nearly three decades now and a variety of models and interpretations has been presented during
this period. All in common are characterized by a more or less empirical nature supported by an
extensive set of experimental data as well as numerical simulations. Today, the electrical
conduction in disordered organic solids is considered as fairly well understood in principle,
however, no model up to date proved to hold generally and in detail. Any attempt to give a
comprehensive picture of this topic would by far go beyond the scope of this work, however,
the significance of the electrical conduction properties of organic polymers in particular for this
work requires at least to give a brief outline of the most common basic concepts.

∆nz
ω( ) t( ) =

N∆α ω( )i2 a( )

3n ω( )i0 a( )
-------------------------------= 1 e

D2t–
–

3ai1 a( )
10i2 a( )
------------------- e

D1t–
e–

D2t– ai3 a( )
5i2 a( )
--------------- e

D2t–
e–

D3t–
+–

 
 
 

gn t 0=( ) 1=

gn t ∞→( ) 0=

1
D
----

t∂
∂ gn t( ) n n 1+( )gn t( )+ 0=

gn t( ) e
Dnt–

=

∆nz
ω( ) t( )

N∆α ω( )i2 a( )

3n ω( )i0 a( )
------------------------------- e

D2t–
=



2.4.)Physical aspects of organic polymers

96

2.4.3.1.)Space-charge-limited currents
The concept of the space-charge limited currents (SCLC’s) does not directly concern

photorefractivity in polymers, since it describes the bulk current flowing through a system of
finite electrical resistance and low charge carrier mobility when an electrical field is applied.
However, there is always (in the dark as well as under illumination) some current flowing
through a photorefractive polymer with an external field applied, which must be expected to be
space-charge limited. This current may easily be measured by a source-measure unit and is
usually determined by an electrical resistance typically in the GΩ (under illumination) to TΩ
(in the dark) regime. This bulk current has barely been paid attention to up to now in the direct
context with photorefractivity in polymers, but it is reasonable to assume that it may have a
major impact on basic properties of polymeric photorefractive media. 

In order to address the possible importance of SCLC’s in PR polymers, subsequently
some aspects will be discussed in advance to the chapter dealing with the photorefractive effect
in particular. A permanent current flowing through the system may be assumed to assist the dark
decay of photorefractive gratings in polymers. Furthermore, it will fill up all inactive deep
charge carrier traps in the system blocking these traps for the photorefractive process.
Moreover, since PR systems are photoconductors, nonuniform illumination will result in an
electrical resistance grating, which is in anti-phase to the illumination pattern. Accordingly, a
current flowing permanently through a nonuniformly illuminated PR polymer will cause some
spatially modulated field distribution inside. This can be especially important if the real
dynamics of photorefractive grating build-up is considered. For more details see “2.5.) The
photorefractive effect” on page 118.

Although, this work actually does not consider the possible impact of SCLC’s on the
photorefractive properties of organic polymers in detail, the basic concept of space-charge
limited currents is outlined subsequently.

Assuming more or less ohmic contacts between the polymer
and the electrical source unit U, charge carriers are easily injected
into the polymer at x = 0 but cannot be transported rapidly enough
to the countercontact at x = d due to the low charge carrier
mobility in the polymer. Accordingly, the charge carriers will
accumulate close to the injection contact forming a space-charge
region, which counteracts the electrical field between the contact
interfaces near the injection contact. Thus, the field driving the
injection will be reduced to form an equilibrium state, which
finally adapts the number of injected carriers to the number which
can be transported by the polymer. The overall current is then
determined by the bulk transport properties. The situation
assuming hole transport is illustrated in Figure (2.4 - 10); the
dotted line illustrates the electrical field as a function of x and sc
indicates the depth of the space-charge region.

Charge carrier transport in general can be described by the current density equation,
Poisson’s equation and the continuity condition of the charge carriers. Without loss of
generality, the problem may be considered one-dimensionally and the named equations for hole
conducting polymers may be written as:

,  eq. (2.4 - 118)

 Figure (2.4 - 10): Sketch of the 
situation leading to SCLC 
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, and  eq. (2.4 - 119)

.  eq. (2.4 - 120)

Here, q is the elementary charge, n is the hole number density, E is the electrical field, j is the
current density, µ is the charge carrier mobility, ε is the effective permittivity, and NT

i is the
density of ionized charge carrier traps in the polymer. Einstein’s relation is presumed to be valid
and is already inserted into eq. (2.4 - 118).

Steady-state solutions (i.e. eq. (2.4 - 120) equals zero) for the above set of equations are
easily found assuming predominant drift transport of holes, which is true for sufficiently high
fields in arbitrary conductors and (almost) generally in polymers, where charge carrier diffusion
is (almost) always negligibly small. Thus, the second term on the right hand side of eq. (2.4 -
118) may be ignored. Furthermore assuming at first, that no charge carrier traps are present (NT

i

= 0), eq. (2.4 - 118) can be inserted into eq. (2.4 - 119), which then is integrated yielding:

.  eq. (2.4 - 121)

For an ideal ohmic contact at x = 0, the boundary condition E(0) = 0 yields C = 0. Please note,
that this might not be strictly valid for an ITO (indium tin oxide) - polymer contact. The
electrical potential ϕ(x) is defined as:

 eq. (2.4 - 122)

and the voltage applied to the device is U(d) = ϕ(d) − ϕ(0) yielding Child’s law:

.  eq. (2.4 - 123)

Please note, that the charge carrier mobility is here assumed to be field independent. 

In some systems (especially crystals and inorganic semiconductors), internal thermal
charge generation may significantly contribute to the total density of charge carriers in the
system at low fields applied, since the injected number of carriers is then relatively small. The
current density will in this case follow Ohm’s law:

,  eq. (2.4 - 124)

where nth is the thermally generated intrinsic charge carrier density. However, thermal charge
generation is usually of minor impact in amorphous organic polymers.

If the charge carrier mobility is field dependent, according to [B5, p. 60f] eq. (2.4 - 123)
may be expressed as:

,  eq. (2.4 - 125)

where an empirical field dependence of the mobility of:

 eq. (2.4 - 126)

is assumed. Here Pm and U0 are empirical constants, which can be obtained experimentally. Eq.
(2.4 - 126) provides a reasonable approximation for the field dependence of the mobility for
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most polymers in the experimentally relevant range of applied fields. A more accurate
description of the field (and temperature) dependence of the mobility will be focused upon in
the subsequent sections.

The above assumption of a trap free medium will usually not account for polymers. In the
presence of shallow traps (i.e. traps, which may be detrapped thermally as well as optically) and
assuming iso-energetic traps (which again will not account for polymers), the current density
may be expressed by means of an effective charge carrier mobility:

,  eq. (2.4 - 127)
since intermediate trapping processes during the charge transport may be interpreted as a
reduced mobility. Here, the parameter  is the fraction of untrapped charge carriers:

 eq. (2.4 - 128)

The effective mobility will then replace the mobility in eq. (2.4 - 123) or eq. (2.4 - 125). In the
so called trap-filled-limit, which may be approached for high applied fields, all shallow traps in
the system will be filled, and the current density behavior then approaches child’s law.

Dropping the assumption of iso-energetic traps and an exponential energetic distribution
for the traps of the general form may be assumed:

,  eq. (2.4 - 129)

where kBTT is an average energetic trap depth (or TT the required temperature to thermally
empty such an average trap, respectively), NT is the total number of available traps, and EC is
the energy level of the conduction band. For disordered organic solids the latter may be
interpreted as the center of the energetic distribution of conducting sites. Please see subsequent
section for the underlying models. The current density for an energetic distribution of trapping
levels according to eq. (2.4 - 129) may then be expressed as:

,  eq. (2.4 - 130)

where NC is the effective density of states of charge carriers in the conduction band, which may
be interpreted as the effective density of states at the center of the distribution of conduction
sites in polymers. The parameter l is defined by:

 eq. (2.4 - 131)
and usually l ≥ 1.

If there are only deep traps, the traps are usually filled completely all over the system and
the aforementioned trap-filled-limit will be reached already at low fields. Thus, in this case, the
behavior corresponds to child’s law.

It is necessary to point out, that the theoretical models of space charge limited currents
have been developed for systems obeying the band transport theory and, hence, cannot account
for the particular charge transport properties of polymers. Nevertheless, SCLC has been widely
used to characterize the electrical properties of organic materials. From current-voltage
characteristics obeying child’s law, for example, the charge carrier mobility may be estimated
and, if µ has been obtained independently, the fraction of not trapped charge carriers may be
estimated. From this, conclusions on the depth of shallow traps may be drawn. In the trap-filled-
limit, NT

i in eq. (2.4 - 119) equals NT
 and integration over the applied voltage yields:
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.  eq. (2.4 - 132)

Therewith the maximum trapped charge density and, accordingly, the trap density in the system
can be estimated. However, the trap-filled-limited regime is hard to reach experimentally, since
most systems suffer from dielectric breakdown before this regime is approached. Last not least,
it should be mentioned, that the transitions between some particular SCLC behavior may reveal
important aspects about the principal nature of the conduction process in a system. For example,
the thermally generated intrinsic charge density may be obtained considering the transition from
ohmic to standard SCLC behavior. The transition points, once identified, are treated
theoretically by equalizing the expressions describing the flanking transport regimes. However,
this requires the correct identification of the involved regimes beforehand, which may be
problematic and ambiguous.

2.4.3.2.)Basic charge transport models for organic polymers
Charge transport in disordered organic solids (i.e. polymers and glasses) cannot be

described by the common band transport model, which is well established to describe the
electrical conduction properties of periodic structures (i.e. crystals including metals). This is
due to the basic model of band transport, which is inapplicable for disordered amorphous
systems in general. The periodicity has important consequences for the macroscopic electronic
structure of a system, since the energy levels of the HOMO (highest occupied molecular orbital)
and the LUMO (lowest unoccupied molecular orbital) of the moieties of the system (which may
be molecules or atoms) are identical due to the identical environment as a result of the
periodicity. Thus, the energy levels overlap (and split) to form quasi continuous bands of
quantum-mechanic energy levels with a degeneracy approaching to infinity as long as the
macroscopic dimensions of the crystal are large enough to neglect surface contributions to the
bulk electrical properties. For more details about the quantum-mechanical background,
reference is made to any standard literature in solid state physics, basic quantum physics or
physical chemistry. 

On the other hand, in amorphous systems, there is neither periodicity nor any long range
order. Therefore, the moieties of such systems exist in slightly different environments at least in
short range distances, leading to slightly different energy levels of the HOMO and the LUMO
of adjacent moieties. Accordingly, any overlap of many molecular orbitals leading to formation
of energy bands is inhibited. Therefore, charge transport in disordered organic solids cannot be
described by band transport mechanisms. This is experimentally confirmed by the fact, that the
observed charge carrier mobilities µ in polymers are at least two orders of magnitude smaller (µ
≈10-2 to 10-10 cm2/Vs) than found for systems exhibiting band transport (µ > 100 cm2/Vs).
Furthermore, a dependence of µ on an applied electrical field is only found in systems exhibiting
band transport, if the electrical conduction involves the Poole-Frenkel effect, and then always
leads to an increase of the mobility with increasing field. In contrast, the charge carrier mobility
in polymers always depends strongly on an applied field and may even decrease with increasing
field. Please note, that especially the latter observation excludes a Poole-Frenkel mechanism to
account for the charge carrier mobility in polymers, which (amongst others) has initially been
proposed. Furthermore, the implication of Poole-Frenkel behavior in organic solids requires
unphysical assumptions. This question is discussed in more detail in [B5, p. 154f]. Finally, the
charge carrier mobility will decrease in band transport systems as a function of increasing
temperature, since augmented collisions with phonons and interaction with an increasing
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number of lattice defects will decelerate the charge carriers. On the contrary, µ in polymers is
usually increased with increasing temperature, which indicates some activated process.It is
assumed today, that charge carrier transport in disordered organic solids follows some hopping
transport mechanism of the charge carriers between localized discrete transport sites as
illustrated in figure (2.4 - 11). Hopping transport may be understood as a series of subsequent
redox-reactions between identical reactants, the one being in the neutral state, the other being a
radical ion. Hopping basically (but not stringently, as discussed later) occurs in the direction
defined by the externally applied field so that the charge carrier gains energy and may be
thermally activated or be due to tunneling. The gain in energy due to the motion in the direction
of the externally applied field also allows for “up-hill“ jumps into a state of higher energy than
the original state. Established models to describe hopping transport in disordered organic solids
are the (small) Polaron model, the theoretical basis of which has been provided by Holstein et.
al. [29] and Emin et. al. [B12] and the so called Baessler formalism, developed by Baessler et.
al. [30] (review). Nowadays, the latter is the most widely used formalism and commonly
accepted as being the most powerful and realistic model to describe electrical conduction in
non-conjugated polymers. 

Please note finally, that molecular organic
crystals represent some special case, since they
exhibit periodicity but usually only form small
bands due to the small intermolecular interactions
occurring in molecular crystals. The charge carrier
mobilities in these systems are fairly small, and
coherent charge transport as predicted by the band
transport model is not observed in most cases. Thus,
there is a tendency that the conduction properties of
these systems must also be attributed to hopping
transport mechanisms although they are crystals.

The history of the research activities in the
field of electrical conduction in disordered organic
solids is marked be a considerable delay between the
recognition of a relatively comprehensive empirical
description of the process and the development of some theory, which fits the trends empirically
found at least for an acceptable range. Therefore, the empirically found expression describing
charge carrier hopping mobility in disordered organic solids will be shown subsequently and
interpreted in short terms. Thereafter, the basic concepts of both the aforementioned hopping
models will briefly be outlined and correlated with the empirical formula. A comprehensive
analysis and comparison with the experiment, which would be advisable in order to allow a
judgement of the ranges of validity of the models established nowadays and to interpret
experimental data correctly in the context of these models cannot be provided in the frame of
this work. For the very details reference is made to the specialized literature, see e.g. [30] - [36]
and references therein. 

2.4.3.2.1.)Empirical description of the electrical conduction in disordered organic solids
The empirical description of the charge carrier hopping mobility µ in disordered organic

solids is based on an expression of the general form [36]:

,  eq. (2.4 - 133)
where a0 is an experimental constant, T is the (absolute) temperature, E is the electrical field,

 Figure (2.4 - 11): Illustration of hopping of 
charge carriers in disordered organic solids
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and  is the average inter-site distance between transporting moieties, i.e. it depends on the
concentration of transport moieties in molecularly doped polymers as well as on their structure.
The exponentials in eq. (2.4 - 133) may physically be interpreted as follows (the list is
enumerated corresponding to the number indices in the exponential arguments):

→ 1)
The first exponential accounts for quantum-mechanical interactions between
particular transporting sites and, thus, stands for the overlap of their molecular wave
functions. For sufficient distance from the core of the considered molecule, the
molecular wave function will decay exponentially as a function of the distance as
known from quantum mechanics, which suggests to express the wave function
overlap in terms of:

,  eq. (2.4 - 134)
where γ stands for the inverse of the wave function’s decay radius, which may be
taken as a measure for the length of the offshoot of the molecular electronic wave
function surpassing a fictive shell of the molecule, which represents the „classical
size“ of the molecule.
→ 2)
The second term reflects the temperature dependence of the charge carrier mobility,
however, afflicted with an inherent dependence on the average inter-site distance as
well, and accounts for its experimentally observed activated behavior. Arrhenius
relationship as well as stretched exponential behavior has been proposed:

  eq. (2.4 - 135)

,  eq. (2.4 - 136)

where ∆EA is the activation energy and TB a parameter, which will be clarified in
context with the Baessler formalism. Up to date, unambiguous experimental evidence
for one or the other version could not be supplied. Fits to experimental data plotted as
lnµ ∝ T −1 and lnµ ∝ T −2 gave comparably good correlation for both versions,
however, the latter being slightly better if the entire range of temperatures is
considered [36]. The Baessler formalism favours the latter version as well, which
supports a general acceptance.
→ 3)
The third exponential reflects the field dependence of the charge carrier mobility,
however, afflicted with an inherent dependence on the temperature and on the average
inter-site distance as well. Functions of the form:

 and  eq. (2.4 - 137)

 eq. (2.4 - 138)

have been empirically found, where β and T0 are constants in T and E. The problem of
the temperature occurring with different exponents has already been discussed above,
and applies here in a similar way. A physical interpretation of the third exponential
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can only be provided on the basis of the Baessler formalism, which will be discussed
in the corresponding section.

Since the functional dependencies according to eq. (2.4 - 133) with eq. (2.4 - 134), eq. (2.4
- 135) and eq. (2.4 - 137) or eq. (2.4 - 134), eq. (2.4 - 136) and eq. (2.4 - 138) inserted represent
the experimental reality, theoretical models describing the charge transport must agree
consistently.

2.4.3.2.2.)The polaron model
In the polaron theory, not only the charge carrier itself is considered for the charge carrier

mobility, but the entire polaron.
Some charge carrier in a polarizable solid environment will polarize its proximity and the

polarized surrounding, in turn, will reduce the energy of the charge carrier. The complete system
formed by the charge carrier and the associated polarization in its proximity is called a polaron,
which is a quasi particle and represents the total energy quantum of this state. The term
“polaron“ includes all effects of a charge carrier on its environment in a solid. Hence, in the case
of some molecular system (polymer, glass or molecular crystal), where a charge carrier is
localized at some molecule, it will not only polarize its surrounding but also affect the
equilibrium values of basic molecular parameters of the transporting site like bond lengths and
bond angles as compared to the values found in the neutral molecule.

It is clear, that the “size“ of a polaron (i.e. its energy) will strongly depend on the
“velocity” of the charge carrier motion in the system with respect to the typical relaxation times
of the system itself, since by that the degree of interaction between the charge carrier and its
surroundings is determined. This relationship will be expressed hereafter by using the term
“time scale (of the charge carrier motion)“. Hence, e.g. “motion on short time scale“ means that
the motion is fast with respect to the relaxation behavior of the system. In particular, four times
and their relation to each other must be considered for organic systems following hopping
transport mechanisms:

a) The average dwell time τdwell of a charge carrier on a transporting site
b) The period of intramolecular vibrations (typical: τia > 10-14sec)
c) The period of intermolecular vibrations (typical: τie < 10-12sec)
d) The response time for deformation of neighboring molecular orbitals as a result of
the presence of the charge carrier (typical: τπ ~ 10-16sec). It is clear for organic
systems, that the main contribution stems from π-orbitals.

There are basically two limiting cases representing very different charge transporting
properties. For τdwell ≤ τπ (< τvibrations), the charge carriers move too fast through the crystal
lattice to induce notable changes in its environment and will exhibit long free path lengths
before being decelerated (e.g. scattered at a phonon). This is the case of band transport. For
τdwell ≥ τie, a charge carrier moves only slowly through the system allowing its environment to
relax and form a potential well, which traps the charge carrier („self-trapping“). Thus, the
charge carrier will be localized on the current transporting site and only be released if the local
neighborhood is changed from „outside“, i.e. by a phonon. Once the charge carrier has hopped
to another transporting site, it will be self-trapped again as described above. Thus, the hopping
process will be supported by phonons and the whole polaron will be displaced.

In the simplest case, the polaron theory may be considered only one-dimensionally, i.e.
the charge carriers are assumed to be transported along a straight line through the system. This
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point of view will suffice here. According to [B12], the one-dimensional polaron theory predicts
the charge carrier mobility by:

.  eq. (2.4 - 139)

The Boltzmann term accounts for the activation energy, which must be expended in order
to generate energetic coincidence between the polaron and a neighboring transportation site.
The activation energy itself consists of the polaron binding energy Ep reduced by the overlap
integral J since the thermal energy required to generate energy coincidence is reduced for
increasing overlap of the wave functions of neighboring transportation sites (the factor of two
stems from the relation between polaron binding energy and the reorganization energy = 2:1).
Please note, that the polaron theory assumes the charge carriers to hop to nearest neighbors,
which are inside the polarization cloud.

The parameter P describes the probability of charge transfer once energy coincidence is
at hand. The phonon frequency νph is included, since a charge carrier has only one chance to
hop per phonon oscillation period and thus νph may be taken as a measure for a maximum hop
frequency, which is equivalent to the interpretation as an “attempt-to-escape“ frequency. The
hopping probability P may be related to the diffusion coefficient D by:

 eq. (2.4 - 140)
and the diffusion coefficient can be expressed in terms of the charge carrier mobility by means
of the Einstein relation:

.  eq. (2.4 - 141)

Merging eq. (2.4 - 140) and eq. (2.4 - 141) reveals, that the ratio  converts a hopping
frequency to a mobility, provided the Einstein relation holds, which will be discussed below in
the context with dispersive charge transport.

Interpreting eq. (2.4 - 139) in terms of eq. (2.4 - 133), the correlations are as follows:

,  eq. (2.4 - 142)

 and  eq. (2.4 - 143)

.  eq. (2.4 - 144)

Comparison with the experiment [34] shows a good agreement of the polaron model with
experimental data at zero external field without considering disorder. 

However, the polaron theory fails to describe the field dependence of the charge carrier
mobility correctly. The field dependence is usually described by an expression given by Marcus
et. al. [37]: 

.  eq. (2.4 - 145)

This expression is basically derived from the idea, that an applied field will support hopping in
one field direction, since it reduces the activation energy, and will hamper hopping in the
opposite direction by rising the activation energy. When expressing both the contributions
Arrhenius-like, taking the sign of the field into account (i.e. the exponential arguments will have
opposite signs) and subtracting these two rates one obtains the from of the field term given

µ qδ
2

kBT
---------Pνphe

Ep 2J δ( )–
2kBT

--------------------------–
=

D Pδ
2=

µ qD
kBT
---------=

qδ
2 kBT⁄

a0
qνph
kBT
-----------=

f1 δ( ) Pln=

f2 δ T,( )
Ep 2J δ( )–

2kBT
--------------------------–=

µ E( ) 1
E
--- qδE

2kBT
------------ 

 sinh∝



2.4.)Physical aspects of organic polymers

104

above. Eq. (2.4 - 145) predicts almost field independent mobility at low fields and strong
dependence at high fields, whereas the contrary is observed experimentally, namely saturation
or even a decrease of the mobility at high fields. Even if the one-dimensional model is expanded
to three dimensions, tunnelling is allowed for, and a small disorder term is introduced only some
gradual improvement of congruence between theory and experiment is achieved but not a
reasonable agreement [38]. The resulting expression is very complicated and will not be
reproduced here.

Thus, in conclusion, there is currently strong indication, that charge carrier transport in
disordered organic solids is not (notably) due to polaronic effects, since the polaron model
cannot account for the field dependence experimentally found. 

2.4.3.2.3.)The Baessler formalism (disorder model)
In the disorder model fluctuations of the molecular energy levels and of the intermolecular

distance and mutual orientation in amorphous organic solids are considered as determining the
charge carrier mobility. Polaronic effects are neglected. The formalism has been developed
largely by means of Monte Carlo (MC) simulation techniques. Subsequently only the basic
concept of the model will be outlined and the resulting expression for the charge carrier mobility
will be shown. A more comprehensive review is provided in Appendix E and in [30].

A fundamental assumption of the Baessler formalism is that the transport manifold of a
disordered organic system abandoning long range order is smeared out into a Gaussian
distribution of localized states. The origin of the distribution is attributed to fluctuations of the
entire variety of intermolecular potentials existing in an organic system containing ions, i.e. the
interaction of ions, dipoles and induced dipoles with themselves and each other, whereby ion -
ion and ion - dipole interactions contribute most. The distribution of localized energetic states
is referred to as diagonal disorder, since the eigen-energies of the sites thus modified would
occur as diagonal elements in the energy matrix. 

Another fundamental assumption of the Baessler formalism is based on model
calculations in [40], which showed that the transfer integrals for charge carrier exchange
between two adjacent transport sites may vary by several orders of magnitude as a function of
the mutual orientation of the transport sites. Thus, it must be expected that the wave function
overlap between adjacent transporting sites, which determines the probability of a charge carrier
exchange (i.e. the jump rate), is subjected to a distribution. Furthermore but less important
(except for fullerene systems), the inter-site distance will not be constant but subjected to a
distribution as well. The subsumption of these distributions is referred to as positional disorder
or off-diagonal disorder.

Based on the above assumptions and by means of MC simulation techniques Baessler et.
al. derived the following expression for the charge carrier mobility in disordered organic solids:

 eq. (2.4 - 146)

with:

,  eq. (2.4 - 147)

where σ is the (1/e -) width of the DOS of transporting sites, Σ is the positional disorder
parameter, C = 2.9x10-7 (µm/V)1/2, and µ0 is an experimental constant. 
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The disorder model is the first model in several decades of research on electrical
conduction in disordered organic solids, which is able to describe the particular features of this
phenomenon consistently and at least qualitatively over a wide range of possible variations of
experimental parameters. Unfortunately, also the disorder formalism utilizes parameters, which
are not or at least not directly accessible by the experiment. The problem in determining the
width of the DOS of transport sites has already been discussed above. The off-diagonal disorder
parameter is even more problematic, since up to date there is no really independent method to
obtain this parameter. Thus, Σ must be gained by fitting experimental data on conductivity and
charge carrier mobility measurements to the equations eq. (2.4 - 146). 

Nevertheless, the Baessler formalism has been a great progress, since it provides a
qualitative idea of the physical processes behind the electrical conduction in disordered organic
solids and it supplies the people working in this field with analytical expressions applicable to
fit experimental data. Since the model was presented first around 1990, it has been applied to a
big variety of different systems and has proven its solid groundwork impressively.

2.4.3.2.4.)Concentration and matrix dependence
The charge carrier mobility in general depends strongly on the concentration of transport

sites in the medium and the type of the polymer matrix in molecularly doped polymer systems,
i.e. in systems, where the transport sites are diluted in an inert polymer matrix. Experimentally,
an increase of the charge carrier mobility by several (i.e. some five to more than seven) orders
of magnitude is observed within a concentration range of about 10%wt ≤ c ≤ 100%wt of
transport sites [46] and no general trend can be formulated for the matrix dependence, but it is
clear that the polarity plays an important role. Neither the concentration dependence of the
charge carrier mobility nor the matrix dependence can be described analytically. However, there
have been attempts to develop some models to describe the concentration dependence. These
are the homogenous lattice gas model [47] and considerations based on the percolation concept
[48]. Although both the models turned out to show considerable deviations from simulation and
experimental data, they may serve as a guideline for understanding the basic relations between
the concentration of transport sites and the charge carrier mobility. Subsequently, the
homogenous lattice gas model and the percolation concept will be briefly outlined. The
influence of the polymer matrix will not be elaborated upon, since the systems investigated in
the frame of this work (PVK as polymer matrix) are not classical molecularly doped polymers
but may rather be considered as systems, where the matrix itself is conductive. Hence, the
influence of the matrix on the conduction properties of these systems becomes a question of the
concentration dependence.

2.4.3.2.4.1.)Homogenous lattice gas concept
Assuming cubic shape of the molecules as well as their homogenous distribution in zero

order approximation, the average inter-site distance  between two transport molecules or
moieties may be expressed as:

,  eq. (2.4 - 148)

where M is the molar mass of the transport moieties and ρM is their density (in pure form), NA
is Avogadro’s constant, and c is the fractional concentration (i.e. dimensionless) of transport
moieties in the system. The parameter  may then be interpreted as mean nearest neighbor
distance in the undiluted system. The average inter-site distance  will decrease as a function
of increasing concentration, which will result in an increase of the wave function overlap as well
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as a decrease of the average quadratic distance to be covered per jump. Hence, the concentration
dependence of the charge carrier mobility may be expressed according to eq. (2.4 - 133)
(disregarding the last two exponentials) and eq. (2.4 - 134) as: 

,  eq. (2.4 - 149)

where a0´ can be identified according to eq. (2.4 - 139) to eq. (2.4 - 142) (conversion of a jump
frequency into a mobility) resulting in:

.  eq. (2.4 - 150)

Here ν0 is the prefactor in the jump rate eq. (E - 2) and the factor 6 in the denominator stems
from the consideration of in principle three spatial jump directions with the possibility of
forward and backward jumps. Please note, that ν0 and νph in eq. (2.4 - 139) are closely related
to each other and have very similar physical meaning and value.

The model ignores diagonal and off-diagonal disorder and takes the hopping sites as an
array of points, whereas the average hopping distances may be estimated as being comparable
to the typical physical dimensions of the hopping sites. Accordingly, it does not surprise, that
comparison of eq. (2.4 - 149) with MC simulations revealed partly considerable deviations,
however, the general trend is reproduced. Thence, it may serve as zero order approximation of
the real behavior. 

Please note, that the second and the third exponential in eq. (2.4 - 133) are derived
according to the polaron model as well as the Baessler formalism, tacitly presuming the absence
of any concentration dependence. This is obviously not true, since the width of the DOS of
transport sites depends on the concentration of transport moieties as shown in [33] for a
representative system. The DOS was found to increase as a function of decreasing
concentration, which was attributed to an increase of the fluctuations of the intermolecular
dipole interactions for smaller concentrations. Most probably, this finding represents a general
trend, which suggests, that both the second exponential (temperature dependence) and the third
exponential (field (and temperature) dependence) in the general form of the mobility equation
(see eq. (2.4 - 133) and especially eq. (2.4 - 146)) may depend considerably on the concentration
of transport moieties.

2.4.3.2.4.2.)The percolation model
The percolation model was proposed by Silver et. al. [49] as an alternative to the lattice

gas model described above. The percolation theory in general deals with the effects of varying
richness of interconnections present in a random network system. A simple picture illustrating
the basic concept is shown in figure (2.4 - 12). In a network of conducting connections, the
connecting links are cut one after the other and at random. The question is what fraction of links
must be cut in order to cut off the macroscopic conductivity of the whole system. Percolation
theory tries to answer this question. It can be shown, that there is a definite answer to this
question for a network size approaching infinity. For the case of a 2D network as illustrated in
figure (2.4 - 12), the threshold point, referred to as percolation threshold, is c0 = 0.5.
Accordingly, there is a sharp transition at which some long-range connectivity appears or
disappears and which occurs abruptly. Percolation theory is an active field of mathematical
research finding application especially in theoretical physics and polymer chemistry (sol-gel
processes). It is beyond the scope of this work to proceed to a more detailed consideration of the
mathematics behind this theory. 
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It is obvious to try to apply the percolation concept to
the concentration dependence of the charge carrier mobility
in molecularly doped polymers. Assuming that the transport
sites occupy positions in a lattice, for a fractional
concentration of unity all positions are occupied. For
decreasing concentration, transport sites are withdrawn
randomly from the lattice leaving open positions behind. In
the absence of energetic and positional disorder (according to
the Baessler formalism; please note, that percolation itself is
a statistical problem and thus subject to disorder
considerations as well, e.g. the lattice disorder covering the
randomness of the condition “unoccupied position“ and
“occupied position“, which is not meant here), the
percolation model predicts the concentration dependence of
the charge carrier mobility to be:

.  eq. (2.4 - 151)
The parameter α is a constant, which amounts to α = 1.5 for
site percolation (i.e. site existent or missing) and α = 1.6 for
bond percolation (i.e. „connection“ between sites existent or
missing) and c0 is the percolation threshold, which is c0 =
0.312 for a simple cubic structure. Please note, that the model
presumes hops of charge carriers only to nearest neighbors and hence no hop is implied, if the
considered neighboring position is empty. 

MC simulations of the concentration dependence of the charge carrier mobility, however,
did not show a well defined percolation threshold and a much stronger concentration
dependence than predicted from the percolation model. Increasing the overlap parameter 
(i.e. the spatial extent of the wave function is reduced) in the simulations leads to improved
agreement between theory and simulation. This shows, that the above approximation of only
nearest neighbor jumps is not acceptable. In conclusion, the MC simulation results tend to
support the lattice gas model rather than the percolation model. Nevertheless, the percolation
model takes proper account of the discrete molecular structure of the system and thus may be
developed to a more powerful concept in the future.

 Figure (2.4 - 12): Illustration of 
the percolation concept. c is the 

fraction of uncut connections, I is 
the flux through the network 
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2.4.3.3.)Dispersive charge transport
Conducting polymers are subjected to dispersive charge

transport. The term “dispersive charge transport“ describes the
phenomenon, that a charge carrier packet diverges considerably
more than predicted from normal diffusion during its field-
driven motion through a disordered organic solid. This results in
anomalous broadening of the signals obtained by time of flight
(TOF) experiments, which is the typical experiment to
determine conduction properties. In TOF, a sheet of charge
carriers is generated by flash excitation in a photosensitive layer
and its motion through a conduction layer to be experimentally
tested is measured by monitoring the displacement current
flowing through the setup. The working principle and the typical
signal shape are depicted in figure (2.4 - 13). The so called
transit time tT (the time the charge carrier packet takes to
traverse the conducting layer) is a measure for the charge carrier
mobility. If the charge carrier packet divergence is anomalously
strong, the transit time is no longer a well defined point. In the
limiting case of “extremely“ dispersive transport, a transit time
cannot be defined. 

Phenomenologically, dispersive charge transport may be
understood in the sense of a broad distribution of propagation
velocities of the single charge carriers. Thus, a clear definition
of a charge carrier mobility is difficult and eventually becomes
impossible when the distribution becomes too broad to clearly
define a maximum in a physical sense. The fortune of a charge
carrier packet traversing a conducting layer at non-dispersive
and dispersive transport is illustrated in figure (2.4 - 14). The
original charge carrier packet is transported along x at velocity
vnd for a certain time not remarkably changing its shape for the
case of non-dispersive transport. In contrast, in the case of
strongly dispersive transport, the carrier packet is smeared out in
transport direction due to a broad distribution of propagation
velocities rather than transported. 

Dispersion in charge transport has an important impact on
the Einstein relation eq. (2.4 - 141), which will be discussed below. A more comprehensive
discussion of dispersive charge transport will be provided in Appendix F.

2.4.3.3.1.)The Einstein relationship
As mentioned before, for non-dispersive media the field-driven motion of a well defined

packet of charge carriers gives rise to a constant displacement current in TOF experiments until
the carriers reach the electrode on the right hand side of the sketch in figure (2.4 - 13). There
will be some diffusive spreading of the packet, broadening the trailing edge of the photo current
transients as depicted by the dotted line in the diagram at the bottom of figure (2.4 - 13). In a
homogeneous medium and for fields small enough to ensure, that the gain in energy for a charge
carrier travelling along the electrical field vector is significantly smaller than the thermal energy

 Figure (2.4 - 13): TOF 
experiment and typical signals: 
dotted line → non-dispersive; 

solid line → strongly dispersive.
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(i.e. , for the parameters see above), Einstein’s relation eq. (2.4 - 141) will hold,
relating charge carrier diffusion and drift mobility. Then, the mean spatial width ∆x of an
initially δ-shaped (δ in this case: Kronecker symbol) charge carrier packet will evolve according
to:

,  eq. (2.4 - 152)

where x is the traversing direction of the carrier packet through the medium, D is the diffusion
coefficient and t is the time. This yields for the relative spread of the photocurrent transient:

,  eq. (2.4 - 153)

where L is the thickness of the sample conducting layer according to figure (2.4 - 13).
In polymers, however, it is always observed, that the packet of charge carriers spreads

considerably faster with time relative to the transit time as predicted by eq. (2.4 - 152).
Accordingly, the apparent diffusivity exceeds the zero field diffusivity as predicted by the
Einstein relation. It has been shown by MC simulations in [50], that the ratio qD/µkBT, equaling
unity if the Einstein relation holds (see eq. (2.4 - 141)) may reach values as large as of order 103

in disordered systems and depends strongly on the bias field as well as the disorder in the system
(for more details, see Appendix F). As already mentioned before, this is referred to as dispersive
charge transport and proves the Einstein relation not being valid in disordered organic systems.
The deviation of the real behavior from the Einstein relation increases with increasing dispersity
of the charge transport. 

2.4.4.) Charge generation and recombination in organic polymers
Apart from charge transport in disordered organic solids, photoinduced charge generation

and recombination is the second major issue within the frame of electrical properties of organic
polymers. In inorganic semiconductors band-to-band excitation leads to the photogeneration of
free charge carriers. In contrast, bound geminate electron - hole pairs (excitons) are involved in
this process in organic materials. The models by far most widely used to describe charge
generation in organic solids are all based on the Onsager formalism [59]. Free carriers are
assumed to be generated by a multi-step process beginning with photon absorption and creation
of a localized hole and a hot (i.e. having considerable kinetic energy) electron, provided
electrons are the mobile charge carrier species. The hot electron then becomes thermalized after
having travelled a certain distance, which is called thermalization radius r0, creating a charge-
transfer (CT) state. This initial process is described by a primary quantum yield Φ0. In this state,
the Coulomb energy associated with the thermalization distance is comparable to the thermal
energy. Eventually, the charge transfer state can either dissociate resulting in a free electron and
a free hole or undergo geminate recombination, i.e. the electron recombines with its parent
cation. The dissociation probability is described by the theory due to Onsager. Accordingly, the
photogeneration efficiency is then given by the product of the efficiency of creating a bound
electron - hole pair and the probability that the pair dissociates. Please note, that the theory is
not restricted to a certain type of charge carrier to be mobile or not and, thus, applies to electron
conductors as well as hole conductors. 

Subsequently, the Onsager formalism will briefly be outlined without elaborating on the
complicated mathematics behind it. The situation found in polymers will be discussed
separately. A short discussion of closely related models based on the Onsager theory will follow.
This includes the discussion of a more recent model especially focusing on the hole conducting
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polymer poly(N-vinylcarbazole), which is of particular interest for this work. Models using
other approaches will not be considered. The paragraph will close with a short note about the
repeatedly cited „Langevin recombination“.

2.4.4.1.)Onsager formalism
The Onsager formalism is derived from the time independent Smoluchowski equations

[60], which are:
 eq. (2.4 - 154)

and:

.  eq. (2.4 - 155)
Here, j is the current density, r is the relative position of the charge carrier with respect to its
counter-ion, r0 is the initial separation, ρ is the particle distribution function, D is the sum of the
diffusion coefficients and W is the potential energy normalized by the thermal energy according
to:

,  eq. (2.4 - 156)

where θ is the polar angle and:

.  eq. (2.4 - 157)

The corresponding reference frame is defined such that the direction of the applied field
coincides with the z-axis and the equations are expressed in polar coordinates. The quantity rC
is the distance, where the Coulomb potential equals the thermal energy, commonly referred to
as „Coulomb radius“ or, less common, but sometimes used in older literature, „Onsager radius“
and thus given by:

 eq. (2.4 - 158)

with ε = εrε0 being the total permittivity. The Smoluchowski equations may easily be
understood. Eq. (2.4 - 154) is the mathematical formulation of the condition, that the charge
carriers contributing to the considered current density are actually generated in the respective
area and do not come from outside. Eq. (2.4 - 155) is Fick’s first law with the particle
distribution function being the concentration. The exponential arguments (eq. (2.4 - 156))
account for the influence of the Coulomb interactions (left term of the exponential argument W)
counteracting the diffusion process and for the applied field (right term of the exponential
argument W) “promoting the diffusion“ by adding a drift component (please note, that the
current density may be expressed as j = sρ, s being the propagation velocity of the particles, i.e.,
the charge carriers, whose distribution is given by ρ). Please note, that the application of the
Smoluchowski equations demands the mean free path length of the diffusing particles to be
much smaller than the Coulomb radius.

Onsager gave a solution for eq. (2.4 - 154) and eq. (2.4 - 155) presuming the boundary
conditions:

 eq. (2.4 - 159)
and:

,  eq. (2.4 - 160)
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where the notation “a|b“ usually refers to probability considerations for „parameter a out of
ensemble b“. In the current context, ρ(r|r0) must be understood as the conditional probability of
finding a particle at r, if initially at r0. Eq. (2.4 - 159) thus reflects the demand, that a charge
carrier may escape from its origin, whereas eq. (2.4 - 160) ensures, that it does not vanish. In
other words, the boundary conditions require the particle to exist somewhere between r = 0 and
r → ∞, but not only at 0. He obtained the following expression for the probability f (r,θ,E,T) of
escaping geminate recombination for an isolated thermalized charge pair at temperature T
separated by distance r, with the distance (vector) oriented at an angle of θ with respect to the
applied field E:

.  eq. (2.4 - 161)

Thus, with the aforementioned primary quantum yield Φ0, the photogeneration efficiency can
be expressed as:

,  eq. (2.4 - 162)
where φ is the azimuth angle and g(r,θ) is the distribution function of the initial distribution of
the thermalized charge pair configurations. 

The different models of photogeneration based on the Onsager formalism basically differ
by the employed distribution function g(r,θ). Most often it is assumed, that the distribution of
thermalized pairs may be described by an isotropic (i.e. no dependence on θ) delta function

  according to:

,  eq. (2.4 - 163)

which represents a perfectly absorbing sphere with vanishing radius at the origin. With eq. (2.4
- 163) and completing the integration of eq. (2.4 - 162), a good numerical approximation for the
photoinduced charge generation has been presented by Mozumder [61]:

, eq. (2.4 - 164)

with r0 according to the definition preceding eq. (2.4 - 156) and the functions Yl(a) (modified
Bessel-functions of the first kind) given by the recursive formula:

 eq. (2.4 - 165)

with the initial element:

.  eq. (2.4 - 166)
Please note, that the primary quantum yield is considered as independent from the applied field
E and the ambient temperature T. 
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2.4.4.2.)The situation in organic polymers
As mentioned before, a key assumption in the

Onsager formalism is the distribution function describing
the charge transfer radii. However, taking the inherent
disorder of organic polymers into account, it is scarcely
imaginable that the distribution of CT states is described
realistically by eq. (2.4 - 163). In fact, comparison between
experimental data on the electric field dependence of the
charge carrier photogeneration efficiency with theoretical
fits applying eq. (2.4 - 163) reveal considerable deviations
especially for high applied fields exceeding 100V/µm [62] -
[64]. In contrast, the classical model appeared to hold for
moderate fields, however, depending on the material. The
low field behavior turned out to be dubious in all cases,
however, is afflicted with very high experimental error,
making the results experimentally obtained less significant.
Considering the success of the Baessler formalism in the
description of the charge carrier mobility by applying
Gaussian distributions for energetic and positional disorder
of transport sites, it seems proximate to assume a distribution of CT radii, which is as well
Gaussian. However, it must be pointed out, that this is not causal a conclusion but rather a
backwards illustration, since various distribution functions have been tested more or less
successfully before the Baessler formalism has been developed [62]. In the most recent works
[63] and [64], the CT radii distribution function:

 eq. (2.4 - 167)

has been found to yield best theoretical fits to experimental data on the field dependence of
photogeneration efficiencies, where β is an adjustable field dependent parameter describing the
distribution of CT radii (β ≈ r0/2 at low fields and approaches r0 for high fields). This parameter
accounts for the fact, that the accessibility of the distribution of CT radii for dissociation
depends on the applied field. CT states with smaller thermalization distance tend to recombine
strongly at low fields, whereas they contribute notably to the dissociation at high fields. Figure
(2.4 - 15) gives an example plot obtained for a crystalline PVK film at λ0 = 254nm [64]. Very
similar data were obtained with amorphous PVK films and for λ0 = 355nm [64]. In all cases,
within the field range relevant in the frame of this work (≈ 10 - 100V/µm), the field dependence
of Φ is described well by the classical Onsager theory using eq. (2.4 - 163). Therefore, data and
references concerning Φ(E) given later in the section devoted to the experimental results will
generally refer to eq. (2.4 - 164), which is derived on the basis of eq. (2.4 - 163).

Although the classical Onsager theory turns out to be well applicable to describe the field
dependence of Φ for by far most of the practical cases, there is a significant weakness of this
theory, if the temperature dependence as well as the dependence on the photon energy of the
exciting radiation in polymers is considered. For the sake of completeness, the reason for and
solution of this problem will be outlined subsequently.

 Figure (2.4 - 15): exp. Φ(E) fitted 
with (a): eq. (2.4 - 163), (b): eq. (2.4 
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2.4.4.2.1.) Important Onsager based models 
The Onsager model assumes thermalization of

the charge carrier initially ejected from the generation
site by absorption of a photon with an excess kinetic
energy, which is then assumed to be dissipated by
means of numerous collisions with the medium. After
the dissipation process, the carrier has travelled a
certain thermalization length from its parent
countercharge and the diffusion process begins. This
ballistic nature of the Onsager model implies, that Φ
depends considerably on the energy of the absorbed
photon and increases with increasing exciting
radiation frequency, since longer thermalization
length facilitates diffusive dissociation of the bound
electron - hole pair. In fact, such a behavior is
observed in certain organic solids, e.g. in PPV
derivatives and polysilanes [63, 65]. However, many
organic materials do not show a wavelength
dependence of the photogeneration efficiency of
charge carriers [B20], which contradicts the classical
Onsager model. The first to account for these
deviations were Noolandi and Hong [66]. They
assumed the photoexcited molecules to loose their energy via internal conversion rather than
ballistically and thus to drop from the virtual (singlet) state S* to the first excited singlet state
S1 without involving some thermalization distance. This is followed by some radiative (rate
constant kR) or non-radiative (rate constant kN) relaxation to the ground state S0, or by the
formation of a bound electron - hole pair (rate constant k). The latter then may dissociate
according to the Onsager model. Recombination (R) of an electron - hole pair will at first
regenerate S1, which then may again follow the processes described above. Please note, that a
recombining pair is assumed to solely relax to the ground state in the classical Onsager model.
The two models are compared in figure (2.4 - 16) and figure (2.4 - 17). L. B. Braun applied the
Noolandi-Hong model for the special case that the electron - hole distance in the bound pair is
larger than the recombination length of the bound pair, i.e. he assumed direct formation of the
free carriers from the S1 state [67]. The latter model has been experimentally verified by Goliber
and Perlstein for an acceptor doped Triphenylamine/Lexan system [62]. However, Cimrová and
Nešpurek reported, that this model fails for Poly(n-vinylcarbazole) (PVK) [64] and developed
another model based on the idea of Noolandi and Hong in order to explain the behavior found
in PVK. Since PVK is a key material in the frame of this work, the model worked out by
Cimrová and Nešpurek will be considered in more detail now.

Cimrová and Nešpurek extended the model of Noolandi and Hong (depicted in figure (2.4
- 17)) by the assumption, that the molecule in its S1 state (besides the other relaxation processes
described above) may directly form a bound electron - hole pair like proposed by Noolandi and
Hong on the one hand, or that the entire exciton may diffuse to an exciton trapping site Cz* first,
and form a bound electron - hole pair later, on the other hand. Two types of exciton trapping
centers were proposed, the one type being active for charge carrier generation (Cza*,
corresponding trapping rate constant ka) and the other type being inactive (Czb*, corresponding
trapping rate constant kb). According to [68], monomer fluorescence of solid PVK is strongly
quenched and only excimer fluorescence is observed. This allows for the neglect of radiative
relaxation of S1 (kR = 0) and the assumption of a very small probability for a direct formation
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of bound electron - hole pairs. Thus, the formation of bound electron - hole pairs is restricted to
the case of previous exciton trapping by active sites and the rate constant for the formation, ki,
is assumed to be field independent. Furthermore, non-radiative (rate constant kN*) and radiative
(rate constant kR*) relaxation of Cza* to the groundstate may occur. The formed pair may
dissociate following Onsager’s formalism (rate constant kd) or recombine back to Cza* (rate
constant kr), which then open again all possible ways as just described. Furthermore,
intersystem crossing of S1 and Cza* to the triplet manifold may happen. The processes relevant
for generation of free charge carriers in PVK are schematically illustrated in figure (2.4 - 18).

The photogeneration process described
above can be expressed by the following first-
order kinetic equations:

,  eq. (2.4 - 168)

 eq. (2.4 - 169)

and

,  eq. (2.4 - 170)

where [S1], [Cza*] and [CT] are stationary
concentrations of the singlet state, the excitons
trapped by active sites and bound electron - hole
pairs and τ, τa and τCT are the corresponding lifetimes of these states, respectively. The
parameters α and I are the absorption coefficient and the radiation intensity. The
photogeneration efficiency Φ may be expressed as:

.  eq. (2.4 - 171)

The lifetimes in eq. (2.4 - 168) to eq. (2.4 - 170) may be expressed as:

,  eq. (2.4 - 172)

, and  eq. (2.4 - 173)

,  eq. (2.4 - 174)

where the first two are assumed to be field independent, whereas τCT is field dependent due to
the field dependent dissociation rate constant kd(E). With eq. (2.4 - 168) to eq. (2.4 - 170) and
eq. (2.4 - 172) to eq. (2.4 - 174), eq. (2.4 - 171) may be rewritten as:

 eq. (2.4 - 175)

with:

.  eq. (2.4 - 176)

The dissociation rate constant can be expressed in terms of the Onsager dissociation probability
f (r,θ,E,T) according to eq. (2.4 - 161):

 Figure (2.4 - 18): Charge carrier 
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.  eq. (2.4 - 177)

Presuming a distribution of CT radii according to eq. (2.4 - 163), Cimrová et. al. obtained for
the charge carrier photogeneration efficiency:

,  eq. (2.4 - 178)

where F (r0,E,T) is defined by eq. (2.4 - 164) and Φ0 is given by:

.  eq. (2.4 - 179)

According to Cimrová et. al., best theoretical fits are obtained for a distribution function
of Ct radii according to eq. (2.4 - 167). The corresponding expression for the charge carrier
photogeneration efficiency is then:

.  eq. (2.4 - 180)

Here Φ0β is the fraction of excitons becoming trapped in trapping sites active for charge carrier
generation and the meaning of β is clarified subsequent to eq. (2.4 - 167).

Using this model, both the field and the temperature dependence of the charge carrier
photogeneration can be explained with the same set of parameters Φ0β, β and K, as presented in
[64]. 

2.4.4.3.)Langevin theory of geminate recombination
The Langevin theory of geminate recombination [69] is based on the assumption, that the

mean distance between two oppositely charged particles is very large as compared to the mean
free path length. Furthermore, the mean distance is assumed to be large enough, so that the
electrostatic interaction between the particles is too small to effect their mutual trajectories. This
requires, that two particles must considerably approach each other by random in order to result
in a notable attractive electrostatic interaction. Since the mean distance is assumed to be much
larger than the minimum distance resulting in some attractive interaction, it may safely be
assumed that in average no third charged particle will be present in the case, when two
oppositely charged particles happen to approach sufficiently to be attracted by one another.
Thus, in the Langevin theory the problem of geminate recombination is basically reduced to a
problem of two particles. 

For an analytic treatment of this problem, one of the particles is assumed to be enclosed
in a spherical surface S with the radius r being one tenth of the mean distance between the
particles. The radius is thus chosen small as compared to the mean distance and large as
compared to the mean free path length. The other (oppositely charged) particle is assumed to be
in the immediate proximity of the enveloping surface. Furthermore it is assumed that geminate
recombination occurs if the latter particle passes through S. Under these conditions, the particles
may be assumed to move under the influence of their mutual electrostatic interaction, whereby
their mobilities are the same as for some motion under the influence of some arbitrary external
electrical field. The quantity in question now is the number of particles of the one sign enclosed
by S, which are approached by a particle of the opposite sign passing through S in the time
interval dt. This number of particles will solely depend on the relative velocity of the two
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considered neighboring particles with respect to each other. 
The velocities of the two considered particles are determined by their mobility, the sum

of external electrical fields and the electrical field resulting from the neighboring oppositely
charged particle. Thus, provided the electrical charge of the particles is one unit elementary
charge, these velocities may be expressed as:

 eq. (2.4 - 181)

and:

.  eq. (2.4 - 182)

Here E1,2 are the total local external electrical fields, µ1,2 are the mobilities,  is the distance
unit vector of the particles pointing towards the negative charge, q is the (modulus of the)
elementary charge and ε is the total permittivity of the medium. The relative velocity of the
particles with respect to one another thus will be:

.  eq. (2.4 - 183)

Without loss of generality, one may now assume that the particle enclosed by S is locally
fixed and assign the number density N to these particles. The other particle (assigned density P),
which is about to pass through S within the time interval dt may then be considered to be inside
a cylinder of volume , which may be interpreted as the flux through the infinitesimal
surface element . Summing up all these cylinders within an infinitesimal volume element dV
of the overall medium considered and multiplying with the number density P yields the total
flux of particles within dV through  approaching in order to recombine. In order to obtain the
corresponding flux quantity through the complete enveloping surface S one has to integrate:

 eq. (2.4 - 184)

The term to the left hand side of eq. (2.4 - 184) may be interpreted as the relative number density
of particles “P“ in a spherical shell around one particle “N“ passing through S in the interval dt.
The first two integrals at the right hand side of eq. (2.4 - 184) yield zero according to eq. (2.1 -
5) (Gauss’s law), since neither E1 nor E2 are correlated with some charge enclosed by S and the
third integral yields just 4π. The complete term in square brackets is moreover identical for each
particle “N“ and thus occurs N times in the volume element dV. Accordingly, one obtains
eventually:

.  eq. (2.4 - 185)

Langevin referred to the term on the right hand side of eq. (2.4 - 185) as the “number of
collisions resulting in geminate recombination within the time interval dt in the volume dV“. It
is straight forward, that the number of particles per unit volume recombining in the interval dt
is given by:

,  eq. (2.4 - 186)

v1 µ1 E1
q

4πε r2
---------------er+ 

 =

v2 µ2– E2
q

4πε r2
---------------er+ 

 =

er

v v1 v2– µ1E1 µ2E2 µ1 µ2+( ) q
4πε r2
---------------er+ += =

v dS•( )dt
dS

dS

Pdt v dS•
S
∫∑

Pdt µ1 E1 dS µ2 E2 dS
µ1 µ2+( )q

4πε
----------------------------

er

r2
----- dS•

S
∫+•

S
∫+•

S
∫∑=

Pdt v dS•
S
∫∑ Pdt

µ1 µ2+( )q
ε

----------------------------∑
µ1 µ2+( )q

ε
----------------------------NPdtdV= =

dN dP
µN µP+( )q

ε
-----------------------------– NPdt= =



2.4.)Physical aspects of organic polymers

117

where N and P are the number densities of the involved charged particles, µN and µP are their
mobilities, respectively, q is the elementary charge and ε is the total permittivity of the medium.
Eq. (2.4 - 186) is Langevin’s law for geminate recombination and may be rewritten as:

 eq. (2.4 - 187)
with:

 eq. (2.4 - 188)

as (geminate) recombination coefficient γR.

dN dP γR– NPdt= =
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2.5.)The photorefractive effect

2.5.1.) Phenomenology of the photorefractive effect
The photorefractive effect was discovered in 1966 by A. Ashkin et. al. [8], who observed

a refractive index change in LiNbO3 as a result of intensive laser irradiation. However, this
observation was initially misinterpreted as optical damage instead of a new nonlinear optical
effect. During the subsequent 5 years basic work by F.S. Chen [9] and J.J. Amodei [70] was
done on the identification of the photorefractive (PR) effect as a new effect of nonlinear optics
with high application potential and on the enlightenment of its fundamental mechanism. The PR
effect has been recognized as a reversible photoinduced refractive index change in certain
materials opening the way to reversibly store optical interference fields, i.e. holograms. In order
to be photorefractive, a material must show the subsequent essential properties besides the
trivial demand for high transparency at the operating wavelength:

 The material must be photoconducting, which demands a minimum of
absorption at the operating wavelength. The photogenerated charges must have
different mobility, i.e. ideally the photoconduction should be monopolar.
 The material must exhibit some electro-optic effect (Pockels- and/or electrical
Kerr effect), i.e. it must be optically nonlinear.

The build-up of a PR refractive index grating in a
suitable medium as a result of nonuniform illumination
may formally be divided into four subsequent steps,
which, however, actually take place simultaneously.
These steps are illustrated in figure (2.5 - 1). The diagram
must be read from top to bottom and covers the following
steps:

 Nonuniform illumination of the PR material
with an optical interference field. The simple
case of an sinusoidal pattern is assumed
without loss of generality. I1 is the modulation
amplitude of the interference field and I0 the
average intensity. A surplus of free charge
carriers is photogenerated in the bright(er)
areas as compared to the dark(er) areas.
Without loss of generality their countercharges
are assumed to be immobile.
 The mobile charge carriers are redistributed
from the bright(er) areas in the medium to the
dark(er) areas by means of diffusion or drift
under the influence of an externally applied
field and eventually will be trapped in the dark(er) areas. This yields a spatially
varying space-charge distribution, which reproduces the shape of the
interference pattern. In the case of pure diffusion, the space-charge distribution
will be in-phase or anti-phase to the interference pattern, whereas there will be

 Figure (2.5 - 1): Formal steps of the 
photorefractive grating build-up
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some dephasing in-between these limits if charge carrier drift contributes
notably to the redistribution process.
 Some space-charge distribution will give rise to a space-charge field according
to Poisson’s equation (eq. (G - 5)), which is dephased with respect to the space-
charge distribution. The dephasing will amount to π/2 (90°) for the case of a
sinusoidal space-charge distribution. Hence, depending on the dominant charge
transport mechanism (diffusion or drift) an overall phase shift of the space-
charge field with respect to the interference pattern in-between 0 and ±π/2 will
occur.
 The space-charge field modulates the refractive index of the material by means
of the linear and/or the quadratic electro-optic effect. Depending on the
mechanism, which modulates the refractive index as a function of the space-
charge field, the resulting refractive index pattern will be in-phase or anti-phase
to the space-charge field. Thus, the refractive index grating will be out of phase
with respect to the interference pattern, which is an unique feature of the
photorefractive effect. This inherent phase shift between the index grating and
its generating interference pattern leads to coherent energy exchange between
the beams generating the interference field, which is referred to as “two-beam
coupling“. The recorded hologram may be read out by standard holographic
methods.

2.5.2.) The photorefractive effect in inorganic crystals
As mentioned before, the photorefractive effect was first discovered in inorganic crystals,

which was the only class of materials known to be possibly photorefractive for the succeeding
two decades. Fundamental work therefore focused upon systems, the electrical conduction
properties of which can be described by the band transport mechanism. The band transport
model of the photorefractive effect, however, cannot be transferred to amorphous organic PR
polymers, which this work is mainly focused upon and which follow a completely different
electrical conduction mechanism as discussed before in “2.4.3.) Electrical conduction in organic
polymers” on page 95. Nevertheless, the basic concepts of the band transport model developed
by Kukhtarev et.al. [71] are still essential in understanding photorefractivity. Thus, the basic
results of the band transport model will be depicted below, however, excluding special aspects,
which are absent or at least negligible in PR polymer. For example photovoltaic effects, which
can be very important in crystals, are negligible in polymers due to the strong external electric
field usually applied to these systems. The derivation of the below presented results is outlined
in Appendix G.

2.5.2.1.) The band-transport model of the photorefractive effect 
(Kukhtarev-model)

The Kukhtarev-model presumes, that there is a fixed and constant number of impurities
and/or defects in the PR medium, which may serve as charge carrier sources or traps depending
on their initial ionization state. The redox-system Fe2+/Fe3+ in a LiNbO3 crystal is a typical
example, where the Fe2+ ions may act as donor-impurities (refereed to hereafter simply as
„donors“) capable of releasing an electron into the conduction band upon optical excitation and
the Fe3+ ions may act as acceptor-impurities (referred to hereafter as acceptors) capable of
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trapping a free electron from the conduction band.
 A system as described above will always contain

donors as well as traps (i.e. even in the dark, when there
are no photoinduced traps and charges) as implied by the
electro-chemical equilibrium of such a system in
sufficiently polar solution. Donors and acceptors are
presumed to be of identical species, having identical
energy levels located somewhere in the band gap of the
system. This, in turn, implies that only ionized donors
are considered as traps, which requires the introduction
of fictive acceptor sites ensuring a non vanishing trap
density in the dark without violating the demand for
macroscopic electrical neutrality of the system. These
acceptor levels are often referred to as “compensating
charges” since they “compensate” the “excess charges”,
which arise from the existence of ionized donor levels
without having donated a charge carrier into the
conduction band.  The “compensating charges” themselfes do not take an active part in the
photorefractive effect (the allotted traps, however, do). Figure (2.5 - 2) illustrates the model.
Upon non-uniform illumination charge carriers are excited from Donor sites in the bright areas
and diffuse or drift in the dark areas, where they get trapped by acceptor sites. This gives rise to
a non-uniform space-charge distribution, which entrains a corresponding space-charge field, the
photorefractive space-charge field. A more detailed discussion of this process as well as its
theoretical description is provided in Appendix G. Subsequently, only the resulting expressions
for the space-charge field and the photorefractive phase shift will be presented.

2.5.2.1.1.)Steady-state solution for the space-charge field
Neglecting photovoltaic contributions, from Kukhtarev’s model the following expression

for steady-state photorefractive space-charge field Esc is obtained:
 eq. (2.5 - 1)

where E0 is the projection of an externally applied dc field onto the grating wave vector K and
the field quantities Ed and Eq are given by:

  eq. (2.5 - 2)

and

.  eq. (2.5 - 3)

Here, kB is the Boltzmann factor, T is the temperature, q is the elementary charge, NA is the
density of charge carrier traps (acceptor sites) and <ε> is the average permittivity. Ed is called
“diffusion field” and may be taken as the field strength, which arises, if charge separation solely
due to diffusion takes place between the bright and the dark areas along the grating vector until
steady-state is achieved, i.e. until the formed electrical field suppresses further charge
separation. Eq is called “saturation field” and represents the hypothetical field strength, which
may be achieved, if the maximum available charge carriers are separated between the bright and

.

 Figure (2.5 - 2): Kukhtarev’s band 
transport model of the photorefractive 
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the dark areas. This state would correspond to a situation in which “all traps are filled”, i.e.,
more exactely, the number density of ionized donor/acceptor levels in the bright area has taken
on its inherent maximum value, whereas in dark area all these sites are occupied, and the charge
carrier concentration in the conduction band is zero. 

The quantity M is a contrast factor given by:

.  eq. (2.5 - 4)

where m is the contrast factor of the light fringe pattern according to eq. (2.1 - 47) and σph and
σd are the photoconductivity and the dark conductivity of the medium, respectively. The latter
is due to thermal excitation of charge carriers. The quotient to the right hand side of eq. (2.5 -
4) is commonly referred to as „conductivity contrast“.

The phase shift φ between the interference pattern and the space-charge field is given by:

.  eq. (2.5 - 5)

Please note that φ approaches φ = 90° for E0 = 0 and φ < 90° for E0 > 0.

2.5.2.1.2.) Dynamics of the space-charge field

2.5.2.1.2.1.)Build-up dynamics
Kukhtarev’s model provides the following expression for the build-up of the physical

space-charge field Esc:

,  eq. (2.5 - 6)
where Esc is the amplitude of the steady-state space-charge field according to eq. (2.5 - 1), given
by:

,  eq. (2.5 - 7)

with M and the characteristic fields as defined before, and φ is the phase angle according to eq.
(2.5 - 5). The time constant for the build-up of the space-charge field τg is given by:

 eq. (2.5 - 8)

and the phase addend ωg reads:

.  eq. (2.5 - 9)

The quantity Eµ is another characteristic field quantity referred to as drift field:

 eq. (2.5 - 10)

and the parameter t0 is a characteristic time constant defined by:

.  eq. (2.5 - 11)
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Please note that ωg represents an important feature of PR crystals. It implies an oscillation
superposing the exponential part during the build-up of the PR grating in the presence of an
externally applied field. The oscillation may be considered as the result of a moving grating with
respect to the stationary intensity pattern during build-up. The significance of this feature will
be discussed in short terms at the end of the following section.

2.5.2.1.2.2.)Erasure dynamics
In analogy to eq. (2.5 - 6) the erasure dynamics of the space-charge field may be expressed as:

.  eq. (2.5 - 12)
Here, Esc represents the initial value of the photorefractive space-charge field when the erasure
process starts and, thus, is only defined by eq. (2.5 - 7), if the space-charge field has been
recorded to steady-state prior to the erasure process. In contrast, the quantities φ, τg and ωg are
defined by eq. (2.5 - 7), eq. (2.5 - 8), and eq. (2.5 - 9) independently from the initial grating
strength. Accordingly, the time history of grating erasure does not depend on the initial grating
strength.

Please note that eq. (2.5 - 12) does NOT imply an oscillation but rather only the grating
spatially moving by . Since there is no “phase reference“ (i.e. the term
“ “ at the right hand side of eq. (2.5 - 6)) during erasure, no oscillation of Esc(t)
will be observed, whereas the basic mechanism causing the oscillation remains unchanged.
Accordingly, the erasure process will be simply mono-exponential even with an external field
applied. 

The oscillation during the formation of the PR grating and its absence during erasure has
important consequences. In suitable PR crystals, the grating build-up may be considerably faster
than the grating erasure as a result of the superposition of the oscillation and the exponential
growth term. PR media showing this feature are preferable candidates for potential application
in holographic storage, especially utilizing holographic multiplexing techniques as discussed in
“2.3.3.) Holographic data storage” on page 60. 

2.5.3.) Photorefractivity in amorphous organic polymers
Some of the basic assumptions Kukhtarev presumed for the development of his famous

model are inadmissible for amorphous organic materials. Therefore, strictly speaking,
Kukhtarev’s model cannot be applied to PR polymers, even so it is still pretty common to
discuss organic PR polymers on the basis of this model. Although many conclusions drawn
from the application of Kukhtarev’s model to photorefractive polymers seem somehow
reasonable, it is quite unsatisfying to argue on the basis of a model, which is well-known to be
in fact not applicable. Subsequently, the main deviations of PR polymers from Kukhtarev’s
model are outlined and a more suitable model to describe photorefractivity in disordered organic
solids is presented. This model, basically developed by Schildkraut et.al., yields a steady-state
solution for the space-charge field as well as transient solutions, which are presented as well.
Finally, the orientational enhancement effect is described, which accounts for the particular
orientational effects observable in low-glass-transition PR polymers and their extraordinary
steady-state performance.
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Please note, that photorefractive polymers require an
external field not only for breaking the inherent statistical centro-
symmetry, but also to support the charge generation and to enable
charge carrier redistribution by charge carrier drift. The latter
requires that the external field has a non-vanishing projection
onto the grating wave vector of the interference pattern.
Therefore, photorefractive polymers are usually operated in a
tilted geometrical configuration, which is depicted in figure (2.5 -
3). Hereafter the tilted geometry will generally be presumed when
considering PR polymers unless explicitly noted otherwise. In
figure (2.5 - 3), K denotes the grating wave vector, I01 and I02 are
the recording beams for the grating and Eext is the externally
applied field. The angles are self-evident. Hereafter, this notation
will be maintained as consistent as possible throughout this work.

2.5.3.1.)Limitations of Kuktharev’s model
An obvious limitation is the premise of a field independent charge carrier photogeneration

efficiency. Twarowski [72] already introduced an Onsager type field dependence for the
photogeneration efficiency into Kukhtarev’s model in order to describe the influence of
geminate recombination in PR crystals. This resulted in the prediction of a considerable slow
down of the grating formation speed in materials exhibiting a low dielectric constant, whereas
the steady-state space-charge field is only affected to a minor extent. 

It is furthermore clear, that the assumption of a field independent charge carrier mobility
can not account for the situation found in disordered organic solids, as described in “2.4.3.)
Electrical conduction in organic polymers” on page 95.

Finally, Kukhtarev’s model presumes a dedicated nature of the traps inherent in the
system, which are represented by the compensating sites as depicted in figure (2.5 - 2).
However, the physical nature of the traps is not yet clear in organic materials. It seems
reasonable to assume, that the charge carrier generation sites (donors) may act as traps once they
have generated a charge carrier, thus being then charged themselves, like an acceptor site in a
PR crystal. On the other hand, there is very strong indication, that there are several other neutral
potential trapping sites in addition to the ionized donors, the nature of which is still unclear and
the number density of which is not directly accessible.

There are several more complications in disordered organic systems, which may have
impact on the PR behavior. For example, the Einstein relation between drift and mobility is not
valid in polymers subject to a strong external field applied as discussed in “2.4.3.3.1.) The
Einstein relationship” on page 108. A field enhanced diffusion process has been postulated to
explain the experimentally found discrepancies [52, 73]. Moreover, there is some indication,
that the trap density in PR polymers may vary on several parameters like light irradiance [74,
75, 76], glass-transition temperature and others.

In conclusion, it seems quite impossible to try to account for all implications, which may
occur in PR polymers. However, there is a model derived by Schildkraut et. al., which
approaches the conditions found in PR polymers much closer than Kukhtarev’s model. 

 Figure (2.5 - 3): Typical 
geometry for PR polymers.
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2.5.3.2.) Schildkraut’s model
In its basics Schildkraut’s model [77, 78] is fairly
similar to Kukhtarev’s model. The mobile charge
carriers are assumed to be holes and to be
photogenerated from neutral electron accepting
moieties. The negative countercharges are
assumed to be fixed at the ionized sensitizer
moieties. A shallow trap level is taken into account
as was introduced by Tayebati et al. for PR crystals
[79]. Finally, the charge carrier photogeneration
efficiency and the hole mobility are allowed to be
field dependent. 

The field dependency of the photogeneration
efficiency Φ(E) is basically described by the
Onsager theory (page 110). Twarowski already
introduced a field dependency of the
photogeneration efficiency into Kukhtarev’s model
[72]. He used Onsager’s expression for the
quantum yield expanded to the first order in the electrical field [80]:

,  eq. (2.5 - 13)

where r0 is the inital separation length of the thermalized charge carrier from its generation site,
rC is the Coulomb radius according to eq. (2.4 - 158) and EC is a characteristic field reading:

.  eq. (2.5 - 14)

In contrast, Schildkraut et al. assumed that the field dependency of the photogeneration
efficiency within the interval of external fields typically applied to PR polymers (about 10V/µm
- 100V/µm) may be approximated with sufficient accuracy by a simple power law [78]:

,  eq. (2.5 - 15)
where Φi is a constant and p is a system dependent empirical parameter to be determined
experimentally. However, according to [78] this relation was derived from a plot depicted in
[67] by sense of proportion and, thus, is not an experimentally confirmed relationship. It should
rather be considered as a rule of thumb, which has been widely accepted as some reasonable
approximation as PR polymers have moved into the focus of interest. In fact, the validity of eq.
(2.5 - 15) appears rather arguable. 

The field dependency of the hole mobility µ(E) is described using the hopping transport
formalism in disordered organic systems [81]:

,  eq. (2.5 - 16)
where µi is a constant and C is an experimentally obtained characteristic parameter. A charge
carrier once generated may recombine with one of the fixed countercharges, i.e. an ionized
sensitizer NG

i, or be trapped in a neutral trap NT. Recombination is assumed to follow the
Langevin theory (page 115), whereas this assumption is relaxed for trapping, since traps are not
required to be charged. Eventually, charge carriers trapped in shallow traps may thermally be
detrapped again and further participate in the overall process. A schematic of Schildkraut’s
model is depicted in figure (2.5 - 4). Subsequently, the results of Schildkraut’s model are
presented in SI units. A detailed derivation of the given expressions is provided in Appendix H.

 Figure (2.5 - 4): Energy level scheme of 
Schildkraut’s model. f(E) is the generation rate, 
T represents trapping and R recombination and 
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2.5.3.2.1.)Steady state solutions for the space-charge field in polymers
Schildkraut et. al. considered the limiting case of deep traps, i.e. detrapping is considered

negligible. All traps can then be considered as filled if the system has reached its steady-state.
Based on these perceptions, Schildkraut et. al. obtained the following expression for the
modulus of the steady state photorefractive space-charge from their model: 

,  eq. (2.5 - 17)

where p stems from eq. (2.5 - 15) and the parameter  given by:

.  eq. (2.5 - 18)

Here, NG,i and NT,i are the initial densities of neutral sensitizers and traps, respectively. n0, γR0,
and f0 are the zero hole density, the zero order recombination rate, and the zero order charge
generation rate, respectively, analytical expressions for which are provided in Appendix H. The
field quantities are defined as:

,  eq. (2.5 - 19)

,  eq. (2.5 - 20)

, and finally  eq. (2.5 - 21)

.  eq. (2.5 - 22)

Here, kB is the Boltzmann factor, T is the temperature, q is the elementary charge, K is the
grating wave vector, ε is the permittivity, E0 is the projection of the externally applied onto K
and the parameter C stems from eq. (2.5 - 16). Please note, that the “field“ in the square root
carries no dimension, but has the value of E0. 

ED obviously is the diffusion field. The other fields do not correlate directly to some
classical field quantities known from Kukhtarev’s model. However, EI may be interpreted as a
kind of general current saturation field, since it may be taken as the maximum field achievable
by separating the zero order charge carrier density determining the current flowing through the
sample in the steady-state case over one grating period of the PR grating. Eq may then be taken
as EI normalized by the ratio of hole recombination and generation, which may be interpreted
as correction by some contrast factor depending on a particular system. Accordingly, Eq may be
taken as some “real“ current saturation field. Em may be taken as a “mobility“ field, i.e. a field
due to different charge carrier mobilities. In a sense, this has some phenomenological similarity
to the drift field in Kukhtarev’s model. 

For the phase shift φ of the space-charge field with respect to the interference pattern
Schildkraut et. al. obtained:

.  eq. (2.5 - 23)

If the density of deep traps NT,i is assumed to be much smaller than the zero order hole
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density n0 and if the photogeneration efficiency is assumed to be much smaller as compared to
the initial hole trapping rate, EI in eq. (2.5 - 17) and in eq. (2.5 - 23) becomes negligible and 
approaches unity. In this case, the expressions eq. (2.5 - 17) and eq. (2.5 - 23) become similar
to the corresponding results obtained from Kukhtarev's model.

Eventually, it is particularly important to point out, that the results of Schildkraut’s model
imply a steady-state situation in the sense of an equilibrium state with a considerable current
flowing permanently through the system. This is fundamentally different from Kukhtarev’s
model, which basically assumes vanishing charge carrier concentration in the conduction band
once the steady-state is reached and, hence, no current flowing through the sample even with an
external field applied. On the other hand, the Schildkraut model does not account for thermal
generation of charge carriers as introduced for the Kukhtarev model. However, thermal
generation of holes will simply increase the zero order hole density n0 as will do any other
process different from photogeneration, which supplies the system with mobile charge carriers
(e.g. by injection from the electrodes). An increase of n0 results in a reduction of the space-
charge field amplitude.

2.5.3.2.2.) Build-up dynamics for the space-charge field in polymers
Based on Schildkraut’s model, Yuan et. al. derived an analytical expression for the build-

up dynamics of the space-charge field in polymers [82]. Subsequently, their results are
presented in SI units. A detailed derivation of the given expressions is provided in Appendix H.
The physically relevant real part of the complex space-charge field may be expressed in similar
form like eq. (2.5 - 6). Without loss of generality, the problem is expressed one-dimensional:

 eq. (2.5 - 24)

where R1 and φ1, R2 and φ2, and R3 and φ3 are the amplitudes and phases of corresponding
complex expressions, the explicit form of which is given in Appendix H. The time constants
τsc1,2 are:

.  eq. (2.5 - 25)

For the meaning of the parameters a, b, and c reference is made to Appendix H. The circular
frequencies ω1 and ω2 add a phase to the two decaying waves of the amplitudes R2 and R3,
which may be interpreted as some spatial shift of corresponding grating components during
build-up of the space-charge field, as discussed before for PR crystals. This may or may not
result in an oscillation observable during grating build-up depending on the numerical values of
the involved quantities. The parameters ω1 and ω2 read:
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.  eq. (2.5 - 26)

For the meaning of the parameters a, b, and c again reference is made to Appendix H.
Please note in particular, that this theory predicts a possible oscillation of the PR grating.

Such an oscillation would be an important feature since it may accelerate the grating build-up
relative to the erasure, which is helpful (however, not essential) for successfully applying
holographic multiplexing techniques, as already mentioned before for PR crystals. However, in
contrast to PR crystals, such an oscillation has not been observed experimentally in polymers
so far. This may be due to the fact, that real systems are believed to always contain a
considerable amount of shallow traps, even if doped with deep traps, which may suppress such
an effect.

2.5.3.2.3.)Erasure dynamics of the space-charge field in polymers
The erasure dynamics of PR polymers may be considered in two ways. The first and most

proximate way is to invert the boundary conditions applied for deriving the build-up dynamics
(see Appendix H). However, this approach suffers from the basic limitation to a system with
solely deep traps, which has been applied in order to obtain an analytical solution for
Schildkraut’s model. 

On the other hand, Cui et. al. recently presented a more detailed analysis of the erasure
process in PR polymers [83] taking into account different levels of traps. This analysis focusses
on the intensity dependence of the erasure rate rather than the general erasure behavior and
therefore uses a simplified approach, not accounting for a particular field dependency of the
charge carrier generation efficiency and the charge carrier mobility as in Schildkraut’s model.
The dependence of the erasure rates on the erasing intensity has been found to be sublinear in
PR polymers by several working groups [84 - 86] which may be expressed as:

 eq. (2.5 - 27)

and Cui et. al. include the aforementioned field dependencies in a field dependency of the power
index in eq. (2.5 - 27). 

Both approaches enumerated above will be outlined below and are discussed in more
detail in Appendix H. As will be shown, the basic results are similar, however, not really
identical. The approach by Cui et. al. provides a more detailed insight into the erasure process
in PR polymers, whereas the first of the above noted approaches is important, since it is a direct
consequence of Schildkraut’s model. Both approaches can only be approximations and reflect
the problem, that there is still no satisfyingly consistent theoretical basis for the photorefractive
effect in polymers.

2.5.3.2.3.1.)Erasure dynamics in Schildkraut’s model
As mentioned before, the erasure dynamics of the space-charge field in PR polymers may

be described on the basis of Schildkraut’s model. This analysis basically follows the same path
as in “2.5.3.2.2.) Build-up dynamics for the space-charge field in polymers” on page 126
applying different boundary conditions. For details reference is made to Appendix H. The
physically relevant real part of the complex space-charge field can be expressed in a form
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similar to eq. (2.5 - 6):

 eq. (2.5 - 28)
where R1´ and φ1´ and R2´ and φ2´ are the amplitudes and phases of corresponding complex
expressions, the explicit form of which is given in Appendix H. The time constants τsc1,2 are
given by eq. (2.5 - 25). The circular frequencies ω1 and ω2 are given by eq. (2.5 - 26).

Please note, that the general law represented by eq. (2.5 - 28) will be universal, provided
the terms of the sum are independent. However, the analytic expressions for the coefficients will
depend on the boundary conditions for t = 0. Please note furthermore, that the circular
frequencies add phases to the erasure components as already described above. This may be
interpreted as some spatial shift of corresponding grating components during erasure of Esc, as
discussed for PR crystals. Since the circular frequencies are different, the relative weighting of
the erasure components should be expected to change in time. Hence, despite there is no more
a phase reference being constant in time like in eq. (2.5 - 24), the phases should affect the
erasure behavior as opposed to the situation found in PR crystal and discussed before in
“2.5.2.1.2.) Dynamics of the space-charge field” on page 121. Thus, some kind of oscillation is
implied in PR polymers for the erasure process as well.

2.5.3.2.3.2.)Cui’s approach to the erasure dynamics
According to Cui et. al. [83], the main factors affecting the dynamics of the space-charge

field in some PR material are the generation, transportation, and trapping of charge carriers. The
field dependency of the quantum efficiency of charge generation, the charge trapping rate and
the charge carrier mobility result from the positional and energetic disorder of the charge
transporting and trapping sites in the polymer matrix. Presumed that holes are the only free
charge carriers present in the medium and that their negative countercharges are fixed at the
generation sites, the energy levels of the trapping sites should follow some particular
distribution, and there will be a certain density of traps for a given energy level E. Trapped holes
may be detrapped thermally and/or optically with different detrapping rates depending on the
energy levels of the involved trapping sites. Thus, integrating over all energy levels at a given
external field results in rate equations taking into account the non-discrete character of the
involved parameters. By means of the mean value theorem of integrals, the set of rate equations
involving integrals of non-discrete parameters can then be reduced to a set of rate equations
containing characteristic discrete values of the parameters in question for the particular system
considered. For more details reference is made to Appendix H. As a solution for the latter set of
rate equations, Cui et. al. obtained for the complex space-charge field E1(t) in terms of the rate
constants:

,  eq. (2.5 - 29)

where µ is the charge carrier mobility, ε is the total (effective) permittivity, and D is the diffusion
coefficient. NG10

i and NT10
i are the initial values of the first order spatial Fourier components

of the densities of ionized charge generators and filled traps, respectively, q is the elementary
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charge. K is the grating wave vector, E0 is the projection of the externally applied field onto the
grating wave vector, and Ξ is a constant, which can be found by setting E1(t) = E1(t = 0). NT10

i

= NT1(t = 0) and NG10
i = NG1(t = 0), and the three decay rate constants are:

,  eq. (2.5 - 30)

, and  eq. (2.5 - 31)

.  eq. (2.5 - 32)

Here, n0 is the zero order hole density and αG, γR, γT and δ are the characteristic, discrete values
of the system for the charge generation rate, the charge carrier recombination rate, the trapping
rate and the detrapping rate, respectively, and αG and δ are given by:

 eq. (2.5 - 33)

with the characteristic, discrete values of sG, sT, and ß. These parameters are the cross section
for light excitation of the charge generating sites, the cross section for optical detrapping of
charges from filled trapping sites and the thermal detrapping rate, respectively.

Among these above rate constants, 1/τ3 is the smallest one and is attributed to the
existence of traps. 1/τ1 is complex implying an oscillation as already derived and discussed
above. 

For a case of low light intensity, which is usually typical for holographic experiments in
photorefractives, the photogeneration rate (i.e. the rate of generation of holes from neutral
sensitizers) will be small as compared to the geminate recombination rate (i.e. the product of the
zero order hole density and the geminate recombination coefficient). This may ostensibly be
explained considering the fact, that there is already a considerable amount of holes distributed
in the system stemming from the previous recording process, thus, decoupling the zero order
hole density from the photogeneration process. Hence, the approximation of low light intensity
also refers to some extent to the recording intensity and will be valid as long as the erasure
intensity is not markedly higher than the spatial average of the recording intensity has been.
However, it is clear, that this point of view requires as well, that the system is operated in the
range of non-saturation, i.e. in this case that the trap density in the system is sufficiently high as
compared to the density of photogeneration centers. This condition is usually fulfilled in organic
amorphous PR systems, since a high trap density may be implied by principle due to the
mechanism underlying the hopping transport model [87]. Thus, the explicit demand for non-
saturation actually refers to inorganic PR crystals rather than to PR polymers. Furthermore,
uniform illumination will cause a small average hole trapping rate as compared to the
detrapping rate, which may be understood when considering, in contrast, the recording process,
where the average hole trapping rate will be higher due to the higher trapping rate in the dark
areas. Hence, one may conclude that the detrapping rate δ dominates in eq. (2.5 - 32), which is
proposed in the original literature without reasoning. 

Taking furthermore only the real part of eq. (2.5 - 30) and assuming Langevin mechanism
for the recombination (see “2.4.4.3.) Langevin theory of geminate recombination” on
page 115), the rate constants simplify to:

,  eq. (2.5 - 34)
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, and  eq. (2.5 - 35)

.  eq. (2.5 - 36)

Moreover, charge carrier diffusion usually is negligible in amorphous organic polymers. Thus,
eq. (2.5 - 34) and eq. (2.5 - 35) equalize and the decay becomes bi-exponential as found from
Schildkraut’s model.

The model outlined above allows for some rough correlation of the grating decay rates to
the involved trap types. Introducing appropriate approximations for the different trap types (i.e.
no traps, shallow traps, deep inactive traps, and deep optically active traps) into the expressions
eq. (H - 60) allows for the derivation of a trap type specific expression for n0, which then allows
for some conclusion on the behavior of the related decay rates to be expected. 

The case of no traps leads to the condition n0 = NG0
i and one obtains:

.  eq. (2.5 - 37)

Thus, for the fast decay rate the power index in eq. (2.5 - 27) may be expected to be α = 1/2.
The case of deep inactive traps (i.e. a hole once trapped cannot be re-excited) will be

represented by the condition n0 = NG0
i − NT yielding:

.  eq. (2.5 - 38)

Expanding the square root of the above expression accounting only for the zero and the first
order term and applying eq. (2.5 - 33) results in:

.  eq. (2.5 - 39)

Thus, for the fast decay rate the power index in eq. (2.5 - 27) may be expected to be α = 1.
For the case of deep optically active traps the approximation NT0

i << NT, NG yields:

  eq. (2.5 - 40)

and, since only optical detrapping shall be admitted, β in eq. (2.5 - 33) can be neglected,
resulting in:

.  eq. (2.5 - 41)

Thus, for the fast decay rate the power index in eq. (2.5 - 27) may be expected to be 1/2 < α < 1.
In the case of shallow traps, the charge carriers may be detrapped thermally and optically.

Otherwise, this case is basically similar to the case of deep optically active traps and eq. (2.5 -
41) will be valid as well, however, completed by the thermal detrapping rate β: 

.  eq. (2.5 - 42)

The fast erasure rate, thus, will depend sublinearly on the intensity as well, however, the power
index will, in turn, depend on the intensity. Combining eq. (2.5 - 27) and eq. (2.5 - 42) results in:
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.  eq. (2.5 - 43)

Despite the obvious fact, that α shows a more complicated behavior in this case, it will remain
in the range 1/2 < α < 1.

It seems problematic to try to draw some definite conclusions concerning the trap species
dominant in a PR polymer from experimentally obtained values of α on the basis of eq. (2.5 -
37) to eq. (2.5 - 43), since the correlation between the possible ranges for α and a particular trap
species seems to be too ambiguous. Cui et. al. tried to find a second argument by considering
the field dependence of the light excitation cross section of filled traps. However, their
discussion is barely comprehensible. For details reference is made to the original literature.

Nevertheless, eq. (2.5 - 37) to eq. (2.5 - 43) indicate, that a changing trap situation in some
material for different experimental conditions may show up in some systematic change of the
power index for the intensity dependency of the erasure rate. However, interpreting an observed
systematic change of the power index unambiguously may not be possible. 

This issue will be picked up again in the section devoted to the experimental results, when
discussing the erasure behavior of PVK based PR polymers.

2.5.3.3.)Orientational enhancement effect
Any model of the photorefractive effect taking into account the influence of a strong

external electrical field predicts that the PR space-charge field will not exceed notably the
projection of the external field onto the grating vector K of the holographic grating. This is
obvious, since the PR space-charge field results from redistribution of generated charge carriers
due to drift and diffusion, giving rise to the spatially modulated space-charge field, which
spatially resolved acts as a counter field or a supplement field to the external field depending on
the considered spatial location along the direction of K. In the location, where the space charge
field acts as a counter field, the drift-driven charge carrier redistribution will be suppressed as
soon as the space-charge field reaches the strength of the external field, cancelling the latter.
Thus, a possible excess space-charge field can only be due to diffusion, which, in polymers, is
negligibly small not contributing notably to the space-charge field. However, in today’s high
performance PR polymers, the achieved refractive index modulations would require a space-
charge field being more than one order of magnitude higher than the projection of the external
field onto K, if only the electro-optic response of a uniformly poled polymer is taken into
account. Accordingly, there must be some considerable enhancement effect for the PR effect in
today’s high performance PR polymers, which explains this contradiction. The explanation has
been given by Moerner et. al. in [88] and is well-known today as the so called orientational
enhancement effect, which will be discussed in this paragraph.

The orientational enhancement effect arises from the inherent property of all high
performance PR polymers known up to date to be electrically poled in situ. Thus, the NLO
chromophores will not only be aligned by the externally applied electrical field but by the total
internal electrical poling field ET, i.e. by the sum of the external field and the internal space-
charge field. Since the PR space-charge field is spatially modulated, the total field in the system
will as well be modulated spatially. Depending on the particular geometry applied, the total field
will be modulated in amplitude, if the external field is aligned parallel to the grating wave vector
K or will be modulated in direction if the external field is oriented perpendicular to K or will be
modulated both in direction and in amplitude for the typical tilted geometry applied to PR
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polymers, which is a geometric configuration in-between the aforementioned limiting cases and
is depicted in figure (2.5 - 5). Please note, that the latter of the limiting cases is hypothetical,
since no notable PR space-charge field will be formed if the projection of the external field onto
K is zero, since then there will be no charge carrier drift along K. Hereafter, the general case of
some tilted geometry will be considered. 

The spatial modulation of the total internal
poling field ET in amplitude and direction results in
a corresponding spatial modulation of the electrical
poling direction in the system, which may as well be
considered as a spatial modulation of the direction
of the optical axis of the macroscopic system and of
the poling strength. Furthermore there will be a
spatial modulation of the degree of the electrical
poling. Both affect the linear as well as the nonlinear
optical properties of the system. Please note, that
steady-state is assumed, i.e. the space-charge field is
constant in time, and that the external field is
presumed to be a dc electrical field. 

The linear optical properties are spatially
modulated as a function of the square of the total
poling field. In the local (molecular) principal axis
system (for a detailed definition see “2.4.2.)
Electrical poling of organic polymers - the oriented
gas model” on page 83), where the susceptibility
and permittivity tensors are diagonal, the changes of
the first order susceptibility and the refractive index
from the isotropic case (non-poled system) to the anisotropic case (poled system) are given by:

 eq. (2.5 - 44)
and analogously:

 eq. (2.5 - 45)

with:

 eq. (2.5 - 46)

and:
,  eq. (2.5 - 47)

according to eq. (2.4 - 65), eq. (2.4 - 67), eq. (2.4 - 69), eq. (2.4 - 73), eq. (2.4 - 74) and eq. (2.4
- 75). The notation “BR“ refers to “birefringent“ and will be used hereafter to denote the
contribution due to linear optical properties. The first order susceptibilities (i.e. the
polarizabilities) α and the ground state dipole moment are taken as dressed values, i.e. already
corrected by local field factors according to “2.4.2.1.4.) Local field correction” on page 91. For
the meaning of the other parameters reference to the oriented gas model (page 83) is made.
Please note explicitly, that eq. (2.5 - 44) and eq. (2.5 - 45) do not yet describe some
photorefractive index modulation, but rather the electrical poling induced optical anisotropy of
the system in the local frame. It must be pointed out, that ET,loc is the total internal poling field
in the molecular (i.e. local) principal axis system, i.e. the magnitude of the vector sum of the
externally applied bias field EB,loc and the PR space-charge field Esc,loc in the local frame. Thus,

 Figure (2.5 - 5): Illustration of the 
orientational enhancement effect (the denoted 

phase in x-direction is related to the 
interference pattern, the space-charge field is 

assumed to phase-shifted by π/2 and the initial 
phasing is chosen arbitrarily; all quantitates are 

vectors).
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the results for the macroscopic susceptibility changes from the oriented gas model on page 83
are related to the fields, which are considered as transformed into the local frame before.

The nonlinear optical properties are considered analogously. According to eq. (2.4 - 83)
and eq. (2.4 - 85), the macroscopic second order susceptibilities, which arise from poling the
system (this is taken here as a change starting at zero for the isotropic case) are given by:

 eq. (2.5 - 48)

and:

,  eq. (2.5 - 49)

The notation “EO“ refers to “electro-optic“ and will be used hereafter to denote the contribution
due to nonlinear optical properties. In order to get the (local) refractive index as a result from
the linear electro-optic effect sensed by an optical field, now the dc field for the electro-optic
response must be accounted for yielding:

 eq. (2.5 - 50)

and analogously:

.  eq. (2.5 - 51)

As for the linear optical properties, ET,loc is the total internal poling field in the local frame and
the hyperpolarizability β is taken as dressed value. Please note, that the refractive index change
depends on the square of the total poling field, like in the case of the linear optical properties.
This is due to the fact, that the property „Pockels effect“ itself in poled polymers depends on the
applied field.

Please note, that the relations expressed above:
 and  eq. (2.5 - 52)

 eq. (2.5 - 53)
will also account for situations where the system can no more be approximated by the oriented
gas model, provided it still has C∞v symmetry. This accounts for the case when the
chromophores are hindered in rotational mobility e.g. if the glass transition temperature of the
system is well above the ambient temperature or if the chromophores are attached to the
polymer backbone by some spacer groups, flexible enough to enable some rotational mobility
at all. Furthermore, A and C are microscopic constants, which do not depend on the chosen
frame, i.e. they are not restricted to the local frame.

Since both the birefringent response according to eq. (2.5 - 44) and eq. (2.5 - 45) and the
electro-optic response according eq. (2.5 - 50) and eq. (2.5 - 51) depend on the square of the
total poling field (in the local frame), the total susceptibility change may be expressed as:

,  eq. (2.5 - 54)

where:
 and  eq. (2.5 - 55)

.  eq. (2.5 - 56)
The PR space-charge field may be written as:
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,  eq. (2.5 - 57)
where Esc0 is the amplitude and  is the unit PR grating vector. Thence, the total internal
electrical field in the laboratory frame can then be expressed as:

,  eq. (2.5 - 58)
where θG is the angle between the grating wave vector K and the laboratory z-axis, which is the
direction of the applied external field Eext in the laboratory frame. Defining, on the other hand,
θp as the local tilt angle of the total internal poling field ET with respect to the laboratory z-axis,
θp will be:

.  eq. (2.5 - 59)

Please note, that quantities expressed in the laboratory frame are not explicitly denoted here. On
the other hand, quantities in the local frame carry the subscript “loc“.

In order to obtain the susceptibility matrix according to eq. (2.5 - 54) in the laboratory
frame, the laboratory frame is transformed into the local frame so that ET coincides with the
molecular z-axis (i.e. the 3-axis in the notation used for the oriented gas model). This may be
performed applying the transposed rotation matrix UT. Then the susceptibility change is
considered in the local frame and is finally transformed back into the laboratory frame by the
rotation matrix U, which reads in summary:

 eq. (2.5 - 60)
with the rotation matrix given by:

.  eq. (2.5 - 61)

The rotation matrix is chosen here as representing a rotation by θp around the laboratory y-axis;
however, this is arbitrary due to the rotational symmetry of the problem around the z-axis.
Solving eq. (2.5 - 60) with eq. (2.5 - 61) yields:

.  eq. (2.5 - 62)

In order to solve for eq. (2.5 - 62), the situation of the poling
field must be considered in more detail as depicted in figure (2.5 -
6). It becomes clear, that:

 eq. (2.5 - 63)

and:

 eq. (2.5 - 64)

which are merged to form eq. (2.5 - 59). 
Inserting eq. (2.5 - 63) and eq. (2.5 - 64) into eq. (2.5 - 62)

eventually results in:
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 eq. (2.5 - 65)

where “ “ is set aside for the sake of a short notation and ET
2 follows from eq. (2.5 - 58):

.  eq. (2.5 - 66)
Eq. (2.5 - 65) may be separated into components of (zero,) first and second order PR gratings
by inserting eq. (2.5 - 57) and comparing coefficients of exponential terms of corresponding
grating order.

2.5.3.3.1.)First order grating
The first order Fourier component of the susceptibility change writes according to eq. (2.5

- 65) with eq. (2.5 - 57):

 eq. (2.5 - 67)

which yields for the first order Fourier component of the photorefractive refractive index
modulation, sensed by s-polarized light (i.e. polarized perpendicular to the x,z-plane in the
laboratory frame):

 eq. (2.5 - 68)

and sensed by p-polarized light (i.e., polarized in the x,z-plane):

.  eq. (2.5 - 69)

The angles α1 and α2 are the incident angles of the recording beams for the interference pattern,
according to figure (2.5 - 3). It is obvious, that a non-zero, externally applied field is required
in order to obtain a photorefractive refractive index modulation, independent from other points
of view, which as well demand an external field (i.e. charge carrier generation and drift).
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2.5.3.3.2.)Second order grating
The second order Fourier component of the susceptibility change is:

,  eq. (2.5 - 70)

which yields for the corresponding Fourier component of the photorefractive refractive index
modulation sensed by s-polarized light:

 eq. (2.5 - 71)

and sensed by p-polarized light:

.  eq. (2.5 - 72)

The angles α1´ and α2´ are the incident angles of the virtual recording beams for a 2K
interference pattern. Beams exhibiting these incident angles, thus, fulfill the Bragg-condition
for the second order Fourier component of the PR refractive index grating. Please note, that the
second order PR refractive index grating is independent from the existence of an external field,
opposed to the first order grating. (However, an external field is nevertheless required to build
up the space-charge field.)

2.5.3.3.3.)The enhancement - a comparison
In order to get an idea of the outstanding importance of the above discussed enhancement

mechanism, in this section the quantitative relations will be regarded more closely. However,
the consideration will be restricted to the first order grating, since the 2K grating has not been
investigated in the frame of this work and has only been noted above for the sake of
completeness. 

For comparison, an expression for the refractive index modulation for the case of a pure
electro-optic polymer will be given below. The case of a pure electro-optic polymer may be
understood as the limiting case of a system of very high glass-transition temperature, which has
been electrically poled at elevated temperature and then cooled down with the poling field
applied. Accordingly, the orientational order generated at high temperature, when the
chromophores exhibited approximately free orientational mobility, is frozen and cannot be
altered any more. The orientational enhancement effect, thus, will not occur in such a system.

Poled polymers in general belong to the C∞v symmetry group, the electro-optic tensor 
of which writes in contracted notation (Kleinman symmetry applies):
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.  eq. (2.5 - 73)

For a certain geometry, an effective electro-optic coefficient may by calculated according to the
expression:

,  eq. (2.5 - 74)
where  and  are the polarization unit vectors of the recording beams,  is the second rank
permittivity tensor and  is the unit grating wave vector. By means of figure (2.5 - 3), the
vectors involved can easily be identified to (the polarization unit vectors are oriented
perpendicular to the propagation direction):

,  eq. (2.5 - 75)

 and  eq. (2.5 - 76)

,  eq. (2.5 - 77)

where the superscripts (s) and (p) denote s-polarization and p-polarization. Neglecting some
small contribution due to the uniform background birefringence (please note, that this has
already been presumed for eq. (2.5 - 74)), presuming a PR space-charge field according to eq.
(2.5 - 57) and using eq. (2.2 - 21) rewritten to the form:

,  eq. (2.5 - 78)

the PR refractive index modulation will be: 

 eq. (2.5 - 79)

and:

.  eq. (2.5 - 80)

The subscript “pp” refers to “prepoled”. Calculating back the electro-optic coefficients by
means of eq. (2.4 - 88) reveals, that:
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 and  eq. (2.5 - 81)

.  eq. (2.5 - 82)

Extracting the electro-optic contribution form eq. (2.5 - 68) and eq. (2.5 - 69) by means of eq.
(2.5 - 55) and eq. (2.5 - 56) and accounting for eq. (2.5 - 53) shows eventually that the electro-
optic contribution to the PR refractive index modulation is enhanced by a factor of two. This
relation was experimentally verified e.g. by Sandalphon et.al. [198].

A corresponding relation for the birefringence contribution cannot be derived, since there
is no such contribution in a prepoled system. However, the birefringence contribution adds to
the electro-optic contribution taking into account the signs of both the contributions. This may
lead to a significantly stronger enhancement, than implied from only considering the electro-
optic contribution.

2.5.3.4.)PR refractive index modulation in low-Tg PR polymers
As discussed in the preceding section, in a PR polymer featuring in situ poling, the total

PR refractive index modulation will result from two contributions, the electro-optic contribution
and the birefringent contribution:

.  eq. (2.5 - 83)
The electro-optic contribution is additionally enhanced by a factor of two with respect to the
electro-optic response in a comparable system not featuring in situ poling.

In today’s high performance PR polymers, the birefringence contribution is the dominant
or even the only contribution. It leads to very high achievable PR refractive index modulations
of up to 10-2, which is on the average more than one order of magnitude higher than in common
PR crystals (in photoconductive PR recording).

2.5.4.) Photorefractive two-wave mixing
Wave mixing in thick hologram gratings is described by the coupled wave theory, which

has already been elaborated upon in “2.3.2.) Coupled wave theory for thick hologram gratings”
on page 53. The concepts outlined in this section are generally valid and important solutions,
which are relevant in the frame of this work, have already been discussed. Furthermore, in
“2.2.3) Degenerate four wave mixing and NLO phase matching” on page 47, wave mixing has
been identified as an NLO effect in general, however, considered only for the particular example
discussed there. This may seem sufficient to obtain some overview over the issue of wave
mixing in thick hologram gratings. However, there is good reason to pick up this subject once
more in the particular context of the photorefractive effect generating the considered hologram
grating. As mentioned before, the mechanism of the photorefractive grating build-up leads to a
dephasing between the eventually resulting refractive index grating and the original holographic
interference pattern. This phase shift results in a coherent energy exchange between the
recording beams, referred to as “two-beam coupling“ (2BC). 2BC is a unique feature of the
photorefractive effect and, thus, deserves a separate discussion in order to emphasize the
outstanding significance of this special case of wave mixing in photorefractive nonlinear optics.
In this section, 2BC will at first be ostensibly explained and then treated in terms of a coupled
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wave formalism. However, it is beyond the scope of this work to give a comprehensive
overview over the variety of particular physical applications of 2BC and closely related effects
in photorefractives. For this wide field, reference is made to the literature [B8, B13, B16, B22,
B24 - B26, and references therein].

The details of the subsequent discussion will be restricted to transmission holograms and
degenerate wave mixing. The presented principles, however, apply to the general case.

2.5.4.1.)Phenomenology of two-beam coupling
In order to understand 2BC phenomenologically, the intersection of two plane waves I01

and I02 in a PR medium shall be considered, as depicted in figure (2.5 - 7) (A). At first, the
resulting interference pattern shall be assumed to have generated a local refractive index
grating. Both the intersecting beams will be partially diffracted and transmitted by “their own“
grating. For the sake of simplicity the refractive index profile shall not be considered as
sinusoidal as depicted by the solid line in figure (2.5 - 7) (B), but as rectangular with the
interfaces between the fringes of different refractive indices located at “−0.5“ and “+0.5“ as
hinted by the hatched areas. As can be seen from figure (2.5 - 7) (A), the phase shift between
I01 and I02 will be 90° at the interfaces “−0.5“ and “+0.5“. One point where this can be seen is
highlighted by a circle in figure (2.5 - 7) (A). Thus, independently from considering outer or
inner reflection (excluding the case of total reflection), the phase shift between a reflected
portion of the one beam and the transmitted portion of the other beam will always be shifted
against one another by ± 90°. For now a diffraction efficiency of 50% shall be assumed. Please
note that the diffraction efficiency is the same for each beam in any case. Then, the beams
leaving the medium to the right of figure (2.5 - 7) (A) will consist half by half of a transmitted
part of the one beam and a diffracted part of the other beam, which superpose to form the overall
transmitted beams. If these contributions are phase shifted by 90°, their superposition will have
a phase in-between (figure (2.5 - 7) (C) upper diagram) but will not be altered in amplitude with
respect to the incident beams.

However, if the interfaces at ±0.5 are now displaced by 90° (the direction does not matter)
as depicted in figure (2.5 - 7) (A) (illustrated only for one interface (+0.5)), the mutual phase
shifts of the contributions forming an overall transmitted beam will drop to 0° in the one case
and increase to 180° in the other case. Hence one beam will vanish through destructive
interference while the other will be doubled in intensity. For illustration, consider the interface
“+0.5“ and the encircled point, which represents zero displacement of the interface. Shift the
interface e.g. by +90° as depicted in the figure. One can see now that a “180° phase state“ of I02
(dotted line) coincides with a “0° (or 360°) phase state“ of I01 (solid line) at the shifted interface
resulting in a mutual phase shift of 180°. It follows that I01 will be depleted in this situation since
the reflected portion of I02 and the transmitted portion of I01 interfere destructively (figure (2.5
- 7) (C), lower diagram to the right). Consider now what happens to I02 behind the grating. For
this purpose, the interface “−0.5“ shall be chosen in order to keep consistent in the considered
reflection process (choosing “+0.5“ would require to account for the inner reflection
introducing an additional phase change of 180°). Αt zero displacement a mutual shift of 90°
between the beam portions forming I02 behind the grating results as expected. If now the
interface is also shifted by +90° and the phase relations of the beams at the shifted interface are
considered, the dotted or solid lines coincide indicating a mutual phase shift of 0°. Thus I02 will
be doubled in intensity by constructive interference in the described case. 

This effect is referred to as 2BC and requires a dephasing of the refractive index pattern
with respect to the interference pattern, as just explained.



2.5.)The photorefractive effect

140

Please note, that the above phenomenological explanation is not purely formal, but may
be considered as ostensible model for the actual process, if the assumption of a constant
diffraction efficiency of 50% is dropped. The energy exchange then will depend on the
diffraction efficiency (i.e. the refractive index modulation amplitude) of the grating as well as
the PR phase shift (i.e. the dephasing between the interference and the index pattern), which in
fact can be verified experimentally and will subsequently be derived theoretically.

 

(A)

(B)

(C)

 Figure (2.5 - 7): Phenomenology of 2BC. (C): Components of a 
transmitted wave. If the solid line represents the transmitted component 
of the one beam, the dotted line will be the diffracted component of the 
other beam. The dashed line depicts the sum, which will be observed 

behind the grating. (A): Wave front scheme of the process. (B): 
Schematic of the grating. For more details see text.
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2.5.4.2.)Theoretical formulation of two-beam coupling
The theoretical consideration of 2BC will lead to the photorefractive

gain, which is the key parameter to describe the energy exchange between
the recording beams by means of the mechanism phenomenologically
described before. 

For the sake of simplicity, an isotropic medium shall be presumed, the
beams are taken as s-polarized and absorption is set to zero. Corrections
accounting for p-polarized beams and non vanishing absorption will be
discussed later in this section. The underlying geometry is depicted in figure
(2.5 - 8): Two infinite plain waves intersect in order to generate an
interference pattern in the photorefractive medium. Since the beams are
taken as s-polarized, vectorial notation of the field components is
dispensable. According to eq. (2.1 - 17), the waves may be expressed as:

,  eq. (2.5 - 84)
where E01,02 are the real and A1,2 are the complex amplitudes of the waves. The interference
pattern generated by the two waves may be written according to eq. (2.1 - 40) as follows

,  eq. (2.5 - 85)
where the wave resistance according to eq. (2.1 - 35) has been disregarded, and  is the grating
wave vector according eq. (2.1 - 44).

In order to account for the fact that the refractive index grating, which will result in the
coupling of the two waves has been generated by just these two waves and may be dephased by
φ with respect to the interference pattern, the refractive index modulation conveniently is
expressed in terms of the normalized interference grating including an offset phase φ.Thus the
refractive index of the medium reads:

,  eq. (2.5 - 86)

where cc denotes the complex conjugate of the preceding term and ∆nm is the material response
to a light intensity modulation of unit contrast. Kukhtarev’s as well as Schildkraut’s model
predict a linear dependence of the PR space-charge field on m (eq. (2.5 - 1), eq. (2.5 - 4), and
eq. (2.5 - 17)). Furthermore, the EO mechanisms translating Esc into a first order refractive
index grating depend linearly on Esc (for low-Tg PR polymers according to eq. (2.5 - 68) and
eq. (2.5 - 69), for PR crystals and high-Tg PR polymers see eq. (2.5 - 78)). Hence, ∆nm is the
(real) PR refractive index modulation amplitude ∆n which has been dealt with several times
before in this paragraph, but normalized by the contrast factor m:

.  eq. (2.5 - 87)

 I0 is the total average intensity, given by:

.  eq. (2.5 - 88)
In order to investigate the wave coupling, the total electrical field according to

 eq. (2.5 - 89)
and the refractive index according to eq. (2.5 - 86) are inserted into the Helmholtz-equation eq.
(2.1 - 18), which is rewritten into the form:

,  eq. (2.5 - 90)
where k0 denotes wave propagation in free space. Since the considered waves are taken as

 Figure (2.5 - 8): 
2BC geometry
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infinite, merely the components of the waves perpendicular to the grating vector must be
accounted for (i.e. in z-direction in the discussed geometry according to figure (2.5 - 8)).
Furthermore applying the common approximation of slowly varying amplitude (see also
“2.3.2.1.) The coupled-wave equations” on page 53), which allows for disregarding the second
order derivative of the wave amplitude with respect to z finally yields the coupled wave
equations by means of comparing coefficients of equal exponentials:

 eq. (2.5 - 91)

and:

,  eq. (2.5 - 92)

where β1 and β2 are the projections of the wave propagation vectors  and  onto the z-
direction, respectively, and φ is the phase shift between the interference pattern and the
refractive index pattern.

The coupled wave equations will now be solved exemplarily for the geometry depicted in
figure (2.5 - 8). Symmetric incidence may be presumed without loss of generality. Considering
a tilted geometry would require to the introduction of obliquity factors as discussed in section
“2.3.2.) Coupled wave theory for thick hologram gratings” on page 53, which would only make
the subsequent expressions more complicated without altering their general proposition. Please
note, that both the recording beams in 2BC will always ideally obey the Bragg-condition, since
2BC is a dynamic self diffraction process, i.e. any perturbation of the Bragg-condition will lead
to the formation a new grating matching the “new“ Bragg-condition.

The components of the wave propagation vectors along the z-direction write for the case
of symmetric incidence:

,  eq. (2.5 - 93)

where 2θ is the intersection angle of the recording beams in the medium, n0 is the average
refractive index of the medium and λ0 is the wave length of the beams in free space. Inserting
eq. (2.5 - 93), one obtains from the coupled wave equations eq. (2.5 - 91) and eq. (2.5 - 92):

 eq. (2.5 - 94)

and

 eq. (2.5 - 95)

with the complex coupling constant , called the photorefractive gain, given by:

,  eq. (2.5 - 96)

The photorefractive gain is the key parameter for describing 2BC. Please note, that the case of
p-polarization of the beams may be accounted for at this point by introducing the scalar product
of the polarization unit vectors as multiplicative correction to the complex coupling constant as
discussed in the context of the coupled wave theory for thick hologram gratings in “2.3.2.1.2.)
p-Polarization” on page 56.

According to eq. (2.5 - 84) the complex amplitudes may be replaced by:
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 and  eq. (2.5 - 97)

 eq. (2.5 - 98)
and one obtains from eq. (2.5 - 94) and eq. (2.5 - 95):

 and  eq. (2.5 - 99)

.  eq. (2.5 - 100)

It is obvious, that these expressions can be separated into an intensity and a phase contribution
by rewriting the complex photorefractive gain  into the form:

 eq. (2.5 - 101)
where Γ is the real PR gain, responsible for the coherent energy exchange between the recording
beams and ξ is related to the imaginary part of the complex gain, causing a phase shift of the
recording beams with respect to each another. These coupling parameters thus read:

 eq. (2.5 - 102)

and:

 eq. (2.5 - 103)

and the corresponding particular differential equations are:

,  eq. (2.5 - 104)

,  eq. (2.5 - 105)

 and  eq. (2.5 - 106)

.  eq. (2.5 - 107)

Solving the first two differential equations results in expressions for the intensities as a function
of z:

 eq. (2.5 - 108)

and:

 eq. (2.5 - 109)

with b as the initial intensity ratio of the recording beams given by:

.  eq. (2.5 - 110)

Please note, that eq. (2.5 - 108) and eq. (2.5 - 109) may be corrected for some absorption of the
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medium by multiplying the right hand side with “exp(-αz)“, where α is the absorption
coefficient.

Knowing the analytic expressions for the intensities, eq. (2.5 - 106) and eq. (2.5 - 107) can
be solved by direct integration after inserting eq. (2.5 - 108) and eq. (2.5 - 109), respectively,
yielding:

 eq. (2.5 - 111)

and:

.  eq. (2.5 - 112)

It is important to understand, what happens to the PR grating as a result of the energy
exchange and the relative dephasing of the recording beams. 

The first will result in a change of the contrast of the interference pattern as a function of
the propagation of the recording beams through the PR medium. It depends on the particular
initial intensity ratio and the sign of Γ, whether the contrast of the interference pattern will
improve or decay. In any case, a change of the optical grating contrast will influence the space-
charge field according to eq. (2.5 - 4) or eq. (2.5 - 17), which, in turn, will affect the PR gain.
Finally there will be some equilibrium, which may deviate considerably from what might be
expected from the basic equations for the space-charge field. This is a particular problem in PR
media showing high net gain, i.e. in high-performance PR polymers. Note that the gain
coefficient in theory is not altered by a change of the grating contrast, due to the normalization
of the refractive index modulation by m (eq. (2.5 - 97) with eq. (2.5 - 86)). Furthermore, the
derivation as depicted above assumes a “slowly varying amplitude” of the involved beams in
order to allow for the neglect of the second order derivative of the wave amplitude with respect
to z as already noted before. It is important to point out, that this approximation can become poor
or even insufficient in high-performance PR polymers. 

The relative dephasing of the recording beams, on the other hand, will result in a
continuous displacement of the optical grating planes as a function of z. Thus, the grating will
be bent as a function of z. At first sight, it seems reasonable to imply, that this may affect the
diffraction efficiency in wave mixing experiments operating with separate read-out beams,
since the Bragg-condition will be a function of z, which cannot be matched all over the grating
by a single wave. However, as will be shown in the section “5.1.) Influence of hologram bending
on the diffraction efficiency in PR thin film devices: A simple model calculation” on page 214,
this effect is insignificant for today’s high-performance PR polymers. Please note, that the
bending of the grating will not affect the dynamic self-diffraction, since the Bragg condition will
be matched for any infinitesimally thin volume sheet perpendicular to the z-axis. This kind of
grating distortion, nevertheless, may become important for PR crystals, since these are usually
much thicker than PR polymer devices and, thus, exhibit significantly higher Bragg-selectivity.
However, PR crystals are beyond the scope of this work and, hence, issues concerning this PR
material class will not be discussed in detail.

All investigations within the frame of this work were carried out using a contrast factor of
the recording beams of the PR grating close to unity. Thus, hereafter the notation ∆nm will be
replaced by ∆n, i.e., the actual PR refractive index modulation will be used in the sense of ∆nm
as long as the PR gain is concerned. However, one should keep in mind that this is matter of the
experimental conditions applied here.
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2.5.5.) Photorefractive characterization parameters and figures of merit
Photorefractive materials are usually characterized by means of their steady-state and

dynamic performance, i.e the achievable refractive index modulation for a given experimental
configuration, the PR gain, and the response times for grating recording and erasure.
Furthermore, the sensitivity of a PR material is important, which is a measure for the optical
energy, which has to be expended in order to achieve a certain refractive index modulation.
However, one must keep in mind, that the interpretation of the PR characteristics will depend
on the demands of a particular application considered. A complication in comparing PR
materials on the basis of the characteristics enumerated above may be due to the fact that most
of these characteristics depend on the geometrical configuration of the setup used for
determination, as well as a number of extrinsic and intrinsic parameters like the operating
wavelength in general and the relation between glass-transition temperature and ambient
temperature for amorphous organic systems. A question often also disregarded is the thickness
of a hologram. Especially in the case of organic PR thin film devices, many data have been
obtained in the past at the edge of the term „thick hologram grating“. For example, the most
common applied geometry is (referring to figure (2.5 - 3)) θt ≈ 30° and 2θ ≈ 7°, resulting in a
grating spacing of Λ ≈ 3µm. Operating such a system at 633nm operating wavelength will
require a sample thickness of at least 20µm to obey eq. (2.3 - 2). Thus any comparison of PR
performance data has to be considered with special care with respect to the actual comparability
of the data to be compared. 

In an attempt to systemize the performance of PR materials, some criteria have been
proposed, which focus on the achievable refractive index modulation of PR materials, i.e. on the
so called dynamic range. These criteria shall allow to compare PR materials most independently
from particular experimental parameters or at least allow for quick transformation of some
performance data into a particular experimental configuration. A general requirement for such
figures of merit is, that they contain basically only material parameters. Subsequently, the
common expressions for figures of merit for PR crystals are derived, which apply as well for
PR semiconductors, PR organic crystals, and purely electro-optic PR polymers. Since the
mechanism of the refractive index modulation by the PR space-charge field is different for
organic PR materials, which allow for orientational enhancement, these figures of merit will be
invalid for such systems. Therefore, another figure of merit has been proposed to account for
the special feature of in-situ poling of such system, which will also be derived below. Finally
the sensitivity of PR materials is discussed in short terms.

Please note, that one may derive various figures of merit taking into account different
parameters or focusing on particular applications. A specialized parameter in this sense, which
counts as well to the term “figure of merit“ is for example the M/#, describing the multiplexing
capability of a holographic medium for mass data storage as discussed in “2.3.3.3.) System
metrics for holographic multiplexing in erasable media” on page 65.

2.5.5.1.)Figures of merit for purely electro-optic PR materials
The refractive index modulation as a function of the PR space-charge field of purely

electro-optic PR materials is given by eq. (2.5 - 78). Considering the space-charge field
amplitude according to eq. (2.5 - 7), two limiting cases can be distinguished. At first, for small
grating spacing Λ, the grating vector K becomes large and the saturation field according to eq.
(2.5 - 3) correspondingly small. Hence, eq. (2.5 - 7) may then be rewritten as:



2.5.)The photorefractive effect

146

,  eq. (2.5 - 113)

since the diffusion field becomes large according to eq. (2.5 - 2). On the other hand, if Λ is large,
Eq is also large, and ED is small. Hence, eq. (2.5 - 7) may be approximated by:

,  eq. (2.5 - 114)

which may be series-expanded to:

.  eq. (2.5 - 115)

This approaches direct proportionality in Eq with increasing E0 exceeding Eq. 
Hence, for both of these cases, the maximum achievable refractive index modulation of

some electro-optic PR material may be (more or less) roughly approximated by:

.  eq. (2.5 - 116)

From this and according to eq. (2.5 - 3), a photorefractive figure of merit Q may be defined
by extracting the material dependent quantities:

.  eq. (2.5 - 117)

Please note, that the effective electro-optic coefficient still depends on the geometrical
configuration of some particular setup. However, reff can be calculated unambiguously for a
particular experimental setup by means of eq. (2.5 - 74) and also recalculated for another setup
allowing to adapt Q to any setup configuration.

On the basis of eq. (2.5 - 117), a variety of slightly different figures of merit have been
established, which are more and more reduced in the number of included parameters. The most
common form is:

,  eq. (2.5 - 118)

since the effective trap density is a parameter in PR crystals, which still successfully defies
efficient control. Thus, by simply ignoring Neff, this does not find reflection in Q, which is often
found convenient, since it makes experimental data „more reproducible“. However, this is a
problem typically found in PR crystals and not in PR polymers.

Some inorganic PR crystals exhibit sufficiently large electro-optic coefficients in order to
achieve reasonable nonlinearities already for moderate space-charge fields, which do not
approach Eq. Then the experiments can be designed not to approach one of the aforementioned
limiting cases, i.e. intermediate fringe spacings and/or only moderate external fields may be
applied. In these cases, the space charge field will depend on ED and/or E0, which do not depend
on the material parameters and the figure of merit may be written:

.  eq. (2.5 - 119)

Please note, that it is stated in [B13] on p. 348, that polymers are often operated in
regimes, where Q and Q´ are the limiting factors, whereas PR crystals often rely on Q´´. This is
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not correct, basically due to two reasons. At first, Q is the wrong figure of merit not reflecting
the particular properties of high-performance PR polymers as will be shown later. Secondly,
there is no saturation field in PR polymers in the sense as found in PR crystals. If such a
saturation field would be postulated, the effective trap density would be dynamic. This may
easily be understood considering eq. (2.5 - 20) and eq. (2.5 - 21), which represent the parameter
being closest to something, which may be interpreted as saturation field. It is obvious, that this
“saturation field“ will depend on the external field and the irradiation intensity via the zero order
hole density. It is incomprehensible, which kind of reasoning may attribute PR polymers to
some regime according to eq. (2.5 - 117) to eq. (2.5 - 119), if there is no reference as discussed
preceding to eq. (2.5 - 119) above.

Last not least, even if someone insists on attributing PR polymers to a regime, where Q
and Q´ are relevant, this does not matter also due to two reasons. At first, the effective
permittivity of polymers is rather small, so it does not notably lower the value of Q´ especially
as compared to PR crystals. Secondly, as already noted above, experimental data on PR
polymers are usually excellently reproducible. This includes reproduction of data obtained from
different samples containing material prepared on different days at different atmospheric
conditions (humidity, ambient temperature and more) and so on.

2.5.5.2.)A figure of merit for orientationally enhanced PR materials
As for the figure of merit for purely electro-optic PR materials, the achievable refractive

index modulation as a function of the space-charge field is considered in order to find a figure
of merit for orientationally enhanced PR materials (especially polymers, however, also liquid
crystals and polymer dispersed liquid crystals may be accounted for). According to the
orientational enhancement effect, the index modulation is given by eq. (2.5 - 68) and eq. (2.5 -
69). In contrast to purely electro-optic PR materials, all orientationally enhanced PR materials
are of the same symmetry group, and refer their inherent optical nonlinearity not to a bulk effect
like crystals but to molecular nonlinearities. This makes the consideration of some “effective“
quantities dispensable and offers the possibility of defining a microscopic figure of merit, which
does not depend on any parameter associated with the space-charge field. In order to find such
a figure of merit, simply the parameters A and C in eq. (2.5 - 68) and eq. (2.5 - 69) according to
eq. (2.5 - 55) and eq. (2.5 - 56) must be considered: 

 eq. (2.5 - 120)

and:

.  eq. (2.5 - 121)

Replacing N by wρNA/M, where w is the concentration of the chromophore in the material (in
%wt), ρ is the density, NA is the Avogadro number and M is the molecular weight of the
chromophore, these expressions may be rewritten as:

 eq. (2.5 - 122)

and:
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.  eq. (2.5 - 123)

The right hand side of these expressions only contains molecular parameters. FA is the molecular
figure of merit for photorefractive polymers for s-polarized beams and FC for p-polarized
beams. Commonly only the latter is considered, since it represents the higher nonlinearity.
Consequently, operating a PR polymer with s-polarization leads in general to a significantly
smaller effect (i.e. PR gain in 2BC and diffracting efficiency in four-wave-mixing), which is a
well-known experimental fact.

It must be pointed out, that FA as well as FC basically may serve for comparison of the
potential PR capability of different NLO chromophores to be used as dopant in a PR polymer.
It is not possible to conclude an estimate of the performance of a real polymer containing the
chromophore from FA or FC, since a manyfold of further parameters will have significant impact
on the eventually obtained system. However, these figures of merit are not intended to describe
a PR material comprehensively, but rather give an idea of the basic capability, which may be
achieved, if the general framework fits.

Please note, that FA and FC are formally related to Q´´ (eq. (2.5 - 119)) and not to Q, or to
Q´, since they do not contain any parameter of the bulk system. However, direct comparison
between PR crystals and orientationally enhanced polymers is neither possible by means of any
of the presented figures of merit, nor can the figures of merit themselves be compared. Both the
purely electro-optic and the orientationally enhanced PR systems represent a class of materials
by themselves, having in common the basic mechanism of the formation of a displaced space-
charge field, but differing significantly by the mechanism, which modulates the refractive
index.

For the sake of completeness, it should be noted, that this led to some dispute about the
attribution of orientationally enhanced PR systems to the „pure photorefractive effect“.
However, the basic mechanism, which leads to the formation of a displaced space-charge field,
is the same. Since this feature marks the photorefractive effect unequivocally, the
aforementioned dispute appears dispensable.

2.5.5.3.)Photorefractive sensitivity
For many holographic applications, not only the dynamic range of a PR material is

important but as well the optical energy, which must be expended to achieve a desired PR
response. Therefore, the sensitivity of a PR medium is of major interest, i.e. the achievable
refractive index change per unit incident or absorbed optical energy. In the literature, two
different measures for the sensitivity have been defined:

 eq. (2.5 - 124)

and:

,  eq. (2.5 - 125)

where J0 is the incident fluency of optical energy per unit area and α is the absorption
coefficient. Instead of ,  may be used as a measure for the grating strength and the
corresponding sensitivities are then defined as:

 eq. (2.5 - 126)
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and:

.  eq. (2.5 - 127)

For determination of the sensitivities, the derivatives in the above expressions are taken
at the beginning of the recording process, which usually avoids a possible influence of the
experimental configuration. However, the sensitivities depend on the operating wavelength, a
possibly applied external field, and on the recording scheme, if the latter impacts the dynamic
response behavior. The latter is especially important in polymers as discussed in [92].
Furthermore, the complicated dynamics of PR polymers in general reduces the significance of
the sensitivity obtained in the way described above.
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3.)Photorefractive polymers
In this paragraph, the basic concepts for photorefractive amorphous organic materials will

be outlined. Photorefractive polymer composites, which are subject of this work are considered
in detail, whereas other approaches are only reviewed briefly. It will be abstained from
discussing photorefractive crystalline systems and comparing them with amorphous
photorefractive polymers. A comparative discussion of this kind may be found in [B13, p.
349ff]. 

Systems, which are closely related to nowadays common materials, but show only minor
variations not resulting in significant different properties as compared to the basic system will
not be considered explicitly. Furthermore, the very first photorefractive organic polymers
usually showing poor performance are not considered as well. 

Please note, that the chemical structures of subsequent particularly cited materials and
molecules will be listed alphabetically in Appendix D, whereas only abbreviations will be used
in the text of this chapter. Explicit reference to the mentioned overview will not be provided in
the text with the used abbreviations hereafter.

Some material will have to meet a couple of basic requirements in order to be
photorefractive at all, on the one hand, and in order to be potentially applicable as optically
nonlinear material on the other. It is clear that the requirements, which must be met to be
potentially suitable for certain applications, will depend on the particular application envisaged
whereas the basic requirements for PR response have to be met in any case. The general features
some material must exhibit in order to observe PR response have already been discussed in
“2.5.1.) Phenomenology of the photorefractive effect” on page 118 but will subsequently be
summarized once more and extended by some more technical demands, which, however, are
not necessarily required for the purely physical occurrence of the PR effect. Thereafter
performance issues will be discussed in order to provide a basis for the discussion of the
different approaches and concepts to realize amorphous organic photorefractive materials.
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3.1.)General requirements
In order to be photorefractive some (arbitrary) material must:

 be photoconductive
 exhibit monopolar electrical conduction (i.e., disparate mobility for electrons 
and holes)
 be photosensitive (i.e. photoinduced charge generation must be possible)
 exhibit the linear and/or quadratic electro-optical effect (i.e. Pockels-effect and/
or (orientational) Kerr-effect).
 be transparent to some degree at operating wavelength.

In order to exhibit photorefractivity in a useful manner, some photorefractive material
meeting the above listed general requirements should furthermore:

 be as transparent as possible at operating wavelength without sacrificing the 
photosensitivity
 show excellent optical quality (→ minimal scattering, maximum homogeneity, 
etc.)
 be stable against degradation of any kind (e.g. phase separation in multi-
component systems, chemical reaction under the influence of an externally 
applied field or due to optical irradiation, physical aging in low-Tg systems (see 
page 82), etc.).

Furthermore, easy processability, low cost and the possibility to tune the general
properties in an uncomplicated way would be preferable properties for any kind of material in
question for technical and commercial application. However, these are not basic requirements.

3.1.1.) Performance issues
The performance of photorefractive materials is determined by four features, which,

however, must be judged having in mind what a particular material is intended to be used for.
Hence, performance properties useful for the one application may be unfavorable for another
and „good performance“ is not necessarily a question of achieving best numerical performance
values in all features. The four performance features of PR materials are subsequently listed and
discussed in a general way. 

Please note, that figures of merit as discussed in “2.5.5.) Photorefractive characterization
parameters and figures of merit” on page 145 are barely considered in the photorefractive
literature concerning polymers. 

3.1.1.1.)Dynamic range
The achievable refractive index modulation is usually referred to as the dynamic range of

a PR material. High dynamic range corresponds to high achievable PR refractive index
modulation and is preferable in general. The achievable refractive index modulation is directly
related to the achievable diffraction efficiency of some hologram stored in PR material. The
dynamic range in general depends on various extrinsic parameters, which are in particular the
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setup configuration, the operating wavelength, the polarization of the incident light, and the
applicable maximum field limited by dielectric breakdown of the sample. If the diffraction
efficiency alone is employed to discuss the dynamic range, the thickness of the sample must be
included in the considerations according to “2.3.2.1.) The coupled-wave equations” on page 53.

Today’s high performance PR polymers in general exhibit relatively high dynamic ranges
and, thus, the question of the dynamic range as a performance indicator is now focused on the
physical operating conditions required to achieve a certain refractive index modulation. In this
context, the required external field at a certain setup configuration (grating spacing, tilt angle
and polarization of the incident light) becomes the crucial question in the sense, that lower
required field means better performance. Typically, the index modulation related to the first
diffraction maximum in degenerate four-wave-mixing (DFWM) experiments is taken as
reference. Please note, that usually the external field for the first diffraction maximum is
referred to, which may lead to misinterpretations. One must be aware, that the refractive index
modulation necessary to achieve the first diffraction maximum depends on the sample thickness
even under otherwise identical conditions (especially identical geometrical holographic setup
configuration). Thus, external field data related to the first diffraction maximum but obtained
for samples of different thickness cannot be compared directly, since they refer to different
index modulations. Unfortunately, the exact field dependence of the refractive index
modulation cannot be derived theoretically and thus comparison of data obtained under
different conditions is barely possible. The common model according to “2.5.3.3.) Orientational
enhancement effect” on page 131 predicts a quadratic field dependence. However, experimental
determination of the power index yields values deviating from this prediction and varies
moreover for different materials. For the material type investigated in frame of this work, the
index modulation was found to be proportional to the applied field to the power of about 1.7 in
the low-Tg regime. The power index was furthermore found to depend on the glass transition
temperature [89]. 

Nevertheless, the dynamic range is the most general performance indicator. However,
detailed comparison of the dynamic range of PR systems requires explicit knowledge of the
conditions applied for determining the dynamic range. Thus, the general statement „high -“ or
„higher dynamic range“ must always be considered carefully. 

3.1.1.2.)Photorefractive response time
The response time of a holographic material is important for any kind of holographic

application. One has to distinguish three dynamic processes, the proper combination of which
determines the performance of a PR material for a particular application. 

The build-up dynamics of the PR grating has been most widely elaborated upon since the
discovery of the first high performance PR polymer in 1994. In general, fast grating build-up is
favorable. This may be of minor importance for some applications, but slow grating build up is
nevertheless undesirable. 

The erasure dynamics of a PR grating has not been paid attention to very much up to now,
but is a major issue of this work. The erasure dynamics must be seen in the context with the
application intended. For example for fast associative memories, fast erasure is favorable,
whereas relatively slow erasure is preferable for holographic mass data storage using
multiplexing techniques.

Another dynamic feature of photorefractive systems is the dark decay dynamics. The dark
decay dynamics has so far not been investigated in detail, however, considered superficially e.g
in [90] and [91]. This work presents a much more detailed investigation of this aspect.
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Generally, slow dark decay is preferable, and the ideal case would be a grating not decaying in
the dark at all.

The PR response time for grating build-up is a parameter widely misused for the straining
after effect in the field of PR polymers. The first high performance PR polymers exhibited rather
slow PR response of roughly one order of magnitude slower than video rate (25fps for NTSC
coding, or 30fps for PAL coding). Therefore, there have been great research efforts to make PR
polymers faster, which led to a number of abstruse publications reporting “significant
improvement“. For example, response rates of more than one order of magnitude smaller than
video rate have been claimed as “world record“ for a PR polymer at an extremely high operating
intensity being more than one order of magnitude higher than commonly applied. Since the PR
effect is an integral effect, the dynamics of which necessarily depends on the irradiation
intensity, this is not really striking. Reading the corresponding publication more carefully
finally reveals, that operating the same system at (the commonly applied) moderate intensities
results in a photorefractive response dynamics which is more than one order of magnitude
slower, however, still well below video rate, which has nevertheless been a considerable
improvement. 

In another case, not the build-up rate of the PR grating was reported as measure of the
response dynamics but the evolution of the PR gain, which includes the evolution of the PR
phase shift. The response dynamics thus obtained is simply not meaningful for most
holographic applications and not representative for the PR grating build up dynamics. The latter
may be derived from the evolution of the refractive index grating obtainable by four-wave-
mixing experiments. Furthermore, it has become common practice to consider only the fastest
build up rate for judging the PR dynamic performance, whereas the PR grating build-up
dynamics in polymer systems has been shown to consist of at least two rates. Although this is
partly justified by the fact, that the fast component mostly covers a significant part of the build
up process which is most relevant for many applications, in some cases only the first response
rate was presented neither showing what happens on longer time scale, nor stating the
contribution of the fast component to the overall dynamics, nor naming the total number of
response rates observed. Such a practice is highly questionable. Eventually it is important to
note, that the PR grating build-up depends on the recording scheme as shown in [92] and on the
applied electrical field due to field dependent charge carrier mobility and photogeneration
efficiency. It is understood, that the geometrical setup configuration shows considerable
influence on the response dynamics as well. 

The erasure dynamics of the gratings in some PR material is a crucial question for the
potential applicability as mass data storage devices using multiplexing. For this purpose, slow
erasure and fast recording are the favorable combination. On the other hand in fast erasable
memories like associative memories or RAM’s, slow erasure dynamics is unfavorable. A major
issue in considering the erasure time as a performance parameter is the way, how the erasure
process is performed. Generally, only erasure experiments conducted by a non Bragg-matched
erasure beam yield correct results. If the grating is erased by some Bragg-matched light beam,
the grating to be erased will be refreshed by the „erasure“-beam and its diffracted beam resulting
in a slower grating decay than correlated to the actual erasure dynamics of the investigated
system. For high performance holographic erasable media exhibiting high diffraction
efficiency, the error thus made may well exceed a factor of 2. Besides the erasure scheme, the
PR erasure dynamics depends on the same parameters as the grating build-up dynamics.
However, a major result of the work at hand is that the erasure dynamics depends moreover on
the recording time, which is a new effect not considered before. Accordingly, erasure time
constants presented in the literature so far are often not clearly assigned to a recording time thus
questioning comparability. Furthermore, the erasure dynamic behavior has been employed
several times to discuss the general dynamics of organic PR systems. It is clear, that this may be



3.1.)General requirements

154

very problematic according to the circumstances discussed above. 

3.1.1.3.)The PR sensitivity
The photorefractive sensitivity has been discussed in detail in “2.5.5.3.) Photorefractive

sensitivity” on page 148. Basically, higher sensitivity is preferable. The PR sensitivity has not
extensively been discussed in the literature about amorphous organic PR solids, which may be
due to the complicated dynamic behavior of PR polymers reducing the significance of the
sensitivity for these systems determined in the conventional way. However, it is a parameter
usually presented in the literature about inorganic crystals. 

3.1.1.4.)The PR phase shift and the PR gain
The photorefractive phase shift is actually not a performance parameter. However, besides

the refractive index modulation, it is the second of these two intrinsic parameters of the
photorefractive effect determining the PR gain. The PR gain, on the other hand, due to its
uniqueness is often referred to in the literature as some kind of performance parameter or at least
as an experimental proof or disproof for the photorefractive nature of a holographic grating.
Often, high PR gain is correlated with better performance in the literature, but actually this is
problematic. Disregarding the question whether the PR gain may be useful, useless or even
objectionable for some application considered, one cannot deduce a clear idea about a material’s
performance from the gain coefficient alone. Only if the gain coefficient (usually the real gain
according to eq. (2.5 - 102) is referred to) is reported together with some data on the refractive
index modulation enabling the estimation of the PR phase shift, one may state about PR
material’s performance by considering the gain. Furthermore, the gain coefficient is
counteracted by absorption and thus the net gain (i.e. gain minus absorption coefficient) is an
important parameter as well. Large gain coefficients and no net gain is an unfavorable situation
in general.

In this context it is particularly important to point out, that the PR gain is a parameter,
which can only have physical meaning for volume holographic gratings. One may calculate
something for thin holographic gratings using the typical evaluation techniques for the PR gain
(to be discussed later), but this „something“ is basically meaningless. This mistake has been
pretty commonly made at the early stage of research on PR organic thin film devices, and even
today there are publications discussing the PR gain while referring to holographic gratings at
the lower edge of a volume grating not pointing out the limitation discussed above.

Furthermore it should be noted, that the refractive index modulation for s- and p-polarized
beams is different in amorphous organic systems (see eq. (2.4 - 74)). Since it has become
common to probe the refractive index modulation using DFWM technique with s-polarized
recording beams and p-polarized probe beam (to be discussed later in detail), the index
modulation thus probed cannot be used directly for calculating the phase shift from concomitant
gain measurements. In fact, eq. (2.4 - 74) must be used to correct for the polarization anisotropy
and the phase shift thus obtained can only be an estimation, since eq. (2.4 - 74) is only an
approximation. This issue will be discussed later on in “4.2.1.4.) Polarization anisotropy for PR
wave mixing experiments” on page 199 in more detail and more accurate ways of taking into
account the polarization anisotropy will be shown.
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3.2.)Material concepts and approaches - a brief survey
A variety of different approaches for developing amorphous organic photorefractive

system have been presented during the last years of intensive research in this relatively new
field. Three basically different concepts must be distinguished, which are the polymer concept,
the glass concept and the liquid crystal concept. Furthermore, the polymer concept can be
divided formally into two groups which are the polymer composites consisting of some polymer
matrix not actively participating in the PR effect at all and various low molecular mass
components incorporated in the matrix and the monolithic polymers carrying all functional
moieties covalently attached to and/or directly included in the polymer backbone. However,
these are limiting cases and there is a broad spectrum of systems consisting of more or less
multifunctional polymer matrices with some functionalities being additionally incorporated as
low molecular mass components. Hereafter, a PR polymer system will be referred to as
composite if more than about 1-2%wt of the system corresponds to an added low molecular
mass component. Otherwise, the system shall be regarded as monolithic. This convention is
intended to allow for the sensitizer to be added as molecular component to an otherwise fully
functionalized polymer. Eventually, there have been attempts to develop photorefractive gels.
However, this approach has not been elaborated upon very much up to now. 

Subsequently all the above mentioned concepts will be briefly reviewed. However,
discussing the manifold of developed systems will by far exceed the frame of this work. Hence,
in most cases the systems will only be described superficially without discussing their particular
properties and reference will be made to the original literature. Furthermore, a selection of the
systems to be reviewed will be made, if the number of known systems is too large. This applies
especially for the PR polymers (monolithic polymers as well as composites) whereas gels,
liquid crystalline systems and even low molecular mass glasses investigated up to now are less
in number and, thus, can be summarized more comprehensively. In general, photorefractive
polymeric composites will be considered in more detail as compared to the other approaches,
since this class of materials includes the system, which has been subject of this work.

3.2.1.) Gels
Photorefractive gels have been reported upon by Chaput et. al. and Darracq et. al. [93, 94].

The materials consisted of a silica oxide backbone with carbazole moieties (charge transporting
moieties, referred to hereafter as “CTA“) and DR moieties (NLO chromophore) covalently
attached via alkyle spacer groups in order to introduce charge transporting and nonlinear optical
properties. For sensitization small amounts of TNF were added. The system was corona poled
in order to break the statistical centro-symmetry. Photorefractivity was proven by 2BC
experiments yielding gain coefficients of up to Γ = 450cm-1 for a grating spacing of 0.81µm in
3.5µm thick samples [94], however, no net gain was achieved since the absorption was α =
560cm-1 at 628nm operating wavelength. Neither refractive index modulation data nor PR
phase shift data have been given. The response time was reported to be 320sec to achieve 90%
of the saturation value of the gain coefficient. A comparable system was also presented by
Burzynski et. al. [95] using a push-pull substituted stilbene derivative as NLO chromophore.
They reported a diffraction efficiency of η = 0.01% and a gain coefficient of Γ = 0.3cm-1. The
authors stated the excellent optical quality and a trend of retaining the second order NLO
character for a long time after corona poling as major advances of their systems. However, this
approach seems not to be persecuted thereafter anymore.

Please note, that the systems described above must be taken as hybrid systems due to the
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inorganic character of the backbone and the organic functional moieties providing the PR
character.

3.2.2.) Liquid crystalline systems
Photorefractive liquid crystalline systems have been focussed upon as it became clear,

that the PR effect in organic amorphous systems is significantly enhanced by orientational
effects (see “2.5.3.3.) Orientational enhancement effect” on page 131). At first sight this seems
obvious, because liquid crystals are well known to exhibit large Kerr effects. Due to their
collective orientational properties, this material class promises PR response at very low
externally applied field, since the electrical poling in order to give rise to second order
nonlinearity is very easy. On the other hand, small fields applied are unfavorable for charge
transport and generation, both of which are essential for the PR effect. Furthermore, the charge
transport in these systems is due to diffusive motion of ions causing hydrodynamic turbulences,
if the applied fields are too high. Using liquid crystal cells faces moreover the problem, that the
inherent long range orientational interaction requires very large grating spacing of several tens
up to hundreds of microns to take place to a sufficient degree. For smaller grating spacings, the
elastic energy counteracting a periodic modulation of the birefringence increases dramatically,
eventually almost suppressing PR response completely. The large grating spacings result in
slow response times on the one hand and operation in the Raman-Nath regime (thin holographic
grating) on the other. Furthermore, the spatial resolution of a hologram written at large grating
spacings is unsatisfactory. 

Photorefractive response has been proven in commercial nematic liquid crystals (e.g.
5CB) doped with small amounts of Rhodamine 6G [96], C60 [97, 98] or perylene and NI (N,N’-
di-(n-octyl)-1,4,5,8-naphtalin-diimde) [99, 100] for generating mobile ions. The latter system
was also reported with the naphtalin-diimide moieties covalently attached to an acrylic polymer
backbone [101], which the authors referred to as polymer stabilized liquid crystals. Up to 8
diffraction orders have been observed [99] and diffraction efficiencies of up to 12% [97] were
obtained for PR liquid crystalline systems. Gain coefficients of no less than 2890cm-1 were
stated [98], however, for operation in the Raman-Nath regime. Thus the physical significance
of this number is strongly reduced. On the other hand, a gain coefficient of Γ = 15cm-1 was
reported for polymer stabilized liquid crystals operating at the edge of the condition for
considering a photorefractive grating as a volume grating [101]. Generally all the authors point
out, that the mechanism of the formation of the space-charge field is actually not classically
photorefractive but at least partly due to the Carr-Helfrich effect [102, 103]. Please note finally,
that the holographic diffraction properties of pure liquid crystalline systems are two-
dimensional, i.e. diffraction is only observed for p-polarization. This is due to the fact, that the
relaxed phase of liquid crystals is not isotropic like in polable polymers and thus, the relation
eq. (2.4 - 74) is not applicable.

A very promising approach to realize photorefractive liquid crystalline systems has been
followed by Ono et. al.. They showed, that mixing high and low molecular mass liquid crystals
leads to nematic phase systems operable at the low external electrical dc fields characteristic for
liquid crystalline systems, but in the volume grating regime with grating spacings in the order
of few microns [104]. The first system reported was composed of a typical commercially
available liquid crystal (4-pentyl-4’-cyano-triphenyl, E44) and a side chain liquid crystalline
polymer (SLCP) carrying a liquid crystal covalently attached to an acrylic polymer backbone
by an alkyle spacer. The authors refer to their material class as polymer dissolved liquid crystals
(PDSLC’s). The systems in general are doped with a small amount of common sensitizers, in
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this case C60. Net gain of up to Γ = 43cm-1 and a diffraction efficiency of η = 9% with a response
time constant of 200ms was obtained for a 50µm thick device at an applied field of 4V/µm and
a grating spacing of 4µm. Further optimization of these PDSLC’s basically by varying the molar
mass of the high molar mass component and using an appropriate mixture of slightly different
low molecular mass liquid crystals (commercial name: E7) finally yielded composites showing
response times down to 15ms while maintaining gain coefficients of Γ = 270cm-1 at 0.1V/µm
field applied to samples of 50µm thickness and at a grating spacing of 2.4µm [105]. However,
it must be pointed out, that the response times reported refer to the evolution of the gain
coefficient and thus are not directly comparable to the response times usually published for
amorphous PR polymers, which are commonly obtained from the evolution of the refractive
index modulation. Nevertheless, these are impressing performance data. For the same class of
materials, world record values of up to Γ = 600cm-1 for volume gratings have as well been
reported for 50µm thick samples, a grating spacing of 2.8µm and an applied field of 0.7V/µm
[106]. Recently, the concept has been extended by introducing “real“ photoconduction to this
material class. Please recall, that the PDSLC’s reviewed above are photoconductive due to ionic
diffusion and drift. For this purpose a 1:1 copolymer carrying the same mesogenic group as
SLCP as well as carbazole covalently attached to the acrylic backbone and TNF as sensitizer
have been used at otherwise identical composition as described above. The PR liquid crystalline
composite thus obtained showed DFWM diffraction efficiencies of up to η = 39% in a 50µm
thick sample at an applied field of 0.3V/µm and for a grating spacing of 2.8µm. Response times
of these systems obtained from DFWM down to 1sec for grating build-up have been reported
[107, 108]. The grating erasure, however, is roughly twice as fast as the build-up. Accounting,
on the other hand, for the early stage of research on this very promising class of photorefractive
organic composites, one may expect significant progress in the future. In fact it has to be
admitted, that PDSLC’s may be about to drive out PR polymers and glasses since they don’t
require application of such high external fields as necessary for polymers and glasses at
meanwhile competing performance.

Eventually it should be noted, that there has been a third approach to utilize liquid crystals
for photorefractive amorphous organic materials, namely polymer dispersed liquid crystals
(PDLC’s) [109, 110]. In these systems, the liquid crystal is dispersed in a photoconducting
polymer matrix forming small droplets, which are in the mesophase. The polymer matrix
decouples the droplets, which breaks the long range orientational order and thus the droplets
exhibit random director of their individual mesophase. This material class may be understood
as an intermediate stage on the way from liquid crystals to PDSLC’s, utilizing liquid crystals
and allowing for the operation in the volume grating regime of holography. The basic operating
conditions of these systems are in-between PR polymers or glasses and PDSLC’s, i.e. a
relatively strong electrical field is necessary for operation, not as strong as required for
polymers, but nevertheless discounting the major advantage of liquid crystalline systems. The
performance of PDLC’s was found to be comparable to PR polymers and glasses. However, the
inherent inhomogenous character of a dispersion results in bad optical quality (strong
scattering), which makes these systems unfavorable in general. Except in [111] this approach
has not been pursued any more after the initial works. 

3.2.3.) Low molecular mass glasses
Strictly speaking, low molecular mass glasses consist solely of one or more low molecular

mass components forming an amorphous glassy solid. However, this definition will be
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expanded to the case of composites containing up to about 10%wt high molecular mass
polymeric compounds. This is reasonable, since the low molecular mass component will
dominate the bulk properties and the polymeric component may be considered as some sort of
stabilizing matrix. Materials with more than 10%wt polymer content will be considered as
polymer composites, which will be discussed later on. 

Low molecular mass glasses (referred to as LMMG hereafter) commonly consist of
bifunctional molecules acting as NLO chromophore as well as charge transporting matrix.
These properties may be combined in one moiety or may be linked by covalently binding
transporting moieties with NLO chromophores so that these two properties are combined in one
molecule but are intramolecularly decoupled to some degree. The latter approach has the
apparent advantage, that the NLO chromophore changes its optical properties less significantly
when the molecule acts as charge transporting moiety and that the charge transporting properties
can be optimized independently by using transporting agents known to show deliberate charge
carrier mobility. LMMG’s have first been taken into consideration as potential photorefractive
materials by Lundquist et. al. [91] as a way to increase the NLO chromophore content in a PR
amorphous organic system above a certain threshold concentration, which, in polymer
composites, basically is determined by the solubility of the low molecular mass components in
the polymer matrix, the thermodynamic stability of the resulting system and its dielectric
strength. In contrast to the second way of overcoming this problem, which is the monolithic
polymer approach discussed below, the LMMG approach usually requires less synthetic efforts
and inherently allows for the occurrence of the orientational enhancement effect, provided the
glass-transition temperature is sufficiently low. A major draw back of LMMG’s, however, is the
inherently fairly slow PR response basically due to mutual orientational hindrance of the glass
forming molecules even at low Tg’s. This problem may be solved by adding plasticizers or small
amounts of inert polymers as “lubricants“ for the orientational motion. This naturally reduces
the chromophore concentration, which is, however, still considerably higher than achievable in
typical polymer composites. The major advantage of low molecular mass glasses as PR
materials is the stability against phase separation, which is still a major problem in polymer
composites. However, there may be a problem concerning crystallization inherent in low
molecular mass systems. Furthermore, the bulk properties of such systems mostly cannot be
altered as simply as in polymer composites. Especially the tuning of the properties of systems
containing multifunctional components usually requires considerable synthetic efforts.

One of the first LMMG’s was presented by Lundquist et. al. [91]. The system was based
on the NLO chromophore 2BCNM and solely consisted of the glass forming chromophore
doped with small amounts of sensitizer (0.3%wt TNF). A glass-transition temperature of Tg ≈
25°C and a very high refractive index modulations of up to ∆n = 10-2 at 90V/µm external field
was reported, however, also dramatically slow response behavior (the authors abstained from
quoting numerical values). The authors found out that doping this system furthermore with
10%wt PMMA decreases the holographic response time significantly to τ = 83sec at an applied
field of 40V/µm obtained by stretched exponential (KWW) fitting using a stretch exponent of
ß = 2. The first diffraction maximum in DFWM for a sample thickness of 150µm using an
operating wavelength of 676nm, a recording intensity of 1W/cm2 and otherwise a standard
setup geometry (external tilt angel 60°, inter-beam angle 20°, p-polarized read-out, recording
polarization not addressed) was determined at 40V/µm in the quasi steady-state regime with a
corresponding PR gain of Γ ≈ 70cm-1. 

A different approach has been followed by Wang et. al. [112]. The authors reported on the
PR properties of a novel carbazole trimer hereafter referred to as TRC1. The TRC1 glass was
solely doped with different amounts of TNF (0.05%wt up to 0.5%wt) for sensitizing and the
material showed a glass-transition temperature of Tg = 29°C. DFWM diffraction efficiencies of
up to η ≈ 24% in 130µm thick samples were measured at 633nm operating wavelength with s-
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polarized recording beams at an intensity of 0.4W/cm-2, 3.9µm grating spacing and for about
40V/µm applied field. For p-polarized recording at an intensity of 0.5W/cm-2 a net PR gain of
up to 76cm-1 was as well reported for about 40V/µm applied field. The PR phase shift obtained
from grating translation technique was found to approach 90° for fields exceeding 20V/µm,
which is a questionable result, since it implies diffusion controlled grating build-up according
to the standard theory of photorefractivity. Accounting for the strong applied field, this seems
not realistic. The dynamic response behavior was not addressed. 

Li et. al. reported on a PR organic glass based on a functionalized oligothiophene [113].
The material is referred to as OT1 hereafter. The authors found a net optical gain of 83cm-1 at
71V/µm applied field and for an operating wave length of 633nm applying p-polarized
recording. The external tilt angle of the sample normal with respect to the bisector between the
recording beams was 30°. Under identical conditions the authors obtained a non-degenerate
four-wave-mixing diffraction efficiency of η = 40% correlated to a refractive index modulation
of ∆n = 2.55x10-3 using a p-polarized read-out beam. A response time for grating build-up of
42ms was obtained from the initial growth of the grating using the uncommon growth function
η(t) ~ e-2t/τ and at 62V/µm applied field. The sample thickness was reported as „typically in-
between 60µm to 75µm“. Data on the glass-transition temperature, the actual beam intensities
and the detailed setup geometry were not provided. A conceptually similar material was
described by Wang et. al. and comprehensively investigated [114]. The system showed
uncommon behavior due to bipolar charge transport leading to undesired side effects.

A siloxane based PR glass has been reported by Mager et. al. [115]. An unsubstituted and
an acceptor substituted carbazole moiety have been N,N-covalently connected by short siloxane
spacers. The materials Si2(Cz-Cz/TCNE) and Si3(Cz-Cz/Stilbene) showed glass-transition at Tg
= 26°C and Tg = 5°C, respectively, and acted as excellent glass-formers, the glass showing high
optical quality. Doped with TNFM, Si2(Cz-Cz/TCNE) was reported to show a net optical gain
of 14cm-1 at a gain coefficient of Γ = 38cm-1 at 50V/µm applied to a 100µm thick sample and
at an operating wavelength of 514nm. Si3(Cz-Cz/Stilbene) was found to exhibit a gain
coefficient of Γ = 180cm-1 at 60V/µm, however doped with some soluble fullerene derivative
similar to PCBM and at 633nm operating wavelength. The latter material did not yield net gain.
The figures of merit according to eq. (2.5 - 123) were quoted as well. Both materials were not
optimized and appear to be very promising.

A group of triphenylamine (TPA) based PR organic glasses was developed by Hohle et.
al. [116] and was characterized by Hofmann et. al. [117] and Grasruck et. al. [118]. For
DRDCTA plasticized with EHMPA and sensitized with C60, initial response times in DFWM
experiments of down to τ = 0.5ms at 92V/µm applied field, 10.8W/cm2 recording intensity at
645nm operating wavelength, 22.3µm thick samples and a grating spacing of 3.5µm were
reported. For 180mW/cm2 intensity at 670nm wavelength and otherwise identical conditions as
described above the authors found an initial response time of τ ≈ 10ms. The authors furthermore
reported on refractive index modulations of up to ∆n ≈ 6x10-3 for p-polarized read-out and s-
polarized recording at 110V/µm external field and maximum gain coefficients of up to Γ ≈
140cm-1 for p-polarized recording which, however, is counteracted by a considerable
absorption of α = 42cm-1 at 670nm and α = 93cm-1 at 645nm operating wavelength. The same
system plasticized with DOP showed considerably slower response behavior and otherwise
comparable performance data. The glass-transition temperature of both systems has been
estimated to about 20°C. The system furthermore has been altered by replacing the NLO
chromophore moiety (DR) in DRDCTA by stilbenes. However, no holographic data for these
systems have been presented yet, but solely investigations on the charge carrier transport
behavior [118].

Another PR molecular glass based on TPA has been presented by Ogino et. al. [119]. The
materials TPA-NA and TPA-DCVA are composed of acceptor substituted anilines covalently
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attached to TPA via a diester spacer and showed glass-transition temperatures of Tg = 28°C and
Tg = 34°C, respectively. For sensitization 0.2%wt C60 was used. The holographic
characterization was performed with a standard setup working at a wavelength of 633nm and
external recording beam angles of 50° and 70°, each of which having an intensity of 130mW/
cm2. For TPA-DCVA a steady-state diffraction maximum of 66% for p-polarized read-out and
s-polarized recording in DFWM was observed at 65V/µm external field applied to a 100µm
thick sample, whereas the diffraction efficiency in TPA-NA was reported to be about 33% at
80V/µm not showing a maximum at lower fields. For p-polarized recording net gains of 58cm-
1 for TPA-NA and 182cm-1 for TPA-DCVA at 60V/µm were quoted. DFWM response times of
about 3 to 5sec for TPA-NA and 5 to 9sec for TPA-DCVA depending on the applied field were
obtained from single exponential fits. The obviously bad agreement of the fits with the
experimental curves as shown in a presented example plot, however, indicates the obtained
response times to be only rough estimates. Considering the glass transition temperatures in
context with the reported ambient temperature of 20°C, it should be possible to accelerate the
dynamic response by adding plasticizers.

Recently Wang et. al. have reported on an exciting novel multifunctional glass-forming
PR material based on methine dyes [120]. These materials combine all functionalities
(including charge generation) necessary for photorefractivity in one molecular moiety, which
was only slightly modified to provide glass-forming properties. The molecules are referred to
hereafter as MG1 (Tg ≈ 6°C) and MG2 (Tg ≈ 26°C). The authors point out, that the materials are
electron conducting and thus the first of this kind utilized for PR application in organic
materials. DFWM experiments were carried out with 633nm operating wavelength for MG1
and 780nm for MG2, both the setups having otherwise similar configuration with 54° (53°)
external tilt angles and 19.8° (19.6°) inter-beam angles and 2.9W/cm2 (3W/cm2) total
intensities with beam ratios of 0.98 (1.09) for 633nm (780nm) in s-polarization. For p-polarized
read-out, the authors obtained diffraction maxima of 74.3% (87.6%) at 53V/µm (44V/µm)
fields applied to 130µm thick material films and maximum refractive index modulations of
5.6x10-3 (1.0x10-2) achieved for the highest fields applied (not specified) for MG1 (MG2). For
MG2 the authors reported bi-exponential dynamic build-up behavior for the refractive index
change with the time constants 16.6ms and 1.2s obtained at 84V/µm. However, the authors did
not explain how they determined the time constants at a field considerably higher than required
for the first diffraction maximum, which reduces the physical significance of the presented
results on the PR dynamics. The gain coefficients were obtained on the setups described above,
however with total intensities of 2.83W/cm2 (3.655W/cm2) at beam ratios of 1.02 (3.78) and
with p-polarized recording beams at 633nm (780nm). Gain coefficients of Γ = 116.1cm-1 and Γ
= 215.9cm-1 were measured at 89V/µm applied field, and the absorption coefficients were
specified as α = 1.64cm-1 and α = 5.54cm-1 for MG1 and MG2, respectively. 

3.2.4.) Monolithic polymers
Numerous monolithic PR polymers have been developed since the first observation of the

PR effect in a polymer in 1991 [12]. In contrast to the PR liquid crystalline systems and the PR
low molecular glasses, both of which are comparatively young material classes and thus could
be reviewed rather comprehensively above, this is not appropriate in the case of monolithic PR
polymers. Hence, subsequently only a selection of important systems recently presented will be
summarized. 

For the subsequent review monolithic polymers shall be defined by the condition, that all
the functional moieties required for the PR effect except the sensitizer are attached to a



3.2.)Material concepts and approaches - a brief survey

161

collective polymer backbone. The sensitizer as very low amount dopant will be allowed for
being added to the system as low molecular mass component. An advantage of monolithic
polymers as PR materials is their phase stability. Phase separation cannot occur and
crystallization is strongly hindered, however, cannot be excluded completely especially on short
length scales (formation of micro-crystalline structures and/or domains) and/or long time scales.
Partial crystallization may be especially a problem in strongly polar materials and in systems
allowing for the formation of hydrogen bridges. The advantage of high phase stability, however,
is counteracted by the fact, that tuning of the bulk properties of these systems can only be
performed making significant synthetic efforts. Furthermore, the general processibility is
usually considerably worse than in the case of low molecular mass glasses and PR polymer
composites. Accordingly, monolithic PR polymers are comparatively “expensive” systems.

The search for fast responding PR polymers has been another driving force for the
development of fully functionalized PR polymers. This material class offers the possibility of
incorporating large amounts of chromophore without lowering the glass transition temperature,
thus opening a way to purely electro-optic systems of high nonlinearity. Furthermore, the
orientation of the NLO chromophores in low-Tg systems was regarded as a dominant factor
limiting the response time of PR polymers [121 - 123]. Thus, purely electro-optic system have
been expected to be faster than systems showing orientational enhancement. However, as will
be shown in “5.2.3.) The relation between the glass-transition temperature and the dynamic
performance in PVK based PR polymers” on page 243 ([124]), the build-up dynamics of the PR
grating in low-Tg PR polymers is limited by the build-up dynamics of the PR space-charge field
rather than by the orientational dynamics of the chromophores whereas the latter is the limiting
factor in high-Tg systems still showing orientational enhancement. On the other hand, Herlocker
et. al. proved, that the orientational dynamics may be insignificant even in high-Tg systems
[125]. It turned out, that the dominant aspect in the search for fast PR polymer systems is
actually the question of the electrical properties, i.e. charge carrier mobility and generation
efficiency, rather than the type of the nonlinear optical response. Accordingly, the fully
functionalized electro-optic PR polymers, which have mostly been developed on the basis of the
same organic photoconductors as the low-Tg PR polymer composites did not meet the high
expectations. 

The steady-state PR performance of monolithic polymers is dominantly determined by the
question of the extent to which the orientational enhancement effect can contribute to the overall
PR effect. Since also the NLO chromophores are attached to the polymer backbone, their
orientational mobility is restricted. Orientational mobility in general may be allowed for to some
extent by introducing sufficiently long and flexible spacer groups between the chromophore
moieties and the polymer backbone. However, this action usually adversely affects the charge
transporting properties, since the introduction of such spacer groups rises the portion of inert
material in the overall system. The dynamic performance of monolithic systems is limited by
their electrical properties on the one hand and, depending on the system, by the orientational
dynamics of the chromophores on the other. In general, up to now the steady-state as well as the
dynamic PR performance of all the known monolithic PR polymers is inferior to today’s high-
performance polymer composites, low molecular glasses and polymer dissolved liquid crystals.

Please note, that the systems reviewed subsequently will not be described in detail in the
text. Instead, the materials will be numbered systematically as P# and their structures will be
shown in section Appendix D. If polymer systems are presented, where the same basic system
has been combined with various functional groups, the functional groups are numbered
systematically as well using CHR# for chromophores or CT# for charge transporting moieties.
The same principle applies if different spacer groups have been used for one and the same
moiety. The number scheme then refers to the attached moiety.

Van Steenwinckel et. al. have presented a group of fully functionalized polymethacrylates
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utilizing carbazole as charge transporting moiety (P1) and three different stilbenes as NLO
chromophores (CHR1 - 3) [126]. The systems were sensitized with 1%wt TNFM and were
characterized holographically at 780nm operating wavelength. The glass transition
temperatures of the different systems were determined to Tg(P1CHR1a) = 66°C, Tg(P1CHR1b)
= 48°C, Tg(P1CHR2) = 47°C, Tg(P1CHR3) = 52°C, where “P1CHR1a“ and “P1CHR1b“
denote systems of different molecular mass and component ratio. For photorefractive
characterization a setup with an external inter-beam angle of the recording beams of 14° and an
external tilt angle of 50° was used, and the sample thickness was 125µm. For DFWM
experiments s-polarized recording and p-polarized read-out and for 2BC p-polarized recording
was used. The correlated intensities have not been reported but rather beam power and some
beam diameter, which is not referred to the beam profile. This makes it difficult to compare the
reported results with data presented elsewhere. The diffraction efficiency and the gain
coefficient have been reported for different ambient temperatures. Best performance values
were found for P1CHR3 at the highest applied ambient temperature of 54°C. A DFWM
diffraction efficiency of η = 60% was obtained and a gain coefficient of Γ = 57cm-1, both at
58V/µm applied field. A DFWM diffraction maximum was not observed within the reported
field interval. At 20°C ambient temperature diffraction efficiencies of up to about η ≈ 11% and
gain coefficients of up to about Γ ≈ 12cm-1 at Eext ≈ 62V/µm were found for the same system.
The response times have were considered. The authors furthermore report on significant
improvement of the PR performance if a substantial amount of plasticizer is added [127].
However, the resulting systems then are no more monolithic PR polymers. Dynamic data have
not been presented for these systems as well. The authors point out, that their polymers contain
only about 20%wt carbazole moieties.

Yu et. al. recently reported on numerous fully functionalized PR polymers [128 - 131]
among of which conjugated systems are outstanding, which contain the transition metal
complexes. The conjugated polymer backbone exhibits the required charge transporting
properties, whereas the metal complexes incorporated in the polymer backbone by
copolymerization act as sensitizers. The thus provided amount of sensitizer is much larger than
typically used in PR polymers. The NLO properties were introduced by covalently attaching
stilbenes. In [131] the development of these systems is reviewed in chronological order. The
first systems containing ionic Ru(bpy)3(PF6)2 moieties were systems showing high glass-
transition temperature (high-Tg) and proved high photorefractivity with net optical gains of up
to almost 200cm-1 without external field. However, the system has been corona poled and
operated at the edge of the Raman-Nath regime due to the small film thickness (≈ 10µm)
achievable with the high-Tg systems. In contrast, corresponding low-Tg systems allowed for
films of more than 100µm thickness and the orientational enhancement effect, however, in
general showed unusual behavior (saturation of the gain coefficient as a function of the applied
field) and no net gain, which the authors attribute to an alignment of the Ru-PF6 dipoles under
the influence of the poling field screening the actual field sensed by the charge generating metal
complexes. In order to avoid this screening effect, neutral phtalocyanine and porphyrine
complexes were used as charge generators incorporated in low-Tg fully functionalized PR
polymers (P2, P3), which then exhibit high photorefractivity. The obtained performance data
[130] are among the best found in monolithic PR polymers up to now. The authors report glass-
transition temperatures of Tg ≈ 16°C for all systems investigated. Net optical gains of up to
53.3cm-1 (P2) and 66.5cm-1 (P3) at an external field of 60V/µm applied to 104µm thick films
were achieved at 633nm operating wavelength and with p-polarized recording beams
intersecting at an internal angle of 7.5°. Tilt angle and beam intensities have not been specified.
DFWM diffraction efficiencies of 12% (P2) and 18% (P3) have been obtained for 60V/µm
applied field and p-polarized read-out. The authors report strongly field dependent PR grating
build up dynamics yielding time constants down to 4.7sec (P2) and 450ms (P3) determined
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from fitting the experimental data to the uncommon expression η(t) ~ e-2t/τ for the initial growth
of the DFWM diffraction signal for an external field of 60V/µm and an incident light intensity
of 830mW/cm2.

Hwang et. al. presented a fully functionalized low-Tg single component PR polymer (P4)
showing photorefractive response even without adding small amounts of sensitizer [132]. The
system showed a Tg of 15°C. A gain coefficient of Γ = 9.7cm-1 (absorption coefficient α =
6.7cm-1 ⇒ 3cm-1 net gain) at 50V/µm external field and using p-polarized recording beams, and
a DFWM diffraction efficiency of more than η = 3% at 85V/µm external field using s-polarized
recording beams and a p-polarized reading beam were obtained. In both experiments identical
beam intensities of 60mW/cm2 were applied, the sample was tilted by an external angle of 60°,
the external angle enclosed by the recording beams was 11°, and the film thickness was 100µm.
The operating wavelength has been reported as λ0 = 633nm. It is important to emphasize once
more, that these performance data refer to a real single component monolithic polymer, which,
thus, is the first material of this kind showing notable photorefractivity reported on up to date.
Please note, however, that there are PR single component monolithic glasses, as described in the
preceding section. Furthermore, the authors have reported that adding up to 1%wt TNF as
sensitizer improves the PR performance up to Γ = 27.4cm-1 (15cm-1 net gain) and η = 5.2% at
60V/µm external field each and otherwise identical conditions as mentioned above. At 50V/µm,
the gain coefficient amounts to about Γ = 12.5cm-1, not yielding net gain.

Hattemer et. al. presented a variety of novel fully functionalized purely electro-optic (i.e.,
high-Tg) PR polymers in [133]. Having focused on the synthesis, the authors only report on a
proof of principle of the photorefractivity of their systems for a particular model system (P5).
However, the PR performance presented is outstanding for this class of materials. In order to
fabricate dielectric stable thin films of the necessary thickness, the authors added a small
amount of ethylcarbazole as a plasticizer. Therefore, one can argue about whether this system
is still monolithic. However, the authors quote a glass transition temperature of Tg = 79°C, high
stability of the optical nonlinearity after poling the system at elevated temperatures and cooling
down with the poling field applied, and proved the purely electro-optic nature of the PR effect
by relating the sign of the gain to the field direction in comparison to a low-Tg system (see
below). Therefore, in this case the plasticizer may be taken as a means for improving
dominantly the processability of the material rather than altering the PR properties and the
system may be considered as basically monolithic. The material was prepoled at an ambient
temperature of T = 80°C applying an external field of 76V/µm to the film. The PR
measurements were carried at 633nm operating wavelength with s-polarized recording beams
for both the 2BC and the DFWM experiment showing a total external intensity of 205mW/cm2

and equal internal intensity ratio. The external inter-beam angle was 20° and the sample was
tilted by 60°. P-polarized read-out was applied in the DFWM experiments. A steady-state gain
coefficient of Γ = 7cm-1 and a steady-state diffraction efficiency of η = 1.3% are reported for
an applied field of 95V/µm. The response time constants were obtained from dynamic
experimental data of η and Γ (both at Eext = 95V/µm) by fitting to a bi-exponential associative
growth function. Time constants of τ1 = 100ms (40ms) and τ2 = 1.5sec (660ms) and relative
weighting factors of A1 = 0.77 (0.81) and A2 = 0.23 (0.19), respectively, were determined for
the evolution of η (Γ). The authors point out that the external field had to be applied in order to
observe the PR effect despite the system has been prepoled. The DFWM diffraction efficiency
is the highest and the PR response is the fastest reported up to date for this class of materials.
The purely electro-optic nature of the observed PR response has been proven by comparing the
sign of the gain coefficient for a well-known low-Tg system showing dominant birefringence
contribution to the refractive index modulation with the sign of the gain coefficient for the
currently discussed system under identical experimental conditions. This argumentation bases
on the fact that for s-polarized recording, the electro-optic and the birefringence contribution to
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the refractive index modulation will have opposite sign according to eq. (2.5 - 45) and eq. (2.5
- 51). Thus, according to eq. (2.5 - 102), the gain coefficient obtained for a (dominantly) electro-
optic system must have the opposite sign as compared to the gain coefficient obtained for the
reference system with dominant birefringence contribution to the refractive index modulation.
Please note, that this is a proof of principle and does not exclude a birefringence contribution to
the electro-optic system, which, however, then counteracts the electro-optic response according
to orientational enhancement model (see page 131 ff). 

 
Eventually, Park et. al. presented a multifunctional PR polymer based on TPA (TDPANA-

FA) [134] and carrying NPP as NLO chromophore incorporated in the polymer backbone. The
polymer showed a glass-transition temperature of Tg = 204°C and required a substantial amount
of plasticizer in order to observe PR response. Therefore, this system actually cannot be
considered as a monolithic PR polymer. However the concept may be developed to a monolithic
system in the future and thus will be treated in this context. The PR properties were examined
at 100µm thick films of TDPANA-FA plasticized by 40%wt TCP and sensitized by C60. For the
2BC experiments p-polarized recording beams were used and for the DFWM experiments s-
polarized recording beams and a p-polarized reading beam. The recording beams intersected at
an external angel of 20° and the sample was tilted by 50°. The total recording intensity was
300mW/cm2 at a beam ratio of 1:1. A DFWM diffraction efficiency of η = 0.92% and a
response time of τ1 = 4ms (fast component) obtained from fitting the evolution of the refractive
index modulation bi-exponentially (the slow component was not presented) were reported for
an external field of Eext = 80V/µm. A gain coefficient of Γ = 36cm-1 has been achieved at the
same external field. The actual Tg of the examined composite is not mentioned. This system
may be expected to be further developed to the first monolithic PR polymer operating below
video rate in the future.

3.2.5.) Polymer composites
Most PR polymers developed up to date are polymer composites. PR polymer composites

basically consist of a more or less inert polymer backbone which may or may not carry some
functional moieties required for PR response covalently attached. The other functionalities
required are incorporated in the system as low molecular mass components. It is clear that this
„mixing“ technique has the inherent advantage that the systems can be tuned very easily by
simply altering the composition or using different components. On the other hand, PR polymer
composites tend to lack compositional stability. Especially the typically highly polar NLO
chromophores being mobile in low-Tg systems tend to crystallize on relatively short time scales
in the usually only little polar polymer matrix. The system then becomes opaque and brittle. 

The great variety of sometimes even only slightly different PR polymer composites
developed up to now requires a different approach for a review as compared to the PR systems
discussed in the preceding sections. Therefore, this section will be structured as follows. Firstly,
two high-performance PR polymer composites will be discussed, which may be regarded as
milestones in this field. In this context typical performance data of high-performance PR
polymer composites will be shown. Secondly, general problems will be discussed, which have
to be taken into account in order to compose a PR polymer composite. Thereafter, the groups of
components will be discussed separately.

Performance data of some more important PR polymer composites, which are not
discussed in the following section “3.2.5.1.) Milestones” will be reviewed in context with the
discussion of the NLO chromophore in “3.2.5.5.2.) Characteristic examples” on page 173.
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3.2.5.1.)Milestones
The first high performance PR polymer composite was presented in 1994 by Meerholz et.

al. [13]. Consisting of PVK (hole conductive matrix), ECZ (plasticizer), TNF (sensitizer), and
DMNPAA (NLO chromophore) in the ratio of 33:16:1:50%wt, the polymer composite
exhibited a glass-transition temperature of Tg ≈ 5°C. For the holographic characterization s-
polarized as well as p-polarized recording beams of 675nm wavelength and 1W/cm2 total
intensity were used in the 2BC experiments and s-polarized beams of identical total intensity in
the DFWM experiments. The sample was tilted by 60° and the external intersection angle of the
recording beams was 22°. The DFWM diffraction efficiency was determined for s-polarized as
well as p-polarized read-out. The film thickness was 105µm. Gain coefficients of Γp = 220cm-
1 and Γs = −40cm-1 were achieved at 90V/µm applied field (total absorption coefficient at this
field: α = 13cm-1). In the DFWM experiments, the first diffraction maximum occurred at an
applied external field of 56V/µm for p-polarized read-out and for s-polarized read-out a
diffraction efficiency of ηs = 60% has been achieved for an external field of 90V/µm not
showing a maximum in the range of external fields applied. The dynamic response behavior has
not been investigated at that time. However, the dynamics of a system with identical
composition was determined later in [124] for a total recording intensity of 45mW/cm2 and
633nm operating wavelength on a setup of very similar configuration. Fitting the growth of the
DFWM diffraction signal to a bi-exponential associative growth function yielded the time
constants τ1 = 1.5sec and τ2 = 10sec with relative weighting factors of A1 = 0.73 and A2 = 0.26
at 56V/µm applied field. A closely related system containing less NLO chromophore and
showing lower glass transition temperature yielded time constants of down to τ1 = 200ms at
87.5V/µm applied field. These results will be discussed later in detail in the section devoted to
the experimental results. The first high-performance PR polymer substantially suffered from the
before mentioned lack of compositional stability. The stability of the systems could be improved
significantly by using eutectic mixtures of the NLO chromophores 2,5-DMNPAA and 3,5-
DMNPAA [135] and 2,5-DMNPAA and MNPAA [136]. Especially the latter system showed
not only significantly improved shelf life time but as well markedly improved PR performance.
The family of PR polymer composites described in the current section still counts to the best
performing organic PR materials and is, moreover, the best characterized as well. Many systems
have been developed as novel PR polymer composites, which actually may be regarded as
closely related derivatives of the first high-performance PR polymer.

The first report of a high speed PR polymer utilized the build-up dynamics of the PR gain
in order to discuss the PR response time [137]. The authors obtained a single response time of
τg = 7.5ms for the build-up of the PR gain at 70V/µm external field applied to a 100µm thick
sample and 500mW/cm2 total recording intensity. The system was a TPD based PR polymer
utilizing DEANST as NLO chromophore (15%wt, which is fairly low) and C60 as sensitizer and
exhibited Tg ≈ 30°C. The concomitant gain coefficient was reported as Γ = 40cm-1 (net gain
33.5cm-1) and the setup configuration was characterized by an external tilt angle of 50° and an
external inter-beam angle of 22.6°. The authors missed to report the beam polarization. DFWM
experiments were not reported. It has already been discussed, that fitting the evolution of the PR
gain does not yield response times, which can be compared reasonably with results obtained on
the basis of the DFWM diffraction efficiency, which is by far the more common procedure.
Nevertheless, the reported system represents the very first PR polymer composite stated to be
operable at frequencies below video rate.

The first reliable report of a PR polymer composite exhibiting fast response in DFWM
experiments has been provided by Herlocker et.al. [125]. The system investigated consisted of
PVK (hole conducting matrix), ECZ (plasticizer), TNFM (sensitizer), and the tolane FTCN
(NLO chromophore) in the ratio of 56:28:0.8:15.2%wt and exhibited a glass-transition
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temperature of Tg = 39°C. The PR properties were determined by 2BC utilizing p-polarized
recording beams of 633nm wavelength, 500mW/cm2 total intensity and a beam ratio of 6.3:1,
and by DFWM experiments utilizing s-polarized recording beams at identical total intensity as
for 2BC but a beam ratio of 1:1 and p-polarized read-out. The setup was described as applying
an external tilt angle of 60° and an external inter-beam angle of 20.5° resulting in 3.1µm grating
spacing. The film thickness was reported as 105µm. No net gain (Γ = 35cm-1, α = 98 cm-1) was
achieved for external fields of up to Eext = 95V/µm due to strong absorption of the sensitizer at
the applied operating wavelength. An internal DFWM diffraction efficiency of η = 24% was
obtained not yet showing a diffraction maximum at the aforementioned field. The authors
reported response times of  τ1 = 4ms (weighting 0.8) and  τ2 = 50ms (weighting 0.2) for the
build-up of the refractive index grating obtained from fitting the evolution of the refractive
index modulation calculated from DFWM diffraction data to a bi-exponential associative
growth function. However, these performance data were obtained on the expense of strong
absorption, which was induced by using a sensitizer at an operating wavelength in the visible,
which is commonly applied in the infrared. Using TNF instead like in the aforementioned
PVK:ECZ:DMNPAA:TNF-system, the system would be sufficiently transparent to possibly
show a net gain, but also must be expected to response considerably slower in the PR dynamic
experiments. 

Please note, that a variety of fast PR polymer systems has been presented during the past
two years, which exhibit more or less comparable speed at the expense of some other PR
property. In particular, these systems often show large absorption which is extremely
unfavorable for most potential applications. Furthermore, the “high-speed“ PR polymers are
often doped with low amounts of chromophore in order to improve the electrical conduction
properties of the system and, hence, must be operated at very high fields in order to obtain a
reasonable dynamic range. Another method to speed up PR polymers is the application of high
intensities of several W/cm2, which are not practicable or at least undesired in many potential
applications. In conclusion, the dynamic performance of PR polymers and polymer composites
is still a field of extensive research efforts and publications in this field must be considered with
special care in order to reasonably trade off the properties reported.

3.2.5.2.)General problems
In this section, general considerations to be taken into account when designing some PR

polymer composite system are discussed. Please note, that these considerations apply to PR low
molecular glasses and monolithic polymers as well, and even to liquid crystalline systems,
however, with some restrictions, which will not be discussed here.

In order to obtain PR response from an amorphous organic polymer system, generally
three functionalities must be incorporated:

a) photoconductivity
b) photosensitivity
c) optical nonlinearity.

This list must be extended by:

d) in-situ polability

if a large PR effect is desired. These four functionalities may be incorporated in the polymer by
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means of appropriate monofunctional or multifunctional moieties. The following general points
must be taken into account:

3.2.5.2.1.)Miscibility
PR polymer composites are thermodynamically metastable systems inherently suffering

from possible phase separation and crystallization of the contained low molecular mass
components. Accordingly, the thermodynamic stability of PR polymer composites will strongly
depend on the miscibility of low molecular mass components with the polymer matrix.

Thereby, special care must be taken of the compatibility of the polymer matrix and the
NLO chromophore, since the latter is inherently rather polar, whereas the polymer matrix
usually is not, and a substantial amount of chromophore must be incorporated into the system
in order to obtain large nonlinearity. Since the mixing of components showing markedly
different polarity is unfavorable in principle, the compatibility of the chromophore with the
matrix is the major issue leading to often poor thermodynamic stability of PR polymer
composites. The miscibility of a NLO chromophore with the polymer matrix may be improved
by aliphatic side groups attached to the chromophore.

If a substantial amount of plasticizer shall be incorporated as well, similar considerations
will apply. However, the plasticizer need not be strongly polar and thus the compatibility
problem is less pronounced and more easy to solve.

It is clear, that components added in only small amounts (e.g. the sensitizer) must at least
be soluble in the system in the amount desired.

3.2.5.2.2.)Absorption and the problem of isomerization gratings
The absorption spectra of the components with respect to the desired operating

wavelength are of significant importance. On the one hand, a minimum absorption must be
provided in order to generate free charge carriers, which then give rise to the PR space-charge
field. This minimum absorption is typically introduced in a PR polymer composite by means of
a sensitizer added in small amounts to the system. However, the other components of the system
should not show notable absorption at the operating wavelength. Although this is a trivial
demand, it often requires a trade-off between the nonlinear properties of the NLO chromophore
and its absorption coefficient at the operating wavelength of the system. Unfortunately, the
chromophores showing high molecular optical nonlinearity usually also absorb strongly in the
visible or even in the near infrared, which often prevents their application in PR polymer
composites. A further problem may arise from the ability of some very common NLO
chromophores (especially azo-dyes) to undergo photoinduced isomerization. This may lead to
an undesired local refractive index grating (i.e. shifted by 180° with respect to the interference
pattern) behaving very differently as compared to the PR grating. The isomerization process
may even occur at very small absorption (however, slowly).

Please note, that a PR polymer composite may be made faster in PR response by adding
a strongly absorbing and/or a relatively large amount of sensitizer. Thus, a compromise must be
found in this case as well.

3.2.5.2.3.)Relation of the energy levels of the components
The relevant energy levels in question are the highest occupied molecular orbital

(HOMO) and the lowest unoccupied molecular orbital (LUMO) of the components. The
relations of these energy levels must be coordinated correctly. 

Subsequently, the relations of the HOMO’s and the LUMO’s of the chromophore and the



3.2.)Material concepts and approaches - a brief survey

168

sensitizer will be discussed qualitatively with respect to the HOMO and the LUMO of the
charge conducting moieties, hereafter referred to as “CTA“ (charge transporting agent). Hole
conduction shall be presumed, but the general considerations to be discussed below will apply
to electron conducting systems as well.

The charge transport in organic polymers takes place
by means of subsequent redox steps, i.e. the hole transport
results from exchange of holes between HOMO’s of the
CTA. Disregarding charge carrier injection from the
electrodes, this requires previous photo-generation of the
holes. By optical excitation, an electron is promoted from
the HOMO of the sensitizer to its LUMO, leaving an empty
place (hole) in the HOMO behind. This hole must be
transferred to an adjacent CTA. In order to facilitate this
process, the HOMO of the sensitizer thus should be of lower
energy than the HOMO of the CTA so that the system gains
energy by the transfer (i.e. the hole jumps upwards in energy
(figure (3 - 1))). In the worst case the HOMO’s in question
may be of similar level, which however is not preferable.
The HOMO of the CTA must not be lower than the HOMO
of the sensitizer. The NLO chromophore should posses the
lowest HOMO of all components in order to avoid its
involvement in the charge transporting process. If the
chromophore is involved in the charge transporting process,
it may be charged temporarily and possibly no more
contribute to the NLO response of the system during these time periods, which is not desired.
Finally, if the system contains extrinsic traps, it is self-evident that their HOMO must be of
higher energy than the CTA (otherwise, the functional moiety considered will not act as a trap). 

Considering the LUMO’s, there is only one condition to be fulfilled. The sensitizer carries
a single electron in its LUMO and will be a radical anion after the hole has been transferred to
a CTA. In order to keep the electron fixed at the sensitizer moiety its LUMO should be the
lowest of all components in the system.

For an electron conducting system, analogous relations will apply, however, HOMO’s
and LUMO’s must be interchanged in the above considerations.

3.2.5.3.)The polymer matrix
The polymer matrix in today’s high performance PR polymer composites usually consists

of some polymer backbone being photoconductive itself or being inert and carrying charge
transporting moieties covalently attached. Completely inert polymers (e.g. PMMA, PS) have
been used previously, but are at a discount today, since a large amount of inert matter reduces
the performance of the system.

By far most high performance PR polymer composites reported up to now utilize
carbazole as CTA and among these, the PVK based systems are by far the largest group. PVK
has been known to be photoconductive for about 30 years now and, thus, is well characterized,
showing a charge carrier mobility of µ = 10-6cm2/Vs in its pristine state [47]. PVK shows
excellent film forming properties, is easily processable, and commercially available at low cost,
since it has already found widespread application in xerography and is produced in large
amounts. It furthermore has the advantage of offering its formal monomer as plasticizer, which

 Figure (3 - 1): Diagram of energy 
levels for PR polymer composites. The 
scheme depicts the energetic situation 
as sensed by an electron. Accordingly, 

electrons relax downhill and holes 
uphill with respect to the indicated 

direction of increasing energy. (CTA: 
charge transporting agent)
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will be discussed below. The best performing PR polymer composites known up to date are
PVK based. PVK based systems have been investigated intensively, e.g. in [138 - 144], and are
furthermore subject of this work. The aforementioned literature refers basically to issues of the
PVK matrix. Literature dealing with PVK based systems but focusing on other components of
PR composites will be noted in the corresponding sections. 

A carbazole based polysiloxane (PSX) carrying carbazole covalently attached to a
polysiloxane backbone by means of aliphatic spacer groups has first been used in PR polymer
composites by Zobel et. al. [145]. Like PVK, PSX shows a charge carrier mobility of µ = 10-
6cm2/Vs in pristine state [146], has excellent film forming properties and is easily processable.
The glass transition temperature of PSX based systems may be adjusted by varying the length
of the aforementioned spacer groups. This avoids the use of low molecular mass plasticizers and
thus increases the stability of the composite. The performance of the PSX based systems
compares to PVK based systems. PSX based PR polymer composites were investigated in more
detail in [147 - 150].

Ogino et. al. presented a polymer matrix (PTPD-ac) suitable for PR polymer composites,
which is based on TPD moieties covalently attached to a polyacrylic backbone [137]. PTPD-ac
shows a charge carrier mobility of µ = 10-4cm2/Vs in pristine state, two orders of magnitude
higher than PVK. The glass transition temperature of this system can be adjusted by
incorporating n-butyl acrylate into the polymer backbone by means of copolymerization with
the TPD-ac monomer, however, at the expense of the charge carrier mobility, which drops by
one order of magnitude if the copolymer contains 50% n-butyl acrylate. This system shows
relatively fast IR response, which has been attributed to its comparatively high charge carrier
mobility.

Mecher et. al. presented a comprehensive study of PR polymer composites based on a
poly(phenylene vinylene) homopolymer (DBOP-PPV) showing long-range π-conjugation,
therefore promising high charge carrier mobility and fast PR response [151]. However, the
charge carrier mobility in pristine DBOP-PPV of µ = 10-5cm2/Vs is only one order of magnitude
higher than in pristine PVK and smaller than in PTPD-ac [152]. The PR polymer composites
based on DBOP-PPV showed similar steady-state PR performance as comparable systems
based on PVK and slightly better dynamic PR performance, however, did not fulfill the high
expectations. This was attributed to low charge carrier generation efficiency achieved with the
fullerene derivative PCBM used as sensitizer.

A fluorene-triarylamine copolymer (TFB) was reported upon by Hofmann et. al. showing
a charge carrier mobility of µ = 10-5cm2/Vs in pristine state [153]. PR response times down to
τ1 = 1ms for the fastest time constant have been determined in a composite utilizing DMNPAA
as NLO chromophore and C60 as sensitizer, however, the dynamic behavior of this system
proved to be very complicated and the significance of the presented response time is
questionable. Moreover, the steady-state performance of this system is very poor questioning
the attribution of this system to high performance PR polymers. 

Please note, that all matrix polymers discussed in this section show maximum optical
absorption at wavelengths shorter than 400nm and thus are operable in the red color spectrum
(λ > 633nm) without restrictions. 

3.2.5.4.)The plasticizer
The glass-transition temperature Tg of any PR polymer is of substantial significance for

the PR performance according to the orientational enhancement effect (“2.5.3.3.) Orientational
enhancement effect” on page 131). In order to reduce Tg and to let the orientational
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enhancement effect take place efficiently, very often plasticizers are added to PR polymer
composites. The choice of a suitable plasticizer is at first determined by the question of its
compatibility with the polymer matrix. Secondly, it would be favorable if the plasticizer
contributes constructively to the functionalities required for PR response, since otherwise it will
only be some inert ballast reducing intrinsic performance parameters, in particular the charge
carrier mobility. Thus, the plasticizer of choice for PVK based systems will be the formal
monomer of PVK, i.e., ECZ, which in fact has most widely been used up to now for this
purpose. In this case the plasticizer acts as CTA. However, despite ECZ and PVK are widely
miscible, the maximum amount of ECZ in a PR polymer composite will be limited, since
pristine ECZ is crystalline and, hence, too much ECZ added will increase the inherent tendency
of the composite to crystallize. A comprehensive study of the influence of varying ECZ
concentration in PVK based PR polymers will be presented in the section devoted to the
experimental results.

Furthermore, derivatives of phtalic acid have been widely used as plasticizer. BBP has
been used in PVK based systems. Since pristine BBP is liquid at room temperature, the
thermodynamic stability of the composite is improved [155, 156]. For plasticizing the
aforementioned DBOP-PPV matrix DPP was used. The authors stated, that this plasticizer
turned out to be highly compatible with the polymer matrix. A TFB matrix has been plasticized
with another derivative of phtalic acid, DOP. However, none of these plasticizers contributes
directly to the PR effect like ECZ. The matrices have already been discussed above in “3.2.5.3.)
The polymer matrix”.

Furthermore, TCP has previously been used sometimes for plasticizing a PVK matrix
[157, 158]. TCP does not contribute to the formation of the space-charge field, is highly toxic,
and potentially cancerogene. Hence, this plasticizer is now at a discount.

Please note, that the chromophore will also act as a plasticizer, however only to some
extent, since the chromophore usually is a strongly polar molecule showing limited softening
capabilities. Nevertheless, low molecular mass NLO chromophores (or liquid crystals) have
successfully been used as plasticizers in PR polymers, e.g. in [127] for plasticizing a fully
functionalized PR polymer.

3.2.5.5.)The chromophore
The PR quality of some NLO chromophore to be used in high performance (and

accordingly in-situ polable) PR polymer composite can be estimated based on the PR figure of
merit according to eq. (2.5 - 123). In order to determine favorable combinations of the molecular
constants in eq. (2.5 - 123) for achieving a high figure of merit, the bond-length alternation
(BLA) model developed by Marder et. al. [159, 160] is very helpful. A model very similar to
the BLA model has been developed by Meyers et. al. [160]. In this model not the bond length
alternation is considered but the bond order alternation (BOA). The BOA considers the relative
difference of the π-bond orders of adjacent carbon-carbon bonds in a π-conjugated system. In
fact, both these models differ only in their methodology and yield identical results. Another
model similar but significantly more accurate than the BLA model has been formulated by
Wortmann et. al. [161, 162] and Barzoukas et. al. [163, 164]. It relates the electronic and the
geometrical structure of some NLO chromophore to its molecular constants of interest, which
are in particular the polarizability and the first hyperpolarizability.

Subsequently, the theoretical models will be briefly outlined and correlated with the PR
figure of merit (FOM). The quantum mechanical basics are beyond the scope of this work and
will not be discussed.
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A manifold of NLO chromophores has been tested for application in PR polymer
composites and even more have been suggested based on arguments referring to eq. (2.5 - 123)
and the BLA model. It is beyond the scope of this work to give a comprehensive overview of
all these chromophores. Therefore, only the most prominent representatives actually used in PR
polymer composites up to now will be discussed in more detail below.

3.2.5.5.1.)Bond-length alternation (BLA) model and related approaches
Typical NLO chromophores for

application in PR organic polymers are rod-
like donor-acceptor substituted π-conjugated
systems as depicted in figure (2.4 - 8). This
archetype of a NLO chromophore may
approximately be taken as an one-dimensional
(1D) push-pull (PP) system. This suggests to
consider only the linear and second order
polarizabilities (α and β, respectively) along
the long molecule axis (z-axis in the molecular
frame, PP-axis). In fact this is a good
approximation since the off-axis components
of both polarizabilities are typically
substantially smaller as compared to the in-
axis components for 1D chromophores. 

BLA has been identified as a useful
structural parameter to predict trends for the
linear and for the second order polarizability
along the PP-axis in the type of molecules
considered. The BLA parameter may be
defined in several ways, however, always
yielding the same general trend of the
polarizabilities as a function of the BLA
parameter. The most ostensive definition (for
chemists) of the BLA parameter has been
provided by Barzoukas et. al. [163], who
introduced a parameter “MIX“ characterizing
the mixing between the two limiting
mesomeric forms of the PP system. Originally,
the BLA parameter was defined as the relative
difference between the average lengths of
carbon-carbon single and double bonds
involved in the π-electron resonance. It is
clear, that this is in fact very similar to MIX. In
both cases, the BLA parameter varies between
+1 and −1 (sometimes only “+“ and “−“ are
written) being the limiting cases for 100%
localized bonds in the limiting mesomeric structures. The sign is actually not significant as long
as it is clear how the signs are correlated with the neutral and the zwitterionic limiting
mesomeric structures. Wortmann et. al. used a parameter derived from LCAO (linear
combination of atomic orbitals) theory, which varies from 0 to 1 describing the position of the
electron pair, which is formally displaced by the internal charge transfer leading to the limiting

 Figure (3 - 2): Normalized variations of the ground 
state dipole moment µg (dotted line), the polarization 

αzz (dashed line), and the hyperpolarizability βzzz 
(solid line) along the long molecule axis as a function 

of the BLA parameter

 Figure (3 - 3): General trend of the terms of the PR 
figure of merit for low-Tg PR polymers in the BLA 

model. Dashed line: birefringence contribution. Solid 
line: electro-optic contribution. Both curves are 
normalized to their maximum modulus value.
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mesomeric structures. For “0“, the electron pair is completely localized at the donor and for “1“
it is localized at the acceptor [161]. Please note, that the LCAO parameter must be used squared
in order to be phenomenologically compatible with the MIX (or the original BLA) parameter.
Here, the BLA parameter and the theoretical background of the BLA model will not be
elaborated upon. Instead of that the trends to be discussed will be displayed in terms of the
chemical valence bond representation of an arbitrary model system. Please note, that the
valence bond representations refer to the electronic ground state of the system considered.

The general qualitative trends of the polarizabilities and the ground state dipole moment
are depicted in figure (3 - 2). It becomes clear that the optimization of both, the linear and the
second order polarizabilities of some 1D NLO chromophore, will not be possible, since the
latter is zero when the first has its optimum. This point corresponds to a state of ideal
mesomerism, which is equal to the BLA parameter being zero (all involved C-C-bonds exhibit
equal length) and the LCAO parameter being  (0.5 in squared form). This state is often
referred to as “cyanine limit“, since it is typical for cyanine dyes.

The PR FOM for low-Tg PR polymers according to eq. (2.5 - 123):

depends nonlinearly on the ground-state dipole moment. Assuming in reasonable
approximation for 1D systems that the polarization anisotropy ∆α is basically modelled by αzz,
the qualitative trends of the birefringence and the electro-optic terms of the FOM as a function
of BLA can be estimated according to figure (3 - 3). 

The absolute maximum of the birefringence contributions to the PR FOM in the BLA
model is mostly markedly larger than the absolute maximum of the electro-optical contribution
[167 - 169]. In these cases, the electro-optic contribution may be neglected and the optimum
chromophore will be localized in the right half of the diagram in figure (3 - 3) towards a
zwitterionic structure. Accordingly, in this case neutral chromophores existing around the
cyanine limit should be most favorable for application in low-Tg PR polymer composites.
Merocyanines known to meet this condition have been successfully used in PR polymer
composites [165]. However, if the chromophore becomes too polar, one will face compatibility
problems with the polymer matrix making this BLA region scarcely accessible for PR polymer
composites. This problem has already been reported for the aforementioned merocyanines [165]
and may safely be expected to become a major issue for chromophores being even more polar
[166]. 

Focussing on an optimization of the birefringence contribution based on the above
considerations successfully led to a variety of novel chromophores for high performance PR
composites [161, 91, 170, 171].

Please note eventually, that the theory of the BLA model is based on a two-level-model
(TLM) formally mixing the neutral and the zwitterionic state of a 1D NLO PP chromophore.
The TLM model is a reasonable approximation for the hyperpolarizability in systems exhibiting
an extended π-conjugated system. On the contrary, the approximation is crude for the linear
polarizability and tends to underestimate the real value. However, since α is always positive the
TLM contribution is always a lower bound [161], and the general trends are depicted correctly.
Furthermore, one must keep in mind, that both α and β will be subjected to dispersion. Hence,
the absolute values of the molecular polarizabilities will depend on the operating wavelength.
The aforementioned TLM model provides analytical expressions approximating the dispersion
(see e.g. eq. (32) to (36) in [161]). 
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3.2.5.5.2.)Characteristic examples
In this section a selection of the most prominent NLO chromophores investigated for

application in PR polymer composites up to now will be presented. As far as available, the PR
FOM according to eq. (2.5 - 123), Fλ (λ: operating wave length), will be provided. The
chromophores to be discussed and their available electro-optical characteristics are listed in
table (3 - 1). 

DMNPAA and its derivatives have been the most common NLO chromophores used in
PR polymer composites up to now. Typical performance data have already been discussed in
“3.2.5.1.) Milestones” above. Furthermore, this chromophore has been used in the frame of this
work. Since low-Tg PR polymer composites containing DMNPAA have been recognized as
being unstable against crystallization soon after the first high-performance PR polymer has been
presented, research efforts focussed on solving this problem. As already mentioned before,
eutectic mixtures of 2,5-DMNPAA and 3,5-DMNPAA were a first approach. Later on, eutectic
mixtures of 2,5 DMNPAA and MNPAA turned out to be more favorable, since this
chromophore mixture exhibits less absorption at 633nm operating wavelength, the
corresponding composites are even more stable and the PR performance is notably improved as
well [136]. The latter system has also been investigated in [92, 141, 151] and in detail in the
frame of this work. Derivatives of DMNPAA carrying extended aliphatic side groups, which
improve the solubility of the chromophore in the polymer matrix have been presented and tested
in PVK based PR composites yielding more or less similar performance as compared to the
original system [174, 175].

Table (3 - 1): Chromophore molecular parameters and PR FOM

DMNPAA ATOP-1 PDCST DPDCP 2BNCM DHADC
-MPN

F-
DEANST

λmax 
[nm]

391* 536* 422* 352* 378* n.a. 417*

µg 
[10-30Cm]

21* 47* 29* 27* 31* 40*** 21*

∆α0 
[10-40Cm2/V]

22* 55* 25* 16* 19* n.a. 22*

β0 
[10-50Cm3/V2]

56* 27* 52* 1* -9* 23*** 78*

F0 
[10-74

C2m4mol/V2kg]

0.20* 1.40* 0.48* 0.24* 0.30* n.a. 0.27*

LCAO-c2 
[scale: 0-1; 

cyanine limit: 0.5]

0.16* 0.45* 0.22* 0.49* 0.59* n.a. 0.12*

∆αx (x[nm]#)
[10-40Cm2/V]

n.a. n.a. n.a. n.a. n.a. 25***
(830)

n.a.

Fx (x[nm]#)
[10-74

C2m4mol/V2kg]

0.28**
(790)

2.63**
(790)

n.a. n.a. n.a. n.a. n.a.

* from [172]; ** from [173]; *** from [170] converted to SI units
#wavelength the listed values have been determined for.
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ATOP-1 is one of the highest performing NLO chromophore for PR polymer composites
known to date. Its first test using the well known PVK/ECZ host matrix showed excellent
steady-state performance at low chromophore concentrations of only 20%wt and at 790nm
operating wavelength [171]. The low chromophore concentration used was a consequence of
compatibility problems with the only little polar PVK matrix causing anti-parallel aggregation
of ATOP-1 when present in the matrix in substantial concentration. These problems could be
solved by increasing the polarity of the matrix surrounding the ATOP-1 moieties, which was
achieved by adding the NLO chromophore DMNPAA to the composite in the ratio 1:1 with
respect to ATOP-1 [166]. The resulting composite ATOP-1:DMNPAA:PVK:ECZ:TNFM in
the ratio of 25:25:34:15:1%wt exhibited a glass transition temperature close to room
temperature. DFWM measurements were carried out on 105µm thick polymer films with s-
polarized recording beams of equal external intensity of 25mW/cm2 each, intersecting at an
external angle of 20° and p-polarized read-out. The sample was tilted by an external angle of
60°. The 2BC experiments were carried out using the same geometrical configuration but p-
polarized recording beams at 25mW/cm2 total external intensity and a beam ratio of 1:100
(undepleted pump beam regime). An operating wavelength of 790nm was used. The first
maximum (ηmax = 85%) of the DFWM diffraction efficiency occurred at Eext = 33V/µm and a
PR gain of Γ = 140cm-1 at Eext = 60V/µm was obtained [165, 173]. These steady-state PR
performance data are among the best reported up to now. Please note, that the PR response
behavior of PVK based ATOP-1 containing systems is complicated and not yet understood
[176]. A first rough estimate indicated a response time of about 3sec at Eext = 68V/µm [171].
This is comparable to the response behavior observed for a similar system containing solely
DMNPAA [177].

Grunnet-Jepsen et. al. reported on a high performance PR composite based on a PVK/
BBP polymer matrix and using the NLO chromophore PDCST [178], however, the
chromophore itself was presented before for PR application [179]. Since then PR polymer
composites containing PDCST or derivatives have intensively been studied [142, 156, 180].
The typical steady-state performance of these systems is basically similar to PVK based
DMNPAA containing systems. The first composite developed by Grunnet-Jepsen et. al.
consisted of PDCST:PVK:BBP:C60 in the ratio of 35:49.5:15:0.5%wt and showed a glass-
transition temperature of Tg = 28°C. The first maximum of the DFWM diffraction efficiency
(ηmax = 82%) occurred at Eext = 80V/µm and a gain coefficient of Γ = 200cm-1 has been
achieved at Eext = 100V/µm in a 75µm thick polymer film. These data have been obtained on a
setup showing the fairly uncommon configuration of 30° external intersection angle of the
recording beams and 45° external tilt angle. The recording beams were s-polarized for the
DFWM experiments and p-polarized for the 2BC experiments exhibiting an absolute external
intensity of 1W/cm2 at 676nm operating wavelength in both cases. The resulting PR grating
spacing of 1.7µm favours fast response due to short displacement lengths for the mobile charge
carriers on the one hand but the steady-state performance is reduced according to eq. (2.5 - 2),
eq. (2.5 - 3), and eq. (2.5 - 1)) on the other as compared to the typically adjusted value of the
grating spacing of about 3µm. The smaller tilt angle as compared to the typically adjusted value
of around 60° results in a reduced projection of the external field onto the grating wave vector,
which is unfavorable for fast response as well as the steady-state performance values. Some
comparative data obtained on a setup of common configuration, which would enable a trade-off
of these counteracting influences was not provided preventing a reasonable comparison of the
presented steady-state performance data with corresponding data obtained for other systems on
setups showing the aforementioned more common configuration. The fastest response time for
this kind of PR polymer composites has been reported for the aforementioned composition
however containing the PDCST derivative 7-DCST as NLO chromophore. The response time
was determined from fitting the PR gain obtained as a function of time to a stretched exponential



3.2.)Material concepts and approaches - a brief survey

175

associative growth function (KWW-fit) yielding τΓ ≈ 5ms for the experimental configuration
described above and Eext = 100V/µm, however, at 645nm operating wavelength [156]. The
sample thickness used in this experiment was not reported but only stated as being in-between
60 and 100µm. Since the PR gain combines the evolution of the PR phase shift and the evolution
of the refractive index modulation, which are strongly indicated to show significantly different
dynamics, the presented response time cannot be related to the response times obtained from the
evolution of the refractive index modulation in DFWM experiments as already mentioned
before in “3.1.1.2.) Photorefractive response time” on page 152. However, for comparison the
authors estimated the response time of the PR gain for the first presented high performance PR
polymer composite from [13] to be roughly τΓ ≈ 100ms. Please note that this comparison is
unreasonable, since neither the applied external field nor the experimental configuration nor the
recording intensity are similar enough to even give a crude estimate of the relation to be
expected if the compared systems would be tested under identical conditions. Nevertheless,
PVK based systems containing PDCST or derivatives appear to be somewhat faster than the
aforementioned DMNPAA containing pendants. 

 The first NLO chromophores explicitly developed in terms of optimizing the PR FOM
for low-Tg systems have been DPDCP and 2BNCM [91, 161]. The latter is a PR low molecular
mass glass and its PR properties have already been discussed in “3.2.3.) Low molecular mass
glasses” on page 157. DPDCP has only been tested for its potential application in PR polymer
composites in a proof of principle. DFWM and 2BC experiments on a model system consisting
of 55%wt of the inert matrix PMMA doped with 15%wt TPD as CTA, 0.5%wt C60 as sensitizer,
and 30%wt of DPDCP were carried out using an operating wavelength of 676nm. The recording
beams were s-polarized for the DFWM experiments and p-polarized for the 2BC experiments
and intersected at an external angle of 30° yielding a grating spacing of 1.66µm. The sample
was tilted by 45°. The read-out of the hologram in the DFWM experiment was performed p-
polarized at 760nm wavelength. The recording intensities were not provided but rather only
beam powers and some not accurately specified beam diameters. However, the intensity ratio
of the recording beams was reported as 1:1 in any case. A DFWM diffraction efficiency of η =
25% at Eext = 100V/µm not showing overmodulation and a PR gain coefficient of Γp = 35cm-1

at Eext = 80V/µm were reported. A single exponential initial response time constant of τ =
850ms was determined. Due to the uncommon setup configuration these performance data
cannot be compared with data obtained on a setup showing the typical configuration as
discussed above. The comparatively low performance in general may be attributed to the
unfavorable host matrix containing a substantial amount of inert matter and only 15%wt CTA.
Furthermore the small absorption reported to be only α = 2cm-1 at operating wavelength should
be expected to condition small charge generation efficiency as compared to the other
composites discussed in this section. Thus a better performing composite may be expected by
choosing a more favorable host system.

Kippelen et. al. presented the NLO chromophore DHADC-MPN, which was developed
based on BLA considerations as well [170]. The chromophore was tested in two PR composites
targeted at the two different operating wavelengths of 633nm and 830nm and consisting of
DHADC-MPN:PVK:ECZ:TNF in the ratio of 40:39:19:2%wt and of DHADC-
MPN:PVK:ECZ:TNFM in the ratio of 25:49:25:1%wt, respectively. The typical holographic
setup configuration was applied with the recording beams intersecting at an external angle of
20° and an external tilt angle of the sample of 60°. The recording intensity was 800mW/cm2 for
633nm operating wavelength and 560mW/cm2 for 830nm with a beam ratio of 1:1 in both cases.
DFWM experiments were carried out with s-polarized recording beams and s- as well as p-
polarized read-out. For the latter the first (external) diffraction maximum was obtained at Eext
= 30V/µm for 633nm operating wavelength (ηmax, 633nm = 10%) and at Eext = 59V/µm for
830nm operating wavelength (ηmax, 830nm = 74%). The small absolute maximum diffraction



3.2.)Material concepts and approaches - a brief survey

176

efficiency ηmax, 633nm was attributed to absorption and reflection losses. For comparison
DMNPAA containing composites have been tested under identical conditions as well. The first
diffraction maximum of ηmax, 633nm = 54% has been obtained at Eext = 65V/µm for a sample
DMNPAA:PVK:ECZ:TNF = 40:39:19:2%wt and of ηmax, 830nm = 88% at Eext = 60V/µm for a
sample DMNPAA:PVK:ECZ:TNF = 50:33:16:1%wt. The sample thickness of all samples was
reported as 105µm. Response times were not reported but rather a sample dynamic DFWM
curve for the DHADC-MPN containing sample for 830nm operating wavelength. From this
curve response time constants in the range of several seconds must be expected. 2BC
experiments are not reported. The authors pointed out, that the systems containing DHADC-
MPN showed high stability against crystallization and phase separation. Formal derivatives of
DHADC-MPN were reported by Van Steenwinckel et. al. [181]. The performance data
presented for PVK based composites containing these chromophores are almost identical to
typical PVK based systems containing DMNPAA. Based on the presented performance data
DHADC-MPN competes with ATOP-1 in chromophore quality for PR application.

Please note, that F-DEANST has been listed for comparison since this chromophore and
its derivatives were widely used in PR polymer composites of the early stage. These
chromophores show reasonable performance in today’s low-Tg high performance PR polymer
hosts, which, however, cannot compete with nowadays established reference systems.
Therefore DEANST derivatives are now at discount. The most current work referring to this
chromophore type focussed on general temperature dependent studies of PR polymers using a
PVK based model-system containing DEANST [157]. No work (except review articles)
referring to this chromophore type has been published more recently.

In conclusion, a representative selection of the best NLO chromophores for PR
application presently known are listed in this section and literature reporting derivatives is
mentioned. Among the listed chromophores ATOP-1 and DHADC-MPN are highest
performing. However, both are not favorable for use at an operating wavelength of 633nm (He-
Ne Laser) due to fairly high absorption but rather for application in the near infrared. For
operating wavelengths in the visible range DMNPAA (and its derivatives) as well as PDCST
(and its derivatives) are more suitable. 

3.2.5.6.)The sensitizer
The task of the sensitizer is to provide the minimum degree of absorption necessary to

generate free charge carriers for the PR grating build-up. Up to now, only two types of
sensitizers have been widely used in amorphous organic PR materials, which are the TNF,
TNFM, and the Buckminster Fullerene C60, or its derivative PCBM, which exhibits
significantly improved solubility in the polymer host matrix as compared to C60.

TNF and TNFM form charge transfer (CT) complexes with the CTA’s, which exhibit a
certain degree of optical absorption at the operating wavelength of the PR system. Upon optical
excitation, an electron is transferred from the CTA moiety to the sensitizer molecule within the
CT complex. Thus the sensitizer becomes negatively and the CTA positively charged and the
CT complex dissociates subsequently. The hole left behind on the CTA then is ready to be
displaced by hopping transport under the influence of the externally applied field. The theory
behind the underlying processes has been elaborated upon in “2.4.3.) Electrical conduction in
organic polymers” on page 95 and in “2.4.4.) Charge generation and recombination in organic
polymers” on page 109.

In contrast, C60 and its derivatives do not form CT complexes with the CTA’s but already
absorb at the operating wavelength. Upon optical irradiation, an electron of the sensitizer is
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excited from the HOMO to the LUMO. The resulting hole in the HOMO of the sensitizer is
thereafter filled up with an electron stemming from a neighboring CTA thus yielding a hole in
the CTA manifold. 

The aforementioned sensitizers differ in their
spectral range of optical excitation. TNF and the
Fulleren derivatives may be applied as sensitizers
for the visible spectrum. Due to its higher
electronegative character, the absorption maximum
of the TNFM-CTA CT complex is red shifted as
compared to the corresponding TNF-CTA CT
complex, which makes TNFM an appropriate
sensitizer for operating wavelengths in the near
infrared optical spectrum. In order to illustrate the
described spectral relations, the differential
absorption spectra of TNF/ECZ, TNFM/ECZ and
PCBM/ECZ in chloroform with respect to pristine
ECZ in the same solvent are depicted in figure (3 -
4).

The applicability of a sensitizer depends
strongly on the ability of the sensitizer to form a CT
complex with the CTA of the conducting polymer
matrix, or on the ability to transfer a hole to the CTA
manifold. It is well-known for TNF, that it forms a
strong CT complex with the carbazole moiety in a PVK matrix [47, 182, 184]. Thus, TNF and
TNFM will be the sensitizer of choice for systems using carbazole as CTA, whereas they are
less preferable for other known CTA’s or conducting polymers like TPD, TPA, or PPV,
respectively. The particular behavior of C60 and its derivatives as sensitizers in certain
conducting polymer matrices is less well known. Fullerene derivatives have been applied in
almost all types of polymer hosts for PR composites including PVK with varying success. A
clear trend has not been worked out up to now. The most comprehensive study of C60 as
sensitizer in PR polymers is provided in [86], however, the model systems are PR polymer
composites of the early stage and no more up to date. In last consequence, the choice of the most
suitable sensitizer for a particular amorphous organic PR material as well as its most appropriate
concentration in the system finally resulting in best performance desired for a particular
application is a matter of trial and error.

 Figure (3 - 4): Differential absorption spectra 
for 50mg ECZ and 2mg TNF (solid line), 

2.3mg TNFM (dashed line) and 2mg PCBM 
(dotted line) with respect to pristine 50 mg 
ECZ, each dissolved in 10ml CHCl3. This 

correlates to a particle ratio of roughly 
ECZ:TNF:TNFM:PCBM ≈ 110:3:3:1.

Spectra measured with a Varian CARY 50 UV/
VIS spectrometer.
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4.)Experimental techniques and general 
evaluation

PVK-based photorefractive polymer composites have been investigated in the frame of
this work by means of holographic determination of the PR grating strength and PR phase shift
where appropriate. These characteristics have been derived from degenerate four-wave-mixing
(DFWM) and degenerate two-wave-mixing experiments, commonly referred to as two-beam-
coupling (2BC). Furthermore simple transmission ellipsometric (ELP) experiments were
carried out in order to determine the parallel plate poling behavior of the systems. The
capabilities of the investigated composites for potential application as mass data storage
systems have been examined by means of peristrophic multiplexing experiments. 

Subsequently, the procedure of material preparation will be described, and the typical
structure of the samples will be sketched. The holographic setups built up for the DFWM and
the 2BC experiments will be described focussing on the substantial components without
elaborating upon trivial aspects. Special features will be pointed out and particular problems
recognized will be discussed where advisable. Please note, that the DFWM and the 2BC setup
will be described separately for the sake of clarity, however, they were actually merged in a
single setup. The peristrophic multiplexing experiments were carried out on a different setup,
which will also be described separately. The setup for the ELP experiments, which was
incorporated in the setup used for the DFWM and 2BC experiments will not be described due
to its simplicity but only depicted in principle. The evaluation procedure for all experiments
carried out will be discussed and a consideration of systematic errors accepted will be included.

 All experiments subsequently described were carried out in air conditioned laboratories
exhibiting a constant room temperature, which will be noted in the section devoted to the
experimental results in the subsections concerning aspects of the particular experiments
performed. 
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4.1.)Preparation of materials and sample structure
All materials investigated consisted of a PVK polymer matrix plasticized by various

amounts of ECZ and sensitized with TNF. At first, DMNPAA was used as NLO chromophore
and later on an eutectic mixture of DMNPAA and MNPAA (eutectic ratio 1:1 [136]). For
introducing extrinsic traps in the system small amounts of TPD were added for certain
experiments. PVK was purchased from Sigma/Aldrich in highest degree of purity available and
used as is. The specifications state an average molar mass of 1,100,000 g/mol equivalent to an
average chain length of approximately 5,500 repeating units, and a glass-transition temperature
of Tg ≈ 200°C. ECZ was also purchased from Sigma/Aldrich but in technical degree of purity
and recrystallized from chloroform three times for purification. The NLO chromophores were
synthesized by standard azo-coupling between purchased anisole (methoxy-benzene)
derivatives corresponding to the substitution pattern desired and nitro aniline by means of
borontetrafluoride-acid and sodium-nitride for generating the precursor diazonium ion. The
reaction solution in DMF (dimethyl-formamide) was separated by mixing with chloroform and
the resulting azo-dye solution was purified by column chromatography over silica gel. TNF was
ordered form Sigma/Aldrich and TPD was ordered from Syntec as technical mixture of mono-
and dimethylated isomers. Both these chemicals were purchased in the highest degree of purity
available and used as is. 

The components required for the PR polymer composites were dissolved in methylen-
chloride to the amount desired and the solution was filtrated thereafter through a ceramic filter
in order to minimize the number and size of solid state particles, which cause undesired
scattering of light. Then the solvent was allowed to evaporate. The solution should not be
evaporated by cooking, since this may aggravate the further processing. The resulting polymer
composite was put between clean glass plates and subsequently homogenized mechanically at
elevated temperatures (about 150°C to 200°C depending on the particular material). The
polymer block thus obtained was finally cut into small pieces.

The glass-transition temperatures of the particular polymer composites was determined
by differential scanning calorimetry (DSC) using a Mettler Toledo DSC 821e calorimeter.
Absorption spectra were measured in solid phase using a Varian CARY 50 or a Kontron
UViCON 860 UV/Vis spectrometer. 

Indium-tin-oxide (ITO) coated glass sheets were
purchased from various suppliers. However, within
experimental series to be compared only one type of ITO
coated glass was used. This turned out to be advisable since
the ITO coated glasses purchased from different suppliers
turned out to exhibit notable differences in properties like
refractive index, absorption spectrum, thickness and
electrical conductivity. The purchased ITO coated glass
sheets were cut into suitable pieces and the ITO coating was
partially removed by etching with an aqueous solution of
1mol/l FeCl3 in 5n HCl at elevated temperature of 60°C for
about 1 minute. ITO coating to remain was protected before
by adhesive tape. The resulting ITO glass slides are sketched
in figure (4 - 1).

 The polymer pieces prepared as described above were
melt-pressed between two of these ITO coated glass slides
under elevated temperatures using glass spacer beads to
adjust the film thickness. The polymer film thickness and sample parallelism was regularly

 Figure (4 - 1): ITO glass slides 
used for sample preparation. 

Grey areas are ITO coated. (A) 
and (B) are typical slides for 

standard and peristrophic 
multiplexing experiments, 

respectively. 

(A)

(B)

0 1 2 3 4 5[cm]
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counterchecked by a micrometer screw and occasionally by a Dektak-3 profilometer. The
structure of the samples finally obtained is depicted in figure (4 - 2). Please note, that special
care must be taken to avoid bubbles in the overlapping area of the opposing ITO traces since
these will dramatically decrease the dielectric strength of the sample.

After having the material melt-pressed
between the ITO glass slides, the samples to be
characterized within a certain series of
measurements must be cooled down to room
temperature applying a consistent and constant
cooling procedure. Among others, the cooling
procedure determines the amount of free volume
enclosed in the system as discussed in “2.4.1.)
Relaxation and thermodynamics in polymers” on
page 70. Thus, geometrically identical samples
made from the same material will behave slightly
different, if inconsistent cooling procedures have
been performed. When advisable, particular
cooling procedures applied will be mentioned in
correlation with the corresponding experiments
to be discussed in the section devoted to the
experimental results.

Sample holders according to figure (4 - 3) were
made from PVC (polyvinyl-chloride) and Pertinax
(phenol resin plastics of excellent electrical resilience).
The structure depicted allows for external angles of
incidence for the recording beams of up to α2 = 85° (see
next section) and provides sufficient mechanical
stability to ensure a stable sample position even with
fairly heavy wires (strongly insulated due to high
voltage) attached to the sample for applying a strong
electrical field. The sample holder can be opened by
opening the 4 screws in the edges enabling easy and
quick access to the samples.

The sample holder for the peristrophic
multiplexing experiments is described in “4.2.1.5.)
Holographic multiplexing experiments” on page 201.

 Figure (4 - 2): Typical sample structure. Above: 
top view; below: side view.

active
area

ITOspacer beads

polymer

 Figure (4 - 3): Standard sample holder. 
The semitransparent object in the center 
indicates the position of the sample. The 
indicated field direction is not stringent. 

screws
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4.2.)Wave mixing experiments
In this section the general setup configuration and parameters, which apply to all the

diffraction experiments will be discussed first. Furthermore, the equipment used will be
described. Thereafter, the 2BC, DFWM and peristrophic multiplexing experiments will be
considered in detail. General problems impacting all diffraction experiments using the
configurations to be described will be discussed. The section will close with a short discussion
of how absolute beam intensities were determined.

4.2.1.)General wave mixing setup configuration and parameters
All diffraction experiments in the frame of this

work were carried out using an operating
wavelength of λ0 = 632.8nm originating from
commercial HeNe lasers (Melles Griot) having an
output power of 10, 20 or 30mW. Prior to particular
experiments, the laser system was allowed to warm
up for at least one hour in order to ensure stable
steady-state working conditions. The laser setups
were mounted on laser tables decoupled from
ground by air-cushions and were covered by closed
nontransparent plastic boxes in order to exclude
influence of airflow on the laser beams in critical
areas and to minimize background light in the setup.

The general setup configuration applied for
the holographic diffraction experiments is depicted
in figure (4 - 4). I01 and I02 are the incident recording
beams 1 and 2, respectively, and I1 and I2 are the
corresponding beams after having traversed the
sample. The incident angles of I01 and I02 are α1 and
α2, respectively. For all diffraction experiments α1 =
50° and α2 = 70° (external) applies resulting in an
external tilt angle of Ψt = 60°. According to eq. (2.1
- 45) and taking into account the refractive index of
n = 1.7±0.05, valid for all the PR polymer composites investigated, an interference grating
fringe spacing of Λ = 3.15±0.1µm is obtained for this configuration.

I03 is the incident probe beam for the performed DFWM experiments. The configuration
according to figure (4 - 4) is referred to as phase-conjugate read-out configuration. I3t is the
transmitted portion of the probe beam after having traversed the sample and I3d is the portion
diffracted by the holographic grating.

4.2.1.1.)Experimental wave mixing setup and equipment
The following basic equipment was used for all except the peristrophic multiplexing

experiments: The laser beam powers were measured with non calibrated standard photodiodes
purchased from Silicon Sensor AG, Germany. Amplifiers for the photodiodes were homemade
by the electronic workshop of the department for Physical Chemistry of the University of

 Figure (4 - 4): Illustration of the general setup 
configuration for holographic wave-mixing in 
PR polymer samples. d is the thickness of the 

polymer layer and Eext depicts the external 
field applied. The indicated 2BC energy 

transfer direction (I2 → I1) is illustrative.
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Munich. Absolute laser beam powers were determined with a power meter from Newport, type
835. For applying an electrical field to the polymer samples a remotely controllable high voltage
power supply from Heinzinger Elektronik, Germany, type PNC 40000-1pos was used,
providing high voltage of up to 40kV at maximum output of 1mA. Small laser beam intensities
were determined by chopping the beams with a HMS-Elektronik light beam chopper, type 221
and using the single channel lock-in amplifiers ITHACO-NF 3921 (two amplifiers), ITHACO
Dynatrac 393 and EG&G Brookdeal 393, each triggered by the chopper controller. In some
cases homemade constructions were used showing similar working principle (i.e. homemade
chopper and retrieving the trigger signal by a separate laser diode and detector). The laser beams
were controlled using fast bistable magnetic shutters (Newport) operating with 5ms switching
time. Digital remotely controllable shutter controllers were homemade by the aforementioned
electronic workshop. 

The setup was controlled by a Pentium 133MHz Intel computer system (OS: Windows 95,
32MB RAM) using either an ISA multifunction PC card from Meilhaus Elektronik, Germany,
type ME300LG or GPIB bus. Kinematic components of the setup were controlled by a PI-
Instruments (Germany) motion controller card type C8242. Measurement programs were
developed with National Instruments LabVIEW 16bit version 3.11, which turned out to operate
more reliably and to process considerably faster on the employed computer system than newer
software versions (up to version 5.1/32bit). Data were sampled using the aforementioned
multifunction card exhibiting a maximum sampling rate of 200kHz and 12bit resolution of the
A/D converter.

A manifold of additional homemade devices was temporarily incorporated into the setup
in order to provide special functionalities. Wherever of essential importance, these will be
discussed in the section devoted to the experimental results in context with the experiments
making use of these functionalities.

The peristrophic multiplexing experiments were carried out in the working group of Prof.
Dr. Demitri Psaltis, CalTech, Pasadena, California, USA, using the measurement equipment
provided there. 
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4.2.1.1.1.)2BC setup

Steady-state and dynamic 2BC measurements were performed using the setup depicted
above, which represents the latest configuration used. The setup was rebuilt and modified
several times in the frame of this work, however, the basic configuration was not altered notably.
Thus, the measurement procedures as described later apply in general.

 Figure (4 - 5): 2BC experimental setup including recording beams (short dotted lines) and erasure beam 
(widely dotted line). Arrows indicate propagation directions. Components of the setup referred to in the 

text while describing the measurement sequences are explicitly marked in the sketch. For the other 
components see legend. A manifold of pinholes (and/or irises) was incorporated as well in order to block 
undesired beam reflections and to facilitate the adjustment of the setup. Furthermore a Mach-Zehnder 
interferometer was included in order to back-check the setup stability using appropriate reflected beam 

portions, which was not used otherwise. The latter and the pinholes are not relevant for holographic 
wave-mixing and, thus, not shown. Please note that the attenuator switch moves an attenuator quickly 
into or out of the beam path and operates out of the propagation plane of the beams. In contrast, the 

attenuator changer changes attenuators by rotation in the propagation plane of the beams, which is a slow 
process taking several seconds. The beam path of the DFWM probe beam is shown in figure (4 - 6).
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4.2.1.1.2.)DFWM setup

Steady-state and dynamic DFWM measurements were performed using the setup
depicted above, which represents the most current configuration. The setup was rebuilt and
modified several times in the frame of this work, however, the basic configuration has not been
altered. Thus, the measurement procedures as described later will apply in general.

 Figure (4 - 6): DFWM experimental setup including transmitted and diffracted probe beams (short 
dotted lines) and erasure beam (widely dotted line). Arrows indicate propagation directions. Please note 

the remarks made in the legend of figure (4 - 5) on the setup components. 
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4.2.1.1.3.)Wave mixing measurement circuitry
For the functional configuration and related

equipment used for wave mixing measurements
reference is made to figure (4 - 7).

Prior to all measurements, possible constant
offset values of the output of the measurement circuitry
were determined by blocking the beams in question
with shutter Sh1, while other beams present were
allowed to enter the setup. The offset values were
subtracted from the output values obtained for channel
1 (detector D1) to channel 4 (detector D4). The output
characteristics of the measurement circuitry as a
function of the incident light power was determined
whenever the circuitry had been modified and was
counterchecked randomly during the operating periods
at constant configuration. If necessary, data obtained
were numerically matched to the characteristics of the
circuitry. Special care was taken of this issue if
rectifiers were used to obtain dc-output values from
chopped beams. The threshold voltage and transfer
characteristics of the rectifiers were carefully
determined as a function of the input ac voltage and
accounted for as numerical offset in the data obtained
by appropriately folding the transfer function with the
experimental data. Attention was paid to the fact, that
ac-signals are not reliably detectable if below or only
slightly above the onset voltage of the rectifiers. If
necessary, appropriate dc voltage offset was provided
to the signal lines in order to avoid this regime of non-
linear operation. 

The time resolution of the setup measurement
circuitry was limited by the adjustable time constant of
the lock-in amplifiers on the one hand and by the cut-off frequency of the rectifiers’ smoothing
circuitry (20Hz) on the other. With disconnected lock-in amplifiers and rectifiers, the time
resolution was limited by the sampling rate of the A/D converter (in total 200kHz, i.e. to be
divided by the number of channels if more than one channel was used). 

The signal resolution limit cannot be discussed in general terms, since it depends on the
particular setup configuration. If relevant, the signal resolution limit will be discussed in the
corresponding sections devoted to the experimental results.

 Figure (4 - 7): Measurement circuitry for 
diffraction experiments. TTL: TTL signal 

line; A/D: analog signal line to A/D 
converter; D/A: analog signal line from D/
A converter; RR: reed relay (on/off); RC: 

reed relay (line changer); A: simple 
amplifier (provided amplification factors: 

10/100/1000); Li: lock-in amplifier 
(reference line indicated by a tilde); HV: 

high voltage source (remote controllable by 
analog dc-signal); MTCTRL: signal from 

motion controller card. Residual 
abbreviations are explained in the context 

with figure (4 - 5).
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4.2.1.2.)Two-beam-coupling (2BC)
2BC experiments were carried out during recording as well as erasure of a PR grating in

the materials investigated. Please note, that the latter represents some sort of contradiction in
terms since erasure of the PR grating requires the absence of the recording beams and thus no
beam coupling can be observed. The problem was solved by shutting down the recording beams
to an extremely low level as compared to the light intensity used for erasing the grating. Please
note furthermore, that grating erasure must be determined using an erasure beam, which is not
Bragg-matched to the PR grating in order to avoid grating refreshment by a Bragg-matched
erasure beam and its diffracted portion, which will distort the actual grating decay process.

4.2.1.2.1.)2BC measurement procedures
The quantities to be directly measured in the 2BC experiments carried out are recording

beam powers as a function of the applied field or of the time and the reference beam powers at
zero field or prior to the onset of the 2BC effect, respectively. The data obtained were evaluated
as described in “4.2.1.2.2.) Evaluation of the 2BC experiments” on page 188.

For the steady-state 2BC experiments the sample was first illuminated with both the
recording beams without an external field applied in order to obtain the reference values for the
powers of the recording beams. Then the external field was increased stepwise by an appropriate
increment, which was chosen based on a trade-off between a suitable number of data points and
the resulting required total measurement time. After increasing the field by one step the material
was given sufficient time to relax to quasi steady-state. The relaxation time required was
estimated by previous determination of the dynamic behavior of the refractive index modulation
in a DFWM experiment at some low external field value necessary to obtain a reasonable signal
strength and subsequent evaluation as described in “4.2.1.3.2.) Evaluation of the DFWM
experiments” on page 195. At least 5 times the thus obtained logarithmically averaged response
time was provided as relaxation time. Subsequently, 500 single measurements were performed
at a sampling rate of 100sec-1, hence, covering a time span of 5 seconds, and the data obtained
were arithmetically averaged to get the corresponding data point. 

For determination of the build-up dynamics of the 2BC effect at constant externally
applied field, the field was always applied for half an hour in advance to the start of the
measurement in order to provide quasi steady-state poling conditions for the material under
investigation and held constant throughout the complete measurement sequence. If desired, the
sample was pre-illuminated during this period as well using either one of the recording beams
(typically beam 2 (I02)) or the erasure beam. This time period is referred to hereafter as “initial
relaxation“ (time). Data sampling was initialized about 500ms in advance to the beginning of
the measurement in order to monitor the onset of the actual measurement procedure, which
defines t = 0. Then the recording process was started by switching on recording beam 1 (or both
of the recording beams if the initial relaxation was performed with the erasure beam) using fast
magnetic shutters exhibiting a mechanical switching time of about 5ms and, if necessary,
simultaneously switching off the erasure beam. The total switching time of the complete process
from initial relaxation to holographic grating recording was less than 10ms in any case. The
recording beams’ powers were monitored as a function of time typically applying an initial
sampling rate of 10sec-1, which was decreased down to 1sec-1 at minimum in several steps as
the sampling process proceeded in order to reduce the total amount of data sampled in
experiments extending over several tens of minutes up to hours. The sampling schedule of a
dynamic experiment as described here was pre-programmed defining steps of sampling rates
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and the number of data to be sampled per rate step, the total sum of all of which eventually
defined the total length of holographic grating recording. The first values obtained immediately
after both the recording beams had been switched on were numerically averaged in order to get
the reference beam powers with the 2BC effect having not yet set on. Depending on the response
speed of the systems investigated, typically 5 to 10 data points were used therefor.

Furthermore a technique was developed in order to monitor the coherent energy transfer
due to 2BC while erasing the grating. For this purpose, the writing beams were shut down by
more than three orders of magnitude in intensity after the holographic grating recording process
as described above had been completed. Then the erasure beam was switched on. The recording
beams reduced in intensity will be referred to hereafter as „gain probe beams“. For shutting
down the recording beams an appropriate attenuator was switched into the main laser beam path
by a home made device consisting of a magnetic relay, which carried the attenuator attached to
its movable part (“ODS“ in figure (4 - 5)). The relay was triggered by a TTL line and an
electronic power relay. Due to the relatively high mass of the parts to be moved, this switching
process was fairly slow. Using the same detectors now the gain probe beams showing very small
intensity (and power, of course) had to be detected besides the original recording beams. It is
clear, that this required a second signal line of much higher sensitivity than for the original
recording beams. Therefore, a TTL controlled signal line changer was built and inserted into the
measurement circuitry. The sensitivity required could only be achieved using lock-in amplifiers,
which demanded the recording beams to be chopped. As a consequence, the original recording
beams also could no more be detected directly but the signal had to be rectified before. Please
note, that rectifiers introduce an additive offset due to the diodes’ onset voltage, which has to
be corrected for calculating the gain values. This correction was performed by measuring the
electrical characteristic of the rectifiers with respect to the input AC voltage, fitting this curve
with polynomial regression and convolving the resulting function with the experimental curves.
The process of changing the signal lines from low sensitivity to high sensitivity required a
considerable relaxation time due to a signal overshoot occurring in the lock-in amplifiers. Thus,
in conclusion, the sequence applied for switching from recording the grating to erasing it again
while further monitoring the coherent energy transfer proceeded as follows. First data sampling
was stopped. The original writing beams were shut down in intensity. Then the signal lines were
changed to high sensitivity and an idle period of two seconds was provided for the lock-in
amplifiers to relax from the occurring signal overshoot. Finally data sampling was restarted and
the erasure beam was switched on simultaneously.

The powers of the gain probe beams were then monitored as a function of time basically
as described above. However, a sampling rate of 16.67sec-1 was applied for the first 5000 data
points, which was then decreased to 2.083sec-1 sampling another 5000 points. This sampling
schedule was applied to all experiments in question here resulting in a total erasure time of the
grating of 45min. The last values obtained were averaged to get the reference beam powers with
the grating already erased. Typically 500 data points were used for averaging in this case. The
evaluation process is described in more detail below including a discussion of the problem of
getting meaningful reference values for the gain probe beams.

Please note, that the circuitry intended to carry out the experiments described above was
disabled for experiments, which focussed only on the build-up dynamics of the 2BC effect or
its steady-state values. Then, the chopper Ch1 (see figure (4 - 5)) was removed and the recording
beam powers were monitored as dc-signals. The rectifiers were then bridged or absent.
Furthermore, the waiting loops in the switching process from recording to erasing were disabled
and the time resolution of the switching process was then accordingly determined by the
maximum time resolution of the MS Windows based setup control software (≤ 50ms).

It is to be pointed out that the measurement technique as described above introduces a
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phase reference “from outside” the PR grating. This does only make sense, if there are
components of the PR grating, the spatial position of which can be considered as unchanged at
least during the initial erasure process.

4.2.1.2.2.)Evaluation of the 2BC experiments
Subsequently, the basic equations for evaluation of the PR gain in the 2BC experiments

carried out in the frame of this work will be discussed. Systematic errors accepted will be
discussed. Finally, the evaluation procedure for the experiments will be outlined.

4.2.1.2.2.1.)Basic equations for evaluation of the 2BC experiments
The PR gain coefficient Γ is calculated from the PR “gain factor“ γ, which is derived from

eq. (2.5 - 108) and eq. (2.5 - 109) and, hence, experimentally accessible. However, these
equations must be adapted to the tilted geometry applied for PR polymers and depicted in figure
(4 - 4). Subsequently, this will be performed ostensibly by modifying the coupling constant of
the symmetric coupled wave problem discussed in “2.5.4.) Photorefractive two-wave mixing”
on page 138. First, eq. (2.5 - 108) and eq. (2.5 - 109) will be applied directly to the tilted
geometry. The fact that the optical paths of the writing beams are differently long in this
geometry will at first be ignored. Then the absorption terms will be eliminated by making use
of both the equations eq. (2.5 - 108) and eq. (2.5 - 109) to calculate the gain coefficient and by
introducing the demand for energy conservation. Finally a modified coupling constant will be
introduced and, thus, the different optical path lengths will be accounted for in context with the
gain coefficient. The following discussion assumes s-polarization of the involved beams which
allows to set the consideration of the polarization vectors aside. 

The net gain factors for the particular recording beams are given by:

 eq. (4 - 1)

and:

 eq. (4 - 2)

where α is the absorption coefficient, b the initial intensity ratio of the recording beams given
by eq. (2.5 - 110), l the average interaction length with the PR grating and l1,2 are the actual
lengths of the path of the light beams through the material. The intensity quantities have been
defined before in context with eq. (2.5 - 108) and eq. (2.5 - 109). Please note, that the interaction
length with the PR grating is connected with the z-coordinate used for the derivation of eq. (2.5
- 110) in “2.5.4.) Photorefractive two-wave mixing” on page 138 via the internal tilt angle θt,
i.e. l is the actual length of the bisector between the recording beams inside the PR material
given by:

,  eq. (4 - 3)

where d is the sample thickness. The actual length l1(2) of the path of beam 1(2) through the
material is given by:

.  eq. (4 - 4)

The subsequent consideration will focus on beam 1 but apply similarly to beam 2 as well.
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Solving eq. (4 - 1) for the net gain coefficient Γ1 yields:

,  eq. (4 - 5)

where γ1, b and α are experimentally accessible. In order to derive an expression for the actual
gain coefficient, the PR gain factor γ01 for the case of zero absorption shall be introduced with:

,  eq. (4 - 6)
which eliminates the absorption term at the right hand side of eq. (4 - 5) resulting in:

.  eq. (4 - 7)

With eq. (4 - 6) one obtains from eq. (4 - 1):

,  eq. (4 - 8)

where I10 represents the intensity of the beam after having traversed through the sample without
PR grating. This allows to obtain the PR gain factor γ01 from the ratio of the intensities of the
recording beam behind the sample for the case of the 2BC effect being absent on the one hand
(I10) and being present on the other (I1). I1 and I10 are directly accessible by the experiment.
Furthermore, b may be expressed as:

.  eq. (4 - 9)

and energy preservation must be accounted for, which writes:

.  eq. (4 - 10)

Inserting eq. (2.5 - 110) for b and eq. (4 - 8) for γ01 into eq. (4 - 7) and using eq. (4 - 10) yields:

,  eq. (4 - 11)

where γ02 is the corresponding absorption-free PR gain factor for beam 2 given by:

 eq. (4 - 12)

in analogy to eq. (4 - 8), however, referring to eq. (4 - 2). Please note, that the absorption terms
have cancelled in eq. (4 - 11) as notified above. 

The oblique incidence of the recording beams leading to different actual length of the
optical paths results in different losses, which are not accounted for in eq. (4 - 5) and eq. (4 - 7)
but have already been eliminated in eq. (4 - 11). For the gain coefficient, however, still
symmetric incidence of the recording beams is presumed and thus equal interaction length for
both the recording beams with the PR grating. In order to correct for this inconsistency, the
expression for the gain coefficient according to eq. (2.5 - 102) must be modified, which is the
real part of the coupling constant in the underlying coupled wave problem:

 .  eq. (4 - 13)

Here 2θ is the intersection angle of the recording beams at symmetric incidence. The factor cosθ
was introduced in order to express the components of the wave propagation vectors of the
recording beams along the z-direction according to eq. (2.5 - 93) for the geometry depicted in
figure (2.5 - 8) on page 141. Accordingly, this form of the 2BC coupling constant will not hold
any more if oblique incidence as depicted in figure (4 - 4) shall be accounted for. In this case the
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projection of the beam propagation vectors onto the z-direction must be considered
independently for each of the beams and, hence, must not be merged into the coupling constant.
It follows the correct expression for calculating the gain coefficient at oblique incidence of the
recording beams:

 ,  eq. (4 - 14)

where d is the sample thickness and the coupling constants reads now:

.  eq. (4 - 15)

Using the gain coefficient according to eq. (4 - 15), the original form of eq. (2.5 - 108) and eq.
(2.5 - 109) expressing the beam intensities as a function of the sample thickness (i.e. the z-
coordinate) is basically restored. Eq. (4 - 1), eq. (4 - 2), and eq. (4 - 8) with “Γl“ in the
exponential argument can be dropped again, since they have only been intermediate steps
introduced in order to illustrate the problem discussed and to derive the correct expressions
ostensively without carrying out a coupled wave analysis once more for the case of oblique
incidence. Eq. (4 - 14) may as well be derived starting with eq. (2.5 - 108) and eq. (2.5 - 109)
with the actual optical paths already inserted. Two expressions of the form of eq. (4 - 5) will
then be obtained, which must be merged in order to get eq. (4 - 14). 

Please note that there is a mistake in the interpretation of the gain equations often
observable in the literature about PR polymers. The gain coefficients calculated by eq. (4 - 14)
are often used together with eq. (4 - 13) instead of eq. (4 - 15). However, the error made is
usually small due to the geometry typically used for these experiments, which results in 3° < θ
< 4° and, thus, cosθ ≈ 1 anyway.

4.2.1.2.2.2.)Consideration of systematic errors in the 2BC experiments
The theoretical solution of the coupled wave problem underlying 2BC (page 141)

assumes a slowly varying amplitude of the involved waves as a function of the interaction
length, an approximation which allows to neglect the second order derivative of the wave
amplitude with respect to the interaction length in the wave equation. In high performance PR
polymers showing strong 2BC, however, this approximation may become poor. Figure (4 - 8)
shows that the approximation is still reasonably valid for the 2BC experiments carried out in the
frame of this work, where usually gain coefficients of Γ ≤ 50cm-1 in samples with d ≤ 125µm
were obtained. In the worst case (i.e. Γ = 50cm-1 and d = 125µm), the grating contrast is reduced
by less than 2% in average and less than 5% at maximum due to 2BC.

Systematic errors in obtaining the gain coefficient from the experimental data on the
absolute or relative recording beam intensities behind the sample may be made by not
accounting correctly for effects other than the coherent energy transfer due to 2BC, which alter
the intensities of the beams while traversing the sample. For symmetric incidence of the
recording beams, these errors cancel by principle. However, for oblique incidence this is not the
case. The effects, which must be accounted for are absorption effects as well as the transmission
coefficients of the various interfaces in the sample structure depicted in figure (4 - 2). Since
there is still a considerable amount of publications coming up, which report on PR gain
coefficients obtained for oblique incidence of the recording beams by means of eq. (4 - 7) it
seems advisable to estimate the order of magnitude of these effects.
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Subsequently the orders of magnitude of these
effects shall exemplarily be considered for a model system
of the composition DMNPAA:PVK:ECZ:TNF =
50:33:16:1%wt operated at an operating wavelength of λ0
= 633nm and showing a basic absorption coefficient of
α633 = 22cm-1 [140]. The sample thickness shall be
125µm and the refractive indices n of the layers of
different materials present in a sample according to figure
(4 - 2) are about nglass = 1.5, nITO = 2 and npolymer = 1.7.
The geometrical configuration of the setup is described in
“4.2.1.) General wave mixing setup configuration and
parameters” on page 181. 

For equal initial intensities in front of the sample,
the initial intensity ratio will be b = 1. For the
aforementioned parameters, one obtains actual optical
path lengths of 140µm for beam 1 and 150µm for beam 2.
Thus, according to the Lambert Beer law:

,  eq. (4 - 16)
an intensity ratio of b = 0.98 behind the sample is
obtained. Please note, that the absorption will be increased
notably but not dramatically by applying an external
electrical field to the system, which will increase the error
slightly. However, a much larger error is made by
disregarding the transmission of the light through the
optical interfaces inside the sample. Calculating the
amplitude transmission coefficients by means of Fresnel’s
equations eq. (2.1 - 116) and eq. (2.1 - 123) and applying
eq. (2.1 - 125) one obtains for the relative transmissions T of the beams 1 and 2 throughout the
whole sample (6 interfaces) for s(p)-polarized light T1 = 0.724(0.960) and T2 = 0.438(0.884),
respectively. Thus follows for s-polarized light b = 0.60 and for p-polarized light b = 0.92

However, in most cases Γ is calculated by means of eq. (4 - 7), b is obtained according to
eq. (4 - 9), and the error made is thus smaller than described above, since then only the interfaces
behind the PR optical nonlinear layer (3 interfaces) will cause systematic deviations in b as
present inside the active polymer layer. The energy transmission coefficients to be taken into
account in this case are T1 = 0.850(0.978) and T2 = 0.662(0.947) for s(p)-polarized light,
respectively. Nevertheless, eq. (4 - 7) will yield erroneous values for Γ, since b contains T1 as
well as T2, whereas the gain factor for a single beam only accounts for the transmission
coefficients of the beam in question.

Please note finally that the application of eq. (4 - 7) will, depending on the applied field,
yield different results if applied to recording beam 1 or recording beam 2 due to the different
path lengths in connection with electro-absorption effects, which will additionally lead to a field
dependence of b.

Most of the aforementioned errors arising from disregarding the oblique incidence of the
recording beams can be avoided if eq. (4 - 14) is used for calculating the gain coefficient, since
they are multiplicative and thus cancel, as already shown above for the basic absorption:
Replacing  with x = 1,2 additionally accounts for the different energy
transmission. As for the absorption, also Tx will cancel during the derivation of eq. (4 - 14). It
is to be pointed out that eq. (4 - 14) in fact represents the combination of eq. (4 - 7) and its

 Figure (4 - 8): Grating contrast factor 
at the rear interface of a PR device of 

thickness d = 125µm as a function of the 
gain coefficient calculated using eq. 

(2.5 - 108) and eq. (2.5 - 109) for b = 1 
(solid stars). Furthermore, the 

corresponding normalized intensities of 
the writing beams are shown. 

The plot implicitly contains the grating 
contrast and the normalized beam 

intensities as a function of z (see figure 
(4 - 4)) if the Γ-axis up to a given value 
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as the z-axis of the system in units of 

[µm]. The solid line represents the 
average grating contrast throughout a 

sample with d = 125µm for Γ = 50cm-1. 
The reduction of the average grating 

contrast as compared to unity contrast 
(i.e. without  beam coupling) in this 

case is still well below 2%.
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pendant for beam 2, as already mentioned before.
However, a small systematic error will remain if the gain coefficient is monitored as a

function of the external field. In this case, the initial intensities I10 and I20 will only account for
the basic absorption (no external field applied) whereas the intensities obtained for the external
field applied will be afflicted additionally with the absorption induced by the applied field [184].
This electro-absorption effect, however, is comparatively small in the systems investigated [13]
and can be neglected with good approximation. This error may be avoided by monitoring the
initial intensities without PR grating as a function of the external field as well and use these for
calculating Γ. However, this is an extensive procedure which is not reasonably counterweighted
by the small gain in accuracy.

4.2.1.2.2.3.)2BC evaluation procedure
The PR gain coefficient as a function of the external field was evaluated by monitoring

the beam powers behind the sample as a function of the applied field and dividing them by their
initial values obtained for zero external field. As described above, electro-absorption of the
materials cause a small systematic error in this case, which increases with the external field
applied. 

The PR gain coefficient as a function of time was evaluated by monitoring the beam
powers behind the sample as a function of time and dividing them by their initial values
obtained when the PR grating had not yet been developed. Since the external field applied in
this case was constant for all experimental data monitored, no systematic error was made.

For determining the PR gain as a function of time during grating erasure, no initial values
for the 2BC probe beams (i.e. the strongly attenuated recording beams) for a PR grating not
being present are available. Monitoring the initial values for the 2BC probe beams prior to the
recording process yielded values, which were obviously wrong. This might be attributed to the
fact, that the system should be expected to experience changes in transmission also upon
illumination due to the ionization of sensitizer molecules and CTA’s changing their absorption
spectrum. Therefore, the erasure process was maintained considerably longer than necessary for
the 2BC and the DFWM signals to drop to zero, and a large number of data from the far edge
of the curves where no signal is observed any more were averaged for obtaining reference 2BC
probe beam powers without PR grating. However, this procedure bears the inherent problem,
that a very weak PR grating may persist due to the existence of the 2BC probe beams required
for monitoring the energy exchange. Thus, this evaluation procedure may suffer from some
systematic error due to this problem. On the other hand, this procedure ensures, that changes of
the sample’s transmission upon illumination are accounted for, since the erasure beam is present
during determination of the reference values of the 2BC probe beams. 

The error possibly made by the above described procedure will occur as some offset being
constant in time throughout all experiments. However, a countercheck was performed by
applying the procedure described above, then switching off the 2BC probe beams and erasing
further on to definitely ensure that no PR grating will be present. Finally the 2BC probe beam
powers were detected once more. The data thus obtained were identical with the reference
values determined as described above with the 2BC probe beams present throughout the
complete erasure process within experimental accuracy. This indicates, that the error discussed
is below the resolution limit of the employed setup.

Gain coefficients were calculated from experimental data according to eq. (4 - 14) and PR
phase shift angles φ from eq. (4 - 15) according to:
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.  eq. (4 - 17)

Please note, that the application of eq. (4 - 15) requires insertion of a refractive index
modulation ∆n obtained for the same polarization as applied in the 2BC experiment due to the
polarization anisotropy of poled polymers according to “2.4.2.) Electrical poling of organic
polymers - the oriented gas model” on page 83. The refractive index modulations were
determined by DFWM experiments, which will be considered subsequently. If the refractive
index modulation is determined with orthogonal polarization as compared to the 2BC
experiment, the polarization anisotropy must be accounted for by correcting the index
modulation with some anisotropy factor derived from the theory as discussed below in
“4.2.1.4.) Polarization anisotropy for PR wave mixing experiments” on page 199.

4.2.1.3.)Degenerate four-wave-mixing (DFWM)
DFWM experiments were carried out during recording of PR gratings in the materials

investigated. Furthermore, the erasure as well as the quasi dark decay of previously recorded PR
gratings were probed by the formal analogy to DFWM experiments with the recording beams
being absent. Please note, that grating erasure must be determined using an erasure beam which
is not Bragg-matched to the PR grating as already discussed before in “4.2.1.2.1.) 2BC
measurement procedures” on page 186. Furthermore, it must be clear, that the dark decay of
some photosensitive holographic grating cannot be determined without causing a minimum
extent of grating erasure. Therefore, any diffraction experiments on the dark decay of PR
grating will only determine a quasi dark decay, which depends on the photon flux the sample
has been exposed to while reading out the grating.

4.2.1.3.1.)DFWM measurement procedures
The quantities in question to be directly measured in the DFWM experiments carried out

in the frame of this work are the transmitted and the diffracted probe beam powers as a function
of the applied field or of the time. The data obtained were evaluated as described below in
“4.2.1.3.2.) Evaluation of the DFWM experiments”.

For all DFWM experiments, the probe beam intensity was at least two orders of
magnitude smaller than the sum of the intensities of the recording beams in order to minimize
partial erasure of the recorded grating by the probe beam. In order to achieve high resolution
while using small absolute beam powers, the probe beam was usually chopped (with chopper
Ch2 in figure (4 - 6)) and lock-in amplifiers were used for detection. This furthermore
minimized the possible impact of some background light, which might have been caught by the
photodetectors used for detecting the transmitted and the diffracted DFWM probe beam
(detectors D3 and D4 in figure (4 - 6)). Please note that this was not an issue for detecting the
relatively strong recording beams, but the low power of the DFWM probe beams made their
reliable detection much more sensitive against undesired light sources. 

Furthermore, in most cases, the probe beam was polarized perpendicularly to the
recording beams, since using s-polarized recording beams and a p-polarized probe beam are the
preferred working conditions for DFWM due to minimized 2BC in this configuration while the
p-polarized probe beam senses maximum ∆n as discussed in “2.5.3.3.) Orientational
enhancement effect” on page 131. Furthermore, by using orthogonal polarizations for recording
the grating and read-out, the possible formation of additional weak PR gratings due to

φ
λ0Γ

2π∆n
-------------- 
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interference of the probe beam with the recording beams is avoided. However, for experiments,
which focused in particular on the photorefractive phase shift the DFWM probe beam and the
recording beams were polarized parallelly in order to probe directly the refractive index
modulation relevant for the 2BC effect. The polarization states actually applied will explicitly
be noted in the respective sections devoted to the experimental results.

Steady-state DFWM experiments as well as experiments on the PR grating build-up
dynamics were typically carried out together with the corresponding 2BC experiments and,
thus, the general procedures discussed in this context will apply here as well. 

However, as opposed to the 2BC experiments, the transmitted and the diffracted DFWM
probe beams were monitored. Furthermore the DFWM probe beam could be controlled
separately by a fast magnetic shutter (shutter Sh3 in figure (4 - 6)) and was typically switched
on only for grating read-out in the steady-state experiments (i.e. at the end of the relaxation of
the system to quasi steady-state). 

 In by far most experiments on the build-up dynamics of the PR grating, the DFWM signal
has even been the main object of interest, since it probes solely the dynamics of the refractive
index build-up, which is directly indicative for the build-up of the PR space-charge field. In
contrast, the dynamics of the 2BC signal represents a mix of the dynamics of the PR space-
charge field build-up and the dynamic evolution of the PR phase shift. In the experiments on the
grating build-up dynamics, the DFWM probe beam was switched on in advance of the instant
when both the recording beams were provided.

For determining the PR grating erasure or dark decay, the grating was first recorded using
the procedure described for the experiments on the PR grating build-up. As soon as the grating
build-up was performed for the time span pre-programmed in the data sampling schedule for the
recording process the data sampling process was stopped and the setup was switched to erasure
or dark decay mode.

For the erasure mode the recording beams were both switched off (shutter Sh2) and the
erasure beam was switched on (Sh4) simultaneously, and data sampling was restarted. The
complete switching process was faster than 100ms. Grating erasure was typically performed for
45min corresponding to a sampling schedule covering 5000 data points at 16.67sec-1 sampling
rate and subsequently 5000 data points at 2.083sec-1. The erasure intensity could be adjusted in
4 steps by inserting different attenuators in the erasure beam path by means of the attenuator
changer ODW (see figure (4 - 6)), which enabled extensive automation of the experiments on
the PR grating erasure.

For measuring the PR grating dark decay, all beams were at first switched off. Special care
was taken to provide the least photon flux achievable through the sample during the read-out
process in order to approximate real “dark“ decay as best as possible. Therefore, the lowest
DFWM probe beam intensity, which could still be resolved reliably by the used setup has been
adjusted for these experiments. In this context a lower resolution limit of up to 0.01 (1%)
internal diffraction efficiency was accepted for the sake of low reading power but at the cost of
the absolute accuracy of the data obtained. Furthermore, the read-out process was modified such
that the sample was kept completely in the dark most of the time and the reading beam was only
switched on for short times required for the lock-in amplifiers to relax to steady-state and
subsequent data sampling. For the latter, 10 single measurements at a rate of 5sec-1 were
performed and arithmetically averaged to form one data point. By all of these measures, a ratio
of up to almost 106 was achieved between the total of the recording beam intensities and the
DFWM probe beam intensity for recording at high intensity. For recording at the lowest
intensities applied, a ratio of better than 103 could still be achieved. The recording intensities
applied will be noted in the corresponding section devoted to the experimental results.
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4.2.1.3.2.)Evaluation of the DFWM experiments
Subsequently, the basic equations for evaluating the DFWM experiments will be

discussed. Simplifications of Kogelnik’s equation eq. (2.3 - 45) will be introduced and the errors
thus made will be considered. Finally, the evaluation procedure for the experiments will be
described.

4.2.1.3.2.1.)Basic equations for evaluation of the DFWM experiments
The following considerations are based on the geometrical configuration depicted in

figure (4 - 4). Intensity and angle parameters used in this section and not explicitly explained in
the text are defined therein.

The evaluation of the DFWM experiments is based on Kogelnik’s coupled wave theory
discussed in “2.3.2.) Coupled wave theory for thick hologram gratings” on page 53. In order to
apply this theory, first the holographic gratings to be evaluated must be identified as volume
holograms. According to eq. (2.3 - 2), some hologram may safely be considered as a volume
hologram if:

,  eq. (4 - 18)

where l is the actual grating thickness given by the length of the bisector between the recording
beams and is connected with the sample thickness via eq. (4 - 3). With n = 1.7, Λ = 3µm, and
λ0 = 633nm and using eq. (4 - 3), eq. (4 - 18) will be fulfilled for samples thicker than 20µm.
The least sample thickness used in the frame of this work was 37µm. Please note, that notable
diffraction into higher orders could already be observed for this thickness. Data presented in the
section devoted to the experimental results refer to sample thicknesses of 63µm to 125µm.
Higher order diffraction for 63µm thick samples was found to be negligibly small and no more
detectable for 125µm thick samples.

The theoretical expressions for the diffraction efficiency in question here are eq. (2.3 - 44)
to eq. (2.3 - 46), since the grating was read out with p-polarized light in all DFWM experiments
performed. The diffraction efficiency thus defined is the ratio between the diffracted beam
power behind the grating (not behind the sample) Idiffracted and the incident beam power in front
of the grating (not in front of the sample) Iincident. This is referred to as „external diffraction
efficiency“:

.  eq. (4 - 19)

However, in the frame of this work ηext according to eq. (4 - 19) is not appropriate for two
reasons. Firstly, the experimentally monitored diffracted beam power will be afflicted with
losses due to restricted transmittance of all the 6 optical interfaces of the sample as discussed
before in “4.2.1.2.2.) Evaluation of the 2BC experiments” on page 188, which must be corrected
for if Kogelnik’s equations shall be applied. Secondly, the quantity in question is not the
diffraction efficiency but the refractive index modulation. Thus, the absorption (including
electro-absorption) of the system (which is accounted for by the theory) must be eliminated,
which requires the absorption coefficient to be determined as well, extending the experimental
efforts markedly. Thus it would be more appropriate to find a way to determine the diffraction
efficiency more conveniently.

This can be achieved by defining an „internal diffraction efficiency“ ηint according to:

,  eq. (4 - 20)

where I3d (diffracted portion) and I3t (transmitted portion) are the (DFWM) probe beam powers
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both monitored simultaneously after the beams have traversed the sample. Using eq. (4 - 20) to
calculate the diffraction efficiency from experimental data, the only error made will arise from
the difference in energy loss due to different optical path lengths and different transmittances of
the interfaces of the samples, whereas the basic quantities of these losses due to the general tilt
of the sample will cancel.

External and internal diffraction efficiency are connected by the following relations:

 eq. (4 - 21)

and:

 eq. (4 - 22)

where  is the energy transmittance for p-polarized light according to eq. (2.1 - 123) and eq.
(2.1 - 125) for beam path number a and interface number b counted in propagation direction of
the beam (i.e. here interface 4 is the polymer/ITO-interface, interface 5 is the ITO/glass
interface etc.). Please note for the sake of completeness, that the beam incident on the sample is
connected with Iincident by:

.  eq. (4 - 23)

4.2.1.3.2.2.)Simplification of Kogelnik’s equation and error discussion
The error made by working with the internal diffraction efficiency instead of the external
diffraction efficiency can be estimated from eq. (4 - 21) and eq. (4 - 22). At first, the absorption
term from Kogelnik’s equation is transferred to eq. (4 - 20). According to eq. (2.3 - 45) the
complete relation may thus be written:

.  eq. (4 - 24)

The parameters not explained in this section are defined in “2.3.2.) Coupled wave theory for
thick hologram gratings” on page 53. For calculating the correction terms, the representative
model system as described in “4.2.1.2.2.2.) Consideration of systematic errors in the 2BC
experiments” on page 190 is used and the geometrical configuration according to figure (4 - 4)
is assumed. Using eq. (2.3 - 21) one obtains for the obliquity factors cD = 0.829 and cT = 0.893.
The transmittances for p-polarized light are calculated according to Fresnel’s equation eq. (2.1
- 123) and eq. (2.1 - 125). For a sample of 125µm thickness one finally obtains:

.  eq. (4 - 25)
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Thus, by working with ηint, the maximum relative error for ηint  → 0 will be −4% and +1% for
ηint  → 1, respectively.

Now the error will be discussed, which is made by reasonably simplifying the right hand
side of eq. (4 - 25). The key problem is to get rid of the obliquity factors cD and cT. The values
of these have already been calculated above. Setting:

 eq. (4 - 26)
will yield a relative error for  relative to  of less than 0.07%, which is excellent an
approximation. By that a dramatic simplification of eq. (4 - 25) is achieved, since ξ vanishes
according to eq. (2.3 - 44) yielding: 

.  eq. (4 - 27)
The coupling constant ν of the coupled wave is given by eq. (2.3 - 44), however, for s-

polarized light. In order to account for p-polarization one may write according to eq. (2.3 - 27),
eq. (2.3 - 38), eq. (2.3 - 44) and eq. (4 - 26):

 eq. (4 - 28)

where  and  are the polarization unit vectors of I3t and I3d. The scalar product of the
polarization unit vectors, however, for the geometric configuration according to figure (4 - 4)
yields: , and, hence, can be ignored (i.e. set to unity).

Finally the geometrical meaning of  must be clarified. From eq. (2.3 - 12), eq. (2.3 - 13),
eq. (2.3 - 21) and eq. (2.1 - 45) one obtains for the geometrical configuration according to figure
(4 - 4):

.  eq. (4 - 29)

In conclusion one ends up with the following expression for the internal diffraction
efficiency:

.  eq. (4 - 30)

Please note, that electro-absorption effects as discussed for the 2BC experiments have not
been regarded here, but nevertheless will show an impact as well. Furthermore, the bulk
refractive index of the materials investigated will depend on the external field applied leading
to a slight field dependence of the transmittance and the reflectance of the ITO/polymer and the
polymer/ITO interfaces, which is omitted as well. However, both these effects are secondary as
compared to errors discussed above for the materials investigated.

4.2.1.3.2.3.)DFWM evaluation procedure
The internal diffraction efficiency according to eq. (4 - 20) was determined

experimentally by simultaneously monitoring the transmitted and the diffracted probe beam. 
The maximum internal diffraction efficiency achieved always falls short of its theoretical

value of unity, which is generally observed in diffraction experiments on PR polymers. This has
been commented by nearly all authors having published some work on PR polymers and was
attributed to various effects including restricted grating dimensions, absorption effects, bending
of the PR grating due to the imaginary part of the complex PR gain coefficient and others.
However, the actual reason for this effect is still not understood. It will be shown in the section
devoted to the results of this work, that at least hologram bending cannot be made responsible
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for this observation. Typically internal diffraction efficiencies in the range of ηint ≈ 0.85 to ηint
≈ 0.9 are achievable in the first diffraction maximum for the experimental configuration
according to figure (4 - 4) and sample thicknesses of around 100µm. The first diffraction
maximum on the other hand clearly corresponds to:

.  eq. (4 - 31)

Thus, if the refractive index modulation was calculated according to eq. (4 - 30) the absolute
internal diffraction efficiency obtained experimentally was normalized beforehand by its
maximum value. In experiments where the grating was recorded to some point before a
diffraction maximum occurred (e.g. in experiments on the grating dynamics), the latter was
determined with the same sample in a standard DFWM experiment using measurement
parameters (i.e., recording intensity and external field), which have proven by practice to yield
reliable values for the maximum diffraction efficiency. 

Accordingly, the refractive index modulation was always calculated according to:

.  eq. (4 - 32)

For evaluation of experiments on the PR grating build-up or decay (i.e. erasure by uniform
illumination as well as dark decay) dynamics, data on the refractive index modulation obtained
from monitoring ηint as a function of time and calculating ∆n according to eq. (4 - 32) were
fitted to the following exponential expressions. 

The grating build-up dynamics was fitted to exponential associative growth functions of
the form:

,  eq. (4 - 33)

where Ai is the absolute weighting factor of the corresponding exponential associative growth
term and τi is the corresponding time constant. Relative weighting factors used for comparing
the fractions the particular exponential terms contributing to the overall process were obtained
from normalizing the particular absolute weighting factors by the sum of all absolute weighting
factors, i.e.:

.  eq. (4 - 34)

Typically, two exponential terms (i.e. i = 1, 2) were sufficient to obtain good agreement with the
experimental curves, which is in agreement with the theory according to eq. (2.5 - 24). In most
cases more than two exponential terms even led to apparent over-parameterization, resulting in
a diverging fitting algorithm. In few cases tri-exponential fits yielded obviously better fits, but
these cases were restricted to certain materials and/or certain experimental conditions. Mono-
exponential behavior was never observed for the grating build-up dynamics. Details will be
discussed in the associated sections devoted to the experimental results. 

The grating decay dynamics was fitted to exponential decay functions of the form:

,  eq. (4 - 35)

where Ai is the absolute weighting factor of the corresponding exponential term and τi is the
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corresponding time constant. Relative weighting factors were obtained using eq. (4 - 34). As for
the build-up dynamics, typically two exponential terms (i.e. i = 1, 2) were sufficient in
agreement with the theory according to eq. (2.5 - 28) and the discussion on page 130. However,
in very few cases tri-exponential behavior occurred which, however, does not agree with the
general behavior proposed by eq. (2.5 - 29). Furthermore, mono-exponential behavior could be
observed as well, however, only under certain experimental conditions. Details will be
discussed in the sections devoted to the experimental results.

In order to enable unifying considerations of the dynamic behavior of the systems
investigated, the obtained particular time constants were merged into an average response time
constant  by means of logarithmic averaging using the expression:

.  eq. (4 - 36)
This technique has been proposed in the frame of this work and will be discussed in more detail
in “5.2.3.) The relation between the glass-transition temperature and the dynamic performance
in PVK based PR polymers” on page 243. 

In some cases the dynamic behavior of the systems investigated was considered within a
series of measurements, where basically bi-exponential but to a minor fraction also tri-
exponential behavior was observed. In these cases, the two slower exponential terms were
merged appropriately according to:

 eq. (4 - 37)
in order to enable reasonable comparability within the series of experiments concerned. The
index j indicates a subset of the index i, which corresponds to the slow exponential terms. It will
explicitly be noted in the discussion of the experimental results, if this approach has been
applied in the evaluation procedure.

Please note, that correct application of eq. (4 - 36) and eq. (4 - 37) demands, that 

,  eq. (4 - 38)

i.e. the weighting factors must be normalized by the sum of the weighting factors of the
exponential terms to be logarithmically averaged.

4.2.1.4.)Polarization anisotropy for PR wave mixing experiments
The refractive index modulation probed by diffraction experiments in PR polymers will

be different for different polarizations of the light diffracted as already discussed theoretically
in “2.4.2.) Electrical poling of organic polymers - the oriented gas model” on page 83, in
“2.5.3.3.) Orientational enhancement effect” on page 131 and repeatedly mentioned before in
“4.2.1.2.2.) Evaluation of the 2BC experiments” on page 188. In order to allow for an
approximate conversion between the refractive index modulations probed by diffraction
experiments using both the polarization states applied in the frame of this work, a reasonable
value for the polarization anisotropy must be determined. According eq. (2.5 - 83) the total
refractive index modulation in low-Tg PR polymers consists of a birefringence (BR) and an
electro-optic (EO) contribution, the polarization anisotropies of which are summarized in eq.
(2.5 - 52) and eq. (2.5 - 53) and may be rewritten in short terms as:
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 eq. (4 - 39)

and:

.  eq. (4 - 40)

The total polarization anisotropy may be expressed by the ratio of the molar PR Kerr
susceptibilities parallel and perpendicular to the direction of the applied external field,  and

, respectively. According to [161] these can be written as:

 eq. (4 - 41)

,  eq. (4 - 42)

where the first term in the brackets represents the electro-optic contribution and the second term
the birefringence contribution. NA is the Loschmidt number, µ0 is the permanent dipole moment
of the NLO chromophore, ∆α and β0 are its first order polarizability anisotropy and its second
order polarizability, respectively, and F0 and F∞ are the local field correction factors according
to eq. (2.4 - 89) and eq. (2.4 - 90). The index “zero“ denotes the dc value and the index “infinite“
its value at fields oscillating with optical frequencies.

Kippelen et. al. [185] determined the molecular constants to be inserted in eq. (4 - 41) and
eq. (4 - 42) for a PR polymer system, which is almost identical to the type of systems
investigated in the frame of this work by means of ellipsometry using an angle of light incidence
of 45°. Their results are listed in table (4 - 1):

The authors furthermore provided data on the bulk refractive index and the dc dielectric
permittivity. They quoted values of n = 1.75 and ε0 = 6.4, respectively, which allows for the
calculation of the local field factors to:

 eq. (4 - 43)

.  eq. (4 - 44)

Applying the above numerical values to eq. (4 - 41) and eq. (4 - 42), one obtains for the molar
Kerr susceptibilities:

 and .  eq. (4 - 45)

It follows for the polarization anisotropy occurring in wave-mixing experiments performed at

Table (4 - 1) 

unit system µ0 ß0 ∆α

CGS 5.5x10-18esu 60x10-30esu 5.5x10-23cm3

MKS 18.41x10-30Cm 22.27x10-50Cm3V-2 61.19x10-40Cm2V-1
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s- and p-polarization:

.  eq. (4 - 46)

This value correlates with a typical PR polymer composite as investigated in the frame of this
work with 50%wt DMNPAA in a PVK/ECZ matrix. It may safely be assumed that the
polarization anisotropy according to eq. (4 - 46) also applies to composites containing 25%
DMNPAA and 25% MNPAA instead of 50% DMNPAA in reasonable approximation. Hence
∆np/∆ns = -2.22 will be used as anisotropy factor if polarization conversions of the refractive
index modulation are necessary. As already pointed out above, this will be the case, if the PR
phase shift according to eq. (4 - 17) is to be estimated from experimental data on the PR gain
coefficient and the DFWM diffraction efficiency, whereby these parameters have been
determined with perpendicular polarization states. However, since eq. (4 - 46) only represents
a rather crude approximation (among others, it is the theoretical dc-field value), absolute values
of the PR phase shift calculated by means of eq. (4 - 46) show limited comparability to the shift
values obtained by direct methods, making a correction for the polarization anisotropy
dispensable. However, general trends found considering data, which are consistently corrected
for polarization anisotropy using one and the same procedure will be reliable. Furthermore, thus
obtained phase shift values were very similar to values (if available) presented for comparable
systems operated under comparable conditions in the literature, which were obtained applying
independent methods (e.g., the moving grating technique).

4.2.1.5.)Holographic multiplexing experiments
The peristrophic multiplexing experiments were intended as proof of principle, for

showing the orders of magnitude to be expected and to reveal unexpected problems. Please note
here, that the sequential order of the experimental results as shown later in this work does not
represent the actual chronological order the results were obtained. In fact, the experiments on
the erasure and decay behavior of the systems investigated were motivated by the problems
encountered in context with the peristrophic multiplexing experiments, which were performed
prior to these investigations.

4.2.1.5.1.)Experimental holographic multiplexing setup, sample holder and measurement 
procedure

Referring to figure (4 - 10) and figure (4 - 9), prior to a peristrophic multiplexing
experiment, all beams were switched off by means of the shutters Sh1 and Sh2 (figure (4 - 9))
and the electric field was switched on. Then, the sample was rotated to an appropriate zero
position. The sample holder, which was mounted on a rotation stage, enabled rotation by about
175° in one direction without causing some parts of the sample holder to pass through the beam
paths while rotating the sample. In order to make this possible, the sample holder was fixed on
the rotation stage using only three mounts as indicated in figure (4 - 10). Then the sample was
pre-illuminated for 15 minutes by opening shutter Sh2 while shutter Sh3 was kept closed. For
recording the first hologram to be multiplexed, the recording beams were switched on by
opening Sh3. Then the first hologram was written for a given time, calculated in principle
according to the recording schedule as described in principle in “2.3.3.3.) System metrics for
holographic multiplexing in erasable media” on page 65. The particular exposure schedule
applied here will be described in the section devoted to the experimental results. Once the first

∆np
∆ns
---------

ζZZZZ
3( )

ζZZXX
3( )

-------------- - 2.22= =



4.2.)Wave mixing experiments

202

hologram had been recorded, both writing beams were switched off by Sh2 and the sample was
rotated by a fraction of the total range of 175°, the upper limit of which results from the total
range divided by the number of holograms intended to be multiplexed in the experiment. Then
the next hologram was recorded by opening Sh2. After all holograms had been recorded, the
recording beams were switched off and the sample was rotated back to the initial position used
for recording the first hologram. Then the reading beam was switched on by means of shutter
Sh1 for two seconds and the diffracted reading beam power was measured at the end of this time
period. This minimum reading interval was demanded by the relaxation time required by the
powermeter used for detecting the reading beam power to auto-adjust its metering range. After
that, the reading beam was blocked again and the sample was rotated to the position of the
second hologram recorded, which then was read out as described before and so on. Please note,
that the sample was held under field throughout the whole experiment.

 Figure (4 - 9): Scheme of the setup applied in peristrophic 
multiplexing experiments. The transmitted reading beam is not 

indicated.
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4.2.1.5.2.)Evaluation of the peristrophic multiplexing experiments
The peristrophic multiplexing experiments carried out in the frame of this work are

DFWM experiments. Accordingly, points discussed for the DFWM experiments principally
apply here as well. However, the peristrophic multiplexing experiments were not carried out in
order to determine general physical properties of the materials investigated but rather in order
to test the potential technical application of these as storage media. Therefore, the point of view,
which the evaluation is considered from is different. This is manifested mainly in the treatment
of the diffraction efficiency. As for the DFWM experiments the internal diffraction efficiency
has been considered, however, a normalization of the maximum diffraction efficiency to unity
has not been performed. This must be seen in the context, that the physical value of the
refractive index modulation was not the point of interest but the actually diffracted light power
available. In technical applications of multiplexing techniques for mass data storage purposes
datasheets will be stored as holograms, retrieved if addressed and converted into electrical
signals by a light detector array (CCD). The basic process is illustrated in figure (2.3 - 6), figure
(2.3 - 8), figure (2.3 - 9) and figure (2.3 - 11). The actually available diffracted light power
obtained from the hologram retrieved thus must exceed a lower threshold, which is determined
by the sensitivity of the detector array. Hence, the physics determining the diffraction efficiency
is secondary as long as enough light is diffracted, which can be reliably detected.

Since the detection limit of today’s CCD cameras is very low, very small diffraction
efficiencies may be allowed for, which are in the order of magnitude of η << 10-3. For such small
diffraction efficiencies, the power of the transmitted probe beam may in good approximation be
considered as unchanged. Therefore, the diffraction efficiency was determined by means of the
ratio of the absolute beam power diffracted and the absolute beam power transmitted, which was
taken prior to the holograms being recorded, however, with the electric field applied to the
sample in order to account for field-induced absorption changes. For both cases background
light was measured and subtracted from the obtained data. From the diffraction efficiencies
obtained and the number of holograms multiplexed the M-number M/# was calculated
according to eq. (2.3 - 66). A detailed consideration of experimental errors has not been
performed.

 Figure (4 - 10): Sample holder developed for peristrophic 
multiplexing experiments. The sample structure is indicated in figure 

(4 - 1) - (B) and figure (4 - 2). The sample holder was made from 
Pertinax. 
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4.2.1.6.)Intensity determination
The intensity relation between the recording beams is of essential significance for the PR

effect. The same applies for the erasure beam in relation to the sum of the recording beams. The
tilted geometrical configuration according to figure (4 - 4) and the sample structure according
to figure (4 - 2) requires a careful determination of the intensity relations inside the material,
which will be discussed now. The subsequent considerations apply for all intensity quantities
quoted for recording and erasure beams in the 2BC and DFWM experiments carried out except
the peristrophic multiplexing experiments, which will be discussed in the corresponding section
devoted to the experimental results.

The intensity of the probe beam in DFWM experiments was typically adjusted to be at
least three orders of magnitude smaller than the intensity of the recording beams

In general, the intensities of the recording beams were determined by measuring the beam
power and determining the beam profiles. The latter then were evaluated for the particular
geometrical configuration on hand yielding the area A illuminated with power P. The intensities
were then calculated by:

.  eq. (4 - 47)

The beam powers were determined inside the employed optical setup in front of the
sample using a calibrated power meter and ensuring normal incidence onto the detector of the
power meter. The portion of the transmitted energy entering the polymer layer in the sample was
calculated according to Fresnel’s equations eq. (2.1 - 116) and eq. (2.1 - 123) and using eq. (2.1
- 125) and using the model system described in “4.2.1.2.2.2.) Consideration of systematic errors
in the 2BC experiments” on page 190. This yields for the recording beams 1 and 2 for s(p)-
polarization T1 = 0.85(0.98) and T2 = 0.66(0.94), respectively, and for the erasure beam, which
entered the sample perpendicularly to the sample surface Te = 0.93 (with eq. (2.1 - 113) or eq.
(2.1 - 121) and eq. (2.1 - 125)). 

 In order to obtain the illuminated area A,
the profile of a beam was measured monitoring
the beam power while blocking the beam
stepwise perpendicularly to its propagation
direction by a razor knife edge. The resulting
curve was differentiated numerically and then
fitted by a Gaussian profile to obtain the beam
profile functions. These were then normalized to
unity and adapted to oblique incidence by
stretching the variance for the axis, which is
parallel to the propagation plane of the beams
according to the transfer projections of the beam
diameters through the involved interfaces until
the beams entered the polymer layer. Please note,
that the transfer projections are obtained by simply taking the cosine ratio between the incident
angles of the beams onto the sample surface and the propagation angles of the beams in the
polymer layer. Thus, two beam profile functions are obtained representing the sections through
the beam profile in plane and perpendicular to the propagation plane of the beams. Typical
results are depicted in figure (4 - 11) and figure (4 - 12). The beams originated from HeNe-lasers
and thus should be radially symmetric outside the sample, which was presumed here without
explicit countercheck. In this work, the full width of half maximum (FWHM) of the obtained
beam profiles was used to calculate the illuminated area A according to eq. (4 - 47).

I P
A
---=

 Figure (4 - 11): Normalized beam profiles out of 
the propagation plane. Squares: Recording beams; 

triangles: erasure beam.
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Please note that there are other conventions
using the 1/e-height-width or the 1/e2-height-
width for calculating the illuminated area. The
FWHM convention was chosen for this work,
since it slightly overweighs the center with
respect to the edges of the beam profile, which
are not of interest in the frame of this work. 

Based on the above considerations,
multiplication factors for the experimentally
obtained beam powers of the recording beams
and the erasure beam can be derived, which yield
the corresponding intensities. Table (4 - 1) shows
typical examples. The particular intensities
applied in the experiments performed will be
noted in the corresponding sections. 

4.2.1.7.)Isomerization gratings
he wave-mixing experiments carried out in the frame of this work bear the inherent

problem of the occurrence of isomerization gratings in the materials investigated at the
operating wavelengths applied. This problem has already been mentioned before in “3.2.5.2.2.)
Absorption and the problem of isomerization gratings” on page 167. The isomerization gratings
are due to the circumstance, that the NLO chromophores used in the PR polymers investigated
were azo dyes showing non-vanishing absorption at the operating wavelength of 633nm. Upon
appropriate optical excitation, the bond order of the azo group of the chromophores is reduced
from two to one resulting in the possibility of free intramolecular rotation of the chromophores.
Thus a photoinduced isomerization equilibrium arises the general scheme of which process is
depicted in figure (4 - 13). The chromophores may be optically excited as long as the
polarization vector of the incident light has a notable projection onto the long molecule axis.
This process is completely random, however, it stops as soon as the molecule is oriented
perpendicular to the polarization direction of the incident light. After some time, this yields an
accumulation of chromophores oriented perpendicularly to the polarization vector in the regions
illuminated. Hence, if the illumination is non-uniform, a refractive index grating is built up,
which is shifted by 180° with respect to the illumination pattern (i.e. the refractive index is
reduced in the illuminated areas with respect to the isotropic case), if probed with light of

Table (4 - 1) : Typical data used for intensity determination

s-polarization p-polarization

beam transmittance area 
[cm2]

multiplication
factor

[1/cm2]

transmittance area 
[cm2]

multiplication
factor

[1/cm2]

I01 0.85 0.02 42.5 0.98 0.02 49

I02 0.66 0.03 22 0.94 0.03 31

Ie(rase) 0.93 0.06 15.5 0.93 0.06 15.5

 Figure (4 - 12): Normalized beam profiles in the 
propagation plane. Squares: recording beam I01; 

circles: recording beam I02; triangles: Ierase
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identical polarization as the light causing the isomerization process. On the other hand, light
with a polarization state perpendicular to the polarization state of the light building up the
isomerization grating will sense a grating which is much weaker. This is, because chromophores
oriented perpendicular to the “recording polarization” will be randomly distributed for the
perpendicular polarization state, however, only in two rather than three dimensions like in the
isotropic case. This yields a refractive index change as well, however with smaller amplitude.
Furthermore, the grating sensed by perpendicularly polarized light will formally be shifted by
0° (i.e. the refractive index increases in the areas illuminated by “the other“ light generating the
grating). 

TIsomerization gratings may have a
significant impact especially on 2BC
experiments, since some local grating
component is implied, the actual contribution of
which to the PR effect cannot be probed
independently from the purely PR grating at the
same operating wavelength. However, it is
possible to determine the isomerization grating
in absence of the PR effect (by simply applying
no field to the sample while recording a
grating), which has been conducted sometimes
in the frame of this work to check for the
possible existence of a detectable isomerization
grating at particular experimental conditions.
Nevertheless, it is not possible to anyhow
quantify this problem reliably, since the strength
of the refractive index grating due to
isomerization will be different if occurring
together with a PR grating, i.e. if an electrical field is applied. In this case, the applied field as
well as the internal space-charge field will affect the isomerization equilibrium thus connecting
the isomerization grating with the PR grating and making their independent determination
impossible. Therefore, especially any kind of PR phase shift obtained from 2BC experiments
performed here must be considered very carefully if the absolute values are compared with the
PR phase shift obtained for similar materials using some independent method not afflicted with
such problems. However, as already discussed before in context with the polarization
anisotropy, general trends found within a consistent series of experiments under identical
experimental conditions relevant for the problem discussed here (i.e. especially the polarization
states of the recording and the reading beams and the contrast of the interference pattern) will
hold. If necessary, the possible impact of isomerization gratings on the experimental data will
explicitly be discussed in the corresponding sections presenting experimental results.

The problem of the isomerization gratings is much less pronounced when considering the
DFWM experiments, which are inherently not phase sensitive. Actually, the influence of
isomerization gratings will only be notable in DFWM experiments, if the materials investigated
are operated at conditions yielding very small PR grating strength at simultaneously relatively
high light intensity or considerable recording times. Typical DFWM experiments carried out in
the frame of this work do not meet these conditions and, thus, the problem of isomerization
gratings can be ignored in good approximation for the DFWM experiments to be discussed in
the section devoted to the experimental results.

Please note finally that isomerization gratings generated by the mechanism as described
above are undesired in PR materials but are utilized in another class of reversible holographic
organic recording materials, the so called “photo-addressable polymers” (PAP’s) [186 - 190]

 Figure (4 - 13): Photoinduced isomerization 
equilibrium. D: donor; A: acceptor
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4.3.)Transmission ellipsometric experiments
Transmission ellipsometric (ELP) experiments were carried out in order to obtain the

electrical poling properties of the materials investigated in an independent manner.
Subsequently the experimental principle will be outlined. Thereafter, the transmission equation
will ostensively be derived and discussed. A detailed error consideration is not included since
no physical conclusions will be drawn from absolute transmission values and the general trends
in the ELP experiments discussed in the frame of this work are not subjected to any kind of
experimental error requiring a closer consideration.

4.3.1.)Experimental transmission ellipsometry setup and procedure

For the transmission ellipsometric experiments carried out a setup as depicted in figure (4
- 14) was applied. A He-Ne laser was used for determining the steady-state poling behavior,
since the wavelength of the light source impacts the ellipsometric transmission as a function of
the applied field. According to eq. (4 - 52), the field induced birefringence necessary to achieve
a transmission maximum increases with the wavelength of the applied light source. Hence, in
order to obtain a transmission maximum as a function of the applied field at lower risk of
possible dielectric breakdown of the sample, it is advisable to use a smaller wavelength.
However, for determining the dynamic poling behavior of the materials investigated this was
not an issue, and therefore, then mostly an infrared laser diode was used, the operating
wavelength of which was far beyond the operating wavelength of the PR effect of the materials.
By that, dynamic ellipsometric and holographic PR measurements could be performed
simultaneously without notably influencing the PR response. For all ellipsometric experiments
completely relaxed samples were used, which was ensured either by heating the samples to the
temperature region of viscoelastic flux or by waiting sufficiently long to ensure complete
thermodynamic relaxation of some orientational order at room temperature in advance of the
experiment. 

The steady-state poling behavior of the materials investigated was determined by
increasing the applied electrical field stepwise by an appropriate increment, which was chosen
on the basis of a trade off between a desired number of data points and the total measurement
time required. After increasing the field by one step the material was given sufficient time to
relax to quasi steady-state. The relaxation time required was estimated by previous
determination of the build-up dynamics of the ellipsometric transmission. At least 5 times the
logarithmically averaged response time was provided as relaxation time. As in the DFWM
experiments 500 single measurements were performed for a certain value of the applied field at

 Figure (4 - 14): Principle of ELP experiments. P1, P2: 
polarizers; D: detector; U: high voltage power supply
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a sampling rate of 100sec-1, hence, covering a time span of 5 seconds, and the data obtained
were arithmetically averaged to get the corresponding data point.

For determining the build-up dynamics of the ellipsometric transmission at constant
externally applied field, the field was switched on by a TTL signal controlling a high-voltage
Reed relay. The high voltage power supplied by the power supply used was up to 40W enabling
very fast charging of the capacitor formed by the sample structure. Together with the fast Reed
relay used, the switching-on of the external field can thus be regarded as a δ-function in very
good approximation. Data sampling was initialized about 500ms ahead of the begin of the
measurement (i.e. switching on the electrical field) in order to monitor the onset of the actual
measurement procedure, which defines t = 0. The power of the transmitted light beam was
monitored as a function of time at a typical initial sampling rate of 10sec-1, which was decreased
down to 1sec-1 at minimum in several steps as the sampling process proceeded in order to
reduce the total amount of data sampled in experiments extending over several tens of minutes
up to hours. The sampling schedule of a dynamic experiment as described here was pre-
programmed defining steps of sampling rates and the number of data to be sampled per rate step,
the total sum of all of which eventually defined the overall length of the parallel plate poling
experiment. 

For determining the dynamics of the relaxation of the orientational order, the material was
first parallel plate poled using the procedure described above. As soon as the build-up of the
field induced birefringence had been conducted for the time span pre-programmed in the data
sampling schedule for the build-up process, data sampling was stopped and the external field
was switched off by the Reed relay. Almost simultaneously the sample was short circuited by
another Reed relay in order to quickly discharge the capacitor formed by the sample structure.
Please note that the sample structure forms a very slowly responding RC-circuit due to the very
high electrical resistance of the polymer layer. If the sample would not be short circuited the
response behavior of the RC-circuit would be determined by the experiment instead of the
relaxation of the orientational order as intended. After the sample was short circuited data
sampling was restarted and the decay of the ellipsometric transmission was monitored by a
recording schedule covering 5000 data points at 33.3 sec-1 sampling rate and subsequently 5000
data points at 2.5sec-1 for the low-Tg materials (Tg < RT) For materials exhibiting a glass-
transition temperature above the ambient temperature three decay loops of 5000 data points
each were applied at sampling rates of 33.3 sec-1, 2.5 sec-1, and 1 sec-1.

4.3.1.1.)Evaluation of the transmission ellipsometric experiments
The transmission of light as a function of the birefringence of the sample in a setup

according to figure (4 - 14) may easily be derived based on ostensive considerations. The
polarization of the light incident on the sample is adjusted to be polarized by 45° with respect
to the optical axis of the birefringent sample by means of the polarizer P1. The optical axis of
the sample is oriented perpendicular to the sample surface (the sample structure is depicted in
more detail in figure (4 - 2)), since it is determined by the direction of the applied field. Thus,
the incident light is split into two orthogonally polarized contributions of equal amplitude, the
one of which is the ordinary beam and the other is the extraordinary beam. As long as the sample
is not birefringent, both the ordinary and the extraordinary beam propagate with identical
velocity through the sample and superimpose behind the sample to a single beam of unaltered
polarization. In this case, the light is blocked by polarizer P2, which is adjusted in crossed
configuration with respect to P1. If an electrical field is applied to the sample it becomes
birefringent and the ordinary and the extraordinary beam propagate with different velocity



4.3.)Transmission ellipsometric experiments

209

inside the sample. This can be expressed by different lengths of the optical paths in the
birefringent material, resulting in a phase difference between the ordinary and the extraordinary
beam. This phase difference ∆ϕ may be easily expressed as a function of the real geometrical
distance l, which the beams cover in the sample:

,  eq. (4 - 48)
where k is the modulus of the wave propagation vector and the indices e and o indicate the
extraordinary and the ordinary beam, respectively. Assuming in good approximation that the
change of the refractive indices for the ordinary and the extraordinary beam is small as
compared to the average bulk refractive index of the material, the real geometrical distances
may be expressed as:

,  eq. (4 - 49)

where d is the sample thickness and Ψt is the internal angle of incidence of the light beam, i.e.
the internal tilt angle of the sample. Accordingly, the vectorial description may be set aside,
since both the o-beam and the e-beam propagate in approximately identical directions. Thus,
with eq. (2.1 - 85) one obtains:

 eq. (4 - 50)

where n stands for the refractive index and λ0 is the optical wavelength in free space. After the
extraordinary and the ordinary beam have merged again behind the sample, the phase difference
∆ϕ will correspond to the angular displacement of the polarization of the beam with respect to
the original state. 

A polarizer will only transmit the amplitude component of the incident beam, which is
oriented parallelly to its polarization director. The latter of P2 has been adjusted to be
perpendicular to the one of P1 and thus all light of the original polarization state will be blocked.
However, if the polarization has been rotated according to eq. (4 - 50), P2 will transmit some
amplitude component of the beam according to:

 eq. (4 - 51)
where  is the amplitude transmission. In order to get the transmitted light power (or
intensity), according to eq. (2.1 - 33) one has to square eq. (4 - 51), which finally yields for the
transmission in an ELP experiment:

 eq. (4 - 52)

with:
.  eq. (4 - 53)

Please note, that  has only been explicitly denoted here as ellipsometric transmission in
order to avoid confusion with the transmittances discussed in the section dealing with the
diffraction experiments. Throughout the rest of this work this notation will no more be used and
the ellipsometric transmission according to eq. (4 - 52) will simply be referred to as „T“.

The apparent similarity in the general form of eq. (4 - 52) and eq. (4 - 30) suggests the
application of eq. (4 - 52) in order to determine the parallel plate poling behavior of the systems
investigated in comparison with the DFWM diffraction properties. The comparability, however,
is restricted to general trends rather than numerical values, since the refractive index difference
according to eq. (4 - 53) is not directly comparable with the PR refractive index modulation.
Furthermore, the optical effects described by eq. (4 - 52) and eq. (4 - 30) are fundamentally
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different in their underlying physics. Nevertheless, eq. (4 - 52) provides a very precious insight
into the poling behavior of the materials investigated, which in turn is essential for the PR effect
in these systems. 

For evaluation of the transmission ellipsometric experiments the transmitted light was
monitored as a function of the externally applied field applying constant (and sufficiently long
for achieving quasi steady-state poling conditions) relaxation times or as a function of time at
constant field applied. The ellipsometric transmission shows oscillatory behavior as a function
of the externally applied field due to the (sin)2-dependency like the diffraction efficiency in
DFWM experiments. Thus a first transmission maximum as a function of the applied field can
be obtained, which was normalized to unity in order to obtain functional dependencies for
∆nELP. Then, a measure for  ∆nELP reproducing general trends correctly was calculated
according to:

.  eq. (4 - 54)
Physically exact numerical values of ∆nELP were not considered in the frame of this work but
only general relations and trends.

The dynamics of the evolution or the decay of ∆nELP was evaluated in a way identical to
the DFWM experiments and has already been discussed in detail in the corresponding section.
Please note, that the number of exponential terms necessary to describe the dynamic behavior
to a sufficient degree of accuracy need not be identical for DFWM and ELP curves. In these
cases, exponential terms were merged appropriately by means of logarithmic averaging as also
already described in “4.2.1.3.2.3.) DFWM evaluation procedure” on page 197 in order to
compare DFWM and ELP experiments. 

Please note eventually that eq. (4 - 52) only
represents an approximation, the quality of which
becomes worse with increasing  and Ψt as
depicted by figure (4 - 15), since eq. (4 - 52) was derived
neglecting the distance “B-D“ in the optical paths.
Within the frame of this work, this approximation is
sufficient since absolute values of the ellipsometric
transmission are not considered, but rather only the
position of the transmission maximum as a function of
the applied field, or the dynamic evolution of the
ellipsometric transmission, both of which are not
effected by the applied approximation. The correct
solution of the problem yielding accurate values for the
absolute ELP transmission is obtained replacing eq. (4 -
50) by the expression:

,  eq. (4 - 55)

where the parameters used are obvious from figure (4 -
15). Eq. (4 - 55) can easily by derived from figure (4 - 15)
the same way as already described above, however, the
derivation is more extensive containing vast
trigonometric manipulations. Since eq. (4 - 55) was not
used in the frame of this work, its derivation will not be
demonstrated here. 
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 Figure (4 - 15): Geometry of 
transmission ellipsometry. The 

considered beam is incident on the 
birefringent medium at point “A“, splits 
into two, which exit the medium at the 

points “B“ and “C“. At point “C“ and “D“, 
respectively, the beams superimpose. 

Hence, the actual optical paths of the two 
single beams between splitting point and 
subsequent reunion are “A-B-D“ and “A-

C“, respectively.
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5.)Results
This work focuses on identifying, systematizing and interpreting general trends in PVK

based PR polymers when the composition and/or experimental parameters of the material are
methodically altered. Accordingly, this work is primarily dealing with a single type of PR
polymer composite, which is based on the first high performance PR polymer developed in 1994
by K. Meerholz et.al. [13], the composition of which was already explained in “3.2.5.1.)
Milestones” on page 165. In 1998, a novel type of PR polymer was invented, which is closely
related with the aforementioned first high performance material, but shows significantly
improved thermodynamic stability at even slightly improved steady state PR performance
[136]. For this material, an eutectic mixture of the NLO chromophores DMNPAA and MNPAA
at otherwise unaltered composition was used instead of solely DMNPAA as in the material
according to [13]. Due to the clearly superior properties of the novel PR polymer, investigations
on the general material properties were thereafter performed using this material. Please note,
that the aforementioned difference in the basic composition may limit the comparability of
results obtained with these two types of materials. However, one can safely presume that both
types of materials behave similarly as far as the general trends are concerned, since neither the
type of the polymer matrix (i.e. the basic electrical properties) nor the sensitizer nor the general
type of NLO chromophores has been altered. All materials investigated in the frame of this
work, their compositions as well as glass-transition temperatures are listed in table (5-1). The
glass-transition temperatures were determined by differential scanning calorimetry (DSC) using
a heating rate of 20K/min.

Table (5-1): Chemical composition and glass transition temperature of the investigated 
materials 

Material
DMNPAA 

(NLO
chromophore 1)

MNPAA 
(NLO

chromophore 2)

PVK
(Polymer 
matrix)

ECZ
(Plasticizer)

TNF
(Sensitizer)

TPD
(Extrinsic trap 

dopant*))

Tg 

units [%wt] [%wt] [%wt] [%wt] [%wt] [%wt] [°C]

20a 20 59 20 1 - 60

20b 20 - 54 25 1 - 30

20c 20 - 49 30 1 - 14

20d 20 - 44 35 1 - -2

30a 30 - 59 10 1 - 62

30b 30 - 54 15 1 - 37

30c 30 - 49 20 1 - 12

30d 30 - 44 25 1 - 6

30e 30 - 39 30 1 - 1

40a 40 - 59 0 1 - 72

40b 40 - 54 5 1 - 48

40c 40 - 49 10 1 - 25
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*) Please note that the HOMO levels of the commonly used hole conductor TPD (N,N’-bis(3-tolyl)-N,N’-diphenyl-benzidine) are situated about 0.5eV
below those of PVK. Thus, TPD moieties in low concentration constitute deep traps within the carbazole charge transport manifold.

40d 40 - 44 15 1 - 17

40e 40 - 39 20 1 - 10

40f 40 - 34 25 1 - 2

50a 50 - 49 0 1 - 35

50b 50 - 44 5 1 - 24

50c 50 - 39 10 1 - 14

50d 50 - 34 15 1 - 7

50e 50 - 29 20 1 - 1

TNF01 25 25 35 14.9 0.1 - 3

TNF02 25 25 35 14.8 0.2 - 3

TNF04 25 25 35 14.6 0.4 - 3

TNF08 25 25 35 14.2 0.8 - 3

TNF2 25 25 35 13 2 - 4

TNF5 25 25 35 10 5 - 9

A 25 25 47 2 1 - 27

B 25 25 43 6 1 - 17.5

C 25 25 39 10 1 - 14

D (TNF1) 25 25 37 12 1 - 11.5

AT 25 25 42 6.18 1 0.82 18.5

BT 25 25 40 8.18 1 0.82 17

CT 25 25 38 10.18 1 0.82 14

CT1 25 25 36 11.36 1 1.64 10

CT2 25 25 34 10.1 1 4.9 12

CT3 25 25 30 9 1 10 12.5

DT 25 25 36 12.18 1 0.82 13

Table (5-1): Chemical composition and glass transition temperature of the investigated 
materials 

Material
DMNPAA 

(NLO
chromophore 1)

MNPAA 
(NLO

chromophore 2)

PVK
(Polymer 
matrix)

ECZ
(Plasticizer)

TNF
(Sensitizer)

TPD
(Extrinsic trap 

dopant*))

Tg 
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This section will be organized as follows: First, by means of a simple numerical
simulation based on Kogelnik’s formalism it will be shown that hologram bending due to 2BC
does not notably affect the DFWM (DFWM: degenerate four-wave-mixing) diffraction
properties of organic PR thin film devices. Thereafter, the influence of the glass-transition
temperature on the steady-state diffraction properties as well as on the PR grating build-up
dynamics in PVK based PR polymers will be investigated in detail. These investigations have
been performed on materials based on the first high-performance PR polymer according to [13].
Subsequently, the role of the sensitizer will be elaborated upon with respect to the same
properties, however, using the improved material according to [136]. Then the dynamic erasure
and dark-decay behavior of holographic PR gratings in PVK based PR polymers will be looked
into extensively. For the latter investigations, materials with and without extrinsic deep traps
(introduced by doping the material with TPD) were considered. Within the frame of those latter
investigations the application of PVK based PR polymers in holographic multiplexing will also
be discussed. Finally, in the last section the application of PVK based PR polymers in
holographic multiplexing will be demonstrated experimentally. Please note that the sequence of
investigations as described above does not reflect the actual chronology in which the
investigations have been carried out. In fact, the multiplexing experiments discussed last were
performed in advance of the investigations on the erasure and dark-decay dynamics, which in
turn were motivated in view of the problems revealed by the multiplexing experiments. 
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5.1.)Influence of hologram bending on the diffraction 
efficiency in PR thin film devices: A simple model 

calculation
In photorefractive materials, strong 2BC leads to bending of the recorded hologram,

which, in turn, may affect the diffraction properties of the latter as already mentioned in
“2.5.4.2.) Theoretical formulation of two-beam coupling” on page 141. Among others this
effect has been made responsible for the fact that even under ideal conditions complete
diffraction has not yet been achieved in organic photorefractive thin film devices, even with the
best PR materials presently known [155]. However, this assumption has not been confirmed up
to now. In order to get a first insight into the effect of hologram bending on the diffraction
properties of organic thin-film devices operated in tilted configuration according to figure (4 -
4), the diffraction efficiency of a typical PR organic thin film device was numerically simulated
using Kogelnik’s coupled wave theory. The Bragg-mismatch was taken into account, which is
introduced by the imaginary part of the complex PR gain according to eq. (2.5 - 101) to eq. (2.5
- 112). This numerical simulation was carried out using typical operating parameters of the
material type 50b according to table 5-1 on page 211. Furthermore, physically unrealistic values
of the PR gain at otherwise typical operating parameters for the same type of material have been
used in the simulation in order to demonstrate general trends in the influence of hologram
bending on the diffraction properties. 

5.1.1.)The simulation model
The external diffraction efficiency ηext given by eq. (4 - 19) is limited by the absorption

of the material, which is not constant due to absorption induced by the applied electrical field
[13]. In order to exclude absorption effects in typical organic PR thin film devices (i.e. showing
small absorption coefficients of α < 30cm-1 even with a strong external electrical field applied),
commonly the internal diffraction efficiency ηint according to eq. (4 - 20) is considered. The
small difference in the optical paths of the diffracted and the transmitted probe beam in the tilted
configuration according to figure (4 - 4) causes only a small error as already discussed in
“4.2.1.3.2.) Evaluation of the DFWM experiments” on page 195. Thus, by using the internal
diffraction efficiency ηint, the holographic grating in the simulation can be considered as loss-
free in good approximation.

According to the theory of 2BC, the coherent energy exchange between the interfering
laser beams is accompanied by a relative phase shift of the recording beams as expressed by eq.
(2.5 - 111) and eq. (2.5 - 112). Consequently, when 2BC occurs, the interference pattern is
continuously slanted as a function of the propagation of the recording beams through the PR
material, leading to hologram bending [71]. It is clear, that this will affect the diffraction
properties of the hologram in four-wave-mixing experiments since the Bragg condition cannot
be met throughout the entire grating even for ideal adjustment of the experimental setup. Please
note, that this problem has been made responsible for the experimental observation that a slight
misalignment of the probe beam relative to the pure geometrical Bragg-condition is necessary
in order to achieve maximum diffraction efficiency [154, 155]. The geometrical Bragg-
condition is met in a phase conjugate DFWM experiment if the probe beam exactly
counterpropagates one of the recording beams. However, in a typical DFWM experiment using
crossed polarization for the recording beams and the probe beam, the actual optical Bragg-
condition cannot coincide with the geometrical Bragg-condition due to the birefringence
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induced by the applied electrical field, which will be discussed later in more detail. On the other
hand, at this point it cannot be safely excluded that hologram bending may contribute to the
above mentioned experimental observation.

In order to estimate the order of magnitude the diffraction process in a DFWM experiment
is affected by hologram bending, the diffraction efficiency was numerically simulated using
Kogelnik’s coupled wave theory according to “2.3.2.) Coupled wave theory for thick hologram
gratings” on page 53 and a simplified theoretical model of a high performance PR polymer
according to “2.5.3.3.) Orientational enhancement effect” on page 131. 

According to the coupled wave theory the complex amplitude  of a p-polarized probe
beam diffracted at a “thick” transmission grating can be described by the general formula eq.
(2.3 - 40), which simplifies in the case of a loss-free grating to:

.  eq. (5.1 - 1)

The particular parameters are explained in “2.3.2.)
Coupled wave theory for thick hologram gratings”
on page 53. The parameter ξ must be understood
with the absorption set to zero for the case
considered here. Additionally, a variance of the slant
angle of the holographic grating must be allow for,
which is not accounted for in the basic coupled wave
theory discussed on page 53. The variance of the
slant angle is a result of a changing diffraction angle
of the signal beam with respect to the reference
beam as a function of hologram bending. Therefore,
the slant factor cD according to eq. (2.3 - 13) and eq.
(2.3 - 21) is rewritten as:

,  eq. (5.1 - 2)

where ∆ψ describes the deviation of the slant angle
due to hologram bending with respect to the slant
angle of the undistorted grating. Furthermore, the
dephasing measure ϑ according to eq. (2.3 - 18) can
be simplified omitting dephasing due to a
wavelength mismatch, which does not occur in the
considered case of DFWM. Thus, one obtains for
the dephasing measure ϑ:

,  eq. (5.1 - 3)
where θ0B and ∆θB are the Bragg-angle and the „Bragg - error“, respectively. Both ∆ψ and ∆θB
will be derived from the degree of hologram bending due to 2BC, as described below. Eq. (5.1
- 1) refers to the external (laboratory) reference frame (x,y,z) as depicted in figure (5.1 - 1). 

The external diffraction efficiency for an incident wave of unit amplitude is defined by
eq. (2.3 - 36):

where the slant factor cTD is defined by eq. (2.3 - 37).
According to the orientational enhancement model (page 131), ∆n depends quadratically
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on the local total poling field Epol. For the sake of simplicity, this basic relation is approximated
by: 

 eq. (5.1 - 4)
where Eext is the externally applied electrical field and Cmol is a constant, containing, among
others, the local field corrected molecular constants of the NLO chromophore, its density in the
matrix, geometrical factors (for example a projection factor for the PR space-charge field onto
the external field direction), and direction cosines of the involved laser beams. Please note, that
this approximation will not affect the aspects under investigation (maximum diffraction with
and without hologram bending), but rather only introduce some error in the field dependence of
the diffraction efficiency with respect to the experimental curve used for comparison.
Accordingly, the quality of this approximation is of minor importance as long as it reproduces
the general trend with reasonable accuracy, which applies here. The constant Cmol can be
estimated from the experiment using the strongly simplified form of Kogelnik’s equation for
slanted transmission holograms according to eq. (2.3 - 43):

 eq. (5.1 - 5)

The argument of eq. (5.1 - 5) must equal π/2 for the external electrical field required for
maximum internal diffraction efficiency Eext(ηmax). 

According to “2.5.4.) Photorefractive two-wave mixing” the complex gain coefficient ( ,
eq. (2.5 - 101) to eq. (2.5 - 103)) can be expressed as:

,  eq. (5.1 - 6)

where φ is the phase shift between the interference pattern and the resulting hologram, and 2θ
is the internal angle between the recording beams. By introducing eq. (5.1 - 6) one obtains two
sets of differential equations from the coupled wave theory of PR two-wave mixing, the one of
which applies to the energy transfer (eq. (2.5 - 104) and eq. (2.5 - 105)) and the other to the
dephasing of the two waves with respect to their initial phase (eq. (2.5 - 106) and eq. (2.5 - 107)).
For the sake of simplicity, the slightly different optical paths of the recording beams are
neglected. The imaginary component of  is the coupling constant for the phasing of the two
waves and, thus, results in hologram bending as discussed on page 144. In order to account for
the hologram bending, a second internal reference frame (u, v, w) is introduced as shown in
figure (5.1 - 1), which is described by the transformation:

.  eq. (5.1 - 7)

Here, Ψ is the tilt angle of the undistorted hologram (not the slant angle according to Kogelnik’s
coupled wave theory, which is denoted by “ψ“ in figure (5.1 - 1)). In the (u, v, w) frame the
interference pattern formed by the recording beams is described by the expression:

.  eq. (5.1 - 8)
K is the modulus of the grating vector, the direction of which is oriented parallelly to the u-axis.
For the sake of simplicity only two dimensions of the volume hologram will be considered
without loss of generality. The dimension along the grating planes and perpendicular to the
propagation direction of the beams is not relevant in a simple sinusoidal hologram, which,
according to the coupled wave theory, may even be read out in out of plane direction at arbitrary
angles, however, yielding a different diffraction efficiency corresponding to the actual
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interaction length. ∆ϕ0 is the initial phase difference of the recording beams, which is arbitrary
and, therefore, is set to zero. ∆ϕ(w) is the induced dephasing at penetration depth w due to 2BC,
I0 = I01 + I02 is the total incident intensity, and m(w) is the grating contrast at penetration depth
w, which is assumed constant in this simple simulation. It must be emphasized, that m(w) is in
fact not a constant due to energy transfer between the beams. The grating contrast recursively
influences the space-charge field, limiting the actual physical relevance of the simulation to
fields where the gain is relatively small. From eq. (2.5 - 111) and eq. (2.5 - 112) one obtains the
following expression for the depth-dependent relative dephasing ∆ϕ(w):

,  eq. (5.1 - 9)

where b is the initial intensity ratio of the writing beams. Please note, that ∆ϕ(w) changes sign
when changing the direction of the externally applied field, since φ changes sign. Thus, the
hologram bending direction depends on the sign of the applied field. In order to calculate the
hologram bending, lines of equal light intensity in the interference pattern (e.g. )
are selected, eq. (5.1 - 9) is inserted into eq. (5.1 - 8) and the resulting equation is rewritten to
the form u(w), which now expresses the position of the grating planes in the (u, v, w) frame as
a function of the penetration depth w:

.  eq. (5.1 - 10)

By differentiating eq. (5.1 - 10) one finally obtains the following expression for the slope of the
grating planes relative to the unaffected grating:

.  eq. (5.1 - 11)

Hologram bending leads to a deviation ∆θB from the “Bragg-angle“ θB0 accompanied by a
variation ∆ψ of the slant angle ψ of the hologram, both as a function of w and Eext. ∆θB and ∆Ψ
are identical and equal to  in the (u, v, w) frame, since the slope of the grating is zero in
this frame if no bending occurs. According to the relation between Ψ and ψ this applies to ∆ψ
as well (see figure (5.1 - 1)). Since the penetration depth can be handled one-dimensional the
transformation back to the laboratory frame is straight forward and equivalent to a simple
rotation, which does not affect the angle deviations:

.  eq. (5.1 - 12)
Thus, by substituting eq. (5.1 - 12) into eq. (5.1 - 11) one finally obtains:

.  eq. (5.1 - 13)
Therewith one can calculate the theoretical complex signal amplitude for a DFWM

experiment from eq. (5.1 - 1) and the expected diffraction efficiency using eq. (2.3 - 36). Please
note, that eq. (5.1 - 1) cannot be solved analytically, since the parameter ξ is complex. As
described above, the results obtained from eq. (2.3 - 36) can be directly compared with
experimental results on the internal diffraction efficiency giving rise to only a small error due
to the assumption of equal interaction length of the beams involved. However, one must keep
in mind that the simulation model used is in general only valid for small PR gains due to the
neglect of the influence of the PR gain on the grating contrast. 
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5.1.2.)Simulation parameters
In order to carry out the simulation and to

compare the results with the experiment, material
50b (see table 5-1 on page 211 for details) was
chosen as model system and parameters specific for
this system were derived from the experiment.
Details about the setup geometry are given in
table 5-2 on page 219 and the setup configuration is
depicted in figure (5.1 - 1).

As mentioned before, the argument of the sine
function in eq. (5.1 - 5) equals π/2 in the first
maximum of the internal diffraction efficiency
ηmax, which allows to estimate the value of the
constant Cmol. According to eq. (5.1 - 5) and for the
configuration under discussion, the refractive index
modulation at ηmax is ∆np = 2.6×10-3, which applies
for the p-polarized light used for grating read out.
∆nP has positive sign, due to the fact that the
refractive index increases with the applied field as compared to the bulk index of the isotropic
material (see “2.4.2.) Electrical poling of organic polymers - the oriented gas model” on
page 83). Accordingly, from the experimental value for the external field E(ηmax) = 59 V/µm
one obtains Cmol = 7.4×10-7. Running the simulation without accounting for hologram bending
but modeling the field dependent refractive index modulation ∆np(E) according to eq. (5.1 - 5)
shows general agreement between the simulated diffraction curve and the experimentally
determined internal diffraction efficiency for externally applied fields of up to about 75V/µm
as indicated by the arrow in figure (5.1 - 2). This experimentally validates the application of eq.
(5.1 - 5). The problem, which is focussed upon is also clearly visible: the diffraction efficiency
in its first maximum is significantly smaller than expected from the simple model. The strong
deviations between the simulated curve and the experimental curve for external fields exceeding
75V/µm are due to the neglect of the contrast loss of the grating, caused by the coherent energy
exchange in 2BC. 

In order to introduce hologram bending now the experimentally obtained PR gain is
considered (the real part of the gain coefficient), which was calculated from the experiment by
means of eq. (4 - 14). The writing beams were s-polarized. Thus, in order to apply eq. (5.1 - 5)
to the refractive index modulation ∆ns(E) sensed by the s-polarized writing beams using the
constant Cmol as determined above, the polarization anisotropy according to “4.2.1.4.)
Polarization anisotropy for PR wave mixing experiments” on page 199 must be taken into
account. As theoretically derived in the aforementioned paragraph, ∆nP /∆ns = -2.22 may be
considered as a reasonable value for PR polymer composites containing DMNPAA and closely
related derivatives as NLO chromophores. Please note, that ∆ns has negative sign in this case,
since the refractive index decreases with respect to the isotropic bulk refractive index when the
field is increased due to the dominant BR contribution as discussed in “2.5.3.3.) Orientational
enhancement effect” in context with “2.4.2.) Electrical poling of organic polymers - the oriented
gas model”. It must be pointed out that the sign of the refractive index modulation does not
result from the pure mathematical formalism applied here, since ∆n can only be derived with
unclear sign from DFWM experiments as can be seen from eq. (5.1 - 5). Thus, additional and
more detailed considerations of the material in question are required in order to determine the
sign of the refractive index modulation for a certain experimental configuration as demonstrated
above. 

 Figure (5.1 - 2): Simulated diffraction 
efficiency without hologram bending (solid 
line) and experimental internal diffraction 

efficiency calculated according to eq. (4 - 20) 
(open squares).
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In order to derive the PR phase shift φ, the
refractive index modulation modeled according to eq.
(5.1 - 5) (corrected for the polarization anisotropy) is
used together with the experimentally obtained PR
gain and eq. (4 - 15) is applied. It turns out, that the
PR phase shift takes a constant value of about 20° for
external fields exceeding 40V/µm, which is in
reasonable agreement with experimental results
obtained with a similar material using the moving
grating technique [207]. Thus, a constant φ = 20° will
be used for the simulation. Recalculating the PR gain
according to eq. (4 - 15) with φ = 20° for the entire
range of external fields applied (0 to 120V/µm) shows
very good agreement with the experiment (see figure
(5.1 - 3)), which validates the described procedure.
Please note, that a constant phase shift as a function of
the applied field cannot be implied in general but will
suffice for the present purpose. As can be seen from the inset of figure (5.1 - 3), the phase shift
tends to increase for small fields applied, which is in agreement with experimental results
obtained using the moving grating technique [207]. This was attributed to the influence of an
isomerization grating component as discussed in “4.2.1.7.) Isomerization gratings” on
page 205. 

Please note furthermore that Γ appears to be negative in the considered experiment and,
hence, φ is positive, resulting in ∆ϕ(w) ≤ 0. Thus, the grating is bent towards the x-axis, resulting
in a decreasing ψ (increasing Ψ) as a function of z in the present case. It is important to point
out, that the bending direction depends both on the direction of the applied field as mentioned
before, as well as on the polarization of the writing beams.

The intensity ratio of the recording beam was set constant to b = 1 (i. e., m = 1), which
correlates with the initial condition of zero externally applied field in the experiment. It must be
pointed out that setting the beam intensity ratio and the grating contrast to unity and assuming
these parameters to remain constant for the complete simulation is a dramatic simplification,
which strongly restricts the range of validity of the calculations. 

The total set of parameters used in the simulation is subsumed in table (5-2):

Table (5-2): Simulation parameters

Parameter External value Internal value Parameter meaning

Ψ 60° 29.2° Tilt angle of the hologram

ψ - 60.8° Slant angle of the hologram

α1 50° 26° Incident angle of recording beam 1

α2 70° 32.5° Incident angle of recording beam 2

θB 50° 26° Bragg angle

φ - 20° PR phase shift

 Figure (5.1 - 3): Calculated gain as described 
in the text (solid line) and experimentally 

determined gain (open circles). Inset: PR phase 
shift derived from 2BC experiments using the 

theoretically modeled refractive index 
modulation as described in the text
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The simulations were carried out using MATLAB for Windows (16bit). The program
code for the simulations is given in Appendix A.

5.1.3.)Results and discussion of the diffraction efficiency simulations

Now the diffraction efficiency can be modelled for the geometry and conditions used in
the experiment by applying eq. (5.1 - 1) and eq. (2.3 - 37). By means of eq. (5.1 - 13) and eq.
(5.1 - 12) hologram bending will be taken into account. The individual parameters for the
simulation are listed in table (5-2). For comparison the corresponding diffraction curves not
taking into account hologram bending were also calculated. 

2θ 20° 6.5° Angle between the writing beams

Eext variable not determined Externally applied electrical field

n0 - 1.75 Materials’ bulk refractive index

λ0 633nm 633nm Operating vacuum wavelength

Cmol - 7.4×10-7µm2/V2 Constant for eq. (5.1 - 5)

∆nP /∆ns - -2.22 Anisotropy factor

b - 1 Recording beam ratio

m - 1 Grating contrast (assumed constant)

d 105µm n.a. sample thickness

Table (5-2): Simulation parameters

Parameter External value Internal value Parameter meaning

 Figure (5.1 - 4): Simulated diffraction curve with hologram bending (solid line) and experimental 
internal diffraction efficiency (open squares). 
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Figure (5.1 - 4) compares the calculated diffraction curve including hologram bending
with the corresponding experimental data. The result is virtually (but not actually) identical to
figure (5.1 - 2), where the theoretical curve has been calculated without hologram bending and
applying the strongly simplified model according to eq. (5.1 - 5). Indeed, the theoretical curves
calculated with and without hologram bending using the complete simulation model are very
similar within the field range, which can be experimentally studied. However, slight differences
exist, which are due to hologram bending as shown in figure (5.1 - 5). Since the graphs are too
similar to be distinguished in a plot covering the total range of external fields used for the
simulation, the sections of interest have been enlarged in figure (5.1 - 5). 

In figure (5.1 - 5) the theoretical influence of hologram bending is clearly visible, but,
within the range of external fields experimentally accessible, of very small magnitude. The
revealed deviations are far below the typical experimental error made in DFWM experiments
with organic thin film devices operated in tilted configuration as described in “4.2.1.3.2.)
Evaluation of the DFWM experiments” on page 195. The diffraction efficiency is lowered by
about 3×10-4 (0.03%) in the first diffraction maximum and 3×10-3 (0.3%) in the second
diffraction maximum due to hologram bending. Furthermore, an offset diffraction can be
observed in the first and second minimum (remaining diffraction efficiency about 3×10-6 and
about 9×10-5, respectively), whereas the diffraction efficiency drops to zero, if simulated
without hologram bending. The deviation of the diffraction magnitude from the values without
hologram bending increases monotonously with the order number of the maxima or minima, but
shows a larger absolute magnitude for the maxima as compared to the minima. As could be
expected from eq. (5.1 - 1) (ξ2 > 0 in the sine argument), hologram bending shifts the diffraction
curves slightly towards smaller external fields. Taking into account hologram bending, the first
diffraction maximum occurs about 9mV/µm earlier on the external field axis than without
bending. As opposed to the diffraction efficiency the reduction of the external field increases
monotonously throughout the straight sequence of both the diffraction extrema (i.e. maxima and
minima) in the direction of increasing field. These results prove unambiguously, that the
experimental observation of incomplete diffraction even for ‘perfect’ alignment of all beams

 Figure (5.1 - 5): Zooms to the areas of interest of the calculated diffraction curves taking and taking not 
into account hologram bending (solid circles and solid squares, respectively): First (A) and second (C) 

diffraction maxima and first (B) and second (D) diffraction minima are depicted.
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[154, 155] can not be attributed to this effect. It should be noted, that this validates the common
practice to compare the performance of different materials considering the external fields
necessary to achieve the first diffraction maximum as already mentioned in “3.1.1.1.) Dynamic
range” on page 151. 

In general, the experimental and the calculated diffraction curves are quite similar for
external fields below 70 V/µm, whereas they start to deviate strongly from each other for higher
fields. This should be attributed to the increasing influence of the contrast factor m, which,
according to eq. (2.5 - 1), determines ESC [71, 140]. The contrast factor at the rear exit plane can
be calculated from the measured intensities of the writing beams after passing through the
device. For Eext ≤ 70V/µm m varies very little (> 0.95), but it strongly decreases to 0.57 at Eext
= 120 V/µm. However, a detailed study of the influence of the contrast factor on the DFWM
diffraction properties would require a very complex simulation model taking into account the
recursive influence of the contrast factor on the PR space-charge field and the PR phase shift.
Furthermore, while the impact of m on the refractive index modulation may be approximated
by calculating the relative recording beam intensities as a function of increasing penetration
depth according to eq. (2.5 - 108) to eq. (2.5 - 110), deriving the contrast factor according to eq.
(2.1 - 47) and correcting the refractive index modulation according to eq. (5.1 - 4) by
multiplication with the contrast factor, there is currently no theoretical model for the influence
of the grating contrast on the PR phase shift for PR polymers. Erwin Mecher experimentally
investigated the correlation between the grating contrast and the PR phase shift in detail and
found a very complicated behavior [T1]. Hence, a consistent solution of the overall problem
cannot be provided at this point. 

 Only under extreme conditions, which cannot be reached experimentally, hologram
bending affects the diffraction properties of a PR grating notably. In order to show the general
relations, which result from the simulation parameters according to table 5-2 on page 219, the
simulation was formally extend to external fields of 1000V/µm (figure (5.1 - 6) keeping in mind
that these results do not represent a real physical state of the materials investigated. Figure (5.1
- 6) clearly demonstrates, that even under extreme conditions hologram bending is not supposed
to show a significant impact on the diffraction efficiency in PR polymers. The functional
dependence of the diffraction efficiency on the external field (i.e. the refractive modulation) is
determined by the mathematical behavior of eq. (5.1 - 1) and will not be considered here in
detail. However, obviously the effect of hologram bending on the diffraction efficiency as a
function of increasing refractive index modulation shows a maximum and decreases again for
even higher index modulations. In contrast, the shift of the position of the diffraction extrema
on the field axis towards lower fields, as compared to the undisturbed grating, increases
monotonously within the simulation interval (figure (5.1 - 7)). This proves, that the dephasing
parameter does not show oscillatory behavior as might be expected from eq. (5.1 - 3). However,
oscillatory behavior would imply a “rolling“ grating (i.e. a change from a transmission type to
a reflection type grating as a function of the penetration depth), which is not allowed for by the
applied model. That fact, that oscillatory behavior actually does not occur even for the highest
fields applied in the current consideration may be taken as indication that the simulation model
is not only mathematically but also physically correct in principle. However, it must be pointed
out that the simulation model does not provide results of actual physical relevance for the high
field values formally used here, since the approximations applied will by no means represent
the physical truth any more. For example, the PR gain simply extrapolated to an external field
of 1000V/µm would exceed Γ = 104cm-1, which implies that the intensity of the depleted beam
normalized by its initial (i.e. undepleted) value will drop to about I/I0 ≈ 10-55. Accordingly, the
grating contrast will almost immediately virtually drop to zero as the recording beams pass
through the active PR layer, which would even violate the basic assumption of a thick
holographic grating underlying Kogelnik’s coupled wave theory.
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 Furthermore, the results of the simulation model will be considered for the case of higher
PR phase shifts than experimentally determined from the employed model system of a PR
polymer. This point of view is justified by the fact, that the model system utilizes the azo dye
DMNPAA as NLO chromophore, which is known to be capable of forming a local
isomerization grating at the operating wavelength applied here (for more details see “4.2.1.7.)

 Figure (5.1 - 6): Formal diffraction maxima and minima as a function of the external field for field 
values beyond experimental accessibility.

 Figure (5.1 - 7): Shift of diffraction extrema towards lower external fields for the case when bending 
occurs with respect to the undisturbed grating. Field values beyond experimental accessibility are 

included.
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Isomerization gratings” on page 205). Thus, one may assume, that the apparent PR phase shift
calculated from the experimental data on the PR gain and the DFWM diffraction efficiency may
consist of a local contribution with zero phase shift corresponding to an isomerization grating
and PR contribution of higher phase shift than calculated. In fact, a considerably higher PR
phase shift approaching almost 90° has been determined for a PR polymer using an AC
modulation technique, which is a method enabling the determination of the purely
photorefractive phase shift independently from a possible local contribution to the overall
refractive index grating [192]. Although the system investigated in the related work is
significantly different from the systems investigated here, the results presented indicate that one
may have to account for a higher PR phase shift than has actually been done in the simulations
discussed above. Moreover, in order to obtain the PR phase shift, a theoretical anisotropy factor
has been applied for adapting the refractive index modulation calculated from DFWM
experiments (carried out using a p-polarized reading beam) to the 2BC experiments, which have
been carried out with s-polarized recording beams. As already discussed in “4.2.1.4.)
Polarization anisotropy for PR wave mixing experiments” on page 199, this theoretical
anisotropy correction factor is only a rather crude approximation afflicted with an error of
unclear magnitude. Accordingly, besides the possible occurrence of a local grating as discussed
above, the crude approximation of the anisotropy factor may as well result in an erroneous
estimate of the absolute phase shift from the experiment. The simulated diffraction efficiencies
as a function of the phase shift are shown in figure (5.1 - 8). 

Please note, that simply the PR phase shift was varied keeping the refractive index
modulation constant. However, in both cases discussed above, which possibly give rise to
misestimates of the PR phase shift, the refractive index modulation sensed by the recording
beams for the 2BC process must in fact be understood as a function of the PR phase shift or vice
versa. 

Figure (5.1 - 8) reveals, that there is a maximum deviation from the undisturbed grating
for about 35° PR phase shift. The phase shift history of the simulation curves can easily be
understood when considering eq. (5.1 - 11). For a given refractive index modulation, the (real
part of the) PR gain coefficient increases with increasing phase shift ( ) as does the

 Figure (5.1 - 8): Diffraction efficiencies in the first (squares) and second (circles) diffraction maximum 
(solid symbols) and minimum (open symbols) simulated for different PR phase shifts. Data for 20° 

represent simulation results for the real model system.
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denominator (due to ) of eq. (5.1 - 11). However, for high phase shifts  grows faster
and, hence, the slope of the grating planes decreases again, approaching zero for φ approaching
90°. For φ = 90° the grating is undisturbed again, which corresponds to a relative dephasing of
the recording beams of 180°, yielding a grating, which is shifted by half a period with respect
to the undisturbed grating (i.e. for φ = 0°), but which is not subjected to bending. Figure (5.1 -
8) shows that the impact of hologram bending on the diffraction efficiencies remains negligibly
small for all values of the PR phase shift. Please note that for φ ≥ 20°, the deviations of the
diffraction efficiencies from the case of an undisturbed grating as depicted in figure (5.1 - 8)
will be upper bounds for the real situation, if there is a local grating as discussed above, or if the
anisotropy factor is erroneous, since in both cases the refractive index modulation of the purely
photorefractive grating will be smaller than determined from DFWM experiments. On the
contrary, for φ ≤ 20° the situation is reversed, i.e. the purely PR refractive index modulation is
larger than determined from DFWM experiments. Nevertheless, in all cases the general trend
can safely be assumed to be similar to the situation as depicted in figure (5.1 - 8): The deviations
in the diffraction efficiency between the disturbed grating and the undisturbed grating vanish
for φ = 0° and φ = 90° and show a maximum in-between.

5.1.4.)Quintessence of the diffraction efficiency simulations
Although the presented simulation model contains strong simplifications, it could

unambiguously be shown that hologram bending due to strong 2BC does not notably affect the
diffraction properties of a grating in organic PR devices within the range of the externally
applied fields experimentally possible. This contradicts earlier statements in the literature,
where hologram bending was made responsible for the observed misalignment of the probe
beam required in order to achieve maximum diffraction efficiency [154, 155] and, among
others, incomplete diffraction at the maximum [155]. The misalignment of the probe beam,
thus, must be attributed to the common setup geometry (s-polarized writing, p-polarized
reading, tilted geometry), which leads to different refraction properties for the writing beams
and for the reading beam due to the field-induced birefringence of the material, rather than to
hologram bending. The real physical background for incomplete diffraction at the diffraction
maximum in PR polymers remains unclear.

φtan φtan
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5.2.)The PR performance of PVK based polymer 
composites at varying glass-transition temperatures
The glass-transition temperature Tg is of outstanding importance for today’s high-

performance PR polymers. According to “2.5.3.3.) Orientational enhancement effect” on
page 131, their excellent performance is basically due to the possibility of in-situ orienting the
NLO chromophores by means of the total electrical field, which emerges in the systems through
superposition of the externally applied field Eext with the internal space-charge field ESC, the
latter being effected by the PR response of the material. As a result, the PR refractive index
modulation ∆n originates mostly from an orientational birefringence [13, 88, 91, 161, 165, 168,
170, 178]. Therefore, the orientational mobility of the NLO chromophores in the polymer
matrix is a vital parameter for the performance of PR polymers, which determines on the one
hand whether the orientational enhancement effect may take place and to which extent it affects
the PR response behavior on the other. As already discussed in “2.4.1.) Relaxation and
thermodynamics in polymers” on page 70, at a given ambient temperature the orientational
mobility of molecular entities in an amorphous polymer matrix is mainly determined by its Tg.

The mechanical force required in order to orient the NLO chromophores to a certain
degree along the total internal field direction is (besides the thermal energy) determined by their
orientational mobility in the polymer matrix. Furthermore, it turned out that the electrical
properties of the photo conducting polymer matrix [196, T2] are affected by Tg as well. While
the first aspect leads to an improved steady-state PR performance as a function of decreasing
Tg, the latter takes influence on the internal PR space-charge field, resulting in a reduction of
the PR performance as Tg decreases for Tg below the ambient temperature (referred to as RT,
„room temperature“, hereafter). These two counteracting effects result in a complicated
dependence of the steady-state PR properties of PR polymers on Tg.

If orientational enhancement takes place, it is clear that the dynamic response behavior of
PR polymers will also depend on the molecular mobility of the NLO chromophores embedded
in the photo-conducting polymer matrix and, consequently, for a given RT depend on Tg.

5.2.1.)Experimental aspects
Subsequently, the Tg dependence of the steady-state and the dynamic properties of PVK

based PR polymer systems will be elaborated upon in detail. The materials investigated are
derived from the first high-performance PR polymer presented in [13] and already described in
detail in “3.2.5.1.) Milestones” on page 165. Investigations on systems exhibiting different Tg
as well as containing different concentrations of NLO chromophores (2,5 DMNPAA) were
carried out. The particular composition of the materials investigated in this section and their
corresponding glass-transition temperatures in the range of -1°C < Tg < 70°C are listed in
table 5-1 on page 211 as well as at the end of this section. For a general overview of the
mentioned components see “3.2.5.4.) The plasticizer” on page 169, “3.2.5.3.) The polymer
matrix” on page 168, and “3.2.5.5.) The chromophore” on page 170, respectively. The glass-
transition temperature of such composites can be adjusted by varying the ratio of PVK to ECZ,
whereas the basic electronic properties are expected to remain approximately constant.
Depending on the chromophore content, the range of accessible Tg’s is delimited by the case,
that no ECZ is added on the one hand yielding materials of relatively high Tg, and material
instability due to phase separation and/or dielectric breakdown for very low Tg materials on the
other. Phase separation occurs, because the materials are thermodynamically metastable, i.e.
they represent oversaturated solid solutions of the highly polar NLO chromophore in the only
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slightly polar polymer matrix. Furthermore, the components of low molecular mass show high
diffusion mobility in the polymer matrix. Thus, phase separation eventually results in partial
crystallization at room temperature and the material becomes opaque. However, it must be
emphasized that all materials investigated in this section showed unchanged performance long
enough to allow for their careful experimental examination. Devices were prepared according
to “4.1.) Preparation of materials and sample structure” on page 179. The film thickness of the
PR polymer was adjusted to d = 105µm. In order to prevent possible crystallization effects,
which may occur in those materials exhibiting very low Tg as described above, all devices were
consistently cooled down to room temperature at a cooling rate of approximately 30°C/sec. The
devices thus obtained were stable against phase separation from few hours for the composites
of very low Tg and high chromophore concentration (e.g. 50e, 40f), up to several months and
longer for materials of high Tg and low chromophore concentration (≤ 30%wt). All samples
were characterized immediately after preparation which resulted in excellent reproducibility of
all experimental results for all systems investigated here. The temperature in the air-conditioned
laboratory, inside of which the experiments were performed was RT = 18±0.5 °C for all
measurements. 

DFWM and 2BC experiments were carried out using s-polarized recording beams, the
internal intensities of which were determined as described in “4.2.1.6.) Intensity determination”
on page 204, yielding I01 = 20mW/cm2 and I02 = 25mW/cm2. The reading beam was p-
polarized and its intensity was IR = 90 µW/cm2. The internal diffraction efficiencies ηint and the
PR gain coefficients Γ were determined as a function of the external field Eext and/or as a
function of time, applying the setup and procedures according to “4.2.) Wave mixing
experiments” on page 181. Recording beam I2 was used for the initial relaxation in the dynamic
experiments. The initial relaxation time was 30 minutes in all cases. Lock-in amplifiers were
not used here.

In order to study the poling process separately from the formation of the PR space-charge
field, the field-dependent and/or time dependent changes of the bulk refractive index was
furthermore determined for the same devices as investigated holographically. Therefore,
ellipsometric transmission experiments according to “4.3.) Transmission ellipsometric
experiments” on page 207 were carried out using the same operating wavelength as applied in
the holographic wave mixing experiments. The devices, were tilted by the internal angle Ψt =
26° and the ellipsometric transmission was determined as a function of the externally applied
electrical field as well as as a function of time.

Table (5-3): Chemical composition and glass transition temperature of the materials 
investigated in “5.2.) The PR performance of PVK based polymer composites at varying 

glass-transition temperatures”

Material DMNPAA MNPAA PVK ECZ TNF TPD Tg 

units [%wt] [%wt] [%wt] [%wt] [%wt] [%wt] [°C]

20a 20 59 20 1 - 60

20b 20 - 54 25 1 - 30

20c 20 - 49 30 1 - 14

20d 20 - 44 35 1 - -2

30a 30 - 59 10 1 - 62
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5.2.2.)The relation between the glass-transition temperature and the steady-
state performance in PVK based PR polymers

The in-situ poling of the materials by the local total internal electrical field ET,loc, which
is the vector sum of the externally applied field Eext and the internal space-charge field ESC,
results in an enhancement of the electro-optic effect as well as in a birefringence contribution
to the index modulation ∆n, unlike in PR crystals. This mechanism is known as the orientational
enhancement effect (for details see page 131). The quality of the grating formation process
(besides its kinetics, which will be discussed later) is strongly influenced by the orientational
mobility of the dipoles. According to “2.4.1.) Relaxation and thermodynamics in polymers” on
page 70, the latter may be considered as being delimited by the internal free volume of the
polymer matrix, for which the relative temperature Tr may be regarded a measure. The relative
temperature is defined as:

 eq. (5.2 - 1)
In earlier investigations, Tg was adjusted by varying the concentration of a plasticizer,

while the measurement temperature (i.e. RT) was kept constant [191]. In analogy, the
measurement temperature was varied for one given material by selectively heating the sample,

30b 30 - 54 15 1 - 37

30c 30 - 49 20 1 - 12

30d 30 - 44 25 1 - 6

30e 30 - 39 30 1 - 1

40a 40 - 59 0 1 - 72

40b 40 - 54 5 1 - 48

40c 40 - 49 10 1 - 25

40d 40 - 44 15 1 - 17

40e 40 - 39 20 1 - 10

40f 40 - 34 25 1 - 2

50a 50 - 49 0 1 - 35

50b 50 - 44 5 1 - 24

50c 50 - 39 10 1 - 14

50d 50 - 34 15 1 - 7

50e 50 - 29 20 1 - 1

Table (5-3): Chemical composition and glass transition temperature of the materials 
investigated in “5.2.) The PR performance of PVK based polymer composites at varying 

glass-transition temperatures”

Material DMNPAA MNPAA PVK ECZ TNF TPD Tg 

Tr Tg RT–=
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the glass-transition temperature of which was constant [157]. Qualitatively, the PR performance
was found to improve in both cases as a function of decreasing Tr. Unfortunately, the Tg’s of
the composites were not explicitly given, which prevents a detailed comparison of the reported
results with the results presented here. As a result of the aforementioned earlier investigations,
for a long time, simply lowering Tg was considered as an easy way to consistently improve the
performance of PR polymers. Furthermore, both the aforementioned studies were restricted to
composites with rather low chromophore concentrations and the chromophore content was held
constant throughout the investigations carried out. However, typical high-performance organic
PR materials known to date contain much more NLO chromophore [13, 178, 171, 165, 170] or
even consist of chromophores only [161, 91]. 

Therefore, the influence of Tg on the steady-state performance of the PVK based PR
polymer composites being subject of this work was investigated at room temperature with the
chromophore content varying between 20 and 50%wt. According to the orientational
enhancement effect, an improvement of the PR performance is expected for increasing
chromophore concentration as well as decreasing Tg. Both trends are confirmed for Tg > RT.
Materials fulfilling this relation between Tg and the ambient temperature will be referred to as
„high-Tg“ systems hereafter. However, a performance optimum was found for the highly-doped
materials at Tg < RT. Materials with Tg < RT will be referred to as „low-Tg“ materials hereafter.
Subsequently, it will be demonstrated that this is a result of two counteracting effects, both of
which scale with Tg: On the one hand, the degree of the orientation of the chromophores along
the local direction of  for a given  improves as a function of decreasing Tg, yielding
higher PR performance. On the other hand, the relative strength of ESC decreases as a function
of decreasing Tg for Tg < RT, which leads to a reduction of the spatial average of  as well
as to a reduction of the modulation of the direction of  with respect to the direction of the
externally applied field, both of which lowering the PR performance. 

5.2.2.1.)Experimental results on the Tg dependence of the steady-state PR 
performance

In order to gain a more detailed insight into the influence of Tg on the steady-state
performance of organic PR materials, four series of PVK-based PR polymer composites with
different chromophore content were studied. In almost all cases (see caption of figure (5.2 - 1)
for details), a maximum of the diffraction efficiency was observed at specific field values
Eext(ηmax). The normalized experimental diffraction curves are shown in figure (5.2 - 1). The
actual maximum of the internal diffraction efficiency was ηint = 80±5% in all cases.

According to “2.3.2.) Coupled wave theory for thick hologram gratings” on page 53, ηint
reaches its first maximum for the sine argument equaling π/2, which corresponds to

 for all materials and for the experimental geometry applied here.
Hence, Eext(ηint,max) can be used to compare the steady-state performance of PR polymers.
Lower Eext(ηint,max) corresponds to better PR performance. 

Etot Eext

Etot
Etot

∆n ηint max,( ) 2.6x10 3–=
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 Figure (5.2 - 2) shows Eext(ηint,max) for all materials as a function of the reduced
temperature Tr calculated according to eq. (5.2 - 1) with RT = 18°C. Data are additionally
included, which were obtained on similar [13] or even identical [140] materials under similar
experimental conditions. They are in perfect agreement when taking into account the slightly
longer wavelength λ0 = 675 nm used in reference [13], which leads to a slight performance
reduction as compared to λ0 = 633 nm. 

Starting from the high-Tg materials the PR performance for a particular chromophore
concentration was initially found to consistently improve with decreasing Tr, as commonly
assumed and already shown [157, 191]. However, unexpectedly it was found, that the highly-
doped materials (containing 40 wt% or 50 wt% chromophore, respectively) show an optimum
of the PR performance for reduced temperatures slightly below Tr = 0 and then decrease again
in performance for even lower Tr. Furthermore, for a given Tr and otherwise constant
experimental conditions the PR performance improves with increasing chromophore content.
This is generally predicted by eq. (2.5 - 44) to eq. (2.5 - 46), eq. (2.5 - 48), and eq. (2.5 - 49),
provided that ET,loc does not notably depend on the chromophore concentration. Hence, this
result was to be expected. 

 Figure (5.2 - 1): Normalized experimental diffraction curves for 20, 30, 40, and 50%wt content of chro-
mophore. The glass-transition temperature decreases in the sequence of the type of open symbols as follows: 

squares, circles, up triangles, down triangles, diamonds, left triangles. The diffraction curve for the material con-
taining 20%wt chromophore and exhibiting highest Tg was completed by fitting the experimental curve frag-

ment to an expression according to eq. (2.3 - 43) and eq. (5.1 - 4), however, setting the field-exponent as a fitting 
variable as well. This procedure was tested before with complete diffraction curves and verified as yielding ex-
cellent agreement with the experiment. Finally the high-Tg curve in “20“ was extrapolated numerically to higher 
external field values (solid line in “20“). The same fitting procedure was applied to the high-Tg diffraction curve 
of the material containing 40%wt chromophore in order to smooth the experimental curve (solid line in “40“). 
Please note, that only one of three experimental data points is shown in the graphs and that the graphs are man-
ually cut at about ηint = 0.5 after the first diffraction maximum. The complete graph as experimentally deter-

mined is only shown for material 50C in order to illustrate the occurrence of the first diffraction minimum (up 
triangles in “50“).
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In order to study the poling process separately from the space-charge-field formation, the
ellipsometric transmission was determined as a function of the externally applied electrical
field. For all materials except those containing only 20%wt chromophore, a maximum in the
transmission was observed at specific field values Eext(Tmax). For the series with 20%wt
chromophore content Tmax only occurred far beyond the dielectric breakdown limit. The curve
fragments were even too short to reasonably estimate Eext(Tmax) by fitting and extrapolation as
described in the caption of figure (5.2 - 1). The normalized experimental ellipsometric
transmission curves are shown in figure (5.2 - 3). The transmission reaches its first maximum
for the sine argument of eq. (4 - 52) equaling π/2, which corresponds to ∆nELP(Τmax) = 1.35x10-
3 for all materials and for the experimental geometry applied here. Therefore, Eext(Tmax) can be
regarded as a measure for the poling properties of the materials for a given chromophore
concentration in analogy to Eext(ηint,max) obtained from the DFWM experiments. A lower
Eext(Tmax) indicates more efficient poling. The similarity of eq. (4 - 52) and eq. (2.3 - 43) shows
that trends in the two experiments can be directly compared. 

Figure (5.2 - 4) shows Eext(Τmax) for the materials containing 30%wt, 40%wt, and 50%wt
chromophore as a function of the reduced temperature Tr calculated according to eq. (5.2 - 1)
with RT = 18°C.

 Figure (5.2 - 2): Dependence of the externally applied field to achieve maximum DFWM diffraction 
efficiency Eext(ηint,max) for λ0 = 633nm on the reduced temperature Tr according to eq. (5.2 - 1) for 

different chromophore contents: 20%wt (down triangles), 30%wt (up triangles), 40%wt (circles), and 
50%wt (squares). The open symbols represent data on very similar or even identical materials with 

50%wt chromophore concentration taken from the literature and obtained for λ0 = 633nm (open 
hexagon, [140]) and λ0 = 675nm (open star, [13]). The dotted lines are guide to the eye.
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 Figure (5.2 - 3):Experimental ellipsometric transmission curves for 30, 40, and 50%wt chromophore content. 
The glass-transition temperature decreases in the sequence of open symbols as follows: squares, circles, up 

triangles, down triangles, diamonds, left triangles. For the materials containing 20%wt chromophore the first 
transmission maximum turned out to be experimentally inaccessible due to dielectric breakdown of the samples. 
Solid lines depict numerically extrapolated graphs from fitting the experimental graph fragments as described 
in the caption of figure (5.2 - 1). Please note, that only each second experimental data points is shown and that 
the graphs are manually cut in length. The complete graph as experimentally determined is only shown for 

material 50D in order to illustrate the occurrence of the first transmission minimum (down triangles in „50“).
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 Figure (5.2 - 4):Dependence of the externally applied field to achieve maximum transmission Eext(Τmax) 
for λ0 = 633nm in the ELP measurements on the reduced temperature Tr according to eq. (5.2 - 1) for 

different chromophore contents: 30%wt (up triangles), 40%wt (circles), and 50%wt (squares). The 
dotted lines are guide to the eye.
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As shown in figure (5.2 - 4), Eext(Τmax) decreases monotonously with decreasing Tr for
all materials with constant chromophore content due to the improved orientational mobility of
the chromophores in the matrix and apparently eventually levels off. For a given Tr and
otherwise constant experimental conditions, Eext(Τmax) decreases with increasing chromophore
concentration as is to be expected from the oriented gas model (eq. (2.4 - 69) and eq. (2.4 - 72)).
The influence of Tr on the degree of orientation increases with the chromophore concentration.
Similar observations have been made for the grating build-up dynamics, which will be
elaborated upon later. This effect might be attributed to the brick-like shape of the
chromophores, leading to self-hindrance at high loading. This would explain the relative
performance reduction observed in figure (5.2 - 2) and figure (5.2 - 4) for the high-Tg materials
with large chromophore content as compared to those containing markedly smaller amounts of
chromophore but exhibiting similar Tg. 

5.2.2.2.)Discussion of the Tg dependence of the steady-state PR performance
The optimum in PR performance observed in figure (5.2 - 2) at high doping levels might

be due to the Tg-dependence of (i) the poling efficiency, or (ii) the internal space-charge field
ESC. Piezoelectric and electrostriction effects are small and can safely be neglected. However,
the absence of a minimum of Eext(Τmax) as a function of Tr in the ELP experiments (figure (5.2
- 4)) for all chromophore concentrations proves that the PR performance optimum observed for
the highly-doped materials for Tr slightly below Tr = 0 cannot be attributed to the poling
properties. 

Since the main difference between the ELP and DFWM experiments is the influence of
the PR space-charge field, the latter remains as possible Tg-dependent parameter, which may
explain the observed DFWM behavior. At Eext(ηint,max) charge-carrier migration is the
transport process dominating the formation of the space-charge field, and diffusion can safely
be neglected (i.e. diffusion field Ed = 0). Thus, following Kukhtarev’s model developed for
inorganic PR crystals (see page 119), the amplitude of the PR space-charge field is the modulus
of the complex PR space-charge field E1 according to eq. (G - 24), which, under these
conditions, can be expressed as:

.  eq. (5.2 - 2)

Here, m is the contrast factor of the illuminating interference pattern for s-polarized beams
according to eq. (2.1 - 47) and the parameter m* is the conductivity contrast according to eq.
(2.5 - 4), which reads:

,

where σd and σph are the dark and the photo conductivity, respectively. E0 is the projection of
the external electrical field onto the grating wave vector and Eq is the saturation field according
to eq. (2.5 - 3).

Thus, for a given m the space-charge field amplitude is delimited by (i) the field term,
containing E0 and Eq, and by (ii) the conductivity contrast m*. In the original theory of
Kukhtarev the dark conductivity is caused by thermal generation of charge carriers in the bulk,
which competes with the space and time dependent photo-generation of charge carriers as
expressed by eq. (G - 2). In organic thin film samples as used in this work (see “4.1.) Preparation
of materials and sample structure” on page 179), however, the dark conductivity should include

Esc E1 m m∗ E0
2

1 E0 Eq⁄( )2+
---------------------------------⋅ ⋅= =

m∗ σph
σd σph+
---------------------=
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a major contribution due to the injection of holes from the ITO contacts, which are directly
attached to the polymer layer. Since the polymer matrix is a hole conductor an unipolar current,
thus, flows through the polymer layer, which may either be injection-limited or space-charge-
limited. In the latter case and according to the theory of space-charge-limited currents (see
“2.4.3.1.) Space-charge-limited currents” on page 96) one would expect an approximately
quadratic increase of the dark current as a function of the externally applied field for sufficiently
high fields. Figure (5.2 - 5) shows the dark current density measured as a function of the external
field applied to a 0.9µm thick layer of the polymer blend type 30a (Tg = 62°C) between ITO
bottom and Aluminium top electrode at different ambient temperatures [196, T2]. 

In order to obtain the power law dependence between the current and the applied field the
experimental curves in figure (5.2 - 5) were fitted to the simple expression:

 ,  eq. (5.2 - 3)
where Eext is the externally applied field. This procedure yielded C = 2.26 ± 0.26 with
correlation factors of better than 0.997 for all ambient temperatures considered indicating that
the dark current in the investigated polymer blends is indeed space-charge limited.

Unfortunately Kukhtarev’s model does not include a contribution due to injected charge
carriers. However, one can presume that the phenomenological influence of this process on the
PR space-charge field should equal the influence of thermal charge generation, since both are
insensitive against non-uniform illumination (provided there is no material heating by the
incident light). Hence, in both cases solely the zero order charge carrier density is affected.

In order to obtain a lower limit of the conductivity contrast factor m* for a particular
material, the dark- and the photo current passing through 37µm thick PR devices of standard
structure according to figure (4 - 2) were measured for an externally applied field of Eext = 54V/
µm, thus providing reasonably similar conditions as applied in the holographic wave mixing

y A B Eext⋅ C+=

 Figure (5.2 - 5)Dark I-V-characteristics of a 0.9µm thick layer of material 30a between Al top and ITO 
bottom electrode. The dark current density jdark was measured at reduced temperatures of Tr = 19°C 

(squares), 9°C (circles), -3°C (up triangles), and -13°C (down triangles). The measurements were 
performed in dry nitrogen (p = 1bar) starting with negative polarity at the bottom electrode from zero 
bias. The bias was varied cyclically and the back cycle from positive bias to zero bias is shown, which 

thus includes capacitive discharge of the sample structure. For more details on the measurement 
technique see [T2]. The solid lines represent fits to eq. (5.2 - 3). 
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experiments. This is an important premise, since either using lower field at the same thickness
of 37µm or markedly thinner films of below 1µm at similar fields of about 50-60V/µm will
yield results, which may not be representative for the problem under consideration (see below
for an example). Due to the strong field dependence of the charge carrier photo-generation
efficiency, the photo current would be underestimated in the first case, while the dark current
would be overestimated in the latter, where the thickness is already of similar order of
magnitude of (or even smaller than) the average drift length of the holes in the systems
concerned [202, 203]. Hence, in both cases the absolute magnitude of m* will be
underestimated. The aforementioned currents were both determined in air (atmospheric
humidity ≈ 50%) using a commercial electrometer (Keithley 6512) and the photo current was
measured at λ0 = 633nm while applying a light intensity of I = 45mW/cm2. The conductivity
contrast m* as calculated from the current measurements decreased as Tr was reduced, but for
larger chromophore concentration the decrease in m* was steeper than for smaller chromophore
content (figure (5.2 - 6)). However, the overall reduction in m* was found to be very small, i.e.
m* > 0.98 in all cases investigated. Thus, even though the Tg-dependence of m* and the poling
efficiency were found to counteract for Tr ≤ 0°C, this can not explain the observed optimum in
the DFWM experiments. 

Please note, that violating the aforementioned premise of comparable conditions between
the current measurements and the holographic experiments may lead to wrong implications. For
example, one obtains m* = 0.85 for material 50e and m* = 0.99 for material 50a, if determined
at an external field of 5.4V/µm applied to a 37µm thick sample, which, in a misleading way,
seemingly explains the observed PR performance optimum. 

Having excluded that the PR performance optimum as a function of Tr as observed for the
highly doped materials may be due to a Tg dependence of the conductivity contrast, the field
term in eq. (5.2 - 2), in particular the saturation field Eq must be implied to be responsible for
this effect. According to eq. (2.5 - 3), Eq reads:

,

where q is the elementary charge, NA is the number of traps,  is the average bulk permittivity,

 Figure (5.2 - 6): Conductivity contrast factor m*, normalized to m* obtained for the material of the 
highest Tg of each series. Squares: 50%wt content of chromophore, circles 40%, up triangle 30%wt, 

down triangles 20%wt. The inset shows the same data but not normalized
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and K is the modulus of the grating vector. An apparent reduction of Eq when Tr is decreased is
not supposed to be effected by an increase of , because this would affect the DFWM as well
as the ELP experiments, the latter of which then must be expected to reveal a similar optimum
in the poling performance as observed for the PR performance. Therefore, an apparent reduction
of Eq as a function of Tr must be attributed to a reduction in the effective number of PR traps
NA. However, at the current state of research on organic PR materials the exact nature of the PR
traps is still unclear. Thus, discussing the trap situation in PR polymers is problematic and can
only be performed phenomenologically on the basis of plausible assumptions. 

The PR traps in polymers could be, for example, due to chemical impurities in the
polymer matrix. However, this kind of trap should not be affected very much by Tg, since their
electronic levels are constant and their number density does not depend on the physical state of
the polymer matrix. Furthermore, traps in disordered organic materials can also result from a
variation in the orientation and distance between the charge-transporting molecular sites and the
surrounding polar and non-polar molecules. This model of positional and conformational
disorder has been developed and successfully applied to the transport of electrical charges in
organic photoconductors by Baessler et al. As already discussed in “2.4.3.2.3.) The Baessler
formalism (disorder model)” on page 104, in a first approximation the energy landscape may be
modeled by a Gaussian-type density of states distribution (DOS), characterized by the width σ.
In [B27] σ has been described by two contributions, a dipolar component σdipole

2 and a van-der-
Waals component σvdW

2: 

.  eq. (5.2 - 4)
The dipolar component is proportional to the concentration of dipoles and the van-der-Waals
component is in the order of 0.1eV. In the case under consideration, the dominant contribution
to the concentration of dipoles stems from the highly polar NLO chromophores, whereas the
contribution by the only little polar carbazole moieties is secondary. Sites located close to the
center of the DOS will contribute most to the charge transport as outlined in Appendix E on
page E4, which elaborates upon the disorder model. In contrast, states located energetically
deep in the DOS are supposed to act as persistent traps for the charge carriers. 

For high-Tg systems (i.e. RT < Tg), the DOS
must be considered as frozen in space and time and,
according to eq. (2.4 - 146) and accounting for the
experimental conditions applied here (i.e.

), the charge carrier mobility will
decrease with increasing width σ of the distribution,
i.e, basically with increasing concentration of NLO
chromophores. With increasing σ, also the number
density (and average depth) of deep traps, which
should contribute most to the space-charge field will
increase. According to [195], for decreasing Tr slow
collective motions of the glass-forming elements in
a random potential occur as soon as Tr drops below
zero (i.e. Tg drops below RT), leading to a slight
broadening of the preexisting DOS. Within the small
temperature range with Tr < 0°C studied here, a
change of the positional disorder can be neglected in
good approximation. However, conformational changes may occur: A site located deep in the
DOS as defined above can change its site energy within the distribution due to the thermally
induced changes of its conformation and orientation relative to the neighboring molecules.
Thus, charge carriers trapped in such a conformational trap should be released more easily due

ε〈 〉

σ2 σdipole
2 σvdW

2+=

 Figure (5.2 - 7): Hole mobilities for selected 
systems containing 50%wt chromophore as 
estimated from the dark current density (U = 
2kV, d = 37µm) using Child’s law. The lines 

are guide to the eye.
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to the thermally induced conformation changes. This interpretation is supported by a strong
increase of the hole drift mobility µ with decreasing Tr < 0°C, found for the materials containing
50%wt chromophore (figure (5.2 - 7)). Assuming that the dark current in the investigated
systems is space-charge limited as already discussed above, the hole drift mobilities can be
estimated from the dark current measurements discussed before using Child's law (eq. (2.4 -
123)) and the dielectric constant of ε = 6.5 as previously determined for this type of material
[185]. The absolute values for µ are in a similar range as determined by the holographic time-
of-flight technique on a similar PVK-based PR composite [138, 139]. 

Following this argumentation one might speculate that the apparent number of
conformational traps (NA) and, thus, the saturation field Eq according to eq. (2.5 - 3) might
decrease for decreasing Tr < 0°C. This in turn should affect the gain coefficient Γ. The gain
coefficients as experimentally determined for the materials containing 50%wt chromophore are
shown in figure (5.2 - 8).

 

 The values experimentally obtained for Γ (open squares) at Eext(ηmax) first decrease as
Tg decreases and approaches RT, and then slightly increase again. According to eq. (2.5 - 102),
Γ depends on sinφ, where φ is the (PR) phase shift between the light interference pattern and the
refractive index grating. According to eq. (2.5 - 5) and neglecting Ed as discussed before, the
PR phase shift is given by:

.  eq. (5.2 - 5)

E0 is the projection of Eext onto the grating vector K. Since ∆n at Eext(ηmax) is identical in all
cases, a smaller Γ reflects a smaller φ. For the materials 50a and 50b, it is reasonable to assume
that Eq = constant, since RT < Tg. The reduced gain in 50b is a result of the significantly smaller
Eext(ηmax) (see figure (5.2 - 2)). From eq. (2.3 - 34), eq. (2.5 - 102) and eq. (5.2 - 5) and with
the polarization anisotropy according to eq. (4 - 46) a value of Eq ≈ 80 V/µm can be estimated
for the materials 50a and 50b. Assuming, therefore, a constant Eq = 80 V/µm for all materials,
one can calculate the theoretically expected values of Γ for the materials 50a - 50e by means of
eq. (5.2 - 5) and eq. (2.5 - 102). For the materials 50c - 50e this yields smaller gain values (figure

 Figure (5.2 - 8): Dependence of the absolute gain coefficient |Γ | as determined for s-polarized writing 
beams at E(ηmax) on the reduced temperature Tr = Tg - RT for the series containing 50%wt chromophore 

(open squares). The stars represent the corresponding gain values expected assuming a constant 
saturation field of Eq = 80 V/µm. The lines are guides to the eye.
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(5.2 - 8), stars) than found experimentally, which can only be interpreted as a relative decrease
of Eq with respect to E0 for Tr < 0°C meeting the expectations.

In order to get a more detailed picture a measure for the absolute value of the PR space-
charge field ESC was derived from the field dependence of the PR refractive index modulation
∆nDFWM according to eq. (2.5 - 69) (and according to [161]) and the field dependence of the
field induced birefringence ∆nELP according to eq. (2.4 - 75). Assuming, that there is no
persistent poling, these quantities may be expressed by:

 and  eq. (5.2 - 6)
,  eq. (5.2 - 7)

where EDFWM and EELP are the externally applied fields in the DFWM and the ELP
experiments, respectively. For a material of constant chromophore content and assuming that
the oriented gas model is reasonably valid for all considered materials, CDFWM and CELP are
constants for a certain and constant experimental configuration. Among others they contain the
particular effective Kerr susceptibilities as well as geometrical factors. Please note, that the
birefringence contribution included in the effective PR Kerr susceptibility as well as the
effective ELP Kerr susceptibility are due to the reorientation of the NLO chromophores in the
polymer matrix by the (local total) poling field and, thus, may depend on the time dependent
progression of the externally applied electrical field, if the latter changes too fast for the
chromophores to follow. However, this does not apply here. Furthermore, all the susceptibility
contributions in question are expected to show the same dependence on the chromophore
concentration, which becomes clear considering eq. (2.4 - 75) and eq. (2.5 - 44) to eq. (2.5 - 51).
In the first DFWM diffraction maximum ∆nDFWM is constant for all experiments, which also
applies to ∆nELP in the first ELP transmission maximum. Thus, the ratio

  eq. (5.2 - 8)

is constant for all experiments carried out. Rewriting eq. (5.2 - 8) to the form:

 eq. (5.2 - 9)

one obtains a measure for the PR space-charge field normalized by the externally applied field,
which is related to the real normalized space-charge field by the unknown, but constant
parameter C’. Figure (5.2 - 9) shows the ratio EELP

2/EDFWM
2 for all investigated materials as a

function of the reduced temperature.
For Tr > 0°C, the ratio EELP

2/EDFWM
2 is approximately constant, whereas it decreases

significantly for decreasing Tr below Tr ≅ -5°C. This general trend is excellently reproduced by
theoretical considerations based on photophysical measurements and applying the more
sophisticated Schildkraut model according to “2.5.3.2.) Schildkraut’s model” on page 124 to
calculate the PR space-charge field [196] (figure (5.2 - 9)). A decrease of the normalized space-
charge field of up to almost 40% for material 50e is observed as compared to the average
normalized space-charge field for all materials with Tr > 0°C. This perfectly explains the
relative performance reduction observed for the highly doped materials at low Tr. As already
discussed above, the decrease of the normalized space-charge field must be attributed to a
decrease of the effective PR trap density NA, resulting in a decrease of the PR saturation field
Eq. The decrease of the effective PR trap density can be explained by enhanced detrapping of
charge carriers captured in conformational traps due faster conformational dynamics of the
conducting polymer matrix for RT > Tg (i.e. Tr < 0). This, in turn, indicates that conformational
traps are an important trap species in the type of PR polymers investigated here. 
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Please note, that the term “conformational traps“ in this case may include PR traps, which
have been postulated to arise from the complex formation between two carbazole moieties [193,
194]. Conformational changes in the polymer matrix may crack such a sandwich complex, thus
releasing the captured charge carrier. However, it is to be pointed out that carbazole sandwich
complexes are supposed to be deep traps in contrast to classical conformational traps, which are
commonly considered as shallow traps. As will be discussed in “5.4.1.3.6.) Conclusions on the
nature of the PR traps” on page 296 and in “5.5.3.) Discussion of the dark decay behavior” on
page 322, there is indeed indication for the occurrence of carbazole sandwich complexes acting
as deep PR trapping sites in the materials under consideration. 

Finally, the experimental observation will be discussed that seemingly no performance
optimum occurs for the lowly doped materials containing only 20%wt and 30%wt chromophore
within the range of reduced temperatures investigated (figure (5.2 - 2)). This might be due to
two reasons.

At first, it might be due to the poling properties of the materials considered. As just
discussed above, the PR space-charge field decreases for decreasing Tr below Tr ≅ -5°C.
Considering figure (5.2 - 4), the external fields required in order to achieve the first transmission
maximum apparently tend to level off for the lowest values of Tr for the material containing
50%wt chromophore. In contrast, for the materials containing less chromophore, this tendency
is less pronounced within the range of reduced temperatures tested experimentally. As
discussed before, the occurrence of a performance optimum as a function of Tr observed for the
highly doped materials must be attributed to two counteracting processes, namely an increasing
orientational mobility of the NLO chromophores improving the steady-state PR performance as
a function of decreasing Tr on the one hand, and a decreasing PR space-charge field lowering
the steady-state PR performance as a function of decreasing Tr on other. While the latter has
been found to be very similar for all materials investigated, the first process seemingly looses
in importance as the chromophore content increases. Thus, one may conclude that the “crossing
point” of these processes leading to a change of the general trend of the PR performance as a

 Figure (5.2 - 9): Ratio EELP
2/EDFWM

2 as a function of the reduced temperature Tr = Tg - RT for the 
materials containing 50%wt (solid squares), 40%wt (solid circles) and 30%wt (solid triangles) 

chromophore. The open stars depict the theoretical dependence of the normalized space-charge field on 
Tr, as calculated from photo-physical measurements for the same set of materials using Schildkraut’s 

model [196]. The dotted lines are guide to the eye.
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function of decreasing Tr shifts to lower values of Tr as the chromophore content is reduced.
This would agree with the experimental results, since the performance optimum occurs a higher
Tr for the materials containing 50%wt chromophore as compared to those containing 40%wt
chromophore. Following this argumentation, one should expect performance optima also for the
materials containing even less chromophore, however, for even lower Tr. 

Secondly, the fact that seemingly no performance optimum occurs for the lowly doped
materials may be explained considering again the PR space-charge field. The decrease of the
normalized space-charge field as depicted in figure (5.2 - 9) is very similar for the materials
containing 50%wt down to 30%wt chromophore. Hence, one can safely assume that the
materials with 20%wt chromophore content will follow the same trend. The absence of a
performance optimum for lower chromophore doping levels, therefore, cannot be understood
by means of a less pronounced decrease of the effective PR trap density NA. However, the
observed performance optimum as a function of the relative temperature seemingly shifts to
lower Tr, when the doping level is reduced, as is indicated by comparing the experimental data
on the materials containing 50%wt and 40%wt chromophore. Consequently, one may assume a
performance optimum for the even lower doped materials occurring at further reduced relative
temperatures, which are already beyond the range investigated. Since the decrease of the
effective PR trap density as a function of the reduced temperature was found to be similar for
all four material series investigated, this implies an increase of the PR saturation field as a
function of a decreasing doping level, i.e. as a function of an increasing density of charge
transporting moieties. According to eq. (2.5 - 3) an increase of Eq may be due to a decreasing
permittivity  and/or an increasing trap density NA. An increase of the trap density as a
function of an increasing density of charge transporting moieties must be expected for the case
of conformational traps, which is supposed to be an important trap species in the investigated
materials, as already proposed before. Furthermore,  must be expected to decrease as a
function of decreasing doping level, since the number density of a strongly polar material
component (the NLO chromophores) is reduced. Since both these effects cooperate, one need
not judge their relative strength but only prove their cooperative result. For this purpose, the
absolute PR saturation field Eq was estimated from the experimentally determined PR gain for
a set of materials with different chromophore content but reasonably similar relative
temperature by applying eq. (2.3 - 34), eq. (2.5 - 102) and eq. (5.2 - 5) and with the polarization
anisotropy according to eq. (4 - 46). The results are depicted in figure (5.2 - 10). As expected
Eq increases significantly when the chromophore doping level decreases, which strongly
supports the interpretation given above. 

Please note that Eq increases markedly stronger as a function of decreasing chromophore
doping level as one might expect considering only the proposed increase of the trap density as
a result of the increasing number density of charge transporting sites. This might be attributed
to the cooperative influence of the bulk permittivity. This point of view may be tested assuming
that  is directly proportional to the number density of chromophores and that NA is directly
proportional to the number density of carbazole moieties in the considered materials. Therewith
one can calculate the relative increase of Eq as a function of the chromophore content with
respect to its value for 50%wt chromophore as it might be expected from eq. (2.5 - 3). The inset
of figure (5.2 - 10) shows the thus obtained results together with the corresponding relative
increase of the PR saturation field experimentally estimated as described above. Accounting for
the strong simplifications applied, the agreement is very reasonable, which gives further support
for the interpretation discussed above.
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Presuming free orientational mobility of the chromophores it is clear from eq. (2.5 - 69)
that, for a decreasing chromophore content (i.e. A and C in eq. (2.5 - 69) will be smaller), a larger
value of the product EextESC will be necessary in order to achieve a certain PR refractive index
modulation. However, according to eq. (5.2 - 2) for small values of E0 (which is the projection
of Eext onto the grating wave vector) as compared to Eq, ESC first increases linearly as a function
of E0, whereas it is limited by Eq if E0 becomes much larger than Eq. Thus, according to eq. (2.5
- 69), the PR refractive index modulation first increases as a function of Eext

2 for small values
of E0 as compared to Eq and finally becomes a linear function of Eext for values of E0 much
larger than Eq, i.e.:

 eq. (5.2 - 10)
where N is the number density of chromophores and with a → 2 for E0 << Eq and a → 1 for E0
>> Eq. Hence, the larger is the ratio E0/Eq the more Eext must be increased in order to compensate
for a decreasing effective PR trap density (and, thus, a decreasing Eq) if a given PR refractive
index modulation is to be achieved. It is clear from the discussion before that an increase of the
ratio E0/Eq is the basic reason for the occurrence of an PR performance optimum in Tr for Tr <
0°C. As discussed before, Eq (at a fixed Tr) is the larger the smaller the chromophore content,
however, the same applies to E0 according to eq. (2.5 - 69). On the other hand, according to
figure (5.2 - 10) Eq increases by almost a factor of 4 from material 50c to material 20c, whereas
E0 only increases by about a factor of 2. This relationship can be taken as representative for the
entire set of materials investigated, i.e., for a given Tr both Eext(ηmax) (i.e. E0 required in order
to reach the first diffraction maximum) as well as Eq increase as a function of a decreasing
chromophore content, but the latter increases markedly stronger than the first. Hence, for a
given Tr the ratio E0/Eq decreases as a function of a decreasing chromophore content. In
quantitative terms, E0/Eq ≈ 0.38, 0.28, 0.25, and 0.24 for the materials 50c, 40d, 30c, and 20c,
respectively. This results in an increase of the power exponent a in eq. (5.2 - 10) as a function
of decreasing chromophore content. Figure (5.2 - 9) indicates that the relative decrease of the
effective PR trap density as discussed above is similar for all materials investigated. Thus, the

 Figure (5.2 - 10):Estimated absolute Eq for the materials 50c at Tr = -4°C, 40d at Tr = -1°C, 30c at Tr = 
-6°C, and 20c at Tr = -4°C. The dotted line is a linear fit.

Inset: Relative change of Eq as a function of the chromophore doping level with respect to Eq for 
material 50c. Open squares: Experimental data corresponding to the main plot. Open circles: Theoretical 

values as calculated from eq. (2.5 - 3). For details see text. The lines are guide to the eye. 
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relative decrease of Eq is similar as well, but its effect on eq. (5.2 - 10) decreases with decreasing
chromophore content. In turn, if the effect on eq. (5.2 - 10) shall be similar for all chromophore
doping levels, one must imply that the effective PR trap density would have to decrease the
stronger the smaller the doping level, i.e. Tr would have to be the lower the smaller the doping
level. Accordingly, the position of the performance optimum in Tr, which can be observed for
the series of materials containing 50%wt should shift to smaller values of Tr if the chromophore
content is decreased, as proposed before, which was indeed observed for the material series
containing 40%wt chromophore. Based on the current discussion, the occurrence of a
performance optimum in Tr furthermore may also be expected for the materials containing
30%wt chromophore and 20%wt chromophore, however, at even smaller reduced temperatures
below the range covered by the presented experiments, as assumed before. 

Please note that a threshold condition for the expected occurrence of the performance
optimum in terms of the ratio E0/Eq cannot be provided on basis of the above theoretical
considerations due to the nonlinear character of the problem. This becomes clear when inserting
eq. (5.2 - 2) into eq. (2.5 - 69) which yields the following simplified relationship for the PR
refractive index modulation underlying the even more simplified expression eq. (5.2 - 10):

,  eq. (5.2 - 11)

where the trigonometric term relating E0 to Eext is omitted. According to figure (5.2 - 10), Eq
scales almost linearly with the chromophore content. In contrast, the required E0 in order to
compensate for a decrease of Eq due to a decreasing apparent trap density as discussed before
enters into eq. (5.2 - 11) to the power of a with 2 < a < 1 (here a is even close to 2). Accordingly,
a smaller relative increase in E0 will be required for the aforementioned compensation if N is
smaller. Hence, the threshold condition for the ratio E0/Eq must be expected to decrease as a
function of decreasing chromophore content. Indeed, the performance optimum for the material
series containing 40%wt chromophore is correlated with a ratio E0/Eq ≈ 0.33 (material 40e).

Both explanations for the experimental fact that seemingly no performance optimum
occurs for the lowly doped materials predict the same trend and, thus, cooperate. Accordingly,
one should expect a steady-state PR performance optimum as a function of Tr in any case,
however, the performance optimum should occur at lower Tr as the chromophore content is
reduced. In the case of the lowly doped materials this point is already beyond the lowest Tr
experimentally applied and, thus, not observed here.

5.2.2.3.)Quintessence of the investigations on the steady-state performance at 
varying glass-transition temperatures

In conclusion, the glass-transition temperature Tg was found to be a factor of outstanding
importance for optimizing the steady-state performance of organic PR materials containing
large amounts of molecular dipoles. It was demonstrated that there is a performance optimum
in highly-doped materials, which is a result of two counteracting effects: On the one hand, the
orientational mobility of the chromophores becomes better with decreasing Tg at constant
ambient temperature leading to a reduction of the external field required to achieve a certain
degree of poling. This was confirmed by transmission ellipsometric experiments. On the other
hand, the conductivity contrast m* and, most importantly, the PR saturation field Eq decrease,
both lowering the PR space-charge field ESC. The decrease of Eq as a function of the reduced
temperature Tr = Tg - RT for Tr < 0°C can be attributed to a decrease of the effective PR trap
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density due to slow collective motion of the photoconducting polymer matrix, which leads to a
relieved release of charge carriers trapped in conformational traps. Observations similar to the
ones reported here have been made with various other chromophores in the PVK matrix [165,
171]. However, it remains unclear whether this can be generalized also to PR materials based
on different photoconductors. 

5.2.3.)The relation between the glass-transition temperature and the 
dynamic performance in PVK based PR polymers

The possibility of in-situ poling, i.e. the orientation of electrical dipoles in an electrical
field, is essential for the “orientational enhancement mechanism“ to take place and, thus, for the
excellent performance of the material class of PR polymer composites. It is clear, that the
quality and the dynamics of the poling process strongly depend on the orientational mobility of
the dipoles in the surrounding polymer matrix, which may be considered as delimited by the
internal free volume of an amorphous polymer. According to “2.4.1.3.1.) Free-volume theory”
on page 74, the glass-transition temperature Tg can be regarded as a measure for this and is,
therefore, of outstanding importance for the steady-state and the dynamic performance of PR
polymers. After having investigated the influence of Tg and the chromophore content on the
steady-state performance of PVK based PR polymer composites in the preceding section, now
the influence of these parameters on the dynamic properties of the investigated materials will
be studied by means of DFWM and ELP experiments. The influence of Tg on the dynamic
properties of PVK based PR polymer composites was investigated first by Bolink et. al. [191].
Surprisingly the authors found only little dependence of the PR grating dynamics on Tg. Since
the response time is one of the technically most important properties of holographic storage
media such as PR polymers, this feature will elaborated upon in much more detail here, covering
the influence of the glass-transition temperature as well as the chromophore content. For now
the build-up dynamics of the holographic grating will be focussed upon, whereas its decay
dynamics will be elaborated upon later.

 In order to determine the build-up dynamics of PR gratings in the concerned materials,
DFWM experiments were carried out and evaluated according to “4.2.) Wave mixing
experiments” on page 181 and as described on page 226 ff. The experiments were initialized by
switching the first laser beam (I01) on, while the sample was already illuminated by the second
beam (I02). The externally applied field required for maximum diffraction efficiency Eext =
Eext(ηint,max) was chosen for the experiments. Under identical experimental conditions all
samples then reach the same the total index modulation, independently from Tg. Accordingly,
different field values were applied for the different materials investigated (figure (5.2 - 2)),
depending on the chromophore content and on Tg. One might expect, that the electrical field has
noteworthy influence on the response times. However, only a slight decrease of the response
times was found for a particular material with increasing external field up to Eext =
Eext(ηint,max). In contrast, for constant chromophore content, it was found that the change of the
response times as a function of Tg is up to three orders of magnitude as will be shown later.
Furthermore, Eext(ηint,max) increases with Tg, as do the response times (figure (5.2 - 12)), while
the latter slightly decrease when increasing the field for a particular material (i.e. at constant Tg).
Also, the change of the response times for constant Tg above the ambient temperature, but
varying chromophore content, is at least one order of magnitude larger than a change which may
be attributed to the different fields applied to the samples. Accordingly, the influence of the
different external fields on the response times is of minor importance and can be safely
neglected as compared to the influence of Tg and the chromophore content. Finally in the low-
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Tg regime the response times are quite similar and there is no consistent trend which allows
some correlation of the response times with different field values or varying orientational
diffusion dynamics.

In order to study the poling process separately from the formation of the PR space-charge
field, time-resolved ELP measurements were furthermore carried out. These experiments were
initialized by switching on the external field using a fast Reed relays, and the ellipsometric
transmission due to the changing birefringence was followed as a function of time. For the sake
of consistency, Eext = Eext(ηint,max) as determined by the steady-state DFWM experiments was
applied.

Depending on the investigated material, the time resolution of the measurements varied
between about 1ms for the materials with the fastest response time and 3s for the slowest
material in both the DFWM and ELP experiments. The maximum time resolution of the
employed experimental setup could be reasonably estimated to be approximately 100 µs. In all
cases, the total measurement time exceeded three times the response time constant of the slow
process in the bi-exponential fit procedure, which was used to determine the DFWM and ELP
response behavior (see below). 

5.2.3.1.)Theoretical consideration of the relaxation dynamics in poled 
polymers

In today’s high performance PR polymers the build-up dynamics of the PR grating is
basically determined by the build-up dynamics of the PR space-charge field and the
reorientational dynamics of the chromophores. The first has been theoretically elaborated upon
in “2.5.2.1.2.1.) Build-up dynamics” on page 121 and in “2.5.3.2.2.) Build-up dynamics for the
space-charge field in polymers” on page 126. The latter may be described by the transient
solutions of the oriented gas model as discussed in “2.4.2.2.) Transient solutions of the oriented
gas model” on page 92, as long as the oriented gas model is a valid approximation. Although
these two processes actually cannot be clearly separated from each other, the dynamic response
of PR polymers will be dominated by only one of them if their kinetics are sufficiently different. 

The theory for the build-up dynamics of the PR space-charge field in polymers yields a
bi-exponential growth law (eq. (2.5 - 24) to eq. (2.5 - 26)), the particular parameters of which
are very complicated expressions containing a very large number of unknown parameters, some
of which are experimentally barely accessible. Therefore, eq. (2.5 - 24) may serve as a general
model for the PR space-charge field build-up dynamics, but the magnitude of some involved
parameters presently cannot be reasonably estimated, which prevents direct comparison
between theory and experiment. According to eq. (2.5 - 68) and eq. (2.5 - 69), the PR refractive
index modulation depends linearly on the PR space-charge field. Hence, if the build-up
dynamics of the PR grating is dominated by the formation of the PR space-charge field
according to eq. (2.5 - 24), one would expect a bi-exponential growth law of the PR refractive
index modulation ∆n having the general form:

,  eq. (5.2 - 12)
where ∆n0 is the steady-state value. Eq. (5.2 - 12) implies an oscillation during recording a PR
grating, which has never been observed in PR polymers so far, which questions the applicability
of this growth law to PR polymers on the one hand, or implies that the PR response in polymers
is not limited by the build-up dynamics of the space-charge field on the other. Please note, that
the theory for the build-up dynamics of the PR space-charge field in crystals yields a mono-
exponential growth law (eq. (2.5 - 6) to eq. (2.5 - 9)), which also implies an oscillation, as

∆n0 ∆n t( ) A1 a1 ω1t+( )e
t τ1⁄–

A2 a2 ω2t+( )e
t τ2⁄–

cos+cos∝–
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already discussed in the corresponding section elaborating upon the photorefractive theory
(page 121). As opposed to PR polymers, this oscillation has indeed been observed
experimentally during the PR grating build-up, which verifies the theory in this case. The
theoretical model for PR crystals, however, does not describe the behavior of the PR space-
charge field in polymers correctly, as already discussed in “2.5.3.1.) Limitations of Kuktharev’s
model” on page 123.

In contrast, if the build-up of the PR space-charge field is much faster than the
reorientational dynamics of the NLO chromophores in the polymer matrix, the latter would
determine the build-up of the PR grating. According to the preceding discussion, preliminarily
this shall be assumed for the PR polymer composites under investigation. Subsequently a
general growth law for the PR refractive index modulation will be derived for this limiting case.
Please note already here that the assumption of reorientation limited response behavior is only
valid for the materials with Tg > RT (i.e. Tr > 0°C). In contrast, the space-charge field formation
becomes the limiting factor for the low-Tg materials as will be shown below. 

According to “2.5.3.3.) Orientational enhancement effect”, the total refractive index
modulation in the investigated materials consists of two contributions, the electro-optic (EO)
and the birefringence (BR) contribution. If the polymer is pre-poled as in the present case (i.e.
the external field was applied in advance of recording the PR grating), a part of the EO
contribution occurs simultaneously to the build-up of the PR space-charge field. After some
delay, the chromophores reorient in the total local poling field ET,loc, which is the superposition
of the PR space-charge field and the externally applied field. As a result, according to eq. (2.5
- 44), eq. (2.5 - 45), eq. (2.5 - 50), and eq. (2.5 - 51) the total refractive index modulation ∆ntot
becomes the sum of two contributions, an orientationally enhanced electro-optic (EO)
contribution and a birefringence (BR) contribution, both of which show the same dependence
on the total local poling field ET,loc. The particular contributions are: 

 and  eq. (5.2 - 13)

,  eq. (5.2 - 14)

and

 and  eq. (5.2 - 15)

,  eq. (5.2 - 16)

respectively. The constants CBR and CEO are defined in eq. (2.5 - 46) and in eq. (2.5 - 48) and
contain, among others, the microscopic optical constants of the NLO chromophores.

From the microscopic constants determined for the DMNPAA chromophore by means of
electro-absorption measurements [171] one can estimate the ratio between the orientationally
enhanced EO and BR contribution for the experimental geometry on hand, which yields (∆nEO
/ ∆nBR) ≈ 0.25 (i.e. ∆nEO ≈ 0.2*∆ntot, ∆ntot = ∆nEO + ∆nBR). According to “2.5.3.3.3.) The
enhancement - a comparison” on page 136, the not-enhanced EO contribution, i.e. when the
polymer is purely parallel-plate poled, is 50% of the orientationally enhanced contribution.
Thus, assuming instantaneous development of the PR space-charge field, one can estimate the
index modulation at the time t = 0 as ∆nEO(not enhanced) ≈ 0.1*∆ntot(ηmax). The assumption of
an instantaneously developing ESC, will naturally never be fulfilled in reality. However, this
quick calculation can be used to define a cut-off diffraction efficiency, after achievement of
which the further grating dynamics can be assumed to be mainly due to orientation. An index
modulation of 0.1×∆ntot is correlated with a DFWM diffraction efficiency of approximately 3%
of the maximum diffraction efficiency. Preliminarily the limiting case of dominantly
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reorientation limited response behavior shall be assumed for the investigated systems as noted
above and in order to make sure that any change of ∆n is then actually due to reorientation, only
the data for diffraction efficiencies of more than 10% have been fitted. The good agreement
between the observed ellipsometric and DFWM-dynamics for the high-Tg materials validates
this procedure. 

In order to find an appropriate growth law for the reorientation limited build-up dynamics
of the photorefractive grating, the oriented gas model according to “2.4.2.) Electrical poling of
organic polymers - the oriented gas model” on page 83 is applied, which is also the basis of the
orientational enhancement mechanism. According to this model and for the case of turning on
the poling field, the dynamics of the electrical field induced poling process is described by
equation eq. (2.4 - 113), which reads:

.

The inverse time constants (i.e. the rate constants) Dn are given by eq. (2.4 - 111):

 where n is a natural number, in are the spherically modified Bessel functions of the order n, and
a is the energy of interaction between the poling field and the molecular dipoles of the
chromophores normalized by the thermal energy, as defined by eq. (2.4 - 57). Further
parameters occurring in eq. (2.4 - 113) are not of interest here and are explained in the
corresponding section dedicated to the oriented gas model. The build-up rates relevant for the
PR grating are D1 and D2, whereas the contribution of D3 is negligibly small due to the small
amplitude of the third-order spherically modified Bessel function i3(a), i.e. 2ai3(a)/15i0(a) <<
2i2(a)/3i0(a) and ai1(a)/5i0(a). Thus, in first approximation eq. (2.4 - 113) simplifies to:

 eq. (5.2 - 17)

which can be rewritten to the general form:

 eq. (5.2 - 18)
with:

.  eq. (5.2 - 19)

Eq. (5.2 - 18) and eq. (5.2 - 19) apply to the DFWM experiments in the limiting case of
reorientation limited PR response behavior as well as to the ELP experiments, which are
reorientation limited by nature. It must be pointed out, that the reorientation dynamics in the
latter experiment may possibly compete with the response characteristics of the electrical RC
circuit formed by the capacitance of the PR device and the combined external and internal
electrical resistances of the PR device and the high voltage power supply applied, respectively.
Since the internal resistance of the power supply is definitely smaller than 40MΩ (maximum
output: 1mA at 40kV), whereas the external resistance of a typical PR sample is in the order of
GΩ, the load of the latter can be neglected. The zero frequency electrical capacitance of a typical
PR sample according to figure (4 - 2) is safely smaller than 100pF, as extrapolated from
oscillator detuning at low frequency. Hence, the purely electrical response time of the circuitry
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of the applied experimental setup is safely smaller than 0.4ms. From eq. (5.2 - 18) one obtains
a bi-exponential growth law similar to eq. (5.2 - 12), but without oscillating prefactors to the
exponential terms:

.  eq. (5.2 - 20)
Here ∆n0 = A1 + A2 is the steady-state value of the refractive index modulation or the steady-
state field-induced birefringence for a given externally applied field in the DFWM experiments
or in the ELP experiments, respectively. The time constants τ1 and τ2 refer to the rotational
diffusion coefficients as 1/ τn = Dn. Please note that the rotational diffusion coefficients do not
refer to molecular axis of the chromophores (there is only one molecular rotation axis).
According to eq. (2.4 - 111), the oriented-gas model predicts a constant ratio of τ1 /τ2 = 3.
Furthermore, in the weak poling limit (0 < a ≤ 0.1) the ratio of the pre-exponential factors
according to eq. (5.2 - 19) is predicted as A1(a)/A2(a) ≈ - 6 ≈ constant. The experimental data
(see next paragraph for details), however, do not agree with the above predictions, which
strongly indicates that the oriented-gas model cannot be applied to this problem as assumed
before. The basic flaws of this model are (i) that interactions between the chromophores are
neglected, and (ii) that it does not take into account interactions of the chromophores with the
surrounding polymer matrix.

Therefore, in analogy to poled EO polymers, it seems most reasonable to describe the
grating build-up dynamics in PR polymers phenomenologically, using either a stretched
exponential fit (often referred to as Kohlrausch-Williams-Watts (KWW) fit) according to the
general growth law:

,  eq. (5.2 - 21)
where ß > 1 is the stretching factor and τKWW is the time constant, or a bi-exponential fit
function [199]. A KWW fitting function with ß = 2 was already successfully applied to describe
the initial onset of the holographic grating build-up in a PR polymer composite, assuming that
the PR space-charge field build-up dynamics determines the dynamic behavior in the interval
considered [225, 226]. However, changes at longer times were not taken into account. Bi-
exponential fits (i.e. formally like in eq. (5.2 - 20)) turned out to result in the best possible
agreement with the experimental data on a linear and on a logarithmic scale even for changes at
longer times. For completeness, as an experiment the data were also fitted to a tri-exponential
growth law, but the fit algorithm (Levenberg-Marquardt) did not reliably converge. It is clear
that it is a priori not appropriate to attribute the two exponential terms to distinct physical
processes, since there is no clear physical model justifying this evaluation method. 

Relaxation times obtained using a KWW fitting formalism cannot be directly compared
to relaxation times determined by means of bi- or, more generally, multi-exponential fitting.
Thus, a unified measure is required, which enables a reasonable judgement of the dynamic
behavior of the relaxation dynamics in PR polymers independent from the particular fitting
formalism applied. According to [199] the exponential terms of a bi-exponential fit may
represent a distribution of relaxation times for the chromophores due to differences in the local
environment. Hence, an average logarithmic relaxation time may be defined by the first
logarithmic moment m1 according to:

 eq. (5.2 - 22)

where ρ is the distribution function of the relaxation times τ. This definition can be understood
considering a strongly simplified dependency of the relaxation times on Tg which may be
written as:
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,  eq. (5.2 - 23)

It is physically more reasonable to assume a distribution of activation energies EA(T-Tg) in eq.
(5.2 - 23), rather than of pre-exponential factors τ0. An average activation energy <EA(T-Tg)>
then corresponds directly to <ln(τ)> [199]. As shown in [200], <ln(τ)> for a bi-exponential
description of time-dependent changes in the polar order can be expressed by:

.  eq. (5.2 - 24)

The <ln(τ)> values can be compared with the corresponding values obtained by a KWW-
fit, using the expression [199]:

,  eq. (5.2 - 25)

where Π are the digamma functions. This formalism must be applied with care, since the
comparison of mean relaxation times according to eq. (5.2 - 24) and eq. (5.2 - 25) is only
meaningful, if the distribution is reasonably symmetric, i.e. for ß > 1 and A1 ≈ 0.5 [199]. 

Eq. (5.2 - 24), furthermore, provides the opportunity to combine the time constants
obtained from multi-exponential fitting to an average relaxation time parameter, taking into
account the weighting of the particular relaxation times. This average relaxation time, of course,
does not correctly describe the dynamic behavior of the considered system in detail, but rather
may serve as a generalized measure for its relaxation behavior. Hereafter, a generalized form of
eq. (5.2 - 24) reading:

 eq. (5.2 - 26)

will be utilized in order to obtain a mean relaxation time, if it appears appropriate and reasonable
for considering general trends of the dynamic behavior of PR polymer systems investigated
within a consistent series of measurements. In particular, in the frame of this thesis this
procedure will be applied, (i) in order to combine the two slow relaxation components (times)
of a tri-exponential fit, if bi-exponential as well as tri-exponential fitting must be applied to
achieve sufficient agreement between fit and experiments carried out on different materials and/
or experimental conditions, and (ii) in order to obtain a mean relaxation time from bi- and/or tri-
exponential fitting, if only general trends in the relaxation behavior are considered. Please note,
that this formalism is not restricted by the symmetry of the distributions of the relaxation times
as long as no comparison with KWW fits is attempted. 

It must be emphasized that average relaxation times obtained when applying eq. (5.2 - 26)
may only represent a rather crude approximation for the “real” relaxation behavior. Hence, eq.
(5.2 - 26) must be applied with care, since on the one hand important details may get lost. On
the other hand it is an inherent feature of multi-exponential fits that slight variations of the
parameters may give similarly good agreement with the experimental data. Therefore, one
should in general pay attention to the trends rather than the absolute values. A careful
consideration may be necessary in order to draw meaningful conclusions. In the frame of this
thesis, this problem will be addressed explicitly whenever advisable.
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5.2.3.2.)Experimental results on the Tg dependence of the build-up dynamics 
of PR gratings in polymers

Figure (5.2 - 11) shows typical examples for the kinetics of the time-dependent build-up
of the refractive index modulation in the DFWM experiments carried out, as well as the
corresponding fitting curves obtained when using the bi-exponential growth law eq. (5.2 - 18).
As already discussed above, only data corresponding to an internal diffraction efficiency larger
than ηint = 10% were considered.

The quality of the bi-exponential fits for reduced temperatures according to eq. (5.2 - 1)
of Tr > 0°C, i.e. in the high-Tg regime (figure (5.2 - 11) (III)), is worse than for Tr < 0°C, i.e. in
the low-Tg regime (figure (5.2 - 11) (I)). However, the agreement between experiment and fit is

 Figure (5.2 - 11): Typical examples of normalized dynamic DFWM growth curves (solid lines) and 
corresponding fits (open circles) using eq. (5.2 - 20), depicted on logarithmic (Ia - IIIa) and on linear 

scale (Ib - IIIb). (I) corresponds to material 50e (Tg = 1°C), (II) to 50c (Tg = 14°C), and (III) to 50a (Tg 
= 35°C). The reduced temperature according to eq. (5.2 - 1) increases from (I) over (II) to (III) from Tr 

= -17°C over -4°C to +17°C.
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still reasonable even for the worst case of disagreement (figure (5.2 - 11) (III)) and will suffice
to consider general trends in the dynamic behavior of the systems investigated. Please note, that
case (III) could actually be better approximated using a tri-exponential fit. However, in order to
keep a consistent evaluation procedure, in this section all experimental DFWM growth curves
were fitted to eq. (5.2 - 20). 

The build-up times in four-wave mixing experiments decreased monotonously for
decreasing Tg and constant chromophore content, as expected, because the orientational
mobility of the chromophores in a viscoelastic matrix increases for decreasing Tg (figure (5.2 -
12)). These results are in contradiction to earlier results reported by Bolink et. al., who found
that the decay times were independent from Tg (i.e. independent from Tr) within experimental
error [191]. The slow response time τ2 is roughly one order of magnitude larger than the fast
response time τ1.

The weight factors A1 and A2 of the exponential terms in the fit function eq. (5.2 - 20) are
shown in figure (5.2 - 13). For the sake of a unified scaling, the sum of A1 and A2 was
normalized to unity. For Tr ≥ 0°C the factor A1 increases approximately linearly as a function
of decreasing Tr, whereas A2 decreases, i.e. the faster component becomes more pronounced at
lower Tg. For Tr ≤ 0°C, there is no consistent trend.

Finally, figure (5.2 - 14) shows the average response times <τ> calculated according to
eq. (5.2 - 24) as a function of Tg. The general tendency is naturally similar to the tendencies of
the particular response times τ1 and τ2 as depicted in figure (5.2 - 12).

 Figure (5.2 - 12): Dependence of the time constants τ1 (solid symbols) and τ2 (open symbols) on the glass-
transition temperature Tg for different chromophore concentrations: 20%wt (down triangles), 30%wt (up 
triangles), 40%wt (circles), and 50%wt (squares). Plots to the left: linear time scaling; plots to the right: 

logarithmic time scaling. The lines are guide to the eye.
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 Figure (5.2 - 13): Dependence of the pre-exponential factors A1 (solid symbols) and A2 (open symbols) 
on the glass-transition temperature for different chromophore concentrations: 20%wt (down triangles, 
dash-doted line), 30%wt (up triangles, dotted line), 40%wt (circles, dashed line), and 50%wt (squares, 
solid line). The near-horizontal lines are linear fits to the data for Tr > 0°C down to the first data point 
for Tr < 0°C. The vertical line depicts the change from reorientation limited response (to the right) to 

space-charge field limited response (to the left).
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 Figure (5.2 - 14): Dependence of the average response times <τ> calculated according to eq. (5.2 - 24) 
on the glass-transition temperature for different chromophore concentrations: 20%wt (down triangles) 
30%wt (up triangles), 40%wt (circles), and 50%wt (squares); (A) logarithmic plot, (B) linear plot. The 

lines are guides to the eye.
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5.2.3.3.)Discussion of the Tg dependence of the dynamic PR performance
According to figure (5.2 - 12), the response times decrease as a function of decreasing Tr.

For Tr < 0°C (i.e. Tg < RT, room temperature) they seem to approach limiting values of τ1 ≈ 200-
500ms and τ2 ≈ 2-5s. This indicates either that the ideal case of gas-like orientational mobility
is approached, or that the orientation of the chromophores is no more the delimiting factor for
the dynamic behavior of the investigated systems for Tr < 0°C. The former explanation seems
rather unlikely, since chromophores embedded in a polymer matrix actually never will act like
“free molecules“ in a strict sense. In order to prove the latter assumption, for two samples the
pure poling dynamics was determined in a simple transmission ellipsometric experiment. The
one of these samples represents the low-Tg regime (composite 50e, Tr = -17°C), whereas the
other sample showed a glass-transition temperature little above RT (composite 50b, Tr = +6°C),
thus representing the high-Tg regime. The externally applied field was the same as in the
holographic experiments. The resulting ellipsometric transmission curves were normalized to
the same signal scale as the DFWM-curves and plotted together for each sample (figure (5.2 -
15)). 

Figure (5.2 - 15) proves that the PR grating in the low-Tg material builds up significantly slower
than the ellipsometric transmission, whereas the sample with Tg little above RT shows very
similar dynamics in holography and ellipsometry. This strongly indicates, that the response
behavior of the materials with Tg ≥ RT (i.e. Tr ≥ 0°C) is determined by the dynamics of the
chromophore orientation in the polymer matrix, as was assumed before. In contrast, in the low-
Tg regime, the PR response is apparently delimited by the build-up of the PR space-charge field
rather than by the electrical poling process. 

At first the high-Tg regime will be considered. According to figure (5.2 - 11), the
agreement between the bi-exponential fitting curves and the experimental curves for the high-
Tg samples is only moderate (see (figure (5.2 - 11) (IIIa)). This might be attributed to the fact
that the orientational dynamics of the NLO chromophores in the polymer matrix is actually not

 Figure (5.2 - 15): Time dependence of the diffraction efficiency in a DFWM-experiment and the 
transmission in an ellipsometric (ELP) experiment for two materials with identical chromophore content 
and different glass-transition temperatures at constant ambient temperature (RT = 18°C): (A) 50e (Tr = -

17°C), (B) 50b (Tr = 6°C).
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correctly described by a bi-exponential growth law but rather by two stretched exponential
growth terms [204, 205]. Only in the limiting case of vanishing disorder the growth dynamics
of the orientational order of the chromophores under the influence of an electrical field in
systems like the ones investigated here becomes bi-exponential. In any other case bi-
exponential fitting can only be an approximation. However, for the present purpose, i.e. to
investigate general trends in the grating build-up dynamics disregarding the different limiting
processes, bi-exponential fitting appears sufficiently accurate. Please recall, that multi-
exponentially fitting the results of dynamic DFWM PR experiments eventually must be
considered as a phenomenological formalism, as discussed above. Thus, it is not necessarily
restricted to a certain number of exponential terms. 

At constant Tg and for Tr > 0°C the response times increased consistently for increasing
chromophore content, whereas very similar response times were obtained for all materials in the
low-Tg regime (figure (5.2 - 12)). This observation leads to the conclusion, that the formation
of the PR space-charge field is only slightly affected by the chromophore content, whereas the
dynamics of the poling process shows a very strong dependence. This might be attributed to an
increasing package density of the chromophores for increasing chromophore content. The
chromophore moieties in a guest-host composite like the investigated materials are embedded
in random coils of polymer chains. In materials containing a relatively small amount of
chromophores, the particular chromophore moieties are mainly surrounded by the viscous
polymer matrix (including the plasticizer) and do not notably interact with each other. When the
chromophore content is increased at the cost of the matrix, the average distance between the
brick-like dye molecules decreases, which may lead to the formation of micro-domains with
colligative poling properties and, thus, to the occurrence of self hindrance effects. It seems
plausible that it is much more difficult to orient a brick surrounded by other bricks as compared
to a single brick surrounded by polymer chains in a composite of the same glass-transition
temperature. Further indication for this interpretation comes from the very strong Tg-
dependence of the response times for the materials with 50%wt chromophore content as
compared to the materials containing less chromophore. Furthermore, the response times for the
high-Tg materials with similar Tg increase dramatically when increasing the chromophore
content from 40%wt to 50%wt, whereas the corresponding increase of the response times is
much less pronounced when going from 30%wt to 40%wt chromophore content. 

In contrast to the high-Tg regime, the bi-exponential fit curves correlate very well with the
experimental curves for the low-Tg samples figure (5.2 - 11). This supports the basic validity of
eq. (5.2 - 12) describing the dynamics of the space-charge field formation in PR polymers.
However, oscillatory behavior is implied by this theory, which is not observed unlike in PR
crystals, i.e. the prediction of oscillatory behavior cannot be attributed to a general shortcoming
of the basic PR theory, which is not that much different for PR crystals and PR polymers. Thus,
eq. (5.2 - 12) fails at least partially for describing the build-up dynamics of the PR space-charge
field in polymers.

Therefore, the question, which parameter involved in the build-up of the PR space-charge
field might determine its dynamic behavior, shall be entered into from another point of view.
According to the general PR theory (page 118 ff), the generation of mobile charge carriers and
their mobility should be considered the most important parameters in this context. Several
investigations of the charge carrier mobility in carbazole based PR polymers have been
performed applying time of flight as well as holographic time of flight techniques. On the one
hand, results were presented indicating that the charge carriers are able to pass distances in the
range of the grating spacing applied here within several milliseconds [138, 201]. This suggests
that the charge generation limits the PR response speed in the low-Tg regime. On the other hand,
a comparison of holographic time of flight with standard time of flight experiments strongly
indicated that the effective drift lengths of the mobile charge carriers is significantly smaller
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than the grating spacing applied here [202, 203]. This, in turn, suggests that the charge-carrier
mobility is the speed-limiting factor in the low-Tg materials. Further support for the latter
assumption comes from investigations on the influence of the sensitizer concentration on the PR
performance of PVK based PR polymers, which will be elaborated upon in the next section. 

The response times of the low-Tg materials with different chromophore content are quite
similar and do not show clear trends (figure (5.2 - 12). This supports the interpretation given
above that the chromophore content affects the poling properties of the materials rather than
their electrical properties. In the low-Tg regime the influence of the orientation on the response
times becomes secondary as compared to the kinetics of the PR space-charge field formation
and, hence, the chromophore content then becomes irrelevant for the PR response behavior. 

The normalized weight factors A1 and A2 of the exponential terms in eq. (5.2 - 20) are
shown in figure (5.2 - 13). For Tr ≥ 0°C the factor A1 increases approximately linearly with
decreasing Tr, whereas A2 decreases. For Tr ≤ 0°C no consistent trend is observed, but the
general impression suggests that A1 and A2 may level off for Tr ≤ 0°C. These results can be
rationalized when taking into account that the limiting process for the grating build-up speed
changes at about Tr ≈ 0°C from orientation limited to space-charge field limited, as discussed
before. 

At first again the high-Tg regime will be discussed. Assuming that the two exponential
terms in eq. (5.2 - 20) represent a distribution of relaxation times for chromophores with slightly
different local environments as discussed in “5.2.3.1.) Theoretical consideration of the
relaxation dynamics in poled polymers” on page 244, the systematic variation of A1 and A2 with
Tr might indicate that the overall distribution varies as a function of the glass-transition
temperature and is narrower for lower Tr as was found for EO polymers in general [199]. This
seems plausible, because the polymer matrix becomes softer as a function of decreasing Tr,
which effectively leads to an equalization of the individual molecular environments inside the
matrix due to the increased mobility of the moieties of low molecular mass. Accordingly, the
contribution of the faster component should increase at the expense of the contribution of the
slower component, provided that the latter can be attributed to those local environments of the
chromophores, which aggravate their reorientation (i.e., according to eq. (5.2 - 23) require a
large activation energy EA(T-Tg)). The strong dependence of the pre-exponential factors on Tg
for the materials with 50%wt chromophore content may be attributed to a formation of micro-
domains, as discussed before. The latter, due to their bigger size, should be more sensitive to a
changing elasticity of the matrix than one particular chromophore moiety. Therefore, a stronger
dependence of <EA(T-Tg)> in eq. (5.2 - 23) on Tg should be expected. Support for this
interpretation comes from the fact that the dependence of the pre-exponential factors on Tg
decreases monotonously with decreasing chromophore doping level. However, this
interpretation implies that the particular exponential terms are correlated with dedicated
physical processes, which is rather speculative as already discussed.

In contrast, in the low-Tg regime the dynamics of the PR space-charge field takes over
ruling the grating build-up kinetics, and the distribution of orientational relaxation times for the
chromophores due to slightly different local environments becomes unimportant (however, it
still may exist). Accordingly, one may expect that the trend described above is not continued for
Tr < 0°C, which agrees with the experimental results. The weighting factors seemingly tend to
level off, however, there are not enough data points to clearly identify a new trend for Tr < 0°C.

 
Figure (5.2 - 14) depicts the logarithmically averaged response times obtained according

to eq. (5.2 - 24). For Tr < 0°C, i.e. when the space-charge field formation becomes dominant for
the dynamic behavior of the investigated materials, one must use an appropriate scaling, which
accounts for the mathematical formalism of eq. (5.2 - 24). If the scaling in units of seconds, as
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in figure (5.2 - 12), would have been maintained, time constants τ1 < 1 would have been used
in eq. (5.2 - 24) and <ln(τ)> resulting from this procedure would have become negative.
Therefore, in order to interpret <ln(τ)> as an average logarithmic relaxation time with physical
meaning, an appropriate scaling must be applied, for which units of milliseconds were chosen
here. As already pointed out in “5.2.3.1.) Theoretical consideration of the relaxation dynamics
in poled polymers” on page 244, the logarithmically averaged response times for materials in
the low-Tg regime cannot be interpreted as average response times correlated with a distribution
of activation energies. They are rather simply weight-averaged response times, since the
underlying physical mechanism is not orientational relaxation. Comparing figure (5.2 - 14) with
figure (5.2 - 12) proves, that the general trends in the dynamic behavior of the investigated
materials are correctly reproduced. 

It seems even technically more useful to refer to the average response time than to the
individual response times, since the first already contains the appropriate individual weight
factors. For optical signal processing and real-time holography only materials with fast response
times are useful, i.e. in the present case the materials with low glass transition temperature. The
fastest response was obtained with the material 20c, yielding <τ> = 300ms. In contrast, the slow
materials of high Tg may be potentially interesting for long-time storage, because they should
be expected to show relatively long decay times for a stored hologram as well. However, the
time necessary to record the hologram can be problematic, since the advantage of long storage
times in the high-Tg materials might be voided by the disadvantage of tremendously long
recording times. The decay dynamics of PR gratings, as well as their relation to the recording
dynamics will be discussed in detail in later sections.

Last but not least it is important to point out that not only Tg and the chromophore content
determine the response times of PVK-based PR polymer composites of the guest-host type. The
dynamic behavior is affected by a lot of other factors influencing the orientational dynamics of
the chromophores and/or the build-up dynamics of the PR space-charge field. For instance,
geometrical factors like the grating spacing are also important [206]. An overview of various
PR polymers including their most important benchmarks is given in “3.) Photorefractive
polymers” on page 150.

5.2.3.4.)Summary of the investigations on the build-up dynamics of PR 
gratings at varying glass-transition temperatures

In conclusion, it could be demonstrate that the holographic build-up times in organic PR
composites for Tr > 0°C (i.e. Tg > RT) are limited by the (re)orientation of the EO chromophores
under the influence of the local total poling field. The response times decrease monotonously
with decreasing Tg, mainly due to an improved orientational mobility of the chromophore
moieties in the viscoelastic polymer matrix. The dynamic data could be fitted to a bi-exponential
decay function with reasonable accuracy in all cases. The fast component strongly dominates at
low Tg, whereas the slow and the fast component become almost equally important for high-Tg
materials. This observation might be interpreted in terms of a changing distribution of the
orientational diffusion time constants for the chromophores in the different materials. The rise
time of the PR grating also depends strongly on the chromophore density for constant Tr > 0°C,
which might be attributed to a self-hindrance of the chromophores in the highly-doped
materials, which reduces the apparent orientational mobility. 

In the low-Tg regime the response times of the materials with different chromophore
content become rather similar. In this regime, the formation of the space-charge field is the rate-
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limiting step in the onset dynamics of the refractive index modulation. In the next section, it will
be demonstrated that the charge-carrier mobility must be considered as rate limiting parameter
in the build-up dynamics of the PR space-charge field in systems like those investigated in the
present paragraph.

Finally, an averaging formalism for the PR response times is introduced, which will be
used throughout this work, if appropriate, for reducing the amount of experimental data and to
work out general trends.
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5.3.)The influence of the sensitizer concentration on the PR 
performance of PVK based polymer composites

In this section, the influence of the sensitizer concentration on the performance of PVK
based PR polymers is investigated. The sensitizer concentration determines the bulk cross
section for photoinduced charge generation, which, in turn, determines the photoinduced charge
generation rate according to eq. (G - 2) and eq. (H - 7). Since the PR effect is an integral effect,
i.e. a large number of charge carriers must be generated in order to obtain a notable PR response,
the sensitizer content is thus expected to have a major impact on the PR grating build-up
dynamics. One may furthermore expect that the sensitizer concentration might influence the
steady-state PR properties, since charged sensitizer molecules may act as coulombic traps
within the PVK charge transport manifold, as will be discussed in more detail later in this
paragraph. 

5.3.1.)Experimental aspects
In contrast to the above investigations on the Tg-dependence of the PR performance, a

slightly different type of material was used here, which proved to be more stable against phase
separation than the materials investigated in the preceding sections [136]. The improvement in
thermodynamical stability was achieved by the utilization of an eutectic mixture of two similar
NLO chromophores, i.e. 2,5 DMNPAA and MNPAA (see Appendix D for the chemical
structures), instead of solely 2,5 DMNPAA [13]. The materials thus obtained were stable
against phase separation up to several months and longer, even for the low glass-transition
temperatures Tg adjusted here. 

The concentration of the sensitizer (TNF) was varied at the cost of the plasticizer (ECZ)
while the content of the component of high molecular mass (the polymer PVK) was kept
constant in order to achieve an approximately constant Tg. The particular composition of the
investigated materials and their corresponding glass-transition temperatures of 3°C < Tg < 9°C
are listed in table 5-1 on page 211 as well as at the end of this section. The ambient temperature
was 20±0.5 °C for all measurements. A general overview of the components, which the
investigated materials were composed of, is given in “3.2.5.) Polymer composites” on page 164.
PR devices were prepared according to “4.1.) Preparation of materials and sample structure” on
page 179. The PR polymer film thickness was adjusted to d = 63µm and the devices were
consistently cooled down to room temperature at a cooling rate of approximately 20°C/sec. All
samples were characterized immediately after preparation, which resulted in excellent
reproducibility for all systems investigated.

DFWM and 2BC experiments were carried out with s-polarized recording beams, the
internal intensities of which were determined as described in “4.2.1.6.) Intensity determination”
on page 204 yielding I01 = 20mW/cm2 and I02 = 20mW/cm2. The reading beam was p-polarized
and its intensity was IR = 100 µW/cm2. The internal diffraction efficiencies ηint, the PR
refractive index modulation ∆n, and the PR gain coefficients Γ were determined as a function
of time applying the setup and evaluation procedures according to “4.2.) Wave mixing
experiments” on page 181. An initial relaxation period was applied to the samples in all cases.
For this purpose the samples were illuminated uniformly for 30 minutes using recording beam
2. The maximum time resolution of the applied experimental setup could be reasonably
estimated to be approximately 100µs. Lock-in amplifiers were not used for the experiments
discussed in this section.

In order to correlate ∆n as determined from the DFWM experiments performed with a p-
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polarized reading beam with the PR gain coefficient obtained for s-polarized recording beams,
the optical polarization anisotropy of the investigated systems as described in “4.2.1.4.)
Polarization anisotropy for PR wave mixing experiments” on page 199 was accounted for by
the correction factor according to eq. (4 - 46):

.

Since many material properties relevant for the PR effect (among others the charge carrier
mobility, the charge generation efficiency, and the linear and second order optical properties)
depend on the externally applied electrical field Eext, the latter was held constant at Eext = 39.7V/
µm for all holographic experiments in this section.

In order to ensure that the dynamic behavior of the investigated materials is mainly
determined by the build-up kinetics of the PR space-charge field, the poling process was
considered separately from the space-charge-field formation by ellipsometric transmission
experiments according to “4.3.) Transmission ellipsometric experiments” on page 207. The
ellipsometric transmission was determined as a function of time applying the same external
electrical field as in the holographic experiments. In analogy to the evaluation procedure
described in the preceding section, the resulting curves of the dynamic evolution of the
ellipsometric birefringence were normalized and compared with the corresponding normalized
curves of the dynamic evolution of the DFWM refractive index modulation. As expected for a
relative temperature Tr of Tr ≤ -11°C (Tr according to eq. (5.2 - 1)) in all cases, for all
investigated materials a relation according to figure (5.2 - 15) (A) rather than to figure (5.2 - 15)
(B) was obtained. Thus, one can safely presume that the dynamic evolution of the DFWM
refractive index modulation is dominantly determined by the build-up dynamics of the PR
space-charge field rather than by the orientational dynamics of the NLO chromophores in the
polymer matrix.

The absorption coefficients of the investigated materials were determined as a function
the sensitizer content in solid phase by means of UV-VIS spectroscopy using a UViCON 860
spectrometer. A sample containing no sensitizer was used as reference. 

Table (5-4): Chemical composition and glass transition temperature of the materials 
investigated in “5.3.) The influence of the sensitizer concentration on the PR performance 

of PVK based polymer composites”

Material DMNPAA MNPAA PVK ECZ TNF TPD Tg 

units [%wt] [%wt] [%wt] [%wt] [%wt] [%wt] [°C]

TNF01 25 25 35 14.9 0.1 - 3

TNF02 25 25 35 14.8 0.2 - 3

TNF04 25 25 35 14.6 0.4 - 3

TNF08 25 25 35 14.2 0.8 - 3

(TNF1) 25 25 37 12 1 - 11.5

TNF2 25 25 35 13 2 - 4

TNF5 25 25 35 10 5 - 9

∆np
∆ns
--------- - 2.22=
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5.3.2.)Experimental results on the sensitizer concentration dependence of 
the PR performance

As already discussed above, one may safely presume that the build-up dynamics of the PR
grating in the materials examined in this section is mainly determined by the dynamic behavior
of the PR space-charge field. Hence, there is no reason to fit only internal diffraction efficiencies
of more than 10% as done in the section before and as discussed in“5.2.3.1.) Theoretical
consideration of the relaxation dynamics in poled polymers” on page 244. Instead, here in all
cases the complete diffraction curves were fitted. In contrast to the results presented in “5.2.3.)
The relation between the glass-transition temperature and the dynamic performance in PVK
based PR polymers” on page 243, the time dependent build-up of the PR refractive index
grating for the materials containing 0.1%wt up to 0.4%wt TNF could only be fitted mono-
exponentially. For the materials containing 0.8%wt or more TNF, bi-exponential fitting
according to eq. (5.2 - 18) was required for a good approximation of the experimental data, in
agreement with the results presented in the preceding section.

Figure (5.3 - 1) shows characteristic examples of the experimentally observed PR grating
build-up and the corresponding fitting curves for both cases, mono- and bi-exponential
dynamics. The response times for the PR grating build-up in the investigated materials are
depicted in figure (5.3 - 2) as a function of the sensitizer content. In order to get a unified
measure for the PR grating build-up dynamics for all investigated materials, the time constants
obtained from bi-exponential fitting by means of eq. (5.2 - 26) were logarithmically averaged. 

 Figure (5.3 - 1): Characteristic examples of the experimental curves for the evolution of the PR 
refractive index modulation as a function of time (grey lines) and related fitting curves (black 
lines): (A) Material TNF04 (containing 0.4%wt TNF) and mono-exponential fit; (B) Material 

TNF08 (containing 0.8%wt TNF) and bi-exponential fit.
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From dynamic measurements of the intensities of the transmitted s-polarized recording
beams, the PR gain coefficients Γ were calculated according to eq. (4 - 13) as function of time.
The corresponding PR phase shifts φ as a function of time were then estimated from ∆n(t) (for
p-polarization) and Γ(t) by means of eq. (4 - 17). The polarization anisotropy was accounted for
applying eq. (4 - 46). Please note, that the values obtained for φ can only be approximations of
the actual absolute values, since there may be an unshifted contribution to the overall refractive
index modulation determined by DFWM, which is due to an isomerization grating as discussed
in “4.2.1.7.) Isomerization gratings” on page 205 and, thus, not of PR origin. Furthermore, the
correction factor for the polarization anisotropy is only an approximation as well, as discussed
in “4.2.1.4.) Polarization anisotropy for PR wave mixing experiments” on page 199. However,
the absolute values for φ thus obtained are in reasonable agreement with PR phase shift data
determined applying an independent method (moving grating technique) to a PR polymer
system similar to the materials investigated here [207]. This proves, that the error made by the
aforementioned approximations is small. Moreover, the chromophore content was constant for
all investigated materials (i.e. a possible contribution of an isomerization grating was constant)
and consistently the same correction factor for the polarization anisotropy was used. Therefore,
general trends of the PR phase shift within this series of measurements will be reproduced
correctly anyway. Characteristic examples for the PR gain coefficient and the corresponding
phase shift calculated as described above are shown in figure (5.3 - 3). 

The quasi steady-state PR parameters of the investigated systems were obtained from the
experimental values of the time dependent measurements after 90 seconds of recording of the
PR grating, i.e. when the experimentally determined holographic parameters (the internal
DFWM diffraction efficiency and the PR gain coefficient) do not notably change any more as
a function of time for all materials investigated (see figure (5.3 - 1) and figure (5.3 - 3)(A)). The
values obtained therewith for the PR refractive index modulation ∆n, the modulus of the PR
gain coefficient Γ, and the corresponding PR phase shift φ as a function of the sensitizer
concentration are depicted in figure (5.3 - 4). Both the refractive index modulation and the PR
phase shift show a clear trend as a function of the sensitizer concentration.

 Figure (5.3 - 2): Average response time constants <τ> as a function of the sensitizer content. The 
response time constants of the materials containing 0.1%wt, 0.2%wt, and 0.4%wt TNF were obtained by 
mono-exponential fitting, whereas the time constants for the materials containing 0.8%wt or more TNF 

are logarithmically averaged response times calculated from the results of bi-exponential fitting by 
means of eq. (5.2 - 26). The solid line is a guide to the eye.
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 Figure (5.3 - 3): Characteristic examples for the PR gain Γ (A) and the PR phase shift φ (B) as a function 
of time for material TNF04 (containing 0.4%wt TNF).
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 Figure (5.3 - 4): PR refractive index modulation ∆n (A), modulus of the PR gain coefficient |Γ | (B), 
and PR phase shift φ (C) achieved after 90sec of recording (i.e. quasi steady-state values) as a function 
of the TNF content for Eext = 39.7V/µm Please note, that Γ is in fact negative for the present experimental 
configuration in the sign systematics used in the frame of this work. The solid lines are guides to the eye.
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5.3.3.)Discussion of the influence of the sensitizer concentration on the PR 
performance in polymers

In the following, at first the absorption of the investigated materials as a function of the
sensitizer content will be considered and the expected influence on the charge generation rate
according to eq. (G - 2) will be discussed. Then, the results of the holographic experiments will
be elaborated upon in the context of the theoretical model of the PR effect according to
“2.5.2.1.) The band-transport model of the photorefractive effect (Kukhtarev-model)” on
page 119. Although this theoretical model can only be applied to PR polymers with strong
restrictions, it will suffice for the purpose of the current discussion. Finally, the influence of the
sensitizer concentration on the dynamic DFWM behavior of the investigated materials will be
discussed.

The sensitizer molecule TNF forms a charge-transfer complex with the charge
transporting moieties (carbazole), which represents the active charge generation site, as already
discussed in “2.4.4.) Charge generation and recombination in organic polymers” on page 109
and in “3.2.5.6.) The sensitizer” on page 176. For a low concentration of TNF with respect to
the concentration of carbazole moieties, it can be presumed that the number density of charge-
transfer complexes increases linearly with the concentration of TNF [182]. Since neither
carbazole/PVK (λmax ≈ 370nm) nor TNF (λmax ≈ 450nm) for themselves absorb at the operating
wavelength of λ0 = 633nm, one should therefore expect a linear increase of the absorption
coefficient α633 as a function of the TNF concentration, which indeed is found experimentally
(figure (5.3 - 5)).

Thus, one can conclude that the number density of active charge generation sites increases
linearly as a function of the sensitizer content within the range investigated here. For a sample
of 63µm thickness containing 0.1%wt TNF, the total intensity loss due to absorption after
passing the sample is 0.7% with respect to the incident light intensity. The loss in intensity

 Figure (5.3 - 5): Absorption of the investigated materials. (A) UV-Vis absorption spectra of 
materials containing 0.2%wt (solid line), 0.4%wt (dashed line), 0.8%wt (dotted line), 2%wt 

(dash-dotted line), and 5%wt TNF (short dotted line). (B) Absorption coefficients at λ0 = 633nm 
as a function of the TNF content. The grey open squares represent experimental data obtained 

from plot (A), whereas the dashed line is a linear fit and the solid circles are the absorption values 
for all materials as derived from the linear fit. The inset of (B) is a plot of (B) on linear scale.
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increases as a function of the sensitizer concentration up to 17% for 5%wt TNF content.
Accordingly, it may be presumed that the overall charge generation rate according to eq. (G -
2) (which is the relevant parameter for the PR effect) in a PR device also increases
approximately linearly as a function of the sensitizer concentration, since the average
illuminating light intensity throughout the device (i.e. averaged from the incident side to the
back side approximating the dependence of the intensity on the propagation length as linear)
decreases only by about 8% (i.e. from 0.7/2% to 17/2%) as the TNF concentration increases by
a factor of 50 (from 0.1%wt to 5%wt). 

At first, the relation between the steady-state PR parameters (figure (5.3 - 4)) and the
sensitizer concentration in the investigated systems will be discussed and subsequently their
dynamic behavior as a function of the TNF content. 

As mentioned before (page 233), for the high external fields applied here (Eext = 39.7V/
µm), charge-carrier migration is the dominating transport process for the formation of the PR
space-charge field and diffusion can safely be neglected (i.e. diffusion field Ed ≈ 0). Thus,
following Kuktharev’s model for the PR effect in crystals, according to eq. (2.5 - 5) and
neglecting Ed, the PR phase shift is given by eq. (5.2 - 5):

.

Eq. (5.2 - 5) allows for an estimation of the PR saturation field Eq achieved after 90sec of
recording as a function of the sensitizer content from the PR phase shifts according to figure
(5.3 - 4)(C). E0 is the projection of the externally applied field onto the grating wave vector K.
According to eq. (2.5 - 3) Eq depends on the number density of active PR traps NA:

,

where q is the elementary charge and  is the average bulk permittivity. The small total
amount of TNF molecules at otherwise unchanged composition of the investigated materials
safely excludes a notable change of  as a function of the sensitizer content. Therefore, any
dependence of Eq on the TNF concentration must be due to a varying number density of the PR
traps NA. The history of Eq as a function of the TNF content, cTNF, in the investigated materials
as calculated from eq. (5.2 - 5) is depicted in figure (5.3 - 6). Additionally, the value of Eq as
estimated for material 50d (Tg = 7°C, Tr = -11°C) in “5.2.) The PR performance of PVK based
polymer composites at varying glass-transition temperatures” on page 226 is shown. The good
agreement between the values obtained for the different series of measurements proves the
inherent consistency of the evaluation procedure applied. 

Apparently, for small amounts of TNF the saturation field does not notably depend on the
sensitizer concentration, whereas Eq increases markedly as a function of TNF concentrations
exceeding cTNF = 0.4%wt. This indicates that the trap situation in the materials changes
significantly between 0.4%wt and 0.8%wt TNF content. 
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Although the exact nature of the charge-carrier traps in PR polymers is still unclear,
conformational traps may be considered as an important trap species as already discussed above
in “5.2.2.) The relation between the glass-transition temperature and the steady-state
performance in PVK based PR polymers” on page 228. Having this in mind, one may assume
that the density of states (DOS) of the charge transport manifold should be slightly broadened
as a function of an increasing TNF concentration, since the concentration of strongly polar
molecular moieties in the investigated systems increases. However, the number density of TNF
moieties in the polymer blends is very small as compared to the high concentration of the
strongly polar NLO chromophore molecules. Thus, the influence of a changing TNF content on
the width of the DOS can safely be neglected. Therefore, neither the depth nor the number
density of conformational traps should be notably affected by the sensitizer concentration
within the range investigated here.

However, the experimental results may be rationalized assuming that TNF moieties
themselves may act as charge carrier traps. It is known from the mechanism of the photoinduced
charge carrier generation in a PVK matrix doped with TNF, that a negatively charged, immobile
TNF molecule is left behind when a mobile hole is generated (see “3.2.5.6.) The sensitizer” on
page 176 and “2.4.4.) Charge generation and recombination in organic polymers” on page 109).
Such an immobile, negatively charged TNF moiety represents a localized coulombic pot within
the transport manifold of the conducting polymer matrix and, accordingly, may act as a
coulombic trap for mobile holes. Coulombic charge carrier traps are often referred to as Poole-
Frenkel (-type) traps or Langevin (-type) traps. The Poole-Frenkel effect describes the field
assisted thermal emptying of this kind of traps [B5, B20] and the Langevin theory of geminate
recombination (see page 115) the recombination coefficient as well as the trapping coefficient
for a coulombic trap interacting with a free charge carrier. In the frame of this work coulombic
traps will be referred to as „Poole-Frenkel traps“. Poole-Frenkel traps in PR organic amorphous
materials have also been proposed by other authors [208]. Assuming the existence of Poole-
Frenkel traps as well as conformational traps in the investigated systems the experimental
observations according to figure (5.3 - 6) may be explained as follows: For very small sensitizer
concentrations (i.e. up to about cTNF = 0.4%wt) conformational traps dominate the PR behavior

 Figure (5.3 - 6): Estimated PR saturation field Eq as a function of the sensitizer content (solid squares). 
The solid circle represents Eq for material 50d calculated on the basis of the experimental data presented 

before in “5.2.) The PR performance of PVK based polymer composites at varying glass-transition 
temperatures” on page 226. The line is a guide to the eye. 
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of the materials, since the number density of ionized sensitizer moieties is significantly smaller
than the number density of conformational traps. The latter does not depend on the TNF
concentration, neither does, therefore, the PR saturation field Eq for cTNF ≤ 0.4%wt (figure (5.3
- 6)). For cTNF > 0.4%wt the number density of Poole-Frenkel traps stemming from ionized
TNF moieties approaches and finally even exceeds the number density of conformational traps
leading to a corresponding increase of Eq (figure (5.3 - 6)). Please note, that the number density
of Poole-Frenkel traps may be assumed to increase linearly as a function of increasing cTNF in
all cases as does the total trap density. This assumption is based on the discussion at the
beginning of this section.

The interpretation given above can be verified estimating the involved total trap densities
from earlier investigations on the same type of PR polymers focussing on charge-carrier photo-
generation, trapping and space-charge field formation in materials of varying chromophore
content and glass-transition temperature [196]. In this work, the charge generation efficiency Φ
was determined to roughly Φ ≈ 2 x 10-3 at an external field of Eext = 40V/µm for material 20c
(see table 5-1 on page 211 and [196], figure 5). Furthermore, Φ was found to be almost
independent of the chromophore content. Thus, assuming in first approximation that Φ
represents the fraction of TNF/ECZ complexes, which have already generated a hole and
accounting for the mass density of the investigated materials of approximately ρ = 1g/cm3, one
can estimate the number densities of ionized TNF moieties NnegTNF as a function of the TNF
concentration cTNF, which yields NnegTNF (cTNF = 0.1%wt) = 3.8 x 1015cm-3 up to NnegTNF
(cTNF = 5%wt) = 9.6 x 1016cm-3. In [196] a total PR trap density of NA ≈ 5 x 1016cm-3 was
estimated from independent measurements (xerographic discharge experiments) for a sample of
the type 50c containing 50%wt chromophore and 1%wt TNF (for details see table 5-1 on
page 211), whereas NnegTNF (cTNF = 1%wt) = 1.9 x 1016cm-3 is obtained according to the above
considerations. Thus, one may conclude that a trap density of NA = 3.1 x 1016cm-3 should be
attributed to conformational traps, the number density of which should not notably depend on
the TNF content as discussed above. For the average bulk permittivity ε = 6.5 was assumed
[185]. By means of eq. (2.5 - 3), one can now estimate the theoretical values for Eq, which might
be expected for NA,conformational = 3.1 x 1016cm-3 = constant and for NA,coulombic according to
NnegTNF. 

Figure (5.3 - 7) shows the resulting theoretical values of Eq. They differ by a factor of
about 2.7 from the experimental values but excellently reproduce the experimentally obtained
general trend in Eq as a function of cTNF. It is important to point out, that Eq,theoretical was
calculated from the sum of a constant term (related to NA,conformational) and a variable term
(related to NA,coulombic) changing as a function of cTNF. Thus, a constant offset factor for all
cTNF can only occur for a particular relation between the constant term and the variable term,
whereas the aforementioned offset factor becomes a function of cTNF for other relations. (For
instance, if the constant term is set to zero (doubled), i.e. NA,conformational = 0 (NA,conformational
= 6.2 x 1016cm-3) is assumed, the offset factor would be 0.14 (4.8) for cTNF = 0.1 and increase
(decrease) as a function of cTNF to 2.1 (3.5) for cTNF = 5). Furthermore, calculating Eq,theoretical
from eq. (2.5 - 3) for a trap density of NA ≈ 5 x 1016cm-3 [196] naturally yields the same offset
factor as compared to the experimental results. This suggests that the general framework of the
presented calculations is physically meaningful, but afflicted with systematic errors due to the
application of the Kukhtarev model for the current discussion. Therefore, although the absolute
values of Eq,theoretical and Eq,experimental are significantly different, the excellent agreement in
the general trends strongly supports the assumption of a coexistence of conformational and
Poole-Frenkel traps in the investigated materials and an increasing contribution of the latter as
a function of increasing TNF content. 
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As already mentioned before, the number density of Poole-Frenkel traps as well as
Eq,theoretical increase linearly as a function of increasing cTNF in all cases. This suggests to fit
Eq,experimental linearly, which yields a function of slightly smaller slope than found for
Eq,theoretical. Hence, besides the aforementioned offset factor of about 2.7 the trap density
seemingly increases slightly sublinearly as a function of increasing cTNF. However, the
deviation is very small, which also supports the general validity of the interpretations given
above.

Subsequently, the dynamic DFWM behavior of the investigated materials as a function of
the TNF content as depicted in figure (5.3 - 2) will be discussed. 

The PR effect is an integral effect, i.e. a large number of charge carriers must be generated
and redistributed in order to achieve a notable PR response, as already discussed in “2.5.1.)
Phenomenology of the photorefractive effect” on page 118. Thus, the build-up dynamics of the
PR space-charge field may be determined either by the charge carrier generation process or by
the charge carrier redistribution process (i.e. by the charge carrier mobility).

In the case of a charge carrier generation limited PR response dynamics the charge carriers
are faster redistributed than generated, and the more charge carriers per unit time are generated,
the faster becomes the PR response. Considering the time constant for the build-up of the space-
charge field τg according to eq. (2.5 - 8) one may estimate the relation, which might be expected
between an increasing number of charge carrier donors (i.e. TNF/ECZ complexes) and the
corresponding increase of the PR response speed:

.

Here, t0 is the characteristic time constant according to eq. (2.5 - 11): 

,

where f0 is the microscopic (i.e. in polymers the molecular) charge carrier generation rate, ND

 Figure (5.3 - 7): Theoretical (solid squares) and experimental values (open circles) for the PR saturation 
field Eq. The first were estimated assuming a constant number density of conformational traps and an 

increasing number of coulombic traps related to the sensitizer concentration as explained in the text. The 
lines are guide to the eye. The grey dotted line is a linear fit to Eq,experimental on linear scale.
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is the number density of charge carrier donors, and NA is the number density of charge carrier
acceptors (traps). In the Kukhtarev model the characteristic time constant t0 connects τg
according to eq. (2.5 - 8) to the charge carrier generation rate.

Charge carrier diffusion is negligibly small in PR polymers, as is accordingly the
diffusion field Ed according to eq. (2.5 - 2). Thus, eq. (2.5 - 8) simplifies to:

,  eq. (5.3 - 1)

where Eq is the well known PR saturation field according to eq. (2.5 - 3):

and Eµ is the drift field according to eq. (2.5 - 11):

.

Here  and  are the average bulk charge carrier mobility according to eq. (G - 14) and the
average bulk permittivity, respectively, q is the (modulus of the) elementary charge, K is the
grating wave vector, and γR is the charge carrier recombination rate. For a given γR and NA, Eµ
grows large for a small charge carrier mobility and eq. (5.3 - 1) may be approximated by: 

,  eq. (5.3 - 2)

which may be rewritten as:

,  eq. (5.3 - 3)

where n0 is the density of free charge carriers. Eq. (5.3 - 3) represents the dielectric relaxation
time, which is well-known from the band theory of electrical conduction. The dielectric
relaxation time may be interpreted as a measure for the time period, for which a free charge
carrier may be unhinderedly accelerated by an applied electrical field. Thus, in this case, the PR
response time is solely limited by the charge carrier mobility. 

In contrast, if the charge carrier mobility is large, Eµ becomes small and eq. (5.3 - 1) may
be approximated by:

.  eq. (5.3 - 4)

This represents the case of charge carrier generation limited response of PR polymers in the
applied model.

According to “2.4.4.3.) Langevin theory of geminate recombination” on page 115 and
accounting for the fact, that the negatively charged recombination centers are considered as
immobile in the investigated materials in very good approximation (i.e. molecular diffusion is
neglected as well as possibly occurring electron transfer between neighboring TNF sites, which
may occur at sufficiently high TNF concentration),  γR (according to eq. (2.4 - 188)) may be
expressed as: 

.  eq. (5.3 - 5)

Inserting eq. (5.3 - 5) into eq. (2.5 - 11) reveals that then Eµ becomes identical to Eq.
Furthermore, according to eq. (G - 2) and the discussion in Appendix G on page G4, here the
molecular charge carrier generation rate f0 must be understood as the product of the zero order
Fourier component of the illuminating light intensity and the molecular cross section for photo-
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excitation of the TNF/ECZ complexes, both of which do not change as a function of cTNF.
Therewith, from eq. (5.3 - 2),

 eq. (5.3 - 6)
should be expected for the case of charge carrier mobility limited PR response and accordingly: 

.  eq. (5.3 - 7)

In contrast, for the case of charge carrier generation limited PR response, eq. (5.3 - 4) must be
considered, yielding:

 eq. (5.3 - 8)

and consequently:

.  eq. (5.3 - 9)

For sufficiently small cTNF the number density of potential donors ND corresponds
directly to cTNF, which applies here as discussed before. The number density of acceptors NA
corresponds to the trap density, which is the sum of conformational and Poole-Frenkel traps, as
calculated before for figure (5.3 - 7). Therewith one can estimate the history of a normalized
measure τgn for τg as a function of cTNF starting with τgn(cTNF = 0.1%wt) = 1 and compare it
with the corresponding history of the unified PR response times normalized to the response time
constant  for the material TNF01 (cTNF = 0.1%wt). For eq. (5.3 - 9), the theoretical as well
as the experimental values for Eq as depicted in figure (5.3 - 7) were used. The results are shown
in figure (5.3 - 8).
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 Figure (5.3 - 8): General history of the normalized theoretical time constant τgn for the case of charge 
carrier mobility limited PR response (open triangles) and for the case of charge generation limited PR 

response (calculated with Eq,experimental (open diamonds) and with Eq,theoretical (open circles)). The solid 
squares are the unified response time constants normalized to their values for material TNF01 (cTNF = 
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For the materials containing more than 0.2%wt TNF apparently none of the theoretically
estimated dependencies for τgn on cTNF actually matches the experimental curve (i.e. ).
However, the general trend for the case of charge carrier mobility limited PR response shows a
reduction for the relative acceleration of the PR response as a function of increasing cTNF, i.e.
the curvature on double logarithmic scale is positive. The same global trend is found for the
experimental curve. In contrast, the theoretical curves for the case of charge carrier generation
limited PR response show the opposite trend, i.e. the curvature on double logarithmic scale is
slightly negative. Furthermore, also the relatively most reasonable match between the
experimental curve and one of the theoretical curves is found for the case of charge carrier
mobility limited PR response. These results may be taken as a strong indication for the PR
response being limited by the charge carrier mobility in the investigated materials containing
more than 0.2%wt TNF. For the materials with cTNF ≤ 0.2%wt the above argumentation does
not allow a clear statement.

Please note, that the charge carrier mobility limiting the dynamic PR response does not
necessarily correspond to the charge carrier mobility, which is determined by time-of-flight
experiments. It has been shown by means of comparison of holographic time-of-flight
experiments and “standard” time-of-flight experiments, that the mean free path length of a free
charge carrier in a PVK matrix is probably smaller than the grating spacing of 3.1µm resulting
from the experimental configuration used here [202, 203]. Therefore, a charge carrier once
generated becomes trapped before it reaches its “final destination” and requires detrapping
before it can continue migrating. This process must be expected to reduce the apparent charge-
carrier mobility. Furthermore, there is indication that detrapping of trapped charge carriers may
be induced thermally as well as optically [83]. This questions a clear distinction between
charge-generation limited and charge-carrier mobility limited PR response behavior in
polymers, since the charge-carrier migration may involve several “charge-generation-steps“ for
a single carrier. 

Finally, the change will be discussed, which is observed for fitting algorithm, which must
be applied in order to approximate the dynamic build-up behavior of the PR space-charge field.
The build-up dynamics for small cTNF ≤ 0.4%wt could be approximated by a mono-exponential
fit, whereas bi-exponential fitting is required when the sensitizer concentration equals or even
exceeds 0.8%wt. This threshold coincides with the occurrence of a significant contribution of a
second trap species (Poole-Frenkel traps) to the overall PR trap manifold, as discussed before.
According to the theory of the PR effect in inorganic crystals, the dynamic response of a
material having a single type of PR traps, the number density of which is constant in time,
should be mono-exponential. If the trap situation in the PR system is more complicated (e.g.
different trap species and/or a time dependent number density), the response behavior is
supposed to become more complicated as well. In the investigated PR polymers, when the TNF
content exceeds 0.4%wt, two very different trap species must be accounted for, the number
density of the one of which (i.e. the Poole-Frenkel traps) is even additionally a function of time,
since the number density of negatively charged TNF moieties increases as a function of time.
Therefore, a more complicated PR grating build-up dynamics should be expected for the
materials doped with more than 0.4%wt TNF as compared to the materials with cTNF ≤ 0.4%wt,
which indeed is found experimentally.

Please note that this interpretation does not inherently assume that the particular
exponential terms of the applied fitting algorithm might be correlated with distinct physical
processes. It has only been stated that the dynamic behavior of a PR material is supposed to
become more complicated, if the trap situation becomes more complicated, which agrees with
the experimental observations.

τ〈 〉n
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5.3.4.)Conclusions from the influence of the sensitizer concentration on the 
PR performance

In conclusion, there is strong indication that the active PR trap manifold in the common
type of PVK-based PR polymers utilizing TNF as sensitizer with a typical concentration of
about 1%wt consists of two different types of traps. On the one hand there are conformational
traps, which exist ab initio and the number density of which does not depend on the sensitizer
content of the particular materials. The conformational traps are the predominant species in
materials doped with very small amounts of sensitizer up to 0.4%wt. On the other hand, there
are Poole-Frenkel traps (coulombic traps) stemming from ionized sensitizer moieties. This kind
of traps adds to the conformational traps and becomes important for higher sensitizer
concentrations of at least 0.8%wt, leading to higher PR saturation fields. For even markedly
higher TNF concentrations Poole-Frenkel traps are supposed to become the predominant
species in the systems concerned. It is an inherent property of this kind of PR traps that they are
generated during the PR recording process and, thus, that their number density is a function of
time. The more complicated trap situation for TNF contents exceeding 0.4%wt apparently
complicates the PR response behavior.

A comparison of the build-up behavior of the PR grating for increasing TNF content with
theoretical considerations on the basis of the Kukhtarev model strongly indicates that the PR
build-up dynamics in the investigated type of materials is limited by the charge carrier mobility
for TNF concentrations exceeding 0.2%wt. 

Please note, that the discussion of the nature of the PR traps and their behavior as a
function of time will be picked up again in a forthcoming section when considering the erasure
behavior of PR gratings. In this context, the question for the physical process limiting the PR
build-up dynamics will also be entered into once more. Another indication for the charge carrier
mobility to be the crucial parameter will be found, which additionally supports the
interpretations given in this section.



5.4.)The erasure behavior of PR gratings in PVK based polymer composites

271

5.4.)The erasure behavior of PR gratings in PVK based 
polymer composites

Due to the reversible character of the PR effect and the achievable high refractive index
modulation, PR polymers are preferable candidates for holographic data storage in re-writable
optical memories utilizing multiplexing techniques, i.e., many holograms are written into the
same volume element using slightly different Bragg-conditions for each hologram. The theory
of holographic multiplexing is elaborated upon in detail in “2.3.3.) Holographic data storage”
on page 60. Such memories, among others, are also very useful for associative retrieval of data
and promise very high storage density [B8, 210]. As discussed in the section referred to, an
appropriate exposure schedule with varying recording times must be applied in order to achieve
approximately equal strength of all holograms in the volume, since by writing a particular
hologram, all holograms written before are partially erased. Hence, the relation between the
dynamics of recording and subsequent erasure of a particular hologram is crucial in order to
obtain a large “M-number” M/#, which is defined as the sum of the grating strength of all
multiplexed holograms. M/# is the commonly accepted holographic figure-of-merit describing
the multiplexing capabilities of a holographic recording medium. The definition of M/# requires
that all multiplexed holograms are of approximately equal strength. Otherwise the parameter M/
# looses its physical relevance [21].

Up to now, most research efforts in the field of organic PR materials have focussed upon
seeking for better steady-state performance (i.e., larger dynamic range), faster response times.
and understanding of the basic physics of the PR effect in amorphous polymeric systems.
However, only small attention has been paid to the details of the erasure behavior of PR gratings
in high performance PR polymers, although fitting erasure curves was performed by few
working groups in order to get a general measure for the dynamics of PR polymers. However,
this has not become common practice. The results presented in this section unambiguously
prove this approach to be unreasonable. The details of the erasure behavior of a PR grating are
crucial for almost every potential application proposed for PR polymers. Theoretical works on
the PR grating erasure have been published by Liphardt et. al. [211] and Cui et. al. [83], the latter
reference of which is also elaborated upon in the theoretical section in this work (“2.5.3.2.3.2.)
Cui’s approach to the erasure dynamics” on page 128). Khand et. al. recently presented a
comprehensive study of the correlation of the fast growth and erasure rates of a PVK based PR
polymer [209]. They found a nearly constant growth/erasure time ratio of approximately 1.5 for
a wide variety of applied electric fields and sensitizer concentrations. From the strong
correlation between the mentioned rates the authors conclude that a single trap model of the PR
effect suffices to describe the dynamics in PR polymers as known from the standard model of
the PR effect in crystals (Kukhtarev model). The authors, furthermore, attribute the dominant
trap species to Poole-Frenkel type traps formed by ionized sensitizers as already proposed by
Grunnet-Jepsen et. al. [208] and as also proposed with restrictions in the preceding chapter
“5.3.) The influence of the sensitizer concentration on the PR performance of PVK based
polymer composites” on page 257. However, simply using the fast rates for evaluating a
practical schedule for multiplexing will fail as shown in [212]. It is necessary to consider the
complete erasure behavior of PR polymers in order to obtain a comprehensive picture of the
kinetics of the PR effect in polymers and to judge of potential applications. 

Subsequently, at first the PR grating erasure in PVK based PR polymer composites
derived from the first high performance PR polymer [13] will be investigated in detail taking
into account different glass transition temperatures. It will be shown that the grating erasure
dynamics depends on the duration, the hologram has been recorded. For the case of polymer
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systems having a glass-transition temperature above the ambient temperature (high-Tg
systems), evidence will be given that this is attributed to the orientational relaxation of the NLO
chromophores embedded in the conducting polymer matrix. On the other hand, it will be shown
that a similar experimental phenomenology arises from a changing PR trap situation in the
systems with Tg below the ambient temperature (low-Tg systems). Optical activation of deep
trapping sites was found to occur in the investigated systems and the impact of this effect on the
PR grating erasure will be discussed by means of a theoretical model for the space-charge field
erasure in PR polymers. Thereafter the possible nature of the traps occurring in the investigated
materials will be discussed. Finally, the influence of the recording time dependence of the
hologram erasure dynamics on the potential applicability of the investigated type of holographic
storage media in holographic multiplexing will be considered.

In the second part, low-Tg PVK based PR polymer composites will be considered, which
are similar to the ones investigated in the first part, but additionally extrinsically doped with
relatively high amounts of deep trapping sites. For these systems was observed that the
hologram erasure dynamics also depends on the recording time, but is fundamentally different
as compared to the case if no extrinsic traps are present. In particular, it was found that the
hologram further builds up even after the recording beams have been switched off and the
grating is going to be erased by a non Bragg-matched erasure beam. This phenomenon also
depends on the duration the hologram has been recorded before. A first experimental indication
for a possible explanation of this effect will be given and the influence of typical experimental
parameters as well as different material compositions will be considered. The observed
behavior will be interpreted in terms of the given phenomenological explanation. A systematic
map of the data obtained for systems of different composition applying different experimental
conditions will be provided. However, a detailed investigation of the mechanisms underlying
the observed erasure behavior as performed for the systems without extrinsic traps was no more
conducted in the frame of this work. 

5.4.1.)PR grating erasure in systems without extrinsic deep traps
A systematic investigation of the complete erasure behavior of highly modulated PR

gratings in today’s high-performance PR polymers is presented, where different glass-transition
temperatures were taken into account. The rather unfavorable ratio between recording and
erasure kinetics basically limits the M/# in PR polymers as shown in [212] and as will be
elaborated upon in a later section in the frame of this theses. This finding has been reproduced
in [209]. Furthermore, it was found that recording and erasure of a PR grating in polymers are
not independent from each other, which significantly complicates the derivation of a recording
schedule for multiplexing experiments, as already mentioned above and as also discussed in
[212]. The goal of the present work was to get an insight into the mechanism connecting
recording and erasure dynamics in PR polymers, which may serve as a basis to solve the
aforementioned scheduling problems e.g. by designing materials showing independent
recording and erasure dynamics. Furthermore, since kinetics and steady-state performance are
affected by even small changes of the glass-transition temperature, a second objective of this
study was to find out whether there is an optimum Tg for the application of PVK-based PR
composites for multiplexing purposes, as was found for the steady-state performance of the
systems investigated (“5.2.) The PR performance of PVK based polymer composites at varying
glass-transition temperatures” on page 226). 
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5.4.1.1.)Experimental aspects
The investigated materials are derived from the first high performance PR polymer [13],

but with strongly improved long-term stability [136]. The compositions and the glass-transition
temperatures as determined by DSC are listed in table 5-1 on page 211 as well as at the end of
the current section. PR devices were prepared according to “4.1.) Preparation of materials and
sample structure” on page 179. The active layer thickness was d = 125µm. The ambient
temperature was 20±0.5°C for all measurements. 

For all experiments carried out, the following conditions apply: An electrical field of E0
= 32V/µm was applied to the samples. DFWM experiments were carried out using the standard
DFWM setup as described in “4.2.) Wave mixing experiments” on page 181 and evaluated by
the procedures described in the same section. Lock-in amplifiers were used, which limited the
reliable time resolution of the applied setup to about 10ms (10 times the integration time
constant of the lock-in amplifiers). The recording beams 1 and 2 were s-polarized exhibiting
internal intensities of I01 = 23mW/cm2 and I02 = 19mW/cm2, which yields a grating contrast of
the interference pattern of m = 0.995. A weak (appr. 3µW/cm2) p-polarized beam
counterpropagating to recording beam 1 was used for readout. The beam intensities were
determined according to “4.2.1.6.) Intensity determination” on page 204. For a typical grating
erasure experiment the material was held in the dark for one hour prior to each writing process.
For initial relaxation, the devices were then pre-illuminated for tp = 30min by beam 2. Hereafter,
beam 1 was switched on and after writing the grating for a certain time trec, both writing beams
were switched off simultaneously. The recorded grating was then erased again by a uniform
Laser beam having an internal intensity of 17mW/cm2. Throughout the complete sequence, the
external field was applied to the sample. For some particular experiments carried out conditions
and procedures slightly deviating from the aforementioned ones were applied in this phase of
the work, which will be described together with the correlated particular experiments.

Please note, that the grating must not be erased with a Bragg-matched erasure beam, e.g.
by simply switching off one of the writing beams. This would lead to grating refreshment by the
interference pattern, which then is formed by the transmitted beam and its portion, which is
diffracted by the grating to be erased. Depending on the strength of the existing refractive index
grating, significant retardation of the grating erasure process would occur and the erasure
dynamics thus obtained would not represent the actual erasure behavior of the PR material. In
order to absolutely exclude any kind of grating refreshment during erasure, in the experiments
underlying the results presented here the erasure beam originated from an independent Laser
and was perpendicularly incident onto the sample. 

 Since the samples were usually permanently operated for several days, all devices were
checked after preparation for their dielectric stability by applying for three hours an external
field of Eext = 40V/µm under uniform illumination by a HeNe Laser beam of similar intensity
like the sum of both recording beams. Subsequently, the samples were stored in the dark for
three days. As a result, no systematic long-term changes were observed if an identical
measurement sequence was repeated several times without manipulating the samples in-
between.

 In order to investigate the orientational relaxation dynamics of the chromophores in the
materials independently from the dynamics of the PR space-charge field, transmission
ellipsometric (ELP) experiments according to “4.3.) Transmission ellipsometric experiments”
on page 207 were carried out at 690nm operating wavelength using a semiconductor laser
diode. The devices were tilted by an internal angle of Ψt = 29° and the ellipsometric
transmission was determined as a function of time at the same external electrical field as applied
in the holographic experiments. The transmission T according to eq. (4 - 52) as a result of the
field-induced birefringence ∆nELP according to eq. (4 - 53) was measured for both the growth
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(poling) as well as the decay (relaxation) of the orientational order. In the latter case, the sample
was short circuited after the sample was poled for a certain time in order to avoid any influence
of the slowly responding RC-circuit, which is formed by the samples capacitance and its high
electrical resistance.

5.4.1.2.)Results of the PR grating erasure experiments in systems without 
extrinsic deep traps

Hereafter, materials with Tg above the ambient temperature (i.e. the reduced temperature
according to eq. (5.2 - 1) Tr > 0°C) will be referred to as “high-Tg materials”, while materials
with Tg below room temperature (i.e. Tr < 0°C) will be referred to as “low-Tg materials”. The
reduced temperatures of the investigated materials are listed in table (5-6).

*) Material A did not saturate within the longest recording time applied here. After 83.3 minutes recording ∆n = 
1.11*10-3 was achieved.
**) For the definition of <τ> see equation eq. (5.2 - 26)
***) Please note, that fitting a non-saturating multi-exponential curve may yield time constants different from 
those obtained by fitting a curve, which at least closely approaches saturation, since in the first case the fitting 
algorithm underestimates the saturation value. Thus, the actual dynamics is underestimated as well and the 
material is even slower than indicated by the given <τrec>.

Table (5-5): Chemical composition and glass transition temperature of the materials 
investigated in “5.4.1.) PR grating erasure in systems without extrinsic deep traps”

Material DMNPAA MNPAA PVK ECZ TNF TPD Tg 

units [%wt] [%wt] [%wt] [%wt] [%wt] [%wt] [°C]

A 25 25 47 2 1 - 27

B 25 25 43 6 1 - 17.5

C 25 25 39 10 1 - 14

D 25 25 37 12 1 - 11.5

CT 25 25 38 10.18 1 0.82 14

Table (5-6): Reduced temperatures, maximum PR index modulation amplitude and 
logarithmically averaged recording time constants of the investigated materials.

Material A B C D

Tr [°C] 7 -2.5 -6 -8.5

∆nmax@32V/µm -*) 1.57*10-3 1.47*10-3 1.41*10-3

<τrec>**) [sec] 142***) 40 22 27
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In general agreement with the results presented in “5.2.3.) The relation between the glass-
transition temperature and the dynamic performance in PVK based PR polymers” on page 243,
the recording speed is quite similar for the low-Tg materials B through D (<τ> ≈ 31±9sec, see
table (5-6)), while the high-Tg material A has a much slower response (figure (5.4 - 1)). This is
generally attributed to the fact that the recording dynamics in the “hard” high-Tg material is
dominantly determined by the orientational dynamics of the EO chromophores (reorientation
under the influence of the local total electrical field, i.e., the sum of the external dc and the
internal space-charge field), while in the “soft” low-Tg materials the build-up of the PR space-
charge field determines the dynamics of the DFWM response. This becomes obvious when
comparing the DFWM recording dynamics (figure (5.4 - 1) (A)) and the ELP poling dynamics
(figure (5.4 - 2) (A)). The maximum achievable diffraction efficiency at the given external field
varies slightly for the investigated materials (table (5-6)) in agreement with the results discussed
in “5.2.2.) The relation between the glass-transition temperature and the steady-state
performance in PVK based PR polymers” on page 228.

Considering the erasure process, a strong dependence of the erasure kinetics on the
recording time of the PR grating is revealed for all materials under investigation (a characteristic
example is shown in figure (5.4 - 1) (B)). Similarly, the relaxation dynamics in ELP depended
on the poling time (figure (5.4 - 2) (B)). This is further illustrated in figure (5.4 - 1) (C) and (D)

 Figure (5.4 - 1): Holographic recording and erasure behavior of the materials A (squares), B (circles), C (up 
triangles), and D (down triangles). (A) shows the recording curves. (B) shows a selected set of normalized era-
sure curves for material B. The arrow indicates increasing recording time for the depicted five curves, the last 
two of which (i.e. for long recording times) are no more clearly distinguishable. (C) and (D) depicts the portion 
of the initial refractive index modulation remaining after 10sec and 30sec erasure, respectively, as a function of. 
the recording time. The pre-illumination fluency for the initial relaxation was 36J/cm2 (recording beam 2, I02 = 

20mW, tp = 30min). The solid lines in plot (A), (C), and (D) are guide to the eye.
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and in figure (5.4 - 2) (C) and (D), which summarize the refractive index modulation amplitude
∆n in DFWM and the amplitude of the field-induced birefringence ∆nELP in ELP remaining
after 10sec and 30sec, respectively. Obviously, the erasure (relaxation) process slows down
with increasing recording (poling) time. The strength of this dependence (represented by the
slope of the plots) decreases from material A to material C; material D behaves very similar to
material C. For the longest recording times applied here, the DFWM-erasure behavior of each
particular material finally levels off and becomes independent from the recording time. In
contrast, such a saturation effect is not observed in the ELP experiments (figure (5.4 - 2) (C) and
(D)). Surprisingly, for short recording times (trec < 60sec) in DFWM the short-term erasure
dynamics (i.e. after 10sec, figure (5.4 - 1) (C)) is fastest for the high-Tg material A and slows
down as Tg decreases, while the opposite trend holds for long trec. The observed “crossing
point” (identical relative ∆n for all materials) shifts to shorter recording times for longer erasure
times and is no longer detected after 30sec of erasure (figure (5.4 - 1) (D)).

The DFWM build-up and erasure dynamics as well as the ELP growth and relaxation
dynamics (examples of which are shown in figure (5.4 - 1) and figure (5.4 - 2), (A) and (B),
respectively) were fitted by the following multi-exponential functions:

 Figure (5.4 - 2): Growth and decay behavior of the field induced birefringence in the materials A (squares), B 
(circles), C (up triangles), and D (down triangles). (A) shows the growth curves. (B) shows a selected set of 

normalized decay curves for material B. The arrow indicates increasing recording time underlying the particular 
erasure curves. (C) and (D) depict the portion of the birefringence remaining after 10s and 30s decay as a 

function of the growth time, respectively. The solid lines in plot (A), (C), and (D) are guide to the eye.
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,  eq. (5.4 - 1)

where the indices ‘r’ and ‘e’ denote recording in DFWM (poling in ELP) and erasure in DFWM
(relaxation in ELP) and i is the number index for the exponential terms. ∆n0,r is the quasi steady-
state value of refractive index modulation amplitude for the recording process in DFWM
(induced birefringence in ELP), as resulting from the fitting process, and ∆n0,e is the refractive
index modulation in DFWM (induced birefringence in ELP) before the erasure (relaxation)
process is going to start.

For the DFWM data, bi-exponential fitting appeared to be sufficient for the low-Tg
materials B, C, and D. For some of the shortest writing times only mono-exponential fits could
be applied to the erasure curves, since fits by more than one exponential term did not converge
due to over-parametrization of the fitting algorithm. In order to stay consistent, this will be
interpreted as an identity of the fast and the slow erasure rates (i.e. only one rate). However, for
the high-Tg material A, bi-exponential fitting did not yield reasonable agreement with the
experimental curve. Instead, three exponential terms were necessary to fit the dynamic behavior
of material A. Please note, that tri-exponential fitting even yielded better results than bi-
exponential fitting for the shortest writing times applied. 

In contrast to the DFWM data, the ELP erasure data could only be approximated using
three exponentials for all materials investigated. Following a similar trend as found for the
DFWM erasure data, the agreement between the experimental and the fitting curves was notably
worse for material A as compared to material B, C, and D, which particularly applies to longer
growth times. This indicates that the dipolar relaxation behavior in the high-Tg case is in fact
only roughly approximated by three exponential decay terms. It is to be pointed out, that the
described fitting procedure is a strictly phenomenological formalism, i.e. the time constants do
not necessarily reflect distinct physical processes, as discussed several times before in the fame
of this thesis.

Except for material A, the pre-exponential factors of the fastest component in the DFWM
as well as in the ELP experiments were always of similar magnitude (between 0.8 and 1.0), i.e.
dominated the dynamic response. For better comparison of the DFWM and ELP data, all fitting
data were reduced to two exponential decay terms by calculating the combined logarithmic
averages of the two slow response times, , in the cases where tri-exponential fitting has
been applied. Furthermore, the combined logarithmic average of all response times in DFWM
and ELP were calculated in order to obtain an overview of the general decay dynamics in the
two experiments in question. The logarithmic averaging was performed according to eq. (5.2 -
26). Please note, that the forthcoming discussion of the ELP relaxation behavior will not be
altered, if all three exponential terms are considered instead of the fast component and the
logarithmically averaged slow components as conducted here. However, the discussion will
become much more extensive and cumbersome. The general trends revealed are identical for
both points of view even though some details may be dropped due to the averaging formalism
applied. Hereafter, the slow relaxation time (as obtained by bi-exponential fitting or by tri-
exponential fitting with subsequent logarithmic averaging of the two slow relaxation times) will
be referred to as “τslow“ and the fast relaxation time as “τfast“.

∆nr
∆n0 r,
------------- 1 Ai r, t τi r,⁄( )–( )exp∑–=

∆ne
∆n0 e,
------------- Ai e, t τi e,⁄( )–( )exp∑=

Ai∑ 1=

τ slow〈 〉
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Figure (5.4 - 3) summarizes the logarithmically averaged total response times for the
DFWM erasure and the ELP relaxation. The general dynamic response dynamics of the high-
Tg material A is almost identical for both experiments, which leads to the conclusion that this
material is dominantly ruled by the orientational relaxation of the NLO chromophores in the
polymer matrix. In contrast, the orientational relaxation is about one order of magnitude faster
than the erasure of the holographic grating in the low-Tg materials B, C, and D. Therefore, one
can safely presume that the DFWM erasure behavior of these materials is dominantly
determined by the decay of the PR space-charge field. However, the picture is not that simple,
as becomes obvious when considering the particular time constants and their relative weighting
in more detail. Figure (5.4 - 4) and figure (5.4 - 5) show the fast and slow time constants τfast
and τslow and the corresponding weighting factors for the ELP relaxation and the DFWM
erasure, respectively. 

 Figure (5.4 - 3): Logarithmically averaged holographic (solid symbols) and ellipsometric (open 
symbols) response times <τ> of materials A (squares), B (circles), C (up triangles) and D (down 

triangles) as a function of the recording and the poling times, respectively. The solid and dotted lines are 
guide to the eye.
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 Figure (5.4 - 4): Fit results of the ELP relaxation curves for the materials A (squares), B (circles), C (up 
triangles), and D (down triangles): (A) fast time constant. (B) logarithmically averaged “slow” time 

constants. (C) relative weight factor of the fast relaxation term. The solid lines are linear fits to the data.
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 Figure (5.4 - 5): Fit results of the DFWM erasure curves for the materials A (squares), B (circles), C (up 
triangles), and D (down triangles): (A) fast time constant. (B) slow time constant. (C) relative weight 
factor of the fast erasure term. The lines are guide to the eye. The solid lines with small open symbols 

are the linear fits to the ELP data taken from figure (5.4 - 4) for material A (squares) and D (down 
triangles). The perpendicular dashed line marks the recording time for which the DFWM pre-exponential 
factors level off and for which τfast,ELP becomes equal to τfast,DFWM for material A. The pre-illumination 

fluency for the initial relaxation was 36J/cm2.
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5.4.1.3.)Discussion of the erasure behavior of PR polymers without extrinsic 
deep traps

5.4.1.3.1.)Discussion of the ellipsometric experiments
Figure (5.4 - 4) and figure (5.4 - 5) summarize the particular fit data for the ELP

experiments and DFWM experiments, respectively. First the ELP data will be considered in
more detail. The orientational dynamics in the high-Tg material A is much slower than in the
low-Tg materials B - D, whereas the latter behave very similarly. In all materials studied here,
both time constants increase with the poling time tpole (figure (5.4 - 4), (A) and (B)), seemingly
following a power law of the general form:

,  eq. (5.4 - 2)
which reads here: τi,ELP = tpole

x. For the fast component τfast,ELP and the high-Tg material A the
exponent x = 0.23 is relatively large, indicating a rather strong dependence. For the low-Tg
materials x is about a factor of 4 smaller (x = 0.06), i.e., τfast,ELP can be considered as constant
in good approximation. In contrast, for the slow component (i.e. <τslow,ELP>) all materials
exhibit an identical, rather strong dependence on the recording time with x = 0.46 (material A
being about a factor of 6 slower). 

Regarding the pre-exponential fit factors Ai,ELP (figure (5.4 - 4), (C)) there is very little
change for the low-Tg materials when the recording time increases. The fast component
dominates over the slow component by a factor of about 4. In contrast, in material A the factor
Afast,ELP is significantly smaller than in the low-Tg materials and decreases exponentially when
tpole increases (the opposite holds for Aslow,ELP). For tpole > 70sec the slow process becomes
dominant (i.e. Aslow,ELP > Afast,ELP). Thus, the relaxation dynamics in the high-Tg material A is
not only slower but differs substantially from the one in the low-Tg materials B, C, and D. 

The observations regarding the poling-time dependence of the relaxation dynamics in the
low-Tg materials may be rationalized assuming that the exponential terms used for fitting the
experimental data may represent different physical processes, although the multi-exponential
fitting procedure was introduced as a phenomenological formalism. The fast process in the low-
Tg materials might represent a quick relaxation of the chromophore dipoles according to the
oriented gas model, the transient solution of which yields a single exponential decay for the
orientational relaxation after turning off the poling field according to eq. (2.4 - 117) in
“2.4.2.2.2.) Turning off the poling field” on page 95. Furthermore and in agreement with the
experimental results, the oriented gas model does not imply a poling-time-dependence of the
relaxation dynamics, since the relaxation of the orientational order is due to free rotational
diffusion as discussed in “2.4.2.2.) Transient solutions of the oriented gas model” on page 92.
However, even for the low-Tg materials the oriented gas model only represents a zero-order
approximation of the actual relaxation process, since it presumes a highly diluted conglomerate
of free molecules, which does not strictly apply to all the systems under investigation here. 

Therefore, the situation shall be considered, which is found in a typical viscoelastic
system being subjected to mechanical stress. According to the standard theory of viscoelasticity,
a viscoelastic system subjected to mechanical stress for a sufficiently long time (represented
here by the electric-field-induced reorientation of dipoles embedded in a glassy polymer matrix)
will attempt to reduce the stress. Hence, the material slowly flows towards a new equilibrium
state. In a glassy polymer this process includes long range conformational changes of the
polymer chains. The longer the stress is applied, the closer this new equilibrium is approached.
In the case of relaxation as discussed here, the reverse situation is observed, i.e., after the
mechanical stress is withdrawn (i.e. the electric field is switched off) the material relaxes back

τi decay, tbuild up–
x=
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into its initial thermodynamical equilibrium state, provided the thermodynamical equilibrium
state under stress represents a non-equilibrium state without external stress. In the case under
consideration, when there is some degree of orientational order of the molecular dipoles and the
external field is switched off, the system exists in a thermodynamical non-equilibrium state,
since random distribution of the dipoles would represent the equilibrium state. Accordingly, the
closer the thermodynamical equilibrium under applied field had been approached during the
poling period (i.e., with increasing poling time), the longer it will take to return to the initial state
without field. The general trend thus described agrees with the experimental observation of a
poling-time-dependence of the slow component of the orientational relaxation dynamics. The
fact that the slow component itself is actually bi-exponential may be indicative for the existence
of a distribution of viscoelastic relaxation times, which is due to different local environments
for the particular NLO chromophores [199]. However, even though there is clear indication for
the presence of a notable viscoelastic contribution to the overall orientational relaxation process
as described above, the “free“ relaxation according to the oriented gas model is the by far
dominant contribution in the low-Tg materials, as can be seen from the relatively small
weighting of the slow component (figure (5.4 - 4)). 

The viscoelastic interpretation of the poling process given above is additionally supported
by the observation that the poling process itself (i.e. the build-up of the orientational order when
turning on the poling field, figure (5.4 - 2) (A)) seemingly does not saturate in any case even for
the longest poling times applied, in contrast to the DFWM diffraction efficiency (which clearly
saturates for materials C and D, figure (5.4 - 1) (A)). In the context of the model described
above, the mechanical stress applied to the system is not constant but decreases when the system
approaches the new equilibrium, since the interaction force between the molecular dipoles and
the applied field according to eq. (2.4 - 45) decreases with increasing orientational order. Thus,
the flow process is supposed to become slower with increasing poling time resulting in an
asymptotic behavior for the build-up of the orientational order, which is supposed to show
dynamics different from that predicted by the oriented gas model yielding bi-exponential build-
up dynamics with fixed relations between the parameters of the particular exponential terms
(see “2.4.2.2.1.) Turning on the poling field” on page 94).

In contrast, the situation is significantly different for the high-Tg material A. In this case,
there is no reason to assume a notable contribution to the relaxation process, which refers to the
oriented-gas model. Instead, the relaxation process should be viscoelastic in general. This view
is supported by three experimental observations. At first, not only the slow but also the fast
relaxation time increases significantly with increasing poling time, as mentioned before and
opposed to the low-Tg systems. In terms of the model discussed above, this strongly indicates
viscoelastic behavior underlying both the fast and the slow component. Secondly, the
weightings of the relaxation terms are fairly similar on the one hand but change notably as a
function of the poling time on the other, both of these observations in contrast to the low-Tg
systems. This may indicate that not different physical processes as proposed for the low-Tg
systems are observed, but rather a change in the distribution of viscoelastic relaxation times.
Finally, the approximation of the relaxation behavior by three exponential terms is notably
poorer as compared to the low-Tg systems. This might indicate a more pronounced influence of
the local environment on the relaxation behavior of the chromophores, i.e. a broader distribution
of relaxation times. A broader distribution is supposed to require more exponential terms for
good approximation than a more narrow one. Hence, one can conclude that the relaxation
behavior of the high-Tg material A is dominated by the viscoelastic properties of the polymer
matrix. 

On the basis of the above viscoelastic interpretation of the poling behavior of the high-Tg
system one also may speculate about the reason why the weighting of the exponential decay
terms changes strongly as a function of increasing poling time (figure (5.4 - 4) (C), Aslow,ELP
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increases significantly and finally becomes even larger than Afast,ELP for poling times exceeding
100sec), whereas such a trend is not observed in the low-Tg materials. This behavior may be
indicative for an increasing spatial range of the conformational changes in the rigid polymer
matrix with increasing degree of poling. In a rigid polymer matrix, long-range conformational
changes are significantly aggravated as compared to short-range conformational changes and
should gain in importance with increasing degree of poling. By that, an existing distribution of
viscoelastic relaxation times due to different local environments of the molecular dipoles to be
oriented may change as a function of the degree of poling as proposed before. In contrast, in a
soft polymer matrix, the influence of the areal range of the conformational changes involved in
the poling process should be much less important. In fact, a good long-range conformational
mobility is characteristic for the low-Tg state of polymers as discussed in “2.4.1.1.)
Phenomenology of viscoelastic transitions” on page 71. 

It is to be pointed out that a theoretical model has recently been developed in order to
describe the poling behavior of system like those investigated here more accurately [204].
Therefor disorder in analogy to the disorder model for the charge transport in polymers was
introduced in order to solve the rotational diffusion equation eq. (2.4 - 94). However, this
approach is not very useful here, since an accurate solution of the relaxation problem under
consideration is not the focus of interest, but rather the correlation between the time span the
electrical poling has been performed and the corresponding decay dynamics of the orientational
order.

5.4.1.3.2.)Discussion of the DFWM experiments
Now the fitting results for the DFWM experiments will be considered in more detail

(figure (5.4 - 5)). The time scale of the DFWM erasure dynamics in material A is similar to the
relaxation in the ELP experiments as shown by figure (5.4 - 3), figure (5.4 - 4) and figure (5.4
- 5). In contrast, in the low-Tg materials B, C, and D the orientational relaxation is basically
more than one order of magnitude faster than the PR grating erasure. However, in more detail,
this statement does only apply in general for the fast components, whereas the slow components
of the PR grating erasure are only more than one order of magnitude faster than the slow
components of the orientational relaxation for short recording times of the holograms. For
longer recording times, the slow component of the orientational relaxation approaches more and
more the slow component of the PR grating erasure kinetics. This is an important aspect, which
will be discussed later in more detail.

Counterintuitively, both erasure time constants for material A are smaller (i.e. the erasure
is faster) than for the low-Tg materials except for trec > 500sec, where at least the slow
component becomes larger than in the low-Tg materials. Since the relaxation of the orientational
order in material A is faster than the DFWM erasure in the low-Tg systems, this does not
contradict the above conclusion that the PR grating erasure kinetics of material A is limited by
the orientational relaxation of the NLO chromophores, but indicates that the decay of the PR
space-charge field is faster as compared to the low-Tg systems. However, surprisingly
τfast,DFWM > τfast,ELP for trec < 500sec for material A (figure (5.4 - 5)(A)). This unexpected
relation might be attributed to an overlap of the PR grating erasure kinetics with the “fast
portion“ of the distribution of viscoelastic relaxation times. In this range the high-Tg material A
may be limited by the decay of the PR space-charge field, even though the orientational
relaxation process is still viscoelastic and does not follow the oriented gas model. This indicates
in general that the PR response is not mandatorily hindered by a rigid matrix, which opens new
ways of thinking about thermodynamically stable high-performance PR polymers utilizing in-
situ orientation of the NLO chromophores (and, thus, showing orientational enhancement of the
PR effect) with fast response behavior for applications not requiring very high index
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modulations. Indeed, it has been shown recently, that even high-Tg PR polymers showing
orientationally enhanced PR response may show fast PR response [137, 153, 217]. However,
the reported materials are based on organic photoconductors showing significantly better charge
carrier mobilities than the PVK matrix. 

Following the same trend as found in the ELP experiments, the fast time constants
τfast,DFWM (figure (5.4 - 5)(A)) are almost independent from the recording time for all three low-
Tg materials B, C and D. 

Considering the slow time constants τslow,DFWM (figure (5.4 - 5)(B)), the trend found for
the fast time constants in all investigated low-Tg materials is continued, however, only for the
low-Tg materials C and D and unlike the relaxational behavior in the ELP experiments (figure
(5.4 - 4)(B)). Material B behaves similarly to the materials C and D only for trec < 500sec,
whereas there is a notably stronger dependence on the recording time for trec > 500sec,
seemingly following then a similar trend as in ELP. In contrast, for the high-Tg material A,
τslow,DFWM and τslow,ELP show identical qualitative dependence on the recording/poling time,
however, τslow,DFWM being consistently smaller than τslow,ELP. On first sight, this contradicts
the general rule that a process involving dipolar relaxation cannot be faster than the relaxation
itself. On the other hand, the fact that identical power-law exponents according to eq. (5.4 - 2)
are obtained for τslow,DFWM as well as for τslow,ELP (see figure (5.4 - 5)) proves that the slow
component in DFWM is attributed to the relaxation of the chromophore dipoles. The
discrepancy in the absolute speed, hence, must be attributed to the fact that in ELP only the
external field was switched off, i.e. the polar orientation of the chromophores relaxes back to
the isotropic state driven by the accompanied gain in entropy. In contrast, in DFWM the external
field remains, and only the internal PR space-charge field is erased. Hence, in the latter case the
chromophores are reoriented by the externally applied dc electrical field in order to adjust to the
new situation. This is expected to be faster than the purely thermodynamical relaxation in ELP,
re-establishing the relations according to the aforementioned general rule for processes
involving dipolar relaxation. It is to be pointed out, that for very long recording times (trec >>
3000sec) τslow,DFWM and τslow,ELP seemingly become similar, even for the low-Tg materials, the
slow DFWM erasure component of which then may be expected to become orientation limited
as well. However, this regime was not yet approached in the experiments carried out.

Nevertheless, the situation remains ambiguous, which requires a more detailed
consideration. As mentioned before, τslow,DFWM for material B shows a stronger dependence on
the recording time for trec > 500sec as compared to the materials of lower Tg (figure (5.4 -
5)(B)). On the one hand, this might indicate some influence of orientational effects at longer
recording times. On the other hand, if there are two dynamic processes in a system, both of
which showing the same functional dependence on the time, the slower process will rule the
overall kinetics. A comparison of the ELP relaxation time constants (figure (5.4 - 4) (A) and
(B)) and the DFWM erasure time constants (figure (5.4 - 5) (A) and (B)) for material B
undoubtedly reveals that the DFWM erasure is the slower process. Consequently, the DFWM
erasure in material B cannot be determined by orientational relaxation. However, as mentioned
before in “5.4.1.3.1.) Discussion of the ellipsometric experiments” on page 281, the ELP
relaxation dynamics could not be approximated by bi-exponential but rather tri-exponential
fitting, and figure (5.4 - 4) (B) shows the logarithmic average of the slow time constants. In fact,
the slowest (i.e. the third) ELP relaxation time constant is larger than the slow DFWM erasure
time constant even for all the low-Tg materials, however contributes only very little (less than
5%). In more detail, a small birefringence (i.e. a non-zero signal in the ELP experiments) could
still be observed in the low-Tg materials, even when the DFWM signal has already vanished.
This, in turn, again contradicts the general rule that a process involving dipolar relaxation
cannot be faster than the relaxation itself. As discussed before for material A, this observation
can be attributed to the fact, that the orientational relaxation dynamics as determined by the ELP
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experiment actually cannot be compared directly with the dipolar relaxation occurring during
DFWM erasure but yields too large time constants. The degree of this “mismatch“ can be
estimated considering the build-up dynamics of the ELP signal as depicted in figure (5.4 - 2)(A).
Obviously, the electrical poling of the low-Tg systems is significantly faster for the materials C
and D as compared to material B. It is consequent to take this trend as representative for the
influence of an external electrical field on changes of the orientational order and to assume that
the relative acceleration of the field driven decay of the orientational order occurring during
DFWM erasure will follow the same trend. Furthermore τslow,DFWM does not notably depend
on the recording time for the materials C and D for all recording times in contrast to the slow
time constants in ELP. On the other hand, for material B this is only valid for trec < 500s,
whereas τslow,DFWM increases with the recording time for trec > 500s like found in the ELP
experiments. 

Summing up all the arguments given above, one can draw the following conclusion: In
material B there might be a small contribution of dipolar relaxation to the slow component of
the DFWM erasure behavior for recording times of trec > 500s (“small contribution“ must be
understood as a lowly weighted additional exponential decay term included in the slow time
constant). This contribution does not dominate the slow component of the DFWM erasure since
it represents only about 30% of the logarithmically averaged slow component of the dipolar
relaxation dynamics (and about 5% of the overall relaxation dynamics), the dominant portion
of which decays much faster than the PR grating is erased. Furthermore, the contribution of the
slow component to the overall DFWM erasure in material B is about 30% for trec > 500s (figure
(5.4 - 5)(C)), whereas the contribution of the logarithmically averaged slow component to the
overall ELP relaxation dynamics is only about 20% for trec > 500s (figure (5.4 - 4)(C)). In
contrast to material B, in the materials C and D no contribution of dipolar relaxation is implied
for all recording times applied, since the general trend of τslow,DFWM as a function of the
recording time does not agree with the trend found for the slow time constants in the ELP
experiments. Accordingly, in these materials one can safely presume that the “field driven
dipolar relaxation”, as discussed above, is in general faster than the DFWM erasure within the
range of recording times investigated here. Therefore, accounting for the ambiguous situation
in material B as just discussed, hereafter mainly the materials C and D will be focussed upon,
where orientational effects can safely be neglected within the range of experimental parameters
applied in this work.

Finally, the pre-exponential factors in DFWM (figure (5.4 - 5)(C)) change significantly as
a function of increasing recording time, but level off for trec > 500 s for all materials. The slow
component starts at lower level and gains in influence, while the fast component shows the
opposite trend. For material A this is the same basic trend as found for the ELP experiment. In
contrast, in the case of the low-Tg systems, the general trend is fundamentally different from the
one found for the orientational relaxation (constant weighting for all recording times, figure (5.4
- 4)(C)). This strongly indicates that there must be a process in DFWM, the importance of which
depends on the recording time and which is not correlated with dipolar relaxation.

5.4.1.3.3.) Experimental verification of optical trap activation
The crucial question now is, which mechanism might cause the slowing of the PR space-

charge field erasure as a function of the recording time in low-Tg materials, where orientational
effects are of minor importance. It is seems reasonable, that this might somehow be correlated
with the trapping sites for the mobile charge-carriers in the materials. Silence et al. reported
earlier about the so-called “optical trap activation” (OTA) in a PR polymer [74]. Following their
formalism, the relationship of the trap density before N(b)

PR and after (or during) optical
irradiation N(a)

PR may be expressed as:
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 eq. (5.4 - 3)
where J is the actual fluence, C is a constant, and x is a power-law exponent. 

Assuming that the PR grating build-up dynamics of the low-Tg systems is mainly
determined by the charge-carrier mobility as already proposed before in “5.3.) The influence of
the sensitizer concentration on the PR performance of PVK based polymer composites” on
page 257 and that the latter is inversely proportional to the trap density (which is typically valid
for photoconductive polymers and low trap densities [83, 74]), Silence et al. obtained the
following relationship between the PR grating build-up time constants before irradiation τ(b)

and after irradiation τ(a) [74]: 

.  eq. (5.4 - 4)
Here, C’ is another constant different from the one in equation eq. (5.4 - 3) and y is another
power-law exponent.

In accordance with this formalism, the build-up dynamics for the systems under
investigation were determined for different pre-illumination intensities Ip = 49.2mW/cm2,
17mW/cm2, 6.9mW/cm2, and 2.8mW/cm2, applied for 30 minutes each, and the resulting rates
were set in relation to a reference rate obtained without pre-illumination. In order to exclude the
influence of a changing trap situation during the grating recording process [74, section 5.3.)
herein], which is inherently included when fitting an entire data set (i.e. up to steady-state), the
time to achieve 5% diffraction efficiency,  τ5, was chosen as a measure of the undisturbed initial
grating build-up rate. The left-hand side of equation eq. (5.4 - 4) is plotted on double-
logarithmic scale in figure (5.4 - 6). In all cases, the response time of the materials was increased
by pre-illumination similar to [74], but unlike reported recently for TPD-PPV [4]. In agreement
with equation eq. (5.4 - 4), a linear dependence is observed, the slope of which yields the power
law exponent y. For the high-Tg material A this procedure yielded y = 0 (figure (5.4 - 6), inset),
which was expected, since in this case the response is determined by the orientational dynamics
of the chromophores and the trap situation is, thus, irrelevant. This finding underlines the
validity of the proposed procedure in obtaining information on changes in the trap situation
upon optical irradiation. Furthermore, the fact that  proves that the dynamics
of the PR space-charge field in the investigated materials is indeed mobility limited. In contrast,

 would be observed for the case of the charge carrier generation limiting the
grating build-up kinetics, a phenomenon referred to as “gating“, since a higher pre-illumination
fluency will provide a higher density of “free“ holes prior to the writing process and, thus,
accelerated PR response [4].

NPR
a( ) NPR

b( ) CJx+=

τ a( ) τ b( )⁄[ ] 1– C′J y=

τ a( ) τ b( )⁄[ ] 1– 0≥

τ a( ) τ b( )⁄[ ] 1– 0≤
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 Figure (5.4 - 6): Dependence of the recording dynamics on the pre-illumination fluency J for the 
materials B (circles), C (up triangles), and D (down triangles). For comparison, the data from Silence et 

al. are included (open squares [74]). The solid lines are linear fits. The dashed line indicates the pre-
illumination in the DFWM experiments underlying figure (5.4 - 5). The arrow indicates the conditions 
used for the relaxation experiments (figure (5.4 - 7)), corresponding data of which are also included (the 
“star“ results from the superposition of an up triangle and a down triangle). The inset shows the data for 

all materials A - D (material A: solid squares) on linear scale.

100 101 102 103 104 105
0.01

0.1

1

10

0 20 60 80

0.0

0.2

0.4

0.6

0.8

 

 

 

 

 

τ 5(a
) /τ 5(b

)  - 
1

J [J/cm2]

 Figure (5.4 - 7): Dependence of the recording dynamics on the delay time between pre-illumination and 
recording for the materials C (up triangles) and D (down triangles). The dashed line indicates the initial 
response without pre-illumination. The solid line is a linear fit to the data. The pre-illumination fluence 

was J = 135 J/cm-2

1 10 100 1000 10000

0.0

0.2

0.4

0.6

0.8

1.0
 

 

τ 5(a
) (t d) 

/ τ
5(b

)  - 
1

td [sec]



5.4.)The erasure behavior of PR gratings in PVK based polymer composites

288

Form figure (5.4 - 6), one can conclude that OTA indeed occurs in the investigated low-
Tg materials, as discussed above. Please note, that the result of y = 0 for the high-Tg material A
does not imply a constant trap situation, but rather that the described experiment is not
indicative for a change of the trap situation, if the dynamic behavior does not depend on this
parameter. Hence, OTA may be implied for material A as well since it is electrically similar to
the low-Tg systems. The optically activated traps emerge faster with increasing glass-transition
temperature (figure (5.4 - 6)): The recording of holograms is strongly slowed down in material
B even for very small pre-illumination fluency, while the low-exposure retardation is
significantly smaller in material C and eventually barely detectable in material D. This indicates
that it is obviously more difficult to change the trap situation in a soft material. On the other
hand, the decrease of the recording speed as a function of the pre-illumination fluency is
significantly stronger in material D (y = 0.73) than in material B (y = 0.16). For J > 100 J/cm2

the effects become fairly similar in all materials. This proves a strong impact of Tg on the OTA
effect, which will be discussed later in more detail. The results presented here are within the
same order of magnitude as those reported in [74]. Please note, that the OTA formalism does
not provide information about the depth of the activated traps, but rather implies a change of
their number density.

In [74] the optically activated traps persisted for a very long time, up to several months.
There was no indication that their formation might be reversible. In contrast, in the materials
considered here, the OTA effects were reversible. In order to quantify the relaxational dynamics
of the traps, experiments with an equal pre-illumination fluency were carried out, however, the
dark periods td under field between pre-illumination and the recording process were varied. For
evaluation of the data the same procedure was applied as for the OTA-measurements discussed
above. The results are shown in figure (5.4 - 7). Obviously, the OTA effect decays mono-
exponentially and vanishes after about one hour. 

OTA not only takes place during pre-illumination, but also occurs while holograms are
recorded. However, the reversibility of the OTA effect complicates the situation, if the system
has been illuminated uniformly in advance of the recording process, since during holographic
recording trap relaxation must be expected to take place in the dark fringes, while further trap
activation will take place in the bright fringes. In any case, if the writing process is interrupted
after a given recording time trec and, if then the grating is erased, OTA should manifest itself in
different erasure kinetics depending on trec. A leveling of the erasure rates in dependence of trec
might, therefore, indicate that the trap situation during recording has come to some quasi-
steady-state equilibrium. 

Interestingly, this equilibration time appears to be identical (about 500sec) in all materials
studied here, i.e. to be independently of Tg (figure (5.4 - 5)). This, in turn, might indicate that
the nature of the optically activated traps is identical in all cases. Note, that this reaching of an
equilibrium does not necessarily coincide with the finishing time of the recording of the PR
grating (as indicated by the fact that the modulation amplitude still increases, figure (5.4 - 1)).
It is noteworthy, that the influence of OTA on the grating decay dynamics was already
investigated in [74]. However, the grating decay dynamics was determined with only the very
weak reading beam being present during the decay process, i.e. under almost dark decay
conditions. As will be discussed in a later section of this work, a pronounced retardation of the
dark decay dynamics with increasing PR phase shift occurs. The latter, on the other hand, was
found to increase as well due to OTA [74]. Thus, it remains unclear from the results presented
in [74], whether the PR grating erasure dynamics is directly affected by OTA.
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5.4.1.3.4.)A theoretical approach to PR space-charge field erasure
After having established that OTA may be responsible for the retardation of the erasure

process as a function of the recording time in the low-Tg systems B - D, the dependence of the
erasure rates on the recording time was studied in these materials for four different erasure
intensities Ie. All three materials behaved very similarly, and as a typical example the data for
material C are shown in figure (5.4 - 8). Please note, that material B did not show any indication
of a deviating behavior, which might be implied by the uncertainty about a possible contribution
of orientational relaxation to the PR grating erasure process in this material as discussed before.
Both erasure rates (inverse time constants) increase with increasing erasure intensity. However,
the dependency is clearly different for the fast and the slow component. When normalized to the
value at trec = 500sec, i.e., after the trap situation has reached a quasi steady-state equilibrium
as proposed before, it becomes obvious, that 1/τ1,norm is identical for all erasure intensities,
decreasing by about 30% from its initial value at short exposure times and remaining constant
for trec ≥ 500sec. In contrast, 1/τ2,norm is almost independent from the recording time for low
erasure intensities, while it decreases by a factor of approximately 2 as a function of the
recording time for high erasure intensities. Thus, there is a relative acceleration of the slow
erasure component at short recording times. Systematic trends in Tg for the investigated “soft”
materials were not observed.

For a given recording time trec, the PR grating erasure rates were found to follow a power-
law dependence on the erasing light intensity Ie of the form:

,  eq. (5.4 - 5)

where τe,i is the erasure time constant, and the index i = fast (slow) denotes the fast (slow)
erasure time constant. While the exponent of the fast erasure component, σfast, depends only
slightly on the recording time (figure (5.4 - 8)(C)), the exponent for the slow component, σslow,
decreases strongly with increasing writing time. 

1
τe i, trec( )
--------------------- Ie

σi trec( )
∝
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 Figure (5.4 - 8): Dependence of the normalized erasure dynamics of material C on the erasure intensity 
Ie. (A) and (B) are the normalized inverse fast (solid symbols) and slow (open symbols) erasure time 

constants 1/τ, respectively, for the erasure intensities: Ie = 2.8 mW/cm2 (squares), 6.9 mW/cm2 (circles), 
17 mW/cm2 (up triangles), and 49.2 mW/cm2 (down triangles). The arrow indicates increasing erasure 
intensity. (C) depicts the erasure rate slopes of material C vs. the recording time. The solid (open) squares 
represent the rate slopes for the fast (slow) erasure rates. The open stars refer to the slow rates obtained 
for another material of the same type, however, extrinsically doped with a high amount of deep traps (see 
text for details). The pre-illumination fluency was 36 J/cm2 in all cases. All lines are guide to the eye.
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Cui et al. proposed a theoretical framework for the PR grating erasure process [83], which
has been elaborated upon in detail in “2.5.3.2.3.2.) Cui’s approach to the erasure dynamics” on
page 128. Neglecting charge-carrier diffusion, which is a valid assumption for the materials
considered here and under the experimental conditions applied, they described the PR grating
erasure in organic polymers by three contributions with individual rate constants (see eq. (2.5 -
30) to eq. (2.5 - 32)): 

.  eq. (5.4 - 6)

Here, q is the elementary charge, µ is the charge-carrier mobility, n0 is the steady-state zero-
order component of the hole density, ε is the (bulk) dielectric constant, γR is the coefficient for
geminate recombination, γT is the hole-trapping coefficient, αG is the photo-generation rate, δ
is the detrapping rate, and E0 is the projection of the externally applied electric field onto the
grating wave vector K. The detrapping rate is given by:

,  eq. (5.4 - 7)
where s is the cross-section for light induced detrapping, I is the light intensity, and ß is the
thermal detrapping rate. The first part of eq. (5.4 - 6) is complex and implies an oscillation,
which, however, was not observed within the series of experiments discussed here. Please note,
that some oscillation-like behavior can be observed under certain experimental condition as
shown in “5.4.2.) PR grating erasure in systems doped with extrinsic traps” on page 300. These,
however, are significantly different as compared to the conditions applied here. Therefore, it
seems reasonable to assume that the imaginary part of the complex component is of minor
importance in the cases discussed here and that this term can be omitted. If furthermore
predominant Langevin-type recombination is presumed (i.e. , see eq. (2.4 - 188))
and low light intensity approximation is applied (i.e. small photo-generation rate αG as
compared to the geminate recombination rate ), 1/τ1 ≈ 1/τ2 and a single fast rate is obtained
from eq. (5.4 - 6). This point of view is in general agreement with [83], stating that the first two
rate constants in eq. (5.4 - 6) are both fast and experimentally barely distinguishable. The third
rate, on the other hand, represents a relatively slow erasure process. Thus, eq. (5.4 - 6) simplifies
to:

 eq. (5.4 - 8)

and one gets a new set of equations, proposing two experimentally distinguishable exponential
terms for fitting the experimental erasure curves.

5.4.1.3.5.)Discussion of the relation between the PR trap situation and PR grating erasure
First, the experimental results will be discussed in the context of [209], which has already

been mentioned in the general introduction to this section on page 271. In [209] the authors
found a nearly constant growth/erasure time ratio of approximately 1.5 for a wide variety of
applied electrical fields and sensitizer concentrations in a PVK based PR polymer similar to the
systems under consideration here. From the strong correlation between the mentioned rates, the
authors conclude that a single trap model of the PR effect suffices to describe the dynamics in
PR polymers like that known from the standard model of the PR effect in crystals. They attribute
the dominant trap species to Poole-Frenkel type traps formed by ionized sensitizers as already
proposed by Grunnet-Jepsen et. al. [208]. On the one hand, the occurrence of OTA in the
materials investigated here in general agrees with this conclusion, since ionized sensitizer

1 τ1⁄ qµn0( ) ε iKµE0+⁄=

1 τ2⁄ αG γ+ Rn0=

1 τ3⁄ δ γTn0+=

δ sI β+=

γR qµ ε⁄=
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moieties are generated by optical irradiation and, thus, represent optically activated trapping
sites. Even further support for this interpretation comes from the reversibility as observed for
the OTA effect as demonstrated above, since the optically activated traps of this kind will vanish
again after some time due to recombination with “free“ holes. On the other hand, the Tg-
dependence as observed for the OTA effect contradicts this interpretation. It is known that TNF
and PVK form charge-transfer complexes (CTC), which represent the active charge-generation
sites. After a CTC has been optically excited a bound electron hole pair is formed, which then
separates under the influence of the externally applied field yielding mobile holes. Thus, the
CTC dissociates leaving a negatively charged immobile TNF molecule behind. According to
[196] the generation efficiency of “free“ holes does not depend on Tg, which consequently
applies to the generation efficiency of negatively charged sensitizer moieties as well. Hence, if
these shall represent the dominant PR trap species, one must conclude, that the OTA effect
should also not depend on Tg. However, the opposite case was observed experimentally (figure
(5.4 - 6)). Accordingly, the attribution of the OTA effect solely to the generation of ionized
sensitizers appears over-simplified, and a more complex situation is implied involving more
than only one trap species. This, furthermore, agrees with the results presented in “5.3.) The
influence of the sensitizer concentration on the PR performance of PVK based polymer
composites” on page 257, where it was shown, that Poole-Frenkel traps are an important but not
the only kind of PR traps in polymers.

Now the results can be discussed, which were obtained from the experiments studying the
PR erasure kinetics as a function of the erasure intensity as well as of the recording time (figure
(5.4 - 8)). 

Taking into account the OTA effect and assuming Langevin-type recombination, eq. (5.4
- 8) implies a decrease of 1/τfast (and, thus, an increase of τfast) as a function of increasing
recording time at constant erasure intensity, since the charge carrier mobility decreases with
increasing trap density and/or depth, thus, lowering the recombination coefficient. The
experimental results seemingly follow this prediction consistently for recording times of trec ≤
500sec as is shown in figure (5.4 - 8)(A). For longer recording times the fast rates level off,
indicating that the trap situation does no longer change, as already mentioned before. 

In contrast, equation eq. (5.4 - 8) does not necessarily imply a recording time dependence
for 1/τslow. However, before this point can be discussed, the detrapping rate δ in equation eq.
(5.4 - 8) must be accounted for. For very small erasure intensities, the zero-order hole density
will be very small as well, which allows to neglect the term . The slow rates then should
dominantly be determined by the detrapping rate, which will not be altered by the trap density,
but rather by the trap depth. Accordingly, it follows from figure (5.4 - 8)(B), that the depth of
the optically activated traps seems to be constant, since there is no more a notable recording time
dependence of the slow erasure rates for the smallest erasure intensity applied. Accordingly, the
retardation of the slow erasure component as a function of increasing recording time at high
erasure intensity (where the term  cannot be neglected) should be attributed to an
increasing trap density due to OTA. It shall now be assumed that Langevin-behavior applies not
only for the charge carrier recombination process, but also for the trapping process (i.e.

, see eq. (2.4 - 188)) as is implied by the assumption that negatively charged
sensitizers may be the dominant trap species [208, 209]. In this case, also the slow erasure rates
will depend on the recording time and an increase of the trap density due to OTA will lead to a
decreasing slow erasure rate as a function of increasing recording time like for the fast rates.
However, there are strong arguments against the assumption that Langevin-behavior applies
also for the trapping process:

At first, a Langevin-type hole trapping coefficient γT (i.e. γT equals γR) would imply that
δ equals the photo-generation rate αG and, hence, becomes negligible in low light intensity

γTn0

γTn0

γT qµ( ) ε⁄=



5.4.)The erasure behavior of PR gratings in PVK based polymer composites

293

approximation. As a result, the slow erasure component would vanish, i.e., equal the fast erasure
rate (see eq. (5.4 - 6)). This also contradicts the aforementioned assumption that there is only a
single trap species following Langevin-behavior as proposed by [209], the number density of
which increases with increasing recording time. Please note that the described situation is
indeed observed for the shortest recording times applied (i.e. when OTA has not yet notably
taken place) when the erasure behavior becomes mono-exponential as already pointed out
before. 

Secondly, for higher erasure intensities, an increasing dependence of the slow rates on the
recording time can be observed, which is even stronger than observed for the fast rates at the
highest erasure intensity applied (figure (5.4 - 8)(B)). If Langevin-behavior would be implied
for the trapping process, the recording time dependence of the slow erasure rates would be
determined by the decrease of the charge carrier mobility for increasing trap density, as
discussed above for the fast rates. Moreover, the detrapping rate δ is not affected by a changing
trap density as discussed before, i.e. is not affected by OTA and, thus, independent from the
recording time. Therefore the recording time dependence of the slow erasure rates at high
erasure intensity may at maximum be as strong as found for the fast rates (for δ ≈ 0), but never
be stronger, which contradicts the experimental observations (figure (5.4 - 8)(B)). 

It follows that the recording time dependence of 1/τslow at high erasure intensity cannot
be explained assuming a single trap species following Langevin-behavior. This, in turn,
indicates another, second trap species, which rules the slow erasure process. These „new“ traps
must be optically activated deep traps and of fundamentally different physical nature as
compared to Poole-Frenkel traps showing Langevin behavior.

The basic properties of these traps can be better understood, if the ratio between the slow
and the fast rates is considered at the different erasure intensities and for different recording
durations. The ratios for two very different recording times are depicted in figure (5.4 - 9).

 As already discussed above, for the long recording time there is strong indication, that
the trap situation has already come to an equilibrium state. In contrast, for the short recording
time the OTA effect is not yet pronounced, if observable at all. Figure (5.4 - 9) demonstrates
that the rate ratios increase with increasing erasure intensity, however, the dependence is

 Figure (5.4 - 9): Dependence of the erasure ratios for material C on the erasure intensity Ie for long 
(1000sec; solid symbols) and short (30sec; open symbols) recording time.
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remarkably different for the different recording times. This result may be understood when
considering the rate ratio according to eq. (5.4 - 8), which reads:

.  eq. (5.4 - 9)

The zero-order hole density n0 may be assumed to increase approximately linearly with the
intensity of the uniform illumination applied during erasure of the grating, since one may safely
assume, that the investigated systems are operated in the range of non-saturation. In contrast, γT
and γR do not depend on the erasure intensity. The detrapping rate δ according to eq. (5.4 - 7),
on the other hand, cannot a priori be presumed to be independent from the erasure intensity.
However, for now it shall be assumed that the optically activated traps are optically inactive, i.e.
can only be emptied thermally. In this case, δ will not depend on the erasure intensity as well.
It will be shown below that this is indeed a reasonable assumption.

Figure (5.4 - 9) shows that the rate ratios according to eq. (5.4 - 9) increase almost linearly
as a function of the erasure intensity on logarithmic scale for the long recording time, which
demands that the terms of the sum in the denominator of eq. (5.4 - 9) are of similar order of
magnitude (neither term must clearly dominate) for all erasure intensities. In contrast, the (1/
τfast)/(1/τslow) seemingly saturates for higher erasure intensities, which requires that a change of
n0 does no longer effect the ratio (1/τfast)/(1/τslow). Hence,  must be significantly larger
than δ for short recording times and higher erasure intensities. As a third case, one may assume
that δ may be much larger than , which would lead to a positive curvature of the
corresponding function in the diagram of figure (5.4 - 9). This case, however, is not observed.
Furthermore, the denominator in eq. (5.4 - 9) must be smaller than the numerator, which again
excludes that the hole trapping coefficient follows Langevin behavior, since otherwise 
would equal  and, thus, (1/τfast)/(1/τslow) ≤ 1 would apply for all recording times. On the
other hand, if the mono-exponential erasure behavior observed for the shortest recording times
is interpreted as a coincidence of the fast and the slow erasure rates as proposed above, the rate
ratio for this case may be considered as unity and independent from the erasure intensity. Hence,
for very short recording times, Langevin behavior is indeed implied for the hole trapping
coefficient, i.e. the numerator and the denominator are identical, as already discussed above. 

Combining the results presented above leads to the conclusion, that the slow erasure rate
as a function of the recording time (and, hence, as a function of increasing optical activation of
traps) must be described by a more complex formalism, which might read as follows:

.  eq. (5.4 - 10)

Here, W1(trec) and W2(trec) are weight factors (W1 + W2 = 1) taking into account optical
activation of traps and γLT is a Langevin-type hole trapping coefficient (one may as well just
write γR). γT is significantly smaller than γLT and, hence, for typical erasure intensities δ + γTn0
is also markedly smaller than γLTn0 (only for very small erasure intensities W1δ becomes the
dominant term for 1/τslow). For very short recording OTA has not yet evolved and W1(trec) = 0
(W2(trec) = 1). As the recording time increases, OTA takes place, W1(trec) increases, whereas
W2(trec) decreases. As a result, 1/τslow decreases, and the rate ratio according to equation eq. (5.4
- 9) increases. On the other hand, the intensity dependence of the rate ratio increases as well,
since the prefactor of the zero-order hole density (the term in squared brackets) decreases and
the denominator in eq. (5.4 - 9), thus, shows a reduced intensity dependence as compared to the
numerator.

Now the validity of this model will be tested for the exponents σi(trec) according to eq.
(5.4 - 5) (figure (5.4 - 8)(C)). Both the fast and the slow rates exhibit a sublinear dependence on
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the erasure intensity, which has been observed several times before in PR polymers [83, 213].
In the model applied here, the dependence of the erasure rates on the erasure intensity is due to
the intensity dependence of the zero-order hole density n0. The exponent σfast is found to be
approximately independent from the recording time, which is in agreement with equation eq.
(5.4 - 5) in combination with equation eq. (5.4 - 8), and yields σfast ≈ 0.9 (figure (5.4 - 8)(C)).
The exponent σslow, on the other hand, decreases strongly with increasing recording time,
finally levelling off at σslow ≈ 0.45 (figure (5.4 - 8)(C)). This can be explained qualitatively by
the model proposed above, if one assumes that the optically activated traps are optically inactive
(i.e. cannot be emptied optically; consequently, δ does not change as a function of the erasure
intensity) as already assumed before and combines eq. (5.4 - 5) with eq. (5.4 - 10). For
increasing recording time W1(trec) increases and W2(trec) decreases, as discussed before.
Accounting for the relations between δ, γT and γLT, as also discussed before, this requires that
the intensity dependence of the slow rates decreases as well, which agrees with the experimental
results. 

Furthermore, the presented model can explain why the decrease of the slow erasure rates
1/τslow as a function of the recording time for the highest erasure intensities applied in figure
(5.4 - 8)(B) is more pronounced as compared to the corresponding decrease of the fast erasure
rates (figure (5.4 - 8)(A)). Since for increasing recording time W1(trec) increases and W2(trec)
decreases, as discussed before, the weighting of the Langevin-type hole trapping coefficient γLT
in the prefactor of n0 in eq. (5.4 - 10) decreases, whereas the weighting of γT increases. As also
mentioned before, γT must be assumed to be significantly smaller than γLT. Additionally, γLT
will decrease as a function of increasing recording time as discussed before for γR. Therefore,
one can safely assume that the prefactor of n0 in eq. (5.4 - 10) decreases much more pronounced
as a function of increasing recording time as compared to γR, which determines the decrease of
the fast erasure rates as a function of increasing recording time, as discussed above. On the other
hand, an increase of W1(trec) as a function of increasing recording time leads to an increasing
contribution of δ to the slow erasure rates counteracting the described relationship, since δ is
independent from the recording time as mentioned before. Therefore, the decrease of 1/τslow as
a function of the recording time will become the more pronounced the higher the erasure
intensity and, for sufficiently high erasure intensities, may well be more pronounced than
observed for 1/τfast, which is indeed observed experimentally.

In order to further verify the model proposed above and in order to prove the assumption
of optical inactivity of the optically activated traps, the complete measurement and evaluation
procedure as described in the presiding section was also applied to a material of the type C,
however, doped with 0.82%wt of TPD (N, N, N’, N’ - tetraphenyl - p - diaminobiphenyl,
“triphenyldiamine”). This material is denoted “CT” in table 5-1 on page 211 as well as
hereafter. The HOMO of TPD constitutes deep traps within the charge transport manifold, if
doped in small molar ratio into a PVK polymer matrix. TPD is located about 0.5eV below the
PVK charge transport manifold. Since the photon energy at operating wavelength is about 2eV,
TPD sites here act as optically inactive deep hole traps. Material CT showed a Tg of 14°C and
its erasure kinetics proved to be limited by the decay of the PR space-charge field as well. A
slope of about σslow ≈ 0.4 as a function of the erasure intensity was found, which did not depend
on the recording time (figure (5.4 - 8)(C)). This meets the expectations according to the model
described above. Furthermore, the magnitude of σslow for material CT strongly indicates that
the optically activated traps in the not doped material C are indeed optically inactive. In contrast,
if these traps would be optically active, δ in the not doped material would be a function of the
erasure intensity as well, which would imply a notably stronger intensity dependence of the
slow erasure rates as compared to the TPD doped material, i.e. σslow for material C should then
be significantly larger than 0.4.



5.4.)The erasure behavior of PR gratings in PVK based polymer composites

296

5.4.1.3.6.)Conclusions on the nature of the PR traps
In conclusion, the presented results indicate (at least) two important and fundamentally

different species of hole traps occurring in the investigated PR polymer blends, both of which
are optically activated. At first, there are Poole-Frenkel traps showing Langevin behavior, as
already proposed before several times [208, 209] and as was found in “5.3.) The influence of
the sensitizer concentration on the PR performance of PVK based polymer composites” on
page 257. Since these traps require negatively charged trapping centers, they are directly
correlated with the negatively charged sensitizer moieties (TNF), the number density of which
increases as a function of the recording time. Poole-Frenkel traps seem to govern the fast
component(s) of the PR erasure process, as already proposed by Khand et. al. [209]. Secondly,
there is another trap species, which does not follow Langevin behavior. These traps seem to
govern the slow erasure component and should be considered as optically inactive as discussed
above. One may speculate, that this second kind of traps should be conformational, since
conformational traps are neutral when empty and, thus, do not show Langevin behavior.
However, conformational traps are believed to be shallow traps, which does not agree with the
experimental results presented here, indicating deep traps as discussed above. Furthermore,
there is no reason to assume that conformational traps are optically activated. Conformational
traps in PVK are due to unfavorable orientation (i.e. poor overlap of the π-electron systems) of
neighboring carbazole moieties in migration direction, thus, forming a “dead end“ for a
migrating charge carrier [87]. However, a hole trapped in such a dead end will stay relatively
long on the “last“ carbazole moiety of the dead ended migration path. In order to stabilize the
unfavorable carbazole radical cation at such a position a sandwich complex with a neighboring
carbazole moiety located “behind“ (i.e. against the migration direction) the cation in question
may be formed. Such dimer radical cations have been proposed several times as deep traps in
the transport manifold of amorphous organic conductors like PVK [214 - 216]. Excimer-
forming sites of this kind would meet the requirements demanded for the second trap species
under discussion: (i) They are neutral when empty and, therefore, do not show Langevin
behavior. (ii) The dimer radical cation is initiated by a hole already generated and captured in a
conformational trap, i.e. the dimer formation can be considered as optically activated. Please
note, that a neutral excimer formed by two uncharged carbazole moieties would of course be an
optically activated trap as well. However, the formation of a neutral excimer would require
optical excitation of one of the involved carbazole moieties, which can safely be excluded here,
since the applied wavelength is far beyond the absorption band of PVK. (iii) The formation of
dimer radial cations is reversible, which agrees with the experimental results on OTA (figure
(5.4 - 7)). (iv) The carbazole dimer radical cations represent optically inactive traps at the
applied wavelength. 

The assumption of carbazole dimers acting as optically activated deep traps may also
qualitatively explain the Tg-dependence observed for the OTA effect (figure (5.4 - 6)). It has
been discussed earlier, that slow collective motion of the conducting polymer matrix occurring
in the investigated low-Tg PVK-based PR polymer composites leads to partial cancellation of
conformational traps. This effect was made responsible for a reduction of the apparent PR trap
density leading to a reduced steady-state PR performance for Tg < RT (see “5.2.2.) The relation
between the glass-transition temperature and the steady-state performance in PVK based PR
polymers” on page 228 and [196]). Such an effect will counteract the formation of the carbazole
dimers proposed above. Hence, for decreasing Tg, the formation of carbazole dimers is
increasingly aggravated, since the apparent density of conformational traps is reduced, which
were assumed above to be the precursor for the formation of the carbazole dimers. Therewith,
for small pre-irradiation fluency (i.e. small density of free charge carriers during the pre-
illumination period) and low Tg, the formation of the dimer trapping sites may be assumed as
still insignificant as found for material D. In contrast, in material B with Tg close to RT, the
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apparent density of conformational traps is markedly higher, leading to a more pronounced
formation of dimers as compared to the materials of lower Tg. As the pre-irradiation fluency
increases and therewith the density of free charge carriers, the cancellation effect for the
conformational traps in the materials of lower Tg becomes less significant as compared to the
number density of charge carriers actually trapped in conformational traps. As a result, the
formation of carbazole dimers is strongly accelerated, finally reaching the same level as for the
materials of higher Tg.

However, it must be pointed out that the experiments presented do not provide any direct
evidence for the occurrence of carbazole dimer radical cations acting as optically activated deep
traps. This renders the above implications speculative.

5.4.1.3.7.)The impact on holographic multiplexing in PR polymers
The first time within the frame of this work, now the potential application of the

investigated materials in holographic multiplexing may be considered. According to the theory
of holographic multiplexing, which has been elaborated upon in “2.3.3.3.) System metrics for
holographic multiplexing in erasable media” on page 65, for erasable holographic media
showing mono-exponential dynamic behavior, an analytical expression can be derived for the
writing schedule as well as for the M-number M/#, the latter of which then writes:

.  eq. (5.4 - 11)

A0 characterizes the total dynamic range of the holographic medium, and τe and τw are the
erasure and recording time constants of the holographic grating, respectively. For all materials
under investigation, the available dynamic range is similar and, hence, the quantity  will
be the crucial parameter for achieving high M/#’s. In this case, a larger ratio  generally
implies better multiplexing capability. Figure (5.4 - 10)(A) shows the ratio of the
logarithmically averaged erasure and recording time constants versus the recording time. A
clear trend of  as a function of the recording time was found. The ratio of the time
constants becomes relatively more favorable with increasing recording time due to the
retardation of the PR grating erasure with increasing recording time, as demonstrated and
discussed above. The slow down of the fast erasure component was attributed to a reduction of
the charge carrier mobility as a result of OTA. This trend is markedly enhanced for the
logarithmically averaged total response times of the systems investigated due to the weighted
inclusion of the slow erasure component. 

For comparison with Khand’s data [209], figure (5.4 - 10) (B) depicts the ratios of only
the fast erasure and recording time constants as a function of the recording time. These ratios
have been stated to be constant within a range of 0.68 ± 0.08 for a wide variety of applied fields,
operating wavelengths, and various concentrations of different sensitizers for PVK based low-
Tg systems similar to the materials under investigation [209]. This general relation could
basically be confirmed. However, it must be pointed out that different experimental techniques
were applied. Khand et. al. used the reading beam of their DFWM setup for erasure, which had
the same intensity as the sum of the recording beams. Since the reading beam must be Bragg-
matched to the holographic grating, it must be expected that grating refreshment effects are
induced by the transmitted reading beam and its diffracted portion. This leads to a significant
reduction of the observed erasure speed, as discussed several times before. In contrast, a non
Bragg-matched erasure beam was used here, which, however, had only about half the intensity
of the sum of the recording beams. Therefore, also here a reduced erasure speed must be
anticipated as compared to a real multiplexing experiment, where the grating erasure is
performed at the same intensity as the grating recording. Hence, the agreement between data
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presented here and the data published in [209] may be taken as coincidental. Khand et. al. did
not consider the recording time dependence of . 

Please note, that a saturation effect for long recording times, especially for material C and
D, is indicated in both the cases, when considering the ratio of the fast time constant as well as
the ratio of the logarithmically averaged time constants. This might be attributed to a saturation
effect in the trap situation, which applies to the fast as well as to the slow erasure time constants,
as discussed above, and, accordingly, also to the logarithmically averaged time constants. The
ratio of the logarithmically averaged time constants is basically smaller as compared to the ratio
of the fast components and the difference between the particular materials is more pronounced.

Obviously, among the investigated materials, type C is most preferable for multiplexing
purposes, which clearly implies an optimum Tg for multiplexing in this type of materials.
However, it must be pointed out that the actual inapplicability of equation eq. (5.4 - 11) to the
investigated class of materials due to their multi-exponential recording/erasure behavior renders

τe τr⁄

 Figure (5.4 - 10): Ratio of the erasure and recording time constants for material A (squares), B (circles), 
C (up triangles) and D (down triangles) vs. the recording time of a particular hologram. (A) 

logarithmically averaged response times, (B) only fast response times. The dashed and dotted lines mark 
the range proposed in [209].
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this statement academical. This is additionally underlined by the fact, that  always shows
a strong systematic dependence on the recording time, even if only the fast time constants are
considered. 

Please note finally that logarithmically averaging the time constants is actually
inacceptable in order to obtain a suitable exposure schedule. However, simply using the fast
time constants will fail as well, since it is clear that an exposure schedule derived from only a
part of the overall dynamic behavior of the systems will not work either. 

5.4.1.4.)Quintessence of the investigations on the PR grating erasure in 
systems without extrinsic deep traps

It was found that the PR grating erasure dynamics in the investigated high-Tg PVK based
PR polymers is governed by the orientational relaxation of the NLO chromophores in the
polymer matrix, whereas it is determined by the decay of the PR space-charge field in the low-
Tg systems. This agrees with the expectations from “5.2.3.) The relation between the glass-
transition temperature and the dynamic performance in PVK based PR polymers” on page 243,
In all cases, the erasure dynamics of the PR grating depended on the recording time of the
grating. This was attributed to a viscous flow of the polymer matrix in the high-Tg regime. In
contrast, in the low-Tg regime, the retardation of the grating erasure as a function of the
recording time was found to be due to optical activation of trapping sites. Based on a theoretical
model for the PR grating erasure in polymers proposed by Cui et. al. [83], two fundamentally
different types of optically activated traps could be identified. On the one hand, Poole-Frenkel
traps showing Langevin behavior are generated, which is in agreement with earlier findings
[208, 209]. These traps seem to determine the initial grating erasure. On the other hand, deep
traps not showing Langevin behavior are optically activated, which might be carbazole dimer
radical cations and which seem to govern the erasure behavior on longer time scale. Thus, single
trap theoretical models for the PR effect in PR polymers as proposed in [208] appear inadequate
in order to describe these systems with sufficient accuracy. The formation of the carbazole
dimers apparently strongly depends on Tg, which may be attributed to slow collective motion
of the conducting polymer matrix occurring in materials with Tg << RT. This leads to a smaller
apparent density of conformational traps (see “5.2.2.) The relation between the glass-transition
temperature and the steady-state performance in PVK based PR polymers” on page 228 and
[196]), which were proposed as precursor for the dimer formation. It is to be pointed out, that
the fact that the trap situation in PR polymers obviously changes significantly during recording
of a grating renders any fitting of PR recording data purely phenomenological, since the fitting
parameters are time dependent. Finally, the potential applicability of the systems investigated
for holographic multiplexing was considered. A relative optimum of the theoretical
multiplexing capabilities as a function of the reduced temperature Tr = Tg - RT for Tr = -6°C was
found on the one hand. However, due to the recording time dependence of the erasure dynamics
PR polymers of the investigated type appear unfavorable for holographic multiplexing in
general on the other. 

τe τr⁄
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5.4.2.)PR grating erasure in systems doped with extrinsic traps
It has been shown in the preceding section, that the ratio between the recording and the

erasure dynamics is rather unfavorable, which must be expected to limit the multiplexing
capabilities of the PVK based PR polymers under investigation. However, an even bigger
problem for a potential application of PR polymers in holographic mass data storage devices
arises from the recording time dependence of the erasure dynamics, since this property makes
the selective erasure and re-recording of particular holograms within a manifold of existing
multiplexed holograms very difficult. By that, a major advantage of PR holographic media for
data storage applications, namely their rewritability, is nearly counted out. In the presiding
section was furthermore shown that the recording time dependence of the hologram erasure
dynamics in low-Tg systems is due to the optical activation of deep trapping sites. Thus, in order
to stabilize the erasure dynamics, as a first approach, a novel material was designed by adding
extrinsic deep traps to the systems in question. As will be shown in a later section (“5.6.)
Holographic multiplexing in PVK based PR polymers” on page 329), this action led to a
significant improvement in the number of holograms, which could be multiplexed, as compared
to similar systems without extrinsic traps, while the M-number M/# remains similar. However,
the initial goal, i.e. stabilization of the hologram erasure behavior, was not achieved but rather
an even more complex erasure behavior was found as compared to materials without extrinsic
traps, which still strongly depends on the recording time.

 It was found that holograms recorded into the newly designed materials applying short
recording times and low recording intensity increase considerably in strength during a
subsequent erasure process if performed at low erasure intensity as well. This feature (which,
on the other hand, caused the aforementioned improvement of the general multiplexing
capabilities), despite showing some similarity to holographic time of flight (HTOF), has not
been observed so far under the standard holographic recording conditions, i.e. by recording a
hologram over several seconds up to minutes with low intensity as opposed to high-intensity
sub-millisecond pulse recording of a hologram usually performed for HTOF experiments [138,
148, 218, 219]. 

Subsequently, a phenomenological investigation of this new feature is presented
focussing on a general qualitative explanation for the observed behavior. Therefore, the build-
up dynamics of PR gratings was investigated with respect to the important relation between the
phase shift of the index grating and its actual modulation depth. Furthermore, the first
investigation on the erasure dynamics concerning the same parameters will be presented.

Many PR polymers exhibit a fairly small phase shift φ between the refractive index
grating and the optical interference pattern of about φ ≈ 20° or even less in the steady state
regime [220]. Furthermore, there are indications, that the phase shift of a PR grating changes
during recording. These circumstances open the way to speculations about what may happen
during grating erasure. It is particularly interesting, whether the grating starts shifting again to
higher values of φ while simultaneously decaying in amplitude. Since the initial phase shift at
the beginning of erasure is typically close to the steady state value and, thus, considerably
smaller than 90° representing the ideal case of the PR space charge distribution in PR materials,
such a behavior may significantly contribute to the observed erasure dynamics. As the charge
separation increases, the modulation depth of the space-charge distribution improves (and,
accordingly, the space charge field increases), while the total space-charge density decreases,
which reduces the space-charge field. Thus, one may assume that the erasure dynamics of the
PR space-charge field should be determined by two counteracting processes of unknown
magnitude.
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5.4.2.1.)Experimental aspects
The investigated materials are derived from the first high performance PR polymer [13],

but with significantly improved long-term stability [136] and doped with different amounts of
TPD (N, N, N’, N’ - tetraphenyl - p - diaminobiphenyl, “triphenyldiamine”). TPD constitutes
deep hole traps of approximately 0.5eV depth if doped in small molar ratio into a PVK polymer
matrix. The compositions and the glass-transition temperatures, as determined by DSC, of the
investigated materials AT, BT, CT, CT1 - 3 and DT are listed in table 5-1 on page 211 as well
as at the end of the current section. PR devices were prepared according to “4.1.) Preparation of
materials and sample structure” on page 179. The active layer thickness was d = 125µm. The
ambient temperature was 20±0.5°C for all measurements. 

A new measurement technique was devised, which allows to obtain a measure of the PR
phase shift during erasure together with a measure of the time history of the magnitude of the
PR space-charge field. The general experimental setup and the evaluation procedure for this
experiment are described in detail in “4.2.) Wave mixing experiments” on page 181. Please note
that this measurement technique introduces a phase reference “from outside” the PR grating.
This does only make sense, if there are components of the PR grating, the spatial position of
which can be considered as unchanged at least during the initial erasure process. In the case
under consideration here, this is the distribution of the immobile negative charge carriers, which
may additionally be assumed to be in phase with the phase reference introduced by the
measurement technique at least during the initial erasure process.

Using the setup described in the aforementioned section, dynamic phase-conjugate
degenerate four-wave-mixing (DFWM) experiments as well as two-beam-coupling (2BC)
experiments were carried out using a HeNe laser. Therewith, the dynamic response behavior of
the investigated materials was determined. Unless otherwise noted, the following experimental
configurations were applied: For determining solely the recording/erasure behavior of the
refractive index modulation, a configuration with s-polarized recording beams (not chopped) at
intensities of I01 = 2.8mW/cm2 (recording beam 1) and I02 = 2.3mW/cm2 (recording beam 2)
was used, and the grating was erased without probing the dynamics of the phase shift, i.e. with
the recording beams switched off. In this configuration, a resolution of better than η = 5*10-3

was achieved. Hereafter this configuration will be referred to as configuration (1). For
determining the recording/erasure behavior of the refractive index modulation as well as the
dynamics of the PR phase shift, the recording beams were p-polarized and chopped and had
time averaged intensities of I01 = 4.7mW/cm2 and I02 = 3.8mW/cm2 when recording the PR
grating. For the erasure process the recording beams were attenuated to time averaged
intensities of I01 = 3.7µW/cm2 and I02 = 3µW/cm2. This configuration yielded a resolution of
better than η = 5*10-3 and Γ = 0.25cm-1 and will be referred to as configuration (2) hereafter.
The modulation depth of the interference pattern was m = 0.994±0.001 for recording at both
polarizations. The reading beam intensity was appr. Ir =5µW/cm2 in all cases. The erasure beam
originated from a second HeNe laser and had perpendicular incidence onto the sample surface
in all cases. The erasure intensities were Ie1 = 3.2mW/cm2 in configuration (1) and Ie2 = 5.1mW/
cm2 in configuration (2). Unless otherwise noted, prior to recording a PR grating, a dark period
under field of 90min as well as a pre-illumination period of 30min performed by recording beam
2 was applied for each measurement. For all measurements an electrical field was continuously
applied to the samples with a polarity causing minimized beam-fanning effects [221], i.e. the
field directions for recording with s-polarized and with p-polarized beams, respectively, were
reversed. Please note that configuration (2) allows for direct calculation of the PR phase shift
from the experimental data since both the refractive index modulation in DFWM as well as the
PR gain are determined for p-polarized light.

Considering the continuity of the PR phase shift curves over the switching process from
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recording to erasure, an offset in the data occurs (see corresponding figures). This can be
attributed to the problem to find appropriate reference values for the intensity of the beams
involved in the 2BC effect, as discussed in “4.2.) Wave mixing experiments” on page 181. In
the case of recording it is clear, that these reference values are the initial values of the recording
beams obtained in advance of the development of a PR grating. In the case of erasure, however,
when the intensity of the recording beams was dramatically reduced as described before,
average value of the beam intensities were used, which were obtained after the grating had been
completely erased. This method suffers from the problem that the two methods to obtain the
reference values represent different working conditions of the material. The observed offset is
only clearly visible when the total signal strength is small, whereas it is almost absent when the
total signal strength is large. This indicates, that there is a small constant offset occurring in a
parameter used for calculating the PR phase shift φ, which does not effect the general dynamic
trends revealed by the experimental results.

Please note, that the phase shift can no more be stated reasonably for very small
experimental values of Γ and ∆n in view of too bad a signal to noise ratio, which causes an
unreasonably large error for φ. The experimental curves shown hereafter are either cut shortly
before this point, or are covered by hatchings beyond this point, respectively.

5.4.2.2.)Experimental results on PR grating erasure in trap-doped systems
Figure (5.4 - 11) shows a characteristic example for the short term recording behavior of

the materials C (without extrinsic deep traps) and CT (with extrinsic deep traps), both of which
having almost identical Tg. As expected, a significant slow down of the grating build-up
dynamics for the trap doped material CT as opposed to the trap free material C is observed,
which is due to the reduced charge-carrier mobility due to the trap doping [46]. Taking the time
to achieve 5% diffraction efficiency as a measure for the speed of the grating build-up, the
recording speed of a PR grating is reduced by approximately a factor of five under identical
experimental conditions (set-up configuration (1)). Furthermore, figure (5.4 - 11) shows a
characteristic example for the short term recording behavior of material CT3. This material was
doped with an amount of extrinsic deep traps, high enough to enable partial charge transport by

Table (5-7): Chemical composition and glass transition temperature of the materials 
investigated in “5.4.2.) PR grating erasure in systems doped with extrinsic traps”

Material DMNPAA MNPAA PVK ECZ TNF TPD Tg 

units [%wt] [%wt] [%wt] [%wt] [%wt] [%wt] [°C]

AT 25 25 42 6.18 1 0.82 18.5

BT 25 25 40 8.18 1 0.82 17

CT 25 25 38 10.18 1 0.82 14

CT1 25 25 36 11.36 1 1.64 10

CT2 25 25 34 10.1 1 4.9 12

CT3 25 25 30 9 1 10 12.5

DT 25 25 36 12.18 1 0.82 13
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hopping between the trapping sites. Tg of material CT3 was slightly lower than that of material
C or material CT and the recording curve was obtained using set-up configuration (2). Thus, the
recording curve of material CT3 cannot be compared directly with the curves for the materials
C and CT. However, it is clear that material CT3 exhibits significantly faster build-up dynamics
as compared to the other two materials. This is due to an increased charge carrier mobility in
material CT3 as compared to material C, which is in general found in PVK when the TPD
concentration is high enough to form a new charge transport manifold, i.e. TPD contributes
significantly as charge transporting site to the overall charge carrier transport process [46].

 Figure (5.4 - 11): Grating buildup in the trap free material C (open circles), and in the trap doped 
materials CT (open squares) and CT3 (open triangles).
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Figure (5.4 - 12) depicts characteristic sets of normalized erasure curves of the PR grating
in material CT (figure (5.4 - 12)(B)) for short recording times, as obtained using set-up
configuration (1). A further increase of the diffraction efficiency during the initial erasure
process is observed. The occurrence of the relative diffraction maximum seems to shift towards
the starting point of the erasure process, if the recording time is increased.

In order to get an overview over the quality of the effect of further increasing diffraction
efficiency during the initial erasure process, the observed behavior was empirically
systematized for different materials and experimental conditions. Therefore standard recording/
erasure experiments were carried out applying different recording times to a series of materials
containing different amounts of TPD at similar Tg (CT and CT1 - 2) and using configuration (1).
For this series of measurements an external field of Eext = 48V/µm was applied in all cases.
Figure (5.4 - 13) shows the relative increase of the diffraction efficiency and the delay of the
occurrence of the relative diffraction maximum for the aforementioned materials as a function
of the applied recording time span. For this purpose, the beginning of recording was chosen as
time origin t = 0.

Obviously, the effect is most pronounced for material CT containing a moderate amount
of deep traps and decreases for even higher concentrations of TPD. The decreasing quality of
the investigated effect with increasing TPD concentration exceeding 0.82%wt might be
attributed to an increasing contribution of TPD to the charge transport as a hopping site within
the polymer matrix. This interpretation is supported by the observation that material CT3
(containing 10%wt TPD) did not show a further increase in the diffraction efficiency within the
interval of experimental parameters applied here, but only for recording times considerably
shorter than 5 seconds (not shown). It was already proposed above that the charge transporting
properties of the PVK polymer matrix in material CT3 is significantly determined by hopping
between TPD sites, which are already dense enough to form a new charge transport manifold

 Figure (5.4 - 13): (A) Relative increase of the diffraction efficiency and (B) delay of the occurrence of 
the relative diffraction maximum τη,max after start of the recording process as a function of the recording 
time for materials containing different amounts of deep traps: CT (circles), CT1 (up triangles) and CT2 

(down triangles). An external field of Eext = 48V/µm was applied in all cases. The dotted line in (B) 
depicts the end of recording.
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[46]. Accordingly, the decreasing quality of the investigated effect with increasing TPD
concentration exceeding 0.82%wt indicates that the materials CT1 to CT3 cannot safely be
considered as typical “PVK-based” materials but may show a contribution of the TPD sites to
the charge transporting process. Thus, the materials CT1 to CT3 fall beyond those, this work is
focussed upon. Therefore, the further investigations will focus on material CT. 

Please note, that materials containing a non-zero amount of TPD below 0.82%wt were not
taken into account. Therefore, one cannot be sure that material CT exhibits the most pronounced
effect. However, one can safely assume that material CT out of the considered series of trap
doped systems is closest to the case of trap controlled charge transport in PVK. Please note
furthermore, that, according to [46], even material CT3 should still exhibit dominantly trap
controlled charge transport and a significantly smaller charge carrier mobility than material C.
If this would be true, a retarded PR grating build-up dynamics as compared to material C should
be expected for material CT3, since the PR grating build-up dynamics of the investigated
systems is limited by the charge carrier mobility as several times discussed before. However,
according to figure (5.4 - 11) this is clearly not the case, which indicates that the results
presented in [46] cannot directly be applied here. A possible reason for that might be that the
samples investigated in [46] did not contain further components as, for instance, ECZ as
plasticizer, and exhibited a significantly different (i.e. higher) Tg. Especially the latter strongly
affects the charge transporting properties of PVK based PR polymers as discussed in “5.2.) The
PR performance of PVK based polymer composites at varying glass-transition temperatures”
on page 226. However, a detailed consideration of this aspect is beyond the scope of this
investigation.

Accounting for the experimental results indicating a strong dependence of the charge
transporting properties on Tg as already noted above, a series of materials, AT, BT, CT and DT,
was designed, which contained identical amounts of TPD, but exhibited different glass-
transition temperatures. Details about the materials composition and their corresponding Tg’s
are listed in table 5-7 on page 302. Recording/erasure experiments were carried out for the Tg-
series applying different recording times and additionally three different external fields of Eext
= 40, 48, and 56 V/µm. For evaluation, in all cases the erasure curves were normalized to the
value at the beginning of the erasure process and the relative increase in diffraction efficiency
was plotted as a function of the recording time. Moreover, the time span, which has been elapsed
when the diffraction maximum occurred, was plotted as a function of the recording time. For
this purpose, again the beginning of recording was chosen as time origin t = 0. The results are
shown in figure (5.4 - 14) and figure (5.4 - 15).
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 Figure (5.4 - 14): Relative increase in diffraction efficiency as a function of the recording time for the 
material series doped with 0.82%wt TPD but having different Tg: AT (squares), BT (circles), CT (up 
triangles), and DT (down triangles). Three different external fields of Eext = 40, 48, and 56V/µm were 

applied. The lines are guide to the eye.
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 Figure (5.4 - 15): Delay of the occurrence of the diffraction maximum τη,max after start of recording as 
a function of the recording time span for the material series doped with 0.82% TPD but having different 
Tg: AT (squares), BT (circles), CT (up triangles), and DT (down triangles). Three different external fields 
of Eext = 40, 48, and 56V/µm were applied. The dotted lines depict the end of recording, the solid lines 
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As expected from several results presented earlier in this work, an optimum in Tg could
be identified for the effect in question. The observed Tg dependence will not be discussed in
detail, but rather serves to identify the material showing the most pronounced effect, which is
again material CT. Furthermore, it was found that the investigated effect relatively increases
when the externally applied field is decreased. This result will be discussed in more detail later
on. Subsequently, a first, basic, explanation of the mechanisms underlying the investigated
effect will be focussed upon.

In order to gain a more detailed insight into the mechanism, which might cause the further
increase of the refractive index modulation even when the PR grating is already in process to be
erased, a measure of the PR phase shift during erasure (referred to as “apparent phase shift”,
hereafter) in material CT was determined as a function of time for various experimental
conditions. In all these experiments the PR phase shift during recording of the PR grating was
determined as well.

Figure (5.4 - 16) shows the evolution of the PR phase shift for material CT (figure (5.4 -
16)(A)) during recording and the apparent PR phase shift during erasure (figure (5.4 - 16) (B))
for different recording times at otherwise identical experimental conditions applying an external
field of Eext = 48V/µm. 

The time history of the apparent phase shift during erasure applying three different erasure
intensities is depicted in figure (5.4 - 17). The externally applied field was again Eext = 48V/µm.
The recording data (not shown) are identical within experimental error and similar to the
corresponding curve in figure (5.4 - 16).

 Figure (5.4 - 16): Phase shift of the PR grating material CT during recording (A) and erasure (B) for 25, 
35, 50, 100, 200 and 500 seconds recording. The hatchings over areas, which cannot be interpreted 

reliably as described in “5.4.1.1.) Experimental aspects” on page 273. 
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Figure (5.4 - 18) shows the time histories of the PR phase shift and the apparent PR phase
shift during recording and erasure, respectively, in material CT for different externally applied
electrical fields of Eext = 40, 48, and 56V/µm. 

 

 Figure (5.4 - 17): Apparent phase shift during erasure in material CT applying the erasure intensities 
Ie0, 2.5*Ie0 and 5*Ie0 (Ie0 = standard erasure intensity as described in “5.4.2.1.) Experimental aspects” 
on page 301). The inset shows the corresponding normalized diffraction efficiencies. The recording time 

was 100sec and an external field of Eext = 48V/µm was applied. The arrows point in the direction of 
increasing erasure intensity. 
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 Figure (5.4 - 18): Phase shift during recording (A) and apparent phase shift during erasure (B) in 
material CT for 100sec recording and applying different external fields of Eext = 40, 48 and 56V/µm. The 
arrows point into the direction of increasing field. The hatched areas cannot be interpreted reliably, as 

described in the experimental section (the width of the hatched areas increases with decreasing Eext and 
the depicted hatching covers the worst case.)
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5.4.2.3.)Discussion of the PR grating erasure in the trap-doped polymer 
composites

At first, the possible occurrence of isomerization gratings in the investigated materials has
to be discussed, since they contain azo-dyes and are operated at wavelength, where these dyes
still show slight absorption. This applies especially to the setup configuration working with p-
polarized beams used for recording as well as for read-out of the holograms. There may be a
local phase grating arising besides the PR grating during the recording process as described
in“4.2.1.7.) Isomerization gratings” on page 205. If there is an isomerization grating of notable
strength, it cannot be probed independently from a simultaneously present PR grating and will
most probably exhibit a different dynamic behavior as compared to the PR grating. Hence, the
dynamic evolution of the PR phase shift measured includes a significant contribution resulting
from the superposition of the different dynamic evolution of the amplitude of these two gratings.
However, charge carrier diffusion in the investigated materials is negligibly small, i.e., no
notable PR grating will be formed without an externally applied field. Thus, the refractive index
modulation due to an isomerization grating in absence of a PR grating can be probed
independently by a DFWM experiment, if no external field is applied, but under otherwise
identical experimental conditions as applied in the PR wave mixing experiments. Figure (5.4 -
19) shows the build-up and the subsequent erasure of the isomerization grating in material CT.

 Within experimental accuracy, no notable holographic grating is observed within the first
50sec of the recording process. The longest recording time applied in the experiments on the
evolution of the PR phase shift during erasure was 500sec, which is correlated with a refractive
index modulation due to an isomerization grating of ∆nISO = 1.0*10-4. This is a factor of about
14 smaller than in the corresponding PR experiments. The isomerization grating is erased
considerably slower than a corresponding PR grating. After 100sec erasure of an isomerization
grating recorded for 2000sec before (finally yielding ∆nISO = 1.6*10-4), ∆nISO has dropped to
∆nISO = 1.3*10-4 (i.e. approximately 80% of its initial value), which is still about 3 times less

 Figure (5.4 - 19): Build-up and erasure of the photo-induced isomerization grating in material CT, 
recorded under identical experimental conditions as in the PR experiments, but without external 

electrical field. 
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than a corresponding PR grating in material CT, recorded for 500sec. Assuming that an
isomerization grating recorded for 500sec and subsequently erased for 100sec should as well
exhibit about 80% of its initial value (i.e. ∆nISO = 0.8*10-4), a corresponding PR grating then is
still more than 5 times stronger. After 50sec of erasure, the corresponding factors are almost 6
and almost 9, respectively. These results demonstrate that the possible occurrence of
isomerization gratings must be taken into account for recording times exceeding 50sec.
Although their contribution to the overall holographic grating even then may be considered as
small enough to be neglected in reasonable approximation for considering general trends,
subsequently the possible influence of an isomerization grating on the PR data will be discussed
when advisable. 

There are theoretical models developed for the PR effect in polymers (see “2.5.3.2.3.1.)
Erasure dynamics in Schildkraut’s model” on page 127 and “2.5.3.2.3.2.) Cui’s approach to the
erasure dynamics” on page 128), the solution for the decay of the PR space-charge field of
which implies some oscillatory behavior. This seemingly agrees with the experimental results
presented before. However, the resulting expressions for the decay of the PR space charge field
as a function of time (eq. (2.5 - 28) and the real part of eq. (2.5 - 29)) contain several unknown
parameters and, thus, are not useful for the current discussion. Hence a brief ostensive
phenomenological explanation for the experimental observations will be given.

In order to find such a phenomenological explanation for the time history of the
diffraction efficiency in the PR grating erasure experiments (see figure (5.4 - 12)), at first the
mechanism underlying the holographic time of flight (HTOF) technique shall be considered. In
HTOF experiments, the hologram is recorded applying a short but intense light pulse of a few
nanoseconds. Charge carriers are thereby generated in the bright regions of the spatially non-
uniform light pulse, however, due to the flash-character of the illumination, the positive and
negative charge distributions are still in phase just after the recording process. The mobile
charge carrier distribution then starts to displace relative to the distribution of the immobile
charge carriers, giving rise to the PR space-charge field ESC. The latter increases as the
displacement ∆ increases and reaches its maximum amplitude for the case of anticoincidence of
the oppositely charged charge carrier distributions (i.e., ∆ = 180°), since the mutual screening
of the particular charge distributions is then at its minimum. For a further increase of ∆ with
180° < ∆ < 360°, ESC will decrease again. If ∆ becomes larger than the holographic grating
period, oscillatory behavior of ESC as a function of ∆ is observed. The modulation depth of the
particular space-charge distributions thereby decreases (e.g. due to recombination effects) and
finally vanishes. The time necessary to reach (the first) anticoincidence is called „transit time“.
The evolution of the space-charge field is probed continuously by cw-DFWM. This technique
has been applied to PR polymers several times, in order to determine the bulk (i.e. average)
charge carrier mobility [138, 148, 218, 219]. At first sight, the observation of increasing
diffraction efficiency during erasure might be attributed to a similar mechanism as underlying
HTOF, i.e. that ∆ increases during the erasure of a PR grating by uniform illumination. In fact,
there is strong experimental indication for this interpretation, as will be discussed below.
However, HTOF experiments represent a highly dynamic situation due to the almost
instantaneous generation of a large amount of charge carriers, which are then statistically
distributed within the density of states (DOS) of the charge transport manifold, most of them
ready to drift under the influence of the externally applied field. This is usually reflected in
correspondingly short transit times of several hundreds of microseconds up to a few
milliseconds. In contrast, here the holographic grating was recorded for up to several tens of
seconds at low intensity and the time necessary to achieve maximum diffraction after the
erasure process had begun (“transit time”) was also in the order of seconds up to several tens of
seconds (depending on the investigated material). Therefore, one may assume that the basic
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mechanism underlying the experimental observations presented above may somehow be similar
to HTOF, however, the details should be significantly different. 

Please note, that a change in ∆ affects the magnitude of the PR space-charge field
distribution as discussed above as well as its spatial position, i.e. the PR phase shift. Hence, as
∆ changes as a function of time, the entire PR grating shifts. This already implied by the
aforementioned dynamic theories of the PR effect in polymers. Both theories imply two PR
space-charge field components spatially moving with different velocity, which may yield an
experimental phenomenology as observed here.

Since an increase of ∆ as a function of time during erasure yields the entire PR grating
shifting, the phasing between the PR grating and the original interference pattern during
recording (i.e. the PR phase shift φ) changes as well. This opens the way to experimentally test
the assumption of a basically HTOF-like mechanism underlying the experimental observation
of further increasing DFWM diffraction efficiency during initial erasure of a PR grating.
Therefore, a new measurement technique was devised, which allows to determine the apparent
PR phase shift during the erasure process, as already described in the experimental section. This
technique was applied to different materials for a variety of experimental conditions. The results
are depicted in figure (5.4 - 16) to figure (5.4 - 18)). 

Subsequently, at first the recording process of a PR grating in material CT will be
discussed focussing on the time history of the PR phase shift. Thereby, the basic ideas of the
phenomenological picture of the dynamic processes taking place during recording a well as
erasure will be explained. Thereafter, these ideas will be applied to the PR grating erasure
process in material CT.

5.4.2.3.1.)The PR recording process in the trap-doped systems
The forthcoming discussion refers to figure (5.4 - 20), where the interaction between Eext

and ESC as described in this section is illustrated for the ideal case of anticoincidence between
the negative (immobile) charge carrier distribution and the positive (mobile) charge carrier
distribution. The upper vector diagram illustrates the direction and the amplitude of the PR
space-charge field, as it will emerge during the recording process. The second to upper vector
diagram illustrates the initial external electrical field in area (I) and area (II) when the PR space-
charge field has not yet emerged. At first area (I) will be considered, i.e. the left hand side
diagrams. Initially, when there is not yet a PR space-charge field, holes generated in the bright
area will drift alongside the external field vector towards the dark areas. The thus resulting ESC
adds to Eext || reducing this component of the external field in the considered area. This yields a
local total field ET,loc, which is reduced in strength and is altered in direction as compared to the
initial Eext as depicted in the lower vector diagram. In comparison with Eext, ET,loc shows a less
favorable orientation for promoting the hole drift from the bright regions towards the dark areas,
i.e. the effective drift distance for a hole to reach the dark area has become longer. 

It may safely be assumed that the trap doping is the determining factor for the charge
carrier redistribution process in material CT. The PR phase shift φ obviously starts at small
values close to 0° and then increases when recording proceeds, finally levelling off at φ ≈ 9°
(figure (5.4 - 16)(A)). Material CT is doped with deep traps in approximately the same number
density as the sensitizer moieties (TNF). Accordingly, on the average there exists a deep trap in
the system for each charge carrier generated. Therefore, it is reasonable to assume that, when
recording starts, the holes generated firstly are trapped at once by a deep trap in the close
neighborhood of their generation centers in the direction of the current local field (i.e. here Eext).
When recording proceeds and more holes are generated, a part of the trapping sites near to the
generation centers in the bright areas are already occupied and, hence, some holes are able to
displace further in the drift direction now defined by the current direction of ET,loc, until they
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meet a deep trap still unoccupied. Thus, during recording φ initially starts at small values and
increases when the recording process proceeds until it reaches the steady-state condition. The
steady-state condition is reached when ESC and Eext || just cancel, since then there is no longer
a component of the driving field for the charge carrier drift oriented parallelly to the grating
wave vector, i.e. no more holes will be redistributed in order to contribute to ESC.

 Please note that this
phenomenological model implies some
correlation between the recording time
of the holograms and the recording
intensity. One must expect that the phase
shift changes faster as a function of time
when recording a hologram at higher
intensity. On the other hand, as
discussed several times in preceding
sections, the PR grating build-up speed
in the low-Tg regime is limited by the
mobility of the charge carriers inside the
polymer matrix, which applies
particularly for the case of trap
controlled transport like in material CT.
However, if more charge carriers are
generated and redistributed per unit
time, the recording process as described
above will become faster although the
redistribution process and not charge
generation is the limiting factor. This is
an important implication on this type of
PR material since holograms carrying
some picture information (i.e. they do
not represent a uniform interference
pattern like a simple sinusoidal pattern)
might be recorded to varying states
inside a single hologram, which
formally would correspond to spatially
varying recording times for a single
hologram. Probably the frame of this
argumentation may be expanded to
other PR polymer materials.

5.4.2.3.2.)The PR erasure process in the trap-doped systems
Referring to figure (5.4 - 20), the terms “left” and “right” will be used hereafter (for

example: area (I) is located left from a neighboring formerly dark area; the term “formerly dark/
bright area” refers to the intensity distribution during recording). 

The effect of a further increase of η during erasure in material CT (figure (5.4 - 12)) could
be determined experimentally up to recording times of about trec ≈ 75sec. For longer recording
times a net increase of η during erasure was no longer observed. However, the approach to fit

 Figure (5.4 - 20): Illustration of the electrical fields inside a 
PR grating in a polymer for the ideal case of anticoincidence 
between the oppositely charged charge-carrier distributions. 

The solid sinusoidal curve represents the positive charge 
carrier distribution and the dotted sinusoidal curve represents 
the negative charge carrier distribution. The shading behind 
the sinus curves depicts the illumination pattern (bright and 
dark areas). ET,loc is the sum of the externally applied field 
Eext and the PR space-charge field ESC. The spatial areas 

referred to in the text are denoted (I) and (II). For a similar but 
more detailed illustration see figure (2.5 - 5) on page 132.
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the erasure curves by a series of exponential terms yielded very good agreement with the
experimental curves, when using one growing exponential term and two decaying exponential
terms. This procedure turned out to be valid for all recording times, which have ever been
applied within this series of measurements (i.e. up to 2000sec recording; fit curves and results
are not shown). This indicates that the erasure process in material CT always includes some
mechanism, which leads to an increase of η during initial erasure, even if a net increase of η is
not observed.

In analogy to the recording process, the trap doping and the thus required filling of the
traps in advance of a further proceeding charge transport should also determine its dynamic
erasure behavior. Due to the high amount of deep extrinsic traps in material CT providing a deep
trap for each possibly generated charge carrier, one can safely assume that the charge carriers
firstly generated in an illuminated area are captured immediately by a deep trap in the close
proximity of the generation center, as already discussed for the recording process. Only if a
substantial amount of the deep traps in the considered illuminated area is already occupied,
charge carriers will have the chance to migrate for a longer distance until they get trapped. For
applying this concept to the erasure process, first the situation at the end of the recording process
must be considered. When recording ends, the hole distribution has displaced to some degree
with respect to the distribution of the negatively charged charge generation centers. When the
material now is uniformly illuminated for erasure, in the area where the center of the hole
distribution is located a substantial amount of the deep traps is already occupied. Thus, charge
carriers generated now within this area may migrate relatively free to the right until they reach
the right edge of the currently existing hole distribution where they get trapped by an
unoccupied deep trap. Hence, the hole distribution should shift to the right from the beginning
of erasure, which may be observed experimentally as an increasing PR phase shift. 

On the other hand, charge carriers generated within area (II) migrate towards the
neighboring formerly bright area, where they compensate (i.e. cancel by recombination or
compensate by being trapped nearby) negatively charged charge generation centers formed
during recording. These charge carriers have left a negatively charged generation center behind,
which is located left from the formerly bright area. Accordingly, this process is supposed to
cause a left shift of the negative charge distribution. However, most charge carriers generated
within area (II) should instantaneously be trapped by a deep trap in the close neighborhood of
their generation center as discussed before. Hence, during the initial erasure only very few
charge carriers generated at the very right edge of area (II) are able to reach the formerly bright
area. This is not yet supposed to cause some notable left shift of the distribution of negative
charges since the number of charge carriers contributing to this process is still just too small.
When the erasure process now proceeds further, more and more deep traps become occupied in
area (II) and, thus, an increasing number of newly generated charge carriers are able to reach
the formerly bright area. Accordingly, although the negative charge distribution should remain
more or less spatially localized for some time after beginning of erasure, it is supposed to start
to shift to the left for longer erasure times. For the PR phase shift, this left shift of the negative
charge distribution counteracts the right shift of the hole distribution. Accordingly, for longer
erasure times one may expect the right shift of the entire PR grating (i.e. the increase of φ) to
slow down, level and finally possibly even change its direction for sufficiently long erasure
times. This situation is in fact observed in figure (5.4 - 16)(B) for the two longest recording
times applied. The PR phase shift lows down and seemingly levels. A change of the shift
direction (i.e. a decreasing φ), however, is not observed. Furthermore, the above described
situation is indicated in figure (5.4 - 18)(B) for the highest external field applied. The fact, that
the situation described above can only be observed applying longer recording times or higher
external field may be rationalized considering ET,loc according to figure (5.4 - 20). If the PR
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grating is strong (i.e. ESC is large), ET,loc in area (II) has a large amplitude and favorable
direction for promoting charge carrier migration towards the formerly bright area. Hence one
may even speculate that a decreasing φ as mentioned before might be observable for sufficiently
long recording times.

In conclusion, the effect of further increasing η during the initial erasure process may be
attributed to the pronounced right shift of the hole distribution while the negative charge
distribution remains more or less localized. As assumed before, this mechanism is similar to the
HTOF mechanism, however, with the significant difference that it operates on a much longer
time scale. Furthermore, there is indication for a left shift of the negative charge distribution,
which has no phenomenological counterpart in the HTOF mechanism. 

Please note, that a mechanism as suggested here renders the application of HTOF in order
to determine charge carrier mobilities in materials with high amounts of deep traps impossible.
The problem about the applicability of HTOF to PR polymers has already been discussed in
[202, 203] for materials without extrinsic deep traps leading to a similar conclusion.

5.4.2.3.3.)The dependence on the erasure intensity
In order to test the presented phenomenological model for different experimental

conditions, the apparent PR phase shift during erasure at varying erasure intensities and
otherwise constant experimental conditions was determined. The results are shown in figure
(5.4 - 17). By increasing the erasure intensity, more charge carriers per unit time are generated
during erasure while the experimental situation otherwise remains unaltered as compared to the
experiments described in the preceding section. Hence, increasing the erasure intensity will
have the same effect like (formally) increasing the charge carrier generation efficiency
throughout the entire PR grating at otherwise unchanged experimental parameters. This should
have the following effects: The overall modulation depth of the space-charge distributions
should decrease faster. As a result, the erasure process in general is accelerated as a function of
increasing erasure intensity (figure (5.4 - 17), insets). It furthermore shows up in the apparent
PR phase shift during erasure, since the corresponding curves break off after shorter erasure
time (figure (5.4 - 17)) because the signal levels become too small for a reasonable evaluation
of the experimental data as mentioned in the experimental section. Furthermore, increasing the
charge carrier generation efficiency should accelerate the increase of φ during erasure for
material CT, since the deep traps along the general migration direction of the holes should be
filled faster. This is indeed indicated by the experimental data (figure (5.4 - 17)(B)), however,
the effect is too small to unambiguously confirm the aforementioned expectation.

5.4.2.3.4.)The dependence on the applied electrical field
Further support for the empirical model may be found, when considering the dependence

of the evolution of the apparent PR phase shift φ during recording and erasure of a PR grating
in the investigated materials on the externally applied field. Increasing the external field will
improve the charge carrier generation efficiency as well as the charge carrier mobility during
recording as well as erasure. Hence, in general more charge carriers will be generated per unit
time and the redistribution will be faster for higher externally applied fields. Accordingly, while
recording a PR grating at higher externally applied fields, ESC will emerge faster and, constant
recording time provided, will be higher at the end of recording. Moreover, the maximum
achievable ESC will be higher for higher externally applied fields since Eext || is larger, which,
according to figure (5.4 - 20) and as described above, limits ESC in steady-state. Consequently,
the start conditions for the subsequently performed grating erasure will depend on the externally
applied field. The erasure process itself must be expected to depend on the externally applied
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field according to its dependence on the bulk charge carrier generation efficiency and the bulk
charge carrier mobility, both of which depend on Eext as well ESC. The experimental results on
the time history of the apparent PR phase shift during recording and erasure are shown in figure
(5.4 - 18).

First the recording process will be discussed (figure (5.4 - 18)(A)). For increasing
externally applied field the deep traps located along the main drift direction of the holes should
be filled up faster due to the larger amount of holes generated per unit time in the bright areas
of the nonuniform illumination pattern. Furthermore, the charge carrier mobility will in general
be higher. Accordingly, while φ should still start at small absolute values close to φ = 0 (ideally
exactly at φ = 0) as discussed before, the subsequent increase of the PR phase shift should be
faster for higher fields externally applied. The experimental results clearly agree with this
expectation.

The time history of φ during erasure as a function of the externally applied field is shown
in figure (5.4 - 18)(B). As discussed before, the hole distribution during erasure in material CT
may be assumed to shift to the right from the beginning of erasure, whereas the distribution of
negative charges at first remains spatially fixed. Thus, φ increases. When increasing the
externally applied field, charge carrier generation efficiency as well as charge carrier mobility
are increased throughout the entire PR grating. On the one hand, this should accelerate the right
shift of the hole distribution due to a faster filling of the extrinsic deep traps as discussed before.
As a result a more pronounced increase of φ as a function of an increasing externally applied
field should be expected, which is indeed observed experimentally (figure (5.4 - 18)(B)). Please
note, that the aforementioned different start conditions for the erasure process due to different
externally applied fields but constant recording durations only cause different start offsets in φ,
which increase with increasing applied field. On the other hand, according to the model
presented here, after some erasure time the negative charge distribution should start shifting to
the left as already discussed before. This effect should be expected to be observed earlier during
the erasure process when the external field is increased, again due to a faster filling of the
extrinsic deep traps located along the mean hole migration path, now referring to area (II).
Indeed, such a saturation effect for φ is observed for the highest external field applied (figure
(5.4 - 18)(B)). For smaller external fields, the described saturation effect should occur later
during the erasure process but can no more be observed experimentally. 

In conclusion, the experimental results obtained for variations of the externally applied
field at otherwise unchanged experimental conditions can easily be interpreted on the basis of
the phenomenological model proposed here. This further supports the given interpretations.

5.4.2.4.)Summary of the investigations on the PR erasure behavior of trap-
doped polymers

A phenomenological mechanistic picture of the recording and the erasure process of a
hologram in a PVK based PR polymer (material CT) showing trap controlled charge transport
is presented taking into account the spatial distribution of electrical fields within the PR grating
and the particular charge transporting mechanism. 

During recording the negative space-charge distribution remains located at the bright
fringes. The hole distribution starts with a small displacement close to 0° with respect to the
negative space-charge distribution and subsequently displaces to about 9° when recording
proceeds, which can be explained by means of a charge transporting mechanism requiring the
filling of the deep traps before a notable drift of charge carriers over longer distances may take
place.
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Within the frame of the proposed model, the negative and the positive space-charge
distributions spatially displace again when the PR grating is erased. However, the negative
space-charge distribution stays more or less localized for a relatively long time span, while the
hole distribution displaces markedly. Only for rather long erasure times there is indication that
the negative space-charge distribution starts shifting as well, however, in opposite direction as
compared to the hole distribution. This behavior can also be explained by the proposed model
accounting for a charge transport mechanism as described above. The electrical fields inside the
material and their influence on the charge carrier generation efficiency and charge carrier
mobility determine the details of the time history of the PR phase shift.

The presented model can explain the experimental observation of further increasing
DFWM diffraction efficiency during erasure of a PR grating applying low recording and erasure
intensity. The quality of this effect depends on the applied electrical field and, in particular, on
the applied recording time, both of which are inherent features of the proposed model.

The model furthermore infers that holograms in the investigated type of material are
inherently non-stable neither during recording nor during erasure. Please note that this is also
implied by the theoretical models of the transient behavior of PR gratings in polymers discussed
in “2.5.3.2.) Schildkraut’s model” on page 124. This inherent feature of the PR effect in
polymers could be proven by experimental results on the PR phase shift, which turned out to be
a function of time during recording as well as erasure. Moreover, the time history of the PR
phase shift as well as of the DFWM diffraction efficiency during erasure is a function of the
time the PR grating was recorded before, which is also an inherent feature of the proposed
model.

The instability of holograms in the investigated type of PR polymer during erasure as well
as the dependence of the general form of their erasure kinetics on the recording time implies
image distortions during the processing of the holograms. Moreover, a hologram carrying some
picture information might formally be recorded differently long inside the hologram depending
on the local recording intensities, which also might result in image distortions during
processing. Finally, the complicated correlation between recording time and erasure dynamics
of the holograms must be expected to pose severe problems when trying to apply this class of
materials in holographic multiplexing. Please note, that the latter was also proven
experimentally in the frame of this thesis, which is elaborated upon in a later section (“5.6.)
Holographic multiplexing in PVK based PR polymers” on page 329).
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5.5.)Dark decay of PR gratings in PVK-based polymer 
composites 

 One of the most important aspects for the potential application of PR polymers for
holographic data storage is the stability of the stored data against degradation when the storage
system is idle, i.e. stored holograms are neither newly written nor refreshed. In this context, two
different kinds of idle situations for a photorefractive medium must be distinguished. Firstly,
the material may be disconnected from the externally applied dc electrical field and additionally
held in the dark. Secondly the material may be held in the dark with the external field still
applied. In this section the latter situation will be focussed upon.

PR polymers require the application of a strong external electrical field and exhibit a non-
zero electrical conductivity even in the dark leading to a dark current permanently flowing
through the system. This feature has already been shown and discussed in section 5.2.2.).
Furthermore, due to the typically rather low dielectric constant in polymers (ε < 10), oppositely
charged charge carriers show a rather strong tendency to recombine. As a result of both of these
features, the PR space-charge distribution is slowly wiped out even when no light is applied to
the material and, hence, only rather short storage times are anticipated as well as found
experimentally. Thus, PR polymers are supposed to be not very promising candidates for
application as long term holographic data storage media in general. However, the dark decay of
holograms has always significant implications for a potential data storage system utilizing PR
polymers, since also a short term data storage device like e.g. a buffer system may be held in
the dark for some time with the external field still applied. So far, the dark decay of holograms
has mostly been neglected in the literature on organic PR materials.

In this section, a detailed investigation of the dark decay behavior of PVK based PR
polymers is presented. Different experimental conditions were applied and different glass-
transition temperatures Tg were taken into account. Furthermore, materials with and without
extrinsic deep traps were investigated. In order to obtain a unified measure of the dark decay
behavior, the combined logarithmic averages of the relaxation times were considered rather
than the particular decay time constants. Evidence will be given that the phase shift between the
illuminating interference pattern and the recorded index grating, the commonly accepted
fingerprint of photorefractivity, is one of the key parameters, yielding slower dark decay for
larger PR phase shift. 

5.5.1.)Experimental aspects
The investigated materials are derived from the first high performance PR polymer [13],

but with strongly improved long-term stability [136]. The compositions and the glass-transition
temperatures of the investigated materials A, B, C and D (not containing extrinsic deep traps)
and CT (doped with extrinsic deep traps) are listed in table 5-1 on page 211 as well as at the end
of the current section. PR devices were prepared according to “4.1.) Preparation of materials and
sample structure” on page 179. The active layer thickness was d = 125µm. The ambient
temperature was 20±0.5°C for all measurements. 

In order to determine and explain the dark decay behavior of the investigated materials
DFWM and 2BC experiments were carried out using a HeNe Laser (λ0 = 633 nm) and the
standard DFWM and 2BC setups as described in “4.2.) Wave mixing experiments” on
page 181. The experimental data were evaluated by the procedures described in the same
section. If required, the polarization anisotropy of the NLO chromophores was taken into
account as discussed in section 4.2.1.4.) on page 199. The decay dynamics of the PR gratings
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were fitted by bi- or tri-exponential decay functions. The combined logarithmic averages of the
particular relaxation times  were calculated according to eq. (5.2 - 26). In this section 
will be used as the only relaxation time measure. This point of view is based on theoretical
considerations to be discussed later in the text. The recording beams 1 and 2 were s-polarized
and exhibited varying internal intensities, which will be noted in the text below in close
correlation with the corresponding experiments. In all cases, a grating contrast of the
interference pattern close to unity was adjusted (m = 0,997 ± 0,003). 

During recording and dark decay the recorded hologram was probed by a p-polarized
beam counterpropagating to beam I01. Due to erasure of the PR grating upon uniform
illumination, the following precautions were taken in order to reasonably approximate “real“
dark decay: Firstly, the reading beam had more than 3 (for the lowest recording intensity) up to
almost 6 (for the highest recording intensity) orders of magnitude lower time-averaged intensity
(appr. 250 nW/cm2) than the recording beams. Secondly, the reading beam was only applied
from time to time using a fast magnetic shutter. Between the read-outs, the sample was held
completely in the dark. The applied reading beam intensity was a result of a trade-off between
the requirement of lowest light exposure possible during the dark decay of the probed
holograms and reasonable resolution for the diffraction signal to be obtained. A more detailed
discussion of the experimental procedure is given in “4.2.1.3.1.) DFWM measurement
procedures” on page 193. For all experiments the samples were pre-illuminated for 30min by
beam 2 in advance of recording a hologram. Unless otherwise noted, an external electrical field
of Eext = 32V/µm was applied to the samples. It is to be pointed out, that the maximum
achievable refractive index modulation at a given external field is different for the materials
investigated here. This has been discussed several times before in the frame of this work and
will not be elaborated upon again. It must be emphasized, that the applied measurement
technique can only approximate the actual dark decay of a holographic grating, since by probing
the grating light induced erasure occurs in any case. This is an inherent feature of DFWM
experiments and cannot be avoided. However, the quality of the approximation achieved with
the procedure as described above safely suffices in order to consider general trends. 

Furthermore, results on the relaxation dynamics of the orientational birefringence in the
investigated materials as determined by transmission ellipsometric experiments will be
included, which have already been presented and elaborated upon in detail in “5.4.1.3.1.)
Discussion of the ellipsometric experiments” on page 281. The setup used for these experiments
and the applied evaluation techniques are described in detail in “4.3.1.) Experimental
transmission ellipsometry setup and procedure” on page 207.

Table (5-8): Chemical composition and glass transition temperature of the materials 
investigated in “5.5.) Dark decay of PR gratings in PVK-based polymer composites”

Material DMNPAA MNPAA PVK ECZ TNF TPD Tg 

units [%wt] [%wt] [%wt] [%wt] [%wt] [%wt] [°C]

A 25 25 47 2 1 - 27

B 25 25 43 6 1 - 17.5

C 25 25 39 10 1 - 14

D 25 25 37 12 1 - 11.5

CT 25 25 38 10.18 1 0.82 14

τ〈 〉 τ〈 〉
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5.5.2.)Results of the dark decay experiments
Firstly, the relation between the relaxation dynamics of the orientational order of the NLO

chromophore dipoles in the investigated materials as determined by transmission ellipsometric
experiments and the dark decay kinetics of a PR grating in these materials (figure (5.5 - 1)) was
considered. For all materials, it was found that the PR dark decay kinetics is at least 30 times
(material A) and typically more than two orders of magnitude slower than the relaxation of the
orientational order of the chromophore dipoles in the materials. This proves that the PR grating
dark decay in all investigated materials is governed exclusively by the decay of the PR space-
charge field, i.e. in the dark essentially by the recombination of oppositely charged charge
carriers. The obtained dark decay curves exhibit multi-exponential behavior in contrast to
earlier results on a low-molecular-weight glass, where a simple mono-exponential behavior was
observed [90]. Please note, that the latter results were obtained using a rather strong reading
beam which, moreover, was applied at all times. Hence, the approximation of the real dark
decay behavior in the system investigated in [90] was significantly worse as compared to here.

In order to get a more detailed insight into the PR dark decay behavior of the investigated
materials under varying experimental conditions, the dark decay was determined for the
different experimental conditions denoted below. As will be discussed later, it was found

 Figure (5.5 - 1): (A) Dependence of the PR dark decay kinetics in the materials A, B, C and D on the 
reduced temperature Tr according to eq. (5.2 - 1) (open squares). The dark decay behavior was almost 

independent from the recording time of the PR grating and, thus, the data obtained for different recording 
times have been averaged here. The error bars indicate the variance of the logarithmically averaged PR 

dark decay response times for the applied interval of recording times. Furthermore, the fastest 
logarithmically averaged dark decay time constant obtained within the frame of this work is shown 

(material CT, 100sec high-intensity recording, open star) as well as the corresponding dark decay time 
constant of the same material but determined for 1000sec recording (open diamond). The PR dark decay 

behavior of material CT will be discussed in more detail later on. Figure (B) shows the decay of the 
orientational birefringence for material A, B, C (which is identical to material CT within experimental 
accuracy), and D as determined after 1000sec poling (solid circles). All data were obtained at Eext = 32V/

µm. The lines are guide to the eye. Please note the different y-scaling in plot (A) and plot (B).
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necessary to also consider the initial PR phase shift φ at hand when the dark decay is about to
start, i.e. at the end of the recording process. 

The dark decay including the initial PR phase shift in material C (not doped with extrinsic
deep traps) was determined as a function of the externally applied field as well as of the
recording time of the PR grating. One should expect that these parameters show a similar
influence as found before for the erasure behavior of a PR grating in the investigated type of
materials (“5.4.) The erasure behavior of PR gratings in PVK based polymer composites” on
page 271). The same experiments were carried out on a material containing extrinsic deep traps
(material CT). The recording process in material CT is much slower (about a factor of 5) as
compared to material C, which is in general agreement with earlier results reported by Malliaras
et. al. [16]. This is basically due to the reduced charge carrier mobility found in an electrically
conducting polymer matrix in the presence of deep traps [46] and has already been illustrated
before (figure (5.4 - 11)). Therefore, an improved dark stability of a hologram in material CT as
compared to material C should be anticipated. The results of the aforementioned experiments
are depicted in figure (5.5 - 2) and figure (5.5 - 3). 

Furthermore, the PR dark decay behavior and the initial PR phase shift for material C and
material CT were investigated for different recording intensities. For material C the dark decay
was determined for 6 different recording times and the decay curves were averaged in order to
obtain a master curve which then was fitted to yield the relaxation times. This procedure is
justified by the fact, that no recording time dependence of the dark decay behavior was found
for material C within experimental error (figure (5.5 - 3)), which was reproduced for each
recording intensity applied here (not shown). For material CT this procedure could not be
applied and in order to obtain the intensity dependence of the PR dark decay, a moderate
recording time of trec = 500sec was chosen, which already assured quasi steady-state conditions
for the recorded holograms. A higher external field of Eext = 48V/µm was required in order to
get a satisfactory diffraction signal at the very low recording intensity. The results of the
described experiments are depicted in figure (5.5 - 4).

 Figure (5.5 - 2): Dependence of the PR dark decay kinetics (solid symbols) and the PR phase shift (open 
symbols) for the materials C (squares) and CT (circles) on the externally applied electrical field Eext for 
trec = 500sec (material C) and trec = 1500sec (material CT) at Irec = 42 mW/cm2. The lines are guide to 

the eye.
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 Figure (5.5 - 3): Dependence of the dark decay kinetics (solid symbols) and the PR phase shift (open 
symbols) for material C (squares) and material CT (circles) on the recording time trec of the PR grating 

at Eext = 32V/µm and I0 = 42 mW/cm2. The lines are guide to the eye.
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 Figure (5.5 - 4): Dependence of the PR dark decay kinetics (solid symbols) and the PR phase shift (open 
symbols) for material C (squares) and material CT (circles) on the recording intensity Irec at Eext = 32V/
µm and for arbitrary recording times trec for material C (for details see text) and at Eext = 48V/µm and 

trec = 500sec for material CT. The lines are guide to the eye.
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5.5.3.)Discussion of the dark decay behavior
Cui et al. proposed a theoretical framework for the PR grating erasure process [83] in

polymers, which has been elaborated upon in detail in “2.5.3.2.3.2.) Cui’s approach to the
erasure dynamics” on page 128 and which was also successfully applied to the PR grating
erasure in “5.4.1.) PR grating erasure in systems without extrinsic deep traps” on page 272.
Neglecting charge-carrier diffusion, which is a valid assumption for the experimental conditions
applied here, they described the PR grating erasure by three contributions with the individual
rate constants according to eq. (5.4 - 6): 

.

Here, e is the elementary charge, µ is the charge-carrier mobility, n0 is the steady-state zero-
order component of the hole density, ε is the (bulk) dielectric constant, γG is the coefficient for
geminate recombination, γT is the hole-trapping coefficient, αG is the photo-generation rate, δ
is the characteristic value of the detrapping rate as discussed on page 129, and E0 is the
projection of the externally applied electrical field vector onto the grating wave vector K. The
detrapping rate is given by eq. (5.4 - 7):

,
where s is the cross-section for light induced detrapping, I is the light intensity, and ß is the
thermal detrapping rate. In the dark, the photo-generation rate is zero and, furthermore, the
steady-state zero-order hole density may be expected to become negligibly small in first
approximation. Therefore, the dark decay of a PR grating in polymers should eventually be
determined by the detrapping coefficient δ, which equals the thermal detrapping rate for I = 0.
Accordingly, the model predicts a mono-exponential dark decay behavior. However, mono-
exponential behavior in fact cannot be expected to be found experimentally, since the steady-
state zero-order hole density cannot be assumed to vanish completely for two reasons: At first,
the investigated type of PR polymers shows a notable dark conductivity resulting in a dark
current flowing permanently through the system as long as the external field is applied (see
figure (5.2 - 5) and [196]). The dark current in this case results from injection of charge carriers
from the ITO-polymer interfaces. Thus, even for the case when no light is applied, some zero-
order hole density must be implied. Secondly, a very weak uniform reading beam was applied
from time to time to the systems in order to probe the holographic grating, as described in the
experimental section. This also yields a non vanishing zero-order hole density, which is
refreshed or at least re-established periodically as long as the grating is probed. Accordingly,
multi-exponential behavior should be expected for the „real experiment“, although one may
safely assume that the detrapping coefficient δ dominates the overall dark decay behavior. This
point of view is supported by the experimental fact, that the slowest component of the multi-
exponential dark decay was by far the dominant component in all cases. In contrast, for light
induced PR grating erasure (i.e. n0 > 0) the slowest component has always been found to be the
least weighted component except for material A when the relaxation of the orientational order
dominated the PR grating decay. However, this can safely be excluded for the dark decay in all
materials investigated here, as illustrated by figure (5.5 - 1). 

The fact that a single parameter (the detrapping coefficient δ) should theoretically
dominate the overall PR dark decay behavior in the considered materials in the ideal case (i.e.
without any exposure during the grating decay and neglecting charge carrier injection from the
ITO-polymer interfaces) suggests to reduce the experimentally obtained bi- or tri-exponential

1 τ1⁄ eµn0( ) ε iKµE0+⁄=

1 τ2⁄ αG γ+ Rn0=

1 τ3⁄ δ γTn0+=

δ sI β+=
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dark decay behavior to a single relaxation time serving as a unified measure for the dark decay
of the PR grating. Accordingly, the combined logarithmic averages of the relaxation times 
according to eq. (5.2 - 26) was calculated.

Figure (5.5 - 1)(A) shows, that the materials A and B exhibit very similar dark decay
kinetics, although they were operated at significantly different reduced temperatures Tr
according to (eq. (5.2 - 1):

,
where Tg is the glass transition temperature of the material in question and RT is the ambient
temperature. Tr >> 0 for material A (Tr(A) ≈ +7), which, thus, is clearly a high-Tg material. In
contrast, Tr < 0 for material B (Tr(B) ≈ -2.5), which, accordingly, should already be considered
as a low-Tg system. However, in its dark decay behavior material B apparently is very similar
to material A, which will be discussed below in detail. At reduced temperatures even lower than
for material B, the PR dark decay becomes significantly faster in material C (Tr(C) ≈ -6) and
then further accelerates for material D, i.e., as a function of further decreased Tr (〈τdd〉C > 〈τdd〉D,
Tr(D) ≈ -8.5, figure (5.5 - 1)(A)). These results can be rationalized accounting for the findings
presented in “5.2.3.) The relation between the glass-transition temperature and the dynamic
performance in PVK based PR polymers” on page 243. 

Low-Tg systems exhibit slow collective motions inside the polymer matrix due to an
increasing long range coordinated molecular mobility of the polymer chain atoms as a function
of decreasing Tr < 0, as discussed in “2.4.1.1.) Phenomenology of viscoelastic transitions” on
page 71. Therewith, the local environment of the carbazole moieties acting as charge
transporting sites as well as trapping sites in the PR process changes as a function of time and
carbazole moieties currently acting as PR trapping sites may release their charge carriers. The
corresponding PR traps are thus cancelled. As also discussed in the above quoted paragraph, the
range of the coordinated motions of the polymer chain atoms in a glassy polymer matrix
increases significantly, when the reduced temperature Tr is decreased passing through zero from
Tr > 0. Accordingly, the degree of PR trap cancellation as a result of the slow collective motion
of the polymer matrix of a PR polymer is more pronounced for lower Tr < 0 and the effective
trap density is accordingly smaller. However, for the dark decay behavior, the effective PR trap
density is not the major concern but, as discussed before, the detrapping coefficient δ. The
detrapping coefficient, on the other hand, is not related to the trap density but to the dwell time
of a trapped charge carrier in a PR trap and, consequently, also the persistence of a PR trap
carrying a trapped charge carrier. The latter is also affected by the ability to collective motions
of the photoconducting polymer matrix since it is reasonable to assume that therewith also the
average life time of the PR traps is reduced, which is phenomenologically identical to a reduced
average dwell time of a trapped charge carrier in a PR trap. Accordingly, the detrapping
coefficient δ is decreased and an accelerated dark decay kinetics should be expected for
increasing ability to long range coordinated molecular motions of the polymer chain atoms. In
contrast, for Tr > 0° the polymer matrix becomes “frozen” and the effective PR trap density as
well as the average life time of PR traps is relatively large (i.e. the detrapping coefficient is
small) and independent from Tr. 

The above described status of a “frozen” polymer matrix clearly applies to material A, the
dark decay of which is slow due to the aforementioned small detrapping coefficient. In contrast,
material B behaves ambiguously in that it mechanically acts already approximately like a low-
Tg system, whereas its dark decay behavior clearly corresponds to a high-Tg system as already
mentioned (figure (5.5 - 1)(B)). This ambiguity of material B concerning its dark decay
behavior may be explained as follows: The aforementioned range of the coordinated molecular
mobility of the chain atoms in a polymer is a function of Tr and increases as Tr decreases for Tr

τ〈 〉

Tr Tg RT–=
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≤ 0° as discussed in “2.4.1.1.) Phenomenology of viscoelastic transitions” on page 71 (for Tr >
0°C, there is only a short range coordinated molecular mobility of the chain atoms).
Furthermore, the molecular orientational mobility of the chromophores can safely be assumed
to require a significantly shorter range of the coordinated molecular mobility of the polymer
chain atoms than a change of the energy landscape of the photoconducting polymer matrix, as
it is required for the cancellation of PR traps. Accordingly, material B, which has only a slightly
negative Tr(B) ≈ -2.5 may mechanically (i.e. in its poling properties) behave like a low-Tg
system rather than like a high-Tg system, whereas its inherent effective PR trap density as well
as its inherent detrapping coefficient may correspond to the situation found in a high-Tg system.
For the materials C and D the situation is clear again; they behave like low-Tg systems whereby
the detrapping coefficient in material D is smaller than in material C due to the smaller Tr ≤ 0°,
which results in a longer range coordinated molecular mobility of the chain atoms.

Please note that the above implications on the Tg-dependence of the dark decay behavior
are derived from the model developed in “5.2.3.) The relation between the glass-transition
temperature and the dynamic performance in PVK based PR polymers” on page 243 in order to
explain the appearance of a steady-state PR performance optimum as a function of Tr. The
applicability of this model to the current problem, in turn, strongly supports its general validity.

Now the dependence of the dark decay on the externally applied field (figure (5.5 - 2))
will be considered. According to “2.5.3.2.3.2.) Cui’s approach to the erasure dynamics” on
page 128, the detrapping coefficient δ in the present case is to be considered as an average
detrapping coefficient covering different kinds of traps.

Besides conformational traps and related species (e.g. carbazole dimers), which have been
referred to in order to explain the Tg dependence of the dark decay behavior in the systems
without extrinsic deep traps, charged sensitizers may be presumed as another important PR trap
species in material C as several times proposed in the frame of this work (e.g. in “5.3.) The
influence of the sensitizer concentration on the PR performance of PVK based polymer
composites” on page 257). Charged sensitizers are Poole-Frenkel traps, the detrapping behavior
of which is field dependent. Thus, a field dependence of the detrapping coefficient δ is implied
leading to accelerated PR dark decay as a function of an increasing external field Eext in
agreement with [90]. It was found that the dark decay basically becomes faster as a function of
the externally applied field in material C, which in general agrees with these considerations. 

However, it is not reasonable to assume that charged sensitizers are also a major PR trap
species in material CT, which is doped with an amount of extrinsic deep traps as large as the
concentration of sensitizer moieties. Since one can safely presume that the concentration of
charged sensitizers is always much smaller than the total concentration of sensitizer moieties as
discussed in “5.3.) The influence of the sensitizer concentration on the PR performance of PVK
based polymer composites” on page 257, the extrinsic deep traps should rather determine the
behavior of material CT as discussed in “5.4.2.) PR grating erasure in systems doped with
extrinsic traps” on page 300. The extrinsic deep traps are uncharged when empty why Poole-
Frenkel behavior cannot be implied. Accordingly, the detrapping coefficient δ in material CT
should exhibit a much less pronounced field dependence than in material C, if at all. Therefore,
the field dependence of the dark decay behavior of material CT, which is even more pronounced
than in material C, cannot solely be attributed to a field dependence of the detrapping
coefficient. This indicates that there must be another important factor besides δ, which
determines the dark decay behavior in the materials considered. 

Another important result is that the dark decay is generally faster in material CT than in
material C. This is a surprising result, since one should expect to observe a slower dark decay
in material CT as compared to material C due to the following reasoning: Comparing the
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magnitude of the Tg-dependence of the dark decay dynamics of the systems without extrinsic
deep traps according to figure (5.5 - 1)(A) with the magnitude of the field dependence of the
dark decay dynamics of material C according to figure (5.5 - 2), Poole-Frenkel traps appear to
be of minor importance as compared to conformational traps and closely related trap species.
As discussed above, in low-Tg systems like material C or CT, these are subjected to a trap
cancellation process due to slow collective motions of the photoconducting polymer matrix.
However, the energetic depth of the extrinsic deep traps is constant and, thus, they cannot be
subjected to this trap cancellation process. This suggests that the dark decay of material CT
should be slower as compared to material C as mentioned before.

It was even more striking that in both materials the dark decay depended strongly on the
intensity of the recording (!) beams I0 = I01 + I02 (figure (5.5 - 4)). Since the detrapping
coefficient δ at a given Eext and in the dark (i.e. I = 0) is a characteristic material constant, there
is no reason to anticipate a dependence of the PR dark decay on the intensity, which the
hologram was recorded with. One may now argue that δ is not constant and that optical
activation of deep trapping sites as discussed in “5.4.1.3.3.) Experimental verification of optical
trap activation” on page 285 may play a role, however, this would even imply the opposite trend
as found experimentally, i.e. the dark decay then should be accelerated for decreasing recording
intensity. In conclusion, it is once more strongly indicates that there must be a factor not taken
into account up to now, which significantly or even dominantly influences the dark decay
behavior of the investigated systems. 

 Figure (5.5 - 5): Illustration of the correlation between the displacement ∆ of the space-charge clouds 
and their mutual overlap for sinusoidal distributions. Solid line: one fringe of the intensity pattern 

corresponding to one fringe of the negative space charge distribution as well as one fringe of the positive 
space-charge distribution at 0° displacement. Dashed and dotted lines: one fringe of the positive space-

charge distribution at 90° and 180° displacement, respectively. Hatched areas: overlap area at 90° 
displacement (single line hatching + crossed line hatching) and 180° displacement (solely crossed line 

hatching). 
Diagram below: relative overlap (solid circles) normalized to 1 at 0° displacement and correlated PR 

phase shift φ (open stars), both as a function of the displacement ∆. The relative overlap is calculated for 
the actually implied periodicity of the space-charge clouds, whereas the upper illustration does not 

account for neighboring fringes involved.
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In order to find an explanation, the PR phase shift φ at the end of recording (which
corresponds to the beginning of the dark decay) as estimated from concomitant PR gain
measurements during recording was taken into account, which revealed a strong correlation
between the trends for φ as a function of the experimental variable and the corresponding trends
for the PR dark decay. This suggests that the recombination of charge carriers eventually
leading to the decay of the PR space-charge field depends on the displacement ∆ between the
positive and negative charge carrier distributions. Assuming that the negative carriers are
immobile and remain on the TNF sites, where they were initially generated, in zero-order
approximation (i.e. neglecting geminate recombination effects and, thus, allowing for mutually
unaffected coexistence of the oppositely charged space-charge clouds) the PR phase shift φ
would correspond to half the displacement ∆ and could, therefore, serve as a qualitative measure
for ∆. Accordingly, a larger φ would correspond to a larger ∆ with reduced mutual overlap
between the positive and negative charge carrier distributions. The described situation is
illustrated in figure (5.5 - 5). As the overlap is reduced, on the average an increasing number of
detrapped charge carriers may not find a suitable recombination site available, get trapped again
and, thus, contribute further to the overall PR space-charge field. Ostensively, the number of
detrapping and retrapping steps until a carrier will recombine and, thus, vanish for the PR space-
charge field should be expected to increase with decreasing overlap, since then less
recombination centers are available near a just detrapped and then mobile charge carrier. As a
result, the average number of recombination events per detrapping event should be reduced as
the displacement ∆ is increased and the dark decay, hence, would take longer. As depicted in
figure (5.5 - 4), φ indeed increases strongly with decreasing Irec yielding slower dark decay, in
agreement with the provided explanation. 

Now this interpretation will be checked for the field dependence of the dark decay in
material C as well as in material CT: With increasing externally applied field φ decreases
strongly in material CT (figure (5.5 - 2)) and, since simultaneously the dark decay becomes
faster, this is in agreement with the interpretation given above. In contrast, in material C φ
increases slightly when the externally applied field increases, which should lead to a
deceleration of the dark decay, but instead the decay is basically even slightly accelerated as a
function of increasing field. Obviously, in this case the phase-shift effect is compensated by the
field-induced decrease of δ due to the Poole-Frenkel effect, as discussed above. One may
speculate whether the phase shift effect eventually takes over determining the trend in the PR
dark decay as a function of Eext for the last field step, however, a single data point does not
suffice to make this a clear statement. 

As elaborated upon in “5.4.1.) PR grating erasure in systems without extrinsic deep traps”
on page 272, a strong dependence of the erasure kinetics on the recording time was found in
non-doped PVK-based materials. Therefore, one should expect a similar influence on the dark
decay kinetics, which, surprisingly, was not the case for material C (figure (5.5 - 3)). This
finding shows that the dark decay kinetics is independent of the actual strength of the hologram
(i.e., the number of charges involved in the formation of the space-charge field), which varies
by a factor of almost 5 from the shortest to the longest recording time applied to material C. In
contrast, in material CT doped with extrinsic deep traps, the dark decay strongly depends on the
recording time. Both these findings can also be explained by the phase-shift effect, since φ
increases strongly as a function of increasing recording time in material CT, while it varies little
in material C (figure (5.5 - 3)). The occurrence of optically activated deep traps as already
mentioned before may be responsible for a slight retardation of the dark decay at longer
recording times, whereas the phase shift seemingly slightly decreases. Although this is indicated
in figure (5.5 - 3), the effect is very small rendering this statement speculative.

On the other hand, the apparent fact that optical activation of deep trapping sites in
material C, the occurrence of which has been proven in “5.4.1.3.3.) Experimental verification
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of optical trap activation” on page 285, is of minor importance for the dark decay may indicate
that the detrapping process of these trapping sites is similar as for “normal” conformational
traps. One may assume that a mechanism similar to the trap cancellation process determines the
thermal detrapping of conformational traps. This would give further indication for the
attribution of the optically activated deep traps in PVK based polymers to carbazole dimers as
discussed in “5.4.1.3.6.) Conclusions on the nature of the PR traps” on page 296, since slow
collective motion of the conducting polymer matrix may not only release a carrier trapped in a
“normal” conformational trap, but may also crack such a carbazole dimer sandwich complex.

Finally, figure (5.5 - 6) depicts the logarithmically averaged dark decay times plotted
versus the estimated PR phase shifts for all experiments performed. This diagram reveals a clear
correlation between these quantities. The fact, that the observed trend is consistent even for both
the investigated materials indicates, that the PR phase shift represents a dominant factor for the
dark decay behavior, the general influence of which should not depend significantly on the
particular type of PR polymer. 

5.5.4.)Quintessence of the investigations on the PR dark decay behavior
In conclusion, a systematic investigation of the dark decay of holograms in PR polymers

was performed. The dark decay was found to be governed by the decay of the PR space-charge
field and - most remarkably - depended on the phase shift of the PR grating. This is particularly
important for the application of PR polymers. In order to store distortion-free images, the energy
transfer between the recording beams (2BC “gain”) is undesired, because it leads to fringe

 Figure (5.5 - 6): Dark decay time constants for all experiments (squares: recording time dependence; 
circles: field dependence; diamonds: recording intensity dependence) carried out on the dark decay of 

material C (open symbols) and material CT (solid symbols) depicted as a function of the corresponding 
PR phase shifts φ at the end of recording the holograms. Details of the particular experimental parameters 
are explained in the figure captions of figure (5.5 - 2) to figure (5.5 - 4). The lines are guide to the eye. 

The star indicates a manual extrapolation to φ = 90°, yielding <τdd> ≈ 2100sec.
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bending and to contrast loss of the hologram [B8, B16]. In order to avoid this, small gain
coefficients Γ are required, which (simultaneously assuming large index modulation
amplitudes) are correlated with small PR phase shifts. The latter, however, yield a fast dark
decay of the recorded information as is clearly demonstrated by the results presented here. Thus,
a trade-off between these counteracting trends will be necessary. The phase-shift effects may
even vary in different areas of an image (e.g. due to different intensities and/or different fringe
visibility m according to eq. (2.1 - 47)), leading to time-dependent contrast and distortion of
images subjected to idle periods during processing, where dark decay can take place.
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5.6.)Holographic multiplexing in PVK based PR polymers
In this section, the actual experimental application of the PVK based photorefractive

polymers investigated in the frame of this work for holographic data storage will be elaborated
upon. Holographic data storage is a promising technology for the storage of large amounts of
data. The basic theory underlying this storage technology has already been outlined in “2.3.3.)
Holographic data storage” on page 60. As discussed therein, in order to be useful for
holographic data storage applications, a material must be capable of achieving a high M-number
M/#, a property dependent on both the recording and erasure dynamics of the stored holograms.
In the preceding sections, the recording, erasure, and dark decay behavior of holograms in PVK
based photorefractive polymers was elaborated upon. In this section, the actual recording of
multiple holograms in the concerned materials by peristrophic multiplexing shall be considered.
The technique of peristrophic multiplexing has been explained in “2.3.3.2.2.) Holographic
multiplexing methods” on page 63. It will be demonstrated, that the simple multiplexing
schedule as derived in “2.3.3.3.) System metrics for holographic multiplexing in erasable
media” on page 65 fails for the investigated class of materials. Therefore, a new recording
schedule is devised in order to account for the variation of the erasure time constants as a
function of the recording time. Applying the new exposure schedule, the M/# measured from
the recording of 20 equalized holograms was 0.3.

5.6.1.)Experimental aspects
The compositions and the glass-transition temperatures of the used materials B (not

containing extrinsic deep traps) and BT (doped with extrinsic deep traps) are listed in table 5-1
on page 211 as well as at the end of the current section. PR devices for the peristrophic
multiplexing experiments were prepared according to “4.1.) Preparation of materials and
sample structure” on page 179. The active layer thickness was d = 125µm. The temperature in
the air-conditioned laboratory was 24±0.5°C for all measurements.

The recording and erasure dynamics of the used materials was determined by DFWM
experiments using a HeNe Laser (λ0 = 633 nm) and the peristrophic multiplexing setup as
described in “4.2.1.5.) Holographic multiplexing experiments” on page 201, however, without
operating the rotation stage. The experimental data were evaluated as described in “4.2.1.3.2.3.)
DFWM evaluation procedure” on page 197. 

The peristrophic multiplexing experiments were carried out using a HeNe Laser (λ0 = 633
nm) and using the setup and experimental procedures as described “4.2.1.5.) Holographic
multiplexing experiments” on page 201. The experimental data were evaluated as described in
the same section.

For all experiments the recording beams were both s-polarized and had internal intensities
of I01 ≈ 400µW/cm2 and I02 ≈ 250µW/cm2 yielding a grating contrast of m ≈ 0.95. The readout
beam was p-polarized with an internal intensity of approximately 3µW/cm2. For erasure, a
fourth non-Bragg matched beam with normal incidence was used having an internal intensity of
approximately 650µW/cm2. An external dc electrical field of Eext = 62 V/µm was applied to the
samples in all cases.

Prior to each experiment on the recording/erasure dynamics as well as prior to each
sequence of peristrophic multiplexing experiments (i.e. a complete recording sequence of
multiple holograms and their subsequent readout) the samples were pre-illuminated by
recording beam I02 for 15min with the external field already applied.
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5.6.2.)Theoretical considerations - derivation of a suitable multiplexing 
schedule

Today, the M-number M/# is widely accepted as a general measure for the data-storage
capacity of an arbitrary holographic storage system. According to “2.3.3.3.2.) The M-number
(M/#)” on page 68, M/# is calculated by eq. (2.3 - 65):

,

where A0 is the maximum single-hologram grating strength, τr is the recording time constant,
and τe is the erasure time constant. As already discussed in “2.3.3.3.) System metrics for
holographic multiplexing in erasable media” on page 65, this formalism presumes mono-
exponential recording and erasure dynamics for a single hologram and implies fairly small
refractive index modulations for the individual holograms (i.e. η < 0.1, which allows for the
approximation: ). The first assumption, however, is not fulfilled in organic PR
materials since the recording as well as the erasure behavior of this class of materials is multi-
exponential, as demonstrated several times in the frame of this work. Moreover, the formalism
leading to eq. (2.3 - 65) presumes that the recording and the erasure dynamics are independent
from each other, which is also not the case in the materials under investigation, as elaborated
upon in “5.4.) The erasure behavior of PR gratings in PVK based polymer composites” on
page 271. Thus, eq. (2.3 - 65) cannot be applied here in order to obtain a reasonable value of M/
#.

However, M/# can alternatively be determined experimentally on the basis of eq. (2.3 -
64):

,

which, therefore, is rewritten as:
,  eq. (5.6 - 1)

where M is the number of recorded holograms and  is the grating strength of a single
hologram. It is clear that M/# calculated by means of eq. (5.6 - 1) only has physical significance,
if the recorded holograms exhibit equal or at least very similar grating strengths. Then, eq. (5.6
- 1) may be formulated in terms of a sum over the grating strengths of the particular holograms
recorded:

Table (5-9): Chemical composition and glass transition temperature of the materials 
investigated in “5.6.) Holographic multiplexing in PVK based PR polymers”

Material DMNPAA MNPAA PVK ECZ TNF TPD Tg 

units [%wt] [%wt] [%wt] [%wt] [%wt] [%wt] [°C]

B 25 25 43 6 1 - 17.5

BT 25 25 40 8.18 1 0.82 17
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.  eq. (5.6 - 2)

The most important issue for the above approach is to have a suitable exposure schedule,
which allows to record multiple holograms of approximately equal strength. Figure (5.6 - 1)
shows a characteristic example, which indicates that a standard exposure schedule calculated
according to eq. (2.3 - 51) and eq. (2.3 - 61) and using a logarithmically averaged erasure time
constant calculated according to eq. (5.2 - 26) does not meet this requirement. As already
mentioned above, this is due to the complex recording/erasure behavior of the investigated
materials. In order to solve for this problem, single-hologram erasure curves were measured for
different recording times between 2 seconds and 50 minutes. They were each fitted by a series
of decaying exponentials for material B or a series of decaying and growing exponentials for
material BT, which exhibits the effect of further increasing PR grating strength during the initial
erasure process, as discussed in “5.4.2.) PR grating erasure in systems doped with extrinsic
traps” on page 300. Accounting for the complex recording/erasure behavior of the materials
considered, the strength wm of the hologram m, after being erased for the time te calculates
according to:

,  eq. (5.6 - 3)
where tm is the time the hologram m was recorded for. The coefficients Aei(tm) as well as the
time constants τei(tm) were determined experimentally by fitting the erasure curves. The
formalism allows for taking into account a recording time dependence of the erasure dynamics.
Therefore, the pre-exponential factors as well as the time constants of the exponentials
describing the grating decay are taken as a function of the recording time of the particular
holograms. The strength wM of the last hologram M is:

 ,  eq. (5.6 - 4)
i.e., te = 0 is presumed. The second to last hologram M-1 must be recorded for the time tM-1,
which can then be computed by numerically solving the relation:

 ,  eq. (5.6 - 5)
since the second to last hologram will be partially erased while the last hologram is recorded.
Therewith, the times necessary for recording all holograms can numerically be obtained
recursively using the relation:

.  eq. (5.6 - 6)

When using this method for computing the recording schedule, the recording time for the
last hologram must be chosen with special care depending on the dynamics of the material and
the total number of holograms to be recorded. If, for instance, the recording time for the last
hologram is chosen too long, the holograms to be recorded earlier can physically not be
recorded to sufficient strength in order to finally yield equal strength for all holograms. Thus, a
solution for the recording schedule cannot be found. In contrast, if the recording time for the last
hologram is chosen too short, a solution will be found, however, the strength of all the
holograms will not be optimal, i.e. the dynamic range of the material is not entirely used. In
order to find the recording schedule that would give best performance, a numerical routine for
the optimization of tM was used. As upper limit for the recording time the maximum recording
time was taken for which experimental values stemming from the single-hologram recording/
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erasure experiments were on hand. In order to numerically solve eq. (5.6 - 6) it is necessary to
evaluate eq. (5.6 - 3) for arbitrary values of tm. Since the coefficients Aei(tm) and erasure time
constants τei(tm) were only obtained experimentally for discreet values of tm, the measured data
were interpolated for values of tm not corresponding to a direct measurement.

5.6.3.)Results and discussion of the holographic multiplexing experiments
Please note at first, that the investigated materials B and BT were operated at an ambient

temperature of RT = 24±0.5°C. Therefore, a reduced temperature of Tr ≈ -6°C according to eq.
(5.2 - 1) applies for the investigated materials whose PR behavior as a function of the reduced
temperature corresponds to the materials C and CT in the preceding sections, respectively.

Figure (5.6 - 1) shows a typical example of an attempt to record a number of holograms
into material B using peristrophic multiplexing and the standard exposure schedule calculated
according to eq. (2.3 - 51) and eq. (2.3 - 61) and using the logarithmically averaged erasure time
constant. The latter was calculated according to eq. (5.2 - 26) from the particular time constants
obtained in one single-hologram recording/erasure experiment carried out applying an arbitrary
recording time. Obviously, the requirement of similar strength of the recorded holograms is not
met and, thus, no M/# with physical meaning can be calculated. This proves that the standard
exposure scheduling is inadequate for the materials concerned.

Therefore, a novel exposure schedule was devised, which accounts for the complex
recording/erasure behavior of the investigated materials as described in the preceding section.
By means of this method, a schedule for the recording of 11 holograms using peristrophic
multiplexing was calculated, but only the last 10 recording times were used to multiplex 10
holograms, since the first of the computed recording times was unreasonably long (>> 1h). The
grating strengths obtained are shown in figure (5.6 - 2) (solid symbols).

 Figure (5.6 - 1): Peristrophic multiplexing of 20 holograms in material B using the standard exposure 
schedule, i.e. presuming mono-exponential recording/erasure dynamics.
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Figure (5.6 - 2) proves that the novel schedule works in principle, however, the last few
holograms are decreasing in strength. One suspected reason for this might be the grating
erasure, which was performed by the weak reading beam during readout of the holograms. Since
the erasure behavior of a particular hologram depends on the time the hologram was recorded,
each multiplexed hologram experiences another degree of erasure during the readout sequence,
which was not taken into account when deriving the recording schedule. On the other hand, it
seems questionable whether it would make sense to take this effect into account for the exposure
schedule, since the exposure schedule then would be a function of the succeeding readout
sequence(s). Another reason for the decreasing strength of the last few holograms may be found
in an experimental mistake, which was not recognized until this project was closed. The single-
hologram recording/erasure experiments underlying the numerical calculation of the exposure
schedule were performed using a non Bragg-matched erasure beam, whereas the erasure of the
earlier holograms during peristrophic multiplexing was conducted Bragg-matched by the
reference beam as well as non Bragg-matched by the signal beam. The Bragg-matched erasure
by the reference beam must be expected to cause some degree of grating refreshment as several
times pointed out in preceding sections. Thus, earlier holograms are supposed to be a little less
erased during recording of the later holograms than assumed for the exposure schedule. 

Please note, that dark decay effects as stated in the original publication ([212]) cannot be
made responsible for the decreasing strength of the last few holograms, since the dark decay of
the holograms in material B does not depend on their recording time as shown in “5.5.) Dark
decay of PR gratings in PVK-based polymer composites” on page 317.

 In order to compensate for the deviations in the hologram strength, the recording schedule
was empirically modified by adding 1 second to each recording time, resulting in more even
holograms with an average strength of 0.0235 to 0.0277 (figure (5.6 - 2), open symbols). The
M/#’s obtained from the two schedules according to eq. (5.6 - 2) were M/# = 0.24 original
schedule and M/# = 0.26 for the empirically modified schedule. 

Under the experimental conditions applied here a diffraction efficiency of η ≈ 0.1 was
achieved for a single hologram, which corresponds to a grating strength of 0.32. It must be point
out, that the obvious similarity of this value with the M/#’s given above is accidental and that

 Figure (5.6 - 2): Strength of 10 multiplexed holograms recorded in material B using the novel expanded 
exposure schedule for multi-exponential dynamics (solid circles) and with the empirically altered 

schedule (open circles)
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the single hologram diffraction efficiency must not be considered as an indicator of the possible
M/# for a material. The measurement of M/# takes into account dynamic effects, which are
completely ignored in a steady-state single-hologram experiment. Thus, a material capable of a
large single hologram index modulation is not necessarily capable of a correspondingly large
M/#.

In an attempt to modify the dynamics of the material allowing to record more than 10
holograms, material BT was created, which contained a small fraction of the hole conductor
TPD acting as a deep hole trap in the photoconducting PVK matrix. As repeatedly discussed
before, this results in a reduced charge-carrier mobility in the PR composite in question and,
hence, slower response in both build-up and erasure of a hologram was anticipated as well as
found experimentally. On the other hand, the steady-state diffraction efficiency for a single
hologram was found almost unchanged as compared to the material without TPD (material B).
The first experimental results, furthermore, showed that for short recording times subsequent
“erasure” actually yields further development of the hologram. The diffraction efficiency
reaches a maximum during initial erasure and then begins to decay. A detailed investigation on
this effect is presented in “5.4.2.) PR grating erasure in systems doped with extrinsic traps” on
page 300. This was taken into account for the exposure schedule by including a growing
exponential term into the fits. Figure (5.6 - 3) illustrates the time history of the hologram
strength during recording with an exposure schedule for recording 10 holograms in material BT.

Using the same procedure as described above, peristrophic multiplexing experiments
were carried out on material BT in order to record 20 and 30 holograms. The results are depicted
infigure (5.6 - 4)). 

 Figure (5.6 - 3): Illustration of the time history of the hologram strengths during multiplexing 10 
holograms in material BT. The vertical dashed lines mark the end of recording for one hologram and the 

start of recording for the next hologram. The build-up of holograms is indicated by light grey lines, 
whereas dark grey lines indicate the subsequent erasure period during which succeeding holograms are 

processed.
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Overall, the uniformity of the recorded holograms was very good with the major
deviations occurring only at the boundaries. Using eq. (5.6 - 2), M/# = 0.30 was obtained for the
case of 20 holograms and M/# = 0.23 for the case of 30 holograms. The smaller M/# for the case
of 30 holograms as compared to the case of 20 holograms may be attributed to the
correspondingly longer erasure period by the weak readout beam for the readout sequence as
already discussed above. This point of view is supported when considering the average
hologram strength, which would yield M/# = 0.27 for both cases (figure (5.6 - 4), grey
horizontal lines). Obviously, the notably higher M/# achieved for 20 holograms must be
attributed on the one hand to the deviations in the hologram strengths at the boundaries, whereas
the notably smaller M/# achieved for 30 holograms seems to be due to a loss in hologram
strength occurring for larger hologram numbers on the other. The hologram strength increasing
again for the last few holograms in the latter case may be attributed to the complex erasure
behavior of material BT as mentioned before. 

In the case of material BT, one may have to account for a dark decay behavior of the
particular holograms depending on the recording time as shown in “5.5.) Dark decay of PR
gratings in PVK-based polymer composites” on page 317. This is an important issue, since the
recorded manifold of holograms may loose its equality in strength, if there is a notable delay
between recording and read-out where dark decay can take place. Therefore, in order to get a
more detailed insight into the influence of dark decay on the relative strength of the multiplexed
holograms in material BT, 20 holograms were recorded with the schedule discussed above and
then read out after varying delay times td. Prior to each cycle, gratings remaining from previous
recording were completely erased. Figure (5.6 - 5) depicts the resulting M/#’s as a function of
the delay time td.

 Figure (5.6 - 4): Strength of multiplexed holograms recorded in material BT using the empirically 
altered, expanded exposure schedule for multi-exponential dynamic behavior of the recording medium. 
20 holograms (solid circles) and 30 holograms (open circles) were recorded. The grey horizontal dashed 
(for 20 holograms) and dotted lines (for 30 holograms) indicate the average hologram grating strength 

yielding M/# = 0.27 in both cases.
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As expected, the apparent M-number decreases with increasing delay time td, because all
holograms decay with time. A similar dependence should be expected for material B, however,
according to the results presented in “5.5.) Dark decay of PR gratings in PVK-based polymer
composites” on page 317 less pronounced than for material BT.

However, since the dark decay is different for each individual hologram in material BT
due to the recording time dependence of the dark decay in this material, the inequality between
the holograms increases as a function of td (figure (5.6 - 6)), and the calculated M/# therewith
looses its physical significance. 

 Figure (5.6 - 5): Dependence of M/# on the delay time td between recording and the beginning of 
readout in material BT. The line is guide to the eye.
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 Figure (5.6 - 6): Strength of 20 multiplexed holograms in material BT after delays of td = 0min 
(squares), td = 4min (circles), td = 10min (up triangles), and td = 30min (down triangles)
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5.6.4.)Conclusions from the holographic multiplexing experiments in PR 
polymers

An expanded numerical formalism for a multiplexing exposure schedule derived from the
standard model as outlined in “2.3.3.3.1.) The exposure schedule” on page 66 and based on
multiple exponential build-up and erasure dynamics of the holograms was developed. This
novel formalism in general allows to determine a suitable recording schedule for an arbitrary
storage medium not exhibiting mono-exponential dynamic behavior.

Peristrophic multiplexing experiments using this novel formalism were carried out in
order to experimentally test the storage capabilities of PVK based PR polymers. An M-number
M/# ≈ 0.25 was obtained and proved to be very similar in both types of materials investigated.
The material doped with extrinsic deep traps allowed for multiplexing of more holograms,
which can be attributed to the fact that for short recording times the holograms still increase in
strength while being erased. 

While PR polymers are capable of achieving very large single-hologram diffraction
efficiencies, several problems have been revealed, which remain to be solved before this novel
class of materials may be applied in holographic data storage. The dependence of the erasure
time constants and, in the case of the trap-doped material, also the dark decay time constants on
the recording time causes the holograms to loose their equality shortly after recording has been
completed. Furthermore, in general relatively fast dark decay times pose serious problems for
persistent data storage. However, in its current state the material might be useful in associative
memories, where one image is simultaneously compared with all images of a data base, but
long-term storage is not intended. 
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6.)Summary and Conclusion
In the frame of this work PVK-based PR polymer composites closely related to the first

high performance PR polymer [13] were investigated. Therefore, the composition of the
investigated type of material was systematically altered, and various experimental conditions
were applied. The main objective of this work was to get a more detailed insight and a better
understanding of the dynamic recording, erasure and dark decay behavior of holograms in this
type of PR polymer. Steady-state performance issues were also addressed as they yield
important information on the general properties of the PR space-charge field for the varying
material compositions and experimental conditions applied. All investigations eventually
focussed on the question, whether PR polymers may be suitable candidates as recording media
in holographic mass data storage devices. This point was finally addressed experimentally,
when the general holographic multiplexing capabilities of the investigated type of material were
examined. 

In chapter 5.1.), a simplified model calculation based on Kogelnik’s coupled equations
was carried out in order to obtain an overview of the general diffraction properties of a hologram
in PR polymers in presence of strong beam coupling. The latter was suspected to be responsible
for the incomplete diffraction at the diffraction maximum in PR polymers, which is commonly
observed experimentally. Although the applied simulation model contains strong
simplifications, it could be proven that hologram bending due to strong 2BC does not notably
affect the diffraction properties of a grating in organic PR devices within the range of the
externally applied field experimentally possible. The degree of incomplete diffraction
commonly observed experimentally could not be reproduced by the simulation. Hence, the
physical reason for this observation remains unclear.

In chapter 5.2.) the dependence of the steady-state and the dynamic PR performance of
the considered materials on the glass-transition temperature Tg was focussed upon. Material
compositions containing various amounts of molecular dipoles were investigated. Tg was varied
by adding different amounts of plasticizer. The reduced temperature Tr = Tg - RT (ambient
temperature) was identified as a factor of outstanding importance. 

A steady-state performance optimum in the highly-doped materials as a function of the
reduced temperature was observed for the first time. The performance optimum is a result of
two counteracting effects: On the one hand, the orientational mobility of the chromophores
becomes better with decreasing Tr leading to a reduction of the external field required to achieve
a certain degree of poling. On the other hand, for decreasing Tr < 0°C the PR space-charge field
Esc is more and more reduced as a result of a decrease of the effective PR trap density due to
slow collective motion of the photoconducting polymer matrix, which facilitates the release of
charge carriers trapped in conformational traps.

Investigating the holographic recording dynamics in the high-Tg (i.e. Tr > 0°C) organic
PR composites it was found that the grating build up speed is limited by the (re)orientation of
the EO chromophores under the influence of the local total poling field leading to faster
response at lower Tr. The grating build-up time also depends strongly on the chromophore
density. This may be attributed to the self-hindrance of the chromophores molecules in the
highly-doped materials, which reduces the apparent orientational mobility of the chromophore
dipoles in the polymer matrix. In the low-Tg regime (i.e. Tr < 0°C) the response times of the
materials with different chromophore content become rather similar and do no longer depend
systematically on Tr. In this regime, the formation of the space-charge field is the rate-limiting
step in the onset dynamics of the refractive index modulation.
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In chapter 5.3.) the influence of the sensitizer concentration on the steady-state and the
dynamic PR behavior of the investigated type of PR polymers was considered. Strong indication
was found that the active PR trap manifold in the common type of PVK-based PR polymers
utilizing TNF as sensitizer consists of two different types of traps. On the one hand there are
conformational traps, which exist ab initio and the number density of which does not depend on
the sensitizer content. The conformational traps are the dominant species in materials doped
with very small amounts of sensitizer up to 0.4%wt. On the other hand, there are Poole-Frenkel
traps (coulombic traps) stemming from ionized sensitizer moieties. These add to the
conformational traps and become important for higher sensitizer concentrations of about
0.8%wt, leading to improved steady-state PR performance. For even markedly higher TNF
concentrations, the Poole-Frenkel traps finally dominate the PR behavior. It is an inherent
property of Poole-Frenkel traps that they are generated during the PR recording process and,
thus, that their number density is a function of time. The more complicated trap situation for
higher TNF concentrations apparently complicates the PR recording behavior, which is mono-
exponential for very low TNF concentration and then becomes multi-exponential as the TNF
content increases and exceeds 0.4%wt. The build-up behavior of the PR grating for increasing
TNF content was compared with theoretical considerations based on Kukhtarev’s model. Strong
indication was found that the PR build-up dynamics of the investigated type of PR polymers is
limited by the charge carrier mobility for TNF concentrations exceeding 0,2%wt.

In order to serve as a suitable storage medium in holographic mass data storage devices,
a holographic recording medium must be capable of achieving good performance in
holographic multiplexing. The crucial parameters defining the performance of a holographic
recording medium in holographic multiplexing, however, are the dynamic range, i.e. the steady-
state performance, and the relation between the build-up dynamics and the erasure dynamics of
the holograms. Therefore, in chapter 5.4.) the general erasure behavior of PR gratings in the
considered type of materials was investigated in detail applying various experimental
conditions and taking into account different glass-transition temperatures. Furthermore, the
influence of extrinsic trap doping was investigated. 

The PR grating erasure in materials without extrinsic deep traps was investigated taking
into account different glass-transition temperatures. As expected from the investigations on the
Tg dependence of the PR performance of the considered materials, the orientational relaxation
of the NLO chromophores in the polymer matrix was found to govern the PR grating erasure
dynamics in the high-Tg regime (i.e. Tg > RT, ambient (“room”) temperature), whereas the decay
of the PR space-charge field determines the PR grating erasure dynamics the low-Tg regime (i.e.
Tg < RT). In all cases, the erasure dynamics of the PR grating depended on the recording time
of the grating. The grating erasure process was found to slow down as a function of increasing
recording time. In the high-Tg regime this can be attributed to a viscous flow of the polymer
matrix. In contrast, in the low-Tg regime optical activation of trapping sites turned out to be
responsible for the observed retardation of the grating erasure. By means of a theoretical model
for the PR grating erasure in polymers, two fundamentally different types of optically activated
traps could be identified. On the one hand, Poole-Frenkel traps are generated as already found
before. These traps seem to determine the initial grating erasure. On the other hand, deep traps
are optically activated, which might be carbazole dimer radical cations and which seem to
govern the erasure behavior on longer time scale. These two kinds of PR traps behave
fundamentally different: the former show Langevin behavior and the latter do not. Accordingly,
multiple trap theoretical models for the PR effect in PR polymers must be applied in order to
describe these systems sufficiently accurate. 

The formation of carbazole dimers apparently strongly depends on Tg. Since
conformational traps may be assumed to be the precursors for the dimer formation, the Tg-
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dependence of the dimer formation may be explained by the slow collective motion of the
conducting polymer matrix occurring in materials with Tg < RT leading to a smaller apparent
density of conformational traps as already proposed before.

 The fact that the charge carrier trap situation (i.e. the number density of traps as well as
the structure of the trap manifold) in PR polymers obviously changes significantly during
recording of a PR grating leads to important implications: At first, it renders any fitting of PR
recording data purely phenomenological, since the fitting parameters are time dependent.
Secondly, the resulting recording time dependence of the erasure dynamics in the investigated
type of PR polymers may be expected to pose problems when trying to apply this class of
materials in holographic multiplexing. 

Finally, the potential applicability of the investigated systems for holographic
multiplexing was estimated by comparing the ratios between averaged measures of the
holographic recording and erasure times. A relative optimum of the theoretical multiplexing
capabilities as a function of the reduced temperature was identified for Tr = -6°C, however, the
presented results already imply very limited multiplexing capabilities in general.

Furthermore, the erasure behavior of PVK-based PR polymers was investigated, which
exhibit trap controlled charge transport [46]. It was observed for the first time, that the DFWM
diffraction efficiency further increases during erasure of a PR grating applying short recording
times and low recording as well as low erasure intensity. In order to understand this
phenomenon, the evolution of the PR phase shift during recording as well as erasure of PR
gratings was considered. For this purpose, a novel measurement technique was devised, which
allows to obtain a measure for the time dependence of the PR phase shift during erasure of the
hologram. The PR phase shift was found to be a function of time during recording as well as
erasure. 

A phenomenological mechanistic picture of the recording and the erasure process of a
hologram in a material showing trap controlled charge transport was developed taking into
account the spatial distribution of electrical fields within the PR grating. The model presented
is based on the assumption that filling of the traps is required before a notable drift of charge
carriers over longer distances may take place. The electrical fields inside the material and their
influence on the charge carrier generation efficiency and charge carrier mobility are taken into
account in order to explain the details of the time history of the PR phase shift. The model can
explain the experimental observation of further increasing DFWM diffraction efficiency during
erasure of a PR grating. The quality of this effect depends on the applied electrical field and, in
particular, on the applied recording time, both of which are inherent features of the proposed
model.

The presented phenomenological model infers that holograms in the investigated type of
material are inherently not stable neither during recording nor during erasure. The dependence
of the general form of their erasure kinetics on the recording time implies image distortions
during the processing of the holograms. The complicated correlation between recording time
and erasure dynamics of the holograms must again be expected to pose problems for a potential
application of this type of material in holographic multiplexing. 

Another important issue when considering the potential applicability of the investigated
materials for holographic mass data storage is the stability of the recorded holograms in the
dark. Therefore, in chapter 5.5.) a systematic investigation of the dark decay of holograms in
PVK-based PR polymers was performed taking into account different glass-transition
temperatures as well as extrinsic trap doping. In any case, i.e., even in the high-Tg regime, the
dark decay was found to be governed by the decay of the PR space-charge field and - most
remarkably - was found to depend on the phase shift of the PR grating. Small PR phase shifts
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yielded a fast dark decay of the recorded information, whereas the dark decay is increasingly
retarded as the phase shift becomes larger.

These results are particularly important for the application of PR polymers. In order to
store distortion-free images, energy transfer between the recording beams (PR gain) is
undesired, because it leads to fringe bending and to contrast loss of the hologram. In order to
avoid this, small gain coefficients Γ are required. In high performance PR polymers, these are
typically correlated with small PR phase shifts, yielding fast dark decay of the hologram. The
phase-shift effects may even vary in different areas of an image, leading to time-dependent
contrast and distortion of images subjected to idle periods during processing, where dark decay
can take place.

Eventually, in chapter 5.6.) the general feasibility of holographic multiplexing in the
investigated type of materials was investigated. These investigations were carried at CalTech in
the group of Prof. Demitri Psaltis, a well known expert in the field of holographic data storage,
and in close cooperation with Dr. Gregory Steckman. 

An expanded numerical formalism for a multiplexing exposure schedule was devised,
which was derived from the standard model and based on multiple exponential build-up and
erasure dynamics of the holograms. This novel formalism in general allows to determine a
suitable recording schedule for an arbitrary storage medium not exhibiting mono-exponential
dynamic behavior. Furthermore, the formalism allows for taking into account a recording time
dependence of the erasure dynamics. In this case, the pre-exponential factors as well as the time
constants of the exponentials describing the grating decay are taken as a function of the
recording time of the particular holograms. The exposure schedule obtained applying this
formalism, however, is strictly limited to a particular material and a certain multiplexing
experiment.

Two low-Tg materials exhibiting very similar glass-transition temperatures were chosen
for the multiplexing experiments. The one of these materials was doped with extrinsic deep
traps and the other one was not. Peristrophic multiplexing experiments were carried out using
this novel formalism in order to experimentally test the storage capabilities of the investigated
types of materials. An M-number M/# ≈ 0,25 was obtained and proved to be very similar in both
materials. The material doped with extrinsic deep traps allowed for multiplexing of more
holograms, which can be attributed to the fact that for short recording times the holograms still
increase in strength while being erased. However, the dependence of the erasure time constants
and, in the case of the trap-doped material, also the dark decay time constants on the recording
time caused the holograms to loose their equality shortly after recording has been completed. 

Holographic mass data storage promises very high storage density. The retrieval of
holographically stored data is intrinsically of parallel nature, which allows for fast data rates.
Holographic storage media may actively participate in data processing since they offer the
possibility of associatively comparing data already inside the holographic storage medium.
Although these features are most preferable for mass data storage systems, up to now
holographic data storage could not be established for commercial use. This was basically due to
technical problems during the first decades, many of which have been solved during the last
decade. However, the major problem still remaining is the question for an appropriate storage
medium, which could not be answered satisfyingly, yet.

At first sight, photorefractive polymers appear to be very promising candidates for
rewritable holographic storage media mainly due to the following properties: PR polymers
exhibit good optical quality. They are easy to process, and their particular properties can easily
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be tuned. PR polymers are capable of achieving very large single-hologram diffraction
efficiencies and feature excellent reproducibility. Last but not least, PR polymers are low cost
materials.

However, in this thesis, several problems have been revealed, which render this novel
class of materials in its current state not suitable for application as rewritable holographic mass
data storage media. Although PR polymers are capable of achieving large single hologram
diffraction efficiencies, the rather unfavorable ratio between the hologram recording and
erasure dynamics allows for only fairly small M-numbers of about M/# ≈ 0,25. Even more
importantly, the complicated relationship between the recording and erasure dynamics of
holograms in PR polymers requires a very sophisticated exposure scheduling in holographic
multiplexing. Especially the pronounced dependence of the erasure dynamics on the recording
time of the particular holograms would make it very difficult to operate a holographic storage
device using PR polymers as storage medium. Furthermore, in general relatively fast dark decay
times, which again depend on the recording conditions in some cases including also the
recording time, pose serious problems for persistent data storage as well as for the equality of
the diffraction properties of the stored manifold of data pages. Finally, there is strong indication
that stored images are subjected to distortion during erasure and, in particular, during idle
periods of the storage system, where dark decay can take place. This must be expected to have
a negative impact on the bit error rate, which is additionally strongly time dependent.

Summing up all the aforementioned shortcomings of PR polymers leads to the conclusion,
that a potential application of this novel class of materials in its current state as storage medium
in rewritable holographic mass data storage devices cannot reasonably be implied. 

Besides the question for a potential applicability of PR polymers as holographic mass data
storage media, this thesis has addressed important mechanistic aspects of the PR effect in
polymers leading to the observed dynamic behavior. The photorefractive trapping of charge
carriers was identified to play a major role in particular for the decay, but also for the build-up
of the PR space-charge field. In order to achieve progress in developing PR polymers, which
may be more suitable for a potential application as holographic mass data storage media,
concepts will have to be found, which reduce the complexity of the PR trap manifold and
provide a trap situation, which is constant in time. However, the present state of knowledge
about charge carrier traps in amorphous PR organic materials suggests that both a complex
structure of the PR trap manifold as well as a time dependent PR trap situation are inherent
properties of this class of materials. Thus, it seems currently out of sight, whether PR polymers
may ever be considered as promising candidates for storage media in rewritable holographic
mass data storage devices.

However, the material investigated in the frame of this thesis might be useful for real-time
holographic applications, where long-term storage is not intended. Examples for such
applications are associative memories, where one image is simultaneously compared with all
images of a data base, or in applications as holographic buffer memories [224, 227], or in optical
coherence tomography applying time gated holographic imaging (TGHi) [4].
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Appendix A

Overview of various storage parameters for selected PR materials.

Material Dark storage time Response time [sec]
@ 1W/cm2

M/#, storage 
capacity

Inorganic PR crystals, room temperature values, λ0 = 514nm, data taken from [B8], table 2, 
page 120 (except dark storage time of).

LiNbO3 >100a a

a. thermally fixed (Dr. Theo Woike, University of Cologne, personal communication; see also [228]).

3 30

LiTaO3 10a 0,25 b

b. @ 351nm.

30

BaTiO3 1h - 1a 0,5 1,5

Ba0,77Ca0,23TiO3 
(BCT)

10s 0,4 2,5

KTa0,52Nb0,48O3 
(KTN)

0,6a 0,2 1,2

KNbO3 1h - 30d 0,1 2,4

Sr0,61Ba0,39Nb2O6 
(SBN)

1h - 30d 0,1 3,0

Bi12TiO20 (BTO) 10s 2*10-3 c

c. @ 3W/cm2 and 633nm, Bi12SiO20.

0,5

GaAs 10-3s 2*10-4 d

d. @ 130mW/cm2 and 1160nm.

0,12

Organic PR polymers, Tr = -7°C e, λ0 = 633nm, data from this work.

e. reduced temperature according to eq. (5.2 - 1) on page 228.

Material C f

f. for material composition see table 5-1 on page 211.

500s - 1500s g

g. depending on the PR phase shift, mean response time calculated applying eq. (5.2 - 26) on page 248.

20000 h

h. @ 42mW/cm2, 633nm, and E0 = 32V/µm, mean response time calculated applying eq. (5.2 - 26) on 
page 248.

0,23 i

i. @ 0,65mW/cm2 and E0 = 62V/µm.

Material CT j

j. for material composition see table 5-1 on page 211.

150s - 650s k

k. depending on the PR phase shift, mean response time calculated applying eq. (5.2 - 26) on page 248.

~ 100000 l

l. about 5 times slower than material C under similar experimental conditions.

0,30 m

m. @ 0,65mW/cm2 and E0 = 62V/µm.
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Appendix B

Source code for the numerical simulations in “5.1.) Influence of 
hologram bending on the diffraction efficiency in PR thin film 

devices: A simple model calculation”
The simulation program assumes that diffracting a laser beam on a hologram having bent

grating planes exhibits the same phenomenology as compared to diffracting a manifold of laser
beams having correspondingly different propagation directions but identical phasing at an
unbent hologram. In the latter case, the overall diffraction efficiency of the complete manifold
of laser beams can be considered as the linear superposition of the single beam diffraction
efficiencies, since the diffracted single beam intensities simply add up to a cumulated diffracted
intensity. Thus, the diffraction efficiencies for a given number of holograms (defined by the
length of the z-vector), which are increasingly slanted with respect to the undisturbed grating
due to hologram bending are calculated and eventually averaged by the number of holograms.

The source code given below represents the core of the simulation program, which has
been applied in this work using different parameter sets for the applied electrical field and the
PR phase shift. The values of these parameters shown below are characteristic examples.

In order to calculate the diffraction efficiency for an undisturbed (i.e. unbent) grating, the
parameter “steig” must be set to zero.

This code was written for and used with MATLAB for Windows, version 4.2c, 16bit:

% Refractive index
n=1.75;

% Z-axis [µm] (i.e. film thickness, here 105µm), increment 1µm
z=1:105;

% Applied electrical dc-field [V/µm] (here 1V/µm - 120V/µm), start:increment:end, E must 
% not be zero

E=1:0.01:120;

% Approximation of PR refractive index modulation ∆n(E0) according to eq. (5.1 - 4)
dn=7.4e-7*E.^2;

% Unity vector correlated to z-axis vector, required for matrix operations
a=1:105;
a=a./a;

% Half intersection angle of the recording beams 
hisw=3.25/180*pi;

% Slant and tilt angle of the hologram
slant=60.8/180*pi;
tilt=29.2/180*pi;

% Grating wave vector
K=2*pi/(0.633/(2*n*sin(hisw)));
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% Incident angle of recording beam 1
theta=26/180*pi;

% Average propagation constant according to eq. (2.3 - 6) 
beta=2*pi*n/0.633;

% Obliquity factor cT in eq. (5.1 - 2), according to eq. (2.3 - 13) and eq. (2.3 - 21)
cr=cos(theta);

% PR phase shift
phi=20/180*pi;

% Real part of the complex PR gain coefficient according to eq. (5.1 - 6)
GE=2*pi*sin(phi)*(-1/2.22)*dn/(0.633*cos(hisw));

% Slope of the grating planes relative to the unaffected grating according to eq. (5.1 - 11)
steig=((GE/(2*K*tan(phi)))'*a).*((exp(-GE'*(z/cos(tilt)))+1).\(2*exp(-GE'*z/cos(tilt)))-

1);

% Slant factor cD according to eq. (5.1 - 2)
cs=cr-K/beta*cos(slant+atan(steig));

% Parameter ν in eq. (5.1 - 1) and according to eq. (2.3 - 38)
nue=((dn'*a)*pi*105)./(0.633*(cs*cr).^0.5);

% Dephasing measure according to eq. (5.1 - 3) taking into account hologram bending as 
% described in detail in “5.1.1.) The simulation model” on page 214

ktheta=-atan(steig).*sin(slant+atan(steig)-theta)*K;

% Parameter ξ (loss-free grating) in eq. (5.1 - 1) and according to eq. (2.3 - 39)
xi=105/2*(0-i*ktheta./cs);

% Solving Kogelnik’s equation eq. (5.1 - 1) and calculating the diffraction efficiency 
% according to eq. (2.3 - 36)

argusin=((nue.^2)-(xi.^2)).^0.5;
nenner=(1-(xi.^2)./(nue.^2)).^0.5;
S=exp(xi).*(sin(argusin)./nenner);
eta=S.*conj(S);
eff=eta*a';
BE=eff/105;

% Writes calculated data to file, fractional format, 8 digit precision (optional)
fwriteid=fopen('absolute path\filename.extension','w');
fprintf(fwriteid,'%1.8f\n',BE');
status=fclose(fwriteid);

% Screen plot of results (optional)
plot(BE);
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Frequently used abbreviations
Due to the large amount of physical expressions and equations in this work it was not

possible to always keep a consistent and stringent naming scheme for all physical variables used
throughout the complete text. Thus, this list covers only physical variables and abbreviations,
which were used most frequently as well as consistently. Physical variables not listed here are
explained in close correlation to their appearance in the text.

2BC two-beam-coupling

BR birefringent, birefringence

DFWM degenerate four-wave-mixing

DMNPAA “DiMethyl Nitro-Phenole Azo-Anisole”, see also Appendix D

∆n refractive index modulation (rarely: change)

E0 projection of the external field onto the hologram grating wave 
vector

Eq photorefractive saturation field

Eext externally applied dc electrical field

ECZ N-ethylcarbazole, see also Appendix D

ELP ellipsometric

EO electro-optic

ESC photorefractive space-charge field

φ photorefractive phase shift

Γ photorefractive gain coefficient

ηint internal diffraction efficiency

ηext external diffraction efficiency

I01 intensity of recording beam 1
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I02 intensity of recording beam 2

I0 total intensity (typically recording intensity)

IR reading beam intensity

Ie erasure (beam) intensity

ITO Indium-tin-oxide

K hologram or interference pattern grating wave vector

λ0 operating wavelength

M/# M-number

MNPAA “Methoxy-Methyl Nitro-Phenyle Azo-Anisole”, see also Appendix 
D

NLO non-linear optic(al)

PR photorefractive

PVK Poly-(N-vinylcarbazole), see also Appendix D

RT room temperature, ambient temperature

Tg glass-transition temperature

Tr reduced temperature

trec recording time

TNF “TriNitro-Fluorenone”, see also Appendix D

TPD “TriPhenyl-Diamine”, see also Appendix D 
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Structures
Subsequently, the structures of the chemical compounds referred to by abbreviations in 

this work will be depicted partitioned in the functionalities: 
- NLO chromophores
- Sensitzers
- Plasticizers
- Polymers, hole conductors and multifunctional compounds

Within this partitions, the corresponding abbreviations are ordered alphabetically referring only 
to the characters, i.e. numbers ahead of the names or abbreviations are disregarded.

Please note that there are multifunctional compounds, the clear attribution of which to one 
of the above listed category is not possible although the last category states “multifunctional 
compounds”. For example 2BNCM forms a PR low molecular glass, but is a NLO chromophore 
although it may act as a hole conductor without introducing this property explicitely by cova-
lently attaching a hole conducting moiety. In contrast, e.g. DRDCTA, which also forms a PR 
low molecular glass, consits of a NLO chromophore moiety with a hole conducting moiety 
(TPA carrying additionally carbazole groups) covalently attached. In the systematics of the ta-
bles below, such special cases will be attributed to more obvious category, i.e. 2BNCM will be 
found in the list of NLO chromophores, whereas DRDCTA will counted as a multifunctional 
compound.

Please note furthermore that the abbreviation of a compound need not be related to its che-
mical name, but may as well be related to its trivial name or even may be arbitraty. Abbreviati-
ons and trivial names commonly accepted will be marked by a superscript star. Exact chemical 
names will be marked by a superscript „#“. Eventually, it must be pointed out that „common 
acceptance“ is not clearly defined, thus, the superscript star reflects the personal opinion of the 
author.

NLO chromophores

AODCST ATOP-1

5CB* 2-BNCM

CN
NC

N

O

O

N OO
S

N

CN

CN

N

OR

O

R'

NC

R, R':
alkyle groups
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7-DCST DEANST*

DHADC-MPN 2,5-DMNPAA*

3,5-DMNPAA* DPDCP

DR* E44

E7 F-DEANST*

FTCN MG1

NLO chromophores
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N

NO2

N
CN

CN N
N
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N NO2
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OH
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CN

CN

CNO
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MG2 MNPAA

NPP* PDCST*

Sensitizers

C60
# (Buckminster Fullerene) NI

[6,6]-PCBM Perylene

Rhodamin6G [Ru(bpy)3][PF6]2
#

NLO chromophores

N
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O

O
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N
N

O
NO2

O

N NO2
N

CN
NC

NH17C8

O

O

N C8H17

O

O

O

O

O NH+Cl-NH

COOC2H5

N N

Ru
2+

N

N N

N

2[PF6]
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TNF* TNFM*

Plasticizers

BBP* Carbazole*

DOP* DPP*

ECZ* EHMPA*

TCP*

Sensitizers
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NO2 NO2

O2N

NO2 NO2
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O

O

O

O N
H

O

O

O

O

O

O

O

O

N N

P
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O

O

CH3

CH3 CH3

highly toxic !!
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Polymers, hole conductors and multifunctional compounds

DPOB-PPV DRDCTA
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P2

P3

P5 PMMA*

Polymers, hole conductors and multifunctional compounds
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PSX PTPD-ac

PVK* Si2(Cz-Cz/TCNE)

Si3(Cz-Cz/Stilbene) SLCP

TDPANA-FA TFB

Polymers, hole conductors and multifunctional compounds
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TPA* TPA-DCVA

TPA-NA TPD*

TPD-ac TRC1

Polymers, hole conductors and multifunctional compounds
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O
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The Baessler formalism (disorder model)

In the disorder model fluctuations of the molecular energy levels (diagonal disorder) and
of the intermolecular distance and mutual orientation (off-diagonal disorder) in amorphous
organic solids are considered as determining the charge carrier mobility in disordered organic
solids. Polaronic effects are regarded inferior and will be neglected. The formalism has been
developed largely by means of Monte Carlo (MC) simulation techniques. Subsequently a few
of the most important simulation results will be shown and the resulting expressions for the
terms correlating with eq. (2.4 - 133) will briefly be discussed. A discussion of particular results
of the MC simulations in context with known experimental results will not be provided. A more
comprehensive review is provided in [30].

CONTENT:

E.1.) Basic considerations E2

E.2.) The disorder model E2

E.2.1.) Results of the Monte Carlo simulations E4

E.2.1.1.) Temperature dependence E4

E.2.1.2.) Field dependence E5

E.2.1.2.1.) Only diagonal disorder (field dependence) E6

E.2.1.2.2.) Only off-diagional disorder (field dependence) E6

E.2.1.2.3.) Diagonal disorder and off-diagonal disorder (field dependence) E7

E.2.2.) Conclusions from the monte carlo simulations E8
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E.1.)Basic considerations
A fundamental assumption of the Baessler formalism is that the transport manifold of a

disordered organic system abandoning long range order is smeared out into a Gaussian
distribution of localized states. The Gaussian shape of the distribution is concluded by analogy
from the experimental observation of inhomogenous broadening of the absorption profiles in
disordered organic solids at low temperature. The origin of the distribution is attributed to
fluctuations of the entire variety of intermolecular potentials existing in an organic system
containing ions, i.e. the interaction of ions, dipoles and induced dipoles with themselves and
each other, whereby ion - ion and ion - dipole interactions contribute most. The distribution of
localized energetic states is referred to as diagonal disorder, since the eigen-energies of the sites
thus modified would occur as diagonal elements in the energy matrix. The density of states
(DOS) function for the charge transporting sites is neither accessible directly in appropriate
experiments (absorption spectroscopy), since excitonic transitions control the optical spectra in
these systems, nor theoretically by quantum chemical calculations, since the required resolution
of less than 100 meV can not be provided. However, it can be shown by MC simulation, that the
width of the DOS for charge carriers originating from a given pattern of positional disorder
(referred to as off-diagonal disorder and to be discussed below in “E.2.) The disorder model”)
may be estimated to be about 1.5 times larger than that for singlet excitation, which is
experimentally accessible using absorption spectroscopy. The simulation is based on the
principle analogy of the interaction between a charge carrier on the one hand and an exciton on
the other hand with the surrounding matrix. Hence, the width σ of the Gaussian DOS for charge
carriers may be estimated from the width for a typical absorption band for the systems
considered here of typically about 500cm-1 (60meV) yielding roughly σ ≈ 100meV.

Another fundamental assumption is, that charge carrier transfer only occurs between
adjacent transporting moieties, henceforth referred to as transport sites. The activation energy
for the charge transfer will be the sum of an intermolecular and an intramolecular contribution
as discussed before for the polaron model. For σ ≈ 100meV, the activation energy may be
estimated to about 400meV as will be shown later. However, the polaronic binding energy will
be much smaller (about one order of magnitude) [39], which is a strong argument for the neglect
of polaronic effects as presumed here.

E.2.)The disorder model
The energy of the charge transporting states of the transport sites is assumed to be subject

to a Gaussian distribution of energies, which may be expressed as:

,  eq. (E - 1)

implying localized states. Here, ε is the energy of some transport site, and σ is the width of the
DOS. Equation eq. (E - 1) tacitly assumes, that there is no correlation of the eigen-energies of
adjacent transport sites, which may not strictly be true but is a reasonable approximation, since
the actual correlation length will not exceed a few sites, and a charge carrier travelling through
a real world sample will visit thousands of sites.

The jump rate among two adjacent sites i and j is assumed to be described by an
expression proposed by Miller and Abrahams in [40]:

ρ ε( ) 1

2πσ2
----------------- e

ε2

2σ2
---------–

=
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,  eq. (E - 2)

where  is the average inter-site distance, γ stands for the inverse of the wave function’s decay
radius, ∆Rij = |Ri − Rj| is the actual distance between the sites i and j, and εi and εj are the
corresponding site energies, which in the case of an applied field contain the electrostatic
potential, i.e.:

,  eq. (E - 3)
where Eij is the external field along ∆Rij. The parameter ν0 is a frequency factor of the order of
magnitude of a typical phonon frequency (ν0 ≈ 1013Hz). Equation eq. (E - 2) implies weak
charge carrier - phonon coupling which allows to ignore polaronic effects but still ensures
sufficient coupling to the heat bath (otherwise, the charge carrier could not be activated
thermally). Hence, the difference of the site energies (including the electrostatic potential
according to eq. (E - 3)) is the only activation energy accounted for and is assumed to be
Boltzmannian for uphill jumps in energy. Hops down in energy are assumed not to require some
energy matching, since there is always a rich phonon spectrum and the hopping rates are small
in the systems considered, which ensures dissipation of the electronic energy differences. 

Equation eq. (E - 2) presumes a spherical molecular electronic wave function, which leads
to a symmetrical coupling between transport sites. Disordered organic system showing
electrical conductivity, however, usually contain aromatic compounds, which are not spherical
(with the exception of systems, the conductivity of which bases on fullerene derivatives). Model
calculations in [40] showed, that the transfer integrals for charge carrier exchange between two
adjacent transport sites may vary by several orders of magnitude as a function of the mutual
orientation of the transport sites. Accordingly, the overlap parameter  in eq. (E - 2) will
be subject to a distribution. Furthermore but less important (except for fullerene systems), the
inter-site distance will not be constant but subjected to a distribution as well. The subsumption
of these distributions is referred to as positional disorder or off-diagonal disorder. The Baessler
model operationally accounts for off-diagonal disorder by splitting the inter-site coupling (i.e.
overlap) parameter Γij into two specific contributions Γi and Γj fluctuating randomly and
independently from each other. Since the actual distribution functions for Γi and Γj are
unknown, a Gaussian probability density with variance σΓ is assumed for both of them with:

,  eq. (E - 4)

where:
 eq. (E - 5)

is the variance of the convolution of  Γi and Γj, i.e. the variance of the inter-site coupling
parameter. However, the parameter Σ cannot be translated directly into a microscopic structural
picture like the parameters characterizing diagonal disorder, but should rather be understood as
some operationally defined measure for the relative variations of electronic inter-site coupling
due to off-diagonal disorder. Please note, that even Baessler grants, that this procedure may be
arguable and represents a zero-order approximation. An attempt to describe the off-diagonal
disorder more realistically is presented and discussed in [41] but will not be regarded here.

Closed form analytical solutions of the hopping transport problem cannot be obtained due
to the Gaussian shape of the DOS and the asymmetry of the jump rates (i.e. νij ≠ νji). The only
analytical approach available to date and retaining both the energetic distribution of hopping

νij ν0e
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sites as well as the distribution of hopping sites themselves is the effective medium approach
presented in [42]. The effective medium approach was shown to provide an excellent
description of the hopping process in dense systems and for finite temperatures. However, the
theory does not provide analytic expressions, which may be used for interpreting experimental
data. Another approach is the ultrametric space concept [43, 44], which is mathematically
simpler but reduces the problem to iso-energetic sites separated by randomly distributed barriers
and is, thus, inferior to the effective medium approach. Baessler et. al. approached the problem
applying Monte-Carlo (MC) computer simulation, which may be seen as an idealized
experiment carried out on samples of arbitrarily adjustable degree of disorder. The details of the
MC simulation technique will not be elaborated upon here. Subsequently, the expressions
obtained for the different contributions to the overall charge carrier mobility in the context of
eq. (2.4 - 133) will be shown and discussed in short terms ending up with the currently most
common equation to describe charge carrier transport through a disordered organic medium.

E.2.1.) Results of the Monte Carlo simulations
The first exponential term in eq. (2.4 - 133) is not subject of the model to be solved for by

Monte-Carlo simulation technique and, therefore, will be skipped here and picked up again later
in this section. In the framework of the Baessler formalism, the first exponential term is merged
into an experimental quantity µ0, which is considered as a material constant. Subsequently, the
temperature dependence of the charge carrier mobility will be considered first and then the
dependence on an external electrical field.

E.2.1.1.)Temperature dependence
If some charge carrier starts within a DOS of Gaussian shape of an undiluted system of

hopping sites, it will relax preferably into states of lower energy, since the hopping rate uphill
in energy is smaller than the hopping rate downhill (compare eq. (E - 2)). This process will be
maintained until thermally activated jumps uphill in energy will occur at similar rates as the
downhill jumps. As a specific feature of the Gaussian DOS, the mean energy  of the charge
carrier will thus saturate at long times, which indicates the attainment of a dynamic equilibrium.
Please note, that Fermi-statistics is irrelevant, as long as the charge carrier density is small
enough to exclude some carrier - carrier interaction. The equilibrium mean energy for the
relaxation time approaching infinity  can be calculated analytically (compare eq. (2.4 -
35)) from [45]:

,  eq. (E - 6)

where the energies are taken as difference to the center of the DOS of the transport sites. For
further proceeding, the result of eq. (E - 6) is expressed as

 eq. (E - 7)
with:
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 eq. (E - 8)

as normalized width of the DOS. Please note, that the distribution of energies for a package of
charge carriers travelling through a disordered organic medium will become Gaussian in the
long time limit with the center of the distribution at , however slightly asymmetric due to
different relaxation patterns of mobile and immobilized charge carriers (e.g. trapped at polymer
chain ends).

In order to conclude from the energetic relaxation behavior to the temperature dependence
of the charge carrier mobility, σ = 100meV at T = 295K is assumed, which is a very typical case
accounting for many experimental systems as already mentioned before. Thus, .
Considering the small fractional DOS of the transport sites for , i.e.,

, it is proximate to assume, that a charge carrier located at  will
most probably not jump downwards in energy by its next jump, but uphill after thermal
excitation. For the case discussed here, this is simply a question of the number states available
for uphill jumps, which is assumed to be considerably larger than the number of states available
for further energetic relaxation. Assuming furthermore that by far most of the charge carriers
are located at  and that the most probable transport level is the center of the DOS of
the transport sites at , the transport activation energy would be about . Thus, the
temperature dependence of the charge carrier mobility will not be of Arrhenius-type according
to eq. (2.4 - 135), but rather take the shape of eq. (2.4 - 136). Accounting for the statistics of
both the occupational energies of the charge carriers in the DOS of the transport sites as well as
the activation barrier heights, MC simulations reveal the charge carrier mobility as a function
of the temperature to be expressed by:

.  eq. (E - 9)
The proportionality factor is the experimental quantity µ0, which has been mentioned above.
Please note, that some off-diagonal disorder as implied by eq. (2.4 - 136) (dependence on )
does not occur in eq. (E - 9).

From eq. (E - 9), an apparent activation energy ∆EA0 may be obtained from: 

,  eq. (E - 10)

which yields about 400meV for σ ≈ 100meV at about 300K as mentioned before.

E.2.1.2.)Field dependence
The hopping mobility must depend on an applied electrical field E, since the electrostatic

potential will distort the DOS thus reducing the average barrier height for jumps upwards in
energy, counted in field direction. Accordingly, the equilibrium energy  must increase
with E. Within the current model and according to eq. (E - 3), this is attributed to a general
relative preference of energetic uphill jumps with respect to the equilibrium without field,
affecting the ratio of the jump rates according to eq. (E - 2).

The results of the MC simulations of the impact of an electrical field on the considered
model reveal complicated behavior, which will not be elaborated upon here in detail. However,
it seems advisable to show some basic simulation results in order to clarify the tendencies
observed. The basic relations obtained will first be considered for the limiting cases of no off-
diagonal disorder and no diagonal disorder and finally allowing for both will be regarded.
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E.2.1.2.1.)Only diagonal disorder (field dependence)
MC simulation of the field dependence of µ plotted as lnµ versus E1/2 as depicted in

Figure (E - 1) reveals saturation at low fields (i.e. µ does not depend on the field). For higher
fields, behavior in Poole-Frenkel fashion is obtained, which may be expressed as:

,  eq. (E - 11)
where S is some slope factor, which will be addressed
later in more detail. For very high fields the slope S
decreases for any width of the DOS and becomes even
negative for small diagonal disorder. This may be
explained by a saturation of the drift velocity occurring
at high fields, when all jumps except in the direction of
the applied field are suppressed. Then the Boltzmann
term in eq. (E - 2) approaches unity, νij becomes
independent of the applied field and the drift velocity
vD thus constant. In this case, which is also represented
by the case of zero diagonal disorder even for low
fields, the mobility will obey the relation:

 eq. (E - 12)

and thus decrease with the applied field increasing.
Please note, that the curves in Figure (E - 1) for 
reproduce the general shape of the curves for  as a function of the field. Thus, the increase
of  as a function of E may be interpreted as the phenomenological reason for the increase
of lnµ with increasing E.

E.2.1.2.2.)Only off-diagional disorder (field dependence)
The MC simulation results for lnµ as a function of

 are depicted in Figure (E - 2). It turns out, that the
introduction of positional disorder results in increased
mobility. This may phenomenologically be explained by the
occurrence of alternative pathways for charge transport, if
the direct path along the direction of the applied field is
afflicted with unfavorable inter-site coupling. Although all
alternative pathways will be effectively longer than the
direct path, more favorable inter-site coupling along the
alternative path may overcompensate the loss of the direct
path. If the applied field is increased, it will increasingly
force the charge carrier to travel along the less favorable and
more direct path, leading to a decrease of the mobility,
which is then consequently even more pronounced than for
zero off-diagonal disorder, which corresponds to the
situation for σ = 0 in Figure (E - 1) and is described by eq.
(E - 12). Please note, that off-diagonal disorder does not
affect .

µ S E∝ln

 Figure (E - 1): Results of MC simulation 
of µ for zero off-diagonal disorder. 

Redrawn after [33].
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E.2.1.2.3.)Diagonal disorder and off-diagonal disorder (field dependence)
Superposition of both types of disorder leads to a

complex behavior, which may include some local minimum
as depicted in Figure (E - 3). For small applied fields, the
off-diagonal disorder appears to be the dominant
contribution, whereas diagonal disorder dominates the high
field regime. There is a balance between the reduction of the
barrier heights for increasing field and the field induced
disturbance of the optimal pathway for transport resulting in
a drastic reduction of the overall field dependence of the
mobility for a certain combination of disorder parameters
and eventually even a reversal of the general trend.

In order to quantify the general behavior, the slope S
in eq. (E - 11) must be quantified in terms of the disorder
parameters  and Σ, which is depicted in Figure (E - 4).
Please note, that only the regime for E was taken into
account, which obeys eq. (E - 11). Apparently, S is
proportional to the square of  except for Σ = 0 and
additionally  with the proportionality factor being C =
2.9x10-7 (µm/V)1/2. Accordingly, S( ) may be
expressed as:

 eq. (E - 13)
In order to obtain B(Σ), the turning points in the plots
according to Figure (E - 3) (i.e. where S vanishes) are
considered. For these points, the relation:

 eq. (E - 14)
must be fulfilled. Plotting  in these points as a function
of Σ yields the diagram shown in Figure (E - 5). Obviously
there is a linear dependence according to:  for Σ
> 2 and for Σ < 2, the curve flattens saturating at 
for Σ = 0. Approximating the curve by straight lines as
illustrated in Figure (E - 5), B(Σ) may be expressed as:

.  eq. (E - 15)

Combining eq. (E - 11) with eq. (E - 13) and eq. (E - 15)
eventually results in the field dependence of the charge
carrier mobility, which correlates with the third exponential
term in eq. (2.4 - 133).

 Figure (E - 3): Results of MC 
simulation of µ accounting for 
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(example for ). Redrawn after 

[33].
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E.2.2.) Conclusions from the monte carlo simulations
Merging both the temperature dependent and the field dependent contribution as obtained

above, the charge carrier mobility in disordered organic solids is described according to the
Baessler formalism by:

 eq. (E - 16)

with:

,  eq. (E - 17)

where σ is the (1/e -) width of the DOS of transporting sites,
Σ is the positional disorder parameter, C = 2.9x10-7 (µm/V)1/
2, and µ0 is an experimental constant. 

The disorder model is able to describe the particular
features of charge transport in disordered organic solids
consistently and at least qualitatively over a wide range of
possible variations of experimental parameters.
Unfortunately, also the disorder formalism utilizes
parameters, which are not or at least not directly accessible
by the experiment. The problem in determining the width of
the DOS of transport sites has already been discussed above.
The off-diagonal disorder parameter is even more
problematic, since up to date there is no really independent
method to obtain this parameter. Thus, Σ must be gained by
fitting experimental data on conductivity and charge carrier
mobility measurements to the equations eq. (E - 16). 

µ µ0e
2
3
---σ̂ 

 
2

–
eC σ̂2 Σ2–[ ] E      Σ 1.5≥( )∀=

µ µ0e
2
3
---σ̂ 

 
2

–
eC σ̂

2 2.25–[ ] E   Σ 1.5<( )∀=

σ̂ σ
kBT
---------=

 Figure (E - 5): Plot of  vs. Σ to 
obtain the form of B(Σ). Redrawn 

after [33].

4

3

2

1

0 1 2 3 4
Σ

σ*

1.5

1.5

σ̂∗



Appendix F: Dispersive charge trnsport in disordered organic solids

F1

Appendix F

Dispersive charge transport in disordered organic solids

As described in “2.4.3.3.) Dispersive charge transport” on page 108, conducting polymers
are subjected to dispersive charge transport, i.e. a charge carrier packet diverges considerably
more than predicted from normal diffusion during its field-driven motion through a disordered
organic solid. Subsequently, two formalisms to describe this phenomenon are presented, the
Scher-Montroll formalism and the Baessler formalism. 

The Scher-Montroll formalism has been widely used for describing dispersive transport
phenomena in polymers. However, although the model has been applied successfully to explain
TOF experiments, it must not be taken as a general theory for charge transport in dispersive
media. 

In contrast, the Baessler formalism, which is based on the Baessler model for charge
transport in disordered organic solids, may be taken as an approach to some general theory,
however, does not provide any analytical expression, which may be applied to experimental
results. 

CONTENT:

F.1.) The Scher-Montroll formalism F2

F.2.) The Baessler formalism for dispersive charge transport F3

F.2.1.) Deviation from Einstein behavior F4

F.2.2.) Dispersion F5

F.2.3.) The non-dispersive / dispersive transition F6

F.2.4.) Phenomenological interpretation F7
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F.1.)The Scher-Montroll formalism
The Scher-Montroll model is based on the traditional perception, that the total

displacement of a charge carrier in a bias field is a succession of independent displacements, in
which the dwell time a carrier spends on one hopping site as well as the length of the individual
displacements are subject to some narrow distribution. Since the time spent for the hopping
itself may be considered negligible, the dwell time of a carrier on one hopping site defines the
actual „hopping time“, i.e., the time interval between the initiation of successive displacements.
According to this traditional model implying only small dispersion of the hopping times, a
narrow charge carrier packet will remain (relatively) narrow while traversing through the
sample, but the spatial distribution of the packet will become Gaussian with increasing time, and
the spreading according to eq. (F - 1) will become negligible as compared to the distance
traversed. Furthermore, the time frame of the experiment will be very large as compared to some
characteristic time for an individual hop (e.g. the mean hopping timet). Thus, the propagation
velocity of the packet will become constant and a well defined transit time will be obtained.
Please note, that this traditional model only accounts for some small off-diagonal disorder due
to a distribution of hopping lengths, but disregards diagonal disorder and the major contribution
to off-diagonal disorder according to the Baessler formalism, which is the orientational disorder
as discussed in “E.2.1.) Results of the Monte Carlo simulations” on page 4.

Scher and Montroll [51] altered the traditional model by allowing for hopping times
similar or even longer than the time frame of the experiment. As opposed to the traditional
model assuming a distribution of hopping times ψ(t) expressed by some exponential of the from
ψ(t) ∝ exp(−λt), where λ is a constant, they introduced a long tail in the distribution function
according to:

,  eq. (F - 1)
where A is a constant and α is a disorder parameter with 0 < α < 1. The more disordered the
material is, the smaller will be the value of α and the more dispersive the transport. Please note,
that eq. (F - 1) is only operative for the restricted time frame of the experiment, otherwise t →
∞ is implied for t0 < t < ∞, where t0 is some arbitrarily chosen time larger than the time frame
of the experiment.

A key prediction of the model is a decay of photocurrent transients in TOF experiments
according to:

,  eq. (F - 2)

where I is the current and tT is the transit time. The intersection point of these two branches
defines a transit time according to:

,  eq. (F - 3)

where C is a constant of the order of unity, W0 is a scaling parameter, ∆EA0 is the zero field
activation energy, L is the sample thickness and l(E) is the mean displacement per hop (in field
direction). Furthermore, according to [52], eq. (2.4 - 152) will have to be replaced by:

,  eq. (F - 4)

which indicates, that the packet spreads faster than described by eq. (2.4 - 152).
 At low fields, according to [53] it may be assumed, that:

ψ t( ) At 1 α+( )–∝

I t( ) t 1 α–( )–        t tT<( )∀∝

I t( ) t 1 α+( )–        t tT>( )∀∝

tT
C
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------- L

l E( )
----------α e
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kBT
------------

∝
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.  eq. (F - 5)
which implies a variation of the transit time with field and thickness. The theory moreover
predicts, that photocurrent transients for a range of fields and thicknesses may be superimposed
when normalized to the transit time. This behavior is referred to as “universality“ and has been
proven experimentally several times (e.g. recently in [54]).

On the basis of eq. (2.4 - 145) (polaron model) the phenomenological relationship:

 eq. (F - 6)

has been proposed by Pfister et. al. [55], which reduces to:

 eq. (F - 7)

at high fields applied, where the hopping probability in field direction approaches unity. The
parameters have been defined in context with the polaron model and will not be listed here once
more.

F.2.)The Baessler formalism for dispersive charge 
transport

Baessler et al. could show by MC simulations, that the
features of dispersive charge transport can be explained by means
of a Gaussian hopping site manifold, even in the absence of
trapping. However, the Baessler formalism does not provide any
analytical description but rather an idea of the impact of material
and sample parameters on the dispersity of charge transport in
disordered organic solids.

Baessler et. al. conduct their discussion on the basis of two
key parameters, the dispersion w, a parameter defined by the extent
of the tail of the displacement current in TOF experiments and a
function f( ), giving a measure of the deviation of the real
system from ideal Einstein behavior, a problem already discussed
above. 

According to [52] and [50], the current profile I(t) in a TOF
experiment may be described by:

,  eq. (F - 8)

where “erfc“ is the inverse error function. Defining the transit time t0 as the intersection point
of the asymptotes of the plateau and the trailing edge of the current transient and a time t1/2,
which is required for the current to decay to half of its value at t0, these times can be expressed
based on eq. (F - 8) as:

l E( ) E∝

µ
W0L

1 1
α
---– 

 

EL
1
α
---

-------------------------- qEδ
2kBT
------------ 

 
1
α
---

e

∆EA0

kBT
------------–

sinh∝

µ 1
E
--- e

qEδ
2αkBT
----------------

e

∆EA0

kBT
------------–

∝

 Figure (F - 1): Illustration of 
the times t0 and t1/2 defining 

the dispersion w

I

tt0

I0

I0

1
2

t1/2
E σ̂,

I t( ) 1
4πDt

-----------------e
x µEt–( )2

4Dt
-------------------------–

xd
∞–

L

∫∝ 1 1
2
---erfc L µEt–

4Dt
------------------ 

 –=



Appendix F: Dispersive charge trnsport in disordered organic solids

F4

 and:  eq. (F - 9)

.  eq. (F - 10)

The times are illustrated in Figure (F - 1). With these times, the dispersion w can be defined as:

.  eq. (F - 11)

The function f ( ) is obtained directly from the Einstein relation by assuming an
apparent diffusion constant Da in disordered systems according to the Einstein-Smoluchowski
relation between hop distance and hop time:

,  eq. (F - 12)

where D0 is the ordinary thermal term and Df ( ) is a contribution depending on the field and
the disorder. Since the ratio qD0/µkBT equals unity according to eq. (2.4 - 141), the deviation
from Einstein behavior may be expressed in terms of f( ) as:

.  eq. (F - 13)

Subsequently, some major trends for f( ) − 1 and w as revealed by MC simulation will
be discussed.

F.2.1.) Deviation from Einstein behavior
For typically applied fields of about 10 - 100 V/µm,

 increases quadratically in the applied field as long as
the diagonal disorder is not large. For  considerably exceeding

, the field dependence approaches linear proportionality.
For even higher fields, the parameter levels off and finally
decreases again, which may be attributed to the strong tilt of the
DOS by the applied field beginning to reduce the dimensionality
of the system. For fields lower than 10 V/µm, the behavior
approaches Einstein behavior. Parametric in , the deviation from
Einstein behavior increases with increasing diagonal disorder,

 finally reaching values of more than 103 for 
approaching  (discussed before to be a typical value for
polymers) and an applied field of about 100V/µm as already
mentioned before. This proves that the Einstein relation is invalid
for a wide range of parameter combinations. Especially
photorefractive polymers of the type investigated in the frame of
this work must be attributed to this range. It must be pointed out
in advance, however, that this is subject to the experimental
conditions applied in holographic experiments on photorefractive polymers.

It should be noted, that the linear field dependence of  (i.e. Df ∝ E) for typical
photorefractive polymer systems exhibiting  will result in “universality“ according to the
Scher-Montroll model even for apparently non-dispersive transport as can be seen from eq. (F
- 11). Thus universality is not necessarily a criterion for dispersive transport as implied by the
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Scher-Montroll model, but rather an indication for quasi-equilibrium stochastic hopping within
a sufficiently wide Gaussian DOS under the action of a drain field.

Please note, that “non-dispersive“ in this context has to be understood in the sense, that
the TOF signals show a well-developed plateau region and a thickness independent charge
carrier mobility. The correlation of dispersity with a thickness dependence is implied by eq. (F
- 5).

F.2.2.) Dispersion
The MC simulation of w as a function of the applied

field for some combinations of diagonal and off-diagonal
disorder is shown in Figure (F - 3). As can be seen,

 for a small amount of disorder and for larger
degree of disorder, w appears to approach w ≈ const. in the
applied field. Constant w implies the observation of
universality. For very high fields, the effective diagonal
disorder is reduced when  becomes comparable to σ,
i.e. when the gain in energy per hop is comparable to the
width of the DOS, since then all sites are available
disregarding their energy. This results in a decreasing
dispersion. The sample length is assumed 4.5µm for the
MC simulation yielding results according to Figure (F - 3).
Please note, that apparently both the kinds of disorder result in a similar effect as far as the field
dependence is concerned.

Considering the dependence of w on the thickness of the sample L, it is found, that w does
not depend on L for small values of L, but turns out to depend on L according to:

 eq. (F - 14)

above some critical length, which
depends on the diagonal disorder. The
corresponding data are shown in Figure (F
- 4). As long as w is constant, universality
is expected, which correlates with L ≤
20µm for . On the other hand, the
dependence of w on the thickness shows,
that the particular shape of TOF signals
are not indicative of some absolute degree
of dispersity. Depending on the thickness,
the TOF signal may appear non-
dispersive although the spatial variance of
the charge carrier packet is anomalously
large or vice versa. The results from
Figure (F - 4) may as well be interpreted
as indicative for the evolution of the
spatial variance of the carrier packet as a
function of its position within the sample. It appears, that charge carrier transport starts with
considerable dispersity even for moderate disorder. Considering holographic experiments in
disordered photorefractive photoconductors, where the grating spacing of typically 0.5µm up to

 Figure (F - 3): Dispersion vs. field 
parametric in  and Σ. Redrawn after 

[30].
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5µm will be the relevant length scale, this may be important especially since dispersive charge
transport has been made responsible for particular photorefractive behavior [56], [57].

In order to clarify, whether off-diagonal and
diagonal disorder have similar effects on the thickness
behavior of w, Baessler et. al. carried out a series of
MC simulations for various superpositions of
energetic and geometric disorder. The results are
shown in Figure (F - 5). It is indicated, that off-
diagonal disorder does contribute to the spreading of
TOF signals (i.e. to dispersive transport behavior).
However, apparently off-diagonal disorder does not
yield some regime where w is independent from L
unless there is not a considerable amount of diagonal
disorder as well. Please recall, that both kinds of
disorder have been identified to contribute similarly
to the field dependence of w.

F.2.3.) The non-dispersive / dispersive transition
MC simulations of TOF photocurrent transients show by

plotting the mean arrival times  (i.e. the transit times tT,
however, in the dispersive regime the classical “transit time“ is
not well defined; therefore the mean arrival time is used, which
may be interpreted as the transit time of the center of the
anomalously broadened carrier packet) as a function of the
sample thickness (Figure (F - 6)), that the  and accordingly
the apparent charge carrier mobilities in the dispersive regime
vary with the thickness as:

,  eq. (F - 15)
where m > 1.0. In this regime, the apparent charge mobility µa
derived from TOF according to:

 eq. (F - 16)

will exceed the value predicted by the dependence of the
mobility on the disorder parameter at moderate fields according to eq. (E - 9). According to [58],

 in fact will vary approximately as:

.  eq. (F - 17)

 Figure (F - 5): Thickness dependence of 
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after [30].
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Accordingly the mobility thus derived does not describe the
bulk charge transport properties. However, there is a critical
value for the disorder parameter , below of which the
mobilities derived from the mean transit times according to
eq. (F - 16) are independent from the thickness, thus yielding
the bulk charge carrier mobility. The critical value of the
disorder parameter may be illustrated by plotting 
parametric in L as a function of  simulated for the non-
dispersive (according to eq. (E - 9)) and the dispersive regime
(according to eq. (F - 17)) as depicted in Figure (F - 7). From
the intersection points between the asymptote describing non-
dispersive transport and the lines obtained for dispersive
transport a relation between the sample thickness and the
disorder parameter  may be derived as shown in Figure (F -
8). The solid line in Figure (F - 8) obeys the empirical
relation:

,  eq. (F - 18)
which eventually relates the width of the DOS to a sample
length (i.e. the drift length until discharge or final
immobilization) at the transition between non-dispersive and dispersive transport. L is in units
of µm. For  being bigger than given by eq. (F - 18), dispersive transport will be observed in
the photocurrent transients.

F.2.4.) Phenomenological interpretation
The field-induced broadening of a charge carrier packet

in disordered organic solids can be illustrated
phenomenologically. The ordinary diffusive (i.e. thermal)
broadening of a packet of charge carriers drifting under
influence of an applied field obeys the Einstein relation only
for small fields and in homogenous media as mentioned
before in “2.4.3.3.1.) The Einstein relationship” on page 108.
The latter condition requires the jump rate being a well-
defined quantity in the case of hopping transport, which is
violated in a medium afflicted with energetic and/or
positional disorder. It has been discussed before, that charge
carriers relaxing within a Gaussian DOS tend to settle on the
average at a mean energy according to eq. (E - 6) occupying
then states of the low energy edge of the DOS. Based on the
argumentation succeeding eq. (E - 6) the jump rates of
carriers located at bottom states of the low energy edge of the DOS may safely be assumed to
exhibit lower jump rates than the average. Thus, the charge carrier packet after having settled at
the bottom of the DOS will be subjected to a distribution of jump rates under the influence of
an applied field, since the hopping probability will depend on the position of a particular charge
carrier within the DOS. It is clear, that this must give rise to non-thermal spreading of the carrier
packet.

 Figure (F - 7): Mean arrival 
times for non-dispersive and 

dispersive transport. Redrawn 
after [58].
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Appendix G

Theoretical treatment of the photorefractive effect in crystals

The band transport model for the photorefractive effect developed by Kukhtarev et.al.
[71] will be elaborated upon below. Special aspects, which are absent or at least negligible in
PR polymers will be set aside. For example photovoltaic effects, which can be very important
in crystals, are negligible in polymers due to the strong external electric field usually applied to
these systems. Important extensions of Kukhtarev’s model were provided by Twarowski
(introduction of an Onsager type field dependent charge carrier generation efficiency [72]) and
Tayebati et al. (introduction of a shallow trap level [79]), which are not elabotated upon here.
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G.1.) The band-transport model (Kukhtarev-model)
The Kukhtarev-model presumes, that there is a

fixed and constant number of impurities and/or defects in
the PR medium, which may serve as charge carrier
sources or traps depending on their initial ionization
state. Such a system will always contain donors as well
as traps (i.e. even in the dark when there are no
photoinduced traps and charges) as implied by the
demand for electro-chemical equilibrium in sufficiently
polar solution. Donors and acceptors are presumed to be
of identical species, having identical energy levels
located somewhere in the band gap of the system. This
implies that only ionized donors are considered as traps,
which requires the introduction of fictive acceptor sites
ensuring a non vanishing trap density in the dark without
violating the demand for macroscopic electrical
neutrality of the system. These acceptor levels do not
take an active part in the photorefractive effect. Figure (G - 1) illustrates the model, upon of
which the subsequent mathematical discussion will rely. 

The change of the density of ionized donors will be determined by the balance between
charge generation and trapping: 

,  eq. (G - 1)

where ND is the total density of donors, Ni
D is the density of ionized donors, n is the density of

free (and mobile) charge carriers, I is the intensity, γR is the rate constant for (linear)
recombination between free charge carriers and ionized traps, and f is the total charge carrier
generation rate, which includes both thermal and photoexcitation:

.  eq. (G - 2)
Here, s is the cross section for photoexcitation and β is the thermal charge carrier generation
rate. Please note, that γR in eq. (G - 1) may as well be considered as trapping rate, which is
important, since later on for PR polymers a recombination rate and a trapping rate will explicitly
be distinguished, which is dispensable here. 

The rates of generation of free charge carriers and of ionized donors are identical,
however, the ionized donors are locally fixed. Thence, charge transport will affect the local
charge density, which is essential for the PR effect and may be expressed as:

,  eq. (G - 3)

where q is the elementary charge and  is the current density. Neglecting photovoltaic effects,
the current density will contain a drift term (driven by an electrical field) and a diffusion term
(driven by the local charge carrier gradient). Please note, that the occurrence of a drift term does
not require an external electrical field, since the displacement of the centers of the mobile and
the fixed charge carrier distributions will generate an internal field. Thus, the current density
reads:

,  eq. (G - 4)
where µ is the charge carrier mobility tensor, kBT is the thermal energy, and  is the electrical

.

 Figure (G - 1): Kukhtarev’s band 
transport model of the photorefractive 

effect

Conduction band

Donor sites

hν

Valence band

Acceptor sites

t∂
∂ND

i

f ND ND
i–( ) γR nND

i–=

f sI β+=

t∂
∂n

t∂
∂ND

i
1
q
--- j∇•+=

j

j q– nµE kBTµ n∇+=
E



Appendix G: Theoretical treatment of the photorefractive effect in crystals

G3

field which must obey Poisson’s equation:

.  eq. (G - 5)
Here, ε is the permittivity tensor,  is the (space-)charge density, and NA is the density of
acceptors, which is the trap density without illumination. The macroscopic charge neutrality
requires: 

.  eq. (G - 6)
Upon non-uniform illumination, (a surplus of) free charge carriers will be generated in the

bright(er) areas compared to the dark(er) areas. “Brighter“ and “darker“ will be referred to
hereafter simply as bright and dark. The simplest case of a periodic spatially non-uniform
optical field is the sinusoidal interference pattern generated by interference of two plane and
coherent waves according to “2.1.2.2.) Interference” on page 10 and eq. (2.1 - 46), which may
be expressed in complex form as:

,  eq. (G - 7)
where  and the parameters are explained in the aforementioned section. The non-
uniform illumination determines a non-uniform spatial distribution of the total charge carrier
generation rate f, which has the same shape:

.  eq. (G - 8)
Here  and the contrast factor M may be expressed as:

,  eq. (G - 9)

where m is the contrast factor of the light fringe pattern according to eq. (2.1 - 47) and σph and
σd are the photoconductivity and the dark conductivity of the medium, respectively. The latter
is due to thermal excitation of charge carriers. The quotient to the right hand side of eq. (G - 9)
is commonly referred to as „conductivity contrast“.

Local density gradients of free charge carriers will arise from the spatially different
photogeneration rates of free charge carriers as a function of the illumination intensity. In the
absence of an external electrical field, these density gradients will be equalized due to diffusion,
which results in a local displacement of the centers of the charge distributions. This will give
rise to local space-charge fields, which counteract the diffusion by drift until a steady-state
situation is reached, where both the contributions to the current density cancel and the current
density drops to zero. Eventually, a space-charge distribution  will result, which reproduces
the intensity pattern of the nonuniform illumination. According to eq. (G - 5), the space-charge
distribution is connected with a space-charge field, the spatial distribution of which is the
derivative of the space-charge distribution and, thus, spatially shifted with respect to the latter.
Thus, the above set of equations completely covers the basic phenomenology of the PR effect,
which has been discussed before.

The space-charge field is the key parameter for the PR effect and can be calculated as a
function of the position as well as as a function of time on the basis of eq. (G - 1) to eq. (G - 6).
General analytical solutions of the set of equations, however, cannot be obtained. Exact
solutions for the space-charge field are only possible for simplified situations, which will be
discussed below.

εE∇• ρ r( ) q n NA ND
i–+( ) r( )= =

ρ r( )

n NA ND
i–+ 0=

I I0 I1eiK r•+=
I1 mI0=

f f0 f1eiK r•+=
f1 Mf0=

M m
σph

σd σph+
---------------------=

ρ r( )



Appendix G: Theoretical treatment of the photorefractive effect in crystals

G4

G.1.1.) Steady-state solution for the space-charge field
In the steady-state case, the time derivatives in eq. (G - 1) and eq. (G - 3) vanish and

 (which follows from the continuity condition for a stationary flow-field). Thus, the
following set of equations is obtained:

  eq. (G - 10)

Analytical solutions for this set of equations may be obtained in the limit of small
modulation depth of the charge generation rate ( ) and small beam coupling, i.e. M is
constant throughout the medium. This allows for ignoring second and higher order spatial
harmonic terms and the independent variables of the set of coupled nonlinear partial differential
equations may be separated (i.e. linearized to ordinary differential equation) by introducing
steady-state solutions of the form:

,  eq. (G - 11)

where  and  are constants. The index “0“ denotes the zero order spatial
harmonic and the index “1“ the amplitude of the first order spatial harmonic. In order to evaluate
the space-charge field, the above constants must be solved for. Combining eq. (G - 11) and eq.
(G - 7) with eq. (G - 10) and separating into zero order and first order spatial terms results in:

 eq. (G - 12)

for the zero order terms and in:

,  eq. (G - 13)

for the first order terms, where  is the effective bulk permittivity and  is the effective
(bulk) charge carrier mobility defined by:

.  eq. (G - 14)

These relations result from  (see “2.1.1.) The electro-magnetic theory of
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light” on page 4), which demands that no rotational electrical field will occur, if there is no
magnetic induction changing as a function of time. Accordingly,  and the space-
charge field  will be oriented parallelly to the grating vector, which in turn yields

. Please note, that this need not be valid for some externally applied field, thus,
 is possible. Hence,  and  are the effective quantities of the ε and µ tensors

along the grating vector.
From eq. (G - 12) and eq. (G - 13)  can be obtained and eventually  from

the last equation in eq. (G - 13) when using the approximations: 

 .  eq. (G - 15)

The first two relations reflect the assumption that the steady-state density of free charge carriers
is small (the recombination rate is much higher than the generation rate) and the third expression
is another form of  as proposed before. After some algebraic manipulations and
approximations one obtains the complex amplitude of the space-charge field:

,  eq. (G - 16)

where kD is known as Debye’s wave number given by:

.  eq. (G - 17)

Debye’s wave number bases on plasma physics [B3]. The plasma-concept as well as
methods of plasma physics may be transferred to certain problems and systems not directly
attributed to plasma physics, e.g. electrolytic solutions, metallic conductors, and
semiconductors like here. The Debye length λD (also referred to as Debye-Hückel-length or
Debye screening length or radius), which is correlated with Debye’s wave-number by

, may be interpreted as some characteristic length beyond of which the electrical
potential of a point charge in a plasma (Debye’s potential) may be considered as negligible for
electrostatic interactions. Therefore, this length is determined by the balance between the
thermal kinetic energy of and electrostatic interaction energy between two point charges in a
plasma-like environment. The Debye length is pretty common in semiconductor physics and
known as the characteristic decay length of some surface or interface space-charge layer. Hence,

 in eq. (G - 16) may be interpreted as a scaling factor taking into account the mutual
interference of neighboring space-charge layers of the PR grating. 

In steady-state (i.e. small density of free charge carriers) and provided , which is
valid for most of the PR inorganic materials, the expression for kD simplifies to:

.  eq. (G - 18)
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G.1.1.1.)Space-charge field without external electrical field
Without an externally applied field, the charge carrier redistribution is exclusively due to
diffusion. In steady-state, the diffusion driven current and the drift current cancel as mentioned
before. This situation may be interpreted as a situation in which generated charge carriers are
no more displaced but recombine again with their generation site yielding a vanishing net
current in the system and the density of free charge carriers approaches zero ( ). In this
case, eq. (G - 11) becomes  and eq. (G - 4) may be rewritten as:

 .  eq. (G - 19)

Ed is referred to as diffusion field and does not depend on intrinsic system parameters (in
particular, it does not depend on the density of impurities or defects). 

A second field quantity may be defined besides the diffusion field for the case that the
hypothetical maximum of the charge carrier redistribution is reached, which is formally
determined by the intrinsic maximum density of traps given by . For , this
corresponds to the trap density in the dark . Hence, the formally achievable maximum space-
charge distribution may be expressed as  and the amplitude of the
space-charge field thus generated is given by:

.  eq. (G - 20)

The quantity Eq is referred to as saturation field.
Using the characteristic field quantities according to eq. (G - 19) and eq. (G - 20), the

complex amplitude of the PR space-charge field is obtained as

 eq. (G - 21)

and the real space-charge field as:

.  eq. (G - 22)

The space-charge field is purely imaginary in this case indicating a phase shift of
 (φ is the phase angle) with respect to the optical interference field as mentioned in

“2.5.1.) Phenomenology of the photorefractive effect” on page 118. The sign of the phase angle
φ is determined by the polarity of the mobile charge carriers. Please note, that E1 will not exceed
the smaller value of the characteristic fields Ed and Eq and reach its maximum for Ed = Eq. Apart
from the temperature, this is basically a question of the grating spacing, which defines the
magnitude of K. Due to the negligibly small diffusion coefficient typically found in polymers,
the case of pure diffusion is insignificant for PR polymers.

n0 0→
n r( ) n1 iK r•( )exp=

E iK
kBT

q
--------- iEd≡=

ND0
i n0 0→

NA
ρ x( ) qND0

i iKx( )exp=

E1 iq
ND0

i

ε〈 〉K
------------- iq

NA
ε〈 〉K

------------- iEq≡= =

E1 M
iEd

1
Ed
Eq
------+

---------------=

Esc r( ) M
EdEq

Ed E+ q
------------------ K r•( )sin–=

φ π 2⁄±=



Appendix G: Theoretical treatment of the photorefractive effect in crystals

G7

G.1.1.2.) Space charge field with external field applied
Using the characteristic fields according to eq. (G - 19) and eq. (G - 20), the influence of

an external electrical field applied to the PR medium becomes illustrative when expressing eq.
(G - 16) as follows:

.  eq. (G - 23)

It becomes clear, that the external field E0 introduces a complex scaling factor in eq. (G - 21),
the term in brackets in eq. (G - 23), which becomes unity for . This affects the behavior
of the space charge field in two ways.

Firstly, the amplitude of the space-charge field is no more limited by Ed and Eq as
discussed above for the case of no external field applied. In contrast, E1 will now be limited by
the strength of E0 except for , when eq. (G - 23) transforms back to eq. (G - 21)
disregarding the existence of an external field. However, a corresponding case will not be
observed in PR polymers due to the inherently large trap densities. 

Secondly, since the scaling factor is complex, the phase angle φ will take on values of
, and the sign of φ will depend on the polarity of the mobile charge carriers as well

as on the direction of the external field. It is self evident, that φ will approach 90° for ,
however, its sign will still depend on the direction of the external field.

Simplifying eq. (G - 23) yields:

,  eq. (G - 24)

which correlates directly to eq. (G - 16). Please note, that eq. (G - 24) is the complex amplitude
of the complex space-charge field. In order to derive the real space-charge field, the real part of: 

 eq. (G - 25)
(the subscript tilde shall point out the complex character) must be extracted as has been done
for deriving eq. (G - 22). The resulting expression is presented in “2.5.2.1.1.) Steady-state
solution for the space-charge field” on page 120.

G.1.2.)  Dynamics of the space-charge field

G.1.2.1.)Build-up dynamics
The photorefractive effect is a macroscopic phenomenon, which requires the excitation

and redistribution of a large number of charge carriers in order to form a notable PR grating.
Hence, the build-up velocity of a PR grating will at first predominantly be determined by the
photon flux, i.e. by the intensity of the optical interference field. A rough estimate reveals an
approximately reciprocal dependency of the build-up time on the intensity ([B22] p. 99ff).
Corresponding considerations apply to the erasure dynamics, where the time axis is simply
inverted.

E1 M
iEd

1
Ed
Eq
------+

---------------
1 i

E0
Ed
------+

1 i
E0

Ed Eq+
------------------+

------------------------------=

E0 0=

Eq Ed«

0 φ π± 2⁄< <
Eq Ed«

E1 M
iEd E0–

1
Ed
Eq
------ i

E0
Eq
------+ +

------------------------------=

E
˜ sc r( ) E

˜ 1eiK r•=



Appendix G: Theoretical treatment of the photorefractive effect in crystals

G8

    Considering not the absolute build-up time of a PR grating but the build-up dynamics,
the band transport equations eq. (G - 1) and eq. (G - 5) must be solved as a function of time. For
this purpose, the independent variables of the set of nonlinear differential equations eq. (G - 11)
will be similarly separated as for the steady-state case by introducing now time dependent
solutions:

 eq. (G - 26)

and the same approximations as above, i.e. .
As discussed in the preceding section, grating vector and space-charge field are parallelly

oriented and, accordingly, the current density vector will also be oriented parallelly to these
quantities. Therefore and for the sake of simplicity, a vectorial representation shall be set aside
hereafter and for this section. It will tacitly be presumed, that all oriented quantities are oriented
along the grating vector and, if some external field is applied, only the projection onto the
grating wave vector will be accounted for. 

By inserting eq. (G - 26) in the band transport equations, separating terms of zero and first
order and ignoring terms of higher order, the following sets of equations are obtained for the
zero order Fourier component: 

 eq. (G - 27)

and the first order Fourier component:

,  eq. (G - 28)

where the effective quantities  and  are defined by eq. (G - 14) and explicit indications
of time dependency have been set aside for the sake of clarity.

If there is an external dc electrical field applied to the medium, E0(t) is constant, and zero
otherwise. Therefore only the case of E0 ≠ 0 will be considered subsequently, which may easily
be rewritten for E0 = 0 if desirable. Applying the approximations eq. (G - 15) also here implies
a small the zero order density of free charge carriers, which in turn implies:

 .  eq. (G - 29)
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Please note, that the approximations eq. (G - 15) are not causally determined here but rather
presumed, which restricts the validity of the present considerations. Applying the named
approximation and assuming linear recombination, one obtains from eq. (G - 27): 

.  eq. (G - 30)

The recombination time constant τR is usually much smaller than the PR grating build-up time
constant in by far most PR media known today. Thus, for calculating E1(t) by means of eq. (G
- 30) only the steady-state solution (n0(t) = n0) must be accounted for. The approximations of
eq. (G - 15) imply furthermore, that the local supply of free charge carriers via the conduction
band is much smaller than the recombination rate:

 .  eq. (G - 31)

Solving now the first order equations for the formation of the space charge field and
substituting eq. (G - 29) and eq. (G - 30) yields:

.  eq. (G - 32)

In order to find an analytical expression for E1(t), the first differential equation of the set eq. (G
- 28) must be solved as well as eq. (G - 32) yielding an expression for (n1-ND1

i)(t), which then
is inserted into the last equation in set eq. (G - 28). Applying then eq. (G - 31) and the first
approximation in eq. (G - 15), the final dynamic solution for the complex amplitude of the
space-charge field is obtained as:

 .  eq. (G - 33)
E1 is the steady state ( ) complex amplitude of the space charge field according to eq. (G
- 24) and the time constant τ is complex and given by:

.  eq. (G - 34)

Ed is the diffusion field according to eq. (G - 19) and Eq is the saturation field according to eq.
(G - 20) and Eµ is another characteristic field quantity referred to as drift field:

.  eq. (G - 35)

The parameter t0 is a characteristic time constant defined by:

.  eq. (G - 36)

The real part of eq. (G - 33) is the dynamic solution for the physical space-charge field Esc
and is shown in “2.5.2.1.2.1.) Build-up dynamics” on page 121.
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G.1.2.2.)Erasure dynamics
For erasing the space charge field a uniform illumination is applied. Accordingly, there is

initially some space-charge field of strength E1 and the final steady-state will be E1  =
0. The resulting dynamic solution for this problem may be formulated in analogy to eq. (G - 33)
as:

,  eq. (G - 37)
where τ is the complex time constant according to eq. (G - 34). The real solution is presented in
“2.5.2.1.2.2.) Erasure dynamics” on page 122
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Appendix H

Theoretical treatment of the photorefractive effect in polymers

In the following, the theoretical models for the photorefractive effect in polymers as
developed by Schildkraut, Cui, et. al. [77, 78] and Cui et. al.[83] will elaborated upon.

Please note, that photorefractive polymers require an external field not only for breaking
the inherent statistical centro-symmetry, but also to support the charge generation and to enable
charge carrier redistribution by charge carrier drift. The latter requires that the external field has
a non-vanishing projection onto the grating wave vector of the interference pattern.
Subsequently, the term “external field” (or similar) or “E0” always refer to the external field
component fullfilling this requirement.

CONTENT:

H.1.) Schildkraut’s model H2

H.1.1.) Steady state solutions for the space-charge field in polymers H4

H.1.1.1.) Zero order component H4

H.1.1.2.) First order component H5

H.1.2.) Build-up dynamics for the space-charge field in polymers H7

H.1.3.) Erasure dynamics of the space-charge field in polymers H9

H.1.3.1.) Erasure dynamics in Schildkraut’s model H9

H.1.3.2.) Cui’s approach to the erasure dynamics H10
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H.1.) Schildkraut’s model
Schildkraut’s model [77, 78] is formulated in

dimensionless form, which may be appropriate for
theoretical considerations but is not very helpful
for application to the experiment. Therefore, the
model is depicted here in SI units [T2]. The mobile
charge carriers are assumed to be holes and to be
photogenerated from neutral electron accepting
moieties. The negative countercharges are
assumed to be fixed at the ionized sensitizer
moieties. Both the charge carrier photogeneration
efficiency and the hole mobility are allowed to be
field dependent. The field dependency of the
photogeneration efficiency Φ(E) is basically
described by the Onsager theory (page 110).
According to [78], by sense of proportion applied
to a plot depicted in [67] within the interval of
external fields typically applied to PR polymers
(about 10V/µm - 100V/µm), the very complicated Onsager field dependence might be
approximated with sufficient accuracy by a simple power law:

,  eq. (H - 1)
where Φi is a constant and p is a system dependent empirical parameter to be determined

experimentally. The field dependency of the hole mobility µ(E) is described using the hopping
transport formalism in disordered organic systems [81]:

,  eq. (H - 2)
where µi is a constant and C is an experimentally obtained characteristic parameter. For more
details see “2.4.3.) Electrical conduction in organic polymers” on page 95. Please note, that eq.
(H - 1) and eq. (H - 2) are of empirical nature and, hence, the fields are considered as
dimensionless. A charge carrier once generated may then recombine with one of the fixed
countercharges, i.e. an ionized sensitizer NG

i, or be trapped in a neutral trap NT. The
recombination is assumed to follow the Langevin theory (page 115) and eq. (2.4 - 186) is
rewritten as:

,  eq. (H - 3)

where γR is the recombination rate, q the absolute elementary charge (i.e. 1.6x10-19 C), µ = µ(E)
the hole mobility, and ε is the total (effective) permittivity. However, this theory does not
account for the trapping rate, since it requires strong Coulomb-interaction between a trapping
site and the charge carrier to be trapped and thus is not valid for neutral traps. Eventually, charge
carriers trapped in shallow traps may be detrapped again and further participate on the overall
process. A schematic of Schildkraut’s model is depicted in figure (1).

Without loss of generality, the problem will be considered one-dimensional in x-direction,
which also shall be the direction of the externally applied field:

,  eq. (H - 4)
where  is the unit vector in x-direction of the system. Accordingly, all occurring oriented
quantities can be related to the x-direction and vectorial expressions can be set aside, which
makes the discussion more clear.

 Figure (H - 1): Energy level scheme of 
Schildkraut’s model. f(E) is the generation rate, 
T represents trapping and R recombination and 
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The continuity equation as formulated for the band transport model, i.e., according eq. (G
- 1) and eq. (G - 3) for the mobile charge carriers, i.e. the holes, may here be formulated as:

,  eq. (H - 5)

where n is the hole density, NG and NG
i and NT and NT

i are the densities of neutral and ionized
sensitizers and traps, respectively, γT and δ are the trapping and detrapping rates, respectively,
and j is the current density as formulated for the band transport mode, i.e., according to eq. (G
- 4), here simplified to:

,  eq. (H - 6)

where kBT is the thermal energy. The hole generation rate f is given by:

,  eq. (H - 7)

where I is the light intensity and s is the light absorption cross section and hν is the photon
energy. Please note, that eq. (H - 6) premises the validity of the Einstein relation

,  eq. (H - 8)

with D as diffusion coefficient. For polymers, eq. (H - 8) is an approximation of unclear quality
in general and may be inacceptable especially for higher fields as discussed in “2.4.3.3.1.) The
Einstein relationship” on page 108. However, there is no alternative analytic expression relating
diffusion coefficient and mobility. Furthermore, drift will usually dominate for higher fields (i.e.
the diffusion term in eq. (H - 6) is of minor influence) and for lower fields, where the diffusion
term becomes more important, eq. (H - 8) may be considered as a reasonably valid
approximation. 

The electrical field must satisfy Poisson’s equation (see Appendix G, eq. (G - 5)), which
reads here:

.  eq. (H - 9)

Please note, that all variables in eq. (H - 5), eq. (H - 6) and eq. (H - 9) depend on x (position)
and t (time) which is self-evident and has neither been explicitly indicated or mentioned above
nor will be so hereafter.

The rate equations for the recombination centers (i.e. ionized sensitizers) and for ionized
traps are:

 eq. (H - 10)

and:

,  eq. (H - 11)

respectively, and the conservation of sites requires the conditions:

 eq. (H - 12)
and:

 eq. (H - 13)
to be met, where NG,i and NT,i are the initial densities of neutral sensitizers and traps,
respectively.
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After having formulated the basic equations, eq. (H - 9) is partially differentiated with
respect to t using thereby eq. (H - 10) and eq. (H - 11) to substitute the corresponding time
derivatives. Then NG and NT

i are eliminated by inserting eq. (H - 12) and eq. (H - 13) and finally
NG

i is substituted using eq. (H - 9). This finally yields the following differential equation:

.  eq. (H - 14)

A second fundamental differential equation is obtained by differentiating eq. (H - 6) with
respect to x and combining it with eq. (H - 5). Then the local derivative of eq. (H - 2) is inserted
and subsequently eq. (H - 9), eq. (H - 12) and eq. (H - 13) are used to eliminate NG

i, NG and NT
i,

respectively, eventually resulting in:

.  eq. (H - 15)

If the system is illuminated with a spatially varying intensity distribution according to eq. (G -
7), the variables n, E, µ, Φ, NT, γT, and δ will have the same spatial modulation as the
interference pattern and, similar to the procedure as described for the band transport mode (eq.
(G - 11)), may be approximated by expressions of the general form:

,  eq. (H - 16)
where K is the (modulus of the) grating wave vector and ζν represents some characteristic
response frequency for the grating build-up. Rewriting eq. (G - 7) in the same form, g0 = I0 is
the zero order constant for the light intensity and g1 = mI0 is the first order constant. 

H.1.1.) Steady state solutions for the space-charge field in polymers

H.1.1.1.)Zero order component
Inserting the approximations according to eq. (H - 16) into eq. (H - 14) (or eq. (H - 15))

yields for the spatially constant zero order Fourier component of the hole density:

,  eq. (H - 17)

with:

 eq. (H - 18)

and µ0 and Φ0 given by eq. (H - 2) and eq. (H - 1), respectively, for E = E0.

ε
q
---

x∂t

2

∂
∂ E

t∂
∂n– γRn f+( )ε

q
---

x∂
∂E γRn γRNT i, f+ +( )n– fNG i, γR γT–( )nNT+ + +

f δ–( ) NT i, NT–( )=

t∂
∂n kBT

q
---------µ

x2

2

∂

∂ n– µE D
Cµi

2 E
-----------

x∂
∂E– 

 
x∂

∂n n
Cµi

2
--------- E f ε

q
---– 

 
x∂

∂E ++ +

+ γRn γRNT i, f+ +( )n fNG i,– γR γT–( )nNT– f δ–( ) NT i, NT–( )=

g x t,( ) g0 g1e iKx iζνt+( )+=

n0
f0 NG i, NT i,– NT0+( ) δ0 NT i, NT0–( )+

f0
q
ε
---µ0 n0 NT i, NT0–+( ) γT0NT0+ +

----------------------------------------------------------------------------------------------=

f0 Φ0
sI0
hν
-------=



Appendix H: Theoretical treatment of the photorefractive effect in polymers

H5

H.1.1.2.)First order component
In contrast to the zero order Fourier component, insertion of the approximations eq. (H -

16) into eq. (H - 14) and eq. (H - 15) will result in two linear equations for the first order Fourier
component. 
Expanding eq. (H - 2) in terms of a Taylor series yields:

 eq. (H - 19)

and µ1 may thus be expressed as:

.  eq. (H - 20)

The same procedure yields from eq. (H - 1):

.  eq. (H - 21)

With these expressions, the two linear equations for the remaining first order terms are:

 eq. (H - 22)

and:

,  eq. (H - 23)

with:

 eq. (H - 24)

according to eq. (H - 3). The parameters Γdie,  ΓI,  ΓR,  ΓT,  ΓD and  ΓE may be interpreted as
the dielectric relaxation rate, the sum of the charge carrier generation and geminate
recombination rates, the total hole recombination rate (i.e. geminate and linear recombination),
the sum of the hole trapping and detrapping rates, the diffusion rate and the drift rate,
respectively. The explicit expressions for these rates are:
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,  eq. (H - 25)

,  eq. (H - 26)

,  eq. (H - 27)

,  eq. (H - 28)

, and  eq. (H - 29)

.  eq. (H - 30)

In order to obtain an analytical solution for eq. (H - 22) and eq. (H - 23), three of the five
first order quantities must be eliminated, since presently there are only two independent
equations. A possible approach would be to seek theoretical or empirical expressions for the
hole trapping and detrapping rates, γT and δ, in terms of E and deriving the first order
expressions by means of a Taylor expansion like conducted before for Φ1 and µ1. Furthermore,
it may be possible to relate NT to n by means of thermodynamic arguments. However, there are
no general expressions of that kind, yet. Therefore, Schildkraut et. al. considered the limiting
case of deep traps, i.e. detrapping is considered negligible and δ = 0. All traps can then be
considered as filled (i.e. NT = NT0 = NT1 = 0) if the system has reached its steady-state (i.e.
furthermore ζν = 0). Since trapping then does not occur any more, γT1 will drop off from the
equations as well, however, will not be zero. The remaining system of two linear equations
contains the variables E1 and n1 and can be solved for the complex space-charge field E1 by
means of Cramers rule, which results in: 

.  eq. (H - 31)

The modulus of the complex space charge field is presented in “2.5.3.2.1.) Steady state solutions
for the space-charge field in polymers” on page 125. 

The parameter  given by:

.  eq. (H - 32)

The fields are defined as:

,  eq. (H - 33)

, with  eq. (H - 34)

, and finally  eq. (H - 35)

.  eq. (H - 36)

Please note, that eq. (H - 36) is partially based on an empirical expression (eq. (H - 2)).
Therefore, the “field“ in the square root carries no dimension, but has the value of E0. An
interpretation of the above field quantities in terms of the field quantities already introduced for
the theoretical model of the photorefractive effect in crystals is given in “2.5.3.2.1.) Steady state
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solutions for the space-charge field in polymers” on page 125.
From the real part and the imaginary part of eq. (H - 31) one obtains for the phase shift φ

of the space-charge field with respect to the interference pattern:

.  eq. (H - 37)

H.1.2.)  Build-up dynamics for the space-charge field in polymers
Based on Schildkraut’s model, Yuan et. al. derived an analytical expression for the build-

up dynamics of the space-charge field in polymers [82]. In analogy to the original Schildkraut
model, they formulated their theoretical formalism in dimensionless form as well, which is
subsequently rewritten to SI units. 

In order to derive an expression for the build-up dynamics of the space-charge field, the
expressions eq. (H - 16) for n, E, µ, Φ, NT, γT, I and δ are rewritten into the form:

.  eq. (H - 38)
It shall be assumed, that the zero order Fourier component evolves much faster than the first
order component, as was assumed before for the derivation of the dynamics of the space charge
fields in PR crystals. Thus, g0 may be approximated as having reached its steady state more or
less instantaneously compared to g1, and will be treated as constant in time. 

Eq. (38) is inserted into eq. (H - 14) and eq. (H - 15), which, accounting furthermore for
eq. (H - 20) and eq. (H - 21) yields:

 eq. (H - 39)

and:

.  eq. (H - 40)

Since it was assumed, that the zero order Fourier component evolves instantaneously, the result
for n0 is the steady-state solution eq. (H - 17). In order to obtain the time dependent first order
component of the complex space charge field E1, eq. (H - 39) is subtracted from eq. (H - 40)
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yielding:

 eq. (H - 41)

and the resulting expression is differentiated with respect to t:

.  eq. (H - 42)

Inserting eq. (H - 41) and eq. (H - 42) into eq. (H - 40) results in a second order differential
equation for E1:

 eq. (H - 43)
with the coefficients a, b, c, and d given by:

,  eq. (H - 44)

 eq. (H - 45)

 eq. (H - 46)

and:

.  eq. (H - 47)

These expressions may be simplified a bit when inserting the rates given by eq. (H - 25) to eq.
(H - 30), however, this will not be formulated here, since calculating some absolute values is
not the focus of interest here, but rather obtaining an analytical expression, which gives an idea
of the general behavior of the PR space-charge field as a function of time. 

In order to solve for eq. (H - 43), boundary conditions must be found. It is ostensibly clear,
that n1(t = 0) = E1(t = 0) = 0, which requires  as well, according to eq. (H - 41).
Furthermore, eq. (H - 39) (or eq. (H - 40)) yields  for
t = 0, which requires  from eq. (H - 42), ensuring, that the solution will not be
trivial. The solution of eq. (H - 43) thus writes:

,  eq. (H - 48)
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,  eq. (H - 49)

,  eq. (H - 50)

 and  eq. (H - 51)

.  eq. (H - 52)

The physically relevant real part of the complex space-charge field E1(t), Esc(x,t), is presented
in “2.5.3.2.2.) Build-up dynamics for the space-charge field in polymers” on page 126. The
amplitude and phase parameters mentioned therein and referring to the current section are as
follows: R1 and φ1 are the amplitude and the phase of c/d, R2 and φ2 are the amplitude and the
phase of A1, and R3 and φ3 are the amplitude and the phase of A2. The real time constants −τsc1,2
are given by the real parts of the complex time constants τ1,2, respectively, and the phase
parameters ω1 and ω2 result from the imaginary part of the complex time constants τ1,2.

H.1.3.) Erasure dynamics of the space-charge field in polymers
The erasure dynamics of PR polymers may be considered in two ways. The first and most

proximate way is to invert the boundary conditions preceding eq. (H - 48) and solve eq. (H -
43). However, this approach suffers from the basic limitation to a system with solely deep traps,
which has been applied in order to obtain an analytical solution for Schildkraut’s model. On the
other hand, Cui et. al. recently presented a more detailed analysis of the erasure process in PR
polymers [83] taking into account different levels of traps. Both approaches will be outlined
below.

H.1.3.1.)Erasure dynamics in Schildkraut’s model
As mentioned before, the erasure dynamics of the space-charge field in PR polymers may

be described on the basis of Schildkraut’s model. The path of this analysis has already been
outlined above. In order to solve for the erasure of the space-charge field, the boundary
conditions for eq. (H - 43) must be altered compared to above. For the erasure process n1(t →
∞) = E1(t → ∞) = 0, which requires  as well, according to eq. (H - 41).
Furthermore, eq. (H - 39) (or eq. (H - 40)) yields  for
t → ∞, which requires  from eq. (H - 42). It is furthermore clear that n1(t = 0) =
n1 and E1(t = 0) = E1. Thus, the boundary conditions are exactly inverted and the solution of eq.
(H - 43) thus writes:

.  eq. (H - 53)
In order to obtain an analytical solution for A1´ and A2´, the boundary condition E1(t = 0) = E1
must be substantiated. Presuming that the grating has been recorded to steady-state in advance
of the considered erasure process, one obtains from eq. (H - 48): E1(t = 0) = d/c. It is furthermore
clear that  will apply for this case. Then one obtains:
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 and  eq. (H - 54)

 eq. (H - 55)

and the corresponding complex time constants given by eq. (H - 50) and eq. (H - 52).
The physically relevant real part of the complex space-charge field E1(t), i.e. Esc(x,t), is
presented in “2.5.3.2.3.1.) Erasure dynamics in Schildkraut’s model” on page 127. The
amplitude and phase parameters mentioned therein are as follows: R1´ and φ1´ are the amplitude
and the phase of A1´ and R2´ and φ2´ are the amplitude and the phase of A2´. The time constants
−τsc1,2 result from the real parts and the circular frequencies ω1 and ω2 result from the
imaginary parts of the complex time constants τ1,2, respectively.

H.1.3.2.)Cui’s approach to the erasure dynamics
The main factors affecting the dynamics of the space-charge field in some PR material are

the generation, transportation, and trapping of charge carriers. The field dependency of the
quantum efficiency of charge generation, the charge trapping rate and the charge carrier
mobility result from the positional and energetic disorder of the charge transporting and
trapping sites in the polymer matrix. Presumed that holes are the only free charge carriers
present in the medium and that their negative countercharges are fixed at the generation sites,
the energy levels of the trapping sites should follow some particular distribution, and there will
be a certain density of traps for a given energy level E. Trapped holes may be detrapped
thermally and/or optically with different detrapping rates depending on the energy levels of the
involved trapping sites. Thus, by integration over all energetic levels the following rate
equations at constant external field may be formulated:   

 eq. (H - 56)

Here  and  are the absolute densities of free holes, hole generators (i.e.
neutral sensitizers), ionized generators (i.e. ionized sensitizers), (neutral) traps and filled (i.e.
ionized) traps, respectively, and q is the elementary charge. The quantities  represent the
value of x at the energy level E.  is the current density according to eq. (H - 6) and  and

 are the geminate recombination rate and the trapping rate, respectively. The
photogeneration rate  and the detrapping rate  may be expressed as:

  eq. (H - 57)

where I is the light intensity,  is the thermal detrapping rate and  and  are the
light excitation cross sections for generators and filled traps. Please note, that αG and δ are
spatially constant for the erasure process.
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By means of the mean value theorem the integrals in eq. (H - 56) can be rewritten into the
general form:

,  eq. (H - 58)

where . A particular consideration of the limiting value of , which, strictly
speaking, is mathematically required may be replaced by an ostensible physical consideration.
The function f in eq. (H - 58) is considered as related to the quantities αG, γR, γT and δ. These
quantities are always ≥ 0 and < +∞ by definition and, thus, their average value  is
finite and the characteristic value for the considered system. Accordingly, the integrals in eq. (H
- 56) may be rewritten as: 

 eq. (H - 59)

yielding finally:

,  eq. (H - 60)

where αG, γR, γT and δ are the characteristic, discrete values of the system and αG and δ result
form eq. (H - 57):

 eq. (H - 61)

with the characteristic, discrete values of sG, sT and ß.
For the analysis of the erasure process it is presumed, that a steady-state PR space charge

field has already been recorded. At t = 0, the writing beams are switched off, and a uniform
erasure beam is turned on instantaneously, which does not match the Bragg condition of the
recorded index grating. For t ≥ 0, the quantities n, NT, NG

i and the electrical field may again be
expressed in terms of their zero and first order Fourier components according to eq. (H - 38):

.  eq. (H - 62)

where E0 is the externally applied field. As above, the zero order components are assumed to
reach their steady-state values almost instantaneously and, thus, are treated as constants in time.
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Appendix H: Theoretical treatment of the photorefractive effect in polymers

H12

The expressions eq. (H - 62) are then inserted into eq. (H - 60), eq. (H - 9), and eq. (H -
6), yielding a set of linear equations, from which all unknown first order components except
E1(t) will be eliminated, yielding finally a differential equation for E1(t), which then must be
solved taking into account appropriate boundary conditions. This procedure in principle has
already been outlined above and will not be elaborated upon here once more. The results are
presented in “2.5.3.2.3.2.) Cui’s approach to the erasure dynamics” on page 128.
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