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Photorefraktive (PR) Polymere gelten als vielversprechende reversible optisch-
holographische Speichermedien, die eine mit den besten derzeit bekannten anorganischen
Materialien vergleichbare PR Performanz aufweisen, ja diese sogar in einigen Belangen
iibertreffen. Zusétzlich bieten PR Polymere gegeniiber anorganischen oder auch organischen
PR Kristallen eine Reihe wichtiger Vorteile. Bei gleichzeitig geringen Kosten zeichnen sich PR
Polymere durch hohe optische Qualitit und gute Reproduzierbarkeit aus, sind strukturell
flexibel, einfach herzustellen und leicht zu verarbeiten.

Im Rahmen dieser Dissertation wurden auf dem photoleitenden Polymer Poly(N-
vinylcarbazol) aufbauende PR Polymere untersucht, wobei den speziellen Eigenschaften
besonderes Augenmerk zuteil wurde, die eine mdgliche Anwendung dieser vergleichsweise
neuen Materialien als holographische Massenspeichermedien erfordern. Zu diesem Zweck
wurde die Zusammensetzung des untersuchten Materialtyps systematisch variiert, ohne die
Grundzusammensetzung nenneswert zu verdndern, und die Materialien wurden verschiedenen
experimentellen Bedingungen ausgesetzt. Dabei war das vorrangige Ziel dieser Arbeit, einen
moglichst umfassenden Eindruck vom dynamischen Verhalten des untersuchten Materialtyps
beziiglich Hologrammaufbau, Loschen der Hologramme, sowie Zerfall der Hologramme im
Dunklen zu erhalten. Weiterhin sollten wichtige Details offen gelegt und die dahinter stehenden
physikalischen Ursachen ermittelt, oder auf der Basis bekannter theoretischer Ansitze
konkretisiert werden. In diesem Zusammenhang wurden auch Fragen des stationdren
Verhaltens der untersuchten Materialien behandelt, da sich daraus wertvolle Erkenntnisse iiber
allgemeine Eigenschaften des PR Raumladungsfeldes bei den unterschiedlichen
Materialzusammensetzungen und unter den unterschiedlichen experimentellen Bedingungen
ableiten lassen, die hier untersucht bzw. verwendet wurden. Zum Abschlufl wurden die
allgemeinen Multiplexingfahigkeiten des untersuchten Typs PR Polymere experimentell
getestet.

Mit Hilfe einer stark vereinfachten Modellrechnung wurden die allgemeinen
Beugungseigenschaften eines dicken holographischen Gitters bei gleichzeitigem Auftreten
starker Zweiwellenkopplung untersucht. Dabei wurde die typische geometrische Konfiguration
fiir Beugungsexperimente an PR Polymeren zugrunde gelegt. Es konnte gezeigt werden, daf
starke Zweiwellenkopplung, die eine Verbiegung der Gitterebenen des Bragg-Gitters zur Folge
hat, die Beugungseigenschaften des Gitters bei entarteter Vierwellenmischung im
experimentell zugénglichen Bereich nicht nennenswert beeinfluf3t.

Die Ausprdgung der stationdren und der dynamischen PR Eigenschaften der im Rahmen
dieser Dissertation behandelten Materialien wurde in Abhingigkeit von der Glastemperatur und
in Abhéngigkeit vom Gehalt an nichtlinear optischem Farbstoff erforscht. Dabei wurde
festgestellt, da3 der reduzierten Temperatur eine entscheidende Bedeutung zukommt. Die
reduzierte Temperatur ist die Glastemperatur bezogen auf die Umgebungstemperatur als
Nullpunkt. Es wurde beobachtet, dal3 die stationdre PR Performanz der Materialien mit hohem
Farbstoffgehalt in Abhédngigkeit von der reduzierten Temperatur ein absolutes Maximum
durchléuft. Dies konnte auf den Einflull zweier gegenldufiger Effekte zuriickgefiihrt werden.
Einerseits  wird in  Richtung  abnehmender  reduzierter = Temperatur  die
Orientierungsbeweglichkeit der Farbstoffmolekiile in der Polymermatrix grofer und deren
Ausrichtung entlang des Summenvektors der elektrischen Felder in einem PR Polymer
erleichtert. Somit sind kleinere externe elektrische Felder erforderlich, um ein gegebenes Mal3
an elektrischer Polung des Materials zu erreichen. Andererseits nimmt das PR Raumladungsfeld
in Richtung abnehmender reduzierter Temperatur ab, sobald die reduzierte Temperatur negativ
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wird. Dies ist eine Folge langsamer langreichweitiger Konformationsinderungen der
Polymermatrix, die dazu fiihren, daBl sich die energetischen Positionen der einzelnen
molekularen Einheiten, die sich fiir den Ladungstrdgertransport verantwortlich zeichnen,
stindig verdndern. Da diese molekularen Einheiten zugleich auch potentielle
Ladungstrdgerfallen reprisentieren, werden darin gefangene Ladungstriger wieder
freigelassen, wenn die obengenannte Anderung der energetischen Postion zu einer
Verringerung der energetischen Tiefe der betroffenen Falle fiihrt. Im Mittel wird dadurch die
effektive Anzahldichte an PR Ladungstragerfallen und damit das PR Raumladungsfeld
reduziert. Um diesen Effekt zu kompensieren, muf3 das externe Feld erhoht werden um eine
gegebene PR Brechungsindexmodulation zu erreichen. Es 1dBt sich ableiten, dal} dieses
Wechselspiel der zwei vorgenannten gegenldufigen Effekte prinzipiell nicht vom
Farbstoffgehalt abhingt, jedoch fiir verschiedene Farbstoffgehalte unterschiedlich gewichtet
ist, so daf} ein Optimum der PR Performanz fiir alle untersuchten Farbstoffkonzentrationen zu
erwarten ist, auch wenn es bei den Materialien mit geringem Farbstoffgehalt im experimentell
untersuchten Bereich nicht mehr nachgewiesen werden konnte.

In Bezug auf das dynamische Verhalten der untersuchten Materialien ergab sich, daf3 die
Geschwindigkeit des Hologrammautbaus bei positiver reduzierter Temperatur durch die
Orientierungsbeweglichkeit der Farbstoffmolekiile innerhalb der Polymermatrix begrenzt wird
und demzufolge mit steigender reduzierter Temperatur abnimmt. In diesem Bereich héngt die
Geschwindigkeit des Hologrammautbaus auBBerdem stark vom Farbstoffgehalt ab: sie sinkt mit
steigender Konzentration an Farbstoffmolekiilen. Dieser Effekt 143t sich durch eine
gegenseitige Behinderung der Farbstoffmolekiile wiahrend der Orientierung im anliegenden
elektrischen Summenfeld erkldren, die mit steigender Farbstoffkonzentration an Bedeutung
gewinnt (“Backstein”-Effekt). Im Bereich negativer reduzierter Temperaturen wird die
Dynamik der Materialien von der Dynamik des PR Raumladungsfeldes bestimmit.
Dementsprechend 146t sich dann auch keine Abhédngigkeit vom Farbstoffgehalt beobachten.

AuBerdem wurden Experimente zum Einflul der Sensibilisatorkonzentration auf das
stationdre und das dynamische photorefraktive Verhalten des untersuchten Materialtyps
durchgefiihrt. Diese lieferten insbesondere wertvolle Informationen zu den
Ladungstragerfallen, die zum PR Effekt beitragen. Es ergaben sich eindeutige Hinweise, daf3 in
PR Polymeren zwei grundsitzlich verschiedene Typen von Ladungstrigerfallen auftreten,
namlich konformative Fallen, die im unbesetzten Zustand elektrisch neutral sind, und Coulomb-
Fallen, die im unbesetzten Zustand entgegengesetzt zur beweglichen Ladungstrigersorte
geladen sind. Erstere sind von Anfang an vorhanden, und ihre Anzahldichte hingt nicht von der
Konzentration an Sensibilisatormolekiilen ab. Die Anzahldichte der Coulomb-Fallen dagegen
héngt systematisch von der Sensibilisatorkonzentration ab, was eine Zuordnung dieser Fallen
zu ionisierten Sensibilisatormolekiilen erlaubt. Diese Fallen werden erst erzeugt, wiahrend das
Hologramm geschrieben wird, ihre Anzahldichte ist also zusitzlich zeitabhdngig. Die
Gesamtzahl aktiver Ladungstrégerfallen fiir den PR ProzeB ergibt sich aus der Summe beider
Fallentypen und nimmt daher fiir gegebene Betriebsbedingungen mit steigender
Sensibilisatorkonzentration zu. Dies fiihrt ab einer gewissen Mindestkonzentration an
Sensibilisatormolekiilen einerseits zu einer verbesserten stationdren PR Performanz, jedoch
andererseits zugleich zu einem komplizierteren Ansprechverhalten der Materialien. SchlieBlich
wurden deutliche Anzeichen dafiir gefunden, daBl die Aufbaudynamik des PR
Raumladungsfeldes in den untersuchten Materialien von der Beweglichkeit der freien
Ladungstrager bestimmt wird und nicht von deren Erzeugungsrate. Diese Aussage ist giiltig fiir
typische Sensibilisatorkonzentrationen in PR Polymeren, wogegen davon auszugehen ist, dafl
es eine untere Konzentrationsschwelle gibt, ab der die Erzeugungsrate den Ausschlag gibt.
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Unter Berlicksichtigung  verschiedener Glastemperaturen wurde ferner das
Loschverhalten von photorefraktiven Brechungsindexgittern in Materialien des untersuchten
Typs eingehend untersucht. Als geschwindigkeitsbestimmende Schritte fiir den Loschvorgang
der Hologramme ergaben sich bei positiven reduzierter Temperaturen (d.h. die Glastemperatur
ist groBer als die Umgebungstemperatur) erneut die dipolare Relaxation der Materialien und bei
negativen reduzierter Temperaturen wiederum die Dynamik (d.h. hier der Abbau) des PR
Raumladungsfeldes. Bei allen untersuchten Materialien wurde eine ausgepragte Korrelation
zwischen der Ldschdynamik und der Schreibdauer der Hologramme gefunden, wobei der
Loschvorgang bei langer geschriebenen Hologrammen langsamer verlief. Im Falle positiver
reduzierter Temperaturen 148t sich dieses Verhalten damit erkldren, dal die Polymermatrix
unter dem EinfluB der bei der Reorientierung der Farbstoffmolekiile auftretenden inneren
Spannung viskos zu flieen beginnt. Das Ausmal} der dadurch beim Schreiben der Hologramme
auftretenden Anderung der inneren mechanischen Struktur nimmt mit der Schreibzeit zu und
mull beim Loschen weitestgehend revidiert werden, was zu einer schreibzeitabhingigen
Loschdynamik fiihrt. Im Falle negativer reduzierter Temperaturen konnte bewiesen werden,
daB die optische Aktivierung von tiefen Fallenzustinden fiir die beobachtete Verlangsamung
des Loschproze3 in Abhingigkeit zunehmender Schreibdauer der Hologramme verantwortlich
zu machen ist. Es konnten zwei grundsitzlich verschiedene Typen von optisch aktivierten
Ladungstrdgerfallen identifiziert werden, ndmlich erneut Coulomb-Fallen und elektrisch
neutrale Fallenzustinde. Von diesen bestimmen erstere die Loschgeschwindigkeit der
Hologramme zu Anfang des Loschvorganges, wéhrend sich letztere fiir die langsame
Komponente des Loschvorganges verantwortlich zeichnen.

Wihrend das Auftreten von optisch aktivierten Coulomb-Fallen bereits zuvor gezeigt
wurde und somit zu erwarten war, liberraschte der Befund optisch aktivierter neutraler
Fallenzustidnde und wurde daher eingehender betrachtet. Die ermittelten Eigenschaften dieser
Fallenzustdnde legen die Annahme nahe, da3 es sich um Carbazol Dimere handeln konnte,
deren optische Aktivierung indirekt erfolgt, d.h sie bilden sich erst in Anwesenheit eines optisch
erzeugten freien Ladungstrégers und liegen im gefiillten Zustand als Radikalkationen vor. Wird
eine solche Falle geleert, 10st sich der Fallenzustand vollstéindig auf. Entscheidende Indikatoren
fiir diese Annahmen sind die experimentellen Befunde einer vollstindigen Reversibilitdt der
optischen Aktivierung und eine ausgepridgte Abhdngigkeit des Prozesses der optischen
Aktivierung von der reduzierten Temperatur. Mit Hilfe der bereits besprochenen
langreichweitigen Konformationsdnderungen der Polymermatrix bei negativen reduzierten
Temperaturen wiirden solche Fallenzustinde mechanisch zerstort.

Zuletzt konnte gezeigt werden, dal von der Existenz einer optimalen reduzierten
Temperatur fiir die Anwendung der untersuchten Materialien fiir holographisches Multiplexen
auszugehen ist.

Auf Basis der Erkenntnisse der vorangehenden Untersuchungen wurden die untersuchten
Materialien mit extrinsischen tiefen Ladungstrigerfallen fiir Locher dotiert, um eine
Stabilisierung der Loschdynamik zu erreichen. Jedoch zeigten die so modifizierten, neuartigen
Materialien ein noch komplizierteres Loschverhalten. Es wurde festgestellt, dall die
photorefraktive Brechungsindexmodulation (d.h. die Stirke des Hologrammes) bei Anwendung
von kurzen Schreibzeiten und geringer Lichtenergie in der Anfangsphase des Loschprozesses
weiter zunimmt. Diese Ergebnisse konnten phdnomenologisch gedeutet werden, wobei die
besonderen Ladungstransporteigenschaften  fallendotierter —ungeordneter organischer
Festkorper und die spezifische riumliche Verteilung der elektrischen Felder in einem PR Gitter
in Betracht gezogen wurden. Mit Hilfe dieses phdnomenologischen Modells konnten auch alle
weiteren experimentellen Beobachtungen qualitativ erkldrt werden, die in Bezug auf die
fallendotierten Materialien gemacht wurden.
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Ferner wurde der Dunkelzerfall von Hologrammen in den untersuchten Materialien
eingehend untersucht. Dabei wurden sowohl unterschiedliche reduzierte Temperaturen
beriicksichtigt als auch Materialien mit und ohne Dotierung mit extrinsischen tiefen
Ladungstragerfallen. Im Rahmen des untersuchten Bereiches sowohl negativer als auch
positiver reduzierter Temperaturen wurde als geschwindigkeitsbestimmender Schritt im
Dunkelzerfalls der Hologramme in allen Féllen der Zerfall des PR Raumladungsfeldes
identifiziert. Ferner konnte gezeigt werden, dafl die Phasenverschiebung zwischen dem
hologrammerzeugenden Interferenzmuster und dem PR Gitter fiir die Geschwindigkeit des
Dunkelzerfall der  Hologramme  von  herausragender  Bedeutung ist.  Die
Dunkelzerfallsgeschwindigkeit der Hologramme wird mit zunehmender Phasenverschiebung
deutlich verlangsamt. Dieses Ergebnis ist von besonderer Bedeutung, da es fiir
bildinformationstragende Hologramme einen inhomogenen Dunkelzerfall impliziert.

SchlieBlich wurde experimentell untersucht, ob holographisches Multiplexen mit
Materialien des untersuchten Typs generell moglich ist. Dazu wurde ein erweiterter
numerischer Formalismus fiir einen Belichtungsplan fiir holographisches Multiplexen
entwickelt, der den Besonderheiten des dynamischen Verhaltens der untersuchten
holographischen Speichermedien Rechnung trdgt. Anhand von peristrophischen Multiplex-
Experimenten konnte gezeigt werden, daB3 die untersuchten Materialien holographisches
Multiplexen zwar grundsétzlich zulassen, jedoch mit schwerwiegenden Méngeln beziiglich
eines moglichen Einsatzes als Speichermedium in holographischen Massenspeichern behaftet
sind.

Zusammenfassend 146t sich feststellen, daB3 die Materialien des untersuchtes Typs als
Speichermedien in holographischen Massenspeichern nicht anwendbar sind. Dies ist
hauptsichlich auf ihr kompliziertes und fiir Massenspeicher unvorteilhaftes dynamisches
Verhalten zuriickzufiihren, das eine inhédrente Eigenschaft das untersuchten Materialtyps oder
gar der gesamten Materialklasse zu sein scheint und eine sinnvolle Anwendung holographischer
Multiplex-Techniken vereitelt. Darliberhinaus sind sowohl die vergleichweise kurze
Dunkelspeicherzeit als auch das inhomogene Dunkelzerfallsverhalten informationstragender
Hologramme fiir einen holographischen Massenspeicher ungeeignet. Stattdessen konnte diese
Klasse von optischen Speichermaterialien als Medium fiir fliichtige holographische Speicher
Anwendung finden (Echtzeit-Anwendungen). Beispiele hierfir wéiren Anwendungen als
assoziative Speicher, als holographische Pufferspeicher, oder als Speichermedium fiir
zeitgetaktete holographische Bilderzeugung (TGHI, time gated holographic imaging).
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Abstract

Photorefractive (PR) polymers are considered as highly promising reversible optical
holographic storage media, which compete and in some aspects even surpass the performance
of the best currently known PR inorganic materials. In contrast to inorganic or organic PR
crystals, PR polymers offer significant advantages like good optical quality, high structural
flexibility, good reproducibility, easy processing and low cost.

In the frame of this work poly(N-vinylcarbazole)-based PR polymer composites were
investigated focussing on the particular features required for a potential application of this
relatively new class of materials as optical holographic storage media in mass data storage
devices. Therefore, the composition of the investigated type of material was systematically
altered, and various experimental conditions were applied. The main objective of this work was
to get a more detailed insight into and a better understanding of the dynamic recording, erasure
and dark decay behavior of holograms in this type of PR polymer. Steady-state performance
issues were also addressed as they yield important information on the general properties of the
PR space-charge field for the varying material compositions and experimental conditions
applied. Finally, the general holographic multiplexing capabilities of the investigated type of
material were examined.

By means of a simplified model calculation the general diffraction properties of a
hologram in PR polymers in the presence of strong beam coupling were examined. It could be
proven that hologram bending due to strong beam coupling does not notably affect the
diffraction properties of a holographic grating in organic PR devices within the range of the
externally applied field experimentally possible.

The dependence of the steady-state and the dynamic PR performance of the considered
materials on the glass-transition temperature as well as on the doping level of electro-optic
chromophores was investigated. The reduced temperature, which is the glass-transition
temperature relative to the ambient temperature, was identified as a factor of outstanding
importance. A steady-state performance optimum in the highly-doped materials as a function of
the reduced temperature was observed, which is a result of two counteracting effects: On the
one hand, the orientational mobility of the chromophores increases with decreasing reduced
temperature, leading to a reduction of the external field required to achieve a certain degree of
electrical poling. On the other hand, for negative and further decreasing reduced temperatures
the PR space-charge field is more and more reduced as a result of a decrease of the effective PR
trap density due to slow collective motion of the photoconducting polymer matrix. The
hologram build up speed was found to be limited by the orientational mobility of the electro-
optic chromophores for positive reduced temperatures. In this regime, the grating build-up time
also depends strongly on the chromophore density due to sterical effects. For negative reduced
temperature the formation of the space-charge field was identified as the rate-limiting step in
the onset dynamics of the refractive index modulation. In this regime the chromophore doping
level turned out to be insignificant for the hologram build-up dynamics.

Considering the influence of the sensitizer concentration on the steady-state and the
dynamic PR behavior of the investigated type of materials, strong indication was found that the
active PR trap manifold consists of conformational traps on the one hand and of coulombic traps
formed by charged sensitizers on the other. The first exist ab initio and their number density
does not depend on the sensitizer content. The latter are formed during the grating recording
process (i.e., their number density is a function of time) and add to the conformational traps.
This leads to improved steady-state PR performance on the one hand but to a more complicated
build-up dynamics of the hologram on the other. Both effects are not observed until a certain
threshold concentration of sensitizer moieties is provided. Furthermore, strong indication was
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found that the hologram build-up dynamics in the investigated type of PR polymers is limited
by the charge carrier mobility as long as the sensitizer concentration is not too low.

The general erasure behavior of PR gratings in the considered type of materials was
investigated in detail taking into account different glass-temperatures. In general the PR grating
erasure was found to be determined by the relaxation dynamics of the orientational order of the
chromophores for the case of positive reduced temperatures (i.e., for glass-transition
temperatures above the ambient temperature), whereas the decay of the PR space-charge field
governed the hologram erasure dynamics in the case of negative reduced temperatures. For all
materials investigated, a strong correlation between the erasure dynamics of a hologram and its
corresponding recording time was observed. In all cases, the grating erasure process was found
to slow down as a function of increasing recording time. For positive reduced temperatures this
can be attributed to a viscous flow of the polymer matrix, whereas optical activation of trapping
sites was identified to cause this effect, if the reduced temperature is negative. Two
fundamentally different types of optically activated traps could be identified, which are
coulombic traps ruling the initial grating erasure and deep traps of non-coulombic nature ruling
the erasure behavior on longer time scale. The latter trap species might be carbazole dimer
radical cations. It could be shown that an optimum reduced temperature must be anticipated for
a potential application of the investigated materials in holographic multiplexing.

Doping the investigated materials with large amounts of extrinsic deep traps in an attempt
to stabilize the erasure dynamics led to an even more complicated erasure behavior. Applying
short recording times and low recording as well as low erasure intensity, a further increase of
the hologram strength was observed during the initial erasure process. A phenomenological
mechanistic picture of the recording and the erasure process of a hologram in a material showing
trap controlled charge transport was developed taking into account the spatial distribution of
electrical fields within the PR grating. This model can qualitatively explain the experimental
observations made for this novel type of material.

The dark decay of holograms in the considered materials was investigated in detail taking
into account different glass-transition temperatures as well as extrinsic trap doping. Within the
range of reduced temperatures investigated (i.e., even for positive reduced temperatures) the
dark decay was found to be governed by the decay of the PR space-charge field. Furthermore,
the phase shift of the PR grating turned out to be a crucial parameter yielding fast dark decay
for small PR phase shifts, whereas the dark decay was increasingly retarded as the phase shift
became larger.

Eventually the general feasibility of holographic multiplexing in the investigated type of
materials was investigated. An expanded numerical formalism for a multiplexing exposure
schedule was devised, which accounts for the complicated dynamic behavior of the type of
holographic storage media investigated. By means of peristrophic multiplexing experiments the
general feasibility of holographic multiplexing in the investigated materials could be
demonstrated as well as the shortcomings of this new class of materials for potential application
as storage medium in mass data storage devices.

In conclusion, the investigated type of holographic storage medium was found to be
inapplicable in holographic mass data storage devices. This is mainly due to the complicated
and unfavorable dynamic behavior, which appears to be an inherent feature of the investigated
type of material, or possibly even the entire class of materials, and which prevents a reasonable
application of holographic multiplexing techniques as well as long time storage. However, this
class of holographic storage materials may find application in any kind of volatile holographic
storage like, among others, associative memories, buffer holograms, or time gated holographic
imaging.
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1.)Introduction

1.)Introduction

The human society of the 20. century was formed by the achieved enormous technical and
scientific progress. In particular, traffic engineering, which dramatically facilitated the covering
of long distances, has been a key technology enabling the development of an industrialized
human society. A traffic infrastructure has been built, which is still the basis of welfare and
success in the industrialized countries. Therefore, the twentieth century is often referred to as
the “age of transportation”. However, within the past decade information technology has
emerged as the new key technology, which is going to form the human society of the 21. century.
A new infrastructure, known as the “Internet”, has emerged, which enables the transportation,
processing and storage of information. Thus, today’s human society and the current era are
already referred to as the “modern information society” and the “age of information”,
respectively.

The amount of digital data to be transported, processed and stored worldwide has recently
been estimated to be in order of magnitude of 102 Bits (12 Exabytes) and is expected to
increase exponentially in the future [1]. Therefore, great research and engineering efforts have
been made in order to provide sufficiently powerful technologies, which can be expected to be
able to handle such an enormous amount of data.

These efforts already led to the introduction of optical technologies in digital
communication. Today’s optical fibre digital communication technologies enable transmission
bandwidths of several tens of Gigagbits per second and have been the technological basis for
the rapid development of the Internet during the last decade. Today it is a matter of course that
(almost) everybody can easily connect to the Internet and down- or upload Megabytes of data
within minutes. Only ten years ago this was mere fiction.

In data storage technologies the Compact Disc (CD) and the Digital Versatile Disc (DVD)
are state of the art for removable read only digital data storage media. On both media data is
stored optically in two dimensions (on DVD’s additionally on multiple layers). The storage
densities of these media is physically limited by the optical diffraction limit for a single
recording spot. Up to 2x10° Bits/cm? may theoretically be achieved utilizing blue laser light of
480nm. Today’s optical disk drives, however, still work with red laser light of about 650nm
wavelength, which quarters the maximum achievable storage density. Despite there are
‘rewritable’ CD’s and DVD’s available, both types of storage media actually cannot be
considered as ’real’ rewritable storage media, since the possible number of read/write cycles is
strongly limited to several hundreds. For real rewritable mass data storage media, magnetic
media like hard disc drives (HDD) and tape drives are still state of the art. These media store
data by means of micro-domains of defined magnetic orientation on the surface of the medium,
i.e. also in two dimensions. Their maximum storage density is physically limited by the super-
paramagnetic limit, which describes the minimum size of a magnetized area being stable against
thermal demagnetization. Today’s HDD’s achieve storage densities of up to 15x10° Bits/cm?.
However, the physical limits of digital mass data storage on magnetic storage media already
loom at the horizon of further development.

Finally, data processing is still done purely electronically and there is no alternative
technology in sight, which may count out the traditional data processing devices based on
semiconductors. The general feasibility of purely optical logical devices has been proven in the
laboratory, however, this technology is still in its very childhood [2].

A very promising technology for a new class of high density mass data storage devices is
optical holographic data storage [B8, B13, B16]. In holographic data storage, whole pages of
digital data are imprinted into a laser light beam by means of a spatial light modulator and are
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stored as an interference pattern in a suitable storage medium. Therewith data are stored in three
instead of two dimensions. The theoretical storage density limit for holographic data storage
was estimated to 1/A3 [19] corresponding to about 10'?Bits/cm? for wavelengths of visible light.
The stored data are retrieved by diffracting an undisturbed reference laser beam at the stored
hologram. Therewith the original object beam carrying the digital information of the stored
hologram 1is reconstructed. Since the thus retrieved digital information is a whole data page,
retrieval of holographically stored data is intrinsically of parallel nature, which allows for fast
data rates.

The special nature of the holographic data retrieval process furthermore allows for
associative comparison of data inside the holographic storage medium. Therefore a reference
beam is used for read out of a stored hologram, which is not undisturbed but already carries
some information. In this case, the reconstructed object beam will only contain data, which are
correlated to the information “imprinted” in the reference beam (optical correlation, associative
memories [B8, B13, B16]). Thus, holographic storage media may also actively participate in
data processing.

Besides the above discussed applications in information technology, there are numerous
applications of holographic techniques, which utilize the special nature of the holographic
recording and retrieval process [B8, B13, B16]: Among others, phase-conjugation of light
waves can be performed and laser beams can be cleaned and reshaped. Holographical
interferometry techniques allow for non-destructive material testing including contact-free
vibrational analysis and deformation testing. Recording a hologram at a certain wavelength and
retrieving it using a shorter wavelength may be used for purely optical coherent image
magnification. Finally, holographic techniques may improve optical coherence tomography
(OCT) [3]. OCT enables in-depth optical imaging in strongly scattering media like biological
tissues and, thus, is an important non-invasive method for medical diagnosis. In contrast to
conventional OCT scanning a medium pointwise, the introduction of holographic techniques
would allow for fast imaging of complete layers of the medium, which would be a significant
progress. Recently, the technique of time gated holographic imaging (TGHI) has been
developed, which promises significant progress in this field [4 to 7].

Besides the special case of read-only holographic mass data storage devices, for all the
aforementioned applications of holography, reversible holographic storage media are highly
preferable or even indispensable. The currently most promising reversible holographic storage
media are photorefractive (PR) materials. In these materials, the hologram to be stored is
reversibly translated into a spatially non-uniform electrical field, the so called PR space charge
field, which modulates the refractive index of the medium via electro-optic effects. The PR
effect is known since 1969, when it was discovered in inorganic crystals [8, 9]. Great research
efforts in the field of PR inorganic crystals have recently led to first attempts to realize
commercial holographic mass data storage systems promising highly persistent high density
data storage.

In 1990, the PR effect was also discovered in organic crystals [10, 11] and soon thereafter
in amorphous organic polymers [12]. Finally, the development of the first high performance PR
polymer in 1994 [13], which competes and in some aspects even surpasses the performance
levels of the best currently known inorganic materials initiated considerable research efforts in
this field. In contrast to PR inorganic or organic crystals, PR polymers offer significant
advantages like good optical quality, high structural flexibility, good reproducibility, easy
processing and low cost.

In this work, PVK-based amorphous organic PR polymers derived from the
aforementioned first high performance PR polymer [13] were investigated. Their steady-state
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and dynamic PR performance was considered. The details of the dynamic behavior was mainly
focussed upon in order to investigate the potential applicability of the considered type of PR
polymers as holographic mass data storage media.

As a first objective of this work, the chemical composition of the investigated materials
was systematically altered in order to optimize their holographic performance. The glass-
transition temperature (7,) was altered by varying the ratio of polymer and plasticizer.
Additionally, different concentrations of NLO chromophores were taken into account. The
influence of 7, and of the concentration of chromophores on the steady-state and the dynamic
PR performance was investigated.

The second goal of this work was to get a deeper insight into the physical processes
determining the steady-state and dynamic performance of the investigated type of PR polymers.
Therefore, the role of the sensitizer in the PR process was considered by means of holographic
experiments on materials containing different concentrations of sensitizer molecules. The
erasure behavior as well as the dark decay behavior of the holographic gratings were
investigated in detail using different material compositions, including materials extrinsically
doped with deep trapping sites, and applying various experimental conditions. The formation of
charge carrier traps turned out to be highly important and was, therefore, elaborated upon in
detail. Established experimental techniques were refined and novel experimental methods were
devised in order to obtain new information on the stability of the recorded holograms in the dark
and their behavior during recording and erasure. The obtained results may serve as a theoretical
basis for future development of materials meeting the requirements of holographic mass data
storage media.

Finally, the general mass data storage capabilities of the investigated class of materials
were experimentally tested by means of peristrophic holographic multiplexing experiments.
These experiments clearly demonstrated the shortcomings of PVK based PR polymers for this
potential application.
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2.1.)Theoretical aspects of elementary optics

Optics is one of the oldest natural sciences. The laws of geometrical optics date back for
over 2000 years. The wave concept of Christian Huygens (1690) has been a milestone in the
development of optical sciences, which finally led to the assignment of optics to
electrodynamics, which in turn was initiated by the electro-magnetic theory developed by James
Clark Maxwell between 1855 and 1862. Heinrich Hertz was finally successful in proving the
electro-magnetic nature of light experimentally in 1887.

However, the electro-magnetic theory neither takes the fact into account, that light has to
be described as a stream of particles in certain experiments, nor is the basic understanding and
the quantitative description of the impact of the propagation medium on the propagation of
electro-magnetic waves included. The latter is introduced in Maxwell’s theory only
phenomenologically as “refractive index* and “permittivity. These parameters are explained
in a satisfactory way by quantum mechanics and quantum electrodynamics, which were
developed, among others, by Heisenberg, Schrédinger and Dirac in the 1920°s.

The following chapter concerns some basic aspects of elementary optics as far as they are
directly relevant to the framework of this theses.

2.1.1.) The electro-magnetic theory of light

The electromagnetic theory of light is based on Maxwell’s equations, which cannot be
derived, but are postulated as the basic equations of electrodynamics. Maxwell’s equations
consist of two field equations and two constraints, which may be expressed both in integral or
in differential form. Hereafter, the physically more ostensive integral form will be used for the
basic discussion. Both forms can be transferred into one another by applying the integral laws
of vector analysis (Gauss and Stokes integral laws).

The first field equation is based on Faraday’s induction law and connects a time dependent
varying magnetic induction (flux density) B_through an open surface 4, limited by a closed
contour C, with an electrical rotational field £ in C:

{>1§"0d§ = —”%fhdﬁ eq. (2.1-1)

where 3 is the line vector of C and 7 is the surface vector to 4. It states, that a temporally
varying magnetic field changing as a function of time always generates an electrical rotational
field encircling the magnetic field lines. The differential form of eq. (2.1 - 1) may be written as:

rotE = VxE = —5?3 eq. (2.1-2)

The second field equation is Ampere’s law, which was extended by Maxwell. This new
formulation of Ampere’s law correlates a current density ] through an open surface 4 limited
by a closed contour C including the total current (old form of Ampere’s law) as well as a time
dependent dielectric displacement D through 4 (Maxwell’s extension) with a magnetic
rotational field H within C, according to:
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fHods = _”(}+%f)) o di eq. (2.1-3)
C A

where 3 is the line vector of C and 7 is the surface vector to A. This relation states in particular
that (besides a flowing current) an electrical field changing as a function of time always
generates a magnetic rotational field encircling the electrical field lines. The differential form
of this law may be written as:

rotH = VxH = %f) +}' eq. (2.1-4)

The well known Gaussian laws of the magnetic and the electrical field are the constraints

to the field equations. The Gaussian law of the electrical field states, that an electrical field may
(not must) have sources, whereas the Gaussian law of the magnetic field defines it solenoidal in

any case. The Gaussian law of the electrical field may be written as:

@.d}f:”jpdrf eq. (2.1 -5)
F 14

where ? is the surface vector to the closed surface " and a’;‘ is oriented away from the enveloped
volume for each surface element dF of the closed surface F; p is the charge density inside the
volume V. Since the magnetic field is always solenoidal, the Gaussian law of the magnetic field
may be expressed as:

{;E.d}f: 0. eq. (2.1 - 6)

F
The corresponding differential forms are:

divD = VeD = p eq. 2.1-7)
and:

divB = VeB = 0 . eq. (2.1-8)
Considering light propagating in free space or insulators, eq. (2.1 - 7) simplifies to:

divD = VeD = 0. eq. (2.1 -9)

The dielectric displacement D is related to the electrical field E and the magnetic
induction B is related to the magnetic field H according to:

D= SOSVE

N o eq. (2.1 -10)
B = pyn H

with g as permittivity of the free space, €, as relative permittivity, 1 as permeability of the free

space, and p,. as relative permeability. The quantities €, and p,. are material parameters.

From Maxwell’s equations, the wave equation for electro-magnetic waves can be derived
(see standard literature of optics). It has become common practice to consider only the electrical
component, which writes for the case of free space:

VZE——Z_ZE =0, eq. (2.1-11)
¢y Ot
where:
co = 1/, Jgong eq. (2.1 -12)

is the propagation velocity of electro-magnetic waves in free space. An important solution of
the differential equation eq. (2.1 - 11) is a monochromatic plain wave, which may be expressed
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as:

E= I?Ocos(cotil;cO?i(p), eq. (2.1-13)
or in complex notation:

X = i(ottkeit

E = Epe . eq. (2.1 - 14)
with:

o = 2nv = 2n(cy/hy) = keg, eq. (2.1 - 15)

where ®, v, A\gand k = ‘l;| are the circular freq;uency, free space wavelength and wave number
= modulus of the wave vector, respectively. £, is the real amplitude of the wave and ¢ is a
phase addend. The plus/minus-signs in eq. (2.1 - 13) and eq. (2.1 - 14) denote arbitrary
propagation directions or phasings. Hereafter and throughout the rest of this work complex
expressions will be denoted by a subscript tilde as far as the complex character of an expression
is not self-evident or irrelevant.

The time derivation in eq. (2.1 - 11) may be eliminated by separating eq. (2.1 - 14) in a
time dependent component and a position dependent component according to:

EC 1) = E()e™” eq. (2.1 - 16)
with:

N — 1] 1;0 FF

EG) = Eye . eq. (2.1-17)
Now eq. (2.1 - 11) may be rewritten as:

V2E(G) + K E() = 0, eq. (2.1 - 18)

which is known as the Helmholtz equation and is commonly applied to problems, which do not
require the consideration of the time dependence.

Only the real part of the complex wave according to eq. (2.1 - 14) is physically relevant.
The complex notation is only a formalism, which facilitates the mathematical handling for many
problems. The physically relevant part of eq. (2.1 - 14) can be extracted by adding the complex
conjugate £ according to:

E = %(E+E*). eq. (2.1 - 19)

However, only linear operations can be performed using the complex notation. Any operation,
which mixes up the real part and the imaginary part is inadmissible, if the problem under
consideration has been formulated from the beginning in complex notation. Hence, if nonlinear
operations are part of the problem under consideration, the problem initially must not be
formulated in complex notation, however, may then be transferred into complex notation using
eq. (2.1 -19).

By inserting eq. (2.1 - 14) and its magnetic equivalent into eq. (2.1 - 2), the relation
between the electrical field and the magnetic flux amplitude is obtained to:

BN e k X EO

By = ) eq. (2.1 - 20)

o

When considering the electrical and the magnetic field amplitude:
N 2, xE
H, 0~ k 0
VA
is obtained, where &, is the unit vector in propagation direction of the wave and Z is called wave

resistance, since it corresponds to the ratio of the electrical and the magnetic field strength
(“voltage/current”). The wave resistance is defined by:

eq. (2.1 -21)
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7 = (Rt eq. (2.1 -22)
808}’

and amounts to about 3772 for the case of free space propagation (¢, = p,. = 1).

The vector product of the electrical and magnetic field vectors defines a vector pointing
in propagation direction of the electro-magnetic wave. This vector has the dimension of a power
density, represents the energetic flux and is referred to as the Poynting-vector S':

S=FExH=c'e,ExB. eq. (2.1 - 23)
Hereby free space is presumed. The power density emitted by a source is called specific
emission and the power density incident onto a surface is referred to as (irradiation) intensity.

Calculating the Poynting vector for a plain wave according to eq. (2.1 - 13) one obtains
from eq. (2.1 - 23):

A — — N . 2

S = CZSOEOXBO[COS(O)Z+/€07’)] . eq. (2.1 -24)
According to (cosoc)2 = 1/2-1/2(cos2a), the Poynting-vector oscillates in the time
domain with twice the frequency of the wave between zero and its maximum value. However,

due to the very short oscillation period usually not the current magnitude of the Poynting-vector
is of interest, but its time average yielding the intensity I:

N 0280 N N
1= (3] = T\onBo\ eq. (2.1 - 25)
N N 2 .
with J.:+At[cos(kor+0)t)] dt = 1/2 for At»2n/® . Applying eq. (2.1 - 20) leads to:
_ C& 2 2 21-2
= —2-—E0 =cgg(ET), eq. (2.1 - 26)

where E|, is the amplitude of the electrical field component.

Calculating the steps from eq. (2.1 - 23) to eq. (2.1 - 26) using the complex notation, one
must take into account that the vector product is not a linear operation. Hence, the problem has
to be formulated initially in real notation but can then be transferred into complex notation
according to eq. (2.1 - 19) as already mentioned before:

S = ReEx ReH eq. (2.1-27)
with:

E _ Aoei(wﬁic.;)

. eq. (2.1 -28)

- — i(ottker)

H = Hye
With eq. (2.1 - 19) one obtains:

§ = EE < @+1). eq. (2.1-29)

For time averaging, it is convenient to introduce a complex amplitude containing the spatial
term of the wave as well as the physical (real) amplitude resulting in:

= — ot

E =Fe

N eq. (2.1 - 30)
H=H¢

By time averaging according to:
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(E() < H(1)) = 0 = (E"())x H" (1)) eq. (2.1-31)

(E() x H' (1)) + (E"(£) x H (1)) = 2Re[E" (t) x H (1)] = 2Re[E(t) x H' (1)]
one obtains:

(§> = %Re[lj?xl?[*] =%Re[?xﬁ*]. eq. (2.1 -32)

This is a general expression, which transfers into eq. (2.1 - 25) when taking the modulus and
presuming free space. According to eq. (2.1 - 26) the intensity may be expressed in complex
notation as:

1= 50E" = SPEEY = SPE, eq. (2.1-33)
Formulating this relation using the wave resistance Z according to eq. (2.1 - 22) yields:
1 *
= —FEE" . .(2.1-34
VAR eq. ( )

Please note that eq. (2.1 - 20) and eq. (2.1 - 21) imply perpendicular orientation of the
propagation direction, of the electrical field vector and of the magnetic field vector relative to
each other. Therefore, commonly electro-magnetic waves are referred to as TEM-waves
(transversal, electrical and magnetic). It must be pointed out that only infinitely vast plain
waves propagating in free space can be pure TEM waves. Real light beams are always laterally
restricted, leading to distortions of the wave fronts and thus to deviations from the TEM nature.
However, the assumption of pure TEM waves is a good approximation in many cases, which
also applies to all problems considered in the frame of this work.

2.1.2.) Superposition of electro-magnetic waves

This section deals with the superposition of electro-magnetic waves and some related
phenomena including polarization, coherence, and the basic concepts of diffraction.

Hereafter, the superposition principle shall be valid, i.e. the electrical field strengths
involved shall be small enough to avoid any nonlinear effects, which are discussed later in a
separate paragraph. Furthermore ideal TEM waves are presumed.

2.1.2.1.)Polarization

Due to the transversal nature of electro-magnetic waves, the electrical field vector shows
time resolved and position resolved a well defined orientation, which is perpendicular to the
propagation direction of the wave. This feature is generally described by the concept of the
polarization. In the frame of this work, the spatial oscillation direction of the electrical field
vector will be referred to as the polarization direction. (It should be noted, that one can find
different definitions in the literature.)

In this context the polarization plane of an electro-magnetic wave is defined by the
polarization direction and the propagation direction or, in other words, by the wave vector £ and
the real electrical field vector £, which oscillates in the polarization plane. As far as there is a
clearly defined reference, the polarization state of an electro-magnetic wave is sometimes
denoted as “s-polarized“, if the polarization plane is oriented perpendicular (germ.: senkrecht)
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to the reference plane, and as “p-polarized“, if the polarization plane is oriented parallelly to
the reference plane. This notation will hereafter always be used in this theses.

Considering the polarization states of an electro-magnetic wave, one has to distinguish
basically two limiting polarization states. Any possible polarization state in-between can be
formed by suitable superposition of waves in these two states. Furthermore each limiting state
can be formed by suitable superposition of two waves in the other limiting polarization state.
These limiting polarizations states are:

A) LINEAR polarization
In this case, the polarization direction is neither a function of time nor a function of
the position. The electrical field vector oscillates parallelly to a constant straight line
perpendicular to the propagation direction of the wave.

B) CIRCULAR polarization
In the case of circular polarization, the electrical field shows a constant modulus but
rotates around the propagation direction as a function of the wave propagation.
For an interval of exactly one period of the wave oscillation along the propagation
direction, the projection of the end point of the electrical field vector onto a plane per-
pendicular to the propagation direction forms just a closed circle.

The cases A and B are illustrated in figure (2.1 - 1). All further polarization states are
mixed states of A and B and count to the group of elliptic polarization states. For example, the
in-phase superposition of two linearly polarized waves propagating in identical directions
results in an as well linearly polarized wave (figure (2.1 - 1), left). In contrast, if the
superposition is performed phase-shifted by n/2, a circularly polarized wave (figure (2.1 - 1),
right) will result if the amplitudes of the waves are identical. Phase shifts in-between 0 and 7t/2
and/or different amplitudes in turn yield some elliptic polarization state. Finally, the
superposition of two circularly polarized waves, which are identical, but their polarization
vectors rotating in opposite directions, results in a linearly polarized wave.

Figure (2.1 - 1): Linear (left) and circular (right) polarization. Redrawn after [B1].

The mathematical procedure of superposing electro-magnetic waves is discussed in the
forthcoming section. Mixing of polarization states is not further considered, since the
mathematical modelling would be very extensive not revealing new aspects. Please note, that
there are particular mathematical formalisms for handling the polarization of electro-magnetic
waves. The modern representation of the polarization has been introduced by G.G. Stokes in
1852 and was improved by R. Clark Jones and Hans Miiller during the 1940ies.
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2.1.2.2.)Interference

As long as the superposition principle is valid, electro-magnetic waves can be superposed
by simply adding the electrical field vectors. Since forming a sum is a linear operation, the
problem can be formulated initially in complex notation.

Considering two plain electro-magnetic waves of the general complex form:

— i((l)|[+k1 ‘;‘+(p|)

E, = Ejye
~ N eq. (2.1 - 35)
— (ot thky et @,)
Ey=Epe
where @ , are phase addends, one obtains for the superposition of the waves:
— otk ire) s iyt ke ity
Ep=E +E,=Ege ' U4 Ege o T, eq. (2.1 - 36)

Depending on the problem under consideration a more or less complicated analytical expression
for the sum wave can be extracted from eq. (2.1 - 36), which will here be demonstrated for two
simple examples.

At first the superposition of two waves, which differ only slightly in frequency but are
otherwise identical will be considered. For this case eq. (2.1 - 35) simplifies to:

— N i(O)lt)

El = Eoe

~ L ey eq. (2.1 -37)
E2 = Eoe

. L Lo s i(keito) .
introducing the complex amplitude Eo with £y = E,e . For the superposition one
obtains after some trigonometric manipulations:

.(031 + o, t)
)

Ey, = E|+E,=2Ee cos( > t). eq. (2.1 -38)
This represents a wave with the average frequency 0.5(®, + ®,), the amplitude of which,
however, is modulated with the average modulation frequency 0.5(®; — ®,) . This behavior is
called “beat* and characteristic for all wave phenomena.

The second example is of essential importance for this work and will, therefore, be
discussed in more detail. Considering the intersection of two linearly polarized plain waves of
identical frequency but different propagation directions, a stationary sinusoidal intensity
distribution will be observed if some basic conditions are fulfilled. This phenomenon is called
interference.

According to eq. (2.1 - 35), plain waves of identical frequency but different propagation
directions, amplitudes, and phasings may be expressed as:

s i(ottkeito)

El = Ey e

- N . eq. (2.1 -39)
— —\ i(ot+ky e+,

E, :]50261co T

The phasings are constant in time. In order to obtain the intensity distribution of the sum of these
waves, eq. (2.1 - 33) is applied to the sum of the amplitudes:

I(?) o< (B, + Ey) o (B, + Ey) eq. (2.1 - 40)

10
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or:

(ei[(/?,—/?z>->+(<p1—<p2>] N Cc)

[(?)OCE012+E022+(m°EQ) eq. (2.1 -41)

where cc stands for the “complex conjugate®. If the intensities of the superposed individual
waves are denoted 1} and I,, I(7) can be expressed by:

where [}, is referred to as interference term and writes:
Iy = 2, JIjI cos0,,c08[ (k) — k) ® P+ (0 —0,)]. eq. (2.1 -43)

Here o,/ is the angle, which is enclosed by the polarization directions (not the vectors) of the
intersecting waves. Please note that the polarization geometry must be read so that 0 < o, <
90°. The observed intensity distribution, called interference pattern, is stationary as long as the
relative phasing of the intersecting waves is constant in time. /1, vanishes for a,;, = 1/2, i.e. if
the interfering waves are polarized orthogonally.

Thus, the term interference is defined as follows:

Any deviation from the additivity of the intensities by considering the superposition of
waves is called interference.

“Maximum” interference is observed for /, = I, and o, = 0. The intensity of the so called
interference fringes varies between zero and two times the total intensity of the two interfering
waves. The interference pattern may be considered as an interference grating and a grating
vector K can be assigned according to:

K=k -k eq. (2.1 - 44)
and:
il -2
) eq. (2.1 - 45)
N
2sin(0®)

where A is the wavelength of the interfering waves, A is the grating spacing (i.e. the wavelength
of the grating) and 20 is the angle enclosed by the wave vectors of the interfering waves.

The most common expression to describe the interference of two beams is obtained
merging eq. (2.1 - 42) to eq. (2.1 - 45) suitably and setting the phasings to zero. This yields:

I(7) = I,[1+mcos(K e 7], eq. (2.1 - 46)
with:
- 2 /]1]2 eq. (2.1 -47)
m = mCOSOﬁplz

and K according to eq. (2.1 - 44) and eq. (2.1 - 45). The variable m is called contrast factor and
is a measure for the modulation depth of the interference pattern.

The two beam interference discussed above is representative for any interference
phenomenon. As already noted, there are three interference conditions, which must be fulfilled
by the intersecting waves in order to yield a stationary interference pattern:

1) identical frequency
2) polarization directions not perpendicular to each other

11
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3) phasing with respect to each other constant in time

The violation of condition 2) leads to vanishing (intensity) contrast of the interference pattern
(m =0 due to or,15 = 90°). Instead of a stationary intensity distribution showing the sequence:
“bright-average-dark-average-bright, then a stationary polarization distribution is formed as
long as the other conditions are fulfilled. The corresponding polarization sequence is: “linearl-
circularl-linear2-circularll-linear1“, whereby linear] and linear2 are orthogonal and circularl
and circularll rotate in opposite directions. For 0° < a,,1, < 90° both intensity pattern and
polarization pattern exist simultaneously in the intersection area. Violation of the conditions 1)
and/or 3) leads to an interference pattern changing as a function of time (i.e. spatially moving).
Condition 3) is closely related to the concept of coherence, which will be outlined in the
following section.

2.1.2.3.)Coherence

Coherence is a general term, which concerns the predictionability of phase relations
within and in-between waves. The forthcoming discussion will be limited to visible light
without loss of generality as far as the basic aspects are concerned. Subsequently, the basic
phenomenology and terminology will be explained.

Visible light is usually generated by random electron transitions in atoms, molecules or
semiconductors, which by principle are strongly limited in duration. Light sources, in which
these processes dominate are called thermal emitters. The particular emission events are
independent from each other and thus, light generated by thermal emitters consists of many
independent individual light wave trains showing randomly distributed phasings. The length of
the particular wave trains is determined by the duration of the underlying emission process.

Accordingly, in a light beam emitted by a thermal emitter, prediction of phase relations is
only possible within the time scales of a particular emission event. The average length of a
particular wave train in the time domain is called coherence time At,, the reciprocal of which is
the frequency bandwidth Av of the wave train. Accordingly, a short coherence time is correlated
with a broadband light pulse. In contrast, for hypothetically ideal monochromatic light the
coherence time diverges to infinity. The propagation velocity of the wave under consideration
links the coherence time with a spatial length, the so called coherence length. On this basis, the
term Jongitudinal coherence has become generally common for denoting this property in
english speaking literature. In contrast, coherence in time is more commonly used in german
speaking literature. The latter is more general, since it is independent from the propagation
medium, which determines the propagation velocity. The coherence length may simply be
interpreted as the length of a particular continuous wave train.

Considering a real light source as opposed to the hypothetical point source often used in
the literature for simplified discussions, the source has a finite size and consists of a huge
number of single emitters, which are again independent from each other, provided that the
considered light source is a thermal emitter. Accordingly, a light beam emitted by such a source
laterally consists of many independent particular wave trains, showing randomly distributed
phasings. In order to denote the phase relations between particular wave trains perpendicular to
the propagation direction of a light beam, the terms spatial coherence or lateral coherence have
been commonly adopted. However, this terminology is not clear cut, since it is related to the
light source and its properties but it actually depends on the geometry of the considered
problem. For example in Young’s double gap experiment interference effects will be observed

12
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if illumination of both gaps is possible by one and the same emitter of a spatially incoherent
source. On the other hand, no interference will occur if the light passing through the gaps stems
definitely from different lateral areas of the source. For these two cases, the source is one and
the same, but the geometry of the experiment defines the result. Hence, definite statements
about spatial coherence require deeper insight into the problem under consideration.

The coherence of traditional light sources is poor and accordingly the study of coherence
has been neglected for a long time despite the fact, that basic work has already been done about
150 years ago by Emile Verdet. He reported the observation of interference effects with sun
light, which before was commonly considered as completely incoherent. However, with the
invention of the laser this situation changed dramatically. In a laser, coupled emission of many
single emitters is enforced, leading to high grade partial coherence in the light generated. Today,
optical coherence theory is a very active research area but beyond the scope of this work.

2.1.2.4.) Phase- and group-velocity

Up to now, the terms “light velocity* or “propagation velocity of a wave* have been used
several times without looking deeper into their physical meaning, which will be discussed now.

The term “propagation velocity of a wave* usually refers to the propagation of a state of
constant phase angle of the considered wave through space or some medium. Considering a
wave e.g. according to eq. (2.1 - 13) or eq. (2.1 - 14), the phase angle 3 of the wave is defined
by the argument of the trigonometric function or the complex exponential function,
respectively:

9= wt+keito. eq. (2.1 - 48)
Here ¢ is a constant and may be disregarded. Accordingly, the propagation of a state of constant
phase angle can be expressed as:

ak) ~ (59) (68) o .
95 = L) /(L) = 22 = 4 . L(2.1-49
(atr\g o)y \gv), T Tx T eq- ( )

by applying the partial derivatives to eq. (2.1 - 48). Accordingly, v,, is the propagation velocity
of a wave, referred to as phase-velocity.

However, the situation becomes more complicated if the propagation of wave groups or
pulses of restricted expansion is considered, which, due to Fourier analysis, can be expressed as
superposition of several harmonic waves. The simplest example for this situation is the
superposition of two waves, yielding a sum wave according to eq. (2.1 - 38). This wave
oscillates with the average frequency of the two superposed waves. The amplitude however, is
additionally modulated by the beat frequency. For further consideration eq. (2.1 - 38) is
rewritten as:

[N

E = Ey(r, t)cos(o, t + ky o 7), eq. (2.1 - 50)

~

1 . s .
whs:re 0, = E(w1 —m,) 1s the beat frequency and &, is the corresponding beat wave vector,
while
(ot ke )

E (1) = Eye eq. (2.1-51)

represents the unmodulated wave with the average frequency ® = 0.5(®; + ®,) and with k as
the corresponding average wave vector.

13
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Obviously, eq. (2.1 - 50) describes a situation containing two different propagation
processes, the propagation of the unmodulated wave, which may be considered as carrier wave,
and the propagation of the amplitude modulation of the carrier wave. The propagation velocity
of the unmodulated wave is ®/k according to eq. (2.1 - 49), which is the phase velocity.
However, the modulation propagates with a velocity, which depends on the phase angle
(ot + k, o ) of the modulation function. Therefore, the propagation velocity is:

. ® ®,— O
b= o= 212 - A0 eq. (2.1 - 52)

ky, k1 —ky Ak
The parameter v, is referred to as group velocity. The group velocity drops to zero, if ki = —ky
and ®; = ®,, which corresponds to a standing wave. Please note, that the group velocity

corresponds to the actual transport speed of information.

As for the phase velocity, the dispersity of the propagation medium has to be taken into
account. In dispersive media, o is a function of & (this will be discussed in more detail in section
“2.1.3.) Light in linear media” on page 16). If Aw is small with respect to the average frequency,
the group velocity equals the derivative of the dispersion relation:

y, = do eq. (2.1 - 53)
dk

This equation is generally valid for each group of superposed waves, provided that Aw is small

with respect to the average frequency. With eq. (2.1 - 49), one obtains:

N N Advp
Vg =V, Tt k& . eq. (2.1 - 54)
Accordingly, ?/g = \‘/p in dispersion-free media, since dk(vp)/ dk = 0 in this case. However,

in dispersive media, ® = kc/n and one obtains:

N kdn
Ve = vp(l — Z@) . eq. (2.1 -55)

In dispersive optical media and at normal dispersion the refractive index increases as a function
of frequency and, hence, v, <v,,. Therefore, sometimes a “group refractive index™ is introduced
in order to account for the difference of the two propagation velocities.

Finally, it should be noted, that a third kind of velocity occurs in regions of anomalous
dispersion, where dn/dk < 0 (e.g. in the absorption band of a medium). This velocity is called
signal velocity and is identical to the group velocity in areas of normal dispersion. The signal
velocity accounts for the fact, that information cannot be transported at velocities exceeding
vacuum light velocity c,. For the same reason, the group velocity never exceeds c( in media of
normal dispersion, whereas the phase velocity may do, however, without transporting any
information.

2.1.2.5.)Diffraction

Diffraction phenomena occur, if parts of a wave are blocked, e.g. by a pin hole, or at the
edge of a light beam, even without an obstacle in the beam path. They are due to the
superposition of the elementary waves existing at the edge of the obstacle or the light beam and,
hence, diffraction phenomena may be interpreted as a special class of interference phenomena.

Please note that “Bragg-diffraction® is a special diffraction phenomenon, which will be
discussed in context with refraction and reflection.

14
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2.1.2.5.1.)The Huygens-Fresnel principle
Before proceeding, the term “elementary waves* must be clarified. The concept of the
elementary waves is based on a principle first formulated by Christian Huygens and improved
by Jean Augustin Fresnel (Huygens-Fresnel principle):

All non-shielded points of a wave-front must at any time be considered as sources of
spherical elementary waves of identical frequency as the primary wave. The ampli-
tude of the optical field at any sequencing point is then determined by the superposi-
tion of all elementary waves reaching this point and taking into account their
individual amplitude and relative phasing.

The meaning of this very important basic optical principle

is illustrated in figure (2.1 - 2). The arrow points in the g RN
propagation direction of the wave. The elementary waves / e, <™ A
are indicated for three points on the wave fronts. The dotted |I ;S 1 \\‘
circles indicate the elementary waves, generated by the v ,_‘-\: I
points on the very left wave front, which after a certain time \\// S \\_ 7
superpose to generate the next wave front in propagation 1/\\ R "“ P
direction. This wave front in turn is origin of elementary ot -1
waves, which now, after a superposition with each other as #/, "“r - : ;
well as with the elementary waves of the formal “first* \\,’ R S DR
wave front (all dashed circles) generate the third wave front I/ AN - ,"- ?}A\\
and so on. Taking into account that there is actually an i~ —" ’;
infinite number of points generating elementary waves on ‘\ "‘ S 4,
each wave front, plain wave fronts generate plain wave NS ////
fronts propagating in propagation direction of the wave. \\\ 7
However, the components of the elementary waves running ==

into the opposite direction must vanish, which actually is Figure (2.1 - 2)

not proposed by the Huygens principle. Fresnel solved this

problem proposing obliquity factors making the radiation characteristics of the elementary
waves directional. The obliquity factors finally were analytically formulated by Kirchhoff.
However, the details of the theoretical validation of the Huygens-Fresnel principle is beyond the
scope of this work. Hereafter, the principle is taken for valid and will be applied, disregarding
components of the elementary waves propagating in “wrong* directions. The elementary waves
from the edge of the light beam interfere in some way, leading to diffraction effects as
mentioned above.

2.1.2.5.2.)Fraunhofer and Fresnel diffraction

It turned out convenient to distinguish between two subgroups of diffraction phenomena,
the near-field diffraction (also referred to as Fresnel’s diffraction) on the one hand, and the far-
field diffraction (also referred to as Fraunhofer’s diffraction) on the other. The near-field
diffraction concerns the area more or less directly behind and/or before the diffracting object.
This applies to either the light source or the observation screen or both. In contrast, the far-field
diffraction describes diffraction phenomena observed at sufficient distance from the diffracting
object, so that the involved light beams are approximately parallel to the optical axis, which, in
simple terms, is the center line connecting the (diffracting) object with the observation plane.
The same condition must be met by the distance of the light source to the diffracting object.
Note, that ideal far-field diffraction, thus, only occurs for infinite distance between source,
object and observation plane and consequently all considerations of real diffraction phenomena
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using the far-field diffraction formalism are approximations.

The basic situation is sketched in figure (2.1 - 3),
where the source was assumed to be at infinite distance
for the sake of simplicity. Hence, the light incident on
the obstacle “O* is parallel and “S* is the screen for
observation of the transmitted light. In the case of near-
field diffraction (no lens), light beams passing through
the aperture in the obstacle and meeting in one and the
same point on “S* obviously cannot be parallel (dashed

lines). If a lens “L* is introduced at focus distance to 0O L S
“S*, parallel beams passing through O meet in one

point on S. This represents the situation of far-field Figure (2.1 - 3): Far- and Near-Field
diffraction. diffraction

It is beyond the scope of this work to discuss the
theory of Fraunhofer and Fresnel diffraction in detail as well as to demonstrate the calculation
of diffraction patterns and reference is made to the standard literature of optics.

2.1.3.) Light in linear media

In this section, the basic principles of the interaction between light and matter will be
outlined. The oscillator model will be worked out as classical consideration of the linear
interaction between light and a homogenous, non-conducting and loss-free medium. Then the
basic approach for the treatment of wave propagation in loss-free and lossy media will be
outlined. Although the concepts outlined here will apply to isotropic as well as anisotropic
media, wave propagation in the latter will be discussed in more detail in context with
birefringence in section “2.1.4.3.6.) Wave propagation in anisotropic media - the index
ellipsoid” on page 35. Furthermore, waves in nonlinear media will be considered separately in
section “2.2.1) Nonlinear interaction between light and matter” on page 40. The influence of the
homogeneity of the medium will not be considered.

Please note, that this section is restricted to dielectric media, i.e. the presence of free
charge carriers shall a priori be excluded and, accordingly, the conductivity ¢ = 0 shall be
presumed.

2.1.3.1.)Material equations

External electrical and magnetic fields induce associated atomar or molecular dipoles in
matter. The dipole moments induced per unit volume are referred to as (complex) electrical
P(E) and magnetic M(H) polarization (rarely also “electrization™ and “magnetization®,
respectively). Therefore, the dielectric displacement D and the magnetic induction B in matter
is described by:

D = gL+ P(E)

N N eq. (2.1 - 56)
B = uH+M(H)

These relations represent the material equations for arbitrary media.
The polarizations are not proportional to the inducing fields, since the medium will react

with a time delay to the inducing fields. However, the magnitude of the material’s response may
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be proportional to the inducing fields. In this case, the medium is called linear and it is:
P(1) = €, L)

M(0) = poy,, H()
where  , and y, , are tensorial material constants depending on the particular behavior of the
fields as’ a functlon of time and are referred to as dielectric and magnetic susceptibility,
respectively. In the case of non-linear media, eq. (2.1 - 57) becomes a virial equation containing
terms of higher order in £. This will be discussed later in a dedicated section. Inserting eq. (2.1
-57) into eq. (2.1 - 56) leads to the relative permittivity €, and permeability M, according to:

D(1) = &, £, EQ)

eq. (2.1 -57)

A T eq. (2.1 -58)
B(1) = n, M H®)

with:
e = 1+y
Zrt ) Ye,t eq. (2.1 -59)
l;lr,z‘ o 1 + Xm,t

Accounting for the tensorial character of the material constants, eq. (2.1 - 58) may be rewritten
in terms of its components as:

D) = &Y &, Ey0)
b eq. (2.1 - 60)
B (1) = uoz Koy, A, (t)

with a,b =x, y, z. Accordingly, ¢ €, ,and pin general consist of 9 elements.

In linear media, each field as a functlon of time may be expressed by superposition of
monochromatic fields using Fourier transformation. In this case, the material constants become
frequency dependent and dispersion has to be taken into account.

In loss-free linear media, the reaction of the medium on the fields occurs simultaneously.
In this case, the material constants are independent from time and the ¢,.- and p,.-tensors
become real and symmetric, as will be shown later.

2.1.3.2.) The oscillator model (Lorentz-model)

The material constants e, and H,_, can only be derived correctly by means of a quantum
mechanical description of the interaction between light and matter. The Lorentz-model, on the
other hand, is a classical model, which only gives a qualitative picture.

The Lorentz-model is based on the perception, that the material response to the interaction
with a light wave is due to a displacement of the electron cloud of an atom or molecule with
respect to its nucleus or manifold of nuclei, induced by the electrical field component of the
wave. The nuclei are considered as fixed due to their large mass relative to the electrons. Thus,
an oscillating electrical dipole is induced, which, in turn, is subjected to energy dissipation by
electro-magnetic radiation damping the induced oscillation. Without loss of generality, this
model can be reduced to the most simple system, which is represented by an electron in the
central field of a proton. In order to ensure linear response, small elongation is presumed.
Furthermore, relativistic effects shall be excluded.

Taking into account, that the driving force for the oscillation is the Coulomb force F:

F = ey, eq. (2.1 - 61)
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with e, as elementary charge and presuming an incident monochromatic wave at frequency o:

E = Eoe'™, eq. (2.1 - 62)
the vibration equation of the electron with respect to the atomic nucleus will be:

. . 2 ot
mii +myu+mo, u = eEoel .

eq. (2.1 - 63)
Here m is the electron mass, y is the damping constant, o is the resonance frequency of the
system and u is the magnitude of the displacement. The solution of this classical problem is:

eq. (2.1 -64)

e 1 =~ iot

E()e

(o, t) =
2 2. .. =
Mwy —07) +iyo

Presuming, that the individual dipoles do not interact with each other (i.e. the density of dipole
is assumed small), the electrical polarization per unit volume may be expressed as the product
of the dipole density n( and the induced dipoles:
2
nye N,
S N Boe™™". eq. (2.1 - 65)
" (0, —0")+iyo

v’

Comparison of eq. (2.1 - 65) with eq. (2.1 - 57) yields an expression for the complex
electrical susceptibility y ,  :

+i e 1 2.1 - 66)
Xeo ™ Xew 1 e w2 = eq. (2.1 -
oo TER TR meg (0"~ o) +iye
with the real part:
o (@ 2 wz)
0 0~
Xeo,1 = X1 = 3 eq. (2.1-67)
meo(moz_mz) +Y2032
and the imaginary part:
2
nye YO
Xew2 = X2 = % T eq. (2.1 - 68)
Oy —07) +7y o

The dependence of y,; and y, on the frequency in the region of a resonance point is illustrated
in figure (2.1 - 4).

Finally it should be noted that the electrical polarization according to eq. (2.1 - 65)
represents a wave by its own, called polarization wave. This polarization wave experiences a
phase delay relative to the stimulating electro-magnetic wave, which starts at ¢ = 0° for ® — 0,
is 90° at the resonance point (o = ®() and ends up at ¢ — 180° for @ — . The phase delay
around the resonance point is depicted in the inset of figure (2.1 - 4).
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Figure (2.1 - 4): Real part (refractive index) and imaginary part (absorption coefficient) of the electri-
cal susceptibility as a function of frequency near a resonance point. The inset shows the phase delay ¢
between the stimulating wave and the material response.

2.1.3.3.)Loss-free and lossy media

2.1.3.3.1.)Energetic considerations

If an electrical or a magnetic field affects a polarizable medium, the fields perform work.
The electro-magnetic work per unit volume w,,, is identical to the energy density:

Wy = [EedD+ [HedB. eq. (2.1 - 69)
Inserting the material equations eq. (2.1 - 56) yields:

22 Ny) N N N N
Wom = 3160+ oI 1+ [B e dP+ [Hedl eq. (2.1 - 70)
and thus, the energy density consists of a field contribution and a contribution of the polarizable
medium.

If the medium is linear and the waves involved are monochromatic, eq. (2.1 - 69) yields:
wem=%1§“of)+%ﬁo§=we+wm, eq. 2.1-71)
where w, is the electrical and w,, is the magnetic energy density.

Furthermore, the field energy in a volume V enclosed by the surface F is

ij .mdV and
the energetic flux escaping from V is the surface integral of the Poynting vector.
Thus, applying Gaul}’ integral law yields:

[Sedr=[div3dr, eq. (2.1 -72)
F_ 14
where df is the normal vector to an infinitesimal element of the surface F.

If some electro-magnetic field energy in the volume is transformed into another form of

energy, power dissipation P, occurs inside the volume, which can be expressed as the volume
integral of the power dissipation density p,;
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S d
P, = [p,dV = jdedwajwede. eq. (2.1 - 73)
v v v
Accordingly, the power dissipation density is:
RN dwem
p, = d1VS+a . eq. (2.1 -74)

Inserting eq. (2.1 - 23) and eq. (2.1 - 71) finally results in:
pv:%[EOB—EOﬁ+ﬁ0§—ﬁOE]—EOGE, eq. (2.1 -75)

where o is the conductivity of the medium. As already mentioned above this paragraph shall be
restricted to dielectric media. Accordingly, the last term is only included for the sake of
completeness and will be disregarded hereafter.

2.1.3.3.2.)Loss-free media
If there is no loss of electro-magnetic field energy in the medium, the power dissipation
density vanishes, which requires according to eq. (2.1 - 75):

EeD=FEeD
i ) . eq. (2.1-76)
HeB=THeB
Inserting eq. (2.1 - 62) (i.e. a monochromatic plain wave) into eq. (2.1 - 58), extracting the
physically relevant real part and writing the Cartesian components separately results in:

D, = SOZ Eqp[Re(e,)cos(myt) —Im(g,,)sin(w,t)], eq. (2.1 -77)
b
with a =x, y, z and b = x, y, z. Expressing furthermore eq. (2.1 - 62) in the same way yields:
E, = Ey,cos(myt). eq. (2.1 -78)

Since the requirements according to eq. (2.1 - 76) must be met for loss-free media, it becomes
clear, that:

Re(e,;) = Re(gy,)
Im(e) = Im(gy,) = 0

Accordingly, the components of the permittivity tensor €, are real and symmetric in loss-free
media, and a coordinate system (principal axes system) can be found, where:

eq. (2.1 -79)

e, 00
g, =(g,) =] 0 g, 0 |,(a@a=xy,2). eq. (2.1 - 80)
0 0 ¢,

The same applies for magnetic fields and magnetically polarizable media.

The wave equation and its solution for free space has already been discussed in “2.1.1.)
The electro-magnetic theory of light” on page 4. Since the relative permittivity for loss-free
media is real, the solution for free space can easily be expanded to loss-free media. Removing
the restriction to the free space (however, not allowing for the presence of free charges) the
wave equation eq. (2.1 - 11) may be rewritten as:

2
N 8 BN

V2E — s,ursouogE =0, eq. (2.1 - 81)

with the complex notation already introduced. The solution for the wave equation provided
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before will apply here as well (eq. (2.1 - 14)) and will fulfill the wave equation for:
K= g1, eq. (2.1 - 82)

which is the dispersion relation for the wave in the medium.
The propagation velocity ¢, of the wave in the medium is according to eq. (2.1 - 12):

1
c, = ——, eq. (2.1 - 83)
ph
NEHEQH
and is different from the propagation velocity ¢ in free space. The variation of the propagation
velocity in the medium relative to the free space is:

o

n=—=¢eH,. eq. (2.1 - 84)
Coh

The quantity n is the refractive index of the medium. Its frequency dependence is depicted in

figure (2.1 - 4). According to eq. (2.1 - 15), it is:

k=2=2_“=2ﬂ=nko, eq. (2.1 - 85)
o A Lo

where A is the free space wave length and k& is the modulus of the free space wave vector.
The wave resistance of the medium is real and defined by:

Z = /“’“0 eq. (2.1 - 86)
€,€

according to eq. (2.1 - 22), which also effects the energy relations, e.g. see eq. (2.1 - 34).

2.1.3.3.3.)Lossy media
In lossy media power dissipation occurs and the permittivity is complex, as is the
susceptibility. According to eq. (2.1 - 84), the refractive index is then complex, too. However,
the wave equation (eq. (2.1 - 81)) accounts also for complex material constants. Accordingly, a
possible solution is again a plain wave. However, since the refractive index is now complex,
according to eq. (2.1 - 85) the wave vector will also be complex (note, that the vacuum wave
vector is always real). The plain wave thus writes:

B = Boe eq. (2.1 - 87)
with:
k = nko. eq. (2.1 - 88)

Here n is the complex refractive index resulting from eq. (2.1 - 84) and the complex material
constants. Note, that one may as well formulate a complex wavelength, but (in linear media) not
a complex frequency. It depends on the particular problem, which formulation is most
appropriate.

According to the equations eq. (2.1 - 84), eq. (2.1 - 68), eq. (2.1 - 67) and eq. (2.1 - 59)
the complex refractive index can be expressed as:

n= Jl1+y, —ix,, eq. (2.1 - 89)

where x4, =1 (i.e. the medium is not magnetizable) was presumed for the sake of simplicity. If
the loss is small (i.e. [x,| « 1+ %), eq. (2.1 - 89) may be approximated by:

)
n= /1+Xl—lm— eq. (2.1 -90)
1

and thus be separated into a real and an imaginary refractive index. Inserting eq. (2.1 - 90) into
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eq. (2.1 - 87) yields the plain wave:
inkoer+ %éko o/

0€ ) eq. (2.1-91)
where e k, is the unit vector in propagation direction of the wave, n,. is the real refractive index:

n, = J1+y eq. (2.1 -92)

and a is the absorption coefficient:
2n
o = *2

Ao 1 %4
The qualitative frequency dependence of n,. and o in the region of a resonance point is depicted
in figure (2.1 - 4). Usually, a is positive and the wave according to eq. (2.1 - 91) will decrease
exponentially in amplitude while propagating. However, . may be negative in some cases,
which are not subject of the present discussion (e.g. in the case of stimulated emission). It should
furthermore be pointed out, that the separation of the complex refractive index into the real
refractive index and the absorption coefficient performed as above will not hold, if the
approximation |y,| « 1+ 7y is not valid.

The wave resistance of a lossy medium is complex as well:

T
7= |22, eq. (2.1 - 94)
€8

which, according to eq. (2.1 - 21), leads to a dephasing ¢ of the magnetic component of the
electro-magnetic wave relative to the electrical component:

oy
oy

eq. (2.1 -93)

aktg

Qo = atan(— ) . eq. (2.1 -95)
4nn,

The energy relations (see page 7 ff) are effected as well and the intensity now depends on the

penetration depth of the wave in the medium according to:

*a(éko °7)

I(éko, r) = e . eq. (2.1-96)

2.1.4.) Reflection and refraction

In this paragraph, the phenomenological and the electro-magnetic treatment of reflection
and refraction of light at interfaces will be outlined. Fresnel’s equations will be derived, but not
interpreted in detail. Thereafter, birefringence will be treated with restriction to uniaxial
systems. The special features of inner total reflection as well as reflection and refraction at
metallic surfaces will be disregarded.
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2.1.4.1.)Phenomenological treatment of reflection and refraction

The phenomenological description of
reflection and refraction can be illustrated using
the Huygens-Fresnel principle, which has
already been formulated above in “2.1.2.5.1.)
The Huygens-Fresnel principle” on page 15.
Assuming that a plain wave front passes
through an interface between two media (which
shall be assumed at first to be air and some
dielectric) the wave front will be scattered by
the atoms at the interface, generating
elementary waves at each atom in accordance
i e Hoygen ol pinle I8V e 1 et oo
. . . wave front according to the Huygens-Fresnel
interface, different areas of the wave front will principle
pass at different times through the interface
generating delayed elementary waves, which
emanate to the outside as well as to the inside of the dielectric. The superposition of the
elementary waves outside the dielectric will then form a new wave front propagating outside the
dielectric in a different direction than the incident one. This situation is depicted in figure (2.1
- 5). The incident wave front is denoted by “A*“ (= “A1 + A2%) and half of the wave front (“A2*)
has already passed through the interface generating delayed elementary waves outside the
dielectric, which form the emerging wave front “B*. As soon as the rest of front “A* (i.e. “A1%)
has passed through the interface, the new wave front “B* will be complete. “B* is the reflected
part of “A*“. However, the elementary waves inside the dielectric will propagate with reduced
velocity (provided the refractive index inside the dielectric is larger than outside) as compared
to the elementary waves outside the dielectric. They, in turn, form another wave front “C*
propagating inside the dielectric. Since the elementary waves exhibit a different propagation
velocity than the elementary waves outside, the propagation direction of the wave front “C* is
different from the original wave front “A*. “C* will also be complete as soon as “A*“ has
completely passed through the interface and is the refracted part of “A*.

2.1.4.1.1.)Fermat’s least-time principle
In order to quantify the relations described above, it is more convenient to apply another
fundamental principle of elementary optics, the least-time principle, which was already
formulated in its present form 1657 by Pierre de Fermat:

The path taken by a light beam between any two points in a system is always the path
that takes the least time.

However, this (original) formulation is not unequivocal, since it does not account for the
possibility of fundamentally different paths between two points, e.g one direct path and another
longer path including reflections. The least time principle in the above formulation would
exclude the latter one. This problem is solved by the following (modern) formulation, allowing
for different optical paths and defining the “least-time* condition for each possible path:

A light-beam going from one point to another must traverse an optical path length
which is stationary with respect to small variations of that path.
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2.1.4.1.2.)Reflection law and Snellius’ refraction law

According to Fermat’s principle, the time ¢,

for the light to traverse from A to B and ¢4 from A
to C has to be “stationarized* as a function of x ; and
xp for ¢4 and x4 and x for ¢, respectively. The
geometry of the arrangement is illustrated in figure
(2.1 - 6). The traversing times may be expressed as:

2. 2 2. 2
_ JXA T4 +J"B Vs

Ci i

typ eq. (2.1-97)

and:

2 2 2 2
x, t Xo *
el e € eq. (2.1-98)

t
AC c

i ¢

where c; , are the propagation velocities of the light
in the media with the associated refractive index n; ;,
respectively. In order to eliminate one of the x-
components in the above equations: Yo%

A

eq. (2.1 -99)  Figure (2.1 - 6): Fermat’s least-time principle
Xe=Xy = b applied on reflection and refraction.
is introduced and the traversing time is minimized
with respect to the remaining x-component, yielding:

dyp _ _ 20atxy) . 2% _ eq. (2.1 - 100)
dxg J 2 2 J 2 2
cif(atxg) +y,~ cixg typ
and:
dye . 2@txg) . ¢ eq. (2.1 - 101)
v, . (2.

2 2 2 2
Ci«/(aJ’xc) V4 Cm/xc tye
Introducing the correlated trigonometric functions, eq. (2.1 - 100) finally results in:

0, =190, eq. (2.1 -102)
which is known as the reflection law and eq. (2.1 - 101) yields:
sin@;  sin0,
= . eq. (2.1 -103)

¢ ¢

With eq. (2.1 - 84) one obtains Srellius’ refraction law from the above equation:
sin®; n,
= —. eq. (2.1 -104)

sin0, n;

It becomes clear from the modern formulation of Fermat’s principle, that “stationarizing*
a light beam path allows for local minima as well as turning points for the traversing time as a
function of the path. The original least-time principle in its strict interpretation only refers to the
absolute minimum of the traversing time.
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2.1.4.2.)The electro-magnetic approach to reflection and refraction

The electro-magnetic approach leads to a much more complete description of reflection
and refraction known as Fresnel’s equations. Based on these equations predictions of the
reflected and transmitted relative intensities as well as the phase relations between the incident,
the reflected and the refracted wave can be made. Subsequently, the basic equations will be
derived and discussed as far as advisable within the frame of this work.

The derivation of Fresnel’s equations bases on the continuity conditions for electro-
magnetic waves at dielectric interfaces without surface charge density and surface current
density, which read:

Ax(E,—E) =0 eq. (2.1 - 105)
ne(D,~D;) =0 eq. (2.1 - 106)
Ax(H,~H) =0 eq. (2.1-107)
he(B,—B) =0, eq. (2.1 - 108)

[13%2]
1

where index denotes the physical quantity incident on a dielectric interface, index “t”
denotes the transmitted part of the quantity and 7 is the surface normal vector of the interface
under consideration. For a detailed discussion of the continuity conditions reference is made to
the standard literature of theoretical electrodynamics.

2.1.4.2.1.)Fresnel’s equations

According to the continuity conditions, the electro-magnetic consideration of reflection
and refraction must be divided into two parts for the two limiting cases of the orientation of the
field vectors relative to the interface considered. A randomly polarized light beam actually will
be split into these two components, which then behave differently in refraction as well as
reflection. It is common practice to consider only the electrical field component of the electro-
magnetic wave. Furthermore, non-absorbing media are assumed for the derivation, however,
the results are valid for absorbing media as well if complex refractive indices are used.

Please note, that there are two possible notations, which differ by the reference plane.
Usually, the polarization states are referred to the plane of incidence, which is defined as the
plane in which the incident and the reflected beams propagate. Referring instead the
polarization states to the considered interface is uncommon, since the situation becomes quickly
puzzling, if more than one interface is involved. In this work, the plane of incidence serves as
reference plane in all cases.

2.1.4.2.1.1.) s-polarization

For s-polarization, the electrical field vector of the considered plain wave is oriented
tangentially to the interface (figure (2.1 - 7)).

In order to derive Fresnel’s equations one has to realize, that this is a problem with two
unknown parameters, which are the reflected and the refracted wave, whereas the incident wave
is known. Accordingly, two linearly independent equations are required, which can be obtained
by using the continuity conditions of eq. (2.1 - 105) to eq. (2.1 - 108). The continuity conditions
are linked via eq. (2.1 - 20), which is generally valid:

&, xE = ¢B, eq. (2.1 - 109)

where ¢, is the unit vector of the wave propagation direction and c is the propagation velocity
of the wave. For the notation used from now on reference is made to figure (2.1 - 7).
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Accounting for the continuity condition eq. (2.1 - y
105), the relation between the electrical fields is:

N N N EI

EOI + EO}" = EOt . eq. (2.1 - 110) B O K Aun E kr
Please note already here, that Eo, is oriented anti-parallel to ) ' 1»6 64 O
Ey; and E(;, which will be shown later. Furthermore, the ni o B,
continuity of the tangential component of the magnetic field n X
H (eq. (2.1 - 107)) requires: t

—?IOicosei + F\I()rcoser = —?IOzcosGt

eq. (2.1-111)

Inserting B = u?] and eq. (2.1 - 109) (or eq. (2.1 - 20))
while accounting only for the modula of the field vectors,
accounting for c; = c,, applying eq. (2.1 - 84) and eq. (2.1 -
102), and choosing an appropriate origin for the coordinate
system (see figure (2.1 - 7)) finally yields:

Figure (2.1 - 7): electrical field vector
tangential to the interface

n; n,
—c0s0; — —cos0,

E .
rsz(—‘”) _ M i eq. (2.1-112)
EOi s n; n;
—c0s0; + —cos0,
K, My
and:
n.
2—-LcosH.
_ EOt . W; !
=) = , eq. (2.1 -113)
EOi K I’ll- nz
—c0s0; + —cos0,
K Hy

where r, and ¢, are referred to as amplitude reflection coefficient and amplitude transmission
coefficient, respectively. These equations are generally valid for arbitrary media.
In most cases, dielectrics are considered, which meet the approximation:

W~ U=, eq. (2.1-114)
Then, the permeabilities in eq. (2.1 - 112) and eq. (2.1 - 113) fall apart and two equations are

obtained, which are referred to as Fresnel’s equations (for s-polarized light). By means of
Snellius’ refraction law (eq. (2.1 - 104)), eq. (2.1 - 112) and eq. (2.1 - 113) finally rewrite as:

in(0,—6
po— 5026 eq. (2.1 - 115)
sin(0;+6,)
and:
. 25in0,cos0, eq. (2.1 - 116)
*  sin(6;,+6,)° o
respectively.

2.1.4.2.1.2.)p-polarization

For p-polarization, the magnetic field vector of the considered plain wave is oriented
tangentially to the interface (figure (2.1 - 7) with the polarization of the sketched waves rotated
by +90° around the propagation vector).

The continuity condition eq. (2.1 - 105) for the tangential component of the electrical field
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vector reads here:

FOicosei—F()rcoser = FO,coset. eq. (2.1-117)
Furthermore, the continuity of the dielectric displacement (eq. (2.1 - 106) requires:
f)ol-sineiJrf)orsinGr = ﬁO,sinGt, eq. (2.1 -118)

which, with eq. (2.1 - 104), eq. (2.1 - 102) and eq. (2.1 - 84), transforms to:

(Eo; + Eo,)sin0; = ;L-l—’-/l—’EO,sinBi eq. (2.1-119)
o
where 7 is the refractive index of the corresponding medium and p is its permeability. With eq.

(2.1 - 117) the amplitude reflection r, and transmission 7, coefficients are finally given by:

n; n;
£ —c0s0; — —cos0,
. E(—Or) _ M Hi eq. (2.1 - 120)
P EOi p n; n, . '
—c0s0, + —cos0;
Y, Ky
and:
2% 050
—cos0.
. EOt _ M; !
t =|— = ) eq. (2.1-121)
P NEy; p N n,
—co0s0,+ —cos0,
K Ky

These equations are generally valid for arbitrary media.

In analogy to the above, eq. (2.1 - 120) and eq. (2.1 - 121) are strongly simplified if the
medium under consideration is purely dielectric, i.e., eq. (2.1 - 114) applies. Then, with eq. (2.1
- 104), eq. (2.1 - 120) and eq. (2.1 - 121) rewrite as:

tan(0;-0,)

e eq. (2.1-122

»~ tan(,+6,) % ¢ )

and:
25in0,c0s0;

= — , eq. (2.1-123)

P sin(6,+6,)cos(6,—6,)
respectively.

2.1.4.2.2.)Interpretation of Fresnel’s equations

Two different situations must be considered, which are the outer reflection (n, > n;) and
the inner reflection (n; < n;). A detailed discussion is beyond the scope of this work. The
objective of this paragraph is to give a quick and qualitative overview over the basic results,
which is best performed graphically. The classical example of an air (n = 1) / glass (n = 1.5) -
interface forms the basis for the graphics.
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Figure (2.1 - 8): Amplitude coefficients according to Fresnel’s equations for an air/glass-interface for outer
reflection (left) and inner reflection (right)

At first the amplitude coefficients will be considered, which determine the reflectance and
the transmittance of an interface. The amplitude coefficients for outer reflection are real over
the whole interval of possible angles of incidence. At the so called polarization angle (6,) or
Brewster angle (the latter is the more common notation) the amplitude reflection coefficient for
p-polarized light drops to zero, whereas the other coefficients remain finite. This feature can be
used for generating polarized light. At an incident angle of 90° (incidence “parallel* to the
interface), the light is completely reflected.

The amplitude coefficients for inner reflection are real up to a
limiting angle 6, which marks the onset of fotal inner reflection. For
angles of incidence greater than the limiting angle, the amplitude
coefficients become complex. There is also a polarization angle, which
is smaller then the limiting angle. The fact, that the transmission
amplitude coefficients do not drop to zero in the area of total inner
reflection is demanded by the electro-magnetic theory (the continuity
conditions forbid a singular situation at the interface). However, the
transmitted wave “propagates® in the medium of smaller refractive
index parallel to the interface (i.e., the refraction angle formally becomes 90°). This wave is
called evanescent wave (figure (2.1 - 9)). Its amplitude decreases exponentially as a function of
the distance from the interface.

Please note, that the sum of the amplitude coefficients need not equal one, but rather the
sum of the reflectance R and transmittance T in order to ensure energy preservation.

The reflectance is defined by:

I 2

R=Z=r, eq. (2.1 - 124)

1

evanescent wave

Figure (2.1 - 9):: Illus-
tration of an evanescent
wave

where /; is the incident- and /. the reflected intensity, and r is the amplitude reflection
coefficient. The transmittance is defined by:

2
1.cosO E,. cos0O n,cos0
_ lcosb, _ nE,, t:( ‘ f)ﬂ, eq. (2.1 - 125)

I;cos0, n;cos0;

niE0i2 cos0;
where ¢ is the transmission amplitude coefficient. The index “#“ denotes parameters for the
transmitted wave, and 0 is the angle, which the wave vector encloses with the normal to the

interface.

Secondly, the phase relations between the incident, the reflected, and the transmitted wave

28



2.1.)Theoretical aspects of elementary optics

will be discussed. The situation of the total inner reflection will not be elaborated upon, since it
is fairly complicated and beyond the scope of this work.

The transmitted wave generally does not experience any phase change with respect to the
incident wave, which can readily be derived from the fact, that the amplitude transmission
coefficient is never negative.

The phase relation between the incident wave and the reflected wave is illustrated in
figure (2.1 - 10) as a function of the incidence angle ;.
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Figure (2.1 - 10): Phase relations for outer and inner reflection. 0p is the Brewster angle.

2.1.4.3.) Uniaxial birefringence

Birefringence is a phenomenon, which occurs in homogenous, but optically anisotropic
media. Optical anisotropy covers the general feature of direction-dependent optical properties
of matter. This may refer to various optical parameters, of which the refractive index leads to
birefringence. Accordingly, birefringent media feature a direction dependent refractive index.
Depending on the symmetry of the medium there are two types of birefringence, uniaxial and
biaxial birefringence. While the basic concepts of birefringence apply to both types, biaxial
media are less symmetric than uniaxial and, thus, biaxial birefringence is mathematically much
more difficult to treat. Since photorefractive polymers only show uniaxial birefringence, biaxial
birefringence will be disregarded. Hereafter, all terms concerning birefringence will refer
exclusively to uniaxial birefringence unless explicitly noted otherwise.

The birefringence will at first be discussed semi-empirically and in terms of the Huygens-
Fresnel principle in order to get a detailed ostensible picture of the wave propagation in
birefringent media. After that, a treatment in terms of propagation of plane waves in anisotropic
media will be outlined leading to the important general term of the index ellipsoid.

2.1.4.3.1.)Optical axis
Uniaxial birefringent media exhibit exactly one at least threefold crystallographic
principal axis, which is the axis of highest symmetry of the system. Please note, that the
principal axis needs not be purely rotational, but may include translation or inversion. Due to its
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symmetry, the crystallographic principal axis defines also a preferred optical direction in the
system along of which the medium is optically isotropic. Therefore, this direction is called the
optical axis of the system. Please note, that the term “axis* does not refer to a spatially fixed
line but rather to a spatial direction.

It should also be noted, that the above conclusion from a crystallographic principal axis
to an optical axis cannot be reversed. Thus, biaxial birefringence does not imply the existence
of two crystallographic principal axes.

2.1.4.3.2.)Phenomenology of uniaxial birefringence

If a transparent birefringent medium is illuminated with natural light in normal incidence
but tilted by 0° < a < 90° with respect to the optical axis, the light beam is split into two beams
inside the medium, each of which having half of the incident intensity. One beam is transmitted
straightly through the medium in accordance with Snellius’ refraction law, whereas the other
beam is spatially separated from the first as a function of the thickness of the medium violating
Snellius’ refraction law. By rotating the medium around the incident (and straightly transmitted)
beam, the second beam describes an envelope of cone around the incident beam inside the
medium and a cylinder casing behind (i.e., outside) the medium without changing the intensity
relations.

Checking for the polarization states, the straightly transmitted beam is found to be s-
polarized with respect to the plane defined by the optical axis and the incident beam, whereas
the spatially separated beam turns out to be p-polarized. Generally, the plane defined by the
optical axis and the perpendicular of incidence of the incident beam is called main section (of
the incident beam) and is of utmost significance for the description of the birefringence. On the
basis of this definition, the two beams now can be denoted unequivocally by means of their
polarization state relative to the main section:

— s-polarized: ordinary beam (o-beam)
— p-polarized: extraordinary beam (e-beam)

The two polarization states are sometimes referred to as “eigen polarizations* of a wave.

2.1.4.3.3.)Wave and beam velocity

The concept of the wave and beam velocity has been developed by Huygens on the basis
of his famous principle. He concluded from the experimental observations known at his time
(i.e. the polarization states and their relation were not known, yet), that a point source placed in
an uniaxial medium will generate two wave fronts, one of which is spherical (o-beam) and the
other (e-beam) is an ellipsoid of revolution. The two surfaces touch at two diametrically
opposite points, the connection of which coincides with the optical axis of the system. This
picture allows for two different geometrical constructions, which are illustrated in figure (2.1 -
11).
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Figure (2.1 - 11): Wave front surface for optical positive (left) and optical negative (right) uniaxial
birefringence. The optical axis is the z-axis. Left, the wave front surface of the e-beam is hatched, whereas
the wave front surface of the o-beam is hatched in the right figure. Pictures taken from [B1]

In order to get a more detailed insight, an incident wave is considered in terms of this
concept in figure (2.1 - 12).
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Figure (2.1 - 12): Beam and wave propagation in optical negative birefringent medium for
normal incidence onto the medium and tilted incidence with respect to the optical axis in 2-
dimensional representation. The main section is the picture plane. Pictures taken from [B1].

From figure (2.1 - 12) it becomes clear that the e-beam experiences a spatial separation
from the o-beam in the illustrated case, which also has been described before
phenomenologically. The key of the spatial separation in the concept of Huygens is the
proposition of two velocities differing in direction as well as magnitude, which describe the
propagation of the e-beam. The so called wave velocity v describes the actual propagation of a
state of constant phase and is oriented normal to the wave fronts of the considered beam,
whereas the so called beam velocity V describes the propagation of the radiation energy and is
oriented along the direction 4G (or BF') in figure (2.1 - 12). The latter is as well the direction
of the Poynting vector, which, in this case, is no more normal to the wave fronts. Please note,
that the electro-magnetic theory explains this by the permittivity tensor applying for anisotropic
media, which causes the electrical field vector and the dielectric displacement to be no more
parallel. This may be made more ostensible considering a parallel plate capacitor in which a
wire is brought in with an angle of e.g 45° relative to the electric field lines. The electrical field
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will cause dielectric displacement in the wire, which will basically be oriented along the wire
and, thus, not be parallel to the electrical field vector. In contrast, for the o-beam, these two
velocities are identical, however, may be separated formally for the sake of consistency, as
shown in figure (2.1 - 12).

While the wave and the beam velocity for the o-beam are always identical and not a
function of the angel of incidence onto the optical axis, these velocities are always a function of
the angel of incidence onto the optical axis for the e-beam and only identical for two important
limiting cases:

a) For incidence parallel to the optical axis, the wave and the beam velocity of the e-
beam as well as the o-beam are all identical and the medium is isotropic.
b) For incidence perpendicular to the optical axis, the wave and the beam velocity of
the e-beam are identical, however, different to the corresponding velocities of the o-
beam and the medium behaves isotropic but actually is not.
These two limiting cases represent two characteristic constants of a birefringent medium,
namely the two principal propagation velocities V,, and V,. V, is the propagation velocity
referring to limiting case a). V, is the propagation velocity referring to the e-beam in limiting
case b).

In terms of the principal propagation velocities, the two principal refractive indices n, and

n, of the medium under consideration are defined according to eq. (2.1 - 84) by:
‘o

no(e) - V()’
o(e

where n,, is the ordinary and n, is the extraordinary principal refractive index.
In terms of the principal refractive indices, the character of the birefringence is commonly
defined as:

eq. (2.1 -126)

n, - n, <0 = optical negative
n, - n,> 0 = optical positive

According to the occurrence of two different velocities (beam velocity and wave velocity)
in birefringent media, it is possible to derive two types of refractive indices for the e-beam (the
refractive index for the o-beam is always n,).

2.1.4.3.4.)Beam refractive index
According to eq. (2.1 - 126), a beam refractive index ng may be defined as:
o
ng = 7 eq. (2.1-127)

with the beam velocity V of the e-beam. In order to derive an expression for V, the wave front
surfaces according to figure (2.1 - 11) are expressed conjointly in Cartesian coordinates as:

2, 2, 2 2,2 2
{m_lj(erz__lj - 0. eq. (2.1 - 128)
2 2 2
VO Ve VO
The rotational symmetry of the problem suggests an expression in polar coordinates:

2 2
(ﬁz— lj(%(sinCD)vaLZ(cosCD)z— 1} -0, eq. (2.1 - 129)

Vo Ve VO

with:
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4y’ = P(sind)?

) 5 5’ eq. (2.1 -130)
z- = V' (cosD)

where @ is the elevation angle. Due to the rotational symmetry there is no dependence on the

azimuth angle. From eq. (2.1 - 129), an expression for the beam velocity of the e-beam can be

deduced:

vy,
V= o ) 3 > eq. (2.1 -131)
V, (sin®)” + V,"(cosD)

which enters into the beam refractive index according to eq. (2.1 - 127). Despite the
consideration of the beam refractive index and the beam velocity may be convenient for some
problems, it is not possible to derive a simple refraction law from the beam refractive index,
since the angle and distance relations are not adaptable to Snellius’ refraction law because the
propagation direction of the beam in the medium does not coincide with the wave front normal.
Employing Fermat’s principle to derive the refraction law as performed above, this is not as
clear as it is in the derivation using the Huygens principle. However, the problem is similarly
essential, since Fermat’s principle simply does not apply to the e-beam. Considering figure (2.1
- 12), it becomes ostensibly clear, that the actual e-beam path length is not stationary against
small variations of the path. This applies only to the formal path of the wave fronts along their
normal, showing on the other hand, that this problem can be solved by considering the wave
refractive index.

2.1.4.3.5.)Wave refractive index
In analogy to eq. (2.1 - 127) the wave refractive index nyy is defined as:

_ %
Ny = - eq. (2.1 -132)

with the wave velocity v of the e-beam representing the propagation velocity of the wave fronts
along their normal in the medium. Furthermore in analogy to the wave front surfaces in figure
(2.1 - 11) representing the beam velocities for the o- and the e-beam in different directions
relative to the optical axis, “normal front surfaces* can be defined, which may be interpreted as
phase surfaces (and will hereafter be called so) representing the corresponding velocities of the
wave fronts along their normals (wave velocities). It is easy to see, that the phase surface and
the wave front surface are identical for the o-beam and different for the e-beam. The phase
surface for the e-beam is a surface of fourth order enveloping the corresponding wave front
surface and has the shape of an ovaloid of revolution. The derivation of the mathematical
expression for the phase surface of the e-beam is extensive and beyond of the scope of this work.
The conjoint expression for the phase surfaces in polar coordinates will turn out to be:

2
(V—z— lj(Vez(sin(I))er V (cosh)’ —v7) = 0 eq. (2.1 -133)
VO

with:
2, . 2 2 2
= x +

Vz(smq’)z x2 - eq. (2.1 - 134)
vi(cosd) =z

where ¢ is the elevation angle. Due to the rotational symmetry there is no dependence on the
azimuth angle. Please note, that ¢ here and @ in eq. (2.1 - 130) are different for all 0° < ¢,
@ < 90°. Furthermore, the extrema of the radius vectors of the phase surfaces and the wave front
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surfaces are identical and, thus, the parameters of the wave front surfaces have already been
used in eq. (2.1 - 133).

Inserting eq. (2.1 - 132), an expression for the wave refractive index of the e-beam can be
extracted from eq. (2.1 - 133):

Ny = > 20 < > X eq. (2.1-135)
n, (sing)”" +n, (cosd)
With nyy, Snellius’ refraction law can be applied to the e-beam for arbitrary incidence on
a birefringent medium:
sin®,
i =Dy eq. (2.1 - 136)

sm@t’e n;

with 0; as the angle of incidence relative to the interface normal, 0, , as the angle of transmission
of the wave front normal of the e-beam and »; as the refractive index outside the birefringent
medium under consideration. It is self-evident, that the wave refractive index and the
corresponding angle has to be used for reflection as well as transmission for interfaces between
two birefringent media.

In order to solve for the actual beam propagation, a relation between ¢ and ® must be
found. In the x-z-plane in figure (2.1 - 11), the wave front surface for the e-beam will reduce to
an ellipse described by:

2 2
X Loy,
V V

e o
which may be expressed in terms of the principal refractive indices using eq. (2.1 - 126):

2
nSx +n’z = ¢, . eq. (2.1 - 138)

Solving this equation for z(x) and differentiating in x results in: z

eq. (2.1 - 137)

xn 2
z=- eq. (2.1 - 139)

zZn,

Since z is the slope of the wave front WF as sketched in figure
(2.1-13),1t1s:

z' = tan(m—¢). eq. (2.1 - 140)
By furthermore accounting for:

I = tand eq. (2.1 - 141)
z

the desired relation between ¢ and @ is obtained to:

2
e _ tan¢

2 tan®’

o

Furthermore, it follows from figure (2.1 - 13), that:
= cos(D—9). eq. (2.1 -143)

Figure (2.1 - 13): Parameters

for the e-beam as discussed in

€q. (2-1 - 142) this section. WF is a tangential

wave front and the z-axis is the
optical axis

S

S

<<

Applying eq. (2.1 - 126) and eq. (2.1 - 132) to eq. (2.1 - 133) yields another pair of
characteristic surfaces, the wave refractive index surfaces (or in short terms: “index surfaces*):
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2 2 2
n n
("02— lj(—Wz(sinq))erlz(cosd))z— 1) ~ 0, eq. (2.1 - 144)
nW ne no
or in Cartesian coordinates using eq. (2.1 - 134) and eq. (2.1 - 132):
2, 2, N2, 2 2

{1—’6 +y2+ZJ(x +2y +Z_2—1j - 0. eq. (2.1 - 145)

n, n, n

Please note, that the index surfaces have basically the same shape as the wave front surfaces (see
eq. (2.1 - 128)) but have exchanged their appearance concerning the optical character due to the
reciprocal relation between the wave velocity and its corresponding refractive index. The index
surfaces for a birefringent medium of optical negative character will correlate with the left
picture in figure (2.1 - 11) and optical positive character will correlate with the right picture.
This is also qualitatively illustrated in figure (2.1 - 15).

Since the refractive index surfaces are defined in the “k-space® (i.e. they refer to the wave
propagation direction), a beam propagating “through* the refractive index surfaces will sense a
refractive index which correlates to the RADIUS VECTOR of the particular surfaces,
depending on its polarization, i.e. the left (right) term on the left hand side of eq. (2.1 - 144) or
eq. (2.1 - 145) accounts for the ordinary (extraordinary) beam. This is a fundamental difference
to the so called “index ellipsoid*, which will be discussed in the next section.

2.1.4.3.6.)Wave propagation in anisotropic media - the index ellipsoid

Above, uniaxial birefringence was discussed semi-empirically using the Huygens-Fresnel
principle. Now, the wave propagation in (linear) anisotropic media will be outlined more
generally in terms of the electro-magnetic approach assuming monochromatic waves and a loss-
free medium with p,. = 1. Please note, that the subsequent discussion is neither restricted to
uniaxial birefringent media nor restricted to a special polarization of the considered wave. This
is an important point, since in this section another “surface®, the so called “index ellipsoid*
(also: “indicatrix”) will be derived, which exhibits a formal similarity to the refractive index
surface according to the above eq. (2.1 - 145), but is defined in “another space®, thus, being
different in interpretation.

As already discussed above, wave and beam propagation direction differ in anisotropic
media, which will be introduced by the permittivity tensor. Thus, now, divlj =0 (eq.(2.1-7))
does no more imply diVE = 0. Rewriting eq. (2.1 - 21) in complex form for arbitrary media
and inserting complex plain waves according to eq. (2.1 - 14) for the magnetic field and the
dielectric displacement in eq. (2.1 - 4) results in:

N S ZOA
e, x k= —n—I:I eq. (2.1 - 146)
and:
2 x I % p (2.1 - 147)
&, xH=—-—D, eq. (2.1 -
k ton

respectively, with Z; according to eq. (2.1 - 22). Inserting eq. (2.1 - 146) into eq. (2.1 - 147)
finally yields:
D = g’ [E-2,(2, 0 D)1, eq. (2.1 - 148)

which is known as the wave equation of crystal optics. Please note, that this equation refers to
the propagation of the wave front normals with &, as the unit propagation vector, not the
propagation of the beam and, hence, n is the wave refractive index according to eq. (2.1 - 132).
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A corresponding expression for the propagation of the beam can be derived from eq. (2.1
- 148) and would be:

lley%

= ——[D-25(23+ D)1, eq. (2.1 - 149)
o

with e, as the unit beam propagation vector and np as the beam refractive index according to
eq. (2.1 - 127). However, this approach will not be pursued any more hereafter. Please recall,
that there is a simple refraction law for an arbitrary incident wave on the basis of the wave
refractive index. Therefore the wave refractive index will be the parameter of choice for by far
most problems concerning wave propagation in anisotropic media.

In principal axes representation and already expressed in terms of its Cartesian
components eq. (2.1 - 148) writes:

D, = egn’[E,— 2,2, E)], eq. (2.1 - 150)
where:
B, = - 5D, eq. (2.1 - 151)
8Ona
resulting:
N 2, oF
D, = so(lk Nl)éa, eq. (2.1 - 152)
2 2
n n

a
where e, are the unit vectors in direction of the principal axis with a = x, y, z. The refractive
indices n, are the so called principal refractive indices and correlate with the permittivity
tensor in principal axes representation according to eq. (2.1 - 80) and eq. (2.1 - 84) for u,. =1, i.e.:

n, = Jeg. eq. (2.1 - 153)
According to eq. (2.1 - 9):
zf)oék=zzf)a-éa= D, =0, eq. (2.1 - 154)
a a
which yields together with eq. (2.1 - 152):
2
e
Z 4 =0. eq. (2.1 - 155)
adl 1
2 2
n n

This equation is called Fresnel’s equation of wave normals. Eq. (2.1 - 155) may be transformed
into eq. (2.1 - 133) by replacing the inverse refractive indices by the corresponding velocities of
the wave front normals according to eq. (2.1 - 132), multiplying eq. (2.1 - 155) with each
denominator in the sum and then (not before!) setting

V. = v, =y
oy eq. (2.1 - 156)
vZ = ve

(this correlation is explained by eq. (2.1 - 163)). In accordance with eq. (2.1 - 130) it is
furthermore:

ex2 + ey2 = (sin(i))2
5 . eq. (2.1 -157)
e, = (cosd)

which finally results in:
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(= v, IO =, ) (sing)* + (v* = v, P)(cosd)’] = 0, eq. (2.1 - 158)

1e.eq. (2.1-133).

Eq. (2.1 - 155) is a quadratic equation in 1/n? resulting in two refractive indices (the
negative solutions are physically meaningless) for a certain given &, , which correspond to the
ordinary and the extraordinary refractive index in an uniaxial birefringent system sensed by the
beam defined by &, . Please note, that the n, in eq. (2.1 - 155) are the corresponding principal
refractive indices, which, however, must not be inserted ab initio for an uniaxial birefringent
system, since then eq. (2.1 - 155) reduces to a simple quadratic form and a part of the solutions
will get lost.

Besides the above analytical solution of such a problem based on Maxwell’s equations
there is a convenient geometric solution, which is more ostensible than the way discussed
above. Since the energy density does not depend on the isotropy of the medium, eq. (2.1 - 71)
is still valid and thus, the electrical energy density is:

w, = %E-ﬁ, eq. (2.1 - 159)
where the real fields must be used, since the scalar product is a nonlinear operation. In principal
axes representation eq. (2.1 - 151) applies and, already written in components of the principal
axes system, eq. (2.1 - 159) becomes:

2 2 2
D D D
w, = 2%{_12.+.25+ Zz}' eq. (2.1 - 160)
0ln, n, n,
By introducing a new normalized vector d with:
- L eq. 2.1 - 161)

/280We

eq. (2.1 - 160) rewrites to:

_xf+‘.izf+__z_2:1 eq. (2.1 - 162)
2 2 2 ’ q- (=
l’lx I’ly nZ

which represents an ellipsoid in the “d-space* (!), expressing the anisotropic properties of the
medium. This construction is called index ellipsoid and widespread applied in crystal optics.
Since the index ellipsoid is defined in
in the “d-space®, its interpretation is
different as compared to the refractive
index surface discussed before (which is
defined in the “k-space®) and is illustrated
in figure (2.1 - 14). k denotes an arbitrarily
polarized propagating wave in the principal
axis system and n, , . are the principal
refractive indices along the corresponding
axis. For evaluation, the intersection curve
of a plane normal to k and the index
ellipsoid is taken and the oscillation
direction of the electrical field vector (i.e.
the polarization) is projected onto the axis
of the intersection curve, defining by that
the two eigen polarizations of the wave. The length of these axis (7 and n, in figure (2.1 - 14))

Figure (2.1 - 14): Index ellipsoid for uniaxial medium
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denote the refractive indices sensed by the eigen polarizations in the considered geometry.
Applying this concept to an uniaxial birefringent material, it is clear, that

nx=ny=no

eq. (2.1-163)
nZ = ne
must apply, so that a wave propagating along z-direction will sense a polarization-independent
refractive index, preserving the z-axis as optical axis. Hence, the index ellipsoid for uniaxial
birefringent media writes according to eq. (2.1 - 162):
2 2 2
d- d d
Y z — .

St St 1. eq. (2.1 -164)

nO nO ne
Comparing this equation with the ellipse term in eq. (2.1 - 145) reveals, that the ordinary and
the extraordinary refractive index in the denominator are exchanged, which is due to the
consideration in different “spaces*.

The relations between the beam velocity surface, z z z

the index surface (both defined in the “k-space®) and the A) * B) 0)
index ellipsoid (defined in the “d-space®) are depicted as \
intersections in the x-z-plane for the case of uniaxial ﬁ \% \ > 3
birefringence in figure (2.1 - 15). Please note in this & y \k / \ /
context, that eq. (2.1 - 155) as well refers to the “d-space*
but is “transformed* into the “k-space® by multiplying
with each denominator in the sum and inserting eq. (2.1 Figure (2.1 - 15): Exemplarily qualita-
- 156), then resulting in eq. (2.1 - 133), which refers to ~ tive sketch of a beam velocity surface
the “k-space“. (A)) with the corrqsponding in@ex sur-
The index ellipsoid according to eq. (2.1 - 162) face (B)) and the index ellipsoid (C)).
does contain more information than the refractive index surface, which is due to its definition

in d-space. Thus, usually the index ellipsoid is used as basis for the consideration of anisotropic
media.

2.1.4.4.)Bragg diffraction

Bragg-diffraction is a combined multi-
reflection and interference phenomenon and is of
essential importance in the framework of this
theses. It defines the fundamental geometrical
condition for wave mixing experiments in thick
hologram gratings. The basic principle is depicted
in figure (2.1 - 16). A light beam passes through a
periodic phase grating (i.e. refractive index
grating), enclosing an angle of

0°<®<90° eq. (2.1 - 165)
with the grating planes. The beam will experience
multiple external and internal reflection and
refraction processes as will each individual
reflected and transmitted portion of the original
beam while passing through the grating. All of these beam portions will finally superimpose.
This process may be described accurately applying Fresnel’s equations and considering the
occurring interference phenomena. The calculations quickly become fairly cumbersome

Figure (2.1 - 16): Phenomenology of Bragg dif-
fraction
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depending on the demanded accuracy and the number of grating planes to account for.
However, such an approach is only necessary for a small number of grating planes and is not
referred to as Bragg-diffraction.

The problem simplifies strongly presuming a large number of grating planes. Then, the
number of reflected beams is high enough to presume constructive interference of the total
number of the reflected beams only for the case when the optical path length difference between
neighboring individually reflected beams meets the condition for constructive interference. In
any other case the interference will be destructive. If this consideration is valid, the problem is
referred to as Bragg-diffraction. The condition for constructive interference may be found
employing a simple geometrical consideration depicted in figure (2.1 - 17). It is not relevant
which individual beams are considered, since the condition will apply to all reflection processes
occurring.

Two neighboring beams reflected at similar
interfaces (outer reflection or inner reflection) may be
considered or two neighboring beams reflected at different
interfaces (outer reflection and inner reflection), however,
the phase relations according to figure (2.1 - 10) must be
accounted for. Here the reflection at similar interfaces
shall be considered. The refractive index modulation of
the phase grating is assumed small, i.e.

An = ny =] «3(n ). eq. (2.1 - 166)

According to figure (2.1 - 17) the optical path length
difference between the reflected beams R; and R, is 2a

where: Figure (2.1 - 17): Bragg condition
a = dcos® = dsin®. eq. (2.1 -167)
Accordingly, the following condition must be met for constructive interference:
2ndcos® = 2ndsin® = bl eq. (2.1 - 168)

where 7 is the average bulk refractive index inside the grating, d is the grating spacing (i.e. the
grating constant), A, is the wavelength in free space, ® is the angle between the incident beam
and the grating planes, and @ is the angle between the incident beam and the grating wave vector
(by definition perpendicular to the grating planes). The parameter b is an arbitrary integer
number. Eq. (2.1 - 168) is called Bragg-condition, which must be met in order to observe Bragg-
diffraction. If the condition is violated, the incident beam is not diffracted. The Bragg-condition
can be very sharp for thick gratings. The question of the grating thickness will be discussed in
“2.3.1.2.) Types of holograms” on page 52. Please note, that a Bragg grating need not be
holographic, however, the term “thick grating® as discussed in the before mentioned section is
a general definition, which accounts for all types of diffraction gratings.

Additionally it should be mentioned here, that Bragg-diffraction is not a nonlinear optical
process. This is important, since wave mixing in thick holograms is often explained in terms of
Bragg-diffraction presuming the validity of the nonlinear phase matching condition eq. (2.2 -
39) without notification. However, eq. (2.2 - 39) is not a necessary condition for Bragg
diffraction in general although wave mixing in thick hologram gratings obeys eq. (2.1 - 168) as
well as eq. (2.2 - 39).
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2.2.)Basic aspects of non-linear optics

The evolution of nonlinear optics (NLO) is closely connected with the development of the
laser, since nonlinear phenomena usually require high light intensity. However, most of the
theoretical work in NLO has been done before the invention of the laser. Experimental proof so
far has only been possible for effects describing the interaction between an electro-magnetic
radiation field and an electrical or a magnetic dc-field. The laser with its particular features as
a light source, however, enabled the observation of NLO effects based on interaction of pure
optical fields and, thus, not only allowed for experimental proof of already theoretically
anticipated NLO effects, but even led to the discovery of new effects and promoted the field of
NLO from some curios side field into the focus of interest in today’s optical sciences.

As discussed in the preceding chapter, propagation of light in matter is described by the
frequency dependent optical constants ,refractive index* and ,,absorption coefficient™, which
are not a function of the intensity of the incident light in linear optics. Thus, in linear optics,
there are two important principles:

a) Superposition principle

Light waves do not affect each other and, thus, can be distortion-free superposed. A

light wave in matter propagates independently of any other light wave existing simul-

taneously in the same area.

b) Principle of frequency conservation

No new light frequencies are generated by interaction of light with matter. The light

frequencies inside and outside the medium are identical. (Exception: Raman effect).
However, both these basic principles of linear optics are no more valid for irradiation with
sufficiently high intensities. This paragraph concerns the mutual influence of interacting light
waves at high intensities. Subsequently, the phenomenology of the nonlinear interaction
between light and matter will be discussed qualitatively for an incident monochromatic plain
wave. The basic principles outlined in this context, however, will apply generally. Subsequently
the electro-optic effects (Pockels effect and Kerr effect) will be discussed in more detail, since
these effects occur in photorefractive polymers. Thereafter, a short consideration of degenerate
four wave mixing as an NLO effect will follow, which additionally will serve for the
introduction of the NLO phase matching condition. The paragraph will close with a brief
discussion of the position of photorefraction in the systematics of nonlinear optics.

The physics of the photorefractive effect as well as four wave mixing in thick hologram
gratings will each be discussed in detail in a separate section later on, since these issues concern
the core of this work.

2.2.1) Nonlinear interaction between light and matter

The basic material equations for the interaction between light and matter, eq. (2.1 - 56) to
eq. (2.1 - 60), as derived in “2.1.3.1.) Material equations” on page 16, will basically hold for
nonlinear optics as well.

However, out of this set of equations, eq. (2.1 - 57) will not suffice to describe the
polarizations induced by nonlinear interaction between light and matter. This is the fundamental
difference between linear and nonlinear optics and will be considered qualitatively in more
detail now. In order to illustrate the interaction between light and matter, the oscillator model
was first employed in “2.1.3.2.) The oscillator model (Lorentz-model)” on page 17 presuming
small elongation in order to ensure linear response of the system. For small elongations, the
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2.2.)Basic aspects of non-linear optics

potential of an electron in the central field of an atom or molecule may well be approximated
by a parabolic potential function resulting in linear response. However, for high irradiance
intensity, the elongation of the electron will exceed the area of the parabolic approximation and
the response of the system will be nonlinear. This is illustrated in figure (2.2 - 1), where the ideal
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Figure (2.2 - 1): Illustration of the parabolic and a non-harmonic potential function.

parabolic potential function and a more realistic example of a potential function as a function of
the elongation from the equilibrium distance 7, are sketched. The area of linear response is
enlarged in the inset. Outside the area of linear response, the characteristic of the induced dipole
moment (which is proportional to the electron displacement) as a function of the incident
electrical field is nonlinear as illustrated together with the transformation behavior on an
incident wave in figure (2.2 - 2). It is clear, that the polarization response must be non-harmonic
and that higher harmonics appear in the polarization wave, which results in the polarization to
be a complicated function of the electrical field containing terms of higher order.

electric field [a.u.]

polarisation [a.u.]
['n"e] uonesuelod

electric field [a.u.]

Figure (2.2 - 2): Illustration of linear and non-linear response behavior. The
dashed curves depict linear behavior. The lower curve illustrates a branch of the
incoming electrical field, the upper left curves illustrate the elongation
characteristics of an electron in a central field and the upper right curves depict
the resulting branch of the polarization wave in the medium.
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2.2.1.1.)Nonlinear polarization

Since terms of higher order in the incident field represent nonlinear operations, the first
approach to this problem must be real as discussed in “2.1.1.) The electro-magnetic theory of
light” on page 4:

P(t) = g1 "E@) + PEO)E®) + ((VE@O)E@)E®) + ...]. eq. 2.2- 1)
Here x(l)’ 2. 3) are the susceptibilities of first, second and third order, respectively, and their
index “#“ denotes a dependence of the susceptibilities on the particular time history of the
electrical field. Usually it is not necessary to consider terms of fourth or even higher order, since
the susceptibilities decrease dramatically with increasing order (typically already about 17
orders of magnitude from first to third order). Thus, effects of higher order than three are usually
negligible. The above eq. (2.2 - 1), however, only accounts for loss-free media. In lossy media,
a phase delay between the polarization and the electrical field will occur, and it would be
convenient to express eq. (2.2 - 1) in complex form. This can be achieved by applying eq. (2.1
- 19) to the electrical field as well as to the polarization and taking the non-conjugate complex
form of the polarization. Since the resulting expression for the entire eq. (2.2 - 1) is very long,
this procedure will be demonstrated on the term of second order:

PP = (P '+ PP () = { DUE@) + B (OIEW) +E (z)]}. eq. (2.2-2)

Please note, that this equation cannot be s1mp11ﬁed furthermore without knowing more about
the specific problem under consideration, since a n' b order susceptibility (here second order) is
in general a tensor of (n+1)™ rank (i.e., here of third rank), preventing the electrical field vectors
on the right hand side of eq. (2.2 - 2) to be simply multiplied. Therefore, eq. (2.2 - 2) is expressed
in terms of its vector components:

PP 0+r (1) = {z X LE(D) + EF(O1E(D) + E *(z)]} eq. (2.2-3)
This equation can easily be separated in:

PP = {z Ao LE(DE(D)+ Ej*(t)Ek(t)]} eq. (2.2 - 4)
and:

PP (1) = %’{zj kxff,ﬁ, [EX(DE* (1) + E(DE *(z)]} eq. (2.2-5)

Please note that the susceptibility is not the same for the two types of products in the sum (as
indicated by the index ,,*‘), since the complete real (or complete complex conjugate) product
represents frequency doubling, whereas the mixed products represents optical rectification and
the susceptibility depends on the particular time history of the product of the fields.

As an example for higher order polarization equations, the complex third order
polarization equation corresponding to the complex second order polarization equation eq. (2.2
- 4) is analogously obtained and writes:
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a

P = ‘}O{Z Yo LE(DE(DE(1) + EX(DE(DE(D) eq. 2.2-6)
Js

+ E(DEF(DE (1) + Ej(f)Ek(t)El*(t)]}

(3)

ikl 1 is of fourth rank and, thus, has

with (i, j, k= x, y, z). The third order susceptibility tensor
81 element. .
Please note that the susceptibility of first order has already been discussed to be a second

rank tensor in the context of “2.1.3.) Light in linear media” on page 16.

Combining the nonlinear polarization with Maxwell’s equations leads to the wave
equation of nonlinear optics, which writes in general form:
2 2
> 1 N N
VE- 1O = 1L Py, eq. (22-7)
€ot ot
For its derivation reference is made to the standard literature of nonlinear optics.

)

2.2.1.2.)Kleinman’s symmetry rule

An important simplification of the second order susceptibility tensor is obtained, if the
medium is loss-free for all (!) radiation fields involved in the nonlinear optical process. In this
context, loss-free means that the electrical work per period of the light wave vanishes:

§3f>dﬁ =0. eq. (2.2-8)
This closed line integral vanishes for:
P S i (2.2-9)
o = == = 5 €q. L=
ST °HBE, GE, 1

where ¢, is the unit vector in k-direction and , j, k = x, y, z, which yields for the elements of the
susceptibility tensor:

2 2
ng)t - Xj(k)t eq. (2.2 - 10)

Furthermore but trivial, the tensor is real.

Eq. (2.2 - 9) may be applied to all electrical field components, which finally results in
three permutation relations, the first of which is eq. (2.2 - 10) and the remaining two of them
write:

@ _ @

Kijkot = Yirg.o eq. (2.2-11)
and:
2 _ @
Xitk.o = Xkt eq. (2.2-12)

This is known as Kleinman's symmetry rule. Usually eq. (2.2 - 11) is applied in order to get a
first simplification of the second order susceptibility tensor, since the sequence of the field
components in eq. (2.2 - 3) is physically insignificant in the majority of cases. Therefore, eq.
(2.2 - 11) does not necessarily require the validity of Kleinman’s symmetry rule. However, the
appropriate approach depends on the particular problem considered.

Please note finally that further reduction of the number of independent tensor elements
may result from more sophisticated symmetry considerations for a particular system with
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respect to a particular problem of nonlinear optics. However, this is too specific to be discussed
here. For example, the second order susceptibility vanishes completely for systems exhibiting
an inversion center.

2.2.2) Electro-optic effects

The generic term “electro-optic effects* covers nonlinear optical effects, where a single
light wave is affected by static or quasi-electrostatic (see below) electrical fields. These effects
can be described by nonlinear polarizations containing an optical field and electrostatic fields.
In this context it becomes clear, what is meant by a “quasi-electrostatic* field. An electrical field
can be considered as quasi-electrostatic, when its frequency is sufficiently small to be neglected
in mixed terms of the nonlinear polarization, i.e., the sum and difference frequency generation
with the optical wave does not change the frequency of the optical wave perceivably.

In more practical terms, electro-optic effects describe the change of an optical anisotropy
or the generation of it from optical isotropy by means of an electrostatic field externally applied
to the system under consideration. l.e., the refractive indices of the system are affected by an
externally applied field. This may be due to deformations of the electron orbitals in the material,
induced by the applied field, to orientation of molecular dipoles by the external field or to other
mechanisms of similar nature. In this paragraph, the static electrical field is always assumed to
be a dc-field without loss of generality.

There are two electro-optic effects. The Pockels effect is a quadratic effect which

describes the variation of the real part of the permittivity as a linear function of the external
field:

ARe(g,)oc E,,. eq. (2.2 -13)

Therefore, the Pockels effect is also referred to as the linear electro-optic effect.
The Kerr effect is a cubic effect, which describes the variation of the real part of the
permittivity as a quadratic function of the external field:

ARe(e,) < E, . eq. (2.2 - 14)

Therefore, the Kerr effect is also referred to as the quadratic electro-optic effect.
Since in general:
eq. (2.2 - 15)

Asr, Pockels ” Agr, Kerr>

the Kerr effect is usually negligible in systems, where the Pockels effect occurs.

It is generally possible to consider the electro-optic effects from the point of view of wave
propagation. In this case, an expression for the nonlinear polarization Py (£) in the system
considered must be found as a function of the optical wave E(7, ¢). This may be necessary for
particular applications, however, in many cases it is sufficient to consider simply the spatially
resolved refractive index changes as a function of the external field vector, which can be
performed on basis of the index ellipsoid (eq. (2.1 - 162)).

Please note, that the Kerr effect is particularly interesting in liquids and solutions, but
usually not so much in crystal optics. However, polymeric systems of the kind investigated in
the frame of this work consist of low mass molecular components dissolved in a low glass-
transition polymer matrix, representing a preferable system for the occurrence of the Kerr effect
or of related phenomena. This will be picked up again in the context with the nonlinear optical
properties of low glass-transition polymers, which are discussed later in more detail.
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2.2.2.1.)Pockels effect

The Pockels effect requires an optically anisotropic medium, the optical behavior of
which may be described by the index ellipsoid according to eq. (2.1 - 162), which writes in
principal axis representation:

4L, eq. (2.2 - 16)

where ny 3 are the principal refractive indices. By applying an electrical
dc-field to the system refractive index changes occur, which result in a
new and slightly rotated index ellipsoid as depicted in figure (2.2 - 3),
which may be described by:

2 2 2
d d d 2dd, 2dd, 2d.d
b e e S S = 1, eq.(22-17)
n'yon'y on'y My ns e
where Ehe mixed components vanish and the n 12, n 22, n' 3 become Figure (2.2 - 3)

2
n, ,n2 ,ny~, respectively, for zero external field. Introducing the
refractive index changes according to:

11 vi-123
2 )2
1 ng  ny
A= = | eq. (2.2 - 18)
nj - V i=456
n.

1

and accounting for their linear change as a function of the external field according to eq. (2.2 -
13), the refractive index changes may be expressed as:

Z riEs, eq. (2.2 - 19)

with i = 1, 2, 3 for the electro-optic coefficients and j = x, y, z for the applied field. The
correlation of the index i with Cartesian coordinates can be derived from eq. (2.2 - 17). In terms
of a matrix equation eq. (2.2 - 19) writes:

1
A=
ny
1
A—2 - -
ny it Y2 13
1 Vo1 Fhy F
2 21 722 T3
Ai’l r r r Ex
3= |32 E,. eq. (2.2 - 20)
1 Va1 Fan ¥
A— 41 a2 Va3
EZ
ny I'sy I'sy I's3
AL 1761 T62 T63]
ns
1
A=
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The r-matrix is called the electro-optic matrix. Please note, that the electro-optic coefficients
depend on the frequency of the light wave as well as on the frequency of the applied field, if the
latter is quasi-electrostatic.

For small changes of the refractive indices, eq. (2.2 - 19) may be approximated by:

3
n
An;=— > Z,rijEj' eq. (2.2 -21)
J

2.2.2.2.)Kerr effect

The Kerr effect can be considered the same way as the Pockels effect and, hence, eq. (2.2
- 16) to eq. (2.2 - 18) are valid as well. However, according to eq. (2.2 - 14), the refractive index
changes due to the Kerr effect are expressed as:

(A—IEJ = Z R B Ey, eq. (2.2 -22)
I” Kerr T

where the electro-optic tensor R;j is a third rank tensor and, thus, eq. (2.2 - 22) can not be
expressed as a matrix equation according to eq. (2.2 - 20). However, eq. (2.2 - 22) is incomplete,
since the Pockels effect may not only contribute as well to the total refractive index changes but
usually will be predominant. Hence, the actual refractive index changes are:

1
A= = Zj riE;+ ijRijkEjEk' eq. (2.2 - 23)
i
Since the electro-optic matrix r;; vanishes for media exhibiting an inversion center, only then
eq. (2.2 - 22) describes the total refractive index changes.
Considering the Kerr effect for loss-free isotropic media with p. = 1 in terms of wave
propagation, the third order nonlinear polarization will be:

3 3 N N
Py, i( ' = SOX( )Ei(m)<Eext *Eexr), eq. (2.2 - 24)

where x(3) is the only remaining independent tensor element of the third order susceptibility
tensor for isotropic media. The time average of the external fields depicts their quasi-
electrostatic nature as discussed before, and i = x, y, z.

Assuming for example a linearly polarized wave running in x-direction:

E(o) = (0,|E], 0" eq. (2.2 - 25)
and an external field applied in z-direction (i.e. the wave according to eq. (2.2 - 25) is s-
polarized):

Eou = (0,0,E,,), eq. (2.2 - 26)

the total field in the system will be the sum of both and yields for the polarization of third order:
3) 3 3012, 2
(@) = (0’ SOX( )Ey(m)[Z‘Ey| * Eext} O) ) eq. (2.2-27)

where only components of the frequency ® were considered.
Furthermore, the incident radiation field will generate a polarization of first order
according to:

PP(@) = (0,502E,(0), 0), cq. (22-28)

where y is the real linear susceptibility.
Thus, the total polarization in the medium at frequency o will be:

P
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P(0) = &E (c))[x+4x( IE, 2y )Eex,} = egxni £, (). eq. (2.2 - 29)

where y,; is an intensity dependent nonlinear constant, which allows for the determination of
the refractive index (with eq. (2.1 - 59) and eq. (2.1 - 84)) sensed by the wave according eq. (2.2
- 25):

3 2 KN
n, = J oyt x(3)\ ) 2y OEoy for (BLE,.,). eq. (2.2 - 30)

The same procedure performed for a p-polarized wave results in:

2 2 RN
n, = Jl+x+§x(3)lEz\ + 3y P o for (B 1| L) eq. (2.2 - 31)

e

Thus, the refractive index is affected by the incident light as well as by the externally applied
field. The isotropic medium has become birefringent, as already depicted by assigning eq. (2.2
- 30) and eq. (2.2 - 31) to an ordinary and an extraordinary refractive index. The “crystal axis*
of the considered system is the direction of the applied field, i.e. it is the z-axis of the coordinate
system chosen here.

s ‘E y| « E,,, and, furthermore, the variation of the refractive indices
as a function of the external field is small due to the in general small third order susceptibility.
Thus, approximating /1 +x=1+x/2 eq. (2.2 - 30) and eq. (2.2 - 31) simplify to:

3) 2
nozn{l +L g } eq. (2.2 - 32)
2n ext
and:
3) 2
nezn{l+ L } eq. (2.2 - 33)
2n ext

In order to quantify the quality of the Kerr effect in a particular medium, a characteristic
constant, the Kerr constant, is defined as:

n,—n,

Mo

B:

eq. (2.2 -34)

ext

2.2.3) Degenerate four wave mixing and NLO phase matching

NLO effects of third order stand for the interaction of four waves, since the third order
polarization will generate a fourth wave. A special case of this situation is the interaction of four
waves of identical frequency o but different propagation vectors ; :

ES i(mt—l?-Oi)

Eo) = Egie™™ "7, eq. (2.2 - 35)
where i = 1, 2, 3, 4 is the running index for the four waves. The polarization states of all four
waves shall be identical without loss of generality.

The total field interacting with the nonlinear medium will be:

Ew) =Y  Edo) eq. (2.2 - 36)

i=1-3
and the resulting third order polarization regarding only terms in ® will be:
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P(0) = 2ege) BO)B(O)E* (0). q. (2.2-37)

Subsequently, the most common case of the described situation will be considered, where
a weak signal wave E 3 interacts with two counterpropagating pump waves of high intensity E 1
and E > (this configuration is known as phase conjugate mirror). In this case the relation
between the propagation vectors of the pump waves will be:

by = —ky. eq. (2.2 - 38)
The interaction can be interpreted ostensibly as diffraction of a signal wave at a periodic
refractive index grating resulting from the interference pattern generated by the pump waves.
Hence, the diffracted wave must meet the phase matching condition. The phase matching
condition is the result of the basic law of impulse conservation, with:

D= 2h——nk and 3°p = 0 eq. (2.2 - 39)

where p is the photon impulse and /4 is Planck’s constant. In this case, the phase matching
condition will write:

ki +k+ks+k = 0. eq. (2.2 - 40)
Please note, that the impulse balance must be interpreted correctly to derive the correct phase
matching condition accounting as well for energy conservation. Thus, e.g. in frequency
doubling the phase matching condition will write k1 + k1 k2 = (, where the index 2 denotes

the generated wave of 2.
Accounting for eq. (2.2 - 38), the phase matching condition eq. (2.2 - 39) requires:

ks = — k3, eq. (2.2 - 41)
which yields according to eq. (2.2 - 37) with eq. (2.2 - 36):
(3)
(@) = 80611 E1(0)Ey(0)E5™(0) eq. (2.2 - 42)
and with eq. (2.2 - 35):
(3) _ > % l(u)t+}30r)
(0) = 80911E01E02E03 e eq. (2.2 -43)

Inserting this equation into the wave equation eq. (2.2 - 7) yields for the diffracted wave:

™ z(o)t k4or) % z(wt+k3or)

Ey(®) = Ege = 9E; : eq. (2.2 - 44)
with § as reflection coefficient. Accordingly, the diffracted wave in the discussed case is the
phase conjugate to the signal wave, which may be considered as a wave ,,running back in time*.
Hence, the reflection law is not valid here.

The procedure as exemplarily demonstrated above will as well apply to an arbitrary
geometry of the setup, not only for counterpropagating pump waves.

Please note that the pump waves and the signal wave need not have the same frequency
and even the pump waves themselves may vary in frequency. However, the analytical treatment
then becomes much more complicated. In the case of different frequencies of the pump waves,
the diffracted signal wave will exhibit another frequency than the signal wave itself. Since eq.
(2.2 - 40) accounts for all cases, it may serve for a qualitative estimation of the direction and
frequency relations of the involved waves.

Please note furthermore that the mutual interaction between all waves present in the
medium taking into account their polarization states may lead to the occurrence of multiple
phase gratings. A comprehensive treatment of this problem may become rather cumbersome.
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However, some phase gratings may be neglected depending on the intensities of the involved
beams as performed above, where the interaction between the pump beams and the signal beam
was therefore disregarded. Another way to avoid a multiple phase grating problem would be to
use orthogonal polarization states for the pump beams and the signal beam. Furthermore, if the
medium is lossy, absorption gratings may occur as well and contribute to the diffraction.

Degenerate four-wave-mixing (DFWM) is one of the key measurement techniques
applied in the frame of this work and will be elaborated upon in much more detail in terms of
the coupled wave theory in “2.3.2.) Coupled wave theory for thick hologram gratings” on
page 53. The treatment of DFWM in terms of the nonlinear optical polarization will not be
pursued any longer hereafter.

2.2.4) Photorefraction

The photorefractive (PR) effect will not be discussed here, but elaborated upon in detail
in a separate chapter: “2.5.) The photorefractive effect” on page 118. However, here it seems
advisable to discuss briefly the position of the photorefractive effect in the systematics of NLO.

Photorefraction is an optical effect representing an outstanding position. The magnitude
of the PR effect does not depend on the intensity but on the energy of the involved fields, i.e.
the PR effect is an integral effect. By contrast the buildup speed of the effect depends on the
intensity. This is unique for a NLO effect and questions the attribution of the PR effect to NLO
in general. However, undoubtedly NLO effects are involved in the PR effect, e.g. the Pockels
effect. Furthermore, the response of PR media may be described by reasonably applying the
physical schemes of nonlinear optics, however, accounting for the nature of the particular
experiment to be considered. Thus, the general attribution of the PR effect to nonlinear optics
seems reasonable, however, somewhat oblique.

Due to the fact that four-wave-mixing experiments may be carried out in photorefractive
media, photorefraction is often referred to as a cubic NLO effect. However, the order of a NLO
effect is defined by the number of electrical fields involved. In the case of the PR effect, this
number varies between 2 and 5 depending on the type of PR medium and the particular
experiment performed (two-wave-mixing or four-wave-mixing). Therefore, a clear attribution
of the PR effect to a certain order of nonlinearity is unreasonable. In fact, the PR effect cannot
be categorized this way at all. In contrast, the PR effect must be considered as a stand-alone
mechanism enabling nonlinear optical response of various order, depending on the particular
experiment and medium
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2.3.)Holography

The principle of holography has been discovered and demonstrated by D. Gabor in 1948
[14]. However, since there was no sufficiently coherent light source available at this time, the
first holograms were realized using mercury vapor lamps in inline recording configuration,
which is restricted to at least semi-transparent objects. The initially intolerable technical
problems prevented a noticeable further development of holography during the 1950ies. This
situation changed with the first realization of an “optical“ Laser by T. Maiman in 1960 [15]
based on the work of C. Towns, N. Bassow and A. Prochorow. In 1962, E.N. Leith and J.
Upatnieks suggested a significantly improved holographic recording technique known as oft-
axis recording [16] and, in the same year, J.N. Denisjuk suggested the recording of holograms
in three dimensional media, which is known today as volume holographic recording. Finally, in
1963 Leith and Upatnieks were the first to record an off-axis hologram using Laser beams [17],
which initiated intense research in this field, which is still ongoing.

This paragraph deals with the basic principles of holography and its application in
holographic data storage. Holography has been utilized basically for the purpose of material
characterization in the framework of this theses and not for imaging. Therefore, the holographic
process will be outlined only phenomenologically neither considering the extensive field of
holographic imaging in detail nor discussing the holographic process in terms of wave
mechanics. However, since the diffraction properties of holographic volume gratings are basic
characteristics of photorefractive materials, the diffraction properties of thick hologram gratings
will be discussed in detail using the coupled-wave theory.

Holography offers a variety of possibilities for application like pattern recognition, data
storage, optical correlation, non-destructive characterization of materials, determination of the
normal modes of vibrating objects, and others. Out of the various potential applications,
holographic multiplexing will be outlined as a technique enabling holographic mass data
storage. Different multiplexing techniques will be described and the basic requirements for
potential holographic storage media, enabling holographic multiplexing will be discussed.

2.3.1.) The holographic process

The spatial percipience of human beings is due to the stereoscopic parallax, which results
in slightly different images of an object observed by each eye. These two images are combined
to a stereoscopic picture by the human brain. Nature must use this trick, because there is no way
to detect the absolute phasing of an electromagnetic wave. The phasing of a wave can only be
defined relative to some reference. This statement is the key to the holographic process. The
holographic process enables the recording of both phase and intensity distribution of an optical
field in some suitable medium by providing a phase reference and formally recording it together
with the optical field. Thus, by reconstructing the optical field from the hologram, the phase
normal is as well “reconstructed” and the phasing of each wave of the optical field relative to
the reference is the same as in the original field. Accordingly, also the relative phasings of each
wave with respect to one another will be the same as in the original field. Since the absolute
phasing of the phase reference is irrelevant, but only the relative phasings of the “individual®
waves of the optical field counts, the original field as a whole is reproduced, containing all its
information in phasing and intensity. It is clear, that the a human being observing the
reconstructed optical field from a hologram will perceive a stereoscopic picture applying
nature’s parallax technique. This recording and retrieval process is subsumed by the term
,holography*, originating from the greek term ,,holos*, which means ,,the whole*.
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2.3.1.1.)Holographic recording and retrieval

As already described above, holographic recording requires basically two optical fields,
the optical field of the object, referred to as “object wave (or beam)”, or, more common, as
“signal wave (or beam)” and an undisturbed (i.e. carrying no image information) reference wave
(or beam) as phase normal. Both waves must be coherent in time with respect to each other for
the duration of the recording process. Lateral coherence over the whole beam diameter is
presumed.

In order to provide the phase normal for the optical field of the object, the object wave is
superimposed with the reference wave yielding an interference pattern. The latter contains the
intensity information of the object wave as well as the relative phasing of each individual wave
train of the signal wave in form of a specific periodic intensity distribution. Thus, the phase
information of the object wave has been transformed into an intensity pattern, which now can
be stored together with the basic intensity information in a suitable storage medium. The
recording process for off-axis recording is depicted in figure (2.3 - 1).
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Figure (2.3 - 1): Holographic recording Figure (2.3 - 2): Holographic retrieval

2 recording
medium

The recorded hologram must be illuminated with a reconstruction wave of equal
orientation (relative to the hologram) like the reference wave in order to retrieve the stored
information. An observer will then notice a virtual image of the object in the same position
relative to the hologram like the object has been for recording (i.e. for the viewer the image
occurs “behind” the hologram). Please note, that the reconstruction wave need not fulfill any
kind of coherence condition, since the absolute phasing of the reconstruction wave is irrelevant.
The projection of its beam diameter onto the hologram normal will be the lower coherence limit,
which is very illustrative, since it is necessary to reconstruct at least one complete wave front of
the object wave in order to obtain the complete information stored. The retrieval process for an
off-axis hologram is depicted in figure (2.3 - 2). Please note, that not the complete hologram is
necessary to reconstruct the complete object wave. Theoretically, each infinitesimal volume
element carries the complete information of the hologram. However, there is a practical limit
due to diffraction at dust, impurities in the material, surface roughness of the medium, and
others, which will considerably decrease the reconstruction quality of the object wave if the
portion of the hologram for retrieval is chosen too small.

Inline holography will basically follow the same principles as described above. However,
the object as well as the virtual image will be positioned in line with the reference beam, which
is indicated by a solid line cross and a dotted cross in figure (2.3 - 1) and figure (2.3 - 2),
respectively. It is clear, that this technique is not preferable.
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2.3.1.2.) Types of holograms

Depending on the recording geometry, basically transmission holograms and reflection
holograms must be distinguished. The determining parameter is the angle 20 between the
propagation vectors of the object wave, the reference wave, and the conditions write:

0 <20 <90° — transmission geometry 23-1)
. eq. (2.3 -
90° <20 < 180° — reflection geometry a

There is no fundamental difference between a transmission hologram and a reflection hologram.

The hologram generated in the recording medium may be an amplitude hologram or a
phase hologram or both. Which kind of hologram is dominant depends on the individual
medium. Amplitude and phase holograms differ significantly in the achievable diffraction
efficiency, which is generally limited to about 6-7% for amplitude holograms, but may reach
100% or even overmodulation for phase holograms.

Furthermore, plane holograms and volume holograms must be distinguished. The
determining parameter in this case is the relation between the fringe spacing of the interference
pattern and the thickness of the hologram. A sort of threshold criterion, which defines a volume
hologram can be estimated to:

d>1.6—, eq. (2.3-2)

where d is the hologram thickness, A is the fringe spacing (grating constant) of the interference
pattern, n is the average bulk refractive index, and A is the operating wavelength in vacuum.

There are some fundamental differences between plane holograms and volume
holograms. The diffraction properties of plane holograms correlate basically to the diffraction
properties of a simple-line grating, whereas the diffraction by volume holograms is of Bragg-
type. This has important consequences. Diffraction by plane holograms yields a strong zero
order intensity maximum, which carries no information as well as higher positive and negative
diffraction orders, carrying the holographically stored information (Raman-Nath regime). The
diffraction orders decrease quickly in intensity with increasing order number and usually only
diffraction of first order yields significant diffraction efficiency. The diffraction efficiencies of
plane holograms are generally strongly limited, since a huge amount of light intensity is lost in
the zero order maximum. In contrast, the Bragg-type diffraction by volume holograms yields
only one diffraction maximum, which carries the stored information and may achieve high
diffraction efficiency. Please note, that ideal Bragg diffraction does not yield “diffraction
orders”, which, however, cannot be realized in a real world experiment. Therefore, the
diffraction maximum corresponding to ideal Bragg diffraction is sometimes referred to as zero
order diffraction, whereas higher order numbers are used to denote additional diffraction
maxima, occurring due to deviations of the considered Bragg-type diffraction grating from the
ideal case. It is important to understand that this notation does not correspond to Raman-Nath
diffraction orders. In fact, the “zero order” Bragg maximum formally corresponds to a first
order diffraction maximum in the Raman-Nath regime.

It is important to point out, that an ideal volume hologram is either strictly wavelength or
strictly direction selective, but not both of these simultaneously, as may easily be seen from the
Bragg condition eq. (2.1 - 168). However, since only holograms with infinite thickness are ideal
volume holograms, each real hologram has limited selectivity with respect to direction or
wavelength, which worsens increasingly by approaching the condition formulated in eq. (2.3 -
2). Finally, plane holograms are neither wavelength nor direction selective and, therefore, not
suitable for multiplexing purposes.
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The simplest possible hologram is generated by two undisturbed waves. Provided the
waves are ideally plain, the resulting hologram will be an ideal sinusoidal interference pattern
according to eq. (2.1 - 46). Such a hologram will suffice to examine the performance and the
diffraction properties of some holographic recording medium, since the diffraction properties
of a hologram do not depend on its information content.

2.3.2.) Coupled wave theory for thick hologram gratings

In this paragraph, the basic concepts of the coupled-wave theory describing the Bragg
diffraction by thick hologram gratings according to [18] will be outlined. This theory predicts
the maximum possible diffraction efficiency as well as its angular and wavelength dependence.
The theory allows for phase as well as amplitude gratings and additionally for slanted geometry.
Strictly speaking, the analysis is restricted to sinusoidal hologram gratings. However, each
periodic hologram may be expressed as a superposition of sinusoidal holograms, which allow
for the application of the coupled-wave theory.

Subsequently, the derivation of the coupled-wave equations will be summarized, and
important solutions will be discussed, which are required for the analytical evaluations
performed in the framework of this thesis.

2.3.2.1.)The coupled-wave equations

The theoretical formulation assumes at first s-polarized
monochromatic light, incident on the hologram grating at or X
near the Bragg angle and will be generalized to p-polarization
later on.

Only the two waves, which obey the Bragg condition
(eq. (2.1 - 168)) at least approximately are assumed to be
present in the medium, which limits the analysis to volume
holograms. The basic model of a hologram grating used for I’
this analysis is depicted in figure (2.3 - 3). K is the grating \
vector according to eq. (2.1 - 44), A is the fringe spacing YN
according eq. (2.1 -45), D and T are the diffracted wave and
the transmitted wave, respectively, and d is the grating
thickness. The slant of the grating is denoted by y, and 05 is Td
the angle of incidence of the transmitted beam. The angles are
valid inside the medium. The hologram is assumed to be
infinite in y-direction, and the fringes shall be parallel to the
y-axis.

~L

ol

Figure (2.3 - 3): Model of a
thick slanted hologram grating.

2.3.2.1.1.)s-Polarization
Since the polarization state of the considered waves has been defined a priori as s-
polarized, the wave propagation in the grating may be expressed in scalar form by applying eq.
(2.1-18):
V2E(R) + K°E(F) = 0. eq. (2.3 - 3)
A solution for this wave equation taking absorption into account will have a basic form
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according to eq. (2.1 - 91), which yields the spatially modulated propagation constant & for a
non-resonant situation (see figure (2.1 - 4)) as:

(1) = ky'n” = 2ikgna eq. (2.3 - 4)
where k is the propagation constant in free space, n is the refractive index, a is the absorption
coefficient, and p,. = 1 is presumed.

By setting:

n(x,z) = ny+ Ancos(K e )

R , eq. (2.3-95)

a(x,z) = ay+Aacos(Ker)
the fringes of the hologram will be represented by the spatial modulation of #» and a with the
modulation amplitudes denoted by a preceding “A” and the average values marked by subscript
“0“. The first equation refers to a phase grating and the second term to an amplitude grating.
Furthermore, an average propagation constant 3 describing the propagation in the medium
without a phase grating is introduced with:

27n,
B = kyny = , eq. (2.3-6)
Ao

where A is the wavelength in free space. By inserting eq. (2.3 - 5) in eq. (2.3 - 4) one obtains:

K= BZ—ZI'OLOB‘F4KBCOS(]A(O 7). eq. (2.3-7)
The parameter « is defined as:

K = ——(k,An® — 2ingAar) eq. 23-8) X

4n

and represents the basic parameter of the coupled-wave theory, the
coupling constant, which describes the coupling between the
transmitted and 5 the diffracted wave. For An«n, the
approximation An~ ~ 2n,An can be applied if A is interpreted as
total differential of n, and eq. (2.3 - 8) simplifies to:

K = %(kOAn—iAoc). eq. (2.3 -9)

The grating formed by An and Aa couples the two waves T and D
leading to energy exchange between them.

The coordinate system and geometrical configuration
depicted in Figure (2.3 - 3) will be used for the subsequent
considerations. The waves may then be described by z-dependent
complex amplitudes 7(z) and D(z) in order to account for the  Figure (2.3 -4): Vector
energy interchange as well as for energy loss due to absorption. The ~ diagram of diffraction by a

. . . " lanted thick hol
total electrical field in the grating is the superposition of the two slanted grl:tingo ogram
waves:
_ 7i}T o fl‘ZTD o
E =1T(z)e + D(z)e , eq. (2.3-10)

where k7 is the propagation vector of the freely transmitted wave in absence of a grating and
kp is the propagation vector of the diffracted wave. The modulus of the first is the average
propagation constant according to eq. (2.3 - 6). The propagation vectors and the grating vector
must fulfill the phase matching condition eq. (2.2 - 39), which determines I}D . Since the grating
has to take on the impulse difference between the two waves, the phase matching condition
writes:

kr—kp = K. eq. (2.3-11)
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The vectorial representation of the problem considered is depicted in figure (2.3 - 4). Obviously,
the components of the individual propagation vectors are given by:

. k. sin0y
kr=10l|=B| o eq. (2.3-12)
k. cos0p
and (applying eq. (2.3 - 11)):
_sine —[—<cos _
N ka B B v
kp=10|=5B 0 : eq. (2.3-13)
kb2 cosf, — Igcosw
where K = ‘I?|

The Bragg condition eq. (2.1 - 168) can be expressed in terms of the grating vector and
the average propagation constant in the medium according to eq. (2.3 - 6):

cos(w—OB)—z% - 0. eq. (2.3 - 14)
It is clear, that the left hand side of eq. (2.3 - 14) will not yield zero, if the Bragg condition is
not met. Therefore, it is feasible to account for a deviation from the Bragg condition by

introducing a dephasing measure 9, which refers to this behavior:

o (y—6,) Ko (2.3-15)
==cos(y — - eq. (2.3 -

K VU5 4nn, 4

The dephasing measure thus defined is independent from the grating spacing. This can easily be
reproduced regarding the derivation of the Bragg condition in section “2.1.4.4.) Bragg

diffraction” on page 38. Eq. (2.3 - 15) may be expressed in terms of the waves involved:

(k' —kp) (B —kp)
2ky 2B
Any violation of the Bragg condition may occur in terms of an angular mismatch for a
fixed wavelength or a wavelength mismatch for a fixed angle of incidence. This may be
expressed by writing:
Op = Bz +Aby

9 =

eq. (2.3-16)

eq. (2.3-17
A = Ay + AL % @3-17)
Inserting eq. (2.3 - 17) into eq. (2.3 - 15) and performing a Taylor series expansion yields:
2
9 = AOBKsin(W—GOB)—AK—-[—(——. eq. (2.3 - 18)
4nn,

Now eq. (2.3 - 10) is inserted into eq. (2.3 - 3), and eq. (2.3 - 7) is introduced by means of
eq. (2.3 - 11). Furthermore, all higher diffraction orders (i.e. all waves not fulfilling eq. (2.3 -
11)) are neglected. Comparing then terms with equal exponential order yields a set of
differential equations:

T"=2iT"kyp, —2ia BT+ 2xBD = 0
) ) , eq. (2.3-19)

D"-2iD'ky_—2io,BD+ (B"—kp )D +2xBT = 0
which is further simplified by assuming slow energy interchange between 7(z) and D(z) as
well as “slow” depletion due to absorption, which allows to neglect second derivatives of the
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waves’ amplitudes. (Please note that “slow” must be understood in the sense of “slowly
changing for the waves propagating in z-direction”.) Finally introducing the dephasing measure
according to eq. (2.3 - 16) yields the coupled wave equations:

cel"tal = —ikD

cpD' + (o +i9)D = —ixT’

with cyand ¢ representing obliquity factors according to figure (2.3 - 4), which account for the
slant of the grating:

eq. (2.3 - 20)

eq. (2.3 -21)

2.3.2.1.2.)p-Polarization
In contrast to s-polarization, the inherent vectorial nature of electromagnetic waves
cannot be disregarded considering the interaction of p-polarized waves in the frame of the
coupled wave model. Accordingly, eq. (2.1 - 18) must be applied in its vectorial form:

V2E() +KE(F) = 0, eq. (2.3-22)
where the constant k is defined by eq. (2.3 - 7). The total electrical field in the grating may be
expressed as before, i.e. by the vectorial equivalent of eq. (2.3 - 10). The waves considered are
assumed to be ideally transversal, which is expressed by the conditions:

T' ]}T =0
@ L4 ];C D = 0 .
Following now the procedure outlined in the preceding section, one arrives at the vectorial
equivalent for eq. (2.3 - 19):
—2iT"ky, +iT. kr— 2ia,BT+2xBD = 0

eq. (2.3 -23)

R . N 5 ) N . eq. (2.3-24)
Now, the vectorial amplitudes of the transmitted and the diffracted waves are separated into
scalar amplitudes, which are a function of z, and corresponding polarization unit vectors &, and
e, which are assumed here to be independent of z:
1(z) = T(2)er
N . eq. (2.3 -25)
D(2) = D(2)2),
Multiplying the first equation of eq. (2.3 - 24) with &, and the second with &, yields:
2iT"ky, —2ia BT+ 2xPD(eyee) = 0

5 5 eq. (2.3 - 26)
and finally the coupled wave equations in analogy to the above:
cT"+tal = —ix(eree,)D
g rep eq. (2.3 -27)

Thus, the coupled wave model yields identical results for s- and p-polarizations of the
involved waves, if the coupling constant is adapted to the actually interacting (i.e. parallel)
polarization components.
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2.3.2.2.)Solution of the coupled wave equations

The solution of the coupled wave equations is obtained by applying the standard
approach, which may be written in this case:

I(z) = g€+ e’
. eq. (2.3 -28)
D) = die'" +dye’™
In order to determine the constants y; (j = 1, 2), eq. (2.3 - 28) is inserted into eq. (2.3 - 20),
and the coefficients of the different exponentials are compared, finally yielding:
(cpyy H o)ty = —ikd,
(cpry+ @)ty = —ixd
! g > eq. (2.3 - 29)
(cpy, to+id)d, = —ixt,
(cpy, ta+i8)d, = —ixt,

Multiplication of equations with identical j = 1, 2 from eq. (2.3 - 29) with each other results in
two identical quadratic equations:
2

(cry;ta)(epy; Tatid) = -7, eq. (2.3 - 30)
having the solution:
) a2 2
le:_1(2+a+19)i (&_aﬂ\‘}) L eq. (2.3 -31)
. 2%,  ¢p cr  Cp ¢pfr

In order to determine the constants ¢ and d;, boundary conditions must be introduced into
the model. It is clear, that:
1(0) = Lt = 1

D) =d+d, = 0

accounts for a transmission hologram, where the diffracted wave is zero before being diffracted
and the transmitted wave is accordingly still undepleted. The undepleted wave is set to unity,
since some absolute fields are not of interest here, but rather the relative energy interchange due
to diffraction. In order to account for a reflection hologram, the diffracted wave
counterpropagates the transmitted wave, which will change the boundary condition for a
reflection grating to:

I0) =1+, =1

eq. (2.3 -32)

, eq. (2.3-33

D(d) _ C~lll€Y1d+C~l’2€Y2d -0 q. ( )

where d is the grating thickness. Please note, that the difference between transmission and

reflection grating also shows up in the sign of the obliquity factor ¢ which is positive for the

first and negative for the latter. Since reflection gratings have not been investigated in the frame

of this work, the subsequent considerations will be restricted to transmission gratings.
Entering with eq. (2.3 - 32) into eq. (2.3 - 29) yields:

K
” - cp(Y1—72)
. .(23-34
ety + eq. ( )
=1ty = s
cr(Y2—71)

The amplitudes of the transmitted and the diffracted wave in a transmission grating are obtained
by introducing these constants into eq. (2.3 - 28).
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However, usually only the diffracted wave is of interest, the amplitude of which reads:

. K V2d v1d
D(d) = i————[e" —e ]. eq. (2.3 - 35)
cp(y1—72)
The diffraction efficiency of the grating is defined as the diffracted fraction of the incident
light power showing up in the diffracted wave:
*

n=22° eq. (2.3 - 36)

[

where the input wave is presumed to have unit amplitude.
The parameter cpp, is the slant factor, given by:

_‘r
CTD - c_ . eq. (2.3 = 37)
D

2.3.2.3.) Transmission holograms

In order to obtain an analytical expression for the diffraction efficiency, eq. (2.3 - 35) must
be combined with eq. (2.3 - 31). This results in a fairly cumbersome expression, which can be
expressed more conveniently by separating the coupling constant from the other parameters
determining the grating behavior. Therefore, two new parameters v and & are introduced
according to:

N, eq. (2.3 - 38)
NEDET
and:
£ = g(ﬁ—“+i9), eq. (2.3 - 39)
Cr ¢p

where d is the grating thickness, k the coupling constant according to eq. (2.3 - 9), 9 the
dephasing parameter according to eq. (2.3 - 18) and cyand cp are the obliquity factors according
to eq. (2.3 - 21). These parameters can easily be redefined in order to account for the individual
properties of a grating considered.

The amplitude of the diffracted wave in terms of v and & writes:

od 5
cr gsSinA vV —§&
eT——.

2

-5

2
v

D(d) = —i Jerpe eq. (2.3 - 40)

This equation is a general expression for the diffraction efficiency due to phase and absorption
gratings and accounts for loss in the medium, slant of the grating and deviations from the Bragg
condition. Accordingly, it simplifies dramatically by excluding some of these effects.

The first restriction accounts for the particular properties of the materials investigated
within the frame of this work. Although these materials cannot a priori be assumed to be loss-
free, the occurrence of a notable absorption grating can safely be excluded. Accordingly, only
phase (i.e. dielectric) gratings must be accounted for.
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2.3.2.3.1.)Loss-free phase grating
In the case of a loss-free phase grating, the parameters v and & may be rewritten as:
y = _nAnd
MonCper eq. (2.3 - 41)
g = -i2d
2¢p

and the absorption term in eq. (2.3 - 40) becomes unity. Applying eq. (2.3 - 36) yields the
diffraction efficiency:

- (sinv? — )
e

g

2
v

Eq. (2.3 - 42) further simplifies by assuming an non-slanted grating and the Bragg condition
obeyed:

T nAnd )2
n [Sln(xmocosew ] oq. (2.3 - 43)

eq. (2.3 -42)

where 0 is the Bragg angle relative to the grating planes according to the well known form of
the Bragg condition according to eq. (2.1 - 168).

2.3.2.3.2.)Lossy phase grating
Eq. (2.3 - 40) is not notably simplified, if a slanted and lossy phase grating is considered
allowing for deviations from the Bragg condition. Therefore, Bragg incidence shall be
presumed here. Then, the parameters v and & may be rewritten as:
nAnd

MoNJepCr

eq. (2.3 -44)
¢ = ‘_"(9. _ %
2\¢; ¢
and one obtains for the diffraction efficiency:
2 odf 1,1
(sinA/v2 - E_,z) 2 ( oo )
n= 5 e , eq. (2.3 - 45)
&
2
\Y%
which simplifies for the case of an unslanted grating to:
_ 2o0d
. nAnd ) 2 cosBy,
= — . .(23-4
n [SIH(XOCOSGOB J e eq. (2.3 - 46)
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2.3.3.) Holographic data storage

Holographic data storage has been an issue since the invention of the laser, which has
promoted holography in general from a barely realizable theoretical concept to actual physical
application. The basic concepts of holographic data storage have been established by van
Heerden in 1963 [19]. Holographic data storage promises various advantages as compared to
other storage techniques.

In this paragraph the basic techniques will be outlined, which may be applied in
holographic mass data storage. Therefore, the principles of holographic data storage are
described briefly in the frame of optical data storage in general leading to “multiplexing® as a
key technique to meet the demand for high storage densities. Subsequently, the different
multiplexing techniques are described schematically. The paragraph closes with a consideration
of the system metrics for holographic multiplexing. In this context, at first a recording schedule
is derived, which allows for holographic multiplexing in erasable media like photorefractives.
Secondly, the M/# (read: ,,m - number®) is introduced, which currently is on the way to be
commonly accepted as a figure of merit, which describes the multiplexing performance of a
holographic storage medium. The recording and erasure dynamics of an erasable holographic
medium will be shown to have major impact on the possible application in holographic
multiplexing. Please note, that this essential question has motivated a great deal of the work
presented here.

Technical, engineering and physical aspects concerning the details of holographic
memory devices will not be considered, since this work focuses on a particular holographic
medium rather than the practical realization of a holographic memory device.

2.3.3.1.)The principle of holographic data storage

Information is stored in today’s commercially Data - “stripe"
available optical storage media (CD and DVD) in
terms of a reflection code representing the 1s and Os v
of the binary code. In principle, the reflection code .

. . . . . . Reflection-code

is printed or burnt into a rotating medium in the form

of one-dimensional strings of longer and shorter ;:CO>

reflecting areas arranged in concentric circles
around the rotation axis of the medium. Thus, the
information is stored two-dimensionally in a serial
manner, and the individual bits are spatially located
on the data carrier (CD) making them vulnerable to ¢p &>
possible damage of the storage medium (e.g.

scratches). A very limited number of these Figure (2.3 -5): Storage scheme for CD and
information layers may be stacked “mechanically bVD

in a single disc in order to achieve a higher storage

density of the complete device (DVD). The principle is depicted in figure (2.3 - 5). The stored
data is read out by a focused laser beam, which is modulated in intensity by the string of
reflecting dots while the CD or DVD rotates.

For holographic storage, on the other hand, the information is provided in terms of images
of two-dimensional pixel arrays. Holograms are formed from these images by means of a spatial
light modulator which imprints a corresponding intensity pattern into the signal beam. A
hologram is then stored in a holographic medium. For retrieval, the hologram is illuminated
solely with the reference beam and the image of the data page will then show up in the diffracted

String of reflecting ,,dots™
o o> o> > 00 @ 00 0
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portion of the reference beam. It can be evaluated by a detector array (charge coupled device,
CCD). The information is distributed over the entire recording volume and may be retrieved
even from only a small portion of the hologram as already mentioned before. Thus, the
information is insensitive against partial damage of the recording medium, which will reduce
the signal to noise ratio rather than cause bit errors.

If the recording medium allows for storage of Datapages

volume holograms, many holograms can be stored N N-1
in a single volume using slightly different Bragg D B!
conditions. This technique is called multiplexing and g ! - -

will be discussed subsequently in more detail. Using
multiplexing, high storage densities of up to several lT
TBit/cm? are theoretically possible. During retrieval
only the hologram will be detected, which obeys the
current Bragg condition. The parallel nature of
holography in general shows up in the inherent
feature of storage and retrieval of whole pages
instead of single bits, which promises high data !
transfer rates. Holographic data storage moreover  Holographi
offers the possibility of associative retrieval. In this aolsee
case, the holograms are illuminated with a reference

beam carrying some information to compare with
the hologram considered. The reference beam will
then only be diffracted if the stored hologram is at
least very similar to the information imprinted in the
reference beam. The diffraction efficiency depends
on the quality of the congruence. If the medium
carries multiple holograms, all Bragg conditions applied for storage can be tested and, thus, the
data page can be found, which correlates best to the information contained in the reference
beam.

Reference
beam for

_ page:

Figure (2.3 - 6): Scheme of holographic data
storage. Angular multiplexing of three data
pages is depicted.

2.3.3.2.)Holographic multiplexing

Subsequently, the principle of multiplexing will be outlined, followed by a schematic
description of the multiplexing methods established today. Finally, the basic scheme will be
depicted, which has to be followed in order to reasonably apply the multiplexing methods. In
this context, the M-number (M/#) in introduced, which provides a measure to trade off the
multiplexing capability of some holographic medium considered in terms of its applicability as
holographic mass storage medium.

2.3.3.2.1.)The principle of holographic multiplexing

Holographic multiplexing is based on the inherent property of volume holograms to
require a specific geometrical configuration, depending on the wavelength for read-out, which
is given by the Bragg condition eq. (2.3 - 14) (or eq. (2.1 - 168)). The diffraction efficiency of
a particular hologram vanishes if the Bragg condition is not met, which is referred to as Bragg
selectivity. The Bragg selectivity is theoretically infinite for an ideal infinitely thick grating, but
depends on various factors for a real grating of limited thickness, the most important of which
are the grating thickness and the grating spacing. One may get an idea of the relations by
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calculating the expected normalized diffraction efficiency as a function of the dephasing with
respect to the Bragg condition for various parameters by means of eq. (2.3 - 36) and eq. (2.3 -
40). An example is depicted in figure (2.3 - 7).

T r T v T v —=—d =125pm; 6 = 20°
d=125um; 6 = 10°
—a—d = 250um; 6 = 10°

-
1

Normalized diffraction efficiency

o

-3 -2 -1 0 1 2 3
Angular mismatch A6

Figure (2.3 - 7): Angular Bragg selectivity of transmission holograms of different thickness d recorded with
different intersection angles 20 of the recording beams (i.e. different grating spacing).

Thus, appropriately applying different Bragg conditions in recording allows to record
many holograms in a single volume element of the recording medium, which can be
individually retrieved without cross-talk between each other. Consequently, the number of
holograms to be multiplexed is in principle limited by the Bragg selectivity of the considered
system. The recording of many holograms should not be misconceived as recording of
holograms at different depth in the volume. In fact, the holograms are superimposed in the same
volume element by intermixing their holographic structures.

While intermixing the holographic structures of many holograms does not affect the
information stored in an individual hologram, it is clear, that there will be an effect on the
strength of the individual holograms. All holographic recording media actually provide a
limited dynamic range, i.e. the achievable absolute refractive index modulation is limited. Thus,
by storing a great number of holograms, the refractive index modulation per hologram and
accordingly also the diffraction efficiency of each hologram will decrease. Please note, that the
diffraction efficiency m is approximately proportional to the square of the index modulation (for
n << 1) resulting in a fast decrease of the diffraction efficiency as a function of the multiplexed
number of holograms. This is a further limiting factor for the maximum number of holograms
to be multiplexed in a system considered.

There are some other factors, which may limit the maximum number of holograms to be
multiplexed. However, these factors are related to technical requirements and engineering
aspects for real storage devices rather than to physical limitations. In particular, an appropriate
control of a storage device requires all stored holograms to exhibit equal or at least very similar
diffraction efficiency. These factors will not be discussed here in detail, although they are
important as well, if the potential applicability of some holographic medium for multiplexing
purposes is considered.
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2.3.3.2.2.)Holographic multiplexing methods
In order to multiplex holograms for storage purposes, the Bragg conditions must be varied
somehow by varying some physical property of either the signal, or the reference beam, or the
storage medium. Furthermore, an appropriate addressing mechanism must be provided, which
maps memory addresses to values of the physical properties varied. The physical property used
for addressing the Bragg condition for a particular hologram defines the multiplexing method.
Please note, that different multiplexing methods may be combined for technical application.

A) Angular multiplexing

_Angular multiplexing generally describes all methods to address
different Bragg conditions by variation of the angle of incidence of the
involved laser beams. This may be performed by changing the angel of
incidence of only the reference beam, which is the most common way and !
already depicted in figure (2.3 - 6). There are alternative possibilities, [ A
which are, however, afflicted with unfavorable technical problems. For |
example the medium may be rotated around its central axis perpendicular
to the plane of incidence of the beams, however, the diffracted beam may
then move as well due to changing refraction. Angular multiplexing is
well established for photorefractive crystals, where a 90° configuration
can be applied as sketched in figure (2.3 - 8). When applying angular
multiplexing, the holographic grating vector is varied either only by
length or by length and direction, the latter which is the case if only the
reference beam is manipulated.

Please note, that angular multiplexing may be performed in
orthogonal directions, which then is referred to as “in-plane* and ““out-of-
plane®. Figure (2.3 - 8) depicts in-plane angular multiplexing. Rotating the variation direction
for the angle of incidence of the reference beam by 90° leads to the out-of-plane equivalent.

I

! Retrieved

Reference
beams

Signal
beam

Figure (2.3 - 8):

Angular multiplexing
in 90° configuration

C) Shift multiplexing

Shift multiplexing [20, 21] basically
uses the concept of angular multiplexing,
however without explicitly changing the angle
of incidence of one of the beams. The signal
beam is a plane wave, whereas the reference
beam is transformed into a spherical wave by

Rotation axis

= Plain reference wave
Signal beam

(plain wave) Lense of high NA

Holographical disk -

a pinhole or a a lens of high numerical
aperture. Then the beams are intersected
inside the medium to record a hologram. The
direction and the length of the holographic
grating vector in this hologram is not constant

’/Spherical reference wave ,

Reconstructed Detector
signal wave (CCD)

Figure (2.3 - 9): Shift multiplexing

but a function of its spatial location in the

hologram. Accordingly, this particular hologram can only be read out again, if the position of
the spherical reference beam relative to the hologram is exactly reproduced in the lateral
position as well as in the distance to the focal point of the reference beam. For recording the next
hologram, the medium is then shifted by a portion of the hologram diameter in a plane
perpendicular to the plane, which includes the propagation vectors of the signal beam and the
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reference beam before its transformation into the spherical reference wave.

Usually the shift is small, so that the
holograms  overlap  significantly.  The
configuration is depicted in figure (2.3 - 9).
Figure (2.3 - 10) illustrates the grating planes,
which result from the intersection of the plain
signal wave and the spherical reference wave.
It is clear, that there is a spatially varying
distribution of grating wave vectors, which
only can be Bragg-matched by the exact
equivalent of the reference wave fronts
applied for generating the hologram. Please
note, that the shift direction may be chosen
arbitrarily, provided it is within the plane
described above.

T Grating

o planes

Figure (2.3 - 10): Sketch of some grating planes
resulting from interference of a plain with a spherical
wave

Shift multiplexing is in particular
preferable for disk-shaped holographic media, e.g. organic polymer systems.

B) Wavelength multiplexing

The wavelength of both the signal and the reference beam is varied in wavelength
multiplexing. The geometrical configuration of the setup remains unchanged, otherwise, which
is in principle favorable. Variation of the wavelength alters the length of the holographic grating
vector. Wavelength multiplexing has gained importance during the last years, which is due to
the tremendous progress achieved in semiconductor laser technology providing nowadays
multi-color tunable semiconductor Lasers at relatively low cost. However, the tunability is still
limited which renders wavelength multiplexing still less flexible than other multiplexing
methods.

D) Peristrophic multiplexing

Peristrophic multiplexing [22] represents a Reference beam
special case, since the Bragg condition is only
altered “spatially* in this multiplexing method. The
individual holograms are recorded in the medium
under identical conditions, however, the medium is
rotated a bit around its center normal between two
recording processes. Thus, the grating vectors of the
individual holograms may be interpreted as lying in Iris
a conic envelope around the axis of rotation of the
medium depending on the particular recording
geometry (i.e., the bisector between the recording
beams need not coincide with the rotation axis).
Therefore, all holograms will be always addressed
simultaneously during readout and the reconstructed
signal beams will occur as well simultaneously but
spatially resolved on a half circle around the axis of rotation. The particularly addressed
hologram must then be separated from the others, e.g. by an iris. On the other hand, this feature

Signal beam
Rotation-axis

Holographic
medium ———>
(disk-shape)

All signals occur
simultaneously on this
half-circle during read-

out

Figure (2.3 - 11): Peristrophic multiplexing
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may allow for fast associative retrieval not requiring mechanical repositioning of the
holographic recording medium.

Please note, that the axis of rotation is not restricted to be normal to the holographic
medium, however, this case is most ostensive. If the axis of rotation is not normal to the
medium, the medium will wobble during rotation, which makes the spatial situation more
complicated.

In analogy to shift multiplexing, peristrophic multiplexing is in particular preferable for
disk-shape holographic media, e.g. organic polymer systems.

E) Phase-encoded multiplexing

Phase-encoded multiplexing [23, 24] does not use a plain reference beam, but a reference
beam with modulated phase, i.e. the wave fronts of the reference beam carry some particular
pattern. If the functions underlying the phase patterns are orthogonal, holograms can be stored
and retrieved without si