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Abstract 
 
Dictyostelium discoideum has proven indispensable to elucidate cytoskeletal dynamics. The 

cytoskeleton plays a key role in almost all cellular processes, including motility, cytokinesis, 

cell-to-cell and cell-substrate adhesions and intracellular transport. Several actin binding 

proteins are also involved in these processes, among them are actin crosslinking proteins (for 

example, filamin and α-actinin). Filamin (also known as ddfilamin or gelation factor or ABP 

120) consists of an actin binding domain and six rod repeats of 100 amino acids, its last repeat 

being responsible for the formation of the homodimer. Both the domains are necessary for the 

actin crosslinking activity of filamin. Dictyostelium mutants lacking filamin have severe 

defects in multicellular slug migration towards light, phototaxis, and preferable temperature, 

thermotaxis. To study the phototaxis defect in filamin− mutants at the molecular level we 

expressed various domains in the mutant and tested their rescue potential. Expression of C 

terminally truncated and point mutated (at a putative phosphorylation site) filamin rescued the 

phototaxis defect partially. Full-length filamin when expressed under the control of the ecmA 

promoter in the anterior tip of the slug rescues the phototaxis, but not when expressed under 

the control of the cotB promoter which allows expression in the posterior ¾th of the slug. 

Phototaxis is a complex phenomenon, which includes more than 55 genes. To identify genes 

involved in this process we carried out a microarray analysis. Amoung 65 genes we selected 

in microarray analysis, 40 genes were up regulated and 25 genes were down regulated. From 

the functions of most of theses genes, we conclude that the phototactic behaviour of slugs is 

controlled by extracellular cAMP, Ca2+ ions and cell adhesion. To further focus on filamin's 

function in phototaxis we searched for proteins interacting with filamin by a yeast two hybrid 

screen and by immunoprecipitation. TipA, GAPA and SapA proteins were pulled down in the 

immunoprecipitation approach while the FIP, filamin interacting protein, was found earlier in 

a yeast two hybrid screen. Biochemical studies suggest that FIP is associated with F-actin and 

may function in vesicle trafficking. Detailed analysis of the mutants of LIM proteins, villidin 

and filamin for chemotactic migration towards cAMP, led us to conclude that alteration in 

chemotactic motility of individual cells may not affect the phototactic migration of the slug.
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I. Introduction 
 

 

 

1. Dictyostelium as a model organism for cytoskeletal studies 
Dictyostelium discoideum, a soil living social amoeba feeds on yeast and bacteria in its 

natural habitat and has become an attractive tool for the study of the actin cytoskeleton and 

related proteins because of the following reasons: (i) The organism can be grown in the 

laboratory easily on bacterial lawns or in shaking culture (axenically). (ii) It undergoes a 

developmental cycle, which allows researchers to study a variety of changes that occur during 

development of a multicellular organism. (iii) Manipulation of genes can be done by 

homologous recombination or REMI (Restriction Enzyme Mediated Integration) (Kuspa and 

Loomis, 1992) and is easy because the organism is haploid. Overexpression of gene/s using 

nonintegrating vectors can be easily achieved, which allows studying the live dynamics of 

proteins or domains of protein by fusing with Green Fluorescence Protein (GFP). (iv) 

Dictyostelium carries all classes of actin binding proteins, which can be found in all 

eukaryotes and thus can be compared with mammalian cells. (v) The ongoing Dictyostelium 

genome project, which is likely to be finished by the end of this year and the Japanese cDNA 

project add great advantage to the study of the organism (Schleicher and Noegel, 1992 and 

Noegel and Luna, 1995). 
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Figure 1: The asexual life cycle of Dictyostelium discoideum. a, Dictyostelium amoebae live 
off bacteria in the soil. b, When the bacteria are consumed and starvation is imminent, the 
amoebae stop dividing and activate several genes that allow them to aggregate by chemotaxis 
towards cyclic AMP diffusing from centrally located cells. These aggregates, which can 
contain up to 100,000 cells, transform into motile slugs (c, d) and finally into fruiting bodies 
(e–g). The fruiting bodies contain 80,000 viable spores supported by 20,000 dead stalk cells. 
(Graphic from Kessin 2000.) Blue and yellow colours for the cells indicate two different 
natural isolates. For a dynamic view of Dictyostelium development see 
http://dicty.cmb.nwu.edu/dicty/pnd/ 
 

The actin cytoskeleton has a dynamic role in the life cycle of Dictyostelium, it gives shape to 

the cells and controls cell movement, cell division and intracellular vesicle transport. A 

variety of actin-binding proteins are present in the cells controlling assembly and disassembly 

of actin. Among these actin-binding proteins are F-actin cross-linking proteins, capping 

protein, severing proteins, monomer-binding proteins, membrane anchors and motor proteins. 

The localization and crosslinking of filamentous actin (F-actin) into bundles and networks is 

mediated by multiple families of cytoskeletal proteins, of which several share an α-actinin-

like conserved F-actin binding domain (ABD) (Matsudaira, 1991, Otto 1994 and Troys et al. 

1999). To date, eleven different actin crosslinking proteins have been identified in 

Dictyostelium, including a filamin-like protein (Hock and Condeelis, 1987), spectrin-like 

protein (Bennett and Condeelis 1988), ddfilamin (also termed as ddFLN gelation factor or 

ABP120) (Condeelis et al. 1981 and Noegel et al. 1989), α-actinin (Brier et al. 1983 and 

Noegel et al. 1987), elongation factor 1a (Demma, 1990), comitin (Weiner et al. 1993), a 30 
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kDa bundling protein (Bross, 1985), a 34 kDa protein (Fechheimer and Taylor, 1984, 

Fechheimer, 1987, Fechheimer et al. 1992), cortexellin I and II  (Faix et al. 1992) and fimbrin 

(Prassler et al. 1997). 

*
*

*
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*
*
*

*

*

*

*

*

*
*

*

*

34 kD *

 
 
Figure 2: Actin-binding proteins and their function (Schleicher et al. 1995). Actin-binding 
proteins influence the equilibrium between monomeric G-actin and filamentous F-actin as 
well as the structural organization of the network of actin filaments by either binding to 
monomeric actin and inhibiting polymerisation, or crosslinking, capping, severing, anchoring 
or moving the actin filaments by binding to actin filaments. The asterisk indicates actin-
binding proteins that have been reported in Dictyostelium.  
 

1.2  Phototaxis in Dictyostelium  
Dictyostelium discoideum is widely used as a simple model organism for multicellular 

development (Maeda et al. 1997 and Gross, 1994). Dictyostelium live as individual amoebae 

in soil, preying on bacteria. But when food runs out and starvation is imminent, the previously 

independent amoebae form dendritic aggregation streams, which break up into groups of up to 

105 cells (Shaffer, 1957 and Kessin, 2001) before they form cylindrical migrating slugs. Slugs 

are sensitive to light, pH, and even slight differences in temperature, which allows them to 

migrate toward an optimal location for fruiting. Slugs are polar with a tip at the anterior 

consisting of prestalk cells whereas the posterior consists predominantely of prespore cells. 

Phototactic turning is initiated in the tip and slugs sense the light only at the anterior prestalk 

zone (Francis, 1964, Poff and Loomis, 1973 and Fisher et al. 1984). Using the tools that are 

available in Dictyostelium, phototaxis and thermotaxis can be addressed at a molecular level. 
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Several groups isolated membrane bound photoreceptors and analysed the absorption 

spectrum (Poff and Butler, 1974, Poff et al. 1974 and Hader and Lebert, 1994). Schlenkrich et 

al.1995a isolated a 45.5 kDa putative photoreceptor from Dictyostelium, the absorption 

spectrum of which closely resembled the action spectrum for Dictyostelium phototaxis 

Schlenkrich et al.1995b, leading to the conclusion that this protein might play an important 

role in the photoreception of Dictyostelium amoebae.  

 

Two models have been proposed to explain phototactic turning (Poff and Loomis, 1973, 

Fisher et al. 1984 and Fisher 1997). The optical model assumes that the pseudoplasmodium 

acts as a cylindrical lens, causing stronger stimulation of light locally and speeding up cell 

movement in the tip thus leading to bending of the anterior zone toward the light source. The 

signal transduction or sign reversal model assumes that light acts directly on physiological 

processes of the cell and cell-cell signalling by shifting the position of the organising centre in 

the tip. In agreement with both of these hypotheses Miura and Siegert (2001) found that light 

acts directly on the cAMP-signalling system and cell movement. Upon light irradiation, 

aggregating cells change their periodicity of cAMP signalling and cells in the slug tip release 

cAMP. They also found that concomitant changes in cell movement occurred in slug cells. 

But these results do not explain the thermotaxis (Smith et al. 1982), where slugs migrate to a 

preferred temperature in the dark, neither do they explain data obtained with ddfilamin mutant 

cells, which have a clear phototaxis deficiency and migrate over shorter distances in the 

darkness as well as in horizontally directed light (Wallraff and Wallraff, 1997).  

 

The anterior tip of the slug mostly consists of prestalk cells that control the migration of the 

slug. The tip shows average high concentration of cAMP, while the posterior prespore cells 

contain lower average concentration (Dormann and Weijer, 2001). Elevated level of cAMP is 

necessary for the maintenance of the tip, generation of a scroll wave and for the migration of 

anterior like cells (ALCs) from posterior region cells of the slug. Consistent with these 

observations, the multicellular aggregates overexpressing extracellular phosphodiesterase do 

not form a tip. Dormann and Weijer (2001) injected cAMP into the tip of slugs and found that 

higher concentrations (10-2 M) of cAMP are needed to disturb the wave generated at the tip. 

 

Darcy et al. (1994) suggested an intermediary role for cGMP in photosensory and 

thermosensory processing in slugs and amoebae. They found all phototaxis mutant strains 
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(mutants were derived from the X22 strain with mutation in phototaxis loci) with altered 

cGMP responses to light and heat were unaltered in their cGMP response to a cAMP pulse, 

concluding that cAMP and light/heat regulate cGMP via independent pathways. 

 
Several experiments have suggested a role for RasD in the correct proportioning of the 

prespore and prestalk cells in differentiation (Reymond et al. 1986 and Louis et al. 1997). 

Furthermore, RasD− null cells exhibit a phototaxis and thermotaxis defect and were not able 

to orient correctly, suggesting a role for RasD in the modulation of morphogenetic signaling 

by the photo- and thermo-receptors (Willkins et al. 2000).  

 

Villidin is a novel multidomain protein (190 kDa) containing a N-terminal WD repeat, three 

PH domains in the middle of the molecule, and five gelsolin-like segments, followed by a 

villin-like headpiece at the C-terminal end. The protein is prominently expressed in the slug 

stage (Gloss et al. 2003). The villidin-minus slugs exhibited a phototaxis defect. The mutant 

slugs migrate over a shorter distance and not as directed towards light as wild type slugs. The 

expression of the WD domain in the mutant background caused a more direct movement of 

the slugs towards the light source, whereas the gelsolin/villin region did not exhibit any 

rescuing potential.  

 

Recently, another Dictyostelium protein has been described that has some similarity to 

villidin, GRP125, a new gelsolin-related protein. In the absence of GRP125, slugs fail to 

readjust their orientation correctly. Analysis of the GRP125-deficient mutant showed that 

GRP125 is required for coupling photodetection to the locomotory machinery of slugs 

(Stocker et al. 1999). 

 

Li et al. (2001) explained the role of Sphingosine-1-phosphate (S-1-P) lyase, an enzyme that 

functions in fatty acid metabolism and controls the slug migration. S-1-P lyase null mutant 

show extremely limited directional migration, the slugs developed directly at the site of 

aggregation. The authors suggest that the phototaxis defect might be due to aberrant actin 

distribution and abnormal cell morphogenesis in mutant slugs. 

 

Wallraff and Wallraff (1997) tested behavioural deficits in the slugs of three mutant strains of 

Dictyostelium lacking different F-actin binding proteins, among them two were F-actin 

crosslinking proteins. Two strains, defective in the production of either α-actinin or severin 

(an actin capping and severing protein), did not show changes in slug behavior. Slugs of the 
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mutant lacking ddfilamin, however, migrated shorter distances in the darkness as well as in 

horizontally directed light. More remarkably, they migrated at an angle of approximately 45° 

to the left or right of the incident light, whereas wild-type slugs migrated on fairly straight 

paths towards the light. The author concluded that, as these mutants are known to lack a 

constituent of the cytoskeleton, alterations in the cytoskeletal architecture might cause 

alterations in the optical properties of cell structures, which are of importance in the specific 

mechanism underlying slug phototaxis.  

 

Genetic analysis of slug behaviour suggests that as many as 55 genes are involved in 

phototaxis and that several of the encoded proteins regulate signal transduction pathways 

involving the intracellular messengers cAMP, cGMP, IP3 and Ca2+ (Darcy 1994, Fisher et al. 

1997 and Fisher, 1997). But ddfilamin emerged as the only protein directly associated with 

the actin cytoskeleton, which had a significant role in Dictyostelium phototaxis.  

 

Structurally filamins are homodimers with large polypeptide chains that associate at their 

carboxyl termini (Gorlin et al. 1990 and Fucini et al. 1999). Their conserved amino-terminal 

actin binding domains consist of two calponin homology domains common to the members of 

the α-actinin/spectrin superfamily of actin-binding proteins (Hartwig, 1994). The rest of the 

polypeptide forms 24 repeated domains of ~96 amino acids, each made up of seven 

antiparallel β-strands that produce an immunoglobulin fold (Fucini et al. 1997). The 

Dictyostelium filamin has a shorter elongated domain, consisting of only six rod like repeats 

of 100 amino acids (Noegel et al. 1989). Its dimerisation is mediated via the formation of 

intramolecular β-sheets between the rod domains 6, leading to an antiparallel arrangement of 

the two monomer chains (McCoy et al. 1999 and Fucini et al. 1999). Dictyostelium mutants 

lacking filamin have defects in the structure of the actin cytoskeleton and exhibit reduced 

cross-linking of actin filaments, leading to reduced size and frequency of pseudopods. This 

results in a decreased motility, chemotaxis and phagocytosis of the mutant cells (Cox et al. 

1992 and 1995).  

 

Recent studies suggested that the function of the filamins is not only in maintaining the 

cortical actin network but also the organisation and stabilisation of these networks by 

interwebbing them with membrane proteins and receptors. Thus filamins interact with several 

membrane receptors: the cytoplasmic part of the glycoprotein Ib IX complex, the receptor for 

von Willebrand factor (Andrews and Fox, 1991 and Takafuta et al. 1998), β1- and β2-integrins 
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(Sharma et al. 1995 and Loo et al. 1998) and α- and β-sarcoglycan (Thompson et al. 2000) 

were all identified as ligands for filamin. Filamins also affect intracellular trafficking of 

proteins and signal transduction. Filamin influences the activity of furin, a protease that is 

involved in the proteolytic processing of many proproteins, by promoting its internalisation 

(Zent et al. 2000). It binds to presenilin-1, a protein involved in early onset familial 

Alzheimer's disease and in the notch signalling pathway (Zhang et al. 1998, Schwarzman et 

al. 1999) and interacts with caveolin-1, a multifunctional protein with roles in caveolae 

biogenesis, endocytic events, cholesterol transport and various signal transduction processes 

(Stahlhut and Deurs, 2000). Furthermore, the involvement of filamin in signal transduction is 

confirmed by its interaction with several components of the NFκB pathway (Edwards et al. 

1997, Marti, 1997 and Leonardi et al. 2000) and the small GTPases RhoA, Rac1, Cdc42 and 

RalA (Ueda et al. 1992, Ohta et al. 1999, Bellanger et al. 2000 and Pi et al. 2002). 

 
Human filamin is also strongly phosphorylated in vivo, which affects its interaction with 

several proteins such as GTPases and might also affect the F-actin binding capacity and 

crosslinking activity. Phosphorylation is mainly on serine and threonine residues and is 

achieved by a variety of kinases (cAMP-kinase, PKC and CaM-kinase II) (Ohta and Hartwig, 

1995 and Tiggs et al. 2003). 

 
To understand the role of ddfilamin in phototaxis we performed rescue studies by expressing 

the actin binding domain, rod domain, C terminally truncated ddfilamin (which can no longer 

crosslink actin filamients) and point mutated ddfilamin (at suspected phosphorylation site). As 

the anterior tip of the slug controls its migration, we expressed ddfilamin under the control of 

cell type specific promoters to test whether it plays a functional role there. We also studied 

global gene expression pattern in the mutant by microarray analysis in order to identify genes 

that involved in this process. Furthermore, we checked the interaction of this protein with 

small GTP binding proteins by using the yeast two hybrid system. With an 

immunoprecipitation assay we found three proteins interacting with ddfilamin, which might 

help ddfilamin to perform its role in the phototactic migration. 

 
1.3  Chemotaxis in Dictyostelium  
Cells sense and respond to signals in the extracellular environment. Many cells have the 

capacity to detect the direction and intensity of an extracellular chemical gradient and respond 

by directed migration toward the source of the chemical. This process is called chemotaxis. 

Chemotaxis results from a localised polymerisation of F-actin leading to the formation of a 
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new lamellipod or pseudopod, cell polarisation, and the forward protrusion of the leading 

edge. Phosphoinositide 3-Kinase plays a central role in establishing and maintaining cell 

polarity by regulating the subcellular localisation and activation of down stream effectors that 

are essential for regulating cell polarity and proper chemotaxis. In addition, other proteins, 

among them actin-binding proteins, are crucial for the establishment of polarity and for 

chemotaxis. 

 
Here we have analysed chemotactic migration of LimC−, LimD−, LimC−/D− and villidin 

mutants. LimC and LimD are LIM domain containing proteins that directly associate with F-

actin. LimD− and LimC−/D− were found to have a defect in chemotaxis. Reexpression of 

LimD-GFP in both cells rescued the defect stating that the defect found is due to the loss of 

function of LimD (Khurana et al. 2002). Villidin is a novel protein with WD and PH domains, 

which are associated with signal transdution and a C-terminal gelsolin like domain followed 

by a villin headpiece, which normally bundles F-actin very strongly. The headpiece in villidin 

however, does not bind to F-actin (Vardar et al., 2002). We also studied the migration 

behaviour of villidin mutants and found that was also altered (Gloss et al. 2003). 

 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. Materials and Methods 
 
 
 
 
1.  Materials 
 

1.1  Laboratory materials 

Cellophane sheet, Dry ease Novex 
Centrifuge tubes, 15 ml,  Greiner 
Coverslips (glass), Ø12 mm, Ø18 mm, Ø55 mm Assistent 
Corex tube, 15 ml, 50 ml Corex 
Cryo tube, 1 ml Nunc 
Electroporation cuvette, 2 mm electrode gap Bio-Rad 
Gel-drying frames Novex 
Microcentrifuge tube, 1.5 ml, 2.2 ml Sarstedt 
Micropipette, 1-20 µl, 10-200 µl, 100-1,000 µl Gilson 
Micropipette tips Greiner 
Multi-channel pipette Finnigan 
Needles (sterile), 18G–27G Terumo, Microlance 
Nitrocellulose membrane, BA85 Schleicher and Schuell 
Nitrocellulose-round filter, BA85, Ø82 mm Schleicher and Schuell 
Nuclepore membrane filter Nuclepore 
Nylon membrane Biodyne B Pall 
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Parafilm American Nat Can 
Pasteur pipette, 145 mm, 230 mm  Volac 
PCR soft tubes, 0.2 ml Biozym 
Petri dish (35 mm, 60 mm, 100 mm) Falcon 
Petri dish (90 mm) Greiner 
Plastic cuvette, semi-micro Greiner 
Plastic pipettes (sterile), 1 ml, 2 ml, 5 ml, 10 ml, 25 ml Greiner 
Quartz cuvette Infrasil  Hellma 
Quartz cuvette, semi-micro Perkin Elmer 
Saran wrap Dow 
Scalpels (disposable), Nr. 10, 11, 15, 21 Feather 
Slides, 76 x 26 mm Menzel 
Syringes (sterile), 1 ml, 5 ml, 10 ml, 20 ml Amefa, Omnifix 
Syringe filters (Acrodisc), 0.2 µm, 0.45 µm Gelman Sciences 
Whatman 3MM filter paper Whatman 
X-ray film, X-omat AR-5, 18 x 24 mm, 535 x 43 mm Kodak 
 
1.2.  Instruments and equipments  

Centrifuges (microcentrifuges): 
Centrifuge 5417 C Eppendorf 
Centrifuge Sigma B Braun  
Cold centrifuge Biofuge fresco Heraeus Instruments 

Centrifuges (table-top, cooling, low speed): 
Centrifuge CS-6R Beckman 
Centrifuge RT7 Sorvall 
Centrifuge Allegra 21R Beckman 

Centrifuges (cooling, high speed): 
Beckman Avanti J25  Beckman 
Sorvall RC 5C plus Sorvall 

Centrifuge-rotors: 
JA-10 Beckman 
JA-25.50 Beckman 
SLA-1500 Sorvall 
SLA-3000 Sorvall 
SS-34 Sorvall 

Dounce homogeniser, 10 ml B. Braun 
Electrophoresis power supply, Power-pac-200, -300 Bio-Rad 
Electroporation unit Gene-Pulser  Bio-Rad 
Fluorimeter PTI 
Freezer (-80 °C) Nunc 
Freezer (-20 °C) Siemens, Liebherr 
Gel-documentation unit MWG-Biotech 
Heating block DIGI-Block JR  NeoLab 
Heating block, Dry-Block DB x 20 Techne 
Hybridization oven Hybaid 
Ice machine  Ziegra 
Incubators: 

Incubator, microbiological Heraeus 
Incubator with shaker Lab-Therm  Kuehner 

Laminar flow, Hera Safe (HS 12) Heraeus 
Magnetic stirrer, MR 3001 K Heidolph 
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Microcontroller Luigs and Newmann  
Microscopes: 

Light microscope, CH30 Olympus 
Light microscope, DMIL Leica 
Light microscope, CK2 Olympus 
Fluorescence microscope, DMR Leica 
Fluorescence microscope, 1X70 Olympus 
Confocal laser scanning microscope, DM/IRBE Leica 
Stereomicroscope, SZ4045TR Olympus 

Oven, conventional Heraeus 
PCR machine, PCR-DNA Engine PTC-200 MJ Research 
pH-Meter Knick 
Refrigerator Liebherr 
Semi-dry blot apparatus, Trans-Blot SD Bio-Rad 
Shakers GFL Kuehner 
Sonicator, Ultra turrax T25 basic IKA Labortechnik 
Speed-vac concentrator, DNA 110 Savant 
Spectrophotometer, Ultraspec 2000, UV/visible Pharmacia Biotech 
Ultracentrifuges: 

Optima TLX Beckman 
Optima L-70K Beckman 

Ultracentrifuge-rotors: 
TLA 45 Beckman 
TLA 100.3 Beckman 
SW 41 Beckman 

UV-crosslinker UVC 500  Hoefer 
UV- transilluminator TFS-35 M  Faust 
Vortex, REAX top Heidolph 
Video cameras 

JAI CV-M10 CCD Camera Stemmer Imaging 
SensiCam PCO Imaging 

Waterbath GFL 
X-ray-film developing machine, FPM-100A Fujifilm 
 
1.3  Kits 

FairPlayTM Microarray labeling kit Stratagene 
Nucleobond AX Macherey-Nagel 
NucleoSpin Extract 2 in 1 Macherey-Nagel 
Nucleotrap Macherey-Nagel 
Original TA Cloning Invitrogen 
pGEM-T Easy Promega 
Qiagen Midi- and Maxi-prep Qiagen 
Qiagen RNeasy Midi/Mini Kit Qiagen 
Stratagene Prime It II Stratagene 
 
1.4  Enzymes, antibodies, substrates, inhibitors and antibiotics 
 
Enzymes used in the molecular biology experiments: 
Calf Intestinal Alkaline Phosphatase (CIAP) Roche 
Klenow fragment (DNA polymerase) Roche 
Lysozyme Sigma 
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Protein A Sepharose CL-4B Amersham 
Proteinase K Sigma 
Restriction endonucleases Amersham, 
 New England Biolabs 
Ribonuclease A (RNase A) Sigma 
S1-nuclease Amersham 
T4 DNA ligase Roche 
Taq-polymerase Roche 
 
Primary antibodies: 
Mouse anti-actin monoclonal antibody Act 1-7 (Simpson et al. 1984)  
Mouse anti-GFP monoclonal antibody K3-184-2 (Gloss et al. 2003) 
Mouse anti-filamin-monoclonal Antibody 82-421-5 (Brink et al. 1989)  
Mouse anti-filamin- monoclonal antibody 82-454-12(Brink et al. 1989)  
Mouse anti-csA monoclonal antibody 33-294-17 (Bertholdt et al. 1985) 
Mouse anti-α-actinin monoclonal antibody 47-60-8 (Schleicher et al. 1984)  
Mouse anti-FIP230 monoclonal antibody K12-349-7 (Knuth, 2002 Ph. D Thesis) 
Mouse anti-FIP230 monoclonal antibody K12-362-6 (Knuth, 2002 Ph. D Thesis) 
Mouse anti-FIP230 monoclonal antibody K12-454-2 (Knuth, 2002 Ph. D Thesis) 
Goat anti-GST antibody (Amersham). 
Rabbit Phospho-Serine/Threonine polyclonal Antibody (Cell Signaling Technology) 
Rabbit Phospho-Threonine polyclonal Antibody (Cell Signaling Technology) 
 
Secondary antibodies: 
Goat anti-mouse IgG, peroxidase conjugated Sigma 
Goat anti-rabbit IgG, peroxidase conjugated Sigma 
Mouse anti-goat IgG, peroxidase conjugated Sigma 
Sheep anti-mouse IgG, I125 conjugatedAmersham 
 
Inhibitors: 
Benzamidin Sigma 
β-glycerophosphate Sigma 
Complete Mini®, Protease inhibitor cocktail tablets Roche 
Diethylpyrocarbonate (DEPC) Sigma 
Leupeptin Sigma 
Pepstatin Sigma 
Phenylmethylsulphonyl fluoride (PMSF)  Sigma 
Sodium Fluoride Sigma 
Sodium orthovanadate Sigma 
Sodium pyrophosphate Sigma 
 
Antibiotics: 
Ampicillin Gruenenthal 
Blasticidin S ICN Biomedicals 
Chloramphenicol Sigma 
Dihydrostreptomycinsulfate Sigma 
Geneticin (G418) Life Technologies 
Kanamycin Sigma, Biochrom 
Tetracyclin Sigma 
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1.5  Chemicals and reagents 

Most of the chemicals and reagents were obtained either from Sigma, Fluka, Difco, Merck, 

Roche, Roth or Serva. Those chemicals or reagents that were obtained from companies other 

than those mentioned here are listed below: 

 
Acetic acid (98-100%) Riedel-de-Haen 
Acrylamide (Protogel: 30:0,8 AA/Bis-AA) National Diagnostics 
Agar-Agar (BRC-RG) Biomatic 
Agarose (Electrophoresis Grade) Life Technologies 
3-Amino-1, 2, 4-triazol  Sigma 
Amino acids Sigma 
Bacto-Agar  Difco 
Bacto-Pepton  Difco 
Bacto-Trypton Difco 
5-Brom-4-chlor-3-indolyl-β-D-galactopyranosid (X-Gal)  Roth 
Bromphenolblue (Na-Salt)  Serva 
BSA (Bovine serum albumin) Roth 
Calciumchlorid-Dihydrat  Merck 
Chloroform Riedel-de-Haen 
Coomassie-Brilliant-Blue G 250  Roche 
Coomassie-Brilliant-Blue R 250  Serva 
p-Cumaric acid  Fluka 
Cyclohexamide  Sigma 
1,4-Dithiothreitol (DTT)  Gerbu 
Dimethylformamide Riedel-de-Haen 
Ethanol Riedel-de-Haen 
Ethylen diamine tetraaceticacid (EDTA)  Merck 
Ethylenglycolbis [2-aminoethylether]- 
Glycerine Riedel-de-Haen 
Isopropyl-D-thiogalactopyranoside (IPTG) Loewe Biochemica 
Methanol Riedel-de-Haen 
Morpholino propane sulphonic acid (MOPS) Gerbu 
N- [2-Hydroxyethyl] piperazine-N’-2- 
-ethanesulfonic acid (HEPES) Biomol 
Sodium dodecyl sulphate (SDS) Serva 
Sodium hydroxide Riedel-de-Haen 
Triton X-100 Merck 
Tween 20  Roth 
Yeast Nitrogen Base  Difco 
 
Radiolabelled nucleotide: 
α-32P-deoxyadenosine triphosphate, (10 mCi/ml) Amersham 

 
1.6  Media and buffers 

All media and buffers were prepared with deionised water filtered through an ion-exchange 

unit (Membra Pure). The media and buffers were sterilized by autoclaving at 120 ºC and 
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antibiotics were added to the media after cooling to approx. 50 ºC. For making agar plates, a 

semi-automatic plate-pouring machine (Technomat) was used. 

 

1.6.1  Media and buffers for Dictyostelium culture 

AX2-medium (Claviez et al. 1982), pH 6.7:  
7.15 g yeast extract 

 14.3 g peptone (proteose) 
 18.0 g maltose 
 0.486 g KH2PO4 
 0.616 g Na2HPO2.2H2O 
 add H2O to make 1 litre 
 
Soerensen phosphate buffer (Malchow, 1972), pH 6.0:      

2 mM Na2HPO4 
 14.6 mM KH2PO4 
 
Phosphate agar plates, pH 6.0: 9 g agar 

 add Soerensen phosphate buffer, pH 6.0 to make  
1 litre 

 
Salt solution (Bonner, 1947):  10 mM NaCl 
 10 mM KCl 
 2.7 mM CaCl2 
 
SM agar plates(Sussman, 1951), pH 6.5:  9 g agar 
 10 g peptone 
 10 g glucose 
 1 g yeast extract 
 1 g MgSO4.7 H2O 
 2.2 g KH2PO4 
 1 g K2HPO4  
 add H2O to make 1 litre 
 
1.6.2  Media for E. coli culture 

LB medium (Sambrook, 1989), pH 7.4:  10 g bacto-tryptone 
 5 g yeast extract 
 10 g NaCl 
 adjust to pH 7.4 with 1 N NaOH 
 add H2O to make 1 litre   
 
For LB agar plates, 0.9% (w/v) agar was added to the LB medium and the medium was then 

autoclaved. For antibiotic selection of E. coli transformants, 50 mg/l ampicillin, kanamycin or 

chloramphenicol was added to the autoclaved medium after cooling it to approximately 50ºC. 

For blue/white selection of E. coli transformants, 10 µl 0.1 M IPTG and 30 µl X-gal solution 

(2% in dimethylformamide) was spread per 90 mm plate and the plate was incubated at 37ºC 

for at least 30 min before using. 
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SOC medium (Sambrook, 1989), pH 7.0: 20 g bacto-tryptone 
 5 g yeast extract 
 10 mM NaCl 
 2.5 mM KCl 
 dissolve in 900 ml deionised H2O 
 adjust to pH 7.0 with 1 N NaOH 
 
 The medium was autoclaved, cooled to approx. 50ºC  
 and then the following solutions, which were 
 separately sterilized by filtration (glucose) or 
 autoclaving, were added: 
 10 mM MgCl2.6 H2O 
 10 mM MgSO4.7 H2O 
 20 mM glucose 
 add H2O to make 1 litre 
 
 
1.6.3  Media and buffers for Yeast culture 

YEPD-Medium: YEPD-Agar plates: 
20 g/l Difco Pepton 20 g/l Difco Pepton 
10 g/l Yeast extract   10 g/l Yeast extract 
 18 g/l Agar agar 
 
100 x Adenine solution: 100 x Tyrosine solution: 
200 mg (1,1 mmol) Adenine in 100 ml  300 mg (1,7 mmol) Tyrosin in 100 ml 
water dissolve with addition of little amounts dissolve with addition of NaOH solution and  
of HCl and filter sterilize. filter sterilize. 
    
100 x Histidine solution: 100 x Leucine solution: 
200 mg (1 mmol) Histidine in 100 ml 1000 mg (7,6 mmol) Leucin in 100 ml 
Water and filter sterilize. Water and filter sterilize. 
 
100 x Tryptophan solution: 100 x Uracil solution: 
200 mg (1 mmol) Tryptophan   in 100 ml 200 mg (1,8 mmol) Uracil in 100 ml  
Water filter sterilize. Water dissolve by warming in water bath and 
 filter sterilize. 
 
1 M 3-Amino-1,2,4-triazol solution: 100 x Cycloheximide solution: 
8,4 g 3-Amino-1,2,4-triazol in 100 ml 1 mg/ml Cycloheximid in Water solution 
Water, filter once and filter sterilize. filter sterilize. 
 
10 x Amino acid solutions: 
300 mg (2,3 mmol) Isoleucine 
1500 mg (1,1 mmol) Valine 
200 mg (0,9 mmol) Arginine 
300 mg (1,6 mmol) Lysine 
200 mg (1,34 mmol) Methionine 
500 mg (3 mmol) Phenylalanine 
2000 mg (16,8 mmol) Threonine,  
make volume to 1l and filter sterilize. 
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The composition of the selection media and agar plates is indicated in following table. Agar 
agar and Yeast extract without nitrogen base dissolved in water was autoclaved. The glucose 
solution was made in water and filter sterilised. The addition of the remaining stock solutions 
took place after cooling to 55 °C. 
 
 
   Selection plates   

Reagents SD/-Leu SD/-Leu+Cyh SD/-Leu/-Trp SD/-Trp SD/-Leu/-His/-Trp/+3-AT

Yeast Nitrogen Base [g] 6,7 6,7 6,7 6,7 6,7 

Agar  agar  [g] 20 20 20 20 20 

Water [ml] 750 750 770 750 745 

20% Glucose [ml] 100 100 100 100 100 

10 x Amino acid solution [ml] 100 100 100 100 100 

100 x Adenine [ml] 10 10 10 10 10 

100 x Tyrosine [ml] 10 10 10 10 10 

100 x Uracile [ml] 10 10 10 10 10 

100 x Histidine [ml] 10 10 10 10 # 

100 x Leucine [ml] # # # 10 # 

100 x Tryptophane [ml] 10 10 # # # 

Cycloheximide solution [ml] # 10 # # # 

3-AT-solution [ml] # # # # 25 

 

1.6.4  Buffers and other solutions 

The buffers and solutions that were commonly used during the course of this study are 

mentioned below.  

 
10x NCP-Buffer, pH 8.0: 12.1 g Tris/HCl 
 87.0 g NaCl 
 5.0 ml Tween 20 
 2.0 g sodium azide 
 add H2O to make 1 litre 
 
PBG, pH 7.4: 0.5 % bovine serum albumin 
 0.1 % gelatin (cold-water fish skin) 
 in 1x PBS, pH 7.4 
 
1x PBS, pH 7.4: 8.0 g NaCl 
 0.2 g KH2PO4 
 1.15 g Na2HPO4 
 0.2 g KCl 
 dissolve in 900 ml deionised H2O 
 adjust to pH 7.4 
 add H2O to make 1 litre, autoclave 



Material and methods 17 

   
 

 
1.2 M Phosphate buffer, pH 6.8: 1.2 M Na2HPO4, pH 9.1 was mixed with 1.2 M 
 NaH2PO4, pH 4.02 at the ratio of 2:1. 
 
20x SSC, pH 7.0 3 M NaCl 
 0.3 M sodium citrate 
 
TE buffer, pH 8.0: 10 mM Tris/HCl, pH 8.0 
 1 mM EDTA, pH 8.0 
 
10x TAE buffer, pH 8.3: 27.22 g Tris 
 13.6 g sodium acetate 
 3.72 g EDTA 
 add H2O to make 1 litre 
MES buffer, pH 6.5 20 mM 2-[N-morpholino]ethane sulphonic acid, pH 6.5 
 1 mM EDTA 
 250 mM sucrose  
 
Homogenisation buffer, pH 7.4: 30 mM Tris/HCl, pH 7,4 
 2 mM DTT 
 2 mM EDTA 
 4 mM EGTA 
 5 mM Benzamidin 
 0,5 mM PMSF 
 1 Tablet complete®  mini Protease Inhibitor Mix (Roche)    
 per 10 ml buffer 
 add 30 % sucrose, prepare fresh before use. 

 
Lysis Buffer (phosphorylation): 50 mM Tri-HCl, pH 7.6 
 150 mM NaCl 
 1 % Nonidet P-40   
 1 mM sodium orthovanadate 
 10 mM sodium fluoride 
 5 mM sodium pyrpphosphate 
 10 mM β-glycrephosphate 
 
5 x Immunoprecipitation Buffer:      0.5 m Potassium phosphate buffer 
                                                          0.375 M NaCl 
                                                          25 mM EDTA 
                                                          5 mM Benzamidine 
                                                          2.5 mM PMSF 
                                                          Adjust the pH to 7.9, prepare fresh. 
 
Hybridisation solution (50 µl):         Hybridisation buffer 48 µl 
                                                          Fish sperm DNA [10 mg/ml] 1µl 
                                                          Oligo dA (18 mer, 100 µM) 1µl 
                                                          mix well 
   
Hybridisation buffer:                         1.2M Phosphate buffer, pH 6.8 
                                                           2mM EDTA 
                                                           50 % Formamide 
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                                                           1% Na-Laurylsarcosinate 
                                                           0.2 % SDS 
                                                           4 x Denhadt’s Reagent 
 
100 x Denhardt’s reagent:                  2 % Ficoll 400 
                                                           2 % Polyvinylpyrolidone 
                                                           2 % bovine serum albumin 
  
1.2 M Phosphate buffer, pH 6.8:       2 volumes 1.2 M Na2HPO4  
                                                          1 volume 1.2 M NaH2PO4 
 
Blocking Solution (282 ml):              270 ml 1-Methy-2-pyrrolidinone (solution        
                                                           should be colourless)  
                                                           0.4 g Succinic anhydride (store desiccated) 
                                                           12.1 ml 1M Sodium borate, pH 8.0 (42mM) 
 
1.7   Biological materials 

Bacterial strains:                               E. coli JM 38 (Vieira and Messing, 1982)           
  E. coli DH5α (Hanahan, 1983) 
  E. coli XL1 blue (Bullock,1987) 
  Klebsiella aerogenes (Williams KL and Newell, 1976) 
 
Dictyostelium discoideum strain: 
AX2-214 An axenically growing derivative of wild strain, NC-4         
 (Raper, 1935). Commonly referred to as AX2. 
 
GHR, Filamin-Mutant fromAX2: Eichinger et al. 1996 
 
HG1264, Filamin¯ mutant from AX2: Brink et al. 1990 

 
GA1 Filamin¯ and α-actinin¯ double 
Mutant: Rivero et al. 1996 
 

Yeast Strains : Y190 (Flick et al. 1990, Harper et al. 1993) 

 Y187 (Harper et al. 1993) 
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2  Cell biological methods 
 
2.1  Growth of Dictyostelium 
 
2.1.1  Growth in liquid nutrient medium (Claviez et al. 1982) 

Dictyostelium discoideum AX2 and the derived transformants were grown in liquid AX2 

medium containing dihydrostreptomycin (40 µg/ml) and other appropriate selective 

antibiotics (depending upon mutant) at 21°C either in a shaking-suspension in Erlenmeyer 

flasks with shaking at 160 rpm or on petri dishes. For all the cell biological works, cultures 

were harvested at a density of 3-5 x 106 cells/ml. 

 

2.1.2  Growth on SM agar plates 

In general, Dictyostelium cells were plated onto SM agar plates overlaid with Klebsiella 

aerogenes and incubated at 21 ºC for 3-4 days until Dictyostelium plaques appeared on the 

bacterial lawns. To obtain single clones of Dictyostelium, 50-200 cells were suspended in 100 

µl Soerensen phosphate buffer and plated onto Klebsiella-overlaid SM agar plates. Single 

plaques obtained after incubation at 21ºC for 3-4 days were picked up with sterile tooth-picks, 

transferred either to new Klebsiella-overlaid SM agar plates or to separate petri dishes with 

AX2 medium supplemented with dihydrostreptomycin (40 µg/ml) and ampicillin (50µg/ml) 

(to eliminate the bacteria) and any other appropriate selective antibiotic (depending upon 

mutant). 

 
2.2  Developoment of Dictyostelium 

Development in Dictyostelium is induced by starvation. Cells grown to a density of 2-3 x 106 

cells/ml were pelleted by centrifugation at 2,000 rpm (Sorvall RT7 centrifuge) for 2 min at 

4ºC and were washed two times in an equal volume of cold Soerensen phosphate buffer in 

order to remove all the nutrients present in the culture medium. For development in 

suspension culture, the cells were resuspended in Soerensen phosphate buffer at a density of 1 

x 107 cells/ml and were shaken at 160 rpm and 21 ºC for desired time periods. For 

development on nitrocellulose filters, 0.5 x 108 cells were deposited on nitrocellulose filters 

(Millipore type HA, Millipore) and allowed to develop at 21 °C as described Newell (Newell 

et al. 1969). 
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2.3  Preservation of Dictyostelium 

Dictyostelium cells were allowed to grow in AX2 medium to a density of 4-5 x 106 cells/ml. 9 

ml of the densely grown culture were collected in a 15 ml Falcon tube on ice and 

supplemented with 1 ml horse serum and 1 ml DMSO. The contents were mixed by gentle 

pipetting, and aliquoted in cryotubes (1 ml). The aliquots were incubated on ice for 60 min, 

followed by incubation at –20 ºC for at least 2 hr. Finally the aliquots were transferred to       

–80 ºC for long term storage.  

 

For reviving the frozen Dictyostelium cells, an aliquot was taken out from –80 ºC and thawed 

immediately at 37 ºC in a waterbath. In order to remove DMSO, the cells were transferred to a 

Falcon tube containing 30 ml AX2 medium and centrifuged at 2,000 rpm (Sorvall RT7 

centrifuge) for 2 min at 4 ºC. The cell pellet was resuspended in 250 µl of AX2 medium and 

the cell suspension was plated onto SM agar plates overlaid with Klebsiella. The plates were 

incubated at 21 ºC until plaques of Dictyostelium cells started to appear. 

 
2.4  Transformation of Dictyostelium cells by electroporation 

The electroporation method for transformation of Dictyostelium cells described by de 

Hostos143 was followed with little modifications. Dictyostelium discoideum cells were grown 

axenically in suspension culture to a density of 2-3 x 106 cells/ml.  The cell suspension was 

incubated on ice for 20 min and centrifuged at 2,000 rpm (Sorvall RT7 centrifuge) for 2 min 

at 4 ºC to collect the cells. The cells were then washed with an equal volume of ice-cold 

Soerensen phosphate buffer followed by an equal volume of ice-cold electroporation-buffer. 

After washings, the cells were resuspended in electroporation-buffer at a density of 1 x 108 

cells/ml. For electroporation, 20-25 µg of the plasmid DNA was added to 500 µl of the cell 

suspension and the cell-DNA mixture was transferred to a pre-chilled electroporation cuvette 

(2 mm electrode gap, Bio-Rad). Electroporation was performed with an electroporation unit 

(Gene Pulser, Bio-Rad) set at 0.9 kV and 3 µF without the pulse controller. After 

electroporation, the cells were immediately spread onto a 100-mm petri dish and were 

allowed to sit for 10 min at 21 ºC. Thereafter, 1 ml of healing-solution was added dropwise 

onto the cells and the petri dish was incubated at 21 ºC on a shaking platform at 50 rpm for 15 

min. 10 ml of AX2 medium was added into the petri dish and the cells were allowed to 

recover overnight. The next day, the medium was replaced by the selection medium 

containing appropriate antibiotic. To select for stable transformants, selection medium was 

replaced every 24-48 hr until the control plate (containing cells electroporated without any 

DNA) was clear of live cells. 
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Electroporation-buffer: 0.1 M Potassium phosphate buffer: 
 
100 ml 0.1 M potassium phosphate buffer 170 ml 0.1 M KH2PO4 
17.12 g sucrose 30 ml 0.1 M K2HPO4 
add distilled H2O to make 1 litre adjust to pH 6.1 
autoclave 
 
Healing-solution: 
 
150 µl 0.1 MgCl2 
150 µl 0.1 CaCl2 
10 ml electroporation-buffer 
 
2.5 Quantitative phagocytosis assays 
 
Phagocytosis was performed according to Maniak et al. (1995). Briefly Dictyostelium cells 

were grown to <5 x106/ml over 5 generations in axenic medium. Cells were centrifuged and 

resuspended at 2 x 106 cells/ml in fresh axenic medium at 21 °C. TRITC-labelled yeast cells 

prepared according to Materials and Method 6.3 were added in a 5 fold excess (109 yeast 

cells/ml stock). Cells were incubated on a rotary shaker at 160 rpm. Samples were taken at 

different intervals and the fluorescence of non internalized yeasts were quenched by 

incubating for 3 min with 100 µl trypan blue (2 mg/ml). Cells were centrifuged again, 

resuspended in phosphate buffer and the fluorescence was measured using a fluorimeter (544 

nm excitation / 574 nm emission). 

 

3  Molecular biological methods  
 
3.1  Purification of plasmid DNA 

In general, for small cultures (1 ml) of E. coli transformants, the alkaline lysis method of 

Holmes and Quigley (1981) was used to extract plasmid DNA. This method is good for 

screening a large number of clones simultaneously for the desired recombinant plasmid. 

Briefly, single transformants were picked up from the culture plate and were grown overnight 

in 1 ml of LB media containing suitable antibiotic. The E. coli cells grown overnight were 

pelleted by centrifuging at 6,000 rpm in a microcentrifuge for 3-5 min. The pellet was then 

resuspended completely in 250 µl STET/lysozyme buffer and the suspension was incubated at 

room temperature for 10 min to lyse the bacterial cells. The bacterial lysate was boiled at 

100ºC for 1 min and was then centrifuged in an Eppendorf centrifuge at maximum speed for 

15 min at room temperature. The plasmid DNA present in the supernatant was precipitated by 
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adding an equal volume of isopropanol and incubating at room temperature for 10 min. The 

precipitated DNA was pelleted in the Eppendorf centrifuge at 12,000 rpm for 15 min and the 

DNA pellet was washed with 70 % ethanol, dried in a speed-vac concentrator and finally 

resuspended in 40 µl TE, pH 8.0, containing RNase A at 1 µg/ml. 

 

STET/lysozyme buffer, pH 8.0: 
50 mM Tris/HCl, pH 8.0 
50 mM EDTA 
0.5% Triton-X-100 
8.0% Sucrose 
Add lysozyme at 1 mg/ml at the time of use. 
 

Alternatively, for pure plasmid preparations in small and large scales (for sequencing, PCR or 

transformations), kits provided either by Macherey-Nagel (Nucleobond AX kit for small scale 

plasmid preparations) or by Qiagen (Qiagen Midi- and Maxi-Prep kit for large scale plasmid 

preparations) were used. These kits follow basically the same approach: first overnight culture 

of bacteria containing the plasmid is pelleted and the cells are lysed by alkaline lysis. The 

freed plasmid DNA is then adsorbed on a silica matrix, washed with ethanol, and then eluted 

with TE, pH 8.0. This method avoids the requirement of caesium chloride or phenol-

chloroform steps during purification. 

 

3.2  Digestion with restriction enzymes 

All restriction enzymes were obtained from NEB, Amersham or Life Technologies and the 

digestions were performed in the buffer systems and temperature conditions as recommended 

by the manufacturers. The plasmid DNA was digested for 1-2 hr. 

  

3.3  Generation of blunt ends in linearised plasmid DNA 

For many cloning experiments, it was necessary to convert the 5’ or 3’ extensions generated 

by restriction endonucleases into blunt ends. Repair of 5’ extensions was carried out by the 

polymerase activity of the Klenow fragment, whereas repair of 3’ extensions was carried out 

by the 3’ to 5’ exonuclease activity of the Klenow fragment. 

 
Reaction-mix for 5’ extensions:                                 Reaction-mix for 3’ extensions: 
1-4 µg linearised DNA                                               1-4 µg linearised DNA 
5 µl 10x High salt buffer                                            5 µl 10x High salt buffer 
1 µl 50x dNTP-mix (each 4 mM)                               2 U Klenow fragment 
2 U Klenow fragment                                                 add H2O to make 50 µl 
add H2O to make 50 µl 
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10x High salt buffer: 
500 mM Tris/HCl, pH 7.5 
1 M NaCl 
100 mM MgCl2 
10 mM DTT 
 
The reaction was carried out at 37ºC for 25-30 min. After incubation, the reaction was 
immediately stopped by heat-inactivating the enzyme at 75 ºC for 10 min or by adding 1µl 0.5 
M EDTA. This was followed by phenol/chloroform extraction and precipitation of DNA with 
2.5 volume ethanol. 
 

3.4  Dephosphorylation of DNA fragments 

To avoid self-ligation of the vector having blunt ends or that has been digested with a single 

restriction enzyme, 5’ ends of the linearised plasmids were dephosphorylated by calf-

intestinal akaline phosphatase (CIAP). Briefly, in a 50 µl reaction volume, 1-5 µg of the 

linearised vector-DNA was incubated with 1 U calf-intestinal alkaline phosphatase in CIAP-

buffer (provided by the manufacturer) at 37 ºC for 30 min. The reaction was stopped by heat-

inactivating the enzyme at 65 ºC for 10 min. The dephosphorylated DNA was extracted once 

with phenol-chloroform and precipitated with 2 vol. ethanol and 1/10 vol. 2 M sodium 

acetate, pH 5.2. 

 
3.5  Setting up of ligation reactions 

A DNA fragment and the appropriate linearised plasmid were mixed in approximately 

equimolar amounts. T4 DNA ligase and ATP were added as indicated below and the ligation 

reaction was left overnight at 10-12 ºC. 

 

Ligation reaction: 5x Ligation buffer: 
Linearised vector DNA (200-400ng) Supplied with the enzyme 
DNA fragment by manufacturers 
4 µl 5x ligation buffer 
1µ 0.1 M ATP 
1.5 U T4 Ligase 
and water to make up to 20 µl. 
 

3.5.1  Generation of the point mutation 

The point mutation was generated to replace serine 174 in ddfilamin with alanine by using an 

overlapping PCR approach, involving the following steps. 

i) Two fragments between nucleotides 270-487 and 461-574 were generated, which has 

26 nucleotides overlapping end. 
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ii) The point mutation was generated by introducing a mismatch nucleotide in the 

overlapping ends. 

iii) The mutation at the EcoRV site in position 548 bp was made to destroy the restriction 

enzyme site without changing the amino acid. 

iv) Overlaping PCR was done to join the two fragments using primers at the extreme 

ends. 

v) The PCR product was cloned into a pGEM-T Easy vector and transformed into E. coli. 

vi) DNA obtained from the bacterial transformants was sequenced to confirm the 

mutation. 

vii) The 290 bp fragment obtained by a EcoRV digestion from the pGEM-T Easy vector 

was ligated to full-length ddfilamin cDNA with C-terminal GFP tag, digested with the 

EcoRV. 

viii) The orientation of the cloned fragment was confirmed by PCR using a forward primer 

at the 5’ end of the full-length cDNA and one of the reverse primer used for 

generation of the 290 bp fragment.  

ix) Clones were further confirmed by sequence analysis. 

 

3.6  DNA agarose gel electrophoresis 

Agarose gel electrophoresis was performed according to the method described by Sambrook 

to resolve and purify the DNA fragments. Electrophoresis was typically performed with 0.7 % 

(w/v) agarose gels in 1x TAE buffer submerged in a horizontal electrophoresis tank 

containing 1x TAE buffer at 1-5 V/cm. Only for resolving fragments less than 1,000 bp, 1 % 

(w/v) agarose gels in 1x TAE buffer were used. A DNA-size marker was always loaded along 

with the DNA samples in order to estimate the size of the resolved DNA fragments in the 

samples. The gel was run until the bromophenol blue dye present in the DNA-loading buffer 

had migrated the appropriate distance through the gel. The gel was examined under UV light 

at 302 nm and was photographed using a gel-documentation system (MWG-Biotech) 

 

DNA-size marker: 

1 kb DNA Ladder (Life Technologies): 12,216; 11,198; 10,180; 9,162; 8,144; 7,126; 
 6,108; 5,090; 4,072; 3,054; 2,036; 1,636; 1,018; 
 506; 396; 344; 298; 220; 201; 154; 134; 75 bp 
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3.7  Recovery of DNA fragments from agarose gels 

DNA fragments from restriction enzyme digests or from PCR reactions were separated by 

agarose gel electrophoresis and the gel piece containing the desired DNA fragment was 

carefully and quickly excised while observing the ethidium bromide stained gel under a UV 

transilluminator. The DNA fragment was then purified from the excised gel piece using the 

Macherey-Nagel gel elution kit (NucleoSpin Extract 2 in 1), following the method described 

by the manufacturers. 

3.8  RNA formaldehyde-agarose gel electrophoresis 

The formaldehyde-agarose denaturing electrophoresis (Lehrach et al. 1977) is used for 

separation and resolution of single stranded RNA. 

 

Sample preparation for electrophoresis: 

In general, 30 µg of purified total RNA was mixed with an equal volume of RNA-sample 

buffer and denatured by heating at 65 ºC for 10 min. After denaturation, the sample was 

immediately transferred to ice and 1/10 vol. of RNA-loading buffer was added. Thereafter, 

the RNA samples were loaded onto a denaturing formaldehyde-agarose gel. 

 

Formaldehyde-agarose gel preparation: 

For a total gel volume of 150 ml, 1.8 g agarose (final concentration 1.2%) was initially boiled 

with 111 ml DEPC-H2O in an Erlenmeyer flask, cooled to 60 ºC and then 15 ml of RNA-gel-

casting buffer, pH 8.0 and 24 ml of 36 % formaldehyde solution were added. The agarose 

solution was mixed by swirling and poured into a sealed gel-casting chamber of the desired 

size. After the gel was completely set, denatured RNA samples were loaded and the gel was 

run in 1x RNA-gel-running buffer, pH 7.0, at 100 V until the bromophenol blue dye had 

migrated the appropriate distance through the gel. 

 

A test gel was sometimes run with 5 µg of total RNA to check the quality of the RNA 

samples. In such a case, 10 µg/ml ethidium bromide was added to the RNA-sample buffer 

during sample preparation and after electrophoresis the gel was examined under UV light at 

302 nm and was photographed using the gel-documentation system. 

10x RNA-gel-casting buffer, (pH 8.0): 10x RNA-gel-running buffer, (pH 7.0): 
 200 mM MOPS  200 mM MOPS 
 50 mM sodium acetate  50 mM sodium acetate 
 10 mM EDTA  10 mM EDTA 
 adjust pH 8.0 with NaOH  adjust pH 7.0 with NaOH 
 autoclaved  autoclaved 
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RNA-sample buffer: RNA-loading buffer: 
 50% formamide  50% sucrose, RNase free 
 6% formaldehyde  0.25% bromophenol blue 
 in 1x RNA-gel-casting buffer, pH 8.0  in DEPC-H2O 
 
Internal RNA-size standard: 
 26S rRNA (4.1 kb) 
 17S rRNA (1.9 kb) 

 
3.9 Transformation of E. coli 
 
3.9.1  Transformation of E. coli cells by the CaCl2 method 

Preparation of CaCl2-competent E. coli cells: 

Chemical competent cell were prepared according to Hiroaki et al. 1990. An overnight grown 

culture of E.coli (0.5 ml) was inoculated into 50 ml LB medium and incubated at 21 ºC, with 

shaking 250 rpm until an OD600 of 0.4-0.6 was obtained. The bacteria were then pelleted at 

4ºC for 10 min at 4,000 rpm (Beckman Avanti J25, rotor JA-25.50) and the bacterial pellet 

was resuspended in 20 ml of ice-cold TB buffer and incubated on ice for 15 min. The 

bacterial cells were again pelleted and gently resuspended in 2 ml of ice-cold TB, DMSO was 

added with gentle swirling to a final concentration of 7 % and aliquoted in 200 µl/tube. The 

aliquots were then quickly frozen in a dry ice/ethanol bath and immediately stored at –80 ºC. 

Transformation Buffer (TB): 10 mM Pipes, 55 mM MnCl2, 15 mM CaCl2, 250 mM KCl, all 

the components except MnCl2 were mixed and pH was adjusted to 6.7 with KOH. Then, 

MnCl2 was dissolved, the solution was sterilised by filtration through a prerinsed 0.45 µm 

filter unit and stored at 4 0C. All salts were added as solids. 

 

Transformation of CaCl2-competent E. coli cells: 

Plasmid DNA (~50-100 ng of a ligase reaction or ~10 ng of a supercoiled plasmid) was mixed 

with 100-200 µl of CaCl2 -competent E.coli cells and incubated on ice for 30 min. The cells 

were then heat-shocked at 42 ºC for 45 s and immediately transferred to ice for 2 minutes. 

The cells were then mixed with 1 ml of pre-warmed (at 37 ºC) SOC medium and incubated at 

37 ºC with shaking at ~150 rpm for 45 min. Finally, 100-200 µl of the transformation mix, or 

an appropriate dilution, was plated onto selection plates and the transformants were allowed 

to grow overnight at 37 ºC. 
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3.9.2  Transformation of E. coli cells by electroporation 
 
Preparation of electroporation-competent E. coli cells: 

An overnight grown culture of E. coli (5 ml) was inoculated into 1,000 ml of LB medium and 

incubated at 37 ºC with shaking at 250 rpm until an OD600 of 0.4-0.6 was obtained. The 

culture was then incubated on ice for 15-20 minutes. Thereafter, the culture was transferred to 

pre-chilled 500-ml centrifuge bottles (Beckman) and the cells were pelleted by centrifugation 

at 4,200 rpm (Beckman Avanti J25, rotor JA-10) for 20 min at 4 ºC. The bacterial pellet was 

washed twice with an equal volume of ice-cold water and the cells were resuspended in 40 ml 

of ice-cold 10% glycerol, transferred to a pre-chilled 50-ml centrifuge tube and centrifuged at 

4,200 rpm (Beckman Avanti J25, rotor JA-25.50) for 10 min at 4 ºC. Finally, the cells were 

resuspended in an equal volume of 10 % chilled glycerol and aliquoted (50-100 µl) in 1.5 ml 

Eppendorf tubes that have been placed in a dry ice/ethanol bath. The frozen aliquots were 

immediately transferred to –80 ºC for long-term storage. 

 
Transformation of electroporation-competent E. coli cells: 

Plasmid DNA (~20 ng dissolved in 5-10 µl ddH2O) was mixed with 50-100 µl 

electroporation-competent E. coli cells. The transformation mix was transferred to a 2 mm 

BioRad electroporation cuvette (pre-chilled) and the cuvette was incubated on ice for 10 min. 

The DNA was then electroporated into competent E. coli cells using an electroporation unit 

(Gene Pulser, Bio-rad) set at 2.5 KV, 25 µF, 200Ω. Immediatly after electroporation, 1 ml of 

pre-warmed (37 ºC) SOC medium was added onto the transformed cells and the cells were 

incubated at 37 ºC with shaking at ~150 rpm for 45 min. Finally, 100-200 µl of the 

transformation mix, or an appropriate dilution, was plated onto selection plates and the 

transformants were allowed to grow overnight at 37 ºC. 

 
3.10  Glycerol stock of bacterial cultures 

Glycerol stocks of all the bacterial strains/transformants were prepared for long-term storage. 

The culture was grown overnight in LB medium with or without the selective antibiotic  

(depending upon the bacterial transformation). 850 µl of overnight culture was added to 150 

µl of sterile glycerol in a 1.5 ml microcentrifuge tube, mixed well by vortexing and the tube 

was frozen on dry ice and stored at –80 °C. 
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3.11  Construction of vectors 

 

3.11.1  Vectors for expression of ddfilamin GFP-fusion proteins 

Vectors were constructed that allowed expression of full-length ddfilamin-GFP, rod domain- 

GFP fusion protein and actin-binding domain in Dictyostelium cells under the control of the 

actin-15 promoter and the actin-8 terminator. Ddfilamin rod domain cDNA was generated by 

PCR using primers I and II listed into the primers list, both the primers add a SmaI site 

allowing release of the cDNA fragment. The PCR product ligated to pGEM-T Easy vector 

from the Promega kit (materials and method 1.3) was transformed into bacteria (materials and 

method 3.9.2), plasmid DNA from bacterial clones was isolated and screened by digesting 

with SmaI. Clones giving 1.6 kb and 3.0 kb fragment upon SmaI digestion were given for 

sequencing (Materials and Method 3.12) the sequences were analyzed for PCR mistakes and 

cDNAs from correct clones were subcloned in-frame at the EcoRI site located at the C-

terminus of the coding region of the green fluorescent protein (GFP) in the pDEX-RH 

expression vector (Scägger, 1994). Sticky ends generated by EcoRI digesion of the vector 

were made blunt ended by using dNTPs and Klenow enzyme (materials and method 3.3) and 

dephosphorylated (materials and method 3.4). Full length ddfilamin and the actin-binding 

domain were cloned as above into the p1ABSr8 vector at the N-terminus of GFP under the 

control of the A15 promoter. The resulting vectors were introduced into AX2 and HG1264 

cells by electroporation (materials and methods 2.4). 

 

3.12  DNA sequencing 

Sequence of the PCR-amplified products or plasmid DNA was performed at the sequencing 

facility of the Centre for Molecular Medicine, University of Cologne, Cologne, by the 

modified dideoxy nucleotide termination method using a Perkin Elmer ABI prism 377 DNA 

sequencer. 

 
3.13  Computer analyses 

Sequencing analysis, homology searches, structural predictions and multiple alignments of 

protein sequences were performed using the University of Wisconsin GCG software package 

(Hiroak et al. 1990) and Expasy Tools software, accessible on the world wide web. 
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4.  Methods for ‘Yeast Two Hybrid System’ 
 

4.1 Transformation of yeast using the LiOAc method: 

The Lithium Acetate method (Elbe, 1992) was used for the yeast transformation. 2-3 medium 

sized (∼ 3 mm) colonies from the plate were inoculated into the medium and grown till 0.7 to 

1.5 OD 600 nm by incubating at 30 0C, and 250 rpm. (For yeast strain grown on YEPD plates, 

YEPD medium was used, yeast containing pACT2 vector grown on SD-Leu plates, and yeast 

containing pAS2 vector grown on SD-Trp plates, the corresponding medium was used). 1.0 

ml culture was centrifuged in a microfuse tube for 5 sec to pellet down the cells. The 

supernatant was discarded living 50-100 µl in microfuse tube; pellet was resuspended with the 

help of a microtip. 2.0 µl (from 10 mg / ml solution) of carrier DNA, 1 µg plasmid DNA was 

added to the cells and vortexed. To this 500 µl of PLATE mixture was added and mixed by 

vortexing. Finally 50 µl of 1.0 M DTT was added and mixed by vortexing. Tubes were 

incubated at the room temperature for 6-8 h. Transformation was achieved by giving heat 

shock for 10 min at 42 0C. 50-100 µl PLATE mixture was removed from the bottom of the 

tube and plated on the corresponding nutrient agar plate. Plates were incubated at 30 0C till 

colonies appear in the plate. Colonies of desired size (∼ 3 mm) appeared in three days. 

PLATE Mixture: 

45 % PEG  9.0 ml 
1M LiOac 1.0 ml 
1M Tri-Cl (pH 7.5) 100 µl 
0,5M EDTA 20 µl  
All preparations were sterile. 
 
4.2  DNA Isolation from yeast: 

Hoffman’s method (Hoffmann and Winston, 1987) was used for the isolation of plasmid DNA 

from yeast with little modifications. A saturated yeast culture was prepared by inoculating up 

to 2-3 medium size (∼ 3mm) colonies into YEPD or selective medium. Cells were pelleted 

from 5.0 ml culture by centrifuging at 4,000 rpm for 5 min. The pellet was resuspended into 

200 µl STET buffer by vortexing briefly and cells were placed into a 1.5 ml tube. About 100 

mg 0.45 mm glass beads were added to the cells and vortexed for 5 min. Then the tube was 

incubated at 100 0C in a heating block for 3 min, cooled briefly on ice and centrifuged at 

13,000 rpm, for 10 min at 4 0C. 100 µl supernatant was taken into a fresh tube. To this 500 µl 

of 7,5 M ammonium acetate was added and mixed by inverting the tube. The mixture was 

then incubated at –20 0C for 1 h, centrifuged 13,000 rpm, 10 min at 4 0C. 100 µl supernatant 

was transferred to fresh tube containing 200 µl of 96 % cold ethanol, mixed well and allowed 
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to stand at room temperature for 5 min 13,000 rpm, 10 min at room temperature, supernatant 

was discarded and pellet was washed with 70 % ethanol. Ethanol was removed carefully 

without disturbing the pellet, pellet was air dried and reconstituted in 20 µl of TE buffer, 10 µl 

of which was used to transform into bacteria (materials and methods3.9.2). 

 

STET buffer:  7.5M Ammonium Acetate: 
8% sucrose in 50 mM Tris, pH 8.0 28.9 g/50 ml 
5 % TritonX-100 
50 mM EDTA 

 

4.3  β-galactosidase colony lift assay: 

Yeast colonies were assayed qualitatively for blue/white selection according to the method 

described by Schneider et al. 1996. Colonies on transformation plate were grown at 30 0C for 

2-4 days on (SD/-Trp, -Leu) or (SD/-Trp, -Leu, -His +3AT) agar plates. Few colonies from 

these plates were streaked on appropriate master replica plate and grown for 1-2 additional 

days. Clean dry nitrocellulose filter was kept on the surface of plate of colonies to be assayed. 

Filter was marked for orientation by punching the holes asymmetrically through the filter in to 

the agar. Filter was lifted carefully and transferred to the pool of liquid nitrogen using forceps 

and completely submerged for 10 sec. keeping colony side up. Completely frozen filter 

removed and allow the thaw at room temperature and carefully placed on Z-buffer X-gal 

solution pre-soaked sterile filter facing colony side up without trapping the air bubble under 

or between the filters. Filters were incubated at room temperature or at 30 0C and checked 

periodically for the appearance of blue color. Corresponding blue colony was selected and 

picked from the plate. 

 

Z-Buffer, pH 7,0: Z-Buffer/X-gal-Solution:   
10,69 g (0,04 mol) Na2HPO4 x 7 H2O 100 ml Z-Buffer, pH 7,0 
5,5 g (0,04 mol) NaH2PO4 x H2O 0,27 ml 14,4 M β-Mercaptoethanol 
0,75 g (0,01 mol) KCl 1,67 ml X-gal-solution (20 mg/ml DMF)  
0,246 g (0,01 mol) MgSO4 x 7 H2O 
adjust volume to 1l with distilled water and autoclave. 
 

4.4  Yeast Strain Maintenance 

Yeast grown to saturation on shaking culture in corresponding medium mixed with glycerol 

to the final concentration of 25 % and stored at –70 0C. Or isolated colony was picked from 

the plate by using sterile loop and thoroughly resuspended in 200-500 µl of YEPD medium 
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(or appropriate SD dropout medium.). Sterile glycerol was added to the final concentration of 

25 %, mixed thoroughly and immediately stored at –70 0C. 

 

5.  Biochemical methods 
 
5.1  Preparation of total protein from Dictyostelium 

1 x 107 to 5 x 108 Dictyostelium cells either vegetative or at different stages of development 

were washed once in Soerensen phosphate buffer. Total protein was prepared by lysing the 

pellet of cells in 500 µl 1 x SDS sample buffer. Equal amounts of protein (equivalent to 2 x 

105 to 1 x 107 cells/lane) were loaded onto discontinuous SDS-polyacrylamide gels.  

 
5.2  SDS-polyacrylamide gel electrophoresis 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using the discontinuous 

buffer system (Laemmli, 1970). Discontinuous polyacrylamide gels (10-15 % resolving gel, 

5% stacking gel) were prepared using glass plates of 10 cm x 7.5 cm dimensions and spacers 

of 0.5 mm thickness. A 12-well comb was generally used for formation of the wells in the 

stacking gel. The composition of 12 resolving and 12 stacking gels is given in the table below. 

 
______________________________________________________________________________ 
Components Resolving gel Stacking gel 
 10 %     12 %       15 % 5% 
______________________________________________________________________________ 
Acrylamide/Bisacrylamide (30:0.8) [ml]: 19.7 23.6 30.0 4.08 
1.5 M Tris/HCl, pH 8.8 [ml]: 16.0 16.0 16.0 - 
0.5 M Tris/HCl, pH 6.8 [ml]: - - - 2.40 
10 % SDS [µl]: 590.0 590.0 590.0 240.00 
TEMED [µl]: 23,0 23.0 23.0 20.00 
10 % APS [µl]: 240.0 240.0 240.0 360.00 
Deionised H2O [ml]: 23.5 19.6 13.2 17.16 
 

Samples were mixed with suitable volumes of SDS sample buffer, denatured by heating at 

95ºC for 5 min and loaded into the wells in the stacking gel. A molecular weight marker, 

which was run simultaneously on the same gel in an adjacent well, was used as a standard to 

establish the apparent molecular weights of proteins resolved on SDS-polyacrylamide gels. 

The molecular weight markers were prepared according to the manufacturer’s specifications. 

After loading the samples onto the gel, electrophoresis was performed in 1x gel-running 

buffer at a constant voltage of 100-150 V until the bromophenol blue dye front had reached 

the bottom edge of the gel or had just run out of the gel. After the electrophoresis, the 
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resolved proteins in the gel were either observed by Coomassie blue staining or transferred 

onto a nitrocellulose membrane. 

 

2x SDS-sample buffer: Molecular weight markers:  
 
100 (mM) Tris/HCl, pH 6.8 94, 67, 43, 30, 20.1, 14.4 kDa 
4 (% v/v) SDS 
20 (% v/v) glycerine 
0.2 (% v/v) bromophenol blue 
4 (% v/v) β-mercaptoethanol 
 

5.3   Native or nondenaturating PAGE (Scägger, 1994): 

Native gels were prepared as SDS polyacrylamide gel with slight modifications. Briefly, 8 % 

gels without stacking gel were prepared as shown above. 2-3 x 108 AX2 cells and AX2 cells 

expressing FLC-GFP fusion protein were lysed in lysis buffer by passing through nucleopore 

filter, the filtrate was centrifuged at 13,000 rpm at 4 0C for 30 min. 10 µl supernatant was 

mixed with 2x protein sample buffer and loaded on to the gel. The gel was prerun at 140V for 

1 h at 4 0C and the electrode buffers were replaced with fresh buffer before loading the 

samples. A molecular weight ladder was also loaded for the reference molecular weight. The 

pH of all the buffers and the gel was maintained at 8.2-8.8 at 4 0C, which was well above the 

isoelectric point of the protein. The gel was allowed to run at 140V at 4 0C till the dye front 

reached the bottom. The gel was removed and soaked in cold 1 x NCP buffer (section 1.6.4) 

containing 1 % SDS at 4 0C for 1 h and then transferred to nitrocellulose paper for 1 h at 10V 

using the semidry blotting device (materials and methods 5.7). The membrane was western 

blotted using anti ddfilamin mAb 82-421-5. 

 
Lysis buffer: Native protein molecular weight markers:  
30 mM Tris/HCl, pH 8.0  669, 440, 232, 140 and 66 kDa 
2 mM DTT 
4 mM EGTA Electrode buffer:   
5 mM Benzamidine 1.9 M Glysine, 0.25 M Tris/HCl, pH 8.8 
0.5 mM PMSF 0.1 % Triton X-100, 0.5 mM EGTA and  
2 mM EDTA 0,2 mM ATP 
30 % sucrose and one complete mini  
protease inhibitor cocktail tablet/15 ml. 
 
2x-sample buffer: 
100 mM Tris/HCl, pH 8.8 
0.2 % (v/v) bromophenol blue 
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5.3.1  Coomassie blue staining of SDS-polyacrylamide gels 

After electrophoresis, the resolved proteins were visualized by staining the gel with 

Coomassie blue staining solution at room temperature with gentle agitation for at least 30 

min. The staining solution was replaced by destaining solution. The gel was destained at room 

temperature with gentle agitation. For best results, the destaining solution was replaced 

several times until protein bands were clearly visible. 

 
Coomassie blue staining solution Destaining solution: 
 
0.1 % Coomassie blue R250 7 % acetic acid 
50 % ethanol 20 % ethanol 
10 % acetic acid 
filter the solution before use 
 

5.3.2  Silver staining of polyacrylamide gels 

Size fractioned proteins on poly acrylamide gel were fixed with 30 % ethanol-10 % acetic 

acid solution for one hour. The gel was rinsed with 20 % ethanol before sensiting with 0.02 % 

sodium thiosulphate for 1 min. After three washings (20 sec each) with MilliQ water, the gel 

was stained with a 0.2 % silver nitrate solution for 45 minutes. The excesse of silver nitrate 

was removed by washings of the gel three times with MilliQ water. The protein bands were 

developed with developer solution until they are suitably visible. The reaction was stoped by 

soaking the gel in stop solution for 5 minutes. 

 

Developer: 0.3 % Sodium carbonate  Stop solution:    50 g Tris base 
  0.025 % Formaldehyde       25 ml glacial acetic acid 
  10 mg/ml sodium thiosulphate        Water to 1000 ml. 

 

5.4 Immunoprecipitation from Dictyostelium cell lysate 

Dictyostelium grown axenially was harvested and washed twice with Soerensen phosphate 

buffer. Cells suspended in twice the volume of the homogenization buffer were lysed through 

‘Nuclepore’ membrane filters. The complete lysis of the cell was confirmed by visual 

inspection of a drop of lysate under light microscope. Lysate was centrifuged at 10,000g for 

25 min at 4 0C. The supernatent was precleaned by incubating with protein A sepharose beads 

for 1 h at 4 0C. 600 µl of cleared supernatent was incubated with 100-800 µl of antibody, 325 

µl 5 x immnoprecipitation buffer, 0.1 % Triton X-100 and protein A sepharose beads at 4 0C 

for 3 h to complete the immunoprecipitation. Beads after the immunoprecipitation were 

washed thrice with 1 x IP buffer. Washed beads were then incubated with 5 x SDS-sample 

buffer for 5 min at 95 0C. The released proteins were resolved on a 10 % SDS-PA gel. The 
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size fractioned proteins were stained with silver. The bands shown in figure 23 were analysed 

by MALDI-MS.  

 

5.5 Detection of phosphorylation 

Dictyostelium cells were lysed in lysis buffer (for phosphorylation) as described above. The 

lysates were subjected to immunoprecipitation with the pSer/Thr antibody. 

Immunoprecipitated proteins were resolved on the 10 % SDS-PA gel and transferred on to 

nitrocellulose membrane and probed with mAb 82-421-5. 

 

5.6  Western blotting using the semi-dry method 

The proteins resolved by SDS-PAGE were electrophoretically transferred from the gel to a 

nitrocellulose membrane by the method described by Towbin149 with little modifications. The 

transfer was performed using Towbin’s buffer in a semi-dry blot apparatus (Bio-Rad) at a 

constant voltage of 10 V for 45-60 min. The instructions provided along with the semi-dry 

apparatus were followed in order to set up the transfer. 

 

Transfer buffer: 39 mM glycine, 
48 mM Tris/HCl, pH 8.3  
and 20% methanol 

 
5.7  Immunodetection of membrane-bound proteins 

The western blot was immersed in blocking buffer and the blocking was performed with 

gentle agitation either overnight at room temperature or for 2-3 h at room temperature with 

several changes of 1x NCP. After blocking, the blot was incubated at room temperature with 

gentle agitation with either commercially available primary antibody at a proper dilution (in 

1x NCP) or hybridoma supernatant or purified antibody for 1-2 h. After incubation with 

primary antibody, the blot was washed 5-6 times with 1x NCP at room temperature for 5 min 

each with repeated agitation. Following the washing steps, the blot was incubated for 1 h at 

room temperature with a proper dilution (in 1x NCP) of horseradish peroxidase-conjugated 

secondary antibody directed against the primary antibody. After incubation with the 

secondary antibody, the blot was washed as described above. After washings, the enhanced 

chemi-luminescence (ECL) detection system was used. For this, the blot was incubated in 

ECL-detection-solution for 1-2 min and then wrapped in Saran wrap after removing the 

excess ECL-detection solution. A X-ray film was exposed to the wrapped membrane for 1-30 

min and the film was developed to observe the immunolabelled protein. 

 



Material and methods 35 

   
 

ECL-detection solution: Blocking buffer : 
 
2 ml 1 M Tris/HCl, pH 8.0 5% milk powder in 1x  
200 µl 250 mM 3-aminonaphthylhydrazide in DMSO NCP 
89 µl 90 mM p-Coumaric acid in DMSO 
18 ml deionised H2O 
6.1 µl 30% H2O2 (added just before using) 
 
5.8  Video imaging and chemotaxis assay 

Vegetative cells were resuspended at 1 x 107 cells/ml in Soerensen phosphate buffer and 

starved for 6 to 8 h. 25-30 µl of the cell suspension were diluted in 3 ml of Soerensen buffer 

and mixed well by pipetting (25-30 times, with occasional vortexing). This is important to 

dissociate cells from aggregates. 1.5 ml of the diluted cells were then transferred onto a 5 cm 

glass coverslip with a plastic ring placed on an Olympus IX70 inverse microscope equipped 

with a 10x UplanFl 0.3 objective. Cells were stimulated with a glass capillary micropipette 

(Eppendorf Femtotip) filled with 0.1 mM cAMP (Gerisch and Keller 1981), which was 

attached to a microcontroller. Time-lapse image series were captured and stored on a 

computer hard drive at 30 second intervals with a JAI CV-M10 CCD camera and an 

Imagenation PX610 frame grabber (Imagenation Corp., Beaverton, OR) controlled through 

Optimas software (Optimas Corp., Bothell, Washington). The DIAS software (Soltech, 

Oakdale, IA) was used to trace individual cells along image series and calculate the cell 

motility parameters (Soll et al. 2001). For processing images, Corel Draw version 8, Corel 

Photopaint and Adobe Photoshop were used. 

 

5.9  Qualitative phototaxis assay (Wallraff and Wallraff, 1997) 

Dictyostelium AX2 cells and derived mutants were cultivated on Klebsiella lawns on SM agar 

plates. Using sterile toothpicks, vegetative cells from edges of the colonies growing on 

Klebsiella lawns were transferred to 90 mm water agar plates. The application point for 

phototaxis was located in the centre of the plate. The plates were wrapped in an opaque black 

plastic sheet with a slit of ~3 mm and incubated at 21 °C. Approximately 48 h after 

inoculation, slime trails and cellular material were blotted to nitrocellulose filter (BA85, Ø 82 

mm, Schleicher and Schuell) by keeping the filter on the plate for 1 h. Thereafter, filters were 

stained with staining solution for 5 min followed by incubation in destaining solution (with 2 

changes) for 10-15 min to remove the excess stain. The filters exhibiting the stained slime 

trails were photographed using a light microscope (Olympus) equipped with a CCD camera 

(CVM10, Progressive Scan, Japan). The distance traveled by the slugs towards the source of 
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light from the point of application and the deviation from the straight line were measured. The 

angle of deviation was calculated from these two measurements. 

 
Staining solution: Destaining solution: 
 0.1 % amido black  25 % isopropanol 
 25 % isopropanol  10 % acetic acid 

 
6 Immunological methods 
 
6.1  Indirect immunofluorescence of Dictyostelium cells 

 
6.1.1  Preparation of Dictyostelium cells 

Dictyostelium cells were grown in shaking culture to a density of 2-4 x 106 cells/ml. The 

desired amount of cells was collected in a centrifuge tube, cells were then resuspended in 

fresh axenic medium and grown overnight on glass coverslips in axenic medium. 

Alternatively, cells from the shaking culture were allowed to attach to the coverslips for 20 

min. Thereafter, cells attached onto the coverslip were fixed immediately by one of the 

fixation techniques described below.  

 

6.1.2  Methanol fixation 

After the cells had attached to the coverslip, the supernatant was aspirated and the coverslip 

was dipped instantaneously into pre-chilled (-20 ºC) methanol in a petri dish and incubated at 

–20 ºC for 10 min. The coverslip was then taken out from methanol and placed on a parafilm 

covered glass plate resting in a humid box with the cell-surface facing upwards. This was 

followed by 2 washings with 500 µl of PBG for 15 min each and immunolabelling as 

described in section 6.1.3 

 

PBG, pH 7.4: 0.5 % bovine serum albumin 
0.1 % gelatin (cold-water fish skin) in 1x PBS, pH 7.4 

 

6.1.3   Picric acid-paraformaldehyde fixation 

After the cells had attached to the glass coverslips the supernatant was gently aspirated from 

the edge of the coverslip and 200 µl of freshly prepared picric acid-paraformaldehyde solution 

was directly added. The coverslip was incubated at room temperature for 30 min. After 

incubation, the picric acid-paraformaldehyde solution was aspirated, the coverslip was picked 

up with a fine forceps and swirled in 10 mM PIPES buffer, pH 6.0, followed by blotting off 

the excess solution with a tissue paper. Now the coverslip was swirled in PBS/glycine and 
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placed on a parafilm-covered glass plate resting in a humid chamber. The coverslip was then 

washed with 500 µl PBS/glycine for 5 min to block free reactive groups followed by post-

fixation with 500 µl 70 % ethanol for 10 min. This was followed by 2 washings with 500 µl 

of PBG for 15 min each. After washings, the cells were immunolabelled as described in 

section 6.1.4. 

 
Picric acid-paraformaldehyde solution: 

0.4 g paraformaldehyde was dissolved in 5 ml ddH2O by stirring at 40 °C and adding 3-4 

drops of 2 M NaOH. After dissolving, the volume was adjusted to 7 ml with ddH2O. To this 

paraformaldehyde solution, 10 ml of 20 mM PIPES buffer, pH 6.0, and 3 ml of saturated 

picric acid was added and the pH was finally adjusted to 6.5.  

 

PBS/glycine: 20 mM PIPES buffer, pH 6.0: 
 
500 ml PBS 0.605 g PIPES 
3.75 g glycine in 100 ml distilled H2O 
filter sterilized adjust to pH 6.0 
store at –20ºC filter sterilized 
 
 
6.1.4  Immunolabelling of fixed cells 

Coverslips containing the fixed cells were incubated with 200 µl of the desired dilution (in 

PBG) of primary antibody for 1-2 h in a humid box at room temperature. After incubation, the 

excess unattached antibody was removed by washing the coverslip 6 times with PBG for 5 

min each. Now the coverslip was incubated for 1 hr with 200 µl of a proper dilution (in PBG) 

of Cy3-conjugated secondary antibody. Following this incubation, two washings with PBG 

for 5 min each followed by three washings with PBS for 5 min each were performed. After 

washings, the coverslip was mounted onto a glass slide (see sections, 6.1.5). 

 
 

6.1.5  Mounting of coverslips 

After immunolabelling of the fixed cells, the coverslip was swirled once in deionised water 

and the extra water was soaked off on a soft tissue paper. Now a drop of gelvatol was placed 

to the middle of a clean glass slide and the coverslip was mounted (with the cell-surface 

facing downwards) onto the drop of gelvatol, taking care not to trap any air-bubble between 

the coverslip and the glass slide. Mounted slides were then stored overnight in the dark at 4 

ºC. Thereafter, the mounted slides were observed under a fluorescence microscope or 

confocal laser scanning microscope. 
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Gelvatol 

2.4 g of polyvinyl alcohol (Mw 30,000-70,000; Sigma) was added to 6 g of glycerol in a 50 

ml centrifuge tube and mixed by stirring. To the mixture, 6 ml of distilled water was added 

and the mixture was incubated at room temperature. After several hours of incubation at room 

temperature, 12 ml of 0.2 M Tris/HCl, pH 8.5, was added and the mixture was heated to 50°C 

for 10 min with occasional mixing to completely dissolve polyvinyl alcohol. The solution was 

centrifuged at 5,100 rpm for 15 min. After centrifugation, 2.5 % of diazabicyclo octane 

(DABCO), an anti-oxidant agent, was added to reduce the bleaching of the fluorescence. The 

solution was aliquoted in 1.5 ml microcentrifuge tubes and stored at –20 °C. 

 
6.2 Preparation of heat-killed yeast cells 

Five grams of dry yeast Saccharomyces cerevisae (Sigma) were suspended in 50 ml of PBS in 

a 100 ml Erlenmeyer flask and incubated for 30 min in a boiling waterbath with stirring. After 

boiling, the yeast cells were washed five times with PBS, followed by two washings with 

Soerensen phosphate buffer. The yeast cells were then finally resuspended in Soerensen 

phosphate buffer at a concentration of 1 x 109 yeast cells/ml. Aliquots of 1 ml and 20 ml were 

made and stored at –20 ºC. 

 

6.3 TRITC-labeling of heat-killed yeast cells 

For labeling, the pellet of 2 x 1010 heat-killed yeast cells were resuspended in 20 ml of 50 mM 

Na2HPO4, pH 9.2, containing 2 mg of TRITC (Sigma) and incubated for 30 min at 37 °C on a 

rotary shaker. After washing twice with 50 mM Na2HPO4, pH 9.2, and four times with 

Soerensen phosphate buffer, aliquots of 1 x109 yeast cells/ml were frozen at –20°C. 

 
7 Microscopy 
 
Visual inspection of Dictyostelium cells expressing ddfilamin rod domain GFP fusion protein 

was performed using an inverted fluorescence microscope (Olympus IX70). Confocal images 

of immunolabelled specimens were obtained with confocal laser scanning microscope TCS-

SP (Leica) equipped with a 63x PL Fluotar 1.32 oil immersion objective. A 488-nm argon-ion  

laser for excitation of GFP fluorescence and a 568-nm krypton-ion laser for excitation of Cy3 

or TRITC fluorescence were used. For simultaneous acquisition of GFP and Cy3 

fluorescence, the green and red contributions to the emission signal were acquired separately 

using the appropriate wavelength settings for each photomultiplier. The images from green 
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and red channels were independently attributed with colour codes and then superimposed 

using the accompanying software. 

 
7.1 Live cell imaging of Dictyostelium cells expressing RN-GFP 

To record the distribution of ddfilamin rod domain GFP fusion protein in living cells, cells 

were grown to a density of 2-3 x 106 cells/ml, washed in Soerensen phosphate buffer and 

resuspended at a density of 1 x 107 cells/ml. The cells were then starved for about 1 hr with 

shaking. Starvation facilitated observation as it allowed the cells to digest endocytosed 

nutrient medium, which is autofluorescent. For observation, cells were initially diluted in 

Soerensen phosphate buffer at 1 x 106 cells/ml and then 500 µl of the cell suspension were 

transferred onto a 18 mm glass coverslip glued to a plastic rim of the same size. Cells were 

allowed to adhere to the glass coverslip for 10-15 min and confocal images were obtained and 

processed as described above. 

 

7.2 Live cell imaging of RN-GFP during phagocytosis 

For analysis of dynamics of ddfilamin rod domain GFP fusion protein during phagocytosis, 

coverslips containing RN-GFP expressing AX2 and HG1264 cells were prepared as described 

above. After the cells had adhered to the glass coverslips, 5-10 µl of the heat-killed, TRITC-

labelled yeast cell suspension (1 x 109 yeast cells/ml) were carefully added from one edge of 

the coverslip. Immediately after the yeast cells had settled (in 2-5 min), confocal images were 

obtained as explained above.  

 
7.3  Microscopy of fixed preparations 
To visualize the actin staining in the fixed preparations, an Olympus IX70 inverse microscope 

equipped with a 40X LCPlanFI 0.6 and a 10X UplanFI 0.3 objective was used. Images were 

captured either with a JAI CV-M10 CCD video camera or a SensiCam cooled CCD video 

camera. 

 

8 Microarray analysis 
 

Array Targets 

The 34 Mb genome of Dictyostelium discoideum, carries about 12,000 genes. A collection of 

a total of 6,000 genes used as the array targets carries partial sequences of 450 known genes 

(PCR amplified sequences of an average length of 500 bp) and approximately 5,400 non-



Material and methods 40 

   
 

redundant ESTs from the Dictyostelium cDNA project (Morio et al. 1998)  

(http://www.csm.biol.tsukuba.ac.jp/cDNAproject.html) and appropriate positive (partial genes 

from D. discoideum genomic DNA), negative controls (fish sperm DNA, human Cot-1) and 

internal control (Sport report Poly A). 

 

8.1  RNA preparation 

 

Wild-type AX2 and ddfilamin minus mutant GHR cells grown axenically to 2-3 x 106 cells / 

ml were washed twice with Soerensen phosphate buffer and developed in suspension to the 

final concentration of 1 x 107 cells per ml in Soerensen phosphate buffer for 10 h at 21 0C 

before used for extraction of total RNA. The total RNA was extracted with the Qiagen 

RNeasy Midi/Mini Kit according to the “Protocol for Isolation of Cytoplasmic RNA from 

Animal Cells” with the modification of washing the cells twice with water after harvesting to 

remove medium. 2-3 x 107 cells were used for the extraction. After extraction the RNA 

concentration is determined by measuring the OD260 (should be > 500 µg/ml). The quality of 

RNA was examined on a gel (materials methods 3.8) should give two bands of 4.1 and 1.9 kb 

for rRNA without degradation. 

 

8.2  Spiking of internal mRNA controls 

Quality control is an important issue of DNA microarray analysis. Therefore we use ten 

internal mRNA controls from Arabidopsis thaliana genes that are added (spiked) to the D. 

discoideum RNA prior to cDNA generation and labelling. These mRNAs are provided in a 

Spikemix with different known amounts of each mRNA. Two different mixes are used for the 

two labelling reactions (Cy3 and Cy5) of one microarray experiment. The spiking was done 

as follows. 

The spiking of the RNA was done by mixing equal quantities of Spikemix and D. discoideum 

total RNA. The RNA mixture was precipitated by adding 0.1 volume of 3 M sodium acetate 

pH 4.8 and 2.5 volume of 100 % ethanol and stored at –20 °C for 2 h. The RNA was 

precipitated by centrifuging in a tabletop centrifuge at 10,000g for 30 min. Ethanol was 

removed by aspiration and the pellete was washed with 70 % ethanol, centrifuged for 15 min 

at 10,000g aspirated and dried. The RNA was dissolved in 12 µl of RNase-free water. 

cDNA generation and fluorescent labelling: 

The reverse transcription of mRNA to cDNA was done with the protocol from the Stratagene 

Fair Play Kit with some modifications. 
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8.3  Quantitation, normalization and data analysis 

The fluorescent labelled cDNA targets bound to the spots were detected by the 

ScanArray 4000XL confocal laser scanner. The microarray is scanned for Cy3 and Cy5 

successively with a resolution 10 µm/pixel. The fluorescent dyes were excited by laser-light 

of pertinent wavelength and emission was detected by a photo-multiplier. To obtain images 

well suited for signal quantification image brightness has to be adjusted by setting the laser-

power (photo-multiplier power should always be set at 70 to 80 %). Signals should be as 

bright as possible, but spots must not be saturated (indicated by white colouring). It might be 

necessary to scan at two different laser-power settings. One setting where most spots give 

bright signals, but a few like some of the positive controls are saturated, and another setting 

where no saturation is seen, but most spots give weak signals. 

 

8.4 Signal Quantification 

The spot and background intensities of the scanned images were quantified by using 

QuantArray. The two images for the Cy3 and Cy5 scan were aligned first and then an array 

pattern was laid over the images to support spot detection. In this step the spot identities were 

also assigned. The signal intensities were then measured and written into an export file, which 

was used for data analysis. 

For the detailed procedure please see 

http://www.uni-koeln.de/med-fak/biochemie/transcriptomics/   

 

 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

III. Results 
 

 

 

1. Biochemical Studies 
The filamin binding site on actin has been shown to reside at residues 105-120 and 360-372 in 

actin subdomain-1 (Mejan et al. 1992). These sites over-lap with those of several other actin 

binding proteins including α-actinin (McGough1998).  

 

1.1 Overexpression of domains of filamin 

The cDNA encoding full-length ddfilamin (FLC), the actin-binding domain along with the 

first five rod domains (Fil5) and the actin binding domain alone (ABD) were cloned in frame 

at the N-terminus of GFP into the P1ABSr8 vector. The expression was under the control of 

the actin-15 promoter. The rod domain was subcloned in frame at the N-terminus of GFP into 

the GFP expression vector pDex79 allowing expression of the fusion protein RN-GFP under 

the control of the actin-15 promoter (Knecht et al. 1986) (Materials and Methods, 3.11.1). 

The plasmid pDXA-GABD expressing the ABD-GFP fusion was obtained from Dr. David 

Knecht (Connecticut, USA) (Pang et al. 1998). All vectors were introduced into AX2 wild 
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type cells as well as into the ddfilamin minus mutant HG1264 and into GA1, a mutant lacking 

ddfilamin and α-actinin by electroporation singly or together. The stable transformants were 

selected for growth in the presence of 20 µg/ml G418 (Geneticin) or 10 µg/ml Blasticidin S 

(Bsr) or both (in case of cotransformation). The transformants were identified by visual 

inspection under a fluorescence microscope or by colony blotting followed by immunological 

detection of the expressed proteins in western blots, which showed that with the exception of 

FLC-GFP expression in AX2 and Fil5-GFP expression in HG1264 the amounts of fusion 

proteins produced where comparable or slightly lower than ddfilamin expression in AX2 

(Figure 1). The expression level of the ddfilamin rod GFP fusion was higher in AX2 cells 

expressing the fusion protein than in HG1264 cells expressing the fusion protein. This was 

shown by western blotting and probing with ddfilamin rod domain specific antibody 82-454-

12 and GFP specific antibody K3-184-2 (Figure 2). The strains were used for in vivo 

localization studies and rescue experiments. 

 

 
 
 

Figure 1: Western blot analysis to test the expression of different domains in AX2 (wild 
type), HG1264 (filamin minus) and GA1 (ddfilamin and α-actinin minus). 5 x 105 cells 
were lysed in SDS-sample buffer and the proteins were resolved by SDS PAGE (10 % 
acrylamide), the proteins were blotted onto a nitrocellulose membrane and probed with mAb 
82-421-5, which recognizes the actin binding domain of ddfilamin. HG1264 and GA1 do not 
express the protein. In AX2 the band appears lower than expected because of the proteolytic 
degradation of the protein. FLC-AX2, FLC-HG, FLC-GA1, are AX2, HG1264 and GA1 cells 
expressing full-length ddfilamin fused with GFP at the C-terminal end respectively. 
ABDGFP-HG, HG1264 cells expressing ABD fused to the C-terminus of GFP. ABD-HG, 
HG1264 cells expressing ABD. Fil5-HG, HG1264 cells expressing ddfilamin without the 
dimerization domain with C-terminally fused GFP. Detection was by enhanced 
chemiluminescence using a peroxidase-coupled secondary antibody. Molecular weight 
markers are given in kDa at the left. 
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Figure 2: Expression of the ddfilamin rod domain in AX2 and HG1264. 5 x 105 cells were 
lysed in SDS-sample buffer, the lysates were resolved on 10 % polyacrylamide gels, the 
proteins were blotted onto a nitrocellulose membrane and probed with mAb 82-454-12 
specific for the rod domain and GFP specific mAb K3-184-2. RN-AX2 and RN-HG1264, 
AX2 and HG1264 cells expressing ddfilamin rod domain with N terminally fused GFP. 
 
 
1.2 Localisation and distribution of ddfialmin domains during growth  

The pattern of the GFP-ABD fluorescence in Dictyostelium AX2 cells was reported to 

coincide with that of dye-labelled phalloidin, indicating that the GFP-ABD colocalises with 

F-actin (Pang et al. 1998). From this information we concluded that the ABD of ddfilamin 

targets to the F-actin network at the cell periphery (Figure 3A) where the protein might bind 

to other proteins involved in signal transduction and might control cellular functions like 

phototaxis. Fil5-GFP shows both a cytosolic staining and enrichment in cell extensions 

(Figure 3B). The localisation of Fil5-GFP was similar to that of full-length ddfilamin (Figure 

3C). Unlike ABD-GFP, FLC-GFP and Fil5-GFP were localised in the cytosol as well. 

 

1.3 Expression of full-length ddfilamin GFP fusion protein in GA1 compensates the 

loss of α-actinin  

Expression of ddfilamin GFP in GA1 (filamin and α-actinin deficient) rescued all the defects 

of this mutant as described in Rivero et al. (1996) including phototaxis The FLC-GFP when 

overexpressed in AX2 cells localises in discontinuous patches near the membrane (Figure 

3C), however in the GA1 mutant it localises in a rim at the circumference of the cell. The 

overexpresing cells show numerous filopods, however the fusion protein was not present in 
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the filopods but only at the base of each filopod, giving a punctate localisation for the fusion 

protein (Figure 3D and F, arrowhead). 

 

Upon starvation, Dictyostelium cells polarise, sense cAMP and start aggregating towards the 

aggregation centre. Simultaneously they produce cAMP pulses themselves signaling to the 

other cells in the population and migrate towards the cAMP signaling centre. During this 

directional movement several proteins reorganise and redistribute. We studied the localisation 

of ABD-GFP and Fil5-GFP in HG1264 and of ddfilamin-GFP in GA1 developed in 

suspension for 6 h. The fusion proteins were very prominent at the base of newly extended 

pseudopods and along the periphery of the cell. The location at the cell periphery occurred 

discontinuously in a punctate manner. In case of the ABD-GFP we observed a reduced 

cytosolic staining as compared to Fil5-GFP and FLC-GFP. We also noted a relative increase 

in fluorescence at the rear end of the cell in ABD-GFP expressing cells (Figure 4a). It has 

been also observed that the protein rapidly translocates to the rear end upon the change in 

direction (Laevsky and Knecht, 2003). In case of Fil5- and FLC-GFP expressing cells the 

relative fluorescence at the rear end was less as compared to that of present at the leading 

edge of the cell (Figure 4 B and C).  
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Figure 3: (Opposite page) Localisation and distribution of GFP-tagged full-length 
ddfilamin(FLC-GFP), the actin binding domain (ABD-GFP) and ddfilamin lacking the 
dimerisation domain (Fil5-GFP). Cells grown axenically were washed twice with Soerensen 
phosphate buffer and allowed to settle on coverslips, images of live cells were taken using a 
confocal laser scanning microscope. (A), HG1264 cells expressing ABD-GFP, (B), HG1264 
cells expressing Fil5-GFP, FLC-GFP expressed in AX2 (C) and GA1 (D), respectively. E and 
F are the corresponding phase contrast images for C and D, respectively. Size bar, 3 µm. The 
arrow in D and F indicates the base of the extended filopod. 

 

 
 
 

Figure 4: Localisation and distribution of FLC-GFP, ABD-GFP and Fil5-GFP in 
aggregation competent cells. Cells grown axenically were washed twice with Soerensen 
phosphate buffer, starved in suspension for six hours and allowed to settle on coverslips. 
Images of live cells were taken using confocal laser scaning microscopy. The left panels show 
the GFP fluorescence of (A) HG1264 cells expressing ABD-GFP, (B) HG1264 cells 
expressing Fil5-GFP, and (C), GA1 cells expressing FLC-GFP. Aa, Ba and Ca are 
transmission microscopic images of the respective cells. The left panels show the overlay. 
Bar, 3 µm.  
 

1.3.1 The ddfilamin rod domain GFP fusion protein (RN-GFP) does not localise 

properly in HG1264 cells 

Filamin is located in the actin cortex at the cell periphery and in cell extensions in 

Dictyostelium cells 21. When we expressed the GFP-tagged rod domain (RN-GFP) and studied 

its localisation, we observed RN-GFP exclusively in the cytosol and not in the cell cortex in 

the mutant, whereas in AX2 cells the fusion protein was present in the cytosol and was also 

enriched in cell extensions (Figure 5). To determine whether RN-GFP colocalises with the 

actin cytoskeleton, RN-GFP expressing HG1264 cells were fixed with cold methanol and 

immunostained with anti-actin monoclonal antibody (Act 1-7) followed by staining with Cy3 
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conjugated goat-anti mouse IgG as the secondary antibody (as described in Materials and 

Methods 6.1.4). We found that the distribution of the fusion protein did not coincide with that 

of actin in the cortical regions (Figure 6). This might well be due to the absence of the actin-

binding domain. Surprisingly, in AX2 cells the distribution parallels the one of F-actin. Here 

the fusion protein can possibly form heterodimers with the endogenous filamin, which targets 

the fusion protein to the cell cortex. 

 
 

Figure 5: Localisation of the GFP-filamin rod fusion protein (RN-GFP) in wild type and 
mutant cells. Axenically grown cells were washed twice with Soerensen phosphate buffer 
and allowed to settle on coverslips, images of live cells were taken using confocal laser 
scanning microscopy. In case of AX2 cells, the GFP fusion protein is present throughout the 
cell and accumulates in cell extensions (arrowheads). In the HG1264 mutant the protein is 
evenly distributed throughout the cells and does not accumulate in cell fronts. Bar, 2 µm.  
 

 

 
 

Figure 6: Subcellular Localization of RN-GFP in HG1264. Immunofluorescence studies 
performed with RN-GFP expressing cells show that the fluorescence pattern of the GFP 
fusion protein does not coincide with that of the actin staining for most areas of the cells. The 
cells were fixed with methanol and immunolabeled with actin specific mAb act 1-7 followed 
by a secondary Cy3-labeled antibody. Bar, 4 µm. 
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1.3.2 Ddfilamin rod domain GFP fusion protein (RN-GFP) forms heterodimers 

with the endogenous protein 

To confirm the proposed heterodimer formation of ddfilamin and RN-GFP biochemically, we 

immunprecipitated the fusion protein from AX2 cells using mAb K3-184-2 against GFP, 

resolved the immunoprecipitate by SDS-PAGE and probed the blot with mAb 82-421-5 

specific for the ABD of filamin (Figure 7, IP). In this blot we detected a band above 96 kDa, 

which corresponds to filamin and another band at around 50 kDa, which represents the heavy 

chain of the antibody used for the immunoprecipitation. The presence of filamin is most likely 

due to the heterodimerisation, as in control experiments filamin could not be 

immunoprecipitated with mAb K3-184-2. The amount of immunprecipitated ddfilamin is 

around 50 % of the total amount of the protein that was immunprecipitated. This was 

confirmed by probing the same blot with mAb 82-454-12 specific for the ddfilamin rod 

domain after stripping the earlier antibody (data not shown). 

 

 
 
 

Figure 7: The filamin rod domain GFP fusion (RN-GFP) forms heterodimers in AX2 
cells. AX2 cells expressing RN-GFP were lysed in homogenization buffer, the lysate was 
cleared and incubated with mAb K3-184-2 against GFP to immunoprecipitate the fusion 
protein followed by addition of protein A sepharose. The cell lysate and sepharose beads were 
boiled in SDS sample buffer and the proteins resolved on a SDS-PA gel (10 % acrylamide). 
The proteins were transferred onto a nitrocellulose membrane and probed with mAb 82-421-5 
specific for filamin's ABD (A). (B) The schematic representation of the heterodimer. 
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1.3.3 A GFP tag located at the C-terminus does not interfere with the dimerisation 

property of filamin 

The sixth rod repeat located at the C terminal end of the ddfilamin is responsible for the 

dimerisation of the protein (Fucini et al., 1999). To find out whether the conjugation of GFP 

at the C terminal end of the protein interferes with the formation of the dimer in FLC-GFP, 

we performed native gel electrophoresis. As only a single band was observed with 

homogenates from AX2 cells as well as from AX2 cells overexpressing FLC-GFP (Figure 8), 

and as there was no detectable amount of the monomeric form of the protein present in the 

cell, we concluded that, full-length ddfilamin with a C terminal GFP tag dimerises normally. 

The formation of the heterodimer (ddfilamin-FLC-GFP) was possible but difficult to detect 

because of the rather small differences in the molecular weights. In HG1264 cells expressing 

recombinant Fil5-GFP that lacks the dimerisation domain, we detected only the monomeric 

form of the protein. The higher bands in the last two lanes might represent a complex of 

proteins interacting with ddfilamin. 

 

 
 
 
Figure 8: Dimerisation propensity of ddfilamin. To test whether a C-terminally located 
GFP-tag interferes with the dimerisation of ddfilamin, we performed native polyacrylamide 
gel electrophoresis. Wild type AX2, AX2 cells expressing full-length ddfilamin fused with 
GFP at its C terminus (FLCAX2) and mutant cells expressing ddfilamin without its 
dimerisation domain (Fil5HG) were lysed in lysis buffer and the proteins were resolved on a 
native polyacrlamide gel with tracking dye. After the dye had reached the bottom, gels were 
soaked in 1x NCP buffer containing 1 % SDS at 4 0C for one hour before blotting onto 
nitrocellulose. Blots were probed with mAb 82-421-5 followed by enhanced 
chemiluminescence. The band indicated by the arrows in each case was in the range of the 
dimer indicating that there was no interference of GFP with the dimerisation of ddfilamin. 
The upper band in case of the Fil5 lane seems to be non-specific as in case of FLC-GFP. 
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1.4 Detection of phosphorylation and generation of a point mutation 

It has been shown earlier that ddfilamin can be phosphorylated in vitro by protein kinase A 

(unpublished data). To detect in vivo phosphorylation of ddfilamin, we immunoprecipitated 

proteins from a cell lysate from AX2 cells expressing recombinant FLC-GFP with 

commercial pSer/Thre specific pAb and probed the immunoprecipitate after western blotting 

with ddfilamin specific mAb 82-421-5. Filamin can be clearly detected proofing that the 

proteins is phosphorylated also in vivo (Figure 9, IP). The bands of slightly smaller mass than 

120 kDa are most likely due to proteolysis of the highly protease sensitive filamin.  

There are several predicted phosphorylation sites in filamin (for the prediction of 

phosphorylation we used the NetPhos program, from the Technical University Denmark). 

Taking into account the specificity of the antibody used, which recognise phospho 

serine/threonine with arginine present at the –3 position, we found four probable 

phosphorylation sites, which are located at S160 and S174 in the Calponin Homology Domain 

2 (CH2) of the actin binding domain and T247 and S248 at the –2 and –1 amino acids 

respectively at the start of the first rod domain. The predicted phosphorylation site S174 is 

conserved within human skeletal muscle α-actinin 2, Drosophila spectrin β-H chain and actin 

binding protein WO4D2. The CH2 domain harbors the actin binding site 3 (ABS3), which 

contributes to F-actin binding in such a way that the CH1 and CH2 domains in concert bind to 

F-actin with higher affinity than the CH1 domain alone (reviewed in Arjan 2001). Therefore 

we decided to introduce a mutation at S174, which abolishes phosphorylation.  

 

 
 
Figure 9: Detection of phosphorylation. Western blot showing phosphorylation of 
ddfilamin. AX2 cells expressing FLC-GFP were lysed in lysis buffer and subjected to 
immunoprecipitation with a pSer/Thre specific pAb followed by addition of protein A-
sepharose beads. The beads were washed thrice with 1x IP buffer, lysed in SDS sample buffer 
and proteins were resolved on 10 % SDS-polyacrylamide gels. The proteins were transferred 
onto nitrocellulose membranes and probed with ddfilamin specific mAb 82-421-5. The lower 
band in the IP lane is possibly due to the degradation of the ddfilamin. The total cell lysate 
(Lys) is shown for control. 
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1.4.1 Generation of the point mutation  

To study the significance of the phosphorylation at the detected phosphorylation site, the 

point mutation was generated by performing the overlapping PCR. Full-length ddfilamin 

cDNA was used as a template to amplify a fragment between two of the three EcoRV sites 

(ERV 286, ERV548 and ERV564). ERV548 was mutated at the last nucleotide of the 

palindrome (5’GATATC3’-5’GATATT3’) without changing the amino acid. The amplified 

fragment was cloned into the EcoRV site of FLC-GFP. The direction of cloning was 

confirmed by PCR. For detailed procedure please see materials and methods (3.6). The 

mutated cDNA was used to transform HG1264 cells. The transformed cells were selected by 

visual inspection for GFP under the UV light. 

 

2.4.2 Expression and localisation of the mutated protein  

By confocal microscopy the distribution of FLC(S174A)-GFP appears to be the same as that 

the of non-mutated protein. The fusion protein accumulates at the front of the cell as well as at 

the rear end of the cell and disscontineously along the periphery. Like FLC-GFP and Fil5-

GFP, FLC(S174A)-GFP also shows the diffused cytosolic staining (Figure 10). 

 

 
 

Figure 10: Localisation of the FLC (S174A)-GFP in HG1264 cells. Axenically grown cells 
were washed twice with Soerensen phosphate buffer and allowed to settle on coverslips, 
images of live cells were taken using confocal laser scanning microscopy. The fusion protein 
is present throughout the cell and accumulates in cell cortex. The punctuted staining appeared 
the same as that of FLC-GFP expression in HG1264. Bar, 5 µm. 
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2 Role of filamin in phagocytosis 
 

2.1 Overexpression of the filamin rod domain reduces phagocytosis activity in AX2 

as well as in mutant cells 

When we studied the localisation and redistribution of RN-GFP in AX2 cells during 

phagocytosis using confocal microscopy we found that RN-GFP was enriched in the newly 

formed phagocytic cup (Figure 11A). It was most prominent at the front of the phagosome, 

where actin also strongly accumulates (Cox et al. 1996). During the phagocytic event the 

fusion protein also accumulated at the rear end of the phagocytic cup and disappeared 

immediately after the completion of the engulfment (60 sec). In HG1264 cells expressing RN-

GFP there was no enrichment observed in the phagocytic cup and the fusion protein remained 

purely cytosolic at all stages of phagocytosis (Figure 11B).  

Our finding that RN-GFP forms heterodimers with the endogenous filamin in vivo led us to 

perform quantitative phagocytosis assays to test whether an impaired F-actin crosslinking due 

to formation of heterodimers could affect phagocytosis. To our surprise, we found that 

HG1264 cells were showing 20-40 % more phagocytosis before reaching a plateau and start 

exocytosing the TRITC labeled yeast particles used for the assay as compared to the AX2 

cells (Figure 11C). These results are contradictory to our earlier finding (Rivero et al. 1996), 

which is most probably due to differences in the assay system used. Not only the AX2 but 

also the HG1264 cells expressing RN-GFP show 20-40 % reduced phagocytic rate. Therefore 

reduced phagocytosis was because of the expression of the ddfilamin rod domain. The 

overexpression of FLC-GFP in AX2 cells also has a similar effect.  
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Figure 11 (Opposite page). Localisation and redistribution of RN-GFP in AX2 and 
HG1264 during phagocytosis. Confocal images of RN-GFP expressing AX2 (A) and 
HG1264 (B) cells taken at intervals of every 10 sec during phagocytosing the TRITC labelled 
heat killed yeast particles. In case of AX2 there is enrichment of the protein in the phagocytic 
cup and at the rear end of the cell but in case of the mutant HG1264 the fusion protein is 
purely cytosolic. Bar, 5 µm. (C) (please see p 53) Quantitative phagocytosis of TRITC 
labelled yeast cells. Dictyostelium cells were resuspended at 2 × 106 cells/ml in fresh axenic 
medium and challenged with a five fold excess of fluorescent yeast cells. Fluorescence from 
internalized yeasts was measured at the designated time points. Values shown are results from 
three independent experiments.  
 
 
3. Phototaxis in mutant strains and rescue experiments 
 

 Migration of the slug is a complex phenomenon, which involves several proteins controlling 

various processes like cell-cell adhesion, cell-substrate adhesion, propagation of the cAMP 

wave to coordinate cell movement in the slug, and the proteins that are involved in the 

organisation of the tip and in controlling the cell fate. The absence of ddfilamin severely 

hampers the phototactic migration of the slug. This indicates the necessity of an organised 

actin cytoskeleton for this process where ddfilamin plays a fundamental. AX2 slugs migrate 

straight towards the point of light entry (Figure 12 C) while HG1264 slugs move with an 

angle and exhibit reduced motility as compared to wild type slugs (Figure 12 B). To 

understand the functional role of the protein at the molecular level, we expressed full-length 

ddfilamin, different domains and deletion constructs in AX2 and HG1264 cells and analysed 

the slug behaviour.  

 

 
 

Figure 12. Phototactic migration of the parent strains. Cells grown on Klebsiella 
aerogenes (clearing plates) were harvested and washed with Soerensen buffer to remove the 
bacteria. About 5 x 105 cells were placed in the centre of a water agar plate. Plates were 
incubated in a dark chamber with a slit (at the position indicated by a triangle) at 21 0C for 48 
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h. Slugs were blotted onto a nitrocellulose membrane and stained with Amido black. AX2 
slugs migrate straight towards the source of the light (C), while HG1264 slugs migrate shorter 
distances and with an angle towards the light source (B). (A), schematic representation of the 
ddfilamin showing formation of the homodimer through its sixth rod repeat. Bar, 1 cm. 
 

3.1 Expression of full-length ddfilamin and full-length ddfilamin with a mutation at 

the predicted phosphorylation site rescues the phototaxis defect  

Expression of full-length ddfilamin GFP (FLC-GFP) fusion protein in HG1264 and GA1 

rescues the phototaxis defect completely, suggesting that this protein is fully functional and 

reverts the phototactic phenotype to the wild type. The phototactic phenotype of AX2 slugs 

overexpressing FLC-GFP was not only accurate, but the slugs also migrated over longer 

distances and formed more slugs per plate (data not shown). The overexpression of the rod 

domain in AX2 cells had a similar effect (see below, section 3.2). We tested the expression of 

all the GFP fusion constructs by western blot analysis and confirmed that they were present 

throughout the life cycle (data not shown). 

There are several reports describing the in vitro phosphorylation of filamin. Vadlamudi et al. 

(2002) showed that p21-activated kinase 1 (Pak-1) phosphorylates filamin, which in turn 

regulates the Pak-1 induced cytoskeletal reorganisation of the actin. Goldmann et al. (2002), 

reported that phosphorylation of filamin regulates its binding to lipid membranes, integrin and 

actin. We have shown the phosphorylation of ddfilamin in vivo and identified two 

phosphorylation sites, which are located in the CH2 actin-binding domain. We generated a 

single point mutation (S174A) in full-length ddfilamin and expressed this protein in HG1264 

as a GFP fusion protein. The slugs expressing this protein migrate straight towards the light 

slit, but they travel over shorter distances. Only 12 % HG1264 slugs expressing (S174A) 

travel distances between 25 mm and 30 mm (33 slugs were analysed), while 40 % of AX2 

slugs travelled an equal distance.  
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Figure 13: Phototactic rescue with FLC-GFP (Opposite page). (A and B), schematic 
representation of FLC-GFP and S174A mutated FLC-GFP, respectively. The red dot in the 
ABD indicates the position of the point mutation. HG1264 expressing FLC-GFP (Aa), GA1 
expressing FLC-GFP (Ab) and HG1264 expressing FLC-GFP (S174A) (Ba) are 
phototactically active and are indistinguishable from wild type AX2 slugs (not shown). Most 
of the HG1264 slugs expressing FLC-GFP (S174A) migrated over shorter distances as 
compared to slugs expressing wild type filamin though they migrated straight towards the 
light. Bar, 1 cm. 
 
 

 
 
Figure 14: Angle of deviation from the light source and distance travelled by slugs. The 
angle of the deviation from the light source for slugs travelled more than 10 mm was 
calculated. About 70 % of AX2 slugs and RN-AX2 slugs migrated with an angle of deviation 
of 0-10°, while more than 70 % of HG1264 and about 60 % of RN-HG1264 slugs migrated 
with an angle of 30-40° and more than 40°. Expression of FLC-GFP in the HG1264 mutant 
rescues the phototaxis defect (A). The distance (in mm) travelled by slugs in 48 h towards the 
source of the light was measured. More than 40 % of AX2 wild type slugs travel a distance of 
25-30 mm and more than 30 mm. About 60 % of RN-AX2 slugs migrate the same distance. 
But both the HG1264 and HG1264 slugs expressing the GFP-filamin rod fusion protein failed 
to travel over a distance longer than 25 mm (B). Over 100 slugs in three independent 
experiments were analysed for each data set. 
 
3.2 Rescue of the phototaxis defect with filamin domains 

HG1264 cells expressing the GFP-tagged rod domain (RN-GFP), the actin binding domain 

(ABD-GFP) or cells coexpressing the actin binding domain (ABD) and RN-GFP 

(RNGFP+ABD-HG) cultivated on Klebsiella aerogenes on SM plates were taken for 

phototaxis studies. Slugs of all the transformants expressing the fusion proteins moved shorter 

distances with a wide angle and were indistinguishable from the parent strain HG1264 (Figure 

14 and 15).  

Overexpression of RN-GFP (Figure 15Ab) and FLC-GFP (Figure not shown) in AX2 led to 

an increase in the number of slugs formed per plate and also increase in the distance traveled. 

Wild type slugs migrated over a significant distance of 40.25±2.06 mm in 48 h, where as 

overexpressors migrated a distance of 43.34±6.44 mm in 48 h. The number of slugs formed 

per plate in case of RN-GFP expressing AX2 cells were 16.78±4.40 while in case of AX2 
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cells they were 12.75±5.85. To study the effect of the expression of separate filamin domains 

on phototaxis and slug migration in Dictyostelium more closely we measured the distance 

travelled by slugs and the angle of deviation from the incident light (Figure 14). We found 

that for HG1264 cells expressing RN-GFP only 13 slugs out of 128 analysed travelled over a 

distance of 25 mm and 63 migrated with an angle more than 300. Whilst for AX2 cells 

expressing RN-GFP, 70 slugs out of 116 analysed travelled over a distance of more than 25 

mm and 43 with an angle less than 100. HG1264 cells expressing the actin-binding domain 

alone or in combination with RN-GFP behaved like HG1264 expressing RN-GFP (data not 

shown). From these data we concluded that expression of full-length filamin is necessary for 

the normal phototaxis of Dictyostelium cells. 

 

 
 

Figure 15. Rescue of the phototactic defect with RN-GFP and ABD. Expression of RN-
GFP (A) in HG1264 does not rescue the phototaxis defect (Aa), AX2 slugs expressing RN-
GFP (Ab) migrate straight towards the light. HG1264 slugs the expressing ABD-GFP (Ba) or 
RN-GFP and ABD (Ca) does not rescue the defect. Bar, 1 cm. Bar at Aa is applied for Ba and 
Ca. 

 
3.3 The requirement of the dimerisation domain for the rescue behavior of ddfilamin  

Improper localisation of RN-GFP and the inability of physically separated ABD and rod 

domains to rescue the phototaxis defect in HG1264 led us to propose that the cortical 

localisation or the association of ddfilamin with F-actin is essential for rescuing the phototaxis 

defect. To test this hypothesis we expressed Fil5-GFP, which localises similarly as the wild 

type protein but does not have the crosslinking function of the protein. We found, that slugs 
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expressing Fil5-GFP migrated over longer distances as compared to HG1264, however they 

migrated in a wide angle towards the light, as did the parent strain. Interestingly, the slugs 

showed a clockwise turn at the end of the trail, which is typical for the mutant strain (Figure 

16). These data suggest that for the ability to sense the light, Dictyostelium slugs need full-

length filamin, which allows the formation of three dimensional F-actin assemblies.  

 

 
 
Figure 16: Fil5-GFP rescues slug migration but not phototaxis. Schematic representation 
of the Fil5-GFP fusion protein (A). Its expression in mutant HG1264 rescues the phototactic 
defect partially (B). Slugs migrate longer distances but do not migrate straight towards the 
light and show the typical clockwise turn at the end of the trail as does HG1264. 
 

 

3.4 Expression of full length ddfilamin at the anterior tip of the slug is necessary and 

sufficient to rescue the phototactic defect 

The slug consists of primarily two cell types, prespore and prestalk cells. We next tested in 

which cells of the slug the function of filamin in the phototaxis process is needed. For this we 

used the ecmA promoter, a prestalk cell specific promoter (Hong and Loomis 1988 and 

Morrison et al. 1994) and the prespore cell specific cotB promoter. In general, cell type 

specific promoters ensure that the genes under their control are tightly expressed within the 

boundaries of cell types and within the specific time frame of the developmental cycle. The 

ecmA promoter is strictly expressed at the anterior one-tenth portion of the slug, expression of 

the cotB promoter is restricted to the posterior 3/4th part of the slug. After culmination the 

cells in this part eventually will form spores. Expression of FLC-GFP in HG1264 cells under 

the control of the ecmA promoter rescued the phototactic defect completely, whereas 

expression under the cotB promoter did not rescue the phototaxis defect (Figure 17). 
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Figure 17: Phototaxis rescue with FL-FLC expressed under the control of cell type 
specific promoters. A and B are schematic drawings of the slugs expressing full-length 
ddfilamin under the control of the prespore specific cotB and the prestalk specific ecmA 
promoter, respectively. Expression under the control of the ecmA promoter rescues the defect 
(Ba) where the protein is expressed in the anterior one-tenth portion of the slug, whilst 
expression under the control of the cotB promoter, where the protein is expressed in the 
posterior 3/4 of the slug, does not rescue the defect (Aa). The green portion in the slug 
indicates the expression of the fusion protein and the arrow indicates the direction of the 
movement of the slug. 
 
 
4 Identification and characterisation of binding partners for 

filamin 
 
Recent studies suggested that filamin functions not only in maintaining the cortical actin 

network but also in the organisation and stabilisation of the network by interwebbing it with 

membrane proteins and receptors. In mammalian cells filamins interact with several 

membrane receptors: the cytoplasmic part of the glycoprotein Ib IX complex, the receptor for 

von Willebrand factor (Andrews and Fox 1991, Marti et al. 1997 and Takafuta et al. 1998), 

β1- and β2-integrins (Sharma et al. 1995 and Loo et al. 1998), insulin receptor (He et al. 2003) 

and α- and β-sarcoglycan (Thompson et al. 2000). Filamins also affect intracellular 

trafficking of proteins and signal transduction. Filamin influences the activity of furin, a 

protease that is involved in the proteolytic processing of many proproteins by promoting its 

internalisation (Zent et al. 2000). It binds to presenilin-1, a protein involved in early onset 

familial Alzheimer's disease and in the notch signalling pathway (Zhang et al.1998, 

Schwarzman et al. 1999 and Guo et al. 2000) and interacts with caveolin-1, a multifunctional 

protein with roles in caveolae biogenesis, endocytic events, cholesterol transport and various 

signal transduction processes (Stahlhut et al. 2000). Furthermore, the involvement of filamin 
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in signal transduction is confirmed by its interaction with several components of the NFκB 

pathway (Edwards et al. 1997, Marti et al. 1997 and Leonardi et al. 2000), and the small 

GTPases RhoA, Rac1, Cdc42 and RalA (Ohta et al. 1999 and Bellanger et al. 2000). 

To evaluate the role of ddfilamin in such processes we searched for the interacting partners 

using a yeast-two hybrid screen. We have screened 97 independent clones, of which 60 clones 

were found positive for the β-galactosidase assay. DNA obtained from these clones was 

cotransfected with the rod domain into yeast strain Y190. From this 14 positive clones were 

isolated of which eight of them were filamin - this was not unexpected as all of them harbour 

the dimerisation domain -, two clones were autoactive, three were false positive and one 

contained a short sequence. Twelve other cDNAs were not interacting with filamin. After the 

failure of searching for new interacting partners for ddfilamin we decided to continue with our 

laboratory's earlier finding, a novel Filamin Interacting Protein (FIP) (Knuth 2002), which 

was identified in the yeast two hybrid screen. To evaluate the biochemical significance of the 

interactions we carried out a set of experiments described in section (4.1). Further in search of 

new interacting partners we performed also immunoprecipitation experiments, which have 

been described in section (4.2). 

 
 
4.1 FIP, a novel protein interacts with filamin  

We have reported a novel protein that interacts with ddfilamin, Filamin Interacting Protein 

FIP (Knuth et al. submitted), which was identified using the complete filamin rod domain as 

bait and a Dictyostelium vegetative cDNA library in a yeast two hybrid vector (Ohta et 

al.1999). FIP is a 230-kDa protein and is composed of mostly coiled coil regions. It is 

developmentally regulated reaching highest levels of accumulation during development. The 

protein is present in the cytosol in a punctated manner and is partially associated with 

membranes. The filamin binding site is located between amino acids 1719 and 1826, a rather 

serine rich stretch. The FIP binding site resides in ddfilamin rod repeat 3 (Knuth, 2002).  

 

4.1.1 Construction of a full-length FIP cDNA  

In continuation of this work, we wanted to uncover the biological significance of the 

interaction and the biochemical role of FIP in Dictyostelium. First we assembled a full-length 

FIP cDNA from a λ-ZAP library. This DNA included a 3´-untranslated region of 96 bp with a 

polyadenylation signal and a polyA tail (GeneBank No. AF356600) (Figure 18). The full-

length FIP cDNA has been cloned into the yeast two-hybrid vector to confirm its interaction 

with the filamin rod domain, and into a GFP expression vector for biochemical and further 
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localisation studies. Full-length FIP interacted with the filamin rod domain in the yeast two-

hybrid system. The successful expression of the full-length protein in the yeast was confirmed 

by western blotting using a monoclonal FIP specific antibody (Figure 19).   

 
 

 
 

 
Figure 18. Generation of the full-length FIP cDNA. A full length FIP cDNA was 
constructed from three cDNA clones (A-C) obtained from a λZap D. discoideum cDNA 
library and cloned into the pBluescript cloning vector. The full length FIP cDNA was built on 
the fragment C (position 3562-6259 of the cDNA), first by cloning the middle EcoRI-NsiI 
fragment (position 1363-3750) from B. A 670 bp 5' fragment (D) was generated by PCR 
amplification using genomic DNA with an EcoRI site at the 5’ end for cloning into the GFP 
vector pDex79. Fragment D was ligated to the 4.9 kb fragment (E) in a directed way using 
EcoRI and EcoRV. Into this product the middle 1.4 kb EcoRV fragment (F) was cloned. The 
correct orientation was determined by digestion with NspI. The sizes are not given in 
proportion. 
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Figure 19: Testing the expression and interaction of FL-FIP with ddfilamin (Opposite 
page). (A) The Y190 yeast strain was transfected with a Gal4AD vector containing full-length 
ddFIP cDNA and grown on Leu– plates for selection. A single colony was taken from the 
plate, the cells were lysed in SDS sample buffer, proteins separated by SDS PAGE (8 % 
acrylamide) and blotted onto a nitrocellulose membrane. The blot was probed with mAb K12-
349-7 specific for ddFIP followed by enhanced chemiluminescence. (B) Interaction of full 
length FIP with the filamin rod domain was confirmed by the yeast two-hybrid system. Yeast 
cells co-expressing full length FIP and filamin polypeptides were grown on agar plates 
lacking histidine, leucine and tryptophan, transferred to nitrocellulose membrane, lysed and 
assayed for β-galactosidase. The blue color indicates an interaction between the proteins.  

 
 

4.1.2 Localisation of FIP does not change in HG1264  

The localisation of FIP was studied by staining methanol fixed aggregating AX2 and HG1264 

cells that had been starved for six hours (t6) with FIP specific antibody K12-363-6. We found 

that the staining was identical in both AX2 and HG1264. The protein was diffusely present 

throughout the cytoplasm. The staining appears like a granular one and was concentrated in 

patches within the cytoplasm (Figure 20). The protein was neither accumulated in the newly 

formed pseudopods nor at the periphery where the actin cytoskeleton is actively reorganised. 

The granular and diffuse staining pattern suggests that the protein might be associated with 

vesicles and might have a role in vesicle transport. To define its role more closely we first 

performed differential centrifugation studies. 

 
Figure 20. Localisation and 
distribution of FIP in AX2 and 
HG1264 cells. Confocal images of 
methanol fixed AX2 and HG1264 cells 
(t6) stained with FIP specific monoclonal 
antibody K12-362-6. The second 
antibody used was TRITC labelled anti-
mouse IgG antibody. The images show 
that there is no remarkable difference in 
the localisation of the protein. Bar, 2 µm. 

 

 
4.1.3 FIP may have a role in vesicle transport 

To confirm whether FIP is associated with membrane vesicles we performed a differential 

centrifugation using the cell lysate obtained from AX2 cells (t6). The lysate was centrifuged 

at 2,000 rpm for 10 min to remove unlysed cells and larger aggregates. 10 µl of pellet and 

supernatant from every step were resolved on polyacrylamide gels and processed for 

immunoblot analysis. The staining with the FIP specific antibody K12-362-6 shows that most 

of the protein is cytosolic, and a thick band of equal intensity was observed in the soluble 
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fractions of the 10,000g and 100,000g spin. A fainter signal in the 100,000g pellet was an 

indication of the association of the protein with membrane vesicles. A very faint band was 

also seen in the first membrane pellet obtained at 10,000g (Figure 21). Probing the blot with 

an α-actinin specific antibody was used for control. α-Actinin is a purely cytosolic protein. 

 

 
 

Figure 21: Fractionation of AX2 cell lysates. AX2 cells developed in suspension for six 
hours (t6) were lysed in lysis buffer containing 1.25 M sucrose. The supernatant after 
centrifugation at 2,000 rpm was used for differential centrifugation at the speed indicated in 
the figure (x100). The pellet at every step was resuspended in an equal volume to that of the 
supernatant at the first step. 40 µl of lysate from pellet and supernatant at each step were 
boiled with 5x SDS loading dye and resolved on an 8 % polyacrylamide gel. The proteins 
were transferred onto a nitrocellulose membrane and probed first with the FIP specific K12-
349-7 (upper panel), the antibody was stripped with 0.2 M NaOH and then reprobed with the 
α-actinin specific mAb 47-62-8 (lower panel) as a control. Detection was with enhanced 
chemiluminescence. 
 

 
4.1.4 FIP is associated with the actin cytoskeleton 

The treatment of Dictyostelium with 5 % DMSO leads to rapid disassembly of the actin 

network. This process is reversible and the disassembled actin network starts assembling upon 

further incubation. Within 5 to 15 min of treatment the class I actin network near the plasma 

membrane rapidly dissociates and forms small actin bundles inside the cytoplasm. After 30 

min of incubation with 5 % DMSO microfilaments return to their original location just 

beneath the plasma membrane (Yumura et al. 1983). Since a full-length FIP-GFP fusion 

protein was not available we followed the staining with the FIP specific mAb using AX2 cells 

(t6) attached to the coverslips and treated with 5 % DMSO for 0’, 5’, 10’, 20’, 30’ and 40’ 

min. For the 0 to 10 min treatment there was no remarkable difference in the staining, while at 

20 to 30 min the protein assembled into larger and more compact structures in the cytosol and 



Results 64 

   
 

the granular localisation was lost (Figure 22). After this time it acquired the original staining 

(data not shown).  

 

 
 
 

Figure 22. Reorganisation of FIP upon DMSO treatment. AX2 cells after six hours of 
starvation were allowed to settle on glass coverslips, treated with 5 % DMSO in 17 mM 
Soerensen phosphate buffer for the indicated time points. They were fixed with cold methanol 
(-20 0C) and immunostained with the FIP specific mAb K12-362-6 (A, 0 and 30 minutes). For 
control the actin distribution was followed using and the actin specific antibody act 1-7 (B). 
Detection was with a Cy3-labelled secondary antibody. Bar, 3 µm. 
 
 
4.2 Immunoprecipitation revealed the identification of TipA, SapA, and GAPA as 

ddfilamin associated proteins, suggesting a role for filamin in cell morphogenesis and 

actin remodelling 

To identify proteins interacting with ddfilamin we performed an immunoprecipitation with 

mAb 82-421-5 bound to protein A sepharose beads using AX2 whole cell lysate. In this 

experiment we were able to coimmunoprecipitate several proteins ranging in molecular 

weight from 96 down to 30 kDa. The protein bands indicated by arrows were cut out from the 

gel and processed for MALDI-MS. They were identified as filamin, TipA, actin, a putative 

cell division factor, SapA, discoidin and GAPA. The proteins indicated in black letters in 

Figure 23 (lane T) were not considered for further studies. Filamin and actin were expected to 

be pulled down, whereas discoidin I based on its lectin activity binds to the sepharose beads. 

The proteins indicated in blue letters were selected for further studies. The band for TipA 

appeared at the theoretical molecular weight of 90 kDa and also as presumably proteolytic 
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break down products, whilst SapA and TipA represent break down products of the respective 

proteins.  

 

 

 
 

Figure 23: Identification of interaction partners for ddfilamin. Axenically grown AX2 
cells were harvested at growth phase, washed twice with Soerensen phosphate buffer and 
lysed in homogenisation buffer as mentioned in matereials and method, and centrifuged at 
13,000 rpm for 30 min. The supernatant was precleared by incubating with protein A 
sepharose beads for 1 h at 4 0C, and the cleared supernatant was used for immunoprecipitation 
with mAb 82-421-5. Beads after immunoprecipitation were washed thrice with 1x IP buffer 
and boiled with SDS-sample buffer and the proteins resolved on a 10 % SDS polyacrylamide 
gel. The gel was stained with silver. Lane C shows the antibody and in lane T the proteins 
eluted from the beads after incubation with the cell lysate. The bands indicated by arrows 
were analysed and identified by MALDI-MS.  
 

 
4.3 Checking the interaction of filamin with Rho GTPases by yeast two hybrid 

screening 

Rho-GTPases related to the Ras superfamily are molecular switches that participate in a 

myriad of cellular activities like regulation of actin assembly and myosin activation (Bishop 

et al. 2000). Human filamin A binds to RhoA, Rac1, Cdc42 and RalA (Marti 1997, Ohta 1999 

and Bellanger et al. 2000). Dictyostelium contains an unexpectedly large number of Ras 

superfamily proteins (Reymond et al. 1984, Robbins et al. 1989, Daniel et al. 1993 and1994). 
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Interestingly, Dictyostelium RasD− mutants have a partial defect in phototaxis (Wilkins et al. 

2000). This might be a hint that ddfilamin is located upstream of the Ras signaling pathway 

because ddfilamin mutants have a severe defect in phototaxis while other actin cross linking 

protein do not have any effect on this phenomenon. We have tested the interaction of Rac 

proteins and mutated Rac proteins such as Rac 1a, 1a(N17), 1a(L61), 1b, 1c, A, B, C, C(L64), 

C(N20), D, E, F1, F1(V12), F1(V17), F2, G, G(V12), G(N17), H (auto active), I, J and L, 

RhoA (mammalian), RhoGDI, RabD and RasG with Rod1-6 using a yeast two hybrid screen. 

Of the above listed GTPases RacB, RacC, RacC (N20), RacD, RacE, RacF1, RacF1(V12), 

Rac F2, RacG, RacG(N17), RacG(V12) and RhoA are likely to be a positive integrator 

(Figure 24). However, we were not able to support our results from yeast two hybrid assays 

by cosedimentation of GST-Rac fusion proteins and bacterially expressed purified filamin rod 

domain 1-6. A failure to obtain cosedimentation may be because of weak interactions (Figure 

25). 

 
 

 
 
 

Figure 24: Rho superfamily proteins have direct interactions with Dictyostelium filamin. 
The Figure shows the direct interaction of Rac proteins with the filamin rod domain. Y190 
yeast strain cotransformants containing Gal4BD-Rac as indicated in the figure and Gal4AD-
filamin rod 1-6 were selected on a medium lacking tryptophane, leucine and histidine, and 
containing 20 mM 3-amino-1, 2, 4-triazole. Individual colonies were patched onto filters and 
assayed for β-galactosidase activity. The histidine reporter allows colonies to grow on the 
nutrient agar and the β-galactosidase reporter gives blue color in the filter lift β-galactosidase 
assay. Blue color of the colony represents the positive interaction and intensity of the color 
indicates the strength of the interaction.   
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Figure 25: The interaction of Ras superfamily proteins with ddFilamin rod domain does 
not occur in vitro. Bacterially expressed recombinant ddfilamin rod domain (rod1-6) was 
allowed to cosediment with GST fusion proteins bound to beads. The bound proteins were 
resolved on a SDS polyacrylamide gel (10% acrylamide) and transferred to a nitrocellulose 
membrane. The membrane was probed with filamin specific mAb 82-454-12 (A) and 
commercially available polyclonal antibodies specific for GST, (B). There was no detectable 
cosedimentation of rod1-6 with GST fusion protein. ‘Lys’, AX2 cells lysed in SDS-sample 
buffer. In ‘control’, recombinant rod1-6 was incubated with GST beads.  
 
 
5. Microarray analysis suggests that mutant slugs have 

elevated extracellular cAMP levels and lowered cell adhesion 
 

To get an impression of global global gene expression in late development, we performed a 

microarray analysis. Total RNA from AX2 and GHR cells developed in suspension for 10 h 

was isolated and used for the preparation of cDNA. Three independent experiments were 

carried out. cDNAs were labelled with cy3 and cy5 separately and mixed together. Six slides 

containing an array of 6,000 independent expressed sequence tags were probed with different 

combinations of the labelled cDNAs from the three batches of RNA. A total of 65 genes with 

a delta value (Delta is a tuning parameter used to determine the cut off significance chosen by 

the users based on false positive rate. One can also choose ‘fold change’ parameter) more than 

+/- 1.467 was considered for the study. 40 genes were found up regulated while 25 genes 

were down regulated. Up regulated genes can be broadly grouped into three groups depending 

upon the function of the proteins. First, they are acting binding proteins, second, proteins 

involved in protein/aminoacid metabolism and the third group functions in cell migration and 

development. The down regulated genes are mostly calcium binding/sequestering proteins, 

proteins regulating adhesion, a class II cAMP phosphodiesterase and the actin sequestering 

protein profilin I. All the genes that are up or down regulated are listed in Table 1 and 2. 
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Table1: List of up regulated genes. 

 
 

Table 2: List of downregulated genes. 
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6. Chemotactic motility of mutants in actin binding proteins 

Chemotaxis towards the cAMP plays the pivotal role throughout the Dictyostelium 

development. Mutants defective in cAMP generation and sensing do not complete the 

developmental cycle. cAMP plays a crucial role to maintain the slug polarity. Unlike 

Drosophila there are no fixed boundries formed during the development, cells are 

continuously in motion, mostly in response to cAMP. Therefore it was important to study 

whether cells having defect in chemotaxis have a defect in phototaxis. To this end we studied 

mutants of Lim D and villidin.  

6.1 Filamin minus cells chemotax normally 

Rivero et al. 1997 reported that HG1264 cells peform normal chemotaxis. We analysed the 

effect of expression of RN-GFP in AX2 and HG1264 cells and found that it does not alter the 

chemotactic response. This indicates that the behavior of the mutants is normal at the onset of 

the development.  

6.2 LimD− cells have a defect in chemotaxis but have normal phototaxis  

Chemotaxis of starving cells towards cAMP was analysed in the capillary assay, where cells 

are stimulated with a micropipette filled with cAMP (10–3 M), and the velocity was 

determined. LimC– cells migrated with an average velocity of 10.19 ± 1.63 µm/min towards 

the pipette, which is similar to wild-type velocity (11.32 ± 1.23 µm/min). For LimD– we 

observed a slightly lower velocity (8.07 ± 2.93 µm/min) and the double mutant was impaired 

even more (7.65 ± 1.86 µm/min). 

 

 
 

Figure 26: Chemotactic migration of LimD− mutants. Axenically grown cells were 
starved in Soerensen phosphate buffer for 6 h at 210 and allowed to migrate towards the 
microtip filled with 1 mM cAMP. The images obtained with the Olympus IX70 inverse 
microscope equipped with a 20x UplanFl 0.3 objective were recorded on a computer hard 
disk. Arrows indicate the lateral pseudopod extended by cells. LimD− cells form a higher 
number of pseudopods (Table 3).  
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To analyse motile cells in more detail we used a chemotaxis assay and followed the cells with 

time-lapse video microscopy. Wild type as well as LimC– cells were polarised and migrated in 

a rapid and directed way towards the micropipette filled with cAMP (Table 3). Furthermore, 

they extended their pseudopods mainly in the direction of the micropipette and formed very 

few lateral pseudopods. LimD– cells also moved to the cAMP source (Figure 26). However, 

they did not migrate as fast as wild type (Table 4) and formed lateral pseudopods in addition 

to the main pseudopod extended in the direction of cAMP (Table 3), whereas persistence and 

directionality were only slightly impaired. LimD– cells re-expressing LimD protein as a GFP 

fusion rescues the chemotaxis defect. 

 
Table 3. Lateral pseudopods formed during migration towards a cAMP gradient or 
crawling in buffer  
 

  
Cell 
type 

 
Number 
of cells  

 
0-2 lateral 

pseudopods 
per 10min 

(%) 

  
3-5 lateral 

pseudopods 
per 10min 

(%) 

 
>5 lateral 

pseudopods 
per 10min 

(%) 

 
Avg. 

frequency of 
lateral 

pseudopods/ 
cell/10min 

AX2 28 15 53 30 5,3  
Buffer LimD− 23 5 60 34 4,9 

AX2 22 81 18 - 1,45  
Gradient LimD− 25 40 60 - 2,7 

 
Images were taken at 20x magnification every 30 sec. Cells in all cases were analysed for 10 
minutes. A Chi square test was performed between AX2 and LimD− cells on the combined 
data of the three categories of lateral pseudopods formed. The difference between AX2 and 
LimD− in the cAMP gradient was found to be highly significant (1x10-3). 
 
Table 4. Motility and chemotaxis parameters in a spatial gradient of cAMP 

 
Cell 
Type 

Cell number Velocity 
µm/min 

Persistence 
µm/min-deg 

Roundness % 

AX2 47 11,32±1,23  4.40±0,80 75,04±3,43 

LimC− 14 10,19±1,63 4.22±1,28 74,02±0,31 
LimD− 27 8,07±2,47 2,93±1,05 80,22±3,97 

LimC/D− 66 7,65±1,86 2,73±0,94 79,51±4,19 
Rescue 12 8,96±1,06 3,11±0,77 72,83±5,57 

 
Images were taken at 10x magnification for every 30 sec. Cell in all cases were analysed for 
at least 10 minutes. The parameters velocity is distance travelled roundness are described in 
materials and method, persistence is essentially speed divided by the direction change; if the 
object is not turning its persistence is the same as speed. 
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LimC and LimD interact directly with F-actin and comprise Zinc fingers of the LIM domain 

type. LIM domains can for homo- or heterodimers and interact with proteins involved in 

signalling and the cytoskeleton (Khurana et al. 2002). We have found that the LIM proteins 

have a role in cell polarity and chemotaxis. The observed defect in chemotaxis in LimD− 

mutant and LimC−/D− is mainly due to changes in cell morphology and cell shape. The 

morphological analysis showed that the mutants form a higher number of lateral pseudopods, 

which may often lead to changes in direction. Reexpressing the Lim D-GFP fusion protein in 

the mutant rescues the phenotype suggesting that the defect in chemotaxis resides in the loss 

of the function of this particular protein. After cells sense the chemoattractant there are 

spatial-temporal changes in actin polymerization and myosin II assembly. These changes are 

mediated by the cyclic AMP receptor (cAR) which activates heterodimeric G proteins, which 

in turn initiate a signaling cascade involving several proteins such as Pleckstrin Homology 

(PH) domain containing proteins, kinases, Ras family GTPases and enzymes like adenylyl 

cyclase A (ACA) and guanylyl cyclase (GC). Actin is predominantly polymerised at the front 

of cells for anterior pseudopod propulsion through a chemoattractant gradient, and myosin II 

is assembled at the sides to suppress lateral pseudopod formation and at the rear for retraction 

(Kimmel and Parent 2003). Cells with reduced levels of cGMP (sGC and GCA mutants) 

exhibit decreased myosin II phosphorylation and cytoskeletal association in response to 

chemoattractants. These cells do not move efficiently directionally in chemoattractant 

gradients (Bosgraaf et al. 2002 and Roche et al. 2003). Like LimD− mutants cells Lim2–, a 

Lim domain containing protein (Chien et al. 2000), have motility as well as a cell polarity 

defect however, Lim2 does not bind actin directly. Therefore both the proteins might work in 

different pathways. Though LimD¯ mutant exhibit reduced chemotactic migration, the 

phototaxis phenotype of mutant slugs was indistinguishable to that of wild type slug 

(Khurana, 2001). 

 
 
6.3 The villidin− mutant has a defect in chemotaxis as well as in phototaxis   
 
Villidin is a novel multidomain protein (190 kDa) from Dictyostelium containing at its N-

terminus a WD repeat, three PH domains in the middle of the molecule, and at the C-terminus 

only five instead of typically six gelsolin-like segments which are followed by a villin-like 

headpiece. Villidin mRNA and protein are present in low amounts during growth and early 

aggregation, they increase during development and reach highest levels at the tipped 
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aggregate stage. The protein is present in the cytosol as well as in the cytoskeletal and 

membrane fraction31. Villidin protein accumulation is most prominent during development.  

The villidin gene has been inactivated by homologous recombination and several mutants 

were obtained and examined. Growth under several conditions was unaltered. An analysis of 

the development of the mutants on phosphate agar or on nitrocellulose revealed that the 

mutants were moderately delayed in development by about 2-3 hours in early development. 

Analysis of the expression pattern of late development specific proteins and mRNAs did not 

indicate significant alterations (Gloss et al. 2003).  

Here we have analysed the chemotactic motility behaviour during development and observed 

that villidin-minus cells moved significantly slower (8.84±1.6 µM/min) in a cAMP gradient 

than wild type cells (13.53±1.3 µM/min). In later development villidin minus cells exhibited a 

phototactic defect. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. Discussion 
 
 
 
 
1. Subcellular localisation of ddfilamin and its domains 

Filamin localises predominantly in new pseudopods of a Dictyostelium cell. The ABD 

however, although derived from this protein behaves differently. Pang et al. (1997) suggested 

GFP-ABD as a general probe to visualise all known F-actin rich structures such as the cortex, 

pseudopods, filopods, crowns, and contractile furrows. They also showed that GFP-ABD 

rapidly relocalised to sites of new actin accumulation. These data in parallel with biochemical 

data led them to suggest that GFP-ABD bound only weakly to F-actin in contrast to 

phalloidin, a commonly used probe to reveal F-actin. Phalloidin is a drug that binds very 

tightly to F-actin and inhibits its depolymerisation. Pang et al. reported also that in cells 

phalloidin-bound filaments accumulate over time into an aggregate at the rear end of the cell 

whereas GFP–ABD behaves differently which was taken as further indication for its weak F-

actin binding and rapid relocalisation. Our observation with HG1264 cells expressing ABD-

GFP suggest that in the absence of endogenous ddfilamin, the fusion protein also relocalises 

at the rear end of the cAMP stimulated cells, which were moving directionally.  

 

At the biochemical level, the actin incorporation into the cytoskeleton is usually resolved into 

three peaks after cAMP stimulation. The second and third peak occurs during the resumption 

of the pseudopod formation. Pseudopod protrusion is a process that is presumed to require 

new F-actin polymerization and changes in the localisation of existing filaments (Mc Robbie 
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and Newell, 1983). In case of the ddfilamin minus mutant there is significant reduction in the 

amount of actin incorporated into the cytoskeleton in the second and third peaks (Brink et al., 

1990). The reduced amount of the ABD-GFP at the anterior as compared to the rear end of the 

cell could underline this finding. The localisation of the ABD-GFP is also delayed for few 

seconds in newly formed pseudopods. In a population of vegetative cells, most cells are 

polarised and make protrusions in one or two directions, whereas about 5–15 % of the cells 

are round and do not show any polarity. Generally the fluorescent signal of the newly formed 

pseudopodia was higher than that of the surrounding cortex. Biochemical studies estimate that 

roughly 20 % of ddfilamin is associated with the cortical actin cytoskeleton whilst around 80 

% remain unbound in the cytosol, the role of which has remained unclear. Though our results 

are mostly based on the visual observation of the expression of the GFP fusion proteins we 

found that the C terminal rod domain allows the cytosolic location of ddfilamin. The removal 

of the dimerisation domain did not affect the localisation of the protein, as it was identical to 

that of full-length ddfilamin. Our visual observation of the S174AFLC-GFP was also identical 

to that of FLC-GFP. 

 

In the mammalian system it has been found that filamin binds to several proteins. Two 

proteins, Ral1 (Ohta et al. 1999) and protein kinase A (Prat et al. 1999) have been implicated 

in regulation of filamin's actin crosslinking activity. Ral1 is a small G protein of the Rho 

family, which binds in a GTP dependent manner to filamin. The induction of filopods in 

Swiss 3T3 cells requires both filamin and Ral1, suggesting that Ral1 is essential for regulation 

of the filamin function. Protein kinase A (PKA) has been shown to phosphorylate the human 

filamin at S2152 in vitro. This serine residue resides at the proposed dimerisation domain, 

suggesting that PKA may regulate the actin crosslinking activity and its translocation from the 

periphery to the cytosol. Bonner and Williams (1994) suggest that in Dictyostelium in 

addition to its role in cellular differentiation, PKA is required for several important aspects of 

slug behaviour (Bonner and Williams, 1999). 

 

In AX2 cells expressing the RN-GFP protein it forms heterodimers with the endogenous 

protein, which brings the fusion protein into the actin cytoskeleton. The formation of isoform 

specific heterodimers can also occur in mammalian and Drosophila cells. Himmel et al. 

(2003) found that heterodimer formation is possible between filamins b and c but not between 

filamin a, and the other two filamins. Heterodimerisation might link the ligand of one filamin 
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isoform to the ligand of the second isoform, which would increase the complexity of the 

filamin family and its possible functions. 

 
2. F-actin crosslinking by ddfilamin is essential for the rescue of the phototaxis 

defect in ddfilamin− mutants  

Phototactic migration in Dictyostelium is a natural behavior to migrate towards the light 

(Wallraff and Wallraff, 1997) in order to disperse the spores to a favourable environment. The 

formation of slugs and fruiting bodies is a complex process, which involves wide varieties of 

signaling within the cells and among groups of cells. This phenomenon can be compared with 

the development of higher eukaryotes. Before forming a motile slug, single cells from 

starving populations become activated. Stimulated cells produce cAMP pulses and other cells 

in the population respond by migrating towards the signal. This process is called cAMP relay. 

The cells organise into a multicellular aggregate (about 105 cells) where they differentiate into 

prestalk and prespore cells, and form the motile slug. The cells in the anterior 20 % portion 

become the tip consisting of mostly prestalk cells, which controls the migration of the slug. 

With the help of available reliable prestalk specific genes it has become possible to subdivide 

the tip cells into pstA, pstAB, and pstO cells. These subtypes are marked by the expression of 

the ecmA, ecmB and ecmO genes, respectively. PstA cells comprise the anterior 10 % of the 

slug; pstAB cells form a central core in the anterior tip, while a layer of pstO cells follows the 

pstA cells (Abe et al. 1994). It has been shown that the cells in the front move in a scroll 

wave, twisting around the pstAB cone (Seigert and Weijer, 1992 and Seigert and Weijer 

1995). This circumferential movement continues in the pstO area. Cells continue to move 

straight forward in columns with a periodic increase or decrease of speed in the prespore 

zone. 

 

To explore whether the phototactic defect in ddfilamin minus mutants is because of the lack 

of filamin-mediated F-actin crosslinking, or whether this protein controls the phototactic 

signalling pathway, we expressed different domains of the protein in the mutant HG1264 and 

in wild type AX2 cells. AX2 cells overexpressing RN-GFP performed normal phototaxis 

although the ddfilamin mediated F-actin crosslinking may have been disturbed to a large 

extent because of the formation of heterodimers. Western blot analysis of immunoprecipitated 

GFP fusion protein revealed that roughly 50 % of the protein formed heterodimers (data not 

shown). The amount of correct filamin dimers might therefore be sufficient to fulfill filamin's 

function in phototaxis. The expression of single domains in HG1264 cells such as the rod 

domain or the ABD and physically separated ABD and rod domain did not rescue the defect. 
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Summarising these results we may conclude that though the ddfilamin mediated F-actin 

crosslinking is necessary for the phototaxis rescue, partial disruption of this function did not 

alter the accuracy of the phototaxis.  

 

RN-GFP alone and even when co-expressed with the ABD in HG1264 did not localise in the 

actin cortex. This observation led us to generate a deletion construct of ddfilamin that should 

localise normally but should not allow actin crosslinking. Ddfilamin having GFP fused to its 

C-terminus was still able to form homodimers and thus contributes its F-actin crosslinking 

function. We therefore generated a ddfilamin GFP fusion protein without the sixth rod 

domain, which could no longer dimerise. We found that it localised as the wild type protein 

and partially rescued the phototaxis defect in HG1264 such that the slugs migrated over 

longer distances, however they did not migrate towards the light in a directed fashion. This 

result suggests that full-length ddfilamin is necessary for the phototactic rescue where it plays 

a role as F-actin crosslinking protein and transduces signals to the photo/thermosensory 

machinery. Alternatively the dimerisation domain could provide the binding site for the 

proteins crucial for phototaxis. 

 

Miura and Siegert (2000) found that light acts directly on the cAMP-signalling system and 

cell movement. Upon light irradiation, aggregating cells change their periodicity of cAMP 

signalling and cells in the slug tip release cAMP. They also found that concomitant changes in 

cell movement also occurred in slug cells. Our results with solitary amoebae in a cAMP 

gradient show that the filamin minus mutant cells HG1264 and GHR (10.97±2.18µm/min) 

can migrate with equal speed as wild type AX2 cells (11.32±1.23µm/min). It appears that 

ddfilamin does not play a key role in chemotactic migration of the single cells or that other 

proteins can compensate its loss. Association of filamin with membrane receptors such as β-

integrins, its actin crosslinking function and lipid membrane insertion can be controlled by 

phosphorylation. Ohta and Harwig (1995) reported that upon phosphorylation with CaM 

kinase II, the dissociation constant for the binding of filamin to the actin filament increases 

approximately by two folds in vitro. The expression of point mutated full-length ddfilamin at 

the potential phosphorylation site in the ABD rescued the phototaxis defect in HG1264 

mutant in that far, that slugs traveled over shorter distances but oriented correctely towards 

the light indicating that phosphorylation at this site could play a regulatory role in phototactic 

signaling. This partial rescue is not similar to that of Fil5. The latter slugs do not orient 

properly but migrate over longer distances than the parent mutant strain, HG1264. Thus the 



Discussion 77 

   
 

photodetection i.e. orientation of slugs towards the light source and phototactic migration are 

two independent mechanisms. Several mutants have been reported, for example GRP125 

(Stocker et al. 1999) and RasD (Wilkins et al. 2000), which have a defect in photodetection 

but migrate as far as the wild type slugs in the dark. For the photodetection of the slug, F-actin 

crosslinking by ddfilamin is essential, which may control the shape of the pseudoplasmopodia 

that act as a cylindrical lens and the migration of the slug could be controlled by signal 

transduction mechanisms where ddfilamin plays a central role. Häder and Burkart (1983) 

stained wild type slug with Neutral Red and found that slugs eventually migrated away from 

the light. This also underlines that any alteration in the optical properties of the cylindrical 

lens leads to negative phototaxis. Summarising these results we conclude that for the proper 

orientation of the slug towards the incoming light, crosslinking of F-actin into three-

dimensional arrays by full-length ddfilamin is essential. 

 

Dictyostelium filamin is a phosphoprotein. We identified the potential phosphorylation site by 

in vivo phosphorylation. To study the biochemical significance of this phosphorylation, we 

introduced a point mutation and studied the localisation of the protein and rescue activity in 

the phototaxis in HG1264. As discussed before, there was partial rescue for the HG1264 slugs 

expressing the mutated protein. Therefore, we gave priority to identify the kinase responsive 

for this phosphorylation. This is a difficult task because Dictyostelium has several kinases 

among them are homologs of the Ste20p. The Ste20p (sterile 20 protein) is a putative yeast 

mitogen-activated protein kinase kinase kinase kinase (MAP4K) involved in the mating 

pathway. The Ste20 group is further divided into the p21-activated kinase (PAK) and 

germinal center kinase (GCK) families (Dan et al. 2001). The PAK family of serine/threonine 

kinases comprises at least four isoforms that are differentially expressed in mammalian tissues 

(Knaus et al. 1998). PAKa localises in the posterior end of polarised chemotaxing 

Dictyostelium cells. Overexpression of activated PAKa leads to an upregulated assembly of F-

actin and results in multiple actin crowns. Human filamin is phosphorylated at S2152 by 

PAK1, which exhibits 59% sequence identity to the kinase domain of PAKa and Myosin I 

Heavy Chain Kinase (MIHCK) of Dictyostelium. Therefore we have chosen as candidate 

kinases of the STE20/PAKa family proteins to check for a probable kinase phosphorylating 

ddfilamin. Attempts to phosphorylate ddfilamin in vitro with a ‘kinase responsive to stress 1 

like kinase’ from Dictyostelium, a member of the Ste20/Pak protein kinases, were however 

not successful (R. Arasada, personal communication). In continuation of this work we have 
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also isolated the kinase domain of PAKa and Myosine I Heavy Chain Kinase (MIHCK) (data 

not shown) to pursue the in vitro phosphorylation.  

 

3. Filamin in the tip region is essential for slug movement and phototaxis 

It has been shown that the tip region is responsible for directing slug motility and phototaxis. 

Grafting of a tip from a wild-type slug to a non-phototactic mutant allows the slug to move 

directionally (Fisher et al. 1984). To test whether the presence of ddfilamin at the anterior tip 

region of the slug is necessary and sufficient for the phototaxis rescue we expressed ddfilamin 

under the control of cell type specific promoters. The cells that occupy the anterior tip of the 

slug express the ecmA gene most strongly and are called pstA cells (Morrison et al. 1994). 

PstO cells follow the pstA region where the ecmA gene is expressed at a low level. PstAB 

cells occupy the central core of the anterior tip and express both ecmA and ecmB genes 

(Jermyn et al. 1989). Expression of ecmA::FLC-GFP in HG1264, where the fusion protein 

was found expressed at the anterior tip of slugs, corrected the phototaxis defect completely.  

 

The cotB gene, exclusively expressed in the spore coat, is a reliable marker for prespore cells 

(Fosnaugh et al 1994). Expression of cotB::FLC-GFP in HG1264 led to expression of the 

fusion protein at the posterior ¾th part of the slug and did not rescue the phototaxis defect. 

Summarizing these results we may conclude that expression of ddfilamin at the anterior tip of 

the slug is necessary for the normal phototactic migration of the slug where full-length 

ddfilamin may control the quality of the cylindrical lens formed by pseudoplasmopodia. 

Wallraff and Wallraff (1997) suggested that absence of ddfilamin alters the shape of the lens, 

which is formed by the cells at the front and/or enhances the internal light scattering via 

abrogation of intercellular coherence. 

 

4. Interaction partners of filamin suggest a diverse function for the protein 

Immunoprecipitation of ddfilamin from AX2 cells overexpressing FLC-GFP revealed an 

interaction with TipA. MALDI-MS analysis gave a score as high as 305 for the protein band 

at around 90 kDa, the predicted molecular weight for the protein, and a 83 kDa and 60 kDa 

protein which may represent degradation products of TipA. Stege et al. (1999) found four 

Dictyostelium tip genes, tipA, tipB, tipC, and tipD, by REMI analysis. All mutants showed a 

primary defect in cell sorting and the formation of tips in the developing mound; the strains 

aggregated into larger than average mounds, which split up and formed many lips on their 

surfaces. Furthermore, each mutant exhibited cell autonomous defects such as reduced or 
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aberrant cell-sorting behavior, never made migrating slugs, and had severely reduced fruiting 

body and spore production (Stege et al. 1997 and Stege et al. 1999). The tip genes function in 

parallel pathways of early Dictyostelium development. Overexpression of one gene in the 

background of others significantly improves the morphogenesis. The authors furthermore 

found that prespore and prestalk gene expression was reduced or delayed in the tip mutants. 

The tipA gene is expressed in pstO cells where the ecmA gene is expressed at low levels. 

When ddfilamin is expressed under the control of the ecmA promotor, low levels of the 

protein expressed in pstO cells may interact with TipA that may contribute to the functions of 

TipA. The sequence analysis of the tipA gene fails to exhibit its biochemical function. A 

SMART search shows the PP2Cc Ser/Thr phosphatase domain but when using blast, this 

domain does not show the sequence homology with any such proteins. According to the NCBI 

blast search engine, the PP2C domain does not share homology with the PP1, PP2A, PP2B 

family of protein Ser/Thr phosphatases. 

 

The second protein in the co-immunoprecipitation experiment was identified by matrix-

assisted laser desorption–ionization mass spectrometry (Maldi-MS) and peptide 

microsequencing as GAPA. The peptide score in this case was 48. D. discoideum has two 

IQGAP-related proteins that are about 50 % identical. Both DGAP1 and GAPA are involved 

in cytokinesis. GAPA– cells can initiate the formation of a cleavage furrow, but often fail to 

complete cytokinesis (Adachi et al. 1997). Despite their homology to GTPase-activating 

proteins (GAPs), IQGAP-related proteins do not possess GAP activity (Faix et al. 1998). 

Sucurai et al. (2001) demonstrated that almost the entire region of GAPA homologous to 

IQGAP. At least one of the GAPs is essential for the formation of a quaternary complex 

consisting of Rac1, cortexillin I and II. GAPA forms a complex with cortexellins and localises 

them the into cleavage furrow functioning in cytokinesis (Faix et al. 2001). Cortexillins of D. 

discoideum are actin-bundling proteins that organise actin filaments preferentially into anti-

parallel bundles and associate them into three-dimensional meshworks. Cortexillins are 

enriched in the cortex of interphase cells, translocate to the equatorial region of dividing cells 

and are required for the correct positioning of the cleavage furrow (Weber et al. 1999). 

Mutants lacking both isoforms, cortexillin I (CI) and II (CII), are severely impaired in 

cytokinesis and form large multinucleate cells. Ddfilamin resembles the cortexillins in that 

far, that it similarly associates with F-actin filaments to form three-dimensional arrays and 

this activity might be subject to GAPA regulation.  

 



Discussion 80 

   
 

SapA, another probable binding partner for ddfilamin pulled down with mAb 82-421-5, has 

several Sap B domains. Saposin (B) domains are present in multiple copies in prosaposin and 

in pulmonary surfactant-associated protein B. In plant aspartic proteinases, a saposin domain 

is circularly permuted (Taylor, 2000). Not much is known about this protein in Dictyostelium. 

 
5. FIP may function in membrane traffic 
Elucidating the interaction partners of filamin is critical for our understanding of the 

molecular mechanisms that regulate the diverse cellular functions of this actin cytoskeleton 

associated protein. Proteins involved in actin polymerisation and crosslinking the filaments 

into bundles or networks support a broad range of functions. Findings from interaction studies 

with vertebrate filamins indicate an involvement of this protein family in such diverse 

processes as mechanical stability, intracellular trafficking and signal transduction. Vesicle 

transport is a cellular process important in the trafficking of lipids and proteins between 

intracellular organelles. Genetic and biochemical approaches in yeast and mammalian cells 

have identified a large number of proteins that are involved in the various steps of vesicle 

transport including the production of vesicles from donor compartments, the transport and 

docking of these vesicles, and the fusion of vesicles with acceptor membranes (Rothman, 

1994). FIP, the filamin interacting protein, which we have identified in a yeast-two-hybrid 

screen, appears to be a vesicle associated protein. Immunostaining with fluorescently labeled 

antibodies and TRITC-phalloidin however showed that FIP colocalises also to some extent 

with F-actin (Knuth, 2001). Additional information about its association with the actin 

cytoskeleton was gathered from studies using DMSO.  

 

DMSO has long been known to lead to a reversible rearrangement of actin filaments and has 

been used to assess the role of microfilaments in mediating motility and maintenance of cell 

structure (Osborn and Weber, 1980). Redistribution of FIP upon a treatment with DMSO 

indicates that FIP is associated with F-actin, but it is not clear whether this is due to a general 

collapse of cellular structures or whether this is due to specific interactions between FIP 

containing membrane structures and the actin network 

 

6. Microarray analysis suggests that the phototaxis defect in ddfilamin− mutants 

may be due to reduced cell adhesion and defective cAMP wave propagation 

During the first 8-10 h of the developmental cycle, cells in the population come together and 

form a loose aggregate and behave in this structure as identical single-celled organisms whose 

behaviour is coordinated by a complex signalling system. Several genes functioning in 
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adhesion, cell type differentiation and cAMP/cGMP signalling are expressed at this stage. 

Therefore we decided to use RNA isolated at 10 h of development for our microarray analysis 

to understand the global genes involved in the process of phototaxis. 

 

With our microarray data analysis we found that a gene for cAMP phosphodiesterase (PDE) 

was down regulated. PDE is expressed in prestalk cells as a result of the activity of a specific 

promoter. This PDE is a class II phosphodiesterase (psdA) that functions extracellularly, and 

is analogous to the class I cAMP PDE, RegA, which functions within the cell. The 

extracellular PDE can have two roles: it degrades the background cAMP between the pulses 

that are produced every 6 minutes, and plays a role in modulating the gradient as it passes the 

cells (Nanjundiah and Malchow 1976). Overexpression of PDE leads to rapid development, 

presumably because cells spend less time to adapt (Kessin, 2001). The low levels of PDE in 

the GHR mutant may result in elevated levels of cAMP that may cause the cells to adapt and 

the gradient to become less steep.  

 

The level of extracellular cAMP is controlled selectively by PDI, the PDE inhibitor. PDI 

competes with cAMP for binding to PDE. PDI is a glycoprotein and like PDE it is secreted 

during development. Its regulation is precisely opposite to that of the PDE, as it is repressed 

by high levels of extracellular cAMP. Wu and Franke (1990) showed that removing cAMP 

from the developing population of cells leads to a dramatic synthesis and secretion of PDI. 

Our microarray result shows that expression of PDI in GHR is upregulated.  

 

A decrease in PDE expression and an increase in PDI expression in GHR could cause an 

elevation in the cAMP level that in turn activates the PKA. But this presumably moderate 

activation of PKA may not cause any alteration in development as reported by Wang and 

Kupsa (1997). However, the increase in extracellular cAMP concentration in the GHR mutant 

might interfere with the formation of the three-dimensional scroll wave by increasing the 

length of the adaptation. The tip dominance properties of the slug are also disrupted when 

slugs are placed on cAMP. New organizing centers appear along the length of the slug and 

fruiting bodies arise along its length (Nestle and Sussman, 1972 and Schaap and Wang 1985). 

The phototactic turning in case of the GHR mutant could also be explained by elevated levels 

of cAMP at the tip but the question remain unanswered why they turn only clockwise.  
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The majority of genes down regulated can be grouped as genes coding for calcium binding 

proteins like Calcium Binding Protein (CBP), CBP2, CBP4a, CBP7 and additional ones that 

are homologous to CBP3 and some unknown proteins with EF hands, and cell adhesion 

molecules. Prestalk and prespore cells possess qualitatively different, high-capacity stores 

containing distinct amounts of calcium and probably being involved in regulation of the 

anterior-posterior [Ca2+]i-gradient. Micromolar amounts of calcium inhibit the cross-linking 

activity of α-actinin and 34kDa actin bundling protein (Fechheimer et al. 1982) and promote 

the severing activity of severin and gelsolin. Ca2+ induces K+ channels, which increases the 

pH. At pH <7.2, α-actinin, hisactophilin, ADF, and cofilin will bind actin. At pH >7.2, α-

actinin and hisactophilin dissociate from actin, while ADF and cofilin depolymerize the actin 

filament. From this information we may conclude that down regulation of several 

Ca2+sequestering proteins may increase the intracellular Ca2+ concentration, which could then 

activate several Ca2+-dependent kinases, which might negatively regulate the slug migration 

(Endl et al. 1996). Intrestingly amounts of the α-actinin and hisactophilin mRNAs were 

increased. The major F-actin crosslinker in wild type cells is α-actinin, whose activity in vitro 

is at least five times greater than that of ddfilamin (Fechheimer et al. 1982 and Condeelis and 

Vahey, 1982). Its function in F-actin crosslinking could be impaired because of the probable 

increase of the intracellular Ca2+-level. This result underlines our finding that F-actin 

crosslinking by ddfilamin is essential for the phototactic rescue of GHR mutant.  

 

During development, Dictyostelium cells express several adhesion systems that allow cells to 

adhere to each other as they aggregate. We found that several genes functioning as adhesion 

molecules like contact site A (gp80), Csb A (gp24) and the putative adhesion molecule CAD2 

were down regulated. 

 

Early studies by Gerisch distinguished two major classes of cell adhesion sites (Gerisch, 

1980). One class is sensitive to low concentrations of EDTA, while the other is stable in 

EDTA up to a concentration of 15 mM. The EDTA-sensitive cell adhesion sites can be 

divided into two subtypes, the EDTA/EGTA-sensitive adhesion sites and the EDTA-

sensitive/EGTA-resistant adhesion sites (Beug et al. 1973). The glycoprotein gp24, the 

product of the csbA gene, has been implicated in cell-cell adhesion of D. discoideum. There 

are two proteins named gp24a and gp24b, which are 85% identical.  Their genes are expressed 

within a few hours of the initiation of development; their mRNAs accumulate to a peak at 12 

hr and persist until culmination. Two independent adhesion mechanisms, contact sites A and 
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contact sites B, function during the aggregation stage. Our microarray results suggest that 

both mechanisms are partially impaired in the GHR mutant resulting in reduced cell-cell 

adhesion. Further down regulation of the putative adhesion molecule CAD2 supports earlier 

findings with gp80 and gp24a. 

 

The majority of the genes that are down regulated are predominantly expressed in the prestalk 

region. The function of some of the DIF (differentiation inducing factor) regulated genes like 

pst-cathepsin, a papain like cysteine protease is unknown but can be correlated with the 

function of earlier genes found down regulated. Another gene, fatty acid desaturase gene, was 

significantly upregulated. Li et al. (2001) investigated the role of Sphingosine-1-phosphate 

(S-1-P) lyase, an enzyme that functions in fatty acid metabolism and catalyses Sphingosine-1-

phosphate degradation, and found that it also controls the slug migration.  

 

The acetylornithine deacetylase mRNA was also found to have increased levels. This is an 

enzyme important in the ammonia metabolism. Ammonia, the major component of the amino 

acid catabolism, regulates the migration of the slug indirectly. As long as ammonia levels are 

high, the slugs will not culminate and form fruiting bodies rather, they will continue to 

migrate as slug. Acetylornithine deacetylase is involved in arginine biosynthesis. Arginine 

along with ornithin in human can be used for ammonia detoxification. Significant induction of 

this gene in the ddfilamin minus mutant could explain the reduced migration of the slug and 

early formation of fruiting bodies.  

 

We also found that profilin, a ubiquitous G-actin sequestering protein (Karakesisoglou et al. 

1999) in eukaryotic cell is down regulated. Its regulation is controlled by membrane 

phospholipids like PIP2 or its precursor PIP. Profilin binds to several proteins that include 

actin related protein or VASP. The profilin-minus mutant showed a severe and complex 

phenotype: single cells were up to 10 times larger than wild-type cells, the F-actin content was 

increased, motility decreased, and development ceased at early culmination. Profilin-minus 

cells were impaired in cytokinesis and formed multinucleated cells that grew on surfaces but 

could not withstand the shearing forces in shaking culture. The down regulation of the profilin 

along with reduced cell adhesion might be more relevant to our findings regarding the 

enhanced phagocytosis of the GHR cells than the defect in phototaxis. Genes encoding 

hypothetical proteins of unknown function and genes coding for proteins whose function 

cannot be correlated with phototaxis and phagocytosis are not discussed here. 



  

 

 

 

 

 

 

 

 

 

 

 

 

V. Summary 
 

 

 

Dictyostelium discoideum is a soil-living social amoeba, feeds on bacteria and lives as 

a solitary unicellular organism when food is plentiful. However, when cells undergo 

starvation, the programmed expression of various genes allows the cells in the population to 

aggregate and differentiate into a motile multicellular organism, the slug. Slug sense smallest 

difference in temperature and migrate towards the light. Phototaxis is a complex phenomenon 

where several genes have been suggested to be involved, but filamin emerged as the first 

cytoskeletal protein, whose absence led to a severe defect in phototactic migration of slugs 

without any alteration in development. Filamin− slugs migrate less distance with an angle of 

about 450 towards either side of the incoming light and almost every trail of phototaxing slugs 

ends up with a typical clockwise turn, similar turns are also observed when wild type slug 

migrate in dark. During our investigation we have tried to find out how a single cytoskeletal 

protein controls a complex phenomenon like phototaxis. 

 

In an attempt to understand, whether the defect is due to the actin crosslinking activity 

of filamin we expressed the actin binding domain and the rod domain of ddfilamin fused to 

GFP in HG1264 and GHR (these filamin− mutants, respectively generated by chemical 

mutagenesis and homologus recombination, show a imilar phenotype). We found that both the 
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domains were unable to rescue the phototaxis indicating that filament crosslinking by filamin 

might be important for phototaxis. RN-GFP when expressed in AX2 cells forms a 

heterodimer with the endogenous protein and can interfere with the crosslinking function of 

endogenous filamin. The results from the phototaxis analysis however indicated that partial 

disruption of this function did not alter the phototaxis. To follow up this question, we 

expressed a filamin lacking the region responsible for dimerisation in HG1264 cells. Slugs 

expressing this protein, migrate longer distances but were impaired in sensing the light as 

their parent strain, suggesting that actin crosslinking by filamin controls the phototactic 

turning of the slugs. We detected and generated a point mutation at a potential 

phosphorylation site, which was located in the actin binding domain of filamin. This mutation 

did not affect the localisation of the protein at the subcellular level but it affected the rescue 

potential of the protein. The HG1264 slugs expressing the mutated protein were oriented 

accurately but traveled less distance as compared to wild type slugs. Several researchers have 

shown that the anterior tip of the slug controls the migration of the slug. Accordingly, 

expression of the full-length filamin in cells at the anterior tip was essential and sufficient to 

rescue the phototactic defect of the mutant. 

 

The confocal microscopic study of RN-GFP expressing cells suggests that the fusion 

protein does not localise properly in mutants whilst when expressed in AX2 cells it localises 

at the cell cortex and the phagocytic cup. Expression of RN-GFP affected the phagocytosis in 

both mutants as well as wild type cells and led to a significant reduction. Our studies also 

revealed that the rate of phagocytosis in the mutant was higher as compared to that of AX2 

cells.  

 

Chemotaxis towards cAMP plays a pivotal role during Dictyostelium development 

including the slug migration. Detailed analysis of LIM protein mutants for chemotaxis 

revealed that LimD controls the cell migration by affecting the formation of lateral 

pseudopods as the cells lacking LimD form a higher number of pseudopods and migrate less 

persistent towards the cAMP gradient. The phototactic behavior of this mutant was 

indistinguishable from wild type cells indicating that the chemotactic migration of cells within 

the slug might not be controlled by this protein although the possibility of the mutant cells 

performing a normal chemotaxis at the higher concentration of cAMP within the slug 

environment cannot be ignored. 
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To understand the involvement of filamin in signal transduction controlling the slug 

migration and phototaxis we identified proteins interacting with filamin by biochemical 

methods. TipA, a protein, which controls the tip formation of the slug and has a role in pattern 

formation, along with GAPA, an IQGAP family protein, and SapA, a SapB domain 

containing protein with unknown function in Dictyostelium, were found as potential 

interacting partners. The significance of these interactions is currently under investigation.  

 

Finally, the microarray analysis results suggest that the phototactic defect in the 

mutant slugs may be due to elevated levels of extracellular cAMP, which may disturb the 

generation of the wave by increasing the adaptation of cells to cAMP. The down regulation of 

several calcium binding protein genes and adhesion molecules such as csA, gp24 and 

ddCAD2 might also be of relevance in this process. Though expression levels of α-actinin, a 

major actin croslinking protein and hisactophilin, a pH-dependent actin crosslinking protein, 

are elevated, their functions might be impaired because of increased levels of intracellular 

calcium.  
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V. Zusammenfassung 
 

 

Das Zytoskelett einer Zelle ist in vielfältige Prozesse involviert. Es ist wichtig für die 

Bewegung, für Zell-Zell-Kontakte, Zell-Substrat-Anhaftung, für die Zellteilung und für 

intrazelluläre Transportprozesse. Für die Aufrechterhaltung dieser verschiedenen Funktionen 

sind neben den Hauptkomponenten des Zytoskeletts, Aktin, Tubulin und 

Intermediärfilamente, die akzessorischen Proteine der Filamentsysteme von entscheidender 

Bedeutung wie vor allem Mutantenanalysen gezeigt haben. Die hier vorgestellten Arbeiten 

sind in Dictyostelium discoideum durchgeführt worden, einem eukaryontischen 

Mikroorganismus mit einzelligen und mehrzelligen Entwicklungsstadien, der zur Analyse von 

verschiedenen zellbiologischen Fragestellungen wie der Rolle und Funktion des Zytoskeletts 

hervoragend geeignet ist.  

Filamin (Gelationsfaktor, ABP120 oder ddFilamin) gehört zur Gruppe der aktinbindenden 

Proteine, die Aktinfilamente quervernetzen und den Aufbau von dreidimensionalen 

Aktinstrukturen ermöglichen. Es besteht aus einer aktinbindenden Domäne und sechs 

Wiederholungseinheiten von je einhundert Aminosäuren, die für die Ausbildung seiner 

stäbchenförmigen Struktur verantwortlich sind und über deren letzte Einheit die 

Dimerisierung des Moleküls erfolgt, die die Grundlage für die Quervernetzungsaktivität von 

Filamin bildet. Dictyostelium Mutanten, denen Filamin fehlt, sind im multizellulären 

Slugstadium beeinträchtigt. Slugs orientieren sich normalerweise auf das einfallende Licht hin 
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und wandern darauf zu, während Filamin− Mutanten eine veränderte phototaktische Reaktion 

aufweisen und in einem Winkel zum Licht hin und über kürzere Strecken wandern.  

Um zu verstehen, welche Eigenschaft von Filamin für diese veränderte Reaktion 

verantwortlich ist, sind einzelne Domänen in der Mutante exprimiert und auf ihre Fähigkeit 

hin, den Phototaxisdefekt zu kompensieren, getestet worden. In diesen Untersuchungen 

konnte der Phototaxisdefekt vom Motilitätsdefekt getrennt werden, wobei für eine verbesserte 

Motilität die Expression eines verkürzten Proteins ausreichend war, das aus aktinbindender 

und verkürzter stäbchenförmiger Domäne bestand und das auf Grund der fehlenden letzten 

Wiederholungseinheit nicht mehr in der Lage war zu dimerisieren. Der Phototaxisdefekt war 

dagegen nicht aufgehoben. Dies verweist auf die Bedeutung der Quervernetzungsaktivität des 

Proteins für diese Aktivität. Eine Mutation in einer potentiellen Phosphorylierungsstelle in der 

aktinbindenden Domäne korrigierte dagegen den Phototaxisdefekt, beeinträchtigte aber die 

Slugmotilität. Schliesslich konnte gezeigt werden, dass eine Filaminexpression in den Zellen 

an der Spitze des Slugs, den sogenannten Tipzellen, ausreicht, um den Phototaxisdefekt 

vollständig aufzuheben. Diese Daten in Kombination mit Daten aus anderen Gruppen lassen 

darauf schliessen, dass die Qualität der Spitze entscheidend für die Wirkung des Lichtes ist. 

Weitere Daten zur Genexpression in der Mutante und die Identifizierung von Filamin-

Bindeproteinen weisen auf Veränderungen in der cAMP Signaltransduktion in der Mutante, 

die die Ursache für die veränderte Slugmotilität sein können 
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VII. Abbreviations 
 
 
APS    ammonium persulphate 
bp    base pair(s) 
BSA    bovine serum albumin 
Bsr    blasticidin resistance cassette 
cAMP   cyclic adenosine monophosphate 
CCD   charge-coupled device 
cDNA    complementary DNA 
CIAP   calf intestinal alkaline phosphatase 
dNTP    deoxyribonucleotide triphosphate 
DMSO   dimethylsulphoxide 
DNA    deoxyribonucleic acid 
DNase    deoxyribonuclease 
DTT   1,4-dithiothreitol 
ECL    enhanced chemiluminescence 
EDTA    ethylenediaminetetraacetic acid 
EGTA    ethyleneglycol-bis (2-amino-ethylene) N,N,N,N-tetraacetic acid 
G418    geneticin 
GFP   green fluorescent protein 
GST    glutathione S-transferase 
HEPES   N-(2-hydroxyethyl) piperazine-N’-2-ethanesulphonic acid 
HRP    horse radish peroxidase 
IgG    immunoglobulin G 
IPTG   iso-propylthio-galactopyranoside 
Kb    kilobase pairs 
KD   kilodalton 
MES    morpholinoethansulphonic acid 
β-ME    beta-mercaptoethanol 
MOPS    Morpholinopropanesulphonic acid 



 

   
 

MW    molecular weight 
NP-40    nonylphenylpolyethyleneglycol 
OD    optical density 
PAGE    polyacrylamide gel electrophoresis 
PCR    polymerase chain reaction 
PIPES    piperazine-N,N’-bis(2-ethanesulphonic acid) 
PMSF    phenylmethylsulphonylfluoride 
RNA    ribonucleic acid 
RNase   ribonuclease 
rpm    rotations per minute 
SDS    sodium dodecyl sulphate 
TEMED   N,N,N’,N’-tetramethyl-ethylendiamine 
TRITC   tetramethylrhodamine isothiocyanate 
UV    ultraviolet 
vol.    volume 
v/v    volume by volume 
w/v    weight by volume 
X-gal    5-bromo-4-chloro-3-indolyl-D-galactopyranoside 
 
 
 
 
Units of Measure and Prefixes 
 
Unit Name 
 
°C    degree Celsius 
D    Dalton 
g    gram 
h    hour 
L    litre 
m    metre 
min    minute 
ng   nanogram 
sec.    second 
µg   micgogram 
V    volt 
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