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Preface

The quest to understand the physics of strongly correlated fermion systems be-
longs to the most challenging and active fields in condensed matter physics. Vari-
ous experiments on high-temperature superconductors (HTSC), heavy-fermion
alloys and organic materials with their often reduced dimensionality have shown
that strong interactions are a central ingredient for the understanding of their
physical properties.

The aim of condensed matter theory is to understand the macroscopic beha-
viour of ~ 1023 interacting fermion systems, starting from a detailed microsopic
description of the individual particles and the way they interact. However, the
description is restricted to the theoretical models that capture all the necessary
ingredients to discuss the physical behaviour one seeks to understand.
Historically, the theoretical basis for understanding the behaviour of electrons in
solids is based on Landau's Fermi-liquid theory in which the electrons are ex-
pressed in terms of quasi-particles, describing single particle excitations of the
non-interacting system, and in addition in terms of collective excitations. How-
ever, in some new metallic systems, such as the HTSC, several anomalous prop-
erties have been observed indicating that the Fermi-liquid theory does not provide
a suitable description. Apart from the HTSC, this general picture of interact-
ing quasi-particles is known to break down in one-dimensional metallic systems in
which the concept of a Tomonaga-Luttinger liquid with purely collective excita-
tions obeying Bose rather than Fermi statistics is successfully applied.

Numerous (lattice) models have been developed and studied in order to explain
these various manifestations of strongly correlated electron behaviour. The most
prominent one is the Hubbard model, where the motion of electrons is controlled
by the hopping amplitude t, in competition with the on-site Coulomb interaction
U. The discovery of the HTSC compounds in 1986 has revitalized the investigation
of the Hubbard model, since several mechanisms proposed to explain the HTSC
invoke properties of the two-dimensional Hubbard model and probably also some
one-dimensional aspects are relevant.

Despite of its simplicity only a few rigorous results exist (in any dimension). Hence
it is very constructive to consider the one-dimensional counterpart, because ana-
lytical as well as numerical tools are much more elaborated in one dimension.
Moreover, quantum fluctuations and collective effects are generically strong in
low dimensional systems providing a fascinating and challenging area for theoret-
ical physicists.

A great variety of non-perturbative analytical and numerical techniques for low
dimensional correlated systems have been developed, having their strengths and
limitations. For instance, the one-dimensional Hubbard model can be solved ex-
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actly by the Bethe ansatz, but more realistic models including further interactions
are no longer integrable. Other techniques like bosonization give a reliable de-
scription of the physics only in the weak-coupling limit. However, in combination
with (exact) numerical tools bosonization becomes a powerful technique.

Due to the rapid evolution of computer technology, a considerable progress in
the development of new numerical algorithms has been made. Perhaps the most
important one is the density matrix renormalization group (DMRG) method which
was developed by White in 1992. This numerical technique, which is the main tool
of the present thesis, leads to highly accurate results for the low-energy physics of
one-dimensional quantum systems. The DMRG algorihm is based on the following
simple but effective concept: the ground-state wavefunction as well as the low
energy excitations of a large interacting chain are obtained by increasing the lattice
size iteratively, starting with a small one that can be diagonalized exactly. The
exponentially growing Hilbert space is controlled by a renormalization procedure
in which 'less important’ degrees of freedom are integrated out.

Motivated by the discovery of triplet superconductivity (TS) in SroRuO4 as well
as the coexistence of the TS phase with ferromagnetism in UGey, URhGe and
ZrZn2 and the indication that the quasi-one-dimensional conductors (Bechgaard
salts) (TMTSF),ClO4 and (TMTSF)2PFg under pressure are triplet supercon-
ductors we study a rather simple extension of the Hubbard model with transverse
(XY-type) anisotropy showing close proximity of triplet superconducting and fer-
romagnetically ordered phases.

Layout of the Thesis

Chapter 1 starts with an overview of interacting electrons in one dimension based
on the concept of a Tomonaga-Luttinger (TL) liquid which is described in the
framework of a weak-coupling continuum limit approach. The TL and Luther-
Emery (LE) theory of an interacting gas model is used for the interpretation of
our numerical results.

Chapter 2 is dedicated to the Hubbard model and its extensions. Starting with
the derivation of Hubbard's tight-binding approximation of electrons in a Coulomb
potential, we summarize basic properties of these lattice models. In one dimension,
where the (extended) Hubbard model belongs to the universality class of either
a TL liquid or a LE phase, the pure Hubbard model is exactly solvable by the
Bethe ansatz. We give an outline of this technique and close with a discussion
of some extended versions of the Hubbard model exhibiting 'superconducting’
phases, characterized by dominant pair correlations.

Chapter 3 gives a detailed description of White's density matrix renormalization
group method and its historical context, beginning with the Lanczos algorithm
which is applied within our DMRG routine. After outlining the two types of al-
gorithms and its improvements, we show how to evaluate (fermionic) local expect-
ation values and correlation functions. Finally, the relation to the matrix product
ansatz and some extensions of the DMRG method will be disccused.

Chapter 4 presents our numerical results for the Hubbard model with transverse
spin-exchange. At first, we reflect the weak-coupling phase diagram using the
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bosonization technique and continue with the analysis of our numerical data for
the half-filled case confirming the bosonization results. Additionally, we discuss
a new phase, which is absent in the weak-coupling investigation, and close this
part with a discussion of the phase diagram for the half-filled model. Afterwards,
DMRG data for the quarter-filled band are analyzed, as a basis for further studies.
Chapter 5 contains the conclusion of this thesis and gives perspectives for further
research on the presented topic.



1. Interacting electrons in 1D

Why are solids in one dimension so special? Already the topology of the Fermi
surface which is described by only two discrete points in one dimension and a
continuous sphere in more than one dimension indicates that one dimensional
interacting systems might behave different. In two and three dimensions the
low-energy physics of interacting fermions is well described by the Fermi liquid
theory developed by Landau [1, 2, 3]. However, in one dimension Landau’s theory
breaks down and the unusual physical behaviour is characterized by the so-called
Tomonaga-Luttinger liquid, a name coined by Haldane [4]. The basic model in
this context is usually called Tomonaga-Luttinger model [5, 6] and was solved
exactly by applying the bosonization method [7].

After outlining the collapse of Fermi liquid theory in 1D, the description of the
Luttinger liquid as a universality class of gapless one dimensional interacting sys-
tems will be the subject of the following sections. In addition, a universality class
characterized by a gap in the spin excitation spectrum will be discussed. The
corresponding model is called Luther-Emery model [8].

1.1. Fermi liquid theory and its breakdown

In Landau’s theory the fundamental degrees of freedom of the system are quasi-
particles which allow a one-to-one correspondence between non-interacting and
weakly interacting systems. This is possible because weak interaction in principle
does not destroy the Fermi surface, i.e. the shape of the momentum distribution
function n,(k) changes, but the finite discontinuity at the Fermi surface |k| = k¢
remains (cf. with the left-hand side of Fig. 1.1).

This discontinuity can be explained on the microscopic level in terms of Green's
functions. In the non-interacting case the one-particle Green’s function

1

Golkw) = o el

(1.1)
has a pole on the real axis describing a single-particle excitation with a well defined
dispersion w = €q(k). Note that the corresponding spectral function is simply a
delta-function, i.e. Ag(k, w) = 6(w—ep(k)). However, if interactions are switched
on, then the Green's function has the modified form

1
w+i0 —eo(k) — Z(k,w) "’

G(k,w) = (1.2)

where the difference between the non-interacting and interacting Green'’s functions
is expressed through the self-energy 3 (k, w) which contains all many-body effects.
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Now the single-particle excitations are given by the poles of G(k,w) while the
self-energy 3 (k, w) provides the damping of these excitations. However, a single
solution which is characterized by only one pole with finite residue

gio1-Z <1, (1:3)

implies a normal Fermi liquid. The amplitude z, gives the magnitude of the
discontinuity of the momentum distribution function at the Fermi surface (cf.
with the left-hand side of Fig. 1.1). The corresponding Green's function becomes
Z
w—ek)+i/T’
after expanding the self-energy to second order around the Fermi surface. Of
course, it is essential that X (k,w) has an analytic expansion about w = 0 and
|k| = kg. For long timescales

Tt =—zImZ(k,w=0)—0 (k— kg) (1.5)

G(k,w) = Gincon(k, w) + (1.4)

the second term of Eq. (1.4) gives a broadened delta-peak in the spectral func-
tion, whereas Gincon(k, w) corresponds to a smooth incoherent background. The
damped peak at the energy e(k) o €q(k)zc expresses the fact that excitations
have the character of quasi-particles. The breakdown of the Fermi liquid theory in

no (k) no (k)
T 11
T
4 Zk \
J !

I
I
T ;
ke k ke k

Figure 1.1.: The figure shows a qualitative plot of the single-particle mo-
mentum distribution function nys (k) at temperature T = 0. Left:
finite discontinuity at the Fermi momentum kg for a system of
interacting fermions in more than one dimension (FL: Fermi li-
quid). Right: absence of a discontinuity in an interacting system

in one dimension (TLL: Tomonaga-Luttinger liquid). The dashed

lines show the non-interacting case.

1D is signalled by either the appearance of multiple solutions indicated by multiple
poles or if zx = 0, manifesting a continuous momentum distribution function, as
illustrated in the right-hand side of Fig. 1.1.

1.2. The concept of Tomonaga-Luttinger liquid

In the limit of weakly interacting fermions only states close to the two Fermi
points +kr are important. For this reason it is possible to linearize the spectrum



Interacting electrons in 1D

€(k) around kg which is leading to two branches of particles, the right movers
and the left movers. Note that in a simple lattice model (see Sec. 2.1 for details)
one would have g(k) = —2tcos(k), where t describes the motion of particles
to neighbouring lattice sites. In the continuum-limit theory one then obtains
four scattering processes which describe the interaction among these particles.
Two scattering processes characterize the Tomonaga-Luttinger (TL) model which
can be solved exactly within the framework of the bosonization technique. The
determined TL parameters describe the physics of this model. This will be the
subject of the following parts.

1.2.1. Free electrons in continuum limit

The microscopic Hamiltonian describing non-interacting electrons has the well-
known form

Ho = Ze(k)clvgckya, (1.6)
k,o

where o and CLO_ are the standard annihilation and creation operators for an
electron with momentum k and spin o = {1, | }, expressed in second quantization.
The summation over k is limited to the first Brillouin zone [—7/aqg, ™/ag], where
ag is the lattice spacing. Note that each momentum state k can be filled by
two electrons of opposite spins (Pauli principle), thus k = 2m/L x n with n =
0,£1,4+2...,£(L/2—1),L/2 has to be used (here with ag = 1). The quantity
L is the total number of lattice sites.

In the continuum limit (ag — 0) the Brillouin zone extends to [—oo, oo] and the
annihilation and creation operators are mapped to analogous fermionic fields. For
instance, the field operator of the corresponding annihilation operator ¢, , and its
inverse transformation are given by

+L/2

1 & 1 A
Vo)== 3 e, and %Zﬁ/ dx e W (x), (1.7)
k=—00

—L)2

where the momentum k = 27/L x nis not bounded, i.e. n=0,+1,+£2 .... The
continuous variable x is related to the discrete lattice site n through x — nag.

In the weak-coupling approach one assumes that the low energy physics is only
relevant near the two Fermi points k. Therefore, it is possible to linearize the
energy spectrum €(k) = ve(k — kg) for right movers and e(k) = —vg(k + kg) for
left movers with

Oe(k) 0 cos(k)
VE = x ———= , (1.8)

which expresses the relation between the linearized spectrum and the lattice one.
Moreover, one decomposes the sum in expression (1.7) into two parts, corres-
ponding to kK > 0 and k < 0, and then shifts each sum by kg so that k =0
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corresponds to the Fermi points:

1 . 1 .
wa(X) = ﬁ Z eIkXCk,U + ﬁ Z elkXCk,U

k>0 k<0
1 = 1 &
_ 1 oilkke)x L oilk—ke)x
= g (x) e Y, (%) (1.9)

The smooth field operators ¥ g and 1; describe right- and left-movers with mean
momenta centered around +kg. By using formula (1.9) the real space counterpart
of the free fermion Hamiltonian (1.6) then reads

+L/2
Ho=ive [ dx 3 (Why (00, ()~ WL, 0000,(0) - (110)

—L)2

For the derivation one must note the following: the cross terms between left and
right components will make no contribution because the smooth left and right
fields have no overlap if the fluctuations around kg are assumed to be small.
Finally, a first order Taylor expansion has been applied

"pn,a(X + 30) ~ wn,U(X) + 306X¢n,U(X) (1-11)

for each branch n € {R, L} of the dispersion curve. Sometimes we will use the
notation n € {+1, —1} instead of R and L and furthermore o € {+1, —1} instead
of T and |.

1.2.2. Scattering processes

Due to the special topology of the one-dimensional Fermi surface, the space for
collisions between particles is strongly limited compared to higher dimensional
systems. By energy and momentum conservation alone, the corresponding low-
energy scattering processes, restricted to the two Fermi points +kg, can be clas-
sified into four different types. These four species of collisions are illustrated in
Fig. 1.2. Next, the coupling constants for electrons with parallel spins will be
denoted by the subscript '||" and those with anti-parallel spins by "L’. Following
[9], the scattering process with coupling g4 describes forward scattering, where
all four participating electrons belong to a single branch. Using the smooth field
operators P g and 1; the Hamiltonian reads

1
HI oY 5 (94 00,07 + 941 06, —o') > oWl o, o (1.12)
n

o0’

The dispersion, characterized by g», corresponds to similar events but involves
electrons on both branches. The interacting Hamiltonian has the form

,Hi%zt X Z (92” 60,0” + 921 60’,—0”) TIJJ/IQVUTPI’U/TPL’U/TPR'U . (113)

o0/
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94

forward

g3
Umklapp

—— — - =

Figure 1.2.: The four scattering processes in the so-called g-ology nomen-
clature for right-moving (solid lines) and left-moving (dashed
lines) electrons in one dimension. In all these processes the spin
dependence is suppressed.

Note that in both processes the associated momentum transfer is small. The
g1 event describes backward scattering, where each electron changes branch but
keeps its spin. This contribution is given by

,Hﬁ]lt X Z (91|| 60,0’ + 911 60,—0’) TPE'(,?PI,J/?PR’J,?PL’J . (1.14)

o0/

The momentum transfer is of order 2kg. Finally, the Umklapp process (two left
electrons become right electrons or vice-versa) is denoted by g3 and is important
only if the band is half-filled, i.e. only if 4kr is equal to a reciprocal lattice vector.
The process is expressed by the term

1
Hiji Z 5 (93] 05.0' + 931 00,— ) Z 1!’17,01!/:7'0,1#_,7'0,1!)_,7'0 : (1.15)
n

o,0/

Since the effect of gy is indistinguishable from that of g5, one may set g, =0
without loss of generality. A spin-rotationally invariant model further reduces the
number of independent couplings. Note that scattering processes of type g- and
g4 do not break symmetries. In contrast, the Umklapp process g3 breaks the con-
servation of individual charge currents and a charge gap opens if the interactions
are attractive (gs < 0). Similarly, the attractive backscattering process g; < 0
breaks the conservation of individual spin currents and a gap in the spin excitation
spectrum opens.

A detailed renormalization group analysis of this interacting gas model is given
by Sélyom [9]. For particular combinations of these coupling constants exact
solutions are known. On the one hand there is the gapless Tomonaga-Luttinger
(TL) model and on the other hand there is the Luther-Emery (LE) model having
a gap in the spin excitation spectrum. Both models can be solved exactly by
expressing the fermionic field operators in terms of boson operators [7, 8].
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1.2.3. Bosonic representation of the TL model

The TL model is a particular model of the interacting Fermi gas, Egs. (1.12)-
(1.15) and Eq. (1.10), in which the bosonization technique yields an exact solu-
tion. The Hamiltonian of the TL model for spin-1/2 particles reads
Hro = Ho+HZ +HX

int int

(1.16)
= iVF/dXZ"?U}I;,U(X)ann,J(X)
omn

+ / dx Y (o) .0 + 921 8o,—01) Y W] ()Y, 0 (PR 5(X)

o0’

dx
- / 5 D (941000 + 91 00,—t) Wl o ()W 00 (VP o0 () ().
o,0'\n
A bosonic formulation of (1.16) is described by two independent bosonic fields,
one representing the charge and the other the spin degrees of freedom. The
fermionic field operators ¥, , are represented by bosonic operators ®,, , via the
identity [10]
1
X) = ——=Fpoexp|i®ns(x)], 1.17
Yo (x) e MO p [iPn,o(X)] ( )
where a is a short distance cut-off that is taken to zero at the end of the calcula-
tion and the so-called Klein factors Fy, , are responsible for reproducing the correct
anticommutation relations between different fermionic species. The bosonic fields
®,,5, which obey
[®) 6 (x), D, ()] = =T 8y 6,00 SigN(x — X'), (1.18)
in turn are combinations of bosonic fields ¢, and their conjugate momenta 96,
where the subscript denotes charge (i = ¢) or spin (4 = s) degrees of freedom.
The relation is given by

cD”Iﬂ' = \/g [(BC - 77¢c) + 0(95 - 77¢s)] ) (119)

where ¢, and 0,, satisfy the following commutation relation

[pu(x), 6 (x)] = %5%/1’ sign(x — x'). (1.20)

From a physical point of view, ¢. and ¢ are the phases of the charge density
wave (CDW) and spin density wave (SDW) fluctuations, i.e.

p(x) ~ \/%axqsc(x) and  5%(x) ~ \/;axd)s(x)v (1.21)

whereas 0. describes the superconducting phase (see chapter 4 for details). The
Hamiltonian can now be expressed as a sum of two decoupled pieces of bosonic
oscillators involving either charge or spin density wave eigenmodes

HE = / dx ) <V“2K L1846, ()] + QVT“M[aX%(X)]?) . (1.22)

u=c,s
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In terms of the parameters gjc = g;; + gi1 and gjs = g;) — giL (i = 2,4) the
charge and spin velocities are

2 2
9au 9ou
= 1 =) . 1.2
Vi VF\/( +27er> <27er> (1.23)

One spectacular consequence is the so-called spin-charge separation (cf. with
Eq. (1.22)) which is completely absent in higher dimensions. In this description
this is due to the fact that spin and charge density modes propagate with different
velocities (vs # v¢) and therefore will separate with time. The parameters K\,
which determine the decay behaviour of the correlation functions, are

K |2TVES Gan — Gou (1.24)
ooV 2mvE gt gon '

Note that the properties of the TL model are completely described by the set of
parameters {v,,, K,}.

1.2.4. Single- and two-particle correlation functions

In this section we give a summary of the correlation functions from which the phys-
ical properties of the TL model may be obtained. Here we will restrict ourselves
to the SU(2) spin-invariant model with Ks = 1.
From our previous discussion of spin-charge separation it is already obvious that
the TL system is not a Fermi liquid. This can be made more precise. After apply-
ing the Fourier transformation on the single-particle Green's function G4 (x, t) the
corresponding momentum distribution function in the vicinity of the Fermi surface
reads

ne(k) = ny(kr) — const. x sign(k — kg)lk — kg|7, (1.25)

where the exponent 7y has the explicit form
1
fy:Z(KC+KC_1~2)20. (1.26)

Note that for any nonvanishing interaction (K. # 1) the discontinuity at kr is
absent, i.e. ng(k) is continuous (cf. with section 1.1).

The coefficient K. also determines the long-distance decay behaviour of all other
correlation functions (O (x)O(x")) in which the order parameter © describes an
instability of the systems. The relevant operators which can take on non-zero
expectation values are the 2k CDW and SDW instabilities and the singlet (SS)
and triplet (TS) superconducting operators. An explicit fermionic and bosonic
expression will be discussed in chapter 4.

The asymptotic shape of the correspondig correlation functions can be calculated
exactly (see [11] and references therein). In detail, one obtains

1. for the density-density correlation (similar to CDW)

A Aq cos(2krr As cos(4ker
@@ww~§+lﬂ&f)+2H%Fhmw (1.27)
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2. for the spin-spin correlation (similar to SDW)

5 5 By  Bicos(2kgr)
(5%(0)S (r)>~r—20+1rchF+..., (1.28)

3. for the singlet-pair correlation

Co C1 cos(2kgr)

T ~Y
(0Ls(0)055(n) ~ ez + = (1.29)
4. and for the triplet-pair correlation
D D 2k
(O15(0)Or5(1) ~ —2 4 DLcos(Zker) (1.30)

K KK 1+2

The constant coefficients A;, B;, C; and D; are model dependent. The algebraic
decay of each correlation function is characterized by the exponent K. only. For
K¢ < 1 spin or charge density fluctuations will be enhanced, while for Ko > 1
pairing fluctuations will dominate.

Note that logarithmic corrections, sometimes included in the above formulae [12],
have not been taken into account because they are not important as long as one
is only interested in the asymptotics r > 1 of the correlations.

In general, 1D quantum-systems with short-range interaction and gapless excita-
tions are critical at zero temperature. In such a case, various correlation functions
show power-law decay. Otherwise, i.e. in the presence of a gap (cf. with Sec. 1.3),
they may decay exponentially and the corresponding correlation length £ is de-
termined by the gap. Closing of a gap indicates a divergent correlation length.
In the limit & — oo the corresponding correlations show power-law decay. Note
that long-range order (LRO) in 1D quantum-systems at finite temperature T > 0
is forbidden by the Mermin-Wagner theorem [13]. This statement is also valid
for T = 0 [14] as long as the models are described by continuous symmetries.
However, models with a discrete symmetry (cf. with chapter 4) admit LRO even
in 1D. Therefore, 1D phases are best characterized by the asymptotic behaviour
of the correlation functions.

1.3. The Luther-Emery phase

The TL model is very restrictive since the interaction parameters g, and g4 are
associated with a small momentum transfer whereas any realistic model with
interaction of type

1
Hint = Z Z V(q)C/-(r-Fq,O’C/-(r’—q,J’Ck’,J’Ck,o' (131)
k,k',q,0,0'

also contains contributions with g > 2kr. Note that the choice of parameters
under which the numbers of right and left movers are conserved is essential in
guaranteeing the exact solvability of this model.
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Additional terms like g; or g3 destroy the symmetry because they change the
individual particle numbers. The Hamiltonian of the TL model (1.22) in which
processes like

g

HgBu = 2(7:;)2/dxcos(\/87r¢s) or (1.32)
9

”HgBaL = 2(7:;)2/dxcos(\/87r¢c) (1.33)

are included is, in general, no longer exactly solvable but a renormalization group
(RG) analysis permits important insights about the influence of such terms.

For simplicity, let us focus on a spin-independent Hamiltonian (1.12)—(1.14) with
gi = 9iL = gi (1 =1,2,4) which can be realized in a SU(2) symmetric model.
The RG flow equations for cut-off dependent interactions g;(£) are quite simple
[9] and translate into

d_Zgl(e) = —,K—VFgl(e) and (1-34)
S o) = ——L @ (1.35)
dz N 27rv,:g1 ' '

after short-distance degrees of freedom have been integrated out. Note that g4
is not renormalized and that g1(£) can be determined from the first equation only

g1

H= 2 1.36
91(£) 1 _’_eﬂ'g_‘}F ( )

where g7 is the starting value. Furthermore, it is easy to see that
91(£) —292(¢) = g1 — 292 (1.37)

holds by subtracting twice the second equation from the first in Eq. (1.34). There
are two different types of flow:

O For g1 > 0 one renormalizes to the fixed line g7 = 0 and g5 = go — 91/2,
where the notation g = g;(£ — oo) was used. The fixed point Hamiltonian
is a TL model with repulsive interactions in which the gj-interaction is
irrelevant.

O For g1 < 0 the solution (1.36) shows that g;(£) diverges at a finite value
of £, i.e. long before reaching this point the perturbational analysis breaks
down. However, one should notice that, well before the divergence, one
has left the weak-coupling regime where Eq. (1.34) and (1.35) are valid.
Therefore, one should not overinterpret the divergence and just remember
that the RG scales to strong coupling.

When gy = g11 < 0, the system is described by the presence of a finite spin
gap As. Further RG investigations show that the gap remains for all g;; < 0 and
|g11| > g1). For the anisotropic case, Luther and Emery have shown that for the
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particular point Ks = 1/2 the model is exactly solvable. At this point a new set
of spinless fermions can be defined

vy Fn expliy/m/2(8s — 2nds)] (1.38)

1
V2To
and the spin part of the corresponding refermionized Hamiltonian then reads

Hs = —ivs D W0V, + A(WEW, +hc). (1.39)
n

This Hamiltonian is easy to diagonalize and the exact result indicates an energy

spectrum
E. = 242 2 : e |91 |
s =1/ VvZk? + AZ with a finite gap  As ~ . (1.40)
2T

This gap has drastic consequences for the physical properties, i.e. correlations
such as SDW and triplet pairing are not critical and decay exponentially with
correlation length & = vs/As, whereas CDW and SS correlators are enhanced
compared to the case with no spin gap.

g1l A
SDW TS
(CDW) (SS)
Ke
CDW | CDW SS SS
(SS) (CDW)
1/2 1 2

Figure 1.3.: Phase diagram in the g1 | -K plane for a 1D interacting gas model
in the absence of Umklapp scattering (from [15]). Correlations
indicated in parentheses have the same exponents as the dom-
inant ones but are logarithmically weaker. At g;; > 0 the sys-
tem belongs to the TL liquid with gapless excitations, whereas
the shaded region (g1, < 0) contains the spin gapped phases.

Here, fluctuations appearing in parentheses diverge with a smaller

power-law exponent than the dominant ones.

Without logarithmic corrections their asymptotic form explicitly reads [8]

1. for the density-density correlation

A A1 cos(2ker As cos(4ker
<p(0)p(r)>~r—§+ ! rﬁc £n) | A2 r4f<c ey (1.41)
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2. and for the singlet pairing correlation

Co n Cq
rKet T pKerKE?

(0L(0)0ss(r)) ~ +o (1.42)
Note that these properties are not restricted to the solvable parameter values only.
Figure 1.3 shows the phase diagram in parameter space characterized by domin-
ating correlation functions. From that figure one can conclude that a TL liquid
as well as the Luther-Emery (LE) phase become superconducting for K. > 1.
Otherwise the CDW or the SDW correlations dominate.

1.4. Determination of K, and v,

In the previous sections we have seen that the complete low energy physics of
a weakly-interacting electron model is determined by the parameters K, and v,
only. Various /attice models like the (attractive or non half-filled) Hubbard model
or the t — J model belong to the universality class of either a TL liquid or the spin
gapped LE phase. Thus all these coefficients may be useful for strongly correlated
models too.

One possibility to compute K, and v, is to use their relations to spin and charge
compressibilities. More precisely, for the charge degree of freedom the ratio v./K.
can be calculated by the variation of ground state energy [12]

10%Eg(n) T vc
-2 OV e 14
L 8n? 2 K.’ (1.43)
where n = N/L is the band filling depending on the number of electrons N and
the lattice size L. Note that the quantity is the inverse of the compressibility k.

The finite-size approximation of it, useful for numerical computation, is given by

K (1.44)

L <EO(L, N +2)+ Eo(L, N —2) —2Eq(L, /\/))‘1
N2 4 '

The charge velocity v. can be obtained from the low-energy spectrum E(k) in
the following way

Ve = (1.45)

Ok ly=o

The discretized pendant of this derivation, necessary for finite systems, reads

 Eo(L,N,5% =0,k =27/L) — Eo(L, N, S* = 0, k = 0)

Ve 2T . (1.46)

where Eq(L, N, 5% = 0,k = 27m/L) denotes the first excited state in the sector
5% = 0. However, if quantum chains with open boundary conditions are con-
sidered, one has to put k = /L instead of k =27/L.

If the model is exactly solvable, like the 1D Hubbard model, then the ground
state energy Eg and the charge velocity v. can be obtained by solving the Lieb-
Wu equations (see Sec. 2.3.2 for details) in the thermodynamic limit [12]. The
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Figure 1.4.: The critical exponent K. (here denoted by K,) for the repulsive
Hubbard model as a function of the band filling n = N/L with
U/t = 1 for the top curve and with U/t = 2,4,8,16 for the
bottom curves (from [12]).

results for K. as a function of n are shown in Fig. 1.4 for different values of
U/t > 0. In the whole parameter region one always has K. < 1, which means
that magnetic fluctuations are dominant and on the other hand superconducting
pairing is suppressed. Note that the situation changes for the attractive U [16].
Frahm and Korepin applied the conformal field theory in order to deduce the
asymptotics of correlation functions for the 1D Hubbard model in the repulsive
regime [17]. Within this theory, the role of the critical exponents is replaced by the
so-called scaling dimensions. Additionally, they have shown that the elements of
the so-called dressed charge matrix are related to the thermodynamic quantities
of the model, especially to the compressibility and therefore to K.. The entries
obey integral equations derived from and similar to the Lieb-Wu equations in the
thermodynamic limit.

Another approach how to compute K, numerically will be discussed in chapter
4. The basic idea is to determine the asymptotics of a suitable correlation func-
tion. However, in order to get qualitatively good results some technical effort is
necessary.

1.5. Quasi-1D organic (super-) conductors

Organic conductors (see also the pioneer works [18, 19, 20]), like Bechgaard or
Fabre salts are built up from large planar molecules stacked along one direction.
The structure within the salts is characterized by several of such molecular chains
lying next to each other. The motion of electrons is different in each direction
and most significant along the chains of molecules in which the orbital overlap is
strongest. Because of these differences in conductivity, these organic compounds
show a quasi one-dimensional behaviour. Compared to the Bechgaard compounds
(TMTSF),X (X is a monovalent anion), the Fabre salts (TMTTF),X exhibit
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a more one-dimensional structure, since the interaction between neighbouring
molecular chains is weaker. The properties of each compound become similar, if
external pressure is applied, associating with a decrease of the distance between
the chains, which leads to a dimensional crossover to higher dimensions.

a b c d

LR + +
_’Dl‘ T T I T T T I T T T I T T T ]

Lo (TMTTF),PF,

100 - ¢ -
EM-HI G M E
< 10p | -
SN ;
FSP (AF SDW ]
16 | ! -
0 2 4 6 8

p (GPa)

Figure 1.5.: The generic temperature-pressure phase diagram for the Fabre
salt (TMTTF),PFg. The phases are: Mott-Hubbard insu-
lating state (M-H ), metallic (M) and superconducting (SC)
state, spin-Peierls (SP), commensurate (AF) and incommensur-
ate (SDW) antiferromagnetic spin-density-wave state. The loca-
tion of other salts at ambient pressure is indicated by the arrows:

(a) (TMTTF)2BF4, (b) (TMTTF)2Br, (c) (TMTSF),PFe and

(d) (TMTSF)2ClO4 (taken from [21]).

The phase diagram of these organic compounds is extraordinarily rich with al-
most all known electronic states of matter (see Fig. 1.5). At low pressure the
(TMTTF),PFg compound behaves very much like a TLL conductor where spin
and charge degrees of freedom are decoupled. The phase below T, = 250 K is
decribed by the presence of a charge gap and it has been interpreted as a Mott in-
sulating state. At Tsp further transition takes place which is characterized by the
opening of a spin gap. This transition can be considered as a spin-Peierls trans-
ition, involving formation of a density wave. By the application of external pressure
or by the substitution of the anion X by atoms of different size, i. e. by chemical
pressure, inter-chain interactions become more important and a crossover from a
quasi 1D system to a Fermi liquid takes place. In this region dominant electron-
electron interactions lead to a spin-density-wave ground state as observed in the
Bechgaard salt TMTSF,>PFg. With increasing pressure the system remains metal-
lic and superconductivity replaces the SDW ground state. The range of strong
SDW correlations for TMTSF,PFg is possibly larger, as indicated in Fig. 1.5 by
the shaded region above the SDW and SC phase boundaries.
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From a theoretical point of view, organic conductors like Bechgaard or Fabre
salts are very interesting compounds. Due to the simple topological structure
it is possible to apply various well elaborated 1D tools and compare/varify the
results with experimental predictions. For instance, the dimensional crossover
can be studied by applying TLL tools on coupled chain-models, starting from a
single chain. Another interesting point is to find a microscopic description for the
mechanism which leads to superconductivity.



2. The generalized Hubbard model

In the previous sections the interacting electron gas, which is characterized by
weak interactions, was the subject of interest. Here we will focus on strongly
correlated lattice systems. One of the most prominent models is the so-called
Hubbard model. It appeared in the literature for the first time in 1963, inde-
pendently proposed by Hubbard [22], Gutzwiller [23] and Kanamori [24], as an
attempt to describe in a simplified way the effect of electron correlations in nar-
row energy bands, in particular in d-bands of transition metals. The microscopic
model consists of two parts: a kinetic term describing the motion of electrons and
a second term, which approximates the Coulomb interaction among them. Be-
cause of the mechanism, the Hamiltonian is expected to be suitable for describing
the main collective features such as itinerant magnetism or metal-insulator trans-
ition. Moreover, since the discovery of high temperature superconductors in 1986
[25], where strong electron correlations are believed to be important [26, 27],
makes the two dimensional Hubbard model relevant for such materials.

In the following section we give a step-by-step derivation of the generalized Hub-
bard model starting from a general solid state Hamiltonian describing the inter-
actions between electrons in the potential Ujo,(r) created by a lattice of ions.
Afterwards, we provide an overview about some rigorous results and exact solu-
tions for the one—dimensional Hubbard model.

2.1. Derivation of the generalized Hubbard model

After neglecting some irrelevant parts, such as the spin-orbit interaction and re-
lativistic corrections, and the use of the so-called adiabatic approximation! the
general Hamiltonian # in solid state physics (expressed in the language of second
quantization) reads

2
H = Z/drwg(r) <2h—mV2+Uion(r)> Yo (1)
+ 3 [ar [ af BB Vet~ VW (). 221)

where Uion(r) labels the potential of the atom ions, Vee(r — ') oc 1/ |r — ¢/ the
repulsive Coulomb potential and w;f,(r) a field operator. In a perfect crystal the

Lor the Born-Oppenheimer approximation, based on the fact that typical electronic velocities are
much greater than typical ionic velocities, leads to a Hamiltonian which describes electrons
moving in a static lattice of ions.
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ions are arranged in a regular periodic array. Thus we consider a periodic potential
Uion(r + R) = Uion(r), where R denotes a Bravais lattice vector. According to
Bloch’s theorem, the free electronic band splits under the influence of Ujon(r)
into infinitely many energy bands o with Bloch functions uy,. However, electrons
in narrow energy bands, such as d-bands in transition metals, exhibit a 'poor’
dynamics and are mostly localized around the atomic sites. Consequently the
Bloch functions are unusable for such bands. A substantially better starting point
is achieved with the so-called tight-binding-approximation, illustrated in Fig. 2.1.
Functions with such a local behaviour are called Wannier functions. They are

a)

Figure 2.1.: A schematic illustration of the the tight-binding approximation
(taken from [28]). a) An isolated atom with three orbitals.
b) The overlap of four identical atoms building a solid with elec-
tron bands. Electrons in black orbitals become itinerant (conduc-
tion band), while those in the light gray orbitals are still localized
at the original atomic sites. Electrons in the gray orbitals are
mostly localized around the atomic sites, but tunnel to nearby
gray orbitals with a non-negligible probability (valence band).
c) An approximation to valence electrons, which are expected to
play essential roles in determining various low energy physics of
the system. d) A reduction to a lattice model in which electrons
live on lattice sites and move from one site to another.

related to the Bloch functions by an unitary transformation

d)/a \/—Ze : ’Uk ) (2-2)

where R; labels the sites of the lattice center and L is the total number of lattice
sites. The Hamiltonian (2.1) then transforms to

_ T Buv 1 T
H= Z t/(Jx/aajao'+zszlcjmi/julaajﬁo’cnuo’cmuif' (2'3)

iJoo ijmn aBuv oo’



The generalized Hubbard model

where c;faa is a fermionic operator creating an electron with spin ¢ in a Wannier

orbital o localized at site /. The coefficients are given by the matrix elements
ti = <’04|Wv + Uion(r) )
* _h2 2
= dr ¢} o (r) WV + Uion(r) | ¢j.a(r) (2.4)

and

/?57;;1/ = </O‘r./ﬁ|\/ee(r - r/)|mu, I‘II/>

= /dr/dr’ ¢;‘k,a(r)¢j‘,ﬁ(r/)vee(r - r/)d)m,p.(r)(bn,u(r,) . (25)

The electronic Hamiltonian (2.3) contains infinitely many parameters. For sim-
plicity it is therefore often assumed that the essential physics of the problem is
captured by a single s-band, thus all orbital indices o, 3 etc. can be omitted. Since
the matrix elements are expected to decrease strongly with increasing distance,
one usually takes only next-neighbor interactions (/j) into account. Furthermore,
the matrix element t;; depends only on the separation of unit cells and not on
direction, hence t;; = t(R; — R;). Using all these simplifications the Hamiltonian
reads

H = —tz Z (CIUC'J-’U + CJT,UC/',U> + UZ ni+n; | + \/Z nin;
(ijy © i (if)
+ JZ S/ ’ SJ + XZZ (C/'T,ch,o + CJT,UC/',U) (17,',_0— + nfx—ff)
(if) iy ©
+ Y o, (2.6)
(if)
which is known as the generalized Hubbard model. We used the following short-
hand notation

t=—tj, U=vii, X=vij
V = V,‘j,‘j, J= —2V,‘jj,‘, Y = V,‘,‘jj. (2.7)

The particle number operators nj, n; and the spin operators S; are defined as

1 -
Mo =¢oCo N=nrtn, S= 5 > TG (2.8)
a,B

where Tog = ((T%)ap. (T7¥)ap. (T%)ap) is a vector which consists of the usual
Pauli matrices. Apart from the single-particle hopping term t, which describes
the motion of electrons to neighbouring lattice sites, and the on-site Coulomb
interaction U of two electrons at the same site, the short-range Coulomb matrix
(2.5) obviously leads to additional interaction terms: The term V' denotes the
Coulomb interaction between electrons at neighbour sites. The interaction X,
called bond-charge interaction, corresponds to a single particle hopping where the
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hopping amplitude depends on the occupation number of the sites involved. In
fact it is proportional to the charge (number of electrons) located at the bond (i))
between the sites / and j which motivates the name. Furthermore, J describes
the spin-spin interaction and Y the hopping of electron pairs to neighbour sites.
While the on-site interaction U usually has the largest numerical value, the other
matrix elements are certainly not zero. Hubbard gave an estimation of the energies
in the case of transition metals [22]:

Ux20eV >V x2-3eV>X=1leV>JY=x0.025eV. (2.9)

In a first approximation he therefore neglected all interaction terms except for
the on-site Coulomb repulsion U and the single-particle hopping t, typically range
between 0.5eV and 1.5eV, which is needed to describe the relevant physics cor-
rectly. This two term model

Huuo = Hi+Hy

= —tzz (C/T,UCJ,U+CJ‘T,UC/,U> "’UZ”/',T”/,i (2.10)
(ijy © i
is known as the pure one-band Hubbard model or just Hubbard model. Despite

of its simplicity rigorous results for the Hubbard model are still rare. The next
section will explore what is known rigorously about this model.

2.2. Some rigorous results for any lattice dimension

One of the most fascinating questions concerns the magnetic properties of the
ground state. For the pure Hubbard model Nagaoka's theorem [29], valid for
arbitrary lattice dimension but restricted to a special lattice structure fulfilling the
connectivity condition [30], predicts a ferromagnetic ground state in a special
limit, i.e. a single hole in a half-filled lattice with infinitely repulsive interaction
(U = o0). For finite repulsion (U < oo) but on special lattices Mielke and
Tasaki were able to derive rigorous criteria for the stability of ferromagnetism
[31]. Moreover, Lieb's theorem [32] states that on a bipartite lattice at half-filling
the ground state has spin S = ||B|—|A||/2, where |B] (]A|) is the number of sites
in the B (A) sublattice®. Based on Brandt and Giesekus basic concepts for the
construction of exact ground states [33] Kollar et al. presented a generalization
of Nagaoka's theorem [34]. They considered the generalized Hubbard model and
derived sufficient conditions for the stability of ferromagnetism.

Apart from magnetism in the Hubbard model, the question about the theoretical
mechanism of superconductivity is fascinating too. Based on so-called 1 pairs
Yang has shown that already the pure Hubbard model (2.10) exhibits off-diagonal
long-range order (ODLRO) eigenstates [35]. Using the optimum ground state
approach, which is a much simpler and clearer method for the construction of
exact eigenstates than Brandt and Giesekus basic concept, or Strack and Vollhardt

2As an example, take a square lattice and add a site (belonging to |A|) at the center of each
bond of this square lattice. Then |A| = 2|B| and the ground state has a magnetization per
site which is more like ferrimagnetism than ferromagnetism.
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generalization [36], De Boer et al. have shown that a large class of generalized
Hubbard Hamiltonian has superconducting ground states of n-pairing type [37].
For reviews of rigorous results about the Hubbard model in arbitrary dimensions
see for instance [28, 38]. Some of the most significant results have been collected
in the reprint volumes [39, 40, 41].

2.3. The Hubbard model in 1D

It is very instructive to consider the one-dimensional Hubbard model, because
analytical and numerical tools are much more elaborated in one dimension. In
particular, in one dimension an exact solution for the pure Hubbard model is
available. This solution gives exact energies of the ground state and all the
excited states in terms of the solution of a system of coupled nonlinear equations.
For a one-dimensional L-site lattice with periodic boundary conditions (PBC), i.e.
CL+1,0 = C1,6, the Hamiltonian of the model written in a symmetric form is given
by

£ 1 1

H = Ht+UZ<nﬁ§> (ng'¢~§> (2.11)

=1

U U
== Ht+HU*§N+ZL

in which U/2 shift the chemical potential. The physical properties depend on
two parameters, i.e. the interaction U/t and the band-filling n = N/L, where
N =3 4ono =2, No is the total number of particles.

2.3.1. Symmetries and limiting cases

The Hubbard Hamiltonian (2.11) has two important symmetries® [42]. First, the
Hamiltonian is invariant under rotations in spin space. The corresponding SU(2)-
spin algebra is generated by the operators

L L L
_ 1
ST=>"¢ciq,. S =D ¢ and S*= > > (ner—ngy) (2.12)
=1 =1 =1
with commutation relation
[St, 571 =257, [S?,Sf] =45 and [H S*] =0, (2.13)

for u € {4+, —, z}. Note that this SU(2)-spin algebra is also valid for the standard
Hubbard model (2.10). The second type of symmetry is particular to the Hubbard
model and relates sectors of different particle numbers. For lattices of even length
L the SU(2)-symmetry is generated by the pseudospin or n-pairing operators

L L

- 1
n =D (DG, nT =) (DG andn =S (N-L) (2.14)
=1 =1

3Notice that these two symmetries are not restricted to the one-dimensional model.
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with corresponding commutation relation
[t 1=2n", [".n"l=+4n" and [H,n*]=0. (2.15)

Of course, this result is not surprising since the m-operators can be obtained from
the spin operators by a particle-hole transformation. The generators of both
algebras commute with one-another and it seems that the Hubbard model has a
SU(2) ® SU(2) symmetry. However, the symmetry group is smaller, because the
two SU(2) symmetries are not completely independent. For fixed L one has

1 1 L
SZ—FTIZ:E(NT—/\Q)-FE(N—L):Ni—E (2.16)
which is always an integer as long as L is even. Therefore, the full symmetry
group is

SO(4) = SU(2) ® SU(2)/Zs . (2.17)

One should notice that odd number of lattice sites or more complicated inter-
actions will conserve the spin rotation invariance (2.12) but in general not the
“charge” SU(2) invariance (2.14). This second symmetry will become the stand-
ard global U(1) invariance which is associated with particle number conservation.
There exist two discrete symmetries which can be used to identify the fundamental
regions of the model. First, the Hamiltonian is invariant under exchange of up and
down spins (spin-flip symmetry). Another symmetry, which leaves the Hamiltonian
invariant, is the particle-hole symmetry. By employing the transformation

¢ o= (—1fc), and ¢, = (-1, (2.18)

maps the empty state |0) to the completely filled state | 1}). Making use of these
symmetries it is sufficient to investigate the Hubbard model only in the region
N < L and Nj < N/2, important for the Bethe ansatz.

In the case t = 0 (atomic limit) the motion of electrons is impossible and at half-
filling the ground state contains exactly one electron per site, i.e. the system is
insulating. This feature still holds for finite t and U = oco. In the free fermion limit
(U = 0) the model reduces to a system of non-interacting moving electrons (see
appendix) and the ground state is metallic. Therefore, for finite value t and at
some critical value U, of the Coulomb repulsion one can expect a metal-insulator
transition.

2.3.2. Exact solution: The Bethe ansatz

In 1967 Yang [43] used the (nested) Bethe ansatz (BA) to solve an 1D elec-
tron system with delta-function interaction. One year later Lieb and Wu [44]
generalized Yang's solution to a lattice case, i.e. the Hubbard model. They re-
duced the problem of diagonalizing the Hamiltonian to solving a set of coupled
nonlinear equations known as the Lieb-Wu equations and calculated the ground
state energy of the system. Moreover, they showed that for arbitrary positive
value U the model at half-filling is an insulator. In 1972 Takahashi derived an
infinite set of nonlinear integral equations that determines the thermodynamics



The generalized Hubbard model

of the Hubbard model [45]. By solving these equations in some limits, he was
able to calculate the low temperature specific heat [46]. In the 80's Woynarovich
studied the elementary excitation spectrum of the Hubbard model in more detail
[47, 48, 49, 50] which was started ten years earlier, e.g. by Ovchinnikov [51] and
Coll [52]. Furthermore, he presented the explicit form of the Bethe ansatz wave
function. Kliimper et al. developed a different method to solve the BA equations
at half-filling, rederiving all known results at zero temperature [53]. Based on the
representation of the SO(4) symmetry of the Hubbard model EBler and Korepin
proved that the excitation spectrum at half-filling is given by the scattering states
of only four elementary excitations which are called holon, antiholon and spinon
with spin up or down, respectively [54]. There was also progress in the understand-
ing of the algebraic structure of the Hubbard model. Shastry showed that the 1D
Hubbard Hamiltonian commutes with a one-parameter family of transfer matrices
of a new 2D classical integrabel model and displayed the form of the R-matrix
explicitly [55]. Shiroishi and Wadati showed that the R-matrix, which underlies
the integrability of the Hubbard model, satisfies the Yang-Baxter equation [56].
Martins and Ramos formulated in terms of the quantum inverse scattering method
the algebraic Bethe ansatz solution of the one-dimensional Hubbard model [57].
Jittner et al. used this result in the quantum transfer matrix approach to the
thermodynamics [58]. In contrast to the traditional approach by Takahashi, this
approach leads to a finite number of non-linear integral equations that determine
the Gibbs free energy.

This is only a short historical overview about the exact results of the Hubbard
model. For a review including a rather exhaustive list of references we refer the
interesting reader to [59] or the more pedagogical article [60].

Bethe ansatz for a Hubbard chain with PBC

The Hubbard Hamiltonian (2.11) conserves the total number of electrons N and
the total number of down spins N and thus N;. Therefore, one can use these
two quantum numbers to label the eigenstates of Hamiltonian (2.11) which have
the following second quantized form

[N, Ny) = <ll\>l¢> Z bo(x1, .-, XN)Ch or - Ch o] O) (2.19)

where |O> denotes the vacuum state in the Fock space and 0 = (o1, . . ., on) € Sy
(element of the symmetric group) is arbitrary. The Schrodinger equation

H|N, N,) = E|N,N,) (2.20)
implies following eigenvalue equation for ¢

- Z Z Gol(x1, ..., Xi+s,..., xn) + U Z O Po(X1, ..., XN)

Jj=1s=%+1 J<k
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where 6XJ.,Xk denotes the Kronecker delta and t = 1. Unphysical amplitudes ¢
where two electrons with the identical spin occupy the same site will not be
considered due to the Fermi statistics of the c-operators. The case N =1 is not
interesting because one electron without interaction obviously describes a free
fermion and equation (2.21) can be solved by ¢,(x) = Ase** with the energy
E = —2cosk. In the case of two particles (N = 2) equation (2.21) reduces to

—Po(x1 —1,x2) — ¢po(x1 + 1, x2) — Po(x1, X2 — 1) — Po(x1, X2 + 1)
= —Udy b0 (x1, x2) + E'pg(x1, x2) (2.22)

with E/ = E+ U — UL/4 and 0 = (01,02). For free electrons, i.e. as long as
x1 < Xp Or X1 > Xo, the solution of (2.22) is just a superposition of plane waves.
A scattering process takes place, when the two particles occupy the same site, i.e.
X1 = X». This scattering is purly elastic, which means that the energy is conserved
and that the momenta of the two electrons are individually conserved, i.e. the
electrons exchange their momenta. The expression for ¢ in these two cases can
be written in a unified form that also anticipates the form of the expression for
N > 2. Let Q be a permutation of the labels of coordinates, i.e. Q = (Q1, Q2) €
{(1,2),(2,1)}. For xq, < xqg, the form for ¢ is then given by

do(x1,%2) = > (—1)PAsy o0, (kp,, kp,)e/ Pt ke (2.23)
PeS,

where (—1)" denotes the sign of the permutation. This is the famous nested
Bethe ansatz form for the wavefunction ¢. The continuity of the wavefunction at
x1 = X requires the fulfillment of the following relation among the amplitudes:

Asior (K1, ko) — Agioy (koo k1) = Agyoy (koo k1) — Agyor (k1. ko) (2.24)

In addition, substituting (2.23) into equation (2.22) with x = x; = x» yields the
condition

{[Avso (k2. k1) = Agyoy (k1. ko)] (€1 — 71 — gk 4 g7k
—U[As0,(k1, k2) — Agyo, (k2. k1)]}
+E'[Agy0, (k1. k2) = Agyoy (Ko, K1)
= —2(coski + cos ko) [Asyo, (K1, ko) — Agyo, (koo k1)] (2.25)
This becomes an eigenvalue equation for the eigenvalue £/ = —2(cos k1 + cos ko)
with eigenfunction [Ag, o, (K1, k2) — Asy0,(k2, k1)], if the expression in brackets

{...} vanishes. One can express two of the four amplitudes Ag, oq, (kpy, kp,) In
terms of the other two. The vanishing condition then reads

—U/2i
A ko, k1) = = _ -A ki, k
o102 (k2. k1) sinky —sinky — U/2i 10z (k1. k2)
4 sin kl —sin k2
sinky — sinky, — U/2i
Equation (2.26) has a natural interpretation in terms of a scattering process of
two particles. In order to see this one has to rewrite it as

Agior (ko k1) = ZSg;gél(klykz)Aagag(kL/Q), (2.27)

!
01,05

Asyo, (K1, k2) . (2.26)
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where S(ki, ko) is the two-particle scattering matrix with elements

/ —U/2i

0'10'1 k k — , ,

Soacy (K1 ko) S k1 — sinky — U2 o1o0021
sin kl —sin k2

+sin ki —sinkp — U/zi‘sol,o'ﬁog,oé .

(2.28)

The elements of the S-matrix (2.28) give two possibilities of a scattering process:
The particles can pass each other without changing their momenta and spin, or
alternatively, the particles exchange their spins so that after scattering particle
one has momentum k7 and spin o> and particle two momentum k> and spin o7.
An equivalent interpretation would be an exchange of momenta instead of spins.
Expression (2.28) can be written in a compact operator form

A +iU/2 Pro

S = 57 iU/2

(2.29)
with the momentum parametrization A = sin k; — sin ko and the permutation
operator of a pair of particles

Pro= P79 =8y, 010000 =
12 — 020h 01.05%02,00 —

(2.30)

O O O
O = O O
O O = O
= O O O

In the final step one has to consider the effect of the periodic boundary conditions
on the wavefunction, i.e.

$o(x1+L,x2) = ¢o(x1,x2) and (2.31)
Po(x1, 0+ L) = ¢o(x1,x). (2.32)

This induces the following conditions on the amplitudes

Ao’olo'o2 (kpl, kpz) = exp (ikplL) AJQ2U01 (kpz, kpl) , (2.33)

where P,Q € S, are arbitrary. Solution of (2.33) determine the quantization
conditions for the momenta ki and k.

The generalization to N > 3 particles separates the Fock space of the Hamiltonian
in NI quadrants

XQE{]-SXC\HSXng"'SXQNSL}' (2-34)
The corresponding N-particle Bethe ansatz wavefunction reads
G, oxn) = D (1P Asg 00, [Q Plexp | I kpx |, (2.35)
PeSy Jj=1

where the symbolic notation AJQI_,_UQN Q,P] = AUO1 Tay (kp,, ..., kp, ) was used.
The amplitudes of various regions are related through the S-matrix. If the regions
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Xg and Xé differ by the exchange of particles / and j, then the relation can be
written in the form

Ao [QPI=3_ S70 (K kDA o1, [Q.P]. (2.36)

0'/ O'J

Note that a repeated application of relation (2.36) for a single pair of particles
reduces any permutation to the identity permutation / with

X/E{]_SXlSXQS...SX/\/S[_}. (237)

This means that the amplitudes A[Q, P] and A[/, P] will be connected by the
product of S-matrices corresponding to all transpositions of a pair of indices which
are necessary to reduce the permutation Q to the identity permutation. However,
the way how to express a permutation by a sequence of transpositions is usually
not unique. For instance, if three particles in their initial state are ordered as
x1 < xo < x3 = (1,2,3) and after the passage of a certain amount of time their
positions are x3 < xo < x1 = (3,2,1), then the three-particle scattering process
can be described in two ways, illustrated in Fig. 2.2. Thus equivalence plays a

(132) S23 SN\ (213)

(321)

Figure 2.2.: lllustration of a three-particle scattering process which can occur
in two ways: The particle x; first passes the particle x> and then
X1 passes xz, or first the particle x» passes particle x3 and then
X1 passes x3. 1 he final result in both cases is the same.

fundamental role in the theory of exactly solvable one-dimensional models and
was established by Yang [43] and Baxter [61] and becomes the basis for what is
known as the Yang-Baxter equation

> 5"1"1 (k1. k2)ST17 (/<1 k3)5, ,,(k2 ks) =
01,0505

Z 50202(/(2 k3)50/10/1/(k1 ks)SJ/U}/(kl ko) . (2.38)

07.0%,0%
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If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation,
then the Bethe ansatz form of the wavefunction is consistent and the model is
integrabel.

The expression obtained for the S-matrix of the Hubbard model (2.29) has the
same form as the matrix, which was used to solve the six-vertex model exactly (see
[61] for details). In order to see that the S-matrix (2.29) satisfies the Yang-Baxter
equation one has to rewrite it explicitly in matrix form

A+iU/2 0 0 0
1 0 A iU/2 0
A)=—— . 2.
SN=3Twz| o we A 0 (2:39)
0 0 0 X+iU/2
and identify the matrix elements with the elements of the £-matrix
iu/2 A
A)=1 bA)=—— d A)=——. 2.4
aN =1 b =37 gn and N =7 (2.40)
The following relation holds between them
a(A) i c(N) : b(N) =(N+iU/2) X :iU/2, (2.41)
which automatically satisfies the functional equation
A A —

b(X) ~ b(u) b —u)’

moreover the Yang-Baxter equation in local form, from which (2.42) follows.
Hence, one can apply all the technique which was used to solve the six-vertex
model. For a prescribed choice of quantities A?, ie. A? = sin k;, and parametriz-
ation of the elements of the S-matrix (2.39) the eigenvalue of the transfer matrix
T; adopt the specific form

N. . .
. >\,‘ — Sin kJ + |U/2 — eikjL

AN=AEX A ) = 2.43
i+1
and the numbers A\; (i=1,..., N} ) assume the following expression
N . . N, .
HX,-—sm /<J-.+|U/2 _ H >\,-—>\k+?U/2 (2.44)
i1 >\,'*Slﬂkj o1 )\,‘*)\k *IU/Q
The right hand side of equation (2.43) is due to the periodicity condition
eWb Al 1 = T;AlL 1, (2.45)

where relation (2.39) was used repeatedly to obtain the above expression for
the amplitude A[l, I] corresponding to the identity P- and Q-permutations. A
substitution of the form \; = X\’ —iU/4 changes expression (2.43) and (2.44) into
the form written by Lieb and Wu, which are called Lieb-Wu equations.
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Lieb-Wu equations for open boundary conditions

The Hubbard model with open boundary conditions was solved by Schulz using the
Bethe ansatz technique [62]. Further examinations of Hubbard models including
boundary chemical potentials or magnetic fields opened new possibilities to study
quantum impurity problems (see e.g. [63, 64, 65]).

The Hubbard chain with boundary chemical potentials is given by

- - fZZ (Ceace+1a+ce+1acea> +UZ”@T”N

=1 o
— P> (Mo+nLe). (2.46)
(e}

Using the notation of Ref. [66], the Lieb-Wu equations determing the spectrum
of H in the N-electron sector and magnetization M = N/2 — N read

gzt (€% = p \? sinllg) +iU/4 ﬁ sin(lg) = Xp +iU/4 o
1—peki ) sin(k;) —iU/4 sin(kj) —XNg—iU/4" '

N Ny
>\ 2iU/4 — ki) +iU/4 -2 2iU/4
+2iU/ H sin(k;) +iU/ H g+ 2iU/  (2.48)
—2|U/4 Aa — sin(kj) |U/4 )\ — g —2iU/4
where the identification k_; = —k; and A_, = —\4 was used in order to simplify

the equations. Of course, with p = 0 one directly obtains the case for open
boundary conditions. The roots of the Lieb-Wu equations (2.47) and (2.48) are
characterized by the so-called charge rapidities k;j with j = —N, ..., N and spin
rapidities Ao With oo = =N, ..., N,. The energy of the corresponding eigenstate
of (2.46) has then the form

N

E/t=1- )Y cos(k), (2.49)

j=—N

where the solutions kK = 0 and A = 0 have been excluded, since the Lieb-Wu
equations (2.47) and (2.48) are already symmetrized.

In order to check the accuracy of our DMRG algorithm (see following chapter
3) we compared the ground state energy of the open Hubbard chain at various
band fillings obtained by (2.47), (2.48) and (2.49) and our DMRG results. For this
purpose we chose the logarithmic expression of Lieb-Wu equations and determined
the set of rapidities by applying an IMSL routine like DNEQNF [67]. Additional
checks have been done in the case of free fermions (see appendix B).

2.4. Superconductivity in extended Hubbard models

Since the discovery of quasi one-dimensional conductors and high-T. supercon-
ducting materials much effort has been devoted to the study of the pairing mech-
anism in highly correlated electronic systems. While the search for 'superconduct-
ivity’ (characterized by dominant pairing correlations) in the Hubbard chain with
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repulsive Coulomb interaction failed, a superconducting state with dominant on-
site singlet-pairing correlations is realized in the attractive case, where a spin gap
opens. An exact analysis of the Bethe ansatz solution by Kawakami and Yang [16]
showed that this pairing correlation function behaves like {05 (0)0ng(r)) ~ 1/rP
at large separations r between pairs. The non-universal exponent B is a function
of U/t and the band filling.

However, the pure Hubbard model is limited in its applicability to real materials.
For instance, the properties of conducting polymers can not be explained without
invoking a least a nearest-neighbour Coulomb interaction. Therefore, various
more realistic extensions of the pure Hubbard model have been considered.

2.4.1. The extended Hubbard model

The Hamiltonian of the Hubbard model with nearest-neighbour Coulomb interac-
tion V is given by

H = Huw +Hy (2.50)
L L L
=ty >, (Cg,aceﬂ,o + CeT+1,aCe,a) +UY mgangy +V Y mengy
=10 =1 =1

and it is called extended Hubbard model. In contrast to the pure Hubbard model,
this Hamiltonian is no longer exactly solvable. However, the model has been ex-
tensively studied by the weak coupling theory based on the bosonization technique
and renormalization group (RG) analysis [68, 9, 69] and numerical calculations
using exact diagonalization, quantum Monte-Carlo simulations or DMRG method
[70, 71, 72, 73]. The weak-coupling phase diagram consists of two insulating

1.0 T T = 1.0 T
(8 X1t=0 BCDW (b) Xit=-1/4 o
05 f cow ] 05 | cow M
?f‘ 000990'”’ ’§‘T - 002
> 00 ! OW =00 *BCDW = oW
s SS ' 1g s ss : .K*/Ts
0.5 -0.5
phase separation phase separation
1.0 - - 1.0 - -
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
U/(JU|+4t) U/(JU|+4t)
Figure 2.3.: Phase diagram of the extended Hubbard model determined by
exact diagonalization calculations for a half-filled L = 12 chain
at (a) X/t =0 and (b) X/t = —1/4 (taken from Ref. [74]).

phases, the spin-density-wave (SDW) phase and the charge-density-wave (CDW)
phase, which are separated by a transition line located at U = 2V/. The metallic
phases are described by dominating singlet (SS) and triplet (TS) superconducting
correlations. In the most interesting region (U,V > 0), the weak-coupling RG
studies [68, 9] show that there is a continuous phase transition between SDW
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and CDW along the line U = 2V. In the strong coupling limit (U,V > 1) the
SDW-CDW transition is discontinuous (first-order) and the phase boundary is
slightly shifted away from the line U = 2V [70].

Quite recently, Nakamura found numerically that for small to intermediate values
of U and V, the SDW and CDW phases are disjoined by the bond-charge density
wave (BCDW) phase [74] which is characterized by the operator:

Ogcpw = (1) Z(CZUCZH'U +h.c.). (2.51)

g

To clarify this mechanism of the transition, he also investigated the effect of the
bond-charge interaction X which leads to an enlargement of the BCDW region
(see also Fig. 2.3). He concluded that SDW-BCDW and BCDW-CDW transitions
are continuous and that these two transition lines merge at a tricritical point into
the first-order line separating the CDW and SDW phases.

2.4.2. The Hirsch model

The extended Hubbard model (2.50) with bond-charge interaction X was proposed
by Hirsch for the description of oxide superconductors by considering holes as
the charge carriers [75, 76]. The one-dimensional Hamiltonian without nearest-
neighbour Coulomb interaction V/, which we call Hirsch model, reads

H = Huw + Hx (2.52)

L
— HHub =+ XZ Z (Cg,oce—i-l,o' + Clj[—i-l,o'cl,a) (nl,—o' + nl-i—l,—o’) .
-1 o

Due to charge and spin conservation the model exhibits U(1) ® SU(2) symmetry.
The Hamiltonian with U = 0 and a modified version of Hx, called Bariev model?,
has been solved by Bethe ansatz [77]. In contrast to the Hirsch model only the
SZ generator commutes with the Bariev Hamiltonian which indicates a U(1) ®
U(1) symmetry. Applying the Lanczos technique Quaisser proved that various
ground-state properties of the Bariev model and (2.52) with U = 0 indicate similar
behaviour as long as the bond-charge repulsion X is small [11, 79]. In addition,
he concluded that for X & 0.5 the pair correlations are strongest in both models.
In the high-symmetric case t = X zero and finite temperature properties of the
Hirsch model have been exactly derived. Schadschneider [78] and Arrachea and
Aligia [80] determined the phase diagram at zero temperature shown in Fig. 2.4.
In regimes I and II the system is described by superconducting states of n-pairing
type, where m-pairs are inserted in the empty lattice or the ground-state of an
U = oo Hubbard model. These states show ODLRO

lim  (YnlOLs(NOos(Nwn) #0  with  OLg(i) = cfcf . (2.53)

li—j|—o00

“Bariev considered in his original work [77] a model consisting of two isotropic XY chains coupled
by three-spin interactions. By using the Jordan-Wigner transformation the Hamiltonian can
be presented in terms of fermionic creation and annihilation operators, which is known as the
Bariev model.
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Figure 2.4.: Schematic representation of the phase diagram of the (one-
dimensional) Hirsch model at t = X, plotted in the U-D plane in
which D = N/L is the particle density. In higher dimensions the
phase diagram at this symmetric point only changes quantitat-
ively (taken from Ref. [78]).

The physics of III (n < 1) is the same as that of a the U = oo Hubbard model,
i.e. without doubly occupied sites. Due to the particle-hole symmetry regime IIT’
(n > 1) is equivalent to III, however no empty sites occur. For n =1, phase IV,
the ground state is an insulator.

The thermodynamics was studied by Dolcini and Montorsi [81]. The non-integrable
regime 0 < X < 1 was intensively studied by Kemper using the transfer-matrix
DMRG [82, 83].

2.4.3. The t — J model

In the limit U — oo doubly occupied lattice sites are forbidden. After projecting
out the states in the Hilbert space involving double occupancies one finds in second
order in t/U the following effective Hamiltonian

L
Hey = —tD 3 {(1= 0 0)¢yGpr o (11 o) +he )

=1 o
L
+I (Se- w1 — ”"Zf“) , (2.54)
=1

where J = 2t2/|U|. This model was solved exactly at the super-symmetric point
J/t = 2 by applying the Bethe ansatz technique [84, 85] and for the limiting case
J — 0, which is equivalent to the U — oo Hubbard model.

From the analysis, supported by various numerical calculations (e.g. [87, 88]), it
is known that the t — J model belongs to the universality class of a Tomonaga-
Luttinger liquid (TLL). The remaining parameter region at J/t > 2 was first
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Figure 2.5.: The phase diagram for the one-dimensional t — J model (taken
from Ref. [86]). The dashed line indicates K. = 1. Below this
line antiferromagnetic correlations dominate the TLL phase, while
above the line singlet correlations are the dominating ones. The
phase seperated regime is determined by K. — oc.

analyzed by Ogata et al. [87] using the exact diagonalization. For J/t = 2.8 to
3.5 depending on the electron density a phase separation takes place, where the
system is separated into electron-rich and hole-rich phases. A third phase with

a spin gap (SG) was found at low densities and 2 < J/t < 3.1. The complete
phase diagram is shown in Fig. 2.5.



3. The density matrix renormalization
group technique

The solution of a (stationary) Schrodinger equation is equivalent to the solu-
tion of a high-dimensional eigenvalue problem. This eigenvalue problem can be
solved numerically by diagonalizing the Hamiltonian matrix with standard eigen-
value routines on computer. Most of these routines [89] use computer memory
instead of "harddisk memory' as an efficient way to save the data. However, this
is restricted to the available free memory.

In order to get the matrix elements of the Hamiltonian one has to choose a proper
orthonormal basis in the Hilbert space §), like the occupation number basis that
includes states describing all possible distributions of N electrons on L lattice sites.
The size of $; grows exponentially with the number of sites L. For instance,
a fermionic spin-1/2 model with four possible occupancies at each lattice site
(vacant, singly occupied with either up-spin or down-spin and doubly occupied
with one up-spin and one down-spin) has 4L degrees of freedom. When L = 16,
the dimension of $); is already 4294967296 and the corresponding Hamilton
matrix has more than 101 elements. Therefore, it is important to be as efficient
as possible.

One way to reduce $); into invariant subspaces, which finally transforms the
Hamiltonian matrix into a block-diagonal form, is to use symmetries. The simplest
symmetry is associated with the conservation of the total number of electrons N.
In addition, when translational symmetry is present, the momentum is conserved
and all states can be grouped by the wave number. This leads to a further re-
duction of $;. Using both symmetries, the largest block matrix of the previous
example has still over 10 elements and one has to store more than 10° GBytes
of memory, too large for most computers. However, Hamiltonian matrices of
current quantum models are extremely sparse.

An effective algorithm for diagonalizing sparse matrices was proposed by Lanczos
in 1950 [90]. The procedure reduces a high-dimensional eigenvalue problem to a
small one without storing the original matrix. Consequently less memory will be
required but memory limitations will still impose restrictions on the system size.
Examination of larger systems needs another methods like the density matrix
renormalization group (DMRG) approach that was formulated by White in 1992
[91, 92]. In contrast to other numerical methods, such as quantum Monte-Carlo
simulations [93], the DMRG technique offers a powerful tool for determing ac-
curate approximations to the ground state and the low-lying excited states of
low-dimensional strongly correlated systems.

The subject of this chapter will be the detailed description of the Lanczos method
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and the DMRG approach, which represent the main numerical tool of the present
thesis.

3.1. Exact diagonalization: The Lanczos method

3.1.1. Invariant subspace

The concept of an invariant subspace is the most important point for understand-
ing the Lanczos method. From linear algebra we know, that a subspace that is
spanned by m linear independent vectors |q1), ..., |gm) is invariant under H, a
n x n hermitian matrix, if for any vector |q) in the subspace the vector H|q) is
also in the subspace. In the following we will denote the H-invariant subspace by
R. What does this invariance mean? If Q,, is a n X m matrix whose columns are
the orthonormal vectors |qgk), then the matrix product HQp, is a n X m matrix
too and the columns are linear combinations of the columns of Q. Assuming
that the |gx) form an orthonormal basis in &, i.e. QLQp = idy,, one can find a
m x m matrix T,, which satisfies the relation

This means that the eigenpairs of a large matrix H can be found from those
of a smaller matrix T,,. For instance, let A and |¢) be an eigenpair of T,,.
Multiplication of T|¢) = A|@) by Qn and the use of relation (3.1) leads to the
equivalence

Qme|¢> = >\Qm|¢> ~ HQm|¢> = >\Qm|¢> ' (32)

where A and Qp,|¢) describe an eigenpair of H. The Lanczos algorithm approx-
imately generates such an invariant subspace R.

3.1.2. The algorithm

The first step in the procedure is to select an arbitrary but nonzero vector |qo)
which belongs to the Hilbert space $) of the model being studied. If some inform-
ation about the ground state is known, like total momentum or spin, then it is
convenient to start the iteration with a vector already belonging to the subspace
having those quantum numbers. Otherwise, it is convenient to select an initial
vector with randomly chosen coefficients. After |qo) is selected, a new vector can
be defined by multiplying the hermitian matrix H with the initial vector. However,
to ensure the orthogonality (go|g1) = 0 one has to subtract the projection onto
|qo). Together one obtains

|g1) = H|qo) — (q0|H[q0)|q0) - (3.3)

An additional vector that is orthogonal to the previous two, i.e. {gg|lg2) = 0 and
(g1]g2) = 0, can be constructed as

|g2) = Hl|g1) — (q1|H]aq1)|a1) — (a1|H|qo)]qo) - (3.4)
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It can be easily checked that the orthogonality conditions are fulfilled. This pro-
cedure can be generalized by defining an orthogonal basis recursively. For each
k=20,1,... one then gets

lak+1) = Hlak) — oklak) — Brlak-1) . (3.5)

where the coefficients are given by

ar = (qk|Hlgx) and Bk = (qk|H|qk-1) - (3.6)

Of course, for all £ < k — 1 one obtains (¢|k) = 0 and for k = 0 one has to set
Bo =0 and |g_1) = 0. After k = m steps a set of orthogonal vectors |gx) has
been generated. Normalizing them by |g}) = |qk)/Bk leads to an orthonormal
matrix Q, whose columns are filled with the vectors [g;). By applying formula
(3.1) the Hamiltonian matrix H will be transformed into a tridiagonal form (cf.
with Fig. 3.1). If m is sufficiently large, the eigenvalues X of the Lanczos matrix
T should be good approximations! of the eigenvalues of A which are restricted
to the invariant subspace

Rm = span {|q5), H|a5), H?|q5). . ... H™ *lag)} (3.7)
known as Krylov subspace. To be more precise, the algorithm is repeated until

[Ao(m) — Xo(m — 1)
Ao (m)]

where ¢ is a small number, typically of magnitude 1079 and X\o(m) is the lowest
or largest eigenvalue at k = m.

The Lanczos algorithm is similar to the Gram-Schmidt orthonormalization (GSO)
process. However, the GSO process applied to K, is expensive, since the cost
is O(m?). In contrast, the Lanczos algorithm delivers the same result but in an
O(m) process. The crucial point is that, to compute |g;,), one uses ”H|qfn_1>
instead of H™|qg).

<e, (3.8)

3.1.3. Numerical implementation

The main aim in the numerical realization of the Lanczos algorithm is to keep
computational effort low. The most expensive operation is the matrix-vector
multiplication H|qgy). In addition, the Hamiltonian matrix cannot be stored in
computer memory (already for small spin-1/2 systems one has to allocate more
than 10° GBytes of memory) and one has to generate the matrix at each iteration
step. However, the calculation of a, can be modified if one introduces a new
vector

i) = Hlag) — Brlak—1) . (3.9)
which permits the relation

ok = (el Hlag) = (gilvi) - (3.10)

!Note that the error increases as one proceeds into the spectrum. Therefore, for extremal
eigenvalues one expects a higher accuracy than for eigenvalues in the middle of the spectrum.
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Figure 3.1.: Schematic illustration of the Lanczos algorithm in which the
Hamiltonian matrix will be iteratively transformed into a tridi-
agonal form. Left figure displays the matrix configuration after
three iterations (/3) and right figure after five steps (/5). The

numerical algorithm stops after a defined convergence has been

reached. Here, the new tridiagonal matrix is of order m.

Consequently, relation (3.5) can be expressed in the less expensive form

|Gk+1) = [vk) — aklax) (3.11)

in which the number of matrix-vector multiplications is reduced to one per iteration
step. The number of iterations depends on the model being studied, but typically
one needs only m = 60 — 120 steps to get the extreme eigenvalues of the higher-
dimensional Hamiltonian matrix H.

3.2. Density matrix renormalization group (DMRG)

The density matrix renormalization group algorithm, developed by White in 1992
[91, 92], nowadays belongs to the standard numerical tools for studying low-
dimensional spin and lattice systems with short-range interactions. The basic
idea is to build up the system iteratively, starting with a small one that can be
diagonalized exactly. The exponentially increasing Hilbert space is controlled by a
proper selection of states which keeps the dimension constant.

Its remarkable accuracy was already demonstrated in the original paper by White
on the basis of a spin-one Heisenberg chain by computing the ground state energy
for a lattice of hundreds of sites with a precision of order 1071° and with a marginal
amount of computational effort. Since then the method has been applied to a
great variety of low-dimensional systems showing similar accuracy.

Apart from ground state properties the inclusion of temperature and the calcula-
tion of dynamical and time-dependent properties is possible too. For instance, the
transfer-matrix DMRG (TMRG) permits the study of thermodynamic properties.
An overview about the great variety of applications can be found in [94].
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In the remaining sections we give a complete description of the DMRG algorithm
including numerical details. First of all, we outline the concept of Wilson's nu-
merical renormalization group method which is the basic module of the DMRG
technique.

3.2.1. Numerical renormalization group (NRG)

The roots of the DMRG technique goes back to Wilson's numerical variant of
renormalization group (RG) procedure [95, 96]. The basic idea of the (real-
space) NRG is to truncate unimportant degrees of freedom using a sequence of
RG transformations (cf. with Fig. 3.2). To be more concrete, the RG sequence

- B, O-O00O00C---0

* Enlargement: Hy — Hypt1

B, l0t0-0-0---0

* Renormalization: Hp11 — 7:1,4+1

Bei1 O-O0-0O---0

Figure 3.2.: Iterative RG transformation scheme for an 1D quantum model
described by the Hamiltonian .

starts with a quantum chain of length £ + 1, within the DMRG terminology also
called block, which is sufficiently small thus the local Hamiltonian Hyy1 can be
diagonalized exactly. After diagonalizing H4+1 numerically, the m lowest eigenpairs
{ej, |vi)} are selected to transform H,. 1 and other operators Oy 1 in block By
to a reduced basis. The remaining eigenpairs are neglected. This can be realized
by forming a projector matrix P in which the columns contain the m lowest
eigenvectors |v;) of the Hamiltonian H,1, i.e.

| | |
P={lv) [va) - |vm) ] . (3.12)

Thus, applying truncation relation
Heyr = PIH, P (3.13)

irrelevant information will be projected out. The effective Hamiltonian 7-ng+1 iS
then a diagonal m x m matrix. Of course, other operators in Byy; have to be
transformed in the same way. The procedure can be repeated if one replaces 7—2“1
with H,. However, in order to form a new Hamiltonian Hyy1 by adding one site
to Hy, the interaction between By and a single site must be reconstructed. We
will give an instruction in Sec. 3.2.5.
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The exponentially growing dimension of the Hilbert space § is now controlled by
the truncation number m which is typically fixed at each enlargement step of the
NRG algorithm. Therefore, the required time and memory for each diagonalization
stays the same.

The NRG procedure was successfully applied to the single impurity Kondo problem
by Wilson [96]. However, further NRG studies of the 1D Heisenberg and Hubbard
model showed that the accuracy becomes quite poor after a few iteration steps
[97, 98]. White realized that the choice of energetically lowest eigenstates as
relevant states in a RG step is usually not adequate. He solved this problem by a
density matrix (DM) projection in which the /argest eigenstates of the DM play
a fundamental role at each renormalization step.

3.2.2. Density matrix projection

Following Ref. [91, 99], we will show that the DM projection provides an useful
truncation prescription for the basis of the Hilbert space $).

At the beginning, we seperate an 1D quantum chain that is represented by the
so-called superblock, into two chains. One part of the chain, the system block,
is considered to be embedded in the superblock, whereas the second part acts as
environment (cf. with Fig. 3.3). Without loss of generality, we assume that $sys

system block environment block
O—O—-—0O00rO0m010-0O0-00
B*=B,+S Bt =S+B,

Figure 3.3.: A ten-site superblock which is divided into a system block and an
evironment block.

and $Heny have the same dimension d = dg X ds, spanned by orthonormal sets
of eigenstates {|/)sys} and {|j)env}, respectively. The ground state, which is also
called target state has then the following expression

W) =D Wi [1)sys © L)eny (3.14)
i
The aim is to approximate the ground state by m < d orthonormal states |u;)sys,
characterizing the basis of the new truncated Hilbert space $){, so that

W’) ~ WN}> = ZJ’U ‘Ui>sys b2y |j>env- (3-15)
ij
If it is not necessary, we will ignore the subscript. In order to find the optimal
truncated basis one has to minimize the functional

S(9) = || lv) — )

Since the coefficients ¥;; = (ij|¢) and ¥;; = (ij|)) are (real-valued) matrix
elements which belong to d x d matrices, the functional equation (3.16) can be

[ (3.16)
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transformed to a more useful matrix representation
S@W) =t {(¥—P)'(W-P)} . (3.17)

Now, we will show that Eq. (3.16) is minimized if the |u;) are represented by the
eigenvectors of the m largest eigenvalues w; of the reduced density matrix

pir = Y _ i, (3.18)
J

which is the projection of the ground state of the superblock on $)sys. Note that
p is a hermitian operator and the condition tr(p) = 1 is fulfilled because of the
normalized target state. One can simplify Eq. (3.17) by the application of the
singular value decomposition theorem [100]. According to the theorem there exist
two unitary d x d matrices U and V' and a diagonal matrix D with non-negative
elements o, such that

p=UDVT (3.19)

The elements o, called singular values, are the square roots of the eigenvalues w;
of p, because
p=UD?U". (3.20)

Using Eq. (3.19) and applying the theorem to the approximated state too, the
functional equation (3.17) simplifies to

SW) =tr {(D-D)I(D-D)} . (3.21)

where D = UT9 V. It is obvious that the functional S is minimized by a diagonal
matrix D of rank m, whose elements are the largest singular values. Finally, the
explicit form of the optimal approximated state reads

01

$=UDV' with D= i , (3.22)
m
0

where the entries are sorted by magnitude. Therefore, the largest eigenvectors
of the reduced DM represent in a good approximation the ground state of the
superblock. Note that the singular value decomposition does not play a role within
the DMRG algorithm. The theorem was only used to show how an optimal basis
of the truncated Hilbert space $,, can be found.

Of course, other types of DM are possible. For instance, in the study of electron
models, such as Hubbard or t — J model, the electron density has to be fixed? at
each DMRG iteration. For this reason, one has to construct the reduced density
matrix from two target states. To be more precise [101], if the desired density is
n and the superblock is of size L, then one can always find two nearest integers
N1 and Ny such that N; < nL < N,. Assuming that |9 (N1)) is the ground state

2Note that in a DMRG process only two sites are added at each step, which makes the half-filling
and quarter-filling case invariant.
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of Nj electrons and |1(N,)) is that of Ny electrons, the corresponding DM then
reads

pir = W1 > Wi(ND)Wir(Ny) + Wa Y by (N2)i (o) (3.23)
J J

where the weights W) has to satisfy the condition
nL=WiNi +WoN, and Wi +Wo=1. (3.24)

It is obvious that these construction ensures the constant band filling at every
iteration. However, the success of this construction is guaranteed as long as the
ground state is not described by a phase separation regime.

In addition, the DM can be easily adapted to obtain thermodynamic quantities of
the quantum model being studied (see e.g. Ref. [102]). One only has to target
several excited states when building the reduced DM. However, the accuracy
decreases as more states are targeted. Therefore, it is most accurate to target
only the ground state of the superblock if ground state properties are of interest.

3.2.3. Truncation error & eigenvalue convergence

The DMRG precision depends crucially on the number of states that have been
projected out in order to truncate the Hilbert space. This truncation error is
measured by the so-called discarded weight

m
Pn=1-) Wa, (3.25)
a=1

where w,, are the m largest density matrix eigenvalues. Note that the accuracy for
a fixed m is many orders of magnitude worse for periodic than for open boundary
conditions. In general, the quality of the truncation of §)sys will be displayed by
the distribution of the density matrix spectrum, where the eigenvalues are sorted
by magnitude, i.e. wy < ... < wy. Fig. 3.4 depicts the distribution behaviour
on the basis of the spin-1/2 Heisenberg model and the half-filled Hubbard chain,
calculated with open boundary conditions. In the case of the Hubbard chain, the
clearly slower decay indicates that one has to take twice as many (or even more)
of DM eigenstates in order to achieve the same accuracy. Spectra of such a form
have been observed in various calculations and only for a few integrable models
the spectra of the density matrix have been determined exactly [103].

One can easily prove that in the limit m — oo the convergence of the ground state
energy E(m) has rather a sub-exponential behaviour [104]. Fig. 3.5 shows the
energy difference AE(m) = |E(m) — E(m — 40)| of a half-filled Hubbard chain
as a function of equidistant m = 80, 120, 160, ..., 400, plotted on a logarithmic
scale. A fit of the data indicates that the function AE(m) =~ am® coincides much
more with the data than the exponential function AE(m) = aexp(mb) .
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Figure 3.4.: The density matrix eigenvalue spectrum of the isotropic Heisen-
berg model and the half-filled Hubbard model plotted on a logar-
ithmic scale. The eigenvalues are sorted by magnitude.

AE(m) = |E(m)-E(m—-40)|

107

10

—= AE(m)=a m’
—— AE(m) = a exp(m b)

.
40 140

aexp(mb).

3.2.4. DMRG algorithms

First of all, one has to decide how to construct a DMRG algorithm, i.e.
In order to keep the

. .
240 340
m

to build up the system block and finally the superblock.
dimension of $) as small as possible, one usually enlarges the system block Bzys

440

Figure 3.5.: Convergence of the ground state energy difference of a 60-site
half-filled Hubbard chain at U = 4t, plotted as a function of m
on a logarithmic scale. The fit function AE(m) ~ am
much more with the data than the exponential function AE(m) ~

b coincides

how
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by one site at each step, similar to Wilson's numerical RG (cf. with Sec. 3.2.1).
Depending on the choice of the environment block B§" the procedure can be
descibed by either the infinite system or finite system algorithm.

Infinite system algorithm

The infinite system algorithm is best suited for computing the ground state of
a quantum chain in the thermodynamic limit L — oo. The standard algorithm
is developed for open boundary conditions® and proceeds as follows (we use the
illustrative representation by [82]):

[0 Take a system block of size £ and set up the matrices which represent the
block Hamiltonian

-1 1 4
’szs = Z /7,‘,,'4.1 , Bzys = O—O__O . (3-26)
i=1

The local operator hj j+1 = id ™! @h®id®~1~" depends on the studied model
(cf. with Sec. 3.2.5). Notice that other local operators O have to be
constructed in a similar way.

[0 Enlarge the system block by one site and form the corresponding Hamilto-
nian

Hpr =M @id+he, BY =([0—0==--0 (3.27)

as well as other operators.

0 Construct the superblock

O—O__O 1 O.__O_O

where the environment block B§} is usually obtained by reflecting B}, .

In order to get the ground state |¢) (or, if required, the excited states)
diagonalize the Hamiltonian

He =My + hevere + HEY (3.28)

of size L = 2£ + 2 numerically by using the Lanczos algorithm (cf. with
Sec. 3.1.2) or the Davidson algorithm [105]. If the desired system size L is
reached, calculate the expectation values (|O|y) and (Y|O O'|Y).

3In principle, the DMRG can work with open and closed (peridic, antiperiodic) boundary con-
ditions. However, the use of open boundary conditions produces a truncation error typically
several orders of magnitude smaller.
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[0 Build the reduced density matrix p and compute its complete eigenspec-
trum {wy, |uy)}. Write the orthonormal eigenstates corresponding to the
m largest eigenvalues w, into the projector matrix

| \ |
P=\lu) |u) - |um)| . (3.29)

[0 Project all operators onto the reduced basis of BZfl using Eq. (3.29), i.e.
H =PHPLP and O =PIOP. (3.30)

[0 Rename the enlarged system block

o e NG —— |O—O——O| —B}”

sys
{+1

sys

and continue from step O after substituting — H,”” and all other

operators.

The algorithm successively increases the chain length by two sites at each iteration
step, whereas the dimension of the Hilbert space ) stays constant. It is clear that
the algorithm is adopted from Wilson's numerical RG procedure. However, there
are a few important differences. In the former case the new basis for the system
block is determined by the density matrix diagonalization and in the latter case
by diagonalizing the Hamiltonian matrix. Furthermore, it is possible to formulate
the infinite system algorithm without any reflection symmetry. This is easily done
in the context of the finite system algorithm.

Finite system algorithm

Apart from the truncation error there is an additional source of error within
the DMRG procedure. During the growth phase (until a desired chain size L
is reached) the system block is embedded into an approximate superblock and
not into the, a priori unknown, exact environment. This 'environment error’ is
not simply additive but can be reduced by using the finite system algorithm (cf.
with Fig. 3.6). One can think of a zipper running repeatedly from left to right and
then right to left through a superblock of fixed size. To be more precise: start
with the infinite system algorithm and enlarge the superblock until a desired length
L is reached. At each iteration £ = 1,...,L/2 store the Hamiltonian matrices
~§,“V with ¢ = £ as well as all additional operators which are needed to connect
the blocks at each iteration (cf. with Sec. 3.2.5). It is clear that in contrast to
the previous algorithm, the size of the environment block B§" has to be adapted
at each iteration step in order to keep the superblock size fixed, i.e. L = £+ ¢’
The algorithm then proceeds as follows [92]:

00 Enlarge the system block Hamiltonian by one site (¢ — £+ 1). Then
construct a superblock Hamiltonian (3.28) with 77, but H§Y, _, and
diagonalize ‘H; numerically.
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Figure 3.6.: Schematic diagram of the finite system algorithm for an eight-site
quantum chain including two sweeps.

sys

[0 Carry out steps [ and [ of the infinite system algorithm. Then store 7'Nl4+1
and all bond operators h which are needed to connect the blocks at each

step. At last substitute ﬁjfl — M, as well all the h operators.

0 Repeat steps 0 and O until £ =L — 2, i.e. £ = 2. This is the left—to—right
phase of the algorithm.

O Now reverse the roles of H®* and HE", i.e. switch directions to build up
the environment block until #/ = L — 2. This is the right—to—left phase of
the algorithm.

[0 Repeat the whole algorithm, starting with step [.

Each time the direction is changed, so-called sweep, an improved set of stored
block Hamiltonians is used to describe the environment block. It can be repeated
until sufficient convergence is reached.

To demonstrate how the algorithm works in detail, we computed the ground
state energy for a partially filled 60-site Hubbard system with open boundary
conditions. Afterwards, we compared the data with the Bethe ansatz energy (see
for details Sec. 2.3.2) versus the number of sweeps. Fig. 3.7 displays how the
progression of the absolute error AE depends on the number of sweeps. The
absolute error decreases with increasing number of iterations until convergence is
reached. Notice that we used a modified version of the finite system algorithm
by running from left to right through the superblock only.

3.2.5. Algorithm improvements

The most time-consuming part within the DMRG algorithm is the diagonalization
of the superblock Hamiltonian (3.28). The efficiency can be increased by using
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Figure 3.7.: The absolute error of the ground state energy computed by finite
system algorithm and Bethe ansatz for a 60-site Hubbard chain
with 40 electrons at U = 4t, plotted as a function of the size of
the system block.

good quantum numbers and diagonalization accelerators reducing CPU time as
well as CPU memory.

If good quantum numbers are used, the Hilbert space $) splits into invariant sub-
spaces and the corresponding Hamiltonian matrix gains a block diagonal struc-
ture. Each block matrix can be stored separately, consequently less memory will
be needed. But, what are good quantum numbers? The simplest symmetry, for
instance, is associated with the conservation of the total number of electrons N.
Additionally, each subspace $)y can be grouped by implementing further quantum
numbers like SZ.

Construction of the superblock Hamiltonian

Up to now, we did not give any description of how to construct and store the
Hamiltonian matrix of an interacting quantum system

HBlB2 = HB1 + hBlBg + HBg =H, (3.31)

which is built up from block By with m; states and B, with m», states. In this
section we will show how to do this efficiently.

In order to form the Hamiltonian matrix for two blocks joined together, it is
necessary that each block has various bond operators which are stored as matrices.
For instance, in the case of the Hubbard model, one has to store the matrix
representations of c,yg, where n corresponds to either the leftmost (/) or the
rightmost (r) site of the block. Note that operators ¢, , can be easily obtained by
taking the Hermitian conjugate of cl,g. Consequently, they are not stored within
the routine. Following [92], the matrix which is representing the Hamiltonian
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Hpg, B, is then given by

[HBlB2] i [7‘[51] ii’6J'J’ + Z ([C:,J] il [C/,U]_/j/ + [ClT,a]jj’ [Cr,a] ii’)
+[HMe,] ;001 (3.32)

where the mym, states are labeled by the indices ij.

However, the Hamiltonian matrix should not be explicitly constructed and thereby
allocated in memory, because Lanczos or Davidson procedure use only the matrix-
vector multiplication at each diagonalization step (cf. with Sec. 3.1.3). Instead,
one should rather form and store the action H|¢) which uses less memory and is
also faster. Starting with the more general expression

[HL]U,/"J" - Z (A%, [BQLJ'/ (3.33)

a

the matrix-vector product then reads

Z [%L]ij,i’j’ [d}a]i’j’ - ZZ [A"‘],-,-/<Z [Ba]jj’ [¥] i’j’) ' (3.34)

I‘/ J'/ j/

For each «, the last sum is used first to compute a temporary matrix [C?*].

Afterwards, the multiplication of [A*] with [C"‘]t provides a partial result, which
is added into the result vector, giving a sum on a. Note that such a calculation
can be accelerated if quantum numbers are used.

Transformation of the wavefunction

Lanczos or Davidson diagonalization algorithms can usually be speeded up if the
initial vector already has characteristic features of the ground state vector. In the
case of the DMRG algorithm, such initial guesses can be provided for either the
infinite system algorithm [106, 107] or the finite system algorithm [108]. Because
the first statement is restricted to spin models only, we will focus on the second
idea which transforms the wavefunction of the previous DMRG step into the basis
of the current configuration.

Assuming that the algorithm is in the left—to—right phase in which one site is
iteratively added to the left block?, the transformation proceeds as follows [108]:
Let |bg) be the m states of the left block B, with £ denoting the rightmost site of
the block. In addition, let |sy1) be the mg states of a single site block S, where
the subscript +1 labels the £ + 1-site of a chain. Joining B, and S together,

0|00

Pri1 £ 41 42

© 0|0

“Note that an analogous transformation is used for the right—to—left phase.
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the corresponding m x mgs basis states are represented by |by) ® [sy1). The new
truncated basis with m states |byy1) is then generated by

|bey1) = Z [Pe+1]be+1'b25+1 |be) @ |s41) (3.35)
Sy1.bg

where P is a slightly rewritten form of the projection matrix (3.29). Note that
bgsy1 is a single matrix index. The m states |by 1) of the right block By 1,

O|© O

+2 41 ¢ Pot1

o0 |0

where ¢ labels the leftmost site of By, were constructed at an earlier DMRG
step, but in a similar fashion

|b£/+1> - Z [PZ’—i-l] byryq.5+1by ‘S+1> ® |bg/> ) (336)
5+1,b[/
Now we are going to describe how to transform the superblock wavefunction

W)= Y P(besiiSiabyi1)lbe) @ [s41) ® |si2) @ |bpi1)  (3.37)

by.si1.542.by g

into the new basis |byy1) ® |S42) ® [s41) @ |ber) which belongs to the next DMRG
iteration. Note that the transformation is not exact, due to the truncation going
from |bg) @ |s41) to |bgt1). However, with the approximation

> bgpa)(bera| = 1 (3.38)
bet1
as well as the use of formula (3.35) and (3.36) one finally obtains
Y(bgrrsiospiby) ~ Y [Pua] w(bespisiobyps1)[Prs1] . (3.39)
bg,5+1,bz/+1

The numerical realization of the transformation is most efficient if the process is
divided into two parts. At first, it is useful to construct a temporary wavefunction

P(bpr1seoby1) = Y [Pesa] Y(bys1S12bp 1), (3.40)

by,s41

bgt1.bps+1

and then form the final result

P(bpr15io5p1by) = Y Y(ber1Spobyi1) [Pr]

by +1

(3.41)

St1 b[/ 'bZ’+1 )

In this form, the transformation requires only a small CPU time compared to
other parts of the DMRG procedure. Using formula (3.40) and (3.41) reduces
the number of diagonalization steps drastically, i.e. from about 100 to less than
30 steps.
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3.2.6. Correlation functions

The ground state wavefunction |¢) resulting from the diagonalization of the su-
perblock Hamiltonian H , is used to evaluate local expectation values <1p\(9(n)\1p>
and correlation functions. Here, we will restrict ourselves to two-point correlators
of the form <1/J‘(9(n)(9’(m)‘1p>. In order to measure O(n), one has to use the
matrix representation, if necessary for each lattice site n. At every step of each
iteration these operators have to be updated using Eq. (3.30). For instance, one
obtains for the local spin-density S%(n) the expectation value

WISy =D Wi [S*(m)] i - (3.42)

i

Note that the procedure gives exact results within the framework of the approx-
imate eigenstate |1).

The examination of a correlation function depends on whether n and m are in
the same block or not. If they are in different blocks, one has to keep track of
[O(n)],, and [O’(m)]ﬂ,. The evaluation then reads

<¢|O(”)O'(m)|¢> = Z wij [O(n)],‘,’/ [O/(m)]jj/'lpi’j’- (343)

ii'J.J

If n.and m are in the same block, one has to keep track of [O(n)O’(m)] . because
Eq. (3.43) would not give the correct evaluation of the correlation function. One
gets

(PlomO' (m)|¥) =D [0(MO'(m)] ;. (3.44)

ii'J

However, it is more convenient to select sites n and m on different blocks in order
to avoid such complicated matrices.
The effect of open boundaries can be easily demonstrated by analyzing the local
bond strength of the nearest-neighbour spin correlation function. In Fig. 3.8
we present (for the system block only) the local bond strength for 60 site Hub-
bard chain at half-filling. One observes a strong alternation in the bond strength
induced by the open boundaries. The local bond strength is strongest at the
end of the chain and becomes weaker in the center of the system, since the
end pair only has one partner while the bulk pairs have two. In order to re-
duce such a boundary effect it is necessary to average the correlation function
C(ln—ml|) = <1/J‘(9(n)(9’(m)|1p> over a number of pairs of lattice sites separated
by the same displacement r = |n — m| [109]:

. ;M)
C(r) = iG] k; Cr(r). (3.45)

Typically one has to take around N(r) = 9 number of pairs and put for each r
the pairs as close to the center of the chain as possible. For this purpose, it is
necessary to store O(n) for each lattice site. Thus much more memory is required,
which strongly depends on the system size L and the number of states m. This
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Figure 3.8.: Nearest-neighbour spin correlation function for a 60 site Hubbard
chain at half-filling, plotted as a function of site index n.

procedure becomes more complex if fermionic operators are involved. In order to
evaluate the triplet-pair correlation function

Crs(r) = (|0} (075 (0)|) (3.46)
with the order parameter

1
1 — T AT T AT
O7s(r) = el (Cr,TCr+1,¢ + Cr,¢Cr+1,T) (3.47)

it is essential to construct new operators (matrices) of the type

(3.48)

o= A
dr,o'a’ - Cf,UCr—i—l,o"

and then compute the corresponding correlation function. Note that a usual
formulation does not provide the correct correlation. In addition, one must take
into account that fermions obey anticommutation rules (cf. with Appendix A).

3.2.7. DMRG and the matrix product ansatz (MPA)

The nature of the DMRG as a variational method was studied by Ostlund and
Rommer. They proved that in the case of a spin-1 chain the DMRG ground state
leads under some conditions to a special wavefunction form which is of matrix
product type [110]. The authors have shown that one could get very good ground
state energy by using the matrix product ansatz (MPA) [111] which corresponds
to a small number m of states applied for the renormalization step within the
DMRG procedure.

The relation between the DMRG method and the MPA can be understood in the
following way [110]: the DMRG scheme proceeds by iteratively adding a single site.
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The new set of basis states is then renormalized in order to keep the dimension
of the Hilbert space $ at a manageable size. If |a),_1, |s;) and |B), denote the
basis of §) associated to a block B,_; of size £ — 1, a single site block S and a
truncated block Bz, then the relation between these bases is written as follows

BYe =Y [Pel g as l0Ve-1® I52). (3.49)

a,s

where the subsript £ is associated to the chain position if it is inside of |...),
else it will denote the size of the block. The prefactor P corresponds to the
projection matrix (3.29). Note that the expression (3.49) is only a modification
of Eq. (3.35).

Changing the notation [Pg]ﬁ’as — [Pg(s)]ﬁa, one can write the previous matrix
of dimension mx (mx ds) as a set of ds matrices with dimension mx m. Further
on, assuming that the procedure leads to a fixed point for P, one can express the
projection operator Py(s) through P(s).

Iterative application of the renormalization Eq. (3.49) leads then to the following
expression

Bre= > ([Peo)[Pls-)] - [Ps1)]) Jedo @ lsi)..Ise) . (3.50)

Sp,..51,Q

where |a)g denotes an initial state. Note that this is already the matrix product
form of the wavefunction. However, it becomes more transparent, if one rewrites
Eq. (3.50) as a linear combination of boundary conditions defined by |3), on the
left and |a)o on the right, i.e.

Q=" tr (@ [P()][Plse-1)] - [77(51)]>6a\51> s (351)
5

The special case of Q = id describes a closed chain with periodic boundary condi-
tions and has the form which was first introduced in [111]. Further information on
the MPA and its generalization to two dimensional quantum systems, the so-called
vertex-state representation, can be found in [112, 113] and references therein. A
DMRG study of excitations of spin-1 chains with matrix product ground state can
be found in [114].

3.2.8. Extensions of the DMRG technique

Since the introduction of the DMRG procedure in 1992, a large number of in-
vestigations using this numerical technique was published and in addition, a lot of
improvements to this method as well as other applications based on the DMRG
algorithm have been performed. Among other things there are following fields of
activity:

[0 The application of the DMRG method to boson systems is difficult because
of the large number of states per lattice site. In principle, this number is
infinite and therefore one has to truncate this space.
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An useful approach was suggested by Jeckelmann and White[115]. They
developed a method which exactly transforms a boson site with 2 levels to
L pseudosites, each with two states. The mapping

L
a= 224_1@ with r, € {0, 1}, (3.52)
=1
between a boson level |a) and the L-pseudosite state |rq, ..., r;) is based on

the representation of a number in binary form. The authors implemented the
pseudosite as hard-core bosons, in order to avoid fermion anticommutation
minus signs. Further on, one has to express all boson operators b in terms
of pseudosite operators a in which the boson number operator takes the
form

L
Np=blb=> " 2t"ala,. (3.53)
=1
Other boson operators take a more complicated form in the new repres-
entation. However, they can easily be determined from Eq. (3.52) and the
properties of boson and hard-core boson operators.

Beside the possibility of calculating static properties of ground states and
low-lying eigenstates in quantum systems, assumptions for the determin-
ation of dynamical properties within the DMRG routine are possible too.
However, the calculation of dynamical quantities has proved to be more
difficult.

Several approaches have been proposed [116, 117, 118]. One of them
calculates dynamical correlation functions by the use of a continued fraction
expansion of the Green's function [116], related to the Lanczos algorithm
which is implemented in most DMRG routines. More precisely, in order to
evaluate the dynamical correlation function C(t—t') = (1|0t (£)O(t")|o)
at zero temperature (T = 0) it useful to consider the Fourier transformed
version of it, i.e.

Clw) = [WalOlpo)? 6(w — (En — Eo)) (3.54)

where the summation is taken over all the eigenstates |¢,) of the Hamilto-
nian H with energy E,. The quantity Eg denotes the ground state energy.
Using the Green's function formalism one can express Eq. (3.54) as

1 .
Cw)y=—= lm ImG(w+in+ Eg), (3.55)
™ n—0t

where the Green's function G can be written in the form of a continued
fraction

(10| OTO|tho)

p
Z-0 - g
R

G =

(3.56)
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The coefficients a, and 3, can be obtained by the recursion formula (3.5)
used in the Lanczos algorithm. In practice, this method works well for simple
discrete spectra but it usually fails for more complicated spectra.

[0 Miscellaneous extensions of the DMRG algorithm to higher, in particular
two dimensional quantum systems have been performed [108, 119, 120,
121, 122]. The simplest 2D algorithm is the so-called multi-chain approach
in which the width of the lattice system is fixed and the height is expanded
by adding whole rows or partial rows of sites. The implementation is similar
to the traditional 1D algorithm by mapping the higher dimensional problem
onto an effective 1D problem, simply by tracing a path through the lattice
[108]. Apart from the approach used in [120], there is another true® 2D
algorithm which was developed by Xiang et al. [121], where the initial blocks
of a L x L lattice are built up directly from the previous configuration of
(L—1)x (L—1) lattice sites (see Fig. 3.9). This approach has proved to be

Figure 3.9.: (A) One possible 4 x 4 superblock configuration showing
different system and environment blocks. The mapping to
an effective 1D system is marked by the solid line. (B) Re-
organization of the path which allows an equivalent descrip-
tion of each block with additional sites at the two corners
of the 3 x 3 lattices (denoted by dashed lines).

very efficient and excellent results for the ground state energy of the spin-
1/2 Heisenberg model on a square and triangular lattices were obtained, but
application to fermion models is difficult and is still a subject of development.

[0 The formulation of a DMRG procedure for quantum lattice systems in mo-
mentum space was established due to the potential advantages over the
real-space approach. The momentum is a good quantum number, since
the basis in momentum space is translationally invariant. The use of this
quantum number reduces the dimension of the Hilbert space. Moreover,
momentum distribution or the dispersion of excitations can be directly cal-
culated.

5The topological characteristics of a two-dimensional lattice are preserved within the algorithm.
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The investigation of the Hubbard model using the momentum space for-
mulation of the DMRG algorithm has shown that this tool is useful for the
Hubbard model only at weak to intermediate coupling [123].

The DMRG method has been successfully adapted for the study of two-
dimensional classical systems [124] and for the investigation of thermo-
dynamic properties of an 1D quantum system [125], in which the DMRG
algorithm is applied onto the quantum transfer matrix and therefore is called
(quantum) transfer-matrix DMRG or simply TMRG. An explicit description
of the TMRG algorithm as well as its modifications can be found in [82, 94].

Of course, thermodynamic quantities of low-dimensional quantum models
can be studied by the pure DMRG routine too. Already White showed
formally that the method can be generalized to systems at finite temperature
[91, 92]. It is necessary to target several excited states when building the
reduced density matrix.



4. The Hubbard model with transverse
spin exchange

4.1. Introduction

The discovery of high-temperature superconductivity in cuprates [25] has revived
great activity on the research of superconductivity. While searching for new com-
pounds having the same layered perovskite structure as La>CuQy, superconduct-
ivity in SroRuO4 with rather unconventional (non-s-wave) pairing! was found.
Later on, one has proved the triplet nature of this superconducting state with a
proximity to a ferromagnetic instability (see [126] for a review). Moreover, com-
pounds like UGe, [127] or ZrZn, [128] even show coexistence of the TS phase
with ferromagnetism.

Another group of unconventional superconductors with proximity of magnetic and
superconducting ordering belongs to the family of quasi-one-dimensional organic
conductors (cf. with Sec. 1.5). In the last few years a lot of measurements have
provided evidence that the Bechgaard salts (TMTSF),CIO4 and (TMTSF)2PFg
are triplet superconductors under pressure (see e.g. [129] and references therein).
Motivated by these experimental results various models of strongly correlated elec-
tron systems showing proximity of (ferro) magnetic and (triplet) superconducting
phases have been studied as attempt to construct a theoretical model for new su-
perconducting materials. Usually the models are based on some extended versions
of the Hubbard model. In particular, several extended versions of the repulsive
Hubbard model have been employed as standard models for metal—insulator trans-
itions, antiferromagnetism and high-T. superconductivity (see [130] for a review).
Based on experimental results showing strong easy-plane anisotropy of ferromag-
netic spin fluctuations in the triplet superconductor Sro RuO4 [131], we will focus
our investigations on a rather simple extension of the Hubbard model including
transverse (XY-type) spin exchange between electrons on nearest-neighbour sites,
proposed by Japaridze and Miiller-Hartmann [132]. They have shown that the 1D
version of this model has an extremely rich weak-coupling phase diagram (see
Fig. 4.1). In particular in the case of a half-filled band the ground state phase
diagram is characterized by two insulating antiferromagnetic phases with easy-
plane anisotropy and a spin gapful metallic phase with an identical decay of the

1Superconductivity involves the formation of a quantum condensate state by so-called Cooper
pairs. Each Cooper pair can be in a state of either total spin S = 0 (singlet) or S =1
(triplet). The antisymmetric singlet state is accompanied by a symmetric orbital function
(s-wave, d-wave), whereas the symmetric triplet state is accompanied by an antisymmetric
orbital function (p-wave, f-wave).
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Figure 4.1.: The weak-coupling phase diagram of the itinerant XY-model at
half-filling. Solid lines indicate borders between phases. The
dashed line qualitatively marks the transition into the XY mag-

netic phase.

triplet superconducting and spin-density wave (SDW(?)) instabilities. Further on,
strong evidence for the presence of an additional transition into a ferromagnetic
XY phase has been given [132].

Beside the hopping amplitude t and the (repulsive) Coulomb interaction U, the
1D Hamiltonian exhibits a transverse spin exchange term characterized by J;.
The Hamiltonian reads

L L
Hi-u-y, = -t Z Z <Ctjfacl+1a + Cg+1acéa) +U Z Mgy Ng),
=1 o =1
J L
1 + c— + _
T Z(Se Ser1 515 )- (4.1)
=1

One can easily verify that besides the obvious U(1) spin-symmetry in the half-filled
case the model is characterized by the SU(2) charge-symmetry.

4.1.1. Analogy to the pair-hopping model

The electron-hole transformation in one spin component

CJT — CZT,T and Cg,i — (—1)ZCM (4.2)

interchanges the charge and spin degrees of freedom and maps (4.1) to the at-
tractive Hubbard model with pair-hopping interaction Y = J, /2. Without Cou-
lomb interaction the new Hamiltonian has the following form:

L
_ T i
Ht‘Y - tz Z (Cl,aC€+1,a + Cé—i—l,acl,a)
=1 «
L
- Y (CéT,TCZT,i Cor1.,C14 T h.c.) : (4.3)
=1



4.2 Weak-coupling results for the half-filled band

The pair-hopping model (4.3) is to be considered as a phenomenological model to
describe the dynamics of small size Cooper pairs. Since high-temperature super-
conducting materials are known to indicate such pairs, to study this model can be
important to capture some of the physics of high-temperature superconductors.
Furthermore, the low-energy physics of this model is related in some way to the
physics of the attractive Hubbard model, which has an exact solution via Bethe
ansatz.

It is important to note that Y — —Y is not a symmetry of the model, unlike the
Hubbard model. Hence, at large |Y'|/t the system is different for negative and
positive Y [133].

Phase transition in pair-hopping model

Using exact diagonalization calculations for chains up to 10 sites Penson and Kolb
[134] found a phase transition at which a spin gap opens for Y > Y. ~ 1.4 t. Very
soon later, Affleck and Marston [133] analysed this model within the framework of
the weak-coupling continuum limit approach. They could show that this model is
essentially equivalent to the attractive Hubbard model. Accordingly, they predicted
that the transition in the pair-hopping model must occur at Y = 0 just like in the
Hubbard model. A few years later, Hui and Doniach [135] presented some new
numerical calculations which show the existence of a phase transition at a finite
positive value of Y. They also presented some arguments on why the predictions of
the renormalization group analysis could be not valid. Finally, Sikkema and Affleck
[136] have investigated the low-energy spectrum using the DMRG technique for
open chains up to 60 sites. They concluded that there is no transition at a non-
zero positive value of Y and that the standard low-energy picture predicted by
Affleck and Marston is valid. In the opposite part of the phase diagram (Y < 0),
they found a transition into a spin gapped phase at Y < Y.~ —1.5¢t.

4.2. Weak-coupling results for the half-filled band

4.2.1. Bosonized Hamiltonian

The mapping of the initial lattice Hamiltonian (4.1) into the continuum theory
(cf. with Sec. 1.2.3 as well as [132]) of two independent quantum models

He = ve [ ax (50000 + 508001
—1—% cos [\/87rKC¢C(x)]> and (4.4)
0
He = v [ ax (G002 + S0P

—1-% cos [\/87TK5¢5(X)}> ; (4.5)
0
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where we have defined (u € {c, s})

VE . JJ_
= — th =2t(14+ — 4.6
Vi K Wi VE ( + 27rt> (4.6)
and
1
2(Ke—1) =~ go=——U+J1), (4.7)
TVE
1
2Tme = gu:—Tr—VF(U—i—JL) : (4.8)
1
2(Ks—1) = gs=—(U+J1), (4.9)
TVE
1
2Tms = g, = W—\/F(U—JL) (4.10)

allows to study the ground state phase diagram of the system based on the infrared
properties of these Hamiltonians.

Depending on the relation between the bare coupling constants g,, g, and g, the
system exhibits two different regimes:

O For gc > |gul (gs > |g1|) we are in the weak coupling regime. The effective
mass M, scales to 0. The low energy (large distance) behaviour of the
gapless charge (spin) degrees of freedom is described by a free scalar field.
The corresponding correlations show a power law decay

(eIV2TROM) g=V2TKGU) |5 — x| 7K (4.11)
(IVETTRO0) =i/ 2ITRE0)y 1, | — | 7H/K (4.12)

and the only parameter controlling the infrared behaviour in the gapless
regime is the fixed-point value of the effective coupling constants K.

O For gc < |9u| (gs < |g1]) the system scales to the strong coupling regime;
depending on the sign of the bare mass m,, the effective mass M,, scales to
400, which signals the crossover to the strong coupling regime and indicates
the dynamical generation of a commensurability gap in the charge (spin)
excitation spectrum. The fields ¢, get ordered with vacuum expectation
values [137, 138]

<¢u>:{ '"/(SK’“‘()) :“zg . (4.13)
LMy

Using the initial values of the coupling constants given in (4.7)-(4.10), we obtain
that flow trajectories in the charge sector (due to the SU(2)-charge symmetry)
are along the separatrix g = g,,. Therefore, at

U+J, >0 (4.14)
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there is a gap in the charge excitation spectrum (A, # 0) and the charge field ¢
is ordered with the vacuum expectation value

(¢c) =0, (4.15)

while at U + J| < 0 the charge sector is gapless and the fixed-point value of the
parameter K7 is one.

The U(1) symmetry of the spin channel ensures more alternatives. Depending on
the relation between the bare coupling constants there are two different strong-
coupling sectors in the spin channel. For

U< min{0, J. } (4.16)

the spin channel is massive (As # 0) and the field ¢s gets ordered with the vacuum
expectation value

(¢s) =0, (4.17)

while for
Ji < min{0, U} (4.18)

the spin channel is massive (As # 0) too, but the field gets ordered with vacuum

expectation value
T
(02 = /5 (4.19)

In the present work we restrict our considerations to the case U > 0 and hence
Eq. (4.18) simplifies to J; < 0 while (4.16) has to be neglected.

In all other cases the excitation spectrum in the corresponding channel is gapless.
The low-energy behaviour of the system is controlled by the fixed-point value of
the Luttinger-liquid parameter K7 =1+ %g;. In the particular case of vanishing
on-site interaction (U = 0) and antiferromagnetic exchange (J, > 0) one has to
use a second order RG analysis to define accurately the fixed point value of the
parameter K (for details, see Ref. [132]).

4.2.2. Order parameters

The order parameters are used to clarify the ground state properties of the model
in different sectors. At first we derive exemplarily the boson-field representation
of the on-site singlet operator

Oos(l) = Co1Cey - (4.20)

We use the fermionic field representation, i.e. ¢z o — I(I}U(X)/‘/a()‘x:bo’ and
continue with

Oos(x) = H(eikFXTPR,o(X)+€_ikFX¢L,a(X))

(19)
= YraWLy T VYR, + 2 FYr YR + e KP4y

(117) 271ra <FR'TFL’¢ei(¢R’T+¢L'i) + Fi 4 Fr e/(Pret L)

+FR TFR ¢e2ik;: ei(q)R,T'HDR,L)

YRR J/e—2ik/: ei(¢L,T+¢L,¢)) ,



64 The Hubbard model with transverse spin exchange

Now we set kp = m/(2ap) which is valid for a half-filled band. This leads to
exp(imx/ag) = exp(iml) = (—1)% and in particular

_ 1 i/ (0c—bs) iV (0c+bs)
Oos(x) (10 2ra <FR,TFL,¢6 + FL+FRr e
+(*1)4FR,TFR,¢eim(ec_¢C)

+(_1)£FL,TFL,¢ei\/§(0C+¢C)) .

Using commutation relation (1.20) in combination with the Campbell-Baker-
Hausdorff formula exp(A) exp(B) = exp(A + B) exp([A, B]/2) gives

1 r A
Oos(x) = e (FR,TFL,LG ivV2mds + FL,TFR,¢€|\/E¢S

¥i(¥1)4FR’TFR’¢e—i\/ﬁ¢c
+i(—1)ZFL,TFL,¢eim¢C> elV2moe

(cos [V2mgs| — (—1)*sin [\/%qbc]) elV2mée |

Q

yjye1

The last step was performed without the Klein factors F, ;. Note that the expo-
nent of a correlation function will be unaffected as long as logarithmic corrections
will not be involved [69]. Finally, transforming the phase fields as ¢, — \/K_#qb#
and 6, — 6,,/+/K, leads to the expression

Oos(x) ~ (cos [V2mKsgs(x)] — (—1)¢sin [\/QﬂchbC(x)]) ei\/%ec(x) (4.21)

where the factor 1/(ma) has been omitted. Note that the remaining order para-
meters can be computed in an analogous manner. The other superconducting
order parameters are

[0 the extended-singlet

Oes(£) = %(CZ,TCZ+1,¢CZ,¢CZ+1,T) (4.22)
Oes(x) ~ (—1)!cos [\/27TKC¢C(X)]ei\/%QC(X) (4.23)

[0 and the triplet pairing

1

O7s(€) = 7 (cercerrs + ceycoris) (4.24)
O1s(x) =~ sin [v/21Ks¢s(x)] ei\/%edx) . (4.25)

Additionally we will use

[ the longitudinal on-site spin-density operator
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Yo 0G0 (4.26)
o

S*(x) = \/gax(ps(x)
+(—1)cos [v2rKcpe(r)] sin [V2rKss(r)],  (4.27)

[0 the transverse on-site spin-density operators
S¥() Z CJ’JC&_U (4.28)
(e}

S¥(x) = icos [\/2mKshs(x)] S|n \/79 (x)
(—1)f cos [v/2m K (x)] sin [\/7 ()], (4.29)

x i) 0.6 (4.30)
g

SY(x) &~ —icos [v/2mKsps(x)] cos {\/?GS(X)}
—1)%cos [ /2K e (x)] sin [\/ijés(x)] (4.31)

[0 and the on-site density operator

o(0) = Z(cgﬂ%q) (4.32)

[

s

+(=1)*sin [v/2TKcdc(x)] cos [v/2mKsds(x)] . (4.33)

Q

p(x)

4.2.3. The weak-coupling phase diagram

With the results of the previous section for the excitation spectrum and the be-
haviour of the corresponding fields Eqs. (4.11)—(4.13) we now analyze the weak-
coupling ground state phase diagram (cf. with Fig. 4.1) of the model (4.1) .
Let us first consider the case U = 0, where the weak-coupling analysis shows the
existence of two different phases: in the case of antiferromagnetic exchange, at
Ji > 0, there is a gap in the charge excitation spectrum while the spin sector
is gapless. Ordering of the field ¢. with vacuum expectation value (¢.) = 0
leads to a suppression of the CDW and superconducting correlations. The SDW
and Peierls correlations show a power-law decay at large distances (see [132] for
details). Due to the U(1)-spin symmetry, K7 > 1 and the transverse correlations
dominate in the ground state

(ST(x)S7(0)) ~ xRS 4 (—1)Ex~ /RS (4.34)
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while the longitudinal spin correlations
(S%(x)S?(0)) ~ x 2+ (=1)!x~Ks (4.35)

and Peierls correlations decay faster.

We now focus on the case of ferromagnetic exchange between spins. At U = 0 and
Ji < 0 there is a gap in the spin excitation spectrum while the charge excitation
spectrum is gapless. As common in the half-filled band case, the gapless charge
excitation spectrum opens a possibility for the realization of a superconducting
instability in the system. Moreover, due to the U(1)-symmetry of the system,
ordering of the ¢s with vacuum expectation value (¢s) = /7/8Ks leads to a
suppression of the CDW and singlet correlations. In this case the SDW(?) and
triplet correlations show an identical power-law decay

(5%(x)S%(0)) = (O1s(x)O75(0)) ~ (—1)*x* (4.36)

at large distances and are the dominating instabilities in the system.

Let us now consider the effect of the on-site Coulomb repulsion. At J; > 0
the easy-plane antiferromagnetic phase remains unchanged at U > 0. However,
at J, < 0 the TS+SDW phase is stable only towards influence of a weak
U < —J, on-site coupling. In the case of repulsive Hubbard interaction, at
U > —J| a charge gap opens. This regime corresponds to the appearance of a
long-range ordered antiferromagnetic (Néel) phase

(5%(x)S?(0)) ~ (—1)% constant (4.37)

in the ground state.

The ferromagnetic transition

Let us now discuss the ferromagnetic transition in the itinerant XY model (U = 0).
The very presence of this transition can already been seen within the weak-coupling
studies, however detailed analysis of the phase diagram close to transition is out
of scope of the continuum-limit approach. As we obtained, at J, <0, |J| < t,
the charge excitation spectrum is gapless and the spin excitation spectrum is
massive. However, in the limit of strong ferromagnetic exchange |J | > t, the
model is equivalent to the XY spin chain. Therefore, with increasing coupling one
has to expect a transition from the regime with massive spin and massless charge
excitation spectrum into a insulating magnetic phase with gapless spin excitations.
On the other hand, in the case of antiferromagnetic exchange J; > 0 the weak
coupling study shows a phase with gapless spin, gapped charge and dominating
easy-plane spin correlations. One expects that this phase evolves smoothly to the
strong coupling limit.

The J, <> —J| asymmetry is already seen on the level of the Hartree regulariza-
tion of the band-width cut-off parameter W = 27t as given by the Egs. (4.6)

Ji
Wees = 2 1+ —. 4.
off 7T< + 27rt> (4.38)
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The weak coupling approaches fail when the effective dimensionless coupling con-
stant |gi| = J1/(2mt) = |g°| ~ 1. This condition immediately gives J(f) = —Tt.
As we show below, using the DMRG studies of chains up to L = 120 sites, indeed
the transition into the ferromagnetic easy-plane ordering discussed above takes
place at J(f) ~ —4t.

4.3. Numerical results at half-filling and U =0

We used the DMRG method to study the ground-state properties of this model.
Our calculations have been performed for open chains up to 120 sites using the
infinite-size version of the DMRG routine. A comparison with the finite-size
algorithm, which requires more CPU time and memory, does not give a substantial
improvement of the results. For most of the numerical results reported here we
have kept 400 states in each block, which produces truncation errors smaller than
10~7.

4.3.1. Ground state energy

The asymmetry of this model is clearly seen in Fig. 4.2, where the ground state
energy as a function of J; is presented.

-10 | » 1
0 t-XY model AAAAA 4
A XY model e

-30 |

-50 |

-70

-90 |

-110

ground state energy (E,)

-130 |

_170 L L L L I
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0

I
Figure 4.2.: Ground-state energy Eg of the XY-model and the itinerant XY-
model as a function of coupling J, /t for a half-filled L = 100
chain.

As we observe from Fig. 4.2 in the case of ferromagnetic exchange the ground
state energy of the itinerant model becomes very close to that of the spin—% XY
chain. Further on, Fig. 4.2 indicates a smooth evolution to the limiting case of
spin-1/2 antiferromagnetic XY chain at J; — co.
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4.3.2. Excitation spectrum

Let us start from the limiting case of the itinerant XY model (U = 0) and analyse
its excitation spectrum. The charge and spin gap for a half-filled L-site system
are evaluated by

sy = e (Serten)sn(L-rt)
L L
2, <§,§>] , (4.39)
L, L L L
As(L) = Eo <§+1,§1>Eo <§,§>, (4.40)

respectively, where Eg(Ny, N) is the ground-state energy for Ny up-spin and N
down-spin electrons. The extrapolation for L — oo is then performed by fitting a
polynomial in 1/L to the calculated finite-chain results.

Figure 4.3 displays the extrapolated values as a function of J,. We observe the
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Figure 4.3.: Spin and charge excitation spectrum of the itinerant XY model at
half-filling. Depending on the behaviour of the gaps four sectors
can be distinguished. Their approximate boundaries are indicated

by grey lines.

following four sectors: at J; > 0 the system is characterized by gapless spin
and gapped charge excitation spectrum, while the weak-coupling ferromagnetic
sector exhibits gapless charge and gapful spin degrees of freedom. Moreover, our

numerical results show the presence of two new regions. At J(fl) =~ —3t a charge

gap opens, while the spin gap starts to decrease and finally closes at J(f2) ~ —4t.
This defines two new sectors: for J(fz) < J < J(fl) both the spin and charge

sectors are gapped, while at J; < J(f2) the spin sectors become gapless. There
are no indications for further transitions in the system. Note that similar behaviour
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of the gaps, with interchange of spin and charge degrees of freedom, was first
observed by Sikkema and Affleck in the pair-hopping model (4.3) [136].

4.3.3. Correlation functions

To investigate the nature of ordering in the different phases we study the behaviour
of the correlation functions. In the sectors with gapless excitation spectrum and
at half-filling we expect the usual expression for correlation functions

C(r) = (0T (NO(0)) ~ Arr % + (=1) Axr=® (4.41)

consisting of a smooth part decaying with exponent 81 and an oscillating part
decaying with 6. In determining the asymptotics of correlation functions (see
Sec. 1.2.4 and Sec. 1.3) we focus on the dominating part given by 6 = min{61, 6>}.
In addition, we average the correlation functions over typically nine numbers of
pairs of lattice sites which are separated by the same distance (cf. with Sec. 3.2.6).
In the following we will present results for correlation functions in different sectors
of the phase diagram.

Sectors I and I’ (A # 0, As = 0): The XY-phases

In Fig. 4.4 we have plotted the longitudinal and transverse spin-spin correlations
in the case of strong easy-plane exchange. Although the amplitudes of the trans-
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Figure 4.4.: The longitudinal (circle) and transverse (square and diamond)

spin-spin correlations in the case of strong easy-plane ferromag-
netic J, = —8t and antiferromagnetic J; = 8t exchange, plotted
against the real space distance |i — j|.

verse correlation functions are different, the estimated exponents are similar?. In

°Note that the influence of finite size effects on the evaluated exponents is relevant. The
determined exponent values for the full set of the data are approximately 5% larger than
those which have been calculated for a suitable subset of the data (10 < |i — j| < 40).
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the case of ferromagnetic exchange we obtained 6 = 0.57, whereas for the anti-
ferromagnetic exchange we have 6 = 0.61. The results are in a good agreement
with the exact value 6 = 0.5 obtained for the XY-model [139]. The longitud-
inal correlation functions decay faster. The calculated exponents 6 ~ 1.79 (for
J; = —8t) and 6 = 1.66 (for J; = 8t) are close to the exact XY-value 6 = 2.

Sector IT (A, = 0, A # 0): The TS+SDW() regime

Let us now focus on the case of ferromagnetic exchange J; < 0at U =0. The
bosonization results predict a suppression of the CDW and singlet correlations,
whereas SDW(?) and triplet correlators show identical power-law decay (cf. with
Eq. (4.36)). Furthermore, both correlation functions are the dominating instabil-
ities in this phase.

Figure 4.5 displays DMRG results for the singlet- and triplet-pair correlation func-
tion.  One can clearly observe a strong triplet-pair correlation. Note that the
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Figure 4.5.: Pair correlation functions in the ferromagnetic phase at J|, = —2t
and U = 0. The lower figure shows the algebraic decay of the
triplet and singlet correlation, plotted on a double logarithmic
scale.

on-site and extended singlet-pair correlations show an almost identical behaviour.
This is expected from the bosonization results (4.21) and (4.22) since the smooth
part of the on-site singlet correlations (4.21) does not contribute due to (4.19).
In the double logarithmic plot (see lower figure) all correlation functions indicate
a power-law decay with fast decaying singlet-pairing correlators (6 ~ 2.18) and a
slowly decaying triplet correlation function (6 ~ 1.03). The results are in a good
agreement with those predicted by bosonization.

In Fig. 4.6 we show calculations for the longitudinal and transverse spin-spin cor-
relation for ferromagnetic exchange (J; = —2t). We observe that the correlation
functions exhibit an algebraic decay in which the transverse spin-spin correlation
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Figure 4.6.: The longitudinal and transverse spin correlation function, plot-
ted at J; = —2t and U = 0 (upper figure). The exponents 6
(lower figure) were calculated using a suitable subset of the data

to reduce finite size effects and numerical inaccuracies at large
distances.

function decays faster. The calculated exponent of the longitudinal spin correl-
ation function is, in agreement with bosonization results, close to that of the
triplet-pairing correlations.

To complete the weak-coupling picture of sector II, we performed calculations for
the density-density correlation. The results are shown in Fig. 4.7. Since in the
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0.000 -

Figure 4.7.: The density-density correlation function at J| = —2tand U =20
including the average value of this correlation which removes the
even-odd-r oscillations.
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double logarithmic plot we observe strong oscillations we additionally calculate
the average value [140]

C(r) = 7[C(r = 1) +2C(r) +C(r + 1)) (4.42)

to smoothen the curve. As its clearly seen from the lower part of Fig. 4.7 the
oscillations are removed, but the estimated exponent remains almost unchanged.
Thus the DMRG result indicates a fast decay of density-density correlations, in
agreement with the bosonization results.

We can conclude that coexisting triplet-pairing and antiferromagnetic SDW (2)
ordering are the dominating instabilities in this sector.

Sector III (A # 0, As # 0): The intermediate phase

In this subsection we analyze the asymptotic behaviour of the superconducting
and spin-spin correlations in the intermediate phase at J;, = —3.5t, where A =
As # 0. Note that this phase is absent in the weak-coupling phase diagram (cf.
with Fig. 4.1).

In Fig. 4.8 we present DMRG data for the pairing correlation functions (left figure).
As is clearly seen from the left figure, especially from the logarithmic plot, the
superconducting correlations decay exponentially in agreement with the presence
of a charge gap. In addition, we plot the spin-spin correlation functions (right
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Figure 4.8.: Pair (left figure) and spin (right figure) correlation functions at
J, = —=3.5t and U = 0, plotted against the real space distance

(upper part) and on a logarithmic scale (lower part).

'

figure). From the logarithmic plot follows that the transverse spin correlation
function decay exponentially. In contrast, the longitudinal spin correlation show
well-established long-range order. The appearance of LRO is consistent with
the U(1) ® Z» spin-symmetry of the present model (4.1). The continuous U(1)
symmetry is generated by the operators S* and S, while the discrete Z> symmetry
comes from the invariance with respect to the S — —S57 transformation. Since
the SDW? ordering violates the discrete Z» and translation symmetries, the true
LRO state is not forbidden.
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4.4. Numerical results at half-filling and U # 0

Let us now consider the effects of a repulsive Coulomb interaction on the ground
state phase diagram of the model starting with the excitation spectrum.

4.4.1. Excitation spectrum

From the bosonization results we know the general effect of the Coulomb repulsion
on the phase diagram which displays itself in an enlargement of the charge gap
sectors at the expense of the spin gap sector. Fig. 4.9 shows charge and spin gaps

I T ‘ j
05 / “\ @—@ charge gap (U=1t)
04 | ﬁ }:{ O~ — O spin gap (U=1t)

41‘.3_:"

R @—@ charge gap (U=2t) |

0.4 / q O+ — O spin gap (U=2t)
u]

I

Figure 4.9.: Spin and charge excitation gaps of the itinerant XY model at
U =t (upper figure) and U = 2t (lower figure). The approximate
boundaries are denoted by grey lines.

for U =t and U = 2t. One can clearly see that sectors I and I, where we have a
finite charge gap Ac > 0, are enlarged. As a consequence the spin-gapped phase
(sector II) becomes smaller with increasing U and finally vanishes completely.
Already at U = 2t the charge gap is always finite. Thus the main effect of the
presence of Coulomb interactions is the suppression of sector II, i.e. a reduction
of the region with dominating superconducting correlations. In analogy with the
U = 0 case we conclude that the sectors with magnetic correlations become
dominating.

4.4.2. Correlation functions

In the following we analyze the effect of the Coulomb interactions on pair and
spin correlation functions. We will focus on the behaviour in sectors Il and III
where A. =0, As # 0 and Ac # 0, Ag # 0, respectively.
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The TS + SDW() phase

In this subsection as a representative point we consider the coupling J;, = —1.5t
at U =t. The phase is characterized by a spin gap of magnitude As =~ 0.13t and
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Figure 4.10.: Pair correlation functions in the ferromagnetic phase at J|, =
—1.5t and U = t. The lower figure shows the algebraic de-
cay of the triplet and singlet correlation, plotted on a double

logarithmic scale.
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Figure 4.11.: Spin correlation functions at J; = —1.5t and U = t. In the

upper part one can clearly observe the exponentially decaying
behaviour of the transverse correlation. Lower part shows an
algebraic decay for the longitudinal correlation, plotted on a
double logarithmic scale.
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massless charge mode. The asymptotic behaviour of the pair and spin correlation
functions is plotted in Fig. 4.10 and Fig. 4.11, respectively. One can clearly
see that the triplet-pairing and longitudinal spin-spin correlations represent the
dominating instabilities in the system. Unfortunately the accuracy of the numerics
is not sufficient in this case to verify that the exponents are still exactly identical.
Instead, we find 8 ~ 1.2 (triplet pairing) and 6 ~ 1.39 (longitudinal spin).

The LRO SDW() phase

In this subsection we compute the correlation functions at U = 2t and J, = —2t.
The presence of a charge gap A. =~ 0.38t leads now to an exponential decay of
superconducting correlations. On the other hand, as is clearly seen from Fig. 4.12,
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Figure 4.12.: Spin correlation functions at J;, = —2t and U = 2t. The

longitudinal spin-spin correlations show a true LRO, while the
transverse spin correlations decay exponentially.

the longitudinal spin-spin correlations show a true LRO while the transverse spin
correlations decay exponentially.

Note that this phase is equivalent to the intermediate sector at —4t < J; < =3t
and U = 0, showing true LRO SDW(?) and exponentially decaying transverse spin
and pair correlations.

The ferromagnetic phase

In this subsection we use as an representative point U = 2t and in addition
Ji = —4t. As one can observe from Fig. 4.13 the spin-spin correlation functions
exhibit an algebraic decay in which the longitudinal correlation decays faster. The
transverse ferromagnetic spin correlation is almost identical to that of the standard
XY-chain.
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Figure 4.13.: Spin correlation functions at J;, = —4t and U = 2t showing
a power-law decay in which the longitudinal correlation decays
faster.

4.5. Physical properties at quarter-filling

In this section we will extend our analysis to the case of a quarter-filled band. Let
us start from the limiting case of the itinerant XY model (U = 0) and analyse its
excitation spectrum.

4.5.1. Excitation spectrum at U =0

Depending on the value of J| /t the quarter-filled model (4.1) belongs either to
a TL liquid with gapless excitation spectrum or to a LE phase described by a spin
gap and gapless charge degrees of freedom. But the charge excitation spectrum
is always gapless, as in the Hubbard model with n < 1.

Figure 4.14 displays the extrapolated values as function of J,. We observe two
transitions: up to J; > —t the system belongs to the TLL universality class with
gapless excitation spectrum. With increasing ferromagnetic exchange the spin
gap increases and the system is described by the LE phase. Below J, ~ —3.7t
the gap is closed and once again the system is represented by a TL liquid. In
contrast to the half-filled case the spin gaps are much smaller.

Now we are going to analyze the behaviour of pair and spin correlation functions.

4.5.2. Correlation functions

At first, we focus our study on the gapless phase expecting a power-law behaviour
for all correlation functions.
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Figure 4.14.: DMRG results for the spin excitation spectrum of the itinerant
XY model at half-filling (circles) and quarter-filling (squares).

The TL phases (A, =0, As = 0):

The TL liquid is characterized by a gapless excitation spectrum with algebraically
decaying correlation functions. Fig. 4.15 shows the numerical data for the pair

and spin correlations at J; = —0.5t. In agreement with the TL liquid prediction,
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Figure 4.15.: Pair (left figure) and spin (right figure) correlation functions
in the TLL phase at J, = —0.5t and U = 0, plotted against
the real-space distance (upper part) and on a double logarithmic
scale (lower part).

one can clearly observe the power-law behaviour of all correlation functions.
The LE phase is more interesting, because the presence of a spin gap favours pair
correlations. Thus, next we will focus on the spin gapped phase.

The LE phase (A =0, As # 0):

We concentrate on the case of ferromagnetic exchange J, = —2t with U = 0.
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Figure 4.17.:

logarithmic scale (lower figure).

The ground state of the SU(2) spin-symmetric LE model is characterized by ex-
ponentially decaying SDW and triplet-pair correlation functions and by CDW and
singlet-pairing correlators showing power-law behaviour. However, in contrast
to the LE model, the model of interest possesses only the ordinary U(1) spin-
symmetry. Therefore, differences in the decay behaviour are expected. Already
Fig. 4.16 indicates a quite different picture. One can clearly observe that the
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triplet-pair correlator decays algebraically and definitively not exponentially. The
singlet-paring correlation function however shows an unchanged correlation be-
haviour, i.e. it has a power-law decay. In Fig. 4.17 we display the spin-spin
correlations, where the transverse spin-spin correlations decay exponentially while
the longitudinal spin-spin correlations exhibit power-law decay. Note that the es-
timated exponents of the triplet pair and the longitudinal spin correlations are
quite similar.

4.5.3. Excitation spectrum at U =t

Due to the absence of a charge gap, the influence of the Coulomb interaction
U leads only to quantitative effects. Therefore, we investigate the U = t case.
Fig. 4.18 depicts the excitation spectrum at U = t, with a shift of all boundaries
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Figure 4.18.: DMRG results for the spin excitation spectrum at half-filling
(circles) and quarter-filling (quares) at U = t.

which separates the phases. Additionally, one can clearly observe a small spin
gapped region in the quarter-filled case.



5. Conclusion and Outlook

Recent experimental findings show evidence for the competition or even coex-
istence of triplet superconductivity and ferromagnetism. Based on these obser-
vations various models of strongly correlated electron systems showing proximity
of (ferro) magnetic and (triplet) superconducting phases have been studied as
attempt to construct a theoretical model for new superconducting materials.
We focused our investigations on a rather simple extension of the Hubbard model
including transverse spin exchange between electrons on nearest-neighbour sites.
The one-dimensional version of this model has an extremely rich weak-coupling
phase diagram (see Fig. 4.1). In the case of a half-filled band the ground state
phase diagram is characterized by two insulating antiferromagnetic phases with
easy plane anisotropy and the spin gapful metallic phase with an identical decay
of the triplet superconducting and spin-density wave (SDW(?)) instabilities.

Our numerical results from the density matrix renormalization group calculations
show that the phase diagram obtained in the weak-coupling limit using the bo-
sonization technique has to be modified (see Fig. 5.1). In the case of vanishing

LRO SDW()
Ac #0
AZO
SDWY)
Ac#0
As =0
—
Ji

Figure 5.1.: The possible ground state phase diagram of the itinerant XY-
model at half-filling. Solid lines mark second order phase trans-
itions between the phases. The dashed line corresponds to the
spin-flop transition from the LRO SDW(?) into the ferromagnetic
XY phase. The dashed-dotted line marks the metal-insulator
transition from the spin-gapped metallic phase with identical de-
cay of triplet superconducting and SDW(?) correlations into the

LRO antiferromagnetic (SDW(?) phase.
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on-site Coulomb interactions,the behaviour of spin and charge gaps as function
of the spin-coupling J; allows to distinguish four different phases:
For antiferromagnetic interactions J; > 0 only one phase is present.

[0 The spin gap vanishes, but the charge gap is always finite. The observed
behaviour of the correlation functions indicates a smooth evolution to the
limiting case of spin-1/2 antiferromagnetic XY chain at J; — oo.

For ferromagnetic couplings J; < 0 three different phases appear.

[0 Already for weak interactions a spin gap opens, but the charge sector is
gapless. Here SDW(?) and triplet correlations, which decay with similar
power-laws, are dominating, i.e. this regime exhibits a coexistence of anti-
ferromagnetic ordering and triplet superconductivity.

0O At J(fl) ~ —3t the spin gap is maximal and a charge gap opens. This

intermediate phase, that extends up to J(fz) ~~ —4t shows long-range order

in the longitudinal spin correlation, whereas superconducting correlations
are surpressed and decay exponentially as expected for the case of a finite
charge gap.

O Finally, at J; > —4t via a spin-flop transition the system again enters a
XY phase characterized by vanishing spin but finite charge gap. Here the
behaviour is similar to the ferromagnetic XY model.

The presence of a repulsive on-site Coulomb interaction U has a strong effect
on the phase diagram. Generically it leads to an enlargement of the sectors with
nonvanishing charge gap at the expense of the sectors with spin gap. Already at
U = 2t the charge gap is finite for all values of the exchange coupling J;. There-
fore the phase where antiferromagnetism and triplet superconductivity coexist
is no longer observed and magnetic correlations become dominant everywhere.
Only for small values of the Coulomb interaction there is still a finite window of
coexistence possible.

We extend our analysis to the case of a quarter-filled band. Depending on the
value J, /t the model belongs either to a gapless excitation phase or to a spin
gapped phase with gapless charge degrees of freedom. In the spin gapped phase
we have shown that this regime is characterized by the coexistence of antiferro-
magnetic ordering and triplet superconductivity. Preliminary results indicate that
the Coulomb interactions only lead to a quantitative modification.

Further studies have to clarify if the two gapless phases exhibit similar physical
properties. In addition, the influence of the Coulomb interaction has to be ex-
amined in more detail. And finally, the nature of superconducting pairs (e.g. hole
or electron) has to be analyzed.



A. Implementation of the fermion sign
in the DMRG method

A common approach to numerically treating a quantum lattice system is to diag-
onalize the Hamiltonian matrix in which the basis states are written in the second
quantization, i.e. the occupation number formalism. A system with N identical
fermions and L sites is described by the basis states

[n1, ..., Ng, ..., n)=\m)®@...®nR...0|n.) (A1)

telling how many particles n, = ny 4+ + ng | are in each single particle state. Within

this formalism all operators may be expressed in terms of creation (cgg) and

annihilation (c, ;) operators obeying the important anticommutation rules
. Ch = ¢ Ch 4+ ¢, =0bubso (A.2)
Lo ¢ o Lo 4,0 o' Lo L Po0’ :

|:CZ,O" CZ’,U’] = [Cg,o' CZT’,J’} =0. (A-3)

A minus sign is introduced whenever places of two operators are interchanged.
Consequently, this sign should be carefully tracked during the DMRG procedure.
It is useful to define new creation and annihilation operators which already include
the fermion sign.

Let us assume following alignment of up- and down-spin particles

1) =¢},q,10) (A.4)
in the case when the single site state |ny) is occupied by two particles with opposite
spins. When applying ngg to|ng, ..., Ng, ..., n.), the number of particles in front
of position £ and n, determine the fermion sign. More precisely, in the left block

4
Cgﬂ O - - ® O
v
we define
20k
Cpplm, .., ne-1,0,...) = (=1)<t |ng, ..., ng-1,1,...) (A.5)
T >k
Cpplm. ..., Ne—1,4,...) = (=1)¢ |ng,..., ne—1, T .. .), (A.6)
.'. Enk
ulm om0 = (DR ek, (A7)
_'_ an-‘rl
cylm. ... ng—1, 1T, ...) = (—1)k |ni, ..., ne—1, M, ...). (A.8)
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The new creation operators of the left block are then given by

&g = (-1 and (A.9)
6ZT,¢ = CeT,¢(_1)N£_1+W’T, (A.10)

where we have defined N, = Zi:l n,. However, in the right block
El

O @ O CeT/,a
\_/

one gets
(....0,np_1,..., mlcy, = (DMt m|,  (A.11)
(.oodng1..., | CeTf,T (Ad) (DN gy, ni[,(A.12)
(....0np_1,..., mlcy, = (DM (. lng_i..oml (A13)
(...hne—1,..., n| ng = (DN (g, ml. (A.14)
Thus connecting left and right block together
4 4
CeTf O - ® O O @ -0

only the sign of the right block operators has to be modified, i.e.

&, = & (-DMr=cf (~1)Mr(-1)% 1 and (A.15)
&, = & ()M =g (—1)Ner(—1)Meatnes, (A.16)

with Nior describing the particle number of the superblock.
A fermionic correlation function like

cle—0)={(e,& ) (A17)

has to be computed in terms of these new operators. Note that all these types
of correlations give wrong behaviour if the implementation of the fermionic sign
is neglected.



B. Noninteracting fermions

In the limiting case U = 0 the 1D Hubbard model reduces to that of free fermions.
The Hamiltonian with open boundary conditions (OBC) then reads

L—1
_ T T
H=-t Z Z (CZ,UCZ-i-l,U + CZ+1,UCZ,U> ' (Bl)
{=1 o==%1

where t represents the strength of the hopping and L the length of the chain. This
model is completely equivalent to the model of spinless free fermions (SFF) due to
the fact that the two spin projections ¢ =1 and o =/ are independent. The SFF
model, which can be mapped to the spin-1/2 XX chain by means of the Jordan-
Wigner transformation, is the simplest exactly solvable strongly correlated model
[139, 141]. The main advantage of this model is that its physical quantities like
the energy spectrum or the ground-state correlation functions can be calculated
rather easily for any finite chain length, even for OBC, as in the standard DMRG
algorithm. Therefore, we will use the model of noninteracting fermions, which is
also a limiting case of our model, as a test system in order to analyze the accuracy
of our DMRG routine.

B.1. Ground-State energy

We can diagonalize the Hamiltonian (B.1) by means of Fourier transformation to
obtain

2y - *tZ% S it e §7 itk ik ) of
Lo kl,k2 klvk2
= -t Z (eik + e_ik) Cl,ack,a
k,o
= Y e(k)cf o, with e(k) =—2t cos(k). (B.2)
k,o

The ground-state energy is then given by

Eo = (H)=> e(k)(c|,co) = e(k)ns(k)

k,o k,o

= —4t Z cos(k), (B.3)

k<kr



B.2 Two-point correlations functions

where n,(k) denotes the momentum distribution for spin o with ny(k) = 1 for
all k < kg = m™N/(2L) and zero otherwise. Due to the OBC, the momentum k
takes the values k = mm/(L + 1) with m=1,..., Ns/L.,

In Figure B.1 the exact ground-state energy ey = Eg/L is compared with DMRG
results for the half-filled band (left figure) and quarter-filled band (right figure).
The DMRG calculations were performed with the infinite-system algorithm for
chains up to L = 160 lattice sites with m = 400 states retained. The discrep-
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Figure B.1.: The graphs show the ground-state energy eg = Eg/L calculated
with equation (B.3) and the DMRG method keeping m = 400
states for the half-filled band (left figure) and the quarter-filled

band (right figure). The insets show the relative errors.

ancies Aey = eg(DMRG) — eg(exact) are always positive in accordance with the
statement that the DMRG is a variational method. Due to the truncation error
in the DMRG procedure, the relative errors e = Aep/|eg(exact)|, plotted in the
insets, increase with increasing chain length. Nevertheless, the agreement with
the exact results is quite good.

B.2. Two-point correlations functions

In order to evaluate correlation functions, we make use of the Wick theorem. For
instance, the triplet-pair correlation function

Crs(In—ml) = (WOLs(n)O1s(m)lw) (B.4)
separates into a product of pairs:
1
Cre(In—ml) = > (<CrTmCm,¢><CrT7+1,¢Cm+1,¢> - <C/i,TCm+1,T><C/i+1,¢Cm,¢>

T T T T
—(Cn1 Cma 1,0 1) F <Cn,¢cm,¢><Cn+1,TCm+1,T>>

= <C/r,T><qhi> - % ((qr+1,T><qr—1,¢> + <Qr+1,i><qr—1,T>)
= <Qr>2 - <Qr+1><Qr—1> , (BS)



Noninteracting fermions

where the vacuum expectation value (q,,) = <c,i,acm,a> denotes a propagator
with distance r = |n — m| and spin o.

The singlet-pair, on-site singlet-pair, density-density and spin-spin correlations can
be obtained in a similar way:

free(r) (g > +{qr+1){(qr-1) (B.6)
ge(r) = QCQB?N(f) = —(a,)?, (B.7)
fcrﬁew( ) = n® —2(q,)? (B.8)
The propagator (g,) can be calculated in the following way [142]: Let |[£) be a

state at site £. Then the corresponding orthonormal momentum states read

L4+1
”L+1 Zsm(k 2)|e),

(B.9)
where the discret momenta take the values k,, = mm/(L+1)withm=1,..., Ns/L.
The propagator is then given by

k k! sin(kny, i) sin(k B.10
(kom0 Ki) = T sinCkn 1) sin (k7. ) (B.10)
In the following figures we diplay various correlation functions of the free fermion
model (B.1) and compare the exact results with the DMRG results. Note that
already 400 states lead to a good agreement with the exact results.
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Figure B.2.: The momentum distribution for free fermions on a chain with 120

sites. The left figure compares exact data with DMRG computa-
tions by showing the absolute error keeping m = 400 states (see
inset). In the right figure the momentum distribution calculated

with the DMRG routine is plotted in the momentum space.
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Figure B.3.: The triplet (left figure) and singlet (right figure) correlation func-
tion for free fermions on a chain with 160 sites calculated by
DMRG with m = 400 states retained. The inset shows the rel-
ative error of the DMRG results.
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Figure B.4.: The spin-spin correlation function for free fermions on a chain
with 100 sites.
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English Abstract

In the present work the numerical density matrix renormalization group (DMRG)
algorithm is used to analyze the ground state properties of the Hubbard model
with transverse spin-exchange.

The DMRG algorithm, which was developed by White in 1992, is based on the
following simple but effective concept: the ground-state wavefunction as well as
the low energy excitations of a large interacting chain are obtained by increasing
the lattice size iteratively, starting with a small one that can be diagonalized
exactly. The exponentially growing Hilbert space is controlled by a renormalization
procedure in which 'less important’ degrees of freedom are integrated out.
Motivated by recent experimental findings showing evidence for the competition
or even coexistence of triplet superconductivity and ferromagnetism we focused
our investigations on a rather simple extension of the Hubbard model including
transverse spin exchange between electrons on nearest-neighbour sites.

In the half-filled case, we showed that the phase diagram obtained in the weak-
coupling limit has to be modified. A new phase, described by spin and charge
excitation gap, shows long-range order in the longitudinal spin correlation, whereas
superconducting correlations are surpressed and decay exponentially as expected
for the case of a finite charge gap.

In general, the presence of a repulsive on-site Coulomb interaction U leads to an
enlargement of the sectors with nonvanishing charge gap at the expense of the
sectors with spin gap.

We extend our analysis to the case of a quarter-filled band. Depending on the
value J; /t the model belongs either to a gapless excitation phase or to a spin
gapped phase with gapless charge degrees of freedom.






Deutsche Kurzzusammenfassung

In der vorliegenden Arbeit verwendeten wir den Algorithmus der Dichte-Matrix-
Renormierungsgruppe (DMRG), um Grundzustandseigenschaften des Hubbard-
Models mit transversalem Spin-Austausch zu analysieren.

Dem DMRG-Algorithmus, der 1992 von White entwickelt wurde, liegt ein einfa-
ches, aber sehr effektives Konzept zugrunde: die Grundzustands-Wellenfunktion
sowie die tiefliegenden Anregungen einer groen, wechselwirkenden Kette erhalt
man durch sukzessiver Verlangerung einer kurzen, exakt diagonalisierbaren Kette.
Der hierbei exponentiell anwachsende Hilbertraum wird mit Hilfe einer Renormie-
rungsprozedur, die 'weniger wichtige’ Freiheitsgrade ausintegriert, kontrolliert.
Neue, experimentell gewonnene Daten weisen auf eine Konkurrenz oder sogar eine
Koexistenz von Triplet-Supraleitung und Ferromagnetismus hin. Geleitet von die-
sen Ergebnissen konzentrierten wir unsere Untersuchungen auf eine elementare,
generische Art des Hubbard-Models mit transversalem Spin-Austausch zwischen
Elektronen benachbarter Gitterplatze, das ein reichhaltiges Phasendiagramm auf-
weist.

Fiir das halbgefllte Band konnten wir zeigen, dass das Phasendiagram, berechnet
im Limes schwacher Kopplung, modifiziert werden muss. Eine neue Phase charak-
terisiert durch Spin- und Ladungs-Liicke weist langreichweitige Anregungen in der
longitudinalen Spin-Korrelationsfunktion, wohingegen supraleitende Korrelationen
exponentiell abfallen.

Im Allgemeinen fiihrt die Prasenz einer repulsiven 'on-site’ Coulomb-Wechselwirkung
zur Ausdehnung der Sektoren mit nicht-verschwindender Ladungsliicke auf Kosten
von Sektoren mit einer Spinanregungsliicke.

Wir erweiterten unsere Untersuchung fiir den Fall des viertelgefiillten Bandes.
Abhéangig von J, /t wird das Modell entweder durch eine Phase mit liickenloser
Energieanregung beschrieben oder es gehort einer Phase an, die durch eine Spin-
anregungsliicke charakterisiert ist.
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