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Preface

The quest to understand the physics of strongly correlated fermion systems be-

longs to the most challenging and active ˛elds in condensed matter physics. Vari-

ous experiments on high-temperature superconductors (HTSC), heavy-fermion

alloys and organic materials with their often reduced dimensionality have shown

that strong interactions are a central ingredient for the understanding of their

physical properties.

The aim of condensed matter theory is to understand the macroscopic beha-

viour of ‰ 1023 interacting fermion systems, starting from a detailed microsopic
description of the individual particles and the way they interact. However, the

description is restricted to the theoretical models that capture all the necessary

ingredients to discuss the physical behaviour one seeks to understand.

Historically, the theoretical basis for understanding the behaviour of electrons in

solids is based on Landau’s Fermi-liquid theory in which the electrons are ex-

pressed in terms of quasi-particles, describing single particle excitations of the

non-interacting system, and in addition in terms of collective excitations. How-

ever, in some new metallic systems, such as the HTSC, several anomalous prop-

erties have been observed indicating that the Fermi-liquid theory does not provide

a suitable description. Apart from the HTSC, this general picture of interact-

ing quasi-particles is known to break down in one-dimensional metallic systems in

which the concept of a Tomonaga-Luttinger liquid with purely collective excita-

tions obeying Bose rather than Fermi statistics is successfully applied.

Numerous (lattice) models have been developed and studied in order to explain

these various manifestations of strongly correlated electron behaviour. The most

prominent one is the Hubbard model, where the motion of electrons is controlled

by the hopping amplitude t, in competition with the on-site Coulomb interaction

U. The discovery of the HTSC compounds in 1986 has revitalized the investigation

of the Hubbard model, since several mechanisms proposed to explain the HTSC

invoke properties of the two-dimensional Hubbard model and probably also some

one-dimensional aspects are relevant.

Despite of its simplicity only a few rigorous results exist (in any dimension). Hence

it is very constructive to consider the one-dimensional counterpart, because ana-

lytical as well as numerical tools are much more elaborated in one dimension.

Moreover, quantum ‚uctuations and collective e¸ects are generically strong in

low dimensional systems providing a fascinating and challenging area for theoret-

ical physicists.

A great variety of non-perturbative analytical and numerical techniques for low

dimensional correlated systems have been developed, having their strengths and

limitations. For instance, the one-dimensional Hubbard model can be solved ex-
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actly by the Bethe ansatz, but more realistic models including further interactions

are no longer integrable. Other techniques like bosonization give a reliable de-

scription of the physics only in the weak-coupling limit. However, in combination

with (exact) numerical tools bosonization becomes a powerful technique.

Due to the rapid evolution of computer technology, a considerable progress in

the development of new numerical algorithms has been made. Perhaps the most

important one is the density matrix renormalization group (DMRG) method which

was developed by White in 1992. This numerical technique, which is the main tool

of the present thesis, leads to highly accurate results for the low-energy physics of

one-dimensional quantum systems. The DMRG algorihm is based on the following

simple but e¸ective concept: the ground-state wavefunction as well as the low

energy excitations of a large interacting chain are obtained by increasing the lattice

size iteratively, starting with a small one that can be diagonalized exactly. The

exponentially growing Hilbert space is controlled by a renormalization procedure

in which ’less important’ degrees of freedom are integrated out.

Motivated by the discovery of triplet superconductivity (TS) in Sr2RuO4 as well

as the coexistence of the TS phase with ferromagnetism in UGe2, URhGe and

ZrZn2 and the indication that the quasi-one-dimensional conductors (Bechgaard

salts) (TMTSF )2ClO4 and (TMTSF )2PF6 under pressure are triplet supercon-

ductors we study a rather simple extension of the Hubbard model with transverse

(XY -type) anisotropy showing close proximity of triplet superconducting and fer-

romagnetically ordered phases.

Layout of the Thesis

Chapter 1 starts with an overview of interacting electrons in one dimension based

on the concept of a Tomonaga-Luttinger (TL) liquid which is described in the

framework of a weak-coupling continuum limit approach. The TL and Luther-

Emery (LE) theory of an interacting gas model is used for the interpretation of

our numerical results.

Chapter 2 is dedicated to the Hubbard model and its extensions. Starting with

the derivation of Hubbard’s tight-binding approximation of electrons in a Coulomb

potential, we summarize basic properties of these lattice models. In one dimension,

where the (extended) Hubbard model belongs to the universality class of either

a TL liquid or a LE phase, the pure Hubbard model is exactly solvable by the

Bethe ansatz. We give an outline of this technique and close with a discussion

of some extended versions of the Hubbard model exhibiting ’superconducting’

phases, characterized by dominant pair correlations.

Chapter 3 gives a detailed description of White’s density matrix renormalization

group method and its historical context, beginning with the Lanczos algorithm

which is applied within our DMRG routine. After outlining the two types of al-

gorithms and its improvements, we show how to evaluate (fermionic) local expect-

ation values and correlation functions. Finally, the relation to the matrix product

ansatz and some extensions of the DMRG method will be disccused.

Chapter 4 presents our numerical results for the Hubbard model with transverse

spin-exchange. At ˛rst, we re‚ect the weak-coupling phase diagram using the
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bosonization technique and continue with the analysis of our numerical data for

the half-˛lled case con˛rming the bosonization results. Additionally, we discuss

a new phase, which is absent in the weak-coupling investigation, and close this

part with a discussion of the phase diagram for the half-˛lled model. Afterwards,

DMRG data for the quarter-˛lled band are analyzed, as a basis for further studies.

Chapter 5 contains the conclusion of this thesis and gives perspectives for further

research on the presented topic.



1. Interacting electrons in 1D

Why are solids in one dimension so special? Already the topology of the Fermi

surface which is described by only two discrete points in one dimension and a

continuous sphere in more than one dimension indicates that one dimensional

interacting systems might behave di¸erent. In two and three dimensions the

low-energy physics of interacting fermions is well described by the Fermi liquid

theory developed by Landau [1, 2, 3]. However, in one dimension Landau’s theory

breaks down and the unusual physical behaviour is characterized by the so-called

Tomonaga-Luttinger liquid, a name coined by Haldane [4]. The basic model in

this context is usually called Tomonaga-Luttinger model [5, 6] and was solved

exactly by applying the bosonization method [7].

After outlining the collapse of Fermi liquid theory in 1D, the description of the

Luttinger liquid as a universality class of gapless one dimensional interacting sys-

tems will be the subject of the following sections. In addition, a universality class

characterized by a gap in the spin excitation spectrum will be discussed. The

corresponding model is called Luther-Emery model [8].

1.1. Fermi liquid theory and its breakdown

In Landau’s theory the fundamental degrees of freedom of the system are quasi-

particles which allow a one-to-one correspondence between non-interacting and

weakly interacting systems. This is possible because weak interaction in principle

does not destroy the Fermi surface, i.e. the shape of the momentum distribution

function nff(k) changes, but the ˛nite discontinuity at the Fermi surface jkj = kF
remains (cf. with the left-hand side of Fig. 1.1).

This discontinuity can be explained on the microscopic level in terms of Green’s

functions. In the non-interacting case the one-particle Green’s function

G0(k; !) =
1

! + i‹ ` "0(k)
(1.1)

has a pole on the real axis describing a single-particle excitation with a well de˛ned

dispersion ! = "0(k). Note that the corresponding spectral function is simply a

delta-function, i.e. A0(k; !) = ‹(!`"0(k)). However, if interactions are switched
on, then the Green’s function has the modi˛ed form

G(k; !) =
1

! + i‹ ` "0(k)`˚(k; !)
; (1.2)

where the di¸erence between the non-interacting and interacting Green’s functions

is expressed through the self-energy ˚(k; !) which contains all many-body e¸ects.
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Now the single-particle excitations are given by the poles of G(k; !) while the

self-energy ˚(k; !) provides the damping of these excitations. However, a single

solution which is characterized by only one pole with ˛nite residue

z`1k = 1`
@˚

@!

∣∣∣∣
!=0;k=kF

» 1 ; (1.3)

implies a normal Fermi liquid. The amplitude zk gives the magnitude of the

discontinuity of the momentum distribution function at the Fermi surface (cf.

with the left-hand side of Fig. 1.1). The corresponding Green’s function becomes

G(k; !) = Gincoh(k; !) +
zk

! ` "(k) + i=fik
; (1.4)

after expanding the self-energy to second order around the Fermi surface. Of

course, it is essential that ˚(k; !) has an analytic expansion about ! = 0 and

jkj = kF . For long timescales
fi`1k = `zk Im˚(k; ! = 0)! 0 (k ! kF ) (1.5)

the second term of Eq. (1.4) gives a broadened delta-peak in the spectral func-

tion, whereas Gincoh(k; !) corresponds to a smooth incoherent background. The

damped peak at the energy "(k) / "0(k)zk expresses the fact that excitations

have the character of quasi-particles. The breakdown of the Fermi liquid theory in

FL TLL1

nff(k)

kF k

1

nff(k)

kkF

zk

Figure 1.1.: The ˛gure shows a qualitative plot of the single-particle mo-

mentum distribution function nff(k) at temperature T = 0. Left:

˛nite discontinuity at the Fermi momentum kF for a system of

interacting fermions in more than one dimension (FL: Fermi li-

quid). Right: absence of a discontinuity in an interacting system

in one dimension (TLL: Tomonaga-Luttinger liquid). The dashed

lines show the non-interacting case.

1D is signalled by either the appearance of multiple solutions indicated by multiple

poles or if zk = 0, manifesting a continuous momentum distribution function, as

illustrated in the right-hand side of Fig. 1.1.

1.2. The concept of Tomonaga-Luttinger liquid

In the limit of weakly interacting fermions only states close to the two Fermi

points ˚kF are important. For this reason it is possible to linearize the spectrum
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"(k) around ˚kF which is leading to two branches of particles, the right movers
and the left movers. Note that in a simple lattice model (see Sec. 2.1 for details)

one would have "(k) = `2t cos(k), where t describes the motion of particles
to neighbouring lattice sites. In the continuum-limit theory one then obtains

four scattering processes which describe the interaction among these particles.

Two scattering processes characterize the Tomonaga-Luttinger (TL) model which

can be solved exactly within the framework of the bosonization technique. The

determined TL parameters describe the physics of this model. This will be the

subject of the following parts.

1.2.1. Free electrons in continuum limit

The microscopic Hamiltonian describing non-interacting electrons has the well-

known form

H0 =
∑

k;ff

"(k)cyk;ffck;ff ; (1.6)

where ck;ff and c
y
k;ff are the standard annihilation and creation operators for an

electron with momentum k and spin ff = f"; #g, expressed in second quantization.
The summation over k is limited to the ˛rst Brillouin zone [`ı=a0; ı=a0], where
a0 is the lattice spacing. Note that each momentum state k can be ˛lled by

two electrons of opposite spins (Pauli principle), thus k = 2ı=L ˆ n with n =
0;˚1;˚2 : : : ;˚(L=2` 1); L=2 has to be used (here with a0 = 1). The quantity
L is the total number of lattice sites.

In the continuum limit (a0 ! 0) the Brillouin zone extends to [`1;1] and the
annihilation and creation operators are mapped to analogous fermionic ˛elds. For

instance, the ˛eld operator of the corresponding annihilation operator ck;ff and its

inverse transformation are given by

 ff(x) =
1p
L

+1∑

k=`1
e ikxck;ff and ck;ff =

1p
L

∫ +L=2

`L=2
dx e`ikx ff(x) ; (1.7)

where the momentum k = 2ı=Lˆ n is not bounded, i.e. n = 0;˚1;˚2 : : :. The
continuous variable x is related to the discrete lattice site n through x ! na0.

In the weak-coupling approach one assumes that the low energy physics is only

relevant near the two Fermi points ˚kF . Therefore, it is possible to linearize the
energy spectrum "(k) = vF (k `kF ) for right movers and "(k) = `vF (k +kF ) for
left movers with

vF =
@"(k)

@k

∣∣∣∣
k=kF

/ @ cos(k)

@k

∣∣∣∣
k=kF

; (1.8)

which expresses the relation between the linearized spectrum and the lattice one.

Moreover, one decomposes the sum in expression (1.7) into two parts, corres-

ponding to k > 0 and k < 0, and then shifts each sum by ˚kF so that k = 0
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corresponds to the Fermi points:

 ff(x) =
1p
L

∑

k>0

e ikxck;ff +
1p
L

∑

k<0

e ikxck;ff

=
1p
L

+1∑

k=`kF
e i(k+kF )xck+kF ;ff +

1p
L

+kF∑

k=`1
e i(k`kF )xck`kF ;ff

” e ikF x R;ff(x) + e
`ikF x L;ff(x) (1.9)

The smooth ˛eld operators  R and  L describe right- and left-movers with mean

momenta centered around ˚kF . By using formula (1.9) the real space counterpart
of the free fermion Hamiltonian (1.6) then reads

H0 = `ivF
∫ +L=2

`L=2
dx

∑

ff

(
 
y
R;ff(x)@x R;ff(x)`  

y
L;ff(x)@x L;ff(x)

)
: (1.10)

For the derivation one must note the following: the cross terms between left and

right components will make no contribution because the smooth left and right

˛elds have no overlap if the ‚uctuations around ˚kF are assumed to be small.
Finally, a ˛rst order Taylor expansion has been applied

 ”;ff(x + a0) ı  ”;ff(x) + a0@x ”;ff(x) (1.11)

for each branch ” 2 fR;Lg of the dispersion curve. Sometimes we will use the
notation ” 2 f+1;`1g instead of R and L and furthermore ff 2 f+1;`1g instead
of " and #.

1.2.2. Scattering processes

Due to the special topology of the one-dimensional Fermi surface, the space for

collisions between particles is strongly limited compared to higher dimensional

systems. By energy and momentum conservation alone, the corresponding low-

energy scattering processes, restricted to the two Fermi points ˚kF , can be clas-
si˛ed into four di¸erent types. These four species of collisions are illustrated in

Fig. 1.2. Next, the coupling constants for electrons with parallel spins will be

denoted by the subscript ’k’ and those with anti-parallel spins by ’?’. Following
[9], the scattering process with coupling g4 describes forward scattering, where

all four participating electrons belong to a single branch. Using the smooth ˛eld

operators  R and  L the Hamiltonian reads

Hg4int /
∑

ff;ff0

1

2

(
g4k ‹ff;ff0 + g4? ‹ff;`ff0

)∑

”

 y”;ff 
y
”;ff0 ”;ff0 ”;ff : (1.12)

The dispersion, characterized by g2, corresponds to similar events but involves

electrons on both branches. The interacting Hamiltonian has the form

Hg2int /
∑

ff;ff0

(
g2k ‹ff;ff0 + g2? ‹ff;`ff0

)
 yR;ff 

y
L;ff0 L;ff0 R;ff : (1.13)
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backward

g1 g3

g2g4
forward dispersion

Umklapp

Figure 1.2.: The four scattering processes in the so-called g-ology nomen-

clature for right-moving (solid lines) and left-moving (dashed

lines) electrons in one dimension. In all these processes the spin

dependence is suppressed.

Note that in both processes the associated momentum transfer is small. The

g1 event describes backward scattering, where each electron changes branch but

keeps its spin. This contribution is given by

Hg1int /
∑

ff;ff0

(
g1k ‹ff;ff0 + g1? ‹ff;`ff0

)
 yR;ff 

y
L;ff0 R;ff0 L;ff : (1.14)

The momentum transfer is of order 2kF . Finally, the Umklapp process (two left

electrons become right electrons or vice-versa) is denoted by g3 and is important

only if the band is half-˛lled, i.e. only if 4kF is equal to a reciprocal lattice vector.

The process is expressed by the term

Hg3int /
∑

ff;ff0

1

2

(
g3k ‹ff;ff0 + g3? ‹ff;`ff0

)∑

”

 y”;ff 
y
”;ff0 `”;ff0 `”;ff : (1.15)

Since the e¸ect of g1k is indistinguishable from that of g2k, one may set g1k = 0
without loss of generality. A spin-rotationally invariant model further reduces the

number of independent couplings. Note that scattering processes of type g2 and

g4 do not break symmetries. In contrast, the Umklapp process g3 breaks the con-

servation of individual charge currents and a charge gap opens if the interactions

are attractive (g3 < 0). Similarly, the attractive backscattering process g1 < 0

breaks the conservation of individual spin currents and a gap in the spin excitation

spectrum opens.

A detailed renormalization group analysis of this interacting gas model is given

by S«olyom [9]. For particular combinations of these coupling constants exact

solutions are known. On the one hand there is the gapless Tomonaga-Luttinger

(TL) model and on the other hand there is the Luther-Emery (LE) model having

a gap in the spin excitation spectrum. Both models can be solved exactly by

expressing the fermionic ˛eld operators in terms of boson operators [7, 8].
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1.2.3. Bosonic representation of the TL model

The TL model is a particular model of the interacting Fermi gas, Eqs. (1.12)-

(1.15) and Eq. (1.10), in which the bosonization technique yields an exact solu-

tion. The Hamiltonian of the TL model for spin-1=2 particles reads

HTL = H0 +Hg2int +H
g4
int (1.16)

= `ivF
∫
dx

∑

ff;”

”  y”;ff(x)@x ”;ff(x)

+

∫
dx

∑

ff;ff0

(
g2k ‹ff;ff0 + g2? ‹ff;`ff0

)
 yR;ff(x) 

y
L;ff0(x) L;ff0(x) R;ff(x)

+

∫
dx

2

∑

ff;ff0;”

(
g4k ‹ff;ff0 + g4? ‹ff;`ff0

)
 y”;ff(x) 

y
”;ff0(x) ”;ff0(x) ”;ff(x) :

A bosonic formulation of (1.16) is described by two independent bosonic ˛elds,

one representing the charge and the other the spin degrees of freedom. The

fermionic ˛eld operators  ”;ff are represented by bosonic operators ˘”;ff via the

identity [10]

 ”;ff(x) =
1p
2ı¸

F”;ff exp [i˘”;ff(x)] ; (1.17)

where ¸ is a short distance cut-o¸ that is taken to zero at the end of the calcula-

tion and the so-called Klein factors F”;ff are responsible for reproducing the correct

anticommutation relations between di¸erent fermionic species. The bosonic ˛elds

˘”;ff, which obey
[
˘”;ff(x);˘

y
”0;ff0(x

0)
]
= `iı ‹”;”0 ‹ff;ff0 sign(x ` x 0) ; (1.18)

in turn are combinations of bosonic ˛elds ffi— and their conjugate momenta @x„—,

where the subscript denotes charge (— = c) or spin (— = s) degrees of freedom.

The relation is given by

˘”;ff =

√
ı

2
[(„c ` ”ffic) + ff(„s ` ”ffis)] ; (1.19)

where ffi— and „— satisfy the following commutation relation

[
ffi—(x); „—0(x

0)
]
=
i

2
‹—;—0 sign(x ` x 0) : (1.20)

From a physical point of view, ffic and ffis are the phases of the charge density

wave (CDW) and spin density wave (SDW) ‚uctuations, i.e.

(x) ı
√
2

ı
@xffic(x) and Sz(x) ı

√
1

2ı
@xffis(x) ; (1.21)

whereas „c describes the superconducting phase (see chapter 4 for details). The

Hamiltonian can now be expressed as a sum of two decoupled pieces of bosonic

oscillators involving either charge or spin density wave eigenmodes

HBTL =
∫
dx

∑

—=c;s

(
v—K—
2
[@x„—(x)]

2 +
v—
2K—
[@xffi—(x)]

2

)
: (1.22)
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In terms of the parameters gic ” gik + gi? and gis ” gik ` gi? (i = 2; 4) the
charge and spin velocities are

v— = vF

√(
1 +

g4—
2ıvF

)2
`

(
g2—
2ıvF

)2
: (1.23)

One spectacular consequence is the so-called spin-charge separation (cf. with

Eq. (1.22)) which is completely absent in higher dimensions. In this description

this is due to the fact that spin and charge density modes propagate with di¸erent

velocities (vs 6= vc) and therefore will separate with time. The parameters K—,

which determine the decay behaviour of the correlation functions, are

K— =

√
2ıvF + g4— ` g2—
2ıvF + g4— + g2—

: (1.24)

Note that the properties of the TL model are completely described by the set of

parameters fv—; K—g.

1.2.4. Single- and two-particle correlation functions

In this section we give a summary of the correlation functions from which the phys-

ical properties of the TL model may be obtained. Here we will restrict ourselves

to the SU(2) spin-invariant model with Ks = 1.

From our previous discussion of spin-charge separation it is already obvious that

the TL system is not a Fermi liquid. This can be made more precise. After apply-

ing the Fourier transformation on the single-particle Green’s function Gff(x; t) the

corresponding momentum distribution function in the vicinity of the Fermi surface

reads

nff(k) ı nff(kF )` const.ˆ sign(k ` kF )jk ` kF j‚ ; (1.25)

where the exponent ‚ has the explicit form

‚ =
1

4

(
Kc +K

`1
c ` 2

)
– 0 : (1.26)

Note that for any nonvanishing interaction (Kc 6= 1) the discontinuity at kF is
absent, i.e. nff(k) is continuous (cf. with section 1.1).

The coe‹cient Kc also determines the long-distance decay behaviour of all other

correlation functions hOy(x)O(x 0)i in which the order parameter O describes an
instability of the systems. The relevant operators which can take on non-zero

expectation values are the 2kF CDW and SDW instabilities and the singlet (SS)

and triplet (TS) superconducting operators. An explicit fermionic and bosonic

expression will be discussed in chapter 4.

The asymptotic shape of the correspondig correlation functions can be calculated

exactly (see [11] and references therein). In detail, one obtains

1. for the density-density correlation (similar to CDW)

〈
(0)(r)

〉
‰ A0
r2
+
A1 cos(2kF r)

r1+Kc
+
A2 cos(4kF r)

r4Kc
+ : : : ; (1.27)
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2. for the spin-spin correlation (similar to SDW)

〈
Sz(0)Sz(r)

〉
‰ B0
r2
+
B1 cos(2kF r)

r1+Kc
+ : : : ; (1.28)

3. for the singlet-pair correlation

〈
OySS(0)OSS(r)

〉
‰ C0

r1+K
`1
c

+
C1 cos(2kF r)

rKc+K
`1
c

+ : : : (1.29)

4. and for the triplet-pair correlation

〈
OyTS(0)OTS(r)

〉
‰ D0

r1+K
`1
c

+
D1 cos(2kF r)

rKc+K
`1
c +2

+ : : : : (1.30)

The constant coe‹cients Ai ; Bi ; Ci and Di are model dependent. The algebraic

decay of each correlation function is characterized by the exponent Kc only. For

Kc < 1 spin or charge density ‚uctuations will be enhanced, while for Kc > 1

pairing ‚uctuations will dominate.

Note that logarithmic corrections, sometimes included in the above formulae [12],

have not been taken into account because they are not important as long as one

is only interested in the asymptotics r fl 1 of the correlations.
In general, 1D quantum-systems with short-range interaction and gapless excita-

tions are critical at zero temperature. In such a case, various correlation functions

show power-law decay. Otherwise, i.e. in the presence of a gap (cf. with Sec. 1.3),

they may decay exponentially and the corresponding correlation length ‰ is de-

termined by the gap. Closing of a gap indicates a divergent correlation length.

In the limit ‰ ! 1 the corresponding correlations show power-law decay. Note
that long-range order (LRO) in 1D quantum-systems at ˛nite temperature T > 0

is forbidden by the Mermin-Wagner theorem [13]. This statement is also valid

for T = 0 [14] as long as the models are described by continuous symmetries.

However, models with a discrete symmetry (cf. with chapter 4) admit LRO even

in 1D. Therefore, 1D phases are best characterized by the asymptotic behaviour

of the correlation functions.

1.3. The Luther-Emery phase

The TL model is very restrictive since the interaction parameters g2 and g4 are

associated with a small momentum transfer whereas any realistic model with

interaction of type

Hint =
1

L

∑

k;k 0;q;ff;ff0
V (q)cyk+q;ffc

y
k 0`q;ff0ck 0;ff0ck;ff (1.31)

also contains contributions with q – 2kF . Note that the choice of parameters
under which the numbers of right and left movers are conserved is essential in

guaranteeing the exact solvability of this model.
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Additional terms like g1 or g3 destroy the symmetry because they change the

individual particle numbers. The Hamiltonian of the TL model (1.22) in which

processes like

HBg1? =
g1?
2(ı¸)2

∫
dx cos(

p
8ıffis) or (1.32)

HBg3? =
g3?
2(ı¸)2

∫
dx cos(

p
8ıffic) (1.33)

are included is, in general, no longer exactly solvable but a renormalization group

(RG) analysis permits important insights about the in‚uence of such terms.

For simplicity, let us focus on a spin-independent Hamiltonian (1.12){(1.14) with

gik = gi? = gi (i = 1; 2; 4) which can be realized in a SU(2) symmetric model.
The RG ‚ow equations for cut-o¸ dependent interactions gi(‘) are quite simple

[9] and translate into

d

d‘
g1(‘) = ` 1

ıvF
g21(‘) and (1.34)

d

d‘
g2(‘) = ` 1

2ıvF
g21(‘) : (1.35)

after short-distance degrees of freedom have been integrated out. Note that g4
is not renormalized and that g1(‘) can be determined from the ˛rst equation only

g1(‘) =
g1

1 + ‘ g1ıvF
(1.36)

where g1 is the starting value. Furthermore, it is easy to see that

g1(‘)` 2g2(‘) = g1 ` 2g2 (1.37)

holds by subtracting twice the second equation from the ˛rst in Eq. (1.34). There

are two di¸erent types of ‚ow:

➊ For g1 – 0 one renormalizes to the ˛xed line g˜1 = 0 and g˜2 = g2 ` g1=2,
where the notation g˜i ” gi(‘!1) was used. The ˛xed point Hamiltonian
is a TL model with repulsive interactions in which the g1-interaction is

irrelevant.

➋ For g1 < 0 the solution (1.36) shows that g1(‘) diverges at a ˛nite value

of ‘, i.e. long before reaching this point the perturbational analysis breaks

down. However, one should notice that, well before the divergence, one

has left the weak-coupling regime where Eq. (1.34) and (1.35) are valid.

Therefore, one should not overinterpret the divergence and just remember

that the RG scales to strong coupling.

When g1k = g1? < 0, the system is described by the presence of a ˛nite spin

gap ´s . Further RG investigations show that the gap remains for all g1? < 0 and
jg1?j > g1k. For the anisotropic case, Luther and Emery have shown that for the
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particular point Ks = 1=2 the model is exactly solvable. At this point a new set

of spinless fermions can be de˛ned

¯” ”
1p
2ı¸

F” exp[i
√
ı=2(„s ` 2”ffis)] (1.38)

and the spin part of the corresponding refermionized Hamiltonian then reads

Hs = `ivs
∑

”

”¯y”@x¯” +´s(¯
y
R¯L + h.c.) : (1.39)

This Hamiltonian is easy to diagonalize and the exact result indicates an energy

spectrum

Es =
√
v2s k

2 +´2s with a ˛nite gap ´s ‰
jg1?j
2ı¸

: (1.40)

This gap has drastic consequences for the physical properties, i.e. correlations

such as SDW and triplet pairing are not critical and decay exponentially with

correlation length ‰s = vs=´s , whereas CDW and SS correlators are enhanced

compared to the case with no spin gap.

(SS)
TSSDW

(CDW)

SS
(CDW)
SS

(SS)
CDWCDW

Kc

g1?

211/2

Figure 1.3.: Phase diagram in the g1?-Kc plane for a 1D interacting gas model
in the absence of Umklapp scattering (from [15]). Correlations

indicated in parentheses have the same exponents as the dom-

inant ones but are logarithmically weaker. At g1? – 0 the sys-
tem belongs to the TL liquid with gapless excitations, whereas

the shaded region (g1? < 0) contains the spin gapped phases.

Here, ‚uctuations appearing in parentheses diverge with a smaller

power-law exponent than the dominant ones.

Without logarithmic corrections their asymptotic form explicitly reads [8]

1. for the density-density correlation

〈
(0)(r)

〉
‰ A0
r2
+
A1 cos(2kF r)

rKc
+
A2 cos(4kF r)

r4Kc
+ : : : (1.41)
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2. and for the singlet pairing correlation

〈
OySS(0)OSS(r)

〉
‰ C0

rK
`1
c

+
C1

rKc+K
`1
c

+ : : : : (1.42)

Note that these properties are not restricted to the solvable parameter values only.

Figure 1.3 shows the phase diagram in parameter space characterized by domin-

ating correlation functions. From that ˛gure one can conclude that a TL liquid

as well as the Luther-Emery (LE) phase become superconducting for Kc > 1.

Otherwise the CDW or the SDW correlations dominate.

1.4. Determination of K— and v—

In the previous sections we have seen that the complete low energy physics of

a weakly-interacting electron model is determined by the parameters K— and v—
only. Various lattice models like the (attractive or non half-˛lled) Hubbard model

or the t`J model belong to the universality class of either a TL liquid or the spin
gapped LE phase. Thus all these coe‹cients may be useful for strongly correlated

models too.

One possibility to compute K— and v— is to use their relations to spin and charge

compressibilities. More precisely, for the charge degree of freedom the ratio vc=Kc
can be calculated by the variation of ground state energy [12]

1

L

@2E0(n)

@n2
=
ı

2

vc
Kc

; (1.43)

where n = N=L is the band ˛lling depending on the number of electrons N and

the lattice size L. Note that the quantity is the inverse of the compressibility ».

The ˛nite-size approximation of it, useful for numerical computation, is given by

» =
L

N2

(
E0(L;N + 2) + E0(L;N ` 2)` 2E0(L;N)

4

)`1
: (1.44)

The charge velocity vc can be obtained from the low-energy spectrum E(k) in

the following way

vc =
@E(k)

@k

∣∣∣∣
k=0

: (1.45)

The discretized pendant of this derivation, necessary for ˛nite systems, reads

vc =
E0(L;N; S

z = 0; k = 2ı=L)` E0(L;N; Sz = 0; k = 0)
2ı=L

; (1.46)

where E0(L;N; S
z = 0; k = 2ı=L) denotes the ˛rst excited state in the sector

Sz = 0. However, if quantum chains with open boundary conditions are con-

sidered, one has to put k = ı=L instead of k = 2ı=L.

If the model is exactly solvable, like the 1D Hubbard model, then the ground

state energy E0 and the charge velocity vc can be obtained by solving the Lieb-

Wu equations (see Sec. 2.3.2 for details) in the thermodynamic limit [12]. The
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Figure 1.4.: The critical exponent Kc (here denoted by K) for the repulsive

Hubbard model as a function of the band ˛lling n = N=L with

U=t = 1 for the top curve and with U=t = 2; 4; 8; 16 for the

bottom curves (from [12]).

results for Kc as a function of n are shown in Fig. 1.4 for di¸erent values of

U=t > 0. In the whole parameter region one always has Kc < 1, which means

that magnetic ‚uctuations are dominant and on the other hand superconducting

pairing is suppressed. Note that the situation changes for the attractive U [16].

Frahm and Korepin applied the conformal ˛eld theory in order to deduce the

asymptotics of correlation functions for the 1D Hubbard model in the repulsive

regime [17]. Within this theory, the role of the critical exponents is replaced by the

so-called scaling dimensions. Additionally, they have shown that the elements of

the so-called dressed charge matrix are related to the thermodynamic quantities

of the model, especially to the compressibility and therefore to Kc . The entries

obey integral equations derived from and similar to the Lieb-Wu equations in the

thermodynamic limit.

Another approach how to compute K— numerically will be discussed in chapter

4. The basic idea is to determine the asymptotics of a suitable correlation func-

tion. However, in order to get qualitatively good results some technical e¸ort is

necessary.

1.5. Quasi-1D organic (super-) conductors

Organic conductors (see also the pioneer works [18, 19, 20]), like Bechgaard or

Fabre salts are built up from large planar molecules stacked along one direction.

The structure within the salts is characterized by several of such molecular chains

lying next to each other. The motion of electrons is di¸erent in each direction

and most signi˛cant along the chains of molecules in which the orbital overlap is

strongest. Because of these di¸erences in conductivity, these organic compounds

show a quasi one-dimensional behaviour. Compared to the Bechgaard compounds

(TMTSF)2X (X is a monovalent anion), the Fabre salts (TMTTF)2X exhibit
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a more one-dimensional structure, since the interaction between neighbouring

molecular chains is weaker. The properties of each compound become similar, if

external pressure is applied, associating with a decrease of the distance between

the chains, which leads to a dimensional crossover to higher dimensions.

1

0

p (GPa)

T
(K

)

2 4 6 8

10

100

SDWSP AF

MM-H I

2 6(TMTTF) PF

SC

db ca

Figure 1.5.: The generic temperature-pressure phase diagram for the Fabre

salt (TMTTF)2PF6. The phases are: Mott-Hubbard insu-

lating state (M-H I), metallic (M) and superconducting (SC)

state, spin-Peierls (SP), commensurate (AF) and incommensur-

ate (SDW) antiferromagnetic spin-density-wave state. The loca-

tion of other salts at ambient pressure is indicated by the arrows:

(a) (TMTTF)2BF4, (b) (TMTTF)2Br, (c) (TMTSF)2PF6 and

(d) (TMTSF)2ClO4 (taken from [21]).

The phase diagram of these organic compounds is extraordinarily rich with al-

most all known electronic states of matter (see Fig. 1.5). At low pressure the

(TMTTF)2PF6 compound behaves very much like a TLL conductor where spin

and charge degrees of freedom are decoupled. The phase below T = 250 K is

decribed by the presence of a charge gap and it has been interpreted as a Mott in-

sulating state. At TSP further transition takes place which is characterized by the

opening of a spin gap. This transition can be considered as a spin-Peierls trans-

ition, involving formation of a density wave. By the application of external pressure

or by the substitution of the anion X by atoms of di¸erent size, i. e. by chemical

pressure, inter-chain interactions become more important and a crossover from a

quasi 1D system to a Fermi liquid takes place. In this region dominant electron-

electron interactions lead to a spin-density-wave ground state as observed in the

Bechgaard salt TMTSF2PF6. With increasing pressure the system remains metal-

lic and superconductivity replaces the SDW ground state. The range of strong

SDW correlations for TMTSF2PF6 is possibly larger, as indicated in Fig. 1.5 by

the shaded region above the SDW and SC phase boundaries.
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From a theoretical point of view, organic conductors like Bechgaard or Fabre

salts are very interesting compounds. Due to the simple topological structure

it is possible to apply various well elaborated 1D tools and compare/varify the

results with experimental predictions. For instance, the dimensional crossover

can be studied by applying TLL tools on coupled chain-models, starting from a

single chain. Another interesting point is to ˛nd a microscopic description for the

mechanism which leads to superconductivity.



2. The generalized Hubbard model

In the previous sections the interacting electron gas, which is characterized by

weak interactions, was the subject of interest. Here we will focus on strongly

correlated lattice systems. One of the most prominent models is the so-called

Hubbard model. It appeared in the literature for the ˛rst time in 1963, inde-

pendently proposed by Hubbard [22], Gutzwiller [23] and Kanamori [24], as an

attempt to describe in a simpli˛ed way the e¸ect of electron correlations in nar-

row energy bands, in particular in d-bands of transition metals. The microscopic

model consists of two parts: a kinetic term describing the motion of electrons and

a second term, which approximates the Coulomb interaction among them. Be-

cause of the mechanism, the Hamiltonian is expected to be suitable for describing

the main collective features such as itinerant magnetism or metal-insulator trans-

ition. Moreover, since the discovery of high temperature superconductors in 1986

[25], where strong electron correlations are believed to be important [26, 27],

makes the two dimensional Hubbard model relevant for such materials.

In the following section we give a step-by-step derivation of the generalized Hub-

bard model starting from a general solid state Hamiltonian describing the inter-

actions between electrons in the potential Uion(r) created by a lattice of ions.

Afterwards, we provide an overview about some rigorous results and exact solu-

tions for the one{dimensional Hubbard model.

2.1. Derivation of the generalized Hubbard model

After neglecting some irrelevant parts, such as the spin-orbit interaction and re-

lativistic corrections, and the use of the so-called adiabatic approximation1 the

general Hamiltonian H in solid state physics (expressed in the language of second
quantization) reads

H =
∑

ff

∫
dr  yff(r)

(
` ~

2

2m
r2 + Uion(r)

)
 ff(r)

+
∑

ff;ff0

∫
dr

∫
dr0  yff(r) 

y
ff0(r

0)Vee(r ` r0) ff0(r0) ff(r) ; (2.1)

where Uion(r) labels the potential of the atom ions, Vee(r ` r0) / 1= jr ` r0j the
repulsive Coulomb potential and  yff(r) a ˛eld operator. In a perfect crystal the

1or the Born-Oppenheimer approximation, based on the fact that typical electronic velocities are

much greater than typical ionic velocities, leads to a Hamiltonian which describes electrons

moving in a static lattice of ions.
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ions are arranged in a regular periodic array. Thus we consider a periodic potential

Uion(r + R) = Uion(r), where R denotes a Bravais lattice vector. According to

Bloch’s theorem, the free electronic band splits under the in‚uence of U ion(r)

into in˛nitely many energy bands ¸ with Bloch functions uk¸. However, electrons

in narrow energy bands, such as d-bands in transition metals, exhibit a ’poor’

dynamics and are mostly localized around the atomic sites. Consequently the

Bloch functions are unusable for such bands. A substantially better starting point

is achieved with the so-called tight-binding-approximation, illustrated in Fig. 2.1.

Functions with such a local behaviour are called Wannier functions. They are

a)

b)

c)

d)

Figure 2.1.: A schematic illustration of the the tight-binding approximation

(taken from [28]). a) An isolated atom with three orbitals.

b) The overlap of four identical atoms building a solid with elec-

tron bands. Electrons in black orbitals become itinerant (conduc-

tion band), while those in the light gray orbitals are still localized

at the original atomic sites. Electrons in the gray orbitals are

mostly localized around the atomic sites, but tunnel to nearby

gray orbitals with a non-negligible probability (valence band).

c) An approximation to valence electrons, which are expected to

play essential roles in determining various low energy physics of

the system. d) A reduction to a lattice model in which electrons

live on lattice sites and move from one site to another.

related to the Bloch functions by an unitary transformation

ffii ;¸(r) =
1p
L

∑

k

e`ikRiuk;¸(r) ; (2.2)

where Ri labels the sites of the lattice center and L is the total number of lattice

sites. The Hamiltonian (2.1) then transforms to

H =
∑

i ;j;¸;ff

t¸ij c
y
i ;¸;ffcj;¸;ff +

∑

i jmn

∑

¸˛—�

∑

ffff0
v¸˛—�ijmn c

y
i ;¸;ffc

y
j;˛;ff0cn;�;ff0cm;—;ff ; (2.3)
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where cyi¸ff is a fermionic operator creating an electron with spin ff in a Wannier
orbital ¸ localized at site i . The coe‹cients are given by the matrix elements

t¸ij = hi¸j`~
2

2m
r2 + Uion(r)jj¸i

=

∫
dr ffi˜i ;¸(r)

[`~2
2m
r2 + Uion(r)

]
ffij;¸(r) (2.4)

and

v¸˛—�ijmn = hi¸; j˛jVee(r` r0)jm—; n�i

=

∫
dr

∫
dr0 ffi˜i ;¸(r)ffi

˜
j;˛(r

0)Vee(r ` r0)ffim;—(r)ffin;�(r0) : (2.5)

The electronic Hamiltonian (2.3) contains in˛nitely many parameters. For sim-

plicity it is therefore often assumed that the essential physics of the problem is

captured by a single s-band, thus all orbital indices ¸, ˛ etc. can be omitted. Since

the matrix elements are expected to decrease strongly with increasing distance,

one usually takes only next-neighbor interactions hi ji into account. Furthermore,
the matrix element ti j depends only on the separation of unit cells and not on

direction, hence ti j = t(Ri ` Rj). Using all these simpli˛cations the Hamiltonian
reads

H = `t
∑

hi ji

∑

ff

(
cyi ;ffcj;ff + c

y
j;ffci ;ff

)
+ U

∑

i

ni ;"ni ;# + V
∑

hi ji
ninj

+ J
∑

hi ji
Si ´ Sj +X

∑

hi ji

∑

ff

(
cyi ;ffcj;ff + c

y
j;ffci ;ff

) (
ni ;`ff + nj;`ff

)

+ Y
∑

hi ji
cyi ;"c

y
i ;#cj;#cj;" (2.6)

which is known as the generalized Hubbard model. We used the following short-

hand notation

t ” `ti j ; U ” vi i i i ; X ” vi i i j
V ” vi j i j ; J ” `2vi j j i ; Y ” vi i j j : (2.7)

The particle number operators nj;ff, nj and the spin operators Sj are de˛ned as

nj;ff = c
y
j;ffcj;ff; nj = nj;" + nj;#; Sj =

1

2

∑

¸;˛

cyj;¸~fi¸˛cj;˛ ; (2.8)

where ~fi¸˛ = ((fi
x)¸˛; (fi

y )¸˛; (fi
z)¸˛) is a vector which consists of the usual

Pauli matrices. Apart from the single-particle hopping term t, which describes

the motion of electrons to neighbouring lattice sites, and the on-site Coulomb

interaction U of two electrons at the same site, the short-range Coulomb matrix

(2.5) obviously leads to additional interaction terms: The term V denotes the

Coulomb interaction between electrons at neighbour sites. The interaction X,

called bond-charge interaction, corresponds to a single particle hopping where the
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hopping amplitude depends on the occupation number of the sites involved. In

fact it is proportional to the charge (number of electrons) located at the bond hi ji
between the sites i and j which motivates the name. Furthermore, J describes

the spin-spin interaction and Y the hopping of electron pairs to neighbour sites.

While the on-site interaction U usually has the largest numerical value, the other

matrix elements are certainly not zero. Hubbard gave an estimation of the energies

in the case of transition metals [22]:

U ı 20 eV > V ı 2` 3 eV > X ı 1 eV > J; Y ı 0:025 eV : (2.9)

In a ˛rst approximation he therefore neglected all interaction terms except for

the on-site Coulomb repulsion U and the single-particle hopping t, typically range

between 0:5 eV and 1:5 eV, which is needed to describe the relevant physics cor-

rectly. This two term model

HHub = Ht +HU
= `t

∑

hi ji

∑

ff

(
cyi ;ffcj;ff + c

y
j;ffci ;ff

)
+ U

∑

i

ni ;"ni ;# (2.10)

is known as the pure one-band Hubbard model or just Hubbard model. Despite

of its simplicity rigorous results for the Hubbard model are still rare. The next

section will explore what is known rigorously about this model.

2.2. Some rigorous results for any lattice dimension

One of the most fascinating questions concerns the magnetic properties of the

ground state. For the pure Hubbard model Nagaoka’s theorem [29], valid for

arbitrary lattice dimension but restricted to a special lattice structure ful˛lling the

connectivity condition [30], predicts a ferromagnetic ground state in a special

limit, i.e. a single hole in a half-˛lled lattice with in˛nitely repulsive interaction

(U = 1). For ˛nite repulsion (U < 1) but on special lattices Mielke and
Tasaki were able to derive rigorous criteria for the stability of ferromagnetism

[31]. Moreover, Lieb’s theorem [32] states that on a bipartite lattice at half-˛lling

the ground state has spin S = jjBj` jAjj=2, where jBj (jAj) is the number of sites
in the B (A) sublattice2. Based on Brandt and Giesekus basic concepts for the

construction of exact ground states [33] Kollar et al. presented a generalization

of Nagaoka’s theorem [34]. They considered the generalized Hubbard model and

derived su‹cient conditions for the stability of ferromagnetism.

Apart from magnetism in the Hubbard model, the question about the theoretical

mechanism of superconductivity is fascinating too. Based on so-called ” pairs

Yang has shown that already the pure Hubbard model (2.10) exhibits o¸-diagonal

long-range order (ODLRO) eigenstates [35]. Using the optimum ground state

approach, which is a much simpler and clearer method for the construction of

exact eigenstates than Brandt and Giesekus basic concept, or Strack and Vollhardt

2As an example, take a square lattice and add a site (belonging to jAj) at the center of each

bond of this square lattice. Then jAj = 2jBj and the ground state has a magnetization per

site which is more like ferrimagnetism than ferromagnetism.
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generalization [36], De Boer et al. have shown that a large class of generalized

Hubbard Hamiltonian has superconducting ground states of ”-pairing type [37].

For reviews of rigorous results about the Hubbard model in arbitrary dimensions

see for instance [28, 38]. Some of the most signi˛cant results have been collected

in the reprint volumes [39, 40, 41].

2.3. The Hubbard model in 1D

It is very instructive to consider the one-dimensional Hubbard model, because

analytical and numerical tools are much more elaborated in one dimension. In

particular, in one dimension an exact solution for the pure Hubbard model is

available. This solution gives exact energies of the ground state and all the

excited states in terms of the solution of a system of coupled nonlinear equations.

For a one-dimensional L-site lattice with periodic boundary conditions (PBC), i.e.

cL+1;ff = c1;ff, the Hamiltonian of the model written in a symmetric form is given

by

H = Ht + U
L∑

‘=1

(
n‘;" `

1

2

)(
n‘;# `

1

2

)
(2.11)

= Ht +HU `
U

2
N +

U

4
L

in which U=2 shift the chemical potential. The physical properties depend on

two parameters, i.e. the interaction U=t and the band-˛lling n = N=L, where

N =
∑
‘;ff n‘;ff =

∑
ff Nff is the total number of particles.

2.3.1. Symmetries and limiting cases

The Hubbard Hamiltonian (2.11) has two important symmetries3 [42]. First, the

Hamiltonian is invariant under rotations in spin space. The corresponding SU(2)-

spin algebra is generated by the operators

S+ =

L∑

‘=1

c
y
‘;"c‘;# ; S` =

L∑

‘=1

c
y
‘;#c‘;" and Sz =

1

2

L∑

‘=1

(
n‘;" ` n‘;#

)
(2.12)

with commutation relation

[S+; S`] = 2Sz ; [Sz ; S˚] = ˚S˚ and [H; S—] = 0 ; (2.13)

for — 2 f+;`; zg. Note that this SU(2)-spin algebra is also valid for the standard
Hubbard model (2.10). The second type of symmetry is particular to the Hubbard

model and relates sectors of di¸erent particle numbers. For lattices of even length

L the SU(2)-symmetry is generated by the pseudospin or ”-pairing operators

”` =
L∑

‘=1

(`1)‘c‘;"c‘;#; ”+ =

L∑

‘=1

(`1)‘cy‘;#c
y
‘;" and ”

z =
1

2
(N ` L) (2.14)

3Notice that these two symmetries are not restricted to the one-dimensional model.
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with corresponding commutation relation

[”+; ”`] = 2”z ; [”z ; ”˚] = ˚”˚ and [H; ”—] = 0 : (2.15)

Of course, this result is not surprising since the ”-operators can be obtained from

the spin operators by a particle-hole transformation. The generators of both

algebras commute with one-another and it seems that the Hubbard model has a

SU(2)˙ SU(2) symmetry. However, the symmetry group is smaller, because the
two SU(2) symmetries are not completely independent. For ˛xed L one has

Sz + ”z =
1

2

(
N" `N#

)
+
1

2
(N ` L) = N# `

L

2
(2.16)

which is always an integer as long as L is even. Therefore, the full symmetry

group is

SO(4) = SU(2)˙ SU(2)=Z2 : (2.17)

One should notice that odd number of lattice sites or more complicated inter-

actions will conserve the spin rotation invariance (2.12) but in general not the

\charge" SU(2) invariance (2.14). This second symmetry will become the stand-

ard global U(1) invariance which is associated with particle number conservation.

There exist two discrete symmetries which can be used to identify the fundamental

regions of the model. First, the Hamiltonian is invariant under exchange of up and

down spins (spin-‚ip symmetry). Another symmetry, which leaves the Hamiltonian

invariant, is the particle-hole symmetry. By employing the transformation

c‘;ff ! (`1)‘c
y
‘;ff and cy‘;ff ! (`1)‘c‘;ff (2.18)

maps the empty state j0i to the completely ˛lled state j "#i. Making use of these
symmetries it is su‹cient to investigate the Hubbard model only in the region

N » L and N# » N=2, important for the Bethe ansatz.
In the case t = 0 (atomic limit) the motion of electrons is impossible and at half-

˛lling the ground state contains exactly one electron per site, i.e. the system is

insulating. This feature still holds for ˛nite t and U =1. In the free fermion limit
(U = 0) the model reduces to a system of non-interacting moving electrons (see

appendix) and the ground state is metallic. Therefore, for ˛nite value t and at

some critical value Uc of the Coulomb repulsion one can expect a metal-insulator

transition.

2.3.2. Exact solution: The Bethe ansatz

In 1967 Yang [43] used the (nested) Bethe ansatz (BA) to solve an 1D elec-

tron system with delta-function interaction. One year later Lieb and Wu [44]

generalized Yang’s solution to a lattice case, i.e. the Hubbard model. They re-

duced the problem of diagonalizing the Hamiltonian to solving a set of coupled

nonlinear equations known as the Lieb-Wu equations and calculated the ground

state energy of the system. Moreover, they showed that for arbitrary positive

value U the model at half-˛lling is an insulator. In 1972 Takahashi derived an

in˛nite set of nonlinear integral equations that determines the thermodynamics
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of the Hubbard model [45]. By solving these equations in some limits, he was

able to calculate the low temperature speci˛c heat [46]. In the 80’s Woynarovich

studied the elementary excitation spectrum of the Hubbard model in more detail

[47, 48, 49, 50] which was started ten years earlier, e.g. by Ovchinnikov [51] and

Coll [52]. Furthermore, he presented the explicit form of the Bethe ansatz wave

function. Kl­umper et al. developed a di¸erent method to solve the BA equations

at half-˛lling, rederiving all known results at zero temperature [53]. Based on the

representation of the SO(4) symmetry of the Hubbard model Eıler and Korepin

proved that the excitation spectrum at half-˛lling is given by the scattering states

of only four elementary excitations which are called holon, antiholon and spinon

with spin up or down, respectively [54]. There was also progress in the understand-

ing of the algebraic structure of the Hubbard model. Shastry showed that the 1D

Hubbard Hamiltonian commutes with a one-parameter family of transfer matrices

of a new 2D classical integrabel model and displayed the form of the R-matrix

explicitly [55]. Shiroishi and Wadati showed that the R-matrix, which underlies

the integrability of the Hubbard model, satis˛es the Yang-Baxter equation [56].

Martins and Ramos formulated in terms of the quantum inverse scattering method

the algebraic Bethe ansatz solution of the one-dimensional Hubbard model [57].

J­uttner et al. used this result in the quantum transfer matrix approach to the

thermodynamics [58]. In contrast to the traditional approach by Takahashi, this

approach leads to a ˛nite number of non-linear integral equations that determine

the Gibbs free energy.

This is only a short historical overview about the exact results of the Hubbard

model. For a review including a rather exhaustive list of references we refer the

interesting reader to [59] or the more pedagogical article [60].

Bethe ansatz for a Hubbard chain with PBC

The Hubbard Hamiltonian (2.11) conserves the total number of electrons N and

the total number of down spins N# and thus N". Therefore, one can use these
two quantum numbers to label the eigenstates of Hamiltonian (2.11) which have

the following second quantized form

∣∣N;N#
〉
=

(
N

N#

) ∑

fxkg
ffiff(x1; : : : ; xN)c

y
x1;ff1 : : : c

y
xN ;ffN

∣∣0
〉
; (2.19)

where
∣∣0

〉
denotes the vacuum state in the Fock space and ff = (ff1; : : : ; ffN) 2 SN

(element of the symmetric group) is arbitrary. The Schr­odinger equation

H
∣∣N;N#

〉
= E

∣∣N;N#
〉

(2.20)

implies following eigenvalue equation for ffi

`
N∑

j=1

∑

s=˚1
ffiff(x1; : : : ; xj + s; : : : ; xN) + U

∑

j<k

‹xj ;xk ffiff(x1; : : : ; xN)

=

(
E +

U

2
N ` U

4
L

)
ffiff(x1; : : : ; xN); (2.21)
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where ‹xj ;xk denotes the Kronecker delta and t = 1. Unphysical amplitudes ffi

where two electrons with the identical spin occupy the same site will not be

considered due to the Fermi statistics of the c-operators. The case N = 1 is not

interesting because one electron without interaction obviously describes a free

fermion and equation (2.21) can be solved by ffiff(x) = Affe
ikx with the energy

E = `2 cos k. In the case of two particles (N = 2) equation (2.21) reduces to
`ffiff(x1 ` 1; x2)` ffiff(x1 + 1; x2)` ffiff(x1; x2 ` 1)` ffiff(x1; x2 + 1)

= `U‹x1;x2ffiff(x1; x2) + E0ffiff(x1; x2) ; (2.22)

with E0 = E + U ` UL=4 and ff = (ff1; ff2). For free electrons, i.e. as long as
x1 < x2 or x1 > x2, the solution of (2.22) is just a superposition of plane waves.

A scattering process takes place, when the two particles occupy the same site, i.e.

x1 = x2. This scattering is purly elastic, which means that the energy is conserved

and that the momenta of the two electrons are individually conserved, i.e. the

electrons exchange their momenta. The expression for ffi in these two cases can

be written in a uni˛ed form that also anticipates the form of the expression for

N > 2. Let Q be a permutation of the labels of coordinates, i.e. Q = (Q1; Q2) 2
f(1; 2); (2; 1)g. For xQ1 » xQ2 the form for ffi is then given by

ffiff(x1; x2) =
∑

P2S2
(`1)PAffQ1ffQ2 (kP1; kP2)e

ikP1 x1+ikP2x2 ; (2.23)

where (`1)P denotes the sign of the permutation. This is the famous nested
Bethe ansatz form for the wavefunction ffi. The continuity of the wavefunction at

x1 = x2 requires the ful˛llment of the following relation among the amplitudes:

Aff1ff2(k1; k2)` Aff1ff2(k2; k1) = Aff2ff1(k2; k1)` Aff2ff1(k1; k2) : (2.24)

In addition, substituting (2.23) into equation (2.22) with x = x1 = x2 yields the

condition

f[Aff2ff1(k2; k1)` Aff1ff2(k1; k2)] (e ik1 ` e`ik1 ` e ik2 + e`ik2)
`U [Aff1ff2(k1; k2)` Aff1ff2(k2; k1)]g
+E0 [Aff1ff2(k1; k2)` Aff1ff2(k2; k1)]

= `2(cos k1 + cos k2) [Aff1ff2(k1; k2)` Aff1ff2(k2; k1)] : (2.25)

This becomes an eigenvalue equation for the eigenvalue E 0 = `2(cos k1+cos k2)
with eigenfunction [Aff1ff2(k1; k2)` Aff1ff2(k2; k1)], if the expression in brackets
f: : :g vanishes. One can express two of the four amplitudes AffQ1ffQ2 (kP1; kP2) in
terms of the other two. The vanishing condition then reads

Aff1ff2(k2; k1) =
`U=2i

sin k1 ` sin k2 ` U=2i
Aff1ff2(k1; k2)

+
sin k1 ` sin k2

sin k1 ` sin k2 ` U=2i
Aff2ff1(k1; k2) : (2.26)

Equation (2.26) has a natural interpretation in terms of a scattering process of

two particles. In order to see this one has to rewrite it as

Aff1ff2(k2; k1) =
∑

ff01;ff
0
2

S
ff1ff

0
1

ff2ff
0
2
(k1; k2)Aff01ff

0
2
(k1; k2) ; (2.27)



30 The generalized Hubbard model

where S(k1; k2) is the two-particle scattering matrix with elements

S
ff1ff

0
1

ff2ff
0
2
(k1; k2) =

`U=2i
sin k1 ` sin k2 ` U=2i

‹ff1;ff02‹ff2;ff
0
1

+
sin k1 ` sin k2

sin k1 ` sin k2 ` U=2i
‹ff1;ff01‹ff2;ff02 : (2.28)

The elements of the S-matrix (2.28) give two possibilities of a scattering process:

The particles can pass each other without changing their momenta and spin, or

alternatively, the particles exchange their spins so that after scattering particle

one has momentum k1 and spin ff2 and particle two momentum k2 and spin ff1.

An equivalent interpretation would be an exchange of momenta instead of spins.

Expression (2.28) can be written in a compact operator form

S12(–) =
–+ iU=2P12
–+ iU=2

(2.29)

with the momentum parametrization – = sin k1 ` sin k2 and the permutation
operator of a pair of particles

P12 = P
ff1ff

0
1

ff2ff
0
2
= ‹ff1;ff02‹ff2;ff

0
1
=




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 : (2.30)

In the ˛nal step one has to consider the e¸ect of the periodic boundary conditions

on the wavefunction, i.e.

ffiff(x1 + L; x2) = ffiff(x1; x2) and (2.31)

ffiff(x1; x2 + L) = ffiff(x1; x2) : (2.32)

This induces the following conditions on the amplitudes

AffQ1ffQ2 (kP1; kP2) = exp (ikP1L)AffQ2ffQ1 (kP2; kP1) ; (2.33)

where P;Q 2 S2 are arbitrary. Solution of (2.33) determine the quantization

conditions for the momenta k1 and k2.

The generalization to N – 3 particles separates the Fock space of the Hamiltonian
in N! quadrants

XQ ” f1 » xQ1 » xQ2 » : : : » xQN » Lg : (2.34)

The corresponding N-particle Bethe ansatz wavefunction reads

ffiff(x1; : : : ; xN) =
∑

P2SN
(`1)PAffQ1 :::ffQN [Q;P ] exp


i

N∑

j=1

kPj xj


 ; (2.35)

where the symbolic notation AffQ1 :::ffQN [Q;P ] ” AffQ1 :::ffQN (kP1; : : : ; kPN) was used.
The amplitudes of various regions are related through the S-matrix. If the regions
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XQ and X
�

Q
di¸er by the exchange of particles i and j , then the relation can be

written in the form

A:::ffi :::ffj :::[Q;P ] =
∑

ff0i ;ff
0
j

S
ffiff

0
i

ffjff
0
j
(ki ; kj)A:::ff0i :::ff

0
j :::
[Q̃; P ] : (2.36)

Note that a repeated application of relation (2.36) for a single pair of particles

reduces any permutation to the identity permutation I with

XI ” f1 » x1 » x2 » : : : » xN » Lg : (2.37)

This means that the amplitudes A[Q̃; P ] and A[I; P ] will be connected by the

product of S-matrices corresponding to all transpositions of a pair of indices which

are necessary to reduce the permutation Q̃ to the identity permutation. However,

the way how to express a permutation by a sequence of transpositions is usually

not unique. For instance, if three particles in their initial state are ordered as

x1 < x2 < x3 = (1; 2; 3) and after the passage of a certain amount of time their

positions are x3 < x2 < x1 = (3; 2; 1), then the three-particle scattering process

can be described in two ways, illustrated in Fig. 2.2. Thus equivalence plays a

S23

S12S23

S12

(213)

S13

(312)

(132)

(231)

(123)

(321)

S13

Figure 2.2.: Illustration of a three-particle scattering process which can occur

in two ways: The particle x1 ˛rst passes the particle x2 and then

x1 passes x3, or ˛rst the particle x2 passes particle x3 and then

x1 passes x3. The ˛nal result in both cases is the same.

fundamental role in the theory of exactly solvable one-dimensional models and

was established by Yang [43] and Baxter [61] and becomes the basis for what is

known as the Yang-Baxter equation

∑

ff01;ff
0
2;ff
0
3

S
ff1ff

0
1

ff2ff
0
2
(k1; k2)S

ff01ff
00
1

ff3ff
0
3
(k1; k3)S

ff02ff
00
2

ff03ff
00
3
(k2; k3) =

∑

ff01;ff
0
2;ff
0
3

S
ff2ff

0
2

ff3ff
0
3
(k2; k3)S

ff1ff
0
1

ff03ff
00
3
(k1; k3)S

ff01ff
00
1

ff02ff
00
2
(k1; k2) : (2.38)
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If the S-matrix derived from the Hamiltonian satis˛es the Yang-Baxter equation,

then the Bethe ansatz form of the wavefunction is consistent and the model is

integrabel.

The expression obtained for the S-matrix of the Hubbard model (2.29) has the

same form as the matrix, which was used to solve the six-vertex model exactly (see

[61] for details). In order to see that the S-matrix (2.29) satis˛es the Yang-Baxter

equation one has to rewrite it explicitly in matrix form

S(–) =
1

–+ iU=2




–+ iU=2 0 0 0

0 – iU=2 0

0 iU=2 – 0

0 0 0 –+ iU=2


 (2.39)

and identify the matrix elements with the elements of the L-matrix

a(–) = 1; b(–) =
iU=2

–+ iU=2
and c(–) =

–

–+ iU=2
: (2.40)

The following relation holds between them

a(–) : c(–) : b(–) = (–+ iU=2) : – : iU=2 ; (2.41)

which automatically satis˛es the functional equation

c(–)

b(–)
=
c(—)

b(—)
+
c(–` —)
b(–` —) ; (2.42)

moreover the Yang-Baxter equation in local form, from which (2.42) follows.

Hence, one can apply all the technique which was used to solve the six-vertex

model. For a prescribed choice of quantities –0j , i.e. –
0
j = sin kj , and parametriz-

ation of the elements of the S-matrix (2.39) the eigenvalue of the transfer matrix

Tj adopt the speci˛c form

˜(– = –0j ;–
0
1 : : : –

0
N ;–1 : : : –N#) =

N#∏

i+1

–i ` sin kj + iU=2
–i ` sin kj

” e ikjL (2.43)

and the numbers –i (i = 1; : : : ; N#) assume the following expression

N∏

j=1

–i ` sin kj + iU=2
–i ` sin kj

=

N#∏

k=1

–i ` –k + iU=2
–i ` –k ` iU=2

(2.44)

The right hand side of equation (2.43) is due to the periodicity condition

e ikjLA[I; I] = TjA[I; I] ; (2.45)

where relation (2.39) was used repeatedly to obtain the above expression for

the amplitude A[I; I] corresponding to the identity P - and Q-permutations. A

substitution of the form –i = –
0
i ` iU=4 changes expression (2.43) and (2.44) into

the form written by Lieb and Wu, which are called Lieb-Wu equations.
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Lieb-Wu equations for open boundary conditions

The Hubbard model with open boundary conditions was solved by Schulz using the

Bethe ansatz technique [62]. Further examinations of Hubbard models including

boundary chemical potentials or magnetic ˛elds opened new possibilities to study

quantum impurity problems (see e.g. [63, 64, 65]).

The Hubbard chain with boundary chemical potentials is given by

H = ` t

L`1∑

‘=1

∑

ff

(
cy‘;ffc‘+1;ff + c

y
‘+1;ffc‘;ff

)
+ U

L∑

‘=1

n‘;"n‘;#

` p
∑

ff

(n1;ff + nL;ff) : (2.46)

Using the notation of Ref. [66], the Lieb-Wu equations determing the spectrum

of H in the N-electron sector and magnetization M = N=2`N# read

e ikj2L
(
e ikj ` p
1` pe ikj

)2
sin(kj) + iU=4

sin(kj)` iU=4
=

N#∏

˛=`N#

sin(kj)` –˛ + iU=4
sin(kj)` –˛ ` iU=4

; (2.47)

–¸ + 2iU=4

–¸ ` 2iU=4

N∏

j=`N

–¸ ` sin(kj) + iU=4
–¸ ` sin(kj)` iU=4

=

N#∏

˛=`N#
˛ 6=¸

–¸ ` –˛ + 2iU=4
–¸ ` –˛ ` 2iU=4

; (2.48)

where the identi˛cation k`j = `kj and –`¸ = `–¸ was used in order to simplify
the equations. Of course, with p = 0 one directly obtains the case for open

boundary conditions. The roots of the Lieb-Wu equations (2.47) and (2.48) are

characterized by the so-called charge rapidities kj with j = `N; : : : ; N and spin
rapidities –¸ with ¸ = `N#; : : : ; N#. The energy of the corresponding eigenstate
of (2.46) has then the form

E=t = 1`
N∑

j=`N
cos(kj) ; (2.49)

where the solutions k = 0 and – = 0 have been excluded, since the Lieb-Wu

equations (2.47) and (2.48) are already symmetrized.

In order to check the accuracy of our DMRG algorithm (see following chapter

3) we compared the ground state energy of the open Hubbard chain at various

band ˛llings obtained by (2.47), (2.48) and (2.49) and our DMRG results. For this

purpose we chose the logarithmic expression of Lieb-Wu equations and determined

the set of rapidities by applying an IMSL routine like
�����������

[67]. Additional

checks have been done in the case of free fermions (see appendix B).

2.4. Superconductivity in extended Hubbard models

Since the discovery of quasi one-dimensional conductors and high-Tc supercon-

ducting materials much e¸ort has been devoted to the study of the pairing mech-

anism in highly correlated electronic systems. While the search for ’superconduct-

ivity’ (characterized by dominant pairing correlations) in the Hubbard chain with
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repulsive Coulomb interaction failed, a superconducting state with dominant on-

site singlet-pairing correlations is realized in the attractive case, where a spin gap

opens. An exact analysis of the Bethe ansatz solution by Kawakami and Yang [16]

showed that this pairing correlation function behaves like
〈
OyOS(0)OOS(r)

〉
‰ 1=r˛

at large separations r between pairs. The non-universal exponent ˛ is a function

of U=t and the band ˛lling.

However, the pure Hubbard model is limited in its applicability to real materials.

For instance, the properties of conducting polymers can not be explained without

invoking a least a nearest-neighbour Coulomb interaction. Therefore, various

more realistic extensions of the pure Hubbard model have been considered.

2.4.1. The extended Hubbard model

The Hamiltonian of the Hubbard model with nearest-neighbour Coulomb interac-

tion V is given by

H = HHub +HV (2.50)

= `t
L∑

‘=1

∑

ff

(
cy‘;ffc‘+1;ff + c

y
‘+1;ffc‘;ff

)
+ U

L∑

‘=1

n‘;"n‘;# + V
L∑

‘=1

n‘n‘+1

and it is called extended Hubbard model. In contrast to the pure Hubbard model,

this Hamiltonian is no longer exactly solvable. However, the model has been ex-

tensively studied by the weak coupling theory based on the bosonization technique

and renormalization group (RG) analysis [68, 9, 69] and numerical calculations

using exact diagonalization, quantum Monte-Carlo simulations or DMRG method

[70, 71, 72, 73]. The weak-coupling phase diagram consists of two insulating
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Figure 2.3.: Phase diagram of the extended Hubbard model determined by

exact diagonalization calculations for a half-˛lled L = 12 chain

at (a) X=t = 0 and (b) X=t = `1=4 (taken from Ref. [74]).

phases, the spin-density-wave (SDW) phase and the charge-density-wave (CDW)

phase, which are separated by a transition line located at U = 2V . The metallic

phases are described by dominating singlet (SS) and triplet (TS) superconducting

correlations. In the most interesting region (U; V > 0), the weak-coupling RG

studies [68, 9] show that there is a continuous phase transition between SDW
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and CDW along the line U = 2V . In the strong coupling limit (U; V fl 1) the
SDW-CDW transition is discontinuous (˛rst-order) and the phase boundary is

slightly shifted away from the line U = 2V [70].

Quite recently, Nakamura found numerically that for small to intermediate values

of U and V , the SDW and CDW phases are disjoined by the bond-charge density

wave (BCDW) phase [74] which is characterized by the operator:

OBCDW ” (`1)‘
∑

ff

(cy‘;ffc‘+1;ff + h.c.): (2.51)

To clarify this mechanism of the transition, he also investigated the e¸ect of the

bond-charge interaction X which leads to an enlargement of the BCDW region

(see also Fig. 2.3). He concluded that SDW-BCDW and BCDW-CDW transitions

are continuous and that these two transition lines merge at a tricritical point into

the ˛rst-order line separating the CDW and SDW phases.

2.4.2. The Hirsch model

The extended Hubbard model (2.50) with bond-charge interaction X was proposed

by Hirsch for the description of oxide superconductors by considering holes as

the charge carriers [75, 76]. The one-dimensional Hamiltonian without nearest-

neighbour Coulomb interaction V , which we call Hirsch model, reads

H = HHub +HX (2.52)

= HHub +X
L∑

‘=1

∑

ff

(
cy‘;ffc‘+1;ff + c

y
‘+1;ffc‘;ff

)
(n‘;`ff + n‘+1;`ff) :

Due to charge and spin conservation the model exhibits U(1)˙ SU(2) symmetry.
The Hamiltonian with U = 0 and a modi˛ed version of HX, called Bariev model4,
has been solved by Bethe ansatz [77]. In contrast to the Hirsch model only the

Sz generator commutes with the Bariev Hamiltonian which indicates a U(1) ˙
U(1) symmetry. Applying the Lanczos technique Quaisser proved that various

ground-state properties of the Bariev model and (2.52) with U = 0 indicate similar

behaviour as long as the bond-charge repulsion X is small [11, 79]. In addition,

he concluded that for X ı 0:5 the pair correlations are strongest in both models.
In the high-symmetric case t = X zero and ˛nite temperature properties of the

Hirsch model have been exactly derived. Schadschneider [78] and Arrachea and

Aligia [80] determined the phase diagram at zero temperature shown in Fig. 2.4.

In regimes I and II the system is described by superconducting states of ”-pairing

type, where ”-pairs are inserted in the empty lattice or the ground-state of an

U =1 Hubbard model. These states show ODLRO

lim
ji`j j!1

h ”jOyOS(i)OOS(j)j ”i 6= 0 with OyOS(i) = c
y
i ;"c
y
i ;# : (2.53)

4Bariev considered in his original work [77] a model consisting of two isotropicXY chains coupled

by three-spin interactions. By using the Jordan-Wigner transformation the Hamiltonian can

be presented in terms of fermionic creation and annihilation operators, which is known as the

Bariev model.
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Figure 2.4.: Schematic representation of the phase diagram of the (one-

dimensional) Hirsch model at t = X, plotted in the U-D plane in

which D = N=L is the particle density. In higher dimensions the

phase diagram at this symmetric point only changes quantitat-

ively (taken from Ref. [78]).

The physics of III (n < 1) is the same as that of a the U = 1 Hubbard model,
i.e. without doubly occupied sites. Due to the particle-hole symmetry regime III’

(n > 1) is equivalent to III, however no empty sites occur. For n = 1, phase IV,

the ground state is an insulator.

The thermodynamics was studied by Dolcini and Montorsi [81]. The non-integrable

regime 0 < X < 1 was intensively studied by Kemper using the transfer-matrix

DMRG [82, 83].

2.4.3. The t ` J model
In the limit U ! 1 doubly occupied lattice sites are forbidden. After projecting
out the states in the Hilbert space involving double occupancies one ˛nds in second

order in t=U the following e¸ective Hamiltonian

Ht-J = `t
L∑

‘=1

∑

ff

{
(1` n‘;`ff) cy‘;ffc‘+1;ff (1` n‘+1;`ff) + h.c.

}

+J

L∑

‘=1

(
S‘ ´ S‘+1 `

n‘n‘+1
4

)
; (2.54)

where J = 2t2=jUj. This model was solved exactly at the super-symmetric point
J=t = 2 by applying the Bethe ansatz technique [84, 85] and for the limiting case

J ! 0, which is equivalent to the U !1 Hubbard model.
From the analysis, supported by various numerical calculations (e.g. [87, 88]), it

is known that the t ` J model belongs to the universality class of a Tomonaga-
Luttinger liquid (TLL). The remaining parameter region at J=t > 2 was ˛rst
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Figure 2.5.: The phase diagram for the one-dimensional t ` J model (taken
from Ref. [86]). The dashed line indicates Kc = 1. Below this

line antiferromagnetic correlations dominate the TLL phase, while

above the line singlet correlations are the dominating ones. The

phase seperated regime is determined by Kc !1.

analyzed by Ogata et al. [87] using the exact diagonalization. For J=t = 2:8 to

3:5 depending on the electron density a phase separation takes place, where the

system is separated into electron-rich and hole-rich phases. A third phase with

a spin gap (SG) was found at low densities and 2 < J=t < 3:1. The complete

phase diagram is shown in Fig. 2.5.



3. The density matrix renormalization
group technique

The solution of a (stationary) Schr­odinger equation is equivalent to the solu-

tion of a high-dimensional eigenvalue problem. This eigenvalue problem can be

solved numerically by diagonalizing the Hamiltonian matrix with standard eigen-

value routines on computer. Most of these routines [89] use computer memory

instead of ’harddisk memory’ as an e‹cient way to save the data. However, this

is restricted to the available free memory.

In order to get the matrix elements of the Hamiltonian one has to choose a proper

orthonormal basis in the Hilbert space H, like the occupation number basis that

includes states describing all possible distributions of N electrons on L lattice sites.

The size of HL grows exponentially with the number of sites L. For instance,

a fermionic spin-1=2 model with four possible occupancies at each lattice site

(vacant, singly occupied with either up-spin or down-spin and doubly occupied

with one up-spin and one down-spin) has 4L degrees of freedom. When L = 16,

the dimension of HL is already 4 294 967 296 and the corresponding Hamilton

matrix has more than 1019 elements. Therefore, it is important to be as e‹cient

as possible.

One way to reduce HL into invariant subspaces, which ˛nally transforms the

Hamiltonian matrix into a block-diagonal form, is to use symmetries. The simplest

symmetry is associated with the conservation of the total number of electrons N.

In addition, when translational symmetry is present, the momentum is conserved

and all states can be grouped by the wave number. This leads to a further re-

duction of HL. Using both symmetries, the largest block matrix of the previous

example has still over 1014 elements and one has to store more than 105 GBytes

of memory, too large for most computers. However, Hamiltonian matrices of

current quantum models are extremely sparse.

An e¸ective algorithm for diagonalizing sparse matrices was proposed by Lanczos

in 1950 [90]. The procedure reduces a high-dimensional eigenvalue problem to a

small one without storing the original matrix. Consequently less memory will be

required but memory limitations will still impose restrictions on the system size.

Examination of larger systems needs another methods like the density matrix

renormalization group (DMRG) approach that was formulated by White in 1992

[91, 92]. In contrast to other numerical methods, such as quantum Monte-Carlo

simulations [93], the DMRG technique o¸ers a powerful tool for determing ac-

curate approximations to the ground state and the low-lying excited states of

low-dimensional strongly correlated systems.

The subject of this chapter will be the detailed description of the Lanczos method



3.1 Exact diagonalization: The Lanczos method 39

and the DMRG approach, which represent the main numerical tool of the present

thesis.

3.1. Exact diagonalization: The Lanczos method

3.1.1. Invariant subspace

The concept of an invariant subspace is the most important point for understand-

ing the Lanczos method. From linear algebra we know, that a subspace that is

spanned by m linear independent vectors jq1i; : : : ; jqmi is invariant under H, a
n ˆ n hermitian matrix, if for any vector jqi in the subspace the vector Hjqi is
also in the subspace. In the following we will denote the H-invariant subspace by
K. What does this invariance mean? If Qm is a n ˆm matrix whose columns are
the orthonormal vectors jqki, then the matrix product HQm is a n ˆ m matrix
too and the columns are linear combinations of the columns of Qm. Assuming

that the jqk i form an orthonormal basis in K, i.e. QtmQm = idm, one can ˛nd a

m ˆm matrix Tm which satis˛es the relation

HQm = QmTm , QtmHQm = Tm : (3.1)

This means that the eigenpairs of a large matrix H can be found from those
of a smaller matrix Tm. For instance, let – and jffii be an eigenpair of Tm.
Multiplication of Tmjffii = –jffii by Qm and the use of relation (3.1) leads to the
equivalence

QmTmjffii = –Qmjffii , HQmjffii = –Qmjffii ; (3.2)

where – and Qmjffii describe an eigenpair of H. The Lanczos algorithm approx-
imately generates such an invariant subspace K.

3.1.2. The algorithm

The ˛rst step in the procedure is to select an arbitrary but nonzero vector jq0i
which belongs to the Hilbert space H of the model being studied. If some inform-

ation about the ground state is known, like total momentum or spin, then it is

convenient to start the iteration with a vector already belonging to the subspace

having those quantum numbers. Otherwise, it is convenient to select an initial

vector with randomly chosen coe‹cients. After jq0i is selected, a new vector can
be de˛ned by multiplying the hermitian matrix H with the initial vector. However,
to ensure the orthogonality hq0jq1i = 0 one has to subtract the projection onto
jq0i. Together one obtains

jq1i = Hjq0i ` hq0jHjq0ijq0i : (3.3)

An additional vector that is orthogonal to the previous two, i.e. hq0jq2i = 0 and
hq1jq2i = 0, can be constructed as

jq2i = Hjq1i ` hq1jHjq1ijq1i ` hq1jHjq0ijq0i : (3.4)
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It can be easily checked that the orthogonality conditions are ful˛lled. This pro-

cedure can be generalized by de˛ning an orthogonal basis recursively. For each

k = 0; 1; : : : one then gets

jqk+1i = Hjqk i ` ¸k jqk i ` ˛k jqk`1i ; (3.5)

where the coe‹cients are given by

¸k = hqk jHjqk i and ˛k = hqk jHjqk`1i : (3.6)

Of course, for all ‘ » k ` 1 one obtains h‘jki = 0 and for k = 0 one has to set
˛0 ” 0 and jq`1i ” 0. After k = m steps a set of orthogonal vectors jqk i has
been generated. Normalizing them by jq‹k i ” jqk i=˛k leads to an orthonormal
matrix Qm whose columns are ˛lled with the vectors jq‹k i. By applying formula
(3.1) the Hamiltonian matrix H will be transformed into a tridiagonal form (cf.
with Fig. 3.1). If m is su‹ciently large, the eigenvalues – of the Lanczos matrix

Tm should be good approximations
1 of the eigenvalues of H which are restricted

to the invariant subspace

Km = span
{
jq‹0i;Hjq‹0i;H2

∣∣q‹0
〉
; : : : ;Hm`1jq‹0i

}
; (3.7)

known as Krylov subspace. To be more precise, the algorithm is repeated until

j–0(m)` –0(m ` 1)j
j–0(m)j

< " ; (3.8)

where " is a small number, typically of magnitude 10`10 and –0(m) is the lowest
or largest eigenvalue at k = m.

The Lanczos algorithm is similar to the Gram-Schmidt orthonormalization (GSO)

process. However, the GSO process applied to Km is expensive, since the cost

is O(m2). In contrast, the Lanczos algorithm delivers the same result but in an
O(m) process. The crucial point is that, to compute jq‹mi, one uses H

∣∣q‹m`1
〉

instead of Hmjq‹0i.

3.1.3. Numerical implementation

The main aim in the numerical realization of the Lanczos algorithm is to keep

computational e¸ort low. The most expensive operation is the matrix-vector

multiplication Hjq‹ki. In addition, the Hamiltonian matrix cannot be stored in
computer memory (already for small spin-1=2 systems one has to allocate more

than 105 GBytes of memory) and one has to generate the matrix at each iteration

step. However, the calculation of ¸k can be modi˛ed if one introduces a new

vector

jvk i ” Hjq‹k i ` ˛k jq‹k`1i ; (3.9)

which permits the relation

¸k = hq‹k jHjq‹k i = hq‹k jvk i : (3.10)

1Note that the error increases as one proceeds into the spectrum. Therefore, for extremal

eigenvalues one expects a higher accuracy than for eigenvalues in the middle of the spectrum.
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Figure 3.1.: Schematic illustration of the Lanczos algorithm in which the

Hamiltonian matrix will be iteratively transformed into a tridi-

agonal form. Left ˛gure displays the matrix con˛guration after

three iterations (I3) and right ˛gure after ˛ve steps (I5). The

numerical algorithm stops after a de˛ned convergence has been

reached. Here, the new tridiagonal matrix is of order m.

Consequently, relation (3.5) can be expressed in the less expensive form

jqk+1i = jvki ` ¸k jqki ; (3.11)

in which the number of matrix-vector multiplications is reduced to one per iteration

step. The number of iterations depends on the model being studied, but typically

one needs only m = 60` 120 steps to get the extreme eigenvalues of the higher-
dimensional Hamiltonian matrix H.

3.2. Density matrix renormalization group (DMRG)

The density matrix renormalization group algorithm, developed by White in 1992

[91, 92], nowadays belongs to the standard numerical tools for studying low-

dimensional spin and lattice systems with short-range interactions. The basic

idea is to build up the system iteratively, starting with a small one that can be

diagonalized exactly. The exponentially increasing Hilbert space is controlled by a

proper selection of states which keeps the dimension constant.

Its remarkable accuracy was already demonstrated in the original paper by White

on the basis of a spin-one Heisenberg chain by computing the ground state energy

for a lattice of hundreds of sites with a precision of order 10`10 and with a marginal
amount of computational e¸ort. Since then the method has been applied to a

great variety of low-dimensional systems showing similar accuracy.

Apart from ground state properties the inclusion of temperature and the calcula-

tion of dynamical and time-dependent properties is possible too. For instance, the

transfer-matrix DMRG (TMRG) permits the study of thermodynamic properties.

An overview about the great variety of applications can be found in [94].
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In the remaining sections we give a complete description of the DMRG algorithm

including numerical details. First of all, we outline the concept of Wilson’s nu-

merical renormalization group method which is the basic module of the DMRG

technique.

3.2.1. Numerical renormalization group (NRG)

The roots of the DMRG technique goes back to Wilson’s numerical variant of

renormalization group (RG) procedure [95, 96]. The basic idea of the (real-

space) NRG is to truncate unimportant degrees of freedom using a sequence of

RG transformations (cf. with Fig. 3.2). To be more concrete, the RG sequence

Enlargement: H‘ !̀ H‘+1

B‘

B‘

Renormalization: H‘+1 !̀ ~H‘+1

~B‘+1

Figure 3.2.: Iterative RG transformation scheme for an 1D quantum model

described by the Hamiltonian H.

starts with a quantum chain of length ‘ + 1, within the DMRG terminology also

called block, which is su‹ciently small thus the local Hamiltonian H‘+1 can be
diagonalized exactly. After diagonalizingH‘+1 numerically, them lowest eigenpairs
fei ; jviig are selected to transform H‘+1 and other operators O‘+1 in block B‘+1
to a reduced basis. The remaining eigenpairs are neglected. This can be realized

by forming a projector matrix P in which the columns contain the m lowest
eigenvectors jvii of the Hamiltonian H‘+1, i.e.

P ”



j j j
jv1i jv2i ´ ´ ´ jvmi
j j j


 : (3.12)

Thus, applying truncation relation

~H‘+1 = PyH‘+1P (3.13)

irrelevant information will be projected out. The e¸ective Hamiltonian ~H‘+1 is
then a diagonal m ˆ m matrix. Of course, other operators in B‘+1 have to be
transformed in the same way. The procedure can be repeated if one replaces ~H‘+1
with H‘. However, in order to form a new Hamiltonian H‘+1 by adding one site
to H‘, the interaction between B‘ and a single site must be reconstructed. We
will give an instruction in Sec. 3.2.5.
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The exponentially growing dimension of the Hilbert space H is now controlled by

the truncation number m which is typically ˛xed at each enlargement step of the

NRG algorithm. Therefore, the required time and memory for each diagonalization

stays the same.

The NRG procedure was successfully applied to the single impurity Kondo problem

by Wilson [96]. However, further NRG studies of the 1D Heisenberg and Hubbard

model showed that the accuracy becomes quite poor after a few iteration steps

[97, 98]. White realized that the choice of energetically lowest eigenstates as

relevant states in a RG step is usually not adequate. He solved this problem by a

density matrix (DM) projection in which the largest eigenstates of the DM play

a fundamental role at each renormalization step.

3.2.2. Density matrix projection

Following Ref. [91, 99], we will show that the DM projection provides an useful

truncation prescription for the basis of the Hilbert space H.

At the beginning, we seperate an 1D quantum chain that is represented by the

so-called superblock, into two chains. One part of the chain, the system block,

is considered to be embedded in the superblock, whereas the second part acts as

environment (cf. with Fig. 3.3). Without loss of generality, we assume that Hsys

Benv5 = S+B4Bsys5 = B4 + S

system block environment block

Figure 3.3.: A ten-site superblock which is divided into a system block and an

evironment block.

and Henv have the same dimension d ” dB ˆ dS, spanned by orthonormal sets
of eigenstates fjiisysg and fjjienvg, respectively. The ground state, which is also
called target state has then the following expression

j i =
∑

i ;j

 i j jiisys ˙ jjienv : (3.14)

The aim is to approximate the ground state by m < d orthonormal states ju i isys,
characterizing the basis of the new truncated Hilbert space H0sys, so that

j i ı j ~ i =
∑

i ;j

~ i j juiisys ˙ jjienv : (3.15)

If it is not necessary, we will ignore the subscript. In order to ˛nd the optimal

truncated basis one has to minimize the functional

S(j ~ i) ”
wwj i ` j ~ i

ww2 : (3.16)

Since the coe‹cients  i j = hi j j i and ~ i j = hi j j ~ i are (real-valued) matrix
elements which belong to d ˆ d matrices, the functional equation (3.16) can be
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transformed to a more useful matrix representation

S( ~ ) = tr
{
( ` ~ )y( ` ~ )

}
: (3.17)

Now, we will show that Eq. (3.16) is minimized if the jui i are represented by the
eigenvectors of the m largest eigenvalues wi of the reduced density matrix

i i 0 =
∑

j

 i j i 0j ; (3.18)

which is the projection of the ground state of the superblock on Hsys. Note that

 is a hermitian operator and the condition tr() = 1 is ful˛lled because of the

normalized target state. One can simplify Eq. (3.17) by the application of the

singular value decomposition theorem [100]. According to the theorem there exist

two unitary d ˆ d matrices U and V and a diagonal matrix D with non-negative
elements ffi , such that

 = U D V y : (3.19)

The elements ffi , called singular values, are the square roots of the eigenvalues w i
of , because

 = U D2 Uy : (3.20)

Using Eq. (3.19) and applying the theorem to the approximated state too, the

functional equation (3.17) simpli˛es to

S( ~ ) = tr
{
(D ` ~D)y(D ` ~D)

}
: (3.21)

where ~D ” Uy ~ V . It is obvious that the functional S is minimized by a diagonal
matrix ~D of rank m, whose elements are the largest singular values. Finally, the

explicit form of the optimal approximated state reads

~ = U ~D V y with ~D =




ff1
. . .

ffm
0


 ; (3.22)

where the entries are sorted by magnitude. Therefore, the largest eigenvectors

of the reduced DM represent in a good approximation the ground state of the

superblock. Note that the singular value decomposition does not play a role within

the DMRG algorithm. The theorem was only used to show how an optimal basis

of the truncated Hilbert space H0sys can be found.
Of course, other types of DM are possible. For instance, in the study of electron

models, such as Hubbard or t ` J model, the electron density has to be ˛xed2 at
each DMRG iteration. For this reason, one has to construct the reduced density

matrix from two target states. To be more precise [101], if the desired density is

n and the superblock is of size L, then one can always ˛nd two nearest integers

N1 and N2 such that N1 » nL » N2. Assuming that j (N1)i is the ground state
2Note that in a DMRG process only two sites are added at each step, which makes the half-˛lling

and quarter-˛lling case invariant.
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of N1 electrons and j (N2)i is that of N2 electrons, the corresponding DM then
reads

i i 0 = W1
∑

j

 i j(N1) i 0j(N1) +W2
∑

j

 i j(N2) i 0j(N2) ; (3.23)

where the weights Wk has to satisfy the condition

nL = W1N1 +W2N2 and W1 +W2 = 1 : (3.24)

It is obvious that these construction ensures the constant band ˛lling at every

iteration. However, the success of this construction is guaranteed as long as the

ground state is not described by a phase separation regime.

In addition, the DM can be easily adapted to obtain thermodynamic quantities of

the quantum model being studied (see e.g. Ref. [102]). One only has to target

several excited states when building the reduced DM. However, the accuracy

decreases as more states are targeted. Therefore, it is most accurate to target

only the ground state of the superblock if ground state properties are of interest.

3.2.3. Truncation error & eigenvalue convergence

The DMRG precision depends crucially on the number of states that have been

projected out in order to truncate the Hilbert space. This truncation error is

measured by the so-called discarded weight

Pm ” 1`
m∑

¸=1

w¸ ; (3.25)

where w¸ are the m largest density matrix eigenvalues. Note that the accuracy for

a ˛xed m is many orders of magnitude worse for periodic than for open boundary

conditions. In general, the quality of the truncation of Hsys will be displayed by

the distribution of the density matrix spectrum, where the eigenvalues are sorted

by magnitude, i.e. wm » : : : » w1. Fig. 3.4 depicts the distribution behaviour

on the basis of the spin-1=2 Heisenberg model and the half-˛lled Hubbard chain,

calculated with open boundary conditions. In the case of the Hubbard chain, the

clearly slower decay indicates that one has to take twice as many (or even more)

of DM eigenstates in order to achieve the same accuracy. Spectra of such a form

have been observed in various calculations and only for a few integrable models

the spectra of the density matrix have been determined exactly [103].

One can easily prove that in the limit m !1 the convergence of the ground state
energy E(m) has rather a sub-exponential behaviour [104]. Fig. 3.5 shows the

energy di¸erence ´E(m) = jE(m) ` E(m ` 40)j of a half-˛lled Hubbard chain
as a function of equidistant m = 80; 120; 160; : : : ; 400, plotted on a logarithmic

scale. A ˛t of the data indicates that the function ´E(m) ı amb coincides much
more with the data than the exponential function ´E(m) ı a exp(mb) .
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Figure 3.4.: The density matrix eigenvalue spectrum of the isotropic Heisen-
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3.2.4. DMRG algorithms

First of all, one has to decide how to construct a DMRG algorithm, i.e. how

to build up the system block and ˛nally the superblock. In order to keep the

dimension of H as small as possible, one usually enlarges the system block Bsys‘
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by one site at each step, similar to Wilson’s numerical RG (cf. with Sec. 3.2.1).

Depending on the choice of the environment block Benv‘ the procedure can be

descibed by either the in˛nite system or ˛nite system algorithm.

In˛nite system algorithm

The in˛nite system algorithm is best suited for computing the ground state of

a quantum chain in the thermodynamic limit L ! 1. The standard algorithm
is developed for open boundary conditions3 and proceeds as follows (we use the

illustrative representation by [82]):

➊ Take a system block of size ‘ and set up the matrices which represent the

block Hamiltonian

Hsys‘ =
‘`1∑

i=1

hi ;i+1 ; Bsys‘ =

1 ‘

: (3.26)

The local operator hi ;i+1 ” idi`1˙h˙ id‘`1`i depends on the studied model
(cf. with Sec. 3.2.5). Notice that other local operators O have to be
constructed in a similar way.

➋ Enlarge the system block by one site and form the corresponding Hamilto-

nian

Hsys‘+1 = H
sys
‘ ˙ id +h‘;‘+1 ; Bsys‘+1 = (3.27)

as well as other operators.

➌ Construct the superblock

where the environment block Benv‘+1 is usually obtained by re‚ecting B
sys
‘+1.

In order to get the ground state j i (or, if required, the excited states)
diagonalize the Hamiltonian

HL = Hsys‘+1 + h‘+1;‘+2 +Henv‘+1 (3.28)

of size L = 2‘ + 2 numerically by using the Lanczos algorithm (cf. with

Sec. 3.1.2) or the Davidson algorithm [105]. If the desired system size L is

reached, calculate the expectation values h jOj i and h jOO 0j i.
3In principle, the DMRG can work with open and closed (peridic, antiperiodic) boundary con-

ditions. However, the use of open boundary conditions produces a truncation error typically

several orders of magnitude smaller.
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➍ Build the reduced density matrix  and compute its complete eigenspec-

trum fw¸; ju¸ig. Write the orthonormal eigenstates corresponding to the
m largest eigenvalues w¸ into the projector matrix

P =



j j j
ju1i ju2i ´ ´ ´ jumi
j j j


 : (3.29)

➎ Project all operators onto the reduced basis of Bsys‘+1 using Eq. (3.29), i.e.

~Hsys‘+1 = PyH
sys
‘+1P and ~O = PyOP : (3.30)

➏ Rename the enlarged system block

= Bsys‘

and continue from step ➋ after substituting ~Hsys‘+1 !̀ Hsys‘ and all other
operators.

The algorithm successively increases the chain length by two sites at each iteration

step, whereas the dimension of the Hilbert space H stays constant. It is clear that

the algorithm is adopted from Wilson’s numerical RG procedure. However, there

are a few important di¸erences. In the former case the new basis for the system

block is determined by the density matrix diagonalization and in the latter case

by diagonalizing the Hamiltonian matrix. Furthermore, it is possible to formulate

the in˛nite system algorithm without any re‚ection symmetry. This is easily done

in the context of the ˛nite system algorithm.

Finite system algorithm

Apart from the truncation error there is an additional source of error within

the DMRG procedure. During the growth phase (until a desired chain size L

is reached) the system block is embedded into an approximate superblock and

not into the, a priori unknown, exact environment. This ’environment error’ is

not simply additive but can be reduced by using the ˛nite system algorithm (cf.

with Fig. 3.6). One can think of a zipper running repeatedly from left to right and

then right to left through a superblock of ˛xed size. To be more precise: start

with the in˛nite system algorithm and enlarge the superblock until a desired length

L is reached. At each iteration ‘ = 1; : : : ; L=2 store the Hamiltonian matrices
~Henv‘0 with ‘0 = ‘ as well as all additional operators which are needed to connect
the blocks at each iteration (cf. with Sec. 3.2.5). It is clear that in contrast to

the previous algorithm, the size of the environment block Benv‘ has to be adapted

at each iteration step in order to keep the superblock size ˛xed, i.e. L = ‘ + ‘ 0.
The algorithm then proceeds as follows [92]:

➊ Enlarge the system block Hamiltonian by one site (‘ ! ‘ + 1). Then

construct a superblock Hamiltonian (3.28) with Hsys‘+1, but Henv‘0=L`‘ and
diagonalize HL numerically.
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˛rst sweep

second sweep

Figure 3.6.: Schematic diagram of the ˛nite system algorithm for an eight-site

quantum chain including two sweeps.

➋ Carry out steps ➍ and ➎ of the in˛nite system algorithm. Then store ~Hsys‘+1
and all bond operators h which are needed to connect the blocks at each

step. At last substitute ~Hsys‘+1 ! H
sys
‘ as well all the h operators.

➌ Repeat steps ➊ and ➋ until ‘ = L` 2, i.e. ‘0 = 2. This is the left{to{right
phase of the algorithm.

➍ Now reverse the roles of Hsys and Henv, i.e. switch directions to build up
the environment block until ‘0 = L ` 2. This is the right{to{left phase of
the algorithm.

➎ Repeat the whole algorithm, starting with step ➊.

Each time the direction is changed, so-called sweep, an improved set of stored

block Hamiltonians is used to describe the environment block. It can be repeated

until su‹cient convergence is reached.

To demonstrate how the algorithm works in detail, we computed the ground

state energy for a partially ˛lled 60-site Hubbard system with open boundary

conditions. Afterwards, we compared the data with the Bethe ansatz energy (see

for details Sec. 2.3.2) versus the number of sweeps. Fig. 3.7 displays how the

progression of the absolute error ´E depends on the number of sweeps. The

absolute error decreases with increasing number of iterations until convergence is

reached. Notice that we used a modi˛ed version of the ˛nite system algorithm

by running from left to right through the superblock only.

3.2.5. Algorithm improvements

The most time-consuming part within the DMRG algorithm is the diagonalization

of the superblock Hamiltonian (3.28). The e‹ciency can be increased by using
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Figure 3.7.: The absolute error of the ground state energy computed by ˛nite

system algorithm and Bethe ansatz for a 60-site Hubbard chain

with 40 electrons at U = 4t, plotted as a function of the size of

the system block.

good quantum numbers and diagonalization accelerators reducing CPU time as

well as CPU memory.

If good quantum numbers are used, the Hilbert space H splits into invariant sub-

spaces and the corresponding Hamiltonian matrix gains a block diagonal struc-

ture. Each block matrix can be stored separately, consequently less memory will

be needed. But, what are good quantum numbers? The simplest symmetry, for

instance, is associated with the conservation of the total number of electrons N.

Additionally, each subspace HN can be grouped by implementing further quantum

numbers like Sz .

Construction of the superblock Hamiltonian

Up to now, we did not give any description of how to construct and store the

Hamiltonian matrix of an interacting quantum system

HB1B2 = HB1 + hB1B2 +HB2 ” HL (3.31)

which is built up from block B1 with m1 states and B2 with m2 states. In this

section we will show how to do this e‹ciently.

In order to form the Hamiltonian matrix for two blocks joined together, it is

necessary that each block has various bond operators which are stored as matrices.

For instance, in the case of the Hubbard model, one has to store the matrix

representations of c yn;ff, where n corresponds to either the leftmost (l) or the
rightmost (r) site of the block. Note that operators cn;ff can be easily obtained by

taking the Hermitian conjugate of c yn;ff. Consequently, they are not stored within
the routine. Following [92], the matrix which is representing the Hamiltonian
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HB1B2 is then given by
[
HB1B2

]
i j;i 0j 0 =

[
HB1

]
i i 0‹j;j 0 +

∑

ff

([
cyr;ff

]
i i 0

[
cl ;ff

]
j j 0 +

[
cyl ;ff

]
j j 0

[
cr;ff

]
i i 0

)

+
[
HB2

]
j j 0‹i ;i 0 ; (3.32)

where the m1m2 states are labeled by the indices i j .

However, the Hamiltonian matrix should not be explicitly constructed and thereby

allocated in memory, because Lanczos or Davidson procedure use only the matrix-

vector multiplication at each diagonalization step (cf. with Sec. 3.1.3). Instead,

one should rather form and store the action Hj i which uses less memory and is
also faster. Starting with the more general expression

[
HL

]
i j;i 0j 0 =

∑

¸

[
A¸

]
i i 0

[
B¸

]
j j 0 (3.33)

the matrix-vector product then reads

∑

i 0;j 0

[
HL

]
i j;i 0j 0

[
 ¸

]
i 0j 0 =

∑

¸

∑

i 0

[
A¸

]
i i 0

( ∑

j 0

[
B¸

]
j j 0

[
 

]
i 0j 0

)
: (3.34)

For each ¸, the last sum is used ˛rst to compute a temporary matrix
[
C¸

]
.

Afterwards, the multiplication of
[
A¸

]
with

[
C¸

]t
provides a partial result, which

is added into the result vector, giving a sum on ¸. Note that such a calculation

can be accelerated if quantum numbers are used.

Transformation of the wavefunction

Lanczos or Davidson diagonalization algorithms can usually be speeded up if the

initial vector already has characteristic features of the ground state vector. In the

case of the DMRG algorithm, such initial guesses can be provided for either the

in˛nite system algorithm [106, 107] or the ˛nite system algorithm [108]. Because

the ˛rst statement is restricted to spin models only, we will focus on the second

idea which transforms the wavefunction of the previous DMRG step into the basis

of the current con˛guration.

Assuming that the algorithm is in the left{to{right phase in which one site is

iteratively added to the left block4, the transformation proceeds as follows [108]:

Let jb‘i be the m states of the left block B‘ with ‘ denoting the rightmost site of
the block. In addition, let js+1i be the mS states of a single site block S, where
the subscript +1 labels the ‘+ 1-site of a chain. Joining B‘ and S together,

P‘+1 ‘ +1 +2

4Note that an analogous transformation is used for the right{to{left phase.
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the corresponding m ˆmS basis states are represented by jb‘i ˙ js+1i. The new
truncated basis with m states jb‘+1i is then generated by

jb‘+1i =
∑

s+1;b‘

[
P‘+1

]
b‘+1;b‘s+1

jb‘i ˙ js+1i ; (3.35)

where P is a slightly rewritten form of the projection matrix (3.29). Note that

b‘s+1 is a single matrix index. The m states jb‘0+1i of the right block B‘0+1,

‘0+1+2 P‘0+1

where ‘0 labels the leftmost site of B‘0, were constructed at an earlier DMRG
step, but in a similar fashion

jb‘0+1i =
∑

s+1;b‘0

[
P‘0+1

]
b‘0+1;s+1b‘0

js+1i ˙ jb‘0i : (3.36)

Now we are going to describe how to transform the superblock wavefunction

j i =
∑

b‘;s+1;s+2;b‘0+1

 (b‘s+1s+2b‘0+1)jb‘i ˙ js+1i ˙ js+2i ˙ jb‘0+1i (3.37)

into the new basis jb‘+1i˙ js+2i˙ js+1i˙ jb‘0i which belongs to the next DMRG
iteration. Note that the transformation is not exact, due to the truncation going

from jb‘i ˙ js+1i to jb‘+1i. However, with the approximation
∑

b‘+1

jb‘+1ihb‘+1j ı 1 (3.38)

as well as the use of formula (3.35) and (3.36) one ˛nally obtains

 (b‘+1s+2s+1b‘0) ı
∑

b‘;s+1;b‘0+1

[
P‘+1

]
:::
 (b‘s+1s+2b‘0+1)

[
P‘0+1

]
:::
: (3.39)

The numerical realization of the transformation is most e‹cient if the process is

divided into two parts. At ˛rst, it is useful to construct a temporary wavefunction

 (b‘+1s+2b‘0+1) =
∑

b‘;s+1

[
P‘+1

]
b‘+1;b‘s+1

 (b‘s+1s+2b‘0+1); (3.40)

and then form the ˛nal result

 (b‘+1s+2s+1b‘0) =
∑

b‘0+1

 (b‘+1s+2b‘0+1)
[
P‘0

]
s+1b‘0 ;b‘0+1

: (3.41)

In this form, the transformation requires only a small CPU time compared to

other parts of the DMRG procedure. Using formula (3.40) and (3.41) reduces

the number of diagonalization steps drastically, i.e. from about 100 to less than

30 steps.
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3.2.6. Correlation functions

The ground state wavefunction j i resulting from the diagonalization of the su-
perblock Hamiltonian HL, is used to evaluate local expectation values

〈
 

∣∣O(n)
∣∣ 

〉

and correlation functions. Here, we will restrict ourselves to two-point correlators

of the form
〈
 

∣∣O(n)O0(m)
∣∣ 

〉
. In order to measure O(n), one has to use the

matrix representation, if necessary for each lattice site n. At every step of each

iteration these operators have to be updated using Eq. (3.30). For instance, one

obtains for the local spin-density Sz(n) the expectation value

〈
 

∣∣Sz(n)
∣∣ 

〉
=

∑

i ;i 0;j

 i j
[
Sz(n)

]
i i 0 i 0j : (3.42)

Note that the procedure gives exact results within the framework of the approx-

imate eigenstate j i.
The examination of a correlation function depends on whether n and m are in

the same block or not. If they are in di¸erent blocks, one has to keep track of[
O(n)

]
i i 0 and

[
O0(m)

]
j j 0 . The evaluation then reads

〈
 

∣∣O(n)O0(m)
∣∣ 

〉
=

∑

i ;i 0;j;j 0
 i j

[
O(n)

]
i i 0

[
O0(m)

]
j j 0 i 0j 0 : (3.43)

If n andm are in the same block, one has to keep track of
[
O(n)O0(m)

]
i i 0 , because

Eq. (3.43) would not give the correct evaluation of the correlation function. One

gets 〈
 

∣∣O(n)O0(m)
∣∣ 

〉
=

∑

i ;i 0;j

 i j
[
O(n)O0(m)

]
i i 0 i 0j : (3.44)

However, it is more convenient to select sites n and m on di¸erent blocks in order

to avoid such complicated matrices.

The e¸ect of open boundaries can be easily demonstrated by analyzing the local

bond strength of the nearest-neighbour spin correlation function. In Fig. 3.8

we present (for the system block only) the local bond strength for 60 site Hub-

bard chain at half-˛lling. One observes a strong alternation in the bond strength

induced by the open boundaries. The local bond strength is strongest at the

end of the chain and becomes weaker in the center of the system, since the

end pair only has one partner while the bulk pairs have two. In order to re-

duce such a boundary e¸ect it is necessary to average the correlation function

C(jn`mj) =
〈
 

∣∣O(n)O0(m)
∣∣ 

〉
over a number of pairs of lattice sites separated

by the same displacement r ” jn `mj [109]:

—C(r) =
1

N(r)

N(r)∑

k=1

Ck(r) : (3.45)

Typically one has to take around N(r) = 9 number of pairs and put for each r

the pairs as close to the center of the chain as possible. For this purpose, it is

necessary to store O(n) for each lattice site. Thus much more memory is required,
which strongly depends on the system size L and the number of states m. This
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Figure 3.8.: Nearest-neighbour spin correlation function for a 60 site Hubbard

chain at half-˛lling, plotted as a function of site index n.

procedure becomes more complex if fermionic operators are involved. In order to

evaluate the triplet-pair correlation function

CTS(r) = h jOyTS(r)OTS(0)j i (3.46)

with the order parameter

OyTS(r) =
1p
2

(
cyr;"c

y
r+1;# + c

y
r;#c

y
r+1;"

)
(3.47)

it is essential to construct new operators (matrices) of the type

dyr;ffff0 ” cyr;ffc
y
r+1;ff0 (3.48)

and then compute the corresponding correlation function. Note that a usual

formulation does not provide the correct correlation. In addition, one must take

into account that fermions obey anticommutation rules (cf. with Appendix A).

3.2.7. DMRG and the matrix product ansatz (MPA)

The nature of the DMRG as a variational method was studied by ­Ostlund and

Rommer. They proved that in the case of a spin-1 chain the DMRG ground state

leads under some conditions to a special wavefunction form which is of matrix

product type [110]. The authors have shown that one could get very good ground

state energy by using the matrix product ansatz (MPA) [111] which corresponds

to a small number m of states applied for the renormalization step within the

DMRG procedure.

The relation between the DMRG method and the MPA can be understood in the

following way [110]: the DMRG scheme proceeds by iteratively adding a single site.
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The new set of basis states is then renormalized in order to keep the dimension

of the Hilbert space H at a manageable size. If j¸i‘`1, js‘i and j˛i‘ denote the
basis of H associated to a block B‘`1 of size ‘ ` 1, a single site block S and a
truncated block B0‘, then the relation between these bases is written as follows

j˛i‘ =
∑

¸;s

[
P‘

]
˛;¸s
j¸i‘`1 ˙ js‘i ; (3.49)

where the subsript ‘ is associated to the chain position if it is inside of j : : :i,
else it will denote the size of the block. The prefactor P corresponds to the
projection matrix (3.29). Note that the expression (3.49) is only a modi˛cation

of Eq. (3.35).

Changing the notation
[
P‘

]
˛;¸s
!

[
P‘(s)

]
˛¸
, one can write the previous matrix

of dimension mˆ(mˆdS) as a set of dS matrices with dimension mˆm. Further
on, assuming that the procedure leads to a ˛xed point for P, one can express the
projection operator P‘(s) through P(s).
Iterative application of the renormalization Eq. (3.49) leads then to the following

expression

j˛i‘ =
∑

s‘;:::;s1;¸

([
P(s‘)

][
P(s‘`1)

]
: : :

[
P(s1)

])
˛¸
j¸i0 ˙ js1i : : : js‘i ; (3.50)

where j¸i0 denotes an initial state. Note that this is already the matrix product
form of the wavefunction. However, it becomes more transparent, if one rewrites

Eq. (3.50) as a linear combination of boundary conditions de˛ned by j˛i‘ on the
left and j¸i0 on the right, i.e.

jQi‘ ”
∑

fsg
tr

(
Q

[
P(s‘)

][
P(s‘`1)

]
: : :

[
P(s1)

])
˛¸
js1i : : : js‘i : (3.51)

The special case of Q = id describes a closed chain with periodic boundary condi-

tions and has the form which was ˛rst introduced in [111]. Further information on

the MPA and its generalization to two dimensional quantum systems, the so-called

vertex-state representation, can be found in [112, 113] and references therein. A

DMRG study of excitations of spin-1 chains with matrix product ground state can

be found in [114].

3.2.8. Extensions of the DMRG technique

Since the introduction of the DMRG procedure in 1992, a large number of in-

vestigations using this numerical technique was published and in addition, a lot of

improvements to this method as well as other applications based on the DMRG

algorithm have been performed. Among other things there are following ˛elds of

activity:

❑ The application of the DMRG method to boson systems is di‹cult because

of the large number of states per lattice site. In principle, this number is

in˛nite and therefore one has to truncate this space.
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An useful approach was suggested by Jeckelmann and White[115]. They

developed a method which exactly transforms a boson site with 2L levels to

L pseudosites, each with two states. The mapping

¸ =

L∑

‘=1

2‘`1r‘ with r‘ 2 f0; 1g ; (3.52)

between a boson level j¸i and the L-pseudosite state jr1; : : : ; rLi is based on
the representation of a number in binary form. The authors implemented the

pseudosite as hard-core bosons, in order to avoid fermion anticommutation

minus signs. Further on, one has to express all boson operators b in terms

of pseudosite operators a in which the boson number operator takes the

form

Nb = b
yb =

L∑

‘=1

2‘`1ay‘a‘ : (3.53)

Other boson operators take a more complicated form in the new repres-

entation. However, they can easily be determined from Eq. (3.52) and the

properties of boson and hard-core boson operators.

❑ Beside the possibility of calculating static properties of ground states and

low-lying eigenstates in quantum systems, assumptions for the determin-

ation of dynamical properties within the DMRG routine are possible too.

However, the calculation of dynamical quantities has proved to be more

di‹cult.

Several approaches have been proposed [116, 117, 118]. One of them

calculates dynamical correlation functions by the use of a continued fraction

expansion of the Green’s function [116], related to the Lanczos algorithm

which is implemented in most DMRG routines. More precisely, in order to

evaluate the dynamical correlation function C(t`t 0) = h 0jOy(t)O(t 0)j 0i
at zero temperature (T = 0) it useful to consider the Fourier transformed

version of it, i.e.

C(!) =
∑

n

jh njOj 0ij2 ‹
(
! ` (En ` E0)

)
; (3.54)

where the summation is taken over all the eigenstates j ni of the Hamilto-
nian H with energy En. The quantity E0 denotes the ground state energy.
Using the Green’s function formalism one can express Eq. (3.54) as

C(!) = ` 1
ı
lim
”!0+

Im G(! + i” + E0) ; (3.55)

where the Green’s function G can be written in the form of a continued

fraction

G =
h 0jOyOj 0i

z ` ¸0 ` ˛21

z`¸1`
˛2
2

z`:::

: (3.56)
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The coe‹cients ¸n and ˛n can be obtained by the recursion formula (3.5)

used in the Lanczos algorithm. In practice, this method works well for simple

discrete spectra but it usually fails for more complicated spectra.

❑ Miscellaneous extensions of the DMRG algorithm to higher, in particular

two dimensional quantum systems have been performed [108, 119, 120,

121, 122]. The simplest 2D algorithm is the so-called multi-chain approach

in which the width of the lattice system is ˛xed and the height is expanded

by adding whole rows or partial rows of sites. The implementation is similar

to the traditional 1D algorithm by mapping the higher dimensional problem

onto an e¸ective 1D problem, simply by tracing a path through the lattice

[108]. Apart from the approach used in [120], there is another true5 2D

algorithm which was developed by Xiang et al. [121], where the initial blocks

of a L ˆ L lattice are built up directly from the previous con˛guration of
(L`1)ˆ(L`1) lattice sites (see Fig. 3.9). This approach has proved to be

(B)(A)

Figure 3.9.: (A) One possible 4 ˆ 4 superblock con˛guration showing
di¸erent system and environment blocks. The mapping to

an e¸ective 1D system is marked by the solid line. (B) Re-

organization of the path which allows an equivalent descrip-

tion of each block with additional sites at the two corners

of the 3ˆ 3 lattices (denoted by dashed lines).

very e‹cient and excellent results for the ground state energy of the spin-

1=2 Heisenberg model on a square and triangular lattices were obtained, but

application to fermion models is di‹cult and is still a subject of development.

❑ The formulation of a DMRG procedure for quantum lattice systems in mo-

mentum space was established due to the potential advantages over the

real-space approach. The momentum is a good quantum number, since

the basis in momentum space is translationally invariant. The use of this

quantum number reduces the dimension of the Hilbert space. Moreover,

momentum distribution or the dispersion of excitations can be directly cal-

culated.

5The topological characteristics of a two-dimensional lattice are preserved within the algorithm.
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The investigation of the Hubbard model using the momentum space for-

mulation of the DMRG algorithm has shown that this tool is useful for the

Hubbard model only at weak to intermediate coupling [123].

❑ The DMRG method has been successfully adapted for the study of two-

dimensional classical systems [124] and for the investigation of thermo-

dynamic properties of an 1D quantum system [125], in which the DMRG

algorithm is applied onto the quantum transfer matrix and therefore is called

(quantum) transfer-matrix DMRG or simply TMRG. An explicit description

of the TMRG algorithm as well as its modi˛cations can be found in [82, 94].

Of course, thermodynamic quantities of low-dimensional quantum models

can be studied by the pure DMRG routine too. Already White showed

formally that the method can be generalized to systems at ˛nite temperature

[91, 92]. It is necessary to target several excited states when building the

reduced density matrix.



4. The Hubbard model with transverse
spin exchange

4.1. Introduction

The discovery of high-temperature superconductivity in cuprates [25] has revived

great activity on the research of superconductivity. While searching for new com-

pounds having the same layered perovskite structure as La2CuO4, superconduct-

ivity in Sr2RuO4 with rather unconventional (non-s-wave) pairing
1 was found.

Later on, one has proved the triplet nature of this superconducting state with a

proximity to a ferromagnetic instability (see [126] for a review). Moreover, com-

pounds like UGe2 [127] or ZrZn2 [128] even show coexistence of the TS phase

with ferromagnetism.

Another group of unconventional superconductors with proximity of magnetic and

superconducting ordering belongs to the family of quasi-one-dimensional organic

conductors (cf. with Sec. 1.5). In the last few years a lot of measurements have

provided evidence that the Bechgaard salts (TMTSF )2ClO4 and (TMTSF )2PF6
are triplet superconductors under pressure (see e.g. [129] and references therein).

Motivated by these experimental results various models of strongly correlated elec-

tron systems showing proximity of (ferro) magnetic and (triplet) superconducting

phases have been studied as attempt to construct a theoretical model for new su-

perconducting materials. Usually the models are based on some extended versions

of the Hubbard model. In particular, several extended versions of the repulsive

Hubbard model have been employed as standard models for metal{insulator trans-

itions, antiferromagnetism and high-Tc superconductivity (see [130] for a review).

Based on experimental results showing strong easy-plane anisotropy of ferromag-

netic spin ‚uctuations in the triplet superconductor Sr2RuO4 [131], we will focus

our investigations on a rather simple extension of the Hubbard model including

transverse (XY-type) spin exchange between electrons on nearest-neighbour sites,

proposed by Japaridze and M­uller-Hartmann [132]. They have shown that the 1D

version of this model has an extremely rich weak-coupling phase diagram (see

Fig. 4.1). In particular in the case of a half-˛lled band the ground state phase

diagram is characterized by two insulating antiferromagnetic phases with easy-

plane anisotropy and a spin gapful metallic phase with an identical decay of the

1Superconductivity involves the formation of a quantum condensate state by so-called Cooper

pairs. Each Cooper pair can be in a state of either total spin S = 0 (singlet) or S = 1

(triplet). The antisymmetric singlet state is accompanied by a symmetric orbital function

(s-wave, d-wave), whereas the symmetric triplet state is accompanied by an antisymmetric

orbital function (p-wave, f -wave).
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´s = 0

XY-Phase
´c 6= 0

´s = 0
´c 6= 0
SDW(x;y)

´s 6= 0
´c 6= 0
(LRO)
SDW(z)

´s 6= 0

TS + SDW(z)

´c = 0

J?

U

J
(c)
? ı `4t

Figure 4.1.: The weak-coupling phase diagram of the itinerant XY-model at

half-˛lling. Solid lines indicate borders between phases. The

dashed line qualitatively marks the transition into the XY mag-

netic phase.

triplet superconducting and spin-density wave (SDW(z)) instabilities. Further on,

strong evidence for the presence of an additional transition into a ferromagnetic

XY phase has been given [132].

Beside the hopping amplitude t and the (repulsive) Coulomb interaction U, the

1D Hamiltonian exhibits a transverse spin exchange term characterized by J?.
The Hamiltonian reads

Ht`U`J? = `t
L∑

‘=1

∑

¸

(
cy‘¸c‘+1¸ + c

y
‘+1¸c‘¸

)
+ U

L∑

‘=1

n‘"n‘#

+
J?
2

L∑

‘=1

(S+‘ S
`
‘+1 + S

+
‘+1S

`
‘ ) : (4.1)

One can easily verify that besides the obvious U(1) spin-symmetry in the half-˛lled

case the model is characterized by the SU(2) charge-symmetry.

4.1.1. Analogy to the pair-hopping model

The electron-hole transformation in one spin component

cy‘;" ! cy‘;" and cy‘;# ! (`1)‘c‘;# (4.2)

interchanges the charge and spin degrees of freedom and maps (4.1) to the at-

tractive Hubbard model with pair-hopping interaction Y = J?=2. Without Cou-
lomb interaction the new Hamiltonian has the following form:

Ht-Y = ` t

L∑

‘=1

∑

¸

(
cy‘;¸c‘+1;¸ + c

y
‘+1;¸c‘;¸

)

` Y

L∑

‘=1

(
cy‘;"c

y
‘;# c‘+1;#c‘+1;" + h.c.

)
: (4.3)
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The pair-hopping model (4.3) is to be considered as a phenomenological model to

describe the dynamics of small size Cooper pairs. Since high-temperature super-

conducting materials are known to indicate such pairs, to study this model can be

important to capture some of the physics of high-temperature superconductors.

Furthermore, the low-energy physics of this model is related in some way to the

physics of the attractive Hubbard model, which has an exact solution via Bethe

ansatz.

It is important to note that Y ! `Y is not a symmetry of the model, unlike the
Hubbard model. Hence, at large jY j=t the system is di¸erent for negative and
positive Y [133].

Phase transition in pair-hopping model

Using exact diagonalization calculations for chains up to 10 sites Penson and Kolb

[134] found a phase transition at which a spin gap opens for Y > Yc ı 1:4 t. Very
soon later, A›eck and Marston [133] analysed this model within the framework of

the weak-coupling continuum limit approach. They could show that this model is

essentially equivalent to the attractive Hubbard model. Accordingly, they predicted

that the transition in the pair-hopping model must occur at Y = 0 just like in the

Hubbard model. A few years later, Hui and Doniach [135] presented some new

numerical calculations which show the existence of a phase transition at a ˛nite

positive value of Y . They also presented some arguments on why the predictions of

the renormalization group analysis could be not valid. Finally, Sikkema and A›eck

[136] have investigated the low-energy spectrum using the DMRG technique for

open chains up to 60 sites. They concluded that there is no transition at a non-

zero positive value of Y and that the standard low-energy picture predicted by

A›eck and Marston is valid. In the opposite part of the phase diagram (Y < 0),

they found a transition into a spin gapped phase at Y < Yc ı `1:5 t.

4.2. Weak-coupling results for the half-˛lled band

4.2.1. Bosonized Hamiltonian

The mapping of the initial lattice Hamiltonian (4.1) into the continuum theory

(cf. with Sec. 1.2.3 as well as [132]) of two independent quantum models

Hc = vc

∫
dx

(
1

2
[@xffic(x)]

2 +
1

2
[@x„c(x)]

2

+
mc

a20
cos

[√
8ıKcffic(x)

])
and (4.4)

Hs = vs

∫
dx

(
1

2
[@xffis(x)]

2 +
1

2
[@x„s(x)]

2

+
ms

a20
cos

[√
8ıKsffis(x)

])
; (4.5)
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where we have de˛ned (— 2 fc; sg)

v— =
vF
K—

with vF = 2t

(
1 +

J?
2ıt

)
(4.6)

and

2 (Kc ` 1) ı gc = `
1

ıvF
(U + J?) ; (4.7)

2ımc = gu = `
1

ıvF
(U + J?) ; (4.8)

2 (Ks ` 1) ı gs =
1

ıvF
(U + J?) ; (4.9)

2ıms = g? =
1

ıvF
(U ` J?) (4.10)

allows to study the ground state phase diagram of the system based on the infrared

properties of these Hamiltonians.

Depending on the relation between the bare coupling constants g—, gu and g? the
system exhibits two di¸erent regimes:

➊ For gc – jgu j (gs – jg?j) we are in the weak coupling regime. The e¸ective
mass M— scales to 0. The low energy (large distance) behaviour of the

gapless charge (spin) degrees of freedom is described by a free scalar ˛eld.

The corresponding correlations show a power law decay

he i
p
2ıKffi(x)e`i

p
2ıKffi(x 0)i ‰

∣∣x ` x 0
∣∣`K ; (4.11)

he i
p
2ı=K„(x)e`i

p
2ı=K„(x 0)i ‰

∣∣x ` x 0
∣∣`1=K (4.12)

and the only parameter controlling the infrared behaviour in the gapless

regime is the ˛xed-point value of the e¸ective coupling constants K—.

➋ For gc < jgu j (gs < jg?j) the system scales to the strong coupling regime;
depending on the sign of the bare mass m— the e¸ective mass M— scales to

˚1, which signals the crossover to the strong coupling regime and indicates
the dynamical generation of a commensurability gap in the charge (spin)

excitation spectrum. The ˛elds ffi— get ordered with vacuum expectation

values [137, 138]

hffi—i =
{ √

ı=
(
8K—

)
: m— > 0

0 : m— < 0
: (4.13)

Using the initial values of the coupling constants given in (4.7)-(4.10), we obtain

that ‚ow trajectories in the charge sector (due to the SU(2)-charge symmetry)

are along the separatrix gc = gu. Therefore, at

U + J? > 0 (4.14)
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there is a gap in the charge excitation spectrum (´c 6= 0) and the charge ˛eld ffic
is ordered with the vacuum expectation value

hffici = 0 ; (4.15)

while at U + J? < 0 the charge sector is gapless and the ˛xed-point value of the
parameter K?c is one.

The U(1) symmetry of the spin channel ensures more alternatives. Depending on

the relation between the bare coupling constants there are two di¸erent strong-

coupling sectors in the spin channel. For

U < minf0; J?g (4.16)

the spin channel is massive (´s 6= 0) and the ˛eld ffis gets ordered with the vacuum
expectation value

hffisi = 0 ; (4.17)

while for

J? < minf0; Ug (4.18)

the spin channel is massive (´s 6= 0) too, but the ˛eld gets ordered with vacuum
expectation value

hffisi =
√

ı

8Ks
: (4.19)

In the present work we restrict our considerations to the case U > 0 and hence

Eq. (4.18) simpli˛es to J? < 0 while (4.16) has to be neglected.
In all other cases the excitation spectrum in the corresponding channel is gapless.

The low-energy behaviour of the system is controlled by the ˛xed-point value of

the Luttinger-liquid parameter K?s = 1 +
1
2g
?
s . In the particular case of vanishing

on-site interaction (U = 0) and antiferromagnetic exchange (J? > 0) one has to
use a second order RG analysis to de˛ne accurately the ˛xed point value of the

parameter Ks (for details, see Ref. [132]).

4.2.2. Order parameters

The order parameters are used to clarify the ground state properties of the model

in di¸erent sectors. At ˛rst we derive exemplarily the boson-˛eld representation

of the on-site singlet operator

OOS(‘) = c‘;"c‘;# : (4.20)

We use the fermionic ˛eld representation, i.e. c‘;ff !  ff(x)=
p
a0

∣∣
x=‘a0

, and

continue with

OOS(x) =
(1:9)

∏

ff

(
e ikF x R;ff(x) + e

`ikF x L;ff(x)
)

=  R;" L;# +  L;" R;# + e
2ikF R;" R;# + e

`2ikF L;" L;#

=
(1:17)

1

2ı¸

(
FR;"FL;#e

i(˘R;"+˘L;#) + FL;"FR;#e
i(˘R;#+˘L;")

+FR;"FR;#e
2ikF e i(˘R;"+˘R;#)

+FL;"FL;#e
`2ikF e i(˘L;"+˘L;#)

)
;
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Now we set kF = ı=(2a0) which is valid for a half-˛lled band. This leads to

exp(iıx=a0) = exp(iı‘) = (`1)‘ and in particular

OOS(x) =
(1:19)

1

2ı¸

(
FR;"FL;#e

i
p
2ı(„c`ffis ) + FL;"FR;#e

i
p
2ı(„c+ffis )

+(`1)‘FR;"FR;#e i
p
2ı(„c`ffic )

+(`1)‘FL;"FL;#e i
p
2ı(„c+ffic )

)
:

Using commutation relation (1.20) in combination with the Campbell-Baker-

Hausdor¸ formula exp(A) exp(B) = exp(A+B) exp([A;B]=2) gives

OOS(x) =
1

2ı¸

(
FR;"FL;#e

`i
p
2ıffis + FL;"FR;#e

i
p
2ıffis

`i(`1)‘FR;"FR;#e`i
p
2ıffic

+i(`1)‘FL;"FL;#e i
p
2ıffic

)
e i
p
2ı„c

ı 1

ı¸

(
cos

[p
2ıffis

]
` (`1)‘ sin

[p
2ıffic

])
e i
p
2ı„c :

The last step was performed without the Klein factors F”;ff. Note that the expo-

nent of a correlation function will be una¸ected as long as logarithmic corrections

will not be involved [69]. Finally, transforming the phase ˛elds as ffi— !
√
K—ffi—

and „— ! „—=
√
K— leads to the expression

OOS(x) ı
(
cos

[√
2ıKsffis(x)

]
` (`1)‘ sin

[√
2ıKcffic(x)

])
e
i

�
2ı
Kc
„c(x) ;(4.21)

where the factor 1=(ı¸) has been omitted. Note that the remaining order para-

meters can be computed in an analogous manner. The other superconducting

order parameters are

❑ the extended-singlet

OES(‘) =
1p
2

(
c‘;"c‘+1;# ` c‘;#c‘+1;"

)
(4.22)

OES(x) ı (`1)‘ cos
[√
2ıKcffic(x)

]
e
i

�
2ı
Kc
„c(x) (4.23)

❑ and the triplet pairing

OTS(‘) =
1p
2

(
c‘;"c‘+1;# + c‘;#c‘+1;"

)
(4.24)

OTS(x) ı sin
[√
2ıKsffis(x)

]
e
i

�
2ı
Kc
„c(x) : (4.25)

Additionally we will use

❑ the longitudinal on-site spin-density operator
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Sz(‘) /
∑

ff

ff c
y
‘;ffc‘;ff (4.26)

Sz(x) ı
√
Ks
2ı
@xffis(x)

+(`1)‘ cos
[√
2ıKcffic(r)

]
sin

[√
2ıKsffis(r)

]
; (4.27)

❑ the transverse on-site spin-density operators

Sx(‘) /
∑

ff

c
y
‘;ffc‘;`ff (4.28)

Sx (x) ı i cos
[√
2ıKsffis(x)

]
sin

[√2ı
Ks
„s(x)

]

+i(`1)‘ cos
[√
2ıKcffic(x)

]
sin

[√2ı
Ks
„s(x)

]
; (4.29)

Sy (‘) / i
∑

ff

ff cy‘;ffc‘;`ff (4.30)

Sy (x) ı `i cos
[√
2ıKsffis(x)

]
cos

[√2ı
Ks
„s(x)

]

`i(`1)‘ cos
[√
2ıKcffic(x)

]
sin

[√2ı
Ks
„s(x)

]
(4.31)

❑ and the on-site density operator

(‘) =
∑

ff

(
cy‘;ffc‘;ff ` 1

)
(4.32)

(x) ı
√
2Kc
ı
@xffic(x)

+(`1)‘ sin
[√
2ıKcffic(x)

]
cos

[√
2ıKsffis(x)

]
: (4.33)

4.2.3. The weak-coupling phase diagram

With the results of the previous section for the excitation spectrum and the be-

haviour of the corresponding ˛elds Eqs. (4.11){(4.13) we now analyze the weak-

coupling ground state phase diagram (cf. with Fig. 4.1) of the model (4.1) .

Let us ˛rst consider the case U = 0, where the weak-coupling analysis shows the

existence of two di¸erent phases: in the case of antiferromagnetic exchange, at

J? > 0, there is a gap in the charge excitation spectrum while the spin sector
is gapless. Ordering of the ˛eld ffic with vacuum expectation value hffici = 0
leads to a suppression of the CDW and superconducting correlations. The SDW

and Peierls correlations show a power-law decay at large distances (see [132] for

details). Due to the U(1)-spin symmetry, K?s > 1 and the transverse correlations

dominate in the ground state

hS+(x)S`(0)i ‰ x`K?s`1=K?s + (`1)‘x`1=K?s ; (4.34)
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while the longitudinal spin correlations

hSz(x)Sz(0)i ‰ x`2 + (`1)‘x`K?s (4.35)

and Peierls correlations decay faster.

We now focus on the case of ferromagnetic exchange between spins. At U = 0 and

J? < 0 there is a gap in the spin excitation spectrum while the charge excitation
spectrum is gapless. As common in the half-˛lled band case, the gapless charge

excitation spectrum opens a possibility for the realization of a superconducting

instability in the system. Moreover, due to the U(1)-symmetry of the system,

ordering of the ffis with vacuum expectation value hffisi =
√
ı=8Ks leads to a

suppression of the CDW and singlet correlations. In this case the SDW(z) and

triplet correlations show an identical power-law decay

hSz(x)Sz(0)i = hOTS(x)OTS(0)i ‰ (`1)‘x`1 (4.36)

at large distances and are the dominating instabilities in the system.

Let us now consider the e¸ect of the on-site Coulomb repulsion. At J? > 0

the easy-plane antiferromagnetic phase remains unchanged at U > 0. However,

at J? < 0 the TS+SDW(z) phase is stable only towards in‚uence of a weak

U < `J? on-site coupling. In the case of repulsive Hubbard interaction, at
U > `J? a charge gap opens. This regime corresponds to the appearance of a
long-range ordered antiferromagnetic (N«eel) phase

hSz(x)Sz(0)i ‰ (`1)‘ constant (4.37)

in the ground state.

The ferromagnetic transition

Let us now discuss the ferromagnetic transition in the itinerant XY model (U = 0).

The very presence of this transition can already been seen within the weak-coupling

studies, however detailed analysis of the phase diagram close to transition is out

of scope of the continuum-limit approach. As we obtained, at J? < 0, jJ?j fi t,

the charge excitation spectrum is gapless and the spin excitation spectrum is

massive. However, in the limit of strong ferromagnetic exchange jJ?j fl t, the

model is equivalent to the XY spin chain. Therefore, with increasing coupling one

has to expect a transition from the regime with massive spin and massless charge

excitation spectrum into a insulating magnetic phase with gapless spin excitations.

On the other hand, in the case of antiferromagnetic exchange J? > 0 the weak
coupling study shows a phase with gapless spin, gapped charge and dominating

easy-plane spin correlations. One expects that this phase evolves smoothly to the

strong coupling limit.

The J? $ `J? asymmetry is already seen on the level of the Hartree regulariza-
tion of the band-width cut-o¸ parameter W = 2ıt as given by the Eqs. (4.6)

We¸ = 2ı

(
1 +

J?
2ıt

)
: (4.38)
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The weak coupling approaches fail when the e¸ective dimensionless coupling con-

stant jgij = J?=(2ıt) = jgci j ’ 1. This condition immediately gives J
(c)
? = `ıt.

As we show below, using the DMRG studies of chains up to L = 120 sites, indeed

the transition into the ferromagnetic easy-plane ordering discussed above takes

place at J
(c)
? ‰ `4t.

4.3. Numerical results at half-˛lling and U = 0

We used the DMRG method to study the ground-state properties of this model.

Our calculations have been performed for open chains up to 120 sites using the

in˛nite-size version of the DMRG routine. A comparison with the ˛nite-size

algorithm, which requires more CPU time and memory, does not give a substantial

improvement of the results. For most of the numerical results reported here we

have kept 400 states in each block, which produces truncation errors smaller than

10`7.

4.3.1. Ground state energy

The asymmetry of this model is clearly seen in Fig. 4.2, where the ground state

energy as a function of J? is presented.
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Figure 4.2.: Ground-state energy E0 of the XY-model and the itinerant XY-

model as a function of coupling J?=t for a half-˛lled L = 100
chain.

As we observe from Fig. 4.2 in the case of ferromagnetic exchange the ground

state energy of the itinerant model becomes very close to that of the spin- 12 XY

chain. Further on, Fig. 4.2 indicates a smooth evolution to the limiting case of

spin-1=2 antiferromagnetic XY chain at J? !1.
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4.3.2. Excitation spectrum

Let us start from the limiting case of the itinerant XY model (U = 0) and analyse

its excitation spectrum. The charge and spin gap for a half-˛lled L-site system

are evaluated by

´c(L) =
1

2

[
E0

(
L

2
+ 1;

L

2
+ 1

)
+ E0

(
L

2
` 1; L

2
` 1

)

`2E0
(
L

2
;
L

2

)]
; (4.39)

´s(L) = E0

(
L

2
+ 1;

L

2
` 1

)
` E0

(
L

2
;
L

2

)
; (4.40)

respectively, where E0(N"; N#) is the ground-state energy for N" up-spin and N#
down-spin electrons. The extrapolation for L!1 is then performed by ˛tting a
polynomial in 1=L to the calculated ˛nite-chain results.

Figure 4.3 displays the extrapolated values as a function of J?. We observe the
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Figure 4.3.: Spin and charge excitation spectrum of the itinerant XY model at

half-˛lling. Depending on the behaviour of the gaps four sectors

can be distinguished. Their approximate boundaries are indicated

by grey lines.

following four sectors: at J? > 0 the system is characterized by gapless spin

and gapped charge excitation spectrum, while the weak-coupling ferromagnetic

sector exhibits gapless charge and gapful spin degrees of freedom. Moreover, our

numerical results show the presence of two new regions. At J
(c1)
? ı `3t a charge

gap opens, while the spin gap starts to decrease and ˛nally closes at J
(c2)
? ı `4t.

This de˛nes two new sectors: for J
(c2)
? < J? < J

(c1)
? both the spin and charge

sectors are gapped, while at J? < J
(c2)
? the spin sectors become gapless. There

are no indications for further transitions in the system. Note that similar behaviour
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of the gaps, with interchange of spin and charge degrees of freedom, was ˛rst

observed by Sikkema and A›eck in the pair-hopping model (4.3) [136].

4.3.3. Correlation functions

To investigate the nature of ordering in the di¸erent phases we study the behaviour

of the correlation functions. In the sectors with gapless excitation spectrum and

at half-˛lling we expect the usual expression for correlation functions

C(r) ” hOy(r)O(0)i ‰ A1r`„1 + (`1)rA2r`„2 (4.41)

consisting of a smooth part decaying with exponent „1 and an oscillating part

decaying with „2. In determining the asymptotics of correlation functions (see

Sec. 1.2.4 and Sec. 1.3) we focus on the dominating part given by „ = minf„1; „2g.
In addition, we average the correlation functions over typically nine numbers of

pairs of lattice sites which are separated by the same distance (cf. with Sec. 3.2.6).

In the following we will present results for correlation functions in di¸erent sectors

of the phase diagram.

Sectors I and I’ (´c 6= 0, ´s = 0): The XY-phases

In Fig. 4.4 we have plotted the longitudinal and transverse spin-spin correlations

in the case of strong easy-plane exchange. Although the amplitudes of the trans-
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Figure 4.4.: The longitudinal (circle) and transverse (square and diamond)

spin-spin correlations in the case of strong easy-plane ferromag-

netic J? = `8t and antiferromagnetic J? = 8t exchange, plotted
against the real space distance ji ` j j.

verse correlation functions are di¸erent, the estimated exponents are similar2. In

2Note that the in‚uence of ˛nite size e¸ects on the evaluated exponents is relevant. The

determined exponent values for the full set of the data are approximately 5% larger than

those which have been calculated for a suitable subset of the data (10 < ji ` j j < 40).
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the case of ferromagnetic exchange we obtained „ ı 0:57, whereas for the anti-
ferromagnetic exchange we have „ ı 0:61. The results are in a good agreement
with the exact value „ = 0:5 obtained for the XY -model [139]. The longitud-

inal correlation functions decay faster. The calculated exponents „ ı 1:79 (for
J? = `8t) and „ ı 1:66 (for J? = 8t) are close to the exact XY-value „ = 2.

Sector II (´c = 0, ´s 6= 0): The TS+SDW(z) regime

Let us now focus on the case of ferromagnetic exchange J? < 0 at U = 0. The
bosonization results predict a suppression of the CDW and singlet correlations,

whereas SDW(z) and triplet correlators show identical power-law decay (cf. with

Eq. (4.36)). Furthermore, both correlation functions are the dominating instabil-

ities in this phase.

Figure 4.5 displays DMRG results for the singlet- and triplet-pair correlation func-

tion. One can clearly observe a strong triplet-pair correlation. Note that the
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Figure 4.5.: Pair correlation functions in the ferromagnetic phase at J? = `2t
and U = 0. The lower ˛gure shows the algebraic decay of the

triplet and singlet correlation, plotted on a double logarithmic

scale.

on-site and extended singlet-pair correlations show an almost identical behaviour.

This is expected from the bosonization results (4.21) and (4.22) since the smooth

part of the on-site singlet correlations (4.21) does not contribute due to (4.19).

In the double logarithmic plot (see lower ˛gure) all correlation functions indicate

a power-law decay with fast decaying singlet-pairing correlators („ ı 2:18) and a
slowly decaying triplet correlation function („ ı 1:03). The results are in a good
agreement with those predicted by bosonization.

In Fig. 4.6 we show calculations for the longitudinal and transverse spin-spin cor-

relation for ferromagnetic exchange (J? = `2t). We observe that the correlation
functions exhibit an algebraic decay in which the transverse spin-spin correlation
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Figure 4.6.: The longitudinal and transverse spin correlation function, plot-

ted at J? = `2t and U = 0 (upper ˛gure). The exponents „
(lower ˛gure) were calculated using a suitable subset of the data

to reduce ˛nite size e¸ects and numerical inaccuracies at large

distances.

function decays faster. The calculated exponent of the longitudinal spin correl-

ation function is, in agreement with bosonization results, close to that of the

triplet-pairing correlations.

To complete the weak-coupling picture of sector II, we performed calculations for

the density-density correlation. The results are shown in Fig. 4.7. Since in the
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Figure 4.7.: The density-density correlation function at J? = `2t and U = 0
including the average value of this correlation which removes the

even-odd-r oscillations.
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double logarithmic plot we observe strong oscillations we additionally calculate

the average value [140]

—C(r) =
1

4
[C(r ` 1) + 2C(r) + C(r + 1)] (4.42)

to smoothen the curve. As its clearly seen from the lower part of Fig. 4.7 the

oscillations are removed, but the estimated exponent remains almost unchanged.

Thus the DMRG result indicates a fast decay of density-density correlations, in

agreement with the bosonization results.

We can conclude that coexisting triplet-pairing and antiferromagnetic SDW(z)

ordering are the dominating instabilities in this sector.

Sector III (´c 6= 0, ´s 6= 0): The intermediate phase

In this subsection we analyze the asymptotic behaviour of the superconducting

and spin-spin correlations in the intermediate phase at J? = `3:5t, where ´c ı
´s 6= 0. Note that this phase is absent in the weak-coupling phase diagram (cf.
with Fig. 4.1).

In Fig. 4.8 we present DMRG data for the pairing correlation functions (left ˛gure).

As is clearly seen from the left ˛gure, especially from the logarithmic plot, the

superconducting correlations decay exponentially in agreement with the presence

of a charge gap. In addition, we plot the spin-spin correlation functions (right
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Figure 4.8.: Pair (left ˛gure) and spin (right ˛gure) correlation functions at

J? = `3:5t and U = 0, plotted against the real space distance
(upper part) and on a logarithmic scale (lower part).

,

˛gure). From the logarithmic plot follows that the transverse spin correlation

function decay exponentially. In contrast, the longitudinal spin correlation show

well-established long-range order. The appearance of LRO is consistent with

the U(1) ˙ Z2 spin-symmetry of the present model (4.1). The continuous U(1)
symmetry is generated by the operators Sx and Sy , while the discrete Z2 symmetry

comes from the invariance with respect to the Sz ! `Sz transformation. Since
the SDWz ordering violates the discrete Z2 and translation symmetries, the true

LRO state is not forbidden.
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4.4. Numerical results at half-˛lling and U 6= 0

Let us now consider the e¸ects of a repulsive Coulomb interaction on the ground

state phase diagram of the model starting with the excitation spectrum.

4.4.1. Excitation spectrum

From the bosonization results we know the general e¸ect of the Coulomb repulsion

on the phase diagram which displays itself in an enlargement of the charge gap

sectors at the expense of the spin gap sector. Fig. 4.9 shows charge and spin gaps
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Figure 4.9.: Spin and charge excitation gaps of the itinerant XY model at

U = t (upper ˛gure) and U = 2t (lower ˛gure). The approximate

boundaries are denoted by grey lines.

for U = t and U = 2t. One can clearly see that sectors I and I’, where we have a

˛nite charge gap ´c > 0, are enlarged. As a consequence the spin-gapped phase

(sector II) becomes smaller with increasing U and ˛nally vanishes completely.

Already at U = 2t the charge gap is always ˛nite. Thus the main e¸ect of the

presence of Coulomb interactions is the suppression of sector II, i.e. a reduction

of the region with dominating superconducting correlations. In analogy with the

U = 0 case we conclude that the sectors with magnetic correlations become

dominating.

4.4.2. Correlation functions

In the following we analyze the e¸ect of the Coulomb interactions on pair and

spin correlation functions. We will focus on the behaviour in sectors II and III

where ´c = 0, ´s 6= 0 and ´c 6= 0, ´s 6= 0, respectively.
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The TS + SDW(z) phase

In this subsection as a representative point we consider the coupling J? = `1:5t
at U = t. The phase is characterized by a spin gap of magnitude ´s ı 0:13t and
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Figure 4.10.: Pair correlation functions in the ferromagnetic phase at J? =
`1:5t and U = t. The lower ˛gure shows the algebraic de-

cay of the triplet and singlet correlation, plotted on a double

logarithmic scale.
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Figure 4.11.: Spin correlation functions at J? = `1:5t and U = t. In the

upper part one can clearly observe the exponentially decaying

behaviour of the transverse correlation. Lower part shows an

algebraic decay for the longitudinal correlation, plotted on a

double logarithmic scale.
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massless charge mode. The asymptotic behaviour of the pair and spin correlation

functions is plotted in Fig. 4.10 and Fig. 4.11, respectively. One can clearly

see that the triplet-pairing and longitudinal spin-spin correlations represent the

dominating instabilities in the system. Unfortunately the accuracy of the numerics

is not su‹cient in this case to verify that the exponents are still exactly identical.

Instead, we ˛nd „ ı 1:2 (triplet pairing) and „ ı 1:39 (longitudinal spin).

The LRO SDW(z) phase

In this subsection we compute the correlation functions at U = 2t and J? = `2t.
The presence of a charge gap ´c ı 0:38t leads now to an exponential decay of
superconducting correlations. On the other hand, as is clearly seen from Fig. 4.12,
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Figure 4.12.: Spin correlation functions at J? = `2t and U = 2t. The
longitudinal spin-spin correlations show a true LRO, while the

transverse spin correlations decay exponentially.

the longitudinal spin-spin correlations show a true LRO while the transverse spin

correlations decay exponentially.

Note that this phase is equivalent to the intermediate sector at `4t » J? » `3t
and U = 0, showing true LRO SDW(z) and exponentially decaying transverse spin

and pair correlations.

The ferromagnetic phase

In this subsection we use as an representative point U = 2t and in addition

J? = `4t. As one can observe from Fig. 4.13 the spin-spin correlation functions
exhibit an algebraic decay in which the longitudinal correlation decays faster. The

transverse ferromagnetic spin correlation is almost identical to that of the standard

XY-chain.
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Figure 4.13.: Spin correlation functions at J? = `4t and U = 2t showing
a power-law decay in which the longitudinal correlation decays

faster.

4.5. Physical properties at quarter-˛lling

In this section we will extend our analysis to the case of a quarter-˛lled band. Let

us start from the limiting case of the itinerant XY model (U = 0) and analyse its

excitation spectrum.

4.5.1. Excitation spectrum at U = 0

Depending on the value of J?=t the quarter-˛lled model (4.1) belongs either to
a TL liquid with gapless excitation spectrum or to a LE phase described by a spin

gap and gapless charge degrees of freedom. But the charge excitation spectrum

is always gapless, as in the Hubbard model with n < 1.

Figure 4.14 displays the extrapolated values as function of J?. We observe two
transitions: up to J? – `t the system belongs to the TLL universality class with
gapless excitation spectrum. With increasing ferromagnetic exchange the spin

gap increases and the system is described by the LE phase. Below J? ı `3:7t
the gap is closed and once again the system is represented by a TL liquid. In

contrast to the half-˛lled case the spin gaps are much smaller.

Now we are going to analyze the behaviour of pair and spin correlation functions.

4.5.2. Correlation functions

At ˛rst, we focus our study on the gapless phase expecting a power-law behaviour

for all correlation functions.
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Figure 4.14.: DMRG results for the spin excitation spectrum of the itinerant

XY model at half-˛lling (circles) and quarter-˛lling (squares).

The TL phases (´c = 0, ´s = 0):

The TL liquid is characterized by a gapless excitation spectrum with algebraically

decaying correlation functions. Fig. 4.15 shows the numerical data for the pair

and spin correlations at J? = `0:5t. In agreement with the TL liquid prediction,
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Figure 4.15.: Pair (left ˛gure) and spin (right ˛gure) correlation functions

in the TLL phase at J? = `0:5t and U = 0, plotted against
the real-space distance (upper part) and on a double logarithmic

scale (lower part).

one can clearly observe the power-law behaviour of all correlation functions.

The LE phase is more interesting, because the presence of a spin gap favours pair

correlations. Thus, next we will focus on the spin gapped phase.

The LE phase (´c = 0, ´s 6= 0):

We concentrate on the case of ferromagnetic exchange J? = `2t with U = 0.
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Figure 4.16.: Pair correlation functions in the ferromagnetic phase at J? =
`2t and U = 0, plotted against the real-space distance (upper
˛gure) and on a double logarithmic scale (lower ˛gure).
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Figure 4.17.: Longitudinal and transverse spin-spin correlation functions in

the ferromagnetic phase at J? = `2t and U = 0, plotted
against the real-space distance (upper ˛gure) and on a double

logarithmic scale (lower ˛gure).

The ground state of the SU(2) spin-symmetric LE model is characterized by ex-

ponentially decaying SDW and triplet-pair correlation functions and by CDW and

singlet-pairing correlators showing power-law behaviour. However, in contrast

to the LE model, the model of interest possesses only the ordinary U(1) spin-

symmetry. Therefore, di¸erences in the decay behaviour are expected. Already

Fig. 4.16 indicates a quite di¸erent picture. One can clearly observe that the



4.5 Physical properties at quarter-˛lling 79

triplet-pair correlator decays algebraically and de˛nitively not exponentially. The

singlet-paring correlation function however shows an unchanged correlation be-

haviour, i.e. it has a power-law decay. In Fig. 4.17 we display the spin-spin

correlations, where the transverse spin-spin correlations decay exponentially while

the longitudinal spin-spin correlations exhibit power-law decay. Note that the es-

timated exponents of the triplet pair and the longitudinal spin correlations are

quite similar.

4.5.3. Excitation spectrum at U = t

Due to the absence of a charge gap, the in‚uence of the Coulomb interaction

U leads only to quantitative e¸ects. Therefore, we investigate the U = t case.

Fig. 4.18 depicts the excitation spectrum at U = t, with a shift of all boundaries
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Figure 4.18.: DMRG results for the spin excitation spectrum at half-˛lling

(circles) and quarter-˛lling (quares) at U = t.

which separates the phases. Additionally, one can clearly observe a small spin

gapped region in the quarter-˛lled case.



5. Conclusion and Outlook

Recent experimental ˛ndings show evidence for the competition or even coex-

istence of triplet superconductivity and ferromagnetism. Based on these obser-

vations various models of strongly correlated electron systems showing proximity

of (ferro) magnetic and (triplet) superconducting phases have been studied as

attempt to construct a theoretical model for new superconducting materials.

We focused our investigations on a rather simple extension of the Hubbard model

including transverse spin exchange between electrons on nearest-neighbour sites.

The one-dimensional version of this model has an extremely rich weak-coupling

phase diagram (see Fig. 4.1). In the case of a half-˛lled band the ground state

phase diagram is characterized by two insulating antiferromagnetic phases with

easy plane anisotropy and the spin gapful metallic phase with an identical decay

of the triplet superconducting and spin-density wave (SDW(z)) instabilities.

Our numerical results from the density matrix renormalization group calculations

show that the phase diagram obtained in the weak-coupling limit using the bo-

sonization technique has to be modi˛ed (see Fig. 5.1). In the case of vanishing

´c 6= 0
´s = 0 ´c 6= 0

´s = 0

J
(c1)
?

XY-Phase
SDW(x;y)

J
(c2)
?

LRO SDW(z)

´c = 0
´s 6= 0

TS+SDW(z)

´c 6= 0
´s 6= 0

J?

U

Figure 5.1.: The possible ground state phase diagram of the itinerant XY-

model at half-˛lling. Solid lines mark second order phase trans-

itions between the phases. The dashed line corresponds to the

spin-‚op transition from the LRO SDW(z) into the ferromagnetic

XY phase. The dashed-dotted line marks the metal-insulator

transition from the spin-gapped metallic phase with identical de-

cay of triplet superconducting and SDW(z) correlations into the

LRO antiferromagnetic (SDW(z)) phase.
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on-site Coulomb interactions,the behaviour of spin and charge gaps as function

of the spin-coupling J? allows to distinguish four di¸erent phases:
For antiferromagnetic interactions J? > 0 only one phase is present.

➊ The spin gap vanishes, but the charge gap is always ˛nite. The observed

behaviour of the correlation functions indicates a smooth evolution to the

limiting case of spin-1=2 antiferromagnetic XY chain at J? !1.

For ferromagnetic couplings J? < 0 three di¸erent phases appear.

➋ Already for weak interactions a spin gap opens, but the charge sector is

gapless. Here SDW(z) and triplet correlations, which decay with similar

power-laws, are dominating, i.e. this regime exhibits a coexistence of anti-

ferromagnetic ordering and triplet superconductivity.

➌ At J
(c1)
? ı `3t the spin gap is maximal and a charge gap opens. This

intermediate phase, that extends up to J
(c2)
? ı `4t shows long-range order

in the longitudinal spin correlation, whereas superconducting correlations

are surpressed and decay exponentially as expected for the case of a ˛nite

charge gap.

➍ Finally, at J? > `4t via a spin-‚op transition the system again enters a
XY phase characterized by vanishing spin but ˛nite charge gap. Here the

behaviour is similar to the ferromagnetic XY model.

The presence of a repulsive on-site Coulomb interaction U has a strong e¸ect

on the phase diagram. Generically it leads to an enlargement of the sectors with

nonvanishing charge gap at the expense of the sectors with spin gap. Already at

U = 2t the charge gap is ˛nite for all values of the exchange coupling J?. There-
fore the phase where antiferromagnetism and triplet superconductivity coexist

is no longer observed and magnetic correlations become dominant everywhere.

Only for small values of the Coulomb interaction there is still a ˛nite window of

coexistence possible.

We extend our analysis to the case of a quarter-˛lled band. Depending on the

value J?=t the model belongs either to a gapless excitation phase or to a spin
gapped phase with gapless charge degrees of freedom. In the spin gapped phase

we have shown that this regime is characterized by the coexistence of antiferro-

magnetic ordering and triplet superconductivity. Preliminary results indicate that

the Coulomb interactions only lead to a quantitative modi˛cation.

Further studies have to clarify if the two gapless phases exhibit similar physical

properties. In addition, the in‚uence of the Coulomb interaction has to be ex-

amined in more detail. And ˛nally, the nature of superconducting pairs (e.g. hole

or electron) has to be analyzed.



A. Implementation of the fermion sign
in the DMRG method

A common approach to numerically treating a quantum lattice system is to diag-

onalize the Hamiltonian matrix in which the basis states are written in the second

quantization, i.e. the occupation number formalism. A system with N identical

fermions and L sites is described by the basis states

jn1; : : : ; n‘; : : : ; nL) ” jn1)˙ : : :˙ jn‘)˙ : : :˙ jnL) (A.1)

telling how many particles n‘ = n‘;"+n‘;# are in each single particle state. Within
this formalism all operators may be expressed in terms of creation (c y‘;ff) and

annihilation (c‘;ff) operators obeying the important anticommutation rules

[
c‘;ff; c

y
‘0;ff0

]
= c‘;ffc

y
‘0;ff0 + c

y
‘0;ff0c‘;ff = ‹‘‘0‹ffff0 ; (A.2)

[
c‘;ff; c‘0;ff0

]
=

[
c
y
‘;ff; c

y
‘0;ff0

]
= 0 : (A.3)

A minus sign is introduced whenever places of two operators are interchanged.

Consequently, this sign should be carefully tracked during the DMRG procedure.

It is useful to de˛ne new creation and annihilation operators which already include

the fermion sign.

Let us assume following alignment of up- and down-spin particles

j "#) = cy‘;"c
y
‘;# j0) (A.4)

in the case when the single site state jn‘) is occupied by two particles with opposite
spins. When applying c y‘;ff to jn1; : : : ; n‘; : : : ; nL), the number of particles in front
of position ‘ and n‘ determine the fermion sign. More precisely, in the left block

‘
cy‘;ff

we de˛ne

cy‘;" jn1; : : : ; n‘`1; 0; : : :) = (`1)
�

k<‘

nk
jn1; : : : ; n‘`1; "; : : :); (A.5)

c
y
‘;" jn1; : : : ; n‘`1; #; : : :) = (`1)

�

k<‘

nk
jn1; : : : ; n‘`1; "#; : : :); (A.6)

cy‘;# jn1; : : : ; n‘`1; 0; : : :) = (`1)
�

k<‘

nk
jn1; : : : ; n‘`1; #; : : :); (A.7)

cy‘;# jn1; : : : ; n‘`1; "; : : :) =
(A:4)

(`1)
�

k<‘

nk+1

jn1; : : : ; n‘`1; "#; : : :): (A.8)
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The new creation operators of the left block are then given by

~cy‘;" ” cy‘;" (`1)N‘`1 and (A.9)

~cy‘;# ” cy‘;# (`1)N‘`1+n‘;" ; (A.10)

where we have de˛ned N‘ =
∑‘
k=1 nk . However, in the right block

‘0

cy‘0;ff

one gets

(: : : ; 0; n‘0`1; : : : ; n1j cy‘0;" = (`1)N‘0`1 (: : : ; "; n‘0`1; : : : ; n1j; (A.11)

(: : : ; #; n‘0`1; : : : ; n1j cy‘0;" =
(A:4)

(`1)N‘0`1+1 (: : : ; "#; n‘0`1; : : : ; n1j;(A.12)

(: : : ; 0; n‘0`1; : : : ; n1j cy‘0;# = (`1)N‘0`1 (: : : ; #; n‘0`1; : : : ; n1j; (A.13)

(: : : ; "; n‘0`1; : : : ; n1j cy‘0;# = (`1)N‘0`1 (: : : ; "#; n‘0`1; : : : ; n1j : (A.14)

Thus connecting left and right block together

cy‘0

‘ ‘0

only the sign of the right block operators has to be modi˛ed, i.e.

~~cy‘0;" ” ~cy‘0;"(`1)Ntot = c
y
‘0;" (`1)Ntot(`1)N‘0`1 and (A.15)

~~cy‘0;# ” ~cy‘0;#(`1)Ntot = c
y
‘0;# (`1)Ntot(`1)N‘0`1+n‘0 ;" ; (A.16)

with Ntot describing the particle number of the superblock.

A fermionic correlation function like

C(j‘` ‘0j) =
〈
~c
y
‘;ff
~~c‘0;ff0

〉
(A.17)

has to be computed in terms of these new operators. Note that all these types

of correlations give wrong behaviour if the implementation of the fermionic sign

is neglected.



B. Noninteracting fermions

In the limiting case U = 0 the 1D Hubbard model reduces to that of free fermions.

The Hamiltonian with open boundary conditions (OBC) then reads

H = `t
L`1∑

‘=1

∑

ff=˚1

(
cy‘;ffc‘+1;ff + c

y
‘+1;ffc‘;ff

)
; (B.1)

where t represents the strength of the hopping and L the length of the chain. This

model is completely equivalent to the model of spinless free fermions (SFF) due to

the fact that the two spin projections ff =" and ff =# are independent. The SFF
model, which can be mapped to the spin-1=2 XX chain by means of the Jordan-

Wigner transformation, is the simplest exactly solvable strongly correlated model

[139, 141]. The main advantage of this model is that its physical quantities like

the energy spectrum or the ground-state correlation functions can be calculated

rather easily for any ˛nite chain length, even for OBC, as in the standard DMRG

algorithm. Therefore, we will use the model of noninteracting fermions, which is

also a limiting case of our model, as a test system in order to analyze the accuracy

of our DMRG routine.

B.1. Ground-State energy

We can diagonalize the Hamiltonian (B.1) by means of Fourier transformation to

obtain

H = `t
∑

‘;ff

1

L




∑

k1;k2

e`i(k1`k2)‘ e ik2 +
∑

k1;k2

e`i(k1`k2)‘ e`ik1


 cyk1;ffck2;ff

= `t
∑

k;ff

(
e ik + e`ik

)
c
y
k;ffck;ff

=
∑

k;ff

"(k) cyk;ffck;ff with "(k) = `2t cos(k) : (B.2)

The ground-state energy is then given by

E0 = hHi =
∑

k;ff

"(k) hcyk;ffck;ffi =
∑

k;ff

"(k) nff(k)

= `4t
∑

k<kF

cos(k) ; (B.3)
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where nff(k) denotes the momentum distribution for spin ff with nff(k) = 1 for

all k < kF = ıN=(2L) and zero otherwise. Due to the OBC, the momentum k

takes the values k = ım=(L+ 1) with m = 1; : : : ; Nff=L.,

In Figure B.1 the exact ground-state energy e0 = E0=L is compared with DMRG

results for the half-˛lled band (left ˛gure) and quarter-˛lled band (right ˛gure).

The DMRG calculations were performed with the in˛nite-system algorithm for

chains up to L = 160 lattice sites with m = 400 states retained. The discrep-
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Figure B.1.: The graphs show the ground-state energy e0 = E0=L calculated

with equation (B.3) and the DMRG method keeping m = 400

states for the half-˛lled band (left ˛gure) and the quarter-˛lled

band (right ˛gure). The insets show the relative errors.

ancies ´e0 ” e0(DMRG) ` e0(exact) are always positive in accordance with the
statement that the DMRG is a variational method. Due to the truncation error

in the DMRG procedure, the relative errors ‹e ” ´e0=je0(exact)j, plotted in the
insets, increase with increasing chain length. Nevertheless, the agreement with

the exact results is quite good.

B.2. Two-point correlations functions

In order to evaluate correlation functions, we make use of the Wick theorem. For

instance, the triplet-pair correlation function

CTS(jn `mj) = h jOyTS(n)OTS(m)j i (B.4)

separates into a product of pairs:

CfreeTS (jn `mj) =
1

2

(
hcyn;"cm;"ihc

y
n+1;#cm+1;#i ` hc

y
n;"cm+1;"ihc

y
n+1;#cm;#i

`hcyn;#cm+1;#ihc
y
n+1;"cm;"i+ hc

y
n;#cm;#ihc

y
n+1;"cm+1;"i

)

” hqr;"ihqr;#i `
1

2

(
hqr+1;"ihqr`1;#i+ hqr+1;#ihqr`1;"i

)

” hqr i2 ` hqr+1ihqr`1i ; (B.5)
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where the vacuum expectation value hqr;ffi = hcyn;ffcm;ffi denotes a propagator
with distance r ” jn `mj and spin ff.
The singlet-pair, on-site singlet-pair, density-density and spin-spin correlations can

be obtained in a similar way:

CfreeES (r) ” hqr i2 + hqr+1ihqr`1i ; (B.6)

CfreeOS (r) = 2C
free
SDW(r) ” `hqr i2 ; (B.7)

CfreeCDW(r) ” n2 ` 2hqr i2 : (B.8)

The propagator hqr i can be calculated in the following way [142]: Let j‘i be a
state at site ‘. Then the corresponding orthonormal momentum states read

jkmi =
√

2

L+ 1

L+1∑

‘=1

sin(km ‘)j‘i ; (B.9)

where the discret momenta take the values km = ım=(L+1) withm = 1; : : : ; Nff=L.

The propagator is then given by

hkmjqr jk 0mi =
2

L+ 1
sin(km i) sin(k

0
m j) (B.10)

In the following ˛gures we diplay various correlation functions of the free fermion

model (B.1) and compare the exact results with the DMRG results. Note that

already 400 states lead to a good agreement with the exact results.
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Figure B.2.: The momentum distribution for free fermions on a chain with 120

sites. The left ˛gure compares exact data with DMRG computa-

tions by showing the absolute error keeping m = 400 states (see

inset). In the right ˛gure the momentum distribution calculated

with the DMRG routine is plotted in the momentum space.
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Figure B.3.: The triplet (left ˛gure) and singlet (right ˛gure) correlation func-

tion for free fermions on a chain with 160 sites calculated by

DMRG with m = 400 states retained. The inset shows the rel-

ative error of the DMRG results.
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English Abstract

In the present work the numerical density matrix renormalization group (DMRG)

algorithm is used to analyze the ground state properties of the Hubbard model

with transverse spin-exchange.

The DMRG algorithm, which was developed by White in 1992, is based on the

following simple but e¸ective concept: the ground-state wavefunction as well as

the low energy excitations of a large interacting chain are obtained by increasing

the lattice size iteratively, starting with a small one that can be diagonalized

exactly. The exponentially growing Hilbert space is controlled by a renormalization

procedure in which ’less important’ degrees of freedom are integrated out.

Motivated by recent experimental ˛ndings showing evidence for the competition

or even coexistence of triplet superconductivity and ferromagnetism we focused

our investigations on a rather simple extension of the Hubbard model including

transverse spin exchange between electrons on nearest-neighbour sites.

In the half-˛lled case, we showed that the phase diagram obtained in the weak-

coupling limit has to be modi˛ed. A new phase, described by spin and charge

excitation gap, shows long-range order in the longitudinal spin correlation, whereas

superconducting correlations are surpressed and decay exponentially as expected

for the case of a ˛nite charge gap.

In general, the presence of a repulsive on-site Coulomb interaction U leads to an

enlargement of the sectors with nonvanishing charge gap at the expense of the

sectors with spin gap.

We extend our analysis to the case of a quarter-˛lled band. Depending on the

value J?=t the model belongs either to a gapless excitation phase or to a spin
gapped phase with gapless charge degrees of freedom.





Deutsche Kurzzusammenfassung

In der vorliegenden Arbeit verwendeten wir den Algorithmus der Dichte-Matrix-

Renormierungsgruppe (DMRG), um Grundzustandseigenschaften des Hubbard-

Models mit transversalem Spin-Austausch zu analysieren.

Dem DMRG-Algorithmus, der 1992 von White entwickelt wurde, liegt ein einfa-

ches, aber sehr e¸ektives Konzept zugrunde: die Grundzustands-Wellenfunktion

sowie die tie‚iegenden Anregungen einer groen, wechselwirkenden Kette erh­alt

man durch sukzessiver Verl­angerung einer kurzen, exakt diagonalisierbaren Kette.

Der hierbei exponentiell anwachsende Hilbertraum wird mit Hilfe einer Renormie-

rungsprozedur, die ’weniger wichtige’ Freiheitsgrade ausintegriert, kontrolliert.

Neue, experimentell gewonnene Daten weisen auf eine Konkurrenz oder sogar eine

Koexistenz von Triplet-Supraleitung und Ferromagnetismus hin. Geleitet von die-

sen Ergebnissen konzentrierten wir unsere Untersuchungen auf eine elementare,

generische Art des Hubbard-Models mit transversalem Spin-Austausch zwischen

Elektronen benachbarter Gitterpl­atze, das ein reichhaltiges Phasendiagramm auf-

weist.

F­ur das halbge‚lte Band konnten wir zeigen, dass das Phasendiagram, berechnet

im Limes schwacher Kopplung, modi˛ziert werden muss. Eine neue Phase charak-

terisiert durch Spin- und Ladungs-L­ucke weist langreichweitige Anregungen in der

longitudinalen Spin-Korrelationsfunktion, wohingegen supraleitende Korrelationen

exponentiell abfallen.

Im Allgemeinen f­uhrt die Pr­asenz einer repulsiven ’on-site’ Coulomb-Wechselwirkung

zur Ausdehnung der Sektoren mit nicht-verschwindender Ladungsl­ucke auf Kosten

von Sektoren mit einer Spinanregungsl­ucke.

Wir erweiterten unsere Untersuchung f­ur den Fall des viertelgef­ullten Bandes.

Abh­angig von J?=t wird das Modell entweder durch eine Phase mit l­uckenloser
Energieanregung beschrieben oder es geh­ort einer Phase an, die durch eine Spin-

anregungsl­ucke charakterisiert ist.
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