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Tag der mündlichen Prüfung: 13.02.2004



Zusammenfassung

Die Changepoint–Analyse befasst sich mit dem Aufdecken von Strukturbrüchen stocha-

stischer Prozesse auf der Basis einer (längeren) Serie von Beobachtungen. In dieser Dis-

sertation werden (nichtparametrische) sequentielle Testprozeduren hergeleitet, die neue

Anregungen aus der Wirtschaftsstatistik aufgreifen. Das wesentliche Beweismittel bilden

Invarianzprinzipien, die es erlauben, die statistische Analyse auf das Untersuchen von

Eigenschaften des Grenzprozesses zu reduzieren. Basierend auf bestehenden Resultaten

für lineare Modelle wird ein Lokationsmodell eingeführt, um auf einen möglichen Wech-

sel im Erwartungswert von zu Grunde liegenden Zufallsvariablen zu testen. Dabei wird

das asymptotische Verhalten der Teststatistik untersucht und die Grenzverteilung der

zugehörigen Stoppzeit bestimmt. In einem zweiten Teil werden sogenannte RCA(1) Zeit-

reihen betrachtet. Es zeigt sich, dass diese Prozesse ein starkes Invarianzprinzip mit einer

gewissen Rate erfüllen und deshalb die vorangehenden Ergebnisse weiterhin Gültigkeit

besitzen. Zudem werden a–posteriori Tests konzipiert, um die Stabilität eines Modellpa-

rameters zu untersuchen. Abschließend wird das Verhalten von Suprema stochastischer

Prozesse mit linearem Drift diskutiert. Die erzielten Resultate können dazu verwendet

werden, sequentielle Tests in mehrdimensionalen Modellen zu konstruieren.

Abstract

Change–point analysis is concerned with detecting structural breaks of stochastic pro-

cesses based on a (longer) series of observations. In this dissertation, we derive (nonpara-

metric) sequential test procedures that take into account new motivation coming from

econometrics. The main basis for the proofs are invariance principles which allow to re-

duce the statistical analysis to investigating the properties of the limit process. Taking

into account results for linear models, a location model is introduced to test for possible

changes in the mean of underlying random variables. Therein, we examine the asymptotic

behaviour of the test procedure under both hypotheses and obtain the limit distribution

of the corresponding stopping time. In a second part, so–called RCA(1) time series are

studied. It turns out that these processes satisfy a strong invariance principle with a cer-

tain rate. This allows for retaining the previous results. Moreover, a–posteriori tests are

provided to examine the stability of a model parameter. Finally, we discuss the behaviour

of suprema of stochastic processes with linear drift. The results obtained can be utilized

to construct sequential tests in multivariate settings.
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Preface

This dissertation is concerned with weak and strong invariance principles and their appli-

cations to the asymptotic theory (in probability and) in statistics, and therein especially

to questions arising in the context of change–point analysis. The models of interest were

introduced in the area of quality control to study the behaviour of (outputs of) certain

production lines, but have been extended to numerous other fields since then. Thus,

several time series models are now included in our approach such as (1) (G)ARCH pro-

cesses, which have attracted a lot of attention recently because Robert Engle won the

Nobel Prize in Economic Sciences in 2003, and (2) RCA time series, which have been

successfully applied to investigate random perturbations of dynamical systems.

The main topic addressed here is the sequential testing of changes in the mean of

underlying random variables (for example the time series of the previous paragraph).

Sequential tests were introduced by Abraham Wald in the 1940s in order to construct

more efficient inspection procedures. Motivated by developments in econometrics some

modifications have been proposed and studied lately. Throughout the present work, the

statistical analysis will be carried out via invariance principles, i.e., we are solely inter-

ested in asymptotic results.

The dissertation is organized as follows.

In Chapter 1, we shall introduce the notions of strong and weak invariance principles and

briefly review the seminal results. Invariance proves useful for an elegant derivation of

precise asymptotics in the following chapters.

In Chapter 2, a sequential test procedure is studied which detects possible changes

in the mean of observations satisfying a weak invariance principle. Two introductory

sections deal with the basic definitions and properties of change–point analysis and se-

quential statistics. In Section 2.3 and Section 2.4, we present a location model and

examples covered by the given framework, while we continue with thoroughly examining

the asymptotic properties of the test procedure in the following. Thus, we analyze the

limiting behaviour under both hypotheses in Section 2.5. The main part of the chapter,

Section 2.6, is devoted to deriving the limit distribution of the corresponding stopping

rule. Provided the change is relatively small, it turns out, that this limit distribution is

normal under a suitable standardization.

In Chapter 3, the results of the second chapter shall be extended to a certain non–

linear time series arising from the well–known autoregressive time series by allowing for
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randomly disturbed coefficients. An important tool herein will be a strong invariance

principle formulated for the partial sums of random variables whose dependence structure

is described in terms of their conditional expectation. By recursive techniques, we shall

retain the results of Chapter 2 for so–called random coefficient autoregressive time series

of order one as well. In addition, an a–posteriori setting for a change in the mean and a

testing procedure for a change in the deterministic part of the coefficients is provided in

Section 3.4.

The final chapter will be concerned with the suprema (obtained in Euclidean norm)

of vector–valued stochastic processes with drift defined on a certain closed (time) interval

on the real line. It turns out that asymptotically these suprema are not far away from the

rightmost point. Unlike in the univariate case, there are now two ways of defining a non–

zero drift: either all components have non–zero drift or at least one. The approximation

rate obtained is the same in both cases. However, different methods of proof are required.

Moreover, the law of the iterated logarithm and some weak convergence results shall be

discussed. In contrast to Chapters 2 and 3, which are based on certain concrete models,

the results presented in Chapter 4 are of rather theoretical use. Nevertheless, they can

be utilized to construct suitable (multivariate) test statistics for sequential procedures.
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Chapter 1

Invariance Principles

1.1 Introduction

There are numerous applications of partial sums of random variables in probability and

statistics. Suppose, we have a sequence of independent, identically distributed, real–

valued random variables {Xn}n∈N on some probability space (Ω,A, P ). Define

S0 = 0, Sn = X1 + . . . + Xn (n ∈ N).

Then, Xn can for instance be seen as gain or loss of a gambler at time n. Obviously, Sn

describes the overall gain or loss. Intuitively, we would call the game fair if the expectation

of the Xn exists and is zero. Else, there would be a preference for either the gambler or

his counterpart. More detailed considerations lead to the theory of martingales.

Another interpretation comes from Physics. Let the distribution of Xn for all n ∈ N
be given by P (Xn = ±1) = 1

2
. Then, Xn steers the movement of a particle which at time

n chooses between the possibilities of going one step to the right or one step to the left

with the same probability. Sn can therefore be regarded as the position of the particle at

time n which by assumption S0 = 0 starts in the origin. This situation corresponds to

the so–called symmetric simple random walk on the integers Z and its generalizations are

of major interest in the theory of discrete Markov chains.

A third example describes a familiar statistical problem. Suppose for the moment that

X1, . . . , Xn have finite expectation and unit variance. On account of several observations

a statistician becomes suspicious and conjectures a violation of the iid assumption, for

instance a break in the mean of the random variables at a (fixed and known) time–point

1 < k∗ < n which is usually called a change–point. A suitable test statistic can be given
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in terms of the partial sums Sn by the difference

Tn = 1√
n

(
Sk∗ − k∗

n
Sn

)
.

Great values of Tn would indicate a change in the expectation at k∗. The given situation

will be discussed in more generality in the second chapter below.

All three classical examples – and there are many more – show that it is natural

to consider the behaviour of the sequence of partial sums {Sn}n∈N0 in the long run. If

E|X1| <∞, then the weak, respectively, strong law of large numbers tell us that

1
n
Sn −→ EX1 (n→∞)

in probability, respectively, almost surely. If we normalize the partial sums Sn by 1
n
, the

limit random variable is deterministic. Moreover, the partial sums Sn will on average take

on values of order nEX1. On the other hand, if in addition 0 < VarX1 = σ2 < ∞, the

central limit theorem gives

lim
n→∞

P
(
Sn − nEX1 ≤

√
nσx

)
= Φ(x) (x ∈ R),

where Φ denotes the distribution function of a standard normal random variable. Roughly

speaking, the sum of many independent random variables will be approximately normally

distributed if it is suitably normalized and the typical deviation from the average value

nEX1 is of order
√

n.

These limit theorems – completed by the law of the iterated logarithm which a.s. indi-

cates the maximum order of the fluctuation of partial sums – have played a fundamental

role in the development of probability and statistics as well in theory as in applications.

A further instrument to examine the asymptotic behaviour of random variables was in-

troduced by the notion of (weak) invariance in the papers of Erdős and Kac (1946), and

Doob (1949). Starting with a theorem of Strassen (1964) we will shortly describe the

development of the theory of strong invariance principles in the next section. One main

advantage of the latter is the additional information on the rate of convergence provided

in the theorems.

1.2 Strong approximations

The term strong invariance principle was first used by Strassen (1964) who used a tech-

nique due to Skorohod (the so–called Skorohod embedding scheme) to prove a functional
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law of the iterated logarithm. His results were strengthened by the work of the Hungarian

construction school grouped around Csörgő and Révész or Komlós, Major and Tusnády.

We are going to sketch their results now.

The one–dimensional case. Let again {Xn}n∈N be a sequence of independent, iden-

tically distributed random variables on a probability space (Ω,A, P ) and assign to it

the sequence {Sn}n∈N0 of their partial sums as in the previous section. Moreover, let

{Yn}n∈N be a sequence of independent standard normal random variables on a suitable

(but possibly different) probability space (Ω0,A0, P0) and let

T0 = 0, Tn = Y1 + . . . + Yn (n ∈ N)

denote the corresponding partial sums. In the current section, we shall present best

approximations of the partial sums of Xn (redefined and normalized on the probability

space (Ω0,A0, P0)) by those of Yn in an a.s. sense. These are called strong approximations

or strong invariance principles.

It is possible to consider a rich enough probability space on which both {Xn}n∈N and

{Yn}n∈N are defined. For the sake of convenience and without losing accuracy we hence

set (Ω,A, P ) = (Ω0,A0, P0) for the whole sequel.

If X1 is standardized, Strassen could prove the following strong invariance.

Theorem 1.2.1 (Strassen)

Let {Xn}n∈N be a sequence of independent, identically distributed random variables on

(Ω,A, P ) with EX1 = 0 and VarX1 = 1. Then, there exists a sequence of independent

standard normal random variables {Yn}n∈N such that

Sn − Tn = o
(√

n log log n
)

a.s.

as n→∞.

Proof: See Strassen (1964). �

Strassen’s result led to the (optimal) extensions of the Hungarian construction. Their

quantile technique was first applied by Csörgő and Révész (1975a,1975b). A substantial

refinement of these results was given by Komlós, Major and Tusnády (1975,1976), and

Major (1976a,1976b) in a series of now famous articles.

At first, we consider the case of existing moments of order greater than 2.
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Theorem 1.2.2 (Komlós, Major and Tusnády)

Let {Xn}n∈N be a sequence of independent, identically distributed random variables on

(Ω,A, P ) with EX1 = 0 and VarX1 = 1. If

E|X1|ν <∞

for some ν > 2, there exists a sequence of independent standard normal random variables

{Yn}n∈N such that

Sn − Tn = o
(
n

1
ν

)
a.s.

as n→∞.

Proof: See Komlós, Major and Tusnády (1975,1976), and Major (1976a). �

The result of Theorem 1.2.2 proved to be best possible in the following sense: if there are

independent, identically distributed random variables {Xn}n∈N satisfying Sn−Tn = o(n
1
ν )

a.s. as n→∞, then necessarily E|X1|ν <∞.

If we assume instead of a certain moment of order ν > 2 the existence of the moment

generating function of X1 in a neighborhood of zero, the following theorem holds true. It

is obtained from an exact probability inequality by an application of the Borel–Cantelli

lemma.

Theorem 1.2.3 (Komlós, Major, Tusnády)

Let {Xn}n∈N be a sequence of independent, identically distributed random variables on

(Ω,A, P ) with EX1 = 0 and VarX1 = 1. If

E exp(tX1) <∞

for |t| ≤ t0, t0 > 0, there exists a sequence of independent standard normal random

variables {Yn}n∈N such that

Sn − Tn = O (log n) a.s.

as n→∞.

Proof: See Komlós, Major and Tusnády (1975,1976). �

The result of Theorem 1.2.3 is optimal under the given assumptions. Unless the Xn

(n ∈ N) are not themselves standard normally distributed it is impossible to obtain a

construction of {Tn}n∈N0 such that the rate could be improved to o(log n) a.s. as n→∞.

Moreover, if the statement of Theorem 1.2.3 is fulfilled for a sequence {Xn}n∈N, then X1

necessarily has an existing moment generating function in a neighborhood of zero.
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Along the lines of Csörgő and Horváth (1993), in most applications it is more con-

venient to approximate {Sn}n∈N0 by a standard Wiener process {W (t) : t ≥ 0}. Define

therefore the partial sum process (in continuous time) {S(t) : t ≥ 0} by

S(0) = 0, S(t) = S[t] (t ∈ R+),

where [·] denotes the integer part. Under the given generalizations we can reformulate

Theorems 1.2.2 – 1.2.3 as follows, since the increments supk≤t≤k+1 |W (t)−W (k)| can be

estimated appropriately (cf. for instance Csörgő and Réveśz (1981), Theorem 1.2.1 and

Lemma 1.2.1).

Theorem 1.2.4

Let {Xn}n∈N be a sequence of independent, identically distributed random variables on

(Ω,A, P ) with EX1 = 0 and VarX1 = 1. If

E|X1|ν <∞

for some ν > 2, there exists a standard Wiener process {W (t) : t ≥ 0} such that

S(T )−W (T ) = o
(
T

1
ν

)
a.s.

as T →∞.

Proof: See Komlós, Major and Tusnády (1975,1976), and Major (1976a). �

Theorem 1.2.5

Let {Xn}n∈N be a sequence of independent, identically distributed random variables on

(Ω,A, P ) with EX1 = 0 and VarX1 = 1 for all n ∈ N. If

E exp(tX1) <∞

for |t| ≤ t0, t0 > 0, there exists a standard Wiener process {W (t) : t ≥ 0} such that

S(T )−W (T ) = O(log T ) a.s.

as T →∞.

Proof: See Komlós, Major and Tusnády (1975,1976). �

As before, Theorems 1.2.4 and 1.2.5 provide the best possible rates under the given

assumptions.

The multi–dimensional case. Soon after these seminal results were proved, first steps

were taken to generalize them to a multivariate setting. To obtain similar statements for
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higher dimensions was not only forced by theoretical considerations, but also by a number

of applications. First extensions of the Komlós, Major and Tusnády theorems are due

to Berkes and Philipp (1979), Philipp (1979) or Berger (1982). While their results were

essentially weaker, major progress goes back to Einmahl (1987,1989). His results will be

cited now.

Let {Xn}n∈N be a sequence of independent, identically distributed p–dimensional,

real–valued random vectors such that

EX1 = 0, CovX1 = Σ,

where Σ is a positive definite p× p matrix. Let the sequence of partial sums {Sn}n∈N0 be

defined by

S0 = 0, Sn = X1 + . . . + Xn (n ∈ N).

We are interested in strong approximations of {Sn}n∈N0 by the partial sums of a sequence

{Y n}n∈N of independent, identically normally distributed random vectors having the same

covariance structure Σ as the original sequence. So, let similarly {T n}n∈N0 be defined by

T 0 = 0, T n = Y 1 + . . . + Y n (n ∈ N).

Finally, let ‖ · ‖ denote the Euclidean norm in Rp.

Theorem 1.2.6 (Einmahl)

Let {Xn}n∈N be a sequence of independent, identically distributed p–dimensional random

vectors on (Ω,A, P ) with EX1 = 0 and CovX1 = Σ. If

E ‖X1 ‖ν<∞

for some ν > 2, there exists a sequence of independent, identically normal random vectors

with Cov Y 1 = Σ such that

‖Sn − T n ‖= o
(
n

1
ν

)
a.s.

as n→∞.

Proof: See Einmahl (1987) if 2 < ν < 4 and Einmahl (1989) if ν > 3. �

To establish the counterpart of Theorem 1.2.3 in the multivariate setting by an adap-

tation of the quantile transformation a further assumption is necessary. Let

M(t) = E exp(〈t, X1〉) (t ∈ Rp)

denote the moment generating function of X1, where 〈·, ·〉 is the scalar product induced

by the Euclidean norm.
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Theorem 1.2.7 (Einmahl)

Let {Xn}n∈N be a sequence of independent, identically distributed p–dimensional random

vectors on (Ω,A, P ) with EX1 = 0 and CovX1 = Σ. If

a) M(t) <∞ for ‖t‖≤ t0, t0 > 0 and

b) sup
‖t‖≤t0

sup
‖s‖≤δ

|M(t + is)|
M(t)

< 1 for all δ > 0,

there exists a sequence of independent, identically normal random vectors with Cov Y 1 =

Σ such that

‖Sn − T n ‖= O(log n) a.s.

as n→∞.

Proof: See Einmahl (1989). �

Without assumption b) the best available a.s. approximation rate would be of order

O(log n)2 only.

By the arguments already mentioned above, Theorems 1.2.6 and 1.2.7 can be refor-

mulated in terms of a p–dimensional Wiener process, too. We say that {W (t) : t ≥ 0} is

a Wiener process in Rp with covariance matrix Σ if

a) EW (t) = 0 for all t ≥ 0,

b) the finite dimensional distributions of {W (t) : t ≥ 0} are Gaussian and

c) EWi(s)Wj(t) = σij min{s, t} for all s, t ≥ 0,

where Wi(t) denotes the i–th component of W (t) and σij the (i, j)–th entry of Σ. Let

the p–dimensional partial sum process {S(t) : t ≥ 0} be defined by

S(0) = 0, S(t) = S[t] (t ∈ R+).

Then, we retain the previous theorems as the following strong approximations.

Theorem 1.2.8

Let {Xn}n∈N be a sequence of independent, identically distributed p–dimensional random

vectors on (Ω,A, P ) with EX1 = 0 and CovX1 = Σ. If

E ‖X1 ‖ν<∞

for some ν > 2, there exists a p–dimensional Wiener process {W (t) : t ≥ 0} with

covariance matrix Σ such that

‖S(T )−W (T )‖= o
(
T

1
ν

)
a.s.

as T →∞.
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Proof: See Einmahl (1987,1989). �

Theorem 1.2.9

Let {Xn}n∈N be a sequence of independent, identically distributed p–dimensional random

vectors on (Ω,A, P ) with EX1 = 0 and CovX1 = Σ. If

a) M(t) <∞ for ‖t‖≤ t0, t0 > 0 and

b) sup
‖t‖≤t0

sup
‖s‖≤δ

|M(t + is)|
M(t)

< 1 for all δ > 0,

there exists a p–dimensional Wiener process {W (t) : t ≥ 0} with covariance matrix Σ

such that

‖S(T )−W (T )‖= O(log T ) a.s.

as T →∞.

Proof: See Einmahl (1989). �

Closing remarks. Strassen’s result (cf. Theorem 1.2.1) gives the optimal rate for just

two existing moments. In case of existing higher moments, Theorems 1.2.2 and 1.2.4

(or their counterparts 1.2.6 and 1.2.8) have not been established under the most general

point of view, since the given presentation suffices for our purposes. But Csörgő and

Horváth (1993) point out, that it is possible to replace the condition E|X1|ν <∞ (ν > 2)

by the general moment condition EH(|X1|) <∞, where H is a strictly positive mapping

on {x ≥ 0} satisfying

a)
H(x)

x2+η
is increasing for some η > 0 and

b)
log H(x)

x
=

log K(x)

x
(1 + o(1))

with a strictly positive mapping K on {x ≥ 0} such that x−1 log K(x) is decreasing. The

resulting a.s. rate changes from o(n
1
ν ) to o(H−1(n)). There is also an analogue for random

vectors.

Strong invariance principles are available not only for independent, identically dis-

tributed random variables and vectors, but also under a variety of dependence concepts.

For a detailed discussion of specific examples we refer to Sections 2.4 or 4.3. Moreover,

we shall derive a strong invariance principle for RCA (random coefficient autoregressive)

time series in Chapter 3.
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In Chapter 4 we shall discuss the behaviour of stochastic processes with drift and values

in Rp which satisfy a strong invariance principle. It turns out that their suprema can

be described appropriately by the suprema of the approximating p–dimensional Wiener

process (with drift).

1.3 Weak approximations

Beside strong invariance principles also weak ones play an important role in the asymptotic

theory. Weak approximations assure the convergence in distribution of certain functionals

of partial sums. We will present a theorem due to Donsker (1951) and a stronger version

traced back to Breiman (1968) which in turn implies Donsker’s result.

Donsker’s theorem and an extension. Construct from the partial sums of a se-

quence of independent, identically distributed random variables {Xn}n∈N the sequence of

stochastic processes {Sn(t) : 0 ≤ t ≤ 1}n∈N on C[0, 1] = {f : [0, 1]→ R : f continuous} by

Sn(t) = 1√
n

(
S[nt] + (nt− [nt])X[nt]+1

)
(t ∈ [0, 1], n ∈ N). (1.1)

Then, for n ∈ N obviously

Sn

(
k
n

)
= 1√

n
Sk (k = 0, 1, . . . , n)

and Sn(t) is for k
n

< t < k+1
n

obtained by linear interpolation. Donsker could prove the

following convergence in distribution result for continuous functionals h : C[0, 1] → R,

where continuity is regarded with respect to the supremum–norm.

Theorem 1.3.1 (Donsker)

Let {Xn}n∈N be a sequence of independent, identically distributed random variables on

(Ω,A, P ) with EX1 = 0 and VarX1 = 1. For n ∈ N let the process {Sn(t) : 0 ≤ t ≤ 1} be

defined by (1.1). Then, there exists a standard Wiener process {W (t) : 0 ≤ t ≤ 1} such

that

h(Sn(t))
D−→ h(W (t))

as n→∞ for every continuous functional h : C[0, 1]→ R.

Proof: See Donsker (1951). �

On choosing h(f) = sup0≤t≤1 f(t), respectively, h(f) = sup0≤t≤1 |f(t)|, Theorem 1.3.1

implies immediately

sup
0≤t≤1

Sn(t)
D−→ sup

0≤t≤1
W (t) (n→∞),
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respectively,

sup
0≤t≤1

|Sn(t)| D−→ sup
0≤t≤1

|W (t)| (n→∞)

by recognizing that both mappings are continuous with respect to the supremum–norm.

Although both proofs make use of the Skorohod embedding, the weak convergence

result of Theorem 1.3.1 cannot be derived from Theorem 1.2.1. To obtain Donsker’s

theorem via Strassen’s strong invariance an a.s. approximation rate of order o(
√

n) would

be necessary. But Breiman (1967) as well as Major (1976b) could show that such a rate

is impossible under the assumption of just two existing moments.

A different weak invariance principle is provided in the following theorem which con-

versely implies Donsker’s theorem and which is due to Breiman (1968).

Theorem 1.3.2

Let {Xn}n∈N be a sequence of independent, identically distributed random variables on

(Ω,A, P ) with EX1 = 0 and VarX1 = 1. For n ∈ N let the process {Sn(t) : 0 ≤ t ≤ 1} be

defined by (1.1). Then, there exists a probability space with a sequence of standard Wiener

processes {Wn(t) : 0 ≤ t ≤ 1} and a sequence of stochastic processes {S̃n(t) : 0 ≤ t ≤ 1}
defined on it such that

a) {S̃n(t) : 0 ≤ t ≤ 1} D
= {Sn(t) : 0 ≤ t ≤ 1} (n ∈ N),

b) sup
0≤t≤1

|S̃n(t)−Wn(t)| P−→ 0 (n→∞).

Proof: See for example Theorem 2.1.2 in Csörgő and Révész (1981). �

Closing remarks. In fact, there is a kind of equivalence between the two concepts of

strong and weak approximations which can be expressed via the Prohorov distance of

probability measures. The precise connection can be found in Strassen (1965). For a

detailed survey confer also Csörgő and Horváth (1993).

In Chapter 2, we shall use a weak invariance principle to determine the asymptotic

behaviour of a delay time occurring in a sequential test procedure. Since we are only

interested in the limit distribution, but not in a.s. results, we abstain from employing a

strong approximation there.



Chapter 2

Delay Time in Sequential Detection

of Change

The current chapter brings together the concepts of change–point analysis, sequential

statistics and invariance principles. The sections are organized as follows.

Sections 2.1 and 2.2 provide preliminaries, the first one laying the foundations of

change–point analysis in an a–posteriori setting. The second section describes the basics

of sequential testing as far as necessary for our purposes.

In Section 2.3, we define a location model to test for a possible change in the mean

of underlying random variables with a sequential procedure. We are interested in the

asymptotic behaviour and hence introduce a weak invariance principle satisfying a certain

approximation rate.

The following section is devoted to possible applications of the location model in

concrete situations. We consider the case of independent, identically distributed random

variables and linear processes. Furthermore, we shall discuss GARCH processes, which

are successfully used to model the volatility of financial markets, and random variables

fulfilling even more general dependence conditions (see Section 2.4).

In Section 2.5, the asymptotic behaviour of the test statistic under both the null

hypothesis and the alternative shall be given.

The main section of this chapter contains the investigation of the stopping rule. It

turns out that under some additional but not too restrictive assumptions, a limiting

distribution can be given which only depends on mean and variance of the underlying

sequence but not on its specific distribution. The problems of Section 2.6 have been

proposed by Lajos Horváth from the University of Utah and have been submitted to the

Statistics and Probability Letters as a joint paper (see Aue and Horváth (2003a)).
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2.1 Change–point analysis

Change–point analysis provides tools to investigate whether a chronologically ordered set

of observations remains stable over time (is ”in order”) or if the observations follow one

pattern up to an unknown time–point and a different pattern afterwards (up to – maybe –

another unknown time–point, and so on). This very general description can be specialized

to numerous submodels. Some of them shall be discussed in this section. Firstly, we start

with a summary of the historical developments. Then we move on to a statistical for-

mulation of change–point problems and put special emphasis on the change in the mean

scenario for abrupt and gradual changes.

Overview. Some of the first change–point problems were considered by Page (1954,

1955). He was interested in economic questions arising in quality control. Therein, the

immediate detection of deviations from an acceptable level is of great importance for com-

panies to minimize their expenses. To this matter, Page (1954) suggested an inspection

scheme (suitably formalizing the heuristics from above) and also a test for a parameter

change at an unknown time–point (1955).

More insight was gained some years later, when the results of the Hungarian construc-

tion school were applied to change–point analysis (cf. Chapter 1). Details on this topic

and on many more may be found in Csörgő and Horváth (1997). A lot of important

limit theorems were obtained which themselves led to asymptotic tests and to asymptotic

estimators of the unknown parameters.

Today, change–point analysis plays a key role in a number of fields as for example in

physics, medicine, biology or meteorology, and is applied even in areas as ethnology and

archaeology. Classical sets of observations are for instance the Nile data giving the average

annual water level of the Nile river in Aswan between 1871 and 1970, or the Clementinum

data collecting the average temperatures in Prague from 1775–1989. Statistical investiga-

tions were carried out by Cobb (1978) in case of the Nile data, the Clementinum data was

for example examined by Horváth, Kokoszka and Steinebach (1999) or Horváth, Hušková,

Kokoszka and Steinebach (2003). One of the most remarkable examples is the so–called

”Land’s End data set” of 52 stone configurations in Cornwall (England). Kendall and

Kendall (1980) employed a Poisson model to answer the question if there are too many

straight line configurations.

All these applications can be distinguished by the different kind of data acquisition.

If all observations are available at the beginning of the test procedure, we speak of a–

posteriori change–point problems. If instead, a new test is applied after each arriving
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observation, we are in the area of sequential change–point analysis. While most of the

papers of the past were devoted to a–posteriori problems, there have recently been some

results for sequential procedures, too. Their description is postponed to the next section,

while we will now state a–posteriori approaches only. Moreover, we focus on the discussion

of nonparametric models. For various parametric settings confer for example Chen and

Gupta (2000). Some of their asymptotic arguments however should only be used with

great care.

A–posteriori change–point analysis. A typical formulation of the test problem can

be given as follows. Let X1, . . . , Xn be independent, real–valued random variables on a

probability space (Ω,A, P ). Based on a given (historical) set of observations we wish to

decide between the hypotheses

H0 : X1
D
= . . .

D
= Xn,

HA : not H0.

The null hypothesisH0 describes the fact that all observations follow the same probability

law, while the alternative HA just states that this is not the case. To apply reasonable

test statistics a more concrete alternative is desirable. Here, we will put our emphasis on

the most common submodel, the so–called AMOC (”at most one change–point”) model

for a change in the expectation of the underlying random variables. In this case H0 and

HA can be restated as

H0 : EX1 = . . . = EXn,

HA : There exists a k∗ < n such that

EX1 = . . . = EXk∗ 6= EXk∗+1 = . . . = EXn,

where k∗ is unknown and X1, . . . , Xn are assumed to have finite expectation. To apply

(strong or weak) invariance principles and carry out the statistical analysis based on

asymptotic properties, it is more convenient to use the representation

Xj =

{
µ + εj : 1 ≤ j ≤ k∗,

µ + ∆ + εj : k∗ < j ≤ n,
(2.1)

where µ and ∆ = ∆n are unknown real parameters, the latter possibly depending on n.

Moreover, ε1, . . . εn are independent, identically distributed random variables satisfying

Eε1 = 0, 0 < σ2 = Var ε1 <∞, E|ε1|ν <∞
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for some ν > 2. The third condition puts us in a position to apply the Komlós, Major

and Tusnády theorems of Chapter 1, since enough moments are assured to construct an

approximating Wiener process with an appropriate rate. As a consequence, the hypotheses

simplify once more to

H0 : k∗ = n,

HA : k∗ < n, ∆ = ∆n 6= 0.

As already mentioned in Section 1.1, a test statistic can be given in terms of the partial

sums of X1, . . . , Xn by

Tn,1 =
1√
nσ

max
k=1,...,n

∣∣Sk − k
n
Sn

∣∣ , (2.2)

where Sk = X1 + . . .+Xk for k = 1, . . . , n. Therein, taking the maximum reflects the fact

that k∗ is unknown in contrast to the example of Section 1.1 (confer also Example 2.2.1

in Section 2.2). Under H0,

E
(
Sk − k

n
Sn

)
= 0 (k = 1, . . . , n),

since the deterministic parts of the difference cancel out and the remaining random parts

have expectation zero by assumption on ε1, . . . , εn. Under HA however, the expectation

is non–zero. So, heuristically we expect small values of Tn,1 under the null hypothesis,

but on the other hand great absolute values under the alternative.

The finite sample performance of Tn,1 is illustrated by the following example, where we

assume a specific distribution for X1, . . . , Xn.

Example 2.1.1 (Finite samples)

Let n = 100, µ = 0, ∆ = 1, k∗ = 50 and let ε1, . . . , εn be standard normal random

variables. Then, the first 50 observations follow the N (0, 1) law, while the final 50 are

N (1, 1) distributed. One realization of X1, . . . , X100 can be found in Figure 2.1. Then,

Figure 2.2 shows the behaviour of T100,1 applied to the data, or more exactly, the sample

path of k 7→ Sk − k
100

S100 based on the outcome. The critical value c = 1.358 has been

obtained to the prescribed level α = 0.05.

Example 2.1.1 and therein especially Figure 2.2 give us a good hint on how to define

an estimator for the change–point k∗. We set

k̂∗ = arg max
k=1,...,n

∣∣Sk − k
n
Sn

∣∣ . (2.3)

The asymptotic properties of the test statistic Tn,1 and the corresponding change–point

estimator k̂∗ are given in the following theorems.
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Figure 2.1: A realization of X1, . . . , X100
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Figure 2.2: Behaviour of Sk − k
n
Sn

Theorem 2.1.1

Let the random variables X1, . . . , Xn follow the model in (2.1) and let Tn,1 be defined as

in (2.2). If Eε2
1 <∞, then, under H0,

Tn,1
D−→ sup

0≤t≤1
|B(t)|

as n→∞, where {B(t) : 0 ≤ t ≤ 1} denotes a standard Brownian bridge.

Proof: It follows from Theorem 1.3.1. �

Theorem 2.1.2

Let the random variables X1, . . . , Xn follow the model in (2.1) and let k̂∗ be defined as in

(2.3). If

∆n → 0,

√
n|∆n|√

log log n
→∞

as n→∞, then, under HA,

∆2
n

σ2

(
k̂∗ − k∗

)
D−→ arg max

t∈R

{
W (t)− |t|

2

}
as n→∞, where {W (t) : t ∈ R} denotes the two–sided standard Wiener process.

Proof: See Csörgő and Horváth (1997), Theorem 2.8.2. �

More general stochastic processes covering the partial sum processes obtained from

the random variables in (2.1) have been studied by Horváth and Steinebach (2000), who

examined the testing procedure, and by Kühn and Steinebach (2002) in case of estimating

the change–point.
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Gradual changes. As mentioned in the overview, there is a great variety of further

(sub)models. While the mean change was an abrupt one during our motivating example,

jumping from µ to µ+∆ at k∗, also finer changes – called gradual – have been considered.

Hušková (1999), and Hušková and Steinebach (2000) (cf. also Hušková and Steinebach

(2002)) investigated the random variables

Yi = µ + ∆

(
i− k∗

n

)α

+

+ εi (i = 1, . . . , n), (2.4)

where µ, ∆ = ∆n and k∗ are unknown parameters, while α ∈ (0, 1] is supposed to be

known. The errors ε1, . . . , εn are assumed to satisfy the conditions from above. Moreover,

x+ = max{x, 0} for x ∈ R. Hušková and Steinebach (2000) studied the hypotheses

H0 : k∗ = n,

HA : k∗ < n, ∆ = ∆n 6= 0.

It turned out that the test statistic

Tn,2 =
1

σ
max

k=1,...,n−1

|
∑n

i=1(xik(α)− x̄k(α))Yi|
(
∑n

i=1(xik(α)− x̄k(α))2)
1
2

, (2.5)

based on the partial sums of weighted residuals satisfies an extreme value asymptotic

under H0. Here we have used the notation

xik(α) =

(
i− k

n

)α

, x̄k(α) =
1

n

n∑
j=1

xjk (i, k = 1, . . . , n).

Theorem 2.1.3 (Hušková and Steinebach)

Let the random variables Y1, . . . , Yn follow the model in (2.4) and let Tn,2 be defined as

in (2.5). Then, under H0,

lim
n→∞

P (anTn,2 ≤ x + bn(α)) = exp
(
−2e−x

)
for all x ∈ R, where

an =
√

2 log log n

and in case

α > 1
2

: bn(α) = 2 log log n + log

(
1

4π

√
2α + 1

2α− 1

)
,

α = 1
2

: bn(α) = 2 log log n + 1
2
log log log log n− log(4π),

0 < α < 1
2

: bn(α) = 2 log log n +
1− 2α

2(2α + 1)
log log log n + log

C
1

2α+1
α H2α+1
√

π2
2α

2α+1


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with

Cα = −(2α + 1)

∫ ∞

0

yα
(
(y + 1)α − yα − αyα−1

)
dy

and H2α+1 being defined in Remark 12.2.10 of Leadbetter, Lindgren and Rootzén (1983).

Proof: See Hušková and Steinebach (2000). �

It is worthwhile mentioning, that the results of Theorem 2.1.3 hold true also for α > 1.

Moreover, Hušková (1999) introduced the least squares type change–point estimator

k̂∗(α) = arg max
k=1,...,n−1

|
∑n

i=1(xik(α)− x̄k(α)Yi)|
(
∑n

i=1(xik(α)− x̄k(α))2)
1
2

(2.6)

whose limiting behaviour is given by the next theorem. Again, the cases 0 < α < 1
2
,

α = 1
2

and 1
2

< α ≤ 1 have to be considered separately.

Theorem 2.1.4 (Hušková)

Let the random variables Y1, . . . , Yn follow the model in (2.4) and let k̂∗(α) be defined as

in (2.6). If

∆n → 0,

√
n|∆n|√

log log n
→∞ (n→∞),

and k∗ = [θn] with some θ ∈ (0, 1), then under HA, the following statements hold true.

a) Let α ∈ (0, 1
2
). Then,(

∆2
n

n2α

) 1
2α+1 (

k̂∗(α)− k∗
)

D−→ σVα (n→∞),

as n→∞, where

Vα = arg max
t∈R

{
Wα(t)− 1

2

∫ ∞

−∞

(
(x + t)α

+ − xα
+

)2
dx

}
with a Gaussian process {Wα(t) : t ∈ R} having zero mean and covariance function

Cov (Wα(s), Wα(t)) =

∫ ∞

−∞

(
(x + s)α

+ − xα
+

) (
(x + t)α

+ − xα
+

)
dx (s, t ∈ R).

b) Let α = 1
2
. Then,

∆n

√
log(n− k∗)

2
√

n

(
k̂∗(1

2
)− k∗

)
D−→ σV 1

2

as n→∞, where V 1
2

is a standard normal random variable.
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c) Let 1
2

< α ≤ 1. Then,

∆n√
n

(
k̂∗(α)− k∗

)
D−→ σVα

as n→∞, where Vα is normally distributed with mean zero and variance

(1− θ)2α−1

(
2α + 1

4

(α− 1 + 2θ)2

α2 + θ(1 + 2α)
− (α− 1)2 + θ(2α− 1)

2α− 1

)
.

Proof: See Hušková (1999) if α ∈ (0, 1) and Hušková (1998) if α = 1. �

Alternative models assuming a stochastic process analogue of the random variables

from above are due to Steinebach (1999). The estimation procedure for gradual changes

was examined by Aue and Steinebach (2002), confer also Aue (2000) for details.

Closing remarks. Throughout the discussion of test statistics and change–point estima-

tors the variance parameter σ2 of the error variables ε1, . . . , εn was assumed to be known.

But the results of Theorems 2.1.2 – 2.1.4 hold true even if σ2 is for instance replaced

by consistent estimators σ̂2
n. (See the corresponding articles of Horváth and Steinebach

(2000), Hušková (1999), and Hušková and Steinebach (2000).) Moreover, we have re-

stricted the presentation to two–sided tests. One–sided alternatives can be introduced in

a similar way.

Of course there are many more testing and estimation procedures for other parameters

than the expectation. We skip the discussion of changes in the variance, covariance, etc.

and refer to Chen and Gupta (2000) or to Csörgő and Horváth (1997). The results in

one dimension have been transferred to multivariate settings, too. Moreover, there are

approaches to investigate multiple change–point problems (for example epidemic alterna-

tives, where the parameter in question changes after a first time–point and returns to its

original value after a second time–point). Once again, detailed surveys may be found in

Csörgő and Horváth (1997).

2.2 Sequential statistics

Aim of this section is the formulation of sequential tests and their distinction from the

tests of the previous section. Moreover, we will discuss two extensions to linear models of

Wald’s (1947) testing approach by Chu, Stinchcombe and White (1996), and by Horváth,

Hušková, Kokoszka and Steinebach (2003). Therein, we shall give another example re-

vealing the connection between (log)likelihood ratios and the CUSUM test procedures
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introduced in the previous section. Finally, we close the section with some remarks on a

different sequential approach carried out by Gut and Steinebach (2002,2003) for renewal

processes.

Sequential tests. In Section 2.1, we have always considered a historical data set of given

size. The typical approach was to carry out the statistical investigation via invariance

principles, i.e., by an embedding into a Gaussian framework.

A different strategy introduced by Wald (cf. for example Wald’s (1947) monograph) is

the following. Instead of treating the sample size as a constant, in a (so–called) sequential

test the number of observations required is itself a random variable. At each stage of the

experiment one of the three decisions

• accept the null hypothesis H0,

• reject the null hypothesis H0 or

• continue taking observations

has to be chosen due to a given rule. If one of the first two decisions is made, the testing

procedure is terminated. Else another trial will be performed. Since the total number

of observations depends on the specific outcome, it is not predetermined but a random

variable. This leads to the formulation of the sequential probability ratio test (shortly

SPRT) for simple hypotheses. We will give a short presentation now. For more detailed

information confer for example Siegmund (1985), Chapter 2.

Let {Xn}n∈N be a sequence of independent random variables on some probability space

(Ω,A, P ). We are interested in testing the simple hypotheses

H0 : fn = f0 for n ∈ N,

HA : fn = f1 for n ∈ N,

where fn denotes the probability density of Xn (n ∈ N). Define the likelihood ratio

Ln = Ln(X1, . . . , Xn) =

∏n
i=1 f0(Xi)∏n
i=1 f1(Xi)

(n ∈ N),

and stop the observations at the first n ∈ N such that Ln 6∈ (A, B) for predetermined

constants 0 < A < 1 < B <∞, i.e., we consider the stopping time

τ = min{n ≥ 1 : Ln 6∈ (A, B)},

where min ∅ = ∞. Then, reject H0 if Lτ ≥ B and accept H0 if Lτ ≤ A. The following

example gives us a good idea about the connections between the likelihood ratios and the

CUSUM procedures of the previous section.
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Example 2.2.1 (Normal distribution)

Let {Xn}n∈N be independent normally distributed with common and unit variance. Easy

calculations show that for testing H0 : µ = µ0 against HA : µ = µ1 with µ0 < µ1, the

likelihood ratio is given by

Ln = exp
(
(µ1 − µ0)Sn − n

2
(µ2

1 − µ2
0)
)
,

where Sn = X1 + . . . + Xn. Now, the stopping rule can be equivalently stated as

τ = min{n ≥ 1 : Sn − n
2
(µ1 + µ0) 6∈ (a, b)},

where

a = log
A

µ1 − µ0

, b = log
B

µ1 − µ0

.

Even simpler is the symmetric case µ1 = −µ0. Then, we stop our testing procedure at

the first n ≥ 1 such that |Sn| ≥ b.

One important question arises immediately: Does the sequential test terminate in

finite time? From a practical point of view, infinitely many observations are intolerable

if collecting data is assumed to be costly both under the null hypothesis H0 and the

alternative HA. A positive answer to the problem is provided in the following theorem.

Theorem 2.2.1

If P{Ln = 1} 6= 1 for all n ∈ N, then

a) P{τ <∞} = 1,

b) Eτ <∞.

Proof: See Wald (1947). �

The constants A and B in the definition of the stopping rule τ can be related to the errors

of first and second type, i.e., to

α = PH0 {Lτ ≥ B} and β = PHA
{Lτ ≤ A}

by the simple approximations

α ≈ 1− A

B − A
, β ≈ A(B − 1)

B − A
.

So, tests of a certain level and power can be easily constructed from the latter.

Deeper investigations have shown that the SPRT is optimal for testing simple hy-

potheses for independent, identically distributed random variables. More exactly, the
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SPRT minimizes the expected sample size under both hypotheses among all tests with

no larger error probabilities. Unfortunately, this property is not retained for extensions

of the SPRT to composite hypotheses (see Siegmund (1985), Sections 2.3 and 2.5).

A modification. We shall consider possible modifications of the SPRT which are appli-

cable in the change–point analysis environment now. In their paper, Chu, Stinchcombe

and White (1996) argue convincingly that in a great number of applications nowadays

data arrive steadily and are cheaply obtainable. Hence, the basis of Wald’s considerations

can be weakened in the following direction. During the ”in control” scenario the statis-

tician is satisfied to keep on observing, since this process is (nearly or completely) cost

free. So, under H0, we do not necessarily have PH0{τ < ∞} = 1. Confer however the

discussion in Section 2.3. Under this point of view, Chu, Stinchcombe and White (1996)

introduced the following linear regression model. Let the sequence of random variables

{Yn}n∈N be defined by

Yn = X ′
nβn + εn, (n ∈ N),

where Xn is a random vector with values in Rp and βn ∈ Rp is deterministic.

One essential assumption is the so–called non–contamination

βn = β0 (n = 1, . . . ,m).

That means, the regresssion parameters stay ”in control” for some historical data set of

size m. Of interest are the hypotheses

H0 : βn = β0 (n = m + 1, m + 2, . . .),

HA : There exists a k∗ ≥ 1 such that

βm+1 = . . . = βm+k∗−1 = β0 6= β1 = βm+k∗ = βm+k∗+1 = . . . ,

where β0, β1 and k∗ are unknown parameters. The setting was picked up by Horváth,

Hušková, Kokoszka and Steinebach (2003). Under assumptions on {εn}n∈N which admit

the usage of the Komlós, Major and Tusnády strong approximations, they provided two

test procedures based on CUSUMs of residuals. Therefore, introduce the least squares

estimator

β̂n =

(
n∑

i=1

X iX
′
i

)−1 n∑
j=1

YjXj

of the regression parameter β at time n. Then, Horváth, Hušková, Kokoszka and Steine-

bach (2003) examined detectors based on the residuals
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a) ε̂i = Yi −X ′
iβ̂m (i ∈ N),

b) ε̃i = Yi −X ′
iβ̂i−1 (i ∈ N \ {1}).

The first residual relies only on the historical data set, for which the regression parameters

are assumed to be ”in control”. In contrast, the second residual is obtained recursively,

making use of all previously taken observations. The residuals lead to two CUSUM

procedures:

a) Q̂(m, k) =
m+k∑

i=m+1

ε̂i,

b) Q̃(m, k) =
m+k∑

i=m+1

ε̃i.

Before we discuss the asymptotics of Q̂(m, k), Q̃(m, k) and establish corresponding stop-

ping rules, we impose some conditions on the random variables {εn}n∈N and {Xn}n∈N.

Assumption 2.2.1

a) Let {εn}n∈N be independent and identically distributed random variables with

Eε1 = 0, 0 < σ2 = Var ε1 <∞, E|ε1|ν <∞

for some ν > 2.

b) Let {εn}n∈N and {Xn}n∈N be independent.

c) There is a positive definite matrix C ∈ Rp×p such that∥∥∥∥∥ 1

n

n∑
i=1

X iX
′
i −C

∥∥∥∥∥
∞

= O
(
n−β

)
a.s.

as n→∞ for some constant β > 0, where here and in the sequel ‖ · ‖∞ denotes the

maximum norm of vectors and matrices.

d) Finally, we assume that X1,n = 1 for n ∈ N.

Now, the first stopping rule can be defined as follows:

τ̂m = min{k ≥ 1 : |Q̂(m, k)| ≥ ĝ(m, k)},

where min ∅ =∞ and

ĝ(m, k) = c
√

m

(
1 +

k

m

)(
k

m + k

)γ
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with γ ∈ [0, min{β, 1
2
}) and c = c(α) being prescribed by

lim
m→∞

P{τ̂m <∞} = α.

For a more detailed discussion on choosing the boundary function ĝ(m, k) confer the next

section. We are now in a position to give the limiting behaviour under both hypotheses.

Theorem 2.2.2

Let the conditions of Assumption 2.2.1 be satisfied and let

σ̂2
m =

1

m− p

m∑
i=1

(
Yi −X ′

iβ̂m

)2

be the least squares estimator of σ2 based on the historical data. Then, the following

statements hold true.

a) Under H0,

lim
m→∞

P

{
1

σ̂m

sup
1≤k<∞

|Q̂(m, k)|
ĝ(m, k)

≤ 1

}
= P

{
sup

0≤t≤1

|W (t)|
tγ

≤ c

}
,

where {W (t) : 0 ≤ t ≤ 1} denotes a standard Wiener process.

b) If ‖C ′
1(β1 − β0)‖∞ > 0, then under HA,

1

σ̂m

sup
1≤k<∞

|Q̂(m, k)|
ĝ(m, k)

P−→∞

as m→∞.

Proof: See Horváth, Hušková, Kokoszka and Steinebach (2003). �

The situation turns out to be more complicated for Q̃(m, k). Similarly, we define the

stopping rule

τ̃m = min{k ≥ 1 : |Q̃(m, k)| ≥ g̃(m, k)},

where

g̃(m, k) =
√

mh

(
k

m

)
.

Therein, the function h is assumed to satisfy the following conditions:

a) lim
h→0

tγ

h(t)
= 0 with some γ ∈ [0, min{β, 1

2
}),
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b) lim sup
t→∞

√
t log log t

h(t)
<∞ and

c) h(t) is positive and continuous on (0,∞).

The precise asymptotics of τ̃m are stated in the next theorem.

Theorem 2.2.3

Let the assumptions of Theorem 2.2.2 be satisfied. Then, the following statements hold

true.

a) Under H0,

lim
m→∞

P

{
1

σ̂m

sup
1≤k<∞

|Q̃(m, k)|
g̃(m, k)

≤ 1

}
= P

{
sup

0<t<∞

|W (t)|
h(t)

≤ 1

}
,

where {W (t) : t ≥ 0} denotes a standard Wiener process.

b) If there is a k̃ ∈ N such that

m + k∗

√
mh

(
k̃
m

)
∥∥∥∥∥∥

m+k̃∑
i=m+k∗

1

i
X ′

i (β0 − β1)

∥∥∥∥∥∥
∞

→∞,

then under HA,

1

σ̂m

sup
1≤k<∞

|Q̃(m, k)|
g̃(m, k)

→∞

as m→∞.

Proof: See Horváth, Hušková, Kokoszka and Steinebach (2003). �

The approach of this paragraph will be transferred to a location model in the following

section. We shall introduce a test procedure which is an analogue of Q̂(m, k) in a different

setting.

Closing remarks. A further shortcoming of the SPRT is the following. If the probability

densities f0 and f1 are ”close to each other” in the sense that

E

(
f0(X1)

f1(X1)

)
≈ 1,

then occasionally very large sample sizes occur. One way to get around this difficulty is

the truncation of the stopping rule: The null hypothesisH0 is accepted if after a maximum
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number of observations the test procedure did not terminate. This approach was carried

out by Gut and Steinebach (2002,2003) to detect changes in the parameters of a renewal

counting process via invariance principles.

To the best of our knowledge, there has not been any attempt to establish an estimation

procedure in a sequential setting to derive the limit distribution for the delay time of a

stopping rule under the point of view of change–point analysis. We shall come back to

this topic in Section 2.6 below.

2.3 The location model

As we have seen, a typical approach in change–point analysis is to carry out the statistical

investigation based on a given data set of fixed size. Tests of this kind are often called to

be of one–shot type and an extensive amount of literature is available for them (cf. for

example Csörgő and Horváth (1997), Chapter 2).

On the other hand though, sequential procedures seem to be more realistic in many

applications, for example in economics. Moreover, one–shot tests cannot be applied re-

peatedly each time new data arrives, as is shown in Example 2.3.1, which goes back to

Robbins (1970) and uses the law of the iterated logarithm for Wiener processes.

So, we will introduce a sequential method, which falls back on the extension of Wald’s

SPRT obtained by Chu, Stinchcombe and White (1996) and which was refined by Horváth,

Hušková, Kokoszka and Steinebach (2003). Instead of investigating a linear model, we

will focus our attention on a location model, in which we are searching for a possible

change in the mean based on observations of the random variables {Xi}i∈N following the

equations

Xi =

{
µ + εi : i = 1, . . . ,m + k∗ − 1,

µ + ∆m + εi : i = m + k∗, m + k∗ + 1, . . . ,
(2.7)

where µ and ∆m are real numbers, the latter (possibly) depending on m. The centered

random variables {εi}i∈N are assumed to satisfy the following conditions.

Assumption 2.3.1 (Weak invariance)

The following assumptions will be used.

a) Let ∣∣∣∣∣
m∑

i=1

εi

∣∣∣∣∣ = OP (
√

m) (m→∞) (2.8)
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hold for ε1, . . . , εm. This condition is somewhat weaker than the asymptotic nor-

mality of the partial sums of the errors {εi}i∈N, but sufficient for our purposes.

b) There is a sequence of Wiener processes {Wm(t) : t ≥ 0}m∈N and a positive constant

σ > 0 such that

sup
1
m
≤t<∞

1

(mt)
1
ν

∣∣∣∣∣
m+mt∑
i=m+1

εi − σWm(mt)

∣∣∣∣∣ = OP (1) (m→∞) (2.9)

with some ν > 2. That is, the sequence {εi}i≥m+1 satisfies a weak invariance prin-

ciple with a given rate.

Moreover, we assume that there is no change in the mean in the ”training period” of size

m. Therefore, we have from (2.7) that

EX1 = . . . = EXm = µ. (2.10)

In this setting, we wish to test between the null hypothesis

H0 : ∆m = 0

and the alternative of a change in the mean, i.e.,

HA : ∆m 6= 0.

Our test statistic will be based on the CUSUM detector

Q(m, k) =
m+k∑

i=m+1

Xi −
k

m

m∑
i=1

Xi. (2.11)

Similarly to the tests in Section 2.2, the procedure stops and we state a mean change in

m+k if Q(m, k) hits or crosses the value of a boundary function g(m, k) for the first time.

That is, we are waiting for the time–point

τm = min{ k ≥ 1 : |Q(m, k)| ≥ g(m, k) } (2.12)

with the understanding min ∅ =∞. This leads to the natural interpretation of infinitely

often repeated observations corresponding to our assumption that data is cheaply avail-

able. Mathematically spoken, τm =∞ if |Q(m, k)| < g(m, k) for all k ≥ 1.

So far, no conditions were imposed on the boundary function in (2.12). The following

example teaches us that g cannot be arbitrary, but has to be carefully chosen indeed.
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Example 2.3.1 (Robbins)

Let {Yi}i∈N be a sequence of independent random variables with a common variance

Var Yi = σ2 > 0 (i ∈ N). Suppose, one is interested in testing the hypotheses

H0 : EYi = 0 (i ∈ N)

and

HA : Not H0.

Then (cf. Ploberger, Krämer and Kontrus (1989)), a suitable one–shot test statistic is

given by

Tn,3 =
1√
nσ

max
k=1,...,n

|Sk| ,

where Sk = Y1 + . . . + Yk for k = 1, . . . , n.

If the partial sums Sk satisfy a (weak) invariance principle, the critical value c can be

calculated from the hitting time of the approximating Wiener process. This leads to the

stopping rule

τ ′n = min{n ≥ 1 : |Sn| ≥ cn },

where cn =
√

nσc. Now, the law of the iterated logarithm for Wiener processes gives that

P {Sn ∈ [−cn, cn] for all n ≥ 1 } = 0

even under H0, so that we get

lim
n→∞

PH0{τ ′n <∞} = 1,

and we eventually cause false alarm. For additional information confer the paper of

Robbins (1970).

Example 2.3.1 shows that there is a need for a more sophisticated approach to choose

a boundary function g in (2.12). Making use of the invariance in (2.9), it turns out that

g(m, k) = c
√

m

(
1 +

k

m

)(
k

m + k

)γ

, (2.13)

where γ ∈ [0, 1
2
), is a good choice for deriving precise asymptotics. Moreover, it is in

accordance with the results of Chu, Stinchcombe and White (1996) and has also been

used by Horváth, Hušková, Kokoszka and Steinebach (2003) to examine a linear regression
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model (cf. Section 2.2). Therein, the constant parameter c = c(α) is prescribed by limiting

the error of first kind to a given level α ∈ (0, 1), i.e.,

lim
m→∞

PH0{τm <∞} = α.

In case ∆m 6= 0 is a constant, Horváth,Hušková, Kokoszka and Steinebach (2003) proved

that the asymptotic power is one, that is

lim
m→∞

PHA
{τm <∞} = 1.

The parameter γ determines the sensitivity of the test and has to be fixed by the statis-

tician in advance. Horváth, Hušková, Kokoszka and Steinebach (2003) showed in a sim-

ulation study, that in their linear regression model detectors with γ close to 1
2

have the

shortest delay time if k∗ is small compared to m, that is a change occurs shortly after the

beginning of monitoring. We will give a formal proof of this observation in Section 2.6

based on our model. (Else smaller choices of γ seemed to be more advisable.)

In Section 2.4 we will describe some settings, that can be treated by our model. Section

2.5 contains the behaviour of our test statistic under both the null hypothesis and the

alternative. Section 2.6 is devoted to determining the limit distribution of the stopping

rule τm.

2.4 Examples

This section contains several applications, which are included in the framework presented

in the preceding section. We will discuss independent, identically distributed random

variables, linear processes or moving average time series of infinite order and GARCH

processes. Two final examples point out that the approximations in (2.8) and (2.9) can be

obtained under rather general conditions such as strong mixing and as well for martingale

differences.

Example 2.4.1 (Independent, identically distributed random variables)

Let the sequence {εi}i∈N in the definition of the {Xi}i∈N in (2.7) be independent and

identically distributed with the further assumptions

a) Eε1 = 0,

b) Eε2
1 = σ2 > 0,

c) E|ε1|ν <∞ with some ν > 2.
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In this setting, the seminal approximations of Komlós, Major and Tusnády (1975,1976),

and Major (1976a) immediately imply (2.8) and (2.9).

Now, independence and identical distribution of the underlying random variables are

very restrictive assumptions. In a great variety of applications therefore models allowing

also dependence structures are of importance. One crucial example in time series analysis

is the moving average process of infinite order (shortly MA(∞)) or linear process. It will

be explained next.

Example 2.4.2 (Linear processes)

Let {εi}i∈N fulfill the equations

εi =
∞∑

j=1

cjδj−i (i ∈ N),

where {δi}i∈N0 are independent and identically distributed random variables with

a) Eδ0 = 0,

b) Eδ2
0 = σ2 > 0,

c) E|δ0|ν <∞ with some ν > 2.

The sequence {εi}i∈N is called a linear process.

Horváth (1997) showed that (2.8) and (2.9) are satisfied if δ0 has a smooth density function

f such that

sup
−∞<s<∞

1

|s|

∫ ∞

−∞
|f(t + s)− f(t)| dt <∞,

if the condition

cj = O
(
j−β
)

(j →∞) (2.14)

with β > 3
2

holds for the coefficient sequence {cj}j∈N and if moreover

g(z) =
∞∑

j=1

cjz
j 6= 0 (|z| ≤ 1), (2.15)

where z ∈ C. Conditions (2.14) and (2.15) yield for example

Eεi = 0 (i ∈ N),

Eε2
i = σ2

∞∑
j=1

c2
j <∞ (i ∈ N).

That means, expectation and variance of the sequence {εi}i∈N do not depend on i.
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One reason, why linear processes are of major interest for statisticians, comes from time

series analysis: a sequence of random variables {Xn}n∈Z is called ARMA(p, q) process1,

if it is the second–order stationary solution of the set of equations

Xn −
p∑

j=1

ajXn−j = en +

q∑
j=1

bjen−j (n ∈ Z),

where {en}n∈Z are random variables satisfying Een = 0 and 0 < Ee2
n = σ2 <∞ (n ∈ Z).

A sequence of this type is often called white noise.

Now, the following theorem, which classifies the representation of ARMA(p, q) time

series as linear processes, states the link to Example 2.4.2. But firstly, set

a(z) = 1− a1z − . . .− apz
p,

b(z) = 1 + b1z + . . . + bqz
q,

where z ∈ C.

Theorem 2.4.1

Let {Xn}n∈Z be an ARMA(p, q) process such that the polynomials a( · ) and b( · ) have no

common zeroes. Then, the following statements are equivalent:

a) There exists a sequence {cj}j∈N0 such that

Xn =
∞∑

j=0

cjen−j (n ∈ Z)

with
∑∞

j=0 |cj| <∞.

b) a(z) 6= 0 for all z ∈ C with |z| ≤ 1.

Moreover, the coefficients in a) are determined by the complex power series

c(z) =
∞∑

j=0

cjz
j =

b(z)

a(z)
(|z| ≤ 1).

The property in a) is called causality. A proof of Theorem 2.4.1 can, for instance, be

found in Brockwell and Davis (1991), Theorem 3.1.2.

The ARMA concept can be further generalized. In finance, many time series exhibit

non–stationary behaviour and/or heteroskedasticity. Engle (1982), who won the Nobel

prize in 2003, and Bollerslev (1986) introduced the so–called ARCH and GARCH2 models,

1ARMA is the acronym for autoregressive moving average.
2GARCH is the acronym for generalized autoregressive conditionally heteroskedastic.
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which allow for time dependent conditional variances of the random variables in considera-

tion, while the variance itself remains constant. These models were successfully applied to

various economic data, for instance to the inflation rate in the United Kingdom (cf. Engle

(1982)) or to stock prices in financial markets. Today, volatility models are indispensable

for financial analysts. The following example shows, that GARCH (and therefore ARCH)

processes are included in our framework under certain additional assumptions.

Example 2.4.3 (GARCH processes)

Let {εi}i∈Z be a sequence of random variables which satisfy the following two sets of

equations:

εi = σiδi (i ∈ Z),

σ2
i = ω +

p∑
j=1

αjε
2
i−j +

q∑
j=1

βjσ
2
i−j (i ∈ Z),

where {δi}i∈Z is a further sequence of random variables with finite second moments, and

where

ω > 0, α1, . . . , αp ≥ 0, β1, . . . , βq ≥ 0.

If {εi}i∈Z is a second–order stationary and ergodic solution of these equations, it is called

a GARCH(p, q) process. In the special case β1 = . . . = βq = 0, the solution is called

ARCH(p) process. If furthermore α1 = . . . = αp = 0, then {εi}i∈Z is simply a white noise

sequence.

Nelson (1990) derived necessary and sufficient conditions for the existence of a unique

second–order stationary solution if p = q = 1. The general case has been treated by

Berkes, Horváth and Kokoszka (2003a). Moreover, it has been shown that {εi}i∈Z is

strong mixing under additional assumptions (cf. Bougerol and Picard (1992a,1992b)).

Eventually, Carrasco and Chen (2002) showed that also a large class of GARCH type

processes is strong mixing under suitable regularity conditions.

The next example illustrates, that Examples 2.4.2 and 2.4.3 are special cases of second–

order stationary and mixing sequences and can therefore be included in the following

approach.

Example 2.4.4 (Mixing sequences)

Let {εi}i∈N be a second–order stationary, mixing sequence of random variables. Then,

(2.8) and (2.9) can be verified under regularity conditions given in Philipp (1986) and

Shao (1993).
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Finally, we introduce an approach built upon martingales and filtrations. A filtration

is a collection of σ–fields {Fi}i∈Z which satisfy Fi ⊂ Fj for all i ≤ j.

Example 2.4.5 (Martingale differences)

A sequence {εi}i∈Z is called a martingale difference sequence with respect to some filtration

{Fi}i∈Z if

E(εi|Fi−1) = 0 a.s.

for all i ∈ Z. Then, the approximations in Philipp and Stout (1986) and Eberlein (1986)

can be used to establish (2.8) and (2.9).

Even so–called RCA (random coefficient autoregressive) time series exhibit a depen-

dence structure that can be covered by the strong invariance principles provided in Eber-

lein (1986). Details will be discussed in Chapter 3.

2.5 Asymptotics of the test procedure

In this section, we state the limit theorems for the test procedure both under the null

hypothesis H0 and the alternative HA. The latter can be further distinguished. We say,

that there is a

• fixed change if ∆m = ∆ 6= 0 is constant and therefore independent of m,

• local change if ∆m → 0 as m→∞.

Not surprisingly, to obtain asymptotics underHA we need different assumptions according

to the distinction above.

2.5.1 Asymptotics under the null hypothesis

At first, we give the limit theorem for Q(m, k) under H0. We shall use the invariance

stated in Assumption 2.3.1 to obtain a supremum of a Wiener process as limiting random

variable. Details are addressed in the following theorem.

Theorem 2.5.1 (Asymptotic under H0)

Let {Xi}i∈N be a sequence of random variables according to (2.7) such that (2.8)–(2.10)

hold. Then, under H0,

lim
m→∞

P

{
1

σ̂m

sup
k≥1

|Q(m, k)|
g(m, k)

≤ 1

}
= P

{
sup

0≤t≤1

|W (t)|
tγ

≤ c

}
,
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γ
∖
α 0.010 0.025 0.050 0.100 0.250

0.00 2.7912 2.4948 2.2365 1.9497 1.5213

0.15 2.8516 2.5475 2.2996 2.0273 1.6126

0.25 2.9445 2.6396 2.3860 2.1060 1.7039

0.35 3.0475 2.7394 2.5050 2.2433 1.8467

0.45 3.3015 3.0144 2.7992 2.5437 2.1729

0.49 3.5705 3.2944 3.0722 2.8259 2.4487

Table 2.1: Selected critical values cα(γ).

where {W (t) : 0 ≤ t ≤ 1} denotes a Wiener process and σ̂2
m is a consistent variance

estimator.

Proof: It is an adaptation of the proof of Theorem 2.1 in Horváth, Hušková, Kokoszka

and Steinebach (2003). �

We close this subsection with two final remarks. Firstly, the limiting distribution of

Xγ = {t−γ|W (t)| : 0 ≤ t ≤ 1} is only known for γ = 0. Else, one has to rely on simulation

results to obtain critical values. For a few commonly used α, we will list some selected

critical values cα(γ) given in Horváth, Hušková, Kokoszka and Steinebach (2003). They

were gained by 50,000 repetitions of Xγ, where the Wiener process {W (t) : 0 ≤ t ≤ 1}
was approximated on a grid of 10, 000 equi–spaced points in the interval [0, 1]. Secondly,

as the proof of Theorem 2.5.1 shows, a suitable estimator σ̂2
m must satisfy the condition∣∣∣∣ 1

σ̂2
m

− 1

σ2

∣∣∣∣ = oP (1) (m→∞),

which is true for instance if the estimator is consistent.

2.5.2 Asymptotics under the alternative

As already mentioned above, we will differ between fixed and local changes, resulting in

two limit statements in Theorems 2.5.2 and 2.5.3. It turns out that in both cases the

test procedure converges in probability to infinity if the null hypothesis is violated, but

different assumptions are required.

We start with the fixed change.
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Theorem 2.5.2 (Asymptotic under HA, fixed change)

Let {Xi}i∈N be a sequence of random variables according to (2.7) such that (2.8)–(2.10)

hold. Let ∆m = ∆ be constant and k∗ = o(m) as m→∞. Then, under HA,

1

σ̂m

sup
k≥1

|Q(m, k)|
g(m, k)

P−→∞

as m→∞, where σ̂2
m is a consistent variance estimator.

Proof: Set k̃ = m + k∗. Then

Q(m, k̃) =
m+k̃∑

i=m+1

Xi −
k̃

m

m∑
i=1

Xi

=
m+k̃∑

i=m+1

εi −
k̃

m

m∑
i=1

εi + ∆m

(
k̃ − k∗ + 1

)
,

where ∆m 6= 0 under HA. By Theorem 2.5.1, we have

1

g(m, k̃)

 m+k̃∑
i=m+1

εi −
k̃

m

m∑
i=1

εi

 = OP (1) (m→∞).

It remains to analyze the deterministic part. Since k∗ = o(m), we get

21−γ ←

(
1 +

k̃

m

)(
k̃

m + k̃

)γ

=

(
2 +

k∗

m

)(
1 + k∗

m

2 + k∗

m

)γ

≤ 3 · 2−γ.

Combining this result with the assumption that ∆m = ∆ is constant, yields∣∣∣∣∣∣ |∆m|(m + 1)
√

m
(
1 + k̃

m

)(
k̃

m+k̃

)γ −
√

m|∆|
21−γ

∣∣∣∣∣∣
≤ |∆m|
√

m
(
1 + k̃

m

)(
k̃

m+k̃

)γ +
√

m|∆|

∣∣∣∣∣∣
21−γ −

(
1 + k̃

m

)(
k̃

m+k̃

)γ

21−γ
(
1 + k̃

m

)(
k̃

m+k̃

)γ

∣∣∣∣∣∣
as m→∞. Hence,

|∆m|(m + 1)
√

m
(
1 + k̃

m

)(
k̃

m+k̃

)γ =

√
m|∆|
21−γ

(1 + o(1)) (m→∞).

This completes the proof. �

Analogously, we can prove the next theorem for a local change in the mean of the

underlying random variables. Since the arguments in the proof only slightly differ from

those of the previous theorem, we just sketch the main parts.
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Theorem 2.5.3 (Asymptotic under HA, local change)

Let {Xi}i∈N be a sequence of random variables according to (2.7) such that (2.8)–(2.10)

hold. Let ∆m → 0, but
√

m|∆m| → ∞ and let k∗ = [βm], β > 0 fixed, as m→∞. Then,

under HA,

1

σ̂m

sup
k≥1

|Q(m, k)|
g(m, k)

P−→∞

as m→∞, where σ̂2
m is a consistent variance estimator.

Proof: Set k̃ = m + k∗. By assumption on k∗ we get k∗m−1 = [βm]m−1 → β > 0 as

m→∞. Therefore,(
1 +

k̃

m

)(
k̃

m + k̃

)γ

=

(
2 +

k∗

m

)(
1 + k∗

m

2 + k∗

m

)γ

−→ (2 + β)1−γ(1 + β)γ

as m→∞, resulting in∣∣∣∣∣∣ |∆m|(m + 1)
√

m
(
1 + k̃

m

)(
k̃

m+k̃

)γ −
√

m|∆m|
(2 + β)1−γ(1 + β)γ

∣∣∣∣∣∣
≤ |∆m|
√

m
(
1 + k̃

m

)(
k̃

m+k̃

)γ +
√

m|∆m|

∣∣∣∣∣∣
(2 + β)1−γ(1 + β)γ −

(
1 + k̃

m

)(
k̃

m+k̃

)γ

(
1 + k̃

m

)(
k̃

m+k̃

)γ

(2 + β)1−γ(1 + β)γ

∣∣∣∣∣∣
as m→∞. So,

|∆m|(m + 1)
√

m
(
1 + k̃

m

)(
k̃

m+k̃

)γ =

√
m|∆m|

(2 + β)1−γ(1 + β)γ
(1 + o(1)) (m→∞).

Since
√

m|∆m| → ∞ by assumption, the assertion of Theorem 2.5.3 follows if we treat

the random part as in the proof of Theorem 2.5.2. �

2.6 Estimation of delay time

We now move on to the main section of this chapter. It deals with determining the limit

distribution of the stopping rule τm, which can be interpreted as the delay time of the

sequential test procedure. Therefore, additional assumptions on ∆m, which are commonly

used in change–point analysis, and a suitable normalization of τm are needed.

We start with a set of conditions which are imposed on ∆m and k∗. We assume that

the change is relatively small and does not occur too late in the sample. Moreover, we

assume without loss of generality that ∆m > 0 throughout this section.
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Assumption 2.6.1

For m→∞, let the following three conditions hold:

∆m −→ 0, (2.16)

√
m∆m −→∞, (2.17)

k∗ = O
(
mθ
)

with some 0 ≤ θ <

( 1
2
− γ

1− γ

)2

, (2.18)

where γ ∈ [0, 1
2
) according to (2.13).

Assumption 2.6.1 puts us in a position to formulate the main theorem.

Theorem 2.6.1 (Limit distribution of the stopping time)

Let {Xn}n∈N be a sequence of random variables according to (2.7) such that (2.8)–(2.9)

and (2.16)–(2.18) are satisfied. Then, under HA,

lim
m→∞

P

{
τm − am

bm

≤ x

}
= Φ(x),

where Φ denotes the standard normal distribution function. Moreover, for m ∈ N,

am =

(
cm

1
2
−γ

∆m

) 1
1−γ

,

bm =

√
amσ

(1− γ)∆m

.

The proof of Theorem 2.6.1 is divided into several auxiliary lemmas. Before we start, we

give one short remark which clarifies a statement from Section 2.3.

Remark 2.6.1

Let the assumptions of Theorem 2.6.1 be satisfied. Then τm is small if γ is close to 1
2
.

Proof: Theorem 2.6.1 implies that

τm ≈ am =

(
c

∆m

) 1
1−γ

m
1
2−γ

1−γ .

Both factors of the product on the right hand side get smaller if γ is chosen to be closer

to 1
2
. �

The main idea in the proof of Theorem 2.6.1 is the following observation:

P {τm > N} = P

{
max

1≤k≤N

|Q(m, k)|
g(m, k)

≤ 1

}
, (2.19)
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which is easily obtained from the definition of the stopping rule τm in (2.12). Equation

(2.19) suggests that we have to find a normalizing sequence N = N(m, x) depending on

m and x ∈ R such that the probabilities P{τm > N(m, x)} converge to the corresponding

value Φ(x) for all x as m→∞ by using the symmetry Φ(x) = 1−Φ(−x) of the standard

normal distribution function and its continuity.

Instead of giving a constructive proof, we will now define N and then show that this

N is the correct choice. Set

N = N(m, x) =

cm
1
2
−γ

∆m

− σx

(
c

1
2
−γm( 1

2
−γ)2

∆
3
2
−2γ

m

) 1
1−γ


1

1−γ

, (2.20)

where x ∈ R.

Next, we will state a technical lemma which contains some easy, but very helpful

results. They explain the connections between the involved model parameters m, k∗ and

∆m, and N as defined in (2.20) above.

Lemma 2.6.1

Let γ ∈ [0, 1
2
) and let (2.16)–(2.18) be satisfied. Then,

a)
(i)

N

m
−→ 0, (ii)

√
N∆m −→∞,

(iii)
k∗

N
−→ 0, (iv)

k∗

m
−→ 0

for all x ∈ R as m→∞, where N is defined in (2.20).

b) Furthermore,

lim
m→∞

1

σ

(
N

m

)γ− 1
2

(
c− ∆mN
√

m(N
m

)γ

)
= x,

where N is defined in (2.20).

Proof: Firstly, we show that the first part of the difference in (2.20) is dominating the

second one, i.e.,

N ≈

(
cm

1
2
−γ

∆m

) 1
1−γ

= am (2.21)
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for large m. It holds

m
1
2
−γ

∆m

(
m( 1

2
−γ)2

∆
3
2
−2γ

m

)− 1
1−γ

=

(
m( 1

2
−γ)(1−γ)

∆1−γ
m

∆
3
2
−2γ

m

m( 1
2
−γ)2

) 1
1−γ

=
(
m( 1

2
−γ)(1−γ)−( 1

2
−γ)2∆

1
2
−γ

m

) 1
1−γ

=
(√

m∆m

) 1
2−γ

1−γ −→∞

as m→∞, by condition (2.17) and γ ∈ [0, 1
2
).

a) (i) For large enough m we can write

N

m
≤ (1 + o(1))

(
cm

1
2
−γ

∆m

mγ−1

) 1
1−γ

≈
(

c√
m∆m

) 1
1−γ

−→ 0

as m→∞, using (2.17) again. Thus, (i) is proved.

(ii) By (2.21),

√
N∆m ≈ ∆m

(
cm

1
2
−γ

∆m

) 1
2(1−γ)

= c
1
2
(1−γ)

(√
m∆m

) 1
2−γ

1−γ −→∞

as m→∞ by (2.17), finishing the proof of (ii).

(iii) Applying assumption (2.18) and the approximation of (2.21), we obtain

k∗

N
= O

(
∆

1
1−γ
m m

(
1
2−γ

1−γ

)2

−
1
2−γ

1−γ

)
= o(1) (m→∞),

since ( 1
2
− γ

1− γ

)2

−
1
2
− γ

1− γ
< 0,

completing the proof of (iii).



2.6 Estimation of delay time 39

(iv) From (i) and (iii) we have

k∗

m
=

k∗

N

N

m
−→ 0

as m→∞.

b) The relation is a consequence of the definition of N in (2.20). It holds

(
N

m

)γ− 1
2
(

c− ∆m

m
1
2
−γ

N1−γ

)

=

(
N

m

)γ− 1
2

c− ∆m

m
1
2
−γ

cm
1
2
−γ

∆m

− σx

(
c

1
2
−γm( 1

2
−γ)2

∆
3
2
−2γ

m

) 1
1−γ


=

(
N

m

)γ− 1
2

σx
∆m

m
1
2
−γ

(
c

1
2
−γm( 1

2
−γ)2

∆
3
2
−2γ

m

) 1
1−γ

= σxNγ− 1
2 ∆m

(
c

1
2
−γm( 1

2
−γ)2

∆
3
2
−2γ

m

) 1
1−γ

.

By (2.21),

Nγ− 1
2 ∆m

(
c

1
2
−γm( 1

2
−γ)2

∆
3
2
−2γ

m

) 1
1−γ

≈

(
∆1−γ

m

cγ− 1
2 m(γ− 1

2
)( 1

2
−γ)

∆
γ− 1

2
m

c
1
2
−γm( 1

2
−γ)2

∆
3
2
−2γ

m

) 1
1−γ

= 1,

giving the desired result. �

With the technical support of Lemma 2.6.1, we are able to proceed with the proof

of Theorem 2.6.1 by showing that the observations before k∗ do not contribute to the

asymptotic.

Lemma 2.6.2

Let γ ∈ [0, 1
2
). If (2.8)–(2.10) and (2.16)–(2.18) hold, then(

N

m

)γ− 1
2

(
max

1≤k<k∗

|Q(m, k)|
g1(m, k)

− ∆mN
√

m(N
m

)γ

)
P−→ −∞

as m→∞, where g1 = c−1g.
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Proof: From the definition of Q(m, k) in (2.11) we obtain the following representation:

Q(m, k) =
m+k∑

i=m+1

εi −
k

m

m∑
i=1

εi + ∆m(k − k∗ + 1)I{k≥k∗}. (2.22)

We will work on the right hand side of (2.22) term by term.

a) The first term of equation (2.22) can be approximated by a Wiener process according

to assumption (2.9). This yields

max
1≤k<k∗

1

g1(m, k)

∣∣∣∣∣
m+k∑

i=m+1

εi − σWm(k)

∣∣∣∣∣
= OP (1) max

1≤k<k∗

k
1
ν

√
m( k

m
)γ

= OP

((
k∗

m

) 1
2
−γ
)

= oP (1)

as m→∞ by Lemma 2.6.1a)(iv). So, it suffices to consider the behaviour of Wm(k).

We note that

max
1≤k<k∗

|Wm(k)|
g1(m, k)

= OP (1) sup
0<t≤k∗

|Wm(t)|√
m( t

m
)γ

by using Lemma 2.6.1a)(iv).

Applying the scale transformation of Wiener processes, we arrive at

sup
0<t≤k∗

|Wm(t)|√
m( t

m
)γ

D
= sup

0<t≤ k∗
m

|W (t)|
tγ

,

where {W (t) : t ≥ 0} denotes another Wiener process. Now, its a.s. continuity also

implies the a.s. continuity of {t−γW (t) : t ≥ 0} (recall that γ < 1
2
). Combining this

property with Lemma 2.6.1a)(iv), we get

lim
m→∞

sup
0<t≤ k∗

m

|W (t)|
tγ

= 0 a.s.

Thus,

max
1≤k<k∗

1

g1(m, k)

∣∣∣∣∣
m+k∑

i=m+1

εi

∣∣∣∣∣ = oP (1)

as m→∞, i.e., the first term is negligible.



2.6 Estimation of delay time 41

b) The second term of the right hand side in (2.22) contains only the errors ε1, . . . , εm.

So, we can apply assumption (2.8) and get

max
1≤k<k∗

1

g1(m, k)

∣∣∣∣∣ km
m∑

i=1

εi

∣∣∣∣∣ = OP

((
k∗

m

)1−γ
)

= oP (1)

as m→∞ using Lemma 2.6.1a)(iv) once again.

c) Finally, we study the deterministic third part of equation (2.22). On combining

Lemma 2.6.1a)(iv) and part b) of this proof, we arrive at

lim
m→∞

∆mN
√

m(N
m

)γ
= c > 0.

Putting together a)–c), Lemma 2.6.2 is proved, since(
N

m

)γ− 1
2

−→∞ (m→∞)

by Lemma 2.6.1a)(i). �

The next aim is to show that the asymptotic behaviour of the maximum taken over

those k ranging from k∗ to N can be appropriately approximated with the corresponding

maximum of the Wiener process {Wm(t) : t ≥ 0} plus an additional drift term traced

back to the change in the mean under HA. Again, we will strongly rely on the invariance

assumed in (2.9). The following lemma contains the exact formulation.

Lemma 2.6.3

Let γ ∈ [0, 1
2
). If (2.8), (2.9) and (2.16)–(2.18) hold, then(

N

m

)γ− 1
2

max
k∗≤k≤N

1

g1(m, k)
|Q(m, k)− (σWm(k) + ∆mk)| = oP (1)

as m→∞, where g1 = c−1g.

Proof: The proof is given in three steps.

a) First of all, we have

(
N

m

)γ− 1
2

max
k∗≤k≤N

1

g1(m, k)

∣∣∣∣∣ km
m∑

i=1

εi

∣∣∣∣∣ = OP

(√
N

m

)
= oP (1)

as m→∞, following from (2.8) and Lemma 2.6.1a)(i).
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b) Secondly, the deterministic part is negligible as well, since

(
N

m

)γ− 1
2

max
k∗≤k≤N

∆m(k − 1)

g1(m, k)
= O(1)

((
N

m

)γ− 1
2 ∆mk∗√

m

(m

k∗

)γ
)

(2.23)

as m → ∞. The order can be further estimated by using the dominating term of

N as in (2.21) and assumption (2.18) on the change-point. Thus, we can continue

with (2.23) by writing

O(1)

∆m

(
m

1
2
−γ

∆m

) γ− 1
2

1−γ

k∗1−γ

 = O(1)

(
∆

1+
1
2−γ

1−γ
m m− ( 1

2−γ)2

1−γ
+θ(1−γ)

)
= o(1)

as m→∞, since

1 +
1
2
− γ

1− γ
> 0 and −

(1
2
− γ)2

1− γ
+ θ(1− γ) < 0,

the last inequality following from (2.18).

c) Finally, an application of (2.9) yields

(
N

m

)γ− 1
2

max
k∗≤k≤N

1

g1(m, k)

∣∣∣∣∣
m+k∑

i=m+1

εi − σWm(k)

∣∣∣∣∣
= OP (1)

(
N

m

)γ− 1
2

max
k∗≤k≤N

k
1
ν

g1(m, k)

= OP (1)

(
N

m

)γ− 1
2 1
√

m(1 + N
m

)

(
m + N

m

)γ

max
k∗≤k≤N

k
1
ν

( k
m

)γ

= OP (1)Nγ− 1
2 max

k∗≤k≤N
k

1
2
−γk

1
ν
− 1

2

= oP

(
k∗

1
ν
− 1

2

)
= oP (1)

as m→∞. Therein, Lemma 2.6.1a)(iv) has been used to obtain the third equality

sign. Moreover, we mention that 1
ν
− 1

2
< 0.

On combining a)–c), the proof is complete. �

The previous lemma can be further refined by simplifying the boundary function g (or

g1) through an asymptotic equivalent expression.
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Lemma 2.6.4

Let γ ∈ [0, 1
2
). If (2.8),(2.9) and (2.16)–(2.18) hold, then

(
N

m

)γ− 1
2

max
k∗≤k≤N

∣∣∣∣∣σWm(k)

g1(m, k)
− σWm(k)
√

m( k
m

)γ

∣∣∣∣∣ = oP (1)

as m→∞, where g1 = c−1g.

Proof:

a) Set

aN,m(γ) = max

{∣∣∣∣∣
(

1 +
N

m

)γ−1

− 1

∣∣∣∣∣ ,
∣∣∣∣∣
(

1 +
k∗

m

)γ−1

− 1

∣∣∣∣∣
}

.

Then aN,m(γ)→ 0 (m→∞) by Lemma 2.6.1a)(i) and (iv). Therefore, we get

(
N

m

)γ− 1
2

max
k∗≤k≤N

|Wm(k)|
√

m( k
m

)γ

∣∣∣∣∣ ( k
m

)γ

(1 + k
m

)( k
m+k

)γ
− 1

∣∣∣∣∣
= O(1)

(
N

m

)γ− 1
2

max
k∗≤k≤N

|Wm(k)|
√

m( k
m

)γ

∣∣∣∣∣
(

1 +
k

m

)γ−1

− 1

∣∣∣∣∣
= O(1)

(
N

m

)γ− 1
2

aN,m(γ) max
k∗≤k≤N

|Wm(k)|
√

m( k
m

)γ

= o(1)

(
N

m

)γ− 1
2

max
k∗≤k≤N

|Wm(k)|
√

m( k
m

)γ
,

as m→∞ by the above named property of aN,m(γ).

b) Let {W (t) : t ≥ 0} be an arbitrary Wiener process. Then obviously

max
k∗≤k≤N

|W (k)|
√

m( k
m

)γ
≤ sup

0<t≤N

|W (t)|√
m( t

m
)γ

.

Moreover, by the scale transformation of Wiener processes we get

(
N

m

)γ− 1
2

sup
0<t≤N

|W (t)|√
m( t

m
)γ

D
= sup

0<t≤1

|W (t)|
tγ

.
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c) Now recall, that the distribution of {Wm(t) : t ≥ 0} does not depend on m. So, we

can apply b) to achieve(
N

m

)γ− 1
2

max
k∗≤k≤N

|Wm(k)|
√

m( k
m

)γ

∣∣∣∣∣
(

k
m

)γ
(1 + k

m
)( k

m+k
)γ
− 1

∣∣∣∣∣ = oP (1)

as m→∞.

On combining a)–c) the proof of Lemma 2.6.4 is complete. �

The remaining and final auxiliary lemma contains the previously claimed convergence

(in distribution) result to the normal law. To simplify notation, we introduce

am(γ) =

(
N

m

)γ− 1
2

(2.24)

bm(γ) = am(γ)

(
c− ∆mN
√

m(N
m

)γ

)
(2.25)

Recall, that both expressions depend on x ∈ R via N = N(m,x) and on the constant

c = c(α) determined by the prescribed number α, which controls the error of first type

(asymptotically).

Lemma 2.6.5

Let γ ∈ [0, 1
2
). If (2.8), (2.9) and (2.16)–(2.10) hold, then

P

{
am(γ)

σ

(
max

k∗≤k≤N

σW (k) + ∆mk
√

m( k
m

)γ
− ∆mN
√

m(N
m

)γ

)
≤ bm(γ)

σ

}
−→ Φ(x)

as m→∞, where am(γ) and bm(γ) are defined in (2.24) and (2.25), respectively.

Proof: Again, the proof is given in three steps.

a) On rephrasing step b) in the proof of Lemma 2.6.4, we see

|W (k)|
√

m( k
m

)γ
= OP

((
N

m

) 1
2
−γ
)

= oP

(
∆mN1−γ

m
1
2
−γ

)
uniformly in k∗ ≤ k ≤ N as m→∞, since by Lemma 2.6.1a)(ii)(

N

m

) 1
2
−γ (

∆mN1−γ

m
1
2
−γ

)−1

=
1√

N∆m

= o(1)

as m→∞.
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b) Let δ ∈ (0, 1) be a fixed number. Then,

max
k∗≤k≤(1−δ)N

∆mk
√

m( k
m

)γ
≤ (1− δ)1−γ∆mmγ− 1

2 N1−γ.

Now, step a) implies

lim
m→∞

P

{
max

k∗≤k≤N

|σW (k) + ∆mk|
√

m( k
m

)γ
= max

(1−δ)N≤k≤N

|σW (k) + ∆mk|
√

m( k
m

)γ

}
= 1,

and furthermore

lim
m→∞

P

{
max

k∗≤k≤N

|σW (k) + ∆mk|
√

m( k
m

)γ
= max

(1−δ)N≤k≤N

σW (k) + ∆mk
√

m( k
m

)γ

}
= 1,

since the positive deterministic part is the dominating term, i.e., the maximum will

be reached near the right endpoint N with arbitrary high probability.

c) Next, we use the scale transformation of Wiener processes to obtain

(
N

m

)γ− 1
2

max
(1−δ)N≤k≤N

|W (k)−W (N)|
√

m( k
m

)γ

D
= sup

1−δ≤t≤1

|W (t)−W (1)|
tγ

.

The almost sure continuity of {W (t) : t ≥ 0} gives

lim
δ→0

sup
1−δ≤t≤1

|W (t)−W (1)|
tγ

= 0 a.s.,

since sup1−δ≤t≤1 t−γ = ((1− δ)t)−γ → 1 as δ → 0. Moreover,

max
(1−δ)N≤k≤N

|W (N)|
√

m( k
m

)γ
= OP

(
N

1
2
−γmγ− 1

2

)
= oP

(
∆mN1−γmγ− 1

2

)
,

since by Lemma 2.6.1a)(ii)

N
1
2
−γmγ− 1

2

∆mN1−γmγ− 1
2

=
1√

N∆m

= o(1)

as m→∞.
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Putting together a)–c), we arrive at

lim
m→∞

P

{
max

k∗≤k≤N

σW (k) + ∆mk
√

m( k
m

)γ
≤ c

}
= lim

m→∞
P

{
am(γ)

σ

σW (N)
√

m(N
m

)γ
≤ bm(γ)

σ

}
.

Hence, the proof of Lemma 2.6.5 is complete after an application of Lemma 2.6.1b) by

recognizing that N− 1
2 W (N) is a standard normal random variable. �

Putting together Lemmas 2.6.2 to 2.6.5, we are now in a position to give the proof of

Theorem 2.6.1.

Proof of Theorem 2.6.1:

a) It only remains to reformulate the results of the auxiliary lemmas. As already

mentioned in (2.19), from the definition of τm in (2.12) we have

P {τm ≥ N(m, x)}

= P

{
max

1≤k≤N

|Q(m, k)|
g1(m, k)

≤ c

}
= P

{(
N

m

)γ− 1
2

(
max

1≤k≤N

|Q(m, k)|
g1(m, k)

− ∆mN
√

m(N
m

)γ

)

≤
(

N

m

)γ− 1
2

(
c− ∆m√

m(N
m

)γ

)}
.

In view of Lemmas 2.6.3 – 2.6.5, we obtain

lim
m→∞

P

{
am(γ)

(
max

k∗≤k≤N

|Q(m, k)|
g1(m, k)

− ∆mN
√

m(N
m

)γ

)
≤ bm(γ)

}
= Φ(x),

where am(γ) and bm(γ) are defined in (2.24) and (2.25), respectively.

b) Next, we will replace N(m, x) by an expression containing the parameters am and

bm defined in Theorem 2.6.1. Using part a), we get

Φ(x) = 1− Φ(−x)

= 1− lim
m→∞

P {τm ≥ N(m,−x)}

= 1− lim
m→∞

P
{
τ 1−γ
m ≥ N(m,−x)1−γ

}
= 1− lim

m→∞
P

τ 1−γ
m ≥ cm

1
2
−γ

∆m

+ σx

(
c

1
2
−γm( 1

2
−γ)2

∆
3
2
−2γ

m

) 1
1−γ


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= 1− lim
m→∞

P
{

τ 1−γ
m − a1−γ

m ≥ σxa
1
2
−γ

m ∆−1
m

}
= lim

m→∞
P
{

τ 1−γ
m − a1−γ

m ≤ σxa
1
2
−γ

m ∆−1
m

}
,

where we have used symmetry properties and the continuity of the standard normal

distribution function.

c) Part a) and equation (2.21) yield

τm

am

P−→ 1 (2.26)

as m→∞. Now (2.26) combined with the mean-value theorem imply

τm − am

bm

=
(τ 1−γ

m )
1

1−γ − (a1−γ
m )

1
1−γ

bm

=
1

1− γ

(
a1−γ

m (1 + oP (1))
) 1

1−γ
−1 τ 1−γ

m − a1−γ
m

bm

=
1

1− γ
aγ

m(1 + oP (1))
τ 1−γ
m − a1−γ

m

bm

.

Therefore, Slutsky’s lemma implies that the random variables

τm − am

bm

and
aγ

m

1− γ

τ 1−γ
m − a1−γ

m

bm

have the same limit distribution. Plugging this relation into part b), we obtain

Φ(x) = lim
m→∞

P
{

τ 1−γ
m − a1−γ

m ≤ σxa
1
2
−γ

m ∆−1
m

}
= lim

m→∞
P

{
aγ

m

1− γ

τ 1−γ
m − a1−γ

m

bm

≤ σx
aγ

m

1− γ

a
1
2
−γ

m ∆−1
m

bm

}

= lim
m→∞

P

{
τm − am

bm

≤ σx
aγ

m

1− γ

a
1
2
−γ

m ∆−1
m

σa
1
2
m(1− γ)−1∆−1

m

}

= lim
m→∞

P

{
τm − am

bm

≤ x

}
.

This finishes the proof of Theorem 2.6.1. �
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Chapter 3

Monitoring Changes in RCA(1)

Time Series

In this chapter, we shall consider random coefficient autoregressive (RCA) time series,

which are defined as generalizations of autoregressive time series. Their basic properties

are discussed in Section 3.1.

As pointed out in the previous chapter (cf. Section 2.4), (weak or strong) invariance

can be verified for a variety of dependence concepts. In Section 3.2, we will show that also

in the case of RCA time series of order one a strong approximation holds true, although

the random variables form (for instance) no martingale difference array. Furthermore, it

is still an open question if they are strong mixing (cf. Lee (2003)). Fortunately, it turns

out that a theorem of Eberlein (1986) is applicable in the given situation. Moreover, we

derive a second strong approximation for a sequence applied to test for a change in one

of the parameters.

In Section 3.3, we shall use the strong invariance principles to obtain the corresponding

theorems from Section 2.5 and 2.6 for RCA time series of order one as well. Furthermore,

in Section 3.4 we add some a–posteriori procedures for a change in the mean scenario and

for a change in one of the parameters determining an RCA time series.

Some of the results of the current chapter have been submitted to the Statistics and

Probability Letters (cf. Aue (2003)).
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3.1 Introduction

Originally, random coefficient autoregressive (shortly RCA) time series have been used in

the context of random perturbations of dynamical systems, but are now used in a variety

of applications, as for example in finance or biology (cf. Tong (1990)). RCA time series

are generalizations of autoregressive time series, since they allow for randomly disturbed

coefficients as well. There are variations allowing a dependence on p of the previous

random variables, called RCA(p) time series, and moreover even multidimensional models

(cf. Nicholls and Quinn (1982)). We shall focus our attention on RCA time series of order

one here.

Assumption 3.1.1

Let {Xn}n∈Z be an RCA(1) time series, that is a solution of the equations

Xn = (ϕ + bn)Xn−1 + en (n ∈ Z), (3.1)

where

(i)

(
bn

en

)
iid∼

((
0

0

)
,

(
ω2 0

0 σ2

))
,

(ii) ϕ2 + ω2 < 1.

The sequences {bn}n∈Z and {en}n∈Z, respectively, are called (white) noise. Further-

more, define

Fn = σ (bk, ek : k ≤ n) (n ∈ Z) (3.2)

as the filtration generated by the noise sequences.

While part (i) of Assumption 3.1.1 describes the properties of and the connections between

the noise sequences {bn}n∈Z and {en}n∈Z, the second condition appears less familiar. But

in fact, it is a necessary and sufficient condition for the existence of an {Fn}–measurable

solution of the defining equations (3.1) and for its stationarity. A time series {Yn}n∈Z is

weakly stationary if for all n ∈ Z, the mean EYn is (the same) constant, EY 2
n is finite

and if there is a function γ = γY such that

Cov(Yn, Yn+h) = γY (h) (n, h ∈ Z),

i.e., the covariance depends only on the difference of the time–points under considera-

tion. A more restricted approach is the notion of strict stationarity defined via the finite

dimensional distributions by the equality

(Xn1 , . . . , Xnk
)
D
= (Xn1+h, . . . , Xnk+h) (n1, . . . , nk, h ∈ Z, k ∈ N).
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In case of an RCA(1) time series, (weak) stationarity can be characterized as follows.

Theorem 3.1.1 (Nicholls and Quinn)

Let {Xn}n∈Z be an RCA(1) time series. Then, the following statements are equivalent:

a) There is a unique {Fn}–measurable, weakly stationary solution of (3.1).

b) ϕ2 + ω2 < 1, i.e., condition (ii) holds true.

Proof: See Corollary 2.3.2 in Nicholls and Quinn (1982). �

It is an obvious fact, that from (i) we immediately get the strict stationarity of {Xn}n∈Z.

Now, the following properties are easy consequences of the previous remarks.

Lemma 3.1.1

Let {Xn}n∈Z be an RCA(1) time series with (i) and (ii), and let γX denote its covariance

function. Then,

EXn = 0, EX2
n =

σ2

1− ϕ2 − ω2
and γX(n) =

ϕnσ2

1− ϕ2 − ω2

for all n ∈ Z.

Proof: By (ii), E(ϕ + b1)
2 = ϕ2 + ω2 < 1. So, using Feigin and Tweedie (1985),

EX2
1 < ∞ and thus mean and variance exist. Since {Xn}n∈Z is strictly stationary, it

suffices to consider X1.

a) Condition (ii) implies |ϕ| < 1. Hence,

EX1 = E(ϕ + b1)X0 + Ee1 = ϕEX0.

Substituting EX0 = EX1 gives the first claim.

b) Next, we calculate

EX2
1 = E ((ϕ + b1)X0 + e1)

2 = ϕ2EX2
0 + ω2EX2

0 + σ2.

Substituting EX2
0 = EX2

1 and condition (ii) finish the proof.

c) Finally, we consider the covariance structure. γX(0) has already been calculated in

part b). Let the statement be true for n− 1 ∈ N. Then,

γX(n) = EXn+1X1 = ϕEXnX1 = ϕγX(n− 1) =
ϕϕn−1σ2

1− ϕ2 − ω2
,

where we have used the iid properties of the sequences {bn}n∈Z and {en}n∈Z. �
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3.2 A strong invariance principle

As we have seen, strong approximations have played a fundamental role in probability

and statistics ever since the seminal papers of Strassen (1964) and Komlós, Major and

Tusnády (1975,1976). Their results for partial sums of independent and identically dis-

tributed random variables have been extended to various dependence concepts. We are

going to verify a strong invariance principle for the partial sums of an RCA(1) time series

{Xn}n∈Z here. Let

Sn(m) = Xm+1 + . . . + Xm+n (m ∈ N0, n ∈ N), (3.3)

where we will abbreviate Sn(0) = Sn. Throughout the section, we assume the underlying

probability space to be rich enough such that both {Xn}n∈Z and the approximating Wiener

process can be defined on it. Our result will follow from a theorem of Eberlein (1986),

which we state in a simpler version here, since we are only interested in real–valued

RCA(1) time series (and not in vector–valued ones). Let ‖ · ‖1 denote the L1–norm.

Theorem 3.2.1 (Eberlein)

Let {Xn}n∈N be a sequence of real–valued random variables such that

a) EXn = 0 for all n ∈ N,

b) ‖E(Sn(m)|Fm)‖1 = O(n
1
2
−θ) uniformly in m ∈ N0 for some θ ∈ (0, 1

2
),

c) there exists a constant σW such that uniformly in m ∈ N0,

ES2
n(m)− σW = O

(
n−ρ
)

as n→∞ for some ρ > 0,

d) there exists a γ > 0 such that uniformly in m ∈ N0,

‖E
(
S2

n(m)|Fm

)
− ES2

n(m)‖1 = O
(
n1−γ

)
a.s.

as n→∞,

e) there exist a constant M <∞ and κ > 2, such that E|Xn|κ < M for all n ∈ N.

Then, there exists a Wiener process {W (t) : t ≥ 0}, such that

[t]∑
n=1

Xn − σW W (t) = O
(
t

1
ν

)
a.s.

as t→∞ for some ν > 2.
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Proof: See Theorem 1 in Eberlein (1986). �

By verifying the assumptions made in Theorem 3.2.1, we get the following strong

approximation for RCA(1) time series.

Theorem 3.2.2 (Strong invariance for RCA(1) time series)

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and let

E|e1|κ <∞ and E|ϕ + b1|κ < 1 (3.4)

for some κ > 2. Then, there exists a Wiener process {W (t) : t ≥ 0} such that

S[t] − σSW (t) = O
(
t

1
ν

)
a.s.

as t→∞ for some ν > 2, where

σ2
S =

σ2

1− ϕ2 − ω2

1 + ϕ

1− ϕ
.

We start with the proof of Theorem 3.2.2 and firstly obtain the order of the conditional

expectation of Sn(m). Here and in the sequel we shall use the following property of

conditional expectations. If C1 ⊂ C2 are σ–fields, then E(X|C1) = E(E(X|C2)|C1).

Lemma 3.2.1

Let {Xn}n∈Z be an RCA(1) time series with (i) and (ii). Then, uniformly in m ∈ N0,

‖E (Sn(m)|Fm)‖1 = O (1)

as n→∞.

Proof: Firstly,

E (Sn(m)|Fm) =
n∑

i=1

E (Xm+i|Fm)

= Xm

n∑
i=1

ϕi

=
ϕXm(1− ϕn)

1− ϕ
−→ ϕXm

1− ϕ
a.s.

as n→∞, since

E (Xm+i|Fm) = E(E(Xm+i|Fm+i−1)|Fm) = ϕE(Xm+i−1|Fm) = ϕiXm a.s.
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for i = 1, . . . , n by iteration. Therefore, we get

‖E(Sn(m)|Fm)‖1 = E(|E(Sn(m)|Fm)|)

= E

∣∣∣∣Xm
ϕ(1− ϕn)

1− ϕ

∣∣∣∣
≤ |ϕ|

∞∑
k=0

|ϕ|kE|Xm|

=
|ϕ|E|X0|
1− |ϕ|

= O
(
|ϕ|

1− |ϕ|

)
= O(1)

as n→∞ uniformly in m. �

Secondly, we determine the asymptotic variance of Sn(m).

Lemma 3.2.2

Let {Xn}n∈Z be an RCA(1) time series with (i) and (ii). Then, uniformly in m ∈ N0,

1

n
ES2

n(m) =
σ2

1− ϕ2 − ω2

1 + ϕ

1− ϕ
+O

(
1

n

)
as n→∞.

Proof: It holds,

1

n
E (Sn(m)Sn(m)) =

1

n
E

(
m+n∑

k=m+1

X2
k

)
+ 2

m+n∑
k>l

E(XkXl)

and

1

n
E

(
m+n∑

k=m+1

X2
k

)
=

1

n
nγX(0) =

σ2

1− ϕ2 − ω2
,

2

n

m+n∑
k>l

E(XkXl) =
2

n

m+n∑
k>l

γX(k − l) =
2σ2

1− ϕ2 − ω2

1

n

n−1∑
i=1

iϕn−i.

Now

1

n

n−1∑
i=1

iϕn−i =
1

n

n−1∑
i=1

(n− i)ϕi

=
n−1∑
i=1

ϕi − 1

n

n−1∑
i=1

iϕi
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=
ϕ(1− ϕn)

1− ϕ
− ϕ

n

(
ϕ(1− ϕn)

1− ϕ

)′
=

ϕ

1− ϕ
+O

(
1

n

)
as n→∞, since(

ϕ(1− ϕn)

1− ϕ

)′
−→ − 1

(1− ϕ)2
and

ϕ(1− ϕn)

1− ϕ
−→ ϕ

1− ϕ

exponentially fast as n→∞, finishing the proof. �

Finally, we calculate the order of the difference between the variance and the condi-

tional variance of Sn(m).

Lemma 3.2.3

Let {Xn}n∈Z be an RCA(1) time series with (i) and (ii). Then, uniformly in m ∈ N0,∥∥E (S2
n(m)|Fm

)
− ES2

n(m)
∥∥

1
= O (1) ,

as n→∞.

Proof: The proof is given in three steps.

a) Firstly,

E
(
S2

n(m)|Fm

)
=

m+n∑
k=m+1

E
(
X2

k |Fm

)
+ 2

m+n∑
k>l

E (XkXl|Fm) a.s.

Consider

X2
m+i =

(
ϕ2 + 2bm+iϕ + b2

m+i

)
X2

m+i−1 + 2(ϕ + bm+i)Xm+i−1em+i + e2
m+i.

Then, we recursively get

E
(
X2

m+i|Fm

)
= E

(
E
(
X2

m+i|Fm+i−1

)
|Fm

)
= E

((
ϕ2 + ω2

)
X2

m+i−1 + σ2|Fm

)
=

(
ϕ2 + ω2

)
E
(
X2

m+i−1|Fm

)
+ σ2

=
(
ϕ2 + ω2

)i
X2

m + σ2

i∑
j=1

(ϕ2 + ω2)j−1 a.s.
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Furthermore,

m+n∑
k=m+1

E
(
X2

k |Fm

)
=

n∑
i=1

E
(
X2

m+i|Fm

)
=

n∑
i=1

(
ϕ2 + ω2

)i
X2

m + σ2

n∑
i=1

i∑
j=1

(
ϕ2 + ω2

)j−1

=
n∑

i=1

(
ϕ2 + ω2

)i
X2

m + σ2

n∑
i=1

1− (ϕ2 + ω2)i

1− ϕ2 − ω2

=
(ϕ2 + ω2)X2

m(1− (ϕ2 + ω2)n)

1− ϕ2 − ω2

+
nσ2

1− ϕ2 − ω2
− σ2(ϕ2 + ω2)(1− (ϕ2 + ω2)n)

1− ϕ2 − ω2

a.s. and for i > j we have a.s.

E(Xm+iXm+j|Fm) = E(E(Xm+iXm+j|Fm+j)Fm)

= ϕi−jE
(
X2

m+j|Fm

)
= ϕi−j

(
ϕ2 + ω2

)j
X2

m + σ2ϕi−j

j∑
k=1

(
ϕ2 + ω2

)k−1

= ϕi−j
(
ϕ2 + ω2

)j
X2

m + σ2ϕi−j 1− (ϕ2 + ω2)j

1− ϕ2 − ω2
.

Thus a.s.,

m+n∑
k>l

E(XkXl|Fm) =
n∑

i>j

E(Xm+iXm+j|Fm)

=
n∑

i>j

ϕi−j
(
ϕ2 + ω2

)j
X2

m + σ2

n∑
i>j

ϕi−j 1− (ϕ2 + ω2)j

1− ϕ2 − ω2
.

b) It holds,

ES2
n(m) =

m+n∑
k=m+1

EX2
k + 2

m+n∑
k>l

E(XkXl)

=
n∑

i=1

γX(0) + 2
n∑

i>j

γX(i− j)

=
nσ2

1− ϕ2 − ω2
+ 2σ2

n∑
i>j

ϕi−j

1− ϕ2 − ω2
.
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c) From a) and b),

E
(
S2

n(m)|Fm

)
− ES2

n(m)

=
n∑

i=1

E
(
X2

m+i|Fm

)
−

n∑
i=1

EX2
m+i

+2
n∑

i>j

E(Xm+iXm+j|Fm)− 2
n∑

i>j

E(Xm+iXm+j)

= D1 + D2 a.s.

Now,

D1 =
(
X2

m − σ2
) (ϕ2 + ω2)(1− (ϕ2 + ω2)n)

1− ϕ2 − ω2

−→
(
X2

m − σ2
) ϕ2 + ω2

1− ϕ2 − ω2
a.s.

as n→∞ and hence ED1 = O(1) uniformly in m ∈ N0. Moreover, ED2 = O(1) if

ϕ = 0. If ϕ 6= 0, we get

D2 =
2(X2

m − σ2)

1− ϕ2 − ω2

n∑
i>j

ϕi−j
(
ϕ2 + ω2

)j
a.s.

(and hence ED2 = O(1) uniformly in m ∈ N0) as n→∞ as follows. Set

I =
n∑

i>j

ϕi−j
(
ϕ2 + ω2

)j
=

n∑
j=1

n∑
i=j+1

ϕi−j
(
ϕ2 + ω2

)j
and consider the inner sum

n∑
i=j+1

ϕi−j
(
ϕ2 + ω2

)j
= ϕ−j

(
ϕ2 + ω2

)j n∑
i=j+1

ϕi

= ϕ−j
(
ϕ2 + ω2

)j ϕj+1 − ϕn+1

1− ϕ
.

This yields

I =
n∑

j=1

(
ϕ2 + ω2

ϕ

)j
ϕj+1 − ϕn+1

1− ϕ

=
ϕ

1− ϕ

n∑
j=1

(
ϕ2 + ω2

)j − 1

1− ϕ

n∑
j=1

(
ϕ2 + ω2

)j
ϕn−j+1

= I1 + I2
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with

lim
n→∞

I1 =
ϕ(ϕ2 + ω2)

(1− ϕ)(1− ϕ2 − ω2)

and

I2 = O

(
1

1− ϕ

n∑
j=1

|ϕ|n−j+1

)
= O

(
1

1− ϕ

n∑
j=1

|ϕ|j
)

= O(1)

since ϕ2 + ω2 < 1 and the sum converges to (1− |ϕ|)−1. �

Thus, we have proved Theorem 3.2.2.

Proof of Theorem 3.2.2: Applying Feigin and Tweedie (1985), from (3.4), we im-

mediately get that E|X1|κ < ∞. Hence, the assertion follows from Theorem 3.2.1 in

combination with Lemmas 3.2.1 – 3.2.3. �

In Section 3.4, we shall construct a test for a change of the parameter ϕ, too. In

order to do so, we need a strong invariance principle for the partial sums of the random

variables {Zn}n∈Z defined via the equations

Zn = Xn−1(Xn − ϕXn−1) (n ∈ Z), (3.5)

where {Xn}n∈Z denotes an RCA(1) time series. Set

Rn(m) = Zm+1 + . . . + Zm+n (m ∈ N0, n ∈ N)

and Rn = Rn(0). Under suitable moment conditions we arrive at the following strong

approximation.

Theorem 3.2.3 (Strong invariance)

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and let {Zn}n∈Z be defined in (3.5).

If

E|e1|κ <∞ and E|ϕ + b1|κ < 1

with some κ > 4, then, there exists a Wiener process {W (t) : t ≥ 0} such that

R[t] − σRW (t) = O
(
t

1
ν

)
a.s.

as t→∞ for some ν > 2, where

σ2
R = ω2EX4

1 + σ2EX2
1 .
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Now, we prove the corresponding lemmas for the sequence {Zn}n∈Z by replacing Sn(m)

with Rn(m) in the statements of the previous lemmas. We start again with the consi-

deration of the conditional expectation of Rn(m) with respect to the filtration given in

(3.2).

Lemma 3.2.4

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and let {Zn}n∈Z be defined in (3.5).

Then, for all n ∈ N, m ∈ N0,

‖E(Rn(m)|Fm)‖1 = 0.

Proof: Since

E(Xi−1(Xi − ϕXi−1)|Fi−1) = Xi−1E(Xi|Fi−1)− ϕX2
i−1 = 0 a.s.

for all i ∈ Z, {Zn}n∈Z is a sequence of martingale differences and the assertion follows. �

Next, we estimate the variance of Rn(m).

Lemma 3.2.5

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and let {Zn}n∈Z be defined in (3.5).

If

Ee4
1 <∞ and E(ϕ + b1)

4 < 1,

then, for all n ∈ N, m ∈ N0,

1

n
ER2

n(m) = ω2EX4
1 + σ2EX2

1 .

Proof: It follows from our assumptions that EX4
1 <∞ (cf. Feigin and Tweedie (1985)).

Now,

1

n
ER2

n(m) =
1

n

m+n∑
i=m+1

E(X2
i−1bi + Xi−1ei)

2

+
2

n

m+n∑
i>j

E(X2
i−1bi + Xi−1ei)(X

2
j−1bj + Xj−1ej)

= J1 + J2.

By strong stationarity, the first term gives

J1 =
1

n

m+n∑
i=m+1

EX4
i−1b

2
i +

1

n

m+n∑
i=m+1

EX2
i−1e

2
i

= ω2EX4
1 + σ2EX2

1 < ∞,
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while the second is zero, since for i > j:

E(X2
i−1bi + Xi−1ei)(X

2
j−1bj + Xj−1ej)

= EX2
i−1X

2
j−1bjEbi + EX2

i−1Xj−1ejEbi

+EXi−1X
2
j−1bjEei + EXi−1Xj−1ejEei

= 0

by (i). This completes the proof. �

We need the following proposition which gives a recursion for the fourth conditional

moments of the Xn.

Proposition 3.2.1

Let {Xn}n∈Z be an RCA(1) time series with (i) and (ii). If

Ee4
1 <∞ and E(ϕ + b1)

4 < 1,

then, the recursion

E
(
X4

m+i−1|Fm

)
= ci−1

0 X4
m +

i−1∑
j=1

cj−1
0 c1E

(
X2

m+i−j−1|Fm

)
+

i−1∑
j=1

cj−1
0 c2E(Xm+i−j−1|Fm) +

1− ci−1
0

1− c0

c3 a.s.

holds true for all i = 1, . . . , n, where

c0 = E(ϕ + b1)
4, c1 = 6σ2(ϕ2 + ω2), c2 = ϕEe3

1, c3 = Ee4
1.

Proof: We have

E
(
X4

m+i−1|Fm

)
= c0E

(
X4

m+i−2|Fm

)
+ Nm+i−2

= ci−1
0 X4

m +
i−1∑
j=1

cj−1
0 Nm+i−j−1 a.s.,

where

Nm+i−j−1 = c1E
(
X2

m+i−j−1|Fm

)
+ c2E(Xm+i−j−1|Fm) + c3 a.s.

Now,

i−1∑
j=1

cj−1
0 Nm+i−j−1 =

i−1∑
j=1

cj−1
0 c1E

(
X2

m+i−j−1|Fm

)
+

i−1∑
j=1

cj−1
0 c2E(Xm+i−j−1|Fm) +

i−1∑
j=1

cj−1
0 c3 a.s.,
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finishing the proof. �

Finally, we obtain a third lemma.

Lemma 3.2.6

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and let {Zn}n∈Z be defined in (3.5).

If

Ee4
1 <∞ and E(ϕ + b1)

4 < 1,

then, uniformly in m ∈ N0,

‖E(R2
n(m)|Fm)− ER2

n(m)‖1 = O(1)

as n→∞.

Proof:

a) Similarly as in the proof of Lemma 3.2.5,

ER2
n(m) = E

(
m+n∑

j=m+1

(
X2

j−1bj + Xj−1ej

))2

= nω2EX4
0 + nσ2EX2

0

and therefore the variance is independent of m.

b) By (i) and the definition of {Fm}m∈Z in (3.2),

E

( m+n∑
i=m+1

(
X2

i−1bi + Xi−1ei

))2 ∣∣Fm


=

m+n∑
i=m+1

E
(
X4

i−1b
2
i |Fm

)
+

m+n∑
i=m+1

E
(
X2

i−1e
2
i |Fm

)
= L1 + L2 a.s.

Using the recursions from the proof of Lemma 3.2.3, for i = 1, . . . , n we get

E
(
X2

m+i−1e
2
m+i|Fm

)
= E

(
E
(
X2

m+i−1e
2
m+i|Fm+i−1|

)
Fm

)
= σ2E

(
X2

m+i−1|Fm

)
= σ2

(
X2

m − EX2
0

) (
ϕ2 + ω2

)i−1
+ σ2EX2

0 a.s.
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Thus,

L2 =
n∑

i=1

E
(
X2

m+i−1e
2
m+i|Fm

)
= σ2

(
X2

m − EX2
0

) n∑
i=1

(
ϕ2 + ω2

)i−1
+ nσ2EX2

0 a.s.

and hence EL2 = O(1) as n→∞. An application of Proposition 3.2.1 yields

EL1 = nω2EX4
0 +O(1) a.s. (3.6)

as n→∞ in a similar way: Firstly,

m+n∑
i=m+1

E
(
X4

i−1b
2
i |Fm

)
= ω2

n∑
i=1

E
(
X4

m+i−1|Fm

)
a.s.

Now, we are able to use the recursion from Proposition 3.2.1.

(i) The first term yields

n∑
i=1

ci−1
0 X4

m = X4
m

1− cn
0

1− c0

a.s.

as n→∞, since c0 = E(ϕ + b1)
4 < 1 by assumption.

(ii) For the second term, it holds true

n∑
i=1

i−1∑
j=1

cj−1
0 c1E

(
X2

m+i−j−1|Fm

)
= c1

n∑
i=1

i−1∑
j=1

cj−1
0 X2

m

(
ϕ2 + ω2

)i−j+1
+

c1σ
2

1− ϕ2 − ω2

n∑
i=1

i−1∑
j=1

cj−1
0

− c1σ
2

1− ϕ2 − ω2

n∑
i=1

i−1∑
j=1

cj−1
0

(
ϕ2 + ω2

)i−j+1

= La + Lb + Lc a.s.

Therein,

La ≤ c1X
2
m

n∑
i=1

(i− 1)
(
ϕ2 + ω2

)i−2
a.s.
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and ELa = O(1) as n→∞, by assumption on c0. Analogously,

Lc = O(1)

as n→∞. Finally,

Lb =
nc1σ

2

(1− ϕ2 − ω2)(1− c0)
− c1σ

2(1− cn
0 )

(1− ϕ2 − ω2)(1− c0)

=
nc1EX2

1

1− c0

+O(1)

as n→∞.

(iii) Next, we consider the third term of the recursion. It holds,

n∑
i=1

i−1∑
j=1

cj−1
0 c2E (Xm+i−j−1|Fm)

= c2

n∑
i=1

i−1∑
j=1

cj−1
0 ϕi−j−1Xm a.s.

as n→∞, by the same arguments used in the proof of Lemma 3.2.3, step c).

Recall again, that c0 < 1.

(iv) The last term yields

c3

n∑
i=1

1− ci−1
0

1− c0

=
nc3

1− c0

+O(1)

as n→∞.

On recognizing

EX4
1 =

1

1− c0

(
c1EX2

1 + c3

)
,

relation (3.6) is proved.

On combining a) and b) the proof of Lemma 3.2.6 is complete. �

Therefore, Theorem 3.2.3 is readily proved.

Proof of Theorem 3.2.3: It is obtained by an application of Lemmas 3.2.4 – 3.2.6 and

Theorem 3.2.1. �
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3.3 A sequential test procedure

In this section, we shall apply the strong invariance principle proved in Theorem 3.2.2 to

provide sequential test procdeures. Hence, we deal again with the situation of Chapter

2, i.e., in more detail, a change in the mean scenario for the random variables {Yn}n∈N

defined by

Yn =

{
µ + Xn : n = 1, . . . ,m + k∗ − 1,

µ + ∆m + Xn : n = m + k∗, m + k∗ + 1, . . . ,

where µ, k∗ and ∆m are unknown parameters and {Xn}n∈Z is an RCA(1) time series. In

particular, we assume that there is no change in a historical data set of size m. We are

interested in testing the hypotheses

H0 : ∆m = 0,

HA : ∆m 6= 0.

Rephrasing the arguments of Section 2.3, we stop and reject H0, if

τm = inf {k ≥ 1 : |Q(m, k)| ≥ g(m, k)}

with the CUSUM detector

Q(m, k) =
m+k∑

j=m+1

Yj −
k

m

m∑
j=1

Yj

and the boundary function

g(m, k) = cm1/2

(
1 +

k

m

)(
k

m + k

)γ

,

where γ ∈ [0, 1
2
) and c = c(α). Then, we can derive the following limit theorems for the

test statistic under the null and alternative hypothesis.

Theorem 3.3.1 (Asymptotic under the null hypothesis)

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and let

E|e1|κ <∞ and E|ϕ + b1|κ < 1

for some κ > 2. Then, under H0,

lim
m→∞

P

{
1

σS

sup
k≥1

|Q(m, k)|
g(m, k)

≤ 1

}
= P

{
sup

0≤t≤1

|Ŵ (t)|
tγ

≤ c

}
,

where {Ŵ (t) : 0 ≤ t ≤ 1} denotes a Wiener process and σ2
S is given in Theorem 3.2.2.
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Proof:

a) From Theorem 3.2.2, for all k ≥ 1 we get

m+k∑
i=m+1

Xi = σS(W (m + k)−W (m)) +O
(
(m + k)

1
ν + m

1
ν

)
a.s.

and

m∑
i=1

Xi = σSW (m) +O
(
m

1
ν

)
a.s.

as m→∞. Set W̃m(k) = W (m + k)−W (m). Then,

sup
k≥1

1

g(m, k)

∣∣∣∣∣
m+k∑

i=m+1

Xi −
k

m

m∑
i=1

Xi − σS

(
W̃m(k)− k

m
W (m)

)∣∣∣∣∣
= O

(
sup
k≥1

(m + k)
1
ν + m

1
ν + k

m
m

1
ν

√
m
(
1 + k

m

) (
k

m+k

)γ
)

a.s.

as m→∞. Now,

sup
1≤k≤m

(m + k)
1
ν + m

1
ν + k

m
m

1
ν

√
m
(
1 + k

m

) (
k

m+k

)γ
≤ sup

1≤k≤m

(m + k)
1
ν + 2m

1
ν

√
m
(
1 + k

m

) (
k

m+k

)γ
≤

(
2

1
ν + 2

)
m

1
ν
− 1

2 sup
1≤k≤m

(
k

m + k

)1−γ

≤
(
2

1
ν + 2

)
m

1
ν
− 1

2 2γ−1

= o(1)

as m→∞, since ν > 2. Similarly,

sup
m<k<∞

(m + k)
1
ν + m

1
ν + k

m
m

1
ν

√
m
(
1 + k

m

) (
k

m+k

)γ = O
(
m

1
ν
− 1

2

)
= o(1)

as m→∞. Thus, we have proved

sup
k≥1

1

g(m, k)

∣∣∣∣∣
m+k∑

i=m+1

Xi −
k

m

m∑
i=1

Xi − σS

(
W̃m(k)− k

m
W (m)

)∣∣∣∣∣ = o(1) a.s.

as m→∞.
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b) The distribution of {W̃m(k)} is independent of m. Hence,

sup
k≥1

|W̃m(k)− k
m

W (m)|
g(m, k)

D
= sup

k≥1

|W̃ (k)− k
m

W (m)|
g(m, k)

,

where {W̃ (t) : t ≥ 0} is a Wiener process independent of {W (t) : t ≥ 0}. Now, we

are exactly at the starting point of the proof of Theorem 2.1 in Horváth, Hušková,

Kokoszka and Steinebach (2003). Along their lines, the proof is complete. �

Theorem 3.3.2 (Asymptotic under the alternative)

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and let

E|e1|κ <∞ and E|ϕ + b1|κ < 1

for some κ > 2. If ∆m = ∆ and k∗ = o(m), then, under HA,

1

σS

sup
k≥1

|Q(m, k)|
g(m, k)

P−→∞

as m→∞, where σ2
S is given in Theorem 3.2.2.

Proof: Set k̃ = m + k∗. Then,

Q(m, k̃) =
m+k̃∑

i=m+1

Yi −
k̃

m

m∑
i=1

Yi

=
m+k̃∑

i=m+1

Xi −
k̃

m

m∑
i=1

Xi + ∆m(k̃ − k∗ + 1)

with ∆m = ∆ 6= 0 under HA. By Theorem 3.3.1, we have

1

g(m, k̃)

 m+k̃∑
i=m+1

Xi −
k̃

m

m∑
i=1

Xi

 = OP (1)

as m→∞. Since k∗ = o(m) by assumption,

1 ≥

(
1 +

k̃

m

)(
k̃

m + k̃

)γ

→ 21−γ

as m→∞. Therefore,

|∆m|(k̃ − k∗ + 1)

g(m, k̃)
∼
√

m|∆|
21−γ

→∞
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as m→∞, where an ∼ bn means an

bn
→ 1 as n→∞. This completes the proof. �

Our next goal is to replace the variance parameter σ2
S of the approximating Wiener

process {W (t) : 0 ≤ t ≤ 1} from Theorem 3.2.2 by a suitable estimator σ̂2
S,m (m ≥ 1)

(which is obtained by plugging in consistent estimators of the parameters of the RCA(1)

time series).

Lemma 3.3.1

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and for every m ≥ 1 let ϕ̂m, σ̂2
m and

ω̂2
m be (weakly) consistent estimators of the parameters ϕ, σ2 and ω2, respectively. Then,

σ̂2
S,m =

σ̂2
m

1− ϕ̂2
m − ω̂2

m

1 + ϕ̂m

1− ϕ̂m

P−→ σ2
S (3.7)

as m→∞, i.e., σ̂2
S,m is a (weakly) consistent estimator of σ2

S.

Proof: (ϕ̂m, σ̂2
m, ω̂2

m)′ is a (weakly) consistent estimator for the vector valued parameter

(ϕ, σ2, ω2)′. The estimator σ̂2
S,m is obtained from (ϕ̂m, σ̂2

m, ω̂2
m)′ through a continuous

transformation and hence (weakly) consistent for σ2
S. �

Now, we get the following corollaries of Theorems 3.3.1 and 3.3.2.

Corollary 3.3.1

Let the assumptions of Theorem 3.3.1 be satisfied. Then, under H0,

lim
m→∞

P

{
1

σ̂S,m

sup
k≥1

|Q(m, k)|
g(m, k)

≤ 1

}
= P

{
sup

0≤t≤1

|Ŵ (t)|
tγ

≤ c

}
,

where σ̂2
S,m is defined in (3.7).

Proof: The assertion follows from Theorem 3.3.1 and Lemma 3.3.1. �

Corollary 3.3.2

Let the assumptions of Theorem 3.3.2 be satisfied. Then, under HA,

1

σ̂S,m

sup
k≥1

|Q(m, k)|
g(m, k)

P−→∞

as m→∞, where σ̂2
S,m is defined in (3.7).

Proof: The assertion follows from Theorem 3.3.2 and Lemma 3.3.1. �
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One way to obtain consistent estimators of ϕ, ω2 and σ2 is the application of a two

step procedure which leads to (conditional) least squares estimators (LSE) ϕ̂m,L, ω̂2
m,L and

σ̂2
m,L. Along the lines of Section 3.2 in Nicholls and Quinn (1982), firstly

ϕ̂m,L =

(
m∑

i=1

X2
i−1

)−1 m∑
i=1

Xi−1Xi (3.8)

can be calculated by minimizing the sum

m∑
i=1

(Xi − ϕXi−1)
2.

with respect to ϕ. Then, in a similar way, we get

ω̂2
m,L =

(
m∑

i=1

(X2
i−1 − X̄2

m)2

)−1 m∑
i=1

(X2
i−1 − X̄2

m)(Xi − ϕ̂m,LXi−1)
2,

σ̂2
m,L =

1

m

m∑
i=1

(Xi − ϕ̂m,LXi−1)
2 − ω̂2

m,LX̄2
m

as minimizers (with respect to ω2 and σ2, respectively) of

m∑
i=1

(
(Xi − ϕ̂m,LXi−1)

2 − ω2X2
i−1 − σ2

)2
.

Recall, that under H0 we a.s. have E((Xi−ϕXi−1)
2|Fi−1) = ω2X2

i−1 +σ2 for i = 1, . . . ,m.

How long does it take to detect the change–point and how big is the difference between

the stopping time and the true change–point given in the underlying model? We will

answer this question by giving the limit distribution of the stopping time τm. Thereby,

we will follow closely the lines of Section 2.6. So, we establish the following conditions

on k∗ and ∆m, which is moreover assumed to be positive without loss of generality from

now on. Let

∆m → 0,
√

m∆m → 0, (3.9)

k∗ = O
(
mθ
)

with some 0 ≤ θ <

( 1
2
− γ

1− γ

)2

(3.10)

as m→∞. Recall that γ ∈ [0, 1
2
).
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Theorem 3.3.3 (Limit distribution of the stopping time)

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and

E|e1|κ <∞ and E|ϕ + b1|κ < 1

for some κ > 2. Let the conditions (3.9) and (3.10) be satisfied. Then, under HA,

lim
m→∞

P

{
τm − am

bm

≤ x

}
= Φ(x),

where Φ(x) denotes the standard normal distribution function. Moreover,

am =

(
cm

1
2
−γ

∆m

) 1
1−γ

,

bm =

√
amσS

(1− γ)∆m

=

√
am

(1− γ)∆m

σ2

1− ϕ2 − ω2

1 + ϕ

1− ϕ
,

where σ2
S is given in Theorem 3.2.2.

Proof: Since

m∑
i=1

Xi = σSW (m) +O
(
m

1
ν

)
a.s.

as m→∞ by Theorem 3.2.2, we have that

m∑
i=1

Xi = OP

(√
m
)

as m → ∞. Therefore, the assumptions of Theorem 2.6.1 are satisfied and the assertion

follows. �

3.4 A–posteriori tests

Beside the sequential testing of Section 3.3, Theorem 3.2.2 can also be utilized to construct

asymptotic tests for a given data set of fixed size. Recently, there has been an article by

Lee, Ha, Na and Na (2003), who used a weak invariance principle to test for the stability of

a certain general parameter vector determining the underlying time series. In particular,

they derive a test which is able to detect changes in all of the parameters ϕ, ω2 and σ2 of

an RCA(1) time series at the same time. Here, we shall focus on the testing for a change

in the mean and for the stability of the deterministic component ϕ of the coefficients.
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Let Y1, . . . , Ym be observations of the random variables

Yn =

{
µ + Xn : n = 1, . . . , k∗,

µ + ∆m + Xn : n = k∗ + 1, . . . ,m,

where µ, k∗ and ∆m are unknown parameters and {Xn}n∈Z is an RCA(1) time series.

Instead of a sequential monitoring scheme, we shall apply a test procedure based on a

fixed data set of m observations. Again, we are interested in testing the change in the

mean hypotheses

H0 : ∆m = 0,

HA : ∆m 6= 0, k∗ < m.

The test is based on the CUSUM

Q(m, k) = Sk −
k

m
Sm =

k∑
i=1

Yi −
k

m

m∑
i=1

Yi. (3.11)

But instead of (3.11), we will consider the functional versions

Tm(t) = S[mt] − tSm =

[mt]∑
i=1

Yi − t
m∑

i=1

Yi (t ∈ [0, 1]),

where [·] denotes the integer part.

Theorem 3.4.1 (Asymptotic under the null hypothesis)

Let {Xn}n∈Z be an RCA(1) time series with (i), (ii) and let

E|e1|κ <∞ and E|ϕ + b1|κ < 1

for some κ > 2. Then, under H0,

sup
t∈[0,1]

|Tm(t)|√
mσS

D−→ sup
t∈[0,1]

|B(t)|,

sup
t∈[0,1]

Tm(t)√
mσS

D−→ sup
t∈[0,1]

B(t)

as m → ∞, where {B(t) : 0 ≤ t ≤ 1} denotes a Brownian bridge and σ2
S is given in

Theorem 3.2.2.
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Proof: It follows from Theorem 3.2.2, that there exist a Wiener process {W (t) : t ≥ 0}
and a ν > 2 such that

k∑
i=1

Xi = σSW (k) +O
(
k

1
ν

)
a.s.

as k →∞. Hence,

sup
t∈[0,1]

∣∣∣∣ |Tm(t)|√
m
− σS√

m
|W ([mt])− tW (m)|

∣∣∣∣
= O

(
sup

t∈[0,1]

[mt]
1
ν + tm

1
ν

√
m

)
= O

(
m

1
ν
− 1

2

)
= o(1) a.s.

as m→∞. Now,

sup
t∈[0,1]

∣∣∣∣ |W ([mt])− tW (m)|√
m

− |W (mt)− tW (m)|√
m

∣∣∣∣
≤ sup

t∈[0,1]

|W ([mt])−W (mt)|√
m

= o(1) a.s.

as m → ∞, since the order of the increments of the Wiener process can be estimated

appropriately (cf. Csörgő and Réveśz (1981), Theorem 1.2.1 and Lemma 1.2.1). Finally,

the scale transformation yields{
1√
m

(W (mt)− tW (m))

}
D
= {W (t)− tW (1)} D

= {B(t)},

where {B(t) : 0 ≤ t ≤ 1} denotes a Brownian bridge. The second claim is proved in a

similar way and hence is omitted. �

As in the previous section, σ2
S can be replaced by the consistent estimator σ̂2

S,m defined

in (3.7) without losing the convergence results of Theorem 3.4.1.

Corollary 3.4.1

Let the assumptions of Theorem 3.4.1 be satisfied. Then, under H0,

sup
t∈[0,1]

|Tm(t)|√
mσ̂S,m

D−→ sup
t∈[0,1]

|B(t)|,

sup
t∈[0,1]

Tm(t)√
mσ̂S,m

D−→ sup
t∈[0,1]

B(t)

as m→∞, where σ̂2
S,m is defined in (3.7).
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Proof: The assertion follows from Theorem 3.4.1 and Lemma 3.3.1. �

The final paragraph is devoted to testing the constancy of ϕ via the least squares

estimator ϕ̂m = ϕ̂m,L in (3.8). The estimator itself does not satisfy the conditions of

Theorem 3.2.1, as is easily checked. But in Section 3.2, we have already seen that the

sequence

Zn = Xn−1(Xn − ϕXn−1) (n ∈ Z)

does. Furthermore,

ϕ̂m − ϕ =

(
m∑

i=1

X2
i−1

)−1 m∑
i=1

XiXi−1 −

(
m∑

i=1

X2
i−1

)−1 m∑
i=1

ϕX2
i−1

=

(
m∑

i=1

X2
i−1

)−1 m∑
i=1

Xi−1(Xi − ϕXi−1)

=

(
m∑

i=1

X2
i−1

)−1 m∑
i=1

(X2
i−1bi + Xi−1ei).

Hence, a test statistic can be obtained through imitating the CUSUM procedure for a

change in the mean by comparing the estimators ϕ̂k and ϕ̂m or by using the functional

version

Um(t) = [mt]
(
ϕ̂[mt] − ϕ̂m

)
(t ∈ [0, 1]),

where [·] denotes the integer part. We are able to proof the following theorem.

Theorem 3.4.2 (Asymptotic under the null hypothesis)

Let {Xn}n∈Z be an RCA(1) time series with (i),(ii) and let

E|e1|κ <∞ and E|ϕ + b1|κ < 1

for some κ > 4. Then, under H0,

sup
t∈[0,1]

|Um(t)|√
mσU

D−→ sup
t∈[0,1]

|B(t)|,

sup
t∈[0,1]

Um(t)√
mσU

D−→ sup
t∈[0,1]

B(t),

as m→∞, where {B(t) : 0 ≤ t ≤ 1} denotes a Brownian bridge and

σU =
σR

EX2
1

.
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Proof: We have

sup
t∈[0,1]

∣∣∣∣ Um(t)√
mσU

− 1√
m

(W ([mt])− tW (m))

∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣ Um(t)√
mσU

− 1√
mσR

(
R[mt] −

[mt]

m
Rm

)∣∣∣∣
+ sup

t∈[0,1]

∣∣∣∣ 1√
mσR

(
R[mt] −

[mt]

m
Rm

)
− 1√

m
(W ([mt])− tW (m))

∣∣∣∣
= K1 + K2.

Clearly, K2 = o(1) a.s. as m→∞ by Theorem 3.2.3 (cf. also the proof of Theorem 3.4.1).

Moreover,

K1 = sup
t∈[0,1]

∣∣∣∣ Um(t)√
mσU

− 1√
mσR

(
R[mt] −

[mt]

m
Rm

)∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣ 1√
mσR

(
R[mt] −

[mt]

m
Rm

)(
EX2

1
1
m

∑m
i=1 X2

i−1

− 1

)∣∣∣∣
= oP (1)

as m→∞, since {Rn}n∈N is a square integrable martingale with respect to the filtration

{Fn}n∈N and

1

m

m∑
i=1

X2
i−1 −→ EX2

1 a.s.

as m→∞ by the ergodic theorem (cf. Feigin and Tweedie (1985)). �

Finally, σU can be replaced by consistent estimators, but the estimation procedure ist

tedious because estimators of all moments up to fourth order are involved.
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Chapter 4

Maximum Approximations

The present chapter is devoted to the maxima of partial sums of random vectors with

non–zero mean or – in greater generality – to suprema of multivariate stochastic processes

having a drift term. First results for maxima of partial sums of random variables with

positive expectation are due to Teicher (1973), who proved a central limit theorem. Fur-

thermore, he could show that the problem of determining the maximum or its limiting

distribution is closely related to the normality of stopping rules appearing in sequential

testing (see Siegmund (1968)). So, the results presented are not only interesting for their

own sake, but also for possible applications in statistics – for instance in a multivariate

modification of the model introduced in Chapter 2.

The chapter is organized as follows. In Section 4.1, we discuss the results preceding

the paper of Berkes and Horváth (2003). Their generalization to suprema of real–valued

stochastic processes with positive drift will be stated in Section 4.2, where we present the

outset of our considerations, too.

Section 4.3 contains the corresponding results in the multi–dimensional case. Simi-

larly, we define stochastic processes with linear drift and values in Rp satisfying a strong

invariance principle. It turns out that the approximation rates can be established by an

adaptation of the proof in the scalar case if all drift components are non–zero. To obtain

the same rate in the general case, a different method is necessary. Moreover, we give an

approximation of the Euclidean norm of our stochastic processes – itself regarded as a

scalar stochastic process – in terms of a scalar Wiener process with drift (cf. Subsection

4.3.2). Finally, we derive the law of the iterated logarithm and some weak convergence

theorems (cf. Subsection 4.3.3) for the considered vector–valued processes.

The results of Section 4.3 have been proposed by Lajos Horváth from the University of

Utah and have already been published as a joint article (see Aue and Horváth (2003b)).
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4.1 Introduction

Let {Xn}n∈N be a sequence of independent, identically distributed random variables on

some (Ω,A, P ) with EX1 = µ > 0 and 0 < σ2 = Var X1 < ∞. We are interested in the

maxima of partial sums

S0 = 0, Sn = X1 + . . . + Xn (n ∈ N).

More exactly, we consider the random variables maxj=1,...,n j−αSj, where α ∈ [0, 1). We

start with a review of existing results.

Maxima and stopping rules. Teicher (1973) was one of the first studying maxima of

partial sums of independent random variables. He could prove a central limit theorem for

these partial sums without using reflection or invariance principles, the latter appearing

for the first time in an article by Erdős and Kac (1946). Teicher’s proof showed that

the central limit theorem is strongly related to first passage times studied in Siegmund

(1968).

Theorem 4.1.1 (Teicher)

Let {Xn}n∈N be a sequence of independent, identically distributed random variables with

EX1 = µ > 0 and 0 < σ2 = Var X1 <∞. Then,

lim
n→∞

P

{
max

j=1,...,n

Sj

jα
− µn1−α ≤ xσn

1
2
−α

}
= Φ(x),

where α ∈ [0, 1) and Φ denotes the standard normal distribution function.

Proof: See Teicher (1973). �

The connection to stopping rules or first passage times is the following. Set

τc = min

{
j ≥ 1 :

Sj

jα
> c

}
,

where c > 0, then Teicher’s proof used the fact

P

{
max

j=1,...,n

Sj

jα
> c

}
= P {τc ≤ n} . (4.1)

So studying the limiting distribution of the maximum on the left hand side of equation

(4.1) is simply the same as determining the asymptotics of τc.

In more generality, Siegmund (1968) obtained the asymptotic normality for a larger

class of (one–sided) stopping rules. Let fc be a concave function defined on R+ such that

fc →∞ as c→∞. Set

τ̃c = min {j ≥ 1 : Sj > fc(j)} .
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The special choice fc(j) = cjα with α ∈ [0, 1) provides Teicher’s result. We have already

discussed stopping rules of this kind in Chapter 2, where we derived the asymptotic

normality for a first passage time, given a special boundary function. Moreover, the

stopping times τc or τ̃c are of interest in renewal theory (see Gut (1974)) as well as in a

variety of other sequential applications (cf. for example, Bhattacharya and Mallik (1973),

Cabilio (1977) or Robbins and Siegmund (1974)).

Now, via the classical central limit theorem, also

lim
n→∞

P

{
Sn

nα
− µn1−α ≤ xσn

1
2
−α

}
= Φ(x).

Comparing the latter with the statement of Theorem 4.1.1 leads to the conjecture

max
j=1,...,n

Sj

jα
− Sn

nα
= oP

(
n

1
2
−α
)

(4.2)

as n → ∞. In the next paragraph, we deal with the conjecture (4.2) for more general

processes, but typically under more restrictive assumptions. It turns out, that the rate

even holds true with probability 1, implying that the random variables j−αSj attain their

maximum near the endpoint n of the underlying index set {1, . . . , n}.

Partial sums with errors. Teicher’s approach has been further extended to partial sums

which can be observed with errors only. Results are due to Chow and Hsiung (1976), and

Chow, Hsiung and Yu (1980). Therefore, let in addition {Yn}n∈N be real–valued random

variables such that Yn = o(1) a.s. as n → ∞ and let {an}n∈N be a sequence of positive

constants satisfying n−αan → 1 as n→∞, where α > 0. Put

Un = 1
n
Sn + Yn (n ∈ N). (4.3)

Then, Chow, Hsiung and Yu (1980) obtained the limiting normal distribution for the

random variables

max
j=1,...,n

ajUj, inf
j≥n

ajUj,

min
j=1,...,n

a−1
j Uj, sup

j≥n
a−1

j Uj

and the related stopping times

τ1,c = min{n ≥ nc : Un ≥ (can)−1},

τ2,c = min{n ≥ nc : 0 < Un ≤ can},

where nc is allowed to depend on c > 0. Moreover, they could prove the following theorem.
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Theorem 4.1.2 (Chow, Hsiung and Yu)

Let {Xn}n∈N be a sequence of independent, identically distributed random variables with

EX1 = µ > 0. Let {Yn}n∈N be random variables such that Yn = o(1) a.s. as n → ∞.

Moreover, choose positive constants α, {an}n∈N and {fn}n∈N satisfying

[1] an = nα(1 + o(1)) (n→∞),

[2] (an − nα) fn = a + o(1) (n→∞)

for some a ∈ R and

lim
β→1

lim sup
n→∞

max

{
fj

fk

: nβ ≤ j, k ≤ n

β

}
= 1.

Then, the following statements hold true.

a) If

(i) E|X1|ν <∞ for some ν ∈ [1, 4),

(ii) nαfnYn = cµ + o(1) a.s. (n→∞),

(iii) fn = O
(
n1−α− 1

ν

)
a.s. (n→∞),

then as n→∞, we get a.s.

max
j=1,...,n

(ajUj − anUn) fn = o(1),

sup
j≥n

(anUn − ajUj) fn = o(1),

max
n0≤j≤n

(ajUn − anUj) fn = o(1),

sup
j≥n

(anUj − ajUn) fn = o(1),

where n0 is a random variable such that Un > 0 for n ≥ n0.

b) Let X1 = µ a.s., let {εn}n∈N be a sequence of independent, identically distributed

random variables with Eε1 = 0 and E|ε1|ν <∞ for some ν ≥ 2. Set

Yn = Y ′
n −

(
1

n

n∑
i=1

εi

)2

with nαfnY
′
n = cµ + o(1) a.s. as n→∞.

(i) If fn = O
(
n

3
2
− 1

ν
−α
)

as n→∞, then the results of a) hold in probability.
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(ii) If fn = O

(
n

3
2
− 1

ν
−α

√
log log n

)
as n→∞, then the results of a) hold a.s.

c) If fn is replaced by nαfna
−1
j or by nαfna

−1
n , then results of a) and b) still hold true.

Proof: See Chow, Hsiung and Yu (1980). �

The next result is due to Chow and Hsiung (1976) and is a specialization of the

previous theorem. It gives the promised proof that the conjecture (4.2) holds true a.s.

Theorem 4.1.3 (Chow and Hsiung)

Let {Xn}n∈N be a sequence of independent, identically distributed random variables with

EX1 > 0 and VarX1 = σ2 <∞. Then,

max
j=1,...,n

Sj

jα
− Sn

nα
= o

(
n

1
2
−α
)

a.s.

as n→∞, where α ∈ [0, 1).

Proof: See Chow and Hsiung (1976). �

We close this section by an example which underlines the applicability of the above

approach in sequential analysis.

Example 4.1.1 (Sequential estimation)

Let {Zn}n∈N be independent, identically distributed random variables with EZ1 = µ̃ and

0 < σ̃2 = Var Z1 <∞. Define

Z̄n =
1

n
(Z1 + . . . + Zn) (n ∈ N),

Vn =
1

n

n∑
i=1

(
Zi − Z̄n

)2
+ bn (n ∈ N)

with a sequence {bn}n∈N of constants satisfying bn → 0 as n→∞. Now, set

Xn = (Zn − µ̃)2 (n ∈ N),

Rn =
1

n

n∑
i=1

(
Zi − Z̄n

)2
+ bn (n ∈ N).

Then, {Xn}n∈N is a sequence of independent, identically distributed random variables and

by assumption on {bn}n∈N, the random variables {Rn}n∈N satisfy the condition Rn = o(1)

a.s. as n → ∞, since the sample mean Z̄n converges a.s. to the expectation µ by the

strong law of large numbers. Furthermore, the sample variance can be rewritten as

Vn =
1

n

n∑
i=1

Xi + Rn (n ∈ N),
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i.e., Vn is of the form claimed in (4.3). Stopping times related to Vn are often used in

sequential analysis (see Robbins (1959) or the papers cited above).

The theorems of this section and mainly Theorem 4.1.3 can be derived from more

general results, which were obtained by Berkes and Horváth (2003). Their setting will be

stated in the following section.

4.2 Results in the scalar case

Like the classical limit theorems were extended to functional versions (see for example

Strassen (1964) in case of the law of the iterated logarithm), Berkes and Horváth (2003)

proved that also Theorem 4.1.3 can be generalized to suprema of any stochastic process

which can be approximated by a Wiener process with a positive drift term under a certain

rate. Their results are pictured in the following lines.

Let {Γ(t) : t ≥ 1} be a stochastic process such that there exists a Wiener process

{W (t) : t ≥ 1} and positive constants δ and γ with

Γ(t)− (δW (t) + γt) = o
(
t

1
ν

)
a.s. (4.4)

as t→∞ with some ν > 2.

Theorem 4.2.1 (Berkes and Horváth)

Let {Γ(t) : t ≥ 1} be a stochastic process such that (4.4) is satisfied. Then,

sup
1≤t≤T

Γ(t)

tα
− Γ(T )

Tα
= o

(
T

1
ν
−α
)

a.s.,

sup
1≤t≤T

Γ(t)

tα
− δW (T ) + γT

Tα
= o

(
T

1
ν
−α
)

a.s.

as T →∞, where α ∈ [0, 1).

Proof: See Berkes and Horváth (2003). �

Under the additional and stronger moment condition on X1 imposed by (4.4), the rate

of convergence in Theorem 4.1.3 can be improved.

Theorem 4.2.2 (Berkes and Horváth)

Let {Xn}n∈N be a sequence of independent, identically distributed random variables with

EX1 > 0, VarX1 = σ2 <∞ and E|X1|ν <∞ for some ν > 2. Then,

max
j=1,...,n

Sj

jα
− Sn

nα
= o

(
n

1
ν
−α
)

a.s.

as n→∞, where α ∈ [0, 1).
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Proof: See Berkes and Horváth (2003). �

Besides, Berkes and Horváth (2003) proved the law of the iterated logarithm for the

supremum of {t−αΓ(t) : t ∈ [1, T ]} and obtained some weak convergence results in D[a, b]

for suitable choices of a and b. Confer Subsection 4.3.3 for further information.

4.3 Vector–valued processes

We are going to extend the results presented in the previous section to random vectors

and vector–valued stochastic processes on Rp. It turns out in Subsection 4.3.1 that the

weighted suprema of the Euclidean norm of the processes will be attained near the end-

point of the underlying index set.

In addition, Subsection 4.3.2 shows that even the Euclidean norm of a vector–valued

Wiener process with linear drift can be approximated by a scalar Wiener process with a

certain variance parameter.

Finally, Subsection 4.3.3 contains some corollaries which are easily obtained from the

theorems proved before.

The main tool in the proofs to come is a strong invariance principle employed on

the considered processes. Under the point of view of limit distributions (as for instance

regarded in Chapter 2), it would have been sufficient to use weak approximations instead.

But since we are not interested in exact asymptotics here, we derive the rates almost

surely.

4.3.1 Approximations in Euclidean norm

As in the scalar case described in Section 4.2, we are interested in approximations of the

weighted suprema of partial sums (in Euclidean norm). Again, a more general approach

using an invariance principle is used to obtain our results.

Let {Xn}n∈N be a sequence of random vectors with values in Rp and

EX1 = γ = (γ1, . . . , γp)
′ and CovX1 = Σ, (4.5)

where Σ denotes a positive definite matrix. We define the partial sums

S0 = 0, Sn = X1 + . . . + Xn (n ∈ N) (4.6)

and the Euclidean norm of an element z = (z1, . . . , zp)
′ ∈ Rp as

‖z ‖=
√

z2
1 + . . . + z2

p .
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We will prove the following analogues of Theorems 4.2.1 and 4.2.2 in this section. The

first theorem assumes all coordinates to have a non–zero drift, that is γj 6= 0 for all

j = 1, . . . , p in (4.5).

Theorem 4.3.1

Let {Xn}n∈N be a sequence of independent, identically distributed random vectors such

that (4.5) holds and let α ∈ [0, 1). If

a) γj 6= 0 for all j = 1, . . . , p and

b) E ‖X1 ‖ν<∞ with some ν > 2,

then

max
1≤k≤m

‖Sk ‖
kα

− ‖Sm ‖
mα

= o
(
m

1
ν
−α
)

a.s.

as m→∞, where {Sk}k∈N0 is defined in (4.6).

Theorem 4.3.1 will be an immediate consequence of the methods used in Berkes and

Horváth (2003). The second theorem only assumes that γ 6= 0, i.e., ‖ γ ‖ is strictly

positive, while no conditions are imposed on a single coordinate. Under this more general

assumption the statement of Theorem 4.3.1 retains with the same upper bound for the

rate of convergence. However, it will require a somewhat different proof.

Theorem 4.3.2

Let {Xn}n∈N be a sequence of independent, identically distributed random vectors such

that (4.5) holds and let α ∈ [0, 1). If

a) ‖γ ‖> 0 and

b) E ‖X1 ‖ν<∞ with some ν > 2,

then

max
1≤k≤m

‖Sk ‖
kα

− ‖Sm ‖
mα

= o
(
m

1
ν
−α
)

a.s.

as m→∞, where {Sk}k∈N0 is defined in (4.6).

The proofs of both theorems are postponed until the end of this subsection, since they will

follow from a more general approach by an application of results due to Einmahl (1989).

Introduce a p–dimensional stochastic process {Γ(t) : t ≥ 1} on [1,∞) with components

Γ1(t), . . . , Γp(t). We impose a strong invariance principle.
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Assumption 4.3.1 (Strong invariance)

There is a p–dimensional Wiener process {W (t) : t ≥ 1} with W (t) = (W1(t), . . . ,Wp(t))
′,

such that the following two conditions hold true:

a) Cov(W (s), W (t)) = min{s, t}Σ,

b) ‖Γ(t)− (W (t) + tγ)‖= o
(
t

1
ν

)
a.s. as t→∞ with some ν > 2.

The strong invariance principle stated in b) is satisfied for large classes of random vectors.

We will not go into the details here, but will give references for further information. We

can apply our theory for instance to

• independent random vectors (cf. Einmahl (1989) and in addition Theorems 4.3.1

and 4.3.2 of this section),

• random vectors satisfying a mixing condition (cf. Kuelbs and Philipp (1980)),

• vector–valued martingale differences (cf. Eberlein (1986)).

We will now restate Theorems 4.3.1 and 4.3.2 in terms of the process {Γ(t) : t ≥ 1},
i.e., we will give functional analogues. Again, we have to separate the cases

• γj 6= 0 for all j = 1, . . . , p and

• ‖γ ‖> 0.

We start with the more restrictive first condition.

Theorem 4.3.3

Let {Γ(t) : t ≥ 1} be a p–dimensional stochastic process, such that Assumption 4.3.1

holds, and let γj 6= 0 for all j = 1, . . . , p. Then,

sup
1≤t≤T

‖Γ(t)‖
tα

− ‖Γ(T )‖
Tα

= o
(
T

1
ν
−α
)

a.s.

sup
1≤t≤T

‖Γ(t)‖
tα

− ‖W (T ) + Tγ ‖
Tα

= o
(
T

1
ν
−α
)

a.s.

as T →∞, where α ∈ [0, 1).

Proof: The proof of the theorem is organized as follows. At first, we will divide the

process {Γ(t) : t ≥ 1} into the parts with positive and negative drift. Moreover, if the

drift term is negative, the supremum of Γi(t) on [1, T ] is asymptotically smaller than the

supremum of −Γi(t) taken over the same interval. By invariance, we can approximate

both {Γi(t) : t ≥ 1} and {−Γi(t) : t ≥ 1} by scalar Wiener processes with positive

drift and are therefore able to apply Theorem 4.2.1. Some more technical calculations

are needed to establish the upper bound for the rate of convergence. The details are

addressed below.
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a) Since all drift components γj are non–zero by assumption, we assume without loss

of generality that

γ1, . . . , γp(1) > 0, γp(1)+1, . . . , γp < 0,

where 0 ≤ p(1) ≤ p. (If p(1) = 0 or = p, respectively, all coordinates have a strictly

negative or positive drift parameter.) Consider the Euclidean norm of T−α ‖Γ(T )‖.
Then,

‖Γ(T )‖
Tα

≤ sup
1≤t≤T

‖Γ(t)‖
tα

≤

p(1)∑
i=1

(
sup

1≤t≤T

|Γi(t)|
tα

)2

+

p∑
i=p(1)+1

(
sup

1≤t≤T

|Γi(t)|
tα

)2
 1

2

.

b) By the law of the iterated logarithm for Wiener processes we have

lim sup
T→∞

1√
T log log T

sup
1≤t≤T

‖W (t)‖= C a.s., (4.7)

where C is a constant. So, the drift term is the dominating one. Hence, there is a

random variable T1 such thatp(1)∑
i=1

(
sup

1≤t≤T

|Γi(t)|
tα

)2

+

p∑
i=p(1)+1

(
sup

1≤t≤T

|Γi(t)|
tα

)2
 1

2

= O(1)

p(1)∑
i=1

(
sup

1≤t≤T

Γi(t)

tα

)2

+

p∑
i=p(1)+1

(
sup

1≤t≤T

−Γi(t)

tα

)2
 1

2

for all T ≥ T1. Now, {−Γi(t) : t ≥ 1} is a scalar stochastic process which can be

approximated with the scalar process {−Wi(t) − γit : t ≥ 1} (i > p(1)). For it is

well–known that {−W (t)} is a Wiener process in case {W (t)} is, an application of

Theorem 4.2.1 yieldsp(1)∑
i=1

(
sup

1≤t≤T

Γi(t)

tα

)2

+

p∑
i=p(1)+1

(
sup

1≤t≤T

−Γi(t)

tα

)2
 1

2

=

p(1)∑
i=1

(
Γi(T )

Tα
+ o

(
T

1
ν
−α
))2

+

p∑
i=p(1)+1

(
−Γi(T )

Tα
+ o

(
T

1
ν
−α
))2

 1
2

a.s. as T →∞.
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c) Next, we use the mean value theorem for the mapping f(x) =
∑p

i=1 x2
i with x ∈ Rp.

Then,∣∣∣∣∣∣∣
p(1)∑

i=1

(
Γi(T )

Tα
+ o

(
T

1
ν
−α
))2

+

p∑
i=p(1)+1

(
−Γi(T )

Tα
+ o

(
T

1
ν
−α
))2

 1
2

−

(
p∑

i=1

(
Γi(T )

Tα

)2
) 1

2

∣∣∣∣∣∣
= o

(
T

1
ν
−α

p∑
i=1

Γi(T )

Tα
Tα−1

)
= o

(
T

1
ν
−α
)

a.s.

as T → ∞, where the last equality follows from (4.7) and once more from the fact

that the drift term is the dominating part.

On combining a)–c), we arrive at

‖Γ(T )‖
Tα

≤ sup
1≤t≤T

‖Γ(t)‖
tα

≤ ‖Γ(T )‖
Tα

+ o
(
T

1
ν
−α
)

a.s.

as T → ∞ and the first assertion of Theorem 4.3.3 follows. The second statement is an

easy consequence of Assumption 4.3.1b), since∣∣∣∣‖Γ(T )‖
Tα

− ‖W (T ) + Tγ ‖
Tα

∣∣∣∣
≤ 1

Tα
‖Γ(T )− (W (T ) + Tγ)‖ = o

(
T

1
ν
−α
)

a.s.

as T →∞. This completes the proof. �

If just ‖ γ ‖> 0 is assumed, we arrive at the same upper bound for the rate of

convergence already established in Theorem 4.3.2 above.

Theorem 4.3.4

Let {Γ(t) : t ≥ 1} be a p–dimensional stochastic process, such that Assumption 4.3.1

holds and let ‖γ ‖> 0. Then,

sup
1≤t≤T

‖Γ(t)‖
tα

− ‖Γ(T )‖
Tα

= o
(
T

1
ν
−α
)

a.s.,

sup
1≤t≤T

‖Γ(t)‖
tα

− ‖W (T ) + Tγ ‖
Tα

= o
(
T

1
ν
−α
)

a.s.

as T →∞, where α ∈ [0, 1).
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Proof: Since some of the drift components are allowed to be zero by assumption, Theorem

4.3.4 is not as easy traced back to the scalar situation as in Theorem 4.3.3. In a first step

it is shown that the location of the largest value of t−α ‖Γ(t) ‖ on the interval [1, T ] is

close to the right endpoint T up to some asymptotic rate specified below. In a second

step, we investigate the components without drift and in a third part those with drift.

We assume without loss of generality

γ1, . . . , γp(1) > 0, γp(1)+1, . . . , γp(1)+p(2) < 0, γp(1)+p(2)+1, . . . , γp = 0

and set q = p(1) + p(2).

a) Our first aim is to examine the order of the difference T − η(T ), where η(T ) is

defined as the location of the largest value of t−α ‖Γ(t)‖ on [1, T ], i.e.,

η(T ) = sup

{
t ∈ [1, T ] :

‖Γ(t)‖
tα

= sup
1≤s≤T

‖Γ(s)‖
sα

}
.

By the law of the iterated logarithm for Wiener processes

lim sup
T→∞

1√
T log log T

sup
1≤t≤T

‖W (t)‖= C a.s., (4.8)

where C is a positive constant. Now, (4.8) and the strong invariance of Assumption

4.3.1b) yield

sup
1≤t≤T−c

√
T log log T

‖Γ(t)‖
tα

= sup
1≤t≤T−c

√
T log log T

‖W (t) + tγ ‖
tα

+ o
(
T

1
ν
−α
)

≤ sup
1≤t≤T

‖W (t)‖
tα

+ sup
1≤t≤T−c

√
T log log T

‖ tγ ‖
tα

+ o
(
T

1
ν
−α
)

= C sup
1≤t≤T

√
t log log t

tα
+ ‖γ ‖

(
T − c

√
T log log T

)1−α

+ o
(
T

1
ν
−α
)

≤
(
T − c1

√
T log log T

)1−α

a.s. (4.9)

for all T ≥ T0 if c1 = c
2

and c is a constant chosen large enough. On the other hand

by similar arguments

sup
1≤t≤T

‖Γ(t)‖
tα

≥‖γ ‖ T 1−α − 2C

√
T log log T

Tα
a.s. (4.10)
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for all T ≥ T0. Now, on choosing c large enough, the upper bound for the supremum

over the restricted range [1, T − c
√

T log log T ] in (4.9) is smaller than the lower

bound for the supremum over the complete interval [1, T ] in (4.10). Hence,

T − η(T ) = O
(√

T log log T
)

a.s.

as T →∞.

b) Similarly as in the proof of Theorem 4.3.3 we obtain

‖Γ(T )‖
Tα

≤ sup
1≤t≤T

‖Γ(t)‖
tα

=
‖Γ(η(T ))‖

ηα(T )

≤ 1

ηα(T )

(
q∑

i=1

Γ2
i (η(T )) +

p∑
i=q+1

Γ2
i (η(T ))

) 1
2

a.s.

as T → ∞, where the sum on the right hand side has been split up according to

existing or non–existing drifts. We consider the second sum first. Observe that for

any q < i ≤ p it holds by Csörgő and Révész (1981), Theorem 1.2.1∣∣Γ2
i (η(T ))− Γ2

i (T )
∣∣

= |Γi(η(T ))− Γi(T )| |Γi(η(T )) + Γi(T )|

=
∣∣∣Wi(η(T ))−Wi(T ) + o

(
T

1
ν

)∣∣∣ ∣∣∣Wi(η(T )) + Wi(T ) + o
(
T

1
ν

)∣∣∣
= O

(
(T log log T )

1
4

√
log T

√
T log log T

)
= O

(
T

3
4

√
log T (log log T )

3
4

)
a.s.

as T →∞, which establishes an upper bound for the components without drift. In

view of this estimation it is already possible to replace η(T ) by T for the zero drift

components. In detail, using

√
x + h =

√
x +

h

2
√

ξ
, ξ ∈ (x, x + h), (4.11)

we get

1

ηα(T )

(
q∑

i=1

Γ2
i (η(T )) +

p∑
i=q+1

Γ2
i (η(T ))

) 1
2
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=
1

ηα(T )

(
q∑

i=1

Γ2
i (η(T )) +

p∑
i=q+1

Γ2
i (T ) +O

(
T

3
4

√
log T (log log T )

3
4

)) 1
2

=
1

ηα(T )

(
q∑

i=1

Γ2
i (η(T )) +

p∑
i=q+1

Γ2
i (T )

) 1
2

+O
(
T− 1

4
−α
√

log T (log log T )
3
4

)
a.s. as T →∞, since

lim inf
t→∞

1

T

(
q∑

i=1

Γ2
i (η(T )) +

p∑
i=q+1

Γ2
i (T )

)
> 0 a.s.

c) Using Theorem 4.2.1 for the components with drift, we get that

1

ηα(T )

(
q∑

i=1

Γ2
i (η(T )) +

p∑
i=q+1

Γ2
i (T )

) 1
2

=

(
q∑

j=1

Γ2
i (η(T ))

η2α(T )
+

p∑
i=q+1

Γ2
i (T )

η2α(T )

) 1
2

=

(
q∑

i=1

(
Γi(T )

Tα
+ o

(
T

1
ν
−α
))2

+

p∑
i=q+1

Γi(T )

η2α(T )

) 1
2

a.s. (4.12)

as T → ∞. We still have to replace η(T ) by T in the second sum on the right

hand side in (4.12). This will be done by an application of the law of the iterated

logarithm and the mean value theorem applied to f(x) = x−2α. Since

η(T ) = T (1 + o(1)) a.s.

as T →∞ by part a), we can proceed by recognizing ξ ∈ (η(T ), T ) with∣∣∣∣ 1

η2α(T )
− 1

T 2α

∣∣∣∣ p∑
i=q+1

Γ2
i (T )

=
2α(T − η(T ))

|ξ2α+1|

p∑
i=q+1

Γ2
i (T )

= O
(√

T log log T

T 2α+1
T log log T

)
= O

(
T

1
2
−2α(log log T )

3
4

)
a.s.
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as T →∞. Now by (4.11),(
q∑

i=1

(
Γi(T )

Tα
+ o

(
T

1
ν
−α
))2

+

p∑
i=q+1

Γ2
i (T )

T 2α
+O

(
T

1
2
−2α(log log T )

3
4

)) 1
2

=

(
q∑

i=1

(
Γi(T )

Tα
+ o

(
T

1
ν
−α
))2

+

p∑
i=q+1

Γ2
i (T )

T 2α

) 1
2

+O
(
T− 1

2
−α(log log T )

3
4

)
a.s. as T →∞. As in the proof of Theorem 4.3.3, we finally arrive at∣∣∣∣∣∣

(
q∑

i=1

(
Γi(T )

Tα
+ o

(
T

1
ν
−α
))2

+

p∑
i=q+1

Γ2
i (T )

T 2α

) 1
2

−

(
p∑

i=1

Γ2
i (T )

T 2α

) 1
2

∣∣∣∣∣∣
= o

(
T

1
ν
−α
)

a.s.

as T →∞.

Putting together parts a)–c), the proof is complete. �

Berkes and Horváth (2003) approximated the Gaussian process with drift with a sum of

specially constructed random variables such that the corresponding weighted sum becomes

an increasing function of time. We used a different method in the previous proof. However,

their method applies to the vector valued case if α = 0.

Theorem 4.3.5

Let {Γ(t) : t ≥ 1} be a p–dimensional stochastic process, such that Assumption 4.3.1

holds. Then,

sup
1≤t≤T

‖Γ(t)‖ − ‖Γ(T )‖= o
(
T

1
ν

)
a.s.,

sup
1≤t≤T

‖Γ(t)‖ − ‖W (T ) + γT ‖= o
(
T

1
ν

)
a.s.

as T →∞.

The proof of Theorem 4.3.5 is based on the following lemma. Let X be a uniformly

distributed random variable on some interval [a, b] ⊂ R. Then, mean and variance of X

are given by

EX = 1
2
(b + a), VarX = 1

12
(b− a)2.

Moreover, X is standardized if b = −a =
√

3.
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In the next lemma, we will approximate the supremum of ‖W (t) + γt‖ on [1, T ] by

a sequence of p–dimensional random variables whose components are independent and

uniformly distributed on [−
√

3,
√

3].

Lemma 4.3.1

Let {W (t) : t ≥ 1} be a p–dimensional Wiener process on [1,∞) with

Cov(W (s), W (t)) = min{s, t}Σ (s, t ≥ 1).

Then,

sup
1≤t≤T

‖W (t) + γt‖ − ‖W (T ) + γT ‖= O(log T ) a.s.

as T →∞.

Proof: As before, we assume that all non–zero drift terms are positive. Let

γ1, . . . , γp(1) > 0, γp(1)+1, . . . , γp = 0,

where γ1 = min{γi : γi > 0} and p(1) ≤ p.

a) Let ξ1, . . . , ξp be independent, identically distributed random variables, uniform on

the interval [−
√

3,
√

3] and set ξ = (ξ1, . . . , ξp)
′. Then,

Eξ = 0, Eξξ′ = Ip×p,

where Ip×p denotes the identity matrix. Since Σ is a positive definite matrix, Σ
1
2

exists and we can introduce the random vector η = Σ
1
2 ξ with

Eη = 0, Eηη′ = Σ.

Moreover, by definition of η, there exists a positive constant a such that

|ηi| ≤ a (1 ≤ i ≤ p),

where η1, . . . , ηp denote the components of η.

b) Let {ηn}n∈N be a sequence of independent random vectors distributed as η and set

c =

(
2a(1 +

√
p)

γ1

)2

. (4.13)



4.3 Vector–valued processes 91

We are going to prove that the sum of the ηn’s (with drift term
√

cγ) is increasing.

Therefore, we consider∥∥∥∥∥
k+1∑
i=1

(
ηi +

√
cγ
)∥∥∥∥∥

2

−

∥∥∥∥∥
k∑

i=1

(
ηi +

√
cγ
)∥∥∥∥∥

2

=

p∑
j=1

(
k+1∑
i=1

(
ηi,j +

√
cγj

))2

−
p∑

j=1

(
k∑

i=1

(
ηi,j +

√
cγj

))2

.

For j = 1, the difference of the inner sums can be reduced in the following way:(
k+1∑
i=1

(
ηi,1 +

√
cγ1

))2

−

(
k∑

i=1

(
ηi,1 +

√
cγ1

))2

=
k+1∑
i=1

k+1∑
l=1

(
ηi,1 +

√
cγ1

) (
ηl,1 +

√
cγ1

)
−

k∑
i=1

k∑
l=1

(
ηi,1 +

√
cγ1

) (
ηl,1 +

√
cγ1

)
=

(
ηk+1,1 +

√
cγ1

)((
ηk+1,1 +

√
cγ1

)
+ 2

k∑
i=1

(
ηi,1 +

√
cγ1

))
.

Summing over all j = 1, . . . , p and observing that γp(1)+1 = . . . = γp = 0 yields∥∥∥∥∥
k+1∑
i=1

(
ηi +

√
cγ
)∥∥∥∥∥

2

−

∥∥∥∥∥
k∑

i=1

(
ηi +

√
cγ
)∥∥∥∥∥

2

=

p(1)∑
j=1

(
ηk+1,j +

√
cγj

)((
ηk+1,j +

√
cγj

)
+ 2

k∑
i=1

(
ηi,j +

√
cγj

))

+

p∑
j=p(1)+1

ηk+1,j

(
ηk+1,j + 2

k∑
i=1

ηi,j

)
= I1 + I2.

Now, by the definition of c in (4.13) and part a) of the proof

ηk+1,j +
√

cγj ≥ −a +
√

cγ1 = a(1 + 2
√

p) > 0.

Hence,

I1 ≥
(
−a +

√
cγ1

) p(1)∑
j=1

((
ηk+1,j +

√
cγj

)
+ 2

k∑
i=1

(
ηi,j +

√
cγj

))
≥ (2k + 1)

(
−a +

√
cγ1

)2
.
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Similar arguments yield

I2 ≥ −(2k + 1)pa2.

So, finally

I1 + I2 ≥ (2k + 1)
(
a2 − 2a

√
cγ1 + cγ2

1 − pa2
)

= (2k + 1)a2(1 + 4
√

p + 3p) > 0

by plugging in the definition of c.

c) We can rewrite the supremum of ‖W (t) + γt ‖ on [1, T ] by using the scale trans-

formation of Wiener processes as

sup
1≤t≤T

‖W (t) + γt‖ = sup
1
c
≤t≤T

c

‖W (ct) + cγt‖

=
√

c sup
1
c
≤t≤T

c

‖W ∗(t) +
√

cγt‖,

where W ∗(t) = 1√
c
W (ct) is a Wiener process. It is easy to check that

EW ∗(t) = 0, EW ′
∗(s)W ∗(t) = min{s, t}Σ.

By Einmahl (1989), we can use the sequence {ηn}n∈N defined in b) to obtain the

following strong approximation:∥∥∥∥∥W ∗(t)−
t∑

i=1

ηi

∥∥∥∥∥ = O(log t) a.s.

as t→∞, where the rate cannot be further improved since the ηn (n ∈ N) are not

normal random vectors themselves. The above considerations result in

sup
1≤t≤T

‖W (t) + γt‖

=
√

c sup
1
c
≤t≤T

c

‖W ∗(t) +
√

cγt‖

≤
√

c sup
1
c
≤t≤T

c

∥∥∥∥∥
t∑

i=1

ηi +
√

cγt

∥∥∥∥∥+O(log T )

=
√

c

∥∥∥∥∥∥
T
c∑

i=1

ηi +
γ√
c
T

∥∥∥∥∥∥+O(log T )

=
√

c

∥∥∥∥W ∗

(
T

c

)
+

γ√
c
T

∥∥∥∥+O(log T )

= ‖W (T ) + γT ‖ +O(log T ) a.s.
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as T →∞. Since furthermore ‖W (T )+γT ‖≤ sup1≤t≤T ‖W (t)+γt‖, the assertion

of Lemma 4.3.1 is proved. �

Now, the proof of Theorem 4.3.5 is an immediate consequence of the previous lemma.

Proof of Theorem 4.3.5: Applying the invariance claimed in Assumption 4.3.1b), we

arrive at

sup
1≤t≤T

‖Γ(t)‖ = sup
1≤t≤T

‖W (t) + γt‖ +o
(
T

1
ν

)
= ‖W (T ) + γT ‖ +O(log T ) + o

(
T

1
ν

)
= ‖W (T ) + γT ‖ +o

(
T

1
ν

)
a.s.

as T →∞. Moreover,

‖W (T ) + γT ‖=‖Γ(T )‖ +o
(
T

1
ν

)
a.s.

as T →∞, finishing the proof. �

The final paragraph of this subsection is devoted to Theorems 4.3.1 and 4.3.2. Since

the conditions a) and b) of Assumption 4.3.1 have already been proved by Einmahl (1989),

they follow readily from the associated Theorem 4.3.3 and 4.3.4, respectively.

4.3.2 More approximations

In this subsection we study the real–valued stochastic process {‖W (t) + γt ‖: t ≥ 1}.
It turns out that this process obtained by taking the Euclidean norm of a p–dimensional

Wiener process with (positive) drift can a.s. be approximated by a scalar Wiener process

{W (t) : t ≥ 1} plus an additional drift term up to some rate of convergence. Therein, the

parameters are completely determined by the vector–valued Wiener process: The drift

parameter is given by ‖ γ ‖ while the variance of the scalar process {W (t) : t ≥ 1} is

obtained from the vector drift term γ in combination with the covariance structure of

{W (t) : t ≥ 1} through

δ =
γ ′Σγ

‖γ ‖2
. (4.14)

The exact formulation is as follows.

Theorem 4.3.6

Let {W (t) : t ≥ 1} be a p–dimensional Wiener process with

Cov(W (s), W (t)) = min{s, t}Σ (s, t ≥ 1)
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and let ‖γ ‖> 0. Then, there exists a scalar Wiener process {W (t) : t ≥ 1} such that

‖W (t) + γt‖ − ‖γ ‖ t− δW (t) = O (log log t) a.s.

as t→∞, where δ is defined in (4.14).

Proof: The basic idea of the proof is to consider the difference ‖W (t) + γt ‖ − ‖γt ‖,
since it might be an intuitively promising approach to examine ’how far’ the random part

of ‖W (t) + γt ‖ differs from the deterministic part γt, which equals ‖γ ‖ t and already

gives the desired drift.

a) Using the mean value theorem for f(x) =
√

x, we get

‖W (t) + γt‖ − ‖γt‖

=

(
p∑

j=1

(Wj(t) + γjt)
2

) 1
2

−

(
p∑

j=1

γ2
j t

2

) 1
2

=
1

2
√

ξ

(
p∑

j=1

W 2
i (t) + 2t

p∑
j=1

γjWj(t)

)

=
1

2
√

ξ
(W (t)′W (t) + 2tγ ′W (t)) , (4.15)

where ξ satisfies the condition

∣∣ξ− ‖γ ‖2 t2
∣∣ ≤ ∣∣‖W (t) + γt‖2 − ‖γt‖2

∣∣
≤ W (t)′W (t) + 2t |γ ′W (t)| . (4.16)

Applying the law of the iterated logarithm to the random parts of the right hand

side of the inequality in (4.16), we see that

lim sup
t→∞

1

t log log t

p∑
j=1

W 2
j (t) <∞ a.s.

as well as

lim sup
t→∞

t|γ ′W (t)|
t

3
2

√
log log t

<∞ a.s.,

i.e., 2t|γ ′W (t)| is dominating W (t)′W (t).
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Using the latter two statements and dividing both sides of the inequality (4.16) by

t2, we arrive at

ξ

t2
−→‖γ ‖2 a.s.

as t→∞.

b) We already know that {γ ′W (t) : t ≥ 1} is a Gaussian process. In view of δ defined

in (4.14) and equation (4.15) we need to replace
√

ξ by ‖γ ‖ t. Therefore write∣∣∣∣ 1√
ξ
− 1

‖γ ‖ t

∣∣∣∣ ≤ 1

ζ
3
2

∣∣ξ− ‖γ ‖2 t2
∣∣

using again the mean value theorem. Therein, ζ fulfills∣∣ζ− ‖γ ‖2 t2
∣∣ ≤ ∣∣ξ− ‖γ ‖2 t2

∣∣
≤ W (t)′W (t) + 2t|γ ′W (t)|

by part a) of the proof. Also by the first part, we obtain∣∣∣∣ 1√
ξ
− 1

‖γ ‖ t

∣∣∣∣ = O
(
t−3t

3
2

√
log log t

)
= O

(
t−

3
2

√
log log t

)
a.s.

as t→∞, since

ζ =‖γ ‖2 t2 +O
(
t

3
2

√
log log t

)
a.s.

as t→∞ implies ζ
3
2 = O(t3) a.s. as t→∞.

c) Putting together the previous results, we arrive at∣∣∣∣ 1√
ξ
− 1

‖γ ‖ t

∣∣∣∣ |tγ ′W (t)| = O(log log t) a.s.

as t→∞. Furthermore, {‖γ ‖−1 γ ′W (t) : t ≥ 1} is a Gaussian process with mean

Eγ ′W (t) = 0 for all t ≥ 1. A computation of the covariance function yields

1

‖γ ‖2
Eγ ′W (s) (γ ′W (t))

′
=

1

‖γ ‖2
γ ′EW (s)W (t)′γ

= min{s, t}γ
′Σγ

‖γ ‖2
= min{s, t}δ

for all s, t ≥ 1. So, there exists a scalar Wiener process {W (t) : t ≥ 1} as stated in

Theorem 4.3.6 which satisfies the desired asymptotic rate. �
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4.3.3 Some implications

In the final subsection, the law of the iterated logarithm for a weighted version of the

norm of the supremum of {Γ(t) : t ≥ 1} is given as well as some weak convergence results

for the stochastic process {sup t−α ‖Γ(t)‖: t ≥ 1}.
A first corollary establishes the law of the iterated logarithm.

Corollary 4.3.1

Let {Γ(t) : t ≥ 1} be a p–dimensional stochastic process such that Assumption 4.3.1 holds

and let ‖γ ‖> 0. Then,

lim sup
T→∞

Tα

√
2T log log T

(
sup

1≤t≤T

‖Γ(t)‖
tα

− ‖γ ‖ T 1−α

)
= δ a.s.,

where δ is defined in (4.14).

Proof: The proof is given by a joint application of the law of the iterated logarithm and

Theorems 4.3.4 and 4.3.6. Firstly, by Theorem 4.3.4

sup
1≤t≤T

‖Γ(t)‖
tα

=
‖W (T ) + Tγ ‖

Tα
+ o

(
T β−α

)
a.s.

as T → ∞, where β > max{1
4
, 1

ν
}. By Theorem 4.3.6 we can replace ‖W (T ) + Tγ ‖ by

a scalar Wiener process whose covariance structure is determined by δ defined in (4.14),

i.e.,

‖W (T ) + Tγ ‖=‖γ ‖ T + δW (T ) +O(log log T ) a.s.

as T →∞. Hence,

Tα

√
2T log log T

(
sup

1≤t≤T

‖Γ(t)‖
tα

− ‖γ ‖ T 1−α

)
=

Tα

√
2T log log T

(
‖W (T ) + γT ‖

Tα
− ‖γ ‖ T 1−α + o

(
T β−α

))
=

Tα

√
2T log log T

(
δW (T )

Tα
+ o

(
T β−α

)
+O(log log T )

)
=

Tα

√
2T log log T

δW (T )

Tα
+ o(1) a.s.

as T →∞. Since

lim sup
T→∞

W (T )√
2T log log T

= 1 a.s.

by the law of the iterated logarithm, Corollary 4.3.1 is readily proved. �
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Corollary 4.3.2

Let {Γ(t) : t ≥ 1} be a p–dimensional stochastic process such that Assumption 4.3.1 holds

and let ‖γ ‖> 0.

a) If α ∈ [0, 1
2
), then as T →∞ we get

Tα− 1
2

(
sup

1≤t≤[Tu]+1

‖Γ(t)‖
tα

− ‖γ ‖ ([Tu] + 1)1−α

)
D[0,1]−→ δ

W (u)

uα
.

b) If α ∈ (1
2
, 1), then as T →∞ we get

Tα− 1
2

(
sup

1≤t≤[Tu]+1

‖Γ(t)‖
tα

− ‖γ ‖ ([Tu] + 1)1−α

)
D[1,∞]−→ δ

W (u)

uα
.

c) If 0 < c1 < c2 <∞, then as T →∞ we get

Tα− 1
2

(
sup

1≤t≤[Tu]+1

‖Γ(t)‖
tα

− ‖γ ‖ ([Tu] + 1)1−α

)
D[c1,c2]−→ δ

W (u)

uα
.

Therein, {W (t) : t ≥ 1} denotes a scalar Wiener process on a suitable interval. Moreover,

δ is defined in (4.14).

Proof: All three parts of the corollary are proved by taking advantage of the approxima-

tions of Theorems 4.3.4 and 4.3.6, the scale transformation and the a.s. uniform continuity

of Wiener processes on suitable intervals.

a) (i) Fix a real number C > 0. Using Theorem 4.3.4 for any 0 ≤ u ≤ C we get

sup
1≤t≤[Tu]+1

‖Γ(t)‖
tα

− ‖W ([Tu] + 1) + γ([Tu] + 1)‖
([Tu] + 1)α

= o
(
([Tu] + 1)β−α

)
a.s. as T →∞. Hence

Tα− 1
2 sup

0≤u≤C

∣∣∣∣∣ sup
1≤t≤[Tu]+1

‖Γ(t)‖
([Tu] + 1)α

− ‖W ([Tu] + 1) + γ([Tu] + 1)‖
([Tu] + 1)α

∣∣∣∣∣
= o

(
Tα− 1

2 sup
0≤u≤C

([Tu] + 1)β−α

)
= o

(
Tα− 1

2 (CT )β−α
)

= o(1) a.s.

as T →∞ by assumption on β.
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(ii) Since α ∈ [0, 1
2
), Theorem 4.3.6 yields

Tα− 1
2 sup

0≤u≤1

∣∣∣∣‖W ([Tu] + 1) + γ([Tu] + 1)‖
([Tu] + 1)α

− ‖γ ‖ ([Tu] + 1)1−α − δ
W ([Tu] + 1)

([Tu] + 1)α

∣∣∣∣
= O

(
Tα− 1

2 sup
0≤u≤1

log | log([Tu] + 1)|
([Tu] + 1)α

)
= O

(
Tα− 1

2 log log T
)

= o(1) a.s.

as T →∞.

(iii) Considering the Gaussian process {Tα− 1
2 ([Tu]+1)−αW ([Tu]+1) : 0 ≤ u ≤ C},

we see by an application of the scale transformation for Wiener processes that{
Tα− 1

2
W ([Tu] + 1)

([Tu] + 1)α
: 0 ≤ u ≤ C

}
D
=

W
(

[Tu]+1
T

)
(

[Tu]+1
T

)α : 0 ≤ u ≤ C

 .

Clearly,

[Tu] + 1

T
−→ u (T →∞)

uniformly on [0, C]. Now, part a) of Corollary 4.3.2 is proved, since t 7→
t−αW (t) is a.s. uniformly continuous on [0, 1].

b) Fix C > 0. By similar arguments as in part a) we see by Theorem 4.3.4 that

Tα− 1
2 sup

C≤u<∞

∣∣∣∣∣ sup
1≤t≤[Tu]+1

‖Γ(t)‖
tα

− ‖W ([Tu] + 1) + γ([Tu] + 1)‖
([Tu] + 1)α

∣∣∣∣∣
= O

(
Tα− 1

2 sup
C≤u<∞

([Tu] + 1)β−α

)
= O

(
Tα− 1

2 (TC)β−α
)

= o(1) a.s.

as T →∞. By Theorem 4.3.6 we get

Tα− 1
2 sup

C≤u<∞

∣∣∣∣‖W ([Tu] + 1) + γ([Tu] + 1)‖
([Tu] + 1)α

− ‖γ ‖ ([Tu] + 1)1−α − δ
W ([Tu] + 1

([Tu] + 1)α

∣∣∣∣
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= O
(

Tα− 1
2
log log TC

(TC)α

)
= o(1) a.s.

as T →∞. Since the law of the iterated logarithm implies

lim
C→∞

sup
C≤t<∞

|W (t)|
tα

= 0 a.s.,

we get

lim
C→∞

lim sup
T→∞

P

{
Tα− 1

2 sup
C≤u<∞

|W ([Tu] + 1)|
([Tu] + 1)α

≥ ε

}
= 0

for any ε > 0. Therefore, we can neglect the tail part of the interval [1,∞) if the

constant C is chosen to be large enough, for our considerations now imply

lim
C→∞

lim sup
T→∞

P

{
Tα− 1

2 sup
C≤u<∞

∣∣∣∣∣ sup
1≤t≤[Tu]+1

‖Γ(t)‖
tα

− ‖γ ‖ ([Tu] + 1)1−α

∣∣∣∣∣ > ε

}
= 0

for any ε > 0.

On the other hand, for any compact interval [c1, c2] ⊂ [1,∞) with 0 < c1 < c2 <∞,

we obtain similarly to part a) of the proof that

Tα− 1
2

(
sup

1≤t≤[Tu]+1

‖Γ(t)‖
tα

− ‖γ ‖ ([Tu] + 1)1−α

)
D[c1,c2]−→ δ

W (u)

uα

completing the proof of b).

c) The last implication of Corollary 4.3.2 has already been proved in part b). �
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[29] Csörgő, M., and Réveśz, P. (1975b). A new method to prove Strassen type laws of

invariance principle II. Z. Wahrsch. Verw. Gebiete 31, 261–269.
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