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DNA deoxyribonucleic acid 
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Zusammenfassung 

Mit Hilfe der molekularen Taxonomie wird die biologische Diversität von 

Organismen anhand von molekularen Markern untersucht. In dieser Arbeit wird eine 

Methode entwickelt, um kleine Organismen durch molekulare Taxonomie zu 

charakterisieren. Da die Nukleotidsequenzen Ribosomaler RNA (rRNA) Regionen 

aufweist, die verschiedene Ebenen der Konservierung haben, können sie als Art-, 

Genus- oder Taxonspezifische molekulare Marker dienen.  

Die Organismen leben in komplexen Ökosystemen. Um die 

Artenzusammensetzung dieser Ökosysteme zu untersuchen, wurde ein 

Hybridisierungsansatz mit Oligonucleotid Microarrays entwickelt um das 

Vorhandensein einer bestimmten rRNA aufzuzeigen. Zusätzlich wird hier ein zweiter 

Ansatz auf der Basis der Pyrosequenzierungtechnologie vorgestellt. In diesem Fall 

wird eine Mischung von rRNA Molekülen direkt sequenziert und der Anteil der 

einzelnen Arten wird dann von dem erhaltenen Pyrogram errechnet.  

Diese Arbeit lässt sich in zwei Teile geliedern: theoretische Bioinformatik und 

experimentelle Ansätze. Der erste Teil befasst sich damit, die Stabilität der 

DNA/RNA Duplexe vorherzusagen. Als Ergebnis wird eine ad hoc Stabilitätsformel 

vorgestellt. Ein Algorithmus und ein Program wurden entwickelt, um Oligonucleotide 

für den microarray Ansatz zu entwerfen. Ausserdem wurden die kinetischen Aspekte 

der Dissasoziation der DNA/RNA Duplexe berücksichtigt. Zusätzlich wurde der 

Formalismus des Pyrosequenzierungs Ansatzes theoretisch bearbeitet. 

Die experimentelle Teil befasst sich mit den Einzelheiten der Oligonucleotid 

Microarray Technologie, unter anderem mit der Herstellung der Arrays, 

Immobilisierung, Hybridisierung und mit dem Scannen. Ein "real-time" kinetischer 

Aufbau für die Beobachtung der DNA/RNA Duplex Dissasoziationen wurde 

entwickelt. Die theoretischen Ergebnisse und die Qualität des Oligonucleotiddesigns 

wurden praktisch ausgewertet, und es wurde festgestellt, dass die Theorie den 

experimentellen Ergebissen gut entsprach. Der Pyrosequenzierungsansatz wurde auch 

getestet und es wurde gezeigt, dass angewandt werden kann um die 

Zusammensetzung einer komplexen Mischung von rRNA Genen festzustellen. 
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Summary 

Molecular taxonomy is a field that studies the diversity of organisms based on 

molecular markers. This work is devoted to develop a methodology of molecular 

taxonomy of small organisms. The ribosomal RNA (rRNA) is used as a molecular 

marker since its nucleotide sequence includes stretches of various levels of 

conservation, which can be used as species, genus and taxa specific regions.  

The organisms live in complex communities. To discover the composition of these 

communities, a hybridization assay employing oligonucleotide microarrays is 

developed to indicate the presence of a certain rRNA, in a sample under investigation. 

An additional method based on the pyrosequencing process is proposed here. In this 

case the mixture of rRNA genes is directly sequenced and the proportion of individual 

sequences is then calculated from the obtained pyrogram.  

The work comprises two parts: theoretical bioinformatics and practical evaluation. 

The first part tackles the problem of DNA-RNA duplex stability prediction. As a 

result, an ad hoc stability function is proposed. An algorithm and a program are 

developed for the design of oligonucleotides employed in the microarray approach. 

The kinetics of DNA-RNA duplex dissociation is considered as well. In addition, the 

formalism of the pyrosequencing approach is elaborated theoretically. 

The experimental part deals with the issues of oligonucleotide microarray 

establishment, including fabrication, immobilization, hybridization and scanning. A 

real-time kinetic setup for observing the RNA-DNA duplex dissociation was 

developed. The theoretical findings and quality of the oligonucleotide design are 

practically evaluated. The theory is found to be in a good accordance with experiment. 

The pyrosequencing approach is tested as well and is demonstrated to have enough 

power to discover the composition of a complex mixture of rRNA genes. 
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Introduction 

Molecular taxonomy is an appealing way of studying the ecology of small 

organisms without cultivation and visual determination. A key to the molecular 

taxonomy is the fact that each organism contains ribosomes, and that their structural 

RNAs on the one hand have enough diversity to be unique for a particular species, on 

the other hand possess conserved regions common for all taxa. The identification of 

species or species groups with specific oligonucleotides as molecular signatures is 

becoming increasingly popular for bacterial samples. However, it shows also a great 

promise for other small organisms that are taxonomically difficult to tract. DNA 

microarrays are currently used for gene expression profiling [1, 2], DNA sequencing 

[3], disease screening [4], diagnostics [5, 6], and genotyping [7], usually within the 

context of clinical applications. The extension of microarray technology to the 

detection and analysis of 16S rRNAs in mixed microbial communities likewise holds 

tremendous potential for microbial community analysis, pathogen detection, and 

process monitoring in both basic and applied environmental sciences [8-10]. There are 

several types of microarrays available on the market and the oligonucleotide 

microarrays are among them. The work here solely deals with oligonucleotide 

microarrays, both theoretically and practically. Two major problems that have been 

addressed in this work are: (i) design of the optimal oligonucleotide with desired 

specificity and (ii) practical evaluation of designed probes. 

 I have devised here an algorithm that aims to find the optimal probes for any 

given set of sequences. The program requires only a crude alignment of these 

sequences as input and is optimized for performance to deal also with very large 

datasets. The algorithm is designed such that the position of mismatches in the probes 

influences the selection and makes provision of single nucleotide outloops. Program 

implementations are available for Linux (text version) and Windows (text and GUI 

version). The soundness of the results produced by the program has been tested 

experimentally. 

In addition, a microarray free approach based on sequencing of a mixture of genes 

has been developed in this work. The microarray free approach makes use of a novel 

pyrosequencing method and discovers the mixture composition quantitatively. Here 
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only the principle is proven and the approach has been tested on the artificial mixture 

of DNA encoding rRNA. 

The work contains five chapters. The first chapter deals with the bioinformatics of 

a probe design. The second chapter depicts a new paradigm of the graphic user 

interface strategy applied to the probe design. The third chapter is mainly devoted to 

the technical establishment of the microarrays. The fourth chapter experimentally 

evaluates the probe design. Finally the fifth chapter deals with the development of the 

microarray free method. 
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Chapter 1 An Algorithm and Program for finding 
Sequence Specific Oligo-nucleotide Probes for 
Species Identification 

Introduction 

Identification of species with molecular probes is likely to revolutionize 

taxonomy, at least for taxa with morphological characters that are difficult to 

determine otherwise. Among these are the single cell eucaryotes, such as Ciliates and 

Flagellates, but also many other kinds of small organisms, such as Nematodes, 

Rotifers, Crustaceans, mites, Annelids or Insect larvae. These organisms constitute the 

meiofauna in water and soil, which is of profound importance in the ecological 

network. Efficient ways for monitoring species identity and abundance in the 

meiofauna should significantly help to understand ecological processes. 

Molecular taxonomy with sequence specific oligo-nucleotide probes has been 

pioneered for bacteria [10,11]. Probes that are specific to particular species or groups 

of related species can be used in fluorescent in situ hybridization assays to detect the 

species in complex mixtures or as symbionts of other organisms [12,13]. 

Alternatively, the microarray technology is increasingly used for this purpose, 

allowing potentially the parallel screening of many different species. Most of the 

species-specific sequences that are used so far for this purpose are derived from 

ribosomal RNA sequences. However, any other sequence is also potentially suitable, 

as for example mitochondrial D-loop sequences in eucaryotes. 

The species-specific probes are usually derived from an alignment of the 

respective sequences, where conserved and non-conserved regions are directly visible. 

A program has been developed for ribosomal sequences that helps to build the 

relevant database, and supports the selection of suitable specific sequences (ARB 

[14]). In this, a correct alignment is crucial for finding the optimal probes, but 

alignments are problematical in poorly conserved regions. These, on the other hand, 

have the highest potential to yield specific probes. Moreover, the current 

implementation of probe finding calculates only the number of mismatching position 

to discriminate between the probes, but does not take into account the position of the 

mismatches within the stretches, which could influence the hybridization behavior. 
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We have therefore devised here a new algorithm that allows working with datasets 

that need not to be carefully aligned and that takes the position of mismatches along 

the recognition sequence into account.  

The algorithm 

The algorithm includes three parts. The first one aims to provide a function that 

calculates the relative stability of matching oligos in dependence of the number and 

position of mismatches. The second one provides a strategy for probe finding that 

scans all possible sequence combinations, but works time efficient. The third part 

deals with matches caused by single nucleotide outloops of a given sequence. 

Stability function 

Extensive studies exist for assessing the thermodynamic consequences of internal 

mismatches in short oligo-nucleotides (see fro example [15,16]). These show that 

there are no simple rules and that the exact influence on the stability of a hybrid 

depends on the nature of the mismatch, as well as its flanking nucleotides. For 

example, mismatches including a G (i.e. G-G, G-T and G-A) tend to be less 

destabilizing than the other types of mismatches [16], although this can not directly be 

predicted from steric considerations. Comparable systematic studies on the relative 

influence of the position of the mismatch within the oligonucleotide do not exist yet, 

although it is clear that the influence is lower at the ends than in more central 

positions [16, 18]. Preliminary evidence with an oligo-dT stretch harboring A 

mismatches along the sequence suggests that the position dependence could be a 

continous function  [17]. We have therefore decided to use an ad hoc approach for the 

stability calculation that is mainly designed to discriminate against sequences with 

more central mismatch positions.  

We model the relative stability of mismatched oligos as follows. The position of 

the mismatch can be considered to be a “weak point”. The location of the “weak 

point” is expressed as a probability function that takes into account the differential 

contribution of central versus terminal positions. The probability that the “weak 

point” is at position x is defined by p1. Under the experimental conditions of melting, 

the presence of the “weak point” is true, meaning that [sum(p1) for all x] = 1. 
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We assume a Gauss distribution as the respective probability function, with the 

maximum in the middle of the duplex and the integral value along the duplex length 

set to 1 (Equation 1-1). 
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Equation 1-1. “Weak point” location probability. L – duplex length, σσσσ - distribution parameter, x 
– duplex position. 

Note that the function in Equation 1-1 refers to discrete positions within the 

sequence, while the Gauss distribution is continuous and the integration from –∞ to 

+∞ is set to yield 1. The parameter σ is therefore chosen such that the discrete sum 

approaches 1 at any intended precision. In the program discussed below the accuracy 

of the sum value is 0.999. 

Although the preliminary experimental evidence [17] suggests that the 

destabilization function can be approximated with the Gauss distribution, the program 

implementation allows also to use a flat distribution, i.e. where a position-independent 

effect on the melting is assumed as an alternative, to compare the outputs of the two 

different assumptions.  

For assessing the relative amount of destabilization caused by a certain mismatch, 

we assume that the mismatch disturbs the surrounding basepairs from (y-n) to (y+n) 

positions. n can be called a border parameter that will need to be experimentally 

verified in the future.  Because n can currently only be guessed, it is set as a program 

variable with a default value of 5. n might also depend on the nature of the mismatch, 

i.e. some types of mismatches might influence the surrounding bases less than the 

others. We therefore implemented further program variables that allow to define a 

different n depending on the nature of the mismatch (i.e. it is possible to set a 

particular n value for each possible type of mismatch). 

The overall relative stability of a given duplex is then expressed as a probability 

function. It is expressed as the sum of products of the individual position probabilities 

p1 (determined by the stability function) and p2 (determined by the border parameter). 
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The value of p2 it the probability of "melting", conditioned that the “weak point” is 

disturbed. (Equation 1-2). 
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Equation 1-2. L – the length of the duplex, p1 – the “weak point” location probability, p2 – the 
"melting" probability due to the disturbance of the “weak point”. 

p2 is a conditional probability of "melting" with p2 = 1 if  the “weak point” is 

disturbed (in the region  y ± n) and p2 = 0  at non-affected positions. This allows 

transforming Equation 1-2 into Equation 1-3.  
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p1 can then be substituted by the function in Equation 1-1, to yield Equation 1-4. 

pe

L
x

ny

ny

=

−−
−+

−
�

2

2

2

)
2

1
(

2
1 σ

πσ  

Equation 1-4. x – the duplex position, y – the mismatch position, n - the border parameter  

In the case of several mismatches, the summing is done along all the respective 

mismatch regions. If the mismatches occur next to each other, their disturbed regions 

simply overlap and the summing is performed across the respective region. 

Probe finding 

The probe finding strategy is devised in a way (i) to avoid the need for exact 

alignments, (ii) to check probe specificity along the whole available sequence and (iii) 

to optimize performance. The workflow is depicted in Figure 1-1. 
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Figure 1-1. Scheme of the probe finding algorithm. Details are explained in the text. 

It starts with a database in which each organism is represented by a single 

continuous sequence, such as a defined region of the 18S or 28S ribosomal genes. 

From this it takes first the sequences of the In-group organism(s) for which specific 

probes should be found and cuts these into short pieces of the specified oligo-

nucleotide length (set as a program variable), following an approach proposed by 

Bavykin et al [20]. This is accomplished by a sliding window scheme with 1-

nucleotide shifts across the whole length of the sequence(s). Two separate lists are 
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created in this way. The first list is simply a straight list of all possible fragments from 

all In-group organisms. The second one consists of an array of lists for each of the In-

group organisms (the two lists are identical if only one In-group organism is chosen). 

All duplicate oligos from the first list are then removed and each of the remaining 

oligos is checked whether it matches with each of the In-group organisms in the 

second list. A match is positive, when the relative melting probability is within the 

range of 0 - 25%, employing the function of Equation 1-4. Thus, this first calculation 

simply ensures that all candidate probes match with all In-group organisms. This 

calculation would be largely dispensable, if only a single In-group organism is 

chosen. 

The next step is to subtract all oligos that match in any of the Out-group 

organisms. To avoid the comparison of all candidate oligos against all Out-group 

sequences, we identify first a group of sequences that is closely related to the In-

group. For this one requires a rough alignment of all sequences, to calculate 

percentage similarity between them. Note that this serves only to identify a subgroup 

of sequences for speeding up the calculations, i.e. mistakes in the alignment are of no 

concern.  The similarity calculator in the program extracts this related group of 

sequences by a simple percentage identity calculation across the given alignment. All 

sequences that are at least 90% similar to the In-group are used as Related-group. This 

percentage can be set as a program variable and should be set such that the Related-

group does not become more than 5-10% of all sequences. 

The sequences of the Related-group are again converted into a fragment list as 

above, duplicates are removed and all candidate oligos are matched with this list. Now 

only those oligos are retained, which have a melting probability of at least 75% (the 

exact percentage values are program variables). The majority of oligos is removed in 

this step. The remaining candidate oligos are then matched against the remaining 

sequences in the Out-group with the same cut-off criterion. 

This stepwise selection scheme allows to significantly speed up the calculations 

even for very large datasets, but still ensures that all oligo-nucleotides of the desired 

length were directly or indirectly matched against all possible other oligos in the 

database.   
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Single nucleotide loops 

Structure analysis with experimental oligo-nucleotides has shown that in a pair of 

hybridized oligos, one nucleotide can loop out, without interfering much with the 

stability of the hybridized pair [21]. This implies that one base of one strand of a 

duplex can loop out from the duplex and the rest of the strand can shift one position. 

This is depicted in Figure 1-2.  

GCATGACGCTGACGTACGAT          GCATGACGC-TGACGTACGAT 
|||||||||***********          ||||||||| ||||||||||| 
CGTACTGCGGACTGCATGCTA         CGTACTGCG ACTGCATGCTA 
                                       G 

Figure 1-2 Scheme of the single-nucleotide outloop problem; asterisks represent mismatches, 
columns represent matches. 

A standard linear scanning algorithm would recognize the situation at the left as 

one with 11 mismatches, i.e. would suggest it as a specific probe. However, if the 

single nucleotide loop is taken into account, the match would be perfect and the probe 

would have to be considered as unspecific. Our scanning algorithm takes this problem 

into account by re-checking all candidate probes after the completion of the filtering 

steps. It does this by sequentially removing one nucleotide from the candidate probe 

and shifting the remainder by one position. The melting probability of the new oligo is 

then calculated and checked. The removed nucleotide is then reinserted and the cycle 

is repeated for the next position. The same procedure is done for the target sequence, 

so that outloops are considered to be possible on both strands of the duplex. Note that 

outloops of two nucleotides are considered to destabilize the helix too much to 

warrant a separate analogous calculation.  

Parallel computation 

A parallel program version allows probe finding to be done in parallel on several 

processors. Essentially the same algorithm is used in the parallel version of the 

program, whereby the parallelism is introduced in the matching steps. Each process 

takes its own part of the database and performs the matching as well as the stability 

calculations. The results are then gathered by the root process and superimposed. 
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Program implementation 

The algorithm is implemented in a program called PROBE. The program consists 

of three modules that can be used independently. The first module finds the probes 

based on the given task (specificity group, length of probes, source database).  

The second one is the analytic module, which can be used if it is impossible to 

design a probe for a given organism group. This module depicts the situation with the 

given In-group and enables to find the closest group for which the task can be 

accomplished. The use of the analytic mode comes into play when PROBE fails to 

identify a set of probes for the given organism group. Such a failure can have two 

reasons - either there is no probe, which identifies all organisms in the specificity 

group, or there is another organism outside the specificity group, which is also 

identified by all candidate probes suitable for the specificity group.  

For the first case, the specificity group must be broken down into several 

subgroups and the probes must be identified for these subgroups separately. For the 

second case, the organism that is very similar to the specificity group should be added 

to the specificity group and this may then have to be broken down into smaller 

subgroups.  

The analytic module creates a table with the organisms of the specificity group as 

well as the most related organisms. This table depicts then the matching or non-

matching patterns for each of the possible probes, allowing a simple visual inspection 

of the best specificity groups. The output can be viewed and modified with 

spreadsheet programs such as Excel. 

The third module provides a report for the identified probe, including the 

mismatches in the duplexes within the specificity group, the best match out of the 

group and some other information.  

The program is written in standard C++ in a platform independent manner. 

Therefore, the program can be easily compiled for Linux and Windows without any 

modifications. The program binary files for Linux and Windows are available from 

the http://biochip.genetik.uni-koeln.de/probe as freeware accompanied with all its 

source files, and a manual that describes further details. 
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Results 

As an example of the performance of the program we have used the full SSU 

database (RDP, release 8.1) [22] containing approximately 16.000 sequences to find a 

specific oligo-nucleotide probe with a length on 20 nt for Thermotoga maritima. The 

search was done on a Pentium III (800 MHz, 512 MB RAM) PC and took about 1.5 

hours without outlooping and 16 hours with outlooping, indicating that the most time 

intensive step is the outlooping subroutine. The parallel version running on a cluster 

with 24 nodes (with the slowest node being a Penthium II - 400 MHz  with 256 MB 

RAM) took 2 hours for the same full task. 

 

Figure 1-3 depicts the output from the check module, which allows comparing the 

oligos and their specificity that were found in this particular comparison. It shows that 

ARB suggests two oligos that are rejected by PROBE either because of mismatches 

occurring only at the ends, or under the outloop routine. Both programs find one oligo 

with acceptable high specificity. 
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A 
Target: 
477 AAACCCUGGCUAAUACCCCA 
Probe: 
tggggtattagccagggttt 
Ingroup, matching: 
Duplex: 
477 AAACCCUGGCUAAUACCCCA Thermotoga maritima str. MSB8 DSM 3109 (T). 
477 AAACCCUGGCUAAUACCCCA 
melting probability 0 
 
Outgroup, matching (without outloop): 
Duplex: 
1200 UGGCCCUGGCUAAUACCCGGG Ralstonia eutropha str. DS185. 
477 aaaCCCUGGCUAAUACCCca 
melting probability 0.42 
 
Outgroup, matching (outloop) 
Duplex: 
477 AAACCCGGCUAAUACCGCAUA Thiorhodovibrio sp. 
477 AAACCCGGCUAAUACCcCA outloop: 6 
melting probability 0.30 
 
B 
Target: 
1143 AAACCGCUGUGGCGGGGGAA 
Probe: 
ttcccccgccacagcggttt 
Ingroup, matching: 
Duplex: 
1143 AAACCGCUGUGGCGGGGGAA Thermotoga maritima str. MSB8 DSM 3109 (T). 
1143 AAACCGCUGUGGCGGGGGAA 
melting probability 0 
 
Outgroup, matching (without outloop): 
Duplex: 
571 GCCCUGCUGUGGCGGGGUCAG Treponema uncultured Treponema clone RFS60. 
1143 aaaCcGCUGUGGCGGGGgaA 
melting probability 0.75 
 
Outgroup, matching (outloop) 
Duplex: 
570 GGCCCGCUGUGGCGGGGUCA outloop: 5 Treponema clone RFS60. 
1143 aaaCCGCUGUGGCGGGGgaA 
melting probability 0.509097 
 
C 
Target: 
1265 ACGGUACCCCGCUAGAAAGC 
Probe: 
gctttctagcggggtaccgt 
Ingroup, matching: 
Duplex: 
1265 ACGGUACCCCGCUAGAAAGC Thermotoga maritima str. MSB8 DSM 3109 (T). 
1265 ACGGUACCCCGCUAGAAAGC 
melting probability 0 
 
Outgroup, matching (without outloop): 
Duplex: 
1731 GAAGCGCCCCGCUAGAACGCG Sulfolobus solfataricus str. P1 DSM 1616 (T). 
1265 acgGuaCCCCGCUAGAAaGC 
melting probability 0.88 
 
Outgroup, matching (outloop) 
Duplex: 
1264 GAGCGUACCCGCUAGAAAGC outloop: 10 clone WCHB1-64. 
1265 acGguacCCCGCUAGAAAGC 
melting probability 0.74 

 

Figure 1-3 Comparison of specific oligos suggested by ARB and PROBE for Thermotoga 
maritima, in comparison to the whole SSU database. A) Oligo suggested by ARB, but found to 
have lower than 70% melting probability in two other species. This was therefore rejected by 
PROBE because of insufficient specificity. B) Oligo suggested by ARB, but found to have lower 
than 70% melting probability when outlooping is considered. This was therefore also rejected by 
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PROBE because of insufficient specificity. C) Oligo suggested by both programs, whereby the 
best outgroup matches have a higher than 70% melting probability. 

Discussion 

The algorithm presented here does not take into account the effect of relative GC 

content and stacking interactions of neighboring bases on the melting temperature of 

the oligo-nucleotides. Accordingly, the oligo-nucleotides suggested by the program 

can differ significantly in melting temperature. However, as this can easily be 

adjusted after the selection is made, we have not included a subroutine that takes GC 

content into account during the primary search, because this would slow down the 

calculations. Furthermore, we expect that GC content differences may be of less 

importance for the applications envisioned here, because they can be largely 

compensated by the choice of experimental conditions, such as buffers that 

compensate stability differences [22].  

A more general problem is our way of calculating the relative stability factor. This 

does currently not take the nucleotide composition into account either. The reason is 

that there are too few experimental data as yet, that would allow to unequivocally 

include this in the calculations. The current experimental data sets focus on the types 

of mismatches in particular contexts, but not systematically on position specific 

effects [16, 24]. Moreover, they deal with relatively short model oligos only (up to 12 

nt). However, the probes used for species identification are longer and the different 

effects can currently not be accurately assessed from experimental data for such 

longer probes. In our equation, it is mainly the border parameter n that would be 

affected by base composition and nearest neighbor interactions and we have therefore 

left this as a variable that can be set according to experimental results. In principle, it 

seems possible that n differs for different sequence compositions, i.e. GC-rich 

stretches have a smaller n than AT-rich ones. Thus, if one chooses a low n, one would 

risk that GC-rich oligos are suggested as specific probes that still show cross 

hybridization. However, it seems that these can easily be eliminated after the selection 

is made. Still, if experimental data indicate that this is a major problem, the program 

could easily accommodate such new insights.  

Finally, the stability function proposed in Equation 1-1 could possibly also have 

other shapes than Gaussian. Again this is a factor that needs further experiments. If it 
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turns out that other functions are more appropriate, one can include this as additional 

options into the program. At the present we offer the extreme, namely a flat function, 

as an alternative option. 

Conclusion 

We have designed a versatile algorithm for finding optimal species- and group-

specific probes for molecular taxonomy that is sufficiently open to implement further 

experimental insights into the nature of the stability of mismatched oligo-nucleotides. 
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Chapter 2 Graphic User Interface (GUI) for the PROBE. 
A new Design Paradigm 

Introduction 

A GUI makes application much more comfortable to work with and more 

appealing to look at. Unfortunately this is not always true, sometimes even simple 

applications become complex if the GUI is not well elaborated. This chapter describes 

a new design and programming paradigm directed towards the user friendly and 

obvious applications. All discussions and considerations apply Microsoft Windows 

operating system (OS) and the GUI version of the PROBE is only available for this 

OS. 

The main problem of many graphic applications is their awaiting of the user 

orders. On the one hand this is of course a desired behavior, if the application is 

mostly a container of the user’s input, for example a text editor or an electronic table. 

In this case the application is supposed to accept the input and be ready to display it to 

the user. If the user wants to format the text, perform spell checking and this like, the 

application has commands for it, and they are usually intuitively clear. 

A different situation exists for scientific applications that deal with something 

essentially new. In this case, the awaiting behavior of the software can be quite 

confusing, especially if the problems are complex. Many examples of puzzling 

software are found among academic and commercial products. For instance, upon the 

startup the application shows a gray window and waits for the user’s actions. One of 

the odd features of many applications is that the menus of hundreds of applications 

are essentially the same: File, View, Tools, Help. The developers try to split the 

commands among these four menus, sometimes producing peculiar assignments.  

Interestingly, there is no work published that specifically addresses the strategies 

of GUI design. For example Petzold [25] or Winnick Cluts [26] describe only the 

facilities for windowing, dialog boxes, progress bars, etc. offered by Windows OS, 

but does not provide any strategic recommendations on how to use these facilities to 

create a user friendly GUI. An extensive search within the database of the Institute of 

Scientific Information (The Thomson Corporation, USA), covering most scientific 
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journals including the ones devoted to computer science, does not reveal publications 

specifically dealing with the strategy of designing a GUI. 

Owing to the lack of a systematic view on the strategy of GUI design, I propose 

here a paradigm turning the application from the passive worker towards the active 

master. Hence, the software but not the user solves the problem. The desired behavior 

is somewhat similar to that of a “program installation wizard” and various “wizards” 

that can be found among MS Office applications. In fact, one should understand that 

changing of the program behavior is not only a question of the design, but a new 

paradigm. The reason that most of the GUI software is waiting for the user actions 

lays in the fundamentals of Windows. 

Windows Application Fundamentals 

Under Windows the applications are “message driven“ [25, 27]. Messages are 

actually the representations of events occurring during the lifetime of an application. 

For example, the user clicks, pressing on the buttons, pressing on the keyboard, 

changes of the directory content and many other things are the events. When an event 

occurs, the internals of Windows generate a message – an integer value specific to 

each event – and the message is put into the application’s message queue. The 

application is running a loop (so called “message loop”) that is getting messages and 

delivering them to the application. The delivery means invoking a procedure within 

the code of the application that is a specific response on the particular message. That 

is why the application is mostly waiting because it is running the message loop and 

performing any activity only if there is a message to be picked up and processed via 

the call of its dedicated procedure. 

New Paradigm 

How to make the GUI application to be not awaiting for the user actions but to be 

active itself? Apparently there is no way to avoid waiting in the message loop. 

Fortunately Windows is a multitasking OS that allows to run an application having 

several threads. A thread is a fragment of code concurrently running with the main 

application. In fact, the main application is a thread as well. The thread resembles 

another program coexisting with the main application. 
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Threads make it possible to separate user interface tasks from the logic of the 

program. Figure 2-1 shows the multithreaded arrangement of the GUI version of the 

PROBE. Interestingly, the logic thread of the PROBE is running the same algorithm 

as was described in Chapter 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1 Multithreading for GUI. The logic thread is running a text-based algorithm, while the 
graphic thread is executing typical windowing routines. 

In fact, there are no significant changes in the code that has been developed for the 

text version of the PROBE, only the text input/output statements are changed to the 

statements making the GUI thread to ask the user either for the input or to display the 

output. Thus, the paradigm for the creation of the active non-waiting application can 

be formulated in the following way: 

• develop a text based code that is active by default 

• create a GUI and organize it as a thread 

• create a logic thread and establish inter-thread communication 

• insert the text based code into the logic thread and adjust input/output 

operations. 
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Implementation 

The GUI versions of both single processor and parallel versions of the PROBE 

have been implemented. According to the new paradigm, the probe calculation engine 

stays unchanged but a new GUI thread is added. The GUI thread provides means to be 

queried for input/output, which are in turn the means of inter-thread communication. 

The probe calculation engine is inserted into the logic thread. The versions have been 

implemented without the use of Microsoft Foundation Classes (MFC). Although MFC 

is almost a standard for windows applications, here it was avoided because MFC 

dictates a very rigid message-driven architecture. Instead, pure Win32 API function 

calls were used for all GUI tasks. 

GUI Objects 

The code of the PROBE algorithm is object oriented. The same applies for the 

GUI part of the application. The object is a programming artifact that in other words 

is called a “user defined type” or “class” [28]. The C++ classes are language 

structures that encapsulate its own data and exert methods – procedures that can be 

called within the program. Each class has a constructor – a method that is 

automatically called when an object is created in the program code. The GUI objects 

are in effect C++ classes wrapping the functionality of overlapped windows, dialog 

boxes and this like. These objects are created by the GUI thread; the constructors 

contain Win32 API calls that generate windows or dialog boxes and display them. 

The methods of these objects are of two types. The first type responds on the windows 

messages delivered by the message loop. These first type methods are not available 

for invocation from anywhere of the program and dedicated solely for message 

processing. The examples of such methods are: OnDraw, OnResize, OnDestroy etc. 

The prefix “On” designates that the method is called upon arrival of the corresponding 

message. The second type is dedicated for the information exchange with the logic 

thread.  

The logic thread uses the GUI objects through their pointers (addresses in the 

memory) by invoking the second type methods. These methods are, for example, 

TextOut, ReadSettings, RetrieveLines. In addition these methods are blocking 

methods from the perspective of the logic thread. Here the blocking means that the 

execution of the logic thread is stopped until the data is actually retrieved from the 
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user, for example, when the method ReadSettings of the DialogBox object is called, it 

will not return before the user has filled up the fields of the dialog box and pressed 

“OK” button. Again from the perspective of the logic thread this is pretty much the 

same as if it was a text-based application, for which in fact the algorithm running in 

the logic thread has been initially developed. In effect, the logic thread is driving the 

calculation process and the graphic user interface is entirely dependent on the logic of 

the algorithm. 

Inter-thread Communication 

As it has been already mentioned, the threads communicate through the second-

type methods of GUI objects. The mechanism of communication employs the user 

defined Windows messages. Earlier in this chapter it has been stated that the 

Windows messages are reflections of the events happening during the lifetime of the 

application, but in fact an application can generate such events by itself and send 

messages to itself or even to another application. The application can send standard 

Windows messages or user (in reality programmer) defined ones. 

When the logic thread needs some user input or is ready to display the output, it 

invokes a second type method of the corresponding GUI object. The internals of the 

method post a standard or a programmer defined message to the message queue of the 

GUI thread and the method is entering an infinite loop awaiting when the GUI thread 

completes the request. When the request is completed, it raises a flag that is a signal to 

quit the loop and return from the method. The pseudo-code below illustrates how the 

GUI object is arranged and how it participates in both threads simultaneously. 

GUI object 
Logic thread GUI thread 

PostMessage(MSG); 
WaitUntilFlag; 
return; 

OnMSG; 
RaiseFlagReady; 
 

Technically it is only possible to send a message to a window. If the logic thread 

needs to communicate with a window, then it is done like it is described above. But 

there are certain requests that have no windows associated. For this reason the GUI 

thread upon startup maintains a window invisible to the end user. This is a blind 

window that serves as a gateway for certain requests. One of these requests is creation 

of a GUI object like a normal window or a dialog box. As it has been mentioned 
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above, all GUI objects must be created in the GUI thread that is running a message 

loop – an unavoidable prerequisite of any windowing – but this is the logic thread that 

decides when to create a GUI object. Hence, the logic thread through the blind 

window asks the graphic user interface thread to create an object and return back a 

pointer on it to the logic thread. Another request issued through the blind window is to 

quit the application. When the logic thread has finished calculations it is ready to 

terminate the program. But the program can not terminate because the GUI thread is 

in the infinite message loop. In traditional applications the user has to close the main 

application window manually, thus interrupting the message loop. In the case of the 

PROBE, the blind window object receives a request for program termination through 

the second type method, which means posting of a “quit” message. The “quit” 

message leads to the message loop interruption and termination of the application. 

Exceptions and Premature Stop 

The multithreaded architecture makes the support of exceptions more difficult. 

The exceptions are incidents like run-time errors, problems with resource allocation 

and premature halt by the user. The first two types of exceptions are easy to handle 

through standard C++ exception support but the premature stop is more difficult. The 

text-based application is normally interrupted by Ctrl-C that forces the program to 

terminate immediately. But in the case of GUI, which is placed into another thread the 

situation is more complicated. Indeed the premature termination exception is coming 

from the GUI thread – the user presses the “STOP” button (Figure 2-2) – but it is the 

logic thread that must react on it. 

 
Figure 2-2. A main PROBE window during calculations. 

Obviously upon the exception one could terminate the program roughly by killing 

the logic thread and this would work unless the additional features like COM objects 
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are implemented (see below in this chapter). Simple killing of the logic thread would 

lead to unreleased resources and unfinished COM processes. To avoid this, a special 

object ThreadWatchdog has been designed. The only task of this object performed in 

its single method (constructor) is checking if the GUI thread is indicating a premature 

stop exception. 

A variable of the type ThreadWatchdog has been added to each non-GUI object of 

PROBE. The ThreadWatchdog object is a part of a new paradigm as well. With 

available software development packages (for example Microsoft Visual Studio) it is 

easy to add a variable to a lot of objects without any manual rewriting of them. The 

idea to add the variable of the ThreadWatchdog type stems from the fact, that 

whatever the logic thread is doing, it is after all creation and destruction of its objects. 

But on the other hand, the C++ compiler automatically invokes constructors of all 

variables that are members of any objects. Hence the following scenario is taking 

place: 

• GUI thread indicates an exception, 

• logic thread is still doing calculations, 

• at a certain moment the logic thread creates some object X, 

• constructor of the ThreadWatchdog is invoked due to the latter is a part of 

X, 

• constructor of ThreadWatchdog rises a C++ exception, 

• the C++ exception is caught in the logic thread, 

• capture of the exception leads to the automatic memory release, 

termination of COM processes, stack unwinding and termination of the 

logic thread. 

The scenario is performed fully automatically, solely by the C++ support. 

Therefore, the logic thread need not be modified from its text version except addition 

of the ThreadWatchdog variable, which can be done semi-automatically by the 

software-developing package. 
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Additional Features 

The Component Object Model (COM) is a very powerful technology of Microsoft 

Windows. Another name of this technology is Object Linking and Embedding (OLE). 

This technology generalizes the idea of object-oriented programming where the 

objects can be written in any language. The objects are also compiled with a 

corresponding compiler and exist in a form of a binary code, for example .ocx, .dll or 

.exe file [29]. The objects exert interfaces – the means to communicate with them. 

The interfaces make COM objects similar to the C++ objects. Microsoft Windows 

takes care of all underlying processes dealing with allocation of the object binary code 

on the disc, loading this into the memory, invoking methods etc. 

PROBE makes use of the COM by collaborating with Microsoft Excel. The output 

from the GUI PROBE is not just a text, rather it immediately goes to the Excel sheets, 

enabling the user directly to order the probes from a company or do any further 

processing of the probes by means of Excel. The most powerful aspect of COM in this 

case is that the PROBE does not pay attention on how the Excel sheet files are binary 

organized. Even more, from version to version of Excel the binary structure of its .xls 

files may change. Instead, the PROBE invokes Excel through COM, asks for the 

worksheet object, receives a pointer to its interface and puts the output into the cells 

using the standard methods very well described in the Help system of Excel. Excel 

takes care of how to process the data and how to store them on the disk. 

A Sight on PROBE 

Putting it all together here are the examples of dialogues offered by PROBE. The 

dialogue shown on Figure 2-3 is popped up during the startup. This dialogue 

determines the mode of calculations to be performed.  
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Figure 2-3. A start-up dialogue determining the computation mode of PROBE. 

One can see that not only the controls presented on the dialogue window, but also 

a clear short explanation of the modes. The user would intuitively understand the 

option “Design” even without reading the article [64] describing the program – the 

main purpose of the PROBE is indeed the design of oligonucleotide probes. After this 

dialogue several others appear among which is the one presented on Figure 2-4. 

 
Figure 2-4. Computation settings of PROBE. 

This dialogue determines settings of the calculation process. Again a short 

preamble explains what the settings mean for the computation. The optimal defaults 

are already provided. The detailed explanation of the settings can be found in the 



 32 

article [64] or on the web site of the program: http://biochip.genetik.uni-

koeln.de/probe. But even if some of the settings are unclear without reading further 

information, it is possible for the user to use the defaults and perform his or her first 

calculation. Psychologically it is much more convenient to go through the whole 

process at least once and dive into the greater details only in case if something wrong 

happens. 

The output of the GUI version of PROBE, as it has been stated above, is written 

directly into the Excel sheets, allowing the user to make any further processing with 

the designed probes if necessary. The table has three columns as one can see on 

Figure 2-5. The leftmost column shows the alignment positions of the 5’-end of 

targets, with which the corresponding probes would hybridize. The middle column 

shows sequences of the targets and finally the rightmost column shows the probes 

themselves. These probes are to be immobilized on the chip. 

 
Figure 2-5. An example of the output provided by the GUI version of PROBE. 

Conclusion 

A new paradigm for obvious graphic user interface applications has been 

developed. The PROBE has been powered with GUI. The GUI version, like its text 

ancestor, is not waiting for the user’s actions; instead it is guiding the user through the 

whole process of the probe design. The output is directed into the Excel worksheets 

enabling easy further processing or ordering the oligonucleotides from the supplier. 
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Chapter 3 Dissociation kinetics 

Introduction 

Biochip technology nowadays offers a convenient way for microbial identification 

and expression profiling. This technology implies employment of solid DNA support 

with immobilized oligos organized in spots. A sample under consideration is applied 

onto the biochip and its fluorescent-labeled nucleic acids (e.g. rRNA, mRNA) 

hybridize with the immobilized oligos. One acquires information from the biochip by 

analyzing the spot intensities. The spot identification and cross-hybridization are 

focused on in this chapter. 

There have been many attempts to solve the problems of cross-hybridization. Here 

I propose a new approach based on the kinetics of dissociation of nucleic acid 

duplexes. The exploitation of kinetics for solving a cross-hybridization problem has 

already been done, but instead of dissociation, the association process was taken into a 

consideration [30]. Something similar to the dissociation approach is presented in the 

work of Drobyshev [31], where the author studied a microarray being washed at rising 

stringency, but this method is a result of a complex overlap of dissociation kinetics 

and thermodynamic stability of the duplexes. Moreover, the available techniques do 

not consider cross-hybridization to occur along with the true hybridization on the 

same spot, which can be the case especially among the oligonucleotide microarrays. 

The key point of the new approach being proposed is that the cross-hybridized 

mismatched duplexes are less stable than the perfect ones and have higher rates of 

dissociation [32-34]. For example, a TT single mismatched duplex dissociates 120 

times faster than the perfect matching one [33]. If one allows the mismatched 

duplexes to dissociate first and disappear from the signal, then it is possible to 

calculate the initial value of the signal without wrong duplexes. 

The identification of spots is another big issue of microarrays. Ideally, the spots 

should have round shape with uniform intensity and equal radius. The background is 

ideally uniformly distributed all over the microarray. In reality, the spots have various 

shapes (donut, round with wrecked edges, etc.) and the background is not uniform, 

containing bright portions emerging from the dust and other artifacts. Most of the 

commercially available packages rely on the manual spot assessment, which is very 
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tedious and slow. Liew [35] proposes an elegant spot recognition algorithm based on 

the technique used for restoring of the degraded documents [36]. The algorithm is 

based on the idea of comparing the gray level of the processed pixel or its smoothed 

gray level with some local averages in the neighborhoods with a few other 

neighboring pixels. The algorithm relies on the image information only and does not 

take into account physical properties of hybridization. The idea of the new method 

being proposed here is that the duplex can dissociate and, therefore, one can observe 

this process as a decay of fluorescence on the chip, while dust and any other 

disturbing signals stay constant or have highly irregular behavior. Thus, by recording 

images during the dissociation process, one makes use of the natural behavior of the 

dissociating duplexes and multiplies the amount of information that increases the 

reliability of spot recognition and elimination of artifacts. 

Theoretical Considerations 

Signal Preparation 

Based on the phenomenon that the rate of dissociation depends on the matching 

quality, the following system of equations (Equation 3-1) describes the time behavior 

of the signal, where S – fluorescent signal, P – quantity of perfect duplex at the spot 

per its area unit, Ui - quantity of any (i-th) imperfect duplex at the spot per its area 

unit, kp kUi – corresponding rate constants. 

 
Equation 3-1. Dissociation processes in the presence of cross hybridisation. The letters P and U 
designate concentrations of perfectly matching and mismatched duplexes respectively. S is a full 
signal comprised from the contribution of perfectly matching and mismatched duplexes. k is a 
dissociation rate constant. 

After rearranging of the system one has to solve it with respect to the rate constant 

kp: 
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If enough time is elapsed, the imperfect duplexes have dissociated and washed 

out, so Ui→0 and therefore S→P. Then the following is valid: 
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Equation 3-2. Solution of the problem in terms of the dissociation constant. The dissociation 
constant is time independent.  

This ratio can be easily recorded. The dissociation curve at each pixel of the chip 

image must be obtained first and then differentiated along its course and derivatives 

must be divided to the value of the signal where the derivative has been obtained. 

According to this, we can expect in the experiment the graph depicted in the Figure 

3-1 (simulated data). 

time

-(
dS

/d
t)/

S

 
Figure 3-1. Simulated situation of perfectly matching duplex and five mismatched duplexes. After 
sufficient time has elapsed, a horizontal line represents kp. 

We can expect, that the graph has initial nonlinear and linear parts. After some 

time the curve approaches a horizontal line. The vertical ordinate of the line 

corresponds to kp. Now it is easy to find the concentration of the perfect duplex at the 

beginning of washing according to the Equation 3-3: 
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hptk
theSP =0  

Equation 3-3. Computation of the initial duplex concentration. 

where Sth is a value of the signal at time th on the horizontal part of the above curve. 

By this calculation one avoids the signal from cross-hybridized oligos. If one fails to 

observe the horizontal line, then the spot is unreliable and this is the indication to 

discard such a spot from the analysis. 

Spot Determination and Quantification 

In fact, there is no need of explicit spot determination. As it has been described 

above, the dissociation curves obtained for each pixel of the chip provide the 

dissociation constant and an initial value of the unbiased signal. Having these 

quantities, the chip must be represented as two images in terms of the constants and 

initial values. Dust and empty area of the chip will have zeroes for both quantities and 

the spots will have certain values. Then it is easy to analyze the image with any 

software that is able to determine spot locations. 

Ranking 

To avoid dependency on the experimental conditions, the values of the rate 

constants are not of great importance at the very beginning of the analysis. Instead, 

one should rank the constants having a control constant as a minimum. Such a control 

could be a duplex with much higher melting temperature (i.e. stability) to ensure the 

slowest possible rate of fluorescence decrease (produced mainly by photobleaching). 

Having the smallest possible constant, the ranking procedure will help to differentiate 

specific and unspecific matching (already without cross-hybridization). Moreover the 

ranking helps to find out the resolution of the whole method: if the range of the 

constants from the control one to the highest one is very small, then the resolution is 

very poor and one should increase their difference by changing the experimental 

conditions. 

Hybridization and dissociation 

The key point of the experiment is that hybridization and dissociation are carried 

out in the same buffer and at the same temperature. The driving force for the 

dissociation is absence of nucleic acids in the washing solution (equal to the 
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hybridization buffer). The entropy then drives the duplex dissociation. In fact, the 

isothermal isobaric process happens spontaneously when and only when the 

differential of the Gibbs energy is negative at all conditions being fixed, but 

deliberating a break apart of an infinitesimal amount of duplexes: 

,TdSdHdG −=  

where dH is the heat necessary to break up the duplex, T – temperature, dS – the 

entropy gain after breaking up. In the process being considered, the spontaneity is the 

case: TdS is always larger than dH if the excess of the washing solution contains no 

DNA. 

Method Establishment 

Super Aldehyde slides 

First of all it was necessary to be able to produce oligonucleotide microarrays and 

make sure that DNA is indeed immobilized. Super Aldehyde microarray substrates 

were the first choice to start with. The immobilization procedure employs the reaction 

of the C6 amino modified oligonucleotide with the aldehyde group stemming from the 

substrate’s surface. At the first reversible stage the Schiff base is formed, which is 

then on the second stage irreversibly reduced by sodium borohydride (Scheme 3-1). 

DNA-(CH2)6–NH2 + O=CH–subst � DNA-(CH2)6–N=CH–subst + H2O, 

DNA-(CH2)6–N=CH–subst + [H] → DNA-(CH2)6–N–CH2–subst. 

Scheme 3-1 Formation of the Schiff base and subsequent reduction (with NaBH4). 

Microarrays were created according to the scheme mentioned above (see 

Materials and Methods) with various concentrations of the oligonucleotide P1 (see 

Table 3-1) in the spotting mixture: 50.0, 37.5, 25.0, 12.5 and 0.0 µM. To determine 

the quality of immobilization, the SYBR Green staining was employed. This 

technique is well established for cDNA microarrays [61]. Strikingly, the staining 

displays maximal signal where no DNA is located (Figure 3-2).  
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Figure 3-2. SYBR Green staining. Amount of the oligonucleotide decreases from left to right. 
Staining shows directly the opposite. 

Because of the unavailability of the information from Telechem, a possible 

“phenomenological” explanation could be proposed that the Micro Spotting Solution 

(Telechem) contains some compound “X” that binds to the glass slide and this 

compound is readily stainable with the dye. When there is DNA in the solution, the 

DNA binds instead of the “X”. But DNA in this case is a single stranded 20 nt 

oligonucleotide that is stained very weakly. By the time of the ongoing experiments, 

another version of the spotting solution – the Micro Spotting Solution Plus – became 

available. Staining experiments with this product displayed no signal at all, supporting 

the theory about the “X” compound. The other means to stain the microarrays with 

SYTO11-16, Panomer 9, OliGreen, according to either their cognate protocols or the 

one similar to SYBR Green, generally failed. Either the signal was absent, or the spots 

without DNA were stained, similarly to the already described effect. 

A common microscopic slide was used as a control and displayed no signal 

regardless whether there was or was no DNA in the spots. Another control was the 

hybridization with 5’Cy5-K1 – a complementary towards P1 Cy5 labeled 

oligonucleotide (see Table 3-1) at 42 oC for 1h. In this case a strong signal was 

observable exactly at the spots containing DNA. 

The failed attempts to control the immobilization lead to the necessity to make 

multiple spots in order to statistically overcome the uncertainty of immobilization. 

The differences in the amounts of the probe of a certain type at several spots will 

contribute to the standard deviation of the mean signal read from them, provided that 

the solution containing complementary DNA that is applied onto the chip for 

hybridization, has homogeneous distribution of the polynucleotides. The latter is 

normally the case if during hybridization the agitation is used. 

Preliminary dissociation experiment 

Having established the microarrays, a preliminary experiment concerning the 

possibility of dissociation was carried out with P2 immobilized and 5’Cy5-K2 
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complementary oligonucleotides. Hybridization was set up at 50 oC for 4 h. The 

dissociation was performed as described in the Materials and Methods section. During 

the dissociation the microarrays were incubated in the washing buffer for 0, 1, 2, 3, 8, 

15 min. Figure 3-3 shows the results. It is obvious, that there is a prominent fade of 

the signal indicating certain kinetics. 

   

   
Figure 3-3. Series of images scanned while washing. Upper left image corresponds to zero time, 
then 1, 2, 3, 8, 15 min. further right and down. 

Accurate kinetic analysis is not possible without real-time intensity measurements 

during dissociation. The scanner available in the lab was not possible to modify for 

such measurements. An ideal alternative was a Leica laser confocal microscope 

enabling to install on the object table a washing chamber (described below) and 

perform real time scanning and image recording. When the microarray, having the P2 

immobilized probe and hybridized 5’Cy5-K2 oligo, was observed by laser scanning, a 

very poor signal came up. The reason was either the poor sensitivity of the 

microscope or in general weak immobilization capacity of the Super Aldehyde slides. 

Later on, the latter problem turned out to be the case. 

Epoxy slides 

Among many available various microarray products, one offers a particular 

promising immobilization chemistry. Scheme 3-2 below shows that the 

immobilization occurs via a single irreversible reaction between a very reactive epoxy 

group and amino group. 

       O                       OH 

subst-CH-CH2 + H2N-DNA → subst-CH-CH2-NH-DNA. 

Scheme 3-2 Immobilization via the reaction with an epoxy group. 

Although the reaction looks very simple, it requires special conditions, namely 

controlled temperature and humidity. The temperature can be easily adjusted, but 

humidity tends to decrease when the temperature rises. To achieve the goal, numerous 

different ways were explored. The best and the most effective approach (at the same 

1 0 2 

3 8 15 



 40 

time the simplest one) is using a glass filled up with water only at the bottom and 

closed with several layers of filter paper (Figure 3-4).  

 
Figure 3-4. Chamber for humidity control during immobilization on the MWG epoxy slides. 

The microarrays are placed on a certain elevation above the water level. The glass 

with microarrays is then placed into the heating oven. The physical principle behind 

the device is the following: there is a certain profile of the humidity along the height 

of the glass emerging due to the difference between the humidity right above the 

water level (100%) and right beneath the filter paper (equal to the humidity in the 

oven). The profile stays unchanged when a dynamic equilibrium between the amount 

of vaporized water and water leaving the opening of the glass through the filter paper 

is established. Thus, at a given height plane perpendicular to the axis of the glass the 

humidity stays constant. By variation of the opening permeability (by altering the 

number of the filter sheets) one can establish any desired humidity at the position, 

where the microarrays are placed. The Materials and Methods section describes the 

immobilization protocol. 

microarrays 

filter 
paper 
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Another important point of the microarray fabrication is the ambient humidity 

during spotting. It was already published [37] and from the personal experience 

determined that the optimal humidity must be 55-60%. If the humidity is too low, the 

needles of the robot, delivering the oligonucleotides to the slide, dry before they reach 

the slide surface and therefore the transfer does not occur. Setting up the desired 

humidity posed therefore a challenge. To solve the problem numerous attempts were 

made. Especially the construction of the spotting robot did not allow to set up the 

humidity right in the spotting area due to the forced air exchange between the inner 

camber and environment. Therefore it was necessary to change the humidity in the 

whole room. A conventional room humidifier (Burg, Germany) at its outmost power 

could increase the humidity maximally for 5%, taking into account the ambient 

humidity at the time of the experiments equal to 30%. The solution was a DIY 

humidifier made of two 8 kW water boilers having a PC fan for vapor spreading. One 

of the boilers worked constantly, another was automatically switched on and off by a 

DIY hydrostat (Figure 3-5) tuned to 60% humidity. The DIY hydrostat was 

constructed from the Feuchtigkeitsschalter kit available from Conrad Electronik, 

Germany. 
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Figure 3-5. A) Scheme of the hydrostat. A fan drives the air onto the humidity sensor. B) Outlook 
on the device. 

The microarrays based on the MWG epoxy slides displayed a staggering 

difference in the immobilization extent. It became possible to observe them under the 

confocal microscope. Figure 3-6 shows the images of the microarray, having P1 

immobilized and 5’Cy3-K1 hybridized oligonucleotides, recorded with the confocal 

microscope and the GSI scanner. 

humid. sens. 

fan A 

B 
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Figure 3-6. A microarray  based on MWG epoxy slides. The views under the confocal microscope 
(left) and GSI scanner (right). 

Dissociation setup 

A constant buffer flow of a controlled temperature through the dissociation 

chamber was established by the kinetic setup depicted on Figure 3-7 along with the 

scheme of the working principle. 

The reservoir equipped with a magnetic stirrer contains a washing buffer, the 

buffer is heated up by an immersion heater, which is in turn controlled by a pre-

calibrated switch. The switch turns ON when the temperature sinks lower then the 

desired value and turns OFF otherwise. The temperature is measured in the 

dissociation chamber (see below) and a feedback loop is established between the 

chamber and the switch. The switch was constructed from the Temperaturschalter kit 

available from Conrad Electronik, Germany and fine-tuned with the MeasureSuit 

[38]. The buffer flows from the reservoir through the setup due to the atmospheric 

pressure. Behind the chamber the buffer is collected and returned back to the reservoir 

by a peristaltic pump. 
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Figure 3-7. Dissociation setup. A) scheme of the setup. B) photograph of the implemented setup.  

The dissociation chamber for recording of real-time kinetics was constructed. 

Figure 3-8 shows the chamber from the top view along with the diagram illustrating 

its working principle.  
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Figure 3-8. A) Working principle of the dissociation chamber. B) photograph of the dissociation 
chamber. C) debubbler to be inserted in the chamber. 

The chamber is a flat prolonged box, with the microarray slide as a top plane. The 

size and form of the chamber enables it to be placed onto the object table of the 

confocal microscope. The microarray surface containing spots is oriented inwards the 

chamber. The microarray itself is fixed with a metal frame and 6 screws. The junction 

between the slide and the rest of the chamber is made watertight with a rubber layer. 

The chamber has an inlet and outlet for a liquid. In the middle of the bottom plane of 

the chamber a thermo-resistor sensor is placed, which wires are lead outside of the 

chamber for the external control.  

microarray 

laser 

PMT 
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The experiments with the chamber revealed an intensive formation of bubbles 

obscuring the scanning area. Many different tricks to avoid the bubbles were tried. 

Among them there were the use of a blood transfusion system with its dedicated 

debubbler, vacuum degasation of the buffer and pre-heating of the setup to the 

working temperature in order to desorb the air from the surfaces. All of these 

techniques were generally unsuccessful due to the unavoidably open buffer reservoir 

catching the air from the surrounding. A final solution appeared to be a piece of a 

silicon hose surrounding the spots of the microarray.  The hose with its one end is 

tightly attached to the microarray, with another to the bottom of the chamber. The 

walls at the end of the hose attached to the bottom of the chamber have “windows” for 

the buffer flow. When the bubbles are formed, they are moving with the buffer flow 

and since they are lighter than the buffer, they slide over the microarray surface. 

When the bubbles encounter the hose, they can not enter the windows of the hose – 

the bubbles would have to sink otherwise (see Figure 3-8). Hence the bubbles are 

forced by the liquid current to bypass the hose and therefore the area being scanned. 

Indirect Labeling 

The dissociation kinetics studies are intended to be carried out with native 

ribosomal RNA and therefore a labeling procedure must be established. There are 

numerous labeling procedures. The most popular methods for nucleic acid labeling 

are currently based on enzymatic procedures such as those involving reverse 

transcriptases [40-44], terminal transferases [45, 46], kinases [46], random priming 

[47, 48], or PCR [49-57]. Most of these protocols also demand careful nucleic acid 

purification, separate sample fragmentation procedures (which considerably improve 

the specificity of hybridization), and a final precipitation or gel filtration step to 

eliminate excess label. As a result, sample isolation and fractionation steps usually 

precede separate labeling-fragmentation-purification routines. Recently developed 

chemical labeling methods also require a considerable time to perform (more than 3 h) 

[58, 59]. Another very fast labeling procedure taking 20-30 min was developed by 

Bavykin, et. al. [60]. This procedure is based on the oxidative cleavage of RNA with 

formation of active species reacting with amino derived fluorescent labels. In order to 

simplify labeling of RNA and at the same time increase accuracy of quantification by 

having a single label per a single RNA molecule I have developed an indirect labeling 

method. The principle of the method is shown on the Figure 3-9.  
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Figure 3-9. Indirect labeling. On the one hand RNA hybridizes with an oligonucleotide of the 
microarray, on the other hand it hybridizes with the “marking oligo”, labeled with a fluorescent 
dye (indicated by an asterisk). 

A labeled oligonucleotide (marked by asterisk) – the “marking oligo” – hybridizes 

with a conserved region of RNA, while all the variable regions are available for 

hybridization with specific oligonucleotides of a microarray. This method is actually a 

refinement on already published technique [39]. The authors insist on the proximity of 

the “marking oligo” to the region that is detected by the specific oligo as far as 3 bases 

apart. In their case the detection limit was 50-500 pM. The method used in this work 

does not require proximity and the determined detection limit of the method is not 

worse than 300 pM of rRNA (60 pg/µl). The detection limit was determined using a 

standard microarray format  with the chip containing the P2 immobilized 

oligonucleotide. The hybridization was performed as described in the Materials and 

Methods section with rRNA of Algae01 species (obtained by in vitro transcription of 

the respective clone) at different dilutions decreasing the concentration of rRNA. The 

smallest concentration that still produced well recognizable signal above the 

background level was considered as a detection limit. 
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Software 

Recording of the real-time kinetics implies regular scanning of the microarray. 

The Leica confocal microscope is able to perform scans one after another spaced with 

a desired time interval. As the result one receives a series of TIFF files named with 

sequential numbers. To discover the dissociation curve a computer program was 

created. The program reads the series of tiff files, converts their names into the 

corresponding time points and looks after the intensity of the same pixel on all 

images. The program has options to perform averaging within a square patch or to 

integrate the spot intensities within the square. The output of the program is a text file 

of time-intensity pairs. The program was designed in two versions for a single 

computer and a cluster (or a multiprocessor computer). The program makes use of the 

TIFF processing library available elsewhere [63]. 

Dissociation Experiments 

The first experiment was carried out with the chip having the P1 immobilized 

oligo and hybridized with the complementary one 5’Cy3-K1. The dissociation curve 

was recorded at 45 oC, washing with 5xSSC. The curve is shown on Figure 3-10A, the 

intensity of the pixels was averaged within 16x16 rectangle. The time course of 

fluorescence has an initial steep part and slow rest. Moreover, the slow part of the 

curve has a wave-like quality. This wave-like behavior became much more prominent 

after the numeric derivation of the curve, that made it impossible to analyze it 

accurately (data not shown). Several things had to be considered. Does the observed 

fluorescence change indeed correspond to the dissociation or the fluorescence decay 

happens due to the other reasons? Why does the dissociation curve have two such 

distinct decrease rates while the single duplex is supposed to dissociate uniformly? 

What is the wave component of the curve, obviously having nothing to do with the 

dissociation itself and dramatically disturbing the analysis? 

The stability of the instruments was the first issue to be checked. Instead of the 

spots on the microarray a piece of aluminum foil was glued onto the normal 

microscopic slide and the same series of images was recorded. In this case not the 

fluorescence, but the reflected light was captured by the PMT and quantified. The 

Figure 3-10B shows the time course of the measured signal. Strikingly, there is a 

prominent decay, that can be attributed either to the laser intensity drift or shifting 
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sensitivity of the PMT. On the other hand one can see that after about an hour the 

decay is getting quite slow. In fact, the same experiment was performed but after 

running the microscope idle for 1.5 hours. The signal intensity then decays much 

slower, but the wave component is somewhat increased (data not shown). This tells us 

that the pre-heating stabilizes the instrument, either it does with the laser or PMT or 

both of them. 

There is an indication in the literature, that the PMTs tend to have uneven 

sensitivity during time. The sensitivity has overlapped long and short periods of 

alterations of unknown origin [62]. Apparently, the reference is quite old, while 

nothing new is available, and the technology of PMT fabrication might have changed, 

it was necessary to examine the issue of the PMT sensitivity in greater details. An 

assay of the PMT sensitivity was carried out by recording of the intensity of the 

constant light source. For this purpose a piece of black cardboard with a needle sized 

aperture was glued onto a conventional microscopic slide and lit from the beneath by 

a transparent-light source of the confocal microscope. The transparent-light source 

can be considered stable because this is a simple incandescent lamp powered from the 

stabilized power supply and has no obvious or documented reasons to be unstable. 

Before scanning, the microscope was pre-heated by running idle for 1.5 hours as 

described above. The scans were processed with the software described above using 

the option to integrate the pixels within the square covering most of the light spot. In 

contrast to the single-pixel tracing, this option spectacularly reduces sporadic glitches 

of intensity. Figure 3-10C shows the time course of the PMT sensitivity. The waves 

mentioned above are prominent along with the slow general decay of sensitivity. The 

period of the waves is about 20 min that is much larger than the mains AC voltage 

frequency, thus making them most likely to be coming from the PMT rather than from 

the possible light source variations. From this moment it becomes clear that all the 

measurements performed with the PMT (and of course with the confocal microscope) 

must be corrected by having the constant light source as a reference. The correction 

factor is then: 

0R
R

f t
t = , 
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where Rt is the reference signal at the time point t, and R0 is the reference signal of the 

very first measurement when t= 0. To obtain correct measurements, this correction 

factor must be multiplied with the measurement to be corrected. 

Another aspect of the fluorescence measurements that had to be taken into account 

is possible photobleaching of the fluorescent dye. The assay of the fluorescence 

steadiness was performed with the chip having the P1 immobilized oligo and 

hybridized with the complementary 5’Cy3-K1. The microscope was preheated for 1.5 

hours and as a reference the transparent-light source was used. The corrected time 

course is displayed on the Figure 3-10D. Apparently during 2 hours there is no 

significant photobleaching of Cy3, which means that the kinetic assay with this dye 

does not need to be corrected for the photobleaching. In contrast, the same experiment 

with 5’Cy5-K1 shown on Figure 3-10E shows a clear photobleaching time course. 

The final experiment based on the previously collected knowledge was carried out 

with in vitro synthesized rRNA. The microarray contained P2 immobilized 

oligonucleotide while rRNA had a complementary stretch towards it. The RNA was 

hybridized at 45 oC for 15 h and washed in the kinetic setup with the mixture of 

5xSSC and 0.1% SDS. The microscope was initially pre-conditioned by running idle 

for 1.5 h. As s reference the conventional microscopic adjustable light source was 

employed. The light was directed on a piece of aluminum foil situated on the outer 

surface of the microarray in a vicinity to the spots being scanned. Therefore the 

images displayed spots and a part lit by the reference light. The initially obtained 

curve was corrected with the reference. The time course of fluorescence is shown on 

Figure 3-10F. There is a large glitch disrupting the otherwise normal exponential 

decay. The glitch occurred due to the slide breakdown. 
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Figure 3-10. Dissociation records. A) uncorrected dissociation curve, oligonucleotide-
oligonucleotide diplex. B) recording the time course of the intensity of the reflected laser light. C) 
time-course of the PMT sensitivity with a constant reference light. D) photobleaching of Cy3, 
corrected curve. E) photobleaching of Cy5, corrected curve. F) dissoiation of the rRNA-
oligonucleotide duplex, corrected curve. 

Conclusion 

Making the conclusion it should be noticed that successful studies of dissociation 

kinetics in order to perform match-mismatch discrimination are possible with a 

confocal microscope. The nature of the detector (PMT) requires its pre-conditioning 

and obligatory use of a reference light. On the other hand the scanning must be 

accompanied with a continuous buffer flow washing the microarray.  The temperature 

of the buffer in the chamber containing the microarray must be controlled 

automatically. For all of these conditions to meet, there was a great difficulty 
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concerning available equipment and manpower. Therefore these experiments have 

been suspended for the future. 

Materials and Methods 

Immobilization of oligonucleotides onto the Super Aldehyde substrate (ArrayIT, 

USA) was performed by manual spotting. The spotting mixture was prepared by 

mixing of equal volumes of the oligonucleotide aqueous solution and 2x Micro 

Spotting Solution (Telechem, USA). Oligonucleotides are listed in the Table 3-1, 

produced by Eurogentec, Belgium. The spotted slides were dried in an silica-gel 

exsiccator for 20h. After this, the slides were rinsed in 0.2% SDS for 2 min. and in 

Millipore water for 2 min. The slides were put into boiling Millipore water for 3 min, 

dried by centrifuging at 500g, 1 min. in Falcon tubes and reduced for 5 min. by 1.5 g 

NaBH4 in 450 ml PBS mixed with 135 ml ethanol. After the reduction, the slides were 

rinsed twice with 0.2% SDS for 1 min. and put for 5 s. into boiling Millipore water. 

Finally the slides were dried by centrifuging as before. 

Staining with SYBR Green was performed by 1x SYBR Green (Molecular Probes, 

Netherlands) in TBE for 4 min. After that, the chips were rinsed 3 times with TBE 

and dried by centrifuging at 500g, 2 min. To remove SYBR Green the chips were 

treated by the solution containing SDS 0.1%, EDTA 1mM, TrisHCl 10mM, pH 7.5 

for 1 h, then rinsed with Millipore water and dried by centrifuging. 

Hybridization experiments were performed in the Hybridization Station (Gene 

TAC, USA) at various temperatures for various times in the hybridization solution, 

containing 5xSSC, 0.1%SDS, 0.2 mg/ml BSA (New England Biolabs) and 10 µM of 

the complementary probe. Washing was carried out 10 times by a mixture containing 

1xSSC and 0.1% SDS at 19 oC, 1 min. flow, 30 s. hold. Finally the chips were dried 

with compressed air for 2 min. Scanning was performed with the GSI (Gen TAC) 

scanner with appropriate laser and filter settings. 

Hybridization involving an indirect labeling was essentially carried out as 

described in the previous paragraph, but the hybridization solution additionally 

contained 5 µM of marking oligo 5’-Cy3-CTC-CTT-GGT-CCG-TGT-TTC-AAG-

ACG-G-3’ and 10 mM  Ribonucleoside Vanadyl Complex (New England Biolabs). 
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For the complimentary material an in vitro synthesized rRNA was employed. Final 

concentration of the rRNA was 1 µM. 

Cloning and in vitro RNA synthesis were carried out as described in the Materials 

and Methods section of the Chapter 4. 

Preliminary dissociation experiments were performed in the 250ml glass 

immersed into the thermostatic bath at 50 oC. The glass contained 1xSSC, 0.1%SDS 

as a washing buffer. Microarrays were completely immersed into the washing buffer 

and incubated for various times. 

The microarrays based on the MWG Epoxy slides (MWG, USA) were created by 

spotting of the 5’ C6-amino modified oligonucleotides (Metabion, Germany), 

delivered onto the slides by the Gene TAC spotting robot (Genomic Solutions) at the 

ambient humidity 60%. The immobilization of the modified oligonucleotides was 

performed at 42 oC, 50% humidity for 8-12 hours. The necessary humidity was 

established in a 1L glass of 180 mm height containing 100 ml of water. The 

microarray slides were put at the 40 mm elevation above the water level. The glass 

was tightly sealed with several sheets of filter paper. The number of sheets was 

determined empirically using a conventional hygrometer so that the elevation level, at 

which the slides were placed, reached 50% humidity. 

Recording of images for real-time kinetics was performed on the Leica Confocal 

Microscope under control of its cognate software. Kinetic data were extracted from 

the series by a self-designed program. Further analysis of the data was performed 

within Microsoft Excel. 
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Tables 
Table 3-1. Set of oligonucleotides for the method establishment. 

ID Sequence 5’-3’ 
P1 AmineC6-GGT-TTT-TTA-ACC-CGC-AAA-CT 
K1 AGT-TTG-CGG-GTT-AAA-AAA-CC 
P2 AmineC6-GAT-TGT-GCA-ATA-CTC-CAA-CC 
K2 GGT-TGG-AGT-ATT-GCA-CAA-TC 
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Chapter 4 Experimental evaluation of the PROBE 

Introduction 

Chapter 1 describes a new probe design algorithm and program [64]. In contrast to 

existing solutions, the algorithm allows working with datasets that need not to be 

carefully aligned and that takes into account the position of mismatches along the 

recognition sequence. In that work [64] we have proposed an ad hoc stability function 

taking into account the positions of mismatches. This chapter is devoted to the 

experimental test of the validity of this function. The most important point that is 

examined here, is the dependency of the DNA duplex stability on the position of 

mismatches, because this was the key point of the new strategy of the probe design. 

Since the end of 2001, when the work on the algorithm was published, a certain 

progress in the probe design as well as in the knowledge of DNA duplex stability has 

taken place. Various probe design programs and approaches became available [65-

69]. They rely either only on the alignment [66] during finding the signature 

sequences, or on the nearest neighbor prediction of the stability of DNA duplexes [65, 

67, 68] ignoring positions of mismatches, while taking into account possible 

secondary structure formation. The nearest neighbor model was developed for the 

duplexes in the solution (not formed on the surface of the microarray) and does not 

care about the position of mismatches [70-74].  The approach proposed by OV. 

Matveeva [69] uses a complex thermodynamic consideration for refining a probe 

selection produced by any program taking into account a compound effect of the 

secondary structure, probe-to-probe interaction and a base composition of the nucleic 

acids participating in the microarray experiment. Again this approach relies on the 

nearest neighbor model developed for solutions. Concerning the influence of the 

position of a mismatch on the duplex stability there is a general rule that a mismatch 

near or at the terminus of a short duplex is less destabilizing than an internal mismatch 

[75]. The group of Stahl completed recently a thorough study in this field [76, 77]. 

First, it is essential to point out, that the format of the system the group of Stahl is 

working with, is not exactly compatible with the conditions, for which the 

dissociation model (being tested here) has been developed in our work. In fact, our 

model in the equilibrium conditions (constant temperature, and a salt concentration) 

predicts the concentrations of perfectly matching and mismatched duplexes on the 
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surface of a microaray where the probes are attached to the glass, while the system of 

Stahl’s group employs nonequilibrium melting at rising temperature with washing at 

changed salt concentration from the microarray having gel pads as spots. This means, 

that their results can be considered as hints supporting our model. Their work from 

2002 [76] shows a little difference in the behavior of the duplexes mismatched at the 

terminal positions (from 1 to 4), while the later study [77]  shows at some point very 

strong differences in the remaining duplex concentrations depending on the position 

of a single mismatch during the course of nonequilibrium melting and washing. 

Another indication of the positional dependency of the stability is provided for the 

short octamers by surface plasmon resonance [78], where it was shown that the 

intermediate mismatches destabilize the duplex at greater extent than the terminal 

ones. 

Results and discussion 

The influence of the mismatch position onto the duplex stability was evaluated. 

For this purpose five microarrays specific to five organisms were prepared to carry 

perfect matching and single-base mismatched probes. In fact, the formation of RNA-

DNA duplexes is an equilibrium process during the hybridization. After the 

hybridization, the microarrays were very shortly washed at 20oC with the solution of 

the same salt concentration as it was during the hybridization (5xSSC which is 1M 

sodium ions), thus preserving the state that had been achieved in the equilibrium. 

Apparently, a mismatch shifts the equilibrium to the extent depending on its position. 

Quantification shows (Figure 4-1) that our hypothetical function in average is 

followed, although one can not claim here that it is followed without exceptions.  
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Figure 4-1. Influence of the mismatch position on the DNA-RNA duplex formation. Low 
stringency wash with 5xSSC, 20oC. Captions of each chart represent species applied onto the 
chips. 

In all cases the most intermediate mismatch at the position eleven brings the 

highest instability of the duplex. It is necessary to point out that based on the nearest 

neighbor model the standard way of stabilities prediction fails to calculate the 

experimentally revealed behavior (Figure 4-2).  
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Figure 4-2. Theoretically calculated concentrations of duplexes for the species indicated as 
captions of the charts. 

The standard way predicts for the studied probes melting temperatures more than 

55 oC slightly varying from probe to probe. The Materials and Methods section 

provides means how to determine concentrations of the duplexes predicted by the 

nearest neighbor model at any experimental temperature, and these normalized 

concentrations are shown in Figure 4-2.  The reason for such a discrepancy between 

the actual situation and prediction given by the nearest neighbor model might be 

attributed to the surface effects that to some extent depend on the density of the 

immobilized probes [81,82]. Moreover, there is a study indicating that the nearest 

neighbor parameters found for solution conditions are not directly applicable to the 

chips [83].  
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The 5xSSC washing is naturally unlikely to be used in practice; I tried a more 

traditional wash with 0.1xSSC. Quantification shows much more contrasted 

dependency (Figure 4-3). The decreased ionic strength enhances repulsion of the 

DNA backbone and in general destabilizes DNA duplex and already mismatched 

DNA duplexes are disturbed even further. These results demonstrate the practical 

applicability of the dissociation model proposed in our work [64] and moreover, the 

stability predictions are robust towards the salt concentration. 
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Figure 4-3. Influence of the mismatch position on the DNA-RNA duplex formation. High 
stringency wash with 0.1xSSC, 20oC. Captions of each chart represent species applied onto the 
chips. 

Another issue addressed was how accurate the PROBE proposes organism 

specific probes. The array containing ten probes for ten different organisms, five of 

which being a negative control, was studied with five rRNAs separately.  Recognition 

power of such an array is high enough, as one can see on Figure 4-4. Experimental 

conditions were the same as for the mismatch position assay. 
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Figure 4-4. Recognition of RNA species by microarray. Horizontal axis represents spots available 
on the microarray specific to the following species: A – Alge01, T – Tardig3, O – Ostrac7, H – 
Harpac13, C – Cyclop13, E – Epheme1, Ch – ChiRon14, N32 – Nematd32, R – Rotato06, N40 – 
Nematd40. Low stringency wash with 5xSSC, 20oC. Captions of each chart represent species 
applied onto the chips. 

One can see that the highest signal appears at the spots specific to a given rRNA 

species being applied onto the microarrays. Along with the specific signal there is a 

certain level of cross-hybridization. To increase the specificity even further, the 

microarrays were washed with 0.1xSSC. There is an obvious gain in the specificity as 

one can see on Figure 4-5. 
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Figure 4-5. Recognition of RNA species by microarray. Horizontal axis represents spots available 
on the microarray specific to the following species: A – Alge01, T – Tardig3, O – Ostrac7, H – 
Harpac13, C – Cyclop13, E – Epheme1, Ch – ChiRon14, N32 – Nematd32, R – Rotato06, N40 – 
Nematd40. High stringency wash with 0.1xSSC, 20oC. Captions of each chart represent species 
applied onto the chips. 

A correct quantification is only possible when the response of the microarray on 

the various target concentrations is known. I studied the response of the microarrays 

on the increasing concentration of RNA. In this experiment two RNA species 

(Harpac13 and Osrtrac7) were in the mixtures – one as a standard (Harpac13), another 

one was varied (Ostrac7). Altogether 6 hybridizations on separate microarrays were 

performed with varying Ostrac7 RNA concentration of 0.1, 1, 10, 100 and 500 times 

standard. One can see on Figure 4-6 that the microarray responds hyperbolically.  
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Figure 4-6. Microarray response calibration. Lengmuir’s model. 

This is a classical example of Langmuir’s absorption model, which assumes an 

absorptive surface with a limited number of absorption centers. The microarray is 

indeed a sort of a surface with a limited number of hybridization (say absorption) 

centers. To test if it is true, I have performed coordinates transformation (power -1) 

and tested if the obtained curve is a line. In fact, one can see that it is indeed a line and 

the goodness of fit is very high (0.999). The same behavior was observed for 

GeneChips (Affymetrix) where the hybridization at high concentrations followed the 

Langmuir’s curve [85]. In the mentioned above experiments (mismatched probes and 

evaluation of the probes specificity), the range of concentrations was far away from 
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the saturation. The concentrations correspond to 1 at Figure 4-6. Therefore, the 

response of the microarray can be considered linear and levels of fluorescence are 

directly proportional to the duplex amounts, i. e. stabilities. 

Conclusion 

The influence of position of mismatches on the duplex stability has been 

experimentally demonstrated in the equilibrium conditions that are assumed by the 

model [64]. Experimentally it has been shown that the PROBE designs probes of 

desired specificity without any significant  cross hybridization. 

Materials and methods 

Computation methods 

The oligos employed in the microarray experiments were designed using the 

PROBE [64] being given with a database of Benthos organisms and other eucaryotes 

[80]. The search was performed assuming the dissociation probability of 24% within 

the group being detected, and 76% outside this group. The oligonucleotides of approx. 

50% GC composition were selected from the pool of designed probes. 

For comparison with the nearest neighbor model, the prediction of melting 

temperatures according to that model were performed by TermAlign software [67]. 

Predicted melting temperature determines the overall stability of the duplex, the 

calculation of the predicted quantities of duplexes at experimental conditions (Figure 

4-2) was performed as follows. 

Let the duplex formation be designated by the equilibrium: 

A + A � AA 

where A is one strand, A is the complementary one. This equilibrium is characterized 

by the equilibrium constant Kp = [AA]/([A][A]); T, p = const. Thus, a well-known 

relation holds [84]: 
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( )KpRTG ln0 −=∆  

Equation 4-1. Standard Gibbs  energy change at isobaric isothermic conditions. 

At the melting point  [AA] = [A] = [A] = C0/2, where C0 is the total concentration 

of the double stranded polynucleotide. Thus, the equilibrium constant at the melting 

point is equal to 1/(C0/2). This enables to calculate the predicted ∆G0 for each duplex 

according to Equation 4-1. To calculate the predicted equilibrium constant appearing 

at the experimental conditions Kpex with temperature less than the melting one, the 

following relation is used: 

( )

( ) .
2

1
lnln

therefore

,ln
2

1
ln

0

0

��
�

�
��
�

�
=

−=��
�

�
��
�

�
−

CT
T

Kp

KpRT
C

RT

ex

meltex

ex
exmelt

 

To compare the actual quantities of duplexes a system of three equations was 

solved comprised from the relations for definition of the equilibrium constant, 

material balance and equality of strands concentrations. The solution is as follows: 
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Experimental procedures 

The microarrays were created using MWG Epoxy slides (MWG). The 5’ C6-

amino modified oligonucleotides (Metabion) were delivered onto the slides by the 

Gene TAC spotting robot (Genomic Solutions). Immobilization of 5’ oligonucleotides 

was performed at 42 oC at 50% humidity for 8-12 hours. The necessary humidity was 

established in a 1L glass of 180 mm height containing 100 ml of water. The 

microarray slides were put at 40 mm elevation above the water level. The glass was 

tightly sealed with several sheets of filter paper. By variation of the number of the 

filter paper sheets it was possible to set up any desired humidity. In fact, the filter 

paper determines a vapor flow at a certain rate, which in turn determines a gradient of 

humidity along the altitude of the glass. By variation of the rate, the steepness of the 

gradient can be varied, and thus the humidity at a certain elevation. 



 65 

The plasmids of the pZErO-2 vector carrying rRNA genes were used to transform 

the TOP10 E coli strain by electroporation according to a standard protocol [79]. The 

transformed cells were grown on the LB agar plates containing kanamycin.  LB liquid 

medium (30 ml) containing 40 µg/ml kanamycin was inoculated with single colonies 

of each clone. After overnight growth at 37 oC, the cells were transferred to 470 ml of 

LB medium containing 40 µg/ml kanamycin the cells were grown overnight at 37 oC. 

The harvest was used to isolate the plasmids according to the large scale plasmid 

preparation and alkaline lysis protocols [79]. 

Large amounts of ribosomal RNA were produced by in vitro transcription reaction 

using the RiboMAX (Promega) kit containing either Sp6 or T7 polymerases 

depending on the orientation of inserted rRNA genes. Again, depending on the 

orientation of the insert, the plasmids before transcription were first cut with either 

SpeI or XbaI (Roche) restriction enzymes according to the cognate protocol. To 

determine the orientation of the inserts, the plasmids were sequenced with M13 

Forward and Reverse primers. The sequencing was performed on the MegaBACE 

sequencer (Molecular Dynamics) according to its standard protocol. 

Hybridization experiments were carried out as follows. Reaction mixture 

contained 10 µl of approx. 17 nM (5 ng/µl) rRNA under investigation, 100 µl of 

hybridization solution (5xSSC, 0.2 mg/ml BSA, 0.1%SDS), 6 µl of 200 mM 

Ribonucleoside Vanadyl Complex (New England Biolabs) and 5 µl of 100 µM 

“marking oligo” (see the next section) 5’-Cy3-CTC-CTT-GGT-CCG-TGT-TTC-

AAG-ACG-G-3’. Thus, the final concentration of RNA was 1.4 nM. The reaction 

mixture was applied onto the chip heated up to 70 oC in the Gene TAC Hybridization 

Station (Genomic Solutions), then the system was heated up to 80 oC, incubated for 1 

minute, then cooled down to 45 oC and incubated with agitation for 24 hours. The 

chips were washed with 5xSSC or 0.1xSSC (depending on the experiment) at 20 oC 3 

times. 

Scanning was performed on the Gene TAC LS IV scanner (Genomic Solutions) 

with an appropriate laser and a filter set for Cy3. After the first scanning the chips 

were scanned again with a high gain. These scans showed “black holes” on a bright 
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background at the positions of the spots where hybridization did not happen (see 

Figure 4-7).  

  
Figure 4-7. Display of spots without hybridization. A) - "black holes". B) - negated and 
contrasted  "black holes". 

This phenomenon has been used to find out the positions of all spots no matter 

how strong the hybridization signal is. The images were negated, contrasted and 

processed with software that automatically determines spot positions. After the spot 

positions were found it became possible to quantify signals of any intensity. All 

images were analyzed with ArrayVision 7.0 (Imaging Research). 

Indirect labeling 

In order to simplify labeling of RNA and at the same time increase the accuracy of 

quantification by having a single label per single RNA molecule, an indirect labeling 

method was used. A fluorescently labeled oligonucleotide – the “marking oligo” – 

hybridizes with a conserved region of RNA, while all the variable regions are 

available for hybridization with specific oligonucleotides of a microarray. The 

determined detection limit of the method is not worse than 300 pM of rRNA (60 

pg/µl). 

A B 
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Tables 
Table 4-1. Perfectly matching probes 

Organism Sequence 
Tardig3 CAC-CAC-CAA-GTT-ACG-GGA-TC 
Nematd40 TGC-ATT-CGC-GAG-AGT-GTC-TG 
Rotato6 TAC-TAA-GCT-CTC-TGC-CGA-CG 
Nematd32 CCA-ACA-GAG-TTG-ACC-TTT-AC 
ChiRon14 GGA-TGG-AAG-TGG-CGA-CTG-TT 
Epheme1 ACA-TTC-GAC-CGA-CTA-GCG-GA 
Cyclop13 ACA-TAC-ATG-GAT-CAC-CCC-TC 
Harpac13 CTT-TGA-CAG-CGA-TCA-CCC-CT 
Ostrac7 ATC-ACT-CGC-GCA-TAA-GTT-AG 
Alge1 GAT-TGT-GCA-ATA-CTC-CAA-CC 

 
 

Table 4-2. Mismatched probes 

Alge1 
end GAT-TGT-GCA-ATA-CTC-CAA-CT 
m6 GAT-TGT-GCA-ATA-CTA-CAA-CC 
m11 GAT-TGT-GCA-CTA-CTC-CAA-CC 

Cyclop13 
end ACA-TAC-ATG-GAT-CAC-CCC-TT 
m6 ACA-TAC-ATG-GAT-CAT-CCC-TC 
m11 ACA-TAC-ATG-AAT-CAC-CCC-TC 

Harpac13 
end CTT-TGA-CAG-CGA-TCA-CCC-CC 
m6 CTT-TGA-CAG-CGA-TCG-CCC-CT 
m11 CTT-TGA-CAG-TGA-TCA-CCC-CT 

Ostrac7 
end ATC-ACT-CGC-GCA-TAA-GTT-AA 
m6 ATC-ACT-CGC-GCA-TAG-GTT-AG 
m11 ATC-ACT-CGC-ACA-TAA-GTT-AG 

Tardig3 
end CAC-CAC-CAA-GTT-ACG-GGA-TT 
m6 CAC-CAC-CAA-GTT-ACA-GGA-TC 
m11 CAC-CAC-CAA-ATT-ACG-GGA-TC 
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Chapter 5 Quantification of a Mixed Sample by 
Sequencing 

Introduction 

Environmental samples are always complex mixtures of different organisms. For 

the taxonomical studies one has to quantify each individual organism. One of the 

quantification ways is to determine the concentration of characteristic nucleic acids of 

the organism, for example rRNA. Traditional means of discovering a mixture 

composition rely on the separation of the mixture to the individual components and 

their subsequent quantification or using specific probes recognizing each component 

in the presence of the others. Here we propose another method based on the 

sequencing of the complex mixture provided that the sequences of the characteristic 

nucleic acids of the suspected organisms are known. 

Solution 

Sequencing can be performed by various means, but the most appropriate for our 

problem is pyrosequencing. Pyrosequencing is a new technique based on the fact that 

the DNA polymerization reaction is followed by a pyrophosphate release. During 

sequencing one adds a certain nucleotide tri-phosphate to the mixture of a template, 

polymerase  and an annealed primer. If the incorporation occurs, the pyrophosphate is 

released. The pyrophosphate along with luciferin and luciferase produce a spark of 

light that can be measured and quantified. The amount of light is proportional to the 

concentration of the pyrophosphate and thus to the concentration of the template. 

The problem of finding out the amounts of each individual sequence species can 

be represented as a system of linear equations: 
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where Sj – peak intensity at j-th step of a specified nucleotide, kji(X) – linear 

coefficient between brightness and incorporation event of a specified nucleotide X at 

the j-th step of sequencing for the i-th organism, nji(X) – number of available 

incorporation events for the X nucleotide at the j-th step for the i-th organism 

(0,1,2,3…), xi – the sought concentration of the desired i-th organism, L – number of 

steps. 

In short this can be written in a matrix form: 

SXN =⋅  

where N – matrix of nji multiplied by kji(X), X vector of xi, S – vector of peak 

intensities. This system can be analytically solved [86]. 

First, multiplying both sides on NT: 

SNXNN TT ⋅=⋅⋅ . 

It is known that NT.N is a square matrix no matter what N is, thus multiplying on the 

inverted NT.N will produce a unity matrix: 

( ) ( ) SNNNXNNNN T1TT1T ⋅⋅⋅=⋅⋅⋅⋅ −−
. 
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The matrix (NT.N)-1.NT.N is a unity matrix having 1 at its diagonal and 0 everywhere 

else. Hence, the solution is: 

( ) SNNNX T1T ⋅⋅⋅= −
 

and the diagonal of (NT.N)-1 contains squares of standard deviations of each solution.  

The number of steps required for an unambiguous solution must be at least as 

many as it provides non-singularity of the matrix N. In fact, it is better to overdefine 

the system of equations even further to make sure that glitches of the measured 

intensities do not affect the solution and the noise is averaged. 

In practice the coefficients kji(X) are unknown. In the ideal case they should be all 

equal to each other and thus may be omitted from the system. But the reality is 

different. To overcome the problem of unknown coefficients one has to record the 

pyrograms for each sequence – for example from the clones or synthesized 

oligonucleotides – and store them in a library. Therefore, a pyrogram of a given 

sequence is a column in the matrix N. The solution X is then found in folds of the 

concentrations used to record the library of pyrograms. Thus, it makes sense to use 

equal concentrations for recording of the library. 

The library can be recorded once and stored for all further solutions. When 

sequencing the unknown mixture, it is good to add a known amount of a sequence that 

is not present in the sample, as a concentration standard. Naturally, the pyrogram of 

the standard must be in the library as well. After finding the solution, all the variables 

can be related to the standard and their final concentrations thus can be obtained via 

known concentration of the standard. Usage of the standard avoids sensitivity of the 

solution to the fluctuations of the instrument characteristics from one run to another. 

The ideal case, where all kji(X) being equal to 1, is necessary for determining the 

minimal number of steps for the sequencing depending on the actual sequences. 

Apparently, the sequences per-se possess a certain amount of information and this 

influences the number of steps to perform. Therefore the matrix N contains only the 

numbers of nucleotides available for incorporation at each step. This matrix for a 

given number of steps can be generated from the sequences according to a simple 

algorithm. After the matrix has been generated the singularity must be tested and if it 
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is singular, more steps are added, matrix re-generated, tested again and so on until it is 

not singular anymore. 

Experimental Verification 

The experimental verification of the proposed method was carried out with PCR 

products of cloned rRNA genes. A library of pyrograms for 7 species has been 

recorded. The abbreviations of the species are the following: A – Alge01, T – 

Tardig3, O – Ostrac7, H – Harpac13, C – Cyclop13, E – Epheme1, N4 – Nematd40.  

Figure 5-1 shows the profiles of the pyrograms.  

The PCR products were discarded to simulate a real life experiment where the 

library is supposed to be pre-collected. Another PCR reaction with the same species 

has been carried out. Agarose gel electrophoresis reveals the concentration of the 

products to be equal. The estimated concentration was 40 ng/µl. The PCR products 

were used to create three mixtures. The Table 5-1 shows the composition of the 

mixtures in µl of the PCR products. 
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Figure 5-1. Library of pyrograms for species T,E,C,A,H,N4,O.  

The mixtures were subjected to pyrosequencing and the obtained pyrograms are 

shown on Figure 5-2. 
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Figure 5-2. Pyrograms of the mixtures 

These pyrograms were analyzed according to the mentioned above formalism. 

First, the analysis of the sequence information reveals the minimum number of steps 

to be 34. The pyrograms of the mixtures as well as the profiles from the library were 

truncated after the 50th step thus providing 16 more equations to overdefine the 

system of equations. The system was solved and found variables were related towards 

“known” concentration of the standard, here the specie “T”. The solutions and their 

standard deviations are shown in Table 5-2. Table 5-3 shows the final values. In Mix1 

there is a good recognition of species. The absent species show values from –1 to 2, 

which is attributed to the background. Indeed, the standard deviations for these 

solutions were larger than the solutions itself, while that for the solutions of present 

species were naturally less than the discovered values. Analogously, the appropriate 

recognition of the compositions of the other mixtures Mix2 and Mix3 is possible (see 

Table 5-3). 
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Conclusion 

Sequencing of a complex mixture of DNA species theoretically makes it possible 

to discover quantities of each component provided that the nucleotide sequence of 

each species is known. This has been proven practically by deciphering of several 

mixtures of various composition. The approach is proposed for quantification of 

mixtures of small organisms from environmental samples. 

Materials and Methods 

The plasmids of the pZErO-2 vector carrying rRNA genes were prepared as 

described in the Materials and Methods section of the Chapter 4. 

PCR amplification was carried out in 30 µl volume with 37 cycles. Concentration 

of the template 0.67 ng/µl. The primer 5’-GAC-CCG-TCT-TGA-AAC-ACG-G-3’ 

was used as a forward primer, the 5’biotynilated primer 5’-ATC-GAT-TTG-CAC-

GTC-AGA-A-3’ was used as a reverse primer.  

Pyrosequencing was performed by the PSQ 96 instrument (Pyrosequencing AB, 

Sweden) with 5’-GAA-ACA-CGG-ACC-AAG-GAG-T-3’ sequencing primer. Prior 

to sequencing the PCR products were cleaned up according to the protocol provided 

by the pyrosequencer manual. 

The solution of linear equations was carried out with the Matlab package. 
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Tables 
Table 5-1. Three mixtures 

Specie Mix1 Mix2 Mix3 
T 10 10 10 
E 13 10 7 
C  7 3 
A  9 5 
H   6 
N4   4 
O   5 
 
 

Table 5-2. Solutions and standard deviations 

 Mix1 Mix2 Mix3 St. Dev. 
T 0.2717 0.1991 0.1535 0.0436 
E 0.3513 0.2378 0.1346 0.0663 
C -0.0098 0.1498 0.0705 0.0616 
A -0.0226 0.1588 0.0997 0.0678 
H 0.0522 0.0469 0.1609 0.0685 
N4 -0.0026 -0.0031 0.0759 0.0608 
O 0.0517 0.0493 0.1174 0.0837 
 

Table 5-3. Comparison between found and given ratios of the species. T is a concentration 
standard. 

Mix1 Mix2 Mix3  
given found given found given found 

T 10 10 10 10 10 10 
E 13 13 10 12 7 9 
C 0 -0 7 7 3 4 
A 0 -1 9 8 5 6 
H 0 2 0 2 6 10 
N4 0 -0 0 -0 4 5 
O 0 2 0 2 5 8 
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