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Zusammenfassung

Orphan-Gene sind proteincodierende Bereiche, die kein erkennbares
Homolog in entfernt verwandten Arten haben. Ein wesentlicher Anteil der bisher
sequenzierten Genome besteht aus solchen Orphan-Genen, deren evolutionare und
funktionelle Bedeutung bislang nicht bekannt ist. Eine Analyse des Drosophila
melanogaster Proteoms zeigt, dass immerhin 26 - 29% aller Proteine keine
statistisch signifikanten Ubereinstimmungen mit nicht aus Insekten stammenden
Sequenzen haben. Entsprechend haben weder das stetige Anwachsen der Menge
verfugbarer Sequenzdaten noch die Reannotation bekannter Gene den Anteil der
Orphan-Gene im Drosophila Genom wesentlich verandert. Es konnte gezeigt
werden, dass Orphan-Gene in derzeitigen genetischen Analysen deutlich
unterreprasentiert sind.

Um die evolutiondren Eigenschaften von Orphan-Genen in Drosphila zu
analysieren wurden 774 cDNA Sequenzen aus zwei D. yakuba-Genbibliotheken
(adult und embryo) mit ihren Orthologen aus D. melanogaster verglichen. Eine
Analyse der Substitutionsraten ergab, dass Orphan-Gene im Mittel dreimal schneller
evolvieren als Nicht-Orphan-Gene, wobei die Breite der Evolutionsraten-Verteilung
sich fir beide Klassen ahnelt. Einzelne Orphan-Gene zeigen sehr niedrige
Substitutionsraten, wie sie sonst flir besonders hochkonservierte Gene typisch sind.
Ein allgemeines Modell fur die Evolution von Orphan Genen wurde entwickelt, dass
die grossen Substitutionsratenunterschiede durch Phasen schneller und langsamer
Divergenz erklahrt.

Neben der Tatsache, dass Orphan-Gene unter allen untersuchten Genen
unterreprasentiert sind gibt es Hinweise darauf, dass sie generell einen weniger
offensichtlichen Phanotypen haben. Eine Hypothese besagt, dass funktionell
wichtige Gene einen deutlichen Phanotypen und eine verlangsamte Evolutionsrate
haben. Damit Gbereinstimmend waren unter den untersuchten cDNA’s genetisch
charakterisierte Gene haufig langsam evolvierend. Interessanterweise war solch ein
Zusammenhang nicht fur Orphan-Gene zu beobachten. Zusatzlich spielen Orphan-
Gene Uberproportional haufig eine Rolle flir Geruchssinn, Hormonhaushalt,
Puppenanheftung, Eimembranstrucktur und Wahrnehmung. Es ist anzunehmen,
dass all diese Funktionen eine Bedeutung fiir spezifische dkologische Anpassungen
haben, die sich schnell verandern und einen schwer detektierbaren mutanten

Phanotypen haben.



Ein Vergleich zwischen Entwicklungsstadien zeigt, dass in der cDNA
Bibliothek von Adulten doppelt so viele Orphan-Gene gefunden wurden wie in der
Embryobibliothek. Eine Analyses der Gene, die Stadienspezifisch exprimiert werden,
ergibt ein ahnliches Verhaltnis. Zusammen mit einer bei Embryotranskripten
gefundenen verringerten Evolutionsrate deutet sich deshalb eine starkere
Einschrankung fur die Verwendung von Orphan-Genen in Embryos an. Die
Expression von Orphan-Genen ist bei Embryos oft rGumlich begrenzt, was auf eine
eher lokale als ubiquitédre Verwendung hinweist. Die generellen Charackteristika von
Orphan-Genen in Drosophila legen nahe, dass diese bei der Evolution von adaptiven
Merkmalen eine Rolle spielen. Langsam evolvierende Orphan-Gene kdnnten von

besonderem Interesse flir die Bestimmung von linienspezifischen Adaptationen sein.



1. Summary

Orphan genes are protein coding regions that have no recognizable
homologue in distantly related species. A substantial fraction of coding regions in any
genome sequenced so far consists of such orphan genes, but their evolutionary and
functional significance is not understood. A re-analysis of the Drosophila
melanogaster proteome is presented that shows that there are still between 26 - 29%
of all proteins without a significant match with non-insect sequences. Therefore,
neither the growth of the database nor the re-annotations have significantly changed
the proportion of orphans in the Drosophila genome over time. In addition, it was
shown that these orphans are significantly underrepresented in the current genetic
analysis.

To analyse directly the evolutionary characteristics of orphan genes in
Drosophila, 774 sequences were compared between cDNAs retrieved from two D.
yakuba libraries (embryo and adult) and their corresponding D. melanogaster
orthologues. Analysis of substitution rates shows that recovered orphans evolve on
average more than three times faster than non-orphan genes, although the width of
the evolutionary rate distribution is similar for both classes. In particular, some
orphan genes show very low substitution rates, which are comparable to otherwise
highly, conserved genes. A general model for orphan gene evolution is proposed that
takes these large rate differences into account and suggests that they are caused by
episodic phases of fast and slow divergence.

Besides the result, that orphans are under-represented among genetically
studied genes, additional findings suggest that orphan genes have less obvious
phenotypes. For example, in the complete sample of the recovered cDNAs higher
frequency of genetically studied genes was found among slow evolving genes, what
supports the proposed hypothesis that functionally more important genes with
obvious phenotypes have lower evolutionary rates. Interestingly, such relationship is
lacking if only orphans are analysed. Additionally, orphans are over-represented
among genes related to olfaction, hormonal activity, puparial adhesion, egg
membrane structure and perception and response to abiotic stimulus. It is reasonable
to expect for all of these functions to be involved in specific ecological adaptations
that change easily over time, and accordingly to have mutant phenotypes which are
difficult to detect.



Finally, comparison between stages shows that the cDNA library from adults
yields twice as many orphan genes than the one from embryos. An analysis of only
genes having stage specific expression reveals a similar figure and together with
lower evolutionary rate of embryo transcripts suggests a higher constraint on use of
orphan genes in embryos. Furthermore, expression of embryo orphans is more often
spatially restricted compared to a random sample of genes what shows that they act
in more localised rather then ubiquitous manner. Taken together, the general
characteristics of orphan genes in Drosophila suggest that they may be involved in
the evolution of adaptive traits and that slow evolving orphan genes may be

particularly interesting candidate genes for identifying lineage specific adaptations.
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2. Introduction

2.1 Genome sequencing projects and orphan genes

2.1.1 What are orphan genes?

A gene that has amino acid sequence similarity to other genes that belong to
relatively narrow monophyletic lineages is referred to as an orphan gene. The
phylogenetic group used to define orphan genes in a particular study is necessary
arbitrary, often influenced by availability of the sequence data. In the most rigorous
use, the term designates strictly genes specific just for one species, moreover
sometimes only one strain (e.g. bacterial species), but more frequently group of
closely related species is compared to the rest of the living organisms. It is
reasonable to expect that genes specific to relatively closely related organisms exist.
However, surprisingly, they came into focus only after first complete genomes were
sequenced. Most of the genes, studied before the genome era, had sequence
counterparts in distantly related organisms, scattered among more general
taxonomic divisions like phyla and kingdoms. Sequence similarity between these
conserved genes often implied their similar functional roles. This was the reason that
genome content was envisaged in a considerably biased way. The yeast genome, as
the first completely sequenced eukaryotic genome (Goffeau et al., 1996), illustrates

this preconception.

2.1.2 Orphan genes and the yeast genome project

Already after the completion of the first chromosome (chromosome IIl) of
Saccharomyces cerevisiae (Oliver et al., 1992) it was obvious that most of the
predicted protein coding genes did not correspond to any previously encountered
sequence. This finding was unexpected for an otherwise genetically extensively
studied organism such as yeast. Before sequencing of the complete yeast genome
started, identification of the same new gene by independent investigators had been
becoming frequent; leading to the notion that the yeast genome had become over-

studied. When the complete yeast genome was sequenced it was estimated,
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depending on the stringency criteria applied, that 30% to 35% of 6275 predicted
genes are without any match to other proteins in the gene databases or without any
functional information. Inability of genetic screens to uncover substantial proportion of
genes and inability of researchers to transfer functional information to these genes
using sequence similarity motivated Dujon to name this unforeseen result “the

mystery of orphan genes” (Dujon, 1996).

It is important to note that the term ‘orphan’ in this initial analysis of the yeast
genome had a double meaning, namely coding regions without known function and
coding regions without matches to other genes in the database (Dujon, 1996).
However, taking into account only lack of the sequence similarity, a later study came
to a similar proportion of yeast orphans (Malpertuy et al., 2000). To overcome
confusion because of the initial functional connotation of the orphan definition
Malpertuy and co-workres (2000) proposed the term 'maverick' gene for a gene with
lack of sequence similarity to other organisms. However, the definition of orphan
genes as coding regions without matches to other genes in the database is usually
used (Fischer and Eisenberg, 1999; Schmid and Aquadro, 2001; Jordan et al.,
2002a).

2.1.3 Orphan genes are ubiquitous in the genomes

Genome projects of the eukaryotic and prokaryotic (Fischer and Eisenberg, 1999)
organisms confirmed findings in the analysis of the yeast genome. Table 1
summarizes approximate orphan content for some completely sequenced eukaryotic
genomes based on the original genome publication data. Although similarity
searches in these studies were performed in a not directly comparable way, because
of different databases sizes used (Spang and Vingron, 2001), differences in their
content and varying significance thresholds, it can be said that almost each newly

sequenced genome brought a large number of new orphan genes.

Taken together, it can be concluded that the genome sequencing projects
uncovered a substantial proportion of genes without sequence similarity in other
organisms that were also missed by various previous functional approaches.
Although this phenomenon is not a trivial issue of the genomic and post-genomic
research, a small number of studies have addressed this question, and very often

just as a side topic.
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2.2 Are there trivial explanations for phenomenon of orphan genes?

2.2.1 Do orphan genes code for real proteins?

The first trivial explanation, which could account for the existence of orphan
genes, is that orphan genes are just over-predicted open reading frames (ORFs) that
do not code for the functional proteins. Correct selecting of ORFs (which are coding
for real proteins) from an 'ORFome' (total number of possible ORFs) is recognized as
the main problem in defining the proteome of an organism. (Zhang, 2002; Harrison et
al.,, 2002; Parra et al., 2003). Direct functional analysis and different types of
transcriptome analysis, e.g. expressed sequenced tags (EST) projects, full length
cDNA sequencing, serial analysis of gene expression (SAGE) (Velculescu et al.,
1997) and microarray analysis (Shoemaker et al., 2001; Clark et al., 2002), are used
to improve pure ab initio or homology based annotation of the genomes. However,
high-throughput experimental approaches for identification of genes and their
functions are still in development. As a result, reliable experimental genomic data,
necessary for precise annotations and improvement of prediction tools, is still missing
(Zhang, 2002).

Because of the above reasons the gene count for many completely
sequenced eukaryotic genomes is still debated. Even the true size of the yeast
proteome has been a point of considerable confusion, although its complete genome
is available for already seven years. In the beginning, as high orphan content of the
yeast genome was unexpected and confusing, several studies based on statistical
properties of known genes tried to correct the gene count arguing that many of the
ORFs are over-predicted (Kowalczuk et al., 1999; Mackiewicz et al., 1999; Zhang
and Wang, 2000). However, when the partial genome sequences of a set of closely
related Hemiascomycetous yeasts became available, it was possible to support the
annotation of many orphan genes based on sequence similarity. This study showed
that, although the total estimated number of genes dropped by 9 % compared to the
initial one (Table 1), the proportion of orphans, now defined as Hemiascomycetous
yeast specific genes, remained the same. This result suggests that, most likely, miss-
annotation is not the major determinant that can account for the existence of orphan
genes, at least not in the yeast genome. However, this study does not provide
evidence that the regions, having similarity to the yeast orphans, are indeed protein

coding. Transcriptional analysis of these regions is indispensable to show that they
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are coding for functional proteins. On the other hand, sequencing of two closely
related bacterial species Mycoplasma pneumoniae and Mycoplasma genitalium
brought orthologues for the most of the predicted genes (Himmelreich et al., 1997). In
the same way, the recent sequencing of human (Lander et al., 2001) and mouse
genome (Waterston et al., 2002), which are closely related organisms in the terms of
evolutionary rates, brought support for many mammal specific orphans. However, in
this case caution is necessary because of a very unreliable annotation of these
genomes (Harrison et al., 2002; Xuan et al., 2003; Parra et al., 2003).

Contrary to the above findings, a direct study of four orphans from the
Drosophila melanogaster Adh region found that their ORFs were interrupted in the
closely related species D. simulans or D. yakuba, indicating that they are not real
genes (Schmid and Aquadro, 2001). Taken together, it is not yet clear which
proportion of orphans are functional proteins, although several studies suggest that

many of them are real genes.

2.2.2 Do orphan genes reflect incompleteness of gene databases?

Based on the studies reported in the previous section it seems that reliable
annotation of a genome requires sequencing of two or more closely related species
and that orphan genes will have orthologues only in the closely related organisms.
However, another trivial explanation for orphan genes could be that they are genes
that do have homologues in other distantly related organisms but that these
organisms are not yet sequenced. Indeed, complete genome sequences of many
phyla are missing in the databases. On the other hand, if incompleteness of gene
databases explains why most of the genes are orphans then accumulation of enough
sequence information in the databases would reduce their number. However, all
genome projects so far have identified a substantial fraction of open reading frames
that have no similarity to the other genes in the database, demonstrating that the
fraction of orphans cumulatively does not diminish (Fischer and Eisenberg, 1999;
Rubin et al., 2000) (Table 1). Accordingly, this defies early hopes that an increasing
database size would eventually reduce the number of orphan genes (Casari et al.,
1996). On the other hand, there is also the possibility that the original reports about
orphans are outdated and that previously classified orphans can now find matches to
newly sequenced genes. Indeed, some decay in the number of bacterial orphans can

be observed, but their proportion in bacterial genomes is still significantly high
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(Fischer and Eisenberg, 1999). Nevertheless, rigorous tests on the current number of

orphans for many sequenced genomes especially eukaryotic ones are missing.

2.2.3 Are orphan genes abundant copies of several genes?

If one takes orphan genes as reality, their abundance may alternatively be
explained by a high copy number of several duplicated orphan genes. Fischer and
Eisenberg (1999) tested the possibility that a high frequency of orphans in bacteria is
due to the existence of paralog families of orphan genes. Nevertheless, the
frequency of recovered orphan protein families was also high. Moreover, they notice
that bacterial orphans are less likely to be members of paralog families compared to
other proteins. This observation is unexplained and opens the question about the

evolutionary dynamics of orphan genes (Fischer and Eisenberg, 1999).

2.3 Common assumptions about the evolutionary origin of orphan
genes

If a substantial fraction of orphan genes code for functional proteins, then the
next question is about their evolutionary origin. There are two most commonly used
explanations for the lack of sequence similarity of orphan genes. The first one is that
orphan genes are fast evolving genes and the second one is that they are lineage
specific genes (Blaxter, 1998; Fischer and Eisenberg, 1999; Wolfe and Sharp, 1993;
Malpertuy et al., 2000; Rubin et al., 2000; Schmid and Aquadro, 2001; Rubin, 2001;
Dehal et al., 2002). Certainly, these two possibilities are not expected to be mutually

exclusive.

Several studies indirectly approached the question of protein evolution rate of
orphan genes. A lower sequence conservation between genes of unknown functions,
as compared with the functionally assigned genes, has been observed for the two
related bacterial species Mycoplasma pneumoniae and Mycoplasma genitalium
(Himmelreich et al., 1997). As unknown function is often coupled with lack of
sequence similarity to distantly related organisms this was the hint that orphan genes
might have different evolutionary rates. In a more direct approach, it was shown that
sequence similarity between Kluyveromyces lactis and Saccharomyces cerevisiae is
lower for orphans then for non-orphans (Ozier-Kalogeropoulos et al., 1998). Similar

results were obtained in the analysis of the partial genomic sequence of other closely
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related yeast species (Malpertuy et al., 2000). This is also the only study, which gives
a hint that at least some of the orphan genes could have reasonably low divergence
rates, indicating that orphans might be lineage specific genes as well (Malpertuy et
al., 2000). However, these results were based on the BLAST E-values and amino
acid identities, which are rather rough measures of sequence divergence. In addition,
these studies were based on the partial gene sequences derived form genomic
regions, and thus they lack stronger evidence that aligned sequences are coding for

real proteins.

Schmid and Tautz (1997) by genomic hybridisation studies and sequencing of
orthologs from D. melanogaster and D. yakuba showed that the fraction of fast
evolving genes in Drosophila is about 30%, roughly matching the percentage of
orphan genes predicted in the Drosophila genome (Rubin et al., 2000). However, not
all fast evolving genes were orphan genes. For example, a zinc-finger transcription
factor and a functional homologue of a yeast chaperone gene was found in the class
of fast evolving genes (Schmid et al., 1999; Wang et al., 1999). Both of these do not
qualify as orphan genes as they match at least partially with known protein domains.
In addition, the relationship between average rate of sequence evolution and orphan
gene status could not be established unequivocally because the applied hybridisation
technique lacks the sensitivity and because public databases contained in the time of

that study only the yeast genome as completely sequenced eukaryotic organism.

2.4  Functional and other properties of orphan genes

2.4.1 Function of orphan genes

As mentioned in the previous part, lack of sequence conservation of orphan
genes is coupled with lack of their functional assignment, not only due to the inability
of researchers to infer functional information using the sequence similarity but also
because phenotype information for orphan gene mutants was not obtained by the
genetic studies. This was originally found in the yeast project (Oliver et al., 1992;
Dujon, 1996) but was also noted in the extensive study of the Adh region in
Drosophila (Ashburner et al., 1999) and the analysis of fast evolving genes (Tautz
and Schmid, 1998). Comparison of genomes of bacterial strains of the same species
also suggest that strain specific genes are over-represented among functionally

uncharacterised genes (Jordan et al., 2002b).
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Indirectly, a possible function of orphan genes can be traced trough some
comparative genomics and yeast studies. For example, genomic exploration of the
closely related yeast species shows that orphan genes are especially abundant
among proteins involved in the extracellular secretion and in the organisation of the
cell wall (Gaillardin et al., 2000). Interestingly, both of these functional classes were
extensively used as taxonomic markers (Phaff, 1998). In bacterial, archaeal and
eukaryotic organisms some of the proteins with narrow phyletic distribution were
shown to function at the periphery of the cell. More specifically, some of them were
predicted membrane proteins that may mediate the interaction of the cells with their
environment (Jordan et al., 2001; Jordan et al., 2002b).

2.4.2 Distinct features of orphan genes

Several studies report some additional distinct properties of orphan genes.
For example, Lipman et al. (2002) found in a comparison between two prokaryotes,
yeast, Drosophila and humans that non-conserved genes are generally shorter than
conserved ones and that their length distribution is more uniform. This could be
explained if non-conserved genes are under weaker selective constraints and would
thus more easily tolerate deletion mutations. The comparison between the
Drosophila and the Anopheles proteome shows also that the orphans that are

specific for each species have the shortest average length (Zdobnov et a. 2002).

There is also indication that orphan genes are generally lower expressed than
non-orphan genes. The observation that phylogenetically conserved genes are more
highly expressed tested by occurrence of ESTs was first made by Green et al. (1993)
(Green et al., 1993) and was confirmed in the analysis of the Adh region in
Drosophila (Ashburner et al., 1999).

2.5 Orphan genes in Drosophila melanogaster genome

The first annotation of the D. melanogaster genome uncovered that 28% of
predicted genes has no sequence similarity to other organisms (Adams et al., 2000).
However, a systematic study or orphan genes in the Drosophila at the genome level
is still missing, although high orphan gene content was announced three years

before as an important open question of fly biology (Rubin et al., 2000). Since then
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only one study directly analysed the evolutionary properties of four orphan genes
(Schmid and Aquadro, 2001).

2.6 Open questions

Based on the current state of the literature many of the important questions
concerning orphan genes are not answered. For example, it is not clear which
fraction of orphans are coding for real proteins, especially in the eukaryotic
organisms. Although repeatedly noted, under-representation of orphans among
studied genes was not tested on the genome level. The evolutionary origin of orphan
genes is also still enigmatic. Two proposed reasons for the lack of sequence
similarity of orphans, namely rapid evolution of coding sequence and/or lineage
specific localization of these genes, have not yet been tested rigorously. There is
definite scarcity of information concerning the function of orphan genes, although
some functional roles are suggested. Moreover, protein properties, expression
profiles and position in biochemical pathways are almost completely unexplored for

orphan genes.
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3. Aim of the study

The aim of this thesis was to study evolutionary dynamics, as well as
sequence properties of the orphan genes in Drosophila, with view to understand their

evolutionary origin and general functional patterns.

The following aspects were in special focus of this study:

e Proportion of orphan genes in the Drosophila melanogaster genome
e Under-representation of orphan genes in the genetic studies
e Testing of hypothesis that orphan genes are fast evolving genes

e Testing of hypothesis that functionally more important Drosophila genes

have lower evolutionary rates
e Comparison of evolutionary rates between adult and embryo transcripts

e Expression levels of orphan genes trough ontogeny of Drosophila and

their relation to possible genetic or developmental constraint

e Statistical analysis of functional patterns of previously characterized

orphan genes

e Spatial expression of orphan genes in the Drosophila embryo
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4. Results

4.1  Analysis of orphan genes in the D. melanogaster genome

4.1.1 Orphan gene content

As gene database content is increasing exponentially and annotation of the
complete genomes is improving some change in the number of orphan genes in
Drosophila genome can be expected. The current database was therefore re-
analysed using BLASTP with the about 14,300 predicted full-length proteins of the
Drosophila melanogaster proteome (release 2), to re-analyse whether the fraction of
orphans reported previously (Rubin et al.,, 2000) has changed over time. As the
probability of identifying a significant BLAST match depends on the size of the
database (Spang and Vingron, 2001), it is not possible to use a single probability
cutoff criterion for assigning orphan status. To overcome this uncertainty, a range of
probability cutoffs was used. For each cutoff category, as defined through the
expectation (E)-values provided by BLAST (Altschul et al., 1990; Altschul et al.,
1997), the fraction of genes was determined whose matches above this cutoff

occurred only in Drosophila or other insects.

Figure 1a shows the results for cutoff E-value classes from 10 to 107'%. The
number of non-matching sequences is very small at the highest E-values, but this is
evidently due to many insignificant chance matches. With continuously lower E-
values there is a continuous increase in the non-matching sequences and there is no
obvious criterion for choosing a particular E-value as a cutoff criterion for orphan
genes. Most studies prefer to take cutoff values form 102 to 10 to discriminate
significant matches from ‘noise’ in a similar type of database search (e.g. Lipman et
al., 2002), whereby the 107 cutoff value is considered as rather conservative. In this
analysis for cutoff classes form 107 to 10°%, the fraction of orphan genes is 26 to 29 %
(marked in Figure 1a). When the BLAST output data were inspected manually and
decision about the significance of a match was done case-by-case, most of the E-
values were also fitting to the above range. Besides these arguments, additional
support that the chosen cutoff values are appropriate comes from analysis of the

named genes in Drosophila genome (see section 4.1.2). Based on these results it
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can be concluded that the fraction of the orphan genes in the Drosophila genome is

still comparable to what has been repeatedly found in the past (Rubin et al., 2000).

Therefore, neither the growth of the database nor the re-annotations have

significantly changed this value over time.
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Figure 1. A: Percentage of orphans found in each cutoff category. The broken lines indicate
the BLAST E-value range of 10™ to 10, for which 26 to 29% orphan genes and the highest
odds ratio were found (see below) B: Odds-ratios for genetically studied genes in the different
cutoff classes. The values indicate how much more likely one finds a genetically studied gene
in the non-orphan compared to the orphan class. All values are highly significant (P = 0

Fischer’s exact test).
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4.1.2 Genetically studied orphan and non-orphan genes

In Drosophila, one can take the fact that a gene has been named as an
approximate indicator that it has been genetically studied, i.e. that a described
mutant exists for it. Therefore, the relative proportion of genetically studied genes
was analysed in all cutoff categories. There are currently 3,633 named genes in
Drosophila, which correspond to about 26 % of the known ORFs. Differences in the
number of named genes were compared between the orphan and non-orphan
sample for each cutoff category (Table 2) and corresponding odds-ratios were
calculated (Figure 1b). The results show that named genes, independent of the
chosen E-value cutoff, are more likely to occur in the non-orphan class. The odds
ratio of finding named genes among non-orphans compared to orphans is the highest
for 10 to 10 cutoff class, supporting the notion that orphan genes are less likely to

be recovered in the current genetic screens.

Interestingly, the odds ratio analysis has a peak at the same cutoff range as
the one chosen to re-estimate the proportion of orphan genes in the Drosophila
genome (see section 4.1.1). This supports independently the correctness of the
chosen cutoff range, because such a peak can be expected only for a non-orphan
sample with the lowest level of incorrectly assigned genes. This reasoning is based
on the assumption of general over-representation of named genes in the non-orphan
sample. Accordingly, more loose or stringent cutoff values then the optimal one
would change the odd ratio by introducing false positives or excluding false negatives

(Figure 1).

Additionally, it is interesting to note that even if E-value cutoff of 10 is used
as threshold for a significant match, 58% of the named Drosophila genes are still
among non-orphans, although the non-orphan class contains for this threshold only
37 % of all genes. This is indication, if BLAST E-value is taken as a rough measure
of sequence conservation, that genetic studies have focused on phylogenetically
strongly conserved genes, whereas lineage specific and phylogenetically broadly

distributed weekly conserved genes were more likely to be overlooked.
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Table 2. Number of named genes in the orphan and non-orphan sample (complete

Drosophila genome)

Genes (E-value cutoff = 10)

Non-orphan
Orphan

Not named

Named

9805 (73.5 %)
806 (89.5 %)

3538 (26.5 %)
95 (10.5 %)

Genes (E-value cutoff = 1)

Non-orphan
Orphan

Not named

Named

8755 (72.0 %)
1856 (89.3 %)

3411 (28.0 %)
222 (10.7 %)

Genes (E-value cutoff = e-1)

Non-orphan
Orphan

Not named

Named

7949 (70.4 %)
2662 (90.1 %)

3340 (29.6 %)
293 (9.9 %)

Genes (E-value cutoff = e-2)

Non-orphan
Orphan

Not named

Named

7531 (69.5 %)
3080 (90.3 %)

3301 (30.5 %)
332 (9.7 %)

Genes (E-value cutoff = e-3)

Non-orphan
Orphan

Not named

Named

7296 (68.9 %)
3315 (90.5 %)

3286 (31.1 %)
347 (9.5 %)

Genes (E-value cutoff = e-4)

Non-orphan
Orphan

Not named

Named

7117 (68.6 %)
3494 (90.2 %)

3255 (31.4 %)
378 (9.8 %)

Genes (E-value cutoff = e-5)

Non-orphan
Orphan

Not named

Named

6949 (68.3 %)
3662 (90.1 %)

3231 (31.7 %)
402 (9.9 %)

Genes (E-value cutoff = e-10)

Non-orphan
Orphan

Not named

Named

6292 (67.1 %)
4319 (88.9 %)

3091 (32.9 %)
542 (11.1 %)

Genes (E-value cutoff = e-25)

Non-orphan
Orphan

Not named

Named

4866 (63.9 %)
5745 (86.7 %)

2748 (36.1 %)
885 (13.3 %)

Genes (E-value cutoff = e-50)

Non-orphan
Orphan

Not named

Named

3157 (59.8 %)
7454 (83.1 %)

2122 (40.2 %)
1511 (16.9 %)

Genes (E-value cutoff = e-100)

Non-orphan
Orphan

Not named

Named

1377 (52.2 %)
9234 (79.6 %)

1263 (47.8 %)
2370 (20.4 %)

Differences were significant in all comparisons (P = 0, two-sided Fisher’s exact test).
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4.2 Comparative analysis of expressed genes in D. yakuba

4.2.1 Orphan gene content in the sample of expressed genes

Analysis of expressed genes allows avoiding mistakes due to wrong
annotations. To study directly the evolutionary characteristics of orphan genes, cDNA
libraries were prepared from D. yakuba embryos and adults and clones were picked
randomly from these. The clones were initially 5’-sequenced to check for redundant
clones and the non-redundant clones were then fully sequenced to high quality.
Comparisons with the D. melanogaster genome sequence allowed to unequivocally
identify the corresponding D. melanogaster orthologue in all cases. The full D.
melanogaster gene sequence was then taken to determine whether it is an orphan

applying the rather conservative cutoff criterion of E > 10™.

Approximately 400 non-redundant cDNAs were obtained from each of the two
libraries (371 from the adult and 403 from the embryo library). Among these, 81
genes were found in both libraries and just one of them was orphan. The embryo
library contains 42 and the adult library 81 orphan genes. To be certain that only true
orphans were included, clones in which a weak match with an InterPro domain was
present were removed, although significance of these weak matches may be
questionable. This curation yielded 34 orphan genes for the embryo library (8.4 %)
and 73 (19.7 %) for the adult library, which is highly significant difference (P < 0.001).
This difference is analysed in more detail in sections 4.3.2 and 4.4. On the other
hand, the percentages are lower than one would have expected from the whole
genome scan (27.1 % in the 10™ class). This could either suggest that many of the
genomic orphans are indeed due to wrong annotations (Schmid and Aquadro, 2001),
or that orphans are generally lower expressed than non-orphan genes, with a
corresponding under-representation in cDNA libraries. That less conserved genes
may be generally lower expressed has also been noted before (see Introduction,
2.4.2).

4.2.2 Genetically studied genes in the sample of expressed genes

Named genes are strongly under-represented among identified orphans. The

odds ratio analysis shows that in the embryo library it is almost eight times and in the
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adult library it is almost three times less likely to find a named gene in the orphan
class than in the non-orphan class (Table 3). Still, 4 orphan genes in the embryo
library and 15 in the adult library are previously named genes, but it is interesting to
look at the nature of the named genes in the orphan class (Table 4). In the adult
library genes with available functional information are involved in immune response,
behaviour, oxygen deprivation or regulation of circadian rhythm and flight. All these
functions can be expected to be important in a specific ecological context.
Interestingly, for several of these mutants are not known, i.e. they were named

because of other reasons.

Table 3. Number of named genes in the orphan and non-orphan sample (genes recovered in
this study)

Genes (embryo)

Not named Named
Orphan 30 (88.2 %) 4 (11.8 %)
Non-orphan 181 (49.1 %) 188 (50.9 %)

P=7.1x10°

Genes (adult)

Not named Named
Orphan 58 (79.5 %) 15 (20.5 %)
Non-orphan 169 (56.9 %) 128 (43.1%)

P =0.0004, two-sided Fisher’s exact test
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Table 4. Previously named orphan genes that were identified among D. yakuba cDNA
sequences

Name Function Mutants
Adult library
ACP53EA Accessory gland-specific peptide 53Ea 6 alleles known
AttA Attacin-A, a gram-negative antibacterial peptide none
AttD Attacin-D, a putative antibacterial peptide none
Cp16 Chorion protein 16 - structural protein of the chorion none
Dpt Diptericin, a gram-negative antibacterial peptide none
DptB Diptericin B, a putative antibacterial peptide none
fau An anoxia-regulated novel gene none
fln Required for thick filament in flight muscle viable, but flightless
fok Associated with kinesin-like molecule none
1(2)k09913 Unknown function recessive lethal
Mst89B Testis specific expression, function unknown none
Noe Nervous system expression, function unknown none
Os9 Olfactory system expression, function unknown none
to Circadian rythm regulated gene rythm defective
yellow-c Possibly involved in cuticle development none

Embryo library

GATAd Non-specific RNA polymerase |l transcription factor none

mael Involved in oocyte nucleus migration recessive lethal
Tom Interacts genetically with Su(H) recessive lethal
Df31 Component of the chromatin recessive lethal

4.2.3 Sequence properties of the expressed orphan genes

The identified orphan genes differ also in several other respects from non-
orphan genes. They are on average more than 100 amino acids shorter, have lower
GC content, lower codon usage bias and fewer exons. All of these differences are
statistically significant (Table 5). Likewise, the number of paralogs is lower in the
orphan sample. If two samples are compared, not taking into account the number of
paralogs per gene (Table 6), the difference is significant but not large. Interestingly,
when the number of paralogs for each gene is included, non-orphan genes have on
average more than four times more paralogs (Norpuan = 2.7 + 0.6; Nnon-orpHan = 12.3

+1.3; P =0.006, Mann-Whitney U test).
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Table 5. Statistical comparisons between orphan and non-orphan cDNAs.
Orphans Non-orphans

No. 106 586

Mean + 1SE Mean + 1SE t test P
aa length 224 +13 356 + 14 -4.994 7.5x10-7
GC 0.541 £ 0.0050 0.553 £ 0.0020 -2.231 0.026
GC3 0.638 £0.0122 0.688 + 0.0049 -3.950 8.6 x10-5
ENC 47.7 £0.79 44.22 £+ 0.35 3.872 1.2x10-4
Fop 0.527 £ 0.0120 0.591 £ 0.0054 -4.726 2.8 x10-6
Exon number 25+0.16 3.5+£0.09 -5.545 1.2 x10-7

Mean and standard errors of the mean are given. Significance of differences were

tested using Student’s t. Values are derived from the full length D. melanogaster homologues
of the D. yakuba cDNAs. GC is general GC content, GC3 is GC content at third codon
positions. ENC (effective number of codons) and Fop (frequency of optimal codons) are
measures of codon usage bias.

Table 6. Genes with paralogues in the orphan and non-orphan sample

Genes Paralogues

0 >1
Orphan 62 (57.9%) 45 (42.1%)
Non-orphan 313 (46.9%) 354 (53.1%)

Difference is significant (P = 0.032, 2-sided, Fischer's exact test). Numbers in
parenthesis represent percent of genes in the respective class. The analyzed sample consists
of D. melanogaster genes, which are homologues to the non-redundant cDNAs recovered
from D. yakuba. Each gene was compared by BLASTP against the complete D. melanogaster
codinég sequence (FlyBase Release 2). If a gene had at least one BLASTP hit with an E-value
<10™"% it was considered to have a paralogue in the D. melanogaster genome.
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4.3  Substitution rates of the expressed genes in D. yakuba

4.3.1 Substitution rates of orphan and non-orphan genes

Substitution rates at coding (dN) and non-coding (dS) positions were
determined for embryo (381) and adult (356) D. yakuba cDNAs aligned to the
corresponding D. melanogaster genes. In this data set, 71 cDNAs were present in
both libraries. Removing the respective shorter cDNA from these duplicate pairs
yielded a non-redundant set of 659 cDNAs. None of the genes has a dN/dS ratio
larger than one, which would be indicative of fast evolution due to positive selection.
For 18 non-redundant genes (2 orphans and 16 non-orphans) it was not possible to
reject the hypothesis that their rate is significantly different from one (Figure 2).
However, many of these genes showed only a small total number of substitutions
(Appendix Table 20).

Table 7 summarizes the rate comparisons. As a class, orphan genes have a
more than three times higher non-synonymous substitution rate compared to non-
orphan genes (dN orpuan = 0.062 versus dN non.orpHan = 0.020). When the adult and
embryo transcripts are compared separately, orphan genes from the embryo library
are evolving more than four times faster compared to non-orphans, while adult
orphan genes almost three times faster (Table 7). A similar trend but with a lower
proportion is seen for the synonymous substitution rates (dS orpuan = 0.335 versus
dS nonorrHan = 0.277) in the complete sample, and when embryo and adult

transcripts are considered separately (Table 7).

Several studies reported positive correlation between dN and dS in different
organisms including Drosophila (Duret and Mouchiroud, 2000; Comeron and
Kreitman, 1998; Dunn et al., 2001). In this study, significant correlation between dN
and dS is also detected for the complete sample (r a. cenes = 0.443, P = 3.5 x 10°%),
and in both subclasses (r orpnan = 0.487, P = 2.4 x 107; r non-orpHan = 0.408, P = 5.2
x 10°%%). Therefore, this correlation may at least partially account for the increased dS
rates of orphans. In mammals neighbouring effects like double mutation at adjacent
sites were proposed to explain this correlation (Duret and Mouchiroud, 2000). In
Drosophila it is suggested that relaxed constraint exists on both kinds of substitutions

in a particular codon (Comeron and Kreitman, 1998).
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Although dN and dS are correlated, the dN/dS ratio of orphan genes is on
average 2.5 times higher than of non-orphan genes (Table 7), indicating that orphan
proteins are less constrained by purifying selection. Taken together these results rule
out the null-hypothesis that orphan and non-orphan genes have equal rates of
evolution. Although orphan genes evolve on average significantly faster than non-
orphan genes, there is nonetheless a broad distribution of different rates for both
classes of genes (Figure 3 and Figure 4). Intriguingly, sequences with very low
divergence rates (dN < 0.0032, dN/dS < 0.02) were found in the orphan gene class,
which is in the range of highly conserved non-orphan genes. Thus, orphan genes are

not necessarily all fast evolving genes.

Table 7. Substitution rate comparisons between orphan and non-orphan cDNAs

cDNA Variable Orphans Non-orphans Ratio t test P value

s o.3(3n5=¢1068;30 o.2(7n7=¢5058§)60 12 3814 15x10°
Al av OOy M esey 31 7862 85107
dvgs OO OOy 25 7928 78x10™

ds 0325; w_;gi?mo 0'2?: ;—'3%8)078 12 2008  0.037
Embryo dN 0-0‘?3 * 2'10)189 0'0(1n6j3058§”3 43 338 51x10%
dnigs 9 ?ﬁ * gf’)345 0'0(6n0=13058§’52 30 4257 1.7x10"
ds 0'34(‘:];-' ?6())1 57 O'szjzoégg’m 13 4382 15x10°
Adult dN 0'0?2 * %0)082 0.0(2n2=¢20ég§)22 29 6753 13x10°
dnigs 9 7(ﬁ * (7)60)1 [ 0'0(7n3=’-'2oég?86 24 7104 67x10™

Mean and standard errors of the mean are given. Significance of differences was

tested using Student’s t.
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Figure 2. Scatter plot of the nucleotide substitution rates at synonymous (dS) and non-
synonymous (dN) sites for the embryo (above) and the adult library (below). Orphan genes
are represented as filled circles and non-orphan genes as open circles. The mean of the dN’s
for the orphan genes is marked as solid line and for non-orphan genes as dashed line. Genes
for which the null hypothesis that dS and dN are equal can not be rejected are marked with a
star.
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Figure 3. Discrete distribution of non-synonymous substitutions (dN) for the embryo (above)
and the adult (below) library. The percentages of genes falling into the respective dN value
classes are represented by black (orphans) and gray (non-orphans) columns. Note the
logarithmic scale for representing the dN value classes.
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4.3.2 Substitution rates of embryo and adult transcripts

The proportion of orphan genes is higher among adult transcripts (see section
3.2.1) and therefore it is interesting to analyse how this difference may influence
substitution rates between adults and embryos. There are fewer highly conserved
orphan genes in the adult library than in the embryo library (Figure 4), but the
average non-synonymous substitution rate, synonymous substitution rate and dN/dS
ratio are nonetheless not significantly different for the orphan genes in both libraries
(Table 8). The same is true for the non-orphan genes (Table 8). Thus, the fact that
the average dN and dN/dS ratios are higher among the cDNAs recovered from the
adult library (dN apuLt = 0.030 versus dN gusryo = 0.020; dN/AS apuit = 0.093 versus
dN/dS emsryo = 0.070) is apparently solely due to the fact that there are more orphan

genes among adult transcripts.

Table 8. Substitution rate comparisons between cDNAs from the adult and embryo library

cDNA \Variable Adult Embryo Ratio t test P value
ds 0'2?; f,o?é%?m 0'2(7n0=i30é?())75 10 -1.061 0289
Al dN O'O?r? : 3?5%?26 0'0(2n0=i30é?§)21 15  3.321 0.001
dN/dS O'O?r? : 395%?68 0'0(7n0=i3oé?§)58 13 2770  0.006
ds 0'34(4; 8'00)1 57 O'SZ(i w_;gic))24o 14 0.741 0.460
Ophan gy 092107962 00032 20169 09  -0175  0.861
dIN/dS 0'17021 i%g;” 0'1% * gf’)345 09  -0071 0943
ds 0'2?5 : gé%?m 0'2?: 33%8)078 10 0037 0971
O';'p%r;n dN O'Off : gé%c))zz 0'0(1n6=i305'8§” 3 14 1883  0.060
dN/dS o.ozr? : gé%()’% 0'0((3”0:*305'8?52 12 1403 0.161

Mean and standard errors of the mean are given. Significance of differences was
tested using Student’s t. The 81 clones that were found in both libraries were excluded from
the comparisons.
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4.3.3 Substitution rates and genetically studied genes

If one assumes that slow evolving genes have important and more general
functions, than the probability of recovery of these genes by classical functional
genetic methods would be higher than for the fast evolving genes. This would hold
under the assumption that the dispensability of genes is correlated with the rate of
protein evolution. A recent study showed that this is indeed the case in bacteria
(Jordan et al., 2002b; Jordan et al., 2002a), but for eukaryotic organisms the situation
is not completely clear (Hurst and Smith, 1999; Hirsh and Fraser, 2001; Jordan et al.,
2002a). As was mentioned before, in Drosophila one can take the fact that a gene
has been named as an approximate indicator that an observable phenotype exists for
it (section 4.1.2). Thus, evolutionary rates calculated for the genes recovered in this
study give an opportunity to test hypothesis that a clear phenotype is correlated with
evolutionary rate. This analysis can be done for all genes or just specifically for

orphans and non-orphans.

The analysis of non-synonymous substitution rates and of dN/dS ratio for the
complete sample shows that there is a significant difference in the proportion of
named genes (genetically studied genes) between the slow and fast evolving group
irrespective of the threshold used (Table 9 and Table 10). The same holds when non-
orphan genes are considered separately (Table 11 and Table 12). On the other hand,
the pattern is opposite for the orphan genes, namely the proportion of named genes
is not significantly different for slow and fast evolving orphan genes for all thresholds.
Similarly, there is significant rank correlation between naming and evolutionary rate
for the complete (dN: rs = -0.293, P << 0.001; dN/JS: rs = -0.248, P << 0.001) and the
non-orphan sample (dN: rs = -0.255, P << 0.001; dN/dS: rs = -0.206, P << 0.001), but
not for the orphan genes (dS: rs = -0.055, P = 0.56; dN/S: rs = -0.039, P = 0.7).
Taking into account that orphans are also under-represented among genetically
studied genes, this suggests that most of them have less obvious phenotypes, even

if some of them have rather low evolutionary rates.
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Table 9. Number and proportion of named genes for different levels of non-synonymous

substitution rate (dN) in the complete sample

dN Not named Named
aNp=1Tx 0 128 (315%)

dN Not named Named
N (P=65x10") o0l meiisw 101 (5%

dN Not named Named
dN (P=1.2x10) 003 4 E%j f; 23799((243%6‘;:0))

Differences were tested using two-sided Fisher’s exact test.

Table 10. Number and proportion of named genes for different levels of selective constraint

(dN/dS) in the complete sample

dN/dS Not named Named
owespoizy D% Eussn e

dN/dS Not named Named
owespooswy B Eoweon  meow

dN/AS Not named Named
wwesposnony BT mEsy  mwnw

Differences were tested using two-sided Fisher’s exact test.
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Table 11. Number and proportion of named genes for different levels of selective constraint

(dN/dS) in the orphan and non-orphan sample

Genes
dN/dS Not named Named
_ <0.03 9 (69.2 %) 4 (30.8 %)
Orphan (P =0.241) >0.03 74 (84.1 %) 14 (15.9 %)
] ) 2. <0.03 142 (44.4 %) 178 (55.6 %)
Non-orphan (P=1.7x107) 3 194 (61.4 %) 122 (38.6 %)
Genes
dN/dS Not named Named
_ <0.06 20 (74.1 %) 7 (25.9 %)
Orphan (P =0.242) >0.06 63 (85.1 %) 11 (14.9 %)
] _ o <0.06 142 (46.3 %) 178 (53.7 %)
Non-orphan (P=3.6x107) ¢ 194 (65.7 %) 122 (34.3 %)
Genes
dN/dS Not named Named
_ <0.1 39 (81.3 %) 9 (18.8 %)
Orphan (P = 1) >0.1 44 (83.0 %) 9 (17.0 %)
<0.1 256 (49.6 %) 260 (50.4 %)
Non-orphan (P = 0.001
on-orphan (= 0.001) >0.1 80 (66.7 %) 40 (33.3 %)

Differences were tested using two-sided Fisher’s exact test.
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Table 12. Number and proportion of named genes for different levels of non-synonymous
substitution rate (dN) in the orphan and non-orphan sample

Genes
dN Not named Named
_ <0.007 9 (64.3 %) 5 (35.7 %)
Orphan (P=0.124) >0.007 74 (85.1 %) 13 (14.9 %)
] ) s <0.007 132 (41.6 %) 185 (58.4 %)
Non-orphan (P =24 x107) 5 7 204 (63.9 %) 115 (36.1 %)
Genes
dN Not named Named
_ <0.01 11 (68.8 %) 5(31.3 %)
Orphan (P=0.155) >0.01 72 (84.7 %) 13 (15.3 %)
] _ 40, <0.01 154 (42.1 %) 212 (57.9 %)
Non-orphan (P=6.6x1077) =, 182 (67.4 %) 88 (32.6 %)
Genes
dN Not named Named
_ <0.03 38 (82.6 %) 8 (17.4 %)
Orphan (P = 1) >0.03 45 (81.8 %) 10 (18.2 %)
_ <0.1 257 (48.7 %) 271 (51.3 %)
Non-orphan (P = 2.7 x 10°®
on-orphan ( x100) o4 79 (73.1 %) 29 (26.9 %)

Differences were tested using two-sided Fisher’s exact test.



Results 41

4.4 Genes with stage specific and non-restricted expression

4.4.1 Stage specific genes

To further examine the so far observed pattern of different evolutionary rates
between genes expressed in embryos and adults (sections 4.2.7 and 4.3.2), the data
set from this study was compared against D. melanogaster EST information from
public databases. As numerous D. melanogaster ESTs retrieved from adult and
embryo cDNA libraries are available, it was possible to define adult and embryo
specific EST sets among the genes studied here. The genes recovered from the D.
yakuba adult library and their D. melanogaster orthologues were considered adult
specific when no TBLASTN match among D. melanogaster embryo ESTs was found.
In a similar way embryo specific genes were chosen, dividing the original D. yakuba
non-redundant data set (n = 692) into the three classes: genes expressed only in the
embryo (n = 59), genes expressed only in the adult (h = 117), and non-restricted

genes that are expressed in both stages (n = 516).

4.4.2 Substitution rates of stage specific and non-restricted genes

The three expression classes (embryo, non-restricted and adult) show
significant differences in non-synonymous substitution rates by one-way ANOVA (F
(2, 656) = 49.180, P = 1.7 x 107"®). The comparison shows that non-restricted genes
have the lowest average substitution rate, followed by genes expressed only in the
embryo and genes expressed only in the adult stage (Figure 5). All of these
differences are significant in the post hoc pair wise comparisons at the 0.01 level
(Table 13).

To distinguish specific differences between orphan and non-orphan genes
these groups were analysed separately. When only orphan genes are considered
(Figure 5) expression status has, as before, a significant effect on the non-
synonymous substitution rates (F (2, 97) = 4.393, P = 0.015). However, the average
dN rates of orphans have a different pattern compared to the complete sample. dN is
increasing from embryo, over non-restricted genes up to the adult class (Figure 5).
Still, in the pair wise comparisons the only significant difference in the average dN

rates is between embryo and adult class. It is interesting to note that the magnitude
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of this difference (three times) is higher compared to the one in the complete data set
(1.9 times) (Table 13). The separate analysis of non-orphan genes gives a pattern
similar to the complete sample analysis (F (2, 556) = 27.240, P = 5.2 x 10?), except
that dN rate in the adult class, although higher, is not significantly different from the

embryo class (Figure 5 and Table 13).

The expression class has also a significant effect on the dN/dS ratio (F (2,
656) = 35.573, P = 1.8 x 10™) (Figure 6 and Table 13). As for the analysis of non-
synonymous rates of the complete sample, it is clear that adult specific genes have
the highest dN/dS ratio compared to embryo specific and non-restricted genes. When
only orphans were considered, adult specific orphan genes have a higher dN/dS rate
compared to embryo specific orphans, but the difference is not any more significant,
probably due to the correlation between dN and dS (see section 4.3.1). The non-
orphan sample reveals higher dN/dS rates of stage specific genes compared to non-
restricted genes, however no significant difference between embryo and adult class

can be detected.

Taken together, these results show that average substitution rates are the
highest for genes specifically expressed in adults compared to the embryo specific
and non-restricted genes. Orphan genes are the major cause of this difference, as
can be seen by the separate analysis of orphans and non-orphans. On the other
hand, non-restricted genes have on average the lowest substitution rates, whereby

non-restricted non-orphan genes contribute the most to this low average rate.

These results support the previous analysis (see section 4.3.2), which
suggested that the protein sequences of the embryo transcripts are evolving slower
compared to the adult transcripts. The above analysis shows that the difference is
even more pronounced when only genes having a stage specific expression are
considered. For example, the adult specific transcripts have on average a 1.9 times
higher non-synonymous substitution rate compared to embryo specific transcripts
(Table 13), while the previous analysis, where all transcripts found in the two libraries

were taken into account, showed only a 1.5 times higher rate (Table 8).
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4.4.3 Protein length of stage specific and non-restricted genes

As Figure 7 and Table 13 show, the expression class has a significant effect
on average protein length (one-way ANOVA, F (2, 689) = 14.229, P = 8.8 x 107).
Non-restricted proteins have the longest protein sequence followed by embryo and
adult specific proteins, but in pair wise comparisons, the only significant difference
detected is the one between non-restricted and adult genes (Table 13). The separate
analysis of orphan genes does not show significant influence of the expression class
(F (2, 103) = 2.499, P = 0.087), while for non-orphan genes the pattern is the same
as for the complete sample (F (2, 583) = 5.129, P = 0.006) (Figure 7 and Table 13).
However, the differences found in this analysis are less pronounced compared to
obviously shorter average protein length in adults if all transcripts independent of
stage specific expression are considered (Laa apuLt = 250 + 9.9; Laa gumryo = 397 +
18.8; ttest=7.792; P=2.2 x 107).

4.4.4 Different expression of orphan genes in embryos and adults

The proportion of recovered orphan genes among adult transcripts is more
than two times higher than among embryo transcripts (see section 4.2.1). Therefore,
it is interesting to further analyse the use of orphan genes in embryos and adults
when only genes with stage specific expression are taken into account. Interestingly,
expression of stage specific genes between libraries is biased by itself (14.6 %
embryo versus 30.8 % adult specific genes in corresponding libraries; P = 7.1 x 107,
two-sided Fisher’s exact test). Among these stage specific genes, 19 genes (25.4 %)
in the embryo and 49 (43%) in the adult class were orphans (P = 0.031) (Table 14).
The lowest number of orphans was found among non-restricted genes 43 (7.2%)
(Table 14). Altogether, these results show that orphans and specifically expressed

genes are used more often in the adult stage.
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Figure 5. Mean of non-synonymous substitution rates (dN). Embryo, non-restricted and adult
expression classes were analyzed. Error bars show one standard error of the mean.
Differences between means were tested using the transformed dN data by one-way ANOVA
(see Material and Methods). Hochberg’'s GT2 post hoc test was used in pair wise
comparisons (A) Complete data set analysis. Expression class has a significant effect on dN
(F (2, 656) = 49.180, P = 1.7 x 10™") and accounts for 13.1% of the dN variance. In all pair
wise comparisons difference between expression classes is significant at the 0.01 level (B)
Orphan gene analysis. Expression class has a significant effect on dN (F (2, 97) = 4.393, P =
0.015) and accounts for 8.3% of the dN variance. Single significant difference in pair wise
comparisons is between embryo and adult class (P = 0.017). (C) Non-orphan gene analysis.
Expression class has a significant effect on dN (F (2, 556) = 27.240, P = 5.2 x 10™"?) and
accounts for 8.9 % of the dN variance. There are two significant differences in pair wise
comparisons: between the embryo and non-restricted class (P = 1.6 x 10'4) and the adult and
non-restricted class (P = 4.3 x 107°).
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Figure 6. Mean of ratio of non-synonymous and synonymous substitution rates (dN/dS).
Embryo, non-restricted and adult expression were analyzed. Error bars show one standard
error of mean. Differences between means were tested on the transformed dN/dS data by
one-way ANOVA (see Material and Methods). Hochberg's GT2 post hoc test was used in pair
wise comparisons. (A) Complete data set analysis. Expression class has a significant effect
on dN/dS (F (2, 656) = 35.573, P=1.8 x 10'13) and accounts for 9.8% of the dN/dS variance.
In all pair wise comparisons difference between expression classes is significant at the 0.05
level. (B) Orphan gene analysis. Expression class has no significant effect on dN/dS (F (2,
97) = 2.896, P = 0.060), nevertheless pattern is similar to dN differences for orphan genes
(previous figure) (C) Non-orphan gene analysis. Expression class has a significant effect on
dN/dS (F (2, 556) = 18.113, P = 2.4 x 10'8) and accounts for 6.1 % of the dN/dS variance.
There are two significant differences in pair wise comparisons: between the embryo and non-
restricted class (P = 0.002) and the adult and non-restricted class (P = 6.0 x 107).
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Figure 7. Mean of protein amino acid length. Embryo, non-restricted and adult expression
classes were considered. Error bars show one standard error of mean. Differences between
means were tested by one-way ANOVA (see Material and Methods). Hochberg's GT2 post
hoc test was used in pair wise comparisons. (A) Complete data set analysis. Expression class
has a significant effect on protein length (F (2, 689) = 14.229, P = 8.8 x 10'7) and accounts for
4% of the protein length variance. There is a single significant difference in pair wise
comparisons between non-restricted and adult class (P = 5.1 x 107). (B) Orphan gene
analysis. Expression class has no significant effect on protein length (F (2, 103) = 2.499, P =
0.087). (C) Non-orphan gene analysis. Expression class has a significant effect on protein
length (F (2, 583) = 5.129, P = 0.006) and accounts for 1.7 % of the protein length variance.

There is a single significant difference in pair wise comparisons between non-restricted and
adult class (P = 0.005).
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Table 13. One-way ANOVA post hoc pair wise comparison between means of the three
expression classes.

Variable Average values Pair wise comparison
Exp.class N Mean + 1SE Exp.class Pvalue Ratio
dN
Embryo 56 0.031+0.0045 - Non-res. 0.005 1.6 (e/nr)
Complete sample Non-res. 494 0.019+£0.0016 - Adult 0 3.1 (a/nr)
Adult 109 0.058 + 0.0064 - Embryo 0.001 1.9 (ale)
Embryo 14 0.026 £0.0063 - Non-res. NS
Orphan genes Non-res. 39 0.056 +0.0136 - Adult NS
Adult 47 0.079+0.0113 - Embryo 0.017 3.0 (ale)
Embryo 42 0.033+0.0057 - Non-res. 1.6x10"2.1 (e/nr)
Non-orphan genes  Non-res. 455 0.016 £0.0012 - Adult 43x10" 27 (a/nr)
Adult 62 0.043+0.0067 - Embryo NS
das
Embryo 56 0.326 +0.0202 - Non-res. 0.01 1.1 (ale)
Complete sample Non-res. 494 0.269 +0.0061 - Adult 8.4x 107 1.3 (a/nr)
Adult 109 0.344 +0.0130 - Embryo NS
Embryo 14 0.275+0.0222 - Non-res. NS
Orphan genes Non-res. 39 0.315+0.0219 - Adult NS
Adult 47 0.370+0.0188 - Embryo 0.05 1.3 (ale)
Embryo 42 0.343+0.0256 - Non-res. 0.002 1.3 (e/nr)
Non-orphan genes  Non-res. 455 0.265+0.0064 - Adult 0.004 1.2 (a/nr)
Adult 62 0.325+0.0176 - Embryo NS
dN/dS
Embryo 56 0.106 +0.0170 - Non-res. 0.008 1.6 (e/nr)
Complete sample Non-res. 494 0.065+0.0045 - Adult 0 2.4 (a/nr)
Adult 109 0.156 +0.0147 - Embryo 0.022 1.5 (ale)
Embryo 14 0.104 £0.0316 - Non-res. NS
Orphan genes Non-res. 39 0.161+0.0254 - Adult NS
Adult 47 0.199 + 0.0257 - Embryo NS
Embryo 42 0.106 £0.0202 - Non-res. 0.002 1.9 (e/nr)
Non-orphan genes  Non-res. 455 0.057 +£0.0042 - Adult 6.0 x 107 2.2 (a/nr)
Adult 62 0.124 +0.0177 - Embryo NS 1.2 (ale)
Protein length (aa)
Embryo 59 295 + 31 - Non-res. NS
Complete sample Non-res. 516 363+ 15 - Adult 5.1 x 107 1.5 (nr/a)
Adult 117 238 + 17 - Embryo NS
Embryo 15 231+ 38 - Non-res. NS
Orphan genes Non-res. 41 262 + 24 - Adult NS
Adult 50 192+ 14 - Embryo NS
Embryo 44 317 £40 - Non-res. NS
Non-orphan genes  Non-res. 475 371+16 - Adult 0.005 1.4 (nr/a)
Adult 67 272 + 26 - Embryo NS

Hochberg's GT2 post hoc test was used in pair wise comparisons. Note that the
sample size is smaller in the analysis of dN, dS and dN/dS compared to the analysis of
protein length. The reason is that substitution rates were not calculated for the genes having
very short cDNA lengths. Letters in parenthesis designate expression classes used to
calculate the ratio (a — adult, e - embryo, nr — non-restricted).
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Table 14. Differences in the number of orphan and non-orphan genes between three
expression classes (pair wise comparisons)

Expression Genes
Orphan Non-orphan
Embryo 15 (25.4 %) 44 (74.6 %)
Adult 49 (43.0 %) 65 (57.0 %)
P =0.031
Expression Genes
Orphan Non-orphan
Embryo 15 (25.4 %) 44 (74.6 %)
Non-modulated 43 (7.2 %) 557 (92.8 %)
P=51x10°
Expression Genes
Orphan Non-orphan
Non-modulated 43 (7.2 %) 557 (92.8 %)
Adult 49 (43.0 %) 65 (57.0 %)
P=11x10"

Differences were tested using two-sided Fisher’s exact test.
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4.5 Functional patterns of previously characterised orphan genes

To trace potential functional roles of orphan genes, it is possible to group
previously studied orphan genes using their molecular function, biological process or
cellular localization through the Gene Ontology (GO) database assignment
(Ashburner et al., 2000). The controlled vocabulary of the Gene Ontology database
allows statistical analysis of such data sets (Castillo-Davis and Hartl, 2003). With a
view to find common functional patterns, the orphan genes obtained in the whole
genome scan (section 4.1.71) using BLAST E-value cutoff of 10 were tested for over-
representation of particular GO terms compared to the complete genome of D.
melanogaster. The statistical comparison was done using hypergeometric distribution
implemented in GeneMerge (see materials and methods, section 6.4). Even though
only a small proportion of genes in the orphan sample has functional information
(4.7% in the biological process and 6.8% in the molecular function section) some
conclusion about functions and processes where orphans are prevalent can be

made.

Table 15 and Table 16 summarise the results. Previously characterised
orphan genes are obviously over-represented among genes involved in olfaction,
hormonal activity, puparial adhesion and egg membrane organization, all functions
which one would expect to be important for specific ecological adaptations. It is also
easy to notice, especially in biological process analysis, that orphan genes are over-
represented in the pathways involved in communication of the organism with the

environment (Table 15).
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Table 15. Rank scores for over-representation of Biological Process terms in the orphan gene
sample compared to the complete D. melanogaster genome

GO Biol.

Process Genome  Orphan Raw e-score Description
frac. frac. e-score
term
GO0:0007608 0.0045 0.0152 8.21E-20 1.96E-17 Olfaction

GO0:0007606 0.0062 0.0171  1.43E-15 3.41E-13 Chemosensory perception
GO0:0009593 0.0062 0.0171  1.43E-15 3.41E-13 Perception of chemical substance
GO0:0007600 0.0074 0.0175 7.23E-12 1.72E-09 Sensory perception
GO0:0009582 0.0083 0.0178 8.32E-10 1.98E-07  Perception of abiotic stimulus
G0:0007594 0.0007 0.0029 2.70E-06 0.0006 Puparial adhesion
G0:0009628 0.0109 0.0178 4.28E-05 0.0102 Response to abiotic stimulus
GO0:0009581 0.0114 0.0181 7.99E-05 0.0190 Perception of external stimulus
GO0:0007304 0.0011 0.0032 0.0002 0.0579 Eggshell formation
GO0:0007591 0.0010 0.0029 0.0007 0.1742 Molting cycle (sensu Insecta)
GO0:0007582 0.0015 0.0036 0.0016 0.3900 Physiological processes
GO0:0007305 0.0003 0.0013 0.0034 0.7994 Vitelline membrane formation

GO:0007306 0.0006 0.0019 0.0034 0.8176 Insect chorion formation

Biological Process (BP) terms are from the Gene Ontology database. Only terms with
raw e-scores below 0.05 are shown. Scores are based on hypergeometric distribution. Raw
e-scores were calculated with Bonferroni correction excluding singleton terms, while e-scores
were calculated with Bonferroni correction for all terms. Genome fraction represents the
proportion of the genes in the complete D. melanogaster genome (12843 genes) having a
corresponding BP term assignment. The orphan fraction represents the proportion of the
orphan genes in the orphan sample (3039 genes) having a corresponding BP Function term
assignment. There are 257 BP terms among orphan genes and 146 orphan genes have BP
information.
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Table 16. Rank scores for over-representation of Molecular Function terms in the orphan
gene sample compared to the complete D. melanogaster genome

GO Mol.
Genome Orphan Raw .
Func. e-score Description
term frac. frac. e-score

GO0:0004984 0.0040 0.0152 4.60E-24 1.19E-21 Olfactory receptor activity
GO0:0008141  0.0007 0.0029 2.70E-06 0.0007 Puparial glue (sensu Diptera)
GO0:0001584 0.0115 0.0175 0.0005 0.1193 Rhodopsin-like receptor activity
G0:0005179  0.0023 0.0052  0.0005 0.1334 Hormone activity

G0:0005180 0.0023 0.0052  0.0005 0.1334 Peptide hormone

Structural constituent of vitelline
membrane (sensu Insecta)
Structural constituent of chorion
(sensu Insecta)

GO0:0004930 0.0136 0.0184 0.0065 1 G-protein coupled receptor activity

G0:0008316  0.0003 0.0013  0.0034 0.8666

G0:0005213  0.0006 0.0019  0.0034 0.8863

GO0:0008613 0.0002 0.0010 0.0140 1 Diuretic hormone activity
GO:0005549 0.0018 0.0032 0.0319 1 Odorant binding activity
GO0:0005184 0.0013 0.0026 0.0326 1 Neuropeptide hormone activity

Molecular Function terms are from the Gene Ontology database. Only terms with raw
e-scores below 0.05 are shown. Scores are based on hypergeometric distribution. Raw e-
scores were calculated with Bonferroni correction excluding singleton terms, while e-scores
were calculated with Bonferroni correction for all terms. The genome fraction column
represents the proportion of the genes in the complete D. melanogaster genome (12843
genes) that have a corresponding Molecular Function term assignment. The orphan fraction
column represents the proportion of the genes in the orphan sample (3039 genes) that have a
corresponding Molecular Function term assignment. Altogether there are 269 Molecular
Function terms among orphan genes and 213 orphan genes have Molecular Function
information.
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4.6 Spatially restricted expression of orphan genes in Drosophila
embryo

It was shown in mammals that genes with localised and tissue specific
expression have increased evolutionary rates (Duret and Mouchiroud, 2000). As
orphans have increased evolutionary rates also, it was appealing to test if their
expression is localised. Expression patterns of all orphan genes recovered from the
embryo library were analysed by whole mount in situ hybridisation. Expression was
classified as specific if any kind of spatially restricted expression was observed. The
general information about expression patterns is summarized in Table 18. A random
sample of expression patterns from the same cDNA library obtained previously
(Schmid, 1996) was statistically compared to the sample of embryo orphans Table
17. The result shows that expression of embryo orphans is more often spatially
restricted compared to the random sample of genes suggesting that they act more

often in a localised rather than ubiquitous manner.

Table 17. Comparison of expression patterns between random sample and orphan genes
from Drosophila yakuba

Expression Random sample Orphans
Spatially restricted 29 22
Homogenous 76 12
Total 105 34

G = 14.33 (Williams’s correction), P < 0.001
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Table 18. Expression and substitution rates of embryo orphans

Name (D. melanogaster

Appendix ID orthologue) Expression dN/dS dN ds
4 CG18111 specific 0.0543 0.0316 0.5823
17 CG13741 specific 0.5769 0.2377 0.4121
26 mael, CG11254 specific 0.3362 0.1041 0.3095
32 CG3227 specific 0.1533 0.0441 0.2879
46 CG13512 unspecific 0.4441 0.1314 0.2958
62 CG11051 specific 0.7453 0.4926 0.661
66 GATAd ,CG5034 unspecific
81 CG4440 specific 0.0782 0.0195 0.2499
93 CG7543 specific
97 CG13011 specifc 0.0089 0.0025 0.2775
99 CG15188 unspecific 0.001 0.0004 0.3626
110 CG10978 unspecific 0.0119 0.0047 0.3961
137 CG12487 specific 0.2499 0.0712 0.2851
139 CG15189 specific 0.1782 0.0352 0.1975
141 CG14112 specific 0.0486 0.0144 0.2959
159 Df31 ,anon1A4, |(2)k05815 specific 0.2705 0.0551 0.2036
216 CG6583 unspecific 0.0245 0.0066 0.2678
232 CG13878 specific
233 CG11100 specific 0.0687 0.0172 0.2509
281 CG13339 specific 0.1408 0.0501 0.356
293 CG9795 unspecific 0.2483 0.0877 0.3532
302 Tom, anonfﬁgt'e"o""”g' specific 0.001 0.0001 0.1069
307 CG18145 unspecific 0.0847 0.0276 0.3263
308 CG14639 unspecific 0.077 0.0366 0.4761
313 CG2046 unspecific 0.1963 0.0608 0.31
324 BG:DS08249.4 specific 0.4322 0.0701 0.1622
327 CG10799 unspecific 0.574 0.3247 0.5657
337 EG:25E8.4 specific 0.0763 0.0193 0.2531
350 CG9188 unspecific 0.1985 0.0697 0.3511
370 CG13043 0.0259 0.0037 0.1443
378 CG6803 unspecific 0.0908 0.0068 0.0746
389 CG18178 specific 0.1155 0.0543 0.4706
391 CG1157 specific 0.0415 0.0178 0.4288

403 CG14915 specific 0.0963 0.0278 0.2884
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5. Discussion

5.1  Evolutionary scenarios for the origin of orphan genes

5.1.1 Orphan genes are a reality

The definition of orphan genes is necessarily vague. It depends on the
statistics of the probability cutoff calculation, the size of the database and the species
representation in the database. An E-value of > 10* and an extra screening step
against the InterPro domain database have been chosen to define the set of orphan
genes among the D. yakuba cDNA sequences. These criteria are conservative
although | would expect the results not to be very different if more relaxed criteria
such as E-values > 10° (Lipman et al., 2002) would be used. Another question
concerns the species representation that one should use for the exclusion criterion.
Insects were taken as a group within which a match was allowed. This is rather
arbitrary and is more dictated by the fact that there are only few EST or genomic
sequences available from the nearest evolutionary relative of insects, the
crustaceans (Friedrich and Tautz, 1995). The full genome sequence from another
Dipteran insect, Anopheles, has recently become available (Holt et al., 2002). The
Anopheles genome has been specifically searched with all orphan genes defined in
this study and 56% of them had no corresponding match in Anopheles. Zdobnov et
al. (2002) find that 18.6% of the Drosophila genes and 11.1% of the Anopheles
genes are orphans that are only found in the respective species in a pairwise

comparison, which roughly matches the figure in this study.

The main reason why insects as a whole were chosen as an exclusion
criterion in database search was to make the results in this survey comparable to
previous studies. Therefore it can be concluded that although the number of
sequences in the databases have increased with exponential rates, it seems that the
percentage of coding regions that show no similarity to previously sequenced genes
is not getting smaller. It is therefore clear that orphan genes are a reality that needs

to be explained.



Discussion 55

5.1.2 Evolutionary scenarios

There are three possible reasons why a gene can be an orphan gene.

(i) The gene has newly evolved in a particular evolutionary lineage, either
through a recombination of exons from other genes, or by a recruitment of a
randomly occurring open reading frame. In the former case, it should show at least
domain similarity to other genes and would therefore not be an orphan. The latter
case would lead directly to an orphan, as a random ORF would not be expected to
show similarity to known genes. On the other hand, random ORFs are unlikely to
code for a useful protein domain. In fact, it seems likely that today’s existing protein
domains have evolved very early on from short peptides, under conditions which are
not any more prevalent in today’s organisms (Lupas et al., 2001).

(i) The gene was an ancestrally shared gene, but was lost in most
evolutionary lineages, giving the appearance of a lineage specific orphan gene. This
explanation may well apply to some orphans. The different evolutionary lineages are
currently not well represented in the database. A Drosophila gene that has no
homologue in yeast, plants, nematodes and vertebrates may still be present for
example in platyhelminths, annelids or cnidarians, in which case one would not call it
an orphan. On the other hand, given the large number of orphans in any of the well
analysed lineages, it seems almost impossible to picture an ancestor, which would
have had all these genes.

(iii) The gene evolves so fast that a similarity cannot be traced after a certain
evolutionary distance. That such fast evolving genes exist in Drosophila has been
shown previously (Schmid and Tautz, 1997). They diverge with rates between 0.3 -
1% per million year, implying that it would not even be possible to trace them among
all Diptera. On the other hand, the data presented here show that many orphan
genes do not evolve fast, at least not in the D. melanogaster - D. yakuba comparison
that has been chosen. In fact, some of them evolve so slow that they should be

present in all organisms, if they would always have had this slow divergence rate.
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5.2 A model for orphan evolution

5.2.1 The model

The considerations above show that a more complex scenario is required to
explain the existence of orphan genes and their evolutionary patterns. A scheme is
proposed that tries to integrate the general knowledge on the evolution of genes, as
well as the new data that are presented here. The scheme starts with the assumption
that a new gene is initially created through a duplication of an existing gene (Figure
8). Such a duplicated gene can either be lost, or can be recruited into an accessory
or redundant function (Krakauer and Nowak, 1999; Lynch and Conery, 2000).
Because of the relaxed selective constraint, it will go through a phase of fast
evolution (Lynch and Conery, 2000), during which it may loose most or all of the
sequence similarity to the "parent" gene. However, at a certain point during evolution,
it might become integrated into a new pathway, because evolutionary novelties have
arisen in the respective lineage. During the time of integration into the new pathway,
one can expect that the gene goes first through a phase of fast adaptive evolution,
which would make it even more different from its "parent" gene. But once it has
reached a new optimal state, it will be under strong purifying selection, implying slow

evolution from this point onwards (Figure 8).

5.2.2 Implications of the model

This scenario has several important implications, both for the evolutionary
history, as well as for the possible function of orphan genes. Because an initial gene
duplication is assumed that leads eventually to an orphan, more refined structure
based methods for the analysis of protein similarities (Koretke et al., 2002) may
eventually help to identify the gene from which the orphan was derived. In terms of
function, this scenario suggests that orphans have only accessory functions during
the phase where they evolve fast, and are involved in important, but lineage specific
functions when they evolve slowly. This would explain why they are under-
represented in genetic screens, because such functions are usually not assessed in
genetical screens. If the presented scenario is right, it points immediately to a class
of genes that should be particularly interesting for studying the genetics of

evolutionary divergence, namely the very slow evolving orphan genes. They can be
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viewed as signatures of genetic pathways that have been newly acquired in a

particular lineage and that are of special importance for the respective lineage.

One of the previously annotated orphan genes that have been recovered
among D. yakuba cDNAs, the flightin gene, is indeed an excellent candidate for a
lineage specific adaptation. It has a dN/dS ratio of 0.015 and is thus among the group
of highly conserved orphan genes. Its function was thoroughly studied in Drosophila
(Vigoreaux et al., 1993; Vigoreaux et al., 1998; Reedy et al., 2000). Mutations have
no effect on viability or fecundity, but have a specific effect on the ultrastructure and
function of the flight muscle. It appears that the gene is specifically required to
increase the frequency at which the maximum power of the flight muscle is delivered
to the wing. This could be seen as a rather specific adaptation for Dipterans. Slow
evolving orphan genes should therefore deserve special attention in the future, both
with respect to their evolutionary divergence patterns as well as their genetic

functions.
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Figure 8. Model for the evolution of orphan genes. The model assumes an initial gene
duplication, after which selective constraints in one of the duplicated genes become relaxed.
This leads to a fast evolutionary divergence (left), indicated by a long branch in the topology.
After a lineage splitting event, the gene may become integrated into a new central function in
one lineage, but not in the other, where it continues to evolve fast because of reduced
constraints. The new function in the first lineage implies that the gene would go through a
phase of adaptive evolution, which would also result in a long branch, depending on how
many aminoacid changes occurred during the phase of adaptation. But once an adaptive
peak is reached, further evolution is slowed down and the branches become short. At this
time, the gene may have lost all sequence similarity to its parent gene, but not necessarily its
structural similarity. The parent gene (right topology) would undergo the same lineage splitting
events, but would continue to have short branches in all lineages, because it has retained its
original function. This model suggests the existence of three types of divergence modes: (1)
fast divergence of genes which may, or may not yet have lost their sequence similarity to their
parent gene, (2) fast divergence due to positive selection and (3) slow evolving orphan genes.
Note that the model would apply in a similar way, if the initial gene would not have been
created through a pure gene duplication, but through recruitment and recombination of exons
from other genes or even after a gene has lost its original function in the context of a
speciation event.
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5.3 Differences between adults and embryos

5.3.1 Overall difference

Almost double as many orphan genes were found among the cDNAs of the
adult library than in the embryo library. Because libraries used in this study were not
normalized, this could have two reasons. Either orphan genes have a higher
expression level in adults, which would result in a higher probability of recovery, or
there are indeed more orphan genes specifically expressed in adults. Even without
differentiating between these possibilities this means that orphan gene products are
more abundant in adults. Because orphans evolve faster on average, this has the

consequence that the average evolutionary rate of adult cDNAs is higher.

This finding can be compared with a previous study, which used
crosshybridisation between RNAs of various Drosophila species (Powell et al., 1993).
In this study it was found that RNAs from adults appeared to evolve faster when
closely related species are compared, but not in the comparisons among more
distantly related species. It was originally assumed that this could be due to
differences in rates of silent substitutions in genes expressed at different stages of
development as well as lineage specific shifts in codon usage (Powell et al., 1993).
However, it would now seem possible that the differences in orphan gene expression
could explain these results as well. Assuming that there is a higher expression of
orphan genes in adults, and taking into account that these evolve faster, one would
see more divergence among adult transcripts than among embryonic ones in
comparisons among closely related species. On the other hand, the fast evolution of
many orphan genes would lead to a complete loss of crosshybridisation between
more distantly related species (Schmid and Tautz, 1997) and the signal that is
measured by crosshybridisation would be mainly due to the more conserved non-
orphan genes. Accordingly, a differential signal between embryonic and adult
transcripts would vanish. Thus, we conclude that the crosshybridisation studies by

Powell et al. (1993) are fully in line with our findings.



Discussion 60

5.3.2 Stage specific genes

The analysis of the ESTs recovered in this study does not allow to
differentiate between genes that are specifically expressed in embryos or adults. In
fact, it can be expected that a substantial number of the genes that have been
recovered are expressed at both stages. However, this means that the difference
between embryos and adults should even be more pronounced when genes are
compared that are specifically expressed in each stage. Indeed analysis of only the
stage specific genes, which were selected based on abundance of their ESTs in

public databases, confirms this reasoning.

A similar specific analysis was done by Castillo-Davis and Hartl (2002) for two
nematode species. They selected the early and late expressed genes on the basis of
quantitative expression data from microarray experiments in Caenorhabditis elegans
and compared then the substitution rates with respect to the orthologue sequences
retrieved from the C. briggsae genome project. In contrast to this work, they do not
find any differences in non-synonymous substitution rates between early and late
expressed genes. This result could have different reasons. C. elegans and C.
briggsae are molecularly more divergent than D. melanogaster and D. yakuba, as
can be inferred from the average synonymous substitution rates (average dS C.
elegans/C. briggsae > 1; average dS D.melanogster/D.yakuba < 0.3). Thus, there
might have been a bias against fast evolving genes in this study, because it focussed

on a subset of unequivocally alignable orthologous genes.

But there might also be a biological reason for this difference between the two
studies. The post-embryonic stages in nematodes are less divergent than in flies.
The adult fly uses a completely different habitat than the embryos and larvae and it is
likely to be subject to many different differential adaptations. If orphan genes are
more often involved in such adaptations and if these evolve generally faster, one
could expect a more pronounced difference in evolutionary rates between early and

late stages in flies than in nematodes.
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5.3.3 Developmental constraint

The higher proportion of orphan genes among adult RNAs can also be seen
in the context of possible developmental constraints. Embryos go through a stage
during early development which looks morphologically very similar even among very
distantly related animal taxa and which has been called the phylotypic stage (Sander,
1983). It was proposed that the phylotypic stage represents a point in development
where structural and network constraints place limits on morphological variability
(Raff, 1996). Given that all developmental processes ultimately depend on the
activity of a specific set of genes, some level of constraint on the variability of
proteins expressed during the embryonic and phylotypic stage may be expected. If
such a constraint exists, its signature may therefore be present in the coding and/or
regulatory sequences. In the nematode study (Castillo-Davis and Hartl, 2002), the
analysis of evolutionary rates did not confirm this expectation, although this may be
partly due to a sampling bias (discussed above). However, the study did find
differences with respect to the number of paralogous genes expressed in the
different stages, which do suggest a stronger constraint on genes involved in

embryonic development.

This study uncovered clear differences in evolutionary rates caused by a
differential representation of orphan genes between the stages and in the number of
stage specific orphan genes, but not with respect to the number of paralogous genes
(not shown). Intriguingly though, another clear difference between adult and
embryonic transcripts was found that points also to a constraint. In this study, the
proteins expressed in embryos are on average 150 amino acids longer than those
expressed in the adult. This exceeds the difference that could be expected from the
larger number of short orphan genes in adults (Table 5). A possible explanation
would be that proteins expressed in the embryo are involved in more protein-protein
interactions, possibly to safeguard the developmental pathways. The analysis of
yeast genes shows that proteins that are involved in more protein-protein interactions

also tend to evolve more slowly (Fraser et al., 2002).
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5.4 Proteins under adaptive pressure

Swanson et al. (2001) compared the sequences of ESTs from the male
accessory gland of Drosophila simulans to their orthologues in its close relative
Drosophila melanogaster. Among these, they found also many fast evolving genes
and even several with an excess of non-synonymous versus synonymous
substitutions. This demonstrates that genes, which can be expected to be under
continuous pressure of new adaptations, such as accessory gland-specific seminal
fluid proteins, are indeed subject to fast evolutionary divergence at the molecular
level. This is also confirmed by the comparative systematic analysis of immunity-
related genes between Anopheles and Drosophila, which show a marked deficit of
orthologues and excessive gene expansions (Christophides et al., 2002). The
overrepresentation of certain functions among orphans in Drosophila that were found
in this study (see section 4.5) suggests also that these might play a role in specific

ecological adaptations that change easily over time.

5.5 Conclusion

The role of orphan genes in the evolutionary process remains enigmatic.
From the evidence discussed in this thesis, it would seem most likely that they are
often involved in specific ecological adaptations. They might thus be the raw material
for micro-evolutionary divergence, while macro-evolutionary differences are more
likely to be caused by changes in regulatory interactions of highly conserved

developmental genes (Carroll, 2001).
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6. Materials and Methods

General molecular biology methods were performed, if not otherwise stated,
as described in Sambrook et al. (1989). The following fly stocks were used in this
study: Drosophila yakuba (wild type obtained from Prof. Dr. Michael Ashburner

laboratory) and Drosophila melanogaster (Oregon R).

6.1 Database search

6.1.1 D. melanogaster proteome analysis

The Drosophila melanogaster proteome (release 2) comprising 14334
proteins was downloaded from Flybase. After removal of 38 5°-truncated proteins a
BLASTP search was carried out against the non-redundant GenBank peptide
database using the NCBI network BLAST client (blastcl3) and the following
parameters: BLOSUMG62 matrix, SEG filtering on and expectation cutoff of 10. After
parsing the BLAST output using MuSeqBox (Xing and Brendel, 2001) installed
locally, the resulting 2.1x10° query/hit pairs were sorted into a Microsoft Access
database. For each cutoff, the number of genes without match outside insects
(orphans) and with match outside insects (non-orphans) was determined. The insect
assignment was done according to the NCBI taxonomy rank classes. In addition, for
each cutoff category the number of named genes was determined. For all genes
retrieved from D. yakuba the full-length orthologue from D. melanogaster was used to
search for protein domains via InterProScan v2.2 (Zdobnov and Apweiler, 2001)

installed locally.

6.1.2 D. melanogaster EST database search

D. melanogaster EST data were downloaded from Flybase and NCBI EST
database. As D. melanogaster ESTs are recovered form cDNA libraries constructed
from different tissues and stages the data set was divided into embryo (99 617 ESTSs)

and adult sample (113 484 ESTs). The majority of these ESTs were derived from
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normalized cDNA libraries, and thus the proportions of transcripts in this data set do
not represent real expression levels. Nevertheless, the large number of the
sequenced transcripts permits some conclusions about differences in the expression
between stages, especially if data are analysed just by considering presence or
absence of a particular transcript in a given library. D. melanogaster orthologues of
cDNAs recovered from D. yakuba were compared against the set of adult and
embryo ESTs using TBLASTN. In this analysis, a match having E-value less then

0.001 was considered significant.

6.2 cDNA libraries and sequencing

cDNA libraries were constructed from D. yakuba embryonic (0-14 hours) and
adult (varying posteclosion times) stages using the Uni-ZAP XR Library Construction

Kit (Stratagene) according to the instructions of the supplier.

6.2.1 D. yakuba 0-14 h embryo library

The Drosophila yakuba 0-14 h embryo library was constructed previously
(Schmid, 1996). In this work, an aliquot of the primary embryo library containing 1.3 x
10° pfu was amplified once, yielding 3.24 x 10" pfu. An aliquot (1.3x10 pfu) of the
amplified library was mass excised to give clones in the pBluescript SK- plasmid

vector (2.8 x 10° cfu), which were used for sequencing.

6.2.2 D. yakuba adult library

Total RNA was extracted from 1g of fresh material using a modified guanidine
isothiocyanate procedure (Stratagene) as follows. Homogenisation of tissue and
subsequent adding of sodium acetate was done according to the protocol of the
manufacturer. After this steps one volume chloroform extraction was included.
Chloroform and water phase were separated by centrifugation for 10 min on 6000xg
at 4 °C. This step was added to improve separation of phenol and water phase in the
subsequent step of the original protocol. Total RNA was dissolved in 2 ml of DEPC-

treated water.
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mRNA was isolated using the Poly(A) Quick mRNA lIsolation Kit (Stratagene)
according to the instructions of the supplier. cDNA was obtained from 3.3 ng D.
yakuba mRNA. cDNA size fractions grater than 500 bp were selected for cloning.
Cloning was done in 1 ug of Lambda ZAP 1l XR vector. 1ul of ligation reaction was
packaged using Gigapack Ill Gold Packaging Extract. The primary library (4 x 10°
pfu) was amplified yielding 9.24 x 10" pfu. An aliquot (4 x 108 pfu) of the amplified
library was mass excised with ExAssist helper phage (Stratagene) to give clones in

pBluescript SK- plasmid vector (6 x 10° cfu).

6.2.3 Preparation of plasmid DNA and sequencing

Randomly picked colonies were grown in 1.2 ml 2xLB media in 96-deep-well
blocks for 30 hours on 37 °C. Plasmids were isolated applying an alkaline lyses -
diatomaceous earth miniprep protocol optimized for 96 well plates as follows. Cells
were harvested by centrifugation at 3220 x g for 10 min. After removal of media, cells
were resuspended in 200 ul of resuspension buffer (50 mM glucose, 25 mM Tris-HCI
pH8.0, 10 mM EDTA pH 8.0). After cell lysis (200 ul of 0.2 M NaOH, 1% SDS)
samples were neutralized by 200 pl of neutralizing buffer (3.6 M GHCI, 1.2 M K
acetate pH 5.5) and centrifuged for 15 min at 3220 x g. The supernatant (500ul) of
each was transferred to a new 96-deep-well block and mixed with 200 pl of
diatomaceous earth suspension (16.8 g diatomaceous earth, 5 ml 1M Tris-HCI pH
8.0, 6 M Guanidine hydrochloride filled up to 100 ml). Samples were transferred in a
96-well filter plate (Whatman GF/B) and centrifuged for 5 min at 2500xg. Two
washing steps with 500 ul washing buffer (20 mM Tris-HCI pH 8.0, 2 mM EDTA pH
8.0, 0.2 M NaCl, 50% ethanol) and one with 250 ul 80% ethanol were performed by
centrifugation for 10 min at 2500 x g. Plasmid DNA bound to diatomaceous earth was
eluted with 100 pl of 10 mM Tris pH 8.0 preheated to ~65 °C. After ~15 min of
incubation on room temperature, plates were centrifuged at 2500xg for 10 min.
Plasmids were sodium acetate — isopropanol precipitated and washed twice with 70
% ethanol. Samples were dissolved in 25 pl of 5 mM Tris pH 8.0. Integrity of

plasmids and concentration were checked by agarose gel electrophoresis.

The clone inserts were fully sequenced directly from plasmids or from PCR
products after amplification with standard T3/T7 and internal primers. The cDNA

insert was cycle sequenced in 10 pl reaction volume using ~200 ng of plasmid
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template, 2 or 4 ul of ET-Terminator mix (Amersham) and 5 pmol of primer. Cycle
sequencing was done in 40 cycles [20s 95C°, 15s 50°C, 1 minute 60°C]. Sephadex
G-50 columns were used for clean up of reactions samples which were then sealed
and stored on —20 °C prior to sequencing injection. Sequencing reactions were run
on a MegaBACE 1000 capillary sequencer (Amersham — Molecular Dynamics). For
injection as well as for the run varying voltage and time were applied (from 40kVs up
to 200kVs for injection, 9 kV-120min or 4 kV-400min for the run). To decrease
injection failures, increase read length and improve sequencing quality several runs

were performed per plate with different injection and run conditions.

6.3 Basecalling and contig assembly

Raw sequence data were basecalled applying the MegaBACE Sequence
Analysis Software Version 2.1 (Cimarron 2.19.5 Slim Phredify basecaller). For each
library all electropherogams were separately basecalled again using PHRED and
assembly was done trough PHRAP (Ewing et al., 1998; Ewing and Green, 1998).
Contigs and basecalling was inspected using CONSED (Gordon et al., 1998; Gordon
et al., 2001). D. yakuba cDNA contigs and D. melanogaster ortholog CDS detected
by BLAST were trimmed and adjusted in the same reading frame using BioEdit
Version 5.0.9. Protein sequences were aligned in the frame using ClustalW
(Thompson et al., 1994). Comparison of sequenced clones with D. melanogaster
orthologues showed that the D. yakuba sequences were on average 62% fulllength

for the embryo library and 77% for the adult library.

6.4 Evolutionary rates, sequence analysis and statistics

Nonsynonymous (dN) and synonymous (dS) rates were estimated by the
maximum likelihood method implemented in PAML v3.1 package using the F3x4
codon frequency model (Yang, 1997). The null hypothesis that dN and dS are equal
was tested comparing -2[log(Lo) log(L)] with the ¥? distribution with 1 degree of
freedom, where L, is log likelihood when dN and dS were estimated as two free
parameters and Lo is log likelihood having dN equal to dS. Codon usage bias
measured as effective number of codons (ENC) or frequency of optimal codons
(Fop), GC3 and GC content and amino acid length were calculated for D.

melanogaster - D. yakuba orphan ortholog pairs using CodonW.
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Statistical calculations were done by SPSS for Windows Release 10.0.7.
Variables used in the statistical analysis, which were not normally distributed, were
transformed using different power and log transformations (Table 19). Kolmogorov-
Smirnov test of goodness-of-fit to the normal distribution were performed and the
transformation, which gave the lowest Z, was used in further analysis, although
qualitatively the same results were obtained without transformation in all tests.
Means are reported with + one standard error of the mean. Correlations were tested
by Pearson’s correlation coefficient (r) and for non-normally distributed variables by

Spearman’s rank correlation coefficient (rs).

Over-representation of particular Gene Ontology GO term (Ashburner et al.,
2000) in the orphan sample compared to the complete genome of D. melanogaster
was tested using hypergeometric distribution implemented in GeneMerge software
(Castillo-Davis and Hartl, 2003). GeneMerge algorithm gives two score values. Raw
e-score is calculated without Bonferroni correction for singletons (terms which are
present just once in a sample and thus can not be over-represented) while e-score

takes into account this correction.

Table 19. Transformation of variables used in the statistical analysis

Variable Transformation
dN (dN)"+ (dN+1)"?
ds -

dN/dS (dN/dS)"+ (dN/dS +1)"?
ENC (ENC+0.5)%°
Fop -
GC (GC)?
GC3 (GC3)?
N of exons (N+3/8)"?
N of paralogues -
Protein length (Laa) log (Laa)

6.5 Expression analysis

Expression analysis of embryos was done by whole-mount in situ
hybridisation (Tautz and Pfeifle, 1989; Lehmann and Tautz, 1994) using a RNA
probe from D. yakuba. A gene was considered to be expressed specifically if any

kind of spatially restricted expression pattern was detected.
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