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Abstract. — Effects of disorder on planar periodic structures in superconductors are examined in

the present work. In part one we analyse the role of impurities in the striped phases of cuprate high-

temperature superconductors. The geometrical degrees of freedom of the combined charge and spin

superstructure in the two-dimensional (2D) copper-oxide planes are first discussed. Pinning by the

atomic lattice – which might give rise to commensuration effects – is irrelevant on large length scales

in the presence of quenched disorder. As a consequence, the stripes have divergent displacement

fluctuations and topological defects are present at all temperatures, implying short-ranged positional

order of the stripe array with a finite correlation length even at zero temperature. Lock-in phenomena

can exist only as crossovers but not as transitions. These results are in agreement with the glassy

nature of stripes observed in experiments.

Secondly, we study the effect of disorder on coupled planar arrays of Luttinger liquids (LLs) as a

model for the electronic degrees of freedom of the stripes. In the framework of a renormalisation

group analysis, we find that weak inter-LL charge-density-wave couplings are always irrelevant as

opposed to the pure system. By varying either disorder strength, intra- or inter-LL interactions,

the system can undergo a delocalisation transition between an insulator and a strongly anisotropic

metallic state with LL-like transport. The delocalised state can exist other than in one dimension

even for a purely repulsive interactions and it is characterised by short-ranged charge-density-wave

order, quasi-long-ranged superconducting order along the stripes and short-ranged superconducting

order in the transversal direction.

In part two the random (1+1)-dimensional fluxline lattice as a model system for vortex glasses

(VG) is examined. Using the recently found exact Replica Bethe Ansatz solution [EK01] for a special

vortex interaction, we argue against the existence of the transition to a thermally unpinned phase

above the VG. The argument is generalised to arbitrary repulsive interactions via the mapping to one-

dimensional repulsive fermions. A small window for the transition sharply below the superconducting

critical temperature is opened by the introduction of a finite persistence length of a single vortex line.

In the phenomenologically related random-field XY model the transition under debate is present but

does not leave any signature in the free energy as we calculate in a sideline of the reasoning.

Finally, the relation of the vortex system to the random-bond dimer model is explored in detail. The

latter can be simulated with a recently developed polynomial algorithm at a precision far beyond

any previous Monte Carlo approach. Data from simulations, which are provided by the collaborating

group of C. Zeng (Washington, D.C.), and theory do not only show qualitative but also excellent

quantitative agreement for a wide range of observables: the large scale lattice stiffness; the average

free energy, internal energy and entropy; moments of the disorder distributed free energy; specific

heat. The special model character of the planar VG as a genuine glassy and yet in many aspects

solvable system is highlighted.
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A. Introduction

1 Striped phases in cuprate superconductors

High-temperature superconductivity (HTSC) was discovered in 1986 [BM86]. To the present day,

a satisfactory understanding of the pairing mechanism in the new material classes has not been

achieved. Early hopes for the designability of compounds with ever higher transition temperatures

could not be fulfilled. Still, the intense research has greatly advanced the understanding of strongly

correlated fermions and made this one of today’s thriving fields in condensed-matter physics. The

copper-oxide (CuO2) planes common to all the important high-Tc compounds, the ’cuprates’, have

been identified as the basic functional building block. The rich phase diagram of HTSC is believed

to emerge upon hole doping from the physics of these antiferromagnetic CuO2 layers, which are

often described by the very reduced paradigm model of highly correlated electrons, the Hubbard

model. Theoretically, a new ordering phenomenon in doped antiferromagnets had been predicted

[Sch89, ZG89, Mac89, EKL90]: the one-dimensional periodic accumulation of the free charges in

’rivers’ that simultaneously act as anti-phase boundaries in the surrounding antiferromagnet. After

the first experimental observation of these one-dimensional superstructures [TSA+95] the field of

stripes physics in the cuprates began to flourish. Not only is the existence of stripes by now exper-

imentally proven in all the important compound classes, their relation to superconductivity is also

largely debated. While the static, originally detected stripe structures quite clearly suppress super-

conductivity, the dynamically fluctuating variant plays an essential role in a class of – still – rather

speculative model mechanism for high-temperature superconductivity [KFE98]. The focus of the

present work is neither on the microscopic mechanism of the formation of stripes nor on the mech-

anism of superconductivity. We rather explore the influence of another key ingredient in real-world

materials, which is, moreover, generic in doped compounds: disorder. In a first part (Chapter B),

the structural properties of a stripe ordered phase are analysed. The preformed stripes are treated as

collective quantum objects. Both the underlying periodic lattice and random impurities work against

thermal and quantum fluctuations in the effort to pin the stripe array. The periodic potential tends

to order the array while disorder pinning roughens the structure. The question in this multiple com-

petition is which mechanism will prove most efficient. A motivation of such an analysis comes from

the observation of particularly stable, static stripe structures at certain doping levels that correspond

to well-defined stripe spacings [MSFS88]. A lock-in of the stripe superstructure in the underlying

periodic atomic potential seems possible. On the other hand, glassy features of the superstructure

have also been observed, which suggests a dominant role of disorder [TIU99, DGS+00]. The situation

in the present model is complicated with respect to roughening phenomena in disordered classical

elastic systems [EN97, EN98] by the presence of quantum fluctuations. On a technical level, the

quantum nature can be coded in an extra imaginary time dimension in the Feynman path integral
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approach. Disorder is then correlated in time direction which has always prevented a closed renor-

malisation group (RG) analysis [Bal93]. In order to avoid the known obstacles our approach lies in a

suitable successive ’switching on’ of mechanisms. The effect of the latest mechanism on the phase

diagram one step earlier is analysed with a combination of scaling and RG arguments. Eventually,

having chosen a convenient order of steps, we arrive at the qualitative phase diagram for the full

model. Disorder shows to be dominant on largest scales while lock-in effects can only be seen in

crossover behaviour and cannot establish a phase of their own. A detailed overview of experimental

observations in the cuprates – and related nickelate systems – and of the phenomenology of stripes

is given in the introductory section of this first part on stripes.

In the second part (Chapter C) we turn to the so far neglected internal degrees of freedom of the

’rivers of charges’. In the limit of sharp distinction between charge-carrier-free regions and the charge

stripes, these stripes may be considered as one dimensional electron gases (1DEG). They interact

internally, described in the Luttinger liquid picture [Hal81a], and from stripe to stripe by the electron

Coulomb repulsion. The coupling to spin degrees of freedom in the embedding antiferromagnet

as well as inter-stripe superconducting order-parameter coupling opens a whole variety of possible

emerging phases depending on the actual coupling parameters. A model calculation by Emery et

al. [EK93, EKZ97] showed that the antiferromagnetic environment may induce a gap in the spin

sector on the stripes. As a consequence, one-particle hopping between the stripes is no longer

necessarily the dominant inter-stripe coupling. A novel two-dimensional non-Fermi liquid seems to

be at least possible. This as a starting point, a series of publications tried to give phase diagrams

of coupled Luttinger liquids as a model for cuprate superconductors [EFKL00, MKL01, VC01]. The

most spectacular consequences are naturally emerging superconducting phases and also a phase where

both of the strong, competing instabilities – charge-density-wave coupling and the superconducting

order-parameter Josephson coupling – are irrelevant. This ’sliding Luttinger liquid’ or ’smectic metal’

would be the realisation of a two-dimensional metallic non-Fermi liquid. The caveat is, however,

as big as the ’smectic metal’ portion of the phase diagram is small. Only very arbitrary finetuning

in the on-stripe and inter-stripe interactions which can hardly be related to the original Coulomb

potential leads to the remarkable results. In our contribution to the model, we examine the influence

of on-stripe disorder on the suggested phase diagrams, both for the finetuned interaction necessary

to obtain the smectic metal and for a more realistic interaction derived from the screened Coulomb

potential. In the latter case, the phase diagram looks less colourful with no smectic metal present.

Generically, disorder reduces the superconducting phase and replaces all of the charge-density-wave

phase by a disorder-localised phase with no translational symmetry. The smectic metal survives

disorder localisation in the finetuned model in a small part of its small fraction of the phase diagram

as the strongly modified ’disordered stripe metal’ (DSM). Other than in the one-dimensional case,

delocalisation is possible even for purely repulsive interactions. The delocalised state is characterised

by short-ranged charge-density-wave order, the superconducting order is quasi-long-ranged along the

stripes and short-ranged in the transverse direction.

2 Planar vortex systems

The effect of disorder on a periodic structure in superconductors – the theme is the same when the

glass phase of planar vortex arrays is examined in the second part of the present work. The Abrikisov
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or mixed phase of type-II superconductors – and the high-temperature superconductors are strongly-

type II – is of eminent technological relevance. An external magnetic field enters the material in

the quantised form of fluxlines which order ideally in a regular lattice. Any transport current in

the superconductor will induce such a field, rendering fluxlines ubiquitous in practical situations.

Disorder plays under these circumstances not a destructive but a constructive role. Impurities –

unavoidable anyway – are welcome to pin the vortex array and prevent dissipation from fluxline

motion transverse to the transport current. The nature of the vortex state is not left unchanged by

disorder. The translational order of the regular lattice is destroyed in what is then a vortex glass

(VG). This phase is fascinating from a theoretical point of view also as a model glass system, on

par with the extensive field of spin glasses [BY86]. Translational symmetry is broken, metastable

states slow down the relaxation and large barriers in between dominate transport characteristics. The

energetical favourability of topological defects will depend on the strength of thermal and disorder

fluctuations. They will render the phase diagram even richer with the topologically ordered Bragg

glass at weak disorder and a possibly multistep melting behaviour [Kie98, BMS+01, AKM+01].

The planar vortex array is a compromise model in a good sense. The reduction of the dimension

transverse to the vortex lines may seem artificial considering the technological relevance. However,

the system is now simple enough to be approached very successfully in the threefold way of modern

physics: (i) experimentally, (ii) analytically and (iii) by numerical means. Since long, theory has

predicted the planar vortex array to be a generic glassy system, despite the dimensional simplification.

The mapping to the random field XY (RFXY) model [Fis89] reveals the existence of a low-temperature

disorder-dominated phase [CO82], with all the signatures in static and dynamic correlations of a glass

[CS96]. Recently, in a prominent experiment with a thin specimen of a conventional superconductor,

such a planar vortex glass has been investigated [BAP+99]. As for the numerical side, an extensive

literature has grown on Monte Carlo simulations, mainly of the related RFXY model [BH94, MMRL95,

CS95]. Only lately the discovery of the relation to a model of statistical combinatorics, the random-

bond dimer model, which can be simulated with polynomial algorithms, has put the planar vortex

array in a unique position in the field of vortex (and in many senses related spin) glasses. System

of linear sizes up to L = 512 can be treated on desktop computers with numerical exact algorithms

[ZLH99]. Even the quantitative testing of scaling approaches like the droplet picture of spin glass

theory [FH88] seems within reach.

Our contribution is twofold. First, we critically examine the possible transition of the planar vortex

glass to an unpinned phase at higher temperatures as implied by the often used mapping to the

RFXY model (Section D.2). New exact results for the free energy of the vortex system with a

contact interaction that prevents line crossing (’noncrossing only’ vortex interaction) [EK01] rule out

the transition to the high-temperature phase. We stringently extend the argument to the generic

case for a repulsive interaction, a result that had been previously suggested [NLS91] but also often

debated. Sharply below the superconducting transition, there is

In a sideline of the reasoning the analytic behaviour of the free energy of the RFXY model

throughout the transition, which this system does undergo, is shown.

The second part (Section D.3) is the fruit of a collaboration with the group of Chen Zeng at George

Washington University, who study numerically the random-bond dimer model and its direct link

to the vortex model. Once the details of the mapping have been clarified, the comparison of the

analytical results from Ref. [EK01] to so far unpublished simulations is very gratifying. Not only
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for the large-scale behaviour like correlation exponents but also for a wide range of thermodynamic

quantities, including response functions and even moments of the disorder distributed quantities,

the agreement between theory and simulation is very good. Concerning the latter quantities this

is even more surprising as, a priori, one could have imagined a strong dependency on microscopic

details, which, of course, differ from the continuum model to the lattice dimers. The benefit is

two-directional. On the one hand, the validity of the analytical Bethe Ansatz results in the replica

framework are clearly confirmed. At least for the delicate part of the analytical continuation in the

replica index, this may not have been anticipated universally. On the other hand, the dimer model

is shown to simulate precisely the disordered vortex system on all length scales. Questions regarding

the vortex glass that cannot be addressed analytically may hence be answered numerically in the

dimer model context. To be a bit more speculative, in view of the large number of relations between

tiling problems and condensed matter systems [MS02] it might prove profitable in other contexts to

have solved with the Bethe Ansatz results a random dimer model exactly.

For a more detailed introduction to the models and the literature we refer to the introductory sections

of Chapter D.

3 Relations and methods

The links between the two main parts of the present thesis are manifold. Beyond the relation of the

physical systems, all type-II superconductors, and the common emphasis on disorder effects, there

is a methodological brace. In the two-dimensional plane, superstructures with a one-dimensional

periodicity are subject to the disordering influence of impurities. The problem falls into the class

of ’disordered elastic media’ that has prospered over the last 15 years in a fruitful interplay with

the development of functional renormalisation tools [Fis86, NS00, SD00, LWC02]. Prior to rigorous

renormalisation group methods comes the use of qualitative scaling arguments in order to clarify

the broad large-scale picture in situations with competing mechanisms. The use of both will go

hand in hand throughout the following chapters. We also take advantage of the possibility given by

the Feynman path-integral approach to quantum mechanics. A quantum statistical physics problem

can be rewritten as a classical problem with an extra (imaginary time) dimension. In Chapters B

and C, we go the way from quantum mechanics to classical physics, while in Chapter D, the two-

dimensional classical line system is mapped onto interacting fermions in one dimension. Also, the

method of bosonisation, that allows to write one-dimensional interacting fermion systems in the guise

of a classical two-dimensional elastic manifold is used two-directional. In Chapter C the interplay

of stripe electronic degrees of freedom with disorder is examined in terms of bosonised, classical

fields while in Chapter D, when the possibility of a glass transition in the vortex array is analysed,

the mapping of the lines to fermions – and simple results from bosonisation theory there – prove

helpful. For the ease of the reader, the presentation of known results from the literature may appear

repeatedly if needed at considerably distant points of the thesis.

Numerical methods had to be used at two points. The phase diagrams in Chapter C rely upon

solving a large number of integrals numerically, while in Section D.3 the very ill-conditioned Bethe

Ansatz integral equation has to be solved numerically in order to extract higher moments of disorder-

distributed thermodynamical quantities.

Chapter E briefly states the ’round up’ work that had been done on the field of the author’s diploma
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thesis, the ’Bragg glass phase in impure type-II superconductors’. A long version of the analysis,

whose results had already been published, was produced. It may illustrate nicely the applicability of

functional renormalisation tools, as mentioned above, to disorder vortex physics.
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B. Striped phases, the geometrical degrees

of freedom

1 Introduction, the phenomenology of stripes

During the last decade evidence emerged from theoretical work [Sch89, ZG89, Mac89, EKL90] and

from experiments on cuprates [CAM+91, MAM92, TSA+95, DMD98] and closely related nickelates

[HLZ+92, CCC93, TBSL94, LC97] for the existence of striped structures within the MO2 (M = Cu,

Ni) planes. These stripes are highly correlated states of holes which are introduced into the planes

by doping and which order into a unidirectional [MDDH00] charge-density wave (CDW, wave length

a) that may be accompanied by a simultaneous spin-density wave of period 2a in the sublattice

magnetisation of the antiferromagnetic metallic spins [TBSL94, KE96, ZKE98]. Qualitatively, one

may think of stripes as parallel strings of holes that constitute an antiphase boundary for spin order,

see Fig. B.1.

Particular interest in these stripes – see the rapidly growing literature in the field, Fig. B.2 – arises

from the possible interplay [EK93] between stripes and superconductivity, In Fig. B.3 a phase diagram

of the classical HTSC material is sketched. Fig. B.4 collects stripe signatures for the same material

that can be seen in a wide portion of the phase diagram both in the superconducting and in the

normal phase. It is important to distinguish between “dynamic” and “static” stripes. While there

is evidence that superconductivity can coexist with both dynamic [CAM+91, MAM92, MD99] and

static [TAI+97, KHM+99] stripes, static stripes tend to suppress superconductivity [CHM+91, NU92,

EKZ97] in contrast to dynamic stripes. Therefore the study of the structure and dynamics of stripes

is of principal importance.

In Fig. B.5, typical experimental evidence from neutron scattering for a periodic superstructure is

shown. The plot is taken from the classical paper by Tranquada et al. The superstructure peaks are

given in reciprocal lattice vector units with respect to the orthorhombic unit cell of the CuO2-plane.

If the four-fold rotation symmetry in the plane is not broken, the tetragonal unit cell may equally be

used, see Fig. B.6. Stripes in the cuprates were first seen in the La2−xSrxCuO4 class of materials.

Their detection in the important YBa2Cu3O7−δ and Bi2Sr2Can−1CunO4+2n+δ families was more

difficult, but by now it has been compiled a large amount of evidence for stripes in all major material

classes by a wide range of experimental techniques, see Table B.1. La2−xSrxCuO4 is a n = 1

material, i.e., it has one CuO2-plane per unit cell and a fairly low maximum critical temperature

Tc = 40K compared to YBa2Cu3O7−y (Tc = 93K) and Bi2Sr2Can−1CunO4+2n+y (Tc = 100K).

The latter two are n ≥ 2 materials and are doped interstitially by extra oxygen in contrast to the

substitutional strontium doping in the case of La2−xSrxCuO4. See Figs. B.7, B.8 for a sketch of the
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structure of two representative compounds.

(i)

(ii)

(iii)

SDW-period 2a

CDW-period a

Fig. B.1: Sketch of the charge and spin density wave in the CuO2-planes, sideview; circles stand for the

Cu-sites with thickness proportional to hole concentration. (i) represents the charge modulation, (ii) the

antiferromagnetic order with phase shifts at the charge stripes; (iii) illustrates the periodic modulation in the

staggered magnetic field (SDW) due to the phase shifts with period 2a.
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Fig. B.2: Appearance of keywords ’stripes’ and ’striped’ in title and abstract of publications in Physical

Review Letters and in preprints on cond-mat; data for 2003 are extrapolated from the first quarter of the

year. Note that the Phys. Rev. Lett.-data contain a background of about 3 publications per year from the

field of optics rather than highly correlated electronic systems.

Various phenomenological pictures have been developed for the theoretical description of stripes.

While charge and spin order are naturally described within a Landau theory [ZKE98], the as-

pect that stripes act as magnetic domain walls suggests to describe them as string-like objects

[ZHvS96, MDHC98]. In the ideally ordered case these strings form a periodic array. Dynamic fluctu-

ations are generated by thermal and quantum effects, whereas potentials tend to suppress dynamic

fluctuations while they may reduce or increase static conformations of the stripes.

In such phenomenological models, the crystalline structure of the underlying atomic lattice has to
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Fig. B.3: Temperature vs doping phase diagram

of the high-Tc compound La2−xSrxCuO4; from

[KBB+92].

Fig. B.4: Charge (ch) and spin (m) order in

the HTSC phase diagram; note the higher en-

ergy scale for charge order as compared to mag-

netic ordering; also note the simultaneous peak in

stripe order and dip of superconducting response;

from [IUT+00].

be taken into account by a periodic potential with period b in the direction perpendicular to the

stripes. Such a potential tends to increase the positional order of the stripe array since is can be

the source of lock-in effects [TSA+95, NW96, EKZ97], see Fig. B.9 where the structural transition

in Nd-La2−xSrxCO4 precedes the appearance of static stripe order. Depending on the crystalline

phase of the material [low-temperature orthorhombic (LTO) or low-temperature tetragonal (LTT)]

and on the direction of the stripes with respect to the crystal axes, the ratio between the period b

and the distance of nearest neighbours can vary.1 In the cuprates the orientation of the stripes can

change with doping: in La2−xSrxCuO4 the stripes were found to lie “diagonal” in the elementary

CuO plaquette for low doping, while they rotate by 45o into a “collinear” state for larger doping

when the material becomes superconducting [WSE+00, MFY+00], see Fig. B.10. In the nickelates,

the stripes appear to be diagonal in general.

In addition to such a periodic potential, the spatially inhomogeneous distribution of dopants provides

a disorder potential for the stripes because of the (screened) Coulomb interaction between dopants

1Denoting the distance between nearest metal neighbours with d and neglecting the tilt of the oxygen octahedra,

one has b/d = 1 for collinear stripes and b/d = 1/
√

2 for diagonal stripes. Although the octahedra tilt increases

the period of the atomic structure in the LTT and LTO phases to twice its value, the period of the stripe potential

remains the same for symmetry reasons: the atomic structure is modulated only by out-of-plane displacements

(alternating “up” and “down”) of the oxygen atoms. These displacements do not double the period of the potential

since the stripe energy is not sensitive to the direction of the out-of-plane displacement.
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Fig. B.5: Typical superstructure peak in neutron

scattering; from [TSA+95].
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Fig. B.6: Orthorhombic vs tetragonal unit cell of

the CuO2-planes.

method length scale time scale

neutron scattering couples to spin density

elastic
�

100Å 10−9–10−14s

inelastic ∆E ' meV ∼ 4 × 10−12s

resonance relaxation of excited internal or implanted states is observed

NMR local 10−3s nuclear magnetic resonance

µSR ” 10−4–10−6s muon spin resonance

ESR ” 10−6–10−10s electron spin resonance

NQR ” static quadrupole res. (→ electric field)

X-rays 0.1-10 µm 10−13–10−14s couples to charge density

ARPES photo emission; probes Fermi surface, quasiparticle spectrum

transport conductivity σ, Hall coefficient RH , thermoelectric effect

STM tunneling microscopy; controversial interpretation [HML+02, HEKK02]

Table B.1: Experimental techniques and their characteristics.

and holes. For low enough temperatures, these dopants can be considered as quenched. However,

not all dopants will contribute to the disorder potential. While substitutional dopants (such as Sr

in La2−xSrxCuO4) are essentially randomly distributed, interstitial dopants (such as oxygen) may

partially organise themselves in homogeneous layers parallel to the CuO2-planes (this behaviour is

called “staging”, see [WLK+97]). At higher temperatures (≈ 102K), interstitial dopants may be-

come mobile and act as annealed disorder, while substitutional dopants are still quenched.
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Fig. B.7: Conventional unit cell of

La2CuO4, showing lanthanum ions and

CuO6 octahedra. Oxygen atoms at the ver-

tices of the octahedra are not shown. The

unit cell contains two formula units.

Fig. B.8: Conventional unit cell of

YBa2Cu3O7, again oxygen atoms are not

shown; one formula unit per cell.

Fig. B.9: Structural phase transition in Nd-

La2−xSrxCuO4 and evolution of superstructure

signals; from [TSA+95]. Fig. B.10: Sublattice resonance as a function of

doping; the stripe pattern rotates by 45o at the

critical doping x ' 0.05. From [MFY+00].

Pinning by the periodic potential is of particular interest since lock-in effects might explain the special

role of certain values for the stripe spacing. In the cuprate system La2−xSrxCuO4 a linear relation

δ ≈ x between the mismatch δ of magnetic Bragg satellite peaks and the hole doping concentration

x is observed from zero doping up to a saturation at x ≈ 0.12 [YLK+98, MFY+00]. Since the

mismatch δ is related to the lattice and CDW periods via δ = b/2a, it allows for a natural explana-

tion [TSA+95] of the “x = 1
8 -problem”, which was originally observed in La2−xBaxCuO4 [MSFS88]:

Since at δ = 1
8 the periods of the CDW and the Cu spacings have an integer ratio p := a/b = 4
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this saturation could be a commensuration effect.2 Similarly, the nickelate system La2−xSrxNiO4+y

shows anomalous thermodynamic behaviour at the values p = 2, 3 [CHC+94, RGC+96] which seem

to be stable over certain respective ranges of the hole concentration x + 2y [CCC93]. Even more,

evidence was reported [TBSL94] for plateaus of the mismatch as a function of temperature at rational

values δ = 3
22 , 5

36 in La2NiO4.125.

On the other hand, the stripe array can also be pinned by disorder [TIU99, DGS+00]. Therefore it

is important to take a closer look at the competitive pinning by the periodic atomic lattice and by

disorder in order to understand to what extent lock-in effects can persist. A first step in this direction

was made by Hasselmann et al. [HNMD99] who focus on a single stripe. However, since a single

stripe and a stripe array differ in dimensionality one expects qualitatively distinct behaviour of the

response of the system to disorder.

The purpose of the analysis in this chapter is to determine the effects of periodic and disorder poten-

tials on the structural order of the two-dimensional stripe array on large scales. The internal electronic

degrees of freedom are not probed in the present context. We assume them to be integrated out and

to determine only the large scale parameters of the stripe description as fluctuating objects. In the

next chapter, the point of view will be reversed and the internal degrees of freedom will be in the focus.

The outline of the chapter is as follows. In Section 2 we establish an elastic model for the quantum

stripe array with periodic and pinning potentials. The effects of these potentials are discussed in

Section 3 in the classical limit. In Section 4 we demonstrate the irrelevance of quantum fluctuations.

Our conclusions are drawn in Section 5 where we discuss the relation of our work to previous work,

the role of topological defects and implications for experiments.

2 Model, competing mechanisms

We describe the stripe system as an array of interacting quantum strings. The strings are assumed

to be aligned in y-direction and to have an average spacing a in x-direction. In the following we

ignore topological defects in the array, the role of which will be discussed in Section 5. Then the

stripe array can be considered as an elastic system. The displacement field u represents a bosonic

collective mode of the electron system. Its fluctuations are governed by a (“reduced”) dynamic action

[ZHvS96, MDHC98, HNMD99]

S =
1� ∫ � /T

0

dτ

{∫
d2r

µ

2
(∂τu)2 + H

}
. (2.1)

τ is the imaginary time and it is set kB = 1. We identify r = (x, y), µ is a mass density and the

Hamiltonian H has a contribution from the elastic energy

Hel =

∫
d2r

γ

2
(∇u)2

with a stiffness constant γ which includes the line tension of the strings as well as their interaction.

The main contribution to this interaction will stem from the Coulomb interaction between the stripes,

2Note that our usage of the notions commensurate and incommensurate follows the traditional usage in the context of

commensurate-incommensurate transitions [Bak82, LNP92]. We distinguish incommensurability from a mismatch

δ of Bragg peaks in the structure factor, whereas in the stripe literature incommensurability is used synonymously

to mismatch. Our notions allow to distinguish incommensurate and commensurate states with finite mismatch.
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but it will also have contributions of entropic nature. These will, however, differ substantially from the

1+1 dimensional case discussed in later chapters, see [Zaa00] and references therein. We therefore

will avoid in the following analysis arguments based on the numerical value of the stiffness constants,

even when the classical 1+1 dimensional limit of our 2+1 dimensional model is discussed. A further

contribution to the stiffness arises from a crystal field that aligns the stripes in y direction. A priori,

the stiffness can be anisotropic with an elastic energy density ∝ γx(∂xu)2 + γy(∂yu)2. To simplify

the analysis, such an anisotropy can be removed by rescaling the y coordinate. Then the effective

isotropic stiffness constant is related to the original anisotropic constants through γ =
√

γxγy. Note

that γx is dependent on the stripe spacing a, i.e., on doping. With increasing distance a between

the stripes γ will shrink.

We will examine the coupling of the stripe array to the periodic potential U(x) generated by the

atomic structure as well as to a random potential V (x, y) due to the interaction between the holes

and the dopants which may be considered quenched at low temperatures. The corresponding energy

contributions read

HU =

∫
d2r ρ(r)U(x), HV =

∫
d2r ρ(r)V (x, y) (2.2)

in terms of the stripe density

ρ(r, τ) ' 1

a

{∑

m

eiQm[x−u(r,τ)] − ∂xu(r, τ)
}

(2.3)

where Qm := 2πm/a are reciprocal lattice vectors of the stripe array. The elastic and disorder pinning

energies of the stripe array are similar to those of vortex lines in planar type-II superconductors. A

recent review of the latter system can be found in Ref. [NS00].

U is assumed to be periodic, U(x) = U(x+b), with a period b < a (the modulation along the stripes

is negligible for our purposes). For simplicity we take U(x) as an even function (this restriction is

for the simplicity of our analysis but not essential for the results)

U(x) = −
∑

n≥1

Un cos(pQnx)

with p > 1. We assume that the random potential V (x, y) is Gaussian distributed with zero average

and a variance

V (r)V (0) =
∆√
2π ξ

e−x2/2ξ2

δ(y)

with a correlation length ξ and a weight ∆.

Subsequently we will establish the global phase diagram for the total system with a partition sum

Z =

∫
D[u] e−S.

Since the system without pinning provides an important reference point we start with a brief discussion

of thermal and quantum fluctuations of the displacement. There is a characteristic length scale

`T :=
√ �

2γ/T 2µ beyond which thermal fluctuations dominate over quantum fluctuations. A related

temperature scale Ta :=
√ �

2γ/a2µ is defined by the coincidence `T = a. In terms of these scales,
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the displacement fluctuations in systems with a large size L � `T are obtained as

〈u2〉 '






T

2πγ
ln

L

a
for T � Ta,

T

2πγ
ln

L

`T
+

�
2a

√
πγµ

for T � Ta.
(2.4)

Thus, while the unpinned stripe array is flat (i.e., 〈u2〉 is finite for L → ∞) at T = 0, it is

logarithmically rough (i.e., 〈u2〉 ∝ ln L for L → ∞) at any finite temperature.

3 Classical limit

For the analysis of the effects of the potentials it is convenient to examine the various limiting cases

defined by the relative strength of thermal fluctuations, quantum fluctuations, periodic pinning and

disorder pinning. We start from the consideration of the classical limit

�
→ 0 acting on the

�
appearing explicitly in Eq. (2.1) but not on possible implicit dependences of other model parameters.

In this limit temporal fluctuations become negligible and one has to examine the system governed

by the Hamiltonian

H = Hel + HU + HV .

In the absence of the potentials U and V thermal fluctuations lead to an average displacement that

diverges logarithmically with the system size L [see Eq. (2.4) for Ta = 0] which means that the

stripe structure has only quasi-long-range order in the position of the stripes.

3.1 Periodic potential only

To analyse the relevance of a periodic pinning potential we focus on commensurabilities of low

order with integer p. In this case the stripe structure can lock into the periodic potential at low

temperatures while it unlocks at large temperatures. The transition between these two states is

analogous to the roughening transition of crystal surfaces. We follow the standard analysis of the

roughening transition (see Ref. [Noz92] and references therein) in order to obtain the transition

temperature TR. Combining Eqs. (2.2), (2.3) and (2.4) we find an average potential energy

〈HU 〉 ' −L2 1

a

∑

n≥1

Un exp
(
−p2Q2

n〈u2〉/2
)

(3.5a)

' −L2 1

a

∑

n≥1

Un

(
L

a

)−p2Q2
nT/4πγ

(3.5b)

for an infinitesimally weak periodic potential. The lowest harmonic n = 1 gives the most relevant

contribution to this energy. The stripes are locked when the average potential energy does not vanish

in the limit L → ∞, i.e., for temperatures below

TR =
2γa2

πp2
.



20 Striped phases, the geometrical degrees of freedom

The transition temperature increases with increasing strength of the potential since γ is renormalised

to larger values. The effective parameters on large length scales L = ael are described by renormal-

isation group (RG) flow equations [Noz92]

d

dl
U1 = (2 − πp2T

a2γ
)U1, (3.6a)

d

dl
γ = A

2π4p2

γa2
U2

1 , (3.6b)

with a temperature dependent coefficient A which is of order one near the roughening transition.

These equations lead to the phase diagram sketched in Fig. B.11. The case with non-integer p

xxx xxx

U
1

γa2

2

p2
πT
γa2

Fig. B.11: Schematic representation of the renormalisation-group flow near the roughening transition accord-

ing to Eqs. (3.6). The line of crosses represents fixed points where the periodic potential is irrelevant and

the stripes are not locked. The dashed line is the phase boundary between the locked and unlocked phase.

Arrows indicate the RG flow.

involves the analysis of higher order commensurable states or incommensurable states. In such cases

the periodic potential is less relevant than in the low order commensurate cases examined above.

Since we find later that the periodic potential is irrelevant in the presence of disorder, for integer

p ≥ 2 this will be true also for non-integer p. For more details on commensurate/incommensurate

systems the interested reader is referred to Refs. [Bak82, LNP92].

3.2 Pinning potential only

In order to discuss the relevance of disorder pinning, we start from the Hamiltonian HV as given in

Eq. (2.2), discard rapidly oscillating terms that are irrelevant on scales much larger than a and keep

only the most relevant term m = 1 in the sum over harmonics for the density (see Ref. [NS00] or

[BEN01] for intermediate steps). After averaging over disorder we find the effective replica pinning

Hamiltonian

Hrep
V '

∑

αβ

∫
d2r

{
−γ2σ

2T
∇uα

∇uβ

− ∆

a2T
cos

2π

a
[uα(r) − uβ(r)]

}
(3.7)
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Disorder couples to the ∂xu term in the density Eq. (2.3) as a random field and gives rise to the

first term in Eq. (3.7) with a value σ = π∆
a2γ2 . (Note that strictly speaking this term should contain

only ∂xuα∂xuβ in the unrenormalised Hamiltonian; the form written in Eq. (3.7) anticipates that

renormalisation generates a random field coupling to both components of the gradient.) Similar to

the estimate for the roughening temperature above, one can estimate the relevance of Hrep
V from its

average with respect to Hel,

〈Hrep
V 〉 ' −

N∑

α,β=1

L2 ∆

a2T
exp(−2π2〈[uα − uβ ]2〉/a2)

= −L2N(N − 1)
∆

a2T

(
L

a

)− 2π
a2

T
γ

,

where we used 〈uα(r)uβ(r)〉 = δαβ 1
2π

T
γ ln L

a . For temperatures above

TSR =
γa2

π

the average disorder energy vanishes on large scales. Below, disorder shows to be relevant and its

effects have to be calculated by renormalisation group techniques. Note that

TSR ' p2

2
TR.

This relation becomes an identity if the renormalisation of γ due to the presence of the potentials

can be neglected. Then TSR > TR for p >
√

2.

Cardy and Ostlund [CO82] were the first to derive RG equations near the transition and Villain and

Fernandez [VF84] studied the flow of parameters to their large-scale values at zero temperature. A

concise summary of these two approaches is given in Ref. [NS00]. We combine the flow equations

for these two temperature ranges by the interpolation

dσ

dl
= c1

a2∆2

T 2γ2a4 + ∆(γ2a4 + c2∆)
, (3.8a)

d∆

dl
=

(
2 − 2πT

γa2

)
∆ − 2

c2∆
2

γ2a4 + c2∆
. (3.8b)

The numbers c1 and c2 are of order unity and depend only weakly on temperature. γ is not renor-

malised due to a statistical symmetry [HF94], just like σ does not feed back to ∆. This holds for the

replica Hamiltonian (3.7) which is a good approximation on large length scales. Smaller scales will

weakly renormalise the stiffness γ to larger values and generate additional irrelevant terms. From

the flow equations, TSR = γa2/π is identified as the temperature above which ∆ is renormalised to

zero. Nevertheless, disorder is marginal for T > TSR since σ takes a finite fixed-point value. Thus,

here one has displacement fluctuations

〈u2〉 =
1

2π

(
T

γ
+ σ

)
ln

L

a
.

Below the transition temperature (T
�

TSR), ∆ flows to a finite fixed-point value and dσ/dl becomes

constant. σ thus asymptotically has a logarithmic dependence on the scale L and gives the dominant

contribution to the fluctuations

〈[u(r) − u(0)]2〉 ∼ a2χ ln2 r

a
. (3.9)
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Slightly below TSR, χ ∝ (1− T/TSR)2. This squared-logarithmic roughness (3.9) defines the super-

rough (SR) phase. In this phase thermal fluctuations can still give a logarithmic contribution to the

correlator (3.9) which, however, is subdominant.

x
x

x
x

x
x

x

x

x
x

x
x
x

x
x x xx x x

1

∆

γ2a4

πT
γa2

ln-roughln
2-rough

Fig. B.12: Schematic representation of the renormalisation group flow describing the superroughening tran-

sition according to Eqs. (3.8). Arrows indicate the RG flow. The dashed line is the phase boundary between

the superrough and rough phase. Crosses represent fixed points (note, however, that σ flows to infinity for

T < TSR = γa2/π).

3.3 Complete potential

In the presence of both a disorder potential and a periodic pinning potential it is not immediately

clear which one will prevail in what part of the phase diagram. At first sight it seems to be possible to

have a flat phase, a ln-rough phase, or a ln2-rough phase. We assume that U and V are weak such

that a renormalisation of the stiffness γ as well as of TR and TSR is negligible. Then one always has

TR < TSR for p >
√

2. Thus, at high temperatures T > TSR the system will be logarithmically rough

since both U and V are irrelevant. At intermediate temperatures in the interval TR < T < TSR, V is

relevant while U is irrelevant with respect to thermal fluctuations. This suggests that the system is

superrough. Although we ultimately find this to be true (see below), the argument needs to be refined

since it is no longer sufficient that U is irrelevant with respect to thermal fluctuations. Instead, we

one has to argue that U is irrelevant at the disorder-dominated, superrough fixed point. Eventually,

for T < TR one might expect to find a superrough phase if U is weak compared to V and a flat phase

if V is weak compared to U . However, the following arguments show that a flat phase is not stable

in the presence of disorder and that superroughness should persist for all T < TSR. For the case of

a interface in the presence of both a periodic potential and disorder, the equivalent conclusion had

already been reached [EN98]. Here, with a periodic medium, the situation is completely analogous

for the case p ≥ 2, still we go through the details for completeness.

In order to argue that a flat phase cannot exist for arbitrarily weak V and that the stripe array is

superrough for all T < TSR, we show (i) that weak periodic potentials (U � V ) are irrelevant at

the superrough fixed point and (ii) that arbitrarily weak disorder (V � U) will roughen the stripe

array even for T < TR, i.e. that disorder is relevant at the flat-phase fixed point, which implies that

U is renormalised to zero and the system is superrough on large scales.

Consideration (i). For U � V the irrelevance of a periodic potential follows from an analysis
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in analogy to the one in Section 3.1. We assume that the disorder-induced fluctuations of the

displacement field are Gaussian with a correlator 〈u2〉 ∼ 1
2a2χ ln2(L/a) [which is implied by Eq.

(3.9)]. This replaces the thermal correlator in Eq. (3.5a). This now leads to

〈HU 〉 ∼ −L2 1

a

∑

n≥1

Un

(
L

a

)−π2n2p2χ ln(L/a)

and the average periodic pinning energy vanishes for large system sizes.

Consideration (ii). The situation V � U is more subtle. We assume that the stripes are locked

into a flat state. We neglect thermal fluctuations which would renormalise U to smaller values. For

simplicity of our argument we assume that p = 2 although the argument can be generalised to any

p > 1. In addition, we retain only the most relevant, lowest harmonic of the periodic pinning energy,

HU ' −U1

a

∫
d2r cos

2πp

a
u(r).

In the absence of V all flat states u(r) = nb with some integer n would be equivalent. Disorder

certainly breaks this degeneracy and one might expect the stripe array to find a ground state where

u(r) fluctuates only weakly around na with some particular n, say n = 0. However, one can show

that the ground state is not given by small fluctuations within this particular “valley” n = 0 but

that solitons (i.e., local areas where u(r) ≈ δn b with a shift δn 6= 0, cf. Fig. B.13) are preferred

energetically. The proliferation of a large number of such solitons implies the irrelevance of U and

hence the superroughness of the stripe array on large scales.

We now examine a disk-like soliton of Radius R and estimate its elastic energy cost and typical

gain of pinning energy in order to decide whether such solitons are favourable. From an energetical

point of view the creation of δn = 1 solitons is equivalent to the creation of a magnetic domain

in a random-field Ising model. For a strong periodic pinning potential, U1 � γa, the soliton has a

narrow border of width `U ≈
√

aγ/U1b and of an energy per unit length ε ≈ √
U1aγ/p. Thus the

elastic energy cost is proportional to the border length, Eel ∝ εR. In the area of the soliton the

strings are exposed to a different disorder potential V (we assume the disorder correlation length

to be small, ξ
�

a). Then the typical energy gain is proportional to the square root of the area

EV ∝ −
√

∆R2/aξ. This gain is larger than the elastic energy cost for solitons of all sizes for a

disorder strength beyond a threshold value

∆c ∝ aξε2.

However, for large solitons one has to take into account that the soliton border will be roughened

by disorder. The equivalent roughening of domain walls in the random field Ising model was studied

in Refs. [Bin83, Nat85]. As a consequence, EV for the soliton gains a logarithmic correction and

wins over the cost in elastic boundary energy for any strength, given a large enough soliton. In other

words, the border line tension ε is renormalised to zero on a finite length scale

`ε ∼ a exp

(
c
aξε2

∆

)
, (3.10)

where c is a constant of order unity. The creation of solitons of a size R larger than `ε is thus

energetically favourable. Overlapping solitons of unbounded size imply a roughness of the stripe
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array, provided the sum of the shifts
∑

i δni at a given position increases with the number of solitons

(enumerated by the index i) that include this site. In principle, the interaction between solitons could

lead to a compensation of the shifts between pairs of solitons. However, the interaction between

the solitons is short-ranged on the scale `U and it cannot compete with a disorder energy that

discriminates between a shift δni = 1 and a δni = −1 for each soliton. Although the pinning

energy of these two states is identical in the bulk area, the disorder energy of these two solitons is

different in the border region and leads to an energy contribution proportional to
√

R. Therefore

the multiple creation of large and overlapping solitons leads to uncorrelated contributions to shifts

δn and therefore implies the roughness of the stripe array on scales beyond `ε. In this sense U is

irrelevant on large scales in the presence of arbitrarily weak V , although on small scales the stripes

will be confined to valleys of U . Since U is irrelevant, the stripe array will be superrough as in the

absence of U .

Although the case p = 1 appears not to be of physical relevance for striped systems, we add as a

side remark that for p = 1 a flat phase can exist. In this case the elastic energy cost ∝ R of a soliton

cannot be compensated by a disorder energy which no longer has a bulk contribution ∝ R but only

a border contribution ∝
√

R.

Strictly speaking, we have shown the irrelevance of U only for integer values of p. Since non-integer

rational values of p would correspond to commensurabilities of higher order, they are even more

susceptible to the destruction of long-range order by V .

It is interesting to note that the absence of a flat phase for p > 1 is peculiar to two dimensions. In

dimensions 2 < d < 4 a flat phase is stable for disorder weaker than a threshold value [EN98, EN99].

Therefore, a stack of planar stripe arrays with a finite coupling between the planes will exhibit also

a flat phase for a disorder strength below a certain threshold value.

a

2R

`U

b

Fig. B.13: Illustration of a soliton of radius R for p = 2. Full lines represent the strings of holes of average

spacing a, dashed lines are minima of U with spacing b = a/p. The soliton width is `U .

4 Adding quantum fluctuations

Now we finally study how the potentials U and V affect the elastic string model taking into account

its quantum mechanical nature. In order to analyse whether these potentials are relevant at all, the

scaling arguments used in Section 3 can be applied analogously to the dynamic action. Since the
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displacement correlations of the unpinned array are qualitatively different for T = 0 (where the array

is flat) and T > 0 (where the array is rough) these cases will be discussed separately.

4.1 At zero temperature

In this section we focus on the case with disorder but without a periodic potential. Before we turn to

the analysis of this case, it is worthwhile to point out that this system is essentially a two-dimensional

“Bose glass.” Because of an analogy between a d-dimensional bosonic problem at zero temperature

and a classical (d + 1)-dimensional problem a finite temperature [FL89], superconducting vortices in

the presence of columnar pinning centers provide another equivalent system that has received a lot of

recent attention [NV92, NV93]. The problem at hand, a bosonic one-component displacement field

at T = 0, is equivalent to a stack of classical elastic layers which was studied by Balents [Bal93].

According to his analysis – which is restricted to dimensions close to d = 4 – the displacement field is

logarithmically rough. We now focus on two dimensions because characteristic modifications leading

to superroughness are to be expected.

The analysis of the disorder pinning is most convenient using the replicated action

Srep
V '

∑

αβ

∫
dτdτ ′d2r

{
−γ2σ

2

�
2
∇uα(r, τ)∇uβ(r, τ ′)

− ∆

a2

�
2
∆̃[uα(r, τ) − uβ(r, τ ′)]

}
(4.11)

where

∆̃(u) = cos
2π

a
u

if we retain only the lowest harmonic of the stripe density as most relevant term as in Eq. (3.7).

For a scaling analysis of this action contribution, we consider a rescaling of space, time, displacement

and action quantum according to

r = elrl, τ = ezlτl, u = eζlul,

�
= eηl

�
l

with a dynamical exponent z, roughness exponent ζ and action scaling exponent η. In order to

analyse the relevance of quantum fluctuation later on we allow for a rescaling of

�
. We note that

due to a statistical tilt symmetry the flow equation of γ consists only of the scaling part [HF94]

d

dl
γ = (z − η + 2ζ)γ

which implies

η = z + 2ζ (4.12)

at any possible fixed point. If η > 0 quantum fluctuations are irrelevant on large scales and the

fixed point can be called a “classical” (

�
∞ = 0) fixed point in analogy to the irrelevance of thermal

fluctuations for classical systems [Fis86].

To establish the relevance of pinning we note that the action of the unpinned system Sel is in-

variant under a rescaling with z = 1, η = 0 and ζ = − 1
2 . According to Eq. (2.4) the displace-

ment fluctuations are finite for T = 0 (this is reflected by the negative value of ζ) which implies
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that 〈cos 2π
a [uα(r, τ) − uβ(r, τ ′)]〉 is finite since in the unpinned system 〈[uα(r, τ) − uβ(r, τ ′)]2〉 '�

/(a
√

πγµ) for l → ∞ and thus disorder is strongly relevant, 〈S rep
V 〉 ∝ e4l.

Disorder can be taken into account on a crude level (the “random field” approximation) by retaining

in action (4.11) only the harmonic parts bilinear in u. Then this action part is found to be scale

invariant together with Sel for z = 1, ζ = 1, and η = 3. To gain qualitative insight into the spatio-

temporal correlations we calculate the displacement fluctuations in this random-field approximation.

We find

〈[uα(r, τ) − uβ(0, 0)]2〉 = Cαβ
1 (r, τ) + C2(r) (4.13a)

with a contribution C1 from quantum fluctuations and a disorder contribution C2. Cαβ
1 (r, τ) vanishes

for α = β and r = 0 and τ = 0 and takes a finite value

Cαβ
1 (r, τ) '

�
a
√

πγµ
(4.13b)

for α 6= β or r � a or τ �
√

µ/γa. C2(r) is rough; its roughness

C2(r) '
σ

π
ln

r

a
+

4π∆

γ2a4
r2 (4.13c)

is dramatically overestimated in this approximation. From this correlation function we recognise that

while disorder roughens the displacement in spatial directions (consider large r for τ = 0), it preserves

the flatness in temporal directions (consider large τ for r = 0). These qualitative properties should

hold even after renormalisation effects due to the anharmonic terms in action (4.11) are taken into

account.

Although a systematic renormalisation group analysis is very intricate and beyond the scope of this

article, we present arguments in favour of η > 0 at the true fixed point. First, we use the fact that

a fixed point with a periodic correlator ∆̃(u) can exist only for ζ = 0. Thus

η = z

from Eq. (4.12) and it is sufficient to show z > 0 for the irrelevance of quantum fluctuations. It is

natural to assume that the dynamic exponent is positive, if not diverging on large scales as is typical

of glassy systems where the dynamics is governed by tunneling through divergent barriers.

The difficulty [Bal93] to calculate z is related to the fact that ∆̃(u) may become nonanalytic near

u = 0. While such a nonanalyticity follows from a functional renormalisation group analysis near

d = 4 [Fis86], it is not clear whether such a nonanalyticity is present in d = 2. According to the

analysis summarised in Section 3.2, such a nonanalyticity is absent at finite temperature near TSR.

At zero temperature, the strong coupling analysis of Villain and Fernandez [VF84] misses such a

possible nonanalyticity. Therefore we consider both possibilities.

We first assume analyticity of the function ∆̃(u). In this case the “dynamic stiffness” will be

renormalised according to

d

dl
µ = (2 − z + 2ζ − η)µ + βµ[∆̃]. (4.14)

The functional βµ[∆̃] represents the vertex corrections arising from the S rep
V . These corrections are

expected to be positive since disorder pins the stripes at minima of V , thereby confining the temporal
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fluctuations which amounts to an increase of the renormalised µ. If βµ[∆̃] is finite at the fixed point,

then η = z = 1 + βµ[∆̃]/(2µ∗) (µ∗ denotes the fixed-point value of µ). Then η > 0 and the fixed

point will be classical.

In case the fixed-point correlator is nonanalytic, the functional βµ[∆̃] diverges [Bal93]. This signals

a qualitative increase of the dynamic stiffness, which should be described by a kinetic term of the

form [Bal93]

Skin =
1� ∫ � /T

0

dτ

∫
d2r ν|∂τu| (4.15)

which is more relevant than the original kinetic term in Eq. (2.1). The coefficient ν would flow

according to

d

dl
ν = (2 + ζ − η)ν + βν [∆̃] (4.16)

with another functional βν [∆̃] > 0. This would imply an even larger dynamical exponent z = η =

2 + βν [∆̃]/ν∗ and even stronger irrelevancy of quantum fluctuations.

Thus, in any case η > 0 and the system flows to the classical fixed point value for V 6= 0 = U .

Quantum effects will result only in a finite renormalisation of the parameters in the classical system.

The most important renormalisation effect concerns an increase of the dynamic stiffness with a

possible generation of ν. Although there is no way of handling a kinetic action of the form (4.15),

we expect quantum fluctuations on small scales to induce a flat but finite quantum contribution C1

to the displacement correlation. The classical contribution C2 will be renormalised as in the absence

of quantum fluctuations [the proper correlation can be obtained from equation (4.13c) by inserting

the scale-dependent values of ∆ and σ as obtained from the flow equations (3.8) without rescaling;

in the superrough phase σ ∝ ln r and ∆ ∝ (ln r)/r2].

Since the presence of the disorder potential implies the irrelevance of quantum fluctuations, they

cannot be expected to modify the competition between U and V as was analysed in Section 3.3.

Thus, the quantum array has superrough spatial correlations at T = 0.

4.2 At finite temperature

An inspection of the correlator (2.4) of the unpinned system suggests that thermal fluctuations

dominate over quantum fluctuations on large scales. In fact, quantum fluctuations are irrelevant at

the classical fixed point also for T > 0.

This can be seen from the action as follows. The classical fixed points (with both thermal roughness

or superroughness) are described by ζ = 0. The finiteness of the time integral implies z = 0 and

according to Eq. (4.12) also η = 0. Then the effective “dynamical stiffness” flows to infinity

according to Eq. (4.14) or Eq. (4.16). Thereby temporal fluctuations of the displacement are

suppressed on large scales, on which the system is described by the static limit

S → 1

T
H.

Hence quantum fluctuations will lead only to a renormalisation of the parameters in the classical

description. Therefore the scaling arguments that were applied in Section 3 to the Hamiltonian hold

also for the dynamic action. We conclude that the system in disorder will be superrough at low
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temperatures – without or with an additional periodic potential – while it will be thermally rough at

high temperatures.

5 Summary and discussion

So far, we have analysed the stripe array in the elastic approximation, i.e. neglecting dislocations.

Before we discuss the relevance of dislocations, we summarise our results. In general, we found quan-

tum fluctuations to be irrelevant in the presence of thermal and/or disorder-induced fluctuations, i.e.,

to renormalise the classical elastic model only weakly.

In the absence of disorder (∆ = 0), the stripe array locks into a commensurate periodic potential

below a roughening temperature TR = 2γb2/π = 2γa2/πp2. This transition temperature is pro-

portional to the stiffness γ which is implicitly temperature dependent due to entropic contributions

[PT79, Zaa00]. At the transition the translational order changes from long ranged to quasi-long

ranged (with logarithmic roughness).

The large-scale structure of the stripe array is dramatically influenced by the presence of disorder

(∆ > 0). If there were no periodic potential, the stripe array would undergo a superroughening

transition at TSR = γa2/π. For T > TSR the array would be unpinned with ln-roughness, while it

would be pinned and superrough for T < TSR. The same scenario holds also in the presence of the

periodic potential, from which the stripe array always unlocks (on sufficiently large scales even for

arbitrarily weak disorder). Therefore, the array is rough at all temperatures for ∆ > 0. However,

for weak disorder and strong periodic potential the crossover length scale from flat to superrough

correlations will be exponentially large, see Eq. (3.10).

Hasselmann et al. [HNMD99] previously proposed a phase diagram for a single stripe with flat and

disordered phases. To our understanding, the disorder was effectively assumed to have long-ranged

correlations, which allows for the existence of a flat phase even for a single stripe. In contrast to this

we consider disorder with short-ranged correlations and find that it always roughens the stripe array.

Because a single stripe represents an elastic system of lower dimensionality than the stripe array, our

finding implies also the roughness of a single stripe in disorder with short-ranged correlations.

Now we come back to discuss the relevance of topological defects in the stripe array, starting with

the simplest situation for U = V = 0. At low temperatures the stripe array can be considered

as a “smectic” with quasi-long-range translational order and long-range orientational order. At a

temperature

Tm =
γa2

8π

it would melt [KT73] due to a proliferation of dislocations into a “nematic” liquid with short-range

translational order and quasi-long-range orientational order, before the proliferation of disclinations

drives a second transition into an isotropic liquid with short-ranged orientational order. While this

scenario is well known for classical systems (for a review see e.g. Ref. [Nel83]), its relevance to

doped Mott insulators was pointed out by Kivelson, Fradkin, and Emery [KFE98].

It is instructive to compare the melting temperature to the other characteristic temperatures related

to the potentials. As pointed out by José et al. [JKKN77], distinct melting and lock-in transitions

can exist only for p ≥ 4 since TR = (4/p)2Tm. For p < 4 they will merge to a single phase tran-

sition. The effect of disorder is quite virulent: In the elastic approximation, it makes the system
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superrough at temperatures below TSR = 8Tm. However, superroughness implies that dislocations

become energetically favourable [this follows from the flow equations (3.8), see. e.g. Ref. [LG00]].

Therefore, their density will be finite even at zero temperature. Nevertheless, for weak disorder and

at low temperatures the length scale where free dislocation appear can be extremely large because

of a U that tends to lock the stripes up to exponentially large scales. Since melting in the absence

of disorder occurs at a temperature, Tm < TSR, free dislocations will be present at all temperatures.

The presence of dislocations reduces the quasi-long-range order (where the satellite peaks have an

algebraic singularity due to the ln-roughness; ln2-roughness corresponds to an algebraic singularity

with an exponent that depends weakly on the wave vector) to short-range order with a correlation

length of the order of the distance between (free) dislocations. Thus, the saturation of the disloca-

tion density at low temperatures implies also the saturation of the correlation length at a maximum

value. This conclusion is consistent with experimental observations in the cuprates [TIU99] (here it

was observed in magnetic ordering, which can be destroyed due to a coupling to disorder even without

a distortion of the stripe array) as well as in the nickelates [LC97, DGS+00] (here the correlation

length is explicitly that of charge order).

Note that the true correlation length of charge order ξC (which we identify with the distance between

free dislocations) can be related to the measured width of peaks in the structure function only if the

wave-vector resolution is much smaller than 1/ξC. Thus, a system without dislocations (with ln- or

ln2-roughness) has an infinite correlation length and the apparent correlation length deduced from

experiments would be resolution limited. Zachar [Zac00] recently proposed an explanation of the

observed apparent correlation lengths in terms of chaotic fluctuations of the distance between neigh-

bouring stripes (see also Ref. [TIU99]), excluding explicitly a key role of dislocations. However, this

argument is based on the assumption of non-integer p and cannot account for the finite correlation

length observed for integer p in the nickelates [LC97, DGS+00]3 and the cuprates [YLK+98]. It is

interesting to note, that the systems, for which a finite correlation length is measured are indeed the

ones with quenched disorder deriving from substitutional Sr doping. The hypothesis of chaotic stripe

distance fluctuations also cannot explain why the transverse correlation length (along the stripes)

– which apparently is not resolution limited [NIF+99] – can be finite. Even more, the fact that

longitudinal and transverse correlation lengths are roughly of the same size [vVN+98, NIF+99] is

consistent with their relation to the dislocation density.

The relevance of disorder even in the presence of periodic pinning is consistent with the quenched na-

ture of the stripe structure observed in experiments [TIU99, DGS+00]. Concerning the spin dynamics

one has to keep in mind that the mere displacement of stripes (which act as phase boundaries for

magnetic domains) does not lead to a frustration and glassy behaviour of spins [ZOK+01]. However,

stripe dislocations do induce such a frustration. Thus, our conclusion about the presence of disloca-

tions is consistent with glassy spin dynamics as seen by local experimental techniques [YHC99, HSI99].

A detailed study of magnetic fluctuations is beyond the scope of the present approach which focuses

on order in the charge sector of the stripe array.

As both the roughening transition is washed out by disorder and the superroughening transition is

washed out by the presence of dislocations, no sharp transition will exist in the thermodynamic limit.

Nevertheless, crossover phenomena may be observable. For weak disorder and/or strong lattice po-

3Note also that in the nickelates the charge correlation length is larger than the spin correlation length by roughly a

factor 4 [LC97], while it should be smaller in the absence of topological defects according to Ref. [Zac00].



30 Striped phases, the geometrical degrees of freedom

tential the stripe array appears to be locked to the lattice potential up to very large length scales.

It “unlocks” also on finite scales with increasing temperature or decreasing lattice potential. An

apparent lock-in transition was observed [TSA+95] in La2−x−yNdySrxCuO4 where the strength of

the lattice potential corresponds to the Nd concentration. Since TSR � Tm the density of free dislo-

cations will be high near TSR so that reminiscences on finite scales of the superroughening transition

are unlikely to survive.

Since the array has short-range order at all temperatures for ∆ > 0 we expect the absence of com-

mensurate/incommensurate transitions (identified from fluctuations on asymptotically large length

scales). Nevertheless, the experimental observations of anomalies at particular values of p can be

related to the effects of U on finite length scales.

In view of our conclusion about the absence of commensuration effects we comment on the δ = 1
8

problem, i.e., the observation that δ = 1/2p apparently saturates at δ = 1
8 near a doping x = 0.125

of the cuprates. If this were a commensuration effect as suggested previously [TSA+95, NW96], one

would expect to observe the value δ = 1
8 around x = 1

8 , i.e. above (x > δ) and below (x < δ) the

matching x = δ. To the best of our knowledge (see the data collected in Fig. 7 of Ref. [YLK+98]),

there is no evidence for data with x < δ. As pointed out by Yamada et al. [YLK+98], the saturation

of δ coincides with a saturation of the effective hole concentration in the CuO2-planes beyond a

certain doping level x ≈ 0.12. Thus it is conceivable that other mechanisms limit the effective hole

concentration and lead to a plateau in δ.

Interestingly, evidence for a similar saturation effect has been reported for YBa2Cu3O6+y at δ = 1/10

corresponding to p = 5 [DMHD01]. While Dai et al. argue that the saturation of δ is not caused by

a saturation of y in this material, we are not aware of any significant data with y < δ which would

support a lock-in mechanism giving rise to this saturation.

At this point we want to address the question to what extend our analysis (so far restricted to two-

dimensional arrays) applies to materials consisting of coupled stacks of layers. Such a coupling is

expected [EK93] because of the Coulomb interaction. In principle, it may give rise to a crossover from

two-dimensional behaviour at small length scales to three-dimensional behaviour on large scales. As

a consequence, a true unlocking transition might exist [EN98, EN99]. Indeed, scattering experiments

[SBT+95, TAI+96, vVN+98] provide evidence for interlayer correlations. However, the correlations

extend only over a few layers which thus behave like one effective layer. We therefore expect our

two-dimensional analysis to apply also to these material classes.

In conclusion, we have pointed out the relevance of disorder for a stripe array even in states

where its period is commensurate with the atomic structure. We found that on large scales pinning

by disorder dominates over pinning by the atomic structure. This induces the superroughness of the

array and, on sufficiently large scales, the presence of free dislocations even at low temperatures,

which explains the saturation of the correlation length observed in experiments.

In the next chapter the focus is shifted from the large scale structure to the electronic degrees of

freedom in the stripes picture.
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C. Striped phases, the electronic degrees

of freedom

1 Introduction, possible 2D non-Fermi-liquid metal and the

role of disorder

Quasi-one-dimensional electron liquids play a paradigmatic role in describing the conductive properties

of a variety of physical systems such as organic conductors [Jer91], quantum-Hall systems [vHS00],

and striped phases in high-Tc compounds [ZG89, EKZ97]. Recent studies of weakly coupled Luttinger

liquids (LL) have provided evidence for the stability of non-Fermi-liquid metallic behaviour in more

than one dimension [EFKL00, VC01, MKL01] as opposed to results for an isotropic 2D Fermi gas

[ER90]. This remarkable result comes from inter-LL interactions that in a suitable combination

with the interactions within the LLs suppress single particle/Cooper pair tunneling and also the

instability towards charge-density wave formation. Earlier studies either excluded hopping [LRK77],

treated all inter-LL interactions separately as weak perturbations [KG76] or focused on single particle

tunneling for strong repulsive intra-LL interactions only [Wen90]. In Refs. [EFKL00, VC01, MKL01]

it was shown that backscattering and particle hopping processes between the LLs can be irrelevant

for sufficiently strong inter-LL forward scattering. The resulting state was called “sliding Luttinger

liquid” (SLL). For a large range of interactions, these processes can be partially relevant and lead to

charge-density wave (CDW), transverse superconductor (SC) or Fermi Liquid (FL) phases [EFKL00,

VC01, MKL01]. Experiments have provided evidence for 1D transport in high-Tc compounds [NEU99,

ASKL99, ALS02]. Theoretically, novel and to date essentially unexplored behaviour can arise from

disorder, which is induced by doping in these materials.

Here, we examine the role of electron scattering by a random impurity potential. For a single

LL it was shown [Ape82, AR82, GS88] that a delocalisation transition can occur with increasing

electron attraction and that repulsive interactions always lead to localisation. On the other hand,

for coupled LLs, a simple scaling analysis suggests that disorder would be irrelevant at least in the

SLL phase [MKL01]. However, using a renormalisation-group (RG) analysis, we show that disorder

profoundly modifies the characteristic properties of these systems. It turns out that a delocalisation

transition persists in analogy to single LLs. Where Josephson inter-stripe couplings are irrelevant,

the delocalised phase can be identified with a new state of matter, which we call disordered stripe

metal (DSM). In contrast to the SLL state of the pure system, even in this delocalised phase, there

exists only short-ranged longitudinal CDW order due to impurity forward scattering. Because of this

scattering process, we also find a strong tendency towards the destruction of transverse CDW order.

Thus, the novel DSM state combines short-ranged CDW order and quasi long-ranged longitudinal
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superconducting order with LL-like transport properties. Interestingly, it has a much wider stability

region in comparison to the pure system’s SLL state.

2 The general model: coupled one-dimensional electron gases

We assume a spin gap in the LLs, as present in stripes in high-Tc compounds [EKZ97] and focus

hence on the low-energy charge excitations. For stripes (labelled by j) that do not couple to each

other these excitations can be described in the language of bosonisation by the bosonic phase fields

Φ̂j and their conjugate momenta πΠ̂j = ∂xΘ̂j . The phase field determines the modulation of the

charge density in the Luttinger liquid around the average value ρ0 and the dual field is consequently

related to the current,

ρ̂j(x) − ρ0 = − 1

π

∂Φ̂j

∂x
+

1√
2πα

cos[2kFx −
√

2Φ̂j ]. (2.1)

̂j(x) = vJ Π̂j .

Both the kinetic energy and Coulomb interaction of the orginal fermions on the stripes translate to

a harmonic path-integral action for the bosonic fields

S0 =
1

2π

∑

j

∫

xτ

[
vJ(∂xΘj)

2 + vN (∂xΦj)
2 − 2i∂τΦj∂xΘj

]

=
1

2π

∫

Q

[
vNq2

‖ |ΦQ|2 + vJq2
‖ |ΘQ|2 − 2iq‖ω ΦQΘ−Q

]
, (2.2)

S0
∣∣∣
Φ

=
1

2πK

∑

j

∫

xτ

[ 1

u
(∂τΦj)

2 + u(∂xΦj)
2
]

(2.3)

S0
∣∣∣
Θ

=
K

2π

∑

j

∫

xτ

[ 1

u
(∂τΘj)

2 + u(∂xΘj)
2
]
. (2.4)

The latter two version of the action result from the integration over the Θ- and the Φ-field, respec-

tively, and the characteristic velocities vN and vJ – which are renormalised by intra-stripe forward

scattering with respect to to the free-fermion value vN = vJ = vF – are expressed in terms of the

conventional Luttinger liquid interaction parameter K =
√

vJ/vN and the velocity u =
√

vJvN .

Backward scattering is irrelevant, like any quantity that is a function of the gapped spin fields only.

We have used as definition of the Fourier transformation

Φj(x, τ) =: a

∫ π/a

−π/a

dq⊥
2π

∫ Λ

−Λ

dq‖
2π

∫ ∞

−∞

dω

2π
eiωτ+iq⊥(aj)+iq‖xΦQ

=

∫

q⊥q‖ω

eiωτ+iq⊥(aj)+iq‖xΦQ

with Q := (ω, q‖, q⊥), a the stripe spacing and Λ the ultraviolet cutoff in the direction along

the stripes. Note that Fourier transformation in the transverse direction (⊥) does not change the

dimensionality.

For an introduction to the method of bosonisation and the details of the conventions used here, see

Appendix 1; our notation follows the review article Ref. [Voi95].
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Forward and backward scattering by weak impurities (denoted by IFS and IBS, respectively) is

described in terms of the action [GS88]

SIFS = −
√

2

π

∑

j

∫

xτ

ηj(x)∂xΦj , (2.5a)

SIBS =
1

πα

∑

j

∫

xτ

{
ξj(x)ei(

√
2Φj−2kFx) + h.c.

}
. (2.5b)

ηj(x) and ξj(x) are Gaussian random variables with zero mean and correlations ηi(x)ηj(x′) =
1
2Dηδijδ(x − x′) and ξ∗i (x)ξj (x′) = Dξδijδ(x − x′) and α is the infinitesimal regularisation length

of bosonisation. Forward scattering can be identified as the coupling of the slowly varying first term

of the density, see Eq. (2.1), to a short-range correlated disorder potential, while the second term

in Eq. (2.1) accounts for impurity backward scattering. The disorder strength parameters Dη ,Dξ

are both determined by the original disorder potential. We write them independently, however, since

they will be separated by the RG flow below. On the replica level the corresponding disorder action

contributions read

SIFS
n =

Dη

2π2

∑

j;ab

∫

xττ ′

∂xΦa
j,x,τ∂xΦb

j,x,τ ′

SIBS
n =

Dξ

(2πα)2

∑

j;ab

∫

xττ ′

cos[
√

2(Φa
j,x,τ − Φb

j,x,τ ′)].

Coulomb repulsion couples the charge density on different stripes. We first include forward scattering

density-density interactions between the stripes, i.e., coupling of the slowly varying first terms of

Eq. (2.1). Indirect contributions from electron-phonon interactions may be included here and the

corresponding action reads

SV =
1

2π

∑

i6=j

∫

xτ

∂xΦiVi−j∂xΦj . (2.6)

In principle, analogous couplings between ∂xΘj can be added [EFKL00, VC01, MKL01], but are

dropped for simplicity. Their inclusion can be achieved by an obvious generalisation of our analysis,

and will not modify our main results. Since SV is bilinear in Φi, it can be included in the momentum-

space representation of the action S0 by replacing vN in Eq. (2.2) by the q⊥-dependent velocity

ṽN (q⊥) = vN + Vq⊥ with the Fourier transformed inter-stripe coupling Vq⊥ =
∑

j e−iq⊥(ja)Vj . The

Luttinger parameter is then generalised to

K̃(q⊥) =
√

vJ/ṽN (q⊥) = K/
√

1 + Vq⊥/vN (2.7)

and intra-stripe forward scattering is included in the harmonic action

S0 + SV
∣∣∣
Φ

=
1

2π

∫

Q

|ΦQ|2 1

K̃

[ 1

ũ
ω2 + ũq2

‖

]
, (2.8)

S0 + SV
∣∣∣
Θ

=
1

2π

∫

Q

|ΘQ|2K̃
[ 1

ũ
ω2 + ũq2

‖

]
. (2.9)

The restriction to low energy excitations underlying bosonisation obviously requires the stability

condition vN + Vq⊥ > 0.
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Besides these forward scattering processes, the Coulomb coupling of the oscillating terms in the

density Eq. (2.1) gives the transverse CDW coupling and pair-hopping reflects the SC Josephson

coupling between stripes

SCDW =
∑

i6=j

Ci−j

∫

xτ

cos
[√

2(Φi − Φj)
]
, (2.10a)

SSC =
∑

i6=j

Ji−j

∫

xτ

cos
[√

2(Θi − Θj)
]
. (2.10b)

Since we assume the presence of a spin gap, single electron hopping is irrelevant and can be ignored

[EKZ97, BC91].

It should be noted that by use of the bosonisation formula for the fermionic field operator, see

Appendix 1, the translation of any of the above couplings from fermionic to bosonised language can

be shown rigorously.

For the pure system without SIFS and SIBS, a specific interaction Vi in Eq. (2.6) can render the

CDW and SC couplings irrelevant in an intermediate region of K, leading to the SLL phase found

in Refs. [EFKL00, VC01]. The interaction must be sufficiently strong and has to include at least

nearest and next-nearest neighbours.

In the presence of disorder, the scattering off impurities has to be taken into account. Let us first

focus on the effect of impurity forward scattering (2.5a) in the absence of any inter-stripe couplings

of type (2.10). This process then changes the SLL phase as described by S0 +SV into the disordered

stripe metal (DSM). Introducing replicated fields and averaging over disorder still leads to a bilinear

action with correlations

〈Φa
QΦb

−Q〉 =
πδab

ω2/vJ + ṽN (q⊥)q2
‖

+
Dηδ(ω)

ṽ2
N (q⊥)q2

‖
, (2.11a)

〈Θa
QΘb

−Q〉 =
πδabṽN (q⊥)/vJ

ω2/vJ + ṽN (q⊥)q2
‖

(2.11b)

where upper indices a, b are replica labels and the definition of the delta function is
∫
dω δ(ω) = 2π.

Note that the impurity forward scattering amplitude Dη does not enter the 〈ΘΘ〉-correlations. Any

physical quantity that can be written in the Θ-field only will thus be untouched by forward scattering

of any strength.

3 Renormalisation

We now examine the relevance of CDW and SC couplings and of impurity backward scattering (IBS)

with respect to the DSM state in an RG analysis. To first order, we will find that the DSM parameters

K̃, ũ are renormalised only by impurity backward scattering and not by CDW and SC couplings. In

Refs. [GS88, GS89] this renormalisation is determined for a single Luttinger liquid in a real-space RG

scheme, whereas here we prefer the momentum-shell approach in which the inter-stripe couplings

can be treated very conveniently. The two approaches are compatible if in the momentum-shell RG

the Θ-field is integrated out before the feedback from disorder is determined. Not following this

prescription leads to dramatically unphysical consequences. It is, however, not easy to find a priori a

justification for this RG ’recipe’ other than by comparison with the trusted real-space approach. The
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problem is explored in detail in Appendix 2 where real- and momentum-space RG are contrasted.

The flow equations (3.19) at the end of the section are the main results of this chapter and will

be used to derive the phase diagrams below. In order to follow the general line of argument, the

following derivation of Eqs. (3.19) may be skipped.

In momentum-space RG, the fields are decomposed in a rapidly varying part (>) with modes from

a momentum shell of with Λdl sharply under the longitudinal cutoff Λ ∼ 1/α and a slowly varying

part (<)

Φj(x, τ) =
{∫

|q‖|<Λe−dl

dq‖
2π

eiq‖x +

∫

Λe−dl<|q‖|<Λ

dq‖
2π

eiq‖x
}∫

q⊥ω

eiωτ+iq⊥(ja)ΦQ =: Φ<
j + Φ>

j .

The latter are integrated out defining a renormalised action S ′
< that only depends on the slowly

varying fields

Z =

∫
D[Φ, Θ]e−S<,> =

∫
D[Φ<, Θ<]

∫
D[Φ>, Θ>]e−S<,> =:

∫
D[Φ<, Θ<]e−S′

< . (3.12)

Anharmonic (a.h.) contributions to the action feed back according to

∆S< := S′
< − S< = − ln〈e−(Sa.h.

<,>−Sa.h.
< )〉>,0

= 〈Sa.h.
<,> − Sa.h.

< 〉>,0 −
1

2
〈(Sa.h.

<,> − Sa.h.
< )2〉>,0 + O

(
(Sa.h.)3

)

Here, the integration of the rapid modes has been rewritten as an average with respect to the

harmonic part of the action.

We now analyse the feedback of each of the anharmonicities S IBS, SCDW, SSC separately, which

is consistent to first order. Averages are for the moment to be understood with respect to the

harmonic action of the modes in the shell. For the disorder feedback one has

∆SIBS
< = 〈SIBS

<,> − SIBS
< 〉

=
Dξ

(2πα)2

∑

j;ab

∫

xττ ′

cos[
√

2 ∆Φ<] 〈cos[
√

2 ∆Φ>] − 1〉 (3.13)

with ∆Φ> := Φa,>
j,x,τ − Φb,>

j,x,τ ′ and the analogue for ∆Φ<. We use

〈(∆Φ>)2〉 = 2

∫ >

Q

{
〈Φa

QΦa
−Q〉 − 〈Φa

QΦb
−Q〉eiω ∆τ

}

= 2dl Λ

∫

ωq⊥

K̃

ω2/ũ + Λ2ũ

(
1 − δabeiω ∆τ

)

= dl Λ

∫

q⊥

K̃(q⊥)
(
1 − δabe−ω ∆τ

)

with ∆τ := τ − τ ′ to get

〈cos[
√

2 ∆Φ>]〉 = e−〈(∆Φ>)2〉

= 1 − dl

∫

q⊥

K̃(q⊥) + δabdl

∫

q⊥

K̃(q⊥)e−∆τũΛ.

The second term of the last expression gives upon insertion into Eq. (3.13) the renormalisation of

impurity backward scattering

dDξ = −dl

∫

q⊥

K̃. (3.14)
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There is an additional feedback to the action from the third term

∆S = dl
Dξ

(2πα)2
( ∫

q⊥

K̃
) ∑

j;ab

δab

∫

xττ ′

e−∆τũΛ cos[
√

2 ∆Φ<] .

A gradient expansion cos[
√

2(Φa
τ −Φa

τ ′)] = 1− (∂τΦa)2
∣∣∣
τ
(∆τ)2 +O(∆τ3) brings the latter term to

a form that matches the harmonic action

∆S = dl
Dξ

π2α2Λ3

( ∫

q⊥

K̃/ũ3
) ∑

j:a

∫

xτ

(∂τΦa
j,τ )2.

We read off by comparison with Eq. (2.3) the parameter renormalisation

dvJ = −dl
2vJ

πα2Λ3
Dξ

∫

q⊥

ṽ−2
N (q⊥).

Since ṽN = nN + Vq⊥ is not renormalised to first order, the latter flow equation can be rewritten in

terms of K =
√

vJ/vN

dK = −dl
K

πα2Λ3
Dξ

∫

q⊥

ṽ−2
N (q⊥). (3.15)

Similarily, we integrate over modes in the momentum shell in the charge-density-wave and Josephson

couplings

∆SCDW,m
< = 〈SCDW,m

<,> − SCDW,m
< 〉

= Cm

∑

j;a

∫

xτ

cos[
√

2 ∆Φ<
m] 〈cos[

√
2 ∆Φ>

m] − 1〉

= dl

∫

q⊥

(1 − cos[maq⊥])
{

K̃(q⊥) +
2Dη

πΛṽ2
N (q⊥)

}

× Cm

∑

j;a

∫

xτ

cos[
√

2 ∆Φ<
m], (3.16)

∆SSC,m
< = dl

∫

q⊥

(1 − cos[maq⊥])K̃−1 Jm

∑

j;a

∫

xτ

cos[
√

2 ∆Θ<
m] (3.17)

with ∆Φ>
m = Φa,>

j+m − Φa,>
j . Here we have used

〈(∆Φ>
m)2〉 = dl

2Λ

π

∫

q⊥

(1 − cos[maq⊥])

∫

ω

{ πK̃

ω2/ũ + Λ2ũ
+

Dηδ(ω)

ṽ2
NΛ2

}

= dl

∫

q⊥

(1 − cos[maq⊥])
{

K̃ +
2Dη

Λπṽ2
N

}
,

〈(∆Θ>
m)2〉 = dl

∫

q⊥

(1 − cos[maq⊥])K̃−1

Note that different from the impurity backward scattering the forward scattering contribution to the

〈ΦΦ〉-correlations does not drop out in the calculation of the CDW feedback.

After each integration step, the cutoff in the stripe direction has to be readjusted to its original value

and also the time direction is rescaled as to keep the harmonic part of the action scale-invariant

q⊥ → q′⊥ = q⊥

q‖ → q′‖ = q‖e
dl

ω → ω′ = ωedl. (3.18)
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Renormalisation due to rescaling and the integration feedback Eqs. (3.14), (3.15), (3.16), (3.17)

combine to the RG equations of flow

dDξ

dl
= (3 − ∆IBS)Dξ, (3.19a)

dDη

dl
= Dη, (3.19b)

dK

dl
= − 1

πα2Λ3
KDξ

∫

q⊥

ṽ−2
N (q⊥), (3.19c)

dṽN

dl
= 0, (3.19d)

dCm

dl
= (2 − ∆CDW

m )Cm, (3.19e)

dJm

dl
= (2 − ∆SC

m )Jm, (3.19f)

with the scaling dimensions

∆IBS =

∫

q⊥

K̃(q⊥), (3.20a)

∆CDW
m =

∫

q⊥

(1 − cos[mq⊥])
{
K̃(q⊥) +

2Dη

πΛṽ2
N (q⊥)

}
, (3.20b)

∆SC
m =

∫

q⊥

(1 − cos[mq⊥])K̃−1(q⊥). (3.20c)

4 Phase diagrams, generic features

In the absence of disorder (Dξ = Dη = 0), K preserves its unrenormalised value
√

vJ/vN . Then the

scaling dimensions (3.20) reproduce the expressions given in Ref. [MKL01]. For weak inter-stripe

interactions Vq⊥ � vN the system is in the SC phase for K � 1, whereas it is in the CDW phase for

K
�

1. For a suitable choice of a strong interaction Vq⊥ , an intermediate range of K can exist where

all SC and CDW couplings are irrelevant and the system is in the SLL phase. The stability of the SLL

phase is determined by the conditions K > KCDW = 2/ minm{c+
m} and K < KSC = minm{c−m}/2.

Hereby we define

c±m ≡
∫

q⊥

[1 − cosmq⊥]

(
vN

ṽN

)±1/2

.

In the presence of disorder, the strength of impurity forward scattering Dη increases exponentially

under the RG flow. This has two important consequences. First, the CDW order along the stripes

becomes now short-ranged as can be easily seen from the second term in Eq. (2.11a). Second, it

implies an exponential increase of ∆CDW
m for all m, i.e., the irrelevance of weak CDW couplings.

Thus, impurity scattering transforms the SLL and CDW phases of the pure system into different

phases. If impurity backward scattering (IBS) is irrelevant – this is the case in the entire stability

region of the SLL [MKL01] – a novel phase is present which we call DSM phase. Unlike for the

SLL, the stability of the DSM for small K is no longer limited by the CDW couplings but by IBS.

Its phase boundary is determined by the relevance of SC couplings at large K and the relevance of

IBS at small K. IBS leads to localisation for a bare IBS strength Dξ larger than a critical value Dξ,c
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(that depends on intra- and inter-stripe interactions). In this case Dξ diverges and K goes to zero

under renormalisation. For Dξ < Dξ,c, the system is delocalised, Dξ → 0 and K saturates at a finite

value K∗ = K∗(Dξ). For K below the critical value Kc = 3/c+
∞, infinitesimal disorder produces

localisation (Dξ,c = 0). For K > Kc, the system remains delocalised at finite disorder strength,

0 < Dξ < Dξ,c.

To determine the phase boundary Dξ,c of the localisation transition for K > Kc, we integrate the

flow Eqs. (3.19a) and (3.19c). In terms of the dimensionless disorder strength D = Dξ/(π3Λv2
N )

we obtain

D(Kl) = D0 +
c+
∞
c

(Kl − K0) −
3

c
ln

Kl

K0
(4.21)

with

c ≡
∫

q⊥

(
vN

ṽN

)2

.

The critical disorder strength then follows from the condition that D(K) = 0 at its minimum at

K = 3/c+
∞ = Kc:

D0,c =
c+
∞
c

(K0 − Kc) +
3

c
ln

Kc

K0
. (4.22)

In the delocalised phase, the renormalised value K∗ of K can be obtained from Eq. (4.21) with

D(K∗) = 0. The phase boundary at large K between DSM and SC phase is given by the condition

K∗ < KSC = minm{c−m}/2, and the boundary at small K between the DSM and the localised phase

is described by Eq. (4.22).

The actual form of the phase diagram and, more importantly, the stability range of the SLL or DSM

phase depends on the interaction Vq⊥ under consideration. To be specific, we will consider in the

following two models for this interaction.

4.1 Model A: interaction yielding a rich phase diagram

A minimal model that renders simultaneously all SC- and CDW-couplings irrelevant for some pa-

rameter region was suggested by Vishwanath et al. [VC01]. It assumes an inter-stripe interaction

forward scattering leading to

K̃(q⊥) = κ/[1 + λ1 cos(q⊥) + λ2 cos(2q⊥)].

Within this model, the three parameters κ, λ1 and λ2 implicitly determine the intra- and inter-stripe

interaction. The corresponding Luttinger parameter is given by K2 = κ2/(1+ (λ2
1 +λ2

2)/2), and the

inter-stripe potential Vi has a range of four stripe spacings. In analogy to Ref. [MKL01], we rewrite

λ1 and λ2 as

λ1 = −4(1 − ∆) cos q0

1 + 2 cos2 q0
,

λ2 =
1 − ∆

1 + 2 cos2 q0
,

such that K̃(q⊥) takes its maximal value κ/∆ at q⊥ = q0. By adjusting ∆ to small values, CDW

couplings are suppressed, while small κ gives negative scaling dimensions for SC-couplings, as pointed

out by Mukhopadhyay et al. [MKL01]. One thus indeed finds regions in (q0, κ, ∆)-phase space, where
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the system is stable against all inter-stripe couplings of type (2.10) and is thus in the SLL phase.

This is demonstrated in Fig. C.1, which may be compared to similar plots in Refs. [VC01, MKL01].

For sufficiently small ∆, windows of q0 exist where the system evolves from a phase coherent SC
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Fig. C.1: Phase diagram of model A for ∆ = 10−3 in the absence of disorder. For large K, the system forms

a 2D superconductor while it is a 2D CDW for small κ. The intermediate SLL exists only for suitable values

of the parameter q0.

through the 2D metallic SLL to a charge ordered CDW state with decreasing parameter κ. Here

and in the following, when both SC and the CDW couplings compete, the one that is most strongly

relevant is assumed to determine the phase. The actual boundary between two such strong coupling

phases might differ within a narrow corridor. Note however, that boundaries to either the DSM or

SLL phase are obtained also quantitatively correctly.

Now disorder is added while all other parameters are unchanged. The CDW and the SLL phases

of the pure system become indistinguishable and merge to the metallic, short-range CDW-ordered

’disordered stripe metal’ (DSM). Backscattering off impurities leads to localisation in a large portion

of the former CDW phase. The SC phase shrinks through downward renormalisation of κ by disorder

(note that κ and K differ by a factor that is not renormalised). In Fig. C.2, the boundaries between

the three phases are given both for infinitesimal and for finite disorder. The latter shifts the boundaries

to larger κ.

A cut through Figs. C.1 and C.2 at fixed q0 but with varying disorder is shown in Fig. C.3. The

SLL and CDW phases exist only for D = 0. A delocalised phase can exist – due to inter-stripe

forward scattering – even for purely repulsive interactions (for example, q0 = 0.85π, ∆ = 10−3 and

κ
�

1.42 corresponds to repulsive on-stripe and repulsive inter-stripe interactions), as opposed to

the strictly one dimensional electron gas with delocalisation for K > 3 corresponding to strongly

attractive interactions. However, the inter-stripe interactions corresponding to the values of ∆, κ, q0

where the SLL or DSM exist may not be very realistic because of their strength.
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Fig. C.2: Phase diagram for model A with ∆ = 10−3 in the presence of disorder for two disorder values.

The comparison of the phase boundaries at infinitesimal disorder D = 0+ and finite disorder D = 5 · 10−11

reflects the disorder induced renormalisation of κ.

4.2 Model B: realistic interaction

Model A is constructed specifically in a way such that the inter-stripe forward scattering interactions

(2.6) give rise to a non-monotonous K̃(q⊥) which allows for the simultaneous irrelevance of CDW

and SC couplings in the absence of disorder. For a large range of parameters q0 and ∆, this potential

has oscillatory character in real space, which also may not be very realistic.

A physically motivated choice for a potential that is monotonous both in real and Fourier space may

be the screened Coulomb potential

V (r) =
A

r
e−µr

which we consider as model B. In Fourier space this model reads

Vq⊥ = −A ln
[
1 + e−2µ − 2e−µ cos q⊥

]
.

Due to the stability condition Vq⊥/vN > −1, see Eq. (2.7), there is a critical amplitude Ac(µ),

above which the model breaks down.

Fig. C.4 displays the stability of the model with respect to weak inter-stripe CDW and SC couplings

in the absence of disorder. No SLL is found, the system shows for all µ and A a direct transition

from the SC to the CDW phase for decreasing K. The addition of disorder leads to the phase

diagram in Fig. C.5. As opposed to model A, impurity backscattering completely covers the CDW

phase and thus leaves only two phases, the localised one and the SC phase. In contrast to the com-

petition between CDW and SC couplings, the localisation boundary is not given by the most relevant

bare coupling. Since even weakly relevant IBS renormalises K to small values, the disorder scaling

dimension decreases while the Josephson coupling, provided a small enough bare value, ultimately

becomes irrelevant, see Eqs. (3.19). Hence the boundary is given by the onset of relevance of IBS
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Fig. C.3: Phase diagram for model A in the plane spanned by disorder and interaction parameter κ for fixed

inter-stripe interactions with q0 = 0.85π and ∆ = 10−3. With increasing disorder strength D, the boundaries

of the DSM phase move to larger κ keeping a nearly constant distance.
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Fig. C.4: Phase diagram for model B for A = 0.78vN without disorder.

with respect to the pure system. It moves to larger K for increasing disorder. No DSM phase is

found now. Formally, the absence of a minimum of Vq⊥ inside the interval (0, π) makes up for this

latter qualitative difference in models A and B.
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Fig. C.5: Phase diagram for model B for two disorder values D = 0+ and finite disorder D = 10−3 and

infinitesimal Josephson coupling J = 0+; A = 0.78vN ;

5 Correlations

Having established the generic topology of phase diagrams, we now address the nature of the possible

phases. First we consider the delocalised DSM phase. It is described by the correlations (2.11)

with the bare IFS amplitude Dη and the renormalised effective K∗ (in general, one has to use

the renormalised but unrescaled quantities). We find a linear growth of the fluctuations of Φ with

longitudinal system size L, 〈Φ2
j (x, τ)〉

L
= (c/2π2)v−2

N DηL, which leads to short-ranged longitudinal

CDW correlations like for single LLs. On the other hand, IFS does not affect the quasi long-ranged

longitudinal superconducting order (fluctuations of Θ) of the pure system. Equally, the conductivity

along the stripes is not affected by IFS since ηj(x) is time independent [GS88]. From a linear-response

calculation we obtain the LL-like conductivity

σ(ω, q‖, q⊥) =
2e2

π

� iω

(ω + i0+)2/v∗J − ṽN (q⊥)q2
‖
,

representing a longitudinal metal. Here, ω represents a real frequency in contrast to Matsubara

frequencies in Eqs. (2.11). Notice that v∗
J = vNK∗2. To extract physical observables from this

expression, the order of limits is crucial. In a situation where a constant field is applied, one should

set q‖ = 0 before asking for the static ω → 0-limit, which exhibits the Drude peak of a pure, ideal

conductor. More realistic, however, is a measurement of the conductance in a finite geometry. To

this end, one integrates the current-current correlation function over the finite length of a given

conductor. The frequency may then be sent to zero to obtain the conductance as the conductivity

per unit length [FL81]. Since K∗ jumps from a finite value to zero at the localisation transition,

σ(q) behaves discontinuously there. In the transverse direction, CDW and SC correlations will be

short-ranged since the corresponding couplings are irrelevant. In the presence of a spin gap (which

suppresses single particle hopping) the irrelevance of the couplings also signals that the DSM is a

transverse insulator.
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The localised phase is less amenable to an analytic description since the divergence of IBS would

necessitate a strong-coupling analysis. However, if the SC coupling is irrelevant, the localisation

transition and the localised phase share the qualitative properties of their 1D counterparts. The

inter-stripe couplings will lead to merely quantitative renormalisation effects. Whether the localised

phase is a random antiferromagnet or a pinned CDW depends on the mechanism generating the spin

gap. The longitudinal localisation length Lloc can be estimated analytically when the transition line

is approached from the localised side. For K < Kc, Lloc ' Λ−1D−1/(3(1−K/Kc))
0 . For K > Kc,

Lloc ' Λ−1 exp(c̃/
√

c(D0 −D0,c) ) with c̃ a numerical factor of order unity. Thus, the inter-

stripe interactions influence the localisation length quantitatively, but the qualitative behaviour found

[GS88] for the localisation transition in a single LL persists.

6 Discussion and outlook

In summary, we have examined impurity effects in arrays of coupled LLs. The competition between

impurity backscattering, CDW and SC couplings allows for three different phases: a localised phase,

a superconducting phase, and the disordered stripe metal. The latter two phases are delocalised since

IBS scattering is irrelevant. While for a single stripe delocalisation occurs only for strongly attractive

on-stripe interactions (K � 3), for a coupled stripe array delocalisation is possible also for purely

repulsive on-stripe and inter-stripe interactions (forward scattering).

The delocalised DSM phase is metallic in longitudinal direction and insulating in transverse directions.

Its correlations for CDW order are short-ranged in all directions whereas superconducting correlations

are quasi long-ranged along the stripes and short-ranged in the transversal direction. These experi-

mentally accessible features should allow to identify the disordered stripe metal and to distinguish it

from the SLL phase.

In the above analysis we have determined the phase diagram from a stability analysis of a Gaussian

fixed point – representing the stripe array with forward scattering by interactions and impurities

– with respect to CDW and SC couplings as well as impurity backward scattering. This stability

analysis, reflected by the flow equations (3.19) which are linear in Dξ, Cm, and Jm, requires the

weakness of these couplings. In principle, this approach does not cover strong-coupling phenomena:

sufficiently strong couplings might drive transitions into SC or CDW phases which are less susceptible

to disorder than the SLL.

Although we cannot consistently access such strong coupling phenomena via our flow equations, they

nevertheless can be used to determine crossovers related to the relative strength of non-Gaussian

couplings. Since all CDW couplings are irrelevant at the DSM fixed point, we raise the question of

whether a CDW phase can be reestablished if CDW couplings are sufficiently strong in comparison

to disorder. We focus on the region where a CDW coupling Cm is relevant in the absence of disorder

and where IBS is irrelevant (i.e., δ ≡ 2 − ∆CDW
m > 0 and ∆IBS > 3 for the bare parameters).

Irrespectively of the relative strength of CDW couplings and IBS, the presence of disorder implies a

continuous growth of Dη and thus also of ∆CDW
m which implies the irrelevance of Cm only on suffi-

ciently large scales. Thus the question is, whether Dη increases fast enough to achieve ∆CDW
m > 2

before a strong-CDW coupling regime is entered. This regime is entered when the dimensionless cou-

pling Ĉm ≡ C1/(Λ2vN ) becomes of order unity under renormalisation before the disorder contribution
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to ∆CDW
m becomes of order δ. For weak Vq⊥ or m � 1, this is the case if

Ĉm �
(

2cDη

πΛv2
Nδ

)δ

.

For CDWs (quasi-)long-ranged charge correlations can exist in the presence of disorder only in D > 2

dimensions like for vortex lattices [NS00]. Then the fermions would form a pinned (localised) Wigner

crystal. However, in D = 2, the formation of CDW order is prohibited by the proliferation of

dislocations [VF84], which ultimately render the CDW coupling irrelevant on sufficiently large scales.

In the previous two chapters, the two sectors of geometrical and electronic on-stripe degrees of

freedom were discussed separately, one of them assumed to be integrated out at a time. One can

imagine, that the coupling does not only determine the effective parameters of the sector under

consideration, but may even generate qualitatively new terms. These important questions deserve

an independent thorough analysis. Steps into this direction have been taken in Refs. [KFE98, TP00]

but further efforts certainly are desirable.
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D. Planar vortex lattices

1 Introduction

The existence of a vortex glass (VG) in type-II superconductors is of crucial importance for their

performance. This disorder dominated phase has been the subject of intense research for decades

[NS00]. The vortex glass plays a paradigmatical role in the field of disordered systems. In face of

the challenges the VG poses, theoretical concepts of great generality and applicability have been

developed, of which the wide field of functional renormalisation may serve as an example. With its

famous relatives, the spin glass models [BY86], there has been a fruitful interplay. Some theories

have been designed in parallel, e.g., the droplet or scaling picture of ground-states and excitations

[FH88, NS00], some have been adapted from one field to the other and the VG may play the role

of a testing ground, e.g., for replica symmetry breaking schemes [LG95]. Other than for spin glass

models there is no lack of experimental realisations of the VG [CFY+93, ZMK+95, SMR+01].

In this context, the planar vortex glass plays an exceptional role. A thin layer of a superconductor

of the second type is placed in a magnetic field parallel to a long axis of the material. Above a lower

critical field Hc1 which diverges with vanishing layer thickness [Abr64], it becomes energetically

favourable for the magnetic field to enter the layer in the form of vortices carrying a flux quantum,

just like for a bulk superconductor. Field energy with respect to the situation where the magnetic

field is expelled from the material is gained, while a – lower – amount of superconductor condensation

energy at the flux line positions is lost. The restricted geometry reduces the immediate technological

relevance of the model to practically zero, however, on the other hand the model thus becomes basic

enough to be analytically tractable while still retaining the generic features of a vortex glass1. Both

in static and in dynamical properties, the glassy nature of the phase will be reflected, e.g. by the

decrease of translational order and by nonlinear response. Other unambiguous characteristics of the

glass phase are the anomalous nature and statistics of thermodynamic quantities [EK00]. Recently,

the glassy behaviour of the magnetic response of a planar vortex lattice has been demonstrated

experimentally for a mesoscopic film of the conventional superconductor 2H-NbSe2 [BAP+99]. Exact

numerical calculations of thermodynamic quantities for very large systems will be presented below,

highlighting the third approach to the system aside analytical calculations and experiments. Given

all this, ideally, an analogy to the field of exactly solvable 1D quantum systems which have advanced

the understanding of strongly correlated systems can here be seen for vortex glasses.

Moreover, the theory underlying the vortex system can be applied to a broad class of other systems

like steps on a vicinal surface [MS64], polymers [dG68], domain walls [PT79] and possibly the striped

phases of the previous sections.

1The planar vortex glass model for that reason has been called a ’baby spin glass’ (M. Mezard).
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Our analysis will have two main themes. In the following Chapter 2, the possible thermally driven

transition from the VG to a free, unpinned phase will be examined. This transition is present in

a model where the vortex interaction is described in elastic approximation (the random-field XY

model, short RFXY model), see Section 2.1. Since the exact disorder averaged free energy for the

vortex system with hard-core repulsion as only interaction is known and analytical [EK01], it would

be interesting to know about signatures of the transition in the RFXY free energy. We find, however,

in Section 2.2 that the transition is not signalled by any nonanalyticities. Our point, the absence of

the glass transition, thus does not come ’for free’ by the analytical nature of the exact free energy.

In the following Section 2.3 we argue how the strength of thermal fluctuations is overestimated by

the elastic approximation to the vortex interaction, which allows for line intersections. The exact

solution for the ’noncrossing only’ model is then combined with the renormalisation group argument

to show the relevance of disorder at all temperatures, Section 2.4. We generalise this result of a

stable VG phase to models of noncrossing lines with arbitrary repulsive interactions in Section 2.5.

The final Section 2.6 acts as a caveat. Due diligence in the treatment of the small-scale cutoff opens

a window for stronger thermal fluctuations. If this may suffice to depin the lattice is discussed for

realistic system parameters.

Chapter 3 explores the relation of the random-bond dimer model to the vortex lattice. The

dimer model is introduced (Section 3.1) and the mapping between the seemingly diverse systems is

explained in detail (Section 3.1.3). Large scale simulations of the dimer model have been performed

by the group of C. Zeng. A recently developed algorithm allows to compute thermodynamic quan-

tities in polynomial time and makes simulations possible even for size 512 × 512 at thousands of

disorder configurations. In Section 3.2 thermodynamic quantities measured in the simulations are

compared to predictions of the above mentioned exact solution by Emig and Kardar [EK01]. The

agreement of correlations, thermodynamic potentials, their momenta with respect to the random

disorder distribution and of response functions is striking. The two approaches thus benefit from

each other. On the one hand, the replica Bethe Ansatz approach by Emig and Kardar with no resort

to replica symmetry breaking is confirmed, the difficult analytical continuation in the replica index

included. Some new light is shed on the old problem of the free energy of a directed polymer in

a disordered environment. On the other hand, the dimer model is shown to simulate the physics

of line lattices down to the lattice cutoff whereas beforehand it had not been clear, if nonuniversal

quantities with contributions from all scales should not likely be dominated by very diverse physics

at small scales. The dimer model seems to allow for quantitative testing of droplet picture or scaling

theory predictions as several orders of magnitude of system size are within reach.

Throughout the following we use – as in the previous chapters – angular brackets 〈 . . . 〉 in order to

denote thermal averages and the overline . . . for disorder averages.
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2 Absence of a glass transition in the (1+1)-dimensional line

lattice

Thermal fluctuations compete against the VG. This raises the question of the existence of a glass

transition at a finite temperature Tg [Fis89]. However, the literature on this subject is rather con-

tradictory [NL91, HF94, ZLH99]. Major support, both analytical and numerical, for a finite Tg

comes from the phenomenologically related random field XY model which has a finite Tg transition

[CO82, GL94]. However, considering the entropic vortex interaction, the absence of a finite Tg tran-

sition has been predicted under certain assumptions as well [NL91]. In this chapter, we will review

the arguments given in the literature, try to clarify the problem and suggest a conclusive answer.

To become specific we introduce the model description. Consider a lattice of self-avoiding directed

elastic lines of density ρ = 1/a in (1+1) dimensions. Each line is characterised by its position xi(z)

and line tension g. The lines interact via a short-ranged repulsive pair potential U(x) that does not

allow them to cross. Quenched disorder couples locally to the lines via the random potential V (r),

r = (x, z), which is assumed to have short-ranged correlations V (r)V (r′) = ∆δξd
(r−r′). Whenever

the disorder correlation length ξd is the smallest length-scale in the problem, it can safely assumed

to be zero. The total energy then reads

H =

∫
dz
∑

i





g

2

(
dxi

dz

)2

+
∑

i,j 6=i

U(xi − xj) + V (xi, z)



 . (2.1)

This model can be considered the continuum version of lines placed on the bonds of a rectangular

lattice [KN85]. Below, we will also consider the effect of the small scale cutoff inherent to any

condensed matter system. The lines will then have a finite persistence length ξ (not to be confused

with ξd), corresponding to persistent random walks in the lattice model.

2.1 Mapping to the XY model and the non-crossing condition

The line lattice in the continuum limit is usually treated within a two-dimensional (2D) elastic theory

for the displacement field u(r) so that the line positions are xi(z) = ia + u(ia, z). The Hamiltonian

is

Hel =

∫
d2r
{c11

2
(∂xu)2 +

c44

2
(∂zu)2 + ρ(r)V (r)

}
(2.2)

with compression modulus c11 = aU ′′(a), tilt modulus c44 = g/a and line density ρ(r) =
∑

i δ[x −
xi(z)].

Upon rescaling

z → z′ =

(
c11

c44

)1/2

z (2.3a)

u → φ =
2π

a
u (2.3b)
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and retaining of only the most relevant term from ρ(r) written as a Fourier series in u(r), the model

becomes equivalent2 to the random-field XY model without vortices [Fis89]

H =

∫
d2r

{
J

2
(∇φ)2 + Ṽ (φ(r), r) − ~µ(r)∇φ(r)

}
(2.4a)

J =
( a

2π

)2 √
c11c44 (2.4b)

The random variables Ṽ and ~µ are Gaussian with zero mean and variance

µi(r)µj(r′) = σδξd
(r − r′) (2.5a)

Ṽ (φ, r)Ṽ (φ′, r′) = h2 cos(φ − φ′)δξd
(r − r′), (2.5b)

h2 = 2
∆

a2

(
c44

c11

)1/2

σ =
h2a2

8π
.

After replication – the version we will need in the next section on renormalisation – we get

Hn =
∑

ab

∫
d2r

{
1

2
J ∇φ2

aδab −
σ

2T
∂xφa∂xφb −

h2

2T
cos[φa − φb]

}
. (2.6)

Cardy and Ostlund [CO82] were the first to show in a renormalisation group (RG) scheme that

disorder is relevant for temperatures below Tg = 4πJ . The renormalised strength of disorder scales

with size L as ∆(L) ∼ Lλdis ,

λdis = 2

(
1 − T

4πJ

)
= 2

(
1 − πT

a2
√

c11c44

)
. (2.7)

Perturbatively in the distance from the transition temperature τ = 1 − T/Tg, a finite fixed point

for the disorder strength ∆ is found for τ > 0 at which σ of Eq. (2.5a) runs to infinity. Above the

transition (τ < 0) the lines are thermally free. In Fig. D.1 the flow of disorder ∆ is sketched. Since

the boundary of the VG phase is given by the condition λdis = 0, the existence of a glass transition

crucially depends on the large scale stiffness J . While in the XY model J stays the same on all

length scales due to a statistical symmetry [CO82, HF94], its asymptotic value for the vortex model

of Eq. (2.1) is a priori not known. Below, we will address this question and argue against a finite

temperature transition. The scaling dimension of disorder3 will remain to be the central criterion.

The RFXY renormalisation group will not be replaced but complemented by a renormalisation of

the stiffness. It will be checked that the small parameter τ of the RG remains small under the

modification.

What are the manifestations of the glass transition in the RFXY model? In equilibrium, the hallmark

of the VG are the displacement correlations [GH82]. For T < Tg, the RG predicts

C(r) = 〈(u(r) − u(0))2〉 ∼ ln2(|r|/a)

2We follow largely the notation of [NS00].
3The scaling dimension of disorder can be obtained equally by an average of the disorder term with the free Hamil-

tonian; thereby the scaling of disorder compared to the elastic energy is described.
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Fig. D.1: Schematic representation of the renormalisation group flow near the glass transition in the RFXY

model. Arrows indicate the RG flow. The dashed line is the phase boundary between the glassy and the

thermal phase. Crosses represent fixed points (note, however, that σ flows to infinity for T < Tg = 4πJ).

in contrast to the thermal correlations

C(r) =
a2T

4π3J
ln(|r|/a) (2.8)

for T > Tg. In the glassy phase, thermal fluctuations of δu(r) = u(r) − 〈u(r)〉 around the pinned

state 〈u(r)〉 are equally described by Eq. (2.8). A measurement of these latter correlations – if not

experimentally maybe in simulations, see below – would provide for the large scale stiffness. Although

thermal correlations do not indicate the transition directly they thus carry information on the phase

in their amplitude. Recently, simulations both at T = 0 [ZMS96] and close to Tg [ZLH99] confirmed

the anomalous displacements and thus provided strong support of the RG theory. The limitations

of earlier Monte Carlo simulations [BH94, MMRL95, CS95] could hereby be overcome. Dynamical

properties as, e.g., the local autocorrelation function, have also been used to identify the transition,

leading at weak disorder to the same result for Tg as given by the static RG condition λdis = 0

[CS96]. However, direct signatures of the transition in the free energy have not been studied so far.

Using the known mapping of the XY model onto a vector Coulomb gas [CO82] one can derive the

RG flow of the free energy as shown in [Kos74] for the pure XY model. This is done in the next

section in a variation of the original derivation of the flow equations.

2.2 The free energy of the XY model at the glass transition

In this section, we want to consider the glass transition in the RFXY model, Eq. (2.2), (2.6), in

more detail. We are especially interested in the behaviour of the free energy at the transition, i.e.,

whether any signature of the transition in form of a nonanalyticity can be found. To this end we will

briefly go through the steps of the real space RG of [CO82] and identify the contribution to the free

energy of an infinitesimal RG step. In the spirit of Kosterlitz’ calculation of the free energy of the

pure XY model [Kos74], these contributions will be integrated over all length scales and give us the

free energy closely above and below the transition point. In order to follow the line of argument of

the chapter, the technicalities in this section may be skipped. Eq. (2.19) at the end of the section

contains the main result.

Below, the original value of renormalised parameters will be denoted by the subscript ’0’, the length
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scale dependent value by ’l’.

At the heart of the RG procedure is the famous identification of spin wave and topological charge

degrees of freedom [Kos74].4 The topological excitations would be missed by a naive gradient

expansion of the cos-term in Eq. (2.6). One way to do better and retain the periodicity is to use the

Villain approximation

eK cos(φa(r)−φb(r))−K ' 1√
2πKV

∑

m

e
i(φa(r)−φb(r))m− m2

2KV ,

that introduces one discrete degree of freedom m ∈ ZZ for each tuple (a, b; r). In the limit of small

K, which we will need around the transition, KV is related to the original K by KV = 1
2 ln(2/K) . For

the moment, positions are discretised with a spacing corresponding to the small length-scale cutoff

of the theory. The replica partition function may thus be written as

Zn = const ×
(
Πa;r

∫
dφa;r

)
e−H0[{φ}]/T Πa,b;r

( ∑

ma,b;r

zm2
a,b;reima,b;r(φa−φb)

)

H0 is the harmonic part of the Hamiltonian Eq. (2.6) and the fugacity z = eβµ = e
− 1

2KV in original

parameters is

z =
a2
0h

2
0

4T 2
.

In the next step we integrate out the ’spin wave’ degrees of freedoms and retain a theory for the

charges,

Zn = const × det(M)−1/2 ×
(
Πa,b;r

∑

ma,b;r

zm2
a,b;r
)
e � r,r′ � ab,cd T J̃−1

bd ma,b;rmc,d;r′G(r−r′). (2.9)

The charges interact logarithmically via the two dimensional Green’s function

G(r) =
1

2π
ln[|r|/a] (2.10)

with coupling parameter J̃−1
ab = −σ + δabJ . Mq,q′;a,b = q2δq,q′(Jδa,b − σ cos2 θ) is the harmonic

coupling matrix, θ the angle between the z- and x-axis, and the contribution of these harmonic

modes to the disorder part of the free energy density is analytic, see Appendix 3,

lim
n→0

1

nÃ
ln detM−1/2 = c(J, T ) +

1

ξxξz

σ

4J
. (2.11)

Remember σ
J = π∆0

c11Ta2
0

and note that the size of the original line system A had been rescaled to

obtain the size of the RFXY model Ã = A×(c11/c44)
1/2. ξx, ξz denote the small scale cutoff lengths

in the respective directions in the isotropised model.

On each lattice site r, due to the symmetry ma,b = −mb,a there are only n(n−1)/2 (n is the replica

index) independent scalar charges. These may be combined to a vector charge ~mr =
∑

a<b ma,b;rêab

in the vector space spanned by the set {êa<b}. If the sum in the exponent of Eq. (2.9) is considered

a quadratic form, the scalar product êab.êcd = 1
2 (δac + δbd − δad − δbc) is implied. It follows

êab + êac = êbc for a < b, i.e., the set of basis vectors {êa<b} is overcomplete and only n−1 of them

4Although rather the mathematical structure of our replica Hamiltonian than the physics is similar, we will use the

terms ’spin wave’ and ’topological charge’ in order to signify the terms concisely.
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are independent. The above symmetry also requires
∑

a,b ma,b = 0, which allows to keep in J̃−1
ab

only the term J−1δab. The charge part of the partition function becomes thus the vector Coulomb

gas

Zn =
∑

M

zM

M !
ΠM

i=1

∫

Da0

d2ri

a2
0

e−H̃c

−H̃c = TJ−1
∑

i6=j

~mri ~mrj G(ri − rj).

Here the vector charges have already been restricted to the smallest possible values ~m2
i = 0,±1, since

higher charges will be irrelevant at the transition.
∑

M sums over configurations with M =
∑

i ~m2
i

unit vector charges labelled by the index i. A finite interaction energy in the thermodynamic limit

further requires overall charge neutrality. It has thus been reparametrised the sum over vector charges

of size 0,±1 on each site to a sum over all values M/2 of unit vector charge pairs, which are then

arranged in the plane. Of course, the lattice constant a0 sets a limit to how close they may come

to each other, symbolised by the restriction on the position integrals.
∫

Da0
d2ri integrates over the

plane apart from spheres of radius a0 around positions rk, k < i.

Now we take terms with M + 2 charges containing a pair of opposite charges at a distance just

above the cutoff, |δr| ∈ (a0, a0 + da0), and integrate over the position of such a pair by use of

Kosterlitz’ decomposition

Πi

∫

Da0

d2ri = Πi

∫

Da′
0

d2ri +
1

2

∑

k 6=l

(
Πi6=k,l

∫

Da0

d2ri

)∫

D̄kl

d2rk

∫

δk(l)

d2rl.

where a′
0 = a0 +da0, D̄kl is the plane bar spheres around points k, l and δk(l) is the halo |rk −rl| <

da0. We again get a term with M charges

Zn =
∑

M

zM

M !

(
Πi

∫

Da′
0

d2ri

a2
0

){
1 +

z2

a4
0

2πa0da0n

(
Ã − a2

0T
2

4πJ2

∑

kl

~mk ~mlG(rk − rl)

)}

× exp[TJ−1
∑

ij

~mi ~mjG(ri − rj)].

Upon reexponentiation we have

Zn = exp[
z2

a4
0

2πa0da0nÃ]
∑

M

zM

M !

(
Πi

∫

Da′
0

d2ri

a2
0

)

× exp [(TJ−1 − nT 2

4πJ2

z2

a4
0

2πa3
0da0)

∑

ij

~mi ~mjGa0(ri − rj)]. (2.12)

At this point, the standard RG ’philosophy’ requires to adjust the length scale in order to keep the

cutoff a0 fixed and the theory form invariant. Our goal, however, is to simply perform the partition

sum step by step, we therefore only do the integration step of the RG and do not rescale. We have

though, in order to be able to do the above integration step iteratively, to adjust the cutoff in the

free Green’s function Eq. (2.10) to a′
0 = a0 + da0 so that it complies with the cutoff in the integrals

Ga0(r) =
1

2π
ln[|r|/a0] =

1

2π
ln[|r|/a0] +

1

2π
ln

a′
0

a0
= Ga′

0
(r) +

1

2π
ln

a′
0

a0
.
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With overall charge neutrality in mind, the last term gives a contribution exp[TJ−1dl
∑

i6=j ] =

exp[−TJ−1Mdl] to the partition function. This term renormalises z. Note that no length is rescaled

at any point. After many integration steps the cutoff will have grown to say al with the flow parameter

l = ln
al

a0
, al = a0e

l.

It measures the progress of the integration of the partition function. A subtlety arises in this scheme.

The factor 1/a4
0 in the feedback of the integration has its origin in the integral measure d2r/a2

0 of the

pair of charges that we integrated out. Upon interation of the integration, this is the only appearance

of the original a0, any other cutoff will have grown to al.

The equations of flow can now be read off. The exponential in front of the integral is independent

of the charges and contributes to the average free energy density f

d

dl
fn(l) = −T

2π

a2
0

nz2e2l,

fn(l = 0) = 0,

f = Ã−1 lim
n→0

1

n
ln Zn = lim

n→0

1

n
fn(∞).

The fugacity z and hence the disorder strength flows according to

d

dl
z = −2

T

4πJ
z + 2(n − 2)e2lz2.

Here, the adjustment of the cutoff in the Green’s function provides for the linear term stems, as

mentioned above, while for the quadratic term the perturbation expansion has to be performed to

second order, the fusion of two charges giving a new unit charge (note the non-Cartesian metric in

the space of vector charges) [CO82]. The length rescaling in the standard RG would give an extra

linear term 2z, indicating the transition at T = Tg = 4πJ . Note that the solutions to the equations

without, z(l). and with rescaling, z̃(l), are related by z(l) = z̃(l)e−2l.

We can read the flow equation for J from the prefactor of the Green’s function in Eq. (2.12). In the

limit n → 0,
d

dl
J = lim

n→0
n

Tz2

2
= 0,

which is valid to all orders as the statistical ’tilt’ symmetry [HF94, SVBO88] of the replicated

Hamiltonian shows [HF94, SVBO88] . The flow of σ in this scheme is tied to the flow of J by the

invariance of λ0 = J − nσ and it is finite and positive. λ0 is the eigenvalue of the coupling matrix

J̃ab corresponding to the constant eigenvector, which does obviously not couple to disorder. This

mode is thus Gaussian and cannot be renormalised.

The flow equation for the fugacity closes on itself and has the solution

z(l) = e−2l 2τ/[2τ/z0 + 2(n − 2)]

e−2τl − 2(n − 2)/[2τ/z0 + 2(n − 2)]

with τ = 1 − T/Tg and the initial value

z0 =
∆0

2T 2

√
c44

c11
. (2.13)
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In the limit of interest n → 0 the solution simplifies to

lim
n→0

z(l) =
e−2l 2τ

2τ/z0−4

e−2τl + 1
τ/(2z0)−1

.

We use this latter form in the integration for the free energy

fn(l = ∞) = −T
2πn

a2
0

∫ ∞

0

dl z2(l)e2l (2.14)

= −Tg
2πn

a2
0

∫ ∞

0

dl (1 − τ)z2(l)e2l.

Two cases need to be considered separately.

(i) Below the glass transition, τ > 0: Upon the reparametrisation x := exp[−2l], the integral over

the flow parameter can be performed and we have

a2
0

2πTg
f(τ > 0) = lim

n→0
f>

n (l = ∞)
a2
0

2πnT

= −τ2

8
2F1(2, 1/τ ; 1 + 1/τ ; 1 − τ/(2z0)) (2.15)

with the hypergeometric function 2F1(a, b; c; z), see e.g. Ref. [AS74].

(ii) Above the glass transition, τ < 0: Upon reparametrisation x := exp[2l] we get

a2
0

2πTg
f(τ < 0) = lim

n→0
f<

n (l = ∞)
a2
0

2πnT

= − 2τ2

(4 − 2τ/z0)2(1 − 2τ)
2F1(2, 2 − 1/τ ; 3− 1/τ ;

1

1 − τ/(2z0)
) (2.16)

It is difficult to find a combined closed expression for all temperatures and equally difficult to expand

either of the expressions Eqs. (2.15), (2.16) in τ . Moreover, an expansion of the above result for

the trusted region of small disorder is not easy since disorder comes in the combination z0/τ which

is not small near the transition at τ = 0. One can thus not immediately make a statement about

the analytical behaviour of f at the transition. However, we can give a power series that proves

to be the Taylor series of f at the transition τ = 0. To this end, we expand the integrand of Eq.

(2.14) around τ = 0 and integrate after the expansion term by term. The resulting expression is

automatically analytical which does, of course, not imply the analyticity of the free energy as two

limits have been exchanged. In order to clarify this question, we compare the resultant power series

(seriesm
τ [. . . ] stands for the power series of order m around τ)

Pm(τ) := −
∫ ∞

0

dl seriesm
τ=0[(1 − τ)z2e2l] = −

m∑

i=0

ckτk (2.17)

of order m with the original expression Eqs. (2.15), (2.16) for the free energy. We find for the scaling

behaviour of the difference

a2
0

2πTg
f − Pm(τ) = constm × τm+1 + O(τm+2) (2.18)

for any m considered, both for τ � 0 with the same constants constm. In Fig. D.2, this fact is

illustrated and the free energy itself is plotted in Fig. D.3. Eq. (2.17) gives hence the manifestly
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Fig. D.2: Free energy minus Taylor expansion of

order m = 1, 3, 5, 7, 9, respectively, in double-

logarithmic plot.
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Fig. D.3: Free energy of the RFXY model above and

below the transition and one Taylor approximant.

analytical form of the free energy at the transition. Since the renormalisation scheme was based on

the assumption of small disorder z0 ∝ ∆0, see Eq. (2.13), only the leading term in ∆0 of the free

energy can be trusted literally. We expand the coefficients {ck}

c0 =
1

4
z0 −

1

8
e1/(2z0)E1 (1/(2z0))

c1 =
1

64z0

(
2(1 − 2z0)z0 + (8z0 − 1)e1/(2z0)E1 (1/(2z0))

)

. . .

of the series Eq. (2.17) in z0, where E1(x) :=
∫∞
1

dt
t e−t/x is the exponential integral,

{ck} = z2
0{1/2, 1/2, 1, 2, 4, 8, 16, 32, . . . , 2k−2} + O(z3

0),

sum up the leading terms and get

f =
2πTg

a2
P∞(τ)

P∞(τ) = −z2
0

2

1 − τ

1 − 2τ
+ O(z3

0).

It has been checked that the rearrangement of the double expansion in τ and z0 – first we expand

in τ and then collect the z2
0-contributions from all terms – leads to no complications. We obtain

the same result by an expansion of the integrand in Eq. (2.14) with respect to z0 and subsequent

integration, which can be performed independent of the sign of τ .

For the ease of notation we have written above f where only the contribution from the ’charge part’

of the Coulomb gas Hamiltonian was considered. We now collect all disorder contribution to the free

energy, as there are (see Eq. (2.6))

(i) the one we just calculated from the cos(φa − φb)-term with a 6= b,

(ii) the trivial one with a = b, and

(iii) the ’spin-wave’ term proportional to σ. In total, the disorder contribution to the free energy

density with respect to the vortex lattice volume, remember the rescaling Eq. (2.3a), is

fdis = −∆2ρ2

4T 3

(
c44

c11

)1/2
π

(1 − 2τ)
− ∆ρ2

T
− π

2

∆ρ3

ξ‖c11
+ O(∆3). (2.19)
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Note that in the spin wave contribution the cutoff lengths of Eq. (2.11) have been related to the

respective length scales of the line lattice a, ξ‖ as ξx = a, ξz = ξ‖
√

c44/c11.

The free energy of the RFXY model is analytical in the temperature at the transition. Although

we have shown this strictly speaking only for small initial disorder ∆, the result holds generally.

Larger original disorder at temperatures around the transition will be renormalised on finite scales to

small values, see Fig. D.1, where our calculation is valid. Following the flow trajectory over a finite

distance l cannot produce a nonanalyticity and the flow to the fixed points does not either as we

have shown. Consequently, in the original vortex system no signature of a transition can be expected

in the free energy. The absence of any nonregularities – as observed below in Section 2.4 – will

hence not suffice to rule out the transition from the glassy to a thermally free phase. On physical

grounds, there is good reason for the regular behaviour of the free energy in the RFXY model. A

nonanalyticity in the thermodynamic potential would reflect a divergence of the correlation length of

the system, as it is the case, e.g., in the Kosterlitz-Thouless (KT) thermal melting transition where

an essential singularity in the free energy is calculated in the spirit of the present analysis [Kos74].

In the melting problem, the quasi-long-range order of the low-temperature phase with no intrinsic

length scale is destroyed by the proliferation of topological defects at higher temperatures. Beyond

the transition, a finite correlation length indicates short-range order. Coming from high temperatures,

the correlation length diverges at the KT-transition. The present case is different: both below and

above the transition, correlations have no intrinsic length scale, they are of logarithmic type with,

however, different powers. The correlation length is infinite on both sides of the transition and this

leaves no room for a divergence which could leave its trace in the free energy. One might also argue

with the topology of the RG flow diagram. In the present case, two starting points on the left and

right of the phase separatrix stay close throughout the flow, while in the KT-problem two closeby

initial vortex fugacities flow to fixed points that are largely separated. The σ-field, which does flow

to distant fixed points in the present problem, cannot produce a singularity as we have shown above.

2.3 Shortcomings of the elastic approximation

The elastic approximation of the vortex interaction allowed in Section 2.1 for the mapping of dis-

ordered lines to the RFXY model. It was essential for the RG calculation to be mathematically

viable. However, some of the physics is swept under the carpet in this procedure. The statistical

symmetry which assures nonrenormalisation of the stiffness J and hence the elastic moduli of the

line lattice, is artificial. In the x-direction, this symmetry is broken by the original vortex interaction.

For the hard-core repulsion of the lines this becomes most obvious but any non-harmonic part in the

interaction would do so just as well. We review the argument leading to the statistical symmetry

and rewrite the Hamiltonian in the form

H =
1

2

∫
d2r

{
c11,0(

∂

∂x
u)2 + c44,0(

∂

∂z
u)2
}

+ Hdis + Hn.h.. (2.20)

The elastic moduli are microscopic constants – denoted by the subscript – and we are interested

in their values at large scales, which possibly are renormalised by pointlike uncorrelated disorder

(dis) and nonharmonic (n.h.) contributions to the vortex interaction. Now the system size is con-

trolled in horizontal direction by the addition of a linearly growing contribution to any displacement

configuration

u → u + εx, (2.21)
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which implies for the mean line distance

a → a(1 + ε). (2.22)

The definition of the effective compression modulus at finite temperature is, see [LL69],

c11 = a
∂2

∂a2
(af(a)). (2.23)

For the present purpose we rewrite

c11 =
1

a

∂2

∂ε2
F (ε)

mLz
(2.24)

with m the number of lines and free energy F = fLzLx. In the case of a purely harmonic vortex

interaction, the dependence of F on ε is simple. The elastic part of Eq. (2.20), H0, transforms under

Eq. (2.21) as

H0 → H0 + ε2
c11,0

2
LxLz + εc11,0

∫
d2r

∂

∂x
u. (2.25)

The third term of course vanishes for periodic boundary conditions. The lines see before and after

the transformation a disorder environment with the same statistics. This is the ’statistical symmetry’

mentioned above and its effect is most easily seen in the replica form of disorder energy, see Eq.

(2.6). There, the disorder average is already taken and the shift drops out in the difference of two

replica fields. Thus the only dependence on ε is the quadratic field independent term of Eq. (2.25).

We readily get

c11 = c11,0, (2.26)

i.e., the nonrenormalisation of the compression modulus. The same argument with u → u+εz works

for the tilt modulus, which the symmetry derives its name from for historical reasons.

We now consider an additional vortex interaction under the transformation, e.g., one that penalises

line crossing

Hn.h. =
∑

i

c

∫
dz δ[xi+1(z) − xi(z)] =

∑

i

c

∫
dz δ[a + ui+1(z) − ui(z)]

→
∑

i

c

∫
dz δ[a(1 + ε) + ui+1(z) − ui(z)].

The dependence on ε does not drop out and the compression modulus c11 will be renormalised, while

the tilt modulus c44 = g/a remains untouched by this interaction and indeed is a constant. 5 A

quantitative analysis is very difficult.

It is clear where the physical origin of the scale dependent contributions to c11 lies [NLS91]. The

fluctuating lines repel each other much stronger than described by an elastic term once they get

close enough. A crossing would cost a large amount of energy and an idealised hard-core repulsion

forbids it altogether. The lattice configurations may thus be heavily restricted, going unnoticed,

however, in the elastic approximation to the energy. For low temperatures, the scale above which

lines have fluctuated far enough to explore the same regions and ’collide’ is large and the error of the

elastic approximation is small. The correction is, however, a monotonic function of the fluctuation

5For a interaction that is nonlocal in z, c44 can be renormalised weakly. This effect, however, can be neglected in

what follows.
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amplitude and hence of the two sources of fluctuations, temperature and disorder strength.

Stressing this origin of the stiffness contributions, we will in the following talk of entropic and steric

stiffness renormalisation with thermal and disorder origin, respectively.

Fortunately the above RG approach is not invalidated in its application to the line lattice al-

together by its shortcoming with respect to the stiffness renormalisation. Rather, the missing

flow equation may be supplemented by other means and the treatment remains valid as long

as the expansion parameter τ continues to be small. Note that τ becomes scale dependent via

τ = 1 − T/Tg, Tg = 4πJ =
√

c11c44a
2/π. In the following section we will review the exact deriva-

tion of the asymptotic large scale stiffness in the presence of disorder and thermal fluctuations. The

small parameter will still be controlled and small, and hence the RG scaling dimension of disorder

Eq. (2.7) will still be a reliable guide to the phase diagram.

Before doing so we illustrate here the underlying physics by looking at the simplified case of ther-

mal renormalization of the stiffness in the pure system. The lines are characterised by a single

line stiffness g and they interact only by a hard-core repulsion. With Eq. (2.23) the free energy

density – for a given size – will give us the stiffness and thus the scaling dimension of disorder

– on the respective scale. There is a very intuitive estimate of the interaction part of the free

energy. The typical length lc on which a collision of two lines occurs can be estimated from

a2 = 〈δx2(z = lc)〉 = T/g lc ⇒ lc = a2g/T , with δx(z) := xi(z) − xi(0). Every collision

’reflects’ the lines and thus reduces the number of possible configurations by a factor of 2 with

respect to the noninteracting case. These factors multiply and one can estimate the entropy re-

duction due to collisions as ∆S = − ln 2 Lz/lc Lx/a. The change of free energy density thus is

∆f = −A−1T∆S = ln 2 T 2/(ga3). This is the only interaction effect. The single line contributions

to the free energy density being ∝ ρ = 1/a, we have according to Eq. (2.23) an entropically gen-

erated compression modulus c11 = const × T 2/(ga3). Certainly, the constant will not be obtained

numerically correct by this argument, but it should be of order one.

Upon insertion of c11, the scaling dimension of infinitesimal disorder Eq. (2.7) shows to be inde-

pendent of temperature and it is really up to numerical factors on which side of the transition the

system is. One can become quantitative by use of the analogy of a 2D statistical physics problem

to a 1D quantum problem. In this case, the quantum problem is a text book one. The hard core

repulsion is satisfied by considering the 1D spinless free fermions. Position being their only quantum

number they cannot cross. Qua the mapping given in Table D.1 one observes that for the free

energy density in the thermodynamic limit only the quantum-mechanical ground state contributes.

Integration of the density of states D(ε) = a/h(2m/ε)1/2 up to the Fermi edge εF = h2/(8ma2)

yields E0 = Nh2/(24ma2). The equivalence of the dimensionless partition functions (cl: classical,

qm: quantum mechanical),

−F

T
= ln Zcl = ln Zqm = −β

�
�

E0,

together with the mapping of Table D.1 give for the free energy F/Lz ↔ E0 of the line system

f =
π2

6

T 2

g
ρ3.

The asymptotic compression modulus renormalized by thermal fluctuations thus is

cth
11 =

π2T 2

ga3
. (2.27)
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model stiffness system size temperature

lines g Lz T

free fermions m β

� �

Table D.1: Relation between parameters of pure vortex lattice and free fermions from the formal equivalence

of the partition function for lines and the Feynman path integral for fermions. Note that dimensions are not

conserved.

In the disorder scaling dimension Eq. (2.7), one curiously finds λdis = 0, i.e., marginal disorder at

all temperatures. The effective thermal fluctuation strength is temperature independent, since the

entropically generated stiffness J increases linear in temperature and just cancels the usual linear

dependence of thermal fluctuations amplitude ∝ T/J . Neglecting disorder and more complicated

interaction contributions to the large scale stiffness, we conclude that the system is at the transition

at all temperatures. Physically, it will be up to the effects neglected so far, which mechanism to

prevail: thermal fluctuations or disorder pinning. These effects that tilt the system to the one or the

other side may be small and the situation is comparable to an unstable equilibrium.

Summarising, we may say that line collisions renormalise the stiffness and thus reduce the washing

out of the pinning potential in a way that might not allow for a thermal free phase at all. These

collision events are misjudged in the elastic approximation that fails to penalise line crossing by an

adequately large energy. The weight of these unphysical configurations in the elastic model can be

quantified. We look at the nearest neighbour correlations

〈δu2〉 := 〈[u(x + a, z) − u(x, z)]2〉 =
a2

(2π)2
〈[φ(x + a, z) − φ(x, z)]2〉

=
2Ta2

(2π)4J

∫ ∞

−∞
dqz

∫ π/a

−π/a

dqx(1 − cos[qxa])
1

q2

' 1.64

4π3

a2T

J
=

T

Tg
(0.41a)2.

Weak disorder is effectively very small around the transition and can be treated in perturbation

theory. It gives a correction of order ∆(c1 + ln[c2∆ + 1]), with constants ci = O(1), to the above

calculation with only elastic energy. Compared to Lindemann numbers in other problems, the value

of 0.41 is rather large6 and corresponds at T = Tg to a fraction of 1.5% of configurations where the

two lines collide at the given value for z. At T = 1.5Tg this number is ' 5%. Exactly these crossing

configurations lead in a correct treatment to an effective stiffening of the lattice so that thermal

fluctuations cannot unpin the lines from impurities.

At the very end of this chapter with various qualitative arguments, we comment on the following

scenario, that might be used for a justification of the ’naive’ elastic approximation to the (1+1)

dimensional line lattice. The line lattice with the hard-core repulsion as only interaction has a

vanishing microscopic compression modulus c11,0. Thus on smallest scales an elastic approximation

would make no sense. However, on any intermediate scale a finite c11 will have developed. Why

6Of course, the concept of a Lindemann number assumes an effective mechanism for melting, usually the generation

of topological defects. These are highly penalised energetically in this model where a line would have to leave the

(1+1)-dimensional plane in order to produce a topological charge.
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not map the system on this scale to the random field XY model and start the RFXY renormalization

scheme here, with effective finite elastic constants? Of course one runs into problems since in doing

so the further renormalisation of the elastic constants is neglected. We can calculate the finite

size corrections to the effective asymptotic compression modulus, remembering the mapping of the

classical system size to the quantum mechanical temperature Lz →
�
β. A Sommerfeld expansion

[Lan69] in the small parameter

κ =
1

βεF
=

2

π2

ma2
0�

2β
→ 2

π2

ga2

LzT

translates straightforwardly to finite size corrections in the classical statistical model. We find with

cth
11(Lz) =

π2T 2

ga3

{
1 − π4

4
κ2 − 3π6

180
κ4 + O(κ6)

}
(2.28)

negative corrections as could have been expected. They give a negative disorder scaling dimension

on any finite scale. Only on largest scales, the entropic renormalisation of the stiffness renders

infinitesimal disorder marginal. It is thus important to take into account the entire flow of the

compression modulus, which is monotonously growing over all scales. Cutting off the renormalisation

by hand on an intermediate scale, as the harmonic approximation does, is misleading. Thermal

fluctuations would be overestimated.

2.4 Non-crossing interaction and disorder: the exact free energy

The model of interacting fluxlines in the plane that has been used in many of the arguments above is

obtained by reduction of the interaction to the non-crossing condition, i.e. choice of U(x) = cδ(x)

with c → ∞ in Eq. (2.1). For this simplified but – with respect to the glass transition – still generic

model, an exact solution has been found by Emig and Kardar [EK01], which is something very rare

in the field of disordered interacting systems and a major achievement.

In the replica approach the challenge is to find the disorder averaged replicated partition function

in the limit of small n. It contains information not only on the disorder averaged free energy but also

on all the cumulants F j
c of its distribution, using

ln Zn =
∑

j

(−n)j

j!

F j
c

T j
. (2.29)

Difficulties typically arise for the limit n → 0 once an expression for Eq. (2.29) has been found for

integer n. For an unambiguous analytical continuation, additional information beyond the values at

integer n is required.

Just like in the pure case the two-dimensional line problem can be mapped onto a one-dimensional

quantum problem. With m lines in the original problem, after replication there are n×m particles in

quantum language. The noncrossing condition of vortices may again be satisfied by Fermi statistics

with respect to particles of the same, say, colour n whereas particles of different colour obey Bose

statistics upon permutation. Disorder pinning appears then in the guise of an attractive interaction

between particles of different colour n. The quantum problem is thus that of n × m attractive

particles with mixed symmetry, mathematically speaking SU(n) attractive fermions. The free energy

of the vortex problem is in the thermodynamic limit related to the quantum ground state energy E0

ln Zn = −E0(n)Lz

T
+ n

Lx

a
ln Z0. (2.30)
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Z0 is the partition function of a single line with no disorder. The mapping along Table D.1 is

implied. Emig and Kardar now realised that thanks to the ultralocal correlation of disorder and the

implied contact interaction of the SU(n) quantum problem a solution by Bethe Ansatz (BA) might

be possible. Indeed, they derived the BA equations in the thermodynamic limit, given here in the

continuous form

nk =

∫ K

−K

dk′gn [(k − k′)ld] ρ(k′) (2.31a)

with integral kernel

gn[x] = 2
∑

m≥0

arctan[
nx

m2 + nm + x2
]. (2.31b)

The length ld = T 3/(g∆) =: 1/c is the second characteristic length scale in the quantum problem

next to the average particle distance a. It describes the size of clusters of n particles, which may be

considered generalised Cooper pairs, and its inverse c serves at fixed temperature and stiffness as a

measure for disorder strength.

From the solution ρ(k) the ground state energy (which has dimensionality EL−1 after the mapping

of Table D.1) is obtained via integration

E0 =
T 2Lxc2ρ

24g
n(1 − n2) +

nT 2Lx

2g

∫ K

−K

dk k2ρ(k). (2.31c)

Note that the first term is linear in the density and contributes to disorder energy of single lines. In

the above equations, the integral boundary K is fixed selfconsistently by the density

ρ =

∫ K

−K

dk ρ(k). (2.31d)

The solution to the limit of Eq. (2.31a) for n → 0 gives the exact average free energy density [EB03]

f = f0ρ +
π2

6

T 2

g
ρ3 +

∆

2T
ρ2. (2.32)

with single line contributions

f0 = C(g)T − ∆

2ξdT
+

g∆2

24T 4
. (2.33)

that were first derived by Kardar and Nelson [KN85, Kar87]. Finite size corrections to these latter

terms have been calculated in Refs. [BO90, BD87]. Eq. (2.32) is one of the main result of the Replica

BA (RBA) solution and much of the following will build upon it. It is noteworthy that the thermally

generated entropic term – second term in Eq. (2.32) – and the steric term from disorder fluctuations

– third term – are simply additive and do not couple and that there are no additional contributions.

From the interaction part of the exact free energy the large scale stiffness can be derived via Eq. (2.23)

as

c11 =
π2T 2

ga3
+

∆

Ta2
= cth

11

(
1 +

ag∆

π2T 3

)
. (2.34)

The scaling dimension of disorder Eq. (2.7) hence is positive for all temperatures

λdis = 2

(
1 − πT

a2√c11c44

)

= 2

{
1−

(
1 +

ag∆

π2T 3

)−1/2
}

> 0.
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We see that the effect of disorder makes the difference for the glassy phase at al temperatures with

respect to the pure situation where thermal fluctuations alone render the system marginal. A priori,

it could also have been imagined the scenario where disorder enlarges the compression modulus on

the one hand but reduces the part induced by thermal fluctuations. This is not the case and no

transition to an unpinned phase is possible. The Vortex glass is stable.

A natural limit to the validity of the RBA results is set by the mapping of a given problem (many

lines in disorder/one polymer in disorder) to a one-dimensional quantum problem which is then

solved by Bethe Ansatz. The natural length scale in the quantum problem is the width ld of cluster

or ’n-string’, being a superposition of the BA generalised momentum eigenstates. If ld = T 3/(g∆)

becomes of the order of the disorder correlation length ξd, the simplification of ultra-locally correlated

disorder is no longer justified. This assumption, however, is essential for the Bethe Ansatz to solve.

The Bethe Ansatz results shown above therefore become are valid only at high temperatures or small

disorder

T � T ∗ = (∆gξd)
1/3. (2.35)

Below this scale a modified replica symmetry breaking solution has been suggested in Ref. [KD98]

for a single line whose predictions, however, could not be tested to date. For the interacting line

system the modifications at low temperatures implied by the replica symmery breaking solution can

be adapted [EK01].

We conclude this section on the exact RBA results by the presentation of a simple argument

from which the steric part of Eq. (2.32) can be obtained qualitatively. The spirit is similar to the

argument given in the previous Section 2.3 for the entropic stiffness.

In the presence of impurities, the total energy which will be a compromise between elastic and disorder

energy. Single line fluctuations are limited by the noncrossing constraint. Therefore a typical scale

in x-direction is the mean line distance a. In z-direction the corresponding scale is lc defined by

the disorder induced single line fluctuations a2 = 〈δx(z = lc)
2〉 = (∆/(gT ))2/3l

4/3
c with roughness

exponent ζ = 2/3 [HHF85, KZ87, Kar87] and δx(z) := x(z) − x(0). In equilibrium, both energies

will contribute equally. The scaling of the elastic energy is easily written U = Lzm × g/2 × a2/l2c
with m the number of lines. We immediately get the scaling behaviour of the effective compression

modulus c11 = a ∂2

∂a2 (af(a)) ∝ ∆/(Ta2), which compares nicely to the exact expression Eq. (2.32).

2.5 General interaction

So far we have considered only the very short range limit of a repulsive vortex interaction. In this

section, we allow for a general repulsion over a nonzero range, including long range interactions,

while intersections and overlap of lines are still assumed to be energetically prohibited. What will

be the effect of a finite range interaction on the glass transition? We again focus on the scaling

dimension of disorder Eq. (2.7) λd = 1 − Tπ
a2

√
c11c44

. While the interaction will not renormalise the

tilt modulus c44 = g/a, the compression modulus will be affected. Two mechanisms compete. A

finite range interaction allows for the definition of a microscopic compression modulus

c11,0 = a
∂2

∂a2
U(a) > 0,

compared to c11,0 = 0 for the noncrossing-only case. The energetic part of the stiffness is thus

increased, thermal fluctuations are suppressed and disorder becomes more relevant. But then the
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entropic fluctuation induced part of the stiffness is also suppressed by which the relevance of disorder

is reduced. What will be the net effect? A larger or smaller effective stiffness as compared to the

situation with the noncrossing interaction only? In order to separate effects, let us split the interaction

potential, which certainly diverges at x = 0 and is otherwise a smooth function, into a part solely

realizing the noncrossing constraint and the residual interaction Ur(x)

U(x) = cδ(x) + µUr(x).

c is very large and the factor µ has been included so that we can tune in and out (in Gedanken) of

the ’reference state’ µ = 0, for which infinitesimal disorder is marginal.

As in Section 2.3, we map the classical lines onto quantum particles and disorder is assumed to be

infinitesimal. Statistics assure noncrossing and we arrive at one-dimensional spinless fermions with

the repulsive interaction µUr(x). The compressibility7

κ = − 1

L

∂L

∂p
=

1

L

(
∂2E0

∂L2

)−1

=
1

ρ2

∂ρ

∂µ

is nothing but the inverse compression modulus in the line language

1/κ ↔ c11.

The double arrow indicates that the mapping of Table D.1 has been invoked and L = Lx.

Weak interaction of the fermions can be treated quantitatively, e.g. by means of bosonisation. For

a review see Ref. [Voi95], in Appendix 1 a sketch of the method is given. The compressibility is

obtained easily as

κ =
a2

π

�
vN

with the renormalised Fermi velocity

vN = vF +
1

2π

�
(g4 + g2 − g1) = vF +

µ

2π

� (
2Ũr(0) − Ũr(2kF )

)
,

that has contributions g2, g4 from forward scattering (momentum transfer q ' 0) and backward

scattering g1 (momentum transfer q ' 2πkf ). Note that in the literature the g1 contribution for the

spinless case is usually included in g2. Also the nonharmonic backscattering of the spinfull case is not

present without spin. With kF = π/a and vF =

�
kF /m, we get in the limiting case of a hard-core

repulsion only µ = 0, of course, κ−1 =

�
2π2/(a3m) → π2T 2/(a3g) = cth

11, see Eq. (2.27).

At finite µ the net effect on the compression modulus is

c11 = cth
11 + δci.a.

11 = cth
11 +

µ

2a2

(
2Ũr(0) − Ũr(2π/a)

)
> cth

11, (2.36)

where the last inequality is a simple consequence of a repulsive Ur(x) that implies, in one dimension,

Ũr(0) > 0 and |Ũr(0)| > |Ũr(2kF)|. The large scale compression modulus is increased by a repulsive

interaction with respect to the value cth
11 for the noncrossing only (or free fermion) case, where

disorder is marginal. Strictly speaking we have shown this only for small µ, as bosonisation is good

only in the limit of small interaction energy compared to kinetic energy, i.e., δci.a.
11 � cth

11. However,

for larger µ it is easy to argue. The compressibility of the Fermi system will be a monotonic function

7Sometimes ∂ρ
∂µ

alone is called compressibility.
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cth
11

λdis > 0

λdis < 0

c11
µ

∂2Ur(a)
∂a2

µ: interaction beyond noncrossing

Fig. D.4: Effective compression modulus vs repulsive vortex-interaction strength.

of µ. Without an underlying lattice, no spin and no magnetic field no resonances are possible that

would be the only way around an increasing ’stiffening’ of the system with increasing repulsion. The

picture of Fig. D.4 emerges where the compression modulus cannot become smaller than the marginal

value cth
11, i.e., even if the effect of disorder on the large scale stiffness is neglected λdis > 0. We have

also included in the figure the limit of large µ and long-range interaction U(x). Then the electrons

will become classical and form a Wigner crystal and their compressibility can simply be obtained in

harmonic approximation to the nearest neighbour interaction κ−1 ∝ µ∂2Ur(a)
∂a2 .

We thus can summarise: Arguing the stability of the glassy phase, we see that the case with only

the noncrossing interaction is in fact a worst case scenario. Any additional repulsion may reduce the

entropic stiffness but in total makes disorder more relevant and Eq. (2.36) even allows us to quantify

the effect for weakly repulsive potentials. No glass transition is possible.

2.6 Effect of small length scale cutoff and application to materials

The effect of a finite single line persistence length ξ is now added which is given by the UV cuttoff

inherent to any condensed matter system. In our case the superconductor coherence length sets a

cutoff for vortex fluctuations, as it is the basic length scale over which the superconducting order

parameter can vary and we identify it with the fluxline persistence length. The effect of the UV

cutoff Λ = π/ξ on correlations of a single line is easily calculated to be

〈[xi(z) − xi(0)]2〉 =
T

g
(z − ξ), (2.37)

for z � 2ξ. The same result is obtained by a position space calculation considering a correlated

random walk where the ’persistence’ of individual line wandering can be analysed very intuitively,

see Appendix 4. We use these correlations in the simple scaling argument for the entropically

renormalized stiffness of Section 2.3 and compare to the random walk of a line without a cutoff.

There is a shift of −T/g ξ in the wandering amplitude. Hence, line collisions will be rarer and

the effective compression modulus will be smaller than in the reference state that renders disorder

marginal. We have identified a mechanism working in favour of the free phase in contrast to the finite

disorder and repulsive interaction contributions of the previous sections. To become quantitative,
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the modified collision length lc as defined from Eq. (2.37) by 〈[xi(lc) − xi(0)]2〉 !
= a2 is used in the

scaling arguments for the thermal entropic contribution to c11 as discussed above. The analogue is

done for the disorder entropic term and the lowest order corrections in ξ/a together with the other

contributions to the compression modulus is given as

c11 = cth
11 + c∆

11 − δcξ
11 + δci.a.

11 , (2.38a)

δcξ
11 =

(
10

3

π2T 3

g2a4
+

35

4

∆
3/2
0

T 3/2a5/2

)
ξ

a
=

(
cth
11

10

3

T

ga
+ c∆

11

35

4

√
∆0

agT

)
ξ

a
(2.38b)

δc∆
11 =

∆0

Ta2
(2.38c)

δci.a.
11 =

1

a2

(
Ũr(0) − 1

2
Ũr(2π/a)

)
. (2.38d)

cth
11 is the reference which renders infinitesimal disorder marginal. The superscript i.a. stands for the

effect of repulsive ’interaction’ beyond the noncrossing condition, as in Section 2.5. Note that from

here the interaction strength parameter µ is set to one. The only effect favouring the thermal phase

is the reduction of the stiffness by a finite persistence length ξ. Therefore, at the possible transition

point Tg this term has to equal the other two terms, which increase pinning

δcth
11(Tg)

!
= δc∆

11(Tg) + δci.a.
11 .

In the limit Ũ(0) � ∆/T , we get

Tg = 0.42(g2∆a2)
1
4

(
a

ξ

) 1
4

.

For the opposite limit Ũ(0) � ∆/T we try to quantify the interaction term. The usual interaction

potential between vortices U(r) in the three dimensional bulk from Ginzburg-Landau theory [Bra77]

is 8

U(r) =
Φ2

0

4πµ0λ2

exp[−r/λ]

r
, (2.39a)

Ũ(q) =
Φ2

0

µ0

1

1 + λ2q2
, (2.39b)

with Φ0 the flux quantum, µ0 the vacuum permeability and λ the penetration depth. It is modified

when the vortices are confined to a quasi-2D layer of width d perpendicular to the magnetic field,

where the effective two dimensional interaction potential in momentum space becomes [Abr64, Kie93]

Ũ(q) =
Φ2

0

4µ0λ

1√
1 + λ2q2

tanh[
d

2λ

√
1 + λ2q2]. (2.40)

The comparison of Eq. (2.40) with the reduction of the three dimensional (3D) potential Eq. (2.39b)

to the plane ∫

qz

Ũ3D(qx, qy, qz) =
Φ2

0

4µ0λ

1√
1 + λ2q2

(2.41)

8Often this equation is written in CGS units, where the flux quantum becomes � 4π/µ0ΦSI
0 = ΦCGS

0 ; this is easily

seen from the energy density w = B2
CGS/(8π) = B2

SI/(2µ0).
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shows how the confinement to the plane softens the vortex lattice for d � λ.

We use this potential in formula (2.38d) in order to estimate δci.a.
11 . The fact that the noncrossing

contribution has not been subtracted from the potential before the Fourier transform does not

disturb. For the purpose of the moment we only evaluate the potential at small momenta while the

noncrossing physics is reflected at largest momenta. We thus have

δci.a.
11 >

Ũr(0)

2a2
' Φ2

0

8µ0λ2

d

a2
(2.42)

for d � a. Ginzburg-Landau theory further tells us c44 = g/a = Φ2
0/(4µ0λ

2) d/a2, exactly twice the

right hand side of Eq. (2.42), again note the softening with small sample width. We get as a bound

for the transition temperature in the limit ∆T � Ũ(0)

Tg > 0.16

(
a

ξ

) 1
3

ag = 0.16

(
a

ξ

) 1
3 Φ2

0d

4µ0λ2
.

The softening of the lattice both with decreasing sample thickness d and increasing temperature

(remember λ = λ0(1−T/Tc)
−1/2, ξ = ξ0(1−T/Tc)

−1/2) seems to make a transition at a temperature

smaller than the superconductor critical temperature Tc possible. The system of course cannot be

made arbitrarily thin as the lower critical field, at which fluxlines start to enter the layer, diverges

with vanishing layer thickness Hc1 ∝ 1/d2 and matches the upper critical field Hc2 at d ' ξ(T )

[Abr64]. In a realistic geometry, d ' 1µm, see Ref. [BAP+99]. In order to derive an estimate for a

lower bound to the transition temperature we choose the limiting values λ0 ' 1µm, ξ0 = λ0/κ with

κ ' 5 for the conventional superconductor used in Ref. [BAP+99], a/ξ0 ' 1 and Tc < 100K. We

find

Tg > 0.99Tc.

This is very close to the critical temperature given the conservative approximations that were made.

A transition very close to Tc, however, cannot be ruled out strictly, especially not for the strongly

type II HTSC with κ ' 102.

Dislocations in the present context can only be generated by lines that leave the sample after crossing

only a fraction of its length. Such topological defects in the vortex array cannot be excluded strictly

since with the glassy ln2-roughness their proliferation is energetically favourable even at zero temper-

ature, see, e.g., the discussion at the end of Section 5. However, the scale which sets their average

density will be very large, corresponding to a large core energy. In the experiment of Ref. [BAP+99],

single flux lines could be observed entering the sample. The discrete response for each such occur-

rence was in all cases of the same amplitude, indicating that the lines enter the film over its whole

width and do not leave the sample in the middle.
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3 The random-bond dimer model and the (1+1)-dimensional

line lattice

In the previous chapter the planar vortex array was analysed theoretically with a focus on the glass

transition. Here, we make use of the close relation to the random-bond dimer model in order to verify

the above RBA results by the comparison of a range of thermodynamic quantities in the two models.

The random-bond dimer model falls into the class of combinatorial problems in statistical physics

that study complete coverings of manifolds by building blocks of a given shape [Fis61, Wu03]. Its

relation to the physics of vortex lattices is not very obvious although in practice very simple [Fis84].

Also, quantum versions of the dimer model on a variety of lattice geometries have been successfully

linked to a wide range of condensed matter problems, e.g. quantum Ising antiferromagnets, see

Ref. [MS02] and references therein. It has also been discovered lately by Propp et al. [EKLP92] that

the combinatorial problem of the classical random-bond dimer model on the square lattice can be

treated with exact numerics very effectively. Zeng and collaborators at George Washington University,

Washington, D.C., have implemented this algorithm and can compute thermodynamic quantities of

the random-bond dimer model with polynomial dependence of computation time on the system size.

The results below are the product of a close collaboration with the group at Washington, who have

provided the simulation data for the dimer model.

The models and their mapping are explained in detail in the following section before analytical

predictions are compared to simulations and the results are interpreted.

3.1 The models and the mapping

3.1.1 Vortex system

We consider the vortex line array of Chapter 2 in the limit of a contact interaction between the lines

that does not allow them to intersect. The lines are confined to a plane at an average distance

a = 1/ρ. A single line is characterised by its position xi(z) and line tension g. Quenched disorder

couples locally to the lines via the random potential V (r), which is assumed to have short range

correlations V (r)V (r′) = ∆δ(r − r′). The total energy is then written

H =

∫ ∑

i





g

2

(
dxi

dz

)2

+ c
∑

i,j 6=i

δ(xi − xj) + V (xi, z)



 (3.43)

with c → ∞. Although considerably simpler, this model of self-avoiding lines is still generic with

respect to thermodynamics and the phase diagram of (1+1)-dimensional vortex lattices, as argued

above in Section 2.5.

3.1.2 Dimer model

The dimer model is defined as follows: Choose a subset (whose elements are called dimers) of the

bonds on a square lattice with lattice constant b and linear size L such that every of the L2 = N

lattice sites (labelled by (ij)) is touched by exactly one of these dimers, see Figs. D.5, D.7. A square

lattice rotated by 45 degrees with lattice constant b/
√

2 is formed by the centers of the bonds. Its 2N

sites shall for convenience also be labelled by (ij) and it will be clear from the context if the original
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lattice or that of the bonds is parametrized. The reduced energy of one such complete covering D

of N/2 dimers is defined by

H̃d = Hd/Td =
∑

(ij)∈D

εij/Td (3.44)

where the sum is over all dimers of D. The bond energies εij are independent random variables

drawn from a Gaussian distribution with zero mean and unit variance εijεkl = δij,kl. Td is the

dimensionless dimer temperature and equivalent to the inverse strength of disorder as will be discussed

in detail below. In the following, the subscript ’d’ stands for quantities of the dimer model, while line

lattice quantities are denoted by the subscript ’l’. The implementation of the polynomial algorithm

[EKLP92] (with exponent ' 2) on a 32-processor cluster by Zeng and collaborators allows to compute

thermodynamic quantities numerically exact – as opposed to, e.g., Monte Carlo sampling – for

sizes up to L = 512 at typically 6000 disorder configurations for a range of dimer temperatures

within days. Merely the measurement of the specific heat in Section 3.2.4 is not covered by the

polynomial algorithm. Thermal fluctuations have to be computed from explicitly sampling over a

representative set out of the exp[NG/π] [Kas61] possible dimer coverings, again for up to 6000

disorder configurations. This gives, however, also reliable results for sizes up to L = 256. The typical

accuracy of the data for moments of disorder averaged quantities at the given number of disorder

samples is ' 10−5.

Fig. D.5: Mapping of a dimer (left) to a line configuration (right) via XOR-addition of the reference state

(middle).

3.1.3 Relation

The two apparently diverse models are closely related. The random bond dimer model can be mapped

onto an array of lines that interact via a hard core repulsion, preventing any line crossing. In Fig. D.6

the mapping with intermediate steps is sketched. From the dimer model (A) on top the discrete line

model (C) can be reached directly and via the intermediate random solid on solid (SOS) model (B).

Both the SOS model and the discrete lines have their continuous counterparts – in the bottom line

of the sketch – that can be treated analytically: The random-field XY model (D) and the continuum

(1+1)-dimensional line lattice (E). Below we will explain how to move between these models and

we will be able to relate quantities of the isotropic dimer model and its version with a height profile

(SOS) to quantities of the anisotropic vortex line lattice. As the starting point for a detailed tour
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lattice constant b
A: random bond dimers

uij, a = 2bheight hij

h(x, z), K

C: lines on the latticeB: solid on solid

D: continuum RFXY E: continuum lines
u(x, z); c11, c44

Fig. D.6: The relation of the dimer model to the (1+1)-dimensional vortex lattice. Top: discrete models;

bottom: continuous models ; left: isotropic, right: anisotropic.

through the mapping table Fig. D.6 the dimer model (A) with the dimer temperature Td being the

only parameter is chosen. The line lattice can be reached very quickly via

(AC) Add the dimer pattern and a reference lattice as given in the middle of Figs. D.5, D.7 with

an ’exclusive or’ (XOR) operation. It means that only if a given bond is covered by either the

dimer pattern or the reference pattern, it is covered in the resulting configuration, which will

be noncrossing lines at average density ρ = 1/(2b), which becomes sharply defined only for

large systems. The ensemble of dimer configurations thus corresponds to a grand canonical

vortex line ensemble with a chemical potential such that the average density is fixed. For the

energies on the bonds that are covered in the respective configurations

Hlines({ε′ij}) = Hd({εij}) + Href({ε′ij}). (3.45)

is implied. Here {εij} stands for a given distribution of energies on all of the bonds and the

random energies ε′ for the line lattice are defined as ε′ij = −εij on the occupied bonds of

the reference lattice and ε′ij = εij elsewhere. If the dimer random bond energies {εij} are

distributed symmetrically with zero mean so are the line bond energies {ε′ij}.

(AB) A height profile {hij} can be assigned to every plaquette in the following way [Hen97]: Every

bond is given a sign ±1 such that going through rows or columns of plaquettes the sign of the

crossed bonds alternates. Starting at a given plaquette with arbitrary height, one moves to

the neighbouring plaquettes and adds to the height ’+3 times bond sign’ if the crossed bond

is covered by a dimer, or ’-1 times bond sign’ if it is not. The resulting numbers define a

path-independent height profile hij .

(BC) Subtract the reference height profile and get

Hij := hij − href
ij (3.46)

on each plaquette with row index i and column index j, as illustrated by the numbers in

Fig. D.7. Hij is quantised in steps of width 4, sites with constant H form directed domains
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of average width 2b that may be labelled by k; introduce displacements uk(i) of the domain

wall k from its perfectly aligned position {i=1..n,j=2k}; the directed domain walls are the

discretised lines; it holds (see Figs. D.7, D.8)

uk(i) =
Hi,2k + Hi,2k+1

4
+ 2k. (3.47)

Note that the mapping to a displacement field makes sense only in an ensemble with a fixed

number of lines, i.e., fixed density. For the grand canonical ensemble induced by the sum over

dimer configurations, uk(i) is a good degree of freedom only for the average configurations,

which, however, carry the dominant weight in the thermodynamic limit.

(CE) Sending the grid spacing to zero gives lines in a disorder environment with average spacing

a = 2b. The individual lines wander freely under the sole restriction that they may not cross.

Therefore the model corresponds to the continuum model of Section 3.1.1 with a hardcore

repulsion only.

(BD) The continuum limit of the SOS model is the RFXY model with reduced stiffness K

H̃RFXY =
K

2

∫
d2r(∇h)2

+
V

T

∫
d2r cos[Qh(r) + α(r)]. (3.48)

α(r) is a random phase, V a constant coupling strength and Q = 2π/4. Only going the way

ACED in order to reach model D justifies the special form of the disorder coupling with the

given value for Q.

(DE) Rescale z → z′ = z
√

c44/c11, define displacements

u(r) := bh(r)/2 (3.49)

and set

K :=
b2√c11c44

4T
=

a2√c11c44

16T
(3.50)

in order to get the elastic Hamiltonian for interacting lines

Hel =
1

2

∫
d2r

{
c11(∂xu)2 + c44(∂zu)2

}

+V ′
∫

d2r cos[
2π

a
u(r) + α(r)] (3.51)

with an effective compression modulus c11 describing the line interaction in elastic approxima-

tion and with tilt modulus c44 = g/a.

The relation (3.49) between the line displacements and the dimer height profile is the contin-

uum version of Eq. (3.47) which can be seen by use of Eq. (3.46) and the observation that

href
ij ' 2j upon coarse graining. This relation is in hindsight, knowing that the lines have a

mean distance of a = 2b, the reason for the choice of Q = 2π/4 in model D, Eq. (3.48). These

numbers are important below when the models are compared quantitatively. Also note that
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the system size A is changed by going from the isotropic model (d for dimer) with stiffness K

to the anisotropic line model (l for lines) according to

Ad/Al =

√
c11

c44
= K

8T

bg
. (3.52)
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The thermodynamics of a disordered planar vortex array is studied numerically using a new
polynomial algorithm which circumvents slow glassy dynamics. Close to the glass transition, the
anomalous vortex displacement is found to agree well with the prediction of the renormalization-group
theory. Interesting behaviors such as the universal statistics of magnetic susceptibility variations are
observed in both the dense and dilute regimes of this mesoscopic vortex system.
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The behavior of vortices in dirty type-II superconductors
has been a subject of intense studies in the past decade [1].
Aside from the obvious technological significance of vor-
tex pinning, understanding the physics of such interacting
many-body systems in the presence of quenched disorder
is a central theme of modern condensed matter physics.
Similarities between the randomly pinned vortex system
and the more familiar mesoscopic electronic systems [2]
are highlighted by a recent experimental study of a planar
vortex array threaded through a thin crystal of 2H-NbSe2

by Bolle et al. [3]. Interesting behaviors, including the
sample-dependent magnetic responses known as “finger-
prints,” have been observed for such a mesoscopic vortex
system.

The disordered planar vortex array is well studied theo-
retically [4–9]. It is one of the few disorder-dominated
systems for which quantitative predictions can be made,
including a finite-temperature “vortex glass” phase [5]
characterized by anomalous vortex displacements [4], and
universal variation of magnetic susceptibility [9]. How-
ever, until the work of Bolle et al., there were hardly any
experimental studies of this system, with difficulties stem-
ming partly from the weak magnetic signals in such 2D
systems. Also, numerical simulations have been limited
by the slow glassy dynamics [10], although the availability
of special optimization algorithms did lead to the elucida-
tion of the zero-temperature problem in recent years [11].
In this Letter, we describe numerical studies of the thermo-
dynamics of the vortex glass via a mapping to a discrete
dimer model with quenched disorder. A new polynomial
algorithm for the dimer problem circumvents the glassy
dynamics and enables us to study large systems at finite
temperatures. Our results obtained in the dilute (single-
flux-pinning) regime compare well with the experiment
by Bolle et al. [3], while those obtained in the collective-
pinning regime strongly support the renormalization-group
theory of the vortex glass, including its prediction of uni-
versal susceptibility variation [9].

The model.—The dimer model consists of all complete
dimer coverings �D� on a square lattice L as illustrated in

Fig. 1(a). The partition function is

Z �

X
�D�

exp

"
2

X
�ij�[D

eij�Td

#
, (1)

where the sum in the exponential is over all dimers
of a given covering, and Td is the dimer temperature.
Quenched disorder is introduced via random bond energies
eij , chosen independently and uniformly in the interval
�2 1

2 ,
1
2 �.

The dimer model is related to the planar vortex-line
array via the well-known mapping to the solid-on-solid
(SOS) model (see Figs. 1): Take the centers of the square
cells of L to form the dual square lattice cL . Orient all
bonds of cL such that the elementary squares of cL that
enclose the sites of the chosen sublattice of L [indicated by
the solid dots in Fig. 1(a)] are circled counterclockwise. It
is now possible to assign a single-valued “height” function
h�r� on the lattice points r of cL , such that the difference
of every pair of neighboring heights across the oriented
bonds is 23 if a dimer is crossed and 11 otherwise.
For the dimer covering of Fig. 1(a), the values of the
associated height function are shown at their respective
positions. In terms of the height configuration h�r�, the
partition function (1) can be written alternatively as Z �P

�h�r�� e2bH �h	, where the SOS Hamiltonian takes the
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FIG. 1. (a) Snapshot of a dimer covering (thick bonds)
together with the associated “height” values h�r� for a lattice
of size L � 8 at temperature Td � 1.0. (b) Dimer covering of
the fixed reference. (c) Vortex-line configuration (thick lines)
obtained as the difference between (a) and (b).
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Fig. D.7: Dimer covering (left), reference state (middle) and line configuration (right), with height profiles

hij (left and middle) and Hij (right).
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Fig. D.8: Illustration of displacements uk(j) in the discrete model, the dashed lines stand for the regular

undisplaced line lattice. Eq. (3.47) can be checked in this sketch with the numbers for Hij in Fig. D.7, right.

We now need to discuss quantitatively the relation of the three continuum model parameters,

(i) line stiffness g, (ii) disorder strength ∆ and (iii) temperature T , to the dimer model. In order

to relate the two dimensionless parameters ∆/T 2 and ga/T of the continuum model to two dimer

parameters, we want to modify and thus the generalise the dimer model slightly. Disorder strength will

be determined by 1/Td, i.e., the dimer temperature will in the line picture not act as a temperature

but rather as inverse disorder strength, see below, while for the mapping of the single line stiffness

we introduce a second dimer parameter ε̃h. Instead of giving all bonds a random energy εij drawn

from the same distribution with zero mean, the horizontal bonds (denoted by ij ∈ h) are assigned

the constant nonrandom energy
εij∈h

Td
= ε̃h > 0 (3.53)
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that penalises excursions of a line and thus increases the tilt modulus c44 = g/a of the vortex array.

The random energy on the vertical bonds remains unchanged and so does relation Eq. (3.45). Note

that by fixing rather the reduced energy than the energy on the horizontal bonds, we have fixed the

statistical weight of these bonds irrespective of the value of the dimer temperature Td. By changing

ε̃h, we can tune the ratio of the average numbers of occupied vertical (#v) and horizontal bonds

(#h). Let us consider the pure limit of a vanishing disorder variance, i.e., Td = ∞ or zero energy on

the vertical bonds. As we assume g not to be renormalised by disorder in analogy to the continuum

model, this limiting case suffices to determine the single line stiffness even in the presence of disorder.

The partition function now is

Zd =
∑

{D}
exp[−#hε̃h],

from which the average number of occupied horizontal bonds can be obtained by taking the derivative

with respect to9 zh := exp[−ε̃h]

〈#h〉 = zh
∂

∂zh
ln Zd.

Kasteleyn calculates Z with the method of Pfaffians as a function of zh, zv [Kas61], here we have

zv = 1 and

ln Z(zh, zv = 1) = N
1

2πi
{L[izh] − L[−izh]}

where L[x] = −
∫ x

0
du
u ln(1 − u). One obtains the exact expression

〈#h〉 = N
arctan zh

π
.

As the total number of occupied bonds is fixed to Nbonds = N/2 this implies 〈#v〉 = N(1/2 −
arctan[zh]/π). The numbers of occupied bonds in the dimer model translate to the numbers of

horizontal and vertical segments in the discrete line model. The ’XOR’-addition of the dimer pattern

and the reference pattern gives immediately 〈#h,lines〉 = 〈#h〉, as the reference pattern contains

only vertical bonds. Vertical segments in the line model come from (i) bonds that are occupied in

the dimer pattern and not in the reference pattern and (ii) from the inverse. Out of the N = L2

bonds of the lattice N/2 are not occupied in the reference pattern. The probability for any given

bond out of these to be occupied in the dimer pattern is 〈#v〉/Nbonds = 1−2 arctan[zh]/π, giving a

contribution to 〈#v,lines〉 of N/2(1− 2 arctan[zh]/π). With the analogous treatment of the reverse

case one gets

〈#v,lines〉 =
L2

2
.

The results must hold, of course, since on average there will be L/2 lines with L vertical segments

each.

We now look at the fluctuations of a given line in the discrete model, again with Td = ∞, under

the constraints imposed by the dimer model. Let a given line make M steps in z-direction. After

each vertical step it may either make a step left (xi = −1) or right (xi = +1) or no horizontal step

(xi = 0). The associated probabilities are uncorrelated and can be derived from the average total

numbers of horizontal and vertical steps. Per line (on average L/2 in total) there are L2 arctan zh/π
L/2

horizontal segments, i.e. p+1 = p−1 = arctan[zh]/π, and hence p0 = 1 − 2 arctan[zh]/π. We can

9The minus here is unusual and makes z the inverse fugacity rather than the fugacity; we keep the minus, however,

in order to remain in contact to the notation in Ref. [Kas61].
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now calculate the fluctuations of the horizontal wandering X :=
∑

i xi of this given line of length

z = Mb as

〈X2〉 =

M=z/b∑

i=1

〈x2
i 〉 = 2b

arctan zh

π
z.

A continuum Hamiltonian H = g
2

∫
dz(∂zX)2 in comparison yields 〈X2(z)〉 = T

g z and allows to

read off
g

T
=

π

2b arctanzh
, (3.54)

which is plotted in Fig. D.9 as a function of ε̃h. The original pure isotropic dimer model corresponds to

the case g
T (ε̃h = 0) = 2/b. Nonrandom positive energy on the horizontal bonds penalises excursions

and stiffens the lines, reflected by limε̃h→∞ g/T = ∞. The above line of argument – with resort to

g/T [b]

ε̃h

5

32.521.510.5

25

0

35

30

20
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10

0

Fig. D.9: Plot of g/T in units of the dimer lattice constant b for varying ε̃h; note the limit g/T → 2 for

vanishing ε̃h and the exponential increase.

overall average numbers of occupation – suggests an entropic rather than microscopic or energetic

origin of part of the stiffness. In the case of disorder, i.e., finite Td, c onsider the case of zero mean

energy on both horizontal and vertical bonds. Then locally nothing will prevent a line from excursions

that best benefit from nearby disorder, as long as in total and on average the numbers of vertical and

horizontal segments equal L2/2 and L2/4, respectively. A given line may thus ’borrow’ horizontal

steps from the ensemble of lines – intuition says this will be locally of vanishing cost. A finite value

of the single line stiffness arises only on larger length scales and saturates at gb/T = 2. This stiffness

we will call ’entropic’ as its origin lies in the constraint on the overall average number of possible

configurations.

Quite differently, a finite value of ε̃h imposes a local energetic cost on horizontal excursions, thus

generating a finite short scale (s.sc.) stiffness. This may be determined tentatively by subtracting

the ε̃h = 0-entropic contribution from the asymptotic large scale (l.sc.) value for general ε̃h, as given

by Eq. (3.54)
gs.sc.

T
=

gl.sc.

T
− 2

b
=

π

2b arctan zh
− 2

b
, gs.sc.(ε̃h = 0) = 0.

The following consideration supports this simple addition of microscopic and entropic stiffness without

interference. Consider the partition function for the line system. The line configurations are in one-
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to-one correspondence to dimer configurations. It is plausible that the finite energy on the horizontal

bonds can be accounted for in terms of line degrees of freedom ui(z) by an elastic energy term

H0,s.sc.. The origin of the entropic elastic term can be seen in the change of summation measure

when going over from the summation over dimer coverings to the integration over line degrees of

freedom. The above arguments showed that on large scales the line conformations carry a harmonic

Boltzmann weight with entropic (entr.) stiffness gentrb/T = 2. In formulae this is represented as

Zl =
∑

{D}
exp[−(H0,s.sc.[D] + Hdis[D])/T ]

=

∫
D[{xi}] exp[−H0,entr.[xi]/T ] exp[−(H0,s.sc.[xi] + Hdis+i.a.[xi])/T ]

=

∫
D[{xi}] exp[−(H0,entr.[xi] + H0,s.sc.[xi])/T ] exp[−Hdis+i.a.[xi]/T ]

=

∫
D[{xi}] exp[−H0,l.sc./T ] exp[−Hdis+i.a./T ]

and additivity of small scale and entropic stiffness seems at least very plausible. Hdis.+i.a. stands

here for the disorder coupling of the lines and the line-line interactions.

Next we come to disorder strength. In the continuum theory it is measured by the disorder

variance ∆, see Eq. (3.43). What is the corresponding quantity in dimer language? Noting the

fact that 1/T 2
d is the variance of the reduced random bond energies in the dimer model, a first

guess would identify the dimensionless strength of the continuum disorder potential
√

∆/T with the

dimensionless inverse dimer temperature 1/Td. Allowing for the disorder correlation length ξd, which

acts as a cutoff in the continuum model, to differ slightly from the cutoff b in the discrete dimer

model, we have
∆

T 2
=

ξd

b

1

T 2
d

. (3.55)

A closer look at the models, however, suggests a modification to this mapping in the isotropic case

with random energy on both horizontal and vertical bonds. In the dimer model the random energy

collected by a given line is clearly proportional to its number of segments, i.e., the line length. In the

continuum model, this is not the case. Disorder energy is written as the coupling of the line lattice

density ρ(x, z) =
∑

i δ(x − xi(z)) to the disorder potential

Hdis =

∫
dxdz V (x, z)ρ(x, z) =

∑

i

∫
dz V (xi(z), z).

The disorder energy is not an integral over the arclength of the lines but over the z-coordinate.

Therefore, disorder energy is proportional to the length projected onto the z-direction and not to the

actual length and, as a consequence, a given dimer disorder corresponds to larger continuum disorder

than assumed by Eq. (3.55). Fortunately, with the annealed disorder average of the free energy there

is a quantity – the only one we can think of – that can be calculated analytically in both models.

It may be used for the calibration of disorder strength. The calculation for the continuum model is

straightforward whereas in the dimer model it is more involved but viable in the isotropic case. The

details are given in Appendix 5 and one finds by comparison

∆

T 2
=

ξd

b

2

T 2
d

{
1 − 2GT 2

d

π
+

2T 2
d

π

∫ e−1/(2T2
d )

0

dx
arctanx

x

}
(3.56)
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model density stiffness disorder system size

vortex lattice ρ = 1/a g/T ∆/T 2 Lx, Lz

isotropic dimer model 1/(2b) 2/b 2ξd/T 2
d

√
Nb = Lx = Lz

16KT
ag

dimer model,

horiz. energies ε̃h = 0 ” 2/b ξd/T 2
d ”

dimer model,

ε̃h > 0, nonrandom ” π
2b arctan[e−ε̃h ]

” ”

Table D.2: Relation between parameters of the vortex lattice and the dimer model with random, zero or

finite nonrandom horizontal bond energies.

with Catalan’s constant G = 1 − 1/32 + 1/52 − 1/72 + · · · ' 0.915966. Note the overall factor of

two as compared to the first guess of Eq. (3.55) in agreement with the above argument concerning

arclength vs. projected length. The contribution of the latter two terms in the bracket crosses

over at Td ' 1 from zero at small Td to ' 0.25 at large Td. This exact relation has been derived

for one special observable and it should not be expected to hold likewise strictly for other physical

quantities under consideration. Rather, to every observable in each of the models the modes around

the short-scale cutoff, in which the model descriptions differ, contribute with different weight. The

one free parameter ξd/b relating a continuum model to a discrete model will therefore be considered

as an observable-dependent fitting parameter. It should, however, not turn out to vary dramatically

around its expected value of order unity.

Below, simulations of both the isotropic dimer model and the dimer model with no energies on the

horizontal bonds (ε̃h = 0) will be compared to theory. For the former, Eq. (3.56) will be used

as disorder strength mapping (occasionally without the small correction terms) while for the latter

Eq. (3.55) proves to fit very well, as here random energy in both models is collected only on vertical

segments of a line.

The manipulation of the line stiffness and possible generation of a microscopic g via finite nonrandom

horizontal bond energies ε̃h > 0 promises to be very interesting in many respects as is argued below.

It has, however, not yet been simulated. For an analysis of these effects we have to refer the reader

to a future joint publication with Zeng and collaborators, which is in preparation.

3.2 Thermodynamics

3.2.1 Large scale equivalence

In the dimer model the correlations of the height profile hij of model B can be determined very

accurately. The quantity δh(r) = h(r)− 〈h(0)〉 measures the height relative to its thermal average,

which may be nonzero in a disorder dominated pinned phase. Renormalisation group predicts (for a

review see Ref. [NS00]) for the disorder averaged correlation function

C(r) = 〈(δh(r) − δh(0))2〉 =
1

2πK
ln(|r|/b),

i.e. logarithmic growth on large scales, irrespective of the value of 〈h(0)〉. A possible transition from

a glassy low temperature phase with 〈h(0)〉 > 0 to a free thermal phase with 〈h(0)〉 = 0 therefore is
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not reflected directly in this correlation function. However, the prefactor 1/(2πK) will be of interest.

The stiffness K here is the large scale stiffness, renormalised by entropic contributions from thermal

and disorder fluctuations on smaller scales. It can be calculated exactly from the RBA free energy

Eq. (2.32). First one uses the thermodynamic definition of the compression modulus Eq. (2.23)

c11 = a
∂2

∂a2

(
a f(a)

)
(3.57)

and then relates this quantity via the mapping given in Eq. (3.50) to the isotropic stiffness K

K =
π

16

(
1 +

ag∆

π2T 3

)1/2

.

Note that due to the linear dependency of the single line free energy on the density ρ = 1/a only

the interaction terms in the free energy Eq. (2.32) contribute. The comparison of the numerical

data to the above predicted functional form are shown in Fig. D.11 for the original dimer model,

and in Fig. D.12 for the model with ε̃h = 0. Disorder mappings are chosen respectively as explained

above. The agreement is very good over orders of magnitude, while the full disorder relation from the

comparison of annealed averages seems to fit better than the simple version. We emphasise that the

validity of the replica Bethe Ansatz calculation with its analytical continuation to n = 0 is strongly

confirmed by the excellent agreement. Interestingly no deviation is found in the large disorder, i.e.,

low Td limit. The condition for the validity of the Bethe Ansatz calculation, Eq. (2.35), translates

for g/T = 2/b and ∆/T 2 = 2ξd/T 2
d (ξ is henceforth always measured in units of b) to

Td � T ∗
d = ξd

√
2
gb

T
= 2ξd. (3.58)

Thus, below Td ' 2 one would have expected the comparison not to work out well as there the

assumptions in the Bethe Ansatz cease to be valid. An explanation for the excellent fit even in this

region is that the true T ∗
d for the dimer problem with no nonrandom energy om the horizontal bonds

is, in fact, vanishing due to a vanishing microscopic stiffness gs.sc., see the considerations in Section

3.1.3, that should be used in Eq. (3.58). This argument is consistent with the comparison of the free

energy, where the agreement is excellent if the microscopic stiffness in the single line free energy is

set zero. A check of the conjecture should be possible with simulations for horizontal dimer energies

ε̃h > 0.

In the pure limit Td → ∞, the stiffness approaches the value K = π/16 in agreement with the exact

calculation for the nonrandom dimer model [Hen97] and the free fermion mapping for noncrossing

lines. Hence, the dimer model obviously simulates a system of noncrossing lines most accurately.

The value K = π/16 is of physical significance as shown by the RG scaling dimension of disorder for

the RFXY model10 Eq. (3.48),

λ∆ = 2(1 − π/16K−1). (3.59)

The limiting value of K = π/16 indicates that infinitesimal disorder is marginal and that the system

is on the borderline between a glassy and a thermal free phase. As we have also seen above, any finite

amount of disorder leads to an increase in K which in turn renders disorder a relevant perturbation

leading to a glassy phase. It is therefore no surprise that only the low temperature glassy behaviour

10Note that the value Q = 2π/4 of model D is explicitly used here.
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has been found in correlation functions that do depend qualitatively upon the phase [ZLH99]. The

conclusion about the absence of the glass transition is confirmed although not the whole parameter

space is tested by the isotropic dimer model with a fixed density of lines and a given line stiffness.

If, however, one can tune the stiffness by the nonrandom energy on the horizontal bonds, a change in

g/T and ∆/T 2 can be attributed to any change of two out of the three physical parameters g, ∆, T

while we expect the limiting value of K = π/16 not to change with the modified stiffness (it drops

out, see Eq. (3.57)). Hence one can convince oneself that the thermally free phase, which would

require K < π/16 is not reached for g, ∆ and especially no temperature T .

3.2.2 Free energy, internal energy and entropy

We now come to a direct comparison of fundamental thermodynamic quantities. We start with the

disorder averaged free energy F = −T lnZ. Due to the different meanings of temperature in the

line and dimer context we will focus on the logarithm of the partition function ln Z. When relating

the systems we have to keep in mind that for a fixed disorder configuration the dimer energy differs

from that of the discrete line configuration which it is mapped onto by the random energy of the

reference state, see Eq. (3.45). Therefore, we expect the quantities

ln Zd + Eref/Td ↔ ln Zl = −Alinesfl/T (3.60)

to correspond, i.e., to obey the same disorder distribution in the thermodynamic limit. In the disorder

average ln Zd + Eref/Td the reference energy does not contribute as the bond energies are drawn

from a Gaussian distribution with zero mean. Higher moments, however, contain contributions of

the Eref-term in the above relation.

Volumes of the discrete and the continuous model are related according to Eq. (3.52)

Ad = (Lb)2 = Al
16K

a

T

g
= LxLz

π

a

T

g

(
1 +

ag∆

π2T 3

)1/2

and the line free energy density fl is given by Eqs. (2.32), (2.33). The energetics and configurations

of individual lines in the two models differ heavily on small scales. We thus cannot expect the disorder

independent part in the single line free energy to be reproduced in the numerics, therefore the disorder

independent contributions in fl are combined such that in the pure limit the exact dimer result is

matched. In this pure limit, the partition functions of the dimer model just counts the complete

dimer coverings of the square lattice. This is a complex combinatorial problem as any flip of one

dimer may necessitate a cascade of flips throughout the system. Nevertheless, the result is exactly

known to be

L−2 ln Zd

∣∣∣
Td=∞

=
G

π

in the thermodynamic limit [Kas61] with G = 1− 1/32 + 1/52 − 1/72 + · · · ' 0.915966 is Catalan’s

constant. The continuum line model parameters are translated to the dimer model along Table D.2

and for the model with no random energy on the horizontal bonds we get

ln Zd = L2
(
π2 +

gb

T

2ξd

T 2
d

)−1/2
(

G +
1

T 2
d

(1 − ξd

2
) − gb

T

ξ2
d

12T 4
d

)
. (3.61)

Here the disorder parameter relation ξd/T 2
d = ∆/T 2 has been used, which should be chosen if

the anisotropic dimer model with random energy only on the vertical bonds is simulated. If the
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vertical and the horizontal bonds carry random energy but no constant energy one should replace

1/T 2
d → 2/T 2

d (modulo correction terms of Eq. (3.56)), as explained above. The square root factor

of Eq. (3.61) stems from the volume rescaling and the T −2
d term in the second parenthesis comes

from terms proportional to disorder in both the single line free energy and the interaction part. The

last term ∝ T−4
d comes from the term ∝ ∆2 in the single line free energy Eq. (2.33).

We compare the formula to numerical data for the case ε̃h = 0, i.e. gb/T = 2, and find that it does

not fit the data at all. However, dropping the T−4
d -term, we get the plot Figs. D.13 and the plots

Figs. D.14, D.15 for the isotropic dimer model. Only the large-Td limit was fixed, yet the agreement

is excellent over orders of magnitude down to small dimer temperatures.

Where is the ∆2-term? In Eq. (3.61) we had not immediately replaced the line stiffness with a value

on purpose. Given a scale dependent stiffness, the two occurences of g in the above formula in fact

differ. In the square root, the stiffness must be the large scale effective stiffness gb/T = 2 as it comes

from the rescaling of the sample volumes. The single line free energy, however, which accounts for

the second occurence of g, is calculated in a quantum mechanical framework where g corresponds

to a mass m, see Table D.1. This mass must surely be defined on microscopic time scales, as the

quantum mechanical time evolution is determined from it. Now, in the simulations presented here

– the isotropic model and the one with random energies only on the vertical bonds and no energy

on the horizontal ones – no microscopic stiffness is generated, i.e., gs.sc. = 0 as argued in Section

3.1.3. Hence the T−4
d -term drops out of Eq. (3.61). This explanation is consistent with the very

good agreement between RBA formulas and dimer simulations down to Td = 0 with no indication

of a finite T ∗
d = ξd

√
2gb/T below which the quantum mechanical RBA calculation should become

invalid. Here again the vanishing microscopic stiffness enters.

In order to confirm these considerations unambiguously, it would be very interesting to study the

case of finite nonrandom energies ε̃h > 0 on the horizontal dimer bonds. One could then check for a

crossover at a then finite T ∗
d and the effect of the single-line T−4

d -term, which becomes of the order

of the T−2
d -term at T ∗

d . Moreover, at low dimer temperatures the dimer free energy −Td ln Zd for a

given disorder configuration would not simply approach a ground state energy that is independent of

Td and thus trivially account for ln Zd ∼ T−1
d . Rather a new compromise between the Td-independent

reduced elastic energy and the disorder energy would have to be found at every value of Td which,

we recall, acts as disorder strength. The resultant scaling of ln Zd ∝ T−α
d with unknown exponent

α could be compared to the prediction α = 4/3 implied by the replica symmetry breaking solution

by Korshunov and Dotsenko [KD98].

Other thermodynamic potentials like the entropy and the internal energy of the dimer model

Sd = − ∂

∂Td
Fd =

∂

∂Td

(
Tdln Zd

)

Ud = Fd + TdSd

are easily calculated from the RBA solution. In the simulations, the internal energy Ud =
∑

D p(ij)εij

with the disorder-configuration-dependent occupation probability p(ij) of bond (ij) can be obtained

quite easily since the polynomial algorithm allows to calculate the probabilities p(ij). The entropy

is obtained by subtraction. A comparison of the numerical internal energy and entropy with the

analytical formulae is given in Figs. D.16, D.17. Again, we use as only fit parameter the ratio between

disorder correlation lengths in the two models ξd/b and find excellent agreement for ξd/b ' 1. The
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slope of Sd at Td = 0 is calculated from Eq. (3.61) to be

L−2 ∂

∂Td
Sd

∣∣∣
Td=0

=
G

ξ
1/2
d

− π2

8ξ
3/2
d

(
1 − ξd

2

)
, (3.62)

and matches the simulation very well.

Summarising, the quantitative agreement between theory and simulations is very satisfying and for

the thermodynamic potentials it is even more surprising than for the large scale stiffness. The latter

is expected to show universality in the sense that it does not depend on microscopic details of the

model while the former get contributions from all scales. A priori, the modes around the cutoff which

is implemented, of course, differently in the continuum theory and the lattice model might have

been expected to dominate and lead to incompatible results. This is not he case. Rather, the model

differences on small scales can be accounted for by the single dimensionless fit parameter ξd/b.

3.2.3 Higher moments

Only the linear coefficient in n, i.e. the average free energy, of the solution to the Bethe Ansatz

equations (2.31a), (2.31d) is known exactly. Higher cumulants describe sample to sample fluctuations

in experimental setups of mesoscopic dimensions while for macroscopic systems their scaling will give

information on the selfaveraging behaviour. The cumulants can be given analytically only in the

strong disorder or dilute limit ldρ = ρ/c � 1, c = ∆g/T 3 in a double expansion in small (n, ldρ)

[EK01]

ln Zn =
∑

j

(−n)j

j!

F j
c

T j
= −LxLz

2

( ∆

T 2

)3( g

T

)2 { n

12
(1 − n2)ldρ + n(ldρ)2

− 4

3π
n2(ldρ)3/2 +

(
1

6
− 1

π2

)
n3ldρ + h.o.t.

}
. (3.63)

The disorder independent part of the single line free energy is dropped in the last equation as it cannot

be calculated unambiguously in the path integral description. The first term in the parenthesis of

Eq. (3.63) ∼ ρ describes the disorder contribution to the single line free energy cumulants while the

following terms stem from interactions. They contain disorder dependent and independent parts,

i.e., steric and entropic terms. In order to compare the RBA results for the cumulants (or moments)

to the dimer model ones over the whole range of disorder strength, we look for the solution ρ(k) of

the RBA Equations (2.31a), (2.31d) numerically. From ρ(k) the ground state energy of the quantum

problem is calculated with Eq. (2.31c)

E0 =
T 2Lxc2ρ

24g
n(1 − n2) +

nT 2Lx

2g

∫ K

−K

dk k2ρ(k)

which immediately gives us the generating functional for the cumulants Eq. (2.30)

ln Zn = −E0(n)Lz

T
+ n

Lx

a
ln Z0.

Our approach is straightforward: Ultimately, we are interested in the coefficients of E0(n) written

as a power series in the replica index n with disorder strength c = g∆/T 3 as a parameter. The

comparison with the dimer model will consist in a comparison of these coefficient under variation
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of disorder. We thus have to solve the coupled equations (2.31a), (2.31d) for ρ(k) at fixed c and

calculate E0(n) according to Eq. (2.31c). What we can do is write Eq. (2.31a) in the form

y =
1

n

∫ 1

−1

dy′ gn[
K

c
(y − y′)]ρ̃(y′) (3.64)

with y := k/K, ρ̃(y) := ρ(Ky) and gn[x] = 2
∑

m≥0 arctan[nx/(m2 +nm+x2)]. At fixed K/c, the

dimensionless function ρ̃(y) is computed by the inversion of the discretised integral equation. This

inversion is quite delicate since the present kind of inverse problem is extremely badly conditioned.

On the details of the numerical inversion, see below. With the solution we can calculate

ρ

K
=

∫ 1

−1

dy ρ̃(y).

The dimer model density ρ = 1/(2b) fixes K and we finally know which value of c had been implied

by our initially chosen K/c. In this approach we cannot – due to the coupling of the BA equations –

modify n and c independently. A modified n implies a modified K, which results in a different value

of c. We ought to adjust the parameter K/c in Eq. (3.64) upon change of n such that c remains

constant. In practice, this is realised by the simple but time-consuming method of nested intervals.

The integral equation (3.64) falls into the class of inhomogeneous Fredholm equations of the first

kind. Its numerical inversion is notoriously difficult [PFTV93]. The reason is simple: Integration with

a regular kernel acts as a smoothing process. The integral over the well behaved solution will differ

only slightly from the integral over a suitable heavily oscillation function. In any discretisation and

numerical treatment unavoidable errors will lead to very large errors in the approximate solution. If

b = A a (3.65)

represents the discretised version of Eq. (3.64) with a the solution and b the known left hand side

of the integral equation then the discrete version A of the integral kernel is a very badly conditioned

matrix, i.e., many of its entries are of the same order of magnitude. Upon inversion errors are heavily

amplified. In practice, inversion theory becomes an optimisation problem [PFTV93]. ’Smoothness’ (or

maybe some other a priori information on the solution) has to be traded off against exact agreement

– ’sharpness’ – with the left hand side. This may sound more arbitrary than it is in our case.

Different from the problem of modelling a finite set of statistical data we can increase the number of

discretisation points at will. Convergence of the solution with a finer grid allows us to find the unique

solution. To become specific: The way we enforce smoothness of the approximate solution is the

well known linear algebra method of singular value decomposition (SVD) [PFTV93]. Consider the

set of linear equations 3.65. What SVD will do for us is find either (a) the solution a with minimum

modulus |a| =
∑

i ai if the solution is degenerate, or (b) the vector a which minimises |b −A a| if

A cannot be inverted. We make use of case (a) and choose in the discretisation the dimension N

of the left hand side vector b smaller than the dimension M of a. For a good convergence of the

resulting approximate solution, the numerics show that a factor of M/N ' 2 puts the appropriate

weight on a small modulus, by which large oscillations are suppressed and smoothness of the solution

is assured.

The kernel Eq. (2.31b)

gn(x) = 2
∑

m≥0

arctan[
nx

m2 + nm + x2
]
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is antisymmetric. This implies ρ(k) = ρ(−k) and allows to restrict the integral to positive values of

k′

nk =

∫ K

0

dk′ ρ(k′) {gn[(k − k′)/c] + gn[(k + k′)/c]} .

A factor of 2 in computation time at a given discretisation level is gained.

The following properties of the kernel gn(k/c), plotted in Fig. D.10, are noteworthy:

• A jump at k = 0: limx→±0 gn(x) = ±π.

• In both limits c → 0 and n → 1, gn(k/c)/n → π sgn(k). This is of course the free fermion

limit with ρ(k) = 1/(2π), K = kF = π/a and E0 =

�
2Lxπ2/(6ma3). In these limits all of

the terms in gn(x) contribute. Numerically, this has been accounted for by an extrapolation

routine for the evaluation of the kernel at the discretisation points.

• In the limit n → 0 only the first order in n of gn(x) contributes. The resulting integral

equation has also been derived in the context of a single polymer in disorder which maps on

1D interacting bosons [Kar87] and can be solved analytically to give the average free energy

of Eq. (2.32) [EK01, EB03].

• c stretches gn(k/c)/n along the abscissa, n does so along the ordinate. The change of the

kernel ∆gn(y)/n over a discrete step ∆y increases with 1/(nc). In order to keep up a given

level of accuracy, 1
n∆gn(y)/∆y has to remain fixed. The number of discretisation points thus

has to increase like 1/(nc). We are unfortunately interested in small n as we want to extract

the Taylor coefficients of E0(n) at n = 0 and moreover in small c as the result for large c is

known analytically.
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n = 0.2, c = 0.2
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g
n
(k/c)/n

k

Fig. D.10: The kernel gn(k/c)/n of the BA integral equation; k, c in units of b−1.

The above described solution scheme was implemented in the programming language C with the

use of Numerical Recipe routines [PFTV93]. The data for the lowest disorder values, see Table D.3,
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disorder c Enum
1 [±0.5%] Eexact

1 Enum
2 [±5%] Epert

2 Enum
3 [±15%] Epert

3

0.1 0.437 0.4364 -0.0279 -0.00479 0.0012 0.00033

0.5 0.537 0.5362 -0.137 -0.0531 0.011 0.0082

1 0.661 0.6612 -0.290 -0.1501 0.040 0.0327

1.5 0.786 0.7863 -0.448 -0.2756 – –

2 0.911 0.911 -0.65 -0.424 0.16 0.131

3 1.16 1.161 -1.07 -0.780 0.35 0.294

5 1.65 1.661 -2.03 -1.678 0.86 0.817

7 2.16 2.161 -3.28 -2.779 1.92 1.60

10 2.91 2.911 -5.32 -4.745 3.7 3.27

12 3.40 3.411 -6.81 -6.24 4.9 4.70

20 5.41 5.411 -14.25 -13.42 14 13.1

25 6.65 6.661 -19.5 -18.76 23 20.4

30 7.89 7.911 -25.6 -24.66 32 29.4

40 10.39 10.411 -39.4 -37.96 61 52.3

50 12.90 12.911 -54.6 -53.05 95 81.7

75 19.14 19.161 -97.7 -97.46 187 183.8

100 25.35 25.411 -151.4 -150.05 357 327

200 50.34 50.411 -423 -424.41 1360 1307

Table D.3: Data for the determination of the free energy cumulants. Given are the coefficients of Ẽ0(n),

see Eq. (3.67) as obtained by the numerical solution of the Bethe Ansatz equations (num.). The disorder

parameter c is written in units of b−1, the coefficients in units of b−3. The superscript ’pert’ stands for values

from the perturbative solution Eq. (3.63). The errors given relate to the least accurate values at small c. For

large c the errors decrease.

needed the highest discretisation level and consumed about 200h computation time on a 2GHz

processor for the determination of the cumulants at fixed disorder c. A typical plot of ρ̃(y) is given in

Fig. D.18 and a plot of E0 (in units of 2mb3/(

�
2nLx)) against n is given in Fig. D.19. The Taylor

coefficients of E0(n) are obtained by repeated extrapolation to n = 0, subtraction of this value from

the finite-n ones and division over n. This straightforward procedure is the best we could think of but

still very error-prone. While the desire for a small extrapolation error requires having points as close

as possible to n = 0, a simple calculation of error propagation shows that the error of a given data

point at finite n goes as n−2k∆E0, where k stands for the order of the Taylor coefficient and ∆E0

for the original error of the data. We therefore could extract reliable values only for cumulants as

high as k = 2, 3, 4. Moreover, the perturbative strong disorder solution for the cumulants Eq. (3.63)

indicates that with increasing disorder c the Taylor coefficients decrease faster with the order. Their

error will thus at small disorder be quickly of the size of the value itself. Again we find that the

numerical computation for large c is easier just like the analytical calculation in this limit. The

reliability of the numerics can be checked in limiting cases where analytical results are available. The

limit of small c or n → 1 should give the free fermion constant density ρ(k) = 1/(2π). In Fig. D.20,

a plot of the numerical solution in this case is shown, the agreement is very good. For n → 0, the
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density can be given perturbatively in K/c [EK01] as

lim
n→0

ρ(k) =

√
1 − k2

K2

{
1

2π

K

c
− π

24

(
K

c

)3

+ O
(
(K/c)5

)
}

. (3.66)

We compare the numerical solution for n = 0.001 and K/c = 0.1 with the above formula in Fig. D.21,

again the result is satisfactory. We can also check against the exact results for the average free energy,

i.e., the coefficient of the linear term, and the strong disorder limit of the cumulants, see Table D.3

and the plots below. In Table D.3 the coefficients {Ej} of

Ẽ0(n) :=

∫ K

−K

dk k2ρ(k) = K3

∫ 1

−1

dy y2ρ̃(y) =
∑

j≥0

Ej+1n
j (3.67)

are given in units of 1/b3 for various values of c. Note that we have shifted the index in the series

in order to point out that the pth cumulant can be calculated from Ep.

For the comparison with the dimer model, we focus on the moments of the logarithm of the partition

function rather than the free energy due to the different meaning of the temperatures in the two

models. The cumulants

(ln Zl)
p
c =

∂p

∂np
ln Zn

∣∣∣
n=0

(3.68)

can be read off from the partition function of the replica problem, here given in terms of the coeffi-

cients of the numerical RBA solution

ln Zn =
∑

j≥1

(−n)j

j!

F j
c

T j
= −LzLx

ρg

24T

( ∆

T 2

)2
n(1 − n2) − LzLx

nT

2g
Ẽ0(n). (3.69)

For the variance (2nd cumulant) and the skewness (3rd cumulant) we write the explicit formulas

together with the expressions from the perturbative BA solution Eq. (3.63)

(ln Zl)2c =





−Al
T

g
E2 full BA solution

Al
4

3π

( ∆

aT 2

)3/2( g

T

)1/2 → Al
2

3π

ξ
3/2
d

T 3
d

perturbative

(3.70)

(ln Zl)3c =





6Al

{( ∆

T 2

)2 g

T

1

24a
− T

2g
E3

}
full BA solution

6Al

( ∆

T 2

)2 g

T

1

2a

{ 1

12
−
(1
6
− 1

π2

)}
→ Al

3ξ2
d

T 4
d

( 1

π2
− 1

12

)
perturbative

(3.71)

The parameter mapping for the case of no energy on the horizontal bonds ε̃h = 0, gb/T → 2,

∆/T 2 → ξd/T 2
d , a → 2b, has been applied to the perturbative solution. One more point should be

kept in mind for the comparison, that is the rescaling of the volume Eq. (3.52)

Al/Ad =
ag

πT

(
1 +

ag∆

π2T 3

)−1/2 → 4

π

(
1 +

4ξd

π2T 2
d

)−1/2
,

where the mapping again assumes the case ε̃h = 0.

In the comparison below, we plot the quantity

(ln Zl)
p
c/Ad = (ln Zl)

p
c/Al × Al/Ad = (ln Zd + Eref/Td)

p
c/Ad.
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It should be noted that for higher moments the energy relation Eq. (3.45) that brings in the reference

energy in the above relation has to be remembered, while in the average free energy its contribution

had been disorder-averaged to zero.

In replica theory the cumulants of random thermodynamic quantities appear naturally, while in

simulations the moments are immediately accessible. The cumulants are polynomial combinations of

the moments of the respective random variable. If the generating functional of the moments {mp}
is

M(n) = 1 + nm1 + n2 m2

2!
+ n3 m3

3!
+ . . . ,

then

K(n) := ln M(n) = nκ1 + n2 κ2

2!
+ n3 κ3

3!
+ . . .

generates the cumulants {κp}. The lowest cumulants expressed in terms of moments are

κ1 = m1

κ2 = m2 − m2
1

κ3 = m3 − 3m1m2 + 2m3
1

κ4 = m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1. (3.72)

From the dependence of Eq. (3.69) on the system size Al = Lx ×Lz it follows immediately that all

of the free energy cumulants scale linearly in Al. Apart from the average free energy, the reduced

cumulants κp/κp
1 = F p

c /F
p

hence vanish in the thermodynamic limit as F p
c /F

p ∼ A1−p. This is

nothing but the central limit theorem (CLT) at work: The distribution of the free energy becomes

infinitely sharp in the limit of large systems. In other words, the vortex line array is self averaging

which in light of the infinite correlation length reflected by logarithmic correlations had not been

evident a priori. For the numerical determination of the cumulants the following problem is entailed.

Immediately accessible in the simulations of the dimer model are the moments mp of the free energy

distribution. They scale with the system size like mp ∼ Ap. Looking at Eqs. (3.72), we see that the

cumulant of order p has to be calculated as the sum of terms that grow by a factor Ap−1 faster with

the system size. Therefore, at a given accuracy of the dimer data, which primarily depends upon

the number of disorder realisations, a limit is set to the system size up to where cumulants can be

obtained in a reliable way. This maximum system size decreases with the order of the cumulant as

the scaling Ap of the terms on the r.h.s. of Eq. (3.72) shows. On the other hand, finite size effects

have to be minimised as well and, as a consequence, only the variance and the third cumulant can

be obtained from the dimer data reasonably.

Figs. D.25 and D.26 are used to determine the maximum size L up to which the second moment

should be compared. The data of the moments produced by the group at Washington have an

accuracy of approximately 10−5. Plot D.25 shows that only for sizes L
�

64, the second cumulant

of the free energy can be trusted for the range Td = 0.01..10. Fig. D.26 demonstrates how the data

for sizes L = 128 and L = 256 deviate at large Td from the reliable data for L = 16, 32, 64. The

overlap of the small sizes excludes the deviation of the large ones to be a finite size effect.

We therefore compare the variance of the free energy (Zl)2c/L2 (where L2 is the dimer volume)

as obtained in the dimer model for L = 64 to the new numerical solution of the RBA equation in

Figs. D.22, D.23. With the only fitting parameter ξd ' 0.8 the agreement is very good. Note the
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very small but consistent deviation of both the dimer results and the numerical BA solution from

a pure power law, which is a straight line in the logarithmic plot of the figures. In Fig. D.24 the

data for the dimer system size L = 256 are plotted both against the numerical BA solution and

the perturbative analytical solution of Eq. (3.63). The perturbative solution is good only for dimer

temperatures Td

�
1, as expected. The misfit between the numerical BA solution and dimer data

is due to the above described numerical errors in the simulation for the large system. Fig. D.27

serves as a demonstration of the negligible size of the cumulants with respect to the moments. The

moments are fitted with the respective powers of the analytical expression for the first moment only,

this amounts to setting all the cumulants apart from the average to zero. The misfit cannot be

detected on the given scale.

The third cumulant – or skewness – of the partition function (Zl)3c/L2 is compared in Fig. D.28.

The dimer data are to be trusted only for the small system L = 16 and here only for Td

�
1, as

demonstrated in Fig. D.29. In this range, no substantial deviations from the perturbative evaluation

of the cumulant Eq. (3.71) is expected. Indeed, the agreement between theory and simulation is

again very good, see Fig. D.28, with xid = 0.8. Although the data from the numerical solution of

the full BA equation have an error of only ∼ 15%, they are of no use. The reason is the following. In

Eq. (3.71), first line, the size of the second term with numerically determined values E3 is throughout

the parameter range about 85% of the first term. Since the terms are subtracted, the original error

of 15% becomes an error of ∼ 100% in the final expression for the third cumulant. For the moment,

not much is lost since the perturbative solution could not have been improved considerably in the

range Td

�
1 which is set by the dimer numerics at hand.

It must be noted that in order to fit the third cumulant, the term ∼ n3 from the term ∼ n/12(1−n2)

in Eq. (3.63) was essential, otherwise not even the sign of the cumulant would have matched. Now

this term ∼ (g/T )(∆2/T 4)n/12(1 − n2) in ln Zn is proportional to the density and essentially the

single line result of Ref. [KN85]. The part ∼ n stemming from here we dropped in the discussion of

the average free energy because we could not find the predicted power of disorder ∆2 and we argued

that this term is ineffective due to a vanishing microscopic stiffness gs.sc./T = 0. This argument

seems a little debatable from the present perspective. Maybe even the relica solution for the single

line problem has to be reconsidered.

3.2.4 Response functions

The disorder averaged specific heat of the isotropic dimer model with random energy on horizontal

and vertical bonds

cd = L−2Td
∂

∂Td
Sd (3.73)

= L−2 ∂

∂Td
Ud = L−2Td

∂2

∂T 2
d

(Tdln Zd) (3.74)

can be measured in the isotropic dimer model via the thermal fluctuations of the dimer energy

cd = L−2 〈H2
d 〉 − 〈Hd〉2

T 2
d

. (3.75)
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From the Bethe Ansatz free energy Eq. (2.32) (again without the ∆2-term in the single line free

energy) it is calculated easily by taking the derivatives after the mapping ∆
T 2 = 2ξd

T 2
d

cd = 2Td
T 2

d π2(2π2 − ξdπ
2 − 4ξdG) + 4ξd(π

2ξd + 16ξdG − 2π2)

(π2T 2
d + 8ξd)5/2

. (3.76)

This formula compares very well to the simulations, see Fig. D.31 where the value of ξd = 0.98 is

chosen.

If the agreement was only due to to special values of fitting parameters and not based on the identity

of the models one would need a parameter for each of the following, at least: the position and height

of the maximum, the slope for small Td, the position and value of the turning point beyond the

maximum. There is, however, only one fitting parameter ξd in Fig. D.31. Also note that the dimer

specific heat probes for the agreement of the two models predominantly in the region around Td ' 1

– the drop to zero for small and large Td being generic rather than specific –, so it can be considered

complementary to the free energy, which tested for amplitude and exponent at small Td while the

large Td (or pure) limit was fixed by hand to the exactly known result, see Section 3.2.2.

The linear low temperature behaviour of the specific is typical of random systems and can easily

be understood by looking at the lowest-lying excitations on a given scale `. On each scale, for a given

disorder environment the groundstate (with zero energy) and the lowest excitation (with energy E)

form a two level system (TLS), whose specific heat is

c`,E =
∂

∂T

Ee−E/T

e−E/T + 1
.

The excitation energies obey now a disorder distribution p`(E) and the contribution to the average

specific heat from each scale is

∆c` L2 =

∫ ∞

0

dE p`(E)c`,E .

For a finite density of excitations at small energies, limE→0 p`(E) > 0, the specific heat as a

superposition of exponential laws from each scale will be linear at T = 0, which is the famous insight

of Anderson et al. [AHV72]. Integration over all lengthscales with the density of excitation (not

distinguishing energies) p(`) allows to write the specific heat as

c =

∫ L

0

d` p(`) ∆c`,

which becomes exact in the limit T → 0. Now the low lying excitations, or secondary minima, are

the central quantity of droplet theory – originally developed in the field of spin glasses [FH87, FH88]

– namely the droplets. For their disorder distribution function, a scaling ansatz

p`(E) ' 1

γ`Θ
p̃
( E

γ`Θ

)

with γ a constant and Θ = d − 2 + 2ζ, ζ being the roughness exponent of the problem under

consideration, has repeatedly been suggested [FH88, NS00]. In our case of the dimer model, d = 2

and ζ = 0, see the logarithmic roughness in the line array, and one expects logarithmic corrections

to the scaling ansatz.
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From the finite size scaling of the specific heat one can hope to obtain information on the droplet

distribution as with growing size larger droplets will fit into the system. However, these bulk droplets

seem to be dominated by the system boundaries. The number of the secondary minima on the

boundaries scales like the linear size L giving a 1/L-decay (instead of growth from bulk droplets) in

the specific heat. Low-lying excitations on the boundary can be easily identified. Consider a bond

on the boundary that is occupied in the groundstate. A configuration that does not cover this very

bond may remain unchanged on all the other bonds since simulations are done with open boundary

conditions. The missing energy on the bond is the excitation energy, whose probability distribution,

however, is nontrivial. It is the probability pocc(E) that a boundary bond carries energy E under the

condition that it is occupied. This conditional probability can be related to the conditional probability

that a bond is occupied given its energy pE(occ) = pocc(E)p(E)/p(occ), with p(occ), p(E) being

unconditional probabilities for the occupation and energy εij = E of a bond, respectively. The

latter conditional probability is just the probability p(ij) mentioned above in the measurement of

the internal energy p(ij) = pE(occ). It can be obtained rather easily from the dimer algorithm

and would allow to compute the prefactor of the 1/L-decay in the scaling of the Td = 0-slope of

the specific heat, see Fig. D.30. The smallest excitation in the bulk is likewise easily identified as

the rotation of a plaquette that consists of two opposite dimers. The probability distribution for

the energy difference of the two configurations is, however, not easily obtained. It is complicated

by the condition that the two dimers before the flip must be part of the groundstate configuration.

In the simulations, it should be stressed, statistics of droplet energies can in principle be measured

systematically in the following straightforward procedure. For a given disorder configuration the

groundstate dimer covering is determined. Then the energy of one arbitrary occupied bond in the

bulk is set to infinity and the new groundstate is determined. It will not contain the bond with

infinite energy and hence have higher energy than the original groundstate. The energy difference

E together with the diameter l of the nonoverlapping region of the two groundstates is stored. The

statistics of these pairs of values for many disorder realisations gives the droplet distribution pl(E).

Quantitative support of the scaling prediction of droplet theory is in reach considering the orders of

magnitude over which the dimer model can be simulated.
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Fig. D.11: Plot of K as a function of the dimer temperature Td. The line is the analytical result, the crosses

are from simulations of the original isotropic dimer model; ξd = 1.15.
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Fig. D.12: Plot of K as a function of the dimer temperature Td; ε̃h = 0, ξd = 0.83.
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Fig. D.13: Comparison of the disorder averaged free energy for ε̃h = 0, L = 256, ξd = 1.00; dimer

temperature Td ∼ 1/
√

∆ is inverse measure of disorder strength in the vortex problem.
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Fig. D.14: Comparison of the disorder averaged free

energy; isotropic dimer model, L = 512, ξd = 0.96.
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Fig. D.15: Size dependence of the numerical free

energy density; data for L = 16, 512 compared to

analytical result for the t.d. limit; isotropic dimer

model, ξd = 0.96.
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Fig. D.16: Comparison of average dimer model entropy sd and internal energy ud with only fitting parameter

ξd = 0.98 (entropy) and ξd = 1.00 (internal energy); L = 256, ε̃h = 0.
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Fig. D.17: Entropy and internal energy in logarithmic plot. The lines are analytical curves with ξd = 0.92

for the entropy and ξd = 0.99 for the internal energy; ε̃h = 0, L = 256.
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Fig. D.18: Typical Bethe Ansatz equation solution ρ(k) at 1000 discretisation steps; takes approx. 1h.
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Fig. D.19: Typical plot of the SU(n) fermion groundstate energy Ẽ0 as a function of the replica index n.

The dotted line is the exactly known limit for n → 0, the dashed line is a polynomial fit for small n. The

Taylor coefficients at n = 0 give the free energy cumulants of the vortex line problem.
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Fig. D.20: ρ(k) in the limit c/K → 0. Comparison to the free fermion value ρ = 1/(2π) serves as check of

numerics.
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Fig. D.21: ρ(k) in the limit c/K → ∞. Comparison of data for n = 0.001, c/K = 10, 1000 steps, to the

analytical expression Eq. (3.66) as check of numerics. Mismatch at k/K ' 1 due to finite n, mismatch at

k/K ' 0 vanishes with increasing number of discretisation steps. Small n requires high discretisation level,

the region around k/K ' 0 contributes, however, only weakly to the groundstate energy. For the extraction

of cumulants, higher values of n are used where the mismatch vanishes.
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Fig. D.22: Free energy fluctuations (lnZl)2c/L2. Dimer data (L = 64) and numerical solution of full BA

equation are compared. The dotted line is a pure power law as a guide to the eye only. Dimer temperature

Td ∼ 1/
√

∆ measures inverse disorder strength; ε̃h = 0, ξd = 0.8.
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Fig. D.23: Same as Fig. D.22, smaller range of Td, shows consistent deviation of dimer data and numerical

BA solution from a pure powerlaw at large Td.
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Fig. D.24: Comparison of numerical BA solution for free energy fluctuations (crosses and solid line) to

perturbative analytical solution (dashed line). Diamonds are dimer results which are not reliable for Td . 2,

see Fig. D.25; ε̃h = 0, L = 256, ξd = 0.8.
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Fig. D.25: Second free energy cumulant over second moment for sizes L = 32, 64, 128, 256, 512 as measured

in the dimer model, no analytical curves. Accuracy of dimer numerics is ' 10−5, for L > 64 the accuracy is

not sufficient for the determination of a reliable free energy variance at Td / 10.



94 Planar vortex lattices

L=128

L=256

L=16,32,64

3
Td

(l
n

Z
l
)2 c

/(
ln

Z
l
)2

10
10

−6

10
−5

10
−4

10
−3

1

Fig. D.26: Second free energy cumulant over second moment, normalised to comparison with L = 64;

convergence of data for L ≤ 64, data for L = 128 and L = 256 deviate for large Td due to accuracy

limitations in the measured moments.
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Fig. D.27: Fit of moments p = 1 . . . 4 of the disorder distributed free energy (lnZd)p with powers of the

analytical expression for the first moment; ε̃h = 0, L = 256. The mismatch between fit and curve (not

visible at given scale) is proportional to size of cumulants. The relative vanishing of cumulants as expected

from CLT is demonstrated.
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Fig. D.28: Third cumulant of free energy (ln Zl)3c/L2, comparison of dimer model (diamonds) to analytical

perturbative results (full line); dimer data are not reliable for Td . 1, see Fig. D.29; the dotted line is a

powerlaw as a guide to the eye only; ε̃h = 0, ξd = 0.8, L = 16.
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Fig. D.29: Third free energy cumulant over third moment as measured in the dimer model; accuracy of

measured moments insufficient for Td . 1 at L = 16; for L ≥ 32, the accuracy is insufficient for Td . 0.001.

The dotted line gives the numerical accuracy of the third moment.
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Fig. D.30: Slope of dimer specific heat cd at Td = 0 vs linear system size; boundary contributions with

dependency 1/L dominate over bulk droplets of size L and produce 1/L-saturation of the specific heat.
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dimer data for L = 256.
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4 Conclusion

The planar vortex glass (VG) had been well established and thoroughly investigated before. What is

new about our approach and what can be learned? The answer is twofold. First, the exact calculation

of the free energy for the noncrossing line array by a Replica Bethe Ansatz (RBA) [EK01] allows to

address anew the long-disputed question about the existence of a thermally depinned phase above

the VG. We can show that the transition is absent for the given special vortex interaction and argue

that this result holds so much the more for a generalised finite-range repulsive interaction. The latter

conclusion had been under debate and is here reached conclusively for the first time. We also show

that a finite persistence length of the vortices – as opposed to a random-walk-like modelling – opens

a small window for the thermally free phase sharply below the superconducting transition.

Second, the recently discovered mapping of noncrossing lines to the dimer tiling problem of combi-

natorial statistics and a new polynomial algorithm for the latter allow to compare RBA theory and

numerically exact simulations. The details of the mapping to the simulated dimer model had to be

clarified before high-precision numerical data were generated by the collaborating group of C. Zeng.

Huge systems of linear size L ≤ 512 can be treated within days, as compared to most advanced

Monte Carlo simulation sizes L
�

64. The agreement between theory and simulations is not only

qualitatively but also quantitatively excellent for a wide range of observables: the large scale lattice

stiffness; the average free energy, internal energy, entropy; moments of the disorder distributed free

energy; specific heat. For all these, the only fitting parameter ξd varied in agreement with the ex-

pected value of ' 1 in the interval (0.8..1.15).

The RBA calculation with the subtleties inherent to replica theory is on the one hand confirmed

most clearly. On the other hand, simulation results gain weight in questions out of analytical reach.

The new interplay between most recent qualitative advances in analytical and numerical approaches

renders the planar disordered vortex system exceptional since, though being a genuine glass, it is

still ’solvable’ in many aspects and may serve as a model glass system. In view of the wide range

of links between condensed matter systems and dimer tiling problems, e.g., between the Ising model

on a square lattice and dimers on an associated lattice [Fis66], the exact solution of a random dimer

model which is at hand with the RBA results might prove useful in other contexts.
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E. Notes on the Bragg glass

1 List of extensions on formerly published work

In his diploma thesis, the author examined the triangular weakly disordered Abrikosov lattice with its

quasi-long-range ordered Bragg glass phase. The main results had been published as a Letter under

the title “Nonuniversal Quasi-Long-Range Order in the Glassy Phase of Impure Superconductors”

[EBN99]. An extended and detailed version was worked out during the first few months of the doctoral

programme. It is published as “Nonuniversal correlations and crossover effects in the Bragg-glass

phase of impure superconductors” [BEN01] and contains the following main extensions:

• The symmetries of the problem are discussed in detail.

• The size of the basin of attraction of the fixed point is characterised.

• Results about finite scale crossover regimes are stressed.

• The details of the calculations (flow equation, numerical solution, correlations) are given.

• The discussion of order parameters is extended. The positional glass correlation function

and the Ginzburg-Landau order parameter correlation function are included of which a short

summary is given in the next section.

When in 2002 new experimental data on the Bragg glass became available, it was interpreted with no

recurrence to several standard publications on the subject [KJB+01]. In a note [BENS], we pointed

at this fact and suggested the consideration of the nonuniversal large scale behaviour, which could

even improve the agreement between theory and experiment.

In this context the possibility was examined whether the ’smallness’ of the nonuniversal contri-

bution to the Bragg glass exponent might be due to the technicality of the expansion around D = 4.

The rationale lies in the analogy to nonuniversal melting in a pure D = 2 system. In our case,

the exponent is also nonuniversal with respect to changes of microscopic parameters related to the

D = 2 degrees of freedom perpendicular to the magnetic field, i.e., the elastic moduli c11 and c66.

Any extra dimension parallel to the magnetic field might ’dampen’ this non-universality. Physically

this extra dimension is one, of course, while in large parts of the calculation it is set to the value

two, in order to be consistent in the expansion in ε = 4 − D. We reviewed the calculations of

[BEN01] and tried to calculate in D = 3 wherever possible, even if this might mean a slight mixing

of orders of ε. The integrals (BEN01, 3.7) become more complicated but still are practicable. The

Fourier transformation (BEN01, 4.1) can be done easily in three dimensions in the case c44 = c11

(or c44 = c66) and give a modified dependency in the microscopic elastic constants. Different from
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D = 4, however, the result also depends inversely on the short-scale cutoff. The cutoff is anisotropic,

in fact it is proportional to the inverse Larkin length scale in the plane and out of the plane. The

Larkin lengths thus bring in another new dependency on the microscopic elastic constants. Putting

this all together very carefully, we did not find a qualitatively more pronounced nonuniversality.

2 Correlation functions from the RG results

From the RG flow of the effective disorder strength, correlation functions shall be calculated. We

first study the translational order parameter

ΨG(r) ≡ eiGu(r) (2.1)

The pair correlation function

CG(r) = 〈ΨG(r)Ψ∗
G(0)〉 = 〈eiG(u(r)−u(0))〉.

is a measure for the translational order in the system. It is often called translational order correlation

function and its scaling behaviour determines the intensity of the reflection pattern obtained in

neutron scattering, CG(r) is often referred to as translational order correlation or simply ‘translational

order’. Being exact to order ε, the average can be raised to the exponent as if u(r) was Gaussian

distributed [Emi98]. We thus can obtain from the displacement correlations Eq. (4.8) in [BEN01]

the result for the asymptotic scaling regime,

CG(r) ∝ gGLηG(κ)
a (x2 + z2

t )−
ηG(κ)

2(1+κ)

×(x2 + z2
l )−

ηG(κ)

2(1+1/κ) (2.2)

with exponent

ηG(κ) = ∆̃∗(κ)(aG)2

and the geometrical factor

gG = exp

[
∆̃∗(κ)(aG)2

1 + κ

(
(x̂Ĝ)2 − 1

2

)

×
{(

1 − h

( |x|
zt

))
− κ

(
1 − h

( |x|
zl

))}]
.

Our main result on the translational order of the flux line lattice consists in the decay of order

with a nonuniversal exponent ηG(κ). Its dependency on κ, as obtained by the solution to the flow

equation for ∆̃ is shown in Fig. E.1 for one of the smallest reciprocal lattice vectors G = G0 with

|G0| = 4π/(a
√

3). The full decay exponent in Eq. (2.2) is modified by additional κ-dependent factors

due to the anisotropic elasticity leading to different contributions from transversal and longitudinal

modes.

Two limiting cases shall be considered: For z → 0 the result simplifies to

CG(x) ∝ (|x|/La)−ηG(κ)

× exp

{
∆̃∗(κ)(aG)2

1 − κ

1 + κ

(
(x̂Ĝ)2 − 1

2

)}
.
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For κ = 1, the translational order decay is isotropic according to

CG(r′) ∝ LηG(1)
a |r′|−ηG(1)

with the rescaled coordinate r′ defined above. This isotropic limit can be used to demonstrate clearly

that the triangular flux line lattice considered here and the scalar model – describing the square lattice

geometry – do not belong to the same universality class. Whereas we obtain ηG(1) = 1.14ε for the

triangular lattice, the result in the RG approach for the scalar model is ηG(1) = π2/9ε = 1.10ε.

021 0 323
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021 0 526
021 0 527
021 0 7

8 891 6 891 3 891 7 891 4 0:

;=<�>@?BA

Fig. E.1: Dependency of the exponent ηG0 on the ratio κ = c66/c11 of elastic constants.

Another correlation function that can be constructed from the translational order parameter Eq.

(2.1) is the positional glass correlation function suggested by spin glass theory [BY86]

SPG(G, r) = |〈ΨG(r)Ψ∗
G(0)〉|2.

It measures the thermal fluctuations of the flux lines around their disordered ground state. We

calculate SPG(G, r) within our framework from the Hamiltonian renormalised up to scale |r| =

Λ−1el. First order perturbation theory in the pinning energy gives the corrections to the mere

thermal result to first order in ε. We get

SPG(G, r) C S0
PG(G, r)



1 + ε

∑

m≥1

cm

(
T

r2

)2m


 ,

where S0
PG(G, r) denotes the correlation function for the pure system with thermal fluctuations only

and cm are numerical coefficients. S0
PG(G, r) is finite for r → ∞ and reduced with respect to unity

merely by the standard Debye-Waller factor. Since the order ε corrections decay, they can surely not

compensate the leading constant term and make up for a more than powerlaw decay of the whole

correlation function. This provides signature of a positional glass to order ε.

Heavily discussed, however not definitely answered, is the question if there exists a phase coherent

vortex glass state in impure type-II superconductors. A finite asymptotic value of the correlation

function

CVG(r) = |〈Ψ(r)Ψ∗(0)〉|2 (2.3)

of the Ginzburg-Landau complex order parameter Ψ(r) is proposed to identify such a phase coherent

vortex glass [Fis89, FH91]. The order parameter can be decomposed in amplitude and phase factor,
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Ψ = |Ψ|ei[φ0+δφ], with groundstate phase φ0 and phase fluctuations δφ. In the London limit the

amplitude is constant and finite outside the vortices and CVG becomes

CVG(r) = |Ψ|2|〈ei[δφ(r)−δφ(0)]〉|2.

Phase fluctuations and vortex displacements are related by [Moo92]

∇2δφ(r) =
2π

a
(∇⊥ × u(r)) .

This allows for the calculation of CVG(r) in the framework of the elastic description of the flux line

lattice. We use perturbation theory for Hdis with fluctuations on scales below |r| having renormalised

this perturbation. Then corrections to the thermal average term (e−〈[δφ(r)−δφ(0)]2〉0) are given to

first order in ε by

CVG(r) = e−〈[δφ(r)−δφ(0)]2〉0 ×
{
1

+
1

T 2

∑

G

R̂∗
G

∫

r̄

[cosh(2F (r, r̄)) − 4 cosh(F (r, r̄))]
}
.

(2.4)

Here R̂∗
G = R∗

G exp(−GαGβ〈uα(0)uβ(0)〉0) ∼ ε are the reduced Fourier coefficients of the random

energy correlator, see Eq. (2.12) in [BEN01]. We have abbreviated F (r, r̄) = Γ(r− r̄)−Γ(−r̄) with

Γ(r) = 〈Gu(r)δφ(0)〉0. The exponential factor of R̂∗
G is finite in d > 2. For the disorder induced

correction in Eq. (2.4), we focus on the isotropic limit with c44 = c66 and get

Γ(r) =
T

4πa2c44

Gyx − Gxy

r2

(
1− 2

Λr
J1(Λr)

)
,

where J1(x) is the Bessel function of first kind. Upon expansion of the cosh-terms, a careful

investigation of the behaviour for large |r| of the remaining integrals gives to order ε

CVG(r) ' e−〈[δφ(r)−δφ(0)]2〉0

×



1 + ε



d1T
2 ln(rΛ) + d2 +

∑

m≥0

cmT 2

(
T

r

)2m






 .

The constants di, ci are again numerical coefficients, yet different from the ones in Eq. (2). The

exponential factor of Eq. (2.4) merely represents the effect of thermal fluctuations and reads

〈[δφ(r) − δφ(0)]2〉0

=
8π2

a4
T

∫

q

q2
⊥

q4
GT (q)[1 − cos(qr)] ∼ 1

ε
|r|ε.

Corrections to order ε can hence not compete against the exponential decay of CVG(r) that originates

from strong thermal fluctuations. Thus we conclude that to order ε there is no phase coherent vortex

glass. Whether this result is valid to higher orders in ε and thus in D = 3 remains, however,

unclear within the present analysis. Dorsey et al. [DHF92] indeed found a vortex glass transition

in 6 − ε dimensions starting from a Ginzburg-Landau Hamiltonian. If this transition exists down to

three dimensions cannot be clarified here unambiguously. In the analysis of the translational order

correlation function the field u(r) was treated as if Gaussian distributed. This is certainly wrong, even

to order ε, for the more complex correlation functions SPG(G, r), CV G(r). The use of the present

renormalisation group scheme in the context of correlation functions therefore remains debatable.
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F. Appendix

1 Bosonisation

In this appendix we sketch the method of ’bosonisation’ of one-dimensional interacting fermion

systems. Fermi-liquid theory of quasiparticles does not apply to dimension one, however, the lowlying

degrees of freedom are well described by collective density fluctuations with bosonic statistics. The

reparametrisation of the configurational space can even be extended to a one-to-one correspondence

on the basic operator level. The generic algebraic behaviour both of correlation functions and the

density of states is easily obtained in bosonised language as well as phase diagrams in the presence

of various instabilities. Spin charge separation is another characteristic feature of dimension one

and a natural consequence in the reparametrisation procedure. The method is also of great use in

the field of spin chains that can be mapped to Fermi system by a Jordan-Wigner transformation

[Hal80]. Below, in very broad steps the bosonisation of an interacting Fermi system is reviewed

starting with the spinless case before giving the modifications by spin degrees of freedom. Out of

the considerable amount of pedagogical literature on the subject the review by Voit Ref. [Voi95] and

the tutorial by Schulz Ref. [Sch95] were most helpful to the present author. The historical credit for

the development of the field goes largely to Haldane [Hal81a, Hal81b] who built on early work by

Mattis and Lieb [ML65] and Luttinger [Lut63].

Basic assumptions of Fermi-liquid theory break down in one dimension. The one-particle Green’s

function G(ω, k) does not have a single pole by which the quasiparticle energies ω(k) can be defined

and the quasiparticle amplitude Z = 〈Ψ̂N+1|c†|Ψ̂N 〉 vanishes. Adiabatic continuity with respect to a

slow switching on of interactions is not given. While in three dimensions the Fermi liquid is unstable

towards the superconducting state for attractive interactions, in one dimension the additional mean

field instability to charge density wave formation for repulsive interactions indicates the inadequacy

of single-particle states for the description of the interacting system. A better and concerning the

ease of calculations even ideal set of states can, however, be identified.

Consider the low energy sector of interacting fermions in one dimension. Spin is neglected for

the moment. The dispersion is linearised around the two Fermi points over momentum windows

kF ± k0,−kF ∓ k0. The kinetic energy then reads

Ĥ0 = vF

∑

k

{(k − kF)â†
kâk + (−k − kF)b̂†k b̂k}, (1.1)

with {â†} ({b̂†}) free-particle Fermi operators ĉ† at the right (left) Fermi point, which create right-

(left-) moving momentum eigenstates.
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A density-density interaction via a potential U(x) reads in second quantisation

Ĥint =
∑

q,k,k′

Ũ(q)ĉ†k−q ĉ
†
k′+q ĉk′ ĉk.

The confinement of the operators to the momentum windows around the Fermi points allows for

three distinct scattering processes:

(i) (kF; kF) → (kF; kF), (−kF;−kF) → (−kF;−kF), momentum transfer q ' 0, forward scattering,

(ii) (−kF; kF) → (−kF; kF), (kF;−kF) → (kF;−kF), q ' 0 and

(iii) (−kF; kF) → (kF;−kF), (kF;−kF) → (−kF; kF), q ' 2kF, backward scattering , see Fig.

F.2. Without spin to possibly distinguish fermions, process (iii) can be combined with (ii). One

assumes slowly varying Ũ(q) over the momentum window and parametrises the scattering (ii)+(iii)

by g2 = Ũ(0) − Ũ(2kF) and (i) by g4 = Ũ(0). The interaction energy then is

Hint =
∑

k,k′ ;q

{
g2 â†

k+q b̂
†
k′−q b̂k′ âk + g4 â†

k+q â
†
k′−q âk′ âk

}
+ ({â} ↔ {b̂})

With the momentum cutoff k0 sent to infinity, the exactly solvable Luttinger model is obtained. The

choice of constant scattering amplitudes gi requires some cutoff function exp(−αq) in momentum

integrals. Results should be finite if α is sent to zero at the very end.

We now introduce the right- and leftmover density operators

ρ̂+(q) =
∑

k

â†
k+q âk , ρ̂−(q) =

∑

k

b̂†k+q b̂k

with bosonic commutation relations

[ρ̂±(−q), ρ̂±(q′)]− = δqq′

qL

2π
, [ρ̂+(−q), ρ̂−(q′)]− = 0.

The finite commutator for q = q′ is one point where the infinite Fermi sea of the Luttinger model is

essential. This subtlety, however, does not touch the applicability of the results to the physical finite

Fermi sea system.

The basic observation about the density operators now is that the state create by such a density

operator is a superposition of particle-hole excitations that all have – due to the linear dispersion

relation – energy vFq. This superposition is hence an eigenstate of the kinetic energy operator

Eq. (1.1). Basic quantum mechanics allow to write H0 as a bilinear form in the bosonic density

operators

Ĥ0 =
2πvF

L

∑

q>0

{ρ̂+(q)ρ̂+(−q) + ρ̂−(q)ρ̂−(−q)} ,

just like the interacting part

Ĥint =
1

2L

∑

q

{2g2ρ̂+(q)ρ̂−(−q) + g4[ρ̂+(q)ρ̂+(−q) + ρ̂−(q)ρ̂−(−q)]}.

The bilinear Hamiltonian can be diagonalised easily with eigenvalues

ω(q) = |q|[(vF + g4/(2π))2 − (g2)/(2π)2]1/2.

Bosonisation has thus been achieved not by treating the interaction but rather by writing the non-

interacting part of the energy in the new density degrees of freedom, that readily diagonalise the
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interaction. Both the simple form of the kinetic energy in terms of the density operators and the

fact that these form a basis of the relevant Hilbert space derive from the linear one-dimensional

dispersion relation. Fig. F.1 illustrates why the eignestates of the above density operators are a

promising candidate for the important low-lying excitations only in one dimension. The spectrum

of particle-hole excitations (excitons) is pictured on the right. From the excitons at small q with

the (approximately) linear dispersion the new ’particles’ are built. Now in one dimension, there are

no low-lying excitations at higher q < 2kF , that could be the decay products of those superposi-

tions. In higher dimensions, the missing states are filled in and the density states no longer cover

the low-energy sector of the Hilbert space. Hence, bosonisation can be ultimately traced back to the

restricted phase space special to one dimension. Bosonic field operators can be introduced on

Fig. F.1: (a) Single particle spectrum of the free Fermi gas in 1D; (b) Particle-hole pair spectrum has no

low-frequency excitations with 0 ≤ |q| ≤ 2kF, unlike in higher dimensions where these states are filled in.

Figure taken from [Hal81a]

k + qk

k′ k′
− q

q ' 2kFq ' 0q ' 0

g1g4 g2

Fig. F.2: ”g-ology”: forward scattering (left and middle) and backward scattering (right). Legs with a filled

line represent leftmovers, dashed legs rightmovers.

the way to a boson representation of the Fermi field operator

Φ̂(x) = − iπ

L

∑

q 6=0

e−α|q|/2−iqx[ρ̂+(q) + ρ̂−(q)] + N̂πx/L

Π̂(x) =
1

L

∑

q 6=0

e−α|q|/2−iqx[ρ̂+(q) − ρ̂−(q)] + Ĵ/L
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N̂ = N̂+ + N̂− , Ĵ = N̂+ − N̂−

N̂± counts the number of particles above the ground state on the right- and left-moving branch. Π̂

is the canonically conjugate operator to Φ̂

[Φ̂(x), Π̂(x′)]− = iδ(x − x′).

The famous inversion of the above relations is

Ψ̂†
±(x) = lim

α→0
(2πα)−1/2Û †

± exp[±iΦ̂(x) − iΘ̂(x)]

Ψ̂†(x) = Ψ̂†
+(x) exp(−ikFx) + Ψ̂†

−(x) exp(ikFx),

with ∂Θ̂
∂x := πΠ̂. Û †

± increases the particle number on the respective branch by one. Bosonisation is

now complete, any operator can be written in terms of the bosonic field operators Φ̂, Π̂.

The interacting Hamiltonian takes the simple form of an elastic quantum string Hamiltonian

Ĥ =
1

2

∫
dx{vN

(
πΠ̂
)2

+ vJ

(∂Φ̂

∂x

)2

}

vN = vF + (g4 + g2)/(2π)

vJ = vF + (g4 − g2)/(2π).

In the path integral formulation, Φ̂, Π̂ lose their operator character and the coupling term −2i ∂Φ
∂x

∂Θ
∂τ

appears in the action. Φ and Θ are dual classical fields then.

The density operator is expressed in terms of the bosonic fields as

ρ̂(x) − ρ0 = − 1

π

∂Φ̂

∂x
+

1√
2πα

cos[2kFx −
√

2Φ̂].

From the continuity equation ∂tρ̂ + ∂x̂ = 0 the slowly varying part of the current operator follows

directly

̂(x) = vJ Π̂ → i

π

∂Φ

∂τ
.

The above expressions of the fermion field operator are rigorous results for the Luttinger model,

for the derivation see Ref. [Hal81a] and the very detailed review Ref. [vDS98]. A more heuristic,

physically motivated derivation of the bosonisation formula was given by Haldane in Ref. [Hal81b],

later than the rigorous publication Ref. [Hal81a]. There, higher order harmonic terms in kF appear

via the field operator in the expression for the density. These terms are frequently given a physical

interpretation, e.g. in Ref. [Sch93], and are of considerable effect in certain situations. In what

sense they are a manifestation of the nonlinear corrections to the free particle dispersion in a rigorous

treatment, as sometimes asserted1 remains unclear to the author.

The modifications of a spin-1/2 degree of freedom carried by the fermions to the above results

are mainly twofold.

(i) The back scattering between fermions of opposite spin cannot be rewritten as a contribution of

1T. Giamarchi in private communication; this possibility is also mentioned in [Sch95]; One of the authors of [vDS98],

H. Schoeller, showed in private communication awareness of the problem, but neither him could resolve it, nor M.

P. A. Fisher when asked by him.
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g2-forward scattering. Written in the bosonic field operators, this interaction is anharmonic.

(ii) For each spin projection ↑, ↓ a set of bosonic field operators is introduced. The Hamiltonian

decouples in the rotated basis Φ̂c,s = (Φ̂↑ ± Φ̂↓)/
√

2, Π̂c,s = (Π̂↑ ± Π̂↓)/
√

2

Ĥ = Ĥc + Ĥs + Ĥg1 .

Ĥc/s are formally identical to the spinless bosonised Hamiltonian with parameters vN , vJ and fields

now carrying the index c, s. The anharmonic backscattering is a function of the s-field only

Ĥg1 =
2g1

(2πα)2

∫
dx cos(

√
8Φ̂s).

The charge and spin density operators demonstrate that with c, s charge and spin degrees of freedom

have been identified

ρ̂(x) − ρ0 = −
√

2

π

∂Φ̂c

∂x
+

ρ0

π

{
ei2kFx−i

√
2Φ̂c cos(

√
2Φ̂s) + h.c.

}

σ̂z(x) = −
√

2

π

∂Φ̂s

∂x
+

iρ0

π

{
e−i2kFx+i

√
2Φ̂c sin(

√
2Φ̂s) + h.c.

}
.

The decoupling of the Hamiltonian together with the – in general – distinct parameters for the charge

and spin sector

vN,c = vF + (g4 + g2 − g1/2)/π ; vJ,c = vF + (g4 − g2 + g1/2)/π

vN,s = −g1/(2π) ; vJ,s = g1/(2π)

manifests spin charge separation in one-dimensional electron systems. Other than above in the

spinless case, none of the back scattering has been included in the parameter g2. A spin independent

density-density interaction has been assumed and hence g2 = g4 = Ũ(0), g1 = Ũ(2kF).

For repulsive interactions g1 > 0 the backward scattering term is irrelevant in the RG sense. On

large scales, correlation functions thus show the algebraic behaviour of a harmonic two dimensional

theory. This is the remarkable ’Luttinger liquid’: All the exponents of large scale correlation functions

and transport characteristics are determined by the parameters of the underlying bosonic model, which

is harmonic even for strong coupling.

2 A technical problem: real- vs momentum-space

renormalisation for dual fields

The flow equations for coupled Luttinger liquids with disorder Eqs. (C.3.19) were derived in a

momentum-shell renormalisation scheme, however with an ad hoc modification. The modification

could only be justified by comparison of the results to the real-space RG for a single Luttinger liquid

with disorder as, e.g., in Refs. [GS88, GS89].

What did we do? Undoubtedly, disorder stiffens on larger scales the Φ-field in imaginary time τ -

direction by the generation of a ’gamma’-term 1
2π

∫
x,τ

γ (∂τΦ)
2
, even in the phase where disorder

eventually is irrelevant. In the scheme above, this disorder feedback was compared to the harmonic

action after integration over the Θ-field in order to read off the renormalisation of the LL parameters.

The renormalised parameters were then used on large scales both in the correlators of the Φ- and
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Θ-fields, although the latter had before been integrated out. In the analysis of any anharmonicities

in the Φ-fields, there is nothing wrong about this procedure. However, thinking straightforwardly,

we would proceed differently if we wanted to analyse, e.g., the Josephson coupling, which is written

in the Θ-fields. One would then not integrate out the Θ-field at all but instead the Φ-field after

disorder has created its feedback.

Let us look at what happens in the straightforward approach in the simpler case of a single

Luttinger liquid. We are in the phase where disorder is irrelevant and where it has left behind the

above γ-term. One then arives for the correlator in the Θ-sector as the equivalent of Eq. (C.2.11b)

〈Θa
qΘb

−q〉 =
πδab

vJq2 + ω2(1 + γvJ)/vN

(
1 +

γ

vN

ω2

q2

)
. (2.3)

The dependence on ω of the γ-term implies the divergence of the correlations 〈[Θ(x, 0)−Θ(0, 0)]2〉,
if no UV cutoff in ω is assumed. With a cutoff Λω, the correlations are proportional to Λωx. As one

consequence, the superconducting order parameter correlations are no longer quasi-long-ranged but

short-ranged with a correlation length ∝ Λ−1
ω . Similar consequences result for any observable that is

written after bosonisation in the Θ-fields only.

In physical terms the implications are drastic. Superconducting order in a one-dimensional electron

gas (1DEG) with any finite amount of impurities would under no circumstances represent an instability

of the system in contradiction to the literature, e.g., Ref. [GS89]. Josephson coupling between

1DEGes would be irrelevant. More seriously, the situation seems to be analogous for anharmonicities

of the sine-Gordon type. T. Giamarchi has drawn our attention to the following scenario. Consider

the bosonised XXY-spin chain, which has a cosine-anharmonicity in the Φ-field. The relevance of this

term indicates the Ising transition, but we focus here on the parameter range where it is irrelevant.

The correlations of the spin raising and lowering operators become in bosonised language

〈Ŝ+(x)Ŝ−(0)〉 = 〈exp[i(Θ(x, 0) − Θ(0, 0))]〉. (2.4)

A straightforward momentum-shell RG would render these correlations short-ranged, in contradiction

to exact Bethe ansatz results [KBI93]. Even worse for the isotropic XXX-chain. The cosine-term is

marginally irrelevant, enough in the momentum-shell reasoning to generate a finite yet small γ and

again give short-ranged correlations of Ŝ+, Ŝ−, while the correlations of Ŝz which are written in the

Φ-field decay algebraically. Spin rotation invariance for the XXX-chain requires, however, not only

the same qualitative behaviour but even the same exponents in the power law.

This is very unsatisfactory, even alarming. What has gone wrong? We will try to trace back the

problem. To this end we go below through the steps of both the momentum-shell (this one very

briefly) and the real-space RG.

2.1 Action and free correlations

Let us first for convenience define again the problem of a single spinless 1DEG with impurity backward

scattering in its most simple form. We neglect impurity forward scattering and write the action as a
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free harmonic part plus the disorder anharmonicity

S = S0 + SD (2.5a)

S0 =
1

2π

∫

xτ

{
uK (∂xΘ)

2
+ u/K(∂xΦ)2 − 2i∂xΘ∂τΦ

}
(2.5b)

SD = −D
∫

x,τ,τ ′

cos[
√

2(Φx,τ − Φx,τ ′)]. (2.5c)

A short-scale cutoff α ' πΛ−1 in the position coordinate is implicit whereas the imaginary time

integration is unrestricted and replica indices are suppressed. The free correlators are

G0
ΦΦ =

πK

uq2 + ω2/u
=

π

vNq2 + ω2/vJ
(2.6a)

G0
ΘΘ =

π/K

uq2 + ω2/u
=

π

vJq2 + ω2/vN
(2.6b)

G0
ΘΦ =

−πiω/q

u2q2 + ω2
=

−πiω/q

vJvNq2 + ω2
, (2.6c)

K =
√

vJ/vN (2.6d)

u =
√

vJvN . (2.6e)

This gives the real-space correlation functions

〈ΘΦ〉0(x, τ) := 〈Θ(x, τ)Φ(0, 0)〉0 =

=
1

(2π)2

∫
dω

∫
dq eiqx+iωτ ω

q

−iπ

u2q2 + ω2

= − i2

4
sign[τ ]

∫
dq

q
e−qαeiqx−qu|τ |

=
i

2
sign(τ) arctan[

x

|uτ | + α
] (2.7a)

〈ΦΦ〉0(x, τ) = −K

4
ln[

x2 + (u|τ | + α)2

α2
] + 〈Φ2〉0 (2.7b)

F (x, τ) := 〈[Φ(x, τ) − Φ(0, 0)]2〉0

=
2

(2π)2

∫
dω

∫
dq (1 − eiqx+iωτ )

π

vNq2 + ω2/vJ

= K

∫
dq

q
e−qα(1 − eiqx−qu|τ |)

=
K

2
ln[

x2 + (u|τ | + α)2

α2
] (2.7c)

G(x, τ) := 〈[Θ(x, τ) − Θ(0, 0)]2〉0 =
1

2K
ln[

x2 + (u|τ | + α)2

α2
] (2.7d)

〈Φ2〉0 := 〈Φ(x, τ)2〉0 =
K

2
ln[L/α]. (2.7e)

The correlation functions obey the relations

∂τ 〈ΦΦ〉0(x, τ) = iuK∂x〈ΘΦ〉0(x, τ) (2.8a)

∂τ 〈ΘΦ〉0(x, τ) =
iu

K
∂x〈ΦΦ〉0(x, τ) + iδ(τ) arctan[

x

α
]., (2.8b)
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These can be derived either within the path-integral approach by a comparison of the correlators or

by use of the canonic commutation relations between Φ̂ and ∂xΘ̂ = πΠ̂Φ.

2.2 Flow equations in momentum-shell RG

The equations of flow (EoF) in momentum-shell RG – derived in analogy to the procedure of Chap-

ter C – with cutoff Λ ' π/α are

d

dl
D = (3 − K)D (2.9a)

d

dl
vN = vJ = 0 (2.9b)

d

dl
γ =

8π

vJv2
NΛ3

D. (2.9c)

The generation of a constant γ may be included in a – rather curiously – dispersive vN

d

dl
vN =

8π

vJv2
NΛ3

ω2

q2
D (2.10a)

d

dl
vJ = 0. (2.10b)

The prefactor of ω2/q2D in the above equations is not expected to be universal, other than the

general structure and the dispersion. In the nonlocalised phase, we obtain the asymptotic correlators

〈Φa
qΦb

−q〉 =
πδab

vNq2 + ω2(1/vJ + γ)
(2.11a)

〈Θa
qΘb

−q〉 =
πδab

vJq2 + ω2(1 + γvJ)/vN

(
1 +

γ

vN

ω2

q2

)
. (2.11b)

As described above, these correlators imply quasi-long-ranged correlations of ei
√

2Φ but only short-

ranged correlations for ei
√

2Θ over a length ξΘ ∝ Λ−1
ω .

2.3 Real-space RG

The focus is on the spatial behaviour of correlation functions. We want to see, if the above

momentum-space results are reproduced if one considers renormalisation of correlation functions

rather than of the Hamiltonian. The method used by Giamarchi and Schulz (GS in the following)

[GS88, GS89] is explained in detail. It is largely analogous to methods that are used to treat the

Kosterlitz-Thouless transition in the two-dimensional XY model.

Starting point is a perturbative expansion of the correlation function under the assumption of small

disorder

RΦ(r1 − r2) ≡ e−F eff
12 ≡ 〈ei

√
2[Φ1−Φ2]〉

=
Z0

Z
〈ei

√
2[Φ1−Φ2]e−SD〉0

= (1 + 〈SD〉0)〈ei
√

2[Φ1−Φ2](1 − SD)〉0 + O(D2)

= e−F12 + 〈SD〉0e−F12 − 〈ei
√

2[Φ1−Φ2]SD〉0
= . . .



110 Appendix

With Φi = Φ(xi, τi), ri = (xi, uτi), x3 = x4 = x, τ3 = τ, τ4 = τ ′ and

−〈ei
√

2[Φ1−Φ2]SD〉0 =

=
D
2

∫

ττ ′x

{
e〈[(Φ1−Φ2)+(Φ3−Φ4)]2〉0 + e〈[(Φ1−Φ2)−(Φ3−Φ4)]2〉0

}

= e−F12
D
2

∫

ττ ′x

e−〈[Φ3−Φ4]2〉0
{
e〈(Φ1−Φ2)(Φ3−Φ4)〉0 + e−〈(Φ1−Φ2)(Φ3−Φ4)〉0

}

= e−F12
D
2

∫

ττ ′x

e−〈[Φ3−Φ4]2〉0
{
e〈(Φ1−Φ2)(Φ3−Φ4)〉0 + e−〈(Φ1−Φ2)(Φ3−Φ4)〉0 − 2

}
− 〈SD〉0e−F12

= e−F12D
∫

ττ ′x

e−〈[Φ3−Φ4]2〉0 {cosh〈(Φ1 − Φ2)(Φ3 − Φ4)〉0 − 1} − 〈SD〉0e−F12 ,

one has

. . . = e−F12

{
1 + D

∫

ττ ′x

e−〈[Φ3−Φ4]
2〉0 [cosh〈(Φ1 − Φ2)(Φ3 − Φ4)〉0 − 1]

}

' e−F12

{
1 +

D
2

∫

ττ ′x

e−〈[Φ3−Φ4]
2〉0 [〈(Φ1 − Φ2)(Φ3 − Φ4)〉20 + O(∆τ4)

]}
(2.12)

= . . .

We have introduced ∆τ = τ ′ − τ and below we will also use the centre of mass coordinate R =

(x, u(τ +τ ′)/2) = (X, Y ) of the internal points ’3’, ’4’. In the following, terms of order (∆τ)4 under

the integral are always neglected as the important contribution is expected to come from small ∆τ .

We use

〈(Φ1 − Φ2)(Φ3 − Φ4)〉0 = u∆τ (∂y〈Φ2ΦR〉0 − ∂y〈Φ1ΦR〉0) + O(∆τ2)

=
K

2
u∆τ (∂y ln[|r2 −R|Λ] − ∂y ln[|r1 −R|Λ])

to get

∫

ττ ′x

e−F34〈(Φ1 − Φ2)(Φ3 − Φ4)〉20 =

=
K2u

4

∫

∆τ

∆τ2e−F (∆τ)

∫
d2R (∂y ln[|r2 −R|Λ] − ∂y ln[|r1 −R|Λ])2

=
K2u

4

∫

∆τ

∆τ2e−F (∆τ) (2π ln[|r2 − r1|Λ] − π cos[2φ]) . (2.13)

The angle φ is defined by tanφ := u(τ2 − τ1)/(x2 − x1) and the integral over R

∫
d2R [∂Y ln |a −R| − ∂Y ln | −R|]2 =

=

∫
d2R

{
[∂Y ln |a−R|]2 + [∂Y ln | −R|]2 − 2[∂Y ln |a −R|][∂Y ln | −R|]

}

= 2

∫
d2R

{
[∂Y ln |R|]2 − [∂Y ln |a −R|][∂Y ln | −R|]

}

≡ 2I1 − 2I2
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in the last step is evaluated with

I1 =

∫
d2R [∂Y ln |R|]2 =

∫
d2R

R2
y

R4
= π

∫ L

1/Λ

dR

R
= π ln(LΛ)

I2 =

∫
d2R [∂Y ln |a−R|][∂Y ln | −R|]

= −
∫

d2R
(ay − Ry)Ry

(a −R)2R2

=

∫
d2R

aR sin φ2 cos θ − R2(sin2 φ cos2 θ + sin2 θ cos2 φ)

(a2 + R2 − 2aR cos θ)R2

= − sin2 φ

∫
dθ

∫
dx

cos θ − x cos θ2

1 + x2 − 2x cos θ
− cos2 φ

∫
dθ

∫
dx

x sin2 θ

1 + x2 − 2x cos θ

=
maple −(sin2 φ − cos2 φ)

∫ 1

0

dxπx + π

∫ |a|

1

dx

x

=
π

2
(− sin2 φ + cos2 φ) + π

∫ L/|a|

1

dx

x
=

π

2
cos[2φ] + π

∫ L/|a|

1

dx

x

=
π

2
cos[2φ] + π ln[L/|a|].

φ being the angle between the x-axis and a and θ the angle between a and R we substituted above

Rx = R cos(φ + θ) = R(cosφ cos θ − sin φ sin θ)

R2
x = R2(cos2 φ cos2 θ + sin2 φ sin2 θ − 2 cosφ sin φ cos θ sin θ)

Ry = R sin(φ + θ) = R(sin φ cos θ + cosφ sin θ)

R2
y = R2(sin2 φ cos2 θ + sin2 θ cos2 φ + 2 cosφ sin φ cos θ sin θ).

The result Eq. (2.13) is inserted in the perturbative expansion of Eq. (2.12) and we re-exponentiate

. . . = e−F eff
12 = e−F12

{
1 +

D
2

K2u

4

∫

∆τ

∆τ2e−F (∆τ) (2π ln[|r2 − r1|Λ] − π cos[2φ])

}

F eff
12 = F12 −

D
8

K2α3

u2

∫

∆τu/α

(
∆τu

α

)2

e−F (∆τ) (2π ln[|r2 − r1|Λ] − π cos[2φ]) . (2.14)

Now the idea of the RG is to integrate out ∆τu/α over dl at the lower cutoff (which here has to be

introduced) iteratively and thus to renormalise in every step the parameters in F12, see Eq. (2.7c);

the rest of the integral is brought to the original form by ’pulling down’ the cutoff back to α = 1/Λ

and absorb the change in a renormalised D′ = D+ d
dlDdl. The l.h.s. of Eq. (2.14) remains constant,

it is the renormalised correlation function on largest scales, while on intermediate scales more and

more of the effect of the integral is absorbed in the first term of the r.h.s. K is renormalised and a

cos[2φ]-term generated in the correlations F eff
12 , whose amplitude we denote for the moment with d

d

dl
K = −DK2α3π

2u2
= −DGSK2

4

d

dl
d =

DπK2α3

4u2

d

dl
D = (3 − K)D.
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We have introduced DGS = 2Dα3π/u2 in order to make contact to the notation in Refs. [GS88,

GS89].

The renormalisation of d can be rewritten in terms of a feedback to u, to this end we need

cos[2φ] = 1 − 2 sin2 φ = 1 − 2y2

y2 + x2
, y = uτ,

∂uF12 =
K

2u

y2

y2 + x2
,

dF12 = ∂uF12du + ∂dF12dd + ∂KF12dK

=
2y2

x2 + y2

(
K

2u
du − dd

)
+ ∂KF12dK + dd.

The effect of a finite d
dld is now attributed to a finite d

dlu and d
dld is set to zero. This gives the

equation of flow
d

dl
u = −1

4
uKDGS.

The renormalisation of u, K rewritten in terms of vN , vJ hence is

d

dl
vN = 0 (2.15a)

d

dl
vJ = −πDα3v2

J

u3
. (2.15b)

These are the EoF in GS, they give quasi-long range order both in the Φ- and the Θ-sector. Where is

the reason for the discrepancy with respect to the momentum-shell result Eq. (2.10).? A hint comes

from an alternative derivation of the RG relations. We rewrite Eq. (2.13) as
∫

ττ ′x

e−F34〈(Φ1 − Φ2)(Φ3 − Φ4)〉20 =

= 2

∫

∆τ

e−F (∆τ)

∫

Q

(
G0

ΦΦ

)2
4 sin2

[
ω∆τ

2

]
{1 − cosQ(r1 − r2)}

= 2

∫

∆τ

∆τ2e−F (∆τ)

∫

Q

(
G0

ΦΦ

)2
ω2 {1 − cosQ(r1 − r2)} .

Insertion in the expansion of the correlation function and re-exponentiation gives

F eff
12 = F12 −

D2α3

u3

∫ L

1/Λ

d(u∆τ)

α

(
u∆τ

α

)2−K ∫

Q

(
G0

ΦΦ

)2
ω2 {1 − cosQ(r1 − r2)}

and from here follows in the RG spirit

dF12 = −2Dα3dl

u3

∫

Q

(
G0

ΦΦ

)2
ω2 {1− cosQ(r1 − r2)} .

In order to absorb the differential change in parameters of the free model, we now compare to the

differential of F12 with respect to a change in vN , vJ

dF12
!
=

2

π

∫

Q

(
G0

ΦΦ

)2 {1 − cosQ(r1 − r2)}
(

ω2

v2
J

dvJ − q2dvN

)
,

and get the renormalisation condition

ω2

v2
J

dvJ − q2dvN = −πDα3

u3
ω2dl. (2.16)
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This equation is fulfilled by either of the sets of RG equations (2.9, 2.15)! One was led to the GS-set

only by the implicit additional condition of a scale-independent renormalisation of vN , vJ . In order

to decide which set is correct, we need a second equation to supplement Eq. (2.16). This will be

provided by the RG for the correlation function e−Geff
12 ≡ 〈ei

√
2[Θ1−Θ2]〉. In close analogy to the

Φ-correlations, we get

dG12 =
2Dα3dl

u3

∫

Q

{1 − cosQ(r2 − r1)}ω2(G0
ΘΦ)2

=
2Dα3K2dl

u5

∫

Q

{1 − cosQ(r2 − r1)}
ω4

q2
(G0

ΘΘ)2

=
2Dα3dlK2

u5

∫

Q

{1 − cosQ(r2 − r1)}
(
u2qGQ

ΘΘ − πvN

q

)2

, (2.17)

which is compared to the differential change of G12 by a small change in vJ , vN

dG12
!
=

2

π

∫

Q

(
G0

ΘΘ

)2 {1 − cosQ(r1 − r2)}
(

ω2

v2
N

dvN − q2dvJ

)
.

The comparison gives

ω2

v2
N

dvN − q2dvJ =
πDα3K2

u5

ω4

q2v2
N

dl (2.18)

and the unique solution to the two equations (2.16,2.18) is the RG equations from the momentum-

shell approach (modulo the non-universal prefactor). However, if in Eq. (2.17) the dubiously singular

πvN/q-term in the round brackets is dropped, the RG conditions are

ω2

v2
J

dvJ − q2dvN = −πDα3

u3
ω2dl (2.19a)

ω2

v2
N

dvN − q2dvJ =
πDα3

u
K2q2dl, (2.19b)

which are solved by the GS-equations of flow. We remind of the relations K2 = vJ/vN , u2 = vJvN .

2.4 Conclusion

The situation is still puzzling. Shall we retain the πvN/q-term or not? What is its significance? It

can be more clearly seen after Fourier transformation how singular the effect of this is term is. On

the way to the flow equations we expanded in the small time difference ∆τ = τ3 − τ4 = τ − τ ′.

The 1/q-term hence corresponds one-to-one to the second, delta-function term in Eq. (2.8b), which

is ultra-local in time. Going back to the step before the expansion proves helpful. Consider the

equivalent of Eq. (2.12) for the Θ-correlations

〈ei
√

2(Θ1−Θ2)〉 = e〈[Θ1−Θ2)]
2〉
{

1 + D
∫

ττ ′x

e−G12(cosh〈(Θ1 − Θ2)(Φ3 − Φ4)〉 − 1)

}
(2.20)

and here the argument of the cosh

〈(Θ1 − Θ2)(Φ3 − Φ4)〉 = 〈Θ1Φ3〉 − 〈Θ1Φ4〉 + 〈Θ2Φ4〉 − 〈Θ2Φ3〉. (2.21)
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From Eq. (2.7a), we see that each of the four terms jumps by π/2 (in the limit α → 0) if the

time coordinates of the respective Θ- and the Φ-field conincide generating the delta function in the

relation for the derivatives. In an expansion of the cosh-term the role of these jumps now has to

be analysed carefully, hereby Fig. F.3 might be helpful. The two external points ’1’, ’2’ are fixed in

the xτ -plane while the internal points ’3’, ’4’ are characterised by their small distance ∆τ , which

is integrated over iteratively at the lower cutoff, and their centre of mass coordinate R = (X, Y ),

which is integrated over the whole plane. The expansion in the derivation above had assumed the

argument of the cosh to be small. This is certainly justified whenever the two internal points are

not separated by one of the lines τ = τ1 or τ = τ2. If they are so, however, the sign functions

of the correlators between the internal points and the separating point give opposite signs, see Eq.

(2.7a),and instead of being small, the limit of the argument of the cosh is

lim
∆τ→0

〈(Θ1 − Θ2)(Φ3 − Φ4)〉 = i arctan[
x1 − X

|uτ1 − Y | + α
] + O(∆τ) (2.22)

with the coordinates (x1, τ1) of the separating point. One therefore has to expand in these situations

the cosh not around zero but around i arctan[ x1−X
|uτ1−Y |+α ] ' iπ

2 . The latter approximation comes

from the fact that the present consideration is necessary only in corridors of small width |uτi − Y |
around the external times i − 1, 2. With cosh[iπ/2 + O(∆τ)] = − sin[O(∆τ)] = O(∆τ) we have –

as it seems to the author – the key to the question if to drop the 1/q-term or not and consequently

which set of RG equations to trust. Due to the linear dependency on the argument upon expansion

in the corridors – rather than the quadratic dependency in the rest of the plane – configurations with

inverted internal points such as (b), (c) in Fig. F.3 cancel in the integration of the centre of mass

coordinate of the internal points. The jumps in the 〈ΘΦ〉-correlator make themselves felt only in the

corridors, here their effect cancels due to symmetry. We can therefore drop them in the first place,

i.e., trust the equations of flow (2.19). For reasons of completeness, we comment on the last term

in the integrand of Eq. (2.20), the 1. Outside the corridors, it is combined with the cosh in order to

give a contribution of order ∆τ 2. Inside the corridors, the cosh becomes by the shift in the argument

a sin. Here, the has to be considered separately and upon integration it renormalised the amplitude

of the algebraically decaying correlations. This, however, can be absorbed in a renormalised cutoff.

The situation now seems clarified as far as the RG for the order parameter correlation function

RΘ(x, τ) := 〈exp[i
√

2(Θ(x, τ) − Θ(0, 0))]〉.

is concerned, which is addressed directly by the real-space approach. But how can this be reconciled

with the momentum-space RG that still seems inherently correct. Maybe the solution lies in the

following direction. In momentum-space RG, the Hamiltonian is renormalised. In case of a Gaussian

fixed point it allows to read off

BΘ(x, τ) := 〈[Θ(x, τ) − Θ(0, 0)]2〉.

The naive use of RΘ(x, τ) = exp[−BΘ(x, τ)] might be spoiled by contributions to RΘ(x, τ) from

finite scales, where the action is not Gaussian yet. This direction of search for a solution to the puzzle

is sustained by two observations. First, going through the real-space RG for BΘ(x, τ), we start at the

level after the expansion of the cosh around zero and thus cannot use the same argument as above
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(c)

(b)

(a)

4

3

3

4

4

3

1

2τ

x

∆τ

Fig. F.3: The external points ’1’, ’2’ and internal points ’3’, ’4’ of the first order expansion of 〈ei
√

2(Θ1−Θ2)〉
in the space-time plane. For situations like (a), the cosh may be expandend around zero, for situations (b),

(c) around iπ/2. Contributions to the renormalised correlation function from configurations (b) and (c)

cancel.

in order to discard the singular term in the correlator. We are therefore lead to the momentum-shell

RG equations in this case.

Second, we consider a simplified scenario, the quantum mechanical harmonic oscillator H = 1
2m p̂2 +

κ
2 x̂2 perturbed by the quartic anharmonicity λx̂4. The momentum expectation value 〈p̂2〉 can be

calculated via two routes. (i) by standard quantum mechanical perturbation theory on an operator

level using the set of unperturbed harmonic oscillator states, and (ii) in the perturbative path-integral

approach, where the classical field p plays the role of ∂xΘ and x the role of ∂xΦ of the bosonisation

problem. Route (ii) is the very analogue to the perturbative momentum-shell RG that is so hard to

interpret. Interestingly, in this zero-dimensional model case, the result can be checked against the

operator calculation which is beyond doubt. The agreement is one-to-one. As for the bosonisation

problem, we thus do not expect to obtain the wrong correlations BΘ(x, τ) in the momentum shell

approach.

The proposed resolution might have physical implications. If some observable can be found that

appears in bosonised form as eipΘ, such that the shift due to the sign function, as described above,

is not to a point where symmetry allows to neglect these singular terms, the momentum-shell RG

equations should apply. p =
√

4 would be such a value for which as a consequence short-ranged

correlations of eipΘ are expected. The author could not think of any such observable, maybe there

are none that show this non-Luttinger liquid behaviour. This in turn would comply with the Luttinger

liquid hypothesis, stating that all large scale correlations in the phase with no relevant instabilities

are of algebraic form with exponents related to the coefficients at the Luttinger liquid fixed point.
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3 Spin wave contribution to the RFXY free energy

The ’spin wave’ part of the disorder free energy Eq. (D.2.11) is calculated as

ln det(M−1/2) = −1

2
ln [Πiλi]

= −1

2
ln
[
Πqq2n(J − nσ cos2 θ)Jn−1T−n

]

= −1

2
ln
[
Πq

(
q2(1 − n

σ

J
cos2 θ)1/nJ/T

)n]

= n
∑

q

ln
1

|q| − n/2 ln(J/T )
∑

q

−n/2
∑

q

ln(1 − n
σ

J
cos2 θ)1/n

lim
n→0

1

n
ln detM−1/2 = c(J, T )− 1

2

∑

q

(−σ

J
cos2 θ)

= c(J, T ) +
Ã

ξxξz

σ

4J
.

4 Correlated random walk

Consider a random walk with correlations 〈xi+nxi〉 = σ2e−2n/nc . Then straightforward calculation

[Tay21] gives for nc � 1

〈X2
n〉

(ncσ)2
:=

〈(∑n
i=1 xi)

2〉
(ncσ)2

=
n

nc
+ (

1

2
e−n/nc − 1).

With nc = ξ/a, n = z/a and Xn =
(
x(z) − x(0)

)
/a we have for z � ξ

〈(x(z) − x(0))2〉 = σ2ξ(z − ξ) =
T

g
(z − ξ). (4.23)

Now a can be sent to zero to reach the continuum. The identification σ2ξ = T/g gives exactly the

momentum space cutoff result 2.37 of Section 2.6. Note that in order to make contact between the

continuum random walk and the discrete random walk in the uncorrelated case, one has to choose

σ2a = T/g. With this choice, we would have a factor of ξ/a > 1 in the correlations. This shows

that correlations are enhanced by an overall factor and suppressed by the shift z → z − ξ. It can be

shown that the overall effect is always an increase of the fluctuations, as one might have intuitively

guessed. If however, after introducing correlations, the new prefactor is identified with the effective,

measurable T/g the effect is a reduction of fluctuations due to the shift-term. To sum up: Turning

on correlations is not so physical, rather the effective g is fixed and small modes are forbidden, as

implemented by a momentum UV cutoff. Eq. 4.23 describes the measurable fluctuations in terms of

measurable parameters. The result reproduces the expression obtained with a momentum UV cutoff.

5 Annealed average of dimer and vortex free energies

In this appendix the annealed averages of both the discrete line system of the random-bond dimer

model and the continuum disordered line lattice are calculated. The results are used to gauge disorder

strengths in the systems and yield Eq. (33.56).
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The relation between the energies of the discrete line configuration (lines), dimer pattern (D) and

reference pattern (R) is

Hlines({ε′ij}) = HD({εij}) + HR({ε′ij}).
Here, it holds for the bond energies ε′ij = −εij on the reference pattern, ε′ij = εij elsewhere. εij is

a symmetrically distributed random variable with mean εij = 0 and variance εijεkl = δij,kl.

Consider the difference δF of the annealed average of free energy in the random line system and in

the pure system

δF/T = ln
Zlines

Zlines,0
.

For the continuum, the calculation is straightforward and very short. It gives

δFcont./T =
∆ρ

2T 2ξd
LxLy. (5.24)

For the lattice model, the disorder average of the partition function with the discrete line energy is

Z lines =
∑

{D}
exp

{
− 1

T d

( ∑

ij∈D

εij +
∑

ij∈R

−εij

)}

=
∑

{D}
exp

{ 1

2T 2
d

( ∑

ij∈D

εij −
∑

ij∈R

εij

)2}

=
∑

{D}
exp

{ 1

2T 2
d

( ∑

ij∈D

ε2ij +
∑

ij∈R

ε2ij − 2
∑

ij∈D

∑

kl∈R

εijεkl

)}

= exp

(
L2

2T 2
d

)∑

{D}
exp

{
− 1

T 2
d

∑

ij∈D

Iij

}
,

with Iij = 1 on the reference bonds and Iij = 0 elsewhere. Note that the sum over the squares of

the dimer energies is independent of the dimer configuration only in the case of the isotropic dimer

model. In the case with random energies only on the vertical bonds it would not give a simple factor

to the sum over dimer configurations.

The remaining sum over dimer configurations

ZR :=
∑

D

exp



− 1

T 2
d

∑

ij∈D

Iij





can be done exactly with the methods of Ref. [Kas61] in a variation of the calculation given there.

It yields

ln ZR =
N2

π

∫ e−1/(2T2
d )

0

dx
arctan[x]

x

The partition function of the pure lattice model is easily obtained by taking the limit Td → ∞,

ln Zlines,0 =
G

π

with Catalan’s constant G = 0.915966. Thus we finally obtain for energy difference

δFdiscr./T = L2





1

2T 2
d

− G

π
+

1

π

∫ e−1/(2T2
d )

0

dx
arctan[x]

x




 .
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The comparison with Eq. (5.24) at the line density ρ = 1/(2b), b being the dimer lattice spacing,

gives the desired relation

∆

T 2
=

ξd

b

1

T 2
d




2 − 4GT 2
d

π
+

4T 2
d

π

∫ e−1/(2T2
d )

0

dx
arctan[x]

x




 .
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Zusammenfassung

Die vorliegende Arbeit untersucht den Einfluss von Unordnung auf planare periodische Strukturen in

Supraleitern. Im ersten Teil stellen die vor etwa 10 Jahren entdeckten Streifenphasen in Hochtem-

peratursupraleitern diese periodische Überstruktur jenseits des Atomgitters dar. Wir beschäftigen

uns in einem ersten Schritt mit den strukturellen Eigenschaften der eindimensionalen Ladungs- und

Spindichtemodulation – den Streifen in den Kupferoxidebenen – welche die funktionalen Bauele-

mente aller Kuprat-Supraleiter sind. Es zeigt sich, dass die Konkurrenz zwischen dem ordnenden

periodischen Potential des Atomgitters und dem Potential der zufällig verteilten Verunreinigungen

auf großen Längenskalen in zwei Dimensionen immer zugunsten der Unordnung ausgeht. So sind

die Auslenkungsfluktuationen der Streifen divergent und topologische Defekte lassen auch bei ver-

schwindender Temperatur nur kurzreichweitige Translationsordnung zu. Der Einfluss von Quan-

tenfluktuationen ändert nichts an diesem Ergebnis, welches in Einklang mit der Beobachtung von

glasartigem Verhalten in Experimenten steht.

Im zweiten Schritt wird das Zusammenspiel von Unordnung und den elektronischen Freiheitsgraden

auf den Streifen mit dem Modell gekoppelter eindimensionaler Elektronenflüssigkeiten, den Luttinger

Flüssigkeiten (LF), untersucht. Renormierungsgruppenmethoden zeigen, dass – anders als im reinen

System – die Ladungsdichtewellenkopplung zwischen den LF immer irrelevant ist. Durch Variation

der Unordnungsstärke oder der Kopplungsparameter zwischen und auf den Streifen kann ein De-

lokalisierungsübergang vom ungeordneten Isolator zu einem stark anisotropen metallischen Zustand

mit LF-artigem Transport ausgelöst werden. Dieser Zustand unterscheidet sich stark von seinem

Gegenstück im reinen System und stellt doch eine mögliche zweidimensionale metallisch Phase dar,

die nicht als Fermi-Flüssigkeit beschrieben werden kann.

Im Mittelpunkt von Teil zwei steht das ungeordnete planare Flussliniengitter als eine einfache

Realisierung eines Vortexglases. Der kürzlich gefundene Ausdruck für die freie Energie bei einer

speziellen Flusslinien-Wechselwirkung [EK01] hilft uns, die Existenz einer thermisch freien Phase

über dem planaren Vortexglas auszuschließen. Dieses Resultat kann auf den Fall beliebiger repulsiver

Wechselwirkungen ausgedehnt werden. Das verwandte XY Modell in einem Zufallsfeld zeigt bekan-

ntermaßen sehr wohl den Übergang zu einer thermisch entpinnten Phase, allerdings ohne, wie wir

berechnen, dabei Spuren in der freien Energie zu hinterlassen.

Die auf den ersten Blick unerwartete Abbildung des Flussliniengitters auf ein Modell der kombi-

natorischen Statistik, das ’Random Bond Dimer Model’, ermöglicht die Untersuchungen des ab-

schließenden Teils. Das Dimer Modell kann mittels eines kürzlich entwickelten polynomialen Al-

gorithmus numerisch exakt behandelt werden, was einen wesentlichen Fortschritt im Vergleich zu

herkömmlichen Monte Carlo Verfahren darstellt. Nach der Erweiterung der Abbildung auf thermody-

namische Größen können die Vorhersagen der exakten Lösung und Simulationsdaten der Gruppe von

C. Zeng (Washington, D.C.) verglichen werden. Es ergibt sich die erstaunlich genaue Übereinstimmung

in allen untersuchten Größen: der Amplitude von Korrelationsfunktionen; der mittleren freien En-

ergie, inneren Energie und der Entropie; den Momenten der unordnungsverteilten freien Energie; der
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Wärmekapazität. Die neuen Resultate verdeutlichen den Modellcharakter des planaren Vortexglases,

das trotz der einem Glas inhärenten Komplexität in vielen Aspekten noch ’lösbar’ ist.
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