Ternäre Übergangsmetallacetylide

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Ulrich Cremer aus Jülich

Köln 2003

Berichterstatter:

Prof. Dr. Uwe Ruschewitz Prof. Dr. Gerd Meyer

Tag der mündlichen Prüfung:16.5.2003

Die experimentellen Untersuchungen für die vorliegende Arbeit wurden von Januar 2000 bis März 2001 am Institut für Anorganische Chemie der RWTH Aachen und von April 2001 bis Dezember 2002 am Institut für Anorganische Chemie der Universität zu Köln unter Anleitung von Prof. Dr. Uwe Ruschewitz durchgeführt.

Herrn Prof. Dr. Uwe Ruschewitz danke ich herzlich für die Stellung des Themas und die wissenschaftliche Unterstützung bei der Durchführung dieser Arbeit.

Kurzzusammenfassung

Durch die Reaktion von CuI mit in flüssigem Ammoniak suspendierten A_2C_2 (A = K, Rb, Cs) und anschließendes Erhitzen des Rückstandes im Vakuum waren die ternären Alkalimetallkupferacetylide ACuC₂ zugänglich. NaCuC₂ konnte durch die Zersetzung von NaCu₅(C₂)₃ erhalten werden. Die Kristallstrukturen wurden mittels Röntgen- und Neutronenpulverdiffraktometrie bestimmt. In NaCuC₂ und β-RbCuC₂ sind $\int_{\infty}^{1} [Cu(C_2)_{2/2}] -]$ -Ketten parallel zur *c*-Achse einer tetragonalen Elementarzelle orientiert (KAgC₂-Typ, *P4/mmm*, Z = 1). In KCuC₂, α-RbCuC₂ und CsCuC₂ verlaufen diese Ketten parallel zueinander in Schichten, die entlang der *c*-Achse einer tetragonalen Elementarzelle abwechselnd um 90° gedreht gestapelt sind (CsAgC₂-Typ, *P4₂/mmc*, Z = 2). Raman- und ¹³C-MAS-NMR-Spektren von ACuC₂ (A = K, Rb, Cs) zeigten die Existenz von C-C-Dreifachbindungen an.

NaCu₅(C₂)₃ konnte durch die Reaktion von NaC₂H mit CuI in flüssigem Ammoniak und anschließendes Erhitzen des Rückstandes im Vakuum erhalten werden. Es besteht aus einem dreidimensionalen [Cu₅(C₂)₃]⁻Polyanion mit kurzen Cu-Cu-Kontakten und Natriumionen in seinen Hohlräumen, wie Pulverdiffraktometeruntersuchungen mit Röntgen- und Synchrotronstrahlung ergaben (*Pnma*, Z = 4). Die Dreifachbindungen der beiden kristallographisch unabhängigen C₂-Hanteln sind den Raman- und IR-Spektren zufolge geschwächt.

Die Diammoniakate $K_2M(C_2H)_4 \cdot 2 NH_3$ (M = Zn, Cd) wurden als Einkristalle aus KC₂H und $K_2Zn(CN)_4$ bzw. Cd(NH₂)₂ in flüssigem Ammoniak dargestellt (*I2/a*, Z = 4). Es liegen tetraedrische $[M(C_2H)_4]^2$ -Baugruppen und $[K(C_2H)_6]$ -Oktaeder vor. Diese Oktaeder sind über gemeinsame Kanten zu Zick-Zack-Ketten verbunden. Ein zweites kristallographisch unabhängiges Kaliumion verknüpft diese Ketten untereinander und bindet die Ammoniakmoleküle.

Die Komplexe A₂M(C₂H)₄ (A = Na - Cs; M = Zn, Cd) waren durch das Entfernen des Ammoniaks aus den entsprechenden Ammoniakaten zugänglich. Während Na₂M(C₂H)₄ röntgenamorph war und die Kristallstruktur von Cs₂Zn(C₂H)₄ nicht gelöst werden konnte, sind alle anderen Ethinylo-Komplexe ihren Röntgenpulverdiffraktogrammen zufolge isotyp zueinander (K₂Zn(C₂H)₄-Typ, *I4₁/a*, Z = 4). Wie in den Ammoniakaten existieren [M(C₂H)₄]²⁻ -Tetraeder und Zick-Zack-Ketten aus [A(C₂H)₆]-Oktaedern. Die Raman-Spektren aller Verbindungen zeigten die Existenz von C-C-Dreifachbindungen an.

Die Erdalkalimetall-Verbindungen $EAM(C_2H)_4$ (EA = Mg - Ba; M = Zn, Cd) waren röntgenamorph und konnten nur durch ihre Raman-Spektren identifiziert werden.

Versuche, ternäre Acetylide der allgemeinen Zusammensetzung $A_2M(C_2)_2$ (M = Zn, Cd, Pd) darzustellen, führten zu röntgenamorphen Pulvern ohne Banden in ihren Raman-Spektren.

Abstract

By reaction of CuI with A₂C₂ (A = K, Rb, Cs) suspended in liquid ammonia and subsequent heating of the remaining residue in vacuum ternary alkali metal copper acetylides of composition ACuC₂ were accessible. NaCuC₂ was obtained by decomposing NaCu₅(C₂)₃. The crystal structures were determined by both X-ray and neutron powder diffraction. In NaCuC₂ and β -RbCuC₂ $\int_{\infty}^{1} \left[Cu(C_2)_{2/2} \right] \right]$ chains are orientated parallel to the *c* axis of a tetragonal unit cell (KAgC₂ type, *P4/mmm*, Z = 1). In KCuC₂, α -RbCuC₂, and CsCuC₂ these chains are arranged parallel in layers, which are staggered along the *c* axis of a tetragonal unit cell by rotating them by 90° to each other (CsAgC₂ type, *P4₂/mmc*, Z = 2). Raman and ¹³C-MAS-NMR spectra of ACuC₂ (A = K, Rb, Cs) indicated the existence of C-C triple bonds.

NaCu₅(C₂)₃ was obtained by reaction of NaC₂H with CuI in liquid ammonia and subsequent heating of the remaining residue in vacuum. It consists of a three dimensional $[Cu_5(C_2)_3]^$ polyanion with short Cu-Cu contacts and sodium ions in its voids, as determined by both Xray and synchrotron powder diffraction (*Pnma*, Z = 4). The triple bonds of the two crystallographically independent C₂ dumbbells are weakened, which was confirmed by Raman- and IR-spectroscopy.

The diammoniates $K_2M(C_2H)_4 \cdot 2 \text{ NH}_3$ (M = Zn, Cd) were synthesized as single crystals from KC₂H and K₂Zn(CN)₄ or Cd(NH₂)₂ in liquid ammonia (*I2/a*, Z = 4). Their crystal structures consist of tetrahedral [M(C₂H)₄]²⁻ units and [K(C₂H)₆] octahedra. These octahedra are linked by common edges to zigzag chains. A second crystallographically independent potassium ion inter-connects these chains and binds to the ammonia molecules.

The complexes $A_2M(C_2H)_4$ (A = Na - Cs, M = Zn, Cd) were accessible by removing ammonia from the corresponding ammoniates. With exception of $Na_2M(C_2H)_4$, which was amorphous to X-rays, and $Cs_2Zn(C_2H)_4$, whose crystal structure could not be solved, all ethinylo complexes of composition $A_2M(C_2H)_4$ are isotypic to each other ($K_2Zn(C_2H)_4$ type, $I4_1/a$, Z = 4) according to their X-ray powder patterns. Similar to the ammoniates tetrahedral [$M(C_2H)_4$]²⁻ units and zigzag chains of connected [$A(C_2H)_6$] octahedra are found. The Ramanspectra of all compounds indicated the existence of C-C triple bonds.

The alkaline-earth metal compounds $EAM(C_2H)_4$ (EA = Mg - Ba; M = Zn, Cd) were amorphous to X-rays and were only identified by their Raman spectra.

Attempts to synthesize ternary acetylides of composition $A_2M(C_2)_2$ (M = Zn, Cd, Pd) led to powders, which were amorphous to X-rays. No signals were found in their Raman spectra.

Inhaltsverzeichnis

1	Einlei	tung und Aufgabenstellung	1
	1.1	Zur stofflichen Einordnung der ternären Übergangsmetallacetylide	1
		1.1.1 Binäre Carbide	1
		1.1.2 Ternäre Übergangsmetallcarbide	3
		1.1.3 Ternäre Übergangsmetallacetylide	3
		1.1.4 Ternäre Übergangsmetallhydrogenacetylide	4
	1.2	Aufgabenstellung	5
2	Allge	neines zu den Synthesen und den Untersuchungsmethoden	7
	2.1	Zu den Synthesen	7
	2.2	Röntgenographische Untersuchungen am Pulver	8
		2.2.1 Röntgenbeugung am Pulver	8
		2.2.2 Neutronenbeugung am Pulver	8
		2.2.3 Pulverbeugungsuntersuchungen mit Synchrotronstrahlung	9
		2.2.4 Rechnerprogramme	9
	2.3	Röntgenographische Untersuchungen am Einkristall	10
	2.4	Raman- und IR-Spektroskopie	11
	2.5	¹³ C-MAS-NMR-Spektroskopie	11
	2.6	Elektronenstrahl-Mikrosondenelementaranalyse	11
3	Ergeb	nisse und Diskussion	13
	3.1	Alkalimetallkupfer(I)acetylide $ACuC_2$ (A = Na - Cs)	13
		3.1.1 Darstellungen	13
		3.1.2 Kristallstrukturen	16
		3.1.3 Raman-spektroskopische Untersuchungen	21
		3.1.4 ¹³ C-MAS-NMR-Spektroskopie	23
	3.2	Natriumkupfer(I)acetylid NaCu ₅ (C ₂) ₃	25
		3.2.1 Darstellung	25
		3.2.2 Kristallstruktur	26
		3.2.3 Raman- und IR-spektroskopische Untersuchungen	33
		3.2.4 Temperaturabhängige Röntgenbeugungsuntersuchungen	34
	3.3	Dikaliumtriethinylocuprat(I): K ₂ Cu(C ₂ H) ₃	36

3.4	Dikaliur	ntetraethinylometallat-Diammoniakate: $K_2M(C_2H)_4 \cdot 2 NH_3$	
		(M = Zn, Cd)	37
	3.4.1	Darstellungen	37
	3.4.2	Kristallstrukturen	38
3.5	Alkalim	etalltetraethinylometallate: $A_2M(C_2H)_4$ (A = Na - Cs; M = Zn, Cd)	44
	3.5.1	Darstellungen	44
	3.5.2	Kristallstrukturen	45
	3.5.3	Raman-spektroskopische Untersuchungen	54
3.6	Erdalkal	imetalltetraethinylometallate: EAM(C ₂ H) ₄	
		(EA = Mg - Ba; M = Zn, Cd)	56
	3.6.1	Darstellungen	56
	3.6.2	Raman-spektroskopische Untersuchungen	57
3.7	Natrium	- und Bariumtetraethinylomanganat(II): $Na_2Mn(C_2H)_4$ und	
		$BaMn(C_2H)_4$	58
3.8	Weitere	Versuche zur Darstellung ternärer Aceytlide	59
	3.8.1	Ternäre Acetylide der Zusammensetzung $A_2Zn(C_2)_2$ (A = Na, K)	59
	3.8.2	Ternäre Acetylide der Zusammensetzung $A_2Pd(C_2)_2$ (A = Na, K)	62
	3.8.3	Ein ternäres Acetylid der Zusammensetzung K ₄ Cu ₂ (C ₂) ₃	62
Zusan	nmenfass	ung und Ausblick	63
Exper	imentelle	er Teil	65
5.1	Allgeme	ine Arbeitsvorschrift zur Darstellung von $ACuC_2$ (A = K, Rb, Cs)	66
5.2	Arbeitsv	orschrift zur Darstellung von NaCuC ₂	67
5.3	Arbeitsv	orschrift zur Darstellung von NaCu ₅ (C ₂) ₃	67
5.4	Arbeitsv	orschrift zur Darstellung von $K_2Zn(C_2H)_4 \cdot 2 NH_3$	67
5.5	Arbeitsv	orschrift zur Darstellung von $K_2Cd(C_2H)_4 \cdot 2 \text{ NH}_3$ und	
	K ₂ Cd	$(C_2H)_4$	68
5.6	Allgeme	ine Arbeitsvorschrift zur Darstellung von A2Zn(C2H)4	
	(A =	Na - Cs) und $A_2Cd(C_2H)_4$ (A = Na, Rb, Cs)	68
5.7	Allgeme	ine Arbeitsvorschrift zur Darstellung von EAM(C ₂ H) ₄	
	(EA =	= Mg - Ba; M = Zn, Cd)	69

5.8 Arbeitsvorschrift zur Darstellung von $A_2Zn(CN)_4$ (A = K - Cs) 5.9 Arbeitsvorschrift zur Darstellung von $[Zn(NH_3)_2](SCN)_2$

5.10 Arbeitsvorschrift zur Darstellung von Mn(SCN) ₂	70
5.11 Arbeitsvorschrift zur Darstellung von Ba(SCN) ₂	71
5.12 Arbeitsvorschrift zur Darstellung von Cd(SCN) ₂	71
5.13 Arbeitsvorschrift zur Darstellung von Cd(NH ₂) ₂	71
5.14 Arbeitsvorschrift zur Darstellung von Ca(NO ₃) ₂	72
5.15 Arbeitsvorschrift zur Darstellung von K ₂ ZnCl ₄	72

6 Literatur

73

Anhang		
A: Ergebnisse der Rietveld-Verfeinerungen	77	
B: Ergebnisse der Einkristallstrukturbestimmungen	117	
C: Raman- und IR-Spektren	125	

1 Einleitung und Aufgabenstellung

1.1 Zur stofflichen Einordnung der ternären Übergangsmetallacetylide

Ternäre Übergangsmetallacetylide lassen sich der höheren Stoffklasse der Carbide zuordnen, also Verbindungen des Kohlenstoffs, in denen dieser der elektronegativste Verbindungspartner ist [1]. Streng genommen trifft diese Definition auch für einige organische Moleküle wie z. B. Kohlenwasserstoffe zu, doch mit der Bezeichnung "Carbid" wird allgemein das Vorhandensein mindestens eines Metalls oder Halbmetalls neben Kohlenstoff vorausgesetzt. Ist nur ein weiteres Element gebunden, so bezeichnet man die Verbindung als binär, enthält sie zwei weitere Elemente, so spricht man von einem ternären Carbid. Die Verbindungen gehören zum Inhalt der anorganischen oder metallorganischen Chemie, je nach dem, ob eine kovalente Metall-Kohlenstoff-Bindung vorliegt oder nicht.

1.1.1 Binäre Carbide

Unterteilt man die existierenden binären Carbide in Abhängigkeit von der Elektronegativitätsdifferenz der beiden Bindungspartner, so gelangt man zu den kovalenten und salzartigen Carbiden. Zudem existieren noch die sogenannten metallischen Carbide [2].

In den kovalenten Carbiden ist die Elektronegativitätsdifferenz zwischen Kohlenstoff und dem weiteren Bindungspartner so gering, daß fast ausschließlich kovalente Bindungen vorliegen (z. B. Siliciumcarbid SiC, Borcarbid B_4C).

Ist die Elektronegativitätsdifferenz größer, resultieren überwiegend salzartige bzw. ionische Verbindungen, die Isolatoren sind. Sie sind aufgrund der basischen Natur des Kohlenstoffanions hydrolyseempfindlich und setzen in ihrer Säure-Base-Reaktion mit protischen Lösemitteln den entsprechenden Kohlenwasserstoff frei. Ihm verdanken die salzartigen Carbide auch ihre Namen. Methanide mit C⁴⁻-Anionen (z. B. Berylliummethanid Be₂C), Acetylide mit C₂²⁻-Hanteln (z. B. Natriumacetylid Na₂C₂, Calciumacetylid CaC₂) und Allenide mit C₃⁴⁻-Anionen (z. B. Magnesiumallenid Mg₂C₃) setzen demzufolge Methan, Acetylen und Allen bzw. Propin frei. Zudem existieren auch Verbindungen dieses Typs, die

noch Wasserstoffatome an den Kohlenstoffatomen tragen können, wie Propinide (z. B. Natriumpropinid NaC₂CH₃) und Hydrogenacetylide (z. B. Natriumhydrogenacetylid NaC₂H). Die Einteilung nach den Bindungsverhältnissen ist jedoch nicht ganz eindeutig, da es beispielsweise Carbide der seltenen Erden gibt (z. B. Lathancarbid LaC₂ [3, 4]), die laut Summenformel zwar zu den ionischen Acetyliden zählen könnten, jedoch formal ein C₂³⁻-Anion enthalten und leitfähig sind. Hier besetzt ein Elektron ein antibindendes π_p^* -Orbital der C-C-Dreifachbindung (*Abb. 1.1*) und gelangt so ins Leitungsband des Festkörpers. Dadurch wird der C-C-Abstand innerhalb der Acetylidhantel länger (128(2) pm in LaC₂) als in Acetylen (120 pm [5]). Die Verbindungen setzen kein reines Acetylen, sondern ein Kohlenwasserstoffgemisch und Wasserstoff bei ihrer Hydrolyse frei. LaC₂ zählt somit zu den metallischen Carbiden.

<u>Abb. 1.1:</u> Schematisches MO-Diagramm des C_2^{2-} -Anions [1].

Die metallischen Carbide sind Verbindungen des Kohlenstoffs mit d- und f-Metallen und verdanken ihren Namen der Eigenschaft, wie ein Metall eine große elektrische Leitfähigkeit zu besitzen. Neben den Carbiden der Seltenerd-Elemente gibt es sogenannte Einlagerungscarbide, in denen sich die Kohlenstoffatome auf Zwischengitterplätze einer typischen Metallpackung befinden (z. B. Vanadiumcarbid VC, Tantalcarbid Ta₂C). Ist der Atomradius des Metalls so klein, daß die Kohlenstoffatome nicht mehr in die Lücken der regulären Metallpackung passen, kommt es zu Verzerrungen im Metallgitter und komplizierteren Stöchiometrien (z. B. Eisencarbid Fe₃C, Mangancarbid Mn₇C₃).

Der Vollständigkeit halber seien noch die Intercalationsverbindungen des Graphits (z. B. LiC_6 [6]) und Metallfulleride (z. B. Na_3C_{60} [7]) genannt. Hier bleiben die grundlegenden Strukturmotive des Graphits und des Fullerens erhalten, tragen allerdings eine negative

Ladung. Außerdem besteht die Möglichkeit, einige Kohlenwasserstoffe zu permetallieren (z. B. perlithiiertes Benzol Li_6C_6 [8, 9]).

1.1.2 Ternäre Übergangsmetallcarbide

Bis vor einigen Jahren waren im Bereich der ternären Übergangsmetallcarbide nur Einlagerungsverbindungen des Systems Erdalkalimetall(Aluminium)-Übergangsmetall-Kohlenstoff (z. B. CaPd₃C [10] und AlTi₃C [11] im Perovskit-Typ) und Seltenerdübergangsmetallcarbide (z. B. YCoC, Y₂FeC₄ und β -ScCrC₂ [12]) bekannt. Die Seltenerdübergangsmetallcarbide lassen sich nicht mehr eindeutig als kovalent, ionisch oder metallisch klassifizieren, da sie aus überwiegend kovalent und polymer aufgebauten, anionischen Übergangsmetall-Kohlenstoff-Netzwerken bestehen, in die Seltenerdkationen eingebettet sind. Der Kohlenstoff kann isoliert (YCoC [13, 14]) oder als C₂-Hantel mit Einfach- (β -ScCrC₂ [15]) oder Doppelbindung (Y₂FeC₄ [16]) vorliegen und die Übergangsmetallatome in vielfacher Weise verknüpfen. Die Kohlenstoff-Einheiten ähneln dabei mit ihren Verbrückungsmöglichkeiten Carbonyl-, Alkyl- und Carben-Liganden. Die einzige bekannte ternäre Verbindung mit Acetylid-Einheiten war bis 1997 Ca₄Ni₃C₅ [10], die allerdings auch isolierte Kohlenstoffatome enthält.

1.1.3 Ternäre Übergangsmetallacetylide

1997 konnten *Ruschewitz et al.* erstmals Verbindungen im System Alkalimetall-Übergangsmetall-Kohlenstoff darstellen, nämlich die ternären Acetylide A₂MC₂ (A = Na; M = Pd, Pt) [17]. In diesen Verbindungen werden anionische Übergangsmetall-Kohlenstoff-Netzwerke mit hoher Symmetrie realisiert (*Abb. 1.2*). Die Palladium- bzw. Platinatome liegen in der Oxidationsstufe 0 vor und binden als Atome mit d¹⁰-Elektronenkonfiguration in typischer linearer Koordination zwei Acetylidhanteln. So resultieren stabförmige Polyanionen $\int_{\infty}^{1} [M(C_2)_{2/2}^{2-}]$ (M = Pd, Pt), die von den Alkalimetallkationen separiert werden. Die Verbindungen sind schwarz, diamagnetisch und nach Leitfähigkeitsmessungen und Bandstrukturrechnungen indirekte Halbleiter [18]. Die entsprechenden ternären Acetylide des Kaliums, Rubidiums und Cäsiums sind isotyp zur Natriumverbindung [18, 19].

Die zu den Pd- und Pt-Verbindungen isoelektronischen Alkalimetallsilber- und

Alkalimetallgoldacetylide (AAgC₂ und AAuC₂, A = Li - Cs) enthalten ebenfalls polymere anionische $\int_{\infty}^{1} \left[M(C_2)_{2/2} \right]^{-}$ -Ketten (M = Ag⁺, Au⁺) [20, 21]. Sie sind farblos bzw. gelb und elektrische Isolatoren.

<u>Abb. 1.2</u>: Die Elementarzelle von Na₂PdC₂ (Raumgruppe $P\overline{3}m1$, Z = 1, Na auf 2d (z = 0,282(1)), Pd auf 1a, C auf 2c (z = 0,384(2))). Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

1.1.4 Ternäre Übergangsmetallhydrogenacetylide

Die ternären Übergangsmetallhydrogenacetylide können als Edukte in den Synthesen von ternären Acetyliden dienen [20, 21]. Sie wurden im allgemeinen innerhalb der Koordinationschemie untersucht, da das Hydrogenacetylidanion (C_2H^-) mit Metallen typische Komplexe bildet, die den isoelektronischen Cyanokomplexen mit dem Cyanidanion (CN^-) bezüglich Stöchiometrie, Farbe und Magnetismus ähneln. Dementsprechend sind viele Ethinyloübergangsmetallat-Komplexe bekannt, die vor allem von *Nast et al.* dargestellt worden sind [22-25]. Er charakterisierte diese Verbindungen vornehmlich spektroskopisch und CH-analytisch. Die von *Nast et al.* dargestellten Verbindungen K₂Zn(C₂H)₄ und K₂Cd(C₂H)₄ konnten von *Weiss et al.* mittels Röntgenpulverdiffraktometrie strukturell aufgeklärt werden [26].

5

1.2 Aufgabenstellung

Ziel dieser Arbeit war die Darstellung und strukturelle Charakterisierung von ternären Übergangsmetallacetyliden. Da vor allem die Acetylide und Hydrogenacetylide von Metallen mit nicht halb oder ganz gefüllter d-Schale explosiv sind [22, 23], sollten diese nicht Gegenstand der Untersuchungen sein. Statt dessen boten sich Verbindungen des Cu(I), Zn(II), Vor Cd(II) und Mn(II) an. allem Versuche zur Synthese von ternären Alkalimetallkupfer(I)acetyliden der Zusammensetzung $ACuC_2$ (A = Li - Cs) erschienen erfolgversprechend, da die Verbindungen der höheren Homologen Silber und Gold schon bekannt waren [20, 21]. Ausgehend von den dort enthaltenen eindimensionalen Polyanionen sollte untersucht werden, ob auch zwei- oder dreidimensionale anionische Netzwerke in ternären Acetyliden verwirklicht werden können. Da in den meisten Fällen nicht von einer Synthese der Produkte in einkristalliner Form ausgegangen werden konnte, bot sich als analytische Methode vor allem die Röntgenpulverdiffraktometrie an.

2 Allgemeines zu den Synthesen und den Untersuchungsmethoden

2.1 Zu den Synthesen

Während in vorausgegangenen Arbeiten zur Darstellung von ternären Carbiden [11-19] meist Festkörperreaktionen bei hohen Temperaturen zu den Zielverbindungen führten, sollte innerhalb dieser Arbeit versucht werden, auch naßchemisch bei tiefen Temperaturen ternäre Verbindungen darzustellen, die nur eine Anionensorte, das $C_2^{2^-}$ bzw. das C_2H^- Anion enthalten. Dies hatte zuvor schon bei der Darstellung der ternären Silber- und Goldacetylide zum Erfolg geführt [20, 21]. Die hierbei erhaltenen Acetylide und Hydrogenacetylide sind luft- und feuchtigkeitsempfindlich. Daher wurden alle Arbeitsschritte in einer Argonatmosphäre mit konventioneller Schlenktechnik durchgeführt. Zudem kam ein Handschuhkasten (MB200B, Fa. Braun) zum Einsatz.

Das nahezu ausschließlich genutzte Lösemittel war flüssiger Ammoniak, denn nahezu alle dargestellten Acetylide und ternären Hydrogenacetylide waren darin schwer löslich, wohingegen die Edukte wie Alkalimetallhydrogenacetylide und die Nebenprodukte wie Alkalimetalliodide vollständig löslich waren. Die etwas bessere Löslichkeit von Kaliumtetraethinylozinkat und -cadmat konnte zur Zucht von Einkristallen genutzt werden. Ammoniak besitzt zudem die Eigenschaft, gasförmiges Acetylen zu lösen, das dann zur Darstellung der benötigten Alkalimetallhydrogenacetylide mit gelöstem Alkalimetall zur Reaktion gebracht werden konnte.

Zur Verflüssigung wurde zunächst gasförmiges Ammoniak in einem Doppelmantelgefäß mit Kryostatkühlung bei -50°C einkondensiert und aus diesem dann über Natrium in einen bei -78°C gekühlten Schlenkkolben mit Glasrührkern überkondensiert. Das benötigte Alkalimetall war zuvor im Handschuhkasten in den Schlenkkolben eingewogen worden. Andere Edukte konnten entweder in fester Form oder als Lösung in Ammoniak zur Reaktionsmischung gegeben werden. Ein angefallenes Produkt wurde dann entweder abfiltriert oder mit Ammoniak dekantierend gewaschen. Zur Entfernung des Ammoniaks ließ man die Reaktionsansätze sich auf Raumtemperatur erwärmen und den Rückstand im dynamischen Vakuum trocknen.

Die bei Temperaturen um -70°C ausgefallenen Niederschläge waren meist schlecht

kristallisiert und enthielten noch adsorbierten Ammoniak. Daher waren die zugehörigen Röntgenpulverdiffraktogramme von geringer Qualität. Zur Steigerung der Kristallinität mußten diese Niederschläge deshalb bei 40-200°C im Vakuum erhitzt werden. Einige der dargestellten Verbindungen waren selbst nach diesem Tempern noch röntgenamorph. Dies war im allgemeinen der entscheidende Grund für das Mißlingen einer Röntgenpulverstrukturanalyse. Nähere Angaben zu den Synthesen befinden sich im Abschnitt 3 und 5 dieser Arbeit.

2.2 Röntgenographische Untersuchungen am Pulver

2.2.1 Röntgenbeugung am Pulver

Zur Anfertigung von Röntgenpulverdiffraktogrammen wurden die zu untersuchenden Verbindungen mittels eines Achatmörsers fein zerrieben und dann aus einer Umfülle heraus oder im Handschuhkasten in Glaskapillare (Markröhrchen) aus Lindemannglas ($\emptyset = 0,3$ mm) gefüllt und eingeschmolzen. Als Pulverdiffraktometer kamen drei Geräte zum Einsatz:

- Guinier-Pulverdiffraktometer G670 mit Image-Plate und Ge-Monochromator (Fa. Huber, Meßzeit i. d. R. zwei Stunden)
- Debye-Scherrer-Pulverdiffraktometer STADI P2 mit Image-Plate und Ge-Monochromator (Fa. Stoe, Meßzeit i. d. R. 6x2 Minuten, die einzelnen Diffrakrogramme wurden aufaddiert)
- Debye-Scherrer-Pulverdiffraktometer STADI P2 mit linearem, ortsempfindlichen Detektor (PSD) und Ge-Monochromator (Fa. Stoe, Meßzeit bis zu 72 h)

Die temperaturabhängige Messung an NaCu₅(C₂)₃ wurde an dem Gerät 2) mit aufgebautem Hochtemperatur-Kapillarofen (Fa. Stoe) durchgeführt. Alle Messungen erfolgten mit monochromatisierter CuK_{α 1}-Strahlung.

2.2.2 Neutronenbeugung am Pulver

Die zu untersuchenden Verbindungen wurden im Handschuhkasten in zylinderförmige Röhrchen aus Vanadium ($\emptyset = 6 \text{ mm}$, Wandstärke: 0,1 mm, Füllhöhe: ca. 5 cm) gefüllt und

mit Hilfe eines Indiumdrahtes luftdicht verschraubt. Zur Aufnahme der Diffraktogramme stand das Flugzeitdiffraktometer ROTAX/DIFF an der gepulsten Spallationsquelle ISIS des Rutherford Appleton Laboratory in Chilton (England) zur Verfügung [27]. Das Diffraktometer ist mit drei orts- und zeitauflösenden Szintillationsdetektoren ausgestattet, die in den Winkeln 28,85°, 72,65° und 122,40° in 20 angeordnet sind.

2.2.3 Pulverbeugungsuntersuchungen mit Synchrotronstrahlung

Beugungsuntersuchungen mit Synchrotronstrahlung wurden am Pulverdiffraktometer der Beamline B2 des Hasylab (Hamburg) durchgeführt (direkter Strahl, ortsempfindlicher Image-Plate-Detektor (OBI)). Die zu untersuchenden Proben befanden sich in Markröhrchen aus Lindemannglas ($\emptyset = 0,3$ mm). Die Wellenlänge der benutzten Strahlung betrug 70,878 pm.

2.2.4 Rechnerprogramme

Zur graphischen Darstellung von Kristallstrukturen wurde das Programm *Diamond* [28] benutzt. Mit dem Programmpaket *WinXPow* [29] konnten Diffraktogramme datentechnisch bearbeitet werden. Zudem erfolgte hiermit auch die Bestimmung der Reflexlagen, die Simulation von Diffraktogrammen und die Indizierung von Reflexen mit den enthaltenen Indizierungsprogrammen *Treor* [30], *Ito* [31] und *Dicvol* [32]. *Ab initio* konnten Strukturen mit dem Programmpaket *Expo* [33] gelöst werden, das Pulverdiffraktogramme nach *Le Bail* zerlegt, um Reflexintensitäten zu extrahieren und Direkte Methoden mit dem Unterprogramm *Sirpow* [34] auf diese anzuwenden. Rietveldverfeinerungen wurden mit dem Programm *GSAS* [35] durchgeführt. Dieses liefert am Ende der Verfeinerung drei Residualwerte, die wie folgt definiert sind:

y _i (obs):	Ordinate des gemessenen Datenpunkts an der Abszissenposition i							
y _i (calc): Ordinate des berechneten Datenpunkts an der Abszissenposition i					position i nach dem			
	zugrundeliegenden Strukturmodell							
$w_i = 1/\sigma_i^2$:	Gewichtungsfaktor (σ _i : Standardabweichung)							
I _i (obs):	Intensität des Re	Intensität des Reflexes i aus dem gemessenen Diffraktogramm						
I _i (calc):	Berechnete Int	ensität d	les	Reflexes	i	nach	dem	zugrundeliegenden
	Strukturmodell							
N:	Anzahl der Refle	exe						
P:	Anzahl der Para	meter						

2 Allgemeines zu den Synthesen und den Untersuchungsmethoden

Die Residualwerte R_P und wR_P beziehen sich auf die Güte der Anpassung des berechneten Diffraktogramms an das gesamte gemessene Diffraktogramm, während R_B die Korrektheit des verfeinerten Strukturmodells in Bezug auf die extrahierten Reflexintensitäten widerspiegelt.

2.3 Röntgenographische Untersuchungen am Einkristall

10

Die temperaturempfindlichen Einkristalle wurden in einem inerten, mit einem Stickstoffstrom gekühlten Öl gepickt (GALDEN HT90 und HT230), in ein Markröhrchen überführt, in flüssigem Stickstoff eingefroren und bei etwa -100°C röntgenographisch vermessen [36]. Die Röntgenbeugungsdaten wurden mit STOE-Diffraktometern (IPDS I und IPDS II) gesammelt (IPDS-Flächenzähler, MoK_{α}-Strahlung: $\lambda = 71,069$ pm, Graphit-Monochromator). Zur Erfassung der Messdaten, Bestimmung der Metrik, Integration der Reflexe und Datenreduktion dienten STOE-Programmsysteme (Expose, Display, Index, Cell, Profile, EMS, Integrate, Select, Decay, Absent, Merge, X-Area) [37]. Die Datenreduktion beinhaltete eine Lorentz- und Polarisationskorrektur. Eine numerische Absorptionskorrektur erfolgte nach Optimierung der Kristallflächen (X-Shape [38], X-Red [39]). Die Strukturlösung gelang mit Direkten Methoden [40]. Das Strukturmodell ließ sich danach mit Fouriermethoden vervollständigen. Die Lagen der Wasserstoffatome konnten der Fourierkarte entnommen werden. Anschließend wurde die Struktur mittels der Methode der kleinsten Fehlerquadrate gegen $|F_0|^2$ unter Verwendung der vollständigen Matrix verfeinert [41]. Die Atomformfaktoren und Dispersionskorrekturen entstammen den International Tables [42]. Die Zeichnungen wurden mit Diamond [27] angefertigt.

2.4 Raman- und IR-Spektroskopie

IR-Spektren wurden mit üblichen KBr-Presslingen auf dem Gerät IFS 66v/S (Fa. Bruker) gemessen. Zur Aufnahme von Raman-Spektren wurden die pulverförmigen Proben in Schmelzpunktbestimmungsröhrchen ($\emptyset = 1$ mm, Füllhöhe: ca. 1 cm) eingeschmolzen und auf dem gleichen Gerät mit dem Aufsatz FRAU 106/S und Nd-YAG-Laser ($\lambda = 1064$ nm, 75 - 80 mW bei farbigen Proben, 150 mW bei farblosen Proben) vermessen.

2.5¹³C-MAS-NMR-Spektroskopie

¹³C-MAS-NMR-Spektren wurden von den Acetyliden ACuC₂ (A = K - Cs) angefertigt. Die Proben wurden dafür in luftdichte Rotoren gefüllt und mit dem Gerät Avance DSX 500 (Fa. Bruker) vermessen (¹³C-Frequenz: 125,841 MHz, Pulssequenz: 90°-Puls gefolgt von zwei 180°-Pulse mit einer Verzögerung von 0,5 μs [43, 44], Pulssequenz-Wiederholung nach 30 s, Rotationsfrequenz der Probe: 5 kHz. Anzahl der scans: 7968 (KCuC₂), 7776 (RbCuC₂), 3264 (CsCuC₂)). Die Intensität der Rotationsseitenbanden wurden auf das isotrope Signal addiert. Die angegebene chemische Verschiebung bezieht sich auf TMS.

2.6 Elektronenstrahl-Mikrosondenelementaranalyse

Qualitative Analysen wurden mit dem Rasterelektronenmikroskop PSEM 75 (Fa. RJLee) durchgeführt. Die zu untersuchenden Proben brachte man zuvor auf einer selbstklebenden Carbon-Folie auf. Die enthaltenen Elemente konnten durch ihre charakteristischen Röntgenspektren identifiziert und quantifiziert werden.

3 Ergebnisse und Diskussion

3.1 Alkalimetallkupfer(I)acetylide ACuC₂ (A = Na - Cs)

3.1.1 Darstellungen

Der zur Darstellung der ternären Silber- und Goldacetylide angewandte Syntheseweg [20, 21] (*Abb. 3.1*, (a)) konnte nicht zur Darstellung der ternären Kupfer(I)acetylide genutzt werden. Nach Zugabe von CuI zu einer Lösung von AC₂H (A = K - Cs) in flüssigem Ammoniak im molaren Verhältnis von 1:2 verblieb nach dem Entfernen des Ammoniaks ein inhomogenes Gemenge, das hauptsächlich eine rote Farbe hatte. Dies deutete auf die Bildung von Cu₂C₂ [45, 46] hin. Es konnte auch nach dem Erhitzen dieses Gemenges kein homogenes Produkt erhalten werden, und eine röntgenographische Untersuchung schlug fehl. Allerdings führte die Reaktion von in Ammoniak suspendiertem A₂C₂ (A = K - Cs) [47, 48] mit CuI zum Erfolg (*Abb. 3.1*, (b)). Es entstanden unmittelbar nach der Zugabe von CuI orangefarbene Niederschläge. Nach Erwärmung auf Raumtemperatur zur Entfernung des Ammoniaks, Trocknung des Rückstandes im dynamischen Vakuum und dekantierenden Waschvorgängen mit flüssigem Ammoniak zur Entfernung des AI zeigten die orangefarbenen Pulver breite

(a)
$$2 \operatorname{AC}_2 H + \operatorname{MI} \xrightarrow{\operatorname{NH}_3(\operatorname{fl})} \operatorname{AM}(\operatorname{C}_2 H)_2 + \operatorname{AI}$$

 $\operatorname{AM}(\operatorname{C}_2 H)_2 \xrightarrow{110^\circ \operatorname{C} - 115^\circ \operatorname{C}} \operatorname{AMC}_2 + \operatorname{C}_2 H_2$
 $(A = \operatorname{Li} - \operatorname{Cs}; M = \operatorname{Ag}, \operatorname{Au})$

(b)
$$A_2C_2 + CuI \xrightarrow{NH_3(fL)} ACuC_2 \text{ (orange)} + AI$$

 $ACuC_2 \text{ (orange)} \xrightarrow{130^\circ C - 200^\circ C} ACuC_2 \text{ (grau)}$
 $(A = K - Cs)$

<u>Abb. 3.1:</u> Syntheseweg für ternäre Silber- und Goldacetylide (a) und für ternäre Kupfer(I)acetylide (b). Reflexe des entsprechenden ternären Acetylids in den Röntgenpulverdiffraktogrammen.

Beim Erhitzen dieser schlecht kristallisierten Verbindungen im dynamischen Vakuum (KCuC₂: 130°C für 1 h, RbCuC₂: 200°C für 3 h, CsCuC₂: 200°C für 5 h) verfärbten sie sich grau und die Kristallinität der Proben verbesserte sich. Die zugehörigen Diffraktogramme eigneten sich für Rietveld-Verfeinerungen. Während des Heizvorganges war ein leichter Druckanstieg zu beobachten, was auf die Entfernung von adsorbiertem Ammoniak hindeutete.

 $LiCuC_2$ konnte nicht in kristalliner Form dargestellt werden. Die nach beiden Synthesewegen (a) und (b) (*Abb. 3.1*) dargestellten gelben Pulver zeigten in den zugehörigen Diffraktogrammen Reflexe mit sehr großen Halbwertsbreiten, wodurch deren Indizierung nicht möglich war.

Bei der Reaktion von Na₂C₂ und CuI nach (b) färbte sich das flüssige Ammoniak dunkelrot, was auf die Bildung von Cu₂C₂ schließen ließ. Tatsächlich zeigte das Diffraktogramm des gewaschenen dunkelorangenen Niederschlags das typische Profil einer Cu₂C₂-Probe (s. Abschnitt 3.2, *Abb. 3.14*). Zusätzlich konnten wenige schwache Reflexe ausgemacht werden, die beim Versuch einer Elementarzellenbestimmung nicht indiziert werden konnten. Auch eine Erhöhung des Eduktverhältnisses Na₂C₂ : CuI auf 1,5 : 1 führte nur zu den Produkten Cu₂C₂ und NaI, zudem verblieb noch überschüssiges Na₂C₂. Wie in Abschnitt 3.2 beschrieben werden wird, bildete sich nach Reaktionsweg (a) im Falle von A = Na und M = Cu die Verbindung NaCu₅(C₂)₃. Wurde dieses Acetylid in einer Glasampulle unter Argon für 1 h auf 270°C erhitzt, bildete sich vermutlich nach dem Reaktionsschema in *Abb. 3.2* NaCuC₂. In dem Diffraktogramm der erhaltenen dunkelgrauen Probe befanden sich zudem noch Reflexe von Cu und unzersetztem NaCu₅(C₂)₃. (s. Anhang A, *Tab. A1, Abb. A1* und *Abb. 3.3*). Der nach *Abb. 3.2* entstandene Kohlenstoff ist höchstwahrscheinlich röntgenamorph angefallen.

 $NaCu_5(C_2)_3 \xrightarrow{270^\circ C, 1h} NaCuC_2 + 4 Cu + 4 C$

Abb. 3.2: Möglicher Bildungsweg von NaCuC₂ aus NaCu₅(C₂)₃.

Ein Erhitzen auf niedrigere Temperaturen bei längeren Reaktionszeiten, z. B. 200°C für 12 h, lieferte nur wenig NaCuC₂. Dafür erschienen neue Beugungsreflexe in den zugehörigen Diffraktogrammen, die ebenso wie die neu auftretenden Reflexe bei einem 30-minütigen Erhitzen auf 280°C nicht indiziert werden konnten (*Abb. 3.3*). Beim mehrstündigen Heizen auf 230°C und 250°C entstand nur unwesentlich mehr NaCuC₂ im Vergleich zum Versuch bei

 200° C, und die nicht indizierbaren Reflexen blieben bestehen. Als günstigstes Verfahren hatte sich ein einstündiges Erhitzen auf 270°C erwiesen, da dann die Ausbeute an NaCuC₂ am größten und der Anteil an nicht indizierbaren Reflexen sehr klein war. Bei allen Temperaturen zersetzte sich die Probe immer auch zu elementarem Kupfer.

<u>Abb. 3.3:</u> Röntgenpulverdiffraktogramme der Zersetzungsprodukte von NaCu₅(C₂)₃. Die zugehörigen Zersetzungsbedingungen sind (von unten nach oben): NaCu₅(C₂)₃ ungeheizt, 200°C für 12 h, 270°C für 1 h, 280°C für 30 min. Der Anteil an elementarem Cu wird mit steigender Temperatur größer. Die einzelnen Diffraktogramme sind unterschiedlich skaliert.

Während die Farben der ternären Kupfer(I)- und Silberacetylide zwischen hell- und dunkelgrau variieren, sind die ternären Goldacetylide gelb. Daher stellte sich die Frage, ob die dunklen Farben wirklich vom Acetylid herrühren oder ob sie durch Spuren von röntgenamorphem, elementarem Kohlenstoff verursacht werden, der bei einer thermischen Zersetzung entstanden sein könnte. Beim Erhitzen des Komplexes $K_2Cu(C_2H)_3$ [49] auf 70°C im dynamischen Vakuum (s. Abschnitt 3.3) entstand neben röntgenamorphen Produkten auch KCuC₂. Das erhaltene Pulver war hellgelb und ähnelte farblich den Goldacetyliden. Daher scheint die graue Farbe der nach *Abb. 3.1* dargestellten Acetylide tatsächlich von amorphem Kohlenstoff herzurühren.

Innerhalb der Syntheseroute (b) spielte es keine Rolle, ob man CuI als Feststoff oder als Lösung in Ammoniak zur Suspension des Alkalimetallacetylids in flüssigem Ammoniak gab. In beiden Fällen entstanden unmittelbar orangefarbene Pulver, Einkristalle fielen nicht an. Deren Züchtung durch Umkristallisation in anderen aprotischen Lösemitteln schien aufgrund der sehr geringen Löslichkeit der polymeren Acetylide wenig erfolgversprechend. Daher wurde, allerdings erfolglos, versucht, KCuC₂ mit Hilfe des Kronenethers 18-Krone-6 in Tetrahydrofuran zu lösen. Auch das ungeheizte, wenig kristalline, orangefarbene KCuC₂ konnte so nicht in Lösung gebracht werden. Bei der Synthese von KCuC₂ nach (b), bei der nun allerdings die Suspension von K_2C_2 in flüssigem Ammoniak unter Anwesenheit des Kronenethers 18-Krone-6 vor der Zugabe von CuI über Nacht gerührt wurde, entstand ein rotbrauner, röntgenamorpher Niederschlag. Dieser zeigte auch nach seinem Erhitzen bei 80°C im dynamischen Vakuum keine Röntgenbeugungsreflexe. Die Substanz ließ sich in Pyridin mit roter Farbe lösen, allerdings fiel nach einigen Minuten ein roter Niederschlag aus, der nach Röntgenbeugungsuntersuchungen Cu₂C₂ war. Daher konnten innerhalb dieser Arbeit keine Einkristalle der Acetylide ACuC₂ dargestellt werden.

3.1.2 Kristallstrukturen

Die Kristallstrukturen der ternären Kupfer(I)acetylide ließen sich mittels Röntgenpulverdiffraktometrie lösen und verfeinern. Zudem wurden an KCuC₂ und RbCuC₂ Neutronenbeugungsuntersuchungen bei 25°C und -263°C bzw. -269°C durchgeführt. Die Daten und Abbildungen der einzelnen Rietveld-Verfeinerungen befinden sich im Anhang A (Tab. A1 - A8, Abb. A1 - A8), Angaben zu den Kristallstrukturen in Tab. 1 - 3. In Abb. 3.4 und Abb. 3.5 sind Ausschnitte aus den Kristallstrukturen graphisch dargestellt. Da Kohlenstoffatome im Vergleich zu Kupferatomen schwache Streuer für Röntgenstrahlen sind, wurden innerhalb der Rietveld-Verfeinerungen die C-C-Abstände als soft constraints auf 120 pm festgesetzt, die C-C-Bindungslänge einer Dreifachbindung [5]. Leider konnten diese Abstände auch bei der Bearbeitung der Neutronenbeugungsdaten nicht frei verfeinert werden. Dies könnte an der verhältnismäßig schlechten Kristallinität der Proben liegen, die breite Reflexe und Reflexüberlappungen verursachte. Zudem wurden anisotrope Reflexhalbwertsbreiten beobachtet, die vermutlich auf die ausgeprägt anisotropen strukturellen Bauelemente (Kupfer-Kohlenstoff-Ketten) zurückzuführen sind. Nachteilig wirkten sich auch zwei Fremdreflexe (in Abb. A2 bei ca. 32° und 38° in 20, in Abb. A5 bei ca. 195 pm und 295 pm in d) in den Röntgen- und Neutronenbeugungsuntersuchungen von $KCuC_2$ sowie die gleichzeitige Existenz von zwei Modifikationen im Falle des RbCuC₂ aus.

	NaCuC ₂	KCuC ₂	α-RbCuC ₂	β-RbCuC ₂	CsCuC ₂
<i>a</i> / pm	376,61(2)	490,79(3)	491,79(8)	446,5(1)	494,06(4)
<i>c</i> / pm	495,95(2)	762,23(6)	832,6(1)	492,5(2)	914,2(1)
V / nm^3	0,070343(9)	0,18360(3)	0,20137(9)	0,09816(6)	0,22314(6)
Raumgruppe	P4/mmm	P4 ₂ /mmc	P4 ₂ /mmc	P4/mmm	P42/mmc
	(Nr. 123)	(Nr. 131)	(Nr. 131)	(Nr. 123)	(Nr. 131)
Ζ	1	2	2	1	2
A auf	1 <i>d</i>	2 <i>e</i>	2 <i>e</i>	1 <i>d</i>	2 <i>e</i>
U_{iso} /pm ²	211(14)	196(17)	644(34) ^a	644(34) ^a	637(18)
Cu auf	1a	2 <i>b</i>	2 <i>b</i>	1a	2 <i>b</i>
U_{iso} / pm^2	214(9)	309(15)	155(30) ^b	155(30) ^b	428(21)
C auf	$2g, z = 0,3790^{\circ}$	4k, x = 0,1223 ^d	4k, x = 0,1220 ^e	2g, z = 0,3782 ^f	4k, x = 0,1214 ^g
U_{iso} / pm^2	200 ^h	200 ^h	200 ^h	200 ^h	200 ^h
wR _p	0,0269	0,0366	0,0	310	0,0293
R _p	0,0209	0,0260	0,02	241	0,0226
R _B	0,0247	0,0476	0,0226	0,0245	0,0440
A – Cu / pm	363,88(1) (8x)	395,92(2) (8x)	405,29(5) (8x)	400,36(9) (8x)	417,47(3) (8x)
A - C / pm	272,98(1) (8x)	316,43(2) (8x)	327,71(4) (8x)	321,35(9) (8x)	341,84(2) (8x)
Cu - C / pm	187,97(1) (2x)	185,40(1) (2x)	185,90(3) (2x)	186,23(6) (2x)	187,03(2) (2x)
C - C / pm	120 ^c	120 ^d	120 ^e	120 ^f	120 ^g

<u>**Tab. 1:**</u> Ausgewählte kristallographische Daten ternärer Kupfer(I)acetylide (röntgenographische Untersuchungen am Pulver).

^{a, b} zusammen verfeinert als *constraint*, ^{c-g} fest als *soft constraint*, ^h fest

Die Alkalimetallkupfer(I)acetylide kristallisieren in zwei Strukturtypen (*Abb. 3.4* und *Abb. 3.5*), die schon von den ternären Silber- und Goldacetyliden bekannt sind. KCuC₂, α -RbCuC₂ und CsCuC₂ sind isotyp zu CsAgC₂ [20] und kristallisieren in der Raumgruppe *P4₂/mmc*. Es liegen $\int_{\infty}^{1} \left[Cu(C_2)_{2/2} \right]$ -Ketten vor, die innerhalb von (001)-Ebenen der tetragonalen

	25°C	-269°C
Raumgruppe, Z	<i>P4</i> ₂ / <i>mmc</i> (Nr. 131), 2	<i>P4</i> ₂ / <i>mmc</i> (Nr. 131), 2
<i>a</i> / pm	490,98(3)	492,78(4)
<i>c</i> / pm	760,78(7)	752,85(8)
V / nm^3	0,18339(2)	0,18282(3)
K auf <i>2e</i>		
U _{iso} / pm ²	290(20)	60(10)
Cu auf 2b		
U_{iso} / pm^2	280(10)	26(8)
C auf 4k	$x = 0,1223^{a}$	$x = 0,1219^{b}$
U_{iso} / pm^2	320(10)	127(8)
Anzahl der Reflexe	62/98/201	61/217/625
R _B	0,0750/0,1367/0,1511	0,0472/0,0468/0,0497
R _p	0,0334/0,0515/0,0307	0,0224/0,0364/0,0332
wR _p	0,0452/0,0507/0,0316	0,0324/0,0369/0,0253
Anzahl d. verf. Parameter	36	39
K – Cu / pm	395,86(2) (8x)	396,03(3) (8x)
K - C / pm	316,30(2) (8x)	315,82(2) (8x)
Cu - C / pm	185,43(4) (2x)	186,32(4) (2x)
C - C / pm	120 ^a	120 ^b

Tab. 2: Ergebnisse der Neutronenpulverbeugungsuntersuchungen an KCuC₂.

^{a, b} fest als *soft constraint*

Elementarzelle parallel zueinander verlaufen. Diese Ebenen sind abwechselnd um 90° gedreht entlang der *c*-Achse gestapelt und werden von den Alkalimetallkationen getrennt. NaCuC₂ und β -RbCuC₂ kristallisieren in der Raumgruppe *P4/mmm* und sind isotyp zu KAgC₂ [20]. Die $\int_{\infty}^{1} \left[Cu(C_2)_{2/2} \right]^{-} \right]$ -Ketten sind alle parallel zueinander, befinden sich auf der *c*-Achse der tetragonalen Elementarzelle und werden wiederum von den Alkalimetallkationen separiert. In beiden Strukturtypen wird das Cu⁺-Kation mit d¹⁰-Elektronenkonfiguration in typischer Weise linear von zwei Acetylidhanteln *end-on* koordiniert. Die Alkalimetallkationen werden *side-on* von vier Acetylidhanteln koordiniert, und zwar im CsAgC₂-Typ tetraedrisch und im KAgC₂-Typ quadratisch planar. Die Acetylidhanteln befinden sich in der Mitte eines gestauchten A₄Cu₂-Oktaeders. Beide Strukturtypen entsprechen zwei einfachen Varianten von Stabpackungen [50], wenn man das Polyanion als Stab auffaßt. Eine dritte, dicht gepackte Stabpackung wird von LiAgC₂ [20] und LiAuC₂ [21] realisiert, in der sich die Metall-Kohlenstoff-Ketten auf der c-Achse einer hexagonalen Elementarzelle befinden und somit auf Lücke liegen. Da die Alkalimetallkationen in die Zwischenräume zwischen den Stäben passen müssen, wird die letztgenannte dichte Stabpackung bevorzugt mit den kleinen Lithiumkationen gebildet. Die ternären Acetylide der größeren Alkalimetallkationen bilden die beiden anderen Packungstypen. β -RbCuC₂ hat ein etwas geringeres Raumvolumen pro

	25°C	-263°C
α- RbCuC ₂	69,0(3) Gew. %	70,3(2) Gew. %
Raumgruppe, Z	<i>P4</i> ₂ / <i>mmc</i> (Nr. 131), 2	<i>P4</i> ₂ / <i>mmc</i> (Nr. 131), 2
a / pm	492,63(6)	493,62(5)
c / pm	828,5(1)	817,3(1)
V / nm^3	0,20106(5)	0,19915(4)
Rb auf 2e		
U_{iso} / pm^2	390(20) ^a	95(8) ^f
Cu auf 2b		
U_{iso} / pm^2	90(8) ^b	$0(4)^{g}$
C auf $4k$	$x = 0,1219^{c}$	$x = 0,122^{h}$
U_{iso} / pm^2	$222(9)^{d}$	$101(5)^{i}$
Rb – Cu / pm	405,27(4) (8x)	404,45(3) (8x)
Rb – C / pm	327,38(3) (8x)	326,01(3) (8x)
Cu – C / pm	186,24(5) (2x)	186,66(6) (2x)
C - C / pm	120 ^c	120 ^h
Anzahl der Reflexe	41/59/114	49/121/208
R _B	0,0244/0,0299/0,0236	0,0284/0,0183/0,0156
β- RbCuC ₂	31,0(3) Gew. %	29,7(2) Gew. %
Raumgruppe, Z	P4/mmm (Nr. 123), 1	P4/mmm (Nr. 123), 1
a / pm	446,12(8)	443,09(7)
c / pm	491,8(2)	493,4(2)
V/nm^3	0,09789(6)	0,09687(4)
Rb auf <i>1d</i>		
U_{iso} / pm^2	390(20) ^a	95(8) ^f
Cu auf <i>la</i>		
U_{iso} / pm^2	90(8) ^b	$0(4)^{g}$
C auf $2g$	$z = 0.3780^{e}$	$z = 0,378^{j}$
U_{iso} / pm^2	$222(9)^{d}$	$101(5)^{i}$
Rb – Cu / pm	399,98(8) (8x)	398,78(7) (8x)
Rb – C / pm	321,11(5) (8x)	319,01(5) (8x)
Cu – C / pm	185,9(1) (2x)	186,67(8) (2x)
C - C / pm	120 ^e	120 ^j
Anzahl der Reflexe	25/36/67	32/72/123
R _B	0,0296/0,0327/0,0264	0,0261/0,0212/0,0141
R _p	0,0197/0,0272/0,0156	0,0216/0,0209/0,0171
wR _p	0,0246/0,0244/0,0160	0,0283/0,0238/0,0168
Anzahl d. verf. Parameter	41	41

Tab. 3: Ergebnisse der Neutronenpulverbeugungsuntersuchungen an RbCuC₂.

a, b, d, f, g, i zusammen verfeinert als *constraint*, ^{c, e, h, j} fest als *soft constraint*

<u>Abb. 3.4</u>: Kristallstruktur von α -RbCuC₂ (CsAgC₂-Typ). Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.5:</u> Kristallstruktur von β -RbCuC₂ (KAgC₂-Typ). Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

Formeleinheit als α -RbCuC₂. Der Anteil an gebildetem β -RbCuC₂ ließ sich durch ein kürzeres Erhitzen des wenig kristallinen orangefarbenen RbCuC₂ auf 200°C für nur 30 min verringern.

Die Auswertung der Daten der Neutronenbeugungsuntersuchungen ergab ein vergleichbares Ergebnis zu dem der Röntgenbeugungsuntersuchungen. Die Diffraktogramme bei -263°C bzw. -269°C ließen sich in den Rietveld-Verfeinerungen besser angepassen als die bei Raumtemperatur. Beim Vergleich der Ergebnisse fiel auf, daß bei tiefen Temperaturen die Gitterkonstante einen größeren Wert annahm, entlang derer das Polyanion verläuft (*a* in *P42/mmc*, *c* in *P4/mmm*), wohingegen sich die andere Zellkante verkürzte (*c* in *P42/mmc*, *a* in *P42/mmm*). Dies läßt sich mit einer weniger ausgeprägten Librationsbewegung der Acetylidhantel bei tiefen Temperaturen erklären, die nun im zeitlichen Mittel häufiger auf der gedachten Zellachse zum Liegen kommt als bei Raumtemperatur. Dadurch werden die Kupferatome etwas auseinander gerückt, und die entsprechende Zellachse wird länger, wohingegen sich die andere Zellkante verkürzt. In den untersuchten ternären Silber-, Palladium- und Platinacetyliden mit Metall-Acetylid-Ketten wurde der gleiche Effekt beobachtet [18, 20]. Es resultierten bei tiefen Temperaturen erwartungsgemäß kleinere Zellvolumina, die untersuchten Verbindungen besitzen demnach einen positiven thermischen Ausdehnungskoeffizienten.

3.1.3 Raman-spektroskopische Untersuchungen

Die Wellenzahlen der C-C-Streckschwingung in den Alkalimetallkupfer(I)acetyliden sind in Tab. 4 neben denen der ternären Silber- und Goldacetylide aufgelistet, die einzelnen Spektren befinden sich im Anhang C (Abb. C1 - C3, Abb. C6). Die Silber- und Goldverbindungen zeigen ähnlich große Werte wie die des Kupfers, weshalb angenommen werden kann, daß in ähnliche Bindungsverhältnisse vorliegen. Die allen Verbindungen Daten der Neutronenbeugungsuntersuchungen an zwei ternären Silberacetyliden führten zu C-C-Abständen von 122,3(6) pm in KAgC₂ [20] und 121,7(7) pm in CsAgC₂ [20]. Diese Werte liegen nahe an der erwarteten Bindungslänge einer C-C-Dreifachbindung von 120 pm [5]. Deswegen wurde auch die Festlegung des C-C-Abstandes auf 120 pm in den Rietveld-Verfeinerungen der ternären Kupferacetylide als sinnvoll erachtet. Die Probe des NaCuC₂ zeigte keine Bande im Raman-Spektrum. Die schwarze Farbe der untersuchten Probe könnte sich dabei nachteilig ausgewirkt haben. Dunkle Farben verursachen während der Aufnahme eines Raman-Spektrums immer eine verstärkte Absorption des Laserlichts in der Probe, so daß für eine Detektion von Raman-Banden zu wenig Streustrahlung emittiert wird. Wurde ein graues Gemenge von NaCu₅(C₂)₃ und NaCuC₂ untersucht, so konnte eine Bande bei 1952 cm⁻¹ beobachtet werden (Anhang C, *Abb. C6*). Ob es sich bei diesem Signal jedoch wirklich um eines von NaCuC₂ handelte, konnte nicht mit Sicherheit gesagt werden, da noch einige andere Banden mit ähnlicher Form aufgetreten sind.

Der ersichtliche Trend der größer werdenden Wellenzahlen von den Kupfer- über die Silber- zu den Goldacetyliden läßt sich auch bei den analogen Dicyano-Komplexen

	ACuC ₂	AAgC ₂ [20]	AAuC ₂ [21]
	$v(C \equiv C)_{Raman} / cm^{-1}$	$v(C=C)_{Raman} / cm^{-1}$	$\nabla(C=C)_{Raman} / cm^{-1}$
A = Li	^a	1962	1998
A = Na	1952 ^b	1965	1997
A = K	1959	1963	1997
A = Rb	1949	1961	1991
A = Cs	1945	1965	1993

Tab. 4: Wellenzahlen der C-C-Streckschwingung in ternären Münzmetallacetyliden.

^a Verbindung konnte nicht dargestellt werden, ^b unsicherer Wert

[M^I(CN)₂]⁻ bzgl. der C-N-Valenzschwingung beobachten [51, 52]. Innerhalb der Münzmetall-Gruppen scheinen die Wellenzahlen fast unabhängig vom enthaltenen Alkalimetall zu sein. Nach mehreren wiederholten Messungen an der gleichen Probe konnte abgeschätzt werden, daß sich die mit dem Spektrometer erhaltenen Wellenzahlen um bis zu 4 cm⁻¹ unterschieden, das heißt daß die Auflösung des Spektrometers ca. 4 cm⁻¹ beträgt . Die Probe des RbCuC₂ enthielt beide Modifikationen, trotzdem konnte nur ein Signal ausgemacht werden. Dieses hatte allerdings ungefähr die doppelte Halbwertsbreite wie die Signale der anderen ternären Kupferacetylide. Daraus konnte geschlossen werden, daß sich die Wellenzahlen der C-C-Streckschwingung der beiden Modifikationen nur gering unterscheiden, und daß das Spektrometer beide Signale nicht getrennt auflösen konnte.
3.1.4 ¹³C-MAS-NMR-Spektroskopie

In den ¹³C-MAS-NMR-Spektren von KCuC₂, RbCuC₂ und CsCuC₂ sind die Resonanzlinien kompliziert aufgespalten, da die magnetischen Spins der ¹³C-Kerne (I = ¹/₂) mit den Spins der isotopen Kerne ⁶³Cu und ⁶⁵Cu koppeln (I = 3/2 für beide Isotope) (*Abb. 3.6*). Zudem muß noch die Quadrupolwechselwirkung beider Kupferkerne mit dem Kohlenstoffkern berücksichtigt werden [53], sowie die Wechselwirkung der Kupferkerne untereinander. Diese Kopplung über chemische Bindungen, durch den Raum oder beides ist typisch für Verbindungen, die Kerne mit einem Quadrupolmoment enthalten. Mit den für Lösemittel-NMR üblichen Methoden können diese Spektren nicht interpretiert werden, eine theoretische Spektrensimulation und Anpassung an das gemessene Spektrum führt hier zum Ziel [54, 55]. Diese ist allerdings im Rahmen dieser Arbeit nicht durchgeführt worden.

Abb. 3.6: ¹³C-MAS-NMR-Spektren von KCuC₂, RbCuC₂ und CsCuC₂.

Dennoch lassen sich einige einfache Schlüsse ziehen. Die chemische Verschiebung des Kohlenstoffatoms in den ternären Kupfer(I)acetyliden wird mit steigender Elektronenzahl des Alkalimetalls größer. Diese Tendenz wurde auch bei Na₂C₂ / K₂C₂ [47], CaC₂ / BaC₂ [56],

 Na_2PdC_2 / K_2PdC_2 [18] und Na_2PtC_2 / K_2PtC_2 [18] gefunden. Desweiteren haben die dort gemessenen chemischen Verschiebungen ähnliche Werte wie die der hier untersuchten ternären Kupferacetylide, weshalb davon ausgegangen werden kann, daß in allen Verbindungen ähnliche Bindungsverhältnisse des Kohlenstoffatoms vorliegen. In Na_2C_2 und K_2C_2 [47] konnte der C-C-Abstand mittels Neutronenbeugung und die Wellenzahl der C-C-Streckschwingung bestimmt werden. Beide Werte entsprachen denen einer C-C-Dreifachbindung [5]. Deshalb kann auch bei den ternären Kupfer(I)acetyliden ACuC₂ mit dem Vorliegen einer C-C-Dreifachbindung gerechnet werden. Dies wurde ebenfalls bei den Raman-spektroskopischen Untersuchungen deutlich.

In KCuC₂, RbCuC₂ und CsCuC₂ existieren ähnliche Koordinationssphären des Kohlenstoffs (s. Abschnitt 3.1.1), was die vergleichbaren Linienformen der drei Spektren widerspiegeln. Auch die Messung an RbCuC₂ zeigt keine auffälligen Unterschiede zu den Spektren der beiden anderen Acetylide, obwohl die Probe aus zwei Modifikationen (α - und β -RbCuC₂) bestand. Dies unterstreicht das Vorhandensein der gleichen Koordinationssphäre des Kohlenstoffatoms in beiden Modifikationen (*Abb. 3.4* und *3.5*).

3.2 Natriumkupfer(I)acetylid NaCu₅(C₂)₃

3.2.1 Darstellung

Die Bildung von NaCu₅(C₂)₃ aus NaC₂H und CuI ist noch nicht vollkommen verstanden. Gab man zu einer Lösung von NaC₂H in flüssigem Ammoniak ein halbes Äquivalent CuI, so färbte sich die Lösung beim Abdestillieren des Ammoniaks dunkelrot, und es verblieb ein Gemenge aus einem roten, gelben und weißen Feststoff. Wurde dieses Gemenge bei 200°C im dynamischen Vakuum für 10 - 30 min erhitzt, so nahm das Gemenge eine gelbe Farbe an. Dabei stieg der Druck merklich, adsorbiertes Ammoniak und die Entstehung von Acetylen konnten die Ursache hierfür sein. Nach dekantierenden Waschvorgängen zur Entfernung des NaI konnte das orangefarbene NaCu₅(C₂)₃ in verhältnismäßig geringer Sauberkeit erhalten werden. Das zugehörige Diffraktogramm zeigte noch Reflexe von elementarem Kupfer, wenige Fremdreflexe geringer Intensität und zudem einen hohen Untergrund (Anhang A, *Abb. A9, Abb. A10*), der auf eine geringe Kristallinität der Substanz schließen ließ. Ein mögliches Reaktionsschema ist in *Abb. 3.7* gezeigt. Bei einem molaren Edukt-Verhältnis von 6 : 5

$$6 \operatorname{NaC_2H} + 5 \operatorname{CuI} \longrightarrow \operatorname{NaCu}_5(C_2)_3 + 5 \operatorname{NaI} + 3 \operatorname{C_2H}_2$$

Abb. 3.7: Mögliche Reaktionsgleichung zur Bildung von NaCu₅(C₂)₃.

bezüglich NaC₂H und CuI konnte beim Erhitzen des verbliebenen roten Gemenges keine Farbänderung festgestellt werden. Anscheinend war ein Überschuß an NaC₂H zur Umsetzung erforderlich. Die überschüssigen vier Äquivalente NaC₂H, die sich beim Heizen unter Acetylenabspaltung in ammoniakunlösliches Na₂C₂ umgewandelt haben sollten, konnten jedoch im Diffraktogramm des Endproduktes nicht ausgemacht werden. Entweder wurde ein Großteil des NaC₂H nicht zersetzt und beim dekantierenden Waschen mit flüssigem Ammoniak entfernt, oder Na₂C₂ fiel röntgenamorph an.

Die oben beschriebene Synthese war nur erfolgreich, wenn auf eine Reinigung des benutzten Acetylens und Ammoniaks verzichtet und Natrium nicht im Handschuhkasten gehandhabt, sondern in Toluol geschnitten wurde. Vermutlich war die Anwesenheit von Verunreinigungen zur Bildung von NaCu₅(C_2)₃ von Nöten. Wurde mit der üblichen Arbeitstechnik gearbeitet, so entstand beim Abdestillieren des Ammoniaks ein orangefarbener, röntgenamorpher Feststoff, der beim Erhitzen im dynamischen Vakuum kristalliner wurde (200°C für 1 h) und Reflexe in Röntgenpulverdiffraktogrammen zeigte (*Abb. 3.8*). Aufgrund der zum Teil sehr großen Halbwertsbreiten der Beugungsreflexe scheiterte jedoch deren Indizierung. Aufgenommene Raman-Spektren zeigten keine charakteristischen Banden.

<u>Abb. 3.8:</u> Diffraktogramm der strukturell unbekannten Phase im System $Na^+ / Cu^+ / C_2^{2-}$.

3.2.2 Kristallstruktur

Die Kristallstruktur des NaCu₅(C₂)₃ ließ sich mit Direkten Methoden lösen. Die Lagen der Kohlenstoffatome fand man in Differenzfourier-Rechnungen. In *Tab. 5* und *Tab. 6* sind ausgewählte Ergebnisse der Strukturbestimmung aufgelistet, weitere Angaben zur Rietveld-Verfeinerung befinden sich im Anhang A (*Tab.* A9, *Tab. A10*, *Abb. A9*, *Abb. A10*). In den *Abb. 3.9* bis *3.13* sind Ausschnitte aus der Kristallstruktur graphisch dargestellt.

$NaCu_5(C_2)_3$	Röntgenstrahlung	Synchrotronstrahlung	
<i>a</i> / pm	732,80(2)	732,20(5)	
<i>b</i> / pm	1099,63(4)	1098,80(6)	
<i>c</i> / pm	726,15(2)	725,52(3)	
V / nm^3	0,58514(3)	0,58371(7)	
Raumgruppe, Z	<i>Pnma</i> (Nr. 62), 4	<i>Pnma</i> (Nr. 62), 4	
Na auf 4c	0,050(1) 0,75 0,316(1)	0,059(2) 0,75 0,323(2)	
U _{iso} (pm ²)	500(40)	760(70)	
Cu1 auf 4c	0,0978(4) 0,25 0,0767(4)	0,1015(6) 0,25 0,0748(6)	
U _{iso} (pm ²)	170(10)	170(20)	
Cu2 auf 8 <i>d</i>	0,0565(3) 0,4583(2) 0,1862(3)	0,0560(4) 0,4581(3) 0,1853(4)	
U _{iso} (pm ²)	151(6)	30(9)	
Cu3 auf 8 <i>d</i>	0,1938(3) 0,4472(2) 0,4944(4)	0,1919(4) 0,4486(3) 0,4949(6)	
U _{iso} (pm ²)	188(6)	100(10)	
C1 auf 8 <i>d</i>	0,203(2) 0,056(1) 0,750(2)	0,212(3) 0,053(2) 0,754(3)	
U _{iso} (pm ²)	200^{a}	$170(40)^{b}$	
C2 auf 8 <i>d</i>	0,145(2) 0,092(1) 0,895(2)	0,133(3) 0,106(2) 0,874(3)	
U _{iso} (pm ²)	200^{a}	170(40) ^b	
C3 auf 8d	0,066(2) 0,19543(7) 0,364(2)	0,074(3) 0,195395(6) 0,364(3)	
U _{iso} (pm ²)	200 ^a	170(40) ^b	
wR _p	0,0375	0,0297	
R _p	0,0292	0,0234	
R _B	0,0303	0,0951	

<u>**Tab. 5:**</u> Ergebnisse der Pulverbeugungsuntersuchnungen mit Röntgen- und Synchrotronstrahlung an $NaCu_5(C_2)_3$.

^a fest, ^b zusammen verfeinert als *constraint*

Die Rietveld-Verfeinerungen mit den aufgenommenen Pulverdiffraktogrammen verliefen nur bedingt befriedigend. Das angewandte Strukturmodell konnte zwar bestätigt werden, allerdings ließen sich einige Parameter wie die C-Lagen und deren thermische Auslenkungsparameter nicht oder nur teilweise verfeinern. Ein Grund dafür waren die schlechte Qualität der Diffraktogramme (s. Anhang A, *Abb. A9, Abb. A10*) mit einem hohen Untergrund und einigen Fremdreflexen mit geringer Intensität. Dies spiegelte sich auch in den großen R_B- und χ^2 -Werten (s. Anhang A, *Tab. A10*) der Verfeinerung mit den Synchrotrondaten wider. Beim Erhitzen des zuerst erhaltenen Gemenges aus der Umsetzung von Na C_2H und CuI entstand also nicht nur kristallines Na $Cu_5(C_2)_3$, sondern auch mindestens ein nicht identifiziertes Nebenprodukt.

<u>**Tab.6:**</u> Ausgewählte interatomare Abstände in $NaCu_5(C_2)_3$ aus den Pulverbeugungsuntersuchungen mit Röntgen- und Synchrotronstrahlung.

	Abstände (Röntgenstrahlung) / pm	Abstände (Synchrotronstrahlung) / pm
Na – Na	378,9(4) (2x)	381,2(8) (2x)
Na – Cu1	305,3(9), 320(1)	309(2), 312(2)
Na – Cu2	334,4(3) (2x)	336,0(5) (2x)
Na – Cu3	312,8(7) (2x)	314(1) (2x)
Na – C1	283(2) (2x), 287(1) (2x)	278(3) (2x), 300(2) (2x)
Na – C2	272(2) (2x), 288(2) (2x)	256(2) (2x), 278(3) (2x)
Na – C3	255(2) (2x)	254(3) (2x)
Cu1 - Cu2	244,4(2) (2x)	244,5(3) (2x)
Cu2 - Cu1	244,4(2)	244,5(3)
Cu2 - Cu3	245,7(3), 252,3(4)	245,9(5), 252,3(5)
Cu3 - Cu2	245,7(3), 252,3(4)	245,9(5), 252,3(5)
Cu1 - C2	221(1) (2x)	216(2) (2x)
Cu1 - C3	218(1) (2x)	219(2) (2x)
Cu2 - C1	211(1), 224(1)	205(2), 228(2)
Cu2 - C2	217(1), 228(1)	218(2), 243(2)
Cu2 - C3	212,9(7)	213(1)
Cu3 - C1	186(1), 227(1)	189(2), 220(2)
Cu3 - C2	211(1)	232(2)
Cu3 - C3	205,7(8)	204(1)
C1 - C2	120 ^a	120 ^c
C1 – Na	283(2), 287(1)	278(3), 300(2)
C1 - Cu2	211(1), 224(1)	205(2), 228(2)
C1 - Cu3	186(1), 227(1)	189(2), 220(2)
C2 – Na	272(2), 288(2)	256(2), 278(3)
C2 - Cu1	221(1)	216(2)
C2 - Cu2	217(1), 228(1)	218(2), 243(2)
C2 - Cu3	211(1)	232(2)
C3 - C3	120 ^b	120 ^d
C3 – Na	255(2)	254(3)
C3 - Cu1	218(1)	219(2)
C3 - Cu2	212,9(7) (2x)	213(1) (2x)
C3 - Cu3	205,7(8) (2x)	204(1) (2x)

a, b, c, d fest als *soft-constraint*

NaCu₅(C₂)₃ enthält ein [Cu₅(C₂)₃]⁻Polyanion, das in der Ansicht entlang der *a*-Achse einer "Leiterwand" mit versetzten Sprossen ähnelt (*Abb. 3.9*). Zwischen diesen Sprossen existieren Lücken, in denen die Na⁺-Kationen plaziert sind. Diese füllen die Lücken nicht ganz aus, was

<u>Abb. 3.9:</u> Sicht auf die Kristallstruktur von Na $Cu_5(C_2)_3$ entlang der *a*-Achse. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.10:</u> Sicht auf die Kristallstruktur von $NaCu_5(C_2)_3$ entlang der *c*-Achse. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.11:</u> Koordinationssphären der drei kristallographisch unterschiedlichen Kupferatome in $NaCu_5(C_2)_3$. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.12</u>: Koordinationssphäre des Natriumatoms in NaCu₅(C_2)₃. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.13:</u> Koordinationssphären der zwei kristallographisch unterschiedlichen C_2^{2} -Hanteln in NaCu₅(C₂)₃. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

an den großen thermischen Auslenkungsparametern deutlich wird (Abb. 3.10, Tab. 5). Es wird quadratisch-pyramidal von fünf $C_2^{2^2}$ -Hanteln *side-on* koordiniert (*Abb. 3.12*). Die Kupferatome besetzen zwei acht- und eine vierzählige kristallographische Lage. Innerhalb des Polyanions existieren bindende Cu-C-Wechselwirkungen. Die kurzen Cu-Cu-Abstände von 244,4(2) - 252,3(4) pm (Tab. 6) deuten auf bindende Cu-Cu-Wechselwirkungen hin [57, 58]. Im Kupfermetall beträgt der Cu-Cu-Abstand 256,3 pm [59]. Lumineszenz im sichtbaren Bereich beim Bestrahlen der Substanz mit UV-Licht konnte auch bei tiefen Temperaturen nicht beobachtet werden. Die Koordination der Kupferatome ist in der Abb. 3.11 dargestellt. Demnach sind das Cu1- und Cu3-Atom ähnlich von zwei C_2^{2} -Hanteln *end-on* und einer Hantel side-on koordiniert. Zusätzlich treten noch zwei Kupferatome in die Koordinationssphäre ein, so daß Cu1 und Cu3 insgesamt von sechs Atomen umgeben sind. Eine vergleichbare Umgebung besitzen auch die Kupferatome im Kupferphenylacetylid [60], in dem auch kurze Cu-Cu-Abstände gefunden wurden (242 pm und 247 pm). Bei Cu2 tritt noch eine weitere *end-on*-Koordination einer C_2^{2-} -Hantel sowie ein zusätzliches koordinierendes Kupferatom auf, so daß Cu2 insgesamt von acht Atomen umgeben ist. Die Koordinationssphäre des Cu1- und Cu3-Atoms sind nicht, wie man der Abb. 3.11 entnehmen könnte, vollkommen planar. Das gilt auch für die Umgebung der C₂²⁻-Hantel, die aus zwei C3-Atomen gebildet wird (Abb. 3.13). Die zweite kristallographisch unterschiedliche Hantel wird aus dem C1- und dem C2-Atom aufgebaut. Da sich alle drei C-Atome auf achtzähligen Lagen befinden, existieren doppelt so viele Hanteln aus C1- und C2-Atomen wie aus zwei C3-Atomen. Letztere bilden die Sprossen der "Leiterwand" im Polyanion. Jeweils ein C-Atom dieser Hantel ist an zwei Kupferatome end-on gebunden, was auch im Kupferphenylacetylid beobachtet wird [60]. Zusätzlich koordiniert die Hantel side-on je ein weiteres Kupfer- und Natriumatom, wobei die Wechselwirkung mit dem Kupferatom stärker ist (*Tab.* 6 (Röntgenbeugung), C3 - Cu1: 218(1) pm; C3 - Na: 255(2) pm). Bei der Hantel aus dem C1- und dem C2-Atom treten neben der gerade beschriebenen Koordinationsgeometrie noch jeweils eine weitere side-on-Koordination an ein Kupfer- und an ein Natriumatom hinzu. Auch hier ist die Wechselwirkung mit dem Kupferatom stärker (*Tab. 6* (Röntgenbeugung), relevante Abstände der side-on-Koordinationen sind: C1 – Cu2: 224(1) pm; C2 – Cu2: 228(1) pm; C1 – Cu3: 227(1) pm; C2 – Cu3: 211(1) pm; C1 – Na: 283(2) pm, 287(1) pm; C2 – Na: 272(2) pm, 288(2) pm). Die side-on-Koordinationen, vor allem an die Kupferatome, sollten die C-C-Dreifachbindung schwächen, und zwar die der C1-C2-Hantel in stärkerem Maße als die der C3-C3-Hantel, da zwei zusätzliche Atome side-on koordiniert werden. Leider ließ sich der C-C-Abstand innerhalb der durchgeführten Rietveld-Verfeinerungen nicht frei verfeinern und wurde auf 120 pm festgesetzt. Allerdings erkennt man die beschriebene Bindungsschwächung anhand der Wellenzahlen der C-C-Streckschwingungen in den Ramanund IR-Spektren (s. Anhang C, *Abb. C4*, *Abb. C5*, Abschnitt 3.2.3).

Wird in einem Gedankenexperiment das Na-Atom durch ein Cu-Atom ersetzt, so gelangt man stöchiometrisch zu Cu₂C₂, dessen Struktur bislang unbekannt ist. Auch das im Rahmen dieser Arbeit nach *Nast et al.* [45] dargestellte rot-schwarze Cu₂C₂ war nahezu röntgenamorph (*Abb. 3.14*). Es liegt die Vermutung nahe, daß es strukturelle Parallelen zu NaCu₅(C₂)₃ gibt, was im folgenden Abschnitt bei der Interpretation der Raman- und IR-Spektren diskutiert wird.

Abb. 3.14: Typisches Reflexprofil einer Röntgenpulveraufnahme von Cu₂C₂

3.2.3 Raman- und IR-spektroskopische Untersuchung

Von NaCu₅(C₂)₃ wurden ein Raman- und ein IR-Spektrum aufgenommen (s. Anhang C, *Abb. C4, Abb. C5*). Da in der Kristallstruktur zwei kristallographisch unterschiedliche C₂²⁻-Hanteln existieren, waren mehrere Banden im Wellenzahlbereich einer C-C-Dreifachbindung zu erwarten. Es ließen sich drei der vier gefundenen Banden im Raman-Spektrum, die in diesem Wellenzahlbereich liegen (1899 cm⁻¹, 1753 cm⁻¹, 1722 cm⁻¹) auch im IR-Spektrum wiederfinden [61, 62]. Auffällig ist die große Abweichung ihrer Wellenzahlen z. B. von der Wellenzahl der C-C-Streckschwingung in KCuC₂ (1959 cm⁻¹), was auf die Schwächung der Dreifachbindung durch die *side-on*-Koordinationen der Acetylidhanteln an die Kupferatome zurückgeführt werden kann. Dabei sollte die Bindung zwischen dem C1- und C2-Atom aufgrund von zwei *side-on*-Koordinationen an Kupferatome im stärkeren Maße geschwächt sein als die zwischen den beiden C3-Atomen mit nur einer *side-on*-Koordination an ein Kupferatom. Tatsächlich fand man im Raman-Spektrum auch zwei mal zwei Banden mit Wellenzahlunterschieden von bis zu 177 cm⁻¹ (1899 cm⁻¹ und 1805 cm⁻¹, 1753 cm⁻¹ und 1722 cm⁻¹). Solche Bindungsschwächungen durch *side-on*-Koordinationen sind z. B. auch in entsprechenden Platinkomplexen gefunden worden [62].

In Tab. 7 werden die gemessenen Banden in den IR- bzw.- Raman-Spektren von Cu₂C₂,

Cu_2C_2 [63]	$NaCu_5(C_2)_3$	CuC ₂ Ph [64, 65]
\tilde{v}_{IR} /cm ⁻¹ ^a	\widetilde{v}_{IR} /cm ⁻¹	\tilde{v}_{IR} /cm ⁻¹ (Auszug)
	1899, 1805 ^b , 1753, 1722	1957, 1930
1610, 1400	1580, 1446	1594, 1571, 1481, 1440 ^b
1220	1385	1380 ^b , 1328 ^b , 1280 ^b
1100 - 1000 (mehrere Banden)		1192, 1173, 1156, 1070
970		1026, 999, 985, 960
915, 850	881	915, 905
760, 730	730	779, 746
	700	685
600	615 (breit)	623, 525
	484 (breit)	515, 424, 403

<u>**Tab. 7:**</u> Gegenüberstellung der gefundenen Banden in den IR-Spektren (bzw. Raman-Spektren) von Cu_2C_2 , $NaCu_5(C_2)_3$ und CuC_2Ph .

^a geschätzt aus dem abgebildeten Spektrum in [63], ^b aus Raman-Spektrum

NaCu₅(C₂)₃ und CuC₂Ph miteinander verglichen [63-65]. Demnach gibt es beim NaCu₅(C₂)₃ eher Parallelen zum CuC₂Ph als zum Cu₂C₂. So fehlen z. B. beim Cu₂C₂ Banden im Bereich der C=C-Streckschwingung völlig. Beim CuC₂Ph besitzen diese Banden höhere Werte als beim NaCu₅(C_2)₃. Dem Strukturvorschlag zu CuC₂Ph [60] zufolge liegt nur eine *side-on*-Koordination der Hantel an ein Kupferatom vor, jedoch keine weitere an ein Natriumatom wie in NaCu₅(C₂)₃. Dies könnte zu der anhand der Wellenzahlunterschiede beobachteten geringer ausfallenden Schwächung der Dreifachbindung führen. Ansonsten existieren zu jeder gefundenen Wellenzahl beim NaCu₅(C_2)₃ auch Wellenzahlen beim CuC₂Ph, die eine ähnliche Größe besitzen. Zusätzlich auftretende Banden haben ihre Ursache im Vorhandensein des Phenylrings. So existieren Banden für Schwingungen des aromatischen Rings (1500 - 1600 cm⁻¹, 950 - 1225 cm⁻¹, 900 - 680 cm⁻¹ [66]) und für die Ph-C-Schwingungen (um 1000 cm⁻¹ [66]). Wenn der Strukturvorschlag zum CuC₂Ph korrekt ist, verwundern die vergleichbaren Wellenzahlen zum NaCu₅(C_2)₃ nicht, denn es liegt eine ähnlich aufgebaute Koordinationssphäre des Cu-Atoms vor [60]. Es wird wie Cu1 und Cu3 von sechs Atomen umgeben: Zwei Kupferatome in kurzen Abständen sowie zwei end-on- und eine side-onkoordinierende C222-Einheit. Da aber diese Struktur bisher in keinem frei zugänglichen Journal detailliert veröffentlicht wurde, kann ein genauerer Vergleich der beiden Kristallstrukturen an dieser Stelle nicht erfolgen.

3.2.4 Temperaturabhängige Röntgenbeugungsuntersuchungen

In einem Hochtemperatur-Kapillarofen wurde NaCu₅(C₂)₃ von 20°C bis 240°C geheizt. In 10°C-Schritten wurde jeweils ein Diffraktogramm aufgenommen (*Abb. 3.15*). Dabei war festzustellen, daß sich die Werte der Gitterkonstanten bei steigender Temperatur nur unwesentlich vergrößerten. Aufgrund der in der Kristallstruktur enthaltenen Lücken wäre auch ein negativer thermischer Ausdehnungskoeffizient vorstellbar gewesen.

Ab ca. 190°C zersetzte sich die Substanz, und es entstand elementares Kupfer. Weitere Nebenprodukte, die Natrium und Kohlenstoff enthalten, konnten röntgenographisch nicht nachgewiesen werden. Überraschenderweise wurden auch keine Reflexe von NaCuC₂ gefunden, welches zuvor durch eine Zersetzungsreaktion von NaCu₅(C₂)₃ in einer geschlossenen Glasampulle schon bei 200°C in geringen Mengen entstanden war (s. Abschnitt 3.1.1).

<u>Abb. 3.15:</u> Röntgenpulverdiffraktogramme an einer Probe von $NaCu_5(C_2)_3$ bei verschiedenen Temperaturen.

3.3 Dikaliumtriethinylocuprat(I): K₂Cu(C₂H)₃

Während die Synthese des Kaliumdiethinylocuprates(I) KCu(C₂H)₂, welches sich durch Erhitzen unter Acetylenabspaltung in KCuC₂ umwandeln lassen sollte, nicht gelang (s. Abschnitt 3.1.1), konnte nach der Arbeitsvorschrift Nast et al. von [49] Dikaliumtriethinylocuprat(I) K₂Cu(C₂H)₃ dargestellt werden (Abb. 3.16). Drei Äquivalente KC₂H wurden mit einem Äquivalent CuI in flüssigem Ammoniak umgesetzt. Dabei fiel sofort ein weißer bis gelber Niederschlag aus, der nach dekantierenden Waschvorgängen zur Entfernung des KI im dynamischen Vakuum getrocknet wurde. Diese Substanz war röntgenamorph, zeigte jedoch im Raman-Spektrum drei Banden im Wellenzahlbereich einer C-C-Dreifachbindung (s. Anhang C, Abb. C7, 1962 cm⁻¹, 1901 cm⁻¹ und 1890 cm⁻¹) sowie drei weitere breite Banden (612 cm⁻¹, 231 cm⁻¹, 130 cm⁻¹). Im Bereich der C-H-Streckschwingung bei 3200 cm⁻¹ war eine sehr breite Bande zu erkennen.

$$3 \text{ KC}_2\text{H} + \text{CuI} \xrightarrow{\text{NH}_3(\text{fl.})} \text{K}_2\text{Cu}(\text{C}_2\text{H})_3 + \text{KI}$$

<u>Abb. 3.16:</u> Synthese des $K_2Cu(C_2H)_3$.

Beim Erhitzen der Substanz auf 70°C im dynamischen Vakuum wurde ein Druckanstieg beobachtet, allerdings entstand kein ternäres Acetylid mit einem dreifach koordiniertem Kupferatom. Das Röntgenpulverdiffraktogramm zeigte breite Reflexe von KCuC₂, andere Nebenprodukte sind wahrscheinlich röntgenamorph angefallen. Da die untersuchte Substanz eine gelbe Farbe hatte, wird davon ausgegangen, daß KCuC₂ gelb ist und die zuvor bei der gezielten Synthese dieser Verbindung aufgetretene dunkelgraue Farbe von graphitischen Verunreinigungen herrührt (s. Abschnitt 3.1.1).

3.4 Dikaliumtetraethinylometallat-Diammoniakate: $K_2M(C_2H)_4 \cdot 2 NH_3$ (M = Zn, Cd)

3.4.1 Darstellungen

Die schon von *Nast et al.* [24, 25] synthetisierten Ethinylokomplexe $K_2M(C_2H)_4$ (M = Zn, Cd) konnten als Diammoniakate einkristallin dargestellt werden. Im Falle des $K_2Zn(C_2H)_4 \cdot 2$ NH₃ wurden etwas mehr als vier Äquivalente KC₂H mit einem Äquivalent $K_2Zn(CN)_4$ in flüssigem Ammoniak umgesetzt und über Nacht zur Kristallisation des Komplexes bei -78°C gekühlt (*Abb. 3.17*). Da der entsprechende Cadmiumkomplex in Ammoniak sehr leicht löslich ist, war es vorteilhaft, eine Synthese ohne ein anfallendes Nebenprodukt wie KCN anzuwenden, da dann die Reaktionsmischung zur Kristallisation stark eingeengt werden konnte, ohne daß dieses ausfällt. Der angewandte Syntheseweg stammt ebenfalls von *Nast et al.* [25] (*Abb. 3.17*). Zu zwei Äquivalenten KC₂H in flüssigem Ammoniak wurden 1,25 Äquivalente Cd(NH₂)₂ gegeben und Acetylen übergeleitet, bis das Cd(NH₂)₂ vollständig aufgelöst war. Der nach dem Entfernen des Ammoniaks verbliebene Rückstand wurde über Nacht getrocknet, mit wenig Ammoniak wieder aufgenommen und die Lösung anschließend so lange eingeengt und wieder auf -78°C gekühlt, bis der Ethinylokomplex einkristallin anfiel. Aus dem geringen Überschuß an Cd(NH₂)₂ zusätzlich entstandenes CdC₂ blieb in Ammoniak gelöst.

$$4 \text{ KC}_2\text{H} + \text{K}_2\text{Zn}(\text{CN})_4 + 2 \text{ NH}_3 \xrightarrow{\text{NH}_3(\text{fl})} \text{K}_2\text{Zn}(\text{C}_2\text{H})_4 \cdot 2 \text{ NH}_3 + 4 \text{ KCN}$$

 $2 \ KC_2H \ + \ Cd(NH_2)_2 \ + \ 2 \ C_2H_2 \ \xrightarrow{\ NH_3(fl.)} \ K_2Cd(C_2H)_4 \cdot 2 \ NH_3$

<u>Abb. 3.17</u>: Synthesen von $K_2M(C_2H)_4 \cdot 2 \text{ NH}_3$ (M = Zn, Cd).

Beide Verbindungen bildeten quaderförmige, farblose Kristalle, die in einem inerten, mit einem Stickstoffstrom gekühltem Öl gepickt und in ein Markröhrchen überführt werden konnten [36]. Sie waren sehr temperaturempfindlich und wurden deshalb bei ca. -100°C auf den Einkristalldiffraktometern vermessen. Bei Temperaturen von über ca. -30°C setzten die Verbindungen ihren Kristallammoniak frei, wobei die Einkristalle zerstört wurden.

3.4.2 Kristallstrukturen

Beide Ammoniakate sind isotyp und kristallisieren monoklin in der Raumgruppe *I2/a*. In *Tab. 8* sind ausgewählte Ergebnisse der Kristallstrukturbestimmungen aufgeführt. Weitere Daten sowie die Meßbedingungen, Bindungslängen und Bindungswinkel befinden sich im Anhang B. Ausschnitte aus der Kristallstruktur sind in den *Abb. 3.18 - 3.22* graphisch dargestellt.

<u>**Tab. 8:**</u> Ausgewählte Ergebnisse der Einkristallstrukturbestimmung an $K_2M(C_2H)_4 \cdot 2 \text{ NH}_3$ (M = Zn, Cd).

	$K_2Zn(C_2H)_4\cdot 2~NH_3~^a$	$K_2Cd(C_2H)_4 \cdot 2 NH_3^{a}$	
Raumgruppe, Z	<i>I2/a</i> (Nr. 15), 4	<i>I2/a</i> (Nr. 15), 4	
<i>a</i> / pm	728,9(1)	744,4(1)	
<i>b</i> / pm	1276,5(2)	1261,9(3)	
<i>c</i> / pm	1406,6(2)	1430.4(2)	
eta / °	98,11(2)	98.94(1)	
V / nm^3	1,2957(3)	1.3273(3)	
Abstände / pm:			
M – C11	205,1(3) (2x)	223,2(3) (2x)	
M – C21	205,6(3) (2x)	224,7(3) (2x)	
C11 – C12	120,3(4)	119,7(5)	
C21 – C22	120,2(5)	118,3(5)	
K1 – N1	295,2(4) (2x)	295,6(4) (2x)	
M - K1	363,35(1), 363,36(1)	368,42(5), 368,43(5)	
M – K2	373,05(9), 373,60(2) (2x)	375,2(1), 380,38(6) (2x)	
K1 – C	299,7(3) – 327,6(3) (8x)	302,3(3) – 334,3(5) (8x)	
K2 – C	300,0(3) – 329,2(3) (12x)	301,0(2) – 337,8(4) (12x)	
R(int)	0,0683	0,0700	
R1(all)	0,0347	0,0353	
wR2(all)	0,0529	0,0453	
GOOF	0,933	1,050	

^a Zn1/Cd1 auf 4e, K1 auf 4d, K2 auf 4e, alle weiteren Atome auf 8f (s. Anhang B, Tab. B2, Tab. B7)

Während der Strukturlösung konnte jede Wasserstofflage der Differenzfourierkarte entnommen werden. Die H11- und H21-Atome der C₂H-Einheiten bilden mit den beiden C-Atomen ideale Winkel von 180° (s. Anhang B, *Tab. B5, Tab. B10*). Allerdings zeigen die Zn1/Cd1-C-C-Winkel eine Abweichung vom idealen 180°-Winkel (M = Zn: 171,8(3)°, 179,2(2)°; M = Cd: 170,3(3)°, 179,1(3)°). Dies wurde auch bei den ammoniakfreien Verbindungen gefunden (s. Abschnitt 3.5.3). Das Zn1- bzw. Cd1-Atom wird annähernd regulär tetraedrisch von vier C₂H-Einheiten *end-on* koordiniert (*Abb. 3.18* und *3.19*). Starke koordinative Rückbindungen von gefüllten Metall-d-Orbitalen in antibindende π_p^* -Orbitale der C-C-Dreifachbindungen können ausgeschlossen werden, da die C-C-Abstände von ca. 120 pm und die Raman-spektroskopischen Daten der ammoniakfreien Komplexe (s. Abschnitt 3.5.3) keine Schwächung der Dreifachbindung anzeigen. Somit existieren kovalente Zn1/Cd1-C-Einfachbindungen mit Abständen von ca. 205 pm bzw. 224 pm (*Tab. 8*). Die weiteren interatomaren Abstände zeigen keine Auffälligkeiten. Bezüglich der Kaliumatome ist das Zn1/Cd1-Atom verzerrt trigonal-bipyramidal von zwei K1- und drei K2-Atomen umgeben (*Abb. 3.20*).

Es existieren jeweils zwei kristallographisch unterschiedliche Kaliumatome (K1 und K2) und C₂H-Gruppen. Die (C11-C12-H11)-Gruppen werden trigonal planar von einem K1- und zwei K2-Atomen umgeben, die (C21-C22-H21)-Gruppen gewinkelt von einem K1- und einem K2-Atom (*Abb. 3.21*). In räumlicher Nähe der möglicherweise zu besetzenden dritten Position, die zu einer trigonalen Koordination führen würde, befindet sich ein NH₃-Molekül.

Das K1-Atom wird von vier C₂H-Einheiten *side-on* und zwei NH₃-Molekülen über die N1-Atome koordiniert, wobei die NH₃-Moleküle im resultierenden, fast regulären $[K1(C_2H)_4(NH_3)_2]$ -Oktaeder *trans* zueinander stehen. Das K2-Atom wird verzerrt oktaedrisch von sechs C₂H-Einheiten *side-on* koordiniert.

Zur räumlichen Beschreibung der gesamten Kristallstruktur bietet sich eine Betrachtungsweise mit verknüpften $[K2(C_2H)_6]$ -Oktaedern an. Genauer werden sie als $[K2(C11-C12-H11)_4(C21-C22-H21)_2]$ -Oktaeder beschrieben. Sie sind über gemeinsame Kanten zu Zick-Zack-Ketten verbunden (*Abb. 3.22*), die entlang der *a*-Achse verlaufen (*Abb. 3.23*). Die Verknüpfung innerhalb der Kette erfolgt nur über die (C11-C12-H11)-Gruppen. Beide kristallographisch unterschiedliche C₂H-Gruppen koordinieren zudem an das K1-Ion. Die resultierenden [K1(C11-C12-H11)₂(C21-C22-H21)₂(NH₃)₂]-Oktaeder verbinden über vier gemeinsame Ecken sechs [K2(C11-C12-H11)₄(C21-C22-H21)₂]-Oktaeder zweier

<u>Abb. 3.18:</u> Molekulare Struktur von $K_2Zn(C_2H)_4 \cdot 2 \text{ NH}_3$ mit thermischen Ellipsoiden (50 % Wahrscheinlichkeit). Die Temperaturfaktoren der H-Atome sind graphisch nicht dargestellt.

<u>Abb. 3.19:</u> Molekulare Struktur von $K_2Cd(C_2H)_4 \cdot 2$ NH₃ mit thermischen Ellipsoiden (50 % Wahrscheinlichkeit). Die Temperaturfaktoren der H-Atome sind graphisch nicht dargestellt.

<u>Abb. 3.20</u>: Koordination des Zn1-Atoms in $K_2Zn(C_2H)_4 \cdot 2 \text{ NH}_3$ von fünf Kaliumatomen in Form einer verzerrten trigonalen Bipyramide. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.21</u>: Koordination der beiden kristallographisch unterschiedlichen C₂H-Gruppen in $K_2Zn(C_2H)_4 \cdot 2$ NH₃ mit thermischen Ellipsoiden (50 % Wahrscheinlichkeit). Die Temperaturfaktoren der H-Atome sind graphisch nicht dargestellt.

unterschiedlicher Zick-Zack-Ketten miteinander, so daß ein dreidimensionales Netzwerk entsteht (*Abb. 3.22, Abb. 3.23*). Für diese Verknüpfung dienen nur die (C11-C12-H11)- und (C21-C22-H21)-Gruppen, nicht die NH₃-Moleküle. Somit lassen sich dem K2-Ion rechnerisch 4/3 (C11-C12-H11)- und 2/2 (C21-C22-H21)-Gruppen, dem K1-Ion 2/3 (C11-C12-H11)- und 2/2 (C21-C22-H21)-Gruppen zuordnen. Die Summe ergibt vier C₂H-Gruppen pro Formeleinheit.

In dem resultierenden Netzwerk existieren Kanäle, in denen sich die NH₃-Moleküle befinden (*Abb. 3.23*). Deren H-Atome (H1-3) zeigen in die Mitten der Kanäle, da die N1-Atome an die K1-Atome gebunden sind. Die Temperaturfaktoren der N1-, H1-, H2- und H3-Atome sind verhältnismäßig groß (s. Anhang B, *Tab. B2, Tab. B7*, für die H-Atome in *Abb. 3.18, 3.19, 3.21* nicht gezeigt), was mit einer gesteigerten Beweglichkeit im Kristall gedeutet werden kann. Es erscheint naheliegend, daß sich die NH₃-Moleküle bei höheren Temperaturen von den K1-Atomen lösen und durch die Kanäle aus dem Kristall diffundieren. Somit bliebe die Morphologie des Kristalls erhalten. Tatsächlich trübten sich die Kristalle nach dem Aufwärmen auf Raumtemperatur nur und zerplatzten nicht. Erst bei einer groben Berührung mit einer Metallnadel zersprangen die spröden Überbleibsel.

<u>Abb. 3.22:</u> Zick-Zack-Kette der über gemeinsame Kanten verknüpften [K2(C11-C12-H11)₄(C21-C22-H21)₂]-Oktaeder in K₂Zn(C₂H)₄ \cdot 2 NH₃. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.23:</u> Blick auf vier Elementarzellen von $K_2Zn(C_2H)_4 \cdot 2$ NH₃ entlang der *a*-Achse. Zur besseren Übersichtlichkeit sind die NH₃-Moleküle nicht in die gezeichneten Koordinationspolyeder der K1-Ionen aufgenommen worden, so daß keine [K1(C11-C12-H11)₂(C21-C22-H21)₂]-Oktaeder sondern [K1(C11-C12-H11)₂(C21-C22-H21)₂]-Vierecke hervorgehoben werden. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

3.5 Alkalimetalltetraethinylometallate: $A_2M(C_2H)_4$ (A = Na - Cs; M = Zn, Cd)

3.5.1 Darstellungen

Die Alkalimetalltetraethinylozinkate und -cadmate $A_2M(C_2H)_4$ (A = Na - Cs; M = Zn, Cd) ließen sich mittels Entfernung des Ammoniaks aus den entsprechenden Ammoniakaten $A_2M(C_2H)_4 \cdot x$ NH₃ darstellen [24, 25]. Diese fielen, mit Ausnahme des K₂Cd(C₂H)₄ · 2 NH₃ (s. Abschnitt 3.4.1), sofort nach der Zugabe von einem Äquivalent eines Zn(II)- bzw. Cd(II)-Salzes (*Abb. 3.24*) zu einer Lösung von etwas mehr als vier Äquivalenten Alkalimetallhydrogenacetylid AC₂H (A = Na - Cs) in flüssigem Ammoniak bei -78°C pulverförmig aus. Beim Kühlen der Reaktionsmischung über Nacht auf -78°C fiel nur K₂Zn(C₂H)₄ · 2 NH₃ einkristallin an (s. Abschnitt 3.4.1). Da die Natriumverbindungen in flüssigem Ammoniak sehr gut löslich waren und sich bei Temperaturen oberhalb von ca. -60°C auflösten, wurden diese mittels Filtration durch eine auf -78°C gekühlte Doppelmantelfritte von der Mutterlauge getrennt. Ansonsten wurde die Reaktionslösung vom Feststoff dekantiert. Die erhaltenen Pulver wurden dann über Nacht im dynamischen Vakuum getrocknet. Dabei gaben die Verbindungen schon einen großen Teil ihres Kristallammoniaks ab. In Diffraktogrammen der thermisch unbehandelten Pulver waren schon breite Reflexe der kristallinen Endprodukte zu

$$4 \text{ AC}_2\text{H} + A_2\text{Zn}(\text{CN})_4 + x \text{ NH}_3 \xrightarrow{\text{NH}_3(\text{fl.})} A_2\text{Zn}(\text{C}_2\text{H})_4 \cdot x \text{ NH}_3 + 4 \text{ ACN}$$
$$(\text{A} = \text{K}, \text{Rb}, \text{Cs}; \text{ für } \text{A} = \text{K} \text{ gilt: } \text{x} = 2)$$

 $4 \operatorname{NaC}_{2}H + [\operatorname{Zn}(\operatorname{NH}_{3})_{2}](\operatorname{SCN})_{2} + (x-2) \operatorname{NH}_{3} \xrightarrow{\operatorname{NH}_{3}(\operatorname{fl.}), -78^{\circ}C} \operatorname{Na}_{2}\operatorname{Zn}(\operatorname{C}_{2}H)_{4} \cdot x \operatorname{NH}_{3} + 2 \operatorname{NaSCN}$

$$4 \text{ AC}_{2}\text{H} + \text{Cd}(\text{SCN})_{2} + x \text{ NH}_{3} \xrightarrow{\text{NH}_{3}(\text{fl}.)} A_{2}\text{Cd}(\text{C}_{2}\text{H})_{4} \cdot x \text{ NH}_{3} + 2 \text{ ASCN}$$
$$(\text{A} = \text{Na}, \text{Rb}, \text{Cs}; \text{ für } \text{A} = \text{K}: \text{ s. Abschnitt } 3.4.1)$$

$$\begin{array}{l} A_2M(C_2H)_4 \cdot x \ NH_3 & \xrightarrow{70^\circ C, \ Vakuum} & A_2M(C_2H)_4 \ + \ x \ NH_3 \\ \\ (A = Na - Cs; \ M = Zn, \ Cd) \end{array}$$

Abb. 3.24: Darstellung der Alkalimetalltetraethinylozinkate und -cadmate A₂M(C₂H)₄.

sehen. Zur Entfernung des restlichen Ammoniaks wurden die bei Raumtemperatur getrockneten Pulver auf 70°C im dynamischen Vakuum erhitzt, wobei ein Druckanstieg zu verzeichnen war. Aufgrund der in der Literatur [67] beschriebenen gesteigerten Detonationsfreudigkeit des Kaliumtetraethinylomercurates $K_2Hg(C_2H)_4$ wurden innerhalb dieser Arbeit keine Alkalimetalltetraethinylomercurate dargestellt.

3.5.2 Kristallstrukturen

Die kristallin erhaltenen Verbindungen $A_2Zn(C_2H)_4$ (A = K, Rb) und $A_2Cd(C_2H)_4$ (A = K, Rb, Cs) wurden mittels Röntgenpulverdiffraktometrie untersucht. Sie sind alle isotyp zueinander und kristallisieren tetragonal in der Raumgruppe $I4_1/a$. Die Kristallstrukturen der Kaliumverbindungen bestimmten schon *Weiß et al.* [26]. Ausgewählte Ergebnisse der Rietveld-Verfeinerungen mit den entsprechenden Diffraktogrammen (s. Anhang A, *Tab. A11 - A16, Abb. A11 - A16*) sind in den *Tab. 9 - 11* aufgeführt. Innerhalb der Verfeinerungen wurde der C1-C2-Abstand der C₂H-Gruppe auf 120 pm [5] als *soft constraint* festgesetzt, das H-Atom an das C2-Atom gerechnet und dessen Lage mit festem Abstand zu den Atomen C1 und C2 (108 pm [68] bzw. 228 pm als *soft constraints*) verfeinert. Zudem wurden die Temperaturfaktoren der Atome C1, C2 und H zusammen als *constraint* verfeinert. Das Vorliegen von C-C-Dreifachbindungen mit der Bindungslänge von ca. 120 pm bestätigten Raman-spektroskopische Untersuchungen (s. Abschnitt 3.5.3).

Bei der Ermittlung der Lagen und Temperaturfaktoren der C₂H-Gruppen stellte sich heraus, daß diese nicht mit guter Genauigkeit bestimmt werden konnten. Dies schlägt sich in großen Standardabweichungen der zugehörigen Temperaturfaktoren und manchen M-C1-C2-Winkeln nieder (*Tab. 9 - 11*). Zudem sind die erhaltenen Längen der M-C1-Bindungen nur bei den Verbindungen Rb₂Cd(C₂H)₄ und Cs₂Cd(C₂H)₄ (*Tab. 10, 11* (Synchrotronstrahlung)) mit den gefundenen Cd-C1-Bindungslängen in der Einkristallstrukturbestimmung von K₂Cd(C₂H)₄ · 2 NH₃ (s. Abschnitt 3.4, 223,2(3) pm, 224,7(3) pm) vereinbar. Beim Vergleich der Zn-C1-Bindungslängen in K₂Zn(C₂H)₄ und Rb₂Zn(C₂H)₄ (*Tab. 9*) fällt eine Diskrepanz in diesem Sinne auf. In K₂Zn(C₂H)₄ ist der Abstand etwas zu lang, in Rb₂Zn(C₂H)₄ zu kurz (in K₂Zn(C₂H)₄ · 2 NH₃: 205,1(3) pm und 205,6(3) pm).

Die schlechte Verfeinerung der Röntgenbeugungsdaten von $Cs_2Cd(C_2H)_4$ hängt mit der Röntgenstrahlabsorption des Cs-Atoms zusammen. Sie verursachte einen hohen Untergrund

$A_2Zn(C_2H)_4$	A = K	A = Rb	
Raumgruppe	$I4_1/a$ (Nr. 88, 2. Aufstellung)	<i>I4</i> ₁ / <i>a</i> (Nr. 88, 2. Aufstellung)	
Z	4	4	
<i>a</i> / pm	756,60(1)	776,080(4)	
<i>c</i> / pm	1828,31(4)	1887,20(2)	
V / nm^3	1,04661(4)	1,13666(1)	
A auf 8e	0 0,25 0,83089(8)	0 0,25 0,83347(5)	
U_{iso} / pm^2	223(13)	489(4)	
Zn auf 4b	0 0,25 0,625	0 0,25 0,625	
U_{iso} / pm^2	221(13)	259(7)	
C1 auf <i>16f</i> ^a	0,1304(6) 0,0668(5) 0,6889(3)	0,1100(7) 0,0753(7) 0,6850(3)	
U_{iso} / pm^2	$400(20)^{b}$	210(20) ^c	
C2 auf $16f^{a}$	0,2126(5) 0,0224(7) 0,9678(3)	0,2280(6) 0,0508(8) 0,9681(4)	
U_{iso} / pm^2	$400(20)^{b}$	210(20) ^c	
H auf <i>16f</i> ^a	0,1923(7) 0,1370(5) 0,2441(3)	0,215(4) 0,103(2) 0,249(2)	
U_{iso} / pm^2	$400(20)^{b}$	210(20) ^c	
Abstände / pm:			
A - Zn	376,2(1) (2x), 386,86(3) (4x)	393,42(9) (2x), 395,88(2) (4x)	
Zn - C1	206,4(1) (4x)	196,1(4) (4x)	
A - C1	310,3(6) (2x), 314,2(5) (2x),	322,8(7) (2x), 328,2(7) (2x),	
	325,9(6) (2x)	333,5(6) (2x)	
A - C2	312,5(4) (2x), 343,8(5) (2x),	329,4(6) (2x), 340,4(9) (2x),	
	346,0(6) (2x)	346,0(7) (2x)	
Winkel / °			
C1 - Zn - C1	108,7(2) (4x), $111,0(3)$ (2x)	109,5(2) (4x), $109,5(4)$ (2x)	
Zn-C1-C2	169,4(5) (4x)	170,5(7) (4x)	
C1 - C2 - H	176,2(3)	176(1)	
Anzahl der Reflexe	113	207	
R_p, wR_p, R_B	0,0179, 0,0226, 0,0157	0,0307, 0,0403, 0,0454	
Anzahl d. verf. Par.	32	23	

<u>**Tab. 9:**</u> Ergebnisse der Röntgenpulverbeugungsuntersuchung an $A_2Zn(C_2H)_4$ (A = K, Rb).

^a Verfeinerte Lagen mit den *soft constraints*: C1 – C2: 120 pm, C2 – H: 108 pm, C1 – H: 228 pm, ^{b, c} zusammen verfeinert als *constraint*

$A_2Cd(C_2H)_4$	A = K	A = Rb
Raumgruppe	<i>I4</i> ₁ / <i>a</i> (Nr. 88, 2. Aufstellung)	$I4_1/a$ (Nr. 88, 2. Aufstellung)
Z	4	4
<i>a</i> / pm	768,95(6)	790,401(4)
<i>c</i> / pm	1846,2(2)	1887,67(1)
V / nm^3	1,0917(2)	1,17929(1)
A auf 8e	0 0,25 0,8334(3)	0 0,25 0,83494(4)
U_{iso} / pm^2	270(50)	344(5)
Cd auf <i>4b</i>	0 0,25 0,625	0 0,25 0,625
U_{iso} / pm^2	290(20)	213(5)
C1 auf <i>16f</i> ^a	0,164(4) 0,077(2) 0,703(2)	0,1189(8) 0,0550(8) 0,6944(4)
U_{iso} / pm^2	250(100) ^b	420(20) ^c
C2 auf <i>16f</i> ^a	0,198(1) 0,020(7) 0,977(2)	0,2163(6) 0,027(1) 0,9723(4)
U_{iso} / pm^2	250(100) ^b	$420(20)^{c}$
H auf <i>16f</i> ^a	0,210(0) 0,168(0) 0,248(2)	0,190(3) 0,122(2) 0,246(3)
U_{iso} / pm^2	250(100) ^b	$420(20)^{c}$
Abstände / pm:		
A - Cd	384,7(6) (2x), 392,1(1) (4x)	396,29(7) (2x), 402,37(1) (4x)
Cd - C1	233(2) (4x)	223,1(5) (4x)
A - C1	298(4) (2x), 303(3) (2x),	320,8(7) (2x), 331,2(7) (2x),
	357(2) (2x)	342,9(7) (2x)
A - C2	331(4) (2x), 352(5) (2x),	331,6(9) (2x), 355,7(9) (2x),
	352(2) (2x)	357,0(5) (2x)
Winkel / °		
C1 - Cd - C1	112,2(8) (4x), 104(2) (2x)	110,2(2) (4x), 108,0(3) (2x)
Cd-C1-C2	158(2) (4x)	161,6(9) (4x)
C1 - C2 - H	179,43(1)	175,4(9)
Anzahl der Reflexe	117	210
R_p, wR_p, R_B	0,0317, 0,0399, 0,0551	0,0217, 0,0284, 0,0303
Anzahl d. verf. Par.	19	35

<u>**Tab. 10:**</u> Ergebnisse der Röntgenpulverbeugungsuntersuchung an $A_2Cd(C_2H)_4$ (A = K, Rb).

^a Verfeinerte Lagen mit den *soft constraints*: C1 – C2: 120 pm, C2 – H: 108 pm, C1 – H: 228 pm, ^{b, c} zusammen verfeinert als *constraint*

Cs ₂ Cd(C ₂ H) ₄	Röntgenstrahlung	Synchrotronstrahlung
Raumgruppe, Z	<i>I4</i> ₁ / <i>a</i> (Nr. 88, 2. Aufstellung), 4	<i>I4</i> ₁ / <i>a</i> (Nr. 88, 2. Aufstellung), 4
<i>a</i> / pm	817,09(5)	815,684(8)
<i>c</i> / pm	1973,8(2)	1969,86(2)
V / nm^3	1,3178(2)	1,31063(3)
Cs auf 8e	0 0,25 0,8357(2)	0 0,25 0,83618(6)
U_{iso} / pm^2	650(30)	634(7)
Cd auf <i>4b</i>	0 0,25 0,625	0 0,25 0,625
U_{iso} / pm^2	180(40)	460(10)
C1 auf <i>16f</i>	0,090(7) 0,069(6) 0,704(4) ^a	0,121(2) 0,058(2) 0,6879(8) ^b
U_{iso} / pm^2	290(180) ^c	820(60) ^d
C2 auf <i>16f</i>	0,224(0) 0,072(8) 0,983(4) ^a	0,222(2) 0,041(2) 0,971(1) ^b
U_{iso} / pm^2	290(180) ^c	$820(60)^{d}$
H auf <i>16f</i>	Lage des H-Atoms nicht berechnet	0,21(1) 0,100(6) 0,252(5) ^b
U_{iso} / pm^2		$820(60)^{d}$
Abstände / pm:		
Cs - Cd	415,83(9) (4x), 416,0(5) (2x)	414,95(2) (4x), 416,0(1) (2x)
Cd - C1	228(4) (4x)	222,7(9) (4x)
Cs - C1	308(8) (2x), 358(7) (2x),	336(2) (2x), 346(2) (2x),
	375(6) (2x)	350(2) (2x)
Cs - C2	336(7) (2x), 372(7) (2x),	348(2) (2x), 363(2) (2x),
	374(5) (2x)	364(2) (2x)
Winkel / °		
C1 - Cd - C1	118(2) (4x), 93(4) (2x)	108,0(4) (4x), 112,4(9) (2x)
Cd-C1-C2	160(9) (4x)	169(2) (4x)
C1-C2-H	Lage des H-Atoms nicht berechnet	176(4)
Anzahl der Reflexe	139	308
R_p, wR_p, R_B	0,0320, 0,0417, 0,0760	0,0401, 0,0519, 0,0537
Anzahl d. verf. Par.	17	35

<u>**Tab. 11:**</u> Ergebnisse der Pulverbeugungsuntersuchung an $Cs_2Cd(C_2H)_4$ mit Röntgen- und Synchrotronstrahlung.

^a Verfeinerte Lagen mit dem *soft constraint*: C1 – C2: 120 pm ^b Verfeinerte Lagen mit den *soft constraints*: C1 – C2: 120 pm, C2 – H: 108 pm, C1 – H: 228 pm, ^{c, d} zusammen verfeinert als *constraint*

und breite Reflexe (s. Anhang A, Abb. A15). Dadurch bedingt fand man nur ungenaue Bindungslängen und -winkel. Außerdem wurde auf das Einrechnen der H-Atome in diesem verzichtet. Aufgrund Fall der geringen Streukraft von H-Atomen in Röntgenpulverbeugungsuntersuchungen können deren verfeinerte Lagen ohnehin nicht sinnvoll diskutiert werden. Auffallend ist die grobe Abweichung der Tetraederwinkel im $[Cd(C_2H)_4]^{2-}$ -Fragment vom Idealfall, wohingegen diese Abweichung bei der Auswertung des Pulverbeugungsdiagrammes mit Synchrotronstrahlung nicht auftritt (Tab. 11). Es ist von hervorragender Qualität (s. Anhang A, Abb. A16), so daß auch die gefundene Cd-C1-Bindungslänge im Erwartungsbereich liegt. Es kann nicht ausgeschlossen werden, daß es sich bei dem nicht indizierten breiten Reflex bei ca. 5.8° in 20 um mehrere überlagerte Satellitenreflexe handelt, verursacht durch eine inkommensurabel modulierte Struktur. Dieses Phänomen tritt z. B. ebenfalls bei einer Modifikation des Rb₂ZnCl₄ auf [69].

Wie erwartet werden die M-Kationen annähernd tetraedrisch von vier C₂H-Gruppen *end-on* koordiniert. Die C₂H-Gruppen sind trigonal planar von drei Alkalimetallkationen umgeben (*Abb. 3.25*), wie dies bei der (C11-C12-H11)-Gruppe in den Kristallstrukturen von K₂M(C₂H)₄ · 2 NH₃ (M = Zn, Cd, s. Abschnitt 3.4) der Fall ist. Die Alkalimetallkationen werden in Form eines verzerrten Oktaeders von sechs C₂H-Gruppen *side-on* koordiniert (*Abb. 3.25*). Diese Oktaeder sind, vergleichbar mit den [K2(C11-C12-H11)₄(C21-C22-H21)₂]-Oktaedern in K₂M(C₂H)₄ · 2 NH₃ (M = Zn, Cd; *Abb. 3.22*), über gemeinsame, innerhalb eines Oktaeders nicht benachbarten Kanten zu Zick-Zack-Ketten verknüpft (*Abb. 3.26*). Sie verlaufen entlang der *a*-Achse und sind über gemeinsame Oktaederecken mit identisch aufgebauten Zick-Zack-Ketten verbunden, die senkrecht zur ursprünglichen Kette orientiert sind (*Abb. 3.26*). Wichtigster Unterschied zur Kristallstruktur der entsprechenden Ammoniakate (s. Abschnitt 3.5.2) ist das Vorliegen von jeweils nur einem kristallographisch unabhängigen Alkalimetallkation und einer C₂H-Gruppe. Durch das Fehlen der NH₃-Moleküle wird eine größere Symmetrie im Kristall realisiert.

Die Kristallstruktur der Alkalimetalltetraethinylometallate zeigt auffällige Ähnlichkeiten zur Kristallstruktur des Scheelits [26, 70] (CaWO₄, *Abb. 3.27*). In beiden Fällen liegt die Raumgruppe $I4_{1/a}$ vor, die Cd- bzw. W-Atome besetzen die gleiche kristallographische Lage 4b (0 0,25 0,625 in der zweiten Aufstellung der Raumgruppe und Ursprungsverschiebung um 0 0 0,5 nach Berücksichtigung der Lageparameter in [70]). Die C₂H-Gruppen bzw. die O-Atome umgeben die Cd- bzw. W-Atome annähernd tetraedrisch (O auf *16f* (0,1504 0,0085 0,7111)). Dabei sind die resultierenden [Cd(C₂H)₄]²⁻ bzw. [WO₄]²⁻-Tetraeder bezüglich der

<u>Abb. 3.25</u>: Der $[Cd(C_2H)_4]^{2}$ -Tetraeder, die verzerrt oktaedrische *side-on*-Koordination der C₂H-Gruppen an das Cs-Atom und die trigonal-planare Koordination der Cs-Atome an die C₂H-Gruppe in Cs₂Cd(C₂H)₄. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.26</u>: Anordnung der verknüpften $[Cs(C_2H)_6]$ -Oktaeder in $Cs_2Cd(C_2H)_4$ bei verschiedenen Blickrichtungen. Rechts unten ist der Blick auf die Elementarzelle gezeigt. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.27</u>: Vergleich der beiden Kristallstrukturen von $Cs_2Cd(C_2H)_4$ und $CaWO_4$ (Scheelit) bei verschiedenen Blickrichtungen. Hervorgehoben sind die $[Cd(C_2H)_4]^{2-}$ bzw. die $[WO_4]^{2-}$ Tetraeder. Die Temperaturfaktoren der beteiligten Atome sind graphisch nicht dargestellt.

<u>Abb. 3.28:</u> Links: Die Anordnung der Cs- und Cd-Atome in Cs₂Cd(C₂H)₄ entspricht der Atomanordnung im Anatas (TiO₂). Die Bezeichnungen "vorne" und "hinten" beziehen sich auf die Lagen der Zick-Zack-Ketten aus kantenverknüpften Cs₆-Oktaedern. Rechts: Zur Verdeutlichung der verzerrten kubisch dichtesten Packung der Cs-Atome in Cs₂Cd(C₂H)₄ und die Positionen der restlichen Atome ist eine Zelle angedeutet. Ein verzerrter Cs₆-Oktaeder mit einem Cd-Atom im Zentrum sowie die Koordination der sich in der Zelle befindenden C₂H-Gruppen sind herausgestellt.

Zellachsen ähnlich ausgerichtet (*Abb. 3.27* unten, Blick entlang der *c*-Achse). Während die Ca-Atome im Scheelit die Lage 4*a* (0 0,25 0,125) einnehmen, befinden sich die Cs-Atome in Cs₂Cd(C₂H)₄ auf der Lage 8*e*. Damit ergibt sich ein entscheidender Unterschied zwischen beiden Kristallstrukturen. Während im Scheelit die Ca- und W-Atome zusammen eine verzerrte kubisch dichteste Packung bilden, wird diese in Cs₂Cd(C₂H)₄ nur von den Cs-Atomen aufgebaut. Jede zweite Oktaederlücke ist von Cd-Atomen besetzt, so daß Zick-Zack-Ketten von kantenverknüpften Oktaedern entstehen (*Abb. 3.28*, links). Die Anordnung der Csund Cd-Atome entspricht damit der Anordnung der O- und Ti-Atome im Anatas (TiO₂, *I4₁/amd*, Ti auf 4*b* (0 0,75 0,625 in der zweiten Aufstellung der Raumgruppe und Ursprungsverschiebung um 0 0 0,5 nach Berücksichtigung der Lageparameter in [70]), O auf 8*e* (0 0,75 0,8316)). Berücksichtigt man zusätzlich die C₂H-Gruppen, so beschreibt man die

Kristallstruktur von $Cs_2Cd(C_2H)_4$ am einfachsten, wie sie in Abb. 3.28 (rechts) gezeigt wird. Die willkürlich eingezeichnete Zelle verdeutlicht die Verzerrung der kubisch dichtesten Packung der Cs-Atome sowie die Besetzung jeder zweiten Oktaederlücke mit einem Cd-Atom. Hervorgehoben ist ein verzerrter Cs₆-Oktaeder und die Koordinationen der sich in der eingezeichneten Zelle befindenden C₂H-Gruppen von Cs-Atomen. Die C₂H-Gruppen sind so aus den Tetraederlücken der kubisch dichtesten Packung verschoben (s. die Kristallstruktur von CaF₂ [70]), daß sie nicht mehr von vier, sondern nur noch von drei Cs-Atomen in Form eines Dreiecks koordiniert werden. Durch diese Verschiebung resultiert zudem die tetraedrische Koordination des Cd-Atoms von vier C2H-Gruppen. Man kann die Kristallstruktur von $Cs_2Cd(C_2H)_4$ auch als verzerrten Spinell auffassen, da die C_2H -Gruppen ebenfalls eine verzerrte kubisch dichteste Packung bilden, in der die Hälfte der Oktaederlücken von Cs-Atomen und ein Achtel der Tetraederlücken von Cd-Atomen besetzt sind. Da diese kubisch dichteste Packung allerdings in größerem Maße verzerrt und die C₂H-Gruppe nicht kugel-, sondern stäbchenförmig ist, erscheint diese Beschreibung der Kristallstruktur eher ungünstig. Rb₂Cd(CN)₄ hingegen kristallisiert kubisch in der Spinell-Struktur [71].

Im Falle der Natriumverbindungen $Na_2M(C_2H)_4$ (M = Zn, Cd) waren die thermisch behandelten wie auch unbehandelten Proben röntgenamorph. Im Gegensatz dazu ließen sich bei den kristallin erhaltenen Verbindungen in den Röntgenpulverdiffraktogrammen der nach dem Entfernen des flüssigen Ammoniaks bei Raumtemperatur erhaltenen Proben schon breite Ethinylokomplexe finden. Reflexe der ammoniakfreien $Cs_2Zn(C_2H)_4$ zeigte im Pulverdiffraktogramm mit Synchrotronstrahlung zahlreiche Reflexe, die allerdings nicht indiziert werden konnten (Abb. 3.29). Bei längerer Bestrahlung mit Röntgenstrahlen zersetzte sich die Substanz außerdem. Diese und die beiden röntgenamorphen Natriumverbindungen wurden aber mittels Raman-spektroskopischer Untersuchungen charakterisiert (s. Abschnitt 3.5.3).

<u>Abb. 3.29:</u> Pulverdiffraktogramm von $Cs_2Zn(C_2H)_4$, dessen Kristallstruktur noch nicht gelöst werden konnte (Synchrotronstrahlung, $\lambda = 70,878$ pm).

3.5.3 Raman-spektroskopische Untersuchungen

Die Wellenzahlen der Banden in den Raman-Spektren (s. Anhang C, *Abb. C8 - C15*) der Alkalimetalltetraethinylometallate $A_2M(C_2H)_4$ (A = Na - Cs, M = Zn, Cd) sind in *Tab. 12* und *Tab. 13* aufgeführt. Demnach zeigen die Spektren aller genannten Verbindungen Banden in vergleichbaren Wellenzahlbereichen. Dies trifft auch für die röntgenamorphen Komplexe Na₂M(C₂H)₄ (M = Zn, Cd) sowie die strukturell unbekannte Verbindung Cs₂Zn(C₂H)₄ zu,

<u>**Tab. 12:**</u> Gefundene Banden in den Raman-Spektren von $A_2Zn(C_2H)_4$ (A = Na - Cs).

Schwingungsart	$Na_2Zn(C_2H)_4$	$K_2Zn(C_2H)_4$	$Rb_2Zn(C_2H)_4$	$Cs_2Zn(C_2H)_4$
$v(C-H)_{Raman} / cm^{-1}$	3223 ^a	3264	3260	3206 ^a , 3145 ^a
$\tilde{v}(C \equiv C)_{Raman} / cm^{-1}$	1945	1943	1939	1936
Schwingungen mit	330 ^a , 135, 118	333, 318, 176 ^a	331, 302, 157 ^a	325, 308, 143 ^a
Beteiligung von Zn				
^a breite Bande				

54

Schwingungsart	$Na_2Cd(C_2H)_4$	$K_2Cd(C_2H)_4$	$Rb_2Cd(C_2H)_4$	$Cs_2Cd(C_2H)_4$
\tilde{v} (C-H) _{Raman} / cm ⁻¹	3221 ^a	3262	3260	3254
$\tilde{v}(C \equiv C)_{Raman} / cm^{-1}$	1932	1936	1935	1931
Schwingungen mit	324 ^a , 123 ^a	318, 275, 167 ^a	648 ^a , 311, 259,	663 ^a , 297, 254,
Beteiligung von Cd			152 ^a , 77	134, 88

<u>Tab. 13</u>: Gefundene Banden in den Raman-Spektren von $A_2Cd(C_2H)_4$ (A = Na - Cs).

^a breite Bande

wodurch deren molekularer Aufbau mit $[M(C_2H)_4]^{2-}$ -Tetraedern bestätigt wird. Allerdings sind die zugehörigen Spektren von geringer Qualität bezüglich Peakhalbwertsbreiten, Peakauflösung und Untergrund.

Bei allen Verbindungen existieren Banden mit Wellenzahlen für die C-H- und C-C-Streckschwingungen. Letztere liegen in der Größenordnung, die man bei dem Vorliegen einer C-C-Dreifachbindung erwarten würde. Bei den kristallinen Komplexen kann man einen schwachen Gang zu kleineren Wellenzahlen erkennen, wenn größere Alkalimetallkationen vorliegen. Auffällig ist der Unterschied in den Wellenzahlen der C-H-Streckschwingungen in den röntgenamorphen und kristallinen Proben. Dies kann so gedeutet werden, daß die beiden röntgenamorphen Natriumverbindungen in einer anderen, bisher unbekannten Struktur vorliegen. Die Wellenzahlen der C-H-Streckschwingungen in Cs₂Zn(C₂H)₄ sind auffällig kleiner als die der strukturell bekannten Komplexe. Auch dies beweist das Vorliegen einer anderen Kristallstruktur.

Mehr oder minder gut aufgelöst erkennt man schließlich Banden von Schwingungen, an denen die Metallatome M (Zn bzw. Cd) beteiligt sind, z. B. Deformationsschwingungen δ (M-C-C) und Valenzschwingungen v(M-C) [65]. In den gut kristallisierten Proben von Rb₂Cd(C₂H)₄ und Cs₂Cd(C₂H)₄ sind die ansonsten überlagerten, breiten Peaks in einzelne schmale Peaks aufgelöst.

3.6 Erdalkalimetalltetraethinylometallate: EAM(C₂H)₄ (EA = Mg - Ba; M = Zn, Cd)

3.6.1 Darstellungen

Die Darstellung der Erdalkalimetalltetraethinylozinkate und -cadmate ging von den entsprechenden Alkalimetallverbindungen aus (*Abb. 3.24*). Zunächst wurde eine Lösung von Na₂Zn(C₂H)₄ bzw. K₂Cd(C₂H)₄ in flüssigem Ammoniak dargestellt. Die Zielverbindungen

$$4 \operatorname{NaC_2H} + [\operatorname{Zn}(\operatorname{NH_3})_2](\operatorname{SCN})_2 \xrightarrow{\operatorname{NH_3(fl), -50^\circ C}} [\operatorname{Zn}(\operatorname{C_2H})_4]^{2^-} + 2 \operatorname{SCN^-} + 4 \operatorname{Na^+} + 2 \operatorname{NH_3}$$

$$4 \text{ KC}_2\text{H} + \text{Cd}(\text{SCN})_2 \xrightarrow{\text{NH}_3(\text{fl})} [\text{Cd}(\text{C}_2\text{H})_4]^{2^-} + 2 \text{ SCN}^- + 4 \text{ K}^+$$

$$[M(C_{2}H)_{4}]^{2-} + EAX_{2} \xrightarrow{NH_{3}(fL), -50^{\circ}C} EAM(C_{2}H)_{4} + 2X^{-}$$
$$(M = Zn, Cd; EAX_{2} = MgI_{2}, Ca(NO_{3})_{2}, Sr(NO_{3})_{2}, Ba(SCN)_{2} [25])$$

<u>Abb. 3.30:</u> Darstellung der Erdalkalimetalltetraethinylozinkate und -cadmate EAM $(C_2H)_4$. Statt [Zn $(NH_3)_2$] $(SCN)_2$ kann auch ZnI₂ eingesetzt werden.

fielen dann sofort nach der Zugabe von in flüssigem Ammoniak gelösten Erdalkalimetallsalzen (*Abb. 3.30*) pulverförmig aus. Damit zuvor kein Na₂Zn(C₂H)₄ ausfiel, wurde dessen Lösung in Ammoniak bei ca. -50°C gehalten. Die so erhaltenen Pulver wurden dekantierend gewaschen und über Nacht im dynamischen Vakuum getrocknet. Einkristalle entstanden im Falle des SrCd(C₂H)₄ während des Kühlens der Reaktionsmischung auf -78°C über Nacht, allerdings waren diese für Röntgenbeugungsuntersuchungen in mehreren Versuchsansätzen zu klein. BaCd(C₂H)₄ ist schon von *Nast et al.* dargestellt worden [25].

Alle dargestellten Verbindungen waren röntgenamorph. Auch ein Erhitzen der Proben im Vakuum auf 70°C steigerte die Kristallinität nicht. Wie das Raman-Spektrum des bei 70°C erhitzten $SrCd(C_2H)_4$ zeigt (s. Anhang C, *Abb. C23*), zersetzte sich die Substanz unter diesen Bedingungen, da die neu auftretenden Banden nicht mehr einer C-C-Dreifachbindung zugeordnet werden können (1482 cm⁻¹, 1092 cm⁻¹).

3.6.2 Raman-spektroskopische Untersuchungen

In *Tab. 14* und *Tab. 15* sind die Wellenzahlen der gefundenen Banden in den Raman-Spektren der Erdalkalimetalltetraethinylozinkate und -cadmate EAM(C_2H)₄ aufgeführt. Die Wellenzahlen der C-H- und C-C-Valenzschwingungen haben ähnliche Werte wie in den Alkalimetallverbindungen (s. Abschnitt 3.5.3). Die Qualität der Spektren ist jedoch prinzipiell aufgrund der amorphen Proben schlechter (s. Anhang C, *Abb. C16 - C24*). Dies betrifft den Untergrund wie auch die Peakbreite. Im Falle mancher Schwingungen mit Beteiligung von Zn bzw. Cd und C-H-Streckschwingungen ließen sich nur sehr breite Banden ausmachen. Die Festlegung einer zugehörigen Wellenzahl war damit nicht möglich. Auffällig ist die beobachtete Wellenzahl der C-C-Streckschwingung in MgZn(C_2H)₄, die mit 1959 cm⁻¹ den größten Betrag für eine C-C-Streckschwingung in den untersuchten Erdalkalimetalltetraethinylometallaten aufweist.

<u>**Tab. 14:**</u> Gefundene Banden in den Raman-Spektren von $EAZn(C_2H)_4$ (EA = Mg - Ba).

Schwingungsart	$MgZn(C_2H)_4$	$CaZn(C_2H)_4$	$SrZn(C_2H)_4$	$BaZn(C_2H)_4$
$\nabla (C-H)_{Raman} / cm^{-1}$		3236 ^a	3234 ^a	
$\tilde{v}(C \equiv C)_{Raman} / cm^{-1}$	1959	1946	1947	1943
Schwingungen mit	259 ^a , 127 ^a		126 ^a	325 ^a , 149, 107
Beteiligung von Zn				
0				

^a breite Bande

<u>**Tab. 15:**</u> Gefundene Banden in den Raman-Spektren von $EACd(C_2H)_4$ (EA = Mg - Ba).

Schwingungsart	$MgCd(C_2H)_4$	$CaCd(C_2H)_4$	$SrCd(C_2H)_4$	$BaCd(C_2H)_4$
$\nabla (C-H)_{Raman} / cm^{-1}$	3254, 3181		3219 ^a	
$\tilde{v}(C \equiv C)_{Raman} / cm^{-1}$	1935	1938	1937	1937
Schwingungen mit	320 ^a , 114	346 ^a	121 ^a	
Beteiligung von Cd				

^a breite Bande

3.7 Natrium- und Bariumtetraethinylomanganat(II): Na₂Mn(C₂H)₄ und BaMn(C₂H)₄

Nach Nast et al. [72] konnte aus einer Lösung von vier Äquivalenten Natriumhydrogenacetylid NaC₂H in flüssigem Ammoniak nach Zugabe von einem Äquivalent Manganthiocyanat $Mn(SCN)_2$ das Natriumtetraethinylomanganat(II) Na₂Mn(C₂H)₄ ausgefällt werden. Das rosa-farbene Pulver war sehr luftempfindlich und konnte in trockenem Zustand nur mit hellbrauner Farbe isoliert werden. In Röntgenpulveraufnahmen zeigte es ebenso wie Bariumtetraethinylomanganat(II) BaMn(C₂H)₄ keine Beugungsreflexe. Die Bariumverbindung fiel aus einer Lösung von K₂Mn(C₂H)₄ in flüssigem Ammoniak nach Zugabe von einem Äquivalent Bariumthiocyanat Ba(SCN)₂ und Kühlen des Reaktionsgemisches bei -78°C über Nacht zudem einkristallin an. Bei Versuchen, diese Kristalle in ein Markrohr zu befördern, zersetzten sie sich explosionsartig, so daß keine Röntgenstrukturanalyse durchgeführt werden konnte.
3.8 Weitere Versuche zur Darstellung ternärer Acetylide

Im Rahmen dieser Arbeit sind mehrere Versuche unternommen worden, ternäre Acetylide des Zinks und Palladiums in jeweils zweiwertiger Form darzustellen und strukturell zu charakterisieren. Eine mögliche stöchiometrische Zusammensetzung wäre $A_2M(C_2)_2$ (A = Alkalimetall, M = Zn, Pd). Im Falle des $A_2Zn(C_2)_2$ mit einem von vier $C_2^{2^2}$ -Hanteln *end-on* koordinierten Zink(II)kation wären Verbindungen denkbar, deren Polyanionen strukturell dem Cristobalit oder den Zeolithen ähnelten. Im Falle eines von vier C22-Hanteln quadratisch-Palladium(II)kations im hypothetischen $A_2Pd(C_2)_2$ umgebenen könnten planar polyanionische, planare Palladium-Acetylid-Schichten mit eckenverknüpften $Pd(C_2)_{4/2}$ -Quadraten existieren, die von den Alkalimetallkationen separiert werden. Beim Erhitzen von $K_2Cu(C_2H)_3$ könnte bei einer Kondensationsreaktion unter Acetylenabspaltung $K_4Cu_2(C_2)_3$ entstehen, das mit von drei $C_2^{2^2}$ -Hanteln trigonal-planar koordinierten Kupferkationen polyanionische, planare Schichten mit kondensierten $Cu_6(C_2)_6$ -Ringen bilden könnte. Leider ist es nicht gelungen, kristalline Verbindungen dieser Art darzustellen, die mittels Röntgenpulverdiffraktometrie oder Raman-Spektroskopie charakterisiert werden konnten. Erhaltene Pulver waren röntgenamorph oder zeigten Reflexe von sehr schwacher Intensität, deren Indizierung scheiterte. In Raman-Spektren waren keine charakteristischen Banden auszumachen. Im folgenden werden die unternommenen Syntheseversuche mit ihren Ergebnissen aufgeführt.

3.8.1 Ternäre Acetylide der Zusammensetzung A₂Zn(C₂)₂ (A = Na, K)

1.) Entsprechend der Syntheseroute (a) zur Darstellung von ternären Alkalimetallkupferacetyliden (s. Abschnitt 3.1.1) wurde versucht, durch Erhitzen von $K_2Zn(C_2H)_4$ eine vollständige Kondensation der Tetraederfragmente $[Zn(C_2H)_4]^{2-}$ unter Acetylenabspaltung zu erreichen. Dazu wurden vier Äquivalente KC₂H mit einem Äquivalent ZnI₂ in flüssigem Ammoniak umgesetzt, das Ammoniak entfernt und der Rückstand auf 190°C im Vakuum erhitzt. Ein Druckanstieg machte sich bemerkbar, und es verblieb ein braunes Pulver, das mit flüssigem Ammoniak dekantierend gewaschen wurde. Es zerfloß an Luft und bildete mit Wasser Gasblasen, was auf eine Hydrolyse unter Bildung von Acetylen hindeutete. Die Substanz zeigte allerdings keine Reflexe in den Röntgenpulverdiffraktogrammen. In einer Elektronenstrahl-Mikrosondenelementaranalyse (EDX) wurden Kalium und Zink im Verhältnis 2 zu 1 gefunden, was man auch beim Vorliegen der hypothetischen Verbindung $K_2Zn(C_2)_2$ erwartet hätte.

Wurde eine Lösung von KC_2H und ZnI_2 in Pyridin über Nacht unter Rückfluß erhitzt, so erhielt man ein braunes, röntgenamorphes Pulver, das an Luft Gasblasen bildete. Wenn $K_2Zn(C_2H)_4$ direkt in Pyridin gelöst und unter Rückfluß erhitzt wurde, konnte wiederum ein braunes Pulver isoliert werden, das sehr schwache und deshalb nicht verwertbare Reflexe in den Röntgenpulverdiffraktogrammen zeigte.

Auch das Erhitzen eines Gemenges von KC_2H und ZnI_2 in einer Glasampulle bei 140°C für drei Stunden oder 130°C für zwölf Stunden lieferte nur schwarze, röntgenamorphe Pulver. Sie zersetzten sich an Luft über eine gelbe Zwischenstufe.

Wenn $K_2Zn(C_2H)_4$ trocken im Vakuum bei verschiedenen Temperaturen bis zu 220°C erhitzt wurde, so nahm der Rückstand eine leicht bräunliche Farbe an und wurde röntgenamorph. Auch ein Erhitzen von $K_2Zn(C_2H)_4$ in Glasampullen z. B. auf 160°C für zwölf Stunden ergab kein kristallines Produkt.

 $Cs_2Zn(C_2H)_4$ verfärbte sich beim Erhitzen auf 150°C im Vakuum dunkelgrau. Diese Verbindung zersetzte sich an Luft über eine weiße, dann gelbe Zwischenstufe und zerfloß schließlich. Allerdings war auch dieses Pulver röntgenamorph und zeigte keine Banden im Raman-Spektrum.

2.) Vergleichbar mit der Syntheseroute (b) zur Darstellung von ternären Alkalimetallkupferacetyliden (s. Abschnitt 3.1.1) wurden Versuche unternommen, Na₂C₂ bzw. K₂C₂ mit Zn(II)-Salzen und -komplexen umzusetzen. Bei der Reaktion von zwei Äquivalenten K₂C₂ und einem Äquivalent ZnI₂ in flüssigem Ammoniak entstand ein graues Pulver, das röntgenamorph war und Gasblasen mit Wasser bildete. Beim Einsatz von K₂C₂ und K₂Zn(CN)₄ in flüssigem Ammoniak und Rühren der Reaktionsmischung über Nacht konnte nach dem Entfernen des Ammoniaks KCN im Diffraktogramm des Rückstandes gefunden werden. Dies ist das Nebenprodukt bei der gewünschten Reaktion zum K₂Zn(C₂)₂ (*Abb. 3.31*). Zur Entfernung des KCN wurde das Gemenge mit flüssigem Ammoniak dekantierend gewaschen. Es konnte ein graues bis blaues, röntgenamorphes Pulver isoliert werden, das mit

 $K_2Zn(CN)_4 + 2 K_2C_2 \xrightarrow{NH_3(fl.),-78^\circ C} K_2Zn(C_2)_2 + 4 KCN$

Abb. 3.31: Hypothetischer Syntheseweg für die Darstellung eines ternären Zinkacetylids.

Wasser Gasblasen bildete und an Luft schwarz wurde. Das zugehörige Raman-Spektrum zeigte keine Bande. Die Substanz roch schwach nach Ammoniak, so daß sie im Vakuum zu dessen Entfernung erhitzt wurde. Bei Heizzeiten von zwei bis sechs Stunden bei Temperaturen von 120 °C bis 160°C konnten mit den erhaltenen grauen Pulvern bestenfalls Röntgenpulverdiffraktogramme mit sehr schwachen Reflexen erhalten werden, die bei Indizierungsversuchen nicht zuzuordnen waren. Eine Elektronenstrahl-Mikrosondenelementaranalyse (EDX) bewies das Vorhandensein von Kalium und Zink. Bei einer Heiztemperatur von 180°C zersetzte sich die Verbindung und wurde schwarz.

Beim Erhitzen von zwei Äquivalenten K_2C_2 und einem Äquivalent $K_2Zn(CN)_4$ in Pyridin unter Rückfluß bildete sich über Nacht ein graues Gemenge, daß wie bei der Synthese in flüssigem Ammoniak viel KCN enthielt, ansonsten jedoch nur schwache Reflexe der Edukte im Röntgenpulverdiffraktogramm zeigte. Auch dieses Gemenge war luftempfindlich.

Wurde ein Gemenge von K_2C_2 und $K_2Zn(CN)_4$ im molaren Verhältnis von 2:1 in einer Glasampulle für vier bis zwölf Stunden auf 130°C erhitzt, so bildete sich zwar ein graues bis blaues Pulver, doch dieses enthielt als kristalline Bestandteile nur $K_2Zn(CN)_4$ und KCN. Im Markrohr wurde das Gemenge auf 250°C erhitzt. Dabei nahm es zunächst eine weiße Farbe an, beim Abkühlen wiederum eine graue bis blaue Farbe. Das Röntgenpulverdiffraktogramm zeigte neben starken Reflexen von KCN nur sehr schwache neue Reflexe, mit denen keine Elementarzelle bestimmt werden konnte. In entsprechenden Umsetzungen von Na_2C_2 und ZnI₂ in Glasampullen entstand als kristalline Komponente nur NaI. Dies deutete auf einen Umsatz hin, der allerdings zu keinem kristallinen Acetylid führte.

Beim Versuch, Na_2C_2 mit [Zn(NH₃)₂](SCN)₂ in siedendem Pyridin zur Reaktion zu bringen, konnte kein Umsatz festgestellt werden.

3.) Nach *O'Keeffe et al.* [73] kann Ga(CN)₃ durch Umsatz von GaCl₃ und Me₃Si-CN dargestellt werden. Dementsprechend wurden Versuche unternommen, ein Äquivalent K_2ZnCl_4 mit zwei Äquivalenten Me₃Si-C=C-SiMe₃ in siedendem Hexan, Pyridin und ohne Lösemittel bei Raumtemperatur und 60°C zur Reaktion zu bringen. In allen Fällen fand keine Reaktion statt. In der röntgenographischen Untersuchung der verbliebenen weißen Pulver fand man nur das Edukt K_2ZnCl_4 . Beim Einsatz von K_2ZnCl_4 und Me₃Sn-C=C-SnMe₃ in siedendem Hexan und Pyridin erhielt man weiße Gemenge, die aus KCl und einer kunststoffartigen, weichen und röntgenamorphen Substanz bestanden. Anscheinend fanden Polymerisationsreaktionen des Me₃Sn-C=C-SnMe₃ statt.

4.) Bei der Zugabe einer Lösung von Diethylzink $Zn(C_2H_5)_2$ in Hexan zu KC₂H, in Hexan suspendiert oder ohne Lösemittel, fand keine Deprotonierung des KC₂H bei Raumtemperatur oder unter Rückfluß des Hexans statt. Bei der röntgenographischen Untersuchung der getrockneten Reaktionsansätze konnte nur KC₂H ausgemacht werden. Die zudem sichtbaren sehr schwachen Reflexe könnten vom $Zn(C_2H_5)_2$ herrühren.

3.8.2 Ternäre Acetylide der Zusammensetzung $A_2Pd(C_2)_2$ (A = Na, K)

Der Syntheseroute (b) zur Darstellung von ternären Alkalimetallkupferacetyliden analog (s. Abschnitt 3.1.1) wurden ein Äquivalent PdI_2 und zwei Äquivalente K_2C_2 in flüssigem Ammoniak suspendiert. Beim Erwärmen der Reaktionsmischung auf -30°C entstand schnell ein hellgelber Feststoff, der röntgenamorph war. Beim Erhitzen des gelben Pulvers auf 150°C im Vakuum nahm es eine braune Farbe an, war jedoch immer noch röntgenamorph. Bei Verwendung von Na₂C₂ und PdI₂ in flüssigem Ammoniak konnte ein braunes Pulver isoliert werden, das röntgenamorph war und keine Banden im Raman-Spektrum zeigte.

3.8.3 Ein ternäres Acetylid der Zusammensetzung K₄Cu₂(C₂)₃

Beim Erhitzen des Ethinylokomplexes $K_2Cu(C_2H)_3$ auf 70°C im Vakuum entstand neben röntgenamorphen Produkten schlecht kristallisiertes $KCuC_2$ (s. Abschnitt 3.3). $KCuC_2$ scheint thermodynamisch stabiler zu sein als ein hypothetisches $K_4Cu_2(C_2)_3$.

4 Zusammenfassung und Ausblick

Innerhalb dieser Arbeit ist es gelungen, ternäre Acetylide des Kupfers darzustellen, deren Kristallstruktur aufzuklären und sie spektroskopisch zu untersuchen. Dabei wurde die Pulverdiffraktometrie mit Röntgenstrahlung, Synchrotronstrahlung und Neutronen genutzt.

Die Acetylide der Form ACuC₂ (A = K - Cs) ließen sich aus A₂C₂ und CuI in flüssigem Ammoniak synthetisieren. NaCuC₂ entstand nur bei der thermischen Zersetzung von NaCu₅(C₂)₃. Die Verbindungen enthalten wie die analogen Silber- und Goldacetylide [20, 21] polyanionische $\int_{\infty}^{1} [Cu(C_2)_{2/2}] -]$ -Ketten, die in NaCuC₂ und β-RbCuC₂ parallel zur *c*-Achse der tetragonalen Elementarzelle orientiert sind (Raumgruppe *P4/mmm*). In KCuC₂, α-RbCuC₂ und CsCuC₂ verlaufen diese Ketten in Schichten parallel zueinander, die wiederum abwechselnd um 90° gedreht entlang der *c*-Achse der tetragonalen Elementarzelle gestapelt sind (Raumgruppe *P4_2/mmc*). Die Alkalimetallkationen trennen die Polyanionen voneinander, wobei sie *side-on* von den Acetylidhanteln koordiniert werden. Somit entsprechen diese Kristallstrukturen zwei einfachen Stabpackungen mit den Kupfer-Kohlenstoff-Ketten als Stäbe und den Alkalimetallkationen in den Lücken dazwischen [50]. In aufgenommenen Raman-Spektren sprachen die Wellenzahlen der C-C-Streckschwingungen für das Vorliegen von C-C-Dreifachbindungen. Dies zeigten auch die ¹³C-MAS-NMR-Spektren von ACuC₂ (A = K - Cs), deren komplizierte Linienformen noch simuliert werden müssen, um weitere Aussagen über die untersuchten Verbindungen machen zu können.

Wurde der Rückstand einer Umsetzung von zwei Teilen NaC₂H und einem Teil CuI in flüssigem Ammoniak im dynamischen Vakuum auf 200°C erhitzt, so erhielt man die Verbindung NaCu₅(C₂)₃. Sie enthält ein dreidimensional aufgebautes $[Cu_5(C_2)_3]^-$ Polyanion mit kurzen Cu-Cu-Kontakten, in dessen Lücken die Natriumkationen plaziert sind (Raumgruppe *Pnma*). Es existieren zwei kristallographisch unterschiedliche Acetylidhanteln, die die Kupfer- und Natriumatome *end-on* und *side-on* koordinieren. Durch die *side-on*-Koordinationen werden die C-C-Dreifachbindungen geschwächt, was mit kleineren Wellenzahlen der C-C-Streckschwingungen in den aufgenommenen Raman- und IR-Spektren im Vergleich zu ACuC₂ (A = K - Cs) gezeigt werden konnte.

Ternäre Hydrogenacetylide können sich in manchen Fällen beim Erhitzen unter Acetylenabspaltung in ternäre Acetylide umwandeln [20, 21]. Deshalb wurden zahlreiche Ethinyloübergangsmetallat-Komplexe dargestellt und in Pulverbeugungsexperimenten mit Röntgen- und Synchrotronstrahlung sowie mittels Raman-Spektroskopie untersucht.

Aus einer Lösung von $K_2M(C_2H)_4$ (M = Zn, Cd) in flüssigem Ammoniak, dargestellt aus $KC_{2}H$ und einem entsprechenden Übergangsmetallsalz [24, 25], konnten die Ammoniakate $K_2M(C_2H)_4 \cdot 2$ NH₃ als Einkristalle isoliert und strukturell aufgeklärt werden. Die beiden temperaturempfindlichen Verbindungen sind isotyp zueinander und kristallisieren in der Raumgruppe I2/a. Neben der tetraedrisch aufgebauten $[M(C_2H)_4]^{2-}$ -Baugruppe sind kantenverknüpfte $[K(C_2H)_6]$ -Oktaeder das charakteristische Strukturmotiv. Die Oktaeder bilden Zick-Zack-Ketten, die über ein zweites kristallographisch unterschiedliches Kaliumatom verknüpft werden. Dieses Kaliumatom bindet zusätzlich die Ammoniakmoleküle. Sie befinden sich in Kanälen des Kristallgitters und können somit leicht aus den Verbindungen entweichen.

Die ammoniakfreien Ethinylo-Komplexe $A_2M(C_2H)_4$ (A = Na - Cs; M = Zn, Cd) ließen sich durch Erhitzen der entsprechenden Ammoniakate darstellen. Bis auf Na₂M(C₂H)₄ (M = Zn, Cd) und Cs₂Zn(C₂H)₄, deren Kristallstruktur nicht aufgeklärt werden konnte, sind alle Verbindungen isotyp zueinander (Raumgruppe *I4*₁/*a*) [26]. Nach pulverdiffraktometrischen Untersuchungen existieren wie in den Ammoniakaten K₂M(C₂H)₄ · 2 NH₃ (M = Zn, Cd) tetraedrische [M(C₂H)₄]²⁻-Fragmente und Zick-Zack-Ketten aus kantenverknüften [A(C₂H)₆]-Oktaedern. Zudem zeigt die Kristallstruktur Ähnlichkeiten zu den Kristallstrukturen des Scheelits (CaWO₄) und Anatas (TiO₂). Die Raman-Spektren der Verbindungen besaßen ein erwartetes Bandenmuster. Die Wellenzahlen der C-C-Streckschwingungen sprachen für das Vorliegen einer C-C-Dreifachbindung.

Aus Lösungen von Na₂Zn(C₂H)₄ und K₂Cd(C₂H)₄ in flüssigem Ammoniak konnten mit den entsprechenden Erdalkalimetallsalzen die röntgenamorphen Komplexe EAM(C₂H)₄ (EA = Mg - Ba [25]; M = Zn, Cd) ausgefällt werden. Die Verbindungen waren jedoch nur durch ihre Raman-Spektren charakterisierbar. Auch der dargestellte röntgenamorphe Komplex K₂Cu(C₂H)₃ [49] zeigte ein verwertbares Raman-Spektrum.

Ein Erhitzen der dargestellten Ethinyloübergangsmetallat-Komplexe auf verschiedenen Wegen führte immer zu röntgenamorphen Pulvern, die keine Banden in den Raman-Spektren zeigten. Im Falle des $K_2Cu(C_2H)_3$ entstand $KCuC_2$. Bei Umsetzungen von A_2C_2 (A = Na, K) und Zn(II)-Salzen, als Gemenge oder in flüssigem Ammoniak, konnten nur röntgenamorphe Pulver erhalten werden. Vergleichbare Versuche mit PdI₂ verliefen ebenfalls erfolglos. Es erscheint sinnvoll, entsprechende Versuche in flüssigem Ammoniak bei Raumtemperatur in geeigneten Autoklaven durchzuführen, um zu kristallinen Produkten zu gelangen

5 Experimenteller Teil

Verwendete Chemikalie	Bezugsquelle (Reinheit), Reinigung
Acetylen C ₂ H ₂	Linde (techn.), durch U-Rohre mit Mol-
	sieb (300 pm) und Aktivkohle geleitet
Ammoniak NH ₃	Hochschullieferung BASF, über Na
	destilliert; Messer Griesheim (99,99 %)
Ammoniumthiocyanat NH ₄ SCN	Fluka (> 98,5 %)
Argon Ar	Linde (99,98 %), durch Gasnachreini-
	gungssystem geleitet (Oxysorb, Messer
	Griesheim)
Bariumhydroxid-Octahydrat Ba(OH) $_2 \cdot 8 H_2O$	Riedel-de Haen (94 %)
Bis(trimethylsilyl)acetylen Me ₃ Si-C≡C-SiMe ₃	ABCR
$Bis (trimethyl stannyl) acetylen \ Me_3 Sn-C \equiv C-Sn Me_3$	Aldrich
Cadmiumsulfat-Hydrat CdSO ₄ \cdot 8/3 H ₂ O	Acros (99 %)
Calciumnitrat-Tetrahydrat Ca(NO_3)_2 \cdot 4 H_2O	Merck (98 %)
Cäsium Cs	ABCR (99,9 %)
Cäsiumacetylid Cs ₂ C ₂	nach [48] (röntgenographisch rein)
Cäsiumcyanid CsCN	Schenkung von Prof. Dr. S. Haussühl
Diethylether	Hanf & Nellis, über Na destilliert
Diethylzink $Zn(C_2H_5)_2$ (15 % ig in Hexan)	Acros
Ethanol	Hoffmann, über Na destilliert
GALDEN HT90 und HT230 (inerte Öle)	Ausimont
n-Hexan	Hanf & Nellis, über K destilliert
Kalium	Merck (> 98 %)
Kaliumacetylid K ₂ C ₂	nach [47] (röntgenographisch rein)
Kaliumcyanid KCN	Merck (96 - 98 %)
Kaliumthiocyanat KSCN	Merck (> 98,5 %)
18-Krone-6	Fluka (> 99 %)
Kupferiodid CuI	Riedel-de Haen (99,5 %)
Magnesiumiodid	Aldrich (> 99,998 %)
Mangandichlorid MnCl ₂	Aldrich (> 99,99 %)

Tab. 16: Verwendete Chemikalien mit Bezugsquelle und Reinigung.

Bezugsquelle (Reinheit), Reinigung			
Degussa (99 %)			
nach [47] (röntgenographisch rein)			
Bayer (techn.)			
Strem Chemicals (99 %)			
Acros (> 99 %), destilliert			
ABCR (99,5 %)			
nach [48] (röntgenographisch rein)			
Riedel-de Haen (99 %)			
Hochschullieferung BASF, über Na			
destilliert			
KMF			
Merck (98 %)			
Aldrich (98 %)			
Aldrich (> 99,99 %), sublimiert			

5.1 Allgemeine Arbeitsvorschrift zur Darstellung von ACuC₂ (A = K, Rb, Cs)

 $A_2C_2 + CuI \xrightarrow{NH_3(fl.)} ACuC_2 + AI$ (A = K, Rb, Cs)

In einem Schlenkkolben werden 0,50 mmol A_2C_2 (A = K, Rb, Cs) [47, 48] in 40 ml flüssigem Ammoniak bei -78°C unter Argon suspendiert. Anschließend gibt man 95 mg (0,50 mmol) CuI zu der gerührten Reaktionsmischung. Darauf fällt sofort ein orangefarbener Niederschlag aus. Das Ammoniak wird durch Erwärmen auf Raumtemperatur entfernt und der Rückstand über Nacht im dynamischen Vakuum getrocknet. Zur Entfernung des löslichen AI wird das verbliebene Gemenge dreimal dekantierend mit flüssigem Ammoniak gewaschen. Das erhaltene orangefarbene Pulver wird nun im dynamischen Vakuum erhitzt (KCuC₂: 130°C für 1 h, RbCuC₂: 200°C für 3 h, CsCuC₂: 200°C für 5 h), worauf es eine graue Farbe annimmt. Während des Heizvorganges macht sich ein Druckanstieg bemerkbar.

5.2 Arbeitsvorschrift zur Darstellung von NaCuC₂

$$\operatorname{NaCu}_{5}(C_{2})_{3} \xrightarrow{270^{\circ}C, Ih} \operatorname{NaCu}_{2} + 4 \operatorname{Cu} + 4 \operatorname{C}$$

Zwei Spatelspitzen NaCu₅(C₂)₃ werden in einer Glasampulle eingeschmolzen und auf 270°C für 1 h in einem Röhrenofen erhitzt. Das erhaltene graue Gemenge enthält neben NaCuC₂ auch unzersetztes NaCu₅(C₂)₃ und Cu. Kohlenstoff kann in den Röntgenpulverdiffraktogrammen nicht nachgewiesen werden.

5.3 Arbeitsvorschrift zur Darstellung von NaCu₅(C₂)₃

$$6 \operatorname{NaC}_2 H + 5 \operatorname{CuI} \longrightarrow \operatorname{NaCu}_5(C_2)_3 + 5 \operatorname{NaI} + 3 \operatorname{C}_2 H_2$$

65 mg (2,83 mmol) Na werden in Toluol abgewogen und in 40 ml flüssigem, nicht zuvor getrocknetem Ammoniak aufgelöst, das sich in einem Schlenkkolben mit Glasrührkern unter Argon befindet. Bis zur Entfärbung der bei -78°C gehaltenen blauen Lösung wird nicht gereinigtes Acetylen durch den Schlenkkolben geleitet und anschließend 269 mg (1,41 mmol) CuI zugegeben. Beim Entfernen des Ammoniaks durch Erwärmen auf Raumtemperatur färbt sich die Reaktionsmischung dunkelrot. Der verbliebene, überwiegend rote Rückstand wird über Nacht im dynamischen Vakuum getrocknet. Dann wird er im dynamischen Vakuum auf 200°C für 30 min erhitzt, wobei sich ein Druckanstieg bemerkbar macht. Nach dem Abkühlen wird das nun gelbe Gemenge zur Entfernung löslicher Nebenprodukte dreimal dekantierend gewaschen und das erhaltene orangefarbene Pulver im dynamischen Vakuum getrocknet.

5.4 Arbeitsvorschrift zur Darstellung von K₂Zn(C₂H)₄ · 2 NH₃ [24]

$$4 \text{ KC}_2\text{H} + \text{ K}_2\text{Zn}(\text{CN})_4 + 2 \text{ NH}_3 \xrightarrow{\text{NH}_3(\text{fl}.)} \text{K}_2\text{Zn}(\text{C}_2\text{H})_4 \cdot 2 \text{ NH}_3 + 4 \text{ KCN}$$

129 mg (3,30 mmol) K werden im Handschuhkasten in einem Schlenkkolben mit Glasrührkern eingewogen und in 40 ml flüssigem Ammoniak bei -78°C gelöst. Anschließend leitet man bis zur Entfärbung der blauen Lösung Acetylen durch den Schlenkkolben. Zu der somit hergestellten KC₂H-Lösung werden 189 mg (0,764 mmol) K₂Zn(CN)₄ gegeben, worauf

sofort ein weißer Niederschlag ausfällt. Beim Kühlen des Reaktionsgemisches auf -78°C über Nacht bilden sich weiße, quaderförmige Einkristalle von $K_2Zn(C_2H)_4 \cdot 2 NH_3$.

5.5 Arbeitsvorschrift zur Darstellung von K₂Cd(C₂H)₄ · 2 NH₃ und K₂Cd(C₂H)₄ [25]

 $2 \text{ KC}_2\text{H} + \text{Cd}(\text{NH}_2)_2 + 2 \text{ C}_2\text{H}_2 \xrightarrow{\text{NH}_3(\text{fl}.)} \text{K}_2\text{Cd}(\text{C}_2\text{H})_4 \cdot 2 \text{ NH}_3$

88 mg (2,25 mmol) K werden im Handschuhkasten in einem Schlenkkolben mit Glasrührkern eingewogen und in 40 ml flüssigem Ammoniak bei -78°C gelöst. Anschließend wird bis zur Entfärbung der blauen Lösung Acetylen durch den Schlenkkolben geleitet. Zu der somit hergestellten KC₂H-Lösung werden 203 mg (1,41 mmol) Cd(NH₂)₂ gegeben und bis zu dessen Auflösung wird wiederum Acetylen durch den Schlenkkolben geleitet. Die getrübte Lösung wird während des Aufwärmens auf Raumtemperatur und Entfernen des Ammoniaks klar. Der Rückstand wird über Nacht getrocknet und dann in ca. 10 ml flüssigem Ammoniak aufgenommen. Man entfernt so lange Ammoniak durch Erwärmen auf Raumtemperatur und kühlt wieder auf -78°C, bis weiße, quaderförmige Einkristalle von K₂Cd(C₂H)₄ · 2 NH₃ ausfallen. Werden diese auf Raumtemperatur erwärmt, im dynamischen Vakuum getrocknet und anschließend im dynamischen Vakuum auf 70°C erhitzt, erhält man die ammoniakfreie Verbindung K₂Cd(C₂H)₄.

5.6 Allgemeine Arbeitsvorschrift zur Darstellung von $A_2Zn(C_2H)_4$ (A = Na - Cs) und $A_2Cd(C_2H)_4$ (A = Na, Rb, Cs) [24, 25]

$$4 \text{ AC}_2\text{H} + A_2\text{Zn}(\text{CN})_4 + x \text{ NH}_3 \xrightarrow{\text{NH}_3(\text{fl.})} A_2\text{Zn}(\text{C}_2\text{H})_4 \cdot x \text{ NH}_3 + 4 \text{ ACN}$$
$$(\text{A} = \text{K} - \text{Cs}; \text{ für } \text{A} = \text{K gilt}; x = 2)$$

$$4 \operatorname{NaC}_{2}H + [\operatorname{Zn}(\operatorname{NH}_{3})_{2}](\operatorname{SCN})_{2} + (x-2) \operatorname{NH}_{3} \xrightarrow{\operatorname{NH}_{3}(\operatorname{fl.}), -78^{\circ}\mathrm{C}} \operatorname{Na}_{2}\operatorname{Zn}(\operatorname{C}_{2}H)_{4} \cdot x \operatorname{NH}_{3} + 2 \operatorname{NaSCN}$$

$$4 \text{ AC}_2\text{H} + \text{Cd}(\text{SCN})_2 + \text{x NH}_3 \xrightarrow{\text{NH}_3(\text{fl}.)} \text{A}_2\text{Cd}(\text{C}_2\text{H})_4 \cdot \text{x NH}_3 + 2 \text{ ASCN}$$
$$(\text{A} = \text{Na}, \text{Rb}, \text{Cs}; \text{für A} = \text{K: s. 5.5})$$

$$\begin{array}{l} A_2M(C_2H)_4 \cdot x \ NH_3 & \xrightarrow{70^\circ C, \ Vakuum} & A_2M(C_2H)_4 \ + \ x \ NH_3 \\ \\ (A = Na \ - \ Cs; \ M = Zn, \ Cd) \end{array}$$

Etwa 4,3 mmol Alkalimetall (A = K - Cs) werden in einem Schlenkkolben mit Glasrührkern eingewogen, in flüssigem Ammoniak bei -78°C gelöst und mit übergeleitetem Acetylen bis zur Entfärbung der blauen Lösung zur Reaktion gebracht. Dann werden 1.0 mmol [Zn(NH₃)₂](SCN)₂ (A = Na), A₂Zn(CN)₄ (A = K, Rb, Cs) bzw. Cd(SCN)₂ zur Lösung des Hydrogenacetylids gegeben. Zum Erhalt der Natriumverbindungen werden die Reaktionsmischungen auf -78°C gekühlt, worauf Na₂M(C₂H)₄ · x NH₃ (M = Zn, Cd) als Pulver ausfällt und über eine per Kryostat gekühlte Doppelmantelfritte abgetrennt werden kann. In den anderen Fällen fallen die Ethinylokomplexe als Ammoniakate direkt nach der Zugabe des Übergangsmetallsalzes aus. Die überstehende Reaktionslösung wird abdekantiert. In allen Fällen werden die Ammoniakate zunächst auf Raumtemperatur erwärmt, über Nacht im dynamischen Vakuum getrocknet und anschließend im dynamischen Vakuum auf 60 -70°C während mehrerer Stunden erhitzt, wobei sie ihren gesamten Ammoniak abgeben, und man zu den Ethinylokomplexen A₂M(C₂H)₄ gelangt.

5.7 Allgemeine Arbeitsvorschrift zur Darstellung von EAM(C₂H)₄ (EA = Mg - Ba, M = Zn, Cd) [25]

$$4 \operatorname{NaC}_{2}H + [\operatorname{Zn}(\operatorname{NH}_{3})_{2}](\operatorname{SCN})_{2} \xrightarrow{\operatorname{NH}_{3}(\operatorname{fl}), -50^{\circ}\mathrm{C}} [\operatorname{Zn}(\operatorname{C}_{2}H)_{4}]^{2^{-}} + 2 \operatorname{SCN}^{-} + 4 \operatorname{Na}^{+} + 2 \operatorname{NH}_{3}$$

$$4 \operatorname{KC}_{2}H + \operatorname{Cd}(\operatorname{SCN})_{2} \xrightarrow{\operatorname{NH}_{3}(\operatorname{fl}.)} [\operatorname{Cd}(\operatorname{C}_{2}H)_{4}]^{2^{-}} + 2 \operatorname{SCN}^{-} + 4 \operatorname{K}^{+}$$

$$[M(C_2H)_4]^{2-} + EAX_2 \xrightarrow{NH_3(fL), -50^\circ C} EAM(C_2H)_4 + 2X^-$$
$$(M = Zn, Cd; EAX_2 = MgI_2, Ca(NO_3)_2, Sr(NO_3)_2, Ba(SCN)_2 [25])$$

Zu einer nach 5.6 hergestellten Lösung von $Na_2Zn(C_2H)_4$ in flüssigem Ammoniak bei ca. -50°C bzw. von $K_2Cd(C_2H)_4$ wird die Lösung einer äquimolaren Menge MgI₂, Ca(NO₃)₂, Sr(NO₃)₂ bzw. Ba(SCN)₂ in flüssigem Ammoniak gegeben. Daraufhin fallen sofort die weißen Zielverbindungen aus. Statt [Zn(NH₃)₂](SCN)₂ kann auch ZnI₂ eingesetzt werden. Die Reaktionsmischung wird über Nacht auf -78°C gekühlt. Anschließend wäscht man die Niederschläge zur Entfernung löslicher Bestandteile zweimal mit flüssigem Ammoniak dekantierend und trocknet über Nacht im dynamischen Vakuum.

5.8 Arbeitsvorschrift zur Darstellung von A₂Zn(CN)₄ [71]

 $2 \text{ ACN} + \text{Zn}(\text{CN})_2 \rightarrow \text{A}_2\text{Zn}(\text{CN})_4$ (A = K, Rb, Cs)

1,46 g (0,0125 mol) $Zn(CN)_2$ werden in 20 ml heißem, entmineralisiertem Wasser suspendiert. Dazu gibt man solange portionsweise ACN (A = K, Rb, Cs), bis die Reaktionsmischung klar ist. Anschließend wird sie bis zur Trübung eingeengt und über Nacht im Kühlschrank aufbewahrt. Die erhaltenen Kristalle werden über eine Fritte abgesaugt, je einmal mit wenig Ethanol und Ether gewaschen und im dynamischen Vakuum bei 100°C getrocknet.

5.9 Arbeitsvorschrift zur Darstellung von [Zn(NH₃)₂](SCN)₂ [74]

 $ZnCl_{2} + 2 NaOH \rightarrow Zn(OH)_{2} + 2 NaCl$ $Zn(OH)_{2} + 2 NH_{4}SCN \rightarrow [Zn(NH_{3})_{2}](SCN)_{2} + 2 H_{2}O$

14 g ZnCl₂ werden in ca. 200 ml entmineralisiertem Wasser gelöst und Zn(OH)₂ durch Zugabe von ca. 27 g 30 %iger NaOH-Lösung ausgefällt. Es wird abfiltriert und chloridfrei gewaschen. Anschließend bringt man eine 10 %ige Lösung von NH₄SCN in entmineralisiertem Wasser zum Kochen und gibt bis zur Trübung der Lösung Zn(OH)₂ hinzu. Man kocht kurz auf und läßt zur Kristallisation des [Zn(NH₃)₂](SCN)₂ erkalten.

5.10 Arbeitsvorschrift zur Darstellung von Mn(SCN)₂ [75]

 $MnCl_2 + 2 KSCN \xrightarrow{Ethanol} Mn(SCN)_2 + 2 KCl$

2,50 g (0,0199 mol) $MnCl_2$ werden unter Argon in 80 ml absolutem Ethanol suspendiert. Dazu werden unter Rühren 3,87 g (0,0398 mol) KSCN gegeben. Das ausgefallene KCl wird abfiltriert. Aus dem Filtrat destilliert man das Ethanol vollständig ab. Der verbliebene Rückstand wird zunächst über Nacht im dynamischen Vakuum bei Raumtemperatur, dann bei 100°C getrocknet.

5.11 Arbeitsvorschrift zur Darstellung von Ba(SCN)₂ [76, 77]

 $Ba(OH)_2 \cdot 8 H_2O + 2 NH_4SCN \rightarrow Ba(SCN)_2 + 2 NH_3 + 10 H_2O$

12,47 g (0,0395 mol) $Ba(OH)_2 \cdot 8 H_2O$ werden in 350 ml entmineralisiertem Wasser gelöst, und eine Lösung von 5,35 g (0,0703 mol) NH₄SCN in 70 ml entmineralisiertem Wasser wird zugegeben. Die Reaktionsmischung wird zur Vertreibung des Ammoniaks auf ein Volumen von ca. 50 ml eingeengt und filtriert. Um überschüssiges Bariumhydroxid in Bariumcarbonat umzuwandeln, gibt man ein Stück Trockeneis hinzu. Die nun trübe Lösung wird erneut filtriert. Das Filtrat wird vollständig eingeengt und der verbliebene Rückstand im dynamischen Vakuum bei 160°C getrocknet.

5.12 Arbeitsvorschrift zur Darstellung von Cd(SCN)₂ [78]

 $Ba(SCN)_2 + CdSO_4 \rightarrow BaSO_4 + Cd(SCN)_2$

Zu einer siedenden Lösung von 11,07 g (0,0351 mol) Ba(SCN)₂ in 100 ml entmineralisiertem Wasser wird langsam eine Lösung von 9,00 g (0,0351 mol) CdSO₄ · 8/3 H₂O in 70 ml entmineralisiertem Wasser gegeben. Nach dem Abkühlen wird die Reaktionsmischung filtriert, auf ca. 60 ml eingeengt, erneut filtriert, auf 25 ml eingeengt und über Nacht im Kühlschrank aufbewahrt. Die ausgefallenen Kristalle werden abfiltriert, je zweimal mit Ethanol und Ether gewaschen und bei 80°C im dynamischen Vakuum getrocknet.

5.13 Arbeitsvorschrift zur Darstellung von Cd(NH₂)₂ [79]

 $2 \text{ K} + 2 \text{ NH}_3 \xrightarrow{\text{NH}_3(\text{fl.}), \text{Fe}} 2 \text{ KNH}_2 + \text{H}_2$ $2 \text{ KNH}_2 + \text{Cd}(\text{SCN})_2 \xrightarrow{\text{NH}_3(\text{fl.})} \text{Cd}(\text{NH}_2)_2 + 2 \text{ KSCN}$

In einem Schlenkkolben mit Glasrührkern werden 324,5 mg (8,30 mmol) K eingewogen und in 50 ml zuvor getrocknetem flüssigen Ammoniak bei -78°C gelöst. Man gibt einige Spatelspitzen Eisenpulver hinzu, worauf sich unter Wasserstoffentwicklung KNH₂ bildet. Wenn die Lösung entfärbt ist, wird sie in einen zweiten Schlenkkolben vom Eisenpulver abdekantiert. Reste des Eisens können mit einem Magneten entfernt werden. Nun gibt man 980,0 mg (4,29 mmol) Cd(SCN)₂ hinzu, worauf ein gelblicher Feststoff ausfällt. Er wird durch eine Fritte abfiltriert, dreimal mit Ammoniak gewaschen und im Vakuum getrocknet. Im trockenen Zustand nimmt das so dargestellte Cd(NH₂)₂ eine orange Farbe an.

5.14 Arbeitsvorschrift zur Darstellung von Ca(NO₃)₂

 $Ca(NO_3)_2 \cdot 4 \text{ H}_2O \xrightarrow{180^{\circ}C} Ca(NO_3)_2 + 4 \text{ H}_2O$

Zur Entfernung des Kristallwassers wird $Ca(NO_3)_2 \cdot 4 H_2O$ im dynamischen Vakuum auf 180°C über Nacht erhitzt.

5.15 Arbeitsvorschrift zur Darstellung von K₂ZnCl₄ [80]

$$ZnCl_2 + 2 KCl \rightarrow K_2ZnCl_4$$

6,82 g (0,050 mol) ZnCl₂ und 7.46 g (0,10 mol) KCl werden in 30 ml entmineralisiertem Wasser gelöst, auf 15 ml eingeengt und fünf Tage bis zur Kristallisation des K₂ZnCl₄ an Luft stehengelassen. Die Kristalle werden abfiltriert, je einmal mit Ethanol und Ether gewaschen und über Nacht bei 100°C im dynamischen Vakuum getrocknet.

6 Literatur

- [1] A. F. Holleman, E. Wiberg, *Lehrbuch der Anorganischen Chemie*, 101st ed., De Gruyter, Berlin 1995.
- [2] A. F. Wells, *Structural Inorganic Chemistry*, 5th ed., Clarendon Press, Oxford (GB) 1984.
- [3] M. Atoji, K. Gschneidner Jr., A. H. Daane, R. E. Rundle, F. H. Spedding, J. Am. Chem. Soc. 1958, 80, 1804.
- [4] F. H. Spedding, K. Gschneidner Jr., A. H. Daane, J. Am. Chem. Soc. 1958, 80, 4499.
- [5] L. Pauling, *The Nature of the Chemical Bond*, 3rd ed., Cornell University Press, Ithaca-NY 1960, p. 230.
- [6] W. Rüdorff, *Graphite Intercalation Compounds*, in: *Advances in Inorganic Chemistry and Radiochemistry* **1959**, *1*, 223.
- [7] H. Kuzmany, *Phys. Unserer Zeit* **1998**, *1*, 16.
- [8] J. R. Baran Jr., C. Hendrickson, D. A. Laude Jr., R. J. Lagow, J. Org. Chem. 1992, 57, 3759.
- [9] S. G. Raptis, M. G. Papadopoulos, A. J. Sadlej, *Phys. Chem. Chem. Phys.* 2000, 2, 3393.
- [10] U. E. Musanke, W. Jeitschko, Z. Naturforsch. b 1991, 46, 1177.
- [11] W. Jeitschko, H. Nowotny, F. Benesovsky, Monatsh. Chem. 1964, 95, 319.
- [12] R. B. King, J. Organomet. Chem. 1997, 536-537, 7.
- [13] M. H. Gerss, W. Jeitschko, Z. Naturforsch. b 1986, 41, 946.
- [14] R. Hoffmann, J. Li, R. A. Wheeler, J. Am. Chem. Soc. 1987, 109, 6600.
- [15] R. Pöttgen, A. M. Witte, W. Jeitschko, T. Ebel, J. Solid State Chem. 1995, 119, 324.
- [16] M. H. Gerss, W. Jeitschko, L. Boonk, J. Nientiedt, J. Grobe, E. Mörsen, A. Leson, J. Solid State Chem. 1987, 70, 19.
- [17] M. Weiß, U. Ruschewitz, Z. Anorg. Allg. Chem. 1997, 623, 1208.
- [18] S. Hemmersbach, B. Zibrowius, W. Kockelmann, U. Ruschewitz, *Chem. Eur. J.* 2001, 7, 1952.
- [19] U. Ruschewitz, Z. Anorg. Allg. Chem. 2001, 627, 1231.
- [20] W. Kockelmann, U. Ruschewitz, Angew. Chem. 1999, 111, 3697; Angew. Chem. Int. Ed. 1999, 38, 3492.
- [21] J. Offermanns, U. Ruschewitz, C. Kneip, Z. Anorg. Allg. Chem. 2000, 626, 649.
- [22] R. Nast, Angew. Chem. 1960, 72, 26.

- [23] R. Nast, Coord. Chem. Rev. 1982, 47, 89.
- [24] R. Nast, R. Müller, Chem. Ber. 1958, 91, 2861.
- [25] R. Nast, C. Richers, Z. Anorg. Allg. Chem. 1963, 319, 320.
- [26] E. Weiss, H. Plass, J. Organomet. Chem. 1968, 14, 21.
- [27] W. Kockelmann, H. Tietze-Jaensch, E. Jansen, W. Schäfer, ROTAX Activity Report 95/96, Rutherford Appleton Laboratory, Chilton, UK 1997.
- [28] Diamond, Version 2.1e, © 1996 2001 Crystal Impact GbR, Author: Klaus Brandenburg.
- [29] STOE WinXPOW, Version 1.07, © 2000 Stoe & Cie GmbH, Darmstadt.
- [30] P.–E. Werner, L. Eriksson, M. Westdahl, J. Appl. Crystallogr. 1985, 18, 367.
- [31] J. W. Visser, J. Appl. Crystallogr. 1969, 2, 89.
- [32] A. Boultif, D. Louer, J. Appl. Crystallogr. 1991, 24, 987.
- [33] C. Giacovazzo, D. Siliqi, B. Carrozzini, A. Guagliardi, A.G.G. Moliterni, J. Appl. Crystallogr. 1999, 32, 339.
- [34] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, *J. Appl. Crystallogr.* 1994, 27, 435.
- [35] A. C. Larson, R. B. v. Dreele, *Los Alamos Laboratory, Rep. No. LA-UR* 1987, 86, 748, Version 2001.
- [36] D. Stalke, *Chem. Soc. Rev.* **1998**, 27, 171.
- [37] Stoe, IPDS-Bedienungsanleitung, Stoe & Cie GmbH, Darmstadt.
- [38] X-Shape 1.06, Crystal Optimisation for Numerical Absorption Correction, © 1999 Stoe & Cie GmbH, Darmstadt.
- [39] X-RED 1.22, Stoe Data Reduction Program, © 2001 Stoe & Cie GmbH, Darmstadt.
- [40] G. M. Sheldrick, SHELXS-97-Program for Structure Analysis, Göttingen 1998.
- [41] G. M. Sheldrick, SHELXL-93-Program for Crystal Structure Refinement, Göttingen 1993.
- [42] T. Hahn, International Tables for Crystallography, Volume A, Space-Group Symmetry, 4th ed., Kluwer Academic Publishers, Dordrecht-Boston-London 1995.
- [43] M. R. Bendall, R.E. Gosdon, J. Magn. Reson. 1983, 53, 365.
- [44] D. G. Cory, W. M. Ritchey, J. Magn. Reson. 1988, 80, 128.
- [45] R. Nast, W. Pfab, Z. Anorg. Allg. Chem. 1957, 292, 287.
- [46] Gmelin Handbook of Inorganic Chemistry, Organocopper Compounds, Part 4, 8th ed., Springer, Berlin-Heidelberg-New York-Tokyo 1987, p. 136.

- [47] S. Hemmersbach, B. Zibrowius, U. Ruschewitz, Z. Anorg. Allg. Chem. 1999, 625, 1440.
- [48] U. Ruschewitz, P. Müller, W. Kockelmann, Z. Anorg. Allg. Chem. 2001, 627, 513.
- [49] R. Nast, W. Pfab, *Chem. Ber.* **1956**, *89*, 415.
- [50] M. O'Keeffe, S. Andersson, Acta Crystallogr. A 1977, 33, 914.
- [51] G. W. Chantry, R. A. Plane, J. Chem. Phys. 1960, 33, 736.
- [52] L. H. Jones, J. Chem. Phys. 1957, 27, 468.
- [53] S. Kroeker, R. E. Wasylishen, J. V. Hanna, J. Am. Chem. Soc. 1999, 121, 1582;
 S. Kroeker, R. E. Wasylishen, Can. J. Chem. 1999, 77, 1962.
- [54] S. H. Alarcón, A. C. Olivieri, R. K. Harris, Solid State Nucl. Magn. Reson. 1993, 2, 325.
- [55] D. W. Alderman, M. S. Solum, D. M. Grant, J. Chem. Phys. 1986, 84, 3717.
- [56] B. Wrackmeyer, K. Horchler, A. Sebald, L. H. Merwin, C. Ross II, Angew. Chem.
 1990, 102, 821; Angew. Che. Int. Ed. Eng. 1990, 29, 807.
- [57] K. M. Merz Jr., R. Hoffmann, *Inorg. Chem.* **1988**, 27, 2120.
- [58] P. Pyykkö, Chem. Rev. 1997, 97, 597.
- [59] S. Srinavasa Rao, T. R. Anantharaman, Acta Crystallogr. A 1969, 25, 676.
- [60] Gmelin Handbook of Inorganic Chemistry, Organocopper Compounds, Part 3, 8th ed., Springer, Berlin-Heidelberg-New York-Tokyo 1986, p. 5-8, p. 51.
- [61] G. Herzberg, Molecular Spectra and Molecular Structure. Bd. I: Spectra of Diatomic Molecules; Bd. II: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold Co., New York-Toronto-London-Melbourne 1945.
- [62] J. H. Nelson, H. B. Jonassen, Coord. Chem. Rev 1971, 6, 27.
- [63] F. Cataldo, Eur. J. Solid State Inorg. Chem. 1998, 35, 281.
- [64] I. A. Garbusova, V. T. Alexanjan, L. A. Leites, I. R. Golding, A. M. Sladkov, J. Organomet. Chem. 1973, 54, 341.
- [65] V. T. Aleksanyan, I. A. Garbuzova, I. R. Golding, A. M. Sladkov, Spectrochim. Acta A 1975, 31, 517.
- [66] J. Weidlein, U. Müller, K. Dehnicke, Schwingungsspektroskopie, 2nd ed., G. Thieme, Stuttgart-New York 1988.
- [67] R. Nast, C. Richers, *Chem. Ber.* **1964**, *97*, 3317.
- [68] L. E. Sutton, Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956 – 1959, The Chemical Society, London 1965.

- [69] K. Friese, Bestimmung von modulierten Kristallstrukturen mit Hilfe von Synchrotronstrahlung in der Praxis, Vortrag auf dem Seminar: Kristallstrukturuntersuchungen mit Synchrotron- und Neutronenstrahlen in der Praxis, 17. 9. 2001, MPI-Stuttgart.
- [70] R. Nast, H. Griesshammer, Chem. Ber. 1957, 90, 1315.
- [71] L. C. Brousseau, D. Williams, J. Kouvetakis, M. O'Keeffe, J. Am. Chem. Soc. 1997, 119, 6292.
- [72] L. D. C. Bok, J. G. Leipoldt, Z. Anorg. Allg. Chem. 1966, 344, 86.
- [73] H. Grossmann, Z. Anorg. Chem. 1908, 58, 269.
- [74] C. Wickleder, Z. Anorg. Allg. Chem. 2001, 627, 1963.
- [75] Gmelin Handbook of Inorganic Chemistry, Mn Compounds, Part C7, 8th ed., Springer, Berlin-Heidelberg-New York 1981, p. 234f.
- [76] L. F. Audrieth, *Inorganic Synthesis*, 1st ed., Vol. 3, McGraw-Hill Book Company Inc., New York-Toronto-London 1950, p. 24.
- [77] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, 3rd ed., Vol. 2, F. Emke, Stuttgart 1978, p. 1051.
- [78] R. Juza, K. Fasold, W. Kuhn, Z. Anorg. Allg. Chem. 1937, 234, 86.
- [79] I. Mikhail, K. Peters, Acta Crystallogr. B 1979, 35, 1200.
- [80] C. J. Howard, J. Appl. Crystallogr. 1982, 15, 615.
- [81] P. Thompson, D. E. Cox, J. B. Hastings, J. Appl. Crystallogr. 1987, 20, 79.
- [82] L. W. Finger, D. E. Cox, A. P. Jephcoat, J. Appl. Crystallogr. 1994, 27, 892.

Anhang

A Ergebnisse der Rietveld-Verfeinerungen

<u>Tab. A1</u>: Kristallographische Daten des NaCuC₂ bei 25°C.

Formel; Molgewicht:	NaCuC ₂ ; 110,56 g/mol
Gitterparameter:	a = 376,61(2) pm
	c = 495,95(2) pm
Raumgruppe; Formeleinheiten Z:	<i>P4/mmm</i> ; 1
Röntgenographische Dichte; F(000):	$2,610 \text{ g/cm}^3;52$
Meßinstrument:	Huber G670 Guinier-Pulverdiffraktometer
	mit Image-Plate,
	Ge-Monochromator,
	$\lambda = 154,056$ pm, Markrohr
Verfeinerter Bereich:	$12,0^\circ \le 2\theta \le 87,9^\circ$
Schrittweite:	0,01° in 20 (Messung: 0,005°, anschlie-
	ßend aufaddiert)
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	30
Strukturlösung:	Daten von NaAgC ₂ [20]
Strukturverfeinerung:	Rietveld
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach
	Thompson, Cox und Hastings [81, 82]
GW; LY; stec:	30(2); 78(1); -31(1)
L11; L13; L23:	0,021(6); 0,282(6); 0,69(4)
Verunreinigungen (Gewichtsanteile):	Cu (23 %); NaCu ₅ (C ₂) ₃ (18 %)
Untergrundfunktion:	Kosinus-Fourierreihe
Anzahl der Parameter:	16
Gesamtzahl der verfeinerten Parameter:	61
Nullpunkt:	-0,092(1)°
$R_p; wR_p:$	0,0209; 0,0269
$R_{\rm B}^{\rm c};\chi^2$:	0,0245; 1,029
Restelektronendichte:	$-0.32 \cdot 10^{-6} \text{ e/pm}^3 / 0.34 \cdot 10^{-6} \text{ e/pm}^3$

<u>Abb. A1:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an NaCuC₂ bei 25°C. Die Reflexlagen der in der Probe enthaltenen Verbindungen sind als Liniendiagramme kenntlich gemacht: NaCu₅(C₂)₃ (obere Reihe), Cu (mittlere Reihe), NaCuC₂ (untere Reihe).

Formel; Molgewicht:	KCuC ₂ ; 126,67 g/mol
Gitterparameter:	a = 490,79(3) pm
	c = 762,23(6) pm
Raumgruppe; Formeleinheiten Z:	$P4_2/mmc; 2$
Röntgenographische Dichte; F(000):	2,291 g/cm ³ ; 120
Meßinstrument:	Stoe Stadi P2 Debye-Scherrer-
	Pulverdiffraktometer mit PSD,
	Ge-Monochromator,
	$\lambda = 154,056$ pm, Markrohr
Verfeinerter Bereich:	$16,0^{\circ} \le 2\theta \le 90,0^{\circ}$
Schrittweite:	0,01° in 20
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	57
Strukturlösung:	Daten von CsAgC ₂ [20]
Strukturverfeinerung:	Rietveld
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach
	Thompson, Cox und Hastings [81, 82]
GW; LY; stec:	74(4); 77(2); 23(2)
L11; L22; L12:	0,044(9); 0,56(9); -0,15(4)
Verunreinigungen:	2 Fremdreflexe geringer Intensität
Untergrundfunktion:	Kosinus-Fourierreihe
Anzahl der Parameter:	18
Gesamtzahl der verfeinerten Parameter:	31
Nullpunkt:	0,010(2)°
$R_p; wR_p:$	0,0260; 0,0366
$\mathbf{R}_{\mathrm{B}}; \chi^2$:	0,0476; 3,847
Restelektronendichte:	$-0,44 \cdot 10^{-6} \text{ e/pm}^3 / 0,49 \cdot 10^{-6} \text{ e/pm}^3$

<u>**Tab. A2:**</u> Kristallographische Daten des KCuC₂ bei 25° C.

<u>Abb. A2:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an KCuC₂ bei 25°C. Die Reflexlagen des in der Probe enthaltenen KCuC₂ sind als Liniendiagramm kenntlich gemacht.

Formel; Molgewicht:	RbCuC ₂ ; 173,04 g/mol
Gitterparameter:	a = 491,79(8) pm
	c = 832,6(1) pm
	(a = 446,5(1) pm)
	(c = 492,5(2) pm)
Raumgruppe; Formeleinheiten Z:	<i>P4</i> ₂ / <i>mmc</i> ; 2 (<i>P4</i> / <i>mmm</i> ; 1)
Röntgenographische Dichte; F(000):	2,854 g/cm ³ ; 156 (2,927 g/cm ³ ; 78)
Meßinstrument:	Stoe Stadi P2 Debye-Scherrer-
	Pulverdiffraktometer mit PSD,
	Ge-Monochromator,
	$\lambda = 154,056$ pm, Markrohr
Verfeinerter Bereich:	$15,0^\circ \le 2\theta \le 80,0^\circ$
Schrittweite:	0,01° in 2θ
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	46 (31)
Strukturlösung:	Daten von $RbAgC_2$ und $CsAgC_2$ [20]
Strukturverfeinerung:	Rietveld
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach
	Thompson, Cox und Hastings [81, 82]
LY; stec:	182(5); -5(6)
L11; L12; L13; L23:	0,09(3); 0,476(9); 0,226(8); 0,41(4)
(GW; LY)	(100(80); 350(13))
Gewichtsanteile der Modifikationen:	63 % (α-RbCuC ₂), 37 % (β-RbCuC ₂)
Untergrundfunktion:	Kosinus-Fourierreihe
Anzahl der Parameter:	18
Gesamtzahl der verfeinerten Parameter:	37
Nullpunkt:	0,044(5)°
$R_p; wR_p$:	0,0241; 0,0310
$R_{\rm B}; \chi^2$:	0,0226 (0,0245); 1,557
Restelektronendichte:	$-0.28 \cdot 10^{-6} \text{ e/pm}^3 / 0.30 \cdot 10^{-6} \text{ e/pm}^3$
	$(-0.57 \cdot 10^{-6} \text{ e/pm}^3 / 0.44 \cdot 10^{-6} \text{ e/pm}^3)$

<u>Tab. A3</u>: Kristallographische Daten des α -RbCuC₂ (β -RbCuC₂) bei 25°C.

<u>Abb. A3:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an RbCuC₂ bei 25°C. Die Reflexlagen der beiden in der Probe enthaltenen Modifikationen sind als Liniendiagramme kenntlich gemacht: β -RbCuC₂ (obere Reihe), α -RbCuC₂ (untere Reihe).

Formel; Molgewicht:	CsCuC ₂ ; 220,48 g/mol
Gitterparameter:	a = 494,06(4) pm
	c = 914,2(1) pm
Raumgruppe; Formeleinheiten Z:	$P4_2/mmc; 2$
Röntgenographische Dichte; F(000):	3,281 g/cm ³ ; 192
Meßinstrument:	Stoe Stadi P2 Debye-Scherrer-
	Pulverdiffraktometer mit PSD,
	Ge-Monochromator,
	$\lambda = 154,056$ pm, Markrohr
Verfeinerter Bereich:	$16.0^\circ \le 2\theta \le 80.0^\circ$
Schrittweite:	0,01° in 20
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	49
Strukturlösung:	Daten von $CsAgC_2$ [20]
Strukturverfeinerung:	Rietveld
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach
	Thompson, Cox und Hastings [81, 82]
LY; stec:	84(2); 31(3)
L11; L12; L13; L23:	0,40(6); 0,385(7); 0,091(3); 0,15(2)
Absorptionskoeffizient (Debye-Scherrer):	0,5 (fest)
Untergrundfunktion:	Cosine Fourier series
Anzahl der Parameter:	15
Gesamtzahl der verfeinerten Parameter:	28
Nullpunkt:	0,002(3)°
$R_p; wR_p:$	0,0226; 0,0293
$\mathbf{R}_{\mathrm{B}}; \chi^2$:	0,0441; 1,216
Restelektronendichte:	$-0.96 \cdot 10^{-6} \text{ e/pm}^3 / 1.34 \cdot 10^{-6} \text{ e/pm}^3$

<u>**Tab. A4:**</u> Kristallographische Daten des $CsCuC_2$ bei 25°C.

<u>Abb. A4:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an $CsCuC_2$ bei 25°C. Die Reflexlagen des in der Probe enthaltenen $CsCuC_2$ sind als Liniendiagramm kenntlich gemacht.

Formel; Molgewicht:	KCuC ₂ ; 126,67 g/mol
Gitterparameter:	a = 490,98(3) pm
	c = 760,78(7) pm
Raumgruppe; Formeleinheiten Z:	$P4_2/mmc; 2$
Dichte aus Neutronenbeugung:	$2,294 \text{ g/cm}^3$
Meßinstrument:	ROTAX an der ISIS Spallationsquelle,
	Rutherford Appleton Laboratory, Chilton, UK;
	<i>time-of-flight</i> -Methode;
	Probe in Vanadiumzylinder ($\emptyset = 8 \text{ mm}$)
Meßbänke / verfeinerte Bereiche:	Bank 1: $2\theta = 28,85^{\circ} / 105 \text{ pm} \le d \le 630 \text{ pm}$
	Bank 2: $2\theta = 72,65^{\circ} / 88 \text{ pm} \le d \le 438 \text{ pm}$
	Bank 3: $2\theta = 122,40^{\circ} / 67 \text{ pm} \le d \le 270 \text{ pm}$
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	62 / 98 / 201
Strukturlösung:	Daten von KCuC ₂ (Röntgenpulverbeugung)
Strukturverfeinerung:	Rietveld
Profilfunktion:	Exponentielle Pseudo-Voigt-Funktion nach Von
	Dreele (1990, unveröffentlicht)
Bank 1: alp; bet-0; bet-1; sig-1:	0,2195; 0,032400; 0,352700; 10,0 (alle fest)
sig-2; gam-1:	4,0(5); 16,1(8)
Bank 2: alp; bet-0; bet-1; sig-1:	0,1398; 0,027250; 0,063330; 10,0 (alle fest)
sig-2; gam-1:	19(3); 23(2)
Bank 3: alp; bet-0; bet-1; sig-1:	0,3573; 0,027600; 0,011670; 10,0 (alle fest)
sig-2; gam-1:	26(7); 28(2)
Verunreinigungen:	mehrere Fremdreflexe einer unbekannten
	Verbindung
Untergrundfunktion:	jeweils Potenzreihe (Q ^{2n/n} !-Funktion)
Anzahl der Parameter:	jeweils 7
Gesamtzahl der verfeinerten Parameter:	36
Nullpunkte in den 3 Bänken:	0,1689 ms / 0,0336 ms / -0,0021 ms (alle fest)
R _p :	0,0334 / 0,0515 / 0,0307
wR _p .	0,0452 / 0,0507 / 0,0316
R_{a} :	0,0750 / 0,1367 / 0,1511
χ :	2,487

Tab. A5: Kristallographische Daten des KCuC ₂ bei 25°C	(Neutronenbeugung am Pulver).
--	-------------------------------

<u>Abb. A5.1</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an KCuC₂ bei 25°C (Bank 1, $2\theta = 28,85^{\circ}$). Die Reflexlagen des in der Probe enthaltenen KCuC₂ sind als Liniendiagramm kenntlich gemacht.

<u>Abb. A5.2</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an KCuC₂ bei 25°C (Bank 2, $2\theta = 72,65^{\circ}$). Die Reflexlagen des in der Probe enthaltenen KCuC₂ sind als Liniendiagramm kenntlich gemacht.

<u>Abb. A5.3</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an KCuC₂ bei 25°C (Bank 3, $2\theta = 122,40^{\circ}$). Die Reflexlagen des in der Probe enthaltenen KCuC₂ sind als Liniendiagramm kenntlich gemacht.

U I	
Formel; Molgewicht:	KCuC ₂ ; 126,67 g/mol
Gitterparameter:	a = 492,78(4) pm
	c = 752,85(8) pm
Raumgruppe; Formeleinheiten Z:	$P4_2/mmc; 2$
Dichte aus Neutronenbeugung:	2,301 g/cm ³
Meßinstrument:	ROTAX an der ISIS Spallationsquelle,
	Rutherford Appleton Laboratory, Chilton, UK;
	<i>time-of-flight</i> -Methode;
	Probe in Vanadiumzylinder ($\emptyset = 8 \text{ mm}$)
Meßbänke / verfeinerte Bereiche:	Bank 1: $2\theta = 28,85^{\circ} / 105 \text{ pm} \le d \le 523 \text{ pm}$
	Bank 2: $2\theta = 72,65^{\circ} / 66 \text{ pm} \le d \le 438 \text{ pm}$
	Bank 3: $2\theta = 122,40^{\circ} / 45 \text{ pm} \le d \le 311 \text{ pm}$
Meßtemperatur:	-269°C
Anzahl der Braggreflexe:	61 / 217 / 625
Strukturlösung:	Daten von KCuC ₂ (Röntgenpulverbeugung)
Strukturverfeinerung:	Rietveld
Profilfunktion:	Exponentielle Pseudo-Voigt-Funktion nach Von
	Dreele (1990, unveröffentlicht)
Bank 1: alp; bet-0; bet-1:	0,2195; 0,032400; 0,352700 (alle fest)
sig-1; sig-2; gam-1:	55(14); 4,2(8); 18(1)
Bank 2: alp; bet-0; bet-1:	0,1398; 0,027250; 0,063330 (alle fest)
sig-1; sig-2; gam-1:	70(50); 24(5); 38(3)
Bank 3: alp; bet-0; bet-1:	0,3573; 0,027600; 0,011670 (alle fest)
sig-1; sig-2; gam-1:	210(80); 70(14); 48(4)
Verunreinigungen:	mehrere Fremdreflexe einer unbekannten
	Verunreinigung
Untergrundfunktion:	jeweils Potenzreihe (Q ^{2n/n!} -Funktion)
Anzahl der Parameter:	jeweils 7
Gesamtzahl der verfeinerten Parameter:	39
Nullpunkte in den 3 Bänken:	0,1689 ms / 0,0336 ms / -0,0021 ms (alle fest)
R _p :	0,0224 / 0,0364 / 0,0332
wR _{p:}	0,0324 / 0,0369 / 0,0253
R _B :	0,0472 / 0,0468 / 0,0497
χ^{-} :	2,965

<u>Tab. A6:</u> Kristallographische Daten des KCuC₂ bei -269°C (Neutronenbeugung am Pulver).

<u>Abb. A6.1</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm Neutronenpulverbeugungsuntersuchung an KCuC₂ bei -269°C (Bank 1, $2\theta = 28,85^{\circ}$). Die Reflexlagen des in der Probe enthaltenen KCuC₂ sind als Liniendiagramm kenntlich gemacht.

<u>Abb. A6.2</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an KCuC₂ bei -269°C (Bank 2, $2\theta = 72,65^{\circ}$). Die Reflexlagen des in der Probe enthaltenen KCuC₂ sind als Liniendiagramm kenntlich gemacht.

<u>Abb. A6.3</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an KCuC₂ bei -269°C (Bank 3, $2\theta = 122,40^{\circ}$). Die Reflexlagen des in der Probe enthaltenen KCuC₂ sind als Liniendiagramm kenntlich gemacht.

Formel; Molgewicht:	RbCuC ₂ ; 173,04 g/mol
Gitterparameter:	a = 492,63(6) pm
L	c = 828,5(1) pm
	(a = 446, 12(8) pm)
	(c = 491.8(2) pm)
Raumgruppe: Formeleinheiten Z:	$P4_{2}/mmc: 2 (P4/mmm: 1)$
Dichte aus Neutronenbeugung:	$2.858 \text{ g/cm}^3 (2.935 \text{ g/cm}^3)$
Meßinstrument:	ROTAX an der ISIS Spallationsquelle.
	Rutherford Appleton Laboratory, Chilton, UK:
	<i>time-of-flight</i> -Methode:
	Probe in Vanadiumzvlinder ($\emptyset = 8 \text{ mm}$)
Meßbänke / verfeinerte Bereiche	Bank 1: $2\theta = 28.85^{\circ} / 128 \text{ nm} < d < 577 \text{ nm}$
	Bank 2: $2\theta = 72.65^{\circ} / 109 \text{ pm} \le d \le 455 \text{ pm}$
	Bank 3: $2\theta = 122.40^{\circ} / 84 \text{ pm} \le d \le 275 \text{ pm}$
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	41 / 59 / 114 (25 / 36 / 67)
Strukturlösung:	Daten von RbCuC ₂ (Röntgenpulverbeugung)
Strukturverfeinerung:	Rietveld
Profilfunktion:	Exponentielle Pseudo-Voigt-Funktion nach Von
	Dreele (1990. unveröffentlicht)
	(Parameter für beide Modifikationen gleich ^a)
Bank 1: alp: bet-0: bet-1:	0.3270: 0.029240: 0.447800 (alle fest)
sig-1; sig-2; gam-1; L22:	$-82(13); 22(1); 38(1); 0.5(2)^{b}$
Bank 2: alp; bet-0; bet-1:	0,3270; 0,024630; 0,063440 (alle fest)
sig-1; sig-2; gam-1; L22:	-790(40); 136(11); 87(3); 0,5(2) ^b
Bank 3: alp; bet-0; bet-1:	0,3270; 0,025450; 0,012730 (alle fest)
sig-1; sig-2; gam-1; L22:	$900(200); -240(20); 114(3); 0,5(2)^{b}$
	(^{a, b} constraints)
Gewichtsanteile der Modifikationen:	69 % (α-RbCuC ₂), 31 % (β-RbCuC ₂)
Untergrundfunktion:	jeweils Potenzreihe (Q ^{2n/n!} -Funktion)
Anzahl der Parameter:	jeweils 6
Gesamtzahl der verfeinerten Parameter:	41
Nullpunkte in den 3 Bänken:	0,1748 ms / 0,0224 ms / -0,0223 ms (alle fest)
R _p :	0,0197 / 0,0272 / 0,0156
wR _{p:}	0,0246 / 0,0244 / 0,0160
R _B :	0,0296 / 0,0327 / 0,0264
χ^2 :	2,463

<u>Tab.</u>	A7:	Kristallographische	Daten	des	α -RbCuC ₂	$(\beta$ -RbCuC ₂)	bei	25°C	(Neutronen-
beugu	ing ar	n Pulver).							

<u>Abb. A7.1</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an RbCuC₂ bei 25°C (Bank 1, 2 θ = 28,85°). Die Reflexlagen der beiden in der Probe enthaltenen Modifikationen sind als Liniendiagramm kenntlich gemacht: β -RbCuC₂ (obere Reihe), α -RbCuC₂ (untere Reihe).

<u>Abb. A7.2</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an RbCuC₂ bei 298 K (Bank 2, $2\theta = 72,65^{\circ}$). Die Reflexlagen der beiden in der Probe enthaltenen Modifikationen sind als Liniendiagramm kenntlich gemacht: β -RbCuC₂ (obere Reihe), α -RbCuC₂ (untere Reihe).

<u>Abb. A7.3</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an RbCuC₂ bei 25°C (Bank 3, 2 θ = 122,40°). Die Reflexlagen der beiden in der Probe enthaltenen Modifikationen sind als Liniendiagramm kenntlich gemacht: β -RbCuC₂ (obere Reihe), α -RbCuC₂ (untere Reihe).

Formel; Molgewicht:	RbCuC ₂ ; 173,04 g/mol			
Gitterparameter:	a = 493,62(5) pm			
	c = 817.3(1) pm			
	(a = 443.09(7) pm)			
	(c = 493.4(2) pm)			
Raumgruppe: Formeleinheiten Z:	$P4_{2}/mmc: 2 (P4/mmm: 1)$			
Dichte aus Neutronenbeugung:	2.886 g/cm^3 (2.966 g/cm ³)			
Meßinstrument:	ROTAX an der ISIS Spallationsquelle.			
	Rutherford Appleton Laboratory, Chilton, UK:			
	<i>time-of-flight</i> -Methode:			
	Probe in Vanadiumzvlinder ($\emptyset = 8 \text{ mm}$)			
Meßbänke / verfeinerte Bereiche	Bank 1: $2\theta = 28.85^{\circ} / 116 \text{ nm} < d < 577 \text{ nm}$			
The bounder of the more Deference.	Bank 2: $2\theta = 72.65^{\circ} / 83 \text{ nm} < d < 372 \text{ nm}$			
	Bank 3: $2\theta = 122 40^{\circ} / 68 \text{ pm} \le d \le 274 \text{ pm}$			
Meßtemperatur:	-263°C			
Anzahl der Braggreflexe:	49 / 121 / 208 (32 / 72 / 123)			
Strukturlösung:	Daten von $RbCuC_2$ (Röntgenpulverbeugung)			
Strukturverfeinerung.	Rietveld			
Profilfunktion:	Exponentielle Pseudo-Voigt-Funktion nach Von			
	Dreele (1990 unveröffentlicht)			
	(Parameter für beide Modifikationen gleich ^a)			
Bank 1: alp: bet-0: bet-1:	0.3270: 0.029240: 0.447800 (alle fest)			
sig-1: sig-2: gam-1: L22:	-20(20); 25(2); 32(1); 2.6(2) ^b			
Bank 2: alp: bet-0: bet-1:	0.3270; 0.024630; 0.063440 (alle fest)			
sig-1: sig-2: gam-1: L22:	-590(40): 140(12): 88(2): 2.6(2) ^b			
Bank 3: alp; bet-0; bet-1:	0.3270; 0.025450; 0.012730 (alle fest)			
sig-1; sig-2; gam-1; L22:	500(140); -10(30); 109(3); 2,6(2) ^b			
	(^{a, b} constraints)			
Gewichtsanteile der Modifikationen:	70 % (α-RbCuC ₂), 30 % (β-RbCuC ₂)			
Untergrundfunktion:	jeweils Potenzreihe ($Q^{2n/n!}$ -Funktion)			
Anzahl der Parameter:	jeweils 6			
Gesamtzahl der verfeinerten Parameter:	41			
Nullpunkte in den 3 Bänken:	0,1748 ms / 0,0224 ms / -0,0223 ms (alle fest)			
R _p :	0,0216 / 0,0209 / 0,0171			
wR _{p:}	0,0283 / 0,0238 / 0,0168			
R _B :	0,0261 / 0,0212 / 0,0141			
χ^2 :	4,778			

<u>**Tab. A8:**</u> Kristallographische Daten des α -RbCuC₂ (β -RbCuC₂) bei -263°C (Neutronen-

beugung am Pulver).

<u>Abb. A8.1</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an RbCuC₂ bei -263°C (Bank 1, $2\theta = 28,85^{\circ}$). Die Reflexlagen der beiden in der Probe enthaltenen Modifikationen sind als Liniendiagramm kenntlich gemacht: β -RbCuC₂ (obere Reihe), α -RbCuC₂ (untere Reihe).

<u>Abb. A8.2</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenbeugungspulveruntersuchung an RbCuC₂ bei -263°C (Bank 2, $2\theta = 72,65^{\circ}$). Die Reflexlagen der beiden in der Probe enthaltenen Modifikationen sind als Liniendiagramm kenntlich gemacht: β -RbCuC₂ (obere Reihe), α -RbCuC₂ (untere Reihe).

<u>Abb. A8.3</u>: Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Neutronenpulverbeugungsuntersuchung an RbCuC₂ bei -263°C (Bank 3, $2\theta = 122,40^{\circ}$). Die Reflexlagen der beiden in der Probe enthaltenen Modifikationen sind als Liniendiagramm kenntlich gemacht: β -RbCuC₂ (obere Reihe), α -RbCuC₂ (untere Reihe).

<u>Tab. A9</u>: Kristallographische Daten des NaCu₅(C₂)₃ bei 25° C.

Formel; Molgewicht:	NaCu ₅ (C ₂) ₃ ; 412,80 g/mol		
Gitterparameter:	a = 732,80(2) pm		
	b = 1099,63(4) pm		
	c = 726.15(2) pm		
Raumgruppe; Formeleinheiten Z:	Pnma; 4		
Röntgenographische Dichte; F(000):	4.685 g/cm^3 ; 768		
Meßinstrument:	Stoe Stadi P2 Debye-Scherrer-		
	Pulverdiffraktometer mit PSD,		
	Ge-Monochromator,		
	$\lambda = 154,056$ pm, Markrohr		
Verfeinerter Bereich:	$13.0^\circ \le 2\theta \le 90.0^\circ$		
Schrittweite:	0,01° in 20		
Meßtemperatur:	25°C		
Anzahl der Braggreflexe:	253		
Strukturlösung:	Direkte Methoden und Differenzfourier-		
	synthesen		
Strukturverfeinerung:	Rietveld		
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach		
	Thompson, Cox und Hastings mit		
	Asymmetrie-Korrektur [82, 83]		
GW; LY; stec:	68(1); 57,8(7); -31,0(8)		
S/L; H/L:	0,0005 (fest); 0,006(1)		
Absorptionskoeffizient (Debye-Scherrer):	1,0 (fest)		
Verunreinigungen (Gewichtsanteile):	Cu (12 %), weitere schwache		
	Fremdreflexe		
Untergrundfunktion:	Kosinus Fourier-Reihe		
Anzahl der Parameter:	16 (fest)		
Gesamtzahl der verfeinerten Parameter:	33		
Nullpunkt:	-0,0093° (fest)		
$\mathbf{R}_{\mathbf{p}}; w\mathbf{R}_{\mathbf{p}}:$	0,0292; 0,0375		
$\mathbf{R}_{\mathbf{B}}; \boldsymbol{\chi}^2$:	0,0303; 2,450		
Restelektronendichte:	$-0.71 \cdot 10^{-6} \text{ e/pm}^3 / 0.77 \cdot 10^{-6} \text{ e/pm}^3$		

<u>Abb. A9:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an NaCu₅(C₂)₃ bei 25°C. Die Reflexlagen der in der Probe enthaltenen Verbindungen sind als Liniendiagramme kenntlich gemacht: Cu (obere Reihe), NaCu₅(C₂)₃ (untere Reihe).

Formel; Molgewicht:	NaCu ₅ (C ₂) ₃ ; 412,80 g/mol
Gitterparameter:	a = 732,20(4) pm
	b = 1098,80(6) pm
	c = 725,52(3) pm
Raumgruppe; Formeleinheiten Z:	Pnma; 4
Röntgenographische Dichte; F(000):	4,697 g/cm ³ ; 768
Meßinstrument:	Pulverdiffraktometer an der Beamline B2
	des Hasylab (Hamburg), direkter Strahl,
	ortsempfindlicher Image-Plate-Detektor
	(OBI), $\lambda = 70,878$ pm,
	Markrohr ($\emptyset = 0,3 \text{ mm}$)
Verfeinerter Bereich:	$6,0^\circ \le 2\theta \le 38,0^\circ$
Schrittweite:	0,004° in 2θ
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	253
Strukturverfeinerung:	Rietveld
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach
	Thompson, Cox und Hastings [81, 82]
GW; LY; stec:	7,1(3); 58(1); -30(1)
Verunreinigungen (Gewichtsanteile):	Cu (1 %), weitere schwache Fremdreflexe
Untergrund:	manuell eingegeben
Gesamtzahl der verfeinerten Parameter:	34
Nullpunkt:	-0,2150(6)°
$R_p; wR_p:$	0,0234; 0,0297
$R_{\rm B}; \chi^2$:	0,0951; 17,98
Restelektronendichte:	$-2.0 \cdot 10^{-6} \text{ e/pm}^3 / 2.0 \cdot 10^{-6} \text{ e/pm}^3$

<u>**Tab. A10:**</u> Kristallographische Daten des $NaCu_5(C_2)_3$ bei 25°C (Beugungsuntersuchungen mit

Synchrotronstrahlung).

<u>Abb. A10:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Beugungsuntersuchung mit Synchrotronstrahlung an NaCu₅(C₂)₃ bei 25°C. Die Reflexlagen der in der Probe enthaltenen Verbindungen sind als Liniendiagramme kenntlich gemacht: Cu (obere Reihe), NaCu₅(C₂)₃ (untere Reihe).

Formel; Molgewicht:	K ₂ Zn(C ₂ H) ₄ ; 243,71 g/mol
Gitterparameter:	a = 756,60(1) pm
	c = 1828,31(4) pm
Raumgruppe; Formeleinheiten Z:	<i>I4</i> ₁ / <i>a</i> ; 4
Röntgenographische Dichte; F(000):	$1,547 \text{ g/cm}^3;480$
Meßinstrument:	Stoe Stadi P2 Debye-Scherrer-
	Pulverdiffraktometer mit PSD,
	Ge-Monochromator,
	$\lambda = 154,056$ pm, Markrohr ($\emptyset = 0,3$ mm)
Verfeinerter Bereich:	$9,0^\circ \le 2\theta \le 70,0^\circ$
Schrittweite:	0,01° in 2θ
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	113
Strukturlösung:	Literaturdaten [26]
Strukturverfeinerung:	Rietveld
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach
	Thompson, Cox und Hastings mit
	Asymmetrie-Korrektur [82, 83]
GW; LY; stec:	15,3(4); 101(4); -33(4)
S/L; H/L:	0,0256(1); 0,0209 (fest)
L11; L22; L12:	-1,3(1); -0,16(6); 3,11(8)
Untergrundfunktion:	Lineare Interpolationsfunktion
Anzahl der Parameter:	12
Gesamtzahl der verfeinerten Parameter:	32
Nullpunkt:	0,0263° (fest)
$R_p; wR_p:$	0,0179; 0,0226
$R_F; \chi^2$:	0,0157; 1,497
Restelektronendichte:	$-0,15 \cdot 10^{-6} \text{ e/pm}^3 / 0,16 \cdot 10^{-6} \text{ e/pm}^3$

<u>Tab. A11</u>: Kristallographische Daten des $K_2Zn(C_2H)_4$ bei 25°C.

<u>Abb. A11:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an $K_2Zn(C_2H)_4$ bei 25°C. Die Reflexlagen des in der Probe enthaltenen $K_2Zn(C_2H)_4$ sind als Liniendiagramm kenntlich gemacht.

	- , .			
Formel; Molgewicht:	Rb ₂ Zn(C ₂ H) ₄ ; 336,44 g/mol			
Gitterparameter:	a = 776,080(4) pm			
	c = 1887,20(2) pm			
Raumgruppe; Formeleinheiten Z:	$I4_{1}/a$; 4			
Röntgenographische Dichte; F(000):	1,966 g/cm ³ ; 624			
Meßinstrument:	Stoe Stadi P2 Debye-Scherrer-			
	Pulverdiffraktometer mit PSD,			
	Ge-Monochromator,			
	$\lambda = 154,056$ pm, Markrohr ($\emptyset = 0,3$ mm)			
Verfeinerter Bereich:	$10,0^\circ \le 2\theta \le 85,0^\circ$			
Schrittweite:	0,01° in 20			
Meßtemperatur:	25°C			
Anzahl der Braggreflexe:	207			
Strukturlösung:	Direkte Methoden und Differenzfourier-			
	synthesen			
Strukturverfeinerung:	Rietveld			
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach			
	Thompson, Cox und Hastings mit			
	Asymmetrie-Korrektur [82, 83]			
GW; LY; stec:	14,5(1); 23(1); -6,3(9)			
S/L; H/L:	0,0207(1); 0,02461 (fest)			
L11; L22; L12:	-0,37(2); -1,2(2); 0,48(1)			
Untergrundfunktion:	Kosinus Fourierreihe			
Anzahl der Parameter:	18 (fest)			
Gesamtzahl der verfeinerten Parameter:	23			
Nullpunkt:	0,02188° (fest)			
$\mathbf{R}_{\mathbf{p}}; w \mathbf{R}_{\mathbf{p}}:$	0,0307; 0,0403			
$R_B; \chi^2$:	0,0454; 1,888			
Restelektronendichte:	$-0.90 \cdot 10^{-6} \text{ e/pm}^3 / 0.76 \cdot 10^{-6} \text{ e/pm}^3$			

<u>**Tab. A12:**</u> Kristallographische Daten des $Rb_2Zn(C_2H)_4$ bei 25°C.

<u>Abb. A12:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an $Rb_2Zn(C_2H)_4$ bei 25°C. Die Reflexlagen des in der Probe enthaltenen $Rb_2Zn(C_2H)_4$ sind als Liniendiagramm kenntlich gemacht.

	,
Formel; Molgewicht:	K ₂ Cd(C ₂ H) ₄ ; 290,73 g/mol
Gitterparameter:	a = 768,95(6) pm
	c = 1846,2(2) pm
Raumgruppe; Formeleinheiten Z:	$I4_{1}/a$; 4
Röntgenographische Dichte; F(000):	1,769 g/cm ³ ; 552
Meßinstrument:	Stoe Stadi P2 Debye-Scherrer-
	Pulverdiffraktometer mit Image-Plate,
	Ge-Monochromator,
	$\lambda = 154,056$ pm, Markrohr ($\emptyset = 0,3$ mm)
Verfeinerter Bereich:	$9,0^\circ \le 2\theta \le 70,0^\circ$
Schrittweite:	0,01° in 2θ
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	117
Strukturlösung:	Literaturdaten [26]
Strukturverfeinerung:	Rietveld
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach
	Thompson, Cox und Hastings mit
	Asymmetrie-Korrektur [82, 83]
GW; LY; stec:	0,0 (fest); 189(3); -86(4)
S/L; H/L:	0,0342(6); 0,03459 (fest)
Absorptionskoeffizient (Debye-Scherrer):	0,4 (fest)
Untergrundfunktion:	Kosinus Fourierreihe
Anzahl der Parameter:	18 (fest)
Gesamtzahl der verfeinerten Parameter:	19
Nullpunkt:	0,0623° (fest)
$R_p; wR_p:$	0,0317; 0,0399
$R_B; \chi^2$:	0,0551; 4,471
Restelektronendichte:	$-0.94 \cdot 10^{-6} \text{ e/pm}^3 / 0.52 \cdot 10^{-6} \text{ e/pm}^3$

<u>Tab. A13</u>: Kristallographische Daten des $K_2Cd(C_2H)_4$ bei 25°C.

<u>Abb. A13:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an $K_2Cd(C_2H)_4$ bei 25°C. Die Reflexlagen des in der Probe enthaltenen $K_2Cd(C_2H)_4$ sind als Liniendiagramm kenntlich gemacht.

U I	- , .
Formel; Molgewicht:	Rb ₂ Cd(C ₂ H) ₄ ; 383,47 g/mol
Gitterparameter:	a = 790,401(4) pm
	c = 1887,67(1) pm
Raumgruppe; Formeleinheiten Z:	$I4_{1}/a$; 4
Röntgenographische Dichte; F(000):	$2,160 \text{ g/cm}^3; 696$
Meßinstrument:	Stoe Stadi P2 Debye-Scherrer-
	Pulverdiffraktometer mit PSD,
	Ge-Monochromator,
	$\lambda = 154,056$ pm, Markrohr ($\emptyset = 0,3$ mm)
Verfeinerter Bereich:	$10,0^{\circ} \le 2\theta \le 85,0^{\circ}$
Schrittweite:	0,01° in 2θ
Meßtemperatur:	25°C
Anzahl der Braggreflexe:	210
Strukturlösung:	Direkte Methoden und Differenzfourier-
	synthesen
Strukturverfeinerung:	Rietveld
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach
	Thompson, Cox und Hastings mit
	Asymmetrie-Korrektur [82, 83]
GW; LY; stec:	13,9(1); 22,3(9); -0,4(8)
S/L; H/L:	0,02553(9); 0,02632 (fest)
L11; L22; L12:	-0,36(2); -0,09(1); 0,62(1)
Absorptionskoeffizient (Debye-Scherrer):	1,2 (fest)
Untergrundfunktion:	Lineare Interpolationsfunktion
Anzahl der Parameter:	12
Gesamtzahl der verfeinerten Parameter:	35
Nullpunkt:	0,0122° (fest)
$R_p; wR_p:$	0,0217; 0,0284
$R_B; \chi^2$:	0,0303; 2,162
Restelektronendichte:	$-0,46 \cdot 10^{-6} \text{ e/pm}^3 / 0,56 \cdot 10^{-6} \text{ e/pm}^3$

<u>**Tab. A14:**</u> Kristallographische Daten des $Rb_2Cd(C_2H)_4$ bei 25°C.

<u>Abb. A14:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an $Rb_2Cd(C_2H)_4$ bei 25°C. Die Reflexlagen des in der Probe enthaltenen $Rb_2Cd(C_2H)_4$ sind als Liniendiagramm kenntlich gemacht.

	- ,.		
Formel; Molgewicht:	Cs ₂ Cd(C ₂ H) ₄ ; 478,34 g/mol		
Gitterparameter:	<i>a</i> = 817,09(5) pm		
	c = 1973,8(1) pm		
Raumgruppe; Formeleinheiten Z:	$I4_{1}/a; 4$		
Röntgenographische Dichte; F(000):	2,391 g/cm ³ ; 840		
Meßinstrument:	Stoe Stadi P2 Debye-Scherrer-		
	Pulverdiffraktometer mit Image-Plate,		
	Ge-Monochromator,		
	$\lambda = 154,056$ pm, Markrohr ($\emptyset = 0,3$ mm)		
Verfeinerter Bereich:	$8,0^\circ \le 2\theta \le 70,0^\circ$		
Schrittweite:	0,01° in 20		
Meßtemperatur:	25°C		
Anzahl der Braggreflexe:	139		
Strukturlösung:	Start der Verfeinerung mit den gleichen		
	Atomlagen wie in $Rb_2Cd(C_2H)_4$		
Strukturverfeinerung:	Rietveld		
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach		
	Thompson, Cox und Hastings mit		
	Asymmetrie-Korrektur [82, 83]		
GW; LY; stec:	14(2); 93(2); -33(3)		
S/L; H/L:	0,0435(7); 0,02470 (fest)		
Absorptionskoeffizient (Debye-Scherrer):	1,1 (fest)		
Untergrundfunktion:	Kosinus-Fourierreihe		
Anzahl der Parameter:	16 (fest)		
Gesamtzahl der verfeinerten Parameter:	17		
Nullpunkt:	0,0872° (fest)		
$R_p; wR_p:$	0,0320; 0,0417		
$R_B; \chi^2$:	0,0760; 4,643		
Restelektronendichte:	$-1.5 \cdot 10^{-6} \text{ e/pm}^3 / 1.1 \cdot 10^{-6} \text{ e/pm}^3$		

<u>**Tab. A15:**</u> Kristallographische Daten des $Cs_2Cd(C_2H)_4$ bei 25°C.

<u>Abb. A15:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Röntgenpulverbeugungsuntersuchung an $Cs_2Cd(C_2H)_4$ bei 25°C. Die Reflexlagen des in der Probe enthaltenen $Cs_2Cd(C_2H)_4$ sind als Liniendiagramm kenntlich gemacht.

Formel; Molgewicht:	Cs ₂ Cd(C ₂ H) ₄ ; 478,34 g/mol		
Gitterparameter:	a = 815,684(8) pm		
	c = 1969,86(2) pm		
Raumgruppe; Formeleinheiten Z:	$I4_{1}/a$; 4		
Röntgenographische Dichte; F(000):	$2,424 \text{ g/cm}^3;840$		
Meßinstrument:	Pulverdiffraktometer an der Beamline B2		
	des Hasylab (Hamburg), direkter Strahl,		
	ortsempfindlicher Image-Plate-Detektor		
	$(OBI), \lambda = 70,878 \text{ pm},$		
	Markrohr ($\emptyset = 0,3$ mm)		
Verfeinerter Bereich:	$4,0^{\circ} \le 2\theta \le 40,0^{\circ}$		
Schrittweite:	0,004° in 20		
Meßtemperatur:	25°C		
Anzahl der Braggreflexe:	308		
Strukturlösung:	Start der Verfeinerung mit den gleichen		
	Atomlagen wie in $Rb_2Cd(C_2H)_4$		
Strukturverfeinerung:	Rietveld		
Profilfunktion:	Modifizierte Pseudo-Voigt-Funktion nach		
	Thompson, Cox und Hastings mit		
	Asymmetrie-Korrektur [82, 83]		
GW; LY; stec:	3,09(6); 0,0 (fest); 16(4)		
S/L; H/L:	0,01558 (fest); 0,0005 (fest)		
L11; L22; L12:	-0,17(3); 0,502(7); 0,90(2)		
Untergrundfunktion:	Lineare Interpolationsfunktion		
Anzahl der Parameter:	14		
Gesamtzahl der verfeinerten Parameter:	35		
Nullpunkt:	-0,1961° (fest)		
$\mathbf{R}_{\mathbf{p}}; w\mathbf{R}_{\mathbf{p}}:$	0,0401; 0,0519		
$R_{\rm B};\chi^2$:	0,0537; 25,32		
Restelektronendichte:	$-1.4 \cdot 10^{-6} \text{ e/pm}^3 / 1.0 \cdot 10^{-6} \text{ e/pm}^3$		

Tab. A16: Kristallographische Daten des Cs₂Cd(C₂H)₄ bei 25°C (Beugungsuntersuchungen

mit Synchrotronstrahlung).

<u>Abb. A16:</u> Gemessenes und berechnetes Diffraktogramm sowie das Differenzdiagramm der Beugungsuntersuchung mit Synchrotronstrahlung an $Cs_2Cd(C_2H)_4$ bei 25°C. Die Reflexlagen des in der Probe enthaltenen $Cs_2Cd(C_2H)_4$ sind als Liniendiagramm kenntlich gemacht.

B Ergebnisse der Einkristallstrukturbestimmungen

Tab. B1: Angaben zur Strukturbestimmung von $K_2Zn(C_2H)_4 \cdot 2 NI$

Verbindung:	$K_2Zn(C_2H)_4 \cdot 2 NH_3$
Kristallform:	Quader
Kristallfarbe:	farblos
Abmessungen:	$0,25 \cdot 0,1 \cdot 0,05 \text{ mm}^3$
Kristallsystem:	monoklin
Raumgruppe:	<i>I2/a</i> (Nr. 15)
Zellparameter <i>a</i> :	728,9(1) pm
<i>b</i> :	1276,5(2) pm
<i>c</i> :	1406,6(2) pm
<i>β</i> :	98,11(2)°
Zellvolumen:	$1,2957(3) \text{ nm}^3$
Formeleinheiten pro Zelle:	4
Dichte (berechnet):	$1,424 \text{ g/cm}^3$
Formelmasse:	277,77 g/mol
F (000):	560
Messtemperatur:	-103(2)°C
Messbereich $\Theta_{\min/\max}$:	2,16° / 24,10°
h _{min/max} , k _{min/max} , l _{min/max} :	-8 / 8, -14 / 14, -16 / 16
Reflexe, gesamt:	5022
, unabhängig:	1024
, beobachtet:	821
σ-Schranke:	$[I > 2\sigma(I)]$
R _{int} :	0,0683
μ (ΜοΚα):	$2,500 \text{ mm}^{-1}$
Absorptionskorrektur	numerisch
Transmission T _{min/max} :	0,3756 / 0,6115
Extinktionskoeffizient:	0,0002(4)
Verfeinerung:	SHELXL93 [41]
Wichtungsschema a / b:	0,0253 / 0
Anzahl der Parameter:	83
R1 _{beob./unabh.} :	0,0233 / 0,0347
wR2 _{beob./unabh} .:	0,0502 / 0,0529
S2 _{beob./unabh} .:	1,001 / 0,933
Rel. Verschiebung $ \Delta /\sigma$:	0,000
Restelektronendichte $ \Delta p $:	$-0,296 / 0,301 \cdot 10^{-6} \text{ e/pm}^3$

IPDS I, 125 Bilder mit φ -scans (0° $\leq \varphi \leq 250^{\circ}$, $\Delta \varphi = 2^{\circ}$), Belichtungszeit 4 min, Abstand Kristall – Detektor: 80 mm Wichtung $w^{-1} = \sigma^2(|F_0|^2) + (0.0253 \cdot P)^2$ mit $P = (|F_0|^2 + 2|F_c|^2)/3$ Extinktion $F_c^* = k F_c [1+0.001 \cdot |F_c|^2 \lambda^3 / \sin(2\theta)]^{-1/4}$ $R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$, $wR2 = [\Sigma w (|F_0|^2 - |F_c|^2)^2 / \Sigma w (|F_0|^2)^2]^{1/2}$ $S2 = [\Sigma w (|F_0|^2 - |F_c|^2)^2 / (N - P)]^{1/2}$ (N: Anzahl der Reflexe, P: Anzahl der Parameter)

Wyckoff-Lage Atom U_{eq} Х Ζ У Zn1 4e0,2500 0,17830(4) 0,0000 0,0195(2) K1 4d0,2500 0,2500 0,7500 0,0314(3)K2 4e0,7500 0,11395(7) 0,0000 0,0235(2)N1 8f 0,4337(7)0,4134(3) 0,8782(3)0,0506(9) H1 8f 0,501(7)0,396(4)0,934(4)0,09(2)H2 8f 0,471(4)0,880(3)0,06(2)0,471(6) δf H3 0,345(8)0,417(5)0,902(4)0,11(3)C11 8f 0,3600(3)0,0879(2)0,9015(2)0,0219(6) C12 δf 0.8442(2)0,0254(6) 0,4236(4)0.0339(3)H11 8f 0,475(5)0,993(3)0,804(23)0,04(1)C21 8f 0,4609(4)0,2626(2)0,0771(2)0,0252(7)C22 8f 0,5906(5)0,3003(3) 0,1279(3) 0,0361(8) H21 8f 0,693(6) 0,329(3) 0,06(1)0,165(3)

<u>**Tab. B2:</u>** Atomlagen und isotrope Auslenkungsparameter (Standardabweichung) in $K_2Zn(C_2H)_4 \cdot 2 \text{ NH}_3$. Die äquivalenten isotropen thermischen Parameter $U_{eq} / 10^{-20} \text{ m}^2$ sind über $U_{eq} = 1/3 \Sigma_{ij} U_{ij}a_i \cdot a_j \cdot (a_i \times a_j)$ berechnet worden.</u>

<u>**Tab. B3:**</u> Anisotrope thermische Auslenkungsparameter (Standardabweichung) / 10^{-20} m² in K₂Zn(C₂H)₄ · 2 NH₃.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Zn1	0,0192(3)	0,0219(3)	0,0179(3)	0,000	0,0038(2)	0,000
K1	0,0378(6)	0,0345(6)	0,0223(5)	0,0093(4)	0,0060(4)	0,0030(4)
K2	0,0176(4)	0,0233(5)	0,0293(5)	0,000	0,0023(4)	0,000
N1	0,070(3)	0,041(2)	0,041(2)	0,005(2)	0,008(2)	-0,011(2)
C11	0,017(1)	0,025(2)	0,022(2)	0,006(1)	-0,001(1)	-0,002(1)
C12	0,027(1)	0,029(2)	0,021(2)	0,001(2)	0,006(1)	0,007(2)
C21	0,028(2)	0,023(2)	0,027(2)	0,002(1)	0,010(1)	0,001(1)
C22	0,031(2)	0,035(2)	0,041(2)	-0,005(2)	-0,002(2)	-0,006(2)

Atom 1	Atom 2	Abstand / pm	Atom 1	Atom 2	Abstand / pm
Zn1	C11	205,1(3) (2x)	N1	H1	90(6)
Zn1	C21	205,6(3) (2x)	N1	H2	79(5)
Zn1	K1	363,35(1) (2x)	N1	H3	77(6)
Zn1	K2	373,60(2) (2x)	C11	C12	120,3(4)
Zn1	K2	373,05(9)	C21	C22	120,2(5)
K1	N1	295,2(4) (2x)	C11	K1	299,7(3)
K1	C11	299,7(3) (2x)	C11	K2	300,0(3)
K1	C21	305,9(3) (2x)	C11	K2	308,5(3)
K1	C12	323,9(3) (2x)	C21	K1	305,9(3)
K1	C22	327,6(3) (2x)	C21	K2	314,1(3)
K2	C11	300,0(3) (2x)	C12	K1	323,9(3)
K2	C11	308,5(3) (2x)	C12	K2	316,8(3)
K2	C21	314,1(3) (2x)	C12	K2	327,9(3)
K2	C12	316,8(3) (2x)	C22	K1	327,6(3)
K2	C12	327,9(3) (2x)	C22	K2	329,1(3)
K2	C22	329,1(3) (2x)	C12	H11	89(3)
K1	Zn1	363,35(1)	C22	H21	92(4)
			K1	H3	302(6)

<u>Tab. B4</u>: Interatomare Abstände (Standardabweichung) in $K_2Zn(C_2H)_4 \cdot 2 NH_3$.

 $\underline{\textbf{Tab. B5:}} \text{ Bindungswinkel } \phi \text{ (Standardabweichung) in } K_2 Zn(C_2H)_4 \cdot 2 \text{ NH}_3.$

A. 1			1.0	A. 1			1.0
Atom 1	Atom 2	Atom 3	φ/ °	Atom I	Atom 2	Atom 3	φ/ °
C11	Zn1	C11	111,5(2)	C11	K2	C21	65,68(8) (2x)
C11	Zn1	C21	105,8(1)(2x)				96,90(7) (2x)
			108,5(1)(2x)				123,07(8) (2x)
C21	Zn1	C21	116,9(2)				152,81(8) (2x)
C11	Zn1	K1	55,57(8) (2x)	C21	K2	C21	105,7(1)
			148,07(8) (2x)	C11	K2	C12	22,28(7) (2x)
C21	Zn1	K1	57,29(8) (2x)				68,73(7) (2x)
			106,07(8) (2x)				79,86(8) (2x)
C11	Zn1	K2	53,27(8) (2x)				148,64(8) (2x)
			55,77(7) (2x)	C11	K2	C12	21,52(8) (2x)
			110,53(8) (2x)				79,34(7) (2x)
C21	Zn1	K2	57,21(8) (2x)				88,20(8) (2x)
			121,56(8) (2x)				93,30(7) (2x)
			140,51(8) (2x)	C21	K2	C12	77,05(8) (2x)
K1	Zn1	K1	150,82(1)				87,65(8) (2x)
K1	Zn1	K2	85,541(3) (2x)				115,52(8) (2x)
			100,865(3) (2x)				156,90(8) (2x)
			104,589(7) (2x)	C12	K2	C12	71,02(6) (2x)
K2	Zn1	K2	77,30(2) (2x)				87,36(7) (2x)
			154,60(3)				109,7(1)
N1	K1	N1	180,0				142,4(1)
N1	K1	C11	90,0(1) (4x)	C11	K2	C22	87,01(9)(2x)
C11	K1	C11	180,0				102,25(8)(2x)
N1	K1	C21	73,3(1)(2x)				102,97(8)(2x)
			106,7(1)(2x)				169,52(8)(2x)
C11	K1	C21	65,49(8) (2x)	C21	K2	C22	21,37(8)(2x)

			114,51(8)(2x)				93,31(8) (2x)
C21	K 1	C21	180,0	C12	K2	C22	81,46(8) (2x)
N1	K1	C12	76,5(1)(2x)				98,25(9) (2x)
			103,6(1)(2x)				108,83(9)(2x)
C11	K1	C12	21,80(7)(2x)				168,69(9)(2x)
			158,20(7)(2x)	C22	K2	C22	87,4(1)
C21	K1	C12	86,05(7)(2x)	K1	N1	H1	121(3)
			93,95(7)(2x)	K1	N1	H2	144(3)
C12	K1	C12	180,0	H1	N1	H2	94(4)
N1	K1	C22	81,5(1)(2x)	K1	N1	H3	88(5)
			98,5(1)(2x)	H1	N1	H3	91(5)
C11	K1	C22	84,78(8) (2x)	H2	N1	H3	104(5)
			95,22(8) (2x)	C12	C11	Zn1	179,2(2)
C21	K1	C22	21,52(9) (2x)	C12	C11	K1	90,5(2)
			158,48(9) (2x)	Zn1	C11	K1	90,1(1)
C12	K1	C22	76,47(8) (2x)	C12	C11	K2	86,7(2)
			103,53(8) (2x)				88,4(2)
C22	K1	C22	180,0	Zn1	C11	K2	90,89(8)
N1	K1	Zn1	69,42(8) (2x)				93,5(1)
			110,58(8) (2x)	K1	C11	K2	113,14(8)
C11	K1	Zn1	34,36(5) (2x)				146,7(1)
			145,64(5) (2x)	K2	C11	K2	100,05(8)
C21	K 1	Zn1	34,45(6) (2x)	C11	C12	K2	70,1(2)
			145,55(6) (2x)				71,0(2)
C12	K1	Zn1	56,16(5) (2x)	C11	C12	K1	67,7(2)
~ ~ ~			123,84(5)(2x)	K2	C12	K1	102,72(9)
C22	K 1	Zn1	55,84(7) (2x)	K2	C12	K2	92,64(7)
			124,16(7)(2x)	K1	C12	K2	126,73(9)
Znl	K1	Znl	180,0	C11	C12	H11	177(2)
NI	KI	H3	15,0(1)	K 2	C12	HII	107(2)
C11	17.1	110	165(1)	77.1	C10	TT1 1	109(2)
CH	KI	H3	88(1)	KI	C12	HII	114(2)
CO1	TZ 1	110	92(1)	C22	C21	Znl	1/1,8(3)
C21	KI	H3	60(1)	C22	C21	KI V1	89,5(2)
C12	17.1	112	121(1)	ZnI	C21	KI K2	88,26(9)
C12	K1	H3	(4(1))	C22	C21 C21	K2 K2	86,4(2)
COD	V 1	112	100(1)	Zn1 V1	C21 C21	K2 1/2	89,40(9)
C22	K1	нэ	0/(1) 112(1)		C_{21}	K2 V1	152,8(1)
7n1	V1	112	(1)	C_{21}	C22 C22	NI VO	09,0(2)
ZIII	ΚI	пэ	02(1) 118(1)	C_{21}	C22	K2 K2	72,2(2)
C11	кр	C^{11}	110(1)		C22	К2 ЦЭ1	117,0(1)
	π∠	CII	00,7(1) 70,05(8)($2v$)	$\frac{C21}{K1}$	C22	п21 Ц91	1/0(2) 113(2)
			77,73(0)(2X) 80/0(7)(2x)	K1 K2	C22	1121 ЦЭ1	113(2) 106(2)
			07,40(7)(2X) 167 2(1)	KZ	CZZ	1121	100(2)
			107,3(1)				

Verbindung:	$K_2Cd(C_2H)_4 \cdot 2 NH_3$
Kristallform:	Quader
Kristallfarbe:	farblos
Abmessungen:	$0,3 \cdot 0,2 \cdot 0,1 \text{ mm}^3$
Kristallsystem:	monoklin
Raumgruppe:	<i>I2/a</i> (Nr. 15)
Zellparameter <i>a</i> :	744,4(1) pm
<i>b</i> :	1261,9(3) pm
с:	1430,4(2) pm
<i>β</i> :	98,94(1)°
Zellvolumen:	$1,3273(4) \text{ nm}^3$
Formeleinheit pro Zelle:	4
Dichte (berechnet):	1,625 g/cm
Formelmasse:	324,79 g/mol
F (000):	632
Messtemperatur:	-103(2)°C
Messbereich $\Theta_{\min/\max}$:	2,16° / 25,99°
h _{min/max} , k _{min/max} , l _{min/max} :	-10 / 10, -18 / 18, -18 / 21
Reflexe, gesamt:	5001
, unabhängig:	1261
, beobachtet:	1060
σ-Schranke:	$[I > 2\sigma(I)]$
R _{int} :	0,0700
μ (ΜοΚα):	$2,235 \text{ mm}^{-1}$
Absorptionskorrektur	numerisch
Transmission T _{min/max} :	0,4633 / 0,6888
Extinktionskoeffizient:	0,0005(2)
Verfeinerung:	SHELXL93 [41]
Wichtungsschema a / b:	0,01450 / 0
Anzahl der Parameter:	83
R1 _{beob./unabh.} :	0,0221 / 0,0353
wR2 _{beob./unabh} :	0,0376 / 0,0453
S2 _{beob./unabh} :	0,957 / 1,050
Rel. Verschiebung $ \Delta /\sigma$:	0,001
Restelektronendichte $ \Delta p $:	$-0,955 / 0,862 \cdot 10^{-6} \text{ e/pm}^3$
IPDS II 100 Bilder mit ω -scans ($0 \le \omega \le 180^\circ$ $\omega = 0^\circ$	$\cdot 0 \le \omega \le 20^\circ$ $\omega = 90^\circ \cdot \Delta \omega = 2^\circ$

<u>Tab. B6</u>: Angaben zur Strukturbestimmung von $K_2Cd(C_2H)_4 \cdot 2 NH_3$.

IPDS II, 100 Bilder mit ω -scans ($0 \le \omega \le 180^\circ$, $\varphi = 0^\circ$; $0 \le \omega \le 20^\circ$, $\varphi = 90^\circ$; $\Delta \omega = 2^\circ$). Belichtungszeit 2 min, Abstand Kristall – Detektor: 80 mm Wichtung $w^{-1} = \sigma^2(|F_0|^2) + (0.0145 \cdot P)^2$ mit $P = (|F_0|^2 + 2|F_c|^2)/3$ Extinktion $F_c^* = k F_c [1+0.001 \cdot |F_c|^2 \lambda^3 / \sin(2\theta)]^{-1/4}$ $R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$, $wR2 = [\Sigma w (|F_0|^2 - |F_c|^2)^2 / \Sigma w (|F_0|^2)^2]^{1/2}$ $S2 = [\Sigma w (|F_0|^2 - |F_c|^2)^2 / (N - P)]^{1/2}$ (N: Anzahl der Reflexe, P: Anzahl der Parameter)

<u>**Tab. B7:</u>** Atomlagen und isotrope Auslenkungsparameter (Standardabweichung) in $K_2Cd(C_2H)_4 \cdot 2 \text{ NH}_3$. Die äquivalenten isotropen thermischen Parameter $U_{eq} / 10^{-20} \text{ m}^2$ sind über $U_{eq} = 1/3 \Sigma_{ij} U_{ij} \mathbf{a}_i \cdot \mathbf{a}_j \cdot (\mathbf{a}_i \ge \mathbf{a}_j)$ berechnet worden.</u>

Atom	Wyckoff-Lage	Х	У	Z	U _{eq}
Cd1	4e	0,2500	0,17975(3)	0,0000	0,0205(1)
K1	4d	0,2500	0,2500	0,7500	0,0331(3)
K2	4e	0,7500	0,11757(8)	0,0000	0,0248(2)
N1	8f	0,437(1)	0,4119(4)	0,8794(3)	0,059(1)
H1	8f	0,481(8)	0,387(5)	0,928(4)	0,08(2)
H2	8f	0,479(8)	0,472(5)	0,870(4)	0,09(2)
H3	8f	0,34(1)	0,421(8)	0,897(6)	0,18(5)
C11	8f	0,3713(4)	0,0812(2)	0,8962(2)	0,0226(7)
C12	8f	0,4343(5)	0,0274(3)	0,8404(2)	0,0280(7)
H11	8f	0,487(6)	0,990(4)	0,799(3)	0,06(1)
C21	8f	0,4774(5)	0,2704(3)	0,0864(2)	0,0254(7)
C22	8f	0,6026(6)	0,3044(3)	0,1389(3)	0,043(1)
H21	8f	0,696(7)	0,327(4)	0,176(3)	0,08(2)

<u>**Tab. B8:**</u> Anisotrope thermische Auslenkungsparameter (Standardabweichung) / 10^{-20} m² in K₂Cd(C₂H)₄ · 2 NH₃.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cd1	0,0201(2)	0,0229(2)	0,0187(2)	0,000	0,0039(1)	0,000
K1	0,0392(7)	0,0362(6)	0,0240(5)	0,0099(4)	0,0050(5)	0,0031(5)
K2	0,0185(5)	0,0251(5)	0,0303(5)	0,000	0,0027(4)	0,000
N1	0,091(4)	0,042(2)	0,041(2)	0,006(2)	0,006(2)	-0,012(2)
C11	0,021(2)	0,025(2)	0,022(1)	0,004(1)	0,001(1)	-0,000(1)
C12	0,027(2)	0,034(2)	0,024(2)	-0,001(2)	0,007(1)	0,005(2)
C21	0,023(2)	0,024(2)	0,030(2)	0,001(1)	0,008(2)	-0,001(1)
C22	0,038(2)	0,035(2)	0,050(2)	-0,004(2)	-0,011(2)	-0,005(2)

Atom 1	Atom 2	Abstand / pm	Atom 1	Atom 2	Atom 3
Cd1	C11	223,2(3) (2x)	N1	H1	79(6)
Cd1	C21	224,7(3) (2x)	N1	H2	84(7)
Cd1	K1	368,43(5) (2x)	N1	H3	78(1)
Cd1	K2	380,38(6) (2x)	C11	C12	119,7(5)
Cd1	K2	375,2(1)	C21	C22	118,3(5)
K1	N1	295,6(4) (2x)	C11	K1	302,3(3)
K1	C11	302,3(3) (2x)	C11	K2	301.0(3)
K1	C21	310,5(4) (2x)	C11	K2	311,9(3)
K1	C12	330,0(4) (2x)	C21	K1	310,5(4)
K1	C22	334,3(5) (2x)	C21	K2	318,5(4)
K2	C11	301,0(3) (2x)	C12	K1	330,0(4)
K2	C11	311,9(3) (2x)	C12	K2	321,9(3)
K2	C21	318,5(4) (2x)	C12	K2	337,8(4)
K2	C12	321,9(3) (2x)	C22	K1	334,3(5)
K2	C12	337,8(4) (2x)	C22	K2	337,5(4)
K2	C22	337,5(4) (2x)	C12	H11	90(5)
K1	Cd1	368,43(5)	C22	H21	86(5)
			K1	H3	301(1)

<u>Tab. B9:</u> Interatomare Abstände (Standardabweichung) in $K_2Cd(C_2H)_4 \cdot 2 NH_3$.

<u>Tab. B10</u>: Bindungswinkel φ (Standardabweichung) in K₂Cd(C₂H)₄ · 2 NH₃.

Atom 1	Atom 2	Atom 3	φ/°	Atom 1	Atom 2	Atom 3	ϕ / °
C11	Cd1	C11	112,3(2)	C11	K2	C21	71,29(9) (2x)
C11	Cd1	C21	105,4(1) (2x)				93,05(9) (2x)
			107,5(1) (2x)				120,35(8) (2x)
C21	Cd1	C21	118,8(2)				157,03(9) (2x)
C11	Cd1	K1	55,07(7) (2x)	C21	K2	C21	105,5(1)
			147,20(7) (2x)	C11	K2	C12	21,84(9) (2x)
C21	Cd1	K1	57,14(9) (2x)				67,15(9) (2x)
			107,32(9) (2x)				79,62(8) (2x)
C11	Cd1	K2	52,27(7) (2x)				145,13(9) (2x)
			56,14(8) (2x)	C11	K2	C12	20,75(9) (2x)
			112,46(8) (2x)				78,65(8) (2x)
C21	Cd1	K2	56,74(9) (2x)				91,82(9) (2x)
			120,59(8) (2x)				93,67(9) (2x)
			139,33(9) (2x)	C21	K2	C12	73,47(9) (2x)
K1	Cd1	K1	152,16(1)				92,87(9) (2x)
K1	Cd1	K2	84,38(1) (2x)				112,20(8) (2x)
			101,37(1) (2x)				160,09(8) (2x)
			103,922(6) (2x)	C12	K2	C12	69,99(6) (2x)
K2	Cd1	K2	78,10(2) (2x)				87,67(8) (2x)
			156,19(3)				114,4(1)
N1	K1	N1	180,0				138,6(1)
N1	K1	C11	89,6(1) (2x)	C11	K2	C22	91,81(9) (2x)
			90,4(1) (2x)				97,86(9) (2x)
C11	K1	C11	180,0				100,45(9) (2x)
N1	K1	C21	74,4(1) (2x)				170,67(9) (2x)
			105,7(1) (2x)	C21	K2	C22	20,52(9) (2x)

C	11	K1	C21	71,10(9)(2x)				95,2(1)(2x)
				108.90(9)(2x)	C12	K2	C22	77.1(1)(2x)
C	21	K1	C21	180.0				95.60(9)(2x)
N	1	K1	C12	77.5(1)(2x)				113.33(9)(2x)
_				102.5(1)(2x)				168.4(1)(2x)
C	11	K1	C12	21.25(8)(2x)	C22	K2	C22	91.4(2)
				158.75(8)(2x)	K1	N1	H1	111(4)
C	21	K1	C12	89.01(8)(2x)	K1	N1	H2	133(4)
			012	90.99(8)(2x)	H1	N1	H2	114(6)
C	12	K1	C12	180.0	K1	N1	H3	87(7)
N	1	K1	C22	83.6(2)(2x)	H1	N1	H3	92(7)
_	-			96.4(2)(2x)	H2	N1	H3	107(8)
C	11	K1	C22	89.32(9)(2x)	C12	C11	Cd1	179.1(3)
			0	90.68(9)(2x)	C12	C11	K1	92.5(2)
C	21	K1	C22	20.72(8)(2x)	Cd1	C11	K1	87.7(1)
			0	159.28(8)(2x)	C12	C11	K2	88.9(2)
C	12	K1	C22	72.68(9)(2x)				91.9(2)
				107.32(9)(2x)	Cd1	C11	К2	87.4(1)
C	22	K1	C22	180.0	0.01	011		91.82(9)
N	1	K1	Cd1	68.27(9)(2x)	K1	C11	К2	113.0(1)
- 1	-		0.01	111.73(9)(2x)		011		144.9(1)
C	11	K1	Cd1	37.25(6)(2x)	K2	C11	K2	101.89(8)
				142.75(6)(2x)	C11	C12	K2	67.3(2)
C	21	K1	Cd1	37.45(6)(2x)	-			69.2(2)
				142,56(6)(2x)	C11	C12	K1	66,2(2)
C	12	K1	Cd1	58,50(6) (2x)	K2	C12	K1	101,0(1)
				121,50(6)(2x)	K2	C12	K2	92,33(8)
C	22	K1	Cd1	57,98(6) (2x)	K1	C12	K2	122,5(1)
				122,02(6) (2x)	C11	C12	H11	177(3)
Co	d1	K1	Cd1	180,0	K2	C12	H11	108(3)
Ν	1	K1	H3	15(2)				115(3)
				165(2)	K1	C12	H11	113(3)
C	11	K1	H3	90(2)	C22	C21	Cd1	170,3(3)
				91(2)	C22	C21	K1	91,1(3)
C	21	K1	H3	61(2)	Cd1	C21	K1	85,4(1)
				119(2)	C22	C21	K2	88,9(3)
C	12	K1	H3	73(2)	Cd1	C21	K2	87,1(1)
				107(2)	K1	C21	K2	134,2(1)
C	22	K1	H3	69(2)	C21	C22	K1	68,2(3)
				111(2)	C21	C22	K2	70,6(3)
C	d1	K1	H3	62(2)	K1	C22	K2	119,2(1)
				118(2)	C21	C22	H21	177(4)
C	11	K2	C11	72,9(1)	K1	C22	H21	113(3)
				78,11(8) (2x)	K2	C22	H21	107(4)
				87,76(7) (2x)				
				162,5(1)				

C Raman- und IR-Spektren

Abb. C1: Ausschnitt aus dem Raman-Spektrum von KCuC₂ (256 scans).

Abb. C2: Ausschnitt aus dem Raman-Spektrum von RbCuC₂ (256 scans).

Abb. C3: Ausschnitt aus dem Raman-Spektrum von CsCuC₂ (256 scans).

Abb. C4: Ausschnitt aus dem Raman-Spektrum von NaCu₅(C₂)₃ (256 scans).

Abb. C5: Ausschnitt aus dem IR-Spektrum von NaCu₅(C₂)₃.

<u>Abb. C6:</u> Ausschnitt aus dem Raman-Spektrum eines Gemenges aus NaCuC₂ und NaCu₅(C₂)₃ (256 scans).

<u>Abb. C7:</u> Ausschnitt aus dem Raman-Spektrum von $K_2Cu(C_2H)_3$ (128 scans).

<u>Abb. C8:</u> Ausschnitt aus dem Raman-Spektrum von $Na_2Zn(C_2H)_4$ (128 scans). Als Verunreinigung ist NaSCN in der Probe enthalten.

Abb. C9: Ausschnitt aus dem Raman-Spektrum von K₂Zn(C₂H)₄ (128 scans).

Abb. C10: Ausschnitt aus dem Raman-Spektrum von Rb₂Zn(C₂H)₄ (64 scans).

Abb. C11: Ausschnitt aus dem Raman-Spektrum von Cs₂Zn(C₂H)₄ (128 scans).

<u>Abb. C12:</u> Ausschnitt aus dem Raman-Spektrum von $Na_2Cd(C_2H)_4$ (128 scans).

Abb. C13: Ausschnitt aus dem Raman-Spektrum von K₂Cd(C₂H)₄ (128 scans).

Abb. C14: Ausschnitt aus dem Raman-Spektrum von Rb₂Cd(C₂H)₄ (128 scans).

Abb. C15: Ausschnitt aus dem Raman-Spektrum von Cs₂Cd(C₂H)₄ (128 scans).

Abb. C16: Ausschnitt aus dem Raman-Spektrum von MgZn(C₂H)₄ (128 scans).

Intensität /

Abb. C17: Ausschnitt aus dem Raman-Spektrum von CaZn(C₂H)₄ (128 scans).

Abb. C18: Ausschnitt aus dem Raman-Spektrum von SrZn(C₂H)₄ (128 scans).

Abb. C19: Ausschnitt aus dem Raman-Spektrum von BaZn(C₂H)₄ (128 scans).

<u>Abb. C20:</u> Ausschnitt aus dem Raman-Spektrum von MgCd(C_2H)₄ (128 scans). Als Verunreinigung ist KSCN in der Probe enthalten.

Abb. C21: Ausschnitt aus dem Raman-Spektrum von CaCd(C₂H)₄ (128 scans).

Abb. C22: Ausschnitt aus dem Raman-Spektrum von SrCd(C₂H)₄ (128 scans).

<u>Abb. C23:</u> Ausschnitt aus dem Raman-Spektrum von $SrCd(C_2H)_4$ nach Erhitzen auf 70°C (128 scans).

Abb. C24: Ausschnitt aus dem Raman-Spektrum von BaCd(C2H)4 (128 scans)

Danksagung

Mein ganz besonderer Dank gilt Prof. Dr. Uwe Ruschewitz für die hervorragende wissenschaftliche wie auch menschliche Betreuung, für unterhaltsame und wegweisende Gespräche nicht nur bei gemeinsamen Mittagessen, für die Möglichkeit, eine andere Universität und Stadt kennenzulernen und vor allem für sein vollstes Vertrauen. Dank gilt auch der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung dieser Arbeit.

Desweiteren danke ich allen (Ex-)Kollegen und Freunden des Arbeitskreises Ruschewitz für das schöne Arbeitsklima und die vielen Hilfestellungen. Ganz herzlich möchte ich mich bei Dr. Ingo Pantenburg für die Unterstützung beim Einleben in Köln, für die extrem nützlichen Unterhaltungen und natürlich für die schönen Einkristall-Messungen bedanken!

In Köln danke ich außerdem: Prof. Dr. Gerd Meyer und seiner Arbeitsgruppe für die Wissen Möglichkeit, Ihnen mit Ihrem gesamten beiwohnen zu dürfen, Priv.-Doz. Dr. Angela Möller für die Raman-Messungen und andere Ratschläge, Dr. Dirk Hinz-Hübner für diverse Pulver-Messungen und die Hilfe bei den Pulverdiffraktometern, Dr. Axel Czybulka für die Einrichtung der Pulverdiffraktometer, Ingrid Müller für die Hilfe bei der Einkristallmontage, Prof. Dr. Lars Wesemann mit seiner Arbeitsgruppe für die gut nachbarschaftlichen Beziehungen und Unterhaltungen. Dort bedanke ich mich vor allem bei Benno Ronig für die Unterstützung bei Computerproblemen und Beatrice Grau, die mich vorzüglich ins kölsche Leben eingeführt hat und mir immer mit Rat und Tat zur Seite stand!

In Aachen danke ich: Prof. Dr. Richard Dronskowski für die lehrreiche Anfangszeit meiner Promotion in seiner Arbeitsgruppe, die mir auch die theoretische Chemie näherbrachte, Dr. Jürgen Huster für die schönen PSD-Pulver-Messungen und die vielen wissenschaftlichen Gespräche, Jupp Offermanns als besten Laborkollegen und Ordnungsweiser sowie der gesamten Werkstatt mitsamt Chris Brümmer für bauliche Hilfen und Lebensweisheiten. Viele Kollegen in Aachen halfen mir gerade am Anfang meiner Promotion sehr, mich mit Arbeitstechniken und Computerproblemen vertraut zu machen. Deshalb bedanke ich mich ganz herzlich bei Ihnen, insbesondere bei Dr. Stefan Irsen und meinem Kollegen, Freund und Mitbewohner Uwe Couhorn, die Zeit mit ihm werde ich nie vergessen.

Außerhalb der Universitäten danke ich ganz besonders meinen Eltern Margret und Walter und meinem Bruder Bernd, die mich in allen Belangen des Lebens vertrauensvoll unterstützen. Meine Freunde und Freundinnen halfen mir, das Leben nicht nur von der chemischen Seite kennenzulernen! Daher gilt auch Ihnen mein Dank.

Erklärung

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt habe, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; daß sie - abgesehen von den angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der geltenden Promotionsordnung sind mir bekannt.

Die von mir vorgelegte Dissertation ist von Prof. Dr. Uwe Ruschewitz betreut worden.

Zur Wahrung der Priorität wurden Teile dieser Arbeit bereits publiziert:

- U. Cremer, U. Ruschewitz: Alkalimetallkupfer(I)acetylide: Synthese und Struktur, Z. *Kristallogr.* 2000, *Suppl.* 17, 128.
- U. Cremer, W. Kockelmann, M. Bertmer, U. Ruschewitz: Alkali Metal Copper Acetylides ACuC₂ (A = Na - Cs): Synthesis, Crystal Structures and Spectroscopic Properties, *Solid State Sci.* 2002, *4*, 247.
- [3] U. Cremer, U. Ruschewitz: Neue Acetylide: NaCu₅(C₂)₃, A₂M(C₂H)₄ und A₂M(C₂H)₄ \cdot 2 NH₃ (A = Rb, Cs; M = Zn, Cd), Z. Anorg. Allg. Chem. **2002**, 628, 2207.

Lebenslauf

Name:	Ulrich Cremer
Geburtsdatum:	21.1.1973
Geburtsort:	Jülich (NRW)
Familienstand:	ledig, keine Kinder
<u>Schulbildung</u>	
1979 – 1983	Martinusschule in Schlich (Grundschule)
1983 – 1992	Stiftisches Gymnasium in Düren
Zivildienst	
1992 – 1993	Christophorus-Schule für Geistigbehinderte in Düren
<u>Hochschulstudium</u>	
10/1993 - 12/1999	Chemiestudium an der RWTH Aachen
4/1996	Diplom-Vorprüfung Fachrichtung Chemie
1/1998 – 4/1998	Forschungspraktikum im Bereich Technische Chemie am
	Schuit Institute of Catalysis der
	Eindhoven University of Technology (Niederlande)
6/1999 – 12/1999	Diplomarbeit am Institut für Anorganische Chemie der
	RWTH Aachen unter Anleitung von Prof. Dr. R. Dronskowski
	und Dr. U. Ruschewitz
12/1999	Diplom-Hauptprüfung Fachrichtung Chemie
1/2000 - 3/2001	Promotion am Institut für Anorganische Chemie der RWTH
	Aachen unter Anleitung von Prof. Dr. R. Dronskowski und
	Dr. U. Ruschewitz
4/2001	Wechsel mit Prof. Dr. U. Ruschewitz an das Institut für
	Anorganische Chemie der Universität zu Köln
4/2001 - 5/2003	Weiterführung der Promotion am Institut für Anorganische
	Chemie der Universität zu Köln
2/2003	Abgabe der Dissertation
16.5.2003	Tag der mündlichen Prüfung