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1 INTRODUCTION

The immune system has evolved to protect organisms against invasion by foreign

pathogens. In vertebrates immune responses are mediated by cells of the innate immune

system, such as macrophages, neutrophils and dendritic cells, and by B and T cells of

the adaptive immune response. Cells react to changes in their environment by

production of new proteins. Changes, such as appearance of pathogens are detected at

the cell membrane by specific receptors, whereas the mRNA needed for de novo

synthesis of proteins is generated in the nucleus. Information therefore has to be

transmitted from the cell membrane to the nucleus, in a process called signal

transduction. Typical signal transduction pathways are initiated through cross-linking

of receptors located in the cell membrane. This leads to recruitment and modification of

intermediate “messengers”, mostly proteins and lipids, which transmit the signal from

the receptor ultimately to transcription factors. Activated transcription factors in turn

initiate transcription from promoters of their target genes, which leads to the production

of new proteins to combat the pathogen.

1.1 The NF- B Transcription Factor Family

The transcription factor family NF-κB regulates the expression of genes controlling cell

survival and proliferation, immune and stress responses, and inflammatory reactions

(reviewed in (Baldwin, 1996; Ghosh and Karin, 2002; Ghosh et al., 1998; Li and

Verma, 2002; Silverman and Maniatis, 2001)). In mammals the NF-κB protein family

contains five different Rel proteins: p65/RelA, c-Rel/Rel, RelB, p50/NF-κB1 and

p52/NF-κB2; the latter two are generated through proteolytic processing of their

respective precursor molecules p105 (p50) and p100 (p52). Rel proteins form various

hetero- or homodimeric complexes, which in most resting cells are kept inactive

sequestered to the ankyrin repeats of inhibitory molecules termed IκBs (Ghosh et al.,

1998) (Figure 1). The precursors of NF-κB1 and NF-κB2 also contain ankyrin repeats

and therefore can act as inhibitors of Rel proteins (Solan et al., 2002). Upon exposure

to a wide variety of stimuli including proinflammatory cytokines (such as TNF and IL-

1), bacterial lipopolysaccharide (LPS) and viral infection, IκB proteins are

phosphorylated on two conserved serine residues. This triggers subsequent



 2                                                                                                                    Introduction

ubiquitination and proteasomal degradation of the IκBs (reviewed in (Karin and Ben-

Neriah, 2000; Verma et al., 1995)). Degradation of IκB releases NF-κB dimers, which

then accumulate in the nucleus where they activate transcription of NF-κB target genes,

including genes encoding proinflammatory cytokines and chemokines, cell-adhesion

molecules and anti-apoptotic proteins (Karin and Ben-Neriah, 2000) (Figure 1). Recent

studies show, however, that after liberation from IκB NF-κB/Rel proteins have to

undergo several modifications such as phosphorylation and acetylation in order to

activate transcription (Ghosh and Karin, 2002). Deficiency for the enzyme glycogen-

synthase 3β (GSK-3β) in mice leads to a defect in NF-κB-dependent gene transcription

despite normal induction of NF-κB DNA-binding (Hoeflich et al., 2000).  It seems

therefore that NF-κB activation is regulated by GSK-3β at the level of the

transcriptional complex, most likely through the phosphorylation of RelA (Schwabe

and Brenner, 2002). Other kinases, such as PI3-K (Sizemore et al., 1999), TBK (T2K)

(Bonnard et al., 2000), ζPKC (Leitges et al., 2001) and PKA (Zhong et al., 1998) have

also been implicated in the transactivation of Rel subunits by phosphorylation (Figure

1).

1.2 The I B Kinase Complex

Induced phosphorylation of IκB is mediated by the IκB-kinase (IKK) signalsome, a

high molecular weight kinase complex (700 – 900 kD) that contains two catalytic

subunits named IKK1and IKK2 (or IKKα and IKKβ) (reviewed in (Israel, 2000; Karin,

1999)) and a regulatory subunit termed NEMO, IKKγ or IKKAP (Mercurio et al., 1999;

Rothwarf et al., 1998; Yamaoka et al., 1998) (Figure 1). The exact stochiometry of the

components of the IKK complex is still unknown and might vary between different

cell-types and depend on the activation status of the cell. IκB-kinase activity is also

found in lysates from activated cells in form of a complex with an apparent molecular

weight of 300 kD. This complex corresponds to dimers of IKK1 and 2, making it

reasonable to assume that the predominant 700 – 900 kD IKK complex consists of a

dimer of IKK1/2 dimers brought together by several NEMO-proteins. It has been

shown, however, that IKK1 and 2 are also active as homodimers (Rothwarf et al.,

1998). IKK1 and IKK2 are highly homologous kinases, consisting of an N-terminal

kinase domain, a helix-loop-helix (HLH) and a leucine zipper (LZ). The kinase



Figure 1. A simplified version of the NF- B Activation Pathway
Proteins are depicted by name and by oval symbols. Receptors are symbolized by
boxed names. Activation processes are indicated by arrows. X stands for
degradation by the 26 S proteosome, P for phosphogroups and Ac for acetylated
amino acid residues. This scheme was composed based on information from:
Karin and Ben-Neriah, 2000; Gosh and Karin, 2002; Li and Verma 2002; Dixit
and Mak, 2002.



 4                                                                                                                    Introduction

domains are similar to those of other known serine-threonine kinases and contain an

activation loop. In cells stimulated with TNF or IL-1 two serines within this activation

loop become phosphorylated, causing a confirmational change that results in kinase

activation. Replacement of serines 177 and 181 in the activation loop of IKK2 with

alanins prevents activation of IKK, whereas their replacment with glutamic acid (which

mimicks phosphoserine) results in constitutive IKK activity (Rothwarf et al., 1998).

NEMO was cloned independently by genetic complementation of cell lines, which do

not respond to NF-κB activating stimuli (Yamaoka et al., 1998) and as a component of

the purified IKK complex (Mercurio et al., 1999; Rothwarf et al., 1998). It is a 48 kDa

glutamine-rich protein without apparent catalytic activity, which contains a LZ domain,

extended coiled-coil motifs and a putative zinc finger motif.

Recent reports on knockout mice revealed different physiological roles for IKK1 and

IKK2. IKK1-deficient mice die shortly after birth showing skeletal abnormalities and a

thickened hyperproliferative epidermis (Hu et al., 1999; Li et al., 1999a; Takeda et al.,

1999). Lack of differentiation and increased proliferation of ikk1-/- keratinocytes occurs

independently of IκB kinase function and NF-κB activation. IKK1 seems to be

essential for the secretion of an as yet unidentified secreted differentiation factor,

termed kDIF (Hu et al., 2001). Mice containing a kinase-inactive version of IKK1

(IKK1SA) are born at normal mendalian ratios and develop normally. IKK1SA female

mice exhibit defective development of the mammary gland during pregnancy due to

lack of expression of the NF-κB-dependent gene cyclin D1 (Cao et al., 2001).

Stimulation of ikk1-/- mouse embryonic fibroblasts (MEFs) and thymocytes by either

TNF or IL-1 leads to essentially normal NF-κB activation, indicating that IKK1 is

dispensable for induction of IκB degradation in response to proinflammatory cytokines

(Hu et al., 1999; Li et al., 1999a; Takeda et al., 1999). IKK1 is, however, critical for the

generation of p52 from its precursor p100 (Senftleben et al., 2001a) in response to

inducers such as BAFF (Claudio et al., 2002), LTβ (Dejardin et al., 2002) or CD40

(Coope et al., 2002). Since p100 associates preferentially - but not exclusively - with

RelB (Solan et al., 2002) this pathway mainly induces p52/RelB dimers (Fig 1). In

mammary epithelium IKK1 is also responsible for IκB degradation and induction of

NF-κB in response to specific signals, such as RANKL (Cao et al., 2001). Recently it

has been found activation of NF-κB can occur independently of NEMO; BAFF induces

processing of p100 to p52 in a NEMO-deficient B cell line (Claudio et al., 2002) and
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LT-beta induces DNA-binding p50 and RelB subunits in the absence of NEMO (Saitoh

et al., 2002).

IKK2 knockout mice die between embryonic days 12.5-14.5 from massive liver

degeneration due to TNF-induced hepatocyte apoptosis (Li et al., 1999b; Li et al.,

1999c; Tanaka et al., 1999), a phenotype similar to that of p65/RelA knockout mice

that die between embryonic days 14.5-15.5 (Beg et al., 1995). NF-κB activation upon

stimulation with TNF or IL-1 is severely impaired in ikk2-/- MEFs, suggesting that

IKK2 is the kinase responsible for NF-κB activation by inflammatory cytokines. IKK2-

knockout mice are viable on a TNFR1-/- background, but the mice still succumb to

opportunistic infections within two to three weeks of birth (Senftleben et al., 2001b).

IKK1 and 2 are required for optimal induction of NF-κB-induced transcription, since

both kinases are involved in phosphorylation of the transactivation domain of the p65

subunit of NF-κB in response to IL-1 and TNF (Sizemore et al., 2002). In addition both

kinases are required for transcription of the majority of NF-κB-dependent genes

activated by these stimuli (Li et al., 2002).

NEMO is essential for NF-κB activation (Rothwarf et al., 1998; Yamaoka et al., 1998),

however, its exact role in the function of the IKK complex remains obscure.

Oligomerization of NEMO is essential for IKK activity (Agou et al., 2002; Li et al.,

2001; Poyet et al., 2000) and numerous studies suggest that NEMO acts by connecting

the IKK to upstream activators (Cooke et al., 2001; Huang et al., 2002; Jain et al.,

2001). The human and mouse genes coding for NEMO are located on the X

chromosome, arranged head to head with the proximal glucose-6-phosphate

dehydrogenase housekeeping gene (G6PD) (Galgoczy et al., 2001; Jin and Jeang,

1999). Three alternative transcripts with different non-coding 5’ exons have been

described. A CpG island, which has been described as essential for the ubiquitous

expression of g6pd (Toniolo et al., 1991), also drives expression of the Nemo gene.

Remarkably, the genes overlap in their 5’ non-coding regions. An alternative Nemo-

promoter has been identified in intron 2 of g6pd. This promoter shows very low basal

activity and may be involved in stress/time- and/or tissue-dependent expression of

NEMO (Galgoczy et al., 2001).
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1.3 Incontinentia Pigmenti

Recently, genetic studies revealed that mutations in the human NEMO gene are the

cause of Incontinentia Pigmenti (IP) or Bloch-Sulzberger Syndrome (Smahi et al.,

2000). IP is an X-linked dominant, male-lethal genetic disorder characterized by

unusual patterns of skin pigmentation (Landy and Donnai, 1993). The skin lesions seen

in IP evolve through characteristic stages, which frequently overlap or appear together.

Affected females show an erythematous, vesicular rash that appears shortly after birth

and is accompanied by massive eosinophilic granulocyte infiltration into the epidermis.

Subsequently verrucous hyperkeratotic lesions evolve that disappear over time, leaving

behind areas of hyperpigmentation in a pattern that respects the lines of Blashko

(Happle, 1985; Landy and Donnai, 1993). In the final stage this hyperpigmentation

fades, and pale hairless patches or streaks remain on the skin (Landy and Donnai,

1993). Another consistent feature of IP is non-random X-inactivation in peripheral

blood leukocytes (PBL). IP patients show completely skewed patterns of X-inactivation

in PBL, suggesting that cells expressing the mutated X-chromosome are counter-

selected (Parrish et al., 1996). Other manifestations of IP include abnormalities of the

teeth, eyes, hair and the central nervous system (Carney, 1976; Landy and Donnai,

1993).

1.4 The Role of the IKK Complex and NF- B in B Cells

Activated NF-κB/Rel proteins are involved in important and diverse functions of B

cells, such as proliferation, isotype switching and cytokine production (Gerondakis et

al., 1998; Grossmann et al., 1999; Gugasyan et al., 2000). NF-κB is constitutively

active in mature B cells indicating that this signaling pathway could be important for B

cell maintenance. Indeed, early studies employing gene targeting technology showed

that mice deficient for more than one of the NF-κB subunits have defects in B cell

development. Adoptive transfer experiments using fetal liver cells of p50/RelA double

knockout mice resulted in absence of B lymphopoiesis. However, when p50-/-RelA-/-

fetal liver cells were mixed with wild-type bone marrow cells they gave rise to mature

B cells in the spleen, demonstrating that this phenotype is non-cell autonomous

(Horwitz et al., 1997). More detailed studies using similar adoptive transfer

experiments of mixed fetal liver cells showed that p50-/- or p50-/-RelA-/- B cells
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cannot develop into marginal zone (MZ) B cells (Cariappa et al., 2000). Similarly

RelA-/-c-Rel-/- fetal liver cells fail to give rise to IgMlowIgD+ mature B cells. RelA-/-c-

Rel-/- immature (IM) B cells undergo accelerated cell death in culture and express

abnormally low levels of Bcl-2. It remains unclear, however, whether the block in B

cell development in RelA-/-c-Rel-/- mice is due to a cell-autonomous effect or not

(Grossmann et al., 2000). In p50/p52 double knockout mice B cell development is

blocked at the immature stage, at the T1 - T2 transition (Figure 12), shortly after B cells

exit from the BM (Franzoso et al., 1997). Mice deficient for B cell-activating factor

(BAFF), a B cell survival factor expressed on myeoid cells, have an arrest in B cell

development at the same stage as p50/p52 double knockout mice. Subsequently it was

shown that BAFF induces processing of p100 to p52 via one of its receptors on B cells,

BAFFR, and NIK, but independently of NEMO (Claudio et al., 2002). B cell specific

inhibition of NF-κB activity by transgenic expression of a trans-dominant form of IκB-

α leads to a reduction of mature splenic B cells and recirculating B220highIgM+ bone

marrow cells (Bendall et al., 1999). Mice deficient for p50 have normal numbers of

follicular (FO) B cells (Cariappa et al., 2000). It has been shown, however, that the in

vivo turnover of p50-/- B cells is increased compared to WT B cells (Grumont et al.,

1998; Pohl et al., 2002). Whether this is due to a defect intrinsic to the B cell lineage or

to a defect in other cell-types is not clear. Ex vivo isolated p50-deficient B cells die

faster than wild-type B cells, indicating that p50 could play a role in mature B cell

survival. A direct analysis of whether mature B cells, once generated, depend on NF-

κB mediated survival signals in a cell-autonomous fashion in vivo, has not been

performed so far.

Most signals that activate NF-κB converge at the IKK complex. It has been shown that

B cells lacking IKK1 activity are short-lived and have a reduced capacity to proliferate.

Very few IKK1-deficient B cells develop into IgD+IgMlow mature B cells in the spleen

(Kaisho et al., 2001; Senftleben et al., 2001a). It is controversial whether there is an

overall reduction of NF-κB binding activity in IKK1-deficient B cells (Kaisho et al.,

2001) or whether the maturation defect is solely due to lack of processing of p100 to

p52(Senftleben et al., 2001a). Together with data from BAFF-deficient and p50/p52-

double knockout mice it seems plausible that the B cell defect in Ikk1-/- radiation

chimeras is due to lack of BAFF-induced processing of p100 via NIK and IKK1. Ikk2-

/- radiation chimeras lack peripheral blood B cells (Senftleben et al., 2001b), similarly
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to the p50/p65 double knockout radiation chimeras (Horwitz et al., 1997), but it is not

clear yet whether the inability of IKK2-deficient fetal liver cells to give rise to B cells

is a B cell-autonomous phenomenon or not. In transgenic mice expressing a dominant-

negative version of IKK2 specifically in B cells, B cells develop normally but show

defects in proliferation and antibody responses (Ren et al., 2002b).

Thus, whereas IKK1 is important for the generation of mature B cells, the role of IKK2

is controversial and little is known about the importance of NEMO in B cell

development. Whether activation of NF-κB through IKK is also essential for

maintenance of mature B cells remains unresolved.

1.5 The Role of the IKK Complex and NF- B in T Cells

To address the role of NF-κB in T cells initial studies have employed either targeted

disruption of one or two of the Rel subunits or T cell lineage-specific transgenic

expression of various non-degradable IκBα mutants (termed superrepressors or

IκBαDN). Transgenic expression of IκBαDN  (Boothby et al., 1997; Ferreira et al.,

1999) or of mIκBβ (Attar et al., 1998) directed by the lck-promoter, of IκBαDN

directed by the CD2-promoter  (Hettmann et al., 1999), or of human IκBα under

control of a β-globin promoter/CD2 enhancer contruct (Esslinger et al., 1998; Esslinger

et al., 1997) led to a reduction of peripheral T cells to varying degrees, probably

reflecting differences in promoter strength and specificity and of the IκB repressor

used. One common feature of these mice is that CD8 cells are more diminished then

CD4 cells. The remaining T cells in these different mice have defects in proliferative

responses, in IL-4, IL-10 and INFγ secretion (Aune et al., 1999; Ferreira et al., 1999)

and they are more susceptible to Fas - and activation-induced apoptosis in vitro (Aune

et al., 1999; Boothby et al., 1997; Ferreira et al., 1999). Treatment of quiescent human

blood lymphocytes with pharmacological NF-κB inhibitors in vitro induced slow T cell

apoptosis associated with a gradual downregulation of Bcl-2 (Bureau et al., 2002).

Studies using knockout mice revealed the roles of individual Rel proteins in T cell

activation (reviewed in (Caamano and Hunter, 2002; Denk et al., 2000)). p50-/-p52-/-

double knockout mice lack mature T cells and radiation chimeras reconstituted with

p50-/-RelA-/- fetal liver cells show complete absence of lymphopoiesis. In both cases,

however, adoptive transfer experiments showed that these defects are not cell-
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autonomous but rather track with cells outside the T lineage (Franzoso et al., 1997;

Horwitz et al., 1997). Analysis of mice engrafted with c-Rel/RelA double knockout

fetal liver cells showed a deficit of peripheral T cells, which could not be rescued by

the enforced expression of the survival factor bcl-2 (Grossmann et al., 2000). It is not

clear, however, whether the defect seen in c-Rel-/-RelA-/- fetal liver chimeras is based

on a T cell-autonomous requirement for NF-κB or not. These studies demonstrate that

interference with NF-κB activation in various ways leads to diminished mature T cell

populations with impaired functions. They also show, however, that peripheral T cells

with impaired NF-κB function can be generated and sustained in vivo.

Mice lacking RelA or IKK2 die early in embryogenesis displaying dramatic TNF-

induced destruction of the liver (Beg et al., 1995; Li et al., 1999b; Li et al., 1999c;

Tanaka et al., 1999). Similarly to p50-/-RelA-/- fetal liver cells also IKK2-deficient

fetal liver cells failed to reconstitute mature T cells in irradiated hosts. Also in this case

co-transfer experiments showed that the defect is not due to a cell-autonomous

requirement of IKK2 in T cells. In addition, IKK2-/-TNFR-/- double knockout mice,

which are viable and reach 3-4 weeks of age, show nearly normal thymocyte

development leading to the suggestion that defective T cell development in chimeras

reconstituted with IKK2-deficient fetal liver is caused by TNF induced killing of

thymocytes (Senftleben et al., 2001a). Adoptive transfer experiments showed that

peripheral T cells develop in the absence of IKK1 (Kaisho et al., 2001; Senftleben et

al., 2001a). Transgenic expression of dominant-negative versions of IKK1 or IKK2

under the control of the human CD2 promoter did not interfere with the development of

splenic CD4 and CD8 T cells. Even co-expression of dominant-negative IKK1 and 2

had no overall effect on T cell development (Ren et al., 2002a).

Thus lack of either IKK1 or IKK2 in T cells does not interfere with the generation of

mature T cells; nor does simultaneous dominant-negative interference with IKK1 and 2

signaling. These data suggest that the IKK does not play an important role in T cell

development. Mice in which NF-κB activation is inhibited by transgenic expression of

non-degradable IκB proteins have reduced T cell numbers. This suggests that either

NF-κB activation can occur in absence of IKK signaling in T cells or that IKK1 and 2

can compensate for the lack of the other.
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1.6 Objectives

When I started this project IKK1, 2 and NEMO had just been cloned and nothing was

known about their roles in vivo . In view of the high overall redundancy in the NF-κB

signaling pathway, the inactivation of the Nemo gene appeared to me as uniquely suited

to completely block NF-κB activation by a single gene knockout. RelA knockout mice

die around embryonic day 15 due to extensive liver degeneration and it seemed

possible that NEMO knockout mice would have a similar phenotype. The assessment

of the role of genes in tissues of adult mice is impossible in knockout mice with early

embryonic lethality. I opted to circumvent this problem by using the approach of

conditional gene targeting, which allows the deletion of genes in specific cell types of

the adult mouse (Rajewsky et al., 1996). Therefore I decided to generate a conditional

nemo allele (nemoFL) in order to analyze the role of NEMO and NF-κB in mouse

development and immune cells. The complete blockade of NF-κB signaling by removal

of NEMO was to be compared to the lack of IKK2 activity, through side by side

comparison of the newly generated nemoFL mice with available IKK2 conditional

mouse strains.



 Materials and Methods 11

2 MATERIALS AND METHODS

2.1 Molecular Biology Methods

Common methods of molecular biology were performed according to standard protocols

(Sambrook et al., 1989). Enzymes were obtained from the following companies:

Boehringer Mannheim (Mannheim), GIBCO-BRL (Gaithersburg, USA), NEB (Beverly,

USA), Stratagene (USA), Takara (Japan) and USB (Cleveland, USA). Size markers for

agarose gel electrophoresis were obtained from GIBCO-BRL (1 kb marker, l-HindIII

marker).

2.1.1 Competent Cells and Isolation of Plasmid DNA

Competent Escherichia coli DH5α cells were prepared according to the protocol of Inoue

et al. (Inoue et al., 1990) and used in heat shock transformations of plasmid DNA. Rapid

DNA ligation was performed with the Takara DNA Ligation Kit (Takara, Japan) according

to the manufacturers instructions.

Plasmid DNA was isolated from transformed Escherichia coli DH5α bacteria with an

alkaline lysis method (Birnboim, 1983). The procedure was according to the protocol of

(Zhou et al., 1990). Plasmid DNA of a higher purity was obtained with QIAGEN columns

(QIAGEN, Hilden) following the supplier's instructions.

2.1.2 Isolation of Genomic DNA from ES Cells and Mouse Organs

Cells were lysed over night at 37°C in lysis buffer (10 mM Tris-HCl, pH 8; 10 mM EDTA;

150 mM NaCl; 0.2% SDS; 400 mg/ml Proteinase K). Subsequently, DNA was precipitated

from the solution by the addition of an equal volume of Isopropanol. The DNA was

pelleted by centrifugation, washed in 70% EtOH and resuspended in TE-buffer (10 mM

Tris-HCl, pH 8; 1 mM EDTA). From ES cell clones, that were grown in 96-well tissue

culture dishes, DNA was extracted and prepared according to the protocol of (Pasparakis

and Kollias, 1995).

Mouse tissue was incubated for 5 h to o/n at 56°C in lysis buffer (0.1 M Tris-HCl, pH 8.5;

5 mM EDTA; 0.2% SDS; 0.2 M NaCl; 600 mg/ml Proteinase K). Undissolved debris was
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pelleted and the supernatant was mixed with an equal volume of isopropanol to precipitate

the DNA. The DNA was washed in 70% EtOH, dried and resuspended in ddH2O.

2.1.3 Agarose Gel Electrophoresis and DNA Gel Extraction

Separation of DNA fragments by size was achieved by electrophoresis in agarose gels

(0.7% - 2.5%; 1 x TAE (Sambrook et al., 1989); 0.5 mg/ml ethidiumbromide). DNA

fragments were recovered from agarose gel slices with either the QIAEX II or the

QIAquick Gel Extraction Kit (QIAGEN, Hilden) following the manufacturer's protocols.

2.1.4 DNA Sequencing

DNA fragments were sequenced with the 'Taq DyeDeoxyTerminator Cycle Sequencing

Kit' (Applied Biosystems), which is a PCR-based modification of the Sanger et al. (Sanger

et al., 1977) protocol. The fluorescently labelled DNA pieces were separated and analysed

with ABI373A and ABI377 systems (Applied Biosystems) with the help of S. Wilms.

Sequencing of the murine Nemo locus was in part performed by Exelixis.

2.1.5 Quantitation of DNA

The concentration of nucleic acids was determined by measuring the absorption of the

sample at 260 nm and 280 nm in a spectrophotometer (Pharmacia). An OD260 of 1

corresponds to approximately 50 µg/ml for double stranded DNA or 40 µg/ml for RNA

and single stranded DNA. Purity of nucleic acids can be estimated by the ratio

OD260/OD280, pure preparations of DNA and RNA show a ratio of 1.8 and 2.0,

respectively. Alternatively, the DNA sample was electrophoresed in an agarose gel, and

the concentration was estimated from the band intensity in comparison with a standard.

2.1.6 Polymerase Chain Reaction (PCR)

PCR (Mullis and Faloona, 1987; Saiki et al., 1985) was used to screen mice and ES cells

for the presence of targeted alleles or transgenes and to amplify fragments for sequencing.

Reactions were performed either in Hybaid machines (MWG-Biotech) or Trio-

thermocyclers (Biometra).
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Name Sequence (5’-3’) TAnn. [°C] Location Direction

27 GCCTTGGTGCTCCCTAACTCT 62 Nemo intron2 sense

39 GATTCGCAGCGCATCGCCTT 62 neor anti-sense

40 TCACATCACATCGTTATCCTT 62 Nemo intron2 anti-sense

61 ATGAACAAGCACCCCTGGAAG 62 Nemo exon1 sense

MP65 GTTCAGAGGTTCAGTCCATTATC 60 Ikk2 intron 5 sense

MP45 TAGCCTGCAAGAGACAATACG 60 Ikk2 exon 6 anti-sense

MP49 TCCTCTCCTCGTCATCCTTCG 60 Ikk2 intron 6 anti-sense

M35 GACAAGCGTTAGTAGGCACAT 60 Flpe6 sense

M36 GAGAAGAACGGCATAGTGCGT 60 Flpe6 anti-sense

Cre1 CATCGCCATCTTCCAGCAG 62 Cre sense

Cre2 CAATTTACTGACCGTACAC 62 Cre anti-sense

Cre8 CCCAGAAATGCCAGATTACG 60 Cre sense

CD19c AACCAGTCAACACCCTTCC 60 neor anti-sense

Table 1.  List of primers routinely used for typing
The sequences are shown from 5’ to 3’. Direction is designated “sense”, if the primer
orientation coincides with the transcriptional orientation of the adjacent gene, and “anti-
sense” otherwise.

Genotyping of mice and ES cells was generally performed in a total volume of 30 ml

according to the following reaction mix: 25 pMol of each primer, 1.6 U of Thermus

aquaticus (Taq) DNA polymerase (GIBCO-BRL), 250 mM dNTPs (Pharmacia), 10 mM

Tris-HCl pH 8.3, 50 mM KCl, 2.5 mM MgCl2, 100 ng template DNA. Amplification

started with denaturation for 3 min at 94 °C followed by 30-35 cycles of 94 °C for 30 sec,

59-62 °C for 30 sec and 72 °C for 30 sec. A final extension step was performed at 72 °C

for 5 min.
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Primers Mouse Strain Allele Product [Bp]

27, 39, 40, 61 Nemo-conditional WT 432

FN 657

F 577

D 842

DN 922

M35, M36 Flpe6 Flpe 647

MP65, MP45, MP49 Ikk2-conditional WT 436

FL 533

D 652

Cre1,Cre2 All Cre lines Cre 1000

Cre8, Cre19c CD19-Cre CD19-Cre 525

Table 2. Mouse typing by PCR

Since Pfu DNA polymerase (Stratagene) has a 12-fold higher fidelity than Taq DNA

polymerase, it was used for amplification of fragments for sequencing. PCR of transgenic

Cre lines was performed as published.

2.1.6 Southern Blot Analysis

5-15 µg DNA were digested o/n with 50 to 100 U of the appropriate restriction enzyme.

Subsequently, the DNA fragments were resolved by agarose gel electrophoresis and

transferrred onto HybondTM-N+ (Amersham) or GeneScreenPlus (Dupont) nylon

membranes by an alkaline capillary transfer according to the method of (Chomczynski and

Qasba, 1984). Membranes were baked at 80°C for 2 hours to fix the DNA, equilibrated in

2x SSC (Sambrook et al., 1989) and then prehybridized o/n in hybridization solution (1M

NaCl, 1% SDS, 10% dextran sulfate, 50 mM Tris-HCl pH 7.5, 500 µg/ml sonicated

salmonsperm DNA) at 65 °C. Afterwards, the radioactively labelled probe was added to

the hybridization solution and allowed to hybridize for 10 h at 65 °C in a rotating cylinder

(Hybaid).
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The following probes were used:

Nemo 5' external probe (probe A): A 480 Bp fragment, excised with AccI and XmnI

from DNA2 (Schmidt-Supprian et al., 2000). DNA2 contains a cloned

BamHI fragment of the Nemo genomic locus, the AccI-XmnI 480 Bp

fragment is located before exon 1 of the Nemo gene.

Nemo 3' external probe: A 429 Bp fragment, excised with SpHI and EcoRI from DNA1

(Schmidt-Supprian et al., 2000). DNA6 contains a cloned BamHI fragment

of the Nemo genomic locus, the SpHI-EcoRI 429 Bp fragment is located in

intron 5 of the Nemo gene.

Nemo internal probe (probe B): A 597 Bp fragment, excised with SpHI and EcoRI from

DNA2 (Schmidt-Supprian et al., 2000). DNA2 contains a cloned BamHI

fragment of the Nemo genomic locus, the SpHI-EcoRI 597 Bp fragment is

located in intron 2 of the Nemo gene.

Ikk2 internal probe: A BglII-StuI fragment (Pasparakis et al., 2002a).

neor probe: A fragment of 600 Bp, excised as a PstI – BamHI fragment from

pMMneoflox8 (Kraus, 2001).

25 to 60 ng of sample DNA were radioactively labeled with 2.5 mC [α32P]dATP

(Amersham, Braunschweig) using the LaddermanTM Labeling Kit (Takara, Japan) that is

based on the principle of random primed oligolabeling (Feinberg and Vogelstein, 1984).

Unincorporated radiolabeled nucleotides were removed with MicroSpinTM S-200HR

columns to reduce background during hybridization (Pharmacia). The probe was denatured

for 5 min in a boiling waterbath before it was added to the hybridization solution. After

hybridization stringency washes were initially performed twice in 1 x SSC/0.1 % SDS and

then followed by washes in 0.5 x SSC/0.1 % SDS and 0.25 x SSC/0.1 % SDS, if necessary.

All washes were at 65 °C under gentle agitation for 15 min to 1 hour. After each wash the

filter was monitored with a Geiger-counter. The washes were stopped when specific

signals of 20 to 100 cps were detectable. Then, the filter was sealed in a plastic bag and

exposed to X-ray film (Kodak XAR-5 or BioMAX MR; Eastman Kodak) at –70 °C. Film

was developed in an automatic developer (Agfa). Alternatively, the filter was exposed at
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RT to a phosphoimager screen (Fuji) that was analyzed on a Bio-Imaging Analyser (Fuji

Bas 1000; Fuji, Japan).

2.2 Cell Biology Methods

2.2.1 Embryonic Stem Cell Culture

The conditional allele nemoFL was generated with Bruce-4 ES cells (Kontgen et al., 1993)

Culturing and transfection of ES cells was performed according to published protocols

(Pasparakis and Kollias, 1995; Torres and Kuehn, 1997). To maintain the pluripotency of

the ES cells, they were cultured in the presence of LIF containing ES cell medium on a

layer of embryonic feeder (EF) cells. The ES cell medium (DMEM, 15 % FCS, 1 mM

sodium pyruvate, 2 mM L-glutamine, 1 x non essential amino acids, 1:1000 diluted LIF

supernatant, 0.1 mM 2-β-mercaptoethanol) contained FCS from a batch that had been

tested to promote ES cell growth and hinder in vitro differentiation. ES and EF cells were

grown in tissue culture dishes (Falcon, Greiner) and kept at 37°C in a humid atmosphere

with 7.5% CO2. EF cells (EF medium: DMEM, 10% FCS, 1 mM sodium pyruvate, 2 mM

L-glutamine) were never passaged more than three times and mitotically inactivated by

mitomycin-C treatment (10 µg/ml for 2 h), prior to seeding with ES cells. ES cell colony

growth was stopped before they became confluent. Colonies were washed once with PBS

and then treated shortly with trypsin (0.05 % trypsin, 0.02 % EDTA in PBS; GIBCO-BRL)

at 37°C until the cells detached from the dish. Optimal conditions for trypsinization of

Bruce-4 cells were achieved by supplementing the solution with 1% chicken serum. The

cell suspension was then used for passaging, transfection or freezing. ES cells were frozen

in ES cell medium containing 10 % DMSO at –80°C and later transferred into liquid

nitrogen for long term storage. For transfection, 0.6 - 1 x 107 ES cells were mixed with 30

to 40 µg of DNA in 1 ml transfection buffer (20 mM HEPES, pH7; 137 mM NaCl; 5 mM

KCl; 0.7 mM Na2HPO4; 6 mM Glucose; 0.1 mM 2-β-ME) and electroporated at RT (480

mF, 230-240V). Subsequently, the ES cells were transferred onto an embryonic feeder

layer and 48 hours later placed under G418 selection (300 µg/ml, 50% active). Selection

against HSV-tk containing random integrants started at day five after transfection by

supplementing the medium with 2 mM gancyclovir (Cymeven, Syntex). At around day 10
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of the transfection, double resistant colonies were picked and split into EF-containing 96-

well tissue culture dishes for expansion.

Specific deletion of the loxP flanked exon II of the Nemo gene and the FRT flanked neor

selection marker cassette from targeted ES cells was achieved in a transient transfection

with 30 µg of supercoiled plasmids: either pCMV-Flpe6 (Buchholz et al., 1998) and

pPGK-Puro, or pCMV-Flpe6, pPGK-Cre (K. Fellenberg, unpublised) and pPGK-Puro

(pFlep6, pPGK-Cre and pPgk-Puro in a ratio of 1:1:10). The conditions of the transfection

were as described above. Two days after the transfection the ES cells were split and

replated at a density of 2 x 103 cells per 10 cm tissue culture dish. Within the next seven to

ten days colonies were allowed to grow up, before they were picked, trypsinized and split

into a master and a duplicate 96-well plate. Cells in the duplicate plate were placed under

G418 selection (700 µg/ml, 50% active) such that G418 sensitive clones were detectable

by cell death. The sensitive clones were then recovered and expanded from the master

plate.

2.2.2 Preparation of Cell Suspensions from Lymphoid Organs

Ex vivo isolated cells were resuspended in medium (DMEM, 5% FCS, 2 mM L-glutamine)

and kept on ice. Thymus, spleen and lymph nodes were squashed between two frosted

sides of a microscope slide to obtain single cell suspensions. Bones were flushed with

medium to extract bone marrow cells and the peritoneal cavity was flushed with 10 ml of

medium to recover cells. Erythrocytes were lysed from spleen and bone marrow

preparations by incubation in lysis buffer for 2 min on ice (140 mM NH4Cl, 17 mM Tris-

HCl pH7.65). Blood from the tail vain was collected in a tube with heparin (Liquemin,

Roche) and then layered on top of 7% Ficoll 400 (Pharmacia, Sweden). After

centrifugation at RT with 1350 g for 15 min., lymphocytes were recovered from the

interphase of the gradient.
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2.2.3 Flow Cytometry

Cells (in general: 106 per sample) were surface stained in 30 ml PBS, 1 % BSA, 0.01 % N3

with combinations of fluorescein isothiocyanate (FITC), phycoerythrin (PE), Cy-

ChromeTM (Cyc), PERCP and/or APC conjugated mAbs for 20 min on ice. Stainings with

biotinylated mAbs were followed by a second staining with either Streptavidin-Cy-

ChromeTM (Pharmingen) or Streptavidin-PERCP (Becton Dickinson). After staining the

samples were washed and resuspended with PBS-BSA-N3. Stained cells were acquired on

a FACScan or FACSCalibur and data were analysed using CellQuest software (Becton

Dickinson). Dead cells were labelled with propidium iodide or Topro-3 and excluded from

the analysis. Monoclonal antibodies, listed in Table 3, were either prepared in our

laboratory by C. Uthoff- Hachenberg and B. Hampel or purchased from Pharmingen

(USA).

Specificity Clone     Reference and supplier

IgM R33-24.12 (Gruetzman, 1981), lab-made

IgD 1.3-5 (Roes et al., 1995), lab-made

IgMb MB86 (Nishikawa et al., 1986), lab-made

IgG2ab G12-47/30 (Seemann, 1981), lab-made

IgG2b R14-50 (Müller, 1983), lab-made

IgE 95.3 (Baniyash and Eshhar, 1984), lab-made

NP B1-8m (Reth, 1981), lab-made

NP B1-48 (Reth, 1981), lab-made

NP S43-10 (Wildner, 1982), lab-made

NP S24/63/63 (Baumhackel et al., 1982), lab-made

NP N1G9 (Cumano and Rajewsky, 1985), lab-made

NP B53-8 (Reth, 1981), lab-made

NP B53-12 (Reth, 1981), lab-made

B220/ CD45R RA3-6B2 (Coffman, 1982), lab-made/Pharmingen

CD3e 145-211 (Leo et al., 1987), Pharmingen

CD4 GK.1.5/4 (Dialynas et al., 1983), Pharmingen

CD5 53-7.3 (Ledbetter and Herzenberg, 1979), Pharmingen



 Materials and Methods 19

CD8 53-6.7 (Ledbetter and Herzenberg, 1979), Pharmingen

CD11c HL3 (Huleatt and Lefrancois, 1995), Pharmingen

CD11b (Mac-1) M1/70 (Springer et al., 1979), lab-made/Pharmingen

CD19 1D3 (Krop et al., 1996), Pharmingen

CD21/CD35 7G6 (Kinoshita et al., 1988), Pharmingen

CD22 Cy34.1 (Symington et al., 1982), Pharmingen

CD23 B3B4 (Rao et al., 1987), Pharmingen

CD24/HSA M1/69 Springer et al. 1978, Pharmingen

CD25 (IL2Rα) 7D4 (Malek et al., 1983), Pharmingen

CD43 S7 (Gulley et al., 1988), Pharmingen

CD44 KM114 (Miyake et al., 1990), Pharmingen

CD45Rb 16A (Bottomly et al., 1989), Pharmingen

CD62L (L-Selectin) MEL-14 (Gallatin et al., 1983), Pharmingen

CD69 H1.2F3 (Yokoyama et al., 1988), Pharmingen

CD86/B7.2 GL1 (Inaba et al., 1994), Pharmingen

CD90/Thy1.2 CFO-1 (Opitz et al., 1982), Pharmingen

CD95 (Fas) Jo2 Pharmingen

CD103 (αIEL) M290 (Kilshaw and Baker, 1988), Pharmingen

CD152 (CTLA-4)  UC10-4F10-11 (Tivol et al., 1995), Pharmingen

I-Ab AF6-120.1 (Wall et al., 1983), Pharmingen

H-2Kb AF6-88.5 (Loken and Stall, 1982), Pharmingen

H-2Kd SF1-1.1 (Abastado et al., 1987), Pharmingen

Ly6-G (Gr-1) RB6-8C5 (Fleming et al., 1993), Pharmingen

MHC class II M5/114 (Bhattacharya et al., 1981), Pharmingen

BP-1 BP-1 (Cooper et al., 1986), Pharmingen

HSA 30F1 (Ledbetter and Herzenberg, 1979), lab-made

TCRβ H57-597 (Kubo et al., 1989), Pharmingen

Table 3. List of antibodies used for flow cytometry and ELISA.
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2.2.4 Magnetic Cell Sorting and FACS Sorting

Specific cell populations were either sorted or depleted from a heterogenous cell

suspension by magnetic cell sorting (MACS; Miltenyi Biotec, Bergisch Gladbach). Cell

populations were labelled with antibody-coupled microbeads (10 ml beads, 90 ml PBS-

BSA-N3 per 107 cells) and separated on VS, CS or Mini-MACS columns in a magnetic

field (Miltenyi et al., 1990). For cell sorting B cells were purified by MACS (Miltenyi) and

then stained with antibodies against various cell surface markers. B cells of individual B

cell subsets were then sorted using a dual laser FACStar (Becton Dickinson). The purity of

isolated populations was subsequently tested by FACS analysis: MACS-isolated B cells

were typically ≥ 85% pure and sorted B cell subpopulations were ≥ 95% pure. FACS

sorting was performed with the help of Christoph Goettlinger.

2.2.5 CFSE Labeling and in vitro T Cell Activation

T cells were purified using MACS (CD90- or CD4-beads after depletion with B220- or

CD19-beads, all Miltenyi) or R&D T cell enrichment columns or FACS-sorting. For

activation marker studies 1.5 to 4 x 106 cells were plated in a 24 well plate and analyzed

after 24 h. Supernatants were kept for cytokine analysis. For proliferation T cells were

resuspended in 1 ml per 107 cells 2.5 µM CFSE (5 mM stock in DMSO, Molecular Probes)

in PBS at 37 °C for 5min (Lyons and Parish, 1994). The labeling reaction was stopped by

addition of 10 ml ice-cold DMEM/10 % FCS medium. The cells were then washed once in

medium. Labeled T cells were plated at 0.5 x 106 cells per well in round bottom 96 well

plates and analyzed after various time points.

Stimulations with immobilized antibodies against CD3 (Clone 145-2C11, Pharmingen) or

CD3 and CD28 (Clone 37.51, Pharmingen) were performed either by precoating plastic

plates with antibody or by adding antibody-coated beads to the cell suspensions. Beads

(surfactant-free sulfate white polystyrene latex, 4.9 µm diameter, intrafacial dynamics

corporation) were incubated with the antibodies in PBS at 37 °C rotating for 2h, washed

twice with PBS and resuspended in medium.
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2.3 Biochemistry and Immunohistochemistry

3.2.1 Protein Extract Preparations

MEFs were resuspended at 106/15 µl cells in hypotonic solution (10 mM Hepes [pH 7.9],

10 mM KCl, 2 mM MgCl2, 0.5 mM DTT, 0.1 mM EDTA, supplemented with various

protein inhibitors) and incubated for 10 min at 4 °C. Then NP-40 was added to 10 % and

the cells were microfuged at 13,000 rpm for 1 min. The supernatant containing the

cytoplasmic fraction was recovered and the nuclear pellet was resuspended in 106/10 µl

cells of high salt buffer (20 mM Hepes [pH 7.9], 420 mM NaCl, 1.5mM MgCl2, 0.5 mM

DTT, 0.2 mM EDTA

and 10 % glycerol) and incubated on ice for 30 min. Nuclear extracts were recovered after

centrifugation at 10,000 rpm for 10 min at 4 °C and stored at – 80 °C.

3.2.2 Western Blotting

Cytoplasmic extracts were electrophoresed by SDS-PAGE (10 %) and transferred to

immobilon-NC membranes (Millipore). The membranes were blocked with superblock

(Pierce), or 3 % NF-milk/PBS or 5 % BSA/PBS and probed using various antibodies.

Membranes were then incubated with goat anti-rabbit IgG-horseradish peroxidase (HRP)

conjugates and developed using the ECL or ECL+ kit (APB).

Specificity Clone, Manufacturer 

β-Actin (AC-15, Sigma)

G6PD (A 9521, Sigma)

IκBα (C21, Santa Cruz)

IKK1 (IMG-136, Imgenex)

IKK2 (10AG2, Upstate Biotechnology)

IKK2 (AHP547, Serotec)

NEMO (rabbit anti-NEMO serum, Yamaoka et al, 1998)

SHP-2 (sc-280; C-18, Santa Cruz)

Table 4. List of antibodies used for Western Blotting
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3.2.3 Electromobility Shift Assay

1 µg to 5 µg of nuclear extract (for MEFs) or NP-40 whole cell lysate (for sorted T cells)

were incubated for 30 min at room temperature with 2 µg poly(dI-dC) (Pharmacia) and 0.5

ng of 32P-labelled κB probe derived from the H-2Kb promoter (Yamaoka et al., 1998) in

binding buffer (10 mM TrisHCl [pH 7.5], 50 mM NaCl, 0.5 mM DTT, 0.1 mM EDTA, 0.1

mg/ml BSA and 4 % glycerol). Samples were fractionated on a 5 % non-denaturing PAGE

and visualized by autoradiography. Other probes used were NF-κB (Promega), Oct-1

(Promega) and NF-1 (Rothwarf et al., 1998).

For supershift assays nuclear extracts or whole cell lysates were preincubated for 30 min at

RT with antibodies against p50 (sc-114, Santa Cruz), p52 (rabbit antiserum, upstate

biotech), RelA (sc-109, Santa Cruz), c-Rel (sc70, Santa Cruz) or RelB (sc-226; C-19,

Santa Cruz).

3.2.4 Measurement of IL-6 and TNF Production

MEFs were plated at 4 x 104 cells per well onto 48 well plates in DMEM containing 10 %

FCS. After 24 h cells were stimulated in triplicate samples with 1 or 10 ng/ml IL-1β, 10

ng/ml TNF or 1 µg/ml LPS for 16 h. The concentration of IL-6 and TNF in the culture

supernatant was determined by ELISA (R&D Systems), according to manufacturer’s

instructions.

3.2.5 Measurement of TNF-Induced Cell Death

MEFs (2 x 104 cells per well) were plated onto 96 well plates and cultured for 24 h in

DMEM containing 10 % FCS. Then the cells were stimulated in DMEM containing 5 %

FCS with either 10 ng/ml TNF or 10 ng/ml TNF plus 300 ng/ml Cycloheximide (Tanaka et

al., 1999). TNF induced cell death was determined by a celldeath kit (Promega) according

to manufacturers instructions. Each condition was measured in triplicate samples.

3.2.6 Preparation of Thin and Ultrathin sections

Tissues fixed in 4 % paraformaldehyde were subsequently treated with 2 % osmium

tetroxide in 0.1 M PBS for 2 h at 4°C, washed in 0.1 M PBS, dehydrated in a graded

ethanol series and embedded in araldite. The 0.5 µm thin slices were stained with
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methylene blue and investigated using a Zeiss Axiophot (Zeiss). Ultrathin 60 nm sections

were examined using an electron microscope (902A, Leo) after further contrasting with

uranyl acetate-lead citrate. Sections were cut by B. Hampel, C. Hoffmann, E. Janßen, and

J. Siodladczek.

3.2.7 Histological Analysis and Immunohistochemistry

Paraffin sections were cut at 5-10 µm and stained with hematoxylin and eosin or giemsa-

azur-eosin-methylene blue solution (Merck). Immunohistochemistry was performed on

paraffin sections using antibodies against NOS-II (SA200, Biomol), Ki-67 (Dianova) and

the 85 kD cleavage fragment of PARP (Promega). After treatment with 3 % normal goat

serum sections were incubated with the second antibody (Dako). The histological analysis

was done in collaboration with Wilhelm Bloch (Institut I für Anatomie, Joseph Stelzmann

Strasse 9, D-50931 Köln, Germany).

2.4 Mouse Experiments

Mouse experimental procedures like vasectomy of males, tail bleeding as well as breeding

of foster mothers and the general handling, marking of mice were performed according to

Hogan (Hogan et al., 1987) and Silver (Silver, 1995).

2.4.1 Mice

C57BL/6, C57BL/6 x Balb/c, 129/Sv and CD1 mice were obtained from Bomholtgard

(Denmark), Charles River, Harlan Winkelmann or Jackson Laboratories. CB20 mice were

taken from breedings in our animal facility. Balancer-Cre mice (Betz et al., 1996), CD4-

Cre (Lee et al., 2001), CD19-Cre mice (Rickert et al., 1995; Rickert et al., 1997), deleter-

Cre mice (Schwenk et al., 1995) and Mx-Cre mice (Kuhn et al., 1995) were intercrossed

with the newly generated NemoFL strain, the Ikk2FL (Pasparakis et al., 2002a) and the

Ikk2 KFL (Pasparakis et al., 2002b) in conventional facilities.
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2.4.2 Immunizations

Primary T dependent antigen responses were induced with alum precipitated NP-CG (4-

hydroxy-3-nitrophenylacetyl chicken-γ- globulin) (Weiss and Rajewsky, 1990). The

immunogen was prepared by mixing 1 volume of (1 mg/ml in PBS) with 1 volume of 10 %

KAl(SO4)2. The solution was adjusted to pH 6.5 and kept 30 min on ice. Then, the

precipitate was washed three times in PBS and resuspended in PBS. Mice were immunized

by i.p. injections of 5 or 50 µg NP17-CG in a volume of 200 µl.

2.4.3 ELISA - Serum Analysis

Ig serum concentrations were determined by C. Uthoff-Hachenberg with enzyme-linked

immunosorbent assays (ELISA, (Kendall et al., 1983)) as described in Roes and Rajewsky

(Roes and Rajewsky, 1993). Microtiter plates (Costar) were coated in PBS plus reagent at

4 °C o/n, and subsequently blocked at RT for 30 min in PBS, 0.5 % BSA, 0.01 % N3, pH

7.2. Next, serially diluted sera samples were applied to the wells and incubated at 37 °C for

1 hour. Then, secondary biotinylated antibody was added for 1 hour at 37 °C. Detection of

the biotinylated reagent was achieved with SA-conjugated alkaline phosphatase (AP,

Boehringer: 30 min at RT) and p-nitrophenylphosphate as substrate (Boehringer).

Following each incubation step, unbound antibodies or SA-conjugated AP were removed

by five washes with tapwater. The OD405 was measured with an ELISA-photometer

(Anthos 2001, Anthos Labtech Instruments) and the relative antibody concentrations were

determined by to a standard. Affinities of IgG1 and l NP-specific antibodies were

determined by calculating the association constant as described by Cumano and Rajewsky

(Cumano and Rajewsky, 1986), following a method developed by Herzenberg et al.

(Herzenberg and Black, 1980). Relative binding of serum antibodies to NP5-BSA versus

NP14-BSA was determined by ELISA in comparison to anti-NP antibody standards of

known affinity.

Coating Biotin-Conjugate Specificity Standard

R33-24.12 gam IgM (SBA) IgM B1-8µ

RS 3.1 R33-60 IgMa 267.7

Mb86 R33-60 IgMb B1-8m
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gam IgG1 (Sigma) gam IgG1 (SBA) IgG1 N1G9

ram IgG2aa (Nordic) gam IgG2a (SBA) IgG2aa 41.2-3

G12-47/30 G12-47/30 IgG2ab S43-10

R14-50 gam IgG2b (SBA) IgG2b D3-13F1

2E.6 gam IgG3 (SBA) IgG3 S24/63/63

gam IgA (Sigma) gam IgA (SBA) IgA 233.1.3

95.3 ram IgE (Pharmingen)IgE B1-8e

187.1 R33-18-10.1 κ S8

NP-BSA gam IgM (SBA) NP/IgM B1-8µ

NP-BSA RS3.1 NP/IgMa 267.7

NP-BSA MB86 NP/IgMb B1-8µ

NP-BSA gam IgG1 (SBA) NP/IgG1 N1G9

NP-BSA gam IgG2a (SBA) NP/IgG2a S43-10

NP-BSA gam IgG3 (SBA) NP/IgG3 S24/63/63

NP-BSA gam λ (SBA) / LS136 NP/λ N1G9

NP-BSA gam κ  (SBA) NP/κ S8

Table 5. Antibody combinations to determine serum antibody isotypes.

2.4.4 BrdU Labeling

Mice were fed with BrdU (Sigma-Alrich) in the drinking water (1 mg/ml) for one or two

weeks (Forster et al., 1989; Gray, 1988). Splenocytes were stained with FITC-conjugated

anti-B220 mAbs (clone RA33.A1.CL6) and fixed with 70 % methanol followed by 2 %

formalin in PBS. Cell were then treated with 1M HCl/0,5 % Tween 20 for 15 min at 37 oC

followed by 0, 1 % Na2B4O7. Cells were finally stained with a biotin-conjugated anti-BrdU

mAb (Alexis Biochemicals) and streptavidin-Cychrome and analyzed with a FACSCalibur

(Becton Dickinson). Alternatively BrdU-Incorporation was measured using a

commercially available kit following manufacturers instructions (Pharmingen).
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2.4.5 Anti IL-7R Antibody Injections

Mice were injected intravenously with 1 mg of anti-IL-7R mAb (clone A7R34) (Sudo et

al., 1993) every other day for four weeks before sacrifice. Cell suspensions from the

various lymphoid organs were analyzed by FACS. DNA isolated from MACS-purified

splenic B cells was analyzed with Southern blotting.
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3. RESULTS

3.1 Generation of a Conditional nemo Allele

The murine gene encoding NEMO is located on the X chromosome, less than 4 kb

from the G6pd gene (Figure 2A). Two BamHI fragments from a BAC containing the

murine Nemo gene were subcloned and sequenced and found to contain the first 7

coding exons of Nemo and the entire region between the coding sequences of the Nemo

and G6pd genes: DNA 2 (6.7 kb, containing Nemo exons I and II) and DNA 1 (7.6 kb,

encompassing exons III-VII) (Figure 2). For the generation of NEMO-deficient mice a

conditional nemo allele was produced. Deletion of exon II introduces a frameshift

followed by a premature termination codon, and should thus inactivate the Nemo gene.

In order to test this hypothesis a Nemo cDNA lacking exon 2 was cloned and expressed

in a NEMO-deficient B cell line (Yamaoka et al., 1998). Expression of this cDNA

failed to restore NF-κB activation in this cell line, showing that deletion of exon 2

indeed leads to a nemo null allele (data not shown).

Therefore I decided to place Nemo exon II between two loxP sites in the mouse

genome. Accordingly a targeting vector was designed to flank exon II of Nemo with

two loxP sites: A FRT site flanked cassette, containing a neor gene (PMC1neopA,

Stratagene) and the Flpe6 gene (Buchholz et al., 1998) under the control of the ACE

promoter (Howard et al., 1993) was cloned and placed into the second intron of the

Nemo gene (Figure 2). This cassette was originally designed and cloned in order to

excise itself in the male germline, analogous to the gene self-excision method by

Bunting et al. (Bunting et al., 1999). Unfortunately, it was later found that a two Bp

deletion in the Flpe6 coding sequence rendered the FLPE nonfunctional and the

cassette had to be deleted in vitro by transient expression of Flpe6. A 2.0 kb XmnI-

BglII fragment was used as 5’ homology region, a 2.0 kb BglII-SpeI fragment was

placed between the two loxP sites and a 5.5 kb SpeI-ClaI fragment was used as 3’

homology region. A thymidine kinase gene was used for negative selection of clones

with random integration of the targeting vector. Bruce-4 ES cells (Kontgen et al.,

1993) derived from C57Bl/6 mice, were transfected, cultured and selected as previously

described (Pasparakis and Kollias, 1995; Torres and Kuehn, 1997). Out of 398 G418

and gancyclovir resistant colonies 6 were identified as homologous recombinants with

cointegration of the second loxP site (FN) by Southern blot analysis of BamHI digested
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DNA, using an AccI-XmnI 480 bp fragment as 5’ external probe (probe A) (Figures 2

and 3A). Two NemoFN/Y ES cell clones were then transiently cotransfected with either

Flpe6 and puromycin, or Flpe6, Cre and puromycin encoding plasmids (pFlep6,

pPgkcre and pPgkpuro in a ratio of 1:1:10) to generate ES cells lacking the neor

cassette and/or NEMO coding exon II (genotypes F, DN and D, see Figures 2 and 3A).

Experimental procedures were essentially as described (Pasparakis and Kollias, 1995;

Torres and Kuehn, 1997), except that puromycin selection (1 µg/ml) was applied

between 24-72 hours after transfection. ES cell clones containing neor deletion (F),

exon II deletion (DN) or neor and exon II deletions (D) were identified by Southern blot

analysis of BamHI digested DNA using probe B (600 bp SpHI-EcoRI fragment)

(Figures 2 and 3A). Chimeric mice were generated by injection of NemoFN/Y, NemoF/Y

and NemoD/Y ES cells into blastocysts from CB20 or Balb/C mice. Matings of male

chimeras to C57BL/6 females yielded germline transmitted female offspring of pure

C57BL/6 genetic background in all three cases. NemoD/WT mice were generated by

crossing either chimeras transmitting the NemoFN genotype with Cre-deleter (Schwenk

et al., 1995) yielding NemoDN/WT females or by crossing chimeras transmitting the

NemoD/Y genotype to wild-type C57BL/6 females, yielding nemoD/WT heterozygous

females. Since nemoDN and nemoD are similarly nemo-knockout alleles and no

difference could be detected between the two both NemoDN/WT and NemoD/WT are

referred to as NemoD/WT. NEMO-deficient embryos were generated by crossing

NemoD/WT mice to chimeras transmitting the NemoD genotype. DNA was analyzed by

Southern blot analysis as described above, or by PCR, using 4 primers in one reaction:

27, 39, 40 and 61 (Figures 3A and B). RT-PCR analysis of RNA and Western blot

analysis of extracts from Nemo deleted ES cell clones revealed the presence of a

shortened mRNA and absence of NEMO protein (not shown). Evidence that targeting

of the Nemo genomic locus did not interfere with expression of the neighboring G6pd

gene was obtained by RT-PCR (not shown) and Western analysis (Figure 3C).

Chimeric mice were generated using either NemoFN/Y or NemoD/Y ES cell clones.

Chimeras generated from NemoD/Y ES cells developed skin lesions 5 to 9 days after

birth. The lesions seemed to be restricted to the ES cell derived black colored skin

areas. The most severely affected animals died at this stage, whereas some chimeras

recovered with complete disappearance of the skin phenotype. Chimeras generated

from NemoFN/Y cells developed normally.



Figure 3. Generation of Nemo knockout Mice II
(A) Southern blot analysis of BamHI digested genomic DNA from ES cell
clones, mice and embryos. Left panel: DNA from parental (WT/Y) and targeted
ES cells carrying the genotypes FN/Y, F/Y, DN/Y and D/Y. Right Panel: DNA
from wild type (WT/WT), heterozygous FN (WT/FN), homozygous FN
(FN/FN) and heterozygous deleted (WT/DN and WT/D) mice, and from
hemizygous DN (DN/Y) and homozygous (D/DN) deleted embryos.
(B) Genotyping of genomic DNA from the above described ES cells, mice and
embryos by PCR using primers 27, 39, 40 and 61.
(C) Western blot analysis of NEMO and G6PD protein expression in
cytoplasmic extracts of wild type (WT/Y), and Nemo knockout (DN/Y) MEFs.
ns, non-specific.
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3.2 Analysis of Nemo-knockout Mice

3.2.1 Liver Degeneration in NEMO-deficient Embryos

NEMO-deficient embryos were generated by crossing heterozygous knockout

(NemoDN/WT) females with male chimeras generated from Nemo-deleted (NemoD/Y) ES

cells. Examination of E12.5 NEMO-deficient embryos by TUNEL-assay revealed

degeneration of the liver due to massive apoptosis of hepatocytes. Heterozygous Nemo

knockout embryos also showed increased hepatocyte apoptosis when compared to wild

type embryos (data obtained in collaboration with Dr. Bloch, not shown).

3.2.2 NEMO is Essential for NF- B Activation

Western blot analysis showed complete absence of NEMO protein in MEFs isolated

from E12.5 NEMO-deficient embryos (Figure 3C). To assess the role of NEMO in the

induction of NF-κB we measured NF-κB activation by various means. In order to

directly compare the inhibitory effect of NEMO-deficiency to that of IKK2-deficiency

on the activation of NF-κB by proinflammatory stimuli, we included ikk2 knockout

MEFs (Pasparakis et al., 2002a) into the analysis. Stimulation of the cells by TNF, IL-1

or LPS failed to induce any detectable NF-κB DNA binding activity in NEMO-

deficient MEFs (Figure 4A), although the p65 and p50 NF-κB subunits are expressed at

normal levels in these cells (not shown). In IKK2-deficient MEFs TNF and IL-1, but

not LPS, induced NF-κB DNA binding activity, although the levels of induction were

strongly reduced compared to wild type MEFs. Analysis of IκBα protein levels in

cytoplasmic extracts yielded corresponding results (Figure 4A).

Inhibition of NF-κB activity has been shown to sensitize cells to TNF induced

apoptosis (reviewed in (Barkett and Gilmore, 1999)). As shown in Figure 4B, NEMO-

deficient MEFs are extremely sensitive to TNF cytotoxicity even in the absence of

cycloheximide. Addition of the protein-synthesis inhibitor cycloheximide renders cells

more sensitive to apoptosis, since it blocks de novo synthesis of new anti-apoptotic

proteins. Under the same conditions, Ikk2D/D cells show twofold increased viability

compared to NEMO-deficient cells. To examine the role of NEMO in the expression of

NF-κB-dependent genes we measured the production of IL-6 and TNF in these cells.

NEMO-deficient cells failed to produce detectable amounts of IL-6 upon stimulation

with IL-1, TNF or LPS while Ikk2D/D MEFs produced significantly reduced IL-6
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Figure 4. Comparison of NF- B activation in wild type, NEMO-deficient and
IKK2-deficient MEFs.
(A) Nuclear translocation of NF-κB was demonstrated by electromobility shift assay
and degradation of IκBα was analyzed by Western blot. MEFs were incubated with
murine recombinant TNF (10 ng/ml) or IL-1β (10 ng/ml) for 15 min and with LPS
(1 µg/ml) for 45 min.
(B) Sensitivity to TNF induced cytotoxicity. MEFs were left untreated (resting) or
stimulated with 10 ng/ml TNF in the absence or presence of 300 ng/ml cycloheximide
(CHX) for 20 h. The amount of cell death was determined by measurement of LDH
activity using a commercially available kit (Promega). Mean and standard deviation
of triplicate samples are shown as the percentage of dead cells relative to the total cell
number for each condition.
(C) Production of cytokines induced by proinflammatory stimuli. MEFs were treated
for 16 h with various stimuli in the indicated concentrations. Levels of IL-6 and TNF
in cell culture supernatants were determined by ELISA. Results are shown as the
mean and standard deviation of triplicate samples.
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compared to wild type cells (Figure 4C). Both NEMO- and IKK2-deficient MEFs did

not release detectable amounts of TNF in response to LPS (Figure 4C). These results

show that NEMO is essential for the induction of NF-κB by proinflammatory signals,

while in the absence of IKK2 residual NF-κB activation still occurs, probably mediated

by IKK1.

3.2.3 NEMO-deficient Mice Model Incontinentia Pigmenti

Heterozygous Nemo-knockout Female Mice Develop Skin Lesions

Heterozygous Nemo knockout mice (NemoD/WT) developed a striking skin defect that

became visible 3 to 4 days after birth, when mice start to develop skin pigment. At that

time point the skin showed areas of reduced or absent pigmentation in a pattern similar

to that seen in chimeric mice (Figure 5A). The extent to which the skin is affected

varies between different mice, probably reflecting the random pattern of X-inactivation.

6 to 7 days after birth the skin of the NemoD/WT mice becomes hard and inflexible,

displaying areas of defective hair growth and extreme scaling. From the appearance of

the skin lesions on, NemoD/WT mice are increasingly growth-retarded and look runted

(Figure 5B). Most of the animals die 6 to 10 days after birth. From 33 NemoD/WT

females born from these initial matings, 29 (88%) died within this time interval: 5 at

day 6, 12 at day 7, 6 at day 8, 4 at day 9 and 1 at day 10. The 4 (12 %) surviving mice

gradually recovered and the scaling skin areas disappeared progressively, leaving

behind some patches lacking hair growth (Figure 5C). After completion of the

histological analyses these matings were stopped to prevent unnecessary suffering of

the mice.

Histopathology of the Skin in Heterozygous Nemo-knockout Mice

In normal skin, keratinocytes proliferate in the basal layer of the epidermis and move

outwards to the suprabasal layers where they progressively accumulate keratin and

finally die as fully differentiated keratinocytes when they reach the cornified layer

(Fuchs, 1993). Microscopic examination of skin sections from 4 and 8 days old

NemoD/WT mice revealed an altered skin structure with a dramatic increase in the

thickness of both the suprabasal and the cornified layer of the epidermis (Figures 6Ad

and Ae), compared to the skin of littermate controls (Figures 6Aa and Ab). At 6 weeks

of age most of the skin of surviving NemoD/WT mice shows normal morphology (Figure
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Figure 5. Heterozygous nemoD/WT female mice develop a disease of
the skin similar to human IP
(A) 4 days old nemoD/WT female and wild type male littermate.
(B) 8 days old nemoD/WT female and wild type male littermate. This
picture shows an extreme case of the runting and wasting seen in
nemoD/WT females.
(C) 5 week old surviving nemoD/WT female mouse. A stripe of the skin
showing hyperpigmentation and absence of hair growth is observed.
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 6Ac) and only small patches are affected, displaying similar, albeit less severe,

histological alterations as the skin of 4 and 8 day old mice (Figure 6Af). In wild type

skin dead keratinocytes composing the cornified layer lack nuclei or cellular organelles

(Figures 6Aa and Ab). In contrast, recognizable cell bodies with nuclei are observed in

the cornified layer of the epidermis from NemoD/WT mice (Figure 6Ad and Ae),

indicating that in these animals keratinocytes that are not fully differentiated reach the

cornified layer.

In sections from affected skin areas in NemoD/WT mice, abnormal gaps form between

keratinocytes of the basal and suprabasal layers (Figures 6Ad-f). To further investigate

this phenomenon electron microscopy was used. As can be seen in Figure 6 Ag, the

cells in the basal layer of normal epidermis are tightly packed. In contrast, in affected

skin areas of NemoD/WT mice basal layer keratinocytes appear to be in loose contact

with each other, forming filopodia that extend into the dilated intercellular spaces

(Figures 6Ah-i). In addition, alterations in tonofilaments and in desmosomal contacts

were observed in keratinocytes in the epidermis of NemoD/WT mice (not shown).

Dyskeratotic cells showing abnormal tonofilament structure and absence of

desmosomes were also observed in the skin of human IP patients (Schamburg-Lever

and Lever, 1973).

Granulocyte Infiltration in the Epidermis and Melanin Deposits in the Dermis are

Common Features in nemoD/WT Mice and Human IP Patients.

A prominent feature of IP at stage I is the presence of massive inflammatory infiltrates

in the epidermis (Landy and Donnai, 1993). Histological examination of sections from

the skin of 4 days old NemoD/WT mice reveals the presence of numerous inflammatory

foci with pronounced infiltration of granulocytes into the epidermis (Figure 6Ba). Only

a few areas showing granulocyte infiltration can be detected in the epidermis of 8 days

old NemoD/WT mice (not shown), indicating that at that age the initial inflammatory

stage is declining.

One of the best described features of IP is the presence of hyperpigmentation (Landy

and Donnai, 1993). Several studies showed that hyperpigmentation is caused by the

presence of increased number of phagocytes containing melanosome complexes in the

dermis (Schamburg-Lever and Lever, 1973; Zillikens et al., 1991). Histological

examination of skin from a stage III IP patient shows the presence of phagocytes
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Figure 6. Histopathology of the epidermis in NemoD/WT mice.
(A) Skin structure in NemoD/WT (c-f, h, i) and wild type mice (a, b, g) was examined
by light microscopy on 0.5 µm sections stained with methylene blue (a-f) or by
electron microscopy on 60 nm slices (g-i). Increased thickness of the epidermis and
widening of intercellular spaces between keratinocytes are apparent in the skin from
4 days (d) and 8 days (e) old NemoD/WT mice compared to controls (a and b
respectively). In addition, the cornified layer (indicated by an asterisk) is thickened
and shows abnormal structure with recognizable cell fragments (d, e). Sections from
unaffected skin areas of a 6 week old NemoD/WT mouse show normal structure (c),
while in affected areas the epidermis is thickened (f). Basal layer keratinocytes in the
skin from 8 days old NemoD/WT mice are in loose contact with each other with
filopodia (arrows) extending into the intercellular spaces (h, i), in contrast to the tight
adherence observed between basal keratinocytes in skin sections from control mice
(g). BL, basal layer. Bars = 35µm (A-F); 3.5µm (g and h); 2µm (i).
(B) Granulocyte infiltration and hyperpigmentation in the skin of NemoD/WT mice.
(a) Methylene blue stained skin sections from 4 days old NemoD/WT mice show
clusters of infiltrating cells, mainly granulocytes (arrowheads) into the epidermis.
(b) Depositions of melanin granulas (arrows) in the dermis are observed in skin
sections from 6 week old mice (Giemsa staining).
(c) Similar melanin depositions are seen in sections from hyperpigmented skin areas
from stage III IP patients (hematoxylin-eosin-safran staining). Slides from IP patients
were obtained from Christine Bodermer and Sylvie Fraitag.
Bars = 35µm (a); 50µm (b and c)
(C) Increased proliferation and apoptosis in the epidermis of NemoD/WT mice.
(a-d) Detection of proliferating cells in skin sections stained with an antibody to Ki-
67. In the epidermis of 8 days old control mice (a) and in unaffected areas from 6
week old NemoD/WT mice (c) only a few cells in the basal layer proliferate (arrows).
In contrast, nearly all of the basal and many suprabasal keratinocytes proliferate in
the epidermis from affected skin areas in 8 days old (b) and 6 week old (d) NemoD/WT

mice. Arrows indicate Ki-67 positive cells.
(e-f) Immunohistochemical detection of apoptotic cells by staining with antibodies to
the 85 kD fragment of PARP. In sections from 8 days old wild type mice (e) and
from normal skin areas of 6 week old NemoD/WT mice (g), apoptotic cells are
detected only at the border between the suprabasal and the cornified layers
(arrowheads). In contrast, increased apoptosis is detected in suprabasal keratinocytes
in affected skin areas from 8 days old and 6 week old NemoD/WT mice (f, h). In the
epidermis of affected skin areas from 6 week old NemoD/WT mice apoptotic cells are
also detected in the basal layer (h). BL, basal layer; SL, suprabasal layer; CL,
cornified layer. Bars = 40 µm (a-d); 30 µm (e-h).
Histology was performed in collaboration with Dr. Wilhelm Bloch.
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containing melanin in the dermis (Figure 6Bc). A similar picture is observed in sections

from affected skin patches from a 6 week old NemoD/WT mouse (Figure 6Bb).

Increased Proliferation and Apoptosis in the Epidermis of Heterozygous Nemo-

knockout Mice.

Epidermal homeostasis is based on a steady state between proliferation of cells in the

basal layer and apoptosis of terminally differentiated keratinocytes at the border

between the suprabasal and cornified layers (Fuchs, 1993). To determine whether the

epidermal hyperplasia observed in the skin of NemoD/WT mice is caused by increased

proliferation of keratinocytes, we stained skin sections from NemoD/WT and wild type

mice with an antibody to Ki-67, an antigen expressed in proliferating cells. In contrast

to wild type skin where only some cells of the basal layer are Ki-67 positive (Figure

6Ca), nearly all of the basal and many suprabasal keratinocytes are labeled for Ki-67 in

the skin of 8 days old NemoD/WT mice (Figure 6Cb). A similar picture is observed in

affected skin patches at the age of 6 weeks (Figure 6Cd), while in skin areas of these

mice showing normal morphology, only some cells of the basal layer expose Ki-67

(Figure 6Cc).

Staining with antibodies to the 85 kDa fragment of poly-(A)DP-ribose polymerase

(PARP) reveals the presence of apoptotic cells selectively at the border between the

suprabasal and cornified layers of the epidermis in wild type mice (Figure 6Ce) and in

unaffected areas from a 6 week old NemoD/WT mouse (Figure 6Bg). In contrast,

apoptotic cells are detected also in the suprabasal layers in affected areas of 8 days old

NemoD/WT mouse skin (Figure 6Cf). At 6 weeks of age, this pattern of increased

apoptosis is extended to both basal and suprabasal keratinocyte layers, but is detected

only in small affected patches showing abnormal structure and increased proliferation

(Figure 6Ch). It seems therefore that a combined increase of proliferation and apoptosis

of keratinocytes contributes to the skin phenotype observed in NemoD/WT mice.

3.2.4 Lack of NEMO-deficient Lymphocytes in Chimeras Generated with Nemo-

knockout ES Cells

One of the consistent features of IP is the complete skewing of X inactivation in blood

leukocytes (Parrish et al., 1996). We used chimeric mice generated from ES cells
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Figure 7. Absence of ES cell derived lymphocytes in chimeras generated with
NEMO-deficient ES cells.
Flow cytometric analysis of PBL from chimeras generated from floxed (nemoFN/Y)
or NEMO-deficient (nemoD/Y) ES cells. Cells were stained with anti-CD45R/B220,
anti-CD3ε, anti-H2-kd and anti-H2-kb monoclonal antibodies. Host derived
lymphocytes are H2-kd positive and ES cell derived lymphocytes are H2-kb

positive. (A) Histograms showing H2-kb expression levels of B220+ (B cells) and
CD3+ (T cells) gated lymphocyte populations. (B) Dot plot showing H2-kb and H2-
kd staining of total PBL. Results are representative of 5 chimeras per genotype.
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carrying either a deleted (nemoD/Y) or a floxed (nemoFN/Y) nemo allele, to test whether a

similar skewing occurs against lymphocytes derived from the NEMO-deficient ES

cells. X inactivation in the mouse embryo starts after 4.5 days post coitum (d.p.c.) (Tan

et al., 1993), while ES cells are injected into blastocysts at 3.5 d.p.c. Thus chimerism

can be considered as a simulation of lyonization in females. This is further supported

by the observation that male chimeras obtained from NemoD/Y ES cells displayed a skin

phenotype similar to that seen in NemoD/WT female mice.

The targeted ES cells are derived from C57BL/6 mice and were injected into CB20 or

Balb/c blastocysts. Thus host and ES cell derived lymphocytes can be distinguished by

haplotype-specific staining for Class I MHC molecules, since C57BL/6 mice express

the H-2b and CB20 and Balb/c mice the H-2d haplotype. Flow cytometric analysis of

PBL from chimeras generated from ES cells containing a floxed nemo allele

(nemoFN/Y), reveals the presence of both ES cell and host derived B and T lymphocytes

(Figure 7A and B). ES cell derived B and T cells were not detected in chimeras

generated from Nemo knockout (NemoD/Y) ES cells, although normal numbers of B and

T cells derived from the host blastocyst were present (Figure 7A and B), indicating that

NEMO-deficient lymphocytes either do not develop or are counter-selected in these

chimeras.

3.3 Analysis of a Kinase-dead Mutant of IKK2

In the absence of IKK2 IKK complexes consist of NEMO associated with IKK1

homodimers and exhibit inducible kinase activity (Li et al., 2000; Rothwarf and Karin,

1999). To eliminate IKK2 kinase activity without disrupting IKK stoichiometry another

conditional ikk2 allele, allowing replacement of IKK2 by a kinase-dead molecule

(IKK2∆K) upon Cre-expression, was generated by Manolis Pasparakis (Pasparakis et

al., 2002b). This allele (ikk2 KFL) was produced by placing only exon 7 of the Ikk2

gene between lox P sites. After deletion of exon 7, exons 6 and 8 splice in frame and

the resulting mRNA should produce a truncated IKK2 protein lacking amino acids 160-

189, which include the two serines of the activation loop (Ser177, 181) that are essential

for the activation of the kinase (Mercurio et al., 1997) (Figure 8).
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Figure 8. The conditional ikk2 K allele. Schematic representation of the wild-type
(WT) ikk2 allele, which producesWT IKK2 protein and the ikk2 K allele, which
after deletion of loxP-flanked exon 7 generates a kinase-dead version of IKK2
(IKK2∆K). Open and filled boxes represent exons, triangles represent loxP sites
and the two serines of the IKK2 activation loop are indicated using the amino acid
single letter code.
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I conducted the biochemical analysis of MEFs generated from Ikk2 KD/WT and

Ikk2 KD/D embryos and compared them to Ikk2D/WT, Ikk2D/D and WT MEFs. The

ikk2 KD allele produces a protein that is recognized by antibodies raised against IKK2,

which has a slightly lower molecular weight (Figure 9A). The level of the IKK2∆K

protein in Ikk2 KD/D MEFs is lower than that of IKK2 in WT MEFs (Figure 9A). This

could be due to either decreased expression or increased degradation/instability of

IKK2∆K. IKK2∆K is integrated into the IKK complex, as shown by

immunopricipitation with antibodies raised against NEMO. Subsequent Western

blotting showed that NEMO interacts with IKK2∆K and IKK1 in Ikk2 KD/D MEFs

(Figure 9B). Kinase-dead IKK2 can act as a dominant negative protein (Delhase et al.,

1999). In Ikk2 KD/WT MEFs, heterozygous expression of IKK2∆K did not reduce NF-

κB activation in response to LPS or TNF compared to heterozygous IKK2 knockout or

WT MEFs. This could be due to the low level of IKK2∆K protein. In Ikk2 KD/D MEFs

LPS induced activation of NF-κB all but abolished, as in IKK2 knockout MEFs

(Figures 9C and 4A). In response to 20 min TNF treatment a residual activation of

similar magnitude could be observed in both IKK2 mutant MEFs (Figure 9C).

Subsequently a detailed time-course analysis of the NF-κB response to IL-1 or TNF

treatment was undertaken, comparing WT, NEMO deficient, IKK2 deficient and

Ikk2 KD/D MEFs (Figures 10A and B). No significant difference in NF-κB DNA

binding monitored by EMSA or IκB-α degradation could be detected between Ikk2-

knockout and Ikk2 KD/D MEFs. Subsequently, the activation of NF-κB-dependent

genes in WT, Nemo-knockout, Ikk2-knockout and Ikk2 KD/D MEFs was tested by

measuring two different parameters that are known to depend on NF-κB acivity: TNF-

mediated cytotoxicity (Barkett and Gilmore, 1999) (Figure 11A) and production of IL-

6 in response to proinflammatory stimuli (Figure 11B). WT MEFs are resistant whereas

NEMO-deficient MEFs are extremely sensitive to TNF-induced apoptosis (Makris et

al., 2000; Rudolph et al., 2000; Schmidt-Supprian et al., 2000), since they fail to

express NF-κB-dependent anti-apoptotic proteins. In this setting, Ikk2 KD/D MEFs are

more sensitive to TNF-induced apoptosis than Ikk2D/D MEFs (Figure 11A). Similarly

the production of IL-6 in response to IL-1, LPS or TNF is reduced in Ikk2 KD/D MEFs

compared to IKK2 knockout MEFs, but it is not completely abolished as in NEMO-
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Nuclear translocation of NF-κB was demonstrated by electromobility shift
assay and  degradation of IκBα was analyzed by Western blot
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deficient MEFs (Figure 11B). These results indicate that NF-κB activation is more

impaired in Ikk2 KD/D MEFs than in IKK2 knockout MEFs, although inhibition is not

as complete as in NEMO deficient MEFs.

3.4 The IKK Complex is Essential for B Cell Maintenance

To delete the loxP flanked nemo and ikk2 alleles in B lymphocytes we used a

transgenic mouse strain expressing Cre recombinase under the control of the

endogenous CD19 locus (Rickert et al., 1997). This CD19-Cre mouse has been shown

to delete loxP flanked alleles specifically in the B cell lineage. The deletion efficiency

was shown to be 75-80% in bone marrow and over 95% in splenic B cells (Cazac and

Roes, 2000; Inui et al., 2002; Rickert et al., 1997) (Figure 12). The fact that deletion

efficiency is higher in splenic than in bone marrow B cells indicates that Cre-mediated

deletion is an ongoing process during B cell development and maturation, leading to

the essentially complete deletion of loxP flanked alleles in mature B cells.

3.4.1 Flow Cytometric Analysis of the B Cell Compartment in CD19-Cre/Ikk2FL/D,

-Ikk2 KFL/D and -NemoFL/Y  Mice

Initial FACS analysis of B cell populations in Ikk2FL/FL, Ikk2FL/D, Ikk2 KFL/FL,

Ikk2 KFL/D and NemoFL/Y mice did not show any differences compared to controls. In

order to facilitate Cre-mediated deletion, I used mice in which only one loxP flanked

allele remains to be deleted (CD19-Cre/Ikk2FL/D, -Ikk2 KFL/D and -NemoFL/Y) for my

experiments. FACS analysis of B cell populations in these mouse strains revealed very

similar pictures. In the bone marrow early B cell development was essentially normal

and the only difference found compared to control mice was a 2-4 fold reduction of

mature recirculating B cells (Figure 13A and B). In the spleen the percentage of B cells

was strongly reduced, leading to an inverted B/T cell ratio (Figures 14A and B). The

reduction seems to occur mainly in the IgMlowIgD+ mature B cell population. Splenic B

cells were then subdivided into immature (IM -CD21lowHSAhigh), follicular (FO -

CD21intHSAlow) and marginal zone (MZ - CD21highHSAint) B cells according to CD21

and HSA expression (Allman et al., 1993; Bigos et al., 1999) (Figure 12). This analysis
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revealed  that, compared to controls, the FO B cells are the most diminished B cell

population in the spleens of CD19-Cre/Ikk2FL/D, -Ikk2 KFL/D and NemoFL/Y mice

(Figure 14A and B). Lymph node B cells and both B1 and B2 cells in the peritoneal

cavity of these mice were also strongly reduced compared to control mice (data not

shown).

3.4.2 Reduction of Absolute B Cell Numbers in Mice with B cell Specific Ablation

of NEMO or IKK2

FACS analysis showed a strong reduction of mature B cells in mice with B-cell specific

ablation of NEMO or IKK2. Calculation of the absolute cell numbers of individual B

cell populations in the spleens of CD19-Cre/Ikk2FL/D, -Ikk2 KFL/D and -NemoFL/Y mice

revealed a 3-4 fold decrease in the total number of splenic B cells in all mutant mouse

strains compared to controls (Figure 15A and Table 6). FO and MZ B cells were most

severely affected (Figure 15C and D and Table 6). Analysis of IM B cells revealed a

different picture in the three different mouse-strains. This population was not

significantly affected in CD19-Cre/Ikk2FL/D mice, while a clear reduction was observed

in CD19-Cre/NemoFL/Y mice and CD19-Cre/Ikk2 KFL/D mice showed an intermediate

picture (Figure 15B and Table 6).

Cell-Type Controls

CD19-Cre

Ikk2FL/FL or FL/D

CD19-Cre

Ikk K2FL/FL or FL/D

CD19-Cre

NemoFL/Y or FL/FL

        Total  42.0 ± 11.2 12.8 ± 1.1 9.9 ± 4.3 11.9 ± 1.7

           IM  6.1 ± 1.6  5.0 ± 1.0 2.9 ± 1.0  1.8 ± 0.5

           FO 27.3 ± 9.1  5.5 ± 0.5 3.7 ± 2.0  8.5 ± 1.5

          MZ  3.9 ± 1.4  0.9 ± 0.2 2.4 ± 1.1  1.1 ± 0.3

Table 6. Size of B cell subsets in CD19-Cre/IKK-conditional mice compared to
control mice
The average of absolute numbers of live B cells is shown in millions plus/minus
standard deviation (CD19-Cre/Ikk2FL/D or FL/FL: n = 3; CD19-Cre/Ikk K2FL/FL or FL/D: n =
5; CD19-Cre/NemoFL/Y or FL/FL: n = 4; Controls: n = 12).
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3.4.3 Preferential Loss of Splenic B Cells of the Deleted Genotype in CD19-

Cre/Ikk2FL/D, -Ikk2 KFL/D and -NemoFL/Y Mice

The strong decrease of peripheral B cell numbers in mice with B cell specific ablation

of NEMO or IKK2 activity suggests that inhibition of IKK signaling interferes with the

development or persistence of B lymphocytes. However, all different subpopulations of

B cells are present in CD19-Cre/Ikk2FL/D, -Ikk2 KFL/D and -NemoFL/Y mice, although in

reduced numbers. One possible explanation for this could be that the remaining cells

persist because they have escaped deletion of the loxP flanked alleles.

To investigate this hypothesis I performed Southern blot analysis of DNA isolated from

FACS-purified BM and splenic B cells populations from these three strains of mice.

This analysis revealed that between 64-76% of bone marrow IgM- B cells had deleted

the loxP-flanked alleles (Figure 16A-C). This result is in agreement with the previously

reported deletion efficiency of the CD19-Cre transgene in the bone marrow (Rickert et

al., 1997) and with deletion seen in CD19-Cre/Ikk2FL/WT mice, in which deletion of the

loxP-flanked allele has no effect due to IKK2-expression from the remaining WT allele

(Figure 16D). Between 64 - 69% of the IgM+ bone marrow B cells isolated from CD19-

Cre/Ikk2FL/D, -Ikk2 KFL/D and -NemoFL/Y mice have deleted the loxP-flanked allele,

compared to an 87% deletion of the loxP-flanked allele in CD19-Cre/Ikk2FL/WT mice.

This indicates that IKK-deleted IgM+ bone marrow B cells are counterselected, in

accordance with the reduced number of recirculating B cells in the bone marrow of

these mice. While deletion was very efficient in splenic IM CD19-Cre/Ikk2FL/D and -

Ikk2 KFL/D B cells (>90%), only 44-66% of FO B cells were found to have deleted the

loxP flanked alleles (Figure 16 A and B). In CD19-Cre/Ikk2FL/WT mice deletion was

87% and 95% for IM and FO B cells, respectively (Figure 16D). The finding that

within the follicular B cell compartment there are less cells of the deleted genotype

than in the immature compartment suggests that B cells lacking IKK2 activity are

counter-selected as they move on to become more mature FO B cells (Figure 16A and

B). In CD19-Cre/NemoFL/Y mice deletion in IM splenic B cells was less efficient than in

the IKK2 loxP flanked alleles (≈70% compared to >90%) and was not further reduced

in FO B cells (Figure 16C). This indicates that the cells that delete the nemoFL allele are

already counter-selected at the immature B cell stage. A more dramatic effect is seen in

MZ B cells. In all three mouse strains very few cells with deleted alleles (≤12%) were

found within the marginal zone B cell population, whereas in CD19-Cre/Ikk2FL/WT mice
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deletion was virtually complete, suggesting that IKK activity is essential for the

development or maintenance of these cells (Figure 16 A-D).

Based on the above data I envisage the following scenario: Ongoing deletion

continuously leads to the generation of B cells that have deleted the respective gene,

but still retain enough protein to stay alive. With time and through turnover of

endogenous mRNAs and proteins these cells lose their ability to signal via the IKK

complex and die. Continuous influx of newly generated B cells from the BM and

continuous Cre-mediated deletion of the loxP flanked alleles leads to the deletion

pattern observed in B cells of CD19-Cre/Ikk2FL/D, -Ikk2 KFL/D and -NemoFL/Y mice.

This scenario predicts a higher turnover rate of mutant compared to control B cells.

3.4.4 CD19-Cre/Ikk2 KFL/D and CD19-Cre/NemoFL/Y B Cells Have Higher in vivo

Turnover Rates than Wild-type Control B Cells

To test this hypothesis I determined the percentage of BrdU-labeled B cells of the

various B cell subpopulations in BM and spleens of CD19-Cre/NemoFL/Y and control

mice that had been fed with BrdU for one week (Figure 17).  In the BM B220+/IgD-

slightly more CD19-Cre/NemoFL/Y B cells incorporated BrdU then control B cells

(Figure 17A). After one week of BrdU-administration in the drinking water the

proportion of BrdU-labeled splenic B cells is around 10 % (Forster and Rajewsky,

1990). These most likely represent newly formed B cells that arrived recently from the

bone marrow, since peripheral B cells have a long life-span and do not proliferate a lot

(Forster and Rajewsky, 1990; Hao and Rajewsky, 2001). An increase in percentage of

BrdU-positive B cells in the spleen therefore would indicate a higher rate of B cell

renewal in the spleen. Approximately twice as many CD19-Cre/NemoFL/Y BM

recirculating, IM, FO and MZ B cells in the spleen incorporated BrdU compared to

control B cells Figure 17 B). This result shows that B cell turnover in the spleen of

CD19-Cre/NemoFL/Y mice is significantly faster than in wild-type animals. The

percentage of BrdU-positive B cells within each subpopulation reflects the cellular

turnover. The increased B cell turnover in CD19-Cre/NemoFL/Y mice suggests that IKK

mutant splenic B cells have a shorter half-life then control B cells.



Figure 17. Increased B cel l  turnover in CD19-Cre/NemoFL/Y mice
compared to control mice.
Analysis of BrdU incorporation by bone marrow (A) and splenic (B) B cells of
mice of the indicated genotypes after one week of BrdU administration in the
drinking water. Cell surface markers are shown as coordinates and gated cell
populations are indicated in brackets, all populations are gated on live
lymphocytes. Numbers indicate percentages of BrdU-positive B cells of gated
populations. B220+ (bone marrow B cells), IM (CD19+CD21lowHSAhigh =
Immature B cells), FO(CD19+CD21intHSA- =  Fol l icular  B cel ls) ,  MZ
(CD19+CD21highHSAint = Marginal Zone B cells).
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3.4.5 Blockade of de novo B Cell Generation in CD19-Cre/Ikk2 KFL/D Mice leads to

Disappearance of IKK2-deficient B Cells from the Spleen.

During B cell development peripheral B cells are continuously generated from the bone

marrow. I decided to evaluate whether CD19-Cre/Ikk2 KFL/D B lineage lymphocytes

that underwent Cre-mediated deletion can persist in the spleen by blocking influx of IM

B cells from the bone marrow. This was achieved by injection of antagonistic

monoclonal antibodies against the interleukin-7 receptor (IL-7R). This treatment blocks

B cell development at the pro-B cell stage and thus abolishes the influx of IM B cells

from the bone marrow into the periphery (Sudo et al., 1993).

After four weeks of anti-IL-7R antibody administration FACS analysis demonstrated

that B cell development in the bone marrow and the influx of newly generated B cells

into the spleen is indeed inhibited in antibody-treated mice (Figure 18A). Southern blot

analysis of DNA isolated from purified splenic B cells of these mice revealed the

absence of Ikk2 KD/D B cells (Figure 18C), whereas in untreated CD19-Cre/Ikk2 KFL/D

mice 50 to 80 % of the CD19-positive splenic B cells have exon-deleted both loxP-

flanked ikk2 K alleles (Figure 18B). This finding validates the view that the B cells

with two exon-deleted ikk2 K alleles that are found in the spleens of CD19-

Cre/Ikk2 KFL/D mice are cells that have only recently undergone Cre-mediated

recombination and still retain IKK2 protein. As soon as the influx from the bone

marrow is blocked, no new B cells having freshly acquired the deleted genotype enter

the spleen from the bone marrow. Within a period of 4 weeks all B cells lacking IKK2

activity disappear from the spleen and only cells that have escaped Cre-mediated

deletion of the loxP flanked alleles persist. These results demonstrate that IKK-

mediated NF-κB activity is essential for the survival of mature B cells.
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(B) Southern blot analysis of Cre mediated deletion in total splenic B
cells from two different (#1,#2) CD19-Cre/Ikk2 KFL/D mice. The results
are representative of six different mice.
(C) Southern blot analysis of Cre mediated deletion in total splenic B
cells from three different (#1-3) CD19-Cre/Ikk2 KFL/D mice that received
anti IL-7R Antibody injections for four weeks.

Tail

Deletion (%) 8854 76

#1 #2

Splenic
B cells

FL

D

B

 Ikk2 KD/D Cells (%) 76 52

not injected

Tail #1 #2 #3

4947 51 49Deletion (%)

Splenic
B cells

FL

D

C

 Ikk2 KD/D Cells (%) 0 2 0

a-IL-7R mAb
injected 



 Results 60

3.5 The Role of the IKK Complex in Mature T Cell Development

3.5.1 Naive T Cell Survival Does Not Depend on IKK2, but Lack of NEMO is

Incompatible With T Cell Generation and/or Persistence

To investigate the role of IKK signaling in T lymphocytes, I sought to inhibit IKK

activity specifically in T lineage cells by crossing Ikk2FL/FL and NemoFL/Y mice with

transgenic mice expressing Cre under the control of the CD4-promoter.

Cell-Type

CD4-Cre

Ikk2FL/FL or FL/D

CD4-Cre

NemoFL/Y or FL/FL Controls

              CD8-SP  2.29 ± 0.28  1.28 ± 0.16  2.11 ± 0.42

              CD4-SP  7.67 ± 0.65  6.32 ± 0.53  7.59 ± 0.90

              DP 85.36 ± 1.98 86.41 ± 2.31 85.61 ± 2.13

              DN  2.69 ± 0.56  3.88 ± 2.30  3.43 ± 1.33

CD4-SP/HSAhigh+int
84.08 ± 1.79 91.34 ± 4.16 82.63 ± 2.21

              /HSAlow
16.54 ± 2.14  8.74 ± 4.24 17.41 ± 2.30

  CD8-SP/HSAhigh
17.06 ± 3.89 38.60 ± 7.76 19.54 ± 5.40

               /HSAint
52.01 ± 5.77  54.48 ± 13.03 50.84 ± 5.16

               /HSAlow
30.80 ± 4.20  4.83 ± 2.27 30.11 ± 2.31

    TCRhigh/CD8-SP 15.32 ± 1.62  6.27 ± 1.09 13.39 ± 2.18

                /CD4-SP 62.86 ± 3.90 65.79 ± 4.59 65.42 ± 3.93

                /DP 20.59 ± 5.12 24.62 ± 4.88 20.07 ± 4.85

 Table 7. Percentages of thymocyte subpopulations in CD4-Cre/IKK-conditional
and control mice.
Cell-types, genotypes and the number of mice analyzed per group are indicated. Average
percentages of total thymocytes are shown in bold numbers plus/minus standard
deviations (CD4-Cre/Ikk2FL/D or FL/FL: n = 10; CD4-Cre/NemoFL/Y or FL/FL: n = 7; Controls: n
= 17). Total thymocyte numbers do not vary significantly between the individual groups.

CD4-Cre mice are reported to delete loxP-flanked alleles in the T lineage with very

high efficiency (Lee et al., 2001; Wolfer et al., 2001) (Figure 19). FACS analysis of T

cell populations in CD4-Cre/Ikk2FL/D mice revealed that thymocyte development is

unperturbed (Figure 20 and Table 7).

In the periphery, however, the number of T cells is reduced, the deficit being more

pronounced in CD8 cells (Figures 20, 25A and B). Similar analyses in CD4-
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Figure 19. Sketch of T cell development in the thymus and deletion efficiency
of the CD4-Cre  mouse line
In the thymus T cell development can be visualized by the expression of the
coreceptors CD4 and CD8. Thymocytes pass  from the double-negative (DN)
through  the double-positive (DP) to the respective single-positive (SP) stages.
Then they exit as CD4 and CD8 T cells into the periphery. Deletion of loxP-
flanked alleles by the CD4-Cre transgeneis essentially complete from the DP-
stage on.



Figure 20. FACS analysis of T cell populations in CD4-Cre/Ikk2FL/D mice
compared to control mice.
Genotypes are as indicated. Cell surface markers are shown as coordinates.
The numbers in the quadrants refer to the percentages of this T cell
population of live cells in the lymphocyte gate.
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Cre/NemoFL/Y mice showed a different picture. In the thymus of these mice the

population of CD8 single positive cells is a little more than half the size of that of

control mice while CD4 single positive cells are only mildly reduced (Figure 21 and

Table I).  Spleen and LN of CD4-Cre/NemoFL/Y mice are nearly devoid of mature T

cells (Figure 21). Deletion of floxed alleles by Cre transgenes is not always complete,

especially when cells that have deleted their loxP-flanked alleles are counter-selected

(Pasparakis et al., 2002b; Rajewsky et al., 1996). Therefore I assessed the genotype of

the T cell populations found in the two CD4-Cre/IKK-conditional mouse strains.

Deletion of only one out of two loxP-flanked alleles can cause problems for the

assessment of deletion efficiency by Southern blot. In CD4-Cre/Ikk2FL/FL mice, for

example, it is impossible to determine from a Southern blot to what extent the bands

representing the loxP-flanked and the deleted alleles stem from Ikk2FL/D T cells and to

what extent they stem from Ikk2FL/FL and Ikk2FL/D T cells. In order to avoid

complications caused by this “incomplete” deletion, I used mice in which only one

loxP flanked allele remains to be deleted (CD4-Cre/Ikk2FL/D and -NemoFL/Y) for

monitoring deletion by Southern blot.

Southern blot analysis of DNA prepared from sorted T cell populations from CD4-

Cre/Ikk2FL/D mice shows that in double positive and in single positive thymocytes, and

in CD4 and CD8 T cells in the spleen and lymph nodes deletion of the loxP flanked

allele is essentially complete (Figure 22A). The faint band representing loxP-flanked

alleles that can be observed for CD8 SP thymocytes is most likely due to immature

CD8 SP cells. These cells are immature, large, outer-cortical cells that lack the TCR

complex but express CD8 (Shortman et al., 1988). Maturation of single-positive

thymocytes is normal in CD4-Cre/Ikk2FL/D mice; CD8- and CD4-SP thymocytes have

the same expression profile of HSA (CD24) (Figure 24A and Table). Loss of HSA-

expression can be correlated to increased maturation of single-positive thymocytes.

Similarly the CD4 versus CD8 ratio is normal in TCRhigh thymocytes of CD4-

Cre/Ikk2FL/D mice (Figure 24B and Table). To demonstrate that inactivation of the Ikk2

gene in T cells of these mice leads to T cells lacking IKK2, I analyzed extracts from

thymocytes and peripheral CD4 T cells by western blotting. This analysis showed that

Ikk2D/D thymocytes still contain IKK2 protein (Figure 22B), probably owing to the long

half-life of IKK2 (approximately 13 h in monocytic cell-lines) (Fischer et al., 1999).

This means that even though thymocytes isolated from CD4-Cre/Ikk2FL/D are

genetically Ikk2D/D, they are not IKK2-deficient since they still contain IKK2 protein.



A

B

Figure 22. Southern and Western
Analysis of sorted T cell populations
in CD4-Cre/Ikk2F/D and control mice
(A) DNA was prepared from DN, DP,
CD4-SP and CD8-SP thymocytes and
mature CD4 and CD8 Tcells from LN
and spleen, sorted from CD4-
Cre/Ikk2F/D mice. Southern Blot
analysis revealed deletion in each T cell
subset.
(B) Cytosolic extracts were prepared
from thymocytes and splenic CD4 T
cells sorted from CD4-Cre/Ikk2F/D and
Ikk2F/FL and Ikk2F/D control mice.  IKK2
levels in these cells are revealed by
Western blotting. IKK1 levels serve as
loading control.



 Results 66

Peripheral T cells in these mice are, on the other hand, truly IKK2-deficient, since no

IKK2 protein could be detected in splenic Ikk2D/D CD4 T cells (Figure 22B).

Deletion of the loxP-flanked alleles is complete in DP and CD4-SP thymocytes of

CD4-Cre/NemoFL/Y mice,which carry only one nemoFL allele, similar to CD4-

Cre/Ikk2FL/D
 mice (Figure 23A). Western Blot analysis showed strong reduction of

NEMO levels in DP and nearly complete absence of NEMO in CD4-SP thymocytes

isolated from CD4-Cre/NemoFL/Y compared to control mice (Figure 23 B and C).

Southern blot analysis of the remaining peripheral T cells of CD4-Cre/NemoFL/Y mice

revealed that in the periphery of CD4-Cre/NemoFL/Y mice virtually all deleted cells have

disappeared. Only a weak band representing cells of the deleted genotype can be

detected in DNA prepared from CD4 T cells (Figure 23A). This shows that the few T

cells that are left in CD4-Cre/NemoFL/Y mice are T cells in which deletion of the loxP-

flanked alleles did not occur. These T cells accumulate in the periphery, whereas T

cells of the deleted genotype cannot persist.

This view is supported by further FACS analysis: in the CD8-SP compartment of CD4-

Cre/NemoFL/Y mice the number of HSA++ immature CD8-SP thymocytes is equal, but

there is a decrease in HSAint cells and there are only very few HSAlow mature cells

(Figure 24A and Table 7). This is paralleled by a reduction in TCRhigh CD8-SP

thymocytes (Table 7). It seems that after deletion of the loxP-flanked alleles the

endogenous IKK2 or NEMO mRNA and protein are gradually lost through turn-over

while the cells mature. Thymocytes and T cells that lack NEMO cannot survive and are

lost. Also the HSAlow CD4-SP compartment is reduced (Table 7), albeit to a lesser

extent. The remaining peripheral T cells in CD4-Cre/NemoFL/Y mice express high levels

of CD44, which is characteristic for T cells that undergo homeostatic expansion in a

lymphopenic environment and become memory-type T cells (data not

shown)(Goldrath, 2002; Goldrath et al., 2000; Surh and Sprent, 2000).

To ascertain that the effects seen in the CD4-Cre/IKK-conditional mice are due to T

cell intrinsic defects I analyzed dendritic cell populations in CD4-Cre/Ikk2FL/D and -

NemoFL/Y mice compared to control mice.  These mice contain normal numbers of

CD11c+CD4+ and CD11c+CD8+ dendritic cells. Southern blot analysis of DNA from

MACS-purified dendritic cells showed that the CD4-Cre transgene does not induce

deletion of ikk2FL or nemoFL alleles in dendritic cells. I also did not detect deletion at

the DNA level from FACS-purified B cells from CD4-Cre/Ikk2FL/D mice (data not

shown).
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Figure 24. FACS analysis of single-positive thymocyte development in
CD4-Cre/NemoFL/Y and CD4-Cre/Ikk2FL/D mice compared to control mice.
(A) Histogram of CD24 expression on CD8-SP thymocytes. White
histograms show control cells and grey histograms CD4-Cre/Ikk2FL/D or CD4-
Cre/NemoFL/Y , respectively.
(B) Dotblots showing CD4 versus CD8 expression in TCRhigh thymocytes.
Genotypes are as indicated and gated cell populations are indicated in
brackets. Cell surface markers are shown as coordinates. Numbers refer to the
percentage of the respective T cell population of live cells in the lymphocyte
gate or of the gated cell population indicated in brackets.
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3.5.2 CD4-Cre/Ikk2FL/D Mice Have Reduced CD25 and CD44 CD4 T Cell

Compartments.

In the spleen and LN of CD4-Cre/Ikk2FL/D mice the CD4 T cell compartment is reduced

by approximately 20% and the CD8 T cell compartment by over 50% compared to

control mice (Figures 25A and B and Table 8).

Organ Cell-Type

CD4-Cre

Ikk2FL/D or FL/FL Ikk2FL/D or FL/FL

Spleen CD4 13.93 ± 3.57 17.75 ± 3.93

CD8  5.54 ± 1.94 12.58 ± 3.83

B cells 73.80 ± 5.86  58.17 ± 10.12

LN CD4  7.54 ± 3.57 10.53 ± 3.02

CD8  2.87 ± 1.02  7.70 ± 2.25

B cells 15.06 ± 6.88 10.80 ± 5.67

Table 8. Absolute B and T cell numbers in spleen and lymph nodes
Averages of absolute numbers of live B and T cells are shown in bold
in millions plus/minus standard deviation (CD4-Cre/Ikk2FL/D or FL/FL: n =
11; Ikk2FL/D or FL/FL: n = 11).

In normal mice around 10 % of the CD4 T cells co-express the interleukin-2 receptor

(IL-2R; CD25) α-chain (Asano et al., 1996). These CD4+CD25+ T cells are suggested

to be generated in the thymus and it has been shown, by various in vitro and in vivo

experiments, that they downregulate immune responses and inhibit development of

autoimmune diseases (for recent reviews see (Curotto de Lafaille and Lafaille, 2002;

Read and Powrie, 2001; Shevach, 2001; Shevach, 2002); they are therefore termed

suppressor or regulatory T cells. T cell populations with immuno-suppressive

properties have also been found within the CD4/CD25- T cell pool. Other CD4 T cell

fractions that were shown to contain T cells with regulatory function are the CD45Rblow

(Powrie et al., 1993) and αEβ7 (CD103)-positive (Lehmann et al., 2002) populations. In

thymus, spleen and LN of CD4-Cre/Ikk2FL/D mice very few CD4+CD25+ T cells can be

found (Figure 25C and E and Table 9). This does not reflect the inability of Ikk2D/D T

cells to express CD25, since these cells upregulate CD25 in vitro in response to various
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stimuli, such as antibodies against CD3, CD3 and CD28, PMA/Iono or ConA over a

period of five days as efficiently as WT T cells (data not shown).

Organ

CD4-Cre

Ikk2FL/D or FL/FL Ikk2FL/D or FL/FL

Thymus 1.17 ± 0.26  4.09 ± 0.54

Spleen 3.70 ± 1.06 13.10 ± 3.20

LN 3.38 ± 2.00 11.75 ± 2.12

Table 9. Percentage of CD4+CD25+ T cells of total CD4 T cells in
thymus, spleen and lymph nodes
Average numbers are shown in millions plus/minus standard
deviation (CD4-Cre/Ikk2FL/D or FL/FL: n = 10; Ikk2FL/D or FL/FL: n = 10).

This lack of CD4+CD25+ T cells is paralleled by a similar deficiency in CD45Rblow

cells in CD4-Cre/Ikk2FL/D mice (data not shown), suggesting that these mice have a

severe deficiency in regulatory T cell populations defined by these markers. No

significant difference in αEβ7-expressing T cell numbers was found between CD4-

Cre/Ikk2FL/D and control mice (data not shown). WT CD4+CD25+ T cells in spleen and

LNs are smaller, as assessed by forward scatter, than those in the thymus, possibly

reflecting a maturation process; in contrast peripheral CD4+CD25+ T cells isolated from

CD4-Cre/Ikk2FL/D mice are of the same size as in the thymus, if not larger (Figure

25D). This indicates that the CD4+CD25+ T cells remaining in CD4-Cre/Ikk2FL/D mice

are different from those in control mice. CD4+CD25+ T cells have been reported to

express the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4; CD152)

constitutively (Read et al., 2000; Takahashi et al., 2000). CD4+CD25+ T cells in CD4-

Cre/Ikk2FL/D mice express CTLA-4 to the same level as those in control mice and they

also display a normal pattern of CD45Rb-expression (data not shown), suggesting that

they could be regulatory T cells. Analysis of CD44 expression on peripheral CD4 and

CD8 T cells showed that CD4-Cre/Ikk2FL/D mice have a clear deficiency in

CD4+CD44+ memory-type T cell numbers and, to a lesser extent, in CD8+CD44+ cell

numbers (Figure 25F and G). Indeed the reduction of CD4 T cells in CD4-Cre/Ikk2FL/D

mice can largely be accounted for by the absence of subsets that were shown to contain

T cells with regulatory (CD4+CD25+) and memory (CD4+CD44+) functions





Figure 25. Analysis of T cell populations in CD4-Cre/Ikk2FL/D mice
compared to control mice.
(A, B) Bar charts of absolute CD4, CD8 T cell and B cell numbers in Spleen (A)
and LN (B). Black bars represent control (Ikk2FL/D or Ikk2FL/FL; n = 10) and grey
bars represent CD4-Cre/Ikk2FL/D or FL/FL mice (n = 10).
(C) FACS analysis of CD25 expression on CD4 T cells in thymus, spleen and
LNs.
(D) Size of CD4/CD25 T cells indicated by forward scatter. Black histograms
represent control (Ikk2FL/D or Ikk2FL/FL) and grey histograms represent CD4-
Cre/Ikk2FL/D or FL/FL mice.
(E) Proportion of CD25-positive of total CD4 T cells. Black bars represent
control (Ikk2FL/D o r  Ikk2FL/FL; n = 10-12) and grey bars represent CD4-
Cre/Ikk2FL/D or FL/FL mice (n = 10-12).
(F) FACS analysis of CD44 expression on CD4 T cells in spleen and LNs.
(G) Proportion of CD44-positive of total CD4 T cells. Black bars represent
control (Ikk2FL/D or Ikk2FL/FL; n = 9) and grey bars represent CD4-Cre/Ikk2FL/D or

FL/FL (n = 9) mice.
Genotypes are as indicated. Cell surface markers are shown as coordinates and
gated cell populations are indicated in brackets. The numbers in the quadrants
refer to the percentage of the respective T cell population of live cells in the
lymphocyte gate or of the gated cell population indicated in brackets. Error bars
indicate standard deviations.
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Organ Cell-Type

CD4-Cre

Ikk2FL/D or FL/FL Ikk2FL/D or FL/FL

Spleen CD4/CD44 4.90 ± 0.39 15.92 ± 1.22

CD8/CD44 8.00 ± 2.71 11.42 ± 1.45

LN CD4/CD44 3.94 ± 0.62  7.64 ± 1.40

CD8/CD44 5.02 ± 1.51  7.06 ± 1.16

Table 10. Percentage of CD44+ T cells of total CD4 or CD8 T cells in
spleen and lymph nodes
Average percentages are shown in bold plus/minus standard deviation
(CD4-Cre/Ikk2FL/D or FL/FL: n = 9; Ikk2FL/D or FL/FL: n = 9).

3.5.3 IKK2-deficient T Cells Can Activate NF- B, Proliferate in vitro and Elicit T-

dependent Immune Responses

In order to test to what extent IKK2-deficient T cells can activate NF-κB, I purified

peripheral T cells from CD4-Cre/Ikk2FL/D mice by FACS and activated them in vitro

with TNF, or with antibodies directed against CD3 and/or CD28. Surprisingly, Ikk2D/D

T cells could significantly activate NF-κB in response to these stimuli, only slightly

less than control T cells (Figures 26A and B). Also the NF-κB subunit composition in

TNF- and anti-CD3/CD28-stimulated Ikk2D/D T cells was similar to that in control T

cells (Figure 26C and data not shown). I performed Western blotting to prove that the

Ikk2D/D T cells used in the activation experiments are IKK2-deficient (Figure 26D).

I also found that under certain conditions Ikk2D/D CD4 and CD8 T cells can proliferate

in vitro as efficiently as control T cells in response to a panel of stimuli (Figures 27A -

C). Similarly, there was no difference between WT and Ikk2D/D CD4 and CD8 T cells

in level of activation marker expression, such as CD69, CD62L, CD44 or CD25, after

anti-CD3, anti-CD3/CD28, PMA/Ionomycin or Concanavalin A treatment for 24 h, or

5 days (data not shown). To test the proliferative abilities of IKK2-deficient T cells in a

more physiological context I injected CFSE-labeled T cells into syngeneic C57/BL/6

RAG-/- hosts. Naïve and memory T cells proliferate spontaneously in a lymphopenic

environment. During this homeostasis-driven proliferation naïve T cells gain

phenotypic and functional characteristics of memory T cells (Goldrath, 2002). After 5,



Figure 26. NF- B activation in IKK2-deficient T cells
(A, B) NF-κB EMSA of whole cell lysates of sorted T cells from mice of
indicated genotypes stimulated with TNF (A; 20 ng/ml) or anti-CD3 or anti-
CD3/CD28 antibodies (B; four antibody coated beads per cell) for the indicated
time-periods. Equal amount of nuclear protein was demonstrated by Oct-1
mobility shift.
(C) NF-κB Supershift-analysis of extracts of TNF (20 ng/ml - 20 min)
stimulated T cells
(D) Western Blot analysis on pooled whole cell lysates of T cells stimulated with
TNF (A) or anti-CD3/CD28  antibodies (B) from CD4-Cre/Ikk2FL/D and Ikk2FL/D

mice. Equal amounts of whole cell lysate of each time point were pooled per
stimulation for each genotype.
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Figure 27 .  IkkD/D T cells can proliferate in vitro as well as WT T cells
T cells were isolated from LN and spleen of CD4-Cre/Ikk2FL/D or FL/FL and control mice,
labelled with CFSE and activated in vitro to proliferate using CD3 or CD3/CD28 coated
beads (one bead per cell), PMA (2 nM)/Iono (1µM) or ConA (1µg/ml). After 3  and 5 days
cells were harvested, analysed by FACS (A, B) and counted (C, D). This experiment was
repeated twice with similar results. (A, B) Analysis of cell divisions in activated IkkD/D and
control T cell cultures. Histograms represent populations gated on live CD4 (A) or CD8 (B)
cells as a function of CFSE intensity and cell number.  T cell genotype and stimulus are as
indicated next to and above the histograms. The number of cell divisions is indicated by lines
and by numbers above each histogram. The results shown are representative of triplicate
wells. (C, D) Absolute cell numbers in  IkkD/D and control T cell proliferation cultures. Cell
counting was performed using Trypan blue exclusion. Total cell numbers are indicated by
bars (grey part = live cells; black part = dead cells). T cell genotype and stimulus are as
indicated below the bar charts. Error bars represent standard deviations of triplicate samples.
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6 or 10 days the mice were sacrificed, spleens and LNs were removed and proliferation

was assessed by FACS-analysis (Figure 28). After five days, most of the control CD8 T

cells had divided 3 to 5 times, whereas most Ikk2D/D T cells seemed to have undergone

only 2 to 3 divisions (Figure 28A). A similar picture was observed after 6 days, but

after 10 days IKK2-deficient and control T cells showed a similar cell-division profile

(Figure 28A). CD4 T cells expand slower in a lymphopenic environment (Goldrath,

2002). After 6 and 10 days I could clearly observe control CD4 T cells that had

undergone one cell division. In contrast Ikk2D/D CD4 T cells did not divide to any

significant extent at any time (Figure 28B). Moreover, only very few Ikk2D/D CD8 and

CD4 T cells could be recovered at all time points from spleen and LNs, in contrast to

control T cells (Figure 28A and B), indicating that IKK2-deficient T cells cannot

expand efficiently in lymphopenic hosts, probably due to a survival defect. However,

this analysis has to be repeated with more mice to ensure the finding.

To test the function of IKK2-deficient T cells in vivo I immunized CD4-Cre/Ikk2FL/D

and control mice with the T-dependent (TD) antigen NP-CG. B cells depend on T cell

help to elicit a humoral immune response to TD antigens. Determination of Ig isotypes

by ELISA showed that basal levels of immunoglobulin titers were normal in CD4-

Cre/Ikk2FL/D mice, except for a slight reduction in serum concentration of IgE (Figure

29A). IKK2-deficient T cells were able to provide B cell help in the course of an

immune response, since CD4-Cre/Ikk2FL/D mice mounted an efficient NP-specific

immune-response.  This response was delayed, however, since the serum concentration

of NP-specific IgG1, λ and κ in CD4-Cre/Ikk2FL/D mice was lower than in control mice

at day 7 (Figures 29B, D and E). At day 14 to 28 after immunization NP-specific IgG

serum concentrations were comparable between CD4-Cre/Ikk2FL/D and control mice

(Figures 29B – 7E and data not shown).



Figure 28.  Homotypic proliferation in lymphopenic hosts in vivo of IkkD/D

compared to WT T cells
T cells were isolated from LN and spleen of a CD4-Cre/Ikk2FL/D mouse and a
control mouse, labelled with CFSE and injected intravenously into RAG-/-
hosts. After 3, 5 or 10 days RAG-/- hosts were killed and T cells from LN and
spleens cells were prepared and analysed by FACS
(A) Histograms represent populations gated on live CD8 T cells as a function of
CFSE intensity and cell number.  T cell genotype and location are as indicated
above the histograms. The number of cell divisions is indicated by lines and by
numbers above each histogram. Bold numbers in the top left corner of each
histogram indicate the total number of retrieved CD8 T cells from individual
RAG-/- hosts.



(B) Histograms represent populations gated on live CD4 T cells as a function of
CFSE intensity and cell number.  T cell genotype and location are as indicated
above the histograms. The number of cell divisions is indicated by lines and by
numbers above each histogram. Bold numbers in the top left corner of each
histogram indicate the total number of retrieved CD4 T cells from individual
RAG-/- hosts.
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4. DISCUSSION

4.1. NEMO in NF- B Activation and Embryonic Development

NEMO deficiency resulted in a lethal phenotype and a complete block of NF-κB

activation by proinflammatory stimuli. The latter contrasted, in a side-by-side

comparison, with IKK2 deficiency, which leads to reduced, but still detectable NF-κB

activation under the same conditions, probably because the absence of IKK2 can be

partially compensated by IKK1. It has been shown that LPS predominantly stimulates

IKK2 activity (Fischer et al., 1999); in agreement with this result I find that IKK2

deficiency completely blocked NF-κB activation in response to LPS. Liver

degeneration is the cause of embryonic lethality in mice lacking the RelA/p65 NF-κB

subunit or IKK2 (Beg et al., 1995; Li et al., 1999b; Li et al., 1999c; Tanaka et al.,

1999). A similar phenotype is also observed in NEMO-deficient embryos, but in this

case liver apoptosis seems to occur earlier than in relA-/- or ikk2-/- embryos,

underscoring the essential role of NEMO in the NF-κB activation process. These

results were confirmed by the independent work of two other research groups (Makris

et al., 2000; Rudolph et al., 2000).

4.2. NEMO-deficient Mice as an Animal Model for the Human Disease

Incontinentia Pigmenti

The localization of Nemo on the X chromosome predicts that random X inactivation

will generate a chimerism of NEMO-deficient and NEMO-containing cells in all

tissues of NemoD/WT females. Given the central role of the NF-κB signaling pathway in

the regulation of various cellular responses (Gerondakis et al., 1998; Kanegae et al.,

1998; O'Neill and Kaltschmidt, 1997), the presence of NEMO-deficient cells in the

body could cause defects in multiple tissues. Indeed, recent work has shown that

mutations in the human NEMO gene cause Incontinentia Pigmenti (IP) (Smahi et al.,

2000).

I show here that heterozygous Nemo knockout mice develop a skin phenotype that

closely resembles the cutaneous manifestations observed in IP patients. The skin

abnormalities in these animals seem to occur in stages that correlate to the different
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stages described for IP. A few days after birth numerous inflammatory foci are found in

the epidermis of NemoD/WT mice, showing massive infiltration of granulocytes into the

epidermis, resembling the inflammatory phase I of IP (Landy and Donnai, 1993). At

eight days, granulocyte infiltrates into the epidermis are reduced, suggesting that at this

age features reminiscent of an initial inflammatory episode are declining, as in stage II

of IP (Landy and Donnai, 1993). Histological examination of the skin from NemoD/WT

mice revealed epidermal hyperplasia with thickening of both the suprabasal and the

cornified layer. Electron microscopy showed that in the epidermis of NemoD/WT mice

basal layer keratinocytes are in loose contact forming dilated intercellular spaces. This

defect may be associated with alterations in tonofilaments and loss of desmosomal

structures that were also observed. Presence of dyskeratotic keratinocytes displaying

abnormal tonofilaments, loss of desmosomal contacts, and dilated intercellular spaces

are reported in stage II IP patients (Schamburg-Lever and Lever, 1973).

Hyperpigmentation caused by the presence of increased numbers of melanosome

containing phagocytes in the dermis is the hallmark of IP, occurring at stage III

(Schamburg-Lever and Lever, 1973; Zillikens et al., 1991). A similar phenomenon was

also observed in the NemoD/WT mouse model, at 6 weeks of age. Furthermore, I and

others found that NEMO deficiency results in embryonic lethality in hemizygous males

both in mice and in humans (Rudolph et al., 2000; Smahi et al., 2000). It will be

interesting to see whether aborted male IP embryos also show liver degeneration due to

hepatocyte apoptosis.

A further similarity between IP patients and NemoD/WT mice relates to the

hematopoietic system. The blood leukocytes of IP patients exhibit a completely skewed

pattern of X-inactivation, suggesting that cells expressing the mutated chromosome are

selectively eliminated (Scheuerle, 1998). Strikingly, chimeras generated from Nemo

knockout ES cells did not possess any ES cell-derived lymphocytes. Thus, lymphocytes

lacking NEMO expression either do not develop or are counter-selected.

How can the dominant feature of the disease developing in IP patients and NemoD/WT

mice, namely the skin disorder, be explained? Several reports have suggested that NF-

κB activation is essential for the normal development of the epidermis. A dramatic skin

phenotype is reported in IKK1 knockout mice which die shortly after birth showing a

thickened hyperproliferative epidermis lacking keratinocyte differentiation (Hu et al.,

1999b; Li et al., 1999a; Takeda et al., 1999). However, this was later demonstrated to
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be independent of I-κB kinase activity and of NF-κB (Cao et al., 2001; Hu et al., 2001).

In a different experimental setting, keratinocyte-specific inhibition of NF-κB by

expression of a dominant-negative IκBα transgene under the control of the keratin 14

promoter was applied to study the role of NF-κB in stratified epithelium (Seitz et al.,

1998). These transgenic mice developed epidermal hyperplasia within 4 days after

birth, lacked evidence of normal hair formation, exhibited growth retardation and died

within 5 to 7 days after birth. Based on these results, the authors proposed that

functional loss of NF-κB leads to keratinocyte hyperproliferation. The same group also

showed that NF-κB inhibition results in increased apoptosis of keratinocytes in vivo

(Seitz et al., 2000a; Seitz et al., 2000b). In the skin lesions from NemoD/WT animals I

observed a combination of hyperproliferation and increased cell death. It seems likely

that the affected areas detected on the skin from NemoD/WT mice consist of

keratinocytes that lack NEMO protein because of random X inactivation and therefore

cannot activate NF-κB.  Proliferating cells were detected not only in the basal layer of

these skin patches, but also in the suprabasal layers of the epidermis indicating

abnormal keratinocyte differentiation. Failure to activate NF-κB may cause

hyperproliferation, incomplete differentiation and premature cell death of NEMO-

deficient keratinocytes, resulting in the macroscopic picture of verrucous scaling skin.

Increased apoptosis of NEMO-deficient basal keratinocytes could lead to their

progressive replacement by NEMO expressing keratinocytes and thus to the gradual

clearance of the skin lesions. TNF and other cytokines that may be produced in the

epidermis during the early inflammatory phase could play a role in this process by

directly killing the NEMO-deficient keratinocytes. Experimental evidence showing that

NF-κB inhibition in vitro sensitizes primary keratinocytes to apoptosis induced by TNF

or Fas (Seitz et al., 2000b) further supports this hypothesis. However, although TNF-

induced NF-κB activation is markedly reduced in IKK2-deficient keratinocytes, they

show only mildly increased apoptosis on TNF treatment compared to controls

(Pasparakis et al., 2002a). This shows, that TNF-induced killing of Ikk2-knockout

keratinocytes does not play an important role in the pathogenesis of the inflammatory

skin disease caused by epidermis-specific deletion of IKK2 (Pasparakis et al., 2002a).

It has also been postulated for human IP that invasion of affected skin by normal cells

takes place at the transition from the inflammatory to the verrucuous stage (Wieacker et

al., 1985).  Studies in mice with epidermis-specific deletion of IKK2 (K14-
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Cre/IKK2FL/FL) showed that IKK2 deficiency inhibited NF-κB activation in

keratinocytes, but did not lead to cell-autonomous hyperproliferation or impaired

differentiation. Mice lacking IKK2 specifically in the epidermis develop an

inflammatory response that develops in the skin shortly after birth and leads to their

death at around day 10 after birth (Pasparakis et al., 2002a). Subsequent to upregulation

of cytokines in epidermis and dermis and infiltration by immune cells keratinocytes

start to hyperproliferate and epidermal differentiation patterns are abrogated

(Pasparakis et al., 2002a). Treatment of newborn K14-Cre/IKK2FL/FL mice with

neutralizing antibodies against TNF or crossing these mice onto a TNFR1-/- genetic

background completely rescued the skin-phenotype. K14-Cre/IKK2FL/FL/TNFR1-/- mice

develop normally (Pasparakis et al., 2002a). The skin phenotype is also ameliorated in

NemoD/WT/TNFR1-/- mice, but they still develop lesions and the mortality remains high.

Studies employing K14-Cre/ NemoFL/WT, K14-Cre/NemoFL/Y, K14-

Cre/NemoFL/WT/TNFR1-/- and K14-Cre/ NemoFL/Y/TNFR1-/- mice will reveal whether

this is due to a TNF-independent defect in other organs in NemoD/WT mice or to the

presence of NEMO-proficient and –deficient keratinocytes in the skin of these animals.

These mice will also reveal whether the lack of NEMO has a more severe (and partly

TNF-independent) effect on the epidermis than the lack of IKK2.

At this point it remains unclear why most NemoD/WT females die within the first 10 days

of life. The lethal effect of keratinocyte-specific inhibition of NF-κB activation in

transgenic mice (Seitz et al., 1998) supports the hypothesis that the skin lesions in

NemoD/WT mice interfere with vital skin functions causing death of the animals. This

view is supported by the data from Pasparakis et al., showing that deletion of IKK2

specifically in the epidermis leads to death of all animals before they are two weeks old

(Pasparakis et al., 2002a). Therefore it might depend on the percentage of NEMO-

deficient cells generated by X-chromosome inactivation whether an animal survives or

succumbs to the disease. Indeed, the few NemoD/WT mice that survive after day ten

showed a milder phenotype from the beginning, with only a small area of the skin

covered by the lesions. Early lethality does not seem to be a prominent feature in

female IP patients.

The repair mechanism proposed to heal the skin defect by the replacement of NEMO-

deficient with NEMO-expressing cells may apply also to other tissues. The increased

number of apoptotic cells observed in the fetal liver of NemoD/WT embryos might
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represent NEMO-deficient hepatocytes whose death at this stage presumably “clears”

the liver from NEMO-deficient cells. Whether a similar mechanism operates also in

other tissues could be assessed by the quantitation of the percentage of NEMO-

deficient cells persisting in these tissues at different developmental stages. This would

uncover the importance of NEMO-mediated NF-κB activation for the survival of

individual cell types in vivo in an ideal experimental setting. I tried to approach this

question using mosaic inactivation of Nemo by crossing mice containing a floxed Nemo

allele to the balancer-Cre strain (Betz et al., 1996). Unfortunately deletion with the

balancer-Cre varied a lot from mouse to mouse so that it was difficult to reach clear

conclusions from the results obtained in this study. Additionally I crossed the

NemoD/WT with mice carrying a EGFP-transgene on the X-Chromosome (Hadjantonakis

et al., 1998). In the resulting NemoD/EGFP offspring I planned to assess presence or

absence of cells that have inactivated the X-chromosome bearing the deleted nemo

allele by quantitating the proportion of GFP-expressing cells in various cell-types and

tissues. Unfortunately in adult mice the EGFP-transgene was object to epigenetic

silencing and therefore no conclusive results could be obtained from these experiments.

In the future I will readdress these issues by using improved genetic tools, such as

HPRT(X-linked)-GFP-knockin mice.

The striking similarities between the skin phenotype we observe in the NemoD/WT mice

and the skin lesions described in IP, which is caused by mutations in the human NEMO

gene, indicate that these mice constitute a model for human IP. Further analysis of

these mice should increase our understanding of the molecular mechanisms involved in

the pathogenesis of this disease. Cell-type-specific and/or inducible inactivation of the

loxP-flanked Nemo gene, which we have introduced into the mouse germline as part of

our targeting strategy, will not only help in this context in the future, but also allow us

to study the role of the NF-κB signaling pathway in other cellular compartments in the

mouse.

4.3 The ikk2 KFL Allele Produces a Kinase-dead Protein

Comparison of NF-κB activation in response to proinflammatory signals in Ikk2 KD/D

and IKK2-deficient MEFs showed a similar impairment measured by EMSA or IκBα
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degradation. However, measuring induction of NF-κB-dependent gene products in

response to inflammatory signals, such as TNF induced death and IL-6 production,

Ikk2 KD/D cells showed lower NF-κB activity than IKK2 deficient cells. These results

suggest that the expression of IKK2∆K, even at the low levels observed, contributes to

a stronger reduction of NF-κB activity than IKK2-deficiency, presumably by a

dominant-negative effect.

At this stage I can only speculate how this dominant-negative effect comes about. In

wild-type cells the most prevalent IKK dimer is the IKK1/2 heterodimer. Therefore it

seems likely that in Ikk2 KD/D cells IKK2∆K is preferentially integrated into the

complex, even though there is a vast excess of IKK1 compared to IKK2∆K. In addition

the presence of one IKK1/IKK2∆K dimer in the 700 – 900 kD IKK complex could

disrupt the activation process, which depends on cross-phosphorylation between the

kinases (Delhase et al., 1999). After liberation from IκB NF-κB can bind to DNA, but

transcriptional activation is additionally regulated by further modifications of the Rel

proteins, such as phosphorylation and acetylation (Ghosh and Karin, 2002). Both IKKs

are implicated in this process (Sizemore et al., 2002). IKK complexes consisting of

IKK1 only could be more efficient in initiating the events leading to phosphorylation of

Rel proteins than IKK complexes also containing the kinase-inactive IKK2∆K.

4.4 IKK-mediated Activation of NF- B is Essential for Mature B Cell

Maintenance

I investigated the role of IKK-induced NF-κB activity in B cells by conditional

inactivation of IKK2 and NEMO. B cell specificity was achieved by crossing mice

carrying conditional NEMO and IKK2 alleles (Ikk2FL/D, Ikk2 KFL/D and NemoFL/Y) to

CD19-Cre mice. All three mutations similarly lead to a strong reduction of B cell

numbers in mutant mouse strains. CD19-Cre/Ikk2FL/D, -Ikk2 KFL/D or -NemoFL/Y mice

have 3-4 fold reduced B cells in the spleen and at least two-fold reduced numbers in

recirculating bone marrow B cells, lymph node B cells and peritoneal cavity B1 and B2

cells. Southern blot analysis of sorted B cell populations revealed that whereas deletion

efficiency in IgM- bone marrow B cells is as high as reported for CD19-Cre mice and

comparable to deletion observed in CD19-Cre/Ikk2FL/WT mice, IgM+ bone marrow B
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cells are already counterselected, most likely reflecting counterselection against

recirculating B cells. In the transition from IM to FO B cells the percentage of B cells

with deleted alleles is reduced, indicating that mature B cells lacking IKK activity are

counter-selected. In the case of CD19-Cre/Ikk2FL/D and -Ikk2 KFL/D mice over 90% of

the IM B cells have deleted the floxed allele, whereas in FO cells, which presumably

originate from the immature transitional cells, the proportion of cells carrying the

deletion ranges from 40 to 70 %, clearly demonstrating counterselection of IkkD/D- and

Ikk2 KD/D B cells. In CD19-Cre/NemoFL/Y mice, NemoD/Y IM B cells are already

counter-selected, as evidenced by Southern blot and cell counting. The fact that

deletion of NEMO, in contrast to the deletion of IKK2, seems to lead to counter-

selection of cells already within the immature B cell compartment may be explained in

two ways. One explanation is that in the absence of IKK2 some IKK-induced NF-κB

activation can still occur while loss of NEMO completely blocks IKK activity. Thus, in

CD19-Cre/Ikk2FL/D mice low levels of remaining NF-κB activity could be sufficient to

sustain development of B cells to the IM stage. In the CD19-Cre/NemoFL/Y mice the

complete absence of NF-κB activity may lead to the loss of IM B cells. Additionally or

alternatively different turnover rates of IKK2 and NEMO mRNA and protein could

play a role. The relatively long half-life of IKK2(Fischer et al., 1999) might ensure that

most B lineage cells of CD19-Cre/Ikk2FL/D mice develop into FO B cells before they

are devoid of this protein. The half-life of NEMO could be shorter than that of IKK2,

leading to a rapid depletion of NEMO protein from IM B cells that have deleted the

nemoFL allele, resulting in the loss of cells at this stage. The fact that CD19-

Cre/Ikk2 KFL/D mice display an intermediate phenotype with some loss of deleted IM

B cells, as demonstrated by the reduction of the absolute cell numbers of IM B cells in

these mice, is compatible with both hypotheses, since the production of IKK2∆K may

lead both to the earlier loss and to more complete inhibition of IKK activity in

comparison to the CD19-Cre/Ikk2FL/D mice.

The picture seen in MZ B cells differs from that seen in FO B cells. The remaining MZ

B cells of the IKK-conditional mutant mice crossed to CD19-Cre mice are nearly

completely devoid of the deleted genotype, clearly demonstrating that Ikk2D/D-,

Ikk2 KD/D and NemoD/Y MZ B cells cannot be generated and/or persist. Recent

evidence suggests that MZ B cells represent a self-renewing separate subset of B cells
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(Carvalho et al., 2001; Hao and Rajewsky, 2001). In this case cells of the deleted

genotype would disappear early during the generation of this lineage and a subset of

cells that have lost their ability to delete would be sustained by self-renewal. Another

view is that MZ B cells are a highly antigen-selected population of B cells (Cariappa et

al., 2000; Martin and Kearney, 2000). During this selection process all B cells able to

undergo Cre-mediated deletion should have deleted the loxP-flanked gene and

subsequently disappeared. Thus the virtual absence of MZ B cells with a deleted

genotype in IKK conditional-CD19Cre mice could be due to the fact that the MZ B cell

compartment is not constantly refilled with B cells that recently acquired the deleted

genotype as is the follicular compartment. Alternatively, the absence of MZ B cells

with deleted nemo or ikk2 alleles could mean that MZ B cells are more dependent on

IKK-induced NF-κB activity then other B cell populations. This explanation, which

does not exclude the former, is supported by the specific loss of MZ B cells in p50

deficient mice (Cariappa et al., 2000).

Mature splenic B cells do not proliferate much (Forster et al., 1989; Fulcher and

Basten, 1997; Hao and Rajewsky, 2001), so that in a BrdU incorporation experiment

over the period of one week most of the BrdU-positive B cells in the spleen represent

IM B cells from the BM (Forster et al., 1989). Roughly twice as many CD19-

Cre/NemoFL/Y splenic B cells stain positive for BrdU after one week of BrdU

administration compared to control B cells. This data are consistent with a BrdU-based

B cell turnover analysis in CD19-Cre/Ikk2 KFL/D mice (Pasparakis et al., 2002b). This

means that recently generated B cells constitute a larger fraction of total splenic B cells

in mutant compared to control mice despite the reduction in B cell numbers in mutant

mice. Thus CD19-Cre/Ikk2 KFL/D mice contain a higher percentage of short-lived

splenic B cells than do wild-type mice. These short-lived B cells should be cells that

carry two deleted alleles and are on their way to lose their ability to signal through the

IKK complex and subsequently die.  When B cell influx from the bone marrow is

blocked for one month by interfering with IL-7R signaling using injections of anti-IL-

7R antibodies, Ikk2 KD/D B cells completely disappear from the spleens of these mice.

The fact that only Ikk2 KFL/D B cells remain in these CD19-Cre/Ikk2 KFL/D mice

shows that there must be a strong selection for cells in which Cre is either absent or

cannot function. FO B cells were shown to have an average calculated half-life of 134

days in the absence of replenishment of the splenic B cell pool from the BM (Hao and
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Rajewsky, 2001). Since all of the Ikk2 KD/D FO B cells disappear after one month this

clearly demonstrates that IKK2 signaling is essential for the maintenance of mature B

cells. We therefore conclude that mature B cells need IKK-mediated survival signals.

Based on our experimental findings we envisage the following scenario: Deletion of the

conditional alleles in mice containing the CD19-Cre transgene is initiated in the bone

marrow and continues throughout the later stages of B cell development. B cells that

underwent Cre-mediated recombination initially retain sufficient amounts of IKK2 or

NEMO protein to allow development into IM B cells and some of these cells progress

further into the mature B cells compartments. B cells that escape Cre-mediated deletion

develop normally into mature B cell subsets. Thus, the follicular B cell compartment of

these mice consists of a mixture of cells that have already deleted and cells that retain

loxP-flanked alleles. The fact that blockade of B cell development in the bone marrow

for four weeks leads to the disappearance of all B cells that have deleted the ikk2 K

floxed alleles from the spleen demonstrates that mature B cells can not survive without

IKK2 activity.

It has been speculated that constitutive activation of NF-κB by signaling through the

BCR is essential for B cell survival (Bendall et al., 1999; Petro and Khan, 2001). In

agreement with this idea B cells die by apoptosis upon inducible deletion of the B cell

receptor (BCR) (Lam et al., 1997). However, it was shown recently that while deletion

of Bcl10 in mice selectively abolishes NF-κB activation by the antigen receptor in B

cells, Bcl10-/- mice show normal B cell development. This argues against the

possibility that NF-κB activation originating from the BCR is needed for B cell

survival (Ruland et al., 2001). Therefore mature peripheral B cells seem to depend on

NF-κB activating signals other than BCR crosslinking, even though a role for the BCR

in this process cannot be excluded with certainty. BAFF is a TNF-family protein that is

expressed mainly on myeloid cells (Hu et al., 1999a; Moore et al., 1999; Schneider et

al., 1999); BAFF-deficient mice revealed a block in B cell development a the T1 to T2

transitional checkpoint, leading to loss of follicular and marginal zone B lymphocytes

(Schiemann et al., 2001). It has been shown that BAFF induces processing of p100 and

nuclear translocation of p52 and RelB via the BAFFR and NIK (Claudio et al., 2002;

Mackall et al., 1996). This process, however, is independent of NEMO (Claudio et al.,

2002) and most likely mediated by IKK1. Since IKK1-deficient B cells develop, albeit

in reduced numbers, BAFF must elicit additional survival signals in B cells apart from
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p100 processing. Ligation of all three receptors for BAFF (BAFFR, BCMA, TACI)

(Mackay et al., 2002) induced phosphorylation of IκBα (Kayagaki et al., 2002) and

treatment with BAFF was shown to induce p50/RelB complexes (Do et al., 2000).

Therefore one potential survival signal initiated by BAFF could be activation of NF-κB

through degradation of IκB via IKK2 and NEMO. Of course also other receptors,

maybe several receptors acting in concert, could initiate the IKK2- and NEMO

mediated response to keep B cells alive.

4.5 The Role of NEMO and IKK2 in Mature T Cell Development

Activation of NF-κB through degradation of IκBs is mediated by the IKK complex and

activation of p52/RelB through processing of p100 depends largely on IKK1. Adoptive

transfer experiments, published while this work was in progress, revealed that IKK1 is

dispensable for T cell development (Kaisho et al., 2001; Senftleben et al., 2001a). Also

IKK2 has no essential role in the generation of T cells, but is important for protecting

thymocytes against TNF-induced apoptosis (Senftleben et al., 2001b). These data

indicate that either IKK1 and 2 can compensate for each other or that T cell

development occurs independently of the IKK. On the other hand, inhibition of NF-κB

activation through T cell specific transgenic expression of repressors of NF-κB resulted

in reduced peripheral T cell populations and CD8-SP thymocytes to varying degrees

(Attar et al., 1998; Boothby et al., 1997; Esslinger et al., 1997; Ferreira et al., 1999;

Hettmann et al., 1999). This shows that NF-κB is required for maintenance of normal T

cell numbers, especially CD8 T cells; it also shows, however, that inhibition of NF-κB

was not complete or that T cells can be generated in the absence of NF-κB activity.

Even though these studies yielded important information about the role of NF-κB in T

cells no clear conclusions could be drawn concerning the dependence of T cell

development on activation of NF-κB. Therefore I chose to analyze the function of the

IKK complex in T cells of the adult mouse employing conditional gene targeting.

Absence of NEMO leads to disruption of the IKK complex and blocks IKK-mediated

activation of NF-κB. T cell-specific ablation of NEMO was achieved by crossing mice

a conditional nemo allele (NemoFL/Y) to CD4-Cre mice. The complete disruption of the
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IKK complex in T cells of CD4-Cre/NemoFLY/ mice was compared to the deletion of

IKK2 in CD4-Cre/Ikk2FL/D mice.

In mice containing the CD4 transgene deletion of loxP-flanked alleles in T cells is

consistently complete from the DP stage on (Lee et al., 2001; Wolfer et al., 2001). The

data obtained from CD4-Cre/NemoFL/Y mice unambiguously demonstrate that T cells in

which the IKK has been disrupted through absence of NEMO are not viable. At this

stage I cannot determine exactly when absence of IKK-mediated NF-κB activation

leads to the loss of deficient T cells. In the thymus of CD4-Cre/NemoFL/Y mice CD8-SP

thymocytes are reduced compared to control mice, mainly because of a lack of more

mature HSA low/- CD8-SP cells. In these mice CD4-SP thymocytes are found in nearly

normal proportions, even though there is also a loss of CD4-SP/HSAlow/- cells. These

findings suggest that T cells with deleted nemo alleles start disappearing as they mature

in the thymus. The presence of a small population of splenic CD4 cells with deleted

nemo alleles indicates that some CD4 cells may survive for a short time after they exit

the thymus and populate the periphery. Although different interpretations could be

envisaged, I favor the hypothesis that NemoD/Y T cells die as soon as they lose all their

reserves of NEMO mRNA and protein. Deletion at the DP thymocyte stage creates

NemoD/Y cells that still contain sufficient levels of wild-type NEMO mRNA and protein

to survive and get positively selected to become CD4 and CD8 single positive cells.

The residual amount of remaining NEMO protein in DP and CD4-SP thymocytes from

CD4-Cre/NemoFL/Y showing more than 95% deletion at the DNA level further supports

this hypothesis. As NemoD/Y thymocytes mature, they slowly lose their mRNA and

protein reserves through turnover and become deficient in IKK signaling. When IKK

activity falls below a certain threshold the cells cannot be maintained anymore and die.

This leads to the very small number of peripheral T cells in CD4-Cre/NemoFL/Y mice

that still contain loxP-flanked alleles, which means that they have escaped Cre-

mediated recombination. A minor fraction of NemoD/Y CD4 peripheral T cells can be

detected. These are presumably cells that deleted Nemo late in development and still

retain sufficient endogenous NEMO protein to stay alive until the protein is lost

completely. Nearly all peripheral T cells in CD4-Cre/NemoFL/Y mice are CD44+. This

indicates that the few T cells that escaped deletion underwent homeostatic proliferation

to expand within this lymphopenic environment. During homeostatic expansion T cells

acquire phenotype and functions of memory T cells (Goldrath, 2002).
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T cells that lack IKK2, on the contrary, persist in the periphery, albeit in reduced

numbers. Spleen and LNs of CD4-Cre/Ikk2FL/D mice contain less than 50 % CD8 and

around 80 % CD4 T cells of control mice in absolute numbers. More detailed analyses

revealed that the lack of CD4 T cells is mostly due to T cells defined by CD25, CD44

and/or CD45Rblow surface expression. CD4 T cell subsets defined by these markers

have been shown to contain suppressive/regulatory (CD25+, CD45Rblow) and memory

(CD44+, CD45Rb low) functions. The reduction in CD4+CD25+ T cells can be observed

already in the thymus, where regulatory T cells are thought to be generated (Read and

Powrie, 2001; Shevach, 2001). I found that in control mice CD4+CD25+ T cells in

spleen and LNs are smaller than those in the thymus, whereas in CD4-Cre/Ikk2FL/D

mice the size remains constant. Since more immature cells are bigger this could

indicate that peripheral CD4+CD25+ T cells in CD4-Cre/Ikk2FL/D mice are cell that

emigrated recently from the thymus and disappear before they develop into smaller,

more mature T cells. However, so far I could not detect additional differences between

CD4+CD25+ T from  CD4-Cre/Ikk2FL/D and those from control mice: the remaining

peripheral CD4+CD25+ T cells in CD4-Cre/Ikk2FL/D mice express constitutive CTLA-4

to the same extent as control CD4+CD25+ T cells and are slightly lower in CD4 as has

been published for regulatory T cells (Read et al., 2000; Takahashi et al., 2000). I

presently do not know whether the defect in CD4+CD25+, CD4+CD45Rblow and

CD4+CD44+ T cells in CD4-Cre/Ikk2FL/D mice reflects a true deficiency in regulatory

and/or memory function.

IKK2-/-TNFR1-/- double deficient thymocytes were reported to have a complete defect

in IKK activation and NF-κB DNA binding and reduced [3H]thymidine uptake in

response to plate-bound anti-CD3 treatment and to a lesser extent to PMA/Ionomycin

or Concanavalin A treatment (Senftleben et al., 2001b). I used EMSA to measure NF-

κB activation in FACS-purified Ikk2D/D and control peripheral T cells upon stimulation

with TNF, anti-CD3 or anti-CD3/CD28. The response of Ikk2D/D T cells to these stimuli

was somewhat weaker than that of control T cells, however IKK2-deficient T cells

could clearly activate NF-κB to a significant extent. The composition of the induced

NF-κB complexes is similar in IKK2-deficient and control T cells. It is well

documented that in MEFs in the absence of IKK2 residual NF-κB activation occurs in

response to proinflammatory stimuli (Li et al., 2000; Li et al., 1999b; Schmidt-Supprian

et al., 2000; Tanaka et al., 1999). It seems that T cells can compensate better for the
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loss of this protein. How this compensation is effected is difficult to predict. It seems

possible that in the absence of IKK2 other kinases or co-activator proteins, present in T

cells but not or in much lower levels in MEFs, associate with IKK1 and allow for NF-

κB activation. One candidate could be IKKε (also known as IKKi), a kinase that was

shown to phosphorylate IκB at one serine residue in vitro (Peters et al., 2000). Another

possibility is that in T cells upstream activators of the IKK complex are expressed that

can activate IKK1 homodimers better than those expressed in MEFs. At this point we

cannot explain the obvious contradiction with the complete absence of NF-κB

activation in IKK2-/-TNFR1-/- double deficient thymocytes. However, the speculations

about the differences between MEFs and T cells could also apply to thymocytes and T

cells. In light of the finding that NEMO-deficient T cells do not exist, it seems

reasonable to argue that the ability of IKK2-deficient T cells to activate NF-κB allows

their generation and persistence. Analysis of [3H]thymidine incorporation in response

to plate-bound anti-CD3 treatment revealed a mild defect in IKK2-deficient compared

to control T cells. Using different experimental settings we observed that IKK2-

deficient T cells could be induced to proliferate in vitro as well as control T cells in

response to a whole variety of stimuli, demonstrating that these cells have no intrinsic

defect impairing cell division. Similarly Ikk2-/- T cells can be induced to efficiently

upregulate activation markers with normal kinetics. I acknowledge that these assays do

not exclude potential defects of IKK2-deficient T cells to physiological responses in

vivo. Nevertheless these data show that T cells without IKK2 can execute programs

necessary for cellular functions such as proliferation and upregulation of activation

markers, which are generally believed to depend to some extent on NF-κB activation.

To test the function of IKK2-deficient T cells in vivo I immunized CD4-Cre/Ikk2FL/D

and control mice with the T-dependent antigen NP-CG. Measurement of NP-specific

immunoglobulin concentrations in the serum during the time course of the immune

response revealed that CD4-Cre/Ikk2FL/D mice were able to mount an efficient, albeit

delayed, anti-NP antibody response. This experiment shows that IKK2-deficient T cells

are functional participants in the immune system of the mouse. Although it seems

unlikely, I cannot formally exclude the rapid expansion and subsequent participation in

the immune response of a minute fraction of T cells that escaped Cre-mediated deletion

in CD4-Cre/Ikk2FL/D mice.
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In agreement with published data I show here that IKK2 is not needed for the

development of mature T cells. IKK2-deficient T cells can activate NF-κB, proliferate,

upregulate activation markers and participate in immune responses. It is interesting to

note, however, that IKK2-deficiency leads to a reduction in peripheral T cell numbers,

especially CD8 T cells. Initial data also indicate that IKK2 is essential for the

generation and/or persistence of CD4 T cell subsets that contain T cells with regulatory

or memory functions, defined by co-expression of CD25 or CD44.

In addition to deletion of IKK2 I analyzed the cell-autonomous role of the IKK

complex in T cells through its disruption by deletion of NEMO. My results clearly

show that IKK-mediated activation of NF-κB is essential for the generation of mature T

cells from single-positive thymocytes. Additionally my data suggest that IKK-signaling

is necessary for CD4 T cell maintenance.
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5. SUMMARIES

5.1 Abstract

I generated a mouse strain harboring a conditional allele (NemoFL) of the X-linked gene

encoding NF-κB essential modulator (NEMO), in order to analyze the function of the

activation of the NF-κB transcription factor family via the IκB-Kinase complex (IKK)

in the immune system of the mouse.

Biochemical studies using NEMO-deficient murine embryonic fibroblasts (MEFs)

showed that NEMO is indispensable for NF-κB activation. Hemizygous male NEMO

knockout mice die at embryonic day 11.5 displaying massive destruction of the liver.

Heterozygous NEMO knockout (NemoD/WT) female mice develop a progressive

inflammatory skin disease, become runted and growth-retarded and most die six to ten

days after birth. Animals that survive beyond this period of time gradually recover.

Detailed analysis of the histopathology of these mice revealed that an inflammatory

response in the skin of NemoD/WT mice soon after birth leads to hyperproliferation and

increased apoptosis of keratinocytes. Due to random X-inactivation NemoD/WT mice are

mosaic animals, During the inflammatory response the skin is presumably cleared of

keratinocytes unable to express NEMO. It seems that only mice in which initially the

majority of cell have inactivated the X-chromosome harboring the nemoD-allele can

survive this period and recover. Male embryonic lethality and transient inflammatory

skin lesions are characteristic of the human hereditary genodermatosis Incontinentia

Pigmenti, which is caused by mutations in the human NEMO gene. The striking

similarities between the pathology in NEMO-deficient mice and human IP suggest that

the Nemo-knockout mice represent a mouse model for this disease.

The role of the IKK and NF-κB in B and T lymphocytes was investigated by cell-type

specific deletion of Nemo employing CD19-Cre (B cell-specific) and CD4-Cre (T cell

specific) transgenic mouse strains. CD19-Cre/NemoFL and CD4-Cre/NemoFL mice were

compared in a side-by-side analysis to two mutant mouse strains, carrying either a

conditional IKK2 allele (ikk2FL) or a conditional IKK2∆K allele ( ikk2 KFL), crossed to

the same Cre-transgenic mice. In Ikk2 KD/D cells IKK2 should be replaced by a kinase-

inactive version of IKK2, IKK2∆K. Biochemical analysis of Ikk2 KD/D MEFs revealed
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that the Ikk2 KD-mutation leads to a more pronounced defect in transcription of pro-

inflammatory NF-κB target genes than a mere lack of IKK2.

Analysis of the CD19-Cre/IKK conditional mutants showed that the maintenance of

mature B cells critically depends on signals mediated by IKK2 and NEMO. Disruption

of the IKK2-signaling pathway leads to loss of mature B cells. Deletion of NEMO or

IKK2-activity in T cells mediated by the CD4-Cre transgene yielded a different picture:

Peripheral T cells lacking NEMO cannot be generated and/or persist, whereas IKK2-

deficient T cells are generated, although in reduced numbers. CD4-Cre/IKK2FL mice

have around half the number of CD8 T cells, a profound deficit in the CD4+/CD25+

regulatory T cell population and a reduction in CD44+ memory-type T cells.  Analysis

of IKK2-deficient T cells showed that they can activate NF-κB to a considerable

extent, upregulate activation markers, proliferate and elicit an, albeit delayed, T-

dependent immune response.
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5.2 Zusammenfassung

Ziel dieser Arbeit war es, die Funktion der Aktivierung der Transkriptionsfaktor-

Familie NF-κB durch den IκB-Kinase Komplex (IKK) im Immunsystem der Maus zu

untersuchen. Zu diesem Zweck wurde ein Mausstamm erzeugt, der ein konditionales

Allel (NemoFL) des sich auf dem X-Chromosom befindenden Nemo (NF-κB essential

modulator) Gens enthält.

Zunächst wurde die Rolle von NEMO in der Entwicklung der Maus anhand von

NEMO-defizienten Mäusen (NEMO-knockout Mäuse) untersucht. Biochemische

Analysen an NEMO-defizienten embryonalen Fibroblasten (MEFs) zeigten, dass ohne

NEMO keine Aktivierung von NF-κB möglich ist. Hemizygote männliche NEMO-

knockout Mäuse sterben an Tag 11.5 der Embryonalentwicklung und weisen eine

weitgehende Degeneration der Leber auf. Heterozygote weibliche NEMO-knockout

Mäuse (NemoD/WT) entwickeln eine progressive Hautkrankheit mit Anzeichen von

lokalen Entzündungsreaktionen. Sie bleiben zunehmend im Wachstum zurück und die

meisten sterben sechs bis zehn Tage nach Geburt. Tiere, die diese Phase überleben,

erholen sich nach einigen Wochen vollständig. Anhand von detallierten

histopathologischen Untersuchungen dieser Mäuse liessen sich einige Tage nach der

Geburt in der Haut von NemoD/WT Mäusen Anzeichen einer Entzündungsreaktion und

hyperproliferierende und absterbende Keratinozyten nachweisen. Durch X-

Inaktivierung werden NemoD/WT Mäuse genetische Mosaike. Während der

Entzündungsreaktion werden vermutlich in der Haut dieser Tiere die NEMO-

defizienten Keratinozyten durch NEMO-ausprägende Keratinozyten ersetzt. Es scheint

so, dass nur Mäuse, in denen während der X-Inaktivierung hauptsächlich das nemoD-

Allel inaktiviert wurde, überleben und sich erholen können. Embryonale Lethalität und

eine progressive Hauterkrankung sind charakteristisch für die menschliche

Erbkrankheit Incontinentia Pigmenti (IP); in 80 % der IP-Patienten wurden Mutationen

im humanen NEMO Gen gefunden. Die starke Ähnlichkeit des Krankheitsverlaufes in

NEMO-defizienten Mäusen mit Incontinentia Pigmenti zeigt, dass diese Mäuse ein

Tiermodell für die menschliche Erbkrankheit Incontinentia Pigmenti (IP) darstellen.

Die Rolle des IKK Komplexes und NF-κB in Lymphozyten wurde in Mäusen

analysiert, denen NEMO ausschliesslich in B oder T Zellen fehlt. Hierzu wurden

NemoFL Mäuse mit CD19-Cre (B Zellen) oder mit CD4-Cre (T Zellen) transgenen

Mäusen verkreuzt. Der zelltyp-spezifische Verlust von NEMO wurde mit dem Verlust



Summaries98

von IKK2 und dem Austausch von IKK2 durch eine Kinase-inaktive Variante,

IKK2∆K, verglichen. Biochemische Analysen zeigten, dass der Ersatz von IKK2 durch

die inaktive Mutante IKK2∆K einen stärkeren Effekt auf die Transkription von NF-κB-

abhängigen inflammatorischen Genen hat, als das Fehlen von IKK2. Die Analyse der

CD19-Cre/IKK-konditionalen Mausmutanten zeigte, dass reife B Zellen zum

Überleben auf IKK2/NEMO-vermittelte Signale angewiesen sind.

Die Deletion von NEMO oder IKK2 in T Zellen anhand des CD4-Cre Transgens

zeitigte ein anderes Bild: Periphere NEMO-defiziente T Zellen können nicht erzeugt

oder nicht erhalten werden, während IKK2-defiziente T Zellen sich entwickeln können,

wenn auch in verminderter Anzahl. CD4-Cre/IKK2FL Mäuse haben ungefähr die Hälfte

an CD8 T Zellen verglichen mit Kontrollmäusen. Zudem können sich IKK2-defiziente

T Zellen nur vermindert zu CD4+CD25+ oder CD4+CD44+ T Zellen entwickeln, oder als

solche überleben. Dies zeigt, dass IKK2-vermittelte Signale essentiell für die

Erzeugung und/oder Erhaltung bestimmter T Zell Untergruppen sind. Weitergehende

Analysen ergaben, dass T Zellen ohne IKK2 NF-κB aktivieren, Aktivierungsmarker

hochregulieren, proliferieren und eine, wenn auch verzögert, T Zell-abhängige

Immunantwort initiieren können.
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5.3 Kurzzusammenfassung

In dieser Arbeit wurde die Rolle der NF-κB Aktivierung durch den IκB-

Kinase Komplex in vivo untersucht. Die Erzeugung und Untersuchung von

NEMO-defizienten Mäusen ergab, dass diese ein Tiermodell für die

menschliche Erbkrankheit Incontinentia Pigmenti darstellen. Die Rolle des

den IκB-Kinase Komplexes in B und T Lymphozyten wurde mit Hilfe von

drei verschiedenen konditionalen Mausstämmen untersucht. Genetische

Manipulationen in diesen Mäusen führt entweder zu Fehlen von NEMO

oder IKK2, oder zum Austausch von IKK2 durch ein IKK2-Protein, das

keine Kinase-Aktivität besitzt. In B Zellen sind IKK2-vermittelte Signale

überlebensnotwendig. In T Zellen dagegen führt die IKK2-Defizienz zur

Reduktion bestimmter T Zell Untergruppen, während das Fehlen von

NEMO und damit von NF-κB Aktivierung durch den IKK Komplex nicht

mit der Erzeugung und/oder Erhaltung von reifen T Zellen vereinbar ist.
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