Alkalimetallreiche Oxide der späten 3d-Übergangsmetalle mit komplexen Anionen

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

> vorgelegt von Peter Amann aus Leverkusen

> > Köln 2001

Berichterstatter:Prof. Dr. Gerd MeyerProf. Dr. Walter JungTag der mündlichen Prüfung:11. Dezember 2001

Die experimentellen Untersuchungen zu der vorliegenden Arbeit wurden im Zeitraum von September 1999 bis Dezember 2001 im Institut für Anorganische Chemie der Universität zu Köln unter Anleitung von Prof. Dr. Gerd Meyer durchgeführt.

Meinem Doktorvater Prof. Dr. Gerd Meyer danke ich herzlich für die großzügige Förderung und Unterstützung dieser Arbeit.

Abstract

Neue alkalimetallreiche Oxide der späten 3d-Übergangsmetalle (Fe, Co, Ni, Cu) mit komplexen Anionen wurden synthetisiert und strukturell aufgeklärt.

Es gelang die Synthese von $Na_{10}[Fe_3O_6][FeO_3]$, einem neuen Natrium-Oxoferrat(II). Die Struktur enthält isolierte $[FeO_3]^{4-}$ -Einheiten neben $[FeO_4]^{6-}$ -Tetraedern, die über Ecken und Kanten zu Schichten verbrückt sind. Die Verbindung stellt die zweite bisher strukturell charakterisierte Eisen(II)-Verbindung im ternären System Na/Fe/O dar.

Mit **Na₉[FeO₄][FeO₃]** wurde der erste Vertreter des A₉B₂X₇-Formeltyps im System Na/Fe/O gefunden. In der Verbindung liegen voneinander isolierte trigonal-planare sowie tetraedrische komplexe Anionen $[Fe^{II}O_3]^{4-}$ und $[Fe^{III}O_4]^{5-}$ vor. Erstmals konnten die kristallographischen Lagen für Fe²⁺ und Fe³⁺ in einem Natrium-Oxoferrat(II, III) eindeutig zugeordnet werden.

Verbindungen des Typs Na₅[MO₂](CO₃) sind bisher kaum untersucht. Neben der bereits bekannten Ni(I)-Verbindung konnten die isotypen Verbindungen $Na_5[CuO_2](CO_3)$ und Na₅[CoO₂](CO₃) synthetisiert werden. Des weiteren konnten die strukturell verwandten Verbindungen $Na_5[CuO_2](SO_4)$ und $Na_5[NiO_2](S)$ dargestellt werden. Wie die Carbonate gehören diese dem Formeltyp Na₅[MO₂](X) an und enthalten einwertige Übergangsmetallkationen, welche linear von Oxoanionen koordiniert werden. Die Tatsache, daß in den Verbindungen keine Koordination zwischen M⁺ und dem zweiwertigen Anion X⁻ besteht, stellt ein besonders hervorzuhebendes Strukturmerkmal dar.

Zudem gelang die Synthese von $Na_{25}[CuO_2]_5(S)(SO_4)_4$. Diese Verbindung kann als "intergrowth" obiger Verbindungen verstanden werden. Die Reaktivität in den Systemen $Na_2O/Cu_2O/Na_2SO_4$ bzw. $Na_2O/Cu_2O/Na_2SO_3$ wurde mit Hilfe thermoanalytischer Methoden und *In-situ*-Pulverdiffraktometrie untersucht.

An der neuen Verbindung $Na_5[CuO_2](OH)_2$ wurde die Bildung und Zersetzung untersucht. Charakteristisches Strukturmerkmal sind isolierte komplexe Ionen, $[CuO_2]^{3-}$, neben OH⁻-Ionen.

Als neues Oxo-Cuprat(III) konnte $Na_{11}[CuO_4](SO_4)_3$ strukturell charakterisiert werden. In der Verbindung liegen $[CuO_4]^{5-}$ -Einheiten isoliert von ihresgleichen neben nicht koordinierenden Sulfationen vor.

 $Na_{10}[CoO_3]{[CoO_3](OH)_2}$ stellt ein neues "Inselcobaltat" dar, mit isolierten carbonatanalogen $[CoO_3]^{4-}$ -Ionen und $\{[CoO_3](OH)_2\}^{6-}$ -Einheiten. Die Hydroxidionen koordinieren über Wasserstoffbrückenbindungen an nur eine kristallographisch unterscheidbare $[CoO_3]^{4-}$ -Gruppe.

Für alle Verbindungen wurden Betrachtungen zum Madelung-Anteil der Gitterenergie angestellt.

Abstract

New alkaline-metal rich oxides of late 3d-transition metals (Fe, Co, Ni, Cu) containing complex anions have been synthesized and structurally characterized.

 $Na_{10}[Fe_3O_6][FeO_3]$ is a new sodium oxoferrate(II). The compound contains isolated $[FeO_3]^{4-}$ groups next to $[FeO_4]^{6-}$ tetrahedra which are connected via corners to three-membered rings. Furthermore, these rings connect via edges to form $[Fe_3O_6]$ layers. This compound is the second structurally characterized Fe(II) compound in the ternary system Na/Fe/O so far. $Na_9[FeO_4][FeO_3]$ is the first representative of the formula type $A_9B_2X_7$ in the system Na/Fe/O. The compound contains isolated trigonal-planar and tetrahedral $[Fe^{II}O_3]^{4-}$ and $[Fe^{III}O_4]^{5-}$ complexes. For the first time crystallographically different sites for Fe³⁺ and Fe²⁺ have been unambiguously determined in a mixed-valent sodium-oxo-ferrat(II, III).

Compounds like $Na_5[MO_2](CO_3)$ are scarcely investigated and known to date. The isotypic compounds $Na_5[CuO_2](CO_3)$ and $Na_5[CoO_2](CO_3)$ have now been synthesized and structurally characterized. Furthermore, $Na_5[CuO_2](SO_4)$ and $Na_5[NiO_2](S)$ have been synthesized. They belong to the same structural family $Na_5[MO_2](X)$, and contain monovalent tansition metal ions in a linear dumb-bell like coordination. It is interesting to note that the complex ions $CO_3^{2^2}$ and $SO_4^{2^2}$ as well, do not coordinate the transition metal cation. In addition, $Na_{25}[CuO_2]_5(S)(SO_4)_4$ has been synthesized which might be described as an "intergrowth" of the above mentioned compounds.

The reactivity in the systems $Na_2O/Cu_2O/Na_2SO_4$ and $Na_2O/Cu_2O/Na_2SO_3$ has been investigated by thermoanalytical methods and the *in-situ* X-ray-powder diffraction technique.

The formation and decomposition of the new compound $Na_5[CuO_2](OH)_2$ has been investigated. The characteristic features of the crystal structure are bent $[CuO_2]^{3-}$ complexes and isolated OH ions.

A new cobaltate, $Na_{10}[CoO_3]\{[CoO_3](OH)_2\}$, has been obtained and is described. The compound contains isolated ions $[CoO_3]^{4-}$ and $\{[CoO_3](OH)_2\}^{6-}$. In the latter, OH forms hydrogen bonds with one crystallographically independent $[CoO_3]$ complex.

The Madelung Part of the Lattice Energy has been calculated and is discussed for all compounds.

1 EIN	LEITUNG	1
2 ALL	GEMEINER TEIL	2
2.1	Allgemeine Arbeitstechniken unter inerten Bedingungen	2
2.2 2.2.2 2.2.2 2.2.1	Strukturaufklärung kristalliner Verbindungen "direkte Methoden" 2.1 Differenz-Fouriersynthese und Parameterverfeinerung Intensitätsmessungen an Einkristallen	2 3 3 4
2.3 2.3.1 2.3.2 2.3.3	Überprüfung der Kristallstruktur Pulverdiffraktometrie Berechnung des Madelunganteils der Gitterenergie IR-Spektroskopie	5 5 8
2.4 2.4.1 2.4.2 2.4.3	Thermoanalytische Methoden Differenzthermoanalyse (DTA) Differential Scanning Calorimetry (DSC) Thermogravimetrie (TG)	9 9 10
2.5	In-situ Röntgenpulverdiffraktometrie	10
2.6	Materialien und Geräte	11
3 SPE		13
3.1.1 3.1.1 3.1.1 3.1.1 3.1.2 3.	Verbindungen des Typs $Na_5[MO_2](X)$ mit $M = Co, Ni, Cu und X = CO_3^{2^*}, S^{2^*}, SO_4^{2^*}Na_5[MO_2](CO_3) mit M = Cu, Co1.1Bestimmung der Kristallstruktur von Na_5[MO_2](CO_3) (M = Co, Cu)1.2Beschreibung der Kristallstruktur von Na_5[MO_2](CO_3) mit M = Co, Cu1.3Vergleich der Kristallstrukturen1.4IR-Spektren von Na_5[MO_2](CO_3) mit M = Co, Cu1.5MAPLE-Berechnungen für Na_5[MO_2](CO_3) (M = Cu, Ni, Co)Na_5[CuO_2](SO_4)2.1Bestimmung der Kristallstruktur von Na_5[CuO_2](SO_4)2.2Beschreibung der Kristallstruktur von Na_5[CuO_2](SO_4)2.3MAPLE-Berechnung für Na_5[CuO_2](SO_4)2.4IR-Spektrum von Na_5[MO_2](SO_4)2.4IR-Spektrum von Na_5[MO_2](SO_4)2.5Bestimmung der Kristallstruktur von Na_5[NiO_2](S)3.1Bestimmung der Kristallstruktur von Na_5[NiO_2](S)3.2Beschreibung der Kristallstruktur von Na_5[NiO_2](S)3.3MAPLE-Berechnung für Na_5[NiO_2](S)$	13 13 15 19 24 24 25 27 27 30 32 33 34 35 36 38
3.2 3.2.1 3.2.2 3.2.3 3.2.4	Na ₂₅ [CuO ₂] ₅ (S)(SO ₄) ₄ Bestimmung der Kristallstruktur von Na ₂₅ [CuO ₂] ₅ (S)(SO ₄) ₄ Beschreibung der Kristallstruktur von Na ₂₅ [CuO ₂] ₅ (S)(SO ₄) ₄ MAPLE-Berechnung für Na ₂₅ [CuO ₂] ₅ (S)(SO ₄) ₄ IR-Spektrum von Na ₂₅ [CuO ₂] ₅ (S)(SO ₄) ₄	40 40 44 51 52

3.3	Untersuchungen zur Reaktivität in den Systemen	50
2.2	$Na_2O/Cu_2O/Na_2SO_3$ und $Na_2O/Cu_2O/Na_2SO_4$	53
3.3.	1 Reaktionen Im System Na ₂ O/Cu ₂ O/Na ₂ SO ₄	53
3.3.	2 Reaktionen im System Na ₂ O/Cu ₂ O/Na ₂ SO ₃	60
3.4	Na₅[CuO₂](OH)₂	67
3.4.	1 Bestimmung der Krsitallstruktur von Na ₅ [CuO ₂](OH) ₂	67
3.4.	2 Beschreibung der Kristallstruktur von Na ₅ [CuO ₂](OH) ₂	69
3.4.	3 Untersuchungen zur Bildung und Zersetzung von Na ₅ [CuO ₂](OH) ₂	72
3.4.	4 MAPLE-Berechnungen f ür Na₅[CuO₂](OH)₂	74
3.4.	5 IR-Spektrum von Na ₅ [CuO ₂](OH) ₂	76
3.5	Na10[CoO3]{[CoO3](OH)2}	77
3.5.	1 Bestimmung der Kristallstruktur von Na ₁₀ [CoO ₃]{[CoO ₃](OH) ₂ }	78
3.5.	2 Beschreibung der Kristallstruktur von $Na_{10}[CoO_3]{[CoO_3](OH)_2}$	80
3.5.	3 MAPLE-Berechnung für $Na_{10}[CoO_3]{[CoO_3](OH)_2}$	83
3.5.	4 IR-Spektrum von $Na_{10}[CoO_3]{[CoO_3](OH)_2}$	85
3.6	Na ₁₁ [CuO ₄](SO ₄) ₃	85
3.6.	1 Bestimmung der Kristallstruktur von $Na_{11}[CuO_4](SO_4)_3$	86
3.6.	2 Beschreibung der Kristallstruktur von Na ₁₁ [CuO ₄](SO ₄) ₃	90
3.6	3 MAPLE-Berechnung für $Na_{11}[CuO_4](SO_4)_3$	95
3.6.	4 IR-Spektrum von $Na_{11}[CuO_4](SO_4)_3$	97
3.7	Verbindungen im System Na ₂ O/FeO/Fe ₂ O ₃	98
3.7.	1 $Na_{10}[Fe_3O_6][FeO_3]$	99
3.	7.1.1 Bestimmung der Kristallstruktur von Na ₁₀ [Fe ₃ O ₆][FeO ₃]	99
3.	7.1.2 Beschreibung der Kristallstruktur von Na ₁₀ [Fe ₃ O ₆][FeO ₃]	101
3.	7.1.3 MAPLE-Berechnung für Na ₁₀ [Fe ₃ O ₆][FeO ₃]	105
3.7.	2 Na ₉ [FeU ₃][FeU ₄] 7.0.1 Bestimmung der Kristelletruktur von Na [FeO_][FeO_]	107
ა. ვ	7.2.1 Bestimmung der Kristallstruktur von $Na_9[FeO_3][FeO_4]$ 7.2.2 Beschreibung der Kristallstruktur von $Na_2[FeO_3][FeO_4]$	107
3.	7.2.3. MAPLE-Berechnung für Na $_9$ [FeO $_3$][FeO $_4$]	113
4 Z	USAMMENFASSUNG	114
5 LI	TERATURVERZEICHNIS	119
6 A	NHANG	123

1 Einleitung

Lange Zeit wurde die These vertreten, Sauerstoff stabilisiere in polynären Oxiden der Metalle (nur) die "hohen" Oxidationsstufen [1]. Die Verbindung Cu₂O zeigt, daß auch in einfachen Oxiden niedrige Oxidationsstufen, hier Cu(I), vorliegen können. "Ni₂O" oder "Co₂O" wurden bislang nicht beschrieben, auch wenn die Elemente Nickel bzw. Cobalt eine große Ähnlichkeit bezüglich Ionenradius und Elektronegativität mit Kupfer aufweisen. Erste Untersuchungen von *R. Hoppe* und Mitarbeitern belegen die Existenz alkalimetallhaltiger Oxide mit Kupfer, Nickel und Cobalt in der Oxidationsstufe +1. So konnten unter anderem Verbindungen wie RbNa₂[NiO₂] [1] oder auch K₃[CoO₂] [1] und NaCuO [2] synthetisiert und strukturell aufgeklärt werden. In diesen Verbindungen liegen die Übergangsmetallkationen nahezu linear koordiniert von Oxidionen vor.

In jüngster Zeit wurde Na₅[NiO₂](CO₃) [3] beschrieben. Hier liegt neben den komplexen Anionen [O-Ni-O]³⁻ als weiteres Oxo-Anion CO₃²⁻ vor. Als wesentliches Merkmal dieser Struktur kann angesehen werden, daß Sauerstoffatome der Carbonatgruppe nicht an das Übergangsmetall koordinieren. Ein wesentliches Anliegen dieser Arbeit war die Beantwortung der Frage, ob entsprechende Verbindungen mit den Übergangsmetallen Kupfer oder Cobalt in der einwertigen Stufe existieren. Auch der Frage, ob andere Anionen isoliert und nicht koordinierend an das Übergangsmetallkation vorliegen können, galt es nachzugehen. Voneinander unterscheidbare isolierte Oxo-Anionen wurden bereits in $Ba_4Na[CuO_4](CO_3)$ [4] und $Ba_4Li[CuO_4](CO_3)$ [5] beschrieben. Alkalimetallhaltige Oxide des Kupfers mit zum Beispiel isolierten Sulfateinheiten oder Hydroxid wurden bisher nicht beobachtet.

Das thermische Verhalten von Natriumverbindungen (Na₂S, Na₂O, Na₂SO₃ oder Na₂SO₄) und ihre Reaktionen mit Metallen wurden bereits untersucht [6, 7, 8]. Eingesetzt wurden hierbei Schmelzflußreaktionen einer Komponente Na₂X mit den jeweiligen Metallen. Für zum Beispiel Nickel und Cobalt wird mit Natriumoxid der Eintritt einer Reaktion bei 1000°C beschrieben. Na₅[NiO₂](CO₃) wurde durch Reaktion zweier Alkalimetallkomponenten (Na₂O und Na₂CO₃) mit CdO in einem Nickelcontainer dargestellt. Wesentlich tiefere Temperaturen (500°C) führten zum Produkt. CdO dient als Oxidationsmittel für das Containermaterial (Ni). Eine solche "Reaktion mit der Wand" wurde erstmals von *Hoppe* und Mitarbeitern zur Synthese neuer ternärer Oxo-metallate verwendet [1, 9, 10, 11, 12, 13]. Über die Reaktion von Na₂O mit CdO und einer weiteren natriumhaltigen Komponente (NaOH, Na₂SO₄) in verschiedenen Containermaterialien wurde jedoch noch nicht berichtet. Ob diese Reaktionen zur Bildung neuer kristalliner Verbindungen führen, sollte in dieser Arbeit auch mit *In-situ*-Methoden untersucht werden.

2 Allgemeiner Teil

2.1 Allgemeine Arbeitstechniken unter inerten Bedingungen

Die Hydrolyse- und Oxidationsempfindlichkeit der Edukte und Produkte machen es notwendig, sämtliche Arbeiten unter Inertgas (hier Argon) durchzuführen. Zur Präparation der Proben steht eine Argon-Handschuh-Box (Fa. Braun) mit Waage zur Verfügung. Das verwendete Argon wird in einer Umwälzanlage mittels Kupferkatalysator und Molekularsieb von Sauerstoff- und Wasserspuren befreit. Die gemessenen Konzentrationen liegen im Regelbetrieb stets unter 2 (O₂) ppm bzw. 0,3 (H₂O) ppm. Die innig verriebenen Pulvergemenge werden in verschließbare Reaktionscontainer (je nach Umsetzung Silber, Nickel oder Eisen; Eigenbau) überführt und anschließend an einer Schutzgasapparatur in Duran- bzw. Kieselglasampullen eingeschmolzen. Die Schutzgasapparatur ist dabei so konstruiert, daß die Ampullenrohre abwechselnd über eine Drehschieberölpumpe evakuiert oder mit Argon geflutet werden können. Das hierfür verwendete Argon wird zunächst getrocknet, indem es vier Trockentürme, gefüllt mit Silicagel, Kaliumhydroxid, Phosphorpentoxid auf Bimsstein und Molekularsieb passiert und anschließend durch einen Röhrenofen geleitet wird, welcher ein mit Titanschwamm gefülltes Kieselglasrohr umschließt. Der Röhrenofen hat dabei eine Temperatur von 800°C. Das Öffnen der Reaktionscontainer geschieht ebenfalls in einer Argon-Handschuhbox, die zur Auswahl geeigneter Kristalle mit einem Polarisations-mikroskop ausgestattet ist. Die Reaktionen finden in stehenden Röhrenöfen (Eigenbau) statt. In der Regel wird in einem Schritt auf 250°C, anschließend mit 50°C/d bis zur entsprechenden Endtemperatur aufgeheizt. Abgekühlt wird entsprechend mit 50°C/d bis 250°C, anschließend in einem Schritt auf Raumtemperatur.

2.1 Strukturaufklärung kristalliner Verbindungen

Röntgenbeugungsmethoden werden zur Strukturaufklärung kristalliner und polykristalliner Verbindungen verwendet. Grundlage ist der von *Laue* und *Bragg* beschriebene Zusammenhang zwischen der Anordnung von Streuzentren (Atome) im kristallinen Festkörper und der Intensität der an ihnen gebeugten Röntgenstrahlen. Systematische Auslöschungen im Beugungsmuster lassen Rückschlüsse auf vorhandene Kristallsysteme und Symmetrieelemente (und damit der Raumgruppe) zu. Die Intensitäten werden neben geometrischen und physikalischen Faktoren durch Art und Lage der Atome in der Elementarzelle bestimmt. Die Beziehung:

$$I_{0}(hkl) \propto \left| F_{0}(hkl) \right|^{2}$$
(1)

liefert den Zusammenhang zwischen der beobachteten Intensität des Reflexes mit der Indizierung *hkl* und dem Quadrat der Strukturamplitude. Die Strukturamplitude setzt sich dabei aus unterschiedlichen Komponenten zusammen. In erster Linie ist die Strukturamplitude direkt proportional zur Elektronenzahl (Ordnungszahl) des betreffenden Elements, dessen Koordinaten in der Elementarzelle die Phaseninformation enthalten. Des weiteren ist der Beitrag der thermischen Bewegung der Atome berücksichtigt. Für den Strukturfaktor ergibt sich folgende Gleichung:

$$F(hkl) = \sum_{j} f_{j} \exp\left(-B_{j} \frac{\sin^{2} \theta}{\lambda^{2}}\right) \cdot \exp\left\{2\pi i \left(hx_{j} + ky_{j} + lz_{j}\right)\right\} = \sum \left|F(hkl) \cdot \exp(i\phi)\right|$$
(2)

mit: $x_j, y_j, z_j = Koordinaten des Atoms j$ h, k, l = *Miller*sche Indizes $2\pi i(hx_j + ky_j + lz_j) = \Phi$ = Phasenwinkel F(hkl) = Strukturfaktor |F(hkl)| = Strukturamplitude B_j = Debye-Waller-Temperaturfaktor des Atoms j Φ = Braggscher Beugungswinkel f_i = Atomformfaktor des Atoms j

Der koordinatenabhängige Teil der Expotentialfunktion wird zur "Phase" zusammengefaßt. Da bei der Umrechnung der gemessenen Intensitäten in Amplituden nur noch deren Betrag ermittelt werden kann, geht die Phaseninformation und damit der direkte Zugang zu den Ortsparametern verloren. Einen möglichen Ansatz zur Strukturlösung stellen die sogennanten "Direkten Methoden" dar.

2.1.1 "Direkte Methoden"

Durch allgemeine Eigenschaften der Fourierdarstellung können Aussagen über Phasenwinkel (azentrischer Fall) oder Vorzeichen (zentrischer Fall) der Strukturamplituden direkt aus den beobachteten Reflexintensitäten abgeleitet werden. Dabei wird auf statistische Gesetzmäßigkeiten zwischen *Miller*schen Indizes zurückgegriffen. Für zentrosymmetrische Strukturen wird das Programm SHELXS-97 [14] verwendet; hieraus resultieren Vorschläge für Lageparameter (Ortskoordinaten). Ein Lösungsansatz für die Kristallstruktur wird durch sukzessives Einlesen, beginnend mit dem schwersten Atom, erhalten.

2.1.1.1 Differenz-Fouriersynthese und Parameterverfeinerung

Nach Ermittlung der Ortskoordinaten durch "direkte Methoden" werden die Lagen weiterer Atome durch Differenz-Fouriersynthesen festgelegt. Die Verfeinerung der Atomlagen und der isotropen Temperaturfaktoren erfolgt durch das Programm SHELXL-97 [15] nach der Methode der kleinsten Fehlerquadrate. Mit dem sogenannten "R-Wert" (Residual-Wert) wird die "Güte" des Strukturmodells abgeschätzt.

$$\mathsf{R} = \frac{\sum \left\|\mathsf{F}(\mathsf{hkl})_{\mathsf{ber.}}\right| - \left|\mathsf{F}(\mathsf{hkl})_{\mathsf{beob.}}\right|}{\sum \left|\mathsf{F}(\mathsf{hkl})_{\mathsf{beob.}}\right|}$$
(3)

Eine weitere Verfeinerung des Strukturmodells geschieht durch folgende Parameter:

• Wichtung der Strukturfaktoren F(hkl)

Die Wichtung berücksichtigt Fehler der experimentellen Messung.

$$w = \frac{k}{\sigma^2 [F(hkI)]}$$
(4)

Als "gewichteter" R-Wert ergibt sich demnach:

$$R_{w} = \frac{\sum \sqrt{w \left\| F(hkl)_{ber.} \right| - \left| F(hkl)_{beob.} \right\|}}{\sum \sqrt{w \left| F(hkl)_{beob.} \right|}}$$
(5)

Anisotrope Temperaturfaktoren

Anisotropen Temperaturfaktoren liegt das Modell harmonischer Temperaturschwingungen der Atome um ihre Gleichgewichtslagen zugrunde. Die mittleren Auslenkungen gelten als richtungsunabhängig [16].

$$T_{hkl} = \left[-2\pi^2 \left(U_{11}h^2 a^{*2} + U_{22}k^2 b^{*2} + U_{33}l^2 c^{*2} + 2U_{12}hka^* b^* + 2U_{23}klb^* c^* + 2U_{13}hla^* c^* \right) \right]$$
⁽⁶⁾

2.1.2 Intensitätsmessungen an Einkristallen

Zur vollständigen Strukturaufklärung unbekannter Verbindungen ist es notwendig, Intensitätsmessungen von Röntgenstrahlen, die an Einkristallen gebeugt wurden, vorzunehmen.

Für röntgenographische Einkristalluntersuchungen wird ein IPDS (Imaging Plate Diffraction **S**ystem, Fa. Stoe & Cie) verwendet. Das Gerät besitzt eine Bildplatte, deren röntgensensitive Komponente aus einer Schicht Bariumbromidfluorid, dotiert mit zweiwertigem Europium, besteht (BaBrF:Eu²⁺). Die am Kristall gebeugten Röntgenstrahlen treffen auf diese Schicht, werden durch angeregte Eu²⁺-Ionen gespeichert und anschließend von einem Helium/Neon-Laser ausgelesen, d.h. zur Photonenemission angeregt.

Zur Aufnahme der Intensitätsdatensätze werden Einkristalle in der Schutzgasbox mit Hilfe eines Polarisationsmikroskops ausgewählt und in Glaskapillaren überführt, die mit Wachs verschlossen werden. Nach Entnahme aus der Handschuhbox werden die Kapillaren abgeschmolzen.

2.2 Überprüfung der Kristallstruktur

Mit einem R₁-Wert, der kleiner als 10% ist, kann ein Strukturvorschlag als richtig angesehen werden. Weitere Berechnungen und Untersuchungen helfen, den Strukturvorschlag zu verifizieren:

- Überprüfung interatomarer Abstände und Winkel
- Berechnung des Madelunganteils der Gitterenergie und Vergleich mit ähnlichen Verbindungen (z.B. den binären Komponenten)
- Übereinstimmung des Volumens der Elementarzelle mit dem aus den "*Biltz*schen Volumeninkrementen" berechneten Volumen
- Aufnahme von IR-Spektren
- Vergleich von indizierten Röntgenpulverdiffraktometer-Daten mit den aus Einkristalldaten berechneten Reflexlagen und -intensitäten

2.2.1 Pulverdiffraktometrie

Im Rahmen dieser Arbeit wird ein $\theta/2\theta$ -Pulverdiffraktometer (Fa. Stoe & Cie) verwendet. In der pulverförmigen Probe befinden sich stets Kristallite, die zufällig so orientiert sind, daß für einige Netzebenenscharen die *Bragg*sche Reflexionsbedingung erfüllt ist. Alle für eine bestimmte Netzebenenschar *hkl* zufällig in Reflexionsstellung befindlichen Kristallite reflektieren unter dem gleichen Glanzwinkel θ_{hkl} bzw. unter dem gleichen Ablenkungswinkel $2\theta_{nkl}$. Das Pulverdiffraktometer registriert die Reflexintensitäten in Form eines Peak-Profils mit Hilfe eines Zählrohres. Mit Hilfe dieses Verfahrens werden neben einer hohen Winkelauflösung zuverlässige Intensitäten erhalten. Eine Auswertung und damit eine Indizierung und Verfeinerung der Gitterkonstanten geschieht nach Bearbeitung des Diffraktogramms durch das Programm Win XPOW [17], mit dem auch Röntgendiffraktogramme simuliert werden können.

Zur Aufnahme der Pulverdiffraktogramme werden die Substanzen fein verrieben und in ein Markröhrchen (Durchmesser 0,3 mm) mit Trichter überführt. Der Trichter wird in der Box verschlossen und das Markröhrchen nach Entnahme aus der Schutzgasbox abgeschmolzen.

2.2.2 Berechnung des Madelunganteils der Gitterenergie

Die Berechnung des Madelung-Anteils der Gitterenergie (**M**adelung **P**art of Lattice Energy, MAPLE) erfolgt mit Hilfe des Programms MAPLE v.4.0 [18].

Grundlage ist ein von *Hoppe* entwickeltes Konzept [19] zur Berechnung der Coulomb-Wechselwirkungen der einzelnen in einer Struktur vorhandenen Ionen. Hierbei wird zunächst ein effektiver Ionenradius (**M**ean **E**ffective Ionic **R**adii, MEFIR) berechnet [20]. Es ergibt sich ein fiktiver Ionenradius (Fictive Ionic Radii, FIR) aus:

$$FIR(h \rightarrow i)_{j} = d(h \rightarrow i)_{j} \frac{R(h)}{R(h) + R(i)}$$
(7)

Hierbei ist d(h \rightarrow i) der Abstand zwischen einem Atom der Sorte h und einem Atom der Sorte i. R(h) und R(i) sind die Ionenradien der Atome (nach Shannon [21] bezogen auf r(O²⁻) = 140 pm, bei 6-facher Koordination). Werden die Atome der Sorte h (jeweils) willkürlich als unveränderbare Referenzpunkte gewählt, so lassen sich die Abstände d(h \rightarrow i)_j mit größer werdendem Abstand durchnummerieren (d(h \rightarrow i)₁= kürzester Abstand). Mit n(h \rightarrow i)_j = Häufigkeit des jeweiligen Abstandes, läßt sich ein gewichteter **M**ean **F**ictive Ionic **R**adius, ¹MEFIR definieren [20].

$${}^{1}\text{MEFIR}(h) = \frac{\sum_{i} \sum_{j=1}^{\infty} \text{FIR}(h \to i)_{j} \cdot n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{\text{FIR}(h \to i)_{j}}{\text{FIR}(h \to i)_{1}}\right)^{6}\right]}{\sum_{i} \sum_{j=1}^{\infty} n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{\text{FIR}(h \to i)_{j}}{\text{FIR}(h \to i)_{1}}\right)^{6}\right]}$$
(8)

Schon in einfachen Oxiden wie TiO₂, mit kurzen O-O-Abständen treten jedoch mit dieser Berechnung Fehler auf [20]. Eine Korrektur kann zum Beispiel auf iterativem Wege erfolgen, hier wird zunächst ¹MEFIR für den kürzesten Abstand berechnet und eine Konvergenzreihe angeschlossen (p = 1 und n = 2, mit ⁿMEFIR(h)-^mMEFIR(h) \leq 0,001Å und n = m+1).

$${}^{n}\text{MEFIR} = \frac{\sum_{i}\sum_{j=1}^{\infty}\text{FIR}(h \to i)_{j} \cdot n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{\text{FIR}(h \to i)_{j}}{{}^{p}\text{MEFIR}(h \to i)}\right)^{6}\right]}{\sum_{i}\sum_{j=1}^{\infty}n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{\text{FIR}(h \to i)_{j}}{{}^{p}\text{MEFIR}(h \to i)}\right)^{6}\right]}$$
(9)

Auf ähnlichem Wege lässt sich eine effektive Koordinationszahl (Effective Coordination Number, ECoN) bestimmen:

$${}^{1}\text{ECoN}(h \to i) = \sum_{i} \sum_{j=1}^{\infty} n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{\text{FIR}(h \to i)_{j}}{{}^{1}\text{MEFIR}(h \to i)}\right)^{6}\right]$$
(10)

$${}^{n}\text{ECoN}(h \to i) = \sum_{i} \sum_{j=1}^{\infty} n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{\text{FIR}(h \to i)_{j}}{{}^{n}\text{MEFIR}(h \to i)}\right)^{6}\right]$$
(11)

Die Summe der ECoN-Beiträge ergibt die effektive Koordinationszahl, die somit entgegen der naiv gezählten Koordinationszahl auch gebrochene Werte annehmen kann.

Die Gitterenergie setzt sich aus verschiedenen Komponenten zusammen [19]:

$$U_{g} = \frac{MF \cdot f(z_{i}) \cdot N_{L} \cdot e^{2}}{r_{KA} \cdot 4 \cdot \pi \cdot \varepsilon_{0}} + E_{nC} + E_{corr}$$
(12)

mit: MF = Madelungfaktor

 $f(z_i)$ = Funktion der Ladung der Ionen

N_L = *Loschmidt*sche Zahl

e = Elementarladung

 ϵ_0 = Dielektrizitätskonstante

r_{KA} = kürzester Abstand Anion-Kation

 E_{nC} ; E_{corr} = Korrekturglieder

 E_{nC} und E_{corr} sind Korrekturglieder, die die nicht-Coulombschen Kräfte (*Born*sche Abstoßung der Elektronenhüllen), Polarisation der Ionen, Nullpunktsenergie usw. enthalten.

Der erste Summand stellt den Madelunganteil der Gitterenergie (MAPLE) dar. Er setzt sich zusammen aus dem kürzesten Abstand Anion-Kation $r_{KA,}$ und $f(z_i)$, einer Funktion der Ladung der Ionen. Der letzte Term wird in den Madelungfaktor MF einbezogen. Der Term $(e^2 N_L/4\pi\epsilon_0)$ wird meist mit einem entsprechenden Faktor multipliziert, die resultierende Konstante 331,81 bewirkt die Dimension [kcal/mol] für die Gitterenergie. Der Madelungfaktor MF ist durch Ladung und Lage der Ionen einer Verbindung bestimmt und kann als Summe von Teilbeträgen (partielle Madelung-Faktoren, PMF), die den verschiedenen Ionen in der Elementarzelle zuzuordnen sind, dargestellt werden. Für Verbindungen des Typs A_mB_n gilt dann:

$$\mathsf{MF}(\mathsf{A}_{\mathsf{m}}\mathsf{B}_{\mathsf{n}}) = \sum_{j=1}^{j=j} m_{j} \cdot \mathsf{PMF}(\mathsf{A}_{j}) + \sum_{\mathsf{r}=1}^{\mathsf{r}=\mathsf{r}} n_{\mathsf{r}} \cdot \mathsf{PMF}(\mathsf{B}_{\mathsf{r}})$$
(13)

mit: $m_j = \frac{z_j}{Z}$ und $n_r = \frac{z_r}{Z}$ (Z = Anzahl Formeleinheiten pro Elementarzelle)

Dabei besetzen die Atome A_j verschiedene Punktlagen der Zähligkeit z_j , und B_r Punktlagen der Zähligkeit z_r .

Die Berechnung der Madelung-Anteile der Gitterenergie erfolgt durch die Ermittlung der Coulomb-Wechselwirkung jedes einzelnen lons mit allen anderen lonen.

Die Summation der Madelunganteile aller in einer Struktur vorhandenen Ionen ergibt dann den Coulomb-Anteil der Gitterenergie.

Im Allgemeinen ist der partielle Madelungfaktor eine Funktion von Q_i, dem "Ionenladungsquotient", wobei gilt:

$$\mathbf{Q}(\mathbf{A}_{ii}^{n}) = \frac{1}{|\mathbf{n}_{i}|} \sum \left(\frac{\mathbf{d}_{i}}{\mathbf{d}_{ij}} \right)^{6} \cdot \mathbf{z}_{j} |\mathbf{n}_{j}|$$
(14)

mit: n_i = Ladung des betrachteten Ions Aⁿ_{ii}

```
d<sub>i</sub>= kürzester aller Abstände d<sub>ii</sub> des betrachteten Ions zu Nachbarn ungleicher Ladung
```

d_{ij} = Abstand zwischen A_i und X_j

z_j = Zahl gleichweit entfernter Nachbarn X_j

n_j = Ladung des Nachbarn

Eine Überprüfung der Kristallstruktur geschieht durch Vergleich des ermittelten Coulomb-Anteils der Gitterenergie mit demjenigen Anteil, der sich durch Summation aus den binären Komponenten einer Verbindung ergibt [22]. Dieses Prinzip ergibt sich aus dem *Born-Haber*-Kreisprozeß für die Berechnung thermodynamischer Größen. In weitgehend ionischen Verbindungen, zum Beispiel Oxiden, werden meist Abweichungen von ca. 1-2% gefunden. In solchen Verbindungen können zusätzliche Beiträge zur Gitterenergie E_{nC} , E_{corr} weitgehend vernachläßigt werden.

2.2.3 IR-Spektroskopie

Mit Hilfe der IR-Spektroskopie gelingt der Nachweis für das Vorhandensein bestimmter Baugruppen in Festkörpern. Grundlage dieses Verfahrens ist die Anregung von Schwingungen durch elektromagnetische Strahlung, deren Wellenlängen im Infrarotbereich liegen. Genauere Betrachtungen der physikalischen und quantenmechanischen Vorgänge während der Absorption führen zu der Auswahlregel, daß nur solche Moleküle bzw. Baugruppen IR-aktiv sind, die bei der Anregung ihr Dipolmoment ändern. Der mathematische Formalismus der Gruppentheorie macht es möglich, die Anzahl der Schwingungen bei Kenntnis der vorliegenden Symmetrie zu ermitteln. Um die möglichen Schwingungen von Baugruppen und komplexen Ionen in Festkörpern und Kristallen zu ermitteln, wird sich der Faktorgruppenanalyse bedient. Bei der Einbindung von isolierten Molekülen in einen Kristall treten an die Stelle der Auswahlregeln für das freie Molekül die der Punktlagensymmetrie (site symmetry). Korrelationstabellen [23, 24] geben darüber Auskunft, wie die Rassen der Schwingungen des freien Moleküls bzw. komplexen Ions in die Symmetrierassen der Punktlage und der Faktorgruppe übergehen.

Damit ist noch keine Aussage über das Auftreten aller Banden möglich, da die jeweiligen Intensitäten neben Überlagerungen auch durch Übergangswahrscheinlichkeiten geprägt

8

sind. In der Praxis wird oft so verfahren, daß gemessene Spektren mit bekannten Spektren verglichen werden.

Zur Aufnahme der IR-Spektren wurden ca. 5 mg der Probensubstanz mit 2-3 Spatelspitzen (50 mg) getrocknetem Kaliumbromid in einer Achatreibschale fein verrieben. Das Pressen der Tabletten erfolgte mit 10 Tonnen (ca. 15 min). Die Aufnahmen wurden in einer evakuierten Probenkammer (10⁻³ mbar) in einem Wellenlängenbereich von 400 bis 7000 cm⁻¹ (MIR-Bereich) bei Raumtemperatur angefertigt. Für die Aufnahme von IR-Spektren an Einkristallen wurden ausgewählte Einkristalle in KBr gepresst. Zur Aufnahme von Spektren im FIR-Bereich wurde die Substanz mit PE verrieben und bei einem Druck von 5t zu einer Tablette gepresst.

2.3 Thermoanalytische Methoden

Die thermische Analyse liefert für die Untersuchung von Substanzen und Reaktionsabläufen einen wesentlichen Beitrag. In Einkomponentensystemen können Umwandlungen erster Ordnung, z.B. Modifikationsumwandlungen (Schmelzen, Erstarren, Sublimation) quantitativ erfaßt werden. In Mehrkomponentensystemen kann z.B. die Reaktionstemperatur einer Redoxreaktion ermittelt werden.

Zu den wichtigsten Methoden der thermischen Analyse gehören die Differenzthermoanalyse (DTA), die dynamische Kalorimetrie (DSC, Differential Scanning Calorimetry) sowie die Thermo-Gravimetrie (TG).

2.3.1 Differenzthermoanalyse (DTA)

In einem Ofen werden Probensubstanz und Referenzsubstanz (die im entsprechenden Temperaturbereich keine Reaktion zeigt) mit konstanter Aufheizrate erhitzt und die Temperaturdifferenz zwischen beiden als Funktion der Temperatur T der Vergleichsubstanz oder der Zeit registriert. Da Phasenumwandlungen erster Ordnung bei konstanter Temperatur stattfinden, läßt sich bei einer Reaktion eine Temperaturdifferenz messen. Mit dieser Methode lassen sich qualitative Aussagen über Reaktionstemperaturen treffen, z.B. ob Reaktionen endo- oder exotherm verlaufen.

2.3.2 Differential Scanning Calorimetry (DSC)

Bei dieser Methode wird die Probe im verschlossenen Tiegel einem definierten Temperaturprogramm unterworfen, gemessen wird der Wärmestrom, um eine konstante Heizrate zu erhalten. Durch Integration des Wärmestroms über die Zeit wird der Wärmeumsatz bzw. die Enthalpieänderung erhalten. Thermodynamische Größen lassen sich so quantitativ bestimmen.

2.3.3 Thermogravimetrie (TG)

Die Thermogravimetrie wird in der Praxis oft mit der DTA gekoppelt, während der Messung wird die Massenänderung der Probe bestimmt. Auf diesem Wege können z.B. Zersetzungen von Substanzen und die Zersetzungsprodukte untersucht werden. Oftmals schließt sich eine massenspektrometrische Bestimmung an. Im Rahmen dieser Arbeit dient die Kopplung DTA/TG lediglich zur Kontrolle der Dichtigkeit der Tiegel.

Zur Durchführung thermoanalytischer Methoden werden 10-20 mg eines innig verriebenen Substanzgemisches unter Schutzgas in verschließbare Silbertiegel (Eigenbau) überführt.

2.4 In-situ-Röntgenpulverdiffraktometrie

Zur Untersuchung von Reaktionsabläufen eignet sich die Aufnahme von Pulverdiffraktogrammen in Abhängigkeit von der Temperatur. Bei dieser Methode wird ein polykristallines Reaktionsgemenge auf ein Silberblech aufgebracht und einem Temperaturprogramm unterworfen (beheizbares Platinband), wobei bei bestimmten Temperaturen Pulverdiffraktogramme aufgenommen werden können. Um die Reaktionsprodukte vor Feuchtigkeit zu schützen, ist die Anlage in eine Schutzgasbox integriert.

In Folge der Kamerageometrie des Bühlerofens werden Reflexe hoher Beugungswinkeln mit zunehmend größerem Fehler des 20-Wertes detektiert. Zusätzlich ist mit zunehmender Temperatur eine Verschiebung der Reflexlage zu niedrigeren Beugungswinkel zu beobachten. Ein weiterer Einfluß auf Reflexlage und –Intensität resultiert aus sich ändernden Schichtdicken und Oberflächenstrukturen der Pulvermischung durch Temperaturänderung und Reaktion der beteiligten Substanzen.

2.5 Materialien und Geräte

Angaben zu den verwendeten Computerprogrammen, Geräten und Substanzen sind in den Tabellen 1, 2 und 3 zusammengefaßt.

Programm	Verwendung				
SHELXS-97 [14]	Kristallstrukturbestimmung mittels "direkter Methoden"				
SHELXL-97 [15]	Kristallstrukturverfeinerung auf Basis von F ² -Werten				
	mittels "no-linear-least-squares"-Methoden				
STOE Win XPOW v. 1.07 [17]	Indizierung und Gitterparameterverfeinerung von Pulver-				
	diffraktometermessungen, Berechnung von theoretischen				
	Spektren				
MAPLE 4.0 [18]	Berechnung von interatomaren Abständen, Winkeln,				
	ECoN- sowie MEFIR- und MAPLE-Werten aus				
	Strukturparametern				
X-SHAPE [25]	Kristallgestalt-Optimierung und Absorptionskorrektur				
X-RED [26]	Datenreduktion für Einkristalldiffraktometerdaten				
SymApps [27]	Darstellung von Symmetrieelementen in Molekülen und				
	Baugruppen				
WinGX [28], PLATON [29]	Darstellung von Differenzfourierkarten				
Diamond 2.1c [30]	Zeichenprogramm für Kristallstrukturen				

Tabelle 1: Angaben über die verwendeten Computerprogramme

Tabelle 2: Angaben zu den verwendeten Geräten

Gerät	Modell und Hersteller
Argon-Glove-Box	MB 200 B, Fa. Braun, Garching, D
	lab master 130, Fa. Braun, Garching, D
Weissenberg-Kamera	102-183, Fa. Huber, Rimstieg, D
	102032, Fa. Seifert, Ahrenssburg, D
Pulverdiffraktometer	STADI P, Fa. Stoe & Cie, Darmstadt, D
Bühler-Kamera	HDK2.4, Fa. Stoe & Cie, Darmstadt, D
IPDS	S/N 48029, Fa. Stoe & Cie, Darmstadt, D
DTA/DSC	STA 409, Fa. Netzsch, Selb, D
IR-Spektrometer	IFS 66v/S, Fa. Bruker, Rheinstetten, D

Substanz	Bezugsquelle
Ni-Stab	Fa. GoodFellow, Cambridge, UK
Ag-Stab	Fa. Degussa, Hanau, D
Fe-Stab	Fa. GoodFellow, Cambridge, UK
Со	Fa. GoodFellow, Cambridge, UK
Cu ₂ O	Fa. Aldrich, Chem Co, Milwaukee, USA
CdO	Fa. Aldrich, Chem Co, Milwaukee, USA
NaOH	Fa. Merck, Darmstadt, D
Na ₂ CO ₃	Fa. Merck, Darmstadt, D
Na ₂ SO ₃	Fa. Merck, Darmstadt, D
Na ₂ SO ₄	Fa. Merck, Darmstadt, D
Na	Riedel-de Haën, Seelze, D
Argon	Fa. Linde AG, Hannover, D

Tabelle 3: Angaben über die verwendeten Substanzen

Das verwendete Na₂O wurde durch Reaktion von NaOH mit metallischem Natrium [31] dargestellt.

3 Spezieller Teil

3.1 Verbindungen des Typs Na₅[MO₂](X)

mit M = Co, Ni, Cu und X = CO_3^{2-} , S^{2-} , SO_4^{2-}

3.1.1 Na₅[MO₂](CO₃) mit M = Cu, Co

Verbindungen des Typs Na₅[MO₂](X), in denen M ein einwertiges Übergangsmetallkation und X ein zweiwertiges Anion darstellt, sind bislang kaum untersucht. Erst in jüngster Zeit konnte Na₅[NiO₂](CO₃) [3] als erster Vertreter dieses Formeltyps synthetisiert und strukturell aufgeklärt werden. Bezüglich des Ionenradius und der möglichen Oxidationsstufen besteht eine große Ähnlichkeit zu den im Periodensystem benachbarten Elementen Kupfer und Cobalt. Alle drei Elemente können in der einwertigen Stufe in Verbindung mit Sauerstoff vorliegen und sind in solchen Fällen linear von Oxidliganden koordiniert. Beispiele hierfür sind bereits von *Hoppe* und Mitarbeitern beschrieben worden: NaCuO [2], Na₃CoO₂ [1], A₃MO₂ [1, 32, 33, 34, 35]. Verbindungen, in denen Cobalt oder Nickel ausschließlich in der einwertigen Stufe vorliegen, sind jedoch ausgesprochen selten, auch sind von Co und Ni keine binären Oxide "Ni₂O" und "Co₂O" bekannt.

Die zu Na₅[NiO₂](CO₃) [3] isotypen Verbindungen des Cobalts und Kupfers konnten im Rahmen dieser Arbeit dargestellt werden. Im Falle des Kupfers kann die binäre Komponente Cu₂O direkt eingesetzt werden. Folgende Reaktionsgleichung führt dabei zur Bildung von Na₅[CuO₂](CO₃):

 $3 \text{ Na}_2\text{O} + \text{Cu}_2\text{O} + 2 \text{ Na}_2\text{CO}_3 \rightarrow 2 \text{ Na}_5[\text{CuO}_2](\text{CO}_3)$

Zur Synthese wurde ein homogenisiertes Substanzgemenge unter Argon in einen Silbercontainer eingebracht, der zum Schutz vor Feuchtigkeit in einen Duranglasmantel eingeschmolzen wurde.

Die Synthese der Cobaltverbindung gelingt durch Verwendung des Oxidationsmittels CdO und Einsatz elementaren Cobalts. Diese "Reaktion mit der Wand" wurde erstmals von *Hoppe et al.* zur Synthese von Alkali-Oxometallaten verwendet [1, 9, 10, 11, 12, 13]. Die hier verwendete Synthese ist analog der für Na₅[NiO₂](CO₃) [3] beschriebenen.

3 Na₂O + CdO+ 2 Na₂CO₃ + 2 Co \rightarrow 2 Na₅[CoO₂](CO₃)

Ein innig verriebenes Substanzgemenge aus Na₂O, CdO und Na₂CO₃ wurde mit einem plättchenförmigen Stück metallischen Cobalts in einen Silbercontainer überführt und in einen Duranglasmantel eingeschmolzen.

Die Ampullen wurden im Röhrenofen in 50°C/d von 250°C bis 500°C aufgeheizt und 21 Tage bei dieser Temperatur gehalten. Mit der entsprechenden Abkühlrate wurde auf 250°C,

danach in einem Schritt auf Raumtemperatur abgekühlt. Geeignete Einkristalle der Verbindungen wurden mit Hilfe eines Polarisationsmikroskop unter Schutzgas ausgewählt und in Kapillarröhrchen (Innendurchmesser 0,3 mm) eingeschmolzen.

 $Na_5[CoO_2](CO_3)$ wird in Form dunkelroter Einkristalle erhalten. Die analoge Kupferverbindung ist gelb-orange. Verbindungen des Typs $Na_5[MO_2](CO_3)$ sind stark hydrolyseempfindlich und zersetzen sich an der Luft zu dunklen Reaktionsprodukten und metallischen Anteilen aufgrund von Disproportionierung im Fall von M = Co, Ni. Eine photographische Aufnahme der Cobaltverbindung ist in Abb. 1 wiedergegeben.

Abbildung 1: Photographische Aufnahme von Einkristallen der Verbindung Na₅[CoO₂](CO₃) (eingepresst in KBr)

3.1.1.1 Bestimmung der Kristallstruktur von Na₅[MO₂](CO₃) (M = Co, Cu)

Entsprechend der Röntgenstrukturanalyse kristallisieren die Verbindungen in der tetragonalen Raumgruppe P4/mmm. Die Daten der Röntgenstrukturanalyse sind in Tab. 4 zusammengefaßt.

	Na ₅ [CuO ₂](CO ₃)	$Na5[CoO_2](CO_3)$
Kristallsystem	tetragonal	tetragonal
Raumgruppe	P4/mmm (Nr. 123)	P4/mmm (Nr. 123)
Gitterkonstanten [pm,°]		
Einkristalldaten	a = 460,83(9)	a = 465,2(1)
	c = 847,5(2)	c = 826,9(3)
Pulverdaten	a = 458,65(2)	a = 465,2(1)
	c = 844,91(7)	c = 825,7(3)
Formeleinheiten/		
Elementarzelle	1	1
F(000)	129,9	127,9
linearer		
Absorptionskoeffizient	3,16	2,52
Kristallform,-farbe	säulenförmig, gelb-orange	säulenförmig, rot
Diffraktometer	IPDS (Fa.	Stoe & Cie)
Meßbereich	-5≤h≤6; -6≤k≤6; -11≤l≤11;	-5≤h≤6; -6≤k≤6; -10≤l≤10;
	$2\theta_{max} = 56,19^{\circ}$	$2\theta_{max} = 55,70^{\circ}$
symmetrieunabhängige		
Reflexe	171 von 1736 gemessenen	167 von 5258 gemessenen
nicht berücksichtigte	keine	keine
Reflexe		
Programme	SHELXS-97 [14]	, SHELXL-97 [15]
Absorptionskorrektur	numerisch, X-Sha	pe [25], X-Red [26]
Lösungsverfahren	"direkte M	Methoden"
Parameterverfeinerung	"full matrix le	east squares"
Anzahl freier Parameter	21	21
R(int.)	0,0843	0,0252
R1	0,0517 für 159 F ₀ > 4σ(F ₀)	0,0611 für 166 F₀ > 4σ(F₀)
	0,0546 alle Daten	0,0610 alle Daten
wR2	0,1513	0,1536
GooF	0,809	1,282

Tabelle 4: Kristallographische Daten für Na₅[CuO₂](CO₃) und Na₅[CoO₂](CO₃)

Die Carbonateinheit in Na₅[MO₂](CO₃) (M = Co, Cu) ist fehlgeordnet. Differenzfouriersynthesen ergeben für die Lage der Kohlenstoffatome die Position [0,5/0,5/0,5]. Die Lageparameter der entsprechenden Sauerstoffatome sind [0,5/0,5/z] (O2) und [x/0,5/0,5] (O3). Wird lediglich die CO₃²⁻-Teilstruktur mit koordinierenden Natriumatomen betrachtet, so kann diese als verzerrte NaCl-Struktur verstanden werden (vgl. Abb. 2).

Abbildung 2: Vergleich der Na/Carbonat-Teilstruktur in Na₅[MO₂](CO₃) (rechts) mit der NaCl-Struktur (links)

Die oktaedrisch um das eingezeichnete Kohlenstoffatom angeordneten Sauerstoffatome sind statistisch zur Hälfte besetzt. Im Zentrum findet sich die Elektronendichte als Überlagerung von acht Schwingungsellipsoiden von Kohlenstoffatomen, die auf den Flächenmitten des Oktaeders lokalisiert werden können und deren Lage zu einem Achtel besetzt ist. Die realistischen Lagen der Kohlenstoffatome ergeben sich aus geometrischen Überlegungen und den Differenzfourierdarstellungen (als Schnitte durch die Elementarzelle). Zur Darstellung der Differenzfourierkarten wurde die Kohlenstofflage im Zentrum der Elementarzelle nicht besetzt.

Abbildung 3: Darstellung der Restelektronendichte als Differenzfourierkarten in Form von Schnitten durch die Elementarzelle; parallel (101) (links), parallel (110) (rechts) in Na₅[CoO₂](CO₃)

Abb. 3 stellt zwei Schnitte durch die Elementarzelle dar. Es zeigt sich, daß auf den Flächenmitten des Oktaeders Elektronendichte lokalisiert ist. Entsprechend der Überlagerung aus acht Schwingungsellipsoiden ist im Zentrum ein deutlich höheres Maß an Elektronendichte zu finden. Unter Annahme einer trigonal-planaren Baueinheit für CO₃²⁻ und der Auswertung der Differenzfourierkarten kann die Lage der Kohlenstoffatome (C_{ber.}) ermittelt werden. Bei Platzierung der Kohlenstoffatome auf den Flächenmitten des Oktaeders aus Sauerstoffatomen reduzieren sich jedoch die Sauerstoff-Kohlenstoff-Abstände auf 111 pm bzw. 117 pm (2x). Diese Werte weichen deutlich von den in der Literatur [36] gefundenen Abständen ab. Eine Elongation der Kohlenstoff-Sauerstoff-Verbindungslinie auf 124 pm führt zu berechneten Lagen der Sauerstoffatome (O2_{ber}; O3_{ber}). Diese liegen jetzt nicht mehr auf speziellen Lagen, sondern auf [0,51187/0,51187/0,32882] für O2 und [0,50631/0,17479/0,50321] für O3 (für M = Co, bezgl. O2_{ber.} und O3_{ber.} für M = Cu vgl. Tab. 6) und sind zu je einem Achtel besetzt. Die neuen Lagen der Sauerstoffatome sind in Einklang mit den überaus großen Temperaturfaktoren, die für O2 und O3 durch Röntgenstrukturanalyse gefunden werden; zudem ist in den Differenzfourierdarstellungen Restelektronendichte an den beschriebenen Sauerstofflagen zu finden.

MAPLE-Berechnungen und IR-spektroskopische Untersuchungen an Na₅[CuO₂](CO₃) sowie Na₅[CoO₂](CO₃) verifizieren die Annahme, daß in den Verbindungen trigonal-planare Baugruppen CO₃²⁻ vorliegen (vgl. Kap. 3.1.1.5 und Kap. 3.1.1.4). Die Lageparameter, sowie Koeffizienten der isotropen und anisotropen thermischen Auslenkungsparameter für die Verbindungen sind in den Tabellen 5 und 6 zusammengefaßt. Die berechneten Atomlagen C_{ber.}, O2_{ber.} und O3_{ber.} sind ebenfalls aufgeführt.

Atom	Lage	Х	у	Z	U ₁₁	U ₂₂	U ₃₃	
Со	1a	0	0	0	111(7)	111(7)	71(9)	98(7)
Na1	4i	0	0,5	0,2394(4)	614(27)	122(16)	312(18)	349(11)
Na2	1b	0	0	0,5	360(23)	360(23)	90(25)	270(15)
01	2g	0	0	0,2136(7)	142(18)	142(18)	72(23)	119(12)
O2 ^{a)}	2h	0,5	0,5	0,341(3)	498(69)	498(69)	377(89)	458(43)
O3 ^{a)}	4o	0,5	-0,812(3)	0,5	589(96)	427(83)	737(95)	584(39)
"C"	1d	0,5	0,5	0,5	562(79)	562(79)	103(71)	409(49)
C _{ber} ^{b)}	8r	0,3958	0,3958	0,446966				
O2 _{ber} ^{b)}	8r	0,51187	0,51187	0,328817				
O3 _{ber} ^{b)}	16u	0,506309	0,174793	0,503211				

Tabelle 5: Lageparameter und Koeffizienten der äquivalenten und anisotropen Temperaturfaktoren [pm²] für Na₅[CoO₂](CO₃)

Der anisotrope Temperaturfaktor hat die Form: $U_{ij}=exp[2\pi i(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+2U_{12}hka^*b^*+2U_{13}hla^*c^*+2U_{23}klb^*c^*)]$ [16]

 $U_{ij} = exp[2m(U_{11}ma^2 + U_{22}kb^2 + U_{33}) c^2 + 2U_{12}ma^2 b^2 + 2U_{13}ma^2 c^2 + 2U_{23}kb^2 c^2)] [10]$ Der äquivalente Temperaturfaktor hat die Form: $U_{eq} = 1/3\{(aa^2)^2[U_{11}+U_{22}+U_{33}+2\cos\alpha(U_{12}+U_{13}+U_{23})]\} [37]$

$$U_{12} = U_{13} = U_{23} = 0$$

^{a)} statistisch zur Hälfte besetzt; ^{b)} statistisch zu einem Achtel besetzt

	P]		(003)					
Atom	Lage	Х	у	Z	U ₁₁	U ₂₂	U ₃₃	U _{eq}
Cu	1a	0	0	0	167(7)	167(7)	139(9)	158(7)
Na1	4i	0	0,5	0,2441(4)	625(28)	161(17)	360(22)	382(11)
Na2	1b	0	0	0,5	340(22)	340(22)	201(30)	294(15)
01	2g	0	0	0,2133(8)	194(21)	194(21)	157(29)	182(14)
O2 ^{a)}	2ĥ	0,5	0,5	0,3380(31)	468(69)	468(69)	567(123)	501(48)
O3 ^{a)}	4o	0,1948(50)	0,5	0,5	824(132)	618(106)	802(116)	748(52)
"C"	1d	0,5	0,5	0,5	486(76)	486(76)	461(121)	478(52)
C _{ber} ^{b)}	8r	0,60166	0,60166	0,446				
O2 _{ber} ^{b)}	8r	0,49009	0,49009	0,32748				
O3 _{ber} ^{b)}	16u	0,17778	0,491389	0,50457				

Tabelle 6: Lageparameter und Koeffizienten der äquivalenten und anisotropen Temperaturfaktoren [pm²] für Na₅[CuO₂](CO₂)

0.17778 Der anisotrope Temperaturfaktor hat die Form:

 $U_{ii} = \exp[2\pi i (\dot{U}_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)]$ [16]

Der äguivalente Temperaturfaktor hat die Form: $U_{eq} = 1/3\{(aa^{2})^{2}[U_{11}+U_{22}+U_{33}+2\cos\alpha(U_{12}+U_{13}+U_{23})]\}$ [37]

 $U_{12} = U_{13} = U_{23} = 0$

^{a)} statistisch zur Hälfte besetzt; ^{b)} statistisch zu einem Achtel besetzt

Von beiden Verbindungen wurden Pulverdiffraktogramme aufgenommen. Abb. 4 zeigt die Gegenüberstellung eines gemessenen Pulverdiffraktogramms gegen ein auf Einkristalldaten basierendes simuliertes Diffraktogramm für Na₅[CoO₂](CO₃). Die Diffraktogramme zeigen bezüglich Reflexlage und -Intensität eine hohe Übereinstimmung, jedoch führt die Verwendung von Cu-Strahlung zu starken Absorptionseffekten und einem vergleichsweise hohen Untergrundrauschen. Als Nebenphase ließ sich die Verbindung Na₂O identifizieren. Die vollständige Indizierung der Reflexe findet sich im Anhang (A I). Auch die Gegenüberstellung von gemessenem und simuliertem Diffraktogramm für Na₅[CuO₂](CO₃) (Abb. 5) zeigt eine sehr gute Übereinstimmung in Lage und Intensität der Reflexe (vgl. A II).

Abbildung 4: Vergleich des gemessenen Diffraktogramms mit einem simulierten Diffraktogramm von Na₅[CoO₂](CO₃) sowie Darstellung des Diffraktogramms von Na₂O [38]

Abbildung 5: Vergleich des gemessenen Diffraktogramms mit einem simulierten Diffraktogramm von Na₅[CuO₂](CO₃)

3.1.1.2 Beschreibung der Kristallstruktur von Na₅[MO₂](CO₃) mit M = Cu, Co

Ein Ausschnitt aus der Struktur von $Na_5[CoO_2](CO_3)$ mit eingezeichneter Elementarzelle wird in Abb. 6 gegeben (bzgl. Auslenkungsparameter der isotypen Kupferverbindung vgl. Tab. 6).

Abbildung 6: Projektion der Kristallstruktur von Na₅[CoO₂](CO₃) mit eingezeichneter Elementarzelle, die thermischen Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit Zentrales Strukturelement der Verbindungen sind linear von Sauerstoffatomen koordinierte einwertige Übergangsmetallkationen. Der Winkel $\langle (O-M-O) der [MO_2]^3$ -Einheiten beträgt in Folge der speziellen Lagen der beteiligten Atome exakt 180°. Die Abstände d(M-O) betragen für Cu-O 180,8(7) pm, für Co-O 176,6(6) pm und entsprechen damit denjenigen vergleichbarer Verbindungen. In Cu₂O [39] beträgt der Abstand 184 pm, in NaCuO 182,8 pm [2] bzw. d(Co-O) = 175,6 pm in Na₃CoO₂ [1]. Schichten dieser parallel zueinander angeordneten Einheiten werden durch Schichten von Carbonat getrennt. Auffällig ist hierbei, daß das komplexe Anion CO₃²⁻ nicht an das Übergangsmetall koordiniert.

Es liegen zwei kristallographisch unterscheidbare Natriumatome vor, deren Koordination von der statistischen Besetzung der Carbonatgruppen abhängt. Die Möglichkeiten der Koordination zwischen Natrium- und Sauerstoffatomen sind infolge der statistischen Besetzung der Positionen O2 und O3 vielfältig. Je nach Besetzung der CO₃²⁻-Lagen ergibt sich für Na1 eine Umgebung von Sauerstoff-atomen gemäß [Na1(O1)₂(O3)(O2)], die sich durch unbesetzte Ecken eines verzerrten Oktaeders beschreiben läßt. um Na1 verknüpfen über Kanten Na1-O12/2O21/2-Na1 Sauerstoffatompolyeder mit ihresgleichen zu Schichten parallel der kristallographischen a-b-Ebene. O3 verbrückt diese Schichten zu Doppelschichten. Na1 koordiniert dabei entweder an eine oder an zwei Carbonatgruppen (vgl. Abb. 7, gelb, grün bzw. schwarz hervorgehoben). Entsprechend der verschiedenen Anordnungen werden vergrößerte Temperaturfaktoren für Na1 in Richtung der Sauerstoffatome O2 und O3 gefunden. Des weiteren bestehen die Möglichkeiten: C.N.(Na1) = 5 (magenta), C.N.(Na1) = 2 (cyan) und C.N.(Na1) = 3 (rot) (vgl. Kap.: 3.1.1.5).

Abbildung 7: Darstellung der möglichen Koordinationssphären um Na1 in Na₅[MO₂](CO₃)

Tabelle 7: Interatomare Abstände Na1-O [pm] und Winkel (O-Na1-O) [°] in Na₅[CoO₂](CO₃) entsprechend der Röntgenstrukturanalyse

d(Na-O)	[pm]	∢(O-Na-O)	[°]	
Na1-O3	232,5(7)	01-Na1-01	169,5(3)	
Na1-O1	233,57(8) (2x)	01- Na1-02	91,78(7)	
Na1-O2	247,3(8)	01- Na1-O3	94,9(2)	
		O2- Na1-O3	48,1(7)	
		O2- Na1-O3	92,2(6)	

d(Na-O)	[pm]	∢(O-Na-O)	[°]
Na1-O1	231,9(1) (2x)	01-Na1-01	167,1(4)
Na1-O3	234,7(9)	O1-Na1-O2	92,11(8) (2x)
Na1-O2	243,7(9)	O1-Na1-O3	96,0(2) (2x)
		O2-Na1-O3	48,5(8)
		O2-Na1-O3	93,4(7)

Tabelle 8: Interatomare Abstände Na1-O [pm] und Winkel (O-Na1-O) [°] in Na₅[CuO₂](CO₃) entsprechend der Röntgenstrukturanalyse

In Tab. 7 und Tab. 8 sind die interatomaren Abstände und Winkel des Polyeders um Na1 in Na₅[MO₂](CO₃) nach Ausweis der Röntgenstrukturdaten zusammengefaßt. Werden die berechneten Lagen für O2 und O3 verwendet, differieren die Abstände Na1-O um bis zu 4 pm, entsprechend die Winkel O2-Na1-O3 um ca. 4°.

Natriumatome der Sorte Na2 koordinieren ausschließlich an Sauerstoffatome der Sorte O1 und O3. Für Sauerstoffatome der Sorte O3 existieren hierbei vier Positionen, die jeweils zur Hälfte besetzt sind. Zur Bildung der Carbonatgruppe müssen jeweils benachbarte Positionen besetzt sein. Abb. 8 zeigt eine schematische Darstellung, in der in vier Feldern die Kanten eines Quadrats mit a1, b1 usw. bezeichnet sind. Die Kanten sollen hier die Polyederkante O3O3 der Carbonatgruppe repräsentieren, die Felder stehen für vier Elementarzellen. Werden nun alle möglichen Besetzungen von vier Kanten in vier Feldern betrachtet, können die entsprechenden "Koordinationen" der Kanten bzw. Eckpunkte an den Punkt P ermittelt werden. Der Punkt P steht hierbei für das auf den Zellkanten platzierte Natriumatom Na2.

Abbildung 8: Schematische Darstellung zur Aufklärung der Koordinationsverhältnisse

Es ergeben sich 256 mögliche Anordnungen der Kanten, jedoch führt die Bedingung, daß Kanten, deren Eckpunkte einen zu geringen Abstand haben (Beispiel: die Kombination b1c2d3a4 ist nicht möglich) nicht besetzt sein können, zu einer Verringerung der

Kombinationsmöglichkeiten auf 81 (vgl. A III). Wird dieses Modell auf die Verbindungen $Na_5[MO_2](CO_3)$ übertragen, so ergeben sich 81x5 Möglichkeiten, da jede Kante O3O3 durch eine Carbonateinheit mit C_{ber.} = x; y; 0,446 oder C_{ber.} = x; y; 0,554 ($Na_5[CoO_2](CO_3)$) gebildet werden kann. Hier müssen also noch die Fälle

1: 4xC_{ber.} z = 0,446

2: 3xC_{ber.} z = 0,446 + 1xC_{ber.} z = 0,554

3: 2xC_{ber} z = 0,446 + 2x C_{ber} z = 0,554

4:
$$1xC_{ber.} z = 0,446 + 3xC_{ber.} z = 0,554$$

5: $4xC_{ber.} z = 0,554$

unterschieden werden.

In der schematischen Darstellung ergeben sich für den Punkt P je nach Besetzung der Kanten unterschiedliche Verknüpfungen mit den Eckpunkten (Ecke c1b1, b1a1, usw.).

Es entfallen 16 (19,7%) der 81 Permutationen auf eine Verknüpfung mit 4 Eckpunkten, 32 (39,5%) auf eine Verknüpfung mit 3 Eckpunkten. In 24 (29,6%) Fällen koordiniert P an 2 Eckpunkte, in 8 (9,9%) Fällen an lediglich einen. In einem Fall (1,2%), der Besetzungsvariante d1a2b3c4, liegt der Punkt P isoliert vor. Eine vollständige Aufstellung der Kombinationsmöglichkeiten findet sich im Anhang (A III). Die Koordinationszahl von Na2 liegt im Vergleich dazu um jeweils zwei höher, da Koordination von je zwei O1 erfolgt. Entsprechend der Statistik werden vergrößerte Temperaturfaktoren für Na2 in der Röntgenstrukturanalyse gefunden.

Abbildung 9: Umgebung der Natriumatome Na2 in Na₅[MO₂](CO₃)

Tabelle 9: Interatomare Abstände Na2-O [pm] und Winkel (O-Na2-O) [°] in Na₅[CoO₂](CO₃) entsprechend der Röntgenstrukturanalyse

d(Na-O)	[pm]	∢(O-Na2-O)	[°]	∢(O-Na2-O)	[°]
Na2-01	236,9(6) (2x)	O1-Na2-O3	90	O3-Na2-O3	180
Na2-O3	248,4(6)	01-Na2-01	180	O3-Na2-O3	90
				O3-Na2-O3	138,9(7)
				O3-Na2-O3	48,9(7)
				O3-Na2-O3	131,7(1)
Tabelle 10: Interatomare Abstände Na2-O [pm] und Winkel (O-Na2-O) [°] in $Na_5[CuO_2](CO_3)$ entsprechend der Röntgenstrukturanalyse

d(Na-O)	[pm]	∢(O-Na2-O)	[°]	∢(O-Na2-O)	[°]
Na2-01	243,0(7) (2x)	01-Na2-01	180	O3-Na2-O3	180
Na2-O3	247,3(8)	01-Na2-03	90	O3-Na2-O3	90
				O3-Na2-O3	132(1)
				O3-Na2-O3	137(1)
				O3-Na2-O3	47(1)

Abb. 9 enthält eine Darstellung der Sauerstoffumgebung des Atoms Na2, in den Tab. 9 und 10 sind die entsprechenden Abstände und Winkel aufgeführt.

Entsprechend der statistischen Besetzung der Sauerstoffatomposition O3 sind verschiedene Kombinationsmöglichkeiten der Winkel (O3-Na2-O3) in den Koordinationspolyedern um Na2 denkbar. Werden die Positionen O3_{ber.} besetzt, sind die Abweichungen in den interatomaren Abständen und Winkeln nur geringfügig. Verknüpfung der Koordinationspolyeder um Na2 ist über die Sauerstoffatome O3 möglich, hieraus resultiert Verbrückung zu Schichten parallel der a-b-Ebene der Elementarzelle.

Für Sauerstoffatome der Sorte O1 besteht in der Verbindung eine verzerrt oktaedrische Umgebung (vgl. Abb. 10), gebildet aus fünf Natrium- und einem Übergangsmetallatom. Die Koordinationssphäre der Sauerstoffatome der Carbonateinheit ist in Abb. 10 als Schlegeldiagramm der trigonal-planaren Einheit wiedergegeben (Verbrückend koordinierende Natriumatome sind auf der Verbindungslinie zweier Sauerstoffatome eingezeichnet.). Sauerstoffatome der Sorten O2 und O3 werden von jeweils vier Natriumatomen koordiniert, Na1 verbrückt dabei O2 mit O3, Na2 verknüpft zwei O3. Auch hier werden die verschiedenen Verknüpfungsmöglichkeiten für Na2 deutlich, da für jedes eingezeichnete Na2 Koordinationen an weitere Carbonatgruppen möglich sind.

Abbildung 10: Umgebung der Sauerstoffatome O1 (links) und Schlegeldiagramm der CO_3^{2-} Einheit (rechts) in Na₅[MO₂](CO₃)

3.1.1.3 Vergleich der Kristallstrukturen

Alle Verbindungen der Reihe Na₅[MO₂](CO₃) (M = Co, Ni, Cu) kristallisieren isotyp. Unterschiede zeigen sich vorrangig im Metall-Sauerstoff-Abstand und somit im a/c-Verhältnis. In Abb.11 ist die Auftragung des a/c-Verhältnisses bzw. des Abstandes M-O gegen die Ordnungszahl des Metalls dargestellt.

Abbildung 11: Auftragung des a/c-Verhältnisses und des Bindungsabstandes d(M-O) gegen die Ordnungszahl für die Verbindungen $Na_5[MO_2](CO_3)$ mit M = Co, Ni, Cu

Erwartungsgemäß steigt der Abstand d(M-O) mit steigender Ordnungszahl des Übergangsmetalls, entsprechend nimmt das a/c-Verhältnis ab. Bei einer Aufspaltung der d-Orbitale im linearen Ligandenfeld (vereinfacht, Abb. 11) wird beim Übergang von Co⁺ (d⁸) zu Ni⁺ (d⁹) ein weiteres Orbital aufgefüllt. Im Wesentlichen wirkt sich dies auf π -Bindungsanteile aus und der Abstand M-O wird nur geringfügig größer. Die Besetzung des d_z2-Orbitals bei Cu⁺ (d¹⁰) wirkt sich auf σ -Bindungsanteile aus und es resultiert eine größere Abstandsänderung.

3.1.1.4 IR-Spektren von Na₅[MO₂](CO₃) mit M = Cu, Co

Von Na₅[CoO₂](CO₃) und Na₅[CuO₂](CO₃) wurden IR-Spektren aufgenommen. Tabelle 11 gibt die jeweiligen Wellenzahlen der Absorptionsbanden sowie deren Zuordnung wieder.

Tabelle 11: Wellenzahlen [cm⁻¹] und Zuordnung der Absorptionsbanden der IR-Spektren von Na₅[CuO₂](CO₃) und Na₅[CoO₂](CO₃)

Na ₅ [CuO ₂](CO ₃)	$Na_5[CoO_2](CO_3)$	Zuordnung [24, 40]
1431	1437	v _{as} (C-O)
1065 (sehr schwach)	1068	v _s (C-O)
884	880	γ (out of plane)
(698sh+) 638	734 685	δ (in plane)

Mit Hilfe von Vergleichsspektren gelingt die Zurodnung der Absorptionsbanden zu den entsprechenden Grundschwingungen einer planaren $CO_3^{2^-}$ -Einheit [24, 40]. Durch Symmetriereduktion (D_{3h} = freies Molekül, C_{2v} = site symmetry) bei Einbau der Carbonateinheit in den Kristallverband wird die symmetrische Valenzschwingung IR-aktiv. Diese Absorptionsbande wird in Na₅[CuO₂](CO₃) jedoch nur sehr schwach detektiert. Gemäß den Korrelationstabellen [24] ist die Aufspaltung von v_{as}(C-O) und δ (in-plane) zu erwarten, diese wird jedoch nur bei der letztgenannten beobachtet, da die Aufspaltung von v_{as}(C-O) stark von der entsprechenden Bindungssituation der Carbonateinheit abhängt. In den vorliegenden Verbindungen sind in Folge der statistischen Besetzung unterschiedliche Bindungs-verhältnisse möglich.

3.1.1.5 MAPLE-Berechnungen für Na₅[CuO₂](CO₃) (M = Cu, Ni, Co)

Für die Verbindungen Na₅[MO₂](CO₃) mit M = Co, Ni, Cu wurde der Madelunganteil der Gitterenergie berechnet und mit der Summe der als Edukte angenommenen Verbindungen verglichen. Die Ergebnisse sind in Tab. 12 dargestellt. Da im Falle der Co- und Ni-Verbindung keine Strukturdaten der binären Komponenten "Co₂O" und "Ni₂O" vorliegen, wurden die für Cu₂O verwendet. Auch hier zeigt sich, daß bei Vorliegen der trigonal planaren Einheiten CO_3^{2-} (s. berechnete Lageparameter) die Abweichungen von der Summe der Edukt-Komponenten deutlich geringer ist. Die Differenzen in den MAPLE-Werten zwischen röntgenographisch gefundenen Struktur (verzerrte NaCI-Struktur für die der Na/Carbonatschicht) (beob.) und der nach Auswertung der Differenzfourierkarten ermittelten (berechn.) sind auf die unterschiedlich langen interatomaren Abstände d(C-O) sowie Winkel ∢(O-C-O) zurückzuführen.

Atom		Edukte	$Na_5[CoO_2](CO_3)$		$Na_5[NiO_2](CO_3)$		$Na_5[CuO_2](CO_3)$	
			beob.	ber.	beob.	ber.	beob.	ber.
Na1	4x	126,2 ^{a)}	177,4	137,1	179,4	137,0	183,6	138,3
Na2	1x	126,2 ^{a)}	159,6	152,0	154,6	149,9	151,9	146,9
Μ	1x	147,1 ^{b)}	157,8	155,8	157,5	156,0	154,8	152,4
С	1x	2658,0 ^{c)}	2348,3	2668,6	2424,2	2661,2	2353,3	2658,9
01	2x	627,3 ^{d)}	374,4	436,7	373,8	438,3	365,6	434,5
02	1x	627,3 ^{d)}	583,6	718,2	564,5	725,4	545,7	725,8
O3	2x	627,3 ^{d)}	570,4	732,0	597,3	734,9	597,0	736,4
$\Sigma_{\text{quaternar}}$			5848,5	6580,4	5960,8	6587,0	5865,3	6579,0
$\dot{\Delta}_{(EdProof)}$	d.)		11,0%	-0,1%	9,3%	-0,2%	10,7%	-0,1%
Σ_{Edukte}		6572,6	657	2,6	657	72,6	65	72,6

^{a)} Mittelwert aus: 3xMAPLE(Na⁺(Na₂O)) + 2xMAPLE(Na⁺(Na₂CO₃))

^{b)} MAPLE(Cu⁺(Cu₂O))

 $\overset{c)}{\longrightarrow} \mathsf{MAPLE}(C^{4+}(Na_2CO_3))$

^{d)} Mittelwert aus $1,5xMAPLE(O^{2-}(Na_2O)) + 0,5MAPLE(O^{2-}(Cu_2O)) + 3xMAPLE(O^{2-}(Na_2CO_3))$

Spezieller Teil

Die durchschnittliche Abweichung für das Kohlenstoffatom beträgt 287,6 kcal/mol in den beobachteten Strukturen (die Abweichungen für die Sauerstoffatome der Carbonateinheit sind diesen Abweichungen direkt proportional). Werden die berechneten Strukturen angenommen, so weicht der Wert MAPLE($C^{4+}(Na_5[MO_2](CO_3))$) im Mittel um –4,9 kcal/mol von dem in Na₂CO₃ [36] gefundenen Wert ab.

Die Abweichungen des MAPLE-Wertes für die Übergangsmetallkationen betragen ca. +10 kcal/mol. Eine Modellrechnung bezüglich des Madelunganteils der Gitterenergie für die binäre Komponente Cu₂O zeigt eine entsprechende Zunahme des MAPLE-Wertes für Cu⁺ bei Verringerung des Abstandes d(Cu-O) von 184,8pm (Cu₂O) auf 180,8 bzw. 176,6pm (vgl. Kap. 3.4.4)

Für die Sauerstoffionen ergibt sich eine vergleichsweise große Abweichung von dem ermittelten Mittelwert MAPLE(O^{2-}) aus den Einzelkomponenten. Sauerstoffatome der Sorte O1 besitzen in den Verbindungen jedoch Werte, die in etwa jenen in Na₂O bzw. Cu₂O entsprechen, MAPLE(O2(Na₅[MO₂](CO₃))) und MAPLE(O3(Na₅[MO₂](CO₃))) entsprechen in etwa MAPLE($O^{2-}(Na_2CO_3)$).

Für O²⁻ ergibt sich in der binären Komponente Cu₂O ein Wert von 503,6 kcal/mol, in Na₂O ergibt sich MAPLE(O²⁻(Na₂O)) = 452,3 kcal/mol, in Na₂CO₃ beträgt MAPLE(O²⁻(Na₂CO₃)) = 735,4 kcal/mol. Die vergleichsweise großen Abweichungen der MAPLE-Werte für Na1 bzw. Na2 lassen sich auf die unterschiedlichen Koordinationszahlen für Na1 und Na2 infolge der Statistik zurückführen. Bei der Berechnung der MAPLE-Werte wird lediglich eine Besetzungsvariante betrachtet (hier z.B a1a1a1a1, Abb. 8), in folge der Translation in alle Raumrichtungen ergeben sich für Na1 in diesem Fall die Koordinationszahlen C.N.(Na1) = 3 und C.N.(Na1) = 5 (magenta und rot in Abb. 7), für Na2 ergibt sich C.N.(Na2) = 6.

Bei der Berechnung von ECoN, MEFIR und MAPLE wird für Na1 über die Möglichkeiten gemittelt.

Um die entsprechenden Werte für jeden Koordinationsvariante im Programm MAPLE zu berechnen kann in der Art verfahren werden, daß in einer verdoppelten Zelle (2xa, b, c), bzw. in einer vierfachen Zelle (2xa, 2xb, c) verschiedene Besetzungen der Carbonatgruppe permutiert werden. Jedoch ist darauf zu achten, das die Translation in alle Raumrichtungen immer gegeben sein muß, bestimmte Varianten lassen sich somit nicht berechnen (z.B. C.N.(Na1) = 2 und C.N.(Na1) = 4 (cyan und schwarz in Abb. 7)). Solche Anordnungen sind dann nur an "Abbruchkanten" eines idealen Kristalls denkbar.

3.1.2 Na₅[CuO₂](SO₄)

In Na₅[CuO₂](SO₄) besetzt ein Sulfation die Position des Carbonats in Na₅[CuO₂](CO₃). Natriumhaltige Oxo-Cuprate mit isolierten Sulfateinheiten wurden bisher nicht beschrieben. In K₂Cu₃O(SO₄)₃ [41] und CuSO₄ [42] wird Koordination des Sulfats an das Übergangsmetall gefunden. Diese Beispiele repräsentieren die in der Regel angetroffene Anordnung. Die Verbindung Na₅[CuO₂](SO₄) wurde durch Erhitzen eines innig verriebenen Substanzgemenges aus Na₂O, Cu₂O und Na₂SO₄ in einem Silbercontainer, der zum Schutz vor Feuchtigkeit in einen Duranglasmantel eingeschmolzen war, nach folgender Reaktionsgleichung erhalten:

 $3 \text{ Na}_2\text{O} + \text{Cu}_2\text{O} + 2 \text{ Na}_2\text{SO}_4 \rightarrow 2 \text{ Na}_5[\text{CuO}_2](\text{SO}_4)$

Die Ampulle wurde im Röhrenofen in einem Schritt auf 250°C, anschließend mit 50°C/d auf 500°C aufgeheizt und 21 Tage bei dieser Temperatur gehalten. Abkühlen erfolgte mit 50°C/d auf 250°C, anschließend in einem Schritt auf Raumtemperatur. Na₅[CuO₂](SO₄) fällt in Form gelb-oranger Einkristalle an, die sich an der Luft zu dunklen Reaktionsprodukten zersetzen.

3.1.2.1 Bestimmung der Kristallstruktur von Na₅[CuO₂](SO₄)

Direkte Methoden und Differenzfouriersynthesen belegen die tetragonale Raumgruppe P4/mmm. Die Ergebnisse der Röntgenstrukturanalyse sind in Tab. 13 zusammengestellt.

	Na₅[CuO₂](SO₄)
Kristalsystem	tetragonal
Raumgruppe	P4/mmm (Nr. 123)
Gitterkonstanten [pm,°]	
Einkristalldaten	a = 479,14(7)
	c = 851,3(2)
Pulverdaten	a = 476,18(8)
	c = 850,3(1)
Formeleinheiten/Elementarzelle	1
F(000)	147,9
linearer Absorptionskoeffizient	3,17
Kristallform,-farbe	unregelmäßig, gelb-orange
Diffraktometer	IPDS (Fa. Stoe & Cie)
Meßbereich	-6≤h≤6; -6≤k≤6; -10≤l≤10; 2θ _{max} = 53,95°
symmetrieunabhängige Reflexe	164 von 2729 gemessenen
nicht berücksichtigte Reflexe	keine
Programme	SHELXS-97 [14], SHELXL-97 [15]
Absorptionskorrektur	numerisch, X-Shape [25], X-Red [26]
Lösungsverfahren	"direkte Methoden"
Parameterverfeinerung	"full matrix least squares"
Anzahl freier Parameter	26
R(int)	0,0715
RÌ	0,0602 für 158 $F_0 > 4\sigma(F_0)$; 0,0614 alle Daten
wR2	0,1752
GooF	1,262

Tabelle 13: Daten der Röntgenstrukturanalyse für Na₅[CuO₂](SO₄)

Spezieller Teil

Nach Ausweis der Röntgenstrukturanalyse besetzt Schwefel die vierzählige Position [0,544/0,544/0,5] zu einem Viertel. Die umgebenden Sauerstoffpositionen O21 und O22 sind statistisch zur Hälfte in der Art besetzt, daß sich für jede Schwefelposition eine nahezu tetraedrische Umgebung ergibt. Das außerordentlich große Schwingungsellipsoid des Sauerstoffatoms O22 läßt die Berechnung von Splitpositionen O23 und O24 zu. Die thermischen Auslenkungsparameter für O23 lassen sich hierbei lediglich isotrop verfeinern. MAPLE-Berechnungen (vgl. Kap. 3.1.2.3.) zeigen, daß eine Besetzung beider Splitpositionen O23 und O24 zu deutlich höheren Abweichungen des Madelunganteils der Gitterenergie von der Summe der Edukte führt. Die in diesem Fall gefundene Elektronendichte auf der Position O24 [0,5/0,5/ -0,693(4)] spiegelt lediglich die Überlagerung der Schwingungsellipsoide des Atoms O22 wider (vgl. Abb. 12).

Abbildung 12: Darstellung der thermischen Schwingungsellipsoide (50% Aufenthaltswahrscheinlichkeit) für die Atome der SO_4^{2-} -Einheit in Na₅[CuO₂](SO₄); berechnete Position O22 (links), Splitpositionen (rechts)

Abb. 13 zeigt die Restelektronendichte in Form von Differenzfourierkarten als Schnitte durch die Elementarzelle. Auch hier zeigt sich, daß die auf der Position O24 gefundene Elektronendichte aus Überlagerungen der auf Position O22 beobachteten Elektronendichte resultiert. Im Folgenden werden deshalb weitere Betrachtungen auf Grundlage der Parameter in Tab. 14 und Tab. 15a durchgeführt, unter der Annahme, daß die Splitposition O23 zu einem Viertel besetzt ist und die Lage O24 unbesetzt bleibt. Aufgrund der Fehlordnung werden vergrößerte Temperaturfaktoren für Sauerstoffatome der Sorte O21 beobachtet.

Die mit "direkten Methoden" und Differenzfouriersynthesen ermittelten Lagen sowie die Koeffizienten der thermischen Auslenkungsparameter sind in den Tabellen 14, 15 und 15a zusammengefasst.

Abbildung 13: Darstellung der Restelektronendichte in Na₅[CuO₂](SO₄) als Differenzfourier-Karten in Form von Schnitten durch die Elementarzelle; parallel (101) (links), parallel (110) (rechts)

Tabelle 14: Lageparameter und Koeffizienten der äquivalenten und anisotropen Temperaturfaktoren [pm²] für Na₅[CuO₂](SO₄)

Atom	Lage	Х	у	Z	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U _{eq}
Cu	1a	0	0	0	230(10)	230(10)	122(12)	0	194(9)
Na1	4i	0	0,5	-0,2326(4)	374(22)	229(19)	286(20)	0	296(11)
Na2	1b	0	0	0,5	363(26)	363(26)	326(40)	0	350(19)
01	2g	0	0	-0,2122(9)	204(23)	204(23)	146(33)	0	184(16)
S ^{a)}	4k	-0,544(2)	-0,544(2)	0,5	283(70)	283(70)	278(31)	33(34)	282(45)
O21 ^{b)}	4o	-0,845(3)	0,5	0,5	433(83)	477(75)	384(73)	0	434(33)

Der anisotrope Temperaturfaktor hat die Form: $U_{ij}=exp[2\pi i(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+2U_{12}hka^*b^*+2U_{13}hla^*c^*+2U_{23}klb^*c^*)]$ [16] Der äquivalente Temperaturfaktor hat die Form: $U_{eq}=1/3\{(aa^*)^2[U_{11}+U_{22}+U_{33}+2cos\alpha(U_{12}+U_{13}+U_{23})]\}$ [37]

 $U_{13} = U_{23} = 0$

^{a)} statistisch zu einem Viertel besetzt; ^{b)} statistisch zur Hälfte besetzt

Tabelle 15: Lageparameter und Koeffizienten der äquivalenten und anisotropen Temperaturfaktoren [pm²] für O22 in Na₅[CuO₂](SO₄)

Atom	Lage	х	у	Z			U _{eq}
O22 ^{a)}	8r	0,456(5)	0,456(5)	0,333(3)			829(148)
		U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
		603(172)	603(172)	1279(179)	-707(175)	-707(175)	469(157)

^{a)} statistisch zu einem Viertel besetzt

Tabelle 15a: Lageparameter und Koeffizienten der äquivalenten und anisotropen Temperaturfaktoren [pm^2] für O24 und O23 in Na₅[CuO₂](SO₄)

Atom	Lage	Х	у	Z	U ₁₁	U ₂₂	U ₃₃	U _{eq}
O24 ^{a)}	2h	0,5	0,5	-0,693(4)	272(64)	272(64)	532(150)	359(50)
O23 ^{b)}	8r	0,423(6)	0,423(6)	0,359(4)				267(79)

 $U_{12} = U_{13} = U_{23} = 0$

^{a)} statistisch zur Hälfte besetzt; ^{b)} statistisch zu einem Achtel besetzt, lediglich U_{eq} berechnet

Von Na₅[CuO₂](SO₄) wurde ein Pulverdiffraktogramm aufgenommen. Abb. 14 zeigt die Gegenüberstellung des gemessenen Diffraktogramms gegen ein auf Einkristalldaten basierendes, simuliertes Diffraktogramm. Die Diffraktogramme zeigen eine gute Übereinstimmung in Lage und Intensität der Reflexe. Die Gitterkonstanten konnten anhand des Diffraktogramms verfeinert werden, die vollständige Indizierung des gemessenen Diffraktogramms findet sich im Anhang (A IV).

Abbildung 14: Gegenüberstellung des gemessenen Pulverdiffraktogramms gegen ein simuliertes Pulverdiffraktogramm von Na₅[CuO₂](SO₄)

3.1.2.2 Beschreibung der Kristallstruktur von Na₅[CuO₂](SO₄)

Im Gegensatz zu den Carbonaten liegen in diesem Fall fehlgeordnete Sulfatanionen vor. Schichten parallel angeordneter $[CuO_2]^{3-}$ -Einheiten werden hier durch Sulfatschichten getrennt. Die Kupfer-Sauerstoffabstände in Na₅[CuO₂](SO₄) entsprechen mit 180,8(8) pm jenen in Na₅[CuO₂](CO₃).

Bei Halbbesetzung der Sauerstoffposition O23 (und entsprechender Nichtbesetzung der Position O24) ergibt sich eine von der Symmetrie T_d abweichende Konformation der Sulfateinheit, vgl. Tab. 16 und Abb. 15. Im Vergleich dazu liegen in Na₂SO₄ [43] Abstände von 147,6 pm und Winkel von 109,55° (2x), 107,70° (2x) und 111,18° (2x) vor.

Tabelle 16: Winkel un	d Abstände in	der Sulfateinheit
-----------------------	---------------	-------------------

∢(OX-S-OX)	[°]	d(S-OX)	[pm]
O23-S-O23	110(1)	S-023	146(2)
021-S-021	107,4(4)	S-021	145(1)
021-S-023	110(1) (4x)		

Abbildung 15: SO₄²⁻-Einheit in Na₅[CuO₂](SO₄)

In Na₅[CuO₂](SO₄) liegen zwei kristallographisch unterscheidbare Natriumatome vor. Na1 mit C.N. = 4 besitzt stark verzerrt bisphenoidische Umgebung. Auf Grund der statistischen Besetzung der Sauerstoffpositionen kann die Symmetrie des Koordinationspolyeders in zwei Fälle unterteilt werden. Abb. 16 gibt die möglichen Koordinationen wieder. In Fall a (rot hervorgehoben) wird Na1 durch 2x O1, O21 und O23 koordiniert, in Fall b (grün hervorgehoben) besitzt Na1 eine Umgebung gemäß Na1(O1)₂(O23)₂. Mit ihresgleichen besteht Verknüpfung der Polyeder über O1 zu Schichten, über O21 zu Doppelschichten. Zudem ist eine Kantenverknüpfung gemäß Na1-O23_{1/2}O12_{/2}-Na1 möglich. Entsprechend der Fehlordnung werden vergößerte Temperaturfaktoren für Na1 gefunden. Interatomare Abstände und Winkel sind in Tab. 17 aufgeführt.

Abbildung 16: Darstellung der möglichen Koordinationen von Na1 in Na₅[CuO₂](SO₄)

Tabelle 17: Interatomare	e Abstände [p	om] und Wink	kel [°] für Na1	in Na ₅ [CuO ₂](SO ₄)
--------------------------	---------------	--------------	-----------------	--

d(Na-O)	[pm]	∢(O-Na-O)	[°]	∢(O-Na-O)	[°]
Na1-01	240,16(8) (2x)	01-Na1-01	171,9(5)	O23-Na1-O21 ^{a)}	80,1(8)
Na1-O23	233(3)	O1-Na1-O23	100,9(8)	O23-Na1-O23 ^{b)}	125(1)
			82,8(8)		
Na1-021	239,7(6)	O1-Na1-Na21	93,8(2)		

Für Natriumatome der Sorte Na2 ergeben sich analoge Betrachtungen (vgl. Kap. 3.1.1.2.) bezüglich der Koordinationssphäre wie für Na2 in Na₅[MO₂](CO₃). Es besteht Koordination an O1 (2x) und O21, wobei unterschiedliche Koordinationszahlen denkbar sind. Über O21 sind Verknüpfungen zu Schichten möglich (bzgl. interatomarer Abstände und Winkel vgl. Tab. 18)

Tabelle 18: Interatomare Abstände Na2-O [pm] und Winkel (O-Na2-O) [°] in Na₅[CuO₂](SO₄)

d(Na-O)	[pm]	∢(O-Na2-O)	[°]	∢(O-Na2-O)	[°]
Na2-O1	244,9(8) (2x)	O1-Na2-O21	90	O3-Na2-O3	180
Na2-021	250,7(5)	01-Na2-01	180	O3-Na2-O3	90
				O3-Na2-O3	145,7(7)
				O3-Na2-O3	55,7(7)
				O3-Na2-O3	124,3(7)

Wie in Verbindungen des Typs Na₅[MO₂](CO₃) besitzen Sauerstoffatome, die am Aufbau der linearen Hantel [CuO₂] beteiligt sind, oktaedrische Umgebung gemäß [O1(Cu)(Na1)₄(Na2)]. Die Umgebung der Sulfatsauerstoffatome durch Natrium ist unterschiedlich, O23 wird von je zwei Natriumatomen koordiniert, O22 von vier. Über Na2 besteht Verknüpfung von O22 mit seinesgleichen (vgl. Abb.17).

Abbildung 17: Schlegeldiagramm der SO_4^2 -Einheit in Na₅[CuO₂](SO₄)

MAPLE-Berechnung für Na₅[CuO₂](SO₄) 3.1.2.3

Die Ergebnisse der MAPLE-Berechnungen sind in Tab. 19 zusammengefasst.

Tabelle 19: MAPLE-Werte in kcal/mol für Na₅[CuO₂](SO₄) bei verschiedenen Besetzungen der Sauerstoffpositionen

Atom		Edukte	quaternär ¹⁾	$\Delta_{(Edquat.)}^{1)}$	quaternär ²⁾	$\Delta_{(Edquat.)}^{2)}$	quaternär ³⁾	$\Delta_{(Edquat.)}^{3)}$
Cu	1x	147,1 ^{a)}	171,0	-23,9	169,8	-22,7	161,0	-13,9
Na1	4x	133,4 ^{b)}	128,6	19,2	137,5	-16,4	133,7	-1,2
Na2	1x	133,4 ^{b)}	136,5	-3,1	136,3	-2,9	151,8	-18,4
S	1x	4777,2 ^{c)}	4588,0	189,2	4608,8	168,4	4796,3	-19,1
01	2x	644,1 ^{d)}	424,0	440,2	412,9	462,4	417,4	453,4
O21	2x	644,1 ^{d)}	794,0	-299,6	793,4	-298,6	769,4	-250,6
022	2x	644,1 ^{d)}			723,0	-157,8		
O23 [*]	1x	644,1 ^{d)}	795,5	-151,4			749,1 (2x)	-210,0
O24 [*]	1x	644,1 ^{d)}	636,0	8,1				
Σ		9455,5	9277,4	178,7	9323,5	132,4	9515,7	-59,8
				1,9%		1,4%		-0,6%

^{a)} MAPLE(Cu⁺(Cu₂O) ^{b)} Mittelwert aus 3xMAPLE(Na⁺(Na₂O)) + 2xMAPLE(Na⁺(Na₂SO₄)) ^{c)} MAPLE(S⁶⁺(Na₂SO₄)) ^{d)} Mittelwert aus 1,5xMAPLE(O²⁻(Na₂O)) + 0,5xMAPLE(O²⁻(Cu₂O)) + 4xMAPLE(O²⁻(Na₂SO₄))

^{*)} Splitpositionen zu O22

¹⁾ Besetzung der Splitpositionen O23 und O24

- ²⁾ Besetzung der Position O22
- ³⁾ Besetzung der Splitposition O23

Die Berechnung auf Grundlage der Lageparameter ergibt bei Besetzung der Lage O22 eine Abweichung von 1,4% von der Summe der binären Komponenten. Bei Besetzung der Splitpositionen O23 und O24 wird eine Abweichung von 1,9% erhalten.

Die Summe der MAPLE-Werte weicht bei ausschließlicher Besetzung der Splitposition O23 mit –0,6% nur wenig von der Summe der binären Komponenten ab. Die jeweiligen Abweichungen lassen sich auf die unterschiedlichen Koordinationsverhältnisse des Schwefelatoms für die jeweiligen Besetzungsvarianten zurückführen. Wird die Position O22 besetzt, resultiert ein interatomarer Abstand d(S-O22) von 154 pm (2x) und eine Abweichung des MAPLE-Wertes für S⁶⁺ von 168,4 kcal/mol (proportional dazu für $\Delta_{(Ed.-quat.)}(O22) = 78,9$ kcal/mol). Bei Besetzung der Splitpositionen O23 und O24 (d(S-O23) = 146 pm;

d(S-O24) = 167 pm) ergibt sich $\Delta_{(Ed.-quat.)}(S)$ = 189,2 kcal/mol. Wird die Position O23 besetzt, resultiert die vergleichsweise geringe Abweichung $\Delta_{(Ed.-quat.)}(S)$ = -19,1 kcal/mol, da hier die Polyedergeometrie (d(S-O) = 146 pm (2x); 145 pm (2x), \sphericalangle (O-S-O) = 110° (5x); 107,4°) der Sulfateinheit mit der in der binären Komponente Na₂SO₄ [43] vergleichbar ist.

Wird die ausschließliche Besetzung der Position O23 angenommen, so ist die Abweichung des MAPLE-Wertes für die kristallographisch unterscheidbaren Sauerstoffatome vom ermittelten Mittelwert 644,1 kcal/mol vergleichsweise groß, jedoch wird erkennbar, daß die einzelnen Sauerstoffatome den Teilstrukturen Na₂O/Na₂SO₄ und Na₂O/Cu₂O zugeordnet werden können. Für O²⁻ ergibt sich in der binären Komponente Cu₂O ein Wert von 503,6 kcal/mol, in Na₂O ergibt sich MAPLE(O²⁻(Na₂O)) = 452,3 kcal/mol, in Na₂SO₄ beträgt

 $MAPLE(O^{2-}(Na_2SO_4)) = 734,6 \text{ kcal/mol. Sauerstoffatome der Sorte O1 koordinieren lediglich an Natrium- und Kupferatome, ihr MAPLE-Wert entspricht in etwa dem der Na/Cu/O-Teilstruktur. Für die Sauerstoffatome der Sulfatgruppe werden deutlich höhere MAPLE-Werte gefunden, die der Na₂O/Na₂SO₄-Teilstruktur zugeordnet werden können. Der um$

-13,9 kcal/mol abweichende MAPLE-Wert für Cu⁺ resultiert aus dem um 4 pm verminderten interatomaren Abstand d(Cu-O) = 180,8 pm in Na₅[CuO₂](SO₄) gegenüber

d(Cu-O) = 184,8 pm in Cu_2O (vgl. Kap. 3.4.2.) und den veränderten Verhältnissen der zweiten Koordinationssphäre um Cu^+ . MAPLE(Na(2)⁺(Na₅[CuO₂](SO₄)) liegt mit 151,8 kcal/mol deutlich über dem ermittelten Mittelwert von 133,4 kcal/mol. Diese Differenz lässt sich auf die unterschiedlichen Koordinationsverhältnisse infolge der diskutierten Statistik zurückführen.

3.1.2.4 IR-Spektrum von Na₅[CuO₂](SO₄)

Von Na₅[CuO₂](SO₄) wurde ein IR-Spektrum im Wellenlängenbereich 7000 cm⁻¹ bis 400 cm⁻¹ aufgenommen. Hierzu wurden einige Einkristalle mit KBr verrieben und mit einem Druck von 10 t zu einer Tablette gepreßt.

Tab. 20 zeigt die Wellenzahlen der gefundenen Absorptionsbanden und die entsprechende Zuordnung für Na₅[CuO₂](SO₄) sowie für Na₂SO₄.

Na ₅ [CuO ₂](SO ₄)	Na ₂ SO ₄	Zuordnung [19, 32]
1114 cm ⁻¹	1116 cm ⁻¹	$v_3 = v_{as}(S-O)$
990 cm⁻¹	990 (schwach)	$v_1 = v_s(S-O)$
624 (+ sh 660) cm ⁻¹	617 (+ sh 637) cm ⁻¹	$v_4 = \delta_{as}(O-S-O)$

Tabelle 20: Wellenzahlen [cm⁻¹] der Absorptionsbanden und Zuordnung

Beide Spektren zeigen eine hohe Übereinstimmung bezüglich der Wellenzahlen der Absorptionsbanden. Isoliert betrachtet besitzt SO_4^{2-} die Punktgruppe T_d, in der von den vier Grundschwingungen $v_3 = v_{as}(S-O)$ und $v_4 = \delta(O-S-O)$ IR-aktiv sind. Im Kristallverband sind in Folge der Punktlagensymmetrie zusätzlich die Schwingungen $v_1 = v_s(S-O)$ und $v_2 = \delta_s(O-S-O)$ IR-aktiv. Im IR-Sektrum von Na₅[CuO₂](SO₄) ist eine zusätzliche Absorptionsbande bei 565 cm⁻¹ zu beobachten, die der Schwingung $v_2 = \delta_s(O-S-O)$ zugeordnet werden kann. Im Spektrum von Na₂SO₄ wird diese Absorption nicht gefunden. In Folge der Symmetrie-erniedrigung sollten die Schwingungen v_3 und v_4 aufspalten. Die Aufspaltung von v_3 kann jedoch in beiden Spektren nicht aufgelöst werden, es zeigt sich lediglich eine Verbreiterung der Banden. Im Spektrum von Na₂SO₄ zeigt sich die Aufspaltung von v_4 in einer Schulter bei 637 cm⁻¹, in Na₅[CuO₂](SO₄) wird diese Schulter nur sehr schwach bei 660 cm⁻¹ detektiert.

3.1.3 Na₅[NiO₂](S)

In Na₅[NiO₂](S) besetzt ein Sulfidion die Position der Carbonateinheit in Na₅[NiO₂](CO₃). Auch hier besteht keine Koordination des Übergangsmetalls an das Schwefelatom.

Na₅[NiO₂](S) konnte durch Reaktion eines Gemenges von Na₂O, Na₂SO₄ und CdO in einem Nickelcontainer synthetisiert werden. CdO wurde dabei als Oxidationsmittel für die Containerwand eingesetzt [1, 9, 10, 11, 12, 13]. Schon frühere Untersuchungen [6] belegen die Bildung von Sulfiden durch Schmelzflußreaktionen von Natriumsulfat mit Nickel. Die Reaktionen wurden jedoch bei weit höheren Temperaturen durchgeführt. In der vorliegenden Reaktion sind die Bildungsprozesse noch nicht hinreichend geklärt. Der Einfluß von CdO und auch Na₂O führt zu verschiedenen denkbaren Reaktionsvarianten.

Das innig verriebene Substanzgemenge wurde in einen Nickelcontainer überführt und zum Schutz vor Feuchtigkeit in eine Kieselglasampulle eingeschmolzen. Die Ampulle wurde im Röhrenofen in einem Schritt auf 250°C, anschließend mit 50°C/d auf 600°C aufgeheizt und 21 Tage bei dieser Temperatur gehalten. Abgekühlt wurde mit 50°C/d auf 250°C und anschließend in einem Schritt auf Raumtemperatur. Geeignete Einkristalle wurden in der Handschuhbox mit Hilfe eines Polarisationsmikroskops ausgewählt und in Kapillarröhrchen (Durchmesser 0,3 mm) überführt, die mit Wachs verschlossen wurden. Nach Entnahme aus der Schutzgasbox wurden die Kapillaren abgeschmolzen.

Die Verbindung fällt in Form tiefroter Einkristalle an, die sich unter Einfluß von Luftfeuchtigkeit durch Disproportionierung schnell zu metallischen und schwarzen Reaktionsprodukten zersetzen.

3.1.3.1 Bestimmung der Kristallstruktur von Na₅[NiO₂](S)

Die Röntgenstrukturanalyse belegt für Na₅[NiO₂](S) die tetragonale Raumgruppe P4/mmm. Die Daten der Röntgenstrukturanalyse sind in Tab. 21 zusammengestellt. Bezüglich Lageparameter, thermischer Verschiebungparameter vgl. Tab. 22.

	Na ₅ [NiO ₂](S)
Kristallsystem	tetragonal
Raumgruppe	P4/mmm (Nr. 123)
Gitterkonstanten [pm,°]	
Einkristalldaten	a = 458,15(8)
	c = 814,1(2)
Formeleinheiten/Elementarzelle	1
F(000)	114,9
linearer Absorptionskoeffizient	3,24
Kristallform,-farbe	säulenförmig, rot
Diffraktometer	IPDS (Fa. Stoe & Cie)
Meßbereich	-5≤h≤5; -5≤k≤5; -10≤l≤10; 2θ _{max} = 53,84°
symmetrieunabhängige Reflexe	147 von 2040 gemessenen
nicht berücksichtigte Reflexe	keine
Programme	SHELXS-97 [14], SHELXL-97 [15]
Absorptionskorrektur	numerisch, X-Shape [25], X-Red [26]
Lösungsverfahren	"direkte Methoden"
Parameterverfeinerung	"full matrix least squares"
Anzahl freier Parameter	14
R(int.)	0,0566
R1	0,0323 für 129 $F_0 > 4\sigma(F_0)$; 0,037 alle Daten
wR2	0,0908
GooF	0,927

Tabelle 21: Daten der Röntgenstrukturanalyse für Na₅[NiO₂](S)

Tabelle 22: Lageparameter sowie Koeffizienten der äquivalenten und anisotropen Temperaturfaktoren [pm²] für Na₅[NiO₂](S)

Atom	Lage	Х	у	Z	U ₁₁	U ₂₂	U ₃₃	U _{eq}
Ni	1a	0	0	0	144(6)	144(6)	83(6)	124(5)
Na1	4i	0	0,5	-0,7425(3)	366(15)	109(12)	306(13)	260(8)
Na2	1b	0	0	0,5	441(22)	441(22)	142(19)	341(14)
0	2g	0	0	0,2191(5)	148(17)	148(17)	105(20)	134(11)
S	1d	0,5	0,5	0,5	165(9)	165(9)	146(11)	159(6)

Der anisotrope Temperaturfaktor hat die Form:

 $U_{ij} = exp[2\pi i (U_{11}h^2a^{*2} + U_{22}k^2b^2 + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)] [16]$ Der äquivalente Temperaturfaktor hat die Form:

 $U_{eq} = 1/3\{(aa^{2}[U_{11}+U_{22}+U_{33}+2\cos\alpha(U_{12}+U_{13}+U_{23})]\}[37]$

 $U_{12} = U_{13} = U_{23} = 0$

Spezieller Teil

Von dem nicht phasenreinen Produktgemisch wurde ein Pulverdiffraktogramm aufgenommen. Es zeigt sich ein kompliziertes Diffraktogramm, in dem keine eindeutige Indizierung der Reflexe möglich ist.

3.1.3.2 Beschreibung der Kristallstruktur von Na₅[NiO₂](S)

Wie in Na₅[NiO₂](CO₃) wird Nickel von Sauerstoffatomen linear koordiniert. Die Einheiten $[NiO_2]^{3-}$ liegen isoliert von ihresgleichen vor. Mit 178,6(5) pm liegen Sauerstoff-Metall-Abstände vor, die mit jenen in Na₅[NiO₂](CO₃) [3] vergleichbar sind. Das Zentrum der Elementarzelle wird von einem Sulfidion besetzt. Schwefel wird in Form eines Kuboktaeders von Natrium koordiniert. Im Gegensatz zur würfelförmigen Umgebung des Schwefelatoms in Na₂S [44] sind die interatomaren Abstände durch Erhöhung der Koordinationszahl von C.N. 8 auf C.N. 12 um 20 pm (quadratisches Prisma) bzw. 42 pm (Kappen) länger.

Abb. 18: Darstellung der Koordinationspolyeder um S²⁻ in Na₅[NiO₂](S) (links) und Na₂S (rechts)

In Na₅[NiO₂](S) liegen zwei kristallographisch unterscheidbare Natriumatome vor. Na1 ist in einer vierfachen Koordination von zwei Sauerstoffatomen und zwei Schwefelatomen umgeben. Die Winkel belegen die Symmetrie eines verzerrten Oktaeders mit zwei unbesetzten Ecken (Tab. 23). Über Sauerstoffatome verknüpfen die Polyeder zu Schichten, die über Kantenverknüpfung gemäß Na1-S₂-Na1 zu Doppelschichten verbrücken (vgl. Abb. 19). Natriumatome der Sorte Na2 sind nach Art eines trans-konfigurierten Oktaeders von vier Schwefel- und zwei Sauerstoffatomen umgeben, die über Kanten zu Schichten verbunden sind (siehe Abb. 20). Die Winkel sind in Tab. 23 zusammengefaßt, interatomare Abstände lassen sich Tab. 24 entnehmen.

Abbildung 19: Verknüpfung der Natriumatome Na1 in Na₅[NiO₂](S)

Abbildung 20: Umgebung der Natriumatome Na2 und Verknüpfung der Koordinationspolyeder mit ihresgleichen in Na₅[NiO₂](S)

Tabelle 23: Winkel (X-Na-X) [°] in Na₅[NiO₂](S)

∢(X-Na1-X)	[°]	∢(X-Na2-X)	[°]
01-Na1-01	164,5(2)	01-Na2-01	180
S-Na1-S	98,50(6)	S-Na2-S	180 (2x)
			90 (4x)
S-Na1-O1	95,07(7) (4x)	S-Na2-O1	90 (8x)

Die Sauerstoffatome besitzen die Koordinationszahl Sechs. Ein verzerrtes Oktaeder wird gebildet aus vier Natriumatomen der Sorte Na1, "Kopf" und "Fuß" bilden Ni bzw. Na2. Die gleichen Koordinationsverhältnisse werden auch bei Na₅[MO_2](CO_3) und Na₅[CuO_2](SO_4) beobachtet.

	S	0	C.N.	ECoN ^{a)}	MEFIR
Na1	2/8 302,4(1)	2/4 231,20(7)	4	3,9	97,9
Na2	4/4 323,96(6)	2/1 228,6(4)	6	5,2	102,8
Ni		2/1 178,4(4)	2	2,0	49,4
C.N.	12	6			
ECoN ^{b)}	11,7	5,9			
MEFIR	205.1	133,4			

Tabelle 24: Motive der gegenseitigen Zuordnung für Na₅[NiO₂](S) sowie interatomare Abstände, ECoN- und MEFIR-Werte in pm

Startwerte der Ionenradien: Startwert $r(O^{2-}) = 140 \text{ pm}$, daraus folgen die über die gewichteten Abstandsmittel (d_{Kation-O}) nach dem ECoN-Konzept [20] berechneten Startwerte: r(Na1) = 99,45pm, r(Na2) = 102,53pm, r(Ni) = 53,57pm

^{a)} Katio/ ΣO^{2-} ; ^{b)} O^{2-}/Σ Kation

3.1.3.3 MAPLE-Berechnung für Na₅[NiO₂](S)

Die Ergebnisse der MAPLE-Berechnung sind in Tab. 25 zusammengefaßt. Da keine Strukturdaten für eine binäre Komponente "Ni₂O" bekannt sind, wurden die Werte für Cu₂O, MAPLE(Cu⁺(Cu₂O)) und MAPLE(O²⁻(Cu₂O)) verwendet. Die Differenz zwischen ermitteltem Madelung-Anteil der Gitterenergie für Na₅[NiO₂](S) und der Summe der binären Komponenten ist mit 6,2 kcal/mol (= 0,3%) gering.

Atom		binär	quaternär	Δ (binär-quaternär)
Na1	4x	114,4 ^{a)}	116,9	-10
Na2	1x	114,4 ^{a)}	133,7	-19,3
Ni	1x	147,1 ^{b)}	143,2	3,9
01	2x	465,1 ^{c)}	477,5	-24,8
S	1x	384,7 ^{d)}	328,3	56,4
Σ		2034,0	2027,8	
				6.2 = 0.3%

Tabelle 25: MAPLE-Werte [kcal/mol] für Na₅[NiO₂](S)

^{a)} Mittelwert aus 3x MAPLE(Na⁺(Na₂O)) + 2x MAPLE(Na⁺(Na₂S))

^{b)} MAPLE(Cu⁺(Cu₂O))

^{c)} Mittelwert aus 1,5x MAPLE(O²⁻(Na₂O)) + 0,5x MAPLE(O²⁻(Cu₂O))

^{d)} MAPLE(S²⁻(Na₂S))

Die Differenzen der Einzelbeiträge sind gering, die höchste Abweichung wird für MAPLE(S²⁻) beobachtet. Die Abweichung von 56,4 kcal/mol kann auf die unterschiedlichen Koordinationsverhältnisse zurückgeführt werden. In Na₂S werden die Schwefelatome von acht Natriumatomen in Form eines quadratischen Prismas umgeben, der interatomare Abstand d(S-Na) beträgt hierbei 282,6 pm [44]. In Na₅[NiO₂](S) wird die Koordinationszahl 12 gefunden, wobei 8+4-Koordination mit d(S-Na) von 302,4 pm (8x) bzw. 324,0 pm (4x) besteht. MAPLE(Ni⁺(Na₅[NiO₂](S))) weicht mit 3,9 kcal/mol nur geringfügig von dem

erwarteten Wert MAPLE(Ni⁺("Ni₂O")) ab. In Na₂S und Na₂O werden für Natriumatome tetraedrische Koordinationen gefunden (d(Na-O) = 240,3 pm; d(Na-S) = 282,6)), in Folge der veränderten Koordinationsverhältnisse für die Alkaliionen in Na₅[NiO₂](S) weichen die Einzelbeiträge MAPLE(Na1(Na₅[NiO₂](S))) und MAPLE(Na2(Na₅[NiO₂](S))) vom berechneten Mittelwert der binären Komponenten ab.

MAPLE(Na1(Na₅[NiO₂](S)) weicht mit -2,5 kcal/mol nur geringfügig von dem berechneten Mittelwert für Na⁺ ab, wie in den binären Komponenten ist C.N.(Na1) = 4. Für Natriumionen der Sorte Na2 mit C.N.(Na2) = 6 ist die Differenz zwischen berechnetem MAPLE-Wert und dem Mittelwert aus den binären Komponenten deutlich größer (-19,3kcal/mol).

Die Differenz zwischen MAPLE($O^{2-}(Na_5[NiO_2](S))$) und dem errechneten Mittelwert MAPLE(O^{2-}) der binären Komponenten ist ebensfalls gering.

3.2 Na₂₅[CuO₂]₅(S)(SO₄)₄

Verbindungen, in denen drei unterschiedliche Anionen vorliegen, sind ausgesprochen selten. Auch alkalimetallhaltige Verbindungen mit Schwefel in zwei Oxidationsstufen sind strukturell kaum untersucht. Beispiele sind z.B. $K_2(S(S_2O_3)_2)(H_2O)_{1,5}$ [45], hier werden jedoch durch Schwefelatome unterschiedlicher Oxidationsstufe Einheiten gemäß (O₃S-S-S-S-SO₃) gebildet. Formal kann Na₂₅[CuO₂](S)(SO₄)₄ als aus 4x Na₅[CuO₂](SO₄) + 1x "Na₅[CuO₂](S)" aufgebaut gedacht werden. Im vorliegenden Fall entstand die Verbindung bei der Reaktion von Na₂O mit Cu₂O in Gegenwart von Na₂SO₃. Die thermische Zersetzung von Na₂SO₃ durch Disproportionierung in Sulfat und Sulfid ist bereits beschrieben worden [8]:

 $4\ \mathsf{Na}_2\mathsf{SO}_3 \to 3\ \mathsf{Na}_2\mathsf{SO}_4 + \mathsf{Na}_2\mathsf{S}$ $15\ \mathsf{Na}_2\mathsf{O} + 5\mathsf{Cu}_2\mathsf{O} + 2\ \mathsf{Na}_2\mathsf{S} + 8\ \mathsf{Na}_2\mathsf{SO}_4 \to 2\ \mathsf{Na}_{25}[\mathsf{CuO}_2]_5(\mathsf{S})(\mathsf{SO}_4)_4$

Jedoch sind auch andere Reaktionen denkbar, in denen zum Beispiel "Na₅[CuO₂](SO₃)" intermediär gebildet wird oder "Na₅[CuO₂](S)" als Zwischenprodukt vorliegt. (vgl. Kap. 3.3.). Ein innig verriebenes Substanzgemenge wurde unter Schutzgasatmosphäre in Silbercontainer überführt und zum Schutz vor Feuchtigkeit unter Argon in einen Kieselglasmantel eingeschmolzen. Die Ampulle wurde im Röhrenofen in einem Schritt auf 250°C, anschließend mit 50°C/d auf 600°C aufgeheizt und 21 Tage bei dieser Temperaur gehalten. Abkühlen erfolgte mit 50°C/d auf 250°C, anschließend in einem Schritt auf Raumtemperatur. Einkristalle von Na₂₅[CuO₂]₅(S)(SO₄)₄ wurden mit Hilfe eines Polarisationsmikroskops in der Handschuhbox ausgewählt und in Kapillarröhrchen überführt. Die Kapillaren wurden nach Entnahme aus der Box abgeschmolzen.

Die Verbindung fällt in Form blaßgelber Einkristalle an, die sich an der Luft schnell zu dunklen Reaktionsprodukten zersetzen.

3.2.1 Bestimmung der Kristallstruktur von Na₂₅[CuO₂]₅(S)(SO₄)₄

Gemäß der Röntgenstrukturanalyse kristallisiert $Na_{25}[CuO_2]_5(S)(SO_4)_4$ in der monoklinen Raumgruppe P2/m, bzgl. Lageparameter und thermischer Verschiebungsparameter, sowie Daten der Röntgenstrukturanalyse vgl. Tab. 26, Tab. 27 und Tab. 28.

	Na ₂₅ [CuO ₂]] ₅ (S)(SO ₄) ₄	
Kristallsystem	mon	oklin	
Raumgruppe	P2/m (Nr. 10)	
Gitterkonstanten [pm,°]			
Einkristalldaten	a = 977,3(1)		
	b = 473,25(5)	$\beta = 102,4(1)$	
	c = 2067,8(2)		
Pulverdaten	a = 978,0(1)		
	b = 472,59(8)	β = 102,61(1)	
	c = 2070,7(3)		
Formeleinheiten/Elementarzelle	·	1	
F(000)	70	7,7	
linearer Absorptionskoeffizient	3,4	46	
Kristallform,-farbe	unregelmäßig, blaß-gelb		
Diffraktometer	IPDS (Fa. Stoe & Cie)		
Meßbereich	-12≤h≤12; -6≤k≤6; -24	l≤l≤26; 2θ _{max} = 53,98°	
symmetrieunabhängige Reflexe	2278 von 1297	4 gemessenen	
nicht berücksichtigte Reflexe	kei	ine	
Programme	SHELXS-97 [14],	SHELXL-97 [15]	
Absorptionskorrektur	numerisch, X-Shap	be [25], X-Red [26]	
Lösungsverfahren	"Direkte N	lethoden"	
Parameterverfeinerung	"full matrix le	ast squares"	
Anzahl freier Parameter	20)2	
R(int.)	0,04	421	
R1	0,0339 für 1870 F ₀ > 4o	(F ₀); 0,0425 alle Daten	
wR2	0,08	894	
GooF	1,0	38	

Tabelle 26: Daten der Röntgenstrukturanalyse für Na₂₅[CuO₂]₅(S)(SO₄)₄

In Na₂₅[CuO₂]₅(S)(SO₄)₄ liegen zwei kristallographisch unterscheidbare Sulfationen fehlgeordnet vor. Die für O224 gefundene Lage besitzt eine entsprechende symmetrieäquivalente Position in lediglich 60(1) pm Entfernung. In Folge der kristallographischen Lage nahe einer Spiegelebene führt das Symmetrieelement zu unverhältnismäßig großen Temperaturfaktoren der Sauerstoffatome O222, O221 und O224, vgl. Abb. 21. Ein entsprechender Effekt wird für die Sauerstoffatome O331 und O333 beobachtet (Abb. 22).

Abbildung 21: Punktlagensymmetrie der $[S(2)O_4]^2$ -Einheit mit eingezeichnetem Symmetrieelement (links) und Darstellung der fehlgeordneten Einheit mit anisotropen Temperaturfaktoren (rechts) in Na₂₅[CuO₂]₅(S)(SO₄)₄ (Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit)

Abbildung 22: Punktlagensymmetrie der $[S(3)O_4]^{2-}$ -Einheit mit eingezeichnetem Symmetrieelement (links) und Darstellung der Einheit mit anisotropen Temperaturfaktoren (rechts) in Na₂₅[CuO₂]₅(S)(SO₄)₄ (Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit)

Tabelle 27: Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren $[pm^2]$ fürNa25[CuO2](S)(SO4)4

Atom	Lage	Х	у	Z	U _{eq}
Cu1	2n	0,29389(5)	0,5	0,29824(3)	169(1)
O11	2n	0,4719(3)	0,5	0,3442(1)	185(6)
O12	2n	0,1122(3)	0,5	0,2578(1)	193(6)
Cu2	2n	0,44156(5)	0,5	0,10572(5)	212(1)
O21	2n	0,2614(3)	0,5	0,0616(2)	232(7)
O22	2n	0,6223(3)	0,5	0,1481(1)	218(6)
Cu3	1f	0	0,5	0,5	155(2)
O31	2n	0,1646(3)	0,5	0,4733(1)	178(6)
S1	1g	0,5	0	0,5	195(3)
S2 ^{a)}	40	0,9191(2)	0,0607(4)	0,10402(8)	315(7)
O221	2m	0,8981(4)	0	0,1699(2)	362(9)
O222	2m	0,7865(6)	0	0,0580(2)	582(13)
O223 ^{a)}	40	0,9312(5)	0,3696(12)	0,0981(3)	366(12)
O224 ^{a)}	40	0,0429(9)	0,0638(16)	0,0928(6)	1079(42)
S3 ^{a)}	4o	0,7987(1)	0,0603(3)	0,32808(7)	191(5)
O331	2m	0,6943(5)	0	0,2708(2)	625(15)
O332	2m	0,7491(3)	0	0,3886(2)	234(7)
O333	2m	0,9416(4)	0	0,3331(2)	589(14)
O334 ^{a)}	40	0,8033(4)	0,3720(10)	0,3209(2)	240(9)
Na1	2m	0,6431(2)	0	0,15496(9)	258(4)
Na2	2n	0,8657(2)	0,5	0,2118(1)	324(5)
Na3	2n	0,5785(2)	0,5	0,25584(9)	251(4)
Na4	2n	0,6938(2)	0,5	0,41615(9)	248(4)
Na5	2n	0,0411(2)	0,5	0,36292(9)	223(4)
Na6	2n	0,3731(2)	0,5	0,44033(8)	197(4)
Na7	2m	0,1944(2)	0	0,4895(1)	254(4)
Na8	2n	0,6985(2)	0,5	0,04683(9)	283(4)
Na9	2n	0,1569(2)	0,5	0,1521(1)	360(5)
Na10	2m	0,0921(2)	0	0,25999(9)	230(4)
Na11	2m	0,2478(2)	0	0,0564(1)	278(4)
Na12	1b	0	0,5	0	674(13)
Na13	2m	0,4926(2)	0	0,3626(1)	237(4)

mit $U_{eq}=1/3\{(aa^*)^2[U_{11}+U_{22}+U_{33}+2cos\alpha(U_{12}+U_{13}+U_{23})]\}$ [37]

^{a)} statistisch zur Hälfte besetzt

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu1	137(2)	187(3)	182(3)	0	28(2)	0
011	164(13)	196(15)	194(14)	0	40(11)	0
012	182(13)	185(15)	212(15)	0	43(11)	0
Cu2	193(3)	231(3)	211(3)	0	43(2)	0
O21	247(15)	252(17)	200(15)	0	53(12)	0
022	225(15)	216(17)	220(16)	0	66(12)	0
Cu3	128(3)	173(4)	172(3)	0	49(2)	0
O31	132(12)	202(16)	209(15)	0	50(11)	0
S1	191(6)	185(7)	205(7)	0	30(5)	0
S2	354(8)	340(20)	274(7)	10(7)	117(6)	-23(7)
O221	415(20)	405(23)	260(18)	0	59(15)	0
0222	795(33)	536(30)	318(22)	0	-94(22)	0
O223	352(26)	276(26)	449(31)	91(23)	39(23)	-28(21)
O224	1011(52)	416(78)	2264(101)	-323(57)	1359(66)	-245(41)
S3	214(6)	178(16)	195(6)	3(5)	76(5)	-8(5)
O331	621(29)	991(44)	206(20)	0	-39(19)	0
O332	227(14)	291(18)	216(15)	0	116(12)	0
O333	329(21)	945(40)	599(29)	0	337(20)	0
O334	233(20)	165(20)	326(23)	32(19)	66(18)	-32(17)
Na1	280(9)	208(9)	281(10)	0	50(7)	0
Na2	206(9)	457(13)	301(10)	0	38(7)	0
Na3	228(8)	342(11)	191(8)	0	60(7)	0
Na4	223(8)	262(10)	243(9)	0	13(7)	0
Na5	183(8)	298(10)	187(8)	0	35(6)	0
Na6	168(7)	233(9)	201(8)	0	66(6)	0
Na7	568(9)	172(9)	335(10)	0	92(7)	0
Na8	264(9)	374(12)	222(9)	0	76(7)	0
Na9	268(9)	625(15)	203(9)	0	85(7)	0
Na10	236(8)	181(9)	273(10)	0	56(7)	0
Na11	313(9)	252(10)	281(10)	0	93(8)	0
Na12	473(20)	1294(43)	292(17)	0	161(15)	0
Na13	231(8)	168(9)	306(10)	0	48(7)	0

Tabelle 28: Koeffizienten der anisotropen Temperaturfaktoren [pm²] für Na₂₅[CuO₂](S)(SO₄)₄

mit U_{ij} =exp[$2\pi i(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+2U_{12}hka^*b^*+2U_{13}hla^*c^*+2U_{23}klb^*c^*)$] [16]

Von Na₂₅[CuO₂]₅(S)(SO₄)₄ wurde ein Pulverdiffraktogramm aufgenommen. Abb. 23 zeigt die Gegenüberstellung des gemessenen Diffraktogramms gegen ein auf Einkristalldaten basierendes, simuliertes Diffraktogramm. Es wird eine hohe Übereinstimmung bezüglich Lage und Intensität der Reflexe beobachtet. Die Gitterkonstanten konnten anhand des Pulverdiffraktogramms verfeinert werden. Eine vollständige Indizierung der Reflexe findet sich im Anhang (A V).

Abbildung 23: Gegenüberstellung des gemessenen Diffraktogramms gegen ein mit Einkristalldaten Simuliertes für $Na_{25}[CuO_2]_5(S)(SO_4)_4$

3.2.2 Beschreibung der Kristallstruktur von Na₂₅[CuO₂]₅(S)(SO₄)₄

In Na₂₅[CuO₂]₅(S)(SO₄)₄ liegen voneinander isolierte komplexe Anionen, [CuO₂]³⁻, vor, die einen nahezu linearen Aufbau aufweisen. Es besteht keine Koordination des Übergangmetallatoms an die Anionen S²⁻ oder SO₄²⁻. Eine Projektion der Kristallstruktur mit eingezeichneter Elementarzelle ist in Abb. 24 wiedergegeben. Entsprechend der Fehlordnung bilden sich "Stränge" von Sulfateinheiten entlang der b-Achse aus, wobei die "Spitzen" der SO₄-Tetraeder je Strang in eine Richtung zeigen (+ bzw. -). Je nach Orientierung sind verschiedene Permutationen (bei 4 "Strängen" pro Elementarzelle) denkbar. Im Folgenden wird eine dieser Besetzungvarianten betrachtet (vgl. Kap. 3.2.3).

Abbildung 24: Projektion der Kristallstruktur von $Na_{25}[CuO_2]_5(S)(SO_4)_4$ (dargestellt ist eine Variante)

Nahezu lineare Anionen $[Cu1(O11)(O12)]^{3-}$ und $[Cu2(O21)(O22)]^{3-}$ sind in der Struktur annähernd parallel angeordnet. Vierereinheiten bilden Blöcke in (010) und werden durch $[Cu3(O31)_2]^{3-}$ -Einheiten separiert, vgl. Abb. 25.

Abbildung 25: Anordnung der [CuO₂]³⁻-Einheiten in vier Elementarzellen

Die Abstände zwischen Sauerstoff- und Kupferatomen sind in den drei kristallographisch unterscheidbaren $[CuO_2]^3$ -Einheiten vergleichbar. Auf Grund von Packungseffekten wird bei zwei der drei Einheiten eine Reduzierung des Bindungswinkels auf 175,9° (Cu1) bzw. 178,8° (Cu2) beobachtet. Die interatomaren Abstände d(Cu-O) sind mit denjenigen in Na₅[CuO₂](SO₄) oder Na₅[CuO₂](CO₃) vergleichbar (siehe Tab. 29).

Tabelle 29: Winkel und interatomare Abstände der $[CuO_2]^{3-}$ -Einheiten in Na₂₅[CuO₂]₅(S)(SO₄)₄

[(Cu1)O ₂] ³⁻		[(Cu2)O ₂] ³⁻		[(Cu3)O ₂] ³⁻	
d(Cu1-O11)	179,4(3) pm	d(Cu2-O21)	180,1(3) pm	d(Cu3-O31)	181,0(3) pm (2x)
d(Cu1-O12)	179,2(3) pm	d(Cu2-O22)	179,5(3) pm		
∢(O12-Cu1-O1	11) 175,9(1)°	∢(O22-Cu2-O21)	178,8(1)°	∢(O31-Cu3-O	031) 180,0(2)°

Die SO_4^{2-} -Einheiten zeigen deutliche Verzerrungen gegenüber der idealen T_d -Symmetrie. Die Winkel in den entsprechenden Einheiten $[S(2)O_4]^{2-}$ und $[S(3)O_4]^{2-}$ sowie interatomare Abstände sind in Tab. 30 aufgeführt.

Abbildung 26: Darstellung der Sulfat-Einheiten in Na₂₅[CuO₂]₅(S)(SO₄)₄; S2 (links), S3 (rechts)

d(S2-O)	[pm]	∢(O-S-O)	[°]	d(S3-O)	[pm]	∢(0-S-0)	[°]
S2-0224	140,9(6)	O221-S2-O223	107,7(2)	S3-O333	140,8(4)	O332-S3-O331	111,4(2)
S2-O221	145,0(4)	O221-S2-O224	111,9(5)	S3-O331	141,5(4)	O332-S3-O334	107,6(2)
S2-0222	146,2(5)	0221-S2-0222	106,7(3)	S3-O332	146,4(3)	O332-S3-O333	113,8(2)
S2-O223	147,4(5)	O222-S2-O224	118,9(5)	S3-O334	148,4(5)	O334-S3-O333	99,1(2)
		O222-S2-O223	102,5(2)			O334-S3-O331	98,6(2)
		O223-S2-O224	108,3(4)			O331-S3-O333	123,1(3)

Tabelle 30: Winkel und interatomare Abstände der Sulfat-Einheiten in Na₂₅[CuO₂]₅(S)(SO₄)₄

Die dreizehn kristallographisch unterscheidbaren Natriumatome besitzen unterschiedliche Koordinationssphären. Für Natriumatome der Sorten Na1, Na2, Na3, Na4, Na5 und Na8 gilt C.N. = 6. Diese Natriumatome koordinieren an jeweils zwei $[CuO_2]^{3-}$ -Hanteln. Weitere Koordination besteht durch Kanten- und Eckenverknüpfung an zwei $[SO_4]^{2-}$ -Einheiten. Polyeder um Na1 verknüpfen untereinander über Ecken gemäß Na1-O22_{2/2}-Na1 zu Strängen entlang [010] (Abb. 29). Polyeder um Na2, Na3, Na4, Na5 und Na8 verknüpfen mit ihresgleichen durch Eckenverknüpfung (gemeinsame Sauerstoffatome von $[SO_4]^{2-}$ -Einheiten, vgl. Abb. 27 und 28).

Abbildung 27: Darstellung der Koordinationspolyeder um Na8 und Na2 sowie Verknüpfung mit ihresgleichen in Na₂₅[CuO₂]₅(S)(SO₄)₄

Abbildung 28: Darstellung der Koordinationspolyeder um Na4 und Na5 sowie Verknüpfung mit ihresgleichen in $Na_{25}[CuO_2]_5(S)(SO_4)_4$

Abbildung 29: Darstellung der Koordinationspolyeder um Na1,Na11, Na3 und Na9 sowie Verknüpfung mit ihresgleichen in $Na_{25}[CuO_2]_5(S)(SO_4)_4$

Mit C.N. = 4 koordinieren die Natriumatome Na9, Na10 und Na11 an jeweils zwei $[CuO_2]^{3-}$ Hanteln und zwei $[SO_4]^{2-}$ -Gruppen. Polyeder um Na9 liegen in Na₂₅ $[CuO_2]_5(S)(SO_4)_4$ isoliert von ihresgleichen vor, Na10 und Na11 verbrücken über Ecken gemäß Na10-O12_{2/2}-Na10 bzw. Na11-O21_{2/2}-Na11 zu Strängen (vgl. Abb. 29 und 30). Diese Stränge sind entlang [010] ausgerichtet.

Abbildung 30: Darstellung der Koordinationspolyeder um Na10 und Na12 sowie Verknüpfung mit ihresgleichen in Na₂₅[CuO₂]₅(S)(SO₄)₄

Für Natriumatome der Sorte Na12 wird eine verzerrt oktaedrische Umgebung von Sauerstoffatomen gefunden. Das Koordinationspolyeder wird hierbei aus zwei Sauerstoffatomen der Sorte O21 (∢(O21-Na12-O21) = 180°) und vier Sauerstoffatomen von Sulfateinheiten gebildet (vgl. Abb. 30) und es findet keine Verknüpfung zu weiteren Na12-O-Einheiten statt.

Natriumatome der Sorte Na6 sind vierfach koordiniert $(2xO^{2-} + 2xS^{2-})$ und bilden kantenverknüpfte Dimere, die über Ecken zu Doppelsträngen entlang der kristallographischen b-Achse verbrücken. Eine Darstellung der Polyeder und deren Verknüpfung findet sich in Abb. 31.

Abbildung 31: Darstellung der Koordinationspolyeder um Na6 sowie Verknüpfung mit ihresgleichen in $Na_{25}[CuO_2]_5(S)(SO_4)_4$

Na7 besitzt die Koordinationszahl 4, gebildet aus einer Umgebung von zwei Sauerstoffatomen der Sorte O31, einem Sulfidion S1 und einem Sauerstoffatom O332 einer Sulfatgruppe. Verknüpfung von Na7 mit seinesgleichen erfolgt über O31 zu Strängen entlang der b-Achse und über S²⁻ zu Doppelsträngen mit Leiterstruktur (siehe Abb.32). Mit C.N. = 4 verknüpft Na13 analog [Cu1(O11)(O12)]-Schichten entlang der b-Achse über O11 (siehe Abb. 32). Weitere Verknüpfung der Polyeder mit ihresgleichen erfolgt über S²⁻, wodurch die linearen Hanteln um Cu1 innerhalb der Doppelstränge verbunden werden.

 $Na_{25}[CuO_2]_5(S)(SO_4)_4$

Sauerstoffatome, die am Aufbau der linearen Hanteln [CuO₂] beteiligt sind, besitzen verzerrt oktaedrische Umgebung gemäß [O(Cu)(Na)₅]. Die Natrium-Umgebung der Sulfatsauerstoffatome ist in Abb. 33 als Schlegeldiagramm wiedergegeben. Die Sauerstoffatome O221, O222 und O223 werden von jeweils 4 Natriumatomen koordiniert, O224 hingegen von drei Natriumatomen. In der Sulfatgruppe [S(2)O₄]²⁻ werden dabei drei Kanten des Tetraeders von Natriumatomen verbrückt.

Abbildung 33: Schlegeldiagramme der Sulfatgruppen in Na₂₅[CuO₂]₅(S)(SO₄)₄

Sauerstoffatome der Sorte O331 und O333 besitzen die Koordinationszahl 3 bezüglich Natrium, O332 und O334 werden von je vier Natriumatomen koordiniert. Es werden ebenfalls drei Kanten des Tetraeders $[S(3)O_4]^{2-}$ von Natriumatomen verbrückt.

Interatomare Abstände und Winkel in $Na_{25}[CuO_2]_5(S)(SO_4)_4$ sind im Anhang (A VI) zusammengefaßt.

In Na₂₅[CuO₂](S)(SO₄)₄ finden sich Teilstrukturen bereits beschriebener Verbindungen wieder, jedoch läßt sich die Verbindung nicht durch Zusammenfassen von fünf Teilstrukturen des Typs Na₅[MO₂](X), und Besetzung von vier Positionen X mit SO₄²⁻ und einer Position mit S²⁻ beschreiben. Eine Teilstruktur Na₅[CuO₂](SO₄) ist in der Darstellung von vier Elementarzellen deutlich zu erkennen (vgl. Abb. 34; rot). Auch das grün hervorgehobene Fragment aus Na₂₅[CuO₂]₅(S)(SO₄) kann als verzerrte Vaiante des Na₅[MO₂](X)-Typs beschrieben werden. Es wird eine vergleichbare Umgebung für S²⁻ gefunden wie in Na₅[NiO₂](S) (Kap. 3.1.3), jedoch liegt achtfache Koordination vor.

Die strukturellen Unterschiede werden bei der Betrachtung eines weiteren Fragments $Na_5[CuO_2](SO_4)$ (vgl. Abb. 34; blau) besonders deutlich. Die Umgebung der Sulfateinheit mit Natriumatomen ist hierbei gegenüber dem vorher genannten Fragment (rot) verzerrt. In $Na_5[CuO_2](SO_4)$ (Kap. 3.1.2.) und dem roten Fragment wird das Sulfation im Zentrum eines verzerrten Kuboktaeders aus Natriumatomen gefunden.

Abbildung 34: Projektion der Kristallstruktur von $Na_{25}[CuO_2]_5(S)(SO_4)_4$, hervorgehoben sind die an dem Aufbau der Struktur beteiligten Fragmente (die zwischen den Kupferatomen eingezeichneten Linien dienen lediglich zu Hervorhebung der Fragmente)

3.2.3 MAPLE-Berechnung für Na₂₅[CuO₂]₅(S)(SO₄)₄

Die Ergebnisse der MAPLE-Berechnung für Na₂₅[CuO₂]₅(S)(SO₄)₄ sind in Tab. 31 zusammengefasst. Die Abweichung des Madelung-Anteils der Gitterenergie von der Summe der binären Komponenten ist mit -1,4% vergleichsweise groß.

Atom		Edukte	quaternär	$\Delta_{(Edukte-quatern"ar)}$
Cu1	2x	147,1 ^{a)}	163,4	-32,6
Cu2	2x	147,1 ^{a)}	160,9	-27,6
Cu3	1x	147,1 ^{a)}	168,3	-21,2
S2	2x	4777,2 ^{b)}	4713,6	127,2
S3	2x	4777,2 ^{b)}	4788,7	-23,0
Na1	2x	129,7 ^{c)}	134,2	-9
Na2	2x	129,7 ^{c)}	137,4	-15,4
Na3	2x	129,7 ^{c)}	132,6	-5,8
Na4	2x	129,7 ^{c)}	141,5	-23,6
Na5	2x	129,7 ^{c)}	133,7	-8,0
Na6	2x	129,7 ^{c)}	153,4	-47,4
Na7	2x	129,7 ^{c)}	141,5	-23,6
Na8	2x	129,7 ^{c)}	130,2	-1,0
Na9	2x	129,7 ^{c)}	122,1	15,2
Na10	2x	129,7 ^{c)}	130,9	-2,4
Na11	2x	129,7 ^{c)}	131,0	-2,6
Na12	1x	129,7 ^{c)}	120,7	9,0
Na13	2x	129,7 ^{c)}	136,0	-12,6
S1	1x	384,7 ^{d)}	284,5	100,2
011	2x	630,9 ^{e)}	427,6	406,6
012	2x	630,9 ^{e)}	436,5	388,8
O21	2x	630,9 ^{e)}	433,7	394,4
022	2x	630,9 ^{e)}	417,0	427,8
O31	2x	630,9 ^{e)}	431,0	399,8
0221	2x	630,9 ^{e)}	799,6	-337,4
0222	2x	630,9 ^{e)}	774,7	-287,6
O223	2x	630,9 ^{e)}	808,9	-356,0
O224	2x	630,9 ^{e)}	756,2	-250,6
O331	2x	630,9 ^{e)}	788,4	-315,0
O332	2x	630,9 ^{e)}	786,0	-310,2
O333	2x	630,9 ^{e)}	788,2	-314,6
O334	2x	630,9 ^{e)}	833,0	-404,2
Σ		39874,9	40437,3	-562,4 (= -1,4%)

Tabelle 31: MAPLE-Werte [kcal/mol] für Na₂₅[CuO₂]₅(S)(SO₄)₄

^{a)} MAPLE($Cu^{+}(Cu_{2}O)$ ^{b)} MAPLE($S^{6+}(Na_{2}SO_{4})$)) ^{c)} Mittelwert: 15xMAPLE($NA^{+}(NA_{2}O)$) + 2xMAPLE($Na^{+}(Na_{2}S)$) + 8xMAPLE($Na^{+}(Na_{2}SO_{4})$)) ^{d)} MAPLE($S^{2-}(Na_{2}S)$)) ^{e)} Mittelwert: 7,5xMAPLE($O^{2-}(Na_{2}O)$) + 2,5xMAPLE($O^{2-}(Cu_{2}O)$) + 16xMAPLE($O^{2-}(Na_{2}SO_{4})$))

Die Abweichungen der MAPLE-Werte der Sauerstoffatome in Na₂₅[CuO₂]₅(S)(SO₄)₄ von dem berechneten Mittelwert der Edukte sind vergleichsweise groß. Jedoch kann hier deutlich zwischen Sauerstoffatomen der Na₂O/Cu₂O- und der Na₂SO₄-Teilstruktur unterschieden werden. Für Sauerstoffatome der binären Komponente Cu₂O werden MAPLE-Werte von 503,6 kcal/mol berechnet, der MAPLE-Wert für Sauerstoff in Na₂O beträgt 452,3 kcal/mol, demgegenüber errechnet sich MAPLE($O^{2-}(Na_2SO_4)$) = 734,6 kcal/mol. Die MAPLE-Werte für Sauerstoff-atome, die an dem Aufbau von [CuO2]-Einheiten beteiligt sind, lassen sich der Na₂O/Cu₂O Teilstruktur zuordnen. Für Sauerstoffatome der Sulfatgruppen werden deutlich höhere MAPLE-Werte gefunden, besonders auffällig sind hierbei MAPLE(O331) und MAPLE(333) mit Werten von ca. 800 kcal/mol. Diese hohen Werte resultieren aus der, im Vergleich zu den anderen Sauerstoffatomen der Sulfatgruppen (C.N.(O) = 5 ($1xS^{6+} + 4xNa^{+}$), verminderten Koordinationszahl vier $(1xS^{6+} + 3xNa^{+})$. Für O224 liegt C.N. = 3 $(1xS^{6+} + 3xNa^{+})$ 2xNa⁺) vor und es resultiert MAPLE(O224) = 833 kcal/mol (mit einem großen interatomaren Abstand d(O224-Na12) = 278 pm (ECoN-Beitrag 0,059) und es ergibt sich naiv abgezählt: C.N.(O224) = 4). Die Einzelbeiträge der Natrium- und Schwefelatome weichen geringfügig von den berechneten Mittelwerten der Produkte ab. Die für die Kupferatome berechneten Werte lassen sich mit denjenigen aus $Na_5[CuO_2](X)$ bzw. $Na_5[CuO_2](OH)_2$ vergleichen.

Die verschiedenen "Strangorientierungen" (siehe Abb. 24) +/+/+, +/+/-/, +/+/-, +/+/-, +/+/-, +/+/-/+ und +/-/-/+ unterscheiden sich nur um maximal 2,6 kcal/mol (wobei sich diese Abweichung auf Rundungsfehler zurückführen lassen). Da alle weiteren Atome auf Spiegelebenen senkrecht zur c-Achse liegen, müssen die inversen Permutationen nicht betrachtet werden.

3.2.4 IR-Spektrum von Na₂₅[CuO₂]₅(S)(SO₄)₄

Von Na₂₅[CuO₂]₅(S)(SO₄)₄ wurde ein IR-Spektrum aufgenommen. Wenige Milligramm der Verbindung wurden unter Schutzgas mit KBr verrieben und mit einem Druck von 10 t zu einer Tablette gepreßt. Die Aufnahme des IR-Spektrums umfaßt einen Wellenlängenbereich von 7000 bis 400 cm⁻¹.

Im Spektrum werden die typischen Absorptionsbanden der S-O-Schwingungen des Sulfats beobachtet. Infolge der Symmetrieerniedrigung werden die Banden durch Aufspaltung verbreitert detektiert. Intensive Absorption findet bei 1123 cm⁻¹ statt (+ 1162 sh; +1101 sh); diese Bande kann der asymmetrischen Valenzschwingung v_{as}(S-O) zugeordnet werden. Die schwache Absorption bei 988 cm⁻¹ entspricht der symmetrischen Valenzschwingung v_s(S-O). Desweiteren wird δ_{as} (O-S-O) bei 626 (+ 662 sh) cm⁻¹ detektiert.

3.3 Untersuchungen zur Reaktivität in den Systemen Na₂O/Cu₂O/Na₂SO₄ und Na₂O/Cu₂O/Na₂SO₃

Die Bildung der Verbindung Na₅[CuO₂](SO₄) wurde ausgehend von den binären Komponenten untersucht. Die Reaktionen wurden mit *In-situ*-Röntgenpulverdiffraktometrie, DTA-Methoden und mit Hilfe der IR-Spektroskopie untersucht. Die Bildung von Na₂₅[CuO₂]₅(S)(SO₄) wurde in dem System Na₂O/Cu₂O/Na₂SO₃ beobachtet, dement-sprechend wurden auch hier thermoanalytische Untersuchungen angestellt. Schmelzfluß-reaktionen von Na₂O, Na₂S oder Na₂SO₄ mit Metallen wie Cu, Ni und auch Co wurden bereits untersucht [6], jedoch wurde hierbei jeweils eine binäre Alkalikomponente eingesetzt. Des weiteren wurden die Reaktionen in den Systemen Na₂O/Na₂SO₃ und Na₂O/Na₂SO₄ mit thermoanalytischen Methoden und IR-Spektroskopie untersucht. Zur Durchführung der thermoanalytischen Methoden wurden 10 mg eines innig verriebenen Substanzgemenges der binären Komponenten unter Schutzgas in verschließbare Silbertiegel (Eigenbau) überführt. Aufgeheizt wurde mit 10 K/min bis 600°C und mit der gleichen Rate auf 200°C abgekühlt. Dieser Zyklus wurde dreimal wiederholt. Die simultan aufgenommene TG-Kurve diente dabei lediglich zur Dichtigkeitsprüfung der Tiegel.

Zur Aufnahme von temperaturabhängigen Pulverdiffraktogrammen wurde ein homogenisiertes Substanzgemisch der binären Komponenten auf ein Silberblech aufgebracht, das in einem Bühlerofen (in einer Schutzgasbox) auf ein beheizbares Platinblech platziert wurde. Die Aufnahme von Pulverdiffraktogrammen erfolgte bis 200°C in 100°-Schritten, von 200°C bis 600°C in 50°-Schritten. Da zwischen Silber- und Platinblech ein Temperaturgradient angenommen werden muß, sind die Temperaturangaben für die Diffraktogramme mit Fehlern behaftet. Infolge apparativer Gegebenheiten werden in den Diffraktogrammen Beryllium-Reflexe bei ca. 20 = 54° beobachtet.

Von den Reaktionsprodukten wurden IR-Spektren angefertigt. Hierzu wurden wenige mg der Produkte unter Schutzgas mit KBr verrieben und unter 10 t zu Tabletten gepresst. Die Aufnahme der Spektren erfolgte in einem Wellenlängenbereich von 7000 bis 400 cm⁻¹.

3.3.1 Reaktionen im System Na₂O/Cu₂O/Na₂SO₄

Abb. 35 zeigt die Ergebnisse der thermoanalytischen Untersuchung eines Substanzgemenges $Na_2O/Cu_2O/Na_2SO_4$ (molares Verhältnis 3 : 1 : 2) als Auftragung des DSC-Signals gegen die Temperatur.

Abbildung 35: Auftragung des DSC-Signals gegen die Temperatur für ein Substanzgemenge $Na_2O/Cu_2O/Na_2SO_4$ (3 : 1 : 2)

Die erste Aufheizkurve der thermoanalytischen Untersuchung zeigt insgesamt fünf thermische Effekte. Im Bereich von 250° C bis 275° C ist ein vergleichsweise starker endothermer Effekt zu beobachten, der in den beiden folgenden Aufheizphasen nicht mehr gefunden wird. Hier kann die Phasenumwandlung der orthorhomischen Modifikation von Na₂SO₄ in die hexagonale Modifikation vermutet werden. Der gleiche Effekt wird bei der thermoanalytischen Messung eines Reaktionsgemenges aus Na₂O/Na₂SO₄ (molares Verhältnis 3 : 2) beobachtet (vgl. Abb. 36).

Abbildung 36: Auftragung des DSC-Signals gegen die Temperatur für ein Substanzgemenge Na₂O/Na₂SO₄ (1 : 2)

Weitere endotherme Effekte im System $Na_2O/Cu_2O/Na_2SO_4$ sind bei 300°C, 375°C und 425°C zu beobachten. Zwei reversible Effekte werden bei den Temperaturen 450°C/420°C und 490°C/450°C (schwach) gefunden. In den folgenden Aufheizphasen wird hier lediglich ein Effekt bei 450°C/420°C detektiert.

Von dem Reaktionsprodukt der DSC-Untersuchung (Na₂O/Cu₂O/Na₂SO₄) wurde ein Pulverdiffraktogramm erstellt. Abb. 37 zeigt die Gegenüberstellung des gemessenen Diffraktogramms gegen ein nach Einkristalldaten von Na₅[CuO₂](SO₄) simuliertes Diffraktogramm. Lage und Intensität der Reflexe zeigen eine gute Übereinstimmung.

Abbildung 37: Gegenüberstellung des Pulverdiffraktogramms vom Reaktionsprodukt der DSC-Untersuchung eines Substanzgemisches $Na_2O/Cu_2O/Na_2SO_4$ (3 : 1 : 2) gegen ein nach Einkristalldaten simuliertes Pulverdiffraktogramm von $Na_5[CuO_2](SO_4)$ (Indizierung AVI)

Abb. 38 zeigt das Pulverdiffraktogramm der DSC-Messung des Systems Na_2O/Na_2SO_4 (molares Verhältnis 1 : 2). Das Endprodukt kann hier als $Na_6O(SO_4)_2$ [46] identifiziert werden. Zusätzlich werden die Beugungsreflexe von Na_2O gefunden.

Abbildung 38: Pulverdiffraktogramm des Reaktionsproduktes Na_2O/Na_2SO_4 (1 : 2), sowie Darstellung eines berechneten Diffraktogramms für $Na_6O(SO_4)_2$ [46] und des Diffraktogramms von Na_2O [38] (Indizierung A VII)

Abb. 39 zeigt die temperaturaufgelöste Röntgenpulverdiffraktometrie in Guinier-Simon-Darstellung für das System $Na_2O/Cu_2O/Na_2SO_4$ (3 : 1 : 2)

Abbildung 39: Guinier-Simon-Darstellung der *In-situ*-Pulverdiffraktometrie für das System Na₂O/Cu₂O/Na₂SO₄ (3 : 1 : 2)

Im Temperaturbereich von Raumtemperatur bis 250°C liegen die Edukte nebeneinander vor. Abb. 40 zeigt das Diffraktogramm bei ca. 250°C als Auftragung der relativen Intensität gegen den Beugungswinkel 20. Die Reflexe können den Edukten der Reaktion zugeordnet werden, im Anhang findet sich eine vollständige Indizierung der Reflexe (A VIII).

Abbildung 40: Gemessenes Diffraktogramm bei ca. 300°C und Diffraktogramme der Edukte Na₂O [38], Cu₂O [39] und β -Na₂SO₄ [47]

Im Temperaturbereich um 300° C liegen weiterhin die Komponeneten Na₂O, Cu₂O und Na₂SO₄ nebeneinander vor; jedoch lassen sich die Reflexe von Na₂SO₄ der hexagonalen Modifikation zuordnen (Abb. 41).

Abbildung 41: Gemessenes Diffraktogramm bei ca. 300°C und Vergleichsdiffraktogramme von Na₂O [38], Cu₂O [39] und γ -Na₂SO₄ [48] (vgl. AIX)

Ab ca. 400°C lassen sich einige Reflexe der intermediär gebildeten Verbindung NaCuO [2] zuordnen, weiterhin können die Edukte identifiziert werden (vgl. Abb. 42). Ab 500°C werden Reflexe beobachtet, die der Verbindung Na₅[CuO₂](SO₄) zugeordnet werden können, weiterhin liegen NaCuO und Cu₂O vor (vgl. Abb. 43).

Abbildung 42: Gemessenes Diffraktogramm bei ca. 400°C und Vergleichsdiffraktogramme von Na₂O [38], Cu₂O [39], γ -Na₂SO₄ [48] und NaCuO [2] (vgl. A X)

Abbildung 43: Gemessenes Diffraktogramm bei ca. 550°C und Vergleichsdiffraktogramme von NaCuO [2] und Cu₂O [39] sowie ein simuliertes Diffraktogramm von Na₅[CuO₂](SO₄) (vgl. A XI)

Die Reaktionsprodukte der *In-situ*-Pulverdiffraktometrie und der thermoanalytischen Untersuchung wurden mit Hilfe der IR-Spektroskopie untersucht. In Tab. 32 sind die
beobachteten Wellenzahlen der Absorptionsbanden den Banden des Vergleichsspektrums von Na₅[CuO₂](SO₄) gegenübergestellt. Alle gefundenen Absorptionsbanden des DTA- und Bühlerofenprodukts lassen sich den Schwingungen zuordnen, die in Na₅[CuO₂](SO₄) gefunden werden.

Na ₅ [CuO ₂](SO ₄)	DSC-Produkt	Bühlerofenprodukt	Zuordnung [24, 40]
1114 cm ⁻¹	1160sh, 1122, 1102sh	1116 (breit)	$v_3 = v_{as}(S-O)$
990 cm⁻¹	988	990	$v_1 = v_s(S-O)$
624 (+ sh 660) cm ⁻¹	625 (+ 664sh)	625 (+ 664sh)	$v_4 = \delta_{as}(O-S-O)$

Die Wellenzahlen der gefundenen Absorptionsbanden sind in den drei Messungen nahezu identisch und können den Schwefel-Sauerstoff-Schwingungen der Sulfateinheit zugeordnet werden (vgl. Kap. 3.1.2.). In Folge der Symmetrieerniedrigung sind die Absorptionsbanden verbreitert.

Abschließend können folgende Reaktionen im System Na₂O/Cu₂O/Na₂SO₄ (molares Verhältnis 3 : 1 : 2) angenommen werden:

$3 \text{ Na}_2\text{O} + \text{Cu}_2\text{O} + 2 \beta - \text{Na}_2\text{SO}_4 \rightarrow 3 \text{ Na}_2\text{O} + \text{Cu}_2\text{O} + 2 \gamma - \text{Na}_2\text{SO}_4$	250°C
$3 \text{ Na}_2\text{O} + \text{Cu}_2\text{O} + 2 \text{ Na}_2\text{SO}_4 \rightarrow 2 \text{ Na}\text{CuO} + 2 \text{ Na}_2\text{SO}_4 + 2\text{Na}_2\text{O}$	420°C
$NaCuO + 2 Na_2SO_4 \rightarrow 2 Na_5[CuO_2](SO_4)$	475°C

Die Bildung von Na₆O(SO₄)₂ [46] wird in diesem System nicht beobachtet. Die Verbindung entsteht bei der Reaktion von Na₂O mit Na₂SO₄ bei ca. 500°C. Untersuchungen im binären System Na₂O/Na₂SO₄ [7] belegen als eutektische Zusammensetzung 15Mol% Na₂O und einen Schmelzpunkt von 550°C, gemäß Na₂O + 2 Na₂SO₄ \rightarrow Na₆O(SO₄)₂.

3.3.2 Reaktionen im System Na₂O/Cu₂O/Na₂SO₃

Die Bildung von $Na_{25}[CuO_2]_5(S)(SO_4)_4$ wurde bei der Umsetzung eines Substanzgemenges aus Na_2O , Cu_2O und Na_2SO_3 (molares Verhältnis 3 : 1 : 2) beobachtet. Um die Bildungsprozesse zu untersuchen, wurden DSC- und Bühlerofenmessungen angestellt. Abb. 44 zeigt die Auftragung des DSC-Signals gegen die Temperatur für ein analoges Substanzgemenge.

Abbildung 44: Auftragung des DSC-Signals gegen die Temperatur für drei Aufheiz- und Abkühlzyklen eines Substanzgemenges $Na_2O/Cu_2O/Na_2SO_3$ (3 : 1 : 2)

Im Diagramm sind mehrere thermische Effekte im Temperaturbereich von 350°C bis 450°C zu beobachten. Ab einer Temperatur von 500 °C ist ein starker exothermer Effekt in der ersten Aufheizphase zu erkennen, der in den weiteren Heizzyklen nicht mehr zu beobachten ist. Hier kann die thermische Zersetzung von Na₂SO₃ in Na₂S und Na₂SO₄ vermutet werden [8]. Bei ca. 440/440°C wird in allen weiteren Zyklen reversibles Verhalten beobachtet. Möglicherweise deutet dieser Effekt auf Eigenschaften des Produktes wie z.B. eine Phasenumwandlung hin.

Abb. 45 zeigt die bei verschiedenen Temperaturen aufgenommenen Pulverdiffraktogramme der Reaktionsmischung in Guinier-Simon-Darstellung.

Abbildung 45: Guinier-Simon-Darstellung der *In-situ*-Pulverdiffraktometrie für ein Substanzgemenge $Na_2O/Cu_2O/Na_2SO_3$ (3 : 1 : 2)

Im Temperaturbereich bis 350°C liegen die eingesetzten Edukte nebeneinander vor. Abb. 46 gibt die Gegenüberstellung des gemessenen Diffraktogramms bei ca. 300°C gegen Vergleichsdiffraktogramme der eingesetzten Produkte wieder.

Abbildung 46: Gemessenes Diffraktogramm des Gemenges $Na_2O/Cu_2O/Na_2SO_3$ (3 : 1 : 2) bei ca. 300°C und Vergleichsdiffraktogramme der Edukte Na_2O [38], Na_2SO_3 [49] und Cu_2O [39] (vgl. A XII)

Abbildung 47: Gemessenes Diffraktogramm des Gemenges $Na_2O/Cu_2O/Na_2SO_3$ (3 : 1 : 2) bei ca. 400°C und Vergleichsdiffraktogramme von Na_2O [38] und NaCuO [2] sowie das simulierte Diffraktogramm von " $Na_5[CuO_2](SO_3)$ " (vgl. A XIII)

Im Temperaturbereich 400°C - 500°C kann die Existenz der Verbindung "Na₅[CuO₂](SO₃)", neben NaCuO [2] und Na₂O vermutet werden. Hinweise hierauf ergeben sich nicht nur aus den Pulverdiffraktogrammen der Bühlerofenmessung. Abb. 48 zeigt das Pulverdiffraktogramm eines analogen Reaktionsgemenges. Hierzu wurde ein homogenisiertes Substanzgemisch in einen Silbercontainer überführt, der zum Schutz vor Feuchtigkeit in einen Duranglasmantel eingeschmolzen wurde.

Abbildung 49: Gemessenes Diffraktogramm von $Na_2O/Cu_2O/Na_2SO_3$ (Reaktion im Silbercontainer, $T_{max} = 400^{\circ}C$) und simuliertes Diffraktogramm (Indizierung A XIV)

Im Röhrenofen wurde die Ampulle in einem Schritt auf 250°C, anschließend mit 50°C/d auf 400°C aufgeheizt und 10 Tage bei dieser Temperatur gehalten. Abgekühlt wurde in einem Schritt auf Raumtemperatur.

Es zeigt sich eine vergleichsweise große Übereinstimmung in der Lage der Reflexe. Intensitätsunterschiede sind anzunehmen. Für den Vergleich wurde davon ausgegangen, das Na₅[CuO₂](SO₃) isotyp zum Sulfat Na₅[CuO₂](SO₄), also mit einer fehlgeordneten Sulfitgruppe im Zentrum der Elementarzelle, kristallisiert. Die Verfeinerung der Gitterkonstanten ergibt hier: a = 475,32(5) pm, c = 848,7(1) pm. Eine Liste der indizierten Reflexe (tetragonal, P4/mmm) findet sich im Anhang A IX. Die Reflexe einer weiteren Phase konnten in diesem Diffraktogramm für eine orthorhombische Zelle indiziert werden (Abb. 49, blau markierte Reflexe). Die Dimensionen: a = 1053,5(7) pm, b = 867,1(9) pm, c = 878,5(7) pm lassen die Vermutung zu, daß es sich um eine Variante des Typs Na₅[CuO₂](SO₃) mit ausgeordneten Sulfitgruppen handelt. Hinweise auf das Vorhandensein des Sulfits ergeben sich auch aus dem IR-Spektrum.

Tabelle 33: Wellenzahlen [cm⁻¹] der Absorptionsbanden und deren Zuordnung für das Reaktionsprodukt und Na₂SO₃

Produkt	Zuordnung	Banden Na ₂ SO ₃ [cm ⁻¹]	Zuordnung [24, 40]
966 (stark)	$v_1 = v_s(S-O)$	967	$v_1 = v_s(S-O)$
626 (+ sh662)	$v_2 = \delta_s(O-S-O)$	630	$v_2 = \delta_s(O-S-O)$
502 (schwach)	$v_4 = \delta_{as}(O-S-O)$	494	$v_4 = \delta_{as}(O-S-O)$

Im IR-Spektrum lassen sich die beobachteten Absorptionsbanden den Schwingungen einer Sulfitgruppierung zuordnen. Tab. 33 enthält die Wellenzahlen der beobachteten Banden des Reaktionsprodukts (Ag-Container, 400°C) sowie die einer Vergleichsmessung von Na₂SO₃. Im Unterschied zum Spektrum von Na₂SO₄ wird hier die Absorptionsbande bei 690 cm⁻¹ deutlich intensiver detektiert. Die Absorption bei der Wellenzahl 494 cm⁻¹ wird im Spektrum von Na₂SO₃ sehr intensiv beobachtet, im Spektrum des Reaktionsproduktes verhältnismäßig schwach. Na₂SO₄ zeigt in diesem Bereich keine Bande. Durch Symmetrieerniedrigung spalten die Absorptionsbanden der S-O-Schwingungen auf und werden verbreitert detektiert. Ab einer Reaktionstemperatur von 500°C können nicht mehr alle Reflexe des Diffraktogramms der Bühlerofenmessung für das System Na₂O/Cu₂O/Na₂SO₃ eindeutig zugeordnet werden. Eine Verbindung Na₅[CuO₂](X) (mit X = SO_3^{2-} oder SO_4^{2-}) liegt weiterhin hierbei kann röntgenographisch nicht zwischen zwischen vor (vgl. Abb. 50), "Na₅[CuO₂](SO₃)" oder Na₅[CuO₂](SO₄) unterschieden werden. Einige wenig intensive Reflexe zeigen jedoch eine weitgehende Übereinstimmung mit dem simulierten Diffraktogramm der Verbindung Na₅[NiO₂](S). Somit kann davon ausgegangen werden, daß eine zum Natrium-Oxoniccolat(I)-Sulfid isotype Verbindung "Na5[CuO2](S)" existiert und bei dieser Temperatur bereits die thermische Disproportionierung in Sulfat und Sulfid begonnen hat.

Abbildung 50: Diffraktogramm von $Na_2O/Cu_2O/Na_2SO_3$ bei ca. 500°C und simuliertes Diffraktogramm von $Na_5[CuO_2](SO_4)$ und $Na_5[NiO_2](S)$ (Indizierung A XV)

Das gemessene Diffraktogramm bei ca. 600° C (Abb. 51) zeigt im wesentlichen die Reflexe von Na₅[CuO₂](SO₄) und "Na₅{CuO₂](S)". Weitere Reflexe bei 36,5° sowie 42,9° und 43,9° können nicht zugeordnet werden. Das Vorliegen des Sulfats kann in diesem Fall durch IR-spektroskopische Untersuchungen verifiziert werden.

Abbildung 51: Gemessenes Diffraktogramm des Reaktionsgemenges $Na_2O/Cu_2O/Na_2SO_3$ bei ca. 600°C und simuliertes Diffraktogramm von $Na_5[CuO_2](SO_4)$ und $Na_5[NiO_2](S)$ (vgl. A XVI)

Tab. 4 enthält die Wellenzahlen der gefundenen Absorptionsbanden sowie die Zuordnung zu Schwefel-Sauerstoffschwingungen eines $SO_4^{2^-}$ -Tetraeders. Die IR-Banden zeigen in Lage und Intensität hohe Übereinstimmung. Es kann also davon ausgegangen werden, daß das Endprodukt der Umsetzung Na₅[CuO₂](SO₄) darstellt.

Tabelle 34: Wellenzahlen [cm⁻¹] der Absorptionsbanden und Zuordnung für das DSC-Produkt (Na₂O/Cu₂O/Na₂SO₃)

Na ₅ [CuO ₂](SO ₄)	Na ₂ SO ₄	Zuordnung [24, 40]
1125 cm⁻¹	1116 cm ⁻¹	$v_3 = v_{as}(S-O)$
986 cm⁻¹ (schwach)	990 (schwach)	$v_1 = v_s(S-O)$
624 (+ sh 669) cm⁻¹	617 (+ sh 637) cm⁻¹	$v_4 = \delta_{as}(O-S-O)$

Abschließend können die Reaktionen in einem Temperaturbereich bis ca. 600°C angegeben werden. Analog dem System Na₂O/Cu₂O/Na₂SO₄ bildet sich zunächst NaCuO und in diesem Fall wohl Na₅[CuO₂](SO₃). Die Zersetzung von Sulfit in Sulfid und Sulfat kann bei einer Temperatur oberhalb von 500°C angenommen werden.

In der thermoanalytischen Untersuchung eines Substanzgemenges aus Na₂O und Na₂SO₃ (molares Verhältnis 1 : 2) (Abb. 52) beginnt bei dieser Temperatur ein starker endothermer, reversibler Effekt (1. Aufheizkurve). Für die weiteren Zyklen (B, C) werden reversible Effekte bei 550/525°C und 325/300°C beobachtet.

Abbildung 52: Auftragung des DSC-Signals gegen die Temperatur für das System Na₂O/Na₂SO₃ (1 : 2)

 $Na_6O(SO_4)_2$ [46] kann bei dieser Reaktion als Endprodukt identifiziert werden. Abb. 53 gibt das Pulverdiffraktogramm des Reaktionsproduktes wieder, als weitere Komponente wird Na_2O gefunden. Das IR-Spektrum des DSC-Produkts zeigt die typischen Absorptionsbanden der Sulfatgruppierung. In Tab. 35 sind die beobachteten Wellenzahlen der

Absorptionsbanden und deren Zuordnung wiedergegeben. In dem Spektrum von $Na_6O(SO_4)_2$ [46] werden vergleichbare Banden angegeben.

Tabelle 35: Wellenzahlen [cm⁻¹] der Absorptionsbanden und Zuordnung für das DSC-Produkt (Na₂O/Na₂SO₃)

Produkt	Na ₂ SO ₄	Zuordnung [46]
(sh 1167) 1138 cm ⁻¹	1116 cm⁻¹	$v_3 = v_{as}(S-O)$
982 cm⁻¹ (schwach)	990 (schwach)	$v_1 = v_s(S-O)$
625 cm^{-1}	617 (+ sh 637) cm ⁻¹	$v_{\ell} = \delta_{\ell} (0 - S_{\ell} 0)$

Abbildung 53: Pulverdiffraktogramm des DTA-Produkts Na_2O/Na_2SO_3 und Vergleichsdiffraktogramm von Na_2O sowie simuliertes Diffraktogramm von $Na_6O(SO_4)_2$ (vgl. AXVII)

Im System Na₂O/Cu₂O/Na₂SO₃ ist die Bildung von Na₆O(SO₄)₂ [46] nicht zu beobachten, auch wird in diesem Temperaturbereich ein exothermer Effekt detektiert. Thermische Analysen, sowie *in-situ*-pulverdiffraktometrische Untersuchungen (kombiniert mit IR-spektroskopischen Messungen der Endprodukte) führen zu folgenden Reaktionsgleichungen in dem System Na₂O/Cu₂O/Na₂SO₃ (molares Verhältnis 3:1:2):

$$3 \text{ Na}_{2}\text{O} + \text{Cu}_{2}\text{O} + \text{Na}_{2}\text{SO}_{3} \rightarrow \text{Na}\text{CuO} + \text{Na}_{5}[\text{CuO}_{2}](\text{SO}_{3}) + \text{Na}_{2}\text{O}$$

$$400^{\circ}\text{C}$$

$$\text{Na}_{5}[\text{CuO}_{2}](\text{SO}_{3}) \rightarrow \sqrt[3]{4} \text{ Na}_{5}[\text{CuO}_{2}](\text{SO}_{4}) + \sqrt[1]{4} \text{ Na}_{5}[\text{CuO}_{2}](\text{S})$$

$$500^{\circ}\text{C}$$

Die Bildung von $Na_{25}[CuO_2]_5(S)(SO_4)_4$ kann in diesem Fall noch nicht nachgewiesen werden.

3.4 Na₅[CuO₂](OH)₂

Hydroxide der Oxocuprate(I) sind bisher nicht strukturell untersucht. Na₅[CuO₂](OH)₂ stellt den ersten Vertreter dieser Verbindungsklasse dar. Im System A₂O/Cu₂O mit A = Na-Cs wurde bereits von verschiedenen ternären Oxiden des einwertigen Kupfers berichtet. Außer für ACuO (A = Na-Cs) [2, 50] liegen jedoch keine Strukturdaten über Natrium-Kupfer(I)-Verbindungen vor. Lediglich für A = K, Rb, Cs sind weitere Strukturtypen im kupferreichen Teil des Phasendiagramms, A₃Cu₅O₄ [51], und im alkalireichen Teil A₃[CuO₂] [32, 33, 34] beschrieben worden. Für Na₃[CuO₂] [52] wird angenommen, daß die Verbindung nicht isotyp zu Na₃[AgO₂] [53] oder A₃[CuO₂] [32, 33, 34] kristallisiert. NaCu₂O₂ [54] enthält als gemischtvalente Verbindung Cu⁺ neben Cu²⁺. Von Sauerstoff-atomen wird Kupfer(I) in seinen Verbindungen linear koordiniert, und es liegen komplexe Ionen der Form [CuO₂]³⁻ vor. In der einzig bisher bekannten Phase des Systems NaOH/CuO, Na₂[Cu(OH)₄] [55] wird Cu²⁺ von vier Hydroxidionen quadratisch-planar koordiniert.

In Na₅[CuO₂](OH)₂ liegen Ionen der Form $[CuO_2]^{3-}$ neben OH⁻ vor, damit gehört die Verbindung dem Formeltyp A₅[MX₂]Y₂ an. Bisher wurde lediglich eine Verbindung dieses Formeltyps, K₅[AuO₂]I₂ [56] beschrieben, in der ebenfalls $[AuO_2]^{3-}$ neben I⁻ vorliegen. Bezüglich der Umgebung der Alkaliionen unterscheiden sich die Verbindungen.

3.4.1 Bestimmung der Kristallstruktur von Na₅[CuO₂](OH)₂

Gemäß Röntgenstrukturanalyse kristallisiert $Na_5[CuO_2](OH)_2$ in der orthorhombischen Raumgruppe Pnma. Lageparameter, isotrope sowie anisotrope thermische Verschiebungsparameter und Daten der Röntgenstrukturanalyse sind in Tab. 36, Tab. 37 und Tab. 38 zusammengestellt.

Von Na₅[CuO₂](OH)₂ wurde ein Pulverdiffraktogramm aufgenommen. Abb. 54 zeigt die Gegenüberstellung des gemessenen Diffraktogramms gegen ein nach Einkristalldaten simuliertes. Der Vergleich zeigt eine hohe Übereinstimmung bezüglich Reflexlage und Intensität, als weitere Komponente konnte das Edukt NaOH identifiziert werden. Die Indizierung der Reflexe findet sich im Anhang (A XVIII).

Spezieller Teil

Kristellije en	$Ma_5[CuO_2](OH)_2$
Kristaliklasse	ortnornombisch
Raumgruppe	Pnma (Nr.62)
Gitterkonstanten [pm,°]	
Einkristalldaten	a = 607,4(2)
	b = 891,2(1)
	c = 1201,0(2)
Pulverdaten	a = 607,2(1)
	b = 891,4(2)
	c = 1201,3(3)
Formeleinheiten/Elementarzelle	4
F(000)	471,8
linearer Absorptionskoeffizient	3,84
Kristallform,-farbe	blockartig, transparent, orange
Diffraktometer	IPDS (Fa. Stoe & Cie)
Meßbereich	-8≤h≤8; -10≤k≤11; -13≤l≤15; 2θ _{max} = 56,15
symmetrieunabhängige Reflexe	806 von 5035 gemessenen
nicht berücksichtigte Reflexe	keine
Programme	SHELXS-97 [14], SHELXL-97 [15]
Absorptionskorrektur	numerisch, X-Shape [25], X-Red [26]
Lösungsverfahren	"direkte Methoden"
Parameterverfeinerung	"fullmatrix least squares"
Anzahl freier Parameter	60
R(int.)	0,0307
R1	$0,0223$ für 675 F ₀ > 4 σ (F ₀) ; 0,0298 alle Daten
wR2	0,0641
GooF	0,961

Tabelle 36: Daten der Röntgenstrukturanalyse für Na₅[CuO₂](OH)₂

Abbildung 54: Gegenüberstellung des gemessenen Pulverdiffraktogramms gegen ein simuliertes von Na₅[CuO₂](OH)₂ und ein Vergleichsdiffraktogramm von NaOH [57]

Atom	Lage	Х	у	Z	U _{eq}
Cu1	4c	0,00356(5)	0,75	0,52402(3)	111(1)
Na1	4c	-0,08619(19)	0,75	0,27065(10)	184(3)
Na2	8d	-0,24203(15)	0,49435(9)	0,63883(7)	184(2)
Na3	4c	0,05172(21)	0,75	0,04064(10)	190(3)
Na4	4c	-0,56367(23)	0,75	0,70692(11)	301(4)
01	4c	-0,22591(32)	0,75	0,62110(14)	112(4)
02	4c	0,19362(31)	0,75	0,41037(17)	134(4)
O3	8d	-0,13087(27)	0,45357(20)	0,82832(13)	191(3)
Н	8d	-0,21440(460)	0,48963(250)	0,87120(186)	62(59)

Tabelle 37: Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren [pm²] für Na₅[CuO₂](OH)₂

Der äquivalente Temperaturfaktor hat die Form:

 $U_{eq} = 1/3\{(aa^{*})^{2}[U_{11}+U_{22}+U_{33}+2\cos\alpha(U_{12}+U_{13}+U_{23})]\} [37]$

Tabelle 38: Koeffizienten der	anisotropen	Temperaturfaktoren	[pm ²] für	[•] Na ₅ [CuO ₂](OH) ₂
				~ / _

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu1	100(2)	116(2)	119(2)	0(0)	11(1)	0(0)
Na1	149(6)	226(8)	176(6)	0(0)	-13(5)	0(0)
Na2	236(5)	93(5)	224(4)	14(3)	3(3)	4(3)
Na3	137(5)	294(8)	138(5)	0(0)	27(4)	0(0)
Na4	210(6)	483(11)	209(6)	0(0)	98(5)	0(0)
01	132(9)	93(12)	110(9)	0(0)	22(7)	0(0)
O2	123(9)	120(11)	158(9)	0(0)	40(8)	0(0)
O3	161(7)	239(9)	174(7)	30(6)	7(6)	18(7)

Der anisotrope Temperaturfaktor hat die Form:

 $U_{ij} = \exp[2\pi i (U_{11}h^2 a^{*2} + U_{22}k^2 b^{*2} + U_{33}l^2 c^{*2} + 2U_{12}hka^* b^* + 2U_{13}hla^* c^* + 2U_{23}klb^* c^*)] [16]$

3.4.2 Beschreibung der Kristallstruktur von Na₅[CuO₂](OH)₂

Charakteristische Strukturelemente von Na₅[CuO₂](OH)₂ sind gewinkelte [CuO₂]³⁻-Einheiten, die in Kanälen entlang [010] angeordnet sind. Abb. 55 zeigt eine Projektion der Kristallstruktur, die [CuO₂]³⁻-Einheiten sind nach Art eines "Fischgrätenmusters" wechselseitig gegeneinander verkippt.

Abbildung 55: Projektion der Kristallstruktur von Na₅[CuO₂](OH)₂

Der Bindungswinkel $\not<$ (O-Cu-O) beträgt 170,14(8)° und ist damit kleiner als in analogen komplexen Anionen [MO₂]³⁻ (M = Fe, Co, Ni [1, 2, 58]) mit $\not<$ (O-M-O) = 175°-180°. Die Abstände Cu⁺-O²⁻ sind nicht äquidistant, sondern betragen 178,8(2) pm und 181,7(2) pm, ein Effekt, der auch bei anderen gewinkelten [MO₂]-Komplexen beobachtet wird (vgl. KNa₂[NiO₂] [58]).

Die $[CuO_2]$ -Einheiten liegen isoliert von ihresgleichen vor, in nächster Nachbarschaft befinden sich Natriumatome mit einem Abstand von d(Cu-Na) \geq 285,2(1) pm und vier Hyxdroxidionen, bei denen die Wasserstoffatome in Richtung des Kupferatoms gerichtet sind. d(Cu-HO)= 315 pm und 332 pm (siehe Abb. 56).

Abbildung 56: Umgebung der Kupferatome in Na₅[CuO₂](OH)₂. Die zwischen Wasserstoffatomen eingezeichneten "Bindungen" stellen lediglich die Ausrichtung der Wasserstoffatome dar

In Na₅[CuO₂](OH)₂ werden vier kristallographisch unterscheidbare Natriumatome gefunden. Na1 wird von zwei Sauerstoffatomen der Sorte O2 und vier Hydroxidionen (O3) in Form eines verzerrten Oktaeders koordiniert. Die trans-konfigurierten Oktaeder verknüpfen über Flächen gemäß Na1-O3O3O2-Na1 zu Strängen entlang a (vgl. Abb. 57).

Abbildung 57: Koordinationspolyeder um Natriumatome der Sorte Na1 in Na₅[CuO₂](OH)₂

Für Na2, Na3 und Na4 werden verzerrt tetraedrische Umgebungen gefunden. [Na4O₂(OH)₂]-Polyeder verknüpfen über Ecken (O2) mit ihresgleichen zu Zick-Zack-Strängen entlang [100] (siehe Abb. 58).

Abbildung 58: Umgebung der Natriumatome Na4 in Na₅[CuO₂](OH)₂

[Na2O₂(OH)₂]-Einheiten verknüpfen über Ecken gemäß Na2-O1-Na1 und Na1-O2-Na1 zu Zick-Zack-Strängen, welche über Hydroxidionen zu gewellten Schichten verbrückt werden (Abb. 59).

Abbildung 59: Koordinationspolyeder um Natriumatome der Sorte Na2 und Verknüpfung mit ihresgleichen in Na₅[CuO₂](OH)₂

Im Unterschied zu allen anderen Natriumatomen liegen tetraedrische [Na3O₂(OH)₂]-Einheiten isoliert von ihresgleichen vor (siehe Abb. 60).

Abbildung 60: Umgebung der Natriumatome Na3 in Na₅[CuO₂](OH)₂

Kristallographisch unterschiedliche Natriumatome verknüpfen über Ecken, Kanten und Flächen, vgl. Tab. 39. Für Sauerstoffatome der Sorte O1 und O2 ergibt sich oktaedrische Koordination gemäß O1(Na) $_{5}$ (Cu) bzw. O2(Na) $_{5}$ (Cu). Für O3(OH) ergibt sich eine sechsfache Koordination aus Natriumatomen. Interatomare Abstände lassen sich Tab. 39 entnehmen.

Tabelle 39: Motive der gegenseitigen Zuordnung für Na₅[CuO₂](OH)₂, ECoN, MEFIR und interatomare Abstände in pm

	01	02	O3 (OH)	C.N.	ECoN ^{a)}	MEFIR
Na1		2/2 238,8(2) 255,2(2)	4/2 253,8(2) 259,3(2)	6	5,8	108,9
Na2	1/2 290,0(1)	1/2 227,5(1)	2/2 240,1(2) 242,2(2)	4 (3+1)	3,9	96,5
Na3	1/1 236,6(2)	1/1 225,3(2)	2/1 244,9(2)	4	3,8	98,2
Na4	2/2 228,8(2) 229,6(2)		2/1 270,5(2)	4 (2+2)	3,0	99,1
Cu	1/1 181,7(2)	1/1 178,8(2)		2	2,0	50,22
C.N.	6	6	6			
ECoN ^{b)}	5,9	5,7	5,7			
MEFIR	134,1	133,6	144,7			

Startwerte der Ionenradien: Startwert $r(O^2) = 140$ pm, daraus folgen die über die gewichteten Abstandsmittel ($d_{Kation-O}$) nach dem ECoN-Konzept [20] berechneten Startwerte:

r(Na1) = 106,33pm, r(Na2) = 98,50pm, r(Na3) = 99,56pm, r(Na4) = 100,13pm, r(Cu) = 54,07pm ^{a)} Katio/ΣO²⁻; ^{b)} O²⁻/ΣKation

3.4.3 Untersuchungen zur Bildung und Zersetzung von Na₅[CuO₂](OH)₂

Für Untersuchungen zur Bildung und Zersetzung von $Na_5[CuO_2](OH)_2$ wurden DSC-Untersuchungen durchgeführt. Abb. 61 zeigt die DSC-Messung eines Reaktionsgemenges aus Na_2O , NaOH und Cu_2O (molares Verhältnis: 3 : 4 : 1). Das Gemenge wurde in verschraubbare Silbertiegel (Eigenbau) überführt und folgendem Temperaturprogramm unterworfen: Heizrate 10 K/min, 25 \rightarrow 600°C (10 min), Abkühlen bis 200°C, dieser Zyklus wurde zweimal wiederholt. Im Diagramm ist ein Effekt bei 285/272°C zu beobachten, der dem Phasenübergang α -NaOH $\rightarrow \beta$ -NaOH zuzuordnen ist. Der thermische Effekt bei 310/305°C entspricht dem Schmelzpunkt von NaOH [59], ein dritter Effekt bei 295/289°C entspricht der eutektischen Temperatur des binären Phasendiagramms NaOH/Na₂O mit einer Zusammensetzung von 13 Gew.-% Na₂O [59]. Ein weiterer reversibler Peak wird bei 408/384°C beobachtet.

Abbildung 61: Darstellung der thermoanalytischen Untersuchung an einem Substanzgemenge von $Na_2O/Cu_2O/NaOH$ als Auftragung des DSC-Signals gegen die Temperatur

Zur weiteren Untersuchung wurden *In-situ-*Pulverdiffraktogramme in einem Temperaturbereich von 25°C bis 400°C aufgenommen. Abb. 62 zeigt die bei verschiedenen Temperaturen aufgenommenen Diffraktogramme.

Abbildung 62: Gemessene Pulverdiffraktogramme eines Substanzgemenges von Na₂O/Cu₂O/NaOH bei verschiedenen Temperaturen (vgl. AXIX)

Im Temperaturbereich bis 300°C sind lediglich die Reflexe des Reaktionsgemenges zu beobachten, im Bereich zwischen 300-400°C liegt die Verbindung Na₅[CuO₂](OH)₂ vor. Bei höheren Temperauren erfolgt Zersetzung in NaCuO [2] und Na₂O sowie NaOH. Die Verbindungen NaCuO und Na₂O ließen sich beim Abkühlen unter den Schmelzpunkt von NaOH nicht beobachten, da die NaOH-Reflexe zu intensiv detektiert wurden (Faktor 10). Abschließend kann von folgenden Reaktionen zur Bildung und Zersetzung von Na₅[CuO₂](OH)₂ ausgegangen werden:

$$4 \text{ NaOH}_{(l)} + 3 \text{ Na}_2\text{O}_{(s)} + \text{Cu}_2\text{O}_{(s)} \rightarrow 2 \text{ Na}_5[\text{CuO}_2](\text{OH})_{2 (s)}$$
(300°C)
$$\text{Na}_5[\text{CuO}_2](\text{OH})_{2 (s)} \rightarrow \text{NaCuO}_{(s)} + \text{Na}_2\text{O}_{(s)} + 2 \text{ NaOH}_{(l)}$$
(400°C)

Na₅[CuO₂](OH)₂ wird durch peritektische Reaktion gebildet und ist bis 400°C stabil.

3.4.4 MAPLE-Berechnungen für Na₅[CuO₂](OH)₂

Für Na₅[CuO₂](OH)₂ wurde der Madelunganteil der Gitterenergie berechnet, die Ergebnisse sind in Tab. 40 zusammengefaßt. Die Abweichung des Madelunganteils der Gitterenergie von der Summe der Ausgangskomponenten ist mit 0,95% gering.

Atom		binär	quaternär	$\Delta_{(binär-quaternär)}$
Na1	1x	117,1 ^{a)}	114,1	3
Na2	2x	117,1 ^{a)}	125,0	-15,8
Na3	1x	117,1 ^{a)}	120,1	-4
Na4	1x	117,1 ^{a)}	115,9	1,2
Cu	1x	147,7 ^{b)}	162,5	-14,8
01	1x	465,1 ^{c)}	465,2	-0,1
02	1x	465,1 ^{c)}	453,9	11,2
O3 (OH)	2x	118,3 ^{d)}	118,2	0,1
Σ		1900,0	1918,1	-18,1=0,95%

Tabelle 40: MAPLE-Werte [kcal/mol] für Na₅[CuO₂](OH)₂

^{a)} Mittelwert aus 2MAPLE(Na⁺(NaOH)) + 3 MAPLE(Na⁺(Na₂O))

^{b)} MAPLE($Cu^{+}(Cu_2O)$)

^{c)} Mittelwert aus 0,5 MAPLE(O²⁻(Cu₂O)) + 1,5 MAPLE(O²⁻(Na₂O))

d) MAPLE(OH (NaOH))

Eine vergleichsweise große Abweichung ist für Cu⁺ zu beobachten. Da die $[CuO_2]^{3-}$ -Hantel in Na₅[CuO₂](OH)₂ gewinkelt vorliegt, und die Cu-O-Abstände nicht denjenigen in Cu₂O entsprechen, wurde die Auswirkung von Verzerrung und Abstandsänderung auf die MAPLE-Werte von Cu₂O [39] untersucht. Eine Abstandsänderung d(Cu-O)=175-185 pm in 1 pm-Schritten wird hierbei durch Änderung der Gitterkonstante hervorgerufen. Die

Winkeländerung ∢(O-Cu-O)=160-200° erfolgt durch "Drehung" des zentralen [OCu₄]-Tetraeders (Änderung der Lageparameter von Cu) und gleichzeitiger Änderung der Gitterkonstante (um äquidistante Abstände d(Cu-O) zu erhalten). Beide Operationen wurden nacheinander und simultan ausgeführt und die MAPLE-Werte berechnet (siehe Abb. 63). Hieraus resultiert ein Ausschnitt aus der Energiehyperfläche bezogen auf MAPLE-Werte in Abhängigkeit von geometrischen Änderungen.

Abbildung 63: Projektion der Kristallstruktur von Cu₂O

In Abb. 64 ist die Abhängigkeit des MAPLE-Wertes für Cu⁺ vom Bindungswinkel und vom Abstand dargestellt. Erwartungsgemäß ist die Abhängigkeit des MAPLE-Wertes vom Bindungswinkel sehr gering, da Coulomb-Wechselwirkungen nicht gerichtet (d.h. vom Winkel unabhängig) sind.

Abbildung 64: Auftragung der MAPLE-Werte für Cu⁺ gegen den Winkel Φ und den Abstand d(Cu-O) in Cu₂O

Im Diagramm sind die Änderungen des MAPLE-Wertes bei Änderung des Bindungswinkels für einen gegebenen Abstand durch die Krümmung der Fläche zu erkennen. Die Differenzen betragen hier maximal ca. 3 kcal/mol. Die geringe Änderung des MAPLE-Wertes ist in diesen Fällen auf die zweite Koordinationssphäre zurückzuführen.

Die Abhängigkeit des MAPLE-Wertes vom Abstand d(Cu-O) für einen gegebenen Winkel ist erwartungsgemäß linear (Steigung der Fläche), bei einer Verringerung des Abstandes auf 175 pm steigt der MAPLE-Wert um ca. 10-12 kcal/mol. Diese Werte zeigen sehr deutlich den Grund für häufig beobachtete größere MAPLE-Werte für M⁺ in ternären Oxometallaten [58] (vgl.: NaCuO: d(M-O)=182-183 pm [2], hier d(M-O)=181,7 pm), in der binären Verbindung Cu₂O beträgt der Abstand 184 pm.

3.4.5 IR-Spektrum von Na₅[CuO₂](OH)₂

Ein IR-Spektrum wurde an ausgewählten Einkristallen von Na₅[CuO₂](OH)₂ aufgenommen. Die typischen Banden v(OH) und δ (NaOH) werden bei 3437 cm⁻¹ bzw. 1085 cm⁻¹ beobachtet [41]. Weitere Schwingungen, die einer Wasserstoffbrückenbindung zugeordnet werden können werden nicht gefunden, da die kürzesten interatomaren Abstände für OH⁻ in Na₅[CuO₂](OH)₂ d(Na-OH) = 224-270 pm, d(Cu-HO) = 320 pm und d(O-HO) = 350-390 pm betragen. Die asymmetrische Streckschwingung der [O-Cu-O]³-Einheit wird bei 796 cm⁻¹ beobachtet. Da der Komplex nicht exakt linear, sondern gewinkelt ist, sollte eine symmetrische Streckschwingung zu beobachten sein, welche der Absorptionsbande bei 617 cm^{-1} zugeordnet werden kann. In Vergleichsspektren von K₃[NiO₂] [9] oder KNa₂[NiO₂], mit d(Ni-O) = 177 pm [1, 58] wird diese Schwingung bei 50 cm⁻¹ höher liegenden Wellenzahlen gefunden. Im ersten angeregten Zustand eines linearen [NiO213-Komplexes mit zwei Elektronen im d_z^2 -Orbital und einem vergleichbaren interatomaren Abstand von d(Ni-O) = 180 pm wird aus Absorptionsspektren mit Schwingungsprogression $v_s = 600 \text{ cm}^{-1}$ beobachtet. Dies entspricht dem vorliegenden Fall eines [CuO₂]³⁻-Komplexes mit Cu⁺ in d¹⁰-Konfiguration. Eine ähnliche Verschiebung ergibt sich auch aus dem Vergleich von Cu₂O $(d(Cu-O) = 184 \text{ pm}, v_{as} = 615 \text{ cm}^{-1} [60])$ und der gefundenen symmetrischen Schwingung im zweiten angeregten Zustand für $K_3[NiO_2]$ (d(Ni-O) = 184 pm, $v_s = 535$ cm⁻¹ [60]). Die hieraus berechneten Kraftkonstanten [40] für die Valenzschwingungen (D_{wh}) betragen 4,2 mdyn/Å bei 177 pm und 3,4-3,7 mdyn/ Å bzw. 2,4-2,7 mdyn/ Å bei 180 pm bzw. 184 pm in guter Übereinstimmung mit den experimentellen Daten. Die Valenzschwingungen v(NaO) sind beginnend bei 550 cm⁻¹ in Richtung kleinerer Wellenzahlen zu beobachten. Im FIR-Bereich des Spektrums ist eine breite Absorption bei 250 cm⁻¹ mit einer Schulter bei 130 cm⁻¹ zu beobachten, die der Deformationsschwingung des [CuO2]-Komplexes zugeordnet werden kann.

3.5 Na₁₀[CoO₃]{[CoO₃](OH)₂}

Über alkalimetallreiche Oxocobaltate wurde bereits berichtet. In Verbindungen wie Na₄CoO₄ [61] und Na₅CoO₄ [62] liegt Cobalt in den Oxidationsstufen +4 bzw. +3 vor. Die Übergangsmetallkationen besitzen in diesen Verbindungen tetraedrische Umgebung von Sauerstoffatomen. In NaCoO₂ [63] wird oktaedrische Umgebung beobachtet, ebenso wie in NaCo₂O₄ [63], wobei nicht zwischen kristallographischen Lagen für Co³⁺ und Co⁴⁺ unterschieden werden kann. In niedrigen Oxidationsstufen wird Cobalt von z.B. zwei Sauerstoffatomen koordiniert: So liegt in Na₃CoO₂ [1] mit Co(I) lineare Koordination vor. In alkalimetallreichen Verbindungen des zweiwertigen Cobalts wird eine trigonal-planare Anordnung der Sauerstoffatome um Cobalt gefunden. Carbonatanaloge [CoO₃]-Einheiten bilden in Na₁₀Co₄O₉ [64, 65] eckenverknüpfte tetramere Einheiten; in K₂Na₄[Co₂O₅] [66] werden zweikernige komplexe Anionen der Form [Co2O5]6- beobachtet. Ein Vertreter der "Insel-Cobaltate", in denen die trigonal-planaren Einheiten [CoO₃]⁴⁻ von ihresgleichen isoliert vorliegen, stellt Na₄[CoO₃] [64, 67] dar. Mit Na₁₀[CoO₃]{[CoO₃](OH)₂} wird ein neues "Insel-Cobaltat" beschrieben in dem die Struktur durch den Einbau eines weiteren Anions komplettiert wird. Auffällig in dieser Verbindung ist die Tatsache, daß keine Verknüpfung zwischen Co²⁺ und OH⁻ beobachtet wird. Zudem erfolgt Wasserstoffbrückenbindung an lediglich eine der kristallographisch unterscheidbaren [CoO₃]⁴-Einheiten.

Na₁₀[CoO₃]{[CoO₃](OH)₂} wird bei der Reaktion von Na₂O mit NaOH und CdO in Gegenwart von elementarem Cobalt erhalten. Hierbei kann folgende Reaktionsgleichung zu Grunde gelegt werden, in der CdO als Oxidationsmittel fungiert:

4 Na₂O + 2 CdO + 2 NaOH + 2 Co \rightarrow Na₁₀[CoO₃]{[CoO₃](OH)₂} + 2 Cd

Ein homogenisiertes Substanzgemenge aus Na₂O, CdO und NaOH wurde mit elementarem Cobalt (plättchenförmig) unter Schutzgas in einen Silbercontainer überführt und zum Schutz gegen Feuchtigkeit in einen Kieselglasmantel eingeschmolzen. Im Röhrenofen wurde die Ampulle in einem Schritt auf 250°C, anschließend mit 50°C/d auf 600°C aufgeheizt und 21 Tage bei dieser Temperatur gehalten. Abkühlen erfolgte mit 50°C/d auf 250°C, anschließend in einem Schritt auf Raumtemperatur. Geeignete Einkristalle wurden mit Hilfe eines Polarisationsmikroskops in der Schutzgasbox ausgewählt und in Glaskapillaren überführt. Die Verbindung fällt in plättchenförmigen tiefroten Einkristallen an, die sich an der Luft schnell zu rosafarbenen Reaktionsprodukten zersetzen.

3.5.1 Bestimmung der Kristallstruktur von Na₁₀[CoO₃]{[CoO₃](OH)₂}

Dirkete Methoden und Differenzfouriersynthesen belegen für $Na_{10}[CoO_3]{[CoO_3](OH)_2}$ die orthorhombische Raumgruppe Pnma.

Die Parameter der Röntgenstrukturanalyse sowie Lageparameter und thermische Verschiebungsparameter sind den Tabellen 41, 42 und 43 zu entnehmen.

	Na ₁₀ [CoO ₃]{[CoO ₃](OH) ₂ }
Kristallsystem	orthorhombisch
Raumgruppe	Pnma (Nr. 62)
Gitterkonstanten [pm,°]	
Einkristalldaten	a = 988,5(1)
	b = 1013,9(2)
	c = 1186,3(2)
Pulverdaten	a = 987,5(6)
	b = 1013,3(7)
	c = 1187,0(6)
Formeleinheiten/Elementarzelle	4
F(000)	920
linearer Absorptionskoeffizient	3,176
Kristallform,-farbe	plättchenförmig, rot
Diffraktometer	IPDS (Fa. Stoe & Cie)
Meßbereich	-11≤h≤12; -12≤k≤12; -14≤l≤14; 2θ _{max} = 52°
symmetrieunabhängige Reflexe	1238 von 8928 gemessenen
nicht berücksichtigte Reflexe	keine
Programme	SHELXS-97 [14], SHELXL-97 [15]
Absorptionskorrektur	numerisch, X-Shape [25], X-Red [26]
Lösungsverfahren	"direkte Methoden"
Parameterverfeinerung	"fullmatrix least squares"
Anzahl freier Parameter	103
R(int.)	0,1189
R1	0,0404 für 855 $F_0 > 4\sigma(F_0)$;0,0811 alle Daten
wR2	0,0790
GooF	0,955

Tabelle 41: Daten der Röntgenstrukturanalyse für Na₁₀[CoO₃]{[CoO₃](OH)₂}

Von Na₁₀[CoO₃]{[CoO₃](OH)₂} wurde ein Pulverdiffraktogramm aufgenommen. In Abb. 65 sind gemessenes Diffraktogramm und ein auf den Einkristalldaten basierendes simuliertes Diffraktogramm gegenübergestellt. Neben Na₁₀[CoO₃]{[CoO₃](OH)₂}, Na₂O und NaOH identifiziert werden. Der Reflex mit 100% relativer Intensität wird hier NaOH zugeordnet. Eine vollständige Indizierung der Reflexe, sowie die Zuordnung der Reflexe der Edukte Na₂O [38] und NaOH [57] ist im Anhang A XX zusammengestellt. Die Verwendung von Cu-Kα-Strahlung führt hier durch Absorptionseffekte zu einem vergleichsweise großen Untergrundrauschen.

Abbildung 65: Gegenüberstellung des gemessenen Pulverdiffraktogramms gegen eine Simulation für Na₁₀[CoO₃]{[CoO₃](OH)₂} und Darstellung des Reflexmusters der Edukte NaOH [57] und Na₂O [38]

Tabelle 42: Lageparameter und Koeffizie	nten der äquivalenten	Temperaturfaktoren	[pm ²] für
Na ₁₀ [CoO ₃]{[CoO ₃](OH) ₂ }			

Atom	Lage	Х	у	Z	U _{eq}
Co1	4c	0,5143(1)	0,25	0,29043(9)	120(3)
Co2	4c	0,2938(1)	0,75	0,11368(9)	107(3)
Na1	8d	0,5038(3)	0,5911(2)	0,2825(2)	220(6)
Na2	8d	0,5723(2)	0,4336(2)	0,0876(2)	155(6)
Na3	4c	0,5837(4)	0,75	0,0553(3)	173(8)
Na4	8d	0,1315(3)	0,5618(2)	-0,0126(2)	166(6)
Na5	8d	0,2839(3)	0,4209(2)	0,1808(2)	202(6)
Na6	4c	0,6107(4)	0,25	0,5189(3)	162(8)
01	8d	0,4031(4)	0,5981(4)	0,1051(3)	121(9)
02	8d	0,5620(4)	0,0988(4)	0,3734(3)	110(9)
O3	4c	0,1088(6)	0,75	0,1122(5)	136(13)
O4	4c	0,4407(6)	0,25	0,1485(4)	108(13)
O5	8d	0,2492(4)	0,4192(4)	-0,1314(4)	209(10)
H1	8d	0,343(8)	0,40(1)	-0,168(7)	800

Der äquivalente Temperaturfaktor hat die Form:

 $U_{eq} = 1/3\{(aa^{*})^{2}[U_{11}+U_{22}+U_{33}+2\cos\alpha(U_{12}+U_{13}+U_{23})]\} [37]$

 $Na_{10}[CoO_3]{[CoO_3](OH)_2}$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Co1	100(7)	158(6)	100(5)	0	-23(5)	0
Co2	83(7)	132(6)	107(5)	0	-1(5)	0
Na1	349(16)	128(11)	183(11)	-23(10)	-131(12)	8(13)
Na2	149(14)	152(13)	165(12)	1(10)	16(10)	0(11)
Na3	130(20)	178(19)	207(18)	0	33(16)	0
Na4	173(15)	139(14)	184(12)	-12(10)	26(11)	-10(11)
Na5	110(13)	159(11)	339(14)	34(11)	16(11)	-5(13)
Na6	160(20)	160(19)	164(17)	0	-11(15)	0
01	110(20)	87(19)	170(20)	-48(17)	23(17)	19(17)
02	110(20)	79(19)	140(20)	-17(17)	6(17)	14(17)
O3	70(30)	130(30)	210(30)	0	-30(30)	0
O4	120(40)	90(30)	110(30)	0	0(20)	0
O5	120(20)	240(20)	270(20)	-50(20)	15(18)	10(20)

Tabelle 43: Koeffizienten der anisotropen Temperaturfaktoren [pm²] für

Der anisotrope Temperaturfaktor hat die Form: $U_{ij}=exp[2\pi i(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+2U_{12}hka^*b^*+2U_{13}hla^*c^*+2U_{23}klb^*c^*)]$ [16]

3.5.2 Beschreibung der Kristallstruktur von Na₁₀[CoO₃]{[CoO₃](OH)₂}

Die Röntgenstrukturanalyse belegt für Na₁₀[CoO₃]{[CoO₃](OH)₂} die Raumgruppe Pnma. Abb. 66 gibt eine Projektion der Kristallstruktur mit eingezeichneter Elementarzelle wieder.

Abbildung 66: Perspektivische Darstellung der Kristallstruktur von Na₁₀[CoO₃]{[CoO₃](OH)₂}

Zentrale Strukturelemente sind isolierte, trigonal-planare Einheiten der Form [CoO₃]⁴⁻. Die zwei kristallographisch verschiedenen Co²⁺ weisen nahezu gleiche Abstandstripel zu den umgebenden Sauerstoffatomen auf. Im Falle von [Co(2)O₃]⁴⁻ koordinieren die Hydroxidionen über Wasserstoffbrückenbindungen an Sauerstoffatome der Sorte O1 (d(H-O) = 265 pm). Abstände und Winkel sind in Tab. 44 zusammengefaßt. In der vergleichbaren Verbindung Na₄[CoO₃] [64] mit isolierten $[CoO_3]^{4-}$ -Einheiten liegen ähnliche Abstände und Winkel vor (d(Co-O) = 180,9 pm, 186,9 pm und 192,2 pm; Winkel: 129,9°, 124,8° und 105,0°), die Auslenkung aus der Ebene, die durch Sauerstoffatome definiert wird, beträgt 5,3 pm.

Abbildung 67: [CoO₃]-Einheiten in Na₁₀[CoO₃]{[CoO₃](OH)₂}

Tabelle 44: Interatomare Abstände und Winkel der [CoO₃]-Gruppen in

 $Na_{10}[CoO_3]{[CoO_3](OH)_2}$

d(M-O)	[pm]	∢(O-Co1-O)	[°]	d(M-O)	[pm]	∢(O-Co2-O)	[°]
Co1-O2	188,2(4)	O2-Co1-O2	109,1(2)	Co2-O1	188,4(4)	O1-Co2-O1	109,6(2)
Co1-O4	183,5(5)	O2-Co1-O4	125,4(1)	Co2-O3	182,9(6)	O1-Co2-O3	125,0(1)
d(Co1-(O2	0402))	2,6 pr	n	d(Co2-(C)10301))	7,0 pr	n

Tabelle 45: Motive der gegenseitigen Zuordnung für Na₁₀[CoO₃]{[CoO₃](OH)₂}, ECoN, interatomare Abstände und MEFIR-Werte in pm

	01	02	O3	04	O5 (OH)	C.N.	EcoN ^{a)}	MEFIR
Co1		2/1		1/1		3	3,0	53,2
		188,2(4)		183,5(5)				
Co2	2/1		1/1			3	3,0	53,2
	188,4(4)		182,9(6)					
Na1	1/1	1/1	1/2		1/1	4 (3+1)	3,5	95,3
	232,9(5)	228,1(4)	228,7(5)	4.10	270,3(5)			07.4
Na2	2/2			1/2	1/1	4	4,0	97,4
	232,1(5)			238,3(4)	237,0(5)			
N-O	237,1(4)			4 / 4	0/4	-	4.0	101 F
IN83	2/1				Z/I	5	4,9	104,5
	243,0(5)	0/0	1/0	242,9(6)	254,7(5)		4.0	00.0
INa4			1/2			4	4,0	99,Z
		237, 2(5)	242,0(4)		233,1(5)			
No5	1/1	241,8(4) 1/1		1/0	1/1	1 (2+1)	2 /	06 5
INAS	1/1 222 0/5)	1/1		1/2	1/1 277 5(5)	4 (3+1)	3,4	90,5
Na6	233,0(3)	229,3(3)	1/1	233,0(3)	2/1, 3(3)	5	18	103.2
INdo		235 8(5)	2/3 6(7)		256 9(5)	5	7,0	105,2
C N	6	<u>200,0(0)</u> 6	<u>2+3,0(7)</u> 6	6	<u>230,3(3)</u> 6			
ECoN ^{b)}	60	59	58	59	53			
MEFIR	137.6	136.6	136.7	137.7	145.4			

Startwerte der Ionenradien: Startwert $r(O^{2-}) = 140 \text{ pm}$, daraus folgen die über die gewichteten Abstandsmittel ($d_{Kation-O}$) nach dem ECoN-Konzept [20] berechneten Startwerte: r(Co1) = 55,9 pm, r(Co2) = 55,9 pm, r(Na1) = 96,8 pm, r(Na2) = 98,3 pm,

r(Na3) = 102,8 pm, r(Na4) = 99,4 pm, r(Na5) = 97,6 pm, r(Na6) = 101,3 pm

^{a)} Kation/ ΣO^{2-} ; ^{b)} O^{2-}/Σ Kation

In Na₁₀[CoO₃]{[CoO₃](OH)₂} liegen sechs kristallographisch unterscheidbare Natriumatome vor. Na1 und Na5 besitzen verzerrt tetraedrische Umgebung und verknüpfen über Ecken gemäß [O1O2O5Na5-O4-Na5O1O2O5] bzw. [O1O2O5Na1-O3-Na1O1O2O5] zu dimeren Einheiten (vgl. Abb. 68).

Abbildung 68: Umgebung der Natriumatome Na1 und Na5 in Na₁₀[CoO₃]{[CoO₃](OH)₂}

Für Na3 und Na6 ergeben sich Koordinationen nach Art einer tetragonalen Pyramide. Die Polyeder $[Na3(OX)_5]$ und $[Na6(OX)_5]$ liegen von ihresgleichen isoliert vor (vgl. Abb. 69).

Abbildung 69: Umgebung der Natriumatome Na3 und Na6 in Na₁₀[CoO₃]{[CoO₃](OH)₂}

Natriumatome der Sorte Na2 und Na4 sind tetraedrisch von Sauerstoffatomen koordiniert und verknüpfen über eine Kante zu Dimeren, welche über Ecken zu Strängen verbrücken (vgl. Abb. 70 und 71).

Abbildung 70: Umgebung der Natriumatome Na2 in Na₁₀[CoO₃]{[CoO₃](OH)₂}

Abbildung 71: Koordinationssphäre der Natriumatome Na4 in Na₁₀[CoO₃]{[CoO₃](OH)₂}

Die Sauerstoffatome der $[CoO_3]$ -Einheiten besitzen quasi-oktaedrische Umgebung gemäß $[O(Co)(Na)_5]$, Na6 bzw. Na3 bildet dabei ein Brückenatom zwischen zwei O2 bzw. O1. Sauerstoffatomen der Sorte O1 kann durch Wasserstoffbrückenbindungen eine um eins erhöhte Koordinationszahl zugeschrieben werden (vgl. Abb. 72).

Abbildung 72: Schlegeldiagramme der $[CoO_3]$ -Einheiten (Co1, links) und (Co2, rechts) in $Na_{10}[CoO_3]\{[CoO_3](OH)_2\}$

3.5.3 MAPLE-Berechnung für Na₁₀[CoO₃]{[CoO₃](OH)₂}

Die Ergebnisse der Berechnung des Madelunganteils der Gitterenergie und die Abweichung von der Summe der binären Komponenten sind in Tab. 46 zusammengefaßt. Die Abweichung ist mit –0.5% gering. Die Differenz der Einzelbeiträge MAPLE($Co^{2+}(CoO)$) und MAPLE($Co^{2+}(Na_{10}[CoO_3]{(CO_3](OH)_2})$ betragen 22,8 kcal/mol bzw. –12,1 kcal/mol und sind auf die unterschiedlichen Koordinationssphären von Co^{2+} zurückzuführen. In CoO wird

sechsfache Koordination des Übergangsmetallkations mit O_h-Symmetrie gefunden, die Abstände betragen 212,5 pm. In Na₁₀[CoO₃]{[CoO₃](OH)₂} wird bei Verminderung der Koordinationszahl auf Drei eine Reduzierung des interatomaren Abstandes auf 182,9 pm bis Mittel ist MAPLE(Co²⁺ pm gefunden. Die resultierende Abnahme (im 188,4 $(Na_{10}[CoO_3]{[CoO_3](OH)_2}) = 540,35 \text{ kcal/mol})$ des MAPLE-Wertes für Co²⁺ wird auch bei anderen Verbindungen gefunden, die Co²⁺ in trigonaler Koordination enthalten (vgl. MAPLE($Co^{2+}(Na_4CoO_3) = 537,3 \text{ kcal/mol})$. Die Differenzen der Einzelbeiträge für Co1 und Co2 lassen sich auf die Ausbildung von Wasserstoffbrückenbindungen im Falle des Anions $[Co(2)O_3]^{4-}$ zurückführen. In der weiteren Koordinationssphäre von Co2 befinden sich Hydroxidionen in einem Abstand von 350 pm, für Co1 werden die nächsten Liganden in einem Abstand von 400 pm (O3) gefunden. Die interatomaren Abstände d(H-O) für die Wasserstoffbrücken werden lediglich bei Sauerstoffatomen der trigonal-planaren Koordination um Co2 beobachtet, und es werden typische Abstände gefunden : d(O5-H) = 103(5) pm, d(O1-H) = 262(2) pm und d(O5-O1) 345,6(6) pm (vgl. [68, 69]). Betrachtungen des MAPLE-Wertes für die am Aufbau des Wasserstoffbrückenbindungssytems beteiligten Fragmente Na1₂Na2₂Na3Na4₄Na5₄Na6Co1O2₂O4 Atome (entsprechend der und Na1₄Na2₄Na3Na4₂Na5₂Na6Co2O1₂O3) ergeben einen Wert von ca. -8,7 kcal/mol für den Einfluß der Wasserstoffbrückenbindungen. Die MAPLE-Werte der Natriumund Sauerstoffatome weichen nur geringfügig vom Wert der binären Komponenten ab.

Atom		binär	quaternär	$\Delta_{ ext{(binär-quaternär)}}$
Co1	1x	545,7 ^{a)}	522,9	22,8
Co2	1x	545,7 ^{a)}	557,8	-12,1
Na1	2x	119,4 ^{b)}	135,1	-31,4
Na2	2x	119,4 ^{b)}	121,5	-4,2
Na3	1x	119,4 ^{b)}	129,0	-9,6
Na4	2x	119,4 ^{b)}	121,0	-3,2
Na5	2x	119,4 ^{b)}	122,3	-5,8
Na6	1x	119,4 ^{b)}	128,6	-9,2
01	2x	483,4 ^{c)}	470,0	26,8
02	2x	483,4 ^{c)}	484,2	-1,6
O3	1x	483,4 ^{c)}	473,7	9,7
O4	1x	483,4 ^{c)}	498,1	-14,7
O5(OH)	2x	118,3 ^{d)}	115,9	4,8
∑(binär-quaternä	r)	5422,4	5449,8	
$\overline{\Lambda}$	•		-	-27 7 = -0 5%

Tabelle 46: MAPLE-Werte [kca	I/mol] für Na ₁₀ [CoO ₃]{[CoO ₃](OH) ₂ }
------------------------------	--

^{a)} MAPLE(Co²⁺(CoO))

^{b)} Mittelwert aus 8xMAPLE(Na⁺(Na₂O)) + 2xMAPLE(Na⁺(NaOH))

^{c)} Mittelwert aus 4xMAPLE(O²⁻(Na₂O)) + 2xMAPLE(O²⁻(CoO))

^{d)} MAPLE(OH⁻(NaOH))

3.5.4 IR-Spektrum von Na₁₀[CoO₃]{[CoO₃](OH)₂}

Von Na₁₀[CoO₃]{[CoO₃](OH)₂} wurde ein IR-Spektrum in einem Wellenlängenbereich von 7000 cm⁻¹ bis 400 cm⁻¹ aufgenommen. Zur Aufnahme wurden wenige mg der Substanz mit KBr verrieben und unter einem Druck von 10 t über eine halbe Stunde zur Tablette gepreßt. Im Spektrum werden die typischen Schwingungen v(OH) und δ (NaOH) bei 3430 cm⁻¹ und 1098 cm¹⁻ beobachtet. Durch Wasserstoffbrückenbindungen werden die Banden verbreitert detektiert.

3.6 Na₁₁[CuO₄](SO₄)₃

Alkalimetallhaltige Verbindungen des dreiwertigen Kupfers mit Sauerstoff als Liganden sind bisher kaum untersucht. Erste Verbindungen konnten von Hoppe und Mitarbeitern synthetisiert werden. In NaCuO₂ [70] liegen unendliche Stränge kantenverknüpfter quadratisch-planarer [CuO₄]-Einheiten vor, während in Na₆[O₂(CuO₂)₂] [71] ebenfalls kantenverknüpfte Dimere solcher Parallelepipede gebildet werden. In Beispielen wie Na₂Cu(SO₄)₂(H₂O)₂ [72], NaKCu₂O(SO₄)₃ [73] oder NaCu₂(OH)(SO₄)₂(H₂O) [74] wird Kupfer in der Oxidationsstufe +2 gefunden, mit Koordinationspolyedergeometrien von quadratisch-planar über bisphenoidisch bis oktaedrisch. In allen diesen Verbindungen koordinieren Sulfationen mit ihren Oxidliganden an das Übergangsmetallion. Verbindungen, in denen isolierte komplexe Anionen der Form [CuO₄]⁵⁻ neben anderen isolierten Oxoanionen vorliegen, sind bisher kaum untersucht. Beispiele hierfür sind Ba₄Na[CuO₄](CO₃)₂ [4] oder Ba₄Li[CuO₄](CO₃)₂ [5]. Mit Na₁₁[CuO₄](SO₄)₃ wird eine Verbindung beschrieben, in der quadratisch-planare [Cu(III)O₄]⁵⁻-Einheiten isoliert von ihresgleichen vorliegen und keine Verknüpfung zwischen Sulfation und Übergangsmetall besteht.

Die Synthese von $Na_{11}[CuO_4](SO_4)_3$ gelingt gemäß folgender Reaktionsgleichung, wobei Na_2O_2 als Oxidationsmittel für CuO eingesetzt wird:

4 Na₂O + Na₂O₂ + 2 CuO + 6 Na₂SO₄ \rightarrow 2 Na₁₁[CuO₄](SO₄)₃

Das innig verriebene Gemenge der Ausgangsverbindungen wurde unter Schutzgas in einen Silbercontainer eingebracht und zum Schutz vor Feuchtigkeit in einen Kieselglasmantel eingeschmolzen. Die Ampulle wurde im Röhrenofen in einem Schritt auf 250°C, anschließend mit 50°C/d auf 600°C aufgeheizt und 21 Tage bei dieser Temperatur gehalten. Abgekühlt wurde mit 50°C/d auf 250°C, anschließend in einem Schritt auf Raumtemperatur. Geeignete Einkristalle wurden mit Hilfe eines Polarisationsmikroskops ausgewählt und in Kapillaren überführt.

3.6.1 Bestimmung der Kristallstruktur von Na₁₁[CuO₄](SO₄)₃

Nach Ausweis der Röntgenstrukturanalyse kristallisiert $Na_{11}[CuO_4](SO_4)_3$ in der orthorhombischen Raumgruppe Pnma (siehe Tab. 48). Direkte Methoden und Differenzfouriersynthesen belegen für die Besetzung der Sauerstofflagen der Sulfatgruppe S(3)O₄ eine Statistik. Die Lagen der Sauerstoffatome O32, O33, O34 und O35 sind jeweils zur Hälfte besetzt. Die thermischen Verschiebungsparameter der teilbesetzten Sauerstofflagen können lediglich isotrop verfeinert werden. Diese bei Raumtemperatur beobachtete Fehlordnung bestätigt sich bei tiefen Temperaturen. In Tab. 49 und 50 sind die Lageparameter und Temperaturfaktoren der Raum- und Tieftemperaturmessung wiedergegeben.

T (000 1/	470.14			
lemperatur	293 K 170 K				
Kristallsystem	orthorho	ombisch			
Raumgruppe	Pnma (Nr. 62)			
Gitterkonstanten [pm,°]					
Einkristall	a = 1601,6(1)	a = 1600,5(2)			
	b = 705,78(7)	b = 701,72(8)			
	c = 1490, 2(2)	c = 1480, 1(2)			
Pulver	a = 1596.8(5)				
	b = 703.6(3)				
	c = 1481,9(5)				
Formeleinheiten/	4	1			
Elementarzelle					
F(000)	130	03,6			
linearér	2,04	2,06			
Absorptionskoeffizient	,	,			
Kristallformfarbe	plättchenf	örmia. rot			
Diffraktometer	IPDS (Fa. S	Stoe & Cie)			
Meßbereich	-19 <h<18' -19<l<19'<="" -9<k<8'="" td=""><td>-21<h<21' -19<l<18'<="" -8<k<8'="" td=""></h<21'></td></h<18'>	-21 <h<21' -19<l<18'<="" -8<k<8'="" td=""></h<21'>			
	$2\theta = 56.26^{\circ}$	$2\theta = 56.20^{\circ}$			
symmetrieunabhängige	1017 yon 15322 genessenen	1046 von 14002 gemessenen			
Reflexe	1917 Volt 15522 gemessenen	1940 von 14992 gemessenen			
nicht berücksichtigte	kei	ine			
Reflexe					
Programme	SHELXS-97 [14]	, SHELXL-97 [15]			
Absorptionskorrektur	numerisch, X-Sha	pe [25], X-Red [26]			
Lösungsverfahren	"direkte M	Methoden"			
Parameterverfeinerung	"full matrix le	east squares"			
Anzahl freier Parameter	162	162			
R(int.)	0,0823	0,0937			
R1	$0,0545$ für 1101 $F_0 > 4\sigma(F_0)$	$0,0547$ für 1134 $F_0 > 4\sigma(F_0)$			
	0,0980 alle Daten	0,0984 alle Daten			
wR2	0,1382	0,1326			
GooF	1,035	1,001			

Tabelle 48: Daten der Röntgenstrukturanalyse für Na₁₁[CuO₄](SO₄)₃

Von Na₁₁[CuO₄](SO₄)₃ wurde ein Pulverdiffraktogramm aufgenommen. Abb. 73 zeigt die Gegenüberstellung von gemessenem und anhand von Einkristalldaten simuliertem Diffraktogramm. Die Übereinstimmung ist gut, beide Diffraktogramme zeigen in Intensität und 2Θ-Werten das gleiche Reflexmuster, Fremdreflexe wurden nicht gefunden. Die vollständige Indizierung des Diffraktogramms ist im Anhang A XXI wiedergegeben.

Abbildung 73: Gegenüberstellung des gemessenen Pulverdiffraktogramms gegen die Simulation für $Na_{11}[CuO_4](SO_4)_3$

Tabelle 49: Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren [pm^2] fürNa11[CuO4](SO4)3 bei 293 K (170 K, kursiv)

Atom	Lage	Х	у	Z	U _{eq}
Cu	4c	0,37578(8)	0,25	0,23627(6)	83(2)
		0,37587(7)	0,25	0,23567(6)	48(2)
01	4c	0,4912(4)	0,25	0,2340(4)	114(12)
		0,4919(3)	0,25	0,2334(4)	69(12)
02	4c	0,2603(4)	0,25	0,2400(4)	116(13)
		0,2605(4)	0,25	0,2397(3)	66(12)
O3	4c	0,3789(4)	0,25	0,3623(3)	132(11)
		0,3781(4)	0,25	0,3619(3)	89(10)
O4	4c	0,3733(4)	0,25	0,1096(3)	127(10)
		0,3732(4)	0,25	0,1084(3)	91(10)
S1	4c	0,1323(2)	0,25	0,4852(1)	138(4)
		0,1328(1)	0,25	0,4838(1)	78(4)
011	4c	0,2012(5)	0,25	0,5497(5)	324(18)
		0,2026(4)	0,25	0,5496(4)	193(14)
012	4c	0,0504(5)	0,25	0,5318(4)	302(17)
		0,0516(4)	0,25	0,5309(4)	159(13)

Atom	Lage	X	V	Z	U _{eq}
013	8d	0,1379(3)	0,0804(5)	0,4273(3)	199(10)
		0.1383(3)	0.0787(5)	0,4255(2)	111(8)
O23	4c	0,0542(4)	0,75	0,3027(4)	257(15)
		0,0541(4)	0,75	0,3037(4)	142(13)
S2	4c	0,1265(2)	0,75	0,2430(1)	118(4)
		0,1265(2)	0,75	0,2428(1)	73(4)
O21	4c	0,2037(4)	0,75	0,2979(5)	248(15)
		0,2044(4)	0,75	0,2975(4)	135(12)
022	8d	0,1243(3)	0,5823(6)	0,1842(3)	265(10)
		0,1245(3)	0,5805(6)	0,1834(3)	157(9)
S3	4c	0,3836(2)	0,75	0,4775(1)	201(5)
		0,3847(1)	0,75	0,4775(1)	164(5)
O31	4c	0,3992(5)	0,75	0,3790(4)	340(18)
-)		0,4008(4)	0,75	0,3789(4)	246(16)
O32 ^{a)}	8d	0,3284(8)	0,919(2)	0,498(1)	501(18)
		0,3268(6)	0,918(2)	0,4975(9)	336 (14)
O33 ^{a)}	8d	0,4439(8)	0,894(1)	0,506(1)	501(18)
		0,4404(6)	0,913(2)	0,5074(8)	336(14)
O34 ^{a)}	4c	0,447(1)	0,75	0,544(1)	501(18)
		0,4498(9)	0,75	0,541(1)	336(14)
O35 a)	4c	0,304(1)	0,75	0,501(1)	501(18)
•• •		0,3068(9)	0,75	0,503(1)	336(14)
Na1	4c	0,1189(4)	0,75	0,0119(3)	383(11)
		0,1185(3)	0,75	0,0130(2)	302(10)
Na2	4C	0,1270(3)	0,25	0,2641(2)	253(7)
	<u>.</u>	0,1275(2)	0,25	0,2636(2)	148(6)
Na3	8d	0,4836(2)	0,0273(4)	0,1224(2)	193(6)
Net	0-1	0,4842(1)	0,0266(4)	0,1214(1)	109 (5)
Na4	80 D8	0,2756(2)	0,0215(4)	0,3527(2)	189(6)
NI-7	0-1	0,2760(1)	0,0276(4)	0,3525(1)	114(5)
IN85	80	0,4875(2)	0,03/2(4)	0,3535(2)	204(6)
NeC	0.4	0,4875(1)	0,0366(4)	0,3530(2)	$\frac{118(5)}{200(6)}$
Nao	80	0,2575(2)	0,0378(4)	0,1235(2)	∠UU(0)
No7	4.0	0,2575(1)	0,0387(4)	0,1220(1)	121(0)
ina/	4C	0,1340(3)	0,75	0,4000(2)	3U3(9)
		0,1350(3)	0,75	U,4585(Z)	Iō∠(ŏ)

Forsetzung der Tabelle 49: Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren [pm²] für Na₁₁[CuO₄](SO₄)₃ bei 293 K (170 K, kursiv)

Der äquivalente Temperaturfaktor hat die Form:

 $U_{eq}=1/3\{(aa^{*})^{2}[U_{11}+U_{22}+U_{33}+2cos\alpha(U_{12}+U_{13}+U_{23})]\}$ [37]

^{a)} statistisch zur Hälfte besetzt

Atom	U11	U22	U22	U ₂₃	U_{13}	U12
Cu1	47(5)	97(4)	105(4)	0	1(4)	0
our	39(4)	54(5)	52(4)	0 0	-2(4)	0
01	48(32)	149(34)	146(23)	Õ	-10(21)	Õ
01	39(26)	105(35)	62(21)	0	-7(20)	0
02	109(35)	154(36)	84(26)	Õ	-22(20)	0
01	82(29)	59(37)	58(25)	0	-10(19)	0
03	119(31)	140(26)	137(25)	0	24(23)	0
	92(25)	78(29)	98(24)	0	-10(22)	0
O4	151(31)	150(25)	80(24)	0	16(23)	0
-	110(25)	109(29)	54(24)	0	39(22)	0
S1	197(12)	85(8)	133(10)	0	3(8)	0
•	129(9)	55(10)	51(9)	0	-1(7)	0
011	398(51)	187(36)	389(42)	0	-277(33)	0
•	246(35)	116(37)	218(33)	0	-167(26)	0
012	329(47)	328(42)	250(34)	0	165(29)	0
	189(31)	152(38)	136(28)	0	80(23)	0
O13	287(30)	109(19)	201(21)	-57(14)	-2(18)	4(18)
	179(23)	44(21)	109(19)	-22(13)	-11(15)	-10(16)
S2	111(9)	93(8)	151(9)	0	-2(7)	0
-	76(7)	63(9)	80(8)	0	-2(6)	0
O21	165(41)	197(35)	383(38)	0	-75(28)	0
	121(29)	79(34)	204(29)	0	-11(23)	0
022	217(27)	265(23)	313(25)	-171(17)	31(21)	-33(22)
	131(19)	178(24)	161(21)	-110(15)	27(17)	-23(19)
O23	275(44)	232(36)	264(33)	0	166(28)	0
	145(30)	182(38)	98(26)	0	99(21)	0
S3	280(15)	186(10)	137(11)	0	-77(9)	0
	289(13)	89(Ì2)	114(10)	0	-90(9)	0
O31	479 (55)	278(38)	264 (37)	0	140(30)	0
	369(41)	113(38)	258(35)	0	148(27)	0
Na1	660(34)	263(20)	225(21)	0	41(21)	0
	627(29)	172(22)	108(18)	0	48(18)	0
Na2	74(18)	329(19)	357(19)	0	8(17)	0
	42(13)	186(18)	217(15)	0	23(14)	0
Na3	172(16)	184(14)	223(13)	-65(9)	4(9)	26(10)
	93(12)	118(14)	117(11)	-39(8)	0(8)	15(9)
Na4	168(15)	196(14)	202(13)	43(10)	-19(10)	-54(10)
	119(11)	123(14)	101(11)	19(9)	-19(9)	-43(9)
Na5	162(15)	193(14)	257(13)	95(10)	1(10)	55(10)
	90(11)	120(15)	145(11)	70(9)	4(9)	21(9)
Na6	164(16)	248(17)	188(14)	-81(9)	6(9)	-65(10)
	130(12)	143(16)	89(12)	-48(8)	16(8)	-30(9)
Na7	593(30)	183(17)	140(16)	0	34(18)	0
	387(22)	88(18)	72(14)	0	14(14)	0

 Tabelle 50:
 Koeffizienten der anisotropen Temperaturfaktoren [pm²] für Na₁₁[CuO₄](SO₄)₃ bei
 293 K (170 K, kursiv)

Der anisotrope Temperaturfaktor hat die Form: $U_{ij}=exp[2\pi i(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+2U_{12}hka^{*}b^{*}+2U_{13}hla^{*}c^{*}+2U_{23}klb^{*}c^{*})]$ [16]

3.6.2 Beschreibung der Kristallstruktur von Na₁₁[CuO₄](SO₄)₃

Eine Projektion der Kristallstruktur ist in Abb. 74 wiedergegeben.

Abbildung 74: Projektion der Kristallstruktur von $Na_{11}[CuO_4](SO_4)_3$ (eingezeichnt sind alle Lagen der Sauerstoffatome)

In Na₁₁[CuO₄](SO₄)₃ liegen voneinander isolierte komplexe Anionen der Form [CuO₄]⁵⁻ vor, in denen Kupfer quadratisch-planar von Sauerstoffatomen umgeben ist. Die nahezu exakt planaren Parallelepipede (Winkelsumme \approx 360°) sind senkrecht zur kristallographischen b-Achse ausgerichtet. Bzgl. interatomarer Abstände und Winkel vgl. Tab. 51 und Abb 75. In den Verbindungen BaLi[CuO₄](CO₃)₂ [5] bzw. BaNa[CuO₄](CO₃)₂ [4] liegen mit 184,7 pm bzw. 185,1 pm vergleichbare Abstände vor. Auch hier belegen die Winkel (BaLi[CuO₄](CO₃)₂: 2x 172,4° und 4x 90,2°; BaNa[CuO₄](CO₃)₂: 2x 174,9° und 4x 90,1°) eine nur wenig verzerrte quadratisch-planare Koordination des Kupferatoms.

Tabelle 51: Interatomare Abstände und Winkel der [CuO₄]-Einheit in Na₁₁[CuO₄](SO₄)₃

d(Cu-O)	[pm]	∢(O-Cu-O)	[°]
Cu1-O1	184,9(6)	O1-Cu1-O3	89,5(3)
	185,8(6)		89,9(2)
Cu1-O2	185,0(7)	01-Cu1-O4	90,1(3)
	184,8(6)		90,3(2)
Cu1-O3	187,9(5)	O2-Cu1-O3	89,8(3)
	186,9(5)		89,3(2)
Cu1-O4	188,8(5)	O2-Cu1-O4	90,5(3)
	188,4(5)		90,5(2)
		O1-Cu1-O2	179,3(2)
			179,2(2)
Kursiv		O3-Cu1-O4	179,6(3)
170 K			179,8(3)

Es liegen drei kristallographisch unterscheidbare Schwefelatome vor. S1 und S2 sind nahezu regulär tetraedrisch von Sauerstoffatomen umgeben. Die Winkelabweichung von der idealen Tetraedersymmetrie ist für $[S(1)O_4]$ und $[S(2)O_4]$ gering. Die Abstände zu den umgebenden Sauerstoffatomen schwanken zwischen 146 und 149 pm (siehe Abb. 76 und Tab.52). Vergleichbare Abstände liegen auch in Na₂SO₄ [35] vor.

Abbildung 76: Sulfateinheiten $[S(1)O_4]^{2-}$ (links) und $[S(2)O_4]^{2-}$ in $Na_{11}[CuO_4](SO_4)_3$

d(S-O)	[pm]	∢(O-S-O)	[°]	∢(O-S-O)	[°]
S1-011	146,7(7)	011-S1-012	111,0(4)	O12-S1-O13	109,0(2) (2x)
	148,2(6		110,7(3)		109,0(2) (2x)
S1-O12	148,2(7)	011-S1-013	109,8(3) (2x)	O13-S1-O13	108,5(3)
	147,6(6)		109,8(2)		108,4(3)
S1-013	147,9(4) (2x)				
	148,1(4) (2x)				
S2-023	146,2(7)	O23-S2-O21	109,0(4)	O21-S2-O22	110,4(3) (2x)
	146,9(6)		109,1(3)		110,0(2) (2x)
S2-022	147,3(4) (2x)	O23-S2-O22	110,0(3) (2x)	O22-S2-O22	107,0(4)
	147,9(4) (2x)		110,3(2) (2x)		107,1(3)
S2-021	148,1(7)				
	148,6(6)				

Tabelle 52: Winkel in den Sulfateinheiten S(1) und S(2) in $Na_{11}[CuO_4](SO_4)_3$

Abbildung 77: Fehlgeordnete Sulfateinheit in Na₁₁[CuO₄](SO₄)₃

d(S-O)	[pm]	∢(0-S-0)	[°]	∢(0-S-0)	[°]
S3-O31	148,7(7)	O31-S3-O32	107,5(6) (2x)	O31-S3-O33	100,0(6) (2x)
	148,1(6)		107,2(5) (2x)		100,7(5) (2x)
S3-O32	152(1) (2x)	O31-S3-O34	124,8(8)	O31-S3-O35	115(1)
	153(1) (2x)		122,0(7)		116,9(8)
S3-O34	141(2)	O34-S3-O32	105,8(7) (2x)	O35-S3-O33	123,7(7) (2x)
	140(1)		108,7(6) (2x)		118,6(6) (2x)
S3-O33	147(1) (2x)	O32-S3-O32	104(1)	O33-S3-O33	88(1)
	152(1) (2x)		101,0(8)		97,9(9)
S3-O35	135(2)				
	130(1)				

Tabelle 53: Winkel i	n der fehlgeordneten	Sulfateinheit S(3	3)O₄ ^{2₋} in Na₁	$_{1}[CuO_{4}](SO_{4})_{3}$
			- /	

Spezieller Teil

Die Sauerstoffumgebung des Schwefelatoms S3 weicht deutlich von der idealen Tetraedersymmetrie ab (vgl. Abb. 77). Abstände und Winkel der $[S(3)O_4]$ -Einheit sind Tab. 53 zu entnehmen. Hier wird deutlich, daß eine nahezu tetraedrische Koordination des Schwefelatoms S3 durch paarweise Besetzung der Sauerstoffpositionen O32 und O34 bzw. O33 und O35 vorliegt.

Die Kristallstruktur wird von sieben kristallographisch unterscheidbaren Natriumatomen komplettiert. Je nach Besetzung der Sauerstoffpositionen der fehlgeordneten Sulfatgruppe ist die Koordinationssphäre unterschiedlich. Im Folgenden sind Koordinationen zwischen Natrium- und Sauerstoffatomen, die in beiden Besetzungsfällen gleich sind, grau einaezeichnet. Koordinierende interatomare Abstände zwischen Natriumund Sauerstoffatomen bei Besetzung der Lagen O32 und O34 sind weiß markiert. Sind die Lagen O33 und O35 besetzt, sind die Bindungen schwarz unterlegt. Na1, Na2 und Na7 bilden mit Sauerstoffatomen von ihresgleichen isolierte Polyeder. Die Sauerstoffumgebung von Natriumatomen der Sorte Na1 ist in Abb. 78 dargestellt, die Koordinationspolyeder sind bei Besetzung der Sauerstoffpositionen O32 und O34 bzw. O33 und O35 ähnlich. Es ergibt sich die Koordinationszahl Fünf für Na1, wobei bei Besetzung der Lagen O32 und O34 ein weiterer Abstand d(Na1-O34) als koordinierend gewertet werden kann. Der ECoN-Beitrag von O34 zur effektiven Koordinationszahl von Na1 beträgt 0,2 (0,04 bei Betrachtung der Koordinationssphäre um O34). Na2 wird von sechs Sauerstoffatomen nach Art eines stark verzerrten Oktaeders koordiniert. Die Sauerstoffumgebung um Na7 kann als stark verzerrtes, einfach bekapptes Bisphenoid beschrieben werden, wobei O35 eine weitere Kappe bildet.

Abbildung 78: Koordinationspolyeder um Na1, Na2 und Na7 in Na₁₁[CuO₄](SO₄)₃

Die Koordinationspolyeder um Na3 und Na4 können als quadratische Pyramiden beschrieben werden. In beiden Fällen bilden sich durch Kantenverknüpfung Stränge entlang der kristallographischen b-Achse aus. Das Sauerstoffpolyeder um Na4 wird im Falle der Besetzung der Positionen O32 und O34 von O32 zusätzlich überkappt. Die Koordinationspolyeder sind in Abb. 79 wiedergegeben.

Abbildung 79: Koordinationspolyeder um Na3 und Na4 in $Na_{11}[CuO_4](SO_4)_3$

Abwechselnd ecken- und flächenverknüpfte Koordinationspolyeder (C.N. = 5) um Na5 bilden bei Besetzung von O32 und O34 Stränge aus. Werden O33 und O35 besetzt, ergeben sich Schichten kanten- und eckenverknüpfter Polyeder, wobei die Koordinationszahl auf Sechs erhöht wird (siehe Abb. 80).

Abbildung 80: Umgebung der Natriumatome Na5 und Verknüpufung mit ihresgleichen in $Na_{11}[CuO_4](SO_4)_3$

Sind O32 und O34 besetzt, bilden [Na(6)O₅]-Polyeder durch Ecken- und Kantenverknüpfung Stränge entlang der b-Achse aus. In der zweiten Besetzungsvariante resultiert Flächenverknüpfung der Polyeder gemäß Na6-O35O2O4-Na6 (siehe Abb. 81).

Abbildung 81: Umgebung der Natriumatome Na6 und Verknüpfung mit ihresgleichen in $Na_{11}[CuO_4](SO_4)_3$

Sauerstoffatome des Parallelepipeds um Cu sind in der Struktur verzerrt oktaedrisch von fünf Natriumatomen und einem Kupferatom umgeben. Das erweiterte Schlegeldiagramm der $[CuO_4]^{5}$ -Einheit in Abb. 82 gibt die Koordinationsverhältnisse wieder. Jedes Sauerstoffatom wird von einem terminalen Natriumatom koordiniert. Vier weitere Alkaliatome bilden Brücken zu weiteren Sauerstoffatomen, dabei sind je zwei über der Verbindungslinie O-O positioniert. Die Natriumumgebung der Sulfatsauerstoffatome ist in den Fällen S(1)O₄ und S(2)O₄ ähnlich. O22 und O13 werden von jeweils vier Natriumatomen koordiniert, wobei Na1 bzw. Na2 jeweils ein Paar symmetrieäquivalenter Sauerstoffatome verbrückt. O21 und O23 bzw. O11 und O12 sind jeweils von zwei terminalen Natriumatomen koordiniert. O21 und O23 werden zusätzlich durch Na7 verknüpft (siehe Abb. 83).

Abbildung 82: Schlegeldiagramm der [CuO₄]-Einheit in Na₁₁[CuO₄](SO₄)₃

Abbildung 83: Schlegeldiagramme der Sulfatgruppen S(2) und S(1) in Na₁₁[CuO₄](SO₄)₄

Die Verknüpfungsmuster bei Besetzung der Positionen O32 und O34 bzw. O33 und O35 sind identisch. Das Sauerstoffatom der vollbesetzten Lage O31 besitzt die Koordinationszahl Fünf, gebildet aus einem Schwefelatom und vier Natriumatomen (2xNa4 + 2xNa5). Die O31-O32- bzw. O31-O33-Kanten des Tetraeders werden je nach Besetzung von Na4 bzw. Na5 verbrückt. O32 und O34 bzw. O33 und O35 besitzen hinsichtlich Natrium die Koordinationszahl Drei, wobei O34 bzw. O35 von je drei terminalen Natriumatomen koordiniert werden (vgl. Abb. 84).

Abbildung 84: Schlegeldiagramme der fehlgeordneten Sulfagruppe S(3), Besetzung der Positionen O32 und O34 (links), O33 und O35 (rechts)

3.6.3 MAPLE-Berechnung für Na₁₁[CuO₄](SO₄)₃

Die Ergebnisse der MAPLE-Berechnung sind in Tab. 54 zusammengefaßt. Es wurden die MAPLE-Werte für die Lageparameter der jeweiligen Besetzungsvarianten bei 293 K und 170 K berechnet. Tab. 54 enthält die MAPLE-Werte für die Berechnung der Besetzungsvarianten bei 293 K, bei 170 K ergeben sich analoge Abweichungen des MAPLE-Wertes von der Summe der als Produkte angenommen Komponenten.

Atom		Edukte	quater. 293K	$\Delta_{(Edukte-quaternär)}^{1)}$	quater. 293K	$\Delta_{(Edukte-quaternär)}^{2)}$
			032034		033035	
Cu1	1x	1111,9 ^{ª)}	1196,7	-84,8	1187,9	-76,0
S1	1x	4777,2 ^{b)}	4723,7	53,5	4609,0	168,2
S2	1x	4777,2 ^{b)}	4757,8	19,4	4756,1	21,1
S3	1x	4777,2 ^{b)}	4651,1	126,1	4945,7	-168,5
Na1	1x	142,1 ^{c)}	137,8	4,3	148,9	-6,8
Na2	1x	142,1 ^{c)}	160,9	-18,8	154,4	-12,3
Na3	2x	142,1 ^{c)}	137,6	9,0	131,5	21,2
Na4	2x	142,1 ^{c)}	145,7	-7,2	132,7	18,8
Na5	2x	142,1 ^{c)}	132,4	19,4	173,3	-62,4
Na6	2x	142,1 ^{c)}	153,5	-22,8	131,2	21,8
Na7	1x	142,1 ^{c)}	153,2	-11,1	143,9	-1,8
01	1x	678,3 ^{d)}	478,9	199,4	473,9	204,4
02	1x	678,3 ^{d)}	470,2	208,1	492,0	186,3
O3	1x	678,3 ^{d)}	468,6	209,7	463,3	215,0
O4	1x	678,3 ^{d)}	464,9	213,4	481,5	196,8
011	1x	678,3 ^{d)}	746,7	-68,4	804,1	-125,8
012	1x	678,3 ^{d)}	747,5	-69,2	769,9	-91,6
O13	2x	678,3 ^{d)}	749,8	-143,0	784,0	-211,4
O21	1x	678,3 ^{d)}	741,4	-63,1	759,8	-81,5
022	2x	678,3 ^{d)}	747,7	-138,8	742,3	-128,0
O23	1x	678,3 ^{d)}	744,9	-66,6	743,5	-65,2
O31	1x	678,3 ^{d)}	778,4	-100,1	700,6	-22,3
032/033	2x	678,3 ^{d)}				
034/035	1x	678,3 ^{d)}				
O32	2x		707,0	-57,4		
O33	2x				624,6	107,4
O34	1x		823,7	-145,4		
O35	1x				868,6	-190,3
Σ		27859,4	27793,8	65,6	27942,3	-82,9
				0,2%		-0,3%

¹⁾ $\Delta_{(\text{binär-quaternär})}$ für Besetzung der Positionen O32 und O34 bei 293K ²⁾ $\Delta_{(\text{binär-quaternär})}$ für Besetzung der Positionen O33 und O35 bei 293K ^{a)} MAPLE(Cu³⁺(NaCuO₂)) ^{b)} MAPLE(S⁶⁺(Na₂SO₄)) ^{c)} Mittelwert aus 4x MAPLE(Na⁺(Na₂O)) + 1x MAPLE(Na⁺(NaCuO₂)) + 4x MAPLE(Na⁺(Na₂SO₄)) ^{d)} Mittelwert aus 2x MAPLE($O^{2-}(Na_2O)$) + 2x MAPLE($O^{2-}(NaCuO_2)$) + 12x MAPLE($O^{2-}(Na_2SO_4)$)

In allen Fällen ist der Betrag der Abweichung von der Summe der als Edukte angenommenen Komponenten mit 0,2 bzw. 0,3% gering. Aus Mangel an Strukturdaten einer binären Kupfer(III)-Sauerstoffverbindung, wurde der Madelung-Anteil der Gitterenergie für NaCuO₂ [70] berechnet und die Einzelbeiträge dieser Verbindung verwendet. Für die Bildung von Na₁₁[CuO₄](SO₄)₃ wurde dabei von folgender Reaktion ausgegangen:

$$2 \text{ Na}_2\text{O} + \text{Na}\text{CuO}_2 + 3 \text{ Na}_2\text{SO}_4 \rightarrow \text{Na}_{11}[\text{CuO}_4](\text{SO}_4)_3$$

3.6.4 IR-Spektrum von Na₁₁[CuO₄](SO₄)₃

Von Na₁₁[CuO₄](SO₄)₃ wurde ein IR-Spektrum im Wellenlängenbereich 7000 cm⁻¹ bis 400 cm⁻¹ aufgenommen. Hierzu wurden wenige mg der Substanz mit KBr fein verrieben und über eine halbe Stunde mit 10 t zu einer Tablette gepreßt. In Tab. 55 sind die Wellenzahlen der Absorptionsbanden und die entsprechende Zuordnung zusammengefaßt.

Tabelle 55: Wellenzahlen der Absorbtionsbanden von $Na_{11}[CuO_4](SO_4)_3$ und Na_2SO_4 sowie Zuordnung

Na ₁₁ [CuO ₄](SO ₄) ₃ [cm ⁻¹]	Na₂SO₄ [cm⁻¹]	Zuordnung [24, 40]
1107	1116	$v_3 = v_{as}(S-O)$
	990 (schwach)	$v_1 = v_s(S-O)$
624 (+ sh 574)	617 (+ sh 637)	$v_4 = \delta_{as}(O-S-O)$

Im IR-Spektrum von Na₁₁[CuO₄](SO₄)₃ werden die typischen Absorptionsbanden der Schwingungen eines Sulfattetraeders gefunden (vgl. Tab. 55). Die symmetrische Valenzschwingung v_s(S-O) wird nicht beobachtet. In den drei kristallographisch unterschiedlichen Sulfatgruppen besetzen jeweils das Schwefelatom und zwei Sauerstoffatome Positionen mit der Punktlagensymmetrie m, dementsprechend liegt für die Sulfatgruppierungen die Punktgruppe C_s vor. Auf Grund dieser Symmetrieerniedrigung sind für die Absorptionsbanden Aufspaltungen zu erwarten. Zusätzlich ist auch die symmetrische Deformationsschwingung bei der vorliegenden Punktlagensymmetrie IR-aktiv. Die zugehörige Absorptionsbande wird jedoch nicht beobachtet.

3.7 Verbindungen im System Na₂O/FeO/Fe₂O₃

Über Verbindungen im ternären System Na/Fe/O ist bereits durch *Hoppe* und Mitarbeiter berichtet worden. Ein großer Teil der strukturell aufgeklärten Phasen enthält Eisen in der Oxidationstufe +3. In diesen Verbindungen wird Fe³⁺ in der Regel von vier Sauerstoffatomen in Form eines verzerrten Tetraeders koordiniert, vgl. Na₄Fe₂O₅ [75] oder auch Na₁₄Fe₆O₁₆ [76]. Meist besteht Eckenverknüpfung zu weiteren Eisen-Sauerstoff-Polyedern, vgl. NaFeO₂ [77]. Lediglich Na₅FeO₄ [78] enthält als Eisen(III)-Verbindung voneinander isolierte [FeO₄]-Tetraeder. In Na₄Fe₁₂O₂₀ [79] wird eine Erhöhung der Koordinationszahl auf Sechs und damit Oktaedersymmetrie beobachtet. In Na₃Fe₅O₉ [80] liegen tetraedrisch sowie oktaedrisch koordinierte Eisenatome vor. In der einzigen bisher bekannten alkalimetallhaltigen Eisen(II)-Verbindung mit isolierten Einheiten, Na₄[FeO₃] [81], ergibt sich für [FeO₃]⁴⁻ eine verzerrt trigonal-planare Anordnung. NaFe₂O₃ [82] enthält als gemischtvalente Verbindung Eisen(II) und Eisen(III) in gleichen Anteilen. Aus der Röntgenstrukturanalyse kann in dieser Verbindung nicht zwischen kristallographischen Lagen für Fe²⁺ und Fe³⁺ unterschieden werden. Es liegen oktaedrisch von Sauerstoff koordinierte Eisenatome mit der formalen Ladung +2,5 vor.

Abbildung 85: Ternäres Phasendiagramm des Systems FeO/Fe₂O₃/Na₂O

Die bekannten Verbindungen im System Na₂O/FeO/Fe₂O₃ sind in Abb. 85 in einem ternären Phasendiagramm dargestellt.

Es konnten zwei neue Phasen strukturell charakterisiert werden. Na₁₀[Fe₃O₆][FeO₃] gehört zu den alkalimetallreichen Ferraten, die ausschließlich Eisen in der Oxidationsstufe +2 enthalten. Dabei liegen von ihresgleichen isolierte trigonal-planare Einheiten [FeO₃]⁴⁻ neben Schichten von kanten- und eckenverknüpften [FeO₄]-Tetraedern vor. Na₉[FeO₃][FeO₄] gehört

zu dem neuen Strukturtyp A₉B₂X₇ im System Na₂O/FeO/Fe₂O₃ und enthält voneinander isolierte Einheiten [Fe^{III}O₃]⁴⁻ und [Fe^{III}O₄]⁵⁻. Hierbei lassen sich die verschiedenen kristallographischen Lagen der Eisenatome eindeutig den formalen Ladungen zuordnen. Die Synthese der Oxoferrate gelingt durch Einsatz von Na₂O und CdO als Oxidationsmittel für die Containerwand (Eisen). Schon frühere Untersuchungen zeigen ([83], [84]), daß die Wahl der Reaktionstemperatur wesentlich zur entstehenden Oxidationsstufe des Übergangsmetalls beiträgt.

$2 \text{ Na}_2\text{O} + \text{CdO} + \text{Fe} \rightarrow \text{Na}_4[\text{FeO}_3]$	< 450°C
$5 \text{ Na}_2\text{O} + 4 \text{ CdO} + 4 \text{ Fe} \rightarrow \text{Na}_{10}[\text{Fe}_3\text{O}_6][\text{FeO}_3]$	≤ 450°C (NaOH) ^{Mineralisato}
$9 \text{ Na}_2\text{O} + 5 \text{ CdO} + 4 \text{ Fe} \rightarrow 2 \text{ Na}_9[\text{FeO}_4][\text{FeO}_3]$	≥ 450°C (NaOH) ^{Mineralisato}
5 Na ₂ O + 3 CdO + 2 Fe \rightarrow 2 Na ₅ [FeO ₄]	> 480°C

Unterhalb von 450°C wird Na₄[FeO₃] erhalten. Im Temperaturbereich 450°C gelingt bei Zugabe von NaOH als Mineralisator die Synthese der neuen Alkali-Oxoferrate Na₁₀[Fe₃O₆][FeO₃] mit ausschließlich zweiwertigem Eisen und Na₉[FeO₃][FeO₄] als gemischtvalente Eisen(II, III)-Verbindung. Oberhalb von 480°C bildet sich Na₅[FeO₄] [78]. Im Gegesatz zu den Systemen mit Cobalt und Kupfer wird hier keine Einlagerung von OH⁻ beobachtet.

Na₁₀[Fe₃O₆][FeO₃] und Na₉[FeO₃][FeO₄] wurden aus Reaktionen von Na₂O und NaOH mit CdO in einem Eisenzylinder erhalten. Ein homogenisiertes Substanzgemenge wurde unter Schutzgas in den Eisenzylinder eingebracht und zum Schutz vor Feuchtigkeit in einen Glasmantel eingeschmolzen. Im Röhrenofen wurde der Container in einem Schritt auf 250°C, anschließend mit 50°C/d auf 450°C erhitzt. Abgekühlt wurde mit der gleichen Rate bis 250°C, anschließend in einem Schritt auf Raumtemperatur. Na₁₀[Fe₃O₆][FeO₃] fällt in plättchenförmigen roten Einkristalle an, die sich an der Luft schnell zu dunklen Reaktionsprodukten zersetzen. Na₉[FeO₃][FeO₄] wird in Form von unregelmäßigen orange-roter Einkristalle erhalten die ebensfalls mit Luftfeuchtigkeit zu dunklen Produkten reagieren.

3.7.1 Na₁₀[Fe₃O₆][FeO₃]

3.7.1.1 Bestimmung der Kristallstruktur von Na₁₀[Fe₃O₆][FeO₃]

Die Röntgenstrukturanalyse belegt die Raumgruppe R3m, bzgl. Lagen und äquivalenter, sowie anisotroper thermischer Verschiebungsparameter vgl. Tab. 57 und Tab. 58. Infolge der statistischen Besetzung (21 von 60 Natriumatomen pro Zelle sind statistisch auf 108 (2x36+2x18) Lagen verteilt) der Lagen Na21, Na22, Na23 und Na24 wurden die isotropen Verschiebungsparameter gekoppelt und die entsprechende Besetzung der Lagen ermittelt.

Abbildung 86: Darstellung der reziproken Ebene 0kl von Na₁₀[Fe₃O₆][FeO₃] mit eingezeichneten diffusen Streuanteilen

Aufgrund der Fehlordnung sind in der Röntgenstrukturanalyse diffuse Streuanteile zu beobachten. Diese wurden bei der Strukturlösung nicht berücksichtigt. Abb. 86 gibt die Darstellung des reziproken Gitters und der diffusen Streuanteile wieder. Bzgl. Einzelheiten zur Röntgenstrukturanalyse vgl. Tab. 56.

Tabelle 56: Daten zur Röntgenstrukturanalyse von Na₁₀[Fe₃O₆][FeO₃]

	Na ₄₀ [Fe ₂ O ₆][FeO ₂]
Kristallsystem	hexagonal
Raumaruppe	R3m (Nr. 166)
Gitterkonstanten [pm]	a = 1096.9(1)
	c = 1825.2(4)
Formeleinheiten/Elementarzelle	6
F(000)	1716
linearer Absorptionskoeffizient	4,86
Kristallform,-farbe	plättchenförmig, rot
Diffraktometer	IPDS (Fa. Stoe & Cie)
Meßbereich	-14≤h≤14; -14≤k≤14; -23≤l≤23; 2θ _{max} = 53,97°
symmetrieunabhängige Reflexe	542 von 7527 gemessenen
nicht berücksichtigte Reflexe	keine
Programme	SHELXS-97 [14], SHELXL-97 [15]
Absorptionskorrektur	numerisch, X-Shape [25], X-Red [26]
Lösungsverfahren	"direkte Methoden"
Parameterverfeinerung	"full matrix least squares"
Anzahl freier Parameter	55
R(int.)	0,0745
R1	$0,0472$ für 480 F ₀ > 4 σ (F ₀) ; 0,0564 alle Daten
wR2	0,0984
GooF	1,281
Restelektronendichte [e/Å ³]	Max = 0,65; min = -0,64

Atom	Lage	sof	Х	у	Z	U _{eq}
Fe1	18h	0,5	0,43287(5)	0,56713(5)	0,03372(5)	119(3)
O11	18h	0,5	0,5346(3)	0,4654(3)	0,0751(3)	138(10)
O12	18h	0,5	0,2273(3)	0,4546(6)	0,0616(4)	313(16)
Fe2	6c	0,16670	0	0	0,0889(1)	186(5)
O21	18h	0,5	0,2020(5)	0,1010(3)	0,0965(3)	132(10)
Na1	18f	0,5	0	0,2647(3)	0	266(8)
Na3	3b	0,08330	0,33333	0,66667	0,16667	300(20)
Na4	18h	0,5	0,2089(3)	0,1044(2)	0,2302(2)	183(6)
Na21	18h	0,167(2)	0,1425(5)	0,285(1)	0,1377(5)	117(22) ^b
Na22	18g	0,098(5)	0,632(1)	0,66667	0,16667	117(22) ^b
Na23	36i	0,157(6)	0,608(2)	0,602(2)	0,1826(7)	117(22) ^b
Na24	36i	0,150(6)	0,569(2)	0,527(2)	0,1920(8)	117(22) ^b

Tabelle 57: Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren [pm²] für Na₁₀[Fe₃O₆][FeO₃]

^a Besetzungsfaktor

^b Gekoppelte isotrope Verfeinerung der statistisch besetzten Lagen

Der äquivalente Temperaturfaktor hat die Form:

 $U_{eq} = 1/3\{(aa^{*})^{2}[U_{11}+U_{22}+U_{33}+2\cos\alpha(U_{12}+U_{13}+U_{23})]\} [37]$

Tabelle 58: Lageparameter und Koeffizienten der anisotropen Temperaturfaktoren [pm²] für Na₁₀[Fe₃O₆][FeO₃]

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe1	129(4)	129(4)	107(4)	2(2)	-2(2)	71(4)
O11	206(19)	206(19)	75(21)	16(9)	-16(9)	158(23)
012	99(18)	188(30)	679(45)	251(31)	126(15)	94(15)
Fe2	151(6)	151(6)	255(11)	0	0	76(3)
O21	137(25)	140(17)	116(22)	14(10)	27(20)	68(12)
Na1	268(18)	234(12)	308(16)	52(7)	104(14)	134(9)
Na3	365(32)	365(32)	170(39)	0	0	183(16)
Na4	167(15)	133(10)	259(15)	-5(7)	-9(13)	83(8)

Der anisotrope Temperaturfaktor hat die Form: $U_{ij}=exp[2\pi i(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+2U_{12}hka^*b^*+2U_{13}hla^*c^*+2U_{23}klb^*c^*)]$ [16]

3.7.1.2 Beschreibung der Kristallstruktur von Na₁₀[Fe₃O₆][FeO₃]

 $Na_{10}[Fe_3O_6][FeO_3]$ kristallisiert isotyp zu $Na_{10}Zn_4O_9$ [85]. In der Kristallstruktur liegen isolierte $[FeO_3]^{4-}$ -Einheiten vor. Die Bindungswinkel \ll (O-Fe-O) betragen nahezu 120°, der Abstand d(Fe2-O21) 192,4 pm ist im Vergleich zu $Na_4[FeO_3]$ [82] größer. In $Na_4[FeO_3]$ [82] weichen die Winkel mit 124,8°, 126,1° und 108,3° deutlich voneinander ab, auch sind die Abstände hier unterschiedlich (186 pm bis 189 pm). Die $[FeO_3]^{4-}$ -Einheiten sind nicht planar, das Eisenatom Fe2 ist mit 13,5 pm aus der durch Sauerstoffatome definierten Ebene herausgerückt, in $Na_4[FeO_3]$ [82] beträgt dieser Abstand 9,5 pm.

[FeO₄]⁵-Einheiten verknüpfen über Ecken gemäß Fe1-O12-Fe1 zu dreigliedrigen Ringen, welche über Sauerstoffatome, die nicht in die Ringbindung einbezogen sind, über Kanten zu Schichten verbrücken. Entsprechend der Kantenverknüpfung zweier Tetraeder sind die

Zentralatome infolge elektrostatischer Abstoßung aus dem Zentrum herausgerückt, und es resultiert eine Reduktion des Bindungswinkels auf 94° (vgl. Abb. 87 und Tab. 59).

Abbildung 87: Umgebung der Eisenatome Fe1 und Fe2 mit Sauerstoffatomen in Na₁₀[Fe₃O₆][FeO₃]

Tabelle 59: Winkel (O-Fe-O) [°] und Abstände [pm] in Na₁₀[Fe₃O₆][FeO₃]

∢(O-Fe-O)	[°]	d(Fe-O)	[pm]
O21-Fe2-O21	119,48(4) (3x)	Fe2-O21	192,4(5) (3x)
O11-Fe1-O11	94,0(2) (1x)	Fe1-012	202,1(3) (2x)
O12-Fe1-O12	119,4(4) (1x)	Fe1-011	207,5(5) (1x)
O12-Fe1-O11	108,44(1) (2x)		207,9(5) (1x)
	111,7(2) (2x)		

Abb. 88 zeigt einen Ausschnitt aus der Fe-O-Teilstruktur. Ober- und unterhalb der durch die [Fe₃O₆]-Schichten gebildeten hexagonalen Kanäle sind die [FeO₃]-Einheiten in gestaffelter Konformation platziert.

Abbildung 88: Projektion der Fe/O-Teilstruktur in Na₁₀[Fe₃O₆][FeO₃]

Die Struktur wird durch Natriumatome komplettiert, wobei nur 21 der 60 Natriumlagen statistisch besetzt sind. Es existieren je zwei unterscheidbare Lagen (Na21 und Na22), die jeweils durch eine Split-Position ergänzt werden (Na23 und Na24).

Na21 koordiniert über eine Kante an die isolierten [FeO₃]-Einheiten, Na22 verbrückt die Kanten der [FeO₄]-Tetraeder. Die Koordinationsverhältnisse sind in Abb. 89 dargestellt.

Abbildung 89: Natriumumgebung einer [FeO₃]-Einheit (links) und ein Ausschnitt aus der [Fe₃O₆]-Teilstruktur in Na₁₀[Fe₃O₆][FeO₃]

d(Na-O)	[pm]	d(Na-O)	[pm]
Na21-O12	213(1)	Na24-O12	219(1) (1x)
Na21-O11	221(1)	Na24-O11	221(1) (1x)
Na21-O21	252,6(7) (2x)	Na24-O21	229(1) (1x)
Na21-O21	252,6(7) (2x)	Na23-O21	241(1) (1x)
Na22-011	254,0(4) (2x)	Na23-O11	235(1) (1x)
Na22-O12	265(1) (2x)	Na23-012	233(1) (1x)

Tabelle 60: Ausgewählte Abstände [pm] für Na21 und Na22 in Na₁₀[Fe₃O₆][FeO₃]

Aufgrund der daraus resultierenden, zu kleinen interatomaren Abstände Na21-Na22 können nicht alle Positionen zur Erfüllung der Ladungsneutralität mit jeweils 10,5 Na⁺ pro Elementarzelle besetzt sein. Durch größere abstoßende Wechselwirkung wegen des geringeren Abstandes verschieben sich die Lagen der Natriumatome und es werden die zugehörigen Split-Positionen besetzt.

Natriumatome der Sorte Na1 werden in der Struktur nach Art eines verzerrten Tetraeders $[Na1(O21)_2(O12)_2]$ von Sauerstoffatomen koordiniert. Diese Tetraeder bilden mit ihresgleichen kantenverknüpfte hexamere Einheiten, die in der Fe-O-Teilstruktur einerseits an die Brückensauerstoffatome der zwölfgliedrigen [FeO₄]-Tetraeder-Einheiten binden (O12), andererseits mit den Sauerstoffatomen der [FeO₃]-Einheit verknüpft sind (O21). Abstände und Winkel der [Na1O₄]-Einheiten sind in Tab. 61 zusammengefaßt (siehe Abb. 90).

d(Na1-O)	[pm]	∢(O-Na1-O)	[°]	∢(O-Na1-O)	[°]
Na1-O21	235,9(4) (2x)	O21-Na1-O21	116,5(3)	O21-Na1-O12	100,7(2) (2x)
Na1-O12	257,4(6) (2x)	O12-Na1-O12	142,1(2)		99,0(1) (2x)

Tabelle 61: Interatomare Abstände [pm] und Winkel [°] für Na1 in Na₁₀[Fe₃O₆][FeO₃]

Abbildung 90: Umgebung der Natriumatome Na1 in Na₁₀[Fe₃O₆][FeO₃]

Deutlich längere Abstände Na⁺-O²⁻ werden für Na3 in Na₁₀[Fe₃O₆](FeO₃] mit verzerrt oktaedrischer Umgebung gefunden. Durch ausschließliche Koordination an Sauerstoffatome der Sorte O12 verbindet Na3 die [Fe₃O₆]-Schichten der Struktur. [Na3(O12)₆]-Oktaeder liegen von ihresgleichen isoliert vor (siehe Abb. 91 und Tab. 62).

Abbildung 91: Umgebung der Natriumatome Na3 in $Na_{10}[Fe_3O_6][FeO_3]$

d(Na3-O)	[pm]	∢(O-Na3-O)	[°]	∢(O-Na3-O)	[°]
Na3-O12	278,1(8) (6x)	O12-Na3-O12	180 (2x)	O12-Na3-O12	102,3(2) (6x)
					77,1(2) (6x)

Für Natriumatome der Sorte Na4 wird eine tetraedrische Umgebung von Sauerstoffatomen gefunden. Diese Tetraeder verknüpfen über Ecken gemäß [Na4-O11-Na4] zu Dreiringen. Die terminalen Sauerstoffatome O21 koordinieren an $[FeO_3]^4$ -Einheiten und O11 der $[Fe_3O_6]$ -Teilstruktur (vgl. Abb 92 bzgl. interatomarer Abstände und Winkel vgl. Tab. 63).

Abbildung 92: Umgebung der Natriumatome Na4 in Na₁₀[Fe₃O₆][FeO₃]

Tabelle 63: Interatomare Abstände	[pm] und Winkel	[°] für Na4 in N	Na ₁₀ [Fe ₃ O ₆][FeO ₃]
-----------------------------------	-----------------	------------------	---

d(Na4-O)	[pm]	∢(O-Na4-O)	[°]	∢(O-Na4-O)	[°]
Na4-011	234,8(4) (2x)	O11-Na4-O11	135,4(3)	O21-Na4-O21	94,3(2)
Na4-021	243,3(6)	O11-Na4-O21	107,4(1) (2x)		
	244,1(6)		102,1(1) (2x)		

3.7.1.3 MAPLE-Berechnung an Na₁₀[Fe₃O₆][FeO₃]

Zur Berechnung des Madelunganteils der Gitterenergie wurde eine mögliche statistische Besetzung der Natriumlagen Na21 und Na22 gewählt. Die Splitlagen Na23 und Na24 wurden in der Berechnung nicht berücksichtigt. Abb. 93 zeigt die ausgewählte Besetzung der Lage Na21 mit 9, Na22 mit 12 Natriumatomen.

Tab. 64 gibt Auskunft über die erhaltenen MAPLE-Werte, die Abweichung MAPLE(binärternär) ist mit 0,1% für dieses Modell gering. Alle interatomaren Abstände sind im Bereich typischer d(Fe-O) bzw. d(Na-O)-Abstände, lediglich d(Na21-O12) ist mit 213 pm vergleichsweise kurz. Als Konsequenz hieraus wird für O12 die höchste Abweichung im Einzelbeitrag der Sauerstoffatome zur Gitterenergie beobachtet. In diesem Fall würde jedoch eine Verschiebung von Na21 und damit die Besetzung der Splitposition Na24 zum Abstand von 219 pm führen.

Abbildung 93: Projektion der Kristallstruktur von Na₁₀[Fe₃O₆][FeO₃], eingezeichnet sind neben der Fe/O-Teilstruktur die für die MAPLE-Berechnung verwendete Besetzung der Positionen Na21 (gelb) und Na22 (grün)

Atom		binär	ternär	$\Delta_{ ext{(binär-ternär)}}$
Fe1	3 ×	538,3 ^{a)}	478,8	178,5
Fe2	1×	538,3 ^{a)}	541,7	-3,4
Na1	3 ×	121,7 ^{b)}	118,7	9,0
Na3	0,5×	121,7 ^{b)}	119,0	1,35
Na4	3 ×	121,7 ^{b)}	122,3	-1,8
O11	3 ×	490,5 ^{c)}	513,7	-69,6
O12	3 ×	490,5 ^{c)}	535,7	-135,6
O21	3 ×	490,5 ^{c)}	465,1	76,2
Na21	1,5×	121,7 ^{b)}	167,5	-68,7
Na22	2 ×	121,7 ^{b)}	110,7	22,0
Σ		7784,7	7776,8	7,9 (≡ 0,1%)

Tabelle 64: MAPLE-Werte in kcal/mol für Na₁₀[Fe₃O₆][FeO₃]

^{a)} MAPLE(Fe²⁺(FeO))

^{b)} MAPLE(Na⁺(Na₂O)) ^{c)} Mittelwert aus 5×MAPLE(O²⁻(Na₂O)) + 4×MAPLE(O²⁻(FeO))

 Fe^{2^+} wird in FeO von sechs Sauerstoffatomen oktaedrisch in einem Abstand von 216,3 pm koordiniert. In Na₁₀[Fe₃O₆][FeO₃] liegen in der trigonalen Einheit Abstände von 192,4 pm vor. Der Abstand nimmt also entsprechend der Koordinationszahl ab. Infolgedessen wird auch nur eine geringe Abweichung des MAPLE-Wertes beobachtet.

3.7.2 Na₉[FeO₃][FeO₄]

3.7.2.1 Bestimmung der Kristallstruktur von Na₉[FeO₃][FeO₄]

Nach Ausweis röntgenstrukturanalytischer Daten kristallisiert Na₉[FeO₃][FeO₄] in der azentrischen Raumgruppe Pca2₁. Bzgl. Daten der Röntgenstrukturanalyse, Lageparameter und isotroper sowie anisotroper thermischer Verschiebungsparameter vgl. Tab. 65, Tab. 66 und Tab. 67.

	Na ₉ [FeO ₃][FeO ₄]
Kristallsystem	orthorhombisch
Raumgruppe	Pca2 ₁ (Nr. 29)
Gitterkonstanten [pm,°]	a = 956,2(1)
. · · .	b = 999,1(2)
	c = 1032, 3(1)
Formeleinheiten/Elementarzelle	8
F(000)	827,6
linearer Absorptionskoeffizient	3,18
Kristallform,-farbe	unregelmäßig, orange-rot
Diffraktometer	IPDS (Fa. Stoe & Cie)
Meßbereich	-12≤h≤12; -13≤k≤13; -13≤l≤12; 2θ _{max} = 56°
symmetrieunabhängige Reflexe	2305 von 13850 gemessenen
nicht berücksichtigte Reflexe	keine
Programme	SHELXS-97 [14], SHELXL-97 [15]
Absorptionskorrektur	numerisch, X-Shape [25], X-Red [26]
Lösungsverfahren	"direkte Methoden"
Parameterverfeinerung	"full matrix least squares"
Anzahl freier Parameter	163
R(int.)	0,0848
R1	$0,0335$ für 1906 $F_0 > 4\sigma(F_0)$; 0,0455 alle Daten
wR2	0,0793
GooF	0,945
Flack X Parameter	-0,0384(217)

Tabelle 65: Daten der Röntgenstrukturanalyse für Na₉[FeO₃][FeO₄]

Atom	Lage	Х	У	Z	U_{eq}
Fe1	4a	0,15918(7)	0,89920(7)	0,14679(7)	154(1)
Fe2	4a	0,18582(7)	0,43178(7)	-0,69756(8)	172(1)
Na1	4a	0,3401(2)	0,6090(2)	-0,8703(3)	276(5)
Na2	4a	0,3463(2)	0,0622(2)	0,3259(2)	262(5)
Na3	4a	0,2760(2)	0,7837(2)	0,3883(2)	239(5)
Na4	4a	-0,0886(2)	0,9862(2)	0,0221(2)	214(5)
Na5	4a	0,2118(2)	0,2722(2)	-0,4428(3)	267(5)
Na6	4a	0,0144(2)	0,6608(3)	0,2388(2)	266(5)
Na7	4a	0,5137(2)	0,7579(2)	-1,0110(2)	284(5)
Na8	4a	0,4229(2)	0,5440(2)	-0,5297(2)	286(5)
Na9	4a	0,0656(2)	0,1666(2)	-0,7470(2)	260(5)
01	4a	0,1684(4)	0,0664(3)	0,0627(4)	199(8)
02	4a	0,0828(4)	0,4195(4)	-0,8490(4)	302(9)
O3	4a	0,0921(4)	0,9247(4)	0,3181(4)	226(8)
O4	4a	0,1613(4)	0,5818(4)	-0,5909(4)	244(9)
O5	4a	0,0432(4)	0,7795(4)	0,0470(4)	197(8)
O6	4a	0,3437(3)	0,8351(3)	0,1659(4)	217(8)
07	4a	0,3030(4)	0,2889(4)	-0,6648(4)	276(9)

Tabelle 66: Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren [pm²] für Na₁₀[Fe₃O₆][FeO₃]

Der äquivalente Temperaturfaktor hat die Form:

 $U_{eq} = 1/3\{(aa^{*})^{2}[U_{11}+U_{22}+U_{33}+2\cos\alpha(U_{12}+U_{13}+U_{23})]\} [37]$

Tabelle 67: Lageparameter und Koeffizienten der anisotropen Temperaturfaktoren [pm²] für Na₁₀[Fe₃O₆][FeO₃]

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe1	136(3)	178(3)	147(3)	-1(3)	-5(3)	-1(2)
Fe2	160(3)	182(3)	173(3)	6(3)	14(3)	0(3)
Na1	317(11)	273(11)	238(14)	27(10)	11(10)	1(9)
Na2	227(11)	256(11)	302(15)	-13(10)	-23(9)	5(9)
Na3	217(11)	273(11)	228(12)	41(10)	-31(10)	-13(9)
Na4	184(10)	264(11)	194(10)	9(9)	0(9)	24(8)
Na5	234(11)	270(11)	296(13)	-20(10)	17(11)	28(8)
Na6	221(10)	325(12)	251(13)	71(10)	-3(9)	18(10)
Na7	254(12)	300(12)	297(13)	-26(10)	10(10)	-35(9)
Na8	251(11)	370(13)	238(12)	16(10)	6(9)	13(10)
Na9	222(10)	253(12)	304(13)	-14(10)	-26(9)	8(9)
01	179(18)	217(18)	202(20)	15(15)	1(15)	16(14)
02	338(21)	352(23)	216(21)	22(20)	-67(21)	8(17)
O3	246(17)	253(19)	180(21)	-6(16)	19(17)	48(15)
O4	291(21)	238(20)	204(20)	-50(15)	-27(17)	10(16)
O5	192(18)	242(18)	156(18)	-31(15)	4(15)	-29(14)
O6	158(16)	242(18)	251(22)	40(16)	-17(15)	12(14)
07	210(18)	290(20)	327(25)	38(17)	14(17)	87(16)

Der anisotrope Temperaturfaktor hat die Form: $U_{ij}=exp[2\pi i(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+2U_{12}hka^*b^*+2U_{13}hla^*c^*+2U_{23}klb^*c^*)]$ [16]

3.7.2.2 Beschreibung der Kristallstruktur von Na₉[FeO₃][FeO₄]

Abb. 94 zeigt eine Projektion der Kristallstruktur mit eingezeichneter Elementarzelle und Koordinationssphären der Übergangsmetallkationen in Polyederdarstellung.

Abbildung 94: Perspektivische Darstellung der Kristallstruktur von Na₉[FeO₃][FeO₄]

Eisen(II) ist verzerrt trigonal-planar koordiniert. Die Einheiten $[FeO_3]^{4-}$ liegen von ihresgleichen isoliert vor. Die Auslenkung aus der Ebene, die durch Sauerstoffatome definiert ist, ist mit 1,2 pm gering. In Na₄[FeO₃] [82] ist das Eisenatom mit 9,5 pm deutlich weiter aus der Ebene herausgerückt. Die Winkel sind in Tab. 68 aufgeführt.

Tabelle 68: Winkel de	er [FeO₃]⁴⁻-Grup	ope in				
Na₃[FeO₃][FeO₄]						
∢(O-Fe2-O)	[°]					

*(01020)	LJ
02-Fe2-07	115,2(2)
O4-Fe2-O7	125,9(2)
O4-Fe2-O2	118,8(2)

Abbildung 95: [FeO₃]-Einheit in Na₉[FeO₃][FeO₄]

Die Sauerstoff-Eisen(II)-Abstände sind in Tab. 70 aufgeführt. In Na₄ [FeO₃] liegen mit 186, 187 und 189 pm vergleichbare Abstände vor [82].

Fe³⁺ besitzt tetraedrische Umgebung von Sauerstoffatomen, wobei auch diese Einheiten voneinander isoliert vorliegen.

Tabelle 69: Winkel der [FeO4]-Gruppe in

 $Na_9[FeO_3][FeO_4]$

∢(O-Fe1-O)	[°]	∢(O-Fe1-O)	[°]
01-Fe1-O3	109,0(2)	O3-Fe1-O5	112,7(2)
01-Fe1-05	109,3(2)	O3-Fe1-O6)	105,3(2)
01-Fe1-06	107,8(1)	O5-Fe1-O6	112,5(1)

Abbildung 96: [FeO₄]-Einheit in Na₉[FeO₃][FeO₄]

Die Abweichung von der idealen Tetraedersymmetrie ist gering. Die Winkel sind in Tab. 69 wiedergegeben, bzgl. interatomarer Abstände vgl. Tab. 70. In $Na_5[FeO_4]$ werden ähnliche Abstände zwischen Eisen- und Sauerstoffatomen gefunden (d(Fe-O) = 187-190 pm) [78].

Tabelle 70: Motive der gegenseitigen Zuordnung für Na ₉ [FeO ₃][FeO ₄], ECoN, interatomar	е
Abstände und MEFIR in pm	

	01	02	O3	O4	O5	O6	07	C.N.	ECoN ^{a)}	MEFIR
Fe1	1/1		1/1		1/1	1/1		4	4,0	49,9
	188,5(4)		189,8(4)		192,9(4)	188,7(3)				
Fe2		1/1		1/1			1/1	3	3,0	48,0
		185,2(4)		187,5(4)			184,6(4)			
Na1		1/1		1/1		1/1		3	3,0	94,8
		234,8(5)		229,3(5)		229,0(4)		_		
Na2	1/1		2/2			1/1	1/1	5	3,9	102,0
	244,9(5)		235,5(4)			280,6(4)	230,5(5)	(3+2)		
			279,3(4)							~~ 7
Na3			1/1	1/1	1/1	1/1		4	4,0	98,7
Ned	2/2		236,6(4)	230,5(4)	238,2(4)	244,0(4)		-	4 7	101.0
INa4	2/2		1/1 000 7/E)		1/1	1/1		5	4,7	101,0
	241,9(4)		228,7(5)		243,3(4)	241,0(4)				
No5	201,9(4)	1/1			1/1		2/2	5	12	106.4
INdo	$\frac{1}{1}$	263 0(5)			$\frac{1}{1}$		2/2 2/5 8/5)	(1 ± 1)	4,3	100,4
	233,4(4)	203,9(3)			249,4(4)		243,0(3) 287 7(5)	(4 ' ')		
Na6		1/1	1/1	1/1	1/1		1/1	5	39	99 9
1400		265 7(5)	285 8(5)	238 4(5)	232 4(4)		230 8(5)	(4+1)	0,0	00,0
Na7	1/1	1/1	1/1	1/1	202,1(1)	1/1	1/1	6	58	107 6
11017	241.8(4)	252.5(5)	263.0(5)	256.4(4)		256.3(4)	241.2(5)	Ũ	0,0	,.
Na8	,•(.)	1/1	,.(.)	2/2	1/1		,=(•)	4	3.4	103.3
		224,3(5)		260,7(5)	250,3(4)			(1+3)	-)	, -
		, , ,		267,9(5)	, , ,			· ,		
Na9	1/1	1/1	1/1	,		1/1	1/1	5	4,3	105,1
	241,3(5)	274,2(5)	252,2(4)			230,4(4)	271,4(5)	(3+2)		
C.N.	7	7 (6+1)	8 (7+1)	7	6	7 (6+1)	7 (5+2)			
ECoN ^{b)}	6,8	6,0	6,6	6,4	5,9	6,3	5,9			
MEFIR	139,6	140,5	140,6	140,4	140,5	139,2	138,3			

Startwerte der Ionenradien: Startwert $r(O^{2-}) = 140 \text{ pm}$, daraus folgen die über die gewichteten Abstandsmittel ($d_{Kation-O}$) nach dem ECoN-Konzept [20] berechneten Startwerte:

r(Fe1) = 49,97pm, r(Fe2) = 48,87pm, r(Na1) = 97,39pm, r(Na2) = 102,00pm, r(Na3) = 99,91pm,

r(Na4) = 101,38pm, r(Na5) = 104,78pm, r(Na6) = 100,68pm, r(Na7) = 105,50pm, r(Na8) = 102,81pm, r(Na0) = 102,02pm

^{a)} Kation/ ΣO^{2-} ; ^{b)} O^{2-}/Σ Kation

Die Kristallstruktur von Na₉[FeO₃][FeO₄] beinhaltet neun unterschiedliche Lagen (siehe Abb. 97, 98 und 99), die mit Natriumatomen besetzt sind. Für Na1 wird die vergleichsweise seltene Koordinationszahl Drei beobachtet, und es liegt keine Verknüpfung zu weiteren [Na1O₃]-Einheiten vor. Der Abstand des Natriumatoms von der aus Sauerstoffatomen gebildeten Ebene beträgt 110,7 pm. Ebenso bildet das durch Sauerstoffatome gebildete Polyeder um Na3 voneinander isolierte Einheiten nach Art eines verzerrten Tetraeders.

Abbildung 97: Umgebung der Natriumatome Na1 und Na3 in Na₉[FeO₃][FeO₄]

Na2, Na4 und Na5 weisen gegenüber Sauerstoff die Koordinationszahl Fünf auf. Ihre Polyeder verknüpfen mit ihresgleichen über Ecken zu Strängen. In entsprechender Weise verbrücken Polyeder um Na8 (C.N. = 4) zu Strängen. Die Koordination um Na2 wird treffender mit 3+2 beschrieben, da die Abstände d(Na2-O3) und d(Na2-O6) mit ca. 280 pm wesentlicher länger sind als d(Na2-O3), d(Na2-O1) und d(Na2-O7) mit 230 - 245 pm. Mit einem ECoN-Beitrag von 0,2 ist jedoch von einer koordinierenden Wechselwirkung auszugehen. Gleichfalls ist die Koordination um Na5 mit 4 + 1 zu beschreiben.

Abbildung 98: Umgebung der Natriumatome Na2, Na4, Na5 und Na8 und Verknüpfung mit ihresgleichen in Na₉[FeO₃][FeO₄]

Abbildung 99: Umgebung der Natriumatome Na6, Na7 und Na9 in Na₉[FeO₃][FeO₄]

Na6 und Na9 besitzen die Koordinationszahl Fünf, ihre Sauerstoffpolyeder verknüpfen mit ihresgleichen nicht. Na7 ist verzerrt oktaedrisch von Sauerstoffatomen umgeben, auch diese Polyeder liegen von ihresgleichen isoliert vor. Die Winkel der Na-O-Polyeder sind im Anhang zusammengefaßt (A XXII).

Abbildung 100: Schlegeldiagramme der [FeO₄]- (links) und [FeO₃]-Einheiten (rechts) in Na₉[FeO₃][FeO₄]

Abb. 100 zeigt die Schlegeldiagramme der [FeO₄]- und [FeO₃]-Einheiten mit ihrer Natriumumgebung. Sauerstoffatome des Koordinationspolyeders um Fe1 besitzen die Koordinationszahl Sechs bezüglich Natrium, lediglich O5 besitzt die Koordinationzahl Fünf gegenüber Natrium. Vier Kanten des Tetraeders werden dabei von einem Natriumatom verbrückt. Na3 und Na2 verknüpfen die Sauerstoffatome O3 und O6. In Na₅[FeO₄] wird eine vergleichbare Koordination der Sauerstoffatome gefunden. Die Sauerstoffatome O2, O4 und O7 der [FeO₃]-Gruppe sind von jeweils sechs Natriumatomen umgeben. Es werden zwei Kanten der trigonal-planaren Einheit einfach bzw. zweifach durch Natriumatome verbrückt, vgl. Abb. 100. In der Vergleichsverbindung Na₄[FeO₃] besitzen die Sauerstoffatome die Koordinationszahl Sechs (1x Fe + 5x Na), jedoch wird hier lediglich eine Kante der trigonalen Einheit einfach von Natrium verbrückt.

Entsprechend der Summenformel Na₉[FeO₃][FeO₄] kann die Verbindung als Stapelvariante von Na₄[FeO₃] [73] und Na₅[FeO₄] [69] beschrieben werden. Hierbei wird in Na₉[FeO₃][FeO₄] eine Erhöhung der Koordinationszahlen in der Na/O-Teilstruktur beobachtet. Die Raumerfüllung von Na₄[FeO₃] beträgt 40,8% (ρ_{ber} = 2,7 g/cm³) und die von Na₅[FeO₄] 47,0% $(\rho_{ber.} = 2.8 \text{ g/cm}^3)$, wohingegen für Na₉[FeO₃][FeO₄] 49,3% ($\rho_{ber.} = 2.9 \text{ g/cm}^3$) berechnet wird. Hier scheint die Zusammenführung zweier Strukturen das chemische Äquivalent zu Hochdruck-Synthesen zu sein, bei denen durch Druck eine Erhöhung der Koordinationszahlen und damit eine größere Raumerfüllung bzw. Dichte induziert wird, vgl. die SiO₂-Modifikationen Stishovit und Christobalit ([86], [87]).

3.7.2.3 MAPLE-Berechnung für Na₉[FeO₃][FeO₄]

In Tab. 71 sind die Ergebnisse der MAPLE-Berechnungen zusammengefaßt. Die Abweichung des Madelung-Anteils an der Gitterenergie von der Summe der binären Komponenten ist mit 0,1% gering.

Atom	binär	ternär	Δ (binär-ternär)	Na ₅ [FeO ₄]	Na ₄ [FeO ₃]	
Fe1	1198,7 ^{a)}	1134,1	64,6	1127,9		
Fe2	536,2 ^{b)}	532,6	3,6		534,6	
Na1	121,7 ^{c)}	117,9	3,8			
Na2	121,7 ^{c)}	132,0	-10,3			
Na3	121,7 ^{c)}	119,9	1,8			
Na4	121,7 ^{c)}	130,9	-9,2			
Na5	121,7 ^{c)}	127,1	-5,4			
Na6	121,7 ^{c)}	118,4	3,3			
Na7	121,7 ^{c)}	144,9	-23,2			
Na8	121,7 ^{c)}	114,5	7,2			
Na9	121,7 ^{c)}	127,1	-5,4			
O1	490,3 ^{d)}	493,6	-3,3	510,2 ¹⁾		
02	490,3 ^{d)}	476,7	13,6		479,7 ³⁾	
O3	490,3 ^{d)}	502,9	-12,6	510,2 ¹⁾		
O4	490,3 ^{d)}	490,0	0,3		479,7 ³⁾	
O5	490,3 ^{d)}	511,6	-21,3	510,2 ¹⁾		
O6	490,3 ^{d)}	512,0	-21,7	510,2 ¹⁾		
07	490,3 ^{d)}	468,4	21,9		479,7 ³⁾	
Na (5x)				126,5 ²⁾		
Na (4x)					128,7 ⁴⁾	
Σ	6262,3	6254,6		3801,2	2488,5	
				62	89,7	
Δ			7,7 (=0,1%)	35,7		
^{a)} MAPLE(Fe ³	$^{3+}(Fe_{2}O_{3}))$		¹⁾ Mitt	elwert MAPLE(C)²⁻(Na₅FeO₄))	
^{b)} MAPLE(Fe ²	²⁺ (FeO))		²⁾ Mittelwert MAPLE(Na⁺(Na₅FeO₄))			
^{c)} MAPLE(Na [†]	⁺(Na₂O))		³⁾ Mitt	elwert MAPLE(C)²⁻(Na₄FeO₃))	
	⁴⁾ Mittelwert MAPLE(Na					

Tabelle 71: MAPLE-Werte [kcal/mol] für Na₉[FeO₃][FeO₄]

^{d)} Mittelwert: $4,5xMAPLE(O^{2-}(Na_2O)) + 1xMAPLE(O^{2-}(FeO)) + 1,5xMAPLE(O^{2-}(Fe_2O_3))$

Da Na₉[FeO₃][FeO₄] auch als Stapelvariante der ternären Verbindungen Na₄[FeO₃] [82] und Na₅[FeO₄] [78] beschrieben werden kann, wurde der Coulomb-Anteil der Gitterenergie auch mit der Summe aus den jeweiligen ternären Verbindungen verglichen. In diesem Fall ergibt sich eine Differenz von 35,1 kcal/mol.

4 Zusammenfassung

Ein wesentliches Anliegen dieser Arbeit bestand in der Synthese und Strukturaufklärung neuer kristalliner Verbindungen. Reaktionen zweier Natriumverbindungen Na₂O mit Na₂X (mit X = $CO_3^{2^-}$, $SO_4^{2^-}$), aber auch NaOH mit CdO als Oxidationsmittel für metallisches Cobalt bzw. Nickel wurden untersucht. Im Fall des Übergangsmetalls Kupfer konnte als Edukt das binäre Oxid Cu₂O direkt eingesetzt werden. Zu der Gruppe von Verbindungen, in denen neben Übergangsmetallen in niedrigen Oxidationsstufen weitere komplexe Ionen isoliert vorliegen, gehört Na₅[NiO₂](CO₃) [3]. Als isotype Vertreter dieser Verbindungsklasse konnten Na₅[CoO₂](CO₃) und Na₅[CuO₂](CO₃) dargestellt werden.

 $Na_{5}[CuO_{2}](SO_{4})$. Hier besetzt SO_{4}^{2} die Position im Zentrum der Elementarzelle.

Na₅[CuO₂](SO₄) tetragonal; P4/mmm (Nr. 123); Z = 1 a = 479,14(7) pmc = 851,3(2) pmR1 = 0,0614 wR2 = 0,1946; GooF = 1,190

Für alle diese Verbindungen wurde der Madelung-Anteil der Gitterenergie berechnet. Diese Berechnungen und IR-spektroskopische Untersuchungen sowie Betrachtungen der Differenzfourier-Karten halfen die vorliegenden Fehlordnungen der Oxo-Anionen CO₃²⁻ und

 SO_4^{2-} aufzuklären. Mit **Na**₅[**NiO**₂](**S**) konnte sogar ein Vertreter mit einem großen Anion, S²⁻, im Zentrum der Elementarzelle gefunden werden.

Die Umsetzung eines Substanzgemenges Na₂O/CdO/Na₂SO₄ in einem Nickelzylinder führte zur Bildung dieser Verbindung. Die Bildung von Sulfid kann durch Reduktion von Na₂SO₄ in Gegenwart von metallischem Eisen und CdO angenommen werden

Die Reaktionsabläufe in den Systemen Na₂O/Cu₂O/Na₂SO₄ und Na₂O/Cu₂O/Na₂SO₃ wurden mit Hilfe thermoanalytischer Methoden und *In-situ*-Pulverdiffraktometrie untersucht. In beiden Reaktionen bildet sich zunächst NaCuO. Die Reaktion in Gegenwart von Na₂SO₄ führt bei ca. 500 °C zum Endprodukt Na₅[CuO₂](SO₄). Im Falle des Systems Na₂O/Cu₂O/Na₂SO₃ wird als Endprodukt Na₅[CuO₂](SO₄) gefunden, desweiteren liegt wohl "Na₅[CuO₂(S)" vor. Im Laufe der Reaktion ergaben sich Hinweise auf das Intermediat "Na₅[CuO₂](SO₃)". Zudem wurde bei der Reaktion von Na₂O mit Cu₂O und Na₂SO₃ (Silbercontainer, 600°C) eine Verbindung erhalten, die formal als Additionsverbindung von Na₅[CuO₂](SO₄) und "Na₅[CuO₂](S)" beschrieben werden kann: **Na₂₅[CuO₂]₅(S)(SO₄)**4.

Als neues Oxo-Cuprat konnte $Na_5[CuO_2](OH)_2$ synthetisiert und strukturell aufgeklärt werden. In dieser Verbindung liegen neben nahezu linearen $[CuO_2]^{3-}$ -Komplexen und OH⁻- lonen isoliert voneinander vor. Untersuchungen zur Bildung und Zersetzung wurden

angestellt, eingesetzt wurde ein entsprechendes Substanzgemenge aus Na₂O mit Cu₂O und NaOH. Na₅[CuO₂](OH)₂ zerfällt bei ca. 400°C zu NaCuO, Na₂O und NaOH. Die Bildung ist beim Abkühlen reversibel.

Bei einer vergleichbaren Reaktion wurde ein neues Cobaltat erhalten. Eingesetzt wurden Na₂O und NaOH mit CdO als Oxidationsmittel für metallisches Cobalt in einem Silbercontainer. Na₁₀[CoO₃]{[CoO₃](OH)₂} enthält voneinander isolierte trigonale-planare Einheiten $[CoO_3]^{4-}$ neben komplexen Anionen $\{[CoO_3](OH)\}^{6-}$, in denen Hydroxidionen über Wasserstoffbrückenbindungen die carbonatanalogen $[CoO_3]^{4-}$ -Einheiten koordinieren.

Durch Oxidations von CuO mit Na₂O₂ in Gegenwart von Na₂O uns Na₂SO₄ konnte ein neues Oxocuprat(III) synthetiesiert und strukturell aufgeklärt werden. **Na₁₁[CuO₄](SO₄)**₃ enthält als zentrales Strukturelement quadratisch-planar koordinierte Cu³⁺-Ionen. Auch in dieser Verbindung findet keine Koordination des Kupferatoms an Sauerstoffatome der Oxo-Anionen SO_4^{2-} statt.

In Reaktionen von elementarem Eisen mit Gemengen aus Na₂O, CdO als Oxidationsmittel und NaOH (Na₂O/CdO/NaOH; Eisencontainer) wurden neue Oxoferrate erhalten. NaOH kann hierbei die Funktion eines Mineralisators zugeschrieben werden. Na₁₀[Fe₃O₆][FeO₃] ist die zweite bisher bekannte Eisen(II)-Verbindung im System Na/Fe/O. Die Struktur enthält komplexe Ionen der Form [FeO₃]⁴⁻ neben Schichten aus kanten- und eckenverknüpften [FeO₄]-Tetraedern.

Zusammenfassung

Als weiteres neues Ferrat wird $Na_9[FeO_3][FeO_4]$ beschrieben. Formal entspricht die Summenformel dem allgemeinen Typ $A_9B_2X_7$. In dieser gemischtvalenten Eisen(II, III)-Verbindung werden isolierte komplexe Ionen $[FeO_3]^{4-}$ und $[FeO_4]^{5-}$ gefunden. Die Struktur kann als Stapelvariante der bekannten Verbindungen $Na_4[FeO_3]$ [73] und $Na_5[FeO_4]$ [69] beschrieben werden.

5 Literaturverzeichnis

- [1] W. Burow, J. Birx, F. Bernhardt und R. Hoppe, Z. Anorg. Allg. Chem., 619 (1993) 923.
- [2] R. Hoppe, K. Hestermann, F. Schenk, Z. Anorg. Allg. Chem., 367 (1969) 275.
 - W. Losert, R. Hoppe, Z. Anorg. Allg. Chem., 524 (1985) 7.
 - D. Fischer, W. Carl, H. Glaum, R. Hoppe, Z. Anorg. Allg. Chem., 585 (1990) 75.
- [3] A. Möller, Z. Anorg. Allg. Chem., 627 (2001) im Druck.
- [4] P. D. Vernooy, A. M. Stacy, J. Solid State Chem. 95 (1991) 270.
- [5] G. Tams, Hk Müller-Buschbaum, Z. Naturforsch. 50 (1995) 56.
- [6] E.G. Bunzel, E.J. Kohlmeyer, Z. Anorg. Allg. Chem., 254 (1947) 1.
- [7] E.J. Kohlmeyer, G. Lohrke, Z. Anorg. Allg. Chem., 281 (1955) 54.
- [8] F. Foerster, K. Kubel, Z. Anorg. Allg. Chem., 139 (1924) 261.
- [9] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., 619 (1993) 969.
- [10] F. Bernhardt, R. Hoppe, R.K. Kremer, Z. Anorg. Allg. Chem., 620 (1994) 187.
- [11] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., 618 (1992) 63.
- [12] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., 619 (1993) 540.
- [13] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., 619 (1993) 1807.
- [14] G.M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, Göttingen 1997.
- [15] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Göttingen 1997.
- [16] G. H. Stout, L. H. Jensen, X-Ray Structur Determination, Wiley, New York, 1989.
- [17] STOE & Cie GmbH: Win XPOW Vers. 1.07, Darmstadt 2000.
- [18] R. Hübenthal, MAPLE 4.0, Gießen 1993.
- [19] R. Hoppe, Angew. Chem., 78 (1966) 52; Angew. Chem. Int. Ed., 5 (1966) 95;
 Angew. Chem. In. Ed., 9 (1970) 25; Adv. Fluorine Chem., 6 (1970) 387;
 Izvj. Jugoslav. Centr. Krist., 8 (1973) 21; Crystal Structure and Chemical Bonding in
 Inorganic Chemistry, Amsterdam 1975, S. 127.
- [20] R. Hoppe, Z. Krist. 150 (1979) 23.
- [21] R.D. Shannon, C.T. Prewitt, Acta Cryst., B25 (1969) 925.
 - R.D. Shannon, Acta Cryst., A32 (1976) 751.
- [22] R. Hoppe, Angew. Chem., 82 (1970) 7.
- [23] John R. Ferraro, Low-frequency vibrations of inorganic and coordination compounds, Plenum Press, New York 1971.
- [24] J. Weidlein, U. Müller, K. Dehnike, Schwingungsspektroskopie, 2. überarbeitete Auflage, Georg Thieme Verlag, Stuttgard, New York, **1988**.

- [25] STOE & Cie GmbH, X-SHAPE Vers. 1.02, Crystal Optimisation for Numerical Absorption Correction, Darmstadt 1993.
- [26] STOE & Cie GmbH: X-RED Vers. 1.08a, STOE Data Reduction Program, Darmstadt 1996.
- [27] K. Nedwed, SymApps 5.1, © Bio-Rad Laboratories 1997.
- [28] L.J. Farrugia, An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single-Crytal X-Ray Diffraction Data, © Dept. of Chemistry, University of Glasgow 1997-2000; L.J. Farrugia, J. Appl. Cryst., 32 (1999) 837.
- [29] A.L. Spek, PLATON for Windows, Utrecht University, Netherlands 2000.
- [30] K. Brandenburg, Diamond v. 2.1c, © 1996-1999 Crystal Impact GbR 1999.
- [31] A. Klemenc, G. Ofner, H. Wirth, Z. Anorg. Allg. Chem., 265 (1951) 221.
- [32] W. Carl, R. Hoppe, Z. Anorg. Allg. Chem., 574 (1989) 79.
- [33] R. Hoppe, W. Losert, Z. Anorg. Allg. Chem., 521 (1985) 69.
- [34] W. Losert, R. Hoppe, Z. Anorg. Allg. Chem., 515 (1984) 87.
- [35] F. Schenk, R. Hoppe, Naturwissenschaften, 56 (1969) 414.
 - H. Klassen, R. Hoppe, Z. Anorg. Allg. Chem., 485 (1982) 92
 - B. Darriet, M. Devalette, B. Lecart, Rev. Chim. Min., 14 (1977) 423.
 - G. Wagner, R. Hoppe, Z. Anorg. Allg. Chem., 549 (1987) 26.
- [36] I.P. Swainson, M.T. Dove, M.J. Harris, J. Physics: Condensed Matter, 7 (1995) 4395.
- [37] R.X. Fischer, Z. Krist., 130 (1969) 185.
- [38] E. Zintl, F. Baumbach, Z. Anorg. Allg. Chem., 198 (1931) 88.
- [39] R. Restori, D. Schwarzenbach, Acta Cryst., 42 (1986) 201.
- [40] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Third Edition, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1978.
- [41] G.L. Starova, S.K. Filatov, V.S. Fundamensii, L.P. Vergasova, *Mineralogical Magazine*, 55 (1991) 613.
- [42] B.R. Rao, Acta Cryst., 14 (1961) 321.
- [43] A.G. Nord, Acta Chem. Scand., 27 (1973) 814.
- [44] E. Zintl, A. Harder, B. Dauth, Z. Elektrochem., 40 (1934) 588.
- [45] K. Maroy, Acta Chem. Scand., 25 (1971) 2580.
- [46] M. Jansen, Z. Anorg. Allg. Chem., 627 (2001) 1949.
- [47] B. Gossner, F. Mussgnug, Z. Krist., 69 (1929) 446.
 A.G. Nord, Acta Physicochim. (USSR), 27 (1973) 814.
 H. McMurdie, M. Morris, E. Evans, B. Paretzkin, W. Wong-Ng, Y. Zhang, Powder Diffraction, 1 (1986) 344.
- [48] W. Eysel, H.H. Hoefer, K.L. Keester, T. Hahn, Acta Cryst., B41 (1985) 5.
- [49] W. Zachariasen, H. Buckley, Phys. Rev., 37 (1931) 1295.

L. Larsson, P. Kierkegaard, Acta Pysicochim. (USSR), 23 (1969) 2253.

H. McMurdie, M. Morris, E. Evans, B. Paretzkin, W. Wong-Ng, C. Hubbard, *Powder Diffraction*, **1** (1986) 272.

- [50] K. Hestermann, R. Hoppe, Z. Anorg. Allg. Chem., 360 (1968) 113.
 H. Klassen, R. Hoppe, Z. Anorg. Allg. Chem., 497 (1983) 70.
- [51] H. Klassen, R. Hoppe, Z. Anorg. Allg. Chem., 494 (1982) 20.
 R. Hoppe, W. Losert, Z. Anorg. Allg. Chem., 504 (1983) 60.
 A. Möller, Z. Anorg. Allg. Chem., 627 (2001) im Druck.
- [52] W. Carl, Diplomarbeit Universität Gießen **1985**.
- [53] H. Klassen, R. Hoppe, Z. Anorg. Allg. Chem., 485 (1982) 92.
- [54] G. Tams, H.-K. Müller-Buschbaum, J. Alloys Compd., 189 (1992) 241.
- [55] A. Riou, Y. Cudennec, Y. Gerault, Acta Crystallogr., C45 (1989) 374.
- [56] R. Hoppe, J. Schneider, J. Less-Common Metals, 137 (1988) 85.
- [57] H. Stehr, Z. Krist., 125 (167) 332.
- [58] A. Möller, M.A. Hitchman, E. Krausz, R. Hoppe, Inorg. Chem., 34 (1995) 2684.
- [59] R. Bouaziz, G. Papin, A.P. Rollet, C. R. Seances Acad. Sci., C262 (1966) 1051.
- [60] N.T. McDevitt, W.L. Baun, Spectrochim. Acta, 20 (1964) 799.
- [61] M. Jansen, Z. Anorg. Allg. Chem., 417 (1975) 35.
- [62] W. Burow, R. Hoppe, Naturwissenschaften, 67 (1980) 192.
- [63] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem., 408 (1974) 104.
- [64] M.G. Barker, G.A. Fairhall, J. Chem. Res. (1979) 371.
 - A. Möller, Chem Mat., 10 (1998) 3196.
- [65] W. Burow, R. Hoppe, Angew. Chem., 91 (1979) 71.
 - W. Burow, R. Hoppe, Z. Anorg. Allg. Chem., 467 (1980) 158.
- [66] R. Hoppe, J. Birx, Z. Anorg. Allg. Chem., 557 (1988) 171.
- [67] W. Burow, R.Hoppe, Z. Anorg. Allg. Chem., 459 (1979) 59.
 - W. Burow, R.Hoppe, Angew. Chem., 91 (1979) 577.
- [68] H. Jacobs, U. Metzner, Z. Anorg. Allg. Chem., 597 (1991) 97.
- [69] H. Jacobs, A. Schardey, Z. Anorg. Allg. Chem., 565 (1988) 34.
- [70] K. Hestermann, R. Hoppe, Z. Anorg. Allg. Chem., 367 (1969) 261.
- [71] N. Bukovec, I. Leban, R. Hoppe, Z. Anorg. Allg. Chem., 563 (1988) 79.
- [72] F.C. Hawthorne, R.B. Ferguson, Acta Crystallogr., 31 (1975) 1753.
 - R. B. Rao, Acta Crystallogr., 14 (1961) 738.
 - B. Dahlman, Arkiv foer Mineralogi och Geologie, 1 (1952) 339.
- [73] F. Scordari, F. Stasi, Neues Jahrb. Mineral., Abh., Issue 3 161 (1990) 241.
- [74] G. Giester, J. Zemann, Z. Krist., 179 (1987) 431.
- [75] G. Brachtel, R. Hoppe, Naturwissenschaften, 64 (1977) 271.

[76] G. Brachtel, R. Hoppe, Angew. Chem., 89 (1977) 45.

- [77] I.E. Grey, R.J. Hill, A.W. Hewart, Z. Krist., 193 (1990) 51.
- [78] G. Brachtel, R. Hoppe, Z. Anorg. Allg. Chem., 446 (1978) 77.
- [79] W.G. Mumme, J. Solid State Chem., 105 (1993) 528.
- [80] C. Gomers, C.J.M. Rooymans, R.A.G. de Graaf, Acta Crystallogr., 22 (1967) 766.
- [81] H. Rieck, R. Hoppe, Naturwissenschaften, 61 (1974) 126; Z. Anorg. Allg. Chem.,
 437 (1977) 95.

A. Möller, R. Hoppe, Z. Anorg. Allg. Chem., 620 (1994) 581.

- [82] A.M. El Balkhi, M. Zanne, C. Gleitzer, A. Courtois, J. Solid State Chem., 18 (1976) 293.
 L.A. dePicciotto, M.M. Thackeray, Mater. Res. Bull., 21 (1986) 583.
 - C.R. Hebd, Seances Acad. Sci., C285 (1977) 129.
- [83] A. Möller, persönliche Mitteilung.
- [84] A. Möller, Z. Anorg. Allg. Chem., 627 (2001) 2537.
- [85] D. Trischek, M. Jansen, Z. Anorg. Allg. Chem., 622 (1996) 245.
- [86] R.J. Hill, M.D. Newton, G.V. Gibbs, J. Solid State Chem., 47 (1983) 185.
- [87] W. Dollase, Z. Krist., 121 (1965) 364.

6 Anhang

Nr.	2θ _{beob.} [°]	h	k	I	2θ _{ber.} [°]	2θ _{beob.} -2θ _{ber.} [°] rel. Int. [%]	20 (Na ₂ O)	h	k		rel. Int. [%]
1	19,062	1	0	0	19,062	-0,0007	58,5					
2	21,889	1	0	1	21,912	-0,0225	100,0					
3	27,856						26,5	27,7694	1	1	1	33
4	28,882	1	0	2	28,891	-0,0092	22,6					
5	32,257						17,6	32,1727	2	0	0	41
6	34,848	1	1	2	34,845	0,0034	98,6					
7	38,703	2	0	0	38,679	0,0237	90,3					
8	42,832	1	1	3	42,805	0,0267	16,3					
9	43,522	2	1	0	43,463	0,0592	29,1					
10	43,804	0	0	4	43,822	-0,0184	37,3					
11	44,848	2	1	1	44,894	-0,0453	20,8					
12	46,287						54,8	46,1344	2	2	0	100
13	48,182	1	0	4	48,191	-0,0087	19,9					
14	48,975	2	1	2	48,990	-0,0148	23,1					
15	53,811						12,5	54,6880	3	1	1	5
16	55,882	2	2	0	55,853	0,0291	28,2					
								57,3626	2	2	2	7
17	59,875	2	0	4	59,858	0,0168	30,8					
18	63,454	2	1	4	63,429	0,0259	16,9					
								67,3074	4	0	0	8
19	67,590	3	1	2	67,541	0,0483	27,3					
20	73,589	2	2	4	73,572	0,0166	12,3					
								74,3363	3	3	1	1
21	74,736	1	1	6	74,711	0,0250	18,5					
								76,5899	4	2	0	5
22	76,848	3	0	4	76,822	0,0255	21,1					
23	82,903	4	0	0	82,956	-0,0532	13,9					
								85,4808	4	2	2	9
24	85,827	3	0	5	85,911	-0,0835	19,8					
								103,1866	4	4	0	2
								112,4502	6	0	0	1

A I: Indizierung des Pulverdiffraktogramms für Na₅[CoO₂](CO₃)

Als Nebenprodukt wurde Na₂O [38] identifiziert.

Nr,	2θ _{beob,} [°] h	k	I	2θ _{ber,} [°]	$2\theta_{beob}$,- $2\theta_{ber}$, [°]	rel, Int, [%]
1	19,339	1	0	0	19,337	0,0016	58,3
2	22,032	1	0	1	22,034	-0,0013	100,0
3	27,477	1	1	0	27,480	-0,0026	12,6
4	28,708	1	0	2	28,707	0,0013	12,0
5	29,483	1	1	1	29,478	0,0052	7,1
6	34,846	1	1	2	34,847	-0,0018	80,7
7	39,258	2	0	0	39,254	0,0040	69,1
8	40,718	2	0	1	40,736	-0,0179	4,0
9	42,769	0	0	4	42,775	-0,0067	22,3
10	44,121	2	1	0	44,116	0,0047	22,5
11	45,470	2	1	1	45,468	0,0017	9,2
12	47,332	1	0	4	47,343	-0,0113	14,0
13	49,346	2	1	2	49,350	-0,0044	8,5
14	56,726	2	2	0	56,723	0,0030	14,0
15	58,120	1	0	5	58,130	-0,0095	3,7
16	59,444	2	0	4	59,445	-0,0007	18,9
17	61,602	3	0	1	61,598	0,0037	3,1
18	63,133	2	1	4	63,131	0,0023	11,6
19	68,324	3	1	2	68,323	0,0004	13,5
20	73,247	1	1	6	73,219	0,0280	6,1
21	73,556	2	2	4	73,578	-0,0217	6,9
22	84,420	4	0	0	84,412	0,0080	3,2

A II: Indizierung des Pulverdiffraktogramms für Na5[CuO2](CO3]

Nr.	$2\theta_{obs}$	h	k		$2\theta_{calc.}$	$\Delta(2\theta_{obs}-2\theta_{calc.})$	rel. Int. [%]
1	10,393	0	0	1	10,395	-0,0017	7,8
2	18,231		not	ir	ndexed		11,5
3	18,628	1	0	0	18,619	0,0094	20,7
4	21,363	1	0	1	21,369	-0,0066	100
5	26,443	1	1	0	26,449	-0,0068	14,2
6	28,101	1	0	2	28,114	-0,0126	4,5
7	33,929	1	1	2	33,934	-0,0054	68,7
8	37,755	2	0	0	37,753	0,0022	68,3
9	40,808		not	ir	ndexed		4,7
10	41,645	1	1	3	41,616	0,0285	5,7
11	42,472	0	0	4	42,49	-0,0178	25,4
12	43,796	2	1	1	43,788	0,0077	8,1
13	46,322		not	ir	ndexed		3,7
14	46,774	1	0	4	46,76	0,0141	6,1
15	47,211		o not	ir	ndexed		5,6
16	47,772		o not	ir	ndexed		6,4
17	48,36		not	ir	ndexed		4,4
18	54,448	2	2	0	54,457	-0,0087	13,4
19	57,497	1	0	5	57,497	0,0003	4,2
20	58,136	2	0	4	58,126	0,0102	19,5
21	61,591	2	1	4	61,594	-0,0028	5,5
22	65,737	3	1	2	65,733	0,0036	10,1
23	70,849	2	1	5	70,853	-0,0039	4,5
24	71,407	2	2	4	71,415	-0,0087	6,1
25	72,273	1	1	6	72,274	-0,0007	5,7

A IV: Indizierung des Pulverdiffraktogramms von $Na_5[CuO_2](SO_4)$

Nr.	$2\theta_{obs}$	h	k		$2\theta_{calc.}$	$\Delta(2\theta_{obs}-2\theta_{calc.})$	rel. Int. [%]
1	9,268	1	0	0	9,258	0,0097	11,1
2	11,013	1	0	1	11,074	-0,061	8
3	17,998	-1	0	4	17,969	0,0289	12,1
4	18,73	0	1	0	18,761	-0,0309	27,4
5	20,342	-2	0	3	20,305	0,0372	24,3
6	21,865	1	1	1	21,837	0,0282	100
7	21,973	0	0	5	21,976	-0,003	75,8
8	22,745	-2	0	4	22,648	0,0976	34,8
9	23,505	1	1	2	23,532	-0.027	8
10	25.757	1	0	5	25,726	0.0303	8
11	26,163	-1	1	4	26.092	0.0712	30.8
12	26.415	0	0	6	26,444	-0.0289	15.5
13	29,937	1	0	6	29,978	-0.0404	10.6
14	31,253	3	Õ	2	31.24	0.0129	5.7
15	32 063	1	1	5	32 033	0,0306	18.5
16	32,688	0	1	6	32 623	0.0658	6.6
17	33,393	-3	1	1	33 407	-0 0147	61 1
18	33 472	-3	1	2	33 476	-0.0032	52.6
19	33 919	3	1	0	33 94	-0.0217	35.5
20	34 195	-3	1	3	34 142	0,0217	28.2
20	35 016	3	1	1	35.05	-0.0336	16
21	35 521	0	0	л В	35 512	0,0000	4,0 66 8
22	36 518	3	0	4	36 486	0,0034	30,6
20	27 091	2	1	4 5	27 120	0,0321	50,0
24	27 614	-3 4	0	0	37,129	-0,0478	76.0
20	29 042	4	0	0	37,000	-0,0543	70,2
20	30,043	0	2	5	30,031	-0,0074	00,0
21	39,007	3	0	5	39,000	0,0010	32,2
28	40,647	4	0	2	40,673	-0,0200	25,2
29	40,905	-1	2	3	40,857	0,0483	16,4
30	41,361	3	1	4	41,334	0,0263	11,1
31	42,373	- 1	2	4	42,38	-0,0074	13,2
32	42,849	4	0	3	42,848	0,0001	18,1
33	43,197	3	0	6	43,134	0,0631	7,5
34	43,498	-2	2	3	43,504	-0,0058	5,6
35	43,761	-1	1	9	43,729	0,0323	8,3
36	44,335	-1	2	5	44,339	-0,0042	18,9
37	44,521	2	2	2	44,522	-0,0007	15,9
38	45,144	4	1	2	45,146	-0,0024	5,4
39	46,495	1	2	5	46,501	-0,0055	4,1
40	46,815	3	0	7	46,85	-0,0353	6,1
41	47,208	4	1	3	47,155	0,0536	6,8
42	47,53	1	1	9	47,605	-0,0744	3,3
43	47,681	-3	0	10	47,72	-0,0395	3,1
44	47,921	1	0	10	47,974	-0,0525	3,8
45	48,1	-3	2	3	48,068	0,0322	5,7
46	48,29	4	0	5	48,306	-0,0162	4,8
47	53,79	3	2	4	53,739	0,0515	12,5
48	54,216	-4	2	3	54,189	0,0272	12,7
49	54,613	4	2	0	54,618	-0,0044	3,3
50	54,95	5	0	4	54,966	-0,0164	4,8
51	55,726	-1	2	9	55,721	0,0041	1,5
52	56,265	5	1	3	56,309	-0,0438	4,8
53	56,808	-2	2	9	56,748	0,0597	21,2

A V: Indizierung des Pulverdiffraktogramms von $Na_{25}[CuO_2]_5(SO_4)_4(S)$

54 57,094 -6 0 1 57,028 0.0665 8.6 55 57,343 -6 0 5 57,386 -0.0426 10.8 56 57,518 2 0 11 57,513 0.0015 7.9 57 58,191 -2 0 13 58,224 -0.033 9.3 58 58,638 4 2 3 58,626 0.0121 12,4 59 58,983 1 2 9 59,013 -0.033 3,4 60 59,737 1 3 1 59,79 -0.0441 4 61 59,797 0.0019 4 62 59,737 1 3 1 59,79 -0.023 3,7 63 60,025 -6 1 3 59,79 -0.0027 4,7 65 60,525 1 3 2 61,543 -0.0179 2 66 61,668 1 3 3 61,677 -0.0019 5.6 71 62,191 </th <th>Nr.</th> <th>$2\theta_{obs}$</th> <th>h</th> <th>k</th> <th>I</th> <th>$2\theta_{calc.}$</th> <th>$\Delta(2\theta_{obs}-2\theta_{calc.})$</th> <th>rel. Int. [%]</th>	Nr.	$2\theta_{obs}$	h	k	I	$2\theta_{calc.}$	$\Delta(2\theta_{obs}-2\theta_{calc.})$	rel. Int. [%]
55 57,343 -6 0 5 57,386 -0.0426 10.8 56 57,518 2 0 11 57,513 0.005 7.9 57 58,191 -2 0 13 58,224 -0.033 9.3 58 58,638 4 2 3 58,626 0.0121 12,4 59 58,983 1 2 9 59,013 -0.03 3,4 60 59,167 -4 2 7 59,212 -0.0441 4 61 59,581 2 2 8 59,593 0.0179 2 66 60,525 1 3 2 60,543 -0.0179 2 66 60,776 5 0 6 60,721 0.0549 6 67 61,677 5 1 5 61,227 0.0498 3,5 68 61,489 -5 2 2 61,508 -0.0192 4 69 61,668 1 3 3 61,67 <	54	57,094	-6	0	1	57,028	0,0665	8,6
56 57,518 2 0 11 57,513 0,005 7,9 57 58,191 -2 0 13 58,224 -0,033 9,3 58 58,638 4 2 3 58,626 0,0121 12,4 59 58,983 1 2 9 59,013 -0,033 3,4 60 59,167 -4 2 7 59,212 -0,0441 4 61 59,581 2 2 8 59,799 -0,053 3,7 63 60,025 -6 1 3 59,793 -0,0115 3,8 64 60,275 -6 1 4 60,272 0,0249 6 67 61,277 5 1 5 61,227 0,0449 3,5 68 61,489 -5 2 2 61,508 -0,0192 4 69 61,668 1 3 3 61,67 -0,0019 5,6 70 61,623 1 0 13 62,557	55	57.343	-6	0	5	57.386	-0.0426	10.8
57 $58, 191$ -2 0 13 $58, 224$ $-0, 033$ $0, 3$ 58 $58, 638$ 4 2 3 $58, 626$ $0, 0121$ $12, 4$ 59 $58, 983$ 1 2 9 $59, 013$ $-0, 03$ $3, 4$ 60 $59, 167$ -4 2 7 $59, 212$ $-0, 0441$ 4 61 $59, 581$ 2 2 8 $59, 579$ $0, 0019$ 4 62 $59, 737$ 1 3 1 $59, 799$ $0, 053$ $3, 77$ 63 $60, 005$ -6 1 3 $59, 993$ $0, 0115$ $3, 8$ 64 $60, 275$ -6 1 4 $60, 272$ $0, 0027$ $4, 77$ 65 $60, 525$ 1 3 2 $60, 543$ $-0, 0179$ 2 66 $60, 776$ 5 0 6 $60, 721$ $0, 0549$ 6 67 $61, 277$ 5 1 5 $61, 227$ $0, 0498$ $3, 5$ 68 $61, 489$ -5 2 2 $61, 508$ $-0, 0192$ 4 9 $61, 668$ 1 3 3 $61, 67$ $-0, 0048$ $4, 4$ 71 $62, 601$ 1 0 13 $62, 557$ $0, 0449$ $3, 9$ 73 $64, 206$ 0 2 11 $64, 1509$ $0, 0334$ $2, 6$ 76 $65, 55$ -5 2 7 $65, 579$ $-0, 0289$ $7, 4$ <td< td=""><td>56</td><td>57,518</td><td>2</td><td>0</td><td>11</td><td>57,513</td><td>0.005</td><td>7,9</td></td<>	56	57,518	2	0	11	57,513	0.005	7,9
58 58,638 4 2 3 59,626 0,0121 12,4 59 58,983 1 2 9 59,013 $-0,03$ 3,4 60 59,167 -4 2 7 59,212 $-0,0441$ 4 61 59,581 2 2 8 59,579 $0,0019$ 4 62 59,737 1 3 1 59,993 $0,0115$ 3,8 63 60,005 -6 1 4 60,272 $0,0027$ 4,7 65 60,525 1 3 2 60,543 $-0,0192$ 4 66 60,776 5 0 6 60,721 $0,0498$ 3,5 68 61,489 -5 2 2 61,577 $0,00498$ 3,5 68 61,489 -5 2 2 61,677 $0,00529$ 4,9 71 62,191 4 1 8 62,1957 $0,00449$ 3,9 73 64,206 2 11 64,5165	57	58,191	-2	0	13	58.224	-0.033	9.3
5958,98312959,013 $-0,03$ 3,46059,167-42759,212 $-0,0441$ 46159,58122859,579 $0,0019$ 46259,73713159,993 $0,0115$ 3,86460,275-61359,993 $0,0115$ 3,86460,275-61460,272 $0,0027$ 4,776560,52513266,543 $-0,0179$ 26660,77650660,721 $0,0549$ 657061,83732761,877 $0,0529$ 4,97162,19141862,198 $-0,0068$ 4,47262,601101362,557 $0,0449$ 3,97364,206021164,164 $0,0429$ 1,67464,542001464,509 $0,0334$ 2,67565,19460465,165 $0,0295$ 9,27665,55-52765,579 $-0,0289$ 7,47566,87733166,823 $0,034$ 3,98067,11813667,169 $-0,051$ 38167,342-13769,663 $0,0681$ 3,88670,0464110	58	58.638	4	2	3	58.626	0.0121	12.4
6059,167 (5),581-42759,212 (5),5979-0,0441 (0,019)46159,58122859,5790,001946259,73713159,79-0,0533,76360,005-61359,9930,01153,86460,275-61460,2720,00274,76560,52513260,543-0,017926660,77650661,2270,04983,56861,489-52261,508-0,019246961,66813361,67-0,00195,67061,9332761,8770,05294,97162,601101362,5570,04493,97364,206021164,1640,04291,67464,54201464,5090,03342,67565,19460465,1550,02897,47665,75342665,802-0,04827,87866,371-111466,3070,06425,77966,85733166,8230,0343,98067,11813767,346-0,05138167,342-13770,735-0,0	59	58,983	1	2	9	59 013	-0.03	3.4
6159,58122859,579 $0,0019$ 46259,73713159,79 $-0,053$ 3,76360,005-61359,993 $0,0115$ 3,86460,275-61460,272 $0,0027$ 4,76560,52513260,543 $-0,0179$ 26660,77650660,721 $0,0549$ 66761,27751561,277 $0,0529$ 4,97061,9332761,877 $0,0529$ 4,97162,19141862,198 $-0,0068$ 4,47262,601101362,557 $0,0449$ 3,97364,206021164,164 $0,0429$ 1,67464,542001464,509 $0,0334$ 2,67565,75342665,802 $-0,0482$ 7,87866,371-111466,307 $0,0642$ 5,77966,85733166,823 $0,034$ 3,98067,11813667,169 $-0,051$ 38167,342-13769,526 $-0,0566$ 38569,73113769,663 $0,0681$ 3,88670,046411070,105	60	59 167	-4	2	7	59 212	-0 0441	4
62 $59,737$ 1 3 1 $59,79$ $-0,053$ $3,7$ 63 $60,005$ -6 1 3 $59,993$ $0,0115$ $3,8$ 64 $60,275$ -6 1 4 $60,272$ $0,0027$ $4,7$ 75 $60,525$ 1 3 2 $60,543$ $-0,0179$ 2 66 $60,776$ 5 0 6 $60,721$ $0,0549$ 6 67 $61,277$ 5 1 5 $61,227$ $0,00192$ 4 69 $61,668$ 1 3 3 $61,67$ $-0,0019$ $5,6$ 70 $61,93$ 3 2 7 $61,877$ $0,0529$ $4,9$ 71 $62,191$ 4 1 8 $62,198$ $-0,0068$ $4,4$ 72 $62,601$ 1 0 13 $62,557$ $0,0449$ $3,9$ 73 $64,206$ 0 2 11 $64,164$ $0,0429$ $1,6$ 74 $64,542$ 0 0 14 $64,509$ $0,0334$ $2,6$ 75 $65,194$ 6 0 4 $65,165$ $0,0295$ $9,2$ 76 $65,55$ -5 2 7 $65,579$ $-0,0289$ $7,4$ 77 $65,753$ 4 2 6 $63,00$ $1,4$ 86 6371 -1 1 4 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 3 3 $66,823$ $0,034$ <	61	59 581	2	2	, 8	59 579	0,0019	4
63 $60,005$ -6 1 $30,175$ $00,0115$ $3,8$ 64 $60,275$ -6 1 4 $60,272$ $0,0027$ $4,7$ 65 $60,525$ 1 3 2 $60,543$ $-0,0179$ 2 66 $60,776$ 5 0 6 $60,721$ $0,0549$ 6 67 $61,277$ 5 1 5 $61,227$ $0,0498$ $3,5$ 68 $61,489$ -5 2 2 $61,508$ $-0,0192$ 4 69 $61,668$ 1 3 3 $61,67$ $-0,0019$ 56 70 $61,933$ 3 2 7 $61,877$ $0,0529$ $4,9$ 71 $62,191$ 4 1 8 $62,198$ $-0,0068$ $4,4$ 72 $62,601$ 1 0 13 $62,557$ $0,0449$ $3,9$ 73 $64,206$ 0 2 11 $64,164$ $0,0429$ $1,6$ 74 $64,542$ 0 0 14 $65,165$ $0,0295$ $9,2$ 76 $65,55$ -5 2 7 $65,579$ $-0,0248$ $7,8$ 78 $66,371$ -1 1 14 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 3 3 1 $66,803$ $0,0034$ $3,9$ 80 $67,118$ 1 3 7 $69,526$ $-0,056$ 3 84 $69,469$ -3 0 15	62	59 737	1	3	1	59 79	-0.053	37
6460,275-61460,2720,00274,76560,52513260,543-0,017926660,77650660,7210,04983,56861,27751561,2770,04983,56861,489-52261,508-0,019246961,66813361,67-0,00195,67061,9332761,8770,05294,97162,19141862,198-0,00684,47262,601101362,5570,04493,97364,206021164,1640,04291,67464,542001464,5090,03342,67565,19460465,1650,02959,27665,555-52765,579-0,02897,47765,75342665,802-0,04827,87866,371-111466,8230,0343,98067,11813767,346-0,00361,48269,73113768,8160,01912,58369,27133369,2550,015488469,469-301569,266-0,05663 </td <td>63</td> <td>60,005</td> <td>-6</td> <td>1</td> <td>3</td> <td>59 993</td> <td>0,000</td> <td>3.8</td>	63	60,005	-6	1	3	59 993	0,000	3.8
6560,22513260,2120,017926660,77650660,7210,054966761,27751561,2270,04883,56861,489-52261,508-0,019246961,66813361,67-0,00195,67061,9332761,8770,05294,97162,19141862,198-0,00684,47262,601101362,5570,04493,97364,206021164,1640,04291,67464,542001464,5090,03342,67565,19460465,1650,02959,27665,55-52765,802-0,04827,87866,371-111466,3070,06425,77966,85733166,8230,0343,98067,11813767,346-0,00361,48268,83542768,8160,01912,58369,271331569,5250,015488469,469-301569,526-0,056638569,73113770,964-0,00178 <tr< td=""><td>64</td><td>60 275</td><td>-6</td><td>1</td><td>4</td><td>60 272</td><td>0,0110</td><td>4 7</td></tr<>	64	60 275	-6	1	4	60 272	0,0110	4 7
6660,77650660,7710,054966761,27751561,2270,04983,56861,489-52261,508-0,019246961,66813361,67-0,019246961,66813361,67-0,01924,97162,19141862,198-0,0684,47262,601101362,5570,04493,97364,206021164,1640,04291,67464,542001464,5090,03342,67565,19460465,1650,02959,27665,553-52765,579-0,02897,47765,75342665,802-0,04827,77866,371-111466,3230,0343,98067,11813667,169-0,05138167,342-13769,6630,06813,88670,046411070,105-0,0594,68770,216-71370,964-0,001788870,701-71570,735-0,03424,58970,89951870,964-0,00178	65	60 525	1	3	2	60 543	-0.0179	י,ד 2
67 $61,277$ 5 1 5 $61,227$ $0,0498$ $3,5$ 68 $61,489$ -5 2 2 $61,508$ $-0,0192$ 4 69 $61,668$ 1 3 3 $61,67$ $-0,0019$ $5,6$ 70 $61,93$ 3 2 7 $61,877$ $0,0529$ $4,9$ 71 $62,191$ 4 1 8 $62,198$ $-0,0068$ $4,4$ 72 $62,601$ 1 0 13 $62,557$ $0,0449$ $3,9$ 73 $64,206$ 0 2 11 $64,164$ $0,0429$ $1,6$ 74 $64,542$ 0 0 14 $64,509$ $0,0334$ $2,6$ 75 $65,194$ 6 0 4 $65,165$ $0,0295$ $9,2$ 76 $65,55$ -5 2 7 $65,579$ $-0,0289$ $7,4$ 77 $65,753$ 4 2 6 $65,802$ $-0,0482$ $7,8$ 78 $66,371$ -1 1 14 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 3 3 1 $66,837$ 3 3 1 80 $67,118$ 1 3 7 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 4 2 7 $68,6163$ $0,0681$ $3,8$ 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 <	66	60,323	5	0	6	60 721	-0,0173	2
67 $61,277$ 5 1 3 $61,227$ $0,0493$ $3,9493$ 68 $61,489$ -5 2 2 $61,508$ $-0,0192$ 4 69 $61,668$ 1 3 3 2 7 $61,877$ $0,0529$ $4,9$ 71 $62,191$ 4 1 8 $62,198$ $-0,0068$ $4,4$ 72 $62,601$ 1 0 13 $62,557$ $0,0449$ $3,9$ 73 $64,206$ 0 2 11 $64,164$ $0,0429$ $1,6$ 74 $64,542$ 0 0 14 $64,509$ $0,0334$ $2,6$ 75 $65,194$ 6 0 4 $65,165$ $0,0225$ $9,2$ 76 $65,55$ -5 2 7 $65,579$ $-0,0289$ $7,4$ 77 $65,753$ 4 2 6 $65,802$ $-0,0482$ $7,8$ 78 $66,371$ -1 1 14 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 3 3 1 $67,148$ $-0,0036$ $1,4$ 82 $68,835$ 4 2 7 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 3 3 3 $69,255$ $0,0154$ 8 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 $70,964$ $-0,0017$ 8 90 $70,964$ -7	67	61 277	5	1	5	61 227	0,0343	25
69 $61,668$ 1 3 2 2 $0,106$ $-0,019$ $5,6$ 70 $61,93$ 3 2 7 $61,877$ $-0,0019$ $5,6$ 70 $61,93$ 3 2 7 $61,877$ $0,0529$ $4,9$ 71 $62,191$ 4 1 8 $62,198$ $-0,0068$ $4,4$ 72 $62,601$ 1 0 13 $62,557$ $0,0449$ $3,9$ 73 $64,206$ 0 2 11 $64,164$ $0,0429$ $1,6$ 74 $64,542$ 0 0 14 $64,509$ $0,0334$ $2,6$ 75 $65,194$ 6 0 4 $65,165$ $0,0295$ $9,2$ 76 $65,55$ -5 2 7 $65,753$ 4 2 6 $65,802$ $-0,0289$ $7,4$ 77 $66,857$ 3 3 1 $66,823$ $0,034$ $3,9$ 80 $67,118$ 1 3 7 $67,346$ $-0,0051$ 3 81 $67,342$ -1 3 7 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 3 3 3 $69,526$ $-0,0566$ 3 86 $70,046$ 4 1 1 $70,964$ $-0,0051$ 3 86 $70,046$ 4 1 1 $70,964$ $-0,0059$ $4,6$ 87 $70,216$ -7 1 3 $70,964$ $-0,0017$ 8 <tr< td=""><td>69</td><td>61 490</td><td>5</td><td>1</td><td>2</td><td>61 509</td><td>0,0490</td><td>3,5</td></tr<>	69	61 490	5	1	2	61 509	0,0490	3,5
000000000000000000000000000000000000	60	61 669	-5	2	2	61.67	-0,0192	4
71 $61,93$ 3 2 7 $61,877$ $0,0529$ $4,9$ 71 $62,191$ 4 1 8 $62,198$ $-0,0068$ $4,4$ 72 $62,601$ 1 0 13 $62,557$ $0,0449$ $3,9$ 73 $64,206$ 0 2 11 $64,164$ $0,0429$ $1,6$ 74 $64,542$ 0 0 14 $64,509$ $0,0334$ $2,6$ 75 $65,194$ 6 0 4 $65,165$ $0,0295$ $9,22$ 76 $65,55$ -5 2 7 $65,579$ $-0,0289$ $7,4$ 77 $65,753$ 4 2 6 $65,802$ $-0,0482$ $7,8$ 78 $66,371$ -1 1 14 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 3 3 1 $66,823$ $0,034$ $3,9$ 80 $67,118$ 1 3 7 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 4 2 7 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 3 3 $369,255$ $0,0154$ 8 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 $70,195$ $-0,0481$ $3,8$ 86 $70,701$ -7 1 5 $70,735$ $-0,0342$ $4,5$ 89 $70,899$ 5 1 8 $72,466$	09 70	01,000	1	3	37		-0,0019	5,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	61,93	3	2	/	61,877	0,0529	4,9
72 $62,601$ 1013 $62,557$ $0,0449$ $3,9$ 73 $64,206$ 0211 $64,164$ $0,0429$ $1,6$ 74 $64,542$ 0014 $64,509$ $0,0334$ $2,6$ 75 $65,194$ 604 $65,165$ $0,0295$ $9,22$ 76 $65,55$ -5 27 $65,579$ $-0,0289$ $7,4$ 77 $65,753$ 426 $65,802$ $-0,0482$ $7,8$ 78 $66,371$ -1 114 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 331 $66,823$ $0,034$ $3,9$ 80 $67,118$ 136 $67,169$ $-0,051$ 3 81 $67,342$ -1 37 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 427 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 333 $69,255$ $0,0154$ 8 84 $69,469$ -3 015 $69,526$ $-0,0566$ 3 85 $69,731$ 137 $69,663$ $0,0681$ $3,8$ 86 $70,046$ 4110 $70,105$ $-0,0342$ $4,5$ 89 $70,9963$ -7 08 $70,964$ $-0,0017$ 8 91 $71,187$ -4 28 $72,12$ $0,0048$ $8,6$ 93 $72,456$ <	/	62,191	4	1	8	62,198	-0,0068	4,4
73 $64,206$ 0211 $64,164$ $0,0429$ $1,6$ 74 $64,542$ 0014 $64,509$ $0,0334$ $2,6$ 75 $65,194$ 604 $65,165$ $0,0295$ $9,2$ 76 $65,55$ -5 27 $65,579$ $-0,0289$ $7,4$ 77 $65,753$ 426 $65,802$ $-0,0482$ $7,8$ 78 $66,371$ -1 114 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 331 $66,823$ $0,034$ $3,9$ 80 $67,118$ 136 $67,169$ $-0,051$ 381 $67,342$ -1 37 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 427 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 333 $69,255$ $0,0154$ 884 $69,469$ -3 015 $69,526$ $-0,0566$ 385 $69,731$ 137 $69,663$ $0,0202$ $2,5$ 88 $70,701$ -7 15 $70,735$ $-0,0342$ $4,5$ 89 $70,989$ 518 $70,872$ $0,0265$ $7,8$ 90 $70,963$ -7 08 $72,466$ $-0,0108$ 394 $72,456$ 138 $72,466$ $-0,0108$ 394 $72,642$ -1 39 $72,69$	72	62,601	1	0	13	62,557	0,0449	3,9
74 $64,542$ 0014 $64,509$ 0,03342,6 75 $65,194$ 604 $65,165$ 0,02959,2 76 $65,55$ -5 27 $65,579$ $-0,0289$ 7,4 77 $65,753$ 426 $65,802$ $-0,0482$ 7,8 78 $66,371$ -1 114 $66,807$ $0,0642$ $5,7$ 79 $66,857$ 331 $66,823$ $0,034$ $3,9$ 80 $67,118$ 136 $67,169$ $-0,051$ 3 81 $67,342$ -1 37 $67,346$ $-0,0036$ 1,4 82 $68,835$ 427 $68,816$ $0,0191$ 2,5 83 $69,271$ 333 $69,255$ $0,0154$ 8 84 $69,469$ -3 015 $69,526$ $-0,0566$ 3 85 $69,731$ 137 $69,663$ $0,0202$ $2,55$ 88 $70,046$ 4110 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 13 $70,964$ $-0,0017$ 8 90 $70,963$ -7 08 $70,964$ $-0,0017$ 8 91 $71,187$ -4 32 $71,141$ $0,0455$ $5,3$ 92 $72,115$ 4 28 $72,12$ $-0,0048$ $8,6$ 93 $72,456$ 13 <td>73</td> <td>64,206</td> <td>0</td> <td>2</td> <td>11</td> <td>64,164</td> <td>0,0429</td> <td>1,6</td>	73	64,206	0	2	11	64,164	0,0429	1,6
75 $65, 194$ 6 0 4 $65, 165$ $0, 0295$ $9, 2$ 76 $65, 555$ -5 2 7 $65, 579$ $-0, 0289$ $7, 4$ 77 $65, 753$ 4 2 6 $65, 802$ $-0, 0482$ $7, 8$ 78 $66, 371$ -1 1 14 $66, 307$ $0, 0642$ $5, 7$ 79 $66, 857$ 3 3 1 $66, 823$ $0, 034$ $3, 9$ 80 $67, 118$ 1 3 6 $67, 169$ $-0, 051$ 3 81 $67, 342$ -1 3 7 $67, 346$ $-0, 0036$ $1, 4$ 82 $68, 835$ 4 2 7 $68, 816$ $0, 0191$ $2, 5$ 83 $69, 271$ 3 3 3 $69, 255$ $0, 0154$ 8 84 $69, 469$ -3 0 15 $69, 526$ $-0, 0566$ 3 85 $69, 731$ 1 3 7 $69, 663$ $0, 0681$ $3, 8$ 86 $70, 046$ 4 1 10 $70, 105$ $-0, 0342$ $4, 5$ 89 $70, 899$ 5 1 8 $70, 964$ $-0, 0017$ 8 90 $70, 963$ -7 0 8 $72, 466$ $-0, 0108$ 3 92 $72, 115$ 4 2 8 $72, 12$ $-0, 0048$ $8, 6$ 93 $72, 456$ 1 3 8 $72, 669$ $-0, 0475$ $2, 9$ <	74	64,542	0	0	14	64,509	0,0334	2,6
76 $65,55$ -5 2 7 $65,579$ $-0,0289$ $7,4$ 77 $65,753$ 4 2 6 $65,802$ $-0,0482$ $7,8$ 78 $66,371$ -1 1 14 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 3 3 1 $66,233$ $0,034$ $3,9$ 80 $67,118$ 1 3 6 $67,169$ $-0,051$ 3 81 $67,342$ -1 3 7 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 4 2 7 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 3 3 3 $69,255$ $0,0154$ 8 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 7 $69,663$ $0,0081$ $3,8$ 86 $70,046$ 4 1 10 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 1 3 $70,964$ $-0,0017$ 8 90 $70,963$ -7 0 8 $70,964$ $-0,0017$ 8 91 $71,187$ -4 3 2 $71,141$ $0,045$ $5,3$ 92 $72,115$ 4 2 8 $72,12$ $-0,0048$ $8,6$ 93 $72,456$ 1 3 8 $72,69$ $-0,0175$ $2,9$ 95 $72,978$ 0 1 15	75	65,194	6	0	4	65,165	0,0295	9,2
77 $65,753$ 4 2 6 $65,802$ $-0,0482$ $7,8$ 78 $66,371$ -1 1 14 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 3 3 1 $66,823$ $0,034$ $3,9$ 80 $67,118$ 1 3 6 $67,169$ $-0,051$ 3 81 $67,342$ -1 3 7 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 4 2 7 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 3 3 $369,255$ $0,0154$ 8 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 7 $69,663$ $0,0681$ $3,8$ 86 $70,046$ 4 1 10 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 1 3 $70,964$ $-0,0017$ 8 90 $70,963$ -7 0 8 $70,964$ $-0,0017$ 8 91 $71,187$ -4 3 2 $71,141$ $0,045$ $5,3$ 92 $72,115$ 4 2 8 $72,12$ $-0,0048$ $8,6$ 93 $72,456$ 1 3 8 $72,66$ $-0,0178$ 3 94 $72,662$ -1 3 9 $72,69$ $-0,0475$ $2,9$ 95 $72,978$ 0 1 15 $72,$	76	65,55	-5	2	7	65,579	-0,0289	7,4
78 $66,371$ -1 1 14 $66,307$ $0,0642$ $5,7$ 79 $66,857$ 3 3 1 $66,823$ $0,034$ $3,9$ 80 $67,118$ 1 3 6 $67,169$ $-0,051$ 3 81 $67,342$ -1 3 7 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 4 2 7 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 3 3 3 $69,255$ $0,0154$ 8 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 7 $69,663$ $0,0681$ $3,8$ 86 $70,046$ 4 1 10 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 1 3 $70,196$ $0,0202$ $2,5$ 88 $70,701$ -7 1 5 $70,735$ $-0,0342$ $4,5$ 89 $70,899$ 5 1 8 $70,964$ $-0,0017$ 8 91 $71,187$ -4 3 2 $71,141$ $0,045$ $5,3$ 92 $72,115$ 4 2 8 $72,122$ $-0,0048$ $8,6$ 93 $72,456$ 1 3 9 $72,69$ $-0,0475$ $2,9$ 95 $72,978$ 0 1 15 $72,965$ $0,0129$ $2,1$ 96 $73,202$ -2 0	77	65,753	4	2	6	65,802	-0,0482	7,8
79 $66,857$ 331 $66,823$ $0,034$ $3,9$ 80 $67,118$ 136 $67,169$ $-0,051$ 381 $67,342$ -1 37 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 427 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 333 $69,255$ $0,0154$ 884 $69,469$ -3 015 $69,526$ $-0,0566$ 385 $69,731$ 137 $69,663$ $0,0681$ $3,8$ 86 $70,046$ 4110 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 13 $70,196$ $0,0202$ $2,5$ 88 $70,701$ -7 15 $70,735$ $-0,0342$ $4,5$ 89 $70,899$ 518 $70,964$ $-0,0017$ 890 $70,963$ -7 08 $72,456$ $7,8$ 91 $71,187$ -4 32 $71,141$ $0,045$ $5,3$ 92 $72,115$ 428 $72,456$ $-0,0108$ 394 $72,642$ -1 39 $72,69$ $-0,0475$ $2,9$ 95 $72,978$ 01 15 $72,965$ $0,0129$ $2,1$ 96 $73,202$ -2 016 $73,149$ $0,0531$ $1,4$ 97 $74,359$ 4111 $74,424$ $-$	78	66,371	-1	1	14	66,307	0,0642	5,7
80 $67,118$ 136 $67,169$ $-0,051$ 3 81 $67,342$ -1 37 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 427 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 333 $69,255$ $0,0154$ 8 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 137 $69,663$ $0,0681$ $3,8$ 86 $70,046$ 41 10 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 13 $70,196$ $0,0202$ $2,5$ 88 $70,701$ -7 15 $70,735$ $-0,0342$ $4,5$ 89 $70,899$ 518 $70,964$ $-0,0017$ 8 91 $71,187$ -4 32 $71,141$ $0,0455$ $5,3$ 92 $72,115$ 428 $72,466$ $-0,0108$ 3 94 $72,642$ -1 39 $72,695$ $0,0129$ $2,1$ 96 $73,202$ -2 0 16 $73,149$ $0,0531$ $1,4$ 97 $74,359$ 4 1 11 $74,424$ $-0,0648$ $2,7$ 98 $74,956$ -7 0 10 $74,98$ $-0,0233$ $2,5$ 99 $75,185$ 4 3 3 $75,229$ $-0,0442$ $6,3$	79	66,857	3	3	1	66,823	0,034	3,9
81 $67,342$ -1 3 7 $67,346$ $-0,0036$ $1,4$ 82 $68,835$ 4 2 7 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 3 3 3 $69,255$ $0,0154$ 8 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 7 $69,663$ $0,0681$ $3,8$ 86 $70,046$ 4 1 10 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 1 3 $70,196$ $0,0202$ $2,5$ 88 $70,701$ -7 1 5 $70,735$ $-0,0342$ $4,5$ 89 $70,899$ 5 1 8 $70,964$ $-0,0017$ 8 91 $71,187$ -4 3 2 $71,141$ $0,045$ $5,3$ 92 $72,115$ 4 2 8 $72,12$ $-0,0048$ $8,6$ 93 $72,456$ 1 3 8 $72,466$ $-0,0108$ 3 94 $72,642$ -1 3 9 $72,69$ $-0,0475$ $2,9$ 95 $72,978$ 0 1 15 $72,965$ $0,0129$ $2,1$ 96 $73,202$ -2 0 16 $73,149$ $0,0531$ $1,4$ 97 $74,359$ 4 1 11 $74,424$ $-0,0648$ $2,7$ 98 $74,956$ -7 0 <	80	67,118	1	3	6	67,169	-0,051	3
82 $68,835$ 4 2 7 $68,816$ $0,0191$ $2,5$ 83 $69,271$ 3 3 3 $69,255$ $0,0154$ 8 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 7 $69,663$ $0,0681$ $3,8$ 86 $70,046$ 4 1 10 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 1 3 $70,196$ $0,0202$ $2,5$ 88 $70,701$ -7 1 5 $70,735$ $-0,0342$ $4,5$ 89 $70,899$ 5 1 8 $70,872$ $0,0265$ $7,8$ 90 $70,963$ -7 0 8 $70,964$ $-0,0017$ 8 91 $71,187$ -4 3 2 $71,141$ $0,0455$ $5,3$ 92 $72,115$ 4 2 8 $72,12$ $-0,0048$ $8,6$ 93 $72,456$ 1 3 8 $72,696$ $-0,0108$ 3 94 $72,642$ -1 3 9 $72,695$ $0,0129$ $2,1$ 96 $73,202$ -2 0 16 $73,149$ $0,0531$ $1,4$ 97 $74,359$ 4 1 11 $74,928$ $-0,0233$ $2,5$ 99 $75,185$ 4 3 3 $75,229$ $-0,0442$ $6,3$ 100 $75,33$ 2 2 <t< td=""><td>81</td><td>67,342</td><td>-1</td><td>3</td><td>7</td><td>67,346</td><td>-0,0036</td><td>1,4</td></t<>	81	67,342	-1	3	7	67,346	-0,0036	1,4
83 $69,271$ 3 3 3 3 $69,255$ $0,0154$ 8 84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 7 $69,663$ $0,0681$ $3,8$ 86 $70,046$ 4 1 10 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 1 3 $70,196$ $0,0202$ $2,5$ 88 $70,701$ -7 1 5 $70,735$ $-0,0342$ $4,5$ 89 $70,899$ 5 1 8 $70,964$ $-0,0017$ 8 90 $70,963$ -7 0 8 $70,964$ $-0,0017$ 8 91 $71,187$ -4 3 2 $71,141$ $0,045$ $5,3$ 92 $72,115$ 4 2 8 $72,466$ $-0,0108$ 3 94 $72,642$ -1 3 9 $72,699$ $-0,0475$ $2,9$ 95 $72,978$ 0 1 15 $72,965$ $0,0129$ $2,1$ 96 $73,202$ -2 0 16 $73,149$ $0,0531$ $1,4$ 97 $74,359$ 4 1 11 $74,424$ $-0,0648$ $2,7$ 98 $74,956$ -7 0 10 $74,98$ $-0,0233$ $2,5$ 99 $75,185$ 4 3 3 $75,229$ $-0,0442$ $6,3$ 100 $75,33$ 2	82	68,835	4	2	7	68,816	0,0191	2,5
84 $69,469$ -3 0 15 $69,526$ $-0,0566$ 3 85 $69,731$ 1 3 7 $69,663$ $0,0681$ $3,8$ 86 $70,046$ 4 1 10 $70,105$ $-0,059$ $4,6$ 87 $70,216$ -7 1 3 $70,196$ $0,0202$ $2,5$ 88 $70,701$ -7 1 5 $70,735$ $-0,0342$ $4,5$ 89 $70,899$ 5 1 8 $70,964$ $-0,0017$ 8 90 $70,963$ -7 0 8 $70,964$ $-0,0017$ 8 91 $71,187$ -4 3 2 $71,141$ $0,045$ $5,3$ 92 $72,115$ 4 2 8 $72,12$ $-0,0048$ $8,6$ 93 $72,456$ 1 3 8 $72,666$ $-0,0108$ 3 94 $72,642$ -1 3 9 $72,69$ $-0,0475$ $2,9$ 95 $72,978$ 0 1 15 $72,965$ $0,0129$ $2,1$ 96 $73,202$ -2 0 16 $73,149$ $0,0531$ $1,4$ 97 $74,359$ 4 1 11 $74,424$ $-0,0648$ $2,7$ 98 $74,956$ -7 0 10 $74,98$ $-0,0233$ $2,5$ 99 $75,185$ 4 3 3 $75,229$ $-0,0442$ $6,3$ 100 $75,33$ 2 2 <td>83</td> <td>69,271</td> <td>3</td> <td>3</td> <td>3</td> <td>69,255</td> <td>0,0154</td> <td>8</td>	83	69,271	3	3	3	69,255	0,0154	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	69,469	-3	0	15	69,526	-0,0566	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	69,731	1	3	7	69,663	0,0681	3,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	70,046	4	1	10	70,105	-0,059	4,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	70,216	-7	1	3	70,196	0,0202	2,5
89 $70,899$ 5 1 8 $70,872$ $0,0265$ $7,8$ 90 $70,963$ -7 0 8 $70,964$ $-0,0017$ 8 91 $71,187$ -4 3 2 $71,141$ $0,045$ $5,3$ 92 $72,115$ 4 2 8 $72,12$ $-0,0048$ $8,6$ 93 $72,456$ 1 3 8 $72,466$ $-0,0108$ 3 94 $72,642$ -1 3 9 $72,699$ $-0,0475$ $2,9$ 95 $72,978$ 0 1 15 $72,965$ $0,0129$ $2,1$ 96 $73,202$ -2 0 16 $73,149$ $0,0531$ $1,4$ 97 $74,359$ 4 1 11 $74,424$ $-0,0648$ $2,7$ 98 $74,956$ -7 0 10 $74,98$ $-0,0233$ $2,5$ 99 $75,185$ 4 3 3 $75,229$ $-0,0442$ $6,3$ 100 $75,33$ 2 2 12 $75,383$ $-0,0537$ $4,8$ 101 $75,89$ 6 2 3 $75,88$ $0,0092$ 3	88	70,701	-7	1	5	70,735	-0,0342	4,5
90 $70,963$ -7 0 8 $70,964$ $-0,0017$ 8 91 $71,187$ -4 3 2 $71,141$ $0,045$ $5,3$ 92 $72,115$ 4 2 8 $72,12$ $-0,0048$ $8,6$ 93 $72,456$ 1 3 8 $72,466$ $-0,0108$ 3 94 $72,642$ -1 3 9 $72,69$ $-0,0475$ $2,9$ 95 $72,978$ 0 1 15 $72,965$ $0,0129$ $2,1$ 96 $73,202$ -2 0 16 $73,149$ $0,0531$ $1,4$ 97 $74,359$ 4 1 11 $74,424$ $-0,0648$ $2,7$ 98 $74,956$ -7 0 10 $74,98$ $-0,0233$ $2,5$ 99 $75,185$ 4 3 3 $75,229$ $-0,0442$ $6,3$ 100 $75,33$ 2 2 12 $75,383$ $-0,0537$ $4,8$ 101 $75,89$ 6 2 3 $75,88$ $0,0092$ 3	89	70,899	5	1	8	70,872	0,0265	7,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	70,963	-7	0	8	70,964	-0,0017	8
9272,11542872,12 $-0,0048$ 8,69372,45613872,466 $-0,0108$ 39472,642 -1 3972,69 $-0,0475$ 2,99572,978011572,965 $0,0129$ 2,19673,202 -2 01673,149 $0,0531$ 1,49774,359411174,424 $-0,0648$ 2,79874,956 -7 01074,98 $-0,0233$ 2,59975,18543375,229 $-0,0442$ 6,310075,33221275,383 $-0,0537$ 4,810175,8962375,88 $0,0092$ 3	91	71.187	-4	3	2	71.141	0.045	5.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92	72,115	4	2	8	72.12	-0.0048	8.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93	72,456	1	3	8	72.466	-0.0108	3
9572,978011572,9650,01292,19673,202-201673,1490,05311,49774,359411174,424-0,06482,79874,956-701074,98-0,02332,59975,18543375,229-0,04426,310075,33221275,383-0,05374,810175,8962375,880,00923	94	72 642	-1	3	g	72 69	-0.0475	29
96 $73,202$ -2 0 16 $73,149$ $0,0531$ $1,4$ 97 $74,359$ 4 1 11 $74,424$ $-0,0648$ $2,7$ 98 $74,956$ -7 0 10 $74,98$ $-0,0233$ $2,5$ 99 $75,185$ 4 3 3 $75,229$ $-0,0442$ $6,3$ 100 $75,33$ 2 2 12 $75,383$ $-0,0537$ $4,8$ 101 $75,89$ 6 2 3 $75,88$ $0,0092$ 3	95	72,978	0	1	15	72 965	0.0129	21
97 74,359 4 1 11 74,424 -0,0648 2,7 98 74,956 -7 0 10 74,98 -0,0233 2,5 99 75,185 4 3 3 75,229 -0,0442 6,3 100 75,33 2 2 12 75,383 -0,0537 4,8 101 75,89 6 2 3 75,88 0,0092 3	96	73 202	-2	0	16	73 149	0.0531	1 4
98 74,956 -7 0 10 74,98 -0,0233 2,5 99 75,185 4 3 3 75,229 -0,0442 6,3 100 75,33 2 2 12 75,383 -0,0537 4,8 101 75,89 6 2 3 75,88 0,0092 3	97	74 350	2 4	1	11	74 494	-0.0648	97
99 75,185 4 3 3 75,229 -0,0442 6,3 100 75,33 2 2 12 75,383 -0,0537 4,8 101 75,89 6 2 3 75,88 0,0092 3	07 08	74 956	-7	١	10	71 QR	-0,00 4 0	2,7
100 75,33 2 2 12 75,383 -0,0537 4,8 101 75,89 6 2 3 75,88 0,0092 3 102 76,45 2 1 12 76,45 2 1 12 76,45 0,0092 3	aa	75 185	-т А	с 0	י <u>ט</u>	75 220	-0,0200	2,J 6 3
101 75,89 6 2 3 75,88 0,0092 3 102 76,45 2 1 12 76,480 0.0200 0.0200	100	75 22	т 0	2	12	75 282	-0,0-++2	0,0 / Q
	101	75 20	6	2	י <i>ב</i> כ	75 88	0,0007	ט,ד 2
IUZ /D4D 3 I L3 /b4XX -UU3XX 2X	102	76 45	3	1	13	76 488	-0 0388	2 A

Fortsetzung der Indizierung des Pulverdiffraktogramms von $Na_{25}[CuO_2]_5(SO_4)_4(S)$

Nr. 2θ _{obs} h k			$2\theta_{calc.}$	$\Delta(2\theta_{obs}-2\theta_{calc.})$	rel. Int. [%]			
	1	10,411	0	0	1	10,429	-0,0184	7
	2	18,58	1	0	0	18,58	-0,0004	13,3
	3	21,302	1	0	1	21,352	-0,0503	100
	4	26,381	1	1	0	26,394	-0,0128	10
	5	28,169	1	0	2	28,14	0,0294	2,6
	6	31,717	0	0	3	31,644	0,0726	4,1
	7	33,92	1	1	2	33,934	-0,0139	57,4
	8	37,679	2	0	0	37,673	0,0058	49,6
	9	41,696	1	1	3	41,662	0,0338	5
	10	42,28	2	1	0	42,32	-0,0406	8
	11	42,597	0	0	4	42,635	-0,0382	13,9
	12	43,649	2	1	1	43,708	-0,0589	6,5
	13	46,895	1	0	4	46,878	0,0174	3,6
	14	47,698	2	1	2	47,677	0,0217	2,7
	15	54,339	2	2	0	54,336	0,0031	9,2
	16	57,704	1	0	5	57,664	0,0403	4
	17	58,22	2	0	4	58,184	0,0357	18,2
	18	59,108	3	0	1	59,043	0,0649	3,5
	19	61,644	2	1	4	61,636	0,0083	3,9
	20	65,629	3	1	2	65,625	0,0038	6,6
	21	70,931	2	1	5	70,95	-0,0193	3,8
	22	71,394	2	2	4	71,415	-0,0211	5,3
	- 23	72,418	1	1	6	72,48	-0,0624	3,3

A VI: Indizierung des Pulverdiffraktogramms des Reaktionsproduktes (Na₂/Cu₂O/Na₂SO₄; DSC)

Nr	$2\theta_{\text{beob.}}[^{\circ}]$ h	k	I	2θ _{ber.} [°]	$2\theta_{beob.}$ - $2\theta_{ber.}[^{\circ}]$	rel. Int.[%]	$2\theta(Na_2O)$	h	k	I	rel. Int.[%]
1	18,331 2	0	0	18,33	0,0011	60,5					
2	26,043 2	2	0	26,036	0,0072	56					
3	27,925					44,9	27,7694	1	1	1	33
4	30,618 3	1	1	30,631	-0,0127	45,1					
5	32,02 2	2	2	32,029	-0,0092	97,7					
6	32,075					100	32,1727	2	0	0	41
7	37,18 4	0	0	37,152	0,0287	46,8					
8	40,693 3	3	1	40,625	0,0673	32					
9	46,328					77,2	46,1344	2	2	0	100
10	53,578 4	4	0	53,553	0,0248	51					
11	63,745 6	2	2	63,777	-0,032	25,3					
12	66,937 4	4	4	66,976	-0,0385	17,4					
13	67,646					18,5	67,3074	4	0	0	8
							74,3363	3	3	1	1
14	76,868					16,4	76,5899	4	2	0	5
15	85,823					18,9	85,4808	4	2	2	9
16	88,217			not	indexed	12,3					
							103,1866	4	4	0	2
							112,4502	6	0	0	1

A VII: Indizierung des Pulverdiffraktogramms des Reaktionsproduktes Na₂O/Na₂SO₄ (DSC)

Als weitere Phase konnte Na₂O [38] identifiziert werden
2θ _{beob.} [°]	rel. Int.[%] _{beob.}	2θ _{Lit.} [°]	h	k		rel. Int.[%] _{Lit.}
19,2554	26,17	19,035	1	1	1	71
23,3034	4,55	23,154	2	2	0	17
27,9718	17,47	27,769	1	1	1	33
28,2185	22,28	28,028	1	3	1	52
29,1743	31,2	28,991	0	4	0	55
29,8669	7,11	29,5827	1	1	0	5,3
31,4586	4,98					
32,2238	28,34	32,124	3	1	1	100
32,347	22,90	32,173	2	0	0	41
34,0689	21,75	33,827	0	2	2	52
36,7242	100	36,4414	1	1	1	100
38,214	6,62	38,336	3	3	1	7
38,7704	13,47	38,616	2	2	2	25
40,9562	2,52	40,757	1	5	1	6
42,6086	29,47	42,3293	2	0	0	34,73
44,712	8,44					
46,3118	55,32	46,134	2	2	0	100
48,7959	15,16	48,781	3	5	1	36

A VIII: Zuordnung der Reflexe des Pulverdiffraktogramms der Bühler-Ofen-Messung bei ca. 250°C (Na2O/Cu2O/Na2SO4)

Als Komponenten konnten identifiziert werden: β-Na₂SO₄ [47], Cu₂O [39], Na₂O [38]

A IX: Zuordnung der Reflexe des Pulverdiffraktogramms der Bühler-Ofen-Messung bei ca. 300°C (Na₂O/Cu₂O/Na₂SO4)

2θ _{beob.} [°]	rel. Int.[%] _{beob.}	2θ _{Lit.} [°]	h	k		rel. Int.[%] _{Lit.}
19,2769	6,24	19,2274	1	0	0	1,4
22,9437	43,27	22,9495	0	1	0	100
24,9635	21,08	24,9712	0	0	2	77,68
27,9374	18,34	27,769	1	1	1	33
29,9181	6,62	29,5827	1	1	0	5,3
31,5893	35,5	31,7078	1	0	2	74,17
32,3496	20,61	32,173	2	0	0	41
33,4507	32,81	33,6273	1	1	0	67,87
36,7224	100	36,4414	1	1	1	100
42,6116	28,93	42,3293	2	0	0	34,73
46,2601	63,25	46,134	2	2	0	100
46,5318	18,48	46,8904	2	0	2	39,74

Als Komponenten konnten identifiziert werden: γ-Na₂SO₄ [48], Cu₂O [39], Na₂O [38]

2θ _{beob} .[°]	rel. Int.[%] _{beob.}	2θ _{Lit.} [°]	h	k		rel. Int.[%] _{Lit.}
21,6042	100	21,446	1	0	1	100
22,8586	30,56	22,9495	0	1	0	100
24,7761	25,52	24,9712	0	0	2	77,68
27,8795	15,43	27,769	1	1	1	33
28,5975	12,36	28,401	2	2	0	10
29,6374	5,31	29,5827	1	1	0	5,3
31,3235	71,22	31,7078	1	0	2	74,17
32,0067	16,34	31,925	3	1	0	10
32,2384	17,61	32,173	2	0	0	41
33,3805	30,51	33,6273	1	1	0	67,87
35,9868	98,45	35,981	3	0	1	60
36,7266	44,63	36,4414	1	1	1	100
38,4481	40,01	38,439	0	0	2	30
38,9518	11,52					
42,6019	21,99	42,3293	2	0	0	34,73
43,3192	42,72	43,276	3	3	0	40
46,1541	60,36	46,134	2	2	0	100
46,3955	15,29					
55,2968	23,57					

A X: Zuordnung der Reflexe des Pulverdiffraktogramms der Bühler-Ofen-Messung bei ca. 400°C (Na₂O/Cu₂O/Na₂SO₄)

Als Komponenten konnten identifiziert werden: Na₂O [38], Cu₂O [39], γ-Na₂SO₄ [48], NaCuO [2]

A XI: Zuordnung der Reflexe des Pulverdiffraktogramms der Bühler-Ofen-Messung bei ca. 550°C (Na₂O/Cu₂O/Na₂SO₄)

2θ _{beob} .[°]	rel. Int.[%] _{beob.}	2θ _{Lit.} [°]	h	k		rel. Int.[%] _{Lit.}
14,4321	4,46	14,136	1	1	0	5
18,5494	9,86	18,503	1	0	0	15,643
19,9551	4,02	19,891	2	0	0	5
21,421	88,83	21,262	1	0	1	100
21,54	100	21,446	1	0	1	100
26,2963	8,49	26,283	1	1	0	13,362
28,001	2,5	28,016	1	0	2	6,102
28,5465	9,32	28,401	2	2	0	10
29,5693	4,31	29,982	1	1	0	25
31,944	14,46	31,925	3	1	0	10
33,7389	64,96	33,786	1	1	2	56,447
35,898	59,26	35,981	3	0	1	60
36,6953	94,49	37,010	1	1	1	100
37,3924	52,99	37,511	2	0	0	69,020
38,3129	21,2	38,439	0	0	2	30
41,9392	17,92	42,437	0	0	4	18,277
42,4594	22,69	42,612	2	0	0	100
43,1988	40,97	43,517	2	1	1	13,077

Als Komponenten konnten identifiziert werden: NaCuO [2], Cu₂O [39], Na₅{CuO₂](SO₄)

2θ _{beob} .[°]	rel. Int.[%] _{beob.}	2θ _{Lit.} [°]	h	k		rel. Int.[%] _{Lit.}
23,5822	30,9	23,689	1	0	1	66
27,7502	17,27	27,769	1	1	1	33
28,6057	39,78	28,929	0	0	2	28
29,5693	3,98	29,5827	1	1	0	5,3
32,1527	23,3	32,173	2	0	0	41
32,707	35,79	32,768	1	1	0	79
34,4025	70,19	34,696	1	0	2	100
35,8065	8,4	35,962	1	1	1	18
36,5074	100	36,4414	1	1	1	100
37,8864	50,79	38,027	2	0	0	5
40,6835	4,77	40,840	2	0	1	13
42,3939	28,81	42,3293	2	0	0	34,73
44,0588	10,28	44,013	0	0	3	1
46,0683	59,65	46,134	2	2	0	100
48,1577	22,37	48,475	2	0	2	54

A XII: Zuordnung der Reflexe des Pulverdiffraktogramms der Bühler-Ofen-Messung bei ca. 300°C (Na₂O/Cu₂O/Na₂SO₃)

Als Komponenten konnten identifiziert werden: Na₂O [38], Cu₂O [39], Na₂SO₃ [49]

A XIII: Zuordnung der Reflexe des Pulverdiffraktogramms der Bühler-Ofen-Messung bei ca. 400°C (Na₂O/Cu₂O/Na₂SO₃)

2θ _{beob} .[°]	rel. Int.[%] _{beob.}	2θ _{Lit.} [°]	h	k		rel. Int.[%] _{Lit.}
19,8679	9,81	19,981	2	0	0	5
21,3880	66,10	21,446	1	0	1	100
21,3719	79,81	21,262	1	0	1	100
26,2963	1,84	26,283	1	1	0	10,531
27,6604	8,35	27,769	1	1	1	33
28,3514	37,51	28,401	2	2	0	10
31,7712	10,53	31,925	3	1	0	10
32,623	47,53	32,173	2	0	0	41
34,1549	100	33,786	1	1	2	66,503
35,7454	58,58	35,981	3	0	1	60
37,7546	67,07	37,511	2	0	0	73,647
38,2147	28,76	38,439	0	0	2	30
41,979	4,17	41,474	1	1	3	4,231
42,1836	4,73	42,137	2	1	0	10,430
42,1836	5,9	42,437	0	0	4	21,070
43,1076	38,32	43,276	3	3	0	40
43,8819	19,61	43,517	2	1	1	12,514
45,8925	25,72	46,134	2	2	0	100
47,8856	25,62	47,465	2	1	2	5,608

Als Komponenten konnten identifiziert werden: Na2O [38], NaCuO [2], "Na5[CuO2](SO3)"

Anhang

A XIV: Indizierung des Pulverdiffraktogramms des Reaktionsproduktes (Na₂O/Cu₂O/Na₂SO₃;

400°C/Ag.Container)

Nr.	$2\Theta_{obs}$	h	k	I	$2\Theta_{calc.}$	$\Delta(2\Theta_{obs}-2\Theta_{calc.})$	rel. Int. [%]
1	10,417	0	0	1	10,415	0,0011	4,7
2	18,646	1	0	0	18,653	-0,0067	13,9
3	19,707	2	1	0	19,704	0,0028	9,1
4	21,409	1	0	1	21,409	-0,0003	62,3
5	22,905	0	2	1	22,855	0,051	11,2
6	26,469	1	1	0	26,498	-0,0294	9,1
7	28,174	1	0	2	28,168	0,0057	3,2
8	32,846	3	2	0	32,793	0,0526	2,5
9	33,357	1	1	3	33,369	-0,0125	10,3
10	34,003	1	1	2	34,000	0,0034	45,0
11	35,522	4	0	1	35,556	-0,0346	2,3
12	37,824	2	0	0	37,824	-0,0003	48,6
13	39,702			- not	indexed -		2,0
14	40,882	2	2	3	40,912	-0,0304	3,7
15	41,707	1	1	3	41,698	0,0087	3,4
16	42,547	0	0	4	42,577	-0,0301	19,3
17	43,354	1	1	4	43,321	0,0326	100,0
18	43,866	2	1	1	43,872	-0,0052	7,4
19	46,856	1	0	4	46,855	0,0011	4,8
20	47,828	2	1	2	47,820	0,0080	4,2
21	50,483	3	4	1	50,517	-0,0334	41,2
22	54,573	2	2	0	54,564	0,0090	10,0
23	56,714	4	3	3	56,737	-0,0229	3,5
24	57,621	1	0	5	57,619	0,0020	3,4
25	58,269	2	0	4	58,246	0,0223	12,9
26	61,714	2	1	4	61,723	-0,0086	5,0
27	65,892	3	1	2	65,868	0,0234	9,6
28	70,983	2	1	5	71,007	-0,0238	2,8
29	71,572	2	2	4	71,569	0,0035	4,9
30	72,476	3	2	1	72,501	-0,0253	4,9
31	74,207	7	3	2	74,186	0,0204	22,4

Rot gekennzeichnete Indizierungen führen zu einer orthorhombischen Zelle der Dimension: a = 1053,5(7) pm, b = 867,1(9) pm, c = 878,5(7) pm

2θ _{beob} .[°]	rel. Int.[%] _{beob.}	2θ _{Lit.} [°]	h	k	I	rel. Int.[%] _{Lit.}
18,1488	6,71	18,503	1	0	0	15,653
20,9379	73,08	21,262	1	0	1	100
22,1336	9,33	22,248	1	0	1	69,693
25,7523	8,07	26,283	1	1	0	13,362
33,4201	40,09	33,786	1	1	2	56,447
35,1443	12,43	35,383	1	1	2	100
36,7633	10,92					
37,5835	100	37,511	2	0	0	69,020
39,1419	6,75	39,299	2	0	0	64,925
42,954	50,34	42,437	0	0	4	18,277
43,6841	40,72	43,517	2	1	1	13,077
50,0185	19,17					
57,5253	10,86	57,910	2	0	4	20,150

A XV:Zuordnung der Reflexe des Pulverdiffraktogramms der Bühler-Ofen-Messung bei ca. 550°C (Na₂O/Cu₂O/Na₂SO₃)

Als Komponenten konnten identifiziert werden "Na₅[CuO₂](S)" und Na₅[CuO₂](SO₄)

A XVI: Zuordnung der Reflexe des Pulverdiffraktogramms der Bühler-Ofen-Messung bei ca. 600°C (Na₂O/Cu₂O/Na₂SO₃)

2θ _{beob.} [°]	rel. Int.[%] _{beob.}	2θ _{Lit.} [°]	h	k		rel. Int.[%] _{Lit.}
20,8165	73,84	21,262	1	0	1	100
22,0939	9,79	22,248	1	0	1	69,693
33,3548	14,73	33,786	1	1	2	56,447
35,0911	13,53	35,383	1	1	2	100
36,3758	64,97					
37,6481	100	37,511	2	0	0	69,020
39,0764	· 14	39,299	2	0	0	64,925
42,9114	47,97	42,437	0	0	4	18,277
43,6085	24,96	43,517	2	1	1	13,077
43,8752	49,99					
49,9652	17,89					

Als Komponenten konnten identifiziert werden "Na₅[CuO₂](S)" und Na₅[CuO₂](SO₄)

Anhang

Nr.	$2\theta_{obs}$	h	k	I	$2\theta_{calc.}$	$\Delta(2\theta_{obs}-2\theta_{calc.})$	rel. Int. [%]	Na ₂ O	h	k	I	rel. Int.[%]
1	15,565						11,6					
2	18,338	2	0	0	18,342	-0,0043	39,8					
3	23,561						22,5					
4	26,047	2	2	0	26,053	-0,0061	30,4					
5	26,995						7,1					
6	27,872						25,8	27,7694	1	1	1	33
7	30,652	3	1	1	30,651	0,0010	23,9					
8	31,415						16,3	32,1727	2	0	0	41
9	32,060	2	2	2	32,050	0,0099	100,0					
10	37,176	4	0	0	37,177	-0,0003	31,2					
11	38,243						40,5					
12	38,953						33,4					
13	40,648	3	3	1	40,653	-0,0049	17,3					
14	46,329						88,5	46,1344	2	2	0	100
15	48,918	5	1	1	48,924	-0,0062	6,9					
16	53,598	4	4	0	53,590	0,0076	39,5					
17	56,272	5	3	1	56,258	0,0143	9,9					
18	57,167	6	0	0	57,129	0,0380	4,2					
19	63,817	6	2	2	63,823	-0,0068	18,9					
20	67,013	4	4	4	67,025	-0,0122	6,3			_	_	_
21	67,607						10,2	67,3074	4	0	0	8
22	76,917						7,1	76,5899	4	2	0	5
23	85,899						12,8	85,4808	4	2	2	9
24	87,995	6	6	2	88,012	-0,0166	8,0					

A XVII: Indizierung des Pulverdiffraktogramms des DCS-Produktes (Na₂O/Na₂SO₃)

Als Nebenprodukt wurde Na₂O [38] identifiziert.

Nr.	$2\theta_{obs}$	h	k	I	$2\theta_{calc.}$	$\Delta(2\theta_{obs}-2\theta_{calc.})$	rel. Int. [%]	NaOH	h	k		rel. Int.[%]
1	13,552						19,2					
2	16,253						21,9	15,5747	0	2	0	14
3	19,152	1	1	1	19,152	-0,0003	15,7					
4	19,852	0	2	0	19,904	-0,0517	49,1					
5	20,413						16,1					
6	20,727	1	0	2	20,786	-0,0587	24,5					
7	21,871			_			18,6					
8	23,029	1	1	2	23,077	-0,0472	21,9					
9	24,853	0	2	2	24,855	-0,0019	100,0					
10	25,812	1	2	1	25,862	-0,0499	37,7					
11	26,651	1	0	3	26,646	0,0053	35,5					
12	27,241						11,7					
13	27,041	4	4	0	00 404	0.0647	27,1					
14	20,009	ן ס	0	3 0	20,494	0,0047	3,7 6.4					
10	29,394	2	0	1	29,390	-0,0042	0,4					
17	30,290	2	2 0	1	30,344	-0,0554	9,4 5 0					
10	30,900	2	0	ו ס	33,977	-0,0091	5,2 28.6					
10	33,000	1	0	Δ	33 256	0,0431	20,0					
20	34 117	•	U	-	00,200	0,0077	30 9					
21	34 797	1	1	Δ	34 785	0.0118	46 9					
22	35,286	'		•	01,700	0,0110	8.4					
23	35,726	2	2	0	35,757	-0.0313	49.3					
24	36.101	0	2	4	36.032	0.0695	45.0					
25	36.572	2	2	1	36.556	0.0159	8.8					
26	36,943				,	-,	18,4					
27	37,774						65,5	38,2183	1	1	1	100
28	38,944						34,3					
29	40,491	0	4	0	40,442	0,0489	40,8					
30	41,613	1	1	5	41,644	-0,0308	18,7					
31	42,304	2	0	4	42,298	0,0057	43,0					
32	43,884	1	4	1	43,892	-0,0080	10,3					
33	45,425	1	3	4	45,426	-0,0005	34,8					
34	46,006						15,7	47,8885	0	6	0	4
35	47,210	2	2	4	47,162	0,0476	43,2					
36	47,812	1	0	6	47,797	0,0150	33,1					
37	49,134	1	4	3	49,091	0,0434	11,5					
38	51,8/6	3	2	2	51,856	0,0201	4,1					
39	53,268	1	4	4	53,324	-0,0552	6,4 15 0		~	^	^	10
40	54,270	0	4	4		0.0404	15,8	53,8877	2	0	0	18
41	55,720	3	I	4	55,684	0,0424	10,2					
42	62 624						22,4					
43	62 162	٨	Δ	2	63 126	0 0363	8.0					
44	6/ 001	4 1	1	2	64 081	0,0302	10.3					
46	64 504	1	3	7	64 503	0,0103	14 1					
47	64 993	1	6	1	65 041	-0.0475	16.5					
48	66 727	4	1	3	66 673	0.0545	6.7					
49	69.390	4	2	3	69.440	-0.0501	10.9					
50	70.003	4	3	1	69.983	0.0203	9.1					
51	70.691	0	6	4	70.682	0,0094	10.3					
52	72,411	1	0	9	72,440	-0,0288	7,6					
53	72,884	4	2	4	72,925	-0,0413	5,4					

A XVIII: Indizierung des Pulverdiffraktogramms für Na₅[CuO₂](OH)₂

Nr.	$2\theta_{obs}$	h	k		$2\theta_{calc.}$	$\Delta(2\theta_{obs}-2\theta_{calc.})$	rel. Int. [%]	NaOH	h k l	rel. Int.[%]
54	73,705	3	3	6	73,750	-0,0456	3,8			
55	74,780	3	5	3	74,756	0,0234	5,9			
56	77,833	2	3	8	77,847	-0,0142	2,8			
57	79,235	5	0	1	79,224	0,0115	5,8			
58	80,617	5	0	2	80,659	-0,0417	4,5			
59	86,432	0	7	5	86,407	0,0255	7,3			

Fortsetzung der Indizierung des Pulverdiffraktogramms für Na₅[CuO₂](OH)₂

Als Nebenprodukt konnte NaOH [57] identifiziert werden

A XIX: Zuordnung der Reflexe der Bühlerofenmessung (Na₂O/Cu₂O/NaOH) bis 300°C

2θ _{beob} .[°]	rel. Int.[%]beob.	2θ _{Lit.} [°]	h	k	I	rel. Int.[%] _{Lit.}
15,5567	53,28	15,575	0	2	0	14
27,8161	23,86	27,769	1	1	1	33
29,6761	4,74	29,5827	1	1	0	5,30
31,274	100	31,396	0	4	0	19
32,2041	36,13	32,173	2	0	0	41
36,5344	93,6	36,4414	1	1	1	100
37,9984	56,12	38,218	1	1	1	100
41,1137	2,75					
42,415	26,92	42,3293	2	0	0	34,73
44,2719	4,18	44,554	1	3	1	6
46,1291	97,35	46,134	2	2	0	100
47.619	18.1	47.889	0	6	0	4

300°C-400°C

000 0 100 0	<u> </u>					
2θ _{beob} .[°]	rel. Int.[%] _{beob.}	2θ _{ber.} [°]	h	k	I	rel. Int.[%] _{ber.}
16,3076	23,87	16,340	1	0	1	52,460
19,9036	43,51	19,910	0	2	0	100
20,7457	28,34	20,784	1	0	2	41,358
24,8406	35,82	24,862	0	2	2	69,685
25,7929	44,67	25,863	1	2	1	72,363
26,6001	41,23	26,647	1	0	3	49,847
27,6876	21,05	27,769	1	1	1	33
32,0642	27,2	32,173	2	0	0	41
34,7255	28,23	34,564	2	1	2	24,623
35,5876	49,87	35,750	2	2	0	86,327
35,9816	100	36,042	0	2	4	72,916
38,2656	10,91	38,862	2	2	2	12,914
40,3289	77,51	40,455	0	4	0	82,791
42,1268	66,13	42,294	2	0	4	66,496
43,176	48,11	43,280	0	4	2	3,597
43,7244	10	43,902	1	4	1	12,709
45,2753	26,81	45,255	2	3	2	18,764
45,9386	75,89	46,134	2	2	0	100
47,0192	21,4	47,161	2	2	4	17,036
47,6769	14,28	47,343	3	0	2	21,997

Als Komponenten konnten identifiziert werden: Na₅[CuO₂](OH)₂, Na₂O [38]

Oberhalb 40	0°C							
2θ _{beob.} [°]	rel.	Int.[%]beob.	$2\theta_{Lit}$.[°]	h	k	I	rel. Int.[%] _{Lit.}
13,6614		6,03						
18,0927		32		19,891	2	0	0	5
21,9251		55,68		21,446	1	0	1	100
32,9841		38,53		32,925	3	1	0	10
36,6658		53,13		35,981	3	0	1	60
37,8703		100		38,439	0	0	2	30
							-	

Als Komponente konnte identifiziert werden NaCuO [2]

Nr,	$2\theta_{obs}$	h	k	I	$2\theta_{calc,}$	$\Delta(2\theta_{obs}-2\theta_{calc,})$	rel, Int, [%]	NaOH/Na ₂ O	h	k	I	[%]
1	15,513						37,0	15,575	0	2	0	14
2	17,523	0	2	0	17,490	0,0333	37,3					
3	17,939	2	0	0	17,951	-0,0116	20,8					
4	20,020	2	1	0	19,988	0,0322	12,6					
5	21,401	2	1	1	21,355	0,0457	47,7					
6	22,285						11,6					
7	24,258	1	0	3	24,214	0,0441	33,2					
8	24,850	1	2	2	24,782	0,0679	29,5					
9	27,782						14,7	27,769	1	1	1	33
10	29,523	3	1	1	29,484	0,0386	14,9					
11	30,303	2	1	3	30,236	0,0666	14,2					
12	31,407	1	0	4	31,454	-0,0469	43,5	31,396	0	4	0	19
13	32,248	3	1	2	32,304	-0,0561	18,3					
14	33,093						29,6	32,173	2	0	0	41
15	35,013	0	2	4	35,015	-0,0020	27,3					
16	35,556	2	3	2	35,549	0,0068	27.3					
17	36,258	1	2	4	36,213	0,0457	36,0					
18	38.222	4	1	1	38.251	-0.0287	100.0	38.218	1	1	1	100
19	39,028	1	0	5	38,990	0.0379	46,4					
20	39,633	2	2	4	39,617	0,0159	40,3					
	,				,	,	,	44,554	1	3	1	6
21	44,735	3	3	3	44,712	0,0226	21,4					
22	45,568				,	,	19,7	46,134	2	2	0	100
23	46.311	2	4	3	46.323	-0.0112	53.4	,				
	,	1	5	1	46,332	-0,0207	,					
24	47,911	4	0	4	47,893	0.0173	20,6					
	,				,	,	,	47,889	0	6	0	4
25	53.864						26,4	53,888	2	0	0	18
26	54,472	1	3	6	54.509	-0.0362	28.8					
-	- ,		-	-	- ,	-,	- , -	54.688	3	1	1	5
27	54,879	3	1	6	54,853	0,0259	17,5	,				
28	55.547	4	3	4	55,494	0.0531	28.5	55.550	1	5	1	14
29	56.250	2	4	5	56.232	0.0181	16.4	,		-		
	,	_	-	-	,	-,	,	56.403	2	2	0	2
								57.363	2	2	2	7
								63.687	2	4	0	6
30	66,780	7	0	1	66,718	0,0622	12,1	-,:	-		-	
31	67,346	2	7	0	67,355	-0,0090	7,2	67,346	4	0	0	8
32	69,158	4	6	2	69,174	-0,0163	10,8	<i>,</i>				

A XX: Indizierung des Pulverdiffraktogramms von $Na_{10}[CoO_3]{[CoO_3](OH)_2}$

Reflexe von NaOH [57] sind rot eingefärbt, als weiteres Produkt wird Na₂O [38] gefunden.

A XXI: Indizierung der Pulveraufnahme vo	on Na ₁₁ [CuO ₄](SO ₄) ₃
--	--

Nr.	$2\theta_{obs.}$	h	k		$2\theta_{calc.}$	$\Delta(2\theta_{obs.}-2\theta_{calc.})$	rel. Int. [%]
1	13,914	0	1	1	13,923	-0,0087	20
2	16,769	2	1	0	16,782	-0,0131	9,1
3	18,265	1	1	2	18,24	0,025	3,9
4	20,626	2	1	2	20,643	-0,0174	100
5	21,954	0	1	3	21,968	-0,0144	4,7
6	22,238	4	0	0	22,251	-0,0128	11,5
7	24,017	0	0	4	24,001	0,0159	6,2
8	25,293	0	2	0	25,297	-0,0039	19
9	26,479	2	0	4	26,502	-0,0227	2,3

Nr.	$2\theta_{obs.}$	h	k		$2\theta_{calc.}$	$\Delta(2\theta_{obs.}-2\theta_{calc.})$	rel. Int. [%]
10	29,331	3	0	4	29,349	-0,0183	3,8
11	31,376	5	1	1	31,321	0,0544	6,3
12	32,189	2	0	5	32,19	-0,0018	4,4
13	32,951	4	0	4	32,958	-0,0072	40,3
14	33,931	4	2	0	33,939	-0,0075	48,5
15	35,151	0	2	4	35,151	-2x10 ⁻⁴	54,5
16	37,131	5	0	4	37,138	-0,0074	14
17	38,438	6	0	3	38,389	0,0487	5,7
18	40,165	1	2	5	40,151	0,0142	8,7
19	41,925	2	3	2	41,927	-0,0019	3,3
20	42,622	0	3	3	42,642	-0,0204	10,3
21	43,015	6	2	1	43,017	-0,0022	14,9
22	44,219	2	0	7	44,227	-0,0076	2,3
23	44,674	0	1	7	44,665	0,0093	7,8
24	45,364	8	0	0	45,402	-0,0382	14,6
25	46,08	3	3	3	46,076	0,0044	2
26	47,158	8	0	2	47,116	0,0421	2
27	47,7	6	1	5	47,672	0,0283	4,9
28	49,123	0	0	8	49,145	-0,0224	5,5
29	51,943	0	4	0	51,945	-0,0022	14,3
30	52,983	6	2	5	53,026	-0,0431	5,1
31	53,639	2	4	1	53,673	-0,0341	2,9
32	54,455	5	3	4	54,45	0,0047	3
33	56,368	7	1	6	56,398	-0,0294	1,8
34	58,67	8	2	4	58,683	-0,0133	11,9
35	61,058	4	2	8	61,067	-0,0097	10,8
36	62,903	4	4	4	62,904	-0,001	7,2
37	63,996	8	3	3	64,041	-0,045	3,3
38	65,62	8	2	6	65,689	-0,0689	2,8
39	68,946	1	2	10	68,958	-0,0124	4,1
40	70,654	7	2	8	70,72	-0,0656	2,3
41	71,434	8	4	0	71,425	0,0091	3,8
42	74,283	0	4	8	74,303	-0,0194	2,7
43	76,479	12	2	0	76,473	0,0054	3,5
44	82,838	10	3	6	82,862	-0,0233	2,4

Fortsetzung der Indizierung des Pulöverdiffraktogramms von Na₁₁[CuO₄](SO₄)₃

∢(O-Na-O)	[°]	∢ (O-Na-O)	[°]	∢ (O-Na-O)	[°]
06-Na1-O4	106,2(2)	O6-Na1-O2	95,1(1)	04-Na1-O2	94,8(2)
07-Na2-O3	97,2(2)	07-Na2-01	86,0(2)	07-Na2-O3	109,1(1)
O3-Na2-O1	95,2(1)	03-Na2-03	153,5(1)	01-Na2-O3	89,3(1)
04-Na3-O3	101,3(2)	04-Na3-05	105,4(2)	04-Na3-06	113,5(2)
O3-Na3-O5	139,5(2)	03-Na3-06	77,5(1)	05-Na3-06	117,3(1)
O3-Na4-O6 O3-Na4-O1 O6-Na4-O1 O1-Na4-O1	106,0(1) 92,4(1) 85,8(1) 75,9(1)	03-Na4-01 06-Na4-01 01-Na4-05	103,3(1) 78,2(1) 107,1(1)	03-Na4-05 06-Na4-05 01-Na4-01	115,8(1) 134,6(1) 160,1(2)
01-Na5-07	84,8(2)	01-Na5-05	107,2(1)	01-Na5-O2	96,7(1)
07-Na5-05	108,7(2)	07-Na5-02	92,3(2)	05-Na5-O2	149,2(2)
07-Na6-05	111,1(2)	07-Na6-O4	105,7(2)	07-Na6-O2	124,0(2)
05-Na6-04	136,6(2)	05-Na6-O2	98,2(2)	04-Na6-O2	78,8(2)
07-Na7-01	84,4(2)	07-Na7-O2	96,3(2)	07-Na7-06	171,3(2)
07-Na7-04	97,4(2)	07-Na7-O3	87,7(2)	01-Na7-02	98,1(2)
01-Na7-06	86,9(1)	01-Na7-O4	176,7(2)	01-Na7-03	89,2(1)
02-Na7-06	84,6(1)	02-Na7-O4	84,4(1)	02-Na7-03	171,9(2)
06-Na7-04	91,3(1)	06-Na7-O3	92 5(1)	04-Na7-03	88 1(1)

A XXII: Winkel [°] der Na-O-Polyeder in Na₉[FeO₃][FeO₄]

Erklärung

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig und ohne unzulässige Hilfe angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen - , die von anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät zur Prüfung vorgelegen hat; daß sie noch nicht veröffentlicht ist, sowie daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der geltenden Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Gerd Meyer betreut worden.

Köln, Dezember 2001

Zur Wahrung der Priorität wurden Teile dieser Arbeit bereits publiziert:

- Peter Amann und Angela Möller, "Synthesis, Crystal Structure and Reactivity of Na₅[CuO₂](OH)₂", *Z. Anorg. Allg. Chem.*, im Druck 2001.

Dank

An dieser Stelle darf ich die Gelegenheit wahrnehmen und all jenen meinen Dank aussprechen, die mich mit Rat und Tat unterstützten und zum Gelingen dieser Arbeit beigetragen haben:

Zunächst möchte ich meinem Doktorvater Prof. Dr. Gerd Meyer aufrichtig für die gute menschliche und finanzielle Betreuung danken.

Für die Übernahme des Korreferates danke ich Herrn Prof. Dr. W. Jung.

Ganz besonders möchte ich Angi danken, am Anfang fernschriftlich, später persönlich hat sie mir als "Doktormutter" viele Ratschläge gegeben und mit Na₅[NiO₂](CO₃) "eine Tür geöffnet". Die vielen fachlichen und "nicht fachlichen" Gespräche haben wesentlich zum Gelingen dieser Arbeit beigetragen und ein hohes Maß an moralischer Unterstützung geliefert.

Der jetzigen und früheren "Laborbesatzung 407": Jens, der mir als mein Vorgänger viele hilfreiche Tips gab, Stephan, Peter, Meike, und Norbert; die wesentlich zum freundschaftlichen Laborklima beitrugen.

Den Betreuern und Betreuerinnen der Geräte: Ingrid, Ingo, Wicky, Frau Schulze, Horst und den Dirks danke ich für die Bewältigung der "Probenflut" und die Diskussionen "nebenher".

Allen jetzigen und ehemaligen Mitgliedern des Arbeitskreises: Morten, Jalil, Micha, Marco, Klaus, Claudia, Sven und denen, die aus platzgründen nicht namentlich erwähnt werden können danke ich für das tolle Arbeitsklima und die Unternehmungen nach der Arbeit.

Stefanie danke ich nicht nur für die kritische Durchsicht dieser Arbeit hinsichtlich Interpunktion und Rechtschreibung, sondern auch für die moralische Unterstützung.

Mein besonderer Dank gilt meiner Familie, meinen Eltern, die mir das Studium ermöglicht haben und meinen Geschwistern Cordula und Jochen. Ihr Vertrauen und die aufmunternden Worte haben wesentlich zur Entstehung dieser Arbeit beigetragen.

LEBENSLAUF

Persönliche Daten:

Peter Ulrich Amann
10.07.1971
Leverkusen
Am Hang 17
51379 Leverkusen
Manfred und Ingrid Amann (geb. Sander)
ledig
deutsch

Schulausbildung:

1978 - 1980	Tannenbergschule, Seeheim-Jugenheim
1980 - 1982	Städt. Gemeinschaftsgrundschule, Leverkusen
1982 - 1991	Landrat-Lucas-Schule, Leverkusen
	Abschluß: Abitur

Zivildienst:

Nov. 1991- Jan. 1993	CBT Wohnhaus Upladin, Leverkusen
----------------------	----------------------------------

Studium:

S	SS 1993 - SS 1999	Chemie an der Universität zu Köln
S	SS 1996	Diplom-Chemiker-Vorprüfung (Vordiplom)
V	VS 1998/1999	Diplom-Chemiker-Hauptprüfung
J	lan. 1999 - Aug. 1999	Diplomarbeit an der Universität zu Köln,
		Institut für Anorganische Chemie,
		Lehrstuhl Prof. G. Meyer
		Thema: "Drei komplexe alkalireiche Oxosilicate"
	Feb. 1999 - Aug. 1999	Studentische Hilfskraft am Institut für
		Anorganische Chemie der Universität zu Köln
	Sept. 1999 - Juli 2000	Wissenschaftliche Hilfskraft am Institut für
		Anorganische Chemie der Universität zu Köln
Promotio	n:	

seit Sept. 1999 seit Aug. 2000

Wissenschaftlicher Mitarbeiter am Institut für Anorganische Chemie der Universität zu Köln