Die Einwirkung von Ammoniumfluoriden auf Gemenge von Halb- und Übergangsmetallen

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von

Dirk Göbbels aus Köln

Köln 2000

Berichterstatter: Prof. Dr. G. Meyer

Prof. Dr. W. Jung

Tag der mündlichen Prüfung: 14.12.2000

Wenn Du ein Schiff bauen willst, dann trommle nicht Männer zusammen, um Holz zu beschaffen, Aufgaben zu vergeben und die Arbeit einzuteilen, sondern lehre sie die Sehnsucht nach dem endlosen Meer. Antoine de Saint-Exupéry

Abstract

Durch Umsetzung von Bor mit NH_4HF_2 bzw. NH_4F konnte NH_4BF_4 einkristallin dargestellt werden. NH_4BF_4 kristallisiert im Baryt-Typ. In der Struktur liegen isolierte $[NH_4]^+$ - und $[BF_4]^-$ -Tetraeder vor. Desweiteren konnte die Struktur von NH_4BF_4 bei 140 K strukturell charakterisiert werden. Durch DTA/TG- bzw. DSC-Methoden wie auch der in-situ-Pulverdiffraktometrie konnte das thermische Verhalten von NH_4BF_4 sowohl unter inerten (Ar) als auch reaktiven (NH_3) Bedingungen aufgeklärt werden.

Bei der Reaktion von Ammoniak mit Bortrifluorid entsteht das Addukt **F**₃**B-NH**₃. Wie die Strukturanalyse zeigt liegt das Molekül in der gestaffelten Konformation vor. Dabei ist das Bor- wie auch das Stickstoffatom nahezu tetraedrisch koordiniert. Anhand von DTA/TG- bzw. DSC-Methoden wie auch der in-situ-Pulverdiffraktometrie konnten Einblicke in das thermische Verhalten von F₃B-NH₃ gewonnen werden.

Bei der Reaktion von Bor mit NH_4F in Monelampullen entstanden als Nebenprodukt tiefblaue Einkristalle von $[Ni(NH_3)_6][BF_4]_2$. Die Verbindung kristallisiert in einem Derivat des CaF_2 -Typs. In der Struktur liegen isolierte $[Ni(NH_3)_6]^{2+}$ -Oktaeder und fehlgeordnete $[BF_4]^-$ -Tetraeder vor. Durch Umsetzung von Metallen der ersten Übergangsreihe mit Bor und Ammoniumfluorid in Monelampullen konnten die analogen Verbindungen $[M^{II}(NH_3)_6][BF_4]_2$ mit M = Cr, Mn, Fe, Co, Ni und Zn dargestellt und strukturell charakterisiert werden. Am Beispiel von $[Ni(NH_3)_6][BF_4]_2$ konnte das thermische Verhalten sowohl unter Argon- als auch Ammoniak-Atmosphäre aufgeklärt werden.

Bei der Umsetzung von Chrom mit Bor und Ammoniumfluorid im molaren Verhältnis von 1:2:8 entstehen bernsteinfarbene Einkristalle von $[\mathbf{Cr}(\mathbf{NH_3})_6][\mathbf{Cr}(\mathbf{NH_3})_2\mathbf{F_4}][\mathbf{BF_4}]_2$. Die Verbindung kristallisiert im tetragonalen Kristallsystem. In der Struktur liegen zwei kristallographisch unterscheidbare Chrom(III)-Ionen vor, die oktaedrisch entweder nur von $\mathbf{NH_3}$ -Liganden oder heteroleptisch gemäß $[\mathbf{Cr}(\mathbf{NH_3})_2\mathbf{F_4}]$ umgeben sind. Die isoliert in der Struktur vorliegenden $[\mathbf{BF_4}]^-$ -Tetraeder sind fehlgeordnet. Das thermische Verhalten von $[\mathbf{Cr}(\mathbf{NH_3})_6][\mathbf{Cr}(\mathbf{NH_3})_2\mathbf{F_4}][\mathbf{BF_4}]_2$ wurde mit DTA/TG-Methoden untersucht. Desweiteren wurden spektroskopische Untersuchungen an $[\mathbf{Cr}(\mathbf{NH_3})_6][\mathbf{Cr}(\mathbf{NH_3})_2\mathbf{F_4}][\mathbf{BF_4}]_2$ durchgeführt.

Durch Umsetzung von Silicium bzw. Germanium mit NH_4HF_2 in Kupferampullen konnten die isotypen Verbindungen (NH_4) $_3$ [MF_6]F (M = Si, Ge) dargestellt werden. Sie kristallisieren im tetragonalen Kristallsystem. Die Ammonolyse von (NH_4) $_3$ [MF_6]F (M = Si, Ge) konnte unter Normaldruck mit Hilfe von DTA/TG-Methoden wie auch der in-situ-Pulverdiffraktometrie aufgeklärt werden.

Durch Umsetzung von Phosphor, Antimon und Bismut mit Ammoniumfluoriden wurde versucht, neue oder bereits bekannte ternäre Ammoniumfluorometallate der 15. Gruppe darzustellen. $(\mathbf{NH_4})_2[\mathbf{SbF_5}]$ entsteht bei der Reaktion von Antimon mit $\mathbf{NH_4HF_2}$ in Kupferampullen. Die Verbindung kristallisiert im orthorhombischen Kristallsystem. In der Struktur liegen isolierte quadratische Pyramiden von $[\mathbf{SbF_5}]^2$ -Ionen vor, in denen das Antimon(III)-Ion aus der Grundebene ausgelenkt ist.

Abstract

The reaction of boron with NH_4HF_2 and NH_4F , respectively, yields single crystals of NH_4BF_4 . The compound adopts the baryte type of structure and contains isolated $[NH_4]^+$ and $[BF_4]^-$ tetrahedra. The crystal structure was additionally refined from low temperature data. Furthermore its thermal decomposition was studied by means of DTA(DSC)/TG methods and in-situ powder diffraction under inert (Ar) and reactive (NH_3) conditions.

Single crystals of $\mathbf{F_3B}$ -N $\mathbf{H_3}$ were obtained by reaction of $\mathrm{BF_3}$ and $\mathrm{NH_3}$. According to the X-ray structure determination the Lewis-acid-base complex contains the $\mathrm{F_3B}$ -N $\mathrm{H_3}$ molecule in the staggered conformation. Both, the boron and the nitrogen atom are nearly tetrahedrally coordinate. The thermal analyses of the complexes were performed using X-ray powder diffraction techniques as well as DTA(DSC)/TG measurements.

The reaction of boron and NH_4F in monel ampoules led to blue single crystals of $[Ni(NH_3)_6][BF_4]_2$. The structure can be seen as a derivative of the fluorite type of structure with the $[Ni(NH_3)_6]^{2+}$ octahedra replacing the Ca^{2+} ions and the disordered $[BF_4]^-$ ions substituting for F. By adding various transition metals, analogous compounds $[M^{II}(NH_3)_6][BF_4]_2$ with M = Cr, Mn, Fe, Co, Ni, Zn were gained. For the example of the Ni compound the thermal behaviour was studied under argon and ammonia atmospheres, respectively.

Amber colored single crystals of $[\mathbf{Cr}(\mathbf{NH_3})_6][\mathbf{Cr}(\mathbf{NH_3})_2\mathbf{F_4}][\mathbf{BF_4}]_2$ formed during the reaction of Cr, B and NH₄F in a molar ratio of 1 : 2 : 8. In the tetragonal structure two different Cr³⁺ ions are present. One of them is octahedrally coordinate exclusively by NH₃ ligands, the second one has two NH₃ and four F ligands. Again, the $[\mathbf{BF_4}]^-$ tetrahedra are disordered. The compound was additionally characterized thermally and spectroscopically.

Reacting silicon and germanium, respectively, with NH_4HF_2 in copper ampoules, the fluorides $(NH_4)_3[MF_6]F$ (M = Si, Ge) were obtained in single crystalline form. The ammonolyses of the tetragonal compounds were monitored by means of DTA/TG and X-ray powder diffraction methods.

Attemps to prepare ternary ammonium fluorides of group 15 elements led only to single crystals of $(\mathbf{NH_4})_2[\mathbf{SbF_5}]$ which formed during the reaction of Sb and $\mathbf{NH_4HF_2}$ in copper containers. A characteristic feature of the crystal structure are isolated square prismatic $[\mathbf{SbF_5}]^{2-}$ units with the $\mathbf{Sb^{3+}}$ ions shifted from the center of the square plane.

Inhaltsverzeichnis

I Einleitung	1
II Allgemeiner Teil	4
1 Apparative Methoden	4
1.1 Trocknung der Ammoniumfluoride NH ₄ F und NH ₄ HF ₂	4
1.2 Arbeiten unter Schutzgas - Die "Argon-Glove-Box"	4
1.3 Ampullenmaterial	5
1.4 Verschweißen und Abschmelzen der Metallampullen	5
1.5 Der Versuchsaufbau	6
1.6 Verwendete Chemikalien und Geräte	7
2 Physikalische Methoden	8
2.1 Röntgenographische Methoden	8
2.1.1 Pulverdiffraktometrie	8
2.1.2 In-situ zeit- und temperaturaufgelöste Pulverdiffraktometrie	9
2.1.3 Imaging-plate-Diffraktometer	10
2.1.4 Einkristallstrukturbestimmung	10
2.2 Rasterelektronenmikroskopie	11
2.3 EDAX-Verfahren	13
2.4 Atomabsorptionsspektroskopie	13
2.5 Thermoanalyse	13
2.6 Infrarot-Spektroskopie	15
2.7 Verwendete Computerprogramme	15

III Spezieller Teil	17
1 Synthese, Kristallstruktur und thermisches Verhalten von NH ₄ BF ₄	17
1.1 Einleitung	17
1.2 Darstellung von Ammoniumtetrafluoroborat	17
1.3 Beschreibung und Diskussion der Kristallstruktur von NH ₄ BF ₄	19
1.4 Thermisches Verhalten von NH ₄ BF ₄	27
1.4.1 Thermischer Abbau von NH ₄ BF ₄	27
1.4.2 Thermisches Verhalten von NH ₄ BF ₄ bei tiefen Temperaturen	32
2 Der Lewis-Säure-Base-Komplex F ₃ B-NH ₃	37
2.1 Einleitung	37
2.2 Darstellung von F ₃ B-NH ₃	37
2.3 Kristallstruktur von F ₃ B-NH ₃	39
2.4 Thermisches Verhalten von F ₃ B-NH ₃	45
3 Synthese und Charakterisierung von $[M^{II}(NH_3)_6][BF_4]_2$ mit $M = Cr$, Mn , Fe , Co , Ni und Zn	53
3.1 Einleitung	53
3.2 Synthese von Hexaamminübergangsmetall(II)-bis-tetrafluoroboraten	53
3.3 Kristallstruktur von $[M^{II}(NH_3)_6][BF_4]_2$ (M = Cr, Mn, Fe, Co, Ni und Zn)	57
3.4 Thermisches Verhalten von $[Ni(NH_3)_6][BF_4]_2$	71
3.4.1 DSC/TG/EG-Untersuchungen	71
3.4.2 Thermischer Abbau von $[Ni(NH_3)_6][BF_4]_2$ in der "Bühler-Kammer"	75
3.4.3 Thermisches Verhalten von $[Ni(NH_3)_6][BF_4]_2$ bei tiefen Temperaturen	77
4 Synthese, Kristallstruktur und thermisches Verhalten von	81
$[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$	
4.1 Darstellung von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$	81
4.2 Kristallstruktur von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$	83
4.3 Spektroskopische Untersuchung von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$	90
4.4 Thermisches Verhalten von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$	94

5	Umsetzungen von Ammoniumfluoriden mit Elementen der 14.	101
	Gruppe (Si, Ge, Pb)	
	5.1 Auf- und Abbau von Ammoniumfluoriden	101
	5.1.1 Einleitung	101
	5.1.2 Darstellung von Ammoniumfluorosilicaten	102
	5.1.3 Thermisches Verhalten von $(NH_4)_3[SiF_6]F$	105
	5.2 Synthese, Struktur und thermisches Verhalten von (NH ₄) ₃ [GeF ₆]F	109
	5.2.1 Einleitung	109
	5.2.2 Reaktionen von Germanium mit Ammoniumfluoriden	109
	5.2.3 Kristallstruktur von $(NH_4)_3[GeF_6]F$	114
	5.2.4 Thermisches Verhalten von (NH ₄) ₃ [GeF ₆]F	117
	5.2.5 Phasenumwandlung von $(NH_4)_3[GeF_6]F$	120
	5.3 Umsetzungen von Blei mit Ammoniumfluoriden	126
	5.3.1 Einleitung	126
	5.3.2 Reaktionen von Blei mit Ammoniumhalogeniden	126
6	Umsetzungen von Ammoniumhalogeniden mit Phosphor,	128
	Antimon und Bismut	
	6.1 Umsetzungen von rotem bzw. Hittorfschem Phosphor mit Ammoniumfluorid	128
	und Ammoniumhydrogendifluorid	
	6.1.1 Einleitung	128
	6.1.2 Versuche zur Synthese und Charakterisierung von Ammoniumfluoro-	129
	phosphaten	
	6.1.3 Thermisches Verhalten von NH ₄ PF ₆	133
	6.2 Umsetzungen von Antimon bzw. Antimontrichlorid mit Ammoniumhalogeniden	140
	6.2.1 Einleitung	140
	6.2.2 Reaktionen von Antimon mit Ammoniumhydrogendifluorid sowie von Anti- montrichlorid mit Ammoniumchlorid	140
	6.2.3 Kristallstruktur von Diammoniumpentafluoroantimonat(III), $(NH_4)_2[SbF_5]$	145
	6.3 Reaktionen von Bismut mit Ammoniumfluorid und Ammoniumhydrogendifluorid	149
	6.3.1 Einleitung	149

	6	3.2 Versuche zur Synthese und Charakterisierung von Ammoniumfluoro- bismutaten	149
		ersuchung verschiedener Ampullenmaterialien am Beispiel der these von (NH ₄) ₃ [SnF ₆]F	151
	7.1 E	länleitung	151
	7.2 S	ynthese von $(NH_4)_3[SnF_6]F$	151
	7.3 A	analytische Untersuchung der verwendeten Containermaterialien	152
	7.4 P	Pulverdiffraktometrische Untersuchung der Reaktionsprodukte	156
8	Erfa	ssung der herrschenden Drücke in den Reaktionscontainern	164
9	Zusa	ammenfassung	172
IVI	Lite	ratur	180
VA	nha	ang	186
	5.1	MIR-Spektren von Ammoniumhydrogendifluorid und Ammoniumfluorid	186
	5.2	Kristalldaten von $[M^{II}(NH_3)_6][BF_4]_2$ mit $M = Cr/Ni$, Fe, Co und Zn	188
	5.3	Indizierung des Pulverdiffraktogramms von NH ₄ BF ₄ bei 298 K	196
	5.4	Indizierung des Pulverdiffraktogramms von NH ₄ BF ₄ bei 140 K	199
	5.5	Indizierung des Pulverdiffraktogramms von F ₃ B-NH ₃	201
	5.6	Indizierung des Pulverdiffraktogramms von $[Ni(NH_3)_6][BF_4]_2$	203
	5.7	Indizierung des Pulverdiffraktogramms von $[\operatorname{Cr}(\operatorname{NH}_3)_6][\operatorname{Cr}(\operatorname{NH}_3)_2\operatorname{F}_4][\operatorname{BF}_4]_2$	204
	5.8	Indizierung des Pulverdiffraktogramms von $(NH_4)_3[CrF_6]$	206
	5.9	Indizierung des Pulverdiffraktogramms von $(NH_4)_3[SiF_6]F$	207
	5.10	Indizierung des Pulverdiffraktogramms von $(NH_4)_3[GeF_6]F$	209
	5.11	Indizierung des Pulverdiffraktogramms von $(NH_4)_2[GeF_6]$	211
	5.12	Indizierung des Pulverdiffraktogramms von $(NH_4)_3[SnF_6]F$	212
	5.13	Indizierung des Pulverdiffraktogramms von NH ₄ PF ₆	213
	5.14	Indizierung des Pulverdiffraktogramms der nicht charakterisierten Phosphor-	214
		Verbindung	

I Einleitung

Bei der Reaktion von Festkörpern erfolgt der Transport von Teilchen durch Diffusion. Dies bedingt bei niedrigen Temperaturen kleine Reaktionsgeschwindigkeiten. Durch Temperaturerhöhung wird die Diffusion und somit auch die Reaktionsgeschwindigkeit erhöht. Verwendet man hingegen Verbindungen, die schon bei niedrigen Temperaturen in eine "mobile" Phase, z.B. in die Gasphase, übergehen, so kann einerseits die Reaktionstemperatur gesenkt und andererseits die Reaktionsgeschwindigkeit erheblich erhöht werden. Als solche Verbindungen haben sich besonders die Ammoniumhalogenide bewährt. Ein Grund liegt wohl darin, daß die Ammoniumhalogenide, NH₄X, nur eine geringe Dissoziationsenergie benötigen und somit leicht in NH₃ und HX zerfallen.

Ein weiterer Vorteil von Ammoniumhalogeniden, besonders von Ammoniumfluorid und Ammoniumhydrogendifluorid, liegt darin, daß sie gute Fluorierungsmittel und im Gegensatz zu den gängigen Fluorierungsmitteln wie z.B. Hydrogenfluorid oder elementarem Fluor leicht zu handhaben sind, da sie Salze und keine Gase sind.

Das Ammoniumion NH₄⁺ stellt aufgrund seines formalen Aufbaus aus N³⁻ und 4 H⁺ ein vielseitiges Synthesereagenz dar. So kann das eine Proton des Ammoniumions sowohl als Säure [1] gemäß

$$Y_2O_3 + 12 NH_4Cl \rightarrow 2 (NH_4)_3 YCl_6 + 6 NH_3 + 3H_2O$$

als auch als Oxidationsmittel wirken [2, 3]:

$$Dy + 4 NH_4F \rightarrow NH_4DyF_4 + 3 NH_3 + \frac{3}{2} H_2$$

Das dreifach negativ geladene Stickstoffatom verhilft dem Ammoniumion zu seinem reduktiven Verhalten. Hierbei unterscheidet man zwischen "innerer" und "äußerer" Reduktion bzw. einer Kombination von beiden:

$$3(NH_4)_2[PtCl_6] \xrightarrow{\Delta T} 3Pt + 2N_2 + 16HCl + 2NH_4Cl$$
 [4]

$$3 \text{ NH}_4[\text{ReO}_4] + 4 \text{ NH}_4\text{Cl} \xrightarrow{\Delta T} 3 \text{ Re} + \frac{7}{2} \text{ N}_2 + 12 \text{ H}_2\text{O} + 4 \text{ HCl}$$
 [5]

Beim Einbau von NH₃, NH₂-, NH²⁻ und N³⁻ in die innere Koordinationssphäre von Metallen reagieren die Bestandteile des Ammoniumions als Base:

$$Zr + 2NH_4HF_2 \rightarrow [Zr(NH_3)F_4] + NH_3 + 2H_2$$
 [6]

$$2 Ga + 6 NH_4F \rightarrow 2 [Ga(NH_3)_2F_3] + 2 NH_3 + 3 H_2$$

$$[Ga(NH_3)_2F_3] + NH_3 \rightarrow [Ga(NH_3)(NH_2)F_3] + NH_4F$$
[7]

$$5 \text{ Ta} + 17 \text{ NH}_4\text{Cl} \rightarrow (\text{NH}_4)_6 [\text{Ta}_5(\text{NH})_4\text{Cl}_{17}] + 7 \text{ NH}_3 + 9.5 \text{ H}_2$$
 [8]

$$(NH_4)_3[TiF_6]Cl \rightarrow TiNF + 2NH_3 + 5HF + HCl$$
 [9]

Da der Ionenradius von NH₄⁺ mit 143 pm zwischen jenem von K⁺ und Rb⁺ liegt [10], kann das Ammoniumion mit den Alkaliionen verglichen werden und wird als Pseudo-Alkali-Ion bezeichnet. Reaktionen, in denen die Ammoniumionen anstelle von Alkaliionen in die Kristallstruktur eingebaut werden, sind seit längerem bekannt [11]:

$$2 SEBr_3 + 3 NH_4Br + 4 CuBr \rightarrow (NH_4)_3 SE_2 Cu_4 Br_{13}$$
 (SE = Dy-Lu, Y)

Um Metallfluoride zu erhalten, können prinzipiell zwei verschiedene Reaktionswege beschritten werden:

Zum einen können Oxide, Halogenide oder andere Vorläufer ("Precursor") mit elementarem Fluor umgesetzt werden. Dabei erhält man in der Regel Metallfluoride in hohen Oxidationsstufen. Um Metallfluoride in niedrigen Oxidationsstufen zu erhalten, muß anschließend eine Synproportionierung zwischen dem hergestellten Metallfluorid und dem jeweiligen Metall oder eine metallothermische Reduktion durchgeführt werden. Bei der zweiten Präparationsmethode werden Fluorverbindungen anstelle des elementaren Fluors verwendet. Am gebräuchlisten ist der Einsatz von Fluorwasserstoff als Ausgangssubstanz. Nachteile bei der Verwendung von elementarem Fluor bzw. Fluorwasserstoff sind der große apparative Aufwand und die Gefährlichkeit der verwendeten Substanzen. Verwendet man Fluorwasserstoff gelöst in Wasser, so tritt ein weiteres Problem auf, wenn das Metall zur Bildung stabiler Oxidfluoride neigt.

Umgehen lassen sich die oben genannten Probleme durch Verwendung von Ammoniumfluorid und Ammoniumhydrogendifluorid [12, 13]. Hierbei erhält man ebenfalls binäre und ternäre Metall-fluoride, wobei die ternären Metallfluoride das Ammoniumion als zweites Kation enthalten.

Ziel dieser Arbeit war es, Ammoniumfluoroverbindungen wie auch Ammoniakate der Elemente Bor, Silicium, Germanium und den Elementen der 15. Gruppe mit Hilfe der "Monelmethode" einkristallin darzustellen und diese röntgenographisch zu charakterisieren. Desweiteren sollte das thermische Verhalten dieser Verbindungen mit Hilfe von DTA/TG- bzw. DSC-Methoden als auch mit Hilfe der Zeit- und Temperatur-abhängigen Pulverdiffraktometrie, sowohl unter inerten (Argon oder Stickstoff) als auch unter reaktiven (Ammoniak) Bedingungen, untersucht werden.

Die Arbeit befaßt sich desweiteren mit der Darstellung und strukturellen Charakterisierung von Verbindungen des Typs $[M^{II}(NH_3)_6][BF_4]_2$ mit M=Metalle der ersten Übergangsreihe. Die Darstellung der Übergangsmetallammoniakate sollte ebenfalls mit der "Monelmethode" erfolgen. Neben der strukturellen Charakterisierung sollte das thermische Verhalten dieser Verbindungsklasse untersucht werden. Von Interesse hierbei war es, ob mit Hilfe des thermischen Abbaus dieser Verbindungen ein Zugang zu den großteils unbekannten Ammoniakatfluoriden der Metalle der ersten Übergangsreihe besteht.

Ein weiterer Gegenstand dieser Arbeit ist, verschiedene Ampullenmaterialien in Bezug auf Korrosionsbeständigkeit, Inertheit gegenüber Fluoriden und Druckbeständigkeit bei hohen Temperaturen zu untersuchen.

II Allgemeiner Teil

1 Apparative Methoden

Zur Darstellung von polynären Metallfluoriden und -fluoridammoniakaten, bei der Metallpulver oder -bleche mit Ammoniumfluorid bzw. Ammoniumhydrogendifluorid umgesetzt werden, muß unter inerten Bedingungen gearbeitet werden, damit z. B. mögliche Hydrolysereaktionen, die allein durch die Luftfeuchtigkeit hervorgerufen werden können, vermieden werden.

Im Folgenden werden die in dieser Arbeit zur Anwendung gelangten Arbeitstechniken und Apparaturen/Geräte beschrieben.

1.1 Trocknung der Ammoniumfluoride NH₄F und NH₄HF₂

Frühere Arbeiten [2, 14] haben gezeigt, daß durch Sublimation der handelsüblichen Ammonium-fluoride NH_4F und NH_4HF_2 in einer Kieselglasapparatur (Ölpumpenvakuum $p \ge 10^{-4}$ bar, $T \ge 80^{\circ}C$) keine wasserfreien Edukte erhalten wurden. Zudem traten Verunreinigungen durch $(NH_4)_2SiF_6$ auf, die aus der Reaktion der Kieselglasgefäßwand mit den Ammoniumfluoriden resultierten.

Da eine spezielle Sublimationsanlage für Fluoride nicht zur Verfügung stand, wurden NH₄F und NH₄HF₂ aus absolutem Methanol umkristallisiert [15, 16]. Dazu wurden 5 bis 10 g NH₄F bzw. 15 bis 20 g NH₄HF₂ mittels Schlenktechnik in ungefähr 250 ml absolutem Methanol [17] mehrere Stunden unter Rühren im Rückfluß gekocht. Anschließend wurde die entstandene, langsam abgekühlte Suspension durch eine Kältedestillation eingeengt. Der ausgefallene weiße Feststoff wurde unter Argon abfiltriert und über Nacht im Ölpumpenvakuum bei 10⁻⁴ bar getrocknet.

Zur Überprüfung, ob die so erhaltenen Ammoniumfluoride wasser- und lösemittelfrei sind, wurden von NH_4F und NH_4HF_2 MIR-Spektren aufgenommen. Dazu wurden jeweils einige Kristallite von NH_4F und NH_4HF_2 in KBr verrieben und bei einem Druck von 10 t zu einem Pressling verarbeitet und anschließend vermessen. Charakteristische Banden für alkoholische OH-Gruppen [18] sowie die charakteristische $\delta(OH)$ -Schwingung des Wassermoleküls im Bereich von 1500 bis 1600 cm⁻¹ [19] konnten nicht nachgewiesen werden, (Spektren siehe Anhang).

1.2 Arbeiten unter Schutzgas - Die "Argon-Glove-Box"

Das Handhaben von luft- und feuchtigkeitsempfindlichen Substanzen erfolgte unter Argon-Schutzgas in einer "Glove-Box" (Fa. M. Braun, Garching). Diese besteht aus einem mit Argon gefluteten Metallgehäuse, das vorne mit einer Plexiglasscheibe verschlossen ist, in die armlange Gummihand-

schuhe eingelassen sind. Durch eine integrierte Umwälzanlage wird die Argon-Atmosphäre ständig sauerstoff- und wasserfrei gehalten. Normalerweise liegen die Wasser- und Sauerstoffkonzentrationen unter 1 ppm. Die Druckregulierung innerhalb der Box erfolgt über Magnetventile. Durch ein evakuierbares Schleusensystem können Chemikalien/Proben und benötigte Geräte ein- bzw. ausgschleust werden. Für die Einwaage von Edukten steht in einer Handschuhbox eine Analysenwaage zur Verfügung, zur Untersuchung der erhaltenen Produkte in einer anderen Box ein Polarisationsmikroskop.

1.3 Ampullenmaterial

Die Reaktivität und der Dampfdruck der in dieser Arbeit verwendeten Ausgangssubstanzen, besonders von Ammoniumfluorid bzw. Ammoniumhydrogendifluorid, erfordern die Verwendung geeigneter inerter Containermaterialien, in denen druckdicht und bei höheren Temperaturen gearbeitet werden kann. Wie aus früheren Arbeiten bekannt [2, 14, 15, 20], eignet sich hierfür besonders Monelmetall (Ni68Cu32); aber auch Kupfer hat sich als inert gegenüber Fluoriden erwiesen [21]. Weitere Ampullenmaterialien wie z.B. Ni, Mo, Nb, Ta, Fe usw. wurden getestet, (siehe Spezieller Teil).

Zur Herstellung der Ampullen, am Beispiel von Monel, werden aus einem gezogenen Rohr (Außendurchmesser 8 mm, Wandstärke 1 mm) ca. 60 mm lange Stücke geschnitten. Diese werden in konzentrierter Salpetersäure angeätzt, mit VE-Wasser gründlich gespült und anschließend im Trockenschrank getrocknet. In einem Schraubstock werden sie einseitig zugekniffen und mit einem Lichtbogenschweißer an dieser Stelle verschlossen. In der Argon-Glove-Box werden die Ampullen gefüllt, mit einer Klebefolie provisorisch versiegelt und am anderen Ende ebenfalls zugeschweißt.

1.4 Verschweißen und Abschmelzen der Metallampullen

Das Verschweißen der Metallampullen erfolgt in einem Lichtbogenschweißgerät [22], wobei die Ampullen als eine der beiden Elektroden fungieren und eine bewegliche Wolframspitze als zweite Elektrode, die über die zu verschweißende Stelle geführt werden kann. Nach dem Einbringen der Ampullen in den Schweißerzylinder wird dieser für ca. 30 bis 45 Minuten evakuiert und anschließend bis zu einem Druck von 800 mbar mit Helium geflutet. Je nach Höhe der Schmelztemperaturen der jeweiligen Ampullenmaterialien sowie ihrer Wärmeleitfähigkeit wird bei verschiedenen Stromstärken zwischen 5 und 20 A geschweißt (Monel: Schmelzpunkt: ca. 1300°C [23]; Kupfer: Schmelzpunkt: 1083°C [24]).

Zum Schutz der Metallampullen vor Korrosion bzw. zum Auffangen des Wasserstoffes, der während der Reaktion durch die Ampullenwand diffundiert, wird das Reaktionsgefäß unter Vakuum in eine Schutzampulle aus Kieselglas eingeschmolzen. Dazu werden die Metallampullen in ein Kieselglasrohr eingeführt, welches anschließend mit einem Knallgas-Gebläsebrenner kurz oberhalb der Ampulle verjüngt wird. Das so vorbereitete Kieselglasrohr wird mit Hilfe eines "Quickfit"-Aufsat-

zes [22] an eine Vakuumpumpe angeschlossen und für ca. 10 Minuten evakuiert. Anschließend kann die Schutzampulle unter Vakuum an der Verjüngung abgeschmolzen werden.

1.5 Der Versuchsaufbau

Das Heizen der Metallampullen kann, wie aus früheren Arbeiten [2, 14, 20] bekannt ist, nach zwei grundsätzlich verschiedenen Verfahren erfolgen, siehe Abb. 1.1. Bei der einen Methode wird die kieselglasummantelte Metallampulle in einem elektrischen Widerstandsofen einem Temperaturprogramm unterzogen. Bei der anderen Methode wird die Metallampulle zum Schutz vor Oxidation nicht mit einer Kieselglasampulle ummantelt, sondern in einem leichten Inertgasstrom (Argon oder Stickstoff) erhitzt. Dabei ist gewährleistet, daß der während der Reaktion entstehende Wasserstoff, der durch die Ampullenwand diffundiert, vollständig abtransportiert wird.

Der Unterschied beider Methoden liegt darin, daß bei der ersten Methode sich ein Konzentrationsgleichgewicht von Wasserstoff in der Metall- und der Kieselglasampulle einstellt. Bei der zweiten Methode kann sich kein Gleichgewicht einstellen, da der herausdiffundierende Wasserstoff unmittelbar vom Inertgasstrom wegtransportiert wird. Somit diffundiert der sich während der Reaktion bildende Wasserstoff vollständig aus der Ampulle. Dadurch liegt in der Metallampulle keine reduzierende Atmosphäre mehr vor, und die Ampullenwand kann zur Reaktion mit herangezogen werden, wie es z.B. bei der Bildung von (NH₄)₄[Ni(TaF₆)₆] [25] geschehen ist.

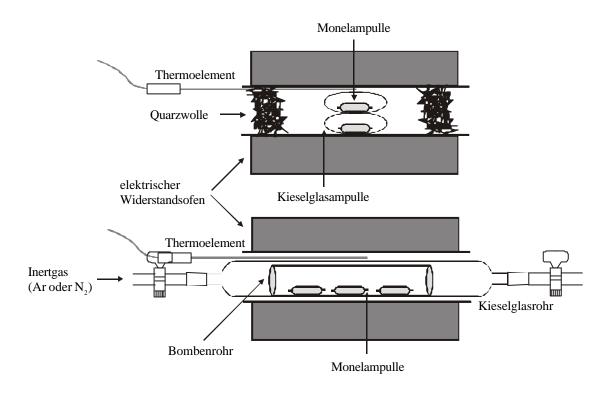


Abb. 1.1: Schematische Darstellung der beiden möglichen Versuchsaufbauten

1.6 Verwendete Chemikalien und Geräte

Chemikalien:		
Monelrohr	8 • 1 mm	F.W. Hempel & Co., Düsseldorf / D
Kupferrohr	8 • 1 mm	Fa. Dörrenhaus, Köln / D
Goldrohr	8 • 1 mm	Fa. Degussa, Hanau / D
Niobrohr	8 • 0,4 mm, 99,9%	6 Fa. Heraeus, Karlsruhe / D
Tantalrohr	8 • 0,4 mm, 99,9%	6 Fa. Heraeus, Karlsruhe / D
Eisenrohr	8 • 1 mm	
Edelstahlrohr	8 • 1 mm	
Nickelstab	Ø 10 mm, 99%	Fa. Good Fellow, Cambridge / UK
Molybdänstab	Ø 10 mm	
Helium	Reinheit 4.6	Linde AG, Hannover / D
Argon	Reinheit 4.8	Linde AG, Hannover / D
Stickstoff	Reinheit 5N	Linde AG, Hannover / D
Ammoniak	Reinheit 6.0	Linde AG, Hannover / D
Ammoniumfluorid	mind. 99,8%	Fa. Merck, Darmstadt / D
Ammoniumhydrogenfluorid	mind. 99,8%	Riedel-de-Haën AG, Seelze / D
Aluminiumfolie	99,999%, Dicke	Chempur Feinchemikalien,
	0,25 mm	Karlsruhe / D
Bor-Pulver		Fa. Merck, Darmstadt / D
Silicium-Pulver	min. 99%	Fa. Merck, Darmstadt / D
Germanium-Pulver	5N	Fa. Ventron, Karlsruhe / D
Zinn-Pulver	nin. 99,9%	Fa. Merck, Darmstadt / D
Blei-Pulver	p. A.	
Hittorfscher Phosphor	p. A.	von Frau Prof. Baudler
Antimon-Pulver	99,999%	Aldrich, Chem. Co., Milwaukee / USA
Bismut-Pulver		Fa. Merck, Darmstadt / D
Ammoniumhexafluorophosphat	99,5%	Fa. ABCR, Karlsruhe / D
Ammoniumtetrafluoroborat	> 98%	Fa. Fluka, Buchs / CH
Nickeldichlorid-Hexahydrat	chem. rein	Riedel-de-Haën AG, Seelze / D

		••	4	
ı _	Δr	•	te:	
v	u	а	u.	

Pulverdiffraktometer	Θ / Θ	Stoe & Cie, Darmstadt / D
Pulverdiffraktometer	Guinier, G645	Huber, Rimsting / D
Pulverdiffraktometer	Θ / 2 Θ , STADI P	Stoe & Cie, Darmstadt / D
Bühler-Kamera	HDK 2.4	Stoe & Cie, Darmstadt / D
Imaging-Plate-Diffraction-Syste	em IPDS	Stoe & Cie, Darmstadt / D

Geräte (Fortsetzung):		
Guinier-Kamera	FR552	Enraf-Nonius, Delft / NL
Weissenberg-Kamera		Huber, Rimsting / D
Generatoren + Röntgenröhren	versch. Typen	Philips, Eindhoven / NL
		Seifert, Hamburg / D
DSC/DTA/TG	STA 409	Netzsch, Selb / D
Thermoanalyser für DTA/TG	TA1	Mettler-Instrumente AG / Ch
IR-Spektrometer	IFS 66	Bruker, Karlsruhe
UV-VIS-Spektrometer	Cary 5E	Fa. Varian, AU
REM	SEM 55	Philips, Eindhoven / NL
EDAX	ECON IV PV9900-26	EDAX-International Inc.
Argon-Handschuhboxen	versch. Typen	Braun, Garching / D
Schutzgas-Schweißgerät	Eigenbau	
Atomabsorptionsspektrometer	AA6	Fa. Varian, AU

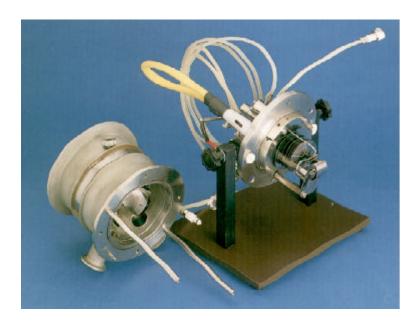
2 Physikalische Methoden

2.1 Röntgenographische Methoden

Im Rahmen der vorgelegten Dissertation wurden verschiedene Aufnahmeverfahren zur röntgenographischen Untersuchung der erhaltenen Produkte angewandt. Für polykristalline Substanzen wurde die Pulverdiffraktometrie genutzt, in-situ-Pulverdiffraktometrie wurde in einem "Bühler-Ofen" durchgeführt. Einkristall-Untersuchungen erfolgten an einem Imaging Plate Diffraction System (IPDS).

2.1.1 Pulverdiffraktometrie

Die Pulverdiffraktometrie dient vor allem zur Bestimmung von Gitterkonstanten und Reflexintensitäten von polykristallinen Substanzen. Bei dem vorhandenen Pulverdiffraktometer der Firma Stoe (Typ STADI P) wird die Probe in einem Kapillarrohr (Durchmesser zwischen 0,1 und 0,3 mm) in der Mitte eines Drehtisches platziert und vom Röntgenstrahl (Cu-Anode) durchleuchtet. Die Reflexe werden nach dem Prinzip von Bragg-Brentano detektiert. Als Ergebnis erhält man den Beugungswinkel Θ mit der zugehörigen Intensität. Aufgrund der Tatsache, daß bei der Pulver-


diffraktometrie die Intensitäten mit einem Flächenzähler bzw. Imaging-Plate detektiert werden, ist dieses Verfahren genauer und mit einem Imaging Plate-Detektor schneller als die verschiedenen Filmverfahren.

Für temperaturabhängige Messungen im Temperaturbereich von 300 bis 20 K steht ein Gerät der Firma Huber (Typ G645) zur Verfügung. Beim Huber-Diffraktometer werden die Proben auf einem mit Folie bespannten Flächenträger präpariert. Die Detektion der gebeugten Röntgenstrahlung erfolgt mit Hilfe eines Szintillationszählrohres.

2.1.2 In-situ zeit- und temperaturaufgelöste Pulverdiffraktometrie

In-situ-Pulverdiffraktometrische Untersuchungen erfolgten in einem Zusatzgerät, der sogenannten "Bühler-Kammer" [26, 27], für ein Θ/Θ-Diffraktometer mit Bragg-Brentano-Geometrie der Firma Stoe & Cie. In der Reaktionskammer kann unter verschiedenen Gasatmosphären wie z.B. Ammoniak bis zu einer Temperatur von 1600°C In-situ-Pulverdiffraktometrie betrieben werden.

Als Hochtemperatur-Diffraktometerkammer dient ein zylindrischer, doppelwandiger, wassergekühlter Aufsatz aus Edelstahl, an dessen Deckel im Innenraum ein Elektrodenpaar mit eingespanntem Platinband als Probenträger und darunter punktgelötetem Pt-Pt/Rh-Thermoelement, sowie eine Umgebungsheizung aus Platinblech angebracht sind. Die Gaszufuhr bzw. -abfuhr erfolgt über Rohrleitungen, die in den Deckel eingelassen sind. Im Boden der Kammer ist der Vakuumpumpenanschluß, der sich direkt unter dem Probenträger befindet, angebracht. Um röntgenographische Untersuchungen im Beugungsbereich von $2\Theta = 0$ - 180° durchführen zu können, ist ein Beryllium-Fenster, welches 85% der verwendeten CuK_{α} -Strahlung durchläßt, mit einer Stärke von 0,5 mm hochvakuumdicht in die Wand der Kammer eingeklebt. Ein Bild der Hochtemperatur-Diffrakto-meterkamer ist in Abb. 2.1 wiedergegeben.

Abb. 2.1: Θ/Θ -Diffraktometer mit der Hochtemperatur-Diffraktometerkammer [26]

Für die Versorgung der "Bühler-Kammer" mit verschiedenen Reaktionsgasen ist ein Rohrleitungssystem installiert worden, das die getrennte Zufuhr der Reaktionsgase Stickstoff, Sauerstoff und Ammoniak ermöglicht [15].

Die Regulierung des Gasstromes erfolgt bei Stickstoff und Sauerstoff über das Druckminderventil an der Druckgasflasche. Zur Dosierung des Ammoniaks ist ein zusätzliches Feinregulierventil in die Versorgungsleitung eingebaut. Der Abgasstrom wird mittels eines Blasenzählers kontrolliert. Zur gefahrlosen Entleerung der Hochtemperatur-Diffraktometerkammer und des Rohrleitungssystems nach Verwendung von Ammoniak bzw. zum Schutz der Vakuumpumpe vor reaktiven Gasen ist eine Wasserstrahlpumpe mit dem Rohrleitungssystem verbunden.

2.1.3 Imaging-Plate-Diffraktometer

Beim IPDS (Imaging Plate Diffraction System) besteht die Bildplatte aus einer mit Europium(II) dotierten Schicht aus BaClF, die in der Lage ist, Röntgenreflexe zu speichern. Das Auslesen der Informationen auf der Bildplatte erfolgt durch Laserabtastung. Anschließend werden die Informationen auf der Bildplatte durch Bestrahlung mit weißem Licht gelöscht, und die Bildplatte steht für eine neue Aufnahme wieder zur Verfügung. Der Vorteil dieses Systems gegenüber Vierkreisdiffraktometern liegt darin, daß an einem Tag ein vollständiger Intensitäts-Datensatz gemessen werden kann.

2.1.4 Einkristallstrukturbestimmung

Die Aufkärung von Kristallstrukturen basiert auf der Möglichkeit, die komplexe Elektronendichtefunktion durch Fouriertransformation in Einzelwellen $F_0(hkl)$ zu zerlegen. Sind die Fourierkoeffizienten m it der Amp litze $|F_{hkl}|$ und dem koordinatenabhängigen Term $e^{i\phi}$, die "Phase", bekannt, so läßt sich durch Fouriersynthese die Kristallstruktur bestimmen:

$$F(x, y, z) = \sum_{hkl} F_{hkl} \cdot e^{-2\pi(hx + ky + lz)}$$

Das Problem der Röntgenstrukturanalyse liegt darin, daß Amplitude und Phaseninformation nicht zu erhalten sind. Vielmehr lassen sich nur die Intensitäten $I_0(hkl)$, die dem Quadrat des Betrages der Strukturamplitude proportional sind, aus den Fourierkoeffizienten ermitteln:

$$I_0(hkl) = \left| F_{hkl} \right|^2 \cdot e^{i\phi}$$

Mit Hilfe von verschiedenen Verfahren läßt sich das "Phasenproblem" der Röntgenstrukturanalyse lösen:

Mit der Patterson-Synthese erhält man vorwiegend das Teilgitter der "schweren" Atome. Dabei

verwendet man die direkt gemessenen F₀²-Werte zur Berechnung der Patterson-Funktion:

$$P(u,v,w) = \frac{1}{V} \sum_{hkl} F_{hkl}^{2} \cdot (\cos \cdot [2\pi(hu + kv + lw)] + i \sin \cdot [2\pi(hu + kv + lw)])$$

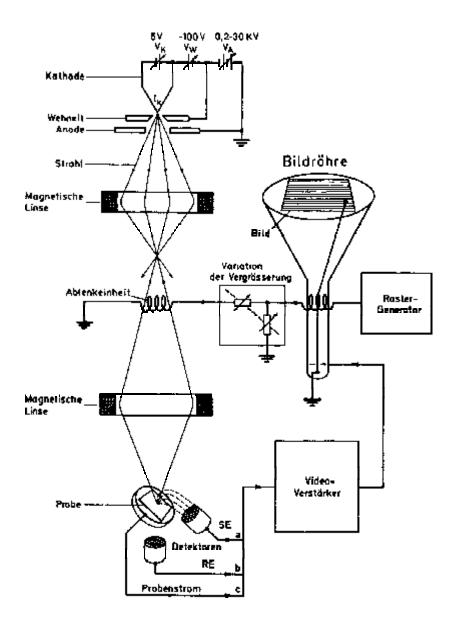
Als Ergebnis erhält man keine Atomlagen, sondern Abstandsvektoren zwischen den einzelnen Gitterteilchen mit den zugehörigen Intensitäten.

Die "direkten Methoden" ermitteln direkt über statistische Methoden Zusammenhänge zwischen den Strukturfaktoren und den Miller'schen Indices (hkl). Dabei ist das Phasenproblem bereits berücksichtigt. Die erhaltenen Ergebnisse führen zu weitern Strukturfaktoren. Mit einer Fouriersynthese erhält man aus den Strukturfaktoren die gesuchten Lageparameter.

$$R = \frac{\sum_{hkl} \left| \left| F_0 \right| - \left| F_c \right| \right|}{\sum_{hkl} \left| F_0 \right|}$$

 $(F_0 = beobachteter Strukturfaktor, F_c = berechneter Strukturfaktor)$

Mit Hilfe der Differenz-Fourier-Synthese lassen sich durch Vergleich der berechneten und beobachteten Strukturfaktoren die Lagen der leichteren Atome bestimmen. Mittels "least-squares"-Verfeinerung (Berechnung mehrerer Zyklen unter möglichst ständiger Verbesserung des R-Wertes) ist es möglich, die Lageparameter der einzelnen Atome sehr genau zu bestimmen. Das erhaltene Strukturmodell kann durch Absorptionskorrektur, Einführung von anisotropen Temperaturfaktoren und Hinzunahme einer Wichtungsfunktion weiter verfeinert werden.


2.2 Rasterelektronenmikroskopie (REM)

Bei der Rasterelektronenmikroskopie [28] wird ein Elektronenstrahl im Hochvakuum mittels eines Linsensystems auf die Probe fokussiert und diese zeilenweise abgerastert. Aus den Wechselwirkungen zwischen Elektronenstrahl und Objekt lassen sich Informationen über die Probe entnehmen, die mit Hilfe eines Detektors und Videoverstäkers auf einem Bildschirm dargestellt werden können, siehe Abb. 2.2.

Mittels eines Dreielektronensystems wird der Elektronenstrahl erzeugt: Die Kathode, die Elektronenquelle, besteht aus einem auf ca. 2000°C erhitzten Wolframdraht. Der Wehnelt-Zylinder hat die Funktion einer Steuerelektrode. Das an die Anode angelegte Feld (die Potentialdifferenz von Kathode und Anode ist zwischen 0,2 und 30 kV einstellbar) beschleunigt die Elektronen. Ein aus elektromagnetischen Linsen (stromdurchflossene Spulen) bestehendes Linsensystem fokussiert den Primärelektronenstrahl auf die Probe. Durch eine Ablenkeinheit wird der Primärelektronenstrahl zeilenweise über die Probe geführt. Das dabei detektierte Signal wird synchron auf einem Bildschirm dargestellt. Durch Wechselwirkung des Primärelektronenstrahls mit der Probe werden durch

inelastische Streuung Elektronen, sogenannte Sekundärelektronen, aus der Probenoberfläche (1-10 nm Tiefe) herausgeschlagen. Die Sekundärelektronen besitzen mit 10 bis 15 eV eine wesentlich geringere Energie als die Primärelektronen und können mittels eines angelegten Feldes zum Sekundärelektronendetektor "gesaugt" werden. Die geringe Austrittstiefe der Sekundärelektronen begründet ihre überragende Bedeutung für die hochauflösende Rasterelektronenmikroskopie.

Die Helligkeit der dargestellten Bildpunkte ist abhängig von der Menge der registrierten Sekundärelektronen. Die Anzahl der erzeugten Sekundärelektronen hängt hauptsächlich von zwei Effekten ab: Zum einen ist dies der Topographiekontrast, da von Flächen, die zum Detektor gerichtet sind, mehr Sekundärelektronen registriert werden als von abgewandten Flächen. Zum anderen spielt der Materialkontrast eine bedeutende Rolle. Die Signalintensität korreliert mit der Ordnungszahl des bestrahlten Elements. Mit steigender Ordnungszahl werden mehr Sekundärelektronen abgegeben. Dies führt dazu, daß schwerere Elemente im Bild heller erscheinen als leichtere Elemente.

Abb. 2.2: Schematische Darstellung eines Rasterelektronenmikroskops [28]

Ein REM besitzt ein Auflösungsvermögen von ≥ 3 nm, das bedeutet eine bis zu 400000-fache Vergrößerung (Lichtmikroskop ca. 3000-fach). Bedingt durch seine hohe Tiefenschärfen wird das REM auch bei niedrigen Vergrößerungen oftmals dem Lichtmikroskop vorgezogen und sogar schon bei Lupenvergrößerung eingesetzt.

Um eine Probe rasterelektronenmikroskopisch untersuchen zu können, werden zwei Anforderungen an sie gestellt: Die Probe muß Erstens hochvakuumbeständig und zweitens elektrisch leitend sein, damit die Primärelektronen abgeführt werden können. Nichtleitende Proben können durch Sputtern (Bedampfen) mit Gold oder Graphit (Schichtdicke ≥ 20 nm) leitend gemacht werden.

2.3 Das EDAX-Verfahren

Das EDAX-Verfahren [29, 30] (Energie-Dispersive Analyse durch X-Ray) ermöglicht die zerstörungsfreie Untersuchung von kleinsten Proben, z.B. von Einkristallen, auf ihre Bestandteile hin bzw. in welchem Verhältnis sie zueinander vorliegen. Bei der Messung wird die zu analysierende Probe durch den Elektronenstrahl eines Rasterelektronenmikroskops zur Röntgenemission angeregt. Das sich dabei bildende charakteristische Röntgenspektrum wird mit internen Standards verglichen. Die registrierten Wellenlängen ermöglichen die Bestimmung der in der Probe enthaltenen Elemente, die Strahlungsintensitäten die Bestimmung der prozentualen Atomverhältnisse.

2.4 Atomabsorptionsspektroskopie

Die Atomabsorptionsspektroskopie (AAS) [31] ist ein Verfahren, das der Spurenanalytik dient. Jedes Element hat ein charakteristisches Spektrum elektromagnetischer Strahlung, das es nach der Anregung emittiert. Die Anregung der jeweiligen Elemente erfolgt durch eine Glimmentladung einer Hohlkathodenlampe oder einer anderen Entladungslampe, die das jeweilige zu untersuchende Element enthält. Die emittierte Strahlung dieses Elements wird ebenso von nichtangeregten Atomen derselben Elementsorte wieder absorbiert. Ist in der Probe das betreffende Element enthalten, so läßt sich dessen Konzentration durch Differenzbildung der Intensitäten der emittierten und absorbierten Strahlung nach dem Gesetz von Lambert-Beer bestimmen.

2.5 Thermoanalyse

Unter dem Begriff Thermische Analyse (Thermoanalyse) faßt man Methoden zusammen, bei denen physikalische und chemische Eigenschaften einer Substanz, eines Substanzgemisches und/oder von Reaktionsgemischen als Funktion der Temperatur oder der Zeit gemessen werden, wobei die Probe einem kontrollierten Temperaturprogramm unterworfen wird. Man unterscheidet folgende thermoanalytische Untersuchungsmethoden [32, 33]:

- die Differenzthermoanalyse (DTA)
- die Thermogravimetrie (TG) und die Derivative Thermogravimetrie (DTG)
- die Dynamische Differenzkalorimetrie (DSC)

Die Differenzthermoanalyse gestattet es, bei physikalischen Umwandlungen mehrere Parameter gleichzeitig zu ermitteln. Dies sind insbesondere die Umwandlungstemperatur, die Umwandlungs-enthalpie und die Molwärme. Bei der DTA werden in einem Ofen die zu untersuchende und eine Referenzsubstanz (z.B. Korund) mit konstanter Geschwindigkeit aufgeheizt. Die Temperaturdifferenz zwischen den beiden Substanzen wird als Funktion der Temperatur der Vergleichssubstanz oder der Zeit aufgetragen. Unterliegt die Probe einer Veränderung, so weicht ihre Temperatur von der der Referenzsubstanz ab. Ist sie größer, so findet ein exothermer Vorgang statt, bleibt die Probe hinter dem Temperaturprogramm zurück, ist der Vorgang endotherm. Der Beginn der jeweiligen Umwandlung läßt sich graphisch leicht aus der Kurve ermitteln.

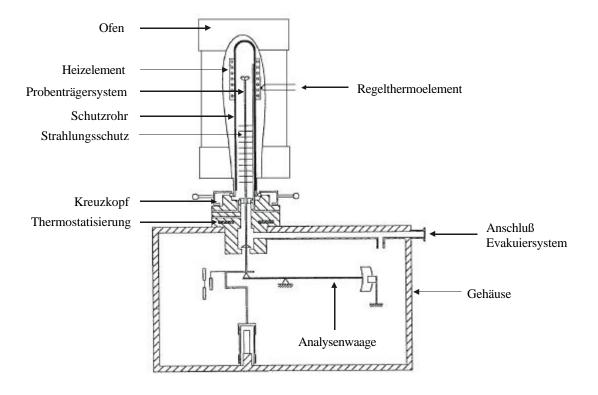


Abb. 2.3: Schematische Darstellung einer DTA/TG-Apparatur [32]

Bei der Thermogravimetrie (TG) wird mittels einer "Thermowaage" die Gewichtsänderung der Probe, die einem kontinuierlichen Temperaturprogramm unterworfen ist, registriert.

Die DTA/TG-Technik läßt sich auch mit Methoden der Gasanalyse koppeln. Zu nennen wären die Gaschromatographie und vor allem die Massenspektroskopie. Durch Kopplung dieser Methoden lassen sich bei Zersetzungsreaktionen die entweichenden Gase identifizieren, und der Reaktionsweg kann nachvollzogen werden. Bei der Kopplung der DTA/TG-Geräte mit einem Massenspektrometer muß man bedenken, daß eine Druckreduzierung von Atmosphärendruck im Probenraum zum Hoch-

vakuum (ca. 10⁻⁶ mbar) im Massenspektrometer erfolgen muß. Um die Druckreduzierung zu gewähren gibt es zwei Möglichkeiten:

- Kapillarsystem (geringe Empfindlichkeit und wegen Kondensationsgefahr nicht für alle Gase geeignet)
- Blendensystem (kurzer Weg zum Massenspektrometer; Kondensationserscheinungen sind nicht zu erwarten, da das Blendensystem in den Ofenraum integriert ist)

2.6 Infrarot-Spektroskopie

Die Infrarot-Spektroskopie [34] ermöglicht bei Festkörpern die Charakterisierung von funktionellen Gruppen wie z.B. Aqua- oder Amminliganden. Desweiteren kann mit Hilfe der IR-Spektroskopie zwischen Atomen/Atomgruppen, z.B. Sauerstoff oder einer Hydroxogruppe und Fluor, unterschieden werden, da ihre charakteristischen Banden bei verschiedenen Wellenzahlen auftreten. Dies ist im Falle der Gruppen -OH und -F mit der Röntgenstrukturanalyse nicht möglich.

Durch Absorption von elektromagnetischer Strahlung kommt es zur Anregung von Molekülschwingungen. IR-aktive Schwingungsbanden sind dann zu beobachten, wenn sich während der Schwingung das molekulare Dipolmoment ändert. Die Anzahl der Schwingungsfreiheitsgrade N berechnet sich für ein lineares Molekül gemäß 3N-5 und für ein nicht-lineares Molekül nach 3N-6, wobei 5 bzw. 6 die Summe der Translations- und Rotationsfreiheitsgrade darstellt. Aufgrund der Symmetrie der Moleküle können den sogenannten Normalschwingungen symmetrische und asymmetrische Valenz- und Deformationsschwingungen zugeordnet werden.

2.7 Verwendete Computerprogramme

- LAZY-PULVERIX [35]

Simulation eines Pulverdiffraktogrammes mit Hilfe von Einkristaldaten.

-SHELXS-97 [36]

Programm zur Berechnung eines Strukturvorschlages aus Diffraktometerdaten, IPDS oder CAD4, unter Verwendung von Patterson- oder direkten Methoden.

- SHELXL-97 [37]

Strukturverfeinerung durch Differenzfourier-Synthese, "least-squares"-Berechnung, Wichtungsfunktion mit Darstellung von Bindungslängen und - winkeln.

-DIAMOND 2.1 [38]

Visualisierungs- und Archivierungsprogramm für Kristallstrukturen

- STOE VISUAL X-POW [39] und STOE WIN X-POW [40]
- Programmpakete zur Steuerung von Pulverdiffraktometern und zur graphischen Erstellung und Auswertung von Pulverdiffraktogrammen.
- -STOE X-SHAPE [41], STOE X-RED [42]

Programme zur Optimierung der Gestalt von Einkristallen und anschließender Absorptionskorrektur.

III Spezieller Teil

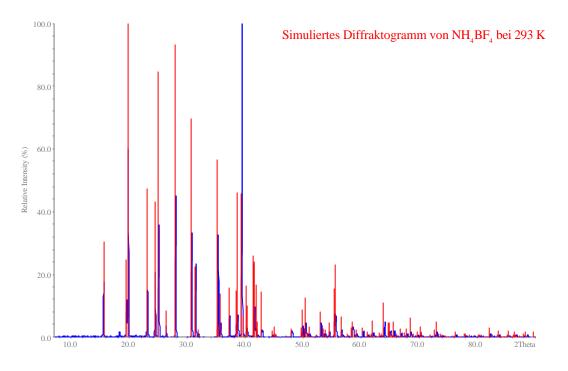
1 Synthese, Kristallstruktur und thermisches Verhalten von NH_4BF_4

1.1 Einleitung

Zu Beginn des 18. Jahrhunderts gelang es J. J. Berzelius [43], durch Auflösen von Borsäure H_3BO_3 in überschüssiger Flußsäure, Neutralisation der Lösung mit Ammoniak oder Ammoniumcarbonat und anschließendem Erwärmen bis zur Trockne, Ammoniumtetrafluoroborat in kristalliner Form zu erhalten. Der Syntheseweg von Berzelius wurde in den folgenden Jahren weiter modifiziert. H. S. Booth und S. Rehmar [44] konnten durch Lösen von Borsäure und Ammoniumhydrogendifluorid in Wasser und anschließendem Einengen der Lösung Ammoniumtetrafluoroborat darstellen. Eine andere Methode ist das Lösen von leicht angefeuchtetem Bornitrid in 94%iger Flußsäure [45]. Durch die thermische Zersetzung von F_3B -N H_3 bei ca. 250°C unter N_2 -Atmosphäre [46, 47] oder BF_3 - N_2H_4 [48] erhält man ebenfalls Ammoniumtetrafluoroborat.

1935 konnten J. L. Hoard und V. Blair [49] anhand einer Röntgenstrukturanalyse erstmals die Struktur von Ammoniumtetrafluoroborat aufklären. Demnach kristallisiert NH_4BF_4 orthorhombisch in der Raumgruppe Pnma (Nr. 62) und den Gitterkonstanten a=906 pm, b=564 pm und c=723 pm. Pro Elementarzelle sind vier Formeleinheiten enthalten. Diese Strukturlösung wurde 1969 von M. J. R. Clark und H. Lynton [50] bestätigt. Kurze Zeit später wurden zwei weitere Modifikationen von NH_4BF_4 in der Literatur beschrieben. D. J. J. van Rensburg und J. C. A. Boeyens [51] diskutierten eine neue Modifikation von NH_4BF_4 bei 140 K aufgrund der Tatsache, daß das Volumen zur Raumtemperaturmodifikation um 1,5% zunahm. K. O. Strømme [52] fand anhand von Pulveraufnahmen eine kubische Modifikation von NH_4BF_4 bei 260°C.

1.2 Darstellung von Ammoniumtetrafluoroborat


In der Vergangenheit wurde NH₄BF₄ ausschließlich auf "naßchemischem" Wege synthetisiert (siehe Einleitung). Im Rahmen dieser Arbeit erfolgte die Darstellung von NH₄BF₄ mittels der "Monel-Methode". Dazu wurden Borpulver und Ammoniumhydrogendifluorid im molaren Verhältnis von 1 : 2 vermengt und in einer verschweißten Monel- bzw Kupferampulle, die zum Schutz vor Oxidation unter Vakuum in eine Kieselglasampulle eingeschmolzen wurde, bei 300°C drei Wochen lang umgesetzt. Man erhält NH₄BF₄ ebenfalls, wenn man Borpulver mit Ammoniumfluorid im Molverhältnis 1 : 4 analog in einer verschweißten Monel- bzw. Kupferampulle zur Reaktion bringt. Die Reaktions-

bedingungen sind in Tabelle 1.1 zusammengefaßt. Von dem erhaltenen farblosen Produkt wurde ein Pulverdiffraktogramm erstellt, das in der Abb. 1.1 dargestellt ist. Die zugehörige Peakliste ist im Anhang wiedergegeben.

Geeignete Einkristalle wurden unter einem Polarisationsmikroskop ausgewählt, in Glaskapillaren eingeschmolzen und mit Einkristall-Filmaufnahmen auf ihre Güte hin untersucht. Von einem geeigneten Kristall wurde anschließend auf dem IPDS ein vollständiger Datensatz erstellt.

Tab. 1.1: Versuchsbedingungen für die Reaktionen von Bor mit NH₄F bzw. NH₄HF₂

Verhältnis:	$\begin{array}{c} \text{B / NH}_4\text{HF}_2\\ \text{B / NH}_4\text{F} \end{array}$	1 / 2 mmol 1 / 4 mmol
Einwaage:	$\mathrm{NH_4HF}_2$	$200 \text{ mg} \equiv 3,506 \text{ mmol}$
	В	$19.0 \text{ mg} \equiv 1.753 \text{ mmol}$
	$\mathrm{NH_{4}F}$	$200 \text{ mg} \equiv 5.4 \text{ mmol}$
	В	$14.6 \text{ mg} \equiv 1.35 \text{ mmol}$
Reaktionstemperatu	ır: 300°C	
Reaktionszeit:	21 d	
Aufheizrate:	5°C/h	
Abkühlrate:	5°C/h	
Ampullenmaterial:	Monel, Kupfer	

Abb. 1.1: Pulverdiffraktogramm von NH₄BF₄

1.3 Beschreibung und Diskussion der Kristallstruktur von NH₄BF₄

 NH_4BF_4 kristallisiert bei Raumtemperatur im Baryt-Typ (orthorhombisch, Pnma, Z=4, a=909,73(18) pm, b=569,77(10) pm und c=729,47(11) pm). Es ist isotyp zu analogen MBF_4 -Ver-bindungen, wie z.B. $InBF_4$ [53], KBF_4 [50] und $TlBF_4$ [54]. In der Struktur liegen isolierte $[BF_4]$ - und $[NH_4]$ +Tetraeder vor. Die interatomaren Abstände und Winkel innerhalb des $[BF_4]$ -Tetraeders entsprechen jenen, die auch für KBF_4 bzw. $RbBF_4$ [50] gefunden werden (Tab. 1.5). Innerhalb der Struktur liegen schwache Wasserstoffbrückenbindungen des Typs N-(H)-F vor, die um ca. 30 pm größer sind als jene in NH_4F [55, 56]. Die kürzeste Wasserstoffbrückenbindung liegt im Bereich von 292,4 pm. Wie für den Baryt-Typ typisch wird das Kation, hier NH_4^+ , zwölffach von Fluoridionen koordiniert (Tab. 1.6).

Aufgrund früherer Befunde, wonach NH₄BF₄ bei ca. 170 K eine Phasenumwandlung durchläuft [51], wurde der Kristall bei 140 K noch einmal auf dem IPDS gemessen. Man findet wiederum eine orthorhombische Elementarzelle (Pnma, Z = 4, a = 887,3(2) pm, b = 574,59(12) pm und c = 717,10(12)pm). Die Besetzung der Punktlagen ist bei 140 K analog zu jenen der Raumtemperaturmodifikation (Tab. 1.3). Die ermittelten interatomaren Abstände und Winkel liegen im Bereich der Werte von InBF₄ (T = -120°C) [53], sind im Vergleich zu den beschriebenen Daten der Tieftemperaturmodifikation von NH₄BF₄ [51] jedoch kleiner. Eine Änderung der Koordinationssphären der einzelnen Atome von der RT-Modifikation zur TT-Modifikation wird nicht beobachtet. Ein Vergleich der Gitterkonstanten beider Messungen macht deutlich, daß die Gitterkonstanten a und c mit fallender Temperatur abnehmen, aber die Gitterkonstante b um etwa 5 pm zunimmt. Im Unterschied zu der in der Literatur beschriebenen Tieftemperaturmodifikation von NH₄BF₄ [51] nimmt das Volumen insgesamt aber ab. Die recht hohen Temperaturfaktoren der Wasserstoffatome und des Stickstoffatoms, die auf eine statistische Fehlordnung der Ammoniumionen hindeuten, nehmen bei 140 K erheblich ab. Dies weist darauf hin, daß ein "Ausfrieren" der Ammoniumionen in der Struktur stattfindet. Die Strukturen beider "Modifikationen" mit eingezeichneten Wasserstoffbrückenbindungen sind in den Abb. 1.2 und 1.3 dargestellt.

Es wurde darüber hinaus versucht, die in der Literatur beschriebene Struktur der Hochtemperaturmodifikation von NH₄BF₄ [52] an einem Einkristall aufzuklären. Bisher konnte die Existenz dieser Phase nur aus Pulverdaten nachgewiesen werden. Demnach kristallisiert NH₄BF₄ bei 260°C kubisch-flächenzentriert mit der Gitterkonstante a = 756(1) pm. Im Gegensatz zu der RT-Modifikation liegen in der HT-Modifikation fehlgeordnete [BF₄]-Tetraeder vor. Bei unseren Untersuchungen an Einkristallen konnte bis 250°C aufgrund von Zellbestimmungen immer noch die orthorhombische Raumtemperaturmodifikation von NH₄BF₄ nachgewiesen werden. Oberhalb 250°C zersetzten sich bei allen Versuchen die Kristalle, bevor sie die Phasenumwandlung durchlaufen hatten. Aufgrund der geringen thermischen Stabilität von NH₄BF₄ sollte man in Zukunft die Untersuchung/ Strukturaufklärung der HT-Modifikation an KBF₄ wiederholen. Sie kann Rückschlüsse über die Art der Fehlordnung der [BF₄]-Tetraeder liefern.

Tab. 1.2: Kristallographische Daten von NH₄BF₄ bei 293 K (links) und 140 K (rechts)

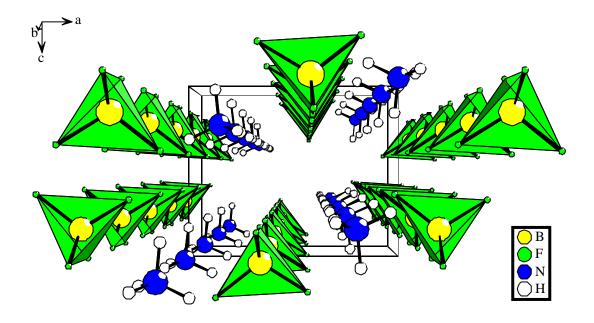
Kristallsystem	orthorhombisch	orthorhombisch	
Raumgruppe	P n m a (Nr. 62)	P n m a (Nr. 62)	
Gitterkonstanten pm	a = 909,73(18)	a = 887,3(2)	
•	b = 569,77(10)	b = 574,59(12)	
	c = 729,47(11)	c = 717,10(12)	
Zellvolumen 10 ⁶ pm ³	378,11(12)	365,60(13)	
Anzahl der Formeleinheiten	Z = 4	Z = 4	
Molmasse g/mol	104,84	104,84	
Röntgenographische Dichte g/cm ³	1,842	1,905	
Kristallfarbe	farblos	farblos	
Meßgerät	IPDS (Stoe)	IPDS (Stoe)	
Strahlung	Mo-K _α (Graphi	t-Monochromator)	
Meßtemperatur K	293(2)	140(2)	
Scan-Modus	2°-Schritte, 100 Bilder	2°-Schritten, 100 Bilder	
Meßbereich °	$7,2 < 2\Theta < 52$	$7,2 < 2\Theta < 52$	
$\mu (MoK_{\alpha}) mm^{-1}$	0,248	0,257	
Indexbereich	-11 < h < 11	-10 < h < 10	
	-6 < k < 6	-7 < k < 7	
	-8 < 1 < 8	-8 < 1 < 7	
F(000)	208	208	
Anzahl der gemessenen Reflexe	2676	1941	
Unabhängige Reflexe	373	382	
Beobachtete Reflexe $[I_0>2\sigma(I)]$	315	337	
R_{int}	0,0361	0,0508	
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-Shape (Stoe) [41]		
	SHELXS-97 [36]	/ SHELXL-97 [37]	
Streufaktoren	International Tables [57]		
Strukturverfeinerung "Full-		east-Squares an F ²	
Daten / Restraints / Parameter	373 / 0 / 44	382 / 0 / 44	
Goodness-of-fit	1,115	1,112	
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0312; wR_2 = 0.0833$	$R_1 = 0.0285$; $wR_2 = 0.0692$	
R-Werte (alle Daten)	$R_1 = 0.0361$; $wR_2 = 0.0859$	$R_1 = 0.0321$; $wR_2 = 0.0712$	
Restelektronendichte	0,23 / -0,13	0,29 / -0,21	

Tab. 1.3:	Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10 ⁻⁴ pm ²) von NH_4BF_4 bei
	293 K und 140 K (grau hinterlegt)

Atom	Lage	x/a	y/b	z/c	\mathbf{U}_{eq}
В	4c	0,9395(2)	0,25	0,6927(3)	0,0330(5)
	4c	0,9299(2)	0,25	0,6919(2)	0,0154(4)
F1	4c	0,0753(2)	0,25	0,6111(3)	0,0716(6)
	4c	0,0634(1)	0,25	0,5909(2)	0,0335(3)
F2	4c	0,8268(2)	0,25	0,5649(2)	0,0575(5)
	4c	0,8056(1)	0,25	0,5721(1)	0,0236(3)
F3	8d	0,9251(1)	0,0509(2)	0,8034(1)	0,0475(4)
	8d	0,9239(6)	0,0518(1)	0,8057(1)	0,0209(3)
N	4c	0,3139(2)	0,25	0,3354(3)	0,141(5)
	4c	0,3162(1)	0,25	0,3317(2)	0,0161(3)
H1	4c	0,227(14)	0,25	0,382(16)	0,25(4)
	4c	0,232(4)	0,25	0,381(4)	0,064(8)
H2	4c	0,309(8)	0,25	0,206(10)	0,17(3)
	4c	0,305(3)	0,25	0,210(5)	0,063(8)
Н3	8d	0,342(6)	0,151(9)	0,376(7)	0,19(2)
	8d	0,370(3)	0,138(4)	0,354(3)	0,072(6)

 $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$

Tab. 1.4: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10^{-4} pm²) von NH_4BF_4 bei 293 K und 140 K (grau hinterlegt)

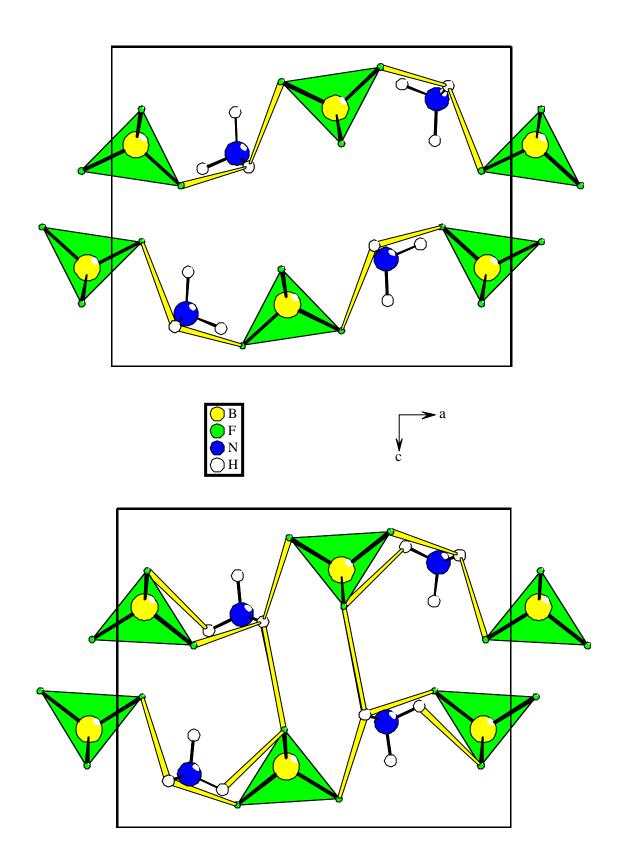

Atom	$\mathbf{U_{11}}$	${ m U_{22}}$	\mathbf{U}_{33}	\mathbf{U}_{13}	U_{23}	\mathbf{U}_{12}
В	0,0334(10)	0,0342(11)	0,0313(14)	0	0,0015(8)	0
	0,0148(7)	0,0179(7)	0,0135(8)	0	0,0005(5)	0
F1	0,0513(9)	0,0838(11)	0,0797(13)	0	0,0322(7)	0
	0,0246(6)	0,0434(6)	0,0324(6)	0	0,0155(4)	0
F2	0,0691(9)	0,0624(9)	0,0410(9)	0	-0,0205(6)	0
	0,0268(5)	0,0277(5)	0,0162(5)	0	-0,0079(3)	0
F3	0,0539(6)	0,0396(6)	0,0489(7)	0,0048(4)	-0,0029(4)	0,0014(4)
	0,0243(4)	0,0182(4)	0,0201(4)	0,0034(2)	-0,0018(2)	0,0019(2)
N	0,0343(9)	0,0416(10)	0,0358(11)	0	-0,0011(7)	0
	0,0146(6)	0,0186(6)	0,0150(7)	0	0,0005(5)	0

$$\boldsymbol{U}_{ij} = exp[-2\pi^2(h^2a^{*2}\boldsymbol{U}_{11} + \ldots + 2hka^*b^*\boldsymbol{U}_{12})]$$

 $\textbf{Tab. 1.5:} \ \ Bindungslängen \ (pm) \ und \ -winkel \ (^\circ) \ von \ NH_4BF_4 \ bei \ 293 \ K \ (links) \ und \ 140 \ K \ (rechts)$

B-F1	137,1(2)	B-F1	138,85(17)
B-F2	138,6(3)	B-F2	139,83(17)
B-F3	139,87(16)	B-F3	140,2(1)
N-H1	86(12)	N-H1	82(3)
N-H2	95(7)	N-H2	88(3)
N-H3	69(6)	N-H3	82(3)
N-(H)F1	295,93	N-(H)F1	291,31
N-(H)F2	292,24	N-(H)F2	289,68
N-(H)F3	293,84	N-(H)F3	289,14
N-(H)F3	294,80	N-(H)F3	291,81
N-(H)F3	304,16	N-(H)F3	299,56
F1-B1-F2	112,0(2)	F1-B1-F2	110,63(12)
F1-B1-F3	109,61(11)	F1-B1-F3	109,64(7)
F2-B1-F3	108,59(10)	F2-B1-F3	109,12(7)
F3-B1-F3	108,38(17)	F3-B1-F3	108,65(12)
H1-N1-H2	110(9)	H1-N1-H2	109(3)
H1-N1-H3	100(6)	H1-N1-H3	116(2)
H2-N1-H3	117(4)	H2-N1-H3	105,2(18)

(Die angegebenen Werte für die Wasserstoffbrückenbindungen des Typs N-(H)-F stammen aus einer MAPLE-Rechnung)


Abb. 1.2: Darstellung der Kristallstruktur von NH_4BF_4 bei 140 K entlang [010]

Tab. 1.6: Motive der gegenseitigen Zuordnung, ECoN und MEFIR (pm), Koordinationszahlen (C.N.) und Abstände (pm) innerhalb der Koordinationspolyeder von NH₄BF₄ der Raumtemperaturmessung (oben) und Tieftemperaturmessung (unten)

	F1	F2	F3	C.N.	ECoN	MEFIR
В	1/1	1/1	2/1	4	3,99	19,52
	137,12	138,59	2 • 139,86			
N	3/3	3/3	6/3	8 + 2 + 2	10,50	175,58
	295,93	292,24	2 • 293,84			
	2 • 343,65	2 • 320,66	2 • 294,80			
			2 • 304,16			
C.N.	2 + 2	2 + 2	4			
ECoN	2,74	3,50	3,94			
MEFIR	122,30	124,25	122,87			
	MAPLE binär	MAPLE termä	r Abweichung			
	[kcal/mol]	[kcal/mol]				
NH ₄ BF ₄	2165,5	2145,1	0,94%			

	F 1	F2	F3	C.N.	ECoN	MEFIR
В	1/1	1/1	2/1	4	3,98	20,29
	138,85	139,82	2 • 140,20			
N	3/3	3/3	6/3	8 + 2 + 2	10,28	169,08
	291,31	289,68	2 • 289,14			
	2 • 351,81	2 • 314,61	2 • 291,81			
			2 • 299,56			
C.N.	2 + 2	2 + 2	4			
ECoN	2,23	3,54	3,88			
MEFIR	122,94	124,42	124,28			
	MAPLE binär	MAPLE termä	r Abweichung			
	[kcal/mol]	[kcal/mol]				
NH ₄ BF ₄	2165,5	2133,2	1,49%			

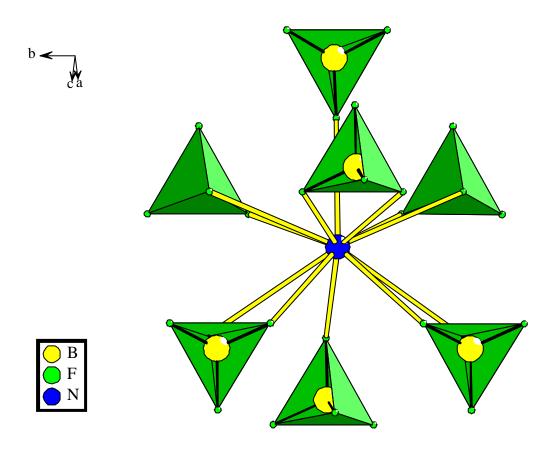
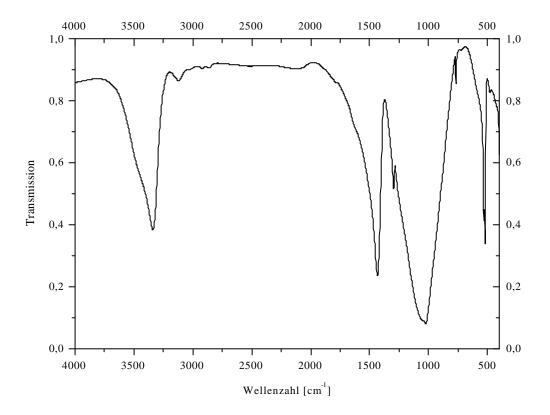

Als Startwerte dienten: r(F) = 133 pm; $r(NH_4^+) = 150 \text{ pm}$; $r(B^{3+}) = 25 \text{ pm}$

Abb. 1.3: Darstellung der Elementarzelle von NH₄BF₄ (entlang [010]) mit eingezeichneten Wasserstoffbrückenbindungen des Typs N-(H)-F bei 293 K (oben) und 140 K (unten)


In NH_4BF_4 wird das NH_4^+ -Ion von 12 F-Ionen mit Abständen von 289 bis 352 pm irregulär koordiniert (Abb. 1.4). Der ECoN-Wert von 10,2 bzw. 10,5 (RT-Messung) belegt aber, daß die beiden Fluoratome im Abstand von 352 pm (ECoN-Beiträge 0,133) eher willkürlich der Koordinationssphäre des Ammoniumions zugeordnet werden. Auch sind die ECoN-Beiträge von den beiden Fluoratomen im Abstand von 315 pm relativ klein (0,655), so daß man insgesamt die Koordinationszahl des Ammoniumions besser mit 8+2+2 angibt. An der Koordination des Ammoniumions sind sieben $[BF_4]$ -Tetraeder beteiligt, wovon fünf mit zwei Fluoratomen chelatisierend koordinieren und zwei nur einzähnig angreifen. Mit einem Ionenradius von 169,1 pm ist das Ammoniumion etwa so groß wie Rb^+ (r = 164 pm) [53].

Die MAPLE-Werte wurden dahingehend berechnet, daß der Wert für B F_3 (1960,2 kcal/mol) aus der Differenz der MAPLE-Werte von RbB F_4 (2165,4 kcal/mol) und RbF (205,2 kcal/mol) ermittelt wurde. Für N H_4 F ergibt sich ein MAPLE-Wert von 201,3 kcal/mol.

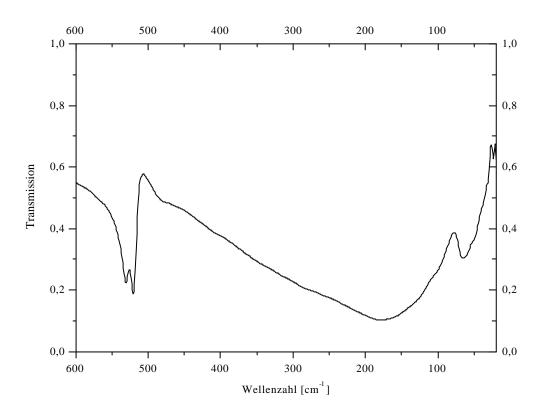
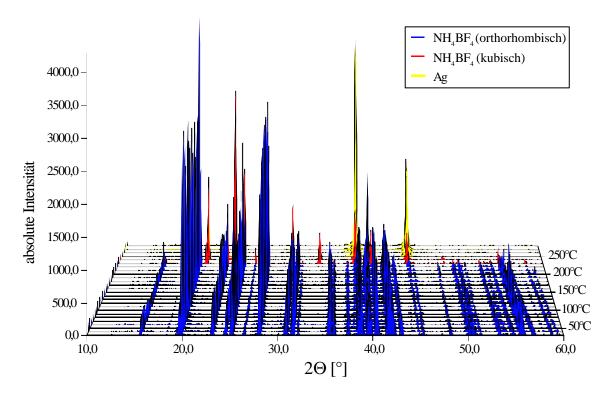


Abb. 1.4: Koordinationssphäre um das Ammoniumion (Aus Übersichtlichkeitsgründen wurden die Wasserstoffatome weggelassen.)

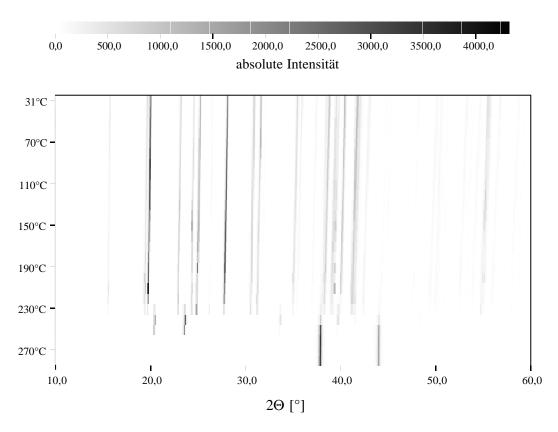
Einige Kristallite von NH₄BF₄ wurden in Kaliumbromid bzw. Polyethylen verrieben, zu Preßlingen verarbeitet und schwingungsspektroskopisch im MIR (Abb. 1.5) und FIR (Abb. 1.6) untersucht. In Tabelle 1.7 sind die beobachteten Banden zusammengefaßt. Durch Vergleich mit Literaturwerten [58, 59] konnten die Banden zugeordnet werden.

Abb. 1.5: MIR-Spektrum von NH_4BF_4

Abb. 1.6: FIR-Spektrum von NH_4BF_4


Banden [cm ⁻¹]	Intensität	Zuordnung	Banden [cm ⁻¹]	Intensität	Zuordnung
3310,3	medium	$v_3(NH_4)$	767,3	weak	$v_1(BF_4)$
1433,4	medium	$v_4(NH_4)$	530,2	weak	$v_4(BF_4)$
1296,5	weak	$v_1 + v_4 (BF_4)$	520,7	weak	$v_4(BF_4)$
1023,8	medium	$v_3(BF_4)$	62,0	weak	Gitterschwingung
877,6	v. weak	?	29,8	v. weak	Gitterschwingung

Tab. 1.7: Zuordnung der beobachteten Schwingungen in NH₄BF₄


1.4 Thermisches Verhalten von NH₄BF₄

1.4.1 Thermischer Abbau von NH_4BF_4

Mit Hilfe von DTA/TG- bzw. DSC-Methoden als auch mit Hilfe der Zeit- und Temperatur-abhängigen Pulverdiffraktometrie, sowohl unter inerten (Ar - oder N₂-Atmosphäre) als auch unter reaktiven Bedingungen (NH₃-Atmosphäre), wurde das thermische Verhalten von NH₄BF₄ untersucht. Bei der in-situ-Pulverdiffraktometrie unter N₂-Atmosphäre ist NH₄BF₄ bis ca. 225°C thermisch beständig. Zwischen 225 und 250°C findet die Phasenumwandlung von der orthorhombischen RT-Modifikation in die kubische HT-Modifikation statt. Diese ist bis ca. 275°C beständig, danach zer-

Abb. 1.7: Temperaturaufgelöste Pulverdiffraktometrie der Zersetzung von NH₄BF₄ unter N₂-Atmosphäre

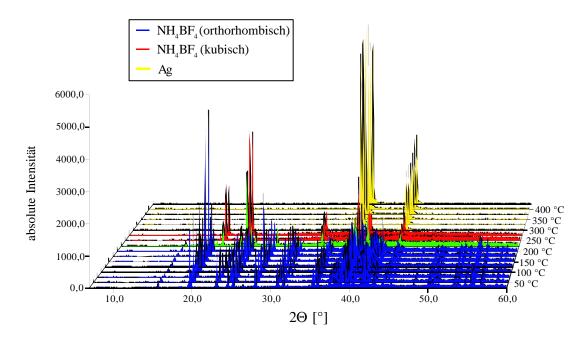
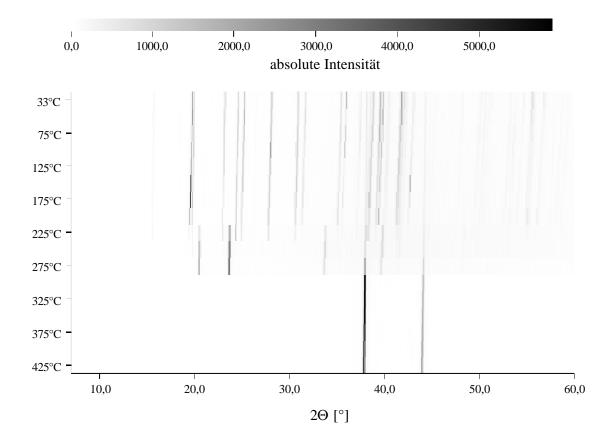


Abb. 1.8: Simon-Guinier-Darstellung des thermischen Abbaus v. NH₄BF₄ unter N₂-Atmosphäre


setzt sich NH_4BF_4 in BF_3 und ein Äquivalent NH_4F . Ab 300°C wird nur noch der Ag-Probenträger detektiert. NH_4BF_4 zersetzt sich zwischen 275 und 300°C unter N_2 -Atmosphäre vollständig in BF_3 und NH_4F , welches in HF und NH_3 dissoziiert. Die Pulverdiffraktogramme des ther-mischen Abbaus unter N_2 -Atmosphäre sind in den Abb. 1.7 und 1.8 wiedergegeben.

Führt man den thermischen Abbau unter Ammoniakatmosphäre durch, so beobachtet man ein analoges Verhalten. Bis 200°C liegt NH₄BF₄ in der orthorhombischen Modifikation vor. Im Bereich zwischen 200 und 250°C kommt es zur Phasenumwandlung von der orthorhombischen in die kubische Modifikation. Zwischen 275 und 300°C zersetzt sich NH₄BF₄ vollständig in BF₃ und NH₄F. Ab 300°C wird nur noch der Ag-Probenträger detektiert. Das thermische Verhalten von NH₄BF₄ unter Ammoniakatmosphäre ist in den Abb. 1.9 und 1.10 dargestellt.

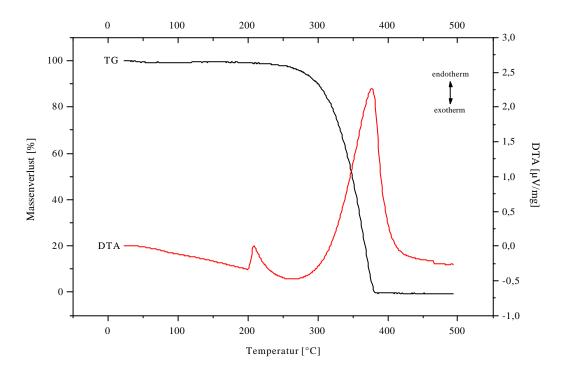

Bei der thermoanalytischen Untersuchung von NH₄BF₄, sowohl unter Ar- als auch unter NH₃-Atmosphäre, erhält man analoge Ergebnisse wie bei der in-situ-Pulverdiffraktometrie. Im DTA/TG-Diagramm unter Ar-Atmosphäre (Abb. 1.11) werden zwei endotherme Signale in der DTA-Kurve und eine Abbaustufe in der TG-Kurve verzeichnet. Bei 209,0°C findet die Phasenumwandlung von der orthorhombischen zur kubischen Modifikation statt. Die thermische Zersetzung von NH₄BF₄ erfolgt endotherm bei 323,7°C (DTA-Signal 377,2°C) mit einem Massenverlust von 100%. Bei der thermoanalytischen Zersetzung unter Ar-Atmosphäre von NH₄BF₄ entsteht BF₃, welches als Gas neben NH₃ und HF entweicht.

Abb. 1.9: Temperaturaufgelöste Pulverdiffraktometrie der Zersetzung von NH₄BF₄ unter NH₃-Atmosphäre

Abb. 1.10: Simon-Guinier-Darstellung des thermischen Abbaus von $\mathrm{NH_4BF_4}$ unter $\mathrm{NH_3}$ -Atmosphäre

Abb. 1.11: Thermoanalytische Zersetzung von NH₄BF₄ unter Ar-Atmosphäre

Die Phasenumwandlung von der orthorhombischen RT-Modifikation in die kubische HT-Modifikation verläuft reversibel (Abb. 1.12). Man beobachtet eine Hysterese von 27,6°C. Beim Aufheizen erfolgt die Phasenumwandlung endotherm bei 204,5°C. Die Umwandlung zurück von der kubischen in die orthorhombische Phase findet hingegen exotherm bei 176,9°C statt. Die Flächen beider Signale sind nahezu gleich groß.

Im DTA/TG-Diagramm unter NH₃-Atmosphäre (Abb. 1.13) werden wiederum zwei endotherme Signale in der DTA-Kurve und eine Abbaustufe in der TG-Kurve registriert. Die Phasenumwandlung unter NH₃-Atmosphäre erfolgt endotherm bei 202,1°C. Die Zersetzungstemperatur von NH₄BF₄ unter NH₃-Atmosphäre ist gegenüber der Zersetzungstemperatur unter Ar-Atmosphäre um 12,2°C erhöht und beträgt 335,9°C (DTA-Signal 378,9°C). Dies läßt sich darauf zurückführen, daß beide Messungen auf zwei verschiedenen Geräten erfolgten und die Aufheizraten sich deutlich unterschieden (10 K/min bei der Messung unter Ar; 4 K/min bei der Messung unter NH₃).

In der Vergangenheit wurde NH_4BF_4 schon von verschiedenen Arbeitsgruppen thermoanalytisch untersucht. R. T. Mareno und J. L. McAtee [60] beobachteten bei der Zersetzung von NH_4BF_4 sowohl unter Ar-Atmosphäre als auch an der Luft BF_3 . Die Zersetzungstemperaturen lagen zwischen 387 und 420°C. Für die Phasenumwandlungstemperatur von der orthorhombischen zur kubischen Phase erhielten sie 189 ± 5 °C. P. W. Richter und C. W. F. T. Pistorius [61] bestimmten die Phasenumwandlungstemperatur zu 188 ± 0.5 °C. Desweiteren wurde von Richter und Pistorius ein Phasendiagramm von NH_4BF_4 bis 40 kbar erstellt [61]. Die früheren Ergebnisse stimmen gut mit den jetzt erhaltenen Daten überein. So befinden sich die damals ermittelten Phasenumwandlungs-

Abb. 1.12: Aufheiz- und Abkühlkurve der thermoanalytischen Untersuchung von $\mathrm{NH_4BF_4}$ unter Ar-Atmosphäre

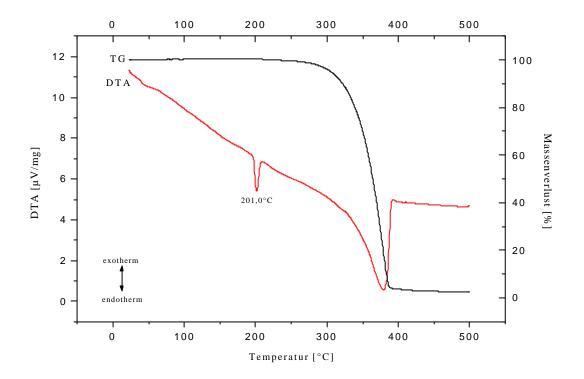
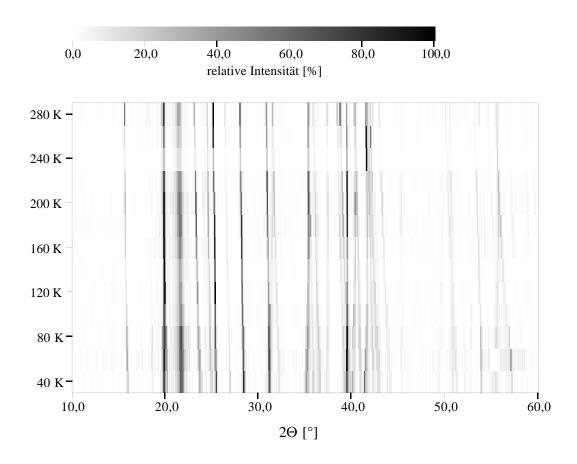


Abb. 1.13: Thermoanalytische Zersetzung von $\mathrm{NH_4BF_4}$ unter $\mathrm{NH_3}\text{-}\mathrm{Atmosph\"{a}re}$

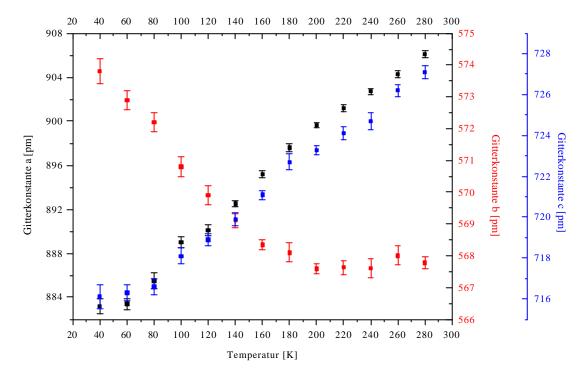
temperaturen in der Mitte der Hysterese! Eine thermoanalytische Untersuchung unter NH₃-Atmosphäre wurde dagegen bisher noch nicht durchgeführt.

Vergleicht man das thermische Verhalten von NH_4BF_4 mit ähnlichen Verbindungen der Elemente der 13. Gruppe, wie z.B. $(NH_4)_3MF_6$ mit M=Al, Ga, und In [15], so beobachtet man , daß sich Bor analog dem Aluminium verhält. Es bildet wie Aluminium bei der Ammonolyse und unter inerten Bedingungen das Trifluorid und nicht das Nitrid, wie man es für die höheren Homologen Gallium und Indium findet. Desweiteren gibt es keine Hinweise auf mögliche Zwischenstufen, die unter Abspaltung von HF, z.B. BF_3 - NH_3 [62], und/oder Aufnahme von NH_3 gebildet werden könnten, wie dies bei den höheren Homologen der 13. Gruppe geschieht [15]. Der Grund für dieses Verhalten mag einerseits in der Standardbildungsenthalpie von BF_3 liegen [63], obwohl dieser Wert ungefähr gleich groß ist wie jener von GaF_3 (Tab. 1.8), andererseits liegt dieses Verhalten auch in der hohen Flüchtigkeit von BF_3 begründet, welches ab -99,9°C als Gas vorliegt! Bei der Ammonolyse der Trihalogenide BCl_3 und BBr_3 entsteht hingegen Bornitrid [24]. Demnach müßte die Ammonolyse der schwer zugänglichen und sehr hydrolyseempfindlichen Verbindungen NH_4BX_4 mit X=Cl und Br im Unterschied zu NH_4BF_4 Bornitrid ergeben.


Tab. 1.8: Thermodynamische Daten in kJ/mol von MF_3 und MN mit M = B, Al, Ga und In [63]

	В	Al	Ga	In	
MF_3	-1136,584	-1510,400	-1174,867	-1189,930	$\Delta { m H^{\circ}}_{ m f}$
	-1119,917	-1413,096	-1100,622	-1114,792	$\Delta { m G^{\circ}}_{ m f}$
MN	-254,387	-317,984	-109,621	-17,154	$\Delta { m H^{\circ}}_{ m f}$
	-228,501	-286,997	-77,741	+15,676	$\Delta G^{\circ}_{ f}$

1.4.2 Thermisches Verhalten von NH₄BF₄ bei tiefen Temperaturen


Im Rahmen dieser Arbeit wurde versucht, die in der Literatur beschriebene Phasenumwandlung von NH₄BF₄ bei ca. 170 K [51] durch pulverdiffraktometrische Untersuchungen im Temperaturbe-reich zwischen 300 und 40 K wie auch durch eine Tieftemperatur-DSC-Untersuchung zu verifizieren. Die Pulverdiffraktogramme wurden in 20K-Schritten zwischen 300 und 40 K aufgenommen. Anhand der Diffraktogramme erkennt man, daß ab 180 K eine Aufspaltung von mehreren Reflexen im Bereich von 35°, 41° und ca. 55° stattfindet (Abb. 1.14). Das Aufspalten der Reflexe zwischen 200 und 160 K weist auf eine Phasenumwandlung hin. Unterhalb von 80 K spaltet der starke Reflex (011) auf. Dies deutet auf eine weitere Phasenumwandlung von NH₄BF₄ hin. Durch Auftragung der Gitterkonstanten bzw. des molaren Volumens gegen die Temperatur lassen sich Rückschlüsse auf die Art der Phasenumwandlung gewinnen. Sollte eine sprunghafte Änderung der Gitterkonstanten bzw. des molaren Volumens beobachtet werden, so deutet dies auf eine Phasenumwandlung erster Ordnung hin. Findet hingegen eine kontinuierliche Änderung der Gitterparameter statt, so weist dies auf eine Phasenumwandlung zweiter oder höherer Ordnung hin. In Abb. 1.15 und 1.16 sind die

Gitterkonstanten bzw. das molare Volumen gegen die Temperatur aufgetragen. Die ermittelten Gitterparameter sind in Tab. 1.9 zusammengefaßt. In Abb. 1.15 erkennt man, daß die Gitterkonstanten a und c mit fallender Temperatur nahezu linear abnehmen. Die Gitterkonstante b hingegen bleibt bis ungefähr 200 K konstant und beginnt dann anschließend linear zu-zunehmen. Durch mehrmaliges Wiederholen der Messung konnte dieser Verlauf bestätigt werden. Dieser Verlauf deutet auf eine Phasenumwandlung zweiter oder höherer Ordnung hin, da keine sprunghafte Änderung einer oder mehrerer Gitterkonstanten beobachtet werden konnte. Dies spiegelt sich auch im Verlauf des molaren Volumens gegen die Temperatur wider: Es nimmt mit abnehmender Temperatur kontinuierlich ab.

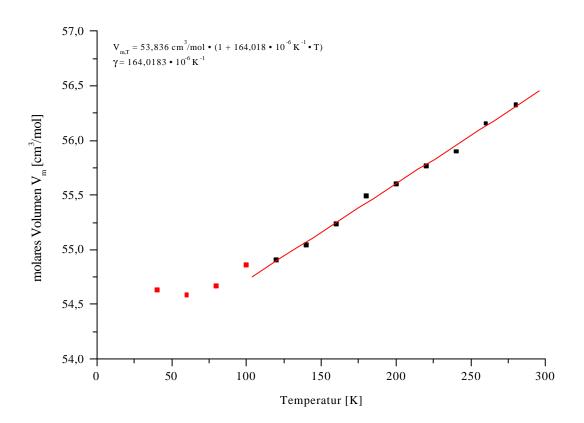


Abb. 1.14: Simon-Guinier-Darstellung der Pulverdiffraktogramme von NH₄BF₄ in Abhängigkeit von der Temperatur

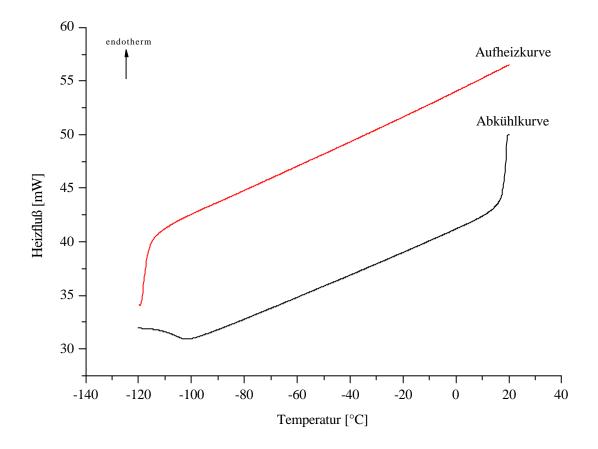

Um diese mögliche Phasenumwandlung zu bestätigen wurde im Temperaturbereich von 20 bis -120°C eine Tieftemperatur-DSC-Untersuchung durchgeführt. Dabei wurde die Probe mit 10 K/min auf -120°C abgekühlt, 15 min bei dieser Temperatur getempert und anschließend wieder mit 10 K/min auf Raumtemperatur erwärmt. In der Abkühlkurve wird dabei ein breites exothermes Signal bei -100°C beobachtet, welches aber in der Aufheizkurve nicht auftritt. Die Messung wurde noch einmal wiederholt, wobei das gleiche Ergebnis erhalten wurde. Im Anschluß wurde eine Leermessung durchgeführt, bei der im selben Temperaturbereich in der Abkühlkurve ein exothermes Signal regi-

Abb. 1.15: Auftragung der Gitterkonstanten von $\mathrm{NH_4BF_4}$ gegen die Temperatur

Abb. 1.16: Auftragung des molaren Volumens V_m gegen die Temperatur zur Ermittlung des Volumenausdehnungskoeffizienten g und des molaren Volumens Vm bei 0 K von NH_4BF_4 (rote Meßpunkte nicht berücksichtigt)

Abb. 1.17: Tieftemperatur-DSC-Untersuchung an NH_4BF_4

 $\textbf{Tab. 1.9:} \ \textbf{Zusammenfassung der ermittelten Gitterparameter und berechneten Volumina von } \ \textbf{NH}_{4} \textbf{BF}_{4}$

Temperatur [K]	a [pm]	b [pm]	c [pm]	V [10 ⁶ pm ³]	V_m [cm ³ /mol]
280	906,1(3)	567,8(2)	727,1(3)	374,1(3)	56,32
260	904,3(3)	568,0(3)	726,2(3)	373,0(3)	56,16
240	902,7(3)	567,6(3)	724,7(4)	371,3(4)	55,90
220	901,2(3)	567,6(2)	724,1(3)	370,4(4)	55,76
200	899,6(3)	567,6(2)	723,3(2)	369,3(3)	55,60
180	897,6(4)	568,1(3)	722,7(4)	368,6(4)	55,49
160	895,2(3)	568,4(2)	721,1(2)	366,9(3)	55,24
140	892,5(3)	569,1(2)	719,9(3)	365,6(4)	55,04
120	890,1(5)	569,9(3)	718,9(3)	364,7(5)	54,91
100	889,0(5)	570,8(3)	718,1(4)	364,4(5)	54,86
80	885,5(7)	572,2(3)	716,6(4)	363,1(5)	54,67
60	883,4(5)	572,9(3)	716,3(4)	362,6(5)	54,59
40	883,2(7)	573,8(4)	716,1(6)	362,9(7)	54,64

striert wurde. Aufgrund dieser Tatsache ist davon auszugehen, daß das beobachtete Sig-nal nicht von der Probe stammt, sondern vielmehr ein Gerätesignal ist. Damit lassen sich aus der DSC-Untersuchung an NH₄BF₄ keine Rückschlüsse auf eine Phasenumwandlung im Temperaturbereich von ungefähr 170 K ziehen.

Mittels der durchgeführten Untersuchungen bei tiefer Temperatur, sowohl am Einkristall als auch am Pulver, konnte kein eindeutiger Nachweis auf die orthorhombische Tieftemperatur-Modifikation von NH_4BF_4 erbracht werden. Die Aufspaltung von Reflexen in den Pulverdiffraktogrammen wie auch der Verlauf der Gitterkonstanten mit der Temperatur deuten aber auf eine Phasenumwandlung zweiter Ordnung hin, die mittels der Tieftemperatur-DSC-Untersuchung nicht verifiziert werden konnte. Das Aufspalten von weiteren Reflexen bei ca. 80 K deutet auf eine weitere Modifikation von NH_4BF_4 hin. Andere Untersuchungsmethoden, wie z.B. die Neutronenbeugung an ND_4BF_4 , könnten Aufschluß über mögliche Modifikationen von NH_4BF_4 bei tiefen Temperaturen liefern.

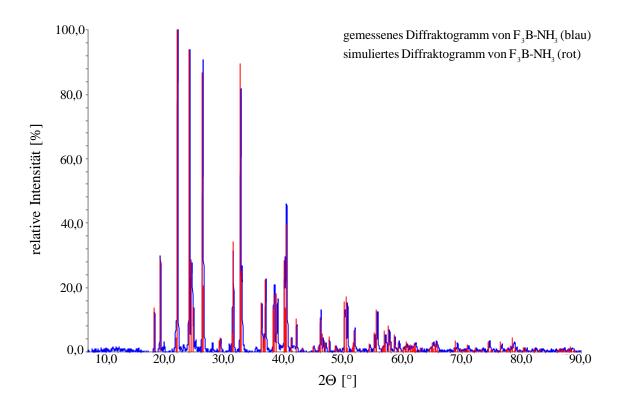
2 Der Lewis-Säure-Base-Komplex F₃B-NH₃

2.1 Einleitung

Anfang des 19. Jahrhunderts beschrieb erstmals Gay-Lussac das Addukt Bortrifluorid-Monoammoniakat [64]. Davy führte einige Jahre später die Arbeiten weiter und fand neben dem Monoammoniakat auch das Di- und Triammoniakat, die als farblose Flüssigkeiten vorgelegen haben sollen [65]. 1953 gelang es H. C. Brown und S. Johnson, bei tiefen Temperaturen höhere Ammoniakate von Bortrifluorid nachzuweisen [66]. Im Temperaturbereich zwischen -45 und -78°C existieren das Di-, Tri- und Tetraammoniakat. Bei Raumtemperatur ist hingegen nur das Mono-ammoniakat beständig. Eine Strukturaufklärung der höheren Ammoniakate fehlt bis heute.

J. L. Hoard, S. Geller und W. M. Cashin gelang es 1950, die Struktur von F_3B-NH_3 mittels der Einkristall-Röntgenstrukturanalyse aufzuklären [62]. F_3B-NH_3 kristallisiert in der orthorhombischen Raumgruppe Pbca mit den Gitterkonstanten a=8,22 Å, b=8,11 Å und c=9,31 Å. In der Elementarzelle sind acht Moleküle F_3B-NH_3 enthalten.

Bis heute wurden eine Vielzahl weiterer Addukte mit der Lewis-Säure BF_3 und Stickstoffbasen dargestellt. Als Beispiel sollen die Alkylaminderivate, wie z.B. $(C_2H_5)_2NH$ - BF_3 [67], genügen. Desweiteren existieren Verbindungen von BF_3 mit anderen Lewis-Basen, wie z.B. Diethylether.


2.2 Darstellung von F₃B-NH₃

In der Literatur werden verschiedene Darstellungsmethoden für F_3B -NH $_3$ beschrieben. Bei der von A. P. Caron et al. beschriebenen Methode [68] wurde gasförmiges Ammoniak durch eine BF_3 -Et $_2$ O-Lösung geleitet. Dabei fiel farbloses F_3B -NH $_3$ aus. Der Niederschlag wurde in destilliertem Wasser oder absolutem Methanol umkristallisiert, wobei als Nebenprodukt Ammoniumtetra-fluoroborat entstand. Eine andere Darstellungsmethode ist der thermische Abbau von Verbindungen des Typs $[M(NH_3)_6][BF_4]_2$. G. Balz und W. Zinser erhielten bei der Zersetzung von $[Ni(NH_3)_6][BF_4]_2$ ein weißes Sublimat, das die Zusammensetzung F_3B -NH $_3$ besaß [69].

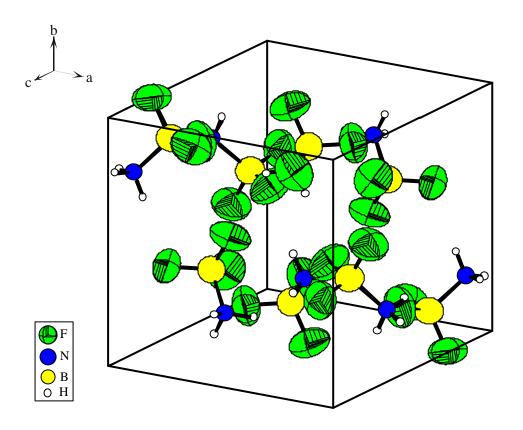
Im Rahmen dieser Arbeit wurde F₃B-NH₃ wie folgt dargestellt: In einem evakuierten und ausgeheizten Schlenkrohr (zur Entfernung von Restfeuchtigkeit) wurde bei ca. -50°C Ammoniak einkondensiert. Anschließend wurde auf ca. -110°C abgekühlt, wobei Ammoniak bei -77°C fest wurde. Nach nochmaligem Evakuieren wurde Bortrifluorid aufkondensiert. Man beobachtete eine sofortige Weißfärbung an der Schlenkrohrinnenwand, die sich langsam nach unten ausdehnte. Nach Beendigung der Einkondensation von BF₃ wurde langsam aufgetaut. Dabei entwich überschüssiges BF₃ und/oder NH₃. Als Rückstand blieb ein weißer Feststoff zurück, der im Ölpumpenvakuum getrocknet wurde. Von dem erhaltenen Produkt wurde ein Pulverdiffraktogramm angefertigt (Abb. 2.1). In Tabelle 2.1 sind die Zellparameter angegeben. Die zugehörige Peakliste ist im Anhang aufgeführt.

Tab. 2.1: Zellparameter von F₃B-NH₃

Ermittelte Zellparameter (pm):	Verfeinerte Zellparameter (pm):
Gitterkonstante a = 812,59	Gitterkonstante $a = 812,89(24)$
Gitterkonstante b = 802,56	Gitterkonstante $b = 803,2(4)$
Gitterkonstante $c = 926,16$	Gitterkonstante $c = 925,8(3)$
	Zellvolumen (10 ⁶ pm ³): 604,5(5)

Abb. 2.1: Pulverdiffraktogramm von F₃B-NH₃

Bei genauer Betrachtung des Pulverdiffraktogramms von F_3B-NH_3 erkennt man, daß sich neben F_3B-NH_3 im geringen Maß auch NH_4BF_4 gebildet hat (siehe Peakliste im Anhang). Eine mögliche Ursache hierfür könnte sein, daß die Reaktionsapparatur nicht vollständig dicht war und eine Hydrolyse von F_3B-NH_3 stattfand gemäß:


$$2 F_3 B\text{-NH}_3 + 2 H_2 O \longrightarrow \text{NH}_4 B F_4 + \text{,,NH}_4 B O_2 \text{``} + 2 \text{ HF}$$

Geeignete Einkristalle wurden mit einem Polarisationsmikroskop ausgesucht, in Markröhrchen eingeschmolzen und mit Einkristall-Filmaufnahmen auf ihre Güte hin untersucht.

2.3 Kristallstruktur von F₃B-NH₃

1950 gelang es J. L. Hoard, S. Geller und W. M. Cashin erstmals die Kristallstruktur von F₃B-NH₃ an einem Einkristall aufzuklären [62]. Die Struktur wurde einige Jahre später von A. P. Caron et al. anhand von Röntgenpulverdaten bestätigt [68]. Im Rahmen dieser Arbeit wurde die Kristallstruktur von F₃B-NH₃ an einem Einkristall neu bestimmt.

F₃B-NH₃ kristallisiert im orthorhombischen Kristallsystem mit der Raumgruppe Pbca (Nr. 61) und acht Formeleinheiten pro Elementarzelle (Tabelle 2.2). In der Struktur liegen isolierte F₃B-NH₃-Moleküle vor, die durch schwache Wasserstoffbrückenbindungen des Typs N-H···F miteinander verknüpft sind (Abb. 2.2 und 2.3).

Abb. 2.2: Kristallstruktur von F₃B-NH₃

Das F₃B-NH₃-Molekül liegt in der gestaffelten Konformation vor (Abbildung 2.4). Die trigonalplanare Koordination des Boratoms in BF₃ [70] geht in eine nahezu tetraedrische Koordination über (vgl. Bindungswinkel Tab. 2.5). Desweiteren nimmt die Länge der B-F-Bindung von 131 pm in BF₃ auf 138 pm zu. Analoge B-F-Abstände beobachtet man für Ammoniumtetrafluoroborat. Der Abstand B-N von 158 pm ist größer als für einfach kovalente B-N-Bindungen zu erwarten.

Vergleicht man die Bor-Stickstoff- und Bor-Fluor-Abstände von F₃B-NH₃ mit jenen von analogen σ-σ-Komplexen von BF₃, wie (H₃C)₃N-BF₃ [71], H₃CCN-BF₃ [72] oder H₃CH₂N-BF₃ [72], so be-

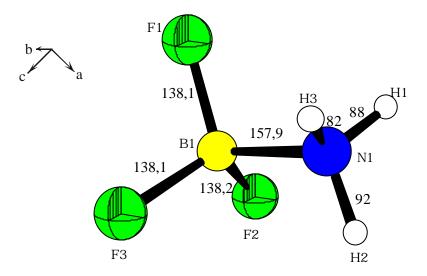
 $\textbf{Tab. 2.2:} \ \ Kristallographische \ Daten \ und \ Angaben \ zur \ Strukturbestimmung \ von \ F_{3}B-NH_{_{3}}$

Kristallsystem	orthorhombisch	orthorhombisch
Raumgruppe	Pbca (Nr. 61)	Pbca (Nr. 61)
Gitterkonstante pm	a = 815,12(10)	a = 807,26(13)
	b = 805,91(14)	b = 800,48(10)
	c = 929,03(12)	c = 924,31(11)
Zellvolumen 10 ⁶ pm ³	610,29(15)	597,28(14)
Anzahl der Formeleinheiten	Z = 8	Z = 8
Molmasse g/mol	84,8	84,8
Röntgenographische Dichte g/cm³	1,847	1,887
Kristallfarbe	farblos	farblos
Meßgerät	IPDS (Stoe)	IPDS (Stoe)
Strahlung	$Mo-K_{\alpha}$ (Graphit-Mo	onochromator)
Scan-Modus	125 Bilder in 2°-Schritten	100 Bilder in 2°-Schritten
Meßtemperatur K	293(2)	170(2)
Meßbereich°	$3.8 \le 2\Theta \le 56.3$	$3.8 \le 2\Theta \le 56.3$
$\mu (\text{MoK}_{\alpha}) \text{mm}^{-1}$	0,239	0,245
Indexbereich	$-10 \le h \le 10$	$-9 \le h \le 9$
	$-9 \le k \le 9$	$-9 \le k \le 9$
	-11 ≤1 ≤ 11	-11 ≤1 ≤ 11
F(000)	336	336
Anzahl der gemessenen Reflexe	4611	4170
Unabhängige Reflexe	588	577
Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	492	502
R_{in}	0,0623	0,0374
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-	Shape (Stoe) [41]
	SHELXS-97 [37] / SH	ELXL-97 [36]
Streufaktoren	International Tables [57]
Strukturverfeinerung	"Full-matrix"-Least-Squ	uares an F ²
Daten / Restraints / Parameter	588 / 0 / 58	577 / 0 / 58
Goodness-of-fit	1,414	1,247
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0311; wR_2 = 0.0914$	$R_1 = 0.0241; wR_2 = 0.0651$
R-Werte (alle Daten)	$R_1 = 0.0367; wR_2 = 0.0942$	$R_1 = 0.0292; wR_2 = 0.0666$
Restelektronendichte	0,16 / -0,15	0,22 / -0,20

Tab. 2.3:	Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10 4 pm 2) von F_3B -N H_3 bei
	293 K und 170 K (grau hinterlegt)

Atom	Lage	x/a	y/b	z/c	\mathbf{U}_{eq}
В	8c	0,3403(2)	0,1071(2)	0,3303(2)	0,0298(4)
	8c	0,3395(2)	0,1057(2)	0,1702(1)	0,0150(3)
F1	8c	0,1965(1)	0,0931(1)	0,4080(1)	0,0500(4)
	8c	0,1935(1)	0,0899(1)	0,0917(1)	0,0259(2)
F2	8c	0,4239(1)	-0,0420(1)	0,3311(1)	0,0503(4)
	8c	0,4241(1)	-0,0455(1)	0,1711(1)	0,0259(2)
F3	8c	0,3082(1)	0,1588(1)	0,1914(1)	0,0490(4)
	8c	0,3068(1)	0,1603(1)	0,3093(1)	0,0248(2)
N	8c	0,4527(2)	0,2413(2)	0,4051(1)	0,0328(3)
	8c	0,4530(1)	0,2393(1)	0,0929(1)	0,0163(3)
H1	8c	0,469(3)	0,216(3)	0,496(3)	0,065(6)
	8c	0,409(2)	0,341(3)	0,091(2)	0,043(5)
H2	8c	0,550(3)	0,258(4)	0,357(3)	0,081(8)
	8c	0,552(2)	0,248(2)	0,137(2)	0,042(4)
Н3	8c	0,409(3)	0,333(3)	0,407(3)	0,064(7)
	8c	0,470(2)	0,212(2)	0,003(2)	0,039(4)

 $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$


Tab. 2.4: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von F_3B -NH $_3$ bei 293 K und 170 K (grau hinterlegt)

Atom	$\mathbf{U_{11}}$	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{13}	U_{23}	$\mathbf{U_{12}}$
В	0,0312(7)	0,0281(7)	0,0301(7)	-0,0015(5)	0,0021(5)	0
	0,0169(6)	0,0139(6)	0,0143(5)	0,0010(4)	-0,0007(4)	0,0000(5)
F1	0,0413(6)	0,0518(6)	0,0568(6)	-0,0089(4)	0,0176(4)	-0,0131(4)
	0,0214(4)	0,0261(4)	0,0303(4)	0,0042(3)	-0,0101(3)	-0,0070(3)
F2	0,0629(7)	0,0316(6)	0,0565(6)	-0,0075(4)	-0,0024(4)	0,0110(4)
	0,0341(4)	0,0162(4)	0,0276(4)	0,0040(2)	0,0011(3)	0,0067(3)
F3	0,0522(6)	0,0622(7)	0,0327(5)	0,0048(4)	-0,0092(3)	-0,0081(4)
	0,0260(4)	0,0315(4)	0,0169(4)	-0,0031(3)	0,0056(2)	-0,0030(3)
N	0,0343(7)	0,0323(7)	0,0319(6)	-0,0012(4)	-0,0015(5)	-0,0014(4)
	0,0174(5)	0,0160(5)	0,0156(5)	-0,0001(3)	0,0002(4)	-0,0010(4)

 $\boldsymbol{U}_{ij} = exp[-2\pi^2(h^2a^{*2}\boldsymbol{U}_{11} + \ldots + 2hka^*b^*\boldsymbol{U}_{12})]$

Tab. 2.5: Bindungslängen (pm) und -winkel (°) von F_3B-NH_3 bei 293 K (links) und 170 K (rechts)

B-F1	138,08(17)	B-F1	139,03(14)
B-F2	138,17(18)	B-F2	139,00(14)
B-F3	138,06(17)	B-F3	138,37(13)
B-N	157,93(18)	B-N	157,88(15)
N-H1	88(3)	N-H1	89(2)
N-H2	92(3)	N-H2	90(2)
N-H3	82(3)	N-H3	87,2(19)
N-(H)-F1	308,5(0)	N-(H)-F1	313,0(0)
N-(H)-F3	310,5(0)	N-(H)-F3	312,9(0)
B-N-H1	110,5(15)	B-N-H1	113,2(11)
B-N-H2	112,9(19)	B-N-H2	111,4(12)
B-N-H3	112,0(16)	B-N-H3	110,7(11)
H1-N-H2	112,9(16)	H1-N-H2	106,9(16)
H1-N-H3	104,7(22)	H1-N-H3	106,0(16)
H2-N-H3	104,9(26)	H2-N-H3	108,3(16)
N-B-F1	108,55(11)	N-B-F1	108,5(1)
N-B-F2	107,88(12)	N-B-F2	107,94(9)
N-B-F3	108,36(11)	N-B-F3	108,52(9)
F1-B-F2	110,16(12)	F1-B-F2	109,92(9)
F1-B-F3	110,65(12)	F1-B-F3	110,61(10)
F2-B-F3	111,15(12)	F2-B-F3	111,27(9)

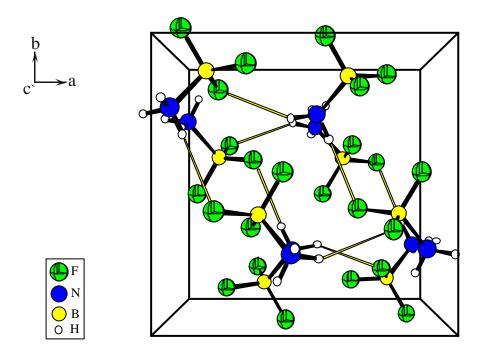
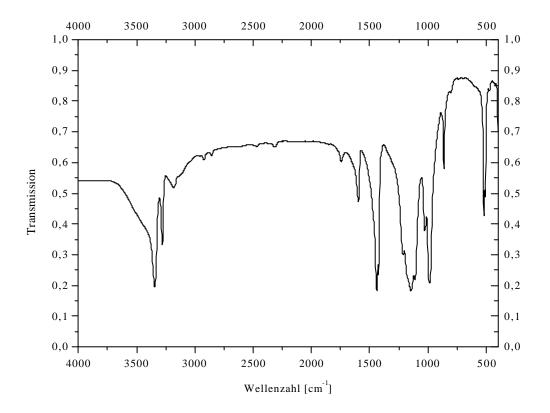


Abb. 2.3: Darstellung des F_3B-NH_3 -Moleküls in der Kristallstruktur

obachtet man mit zunehmender Donorstärke eine Abnahme des Bor-Stickstoff-Abstandes und eine Zunahme des Bor-Fluor-Abstandes (Tabelle 2.6). Dieses Verhalten beobachtet man bei allen σ - σ -Komplexen dieser Art [73]. Allgemein gilt bei σ - σ -Komplexen, daß mit Zunahme der Donorstärke (Elektronenübergang) die intermolekularen Bindungen kürzer und die intramolekularen Bindungen länger werden.


Tab. 2.6: Bindungslängen [pm] und -winkel [°] einiger $\sigma\text{-}\sigma\text{-}Komplexe$ von $BF_{_3}$

	BF ₃ [70]	H ₃ N-BF ₃	(CH ₃) ₃ N-BF ₃ [71]	H ₃ CH ₂ N-BF ₃ [72]	CH ₃ CN-BF ₃ [72]
Abstand B-N [pm]	-	158	158,5	157	163,5
Abstand B-F [pm]	131	138	139	139	133
Winkel F-B-F [°]	120	110,6	107	110,5	114

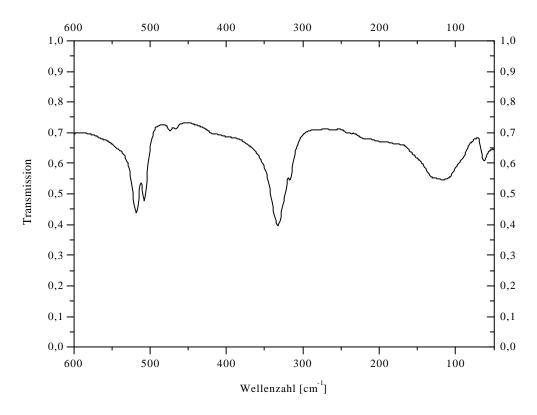


Abb. 2.4: Kristallstruktur von F₃B-NH₃ mit eingezeichneten Wasserstoffbrückenbindungen des Typs N-H···F

Einige Kristallite von F₃B-NH₃ wurden mit Kaliumbromid verrieben, zu Presslingen verarbeitet und schwingungspektroskopisch im MIR- (Abb. 2.5) und im FIR-Bereich (Abb. 2.6) untersucht. In Tabelle 2.7 sind die beobachteten Banden zusammengefaßt. Durch Vergleich mit Literaturwerten konnten die gefundenen Banden zugeordnet werden [74, 75, 76, 77]. Im MIR-Spektrum beobachtet man eine deutliche Verschiebung der Valenzschwingungen des koordinierten Ammoniakmoleküls

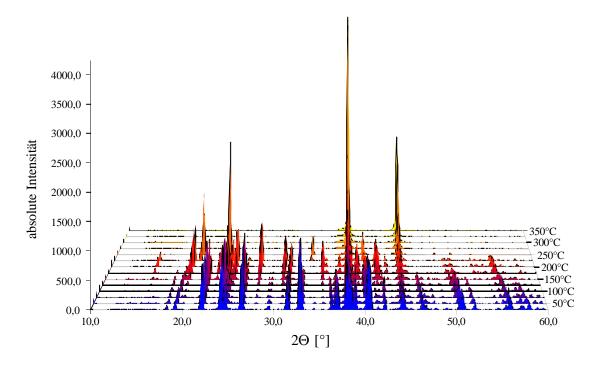
Abb. 2.5: MIR-Spektrum von F₃B-NH₃

Abb. 2.6: FIR-Spektrum von F_3B-NH_3

im Vergleich zu jenen des freien, gasförmigen Ammoniaks, die bei 3444 cm⁻¹ und 3337 cm⁻¹ liegen [78]. Diese Erniedrigung der Wellenzahlen der NH₃-Valenzschwingungen bestätigt den Verdacht auf das Vorliegen von N-H··F-Wasserstoffbrückenbindungen in F₃B-NH₃, der sich aus der Röntgenstrukturanalyse ergab. Ebenfalls beobachtet man bei den Schwingungen, an denen das Boratom stark beteiligt ist, aufgrund der beiden Borisotope ¹¹B und ¹⁰B (Verhältnis: 80:20) eine Aufspaltung der Banden. Eine eindeutige Zuordnung der Deformationsschwingungen der BF₃-Gruppe unterhalb 600 cm⁻¹ (Abb. 2.6) konnte nicht getroffen werden. Die Zuordnung der Schwingungen erfolgte entsprechend jenen in [74].

Tab. 2.7: Zuordnung der beobachteten Schwingungen von F₃B-NH₃

Banden [cm ⁻¹]	Intensität	Zuordnung	Banden [cm¹]	Intensität	Zuordnung
3344,4	medium	$v_{as}(NH_3)$	986,6	strong	$v_{sv}^{(11}BF_3)$
3279,4	medium	$v_{sv}(NH_3)$	863,4	medium	$\rho(NH_3)$
3184,8	weak	$2 \cdot \rho(NH_3)$	518,0	medium	$\delta_{\rm as}(^{10}{\rm BF}_3)$
3105,6	weak, sh.		507,5	weak	$\delta_{as}(^{11}BF_3)$
2921,7	v. weak	$2 \cdot \rho(NH_3)$	473,9	weak	$\delta_{\rm sv}(^{10}{\rm BF}_3)$
2856,2	v. weak	$2 \cdot \delta_{sv}(NH)$	464,6	weak	$\delta_{\rm sy}(^{11}{\rm BF}_3)$
2312,9		·	332,6	strong	$\rho(^{10}\mathrm{BF}_3)$
1745,2	v. weak	$2 \cdot \rho(NH_3)$	315,5	weak	$\rho(^{11}BF_{3})$
1595,9	medium	$\delta_{as}(NH)$	60-140	medium, br.	$\tau(B-N)$ o. $\nu(N-H-F)$
1438,2	medium	$\delta_{sv}(NH)$	0-60	medium	Gitterschwingungen
1424,4	weak	$\delta_{sv}^{s}(NH)$			
1210,4	weak	$v_{as}^{(10}BF_3)$			
1146,9	medium, br.	$v_{as}^{(11}BF_3)$			
1112,0	weak				
1027,9	medium	$\nu_{sv}^{}(^{10}BF_3^{})$			


2.4 Thermisches Verhalten von F₃B-NH₃

Aus früheren Arbeiten ist bekannt, daß beim Erhitzen von F_3B-NH_3 in einer Ampulle neben Ammoniumtetrafluoroborat auch Bornitrid gemäß

$$4 F_3 B - NH_3 \rightarrow BN + 3 NH_4 BF_4$$

ensteht [47]. Thermoanalytische und in-situ-pulverdiffraktometrische Untersuchungen sowohl unter inerten als auch reaktiven Bedingungen, z.B unter NH₃-Atmosphäre, wurden bisher jedoch nicht durchgeführt. Im Rahmen dieser Arbeit wurden diese Untersuchungen erstmals durchgeführt und lieferten Einblicke in das thermische Verhalten von F₃B-NH₃.

Unter den Bedingungen der in-situ-Pulverdiffraktometrie ist F₃B-NH₃ sowohl unter Stickstoff- als auch unter Ammoniakatmosphäre bis ca. 125°C thermisch beständig. Ab 125°C wird neben F₃B-NH₃ auch NH₄BF₄ röntgenographisch erfaßt. Bis 175°C liegen beide Verbindungen nebeneinander vor. Unter Ammoniakatmosphäre wird ab 175°C nur noch NH₄BF₄ detektiert, unter Stickstoff- atmosphäre dagegen erst ab 200°C. Das weitere thermische Verhalten entspricht jenem, wie es im vorherigen Kapitel für NH₄BF₄ beschrieben wurde. Im Bereich von 225°C findet die Phasenumwandlung von der orthorhombischen in die kubische Phase von NH₄BF₄ statt. Die Phasenumwandlung ist bis 250°C abgeschlossen. Ab 275°C beobachtet man die Zersetzung von NH₄BF₄ zu BF₃, NH₃ und HF. Am Ende der thermischen Zersetzung traten nur noch Reflexe des Probenträgers auf. Die Pulverdiffraktogramme des thermischen Abbaus von F₃B-NH₃ unter Stickstoff- bzw. Ammoniakatmosphäre sind in den Abb. 2.7 bis 2.10 wiedergegeben.

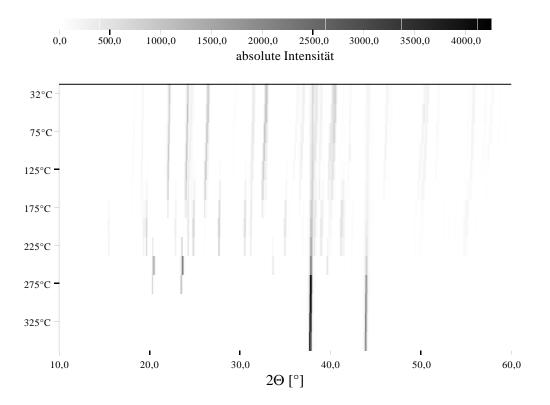
Abb. 2.7: Pulverdiffraktogramme der thermischen Zersetzung von F₃B-NH₃ unter Ammoniak in Abhängigkeit von der Temperatur

Folgender Abbaumechanismus von F₃B-NH₃ läßt sich im Einklang mit den pulverdiffraktometrischen Untersuchungen angeben: Ab 125°C kommt es im System zu einer HF-Bildung, die durch eine Zersetzung von F₃B-NH₃ herrührt. Das dabei gebildete borhaltige Intermediat konnte bisher nicht erfaßt und charakterisiert werden. Als mögliche Reaktionen kann man formulieren:

$$F_3B - NH_3 \xrightarrow{\Delta T} HF \uparrow + "BF_2NH_2"$$

 $F_3B - NH_3 \xrightarrow{\Delta T} 2HF \uparrow + "BF = NH"$

Sowie HF im System vorliegt, kommt es zur Bildung von NH_4BF_4 durch Anlagerung von HF an F_3B-NH_3 :


$$F_3B-NH_3+HF \rightarrow NH_4BF_4$$
 (ortorhombische Modifikation)

Bei 250°C findet die Phasenumwandlung von der orthorhombischen in die kubische Modifikation statt:

$$NH_4BF_4$$
 (orthorhom bisch) $\xrightarrow{\Delta T}$ NH_4BF_4 (kubisch)

Ab 275°C beobachtet man die Zersetzung von NH_4BF_4 zu BF_3 und NH_4F , welches in NH_3 und HF zerfällt:

$$NH_4BF_4$$
 (kubisch) $\xrightarrow{\Delta T}$ $BF_3 \uparrow + NH_3 \uparrow + HF \uparrow$

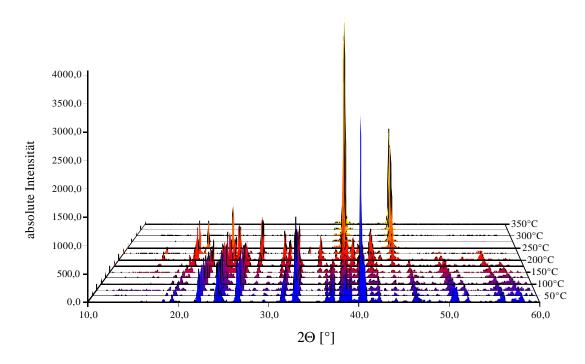
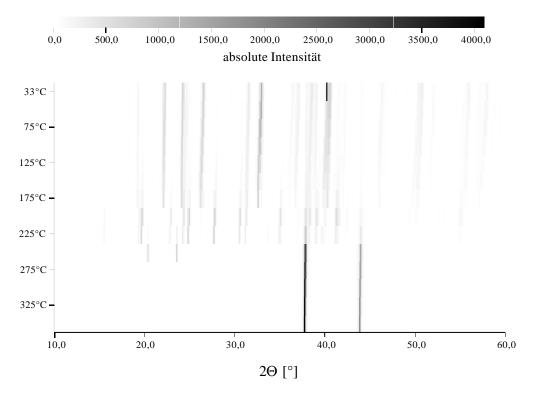
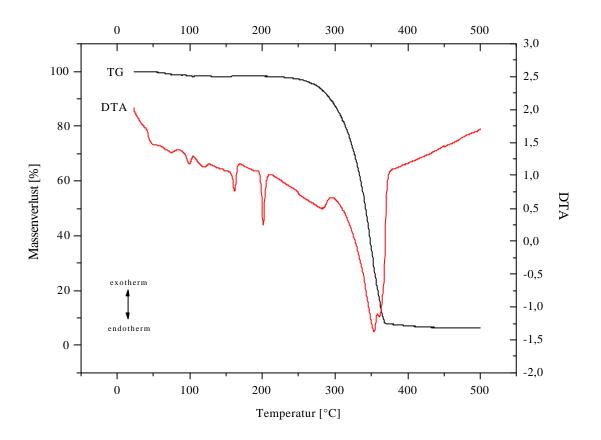


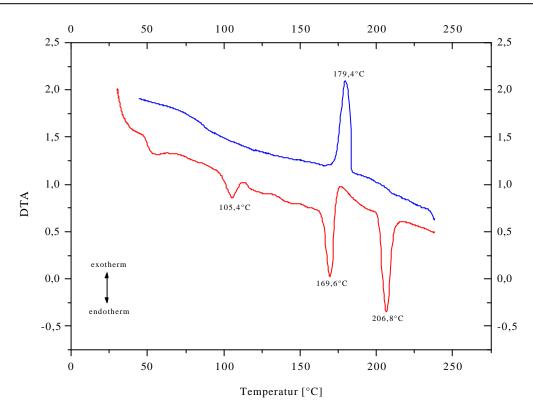
Abb. 2.8: Simon-Guinier-Darstellung der thermischen Zersetzung von F₃B-NH₃ unter NH₃-Atmosphäre in der "Bühler-Kammer"


Die thermoanalytische Untersuchung von F_3B-NH_3 unter NH_3 -Atmosphäre unterstützt den für die Messung in der Bühler-Kammer unter NH_3 -Atmosphäre postulierten Mechanismus.

Im DTA/TG-Diagramm (Abb. 2.11), werden fünf endotherme Signale in der DTA-Kurve und ein Zersetzungsschritt in der TG-Kurve verzeichnet. Die ersten drei Signale in der DTA-Kurve sind mit keiner Massenänderung verbunden. Bei 99,4°C beginnt das F₃B-NH₃-Molekül vermutlich um die Bor-Stickstoff-Bindung zu rotieren. Der thermische Effekt bei 161,7°C kann der Umwandlung von F₃B-NH₃ zu NH₄BF₄ zugeordnet werden. Bei 201,5°C wandelt NH₄BF₄ von der orthorhombischen in die kubische Phase um. Die Zersetzung von NH₄BF₄ erfolgt bei 315,7°C (DTA-Signale: 353,8 und 361,1°C) mit einem Masseverlust von 100%.

Heizt man bei der thermoanalytischen Untersuchung von F₃B-NH₃ unter NH₃-Atmosphäre nur bis


Abb. 2.9: Pulverdiffraktogramme des thermischen Abbaus von F_3B-NH_3 unter N_2 -Atmosphäre in Abhängigkeit von der Temperatur


Abb. 2.10: Simon-Guinier-Darstellung der thermischen Zersetzung von F₃B-NH₃ unter N₂-Atmosphäre in der Bühler-Kammer

230°C und hält ca. 15 min bei dieser Temperatur so beobachtet man drei endotherme Signale in der Aufheizkurve und nur noch ein exothermes Signal in der Abkühlkurve (Abb. 2.12). Bei 105,4°C beginnt das Molekül wieder um die B-N-Bindung zu rotieren. Die Umwandlung von F₃B-NH₃ zu NH₄BF₄ findet bei 169,6°C statt. Die Phasenumwandlung von NH₄BF₄ erfolgt bei 206,8°C. Beim Abkühlen erfolgt die Phasenumwandlung zurück in die orthorhombische Phase von NH₄BF₄ exotherm bei 179,4°C. Dieses Ergebnis steht im Einklang mit den erhaltenen Ergebnissen der thermoanalytischen Untersuchungen an NH₄BF₄ (siehe vorheriges Kapitel). Der erhaltene weiße Rückstand wurde röntgenographisch untersucht (Abb. 2.13). In dem erhaltenen Diffraktogramm konnten nur Reflexe von NH₄BF₄ nachgewiesen werden.

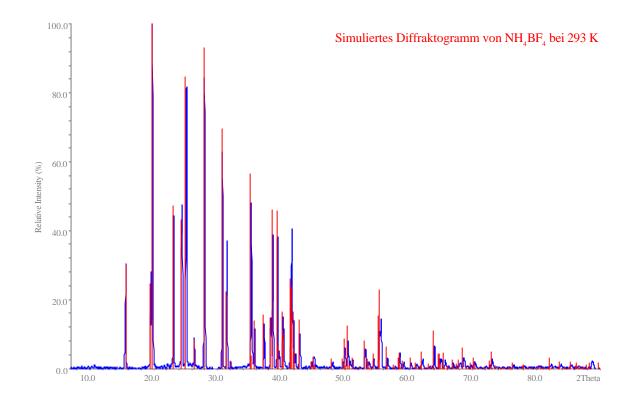

Eine eindeutige Zuordnung der ersten beiden thermischen Effekte in der DTA-Kurve konnte aus den durchgeführten Untersuchungen nicht erfolgen. Um die oben gemachten Aussagen zu verifizieren, muß man andere Untersuchungsmethoden heranziehen. Ob eine Rotation bei erhöhter Temperatur um die Bor-Stickstoff-Bindung stattfindet, müßte mit Hilfe der ¹⁹F- und ¹¹B-Festkörper-NMR-Spektroskopie nachgewiesen werden können.

Abb. 2.11: Thermoanalytische Untersuchung von F₃B-NH₃ unter NH₃-Atmosphäre

Abb. 2.12: Aufheiz- (rot) und Abkühlkurve (blau) der thermoanalytischen Untersuchung von F_3B - NH_3 unter NH_3 -Atmosphäre

Abb. 2.13: Pulverdiffraktogramm des Rückstandes der thermischen Zersetzung von F_3B-NH_3 unter NH_3 -Atmosphäre

Durch Kopplung der DSC mit einem Massenspektrometer lassen sich bei der thermoanalytischen Zersetzung von F₃B-NH₃ unter Ar-Atmosphäre die flüchtigen Zersetzungsprodukte charakterisieren. Desweiteren können Rückschlüsse über den Verlauf der Zersetzung gewonnen werden.

In der DSC-Kurve werden 4 endotherme Signale registriert, wovon drei Signale mit einem Massenverlust verknüpft sind. In der TG-Kurve beobachtet man jedoch nur einen Zersetzungsschritt (Abb. 2.14). Bei 170,1°C schmilzt F₃B-NH₃ endotherm. Ab 252,2°C zersetzt sich F₃B-NH₃ vollständig in drei Schritten. Im ersten Teilschritt bei 266,2°C bildet sich unter Abgabe von HF BF₂-NH₂, dessen Masse im Massenspektrometer zuerst detektiert wird. Das intermediär gebildete HF reagiert mit noch verbliebenem F₃B-NH₃ zu NH₄BF₄. In den zwei weiteren Teilschritten (306,8°C und 327,0°C) zersetzt sich NH₄BF₄ vollständig unter Bildung von NH₃, BF₃ und HF, die im Massenspektrometer mit ihren typischen Fragmentierungsmustern registriert worden sind. In Abb. 2.15 sind aus Gründen der Übersichtlichkeit die Fragmentierungsmuster der intermediär gebildeten Moleküle weggelassen worden. Zusammenfassend läßt sich folgender Abbaumechanismus für die Zersetzung von F₃B-NH₃ unter Ar-Atmosphäre formulieren:

$$\begin{split} F_3B - NH_3(s) & \xrightarrow{170 \text{1°C}} F_3B - NH_3(l) \\ F_3B - NH_3(l) & \xrightarrow{266 \text{2°C}} HF \uparrow + BF_2NH_2 \uparrow \\ \\ F_3B - NH_3(l) + HF & \xrightarrow{266 \text{2°C}} NH_4BF_4(s) \\ \\ NH_4BF_4(s) & \xrightarrow{306 \text{8°Cund327,0°C}} BF_3 \uparrow + NH_3 \uparrow + HF \uparrow \end{split}$$

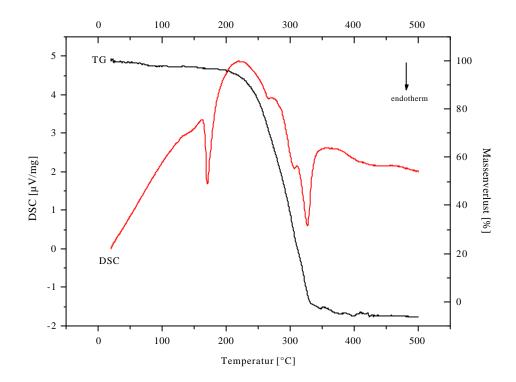
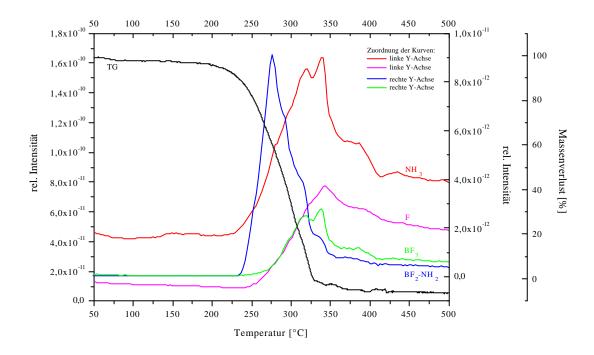



Abb. 2.14: DSC/TG-Untersuchungen zur Zersetzung von F₃B-NH₃ unter Ar-Atmosphäre

Abb. 2.15: Darstellung der registrierten Moleküle im Massenspektrometer bei der thermischen Zersetzung von F₃B-NH₃ unter Ar-Atmosphäre

3 Synthese und Charakterisierung von $[M^{II}(NH_3)_6][BF_4]_2$ mit M = Cr, Mn, Fe, Co, Ni und Zn

3.1 Einleitung

Tassaert beschrieb 1798 erstmals eine Verbindung der Zusammensetzung CoCl₃ • 6 NH₃, die er durch Umsetzung von "CoCl," mit wäßrigem Ammoniak erhalten hatte [79]. Ende des 19. Jahrhunderts gelang es S. M. Jørgensen, eine Vielzahl weiterer Kobalt-Ammin-Verbindungen zu synthetisieren. Aufbauend auf diesen Ergebnissen formulierte A. Werner 1893 seine Koordinationstheorie [80]. O. Hassel und H. Kringstad [81] konnten 1932 die Gitterkonstanten von [Ni(NH₃)₆]X, mit X = [BF₄], SO₃F und ClO₄ bestimmen. Anhand der Beugungsmuster erkannten sie, daß eine strukturelle Verwandschaft zwischen den einzelnen Verbindungen bestehen muß. G. Balz und W. Zinser beschrieben drei Jahre später den thermischen Abbau von $[M(NH_3)_6][BF_4]_2$ mit M = Ni, Zn, Cd [69]. Eine Strukturaufklärung solcher Verbindungen gelang erst in neuerer Zeit. Sowohl Halogenide der Zusammensetzung $[M(NH_3)_6]X$, (X = Cl, Br, I und M = Metalle der ersten Übergangsreihe von Vbis Ni [82]), als auch die analogen Verbindungen mit den komplexen Anionen [BF₄]⁻ oder [PF₆]⁻ wie $[M(NH_3)_6][BF_4]_2$ (M = Co, Ni [83, 84]) sind strukturelle Derivate des Flußspat-Typs. Desweiteren gelang es, die Tetrafluoroborate [M(NH₃)₆][BF₄]₃ (M = Co, Ru [85, 86]) strukturell zu charakterisieren. R.-A. Schöning erhielt durch Umsetzung von Tantal mit NH₄F in Monel als Nebenprodukt Einkristalle der Salze [M(NH₃)₆][TaF₆]₂ (M = Ni, Fe (bei Zusatz von Eisen [87]), die ebenfalls als Derivate des Flußspat-Typs aufgefaßt werden können.

${\bf 3.2\,Synthese\,von\,Hexammin-}\ddot{\bf U}bergangsmetall (II)-bis-tetrafluor oboraten$

Bei der Darstellung von NH_4BF_4 aus Bor-Pulver und Ammoniumhydrogendifluorid bzw. Ammoniumfluorid mittels der "Monel-Methode" entstehen als Nebenprodukt durch Reaktion der Edukte mit der Ampullenwand tiefblaue Einkristalle von $[Ni(NH_3)_6][BF_4]_2$. Durch direkte Zugabe von Übergangsmetallen der ersten Übergangsreihe können die analogen Verbindungen $[M(NH_3)_6][BF_4]_2$ mit M = Cr, Mn, Fe, Co und Zn synthetisiert werden.

$$2 B + 8 NH_4F + Ni(Wand) \xrightarrow{Monel_{300^{\circ}C,21d}} [Ni(NH_3)_6][BF_4]_2 + 2 NH_3 + 4 H_2$$

$$2 B + 6 NH_4HF_2 + Ni(Wand) \xrightarrow{Monel_{300^{\circ}C,21d}} [Ni(NH_3)_6][BF_4]_2 + 4 HF + 4 H_2$$

$$M + 2 B + 8 NH_4F \xrightarrow{Monel_{300^{\circ}C,21d}} [M(NH_3)_6][BF_4]_2 + 2 NH_3 + 4 H_2$$

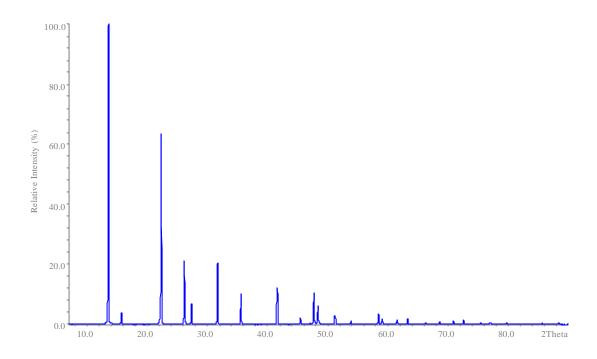
Die Tetrafluoroborate $[M(NH_3)_6][BF_4]_2$ erhält man, indem man die Edukte im molaren Verhältnis 1 : 2 : 8 (Ausnahme: Chrom) in einer verschweißten Monelampulle bei 300°C für 21 Tage umsetzt. Bei der Umsetzung von Chrom mit Bor-Pulver und Ammoniumfluorid im molaren Verhältnis 1 : 2 : 8 entstehen im Gegensatz zu den oben genannten Verbindungen bernsteinfarbene Einkristalle von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ (siehe folgendes Kapitel). Beim Versuch zur Darstellung von $[Cr(NH_3)_6][BF_4]_3$, bei dem die Edukte im molaren Verhältnis 1 : 3 : 12 in einer verschweißten Monelampulle bei 300°C für 21 Tage umgesetzt werden, entsteht nicht die gewünschte Verbindung sondern $[Cr(NH_3)_6][BF_4]_2$.

$$Cr + 3B + 12NH_4F \xrightarrow{Monel,300^{\circ}C,21d} [Cr(NH_3)_6][BF_4]_2 + NH_4BF_4 + 5NH_3 + \frac{11}{2}H_2$$

Die Monelampullen werden in ein Bombenrohr gelegt, welches sich in einem stickstoff- bzw. argondurchströmten Kieselglasrohr befindet. Das Kieselglasrohr wird mit einem elektrischen Widerstandsofen dem in Tab. 1 stehenden Temperaturprogramm unterzogen. Der sich während der Reaktion bildende Wasserstoff diffundiert durch die Containerwand und wird durch das Inertgas abtransportiert. Somit kann sich kein Diffusionsgleichgewicht zwischen Ampulleninnerem und -umgebung einstellen. Der gesamte, sich bildende Wasserstoff diffundiert aus dem Reaktionsgefäß. Dadurch ist außer Ammoniak kein Reduktionsmittel mehr im Ampulleninneren vorhanden, was dazu führt, daß die Containerwand vom Oxidationsmittel angegriffen werden kann. Die Synthesebedingungen für die Darstellung von [M(NH₃)₆][BF₄]₂ sind in Tabelle 3.1 zusammengefaßt.

Man erhält auf diese Weise keine phasenreinen Produkte, vielmehr liegen stets Produktgemische vor, die neben $[M(NH_3)_6][BF_4]_2$ auch NH_4BF_4 und unumgesetztes Bor enthalten.

Um für physikalische Untersuchungen phasenreine [M(NH₃)₆][BF₄]₂-Proben zu erhalten, bietet sich die naßchemische Synthese an. [Ni(NH₃)₆][BF₄]₂ wurde nach der Vorschrift von E. Wilke-Dörfurt und G. Balz dargestellt [88]. In 100 ml p.a. NH₃-Lösung löst man 2 g NiCl₂ • 6 H₂O (8,4 mmol). In 50 ml bidestilliertem Wasser werden 1,764 g (16,8 mmol) NH₄BF₄ gelöst und unter Rühren zu der ammoniakalischen NiCl₂-Lösung gegeben. Es fällt nach kurzer Zeit ein blauer Niederschlag aus. Der entstandene Niederschlag wird abfiltriert und in verdünnter Ammoniak-Lösung, die mit NH₄BF₄ versetzt ist, umkristallisiert. Nach erneutem Filtrieren wird der Niederschlag mit verd. Ammoniakund anschließend mit konz. Ammoniak-Lösung gewaschen. Das entstandene Produkt wird im Ölpumpenvakuum getrocknet.


$$\text{NiCl}_2 \cdot 6 \,\text{H}_2\text{O} + \text{NH}_3(\text{aq.}) \rightarrow [\text{Ni}(\text{NH}_3)_6] \,\text{Cl}_2 + 6 \,\text{H}_2\text{O}$$

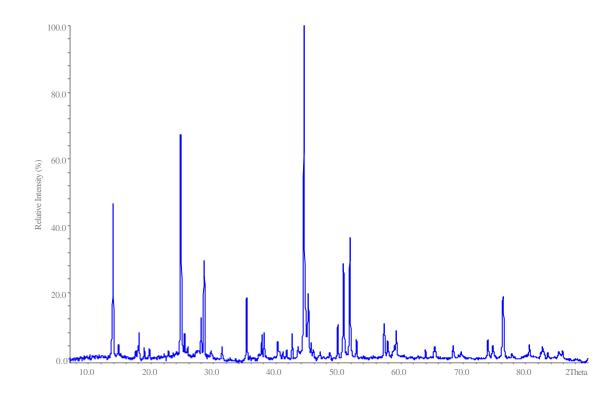
$$[Ni(NH_3)_6]Cl_2 + 2 NH_4BF_4 \xrightarrow{NH_3(aq.)} [Ni(NH_3)_6][BF_4]_2 \downarrow + 2 NH_4Cl$$

Von dem entstandenem Produkt wurde ein Pulverdiffraktogramm angefertigt (Abb. 3.1). Die zugehörige Peakliste ist im Anhang angegeben.

 $\begin{tabular}{ll} \textbf{Tab. 3.1:} & Zusammenfassung der Reaktionsparameter bei der Darstellung von $[M^{II}(NH_3)_6][BF_4]_2$ \\ & und $[M^{III}(NH_3)_6][BF_4]_3$ \\ \end{tabular}$

Verhältnis:	M / B / NH ₄ F	1 / 2 / 8 mmol
	$M / B / NH_4F$	1 / 3 / 12 mmol
Einwaage:	NH_4F	$200 \text{ mg} \equiv 5.4 \text{ mmol}$
	В	$14,6 \text{ mg} \equiv 1,35 \text{ mmol}$
	Ti	$32,3 \text{ mg} \equiv 0,675 \text{ mmol}$
	Cr	$35,1 \text{ mg} \equiv 0,675 \text{ mmol}$
	Cr	$23,4 \text{ mg} \equiv 0,45 \text{ mmol}$
	Mn	$37.1 \text{ mg} \equiv 0.675 \text{ mmol}$
	Fe	$37.7 \text{ mg} \equiv 0.675 \text{ mmol}$
	Co	$39.8 \text{ mg} \equiv 0.675 \text{ mmol}$
	Co	$26.5 \text{ mg} \equiv 0.45 \text{ mmol}$
	Ni	$39.6 \text{ mg} \equiv 0.675 \text{ mmol}$
	Zn	$44.1 \text{ mg} \equiv 0.675 \text{ mmol}$
Reaktionstemperatur	:: 300°C	
Reaktionszeit:	21 d	
Aufheizrate:	5°C/h	
Abkühlrate:	3°C/h	
Ampullenmaterial:	Monel, Kupfer	

Abb. 3.1: Pulverdiffraktogramm von $[Ni(NH_3)_6][BF_4]_2$ aus der naßchemischen Synthese


Neben Verbindungen der Zusammensetzung $[M^{II}(NH_3)_6][BF_4]_2$ wurde mittels der "Monel-Methode" die Synthese der analogen dreiwertigen Verbindungen von Cr und Co angestrebt. Dabei wurden die Edukte im molarem Verhältnis von 1:3:12 eingesetzt und bei 300° C in einem durchströmten Ofen für 21 Tage zur Reaktion gebracht (Tab. 3.1). Bei der Reaktion mit Chrom bildete sich nicht die gewünschte Verbindung, sondern jene des zweiwertigen Chroms. Mögliche Ursache hierfür ist, daß mit Zunahme der Ammoniakkonzentration Cr^{3+} nicht mehr zugänglich ist. $[Co(NH_3)_6][BF_4]_3$ konnte ebenfalls mit Hilfe der Monel-Methode nicht dargestellt werden.

Auch die direkte Umsetzung der Übergangsmetalle mit NH₄BF₄ blieb erfolglos. Am Ende der Reaktion wurden wieder die Edukte in den Ampullen vorgefunden. Selbst binäre Übergangs-metallfluoride konnten nicht nachgewiesen werden.

Desweiteren wurde versucht, das durch die Schrägbeziehung zu Bor verwandte Silicium mit Ammoniumfluorid und Übergangsmetallen zu $[M^{II}(NH_3)_6][SiF_6]$ umzusetzen. Die Reaktionen erfolgten bei einer Zusammensetzung von 1 : 1 : 6 zwischen 300 und 400°C. Die Reaktionsparameter sind in der Tab. 3.2 zusammengefaßt. In allen durchgeführten Reaktionen kam es zu keiner Bildung von $[M^{II}(NH_3)_6][SiF_6]$. Als Hauptprodukt lag hauptsächlich ein graues Produkt vor, welches sich nicht charakterisieren ließ (Abb. 3.2). Im Reaktionsprodukt einer Umsetzung mit Eisen lagen vereinzelte farblose Kristalle vor, die unter dem Polarisationsmikroskop auslöschten. Einige von ihnen wurden isoliert und in Glaskapillaren eingeschmolzen. Bei der Zellbestimmung auf dem IPDS wurde eine tetragonal-primitive Zelle mit den Gitterkonstanten a = 615,53 pm und c = 724, 21 pm gefunden. Durch Vergleich mit bekannten Verbindungen im System Si/NH₃/NH₄/F konnte die gefundene Zelle der Verbindung NH₄[Si(NH₃)F₅] zugeordnet werden [89].

Tab. 3.2: Reaktionsparameter der Umsetzung von Si, NH₄F und Übergangsmetallen

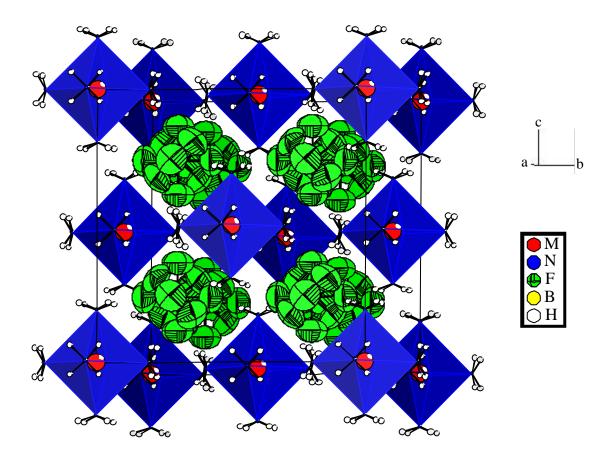

Verhältnis:	M / Si / NH ₄ F	1 / 1 / 6 mmol
Einwaage:	$\mathrm{NH_{4}F}$	$200 \text{ mg} \equiv 5.4 \text{ mmol}$
	Si	$25,3 \text{ mg} \equiv 0,9 \text{ mmol}$
	Fe	$50.3 \text{ mg} \equiv 0.9 \text{ mmol}$
	Co	$53.0 \text{ mg} \equiv 0.9 \text{ mmol}$
	Ni	$52.8 \text{ mg} \equiv 0.9 \text{ mmol}$
Reaktionstemperatu	r: 300°C, 400°C	
Reaktionszeit:	21 d	
Aufheizrate:	5°C/h	
Abkühlrate:	3°C/h	
Ampullenmaterial:	Monel, Kupfer	

Abb. 3.2: Pulverdiffraktogramm des grauen Produktes aus der Umsetzung von Übergangsmetallen mit Si und NH₄F

3.3 Kristallstruktur von $[M^{II}(NH_3)_6][BF_4]_2$ (M = Cr, Mn, Fe, Co, Ni und Zn)

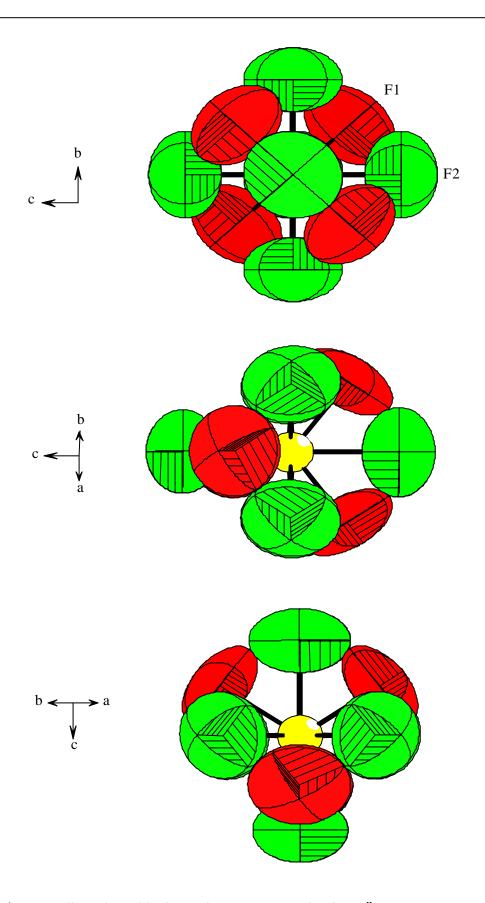
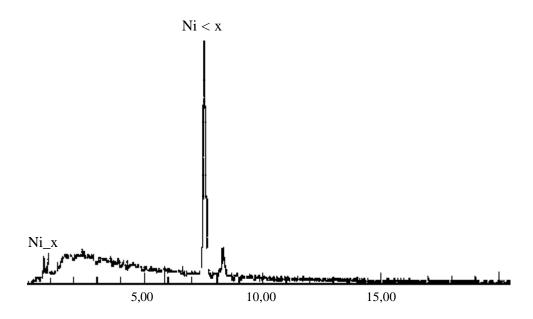

Verbindungen des Typs [M^{II}(NH₃)₆][BF₄]₂ kristallisieren in einer kubisch-flächenzentrierten Struktur, die man gemäß $[M^{II}(NH_3)_6][BF_4]_2 \equiv [Ca][F]_2$ als ein Derivat des Flußspat-Typs auffassen kann (Abb. 3.3). Die regulären [M(NH₃)₆]-Oktaeder bilden analog den Calciumionen im Flußspat eine kubisch-dichteste Kugelpackung, die [BF₄]-Tetraeder besetzen darin alle Tetraederlücken und werden so verzerrt kuboktaedrisch von zwölf Ammingruppen koordiniert. Die Besetzung der Lage 96k in der Raumgruppe Fm-3m zu 75% mit Wasserstoff (Tab. 3.4), führt zu einer quadratischen Anordnung der Wasserstoffatome am Stickstoffatom. Gemäß [90] sind die Eckpunkte dieser Quadrate als Maxima der Aufenthaltswahrscheinlichkeit von dynamisch fehlgeordneten Wasserstoffatomen zu interpretieren. Die Fehlordnung der Ammingruppen wird durch eine gekoppelte Translation und Rotation um die Metall-Stickstoffbindung hervorgerufen. Die kristallographischen Daten für $[Ni(NH_3)_6][BF_4]_2$ und $[Mn_{0.787}Ni_{0.213}(NH_3)_6][BF_4]_2$ sind in den Tabellen 3.3 bis 3.10 angegeben. Bei der Betrachtung der anisotropen Temperaturfaktoren U_{ii} von [Ni(NH₃)₆][TaF₆]₂ [87] fällt auf, daß die Fluoridionen der Lage 48g eine sehr starke Auslenkung in Richtung [100] und [010] erfahren. Dieses Phänomen wird auch bei den Verbindungen des Typs [MII(NH₃)₆][BF₄], (M = Cr, Mn, Fe, Co, Ni und Zn) beobachtet. Neben den hohen Temperaturfaktoren für die Fluor-Lagen liegt auch eine Fehlordnung der [BF₁]-Tetraeder vor (Abb. 3.4), wie dies auch für die in der Literatur erwähnten Verbindungen $[M(NH_3)_6][BF_4]_3$ (M = Co, Ru [85, 86]) beschrieben wird. In Analogie zum $[TaF_6]^{-1}$

Abb. 3.3: Kristallstruktur von $[M^{II}(NH_3)_6][BF_4]_2$


-Oktaeder versuchen die [BF₄]-Tetraeder wohl durch eine dynamische Fehlordnung Wasserstoff-brückenbindungen des Typs N-(H)-F auszubilden. Untersuchungen wie z.B. die ¹¹B- und ¹⁹F-Fest-körper-NMR-Spektroskopie, die diese Vermutung verifizieren könnten, konnten im Rahmen dieser Arbeit nicht durchgeführt werden.

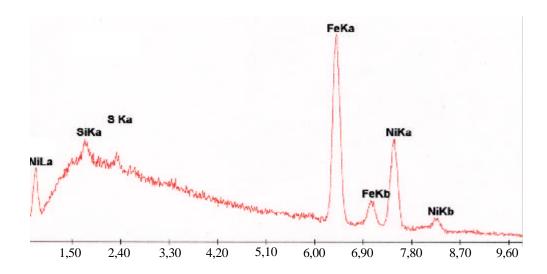

Läßt man bei der Strukturverfeinerung den Besetzungsfaktor für die Übergangsmetalle frei, beobachtet im Falle von Cr, Mn, Fe und Co eine Zunahme, für Zn dagegen eine Abnahme. Dies deutet darauf hin, daß das jeweilige Übergangsmetallion auf der Lage 4a zum Teil durch Ni²+ substituiert ist. Die Farben der Kristalle einzelner Verbindungen, wie z.B. [Zn(NH₃)₆][BF₄]₂ (schwach hellblau) oder [Fe(NH₃)₆][BF₄]₂ (hellblau), deuten ebenfalls auf einen Einbau von Ni²+ hin, den man schon von analogen Verbindungen des Typs [M(NH₃)₆][TaF₆]₂ (M = Fe, Co [87]) kennt. Absorptionsspektroskopische Untersuchungen an diesen Verbindungen wie auch die Atom-Absorptions-Spektroskopie haben gezeigt, daß z.B. Eisen nur zu 2/3 die Lage 4a besetzt [87], während das restliche Drittel von Cu²+ und Ni²+ im Verhältnis 1 : 2 (analog der Monelzusammensetzung) besetzt wird. Im Rahmen dieser Arbeit konnten spektroskopische Untersuchungen nicht durchgeführt werden, da von den Verbindungen keine ausreichende Menge "phasenreiner" Substanz zur Verfügung stand. Für die Fe- bzw. Ni-Verbindung konnten jedoch EDAX-Untersuchungen durchgeführt werden (Abb.

Abb. 3.4: Darstellung der Fehlordnung des $[BF_4]^-$ -Tetraeders in $[M^{II}(NH_3)_6][BF_4]_2$ (M = Cr, Mn, Fe, Co, Ni, Zn)

3.5). Diese zeigen, daß ein Einbau von Kupfer in die Kristallstruktur nicht erfolgt ist, Nickel jedoch zu ungefähr 30% in der Verbindung vorliegt.

Abb. 3.5: Ergebnis der EDAX-Untersuchung an $[Ni(NH_3)_6][BF_4]_2$ (oben) und $[Fe(NH_3)_6][BF_4]_2$ (unten)

 $\textbf{Tab. 3.3:} \ \ Kristallographische \ Daten \ und \ Angaben \ zur \ Strukturbestimmung \ von \ [Ni(NH_3)_6][BF_4]_2$

Kristallsystem	kubisch
Raumgruppe	Fm3m (Nr. 225)
Gitterkonstante pm	a = 1128,48(14)
Zellvolumen 10 ⁶ pm ³	1437,1(3)
Anzahl der Formeleinheiten	Z = 4
Molmasse g/mol	334,53
Röntgenographische Dichte g/cm³	1,546
Kristallfarbe	tiefblau
Meßgerät	IPDS (Stoe)
Strahlung	Mo-K _a (Graphit-Monochromator)
Scan-Modus	75 Bilder in 2°-Schritten
Meßtemperatur K	293(2)
Meßbereich °	$3,8 \le 2\Theta \le 56,3$
$\mu \text{ (MoK}_{\alpha}) \text{ mm}^{-1}$	1,426
Indexbereich	$-14 \le h \le 14$
	$-13 \le k \le 14$
	-13 ≤1 ≤ 14
F(000)	680
Anzahl der gemessenen Reflexe	2539
Unabhängige Reflexe	118
Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	117
R_{int}	0,0681
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-Shape (Stoe) [41]
	SHELXS-97 [36] / SHELXL-97 [37]
Streufaktoren	International Tables [57]
Strukturverfeinerung	"Full-matrix"-Least-Squares an F2
Daten / Restraints / Parameter	118 / 0 / 17
Goodness-of-fit	1,147
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0434; \text{ wR}_2 = 0.1141$
R-Werte (alle Daten)	$R_1 = 0.0437$; $wR_2 = 0.1142$
Restelektronendichte	0,398 / -0,358

Tab. 3.4: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10 ⁻⁴ pm ²) von [Ni(NH ₃) ₆][BF ₄]	$]_2$
---	-------

Atom	Lage	x/a	y/b	z/c	sof	\mathbf{U}_{eq}
Ni	4a	0	0	0		0,0471(7)
В	8c	0,25	0,25	0,25		0,067(3)
N	24e	0,1899(4)	0	0		0,0665(13)
F1	48g	0,2500	0,1236(12)	0,25	0,09252	0,118(8)
F2	32f	0,1856(6)	0,3144(6)	0,1856(6)	0,07415	0,150(13)
H1	96k	0,221(3)	0,050(3)	0,050(3)	0,37500	0,11(3)

 $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$

 $\textbf{Tab. 3.5:} \quad \text{Koeffizienten der anisotropen Temperaturfaktoren } U_{ij} \ (10^{\text{-}4} \text{ pm}^2) \ \text{von } \ [\text{Ni(NH}_3)_6] [\text{BF}_4]_2$

Atom	\mathbf{U}_{11}	${ m U}_{22}$	\mathbf{U}_{33}	\mathbf{U}_{13}	U_{23}	$\mathbf{U_{12}}$
Ni	0,0471(7)	0,0471(7)	0,0471(7)	0	0	0
В	0,067(3)	0,067(3)	0,067(3)	0	0	0
N	0,0754(19)	0,049(2)	0,0754(19)	0	0	0
F1	0,138(11)	0,078(6)	0,138(11)	0	-0,016(10)	0
F2	0,150(13)	0,150(13)	0,150(13)	0,047(4)	-0,047(7)	0,047(7)

 $U_{ij} = \exp[-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12})]$

 $\textbf{Tab. 3.6:} \quad \text{Bindungslängen (pm) und -winkel (°) in } [\text{Ni(NH}_3)_6][\text{BF}_4]_2$

Ni-N	214,3(5)	N-Ni-N	180	
B-F1	142,7(13)	N-Ni-N	90	
B-F2	126,0(10)	F1-B-F1	180	
N-H	87,3(10)	F1-B-F1	90	
F1-F2	124,4(8)	F2-B-F2	109,47	
		F1-B-F2	125,264(2)	
		F1-B-F2	54,7	
		F2-F1-F2	111,6(15)	

Tab. 3.7: Kristallographische Daten und Angaben zur Strukturbestimmung von $[Mn_{0,787}Ni_{0,213}(NH_3)_6][BF_4]_2$

Kristallsystem	kubisch
Raumgruppe	Fm3m (Nr. 225)
Gitterkonstante pm	a = 1136,11(22)
Zellvolumen 10 ⁶ pm ³	1466,4(5)
Anzahl der Formeleinheiten	Z = 4
Molmasse g/mol	331,53
Röntgenographische Dichte g/cm³	1,764
Kristallfarbe	blauviolett
Meßgerät	IPDS (Stoe)
Strahlung	Mo-K _a (Graphit-Monochromator)
Scan-Modus	100 Bilder in 2°-Schritten
Meßtemperatur K	293(2)
Meßbereich °	$3,8 \le 2\Theta \le 56,3$
$\mu (MoK_{\alpha}) mm^{-1}$	2,221
Indexbereich	$-13 \le h \le 15$
	$-14 \le k \le 14$
	$-15 \le l \le 15$
F(000)	670,556
Anzahl der gemessenen Reflexe	2699
Unabhängige Reflexe	127
Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	106
R_{int}	0,0554
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-Shape (Stoe) [41]
	SHELXS-97 [36] / SHELXL-97 [37]
Streufaktoren	International Tables [57]
Strukturverfeinerung	"Full-matrix"-Least-Squares an F ²
Daten / Restraints / Parameter	127 / 0 / 18
Goodness-of-fit	1,144
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0450; wR_2 = 0.1227$
R-Werte (alle Daten)	$R_1 = 0.0541; wR_2 = 0.1308$
Restelektronendichte	0,308 / -0,269

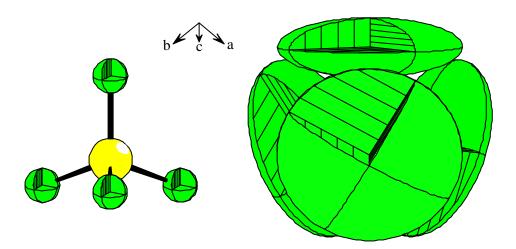
Tab. 3.8:	Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10^{-4} pm ²) von
	$[Mn_{0.787}Ni_{0.213}(NH_3)_6][BF_4]_2$

Atom	Lage	x/a	y/b	z/c	sof	\mathbf{U}_{eq}
Mn	4a	0	0	0	0,01639	0,0610(11)
Ni	4a	0	0	0	0,00444	0,0610(11)
В	8c	0,25	0,25	0,25		0,076(3)
N	24e	0	0	0,1972(6)		0,086(2)
F1	32f	0,1849(6)	-0,1849(6)	0,3151(6)	0,07593	0,158(6)
F2	48g	0,25	-0,1262(12)	0,25	0,09074	0,148(5)
H1	96k	0	-0,224(8)	-0,070(5)	0,37500	0,15(4)

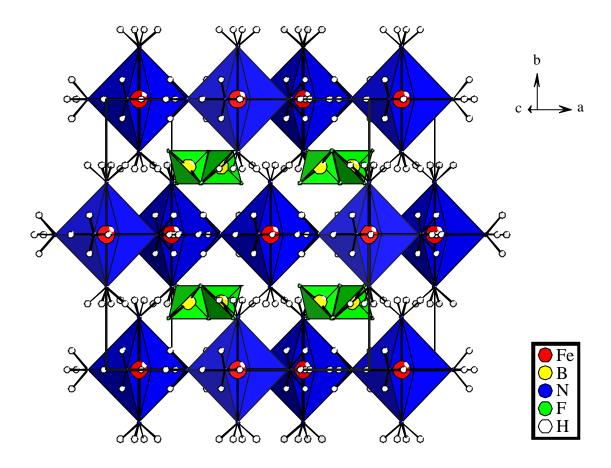
 $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$

 $\label{eq:Tab.3.9:} \textbf{Tab.3.9:} \quad \text{Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10^{-4} pm2) von $[Mn_{0,787}Ni_{0,213}(NH_3)_6][BF_4]_2$$

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	U ₃₃	U ₁₃	U_{23}	U ₁₂
Mn	0,0610(11)	0,0610(11)	0,0610(11)	0	0	0
Ni	0,0610(11)	0,0610(11)	0,0610(11)	0	0	0
В	0,076(3)	0,076(3)	0,076(3)	0	0	0
N	0,093(3)	0,093(3)	0,073(4)	0	0	0
F1	0,158(6)	0,158(6)	0,158(6)	-0,050(4)	0,050(4)	0,050(4)
F2	0,174(9)	0,095(8)	0,174(9)	0	0,000(10)	0


 $\boldsymbol{U}_{ij} = exp[-2\pi^2(h^2a^{*2}\boldsymbol{U}_{11} + \ldots + 2hka^*b^*\boldsymbol{U}_{12})]$

 $\textbf{Tab. 3.10:} \ \ Bindungslängen \ (pm) \ \ und \ \ -winkel \ (^\circ) \ \ in \ \ [Mn_{_{0,787}}Ni_{_{0,213}}(NH_{_3})_{_6}][BF_{_4}]_{_2}$


Mn/Ni-N	224,0(7)	N-Mn/Ni-N	180
B-F1	128,2(11)	N-Mn/Ni-N	90
B-F2	140,7(14)	F2-B-F2	180
N-H	84,7	F2-B-F2	90
F1-F2	124,1(8)	F1-B-F1	109,5
N-(H)-F1	325,8	F1-B-F2	125,264(1)
N-(H)-F2	323,8	F1-B-F2	54,736(1)
		F1-F2-F1	115,0(16)
		Mn/Ni-N-H	107,2

Für $[Ni(NH_3)_6][BF_4]_2$ und $[Fe(NH_3)_6][BF_4]_2$ wurden bei 115 K bzw. 120 K noch einmal Intensitäts-Datensätze erstellt. Für $[Ni(NH_3)_6][BF_4]_2$ ließ sich bei der Zellbestimmung eine tetragonal-innenzentrierte Zelle mit den Gitterkonstanten a=806,2(10) pm und c=1098,2(19) pm finden, die sich über eine $\sqrt{2}$ -Beziehung in die kubische Zelle überführen läßt. Die Struktur konnte jedoch nicht gelöst werden, da während der Tieftemperatur-Messung der Kristall seine röntgenographische Güte verloren hatte.

Für $[Fe(NH_3)_6][BF_4]_2$ wurde bei 120 K dieselbe kubische Zelle wie bei Raumtemperatur gefunden, allerdings mit einer um 19 pm kleineren Gitterkonstante (a = 1114,3(4) pm). In der Struktur von [Fe(NH₃)₆][BF₄]₂ liegen wieder isolierte, wohlgeordnete [Fe(NH₃)₆]²⁺-Oktaeder vor, die eine kubisch-dichteste Kugelpackung bilden (Abb. 3.7). In den Tetraederlücken befinden sich die [BF₄]⁻-Tetraeder. Anders als bei Raumtemperatur findet man bei tieferer Temperatur bei der Strukturverfeinerung nur noch eine Fluor-Lage (Lage 32f). Die Lage 48g hingegen wird nicht mehr besetzt. Dies führt dazu, daß man "nur" hohe Temperaturfaktoren für die Fluor-Atome beobachtet, jedoch keine Fehlordnung der [BF₄] -Tetraeder (Abb. 3.6). Bei 120 K liegt keine dynamische Fehlordnung der [BF₄]-Tetraeder mehr vor, sondern vielmehr eine statistische, die sich in den sehr hohen Temperaturfaktoren der Fluoratome widerspiegelt. Ebenfalls spiegelt sich die Ausordnung der [BF₄] -Tetraeder in der nun deutlich kleineren Gitterkonstanten wider. Eine Ausordnung der dynamisch fehlgeordneten NH₂-Moleküle wird bei dieser Temperatur noch nicht beobachtet. Frühere Arbeiten von P. Schiebel und A. Hoser an [Ni(NH₃)₆]I₂ und [Co(NH₃)₆][PF₆]₂ zeigen, daß eine Ausordnung der NH₃-Moleküle erst unterhalb von 30 K beobachtet wird [91, 92]. Die Fe-N-Bindungslänge nimmt von 218,6(7) pm auf 216,8(15) pm ab. Der gefundene B-F-Abstand mit 117,5(23) pm ist recht kurz im Vergleich zu anderen B-F-Abständen in Tetrafluoroboraten (Kapitel 1 Spezieller Teil). Der zu kleine Abstand zwischen Bor und Fluor läßt sich so erklären, daß normalerweise nur die Schwerpunkte der Schwingungsellipsoide zur Berechnung des Abstandes herangezogen werden, nicht aber die Bereiche, die am Rand der Ellipsoide liegen [14].

Abb. 3.6: Darstellung des [BF₄]⁻-Tetraeders mit (rechts) und ohne (links) thermische Ellipsoide für die Fluor-Lage

Abb. 3.7: Kristallstruktur von $[Fe(NH_3)_6][BF_4]_2$ bei 120 K

Bei der Umsetzung von elementarem Titan mit Bor und Ammoniumfluorid in einer Monel-Ampulle entstanden vereinzelt farblose Kristalle. Unter dem Polarisationsmikroskop wurden einige Kristalle isoliert und anschließend in Glaskapillaren eingeschmolzen. Die isolierten Kristalle löschten unter dem Polarisationsmikroskop nicht aus. Von einem Kristall wurde ein Intensitäts-Datensatz erstellt. Bei der Zellbestimmung wurde eine kubisch-flächenzentrierte Zelle mit der Gitterkonstante a = 1132,06(23) pm gefunden. Die anschließende Strukturlösung gelang nicht vollständig. Einzelne Strukturfragmente konnten hingegen gefunden werden. Danach liegen in dem Kristall reguläre isolierte $[\mathrm{Ti}(\mathrm{NH_3})_6]^{\mathrm{x}^+}$ -Oktaeder mit einem Ti-N-Abstand von 212,9 pm vor. Desweiteren werden isolierte $[\mathrm{BF_4}]$ -Tetraeder gefunden, die dieselbe Fehlordnung aufweisen, wie es oben beschrieben wurde. Aus dem Verhältnis zwischen Oktaedern und Tetraedern würde sich die Oxidationsstufe +2 für Titan ergeben. Dem spricht die Farbe des Kristalls entgegen. Eine Titan(II)-Verbindung müßte dunkel sein, der untersuchte Kristall war jedoch farblos. Dies spricht für die Oxidationsstufe +4. Es konnten jedoch nicht mehr als zwei $[\mathrm{BF_4}]$ -Tetraeder gefunden werden. Das Vorliegen von Ti-F-Oktaedern konnte anhand der Rechnung ausgeschlossen werden.

Tab. 3.11: Kristallographische Daten und Angaben zur Strukturbestimmung von $[Fe(NH_3)_6][BF_4]_2$ bei 120 K

Kristallsystem	kubisch
Raumgruppe	Fm3m (Nr. 225)
Gitterkonstante pm	a = 1114,3(4)
Zellvolumen 10 ⁶ pm ³	1383,5(9)
Anzahl der Formeleinheiten	Z = 4
Molmasse [g/mol]	331,68
Röntgenographische Dichte g/cm³	1,592
Kristallfarbe	hellblau
Meßgerät	IPDS (Stoe)
Strahlung	Mo-K _a (Graphit-Monochromator)
Scan-Modus	80 Bilder in 2°-Schritten
Meßtemperatur K	120(2)
Meßbereich °	$3,8 \le 2\Theta \le 56,3$
$\mu \text{ (MoK}_{\alpha}) \text{ mm}^{-1}$	1,169
Extinktionskoeffizient	0,002(8)
Indexbereich	$-14 \le h \le 14$
	$-14 \le k \le 14$
	$-14 \le 1 \le 12$
F(000)	672
Anzahl der gemessenen Reflexe	2455
Unabhängige Reflexe	121
Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	118
R_{int}	0,4019
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-Shape (Stoe) [41]
	SHELXS-97 [36] / SHELXL-97 [37]
Streufaktoren	International Tables [57]
Strukturverfeinerung	"Full-matrix"-Least-Squares an F ²
Daten / Restraints / Parameter	121 / 0 / 13
Goodness-of-fit	1,638
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.1186$; $wR_2 = 0.2894$
R-Werte (alle Daten)	$R_1 = 0.1221; wR_2 = 0.2957$
Restelektronendichte	1,909 / -0,886

Tab. 3.12: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10^{-4} pm 2) v. $[Fe(NH_3)_6][BF_4]_2$ bei 120 K

Atom	Lage	x/a	y/b	z/c	\mathbf{U}_{eq}
Fe	4a	0,5	0	0	0,0294(19)
В	8c	0,25	0,25	0,25	0,048(6)
N	24e	0,5	0	0,1946(14)	0,083(6)
F1	32f	0,3109(12)	0,8109(12)	0,3109(12)	0,34(3)
H1	96k	0,429(11)	0	0,257(18)	0,08(5)

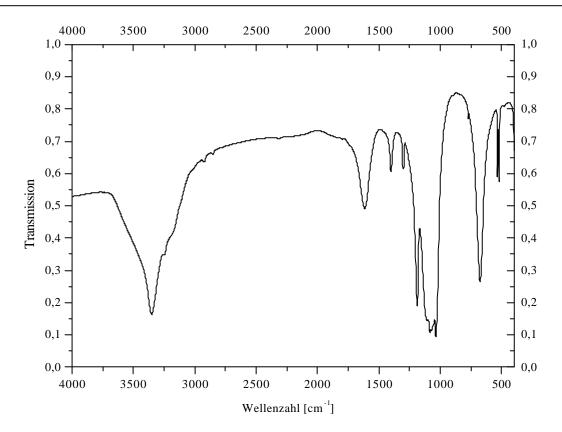
 $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$

Tab. 3.13: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10^{-4} pm 2) von $[Fe(NH_3)_6][BF_4]_2$ bei 120 K

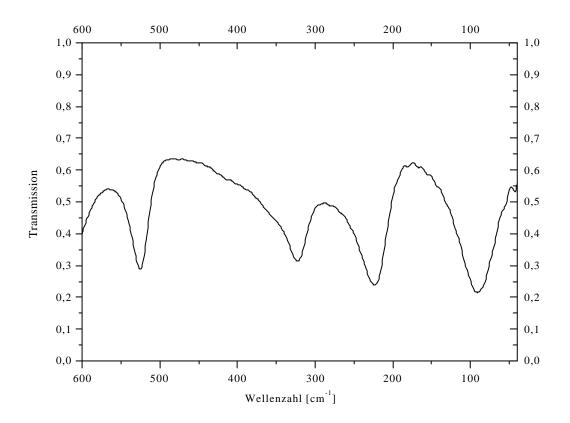
Atom	U ₁₁	\mathbf{U}_{22}	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Fe	0,0294(19)	0,0294(19)	0,0294(19)	0	0	0
В	0,048(6)	0,048(6)	0,048(6)	0	0	0
N	0,111(10)	0,111(10)	0,029(7)	0	0	0
F1	0,34(3)	0,34(3)	0,34(3)	-0,144(15)	-0,144(15)	-0,144(15)

 $\boldsymbol{U}_{ij} = exp[-2\pi^2(h^2a^{*2}\boldsymbol{U}_{11} + \ldots + 2hka^*b^*\boldsymbol{U}_{12})]$

Tab. 3.14: Bindungslängen (pm) und -winkel ([°) in $[Fe(NH_3)_6][BF_4]_2$ bei 120 K


	21 < 0 (1 =)		100	
Fe-N	216,8(15)	N-Fe-N	180	
B-F1	117,5(23)	N-Fe-N	90	
N-H	105(16)	F1-B-F1	109,471	
N-(H)-F	324,9(1)	Fe-N-H	131(9)	

Vergleicht man den Metall-Stickstoff-Abstand in den Verbindungen $[M(NH_3)_6]X_2$ (X = Cl, NO_3 , $[BF_4]^-$ und $[TaF_6]^-$) am Beispiel der jeweiligen Nickelverbindung, so stellt man eine Abhängigkeit von der Größe des Anions fest. Mit zunehmender Größe des Anions nimmt der Abstand von 212,0 pm ($[Ni(NH_3)_6]Cl_2$ [82]) über 214,3 pm ($[Ni(NH_3)_6][BF_4]_2$) und 216,7 pm ($[Ni(NH_3)_6][NO_3]_2$ [93]) auf 216,4 pm ($[Ni(NH_3)_6][TaF_6]_2$ [87]) zu. Der Einfluß der Größe des Anions auf die Gitterkonstante a ist viel erheblicher, diese nimmt um ca. 260 pm von $[Ni(NH_3)_6]Cl_2$ (1006,2(1) pm [82]) zum $[Ni(NH_3)_6][TaF_6]_2$ (1260,4(2) pm [87]) hin zu.


Einige Kristallite von [Ni(NH₃)₆][BF₄]₂ wurden mit Kaliumbromid bzw. Polyethylen verrieben, zu Presslingen verarbeitet und schwingungsspektroskopisch im MIR- (Abb. 3.8) und im FIR-Bereich (Abb. 3.9) untersucht. Die beobachteten Banden sind in Tab. 3.15 zusammengefaßt. Durch Vergleich mit Literaturwerten [94, 95] konnten die registrierten Banden zugeordnet werden. Im FIR beobachtet man die Schwingungen des [NiN₆]-Oktaeders und zusätzlich die Gitterschwingung von [Ni(NH₃)₆][BF₄]₂. Im MIR treten einerseits die charakteristischen Schwingungen der NH₃-Moleküle und andererseits die charakteristischen Schwingungen des [BF₄]-Tetraeders auf. Analog zum F₃B-NH₃ beobachtet man bei [Ni(NH₃)₆][BF₄]₂ ebenfalls eine deutliche Verschiebung der Valenzschwingungen des koordinierten Ammoniakmoleküls zu kleineren Wellenzahlen (um ca. 100 cm⁻¹) im Vergleich zu jenen des freien, gasförmigen Ammoniaks, die bei 3444 cm⁻¹ und 3337 cm⁻¹ liegen [78]. Die Bande bei 1400 cm⁻¹ konnte keiner Ammoniak- bzw. Tetrafluoroboratschwingung zugeordnet werden. Möglicherweise handelt es sich bei dieser Bande um die Deformationsschwingung des Ammoniumions, die normalerweise bei 1420 cm⁻¹ auftritt [78]. Dies bedeutet dann, daß die Substanz mit Spuren von NH₄BF₄ verunreinigt ist (siehe naßchemische Synthese von [Ni(NH₃)₆][BF₄]₂).

Tab. 3.15: Zuordnung der beobachteten Schwingungen von [Ni(NH₃)₆][BF₄]₂

Banden [cm ¹]	Intensität	Zuordnung	Banden [cm ¹]	Intensität	Zuordnung
3351,9	medium	$V_{as}(NH_3)$	1036,2	weak	$v_3(BF_4)$
3243,0	weak	$v_{as}(NH_3)$	771,1	v. weak	$v_1(BF_4)$
2919,0	v. weak	2 • ρ(NH ₃)	675,4	medium	$\rho(NH_3)$
2853,0	v. weak	$2 \cdot \delta_{sv}(NH_3)$	533,7	weak	$v_{A}(BF_{A})$
1615,7	medium	$\delta_{3}(NH_3)$	521,9	weak	$v_{A}(BF_{A})$
1400,7	weak	$\delta(NH_4^+)$?	322,8	weak	v(Ni-N)
1300,8	weak	$v_1 + v_4(BF_4)$	223,3	weak	$\delta(N-Ni-N)$
1188,7	weak	$\delta_{sv}(NH_3)$	90,5	medium	Gitterschwingung
1083,7	weak	$v_2, v_4(BF_4)$	·		

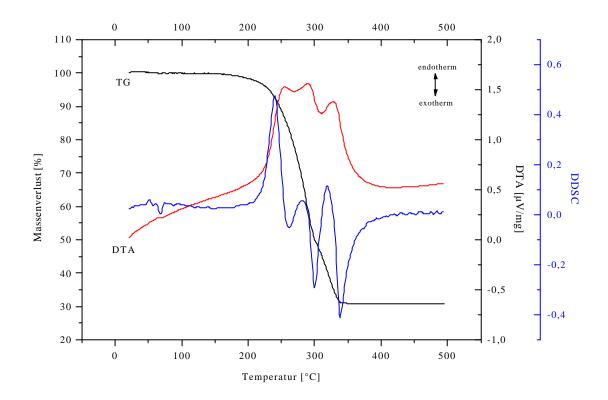
Abb. 3.8: MIR-Spektrum von $[Ni(NH_3)_6][BF_4]_2$

Abb. 3.9: FIR-Spektrum von $[Ni(NH_3)_6][BF_4]_2$

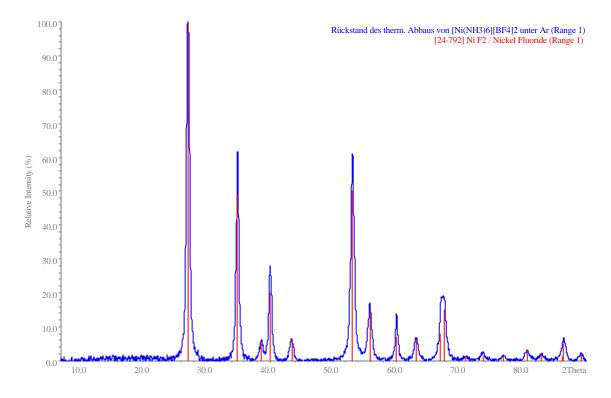
3.4 Thermisches Verhalten von [Ni(NH₃)₆][BF₄],

G. Balz und W. Zinser [69] untersuchten Anfang der dreiziger Jahre das thermische Verhalten von unterschiedlichen Übergangsmetallammin-tetrafluoroboraten. Dabei fanden sie heraus, daß diese in zwei Schritten zu den jeweiligen binären Fluoriden zerfallen. Im ersten Zersetzungsschritt entweichen zwei Moleküle F_3B-NH_3 und im zweiten Reaktionsschritt die restlichen vier Moleküle Ammoniak. Im Rahmen dieser Arbeit wurde am Beispiel von $[Ni(NH_3)_6][BF_4]_2$ das thermische Verhalten sowohl unter inerten (Ar, N_2) , als auch unter reaktiven (NH_3) Bedingungen untersucht.

3.4.1 DSC/TG/EG-Untersuchungen


Die Untersuchungen des thermischen Abbaus von [Ni(NH₃)₆][BF₄]₂ unter Ar-Atmosphäre erfolgte mit Hilfe von DSC/TG/EG-Messungen. Demnach wird die Verbindung in einem dreistufigen Prozeß abgebaut, wobei die einzelnen Stufen in der TG-Kurve nicht vollständig nebeneinander aufgelöst werden konnten (Abb. 3.10). Bis 252,6°C ist die Verbindung thermisch stabil. Die erste und zweite Abbaustufe (252,6°C und 291,4°C) ist mit einem Massenverlust von 49,5% verbunden. Die dritte Abbaustufe (329,4°C) führt nach einem Massenverlust von 19,7% zu einem zitronengelben Rückstand, der anschließend röntgenographisch untersucht wurde (Abb. 3.11). Das Diffraktogramm ließ sich zweifelsfrei als jenes von NiF₂ indizieren. Mit Hilfe des Massenspektrum in Abhängigkeit von der Temperatur (Abb. 3.12) läßt sich folgender Abbaumechanismus für die thermoanalytische Zersetzung von [Ni(NH₃)₆][BF₄]₂ unter Ar-Atmosphäre formulieren:

In den ersten beiden endothermen Reaktionsschritten erfolgt die Abgabe von sechs Molekülen NH₃ und einem Molekül BF₃ pro Formeleinheit. Als Intermediat bildet sich "NiF[BF₄]".


Das freiwerdende Bortrifluorid reagiert mit Ammoniak zu F₃B-NH₃ (siehe Fragmentierungs-muster im MS-Diagramm). Im dritten endothermen Reaktionsschritt kommt es unter Abspaltung von einem Molekül BF₃ pro Formeleinheit zur Bildung von NiF₂.

"NiF[BF₄]"
$$\xrightarrow{329,4^{\circ}\text{C}}$$
 NiF₂ + BF₃ \uparrow

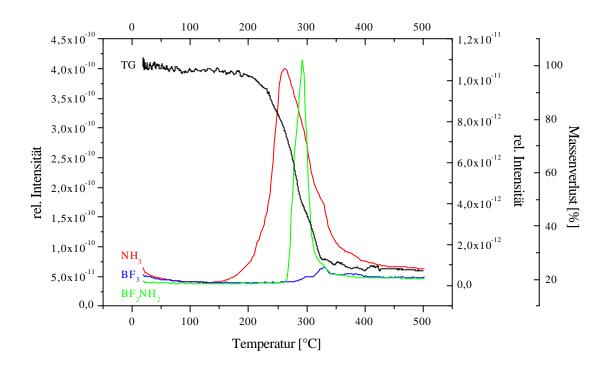
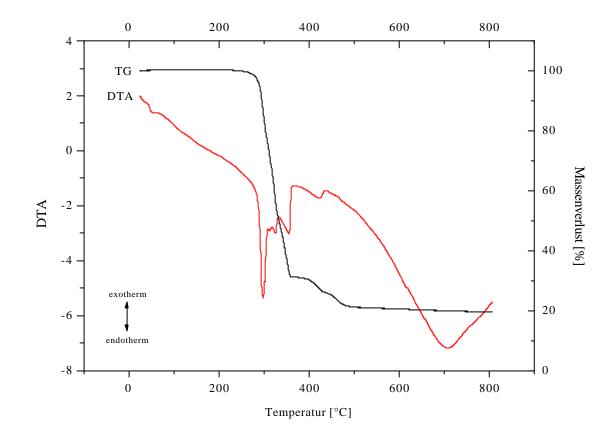

Im Gegensatz zu G. Balz und W. Zinser [69] läßt sich keine Ammoniakabspaltung im letzten Reaktionsschritt beobachten. Die dargestellte TG-Kurve im TG/MS-Diagramm suggeriert einen zu hohen Massenverlust. Dies läßt sich darauf zurückführen, daß ein Teil des intermediär gebildeten Bortrifluorids mit dem Korundtiegel reagiert. Im MS-Diagramm wurde das Fragmentierungsmuster von SiF₄ gefunden. Aus Übersichtlichkeitsgründen werden im MS-Diagramm nur die relevanten Massen angegeben.

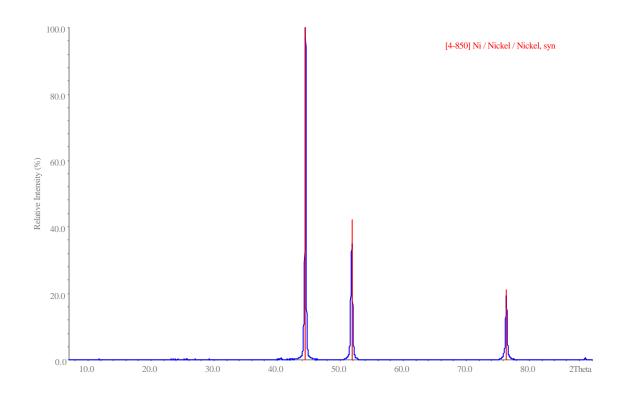
Abb. 3.10: DTA/TG-Diagramm von $[\mathrm{Ni}(\mathrm{NH_3})_6][\mathrm{BF_4}]_2$ unter Ar-Atmosphäre

 $\textbf{Abb. 3.11:} \ Diffraktogramm \ des \ zitronengelben \ R\"{u}ckstandes \ der \ Zersetzung \ von \ [Ni(NH_3)_6][BF_4]_2$

Abb. 3.12: TG/MS-Diagramm von $[Ni(NH_3)_6][BF_4]_2$


Der thermische Abbau von $[Ni(NH_3)_6][BF_4]_2$ unter Ammoniak erfolgt nach DTA/TG-Untersuchungen in einem mehrstufigen Prozeß, wobei die ersten drei Stufen in der TG-Kurve nicht vollständig nebeneinander aufgelöst werden konnten (Abb. 3.13). Die thermische Beständigkeit von $[Ni(NH_3)_6][BF_4]_2$ unter Ammoniak ist um ca. 40°C größer als unter Ar-Atmosphäre. Zwischen 290 und 360°C zersetzt sich $[Ni(NH_3)_6][BF_4]_2$ unter Ammoniak endotherm zu NiF_2 , analog zu der Zersetzung unter Ar-Atmosphäre. In den beiden darauf folgenden Zersetzungsschritten bei 441,9°C und 465,6°C kommt es aufgrund der teilweise katalytischen Spaltung des Ammoniaks in die Elemente zur Reduktion des Nickels unter Abspaltung von jeweils einem Fluoratom pro Formeleinheit. Gemäß der röntgenographischen Untersuchung des graumetallisch glänzenden Rückstandes zersetzt sich $[Ni(NH_3)_6][BF_4]_2$ unter Ammoniak zu elementarem Nickel (Abb. 3.14). Zusammenfassend läßt sich folgender Abbaumechanismus formulieren:

$$\begin{split} &[\mathrm{Ni}(\mathrm{NH_3})_6][\mathrm{BF_4}]_2 & \xrightarrow{\mathrm{NH_4}} "\mathrm{NiF}[\mathrm{BF_4}]" + \mathrm{BF_3} \uparrow + 6\,\mathrm{NH_3} \uparrow \\ &"\mathrm{NiF}[\mathrm{BF_4}]" & \xrightarrow{\mathrm{NH_3}} & \mathrm{NiF_2} + \mathrm{BF_3} \uparrow \\ &\mathrm{NiF_2} & \xrightarrow{\mathrm{NH_3}} & "\mathrm{NiF"} + \mathrm{HF} \uparrow \\ &"\mathrm{NiF"} & \xrightarrow{\mathrm{NH_3}} & \mathrm{Ni} + \mathrm{HF} \uparrow \end{split}$$


Die ermittelten Daten aus den DTA/TG-Diagrammen sind in Tab. 3.16 zusammengefaßt. Das breite endotherme DTA-Signal bei 700°C kann man der Rekristallisation des Nickels zuschreiben.

Tab. 3.16: Zusammenfassung der aus den DTA/TG-Messungen ermittelten Daten

Zersetzungsstufen	T _{Onset} [°C]	Massenve	rlust [%]	DTA-Peak [°C]
		beobachtet	berechnet	
1 und 2	252,6	49,5	50,8	252,6 und 291,4
3		19,7	20,3	329,4
1 und 2	290,6	48,8	50,8	299,5 ; 316,1 ; 328,3
3		19,6	20,3	355,7
4	441,9	5,3	5,7	432,1
5	465,6	5,4	5,7	

Abb. 3.13: DTA/TG-Diagramm von $\mathrm{[Ni(NH_3)_6][BF_4]}_2$ unter Ammoniak-Atmosphäre

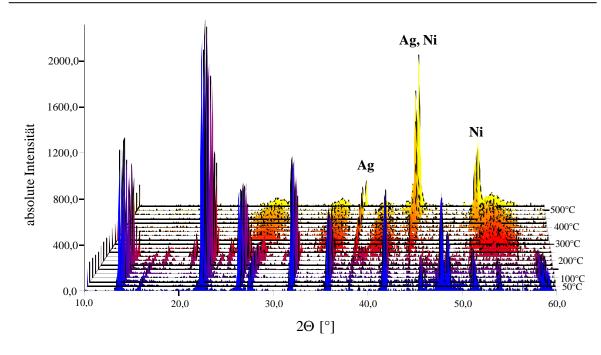
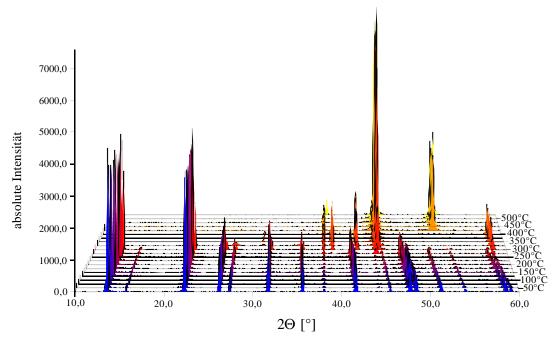


Abb. 3.14: Pulverdiffraktogramm des Rückstandes aus der Zersetzung von $[Ni(NH_3)_6][BF_4]_2$ unter NH_3

3.4.2 Thermischer Abbau von $[Ni(NH_3)_6][BF_4]_2$ in der "Bühler-Kammer"


Die thermische Zersetzung von $[Ni(NH_3)_6][BF_4]_2$ unter N_2 -Atmosphäre erfolgt in einem vierstufigen Prozeß (Abb. 3.15). Bis 150°C läßt sich ausschließlich $[Ni(NH_3)_6][BF_4]_2$ röntgenographisch nachweisen. Ab 175°C tritt eine weitere Phase auf, die bisher nicht charakterisiert werden konnte. Bis 250°C läßt sich $[Ni(NH_3)_6][BF_4]_2$ nachweisen. Ab 250°C kommt es zur Bildung einer amorphen Phase, vermutlich NiF_2 . Zusätzlich beobachtet man ab 250°C die Peaks des Probenträgers (Ag). Ab 450°C bildet sich Ni als Endprodukt der Zersetzung. Dies ist nur dadurch zu erklären, daß in der Bühler-Kammer bei 400 bis 450°C eine Ammoniakatmosphäre vorgeherrscht haben muß. Diese kann einerseits dadurch zustande kommen, daß der N_2 -Strom zu schwach eingestellt war und der intermediär gebildete Ammoniak nicht vollständig aus der Kammer transportiert worden ist oder daß die Zersetzung von $[Ni(NH_3)_6][BF_4]_2$ zu NiF_2 nicht vollständig verläuft, sondern möglicherweise ein Ammoniakat des NiF_2 vorgelegen hat, welches bei höheren Temperaturen Ammoniak abgibt. Ein ähnliches Verhalten haben schon G. Balz und W. Zinser beim Versuch der Darstellung von NiF_2 durch thermische Zersetzung $[Ni(NH_3)_6][BF_4]_2$ beobachtet [69].

Die thermische Zersetzung von $[Ni(NH_3)_6][BF_4]_2$ unter NH_3 -Atmosphäre erfolgt dagegen in einem dreistufigen Prozeß (Abb. 3.16). Bis 275°C ist $[Ni(NH_3)_6][BF_4]_2$ in Gegenwart von Ammoniak beständig. Bei 300°C läßt sich neben $[Ni(NH_3)_6][BF_4]_2$ eine weitere Phase nachweisen, die bisher nicht charakterisiert werden konnte. Diese Phase tritt nur im Diffraktogramm bei 300°C auf. Bei 325°C

Abb. 3.15: Pulverdiffraktogramme der thermischen Zersetzung von $[Ni(NH_3)_6][BF_4]_2$ unter N_2 -Atmosphäre in Abhängigkeit von der Temperatur

liegt eine neue Phase vor, die ebenfalls nicht charakterisiert werden konnte. Diese Phase ist bis 400°C beständig. Ab 400°C läßt sich als Endprodukt der Zersetzung Nickel nachweisen. Auch hier beobachtet man die Peaks des Ag-Probenträgers. Das Auftreten von NiF₂ konnte anhand der Diffraktogramme nicht beobachtet werden.

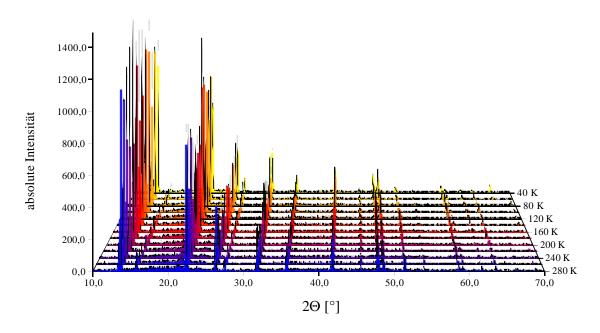


Abb. 3.16: Pulverdiffraktogramme der thermischen Zersetzung von $[Ni(NH_3)_6][BF_4]_2$ unter NH_3 -Atmosphäre in Abhängigkeit von der Temperatur

3.4.3 Thermisches Verhalten von $[Ni(NH_3)_6][BF_4]_2$ bei tiefen Temperaturen

Um das thermische Verhalten von $[Ni(NH_3)_6][BF_4]_2$ bei tiefen Temperaturen zu untersuchen, wurden im Bereich von $10^\circ \le 2\Theta \le 70^\circ$ zwischen 280 und 40 K in 20K-Schritten Pulverdiffraktogramme erstellt. In Abb. 3.17 sind die Diffraktogramme dargestellt. Ein thermischer Effekt, z.B. eine mögliche Phasenumwandlung durch Einfrieren der rotierenden $[BF_4]$ -Tetraeder, konnte in dem gewählten Temperaturbereich nicht nachgewiesen werden. Auch die Verschiebung der Reflexe gemäß der Bragg'schen Bedingung zu höheren 2Θ -Werten mit fallender Temperatur ist minimal. In Tab. 3.17 sind die ermittelten Gitterkonstanten wie auch die berechneten Volumina zusammengefaßt. Eine andere Möglichkeit zum Nachweis einer Phasenumwandlung ist die Auftragung der Gitterkonstanten gegen die Temperatur. Zu erwarten wäre eine kontinuierliche Abnahme der Gitter-

Eine andere Möglichkeit zum Nachweis einer Phasenumwandlung ist die Auftragung der Gitterkonstanten gegen die Temperatur. Zu erwarten wäre eine kontinuierliche Abnahme der Gitterkonstanten mit fallender Temperatur. Eine Anomalie in diesem Verlauf könnte auf eine mög-liche Phasenumwandlung hindeuten.

Abb. 3.17: Pulverdiffraktogramme von $[Ni(NH_3)_6][BF_4]_2$ in Abhängigkeit von der Temperatur

Im Temperaturbereich von 280 bis 100 K findet man einen nahezu linearen Abfall der Gitterkonstanten mit der Temperatur. Unterhalb von 100 K flacht die Kurve ab. Zwischen 80 und 60 K kommt es zu einer Zunahme der Gitterkonstante. Da diese Anomalie einerseits im Fehlerbereich der Bestimmung der Gitterkonstante liegt und da es sich andererseits auch um einen Artefakt der Messung handeln kann, läßt sich eine Phasenumwandlung von [Ni(NH₃)₆][BF₄]₂ in diesem Temperaturbereich nicht mit Sicherheit nachweisen. Um eine mögliche Phasenumwandlung bei tiefer Temperatur verifizieren zu können, muß man die Messung in diesem Temperaturbereich mehrmals wiederholen, um Meß-

fehler auszuschließen. Desweiteren muß man in kleineren Temperaturschritten Diffraktogramme erstellen, damit die Umwandlungstemperatur so genau wie möglich bestimmt werden kann. Ebenfalls sollte man auf einen internen Standard nicht verzichten, um die Gitterkonstanten sehr genau bestimmen zu können.

Aus der Auftragung der Gitterkonstanten gegen die Temperatur läßt sich der thermische Ausdehnungskoeffizient α und die Gitterkonstante a_0 bei 0 K durch lineare Regression bestimmen. Durch Auftragung des molaren Volumens gegen die Temperatur erhält man ebenfalls durch lineare Regression den "kubischen" Volumenausdehnungskoeffizient γ und das molare Volumen $V_{m,0}$ bei 0 K. Nach dem erweiterten Gesetz von Gay-Lussac [96] gilt:

$$a_{T} = a_{0} + a_{0}\alpha T + a_{0}\alpha' T^{2} + \dots$$

Mit $\alpha' = 0$ folgt:

$$a_{T} = a_{0} + a_{0}\alpha T = a_{0} \cdot (1 + \alpha T)$$

Zur Bestimmung des "kubischen" Volumenausdehnungskoeffizienten muß das Volumen der Elementarzelle $V_{\rm EZ}$ in das molare Volumen $V_{\rm m}$ umgerechnet werden.

$$V_{\rm m} = \frac{V_{\rm EZ} \cdot N_{\rm A}}{Z}$$
 [cm³/mol]

Für den "kubischen" Volumenausdehnungskoeffizienten γ gilt analog das Gesetz von Gay-Lussac:

$$V_{mT} = V_{m0} + V_{m0} \gamma T + V_{m0} \gamma' T^2 + \dots$$

Mit $\gamma' = 0$ folgt:

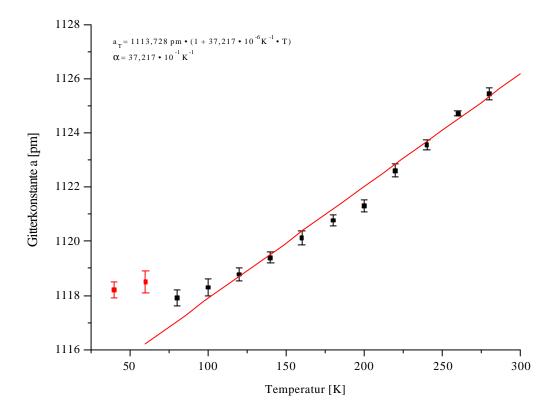
$$V_{mT} = V_{m0} + V_{m0} \gamma T = V_{m0} \cdot (1 + \gamma T)$$

Aus der linearen Regression ergibt sich:

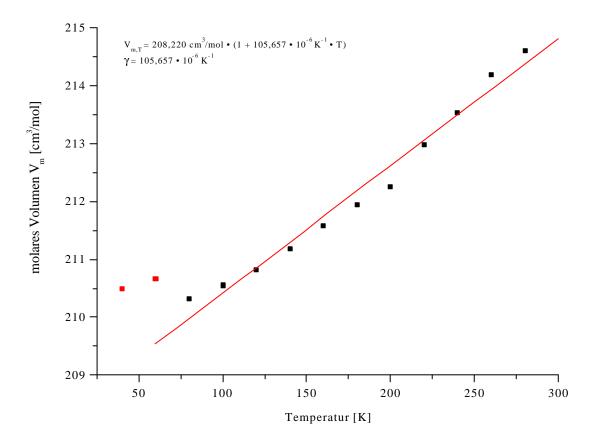
• für den thermischen Ausdehnungskoeffizienten α und die Gitterkonstante a bei 0 K

$$a_T = 1113,728 \text{ [pm]} \cdot (1 + 37,217 \cdot 10^{-6} \text{ K}^{-1} \cdot \text{T})$$

 $\alpha = 37,217 \cdot 10^{-6} \text{ K}^{-1}$


 \bullet für den "kubischen" Volumenausdehnungskoeffizienten γ und das molare Volumen V_m bei 0~K

$$V_{m,T} = 208,220 \text{ [cm}^3/\text{mol]} \cdot (1+105,657\cdot 10^6 \text{ K}^{-1} \cdot \text{T})$$


$$\gamma = 105,657 \cdot 10^{-6} \text{ K}^{-1}$$

Tab. 3.17: Zusammenfassung der ermittelten Gitterparameter von $[Ni(NH_3)_6][BF_4]_2$ in Abhängigkeit von der Temperatur

Temperatur [K]	Gitterkonstante a [pm]	V _{EZ} [10 ⁶ pm ³]	V _m [cm³/mol]
280	1125,4(2)	1425,461	214,605
260	1124,7(1)	1422,727	214,193
240	1123,6(2)	1418,368	213,537
220	1122,6(2)	1414,735	212,99
200	1121,3(2)	1409,864	212,257
180	1120,8(2)	1407,828	211,95
160	1120,1(3)	1405,380	211,582
140	1119,4(2)	1402,671	211,174
120	1118,8(3)	1400,342	210,823
100	1118,3(3)	1398,540	210,552
80	1117,9(3)	1397,040	210,326
60	1118,5(4)	1399,291	210,665
40	1118,2(3)	1398,165	210,495

Abb. 3.18: Auftragung der Gitterkonstante a gegen die Temperatur zur Ermittlung des thermischen Ausdehnungskoeffizienten α und der Gitterkonstanten a bei 0 K von $[Ni(NH_3)_6][BF_4]_2$ (rote Meßpunkte nicht berücksichtigt)

Abb. 3.19: Auftragung des molaren Volumens V_m gegen die Temperatur zur Ermittlung des kubischen Volumenausdehnungskoeffizienten γ und des molaren Volumens V_m bei 0~K von $[Ni(NH_3)_6][BF_4]_2$ (rote Meßpunkte nicht berücksichtigt)

4 Synthese, Kristallstruktur und thermisches Verhalten von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

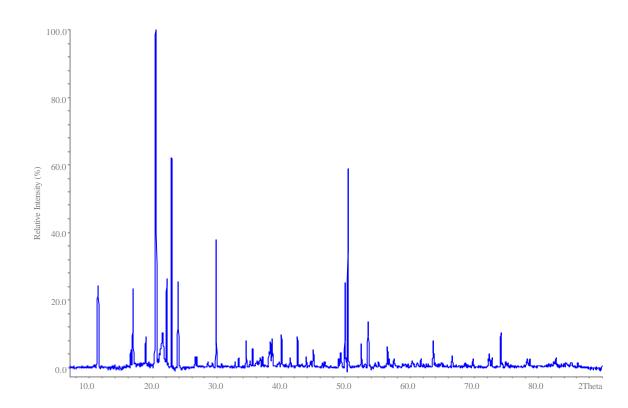
4.1 Darstellung von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

Bernsteinfarbene Einkristalle von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ entstehen bei der Umsetzung von Chrom, Bor und Ammoniumfluorid im molaren Verhältnis von 1:2:8 in einer verschweißten Monelampulle bei 300° C. Folgende Reaktionsgleichung läßt sich formulieren:

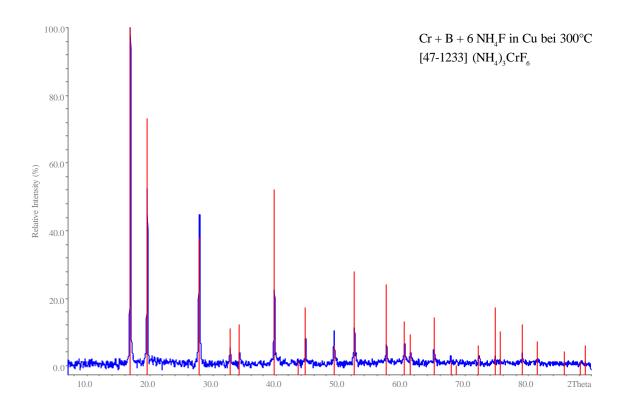
$$2\,Cr + 2\,B + 12\,NH_{4}F \xrightarrow{\quad Monel 300^{\circ}C, \, 21d \quad} [Cr(NH_{3})_{6}][Cr(NH_{3})_{2}F_{4}][BF_{4}]_{2} + 4\,NH_{3} + 6\,H_{2}$$

Die verschlossene Monelampulle wird in ein Bombenrohr gelegt, welches sich in einem argon- bzw. stickstoffdurchströmten Kieselglasrohr befindet. Dieses wird mit einem elektrischen Widerstandsofen dem in Tabelle 4.1 stehenden Temperaturprogramm unterzogen. Eine relativ niedrige Aufheizrate wird gewählt, um ein Aufplatzen der Ampullen zu verhindern. Während der langsamen Aufheizphase wird ein Teil des sich bildenden Wasserstoffs durch die Ampullewand diffundieren und vom Inertgas abtransportiert, so daß sich kein Diffusionsgleichgewicht zwischen Ampulleninneren und -umgebung einstellen kann.

Man erhält auf diesem Wege kein phasenreines Produkt, vielmehr liegt ein Produktgemisch vor. Neben kristallinem $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ findet man rotbraunes, nicht umgesetztes Bor-


Tab. 4.1: Zusammenfassung der Reaktionsbedingungen

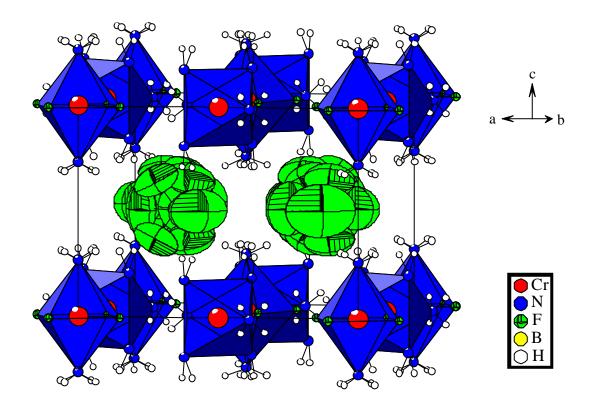
Verhältnis:	M / B / NH ₄ F	1 / 2 / 8 mmol
	$M / B / NH_{\!\scriptscriptstyle 4}F$	1 / 1 / 6 mmol
Einwaage:	$NH_{_{A}}F$	$200 \mathrm{mg} \equiv 5.4 \mathrm{mmol}$
	B	$14.6 \text{ mg} \equiv 1.35 \text{ mmol}$
	Cr	$35.1 \text{ mg} \equiv 0.675 \text{ mmol}$
	В	$9.7 \text{ mg} \equiv 0.90 \text{ mmol}$
	Cr	$46.8 \text{ mg} \equiv 0.90 \text{ mmol}$
Reaktionstemperatu	r: 300°C	
Reaktionszeit:	21 d	
Aufheizrate:	3°C/h	
Abkühlrate:	3°C/h	
 Ampullenmaterial:	Monel, Kupfer	


pulver und hellgrünes polykristallines $(NH_4)_3[CrF_6]$. Die Bildung von NH_4BF_4 wurde nicht beobachtet. Vom erhaltenen $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ wurde ein Pulverdiffraktogramm erstellt (Abb. 4.1). Die zugehörige Peakliste ist im Anhang wiedergegeben.

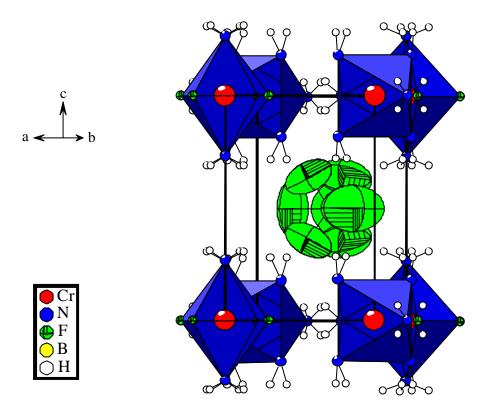
Gemäß der oben angegebenen Reaktionsgleichung sollte man ein phasenreines Produkt erhalten, wenn die Edukte im molaren Verhältnis von 1:1:6 eingesetzt werden. Führt man diese Reaktion unter den gleichen Reaktionsbedingungen durch, so erhält man als Produkt nicht die gewünschte Verbindung, vielmehr kommt es ausschließlich zur Bildung von $(NH_4)_3[CrF_6]$ (Abb. 4.2). Die Reflexliste von $(NH_4)_3[CrF_6]$ ist im Anhang wiedergegeben. Das im Eduktgemisch vorhandene Bor nimmt an der Reaktion nicht teil!

Geeignete Einkristalle wurden mit einem Polarisationsmikroskop ausgewählt, in Markröhrchen eingeschmolzen und mit Einkristall-Filmaufnahmen auf ihre Güte hin untersucht. Von einem ausgewählten Einkristall wurde auf dem IPDS ein vollständiger Intensitätsdatensatz erstellt.

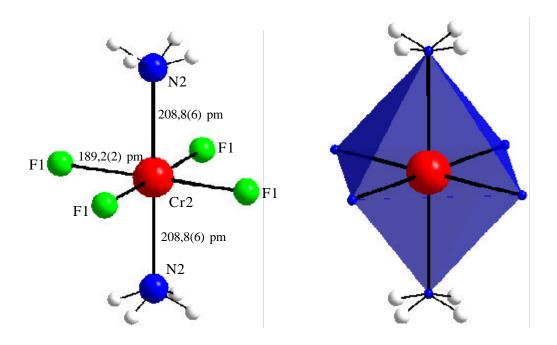
Abb. 4.1: Pulverdiffraktogramm von $[Cr(NH_3)_6][Cr(NH_3)_7F_4][BF_4]_7$


Abb. 4.2: Pulverdiffraktogramm des hellgrünen Produktes: (NH₄)₃[CrF₆]

4.2 Kristallstruktur von $[Cr(NH_3)_6][Cr(NH_3)_7F_4][BF_4]_7$


 $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ kristallisiert in der tetragonalen Raumgruppe P4/mbm (Nr. 127) mit zwei Formeleinheiten pro Elementarzelle. Die Kristallstruktur ist in Abb. 4.3 dargestellt. Gemäß $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2 \equiv [A][B][X]_2 \equiv [A_{0.5}B_{0.5}][X]$ handelt es sich um eine geordnete Vierfach-Überstruktur-Variante des CsCl-Typs. In der "primitiven" Subzelle $a_{sub} = a/2 = 528,0$ pm; $c_{sub} = c = 781,7$ pm; $(c/a)_{sub} = 1,48$ sind die $[BF_4]$ -Tetraeder daher von acht Oktaedern umgeben. Die "primitive" Subzelle ist in Abb. 4.4 dargestellt.

In $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ liegen zwei kristallographisch unterscheidbare Chrom(III)-Ionen vor. Das Cr1-Ion wird verzerrt oktaedrisch von sechs NH_3 -Liganden koordiniert (Tab. 4.5). Die N11-Cr1-N11-Winkel betragen 86,5(2) bzw. $93,5(2)^\circ$. Die Bindungslängen Cr1-N11 und Cr1-N12 liegen mit 207,4(4) bzw. 208,4(6) pm im selben Bereich wie sie bei analogen $[Cr^{III}(NH_3)_6]^{3+}$ -Verbindungen vorkommen [97]. Das Cr2-Ion hingegen wird heteroleptisch von zwei NH_3 - und vier F-Liganden gemäß eines trans- $[Cr(NH_3)_2F_4]^-$ -Komplexes koordiniert. Aufgrund der unterschiedlichen Bindungslängen von Cr2-F1 (189,2(2) pm) und Cr2-N2 (208,8(6) pm) wird die oktaedrische Umgebung von Cr2 entlang der Achse N2-Cr2-N2 gestreckt.


In (110) kommt es zur Ausbildung von Oktaederschichten, in der eine alternierende Anordnung der isolierten $[Cr(NH_3)_6]^{3+}$ und trans- $[Cr(NH_3)_2F_4]^{-}$ -Oktaeder vorliegt (Abb. 4.3). Dabei besetzen die trans- $[Cr(NH_3)_2F_4]^{-}$ -Oktaeder die Ecken und Flächenmitten, die $[Cr(NH_3)_6]^{3+}$ -Oktaeder sind auf den Kantenmitten angeordnet. Zwischen den Oktaederschichten befindet sich jeweils eine Schicht $[BF_4]^{-}$

 $\textbf{Abb. 4.3:} \ Perspektivische \ Darstellung \ der \ Elementarzelle \ von \ [Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

Abb. 4.4: Perspektivische Darstellung der tetragonal-primitiven, längs [001] elongierten Subzelle vom CsCl-Typ

Abb. 4.5: Darstellung des trans- $[Cr(NH_3)_2F_4]^-$ (links) bzw. $[Cr(NH_3)_6]^{3+}$ -Oktaeder (rechts)

-Tetraeder, die so angeordnet ist, daß sich die [BF₄]-Tetraeder in den Hohlräumen zwischen den Oktaedern befinden. Die Stapelung der Schichten erfolgt entlang [001].

Im Gegensatz zu den wohlgeordneten [Cr(NH₃)₆]³⁺- bzw. trans-[Cr(NH₃)₂F₄]⁻-Oktaedern sind die [BF₄]-Tetraeder stark fehlgeordnet (Abb. 4.6). Offenbar ist innerhalb der tetragonal-primitiven Subzelle genügend Raum, was die Fehlordnung der vergleichweise kleinen [BF,]-Tetraeder möglich macht. Eine weitere Triebkraft für die Fehlordnung der [BF₄]-Tetraeder liegt in der Möglichkeit, durch eine dynamische Fehlordnung N-(H)-F-Wasserstoffbrückenbindungen auszubilden. Untersuchungen, die diese Vermutung verifizieren, konnten im Rahmen dieser Arbeit nicht durchgeführt werden. Desweiteren beobachtet man eine starke Auslenkung der Temperaturfaktoren entlang [100] und [010] für F2 und F4, entlang [010] und [001] für F3. Sowohl dieses Phänomen als auch die Fehlordnung der [BF₄]-Tetraeder ist von analogen Verbindungen, z.B [Co(NH₃)₆][BF₄]₃ [85, 86] bekannt. Die B-F-Bindungslängen entsprechen jenen in Verbindungen des Tpys [M^{II}(NH₃)₆][BF₄]₂ (siehe Kapitel 3). Im Unterschied zu diesen liegen im hier beschriebenen [BF₄]*-Tetraeder drei röntgenographisch unterscheidbare Fluorid-Ionen vor. Zwei B-F-Abstände (B-F2: 142,7(12) pm; B-F4: 135,3(7) pm) liegen im Bereich, wie er auch bei Verbindungen des Typs MBF₄ [50] beobachtet wird. Der Abstand B-F3 mit 131,2(13) pm ist für einen Bindungsabstand in einem [BF₄]-Tetraeder sehr kurz. Vielmehr ist er vergleichbar mit dem Bor-Fluor-Abstand in BF₃ (ca. 130 pm) [70]. Beim Abkühlen von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ auf 140 K bleibt die Raumgruppe P4/mbm (Nr.

Beim Abkühlen von [Cr(NH₃)₆][Cr(NH₃)₂F₄][BF₄]₂ auf 140 K bleibt die Raumgruppe P4/mbm (Nr. 127) erhalten. Die Anordnung der Atome innerhalb der Elementarzelle ist identisch mit jener bei 293 K. Hauptsächlich nimmt durch das Abkühlen die thermische Mobilität der einzelnen Ionen ab, was sich in den Temperaturfaktoren niederschlägt (Tab. 4.4). Diese werden in der Regel halbiert. Besonders wirkt sich das Kühlen auf die fehlgeordneten [BF₄] -Tetraeder aus. Die Geometrie bleibt erhal-

Tab. 4.2: Kristallographische Daten und Angaben zur Strukturbestimmung von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

Kristallsystem	tetragonal	tetragonal
Raumgruppe	P4/mbm (Nr. 127)	P4/mbm (Nr. 127)
Gitterkonstante pm	a = 1055,99(11)	a = 1053,22(12)
	c = 781,66(10)	c = 773,71(11)
Zellvolumen 10 ⁶ pm ³	871,64(17)	858,26(18)
Anzahl der Formeleinheiten	Z = 2	Z = 2
Molmasse g/mol	489,9	489,9
Röntgenographische Dichte g/cm³	1,867	1,896
Kristallfarbe	bernsteinfarben	bernsteinfarben
Meßgerät	IPDS (Stoe)	IPDS (Stoe)
Strahlung	$Mo-K_{\alpha}$ (Graphit-Mo	onochromator)
Scan-Modus	100 Bilder in 2°-Schritten	100 Bilder in 2°-Schritten
Meßtemperatur K	293(2)	140(2)
Meßbereich °	$3.8 \le 2\Theta \le 56.3$	$3.8 \le 2\Theta \le 56.3$
$\mu (\text{MoK}_{\alpha}) \text{mm}^{-1}$	1,368	1,390
Indexbereich	$-13 \le h \le 13$	$-13 \le h \le 13$
	$-13 \le k \le 13$	$-13 \le k \le 13$
	$-10 \le 1 \le 10$	$-10 \le l \le 10$
F(000)	492	492
Extinktionskoeffizient	0,006(3)	
Anzahl der gemessenen Reflexe	10445	7476
Unabhängige Reflexe	578	572
Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	411	405
R_{irt}	0,0427	0,0675
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-S	hape (Stoe) [41]
	SHELXS-97 [36] / SHE	LXL-97 [37]
Streufaktoren	International Tables [57]	
Strukturverfeinerung	"Full-matrix"-Least-Squa	res an F ²
Daten / Restraints / Parameter	578 / 1 / 62	572 / 1 / 60
Goodness-of-fit	1,084	1,051
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0414; wR_2 = 0.1087$	$R_1 = 0.0368; wR_2 = 0.0973$
R-Werte (alle Daten)	$R_1 = 0.0571; wR_2 = 0.1164$	$R_1 = 0.0551; wR_2 = 0.1055$
Restelektronendichte	0,562 / -0,579	0,658 / -0,646

 $\begin{array}{lll} \textbf{Tab. 4.3:} & \text{Atomkoordinaten und "aquivalente Temperaturfaktoren U_{eq} (10^{-4} pm2) von} \\ & & [\text{Cr(NH}_3)_6][\text{Cr(NH}_3)_2\text{F}_4][\text{BF}_4]_2 \text{ bei 293 K und 140 K (grau hinterlegt)} \\ \end{array}$

Atom	Lage	x/a	y/b	z/c	\mathbf{U}_{eq}
Cr1	2d	0	0,5	0	0,0156(4)
	2d	0	0,5	0	0,0074(3)
N11	8k	0,6012(3)	0,1012(3)	0,1817(5)	0,028(1)
	8k	0,6007(2)	0,1007(2)	0,1856(4)	0,0138(7)
N12	4g	0,3604(4)	0,8604(4)	0	0,033(2)
	4g	0,3599(3)	0,8599(3)	0	0,0184(10)
H11	161	0,614(5)	0,070(5)	0,282(4)	0,09(2)
	161	0,669(4)	0,090(4)	0,171(5)	0,041(12)
H12	161	0,310(5)	0,118(6)	0,063(9)	0,12(3)
	161	0,296(5)	0,115(6)	0,066(7)	0,11(3)
Cr2	2a	0	0	0	0,0168(4)
	2a	0	0	0	0,0079(3)
F1	8i	0,8368(2)	0,0739(3)	0	0,0321(7)
	8i	0,8351(2)	0,0725(2)	0	0,0165(5)
N2	4e	0	0	0,2672(8)	0,034(1)
	4e	0	0	0,2707(6)	0,0175(9)
H2	161	0,069(7)	0,966(11)	0,309(8)	0,12(3)
	161	0,997(18)	0,082(3)	0,298(8)	0,18(4)
В	4h	0,3115(6)	0,8115(6)	0,5	0,040(2)
	4h	0,3131(5)	0,1869(5)	0,5	0,0216(14)
F2	4h	0,4071(6)	0,9071(6)	0,5	0,140(4)
	4h	0,4076(4)	0,0924(4)	0,5	0,0692(18)
F3	8j	0,188(1)	0,173(2)	0,5	0,157(7)
	8j	0,1904(7)	0,164(1)	0,5	0,078(3)
F4	161	0,3470(9)	0,2537(8)	0,3589(9)	0,102(3)
	161	0,3484(5)	0,2595(4)	0,3547(5)	0,0413(12)

 $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$

Tab. 4.4: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ bei 293 K und 140 K (grau hinterlegt)

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	U ₁₃	$\mathbf{U_{23}}$	\mathbf{U}_{12}
Cr1	0,0128(4)	0,0128(4)	0,0212(7)	0	0	-0,0008(5)
	0,0060(4)	0,0060(4)	0,0103(5)	0	0	0,0004(5)
N11	0,0282(12)	0,0282(12)	0,0276(19)	-0,0036(12)	-0,0036(12)	-0,0047(15)
	0,0110(10)	0,0110(10)	0,0194(15)	-0,0015(9)	-0,0015(9)	-0,0026(12)
N12	0,0204(18)	0,0204(18)	0,059(4)	0	0	0,004(2)
	0,0105(14)	0,0105(14)	0,034(3)	0	0	-0,0036(19)
Cr2	0,0137(4)	0,0137(4)	0,0231(7)	0	0	0
	0,0057(4)	0,0057(4)	0,0122(5)	0	0	0
F1	0,0185(12)	0,0308(15)	0,0471(16)	0	0	0,0056(11)
	0,0098(10)	0,0146(11)	0,0251(11)	0	0	0,0011(10)
N2	0,038(2)	0,038(2)	0,025(3)	0	0	0
	0,0203(14)	0,0203(14)	0,0120(19)	0	0	0
В	0,043(3)	0,043(3)	0,034(4)	0	0	-0,005(4)
	0,022(2)	0,022(2)	0,020(3)	0	0	-0,003(3)
F2	0,157(6)	0,157(6)	0,105(7)	0	0	0,075(7)
	0,086(3)	0,086(3)	0,036(2)	0	0	0,045(3)
F3	0,078(9)	0,235(19)	0,158(16)	0	0	-0,095(12)
	0,037(4)	0,107(7)	0,090(7)	0	0	-0,041(5)
F4	0,141(7)	0,105(6)	0,060(4)	0,031(4)	0,012(4)	-0,008(4)
	0,058(3)	0,036(3)	0,029(2)	0,0159(17)	0,0044(19)	0,000(2)

 $U_{ij} = exp[-2\pi^{2}(h^{2}a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})]$

ten, aber es kommt zu einer deutlichen Änderung des B-F4-Abstandes. Er nimmt von 135,3(7) pm (293 K) auf 141,0(4) pm (140 K) zu. Die beiden anderen B-F-Abstände ändern sich nur minimal, bzw. die Änderung liegt im Bereich der Standardabweichung. Ein Einrasten der [BF₄]-Tetraeder in eine feste Position wurde durch Abkühlen auf 140 K nicht erreicht.

Tab. 4.5: Bindungslängen (pm) und -winkel (°) in $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ bei 293 K (links) und 140 K (rechts)

Cr1-N11	207,4(4)	Cr1-N11	207,7(2)
Cr1-N12	208,4(6)	Cr1-N12	208,7(5)
Cr2-N2	208,8(6)	Cr2-N2	209,4(5)
Cr2-F1	189,2(2)	Cr2-F1	189,8(2)
B-F2	142,7(12)	B-F2	140,8(9)
B-F3	131,2(13)	B-F3	131,5(8)
B-F4	135,3(7)	B-F4	141,0(4)
N11-H11	86(2)	N11-H11	73,9(37)
N12-H12	76(6)	N12-H12	88,4
N2-H2	87(5)	N2-H2	89,1(20)
F3-F4	127,9(11)	F3-F4	124,9(5)
F4-F4	150,5(17)	F4-F4	160,7(10)
N11-(H11)-F1	287,9	N11-(H11)-F1	287,1
N11-(H11)-F2	322,5	N11-(H11)-F2	317,1
N12-(H12)-F4	305,7	N12-(H12)-F4	302,1
N2-(H2)-F3	314,4	N2-(H2)-F3	318,6
N2-(H2)-F4	325,5	N2-(H2)-F4	306,4
N11-Cr1-N11	93,5(2)	N11-Cr1-N11	92,47(19)
N11-Cr1-N11	86,5(2)	N11-Cr1-N11	87,53(19)
N11-Cr1-N11	180,0	N11-Cr1-N11	180,0
N11-Cr1-N12	90,0	N11-Cr1-N12	90,0
N12-Cr1-N12	180,0	N12-Cr1-N12	180,0
F1-Cr2-F1	90,0	F1-Cr2-F1	90,0
F1-Cr2-F1	180,0	F1-Cr2-F1	180,0
F1-Cr2-N2	90,0	F1-Cr2-N2	90,0
N2-Cr2-N2	180,0	N2-Cr2-N2	180,0
Cr1-N11-H11	121(3)	Cr1-N11-H11	108,0(1)
Cr1-N12-H12	107(5)	Cr1-N12-H12	109,2(1)
Cr2-N2-H2	112(4)	Cr2-N2-H2	103,7(1)
F2-B-F3	127,8(9)	F2-B-F3	124,4(5)
F2-B-F4	99,4(6)	F2-B-F4	101,3(3)
F3-B-F3	104,4(19)	F3-B-F3	111,2(10)
F3-B-F4	57,3(5)	F3-B-F4	54,5(2)
F3-B-F4	109,8(7)	F3-B-F4	111,1(4)
F4-B-F4	67,5(8)	F4-B-F4	69,5(4)
F4-B-F4	109,2(8)	F4-B-F4	105,8(4)
F4-B-F4	161,1(12)	F4-B-F4	157,3(7)

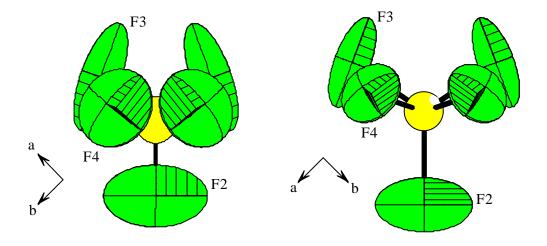
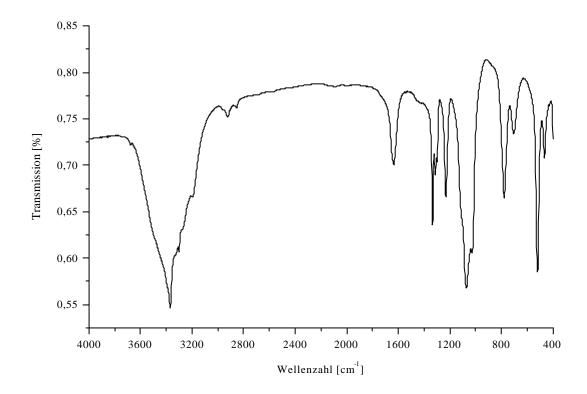



Abb. 4.6: Fehlordnung des [BF₄]⁻-Tetraeders bei 293 K (links) und 140 K (rechts)

$\textbf{4.3 Spektroskopische Untersuchung von} \ [\text{Cr}(\text{NH}_3)_6] [\text{Cr}(\text{NH}_3)_2 \text{F}_4] [\text{BF}_4]_2$

Einige Kristallite von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ wurden mit trockenem Kaliumbromid verrieben, zu einem Preßling verarbeitet, und von diesem ein Spektrum im MIR-Bereich (Abb. 4.7) aufgenommen. Durch Vergleich mit Literaturdaten [95, 98, 99] konnten die Banden zugeordnet werden.

Abb. 4.7: MIR-Spektrum von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

Banden [cm ⁻¹]	Intensität	Zuordnung	Banden [cm ⁻¹]	Intensität	Zuordnung
3369,5	medium	$v_{sy}(NH_3)$	1298,2	weak	$v_1 + v_2(BF_2)$
3301,4	weak	$v_{sv}^{sy}(NH_3)$	1230,5	weak	$\delta_{\rm sv}({\rm NH_3})$
3197,3	weak	$v_{s}(NH_3)$	1071,9	v. weak	$v_{3}^{(11}BF_{4})$
2923,7	weak	Fett	1027,2	medium	$v_3^{(10}BF_4)$
2854,4	weak	Fett	778,0	weak	$v_1(BF_4)$
1633,0	medium	$\delta_{3}(NH_3)$	703,3	weak	$\rho(NH_3)$
1332,3	weak	$\delta_{sv}^{as}(NH_3)$	519,0	medium	$v_4(BF_4)$
1312,1	v. weak	$\delta_{sv}^{sy}(NH_3)$	466,3	weak	$v_{as}(CrN)$

Tab. 4.6: Zuordnung der beobachteten Schwingungen von [Cr(NH₃)₆][Cr(NH₃)₂F₄][BF₄]₂

Die registrierten Banden und deren Zuordnung sind in der Tab. 4.6 zusammengefaßt. Im MIR-Spektrum treten haupsächlich die charakteristischen Banden der $[BF_4]^-$ -Tetraeder und der NH_3 -Moleküle auf. Die Aufspaltung der Bande $v_4(BF_4)$ bei 519 cm $^-$ 1 wird nicht beobachtet. Hingegen läßt sich die Aufspaltung der Bande bei 1070 cm $^-$ 1 und 1030 cm $^-$ 1 auf die Isotopenverteilung von ^{11}B und ^{10}B zurückführen. Die Größe der Aufspaltung ist vergleichbar mit der Aufspaltung in NH_4BF_4 [58, 59]. Außer der Bande bei 466 cm $^-$ 1 ($v_{as}(CrN_6)$) lassen sich alle Banden den charakteristischen Schwingungen des NH_3 -Moleküls zuordnen.

Zusätzlich wurde von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ ein Absorptionsspektrum im UV-VIS-Bereich aufgenommen (Abb. 4.8). Im Spektrum erkennt man zwischen 10000 und 40000 cm $^-$ drei Absorptionsbanden. Das Absorptionsspektrum läßt sich folgendermaßen interpretieren:

In $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ liegen zwei verschiedene Chromophore vor: Zum einen der oktaedrische $[Cr(NH_3)_6]^{3+}$ -Komplex (in der weiteren Diskussion als Komplex B bezeichnet) und zum anderen der ebenfalls oktaedrische heteroleptische trans- $[Cr(NH_3)_2F_4]^{-}$ -Komplex (Komplex A). Für die beiden Chromophore ergeben sich nach

$$\Delta_{\text{okt}} = 10 \text{ Dq} = f \cdot g \quad \text{[cm}^{-1}\text{]}$$

 $mit \; f(6\;NH_3) = 1,25; \; f(6\;F) = 0,9 \; und \; g(Cr^{3+}) = 17000 \; cm^{-1} \; [100] \; folgende \; Ligandenfeldstärken \; \Delta_{ok}; \; f(6\;NH_3) = 1,25; \; f(6\;F) = 0,9 \; und \; g(Cr^{3+}) = 17000 \; cm^{-1} \; [100] \; folgende \; Ligandenfeldstärken \; \Delta_{ok}; \; f(6\;NH_3) = 1,25; \; f(6\;F) = 0,9 \; und \; g(Cr^{3+}) = 1,2000 \; cm^{-1} \; [100] \; folgende \; Ligandenfeldstärken \; \Delta_{ok}; \; f(6\;NH_3) = 1,2000 \; cm^{-1} \; f(6\;NH_3) = 1,2000 \; cm^{$

$$[Cr(NH_3)_6]^{3+}$$
: $\Delta_{okt} = 17000 \text{ cm}^1 \cdot 1,25 = 21250 \text{ cm}^1$
 $[CrF_6]^{3-}$: $\Delta_{okt} = 17000 \text{ cm}^1 \cdot 0,90 = 15300 \text{ cm}^1$

Gemäß der Regel der mittleren Umgebung [100] ergibt sich für den Komplex A folgende Ligandenfeldstärke Δ_{okt} :

$$[Cr(NH_3)_2F_4]$$
: $\Delta_{okt} = 2/6 \cdot (21250 \text{ cm}^{-1}) + 4/6 \cdot (15300 \text{ cm}^{-1}) = 17280 \text{ cm}^{-1}$

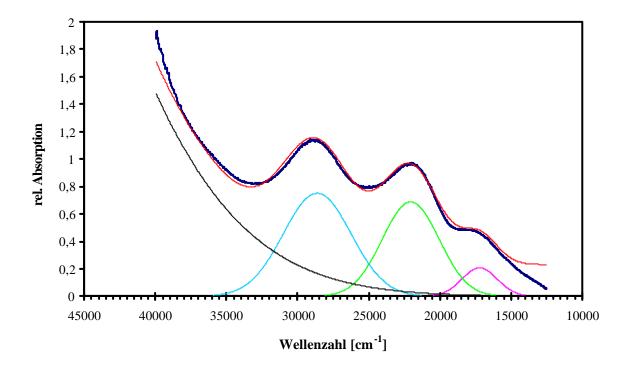
Der Racah-Parameter B, der Aufschluß über die Metall-Liganden-Bindungen gibt , berechnet sich

nach:

$$B = B_0 \bullet (1 - h \bullet k)$$
 h, k = nephelauxetische Parameter

Für ein d³-System beträgt $B_0 = 1030 \text{ cm}^{-1} [100]$. Mit $h(6 \text{ NH}_3) = 1,4$; h(6 F) = 0,8 und $k(\text{Cr}^{3+}) = 0,21$ [100] ergibt sich für die beiden Chromophore folgender Racah-Parameter B:

Komplex A: $B = 1030 \text{ cm}^{-1} \bullet (1-0.8 \bullet 0.21) = 857 \text{ cm}^{-1}$ (Dabei wurde die Annahme gemacht, daß sich Komplex A analog $[\text{CrF}_6]^{3-}$ verhält.)


Komplex B:
$$B = 1030 \text{ cm}^{-1} \bullet (1-1.4 \bullet 0.21) = 727 \text{ cm}^{-1}$$

Aus dem Verhältnis B/B₀ läßt sich eine Aussage über den Charakter der Metall-Ligand-Bindung treffen. Die Werte befinden sich zwischen 0 und 1. Je kleiner das Verhältnis B/B₀ ist, um so größer ist der ionische Charakter der Metall-Ligand-Bindung. Für beide Komplexe ergeben sich folgende Werte:

Komplex A: $857 \text{ cm}^{-1}/1030 \text{ cm}^{-1} = 0.83$ Komplex B: $727 \text{ cm}^{-1}/1030 \text{ cm}^{-1} = 0.71$

Daraus folgt, daß im Komplex A ein ionischer Charakter der Metall-Ligand-Bindung von 83% vorliegt. Hingegen beträgt der ionische Charakter im Komplex B 71%. Der wahre Wert für den Komplex A sollte etwas niedriger sein, da der nephelauxetische Effekt der NH₃-Liganden ausgeprägter ist als der der F-Liganden.

Das Termschema eines oktaedrischen d'-Komplexes [100] ist in Abb. 4.9 dargestellt. Bei der Auf-

Abb. 4.8: Absorptionsspektrum von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

stellung des Termschemas wurden nur die Quartett-Terme berücksichtigt, da alle anderen Anregungen aus dem Grundzustand (${}^4A_{2g}$) spin-verboten und daher sehr schwach sind.

Mit Hilfe des Tanabe-Sugano-Diagramms für ein d³-System [100] lassen die theoretischen Energien der Übergänge I, II und III beider Komplexe berechnen. Aus dem Verhältnis der Wellenzahlen der beobachteten Übergänge ergeben sich folgende Dq/B-Verhältnisse für beide Chromophore:

Komplex A: Dq/B = 2.0Komplex B: Dq/B = 2.9

Aus dem E/B-Verhältnis für die Übergänge I, II und III der beiden Komplexe ergeben sich folgende Energien, die in der nachfolgenden Tabelle zusammengefaßt sind.

Tab. 4.7: Zusammenfassung der berechneten Energien der Übergänge I, II, und III der Komplexe A und B

Übergang	Komplex A	Komplex B	
I	16710 cm ¹	21080 cm ¹	
II	24850 cm ⁻¹	28350 cm ¹	
Ш	38220 cm ¹	45560 cm ⁻¹	

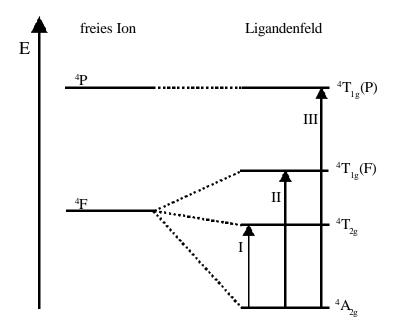
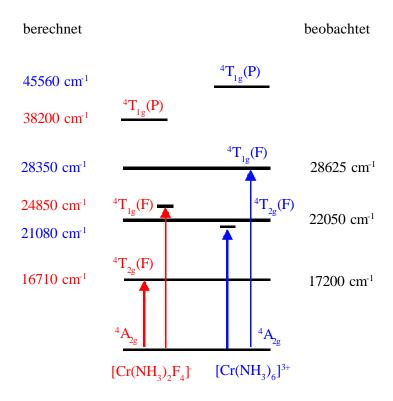



Abb. 4.9: Quartett-Termschema von Cr3+ im oktaedrischen Ligandenfeld

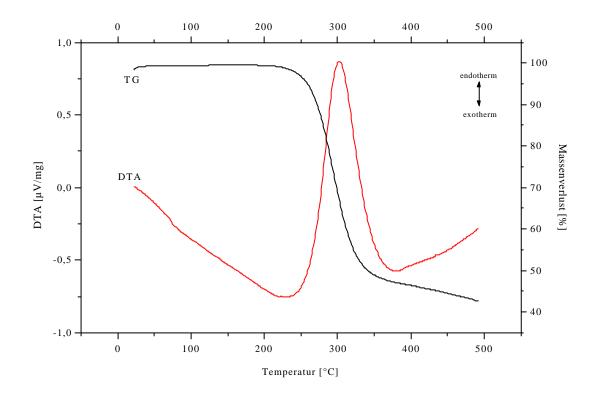
Dementsprechend werden folgende Übergänge im Absorptionsspektrum beobachtet: Die Bande bei 17200 cm $^{-1}$ entspricht Übergang I ($^4A_{2g} \rightarrow {}^4T_{2g}$) von Komplex A, welches gleichbedeutend ist mit

 $\Delta_{\rm okt}$ (Komplex A). Die Bande bei 22050 cm 1 setzt sich aus dem Übergang II ($^{4}A_{2g} \rightarrow {}^{4}T_{1g}$) von Komplex A und Übergang I ($^{4}A_{2g} \rightarrow {}^{4}T_{2g}$) von Komplex B zusammen. Aufgrund der Überlagerung beider Übergänge wird der Übergang II vom Komplex A energetisch erniedrigt, wohingegen der Übergang I vom Komplex B energetisch erhöht wird. Die dritte Bande bei 28625 cm $^{-1}$ entspricht dem Übergang II ($^{4}A_{2g} \rightarrow {}^{4}T_{1g}$) des Komplexes B. Der Übergang III beider Komplexe wird im Spektrum nicht beobachtet, da diese Übergänge durch Charge-Transfer-Banden verdeckt sind.

Abb. 4.10: Energieniveauschema der Übergänge in $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

4.4 Thermisches Verhalten von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

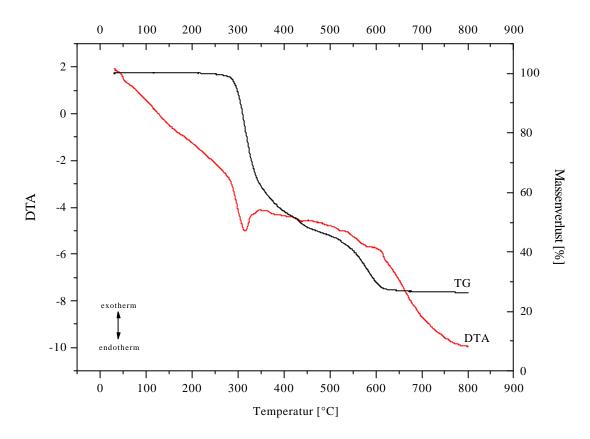
Der thermische Abbau von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ erfolgt nach DTA/TG-Untersuchungen unter Ar-Atmosphäre (Abb. 4.11) in einem einstufigen Prozeß. Die Verbindung ist unterhalb 265°C thermisch beständig. Ab 265,2°C zersetzt sie sich unter einem Massenverlust von 57,3% zu CrF_3 (berechnet 44,5%; gemessen 42,7%). Die Abgabe von 8 Molekülen NH_3 und 2 Molekülen BF_3 pro Formeleinheit verläuft endotherm (DTA-Signal: 302,0°C). Zusammenfassend läßt sich folgendes Reaktionsschema formulieren:

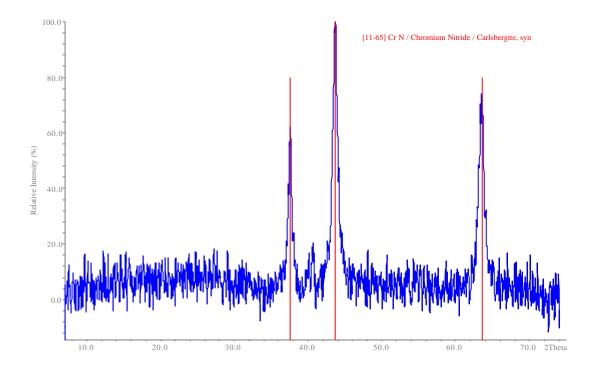

$$[\mathrm{Cr}(\mathrm{NH_3})_6][\mathrm{Cr}(\mathrm{NH_3})_2\mathrm{F_4}][\mathrm{BF_4}]_2 \xrightarrow{265^{\circ}\mathrm{C}} 2\,\mathrm{CrF_3} + 8\,\mathrm{NH_3} \uparrow + 2\,\mathrm{BF_3} \uparrow$$

Erfolgt die DTA/TG-Untersuchung unter NH₃-Atmosphäre (Abb. 4.12), so verläuft der thermische

Abbau von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ in einem dreistufigen Prozeß. Die Verbindung zersetzt sich ab 291,7°C über zwei bisher nicht charakterisierte Intermediate zu CrN (berechnet 26,95%, gemessen 26,7%) (Abb. 4.13). Die Zersetzung von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ erfolgt in allen drei Teilschritten endotherm.

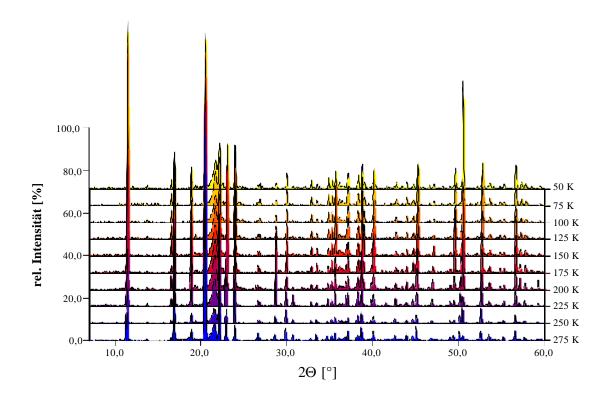
Tab. 4.8: Zusammenfassung der aus den DTA/TG-Diagrammen (oben Ar, unten NH₃) ermittelten Daten


Zersetzungsstufe	T _{Onset} [°C]	Massenverlust [%]	DTA-Peak
1	265,2	57,3	302,0
1	291,7	46,4	314,2
2	423,5	7,0	439,1
3	544,6	19,9	581,8


Abb. 4.11: DTA/TG-Diagramm von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ unter Ar-Atmosphäre

Röntgenographische Untersuchungen, wie z.B. die in-situ-Pulverdiffraktometrie, könnten über den Verlauf des thermischen Abbaus von [Cr(NH₃)₆][Cr(NH₃)₂F₄][BF₄]₂ genauere Auskunft geben. Aufgrund unzureichender Mengen an Substanz konnte eine röntgenographische Untersuchung im Rahmen dieser Arbeit nicht erfolgen. Aus demselben Grund wurden auch keine analytischen Untersuchungen an gezielt hergestellten Zwischenstufen durchgeführt, die Auskunft über die Zusammenset-

zung der Intermediate liefern würden.


 $\textbf{Abb. 4.12:} \ DTA/TG-Diagramm \ von \ [Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2 \ unter \ NH_3-Atmosph\"are$

 $\textbf{Abb. 4.13:} \ \ Pulverdiffraktogramm \ des \ \ R\"{u}ckstandes \ der \ DTA/TG-Untersuchung \ unter \ NH_{_3}-Atmosph\"{a}re$

Um Auskunft über das thermische Verhalten von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ bei tiefen Temperaturen zu erhalten, wurden im Temperaturbereich von 300 bis 50 K in 25 K-Schritten Pulverdiffraktogramme erstellt. Die Diffraktogramme sind in Abb. 4.14 dargestellt.

Eine mögliche Phasenumwandlung, die z.B. durch das Einrasten der fehlgeordneten $[BF_4]$ -Tetraeder in eine feste Position hervorgerufen werden könnte, konnte in dem gewählten Temperaturbereich anhand der Pulverdiffraktogramme nicht nachgewiesen werden. Die aus den Diffraktogrammen bestimmten Gitterparameter und molaren Volumina sind in Tab. 4.9 zusammengefaßt.

Abb. 4.14: Pulverdiffraktogramme von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ in Abhängigkeit von der Temperatur

Eine weitere Möglichkeit zum Nachweis bzw. zur Charakterisierung einer Phasenumwandlung ist die Auftragung der ermittelten Gitterkonstanten bzw. berechneten molaren Volumina gegen die Temperatur. Es ist eine lineare Abnahme der Gitterparameter mit fallender Temperatur zu erwarten. Eine Anomalie in diesem Verlauf, z.B. eine sprunghafte Änderung der Gitterparameter bei sinkender Temperatur, könnte auf eine Phasenumwandlung hindeuten.

Im Bereich zwischen 275 und 200 K nimmt die Gitterkonstante a steiler ab als im restlichen Temperaturbereich (Abb. 4.15). Der Wert bei 175 K ist größer als der von 200 K. Die Abweichung liegt jedoch im Bereich der Standardabweichung, und somit ist diese Anomalie nicht als eine mögliche Phasenumwandlung zu betrachten. Unterhalb von 100 K kommt es noch einmal zu einer Zunahme der Gitterkonstanten a. Dieser Verlauf läßt sich wiederum auf die Ungenauigkeit der Bestimmung zurückführen. Bei der Betrachtung des Verlaufs der Gitterkonstanten c gegen die Temperatur

(Abb. 4.16) beobachtet man keine sprunghafte Änderung bzw. einen anomalen Verlauf mit fallender Temperatur. Im Temperaturbereich zwischen 275 und 100 K nimmt die Gitterkonstante c kontinuierlich mit fallender Temperatur ab. Bei tieferen Temperaturen flacht der Verlauf der Kurve etwas ab. Unterhalb von 100 K beobachtet man wieder einen minimalen Anstieg der Gitterkonstanten. Diese Zunahme läßt sich wiederum auf die Ungenauigkeit der Bestimmung zurückführen. Einen unregelmäßigen Verlauf beobachtet man in der Auftragung des molaren Volumens gegen die Temperatur (Abb. 4.17). Aber auch hier beobachtet man keine Anomalie, die auf eine Phasenumwandlung hindeuten könnte.

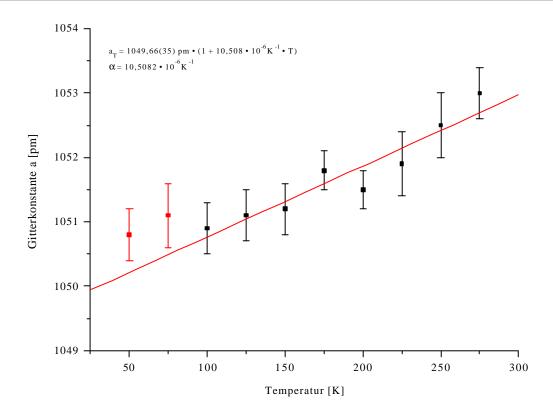
Aus der Auftragung der Gitterkonstanten bzw. des molaren Volumens gegen die Temperatur lassen sich gemäß des erweiterten Gesetzes von Gay-Lussac [96] durch lineare Regression die thermischen Ausdehnungskoeffizienten α und γ bestimmen. Außerdem erhält man die Gitterkonstanten bzw. das molare Volumen von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ bei 0 K.

Aus der linearen Regression ergibt sich:

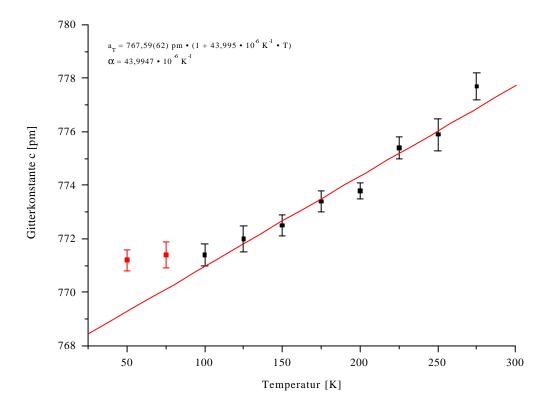
• für den thermischen Ausdehnungskoeffizienten α der Gitterkonstante a und die Gitterkonstante a bei $0~\mathrm{K}$

```
a_{T} = 1049,66(35) \text{ [pm]} \cdot (1 + 10,508 \cdot 10^{-6} \text{ K}^{-1} \cdot \text{T})

\alpha = 10.5082 \cdot 10^{-6} \text{ K}^{-1}
```


• für den thermischen Ausdehnungskoeffizienten α der Gitterkonstante c und die Gitterkonstante c bei $0~\mathrm{K}$

$$a_T = 767,59(62)$$
 [pm] • $(1 + 43,995 • 10^{-6} K^{-1} • T)$
 $\alpha = 43,9947 • 10^{-6} K^{-1}$


- für den "kubischen" Volumenausdehnungskoeffizienten γ und das molare Volumen $\boldsymbol{V}_{\!\!\!\!\!m}$ bei 0 K

$$V_{m,T} = 254,62(30) \text{ [cm}^3/\text{mol]} \bullet (1 + 66,451 \bullet 10^{-6} \text{ K}^{-1} \bullet \text{ T})$$

$$\gamma = 66,4509 \bullet 10^{-6} \text{ K}^{-1}$$

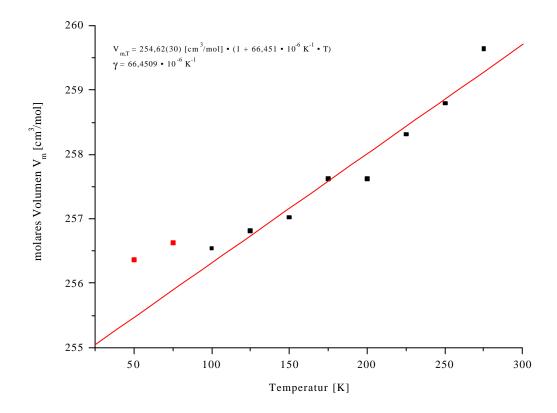

Die ermittelten thermischen Ausdehnungskoeffizienten für die Gitterkonstanten a und c stehen im Einklang mit den Ergebnissen der Einkristalluntersuchungen bei Raumtemperatur und 140 K. Dort beobachtet man, daß beim Abkühlen die Gitterkonstante c viel stärker kontrahiert als die Gitterkonstante a (Tab. 4.2).

Abb. 4.15: Auftragung der Gitterkonstanten a von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ gegen die Temperatur

Abb. 4.16: Auftragung der Gitterkonstanten c von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ gegen die Temperatur

Abb. 4.17: Auftragung des molaren Volumens V_m von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ gegen die Temperatur

Tab. 4.9: Zusammenfassung der ermittelten Gitterkonstanten und berechneten molaren Volumina von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

Temperatur [K]	a [pm]	c [pm]	V [10 ⁶ pm ³]	V _m [cm³/mol]
275	1053,0(4)	777,7(5)	862,3(10)	259,64
250	1052,5(5)	775,9(6)	859,5(11)	258,80
225	1051,9(5)	775,4(4)	857,9(9)	258,32
200	1051,5(3)	773,8(3)	855,6(7)	257,62
175	1051,8(3)	773,4(4)	855,6(8)	257,62
150	1051,2(4)	772,5(4)	853,6(8)	257,02
125	1051,1(4)	772,0(5)	852,9(9)	256,81
100	1050,9(4)	771,4(4)	852,0(8)	256,54
75	1051,1(5)	771,4(5)	852,3(10)	256,63
50	1050,8(4)	771,2(4)	851,4(9)	256,36

5 Umsetzung von Ammoniumfluoriden mit Elementen der 14. Gruppe (Si, Ge, Pb)

5.1 Auf- und Abbau von Ammoniumfluorosilicaten

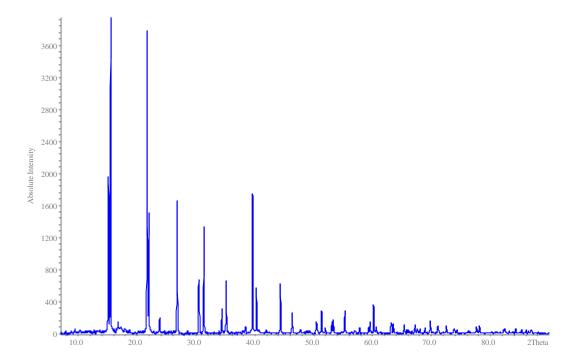
5.1.1 Einleitung

Ammoniumfluorosilicate sind seit langem bekannt. J. L. Hoard und M. B. Williams [101] gelang es 1942, $(NH_4)_3[SiF_6]F$, die bisher ammoniumfluoridreichste Ammoniumfluorosilicat-Verbindung, strukturell aufzuklären. Sie kristallisiert in der tetragonalen Raumgruppe P4/mbm (Nr. 127) mit den Gitterkonstanten a = 804 pm und c = 584,5 pm. Pro Elementarzelle sind zwei Formeleinheiten enthalten. Im Unterschied zum $(NH_4)_3[ZiF_7]$ [102] liegen in $(NH_4)_3[SiF_6]F$ isolierte $[SiF_6]^{2^2}$ -Oktaeder und "einsame" Fluoridionen vor. Von $(NH_4)_2[SiF_6]$ kennt man zwei Modifikationen, die beide strukturell aufgeklärt wurden [103, 104, 105]. Bei Raumtemperatur kristallisiert $(NH_4)_2[SiF_6]$ kubisch (Raumgruppe Fm-3m) im $K_2[PtCl_6]$ -Typ. Unterhalb von 5°C kristallisiert $(NH_4)_2[SiF_6]$ isotyp zu den analogen Verbindungen der höheren Homologen Ge und Sn [106, 21] in der trigonalen Raumgruppe P-3m1 (Nr. 164). In beiden Modifikationen liegen wiederum isolierte $[SiF_6]^2$ -Oktaeder vor. Das ammoniumfluoridärmste Ammoniumfluorosilicat $(NH_4)[SiF_5]$ ist bisher noch unbekannt. Die $[SiF_6]^2$ -Oktaeder müßten in $(NH_4)[SiF_5]$ entweder kantenverknüpfte Dimere oder eckenverknüpfte Stränge ausbilden; dies wird jedoch nur in Verbindungen mit großen Kationen wie z.B. in (PhNHR₂) $_3[Si_5F_{11}]$ [107] beobachtet.

Seit längerem kennt man auch Ammoniakate von SiF $_4$. Diese wurden schon 1927 von W. Biltz und E. Rahlfs [108] vorhergesagt. C. Plitzko gelang es 1996 durch Umsetzung von Si mit NH $_4$ HF $_2$ in Monel-Ampullen, die Ammoniakate [Si(NH $_3$) $_2$ F $_4$] und (NH $_4$)[Si(NH $_3$)F $_5$] darzustellen und erstmals ihre Strukturen aufzuklären [89]. [Si(NH $_3$) $_2$ F $_4$] kristallisiert in der monoklinen Raumgruppe P2 $_1$ /c mit den Gitterkonstanten a = 506,9 pm, b = 727,9 pm, c = 675,9 pm und dem monoklinen Winkel β = 93,21°. (NH $_4$)[Si(NH $_3$)F $_5$] kristallisiert in der tetragonalen Raumgruppe P4/n mit den Gitterkonstanten a = 614,9 pm und c = 721,0 pm. Wie bei den Ammoniumfluorosilicaten ist das Silicium in diesen beiden Ammoniakaten oktaedrisch koordiniert. In der Gasphase fanden Untersuchungen an Si(NH $_3$)F $_4$ statt [109]. Anhand von IR-Spektren und Ab-Initio-Rechnungen konnte eine trigonal-bipyramidale Struktur des Moleküls nachgewiesen werden. Desweiteren findet man in der Literatur theoretische Berechnungen über eine Vielzahl von Siliciumamidfluoriden [110], -imidfluoriden [110, 111] und auch dem Siliciumnitridfluorid [111]. Demnach ist SiNF eine endotherme Verbindung. Betrachtet man jedoch die hohe Gitterenergie von SiO $_2$, so könnte SiNF eine "metastabile" feste Verbindung sein.

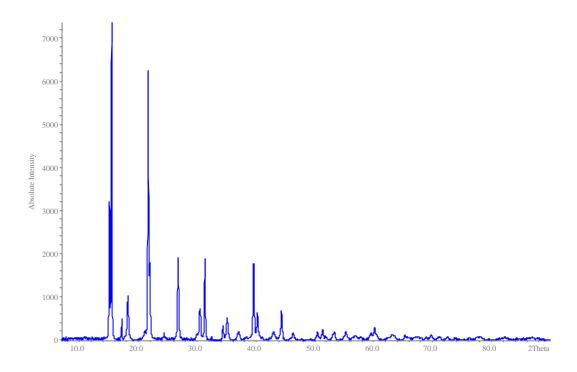
5.1.2 Darstellung von Ammoniumfluorosilicaten

Im Rahmen dieser Arbeit wurde versucht, mit Hilfe der "Monel-Methode" Ammoniumfluorosilicate wie auch Fluoridammoniakate des Siliciums durch Umsetzung von Silicium mit Ammonium-fluoriden in verschweißten Metallampullen zu erhalten, um sie anschließend unter inerten (N_2 oder Ar) wie auch reaktiven Bedingungen (NH_3) thermisch abzubauen. Dazu wurden die Edukte im stöchiometrischen Verhältnis eingewogen, vermengt und bei verschiedenen Temperaturen für vier Wochen zur Reaktion gebracht. Zum Schutz vor Oxidation wurden die Metallampullen unter Vakuum in Kieselglasampullen eingeschmolzen. Die Reaktionsbedingungen sind in Tab. 5.1 zusammengefaßt.


Tab. 5.1: Zusammenfassung der Reaktionsbedingungen

Verhältnis:	Si / NH ₄ HF ₂	1 : 4 mmol
	Si / NH ₄ HF ₂	1:1 mmol
	Si / NH ₄ HF ₂	2:1 mmol
	Si / NH ₄ F	1 : 7 mmol
Einwaage:	NH_4HF_2	$200 \text{ mg} \equiv 3,506 \text{ mmol}$
	Si	$24.6 \text{ mg} \equiv 0.8765 \text{ mmol}$
	Si	$98.5 \text{ mg} \equiv 3.506 \text{ mmol}$
	Si	$196.9 \mathrm{mg} \equiv 7.012 \mathrm{mmol}$
	NH_4F	$200 \text{ mg} \equiv 5.4 \text{ mmol}$
	Si	$21.7 \text{ mg} \equiv 0.7714 \text{ mmol}$
Reaktionstemperatur:	300°C, 400°C	
Reaktionszeit:	4 Wochen	
Aufheizrate:	3°C/h	
Abkühlrate:	3°C/h	
Ampullenmaterial:	Monel, Kupfer, Gold	

Für die durchgeführten Umsetzungen von Silicium mit Ammoniumfluoriden lassen sich folgende Reaktionsgleichungen formulieren:


$$2 \operatorname{Si} + 7 \operatorname{NH}_{4} \operatorname{HF}_{2} \xrightarrow{\operatorname{Cu},300^{\circ}\mathrm{C},28d} 2 (\operatorname{NH}_{4})_{3} [\operatorname{SiF}_{6}] F + \operatorname{NH}_{3} + 4 \operatorname{H}_{2}$$

$$\operatorname{Si} + 7 \operatorname{NH}_{4} F \xrightarrow{\operatorname{Cu},300^{\circ}\mathrm{C},28d} (\operatorname{NH}_{4})_{3} [\operatorname{SiF}_{6}] F + 4 \operatorname{NH}_{3} + 2 \operatorname{H}_{2}$$

$$2 \operatorname{Si} + 5 \operatorname{NH}_{4} \operatorname{HF}_{2} \xrightarrow{\operatorname{Monel}_{4}00^{\circ}\mathrm{C},28d} 2 \operatorname{NH}_{4} [\operatorname{Si}(\operatorname{NH}_{3})F_{5}] + \operatorname{NH}_{3} + 4 \operatorname{H}_{2}$$

$$\operatorname{Si} + 2 \operatorname{NH}_{4} \operatorname{HF}_{2} \xrightarrow{\operatorname{Monel}_{4}00^{\circ}\mathrm{C},28d} F = \operatorname{Si}(\operatorname{NH}_{3})_{2} F_{4} + 2 \operatorname{H}_{2}$$

Zur Überprüfung der erhaltenen Produkte wurden Pulverdiffraktogramme erstellt und mit den Daten der bekannten Verbindungen verglichen. Sowohl bei der Umsetzung von Si mit NH_4HF_2 im Verhältnis 1:4 wie auch bei der Umsetzung mit NH_4F im Verhältnis 1:7 bildet sich $(NH_4)_3[SiF_6]F$. Demnach geschieht die Bildung von $(NH_4)_3[SiF_6]F$ unabhängig vom NH_3 -Partialdruck. Ein nahezu phasenreines und kristallines Produkt erhält man jedoch bei der Umsetzung mit NH_4HF_2 . Bei der Umsetzung mit NH_4F bildet sich eine weitere Phase, die bisher nicht charakterisiert werden konnte. Die beiden Diffraktogramme sind in den Abb. 5.1 und 5.2 dargestellt. Die Peakliste von $(NH_4)_3[SiF_6]F$ ist im Anhang wiedergegeben. Im Rahmen dieser Arbeit konnte das Ammoniakat $[Si(NH_3)_2F_4]$ mittels der "Monel-Methode" nicht erhalten werden. $(NH_4)[Si(NH_3)F_5]$ konnte hingegen in sehr geringen Mengen dargestellt werden. Im Diffraktogramm erkennt man (Abb. 5.3), daß sich mindestens ein weiteres Produkt bei der Umsetzung von Si mit NH_4HF_2 im Verhältnis 2:1 gebildet hat. Diese Phase konnte aber bisher nicht identifiziert werden.

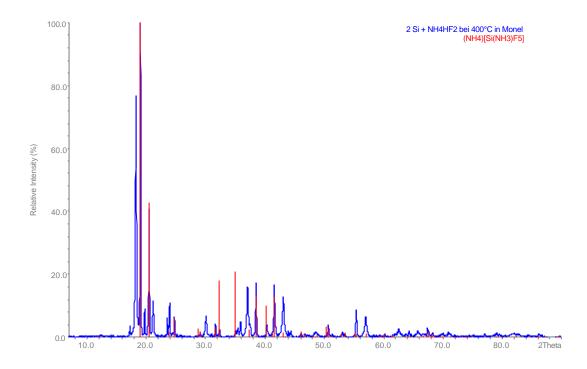
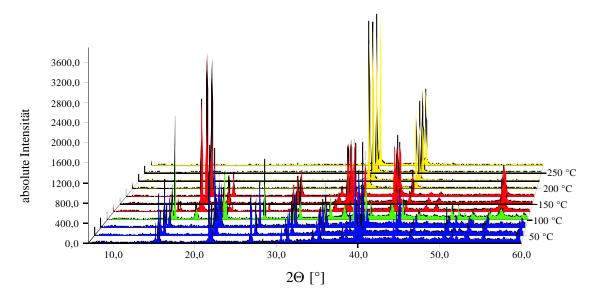


Abb. 5.1: Pulverdiffraktogramm der Umsetzung von Si mit NH₄HF₂ im Verhältnis 1 : 4

Von $(NH_4)_3[SiF_6]F$ wurden unter dem Polarisationsmikroskop einige Einkristalle isoliert und in Glaskapillare eingeschmolzen. Von einem Einkristall wurde anschließend ein Intensitätsdatensatz auf dem IPDS erstellt. Bei der Zellbestimmung wurde die bekannte tetragonal-primitive Zelle mit den Gitterkonstanten a = 808,57(12) pm und c = 587,12(12) pm gefunden. Beim Versuch, mit diesem Datensatz die Struktur zu lösen, stellte sich bei der Rechnung heraus, daß ein Zwilling oder gar Mehrling gemessen wurde. Es ließen sich zwar alle Lagen bis auf die der Wasserstoffatome lokalisieren aber der wR_2 -Wert blieb bei 30% "stehen". Der K-Wert, der auf eine Verzwilligung des Kristalls hindeutet, hatte einen Wert von ca. 30. Bei genauer Betrachtung des Recipe-Files ließ sich die Verzwilligung des gemessenen Kristalls endgültig nachweisen.

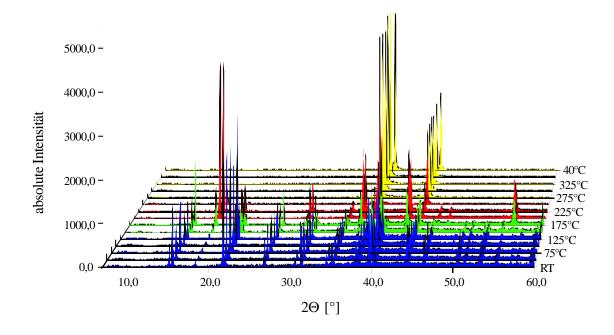
Abb. 5.2: Diffraktogramm der Umsetzung von Si mit NH_4F im molaren Verhältnis 1:7

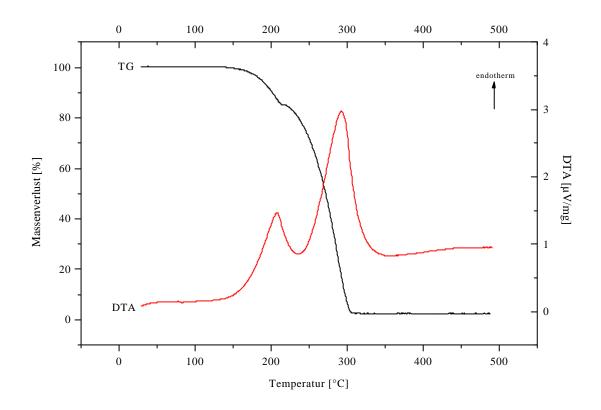

Abb. 5.3: Diffraktogramm der Umsetzung von Si mit NH_4HF_2 im molaren Verhältnis 2:1

5.1.3 Thermisches Verhalten von (NH₄)₃[SiF₆]F

 $(NH_4)_3[SiF_6]F$ wurde sowohl mittels der in-situ-Pulverdiffraktometrie wie auch mittels DTA/TG-Messungen unter inerten (N_2) oder Ar) wie auch reaktiven Bedingungen (NH_3) untersucht.

In der Bühler-Kammer ist $(NH_4)_3[SiF_6]F$ unter N_2 -Atmosphäre bis 75°C thermisch beständig. Ab 100°C läßt sich $(NH_4)_2[SiF_6]$ neben $(NH_4)_3[SiF_6]F$ nachweisen. Bei 125°C liegt hauptsächlich $(NH_4)_2[SiF_6]$ vor. Aber es läßt sich auch noch $(NH_4)_3[SiF_6]F$ nachweisen. Ab 150°C konnte nur noch $(NH_4)_2[SiF_6]$ detektiert werden. Dieses ließ sich noch bei 175°C nachweisen, aber zwischen 175°C und 200°C zersetzte es sich vollständig zu SiF_4 , NH_3 und HF. Ab 200°C ließ sich nämlich nur noch der Probenträger aus Silber röntgenographisch nachweisen. In Abb. 5.4 sind die Diffraktogramme des thermischen Abbaus unter N_2 -Atmosphäre dargestellt.


Führt man den gleichen Versuch anstatt unter inerten Bedingungen unter NH_3 -Atmosphäre durch, so ist $(NH_4)_3[SiF_6]F$ bis $125^{\circ}C$ thermisch beständig. Ab $150^{\circ}C$ kann neben $(NH_4)_3[SiF_6]F$ auch $(NH_4)_2[SiF_6]$ nachgewiesen werden. Bei $200^{\circ}C$ liegt im System nur noch $(NH_4)_2[SiF_6]$ vor. Dieses ist bis $250^{\circ}C$ "stabil". Oberhalb von $250^{\circ}C$ zersetzt es sich vollständig in SiF_4 , NH_3 und HF. Ab $275^{\circ}C$ wurde nur noch der Probenträger röntgenographisch erfaßt. Die Diffraktogramme der Zersetzung von $(NH_4)_3[SiF_6]F$ unter NH_3 -Atmosphäre sind in der Abb. 5.5 dargestellt.


Abb. 5.4: Pulverdiffraktogramme der thermischen Zersetzung von (NH₄)₃[SiF₆]F unter N₂-Atmosphäre in Abhängigkeit von der Temperatur

Die thermoanalytische Zersetzung von $(NH_4)_3[SiF_6]F$ unter Ar-Atmosphäre erfolgt in einem zweistufigen Prozeß, siehe Abb. 5.6. Im ersten Zersetzungsschritt bei 177,6°C wird in einem endothermen Prozeß ein Molekül NH_4F pro Formeleinheit abgespalten. Im zweiten Zersetzungsschritt bei 243,7°C zersetzt sich die intermediär gebiltete Zwischenstufe $(NH_4)_2[SiF_6]$ endotherm vollständig zu SiF_4 , NH_3 und HF. Zusammenfassend läßt sich folgende Reaktionsgleichung formulieren:

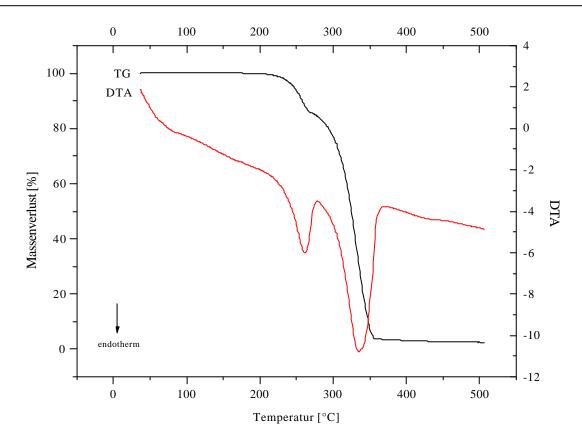

$$(NH_4)_3[SiF_6]F \xrightarrow{177,6^{\circ}C,-NH_4F} (NH_4)_2[SiF_6] \xrightarrow{243,7^{\circ}C} SiF_4 \uparrow + 2NH_3 \uparrow + 2HF \uparrow$$

Abb. 5.5: Pulverdiffraktogramme des thermischen Abbaus von $(NH_4)_3[SiF_6]F$ unter NH_3 -Atmosphäre in Abhängigkeit von der Temperatur

Abb. 5.6: DTA/TG-Diagramm der thermoanalytischen Zersetzung von $(NH_4)_3[SiF_6]F$ unter N_2 -Atmosphäre

Abb. 5.7: DTA/TG-Diagramm der thermoanalytischen Zersetzung von $(NH_4)_3[SiF_6]F$ unter NH_3 -Atmosphäre

Tab. 5.2: Zusammenfassung der aus den DTA/TG-Diagrammen (oben Ar, unten NH₃) ermittelten Daten

Zersetzungsstufe	T_{Onset} [°C]	Massenv	Massenverlust [%]	
		beobachtet	berechnet	
1	177,6	15,2	17,2	207,7
2	243,7	84,8	82,8	292,7
1	239,5	14,8	17,2	261,0
2	299,4	82,9	82,8	334,7

Die thermische Zersetzung von $(NH_4)_3[SiF_6]F$ unter NH_3 -Atmosphäre erfolgt in einem zweistufigen Prozeß, wobei beide Stufen nicht vollständig nebeneinander aufgelöst werden können, siehe Abb. 5.7. Im ersten Zersetzungsschritt bei 239,5°C kommt es zu einem Massenverlust von 14,8%. Dies ist gleichbedeutend mit der Abspaltung von einem Molekül NH_4F pro Formeleinheit. Im zweiten Zersetzungsschritt bei 299,4°C zersetzt sich das intermediär gebildete $(NH_4)_2[SiF_6]$ vollständig zu SiF_4 , NH_3 und HF. Beide Teilschritte verlaufen endotherm. Die thermische Zersetzung von

 $(NH_4)_3[SiF_6]F$ unter NH_3 -Atmosphäre erfolgt gegenüber der thermischen Zersetzung unter Ar-Atmosphäre bei deutlich höheren Temperaturen, siehe Tab. 5.2. Folgende Reaktionsgleichung läßt sich für den thermischen Abbau von $(NH_4)_3[SiF_6]F$ unter NH_3 -Atmosphäre formulieren:

$$(NH_4)_3[SiF_6]F \xrightarrow{239,5^{\circ}C;-NH_4F} (NH_4)_2[SiF_6] \xrightarrow{299,4^{\circ}C} SiF_4 \uparrow + 2 NH_3 \uparrow + 2 HF \uparrow$$

Beim thermischen Abbau von $(NH_4)_3[SiF_6]F$ unter Normaldruck, sowohl mit der Differenzthermoanalyse wie auch in der "Bühler-Kammer" unter inerten bzw. reaktiven Bedingungen, konnte keine Ammonolyse des Siliciums beobachtet werden. Nach der Bildung von $(NH_4)_2[SiF_6]$ zersetzt sich dieses zu SiF_4 , NH_3 und HF. Ein Grund hierfür ist in der hohen Flüchtigkeit von SiF_4 zu sehen, analog zum BF_3 (siehe Kapitel 1). Desweiteren spielt der Ammoniak-Partialdruck eine große Rolle bei der Bildung von Ammoniakaten. Die beiden bekannten Silicium-Ammoniakate [89] konnten bisher nur in verschweißten Monelampullen dargestellt werden, in denen ein großer Ammoniak-Partialdruck vorherrschte. Um dies zu berücksichtigen, sollten die Versuche zum thermischen Abbau von $(NH_4)_3[SiF_6]F$ unter variablem NH_3 -Druck in einem geschlossenen System wiederholt werden.

Ein möglicher Zugang zu den bisher unbekannten Amiden, Imiden und Nitriden des Siliciumtetrafluorids besteht in der Ammonolyse von Ammoniumfluorosilicaten bei sehr hohen Ammoniakdrücken. Auf diesem Wege konnten z.B. 1995 F. Flacke und H. Jacobs [112] Hexaamidostannate erhalten.

5.2 Synthese, Struktur und thermisches Verhalten von (NH₄)₃[GeF₆]F

5.2.1 Einleitung

Wie schon die Ammoniumfluorosilicate kennt man Ammoniumfluorogermanate ebenfalls schon lange. 1939 gelang es J. L. Hoard und W. B. Vincent [106] erstmals, die Struktur von $(NH_4)_2[GeF_6]$ an einem Einkristall aufzuklären. $(NH_4)_2[GeF_6]$ kristallisiert in der trigonalen Raumgruppe P-3m1 (Nr. 164) mit den Gitterkonstanten a = 585 pm und c = 477,5 pm. Sie ist damit isotyp zu den Verbindungen der Zusammensetzung $(NH_4)_2[MF_6]$ der 14. Gruppe [21, 105, 113]. Die Existenz der ammoniumfluoridreicheren Verbindung $(NH_4)_3[GeF_6]$ F war bis 1998 nur anhand von Pulverdaten belegt [114]. C. Plitzko gelang es 1998, mit Hilfe der "Monel-Methode" Einkristalle von dieser Verbindung zu erhalten und deren Struktur aufzuklären [115]. Sie kristallisiert isotyp zu $(NH_4)_3[SiF_6]$ F in der tetragonalen Raumpruppe P4/mbm (Nr. 127) mit den Gitterkonstanten a = 820,96 pm und 598,41 pm. Kurze Zeit vorher gelang es W. Weber und E. Schweda [116] durch Ammonolyse von $(NH_4)_2[GeF_6]$ das Ammoniakat $(NH_4)[Ge(NH_3)F_5]$ darzustellen und die Struktur aus Pulverdaten zu bestimmen. Sie kristallisiert isostrukturell mit $(NH_4)[Si(NH_3)F_5]$ in der tetragonalen Raumgruppe P4/n (Nr. 85) mit den Gitterkonstanten a = 619,41 pm und c = 724,70 pm. Das Ammoniakat $[Ge(NH_3)_2F_4]$ ist bisher unbekannt.

5.2.2 Reaktionen von Germanium mit Ammoniumfluoriden

Im Rahmen dieser Arbeit wurde versucht, mit Hilfe der "Monel-Methode" Ammoniumfluorogermanate bzw. Ammoniakate des GeF₄ darzustellen, um sie anschließend unter inerten (Ar und N₂) und reaktiven (NH₃) Bedingungen thermisch abzubauen. Dazu wurden in verschweißten Metallampullen die Edukte in den jeweiligen stöchiometrischen Verhältnissen bei unterschiedlichen Temperaturen für vier Wochen zur Reaktion gebracht. In Tab. 5.3 sind die Reaktionsparameter der einzelnen Reaktionen zusammengefaßt. Bei allen Versuchen wurden die Metallampullen zum Schutz vor Oxidation unter Vakuum in Kieselglasampullen eingeschmolzen.

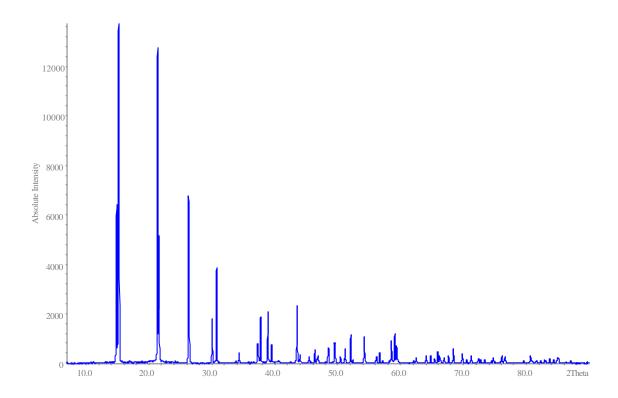
Für die durchgeführten Versuche lassen sich folgende Reaktionsgleichungen beschreiben:

$$2 \text{ Ge} + 7 \text{ NH}_4 \text{HF}_2 \xrightarrow{\text{Cu},300^\circ\text{C},28\text{d}} 2 (\text{NH}_4)_3 [\text{GeF}_6] \text{F} + \text{NH}_3 + 4 \text{ H}_2$$

$$\text{Ge} + 3 \text{ NH}_4 \text{HF}_2 \xrightarrow{\text{Au},300^\circ\text{C},28\text{d}} (\text{NH}_4)_2 [\text{GeF}_6] + \text{NH}_3 + 2 \text{ H}_2$$

$$2 \text{ Ge} + 5 \text{ NH}_4 \text{HF}_2 \xrightarrow{\text{Monel},400^\circ\text{C},28\text{d}} 2 \text{ NH}_4 [\text{Ge}(\text{NH}_3)\text{F}_5] + \text{NH}_3 + 4 \text{ H}_2$$

$$\text{Ge} + 2 \text{ NH}_4 \text{HF}_2 \xrightarrow{\text{Monel},400^\circ\text{C},28\text{d}} [\text{Ge}(\text{NH}_3)_2 \text{F}_4] + 2 \text{ H}_2$$


Tab. 5.3: Zusammenfassung der Reaktionsparameter

Verhältnis: Ge / NH, HF, 1 : 4 mmol $\rightarrow (NH_4)_3[GeF_6]F$ Ge / NH, HF, $\rightarrow (NH_4)_2[GeF_6]$ 1 : 3 mmol Ge / NH₄HF₂ \rightarrow [Ge(NH₃)₂F₄] 1 : 1 mmol Ge / NH, HF, \rightarrow (NH₄)[Ge(NH₂)F₅] 2:1 mmolEinwaage: NH₄HF₂ $200 \text{ mg} \equiv 3,506 \text{ mmol}$ Ge $63,4 \text{ mg} \equiv 0,8765 \text{ mmol}$ $84.9 \text{ mg} \equiv 1.169 \text{ mmol}$ Ge $254,6 \, \text{mg} \equiv 3,506 \, \text{mmol}$ Ge Ge $509.1 \text{ mg} \equiv 7.012 \text{ mmol}$ Reaktionstemperatur: 300°C, 400°C Reaktionszeit: 4 Wochen Aufheizrate: 3°C/h 3°C/h Abkühlrate: Ampullenmaterial: Monel, Kupfer, Gold


Die Umsetzung von Ge mit NH_4HF_2 im molaren Verhältnis 1:4 erfolgte in Cu-, Au- und Monel-Ampullen. In der Kupferampulle lag nach der Reaktion ein kristallines farbloses Produkt vor, wohingegen sich in den beiden anderen Ampullen ein polykristallines farbloses Produkt gebildet hatte. Bei der röntgenographischen Untersuchung der Produkte stellte sich heraus, daß sich in allen drei Ampullen als Hauptprodukt $(NH_4)_3[GeF_6]F$ gebildet hatte. Aber nur die Umsetzung in der Kupferampulle lieferte ein phasenreines Produkt. Das Produkt in der Goldampulle war mit sehr geringen Mengen $(NH_4)_2[GeF_6]$ verunreinigt. Dagegen ließ sich die Verunreinigung des Produkts aus der Monel-Ampulle nicht charakterisieren. Die Diffraktogramme der Umsetzungen in Kupfer und Gold sind in den Abb. 5.8 und 5.9 dargestellt. Die zugehörige Peakliste von $(NH_4)_3[GeF_6]F$ ist im Anhang angegeben.

Die Umsetzung von Ge mit NH_4HF_2 im molaren Verhältnis 1:3 erfolgte ebenfalls in Cu-, Au- und Monel-Ampullen. In der Au- und Cu-Ampulle hatte sich ein kristallines farbloses Produkt gebildet, wohingegen in der Monelampulle ein polykristallines farbloses Produkt vorlag. Von allen drei Produkten wurde ein Pulverdiffraktogramm erstellt. In der Goldampulle hatte sich ausschließlich $(NH_4)_2[GeF_6]$ gebildet, welches minimal mit $(NH_4)_3[GeF_6]$ F verunreinigt war. Die zugehörige Peakliste von $(NH_4)_2[GeF_6]$ ist im Anhang angegeben. In der Kupferampulle lag hauptsächlich $(NH_4)_2[GeF_6]$ vor, welches aber mit ca. 8% $(NH_4)_3[GeF_6]$ F verunreinigt war. In der Monel-Ampulle hatte sich dagegen ausschließlich $(NH_4)_3[GeF_6]$ F gebildet, aber auch $(NH_4)_2[GeF_6]$ sowie eine weitere Phase, die bisher nicht charakterisiert werden konnte, konnten röntgenographisch nachgewiesen werden. Die Diffraktogramme sind in Abb. 5.10 dargestellt.

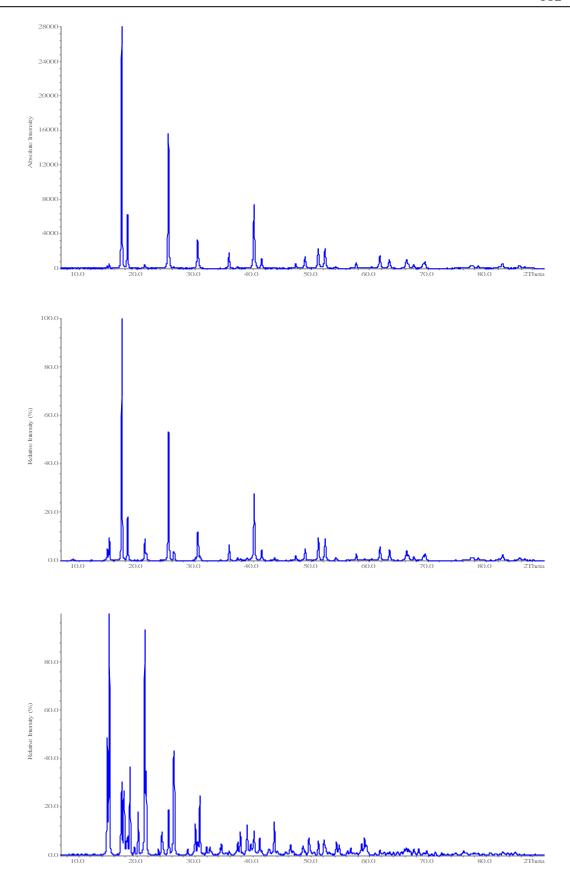

Der Versuch, Ammoniakate von GeF₄ einkristallin zu erhalten, blieb erfolglos. Nur in einem Versuch, bei der Umsetzung von Ge und NH₄HF₂ im molaren Verhältnis 2 : 1 konnte in sehr geringen

Abb. 5.8: Diffraktogramm der Umsetzung von Ge mit $\mathrm{NH_4HF_2}$ im molaren Verhältnis 1:4 in Cu

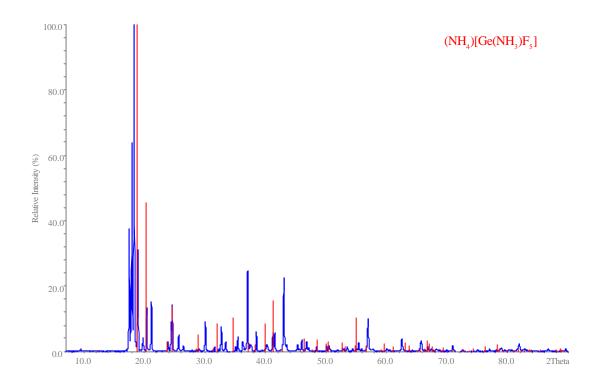


Abb. 5.9: Diffraktogramm der Umsetzung von Ge mit $\mathrm{NH_4HF_2}$ im molaren Verhältnis 1:4 in Au

Abb. 5.10: Pulverdiffraktogramme der Umsetzung Ge und NH_4HF_2 im molaren Verhältnis 1:3 in Au (oben), Cu (Mitte) und Monel (unten)

Mengen $(NH_4)[Ge(NH_3)F_5]$ röntgenographisch nachgewiesen werden. Desweiteren hatte sich bei dieser Umsetzung $(NH_4)_2[GeF_6]$ gebildet. Daneben liegt noch eine weitere Phase vor, die bisher nicht charakterisiert werden konnte. Das Diffraktogramm ist in Abb. 5.11 dargestellt. Versuche zur Darstellung von Ammoniakaten in Goldampullen führten zur Bildung von Goldgermaniden. Dabei wurden die Goldampullen zerstört. Die Bildung von $[Ge(NH_3)_2F_4]$ konnte in keinem der durchgeführten Versuche nachgewiesen werden.

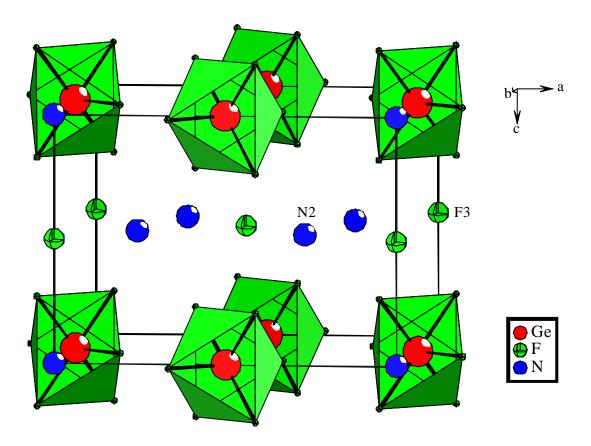


Abb. 5.11: Pulverdiffraktogramm der Umsetzung von Ge und NH₄HF₂ im molaren Verhältnis 2 : 1

Einige Kristalle von $(NH_4)_3$ [GeF₆]F wurden unter dem Polarisationsmikroskop isoliert und in Glaskapillaren eingeschmolzen. Mit Filmmethoden wurden sie auf ihre Güte hin untersucht. Von einem Kristall wurde anschließend auf dem IPDS ein vollständiger Datensatz erstellt.

5.2.3 Kristallstruktur von (NH₄)₃[GeF₆]F

(NH₄)₃[GeF₆]F kristallisiert in der tetragonalen Raumgruppe P4/mbm (Nr. 127) mit zwei Formeleinheiten pro Elementarzelle. Die Verbindung ist isotyp zu (NH₄)₃[SiF₆]F. Germanium ist verzerrt oktaedrisch von sechs F-Ionen koordiniert. Die Ge-F-Abstände betragen 174,5 pm (F2) und 175,4 pm (F1). Sie sind vergleichbar mit jenen, die in (NH₄)₂[GeF₆] vorliegen [106]. Das siebte Fluoridion koordiniert nicht am Metallion, vielmehr kann man es als freies Fluoridion bezeichnen. Das einsame Fluoridion (F3) befindet sich im Zentrum der Elementarzelle und auf den Mitten der c-Achse. Es wird oktaedrisch von sechs Ammoniumionen koordiniert. In der Struktur liegen zwei kristallographisch unterscheidbare Ammoniumionen vor, deren Wasserstoffatome nicht lokalisiert werden konnten. Die einen NH₄⁺-Ionen (N1) besetzen die Ecken der Elementarzelle und die Flächenmitten von (110). Die anderen NH₄⁺-Ionen (N2) befinden sich in der Elementarzelle in der gleichen Ebene wie die einsamen Fluoridionen. Sowohl N1 als auch N2 werden oktaedrisch von vier [GeF₆]²-Oktaedern und zwei einzelnen Fluoridionen koordiniert. In Abbildung 5.12 ist die Kristallstruktur von (NH₄)₃[GeF₆]F dargestellt.

Abb. 5.12: Kristallstruktur von $(NH_4)_3[GeF_6]F$

 $\textbf{Tab. 5.4:} \quad \text{Kristallographische Daten und Angaben zur Strukturbestimmung von } (\text{NH}_4)_3[\text{GeF}_6]F$

Kristallsystem	tetragonal
Raumgruppe	P4/mbm (Nr. 127)
Gitterkonstante pm	a = 822,76(12)
1	c = 594,79(10)
Zellvolumen 10 ⁶ pm ³	402,63(11)
Anzahl der Formeleinheiten	Z=2
Molmasse g/mol	259,7
Röntgenographische Dichte g/cm ³	2,142
Kristallfarbe	farblos
Meßgerät	IPDS (Stoe)
Strahlung	Mo-K _α (Graphit-Monochromator)
Scan-Modus	100 Bilder in 2°-Schritten
Meßtemperatur K	293(2)
Meßbereich °	$3.8 \le 2\Theta \le 56.3$
$\mu (MoK_{\alpha}) mm^{-1}$	3,878
Indexbereich	$-10 \le h \le 9$
	$-10 \le k \le 10$
	-7 ≤1 ≤ 7
F(000)	256
Anzahl der gemessenen Reflexe	3510
Unabhängige Reflexe	289
Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	225
R_{int}	0,0327
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-Shape (Stoe) [41]
	SHELXS-97 [36] / SHELXL-97 [37]
Streufaktoren	International Tables [57]
Strukturverfeinerung	"Full-matrix"-Least-Squares an F ²
Daten / Restraints / Parameter	289 / 0 / 22
Goodness-of-fit	1,184
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0476$; $wR_2 = 0.1323$
R-Werte (alle Daten)	$R_1 = 0.0572$; $wR_2 = 0.1390$
Restelektronendichte	0,887 / -0,547

Tab. 5.5: Atomkoordinaten und äquivalente Ter	nperaturfaktoren ${ m U}_{_{ m eq}}$	(10 ⁻⁴ pm²) vo	on $(NH_4)_3[GeF_6]F$
--	--------------------------------------	---------------------------	-----------------------

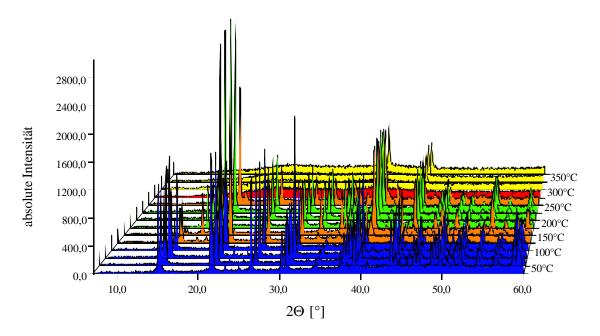
Atom	Lage	x/a	y/b	z/c	$\mathbf{U}_{\mathbf{eq}}$
Ge	2d	0,5	0	0	0,0242(5)
N1	2a	0	0	0	0,107(10)
N2	4h	0,2930(9)	0,2070(9)	0,5	0,065(3)
F1	8k	0,6001(5)	0,1001(5)	0,5	0,117(3)
F2	4g	0,3501(7)	0,1499(7)	0	0,148(5)
F3	2b	0	0	0,5	0,060(3)

 $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$

 $\textbf{Tab. 5.6:} \ \ Koeffizienten \ der \ anisotropen \ Temperaturfaktoren \ U_{ij} \ (10^{-4} \ pm^2) \ von \ (NH_4)_3 [GeF_6]F$

Atom	\mathbf{U}_{11}	${ m U}_{22}$	U ₃₃	U ₁₃	U ₂₃	$\mathbf{U_{12}}$
Ge	0,0254(5)	0,0254(5)	0,0218(7)	0	0	-0,0028(4)
N1	0,068(8)	0,068(8)	0,184(31)	0	0	0
N2	0,079(4)	0,079(4)	0,038(4)	0	0	0,041(6)
F1	0,135(4)	0,135(4)	0,080(4)	0,041(3)	0,041(3)	-0,051(5)
F2	0,173(8)	0,173(8)	0,098(7)	0	0	0,134(9)
F3	0,060(4)	0,060(4)	0,059(6)	0	0	0

 $\overline{U_{ij} = \exp[-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12})]}$


Tab. 5.7: Bindungslängen (pm) und -winkel (°) in $(NH_4)_3[GeF_6]F$

Ge-F3	keine Bindung	F2-Ge-F2	180
Ge-F2	174,5(8)	F2-Ge-F1	90
Ge-F1	175,4(5)	F1-Ge-F1	180
N1-(H)-F3	297,4	F1-Ge-F1	96,8(4)
N2-(H)-F1	279,3	F1-Ge-F1	83,2(4)
N2-(H)-F3	295,2		

5.2.4 Thermisches Verhalten von (NH₄)₃[GeF₆]F

Im Rahmen dieser Arbeit wurde das thermische Verhalten von $(NH_4)_3[GeF_6]F$ mit Hilfe der Differenzthermoanalyse wie auch der in-situ-Pulverdiffraktometrie unter inerten (Ar und N_2) und reaktiven (NH_3) Bedingungen untersucht.

In der "Bühler-Kammer" ist $(NH_4)_3[GeF_6]F$ unter N_2 -Atmosphäre bis $100^{\circ}C$ thermisch beständig. Ab $125^{\circ}C$ liegt neben $(NH_4)_3[GeF_6]F$ auch $(NH_4)_2[GeF_6]$ vor. Ab $175^{\circ}C$ läßt sich nur noch $(NH_4)_2[GeF_6]$ nachweisen. Dieses ist wiederum bis $225^{\circ}C$ beständig, bevor es sich ab $250^{\circ}C$ zu $(NH_4)[Ge(NH_3)F_5]$ zersetzt. Bei $275^{\circ}C$ konnte nur das Ammoniakat nachgewiesen werden. Ab $300^{\circ}C$ ließ sich nur noch der Probenträger röntgenographisch nachweisen. Die Diffraktogramme der Zersetzung von $(NH_4)_3[GeF_6]F$ sind in Abb. 5.13 dargestellt.

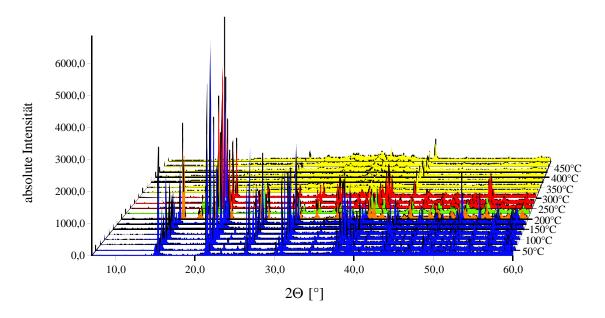


Abb 5.13: Diffraktogramme der Zersetzung von $(NH_4)_3[GeF_6]F$ unter N_2 -Atmosphäre in Abhängigkeit von der Temperatur

Erfolgt der thermische Abbau von $(NH_4)_3[GeF_6]F$ unter Ammoniak in der "Bühler-Kammer", so ist $(NH_4)_3[GeF_6]F$ bis 175°C beständig. Ab 200°C läßt sich $(NH_4)_2[GeF_6]$ in den Diffraktogrammen nachweisen. Bei 225°C läßt sich kein $(NH_4)_3[GeF_6]F$ mehr nachweisen. Dort liegt ausschließlich $(NH_4)_2[GeF_6]$ im System vor. Zwischen 225 und 250°C zersetzt sich $(NH_4)_2[GeF_6]$ unter Abspaltung eines Moleküls HF pro Formeleinheit zu $(NH_4)[Ge(NH_3)F_5]$. Das Ammoniakat ist bis 300°C beständig, bevor es sich zu einer bisher nicht charakterisierten Phase zersetzt. Dieses Ergebnis steht im Einklang mit den Ergebnissen von W. Weber und E. Schweda [116]. Im Unterschied zu ihren Ergebnissen fanden sie nach der Zersetzung von $(NH_4)[Ge(NH_3)F_5]$ keine weitere Phase mehr im System. Die Diffraktogramme der Ammonolyse von $(NH_4)_3[GeF_6]F$ sind in Abb. 5.14 dargestellt.

Zusammenfassend lassen sich folgende Abbaumechanismen für die thermische Zersetzung von $(NH_4)_3[GeF_6]F$ in der "Bühler-Kammer" unter N_2 - bzw. NH_3 -Atmosphäre formulieren:

$$\begin{split} &(\mathrm{NH_4})_3[\mathrm{GeF_6}]\mathrm{F} \xrightarrow{100^{\circ}\mathrm{C}, -\mathrm{NH_4F}} (\mathrm{NH_4})_2[\mathrm{GeF_6}] \xrightarrow{275^{\circ}\mathrm{C}, -\mathrm{HF}} (\mathrm{NH_4})[\mathrm{Ge}(\mathrm{NH_3})\mathrm{F_5}] \\ &(\mathrm{NH_4})[\mathrm{Ge}(\mathrm{NH_3})\mathrm{F_5}] \xrightarrow{300^{\circ}\mathrm{C}} \mathrm{GeF_4} \uparrow + 2\,\mathrm{NH_3} \uparrow + \mathrm{HF} \uparrow \\ &(\mathrm{NH_4})_3[\mathrm{GeF_6}]\mathrm{F} \xrightarrow{175^{\circ}\mathrm{C}, -\mathrm{NH_4F}} (\mathrm{NH_4})_2[\mathrm{GeF_6}] \xrightarrow{275^{\circ}\mathrm{C}, -\mathrm{HF}} (\mathrm{NH_4})[\mathrm{Ge}(\mathrm{NH_3})\mathrm{F_5}] \xrightarrow{325^{\circ}\mathrm{C}} ? \end{split}$$

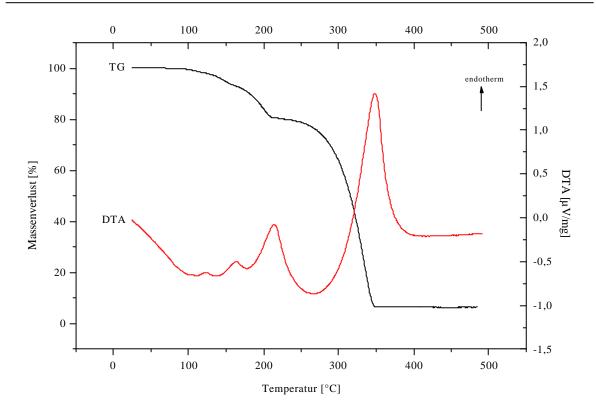
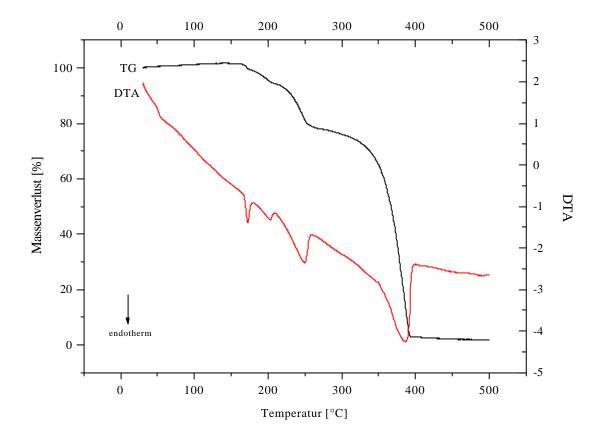


Abb. 5.14: Diffraktogramme des thermischen Abbaus von (NH₄)₃[GeF₆]F unter Ammoniak in Abhängigkeit von der Temperatur


Die thermische Zersetzung von $(NH_4)_3$ [GeF₆]F unter Ar-Atmosphäre erfolgt in einem vierstufigen Prozeß. In den ersten beiden Zersetzungsschritten erfolgt ein insgesamter Massenverlust von 6%. Dies ist gleichbedeutend mit der Abspaltung eines Moleküls HF (ber. 7,7%) pro Formeleinheit. Im dritten Zersetzungsschritt bei 180,0°C erfolgt ein Massenverlust von 13,6%. In diesem Zersetzungsschritt kommt es zur Abspaltung eines "Moleküls" NH_4F (ber. 14,3%) pro Formeleinheit. Im letzten Zersetzungsschritt ab 301,4°C zersetzt sich die intermediär gebildete Verbindung vollständig zu GeF₄, NH_3 und HF. Alle Zersetzungsschritte erfolgen endotherm. Die thermoanalytische Zersetzung von $(NH_4)_3$ [GeF₆]F unter Ar-Atmosphäre ist in der Abb. 5.15 dargestellt.

Erfolgt die thermoanalytische Zersetzung von $(NH_4)_3[GeF_6]F$ unter Ammoniak, so beobachtet man einen analogen vierstufigen Prozeß. Die Zersetzung unter Ammoniak unterscheidet sich dahin, daß sich die Zersetzungstemperaturen der einzelnen Teilschritte zu höheren Temperaturen verschieben. In Abb. 5.16 ist die thermoanalytische Zersetzung von $(NH_4)_3[GeF_6]F$ unter Ammoniak dargestellt. In Tab. 5.8 sind die Daten aus den DTA/TG-Diagrammen zusammengefaßt.

Zusammenfassend läßt sich folgender Abbaumechanismus für die thermoanalytische Zersetzung von $(NH_4)_3[GeF_6]F$ sowohl unter Argon wie auch unter Ammoniak formulieren:

Abb. 5.15: Thermoanalytische Zersetzung von $(NH_4)_3[GeF_6]F$ unter Ar-Atmosphäre

 $\textbf{Abb. 5.16:} \ \ \textbf{Thermoanalytische Zersetzung von (NH}_4)_3 [\text{GeF}_6] F \ \text{unter NH}_3 - \text{Atmosph\"are}$

$$(NH_4)_3[GeF_6]F \xrightarrow{\Delta T, -HF} (NH_4)_2[GeF_6] \cdot NH_3 \xrightarrow{\Delta T, -NH_4F} (NH_4)[Ge(NH_3)F_5]$$

$$(NH_4)[Ge(NH_3)F_5] \xrightarrow{\Delta T} GeF_4 \uparrow + 2 NH_3 \uparrow + HF \uparrow$$

Tab. 5.8: Zusammenfassung der Daten aus den DTA/TG-Diagrammen (oben Ar, unten NH₃)

Zersetzungsstufe	T_{Onset} [°C]	Massenv	Massenverlust [%]	
		beobachtet	berechnet	
1, 2	118,9	6	7,7	123,1; 163,4
3	180,0	13,6	14,3	215,0
4	301,4	74	78	348,5
1, 2	162,1	7,3	7,7	172,5; 203,1
3	228,0	15,8	14,3	249,0
4	357,5	74,9	78	387,0

5.2.5 Phasenumwandlung von $(NH_4)_3[GeF_6]F$

Um Auskunft über das thermische Verhalten von $(NH_4)_3$ [GeF $_6$]F bei tiefen Temperaturen zu erhalten, wurde im Temperaturbereich von 300 bis 50 K in 25 K-Schritten jeweils ein Pulver-diffraktogramm erstellt (Abb. 5.17). Anhand der Diffraktogramme erkennt man, daß sich eine neue Modifikation von $(NH_4)_3$ [GeF $_6$]F unterhalb von 225 K bildet. Um die Phasenumwandlungstemperatur genauer zu bestimmen, wurde im Temperaturbereich von 225 und 200 K in 5 K-Schritten wiederum jeweils ein Pulverdiffraktogramm erstellt (Abb. 5.18). Aus diesen Diffraktogrammen wird deutlich, daß die Phasenumwandlung im Bereich zwischen 220 und 225 K erfolgt.

Anhand der Indizierung der einzelnen Diffraktogramme findet eine Phasenumwandlung vom tetragonal-primitiven Kristallsystem in das kubisch-primitive Kristallsystem statt. Die ermittelten Gitterkonstanten und die sich daraus berechnenden molaren Volumina sind in Tab. 5.9 zusammengefaßt.

Aus der Auftragung der Gitterkonstanten gegen die Temperatur läßt sich ebenfalls eine Phasenumwandlung nachweisen und charakterisieren. Es sollte eine lineare Abnahme der Gitterkonstanten mit fallender Temperatur erfolgen. Eine Anomalie in diesem Verlauf weist auf eine mögliche Phasenumwandlung hin. Eine sprunghafte Änderung der Gitterparameter deutet auf eine Phasenumwandlung 1. Ordnung hin, wogegen eine kontinuierliche Änderung der Gitterparameter für eine Phasenumwandlung 2. oder gar höherer Ordnung spricht. In Abb. 5.19 sind die Gitterkonstanten gegen die Temperatur aufgetragen. Im Temperaturbereich zwischen 300 und 225 K nehmen die Gitterkonstanten

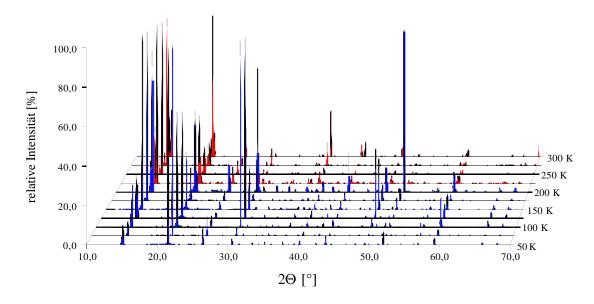
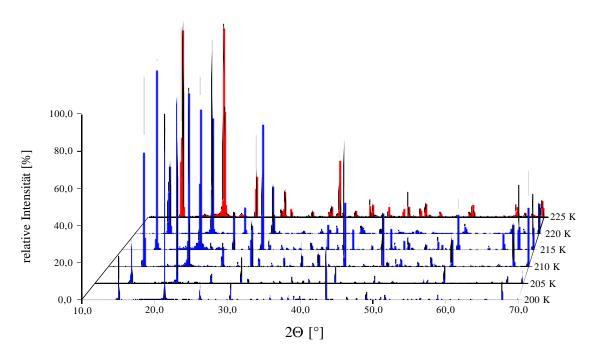



Abb. 5.17: Pulverdiffraktogramme von (NH₄)₃[GeF₆]F im Temperaturbereich von 300 und 50 K

Abb. 5.18: Pulverdiffraktogramme von (NH₄)₃[GeF₆]F im Temperaturbereich von 225 und 200 K

ab. Im Bereich von 225 und 200 K findet eine sprunghafte Änderung der Gitterkonstanten statt. Der weitere Verlauf der Gitterkonstanten gegen die Temperatur entspricht dem erweiterten Gesetz von Gay-Lussac [96]. Dieses Verhalten weist auf eine Phasenumwandlung 1. Ordnung hin. Um die Phasenumwandlungstemperatur sehr genau zu bestimmen, sollten in Zukunft noch Tieftemperatur-DSC-Untersuchungen an $(NH_4)_3$ [GeF₆]F erfolgen.

Um strukturchemisch die Phasenumwandlung von (NH₄)₃[GeF₆]F zu charakterisieren, wurde ein

Einkristall bei 163 K auf dem IPDS vermessen. Die Zellbestimmung lieferte eine kubisch-primitive Zelle mit einer Gitterkonstanten von 1168,63(33) pm. Die Güte des Einkristalls nahm während der Messung drastisch ab ($R_{Int.} > 100\%$), so daß eine Bestimmung der Struktur nicht möglich war. Durch Vergleich von Pulverdiffraktogrammen läßt sich sagen, daß (NH_4) $_3$ [GeF $_6$]F in der kubischen Modifikation weder isostrukturell zu (NH_4) $_3$ [SnF $_6$]F [117] noch zu (NH_4) $_3$ [ZrF $_7$] [102] ist.

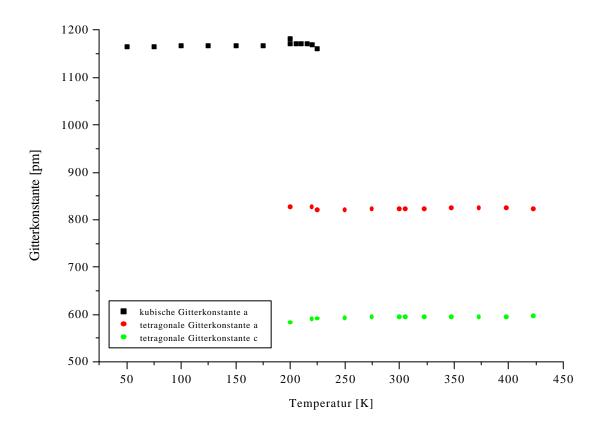


Abb. 5.19: Auftragung der Gitterkonstanten gegen die Temperatur für (NH₄)₃[GeF₆]F

Aus der Auftragung der Gitterkonstanten gegen die Temperatur lassen sich mit Hilfe der linearen Regression die thermischen Ausdehnungskoeffizienten gemäß dem Gesetz von Gay-Lussac [96] bestimmen. Für die tetragonale Modifikation von $(NH_4)_3[GeF_6]F$ wurde keine Bestimmung der thermischen Ausdehnungskoeffizienten durchgeführt, da die ermittelten Gitterparameter in ihren Werten sehr verschieden waren, so daß kein linearer Verlauf erkennbar war (Abb. 5.20 und 5.21). In der Auftragung der Gitterkonstanten gegen die Temperatur wurden auch die Daten aus der "Bühler-Kammer"-Messung berücksichtigt. Hingegen ließen sich die thermischen Ausdehnungskoeffizienten der kubischen Modifikation bestimmen. Bei der Bestimmung der Werte wurden die ermittelten Gitterparameter aus der röntgenographischen Untersuchung im Temperaturbereich von 225 bis 200 K nicht berücksichtigt, da sie zu sehr von den Werten der ersten Messung abwichen. Folgende Werte lassen sich bestimmen:

$$a_T = 1164,63 \text{ [pm]} \cdot (1 + 13,644 \cdot 10^{-6} \text{ K}^{-1} \cdot \text{T})$$

 $\alpha = 13.6438 \cdot 10^{-6} \text{ K}^{-1}$

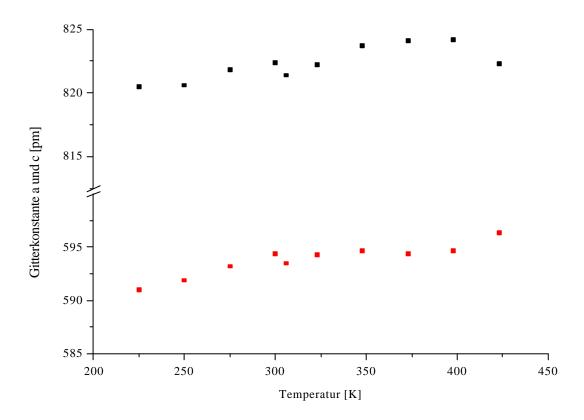


Abb. 5.20: Auftragung der tetragonalen Gitterkonstanten gegen die Temperatur

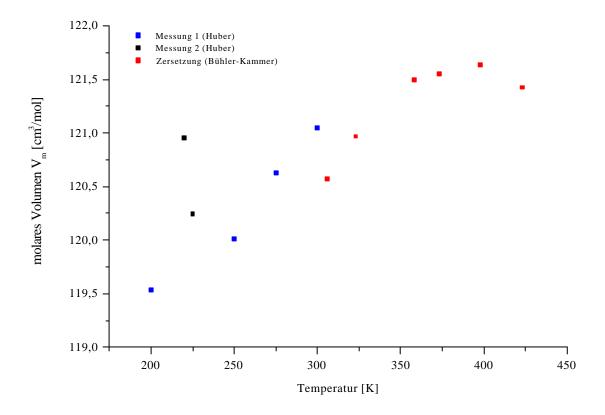
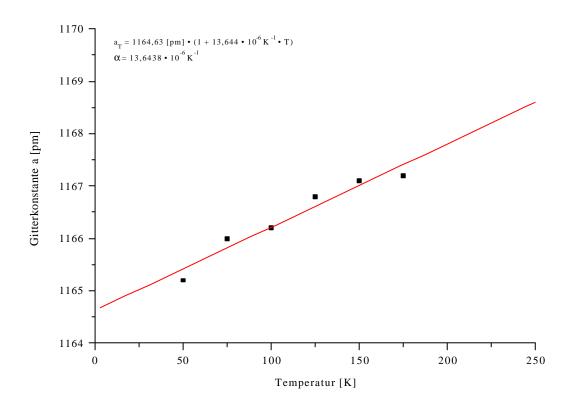
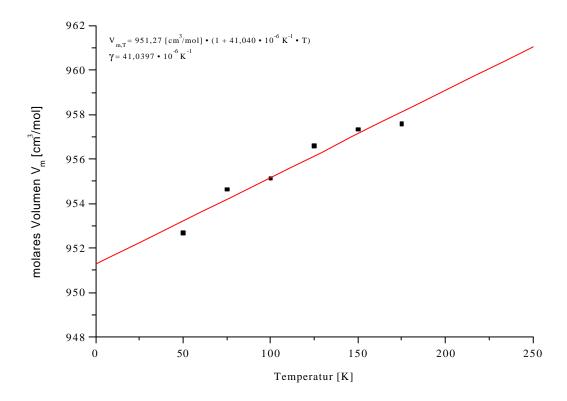




Abb. 5.21: Auftragung des molaren Volumens der tetragonalen Modifikation gegen die Temperatur

Abb. 5.22: Bestimmung des thermischen Ausdehnungskoeffizienten α der kubischen Modifikation

$$\begin{aligned} V_{m,T} &= 951,\!27 \text{ [cm}^3/\text{mol]} \bullet (1 + 41,\!040 \bullet 10^{\text{-}6} \text{ K}^{\text{-}1} \bullet \text{T}) \\ \gamma &= 41,\!0397 \bullet 10^{\text{-}6} \text{ K}^{\text{-}1} \end{aligned}$$

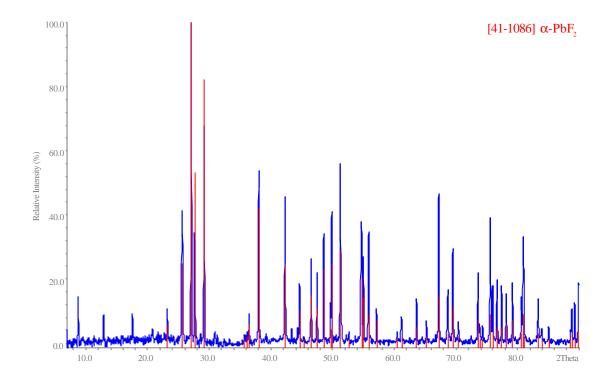
Vergleicht man diese Werte mit jenen von $(NH_4)_3[SnF_6]F$ [22], so stellt man fest, daß sie etwa nur halb so groß sind wie die von $(NH_4)_3[SnF_6]F$. Dies mag auf den unterschiedlichen strukturellen Aufbau beider Verbindungen zurückzuführen sein.

Tab. 5.9: Zusammenfassung der ermittelten Gitterkonstanten und berechneten molaren Volumina von $(NH_4)_3[GeF_6]F$

Temperatur [K]	a [pm]	c [pm]	V [10 ⁶ pm ³]	V _m [cm³/mol]
423	822,3(8)	596,4(7)	403,3(9)	121,43
398	824,2(5)	594,7(3)	404,0(5)	121,64
373	824,1(3)	594,43(22)	403,7(3)	121,55
348	823,7(3)	594,74(24)	403,5(4)	121,49
323	822,2(3)	594,33(21)	401,7(3)	120,97
306	821,4(3)	593,54(21)	400,5(3)	120,57
300	822,36(17)	594,40(14)	401,98(19)	121,05
275	821,79(24)	593,19(24)	400,6(3)	120,63
250	820,6(4)	591,9(3)	398,6(4)	120,01
225	820,5(4)	591,0(3)	397,8(5)	119,69
	1161,68		1567,68(77)	944,12
225	821,4(4)	591,9(3)	399,4(5)	120,25
220	825,5(19)	589,5(9)	401,7(2)	120,96
	1168,6(10)		1595,8(3)	961,04
215	1171,1(3)		1606,3(8)	967,22
210	1170,7(4)		1604,6(9)	966,23
205	1171,1(3)		1606,1(8)	967,22
200	1171,3(3)		1606,8(8)	967,72
200	825,7(3)	582,3(11)	397,0(10)	119,54
	1182,6(18)		1654,0(4)	996,05
175	1167,18(19)		1590,1(4)	957,59
150	1167,1(3)		1589,6(8)	957,35
125	1166,8(3)		1588,5(7)	956,61
100	1166,2(3)		1586,1(7)	955,13
75	1166,0(3)		1585,4(8)	954,64
50	1165,4(2)		1582,2(8)	952,68

5.3 Umsetzungen von Blei mit Ammoniumfluoriden

5.3.1 Einleitung


Seit längerem sind die beiden Ammoniumfluoroplumbate $(NH_4)_2[PbF_6]$ [118] und $(NH_4)_3[PbF_6]F\bullet HF$ [119] bekannt; eine strukturelle Charakterisierung hat bis vor kurzem nicht stattgefunden. U. Reusch gelang es vor kurzem, $(NH_4)_2[PbF_6]$ durch Umsetzung von Blei(IV)-acetat mit NH_4F in HF darzustellen und aus Pulverdaten die Struktur von $(NH_4)_2[PbF_6]$ aufzuklären [113]. Demnach kristallisiert $(NH_4)_2[PbF_6]$ isostrukturell zu $(NH_4)_2[MF_6]$ (M=Ge,Sn) in der trigonalen Raumgruppe P-3m1 (a = 615,45(1) pm, c = 483,40(1) pm, Z = 1). Desweiteren gelang es ihm durch Umsetzung von PbF_4 mit NH_4F im molaren Verhältnis 1 : 3 unter NH_3 -Atmosphäre bei $70^{\circ}C$ $(NH_4)_3[PbF_6]F$ darzustellen. Aus NH_4F im molaren Verhältnis 1 : 3 unter NH_3 -Atmosphäre bei NH_4F in einer kubischen Elementarzelle NH_4F in einer kubischen Elementarzelle NH_4F in einer kubischen Elementarzelle NH_4F in NH_4F zeigen, daß sich die Blei(IV)-Verbindungen oberhalb von NH_4F zersetzen. Bei ca. NH_4F zeigen, daß sich die Blei(IV)-Verbindungen oberhalb von NH_4F zersetzen. Bei ca. NH_4F besitzt eine interessante physikalische Eigenschaft: Bereits NH_4F stellte W. Jander [120] fest, daß NH_4F ein Anionenleiter ist.

5.3.2 Reaktionen von Blei mit Ammoniumhalogeniden

Im Rahmen dieser Arbeit wurde versucht, Ammoniumfluoroplumbate mit Hilfe der "Monel-Methode" zu erhalten und sie an Einkristallen strukturell zu charakterisieren. Versuche zur Darstellung von Ammoniumfluoroplumbaten mit Hilfe der "Monel-Methode" führte C. Plitzko in seiner Dissertation [2] durch, und stellte fest, daß sich im Temperaturbereich von 200 bis 400°C ausschließlich PbF₂ bildet. Daher erfolgten die im Rahmen dieser Arbeit durchgeführten Versuche bei Temperaturen unterhalb von 200°C. Die Reaktionsbedingungen sind in Tabelle 5.10 zusammengefaßt.

Neben nicht reagiertem Blei fielen farblose, polykristalline bis kristalline Produkte an, die pulverdiffraktometrisch untersucht wurden. Bei allen Umsetzungen im Temperaturbereich von 100 bis 200°C kam es zur Bildung von PbF₂. In der Abb. 5.24 ist das Pulverdiffraktogramm der Umsetzung Pb mit NH₄HF₂ im molaren Verhältnis 1 : 4 bei 100°C dargestellt. Anhand dieser Ergebnisse ist es sehr unwahrscheinlich, daß mit Hilfe der Monel-Methode einkristalline Produkte von Ammoniumfluoroplumbaten darzustellen sind.

Desweiteren wurde versucht, die von O. Ruff [119] beschriebene Verbindung (NH₄)₃[PbF₆]F•HF zu reproduzieren und strukturell zu charakterisieren. Bei allen durchgeführten Versuchen kam es zur Hydrolyse der eingesetzten Blei(IV)-Verbindung. Es gelang nicht, die Verbindung im Rahmen dieser Arbeit zu reproduzieren. Die Struktur dieser Verbindung ist von Interesse dahingehend, ob es eine strukturelle Verwandschaft zwischen (NH₄)₃[PbF₆]F und (NH₄)₃[PbF₆]F•HF existiert oder ob beide Verbindungen nicht ein und dasselbe sind [113].

Abb. 5.24: Pulverdiffraktogramm der Umsetzung von Blei mit Ammoniumhydrogendifluorid im molaren Verhältnis 1 : 4 bei 100°C

Tab. 5.10: Zusammenfassung der Reaktionsparameter

Verhältnis:	Pb / NH ₄ HF ₂ Pb / NH ₄ HF ₂	1: 4 mmol $\rightarrow (NH_4)_3[PbF_6]F$ 1: 3 mmol $\rightarrow (NH_4)_2[PbF_6]$
Einwaage:	NH ₄ HF ₂ Pb Pb	$200 \text{ mg} \equiv 3,506 \text{ mmol}$ $181,6 \text{ mg} \equiv 0,8765 \text{ mmol}$ $242,2 \text{ mg} \equiv 1,169 \text{ mmol}$
Reaktionstemperatur:	100°C, 125°C 150°C, 200°C	
Reaktionszeit:	10 Tage	
Aufheizrate:	3°C/h	
Abkühlrate:	3°C/h	
Ampullenmaterial:	Kupfer	

6 Umsetzungen von Ammoniumhalogeniden mit Phosphor, Antimon und Bismut

6.1 Umsetzung von rotem bzw. Hittorfschem Phosphor mit Ammoniumfluorid und Ammoniumhydrogendifluorid

6.1.1 Einleitung

Umsetzungen von phosphorhaltigen Verbindungen, vor allem Phosphorpentachlorid, mit Ammoniumhalogeniden sind seit langem bekannt [24]. So basiert z.B. die Synthese von Phosphor(V)-nitrid P₃N₅ auf der Ammonolyse von PCl₅ oder (NPCl₂)₃ mit Ammoniumchlorid bei Temperaturen über 500°C:

$$3 \text{ PCl}_5 + 5 \text{ NH}_4 \text{Cl} \xrightarrow{T > 500^{\circ}\text{C}} P_3 \text{N}_5 + 20 \text{ HCl}$$

$$(NPCl_2)_3 + 2 NH_4Cl \xrightarrow{T > 500^{\circ}C} P_3N_5 + 8 HCl$$

Die technisch interessanten oligomeren Phosphazene erhält man durch Erhitzen von Phosphorpentachlorid mit Ammoniumchlorid in einem Autoklaven auf 120°C gemäß:

$$PCl_5 + NH_4Cl \xrightarrow{T \approx 120^{\circ}C} \frac{1}{n} (NPCl_2)_n + 4 HCl_2$$

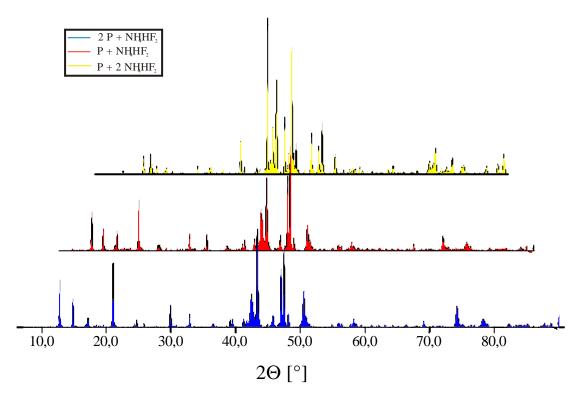
Als Hauptprodukt entsteht dabei das cyclische trimere Phosphornitriddichlorid (PNCl₂)₃, welches erstmalig 1834 von J. Liebig und F. Wöhler [121] aus PCl₅ und NH₃ gewonnen wurde; daneben bildet sich auch die tetramere Baueinheit (PNCl₂)₄. Die analogen Fluorverbindungen [122] lassen sich aus den chlorhaltigen Verbindungen gemäß

$$NPCl_2 + 2 KSO_2F \xrightarrow{T \approx 125^{\circ}C} NPF_2 + 2 KCl + 2SO_2$$

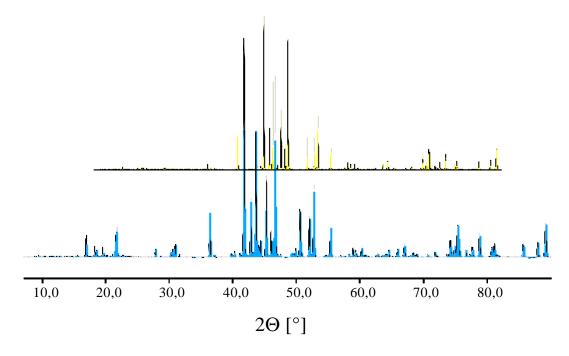
gewinnen. Durch Einwirkung von wasserfreier Flußsäure auf Phosphornitriddichlorid $(NPCl_2)_3$ erhält man Ammoniumhexafluorophosphat [123]. Pulveruntersuchungen ergaben eine kubisch-primitive Elementarzelle mit einer Gitterkonstanten a = 790(1) pm. Eine Strukturaufklärung an einem Einkristall wurde jedoch nicht durchgeführt.

$$(NPCl_2)_n + 6n HF \rightarrow n NH_4PF_6 + 2n HCl$$

6.1.2 Versuche zur Synthese und Charakterisierung von Ammoniumfluorophosphaten


Zur Darstellung von Ammoniumfluorophosphaten mit Hilfe der "Monel-Methode" wurde roter bzw. Hittorfscher Phosphor mit Ammoniumfluorid bzw. Ammoniumhydrogendifluorid in unterschiedlichen molaren Verhältnissen bei verschiedenen Temperaturen umgesetzt. Die Reaktionsdauer betrug jeweils von Tage und es wurden 200 mg Ammoniumfluorid bzw. Ammoni-umhydrogendifluorid eingesetzt. Die Reaktionsdaten sind in Tabelle 6.1 zusammengefaßt.

Tab. 6.1: Reaktionsparameter der Umsetzung von Phosphor mit Ammoniumfluorid und Ammoniumhydrogendifluorid


Verhältnis P / NH ₄ F	Einwaage [mg] (Phosphor)	Verhältnis P / NH ₄ HF ₂	Einwaage [mg] (Phosphor)
1/3	0,0558	2 / 1	0,2172
1 / 3,5	0,0478	1 / 1	0,1086
1 / 4	0,0418	1 / 2	0,0543
1 / 5	0,0335	1 / 3	0,0362
1 / 6	0,0279	1 / 3,5	0,0310
1 / 7	0,0239	1 / 4	0,0272
Reaktionstemperaturen	: 400°C (Monel)	Reaktionstemperaturen:	400°C (Monel)
(für alle Ansätze)	350°C (Monel)	(für alle Ansätze)	300°C (Monel)
			250°C (Tantal)
			200°C (Tantal)
Reaktionsdauer:	21 d		
Aufheizrate:	3°C/h		
Abkühlrate:	3°C/h		

Die Umsetzungen von Hittorfschem Phosphor mit Ammoniumfluorid bei 400 und 350°C bzw. mit Ammoniumhydrogendifluorid bei 400 und 300°C erfolgten in Monelampullen, die zum Schutz vor Oxidation unter Vakuum in Kieselglasampullen eingeschmolzen wurden. Die erhaltenen Produkte, in der Regel graue polykristalline Pulver, wurden mit Hilfe der Pulverdiffraktometrie untersucht. Selbst bei einem großen Überschuß von Ammoniumfluorid bzw. -hydrogendifluorid bildeten sich unabhängig von der Reaktionstemperatur ausschließlich Nickelphosphide. Dabei konnte Ni₃P als Hauptprodukt identifiziert werden. Lag ein großes molares Verhältnis zwischen der Ammoniumkomponente und Phosphor vor oder gar ein Unterschuß der Ammoniumfluoride (Tab. 6.1), so kam es zur Ausbildung einer weiteren Verbindung, die sich nicht charakterisieren ließ. Die Intensitäten der Reflexe dieser Phase nahm mit steigendem Anteil von Ammoniumfluorid bzw. -hydrogen-difluorid rasch ab (Abb. 6.1). Bei Reaktionstemperaturen von 400°C wurde unabhängig vom Verhältnis der Edukte hauptsächlich Nickelphosphid gebildet. Bei großen molaren Verhältnissen (Tab. 6.1) ließ

sich neben Nickelphosphid auch die oben erwähnte unbekannte Phase in geringen Mengen röntgenographisch nachweisen.

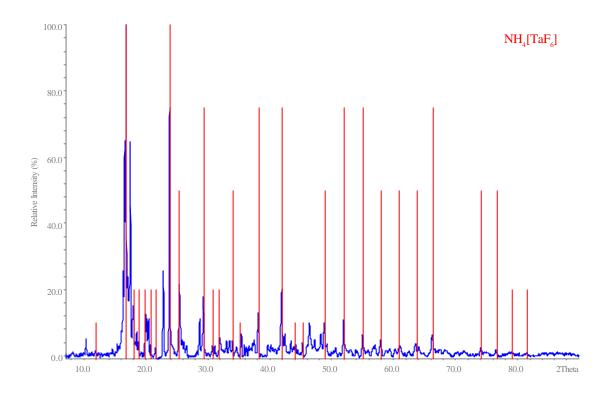
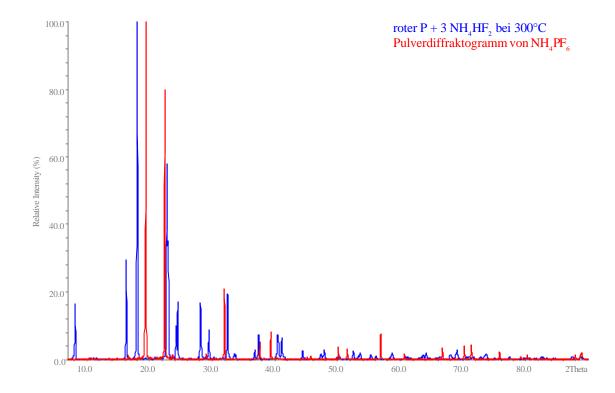


Abb. 6.1: Abnahme der Reflexintensitäten der unbekannten Phase im Bereich $10^{\circ} \le 2\Theta \le 20^{\circ}$ mit Zunahme des Überschußes von Ammoniumhydrogendifluorid bei 300° C

Abb. 6.2: Pulverdiffraktogramme der Umsetzung von Ammoniumfluorid mit Hittorfschem Phosphor bei 400°C

Aufgrund der Reaktion des Phosphors mit dem Containermaterial wurden weitere Versuche mit Tantal als Ampullenmaterial durchgeführt. Als Edukte wurden roter Phosphor und Ammoniumhydrogendifluorid eingesetzt. Die Umsetzungen sollten im Temperaturbereich von 200 und 400°C erfolgen. Bei 200°C konnte unabhängig vom Verhältnis der Edukte keine Reaktion beobachtet werden. Bei 250°C fand eine Reaktion mit der Containerwand statt. Mittels Pulverdiffraktometermessungen konnte Ammoniumhexafluorotantalat, $NH_4[TaF_6]$, nachgewiesen werden (Abb. 6.3). Tantalphosphide ließen sich nicht detektieren. Aufgrund des Resultates, daß Tantal mit den Edukten reagierte, wurde auf weitere Versuche bei höheren Temperaturen verzichtet.


Abb. 6.3: Pulverdiffraktogramm der Produkte aus einer Umsetzung von Phosphor mit Ammoniumhydrogendifluorid bei 250°C in einer Tantalampulle

Aufgrund obiger Resultate wurden aus einem Molybdänstab hergestellte Ampullen entwickelt, die durch einen verschraubbaren Kupferkopf vakuumdicht verschlossen werden konnten. Die verschlossenen Ampullen wurden wiederum unter Vakuum in Kieselglasampullen eingeschmolzen. In Tab. 6.2 sind die Reaktionsparameter für die Umsetzung von rotem Phosphor mit Ammoniumfluorid bzw. -hydrogendifluorid zusammengefaßt.

Bei beiden Reaktionen bildete sich ein farbloses kristallines Produkt, dessen plättchenförmige Einkristalle unter dem Polarisationsmikroskop nicht auslöschten. Von beiden Produkten wurde ein Pulverdiffraktogramm erstellt. Durch Vergleich der gemessenen Diffraktogramme untereinander und mit dem gemessenen Diffraktogramm von NH₄PF₆ stellte sich heraus, daß sich bei beiden Ansätzen das gleiche Produkt gebildet hatte, wobei es sich aber nicht um Ammoniumhexa-fluorophosphat

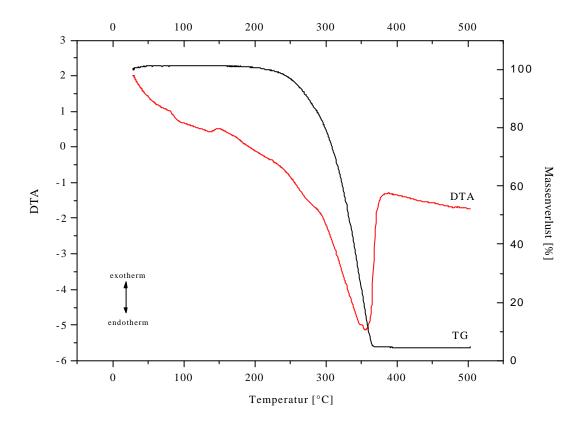
Tab. 6.2: Reaktionsparameter der Umsetzung von Ammoniumfluorid und -hydrogendifluorid mit Phosphor in Molybdänampullen

Verhältnis:	P/NH ₄ F	1:6	
	P / NH_4HF_2	1:3	
Einwaage:	$\mathrm{NH_{4}F}$	$200 \text{ mg} \equiv 5.4 \text{ mmol}$	
	P	$27.9 \text{ mg} \equiv 0.9 \text{ mmol}$	
	$\mathrm{NH_4HF}_2$	$200 \text{ mg} \equiv 3,506 \text{ mmol}$	
	P	$36,2 \text{ mg} \equiv 1,1686 \text{ mmol}$	
Reaktionstemperatu	Reaktionstemperatur: 300°C		
Reaktionsdauer:	21 d		
Aufheizrate:	5°C/h		
Abkühlrate:	3°C/h		
Reaktionsdauer: Aufheizrate:	P nr: 300°C 21 d 5°C/h		

Abb. 6.4: Pulverdiffraktogramm der Umsetzung von Phosphor mit Ammoniumhydrogendifluorid bei 300°C in einer Molybdänampulle

handelte (Abb. 6.4). Beide Diffraktogramme ließen sich tetragonal indizieren. Die zugehörige Peakliste ist im Anhang aufgeführt. Folgende Gitterkonstanten ließen sich gemäß der Indizierung verfeinern:

a = 550,59(6) [pm] c = 1085,97(16) [pm] $V = 329,21(8) [10^6 pm^3]$


Geeignete Einkristalle wurden unter dem Polarisationsmikroskop isoliert und in Glaskapillaren eingeschmolzen. Auf dem IPDS wurde ein Intensitätsdatensatz von einem Einkristall erstellt. Bei der Zellbestimmung ließ sich eine tetragonal-primitive Zelle mit den Gitterkonstanten a=552,70(8) pm und c=1093,40(24) pm "finden". Dies steht im guten Einklang mit dem Ergebnis der Pulverdiffraktometrie. Im Rahmen dieser Arbeit ließ sich jedoch die Struktur der gebildeten Verbindung nicht aufklären. Auch das Messen eines weiteren Einkristalls konnte dieses Problem nicht lösen.

6.1.3 Thermisches Verhalten von NH₄PF₆

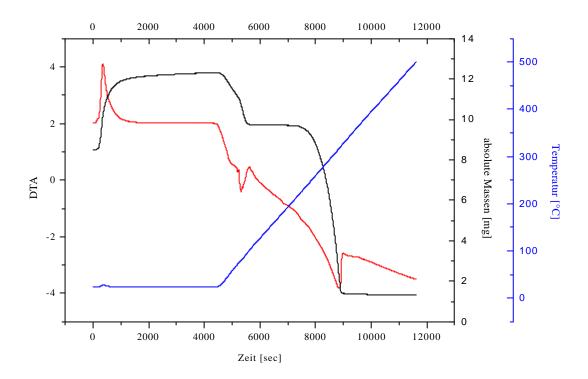

Im Rahmen dieser Arbeit fanden diffrerenzthermoanalytische Untersuchungen wie auch zeitaufgelöste in-situ-Pulverdiffraktometrie unter inerten und reaktiven Bedingungen (NH₃-Atmosphäre) an NH₄PF₆ statt. Desweiteren wurde das thermische Verhalten von NH₄PF₆ mit Hilfe Pulverdiffraktometrie bei tiefen Temperaturen untersucht.

Abb. 6.5 zeigt ein DTA/TG-Diagramm, das unter Ar-Atmosphäre aufgenommen wurde. Man beobachtet ein endothermes Signal in der DTA-Kurve und einen Zersetzungsschritt in der TG-Kurve. Bis 300° C ist NH_4PF_6 unter inerten Bedingungen thermisch beständig. Ab $301,2^{\circ}$ C zersetzt sich NH_4PF_6 endotherm (DTA-Signal $355,3^{\circ}$ C). Als Zersetzungsprodukte kann man PF_5 und NH_4F , welches dissoziiert in NH_3 und HF vorliegt, annehmen. Führt man hingegen die thermoanalytische Untersuchung unter NH_3 -Atmosphäre durch (Abb. 6.6) so findet man in der DTA-Kurve zwei endotherme und ein exothermes Signal. In der TG-Kurve beobachtet man zuerst eine Massenzunahme und anschließend zwei Abbaustufen. Beim Einströmmen des Ammoniaks in die Reaktionskammer findet eine stark exotherme Reaktion (DTA-Signal $28,0^{\circ}$ C) statt. Es kommt zu einer Massenzunahme von ca. 30%. Dies entspricht der Aufnahme von drei Molekülen Ammoniak (31,2%). Bis $119,8^{\circ}$ C wird das aufgenommene Ammoniak in einer endothermen Reaktion (DTA-Signal $80,2^{\circ}$ C) wieder abgegeben. Ab $277,2^{\circ}$ C zersetzt sich NH_4PF_6 endotherm (DTA-Signal $297,7^{\circ}$ C) vollständig in PF_5 , NH_3 und HF.

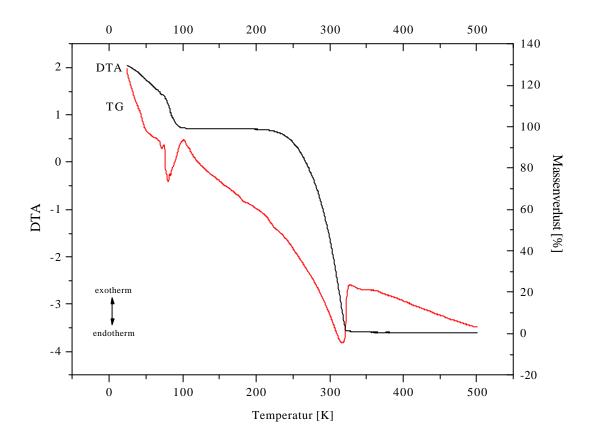

Führt man den thermischen Abbau in der Bühler-Kammer durch, so ist NH₄PF₆ unter N₂-Atmosphäre bis 250°C thermisch beständig (Abb. 6.8). Zwischen 250 und 275°C beginnt die Zersetzung von NH₄PF₆. Sie verläuft wie bei der DTA-Untersuchung unter Ar-Atmosphäre in einem Schritt zu PF₅ und NH₄F, das bei diesen Temperaturen dissoziert in NH₃ und HF vorliegt. Ab 300°C wurde nur noch der Ag-Probentiegel röntgenographisch erfaßt. Erfolgt der thermische Abbau unter NH₃-Atmosphäre (Abb. 6.9), so beobachtet man beim Einströmen des Ammoniaks in die Reaktionskammer

Abb. 6.5: DTA/TG-Diagramm von $\mathrm{NH_4PF_6}$, gemessen unter Ar-Atmosphäre

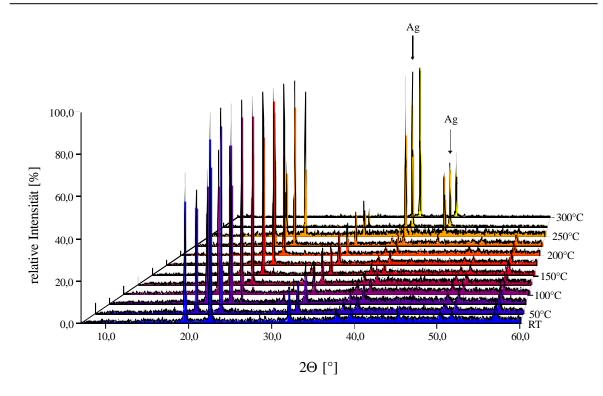


Abb. 6.6: DTA/TG-Diagramm von NH₄PF₆, gemessen unter NH₃-Atmosphäre (Auftragung gegen die Zeit)

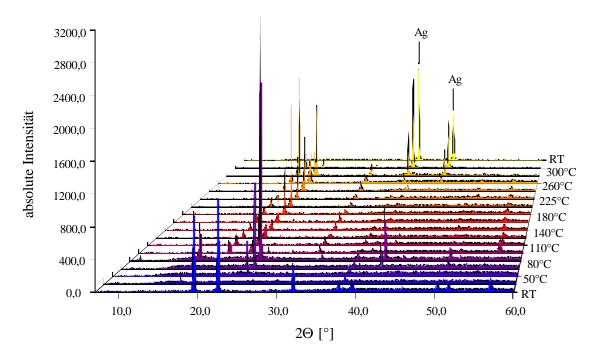


Abb. 6.7: DTA/TG-Diagramm von NH₄PF₆ gemessen unter NH₃-Atmosphäre

einen deutlichen Temperaturanstieg in der Kammer. Nach der exothermen Reaktion liegt ein amorphes Produkt vor, das zwischen 50 und 60°C in ein kristallines Produkt übergeht. Diese Phase ist bis 80° C beständig. Zwischen 80 und 100° C bildet sich eine neue Phase, die ihrerseits bis ca. 280° C thermisch beständig ist. Bei dieser Temperatur beobachtet man eine vollständige Zersetzung dieser Phase. Ab 300° C wurde wiederum nur noch der Ag-Probentiegel detektiert. Beide sich bildende Phasen beim thermischen Abbau von NH_4PF_6 unter NH_3 -Atmosphäre ließen sich im Rahmen dieser Arbeit nicht charakterisieren.

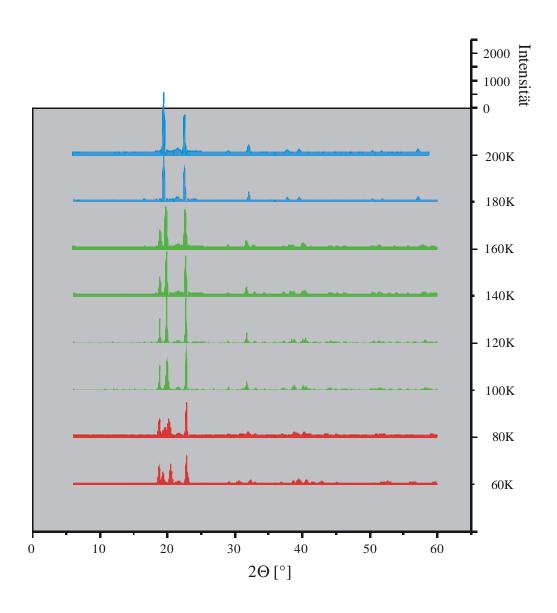


Abb. 6.8: Darstellung der Pulverdiffraktogramme der Zersetzung von NH₄PF₆ unter N₂-Atmosphäre in Abhängigkeit von der Temperatur

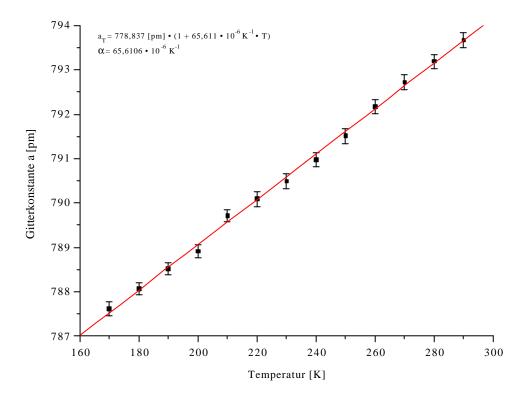


Abb. 6.9: Darstellung der Pulverdiffraktogramme des thermischen Abbaus von NH₄PF₆ unter Ammoniak in Abhängigkeit von der Temperatur (Meßtemperaturen: 34°C, 34°C, 50°C, 60°C, 80°C, 100°C, 110°C, 120°C, 140°C, 160°C, 180°C, 200°C, 225°, 250°C, 260°C, 280°C, 300°C, 40°C)

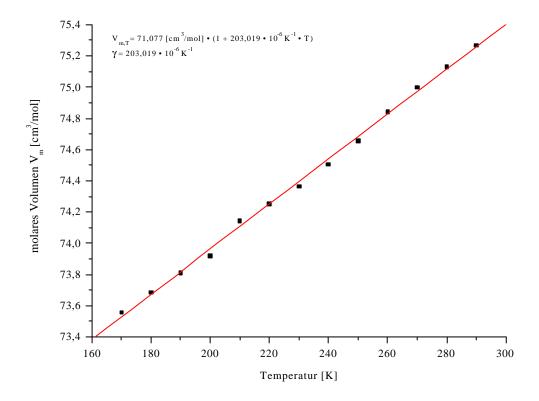

Durch Aufnahme von Pulverdiffraktogrammen bei tiefen Temperaturen sollte untersucht werden, ob verschiedene Phasen von $\mathrm{NH_4PF_6}$ bei tiefen Temperaturen existieren. Dazu wurde im Temperaturbereich von 290 bis 60 K in Schritten von 10 K ein Diffraktogramm erstellt. Anhand der Diffraktogramme erkennt man (Abb. 6.10), daß zwei weitere Phasen von $\mathrm{NH_4PF_6}$ existent sind. Die kubische Phase ist bis ca. 170 K beständig. Ab 160 K tritt eine neue Phase auf, die ihrerseits bis ca. 80 K beständig ist. Unterhalb von 80 K tritt eine weitere Phase auf. Vermutlich bilden sich die zwei Modifikationen bei tiefen Temperaturen durch das Einrasten der Ammoniumionen und der Hexafluorophosphat-Anionen in eine feste Orientierung. Um diese Vermutung zu verifizieren, muß man die Struktur von $\mathrm{NH_4PF_6}$ sowohl bei Raumtemperatur als auch bei tiefer Temperatur anhand von Einkristallstrukturanalysen charakterisieren.

Abb. 6.10: Pulverdiffraktogramme von NH₄PF₆ in Abhängigkeit von der Temperatur

Abb. 6.11: Auftragung der Gitterkonstanten a gegen die Temperatur zur Ermittlung des thermischen Ausdehnungskoeffizienten α und der Gitterkonstante bei 0 K für NH_4PF_6

 $\begin{tabular}{ll} \textbf{Abb. 6.12:} & Auftragung des molaren Volumens V_m gegen die Temperatur zur Ermittlung des "kubischen" Volumenausdehnungskoeffizienten γ und des molaren Volumens bei 0 K für NH_4PF_6 \\ \end{tabular}$

Abb. 6.11 und 6.12 zeigen eine Auftragung der Gitterkonstanten a bzw. des molaren Volumens V_m der Raumtemperaturmodifikation gegen die Temperatur. Daraus lassen sich nach Gay-Lussac mittels linearer Regression der thermische Ausdehungskoeffizient α wie auch der "kubische" Volumenausdehnungskoeffizient γ ermitteln [96]. In Tab. 6.3 sind die aus den Messungen resultierenden Daten wie auch die Ergebnisse der graphischen Auswertung von NH_4PF_6 zusammengefaßt.

Tab. 6.3: Zusammenstellung der ermittelten bzw. berechneten Daten von NH₄PF₆ in Abhängigkeit von der Temperatur

Temperatur [K]	Gitterkonstante a [pm]	Volumen V [10 ⁶ pm³]	$\begin{array}{c} \text{molares Volumen V}_{\!\scriptscriptstyle m} \\ \text{[cm}^{\!\scriptscriptstyle 3}\!/\!\text{mol]} \end{array}$
290	793,67(16)	499,95(18)	73,56
280	793,19(16)	499,03(17)	73,69
270	792,72(16)	498,16(17)	73,81
260	792,17(15)	497,11(16)	73,92
250	791,51(17)	495,87(18)	74,15
240	790,98(16)	494,88(17)	74,25
230	790,49(17)	493,95(18)	74,36
220	790,09(17)	493,21(16)	74,51
210	789,71(14)	492,49(15)	74,65
200	788,91(14)	491,00(15)	74,84
190	788,52(14)	490,28(15)	75,00
180	788,07(13)	489,44(14)	75,13
170	787,62(16)	488,59(17)	73,56

thermischer Ausdehnungskoeffizient a: $65,611 \cdot 10^{-6} \text{ K}^{-1}$ Gitterkonstante a bei 0 K: 778,837 pm kub. Volumenausdehungskoeffizient g: $203,019 \cdot 10^{-6} \text{ K}^{-1}$ molares Volumen V_m bei 0 K: $71,077 \text{ cm}^3/\text{mol}$

Wie man an den beiden Auftragungen erkennen kann, nehmen das molare Volumen und die Gitterkonstante nahezu linear mit fallender Temperatur ab. Dementsprechend spiegeln die ermittelten Werte von α und γ das thermische Verhalten von NH_4PF_6 gut wider. Ein Vergleich der Daten mit analogen Verbindungen des Typs NH_4MF_6 der höheren Homologen Arsen, Antimon und Bismut, die im BaSiF $_6$ -Typ kristallisieren [124], ist nicht möglich, da von diesen Verbindungen weder der thermische Ausdehnungskoeffizient noch der "kubische" Volumenausdehnungskoeffizient bekannt sind.

6.2 Umsetzungen von Antimon bzw. Antimontrichlorid mit Ammoniumhalogeniden

6.2.1 Einleitung

Ein Vielzahl von Ammoniumfluoroantimonaten des dreiwertigen Antimons sind bekannt. Bis heute konnten die Strukturen von $(NH_4)_2SbF_5$ [125], NH_4SbF_4 [126] und $NH_4Sb_3F_{10}$ [127] an Einkristallen bestimmt werden. $NH_4Sb_2F_7$ [128] und $(NH_4)_4Sb_5F_{19}$ [129] wurden ebenfalls synthetisiert, aber deren Strukturen sind bis jetzt noch nicht durch Messungen an Einkristallen charakterisiert worden. Die Präparation dieser Verbindungen erfolgte ausnahmslos auf naßchemischen Wege.

In den ternären Antimon(III)-Fluor-Verbindungen findet man eine Vielzahl von Verknüpfungsmöglichkeiten der Anionen. (NH₄)₂SbF₅ ist die einzige Verbindung, in der isolierte SbF₅²⁻-Anionen vorliegen. In NH₄SbF₄ findet man oligomere Zickzackketten von [SbF₄]-Baugruppen, die entlang [001] verlaufen. Dabei sind die Anionen jeweils über zwei cis-ständige Fluoratome verknüpft. Desweiteren sind die Anionen in der Kette so angeordnet, daß die freien Elektronenpaare trans zueinander stehen. Dimere [SbF₄]₂²⁻-Baueinheiten, die über eine gemeinsame Kante verknüpft sind, liegen in NaSbF₄ [24] vor. In KSbF₄ findet man dagegen cyclische tetramere Baueinheiten des Typs [Sb₄F₁₆]⁴⁻ [24]. In NH₄Sb₂F₇ sollen isolierte [Sb₂F₇]-Anionen vorliegen, in denen die trigonalen Bipyramiden SbF₄E⁻ über eine asymmetrische Sb1-F-Sb2-Brücke verknüpft sind [128]. Dagegen konnte man bisher vom fünfwertigen Antimon nur Ammoniumhexafluoroantimonat charakterisieren. Es kristallisiert isotyp zu Ammoniumhexafluorobismutat im BaSiF₆-Typ [124].

Im System SbCl₃/NH₄Cl sind vier Verbindungen bekannt. In dem von J. Kendall et. al. [130] aufgenommenen Phasendiagramm sind nur zwei Verbindungen enthalten, nämlich $(NH_4)_3Sb_2Cl_9$ und NH_4SbCl_4 . 1955 gelang es M. Edstrand et. al. [131], $(NH_4)_2SbCl_5$ darzustellen und auch die Kristallstruktur dieser Verbindung aufzuklären. Zu einem späteren Zeitpunkt wurde diese Strukturlösung von M. Webster und S. Keats [132] bestätigt. Die Verbindung kristallisiert in der monoklinen Raumgruppe C2/m (Nr. 12) mit den Gitterkonstanten a = 1185,0(30) pm, b = 767,0(20) pm, c = 1187,0(30) pm und β = 113,5(5)°. Durch Umsetzung von SbCl₃ und NH_4Cl in fl. SO_2 gelang es E. Martineau und J. B. Milne [133], $(NH_4)_3SbCl_6$ zu synthetisieren. Die Struktur von $(NH_4)_3SbCl_6$, wie auch die Strukturen von $(NH_4)_3Sb_2Cl_9$ und NH_4SbCl_4 , konnten bis heute nicht an Einkristallen charakterisiert werden.

6.2.2 Reaktionen von Antimon mit Ammoniumhydrogendifluorid sowie von Antimontrichlorid mit Ammoniumchlorid

Die Umsetzungen von Antimon mit Ammoniumhydrogendifluorid erfolgten mittels der "Monel-Methode" in Kupferampullen. Dazu wurden die Edukte im jeweiligen stöchiometrischen Verhältnis eingewogen und in verschweißten Kupferampullen, die zum Schutz vor Oxidation unter Vakuum in

Tab. 6.4: Zusammenfassung der Reaktionsparameter der Umsetzungen von Antimon mit Ammoniumhydrogendifluorid

Verhältnis		
Sb / NH ₄ HF ₂	1:2,5	$\rightarrow (NH_4)_2SbF_5$
· -	1:2	$\rightarrow NH_4SbF_4$
	1:1,75	$\rightarrow \mathrm{NH_4Sb_2F_7}$
	1:1,66	$\rightarrow NH_4Sb_3F_{10}$
Einwaage:	NH_4HF_2	$200 \text{ mg} \equiv 3,506 \text{ mmol}$
	Sb	$170.8 \text{ mg} \equiv 1.402 \text{ mmol}$
	Sb	$213,4 \text{ mg} \equiv 1,753 \text{ mmol}$
	Sb	$243.9 \text{ mg} \equiv 2,003 \text{ mmol}$
	Sb	$256,1 \text{ mg} \equiv 2,104 \text{ mmol}$
Reaktionstemperatu	r: 300°C, 400°C	
Reaktionsdauer:	28 d	
Aufheizrate:	4°C/min	
Abkühlrate:	3°C/min	
Ampullenmaterial:	Kupfer	

Kieselglasampullen eingeschmolzen wurden, zur Reaktion gebracht. Die Reaktionsbedingungen, wie auch die stöchiometrischen Verhältnisse, sind in Tab. 6.4 zusammengefaßt.

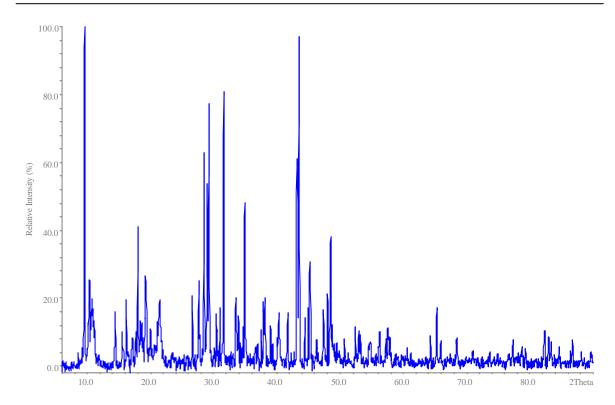
In allen vier Reaktionen, die bei 300°C durchgeführt wurden, lag beim Öffnen der Ampullen ein farbloses kristallines Produkt vor. Daneben fand man graue metallische Späne von nicht umgesetztem Antimon. Alle Kupferampullen waren an der Innenseite mit einem metallischen Spiegel überzogen. Innerhalb des polykristallinen Produktes lagen vereinzelt farblose Kristalle vor. Mit Ausnahme des berechneten Ansatzes von $NH_4Sb_2F_7$, wo stäbchenförmige Kristalle vorlagen, hatten die Kristalle einen plättchenförmigen Habitus. Alle erhaltenen Kristalle löschten unter dem Polarisationsmikroskop aus. Sowohl plättchen- als auch stäbchenförmige Einkristalle wurden in Glaskapillaren eingeschmolzen und mit Filmmethoden auf ihre Güte hin untersucht. Anhand von Zellbestimmungen, die an einem IPDS durchgeführt wurden, zeigte sich schnell, daß es sich in jedem Fall um $(NH_4)_2SbF_5$ handelte.

Folgende Reaktionsgleichung läßt sich für die Bildung von (NH₄)₂SbF₅ formulieren:

$$2\,Sb + 5\,NH_4HF_2 \xrightarrow{300^{\circ}C,\,28d,Cu-Ampulle} 2\,(NH_4)_2SbF_5 + NH_3 + 3\,H_2$$

Aufgrund der Tatsache, daß bei 300°C unabhängig vom stöchiometrischen Verhältnis ausschließlich $(NH_4)_2SbF_5$ entsteht, wurden die Versuche zur Darstellung von NH_4SbF_4 , $NH_4Sb_2F_7$ und $NH_4Sb_3F_{10}$ bei höherer Temperatur (400°C) wiederholt. Auch die Reaktionen bei 400°C führten nicht zu den

gewünschten Produkten, da die Schweißnähte der Kupferampullen während der Reaktionen aufrissen und die Kupferampullen ummantelnden Kieselglasampullen bersten ließen. Dadurch konnten flüchtige Substanzen entweichen. Als Produkt dieser Umsetzungen erhielt man in sehr geringen Ausbeuten ein metallisches graues Pulver.


Neben dem Versuch, mittels der "Monel-Methode" Ammoniumfluoroantimonate zu erhalten, wurden Reaktionen zur Synthese von Ammoniumchloroantimonaten durchgeführt. Bisher ist nur $(NH_4)_2SbCl_5$ röntgenographisch charakterisiert worden. Desweiteren sind NH_4SbCl_4 , $(NH_4)_3SbCl_6$ und $(NH_4)_3Sb_2Cl_9$ [130, 133] beschrieben, die jedoch bisher strukturell nicht aufgeklärt wurden. Im Rahmen dieser Arbeit sollte versucht werden, durch Umsetzung von $SbCl_3$ und NH_4Cl diese Phasen darzustellen und anschließend röntgenographisch aufzuklären. Die jeweiligen Reaktionsparameter sind in Tab. 6.5 zusammengefaßt. Beide Edukte wurden zur Reinigung sublimiert.

Tab. 6.5: Zusammenfassung der Reaktionsparameter der Umsetzungen SbCl, mit NH, Cl

Verhältnis		
SbCl ₃ / NH ₄ Cl	1:3	$\rightarrow (NH_4)_3SbCl_6$
	1:2	$\rightarrow (NH_4)_2SbCl_5$
	1:1,5	$\rightarrow (NH_4)_3Sb_2Cl_9$
	1:1	$\rightarrow \mathrm{NH_4SbCl_4}$
Einwaage:	NH ₄ Cl	$200 \mathrm{mg} \equiv 3,74 \;\mathrm{mmol}$
	$SbCl_3$	$284,3 \text{ mg} \equiv 1,246 \text{ mmol}$
	$SbCl_3$	$426,4 \text{ mg} \equiv 1,87 \text{ mmol}$
	$SbCl_3$	$587.7 \text{ mg} \equiv 2.493 \text{ mmol}$
	SbCl ₃	$853.2 \text{ mg} \equiv 3.74 \text{ mmol}$
Reaktionstemperatu	r: 70 und 300°C	
Reaktionsdauer:	7 d	
Aufheizrate:	5°C/h und 3°C/h	
Abkühlrate:	3°C/h	
Ampullenmaterial:	Kupfer	

Bei allen Versuchen wurde zuerst mit 5°C/h auf 70°C erhitzt und für zwei Tage bei dieser Temperatur getempert. Anschließend wurde die Temperatur mit 3°C/h auf 300°C erhöht. Nach sieben Tagen Tempern wurde mit 3°C/h auf Raumtemperatur abgekühlt. Die Durchführung aller Versuche erfolgte in Kupferampullen, die zum Schutz vor Oxidation unter Vakuum in Kieselglasampullen eingeschmolzen wurden.

Als Hauptprodukt bildete sich bei allen Versuchen ein graues, teilweise metallisch glänzendes, polykristallines Pulver. Im Ansatz für (NH₄)₃Sb₂Cl₉ lagen neben diesen Kristalliten, die hauptsächlich an der Ampullenwand hafteten, vereinzelt farblose Kristalle vor, die unter dem Polarisationsmikroskop auslöschten. Von diesem farblosen Produkt wurde ein Pulverdiffraktogramm erstellt, das in Abb.

Abb. 6.13: Pulverdiffraktogramm der Produkte aus der Umsetzung von SbCl₃ und NH₄Cl im molaren Verhältnis von 2:3

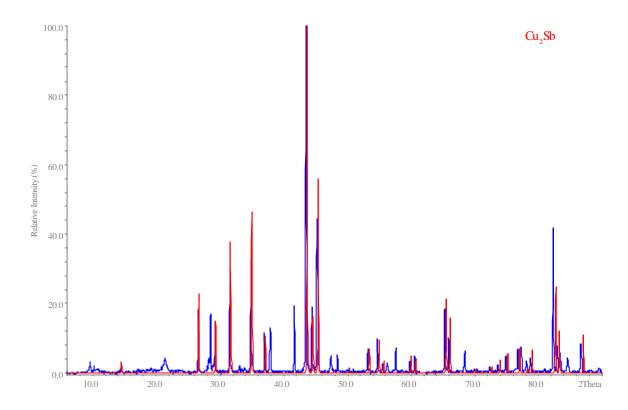


Abb. 6.14: Pulverdiffraktogramm der graumetallisch glänzenden Kristallite

6.13 dargestellt ist. Die ermittelten Gitterparameter wie auch die zugehörige Peakliste sind im Anhang angegeben. Anhand des erstellten Diffraktogrammes lassen sich die Edukte, SbCl₃ und NH₄Cl, nicht mehr nachweisen. Das Vorhandensein von Ammoniumchloroantimonaten kann ebenfalls ausgeschlossen werden.

Bei den graumetallisch glänzenden Kristalliten handelt es sich um die intermetallische Verbindung Cu₂Sb [134], wie Abb. 6.14 zeigt. Damit sich die intermetallische Verbindung bilden kann, muß eine "innere" und/oder "äußere" Reduktion der vorhandenen Antimonverbindung stattgefunden haben. Folgende Reaktionsmechanismen lassen sich für die Bildung von Cu₂Sb formulieren:

$$2 \operatorname{SbCl}_{3} + 3 \operatorname{NH}_{4} \operatorname{Cl} \xrightarrow{300^{\circ} \operatorname{C}, 7.\mathrm{d}, \operatorname{Cu-Ampulle}} (\operatorname{NH}_{4})_{3} \operatorname{Sb}_{2} \operatorname{Cl}_{9}$$

$$(\operatorname{NH}_{4})_{3} \operatorname{Sb}_{2} \operatorname{Cl}_{9} \xrightarrow{300^{\circ} \operatorname{C}, \operatorname{Cu-Ampulle}} 2 \operatorname{Sb} + \operatorname{N}_{2} + 9 \operatorname{HCl} + \operatorname{NH}_{3}$$

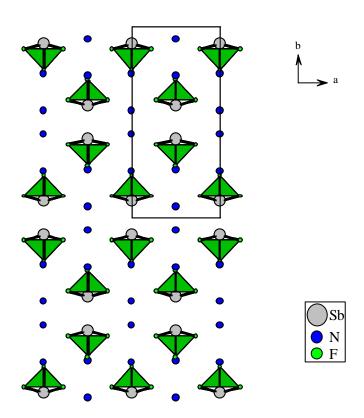
$$2 \operatorname{Cu} + \operatorname{Sb} \xrightarrow{300^{\circ} \operatorname{C}, \operatorname{Cu-Ampulle}} \operatorname{Cu}_{2} \operatorname{Sb}$$

beziehungsweise:

$$2 \operatorname{SbCl}_{3} + 3 \operatorname{NH}_{4} \operatorname{Cl} \xrightarrow{300^{\circ} \operatorname{C}, 7 \operatorname{d}, \operatorname{Cu-Ampulle}} 2 \operatorname{Sb} + \operatorname{N}_{2} + 9 \operatorname{HCl} + \operatorname{NH}_{3}$$

$$2 \operatorname{Cu} + \operatorname{Sb} \xrightarrow{300^{\circ} \operatorname{C}, \operatorname{Cu-Ampulle}} \operatorname{Cu}_{2} \operatorname{Sb}$$

Weitere Untersuchungen müssen zeigen, ob es während der Reaktion von SbCl₃ und NH₄Cl zur Bildung von Ammoniumchloroantimonaten kommt, bevor die Reduktion des Antimons stattfindet.


Geeignete Einkristalle des farblosen Produktes wurden unter dem Polarisationsmikroskop isoliert und in Glaskapillaren eingeschmolzen. Auf dem IPDS wurde ein Intensitätsdatensatz von einem Einkristall erstellt. Bei der Zellbestimmung ließ sich folgende trikline Zelle bestimmen:

$$\begin{array}{lll} a = 992,27(28) \ [pm] & \alpha = 83,124(30)^{\circ} \\ b = 1127,88(29) \ [pm] & \beta = 88,23(3)^{\circ} \\ c = 1642,96(43) \ [pm] & \gamma = 67,87(3)^{\circ} \\ V = 1690,8 \ [10^6 \ pm^3] & \end{array}$$

Die Struktur dieser Verbindung ließ sich nicht aufklären. Auch das Messen eines weiteren Kristalls half nicht über dieses Problem hinweg. Vergleicht man die gefundenen Zellen (IPDS und Pulverdiffraktometer) miteinander, so stellt man eine sehr gute Übereinstimmung der Gitterparameter fest.

6.2.3 Kristallstruktur von Diammoniumpentafluoroantimonat(III), (NH₄),SbF₅

(NH₄)₂SbF₅ kristallisiert in der orthorhombisch-C-zentrierten Raumgruppe Cmcm (Nr. 63) mit den Gitterkonstanten a = 652,14(12) pm, b = 1419,50(24) pm und c = 679,20(10) pm (Tab. 6.6). Pro Elementarzelle sind vier Formeleinheiten (NH₄)₂SbF₅ enthalten. In der Struktur liegen isolierte SbF₅²⁻ -Anionen und isolierte Ammoniumionen vor, deren Wasserstoffatome nicht lokalisiert werden konnten (Abb. 6.15). Antimon ist quadratisch-pyramidal von fünf Fluoratomen umgeben, wobei die sechste Koordinationsstelle vom freien Elektronenpaar des Sb³⁺-Ion eingenommen wird (Abb. 6.16). Das apikale Fluoratom ist um 16 pm näher am Antimon als die vier Fluoratome in der Ebene. Desweiteren ist Antimon um 15,2° aus der quadratischen Ebene ausgelenkt (Abb. 6.16). Die isolierten SbF₅²-Baueinheiten bilden innerhalb der Struktur Schichten aus. In den Schichten sind die SbF₅²--Einheiten so angeordnet, daß die freien Elektronenpaare der Antimon(III)-Ionen zwischen den Schichten auf Lücke stehen (Abb. 6.17). Der Abstand der Sb³⁺-Ionen zwischen den Schichten beträgt 422,5 pm. Innerhalb der Schichten werden die SbF₅²-Anionen über Wasserstoffbrückenbindungen des Typs N-(H)-F miteinander verknüpft (Abb. 6.17). N1 ist verzerrt quadratisch-prismatisch von acht F-Ionen umgeben, wobei zwei Sets von je vier F-Ionen vorliegen, die 302,5 pm bzw. 306,5 pm entfernt sind. N2 hingegen ist quadratisch-pyramidal von fünf F-Ionen koordiniert. Der Abstand N2-F1 beträgt 302,6 pm und ist damit um ca. 26 pm länger als der Abstand N2-F2 mit 276,7 pm.

Abb. 6.15: Projektion der Kristallstruktur von (NH₄)₂SbF₅ auf [001]

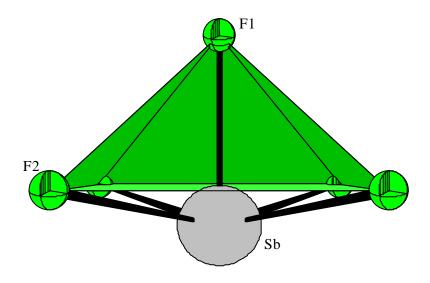
 $\textbf{Tab. 6.6:} \quad \text{Kristallographische Daten und Angaben zur Strukturbestimmung von } (\text{NH}_4)_2 \text{SbF}_5$

Kristallsystem	orthorhombisch
Raumgruppe	Cmcm (Nr. 63)
Gitterkonstanten pm	a = 652,14(12)
	b = 1419,50(24)
	c = 679,20(10)
Zellvolumen 10 ⁶ pm ³	628,74(18)
Anzahl der Formeleinheiten	Z = 4
Molmasse g/mol	252,9
Röntgenographische Dichte g/cm³	2,672
Kristallfarbe	farblos
Meßgerät	IPDS (Stoe)
Strahlung	$Mo-K_{\alpha}$ (Graphit-Monochromator)
Scan-Modus	100 Bilder in 2°-Schritten
Meßtemperatur K	293(2)
Meßbereich °	$3,8 \le 2\Theta \le 56,3$
$\mu (MoK_{\alpha}) mm^{-1}$	4,404
Indexbereich	$-7 \le h \le 7$
	$-16 \le k \le 16$
	$-7 \le 1 \le 7$
F(000)	472
Anzahl der gemessenen Reflexe	1920
Unabhängige Reflexe	323
Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	317
R_{int}	0,0441
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-Shape (Stoe) [41]
	SHELXS-97 [36] / SHELXL-97 [37]
Streufaktoren	International Tables [57]
Strukturverfeinerung	"Full-matrix"-Least-Squares an F ²
Daten / Restraints / Parameter	323 / 0 / 26
Goodness-of-fit	1,392
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0255$; $wR_2 = 0.0685$
R-Werte (alle Daten)	$R_1 = 0.0259; wR_2 = 0.0686$
Restelektronendichte	0,61 / -0,60

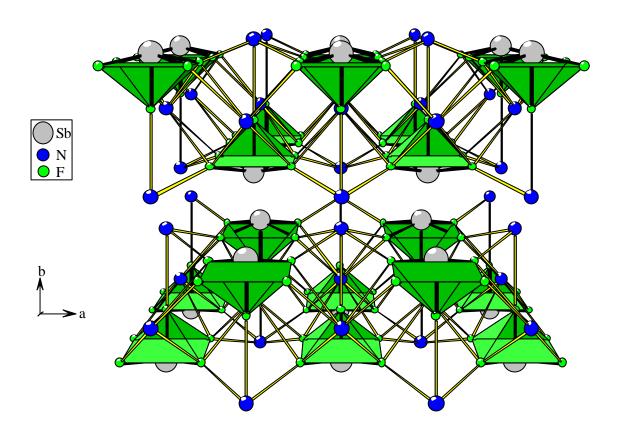
Tab. 6.7: Atomkoordinaten und äquivalente	Temperaturfaktoren U	$J_{eq} (10^{-4})$	pm ²) von	$(NH_4)_2SbF_5$
--	----------------------	--------------------	-----------------------	-----------------

Atom	Lage	x/a	y/b	z/c	\mathbf{U}_{eq}
Sb	4c	0	0,08851(3)	0,25	0,0253(3)
N1	4c	0,5	0,2552(6)	0,25	0,0405(19)
N2	4c	0,5	0,9374(6)	0,25	0,0369(16)
F1	4c	0	0,2242(3)	0,25	0,0455(12)
F2	16h	0,2255(6)	0,1159(3)	0,4599(5)	0,0812(11)

 $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$


Tab. 6.8: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10^{-4} pm²) von $(NH_4)_2SbF_5$

Atom	U ₁₁	\mathbf{U}_{22}	U ₃₃	U ₁₃	U ₂₃	$\mathbf{U_{12}}$
Sb	0,0204(4)	0,0263(4)	0,0291(4)	0	0	0
N1	0,034(4)	0,039(4)	0,048(5)	0	0	0
N2	0,031(4)	0,042(4)	0,038(4)	0	0	0
F1	0,052(3)	0,028(2)	0,056(3)	0	0	0
F2	0,084(2)	0,0778(18)	0,082(2)	0,0143(19)	-0,059(2)	-0,009(2)


 $\boldsymbol{U}_{ij} = exp[-2\pi^2(h^2a^{*2}\boldsymbol{U}_{11} + \ldots + 2hka^*b^*\boldsymbol{U}_{12})]$

Tab. 6.9: Bindungslängen (pm) und -winkel (°) in $(NH_4)_2SbF_5$

Sb-F	71 1	92,7(4)	F1-Sb-F2	79,27(11)
Sb-F	F2 2	08,5(3)	F2-Sb-F2	86,3(2)
N1-	(H)-F2 3	02,5	F2-Sb-F2	89,7(3)
N1-	(H)-F2 3	06,5	F2-Sb-F2	158,5(2)
N2-	(H)-F1 3	02,6		
N2-	(H)-F2 2	76,7		

Abb. 6.16: Darstellung des $[SbF_5]^{2-}$ -Anions

Abb. 6.17: Perspektivische Darstellung von $(NH_4)_2[SbF_5]$ entlang [001]

6.3 Reaktionen von Bismut mit Ammoniumfluorid und Ammoniumhydrogendifluorid

6.3.1 Einleitung

In der Vergangenheit ließen sich einige Ammoniumfluorometallate des Bismuts auf dem naßchemischen Wege und durch thermische Zersetzung synthetisieren. 1964 gelang es B. Aurivillius und C.-I. Lindblom [135], die Kristallstruktur von Ammoniumtetrafluorobismutat, NH₄BiF₄, an einem Einkristall aufzuklären. NH₄BiF₄ kristallisiert in der monoklinen Raumgruppe P2₁/c (Nr. 14) mit den Gitterkonstanten a = 831,7(0) pm, b = 759,7(3) pm, c = 648,6(1) pm und β = 93,5°. Pro Elementarzelle sind vier Formeleinheiten enthalten. Das thermische Verhalten von NH₄BiF₄ unter Ammoniakatmosphäre wurde von J. Strähle et. al. [136] untersucht. Bei 250°C bildet sich NH₄Bi₃F₁₀, welches isotyp zu KY_3F_{10} [137] in der kubischen Raumgruppe Fm-3m (Nr. 225) mit a = 1197,60(2) kristallisiert. Bis 285°C ist $NH_4Bi_3F_{10}$ vollständig zu BiF_3 zerfallen. Bei der ab 285°C eintretenen Ammonolyse von BiF₃ bildet sich die Vernier-Phase Bi₃NF₆, die aus Pulverdaten strukturell aufgeklärt werden konnte. Sie kristallisiert in der Raumgruppe Pbcm (Nr. 57) mit den Gitterkonstanten a = 581,74(2) pm, b = 570,18(2) pm und c = 1851,13(5) pm. A. I. Popov et. al. [138] konnten 1989 durch Umsetzung von Ammoniumfluorid und Bismutpentafluorid in wasserfreier Flußsäure Ammoniumhexafluorobismutat, NH₄BiF₆, synthetisieren. Anhand von Pulverdaten wurde gezeigt, daß NH₄BiF₆ isotyp zu NH₄SbF₆ ist und somit im Bariumhexafluorosilicattyp kristallisiert [124]. NH_4BiF_6 kristallisiert in der trigonalen Raumgruppe R-3m (Nr. 166) mit a = 780,5(5) pm, c = 771,7(4) pm und Z = 3. In einer heftigen exothermen Raektion zersetzt sich NH_4BiF_6 bei ca. $85^{\circ}C$ zu BiF_3 , Stickstoff, Ammoniak und Flußsäure.

6.3.2 Versuche zur Synthese und Charakterisierung von Ammoniumfluorobismutaten

Durch Oxidation von Bismut mit Ammoniumfluorid bzw. -hydrogendifluorid mit Hilfe der "Monel-Methode" sollten Ammoniumfluorobismutate synthetisiert und anschließend röntgenographisch charakterisiert werden. Dazu wurden die Edukte gemäß Tab. 6.10 eingewogen, in Metallampullen verschweißt, die wiederum zum Schutz vor Oxidation unter Vakuum in Kieselglasampullen eingeschmolzen wurden. Anschließend wurden die Eduktgemische in einem Widerstandsofen zur Reaktion gebracht. Die Versuche erfolgten bei verschiedenen Reaktionstemperaturen zwischen 275 und 400°C. Das Containermaterial wurde ebenfalls variiert.

In der Regel fielen graue polykristalline Pulver an, die vereinzelt farblose Kristalle enthielten. Die vorhandenen Kristalle löschten im Polarisationsmikroskop aus. Bei 275°C erhielt man neben einem grauen Produkt auch metallische Kugeln. Bei letzteren handelte es sich um elementares Bismut. Durch pulverdiffraktometrische Messungen konnte gezeigt werden, daß bei allen Versuchen kein

Ammoniumfluorobismutat als Produkt vorlag. Bismuttrifluorid konnte ebenfalls nicht nachgewiesen werden. Auch die Variation des Ampullenmaterials von Monel über Tantal zu Kupfer änderte dieses Ergebnis nicht, jedoch nahm dadurch die Anzahl der farblosen Kristalle zu.

Einige der farblosen Kristalle wurden unter dem Polarisationsmikroskop ausgewählt und anschließend in Glaskapillaren eingeschmolzen. Nach dem Einschmelzen in die Glaskapillare zersetzten sich alle Kristalle innerhalb weniger Minuten, auch wenn die Kapillaren in der Argon-Box verschlossen wurden. Dabei schlug sich ein farbloser Belag auf der Innenseite der Kapillaren nieder. Bei den vorhandenen Kristallen handelt es sich um eine Verbindung, die thermisch sehr instabil ist. Sie konnte im Rahmen dieser Arbeit nicht identifiziert werden. Auch eine Charakterisierung der polykristallinen Produkte anhand der Pulverdiffraktogramme konnte nicht erfolgen.

Aufgrund der Tatsache, daß Phosphor mit Ammoniumfluoriden in Molybdän zu einem phasenreinen kristallinen Produkt reagiert, sollten weitere Versuche zur Umsetzung von Bismut mit Ammoniumfluorid und Ammoniumhydrogendifluorid in Molybdänampullen auf jeden Fall erfolgen.

Tab. 6.10: Reaktionsparameter der Umsetzungen von Bismut mit Ammoniumfluorid bzw. Ammoniumhydrogendifluorid

Verhältnis:	·	$\begin{array}{ll} 1:4 & \rightarrow \mathrm{NH_4BiF_4} \\ 1:6 & \rightarrow \mathrm{NH_4BiF_6} \\ 1:2 & \rightarrow \mathrm{NH_4BiF_4} \\ 1:2,5 & \rightarrow (\mathrm{NH_4})_2\mathrm{BiF_5} \\ 1:3 & \rightarrow \mathrm{NH_4BiF_6} \end{array}$	
			Reaktionstemperaturen/Ampullen
Einwaage:	NH_4F	$200 \mathrm{mg} \equiv 5.4 \mathrm{mmol}$	
	Bi	$282,1 \text{ mg} \equiv 1,35 \text{ mmol}$	275°C (Ta), 350°C (Ta)
	Bi	$188,1 \text{ mg} \equiv 0.9 \text{ mmol}$	275°C (Ta), 350°C (Ta)
	NH_4HF_2 Bi	$200 \text{ mg} \equiv 3,506 \text{ mmol}$ $366,3 \text{ mg} \equiv 1,753 \text{ mmol}$ $293,1 \text{ mg} \equiv 1,402 \text{ mmol}$	275°C (Ta), 300°C (Ta, Cu), 350°C (Ta, Cu), 400°C (Monel) 300°C (Ta, Cu), 350°C (Ta, Cu), 400°C (Ta, Cu)
	Bi	$244,2 \text{ mg} \equiv 1,169 \text{ mmol}$	350°C (Ta), 400°C (Monel)
Reaktionsdauer: Aufheizrate: Abkühlrate:	28 d 3°C/h 3°C/h		

7 Untersuchung verschiedener Ampullenmaterialien am Beispiel der Synthese von $(NH_4)_3[SnF_6]F$

7.1 Einleitung

Bei der Darstellung von ternären Metallfluoriden und -fluoridammoniakaten, bei der Metallpulver oder -bleche mit Ammoniumfluorid bzw. Ammoniumhydrogendifluorid umgesetzt werden, als auch bei der Umsetzung mit elementarem Fluor oder mit Flußsäure, muß man mehreren apparativen Problemen Rechnung tragen:

- 1.) Welches Containermaterial kann verwendet werden?
- 2.) Ist es bei höheren Temperaturen inert gegenüber Fluoriden?
- 3.) Wie verhält sich das Containermaterial bei hohen Gasdrücken?

Mit Hilfe der "Monel-Methode" [2, 14, 20] können Metalle oder Nichtmetalle in Form von Pulvern, Blechen oder Metalloxide mit Ammoniumfluorid oder Ammoniumhydrogendifluorid in verschweißten Monelampullen (68% Nickel, 32% Kupfer) umgesetzt werden. Die Kupfer-Nickel-Legierung hält Reaktionstemperaturen von 600°C und Drücken über 200 bar mehrere Wochen stand. Die bei der Reaktion von Metall mit Ammoniumhalogenid entstehenden Gase, Wasserstoff und Ammoniak, diffundieren teilweise (H₂) oder gar nicht (NH₃) durch die Ampullenwand. Somit liegt eine reduzierende Atmosphäre (H₂) im Ampulleninnern vor, die die Oxidation des Nickels aus der Ampullenwand weitgehend verhindert. Ammoniak steht zur Bildung von Ammoniakaten oder zur Ammonolyse der Oxidationsprodukte zur Verfügung.

Es stellt sich die Frage, ob die "Monel-Methode" ohne weiteres auf andere Ampullenmaterialien übertragbar ist. Wenn ja, welche Materialien sind geeignet für Umsetzungen mit Fluoriden? Haben diese Container Einfluß auf die Produktbildung oder haben sie gar einen katalytischen Effekt bei der Bildung der Produkte? Können durch "Wandreaktionen" gezielt Produkte synthetisiert werden z.B. durch Einbau des Containermaterials in die Kristallstruktur?

Die Untersuchungen erfolgen am Beispiel der Synthese von (NH₄)₃[SnF₆]F durch Umsetzung von elementaren Zinn mit Ammoniumhydrogendifluorid, da diese Reaktion mit der "Monel-Methode" reproduzierbar ist und das erwartete Produkt röntgenographisch eindeutig zu identifizieren ist.

7.2 Synthese von $(NH_4)_3[SnF_6]F$

Die Synthese von $(NH_4)_3[SnF_6]F$ erfolgte durch Umsetzung von Zinnmetall und NH_4HF_2 im molaren Verhältnis 1:4 bei $300^{\circ}C$ in verschiedenen verschweißten Metallampullen, die zum Schutz vor Oxidation unter Vakuum in Kieselglasampullen eingeschmolzen wurden. Die Reaktionsbedingungen sind in Tab. 7.1 zusammengefaßt.

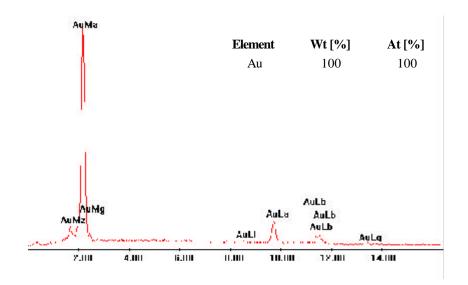
Tab. 7.1: Reaktionsparameter der Umsetzung von Zinn mit NH₄HF₂

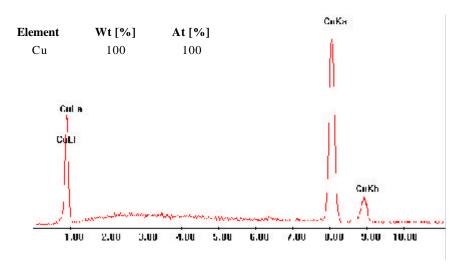
 $\label{eq:Verhältnis:} \textbf{Verhältnis:} \qquad \text{Sn / NH}_4 \text{HF}_2 \qquad 1:4 \quad \rightarrow (\text{NH}_4)_3 [\text{SnF}_6] \text{F}$

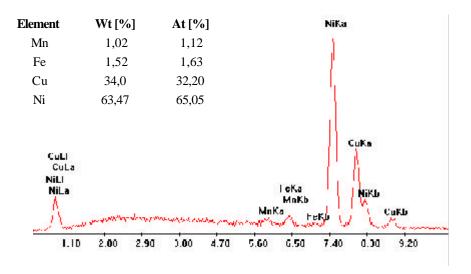
Einwaage: NH_4HF_2 228,2 mg = 4 mmol

Sn $118.7 \text{ mg} \equiv 1 \text{ mmol}$

Reaktionsdauer: 300 h Aufheizrate: 5°C/h Abkühlrate: 5°C/h


Folgende Reaktionsgleichung läßt sich für die Umsetzung von Sn mit NH4HF2 formulieren:


$$2\,Sn + 7\,NH_4HF_2 \xrightarrow{\quad 300^{\circ}C,\,300h \quad} 2\,(NH_4)_3[SnF_6]F + NH_3 + 4\,H_2$$


Als Containermaterialien standen zur Verfügung: Monel, Cu, Au, Nb, Ta, Ni, Fe, Edelstahl, Al und Mo. Die Molybdän-Bomben wurden im Gegensatz zu den anderen Ampullen nicht verschweißt, sondern durch einen verschraubbaren Kupferkopf verschlossen. Da sich das vorhandene Aluminiumrohr nicht verarbeiten ließ, wurden Kupferampullen mit einer 0,25 mm dicken Al-Folie ausgekleidet. Die aus einem Zinkstab hergestellten Zn-Bomben konnten nicht verwendet werden, da sie der mechanischen Belastung beim Verschließen mit einem verschraubbaren Kupferkopf nicht standhielten. Vor der Verwendung wurden alle Ampullenmaterialien gereinigt bzw. entfettet. Dies geschah entweder auf mechanischem oder chemischem Wege.

7.3 Analytische Untersuchung der verwendeten Containermaterialien

Um die genaue Zusammensetzung der verwendeten Ampullenmaterialien herauszufinden, wurden sowohl AAS- als auch EDAX-Analysen durchgeführt. Die Kenntnis der genauen Zusammensetzung der Metallampullen ist vonnöten, um eventuell bei der Umsetzung auftretende Nebenprodukte, z.B. durch Reaktion von NH₄HF₂ mit der Ampullenwand, identifizieren zu können. In den folgenden Abbildungen sind die Ergebnisse der EDAX-Analysen graphisch dargestellt. Vom verwendeten Nibzw. Mo-Stab konnten im Rahmen dieser Arbeit keine Analysen durchgeführt werden.

Abb. 7.1: Graphische Darstellung der EDAX-Analyse von Au (oben), Cu (Mitte) und Monel (unten)

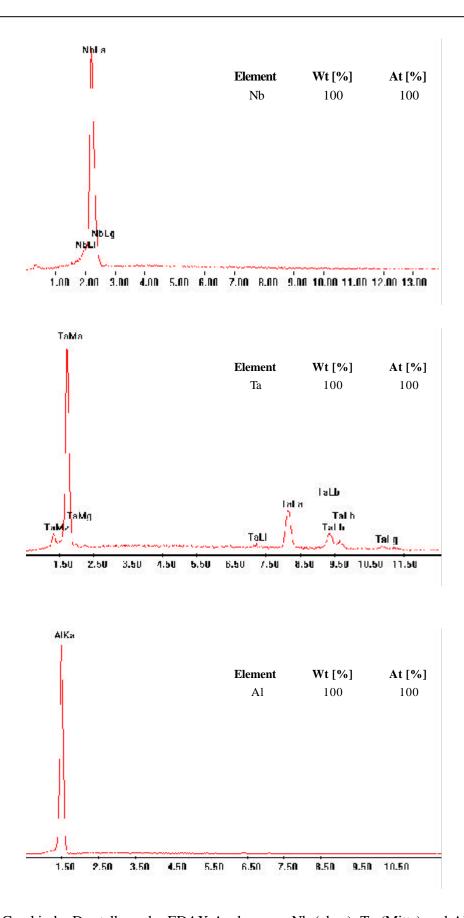
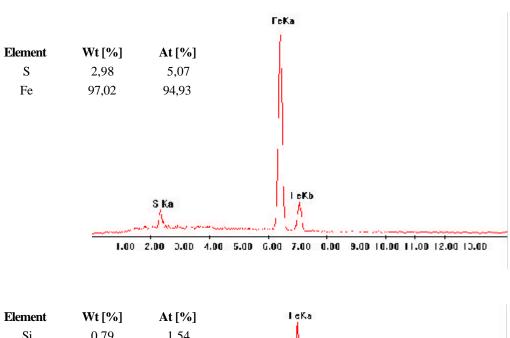



Abb. 7.2: Graphische Darstellung der EDAX-Analyse von Nb (oben), Ta (Mitte) und Al (unten)

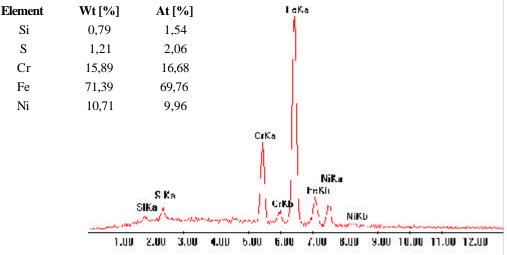


Abb. 7.3 Graphische Darstellung der EDAX-Analyse von Fe (oben) und Edelstahl (unten)

Die Ergebnisse der durchgeführten Analysen zeigen, daß die verwendeten Metalle keine untypischen Verunreinigungen aufweisen. Anhand der EDAX-Analysen konnten bei den reinen Metallen, bis auf Eisen, überhaupt keine Verunreinigung nachgewiesen werde. Hingegen findet man mit der Atomabsorptionsspektroskopie Spuren von Verunreinigungen, z.B. in Eisen 0,5% Mangan, die typisch für die einzelnen Metalle sind [24]. Bei Eisen konnte eine 5% ige Verunreinigung mit Schwefel nachgewiesen werden, der jedoch ein Bestandteil von Roheisen ist. Die verwendeten Legierungen enthielten ebenfalls nur die für sie charakteristischen Zusammensetzungen an bestimmten Elementen [24].

Um die ablaufenden Reaktionen in der Ampulle besser verstehen zu können, wurde begonnen, rasterelektronenmikroskopische Untersuchungen an den verwendeten Containermaterialien durchzuführen. Dafür wurden Bleche des jeweiligen Ampullenmaterials angefertigt, von denen vor und nach der Reaktion rasterelektronenmikroskopische Aufnahmen aufgenommen werden sollten. Im Rahmen dieser Arbeit konnten nur Aufnahmen vor der Umsetzung erhalten werden. In der Abb. 7.4 sind die Oberflächen von Kupfer und Monel dargestellt. In Zukunft sollten weitere Untersuchungen auf diesem Gebiet erfolgen. Möglicherweise lassen sich durch rasterelektronenmikroskopische Untersuchungen von Ampullenmaterialien Rückschlüsse auf die Vorgänge bei Reaktionen mit der Ampullenwand gewinnen.

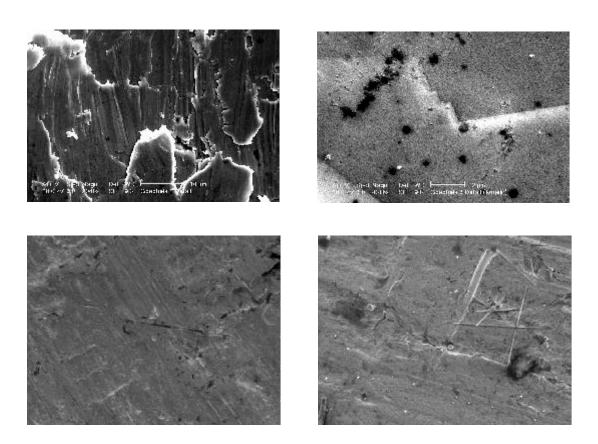
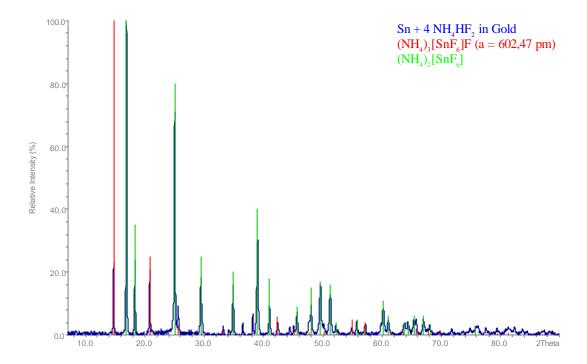


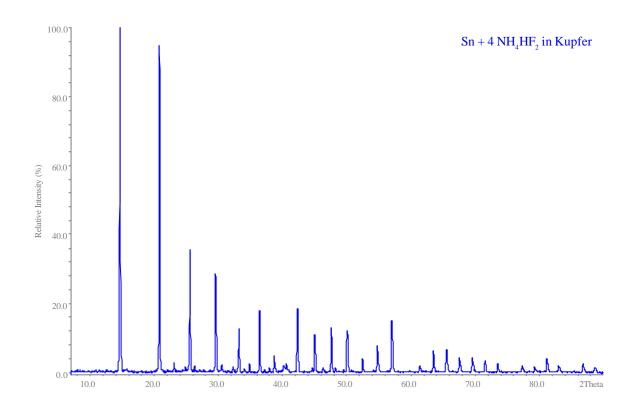
Abb. 7.4: REM-Aufnahmen der Oberflächen von Kupfer (oben links, 2048fache Vergrößerung) und Monel (oben rechts, 8316fache Vergrößerung); Oberfläche von Gold vor (unten links, 2000fache Vergößerung) und nach der chemischen Reinigung mit konz. HCl (unten rechts, 2000fache Vergrößerung)

7.4 Pulverdiffraktometrische Untersuchung der Reaktionsprodukte

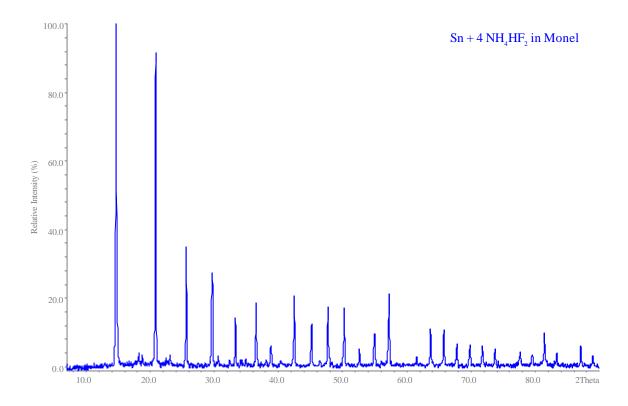
Von den erhaltenen Produkten wurden Pulverdiffraktogramme erstellt, die in den Abbildungen 7.5 bis 7.14 dargestellt sind. Die Ergebnisse der röntgenographischen Untersuchungen sind in Tab. 7.2 zusammengefaßt.

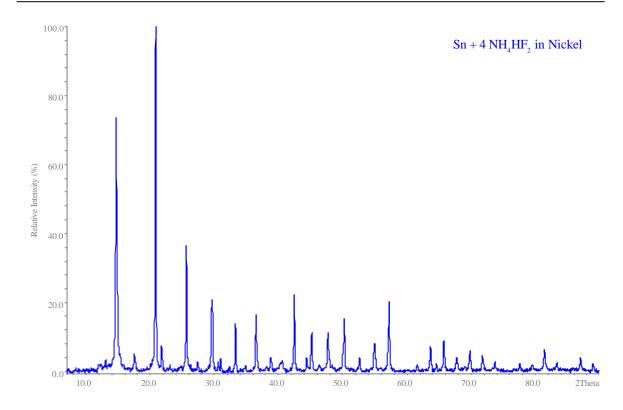

Tab. 7.2: Ergebnisse der Umsetzung von Sn mit NH₄HF₂ in verschiedenen Containermaterialien

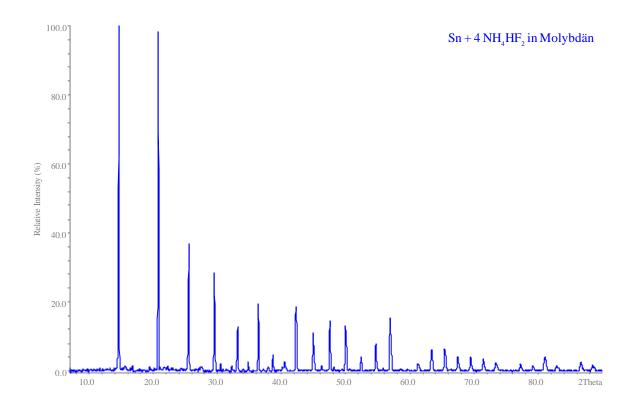
Ampulle	Ergebnis der Pulverproben
Au	$(NH_4)_3[SnF_6]F + (NH_4)_2[SnF_6]$
Cu Monel	$(NH_4)_3[SnF_6]F$ $(NH_4)_3[SnF_6]F$
Mo Ni	$(NH_4)_3[SnF_6]F$ $(NH_4)_3[SnF_c]F + unbekannte Phase$
Al	$(NH_4)_3[AlF_6]$ + unbekannte Phase
Fe Edelstahl	FeF_2 + unbekannte Phase $(NH_4)_3[FeF_6] + (NH_4)_3[CrF_6] + unbekannte Phase$
Nb Ta	nicht charakterisierbares Produkt + Metallkugeln (Sn) $NH_4[TaF_6]$

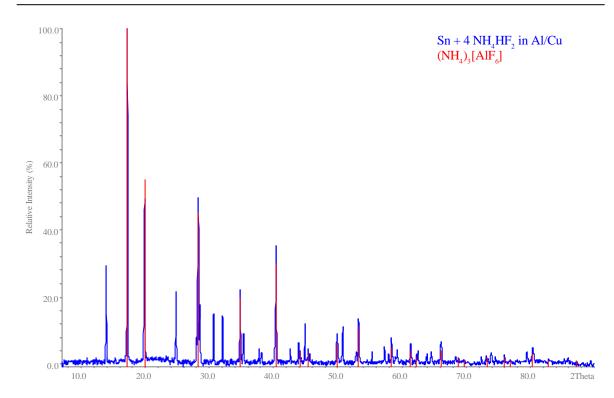

Bei der Umsetzung von Sn mit NH_4HF_2 im molaren Verhältnis 1 : 4 entstand nur dann $(NH_4)_3[SnF_6]F$, wenn das verwendete Ampullenmaterial edler war als Zinn (Au, Cu). Waren jedoch die verwendeten Materialien unedler als Zinn, so kam es zu einer Reaktion zwischen NH_4HF_2 und der Ampullenwand. In der Regel entstanden dabei Ammoniumfluorometallate des jeweiligen Containermaterials (Tab. 7.2). Allgemein gilt: Sind die Redoxpotentiale (Tab. 7.3) der Ampullenmaterialien positiver als das von Zinn, so kommt es zur Bildung von $(NH_4)_3[SnF_6]F$. Sind sie hingegen negativer als jenes von Zinn, so beobachtet man eine Reaktion zwischen der Ampullenwand und dem Fluoridierung-mittel, mit Ausnahme von Monel und Molybdän. Aufgrund der Redoxpotentiale von Ni und Mo müßte es zur Bildung von Ammoniumfluorometallaten beider Elemente kommen. In beiden Ampullen kam es aber ausschließlich zur Bildung von $(NH_4)_3[SnF_6]F$. Selbst die Umsetzung in einer reinen Nickelampulle führte zur Bildung von $(NH_4)_3[SnF_6]F$. Dieses Verhalten läßt sich auf die Passivierung von Nickel in Gegenwart von Fluoriden zurückführen. Frühere Arbeiten haben gezeigt, daß bei Reaktionen in Monelampullen dann Ammoniumfluoroniccolate entstehen, wenn ein sehr großer Überschuß an NH_4HF_2 vorliegt [2, 20]. Frühere Untersuchungen mit Molybdän haben gezeigt, daß keine Reaktion zwischen Ammoniumfluoriden und Molybdänmetall stattfindet [139].

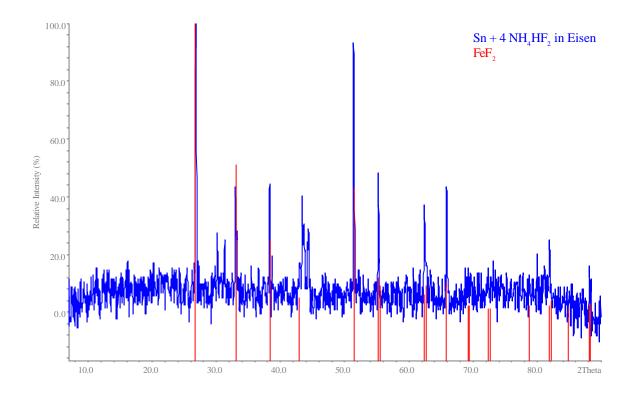
Tab. 7.3: Redoxpotentiale der verwendeten Ampullenmaterialien

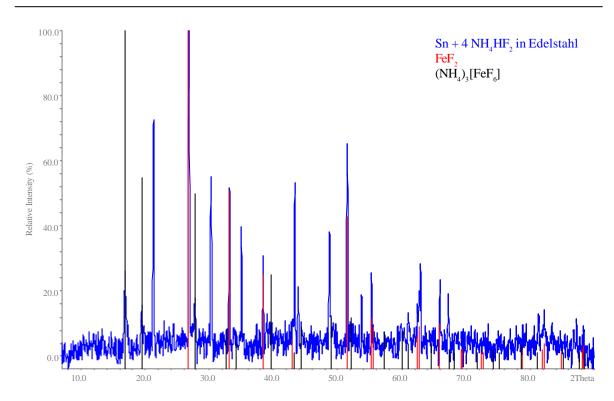

Redoxpaar	Literatur [140, 141] [V]			
Au ³⁺ / Au	1,498	1,42		
Cu^{2+}/Cu	0,3419	0,345		
Sn^{4+}/Sn^{2+}	0,151	0,154		
Fe^{3+}/Fe	-0,037	-		
Sn^{2+}/Sn	-0,1375	-0,136		
$\mathrm{Mo^{3+}}/\mathrm{Mo}$	-0,200	-		
Ni^{2+}/Ni	-0,257	-0,236		
Cr ³⁺ / Cr	-0,407	-0,56		
Fe^{2+}/Fe	-0,447	-0,441		
Cr^{2+}/Cr	-0,913	-0,71		
Al^{3+}/Al	-1,662	-1,66		

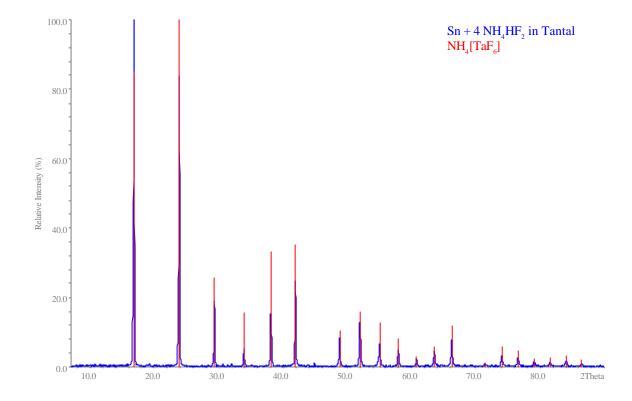

Abb 7.5: Pulverdiffraktogramm der Umsetzung Sn mit $\mathrm{NH_4HF_2}$ in einer Au-Ampulle


Abb 7.6: Pulverdiffraktogramm der Umsetzung Sn mit NH_4HF_2 in einer Cu-Ampulle


Abb 7.7: Pulverdiffraktogramm der Umsetzung Sn mit NH_4HF_2 in einer Monel-Ampulle


Abb 7.8: Pulverdiffraktogramm der Umsetzung Sn mit $\mathrm{NH_4HF_2}$ in einer Ni-Ampulle


Abb 7.9: Pulverdiffraktogramm der Umsetzung Sn mit NH_4HF_2 in einer Mo-Ampulle


Abb 7.10: Pulverdiffraktogramm der Umsetzung Sn mit NH_4HF_2 in einer mit Al-Folie ausgekleideten Cu-Ampulle

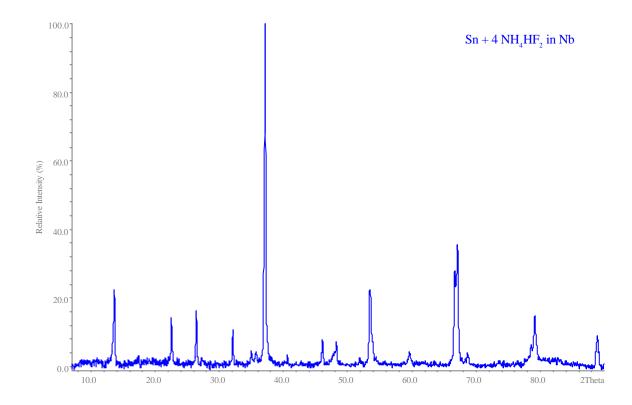

Abb 7.11: Pulverdiffraktogramm der Umsetzung Sn mit NH_4HF_2 in einer Fe-Ampulle

Abb 7.12: Pulverdiffraktogramm der Umsetzung Sn mit NH_4HF_2 in einer Edelstahl-Ampulle

Abb 7.13: Pulverdiffraktogramm der Umsetzung Sn mit NH_4HF_2 in einer Ta-Ampulle

 ${\bf Abb}$ 7.14: Pulverdiffraktogramm der Umsetzung Sn mit ${\rm NH_4HF_2}$ in einer Nb-Ampulle

8 Erfassung der herrschenden Drücke in den Reaktionscontainern

Eine entscheidende Rolle für die Bildung der Produkte wird dem sich aufbauenden Gasdruck, der bei der Umsetzung von Ammonimfluorid bzw. Ammoniumhydrogendifluorid mit Metallen oder Halbmetallen entsteht, zugeschrieben. Eine besondere Bedeutung kommt hierbei dem Ammoniakpartialdruck zu. Man geht davon aus, daß mit dessen Hilfe Einfluß auf die Produktbildung genommen werden kann. Steuerbar ist der Ammoniakpartialdruck durch die Wahl des Ammoniumhalogenids (NH₄F oder NH₄HF₂), dessen Menge, durch Variation des Volumens der Ampulle und auch durch die Höhe der Reaktionstemperatur.

Die Erfassung der sich einstellenden Druckverhältnisse in den verwendeten Reaktionscontainern gestaltet sich schwierig, da eine Vielzahl von Parametern, die den Druck beeinflussen, meßtechnisch nicht erfaßt werden können.

Die Druckabschätzung im Rahmen dieser Arbeit basiert auf einer Reihe von Annahmen, die im folgenden aufgelistet sind:

- Reaktionsverlauf in den Metallampullen [15] am Beispiel der Reaktion von Sn mit NH₄F und NH₄HF₂
 - 1.)In der Aufheizphase findet die vollständige Dissoziation der Ammoniumhalogenide NH_4F und NH_4HF_2 statt, bevor das Metall oder Halbmetall von HF oxidiert wird.

$$NH_4F \rightarrow NH_3 + HF$$

 $NH_4HF_2 \rightarrow NH_3 + 2 HF$

2.)Oxidation des Metalls oder Halbmetalls durch HF

$$Sn + 4HF \rightarrow Sn^{4+} + 4F^{-} + 2H_{2}$$

- 3.)Die Diffusion des sich bildenden Wasserstoffes durch die Ampullenwand tritt erst ein, wenn das Metall oder Halbmetall vollständig von HF oxidiert worden ist.
 - vollständig, wenn sich die Ampulle in einem durchströmten Ofen befindet
 - bei geschlossenen Reaktionsgefäßen stellt sich ein Diffusionsgleichgewicht zwischen der Reaktionsampulle und der Kieselglasampulle ein
- 4.)Bildung des fluoridreichsten und thermodynamisch stabilsten Fluorostannat-Anions [SnF₆]²⁻. Dieses resublimiert als Ammoniumheptafluorostannat(IV).

$$\text{Sn}^{4+} + 7 \text{ F}^{-} + 3 \text{ NH}_{4}^{+} \rightarrow (\text{NH}_{4})_{3} [\text{SnF}_{6}] \text{F}$$

 Der Enddruck der Reaktion zwischen Metall / Halbmetall und NH₄F / NH₄HF₂ ergibt sich nur aus der jeweiligen Reaktionsgleichung.
 Beispiel:

$$\begin{split} &\text{Sn} + 7 \text{ NH}_{4}\text{F} \xrightarrow{300^{\circ}\text{C}} (\text{NH}_{4})_{3}[\text{SnF}_{6}]\text{F} + 4 \text{ NH}_{3} + 2 \text{ H}_{2} \\ &2 \text{ Sn} + 7 \text{ NH}_{4}\text{HF}_{2} \xrightarrow{300^{\circ}\text{C}} 2 (\text{NH}_{4})_{3}[\text{SnF}_{6}]\text{F} + \text{NH}_{3} + 4 \text{ H}_{2} \end{split}$$

• Berechnung des Volumens der Reaktionsampulle

Das Volumen der Ampulle läßt sich näherungsweise nach folgender Gleichung berechnen [142]:

$$V = r^2 \cdot \pi \cdot h_1 + 2 \cdot (\frac{1}{3} \cdot r^2 \cdot \pi \cdot h_2)$$

mit: r = Innenradius der Ampulle [mm]

h, = Höhe des Ampullenanteils, der nicht zugequetscht wird [mm]

h₂ = Höhe des Ampullenanteils, der zugequetscht wird [mm]

Bei der Berechnung des Volumens wird von einer Länge der Ampullen von 60 mm, vom Gleichbleiben des Radius beim Reinigen der Ampullen mit konzentrierten Säuren und von einem jeweils gleichen Volumenverlust beim Zuquetschen und Verschweißen der Ampullen ausgegangen.

Für das Volumen der Ampullen erhält man mit r=6 mm, $h_1=40$ mm und $h_2=10$ mm folgenden Wert: ${\bf V}={\bf 1,3195\cdot 10^{-6}\,m^3}$

• Berechnung des Volumens der Kieselglasampulle [142], die die Reaktionsampulle ummantelt

$$V = r^2 \cdot \pi \cdot h_1 + 2 \left(\frac{1}{2} \cdot r^2 \cdot \pi \cdot h_2 \right)$$

mit: r = Innenradius der Kieselglasampulle [mm]

h₁ = Höhe des Kieselglaszylinders

h, = Höhe der Verjüngungs- bzw. Abschmelzstelle

Mit r = 8 mm, $h_1 = 100$ mm und $h_2 = 5$ mm ergibt sich das Volumen der Kieselglasampulle zu $V = 21,1115 \cdot 10^{-6}$ m³. Näherungsweise ist das Volumen der Kieselglasampullen bei allen Ansätzen konstant.

 Die Partialdrücke der sich bildenden Gase lassen sich nach der van-der-Waals-Gleichung berechnen [143]:

$$(p + \frac{n^2 a}{V^2}) \cdot (V - n \cdot b) = n \cdot R \cdot T$$

mit: p = Druck [Pa]

V = Volumen [m³]

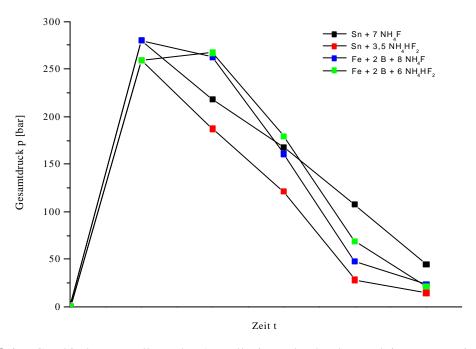
n = Stoffmenge [mol]

R = molare Gaskonstante = 8,31441 [Pa m³/K mol]

T = Temperatur [K]

a, b = van der Waals-Konstanten

• Der Partialdruck des beim Schweißen eingeschlossenen Heliums (750 mbar bei Raumtemperatur) wird mit Hilfe der Gleichung von Gay-Lussac berechnet [143]:


$$p_E = \frac{T_E}{T_A} \cdot p_A$$

Die beim Schweißen eingeschlossene Menge Helium ist in allen Ampullen gleich!

Obwohl es sich um reale Gase handelt, wird der Gesamtdruck nach Dalton [143] berechnet und die Wechselwirkung zwischen den Molekülen vernachlässigt:

$$p_{gesamt} = p_{NH_3} + p_{HF} + p_{H_2} + \dots = (n_{NH_3} + n_{HF} + n_{H_2} + \dots) \cdot \frac{RT}{V}$$

Die gemäß obiger Näherungen berechneten Partialdrücke für NH₃, HF und H₂ für die Umsetzung von Sn mit Ammoniumfluorid bzw. Ammoniumhydrogendifluorid sind in Tab. 8.1 zusammengestellt. Die einzelnen Schritte sind die des oben postulierten Reaktionsverlaufs. Die van der Waals-Konstanten a und b wurden aus den kritischen Daten [140] der jeweiligen Gase berechnet. In Abb. 8.1 sind die sich aus den Partialdrücken ergebenden Gesamtdrücke graphisch wiedergegeben. Als Abszisse fungiert eine Zeitachse t.

Abb. 8.1: Graphische Darstellung der Ampulleninnendrücke der Reaktionen von Zinn mit NH₄F / NH₄HF₂ und der Umsetzungen von Fe mit B und NH₄F / NH₄HF₂

Aus dem Verlauf der beiden Graphen für die Umsetzung von Sn mit NH₄F bzw. NH₄HF₂ wird deutlich, daß sich zu Beginn der Reaktion ein maximaler Druck in den Ampullen aufbaut, der während der Reaktion kontinuierlich abnimmt. Im zweiten Reaktionsschritt erfolgt eine starke Druckabnahme (ca. 60 bar bei Verwendung von NH₄F bzw. 75 bar bei Verwendung von NH₄HF₂) infolge der Reaktion des in-situ generierten HF mit dem Metall. Die größere Druckabnahme bei der Reak-

Tab. 8.1: Zusammenfassung der thermodynamischen Daten

Verbindung	T_{c} [°C]	\mathbf{p}_{c} [atm]	a [m ⁶ Pa/mol ²]	b • 10 ⁻³ [m ³ /mol]
NH_3	132,5	112,5	0,4210052	0,036985
HF	188	64	0,956404	0,073909
H_2	-239,9	12,8	0,0248605	0,026645
Не	-267,9	2,26	0,035103	0,023828
$N_{_2}$	-147	33,5	0,1367309	0,038625

Reaktion von Sn mit NH₄F:

	p(NH ₃) [bar]	p(HF) [bar]	$p(H_2)$ [bar]	p(He) [bar]	p(gesamt) [bar]
Schritt 1	159,3	119,4	0	1,4417	280,1417
Schritt 2	159,3	0	57,2	1,4417	217,9417
Schritt 3	159,3	0	7,0	1,4417	167,7417
Schritt 4	99,0	0	7,0	1,4417	107,4417
Schritt 4 (RT)	40,4	0	3,6	0,75	44,75

Reaktion von Sn mit NH₄HF₂:

	p(NH ₃) [bar]	p(HF) [bar]	$p(H_2)$ [bar]	p(He) [bar]	p(gesamt) [bar]
Schritt 1	110,7	147,0	0	1,4417	259,1417
Schritt 2	110,7	0	74,8	1,4417	186,9417
Schritt 3	110,7	0	9,1	1,4417	121,2417
Schritt 4	17,7	0	9,1	1,4417	28,2417
Schritt 4 (RT)	8,9	0	4,7	0,75	14,35

Reaktion von Fe mit B und NH_4F :

	p(NH ₃) [bar]	p(HF) [bar]	$p(H_2)$ [bar]	p(He) [bar]	p(gesamt) [bar]
Schritt 1	159,3	119,4	0	1,4417	280,1417
Schritt 2	159,3	0	102,1	1,4417	262,8417
Schritt 3	159,3	0	0	1,4417	160,7417
Schritt 4	46,3	0	0	1,4417	47,7417
Schritt 4 (RT)	22,0	0	0	0,75	22,75

Reaktion von Fe mit B und NH₄HF₂:

	p(NH3) [bar]	p(HF) [bar]	p(H2) [bar]	p(He) [bar]	p(gesamt) [bar]
Schritt 1	110,7	147,0	0	1,4417	259,1417
Schritt 2	110,7	67,1	87,8	1,4417	267,0417
Schritt 3	110,7	67,1	0	1,4417	179,2417
Schritt 4	0	67,1	0	1,4417	68,5417
Schritt 4 (RT)	0	20.5	0	1,4417	21,9417

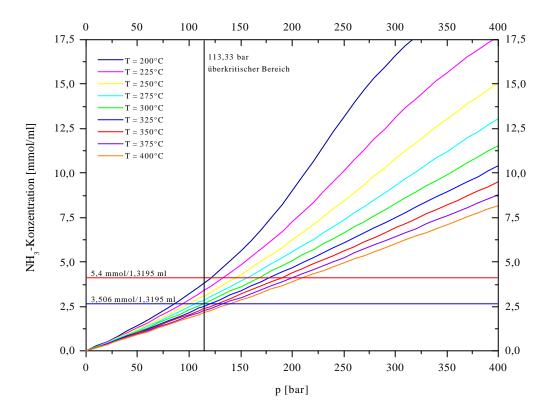
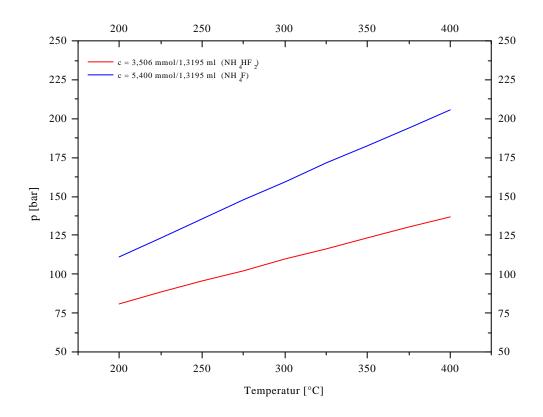



Abb. 8.2: Konzentrations-Druck-Diagramm von Ammoniak [144]

Abb. 8.3: p,T-Diagramm von NH_4HF_2 und NH_4F [144]

tion von Sn mit NH₄HF₂ ergibt sich aus der Tatsache, daß bei der Dissoziation von NH₄HF₂ doppelt so viel HF gebildet wird als bei der Dissoziation von NH₄F. Ebenfalls ergibt sich daraus, daß der Wasserstoffpartialdruck bei der Reaktion von Sn mit NH₄HF₂ größer ist als bei der Reaktion von Sn mit NH₄F. Dies führt dazu, daß beim dritten Reaktionsschritt eine größere Druckabnahme bei der Umsetzung mit NH₄HF₂ zu verbuchen ist als bei der Umsetzung mit NH₄F. Die Abweichung beider Gesamtdrücke erreicht beim vierten Reaktionsschritt ihr Maximum. Durch Betrachtung der Raktionsgleichungen erkennt man, daß bei der Umsetzung von Sn mit NH₄F am Ende der Reaktion 4 Teile Ammoniak in der Ampulle verbleiben, hingegen ist am Ende der Reaktion bei der Umsetzung von Sn mit NH₄HF₂ nur ein Teil Ammoniak vorhanden ist. Diese Tatsache schlägt sich drastisch in den Ammoniakpartialdrücken beider Reaktionen nieder! Am Ende jeder Tabelle sind die Ampulleninnendrücke bei Raumtemperatur angegeben.

Trägt man die so berechneten Gesamtdrücke der Umsetzungen von Fe mit B und NH₄F bzw. NH₄HF₂, die in einem durchströmten Ofen durchgeführt wurden, ebenfalls gegen eine Zeitachse auf, so erhält man einen nahezu analogen Verlauf der Kurven (Abb. 8.1). Zu Beginn der Reaktion zeigt sich ein der Umsetzung von Sn mit NH₄F bzw. NH₄HF₂ identischer Verlauf, da bei allen Umsetzungen die gleiche Menge NH₄F und NH₄HF₂ eingewogen wurde, auch die Reaktionstemperaturen waren identisch. Somit liegen nach der Dissoziation der Ammoniumhalogenide die gleichen Partialdrücke von NH₃ und HF vor. Gemäß den Reaktionsgleichungen für die Umsetzungen von Fe mit B und NH₄F bzw. NH₄HF₂

Fe + 2 B + 8 NH₄F
$$\xrightarrow{300^{\circ}\text{C}}$$
 [Fe(NH₃)₆][BF₄]₂ + 2 NH₃ + 4 H₂
Fe + 2 B + 6 NH₄HF₂ $\xrightarrow{300^{\circ}\text{C}}$ [Fe(NH₃)₆][BF₄]₂ + 4 HF + 4 H₂

berechnet man für den zweiten Schritt einen deutlich geringeren Druckabfall als bei der Umsetzung von Sn mit NH₄F, bei der Reaktion mit NH₄HF₂ erhält man sogar einen leichten Druckanstieg. Dieser Verlauf ist auf die Tatsache zurückzuführen, daß sowohl bei der Umsetzung mit NH₄F als auch mit NH₄HF₂ doppelt so viel Wasserstoff bei der Oxidation von Fe und B gebildet wird. Bei der Umsetzung mit NH₄HF₂ kommt noch hinzu, daß nach der Oxidation von Fe und B vier Teile HF im System verbleiben, was zu dem geringen Druckanstieg führt. Da die Umsetzungen in einem durchströmten Ofen durchgeführt wurden, wobei der durch die Ampullenwand diffundierte Wasserstoff unmittelbar vom Inertgas wegtransportiert werden konnte, konnte sich kein Diffusionsgleichgewicht einstellen, wie es bei der Umsetzung von Sn mit NH₄F/NH₄HF₂ der Fall war. Dies führte dazu, daß der Wasserstoff vollständig dem System entzogen wurde. Daher ist die Druckabnahme vom zweiten zum dritten Schritt deutlich größer als bei der Darstellung von (NH₄)₃[SnF₆]F. Vom dritten zum vierten Schritt ist die Abnahme des Gesamtdrucks in beiden Systemen wiederum deutlich größer als bei der Synthese von (NH₄)₃[SnF₆]F. Ursache hierfür sind die Ammoniakpartialdrücke in beiden Systemen. Bei der Synthese von Ammin-Komplexen wird mehr Ammoniak dem System entzogen als bei der Darstellung von Ammoniumfluorometallaten. Bei der Umsetzung von Fe mit B und NH₄HF₂ fällt der Ammoniakpartialdruck sogar auf Null ab! Bei Raumtemperatur liegen die Gesamtdrücke wieder in dem Bereich, der auch für die Synthese von (NH₄)₃[SnF₆]F berechnet wurde.

Eine andere mögliche Abschätzung des Ammoniakpartialdruckes erfolgt über ein Konzentrations-Druck-Diagramm, siehe Abb. 8.2 und 8.3, welches sich aus dem p,V-Diagramm [144] ableitet. Hierbei wird die Annahme gemacht [14], daß die Konzentration des Ammoniaks für den Zeitpunkt bekannt ist, an dem die verwendeten Metalle oder Halbmetalle vollständig oxidiert sind, sich eventuell entstehende Ammin-Komplexe, wie z.B. $[Ni(NH_3)_6][BF_4]_2$, oder Ammoniakate, wie z.B. $(NH_4)[Si(NH_3)F_5]$ [89], aber noch nicht gebildet haben.

Vergleicht man die Ammoniakpartialdrücke miteinander (Tab. 8.2) so beobachtet man, daß bei niedrigen Temperaturen die berechneten Partialdrücke größer sind als die aus dem Konzentrations-Druck-Diagramm entnommenen Partialdrücke. Dieser Sachverhalt invertiert sich zu höheren Temperaturen. Bei 300°C findet man eine gute Übereinstimmung zwischen den nach van der Waals berechneten und den aus dem Konzentrations-Druck-Diagramm entnommenen Werten.

Tab. 8.2: Gegenüberstellung der berechneten und dem Konzentrations-Druck-Diagramm entnommenen Partialdrücke des Ammoniaks

	NH_4HF_2 : $n = 3$	3,506 • 10 ⁻³ mol	$NH_4F: n = 5.4 \cdot 10^{-3} \text{ mol}$	
Гетрегаtur [°С]	p [bar] (berechnet)	p [bar] (Diagramm)	p [bar] (berechnet)	p [bar] (Diagramm)
200	86,20	81,14	119,2	111,06
225	92,32	88,56	129,23	123,12
250	98,45	95,71	139,25	135,95
275	104,57	102,46	149,27	147,73
300	110,70	109,61	159,30	159,65
325	116,82	116,49	169,32	171,43
350	122,95	123,51	179,35	182,42
375	129,07	130,26	189,37	194,2
400	135,20	137,01	199,39	205,59

Die oben durchgeführte Druckabschätzung beruht darauf, daß jeder Teilschritt für sich betrachtet wird. In Wirklichkeit ist das vorhandene System viel komplexer. Bis die Reaktionstemperatur von 300°C mit einer durchschnittlichen Aufheizrate von 3°C/h erreicht ist, ist die Dissoziation von NH₄F bzw. NH₄HF₂ schon abgeschlossen. Bei der Bildung von HF tritt sofort die Oxidation des Metalls und/oder Halbmetalls ein. Der bei der Oxidation entstehende Wasserstoff beginnt augenblicklich durch die Ampullenwand zu diffundieren. Bei der Synthese von Ammin-Komplexen beginnt die Bildung der Metall-Ammin-Komplexe wahrscheinlich bei einem bestimmten Ammoniakmindestpartialdruck. Desweiteren findet bei höheren Reaktionstemperaturen katalytische Zerfall des Ammoniaks in die Elemente statt. Der dabei entstehende Wasserstoff wird dem System wiederum durch Diffusion durch die Ampullenwand entzogen. Somit findet ein ständiger Verbrauch der generierten Gase im System statt, so daß davon auszugehen ist, daß die oben berechneten Partialdrücke und die

daraus resultierenden Gesamtdrücke größer als die tatsächlich vorhandenen sind. Darüber hinaus ist zu erwarten, daß die Abweichung vom idealen Verhalten bei hohen Drücken nicht unerheblich ist. Um in Erfahrung zu bringen, wie groß die Abweichung der berechneten Gesamdrücke von den realen Drücken ist, müßte man die Versuche in einem Autoklaven wiederholen, in dem man kontinuierlich den vorliegenden Druck erfassen kann. Um Rückschlüsse auf die einzelnen Partialdrücke zu ziehen, müßten über Meßsonden die Konzentrationen der in-situ generierten Gase gemessen werden. Aufgrund der berechneten Partialdrücke von Ammoniak und Fluorwasserstoff könnte es sich zu Beginn der Reaktionen sogar um Reaktionen im überkritischen Bereich handeln. Um diese Vermutung verifizieren zu können, müßten Versuche in einem Sichtfensterautoklaven durchgeführt werden, da bisher nicht abzuschätzen ist, welchen Einfluß überkritischer Ammoniak und überkritischer Fluorwasserstoff aufeinander haben. Ein großer Vorteil von Autoklaven wäre, daß stets ein identisches, wohl definiertes Volumen vorhanden wäre. Dies würde dazu führen, daß Druckschwankungen aufgrund unterschiedlicher Ampullenvolumina nicht auftreten (Tab. 8.3).

Tab. 8.3: Ammoniakpartialdrücke in Abhängigkeit vom Ampullenvolumen

Volumen [10 ⁻⁶ m ³]	p(NH ₃) [bar] (NH ₄ F)	p(NH ₃) [bar] (NH ₄ HF ₂)
1,696	129,304	88,677
1,508	142,713	98,461
1,414	150,55	104,266
1,3195	159,299	110,699

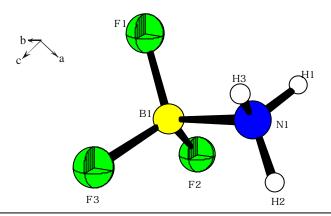
9 Zusammenfassung

NH₄BF₄

Durch Umsetzung von Bor mit NH₄HF₂ bzw. NH₄F im molaren Verhältnis 1 : 4 bzw. 1 : 2 konnte NH₄BF₄ einkristallin dargestellt werden. NH₄BF₄ kristallisiert im Baryt-Typ. In der Struktur liegen isolierte [NH₄]⁺ und [BF₄]⁻-Tetraeder vor. Desweiteren konnte die Struktur von NH₄BF₄ bei 140 K bestimmt werden. Eine Strukturaufklärung der kubischen Hochtemperaturmodifikation von NH₄BF₄ konnte im Rahmen dieser Arbeit nicht erfolgen, da sich bei allen Versuchen die Einkristalle oberhalb von 250°C zersetzten. Bis 250°C konnte einkristallin die orthorhombische Raumtemperaturmodifikation nachgewiesen werden. Durch DTA/TG- bzw. DSC-Methoden wie auch der in-situ-Pulverdiffraktometrie konnte das thermische Verhalten von NH₄BF₄ sowohl unter inerten (Ar) als auch reaktiven (NH₃) Bedingungen aufgeklärt werden. Sowohl unter Argon- als auch Ammoniak-Atmosphäre wandelt die orthorhombische Raumtemperaturmodifikation von NH₄BF₄ bei zwischen 200 und 210°C in die kubische Hochtemperaturmodifikation um. Diese Phasenumwandlung ist reversibel. Man beobachtet eine Hysterese von ca. 30°C. Oberhalb von 250°C zersetzt sich NH₄BF₄ in BF₃ und NH₄F, welches dissoziiert in NH₃ und HF vorliegt.

Kristallsystem:	orthorhombisch	orthorhombisch
Raumgruppe:	Pnma (Nr. 62)	Pnma (Nr. 62)
Gitterkonstanten:	a = 909,73(18) pm	a = 887,3(2) pm
	b = 569,77(10) pm	b = 574,59(12) pm
	c = 729,47(11) pm	c = 717,10(12) pm
R-Werte (alle Daten):	$R_1 = 3,61$	$R_1 = 3,21$
	$wR_2 = 8,59$	$wR_2 = 7,12$
		· · ·

F,B-NH,


Bei der Reaktion von Ammoniak mit Bortrifluorid entsteht das Addukt F₃B-NH₃. Es kristallisiert im orthorhombischen Kristallsystem. Wie die Strukturanalyse zeigt liegt, in dem Lewis-Säure-Base-Komplex das Molekül in der gestaffelten Konformation vor. Dabei ist das Bor- wie auch das Stickstoffatom nahezu tetraedrisch koordiniert. Der B-N-Abstand von 158 pm ist größer als für einfach kovalente B-N-Verbindungen zu erwarten. Allgemein gilt für Komplexe dieser Art, daß mit Zunahme der Donorstärke (Elektronenübergang von der Base zur Säure) die intermolekularen Bindungen kürzer und die intramolekularen Bindungen länger werden.

 F_3B-NH_3 zersetzt sich zwischen 125 und 175°C zu HF und einem borhaltigen Intermediat, das bisher nicht charakterisiert werden konnte. Das im System vorhandene HF reagiert mit dem restlichen noch nicht zersetzten F_3B-NH_3 zu NH_4BF_4 . Das weitere thermische Verhalten entspricht jenem von NH_4BF_4 .

	293 K	170 K
Kristallsystem:	orthorhombisch	orthorhombisch
Raumgruppe:	Pbca (Nr. 61)	Pbca (Nr. 61)
Gitterkonstanten:	a = 815,12(10) pm	a = 807,26(13) pm
	b = 805,91(14) pm	b = 800,48(10) pm
	c = 929,03(12) pm	c = 924,31(11) pm
R-Werte (alle Daten):	$R_1 = 3,67$	$R_1 = 2,92$

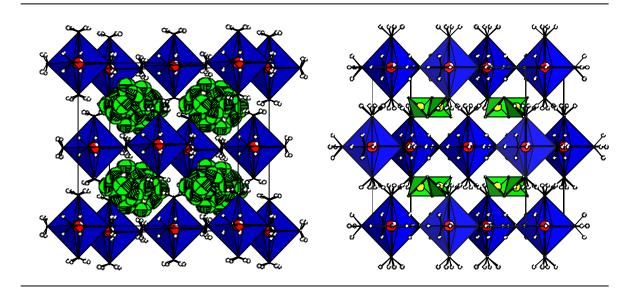
 $wR_2 = 6,66$

 $wR_2 = 9,42$

$[M^{II}(NH_3)_6][BF_4]_2$

Bei der Reaktion von Bor mit NH_4F in einer Monelampulle entstehten als Nebenprodukt tiefblaue Einkristalle von $[Ni(NH_3)_6][BF_4]_2$. Durch Umsetzung von Metallen der ersten Übergangsreihe mit Bor und Ammoniumfluorid im molaren Verhältnis 1:2:8 konnten die analogen Verbindungen $[M^{II}(NH_3)_6][BF_4]_2$ mit M=Cr, Mn, Fe, Co, Ni, Zn einkristallin dargestellt und strukturell charakterisiert werden. $[M^{II}(NH_3)_6][BF_4]_2$ kann man gemäß $[M^{II}(NH_3)_6][BF_4]_2 \equiv [Ca][F]_2$ als ein Derivat des Flußspat-Typs auffassen. Die regulären $[M^{II}(NH_3)_6]^{2+}$ -Oktaeder bilden eine kubisch-dichteste Kugelpackung, die komplexen $[BF_4]$ -Anionen besetzen darin alle Tetraederlücken. Die $[BF_4]$ -Tetraeder sind fehlgeordnet. Bei 120 K findet man in der Fe-Verbindung keine dynamische Fehlordnung mehr, vielmehr liegt eine statistische Fehlordnung der $[BF_4]$ -Tetraeder vor, die sich in den sehr hohen Temperaturfaktoren der Fluoratome widerspiegelt.

Thermoanalytisch findet man folgende Abbaumechanismen für den thermischen Abbau von $[Ni(NH_3)_6][BF_4]_2$:


1.) Argon-Atmosphäre

$$[\mathrm{Ni}(\mathrm{NH_3})_6][\mathrm{BF_4}]_2 \xrightarrow{252,6^{\circ}\mathrm{C} \, \mathrm{und} \, 291,4^{\circ}\mathrm{C}} "\mathrm{NiF}[\mathrm{BF_4}]" + \mathrm{BF_3} \uparrow + 6 \, \mathrm{NH_3} \uparrow$$

$$"\mathrm{NiF}[\mathrm{BF_4}]" \xrightarrow{329,4^{\circ}\mathrm{C}} \mathrm{NiF_2} + \mathrm{BF_3} \uparrow$$

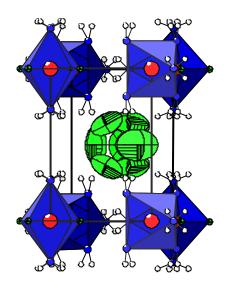
2.) Ammoniak-Atmosphäre

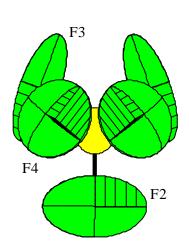
$$\begin{split} &[\mathrm{Ni}(\mathrm{NH_3})_6][\mathrm{BF_4}]_2 & \xrightarrow{252.6^{\circ}\mathrm{C}\,\mathrm{und291,4^{\circ}\mathrm{C}}} \\ &"\,\mathrm{NiF}[\mathrm{BF_4}]" & \xrightarrow{329.4^{\circ}\mathrm{C}} \\ &"\,\mathrm{NiF}_2 + \mathrm{BF_3} \uparrow \\ \\ &\mathrm{NiF_2} & \xrightarrow{\mathrm{NH_3}} \\ &"\,\mathrm{NiF}" + \mathrm{HF} \uparrow & \xrightarrow{\mathrm{NH_3}} \\ &N\mathrm{iH_3} & \to \\ \end{array} \\ & \mathrm{NiF_4} & \xrightarrow{\mathrm{NH_3}} \\ \end{array}$$

Der thermische Abbau von $[Ni(NH_3)_6][BF_4]_2$ in der "Bühler-Kammer" unter N_2 -Atmosphäre erfolgt in einem vierstufigen Prozeß. Über eine bisher nicht charakterisierte Phase zersetzt sich $[Ni(NH_3)_6][BF_4]_2$ zu NiF_2 , welches in zwei weiteren Schritten zu elementarem Nickel reduziert wird. Dieser Verlauf läßt sich nur dadurch erklären, daß im System eine "schwache" Ammoniakatmosphäre vorgeherrscht haben muß. Der thermische Abbau unter NH_3 -Atmosphäre verläuft in einem dreistufigen Prozeß. Über zwei bisher nicht charakterisierbare Intermediate zersetzt sich $[Ni(NH_3)_6][BF_4]_2$ zu elementarem Nickel.

	[Ni(NH ₃) ₆][BF ₄] ₂ 293 K	[Fe(NH ₃) ₆][BF ₄] ₂ 120 K
Kristallsystem:	kubisch	kubisch
Raumgruppe:	Fm3m (Nr. 225)	Fm3m (Nr. 225)
Gitterkonstanten:	a = 1128,48(14) pm	a = 1114,3(4) pm
R-Werte (alle Daten):	$R_1 = 4,37$	$R_1 = 12,21$
	$wR_2 = 11,42$	$wR_2 = 29,57$

$[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$


Bernsteinfarbene Einkristalle von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ entstehen bei der Umsetzung von Cr, B und NH_4F im molaren Verhältnis 1:2:8 in einer verschweißten Monelampulle bei $300^{\circ}C$. Die Verbindung kristallisiert in der tetragonalen Raumgruppe P4/mbm (Nr. 127) mit zwei Formeleinheiten pro Elementarzelle. Gemäß $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2 \equiv [A][B][X]_2 \equiv [A_{0.5}B_{0.5}][X]$ handelt es sich um eine geordnete Vierfach-Überstruktur-Variante des CsCl-Typs. In der Struktur liegen zwei kristallographisch unterscheidbare Chrom(III)-Ionen vor. Das Cr(1)-Ion wird verzerrt oktaedrisch von sechs NH_3 -Liganden koordiniert. Das Cr(2)-Ion hingegen wird heteroleptisch von zwei NH_3 -und vier F-Liganden gemäß eines trans- $[Cr(NH_3)_2F_4]$ -Komplexes koordiniert. Die isoliert in der Struktur vorliegenden $[BF_4]$ --Tetraeder sind fehlgeordnet.


Desweiteren wurde ein Absorptionsspektrum im UV-VIS-Bereich aufgenommen. Im Bereich zwischen 10000 und 40000 cm⁻¹ treten drei Absorptionsbanden auf. Die Bande bei 17200 cm⁻¹ entspricht dem Übergang ${}^4A_{2g} \rightarrow {}^4T_{2g}(F)$ des Chromophores [Cr(NH₃)₂F₄]. Bei der Bande bei 22050 cm⁻¹ handelt es sich um zwei sich überlagernde Übergänge. Die Bande setzt sich aus den Übergängen ${}^4A_{2g} \rightarrow {}^4T_{1g}(F)$ ([Cr(NH₃)₂F₄]) und ${}^4A_{2g} \rightarrow {}^4T_{2g}(F)$ ([Cr(NH₃)₆]) zusammen. Die Bande bei 28625 cm⁻¹ läßt sich dem Übergang ${}^4A_{2g} \rightarrow {}^4T_{1g}(F)$ von [Cr(NH₃)₆] zuordnen.

Bei der thermoanalytischen Zersetzung unter Argon zersetzt sich $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ in einem Schritt zu CrF_3 . Unter Ammoniak erfolgt die Zersetzung in einem dreistufigen Prozeß. Über zwei bisher nicht charakterisierte Intermediate zersetzt sich $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ zu CrN. Aus der Auftragung der Gitterkonstanten gegen die Temperatur läßt sich nach dem Gesetz von Gay-

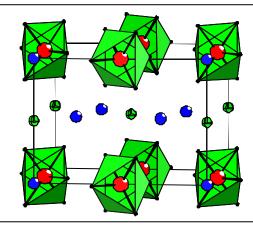
Lussac der thermische Ausdehnungskoeffizient α und die Gitterkonstanten a_0 und c_0 bei 0 K durch lineare Regression ermitteln. Als Ergebnis für die thermischen Ausdehnungskoeffizienten erhält man $\alpha(a)=10,508$ • 10^{-6} K⁻¹ und $\alpha(c)=43,995$ • 10^{-6} K⁻¹. Trägt man das molare Volumen gegen die Temperatur auf, läßt sich der "kubische" Volumenausdehnungskoeffizient γ und das molare Volumen bei 0 K durch lineare Regression bestimmen. Der "kubische" Volumenausdehnungskoeffizient γ von $[Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$ beträgt 66,451 • 10^{-6} K⁻¹.

	293 K	140 K
Kristallsystem:	tetragonal	tetragonal
Raumgruppe:	P4/mbm (Nr. 127)	P4/mbm (Nr. 127)
Gitterkonstanten:	a = 1055,99(11) pm	a = 1053,22(12) pm
	c = 781,66(10) pm	c = 773,71(11) pm
R-Werte (alle Daten):	$R_1 = 5.71$ $wR_2 = 11.64$	$R_1 = 5.51$ $wR_2 = 10.55$

Thermisches Verhalten von $(NH_4)_3[MF_6]F$ (M = Si, Ge); Kristallstruktur von $(NH_4)_3[GeF_6]F$

Bei der Umsetzung von Si bzw. Ge mit NH_4HF_2 im molaren Verhältnis 1:4 in Kupferampullen konnten $(NH_4)_3[MF_6]F$ (M=Si, Ge) einkristallin erhalten werden. Im Rahmen dieser Arbeit wurde die Struktur von $(NH_4)_3[GeF_6]F$ noch einmal bestimmt. Die Ge- und die Si-Verbindung kristallisieren isotyp im tetragonalen Kristallsystem. In der Struktur liegen isolierte $[GeF_6]^{2-}$ -Oktaeder vor. Das siebte Fluoridion koordiniert nicht am Metallion und kann als freies Fluoridion bezeichnet werden. In der Struktur liegen zwei kristallographisch verschiedene Ammoniumionen vor, deren Wasserstoff-

atome nicht lokalisiert werden konnten. Sie werden oktaedrisch von vier $[GeF_6]^{2}$ -Oktaedern und zwei freien Fluoridionen koordiniert.


Kristallsystem: tetragonal

Raumgruppe: P4/mbm (Nr. 127) **Gitterkonstanten:** a = 822,76(12) pm

c = 594,79(10) pm

R-Werte (alle Daten): $R_1 = 5,72$

 $wR_2 = 13,90$

Durch DTA/TG- bzw. DSC-Methoden wie auch der in-situ-Pulverdiffraktometrie konnte das thermische Verhalten von $(NH_4)_3[MF_6]F$ (M=Si, Ge) sowohl unter inerten (Ar) als auch reaktiven (NH_3) Bedingungen aufgeklärt werden.

Die Si-Verbindung zersetzt sich sowohl unter inerten als auch reaktiven Bedingungen in einem zweistufigen Prozeß. Im ersten Zersetzungsschritt kommt es zur Bildung von $(NH_4)_2[SiF_6]$ unter Abspaltung von NH_4F . Im zweiten Zersetzungsschritt zersetzt sich $(NH_4)_2[SiF_6]$ vollständig zu SiF_4 , HF und NH_3 . Die Zersetzungstemperaturen verschieben sich unter NH_3 -Atmosphäre zu höheren Temperaturen. Die Bildung von Ammoniakaten, z.B. $(NH_4)[Si(NH_3)F_5]$ bzw. $[Si(NH_3)_2F_4]$, wurde nicht beobachtet. Folgender Reaktionsmechanismus für den thermischen Abbau von $(NH_4)_3[SiF_6]F$ sowohl unter Ar/N_2 - als auch NH_3 -Atmosphäre läßt sich formulieren:

$$(\mathrm{NH_4})_3[\mathrm{SiF_6}]F \xrightarrow{\Delta \mathrm{T, Ar/N, oder NH_3}} (\mathrm{NH_4})_2[\mathrm{SiF_6}] + \mathrm{NH_4F} \uparrow$$

$$(\mathrm{NH_4})_2[\mathrm{SiF_6}] \xrightarrow{\Delta \mathrm{T, Ar/N, oder NH_3}} \mathrm{SiF_4} \uparrow + \mathrm{NH_3} \uparrow + \mathrm{HF} \uparrow$$

 $(NH_4)_3[GeF_6]F$ zersetzt sich anhand von DTA/TG-Untersuchungen sowohl unter Ar- als auch NH_3 -Atmosphäre in einem vierstufigen Prozeß. In den beiden ersten Zersetzungsschritten kommt es zur Bildung von $(NH_4)_2[GeF_6]$ • NH_3 unter Abspaltung von HF. Im dritten Zersetzungsschritt wird NH_4F abgespalten und es bildet sich das Ammoniakat $(NH_4)[Ge(NH_3)F_5]$. Im letzten Schritt zersetzt sich dieses zu GeF_4 , HF und NH_3 . Zusammenfassend läßt sich folgender Mechanismus für die Zersetzung von $(NH_4)_3[GeF_6]F$ formulieren:

$$(\mathrm{NH_4})_3[\mathrm{GeF_6}]F \xrightarrow{\Delta \mathrm{T,-HF}} (\mathrm{NH_4})_2[\mathrm{GeF_6}] \cdot \mathrm{NH_3} \xrightarrow{\Delta \mathrm{T,-NH_4F}} (\mathrm{NH_4})[\mathrm{Ge}(\mathrm{NH_3})\mathrm{F_5}]$$

$$(\mathrm{NH_4})[\mathrm{Ge}(\mathrm{NH_3})\mathrm{F_5}] \xrightarrow{\Delta \mathrm{T}} \mathrm{Ge\mathrm{F_4}} \uparrow + 2\,\mathrm{NH_3} \uparrow + \mathrm{HF} \uparrow$$

Zersetzt man (NH₄)₃[GeF₆]F in der "Bühler-Kammer", so beobachtet man einen etwas anderen Ver-

lauf. Unter N_2 -Atmosphäre kommt es im ersten Zersetzungsschritt zur Abspaltung von einem Mol NH_4F pro Formeleinheit. Im zweiten Zersetzungsschritt spaltet das gebildete $(NH_4)_2[GeF_6]$ HF ab unter Ausbildung des Ammoniakats $(NH_4)[Ge(NH_3)F_5]$. Im letzten Zersetzungsschritt zersetzt sich das Ammoniakat vollständig zu GeF_4 , HF und NH_3 .

Die Zersetzung von $(NH_4)_3[GeF_6]F$ unter NH_3 -Atmosphäre in der "Bühler-Kammer" verläuft analog zu der Zersetzung unter N_2 -Atmosphäre bis auf die Tatsache, daß sich das Ammoniakat oberhalb von 300° C in eine weitere Phase zersetzt, die im Rahmen dieser Arbeit nicht charakterisiert werden konnte.

Zusammenfassend lassen sich folgende Reaktionsmechanismen für den thermischen Abbau von $(NH_4)_3[GeF_6]F$ in der "Bühler-Kammer" formulieren:

$$\begin{split} &(\mathrm{NH_4})_3[\mathrm{GeF_6}]\mathrm{F} \xrightarrow{100^{\circ}\mathrm{C}, -\mathrm{NH_4F}} + (\mathrm{NH_4})_2[\mathrm{GeF_6}] \xrightarrow{275^{\circ}\mathrm{C}, -\mathrm{HF}} + (\mathrm{NH_4})[\mathrm{Ge}(\mathrm{NH_3})\mathrm{F_5}] \\ &(\mathrm{NH_4})[\mathrm{Ge}(\mathrm{NH_3})\mathrm{F_5}] \xrightarrow{300^{\circ}\mathrm{C}} + \mathrm{GeF_4} \uparrow + 2\,\mathrm{NH_3} \uparrow + \mathrm{HF} \uparrow \\ &(\mathrm{NH_4})_3[\mathrm{GeF_6}]\mathrm{F} \xrightarrow{175^{\circ}\mathrm{C}, -\mathrm{NH_4F}} + (\mathrm{NH_4})_2[\mathrm{GeF_6}] \xrightarrow{275^{\circ}\mathrm{C}, -\mathrm{HF}} + (\mathrm{NH_4})[\mathrm{Ge}(\mathrm{NH_3})\mathrm{F_5}] \xrightarrow{325^{\circ}\mathrm{C}} + ? \end{split}$$

Desweiteren wurde das thermische Verhalten von $(NH_4)_3[GeF_6]F$ bei tiefen Temperaturen untersucht. Dazu wurden im Temperaturbereich von 300 bis 50 K in 25 K-Schritten jeweils ein Pulverdiffraktogramm erstellt. Anhand der Diffraktogramme konnte nachgewiesen werden, daß sich im Temperaturbereich zwischen 225 und 200 K $(NH_4)_3[GeF_6]F$ eine Phasenumwandlung vom tetragonalen in das kubische Kristallsystem vollzieht. Um die Umwandlungstemperatur genauer bestimmen zu können, wurden in diesem Temperaturbereich in 5 K-Schritten nochmals Diffraktogramme erstellt. Demnach findet die Phasenumwandlung zwischen 225 und 220 K statt.

Um die Phasenumwandlung strukturchemisch nachvollziehen zu können, wurde ein Einkristall bei 140 K gemessen. Bei der Zellbestimmung wurde eine kubisch-primitive Zelle mit der Gitterkonstante a = 1168,63(33) pm gefunden. Eine Lösung der Struktur war nicht möglich, da der Kristall während seiner Messung seine Güte verloren hatte.

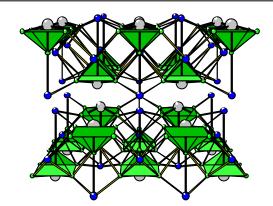
Umsetzungen von Ammoniumfluoriden mit P, Sb und Bi; Struktur von (NH₄)₂[SbF₅]

Durch Umsetzung von Hittorf'schem Phosphor bzw. rotem Phosphor mit NH₄F und NH₄HF₂ in unterschiedlichen molaren Verhältnissen wurde versucht, mit Hilfe der Monel-Methode bei verschiedenen Reaktionstemperaturen neue Ammoniumfluorophosphate zu erhalten. Bei Verwendung von Monel und Tantal als Ampullenmaterial konnte nur eine Reaktion von Phosphor mit dem Containermaterial nachgewiesen werden. Bei den Umsetzungen in Monel entstanden ausschließlich Nickelphosphide. Bei Verwendung von Tantalampullen konnte ab einer Reaktionstemperatur von 250°C die Bildung von NH₄TaF₆ nachgewiesen werden. Durch Verwendung von Molybdän als

Ampullenmaterial konnte eine Reaktion zwischen NH_4HF_2/NH_4F und P erreicht werden. Es bildete sich ein farbloses kristallines Produkt. Einige Einkristalle wurden isoliert und auf dem IPDS gemessen. Bei der Zellbestimmung ließ sich eine tetragonal-primitive Zelle mit den Gitterkonstanten a = 552,70(8) pm und c = 1093,40(24) pm finden. Im Rahmen dieser Arbeit ließ sich jedoch die Struktur der gebildeten Verbindung nicht aufklären.

Bei der Umsetzung von Bismut mit Ammoniumfluoriden sollten Ammoniumfluorobismutate dargestellt und strukturell charakterisiert werden. Bei allen durchgeführten Versuchen ließ sich die Bildung von NH₄BiF₄ nicht nachweisen. Auch die Bildung von BiF₃ wurde nicht beobachtet. Auch die Variation des Ampullenmaterials von Monel über Tantal zu Kupfer änderte an diesem Ergebnis nichts. Bei den Umsetzungen in Kupferampullen fielen vereinzelt farblose Einkristalle an, die unter dem Polarisationsmikroskop auslöschten. Einige Kristalle wurden unter dem Polarisationsmikroskop ausgesucht und in Glaskapillaren eingeschmolzen. Nach dem Einschmelzen in die Glaskapillare zersetzten sich alle Kristalle innerhalb weniger Minuten.

Durch Umsetzung von Sb mit NH_4HF_2 im molaren Verhältnis 1:2,5 konnte $(NH_4)_2[SbF_5]$ einkristallin dargestellt werden. Die Verbindung kristallisiert im orthorhombischen Kristallsystem. In der Struktur liegen isolierte $[SbF_5]^{2-}$ -Anionen und isolierte $[NH_4]^+$ -Kationen vor, deren Wasserstoffatome nicht lokalisiert werden konnten. Antimon ist quadratisch-pyramidal von fünf F-Liganden koordiniert. Das apikale Fluoratom ist um 16 pm näher am Antimon als die vier Fluoratome in der Ebene. Das Sb(III)-Ion ist um 15,2° aus der quadratischen Ebene herausgelenkt.


Kristallsystem: orthorhombisch
Raumgruppe: Cmcm (Nr. 63)

Gitterkonstanten: a = 652,14(12) pm b = 1419,50(24) pm

c = 679,20(10) pm

R-Werte (alle Daten): $R_1 = 2,59$

 $wR_2 = 6.86$

IV Literatur

- [1] G. Meyer, *Inorg. Synth.*, **1989**, 25, 46.
- [2] C. Plitzko, Dissertation, Universität Hannover, 1996.
- [3] C. Plitzko, G. Meyer, Z. Anorg. Allg. Chem., 1997, 623, 1393.
- [4] G. Meyer, A. Möller, J. Less-Common Met., 1991, 170, 327.
- [5] A. Möller, Dissertation Hannover, 1993.
- [6] C. Plitzko, M. Strecker, G. Meyer, Z. Anorg. Allg. Chem., 1997, 623, 79.
- [7] M. Roos, G. Meyer, Z. Anorg. Allg. Chem., 1999, 625, 1839.
- [8] M. Simon, G. Meyer, J. Chem. Soc., Chem. Commun., 1993, 5, 460.
- [9] C. Wüstfeld, Th. Vogt, U. Löchner, J. Strähle, H. Fueß, Angew. Chem., 1988, 100, 1013.
- [10] R. D. Shannon, C. T. Prewitt, *Acta Cryst.*, **1969**, B25, 925.
 R. D. Shannon, *Acta Cryst.*, **1976**, A32, 751.
- [11] M. S. Wickleder, A. Bohnsack, G. Meyer, Z. Anorg. Allg. Chem., 1996, 622, 675.
- [12] G. Pourroy, P. Poix, J. Fluorine Chem., 1989, 42, 257.
- [13] S. J. Patwe, B. N. Wani, U. R. K. Rao, K. S. Venkateswarlu, Can. J. Chem., 1989, 67, 1815.
- [14] R.-A. Schöning, Dissertation, Universität zu Köln, 1998.
- [15] M. Roos, Dissertation, Universität zu Köln, 1999.
- [16] W. Weber, Dissertation, Universität Tübingen, 1996.
- [17] Organikum, 18. Auflage, **1990**, Deutscher Verlag der Wissenschaften (Berlin).
- [18] W. W. Simons (Ed.), The Sadtler Handbook of Infrared Spectra, 1978.
- [19] H. D. Lutz, Structure and Bonding, **1988**, 69, 97.
- [20] M. Strecker, Dissertation, Universität Hannover, 1994.
- [21] N. Böhmer, Diplomarbeit, Universität zu Köln, 1999.
- [22] D. Göbbels, Diplomarbeit, Universität zu Köln, 1998.
- [23] D'Ans, Lax, Taschenbuch für Chemiker und Physiker, Bd. 3, 4. Auflage 1998, Springer.
- [24] A. F. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie, **1995**, 101. Auflage, de Gruyter-Verlag (Berlin-New York).
- [25] R.-A. Schöning, G. Meyer, Z. Anorg. Allg. Chem., 1997, 623, 1759.
- [26] Stoe & Cie GmbH: Stoe Automatic X-Ray Powder Diffractometer Systems, Darmstadt.
- [27] Edmund Bühler GmbH & Co.: High Temperature X-Ray Diffraction, Bodelshausen.

- [28] E. Gusek, A. Bettencourt, Einführung in die Rasterelektronenmikroskopie, Universität zu Köln.
- [29] A. K. Cheetham, A. J. Skarnulis, D. M. Thomas, K. Ibe, J. Chem. Soc., Chem. Comm., 1984, 1603.
- [30] A. K. Cheetham, P. Day, *Solid State Chemistry*, **1987**, Oxford University Press, 1. Auflage.
- [31] H. Naumer, W. Heller (Hrsg.), *Untersuchungsmethoden in der Chemie*, **1986**, G. Thieme Verlag (Stuttgart, New York).
- [32] W. F. Hemminger, H. K. Cammenga, Methoden der thermischen Analyse, 1980, Springer-Verlag (Berlin, Heidelberg, New York, London, Paris, Tokyo).
 Netzsch: Bedienungsanleitung Simultan-Thermo-Analyse STA 409 C, Selb.
- [33] A. Kettrup, *Analytiker-Taschenbuch*, **1984**, Springer-Verlag (Berlin, Heidelberg, New York, London, Paris, Tokyo).
- [34] M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in organischer Chemie*, **1995**, 5. Auflage, Georg Thieme Verlag (Stuttgart, New York).
- [35] K. Yvon, W. Jeitschko, E. Parthe, LAZY PULVERIX, J. Appl. Cryst., 1977, 10, 73.
- [36] G. M. Sheldrick, SHELXS-86 / -97, Program for the Solution of Crystal Structures, Göttingen 1986 / 1997.
- [37] G. M. Sheldrick, SHELXL-93 / -97, Program for the Refinement of Crystal Structures, Göttingen 1993 / 1997.
- [38] G. Bergerhoff, DIAMOND 2.1c, Visuelles Informationssystem für Kristallstrukturen, Bonn 1999.
- [39] Stoe & Cie, VISUAL X-POW 1.03, Darmstadt **1996**.
- [40] Stoe & Cie, VISUAL WIN X-POW 1.04, Darmstadt **1998**.
- [41] Stoe & Cie, X-SHAPE 1.01, Darmstadt **1996**.
- [42] Stoe & Cie, X-RED 1.07, Darmstadt **1996**.
- [43] J. J. Berzelius, *Pogg. Ann.*, **1824**, 2, 122.
- [44] H. S. Booth, S. Rehmar, *Inorg. Synth.*, **1946**, 2, 23.
- [45] O. Glemser, H. Haeseler, Z. Anorg. Allg. Chem., 1955, 279, 141.
- [46] I. G. Ryss, N. G. Parkhomenko, Zh. Neorg. Khim., 1966, 11, 103.
- [47] A. W. Laubengayer, G. F. Condike, J. Am. Chem. Soc., 1948, 70, 2274.
- [48] W. G. Paterson, M. Onyschuk, Can. J. Chem., 1961, 39, 986.
- [49] J. L. Hoard, V. Blair, J. Am. Chem. Soc., 1935, 57,1985.
- [50] M. J. R. Clark, H. Lynton, Can. J. Chem., 1969, 47, 2579.
- [51] D. J. J. van Rensburg, J. C. A. Boeyens, J. Solid State Chem., 1972, 5, 79.
- [52] K. O. Strømme, Acta Chem. Scand., 1974, A28, 546.

- [53] H. Fitz, B. G. Müller, Z. Anorg. Allg. Chem., 1997, 623, 579.
- [54] H. Möller, H. D. Lutz, Z. Krist., 1992, 201, 285.
- [55] L. E. Drain, Disc. Faraday Soc., 1955, 19, 200.
- [56] R. C. Plumb, D. F. Hornig, J. Chem Phys., 1955, 23, 947.
- [57] A. J. C. Wilson (Ed.), *International Tables for X-Ray Crystallography*, Vol. C, **1992**, Kluver Academic Press (Dordrecht / Holland).
- [58] C. J. H. Schutte, D. J. J. Rensburg, *J. Mol. Structure*, **1971**, 10, 481.
- [59] G. L. Cote, H. W. Thompsen, *Proc. Roy. Soc. (London)*, **1957**, B70, 785.
- [60] R. T. Mareno, J. L. McAtee, *Thermochim. Acta*, **1972**, 4, 421.
- [61] P. W. Richter, C. W. F. T. Pistorius, J. Solid State Chem., 1971, 3, 434.
- [62] J. L. Hoard, S. Geller, W. M. Cashin; Acta Cryst., 1951, 4, 396.
- [63] I. Bahrin, *Thermochemical Data of Pure Substances*, **1995** 3. Auflage, VCH-Wiley (Weinheim).
- [64] J. Gay-Lussac, J. L. Thenard; Mem. Phys. Chim. Soc. Arcueil, 1809, 2, 210.
- [65] H. Davy; Phil. Trans. Roy. Soc. London, 1812, 102, 352.
- [66] H. C. Brown, S. Johnson; J. Am. Chem. Soc., 1954, 76, 1978.
- [67] C. A. Kraus, E. H. Brown; J. Am. Chem. Soc., 1929, 51, 2690.
- [68] A. P. Caron, J. L. Ragle, M. E. Yorke, H. Yeh; J. Phys. Chem., 1968, 72, 556.
- [69] G. Balz, W. Zinser; Z. Anorg. Allg. Chem., 1935, 221, 225.
- [70] D. Mootz, M. Steffen; Z. Anorg. Allg. Chem., 1981, 431, 171.
- [71] S. Geller, J. L. Hoard; *Acta Cryst.*, **1951**, 4, 399.
- [72] J. L. Hoard, S. Geller, T. B. Brown; *Acta Cryst.*, **1951** 4, 405.
- [73] C. K. Prout, J. D. Wright; Angew. Chem., 1968, 17, 688.
- [74] J. Goubeau, H. Mitschelen; Z. Phys. Chem., 1958, 14, 61.
- [75] R. C. Taylor, H. S. Gabelnick, K. Aida, R. L. Amster; *Inorg. Chem.*, 1969, 8, 605.
- [76] D. H. Clague, A. Danti; *Spectrochim. Acta*, **1967**, A 23, 2359.
- [77] W. Sawodny, J. Goubeau; Z. Phys. Chem., 1965, 44, 227.
- [78] J. Weidlein, U. Müller, K. Dehnicke; Schwinggungsspektroskopie, S. 51, 2. Aufl. 1988, Thieme Verlag (Stuttgart, New York).
 Schwingungsfrequenzen I, 1. Aufl. 1981, Thieme Verlag (Stuttgart, New York).
- [79] Tassaert, Ann Chim., 1798, 28, 92.
- [80] A. Werner, Z. Anorg. Chem., 1893, 3, 267.
- [81] O. Hassel, H. Kringstad, Z. Anorg. Allg. Chem., 1932, 209, 281.
- [82] R. Eßmann, G. Krainer, A. Niemann, D. Rechenbach, A. Schmieding, T. Sichla, U. Zachwieja, H. Jacobs, Z. Anorg. Allg. Chem., 1996, 622, 1161.

- [83] S. Kummer, D. Babel, Z. Naturforsch., 1984, B39, 1118.
- [84] A. Hoser, K. Vogt, W. Prandl, Z. Krist., 1983, 162, 112.
- [85] Y. Okaya, R. Pepensky, Y. Takeuchi, H. Kuroya, A. Shimada, P. Gallitelli, N. Stemple, A. Beevers, *Acta Cryst.*, **1957**, 10, 798.
- [86] H. C. Stynes, J. A. Ibers, *Inorg. Chem.*, **1971**, 10, 2304.
- [87] R.-A. Schöning, G. Meyer, Z. Anorg. Allg. Chem., 1998, 624, 1389.
- [88] E. Wilke-Dörfurt, G. Balz, Z. Anorg. Allg. Chem., 1927, 159, 198.
- [89] C. Plitzko, G. Meyer, Z. Anorg. Allg. Chem., 1996, 622, 1646.
- [90] P. Schiebel, A. Hoser, W. Prandl, G. Heger, W. Paulus, P. Schweiss, J. Phys. Condens. Matter, 1994, 11, 10989.
- [91] P. Schiebel, A. Hoser, W. Prandl, G. Heger, P. Schweiss, J. Phys. I France, 1993, 3, 987.
- [92] P. Schiebel, W. Prandl, R. Papoular, W. Paulus, Acta Cryst., 1996, A52, 189.
- [93] A. Riou, Y. Cudennec, Y. Gerault, A. Lecerf, *Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences Ser. II*, **1996**, 332, 247.
- [94] T. Grzybek, J. M. Janik, A. Kulczycki, G. Pytasz, J. A. Janik, J. Sciesinski, E. Sciesinski, J. Raman Spectrosc., 1973, 1, 185.
- [95] J. M. Terrasse, H. Poulet, J. P. Mathieu, *Spectrochim. Acta*, **1964**, 20, 305.
- [96] G. Meyer, Eur. J. Solid State Inorg. Chem., 1991, 28, 1209.
- [97] K. Wieghardt, J. Weiss, *Acta Cryst.*, **1972**, B28, 529.
- [98] K. H. Schmidt, A. Müller, *Inorg. Chem.*, **1975**, 14, 2183.
- [99] T. Veach Long II, D. J. B. Penrose, J. Am. Chem. Soc., 1971, 632.
- [100] L. H. Gade, Koordinationschemie, 1998 1. Auflage, VCH-Wiley (Weinheim).
- [101] J. L. Hoard, M. B. Williams, J. Am. Chem. Soc., 1942, 64, 633.
- [102] G. C. Hampson, L. Pauling, J. Am. Chem. Soc., 1938, 60, 2702.
- [103] R. M. Bozorth, J. Am. Chem. Soc., 1922, 44, 1066.
- [104] E. O. Schlemper, W. C. Hamilton, J. Chem. Phys., 1966, 44, 2499.
- [105] E. O. Schlemper, W. C. Hamilton, J. Chem. Phys., **1966**, 45, 408.
- [106] J. L. Hoard, W. B. Vincent, J. Am. Chem. Soc., 1939, 61, 2849.
- [107] V. O. Gel'mboldt, Zh. Neorg. Khim., 1989, 34, 1889.
- [108] W. Biltz, E. Rahlfs, Z. Anorg. Allg. Chem., 1927, 166, 351.
- [109] J. Hu, L. J. Schaad, B. Andes Hess, J. Am. Chem. Soc., 1991, 113, 1463.
- [110] A. E. Reed, Schleyer, *Inorg. Chem.*, **1988**, 35, 3969.
- [111] C. F. Melius, P. Ho, J. Phys. Chem., 1991, 95, 1410.
- [112] F. Flacke, H. Jacobs, J. Alloys Compd., 1995, 227, 109.
- [113] U. Reusch, Dissertation, Universität Tübingen, 1999.

- [114] B. K. Vajnstejn, R. N. Kurdjumova, Soviet Phys. Cryst., 1958, 3, 27.
- [115] C. Plitzko, G. Meyer, Z. Krist. NCS, 1998, 213, 475.
- [116] W. Weber, E. Schweda, Z. Anorg. Allg. Chem., 1997, 623, 1529.
- [117] C. Plitzko, G. Meyer, Z. Anorg. Allg. Chem., 1997, 623, 1347.
- [118] R. L. Davidovich, T. A. Kaidolova, Russ. J. Inorg. Chem. (Engl. Transl.), 1971, 16, 1354.
- [119] O. Ruff, W. Plato, Z. Anorg. Allg. Chem., 1916, 98, 27.
- [120] W. Jander, Z. Angew. Chem., 1929, 42, 462.
- [121] J. Liebig, F. Wöhler, Lieb. Ann., 1834, 11, 139.
- [122] F. Seel, J. Langer, Z. Anorg. Allg. Chem., 1958, 195, 316.
- [123] H. Bode, H. Clausen, Z. Anorg. Allg. Chem., 1951, 265, 229.
- [124] J. Hoard, R. Vincent, J. Am. Chem. Soc., 1940, 62, 3126.
- [125] R. R. Ryan, D. T. Cromer, *Inorg. Chem.*, **1972**, 11, 2322.
- [126] V. E. Ovchinnikov, A. A. Udovenko, L. P. Solov'eva, L. M. Volkova, R. L. Davidovich, Koord. Khim., 1982, 8, 697.
- [127] B. Ducourant, R. Fourcade, G. Mascherpa, Rev. Chim. Min., 1983, 20, 314.
- [128] N. Habibi, B. Ducourant, R. Fourcade, G. Mascherpa, Bull. Soc. Chim. Fr., 1974, 2320.
- [129] B. Ducourant, R. Fourcade, C. R. Seances Acad. Sci., Ser. C, 1976, 282, 741.
- [130] J. Kendall, E. D. Crittenden, H. K. Miller, J. Am. Chem. Soc., 1923, 45, 980.
- [131] M. Edstrand, M. Inge, N. Ingri, Acta Chem. Scan., 1955, 9, 122.
- [132] M. Webster, S. Keats, J. Chem. Soc., 1971, 298.
- [133] E. Martineau, J. B. Milne, J. Chem. Soc., **1970**, 2971.
- [134] A. Westgren, G. Haegg, Erikkson, Z. Phys. Chem. (B), **1929**, 4, 457.
- [135] B. Aurivillius, C.-I. Lindblom; Acta Chem. Scand., 1964, 18, 1554.
- [136] M. Hoffmann, E. Schweda, J. Strähle, J. P Laval, B. Frit; J. Solid State Chem., 1995, 114, 73.
- [137] J. W. Pierce, H. Y. P. Hong; *Proceedings 10th Rare Earth Conf.*, Carefree, Arizona **1973**, A2 527.
- [138] A. I. Popov, A. V. Scharabarin, V. F. Sukhoverkhov, N. A. Tchumaevsky; Z. Anorg. Allg. Chem., 1989, 576, 242.
- [139] R.-A. Schöning, *Diplomarbeit*, Universität Hannover, **1995**.
- [140] Weast, *Handbook of Chemistry and Physics*, CRC Press, Inc., Boca Raton, Florida, 70th Ed. **1989**.
- [141] Landolt, Börnstein, Zahlenwerte und Funktionen aus Physik/Chemie/...., Elektrische Eigenschaften II, 2. Band 7. Teil, 6. Auflage, Springer Verlag **1960** (Berlin, Heidelberg, New York, London, Paris, Tokyo).

- [142] H. J. Bartsch; *Taschenbuch Mathematischer Formeln*, **1987**, Verlag Harri Deutsch, (Thun und Frankfurt/Main).
- [143] P. W. Atkins; Physikalische Chemie, 1. Auflage 1987, VCH-Wiley (Weinheim).
- [144] E. W. Lemmon, M. O. McLinden, D. G. Friend; "Thermophysicals Properties of Fluid Systems" in NIST Standard Reference Database Number 69, Eds. W. G. Mallard, P. J. Linstrom, August 1997, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
- [145] T. C. Waddington, J. Chem. Soc., 1956, 4340.
- [146] J. T. R. Dunsmuir, A. P. Lane, Spectrochim. Acta, Vol. 28A, 1972, 45.
- [147] J. R. During, D. J. Antion, Appl. Spectrosc., 1970, 24(1), 16.

V Anhang

5.1 MIR-Spektren von Ammoniumhydrogendifluorid und Ammoniumfluorid

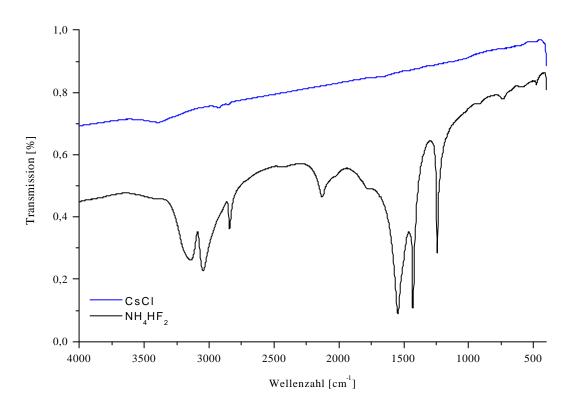


Abb. 1: MIR-Spektrum von Ammoniumhydrogendifluorid

Banden [cm ¹]	Intensität	Zuordnung	Literat	ur [145/	146/34]
1219,2	sh	ν ₂ (HF ₂ -)	-	1215	-
1240,3	S	?	-	-	-
1430,0	S	$v_4(NH_4^+)$	1400	-	1406
1545,2	S	$v_3(HF_2^-)$	-	1530	-
1777,1	sh	$v_4 + v_6 (NH_4^{-+})$	1735	-	-
2035,6	sh	$v_2 + v_6 (NH_4^+)$	2010	-	-
2128,3	m	?	-	-	-
2840,8	m	$2v_4(NH_4^+)$	2805	-	2875
3048,7	m	$v_2 + v_4 (NH_4^{+})$	3030	-	3050
3145,7	m	$v_3(NH_4^+)$	3130	-	3140
3402,8	vw	$v_1(NH_4^+)$	3400	-	-

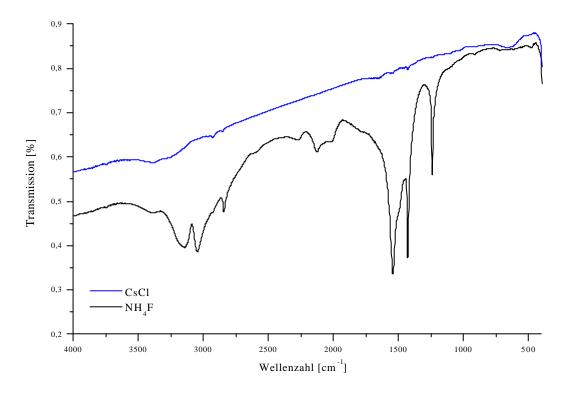


Abb. 2: MIR-Spektrum von Ammoniumfluorid

Banden [cm¹]	Intensität	Zuordnung	Literatur	· [56/147]
1240,3	S	?		
1430,0	S	?		
1490,4	sh	$v_4(NH_4^+)$	1489	1484
1545,2	S	$3v_6(NH_4^+)$	1545	-
1788,3	sh	$v_4 + v_5 (NH_4^+)$	1809	-
2017,3	vw	$v_4 + v_6(NH_4^+)$	2007	2005
2077,8	sh	$v_2 + v_5 (NH_4^+)$	2084	2080
2128,3	w	$v_4 + 2v_5(NH_4^+)$	2159	2135
2267,4	w	$v_2 + v_6(NH_4^+)$	2261	2260
2500,7	vw	$v_4 + v_6 (NH_4^+)$ $v_3 - v_6 (NH_4^+)$	2485	2508
2597,7	vw	$v_2 + v_5 + v_6(NH_4^+)$	2590	2595
2840,8	W	$v_3(NH_4^+)$	2820	2830
2926,5	sh	$2v_4(NH_4^+)$	2969	2940
3048,7	m	$v_4 + 3v_6(NH_4^+)$	3065	3100
3144,3	m	$v_3 + v_5 (NH_4^+)$ $v_1 + v_5 (NH_4^+)$	3161	-
3359,3	V	$v_3 + v_6(NH_4^+)$	3320	3310

5.2 Kristalldaten von $[M^{II}(NH_3)_6][BF_4]_2$ mit M = Cr/Ni, Fe, Co und Zn

Tab. 1: Kristallographische Daten und Angaben zur Strukturbestimmung von $[Ni_{0,751}Cr_{0,249}(NH_3)_6][BF_4]_2$

K	Kristallsystem	kubisch
R	Raumgruppe	Fm3m (Nr. 225)
C	Gitterkonstante pm	a = 1130,41(18)
Z	Zellvolumen 10 ⁶ pm ³	1444,5(4)
A	Anzahl der Formeleinheiten	Z = 4
N	Molmasse g/mol	333,0
R	Röntgenographische Dichte g/cm³	1,523
K	Kristallfarbe	tiefblau
N	Леßgerät	IPDS (Stoe)
S	trahlung	$Mo-K_{\alpha}$ (Graphit-Monochromator)
S	can-Modus	100 Bilder in 2°-Schritten
N	Meßtemperatur K	293(2)
N	∕leßbereich °	$3.8 \le 2\Theta \le 56.3$
μ	$(\text{MoK}_{\alpha}) \text{ mm}^{-1}$	1,143
I	ndexbereich	$-14 \le h \le 14$
		$-14 \le k \le 14$
		$-14 \le l \le 14$
F	F(000)	676,016
A	Anzahl der gemessenen Reflexe	3481
J	Jnabhängige Reflexe	122
E	Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	115
R	R _{irt}	0,0746
7	Verwendete Programmsysteme	X-Red (Stoe) [42] / X-Shape (Stoe) [41]
		SHELXS-97 [36] / SHELXL-97 [37]
S	treufaktoren	International Tables [57]
S	trukturverfeinerung	"Full-matrix"-Least-Squares an F2
Γ	Daten / Restraints / Parameter	122 / 0 / 17
C	Goodness-of-fit	1,396
R	R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0418; wR_2 = 0.1106$
R	R-Werte (alle Daten)	$R_1 = 0.0453; wR_2 = 0.1124$
R	Restelektronendichte	0,316 / -0,237

Tab. 2:	Atomkoordinaten und äquivalente	Temperaturfaktoren	$U_{\!\scriptscriptstyle eq}$	(10^{-4})	pm ²)	von
	$[Ni_{0.751}Cr_{0.249}(NH_3)_6][BF_4]_2$		-			

Atom	Lage	x/a	y/b	z/c	sof	\mathbf{U}_{eq}
Ni	4a	0	0	0	0,01564	0,0496(8)
Cr	4a	0	0	0	0,00519	0,0496(8)
В	8c	0,25	0,25	0,25		0,068(3)
N	24e	0,1902(5)	0	0		0,0730(16)
F1	32f	0,3146(6)	0,1854(6)	0,1854(6)	0,07528	0,160(6)
F2	48g	0,25	0,1239(11)	0,25	0,09139	0,130(4)
H1	96k	0,217(7)	0,052(3)	0,052(3)	0,37500	0,13(3)

 $\textbf{Tab. 3:} \ Koeffizienten\ d.\ anisotropen\ Temperaturfaktoren\ U_{ij}\ (10^{\text{-}4}\ pm^2)\ von\ [Ni_{0,751}\text{Cr}_{0,249}(NH_3)_6] [BF_4]_2$

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{13}	${ m U}_{23}$	$\mathbf{U_{12}}$
Ni	0,0496(8)	0,0496(8)	0,0496(8)	0	0	0
Cr	0,0610(11)	0,0496(8)	0,0496(8)	0	0	0
В	0,068(3)	0,068(3)	0,068(3)	0	0	0
N	0,058(3)	0,081(2)	0,081(2)	0	0	0
F1	0,160(6)	0,160(6)	0,160(6)	-0,048(5)	0,048(5)	0,048(5)
F2	0,151(7)	0,088(7)	0,151(7)	0	-0,014(9)	0

 $\boldsymbol{U}_{ij} = exp[-2\pi^2(h^2a^{*2}\boldsymbol{U}_{11} + \ldots + 2hka^*b^*\boldsymbol{U}_{12})]$

 $\textbf{Tab. 4:} \ \ Bindungslängen \ (pm) \ und \ -winkel \ (^\circ) \ in \ [Ni_{0,751}Cr_{0,249}(NH_3)_6][BF_4]_2$

Ni/Cr-N	215,0(6)	N-Ni/Cr-N	180,0
B-F1	12606(12)	N-Ni/Cr-N	90,0
B-F2	142,6(13)	F2-B-F2	180,0
N-H	88,6(46)	F2-B-F2	90,0
F1-F2	124,5(7)	F1-B-F1	109,5
N-(H)-F1	328,0	F1-B-F1	109,471(1)
N-(H)-F2	322,6	F1-B-F2	125,264(1)
		F1-B-F2	54,736(1)
		F1-F2-F1	112,2(16)
		Ni/Cr-N-H	110(5)

 $\textbf{Tab. 5:} \ \ Kristallographische \ Daten \ und \ Angaben \ zur \ Strukturbestimmung \ von \ [Fe(NH_3)_6][BF_4]_2$

Kristallsystem	kubisch
Raumgruppe	Fm3m (Nr. 225)
Gitterkonstante pm	a = 1133,38(19)
Zellvolumen 10 ⁶ pm ³	1455,9(4)
Anzahl der Formeleinheiten	Z = 4
Molmasse g/mol	331,67
Röntgenographische Dichte g/cm³	1,513
Kristallfarbe	schwach hellblau
Meßgerät	IPDS (Stoe)
Strahlung	$Mo-K_{\alpha}$ (Graphit-Monochromator)
Scan-Modus	90 Bilder in 2°-Schritten
Meßtemperatur K	293(2)
Meßbereich °	$3.8 \le 2\Theta \le 56.3$
$\mu \text{ (MoK}_{\alpha}) \text{ mm}^{-1}$	1,111
Indexbereich	$-14 \le h \le 14$
	$-12 \le k \le 14$
	$-14 \le l \le 14$
F(000)	672
Anzahl der gemessenen Reflexe	2603
Unabhängige Reflexe	123
Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	110
R_{int}	0,0507
Extinktionskoeffizient	0,006(3)
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-Shape (Stoe) [41]
	SHELXS-97 [36] / SHELXL-97 [37]
Streufaktoren	International Tables [57]
Strukturverfeinerung	"Full-matrix"-Least-Squares an F ²
Daten / Restraints / Parameter	123 / 0 / 18
Goodness-of-fit	1,111
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0466$; $wR_2 = 0.1144$
R-Werte (alle Daten)	$R_1 = 0.0523; \text{ wR}_2 = 0.1236$
Restelektronendichte	0,295 / -0,299

Tab. 6:	Atomkoordinaten	und äquivalente	Temperaturfaktor	en U _{ea}	(10^{-4}pm^2)	von $[Fe(NH_3)_6][BF_4]$],
----------------	-----------------	-----------------	------------------	--------------------	--------------------------	--------------------------	----

Atom	Lage	x/a	y/b	z/c	sof	$ m U_{eq}$
Fe	4a	0	0	0	0,02112	0,0562(10)
В	8c	0,25	0,25	0,25		0,076(4)
N	24e	0	0,1929(6)	0		0,0805(19)
F1	32f	0,1847(6)	0,3153(6)	0,1847(6)	0,06891	0,147(6)
F2	48g	0,25	0,25	0,1254(11)	0,09779	0,148(4)
H1	96k	0,053(3)	0,217(7)	0,053(3)	0,37500	0,14(3)

 $\textbf{Tab. 7:} \ \ Koeffizienten \ der \ anisotropen \ Temperaturfaktoren \ U_{ij} \ (10^{\text{-}4} \ pm^2) \ von \ [Fe(NH_3)_6][BF_4]_2$

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	U ₁₃	\mathbf{U}_{23}	$\mathbf{U}_{_{12}}$
Fe	0,0562(10)	0,0562(10)	0,0562(10)	0	0	0
В	0,076(4)	0,076(4)	0,076(4)	0	0	0
N	0,087(3)	0,068(4)	0,087(3)	0	0	0
F1	0,147(6)	0,147(6)	0,147(6)	0,045(5)	-0,045(5)	0,045(5)
F2	0,174(8)	0,174(8)	0,095(8)	0	0	-0,011(10)

 $U_{ij} = \exp[-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12})]$

Tab. 8: Bindungslängen (pm) und -winkel (°) in $[Fe(NH_3)_6][BF_4]_2$

Fe-N	218,6(7)	N-Fe-N	180,0	
B-F1	128,4(13)	N-Fe-N	90,0	
B-F2	141,3(13)	F2-B-F2	180,0	
N-H	89,1(51)	F2-B-F2	90,0	
F1-F2	124,4(7)	F1-B-F1	109,5	
N-(H)-F1	326,9	F1-B-F1	109,471(2)	
N-(H)-F2	323,4	F1-B-F2	125,264(2)	
		F1-B-F2	54,736(1)	
		F1-F2-F1	114,5(16)	
		Fe-N-H	107,9(57)	

 $\textbf{Tab. 9:} \ Kristallographische \ Daten \ und \ Angaben \ zur \ Strukturbestimmung \ von \ [Co(NH_3)_6][BF_4]_2$

Kristallsystem	kubisch
Raumgruppe	Fm3m (Nr. 225)
Gitterkonstante pm	a = 1131,20(18)
Zellvolumen 10 ⁶ pm ³	1447,5(4)
Anzahl der Formeleinheiten	Z = 4
Molmasse g/mol	334,75
Röntgenographische Dichte g/cm³	1,536
Kristallfarbe	violett
Meßgerät	IPDS (Stoe)
Strahlung	$Mo-K_{\alpha}$ (Graphit-Monochromator)
Scan-Modus	100 Bilder in 2°-Schritten
Meßtemperatur K	293(2)
Meßbereich °	$3,8 \le 2\Theta \le 56,3$
$\mu (MoK_{\alpha}) mm^{-1}$	1,261
Indexbereich	$-13 \le h \le 13$
	$-14 \le k \le 14$
	$-14 \le 1 \le 14$
F(000)	676
Anzahl der gemessenen Reflexe	3493
Unabhängige Reflexe	121
Beobachtete Reflexe $[I_0 > 2\sigma(I)]$	115
$R_{_{int}}$	0,0850
Verwendete Programmsysteme	X-Red (Stoe) [42] / X-Shape (Stoe) [41]
	SHELXS-97 [36] / SHELXL-97 [37]
Streufaktoren	International Tables [57]
Strukturverfeinerung	"Full-matrix"-Least-Squares an F ²
Daten / Restraints / Parameter	121 / 0 / 18
Goodness-of-fit	1,252
R-Werte $[I_0 > 2\sigma(I)]$	$R_1 = 0.0959; wR_2 = 0.2010$
R-Werte (alle Daten)	$R_1 = 0.0975$; $wR_2 = 0.2081$
Restelektronendichte	0,758 / -0,303

Tab. 10: Atomkoordinaten und äquivalente	Temperaturfaktoren U _e	$[Co(NH_3)_6][BF_4]_2$
--	-----------------------------------	------------------------

Atom	Lage	x/a	y/b	z/c	sof	\mathbf{U}_{eq}
Co	4a	0	0	0		0,0762(17)
В	8c	0,25	0,25	0,25		0,099(5)
N	24e	0	0	0,1906(8)		0,097(3)
F1	32f	0,3143(11)	-0,1857(11)	0,3143(11)	0,07391	0,18(2)
F2	48g	0,25	0,879	0,25	0,09276	0,152(15)
Н	96k	-0,050(6)	-0,050(6)	0,213(11)	0,37500	0,14(5)

 $\textbf{Tab. 11:} \ \ Koeffizienten \ der \ anisotropen \ Temperaturfaktoren \ U_{ij} \ (10^{-4} \ pm^2) \ von \ [Co(NH_3)_6][BF_4]_2$

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{13}	U_{23}	U ₁₂
Co	0,0762(17)	0,0762(17)	0,0762(17)	0	0	0
В	0,099(5)	0,099(5)	0,099(5)	0	0	0
N	0,106(4)	0,106(4)	0,081(5)	0	0	0
F1	0,18(2)	0,18(2)	0,18(2)	-0,047(12)	-0,047(12)	-0,047(12)
F2	0,17(2)	0,111(12)	0,17(2)	0	0,013(18)	0

 $\boldsymbol{U}_{ij} = exp[-2\pi^2(h^2a^{*2}\boldsymbol{U}_{11} + \ldots + 2hka^*b^*\boldsymbol{U}_{12})]$

Tab. 12: Bindungslängen (pm) und -winkel (°) in $[\mathrm{Co(NH_3)}_6][\mathrm{BF_4}]_2$

Co	o-N	215,6(10)	N-Co-N	180,0
В-	-F1	126(2)	N-Co-N	90,0
В-	-F2	146(2)	F2-B-F2	180,0
N-	-H	83,9(8)	F2-B-F2	90,000(1)
F1	1-F2	126,1(15)	F1-B-F1	109,5
N-	-(H)-F1	328,4	F1-B-F1	109,471(1)
N-	-(H)-F2	321,4	F1-B-F2	125,264(1)
			F1-B-F2	54,736(1)
			F2-F1-F2	109,5(14)
			Co-N-H	107,5(94)

 $\textbf{Tab. 13:} \ \ Kristallographische \ Daten \ und \ Angaben \ zur \ Strukturbestimmung \ von \ [Zn(NH_3)_6][BF_4]_2$

Kristallsystem Raumgruppe Gitterkonstante pm $a = 1127,4(2)$ Zellvolumen 10^6 pm³ $a = 1127,4(2)$ Zellvolumen 10^6 pm³ $a = 1127,4(2)$ Zellvolumen $a = 1127,4(2)$ Ze	
Gitterkonstante pm $ a = 1127,4(2) $ Zellvolumen 10^6 pm³ $ 1433,0(4) $ Anzahl der Formeleinheiten $ Z = 4 $ Molmasse g/mol $ 341,2 $ Röntgenographische Dichte $g/cm³$ $ 1,58 $ Kristallfarbe bläulich/farblos Meßgerät IPDS (Stoe) Strahlung Mo- K_{α} (Graphit-Monochromator) Scan-Modus $ 100 \text{ Bilder in } 2^\circ\text{-Schritten} $ Meßtemperatur K $ 293(2) $ Meßbereich $^\circ$ $ 3,8 \le 2\Theta \le 56,3 $ $ \mu \text{ (MoK}_{\alpha} \text{) mm}^1 $ $ 1,792 $ Indexbereich $ -14 \le h \le 14 $ $ -13 \le k \le 14 $ $ -14 \le 1 \le 14 $ F(000) $ 688 $ Anzahl der gemessenen Reflexe $ 3408 $ Unabhängige Reflexe $ 120 $	
Zellvolumen 10^6 pm³ $1433,0(4)$ $Z = 4$ $Molmasse g/mol$ $341,2$ $Röntgenographische Dichte g/cm³ 1,58 Kristallfarbe bläulich/farblos Meßgerät IPDS (Stoe) Mo-K_{\alpha} (Graphit-Monochromator) Scan-Modus 100 Bilder in 2°-Schritten Meßtemperatur K 293(2) Meßbereich ° 3,8 \le 2\Theta \le 56,3 \mu (MoK_{\alpha}) mm^{-1} 1,792 Indexbereich -14 \le h \le 14 -13 \le k \le 14 -14 \le l \le 14 F(000) 688 Anzahl der gemessenen Reflexe 120$	
Anzahl der Formeleinheiten $Z=4$ Molmasse g/mol $341,2$ Röntgenographische Dichte g/cm³ $1,58$ Kristallfarbe bläulich/farblos Meßgerät IPDS (Stoe) Strahlung Mo-K $_{\alpha}$ (Graphit-Monochromator) Scan-Modus 100 Bilder in 2° -Schritten Meßtemperatur K $293(2)$ Meßbereich $^{\circ}$ $3,8 \le 2\Theta \le 56,3$ μ (MoK $_{\alpha}$) mm $^{-1}$ $1,792$ Indexbereich $-14 \le h \le 14$ $-13 \le k \le 14$ $-14 \le 1 \le 14$ F(000) 688 Anzahl der gemessenen Reflexe 3408 Unabhängige Reflexe 120	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Röntgenographische Dichte g/cm³ 1,58 Kristallfarbe bläulich/farblos Meßgerät IPDS (Stoe) Strahlung Mo-K $_{\alpha}$ (Graphit-Monochromator) Scan-Modus 100 Bilder in 2°-Schritten Meßtemperatur K 293(2) Meßbereich ° 3,8 \leq 2 Θ \leq 56,3 μ (MoK $_{\alpha}$) mm¹ 1,792 Indexbereich -14 \leq h \leq 14 -13 \leq k \leq 14 -14 \leq l \leq 14 F(000) 688 Anzahl der gemessenen Reflexe 3408 Unabhängige Reflexe 120	
$\begin{tabular}{ll} Kristallfarbe & bläulich/farblos \\ Meßgerät & IPDS (Stoe) \\ Strahlung & Mo-K_{\alpha} (Graphit-Monochromator) \\ Scan-Modus & 100 Bilder in 2°-Schritten \\ Meßtemperatur K & 293(2) \\ Meßbereich ° & 3,8 \le 2\Theta \le 56,3 \\ \mu \ (MoK_{\alpha}) \ mm^1 & 1,792 \\ Indexbereich & -14 \le h \le 14 \\ & -13 \le k \le 14 \\ & -14 \le 1 \le 14 \\ \hline F(000) & 688 \\ Anzahl \ der \ gemessenen \ Reflexe & 3408 \\ Unabhängige \ Reflexe & 120 \\ \end{tabular}$	
$\begin{array}{lll} \text{Meßger\"{a}t} & \text{IPDS (Stoe)} \\ \text{Strahlung} & \text{Mo-K}_{\alpha} (\text{Graphit-Monochromator}) \\ \text{Scan-Modus} & 100 \text{Bilder in 2°-Schritten} \\ \text{Meßtemperatur K} & 293(2) \\ \text{Meßbereich} ^{\circ} & 3,8 \leq 2\Theta \leq 56,3 \\ \mu (\text{MoK}_{\alpha}) \text{mm}^{-1} & 1,792 \\ \text{Indexbereich} & -14 \leq h \leq 14 \\ & -13 \leq k \leq 14 \\ & -14 \leq 1 \leq 14 \\ \end{array}$ $\begin{array}{lll} \text{F(000)} & 688 \\ \text{Anzahl der gemessenen Reflexe} & 3408 \\ \text{Unabhängige Reflexe} & 120 \\ \end{array}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Scan-Modus 100 Bilder in 2°-Schritten Meßtemperatur K 293(2) Meßbereich ° $3,8 \le 2\Theta \le 56,3$ $\mu \text{ (MoK}_{\alpha}\text{) mm}^{-1}$ 1,792 Indexbereich $-14 \le h \le 14$ $-13 \le k \le 14$ $-14 \le l \le 14$ F(000) 688 Anzahl der gemessenen Reflexe 3408 Unabhängige Reflexe 120	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
$\begin{tabular}{lll} Meßbereich $^{\circ}$ & $3,8 \le 2\Theta \le 56,3$ \\ μ (MoK_{\alpha})$ mm$^{-1}$ & $1,792$ \\ Indexbereich & $-14 \le h \le 14$ \\ & $-13 \le k \le 14$ \\ & $-14 \le l \le 14$ \\ \hline F(000)$ & 688 \\ Anzahl der gemessenen Reflexe & 3408 \\ Unabhängige Reflexe & 120 \\ \hline \end{tabular}$	
$\begin{array}{lll} \mu \; (\text{MoK}_{\alpha}) \; \text{mm}^{-1} & 1,792 \\ & & -14 \leq h \leq 14 \\ & & -13 \leq k \leq 14 \\ & & -14 \leq l \leq 14 \end{array}$ $F(000) & 688 \\ & \text{Anzahl der gemessenen Reflexe} & 3408 \\ & \text{Unabhängige Reflexe} & 120 \\ \end{array}$	
Indexbereich $-14 \le h \le 14$ $-13 \le k \le 14$ $-14 \le l \le 14$ $F(000) \qquad \qquad 688$ Anzahl der gemessenen Reflexe 3408 Unabhängige Reflexe 120	
$-13 \le k \le 14$ $-14 \le l \le 14$ $F(000) \qquad \qquad 688$ Anzahl der gemessenen Reflexe 3408 Unabhängige Reflexe 120	
$-14 \le l \le 14$ F(000) 688 Anzahl der gemessenen Reflexe 3408 Unabhängige Reflexe 120	
F(000) 688 Anzahl der gemessenen Reflexe 3408 Unabhängige Reflexe 120	
Anzahl der gemessenen Reflexe 3408 Unabhängige Reflexe 120	
Unabhängige Reflexe 120	
Rephachtete Reflexe $[I > 2\sigma(I)]$ 106	
Beobachiete Reflexe $[I_0 > 20(1)]$	
$R_{irt} = 0.0614$	
Verwendete Programmsysteme X-Red (Stoe) [42] / X-Shape (Stoe) [41]	
SHELXS-97 [36] / SHELXL-97 [37]	
Streufaktoren International Tables [57]	
Strukturverfeinerung "Full-matrix"-Least-Squares an F ²	
Daten / Restraints / Parameter 120 / 0 / 18	
Goodness-of-fit 1,204	
R-Werte $[I_0 > 2\sigma(I)]$ $R_1 = 0.0444; \text{ wR}_2 = 0.1179$	
R-Werte (alle Daten) $R_1 = 0.0503$; $wR_2 = 0.1265$	
Restelektronendichte 0,26 / -0,35	

Tab. 14: Atomkoordinaten und	äquivalente	Temperaturfaktoren	U_{eq}	(10 ⁻⁴ pn	n²) von	[Zn(NF	$[BF]_{3}$	₄] ₂
------------------------------	-------------	--------------------	----------	----------------------	---------	--------	------------	-----------------------------

Atom	Lage	x/a	y/b	z/c	sof	$ m U_{eq}$
Zn	4a	0	0	0	0,01861	0,0657(10)
В	8c	0,25	0,25	0,25		0,077(4)
N	24e	0,8096(6)	0	0		0,084(2)
F1	32f	0,1840(7)	0,1840(7)	0,1840(7)	0,07931	0,170(7)
F2	48g	0,25	0,1243(13)	0,25	0,08736	0,141(5)
Н	96k	0,284(10)	0,053(4)	0,053(4)	0,37500	0,17(5)

 $\textbf{Tab. 15:} \ \ Koeffizienten \ der \ anisotropen \ Temperaturfaktoren \ U_{ij} \ (10^{\text{-}4} \ pm^2) \ von \ [Zn(NH_3)_6][BF_4]_2$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Zn	0,0657(10)	0,0657(10)	0,0657(10)	0	0	0
В	0,077(4)	0,077(4)	0,077(4)	0	0	0
N	0,071(4)	0,091(3)	0,091(3)	0	0	0
F1	0,170(7)	0,170(7)	0,170(7)	-0,052(5)	-0,052(5)	-0,052(5)
F2	0,164(9)	0,094(9)	0,164(9)	0	0,006(11)	0

 $\boldsymbol{U}_{ij} = exp[-2\pi^2(h^2a^{*2}\boldsymbol{U}_{11} + \ldots + 2hka^*b^*\boldsymbol{U}_{12})]$

 $\textbf{Tab. 16:} \ \ \text{Bindungslängen (pm) und -winkel (°) in } \ \ [\text{Zn(NH}_3)_6][\text{BF}_4]_2$

Zr	n-N	214,6(7)	N-Zn-N	180,0
В-	-F1	128,9(13)	N-Zn-N	90,0
В-	-F2	141,7(15)	F2-B-F2	180,0
N-	-H	89,2(67)	F2-B-F2	90,0
F1	1-F2	124,9(8)	F1-B-F1	109,5
N-	-(H)-F1	325,7	F1-B-F2	125,264(2)
N-	-(H)-F2	321,9	F1-B-F2	54,736(2)
			F1-F2-F1	114,8(18)
			Zn-N-H	109(8)

5.3 Indizierung des Pulverdiffraktogramms von $\mathrm{NH_4BF_4}$ bei 298 K

Wellenlänge [CuK_{α}]: 1,540598

2Θ-Fenster: 0,100 Final 2Θ-Fenster: 0,040 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: -0,015(4)

Symmetrie: orthorhombisch P Raumgruppe: P n m a (Nr.62)

Ermittelte Zellparameter [pm]: Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 907,06
Gitterkonstante a: 906,95(7)
Gitterkonstante b: 567,93
Gitterkonstante b: 567,59(5)
Gitterkonstante c: 727,44
Gitterkonstante c: 727,33(5)
Zellvolumen [10⁶ pm³]: 374,41(7)

N	2Q [obs]	нкь	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
1	15,608	1 0 1	15,605	0,0030	17,7	5,6730	5,6741
2	18,288	n	icht indizier	t	1,5	4,8471	
3	19,567	2 0 0	19,560	0,0072	11,9	4,5331	4,5348
4	19,806	0 1 1	19,825	-0,0197	60,2	4,4791	4,4747
5	21,141	n	icht indizier	t	0,6	4,1991	
6	23097	2 0 1	23,095	0,0024	15,1	3,8477	3,8481
7	24,449	0 0 2	24,457	-0,0088	21,0	3,6380	3,6367
8	25,112	2 1 0	25,115	-0,0036	36,0	3,5434	3,5429
9	26,378	1 0 2	26,383	-0,0050	3,7	3,3761	3,3754
10	27,993	2 1 1	27,991	0,0020	45,1	3,1849	3,1851
11	30,796	1 1 2	30,795	0,0007	33,2	2,9011	2,9012
12	31,504	0 2 0	31,499	0,0052	23,4	2,8375	2,8379
		2 0 2	31,509	-0,0050		2,8371	
13	32,040	3 0 1	32,035	0,0050	1,0	2,7912	2,7916
14	35,347	1 2 1	35,334	0,0133	32,7	2,5373	2,5382
		2 1 2	35,341	0,0064		2,5377	
15	35,812	3 1 1	35,817	-0,0053	4,5	2,5054	2,5050
16	37,347	2 2 0	37,350	-0,0029	6,7	2,4059	2,4057
17	38,410	1 0 3	38,401	0,0083	3,8	2,3417	2,3422
18	38,699	3 0 2	38,701	-0,0017	7,0	2,3249	2,3248
19	39,424	2 2 1	39,420	0,0041	100,0	2,2838	2,2840
20	40,291	0 2 2	40,277	0,0133	2,9	2,2366	2,2373
21	41,677	1 1 3	41,682	-0,0057	9,8	2,1654	2,1651
		4 0 1	41,692	-0,0151		2,1646	
22	41,939	3 1 2	41,962	-0,0226	2,8	2,1524	2,1513
23	42,912	4 1 0	42,918	-0,0060	2,2	2,1059	2,1056
24	44,767	4 1 1	44,774	-0,0061	0,8	2,0228	2,0225
25	45,160	2 2 2	45,153	0,0066	0,5	2,0061	2,0064
26	48,071	3 0 3	48,067	0,0044	2,0	1,8912	1,8914
27	49,767	0 3 1	49,756	0,0109	1,4	1,8307	1,8310

N	2Q(obs)	нкь	2Q(calc)	obs-calc	Int.	d(obs)	d(calc)
28	50,005	4 1 2	50,014	-0,0091	3,7	1,8225	1,8222
29	50,483	1 2 3	50,481	0,0017	4,5	1,8064	1,8064
30	50,835	1 3 1	50,831	0,0036	0,9	1,7947	1,7948
		3 1 3	50,845	-0,0101		1,7944	
31	51,190	1 0 4	51,197	-0,0066	1,1	1,7831	1,7829
32	52,360	2 3 0	52,355	0,0051	0,4	1,7459	1,7461
33	53,181	4 2 1	53,174	0,0070	4,4	1,7209	1,7211
34	53,634	2 2 3	53,626	0,0083	1,1	1,7074	1,7077
35	53,851	1 1 4	53,856	-0,0053	1,1	1,7011	1,7009
36	54,556	5 1 1	54,546	0,0103	1,8	1,6807	1,6810
37	55,449	4 0 3	55,440	0,0091	7,5	1,6558	1,6560
38	55,638	1 3 2	55,645	-0,0075	6,7	1,6506	1,6504
39	56,666	5 0 2	56,661	0,0047	2,3	1,6231	1,6232
40	57,859	4 2 2	57,853	0,0061	0,5	1,5924	1,5925
41	58,605	2 3 2	58,599	0,0061	3,2	1,5739	1,5741
		3 2 3	58,606	-0,0017		1,5739	
42	59,241	3 0 4	59,254	-0,0135	1,0	1,5585	1,5582
43	60,415	0 2 4	60,414	0,0013	1,9	1,5310	1,5310
44	61,291	6 0 0	61,274	0,0171	0,8	1,5112	1,5116
45	62,178	0 3 3	62,188	-0,0093	1,5	1,4918	1,4916
46	63,304	3 3 2	63,327	-0,0233	0,5	1,4679	1,4674
47	64,049	4 3 0	64,047	0,0017	4,7	1,4526	1,4527
		5 0 3	64,060	-0,0116		1,4524	
48	64,862	1 0 5	64,865	-0,0027	1,7	1,4364	1,4363
49	65,098	6 1 1	65,080	0,0176	2,0	1,4317	1,4321
50	65,760	0 4 0	65,757	0,0035	2,2	1,4189	1,4190
		4 0 4	65,780	-0,0199		1,4185	
51	66,272	0 1 5	66,275	-0,0035	0,4	1,4092	1,4091
		5 2 2	66,281	-0,0099		1,4090	
52	67,008	6 0 2	66,990	0,0183	1,3	1,3955	1,3958
53	67,584	2 0 5	67,575	0,0093	0,5	1,3850	1,3851
54	68,069	1 4 1	68,053	0,0166	1,0	1,3763	1,3766
		4 1 4	68,074	-0,0049		1,3762	
55	68,662	3 2 4	68,661	0,0015	1,7	1,3658	1,3659
56	69,266	6 1 2	69,264	0,0019	0,5	1,3554	1,3554
57	69,845	2 1 5	69,840	0,0045	0,6	1,3456	1,3457
58	70,330	3 3 3	70,322	0,0084	0,9	1,3375	1,3376
59	70,528	6 2 0	70,532	-0,0038	0,5	1,3342	1,3341
60	72,826	1 3 4	72,835	-0,0096	0,8	1,2977	1,2975
61	73,148	5 2 3	73,137	0,0106	1,5	1,2928	1,2929
62	73,885	1 2 5	73,894	-0,0090	0,4	1,2817	1,2815
63	76,454	2 2 5	76,460	-0,0058	0,7	1,2449	1,2448
		7 1 1	76,479	-0,0252		1,2445	

N	2Q(obs)	нкь	2Q(calc)	obs-calc	Int.	d(obs)	d(calc)
64	82,353	5 2 4	82,354	-0,0008	0,9	1,1700	1,1700
65	83,911	5 3 3	83,921	-0,0097	0,6	1,1522	1,1521
66	85,569	8 0 0	85,603	-0,0341	0,5	1,1341	1,1337
67	86,779	0 5 1	86,752	0,0262	0,7	1,1213	1,1216
		7 2 2	86,790	-0,0117		1,1212	
68	88,253	1 2 6	88,244	0,0097	0,3	1,1064	1,1065
69	88,781	2 5 0	88,775	0,0058	0,8	1,1011	1,1012

5.4 Indizierung des Pulverdiffraktogramms von $\mathrm{NH_4BF_4}$ bei 140 K

Wellenlänge [$\operatorname{CuK}_{\alpha}$]: 1,540598

2Θ-Fenster: 0,050 Final 2Θ-Fenster: 0,050 2Θ-Nullpunkt: 0,0169 (refineable) 2Θ-Nullpunkt: 0,045(8)

Symmetrie: orthorhombisch P Raumgruppe: P n m a (Nr.62)

Ermittelte Zellparameter [pm]:

Gitterkonstante a: 890,94 Gitterkonstante b: 567,77 Gitterkonstante c: 719,11 Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 892,4(3) Gitterkonstante b: 568,2(1) Gitterkonstante c: 719,63(13) Zellvolumen [10⁶ pm³]: 364,90(22)

N	2Q [obs]	нкь	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
1	15,812	1 0 1	15,807	0,0048	31,3	5,6002	5,6019
2	19,899	2 0 0	19,882	0,0171	100,0	4,4583	4,4621
		0 1 1	19,894	0,0054			4,4595
3	23,432	2 0 1	23,440	-0,0072	78,1	3,7934	3,7922
4	24,735	0 0 2	24,723	0,0112	47,9	3,5965	3,5981
5	25,353	2 1 0	25,360	-0,0066	37,5	3,5102	3,5093
6	26,610	r	nicht indizier	t	7,7	3,3472	
7	28,279	2 1 1	28,270	0,0086	54,4	3,1533	3,1542
8	31,065	1 1 2	31,054	0,0103	44,9	2,8766	2,8775
9	31,471	0 2 0	31,464	0,0071	11,1	2,8404	2,8410
10	31,907	2 0 2	31,926	-0,0186	11,5	2,8025	2,8009
11	35,381	1 2 1	35,398	-0,0170	42,8	2,5349	2,5338
12	35,724	2 1 2	35,711	0,0134	7,0	2,5114	2,5123
13	36,295	3 1 1	36,272	0,0233	50,4	2,4731	2,4747
14	37,492	2 2 0	37,499	-0,0069	8,8	2,3969	2,3965
15	38,834	1 0 3	38,844	-0,0093	18,3	2,3171	2,3165
16	39,251	3 0 2	39,265	-0,0141	24,3	2,2935	2,2927
17	39,604	2 2 1	39,606	-0,0018	21,1	2,2738	2,2737
18	40,418	4 0 0	40,396	0,0217	18,0	2,2299	2,2310
		0 2 2	40,421	-0,0028			2,2297
19	40,793	0 1 3	40,799	-0,0069	11,5	2,2103	2,2099
20	41,726	1 2 2	41,720	0,0057	23,7	2,1629	2,1632
21	42,080	1 1 3	42,089	-0,0096	11,9	2,1456	2,1451
22	42,366	4 0 1	42,382	-0,0164	14,5	2,1318	2,1310
23	42,775	2 0 3	42,764	0,0105	4,6	2,1123	2,1128
24	43,539	4 1 0	43,546	-0,0064	5,9	2,0770	2,0767
25	45,469	4 1 1	45,420	0,0491	4,1	1,9932	1,9953
		2 2 2	45,436	0,0323			1,9946
26	47,879		nicht indizier		2,5	1,8984	
27	49,742	0 3 1	49,740	0,0022	3,3	1,8315	1,8316

N	2Q [obs]	H K L	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
28	50,760	4 1 2	50,716	0,0440	12,7	1,7972	1,7986
29	53,722	4 2 1	53,727	-0,0053	8,7	1,7049	1,7047
30	54,442	1 1 4	54,430	0,0119	3,0	1,6840	1,6843
31	55,417	5 1 1	55,403	0,0137	3,5	1,6567	1,6570
32	55,749	1 3 2	55,763	-0,0141	15,4	1,6476	1,6472
33	56,248	4 0 3	56,266	-0,0178	4,6	1,6341	1,6337
34	57,538	2 1 4	57,521	0,0173	6,6	1,6005	1,6010
35	59,143	3 2 3	59,162	-0,0190	3,0	1,5609	15604
36	60,891	0 2 4	60,901	-0,0102	4,1	1,5202	1,5199
37	62,439	0 3 3	62,423	0,0155	3,4	1,4862	1,4865
		3 1 4	62,453	-0,0139			1,4859
38	64,474	4 3 0	64,484	-0,0103	4,9	1,4441	1,4439
39	65,649	1 0 5	65,656	-0,0076	3,5	1,4210	1,4209
		0 4 0	65,678	-0,0289			1,4205
40	65,899	4 2 3	65,901	-0,0023	8,6	1,4163	1,4165
		4 3 1	65,930	-0,0315			1,4157
41	66,165	6 1 1	66,179	-0,0139	2,5	1,4112	1,4109
		2 3 3	66,213	-0,0487			1,4103
42	69,354	2 4 0	69,374	-0,0202	6,8	1,3539	1,3536
		3 2 4	69,378	-0,0238			1,3535
43	70,781	2 4 1	70,771	0,0103	3,5	1,3301	1,3302
		3 3 3	70,802	-0,0215			1,3297

5.5 Indizierung des Pulverdiffraktogramms von F_3B-NH_3

Wellenlänge [$\operatorname{CuK}_{\alpha}$]: 1,540598

2Θ-Fenster: 0,050 Final 2Θ-Fenster: 0,050 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: 0,001(13)

Symmetrie: orthorhombisch P Raumgruppe: Pbca (Nr.61)

Ermittelte Zellparameter [pm]: Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 812,59
Gitterkonstante a: 812,89(24)
Gitterkonstante b: 802,56
Gitterkonstante b: 803,2(4)
Gitterkonstante c: 926,16
Gitterkonstante c: 925,8(3)
Zellvolumen [10⁶ pm³]: 604,5(5)

N	2Q(obs)	HKL	2Q(calc)	obs-calc	Int.	d(obs)	d(calc)
1	18,218	1 1 1	18,231	-0,0134	12,6	4,8657	4,8622
2	19,164	0 0 2	19,158	0,0066	29,9	4,6275	4,6291
3	19,553		nicht indizie	•	1,5	4,5363	,
4	19,820		nicht indizie		3,1	4,4759	
5	22,084	1 0 2	22,080	0,0041	100,0	4,0218	4,0226
		0 2 0	22,116	-0,0318		4,0161	
6	23,080		nicht indizie	rt	2,2	3,8505	
7	24,123	0 2 1	24,136	-0,0128	94,2	3,6863	3,6844
8	24,509	2 1 0	24,527	-0,0174	27,4	3,6291	3,6266
9	24,741	1 2 0	24,706	0,0349	13,6	3,5956	3,6006
		1 1 2	24,733	0,0077		3,5967	
10	25,115		nicht indizie	rt	3,6	3,5429	
11	26,362	2 1 1	26,373	-0,0102	91,1	3,3780	3,3767
12	27,965		nicht indizie	rt	2,8	3,1880	
13	29,219	2 0 2	29,216	0,0027	3,7	3,0539	3,0542
14	29,411	0 2 2	29,420	-0,0092	4,0	3,0345	3,0336
15	30,756		nicht indizie	rt	2,3	2,9047	
16	31,442	1 2 2	31,451	-0,0091	31,4	2,8429	2,8421
17	32,767	2 2 1	32,781	-0,0149	81,3	2,7310	2,7298
18	35,326		nicht indizie	rt	1,5	2,5387	
19	36,265	3 1 1	36,281	-0,0158	14,8	2,4751	2,4741
20	36,644	1 3 1	36,616	0,0275	5,6	2,4504	2,4522
21	36,935	2 2 2	36,946	-0,0107	22,7	2,4318	2,4311
22	38,297	2 1 3	38,264	0,0324	15,5	2,3484	2,3503
23	38,428	1 2 3	38,385	0,0430	20,7	2,3407	2,3432
		3 0 2	38,465	-0,0375		2,3385	
24	38,898	0 0 4	38,879	0,0199	16,5	2,3134	2,3145
25	40,132	3 2 0	40,112	0,0201	29,7	2,2451	2,2462
		3 1 2	40,129	0,0024		2,2452	
26	40,427	1 3 2	40,437	-0,0105	45,7	2,2294	2,2288

N	2Q(obs)	нкь	2Q(calc)	obs-calc	Int.	d(obs)	d(calc)
27	41,315	3 2 1	41,328	-0,0123	4,5	2,1835	2,1829
28	42,108	1 1 4	42,087	0,0206	8,5	2,1442	2,1452
29	44,991	2 3 2	44,989	0,0016	1,9	2,0133	2,0133
		2 0 4	45,038	-0,0467		2,0113	
30	45,972	3 1 3	45,944	0,0285	2,1	1,9726	1,9737
31	46,208	1 3 3	46,220	-0,0119	13,0	1,9630	1,9625
		0 4 1	46,223	-0,0149		1,9624	
32	46,627	1 2 4	46,611	0,0159	4,5	1,9464	1,9470
33	47,126	4 1 1	47,124	0,0016	2,7	1,9269	1,9270
34	47,601	1 4 1	47,632	-0,0306	3,8	1,9088	1,9076
35	48,734	3 3 1	48,778	-0,0438	1,8	1,8670	1,8654
36	50,282	4 2 0	50,277	0,0051	13,2	1,8131	1,8133
		4 1 2	50,292	-0,0098		1,8128	
37	50,640	2 4 0	50,665	-0,0247	15,2	1,8011	1,8003
38	51,918	3 3 2	51,871	0,0478	7,4	1,7598	1,7613
		3 0 4	51,914	0,0044		1,7599	
39	54,489	0 4 3	54,473	0,0166	2,0	1,6826	1,6831
		0 2 5	54,529	-0,0394		1,6815	
40	55,267	4 1 3	55,274	-0,0073	5,1	1,6608	1,6606
41	55,781	1 2 5	55,783	-0,0017	12,5	1,6467	1,6467
42	57,106	3 2 4	57,094	0,0127	5,3	1,6116	1,6119
43	57,751	4 3 1	57,774	-0,0228	6,9	1,5951	1,5945
44	57,938	3 4 1	57,980	-0,0418	3,2	1,5904	1,5894
45	58,723	5 1 1	58,750	-0,0264	4,8	1,5710	1,5704
46	59,367	2 4 3	59,386	-0,0184	3,6	1,5555	1,5551
47	60,721	3 4 2	60,746	-0,0254	2,6	1,5240	1,5235
		0 3 5	60,769	-0,0488		1,5229	
48	62,030	2 5 0	62,075	-0,0446	2,9	1,4950	1,4940
49	65,190	3 4 3	65,200	-0,0100	3,3	1,4299	1,4297
50	65,651	2 5 2	65,611	0,0399	3,3	1,4210	1,4218
		2 4 4	65,648	0,0024		1,4211	
51	69,187		nicht indizie	ert	2,8	1,3568	
52	71,055	0 6 1	71,097	-0,0412	1,9	1,3256	1,3249
53	74,611	6 2 1	74,571	0,0399	3,6	1,2710	1,2716
		2 6 0	74,575	0,0362		1,2715	
54	76,665	2 1 7	76,623	0,0422	2,5	1,2420	1,2425
		1 2 7	76,700	-0,0346		1,2415	
55	78,401	5 4 2	78,385	0,0164	1,9	1,2188	1,2190
		4 3 5	78,406	-0,0045		1,2187	
56	78,738	4 1 6	78,707	0,0315	3,3	1,2144	1,2148
		1 6 3	78,741	-0,0024		1,2144	
57	79,163	6 3 0	79,169	-0,0057	1,6	1,2089	1,2089

5.6 Indizierung des Pulverdiffraktogramms von $[Ni(NH_3)_6][BF_4]_2$

Wellenlänge $[\operatorname{CuK}_{\alpha}]$: 1,540598 2Θ -Fenster: 0,050 Final 29-Fenster: 0,030 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: -0,004(3)

Symmetrie: kubisch F

Raumgruppe: F m -3 m (Nr. 225)

Ermittelte Zellparameter [pm]: Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 1127,0 Gitterkonstante a: 1126,94(5)

Zellvolumen [10⁶ pm³]: 1431,22(12)

N	2Q [obs]	нкь	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
1	13,600	1 1 1	13,598	0,0014	100	6,5057	6,5064
2	15,715	2 0 0	15,715	0,0007	3,8	5,6345	5,6347
3	22,296	2 2 0	22,295	0,0013	63,2	3,9841	3,9843
4	26,207	3 1 1	26,206	0,0011	21,1	3,3977	3,3979
5	27,393	2 2 2	27,393	-0,0001	6,9	3,2532	3,2532
6	31,735	4 0 0	31,735	0,0000	20,5	2,8174	2,8174
7	35,600	4 2 0	35,599	0,0011	10,0	2,5198	2,5199
8	41,608	5 1 1	41,608	0,0002	12,2	2,1688	2,1688
9	45,495	4 4 0	45,494	0,0009	2,0	1,9921	1,9922
10	47,705	5 3 1	47,705	0,0002	10,4	1,9049	1,9049
11	48,422	6 0 0	48,424	-0,0020	6,1	1,8783	1,8782
12	51,227	6 2 0	51,227	-0,0005	3,0	1,7819	1,7819
13	53,923	6 2 2	53,924	-0,0013	0,9	1,6990	1,6989
14	58,433	7 1 1	58,436	-0,0034	3,4	1,5781	1,5780
15	59,064	6 4 0	59,063	0,0013	1,8	1,5628	1,5628
16	61,527	6 4 2	61,528	-0,0015	1,3	1,5060	1,5059
17	63,342	7 3 1	63,340	0,0017	1,9	1,4671	1,4672
18	66,299	8 0 0	66,299	0,0004	0,3	1,4087	1,4087
19	68,618	8 2 0	68,618	0,0009	0,7	1,3666	1,3666
20	70,894	6 6 0	70,900	-0,0064	1,0	1,3282	1,3281
21	72,592	7 5 1	72,592	0,0006	1,3	1,3013	1,3013
22	75,376	8 4 0	75,377	-0,0003	0,5	1,2600	1,2600
23	77,022	9 1 1	77,031	-0,0082	0,6	1,2371	1,2370
24	79,756	6 6 4	79,764	-0,0076	0,5	1,2014	1,2013
25	85,731	7 7 1	85,703	0,0275	0,3	1,1323	1,1326
26	88,376	10 2 0	88,384	-0,0082	0,4	1,1051	1,1051

$5.7\ Indizierung\ des\ Pulverdiffraktogramms\ von\ [Cr(NH_3)_6][Cr(NH_3)_2F_4][BF_4]_2$

Wellenlänge $[CuK_{\alpha}]$: 1,540598

2Θ-Fenster: 0,100 Final 2Θ-Fenster: 0,060 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: 0,068(7)

Symmetrie: tetragonal P

Raumgruppe: P 4/m b m (Nr. 127)

Ermittelte Zellparameter [pm]:

Gitterkonstante a: 1052,33
Gitterkonstante a: 1054,24(14)
Gitterkonstante c: 778,10
Gitterkonstante c: 779,93(18)
Zellvolumen [10⁶ pm³]: 866,8(3)

Verfeinerte Zellparameter [pm]:

N	2Q [obs]	H K L	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
1	11,315	0 0 1	11,336	-0,0214	24,4	7,8140	7,7993
2	16,399	1 1 1	16,436	-0,0367	5,3	5,4009	5,3889
3	16,800	2 0 0	16,806	-0,0056	23,3	5,2729	5,2712
4	18,777	2 1 0	18,807	-0,0296	9,0	4,7220	4,7147
5	20,321	2 0 1	20,318	0,0032	100,0	4,3666	4,3673
6	22,002	2 1 1	22,012	-0,0104	26,4	4,0367	4,0348
7	22,765	0 0 2	22,785	-0,0203	62,3	3,9031	3,8996
8	23,835	2 2 0	23,854	-0,0194	25,5	3,7303	3,7273
9	26,470	2 2 1	26,483	-0,0124	3,2	3,3645	3,3630
10	26,717	3 1 0	26,719	-0,0014	3,4	3,3340	3,3338
11	28,451	2 0 2	28,448	0,0030	1,9	3,1347	3,1350
12	29,137	3 1 1	29,107	0,0299	1,5	3,0624	3,0655
13	29,707	2 1 2	29,706	0,0002	38,0	3,0049	3,0049
14	30,563	3 2 0	30,549	0,0140	1,1	2,9226	2,9239
15	32,675	3 2 1	32,682	-0,0072	1,8	2,7384	2,7379
16	33,231	2 2 2	33,223	0,0079	3,0	2,6938	2,6945
17	34,446	0 0 3	34,471	-0,0243	8,0	2,6015	2,5998
18	35,053	4 1 0	35,067	-0,0137	2,0	2,5579	2,5569
19	35,410	3 1 2	35,394	0,0161	5,7	2,5329	2,5340
20	36,170	3 3 0	36,118	0,0514	2,0	2,4814	2,4849
21	36,595	1 1 3	36,576	0,0185	2,9	2,4536	2,4548
22	36,965	4 1 1	36,968	-0,0025	3,2	2,4298	2,4297
23	37,999	3 3 1	37,974	0,0250	4,6	2,3661	2,3676
24	38,175	4 2 0	38,145	0,0302	7,7	2,3556	2,3573
25	38,477	3 2 2	38,450	0,0270	8,6	2,3378	2,3394
26	39,499	2 1 3	39,554	-0,0550	1,6	2,2796	2,2766
27	39,934	4 2 1	39,920	0,0138	9,9	2,2558	2,2565
28	41,317	4 0 2	41,312	0,0048	2,8	2,1834	2,1836
29	42,400	2 2 3	42,354	0,0459	8,9	2,1301	2,1323
30	43,749	5 1 0	43,748	0,0007	3,3	2,0675	2,0675
31	44,488	4 3 1	44,475	0,0123	1,9	2,0349	2,0354

N	2Q [obs]	нкц	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
32	44,914	4 2 2	44,894	0,0199	5,3	2,0165	2,0174
33	46,339	5 2 0	46,342	-0,0029	1,5	1,9578	1,9577
34	46,575	0 0 4	46,540	0,0351	1,8	1,9478	1,9498
35	46,721	3 2 3	46,716	0,0046	1,8	1,9427	1,9429
36	48,829	4 4 0	48,828	0,0005	2,5	1,8636	1,8636
37	49,182	4 0 3	49,188	-0,0065	4,5	1,8511	1,8508
38	49,853	2 0 4	49,824	0,0289	25,2	1,8277	1,8287
	,	5 1 2	49,883	-0,0308	,	1,8267	,
39	49,998	4 1 3	49,992	0,0067	3,0	1,8227	1,8230
40	50,276	4 4 1	50,297	-0,0209	59,2	1,8133	1,8126
41	52,354	4 2 3	52,348	0,0065	7,1	1,7461	1,7463
42	53,432	6 0 1	53,409	0,0225	13,5	1,7134	1,7174
43	54,520	3 1 4	54,474	0,0464	1,5	1,6818	1,6831
		4 4 2	54,530	-0,0097		1,6815	
44	54,998	6 2 0	55,047	-0,0494	1,8	1,6683	1,6669
45	56,410	6 2 1	56,400	0,0097	6,2	1,6298	1,6301
46	56,712	3 2 4	56,698	0,0133	2,5	1,6219	1,6222
47	57,486	6 0 2	57,482	0,0045	2,5	1,6018	1,6020
48	60,323	3 3 4	60,287	0,0359	2,2	1,5331	1,5340
		6 2 2	60,339	-0,0166		1,5327	
49	61,121	4 4 3	61,136	-0,0145	1,5	1,5150	1,5147
50	61,674	4 2 4	61,686	-0,0126	2,7	1,5027	1,5025
51	63,570	6 4 0	63,592	-0,0212	7,9	1,4624	1,4620
52	66,552	6 2 3	66,590	-0,0375	3,6	1,4039	1,4032
53	68,511	6 4 2	68,486	0,0251	1,3	1,3685	1,3689
54	69,746	4 4 4	69,747	-0,0010	2,5	1,3472	1,3472
55	72,169	8 1 0	72,184	-0,0157	2,7	1,3079	1,3076
56	72,359	6 0 4	72,334	0,0246	3,9	1,3049	1,3056
		7 3 2	72,382	-0,0233		1,3045	
57	72,726	0 0 6	72,682	0,0439	2,8	1,2992	1,2999
		8 0 1	72,715	0,0113		1,2994	
58	74,122	8 2 0	74,102	0,0195	10,2	1,2782	1,2784
59	74,290	6 4 3	74,384	0,0054	1,4	1,2742	1,2743
60	74,890	6 2 4	74,885	0,0043	1,7	1,2669	1,2670
61	75,243	2 0 6	75,229	0,0145	1,3	1,2619	1,2621
		8 2 1	75,261	-0,0177		1,2616	
62	78,181	7 3 3	78,164	0,0171	2,6	1,2216	1,2219
63	78,663	8 2 2	78,703	-0,0399	2,4	1,2153	1,2148
64	82,335	6 4 4	82,379	-0,0439	1,6	1,1702	1,1697
65	82,739	4 0 6	82,714	0,0249	2,9	1,1655	1,1658
		8 4 1	82,745	-0,0066		1,1654	
66	84,372	8 2 3	84,356	0,0154	1,5	1,1471	1,1472
67	85,140	6 2 5	85,114	0,0255	1,5	1,1387	1,1389
		4 2 6	85,175	-0,0349		1,1383	
68	86,128	7 3 4	86,069	0,0586	1,4	1,1281	1,1287
		8 4 2	86,115	0,0128		1,1283	

${\bf 5.8 \ Indizierung \ des \ Pulverdiffraktogramms \ von \ (NH_4)_3[CrF_6]}$

Wellenlänge [$\operatorname{CuK}_{\alpha}$]: 1,540598

2Θ-Fenster: 0,050 Final 2Θ-Fenster: 0,050 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: -0,01(1)

Symmetrie: kubisch F

Raumgruppe: F m -3 m (Nr. 225)

Ermittelte Zellparameter [pm]: Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 905,69 Gitterkonstante a: 905,56(16)

Zellvolumen [10⁶ pm³]: 742,61(22)

N	2Q [obs]	H K L	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
			4 4 0 4 7		1000		
1	16,947	1 1 1	16,945	0,0024	100,0	5,2276	5,2283
2	19,596	2 0 0	19,590	0,0057	52,3	4,5265	4,5278
3	27,844	2 2 0	27,843	0,0006	44,8	3,2016	3,2017
4	32,764	3 1 1	32,774	-0,0097	5,5	2,7312	2,7304
5	34,274	2 2 2	34,275	-0,0015	3,9	2,6142	2,6141
6	39,780	4 0 0	39,784	-0,0041	22,5	2,2641	2,2639
7	44,714	4 2 0	44,718	-0,0043	8,0	2,0251	2,0249
8	49,265	4 2 2	49,255	0,0099	10,2	1,8481	1,8485
9	52,450	5 1 1	52,463	-0,0126	11,3	1,7432	1,7428
10	57,534	4 4 0	57,526	0,0083	6,3	1,6006	1,6008
11	60,440	5 3 1	60,429	0,0106	6,4	1,5304	1,5307
12	61,402	6 0 0	61,378	0,0245	4,0	1,5087	1,5093
13	65,083	6 2 0	65,093	-0,0097	4,9	1,4320	1,4318
14	67,766	5 3 3	67,807	-0,0410	2,9	1,3817	1,3810
15	72,247	4 4 4	72,219	0,0274	3,0	1,3066	1,3071
16	74,803	7 1 1	74,814	-0,0109	3,0	1,2682	1,2680
17	79,075	6 4 2	79,070	0,0044	3,9	1,2101	1,2101

5.9 Indizierung des Pulverdiffraktogramms von (NH₂)₃[SiF₆]F

Wellenlänge [CuK_{\alpha}]: 1,540598

2Θ-Fenster: 0,100 Final 2Θ-Fenster: 0,020 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: -0,030(3)

Symmetrie: tetragonal P

Raumgruppe: P 4/m b m (Nr. 127)

Ermittelte Zellparameter [pm]: Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 806,86 Gitterkonstante a: 806,53(4)
Gitterkonstante c: 585,67 Gitterkonstante c: 585,43(3)
Zellvolumen [10⁶ pm³]: 380,82(4)

N **2Q** [obs] H K L 2Q [calc] obs-calc Intensität d [obs] d [calc] 0,0015 1 15,123 0 0 1 15,122 49.5 5,8537 5,8543 2 15,525 0,0012 15,526 1 1 0 100,0 5,7026 5,7030 3 16,806 nicht indiziert 3,5 5,2711 4 21,739 1 1 1 21,738 95,6 4,0849 0,0008 4,0851 5 2 0 0 22,023 22,024 -0,0013 38,0 4,0329 4,0326 6 23,849 nicht indiziert 4,9 3,7281 7 26,823 2 0 1 26,824 -0,0009 41.9 3,3211 3,3210 8 30,514 0 0 2 30,515 -0,0005 16,9 2,9272 2,9272 9 31,345 2 2 0 31,345 0,0003 33,6 2,8515 2,8515 10 34,408 1 1 2 34,410 -0,0026 7,7 2,6044 2,6042 11 3 1 0 0,0001 16,4 35,158 35,158 2,5505 2,5505 2 1 2 12 39,621 39,621 44,0 0,0002 2,2729 2,2729 3 2 0 13 40,283 40,285 -0,0019 14,6 2,2370 2,2369 14 2 2 2 44,312 15,6 44,310 -0.00142,0426 2,0425 15 46,383 4 1 0 46,381 6,3 1,9560 0,0020 1,9561 3 3 1 50,432 16 50,443 0,0104 3,6 1,8077 1,8081 4 2 0 50,570 3,1 17 50,581 0,0111 1,8031 1,8035 18 51,366 3 2 2 51,367 -0,0006 7,1 1,7774 1,7773 19 52,016 2 0 3 52,019 -0,0029 1,6 1,7567 1,7566 20 4 2 1 53,094 -0,0023 3,8 53,092 1,7236 1,7235 21 2 1 3 4,3 53,335 53,334 0,0016 1,7163 1,7163 22 4 0 2 7,1 55,277 55,277 -0,0006 1,6605 1,6605 23 3 3 2 57,784 1,7 57,780 -0.00421,5944 1,5943 24 59,379 4 3 1 59,384 -0,0043 1,9 1,5552 1,5551 25 59,601 3 1 3 59,606 -0,0055 3,8 1,5500 1,5498 26 60,221 4 2 2 60,223 -0,0021 8,9 1,5355 1,5354 5 1 1 60,591 2,0 27 60,600 0,0091 1,5268 1,5270 28 63,180 3 2 3 63,179 0,0013 3,3 1,4705 1,4705 29 63,509 0 0 4 63,513 -0,0042 3,1 1,4637 1,4636 30 65,404 4 4 0 65,405 -0,0008 2,6 1,4258 1,4258 31 65,823 1 1 4 65,826 -0,0028 1,1 1,4177 1,4176

N	2Q [obs]	H K L	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
32	66,071	4 3 2	66,083	-0,0124	0,9	1,4130	1,4128
33	67,222	5 1 2	67,222	-0,0001	2,7	1,3916	1,3916
34	68,116	2 0 4	68,098	0,0178	1,2	1,3755	1,3758
35	68,891	3 3 3	68,901	-0,0095	1,7	1,3619	1,3617
36	69,813	5 3 1	69,812	0,0005	3,8	1,3461	1,3461
37	71,122	4 2 3	71,125	-0,0032	2,2	1,3245	1,3245
38	72,542	2 2 4	72,540	0,0024	2,5	1,3020	1,3021
39	73,872	4 4 2	73,877	-0,0047	1,3	1,2819	1,2818
40	74,317	6 2 0	74,320	-0,0030	1,0	1,2753	1,2752
41	77,636	5 1 3	77,641	-0,0045	2,1	1,2288	1,2288
42	78,188	6 0 2	78,186	0,0018	2,2	1,2215	1,2216
43	82,446	6 2 2	82,429	0,0174	1,5	1,1689	1,1691
44	84,392	1 1 5	84,383	0,0093	1,4	1,1468	1,1469
45	85,336	4 2 4	85,347	-0,0113	1,0	1,1366	1,1364
46	86,094	5 3 3	86,096	-0,0014	1,0	1,1285	1,1285

${\bf 5.10\,Indizierung\,des\,Pulverdiffraktogramms\,von\,(NH_4)_3[GeF_6]F}$

Wellenlänge [CuK_{α}]: 1,540598

2Θ-Fenster: 0,100 Final 2Θ-Fenster: 0,030 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: -0,0425(23)

Symmetrie: tetragonal P

Raumgruppe: P 4/m b m (Nr. 127)

Ermittelte Zellparameter [pm]: Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 821,57 Gitterkonstante a: 820,91(3)
Gitterkonstante c: 594,00 Gitterkonstante c: 593,712(24)
Zellvolumen [10⁶ pm³]: 400,10(3)

N	2Q [obs]	нкь	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
1	14,912	0 0 1	14,909	0,0025	46,8	5,9361	5,9371
2	15,252	1 1 0	15,251	0,0010	100,0	5,8044	5,8047
3	21,394	1 1 1	21,391	0,0029	93,0	4,1500	4,1506
4	21,639	2 0 0	21,634	0,0054	37,5	4,1035	4,1046
5	26,379	2 0 1	26,376	0,0023	49,4	3,3760	3,3763
6	30,081	0 0 2	30,079	0,0023	12,9	2,9683	2,9686
7	30,783	2 2 0	30,782	0,0007	27,9	2,9023	2,9024
8	34,363	2 2 1	34,365	-0,0020	2,9	2,6076	2,6075
9	37,356	2 0 2	37,355	0,0013	5,7	2,4053	2,4054
10	37,792	3 1 1	37,792	-0,0001	13,7	2,7385	2,3785
11	38,987	2 1 2	38,987	-0,0005	15,4	2,3084	2,3083
12	39,548	3 2 0	39,550	-0,0017	5,2	2,2769	2,2768
13	43,578	2 2 2	43,576	0,0019	16,8	2,0752	2,0753
14	44,086	4 0 0	44,090	-0,0043	2,3	2,0525	2,0523
15	45,517	4 1 0	45,522	-0,0048	1,8	1,9912	1,9910
16	46,429	3 1 2	46,430	-0,0008	3,9	1,9542	1,9542
17	46,899	3 3 0	46,920	-0,0206	2,1	1,9357	1,9349
18	48,565	1 1 3	48,564	0,0007	4,5	1,8731	1,8732
19	49,531	3 3 1	49,507	0,0245	6,0	1,8388	1,8397
20	49,611	4 2 0	49,624	-0,0123	5,8	1,8360	1,8356
21	50,474	3 2 2	50,476	-0,0013	1,8	1,8067	1,8066
22	51,205	2 0 3	51,203	0,0017	4,1	1,7826	1,7826
23	52,110	4 2 1	52,111	-0,0007	8,3	1,7537	1,7537
24	52,484	2 1 3	52,486	-0,0023	0,9	1,7421	1,7420
25	54,297	4 0 2	54,297	-0,0007	7,7	1,6882	1,6881
26	56,211	2 2 3	56,212	-0,0007	1,8	1,6351	1,6351
27	56,744	3 3 2	56,746	-0,0014	3,1	1,6210	1,6210
28	57,168	5 1 0	57,170	-0,0017	0,7	1,6100	1,6099
29	58,609	3 1 3	58,607	0,0016	6,4	1,5738	1,5739
30	59,126	4 2 2	59,127	-0,0012	8,6	1,5613	1,5612
31	59,435	5 1 1	59,437	-0,0022	5,0	1,5539	1,5538

N	2Q [obs]	H K L	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
32	62,088	3 2 3	62,091	-0,0021	0,6	1,4937	1,4937
33	62,529	0 0 4	62,527	0,0024	1,6	1,4842	1,4843
34	64,117	4 4 0	64,120	-0,0035	2,0	1,4513	1,4512
35	64,785	1 1 4	64,779	0,0062	2,2	1,4379	1,4380
36	65,467	4 0 3	65,465	0,0014	1,2	1,4246	1,4246
37	65,954	5 1 2	65,953	0,0007	3,4	1,4152	1,4152
38	66,257	4 4 1	66,245	0,0121	2,0	1,4095	1,4097
39	66,987	2 0 4	66,990	-0,0030	1,7	1,3959	1,3958
40	67,665	3 3 3	67,665	0,0007	2,2	1,3835	1,3835
41	68,432	5 3 1	68,432	0,0001	4,0	1,3699	1,3699
42	69,825	4 2 3	69,830	-0,0052	2,8	1,3459	1,3458
43	70,582	6 0 1	70,587	-0,0041	0,9	1,3333	1,3332
44	71,310	2 2 4	71,309	0,0011	2,1	1,3215	1,3215
45	72,436	4 4 2	72,433	0,0030	1,2	1,3037	1,3037
46	72,806	6 2 0	72,806	-0,0004	1,0	1,2980	1,2980
47	73,427	3 1 4	73,427	0,0000	1,0	1,2885	1,2885
48	74,538	5 3 2	74,538	-0,0001	0,7	1,2721	1,2721
49	74,812	6 2 1	74,815	-0,0029	1,6	1,2681	1,2680
50	76,162	5 1 3	76,164	-0,0018	2,1	1,2489	1,2489
51	76,612	6 0 2	76,622	-0,0095	1,8	1,2427	1,2426
52	79,657	4 0 4	79,655	0,0019	0,7	1,2027	1,2027
53	80,729	6 2 2	80,738	-0,0095	1,9	1,1894	1,1893
54	81,699	3 3 4	81,700	-0,0009	0,7	1,1777	1,1777
55	82,340	4 4 3	82,329	0,0115	0,6	1,1701	1,1703
56	82,923	1 1 5	82,928	-0,0045	0,9	1,1634	1,1633
57	83,146	7 1 0	83,136	0,0098	0,6	1,1608	1,1609
58	83,731	4 2 4	83,734	-0,0030	1,3	1,1542	1,1542
59	84,356	5 3 3	84,360	-0,0040	1,1	1,1472	1,1472
60	85,083	7 1 1	85,075	0,0076	1,5	1,1393	1,1394
61	87,104	6 4 1	87,098	0,0058	0,6	1,1180	1,1180

${\bf 5.11\ Indizierung\ des\ Pulverdiffraktogramms\ von\ (NH_4)_2[GeF_6]}$

Wellenlänge [$\operatorname{CuK}_{\alpha}$]: 1,540598

2Θ-Fenster: 0,050 Final 2Θ-Fenster: 0,030 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: -0,034(6)

Symmetrie: trigonal P

Raumgruppe: P -3 m 1 (Nr. 164)

Ermittelte Zellparameter [pm]: Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 586,57

Gitterkonstante a: 586,21(8)

Gitterkonstante c: 482,10

Gitterkonstante c: 481,76(6)

Zellvolumen [10⁶ pm³]: 143,37(4)

N	2Q [obs]	нкь	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
1	17,458	1 0 0	17,455	0,0030	100,0	5,0759	5,0767
2	18,393	0 0 1	18,401	-0,0081	22,2	4,8197	4,8176
3	25,468	1 0 1	25,468	-0,0003	55,6	3,4946	3,4946
4	30,476	1 1 0	30,473	0,0032	12,0	2,9308	2,9311
5	35,834	1 1 1	35,832	0,0022	6,2	2,5039	2,5040
6	37,294	0 0 2	37,300	-0,0056	0,8	2,4092	2,4088
7	40,124	2 0 1	40,121	0,0036	26,3	2,2455	2,2457
8	41,453	1 0 2	41,459	-0,0062	4,0	2,1766	2,1763
9	47,344	2 1 0	47,337	0,0070	2,1	1,9186	1,9188
10	48,901	1 1 2	48,902	-0,0011	4,7	1,8610	1,8610
11	51,207	2 1 1	51,204	0,0035	8,1	1,7825	1,7826
12	52,313	2 0 2	52,317	-0,0035	8,0	1,7474	1,7473
13	54,170	3 0 0	54,155	0,0147	0,9	1,6918	1,6922
14	57,702	3 0 1	57,692	0,0095	2,2	1,5964	1,5966
15	60,393	1 0 3	60,411	-0,0178	0,6	1,5315	1,5311
16	61,758	2 1 2	61,760	-0,0024	5,1	1,5009	1,5008
17	63,422	2 2 0	63,419	0,0033	3,6	1,4655	1,4655
18	66,329	1 1 3	66,316	0,0125	3,6	1,4081	1,4084
		3 1 0	66,333	-0,0045			1,4080
19	66,625	2 2 1	66,651	-0,0261	2,1	1,4026	1,4021
20	67,603	3 0 2	67,600	0,0033	1,5	1,3846	1,3847
21	69,197	2 0 3	69,167	0,0296	2,0	1,3566	1,3571
22	69,485	3 1 1	69,495	-0,0098	2,6	1,3517	1,3515
23	77,460	2 1 3	77,437	0,0231	1,2	1,2312	1,2315
24	77,730	4 0 1	77,751	-0,0211	1,3	1,2276	1,2273
25	78,647	3 1 2	78,645	0,0029	0,9	1,2156	1,2156
26	82,178	1 0 4	82,191	-0,0131	0,8	1,1720	1,1719
27	82,803	3 0 3	82,795	0,0083	2,1	1,1648	1,1649
		3 2 0	82,811	-0,0074			1,1647
28	85,757	3 2 1	85,755	0,0017	1,1	1,1321	1,1321
29	86,641	4 0 2	86,631	0,0098	0,7	1,1228	1,1229
30	88,100	4 1 0	88,105	-0,0055	0,3	1,1079	1,1078

${\bf 5.12\ Indizierung\ des\ Pulverdiffraktogramms\ von\ (NH_4)_3[SnF_6]F}$

Wellenlänge [$\operatorname{CuK}_{\alpha}$]: 1,540598

2Θ-Fenster: 0,050 Final 2Θ-Fenster: 0,040 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: -0,022(4)

Symmetrie: kubisch P

Ermittelte Zellparameter [pm]:

Verfeinerte Zellparameter [pm]: Gitterkonstante a: 1207,05 Gitterkonstante a: 1206,63(8)(3)

Zellvolumen [10⁶ pm³]: 1756,8(2)

N	2 Q [obs]	нкь	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
1	14,675	2 0 0	14,671	0,0044	100,0	6,0314	6,0332
2	20,807	2 2 0	20,805	0,0014	85,9	4,2658	4,2661
3	25,552	2 2 2	25,552	-0,0007	33,0	3,4833	3,4832
4	26,642	3 2 0	26,615	0,0271	1,1	3,3432	3,3466
5	29,588	4 0 0	29,589	-0,0009	27,9	3,0167	3,0166
6	30,522	4 1 0	30,522	0,0004	2,3	2,9265	2,9265
7	32,299	3 3 1	32,314	-0,0144	1,5	2,7694	2,7682
8	33,175	4 2 0	33,177	-0,0025	12,2	2,6983	2,6981
9	34,029	4 2 1	34,021	0,0078	1,0	2,6325	2,6331
10	34,832	3 3 2	34,847	-0,0152	2,1	2,5736	2,5725
11	36,444	4 2 2	36,449	-0,0060	17,6	2,4634	2,4630
12	37,219	5 0 0	37,228	-0,0096	0,8	2,4139	2,4133
13	38,002	5 1 0	37,994	0,0084	1,0	2,3659	2,3664
14	38,747	5 1 1	38,746	0,0011	4,1	2,3221	2,3222
15	40,225	5 2 0	40,215	0,0095	1,4	2,2401	2,2407
16	42,334	4 4 0	42,339	-0,0044	15,4	2,1333	2,1330
17	45,044	6 0 0	45,043	0,0004	9,7	2,0110	2,0111
18	46,352	6 1 1	46,349	0,0036	1,6	1,9573	1,9574
19	47,629	6 2 0	47,626	0,0028	12,9	1,9077	1,9079
20	48,256	5 4 0	48,255	0,0007	0,9	1,8844	1,8844
21	50,103	6 2 2	50,106	-0,0036	11,9	1,8192	1,8191
22	52,504	4 4 4	52,500	0,0037	3,5	1,7415	1,7416
23	54,819	6 4 0	54,819	-0,0001	6,9	1,6733	1,6733
24	57,078	6 4 2	57,074	0,0037	13,7	1,6123	1,6124
25	61,411	8 0 0	61,422	-0,0116	2,0	1,5085	1,5083
26	63,532	8 2 0	63,529	0,0034	5,4	1,4632	1,4633
27	65,593	6 6 0	65,598	-0,0045	5,3	1,4221	1,4220
28	67,630	6 6 2	67,633	-0,0032	3,8	1,3842	1,3841
29	69,625	8 4 0	69,639	-0,0135	3,8	1,3493	1,3491
30	71,607	8 4 2	71,619	-0,0122	3,0	1,3167	1,3165
31	73,585	6 6 4	73,577	0,0082	2,0	1,2861	1,2863
32	77,404	8 4 4	77,436	-0,0325	1,7	1,2319	1,2315
33	79,352	10 0 0	79,344	0,0081	1,6	1,2065	1,2066
34	81,250	10 2 0	81,239	0,0117	3,5	1,1831	1,1832
35	83,138	10 2 2	83,124	0,0136	1,5	1,1609	1,1611
36	86,882	10 4 0	86,875	0,0064	2,2	1,1203	1,1203
37	88,753	10 4 2	88,745	0,0082	1,6	1,1014	1,1015

5.13 Indizierung des Pulverdiffraktogramms von $\mathrm{NH_4PF}_6$

Wellenlänge [$\operatorname{CuK}_{\alpha}$]: 1,540598 2Θ -Fenster: 0,050 Final 2Θ-Fenster: 0,030 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: 0,016(5)

Symmetrie: kubisch P

Ermittelte Zellparameter [pm]: Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 792,40 Gitterkonstante a: 792,55(5)

Zellvolumen [10⁶ pm³]: 497,83(6)

N	2Q [obs]	H K L	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
1	16,636	n	icht indizier	t	1,3	5,3245	
2	19,383	1 1 1	19,383	0,0001	100,0	4,5758	4,5758
3	22,414	2 0 0	22,418	-0,0036	79,8	3,9634	3,9627
4	23,700	n	icht indizier	t	1,2	3,7511	
5	29,007	n	icht indizier	t	1,8	3,0758	
6	31,911	2 2 0	31,912	-0,0018	20,8	2,8022	2,8021
7	37,608	3 1 1	37,610	-0,0025	5,2	2,3898	2,3896
8	39,344	2 2 2	39,350	-0,0059	8,3	2,2882	2,2879
9	45,117	n	nicht indiziert			2,0080	
10	45,758	4 0 0	45,756	0,0018	1,1	1,9813	1,9814
11	50,130	3 3 1	50,131	-0,0011	3,5	1,8183	1,8182
12	51,525	4 2 0	51,527	-0,0018	3,2	1,7722	1,7722
13	56,867	4 2 2	56,868	-0,0005	7,5	1,6178	1,6178
14	60,672	5 1 1	60,666	0,0056	1,8	1,5251	1,5253
15	66,712	4 4 0	66,707	0,0051	3,6	1,4009	1,4010
16	70,202	5 3 1	70,199	0,0027	3,9	1,3396	1,3397
17	71,352	6 0 0	71,346	0,0060	4,2	1,3208	1,3209
18	75,869	6 2 0	75,860	0,0087	2,2	1,2530	1,2531
19	79,194	5 3 3	79,187	0,0077	0,7	1,2085	1,2086
20	80,292	6 2 2	80,287	0,0053	1,4	1,1947	1,1948
21	87,910	7 1 1	87,910	-0,0003	1,4	1,1098	1,1098
22	88,968	6 4 0	88,993	-0,0255	2,0	1,0993	1,0991

5.14 Indizierung des Pulverdiffraktogramms der nicht charakterisierten Phosphor-Verbindung

Wellenlänge [CuK_{α}]: 1,540598

2Θ-Fenster: 0,050 Final 2Θ-Fenster: 0,050 2Θ-Nullpunkt: 0,000 (refineable) 2Θ-Nullpunkt: -0,005(6)

Symmetrie: tetragonal P

Ermittelte Zellparameter [pm]: Verfeinerte Zellparameter [pm]:

Gitterkonstante a: 550,60
Gitterkonstante a: 550,59(6)
Gitterkonstante c: 1086,08
Gitterkonstante c: 1085,97(16)
Zellvolumen [10⁶ pm³]: 329,21(8)

N	2Q [obs]	нкь	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
1	8,136	0 0 1	8,135	0,0008	11,8	10,8585	10,8597
2	16,316	0 0 2	16,311	0,0048	21,5	5,4282	5,4298
3	18,057	1 0 1	18,049	0,0080	100,0	4,9086	4,9108
4	22,831	1 1 0	22,823	0,0083	54,1	3,8918	3,8932
5	23,000	1 0 2	22,986	0,0144	30,1	3,8637	3,8661
6	24,273	1 1 1	24,267	0,0063	10,1	3,6639	3,6648
7	24,576	0 0 3	24,573	0,0040	12,6	3,6193	3,6199
8	28,186	1 1 2	28,182	0,0048	16,4	3,1634	3,1640
9	29,512	1 0 3	29,508	0,0046	8,0	3,0243	3,0247
10	32,501	2 0 0	32,498	0,0032	20,4	2,7527	2,7529
11	33,547	2 0 1	33,556	-0,0088	1,4	2,6692	2,6685
12	33,782	1 1 3	33,784	-0,0023	1,2	2,6512	2,6510
13	36,884	1 0 4	36,884	-0,0007	3,1	2,4350	2,4350
14	37,419	2 1 1	37,420	-0,0007	8,7	2,4014	2,4013
15	40,477	1 1 4	40,474	0,0032	3,0	2,2268	2,2269
16	41,164	2 0 3	41,162	0,0021	6,9	2,1911	2,1913
17	44,460	2 1 3	44,463	-0,0035	2,8	2,0361	2,0359
18	47,403	2 2 1	47,409	-0,0059	2,0	1,9163	1,9161
19	47,919	1 1 5	47,922	-0,0030	3,2	1,8969	1,8967
20	49,963	2 1 4	49,965	-0,0013	0,8	1,8239	1,8239
21	52,554	3 1 0	52,517	0,0370	2,8	1,7400	1,7411
		3 0 2	52,596	-0,0426			1,7387
22	53,388	2 2 3	53,397	-0,0095	1,4	1,7174	1,7144
23	53,705	2 0 5	53,712	-0,0068	2,2	1,7053	1,7051
24	55,365	3 1 2	55,370	-0,0051	1,9	1,6581	1,6580
25	56,145	3 0 3	56,144	0,0013	1,1	1,6369	1,6369
26	58,783	3 1 3	58,804	-0,0215	1,8	1,5696	1,5690
27	60,856	3 0 4	60,878	-0,0220	0,7	1,5210	1,5205
28	63,763	2 1 6	63,768	-0,0050	1,1	1,4584	1,4583
29	64,192	2 2 5	64,198	-0,0063	2,0	1,4497	1,4496
30	66,369	3 2 3	66,389	-0,0195	0,8	1,4073	1,4070

N	2Q [obs]	H K L	2Q [calc]	obs-calc	Intensität	d [obs]	d [calc]
31	68,063	4 0 0	68,059	0,0041	1,6	1,3764	1,3765
32	69,081	3 1 5	69,086	-0,0053	2,8	1,3586	1,3585
33	70,655	r	icht indizier	t	0,6	1,3321	
34	71,070	2 2 6	71,069	0,0091	0,9	1,3254	1,3255
		4 1 1	71,068	0,0014			1,3254
35	71,876	2 1 7	71,869	0,0068	0,8	1,3125	1,3126
36	72,808	3 3 0	72,821	-0,0135	0,8	1,2980	1,2977
37	73,487	r	icht indizier	t	0,9	1,2876	
38	73,861	1 1 8	73,878	-0,0163	0,7	1,2820	1,2818
39	75,209	3 3 2	75,220	-0,0108	0,5	1,2624	1,2622
40	77,459	4 2 0	77,464	-0,0041	1,1	1,2312	1,2311
41	78,232	3 3 3	78,183	0,0494	0,5	1,2210	1,2216
42	82,644	3 2 6	82,598	0,0460	0,8	1,1666	1,1671
43	87,505	3 3 5	87,490	0,0147	0,7	1,1139	1,1140
		2 2 8	87,546	-0,0413			1,1135

Erklärung

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt habe, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; daß sie - abgesehen von den angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmung der geltenden Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Gerd Meyer betreut worden.

Zur Wahrung der Priorität wurden Teile dieser Arbeit bereits publiziert:

- [1] D. Göbbels, G. Meyer, Synthese und Kristallstruktur von [Cr(NH₃)₆][Cr(NH₃)₂F₄][BF₄]₂, Z. Anorg. Allg. Chem., 2000, 626, 1499
- [2] D. Göbbels, G. Meyer, Tetrafluoroborate von Übergangsmetall-Komplexen, *Z. Kristallogr.*, *Suppl.* 17, **2000**, 161

Danksagung

An dieser Stelle möchte ich mich bei allen Personen bedanken, die zum Gelingen dieser Arbeit direkt oder indirekt beigetragen haben.

Zunächst gilt mein Dank meinem Doktorvater, Prof. Dr. Gerd Meyer, der mir immer mit Rat und Unterstützung zur Seite stand. Desweiteren danke ich ihm ferner für sein stetes Interesse, den sehr guten Arbeitsbedingungen und dem großen Forschungsfreiraum, die zum Gelingen dieser Arbeit beitrugen.

Herrn Prof. Dr. W. Jung danke ich für die Übernahme des Korreferats.

Dr. M. "Wicky" Wickleder und Frau (!) Dr. Claudi Wickleder danke ich für die unzähligen Ratschläge sowie den vielen Diskussionen und Anregungen, die zum Gelingen dieser Arbeit beitrugen. Desweiteren für die vielen Exkursionen nach Brühl in den "Zoo", aber auch für die Ausflüge zur Weihnachtszeit.

Dr. "Angi" Möller danke ich besonders für die Unterstützung beim Interpretieren spektroskopischer Probleme auf "letzter Minute". Ein ganz besonderes Dankeschön gebührt ihr, für die Zeit, die ich bei ihr im Land des Tasmanischen Teufels verbringen konnte.

Dr. D. J. Hinz danke ich für die Einweisung in die vorhandenen Pulverdiffraktometer und der Unterstützung beim Lösen von pulverdiffraktometrischen Fragestellungen.

Meinen lieben ehemaligen und derzeitigen Laborkollegen danke ich für die schöne Zeit in Labor 415. Hervorzuheben sind dabei Mischa "die Wand" Schmidt, für die vielen netten Stunden beim sonntäglichen Brunch. Ebenfalls die Wüstenlaus Jalil "Knut" Assoud, auch als Herr der 100 Schwestern bekannt. Zu nennen sind desweiteren Marco Bastian (der binäre Mann), Jens "Tenner" Hansing, Dirk "Dundee" Stellfeldt, Niels Gerlitzki, Peter Amann, Stephan Bremm und Norbert, die Eule, Böhmer für die vielen gemeinsam verbrachten Stunden bei einem Glas Bier oder Wein. Vieleicht waren es auch mehrere Gläser? Allen anderen Arbeitskollegen, die hier nicht namentlich erwähnt sind, gilt ebenfalls mein Dank.

Ein ganz besonderes Dankeschön gebührt den Angestellten des Institutes, zu nennen sind hier vor allem Ingrid Müller, Regina Schulze und Horst Schumacher für die unzählig durchgeführten Messungen am IPDS, DTA, IR und Pulverdiffraktometer.

Natalie Scott danke ich für die Möglichkeit, die Welt mal von "down under" betrachten zu können und diesbezüglich noch einmal meinem Doktorvater, der mir einen etwas längeren Aufenthalt (waren es 2 oder 3 Monate) auf der anderen Seite der Welt genehmigte.

Lebenslauf

Persönliche Daten

Name: Dirk Göbbels Geburtstag: 08.03.1970 Geburtsort: Köln-Weiden

Anschrift: Potsdamerstr. 12, 50859 Köln

Eltern: Wilhelm Göbbels und Barbara Göbbels, geb. Vetter

Nationalität: deutsch Familienstand: ledig

Schulbesuch

1976 - 1980 Albert-Schweitzer-Grundschule in Köln-Weiden
1980 - 1986 Eichendorff-Realschule in Köln-Ehrenfeldt
1986 - 1988 Aufbaugymnasium in Köln
1988 - 1989 Königin-Luise-Gymnasium in Köln
Abschluß: Allgemeine Hochschulreife

Wehrdienst

10/1989 - 09/1991 Soldat auf Zeit für 2 Jahre (SaZ2) in Wildeshausen, Lippstadt,

Altenstadt (Oberbayern) und Iserlohn

Studium

10/1991 Chemie an der Universität zu Köln
 07/1995 Vordiplom
 02/1998 mündliche Diplomhauptprüfung
 02/98-10/98 Diplomarbeit über "Reaktionen von Ammoniumhalogeniden mit Elementen an der Zintlgrenze"

Promotion

seit 10/1998 Wissenschaftlicher Mitarbeiter am Institut für Anorganische Chemie der

Universität zu Köln