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Introduction

1 INTRODUCTION

Hundred thirty Mbp to 110,000 Mbp represent the wide range of nuclear genome sizes,
which have been observed among Angiosperms. Between these estimates for
Arabidopsis thaliana and Fritillaria assyriaca, a broad panel of genome sizes and
chromosome numbers are found among flowering plants (reviewed in Bennett et al.,
2000). These variations are mainly due to the amount of repetitive DNA sequences in
the genomes. The abundance of repetitive sequences has been found positively
correlated with genome size (Bennetzen 2000a; Bennetzen 2000b). Polyploidy appears
to be widespread in the plant kingdom, but it does not account for the large variations in
genome sizes which are observed in higher plants.

Comparative mapping experiments in the Poaceae (Moore et al. 1995) and the
Brassicaceae family (Lagercrantz et al. 1996) have revealed a conserved gene repertoire
and genome organisation in related species, despite their differences in genome sizes.
These experiments rely on the use of a common set of markers for the construction of
genetic linkage maps for two or more species. These markers used are representing
links between the maps of related species. This allows direct comparison of the
resulting linkage maps. Thus, it can be studied whether the markers along the linkage
groups can be found in a conserved arrangement.

The Brassicaceae family lends itself particularly well to comparative genome analysis
studies. Small size of mature plants, a short generation time, prolific seed production
from single plants and diploid genetics makes Arabidopsis thaliana ideally suited for
genetic and mutational analyses. For these reasons and due to its small genome size, this
crucifer has been chosen as model organism for molecular genetic studies in plants. The
genome of 4. thaliana is the best-studied genome of a higher plant and it is therefore of
special interest to transfer the knowledge obtained in the model species to related crop
plants. Within the Brassica genus, closely related to Arabidopsis, several species are
exploited as vegetable and fodder crops and most importantly oil seeds. For many
Brassica species, recent polyploid ancestry has been postulated (Lydiate ef al. 1993).
Thus, the Brassicaceae family offers excellent opportunities for studying comparative

genome arrangements between diploid species and those of polyploid origin.
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1-1 ARABIDOPSIS THALIANA: THE MODEL

1-1-1 Genome size

A. thaliana is a crucifer with n=5 chromosomes. Chromosomes 2 and 4 can be easily
recognised because they carry the nucleolar organising regions (NOR) (Heslop-Harrison
and Maluszynska 1994). Arabidopsis has one of the smallest genomes among higher
plants, the 2C DNA content has been determined at ~0,30 pg (Arumuganathan and
Earle 1991). Much higher values have been determined for other species such as rice
(~0,86-0,91 pg), maize (~4,75-5,63 pg) or wheat (~33,09 pg). For the Brassica relatives
the nuclear DNA content is comprised between 0,97 (B. nigra) and 2,56 pg/2C (B.
napus), the resulting genome size estimates are 468 Mbp to 1235 Mbp, respectively
(Arumuganathan and Earle 1991). Based on the genomic sequencing efforts the genome
size of Arabidopsis can now be estimated at 125 Mbp (The Arabidopsis genome
initiative 2000).

1-1-2 Repeated DNA sequences

The A. thaliana genome contains a low amount of repetitive DNA (~20%) (Meyerowitz
1994). Repeated DNA sequences can be classified into sequences organised in tandem
arrays and those that are distributed throughout the genome.

Tandemly repeated DNA sequences are found at the telomeres, the centromeres and the
nucleolar organising regions (NORs). The telomeric sequences are estimated to
constitute about 0,3% of the genome (Richards and Ausubel 1988). Two NORs are
identified on chromosomes 2 and 4 of Arabidopsis and contain clusters of 18, 25 and
5,8S rDNA arrays for an estimated size of 4 Mbp (Goodman et al 1995), or 6% of the
genome. The 5S rDNA sequences are also organised in tandem but independently from
the NORs. They account for 0,7% of the Arabidopsis genome (Campbell et al. 1992).
The centromeric regions have been determined for all 5 chromosomes (RCENI1-5)
(Round et al. 1997 ; Copenhaver et al. 1999). Long arrays of 180 bp tandemly repeated
DNA sequences are found at each of the Arabidopsis centromeres. The 5S rDNA
repeats are also observed in some centromeric regions.

Despite the small genome size and low amount of transposable elements, the 4. thaliana
genome has representatives of the main classes of transposons and retrotransposons

(Konieczny et al. 1991; Pélissier et al. 1995; The Arabidopsis genome initiative, 2000).
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Recently, the amount of transposable elements has been determined to be about 10% of
the A. thaliana genome. Especially, certain families of retrotransposons are localised in
the centromeric and peri-centromeric regions. Few repetitive sequences are found in
euchromatic regions (The Arabidopsis genome initiative, 2000).

No parallel can be elaborated with cereal genome organisation. In these genomes,
repetitive sequences represent between 50 and 80% of the nuclear DNA. The large
majority of repetitive DNA is belonging to the retrotransposon class, which is spread all

over the genome and interspersed with gene sequences (reviewed in Bennetzen 2000b).

1-1-3 Genetic maps

Many genetic maps have been established for Arabidopsis for a range of mapping
populations with morphological markers as well as with molecular markers (Koornneef
et al. 1983a; Koornneef et al. b; Chang et al. 1988; Nam et al. 1989; Hauge ef al. 1993).
Recombinant inbred lines established from a cross between the Landsberg erecta and
Columbia ecotypes serve as a reference population
(http://nasc.nott.ac.uk/new ri_map.html; Lister and Dean 1993). Due to the almost
complete homozygosity of the lines, they can be widely used and are thus particularly
suited to integrate different types of markers information. Consequently, many marker
types were then used such as RFLPs (Fabri and Schéffner 1994; Liu et al. 1996),
RAPDs (Reiter ef al. 1992), CAPSs (Konieczny and Ausubel 1993; Jarvis ef al. 1994),
microsatellites ( Bell and Ecker 1994) and AFLPs (Alonso-Blanco ef al. 1998).

1-1-4 Physical maps and the sequencing project

Physical maps of the 4. thaliana genome have been established as a pre-requisite of the
genome sequencing project which has been initiated in 1996. Alignments of BAC and
YAC contigs gave a first glimpse into 4. thaliana genome and its organisation (Schmidt
et al. 1995; Zachgo et al. 1996; Schmidt et al. 1997; Kotani et al. 1997; Camilleri et al.
1998; Marra et al. 1999; Mozo et al. 1999). Since some of the clone contig maps are
anchored to the genetic maps, the relationship between genetic and physical distances
along the chromosomes could be studied. The frequency of recombination has been

observed to vary with hot and cold spots along the chromosomes. Schmidt et al. (1995)
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calculated an average of 185 Kbp/cM for chromosome 4 with variation from 30-50
kbp/cM for hot spots to >550 kbp/cM for cold spots.

Sequence data are now available for the whole 4. thaliana genome, with the notable
exception of the centromeres, telomeres and NORs. The total length of sequenced
regions is 115,409,949 bp. Taking into account the length of the non-sequenced
segments, the genome size is reported to be 125 Mbp. A total of 25,498 genes were
predicted to be present in the sequenced regions. Around 70% of the genes could be
grouped into different functional classes (The Arabidopsis genome initiative 2000). An
overall analysis shows a homogenous density of genes and transposable elements on the
five chromosomes (Lin et al., 1999; Mayer et al. 1999; Salanoubat et al. 2000; Tabata et
al. 2000, Theologis et al. 2000; The Arabidopsis genome initiative 2000). Previous
studies estimated a gene density of 4,6 kbp/gene for A. thaliana (Barakat et al 1998).
This is consistent with the values reported for the individual chromosomes, which vary

from 4,0 kbp/gene to 4,9 kbp/gene (The Arabidopsis genome initiative 2000).

1-1-5 Duplications in the Arabidopsis genome

The extent of duplications within the 4. thaliana genome became apparent by the
analysis of large sequenced segments. Frequently, members of small gene families are
found closely linked (Bevan et al. 1998; Terryn et al. 1999). Overall, it has been
calculated that 17% of all 4. thaliana genes are arranged in tandem arrays. The
proportion of gene family members is greater in A. thaliana than in other eukaryotic
model counterparts and is interpreted as an extreme tolerance of plants to tolerate
increases in genome size (The Arabidopsis genome initiative 2000).

Large contigs of 4. thaliana DNA having been sequenced, segmental duplications
including many genes have been uncovered in the 4. thaliana genome, like at first
between chromosomes 2 and 4 (Lin et al. 1999; Mayer et al. 1999; Terryn et al. 1999).
Furthermore, by combining mapping information for small multigene families and
sequence alignment studies, Blanc et al. (2000) were able to draw a preliminary
scheme of the duplicated segments, which comprise 60% of the 4. thaliana genome.
The high divergence observed within these duplicated segments reveals the ancient
nature of these duplications of A. thaliana. Indeed, only 20% to 47% of the genes were
found in common between duplicated segments. With the completion of the genomic

sequencing project, a refined map of the duplicated segments could be drawn and it
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could be confirmed that 60% of the genome is present in large segmental duplications

(The Arabidopsis genome initiative 2000).

1-1-6 Expressed Sequence Tags (ESTs)

EST collections reflect the genes transcribed in an organism. The analysis of cDNA
libraries made from different tissues and from material grown under various conditions
results in a representation of many different gene sequences. Large scale analyses were
initiated to estimate the validity of this approach (Hofte ef al. 1993; Newman et al.
1994). ESTs are single-pass sequences which partially represent a particular cDNA
clone. Over 100,000 A. thaliana ESTs are available in public databases
(http://www.ncbi.nlm.nih.gov; http://www.tigr.org/tdb/agi/). Alignment of overlapping
ESTs allows the construction of tentative consensus sequences (TCs). This decreases
the redundancy of an EST collection and most importantly the EST assemblies often
cover the entire protein-coding-sequence of genes (Rounsley et al. 1996; Quackenbush
et al. 2000).

Only 57%-61,4% of the predicted genes have corresponding EST sequences (The
Arabidopsis genome initiative 2000). Thus, despite the extensive Arabidopsis EST
collections, experimental proof for many of the predicted genes is still lacking.
Exon/intron structure predictions of genes are mainly relying on computer-based
algorithms and it has been established that not all of the annotated genes are correctly
predicted (The Arabidopsis genome initiative 2000). In contrast, aligning EST or cDNA
sequences with the corresponding genomic sequence readily and reliably reveals the
exon-intron structure of a particular gene. Therefore, EST contig information plays an
important role in the annotation of genomic sequencing data. It has been established that
in the segmental duplications of the Arabidopsis genome, only exon sequences are
conserved due to the ancient nature of the duplications (Terryn et al. 1999; Blanc et al.
2000). Thus, alignment of duplicated gene sequences can also be exploited for

improving gene structure predictions.

1-2 THE BRASSICACEAE FAMILY

The Brassicaceae family is comprised of 360 genera and approximately 3350 species

(reviewed in Paterson et al. 2000, Schmidt et al. 2000). Especially, species of the
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Brassica genus are of agricultural importance as oil seeds, vegetable and fodder crops.
For example, sub-species of Brassica oleracea include cabbage, cauliflower, broccoli,
kale, kohlrabi and Brussels-sprouts.

Marker assisted breeding is important for crop improvement of the Brassica species,
therefore, efforts are underway to establish molecular linkage maps for Brassica
species. The study of genetic similarities between genotypes is of special importance to
permit maintenance and exploitation of germplasm resources (Lydiate et al. 1993). The
close phylogenetic relationship to A. thaliana offers unique opportunities to transfer
knowledge from the well-studied Arabidopsis genome to the related crop plants. Thus,
it is important to study the genome organisation of these plants in a comparative way in
order to develop methods which will achieve this transfer in an efficient manner.

The divergence time between Brassica and A. thaliana has been estimated at 14,5-20,4
million years ago (Yang et al. 1999), reflecting the close phylogenetic relationship
between these species. The Capsella genus is also closely related to Arabidopsis and
Brassica. Capsella-Brassica divergence time has been calculated at 12,4-19,5 million
years ago, whereas the split of the Capsella - A. thaliana lineages seems to have
occurred more recently, 6,2-9,8 million years ago (Koch et al. 1999). For comparisons,
the split of the lineages leading to monocotyledonous and dicotyledonous plants has

occurred between 170 and 235 million years ago (Yang et al. 1999).

1-2-1 Chromosome numbers and genome sizes

Members of the Brassicaceae family have different base chromosome numbers. Despite
their close phylogenetic relationship, 4. thaliana and C. rubella differ in chromosome
number. They have 2n=2x=10 and 2n=2x=16 chromosomes, respectively. The diploid
Brassica species, B. nigra, B. oleracea and B. rapa (syn. campestris) are also
characterised by different chromosome numbers. They contain 2n=2x=16, 2n=2x=18
and 2n=2x=20 chromosomes, respectively. Interspecific hybridisation between these
diploid species can generate stable fertile amphidiploid species (B. napus, B. juncea and
B. carinata, Figure 1). The amphidiploid species can be considered to carry the entire
genome sets of each of the progenitors (U, 1935 ).

The genomes of the Brassica species are much larger than that of their relative 4.
thaliana. The sizes vary from 0,97 pg/2C (B. nigra) to 2,56 pg/2C (B. napus). B.

oleracea sub-species also show differences in genome size from 1,24 pg/2C (B.
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oleracea ssp. italica) to 1,37 pg/2C (B. oleracea ssp. botrytis) (Arumuganathan and
Earle, 1991). Species more closely related to Arabidopsis have also larger genome sizes
than A4. thaliana. For the tetraploid species C. bursa-pastoris (shepherd’s purse) a value

of 680 Mbp (Bennett and Smith 1976) is suggested.

B.rapa B.napus B.oleracea
AA 2n=20 AACC 2n=38 CC 2n=18

B.carinata
BBCC 2n=34

B.juncea
AABB 2n=36

B.nigra
BB 2n=16

Figure 1: Genetic relationship of the cultivated Brassica species, redrawn from U (1935). The
chromosome numbers are indicated for each species. A, B and C designate the genomes of the three
diploid species.

1-2-2 Genome organisation

Cytogenetic studies (FISH) have been carried out to localise rDNA loci and some
repetitive sequences on the chromosomes of Brassica species. In B. oleracea var.
alboglabra, Amstrong et al. (1998) observed three distinct NOR loci (18S-5,8S-25S
rDNA genes) on chromosomes 2, 4 and 7. The 5S rDNA sequences are located on the
long arm of chromosome 2. Highly repetitive sequences co-localise with all peri-
centromeric regions, but in situ hybridisation experiments revealed that the different

centromeric regions are labelled with varying intensities.

1-2-3 Genetic mapping

Several maps have been established for different Brassica species utilising a variety of
mapping populations. A common observation is the remarkable degree of duplication of
the genome. Moreover, for some markers three and four loci could be detected. On
average, not less than 30% of all RFLP markers tested revealed multiple loci. Sets of
duplicated loci were found in the same order with similar distances between them on
different linkage groups (Slocum et al. 1990; McGrath and Quiros 1991; Song et al.
1991; Teutonico and Osborn 1994). Several markers showed polymorphic as well as
monomorphic fragments. This also indicated that multiple loci are corresponding to

these markers.
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These observations in combination with the larger genome size of Brassica compared to
A. thaliana led to two different hypotheses about the ancestry of the Brassica genome.
Either the Brassica genome was modified by many duplications and subsequently
rearrangements (Truco et al., 1996) or the cultivated diploid Brassica species are

derived from polyploid ancestors (Lagercrantz et al. 1996).

1-2-4 Comparative mapping between Brassica species

Genetic mapping experiments of Brassica species revealed rearrangements, inversions,
translocations and duplications, if the genomes of the three cultivated diploid Brassica
species were compared in a pairwise fashion. Between each of the pairs of the three
cultivated diploid Brassica species, 5 to 12 rearrangements were detected (Lagercrantz
and Lydiate 1996). In contrast, in the amphidiploid B. napus, the genomes of its
progenitors B. rapa and B. oleracea are present with almost no alterations (Sharpe et al.
1995 ; Parkin et al. 1995 ; Bohuon et al. 1996). Similarly, the B. juncea genome reflects
the organisation of the genomes of its progenitors (Axelsson et al. 2000)

By analysing the genome of B. nigra via RFLP markers, Lagercrantz and Lydiate
(1996) could describe that the whole B. nigra genome was arranged as eight sets of
triplicated collinear chromosomal segments. Thus, the B. nigra genome can be viewed
as reshuffled assembly of three complete copies of a putative ancestral genome. Due to
the fact that almost all B. nigra segments could be identified in B. oleracea and B. rapa,
it has been concluded that the A and C genome are also showing the genome triplication
initially identified in B. nigra. Fission and fusion of chromosome segments would have
then reshuffled the A, B and C genomes in different ways (Lagercrantz and Lydiate
1996). The rather similar sizes of the A, B and C genomes corroborates this view (507-

516 Mbp for B. rapa, 468 Mbp for B. nigra and 599-662 Mbp for B. oleracea).

1-2-5 Comparative genetic mapping between Arabidopsis thaliana and related
species

Rearrangements between the A. thaliana and C. rubella genomes are expected due to
their different base chromosome numbers. Genetic mapping of markers located on A.
thaliana chromosome 4 revealed two collinear linkage segments in Capsella, one of

which contains an inversion (Acarkan et al. 2000). Marker repertoire has been shown to
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be conserved between both species, only two A. thaliana markers analysed did not
hybridise the C. rubella DNA.

Comparative mapping studies have been carried out to determine how the genome of an
ancient polyploid such as Brassica is related to the one of its close diploid relative 4.
thaliana. Genetic mapping experiments showed that clusters of closely linked RFLP
loci are conserved between Brassica oleracea and A. thaliana, but extensive
rearrangements are observed (Kowalski et al. 1994). It is worthwhile to point out that
this analysis provided evidence for duplications in the 4. thaliana genome (Kowalski et
al. 1994).

A detailed comparison of the 4. thaliana and B. nigra genomes established the average
size of conserved linkage segments at 8 cM. This corresponds to ~90 rearrangements
between the genomes of these species (Lagercrantz 1998). A 1,5 Mbp segment of 4.
thaliana surrounding the CO gene (control of flowering time) has been analysed for
collinearity in B. nigra. The genetic experiments revealed two intact homologous
regions in B. nigra equivalent to the 4. thaliana segment and a third one carrying a
large chromosomal inversion (Lagercrantz ef al. 1996). A study of markers located in a
30 cM segment of 4. thaliana chromosome 4 matches six segments in the B. napus
genomes, two of which are also characterised by a large inversion (Cavell ef al. 1998).
A segment of 15 kbp on chromosome 3 of 4. thaliana has been found completely
collinear with a single linkage group in the B. nigra, B. oleracea and B. rapa genomes,
but additionally, partial clusters were discovered in all three species (Sadowski ef al.
1996). Furthermore, for six genes present in a 30 kbp region of A. thaliana chromosome
4 five corresponding loci could be found in the B. nigra genome, one of which included
all six genes and whereas the others represented imcomplete copies of the locus
(Sadowski and Quiros 1998).

Six BAC inserts of A. thaliana were used as probes in fluorescent in situ hybridisation
experiments on DNA fibres of B. rapa chromosomes. Multiple hybridising regions of
similar size as the A. thaliana segments were observed in B. rapa. This led the authors
to conclude that the increase of the Brassica genome size is mainly due to duplications
rather than accumulation of repetitive sequences in intergenic regions (Jackson et al.
2000).

The comparison between the A. thaliana and Brassica genomes revealed further
evidences for the complex nature of the Brassica genomes. The collinearity studies

detected conserved segments, but rearrangements were frequently seen.
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1-2-6 Initiation of microcollinearity studies within the Brassicaceae family

A. thaliana is self-fertile, but some species of the genus Brassica are self-incompatible.
A comparative physical mapping study on the region encoding the self-incompatibily
locus (SLG/SLK) showed that the homeologous region of Arabidopsis was highly
conserved with the exception that the self-incompatibily genes were absent from this
locus (Conner et al. 1998). An A. thaliana fragment carrying the single-copy RPM 1
gene surrounded by GTP and M4 markers has been shown to have six homeologous loci
in B. napus but only two carry a copy of RMP1. Sequencing of the incomplete loci in B.
napus suggested that the absence of RPM1 is due to deletions (Grant ef al. 1998).

These first microcollinearity studies show that many small alterations can be found at
the level of the genes between the Arabidopsis and Brassica genomes. In contrast,
comparisons between small regions of the A. thaliana and C. rubella genomes revealed

conserved gene repertoire and order (Acarkan et al. 2000; Rossberg et al. 2001).

1-2-7 Mobile elements in the Brassicaceae family

The great influence of repetitive elements on genome size has been noted in grasses.
Microcolinearity studies revealed that in the maize genome many retrotransposons are
found interspersed with genes, whereas these elements are not as frequent in the
orthologous regions of the much smaller sorghum and rice genomes. Nevertheless,
despite the presence of many retrotransposons extensive microcollinearity is observed
(Chen et al. 1998; Tikhonov et al. 1999).

Little is known about transposable elements in Brassica and their putative conservation
with mobile elements in the A. thaliana genome. But common occurrence of different
types of elements has been reported in a number of studies. Long interspersed elements
(LINEs, Noma and Ohtsubo 1999), miniature inverted-repeat transposable elements
(MITEs, Casacuberta et al. 1998), TyI-Copia-like (Hirochika and Hirochika 1993) and
Ty3-Gypsy-like retrotransposons (Suoniemi et al. 1998) have been found at least in
common between A. thaliana and one of the Brassiceae members. In contrast, short
interspersed elements (SINEs) present in Brassiceae species were not cross-hybridising

to A. thaliana DNA (Lenoir et al. 1997).

10
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1-3 OBJECTIVE OF THIS STUDY

This study is aiming at the comparative genome analysis of three species of the
Brassicaceae family, Arabidopsis thaliana, Capsella rubella and Brassica oleracea.
Lineages leading to Arabidopsis and Capsella separated 6,2-9,8 million years ago,
whereas Brassica diverged from Arabidopsis and Capsella 14-20 million years ago. The
species chosen for the analysis are characterised by different chromosome numbers and
genome sizes, furthermore Brassica oleracea is of relatively recent polyploid origin.
Arabidopsis markers and sequence information were exploited to generate a linkage
map of Capsella. This part of the study was aimed at an overall comparison of gene
repertoires in both species. Furthermore, it was intended to analyse the collinearity of
the Arabidopsis and Capsella genomes.

A 50 kbp region located on the long arm of 4. thaliana chromosome 4 was chosen for a
microcollinearity study. The aim was the identification of homologous regions in the C.
rubella and B. oleracea genomes and their characterisation in respect to gene repertoire
and order. Another objective included the comparative analysis of exon/intron structures
of orthologous genes.

Repetitive DNA sequences constitute a large fraction of plant genomes. A comparative
analysis of retroelement-like sequences in the 4. thaliana and C. rubella genomes was
carried out to reveal more about the conservation of such sequences in the Brassicaceae

family.

11
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1-4 ABBREVIATIONS

acc. no.
A. thaliana
BAC

bp (kbp, Mbp)
B. oleracea
BSA

°C

C. grandiflora/rubella
chr.

cos

CTAB

DNA

dNTP

E. coli

EDTA

ENV

EST

g (mg, ug)
indel

INT

IPCR

IPTG

1 (ml, ul)

LG

LINE

LTR

M (mM)

mA

MDE™ gel solution
NOR

O/N

accession number

Arabidopsis thaliana

Bacterial Artificial Chromosome
base pair (kilo, Megabasepair)
Brassica oleracea

bovine serum albumine

degree Celsius

Capsella grandiflora/rubella
chromosome

cosmid

Cetyl tri-methyl ammonium bromide
Desoxyribonucleic acid

desoxyribo nucleoside tri-phosphate
Escherichia coli

ethylene diamino tetra acid
envelope gene

expressed sequence tag

gram (milligram, microgram)
insertion/deletion

integrase

inverse polymerase chain reaction
isopropyl-p-D-thio-galactoside

litre (millilitre, microlitre)

linkage group

long interspersed element

long terminal repeat

molar (millimolar)

milli-Ampere

Mutation Detection Enhancement gel solution
nuclear organising regions

overnight
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ORF
PBS
PCI
PCR
PFGE
PPT
RFLP
RNAse

RT
RT
SDS
SINE
SNP
SSCP
TSD

Tris

vol
v/v
w/v
X-gal
YAC

open reading frame

primer binding site

phenol / chloroform / isoamylalcohol
polymerase chain reaction

pulsed field gel electophoresis

polypurin tract

restriction fragment length polymorphism
ribonuclease

rotation per minute

room temperature

reverse transcriptase

sodium dodecyl sulphate

short interspersed element

single nucleotide polymorphism
single-stranded conformation polymorphism
target site duplication
tris-(hydroxymethyl)-aminomethane
units

Volt

volume

volume per volume

weight per volume
5-bromo-4-chloro-3indolyl-B-thiogalactoside

Yeast Artificial Chromosome
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2 MATERIAL AND METHODS

2-1 MATERIAL

2-1-1 Equipment

Thermal cycler (PTC200)

Centrifuges

Hybridisation chambers
ABI prism 377 and 3700 sequencers
UV crosslinker

Pulsed field gel electrophoresis

Biozym Diagnostic GmbH, Hess. Oldendorf, Germany
Beckman Instruments, Unterschleissheim-Lohhof, Germany
Eppendorf, Koln, Germany

Heraeus Instruments, Hanau, Germany

Heraeus Instruments, Hanau, Germany

Perkin Elmer, Uberlingen, Germany

Amersham Pharmacia Biotech, Freiburg, Germany

Bio-Rad Laboratories GmbH, Munchen, Germany

2-1-2 Enzymes and nucleotides

Restriction enzymes and buffers

[0-*2P]-dCTP

Desoxyribonucleotidetriphosphate (ANTP)
DNA size standards
DNA polymerase I (Klenow Fragment)

Oligonucleotides

Adenosinetriphosphate (ATP)
Ribonuclease A (RNase A)
Random hexamers p(dN),
Salmon sperm DNA

Taq polymerase and buffer

T4 DNA ligase and buffer

Boehringer Mannheim, Mannheim, Germany
New England Biolabs Inc., Frankfurt, Germany
Gibco BRL, Karlsruhe, Germany

MBI Fermentas, St. Leon-Rot, Germany

Amersham Pharmacia Biotech, Freiburg, Germany
Hartmann Analytic, Braunschweig, Germany

MBI Fermentas, St. Leon-Rot, Germany

Gibco BRL, Karlsruhe, Germany
Metabion, Planegg-Martinsried, Germany
MWG, Ebersberg, Germany

Boehringer Mannheim, Mannheim, Germany

Sigma, Deisenhofen, Germany
Gibco BRL, Karlsruhe, Germany

New England Biolabs Inc., Frankfurt, Germany

2-1-3 Chemicals and media components

Agarose

Bacto agar
Bacto tryptone

Gibco BRL, Karlsruhe, Germany

Difco Laboratories, Detroit USA
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Yeast extract
Acrylease

BSA

Chemicals

MDE" gel solution

Stratagene, Amsterdam, The Netherlands

MBI Fermentas, St. Leon-Rot, Germany

Calbiochem Novabiochem GmbH, Schwalbach, Germany

Duchefa Biochemie BV, Haarlem, The Netherlands
Gibco BRL, Karlsruhe, Germany

J. T. Baker, Deventer, The Netherlands

Merck, Darmstadt, Germany

Amersham Pharmacia Biotech, Freiburg, Germany
Serva, Heidelberg, Germany

Sigma, Deisenhofen, Germany

FMC BioProducts Corp., Rockland, USA

2-1-4 Purification systems

DEAE cellulose paper

Low copy plasmid purification (Nucleobond AX
plasmid-purification kit )

PCR product purification (High Pure PCR-
purification-Kit ")
Plasmid DNA purification (High Pure Plasmid-

™

Kit™)

Amersham Pharmacia Biotech, Freiburg, Germany

Macherey-Nagel GmbH, Duren, Germany

Boehringer Mannheim, Mannheim, Germany

2-1-5 Blotting material and films

Nylon membranes Hybond N*

Biodyne A/B
Whatman® 3MM

X-ray films (Kodak-X-OMAT-
AR-5)

Amersham Pharmacia Biotech, Freiburg, Germany
Pall, Dreieich, Germany

Whatman, Maidstone, England

Sigma, Deisenhofen, Germany

2-1-6 Biological material

2-1-6-1 Capsella mapping population

An interspecific cross of the self-incompatible species Capsella grandiflora and the

self-compatible species Capsella rubella was carried out. One of the resulting progeny

plants was allowed to self-fertilise. Of 100 F2 plants, 50 self-compatible plants were

selected for the mapping population (Acarkan et al. 2000).
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2-1-6-2 Brassica mapping population

The population used for genetic mapping experiments in Brassica oleracea was
established from the highly polymorphic cross of B. oleracea var. alboglabra x B.
oleracea var. italica (A12DHd x GDDH33) (Bohuon et al. 1996). A subset of 40 double
haploid lines was analysed to map different loci via RFLP and SSCP analysis.

2-1-6-3 RFLP markers

Arabidopsis DNA sequences were used as RFLP markers for genetic mapping
experiments in Capsella.
- mi-markers: Psfl fragments of genomic DNA derived from A. thaliana
ecotype Columbia and cloned into vector pUC119 (Liu et al. 1996).
- EST clones: A. thaliana cDNA clones for which partial sequence

information is available (Newman er al. 1994, Hofte et al. 1993).

2-1-6-4 Brassica/Capsella cosmid libraries

Cosmid libraries containing genomic DNA of Capsella rubella and Brassica oleracea
were established in the laboratory (Schmidt e al. 1999).

Total genomic DNA from Brassica oleracea var. alboglabra and Capsella rubella was
partially digested either with Tagl or Mbol, cloned into cosmid vector pCLD04541
(Bancroft et al. 1997) and transformed into E. coli strain SURE™?2. Cosmid vector
pCLD04541 carries a tetracycline resistance gene. The average size of the genomic
DNA inserts is approximately 20 kbp (Schmidt ez al. 1999).

About 23,000 clones were gridded into 384-microwell plates for each of the two
Capsella cosmid libraries. It has been estimated that both libraries together encompass
4-5 genome equivalents (Acarkan, 2000). Approximately, 110,000 gridded cosmid
clones make up the libraries containing Brassica oleracea genomic DNA. This
corresponds to 2,5-4 genome equivalents since the genome size of Brassica has been
estimated to be between 600 and 870 Mbp (Arumuganathan and Earle 1991; Bennett
and Smith 1976).
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2-1-6-5 Brassica BAC libraries:

BAC library: This library of B. oleracea A12DHd DNA contains
approximately 25,000 clones with an average insert size of 110 kbp. The
library corresponds to 4,5 genome equivalents (C. Ryder and G. King, HRI
Wellesbourne, unpublished; http://hbz.tamu.edu/bacindex4.html). Genomic
DNA is cloned into the HindIIl site of cloning vector pBeloBAC11 which

carries a chloramphenicol resistance gene (Kim ef al. 1996 ).

BIBAC library: Brassica oleracea var. alboglabra DNA has been partially
digested with Sau3Al and cloned into the BamHI site of the pBIBAC 2
vector (binary BAC vector, Hamilton 1997). The pBIBAC 2 vector carries a
kanamycine resistance gene. The average size of the genomic DNA inserts is
145 kbp for 85% of the 34,000 clones (O’Neill & Bancroft 2000). Thus, this
library provides a 6.9-fold redundancy of the Brassica oleracea genome if

one considers a genome size of 600 Mbp (Arumuganathan and Earle 1991).

2-1-7 Bacterial strains, vectors and media

E. coli strains K12 DH5o (Hanahan 1983)

SURE"?2 (Stratagene)

Vectors used pGEM 7Zf" (Promega)

pGEMTeasy (Promega)
pCLDO04541 (Bancroft et al. 1997)

LB medium 1% (w/v) bacto tryptone
0,5% (w/v) yeast-extract
1% (w/v) NaCl
pH 7,0 with NaOH
LB agar LB medium solidified with 1,5% (w/v) bacto-agar
Media supplements Stock solution Working concentration
IPTG 23,8 mg/ml 23,8 ug/ml
X-Gal 20 mg/ml 20 ug/ml
Antibiotics: carbenicilline 200 mg/ml 200 wg/ml
tetracycline 5 mg/ml 10 nug/ml
chloramphenicol 34 mg/ml 12,5 ug/ml
kanamycine 50 mg/ml 40 ug/ml
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2-1-7 Oligonucleotides

Oligonucleotide sequences used for sequencing and isolation of inserts cloned into

plasmid vectors:

universe : GTA AAA CGA CGG CCA GT

reverse: AAC AGC TAT GAC CAT G

T7: GTA ATA CGA CTC ACT ATA GGG C
T3: AAT TAA CCC TCA CTA AAG GG

SP6: CAT ACG ATT TAG GTG ACA CTA TAG

Oligonucleotide sequences used for isolation of BAC and cosmid insert sequences
adjacent to vector sequences with iPCR (inverse PCR):

Cosmid-vector specific oligonucleotides:

cosl: GGA GCT CCA ATT CGC CCT5 ATA G
cos2: GGC GGC CGC TCT AGA ACT AG
cos3: GCT TGA TAT CGA ATT CCT GC
cos4: CGA TAC CGA CCT CGA GG

cos5: GGA ATT CGA TAT CAA GCT TA
cos6: CAG CCC GGG GGA TCC ACT AGT
cos7: CCC CTC GAG GTC GAC GGT

cos8: GGT ACGTACCAGCTTTTGTT

BAC-vector specific oligonucleotides:

BACI: CTG CAG GCA TGC AAG CTT (Woo et al. 1994)
BAC2: CAG CTG AGA TCT CCT AG (Woo et al. 1994)
BAC3: CAATTC CAC ACA ACATACG
BAC4: GTG ATA TCT TAT GAG TTC G (Woo et al. 1994)
BACS: CAT TAA TGA ATC GGC CAA CG

2-2 METHODS

All standard molecular biology techniques were performed according to Sambrook et

al. (1989).

2-2-1 RFLP procedure

2-2-1-1 Genomic DNA preparation

Capsella genomic DNA was prepared according to Dellaporta et al. (1983) with the
modifications described in Schmidt et al. (1999). For the isolation of genomic DNA
from Brassica, the DNA extraction method from Saghai-Maroof et al. (1984) with the

modifications by Hoisington (1992) was used.
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2-2-1-2 Southern blot (Southern 1975)

One mg of genomic DNA was digested with appropriate restriction enzymes (e.g. Dral,
EcoRl, EcoRV, Xbal) for 6h at 37°C and separated on a 0,8% TBE agarose gel with
IXTBE running buffer at 55V O/N. The gel was incubated for 15-30 min in HCI (1%
solution), for 30 min in denaturation buffer and for another 30 min in neutralisation
buffer before the DNA was transferred onto charged Hybond N* membrane (Amersham
Pharmacia Biotech). Transfer was carried out O/N using 20xSSC buffer. The membrane
was baked for 30 min at 80°C as recommended by the manufacturer.

C. grandiflora plants are self-incompatible, consequently, a finite amount of material
was available to prepare DNA from this parental plant of the mapping population. In
order to have sufficient DNA for RFLP analysis, a DNA pool of all individuals of the
F2 progeny derived from the interspecific cross has been set up. This pool represents
alleles of the C. grandiflora and the C. rubella parental plants in an equal fashion. For
polymorphism analysis, membranes were prepared carrying one mg of genomic DNA
from C. rubella and the F2 pool, respectively, digested with appropriate restriction
enzymes. An RFLP is recognised, if one or several additional fragments are present in
the lane carrying DNA of the F2 pool compared to the lane with C. rubella DNA.
Hence, these additional fragments are likely C. grandiflora specific. A set of two
membranes carried DNA of the individual progeny plants. The first membrane
contained as first lane the DNA of the F2 pool, then DNA of individuals 1-25 of the F2
progeny and at last, C. rubella DNA. The second membrane was prepared in a similar

way, it contained DNAs of F2 plants 26-50.

10xTBE buffer 40 mM Tris

40 mM boric acid

10 mM EDTA (pH 8,0)
Denaturation buffer 1,5 M NacCl

0,5 M NaOH
Neutralisation buffer 1,5 M NacCl

0,5 M Tris-HCI (pH 7,2)

0,001 M EDTA (pH 8,0)
Transfer buffer (20xSSC) 3 M NaCl

0,3 M Naj citrate

2-2-1-3 Hybridisation experiments

Membranes were pre-hybridised at 65°C for 2-4 hours in 5x Denhardt’s hybridisation

solution containing 200 ug denatured salmon sperm DNA.
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The radioactively labelled probe was prepared in the following way: denatured DNA
(50-100 ng) was mixed with 1x random prime buffer, one unit of Klenow fragment of
DNA polymerase I, one ul of BSA solution (20 mg/ml) and 30 to 50 uCi o->*P-dCTP.
The reaction mixture was incubated 15-20 min at 37°C. Unincorparated nucleotides
were separated from the labelled DNA fragment with a column (High pure PCR
purification kit, Boehringer Mannheim). The DNA fragment was denatured at 95°C
before it was added to the pre-hybridisation solution. Hybridisation took place O/N at
65°C.

The filters were washed twice with a 2xSSC/0,1%SDS solution for 30 min, and then 10
min with 1xSSC/0,1%SDS at 65°C. Membranes were exposed to films for 2 to 5 days at

—80°C, in cassettes with intensifying screens.

5x-Denhardt’s hybridisation 5xSSC
0,1% SDS

solution 5x Denhardt’s
1x random prime buffer 200 pl/ml solution A
500 pl/ml solution B
300 pl/ml solution C
Solution A 1 ml solution O
1,8% (v/v) p-mercaptoethanol
5 ul dATP, 5 ul dGTP, 5 ul dTTP (100 mM dNTP stock solutions)
Solution B 2 M Hepes (pH 6,6)
Solution C 90 OD260 p(dN)G/ml in TE
Solution O 0,125 M Tris-HCI (pH 8)

0,125 M MgCl,

2-2-2 BAC and cosmid DNA minipreparation

For isolation of DNA from BAC or cosmid clones a protocol developed by the Texas
A&M University BAC Center (http://hbz.tamu.edu/cgi-bin/htmlassembly?bacbacc) was
used with the following modifications: four ml of LB containing an appropriate
antibiotic were inoculated with a single E. coli colony, and incubated at 37°C O/N with
shaking. The resulting culture was centrifuged at 14,000 rpm for two min at RT, the
supernatant was discarded and the pellet was resuspended in 200 ul TE. Four-hundred
ul of buffer II were added, the tube was gently inverted and incubated on ice for 5 min.
Proteins were precipitated by adding 300 ul of buffer III. After a 10 min incubation at
—80°C, the preparation was kept for 20 min at RT and subsequently centrifuged for 15
min, 14,000 rpm at RT. DNA was precipitated by adding 0,6 vol of ice-cold isopropanol
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to the supernatant. The preparation was kept for 10 min at —80°C and after 20 min at
RT, the solution was centrifuged for 20 min, 14000 rpm at 4°C. The DNA pellet was
washed with one ml of ice-cold 70% ethanol, centrifuged for 2 min, 14,000 rpm, 4°C,
and air-dried for 10 min. The pellet was then dissolved in 50 ul TE/RNAse (50 ug/ml),
incubated for 5 min at 56°C, and at 37°C for 30 min. Ten ul of the preparation were

used for a restriction digest.

TE 10 mM Tris-HC1
1 mM EDTA (pH 8,0)

Buffer 11 0,2 M NaOH
1% SDS
Buffer III 3 M potassium acetate,

adjusted to pH 4,8 with glacial acetic acid

TE/RNase 10 mg/ml bovine pancreatic Rnase
10 mM Tris-HCI (pH 7,5)
15 mM NaCl
Heat to 100°C

2-2-3 Isolation of BAC and cosmid end fragments by iPCR (inverse PCR)

BAC and cosmid clones carry inserts of genomic DNA in vectors with known DNA
sequence. BAC and cosmid end fragments represent the sequence of genomic insert
DNA directly adjacent to the polylinker sequence of the vector. Such end fragments are
especially valuable for establishing BAC or cosmid clone contigs. They can be used as
probes to screen libraries in chromosome walking experiments.

BAC or cosmid clone DNA was digested with a suitable restriction enzyme. The
digested fragments were ligated to form circles. An aliquot of the ligation mixture was
used as template for PCR with pairs of oligonucleotides corresponding to polylinker
sequences either to the left or to the right of the cloning site. The two oligonucleotides
of a particular primer pair were designed such that an amplification reaction was only
possible after circle formation. Only those genomic DNA sequences could be amplified,
which were attached to vector sequences carrying the primer binding sites. The resulting
PCR products were purified to be sequenced or to be used as probe in hybridisation
experiments.

The left borders of inserts cloned into the Tagl site of cosmid vector pCL04541 were
isolated by digestion of the cosmid clones with Pvull, Pvul, Hinfl, Sacl, Hae3Al, or

Xbal. PCR was performed with primer combination cos5/cos6. Sequences
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corresponding to the right borders of these Tagl cosmid inserts could be rescued by
digestion of the cosmid DNA with Pvull or Hinfl. The PCR reaction was carried out
with the primer combination cos7/cos8.

Left borders of Sau3Al cosmid clones were isolated with restriction enzymes Pvull,
Pvul, Hinfl and Rsal, and PCR was performed with primer combinations cos1/2. The
right border could be obtained by digestion of cosmid DNA with restriction enzymes
Pvull, Hinfl, Hae3Al, Rsal or Apal and the religated circles were amplified with primer
combination cos3/cos4. All these primers correspond to the DNA sequence of vector
pCLDO04541 used for establishing the Brassica and Capsella cosmid libraries (Schmidt
et al. 1999). The oligonucleotide sequences were given in chapter 2-1-8. BAC end
fragment isolation was only performed on the Wellesbourne BAC library (C. Ryder and
G. King, unpublished). Primer sequences were already published concerning vector
pBeloBAC11 (Woo et al. 1994), but two additional oligonucleotides suitable for this
strategy were developed (2-1-8).

2-2-4 Pulsed field gel electrophoresis

Pulsed field gel electrophoresis (PFGE) is a technique for resolving DNA of a size
range of several kbp to several Mbp. The DNA molecules are oriented in the agarose
matrix using alternating electric fields between spatially distinct pairs of electrodes.
Electrodes are placed in the chamber in a hexagon arrangement with the agarose gel in
the centre.

BAC DNA (200-400 ng) was digested for 3-5 hours at 37°C with 10 U NotI to release
the genomic DNA insert from the vector sequences. An 1% TBE agarose gel was
prepared in a casting stand. Within the electrophoresis chamber, the gel was fixed to
avoid movement of the gel due the cooling buffer system. The 0,5x TBE electrophoresis
buffer together with the gel were cooled in the electrophoresis chamber to 12°C.
Loading dye was added to the samples which were then incubated for 5 min at 56°C,
chilled immediately on ice and loaded onto the gel. A DNA (Boehringer Mannheim,
CI857Sam7), concatemeres of A DNA and A DNA digested with HindIIl were used as
length standards.

The electrophoresis conditions varied depending on the nature of DNA fragments which

were to be separated:
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Sizing of BAC inserts Restriction analysis of BAC clone DNA
(Notl digestions) (Mlul or Smal digestion)
Switch times are gradually increased: Switch times are gradually increased:
3-5 sec initial switch time 2 sec initial switch time
6-15 sec final switch time 6 sec final switch time
6 V/em 6 V/em
120° angle 120° angle
12°C 14°C
22-24 h run 12 h run

2-2-5 Construction of a library containing Mbol fragments of C. rubella total DNA

2-2-5-1 Digestion of total C. rubella DNA

One mg of total C. rubella DNA was digested to completion with 2x25U of the enzyme
Mbol for 2x3h at 37°C. The sample was concentrated (via evaporation) and separated

on an 0,8% TAE agarose gel for 4h, 27V/22mA.

2-2-5-2 Purification of fragments

Fragments with a size range between 1,5Kb and 500bp were concentrated through
electrophoresis onto a piece of DEAE cellulose paper. The paper containing the DNA
fragments was transferred into a tube containing 400 ul of DEAE solution, ground and
incubated for 90 minutes at 65°C. A hole was pierced into the bottom part of the tube,
and the solution was transferred into a second tube by centrifugation, 2 min at
14000rpm. A PCI extraction was required to remove remaining cellulose fibres. The
DNA was precipitated from the supernatant with 0,7 vol isopropanol and centrifuged for
30 min at 4°C and 14,000 rpm. The pellet was washed with 700 ul of 70% ethanol,
centrifuged 5 min, 4°C, 14,000 rpm and resuspended in 20 ul water. An aliquot of 1 ul

was separated on an agarose gel to quantify the extracted DNA.

DEAE solution 20 mM Tris-HCI pH 7,5
1 mM EDTA, pH 8,0
1,5 M NaCl

PCI (25:24:1) phenol
chloroform
isoamylalcohol

50x TAE 4 M Tris
5,7% v/v acetic acid
50 mM EDTA
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2-2-5-3 Ligation reaction and transformation

Insert DNA (100-150 ng) was ligated with 50 ng of BamHI digested vector DNA
(PGEM7Zf+) using 1 U T4 DNA ligase in a final volume of 10 ul at 16°C, O/N. An
aliquot of 200 ul of DH5a competent cells (Hanahan 1983) was incubated on ice with 2
ul of the ligation reaction for 30 min. After 90 sec at 42°C, the cells were immediately
chilled on ice for 1 min and incubated with 800 ul LB at 37°C for 45 min. The whole
transformation mixture was plated on LB plates containing carbenicillin, IPTG and X-
Gal and incubated at 37°C O/N. Only white, carbenicillin resistant colonies were used

for further analysis.

2-2-6 SNP-SSCP

Several methods have been developed to analyse single nucleotide polymorphisms, for
example SSCP (single-stranded conformation polymorphism). This technique is based
on different mobilities of denatured DNA strands in MDE" gels. Even single nucleotide
differences in DNA fragments analysed may be detectable using this method, because
they might influence the conformation of the strands when separated on a MDE ™" gel.

* The PCR for fragments of sizes between 200 and 400 bp was performed in a total
volume of 25 ul. After amplification, 5 ul were separated on an 0,8% TAE agarose
gel and 2-4 ul were added to SSCP dye solution, denatured at 94°C for 3 min and
immediately placed on ice.

* The polyacrylamide gel solution was poured between two glass plates, which were
differently treated as follows. One glass surface was treated with acrylease , an
antistick coating solution; the other glass plate was treated with y-metha-
acryloxypropyl-trimethoxysilane, a binder component. The spacers were 0,4 mm
thick. The 0,5xMDE " gel solution was polymerised with TEMED (N, N, N, N’-
tetramethyl-ethylene diamine) and 10% APS (ammonium persulfate).

* The samples were loaded and electrophoretically separated at 0,5-1,5W, 100-140V,
4-7,5mA O/N (14-18h) in 0,6x TBE buffer.

* The detection of the fragments was done by silver staining (Sanguinetti et al. 1994).
The gel (fixed to the silanised glass) was incubated for 3 min in the fixation
solution, and stained for 7 min in the silver nitrate solution. After a short rinse in

water, the fragments are detected with a NaOH-based developing solution. DNA
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fragments were visible after 10-20 min. The gel was fixed again, rinsed with water

and then dried and scanned.

10x PCR buffer 100 mM Tris (pH 8,3)
500 mM KCl
20 mM MgCl,
0,1% (v/v) gelatine
0,05% (v/v) Tween 20
0,05% (v/v) NP40
Gel solution 0,5x MDE 0,6x TBE
5% (w/v) glycerin
0,5x MDE gel solution (2x)
0,06% TEMED
0,05% APS

SSCP dye buffer 95% Formamide
0,01 M NaOH
0,05% bromophenol blue
0,05% xylene cyanol

Fixation solution 10% ethanol
0,5% acetic acid

Staining solution 0,2% AgNO;
10% ethanol
0,5% acetic acid

Developing solution 3% NaOH
0,1% formaldehyde

2-2-7 DNA sequencing and analysis

DNA sequencing was performed by the ADIS unit (Max-Planck-Institute) with
PE/Applied Biosystems 377 and 3700 sequencers using BigDye-terminator chemistry
(Perkin Elmer). The resulting sequences were analysed using the Wisconsin Package
(version 10.0-UNIX, Genetic Computer Group [GCG], Madison, WI, USA).
Comparisons of sequences with Arabidopsis thaliana genomic DNA or EST sequences
were performed with the BLAST program (Altschul et al. 1997) using several
providers: MIPS (Munich Information Center for Protein Sequences), NCBI (National
Center for Biotechnology Information), TAIR (The Arabidopsis Information Resource)
and TIGR (The Institute for Genome Research). The EST contig information could be
retrieved from the TIGR web site.

Gene predictions were carried out using two different programs, GeneMark.hmm and

Genscan. Alignment of multiple nucleotide sequences, or amino-acid sequences were
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carried out with the Clustal W software. All internet resources used during this study are

listed below.

Programs/Databases Web sites
Clustal W http://www?2.ebi.ac.uk/clustalw/
http://www.clustalw.genome.ad.jp
GeneMark.hmm http://dixie.biology.gatech.edu/GeneMark/eukhmm.cgi
Genscan http://genes.mit.edu/GENSCAN.html
MIPS http://mips.gsf.de/proj/thal/
NCBI (BLAST) http://www.ncbi.nlm.nih.gov/BLAST/
TAIR http://www.arabidopsis.org
Tandem Repeat Finder http://c3.biomath.mssm.edu/

TIGR Arabidopsis gene index

2-2-8 Genetic linkage analysis

http://www.tigr.org/tdb/agi/index.html

Linkage analysis of the Capsella mapping population and establishment of a map was

performed with the MAPMAKER program (Lander et al. 1987), using the Haldane

centiMorgan function.
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3 RESULTS

3-1 GENETIC MAPPING

This study aims to establish a genetic map for Capsella based on molecular markers.
The resulting linkage groups shall be compared to the maps of the Arabidopsis
chromosomes. A common set of markers is a prerequisite to establish comparative
genetic maps of two species. For A. thaliana extensive molecular marker maps have
been assembled, moreover the genome is completely sequenced (The Arabidopsis
genome initiative 2000). These resources were exploited to generate a genetic map of
Capsella. Markers have not been randomly chosen, rather it has been attempted to select
markers homogenously distributed on the five Arabidopsis chromosomes for genetic
mapping in Capsella.

3-1-1 Capsella mapping population

The Capsella mapping population is composed of 50 self-compatible F2 individuals
derived from an interspecific cross of C. grandiflora and C. rubella. For a nuclear
encoded co-dominant locus, the expected segregation among the F2 progeny is a 1:2:1
ration of plants homozygous for the C. grandiflora allele, heterozygous plants and
plants homozygous for the C. rubella allele.

3-1-1-1 RFLP markers

Any DNA fragment can be used as RFLP marker as long as it reveals a restriction site
polymorphism between the DNAs of the two parents of a mapping population.
Arabidopsis and Capsella are closely related species, thus Arabidopsis DNA sequences
readily cross-hybridise with Capsella DNA (Schmidt et al. 1999; Acarkan 2000;
Acarkan et al. 2000; Clarenz 2000; Mbulu 2000). Different sources of RFLP markers
were used in this study. In total, 55 Arabidopsis RFLP markers (mi... markers; Liu et
al. 1996), eight Arabidopsis EST clones (Arabidopsis Biological Ressource Centre;
http://aims.cps.msu.edu/aims) and one Capsella genomic DNA fragment derived from a

cosmid clone were used for a polymorphism survey. The mi... markers are Pstl
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fragments of Arabidopsis genomic DNA and most of them represent low copy

sequences.

3-1-1-1-1 Polymorphism survey

For the polymorphism survey, DNA of C. rubella has been analysed alongside a pool of
DNAs of 50 F2 progeny plants. This strategy was taken, since C. grandiflora is self-
incompatible. Thus only limited amount of DNA of the C. grandiflora plant used as a
parent for the mapping population was available. The polymorphism survey allows to
compare the RFLP pattern of the homozygous C. rubella plants with the pattern
revealed by all F2 individuals which corresponds to the heterozygous condition. Hence,
any additional fragment, which is detected by a marker in the DNA of the pool of F2
plants compared to DNA of the C. rubella plants, most likely corresponds to a C.
grandiflora specific allele.

Several enzymes were used for the polymorphism survey. Genomic DNA from C.
rubella and the pool of the 50 F2 plants has been digested with the following restriction
enzymes: Bglll, Dral, EcoRl, EcoRV, Hindlll, Xbal and Xhol. The resulting Southern
blots were analysed in hybridisation experiments with RFLP markers as probes. The
frequency, with which polymorphisms could be detected with each of the restriction
enzymes used in respect to the number of markers tested, is presented in Table A.

Markers revealing a Frequency of
Enzyme used Markers tested polymorphism polymorphism
Bglll 23 9 39%
Dral 32 19 59%
EcoRlI 55 24 44%
EcoRV 56 34 61%
HindllI 25 8 32%
Xbal 52 26 50%
Xhol 8 2 25%

Table A: Represented above is the frequency of polymorphism for the restriction enzymes used.

From the set of 63 A. thaliana markers tested, only one marker (mi423a) did not show
any hybridisation to Capsella genomic DNA. The enzymes which have been used most
frequently for the polymorphism survey were EcoRI, EcoRV and Xbal. Using these
enzymes RFLPs were readily detected. Between 44% and 61% of the markers tested
showed a polymorphism. Likewise, Dral reveals polymorphisms for a high percentage
of markers (Table A). Figure 2 illustrates two examples of RFLP marker hybridisations.
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Out of the 62 A. thaliana markers hybridising to Capsella DNA, six mi... markers
(9,5%) only revealed monomorphic patterns although five or six different enzymes have
been used for the RFLP analysis (Bglll, Dral, EcoRI, EcoRV, Hindlll and Xbal). Thus,
the polymorphism survey identified 56 A. thaliana markers and one Capsella marker
suitable for genetic mapping experiments with the Capsella mapping population.

3-1-1-1-2 Analysis of RFLP marker segregation in Capsella

From 57 RFLP markers identified in the polymorphism survey analysis 45 markers
have been chosen for genetic mapping experiments in Capsella. For 41 markers an
unambiguous co-dominant inheritance could be scored. Among these 41 markers five
revealed two loci each (mi320, mi358, mi335, mi74, and 1G3). Thus, 46 loci in total
could be assigned to eight linkage groups of Capsella (Figure 6).

It has not been attempted to map all loci corresponding to a particular marker. Duplicate
loci have been scored when they were revealed in the same experiment. Interestingly,
four of the five duplicate loci studied here were revealed by restriction of genomic DNA
with Dral.

Figure 3 is illustrating the case of A. thaliana marker mi358, which revealed two loci
when hybridised to Capsella genomic DNA. The segregation of this marker as well as
the complete data set for all RFLP markers is listed in Appendix.

It is frequently observed that a marker hybridises to two loci with different intensities.
By convention the stronger signal obtained is called locus a and the weaker one is
referred to as locus b of a particular marker. This distinction is important in the context
of comparative mapping experiments. Duplicate loci could indicate deviations from
collinearity unless the loci are compared to their orthologous counterparts in the other
species.

Marker 1G3 is corresponding to rDNA sequences in Arabidopsis. Consistent with the
repetitive nature revealed on the Capsella survey blot, a complex pattern of hybridising
loci was obtained when the mapping population was analysed. Nevertheless, two
segregating loci could be discerned. 1G3-a could be evaluated as a co-dominant locus
whereas 1G3-b exhibited a dominant segregation of a C. grandiflora specific fragment.
Therefore, no distinction could be made for this locus between the genotypes of plants
which are homozygous for the C. grandiflora allele or heterozygous. Nevertheless,
IG3b could be assigned to a linkage group F in Capsella (Figures 4 and 6).
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For all markers used for genetic mapping in Capsella, sequence information has been
obtained (data not shown). Hence, they could be placed on the sequence maps of the

Arabidopsis chromosomes in an unambiguous way (Figure 7).

3-1-1-2 SSCP markers

3-1-1-2-1 Capsella sequences as a source for SSCP markers

A library of clones containing small inserts of C. rubella total DNA was established.
This library has been constructed to compare the sequence repertoire of the Arabidopsis
and Capsella genomes. Moreover the Capsella sequences served as a source for the
generation of single strand conformation polymorphism (SSCP) markers. SSCP analysis
is based on different mobilities of denatured DNA strands in MDE™ gels. Even single
nucleotide differences between DNA strands may be detected with this method. In order
to obtain scorable polymorphisms, the DNA fragments analysed should not be longer
than 300 or 400 bp.

a- Choice of the enzyme used
Genomic C. rubella DNA has been digested with enzymes containing a 4 bp
recognition site (Alul, Haelll, Mbol, Rsal and Tagl). After gel electrophoresis, the size
range containing the majority of the generated fragments was evaluated. Table B

summarises the results of this analysis.

- L Majority of the fragments
Restriction enzyme Recognition site have a size of
Alul AGCT 250-1300 bp
Haelll GGCC 750-3000 bp
Mbol GATC 250-1300 bp
Rsal GTAC 400-2000 bp
Tagl TCGA 250-2000 bp

Table B: This table summarises the average fragment sizes which are obtained if total genomic C. rubella
DNA is digested with Alul, Haelll, Mbol, Rsal and Tagl, respectively. The recognition sequences of the
different enzymes are listed in the table.

The largest portion of fragments generated with Haelll was 2000 bp long, and
consequently too large for the purpose of SSCPs. Alul, Rsal and Taql could have been
chosen, but the Capsella clone library has been established using a complete digestion
of Capsella genomic DNA with Mbol. The Mbol fragments can be ligated into vectors

with a BamHI cloning site.
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Clones putatively containing a Capsella DNA insert were analysed by PCR. All clones
yielding an amplification product were sequenced. In total 148 sequences of Mbol-
fragments were obtained. One sequence was identical to cloning vector sequences and
another represented E. coli DNA sequences. After removing redundant sequences 132
sequences remained. Due to the availability of the complete genome sequence of
Arabidopsis, it can be reliably estimated, how many of the C. rubella sequences show
homology to A. thaliana sequences (The Arabidopsis genome initiative 2000).

All Capsella rubella sequences were subjected to a BLAST analysis (Altschul et al.
1997) to determine their homology to Arabidopsis nuclear and organellar sequences.
Based on a threshold value of e™° the sequences could be classified in two groups as
follows: 102 sequences were homologous to A. thaliana sequences and 30 sequences
seemed to be specific for the C. rubella genome. It was analysed whether the A.
thaliana sequences showing homology to Capsella sequences are correponding to
different classes of repetitive sequences or whether they represent low copy sequences.
For the corresponding Arabidopsis sequences it was also tested whether they show
homology to cognate EST or cDNA sequences. The analysis is summarised in Table C.

Capsella
Sequences with homology to Arabidopsis sequences specific
sequences
Repetitive sequences Low copy sequences
Sequences | Sequences
with without
DNA o " It?etro- homology | homology
r sequences rganellar sequences p(r)z:gi-s to ESTor | to EST or
cDNA cDNA
sequences | sequences
Chloro- | Mitochon-
18,5-255 55 plast DNA  drial DNA
9 1 24 4 2 26 36 30
6,8% 0,8% 18,2% 3,0% 1,5% 19,7% 27,3% 22,7%

Table C: Summary of the sequence homology of the C. rubella Mbol-sub-clone sequences in respect to A.
thaliana sequences. Numbers of clones for each category are given as well as the percentage of sequences
in each category in respect to the total number of 132 sequences analysed.

In total, 77,3% of the C. rubella sequences were found to be homologous to A. thaliana
sequences, a large proportion of them being of repetitive nature, such as organellar
sequences. Among the 10 fragments matching rDNA sequences, one (Mbo-M15)
showed homology to Arabidopsis 5S rDNA sequences (GenBank acc. no. M65137) and
the other 9 exhibited homology to 18S-5,8S-25S rDNA arrays constituting the NORs in
Arabidopsis (GenBank acc. no. X52322).
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It was analysed, whether Mbo-M15 could be used as an RFLP marker, but the
polymorphism survey analysis revealed that the enzymes used (Dral, EcoRI, EcCoRV,
Xbal) do not cut the arrays of 5S rDNA sequences in the Capsella genome (data not
shown). Sixty percent of Capsella sequences corresponding to repetitive sequences are
homologous to Arabidopsis chloroplast DNA (GenBank acc. no. AP000423) whereas
only 3% correspond to sequences of Arabidopsis mitochondrial genome (GenBank acc.
no. Y08501, Y08502).

One fragment of 484 bp was found to be homologous to over 20 different sequences in
the A. thaliana genome. This insert, Mbo-D22, is corresponding to an A. thaliana
retroelement-like sequences. The analysis of this sub-clone is described in more detail
in Chapter 3-3.

Almost 50% of the Mbo-sequences were shown to be homologous to low copy
sequences in A. thaliana. Cognate ESTs or cDNA sequences could be identified for
42% of the Arabidopsis low copy sequences, which were corresponding to Capsella
Mbo-sequences.

b- Mapping data

Only Capsella fragments demonstrating homology to A. thaliana low copy sequences
have been considered for mapping studies. The corresponding Arabidopsis sequences
were then located on the chromosome sequence maps. The Arabidopsis RFLP markers
chosen for genetic mapping in Capsella were well distributed over the Arabidopsis
genome. Nevertheless, some regions of the Arabidopsis genome remained under-
represented. Mbo-fragments showing homology to those regions of the A. thaliana
genome were chosen for SSCP marker analysis.

Primer pairs were deduced on the sequences of 23 different Mbo-fragments (Mbo-...).
These pairs of oligonucleotides were used for PCR experiments on C. rubella and C.

ETM

grandiflora DNA. The resulting products were denatured and separated on MD gels

to detect polymorphisms. Eleven fragments were polymorphic, one of which showed a

length polymorphism after the PCR amplification and did not require the MDE™

gel
analysis (Mbo-Cr8-PCR). For nine fragments, a co-dominant polymorphism could be
discerned, whereas for one marker the polymorphism was not distinct enough to allow
reliable scoring (Mbo-N18). Eight sequences were monomorphic, two vyielded
amplification products only on C. rubella template DNA (Mbo-Cr1, Mbo-N24) and two

did not yield distinct patterns (Mbo-C14, Mbo-D22). This coincides with the fact that
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both clones correspond to repetitive DNA sequences, Mbo-C14 has homology to rDNA
sequences and Mbo-D22 to retroelement-like sequences. This readily explains the
amplification of multiple fragments. An example for a SSCP analysis is shown in
Figure 5.

For six of the monomorphic fragments, it was tested whether it was possible to discern a
polymorphism after digestion of the PCR products and separation of the resulting

fragments (CAPS, cleaved amplified polymorphic sequence) on MDE™

gels. Since
sequence information is available for all clones, a restriction map can be generated and
restriction enzymes can be chosen accordingly. Between two and three enzymes have
been tested for each of the inserts, although 13 different digestions have been tested for
these six markers only two loci could be mapped (Mbo-N18/HindllI-Clal and Mbo-
L19/HindlIl).

In total, 23 Mbo-fragments have been chosen for SSCP analysis and 12 loci could be
integrated into the Capsella molecular marker map (52%). Among these 12 Mbo-
fragments which could be placed on the map, eight had homology to Arabidopsis EST

sequences.

3-1-1-2-2 Other SSCP sources

a- End-sequences of cosmid inserts isolated by inverse PCR

Any DNA fragment for which sequence information is accessible can be mapped with
the SSCP technique. Nine DNA fragments were isolated by inverse PCR (iPCR) from
C. rubella cosmid clones (cos...) and sequenced. From this sequence information, pairs
of primer sequences were deduced and tested for amplification on the parents of the
Capsella mapping population. For polymorphic fragments a segregation analysis was
undertaken. One fragment (cos2) could be mapped directly after the PCR amplification
due to a length polymorphism and another fragment (cos57) required the separation on a
MDE™ gel. Two additional fragments could be mapped after digestion (cos9-
Hindlll/BamHI and cos36-Rsal). Thus, four fragments isolated from C. rubella cosmid
clones could be placed on the Capsella linkage map.
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b- Centromeric and telomeric regions of the A. thaliana genome as a target
for SSCP markers

Eight genes located in the telomeric or centromeric regions of the A. thaliana
chromosomes have been chosen for mapping studies. A strategy was chosen that should
to pinpoint a gene or a predicted gene on the outermost sequenced and annotated BAC
clones of a particular chromosome. Pairs of primers were deduced from the Arabidopsis
gene sequences and PCR experiments were performed on A. thaliana and C. rubella
DNA.

Arabidopsis BAC clone Accession Size of PCR product (bp) Mapping Capsella
chromosome number A. thaliana C. rubella technigue map
I T25K16 | AC007323 1376 ~ 1300 SSCP/dom —
I F23H14 | AC006837 876 ~ 700 SSCP/dom —
I T9J23 | AC005309 803 ~ 550 SSCP LGC
I T20G20 | AC006220 812 ~ 600 CAPS LGD
1l MAA21 | AL163818 1579 ~ 1600 SSCP/dom —
v F17A8 AL49482 1432 ~ 1400 — —
v F16J13 AL49638 1979 — — —
\Y F7J8 | AL137189 1469 ~ 1400 sscp' LGG

Table D: Summary of BAC clones chosen due to their telomeric or centromeric location in the A. thaliana
genome for genetic mapping in Capsella. The size of the PCR product which could be amplified from a
gene or predicted gene located on a particular BAC clone is given. PCR products of Capsella were not
sequenced, the fragment sizes have been estimated after gel electrophoresis. The cross indicates that the
PCR fragment has been digested before it was analysed on MDE™ gels and -dom- is identifying a
dominant marker. In the last column the Capsella linkage groups (LG) are listed to which markers could
be added.

Table D summarises the chromosome locations for the chosen BAC clones, which carry
the genes or predicted genes used in this study. If possible, the complete gene or
predicted gene was amplified and the sizes of the PCR products for A. thaliana and C.
rubella are given in bp. Cr-T20G20 could be mapped as a CAPS marker, since
digestion of the PCR products with Dral and electrophoretic separation of the fragments
on an agarose gel revealed a polymorphism between C. grandiflora and C. rubella
(Figure 5). As no other CAPS polymorphism was obtained by amplification and
digestion of the PCR products spanning the predicted genes, additional primer
sequences were deduced from the Arabidopsis sequences in order to generate fragments
of approximately 300 bp. It was tested whether the primer sequences were suitable to
amplify the corresponding Capsella sequences. Resulting PCR products were then
analysed for the presence of SSCPs. Two loci could be added to the map, Cr-T9J23 and
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Cr-F7J8, located on two different linkage groups. Three primer combinations yielded an
amplification product for only one of the two parents and one primer combination
(F16J13) failed to amplify Capsella genomic DNA altogether.

3-1-1-3 Capsella map

3-1-1-3-1 Parameters

The Capsella genetic linkage map has been constructed using the MAPMAKER
software (version 3.0; Lander et al. 1987) with a LOD score of 4.0 and a linkage group
breakpoint at 50,0 cM. Haldane’s mapping function has been chosen to convert the
recombination frequency into genetic map units (centiMorgan, cM).

According to Mendel’s laws, a 1:2:1 segregation is expected for the inheritance of a co-
dominant marker encoded by the nuclear genome in a F2 population. Accordingly, C.
grandiflora and C. rubella alleles should be present in a 1:1 ratio. The segregation data
as well as the allele frequency data for all markers have been subjected to ¢ tests and a
significance threshold of 0,05 was used to recognise distorted segregation ratios. The
Appendix lists the c? test table for all markers constituting the Capsella map.

3-1-1-3-2 Capsella genetic linkage map

The set of data obtained in this study has then been merged with data previously
established in the laboratory (Acarkan 2000; Acarkan et al. 2000; Clarenz 2000; Mbulu
2000). The map consists of 137 loci and spans 650,5 cM. Locus IG3-b has not been
included, due to the dominant inheritance of this locus. The results for each linkage
group are summarised in Table E.

The Capsella genetic map is illustrated in Figure 6. All linkage groups have a similar
marker density between 4 and 5,7 cM/marker, apart from linkage group F which
benefited of a special study (Acarkan et al. 2000). The sizes of the linkage groups range
from 56,9 cM for the smallest (LG E) to 108,4 cM for the largest linkage group (LG G).
The c? test permitted to demonstrate four regions showing distorted allele distribution,
in three of them C. grandiflora alleles are over-represented whereas in the other one C.
rubella alleles are more abundant than expected (Figure 6 and Appendix). A segment
showing significant distortion in favour of C. grandiflora alleles is present on LG G
between markers mil74 and N97271. This region spans 37,3 cM and represents 35,4%
of this linkage group. In all other cases the distortion of allele frequencies is restricted to
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one or two closely linked markers (mi19 and mi208 on LG A; m457A on LG E;
FKBP15_1 and FKBP61/3 on LG D).

Capsella Total number of loci Average distance Arabidopsis
linkage Size (cM) RFLP PCR-based between loci on a collinear
groups markers markers particular LG chromosomes

A 86,4 14 3 5cM |
B 96,7 17 0 57cM |
C 83,2 9 3 7cM I
D 63,7 14 1 4,2 cM /111
E 56,9 11 3 4cM 1l
F 75,8 23 5 2,7cM VIV
G 108,4 19 1 54 cM VIV
H 79,4 11 3 57cM V
Total 650,5 118 19 4,7cM

Table E : This table lists the results of the complete set of data provided by Acarkan (2000), Clarenz
(2000), Mbulu (2000) and markers added from this study. Eight Capsella linkage groups are depicted
with their respective size in cM. The number of loci for each linkage group is given, it is furthermore
listed whether the markers have been mapped by RFLP analysis or PCR-based methods. The marker
density of each linkage group has been calculated by dividing the complete size of the linkage group by
the number of loci mapped on this linkage group. Syntenic chromosomes of A. thaliana are indicated for
each of the eight Capsella linkage groups.

3-1-1-4 Duplicated loci

The copy number of RFLP markers mapped in this study has been estimated for the
Capsella genome from the results of the hybridisation experiments. Since sequence
information is available for all Arabidopsis markers used, it was analysed whether the
marker was present as a single-copy sequence in the genome or whether additional

sequences were found. The results are summarised in Table F.

Capsella rubella Arabidopsis thaliana
One locus 22 53,7% 23 56,1%
Two loci 15 36,5% 13 31,7%
> two loci 4 9,8% 5 12,2
Total 41 100% 41 100%

Table F: All RFLP markers (41 markers), which have been mapped in this study, were analysed for the
putative number of loci in A. thaliana and C. rubella.

The vast majority of markers appear to be at a single locus. One third of the RFLP
markers which have been used in this study exhibited a fragment pattern consistent with
two loci. In general, numbers of loci revealed by different markers are very similar
between A. thaliana and C. rubella.
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3-1-2 Arabidopsis thaliana

3-1-2-1 Arabidopsis sequence map

For the purpose of a comparative mapping study, the A. thaliana sequence map was
used. For all markers, sequence information has been established. Sequences of the
RFLP markers have been aligned with the A. thaliana genome sequence. Since the A.
thaliana genome sequence is accomplished, it is possible to assemble each chromosome
as two large sequences representing the arms of the chromosome. The position of all
markers used in this study were located on these sequence maps of the Arabidopsis
chromosomes (http://mips.gsf.de/proj/thal/db/). For Capsella SSCP markers the
homologous A. thaliana sequences are indicated on the map. The map unit on the
sequence map is given in Mbp. Some Capsella SSCP markers showed homology to
different locations in A. thaliana. The highest BLAST score and the syntenic flanking
markers allowed the choice of the A. thaliana locus most likely homeologous to the
Capsella locus. Regions which have not been sequenced (centromeres and NORs) are
indicated by a rupture of the chromosome on the A. thaliana sequence map (Figure 7).

3-1-2-2 Comparative mapping between Arabidopsis and Capsella

All markers could be placed into eight Capsella linkage groups. As described in Table
F, each Capsella linkage group is forming large collinear segments with A. thaliana
chromosomes. Chromosome | of A. thaliana is collinear with Capsella LGs A and B,
chromosome Il is collinear to LGs C and D, chromosome 111 is homeologous to LGs D
and E, chromosome IV is equivalent to LGs F and G, finally, chromosome V
corresponds to LGs F, G and H. On average, two Capsella linkage groups are found to
cover one A. thaliana chromosome. The centromeres, clearly localised on A. thaliana
do not correspond to the breakpoints of collinearity. For chromosome |, markers
adjacent to the centromeric regions are found collinear with LG A, the chromosome I
centromere does not disturb collinearity with LG D. The centromeric segment of
chromosome 111 is collinear with LG E. The markers located in the centromeric region
of chromosome IV are syntenic to LG G, however, a large inversion interrupts
collinearity. Interestingly, the centromeric region of chromosome V is collinear with LG
F, whereas the remainder of chromosome V is corresponding to LGs G and H.
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In total, three inversions are noted, between LG B and chromosome |, between LG G
and chromosome 1V, and between LG H and chromosome V (Figure 7).

3-2 MICROCOLLINEARITY

Genome collinearity at the level of the genes was investigated for three species
belonging to the family of the Brassicaceae, A. thaliana, C. rubella and B. oleracea. For
this analysis, a region of A. thaliana chromosome IV located between RFLP markers
08300 and mi431 was chosen. This study aims to analyse the Arabidopsis region in
respect to gene repertoire and to identify and characterise the corresponding regions
from the C. rubella and B. oleracea genomes.

3-2-1 Capsella rubella cosmid contig

A 20 kbp region located on the long arm of chromosome 4 of A. thaliana between
RFLP markers g8300 and mi431 was used for a BLAST analysis with Arabidopsis EST
sequences. This revealed several ESTs with high sequence identity to the genomic DNA
sequence. Five ESTs (EST 1 — 104G24T7; EST 2 — 140012T7; EST 3 —90J24T7; EST
4 — 192P5T7; EST 5 — 79G7T7) were chosen for sequence analysis and it could be
confirmed that they represent cognate cDNA sequences for genes in the Arabidopsis
region (data not shown). This analysis showed that EST 1 and EST 2 are partially
overlapping (Figure 8). EST 4 corresponds to the aspartate amino-transferase gene
(asp5 gene, GenBank acc. no. X91865).

EST 4 (AAT) has been used for genetic mapping experiments with the Capsella
population. It maps to linkage group G of the C. rubella map. This segment is
orthologous to a part of the long arm of chromosome 4 of A. thaliana (chapter 3-1).

The five ESTs have been used as probes to screen the C. rubella genomic DNA cosmid
libraries to identify corresponding Capsella sequences. Twenty hybridising colonies
were detected, 17 in the C. rubella Sau3Al library and three in the C. rubella Taql
library. DNA of all cosmids has been prepared, digested using different enzyme
combinations and blotted. The resulting membranes have been hybridised with the
different ESTs and based on these results the cosmid clones were arranged into contigs.
Two C. rubella cosmids, CS51 and CT8, have been chosen for sequence analysis.
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Fimme 8: Shown above is a representation of the Capedla sequence confip and the comespordirg
Eion of Arsfudopar choomozome 4. Atleast five differerd genes, showr as A boxes, ame pesent in
the Arafadopns regionas cograte DN clones and EST sequences (E2T0-3) and could be lomted
on this segment. Gernomic DHA inserts of two Cgpeelia cosmid clones, 531 and CTH, are
harbonming sequences homalogous o ESTs 0-5. The sequerces of the cosrndd DNA iveerts had to be
cormected with two PCE fagments to yield a contip. Festriction sites of ersymes used for sub-
clonirg a® indicated on the cosid ssquerces showen in tlack The sub-clones are drawn in blue
while the deletion clones ae indicated in green. The sequenced region iz sparming, over 37 kbp. The
sequerced ®aions are drawn to acak.
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Cosmid CS51 carries sequences homologous to ESTs 1/2 and 3, and the CT8 cosmid
has homology to ESTs 4 and 5. Cosmid CS51 has been sub-cloned with Xhol, which
gave 3 fragments, one of which corresponds to a genomic DNA/vector border fragment.
The CT8 cosmid has been sub-cloned independently with EcoRI, Hindlll and Xbal.
Several sub-clones could be identified, but the genomic DNA fragments adjacent to the
vector sequences were not obtained. Large fragments were further sub-cloned, the
resulting clones are referred to as deletion clones. This increased the efficiency of
sequencing by providing additional anchor points to deduce primers for sequencing
(Figure 8). PCR experiments were used to analyse whether sub-clone sequences are
directly adjacent to each other or whether a small genomic DNA fragment was residing
between them. In the case of cosmid CT8, two sub-clones thought to be adjacent to each
other were 272 bp apart due to two neighbouring Xbal sites, the PCR product spanning
this region has been sequenced.

The insert sequences of cosmids CS51 and CT8 do not overlap. Therefore, PCR
experiments were performed to establish fragments spanning the C. rubella genomic
DNA sequences between the inserts of the cosmid clones. One PCR fragment could be
amplified using primer -A- on CS51 and a primer specific for cosmid vector sequences.
Another fragment could be amplified between primers A and B located on CS51 and
CT8, respectively (Figure 8). The sizes of these PCR products are 3 kbp and 5 kbp,
respectively. They could be cloned into the pGEMTeasy vector and sequenced.
Assembly of all sub-clone and PCR product sequences yielded a contig of 37,159 bp.
The sequencing data have been analysed with the GCG package and homology searches
to A. thaliana genomic DNA or EST sequences have been performed using the NCBI,
TAIR and MIPS databases (chapter 2-2-7).

One of the C. rubella sub-clones showed sequence similarity to an A. thaliana gene
located upstream of ESTs 1/2. This gene has been called EST 0 (GenBank acc. no.
D43962).

3-2-2 Brassica oleracea cosmid contig
The region located on A. thaliana chromosome 4 has also been investigated in B.

oleracea. Cosmid B21 harbours sequences homologous to ESTs 3-5, but no cosmid
could be identified carrying homologues of ESTs 0 or 1/2. These ESTs have therefore
been used to screen two B. oleracea BAC libraries (C. Ryder and G. King, unpublished,;
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O’Neill and Bancroft 2000). The BIBAC library (O’Neill and Bancroft 2000) has larger
average insert sizes than the BAC library from HRI Wellesbourne (C. Ryder and G.
King, unpublished). The BACs obtained from the hybridisation of the Wellesbourne
library showed faint results when probed with a Capsella sub-clone corresponding to
EST 0 and ESTs 1/2. Nevertheless, further analyses confirmed that these BAC clones
were harbouring sequences homologous to EST 0 and EST 1/2. The BIBAC library has
been first hybridised to ESTs 1/2 and some hybridising clones could be identified. The
filters have been submitted to a second hybridisation experiment with EST 4 as probe.
Only BAC clones which were hybridising in both experiments have been analysed
further. An example of the colony hybridisation results is shown in Figure 9. Two
independent colonies of nine hybridising BIBAC clones were prepared, digested with
Hindlll and blotted. Figure 10 shows the result of a hybridisation of a Southern blot
carrying DNA of BIBAC clones. The membrane was probed with EST 4. Clones IB10,
IB14 and 1B16 showed a pattern clearly different from that of clones 1B9, 1B11, IB12,
IB13, IB15, IB17 and 1B18. Two different restriction fragment patterns were also
observed for the other probes (ESTs 1-3 and EST 5). It was deduced that at least two
loci in B. oleracea are corresponding to the AAT region of A. thaliana. These were
mapped via the SSCP technique to chromosomes 1 and 7 of B. oleracea (data not
shown). Two BAC contigs could be established for each of the two loci with 1B12
representing the B. oleracea chromosome 1 locus and 1B10 representing the locus on
chromosome 7 (clones marked with an asterisk in Figure 10). Cosmid B21 has been
determined to be part of the chromosome 1 locus and a second cosmid, B3, is

corresponding to the region on chromosome 7.

BAC clone B. oleracea chromosome Estimated insert size (kbp)
B67 I 60
B85 I 90
IB12 [ 130
B58 VIl 60
B60 Vi 120
B82 Vi 70
IB10 Vi 155

Table G: Listed above are insert size estimates for different BAC clones. The clones are grouped
according to their chromosomal location in B. oleracea.

BAC DNA has been digested with Notl to free the genomic insert from the vector

sequences. These digests have been analysed by pulsed field gel electrophoresis to
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Figure # : Depicted above is the result of a colony hybridisation e xperiment.
The JIC BIBAC library (O'MHeill and Bancroft 2000 has been hybridized to
E3Ts 1/2. One filter carmies BAC clones from 3 different micro-well plates,
here indicated with numbers 1-5. Fach plate has been grdded twice, thus
providing an infernal control for the hybrdisation experitnent. On filter JF 15,
plates 17-24 are grouped, the co-ominates of hybrdising clones are defined
by the nutnber of the plate in addition to the row (A-F) and column
desighations {1-24). For esxmmple, case 3 shows hybrndimtion of a clone (in
black) from plate & of this pool {equals plate no. 24 with the co-ordinate H20.
Therefore, the hybrdizsing clone is identified as 24H20.
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estimate the sizes of the genomic DNA inserts. The results of such an experiment are
shown in Figure 11 and sizes of BACs, which were analysed in detail, are listed in
Table G.

For the B. oleracea chromosome 1 locus, the insert of cosmid 21 has been completely
sequenced. The genomic segment spans 22,424 bp. The genic regions have been
sequenced on both strands. According to the hybridisation results this cosmid only
harbours sequences homologous to ESTs 3-5. Therefore, Hindlll sub-clones were
generated from BAC clones spanning the complete region. The sub-clones were
hybridised to ESTs 0 and 1/2 and a sub-clone harbouring homologues of ESTs 1/2 was
obtained and sequenced (Figure 12).

For the chromosome 7 locus, BACs 58 and 82 as well as cosmid 3 were sub-cloned.
Homologous sequences corresponding to ESTs 1-5 could be identified, but a sub-clone
corresponding to EST 0 has not been found. Figure 12 is representing the organisation
of the two homeologous B. oleracea regions and the different sequenced fragments.
Figure 13 shows a Southern blot analysis of the homeologous B. oleracea loci. A
Southern blot carrying DNA of BAC clones 82 and 85 has been used for EST 0 and 1/2
hybridisations and a filter with DNA of BAC clones 58 and 67 has been probed with
ESTs 3 and 4. Thus on each blot, a BAC clone from each B. oleracea locus is
represented.

3-2-3 Microcollinearity analysis

3-2-3-1 Analysis of the Arabidopsis region

Over 115 Mbp of the A. thaliana genome have been sequenced, with the exception of
the centromeres and rDNA loci. Most of the sequences available are annotated for the
presence of genes and exon/intron structures have been predicted. Nevertheless, these
data lack an experimental proof and predicted gene structures may not accurately reflect
the actual coding sequences (The Arabidopsis genome initiative 2000). EST or cDNA
sequences are powerful resources which unambiguously indicate the presence of a gene
furthermore, the exon/intron structure of a gene is unveiled by alignment of EST or
cDNA sequences relative to the genomic DNA sequence.
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The A. thaliana EST database (TIGR Arabidopsis Gene Index, TIGR-AtGI release5.0;
chapter 2-2-7) is currently containing 110,724 EST sequences. Since several EST
sequences may correspond to a particular gene, the EST sequences have been assembled
into contigs (TCs, Rounsley et al. 1996). These contigs can be used for sequence
alignments with genomic DNA sequences.

Five ESTs are corresponding to a 20 kbp region of BAC F10N7 (GenBank acc. no.
AL021636) in A. thaliana. All ESTs have been completely sequenced to confirm their
identities and to obtain the entire sequence of the clones. EST 1 (~600 bp) and EST 2
(~1150 bp) showed an overlap of 300 bp. The clones differ at their 3’-end sequences,
they carry a poly-A tail at different positions. ESTs 3 and 4 only span the 3’-end of their
corresponding genes. For EST 5 which has homology to a ribosomal protein gene
(rpl39), only a partial sequence could be obtained.

A BLAST analysis of the sequenced C. rubella region against the A. thaliana database,
also revealed homology to the Knat5 gene of A. thaliana (MRNA, GenBank acc. no.
D43962, noted EST 0 in Figures 8, 12 and 13) and copies of cytochrome P450-like
genes. Three copies of cytochrome P450-like genes are present downstream of
sequences corresponding to EST 5 in the A. thaliana region.

Taking this into account, an Arabidopsis region of approximately 47,000 bp was used
for the following analysis. It is located on BAC F10N7 (bp 40,000-96,589) and is
referred to F1ON7-seg. This region partially overlaps with another sequenced BAC,
F11C18 (GenBank acc. no. AL049607).

F10N7-seg has been aligned using the BLASTN tool with Arabidopsis EST contigs
(http://www.tigr.org/tdb/agi/). In addition to the ESTs which had been initially
identified with a much smaller EST collection (ESTs 1-5), six other EST contigs could
be determined. TC100015 (unknown function), can be mapped between the Knat5 gene
and the gene corresponding to the EST 1/2 contig, it is covering an entire putative gene.
TC93505 corresponds to the 5’end of EST 3 and seems to carry mainly the 5’-non-
translated leader. AV545275/AV553989 are two ESTs that are homologous to the
region downstream of the sequence corresponding to EST 5, and are found in the
consensus sequence TC94311. TC103345 is another partial EST contig which has been
found around bp 41,000 of F1I0ON7-seg. At the very end of FION7-seg which overlaps
with the sequence of F11C18 sequences homologous to two ESTs, Al998897 and
AV542993, could be detected. Sequence Al998897 is part of TC82122 and AV552993
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spans TC82121. BAC F10N7 does not contain the entire sequence corresponding to
TC82121 (Figure 14).

Thus, very few genes are spanned in their entirety by ESTs, therefore, this A. thaliana
sequence was submitted to two different gene prediction programs, Eukaryotic
GeneMark.hmm at http://dixie.biology.gatech.edu/GeneMark/eukhmm.cgi and Genscan
at http://genes.mit.edu.GENSCAN.html.

Based on the predictions, evidence for several other genes has been found. TC77106
could be placed into the region between the genes corresponding to ESTs 3 and 4. It has
similarity to serine/threonine protein kinase genes. TC84838, TC80777 and TC73278
are copies of the cytochrome P450-like gene family. Corresponding ESTs have not been
found, but prediction programs could infer ORFs in all three copies.

A. thaliana has been noticed to contain large segmental duplications (Blanc et al. 2000;
The Arabidopsis genome initiative 2000). For some sequences of the analysed region
homologous sequences could be found in other chromosomal locations. TC77106, for
example, has homology to a locus located on chromosome Il (GenBank acc. no.
AC007070, between bp 11,000 and 15,000). It has not been established whether both
copies shared the same exon/intron structures. EST contig TC103345 has sequence
homology with chromosome 1, but no ORF could be determined using prediction
programs, for the chromosome 4 locus.

All data taken together a region dense in genes is revealed. Experimental evidence by
cDNA or EST sequences could be found for several genes (Knat5 gene TC71614; AAT
gene X91865; ESTs 1/2; EST 3; EST 5; TC100015; TC93505; TC94311; TC103345;
TC82121 and TC82122), however, gene prediction programs identify several other
coding regions (TC84838, TC80777, TC73278, TC77106, TC73277). Figure 14

summarises the data.

3-2-3-2 Comparison of the Arabidopsis region with those of other species
a-Capsella rubella region

Based on the alignment of Arabidopsis cDNA sequences with genomic sequences of A.

thaliana and C. rubella, it could be shown that exon/intron structures of orthologous

genes are very similar. In general, lengths of exon sequences are conserved.

Furthermore, an average sequence identity of ~90% for exon sequences could be

established (Acarkan et al. 2000; Rossberg et al. 2001).
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In this study, the following strategy has been taken to characterise and compare gene
structures in A. thaliana and C. rubella. All ESTs, cDNAs and predicted genes of A.
thaliana have been aligned with the sequence contig established for C. rubella. The
gene structure can be easily deduced by aligning A. thaliana EST and cDNA sequences
with the Capsella genomic DNA sequence. Intron borders in A. thaliana as well as in C.
rubella are defined by the di-nucleotides GT...AG. The putative C. rubella exon
sequences matching A. thaliana ¢cDNA and EST sequences were assembled and
translated into amino acid sequences.

For genes that are only partially covered by ESTs or that are merely based on
predictions, the corresponding region of C. rubella genomic DNA sequence has been
submitted to two gene prediction programs (Genscan and GeneMark). Combining both
sets of data and taking into account the finding that exons are conserved in length and
sequence between A. thaliana and C. rubella, predicted exons of similar size in both
species were considered as likely. The putative exon sequences were assembled and
translated into amino acid sequences for the predictions in both species. Gene
predictions could then be validated if they span a complete ORF both in A. thaliana and
in C. rubella. The resulting amino acid and assembled exon sequences were compared
between the two species.

For the C. rubella region, the following genes Cr-71614, Cr-100015, Cr-83424, Cr-
86829, Cr-77106, Cr-AAT, Cr-73278 could be predicted. The F10N7-seg harbours the
A. thaliana genes in the same order and orientation. Additionally, the spacing between
the genes is very similar. Genes in both species have identical exon and intron humbers
(Figure 15). However, sequences corresponding to EST contig At-103345 and the gene
prediction At-76968 were not found in the Capsella rubella contig.

Another difference seen between the regions in both species is the copy number of
cytochrome P450-like genes. The Arabidopsis contig harbours three copies, whereas the
Capsella region might contain only one. Pairwise comparisons between the copies of
the A. thaliana P450-like genes and the C. rubella copy indicate the lack of the At-
84838 and At-80777 genes in Capsella, At-73278 is potentially orthologous to the
cytochrome P450-like gene in Capsella. The ORF sequence comparisons show 91,3%
sequence identity at the nucleotide level for At-73278/Cr-73278 versus 88,9% and
90,1% for At-84838/Cr-73278 and At-80777/Cr-73278, respectively (Table H). If the A.
thaliana ORFs are compared among themselves nucleotide sequence identities range
from 92,7% to 93,1%.

55



Results

‘eared srsdorig i 0 MOTRIIIonIT SUn{H el aotanbas wigsde T ey 10 AIotSal uo pantorrad Maaq ATIO aaw] Srogarparnd
seall], “(Anyq NS HIRPA A0 PUR {aTq HIRC) WeaSUaD s ATanfoadsar paumqo suonotpard @) Jo (raumiSie s seofs [aas] QInfy AL aonanbes wssden s wpla pausme wmos
8l 5LEH 10 S20U00 10 §1 26 Asdoptitugs DAl Ul 11 5ke-0L DUE Goa06-0L L EH stadopigend ils punoy ASoowoy sy, syeotp $exoq wado ALl VOGRS MRl Speal s sRoTp
2MOIR L], THASHD DR SAdrPLTEa T Iy J0L0E WONIiog B aIeiys [als sa1as payorpard o) pioods artog saxoq mopra & paptaeardar o1 uoT3al eagid 0 paotanbas o eatag (4] am3ng
o 81 praursas sisdowigenr s doy s o wors A sisdorgees Swmpuodsarion s o pameduron sarES 0 woqnOInETD S e aaranbas Bmroa wiasden s 10 nonesnIESo ST ameLy

dgy |

—

~

—a-

8428240 L IEPED S5E8E~] 1y =10 A01LLHD FEFES~D SL0a0L=2 F1alL~a
BlIaqId
——tn e — - B o —-&— -t — -
L e X || R 0 |-
SAZEL Y LAy 20594 1y SERFSIY LLEPSiY SoEaG Y L'y iy QgL ALy toFea iy SLOoOL iy FLaLL iy
SEEE0L I

PLRIRL Y

56



Results

Sequence homology to TC98955 and TC94311 is found in the regions of both species,

but it was not possible to delimit a concordant open reading frame.

b- Brassica oleracea region
For the structural analysis of the Brassica oleracea genes, the same strategy was
followed as described for the Capsella rubella genes.
The region located on chromosome 1 of B. oleracea is covered by a sequenced cosmid
insert of 22,424 bp, and next to this region, another fragment isolated from BAC 85
harbours sequences homologous to At-100015 and ESTs 1/2 (Figure 16). The 5’ part of
the Bo-100015 gene on chromosome 1 could not be determined, because it is not
completely residing on the sub-clone established with Hindlll. The sub-clone
encompasses 5550 bp, only a slight increase of the intergenic space between genes Bo-
100015-chr. 1 and Bo-83424-chr. 1 is noted compared to the regions in A. thaliana or C.
rubella. The sequenced insert of cosmid B21 contains sequences corresponding to EST
3. The 3’-end of the gene, covered by A. thaliana EST 3 is represented, but homology to
the remainder of the gene could not be established. The Bo-AAT-chr. 1 gene is found to
be complete, as well as Bo-77106-chr. 1, which corresponds to an A. thaliana gene
prediction. Sequence homologies are detected for At-98955 and At-94311 but an ORF
could not be determined. A short sequence identity could be detected between B.
oleracea and gene prediction At-73277 of A. thaliana. Sequence At-73277 is matching
both B. oleracea loci. Predictions applied on the A. thaliana and the B. oleracea
sequences corresponding to At-73277 permitted to determine a putative ORF consisting
of two exons. The orientation of B. oleracea genes and predictions relative to each other
in the chromosome 1 region is identical to the arrangement in A. thaliana and C.
rubella. As far as the intergenic regions could be analysed, they are similar in size in the
three species.
The second locus which shows homology to the A. thaliana region of interest maps to
chromosome 7 of B. oleracea, two segments of ~12 kbp and ~7 kbp have been
sequenced. The ~12 kbp fragment has been isolated from BAC 82 and the ~7 kbp
segment corresponds to a sequence assembly based on a sub-clone derived from BAC
58 and two sub-clones from cosmid B3 (Figure 12). On the chromosome 7 locus of B.
oleracea, the BAC82 sub-clone of ~12,500 bp carries a second copy of the gene
corresponding to ESTs 1/2 and a putative complete copy of the gene with homology to
At-86829.
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The 7,500 bp fragment harbours a copy of the Bo-AAT gene, homologous sequences to
At-98955 and a second copy of the putative ORF At-73277 (Figure 16). The assembly
of the B3 sub-clone has been submitted to a BLAST search. Sequence identity with a B.
napus cDNA (GenBank acc. no. X62120) could be identified. In A. thaliana, a
homologue of this gene is mapping also to chromosome 4, but to a different BAC (BAC
F2009). BAC clones F2009 and F10N7 are ~1,4 Mbp apart.

c- Comparisons of gene structures

Sequence identity (%)
Nucleotide level Amino Acid level
TC71614 (Knat5 gene) Ath/Cr* 93,2 95,2
TC100015 Ath/Cr 84,1 80,4
TC83424 Ath/Cr 89,5 91,1
Ath/Bo-chrl 80,8 73,7
Ath/Bo-chr7 80,8 76,6
Cr/Bo-chrl 80,3 78,8
Cr/Bo-chr7 82,9 85,8
Bo-chr1/Bo-chr7 82,7 81
TC86829 Ath/Cr 93 91
Ath/Bo-chr7* 88 86,6
Cr/Bo-chr7* 87,5 87,1
TC77106 Ath/Cr 92 91,4
Ath/Bo-chrl 88,5 88,8
Cr/Bo-chrl 88,1 87,6
AAT gene Ath/Cr 93 96,9
Ath/Bo-chrl 87,8 96
Ath/Bo-chr7 89,5 94,5
Cr/Bo-chrl 87,7 96,2
Cr/Bo-chr7 89,5 95,3
Bo-chr1/Bo-chr7 89,4 97,4
P450 Ath-1/Ath-2 93,1 88,2
Ath-1/Ath-3 93 88,5
Ath-2/Ath-3 92,7 85,5
Ath-1/Cr 90,1 87,9
Ath-2/Cr 88,9 85,5
Ath-3/Cr 91,3 90
TC73277 Ath/Bo-chrl 86,5 80,5
Ath/Bo-chr7 87,9 85,6
Bo-chr1/Bo-chr7 85,9 81,6

Table H: Comparison of exon sequences at the nucleotide and amino acid levels. In the first column the
different A. thaliana genes are listed for which homologous C. rubella and/or B.oleracea sequences have
been analysed. The different B. oleracea loci are distinguished from each other by the chromosome they
map to, A. thaliana copies of the cytochrome P450-like genes are designated as following: Athl-
TC84838; Ath2-TC80777; Ath3-TC73278. The asterisks indicate the genes for which only partial
sequence information could be obtained.

As a general rule, positions and numbers of introns are strictly conserved between A.
thaliana and C. rubella. This is not necessarily the case for the gene structures obtained

for B. oleracea sequences using the A. thaliana or C. rubella exon sequences as
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template. The intron borders corresponded in all cases to the consensus sequences
(GT...AG). The level of nucleotide and amino acid identity for the exons of the genes
and predictions are summarised in Table H, for each species pair used in this study.

For the C. rubella Knat5 homologue, Cr-71614, the 3’ end of the sequence is not
present on the cosmid. The exons are strongly conserved in size and sequence between
A. thaliana and C. rubella, only the first intron shows an increase of 65 bp (Figure 17a).
This gene is known to be present on both B. oleracea loci (Figure 12).

The A. thaliana At-100015 contains large introns (810-1070 bp). The sizes of the
introns are very similar in C. rubella. Such large introns are unusual for A. thaliana and
C. rubella genes (Acarkan et al. 2000; Rossberg et al. 2001) but the fact that
Arabidopsis ESTs are covering this region and that a conserved gene structure was
found in both species supports the gene feature given. TC100015 is also present on
chromosome 1 of B. oleracea, the first exon could be aligned with the A. thaliana and
C. rubella sequences. Sequence information for the rest of the gene was not available
(Figure 17b).

Despite the fact that At-83424 covers almost 1,5 kbp of A. thaliana genomic sequence,
the ORF which could be established spans only 546 bp (Figure 17c). From the two B.
oleracea loci carrying this gene, the chromosome 7 locus exhibited a homologous ORF
of exactly 546 bp while the sequence spanned 609 bp on chromosome 1. The C. rubella
copy covered 618 bp.

EST 3 covers only the 3’ part of prediction At-86829. The exon/intron structure is a
composite of the structure deduced from the EST alignment and from prediction
programs. Predictions have been performed with the DNA sequences of A. thaliana, C.
rubella and B. oleracea, exon sequences were considered as likely if they were in
common to all three species. All three potential ORFs were translated to confirm the
exon assembly. The structure of this gene could be established and it represents a very
long gene. The first exon is very small (47 bp) rejected almost 1 kbp from the remainder
of the genes in A. thaliana and C. rubella. The entire sequence is thought to be present
on chromosome 7 of B. oleracea (albeit the first exon and part of the second exon are
not present on the sequenced fragment). The chromosome 1 copy in contrast, is only
present as remnant of the 3’end of the At-86829. In Figure 17d, the TC86829 gene
structure is shown. Red labelling indicates homology to EST 3. When the EST 3-
homologous fragments located on B. oleracea chromosomes 1 and 7 are compared, an

alignment of about 700 bp that is 86,1% identical is the result. The alignment shows
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numerous mismatches between the two copies and at least 3 indels of one nucleotide
were present on separate locations.

TC77106 is a predicted gene sequence and common features could be observed between
the three species. Increased sizes of intron sequences were observed in the B. oleracea
gene, especially on the 3’ end of this prediction (Figure 17e). The C. rubella gene
exhibited the particularity of an enlarged exon 7.

The AAT gene structure is comparable in A. thaliana and C. rubella. In genes of both
species 11 exons are found. Only intron sizes differ between the genes of the two
cruciferous plants. The AAT gene is present at both loci of B. oleracea. Whereas the
chromosome 7 copy (Bo-AAT-chr. 7) exhibits the same number of introns as the gene
in A. thaliana, the copy located on chromosome 1 (Bo-AAT-chr. 1) lacks intron 8 and
consequently has only 10 exons. On Bo-AAT-chr. 7, the eighth intron is dramatically
increased in size when compared to the A. thaliana and C. rubella genes (Figure 17f).
Of all genes studied the AAT genes showed the highest degree of conservation at the
amino acid level. The two B. oleracea copies are 97,4% identical at amino acid level. A
comparison of the Arabidopsis predicted protein sequence with the two B. oleracea
copies shows sequence identities of 96,0 and 94,5%, similar values (96,2% and 95,3%)
are obtained if the C. rubella gene is translated and compared to the amino acid
sequences of the Brassica genes. The deduced protein sequences of the A. thaliana and
C. rubella genes are also highly identical (96,7%).

The amino acid sequences of the AAT gene, translated from the nucleotide sequences
and obtained for the three species (A. thaliana, C. rubella and two copies of B.
oleracea) have been compared with a multiple sequence alignment program. Thirty-two
out of 454 amino acid positions are differing between the genes of the three species
(shaded amino acids). Thirteen positions are variable between the two copies of B.
oleracea, similarly 13 amino acid exchanges are counted between the A. thaliana copy
and the C. rubella copy of the AAT gene (Figure 18).

Gene predictions TC84838 and TC73278 have been assembled from F10N7-seg while
TC80777 has been established from the overlapping BAC F11C18. No EST is available
for these cytochrome P450-like genes. Alignment and assemblies have been realised
with gene prediction programs and comparison of the three predictions to each other.
The three exon/intron structures of the cytochrome P450-like genes are very well
conserved within A. thaliana. Exon and intron sizes are very similar between the copies
(Figure 17g), but one (At-80777) has a deletion affecting the first exon.
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Interestingly, the sequence of BAC F10N7 differs from the sequence of BAC F11C18
in the region corresponding to TC80777 by a 1 bp indel. Thus, if the gene structure of
At-80777 would be based on the sequence of BAC F10N7 rather than that of BAC
F11C18 a different structure would be the result. Since the three copies of the
cytochrome P450-like genes share very similar exon/intron structures it was concluded,
that the indel was due to a sequencing error.

B. oleracea-7 MASSM.SL GSTSLLPREI NKCKLKL GPSGSNPFLRTKSLSRVTVSVSVKPSRFEG TVAP 60
B. oleracea-1 MASSM.SL GSTSLLPREI NKCKLKL GTSGSNPFLKAKCFSRVTIVSVAVKPSRFEG TVAP 60
A. thaliana MASLM.SLGSTSLLPREI NKENVKL CTSASNPFLKAKSFSRVTNTVAVKPSRFEG TVAP 60
C. rubella MASSML_SL GSTSLLPREI SKEKLKL GTSGSNPFLKAKSESRVTNVAVAVTPSRFEG TVAP 60
B. oleracea-7 PDPI L GVSEAFKADTNEL KLNL GVGAYRTEEL QPYVLNVVKKAENLM_ERGDNKEYLPI E 120
B. oleracea-1 PDPI L GVSEAFKADTNEL KLNL GVGAYRTEEL QPYVLNVVKKAENLM_ERGDNKEYLPI E 120
A. thaliana PDPI L GVSEAFKADTNGVKLNL GVGAYRTEEL QPYVLNVVKKAENLM_ERGDNKEYLPI E 120
C. rubella PDPI L GVSEAFKADTNEMKLNL GVGAYRTEEL QPYVLNVVKKAENLM_ERGDNKEYLPI E 120
B. oleracea-7 GLAAFNKATAEL LFGAGHPVI KECKVATI QGLSGTGSLRLAAALI ERYFPGAKVLI SAPT 180
B. oleracea-1 GLAAFNKATAEL L FGAGHPVI KECKVATI QGLSGTGSLRLAAALI ERYFPGAKVLI SAPT 180
A. thaliana GLAAFNKATAEL LFGAGHPVI KECRVATI QGLSGTGSLRLAAALI ERYFPGAKVVI SSPT 180
C. rubella GLAAFNKATAEL LFGAGHPVI KECRVATI QGLSGTGSLRVAAALI ERYFPGAKVVI SSPT 180
B. oleracea-7 WENHKNI FNDAKVPWXEYRYYDPKTI GLDFEGM EDI KEAPEGSFI LLHGCAHNPTG DP 240
B. oleracea-1 WENHKNI FNDAKVPWSEYRYYDPKTI GLDFEGM ADI REAPEGSFI LLHGCAHNPTG DP 240
A. thaliana WENHKNI FNDAKVPWSEYRYYDPKTI GLDFEGM ADI KEAPEGSFI LLHGCAHNPTG DP 240
C. rubella WENHKNI FNDAKVPWSEYRYYDPKTI GLDFEGM ADI KDAPEGSFI LLHGCAHNPTG DP 240
B. oleracea-7 TPEQW/KI ADVVQEKNHI PFFDVAYQGFASGSL DEDAASVRL FAERGVEFFVAQSYSKNL 300
B. oleracea-1 TPEQW/KI ADVI QEKNHI PFFDVAYQGFASGSL DEDAASVRL FAERGVEFFVAQSYSKNL 300
A. thaliana TPEQW/KI ADVI QEKNHI PFFDVAYQGFASGSL DEDAASVRL FAERGVEFFVAQSYSKNL 300
C. rubella TPEQW/KI ADVI QEKNHI PFFDVAYQGFASGSL DEDAASVRL FAERGVEFFVAQSYSKNL 300
B. oleracea-7 GLYAERI GAl NVVCSSADAATRVKSQLKRI ARPMYSNPPVHGARI VANVLGCATMFGEVK 360
B. oleracea-1 GLYAERI GAl NVVCSSADAATRVKSQLKRI ARPMYSNPPVHGARI VANVVGCAAMFNEVK 360
A. thaliana GLYAERI GAl NVVCSSADAATRVKSQLKRI ARPMYSNPPVHGARI VANVWGCVTMFSEVK 360
C. rubella GLYAERI GAl NVVCSSADAATRVKSQLKRI ARPMYSNPPVHGARI VANVWCECPTMFGEVK 360
B. oleracea-7 AEMVEMVAGRI KTVRCRL YDSL VSKDKSGKDWEFI LKQ GVFSFTGLNKAQSDNMITNKWHY 420
B. oleracea-1 AEMEMVAGRI KTVRCQL YDSL VSKDKSGKDWEFI LKQ GVFSFTGLNKAQSDNMTDKWHY 420
A. thaliana AEMEMVAGRI KTVRCEL YDSL VSKDKSGKDWEFI LKQ GVFSFTGLNKAQSDNMTDKWHY 420
C. rubella AEMVEMVAGRI KTVRCEL YDSL VSKDKSGKDWEFI LKQ GVFSFTGLNKAQSDNMINKWAHYV 420
B. oleracea-7 YMIKDGRI SLAGLSMAKCEYLADAI | DSCHNVS 453

B. oleracea-1 YMIKDGRI SLAGLSMAKCEYLADAI | DSHHNVS 453

A. thaliana YMIKDGRI SLAGLSLAKCEYLADAI | DSYHNVS 453

C. rubella YMIKDGRI SLAGLSMAKCEYLADAI | DSYHNVS 453

Figure 18: Multiple sequence alignment of the AAT gene sequence found in the three species. The AAT
exon sequences have been translated into amino acid sequences and compared between the three
Brassicaceae species. Amino acid exchanges between the three species have been shaded grey.

Each of the three A. thaliana genes has been compared to the C. rubella copy.
Nucleotide sequence identities neither vary greatly between the A. thaliana sequences
nor between those of A. thaliana and C. rubella. A notable difference between the genes
of the two species is a large increase in size of the third intron of the C. rubella gene. It
spans 1025 bp whereas the intron sizes of the A. thaliana genes vary between 254 and
295 bp. The nucleotide identity values indicate that the C. rubella gene is most closely
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related to At-73278. If this is considered to be the case, then the genes located between
the 94311 and 73278 genes could have either been deleted from the Capsella region or
alternatively the ancestral gene corresponding to At-73278 has been duplicated in A.
thaliana after the divergence of these two crucifer species.

A prediction found on both B. oleracea loci is corresponding to TC73277 which seems
to contain only two exons. The A. thaliana and B. oleracea gene structures are entirely
predicted, homologous sequences between the two species are longer than these two
exons but no longer open reading frame in common to the three genes could be
determined. The sequenced C. rubella region does not contain homologous sequences to
these predicted ORFs (Figure 10h).

d-Estimation of the gene content in the Brassica loci
The comparative analysis of the regions in the A. thaliana, C. rubella and B. oleracea
genomes revealed a very similar organisation of genes. As a complement of the
comparative sequence analysis, a hybridisation study was performed to gather more
data concerning the gene repertoire of the homeologous Brassica loci. Therefore, BAC
DNA has been digested with Mlul and Smal and fragments have been separated on
PFGE. After blotting these DNAs, ESTs, and PCR products covering some predicted
genes were used as probes to determine whether a particular gene was present in one or
both Brassica loci, furthermore it was attempted to estimate the maximal size of the
regions corresponding to F10N7-seg, which is spanning 46,590 bp.
It could be established that BACs 58 and 82 (chromosome 7) carry homologous
sequences of the outermost genes (Knat5 and TC82121) identified on F1ION7-seg within
a region which maximally spans 60 kbp (data not shown). Presence of sequences
homologous to TC86680, TC86829, AAT, TC98955, TC73277, TC82122 could be
validated by hybridisation studies or due to available sequence information. These
results are summarised in Figure 19.
BAC 67 is digested by Smal into two fragments of 20 and 40 kbp. The 20 kbp fragment
carries the end-sequence of this BAC (67R, isolated by iPCR) together with the gene
homologous to ESTs 1/2, whereas the 40 kbp fragment spans from Bo-86829 to Bo-
73277. However, sequences homologous to TC84838, TC80777 and TC73278 are not
found. The sequences insert of cosmid B21 is included in BAC 67 and does not contain
any Smal site. It can be concluded, that the contig from Bo-83424 to Bo-73277 is
present on BAC 67, it maximally encompasses 60 kbp (data not shown, Figure 19).
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3-3 THE RETROELEMENT

Repetitive elements, among them mobile elements, are important components of plant
genomes. The A. thaliana genome contains approximately 10% of transposable
elements (The Arabidopsis genome initiative 2000). A sequence corresponding to one
of the Capsella Mbo-sub-clones has been found to be homologous to repetitive
sequences in the A. thaliana genome. This observation provided an entry-point to
compare repetitive components of the A. thaliana and C. rubella genomes. The aim of
this study was the characterisation of a repetitive element in C. rubella and to compare
its features to the corresponding sequences in the A. thaliana genome.

3-3-1 Features of retrotransposons

Mobile elements transposing through an RNA intermediate (retroids) are distinguished
in three groups, the Long Interspersed Nuclear Elements (LINES) which lack flanking
LTRs (long terminal repeats), the Copia-type and Gypsy-type LTR-retrotransposons and
the Small Interspersed Nuclear elements (SINES) as such the Alu sequences found in the
human genome. The Copia-type and Gypsy-type LTR-retrotransposons were named
with reference to Drosophila LTR-retrotransposons which have been characterised first
(reviewed in Grandbastien 1992). Retroviruses are thought to be restricted to the animal
kingdom (Xiong and Eickenbush 1990). They are very similar to the Gypsy LTR-
retrotransposons but are characterised by an envelope gene upstream of the 3’ LTR
which plays a role in the cell to cell transfer of the retrovirus and infection (Bennetzen
2000Db).

In Figure 20, the general organisation of a Ty3/Gypsy retrotransposon is depicted
(Grandbastien 1992). The entire element is framed by Target Site Duplications (TSD)
which are formed during the integration. During the integration process, the genomic
DNA will suffer a staggered cut into which the element will be ligated, as a result short
identical sequences, 4 to 6 nucleotides in length, will be found flanking the element.
The LTRs of the retroelement are required for the transposition process following the
hypothesis that they are containing very short ORFs coding for proteins involved in the
transposition (Vicient et al. 1999a). Three bp away from the 5’LTR a potential Primer
Binding Site (PBS) sequence is located which is complementary to, in the case of
Ty3/Gypsy and Del-retroelements, the 3’end of methionine initiator tRNA (tRNAM®)
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(Smyth et al. 1989; Wright and Voytas 1998). This sequence is required for DNA
synthesis. As shown in Figure 20, different domains can be recognised. The different
components encoded by a retroelement are the GAG protein, highly divergent and
therefore poorly recognised as a protein domain in database searches, the protease
(PROT), the reverse-transcriptase (RT) and RNAse H, which usually from the
polyprotein complex, and the integrase (INT). If the integrase ORF is located
downstream of the ORF coding for RT, the element belongs to the Ty3/Gyspy class,
Ty/Copia elements carry the INT upstream of the RT (Figure 20). The presence of an
ENV ORF characterises retroviruses, which are not found in plants. Retrotransposons
carrying a supplementary ORF (putative ENV) downstream of the INT are belonging to
the Errantivirus (as for example athila; Pélissier et al. 1995; Pélissier et al. 1996) family
while elements lacking this feature belong to the Metavirus family (as for example Tat
retrotransposons; Konieczny et al. 1991). Immediately adjacent to the 3" LTR is a 12-15
bp long polypurine tract (PPT) used for the synthesis of the (+) DNA strand
(Grandbastien 1992; Wright and Voytas 1998).

Retroelements are transposing through an RNA intermediate, they do not excise from
their original position, rather a copy of the original element is integrated elsewhere. This
leads to an amplification of such elements in genomes with time (Kumar and Bennetzen
1999; Bennetzen 2000b). Retrotransposons represent a very prevalent class of mobile
elements in many plant genomes, they can constitute as much as 50 to 80% of the
nuclear DNA in grasses (SanMiguel et al. 1998 ).

3-3-2 Capsella retroelements

3-3-2-1 Screening of the Capsella libraries

Analysing the sequence data of the library of Capsella Mbo-fragments, Mbo-D22
showed homology to several A. thaliana BAC sequences. Approximately 30 GenBank
entries showed higher homologies than the cut-off E-value set at e™>. The sequence
identities between the 484 bp fragment of Capsella DNA and the corresponding
sequences in the Arabidopsis genome is ~85%. The BACs map to different loci in the A.
thaliana genome. The sequences with homology to Mbo-D22 were annotated on some
of the BAC sequence entries as retroelement-like sequences.

Mbo-D22 has been used to probe the Capsella cosmid Taql and Sau3Al libraries.
Approximately 120 clones have been identified as hybridising signals. DNA of 16
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cosmid clones has been prepared, digested and blotted to be hybridised successively
with the Mbo-D22 sub-fragment and a PCR product representing the LTR sequences
(Long Terminal Repeats) of the A. thaliana retrotransposon. Primers (LTR1-29f = 5’
CGA GIT CCT AGA TCA TCC TC3’, LTR1-29r =5 GAG CAG AAT CGI TAG
GGT TTG G have been deduced from LTR sequences of an A. thaliana element
located on the chromosome 1V (GenBank acc. no. AL161517). Different patterns of
hybridising fragments have been obtained among the cosmids following the Mbo-D22
and LTR1-29f/LTR1-29r hybridisation. Twelve clones showed homology to the LTR
probe, whereas all cosmid clones did hybridise with Mbo-D22 (Mbulu 2000). Three
cosmids clones have been chosen for further analyses, cos-T16, cos-S20 and cos-T32.
The element harboured in cos-S20 has been sequenced (Mbulu 2000). An analysis of
the restriction pattern of cos-T16 and cos-T32 showed that they were representing the
same Capsella genomic fragment. The T32-element was then chosen for sub-cloning
and subsequent sequence analysis, to permit a comparison between the T32-element and
the previously characterised S20-element. The cosmid has been sub-cloned with
restriction enzymes Xbal, Hindlll and EcoRlI; fragments of 6410 bp, 2719 bp and 3897
bp, respectively were generated. The Hindlll sub-clone was found to reside within the
Xbal sub-clone. From the Xbal and EcoRI sub-clones, additional sub-clones - referred
to as deletion clones - have been generated as depicted in Figure 21. All sub-clones
were sequenced first using vector-specific primers. This strategy generated numerous
anchor points for deducing additional primers for sequencing. Thus, the sequence of the
entire element could be generated faster then by solely relying on primer-walking on
large cloned fragments.

BLAST searches carried out with the sequences of the S20- and T32-elements revealed
matches with ~30 sequences in the A. thaliana genome. These sequences were in some
cases annotated as Del-like retrotransposon. The Del element has been originally
characterised in Lilium Henryi (Sentry and Smyth 1989; Smyth et al. 1989).

3-3-2-3 Characterisation of the S20-element

The S20-element spans 7768 bp and is flanked by a target site duplication of 5 bp
(TGTAA). The entire sequence of the Capsella S20-element is 52,3% A+T rich, if only
the inner segment is taken into account, the sequence is 48,9% A+T rich. The 5’LTR
spans 1070 bp and the 3’LTR 939 bp.
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Insertions/deletions (indels) are not distributed all over the two LTR sequences, rather
the length difference of 131 nucleotides between both LTRs is due to a most likely
single indel. Sequence identity between the LTR sequences is approximately 96%.

Three nucleotides downstream of the 5°LTR, a putative primer binding sequence

showing complementarity to the methionine tRNA initiator (tRNAM®

) is found.
Immediately adjacent to the 3’LTR is an A/G rich sequence, a putative polypurine tract
(PPT). Figure 22 depicts the flanking regions of the inner segment directly adjacent to

the LTRs (TG...CA borders).

PBS PPT
5' LTR 1077 CAATTTGGTATCAGAACATTTACGGTT 1103. 6822 TAGTGGGGGAGAATTG 6837 3' LTR

ITEEETT [ 1111
3’ - ACCAUAGUCUCG G U CCAA-5’
3’ end of tRNA Met

Figure 22: DNA sequences of the internal segment of the Capsella S20-element. The sequences adjacent
to the LTRs show features characteristic for primer binding sites necessary for DNA synthesis.

3-3-2-4 Characterisation of the T32-element

The T32-element, spans from the 5° LTR to the 3° LTR 6298 bp, the 5 LTR
encompasses 1376 bp and the 3’ LTR has been truncated due to cloning into the cosmid
vector, only 300 bp of it are present on the T32-cosmid clone. The 3’ end of the 3’ LTR
is therefore missing in the obtained sequence. Furthermore, the 5’ end of the 3’ LTR as
well as a putative polypurine tract is lacking due to an internal deletion of 1272 bp of
the T32-element with respect to the S20-element. The complete 5° LTR of the T32-
element has then been compared to the LTRs of the S20-element. Di-nucleotides
characteristic for LTR borders (TG...CA) could be pinpointed for the T32-5" LTR as
well as for the LTRs of the S20-element. The larger size of the T32-5" LTR compared
to the S20-element is explained by an insertion of 296 bp which took place 131 bp
upstream of 3’end of this LTR.

The internal segment flanking the 5’ LTR exhibits properties of a putative priming site
for DNA synthesis. A Capsella sequence of 22 nucleotides is complementary to the
published consensus sequence of the 3’ end of tRNAM® (Sentry and Smyth 1989;
Smyth et al. 1989). This sequence is separated by the triplet ATT from the sequence of
the 5° LTR. The comparison of the tRNAM® consensus sequence and the Capsella

sequence is shown in Figure 23.
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5 LTR 1375 CAATTTGGTAGTAGAGCATTTACGGIT 1401

LETEE T IR
3’ - ACCAUAGUCUCG G U CCAA-5'

3’ end of tRNA Met

Figure 23: DNA sequence of the internal region of the Capsella T32-element. The sequences adjacent to
the 5” LTR correspond to a putative priming site of tRNAM®.

3-3-2-5 Sequences flanking the Capsella elements

Sub-clones of cosmids S20 and T32 harbouring the elements also provided information
about Capsella sequences flanking the retrotransposons. These sequences from the S20
cosmid as well as the T32 cosmid have been aligned with the sequence of the A.
thaliana genome. For the part of sub-clone T32-E10 (Figure 21) which is not
corresponding to the retroelement analysed here, homologous sequences were found.
These corresponded to an athila retrotransposon-like element. The sequence alignment
showed a sequence identity of 60% over 2158 bp, 1600 bp of which correspond to
ORF?2 of the athila element (GenBank acc. no. X81801, Pélissier et al. 1995).

3-3-2-6 Sequence analysis of the Capsella elements

The A. thaliana element family which shows homology to the S20- and T32-elements is
not characterised, only the LTRs and the putative reverse transcriptase are occasionally
annotated as Del-like retrotransposons. In order to characterise the elements further and
to determine the retroelement family to which the Capsella elements might belong to,
the sequences were analysed for the presence of conserved domains. For this, BLAST
searches with different capabilities were used (Atschul et al. 1997,
http://ncbi.nim.nih.gov).

The complete nucleotide sequence of the S20-element was used for a BLAST alignment
with the whole non-redundant database, without any organism selected. The homologies
obtained were with A. thaliana and other organisms as different as pineapple, rice,
maize or lily. Figure 24 summarises the results. The homologies cluster in a region of
~2600 bp of the Capsella element.

An alignment of the DNA sequence of the S20-element with the Del retrotransposon
which was identified in Lilium Henryi (GenBank acc. no. X13886, Smyth et al. 1989)
yielded nucleotide identity of ~59 % over 2624 bp. Following the annotations of the
Del-retrotransposon, these 2624 bp are including a reverse-transcriptase motif, an
RNAse H motif, a zing finger motif and an integrase motif. This Del-element does
contain a single Open Reading Frame (ORF) coding for all different proteins. The

73




Results

corresponding region of the S20-element is located between bp 3300 and 5900 (Figure
24).

The internal segments of both Capsella elements have been translated in the six possible
frames and submitted into search for conserved domains (BLAST, Conserved Domain
Database; Altschul et al. 1997). Core domains could be detected on two separate ORFs
for both elements. A significant homology could be detected to a reverse-transcriptase
domain  (RNA-dependent-DNA-polymerase, Pfam00078, E-value 1e**) and
downstream of this match an integrase domain could be identified (Pfam00665, 5¢™%).
The Capsella element can therefore be grouped into the Ty3/gypsy family of elements,
since the INT ORF is located downstream of the RT ORF.

The two conserved domains are coded for by different open reading frames. A third
ORF of 330 amino acids, upstream of the RT is found on the S20-element but does not
match any conserved sequences. Nonetheless, it has homology with A. thaliana
sequences, which are annotated as polyprotein regions of retroelement-like sequences.
These sequences could code for GAG, the most divergent gene of a retroelement
(Wright and Voytas 1998) or for a protease. Interestingly, some RNase H motifs
determined from the sequence published in Jordan and McDonald (1999) are found
downstream of the RT but in a different frame. Due to the presence of several stop
codons this region is not shown as an ORF. No large ORF downstream of the region
with homology to integrase could be shown, therefore, this element is supposed to
belong to the Ty3/gypsy sub-class of the Metaviridae family, lacking any putative ENV
gene.

In the Capsella S20-element, the INT core domain sequence contains a stop codon 154
amino acids after the putative methionine start codon. This stop codon is absent from
the T32-INT core domain and ORF. Thus, the region corresponding to the INT core
domain is represented by a large ORF in the the T32-element and two shorter ORFs in
the S20-element. Figure 25 shows both Capsella elements T32 and S20 in the 5’® 3’
orientation. The different genes discovered via presence of core domains and large
ORFs are depicted inside open bars representing the three alternative frames. Amino
acid sequence identities have been indicated. Segments of conserved sequences appear
to be larger than the putative ORFs.
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Figure 25: Depicted abore ame the ORFz and conserved motifs which could he
detected fior the three frames of translation for both Capsella elements. The LTRs are
drawn as amows to indicate their amangeiment in a direct repeat manner. OFFz

deterrined in each element are shown as red boxes with an armow head showing, the
direction of franscription. Homology to ENAseH, localised by motif homology is
depicted as open boxes. The elernent-wide open bars mepresent the three poszsible
for#ard fratnes of tmhslation. The yellow box inside the 3' LTR of T32 demonstrates
ah insertion event, and the L in the 3 LTE of the mme element exemplifies that LTRII
of the T32 element has been fmincated by a deletion. The grey shading linking, both
elernents depicts the homology between the 320 3' LTE and the remnant of T52 3LTER
on nucleotide level, and the level of armino-acid sequence identities of pufative OFFs,
and conseved domains.
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3-3-2-7 Sequence comparisons of the Capsella elements

3-3-2-7-1 Sequence alignment of the Capsella elements

The sequence of the T32-element has been aligned with that of the S20-element using
the Bestfit program (GCG). An overall sequence identity of 96% was found along
~6000 bp. This corresponds to the entire sequences of the T32-element. Another
comparison was performed with the “BLAST two sequences” tool (Tatusova and
Madden 1999) which compares two large sequences to each other. The result of this
alignment is shown in Figure 26. LTR sequences are homologous within and between
elements. The sequence alignments indicate two large insertions/deletions. A large
deletion in the T32-element is located around the junction of the internal sequence and
the 3’ LTR if compared to the S20-element. This alteration spans 1273 bp and involves
the untranslated region after the putative INT ORF, the PPT and the first 72 bp of the 3’
LTR. This deletion will be analysed further below. A second minor event differentiates
the LTRI sequences of the Capsella elements. LTRI of the T32-element is increased in
size by ~300 bp compared to the sequence of the S20-element. Segments representing
the RT-RNAse H as well as the LTR sequences display sequence identities >95% if the
Capsella elements are compared (Figure 26).

3-3-2-7-2 Analysis of the deletion

A fragment of 1272 bp seems to be deleted from the 3’-part of the T32-element when
compared to the S20-element. Two primers corresponding to sequences located to each
side of the deletion on the T32-element were used for PCR experiments. The expected
sizes of the PCR products were ~300bp and ~1500bp for the T32-element and S20-
element respectively.

The Capsella cosmid libraries cannot only be screened by colony hybridisation
experiments but also by PCR (Schmidt et al. 1999). Fifteen pools of DNA have been
prepared which together encompass all cloned Capsella genomic DNA sequences.
These 15 DNA pools were used for PCR amplifications with these two primers flanking
the deletion of the T32-element. For six pools amplification products could be clearly
detected. The PCR products, separated on a 0,8% TAE agarose gel are shown in Figure
27. The size of the amplification products obtained for DNA pools C4 and C14 are
indicative of copies which do not contain the deletion.
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Figure 27: The large deletion
affecting the 3 LTE of the T32-
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iz a PCR analysis of Caprella
genomic and cosmid clone DHA
using primers flanking this deletion.
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respectively are contained in these
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On four DNA pools (C2, C7, C10 and C12), in contrast, fragments were amplified
which corresponded to the deleted version of the element. The amount of amplification
products generated in such experiments is depending on the representation of a
particular cosmid clone in the analysed pool. Cosmid clones growing poorly are
generally under-represented in the DNA pools and can therefore escape detection. For
example, cosmid T32 is part of DNA pool C5, but no amplification product has been
seen.

It is interesting to see that in C. grandiflora DNA, only the undeleted class of elements
is detected, whereas C. rubella sequences represent both classes of elements. The
Capsella cosmid libraries have been established with C. rubella DNA, thus the results
for C. rubella genomic DNA and the DNA pools representing the cosmid libraries are

coherent. Amplification products of other sizes can also be noticed in some DNA pools.

3-3-2-7-3 Sequence composition of the Capsella elements

The nucleotide composition of the elements has been analysed to determine whether
some differences exist along the putative mobile element concerning the predominance
of bases. The analysis has been carried out on the GCG package with the “composition”
function. These data are reported in Table I. It can be seen that a high A+T content is
characteristic for the LTR sequences, whereas the G+C content is higher in the inner
segment. The LTRs are composing 27% of the S20-element and 31% of the T32-

element.

S20-element T32-element

Size 7768 bp 6298 bp

LTR [LTRI5’ 1070 bp 1376 bp

sizz |LTRII 3’ 939 bp 300 bp'

AIT GIC AIT GIC

Complete element 52,2% 47,7% 51,4% 48,6%
LTR 5’ (LTRI) 41,4% 36,5% 62,6% 37,4%
LTR 3’ (LTRIN) 63,2% 36,8% - -
Inner segment T 48,3% 51,6% 47,2% 52,7%

Table I: Comparison of the nucleotide composition of two Capsella retrotransposons, the T32- and S20-
elements. t: the complete sequence of LTRII is not available, thus it has not been analysed. 1: the inner
segment corresponds to the sequence between the LTRs.
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3-3-3 Arabidopsis Del-like retroelements

3-3-3-1 Size of the elements and locations in the Arabidopsis thaliana genome

The family of A. thaliana elements homologous to the Capsella retroelement-like
sequences has been analysed. Using the S20-element sequence for a BLAST analysis
with the sequence of the Arabidopsis genome, ~30 different BAC clones showed
significant homologies (E-values between 0.0 and 1e™**).

For 22 different elements, it could be established that they contain two LTRs flanked by
a TSD. They span between 7500-8300 bp including LTRs of about 1100 bp (Table J).
Two elements are considerably enlarged, they encompass 10,133 bp (GenBank acc. no.

AC73433) and 14,039 bp (GenBank acc. no. AL161509), respectively.

; ) ) Average
Size 5 LTR | 3’'LTR S TSD
GenBank acc. no. | Chr. no. (bp) (bp) (bp) Id?t;:)lty

1 ABO011478 \Y 7844 1154 644 97,5 QA TY +

2 AC002534 " 8278 1163 1157 96 ATATC

3 AC005398 I 7831 1158 1163 96,7 ATATT

4 AC006228 | 8195 1147 1142 95 CTAGG

5 AC006955 I 7848 1144 742 97,5 ATTAG

6 AC007203 I 7583 1166 1134 94 C¥ JAAC

7 ACO007399 \Y 7946 1145 1132 95,5 GITAC

8 AC018660 \Y, 8046 1158 1128 91,8 ATAAG

9 AC021199 I 8295 1154 1156 97,5 TAAAT
10 AC025782 I 7900 1157 1155 97 TCTAC
11 AC069557 \Y, 8261 1155 1153 94,6 GAAGT
12 ACO073433 I 7959 1162 1155 92 A GTTG
13 AF058825 \Y 8434 1161 1682 92,5 GAAAT
14 AFQ77407 \Y 7779 1154 1053 94,6 CAAAG
15 AF262041 Y, 8266 1153 1147 99 ATTTG
16 AL161508-I v 7066 1158 1159 94,5 GAATG
17 AL161510 v 8062 1155 1156 97,3 CTCTT
18 AL161517 v 7856 1156 1157 97 CAAAC
19 AP001296 Il 8251 1157 1154 97,9 ATTTC
20 AP001301 Il 8103 1154 1154 95,5 GICTT
21 AP002043 1" 7642 1053 1058 99,3 AAAGG
22 AP002058 " 8278 1154 1153 97 GCGAG

Table J: List of 22 Arabidopsis Del-like elements homologous to the Capsella T32/S20-elements. The
different Arabidopsis chromosomes carrying such elements are reported (Chr. no.). The GenBank
accession numbers (Acc. no.) of the sequenced BACs which carry those elements are given. In the case of
the chromosome 4 elements, the accession numbers reflect the sequence assemblies as provided on the
MIPS web site (http://mips.gsf.de/proj/thal/db/). The two shaded lines indicate the two elements
exhibiting the highest degree of conservation between their LTRs. The TSD is defined as conserved direct
repeat sequences immediately flanking the element.

Sequence conservation between the two LTRs of a particular element is varying. LTRs
of elements 8 and 12 are more diverged (Table J). Interestingly, the latter element also
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has a point mutation affecting the TSD. Other elements (15 and 21) exhibit more
conserved LTRs (>99% sequence identity) (Table J). The TSDs have been also listed in
the Table 3-3-B but no particular preference for an integration site could be determined.
With the exception of the first element listed, nucleotide differences within the TSD are
found for elements which exhibit a rather low conservation of the LTRs.

The BAC clones containing the retroelement-like sequences have been localised on the
A. thaliana chromosomes using clone contig information available in the TAIR (TAIR:
http://www.arabidopsis.org) and MIPS (http://mips.gsf.de/proj/thal/db/) databases. The
size of the chromosomes arms are the ones determined by AGI project (The Arabidopsis
Genome Initiative 2000). Members of the retroelement family are found on all A.
thaliana chromosomes (Figure 28). In general, the retroelements show a clustering in

centromeric regions with the exception of chromosome I1.

3-3-3-2 Sequence comparison of the Arabidopsis Del-like retrotransposons

Acc. no. LTRI sequence 5’-end LTRI sequence 3’-end
1 AB011478 TG TAACGCCCGTGAACCAGAAAA AAAAAATGAGTCGGGTTGTTT CA
2 AC002534 TG TAACGCCCGTGAACCGGAAAA AAAAAAAAGGTCGGGTTGTTA CA
3 AC005398 TG TAACGTCCGTGAACTGGAAAA AAAAAATGGGTCGGGTTGTTT CA
4 AC006228 TG TAACGCCCGTGAACCGGAAAA AAAAAATGGGTCGGGTTGTTT CA
5 AC006955 TG TAACGCCCGTGAACCGGAAAA TTTAAATGGGTCGGGTTGITT CA
6 AC007203 TA TAACGCCCGTGAACCAGAAAA AAAAAATGGGTAGGGTTGTTT CA
7 AC007399 TG TAACGT CCGTGAACCGGAAAA AAAAAATGGGTCAGGTTGTTT CA
8 AC018660 TG TAACACCCGTAAATAGAAAAA AAAAAATGG-TCGGGTTGTTT CA
9 AC021199 TG TAACGCCCGTGAACCCGAAAA GAAAAACGGGTCGGGTTGTTT CA
10 AC025782 TG TAACGCCCGTGAACCGAAAAA AAAAAATGGGTCGGGTTGTTT CA

Table K: The sequences at the 5’ and 3’ termini of 5’ LTRs are given for 10 retro-elements, numbered 1
to 10. All sequences are shown from the 5 end to the 3’end. The TG...CA borders are in bold. The
results for the 3° LTRs are similar (data not shown).

Sequence alignments were carried out for a subset of 10 Arabidopsis elements to
pinpoint deletions or insertions within the elements. The element located on BAC
T32N15 (GenBank acc. no. AC002534) has been chosen as reference to be aligned with
all different sequences shown in Table K using the CLUSTAL W program
(http://lwww2.ebi.ac.uk/clustalw/ or http://www.clustalw.genome.ad.jp/). This element
has been selected on the basis of its size which is most likely representing the average
for complete elements. The alignment of the 5’ and 3’ termini of different LTRs shows
that LTRI and LTRII have conserved sequences for about ~20 bp inside the LTR, then
an A+T rich sequence of different length disrupts the alignment.
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Apart from few exceptions, LTRs are bordered by a di-nucleotide inverted repeat
(TG...CA). Using these criteria LTRs can be defined with high accuracy. Out of 10
LTRs analysed in detail, only one element (6) exhibits a point mutation where the TG
of the inverted repeats bordering the LTR has been changed to TA.

A similar kind of alignment has been performed for the putative PBS and PTT
sequences. These sequences are representing the priming binding sites required for
DNA synthesis. The PBS is a sequence expected to be complementary to the 3’end of
the host tRNA;M® which is used as primer for the synthesis of the (-) DNA strand. The
PPT is important for the synthesis of the (+) DNA strand. The Arabidopsis sequences
are listed in the Table L, as well a consensus sequences deduced from the analysis of the
ten Arabidopsis elements and the sequences established on both Capsella elements T32
and S20.

Acc. no. Primer binding site (PBS) Polypurine tract (PPT)

1 AB011478 ATT TGGTATCAGAGCGATTACGGTIT TAGTGGGCGAGAAT TG
2 AC002534 ATT TGGTATCAGAGCGATCACGGTIT TAGTGCGAGAGAAT TG
3 AC005398 ATT TGGTATCAGAGCGATTACGGTIT TAGTGGGCGAGAAT TG
4  AC006228 ATT TGGTATCAGAGCGATCACGGTIT TAGTGGGCGAGAAT TG
5 AC006955 ATT TGGTATCAGAGCGATTACGGIT TAGTGGGCGAGAAT TG
6 AC007203 ATT TGGTATCAGAGCGATCACAGIT TAGTGGGCGAGAGT TG
7 AC007399 ATT TGGTATCAGAGCGATTACGGTIT TAGTGGGAGAGAAT TG
8 AC018660 ATT TGGTATCAGAGCGATCACGGTIT TAGTGGGGGAGAAT TG
9 AC021199 ATT TGGTATCAGAGCGATTACGGIT TAGTGGGCGAGAAT TG
10 AC025782 ATT TGGTATCAGAGCGATTACGGIT TAGTGAGGGAGAAT TG
Consensus Ath ATT TGGTATCAGAGCELATTACEGIT TAGTGCE,GAGAS,T TG
S20-element ATT TGGTATCAGAACATTTACGGIT TAGTGGGCGAGAAT TG
T32-element ATT TGGTAGTAGAGCATTTACGGIT -

Table L: Alignment and composition of the potential PBS and PPT sites for the ten analysed Arabidopsis
sequences. The corresponding Capsella sequences are also listed. Due to a deletion the T32-element does
not contain a PPT.

The alignment by CLUSTAL W in reference to the element located on BAC T32N15
(GenBank acc. no. AC002534) permitted to observe an overall identity among the
elements tested. Nevertheless, insertions and deletions do not seem to be rare events. In
Figure 29, the retrotransposons are depicted schematically with remarkable deletions or
insertions comprised between 320 and 632 bp marked by arrows. The orientation of the
transposons are 5’ to 3’. Deletions in elements 1, 3, 5 and 10 are found in the same
region but they are of different size. The deletions span ~320 bp, ~400 bp, ~418 bp, and
~410 bp, respectively. Elements 6 and 8 revealed deletions of 632 bp and 585 bp,
respectively in the second half of the elements. Element 8 contains an insertion of 576
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bp near the 3’ LTR. Indels of few base pairs in size are frequently found in the pairwise

alignments of all elements.

3-3-3-3 Comparison of the A. thaliana and the Capsella elements

Alignment of internal segments of Capsella S20-element and A. thaliana T32N15
(AC002534) has been performed with the “Bestfit” command of the GCG program. An
overall sequence identity of 76% has been established. Sections of the compared
segments showed higher conservation. LTRI and LTRII were conserved between the
elements of both species at 72% and 71%, respectively. An analysis of these two
elements has been performed using the BLAST two sequences program, the result is
depicted in Figure 30.

Interestingly, a segment of a Capsella element, spanning from nucleotide 1271 to 6148
and homologous to the A. thaliana sequence segment from 1368 to 6223 showed only
four indels of one nucleotide. All other insertions/deletions distinguishing these
elements were representing triplets and thus, would not lead to frame shifts. In contrast,

in alignments of the LTR sequences many indels could be noticed.

3-3-4 Hybridisation pattern in species of the Brassicaceae family

BLAST similarity searches indicated approximately 30 different A. thaliana sequences
with homology to the Del-like retrotransposons from Capsella. The fact that this
sequence seems to be preferentially integrated near centromeres may lead to an
underestimation of the abundance of this family in the Arabidopsis genome, since the
centromeric regions have been only partially sequenced.

A Southern blot containing DNA of 14 A. thaliana ecotypes, C. grandiflora, C. rubella,
B. oleracea var. alboglabra and B. oleracea var. italica has been made. Genomic DNA
of the three genera has been digested with Dral and blotted. The Southern blot has been
hybridised with a sub-clone of the Capsella S20-element which spans 7 kbp of
sequence. This fragment is representative of the entire sequence of this element. The
results of this hybridisation experiment is shown in Figure 31. The strongest
hybridisation has been obtained with C. rubella DNA, consistent with the fact that the
probe sequence was derived from this species. Hybridisation of various strengths has
been observed for DNA of different Arabidopsis ecotypes.
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The three ecotypes hybridising most strongly with the Capsella element are Columbia
wild type (WT), T22B4 and Li5. The Brassica species only show faint hybridisation. A
small fragment of ~1200 bp is clearly revealed in all ecotypes. A similar sized fragment
is seen in Capsella. To determine which part of the retroelement is corresponding to this
fragment, several Arabidopsis retrotransposons and the two Capsella retrotransposons
have been submitted to the “map” command of the GCG program with the Dral enzyme
selected. The Dral recognition site is TTTAAA and as noted earlier, the LTRs are very
A+T rich, furthermore, repeats of A or T are very frequent close to the LTR borders.
Thus, for many retroelements analysed, Dral fragments in the range of ~1 kbp could be

identified in the LTR sequences.
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4 DISCUSSION

4-1 GENETIC MAPPING

4-1-1 The Capsella map

In this study, a genetic linkage map of Capsella has been constructed, which was
derived from an interspecific cross (C. grandiflora x C. rubella). Fifty F2 individuals
were scored for 137 loci and eight linkage groups (LG) covering in total 650 ¢cM could
be established (chapter 3-1).

To be able to constitute this map efficiently, a “target mapping” strategy has been used
to cover most of the Capsella genome with the Arabidopsis probes. Markers
homogeneously distributed along the A. thaliana chromosomes were chosen for the
mapping experiments. Particular efforts have been undertaken to use markers mapping
close to the telomeric ends (chapter 3-1) and the centromeric regions (Clarenz 2000) of
the Arabidopsis chromosomes.

All 136 loci for which co-dominant inheritance has been observed could be placed into
eight linkage groups. The loci are homogeneously spread along the five Arabidopsis
chromosomes and also on the Capsella linkage groups. On the established Capsella
map, markers are on average separated by 4,7 cM (Table E, Figure 7).

Markers mapping to four different regions in the Capsella genome show frequencies
significantly different from the expected 1:1 ratio of the grandiflora and rubella alleles
(Figure 6; Appendix). For a nuclear encoded co-dominant locus, the expected
segregation among the F2 progeny is a 1:2:1 ratio of plants homozygous for the C.
grandiflora allele, heterozygous plants and plants homozygous for the C. rubella allele.
Some regions in the Capsella maps show significant segregation distortion. Markers
Mbo-L5 and m326A (LG F) delimit a region which shows a significant under-
representation of homozygous C. grandiflora plants. The same is observed for markers
m448A, mi306 and H36452 on linkage group G and for marker mi353 and Z35365 on
linkage group B.

C. grandiflora is a self-incompatible species. For the Capsella mapping population,
only self-fertile individuals have been chosen. Consequently, for a genomic region

corresponding to the self-incompatibility locus, it is expected that homozygous C.
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grandiflora plants are under-represented. Nevertheless, DNA for some individuals of
the F2 population which did not produce seed is available. For two markers (Mbo-L5,
mi323) located in a cluster with significant segregation distortion, DNA of the
individuals have been subjected to a segregation analysis. Interestingly, in this part of
the mapping population which represents putatively self-incompatible individuals, many
plants homozygous for the C. grandiflora allele of these two loci could be detected (S.
Stegemann and R. Schmidt, unpublished results). Thus, it may be possible in future
mapping studies to establish the map position of the self-incompatibility locus in

Capsella.

4-1-2 Conservation of sequence repertoire between Arabidopsis and Capsella

The vast majority of Arabidopsis RFLP markers and ESTs hybridised to Capsella DNA.
Among the 63 A. thaliana RFLP probes tested, only one (1,6%) did not hybridise to
Capsella DNA. The mi423a marker sequence corresponds to a 7yl-copia-like
retroelement. This finding is consistent with data previously obtained. Acarkan et al.
(2000) could show for another Arabidopsis marker which did not hybridise to Capsella
DNA, that it constitutes the LTR sequence of a retrotransposon-like element. Similar
observations were made in grasses. Avramova et al. (1996) established that most maize
retrotransposon-like sequences do not hybridise to sorghum DNA. In contrast, Del-like
retrotransposons of C. rubella and A. thaliana have been found to cross-hybridise
(chapter 3-3).

For 23 (62%) of the 37 mi... RFLP markers which have been mapped in Capsella,
corresponding EST sequences could be found (data not shown). Similarly, 60% of all
predicted Arabidopsis genes match EST sequences (The Arabidopsis genome initiative
2000). Thus, the Arabidopsis gene repertoire is well reflected in the set of mi... RFLP
markers. The similarity of the gene repertoires of Arabidopsis and Capsella is indicated
by the fact that the vast majority of these markers hybridise to Capsella genomic DNA.
These results are consistent with studies comparing the genome of Arabidopsis to that
of different Brassica species (Kowalski et al. 1994; Lagercrantz 1998)

PCR-based marker systems have also been used in this study. SSCP analysis in
particular has been successfully employed for genetic mapping in Capsella. This
technique exploits different mobilities of denatured DNA strands in MDE" gels. Even
single nucleotide differences in DNA fragments might influence the conformation of the

strands when separated on a MDE" gel and thus, may be detected as a polymorphism
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(Slabaugh et al. 1997). This method has been found to be very efficient for detecting
sequence differences in human genes. For example, the NF1 gene is spanning ~350 kbp
of genomic DNA and some mutations in exons lead to an autosomal dominant disorder.
Using two alternative PCR-based marker systems, heteroduplex analysis and SSCP, 26
new mutations could be detected in 59 exons of the gene. The SSCP method could
reveal 65% of these polymorphisms, clearly demonstrating the versatility of this
technique (Abernathy et al. 1997).

Another advantage of PCR-based marker systems is that sequences of primers can be
selected to restrict amplification to a single member of a gene family. In contrast, RFLP
markers do not only detect orthologous sequences but may also reveal paralogues.
Especially for large multigene families or repetitive sequences, RFLP marker analysis
may result in a hybridisation pattern too complex to be evaluated (Slabaugh et al. 1997).
It was attempted to map Capsella Mbo-fragments corresponding to repetitive DNA
sequences of the A. thaliana genome using SSCP analysis, but albeit polymorphisms
could be detected, the pattern of the segregating fragments was too complex to assign
these to loci.

Mbo-C14 corresponds to 18-5,8-25S rDNA sequences, which are present in large
tandem arrays (Copenhaver and Pikaard 1996). Many different fragments of almost the
same size could be amplified, but it was not possible to discern individual strands upon
SSCP analysis (data not shown). Mbo-D22 shows homology to approximately 30
different locations in the A. thaliana and Capsella genomes (chapter 3-3). This fragment
is homologous to a putative INT ORF of a retrotransposon-like sequence. Thus,
although the copy number of this sequence in the Capsella genome is much lower than
that of the rDNA sequences, SSCP analysis could not discern scorable polymorphic
fragments (data not shown). In the immediate vicinity of one of the Capsella elements,
other sequences with homology to repeats in the Arabidopsis genome were found
(Figure 21). The results of the SSCP analysis with a similarly complex pattern as that
for Mbo-D22, give a strong hint that these sequences may be repetitive in the Capsella

genome as well (data not shown).

4-1-3 Arabidopsis sequence map
The Arabidopsis chromosome maps to which this study is referring to are “sequence
maps’, their scale is given in Mbp. This tool is available due to concerted efforts made

to sequence the Arabidopsis thaliana genome (The Arabidopsis genome initiative
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2000). The spacing between two loci on the sequence map of a particular chromosome
is reflecting the exact physical distance between them in bp. The sequence map is
advantageous because it is possible to define unambiguously the order of the loci along
the chromosome. On a genetic map closely linked markers often cluster at one locus,
especially if a small mapping population is used. Acarkan et al. (2000) have compared
the organisation of Arabidopsis chromosome 4 with that of the Capsella linkage groups.
In this study the molecular marker map of A. thaliana chromosome 4 was used for the
comparison. Using the sequence map, the comparative map could be considerably
refined, since those loci which previously had to be assigned to a single map position on
the genetic map could now be ordered in an unambiguous way along the sequence map
(chapter 3-1, Figure 7).

Genetic linkage maps are based on recombination frequencies. Comparison of genetic
and physical distances along chromosomes has revealed hot and cold spots of
recombination. For example, for chromosome 4 of A. thaliana, an average value of 185
kbp/cM could be established with a variation from 30-50 kbp/cM for hot spots to >550
kbp/cM for cold spots (Schmidt et al. 1995). The sequence map is not prone to these
differences. Consequently, markers can be chosen which are equally distributed along
the sequences of the chromosomes.

For a number of RFLP markers, multiple loci could be mapped in Capsella. All marker
sequences were aligned with the sequence of the Arabidopsis genome. This strategy
allows to pinpoint orthologous as well as paralogous loci on the chromosome sequence
maps. In contrast, if markers are used for genetic mapping studies, which correspond to
two copies in the genome, often only one locus can be mapped, whereas the other locus
is monomorphic. The use of such markers in comparative mapping studies proves to be
problematic, because it cannot be established in an unambiguous way whether
paralogous or orthologous loci corresponding to a particular marker are being compared
(Bennetzen 2000a).

Exon sequences from Brassica or Capsella are well conserved to the corresponding
gene sequences in Arabidopsis. A set of 13 orthologous Brassica and Arabidopsis
coding sequences was 87% identical at the nucleotide and amino acid level (Cavell et
al. 1998). Similar values could be reported for the genes studied in the context of this
work (Table H). Comparing exon sequences of Arabidopsis and Capsella, even higher
average values are found (Table H; Acarkan et al. 2000; Rossberg et al. 2001). Thus,

due to the high sequence identity of coding sequences in related cruciferous species, the
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vast majority of Brassica and Capsella markers which span exon sequences can be
unambiguously placed onto the sequence maps of the Arabidopsis chromosomes by
aligning the sequence of the marker with the Arabidopsis genome sequence. Using this
strategy, a molecular marker map established for any cruciferous species can be directly
compared to the Arabidopsis sequence maps of the chromosomes, as long as sequence
information for the molecular markers is obtained. It is not any longer required to carry
out laborious genetic mapping experiments in Arabidopsis. This strategy has already
been proven useful for the Capsella Mbo-markers (Figure 7).

The annotated sequence of the Arabidopsis genome offers the possibility to specifically
target exon sequences for marker studies. It has been possible in many cases to use
primer sequences deduced from A. thaliana sequences for PCR amplifications in
Capsella. This could be exploited for the mapping studies (Table D), clearly
demonstrating the impact that the information of the 4. thaliana genome sequence may
have for comparative mapping in related species. Due to the particularly high sequence
identity of exon sequences in Arabidopsis and Capsella, the use of degenerate PCR
primers is often obsolete. For more distantly related species, EST resources can be
exploited to deduce degenerate primers with homology to conserved regions of genes.
The resulting primer pairs can be used for the development of PCR-based markers. In
this way, genes encoding Calvin cycle enzymes could be mapped in sugarbeet

(Schneider et al. 1997).

4-1-4 Comparative genetics between A. thaliana and Capsella

Many comparative genetic mapping studies have been established between related
species belonging to the same family. Tanksley et al. (1992) have compared the tomato
with the potato genomes. They could show a high degree of collinearity, only five
inversions spanning entire chromosome arms had to be assumed to explain the
differences in chromosome organisation between the species of the Solanaceae family.
Likewise, the comparison of the Arabidopsis and Capsella genomes revealed a high
degree of genome collinearity (Figure 7). In total, 14 large collinear segments have been
detected. Most importantly, it could be established that the conserved regions cover the
majority of the A. thaliana sequence and the Capsella linkage map. Some
rearrangements between the maps are to be expected, since Capsella has eight
chromosomes, whereas A. thaliana has only five. In Arabidopsis, the position of the

centromeres is known for all five chromosomes (Schmidt et al. 1995; Round et al.
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1997; Copenhaver et al. 1999). Thus, it could be analysed whether the breakpoints of
collinearity seen in the comparative map would coincide with the centromeric regions in
Arabidopsis. In contrast to the result of Tanksley et al. (1992), the breakpoints do not
systematically involve the centromeric regions of the Arabidopsis chromosomes (Figure
7).

Marker IG3 corresponds to 18S-25S rDNA sequences. Using this marker it was possible
to place two loci corresponding to rDNA sequences on Capsella linkage groups B and
F. In Arabidopsis, two NORs have been mapped to chromosomes 2 and 4 (Heslop-
Harrison and Maluszynska 1994; Copenhaver and Pikaard 1996). Thus, the rDNA loci
mapped in 4. thaliana and C. rubella are found in non-collinear arrangement (Figure 7).
Since several monomorphic fragments were observed for marker 1G3 (Figure 4; Mbulu
2000), it cannot be ruled out that additional 18S-25S rDNA loci exist in Capsella.
Cytogenetic studies could show whether more than two NORs are found. Analysing
Arabidopsis ecotypes for the map positions of 5S rDNA sequences, Fransz ef al. (1998)
could also reveal loci in non-collinear locations.

The comparative mapping experiments between Arabidopsis and Capsella genomes
showed evidence for 14 collinear segments, with an average size of more than 40 cM. In
contrast, comparison of the Brassica nigra genome and that of A. thaliana revealed
regions of conserved marker order that span 8 ¢cM on average. Approximately 90
rearrangements have to be assumed to explain the differences in organisation between
the Arabidopsis and B. nigra genomes (Lagercrantz 1998). Likewise, 26 rearrangements
differentiate the genomes of 4. thaliana and B. oleracea (Kowalski et al. 1994). Thus,
collinearity in the Brassica and Arabidopsis genomes is not as pronounced as that seen
for the species pair Arabidopsis and Capsella. The divergence time of Capsella and
Arabidopsis has been estimated at 6,2-9,8 million years ago, whereas the lineages
leading to Brassica and Arabidopsis separated 12,2-19,2 million years ago (Acarkan et
al. 2000). However, the closer phylogenetic relationship of Arabidopsis/Capsella
compared to that of Arabidopsis/Brassica cannot fully account for the observed
differences in collinearity patterns. Thus, it is tempting to speculate that the polyploid
ancestry of the Brassica species might contribute to the high frequency of
rearrangements which need to be invoked to explain the differences in genome
organisation between Arabidopsis and Brassica (The Arabidopsis genome initiative

2000; Schmidt ez al. 2001).
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Comparative mapping studies in grasses have shown that extensive conserved linkage
segments can be detected in species which diverged as long as 60 million years ago.
Furthermore some of the species studied showed an up to 40-fold difference in genome
size (Gale and Devos 1998a, b). Moore et al. (1995) recognised that a limited number of
rice linkage segments is sufficient to describe the marker arrangement of 12 rice, 7
wheat and 10 maize chromosomes. This concept has been very fruitful and allowed to
align chromosome maps from many different grass species. A comparative map based
on less than 30 conserved linkage segments could be developed. It included the
genomes of foxtail millet, oats, pearl millet, maize, rice, sugarcane, sorghum and
Triticeae (Gale and Devos 1998Db).

Comparing the number of rearrangements distinguishing different grass genomes with
that found in the study of 4. thaliana and B. nigra, it is obvious that the frequency of
chromosomal rearrangements seen for the cruciferous species is higher than that

observed for the Poaceae family (Lagercrantz 1998).

4-2 MICROCOLLINEARITY

4-2-1 Conservation of gene repertoire in orthologous segments of the A. thaliana,

C. rubella and B. oleracea genomes

A 50 kbp region of the Arabidopsis thaliana genome has been analysed in respect to its
gene repertoire and order. The corresponding regions from the C. rubella and B.
oleracea genome could be identified and characterised. Overall the regions exhibit a
similar gene repertoire and order, although some deviations from microcollinearity have
been detected.

In the Arabidopsis region of interest, 16 coding sequences have been described (Figure
14). Experimental evidence is available for 10 of the genes, since cognate cDNA
sequences can be found, the remaining six coding sequences have been determined
using gene prediction programs. Three of the predicted genes share highly similar
ORFs, common exon/intron structure and putative function (At-84838, At-80777 and
At-73278). This can be taken as indication that these predicted gene structures are
reflecting protein coding sequences. The three copies of the cytochrome P450-like
sequences are present in a tandem arrangement in the Arabidopsis region. Another gene

prediction (At-77106) is also homologous to coding sequences located elsewhere in the
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Arabidopsis genome. This may also indicate that this prediction is indeed representing a
gene.

The corresponding region of the Capsella genome could be identified. Cr-71614 and
Cr-73278 are the outermost genes present in the sequenced C. rubella region. Thus, the
last three genes defined in the Arabidopsis region (At-73277, At-82122 and At-82121)
are not present on the contig. No attempt has been made to establish the presence of
homologous sequences in the C. rubella genome. For nine of the 13 Arabidopsis genes
or predicted genes, orthologous sequences could be detected in the C. rubella region.
Among the genes which are apparently absent from the C. rubella region, are two
copies of the cytochrome P450-like genes. Pairwise nucleotide sequence comparisons of
the three copies of the Arabidopsis cytochrome P450-like genes and the Capsella gene
were performed. The results indicate that the Arabidopsis copies are more closely
related to each other than either of these genes to the copy in C. rubella (Table H). This
suggests that duplications of the P450-like genes likely occurred in A. thaliana after the
Arabidopsis and Capsella lineages separated.

Tandem gene duplications are frequently found in the Arabidopsis genome. It has been
estimated that 17% of the Arabidopsis genes are present in such an arrangement (The
Arabidopsis genome initiative 2000). In another microcollinearity study, Acarkan et al.
(2000) could also highlight a recent gene duplication. In the C. rubella genome, two
genes are present in a tandem fashion, whereas a single copy was present in the
orthologous region of the 4. thaliana genome. Sequence comparisons could establish
that the genes have been duplicated in Capsella after the separation of the Arabidopsis
and Capsella lineages (Acarkan et al. 2000). All these data taken together indicate the
frequent occurrence of gene duplications in plant genome evolution.

Genes 71614, 100015, 83424, 86829, 77106 and AAT are present in a perfect collinear
arrangement in the 4. thaliana and C. rubella regions. Gene order, orientation and
spacing are conserved. These results are concordant with another microcollinearity
study recently performed for A. thaliana and C. rubella (Rossberg et al. 2001).
Interestingly, it could also be shown, that in the distantly related tomato genome, the
five studied genes are present in physical proximity. However, two inversions
distinguish the arrangement of genes in tomato genome from those in the two crucifer
species.

Microcollinearity analysis in 4. thaliana, C. rubella and B. oleracea revealed that in

Brassica two homeologous loci can be found for the region of interest. This is
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concordant with most comparative mapping experiments involving Arabidopsis and
Brassica. In the paleopolyploid Brassica genomes, the vast majority of regions appear
to be present in at least two copies (Kowalski et al. 1994; Lagercrantz et al. 1996;
Sadowski et al. 1996; Osborn et al. 1997; Cavell et al. 1998; Grant et al. 1998;
Sadowski et al. 1998; Lagercrantz 1998). The region around the self-incompatibility
locus in Brassica campestris, however, appears to be present as a single copy (Conner
et al. 1998).

The two homeologous segments in Brassica differ in respect to gene content (Figure
19). A copy of gene 94311 could be found on the chromosome 1 locus, whereas
presence of this sequence could not be validated for the chromosome 7 locus. In
contrast to the corresponding regions in 4. thaliana and C. rubella, a copy orthologous
to any of the cytochrome P450-like genes could neither be found in the analysed region
of chromosome 1, nor on the one of chromosome 7. Another remarkable exception of
microcollinearity is the case of predicted gene 86829. Whereas hybridisation studies
indicated its presence on both homeologous Brassica loci, sequence analysis revealed
that only a relic of this gene was present on chromosome 1, putatively a pseudogene
(chapters 3-2 and 4-2-2). This clearly shows the importance of detailed comparative
sequence analyses. Hybridisation studies reveal the sequence content, but the
divergence of sequences cannot be assessed. This problem has been noted in a
comparative study of the rice and maize genomes (Tarchini et al. 2000). In the context
of this study, hybridisation analysis could not clarify whether genes present in the rice
genome were absent from the maize genome or whether the divergence of the genes
prohibited their detection.

Homeologous segments in the Brassica genome often show differences in gene
repertoire (Lagercrantz et al. 1996; Sadowski et al. 1996; Cavell et al. 1998; Grant et al.
1998; Sadowski et al. 1998; Quiros et al. 2001). A particularly detailed study
highlighted apparent gene deletions, inversions and translocations in homeologous
segments of the B. oleracea genome. Any one of the homeologous segments differed in
respect to gene repertoire if it was compared to the corresponding region of the A.
thaliana genome. Only the gene repertoire of all homeologous Brassica loci taken
together made up the gene complement in A. thaliana. All homeologous Brassica
segments were collinear with the counterpart in Arabidopsis, with exception of those
genes which were missing in one or even two of the triplicated segments (O’Neill and

Bancroft 2000).
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One has to take in account, nevertheless, the case of high divergence of fast evolving
genes which would not be recognised anymore from its putative orthologue, gene loss
can be considered as the extreme case of divergence in eukaryotic organisms (Aravind
et al. 2000).

A patchwork pattern in gene content between duplicated chromosome segments is also
observed in the Arabidopsis genome. Analysis of the whole genome sequence unveiled
that large parts of the A. thaliana genome have been duplicated (Bevan et al. 1998;
Terryn et al. 1999; Mayer et al. 1999; Lin ef al. 1999). Blanc et al. (2000) estimated
that about 60% of the A. thaliana genome is present in duplicated segments.
Rearrangements are frequently observed and only between 20% and 47% of the genes
are in common in duplicated regions (The Arabidopsis genome initiative 2000). From
these observations, it has been concluded that duplicated segments suffer many
alterations which result in differences in gene content. Thus, polyploidy may foster
rapid chromosomal evolution (The Arabidopsis genome initiative 2000). Further
support of selective gene loss from duplicated segments of a genome is given by a study
comparing microcollinearity of the distantly related species Arabidopsis and tomato (Ku
et al. 2000). In this context, it is important to emphasise that in the comparison of the A.
thaliana and C. rubella genome, such extensive exceptions from microcollinearity are
not seen (chapter 3-2; Acarkan ef al. 2000; Rossberg et al. 2001).

The duplicated segments in the Arabidopsis genome are believed to be ancient, since
sequence conservation is restricted to exon sequences, whereas intron and intergenic
sequences are shown to be highly divergent (Terryn et al. 1999). A microcollinearity
study between the A. thaliana and B. oleracea genomes could provide evidence for the
presence of the duplicated segment in the common ancestor of the Arabidopsis and
Brassica lineages. This is concordant with the fact that the presence of at least one of
the duplicated segments could be proven for the A. thaliana and C. rubella genomes
(Rossberg et al. 2001). It is important to note that no evidence for consistent differences
in copy-number of markers in the 4. thaliana and C. rubella genomes could be found
(Table F). The high degree of collinearity seen at the gross chromosomal level (Figure
7) also confirms that the duplicated segments are predating the speciation of
Arabidopsis and Capsella. Ku et al. (2000) estimated that at least some of the
duplications in the Arabidopsis genome happened approximately ~112 million years

ago, consistent with the view of the ancient nature of the duplication.
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In the grasses a remarkable degree of genome collinearity at the gross chromosomal
level is found, even if species are compared which diverged as along as 60 million years
ago and which show several-fold differences in genome size (Gale and Devos 1998). At
the microscale, however, many small deviations from microcollinearity are observed. A
comparison between orthologous regions of the sorghum and maize genomes showed an
overall collinear organisation, which was interrupted either due to gene deletions or
translocations. Most importantly, intergenic regions in maize are often enlarged in
comparison to those of sorghum. These size increases are caused by the presence of
retrotransposons in intergenic regions of maize (Bennetzen et al. 1998; Feuillet and
Keller 1999; Tikhonov ef al. 1999). A comparison realised between orthologous regions
in rice and maize also highlighted rearrangements and evidence for a gene translocation
was presented (Tarchini et al. 2000).

An abundance of retrotransposons in intergenic regions such as seen in the maize
genome has so far not been revealed if intergenic regions in the cruciferous species are
analysed. Only few retrotransposons are observed in the euchromatic regions of the A.
thaliana (The Arabidopsis genome initiative 2000), C. rubella and B. oleracea genomes
(A. Acarkan, M. Rossberg and R. Schmidt, unpublished results). Consistent with these
observations, intergenic spacing was found to be very similar in the region under study
in the 4. thaliana, C. rubella and B. oleracea genomes (Figures 15 and 16). For
corresponding segments of the Arabidopsis and Brassica genomes, different
observations have been made. In some cases, regions are of similar size both species,
whereas in other instances an increase of size was noted for a Brassica region when
compared to the Arabidopsis counterpart (Conner et al. 1998; Grant et al. 1998; Jackson
et al. 2000; O’Neill and Bancroft 2000; Sadowski et al. 1996, Sadowski and Quiros,
1998; Schmidt et al. 1999; Quiros et al. 2001).

Regardless whether species of the Brassicaceae or Poaceae family are compared,
microcollinearity studies reveal evidence for small genome rearrangements, such as
gene deletions, inversions and translocations (Bennetzen 2000a; Schmidt ef al. 2001).
Especially if one takes into account that rather small regions of the genomes were
studied, it is directly apparent that these changes are very frequent. However, they do
not interfere with the overall genome collinearity seen in comparative genetic mapping

experiments.
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4-2-2 Conservation of gene structure

The strategy taken for the comparison of gene structures in this study integrated
information derived from alignments of cDNA and genomic DNA sequences and gene
predictions by the programs Genscan and GeneMark. The analysis was not restricted to
genomic DNA sequences in one species, rather the aim was to exploit the high sequence
identity found for exon sequences between different cruciferous species to improve
gene predictions (Cavell et al. 1998; Acarkan et al. 2000; Rossberg et al. 2001). A gene
prediction was considered to be likely if exon sequences, which are highly similar in
length and structure, could be determined for each genomic DNA sequence of the
different species analysed. Following this strategy, it was possible to determine all
putative gene structures shown in Figure 17. The predicted genes defined in this way
differ in several cases from the annotations given for the Arabidopsis genome sequence
and show the utility of this approach for the improvement of gene structure predictions.
It has been previously noted that comparative data can be used for this (The Arabidopsis
genome initiative 2000; Rossberg et al. 2001).

In two cases, however, it was not possible to discern concordant ORFs in the regions of
the A. thaliana, C. rubella and B. oleracea genomes which showed homology.
Interestingly, for one case, the cognate EST contig 98955 provided experimental
evidence that at least, the region of the 4. thaliana genome was transcribed,
nevertheless no ORF could be determined. The region exhibited significant homology
to a ribosomal protein gene (data not shown).

Concerning the gene structures defined in this study, 4. thaliana and C. rubella
exhibited very few differences. Generally exon length and intron positions are
conserved. One notable exception was an enlarged exon 7 in Cr-77106 compared to the
copy of the Arabidopsis gene. These results are in excellent agreement with previous
findings which compared structures of nine different sets of orthologous genes for A.
thaliana and C. rubella (Acarkan et al. 2000; Rossberg et al. 2001). All but one of the
nine genes studied exhibited conservation of exon lengths and intron positions. The
exception was a gene putatively coding for a transcription factor. For this gene
considerable differences in exon lengths were observed. Furthermore, the coding
regions were not as highly conserved as those of other protein coding genes (Rossberg
et al. 2001).

In general, conservation of gene structures was also seen if B. oleracea genes were

included in the analysis. However, the AAT gene copy on chromosome 1 has 10
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introns, whereas the homeologous copy on chromosome 7 has 11, like the A. thaliana
and C. rubella genes. Differences in intron number are occasionally observed if
orthologous genes are compared (Chen et al., 1998; Rossberg et al. 2001; M. Rossberg
and R. Schmidt, unpublished results).

The most striking difference in gene structure concerned the two homologues of gene
At-86829 in the Brassica oleracea genome. The copy on chromosome 7 appears to have
the same exon/intron structure as the 4. thaliana and C. rubella genes, albeit the 5’-end
of the gene is not covered by the sequenced region (Figures 16 and 17d). In contrast, on
chromosome 1, only a remnant of the gene representing the 3’-end of 86829 could be
found. Furthermore, this gene relic could be differentiated from the copy located on
chromosome 7 by a number of one bp indels. Thus, not only apparent deletions of
complete gene sequences could be found in this microcollinearity study, since the
analysis of gene 86829 exemplifies the occurrence of putative pseudogenes in B.
oleracea. This finding could be corroborated by analyses of several other gene
sequences in Brassica (M. Rossberg and R. Schmidt, unpublished results).

The degree of sequence conservation for exon sequences of A. thaliana and C. rubella
is always higher than that estimated for A. thaliana and Brassica (Table M). A similar
rate of conservation is depicted regardless if A. thaliana or C. rubella genes are
compared to Brassica or whether the homeologous Brassica genes are aligned
(highlighted as shaded boxes in Table M). Thus, if one can postulate that genes evolve
at the same rate in the three species, the two homeologous Brassica regions appear as
diverged as the Brassica regions compared to their counterparts in A. thaliana and C.
rubella. These data are coherent with the more recent divergence of Arabidopsis and
Capsella. The Brassica lineage separated from the Arabidopsis/Capsella lineage 12-19
million years ago (Acarkan et al. 2000).

| Average identity of exon sequences Average amino-acid identity
Ath/Cr 90,6% 90,5%
Ath/Bo 86,2% 85,3%
Cr/Bo 86% 88,5%
Bol/Bo7 86,1% 86,6%

Table M: Average of exon and amino acid sequence identity between 4. thaliana, B. oleracea, and C.
rubella genes compared pair by pair. Shaded boxes show the similar rate of sequence conservation
between A. thaliana / B. oleracea, C. rubella /| B. oleracea and both B. oleracea loci.
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4-3 RETROELEMENT

A 484 bp sequence of Capsella genomic DNA (Mbo-D22, chapter 3-3) exhibited
homology to repeated DNA sequences in the A. thaliana genome. Some of these
Arabidopsis sequences were annotated as Del-like retrotransposons. The Del
transposable element has been originally characterised in lily (Lilium Henryi, GenBank
acc. no. X13886; Smyth ez al. 1989; Sentry and Smyth 1989).

Cosmid libraries have been screened to identify copies of these elements from Capsella
rubella. Of 120 hybridising clones, two were characterised in detail and the elements
residing in these cosmids were sequenced. The S20 and T32 elements span 7768 bp

(Mbulu 2000) and 6298 bp, respectively. T32 represents a partial copy.

4-3-1 Sequence conservation

The Capsella elements, as well as the Arabidopsis elements (chapter 3-3) exhibit LTR
sizes of 644-1376 bp. The borders of the LTRs are corresponding to the TG...CA di-
nucleotide inverted repeats (Table J) typically found in retrotransposons of eukaryotic
organisms, plants and animals (Grandbastien 1992).

The degree of sequence identity of pairs of LTRs from different 4. thaliana elements
varies from 91,8% to 99,3%, the average being 96% (Table J). Both LTRs of a unique
element are generated from a single template during the process of reverse transcription.
The sequence identity of the LTRs of a particular element can thus be taken as a
measure for the time-point at which transposition occurred. Identical LTR sequences are
hallmarks of recent transposition and divergent LTRs indicate ancient events. Jordan
and McDonald (1999) examined the entire genome sequence of Saccharomyces
cerevisiae for the distribution and the conservation at nucleotide and amino acid level of
the five LTR-retrotransposon classes 7y/-5. They could show homogeneity in sequence
and variation in size among elements. Among 48 Ty retroelements analysed, 22 Ty
elements had 100% identity between their LTRs, 17 had identities >99% and eight had
identities of 97,3-98,8%. These results led the authors to conclude that these are recent
insertions. Twelve families of retrotransposons have been studied in Caenorhabditis
elegans, and benefiting from the complete nuclear genome sequence, it was found that
all LTR-retroelements displayed LTR sequence identity above 99% (Bowen and
McDonald 1999). The average sequence identity values obtained for LTRs of the
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Arabidopsis elements argue for insertion events at different time-points. 4. thaliana
elements AP002043 (Table J, element no. 21) and AF262041 (Table J, element no. 15)
exhibit LTR sequence identities of 99,3% and 99%, respectively. For eight elements
sequence identities of 97-97,9% were found and in 12 elements sequence identities of
the LTR sequences ranged from 96,7 to 91,8% (Table J).

The PBSs and PPTs of the A. thaliana elements and the one from the Capsella S20-
element have been compared to each other. The PBS sequences are complementary to
the 3” end of the host tRNA;"*". Priming of DNA synthesis by tRNA;M is a feature
which is observed for many Copia- and Gypsy-like retrotransposons in different species
(Grandbastien 1992 ).

Based on the relative position of the ORF of the integrase in respect to the ORF for a
putative reverse transcriptase the Capsella elements have been classified into the
Ty3/gypsy family of elements. Since no evidence for a putative envelope ORF could be
found they are thought to belong to the Metaviridae family. This classification is further
supported by the fact that all elements of the Metaviridae-type studied so far have a PBS

recognised by tRNA;M

. In contrast, athila and Tat retroelements, which belong to the
Errantivirus family of elements do not match the tRNA;M* but show putative homology
to at least three different tRNA genes (Wright and Voytas 1998)).

The overall sequence identity found between Capsella and A. thaliana elements is
~74%, but fractions of the elements exhibit a higher degree of sequence conservation.
The inner segment of the Arabidopsis and Capsella elements is 76% homologous
(Figure 30). Sequence identity between Capsella and A. thaliana elements is thus lower
than sequence identities determined for exon sequences of protein-coding genes
(Acarkan et al. 2000; Rossberg et al. 2001). Nevertheless, these Del-like elements of
Arabidopsis and Capsella have sufficient homology to be detected in cross-
hybridisation experiments, whereas it has been shown for many maize repetitive
elements that they do not cross-hybridise to sorghum DNA (Avramova et al. 1996).
Interestingly, the Del-like Capsella element only poorly cross-hybridised to Brassica
oleracea DNA (Figure 31). If one considers that protein-coding exon sequences are less
conserved between Capsella and Brassica than between Capsella and Arabidopsis
(chapter 3-2), this result might reflect the divergence rather than the absence of this
element family in the Brassica genome.

Nevertheless, these elements of the Brassicaceae family do not seem to exhibit the same

degree of conservation as it has been established for some domains of transposable
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elements which are cross-hybridising to DNA of different grasses (Jiang et al. 1996;
Miller et al. 1998). In contrast, a SINE element first characterised in B. napus, appears
to be well conserved among several cruciferous species, especially the Brassica genus,
but does not exist in Arabidopsis (Lenoir et al. 1997).

Interestingly, Langdon et al. (2000) could identify members of a Gypsy-retrotransposon
family called Crwydryn in grasses and A. thaliana. An important observation has been
the high degree of LTR conservation existing in cereals compared to the high variability

of the LTR sequences in Arabidopsis.

4-3-2 Conservation of element size

The A. thaliana elements listed in Table 3-J vary in size. Many deletions/insertions can
be observed along the inner segments of those elements. In contrast, few indels were
observed in 7y elements from yeast, the occurrence of frame-shifts was considered as
rare in 7y families (Jordan and McDonald 1999). The yeast genome is known to contain
many active 7y elements in contrast to observations made in plants (Grandbastien
1992). Few plant retrotransposons have been recognised to be active, as for example the
retrotransposon Bs/ in the maize genome, the 7Tnt/ element in tobacco and BARE in
barley (Grandbastien et al. 1989; Vicient et al. 1999a and b). The frequency of indels
together with the disparate identities of the LTRs support the hypothesis that the
retroelements in Arabidopsis and Capsella are not active.

Recombination between LTRs can provoke the loss of a retrotransposon with a solo-
LTR staying behind. Solo-LTRs are abundant in the yeast genome, their sequences are
highly divergent compared to that of LTRs from complete elements. A mechanism
identified in yeast suggests that the host induces intra-element LTR recombination
(Jordan and McDonald 1999). Very few solo-LTRs of the Del-like retrotransposons
have been identified in the A. thaliana genome (data not shown).

A comparison of the S20- and T32-Capsella elements revealed large
insertions/deletions in the LTR sequences. Interestingly, the Copia-like retroelement
BARE shows extraordinarily long LTRs (1,8-1,9 kbp), it is thought that this is a result of
many imprecise excisions of the elements. This observation suggests that a large part of
the LTR is not important as long as sequences required for promoter activity are

conserved (Vicient et al. 1999a).
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4-3-3 Copy number of the elements

The capacity of retroelements to transpose via a copy of themselves implies that they
can be readily amplified within a genome. Thus, they represent an important factor in
genome evolution. Few complex genomes have been sequenced in their entirety but the
Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae and more
recently the Arabidopsis thaliana genome offer the possibility to examine the
distribution of retroelements families (Britten 1997; Bowen and McDonald 1999;
Jordan and McDonald 1999; Kumar and Bennetzen 1999; Langdon et al. 2000; Wendel
and Wessler 2000).

The A. thaliana genome spans 125 Mbp and has a transposable element population
representing ~10% of the genome (The Arabidopsis genome initiative 2000). The
majority of the retrotransposons are clustered in the heterochromatin regions of the
genome, e.g. the centromeric areas. Few genes are located in these areas, and their
expression, although existing seems much reduced (Mayer et al. 1999; Lin ef al. 1999).
A study of the transposable elements on chromosome 2 of Arabidopsis showed that
~4,3% of this chromosome is corresponding to Gypsy-like elements. Copia-like
elements account for 1% of the chromosome 2 sequence (Kapitonov and Jurka 1999).

In the lily genome 13,000 copies of the Del retrotransposons are found (Smyth et al.
1989). Much lower copy numbers are observed for Arabidopsis elements. Ta
retrotransposons represent 0,1% of the cruciferous genome (Konieczny et al. 1991).
Athila elements have been estimated at ~150 copies per genome (Pélissier ef al. 1996),
with peri-centromeric localisation. The clustering of athila sequences in centromere
vicinity is also reflected by the fact that these elements are frequently associated with
the highly repetitive centromeric tandem repeat sequence of 180 bp (Pélissier et al.
1995).

Twenty-two Del-like elements have been identified via sequence homology in the A.
thaliana genome. In addition elements larger and shorter than the average size observed
for most copies have been found. Most of the elements cluster in the centromeric
regions (Figure 28). Since the organisation and sequence of the centromeric regions of
the 4. thaliana genome remains to be elucidated, it is likely that more than 30 Del-like
elements are present in the Arabidopsis genome.

The hybridisation pattern of the element in different Arabidopsis ecotypes does not
show great variation in copy number and some ecotypes display very similar patterns

(WT/T22B4/Li5; Figure 31). Thus, it can be hypothesised that these retroelements are
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common to a number of ecotypes and that their activity ceased before the divergence of
the ecotypes. The same observation is obtained with the retrotransposon family 7a
which may predate Arabidopsis speciation. Among the Ta retrotransposons, Tal-Ta7
have been characterised as closely related to the tobacco 7Tnt/ element while 7a8-Tal(
are more closely related to Drosophila Copia-like retrotransposons (Konieczny et al.
1991).

A colony library screen revealed that approximately 120 Capsella cosmid clones
correspond to Del-like elements. The libraries used represent a roughly fourfold
coverage of the Capsella rubella genome (Schmidt et al. 1999), this would be consistent
with 30 copies of the Del-like elements in the Capsella genome. Hybridisation and PCR
amplification experiments could also confirm the presence of the Del-like elements in

C. grandiflora (Figures 27 and 31).

4-3-4 Distribution of the elements in the genome

It was shown in this study that 4. thaliana Del-like elements were found preferentially
in peri-centromeric regions (Figure 28). Other elements, such as athila are also found
clustered in these regions (Pélissier et al. 1995; Schmidt et al. 1995; Thompson et al.,
1996a and b). A sequenced region flanking the Capsella element T32 showed sequence
homology of over 60% on 2000 bp with an athila-like element. Many 4. thaliana
BACs, which carry Del-like retrotransposons are as well annotated for the presence of
athila-like elements. Thus, Del-like elements and athila-like elements are found in close
proximity in the Arabidopsis genome.

It has not been possible to map the two Capsella Del-like retrotransposons. The regions
flanking the S20/T32-elements of the cosmid do not carry low copy sequences with
homology to the Arabidopsis genomic DNA sequence. Therefore, it has not been
possible to map these elements in silico. It has been attempted to establish the map
positions of the Capsella cosmid clones by SSCP analysis, but due to the repetitive
nature of many of the amplified fragments it has not been possible to establish a map
position.

Nonetheless, the presence of athila-like sequences in the immediate vicinity of the
Capsella Del-like element T32 (Figure 21) supports the hypothesis that these elements
might be present in peri-centromeric regions in Capsella, as observed in Arabidopsis.
This could be investigated further if the elements would be hybridised to chromosome

spreads of this species.
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Repetitive sequences are interspersed in some monocotyledonous plants genomes with
gene sequences (Bennetzen 1996; SanMiguel ef al. 1998). These elements seem to have
been amplified in successive waves, thus different layers of elements can be detected
(SanMiguel et al. 1996). The authors analysed nucleotide substitution rates and dated
the insertion waves at about six million years and within the last three million years.
Such a complex integration pattern has also been observed in the Arabidopsis genome.
Tnatl and Tnat2, novel transposable elements from A. thaliana are inserted within each
other (Noma and Ohtsubo 1999).

Two Del-like elements have been identified in A. thaliana which are much larger than
the average size observed among the 22 elements listed in Table J. In the case of the
Del-like retrotransposon located on the sequence contig with GenBank acc. no.
ACO002534, it appears that the increased size is due to the insertion of a different
element into the Del-like retrotransposon. This element shows homology to athila
sequences and is flanked by a 4 bp TSD. The analysis of the other particularly large
element (Genbank acc. no. AC073433-chr. 1) revealed that this element could be
aligned with the reference element T32N15 (GenBank acc. no. AC002534), only minor
deletions were noted. The large size of the element located on chromosome 1 could be
accounted for by to the presence of a second 3’ LTR sequence. The two 3’ LTR
sequences are present in a direct tandem arrangement. Upstream of both 3 LTR
sequences a PPT sequence is found and downstream the TSD (AGTTG). The presence
of the same target site duplication, one upstream of the 5’LTR, and one downstream of
each of the two 3’LTRs is not consistent with assuming an insertion of a Del-like
retrotransposon into another one. Rather this arrangement could be the result of
duplication. Tandem duplications are frequently found in the 4. thaliana genome.
About 17% of the predicted genes annotated on the A. thaliana sequence are found in

such an arrangement (The Arabidopsis genome initiative 2000).
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S SUMMARY

Three species belonging to the Brassicaceae family, A. thaliana, C. rubella and B.
oleracea have been chosen for comparative genome analyses. The diploid species 4.
thaliana and C. rubella are more closely related than either of these species is to the
paleopolyploid B. oleracea.

Genome-wide comparative mapping experiments between Arabidopsis and Capsella
revealed a conserved gene repertoire. The sequence maps of the five 4. thaliana
chromosomes have been aligned with linkage groups established for the eight Capsella
chromosomes. Fourteen conserved linkage segments cover the majority of the
chromosome maps of both species. The number of rearrangements distinguishing the
genomes of Arabidopsis and Capsella is much lower than values observed between the
paleopolyploid Brassica species and A. thaliana.

Comparative physical mapping and sequence analysis between orthologous regions of
the A. thaliana, C. rubella and B. oleracea genomes have demonstrated an overall
microcollinearity. Consistent with the polyploid ancestry of the B. oleracea genome,
two homeologous regions could be analysed and compared to the chromosome
segments studied in A. thaliana and C. rubella. The gene repertoires in the
homeologous B. oleracea regions differ, evidence for an apparent gene deletion was
found. Comparison of the Arabidopsis and Capsella segments indicated a recent tandem
gene duplication of a cytochrome P450-like gene. In the homeologous B. oleracea
regions, such a gene has not been found. Despite these differences observed in gene
repertoire between the orthologous regions, order of genes and their orientation relative
to each other was maintained. Moreover, exons of orthologous genes were conserved in
length and sequence, with the exception of one putative pseudogene in B. oleracea.
Arabidopsis and Capsella coding sequences are on average 90% identical at the
nucleotide level. In contrast, characterisation of a retroelement-like family in A.
thaliana and C. rubella indicated that these components of the genome are more
diverged. Homeologous Brassica genes were found to be 85% identical at the
nucleotide level. Similar values were obtained if Arabidopsis or Capsella exons were
aligned with Brassica sequences. These values reflect the phylogenetic relationship

established for these species.
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These results taken together, an overall similarity of genome organisation in A. thaliana,
C. rubella and B. oleracea is unveiled, despite the fact that duplicated segments
complicate collinearity relationships. Consequently, the sequence of the Arabidopsis
genome can be used as an efficient tool to unravel the genome organisation of related

cruciferous plants.
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6 ZUSAMMENFASSUNG

Drei Arten der Familie der Brassicaceae, A. thaliana, C. rubella und B. oleracea
wurden fiir vergleichende Genomanalysen herangezogen. Die diploiden Spezies 4.
thaliana und C. rubella sind untereinander enger verwandt als mit der paleopolyploiden
Art B. oleracea.

Genom-weite vergleichende Kartierungsexperimente in Arabidopsis und Capsella
zeigten eine Konservierung des Genrepertoires. Die Sequenzkarten der fiinf
Arabidopsis-Chromosomen wurden mit den Kopplungsgruppen verglichen, die fiir die
acht Capsella-Chromosomen erstellt werden konnten. Vierzehn konservierte
Kopplungssegmente decken fast die gesamten Chromosomenkarten beider Arten ab.
Die Zahl der Umordnungen, in der sich die Genome von Arabidopsis und Capsella
unterscheiden, ist damit betrdchtlich niedriger als die Werte, die fiir paleopolyploide
Brassica-Arten und A. thaliana beobachtet wurden.

Vergleichende physikalische Kartierungen und Sequenzanalysen orthologer Regionen
der A. thaliana-, C. rubella- und B. oleracea-Genome konnten Mikrokolinearitét
nachweisen. In Ubereinstimmung mit der polyploiden Herkunft des B. oleracea-
Genoms konnten zwei homeologe Regionen analysiert und mit den in A. thaliana und
C. rubella untersuchten Segmenten verglichen werden. Die homeologen B. oleracea-
Regionen unterscheiden sich in Bezug auf ihr Genrepertoire, ein Hinweis auf eine
Gendeletion wurde gefunden. Ein Vergleich der Arabidopsis- und Capsella-Segmente
zeigte eine rezente Genduplikation eines Cytochrom P450-dhnlichen Gens. In den
homeologen B. oleracea-Regionen wurde ein solches Gen nicht gefunden. Trotz der
beobachteten Unterschiede im Genrepertoire der orthologen Regionen, war die
Anordnung und die relative Orientierung der Gene zueinander erhalten. Auferdem
waren die Exons der Gene in Lédnge und Sequenz konserviert, mit der Ausnahme eines
mutmaBlichen B. oleracea-Pseudogens. Kodierende Sequenzen aus Arabidopsis und
Capsella sind auf der Nukleinsdureebene im Schnitt 90% identisch. Im Gegensatz dazu
wies die Charakterisierung einer Retroelement-&dhnlichen Familie aus 4. thaliana und C.
rubella die hohere Divergenz dieser Komponenten des Genoms nach. Die Identitét
homeologer Brassica-Gene betrug 85% auf der Nukleinsiureebene. Ahnliche Werte

wurden erhalten, wenn Arabidopsis- und Capsella-Exons mit Brassica-Sequenzen
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verglichen wurden. Diese Werte spiegeln die phylogenetischen
Verwandtschaftsverhiltnisse dieser Arten wider.

Alle diese Ergebnisse zusammengenommen, ergibt sich eine auffallende Ahnlichkeit
der Organisation der A. thaliana-, C. rubella- und B. oleracea-Genome, wenn man
davon absieht, daf duplizierte Segmente Kollinearititsbeziehungen erschweren konnen.
Folglich kann die Sequenz des Arabidopsis-Genoms als effizientes Werkzeug eingesetzt

werden, um die Genomorganisation verwandter Cruciferen aufzuschliisseln.
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Appendix

1- Segregation of markers used for the establishment of the Capsella

genetic map

List of the different 136 markers used for the establishment of the Capsella genetic map

and their segregation.

Mapping population: fifty F2-plants derived from a cross of C. grandiflora with C.

rubella.

1 = CGenotype of the F2 plants, honmbzygous C. grandiflora
2 = Genotype of the F2 plants, heterozygous

3 = CGenotype of the F2 plants, honbzygous C. rubella

- = m ssing data point

Locus F2- progeny plants 1-50
*I' 1 F4_B 1-2232131131122222-22112233323311221113121- 212322-
*m 443 12-232131131-2222222211222322332122111312122122222
*MooL9 1222321311311222222221122-322322123111312132122222
*m 348 12223212213112222232-11222323322223-12321132122222
*m 203 12223212223212222232211222323322223112321132122122
*m235A -122321222321222223221122- 2223222- 3112321232132122
*MoolL16 11222212222213222232311221222322223212321232123122
*m254A 11222-1222231322223- 311-11222322223212321232122121
*m 342_MA7 111312112223132222313211122-2212213222231233- 22122
*MooCr 8 11131211222313222231321112222212213222231233222122
*m 133_M45 -1131-112223132222313-11122-2212213222231232- 22122
*m 291_M46 111311112223132222313311112222122132- 2231222- 22122
*m 208 1113111122221322223133111112221221322-231312222122
*m 19 11131111222213222231331111122212213222231312222122

*| A7_T21478_B

21131111222213223231331111122212213222231312222122

*N96681 21131112222213223332232111112111213222232212222122
*m 303 21131112222213223332232111112111213222232212222122
*m 353 222221231233222222322322233313221222222222223- 2212

*735365_MB5_B

-2222-221233222232222322233-1322122- 22221222- 22212

*111C8 221231221233122232222311123313211233222312- 2323212
*m 335_B 3212312212331322322-231112211331122322231222223311
*T46241_ML3 3-123122123313223222231112211331122322231222223311
*1G3_A 31123122123313213222121112221331123322231222222311
*1 A10 32123-2212331321322-121112221331123322221222222321

* AAD67525_M27_B
*| A7_T21478_A

321-3122123313213222121112221331122322221222222321
3212312212331321322212- - -22213311-2322221222222321

*nB15A A 32123122123313213222121112221331122322221222222321
*m 320_B -2223122123313213222121112221331122322- 21222222321
*11C12 3-323222123223213222121312221322122313221322322232
*m 425 3231323213323321222211- 322222322122313222322232233
*m 157 23323233132233212222211322222322212213122231232233
*m74_A 31322232323323212312313322322122322322122312112323
*m 199 31322232323323212312313322322122322322122312112323

*m 207

3132223132-3232123-2323332322122322222112312112323
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*m 339 3132222132332-2133123233323221223-222-212312112322
*m 142 3232212132332222331232-332322122332221212322112322
*m 358_A 32322121323322223312323332322122332221212323112322
*FKBP61l 3T -23221213233212232123233223- - 31233-331212333- 22321
* FKBP15- 11 22322121323321223212323322322312332331212333- 22321
*T20&20 22322121213221233213323322322312332331212233322321
*734612_Nb 22-2212121322123321332332231-312332232212133322321
*m 398 22322122213221233212323322312312332232212133322321
*m 390 223121232122-1233212323322312312322222212133322321
*m 116 22312123212221233212323322312312322222212133322321
*1 1 H8_Z34614_B  223121232222-1233212323322312312322222212133322321
*m 139 223111132222312322123133323122123222222121333223- 1
*1 C7 133213211112322211112223212212213213222232- 1221322
*MooH16 23321321111232221111222321221221223322223111221322
*m 320_A -33213211112322211122-2321221221222322223121- - 1332
*AC002391 22321221111232221112222321221221222312223121- 21232
*m 238 22321221111232221112222321221221222313223121221232
*11GB_Z29768_B  213-11321112--221112223121222221232313222222322232
*m 54 213211322111-2211112233122122222232322222232322232
*m 277 21222232212222312111233123113222232322232232322233
*11D4_A 21222332312222312211233123113332233323132332322223
*1 F5_A 21222332312222312311233123113332233323132332322223
*111C7 2122-33231222231231-1331231133322333231323- 2322223
*CT9-7 21222332312212312311133123113222232323- 3--323---23
*1'11A10 31332222312332111122221323222222321232331323132231
*m 287 31332221322222111111221323322222322231331323132231
*T41531_M24 31332221322222121111231323233222322231331323232231
*H76592_M5 31332221322222121111231323233222322231331323- 32231
*ve021_M7 -13222213322121211111313232- 3222322- 31321323- 32231
*Cos57 31322121222212121221121323232222222231321322232231
*NMR249A -1322-2113121-121221121323232222222231321322232231
*11D9_C 31322121131212121221121323232222122- 31321322232231
*MoolL19 31322121131112121221121323232222122231321322232231
*mi57A 31222111131112121221121323222222122231222322232121
*m 456 312221121311121212211213232223221222312223- - 232221
*T21989_ M6 -1222-1213111-1212211213232- 2322122- 31222322- 32221
*MooE6 21222112131112121221121323222332132231222322232221
*11D4_B 21221112121112131221121323222332132231222322232221
*CF7_1 2212221212-22132211322131222331- 122232222322222222
*m 121 -112--1212122132211321131222331212-222222322222223
*m 97 21122212111221322113211312222212122222222322222223
*m 174 21132211111221222113111212332112121222222312222123
*m 74_B 21132311111221222113111-12332112122221222212222123
*m 438 21132311111221222113111212332112112221222212222123
*m 138 -113--11111221222113111212332111112221222213- 22123
*m 433 21133211111221222113111212332111122221222213221123
*m 90 21133211111221222113111212332111122221222213221123
*m 219 21222211111221222112112222332111122221222213221123
*m 125 21322222--122-122112-12122332121222221221113321223
*N97271_MB1 21322222211221122112112121322122222221221113311223
*nb18A 213221222122-11121122121----2232232221212113222333
*7Z35365_MB5_A -1322-2221222221223-2222221-2232232-21212123- 22333
*H36452_ML7 213222222122-2212232222222122232232221212123222333
*m 306 21322222212222212232222222122232232221212123222333
*mi48A 213222222122222122322322221-2332222221112123222332
*nB15A B 21322222212222212233232222-22332222221112123223332
*m 122 21322223222222212233232222122332222221112123223322
*m 51 2132222322222221223323222212233322222111212322- - 22
*I G3_B R IR R R 3--333-33-------- 33-----mee- 33-33--
*MooL5 21322222222122222333233222322123322221212- 23323322
*m 323 21322222222122222322233223312222323221212223323322
* Mool 18 21322222222122222322233223312222322221212223323222

*m 137 -1322-222221222223222332233-2222322-21212223- 23222
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* AA728584_M32 21-22222222122222322233223312222322221212223323222
*AA067525_MR7_A 21322222222122222322233223312222322221212223323222

* Mooy 21322222222122222322233223312222322221212223323222
*m 30 21-222222221222223222332-3312222322221212223323222
*1 &_718140 21322222222122222322233223312222322221212223323222
*NB26A 213222222221- - 2223222322-3312222322222212223323222
*m 358_B 213222222221-222231223---3312221212222212223323222
*11 &@_Z29799 21322222222122122312232223312231212222212223323221
*EST2 2-3-222222-1-21223-2232223312231212222212222323221
* C54X6 2132222222212212231-232223312231212222212222323221
*cDNAJ 21322222222122122312232223312231212222212222323221
*m 330_A 21322222222122122312232223313231212222211222323221
*nbS57A 2232--222221-2122312332223323231212222111222323221
*11D9_B --32222222212212131- 332223323231213222111222323221
*11B4_T41886 2---22122221-212131223-2-2323321222323121232233211
*m 123 32222211222132221312232222223321122323221232- 32211
*m 232 32222211222132221312232222223321122323221232- 32111
* AAT 32222112222132232312231232223321122323221322232111
*m 431 32222112222132232212231232223321122323221322232111
*11 GB_Z29768_A  32212112222132222212231232223321122323221322232111
*I F5_B 3--12112-22132222-12--1232223321122323221322232111
*11H8_Z34614_A  32212112222132222212231232223221122323221322232111
*MooOl11 32212112222132222212231232223221122323222322232111
*Cos36RB 322121122221322222122312322- 3221122323222322232111
*m 369 32212112222132222212231232223221122323222322232111
*m 335_A 3133111122322331222-111333213312222321223211322212
*MboA6 31331111223223312222111333213312222321223211322212
* CSau20F 312311112232-331222-11133321331222-32122321132221-
*CosT9 31231111223223312222111333213312222321223211322212
*NMR211A 3123121122322331222211123-223212223321223121222212
*m 69 31232211223122212222311233223221313221223122322212
*AA067573_M36 31233-1122312221222- 3122332- 2221313- 21323122- 22222
*MooN18 11233211222132223322322233121221313121323122212211
* FKBP15- 21 11233-112221322233223222333-1221313-21323122- 12221
*m 194 11233311122132223322322233321321213121323122212221
*I1F4_A 122333111221322232-23222333-13212131113231- 2212311
*I1D9_A 12233312122132223222322233231321213111323122212311
*m 61 1-23331222213222322232223323132121-112322112212311
*m 330_B 12233312222132223222322233-31322211112312112212211

2- Values of the ” test for each of the co-dominant markers used to

establish the Capsella genetic linkage map

Presented in the table are the c®-Test data for each marker mapped on the Capsella
genetic map. In the first column is indicated the amount of plants scored for a marker,
then is listed the number of plants having the C. grandiflora or C. rubella genotype for
each marker, as well as the number of heterozygous. It has been tested whether the
values were significantly different from the expected ratio 1:2:1 segregation. Number of
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alleles for each genotype has been also calculated and compared to the expected ratio of
1:1 segregation. In both cases, distorted segregations have been fixed to 0,05.

Markers plants | Capsella | Capsella | Capsella | c?- | Capsella | Capsella| c*-
analysed |grandiflora| hetero- rubella | Test |grandiflora| rubella | Test
foreach | homo- zygote homo- alleles alleles

marker zygote | individuals| zygote
individuals individuals
IIF4_B 46 16 20 10 0.21 52 40 0.21
mid43 48 14 27 7 0.15 55 41 0.15
MboL9 49 15 26 8 0.16 56 42 0.16
mi348 48 11 28 9 0.68 50 46 0.68
mi203 50 11 30 9 0.69 52 48 0.69
m235A 47 10 29 8 0.68 49 45 0.68
MboL 16 50 11 31 8 0.55 53 47 0.55
m254A 47 13 26 8 0.30 52 42 0.30
mi342_M47 48 15 24 9 0.22 54 42 0.22
MboCr8 50 15 26 9 0.23 56 44 0.23
mil33_M45 45 14 23 8 0.21 51 39 0.21
mi291_M46 48 17 23 8 0.07 57 39 0.07
mi208 49 19 22 8 0.03 60 38 0.03
mil9 50 19 23 8 0.03 61 39 0.03
IA7/T21478 B 50 18 23 9 0.07 59 41 0.07
N96681 50 17 25 8 0.07 59 41 0.07
mi303 50 17 25 8 0.07 59 41 0.07
mi353 49 5 34 10 0.31 44 54 0.31
Z35365_M35B 45 5 33 7 0.67 43 47 0.67
1Cc8 49 12 24 13 0.84 48 50 0.84
mi335_B 49 14 22 13 0.84 50 48 0.84
T46241_M13 49 14 22 13 0.84 50 48 0.84
IG3_A 50 16 22 12 0.42 54 46 0.42
IA10 48 13 24 11 0.68 50 46 0.68
AA067525/M27 49 14 25 10 0.42 53 45 0.42
IA7/T21478 A 46 11 25 10 0.83 47 45 0.83
m315A_A 50 14 26 10 0.42 54 46 0.42
mi320_B 48 13 26 9 0.41 52 44 0.41
11C12 49 9 27 13 0.42 45 53 0.42
mi425 49 7 26 16 0.07 40 58 0.07
mil57 50 8 27 15 0.16 43 57 0.16
mi74_A 50 9 24 17 0.11 42 58 0.11
mil99 50 9 24 17 0.11 42 58 0.11
mi207 48 9 23 16 0.15 41 55 0.15
mi339 47 9 23 15 0.22 41 53 0.22
mil42 49 8 26 15 0.16 42 56 0.16
mi358_A 50 8 25 17 0.07 41 59 0.07
FKBP61I3T 45 8 19 18 0.04 35 55 0.04
FKBP15-1I 49 8 23 18 0.04 39 59 0.04
T20G20 50 9 23 18 0.07 41 59 0.07
Z34612_M5 48 10 22 16 0.22 42 54 0.22
mi398 50 9 25 16 0.16 43 57 0.16
mi390 49 10 25 14 0.42 45 53 0.42
mill6 50 10 26 14 0.42 46 54 0.42
11H8/Z34614 B 49 9 26 14 0.31 44 54 0.31
mi139 49 12 23 14 0.69 47 51 0.69
IC7 49 16 24 9 0.16 56 42 0.16
MboH16 50 16 25 9 0.16 57 43 0.16
mi320_A 46 14 23 9 0.30 51 41 0.30
T2-cosmid 49 15 28 6 0.07 58 40 0.07
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mi238
11G8/229768_B
mi54

mi277
1ID4_A
IF5_A

HIC7

CT9-7

111A10

mi287
T41531 _M24
H76592_M25
ve021_M7
Cos57
m249A
1ID9_C
MbolL19
m457A
mi456
T21989 M26
MboE6
1ID4_B
CF7-1

mil2l

mi97

mil74
mi74_B
mi438

mil38

mi433

mi90

mi219

mil25
N97271_M31
m518A
Z35365 M35 A
H36452_M17
mi306
m448A
m315A B
mil22

mi51

MboL5
mi323
Mbol18
mil37
AAT728584 M32
AA067525/M7a
MboM7

mi30
IG2_718140
m326A
mi358 B
11G9_718140
EST113
C54X6
c13.049
mi330_A
m557A
1ID9 B

50
47
49
50
50
50
47
44
50
50
50
49
46
50
47
49
50
50
48
44
50
50
48
46
50

49
50
46
50
50
50
46
50
45
44
49
50
49
49
50
48
49
50
50
45
49
50
50
48
50
47
46
50
45
49
50
50
47
47

SBoBowo~vw~o~Nwprooooobrooo~N~N~No~N~N~NR

28
26
28
28
22
21
19
18
23
22
22
21
19
28
24
23
23
26
25
23
26
25
31
26
31
24
23
23
18
21
21
27
26
27
24
29
34
35
33
32
33
32
31
33
35
32
35
35
35
34
35
34
31
32
30
32
33
31
28
26
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0.11
0.30
0.54
0.42
0.05
0.03
0.04
0.20
0.32
0.69
0.23
0.23
0.83
0.69
0.54
0.42
0.32
0.05
0.15
0.14
0.23
0.16
0.54
0.21
0.07
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.10
0.01
0.14
0.83
0.84
0.84
1.00
0.54
0.55
0.68
0.09
0.16
0.32
0.29
0.42
0.32
0.32
0.41
0.32
0.30
0.83
1.00
0.83
0.89
0.84
0.84
0.84
0.84

58
52
52
46
40
39
37
38
45
48
44
43
45
52
50
53
55
60
55
51
56
57
51
52
59
64
63
65
62
65
65
65
54
63
52
43
48
49
49
46
47
46
M
43
45
40
45
45
45
44
45
4
45
50
44
50
51
51
46
46

42
42
46
54
60
61
57
50
55
52
56
55
47
48
44
45
45
40
41
37
44
43
45
40
41
36
35
35
30
35
35
35
38
37
38
45
50
51
49
52
53
50
57
57
55
50
53
55
55
52
55
52
47
50
46
48
49
49
48
48

0.11
0.30
0.54
0.42
0.05
0.03
0.04
0.20
0.32
0.69
0.23
0.23
0.83
0.69
0.54
0.42
0.32
0.05
0.15
0.14
0.23
0.16
0.54
0.21
0.07
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.10
0.01
0.14
0.83
0.84
0.84
1.00
0.54
0.55
0.68
0.09
0.16
0.32
0.29
0.42
0.32
0.32
0.41
0.32
0.30
0.83
1.00
0.83
0.89
0.84
0.84
0.84
0.84
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11B4_T41886
mil23

mi232

AAT

mi431
11G8_Z29768 A
IF5_B
IIH8_Z34614 A
MboO11
Cos36B

mi369

CSau20F

CosT9

mi335_A
MboA6

m211A

mi69
AA067573_M36
MboN18
FKBP15-21
mil94

IIF4_A

1ID9_A

mi6l

mi330 B

44
49
49
50
50
50
44
50
50
49
50
46
50
49
50
49
50
45
50
46
50
47
50
48
49

10
10
11
11
11
12
12
12
11
11
11
15
15
15
15
13
12
10
15
12
14
15
14
13
14

24
29
28
27
28
28
23
29
30
29
30
18
22
20
21
26
27
24
23
21
22
18
22
23
24

10 1.00
10 1.00
10 0.84
12 0.84
11 1.00
10 0.69
9 0.52
9 0.55
9 0.69
9 0.75
9 0.69
13 0.68
13 0.69
14 0.84
14 0.84
10 0.54
11 0.84
11 0.83
12 0.55
13 0.83
14 1.00
14 0.84
14 1.00
12 0.84
11 0.54

44
49
50
49
50
52
47
53
52
51
52
48
52
50
51
52
51
44
53
45
50
48
50
49
52

44
49
48
51
50
48
M
47
48
47
48
44
48
48
49
46
49
46
47
47
50
46
50
47
46

1.00
1.00
0.84
0.84
1.00
0.69
0.52
0.55
0.69
0.75
0.69
0.68
0.69
0.84
0.84
0.54
0.84
0.83
0.55
0.83
1.00
0.84
1.00
0.84
0.54

3- Correspondence of the EST/TC accession numbers and the

Arabidopsis thaliana annotations of the genes along the complete

sequence

During this study, genes and predicted genes have been called by their ,tentative

consensus® names or EST accession numbers. In this table, is given the correspondence

between the EST and TC names compared to the recent annotations given for the

complete Arabidopsis thaliana genome.

ESTs TC name At4g name
ESTO/Knat5gene 71614 At4g32040
100015 At4g32030
EST1/2 At4932020
EST3/AV528310 86829/93505 At4g32010
77106 At4g32000
AAT/EST4 71853 At4g31990
EST5 98955 At4g31980
AV54275/553989 94311
P450-like 84838 At4g31970
103345 At4g31960
P450-like 80777 At4g31950
P450-like 73277 At4g31940
82122 At4g31930
82121 At4g31920

VI
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4- ORF sequences for the genes and predicted genes on Capsella

rubella and Brassica oleracea

During this study, Capsella rubella and Brassica oleracea genomic sequences have

been used to determine putative ORFs corresponding to the predictions of Arabidopsis

thaliana sequences. C. rubella and B. oleracea ORF sequences are listed below from

the mtarting methionine (ATG) to the stop codon. Sequences of A. thaliana for which

only predictions were available are listed as well.

Sequence of the C. rubella ORF Cr-71614

1

51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101

ATGICGITTA
TCTCCGACAC
AAACGCCTTC
GCCACGECGG
CGCTCCTGAT
ACACCGGAGA
GAAACTGTAC
TAAGGCCGCG
ATGIGCCTTG
GATGCTCAGC
TGGTGICGIT
TTGIGITGIT

ACAGCTCTCA TCTTCTTCCT
TTCTCCGATC AACCTCCTCC
CCTTGICACC ACCAGITTCC
ATTCCGATCT CGCTCCTCCG
GCTAACCCAC GGTGGCTCTC
AGTCCGITCT GAAGTITATCG
TTGGCGITGT TGGAGGTGAA
ATTTTGAGAC ATCCGATGTA
CCTTAGGGIT GCGACTCCCG
TCAGICAGIT CCACACCGTC
GTGGACAACA AGGAACTTGA
ATGITCATTC AAAGAACAAC

CATGCAATGG AAGCCATTAC GCCTTGTITGG
ATCCCTAACT GGAGTITTCTC CAAGTGAAAG
ATGATGAAGA TGATAATCAA GTAGACAGCG
AGITTGGACG GCTCAGATTG CTTGATGGEEG
CGAACGAGAG AGATCCTTGA TGGAACGTGT
AGCTTAAACA GGGTTTCAAA GAGAAGATTG
ATGAGGAAGA GAAGAGCGGEG GAAGCTCCCG
GAAAGAGTGG TGGCGTACTC ACTCGAAATG
ACAAGGCAAA ACTGGTTCAA GAAACCGGTT
AATTGGITCA TCAACCAGAG GAAGAGAAAC
ATCATCTACT CTCTCCAAGA ACAAACGTAA

Sequence of the C. rubella ORF Cr-100015

51
101
151
201
251
301

401
451
501

601
651
701
751
801

ATGAAGAGGA
GGTGGTGACG
GGCTCAAGCA
CTTCCTCCGT
ATTCGCTGEC
ATTCCGITAG
GGAAACCGTA
CTCTGCATCT
GCTGCTCTAC
ATCACTAGIT
GCTTAAAAAC
AGGAGATTGC
CAGAGATTGA
GGAGACACGG

TTCCGTCGAC ATCAGCTAAG
GCTATGACTG ACGACGAGAT
TGCTGGTACT GCAGTGECGG
TACGATGGGG AATCCGTCAG
GGCGGECGTCG GCGITATCGT
AGCTAGTCCG AAGACTCCTC
GCGGATCTGG TAGCCGTGGC
CCTTCAGCTG ATGGGTTCGA
GTCTACAGGA TCTGGATCTA
CCTTCTCTAA GAGATTGAGG
GAAGAGAACT TGAAGCTGAA
AAGTCTCCGA GCAACGTTTG
AGAGAATTAA GCTTGACTTG
GTTGATCTCA GCCATAAACA

CCACAAGAAG

TCATTTCATG
TCCAACACCA
GAGATCGAAC
TAATGGTAAG
AGGTCAACAT
TTTGGICCTC
GAAGAAAGAA
TGGACATAAG
GGGGATACAA
GCCATACCCA
TGCAGITGAA
TGGAACAGCA

ATTCTGGICA
GGTTGITGAG
ATAATCCGGC
CGACGITCTC
TTCAATGAAG
TCTCCTGGAG
GGATCTGGAA
GGATACTAGT
AGGICTTTCC
AAAAAGAAGT
AGAAAGACTA
ACGAACAAAA
AACTCAGGECC
ACAAGCGGTA

GCAGAGTAGA TGGAAGAAAT GGTGAATCAG AAAACAAAGG
TTCAGCTTTG ATCTCAACAT GGTACCATCA GAGGAGGAGA

A

AAGACCTTCC
CACTTCCCTG
TTCCACCCTT
GAGACAATTC
GAGATCCAAA
CGCCGATGGT
GCGCTAGCTA
CTTGCGGECTC
TCCGAGGATC
ACTCCACTCT
TCACATTATG
CGTTTGIGTC
AATCATTGCA
ACAATGTCGG
GTTTGATGGEG
TTGITCCAAC
CTGAAGCATG
AGAAGAGATA
CTTCTGTACT
ACTGAGGAAG
ACAAATCAAC
ATACTTCCAC

AGGATGACTG
CTTCTTTTAC
CGCCACGAAT
GGTCCTCAAG
AAGGATGTCG
CGGCGGATCT
GCCGTGGECGG
CGTCAAGCTA
CACTAACGAA
CATCTTCTGA
GACCTTGAAA
CGTCAGGAAT
GTGTAAAGAA
TCAAAATCGT
GAGTGTGTITC
TGATATTGTA

VI
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Sequence of the C. rubella ORF Cr-83424

1
51
101
151
201
251
301
351
401
451
501
551
601

ATGGGCGTCG CCGTTCTAAA TCCCCAAGAC TGITTGAGAG ATCCCTTCTC
CCACATGAGA CATCATCCTC GTAACCCTAG CGCATGICCC AACAGGCAGA
AAAAGCCGGT TTCCAACAAC CGTACGCGCC GGAGCCCTCC ACGTAATCAA
TCCACCAGAT CTCCTTCTCC TCCTATCGCG CCGCCTCTTC CTCCTCCTCG
TGCGCCTGIC TCTGCTTTTG TTCCCAAGGG AACGGTTAAG AAGAGTCCTA
AAAACACCGT CGCCGTTGGT CAGGTTAGAA TCCTCAAGCG CGGTGAAGAA
ATTCCTAAGA AGACTTCGGA TCTCGITGIT GCAAAGICAG ATCTCGITGT
TGTGAAGCCA GATCTGGTTG TTGAGAAGIC AGATCTGGGT TCTACTCGIC
GTATTGGACC AGATCCCGGT TTGATTCCGA GICAAATCCG TTTGICTGGC
CGCAAATCAA AATCAGCACC GITTTACGCC GGICCGGTGA CCATGACCTC
GCCGCCTCCG AGCGATGTAC CGCTTCCAGC TTTTTTCACG AAGAAGAGCG
TCTCTTTGIT CCAAGCCGCC GATGCAACCA ATGATCTGAT CAGGATGCTT
CGCTTAGACA TCGCCTGA

Sequence of the B. oleracea ORF Bo-83424, locus chromosome 1

1
51
101
151
201
251
301
351
401
451
501
551
601

ATGGGCGTAG CTGITCTAAA TCCACAAGAC TATCTCAAAC AACCTTTCTC
CCACATGAAG TATCCTCGTA ACCACACCGC ATGCCCCAAC AGGCATCAGA

AGAAGCCGGT TCCAAACCGC ACGCGCCGGA
ACCAGATCTC CTCCTAAAGC GCCGCCTCCT
CTCTTCTTAC GITCCGAAGG GAACGGTTGA
TCGICGITGG TCAGGTTAGG ATCCTGAAGC
AAGACATTAG AATTGGTCGT GGAAAAGACA
AGATCTGGIT GTCGAAAAGC CAGATCTGGT
CAGATCCGIG TCTGATTCCG AGCCAGATCC
AATAAGACCG TAGTCCCGIT TTACGCCGGT
GCCTCCGAGC GACGTCCCTC TCCCAGCCTT
CTACAAACCA TATCATCAAG CTGCTTCGCC
CTCCAATGA

GTCCTCCGCG CAATCAGACA
CCTCCTCAAC GCGCCGCCGT
GAAGAGTCCC ACCAAAAACG
GAGGCGAGGA GATCCCTAAG
GATCTGGITG TCGAAAAGAC
TTCCACTCAA CGGATCGGAC
GTCTCCCCGA CCGCAAATCG
CCTGTGACCA TGACCTCGCC
CTTCACCACG AAGAAGGACG
TAGACGTCGC ATGTATGTCT

Sequence of the B. oleracea ORF Bo-83424, locus chromosome 7

1
51
101
151
201
251
301
351
401
451
501

ATGGGCGTCG CTGTTCTAAA TCCCCAGGAC
TCACATGAAA CATCCACGTA ACCCCAGCGC
AACCGGTTTC GAACCGCACG CGCCGCAGCC
CCATCTCCCC CTGTAGCCCC GCCGCTTCCA
CCCCAACAAC AACAACAACA ACAGCGTCGT
TGAAGCGCGG CGAGGAGATC CCTAAGAAGA
AAGACAGATC TTGTGTCTAC TCGTAGGATC
TCCGAGTCAG ATCCGTTTAT CCGTCCGCAA
ACGCCGGTCC CGTGACCATG ACGICTCCTC
CCAGCCTTTT TCGCCGCGAA GAAGAGCGTC
CGCTACCAAC GAAATCATCA GGATGCTCCG

Sequence of the A. thaliana ORF At-86829

51
101
151
201
251
301
351
401

ATGGAAGTGA CTCGTGGTTT CTCTTTTTTG
TCTTCACTGI GGATGCATTG CTTCTAGATT
ATGGTGGTGI TACCTGTATA AGTTGCGCCA
ATGAATGTGA GCCATGAATC TAACGGTAAG
AGCAGAGCAT GTAGGCAGTG TTCTTGAGAG
TTCACTTTCA AAGAATCGAC CCCACTCATT
GAAGAATCGC TGCTTCCTTC CAGCCTAGAT
AAGGAAAGAA TTGTCTGCAC AGCCAAACTT
CGCTTATGAC AAGCCCATTT CATGATGCTG

TGCTTGAAGC ATCCTTTATC
GTGCCCCAAC AGGCAGAAAA
CGCCGCGAAA ACAAACCTCC
AAGGGAACGG TGACGACGCG
CGCTGGICAG GITAGAATCC
CAGCAGATCT GGTCGTAGAA
GGACCGGATC CAGGATTGAT
AGCAAAGACC GTCCCGTTTT
CTCCAAGCGA CGTCCCTCTT
TCTTTGITCC AAGCCGCCGA
CCTAAACATC GCGTGA

GACAAGITTC TTCGAAAGCG
TATGATGGAG CTTCTAGAGA
AGAAATCCGG ACTAATTTCT
GACTTCCCCT CATTTGCTTC
GACAAATCTC AAGCACTTGC
CTTCTCTTCA AATGAAACAA
GCTCTTAGAC ACAAAACTGA
GAGCATTTCA CTTGGACCTA
CTGITGATGA CAGAAGTAAG

Vi
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451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501
1551
1601
1651
1701
1751
1801
1851
1901
1951
2001
2051
2101
2151
2201

ACTAATTCGA
ACCTGCAAAT
TGGTGTCACA
ACCCAATTGC
GCAATTATCT
TTCCTAGCTC
GCGAGCGATG
AGAGGCATAT
TACAAGACAT
AATAATAACA
GTCCATGCAG
CTGAAGGAAA
ACACAGATGT
CAGCTTGAAT
CTGAGGACAT
GCTAGGAAAC
TGATAGCGTA
AGCTGITGCG
AATCAAGATT
CCTTTTTGIC
ATGCTTGIGG
AAGTGGTCGT
CGCACCTGAT
GCAAAGAGTT

CGGITCGICC
CTCATGATCC

TTTTCCAACT
TCAGCTCCCA
GATTCATGTC
TTCCCCGITA
GGACAGTATC
AAATTCCAAA
CGGGTCGTAT
TTCCCCCCTA
AAAAGGGAAA
GCAGGATGTA
TTGCAAGCTG
ACTCGTAATG
TCAAGGGAAG
CCGGGATGTIG
GGCAAAGGAT
GGGTTCGGAA
GATGITCTGG
GCCTCCCCAA
TTGAAGAATA
TCACGICAAA
GAAATGGCGA
GCTCTGATAA
GAACTCTCTC
CAAAAGGAGG
ATGCATCTGC
GAACAGEEEG
GGCAGEGTGT
AACACAAGCC
TTCAGGACGC
AAGCCAGCAG
AGAGCATTCC
TCAGACCCGG
AGCGTTTCCT
CAGGAGAACA
TCAGCCGCAC
TGTGAACTAA

GGCCCCTCGG
TTGCTGCTGG
GCTCGECCTC
CTGGCCTAGG
CTCATCTGTA
ATTATACCAC
TGGTCGACTG
TATCTCTACC
GAATGGGTGT
CGTTTTGGAG
GIGACACTGT
GGATACCGTA
CAGTGAACCC
GIGACATCAA
AACTTATTTC
CATTGGGACT
AACTGAAAAT
TCCACCAAAC
TGACGAACCA
CAGGGGAACA
CAGCTGCCGG
TCTCTTGGAT
CAAGAGAACA
AGACTGGCAT
TCTGAATAGT
AAATCACGGT
TCGTGCATCG
GTCATGCACT
TCATGCTGCG
GCGCAGICAC
AGCGGTTGAA
GGGECTTCCCG
CTGGAAGCAT
GCAAAGCAGT
AAGAAACTGA

Sequence of the C. rubella ORF Cr-86829

51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951

1001
1051
1101
1151
1201
1251
1301
1351

ATGGAAGTGA
CCTTCACTGT
ATGGCAGCGT
ATGAATGICA
AGAGCATGTA
ACTTTCAAAG
GAATCGCTGC
GAAAGAATTG
GACCTACGCT
AGTAAGACTA
TCCAAAACCT
GGAGCCTGGT
GGGAAGACCC
GCTGCAGATA
TTTATTTTCC
CTGAGIGCTA
ATGTGCAGAG
TAAAAATACA
TGGCCTAATA
CATACAGTCC
CAGAACCTGA
ACAGCAACAC
TTCCAACAAC
AGAAGCCTGA
ACTTCGICTA
GCTCATTGAT
CACAGGAACT

GICGITGITT
GGATGCATTG
TACCTGTATA
GTCAAGAATC
GGCAGTGITC
GATCGGCCCC
TTCCTTCCAG
CAGGAATTAT
TATGACAAGT
CGTCAATTTT
GCAAATTCAG
GTCACAGATT
AATTGCTTCC
TTATCTGGAC
AAGCTCAAAT
GCGATGCGGEG
GCATATTTCC
AGACATAAAA
ATAACAGCAG
ATGCAGITGC
AGGAAAACTT
AGATGITCAA
TTGAATCCGG
GGACATGGA
GGAAACGGGT
AGCGTITGATG
GATGCGGECCG

CTCTTTTTCG
CTTCCAGATT
AGITTGCGCCA
CAATGGTAGG
TTGAGAGGAC
ACTCAATCTT
ACTAGATGCT
CTGCACAGCC
CCATTTCATG
CCAACTAGCC
CTCCCACTGC
CATGTCGCTC
TCGITATTGG
AGTATCCTCA
TCCAAAATTA
TCGTATTGGT
CCCCGATTTC
GGGAAAGAGT
GATGTACGIT
AAGCTGGTGA
GTAATGGGAT
GGGAAGCAGT
GATGITGGTGA
AAGGATAATT
TCGGAACATT
TTCTGGAATT
CCCCAATCCG

CTGGAAAATC AAGATTTTGA AGAATATGAC

TCCAGGCAGC
CATGGAGCCT
CTCCAGAAGG
ATTACTGACC
TGAGICCTTG
TCTTTGAAAA
GITCTTCCGA
CGAGGGTICTC
TCCAGITCAG
GGTGTGACTC
AACATTCAGC
AAGCGACGAA
AATCTGAACA
TTGGTCTAAA
TTCAGICGIC
AAGAGCAAGC
AACTTGGGAG
CCAGCATCTT
CCAGITTTCG
AGAGCAATGG
TGGATATTCT
CCTGGCAGGT
GGATACACTT
CATCAAACGA
TTAGGAAATG
TGCAGCCACG
TCTGCAGCCA
TGCACTGTGT
GAAGCGGAAC

GACAAGITTC
TATGATGGAG
AGAAATCCGC
GACTCCTCAT
AAATCTTAAG
CTATTCAAAT
CTTAGACACA
AAACTTGAGC
ATGCTGITAT
CCTCGGTCCA
TGCTGGCATG
GGCCTCCTCC
CCTAGGATTA
TCTGTATGAG
TTCCACTCTT
CGACTGGITC
TCTACCCGAG
GGGIGITCCA
TTGGAGGGTG
CACTGTAACG
ACCGTAAAGC
GAACCCAATC
CATCAGCTGG
TATTTCTTCA
GGGAGTAAGA
GAAAGTAACT
CCAAACCCAG
GAACCACCGG

TGCTTCCAAA
AGTGGGAGCC
TCGCGGGAAG
AAGAGCTGCT
ACTGTTTATT
AGITCTGAGT
AAGCATGTGC
CCGTTAAAGA
GTTTTGGECCT
CTTGCATACA
CGTACAGAAC
CTCTACAGCG
TGTTTTCCAA
CTAGAGAAGT
CTTAACTTCT
GTCTGCTCAT
GAGGCACAGG
TACGCTGGAA
GGAAGAGGAC
GTGCAGTGTIG
TCTTCCACCA
CTTCATGITC
GTCCGGCAGA
AAAGCTAAAC
CAGGCATCAC
ACCAAGCATC
ACCACCGAGC
GCGAGGCAGT
AAAGGAGAGG
CAGGGACGAG
GGGAAAACAT
ATGAGCCTTC
AAAGCCTATT
GCACAGAACA
ACAAATGGAG

TTCGAAAGCG
CTTCTAGATA
ACTATTTTCT
TTGCTTCAGC
CACTTGCTCG
GAAACAAGAA
AAACTGAAAG
ATTTCACTTG
TGATGACAGA
GGCAACTGCT
GAGCCTAATG
AGAAGGTCGC
CTGACCAAGA
CCCTTAACTG
TGAAAAAGTT
TTCCGAAAGC
GGTCTCCCGT
GTTCAGATTT
TGACTCCTTG
TTCAGCCGTA
GACAAACTCT
TAAACATTTT
TCTAAACTAG
GTCGTCACTA
GCAAGCGTCT
TGGGATGAGG
CATTATTACG
TTTTCGGGAA
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1401
1451
1501
1551
1601
1651
1701
1751
1801
1851
1901
1951
2001
2051

GAAAACTGIT TTTGITGGCAC GTCAAACAGG GGAACAAGAG CAATGGGTGC
AGTGTGATGC TTGTGGGAAA TGGECGACGEC TGCCTGIGGA TACTCTTCTT
CCACCAAAAT GGITGITGCTC CGATAATCAC TTGGATCCTG CCAGGICTTC
ATGITCTGCA CCTGATGATC TCTCTCCAAG AGAACAGGAT ACACTAGTCC
GGCAAAGCAA AGAGTTCAAA AGGAGGAGAC TGGCAGCATC AAACGAAAAG
CTAAACCAGT CGCAGGAGGEC ATCTGCTGTG GAAACTTTAG CAAATGCAGG
TATCACCACG ACTGGTGAAC AAGGGGAAAT CGCAGTTGCA GCGACGACCA
AGCACCCAAG ACACCGGGCA GGGTGITCGI GCATCGICTG TAGCCAACCG
CCGAGCGGAA AAGGCAAACA CAAGCCGACA TGCACTTGCA CAGTATGCGA
GGCAGTGAAG AGGCGGTTTA GGACGCTCAT GATGCGGAAG AAAAACAGGG
GAGAGGCAGG ACAGGCAAGC CAGCAGGCAC AGTCGGAGAG CAGAGACGAG
ACAGAAGTGG AGAGTATTCC AGCGGCTGAG GCAGCGICAG GGGATAATAT
TGACTTAAAC TCAGACCCGG GGGGITCCCC GAGTAAGCAT GATGGGCTTT
CTTCAAAGCT GCAGCTTTTC CTCTAG

Sequence of the B. oleracea ORF B0-86829 locus chromosome 7

1

51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501
1551
1601
1651
1701
1751
1801
1851
1901
1951
2001
2051
2101

CGICTTCACT
TAATGGTGGT
CATGAATGIC
AGAATGTAAG
TTCCAAAGAA
ATCTCTCCTT
AAGAATCTGC
ACAAGTCAAT
CCAACTCGCC
CTCCCACTAC
ATTCACGTCG
TCCGCGITAT
GACAGTATCC
GITCTGAGIG
AGCATGTGCA
CGTTAAAGAT
TTTTGGCCTA
TTGCATACAG
GCACAGAACC
TCTACAGCAG
GITTTCCAAC
TTGACAAGTC
CTAATCTCTG
ACTGCTCATT
AGGCGCAGGA
ACAGITGAAG
GAAGAGGACA
TTCAGTGTGA
CTTCCACCAA
TTCATGITCT
TCCGCCTAAG
GAGGAGGECCT
AGGTGAACAA
ACCGAGCTGG
GGCAAACACA
GCGGITCAAG
AGGCAAGCCA
GAGAGCATTC
AAACTCAGAC
CAACGITTCC
GCGGGAGAAC

GTGGATGCAT
GITACATGTA
GAATCCAACG
CAGCGTTCTC
TCTCCCCCAC
CCCGCAAGAC
ACAGCCAAAC
TTCATGATGT
TCTCGGTICTA
TGCTCCTCCC
CTAGGCCTCC
TGGCCTAGGA
TCATCTCTCA
CAAGCGATGC
GAGGCGTATT
ACAAGACATA
ATAATAACAG
TCAATGCAGT
TGAAGGAAAA
CACAGATGIT
AACTTGAGTT
TGACGACATG
CTAGGAAACG
GATAGCGTAG
ACTGCTGCGG
ATCACGATTT
GIGITTGIGT
TGCTTGIGCT
AGTGGITGTG
GCACCTGATG
CAAAGAGTTC
CTGCTCTAGA
GGAGAAACCG
CTGITCGTGC
AGCCGTCATG
ACGCTCATGA
GCAGGCGCAG
CAGCGGITGA
CCAGCTTCTA
TCTGGAGGTG
AGCAAAGCAG

TGCTTCTAGA
TAACCTGCGC
GTAGGGAGTIT
GAGAGGACAA
ACAACCTTTC
TAGAATCTCT
TTGAGCATTT
GGACGACAGA
GACAACTCCT
ATGGAGCCTA
TCCAGAAGGT
TCACTGATCA
AACTCCAAAA
TGGTCGTATT
TTCCACCGAT
AAGGGGAAAG
CAGGATGTAC
TGCAAGCTGG
CTCGTAATGG
CAAGGGAAGC
CGGGATGT GG
TCAAAGGACG
TGITCGAAAC
ATGITCTGGA
CCTCCTCAGT
TGAAGAATAC
CACGTCAAAC
AAATGGCGAC
CTCTGATAAT
AACTCACCCC
AAAAGGAGGA
CACTTTAGCA
AGGTTGCAGC
ATTGICTGCA
CACTTGCACT
TGCGGAAGCG
TCAGATCAGT
ACTGCCAGCG
GAGIGAGCAT
TATCTGAAAC
TGATATAGTA

CTCAGCCGCA CAAGAACATG ACAGAGACAC

TGAACTAA

Sequence of the A. thaliana ORF At-77106

1 ATGGGAAAGA TTCTTCATCT TCTTCTTCTT

TTCATGATGG
CAAAAAATCC
CCCTACATTT
ATCTCAAACA
CTTCAGATGA
CAGACACAAC
CACTTGGACC
AGCAAGACTA
TCCAAAACCT
ACGGGAGCCT
CGAGGCAAGA
GGAGCTGCAG
TTATACCACT
GGTCGACTGG
CTCTCAGCCT
AATGGGTGIT
GITCTGGAGG
TGATACTGTA
GATACCGTAA
AGTGAACCCA
TGATATCAAC
GCTTAATGCT
ATTGGCACTA
ACTGAGATTA
CTGCTAAACC
GATGAACCAC
AGGGGAACAA
GGECTTCCTGT
GICTTGGATC
AAGAGAACAG
GACTGGCATC
AATGCAGCTA
CACGACCAAG
GCCAGCCGCC
GIGIGTGAGG
AAACAGAGGA
GCAGAGAGGA
GCAGGEGEGEEEA
GATGAGICTT
AGAAAGGTGT
AGCACAGAGA
AAGCGGAGCT

CTTCTTAAGG

AGCTTGTGGA
GGACTATTCT
GCTTCAGCAG
CTTGCTTCAT
AACAAGAGGA
ACTGAGAAGA
TACTCTTATG
CTCCTATTTT
GCGAACTCAG
CGTGTCGCAG
CTCAGITGCT
CAATTATCTG
GTTTGAAAAA
TTCTTCCTAA
GAGGGECCTCC
CCAGTTTAGG
GTGTGACTCC
ACGITCAGCC
AGCGACAAAC
ATCTGAACAT
TGGICTAAAC
TCAGCCGTCG
AGAGCAAGCG
ACCTGGGAGG
GAGCATATGT
CAGTTTTTGG
GAGCAATGGG
GGATACTCTT
CTGGCAGGTC
GATACACTTC
ATCAAACCAG
TCACCACGAC
CACCCGAGAC
GAGTGGGAAA
CGGTGAAGAG
GAAGCAGGGEC
GACAGAAGCT
ACATTGACTT
CTGCAAGCTG
TCCAAATACA
ACGGITCGTC
CCTGAGGCAT

TCTCTGITCT
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51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951

1001
1051
1101
1151
1201
1251

TGAATTCATC
CTCTTTCTCC
ATGGGCAAAG
CGCTCTCATA
TATGCTTTTG
TCAGGTGAGA
CGATTACAAG
TTATAGGACG
AACACTCTAG
ACGAGAATTT
ACATCATCTC
GICTACGAGC
TTCTCGGGGA
ATACAGCAAG
ATCCACAGAG
CGCCAAGATC
GGGECTCACGG
GCTCCAGAAT
TGCGITTGGT
AGAAATTGAG
CAACTTACGG
AGATACAATG
TTTGIGTACA
CACTCACTAG
AATACCATCA

ATTAGIGITT CTGCTTTTAC
TGITTACACT TCCATGCCTT
GCCAAGAACA CAAGITAGAT
ATCACCTCAT CTTCTCTAGG
GGITTATTGG TCTAAGAAAT
GTAGGATTTC ATTATCCAAG
ACACTAGAGA AAGCAACAGG
AGGCGGGITC GGAGATGTTT
CAGCAGTCAA AAAGATCGAA
CAGAATGAAG TTGATTTGIT
ATTGITTGGA TATGGAAATG
TGATGGAAAG CGGATCATTG
TCGGCTTTAA CATGGCACAT
AGCTGITGAG TATCTCCACG
ATCTTAAATC GITCAAATATT
AACATTCAGA TTTCGGATTT
CAAAAACAAC ATTAAACTAT
ATCTCCTAGA TGGAAAATTG
GTGGTTTTAC TTGAACTCTT
TTCGGITCAG TGICAATCTC
ATAGATCAAA GCTTCCGAAA
GATCATAAGC ACTTATACCA
ACCAGAACCG AGTTATCGAC
TTCCATTGGT TCCGGTAGAG
TCGICTTGA

Sequence of the C. rubella ORF Cr-77106

1

51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351

ATGAGAAAGA
CCTCATTAGT
CTCCTTCTCC
ATGGCCAGAG
CTCTCTCATA
TATGCTTCTG
TCAGGTGAGA
CGATTACAAG
TTGTAGGACG
AACACTCTAG
ACGAGAGTTT
ACATCATCTC
GICTACGAGC
TTCTCGGGGA
ATACAGCCAG
ATCCACAGAG
CGCCAAGITG
CAATCCAAAA
ACTCAGATTT
GAACAACATT
TCCTAGACGG
GITCTACTTG
GGITCAGIGC
GATCAAAGCT
CATAAGCACT
AGAACCGAGT
CACTGGITCC
TCTTAA

CACTTCATCT TCATCTTCTT
GITTCTGCTT CTTCTACTAT
ACTTTACACT TCCATGGCTT
GCCAAGAACA CAAACTAGAT
ATCACCTCAT CTTCTCTAGG
GATTTATCGG TCCAAGAAGT
GTGGGATTTC ACTAGCCAAG
ACACTAGAAA AAGCGACAGG
AGGCGGATTT GGATATGITT
CAGCAGICAA AAAGATTGAA
CAGAACGAAG TTGATTTGIT
ATTGITGGGA TATGGAAGTG
TGATGCAAAA TGGATCCTTG
TCGGCTTTAA CATGGCACAT
AGCTGITGAG TATCTTCACG
ATCTTAAATC TTCAAACATT
ATTCAAGAGA ATCTGATACA
CATGGITTCG TTTATGTATC
CGGATTTTGG TCTGGCGGTA
AAACTATCAG GGACACTTGG
TAAATTAACG GATAAAAGTG
AACTCTTGCT AGGAAGACGG
CAATCTCTAG TCACTTGGGC
TCCAAAAATT GTGGATCCGG
TATACCAGGT AGCAGCCGTG
TATCGACCGT TGATAACCGA
GGTAGAGCTA GGGGGCACTC

TTCACCTGCT
CCTTTTCTCC
GCACACAAGA
ACTAATACTT
CTCCCAAAAA
AAGGCCTTTG
CGGITTCAAA
ACAAGGCCTG
AACGITAGIC
GAGCAAGATT
AACTCAGITC
GATACACAGT
GCGGATGAAG
AGCGITGICG
CTCCTTGATT
TGGICTTGCG
CAGGAACACT
ACGGATAAGA
GITAGGAAGA
TTGICACTTG
ATCGTGGATC
GGTGGECAGCC
CGTTGATAAC
CTAGGAGGGA

AAGATCTCTG
ACCTAATTAT
CCTTCTCTCC
GCTCACAAGA
GITCATACTC
CCCTCAAAAC
AAGGGTTTTG
CGGITTCAAA
ACAAGGCCAG
AACGITAGIC
GAGCAAGATT
AAATCAGCTC
GATGCTCAGT
GCGGATGAAG
AGCGITGICG
CTCCTTGATT
TTCGICTTTG
TATGICTAAC
ATGGTTGGGG
TTATGITGCT
ATGICTACGC
CCGGTTGAGA
AATGCCTCAA
TTCTCAAAGA
GCAGIGCTTT
TGITCTTCAC
TCCGGTTAAC

TCACAGCCTT
AGGGATCCAC
AACTTCTAAT
GTATCTTGIT
CACCAAGAAC
TGCAGICCTT
GACGGTAATC
TTTAGGCAAC
AAGAAGCAAA
CACCACCCGA
GAGTTTTATC
TACACGGACC
ATTCGCTCTTG
TCCTCCGGTT
CTTCCTTCAA
GTAATGGT GG
TGGITATGIT
GTGATGITTA
CGGCCGGTTG
GGCAATGCCC
CGGTTATCAA
GTGGCAGTGC
CGATGITCTT
CTCTCCGGIT

TTCTTGAGIT
TCACAGCCTT
AGGGATCCAA
AACTTTTTAT
CTATGITGIT
CACCAAGAAC
TGCAGICCTT
GACGGTAATC
TTTAGGCAAT
AAGAAGCAAA
CACCACCCGA
GAGTTTCATC
TACACGGACC

ACCATCATCC

Sequence of the B. oleracea ORF Bo-77106 locus chromosome 1

51
101
151

ATGAGAAAGA TTCTTCCTCT ACTCCTTAAG GICTTGGITA TTCAGITCCT
CTGTAGIGIC TATGCTTGTA CAGCATCCCA TCCACCTGCG TCACAGCCTT
CACTTTCTCC CGICTACACT TCCATGGCTT CCTTCTCTCC AGGAATCCAA
ATGGGTAGTA GAGGCCAAGA ACACAATAAA CTTTTAATAG CTCTTATAAT

Xl
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201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201

CAGCTCCTCG TCTCTAGGAC TAATAGTTTT

CTGITTATCG
GGGATTTCAT
ACTAGAGAAA
GCGGEGITTGG
GCGGTTAAGA
GAACGAAGTT
TTCTGGGACA
ATGGAAAAGG
GGCTTTAACA
GIGTAGAGTA
ATAAAATCTT
TGATTTTGGA
AACTATCTGG
GITCTACTTG
GGITCAGIGC
GATCAAAGCT
CATAAGCATC
AGAACCAAGT
CACTGGITCC
TCCTAA

GTCTAAGCAA
TACCCAAGAA
GCAACAGECG
ATTTGITTAC
AGATCGAAAA
GATCTATTGA
TACAAGTGAA
GATCTTTGAA
TGGCACATGC
TCTACATGAG
CAAATATTCT
CTTGCGGTAA
GACACTTGGT
AACTGITGCT
CAATCTCTGG
TCCTAAAATA
TATACCAGGT
TATAGACCGT
GGTAGAGCTA

TTTCCCAAAC
GGGITTTATG
GCTTCAAAGA
AAAGCCTGCT
CGTTAGCCAA
GCAAGATTCA
ATCAGCCCGA
GGCACAGITA
GGATGAAGAT
CGTTGTCGCC
CCTTGATTCT
CGAACGGGAT
TATGITGCTC
GGGAAGGCGA
TCACTTGGEEC
GI'GGATCCAG
AGCAGCCGTG
TGATAACCGA
GGAGGAACAC

Sequence of the C. rubella gene Cr-AAT

1

51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351

ATGCCTTCTT
GATTAGCAAG
TGAAAGCAAA
TCTCGITTTG
CAGCGAAGCA
TTGGGCECTTA
AAAAAGGCGG
TCCAATTGAG
TTGGAGCTGG
GGICTTTCGG
TTATTTTCCT
ACAAGAATAT
TATGATCCAA
TAAGGATGCT
ACCCAACAGG
GICATTCAGG
CTTTGCTAGT
CTGAACGT GG
GGICTTTATG
CGATGCTGCG
TGTACTCAAA
GGCGATCCAA
GGGAAGAATA
AAGACAAGAG
TTCTCTTTCA
GIGGCATGIG

CAATGTTGTC
GATAAGCTAA
GTCTTTTAGC
AGGGTATAAC
TTCAAAGCTG
CCGAACTGAG
AGAATTTGAT
GGGTTGGECAG
TCATCCTGIT
GAACAGGTTC
GGAGCAAAAG
CTTCAATGAT
AAACAATTGG
CCAGAAGGAT
AATTGACCCA
AAAAGAACCA
GGAAGCCTTG
AATGGAGTTT
CAGAAAGAAT
ACAAGGGTCA
CCCACCAGIT
CTATGITCGG
AAAACAGTGA
CGGGAAGGAC
CTGECTTGAA
TACATGACTA

TCTCGGITCG
AGCTTGGGAC
AGGGTGACTA
TATGGCTCCT
ACACCAACGA
GAACTCCAGC
GITGGAGAGA
CATTCAACAA
ATTAAGGAAC
CCTGCGAGTA
TTGIGATTTC
GCCAAAGITC
TTTGGATTTT
CTTTCATCTT
ACCCCAGAAC
TATCCCATTC
ATGAAGATGC
TTTGITGCTC

TGAATGGAAA
GACAAGAGTT
TGGTCATTCA
CAAAGCTCAG
AAGACGGAAG

TTGITGITTA
CGACCAAGAA
CAGICCTTCG
CAGTAATCTT
TAGACAATCA
GAAGCAAAAC
CCATCCCAAC
GCTTCATCGT
CACGGACCTT
TGCTCTTGAT
CTCCGGITAT
TCCTTCAACG
GCACGGCAAG
CAGAATATCT
CCGGTTGAGA
AATGCCACAA
TTATCAAAGA
GCAGIGCTTT
TGITCTTCAC
TCCGGTTAAC

ACTTCTCTAT
TTCCGGITCG
TGECGGITGC
CCTGACCCTA
GATGAAACTC
CTTATGIGCT
GGAGATAATA
GGCTACTGCT
AAAGAGTGGC
GCAGCGECTC
ATCACCAACC
CATGGICTGA
GAGGGAATGA
GCTTCATGGA
AGTGGGTGAA
TTTGATGITG
AGCATCTGIG
AGTCATACAG
AATGTCGTGT
AAAAAGGATT
GAATCGTGGEC
GCAGAGATGG
GTATGATAGC
TTCTGAAGCA
AGCGATAACA
AATATCGITG

TCCTTTTGEG
CTCAGAGAGT
ATTACAAGAC
ATAGGACGAG
CACCCTAGCC
GGGAGITTCA
ATCATCTCAC
TTACGAGCTG
CTCGTGGATC
ACAGCAAGAG
CCACAGAGAT
CCAAGATATC
AACAACATTA
CCTAGATGTG
AGITGAGITC
CTTACGGATA
TACAATGGAT
GTGTACAGCC
TCACTTGITC
ATCATCATCG

TACCGCGCGA
AACCCGTTCC
AGTCACGCCT
TTCTTGGAGT
AATCTTGGTG
TAATGITGIT
AAGAGTATCT
GAGTTGCTGT
AACAATTCAG
TTATAGAGCG
TGGGGTAATC
ATACCGCTAC
TAGCAGATAT
TGIGCTCACA
AATTGCGGAT
CATACCAGGG
AGATTATTTG
TAAAAATTTA
GCTCATCAGC
GCTCGGCCTA
TAATGICGTG
AAATGATGCEC
CTCGITTCAA
AATTGCCATG
TGACGAACAA
GCTGGATTGT

CCATGGCGAA ATGCGAGTAC CTTGCTGACG CCATCATTGA CTCCTATCAC

AACGTAAGTT

GA

Sequence of the B. oleracea gene Bo-AAT locus chromosome 1

51
101
151
201
251
301
351

ATGGCTTCAT CAATGCTGTC TCTCGGITCT ACTTCTCTGC TACCTCGCGA
GATTAACAAG GATAAGCTAA AGCTTGGAAC TTCCGGITCC AACCCCTTCC
TGAAAGCAAA GTGITTTAGT CGGGTGACCA TGICGGITGC AGTGAAGCCT
TCTCGCTTTG AGGGTATCAC CATGGCTCCA CCAGACCCTA TTCTTGGCGT
CAGCGAAGCT TTCAAAGCTG ACACTAACGA GCTTAAGCTC AATCTCGGECG
TTGGTGCTTA TCGAACTGAA GAACTCCAGC CTTATGICCT TAATGITGIT
AAAAAGGCGG AGAACCTGAT GTTGGAGAGA GGAGATAATA AAGAGTATCT
CCCAATAGAA GGGTTGGCTG CATTCAACAA GGCCACTGCT GAGCTGCTGT

Xl
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401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351

TTGGAGCTGG
GGICTTTCCG
TTATTTTCCT
ACAAGAACAT
TATGACCCCA
AAGGGAAGCT
ACCCGACCGG
GICATTCAAG
CTTTGCTAGC
CTGAGCGTI GG
GGCCTTTATG
CGATGCTGCT
TGTACTCGAA
GGAGATGCAG
GGGGAGGATT
AGGATAAGAG
TTCTCATTCA
GIGGCATGIG
CTATGGCAAA
AACGTAAGCT

TCATCCTGIT
GAACAGGTTC
GGAGCTAAAG
CTTCAACGAC
AAACAATCGG
CCAGAAGGAT
AATCGACCCA
AAAAGAACCA
GGAAGCCTTG
GATGGAGITT
CTGAAAGGAT
ACAAGGGTGA
CCCACCGGTIT
CTATGITCAA
AAGACGGTGA
CGGTAAGGAC
CAGGTCTCAA
TACATGACTA
ATGCGAGTAC
GA

ATTAAAGAAC AAAAAGTGGC AACAATTCAA

ACTCCGACTA
TTCTTATATC
GCCAAAGITC
TTTGGATTTT
CATTCATACT
ACGCCAGAGC
CATCCCATTT
ATGAAGACGC
TTCGICGCTC
TGGTGCAATC
AGAGCCAGTT
CACGGTGCGA
CGAGTGGAAA
GACAGCAGCT
TGGTCGITTA
CAAGGCTCAG
AAGACGGGAG
CTCGCTGATG

GCAGCGECTC
TGCACCAACA
CCTGGICTGA
GAAGGGATGA
GCTACACGGEC
AGTGGGTGAA
TTCGACGITG
AGCTTCCGTG
AGTCGTATAG
AACGTCGTCT
GAAAAGGATA
GGATCGTGEC
GCAGAGATGG
GTACGACAGC
TTCTGAAGCA
AGTGATAACA
GATATCGITG
CCATCATCGA

TTATCGAGCG
TGGGGTAACC
ATACCGCTAC
TAGCTGATAT
TGCGCTCACA
AATTGCTGAC
CATACCAGGG
AGACTATTTG
TAAAAACTTG
GCTCATCAGC
GCTAGGCCTA
TAACGICGTG
AAATGATGGC
CTCGTTTCGA
GATTGGCATG
TGACGGACAA
GCTGGATTGT
CTCGCACCAT

Sequence of the B. oleracea gene Bo-AAT locus chromosome 7

1

51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351

ATGCCTTCTT
GATTAACAAG
TGAGAACAAA
TCTCGITTCG
CAGCGAAGCA
TTGGCGCTTA
AAAAAGGCCG
ACCAATAGAG
TTGGAGCTGG
GGICTTTCCG
TTACTTCCCT
ACAAGAATAT
TATGACCCAA
TAAGGAAGCT
ACCCAACTGG
GICGITCAGG
CTTTGCTAGT
CCGAACGT GG
GGICTTTATG
CGATGCTGCT
TGTACTCGAA
GGGGATGCAA
GGGTAGGATA
AAGACAAGAG
TTCTCATTCA
GIGGCATGIG
CTATGGCAAA
AACGTAAGCT

CAATGCTCTC
GATAAGCTAA
GTCTCTTAGT
AGGGTATAAC
TTCAAAGCTG
TCGAACCGAG
AGAACCTGAT
GGGITGECTG
TCATCCTGIT
GAACCGGTTC
GGAGCTAAAG
CTTCAATGAT
AAACTATTGG
CCGGAAGGAT
GATTGACCCA
AGAAGAACCA
GGAAGCCTTG
AATGGAGTTT
CTGAAAGAAT
ACAAGGGTGA
CCCACCGGTIT
CTATGITTGG

TACATGACTA
ATGTGAGTAT
GA

TCTCGCECTCG
AACTTGGACC
CGGGTGACCA
AATGGCACCA
ACACTAACGA
GAACTCCAGC
GITAGAGAGA
CATTCAACAA
ATTAAGGAAC
ACTGAGACTA
TTCTGATATC
GCCAAAGITC
TTTGGACTTT
CATTCATTTT
ACACCAGAAC
TATCCCGITT
ATGAAGATGC
TTTGITGCTC
AGGTGCAATC
AGAGCCAGTT
CACGGGEECGA
TGAGTGGAAA
GACAAAGGTT
TGGTCCTTTA
TAAAGCTCAG
AAGACGGGAG
CTTGCCGATG

Sequence of the A. thaliana ORF At-84838

51
101
151
201
251
301
351
401

ATGGATACTT CCCTCTTTTC TTTATTTGIT
TATTGCTCTT TTTAAGAAAT CAAAGAAACC
CACCAAGTIGG TGCGTGECCC ATCATCGGTC
AAGGAACAGC TTCTTTACCG AACCTTAGGA
TCCAGCCATG TCGCTACGAC TTGGGAGCAG TGAAACATTT
GITTTGAGGT GGCTAAAGAT TGITTTACTG TGAACGACAA
TCACGTCCTA TTACTGCAGC CGCAAAGCAC ATGGGITACG
TTTCGGGITT GCGCCTTATA GCGCTTTCTG GCGTGAGATG
CAACCCTCGA GCTACTTTCT AACCGGCGGC TTCAGATGCT

ACTTCTCTGT
CTCAGGITCG
TGICGGITTC
CCAGACCCTA
GCTTAAACTC
CTTATGIGCT
GGAGATAATA
GGCCACTGCT
AAAAAGTGCC
GCAGCGECTC
AGCACCAACA
CATGGNCTGA
GAGGGGATGA
GCTTCATGGT
AATGGGTGAA
TTCGATGITG
AGCATCTGIG
AGTCGTATAG
AATGTCGTCT
GAAAAGGATT
GGATCGIGEC
GCAGAGATGG
GTATGACAGT
TTCTGAAGCA
AGCGATAACA
GATATCGCTG
CCATCATCGA

CCAATCCTTG
AAAACATGTA
ATCTTCACCT
AAAATGCCTG

TACCGCGCGA
AACCCCTTCC
AGTGAAACCT
TTCTTGGAGT
AATCTCGGTG
TAACGTCGIT
AAGAGTATCT
GAGCTGCTT

AACCATTCAG
TTATTGAGCG
TGGGGTAATC
ATACCGITAC
TAGAAGATAT
TGIGCTCACA
AATAGCTGAT
CATACCAGGG
AGATTATTCG
TAAAAATTTG
GCTCATCAGC

TTTTCGITTT
AAAGCTCCTG
TCTCAGIGGC
ACCAGTACGG
GTTGTGAGCA
AGCCTTGGCT
ATTGTGCTGT
CGTAAAATCG
CAAGCATGTC

X1l
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451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501
1551

CGIGITTCTG
CAAGAAAGGT
AGGATATGAG
TTTGGAGECG
CAGAAAGGEC
CCGATGCTTT
GAGATGAAGC
TGAAAACCAT
CAGACTTCGT
CATCTTCAAC
GATTCTTGGA
CTCTTCTTCT
GACATCCACG
TCTGGTGTAT
CTGGTICCTCT
GGITACAACG
CCAAAGAGAT
GGITTATCAC
GAGCTGATGC
GGCCATGCAA
ACGTGAAAAC
TTAACCATTC
TAAGGAAGCG

AGATCTCAAT
GGTTCAGAAC
TCTGAACATG
GCTCGTTATC
GTCGCAAATT
TCCGAAACTA
AAACAGGAAG
CGACAACAAC
CGACGITATG
ATGATGCAAT
GGAAGTGAGA
AAACAATAAG
TCGGCAGAGA
ATTCAAGCGA
CTTAGGCCAT
TTCGTCGCGG
CCGAGGGITT
AGGAGAAGCA
CATTTGGITC
GTGCTTCATT
TGITATGGAT
CTAAAGCCAC
CTTTATGIGT

GGITATGCAA
CAGTAATGGT
ATGGTGAGAA
CCCTGAAGAT
TCTTTCACCT
GGGIGGITTG
AGAATTAGAT
GAAAAGITTC
CTGTCGCTTG
TACTAGCATT
CTTCACCATC
GACATGITAA
CAGGAACGTC
TTATCAAAGA
CGAGAGECGA
CACAAGAATG
ATATGGAGCC
AAAGAGTTCG
GGGAAGAAGA
TAGGTCTTGC
ATGCCTGITG
GCCTCTTGAG
GA

Sequence of the A. thaliana ORF At-80777

1

51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501

ATGGATACTT
TATCGCTCTT

CCCTCTTTTC
TTCAAGAAAT

TTTATTTGIT
CAAAGAAACC

CACCAAGIGG TGCATGECCC ATCATTGGTC

AAGGAACAGC
TCCAGCCATG
GITTTGAGGT
TCTCTTATGA
GATGCGTAAA
TGCTCAACAA
TATTCCTTAT
AAAGAGCTGG
CCGGAAAGCG
GAAGAGGCAA
CGGTATATTC
TGCAAGGACA
ATCCTTGAAA
AACGAAACAC
AACAAGGCAA
ACTACCTGCC
CCTTACATGG
AAGTACAAGA
GATTCAGACA
ATTGAGATTG

CTGATCAATC

TTCTTTACCG
TCGCTACGAC
GGCTAAAGAT
CTGCAGCCGC
ATCGCAATGA
CGTTCGIGIT
GGGTCAAGAA
TTAGAGGACA
ATACTTTGGA
GGCAATGGAG
ACCGTGICTG
TGAGAAGGAG
GATGGATTGA
AATGATTCAG
ACTCTCGCAT
TGGCACTAAT
GCCATTTCTC
TGAGATAGAC
TAAAAAATCT
TATCCAGCTG
GGTCGCAGGT
GGAAAATCCA
CCAGAGAGGT
AAACTTTGAG
CTTCATTGEC
TCATTTGAAG
CCCTGGECTTA
CACGTICTTAA

AACCTTAGGA
TTGGGAGCAG
TGITTTACTG
AAAGCACATG
TCGAGCTCCT
TCTGAGATCT
AGGTGGITCA
TGATTGCGAA
GGECEECGEECG
AAAGGGCATC
ATGCTTTTCC
ATGAAGCAGA
AAACCATCGA
ACTTCGTCGA
CTTCAATACG
TCTTGGAGGA
TTCTTCTAAA
ATCCACGTCG
GGTATATCTT
CTCCTCTCTT
TACAACGITC
AAGAGATCCG
TTATCACAGG
CTGATGCCAT
CATGCAAATG
TGAAAACTGT
ACCATTACTA
GAGAGAGCTT

Sequence of the A. thaliana ORF At-73272

1 ATGGATACTT CCCTCTTTTC TTTGITTGIT
51 TATCGCTCTT TTCAAGAAAT CAAAGAAACC AAAATATGTA
101 CACCAAGIGG TGCATGGECCC ATCATCGGECC ATCTTCACCT

GATTTGTATT
TGATCTAAAG
TGGTGECCGG
GCCGAAGAGG
CGTCGGTATA
ATTTTCAAGG
GTGATCCTTG
AGGAACGAAA
CAGAACAAGG
AAATCTACCT
AACCCTTACA
AGAAAGCACA
GAGGATTCAG
AACATTGAGA
TAGAAGATTG
TTAGTGAATG
AAACGAATTT
ATGTAAGAGG

TCAATCCTTG
AAAATATGTA
ATCTCCACCT
AAAATGCCTG
TGAAACATTT
TGAACGACAA
GGITACGITT
TTCTAACCGG
CAATGGGTGT
GAACCAGTAA
CATGATCATG
CAGAATCCTC
GCGAAATTCT
GAAACTAGGG
CAAGAAGAGA
CAACAACGCA
CGTTATGITG
ATGCCAATAC
AGTGAGACTT
CAATAAGGAC
GCAGAGACAG
CAAGCGATTA
AGGCCATCGA
CGTGCGGCAC
AAAGTTTATA
AGAAGCAAAA
TTGGTTCGGG
CTTCATTTAG
ATTGGATAGG
AAGCTACGCC
TTTGTGTGA

CCAATCCTTG

CCTTGTGGEGT
AGCTGGTTAG
AAAGCGATAC
CAAGGCAATG
TTCACCGTGT
ACATGAGAAG
AAAGATGGAT
CACAATGATT
CAAATTCTCG
GCCTGGCACT
TGGGCCATTT
AGATGAGATC
ACATAGAAAA
TTGTATCCAG
CACGGTCGCT
TATGGAAAAT
CGACCAGAGA
ACAAAACTTT
GCTCTTCATT
CAATCATTTG
GAGCCCTGEC
GTCCACGTCT

TTTTCGITTT
AAAGCTCCTG
TCTCGGTGGC
ACCACTACGG
GTTGGGAGCA
AGCCTTGGCT
TCTGGCTCGA
CGCCTTCAGA
GAAAGATTTG
TGGITGATCT
AGAATGGT GG
GGAACATACC
TTCACCTCGT
TGGCTTGATT
GTTAGATGTIG
AAGITTCAGG

GATTTTGATG
AAGAAGATCA
GTCTTGCTCG
CCTGITGACA
TCTTGAGGTT

TTTTCGITTT
AAAGCTCCTG
TCTCGGTGGC

XV
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151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501
1551

AAGGAACAGC
TCCAGCCATG
GITTTGAGGT
TCACGTCCTA
TTTCGGGITT
CAACCATCGA
CGIGITTCTG
CAAGAATGEC
AGGACATGAC
TTTGGAGECG
ATGCAAAAAG
TGICAGATGC
AAGGAGATGA
GATTGAAAAC
ATTCAGACTT
TCGCATCTCC
ACTGATTCTT
TTTCTCTTCT
ATCGACATCC
AAATTTGGTG
CAGCTGGTICC
GCTGGITACT
AATCCAAAGA
AGAGGTTCAT
TTTGAGCTGA
ATTGGCCATG
TTGACGTGAA
GGCTTAACCA
TATTAAGGAA

TTCTCTACCG AACCTTAGGA
TCGCTACAAC TTGGGAGCAA
GGCTAAAGAT TGITTTACTG
TGACTGCAGC TGCAAAGCAC
GCCCCTTATA GCGCTTTCTG
GCTTCTTTCT AACCGGCGEC
AGATCACAAT GGGTGTGAAA
GGTACAAAAC CAGTAATGGT
TCTGAACATG ATCGTGAGAA
GAGGCTCAGT ATCGTCGGAG
GCCATCGCAA AGITCTTTCA
TTTTCCGACA CTAAGITTTT
AGCAAACGGEG AAGCGAATTA
CATCGACAAC AACGCAAATT
CATCGACGIT ATGATGICGC
AGTATGATGC AAATACTAGC
GGAGGAAGTG ACACTTCAGC
TCTAAACAAT AAAGAAATGT
ACGTCGGCAG AGACAGGAAC
TATCTTCAAG CAATTATCAA
TCTCTTAGGC CCTCGAGAGG
ACGITCCGTG CGGCACAAGA
GATCCGAAAG TTTATATGGA
TACAGGAGAA GCAAAAGAGT
TGCCATTTGG TTCAGGAAGA
CAAGTGCTTC ATTTAGGICT
AACTGITATG GATATGCCTG
TTCCTAAAGC CACGCCTCTT
GAACTTTTTG TGTGA

Sequence of the C. rubella ORF Cr-73278

51
101
151
201
251
301
351
401
451
501
551
601
651

751
801
851

951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501
1551

ATGGATACGT
TATCGCTCTC
AACCTAGCGG
AAAGAACAGC
CGCAGCCATG
GITTTGAAGT
TCACGTCCTA
TTTCGGGITT
CAACCATCGA
CGIGITTCTG
CAAAAAAGGT
ACGACATGAC
TTTGGAGECG
ATGCAAAAAG
TGITCCGATGC
AAGGAGATGA
GGTTGAAAAC
ATTCAGACTT
TCGCATCTTC
ACTGATTCTA
TTGCTCTTCT
ATAGACCTCC
AAATCTGGTG
CAGCTGGTICC
GCCGGTCACA
AATCCAAAGG
AGAGGTTTGT
TTTGAGCTGA
ATTGGCCATG
TTGATGTGAA
GGCCTGACCA
TCTTAAGGAA

CTCTCTTTTC TCTATTTGIT
TTTAAGAAAT CGAAGAAACC
CGCATGGECCT ATCATCGGECC
TTCTCTATCG AACCTTAGGA
TCGCTACAAC TTGGGAGCAG
GGCTAAAGAT TGITTCACTG
TGACTGCAGC CGCAAAGCAC
GCACCTTATA GCGCTTTCTG
GCTACTTTCT AACCGGECGGEC
AGATCTCAAT GGGTGTAAAC
GGTTCAGAAC CAGTAATGGT
ACTAAACATG GTCGTGAGAA
CCGGCTCAGA ATCCTCGAAG
GCCATCGCAA AGITCTTTCA
TTTTCCGACG CTAGGGTGGT
AGCAAACGGEG AATCGAATTA
CATCGACAAC AAAGAAAAGT
CATCGACGIT ATGITGICAC
AATATGATGC TAATATTAGC
GGAGGAAGTG AGACTACATC
TCTTAACAAC AAAGAAATGT
ACGITGGCAC AGAAAGGAAC
TATGITCAAG CAATTATCAA
ACTCTTAGGC CCTCGAGAGG
ACGITTCTCG CGGCACAAGA
GATCCGAGAG TTTATATGGA
TACAGGAGAA GCAAAAAAGT
TGCCATTTGG TTCGGGAAGA
CAAGTGCTTC ATCTAGGTICT
AACTGTCTCG GATATGGECTG
TTCCTAAAGC CACGCCACTT
CATCTTTTCG TGTAA

AAAATGCCTG
TGAAGCATTT
TGAACGACAA
ATGGGITACA
GCGTGAGATG
TTCAGATGCT
GATTTGTATT
TGATCTAAAG
TGGTGGCAGG
GATACTGAAG
CCTCATCGGT
TTGATTTGCA
GATGTGATCC
TTCAGGAACG
TTGCGGAACA
ATCAAATCTA
ATCAACCCTT
TAAAGAAAGC
GTCGAGGATT
AGAAACATTG
CGATGGAAGA

TGCTCGITTC
TTGATATGAG
GAGGITCTGA

CCCATCCTCC
AAAACATGIT
ATCTTCACCT
AAAATGCCTG
CGAAGCATTT
TGAACGACAA
ATGGGITACA
GCGTGAGATG
TTCAGATGCT
TATTTGTATT
TGATCTAAAG
TGGTTGCCGG
GACACTGAAG
CCTCATTGGT
TTGATTTGCA
GATGTGATCC
TTCAGGACCG
TTGCAGAACA
ATCAAATCTA
ATCTACACTT
TAAAGAAAGC
GTCGAGGATT
AGAAACATTG
CGATGGAAGA
CTGATAGTGA
ACCAAACGAG
TTGACGICAG
AGATCATGCC
TGCTCGAATC
TCGATATGAG
GAGGITCTGA

ACCACTACGG
GTTGTGAGCA
GGCCTTGGECT
ATTTTGCTGT
CGTAAAATCG
CAAGCACGIT
CCTTGIGGIT
AGCTGGITAG
AAAACGATAC
AGGCAATGCA
ATATTCACTG
AGGACATGAG
TTGAAAGATG
AAAGAGAATG
AGGAAAACTC
CCTGCCTGEC
ACATGGGCCA
ACAAGATGAG
CAGACATAGA
AGATTGTATC
TTGCACGGTC
ACGTATGGAA
TTCAGACCAG
AGGACAAAAC
CAGGCTCTTC

TTATCGITCT
AAAGCTCCTA
TATCAGITGGC
ACCATTACGG
GTTGTGAGCA
AGCCTTGGCT
ATTTTGCTGT
CGTAAAATCG
CAAGCACGIT
CCTTGTGGEGT
AGCTGGITAG
AAAACGATAC
AGGCAAGGCA
ATATTCACTG
AGGACATGAG
TTGAAAGATG
AAAGAGAATG

TTAGICCACG

XV



Appendix

Sequence of the A. thaliana ORF At-73277

1
51
101
151
201
251
301
351

ATGGAAGCAA CTATGITTGA TGGGITTATG AATGITCCAA GAGCCGGTTT
AGATGCTTCA GGGCACGATG TCCGICTTCA TATTAGCTTG CTTGITGACA
TTTCCAAGGT TGATGGAAGT GAAGAGATCG AGITCCTTTG CTCCGICTGG
CCTAACCGTA TTGAAATTCG AAAGCTTTAC AAGCTTAGAC GCAACAAAAT
CACTGGICAG CCTTACATGG GACCTAATTT TGGGAATTTG AAGTATGATT
TTCAGACAGC GATTCGGGAG TTTTTACGAG TAAGAGGAAT CGACGCAGAG
CTTTGITTTT TCTTGCATGA ATATATGATG AATAAGGATA GGATTGAGCT
CATTCAATGG TTGA

Sequence of the B. oleracea ORF Bo-73277 locus chromosome 1

1
51
101
151
201
251
301
351

ATGGAAGCGA CCATGITTGA TGGGITTATG TCTGITCTAA GAACCGGTTT
AGATGCTTCA GGGAGCGATG TCCGCCTCCA CATTAGCTTG CTTGTCAACA
TTAGCAAGGC TGATGGAAAT GACGAGATAG AGITCCTCTG CTCTGICTGG
TCTAACCGCA TCGAAATTCA AAACCTTTAC ATGCTTAGAC GCAACAAAGT
CATTCCTAAG ACTTACATGG GACCCAGTTT CGGGAGITTG AAGTATGATT
TTCAGACGGC GGTTAAAGAG TTTTTGCGAG TAAGAGGAAT CTACGGGGAG
CTTTGCTTTT TCTTGCATGA GTATATGATG AACAAGGATA GGATTGAGCT
CATCAATGGT TGA

Sequence of the B. oleracea ORF Bo-73277 locus chromosome 7

51
101
151
201
251
301
351

ATGGAAGCAA CTATGITCGA TGGGITTATG ACTGITCCAC GAACCGGTTT
AGATGCTTCA GGGCGCGACG TCCTTCTTCA CGITAGCCTT CTTGTCGACA
TCTCCAAGGC TGATGGGAGT GAAGACATGG AGITCCTCTG CTCCGTATGG
CCTAACCGTA TCGAAATTCA AAACCTTTAC ATGCTTAGAC GTGATAAAAT
CACTGGCCAG CCTTACATGG GACCAAAGTT CGGGAGICTG AGGTATGATT
TTCAGACGGC GATTAAAGAG TTTTTGCGAG TAAGAGGGAT AGACTCGGAG
CTTTGCTTTT TCTTGCATGA ATATATGATG AATAAAGATA GGATTGAGCT
CATCAATGGT TGA

XVI
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