Zur Affinität von Quecksilber zu Stickstoff-Donorliganden

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Peter Nockemann

aus Halver

Köln 2002

Berichterstatter: Prof. Dr. Gerd Meyer Prof. Dr. Walter Jung

Tag der mündlichen Prüfung: 4.7.2002

"Das Sichtbare und Greifbare ist der Körper der Welt, der da aus den drei Urstoffen besteht, dem Schwefel, Quecksilber und Sal3."

Paracelsus (1497-1541)

[aus: Paracelsus, Sämtliche Werke, Herausg. B. Aschner, Verlag G. Fischer, Jena, IV, 1926, 800.]

Die experimentellen Untersuchungen für die vorliegende Arbeit wurden von Januar 2001 bis Februar 2002 am Institut für Anorganische Chemie der Universität zu Köln unter Anleitung von Prof. Dr. Gerd Meyer durchgeführt.

Herrn Prof. Dr. Gerd Meyer danke ich herzlich für seine großzügige Förderung und Unterstützung sowie für sein stetes Interesse an dieser Arbeit.

Inhaltsübersicht

Mit der Verbindung [Hg(NH₃)₂][HgCl₃]₂ wurde erstmals röntgenographisch die Struktur eines ausgeordneten Diammins des Quecksilbers bestimmt. Für die strukturell charakterisierte Verbindung [Hg(NH₃)₄](ClO₄)₂ wurde eine im Gegensatz zu den Homologen Zink und Cadmium verzerrte $[Hg(NH_3)_4]^{2+}$ -Tetraedersymmetrie gefunden. Mit A[Hg₃(NH)₂](NO₃)₃ (A = NH₄, K) konnte erstmals die Struktur einer über Imid-Gruppen verknüpften Raumnetzstruktur des Quecksilbers am Einkristall bestimmt werden. Der thermische Abbau führt zum "Nitrat der Millonschen Base" [Hg₂N]NO₃, welches erstmals am Einkristall in der azentrischen Raumgruppe P4₃2₁2 charakterisiert wurde. Die Verbindungen [Hg(py)₂] X_2 , (X = Cl, Br, I) wurden strukturell neu bestimmt und infrarotspektroskopisch und thermoanalytisch bzgl. ihrer Umwandlung in [Hg₃(py)₂]Cl₆ und [Hg₃(py)₂]Br₆ untersucht. Durch Umsetzung von Diazinen mit Quecksilber(II)-Verbindungen wurden die koordinationspolymeren Verbindungen Cl, Br), [Hg(Pyridazin)]X₂, [Hg(Pyrimidin)]X₂ (X =[Hg(Pyrazin)]Cl₂ und [Hg(Pyrazin)₂]Br₂ mit einer polymeren Verknüpfung zu Strängen sowie die zu Schichten verknüpften Verbindungen $[Hg(Pyrimidin)_2](ClO_4)_2$, $[Hg(Pyrazin)_2](ClO_4)_2$ und [Hg(Pyrimidin)₂](NO₃)₂ erhalten. Die Struktur von [HgCl][Hg(Purin)Cl₂] besteht aus Purin-Molekülen, die über alle vier Stickstoffatome zum Quecksilber koordinieren. Die Struktur von [Hg(H-Purin)(CF₃)₂]₄ besteht aus Hg(CF₃)₂ – Molekülen, die über Purin-Moleküle zu tetrameren Einheiten verknüpft werden. Die Struktur von $Hg_2(admtrz)X_4$ (X = Cl, Br) besteht aus jeweils zwei HgX2-Einheiten, die an die zwei benachbarten Stickstoffatome der 3,5-Dimethyl-4'-Amino-1,2,4-Triazol- Moleküle koordiniert sind. Die Struktur von β-[Hg(admtrz)(CF₃)₂]₂ besteht aus einer Molekülpackung von Dimeren der über Stickstoff koordinierten Verbindung und geht bei tiefen Temperaturen in α -[Hg(admtrz)(CF₃)₂]₂ über. In Hg(Anilin)₂Cl₂ findet sich Molekülpackung von verzerrt tetraedrisch von zwei Chloratomen und zwei über NH₂-Gruppen an Quecksilber koordinierenden Anilin-Molekülen umgeben. Die Struktur von $Hg_2(utp)Cl_4$ ist charakterisiert durch Doppelschichten von $HgCl_2$ -Einheiten, die durch Urotropin-Molekül-Schichten verknüpft sind. In der Struktur von [MM⁺(HgCl₃)⁻]·MM liegt Melamin in einer protonierten Form vor, so dass sich Zwitterionen mit [HgCl₃]⁻ - Anionen bilden. Die Strukturen von [Hg(py)4](ClO4)2 und [Hg(py)4](ClO4)2·2Py bestehen aus einer Packung von Molekülen von vierfach verzerrt quadratisch planar von Pyridin koordiniertem Quecksilber. Die Struktur von $[Hg(utp)_2(NO_3)_3] \cdot utp \cdot H_3O^+$ ist bestimmt durch hexagonal bipyramidale [Hg(UTP)₂(NO₃)₃]⁻ - Anionen. Die Struktur von [Hg₂(dmgly)₂](NO₃)₂ besteht aus Hg₂²⁺-Hanteln, die beidseitig von jeweils zwei Stickstoffatomen der Dimethylglyoxim-Liganden koordiniert werden. Die Strukturen von [Hg2(Pyrimidin)](NO3)2 und [Hg2(Pyrimidin)](CIO4)2 zeichnen sich aus durch Hg2²⁺-Hanteln, die über Pyrimidin-Moleküle über die Stickstoffatome zu Strängen verknüpft sind. In [Hg₂(Pyrazin)₂](ClO₄)₂ liegen Schichten von zweidimensional über Pyrazin-Moleküle vernetzten Hg2²⁺-Hanteln vor.

Abstract

For the first time, the crystal-structure of an ordered mercury diammine complex $[Hg(NH_3)_2][HgCl_3]_2$ was determined from single crystal data. For the structurally characterized compound $[Hg(NH_3)_4](ClO_4)_2$ a distorted $[Hg(NH_3)_4]^{2+}$ tetrahedral symmetry was found contrary to the homologous compounds of zinc and cadmium. $A[Hg_3(NH)_2](NO_3)_3$ (A = NH₄, K) is the first mercury compound whose structure was ascertained to consist of a three dimensional network connected via imido-groups. The thermal decomposition of $NH_4[Hg_3(NH)_2](NO_3)_3$ leads to the nitrate of Millon's base $[Hg_2N]NO_3$ and crystallizes in the non-centrosymmetric space group P4₁2₁2. Its structure could be determined with single crystals suitable for x-ray crystallography. The compounds $[Hg(py)_2]X_2$, (X = Cl, Br, I) were structurally determined anew and were investigated I.R.-spectroscopically as well as thermoanalytically with regard to their transformation to $[Hg_3(py)_2]Cl_6$ and $[Hg_3(py)_2]Br_6$.

It was possible to obtain a variety of coordination polymers $[Hg(pyridazine)]X_2$, $[Hg(pyrazine)]X_2$ (X = Cl, Br), $[Hg(pyrazine)]Cl_2$, $[Hg(pyrazine)_2]Br_2$ and $[Hg(pyrimidine)_2](ClO_4)_2$, $[Hg(pyrazine)_2](ClO_4)_2$ und $[Hg(pyrimidine)_2](NO_3)_2$ by reactions of diazines with mercury(II)-salts. The structures of the former consist of chains whereas the latter form layers. In the structure of [HgCl][Hg(purine)Cl₂] all four nitrogen atoms of the purine molecules coordinate to mercury atoms. In [Hg(H-purine)(CF₃)₂]₄ Hg(CF)₃ molecules are connected via purine molecules forming tetrameric units. The structure of $Hg_2(admtrz)X_4$ (X = Cl, Br) consists of two HgX_2 units that are coordinated via the two neighbouring nitrogen atoms in the 3,5-Dimethyl-4'-Amino-1,2,4-Triazole molecule. β- $[Hg(admtrz)(CF_3)_2]_2$ consists of a molecular packing of dimers and transforms to α -[Hg(admtrz)(CF₃)₂]₂ at lower temperatures. In Hg(aniline)₂Cl₂ two chlorine atoms and two NH₂-groups of the aniline molecules form isolated distorted tetrahedra around coordinated mercury atoms, the structure can also be described as a molecular packing. The structure of $Hg_2(utp)Cl_4$ is characterized by double layers of $HgCl_2$ units which are connected via layers of urotropine molecules. [MM⁺(HgCl₃)]·MM contains protonated melamine which coordinate [HgCl₃]⁻ anions. The structures of [Hg(py)₄](ClO₄)₂ and [Hg(py)₄](ClO₄)₂·2Py consist of packed molecules with a fourfold coordination of mercury by pyridine that form a distorted square plane around mercury. The main feature of [Hg(utp)₂(NO₃)₃]·utp·H₃O⁺ is a hexagonal bipyramidal $[Hg(UTP)_2(NO_3)_3]^-$ anion. The structure of $[Hg_2(dmgly)_2](NO_3)_2$ is made up of dumb-bells that are coordinated by two nitrogen atoms of pyrimidine. Hg_{2}^{2+} $[Hg_2(pyrimidine)](NO_3)_2$ and $[Hg_2(pyrimidine)](ClO_4)_2$ also contain Hg_2^{2+} dumb-bells whereas in these cases the coordination by pyrimidine molecules leads to the formation of chains. Furthermore, in $[Hg_2(pyrazine)_2](ClO_4)_2$ a two-dimensional network of Hg_2^{2+} dumbbells coordinated by pyrazine molecules is observed.

Ι	ALLGE	MEINER TEIL	1
1	Einl	EITUNG	1
2	Elek	TRONISCHE SITUATION UND RELATIVISTISCHE EFFEKTE DES QUECKSILBERS	
3	Die A	AFFINITÄT DES QUECKSILBERS ZU STICKSTOFF	6
4	ALLO	GEMEINES ZUR KOORDINATIONSCHEMIE DES QUECKSILBERS ^{[5],[6],[8],[9]}	
5	LIGA	NDENEIGENSCHAFTEN VON ORGANISCHEN N-HETEROCYCLEN	9
	ODEZH		11
п	SPEZIE	SLLEK TEIL	11
1	Reak	TIONEN VON QUECKSILBER(II) MIT AMMONIAK	11
	1.1	Die Bildung von Quecksilber(II) – Ammoniakaten	11
	1.1.1	Einleitung	11
	1.1.2	Kristallstruktur von [Hg(NH ₃) ₂][HgCl ₃] ₂	13
	1.1.3	Kristallstruktur von [Hg(NH ₃) ₄](ClO ₄) ₂	16
	1.1.4	Schwingungsspektroskopische Untersuchungen an $[Hg(NH_3)_4](CIO_4)_2$	18
	1.1.5	Diskussion zu den Quecksilber(II)-Ammoniakaten.	20
	1.2	<i>Kaumneizverknupjte Quecksitber(II)-Sitckstojj-verbinaungen</i>	23
	1.2.1	Entirements K ristallstruktur von NH.[Hga(NH)a](NOa)a und K[Hga(NH)a](NOa)a	23 24
	1.2.2	Kristallstruktur von [Hg ₂ N]NO ₂	
	1.2.4	Thermische Analysen	30
	1.2.5	Schwingungsspektroskopische Messungen	32
	1.2.6	Diskussion zu raumnetzverknüpften Quecksilber(II)-Stickstoff-Verbindungen	33
2	N-HI	TEROCYCLEN ALS LIGANDEN VON QUECKSILBER(II)-VERBINDUNGEN	40
	2.1	Einleitung	40
	2.2	Pyridin als Ligand von Quecksilber(II)-halogeniden	42
	2.2.1	Kristallstruktur von Hg(Pyridin) ₂ Cl ₂	42
	2.2.2	Kristallstruktur von Hg(Pyridin) ₂ Br ₂	44
	2.2.3	Kristallstruktur von Hg(Pyridin) ₂ I ₂	45
	2.2.4	Kristalistruktur von Hg ₃ (Pyridin) ₂ Cl_6	47
	2.2.5	Schwingungssnektroskonische Untersuchungen an Pyridin-koordinierten	
	Ouecl	ksilber(II)halogeniden	51
	2.2.7	Thermische Zersetzung von HgPy ₂ Cl ₂ und HgPy ₂ Br ₂	53
	2.3	Diskussion der Trends für Quecksilber(II)-halogenide mit Pyridin-Liganden	55
	2.4	Diazine als Liganden von Quecksilber(II)-halogeniden	59
	2.4.1	Kristallstruktur von Hg(Pyridazin)Cl ₂	59
	2.4.2	Kristallstruktur von Hg(Pyridazin)Br ₂	61
	2.4.3	Kristallstruktur von Hg(Pyrimidin)Cl ₂	63
	2.4.4	Kristallstruktur von Hg(Pyrimidin)Br ₂	64
	2.4.5	Kristalistruktur von Hg(Pyrazin) Pr	60
	2.4.0	Distrussion day koordinationspolymeran Addukte von Diaginan an Quacksilher(II)	07
	2.J halogan	ida	60
	7 6	Purin als Ligand von Quacksilhar(II) chlorid und his trifluormathylat	09
	2.0	Kristallstruktur von [HgCl][Hg(Purin)Cl_]	74 74
	2.6.2	Kristallstruktur von [Hg(Purin)(CF ₂) ₁	
	2.6.3	Diskussion der Reaktivität von Purin als Ligand von Quecksilber(II)-Verbindungen	
	2.7	3,5-Dimethyl-4'-Amino-1,2,4-triazol als Ligand von Quecksilber(II)halogeniden	83
	2.7.1	Kristallstruktur von Hg ₂ (admtrz)Cl ₄	83
	2.7.2	Kristallstruktur von Hg ₂ (admtrz)Br ₄	86
	2.7.3	Kristallstruktur von RT-[Hg(admtrz)(CF ₃) ₂] ₂	88
	2.7.4	Kristallstruktur von TT-[Hg(admtrz)(CF ₃) ₂] ₂	89
	2.7.3	Diskussion der Additionsverbindungen von "admtrz" an Quecksilber(II)-Verbindungen	
	∠.ð	Anuin, Meiamin una Uroiropin als Liganaen von Quecksilber(II)-halogeniden	93
	2.8.1 282	N IISIAIISITUKUUF VON $Hg(AIIIIII)_2 \cup l_2$	95 06
	2.0.2 2.8.3	Kristallstruktur von [MelaminH ⁺ (H σ Cl ₂)]·Melamin	90 90
	2.8.4	Diskussion der Additionsverbindungen von HgCl ₂ an Anilin. Urotronin und Melamin	100
	2.9	<i>N</i> -Heterocyclen als Liganden in <i>Quecksilber(II)nitraten und –perchloraten</i>	106
	2.9.1	Kristallstruktur von [Hg(Pyridin) ₄](ClO ₄) ₂	106
	2.9.2	Kristallstruktur von $[Hg(Py)_4](ClO_4)_2 \cdot 2Py$	108
	2.9.3	Schwingungsspektroskopischer Vergleich von [Hg(Py) ₄](ClO ₄) ₂ und [Hg(Py) ₂](ClO ₄) ₂	109

	294 Kristallstruktur von [Hø(Pyrimidin)](ClO ₄)	111		
	2.95 Kristallstruktur von [Hg(Pyrazin) ₂](ClO ₄) ₂	113		
	2.9.6 Kristallstruktur von [Hg(Pvrimidin) ₂](NO ₂)			
	2.9.7 Kristallstruktur von $[Hg(utp)_2(NO_3)_2]^{-1}$ utp H_3O^+	120		
	2.9.8 Schwingungsspektroskopische Charakterisierung von $Hg(utp)Cl_2$ und $[Hg(utp)_2(NO_3)_3]$	utp•H ₃ O ⁺		
	122 2.9.9 Diskussion der Quecksilber-Stickstoff-Koordinationsverbindungen mit den "härteren" A Perchlorat und Nitrat			
	2.10 Zusammenfassende Betrachtung des Koordinationsverhaltens von Stickstoff-Donat	oren in		
	der Koordinationssphäre des Quecksilbers im Hinblick auf die Stickstoff-Affinität	127		
3	STABILE QUECKSILBER(I)- STICKSTOFF-VERBINDUNGEN	135		
	3.1 Einleitung	135		
	3.2 Kristallstruktur von [Hg ₂ (dmglv) ₂](NO ₂) ₂	136		
	$\frac{3.2}{11} = \frac{11}{11} \frac$	138		
	3.4 Kristallstruktur von [Hg./Pyrimidin]](ClO)	140		
	$2.5 \qquad Kristallstruktur von [Hz (Dynazin)](ClO_4).$	140		
	$5.5 \qquad \text{Kristaustruktur von } [\text{Hg}_2(\text{Fyrazin})_2](\text{CtO}_4)_2$	142		
	3.0 Schwingungsspektroskopische Messungen	145		
	3. / Diskussion der stabilen Quecksilber(1)-Stickstoff-Verbindungen	146		
4	ZUSAMMENFASSUNG UND AUSBLICK	150		
Ш	EXPERIMENTELLER TEIL	155		
1	Vedzelounie vedwendeted Cedäte	155		
1	VERZEICHNIS VERWENDETER GERATE	155		
2	VERZEICHNIS VERWENDETER CHEMIKALIEN	155		
3	VERZEICHNIS VERWENDETER COMPUTERPROGRAMME	157		
4	ZUR KRISTALLISATION AUS LÖSUNGEN	158		
	4.1 Hydrothermale und solvothermale Kristallzüchtung [83]	158		
	4.2 Kristallzüchtung und Kristallwachstum	161		
5	SYNTHESEN DER QUECKSILBER-STICKSTOFF-VERBINDUNGEN	162		
	5.1 Synthese von Quecksilber(II)-Ammoniakaten	162		
	5.1.1 Darstellung von [Hg(NH ₃) ₂][HgCl ₃] ₂	162		
	5.1.2 Darstellung von $[Hg(NH_3)_4](ClO_4)_2$	162		
	5.1.3 Darstellung von $NH_4[Hg_3(NH)_2](NO_3)_3$	163		
	5.1.4 Darstellung von K[Hg ₃ (NH) ₂](NO ₃) ₃	163		
	5.1.5 Darstellung von [Hg ₂ N]NO ₃	163		
	5.2 Synthese von Quecksilber(II)-halogeniden mit Pyridin als Ligand	164		
	5.2.1 Darstellung von [Hg(Py) ₂]Cl ₂	164		
	5.2.2 Darstellung von [Hg(Py) ₂]Br ₂	164		
	5.2.3 Darstellung von $[Hg(Py)_2]I_2$	165		
	5.2.4 Darstellung von $Hg_3(Py)_2Cl_6$	165		
	5.2.5 Darstellung von $Hg_3(Py)_2Br_6$	165		
	5.3 Synthese von Quecksilber(II)-halogeniden mit Diazinen als Liganden	165		
	5.3.1 Darstellung von Hg(Pyridazin)Cl ₂	165		
	5.3.2 Darstellung von Hg(Pyridazin)Br ₂	166		
	5.3.3 Darstellung von Hg(Pyrimidin)Cl ₂	166		
	5.3.4 Darstellung von Hg(Pyrimidin)Br ₂	166		
	5.3.5 Darstellung von Hg(Pyrazin)Cl ₂	166		
	5.3.6 Darstellung von $Hg(Pyrazin)_2Br_2$	167		
	5.4 Darstellung von Verbindungen mit Purin als Ligand von Quecksilber(II)-chlorid u	nd –bis-		
	trifluormethylat	167		
	5.4.1 Darstellung von [HgCl][Hg(Purin)Cl ₂]	167		
	5.4.2 Darstellung von $[Hg(Purin)(CF_3)_2]_4$	167		
	5.5 Darstellung von Verbindungen mit 3,5-Dimethyl-4'-Amino-1,2,4-triazol als Ligand	l von		
	Quecksilber(II)halogeniden	168		
	5.5.1 Darstellung von $Hg_2(admtrz)Cl_4$	168		
	5.5.2 Darstellung von $Hg_2(admtrz)Br_4$	169		
	5.5.3 Darstellung von [Hg(admtrz)(CF_3) ₂] ₂	169		
	5.5.4 Darstellung von Hg(Anilin) ₂ Cl ₂	170		
	5.5.5 Darstellung von $Hg_2(utp)Cl_4$	170		
	5.5.0 Darstellung von [MelaminH (HgCl ₃)] · Melamin	170		
	5.5.7 Darstellung von $[Hg(Py)_4](CIO_4)_2$.	1/0		
	5.5.0 Darstellung von [Hg(Fy)4](CIO ₄) ₂ ·2Py	1/1 171		
	5.5.7 Datstellung von $[Hg(Pyrmun)_2](CIO_4)_2$	1/1 171		
	5.5.10 Datstellung von [Hg(FyldZIII)2](ClO4)2	1/1 171		
	5.5.11 Datstellung von [$Hg(tr y)$ [$Hu(tr)_2$](HO_3) ₂	1/1 171		
	5.5.12 Datstenung von [11g(utp)2(11($3)$ 3] utp[113]	1/1		

	5.6	Synthese von Quecksilber(I)-Verbindungen mit N-Heterocyclen als Liganden	172
	5.6.1	Darstellung von [Hg ₂ (dmgly) ₂](NO ₃) ₂	
	5.6.2	Darstellung von [Hg ₂ (Pyrimidin)](NO ₃) ₂	
	5.6.3	Darstellung von [Hg ₂ (Pyrimidin)](ClO ₄) ₂	
	5.6.4	Darstellung von [Hg ₂ (Pyrazin) ₂](ClO ₄) ₂	
6	Meti	HODEN ZUR PRODUKTCHARAKTERISIERUNG	173
	6.1	Kristallstrukturbestimmung ^{[85],[86],[87],[88]}	173
	6.1.1	Der Strukturfaktor	173
	6.1.2	Die Patterson-Methode	
	6.1.3	Die Direkten Methoden	175
	6.1.4	Strukturverfeinerung	175
	6.1.5	Kristallographische R-Werte	175
	6.1.6	Absorptionskorrektur	
	6.1.7	Extinktion	177
	6.1.8	Temperaturfaktor	178
	6.2	Pulverdiffraktometrie	179
	6.3	Temperaturaufgelöste "in-situ"- Pulverdiffratometrie	179
	6.4	Einkristallstrukturanalyse mit dem Imaging Plate Diffraction System	
	6.5	Infrarot- und Ramanspektroskopie	
	6.6	SHG - Effekt	
	6.7	Thermische Analysen	181
IV	LITER	ATURVERZEICHNIS	
V	ANHAN	NG	188
1	INFR.	AROT- UND RAMANSPEKTREN	
	1.1	Infrarotspektren und Zuordnung von $Hg(Pyrimidin)X_2$ (X = Cl, Br)	
	1.2	Infrarotspektren und Zuordnung von $Hg(Pvrimidin)X_2$ (X=ClO ₄ , NO ₃)	
	1.3	Infrarotspektrum von Hg ₂ (admtrz)Cl ₄	
2	LAGE	EPARAMETER UND ANISOTROPE TEMPERATURFAKTOREN	191

I Allgemeiner Teil

1 Einleitung

Bereits bei den Alchemisten G. AGRICOLA (1494 - 1555) [1] oder PARACELSUS (1497-1541) finden Quecksilber-Stickstoff-Verbindungen Erwähnung. Sie gehen aus Reaktionen des "Sublimates", dem Quecksilber(II)-chlorid, mit Ammoniak oder "Salmiakgeist" hervor. Eine erste umfassende, als wissenschaftlich zu bezeichnende Arbeit stammt von 1846 von E. MILLON (1812 – 1867) [30] und beschreibt detailliert die Reaktionen von Ammoniak mit Quecksilber(II)-oxid zu einem Produkt, das später als "Millonsche Base" bezeichnet wurde. Zur Spurenanalyse von Ammoniak und Ammoniumverbindungen entwickelte JULIUS NEßLER (1827 – 1905) ein Reagenz, bei dem sich das schwerlösliche braune Iodid der "Millonschen Base" bildet.

Doch erst über 100 Jahre später machte 1951 LIPSCOMB [4] einen ersten Strukturvorschlag für die einzigartige kovalente Raumnetzverknüpfung von Quecksilber über Stickstoff gemäß [Hg2N]OH·2H2O aus Pulverdaten. In den folgenden Jahren entwickelte sich allem vor durch die wachsenden Möglichkeiten der Röntgenstrukturanalyse ein reges Interesse an der Struktur- und Koordinationschemie des Quecksilbers, wie Übersichtsartikel von GRDENIĆ [22] und BREITINGER und BRODERSEN [3] belegen.

Dennoch sind bis heute wichtige Fragen der Quecksilber-Stickstoff-Chemie nicht abschliessend beantwortet, da aufgrund der hohen Quecksilber-Stickstoff-Affinität die Bildung von schwerlöslichen und damit unzureichend kristallisierenden Substanzen die Strukturbestimmung erschwert.

Im Rahmen dieser Arbeit wird anhand von neuen und auch bereits bekannten, jedoch erstmals strukturell charakterisierten Quecksilber-Stickstoff-Verbindungen das Augenmerk auf die Koordinationschemie des Quecksilbers und speziell auf die grosse Quecksilber-Stickstoff-Affinität gerichtet. Dabei soll zunächst die Kristallisation und Strukturaufklärung der "klassischen" Salze der "Millonschen" Base und der Ammoniakate am Einkristall erfolgen. Der nächste Schritt ist die Synthese und Charakterisierung von koordinationspolymeren Quecksilber-Stickstoff-Verbindungen durch den Einsatz von Stickstoff-Heterocyclen. Dabei steht vor allem die Untersuchung von Zusammenhängen zwischen der Basizität dieser Liganden und den Auswirkungen auf die Koordinationschemie des Quecksilbers im Vordergrund. Bei der Umsetzung von Quecksilber(I)-Verbindungen mit Ammoniak oder auch Aminen höherer Basizität erhält man unter Disproportionierung elementares Quecksilber und entsprechende Quecksilber(II)-Verbindungen. Bei einer geringeren Basizität des Stickstoff-Donorliganden ist jedoch durchaus die Bildung von Quecksilber(I)-Stickstoff-Verbindungen möglich, da die Metall-Metall-Bindung bei einer gering ausgeprägten Donizität der Lewis-Base durchaus stabil ist. Ein weiteres Anliegen dieser Arbeit war es, nach neuen Liganden für Quecksilber(I)-Verbindungen zu suchen. Dabei erwiesen sich einige N-Heterocyclen als geeignete Liganden für das hantelförmig vorliegende Hg2²⁺, so dass zu Ketten bzw. Schichten verknüpfte koordinationspolymere Quecksilber(I)-Stickstoff-Verbindungen synthetisiert werden konnten.

2 Elektronische Situation und Relativistische Effekte des Quecksilbers

Die nichtrelativistische Schrödinger-Gleichung ist normalerweise die Grundlage der theoretischen Chemie. Die entsprechende relativistische Behandlung liefert die Dirac-Gleichung. Die relativistischen Effekte gewinnen mit steigender Ordnungszahl und Atommasse an Bedeutung. Die s-Elektronen und in geringerem Umfang auch die p-Elektronen werden bei Annäherung an den Kern erheblich beschleunigt und ihre Geschwindigkeit nähert sich der Lichtgeschwindigkeit. Schätzungsweise beträgt die Geschwindigkeit der s-Elektronen beim Quecksilber (Z = 80) über 50% der Lichtgeschwindigkeit. Das führt zu einer Zunahme der Elektronenmasse um ca. 20% und zu einer Abnahme der Orbitalgröße um ca. 20%, was bereits an der inversen Beziehung zwischen Bohrschem Atomradius und Elektronenmasse deutlich wird ($a_0 =$ $4\pi\epsilon h^2/mZe^2$). Die s- und p- Orbitale kontrahieren, während die d- und f-Orbitale expandieren. Der relativistische Effekt ist bei den d- und f-Orbitalen gering, da diese sich kaum in der Nähe des Atomkerns aufhalten. Die zunehmende Abschirmung dieser Elektronen durch die Elektronen in den relativistisch kontrahierten s- und p-Orbitalen führt zu einer Kompensation der Zunahme von Z. Die s- und p-Elektronen werden also stärker in Richtung auf den Kern verschoben, ihre Energie nimmt ab und sie werden stabilisiert. Die d- und f-Orbitale expandieren, die Elektronen werden destabilisiert und ihre Energie nimmt zu. Da die äußersten Elektronen aber die ns- und np-Elektronen und nicht die (n-1)d- oder (n-2)f-Elektronen sind, kontrahiert das Atom als Ganzes.

Abbildung 1: 6s-Orbitalkontraktion als Funktion der Ordnungszahl nach Pyykkö [16]

Dadurch, dass die 5d-Orbitale annähernd die gleiche Energie haben wie die 6s- und 6p-Orbitale, hat ORGEL [12] angenommen, dass das d_z^2 -Orbital an dieser Hybridisierung teilnimmt, dabei Elektronendichte von den Liganden abzieht und so die Komplexe in gewissem Grade stabilisiert. Die erste Stufe dieser Hybridisierung ist, wie in Abbildung 2 dargestellt, die Hybridisierung der s- und d_z^2 -Orbitale unter Bildung eines Hybridorbitals Ψ_1 , bei dem das Maximum der Elektronendichte in der xy-Ebene liegt, und eines Hybridorbitals Ψ_2 mit dem Maximum der Elektronendichte entlang der z-Achse. Die entsprechenden Hybridisierungen sind demnach:

$$\Psi_{d_z^2} - \Psi_s \to \Psi_1 \qquad \qquad \Psi_{d_z^2} + \Psi_s \to \Psi_2$$

Das Elektronenpaar aus dem d_{z^2} -Orbital kann das Hybridorbital Ψ_1 besetzen:

$$5d_{z^2}^2(6s)^0 \to \Psi_1^2 \Psi_2^0$$

Das leere Hybridorbital Ψ_2 kann nun in zweiter Stufe weiter mit dem p_z-Orbital hybridisieren und dabei zwei Orbitale Ψ_3 und Ψ_4 ergeben, die in ähnlicher Weise gegeneinander gerichtet sind (180°-Winkel), wie das bei einfachen sp-Hybridorbitalen der Fall ist, und die senkrecht zu der Ladungsebene des ersten Hybridorbitals Ψ_1 liegen:

$$\Psi_2 + \Psi_{p_z} \to \Psi_3 \qquad \Psi_2 - \Psi_{p_z} \to \Psi_4$$

Diese Hybridorbitale Ψ_3 und Ψ_4 sind nun in der Lage, Elektronendichte von Liganden abzuziehen, die sich in z-Richtung nähern.

Abbildung 2: Hybridisierung der Orbitale $(n-1)d_z^2$, ns und np_z [7]

FISCHER und DRAGO [13] haben diese Vorstellungen erweitert, um zu erklären, warum Hg^{2+} im Gegensatz zu seinen Homologen Zn^{2+} und Cd^{2+} mit tetraedrischer Koordination eine so starke Vorliebe für die Koordinationszahl 2 aufweist. Der durch die relativistischen Effekte verringerte Energieunterschied zwischen 5d- und 6s-Orbitalen führt zu der besonderen Bedeutung der d-s-Hybridisierung bei Quecksilber.

Relativistische Effekte sind ungefähr proportional zu Z^2 , so dass diese bei schwereren Elementen besondere Bedeutung erlangen. Der relativistische Effekt ist im Wesentlichen für die Stabilisierung des 6s-Orbitals und für die "inerten" s-Elektronenpaare bei den Elementen Hg bis Bi verantwortlich.

Durch die relativistische Kontraktion der Atomradien sind auch die Bindungslängen betroffen und kürzer als sie theoretisch ohne relativistische Effekte wären. In Tabelle 1 sind die experimentell ermittelten sowie relativistisch berechneten Bindungslängen von einigen Quecksilberverbindungen den Bindungslängen aus theoretischen, nichtrelativistischen Rechnungen gegenübergestellt. Dabei wird z.B. für Hg₂²⁺ mit 23 pm eine erhebliche Abweichung beobachtet.

	nichtrelativ.	relativ.	exp.		
Molekül	Rechnung /	Rechnung /	Befund /	Methode	D(NR-R)
	pm	pm	pm		
HaH ⁺	188	164	150 /	Hartree-Fock-	24
ngn			139,4	Slater	27
	216	203	209	Hartree-Fock-	13
пg(Сп ₃) ₂				Slater	
HgCl ₂	241	229	225	PP-Hartree-Fock	12
Ца ²⁺	210	262	250	Hartree-Fock-	49
пу ₂	312	203	200	Slater	

Tabelle 1: Quecksilber – Ligand-Abstände in pm nach relativistischen Rechnungen gegenüber nichtrelativistischen Rechnungen nach Pyykkö [16]

Die Valenz-Schwingungsfrequenz ω von Hg₂²⁺ beträgt nach experimentellen Befunden sowie relativistischen Hartree-Fock-Slater – Rechnungen 182 cm⁻¹, während sie nach nichtrelativistischen Rechnungen bei nur 107 cm⁻¹ liegt [14]. Relativistische quantenmechanische Rechnungen von NEISLER und PITZER [15] haben für das interatomare Energiepotential V(Hg·····Hg) ein um ca. 45% niedrigeres Energieminimum als in nichtrelativistischen Rechnungen ergeben. In Abbildung 3 sind die berechneten Potentialkurven einander gegenübergestellt.

Abbildung 3: Relativistisches und nichtrelativistisches Energiepotential der Quecksilber-Quecksilber-Bindung nach NEISLER und PITZER [15]

Die Eigenschaft des Quecksilbers, bei Raumtemperatur flüssig zu sein sowie das chemisch relativ edle Verhalten, das Quecksilber gelegentlich nach Pyykkö [16] die

Bezeichnung "Pseudohelium" verleiht, sind ebenfalls auf die relativistische Kontraktion des gefüllten 6s²-Orbitals zurückzuführen.

Wenn auch bislang diverse Eigenschaften des Quecksilbers zumindest qualitativ auf die relativistischen Effekte zurückzuführen sind, sind noch längst nicht alle offenen Fragen abschließend und quantitativ beantwortet. So ist beispielsweise die oben angeführte Deutung der Bevorzugung der linearen Koordination von Quecksilber(II) z.B. durch detaillierte Analysen der Bindung in linearen Quecksilberverbindungen gestützt, eine vergleichende theoretische Studie beispielsweise der Bildungsenthalpien der Komplexe mit C.N. = 2 und C.N. = 4 existiert jedoch noch nicht. Ebenso ist bislang nach Pyykkö [16] noch keine theoretische bzw. relativistische Deutung der hohen Quecksilber-Schwefel-Affinität gelungen, die beispielsweise in den Mercaptanen (*lat.: mercurio captum: Quecksilber-", Fänger"*) zum Ausdruck kommt. Gleiches gilt auch für die Quecksilber-Stickstoff-Affinität.

3 Die Affinität des Quecksilbers zu Stickstoff

Zu der Verbindungsklasse der Quecksilber-Stickstoff-Verbindungen gehören lange bekannte Substanzen wie z. B. die "Millonsche Base", Hg₂NOH·2H₂O, oder das unschmelzbare Präzipitat HgNH₂Cl. Eine besondere Bedeutung hat auch das schwerlösliche Iodid der Millonschen Base Hg₂NI als Nachweisreagenz für Stickstoffverbindungen. Quecksilber(II)-Verbindungen sind somit in der Lage, Ammoniumverbindungen vollständig zu "merkurieren". Diese einzigartige Fähigkeit des Quecksilbers beruht auf der außerordentlichen Stabilität der kovalenten Quecksilber-Stickstoff-Bindung.

Diese Stärke der Quecksilber-Stickstoff-Bindung wird auch für die biologische Wirkung von anorganischen und organischen Quecksilber-Verbindungen verantwortlich gemacht. Kommen diese in Kontakt mit Aminosäuren, Proteinen, Enzymen, Nucleobasen bzw. Nucleosäuren oder auch Zellmembranen oder Mitochondrien, so bindet sich Quecksilber praktisch irreversibel an die Stickstoff- oder Schwefel-Atome und wird so angereichert. Auch eine mutagene Wirkung der Quecksilberverbindungen wird diskutiert; als Beispiel für diese Gefährdung mag die in dieser Arbeit vorgestellte Additionsverbindung von Purin, dem Grundbaustein der Nucleobasen Adenin und Guanin, an Quecksilber(II)-chlorid, dienen.

Die allgemeine Ursache der außergewöhnlich großen Elektronenaffinität des Quecksilbers wird nach CHEN und WENTWORTH [17] einer weiteren Konsequenz der relativistischen Effekte zugeschrieben, nämlich dem Spin-Orbit-Splitting, das eine Kontraktion der $6p_{1/2}$ – Schale bewirkt. Das Spin-Orbit-Splitting bewirkt für ein p-Elektron mit l = 1 die beiden möglichen Werte j = 1/2 und j = 3/2. Diese Energieaufspaltung ist Folge relativistischer Effekte und kann für die Valenzelektronen schwerer Elemente einige Elektronenvolt betragen.

Die oben erwähnte d-s-Separation und insbesondere die Expansion und daraus folgende Destabilisierung der 5d-Orbitale ermöglicht eine größere Polarisierbarkeit von Quecksilber(II), so dass damit auch eine zusätzliche Erklärung für die Eigenschaft von Hg²⁺ als außerordentlich "weiche Säure" im Sinne des Pearson-Konzeptes [18] geboten wird. Dabei ist zu berücksichtigen, dass alle wirklich weichen Säuren Übergangsmetalle mit sechs oder mehr d-Elektronen sind und dass die d¹⁰-Konfiguration nach AHRLAND [19] besonders weiche Säuren ergibt.

Wird die Irving-Williams-Reihe von einigen Chelat-Verbindungen nach MCCORMICK [20] mit Sauerstoff, Stickstoff und Schwefel als Donoratomen betrachtet, so ist hier ein Effekt dominant, der besagt, dass die weicheren Metallionen mit größerer Anzahl von d-Elektronen Ligandenatome in der Reihenfolge S > N > O bevorzugen, während die härteren Ionen z.B. der Erdalkalimetalle und die der ersten Übergangsmetalle dagegen Ligandenatome in der umgekehrten Reihenfolge O > N > S bevorzugen. Ob das Verhalten eines sauren oder basischen Zentrums als hart oder weich zu bezeichnen ist, ist keine für ein Atom spezifisch charakteristische Eigenschaft, sondern immer auch ein mit dem jeweiligen Ligandenatom wechselwirkendes Charakteristikum, so dass JØRGENSEN [21] von einer "Symbiose" von Metall- und Ligandenatom spricht.

Wie bereits oben erläutert, ist das HSAB-Konzept allenfalls eine qualitative Beschreibung der Quecksilber-Stickstoff-Affinität. Eingehende theoretische Arbeiten zum Charakter der außerordentlichen Stabilität der Quecksilber-Stickstoff-Bindung fehlen bislang.

4 Allgemeines zur Koordinationschemie des Quecksilbers ^{[5],[6],[8],[9]}

In den meisten Quecksilber(II)-Verbindungen sind die Liganden weitgehend kovalent gebunden. Nach GRDENIĆ [22] wird zwischen einer charakteristischen und einer effektiven Koordinationszahl unterschieden. Die charakteristische Koordinationszahl der sp-, sp^2 - und sp^3 -Hybridisierung entsprechende bezeichnet dabei die Koordinationszahl zwei, drei oder vier. Die Atomabstände folgen dann etwa der Additionsregel für kovalente Atomradien. Die weiter entfernten Liganden ergänzen die charakteristische Koordinationszahl zu einer effektiven Koordination. Eine häufig beobachtete Koordinationszahl ist in Form eines gestauchten oder verzerrten Oktaeders die sog. ,2+4"-Koordination; es finden sich aufgrund der d¹⁰ – Elektronenkonfiguration jedoch zahlreiche Varianten wie z.B. trigonale oder hexagonale Bipyramiden oder verzerrte Tetraeder im Sinne einer "2+2"-Koordination, wie sie im Kapitel II2.10 vorgestellt werden. Die Vielfalt der Koordinationsmöglichkeiten zeigt sich beispielsweise in einem jüngst veröffentlichten Übersichtsartikel von SEREZHKIN et al. [23] zu Koordinationspolvedern bei komplexen Quecksilber(II)-halogeniden, wo unter 188 untersuchten Verbindungen 252 kristallographisch unterschiedliche Arten von Hg(II)-Koordinationen festgestellt wurden. Über die Bevorzugung der Koordinationszahl zwei und die relativistischen Ursachen dieser Präferenz ist bereits in Kapitel 2 berichtet worden. Die Bindungswinkel können dabei je nach effektiver Koordinationszahl deutlich von 180° abweichen.

Abbildung 4: Gegenüberstellung der Ergebnisse quasirelativistischer (oben) und nichtrelativistischer (unten) theoretischer Rechnungen für die Dimerisierung von HgCl₂ und HgBr₂ und die Konsequenzen für die Geometrie der Dimere nach KAUPP und VON SCHNERING [24]

Der relativistische Effekt hat auch bei der häufig auftretenden Dimerisierung strukturbestimmenden Einfluss, wie eine Gegenüberstellung quasirelativistischer und nichtrelativistischer theoretischer Rechnungen von KAUPP und VON SCHNERING [24] für die Halogenide zeigt, bei denen die lineare Koordination auch bei der Dimerisierung dominiert.

Quecksilber(II)-iodid bildet im Unterschied zu HgCl₂ mit isolierten HgCl₂-Molekülen im Dampfzustand und im Kristall nur im Dampfzustand lineare Einzelmoleküle aus. Im Kristall liegen eckenverknüpfte HgI₄ – Tetraeder (Hg-I-Abstand 278 pm) vor. In einer kubisch-dichtesten Packung von Iodid-Ionen sind in die Hälfte der tetraedrischen Lücken zwischen alternierenden Γ - Doppelschichten Hg²⁺ - Ionen eingebaut. HgI₂ wird daher auch als "autokomplexes Salz" Hg[HgI4] bezeichnet. Das Diiodid kommt in zwei enantiotropen Modifikationen vor und geht bei 127°C in eine orange Form mit isolierten HgI₂-Molekülen über. Das Bromid HgBr₂ bildet insofern einen Übergang zwischen der HgCl₂- und der HgI₂-Struktur, als dass dort zwar wie bei HgCl₂ isolierte HgBr₂-Einheiten mit einem Abstand Hg-Br von 248 pm vorliegen, jedoch im Abstand von 323 pm wie im CdCl₂ eine verzerrte Oktaederumgebung durch Bromid-Ionen weiterer HgBr₂ - Moleküle ergänzt wird. Solche verzerrten Oktaeder finden sich auch in isolierter Form beispielsweise im (NH₄)₂HgBr₄ [25]. Im Gegensatz zum Quecksilber(II)fluorid, das als eine der wenigen ionischen Verbindungen des Quecksilbers gilt, besitzt HgCl₂ eine kovalente Struktur; diese Tendenz setzt sich bis zum Iodid weiter fort, so dass die kovalenten Moleküle HgCl₂, HgBr₂ und HgI₂ auch in wässriger Lösung praktisch undissoziiert vorliegen und mit Silbernitrat keine Fällung ergeben.

5 Ligandeneigenschaften von organischen N-Heterocyclen

Neben der im HSAB-Konzept nach PEARSON [18] eingeführten "Härte" oder "Weichheit" eines Stickstoffdonors ist gerade bei den Heterocyclen mit N-H-Funktionen auch der Aspekt der Basizität bzw. Acidität von großer Bedeutung. Eine Zuordnung von Stickstoff-Donorliganden im Sinne des Hart- / Weich - Konzeptes ist zudem in einigen Fällen nicht innerhalb scharf abgegrenzter Kategorien möglich. Während Stickstoff als kleines, elektronegatives Atom der zweiten Periode in der Regel als hart eingestuft wird, ist der Pyridin-Ligand, der wesentlich weicher als z.B. NH₃ zu sein scheint, als Grenzfall einzustufen. Dies hängt mit der Fähigkeit des Pyridins zu π -Wechselwirkungen mit dem Zentralatom zusammen. Das klassische Bild einer kovalenten Bindung zwischen Ligand und Zentralatom ist das einer s-Donor-Akzeptor-Bindung zwischen einem Elektronenpaar in einem nichtbindenden Donor-Orbital des Liganden und einem Akzeptororbital des Zentralatoms. Eine reine Metall-Ligand-s-Bindung liegt jedoch in den seltensten Fällen vor. Zusätzliche Ligand-Metall-p-Wechselwirkungen können in vielen der "klassischen" Koordinationsverbindungen einen entscheidenden Einfluss auf die elektronischen Eigenschaften des Komplexes haben.

In einem Komplex sind die Liganden mit ihren Donoratomen ein wesentlicher strukturbestimmender Teil einer Koordinationsverbindung. Dabei ist in einem Komplex immer das Zusammenwirken aller Liganden für dessen charakteristische Eigenschaften und dessen Struktur entscheidend.

Als Maß für die Elektronen-Donator-Fähigkeiten eines Liganden kann dessen Basizität angesehen werden. Während die aliphatischen Amine stärker basisch als z.B. Ammoniak sind, da die Alkylgruppen als s-Donoren fungieren und die positive Ladung delokalisieren, verfügen N-Heterocylen über eine vergleichsweise geringe Basizität. Die relativ geringe Basizität von Pyridin beruht auf der sp³-Hybridisierung des N-Atoms, wodurch die Elektronegativität von N erhöht, die Protonenaffinität jedoch erniedrigt wird. Die Diazine Pyridazin, Pyrimidin und Pyrazin sind elektronenarme aromatische Heterocyclen und alle schwächere Basen als Pyridin.

II Spezieller Teil

1 Reaktionen von Quecksilber(II) mit Ammoniak

1.1 Die Bildung von Quecksilber(II) – Ammoniakaten

1.1.1 Einleitung

Bislang sind drei Produkte der Reaktion von HgCl₂ mit Ammoniak bekannt, wobei die jeweiligen Anteile der Komponenten von den Reaktionsbedingungen abhängen. Die möglichen Produkte sind Hg(NH₃)₂Cl₂, HgNH₂Cl und Hg₂NCl·H₂O. Sie werden nach den folgenden Gleichungen gebildet:

$$HgCl_{2} + 2 NH_{3} \implies Hg(NH_{3})_{2}Cl_{2}$$

$$HgCl_{2} + 2 NH_{3} \implies HgNH_{2}Cl + NH_{4}^{+} + Cl^{-}$$

$$2 HgCl_{2} + 4 NH_{3} + H_{2}O \implies Hg_{2}NCl \cdot H_{2}O + 3 NH_{4}^{+} + 3 Cl^{-}$$

In konzentrierter NH₄Cl-Lösung fällt das Diammin Hg(NH₃)₂Cl₂ aus, während in verdünntem Ammoniak und ohne Überschuss an NH4⁺ das Amin HgNH2Cl entsteht. Das Amin besteht aus unendlichen Ketten -Hg-NH₂-Hg-NH₂-, in denen die -N-Hg-N-Bruchstücke linear gebaut sind, am Stickstoff aber tetraedrische Bindungswinkel auftreten; die Chlorid-Ionen liegen zwischen den Ketten. Während um 1820 etwa bei GUIBOURT [26] noch unvollständige Kenntnisse über die bei Einwirkung von Ammoniak auf HgCl₂ auftretenden Fällungsprodukte herrschen und diese allgemein als "weißes Präzipitat" bezeichnet werden, wird bereits von SOUBEIRAN [27] darauf hingewiesen, dass beim Auswaschen des weißen Präzipitates Änderungen in der Zusammensetzung auftreten. Erst zahlreiche weitere Untersuchungen von MITSCHERLICH [28], WÖHLER und LIEBIG [29] und schließlich MILLON [30] führen zur Erkenntnis, dass je nach Art der Wechselwirkung zwischen NH₃ und HgCl₂ und in Abhängigkeit von Konzentration und Temperatur verschiedenartig zusammengesetzte Niederschläge auftreten, so dass eine Unterscheidung zwischen dem "schmelzbaren weißen Präzipitat", [Hg(NH₃)₂]Cl₂, dem "unschmelzbaren Präzipitat", HgNH₂Cl, und dem "Chlorid der Millonschen Base", Hg2NCl, möglich wurde.

Die Millonsche Base besitzt ein dreidimensionales Netzwerk der Zusammensetzung Hg₂N, in dem die OH⁻-Ionen und Wassermoleküle die relativ ausgedehnten Hohlräume und Kanäle besetzen. Durch thermischen Abbau unter Ammoniak-Atmosphäre und *in-situ*-Pulverdiffraktometrie konnten in früheren Untersuchungen [31] weitere

Zusammenhänge in diesem System aufgeklärt werden, wie in Abbildung 5 verdeutlicht wird.

Abbildung 5: Thermischer Abbau im System HgCl₂ / NH₃ unter NH₃- Atmosphäre [31]

Die Kristallstrukturen der Diamminquecksilberhalogenide $Hg(NH_3)_2X_2$ (X=Cl, Br, I) gelten als gesichert [32]. In einem kubisch-primitiven Halogenid-Gitter sind lineare ${}^{+}H_3N$ -Hg-NH $_3^{+}$ - Gruppen längs der Achsen des kubischen Gitters statistisch orientiert so angeordnet, dass in einer Ebene senkrecht zur N – Hg – N – Verbindungslinie vier Halogenidionen gleichartig koordiniert werden; Quecksilber erhält damit die effektive Koordinationszahl 6.

Eigene Versuche, nach langen Belichtungszeiten von $Hg(NH_3)_2Cl_2$ durch Zwischenreflexe Hinweise auf eine mögliche Überstruktur zu finden, führten nicht zum Erfolg und scheinen die Annahme einer völlig statistischen Verteilung der ⁺H₃N-Hg-NH₃⁺ - Gruppen zu bestätigen.

Mit der Synthese von $[Hg(NH_3)_2][HgCl_3]_2$ konnte erstmals ein Diammoniakat des Quecksilbers mit ausgeordneten, linearen ⁺H₃N-Hg-NH₃⁺ - Einheiten röntgenographisch charakterisiert werden.

Eine erste systematische Untersuchung der Addition von gasförmigem Ammoniak an die Quecksilber(II)-halogenide findet sich 1912 bei PETERS [33] und zeigt, dass jeweils 2 Mol NH₃ addiert werden. Eine Untersuchung von BILTZ und RAHLFS [34] aus flüssigem Ammoniak weist auf die Existenz von Addukten mit 2, 8 oder 9,5 Mol NH₃. Bei HOLMES [35] wird 1918 eine Additionsverbindung von HgCl₂ an [Hg(NH₂)₂]Cl₂ der

Zusammensetzung 3HgCl₂·2NH₃ beschrieben, die nach der Summenformel dem [Hg(NH₃)₂][HgCl₃]₂ entspricht.

Mit [Hg(NH₃)₄](ClO₄)₂ wurde erstmals ein tetraedrisch gebautes Tetraammin des Quecksilbers röntgenographisch charakterisiert. Die Existenz dieser Verbindung fand bereits Erwähnung in der Literatur erstmals 1930 bei WEITZ et al. [36] aus Elementaranalyse-Befunden; eine Strukturbestimmung war bislang möglicherweise auftretender Verzwillingung nicht aufgrund oftmals möglich. Die Ouecksilberverbindung vervollständigt die Reihe der homologen Verbindungen $[Zn(NH_3)_4](ClO_4)_2$ [37] und $[Cd(NH_3)_4](ClO_4)_2$ [38]. Im Gegensatz zu diesen Verbindungen kristallisiert die Quecksilberverbindung jedoch nicht kubisch in der Raumgruppe $Fm \overline{3}m$, sondern monoklin in der Raumgruppe $P2_1/c$. Zudem weist die Verbindung aufgrund relativistischer Effekte, die in der elektronischen Struktur des Quecksilbers zum Tragen kommen, gestauchte $[Hg(NH_3)_4]^{2+}$ - Tetraeder auf.

In der Literatur finden sich weitere Hinweise auf Tetrammine von Quecksilber(II)verbindungen, so z.B. bei WEITZ et al. [36] auf [Hg(NH₃)₄](NO₃)₂, [Hg(NH₃)₄]SO₄ und [Hg(NH₃)₄](SCN)₂. Die Darstellung von [Hg(NH₃)₄](NO₃)₂ konnte in eigenen Versuchen durch Einleiten von Ammoniak-Gas in eine gekühlte Hg(NO₃)₂ / NH₄NO₃– Lösung nachvollzogen werden. Eine strukturelle Charakterisierung gelang jedoch bislang nicht, da die Verbindung bereits nach kurzer Zeit Ammoniak abgibt und die Einkristalle unbrauchbar werden. Weitere Versuche in vorgekühltem Medium werden folgen und die Abgabe des Ammoniaks möglicherweise verhindern.

1.1.2 Kristallstruktur von [Hg(NH₃)₂][HgCl₃]₂

 $[Hg(NH_3)_2][HgCl_3]_2$ kristallisiert orthorhombisch in der Raumgruppe Pmna mit den Gitterparametern a = 591,9(1) pm, b= 800,3(1) pm, c = 1243,3(4) pm, und Z = 2. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 3 und Tabelle 4. Abbildung 6 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Die Struktur von $[Hg(NH_3)_2][HgCl_3]_2$ besteht aus $[Hg(NH_3)_2]^{2+}$ - Einheiten sowie $[HgCl_3]^-$ - Anionen. Der Abstand Quecksilber-Stickstoff der exakt linearen $[Hg(NH_3)_2]^{2+}$ - Einheiten beträgt 207,2(16) pm. Senkrecht zu diesen "Hanteln" befinden sich zwei Chlor-Atome in zweiter Koordinationssphäre im Abstand von

317,6(5) pm. Im "assoziativen" Abstand von 342,3(3) pm befinden sich vier weitere Chloratome. Der Winkel der $[Hg(NH_3)_2]^{2+}$ - Einheiten in Bezug auf die durch die entfernteren Chloratome gebildete Ebene beträgt 73,4(4)°. Als Anionen lassen sich $[HgCl_3]^-$ - Ionen formulieren, die sich durch zwei Chloratome im Abstand von 235,8(4) pm im Winkel von 167,7(2)° sowie einem Chloratom im Abstand von 280,0(5) pm und einem Winkel Cl2-Hg1-Cl3 von 98,7(2)° auszeichnen. Chloratome im Abstand 297,1(1) pm und 333,8(5) pm ergänzen eine "effektiv" verzerrt oktaedrische Umgebung des Quecksilbers.

Abbildung 6: Perspektivische Darstellung der Elementarzelle von [Hg(NH₃)₂][HgCl₃]₂

Abbildung 7: Darstellung der Umgebung der $[Hg(NH_3)_2]^{2+}$ - Hanteln in $[Hg(NH_3)_2][HgCl_3]_2$

Abbildung 8: Umgebung der [Hg(NH₃)₂]²⁺ - Hanteln in [Hg(NH₃)₂]Cl₂

Abbildung 7 und Abbildung 8 zeigen einen Vergleich der Umgebungen der $[Hg(NH_3)_2]^{2+}$ - Einheiten in $[Hg(NH_3)_2][HgCl_3]_2$ und $[Hg(NH_3)_2]Cl_2$. Dabei ist zu berücksichtigen, dass bei $[Hg(NH_3)_2]Cl_2$ die $[Hg(NH_3)_2]^{2+}$ - Einheiten statistisch fehlgeordnet sind. $[Hg(NH_3)_2]Cl_2$ kristallisiert kubisch in der Raumgruppe Fm $\overline{3}$ m mit einem Zellvolumen von nur 67·10⁶ pm³. Die Quecksilberposition ist jeweils nur zu 1/6 statistisch besetzt.

Die Synthese von [Hg(NH₃)₂][HgCl₃]₂ erfolgte durch Zugabe von HgNH₂Cl zu einer äquimolaren Mischung einer Lösung von HgCl₂ und NH₄Cl bis zur Sättigung bei 75°C. Somit ist folgende Reaktionsgleichung zu formulieren:

$$2 \text{ HgCl}_2 + \text{NH}_4\text{Cl} + \text{HgNH}_2\text{Cl} \rightleftharpoons [\text{Hg(NH}_3)_2][\text{HgCl}_3]_2$$

Abbildung 9: Verknüpfung der $[Hg(NH_3)_2]^{2+}$ - Hanteln mit den $[HgCl_3]^-$ - Anionen in $[Hg(NH_3)_2][HgCl_3]_2$

1.1.3 Kristallstruktur von [Hg(NH₃)₄](ClO₄)₂

[Hg(NH₃)₄](ClO₄)₂ kristallisiert monoklin in der Raumgruppe P2₁/c mit den Gitterparametern a = 791,52(9) pm, b= 1084,3(2) pm, c = 1566,4(2) pm, β = 120,352(1)°. Einzelheiten zur Strukturbestimmung und ausgewählte Bindungslängen und -winkel finden sich in Tabelle 3 und Tabelle 4. Abbildung 10 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Die Struktur von $[Hg(NH_3)_4](ClO_4)_2$ besteht aus einer Packung von tetraedrischen $[Hg(NH_3)_4]^{2+}$ - Ionen und Perchlorat-Anionen. Die Packung leitet sich bezüglich der Schweratome von einer monoklin verzerrten Variante des Fluorit-Typs, dem Baddeleyit-Strukturtyp (α -ZrO₂) ab, d.h. Quecksilber ist in der Packung von jeweils sieben der zwei kristallographisch unterschiedlichen Chlorlagen umgeben. Damit unterscheidet sich die Packung deutlich von $[Zn(NH_3)_4](ClO_4)_2$ [37], welches in der Raumgruppe F $\overline{4}$ 3m kristallisiert und bezüglich der Schweratome im vom Fluorit-Typ abgeleiteten MgAgAs-Typ mit ebenfalls zwei kristallographisch unterschiedlichen

Perchlorat-Lagen beschrieben werden kann. Abbildung 10 zeigt die Elementarzelle von [Hg(NH₃)₄](ClO₄)₂ in Richtung der a-Achse.

Abbildung 10: Perspektivische Darstellung der Elementarzelle von [Hg(NH₃)₄](ClO₄)₂

In der Umgebung der zwei kristallographisch unterschiedlichen Perchlorat-Anionen finden sich Sauerstoff-Atome in unterschiedlicher und unregelmäßiger Koordination mit Abständen im Bereich von etwa 289 – 328 pm und lassen damit teilweise auf das Vorhandensein von N-H···O – Wasserstoffbrückenbindungen schließen. Diese lassen sich auch durch die für Systeme mit H-Brücken charakteristische Verbreiterung der N-H-Valenzschwingungen v₁ und v₃ (IR: 3000 – 3600 cm⁻¹) nachweisen. Diese Wasserstoffbrückenbindungen haben zudem vergrößerte Cl-O-Abstände von z.B. 143 pm im Vergleich zu Cl-O-Abständen von "freien" Perchlorat-Anionen mit etwa 136 pm zur Folge. Abbildung 11 zeigt die Umgebung der Perchlorat-Anionen.

Abbildung 11: Umgebung der zwei kristallographisch verschiedenen Perchlorat-Gruppen in $[Hg(NH_3)_4](ClO_4)_2$

Die $[Hg(NH_3)_4]^{2+}$ - Einheiten bilden verzerrte Tetraeder mit zwei etwas kürzeren Hg-NH₃-Abständen von 224 pm und zwei längeren Abständen von 228 pm. Die zwei in kürzeren Abständen gebundenen Ammin-Liganden schließen einen Winkel von 125° ein; zwischen den beiden anderen Liganden findet sich ein Winkel von 115°. Die übrigen Winkel liegen zwischen 102° und 105°.

1.1.4 Schwingungsspektroskopische Untersuchungen an [Hg(NH₃)₄](ClO₄)₂

Für $[Hg(NH_3)_4](ClO_4)_2$ wurde ein Infrarotspektrum im MIR- und FIR-Bereich aufgenommen; Abbildung 12 zeigt das Spektrum. Bei einer Lagesymmetrie T_d wären bei ideal tetraedrischen Baueinheiten ClO_4^- und $[Hg(NH_3)_4]^{2+}$ jeweils zwei IR-Moden (v_3, v_4) und vier Raman-Moden zu erwarten, wie dies auch beispielsweise für $[Zn(NH_3)_4](ClO_4)_2$ [37] vorgefunden wird. Aufgrund der im vorigen Kapitel beschriebenen Abweichung von einer idealen Tetraedersymmetrie ist auch im IR-Spektrum eine Aufspaltung bzw. eine Schulterbildung für die Deformations-Schwingung v₃ sowie eine deutliche Verbreiterung der Banden zu beobachten.

Die N-H-Schwingungen im Bereich von 3000-3600 cm⁻¹ weisen die für H-Brückensysteme charakteristische Verbreiterung der N-H-Valenzschwingungen auf und bestätigen damit die aus der Röntgenstrukturanalyse bestimmten potentiellen Abstände für H-Brücken im Bereich von 289 – 328 pm. In Tabelle 2 findet sich eine Zuordnung der Moden zu den vorgefundenen Banden in [Hg(NH₃)₄](ClO₄)₂.

Abbildung 12: MIR-Spektrum von [Hg(NH₃)₄](ClO₄)₂

Tabelle 2: Zuordnung der Banden im IR-Spektrum von $[Hg(NH_3)_4](C)$	$\Box O_4)_2$
--	---------------

Molekül	Mode	Bande /cm ⁻¹	Intensität
NH ₃ -Ligand	v ₃ , vd (E)	3385	st, br
		3292	st
	v_1 , $vs(A_1)$	3209	m
		3138	m
	$\nu_{4}, \delta_{d}(E)$	1612	m
	v_2 , $\delta s(A_1)$	1253	W
	ρ ("rocking")	694	m, br
ClO ₄	$2 \nu_d$	2017	W
	$v_1 + v_4$	1426	m
	v_3 , v_d (F ₂)	1080	vst, br
	v_1 , vs (A ₁)	944	W
	$\nu_4, \delta_d \left(F_2\right)$	624	S
	v_3 , v_d (F ₂)	463	W
$H_{\alpha}(NH)$ ²⁺		335	m, br
п <u>g</u> (1 1 п ₃) ₄	$v_3, v_d(r_2)$	370	w, sh
	$\nu_4, \delta_d \left(F_2\right)$	160	m

1.1.5 Diskussion zu den Quecksilber(II)-Ammoniakaten

Die Ursache der Deformation der im $[Zn(NH_3)_4](ClO_4)_2$ noch völlig symmetrischen Tetraeder könnte in Packungseffekten oder der Ausbildung eines Wasserstoffbrücken-Systems gesucht werden. Für eine plausiblere Erklärung muss die elektronische Situation dieses d¹⁰-Systems im Zusammenhang mit relativistischen Effekten betrachtet werden. Die geringere d-s-Separation führt bei der Hybridisierung zu einer stärkeren dund s- Beteiligung und einer, wie in Kapitel I2 erläutert, Bevorzugung der d_z-Richtung. DUNITZ und ORGEL [39] berichten generell für die Tetraedergeometrie bei d¹⁰ – Elementen, wie sie beispielsweise in den Kupfer(I)- und Silber(I)- Halogeniden auftritt, dass auch hier eine geringfügige Auslenkung aus der idealen Symmetrie auftreten muss, da keine ideale sp³-Hybridisierung vorliegen kann.

Als anschauliche Interpretation könnte die "kurze" H₃N-Hg-NH₃ – Achse mit dem 125°-Winkel als ursprünglich lineare $[Hg(NH_3)_2]^{2+}$ - Einheit betrachtet werden, bei der zwei zusätzliche Ammin-Liganden koordinieren und die vorliegende Verzerrung im Sinne einer "2+2"-Koordination hervorgerufen haben. Nach GRDENIĆ [40] spielt hier die "charakteristische" Koordinationszahl zwei eine Rolle; anhand dieser vergleichsweise geringen Verzerrung von einer "2+2" – Koordination zu sprechen, wäre jedoch übertrieben. Die elektronische Situation am Quecksilber könnte aufgrund der auftretenden relativistischen Effekte eher anschaulich als eine "Anisotropie der Elektronegativität" betrachtet werden.

Eine ähnliche Tetraederverzerrung wurde auch für das nur selten vorzufindende tetraedrische Chloromercurat-Anion HgCl₃⁻ in $[(CH_4)_3PhN]^+[HgCl_3]^-$ beobachtet, wobei hier jedoch zudem eine Eckenverknüpfung der Tetraeder vorliegt. Die Tetraederumgebungen sind einander in Abbildung 13 gegenübergestellt. Hier ist die Verzerrung jedoch deutlich gravierender, so dass eher die Bezeichnung "2+2" – Koordination angemessen wäre. Im Quecksilber(II)-iodid findet sich eine regelmäßige Tetraederumgebung mit äquidistanten Hg-I-Abständen, die allerdings bei 278 pm liegen und eher im Sinne einer kubisch dichtesten Packung von Γ mit Hg²⁺ in der Hälfte der Tetraederlücken zu interpretieren ist. Zudem liegt im Iodid eine wesentlich höhere Polarisierbarkeit vor.

Fazit der Betrachtung ist, dass die Packung der $[Hg(NH_3)_4]^{2+}$ - Kationen und Perchlorat-Anionen im Baddeleyit-Typ in erster Linie eine Folge der Tetraederstauchung ist und nicht umgekehrt Packungseffekte eine Stauchung der Tetraeder bewirken.

Abbildung **13**: Darstellung eines verzerrten [Hg(NH₃)₄]²⁺ - Tetraeders und Gegenüberstellung mit der tetraedrischen Chlorid-Koordination des Quecksilbers in [Ph₃MeN][HgCl₃]

Tabelle **3**: Kristalldaten und Einzelheiten zur Strukturbestimmung von $[Hg(NH_3)_2][HgCl_3]_2$ und $[Hg(NH_3)_2](ClO_4)_2$

	$[Hg(NH_3)_2][HgCl_3]_2$	$[Hg(NH_3)_4](ClO_4)_2$
Gitterkonstanten / pm	a = 591,88(11), b = 800,31(14),	a = 791,52(9), b = 1084,30(18),
Winkel / grd	c = 1243,3(4)	$c = 1566,42(18), \beta = 120,3520(10)$
Zellvolumen/pm ³	588,9(2)	1160,1(3)
Zahl der Formeleinheiten	2	4
Kristallsystem	orthorhombisch	monoklin
Raumgruppe	P m n a	$P 2_1 / c$
Messgerät	Stoe	PDS
Verwendete Strahlung	ΜοΚα, λ	= 71,07 pm
Monochromator	Gr	aphit
Messtemperatur	293 K	170 K
Scan-Modus	2°-Schritte	e, 100 Bilder
Messbereich/grd	$3,8^{\circ} < 2\theta < 53,97^{\circ}$	$3,8^{\circ} < 2\theta < 53,97^{\circ}$
Indexgrenzen h,k,l	$6 \le h \le 7$, $9 \le k \le 10, \pm 15$	$\pm 9, \pm 13, \pm 19$
Berechnete Dichten	$4,753 \text{ g/cm}^3$	$2,608 \text{ g/cm}^3$
F(000)	712,7	823,7
Absorptionskorrektur	numerisch, X	K-SHAPE [50]
lin. Absorptionskoeff. μ/mm^{-1}	38,87	13,76
Zahl der gemessenen Reflexe	9943	19262
Symmetrieunabhängige	710	2283
Reflexe		
R _{int}	0,0948	0,0723
Strukturbestimmung und -	Programme SHELXS-97 [51] und SHELX-97 [52]	
verfeinerung	-	
Streufaktoren	International	Tables, Vol, C
Parameter	36	137
R ₁	0,0480 für 580 Fo > 4σ(Fo)	0,0647 für 1569 Fo > 4σ(Fo)
	0,0583 für alle Daten	0,0941 für alle Daten
wR_2 (alle Daten)	0,1128	0,1464
Flack-Parameter	-	-
Goodness of fit	0,995	1,130
wR ₂ (alle Daten) Flack-Parameter Goodness of fit	0,0583 für alle Daten 0,1128 - 0,995	0,0941 für alle Daten 0,1464 - 1,130

[Hg(NH ₃) ₂][HgCl ₃] ₂		[Hg(NH ₃) ₄](ClO ₄) ₂		
Hg1-Cl2	235,8(4)	Hg1-N1	224,7(14)	
Hg1Cl1	235,9(5)	Hg1-N2	228,7(15)	
Hg1-Cl3	280,0(5)	Hg1-N3	224,1(15)	
Hg2-N1	207,2(16)	Hg1-N4	228,7(15)	
		Cl1-O1	141,5(15)	
		Cl1-O2	142,5(14)	
		Cl1-O3	140,2(15)	
		Cl1-O4	139,1(19)	
		Cl2-O5	137(2)	
		Cl2-O6	139,2(17)	
		Cl2-O7	137(2)	
		Cl2-O8	140,9(15)	
Cl2-Hg1-Cl1	167,68(17)	N3-Hg1-N1	125,0(6)	
Cl2-Hg1-Cl3	98,70(16)	N3-Hg1-N4	104,4(7)	
Cl1-Hg1-Cl2	93,62(16)	N1-Hg1-N4	104,8(6)	
N1-Hg2-N1	180,0(9)	N3-Hg1-N2	103,1(8)	
_		N1-Hg1-N2	104,8(6)	
		N4-Hg1-N2	115,4(6)	
		O4-Cl1-O3	110,1(14)	
		O4-Cl1-O1	112,8(14)	
		O3-Cl1-O1	105,2(10)	
		O4-Cl1-O2	109,0(11)	
		O3-Cl1-O2	110,1(11)	
		O1-Cl1-O2	109,6(12)	
		O7-Cl2-O5	100(2)	
		O7-Cl2-O6	111,0(15)	
		O5-Cl2-O6	114,1(19)	
		O7-Cl2-O8	115,2(15)	
		O5-Cl2-O8	107,1(15)	
		O6-Cl2-O8	109,7(11)	

Tabelle 4: Ausgewählte Abstände /pm und Winkel /° in [Hg(NH ₃) ₂][HgCl ₃] ₂	und
$[Hg(NH_3)_4](ClO_4]_2$	

1.2 Raumnetzverknüpfte Quecksilber(II)-Stickstoff-Verbindungen

1.2.1 Einleitung

Insbesondere die "Millonsche Base" [Hg₂N]OH·2H₂O und ihre Salze sind im Hinblick auf ihre Struktur und die Frage nach ihrer Konstitution bereits Gegenstand zahlreicher Untersuchungen gewesen [41] [42] [43]. Die Struktur dieser Verbindungen wurde erstmals von LIPSCOMB [41] 1951 im Sinne einer weiträumigen Raumnetzstruktur des Kations Hg₂N⁺ gedeutet. Die bislang ausschließlich aus Röntgenpulverdaten bestimmte Kristallstruktur des "Nitrats der Millonschen Base" [Hg2N]NO3 wird dabei zumeist bezogen auf das Hg₂N⁺-Gerüst als kubischer β -Cristobalit-Typ beschrieben. HAYEK und INAMA [44] beschreiben ein tetragonal indizierbares Pulver von [Hg₂N]NO₃. Die bisherigen Untersuchungen waren zunächst auf die Reaktivität von Quecksilber(II)halogeniden und thermische Abbaureaktionen von Quecksilber(II)-amid- und imidhalogeniden [31] gerichtet. Einkristalle des wasserfreien "Nitrats der Millonschen Base" wurden in einem Teflon-Autoklaven aus Quecksilber(II)-nitrat und konzentriertem Ammoniak bei 180°C erhalten. Die Metrik ist tetragonal in der azentrischen Raumgruppe P4₃2₁2. Es konnte zudem gezeigt werden, dass das Produkt auch durch thermischen Abbau von NH₄[Hg₃(NH)₂](NO₃)₃ erhältlich ist; dies kann strukturell durch eine weitere räumliche Verknüpfung der Hg-N-Netzwerkstruktur erklärt werden.

Die Verbindung $NH_4[Hg_3(NH)_2](NO_3)_3$ kristallisiert bei Raumtemperatur aus einer Lösung von Quecksilber(II)-nitrat in konzentriertem Ammoniak in farblosen, gut ausgebildeten Rhombendodekaedern. Die Metrik ist kubisch in der ebenfalls azentrischen Raumgruppe $P4_132$. Im Gegensatz zu anderen Verbindungen des Quecksilbers mit dem Motiv $[Hg_3(NH)_2]^{2+}$ findet sich nicht ausschließlich eine Schichtverknüpfung wie z.B. in $Hg_2(NH)Br_2$ [45], sondern eine Verknüpfung der [NHHg4]-Tetraeder über jeweils drei Ecken zu einer Raumnetzstruktur. In der Literatur findet sich bei Hayek und Inama [44] eine aus Röntgenpulverdaten und Elementaranalysen als "HgNH₂NO₃" gedeutete Verbindung. Bei Randall et al. [46] ist die Struktur eines natürlich vorkommenden Minerals ebenfalls als Quecksilber(II)amidnitrat mit einer Fehlordnung der NH₂-Gruppen beschrieben worden. Es kann gezeigt werden, dass es sich bei diesem "HgNH₂NO₃" tatsächlich um NH₄[Hg₃(NH)₂](NO₃)₃ handelt.

1.2.2 Kristallstruktur von NH₄[Hg₃(NH)₂](NO₃)₃ und K[Hg₃(NH)₂](NO₃)₃

 $NH_4[Hg_3(NH)_2](NO_3)_3$ kristallisiert in der azentrischen kubischen Raumgruppe $P4_132$ (Nr. 213) mit den Gitterparametern a = 1030,4(2) pm und Z = 4. Einzelheiten zu Kristalldaten und Strukturbestimmung sowie ausgewählte Bindungslängen und –winkel sind in Tabelle 5 und Tabelle 6 zu finden. Eine perspektivische Darstellung der Elementarzelle zeigt sich in Abbildung 14. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 14: Perspektivische Darstellung der Elementarzelle von NH₄[Hg₃(NH)₂](NO₃)₃

Die Struktur zeichnet sich aus durch in c-Richtung über Schraubenachsen fortlaufende Stränge von über drei Ecken verknüpften [NHHg₃]- Tetraedern. Diese Stränge sind jeweils über ein nach außen weisendes Quecksilberatom mit vier weiteren Strängen verbunden. Der Tetraederwinkel der [NHHg₃]-Einheiten weist mit 112,2(4)° eine leichte Abweichung vom idealen Tetraeder auf. Die Struktur von K[Hg₃(NH)₂](NO₃)₃ ist isotyp zur Ammoniumverbindung, kristallisiert jedoch in der enantiomorphen Raumgruppe P4₃32 mit der Gitterkonstante a = 1020,8(1) pm. Das Zellvolumen der Kaliumverbindung ist damit um etwa 30·10⁶ pm³ kleiner als das der Ammoniumverbindung.

Abbildung 15: Umgebung der Ammoniumionen in [Hg₂N]NO₃

Abbildung 16: Umgebung der Nitrat-Gruppen in NH₄[Hg₃(NH)₂](NO₃)₃

Es findet sich zudem mit dem Winkel N1-Hg1-N1 178,4(4)° eine kleine Abweichung von einer linearen Koordination der Quecksilberatome. Die Wasserstoffatome konnten aufgrund der hohen Elektronendichte im Umfeld der Quecksilberatome nicht röntgenographisch lokalisiert werden. Aus dem gleichen Grund weisen die zu jeweils drei Quecksilberatomen im Abstand von 207,0(9) pm verknüpfenden Stickstoffatome N1 sehr kleine Temperaturfaktoren auf. Die Nitrat-Gruppen sind von 5

Quecksilberatomen mit Abständen im Bereich von 282,2(15) pm bis 344,0(8) pm umgeben, wie in Abbildung 16 dargestellt. Abbildung 15 zeigt, dass die Ammonium-Ionen trigonal-antiprismatisch von sechs Nitrat-Gruppen mit Abständen im Bereich von 299,4(15) pm bis 315,5(7) pm umgeben sind.

Abbildung 17: Umgebung einer Schraubenachse in NH₄[Hg₃(NH)₂](NO₃)₃

Abbildung 18: Pulverdiffraktogramm von $NH_4[Hg_3(NH)_2](NO_3)_3$ (blau) und "Hg NH_2NO_3 " nach [46] (rot)

1.2.3 Kristallstruktur von [Hg₂N]NO₃

 $[Hg_2N]NO_3$ kristallisiert in der azentrischen tetragonalen Raumgruppe P4₃2₁2 (Nr. 96) mit den Gitterparametern a = 1540,4(1) pm, c = 909,8(1) pm und Z = 4. Eine perspektivische Darstellung der Elementarzelle findet sich in Abbildung 19. Einzelheiten zu Kristalldaten und ausgewählte Bindungslängen und –winkel finden sich in Tabelle 5 und Tabelle 6. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Die Struktur ist charakterisiert durch ein dreidimensionales Gerüst eckenverknüpfter, leicht verzerrter [NHg₄]-Tetraeder mit Quecksilber-Stickstoff-Abständen im Bereich von 202,9(23) pm bis 209,1(25) pm und Hg-N-Hg – Winkeln im Bereich von $104,9(10)^{\circ}$ bis $114,9(10)^{\circ}$. Dabei bilden die Tetraeder um Stickstoff N1 und N2 entlang von Schraubenachsen eckenverknüpfte Tetraederstränge in c-Richtung mit einer Sequenzlänge von 4 Tetraedern (4T).

Abbildung 19: Perspektivische Darstellung der Elementarzelle von [Hg2N]NO3

Abbildung 20: Darstellung der Umgebung eines NHg₄ – Tetraeders

Abbildung 21: Darstellung der Umgebung der Schraubenachsen mit der Translationsperiode 4 (links) und 5 (rechts)

Diese Stränge werden durch Tetraeder um die Stickstofflage N3 verknüpft, wobei sich Tetraederstränge mit einer Sequenzlänge von 5 Tetraedern (5T) bilden. Abbildung 21 zeigt einen Vergleich der Schraubenachsen mit den Translationsperioden 4T und 5T. Die Sequenzen erstrecken sich jeweils auf 909,8(2) pm. Der kleinste Hg-Hg-Abstand beträgt innerhalb der Hohlräume der 4T-Stränge 557,3(2) pm und innerhalb der 5T-Stränge 570,6(1) pm. Abbildung 23 zeigt die Verknüpfung des Ouecksilber-Stickstoff-Teilgitters senkrecht zur c-Achse im Vergleich mit der Verknüpfung in $NH_4[Hg_3(NH)_2](NO_3)_3$. Quecksilberatome besetzen insgesamt sechs verschiedene kristallographische Lagen. Neben einer exakt linearen Anordnung des Stickstoffs um Hg6 mit dem Winkel N2-Hg6-N2 180,0(7)° finden sich auch deutliche Abweichungen wie z.B. am Hg1 mit dem Winkel N1-Hg1-N3 168,9(7)°. Die Hg-Hg-Abstände liegen im Bereich von 327,5(1) pm bis 335,5(1) pm und sind für Quecksilber(II) ungewöhnlich kurz und liegen damit im Bereich für d¹⁰-d¹⁰-Wechselwirkungen [47], die infolge einer Absenkung der Energie im Metallband und damit ermöglichten charge-transfer-Übergängen (dazu siehe [48] und [49]) eine Erklärung für die dunkelgelbe bis hellbraune Farbe der Kristalle bieten könnten. Die Nitrat-Gruppe um N4 koordiniert an 10 Quecksilberatome mit Abständen im Bereich von 291,5(33) pm bis 328,5(29) pm. Die Nitrat-Gruppen um N5 und N6 koordinieren jeweils an 8 Quecksilberatome in Abständen im Bereich von 271,8(36) pm bis 333,4(33) pm; siehe dazu Abbildung 22.

Abbildung 22: Umgebungen der drei kristallographisch verschiedenen Nitrat-Gruppen

Abbildung 23: Vernetzungen im Quecksilber-Stickstoff-Teilgitter in Richtung der c-Achse in NH₄[Hg₃(NH)₂](NO₃)₃ (links) und [Hg₂N]NO₃ (rechts)

1.2.4 Thermische Analysen

Aus dem in Abbildung 24 dargestellten TG/DTA-Diagramm ergibt sich für $NH_4[Hg_3(NH)_2](NO_3)_3$ eine Zersetzungstemperatur von 270°C. Die Zersetzung vollzieht sich in einer Stufe und ist verbunden mit einem Massenverlust von 14,5%. Aus der temperaturaufgelösten Pulverdiffraktometrie, bei der $NH_4[Hg_3(NH)_2](NO_3)_3$ in einer offenen Kapillare unter Luft-Atmosphäre aufgeheizt wurde, lässt sich das Zersetzungsprodukt als die tetragonale Modifikation von $[Hg_2N]NO_3$ identifizieren und vollständig in der Raumgruppe P4₃2₁2 indizieren.

Diese Verbindung ist bis 350°C stabil, wo Zersetzung zu HgO zu beobachten ist. Aus der mit der Thermoanalyse gekoppelten Massenspektrometrie ist bei 270°C eine Zersetzung unter Abgabe von N₂O, N₂, NH₃ und H₂O zu beobachten, d.h. es finden sich Zersetzungsprodukte von NH₄NO₃; formal entspricht die Zersetzung dem Verlust von 3 NH₄NO₃ (Massenverlust 14,5%) und lässt sich folgendermaßen formulieren:

$$2 \text{ NH}_{4}[\text{Hg}_{3}(\text{NH})_{2}](\text{NO}_{3})_{3} \xrightarrow{\sim 270^{\circ}\text{C}} 3 [\text{Hg}_{2}\text{N}](\text{NO}_{3}) + 3 \text{ NH}_{4}\text{NO}_{3}$$
$$\underbrace{\Delta}{} 2 \text{ H}_{2}\text{O} + \text{N}_{2}\text{O}$$
$$\text{NH}_{4}\text{NO}_{3} \xrightarrow{\Delta} N_{2} + \frac{1}{2} \text{ O}_{2} + 2 \text{ H}_{2}\text{O}$$

Bei 380°C erfolgt Zersetzung von [Hg₂N]NO₃ zu Quecksilber(II)-oxid, welches mithilfe der temperaturaufgelösten Pulverdiffraktometrie, wie in Abbildung 25 dargestellt, identifiziert wurde. Diese Zersetzung erfolgt unter Abgabe von N₂O, das mithilfe der

Massenspektrometrie detektiert wurde. Der weitere Abbau kann somit folgendermaßen formuliert werden:

Abbildung **24**: Thermischer Abbau von NH₄[Hg₃(NH)₂](NO₃)₃, DTA (o.) und Massenspektrum (u.)

In früheren Untersuchungen [31] auf dem Gebiet der thermischen Abbaureaktionen von Quecksilber(II)-halogeniden unter Ammoniak-Atmosphäre sowie von Quecksilber(II)amid- und –imidhalogeniden konnte gezeigt werden, dass beispielsweise der Abbau von Hg₂(NH)Cl₂ unter Argon auf analogem Weg erfolgt; auch hier findet die Umwandlung bei einer Zersetzungstemperatur von 270°C statt:

$$Hg_2NHCl_2 \longrightarrow [Hg_2N]Cl + HCl$$

Erstaunlich ist bei diesen thermischen Abbauprozessen, dass die Kristallinität angesichts der doch einschneidenden Strukturveränderung noch weitgehend erhalten bleibt, was für eine große Flexibilität und Stabilität des Quecksilber-Stickstoff-Netzwerkes spricht. Die Verknüpfung zu einer Raumnetzstruktur kann nur durch Bewegung und Verformung des bereits geknüpften Hg-N-Netzwerkes erfolgen, da eine Spaltung der Hg-N-Bindung mit einer Kraftkonstante von 300 mdyn/pm und anschließende Neuverknüpfung als sehr unwahrscheinlich anzusehen ist. Die in NH₄[Hg₃(NH)₂](NO₃)₃ noch linearen N-Hg-N-Einheiten erleiden bei der Umwandlung in [Hg₂N]NO₃ eine Deformation auf etwa 170°.

Abbildung 25: Diagramm des thermischen Abbaus von NH₄[Hg₃(NH)₂](NO₃)₃ mit temperaturaufgelöster Pulverdiffraktometrie

1.2.5 Schwingungsspektroskopische Messungen

Im Infrarot- und Ramanspektrum von NH₄[Hg₃(NH)₂](NO₃)₃ in Abbildung 26 finden sich nach Nakamoto [53] zunächst die Nitrat-Banden bei $v_{as} = 1362 \text{ cm}^{-1}$ (IR) (sehr breit), eine Deformationsschwingung bei $\gamma = 805 \text{ cm}^{-1}$ (IR) sowie $v_s = 1059 \text{ cm}^{-1}$ (RA) und $\delta = 722 \text{ cm}^{-1}$ (RA). Für NH₄[Hg₃(NH)₂](NO₃)₃ finden sich zusätzlich N-H-Schwingungen für v_1 , v_3 im Bereich 3200 cm⁻¹ (IR) sowie die $v_4 = 1400 \text{ cm}^{-1}$ (IR), hier jedoch überlagert von der Nitrat-Bande. Die Quecksilber-Stickstoff-Schwingung findet sich für beide Verbindungen nach [54] bei v(Hg-N) = 677 cm⁻¹ (IR), d.h. es handelt sich um eine ausgesprochen starke Bindung.

Abbildung 26: IR- und Raman-Spektrum von NH₄[Hg₃(NH)₂](NO₃)₃

1.2.6 Diskussion zu raumnetzverknüpften Quecksilber(II)-Stickstoff-Verbindungen

Bereits in der älteren Literatur beispielsweise bei KANE [55] wird darauf hingewiesen, dass bei der Einwirkung von Ammoniak auf Hg(NO₃)₂ in wässriger Lösung in Abhängigkeit von der Konzentration beider Verbindungen und damit in Abhängigkeit vom pH-Wert mindestens drei unterschiedliche Verbindungen auftreten. Weitere Untersuchungen von PESCI [56] zeigten dass bei Einwirkung von NH₃ auf Hg(NO₃)₂ hauptsächlich die drei Verbindungen Hg(NH₃)₂(NO₃)₂, HgNH₂NO₃ und Hg₂NNO₃ auftreten, die durch die folgenden Gleichgewichtsreaktionen miteinander zusammenhängen:

Hg(NH₃)₂(NO₃)₂
$$\xrightarrow{H_2O}$$
 HgNH₂NO₃ + NH₄NO₃
2 HgNH₂NO₃ $\xrightarrow{H_2O}$ Hg₂NNO₃ + NH₄NO₃

Für ammoniakalische NH_4NO_3 -Lösung. wird neben diesen drei Verbindungen noch über ein Tetrammin $[Hg(NH_3)_4](NO_3)_2$ berichtet [36]. Von BJERRUM stammen von 1941

[57] Untersuchungen mit einer Glaselektrode in ammoniakalischen Hg(NO₃)₂-Lösungen in Gegenwart von NH₄NO₃ bei unterschiedlichen Konzentrationen. Danach treten im untersuchten pH-Wert-Bereich von 0 bis 10 nur Amminkomplexe auf, wie dies im Diagramm in Abbildung 27 dargestellt ist. Für die Komplexbildungskonstanten gilt abgeleitet aus den Steigungen der Kurve:

$$K_{n} = \frac{[Hg(NH_{3})_{n}]^{2+}}{[Hg(NH_{3})_{n-1}] \cdot [NH_{3}]}$$

Die Komplexkonstanten berechnen sich danach wie folgt: $\lg K_1 \sim 8,8$; $\lg K_2 \sim 8,7$; $\lg K_3 = 1,00$ und $\lg K_4 = 0,78$. Die Existenzgebiete der Ammine wurden dabei bei den NH₄NO₃ - Konzentrationen von 0,5 n bis 2 n untersucht.

Abbildung 27: Bildung der $[Hg(NH_3)_n]^{2+}$ - Komplexe in NH_4NO_3 -Lsg. unterschiedlicher Konzentration (oben) und die Existenzgebiete der Amminkomplexe (unten) nach Bjerrum [57]

Neben diesen Amminkomplexen und den Verbindungen HgNH₂NO₃ und Hg₂NNO₃ finden in der Literatur Verbindungen der Zusammensetzung Hg(NH₃NO₃)₂·4NH₄NO₃ [36], Hg(NH₃)₂(NO₃)₂·HgNH₂NO₃ [56], sowie HgNH₂NO₃·Hg₂NNO₃ [58] Erwähnung. Für die Bildung der Verbindung NH₄[Hg₃(NH)₂](NO₃)₃, die auch ohne Zusatz von NH₄NO₃ entsteht, kann die folgende Reaktionsgleichung formuliert werden:

$$3 \text{ Hg}(\text{NO}_3)_2 + 6 \text{ NH}_3 \implies \text{NH}_4[\text{Hg}_3(\text{NH})_2](\text{NO}_3)_3 + 3 \text{ NH}_4\text{NO}_3$$

Für die Bildung der isotypen Kaliumverbindung kann folgende Reaktionsgleichung formuliert werden:

Diese Reaktionsgleichungen zeigen, dass für die Bildung der Imid-Verbindungen Ammoniak im Überschuss vorhanden sein muss. Die Bildung erfolgte auch durch Zugabe von konzentriertem Ammoniak zu Quecksilber(II)-nitrat. Die Anwesenheit von NH₄NO₃ führt nach den oben aufgeführten Untersuchungen vermutlich aufgrund der Pufferwirkung zur Bildung der Ammoniakate und führt in den Gleichgewichts-Reaktionen zur Rückreaktion. Die Bildung der Kaliumverbindung stellt sich als eine einfache Ionentauschreaktion zwischen Ammonium und Kalium dar. Dies legt die Vermutung nahe, dass sich auch Rubidium und Cäsium und evtl. Silber oder Thallium in die relativ großen Hohlräume der Struktur einbauen ließen, was eventuell eine interessante Variation für die kristalloptischen Eigenschaften der azentrischen Struktur bedeuten könnte. Silber ist dabei eventuell problematisch, da in ammoniakalischer Lösung die Ausbildung von $[Ag(NH_3)_2]^+$ - Kationen zu erwarten ist.

Als bislang ungeklärt muss die Frage nach einem sicheren Existenznachweis für ein "echtes" HgNH₂NO₃ angesehen werden. Die Pulverdiffraktogramme der in den zwei bisherigen Veröffentlichungen als "HgNH2NO3" angesehenen Verbindungen stimmen exakt mit den Pulverdiffraktogrammen von NH₄[Hg₃(NH)₂](NO₃)₃ und dessen aus Eiskristall-Daten simulierten Pulverdiffraktogrammen überein, wie Abbildung 18 zeigt. Das Problem der Einkristallstruktur-Untersuchungen von RANDALL [46] war, dass die Stickstoffatome neben den Schweratomen nicht lokalisiert werden konnten. Da RANDALL et al. die Übereinstimmung der Pulverdiffraktogramme mit einer als "HgNH₂NO₃" identifizierten Verbindung aus einer Veröffentlichung von HAYEK und INAMA von 1954 erkannten und danach eine fehlgeordnete Amin-Struktur konstruierten. Das Problem der Veröffentlichung von HAYEK und INAMA [44] ist jedoch, dass sich die Identifikation von "HgNH₂NO₃" (HgN₂H₂O₃) in erster Linie auf die Elementaranalyse stützt. Diese scheint zwar sehr genau zu sein, die ermittelte Zusammensetzung stimmt jedoch auch exakt mit der Zusammensetzung von $NH_4[Hg_3(NH)_2](NO_3)_3$ ($Hg_3N_6H_6O_9 =$ 3× HgN₂H₂O₃) überein. Somit kann die Struktur von HgNH₂NO₃ als ungeklärt betrachtet werden. Dass ein HgNH₂NO₃ überhaupt existiert, geht jedoch aus mehreren älteren schwingungsspektroskopischen Untersuchungen hervor.

Strukturell stellt die Verbindung NH₄[Hg₃(NH)₂](NO₃)₃ eine interessante Neuerung dar, da das einzige bislang strukturell charakterisierte Quecksilber-Imid Hg₂(NH)Br₂ von Brodersen [45] nur aus Pulverdaten bestimmt werden konnte. Im Hg₂(NH)Br₂ liegen zudem durch [HgBr₃]⁻ - Anionen getrennte, gewellte Schichten eines [Hg₃(NH)₂]²⁺ -Netzwerkes vor, während für NH₄[Hg₃(NH)₂](NO₃)₃ eine Verknüpfung der Schichten untereinander zu einer Raumnetzstruktur beobachtet wird. Strukturell ist dies insofern von Interesse, da damit die von BRODERSEN aufgezeigte strenge Analogie der Hg-N-Verbindungen mit den Silicaten, hier im Speziellen mit den Phyllosilicaten [59], durchbrochen wird.

Abbildung **28**: Vergleich der Tetraederverknüpfungen mit [NHg₄]-Fünfringen (links, Farben entsprechen jeweils einer krist. Lage) in NH₄[Hg₂(NH)₃](NO₃)₃ und über [SiO₄]-Sechsringe im β -Cristobalit (rechts)

Dies gilt auch für das wasserfreie "Nitrat der Millonschen Base", Hg2NNO3, welches im Gegensatz zu den Halogeniden bzw. der Millonschen Base Hg2NOH·2H2O in einer kubischen, dem β-Cristobalit entsprechenden, oder hexagonalen, dem Tridymit entsprechenden Modifikation kristallisiert. Die Raumgruppe ist in NH₄[Hg₃(NH)₂](NO₃)₃ mit P4₃2₁2 zwar identisch mit dem β -Cristobalit, die Wyckhoff-Lagen der NHg₄- Teilstruktur sowie die Eckenverknüpfung der Tetraeder stimmen Gegenüberstellung jedoch nicht überein. Abbildung 28 zeigt eine der Tetraederverknüpfung in NH₄[Hg₃(NH)₂](NO₃)₃ und im β-Cristobalit-Typ. Die Winkelung der Si-O-Si-Bindung von in der Regel 130-140° erlaubt die zahlreichen SiO₂-Modifikationen. Die starke Linearität der Hg-N-Hg- Bindungen erlauben nur ein eingeschränktes Spektrum an Tetraederverknüpfungen. Nach BRODERSEN [59] sind von den SiO₂-Modifikationen nur die beiden oben genannten für Hg-N-Verknüpfungen möglich. Die Quecksilber-Stickstoff-Teilstruktur von $[Hg_2N]NO_3$ ist jedoch mit keiner SiO₂-Modifikation isotyp, d.h. es besteht die Möglichkeit, dass weitere Tetraederverknüpfungen für die Quecksilber-Stickstoff-Teilstrukturen bestehen, die keine Analogien zu Silikatstrukturen aufweisen. Diese Frage wirft auch ein neues Licht auf die übrigen Salze der Millonschen Base, deren Strukturen bislang nicht an Einkristallen ermittelt wurden. Auch die Struktur des "Nitrats der Millonschen Base" wird in der Literatur üblicherweise als tetragonal verzerrter β -Cristobalit-Typ beschrieben. Hier bleibt zu klären, ob hier eine weitere Modifikation vorliegt oder eine aus Pulverdaten falsch bestimmte Zelle.

	$NH_4[Hg_3(NH)_2](NO_3)_3$	K[Hg ₃ (NH) ₂](NO ₃) ₃	[Hg ₂ N]NO ₃					
Gitterkonstanten / pm	a = 1030,4(2)	a = 1020,80(13)	a = 1540,4(1), b = 909,8(1)					
Zellvolumen / pm^3	$1093,9(3)\cdot10^{6}$	$1063,7(2)\cdot10^{6}$	$2159,7(3)\cdot10^6$					
Zahl der	4	4	4					
Formeleinheiten			_					
Kristallsystem	kubisch	kubisch	tetragonal					
Raumgruppe	P4 ₁ 32	$P4_332$	$P4_{3}2_{1}2$					
Messgerat Verwendete Strahlung		Stoe IPDS MoV $\lambda = 71.07 \text{ nm}$						
Monochromator	$\alpha, \lambda = /1, 0 / \text{pm}$ Granhit							
Messtemperatur		20°C						
Scan-Modus	2	2°-Schritte, 100 Bilder						
Messbereich/grd	3,8° < 20 < 53,95°	3,8° < 20 < 53,95°	3,8° < 20 < 53,97°					
Indexgrenzen h,k,l	$\pm 13, \pm 13, \pm 13$	$\pm 13, \pm 13, \pm 13$	$\pm 19, \pm 19, \pm 11$					
Berechnete Dichten	$5,039 \text{ g}/\text{cm}^3$	$5,338 \text{ g}/\text{cm}^3$	$7,342 \text{ g}/\text{cm}^3$					
F(000)	1415,3	1463,3	3960,0					
Absorptionskorrektur	nui	merisch, X-SHAPE [50]						
lin. Absorptionskoeff. μ / mm^{-1}	42,06	42,08	70,91					
Zahl der gemessenen Reflexe	13138	31433	38896					
Symmetrieunab-	410	397	2362					
R	0 1301	0 1766	0 1376					
Strukturbestimmung	Programme SF	IELXS-97 [51] und SHEI	X-97 [52]					
und -verfeinerung								
Streufaktoren	Inte							
Parameter	30	31	135					
R_1	0,0263 für 389 Fo >	0,0285 für 380 Fo>	0,0390 für 1872					
	4σ(Fo)	4σ(Fo)	$Fo > 4\sigma(Fo)$					
	0,0283 für alle Daten	0,0310 für alle Daten	0,0540 für alle					
wD (alla Datar)	0.0677	0.0614	Daten					
WK ₂ (alle Daten) Flack-y-Parameter	0,00//	0,0014 -0.0460	0,0836 -0.0211					
Goodness of fit	0,0240	1 173	1 092					
	0,200	1,1/0	1,074					

Tabelle 5: Kristallographische Daten für $NH_4[Hg_3(NH)_2](NO_3)_3$, $K[Hg_3(NH)_2](NO_3)_3$ und $[Hg_2N]NO_3$ und ihre Bestimmung

NH ₄ [Hg ₃ (NH) ₂	2](NO ₃) ₃	K[Hg ₃ (NH) ₂](N	NO ₃) ₃	[Hg ₂ N]NO ₃	
Hg1-N1 Hg1-O2 Hg1-Hg1	207,1(4) 281,6(10) 343,7(1)	Hg1-N1 N2-O1 N2-O2	205,8(5) 120(2) 122,1(14)	Hg1-N1 Hg1-N3 Hg2-N3	204,0(13) 205(2) 204(2)
N1-Hg1 N2-O2 N2-O1	207,1(4) 122,9(12) 126(2)	N2-02 N2-02	122,1(14)	Hg2-N3 Hg3-N2 Hg3-N1 Hg4-N3 Hg4-N2 Hg5-N2 Hg6-N2 Hg1-Hg3 Hg1-Hg2 Hg1-Hg2	204(2) $204,1(19)$ $207,5(15)$ $204(2)$ $204,3(18)$ $206,7(18)$ $205,3(19)$ $327,93(13)$ $329,09(14)$ $332,26(14)$
				N4-O3 N4-O1 N4-O2	555,26(14) 118(4) 128(4) 135(5)
N1-Hg1-N1 N1-Hg1-O2 N1-Hg1-O2 O2-Hg1-O2 N1-Hg1-Hg1 N1-Hg1-Hg1 Hg1-N1-Hg1 O2-N2-O2 O2-N2-O1 N2-O2-Hg1	178,3(6) 95,2(4) 85,1(4) 95,2(4) 156,5(4) 147,5(4) 145,9(2) 112,1(3) 122(2) 118,8(10) 129,0(7)	N1-Hg1-N1 Hg1-N1-Hg1 Hg1-N1-Hg1 O1-N2-O2 O1-N2-O2 O2-N2-O2	178,3(7) 112,0(4) 112,0(4) 112,0(4) 118,9(11) 118,9(11) 122(2)	N1-Hg1-N3 N3-Hg2-N3 N2-Hg3-N1 N3-Hg4-N2 N2-Hg5-N2 N2-Hg6-N2 Hg1-N1-Hg1 Hg1-N1-Hg3 Hg1-N1-Hg3 Hg3-N1-Hg3 Hg3-N2-Hg4 Hg3-N2-Hg6 Hg2-N3-Hg1	169,4(8) $176,0(13)$ $179,0(7)$ $169,0(9)$ $175,2(10)$ $179,7(10)$ $119,4(12)$ $105,66(11)$ $109,91(11)$ $105,6(11)$ $114,0(8)$ $110,1(8)$ $114,5(12)$ $107,5(11)$
				Hg4-N3-Hg1 O3-N4-O1 O1-N4-O2	109,5(10) 123(3) 114(3)

Tabelle 6: Ausgewählte internukleare Abstände / pm und Winkel / grd in $NH_4[Hg_3(NH)_2](NO_3)_3$, $K[Hg_3(NH)_2](NO_3)_3$ und $[Hg_2N]NO_3$

2 N-Heterocyclen als Liganden von Quecksilber(II)-Verbindungen

2.1 Einleitung

Aufgrund der grossen Affinität von Ouecksilber(II) zu Stickstoff lag es nahe, das bislang strukturell nur unzureichend charakterisierte Gebiet der organischen Stickstoffliganden zu erweitern und damit systematisch Aufschluss über deren Koordinationsverhalten am Quecksilber zu erhalten. Ausgehend von der Koordinationschemie einfacher Heterocyclen wie z.B. Pyridin sollten zunehmend mehrfach N-substituierte Heterocyclen eingesetzt werden, um gezielt zu koordinationspolymeren Verbindungen zu gelangen. Dabei wurde differenziert zwischen der Koordinationschemie an den Quecksilber(II)-Halogeniden (Chlorid, Bromid, Iodid) sowie dem "Pseudohalogenid" Hg(CF₃)₂, und den Quecksilber(II)-Verbindungen mit "härteren" Anionen wie Nitrat oder Perchlorat.

Mit Elektronendonoren erleidet beispielsweise Quecksilber(II)-iodid Depolymerisation. Ein Teilziel dieser Arbeit war es, die Tendenzen zur Polymerisation bzw. Depolymerisation in der Reihe der Halogenide Chlorid – Bromid – Iodid mit Stickstoff-Heterocyclen bzw. allgemein organischen N-Donor-Liganden zu ermitteln. Dabei hat sich in mehreren Fällen, wie zum Beispiel von Hg₃Py₂Cl₆ zu Hg₃Py₂Br₆, ein geradezu umgekehrter Trend zur zunehmenden Depolymerisation gezeigt. Fluoride wurden aufgrund ihres ionischen Charakters aus dieser Untersuchung ausgeklammert. Das als "Pseudohalogenid" geltende Trifluormethan im Hg(CF₃)₂, mit einem elektronischen Verhalten vergleichbar dem des Chlorids, zeigt (an zwei Beispielen belegt) bei Verknüpfung über N-Heterocyclen die Ausbildung von dimeren oder tetrameren Einheiten.

Für die Koordinationschemie der Quecksilberverbindungen mit "härteren" Anionen wie Nitrat und Perchlorat sind, wie bereits in Kapitel 1 für Ammoniak als Ligand gezeigt, höhere Stickstoffkoordinationen zu erwarten. Eine offene Frage war beispielsweise die Koordination des in älterer Literatur bereits erwähnten $[Hg(Py)_4](ClO_4)_2$ – entweder tetraedrisch analog zum $[Hg(NH_3)_4](ClO_4)_2$ oder in verzerrt oktaedrischer Umgebung mit zwei $[ClO_4]^-$ - Anionen in der Koordinationssphäre. Letzterer Strukturvorschlag hat sich dabei als richtig erwiesen. Für die ebenfalls in der Literatur der Zusammensetzung nach bekannte Verbindung $Hg(ClO_4)_2 \cdot 6Py$ stellte sich die Frage, ob es sich hier um den seltenen Fall eines sechsfach von Stickstoff koordinierten Quecksilbers handelt, oder wie die Strukturanalyse letztlich gezeigt hat, um eine zu [Hg(Py)₄](ClO₄)₂ analoge Struktur mit zwei freien Pyridin-Molekülen.

Aufgrund der Möglichkeit zur höheren Stickstoffkoordination mit den "härteren" Anionen Nitrat und Perchlorat gegenüber den kovalent gebundenen Halogeniden am Quecksilber konnten mit den N-Heterocyclen Pyrazin und Pyrimidin zweidimensional vernetzte Koordinationspolymere synthetisiert werden.

Insbesondere sollten die organischen N-Heterocyclen aufgrund ihrer vielfältig untersuchten elektronischen Struktur und Elektronendichteverteilung als Modellsysteme dienen, an denen Zusammenhänge zwischen der Basizität dieser Stickstoff-Donorliganden und dem Koordinationsverhalten des Quecksilbers bezüglich der Bindungslänge, -stärke und -winkel studiert werden konnten. Diese zur Strukturvorhersage notwendigen Erkenntnisse konnten im Rahmen dieser Arbeit sicherlich längst nicht abschliessend erschlossen werden, zumindest wurde jedoch versucht, aus den einzelnen Verbindungen Trends und Tendenzen abzulesen. Natürlich kann diese empirische Vorgehensweise nicht die Notwendigkeit umfassender theoretischer Arbeit auf diesem Gebiet ersetzen.

2.2 Pyridin als Ligand von Quecksilber(II)-halogeniden

2.2.1 Kristallstruktur von Hg(Pyridin)₂Cl₂

Hg(Py)₂Cl₂ (Py = Pyridin = C₅H₅N) kristallisiert monoklin in der Raumgruppe P2₁/c mit den Gitterparametern a = 392,25(5) pm, b= 861,79(14) pm, c = 1808,9(2) pm, β = 100,47(1)°. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 7 und Tabelle 8. Abbildung 29 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 29: Perspektivische Darstellung der Elementarzelle von HgPy₂Cl₂

Die Struktur von Hg(Py)₂Cl₂ besteht aus Oktaedern, die in Richtung der a-Achse über Kanten verknüpft sind. Die verknüpfenden Kanten der Oktaeder um Quecksilber(II) bestehen aus verbrückenden Chlorid-Ionen, deren Abstand 276,4(2) pm und 277,7(2) pm beträgt. Abbildung 30 zeigt einen Ausschnitt aus einem dieser kantenverknüpften Oktaederstränge. Der Winkel Cl1 – Hg – Cl1 beträgt 89,87(6)°, d.h. das Oktaeder um Quecksilber(II) ist nahezu unverzerrt, jedoch gestaucht. Im Winkel Cl1 – Hg – N1 von $88,8(2)^\circ$, somit nahezu senkrecht zu den Hg – Cl – Strängen, ist Quecksilber linear im Abstand von 228,3(6) pm an zwei Stickstoffatome von Pyridin-Molekülen koordiniert. Die Pyridin-Moleküle sind bezüglich der Verknüpfungsachse in Richtung [100] um 28° verdreht. Diese Oktaederstränge sind in Richtung der b-Achse parallel mit einem Winkel von Hg – Hg – N1 = 42,8° gepackt. Die nächste Lage befindet sich in Richtung der c-Achse und die Stränge sind gegenüber der ersten Schicht um 82° verdreht.

Abbildung 30: Ausschnitt aus der Struktur von HgPy $_2$ Cl $_2$ - chlorverbrückter Strang in Richtung [100]

Quecksilber(II)-chlorid löst sich äusserst leicht in Pyridin, worüber bereits ALFRED WERNER 1897 berichtet [60], und erwärmt sich beim Übergiessen stark. Beim Erkalten der Lösung scheidet sich HgPy₂Cl₂ in langen spießförmigen Nadeln ab, wie bereits PESCI 1895 beschreibt [61]. Die vorliegende Strukturbestimmung sowie die Bestimmung von HgPy₂Br₂ und HgPy₂I₂ sind Neubestimmungungen der bereits von GRDENIĆ und KRSTANOVIĆ [62] bestimmten Kristallstrukturen.

2.2.2 Kristallstruktur von Hg(Pyridin)₂Br₂

 $Hg(Py)_2Br_2$ (Py = Pyridin = C₅H₅N) kristallisiert orthorhombisch in der azentrischen Raumgruppe Pca2₁ (Nr. 29) mit den Gitterkonstanten a = 1811,47(10) pm, b = 880,73(14) pm, c = 861,1(3) pm. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 7 und Tabelle 8. Abbildung 31 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 31: Perspektivische Darstellung der Elementarzelle von HgPy2Br2

Die Kristallstruktur von HgPy₂Br₂ besteht aus einer Packung von Hg(Py)₂Br₂-Molekülen. In Abbildung 32 findet sich eine Darstellung eines einzelnen Moleküls. Quecksilber(II) ist dabei tetraedrisch koordiniert. Im Abstand von 249,54(15) pm und 249,61(15) pm befinden sich zwei Bromid-Ionen, die einen Winkel von 140,91(6)° einschliessen. Zwei Pyridin-Moleküle koordinieren im Abstand von 239,5(13) pm und 240,5(10) pm und die Stickstoffatome schliessen mit dem Quecksilber einen Winkel von 89,7(4)° ein. Die beiden Pyridin-Moleküle sind mit einem Winkel von 9° leicht gegeneinander verdreht. Die Packung dieser Moleküle erfolgt so, daß entlang der c-Richtung jeweils ein Pyridin-Molekül im Abstand von 420 pm parallel zum nächsten Pyridin-Molekül gestapelt ist. Die Hg(Py)₂Br₂-Moleküle sind dabei in einem Winkel von 86° gestaffelt. Die nächste Schicht parallel (011) ist dagegen um 180° gedreht.

Abbildung 32: Darstellung eines HgPy2Br2 - Moleküles

Die Aufbewahrung der Kristalle im offenen Gefäss an der Luft führt zur Abgabe von Pyridin, so dass nach einigen Tagen Quecksilber(II)-bromid übrig bleibt.

2.2.3 Kristallstruktur von Hg(Pyridin)₂I₂

 $Hg(Py)_2I_2$ (Py = Pyridin = C₅H₅N) kristallisiert orthorhombisch in der Raumgruppe Pnma mit den Gitterkonstanten a = 1460,2(3) pm, b = 1140,60(14) pm, c = 853,27(10) pm. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 7 und Tabelle 8. Abbildung 33 zeigt eine perspektivische Darstellung der Elementarzelle; in Abbildung 34 findet sich eine Darstellung der Elementarzelle in Richtung der a-Achse. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 33: Perspektivische Darstellung der Elementarzelle von HgPy₂I₂ in Richtung [001]

Abbildung 34: Perspektivische Darstellung der Elementarzelle von HgPy₂I₂ in Richtung [100]

Die Kristallstruktur von Hg(py)₂I₂ besteht aus einer Packung von Hg(Py)₂I₂-Molekülen. In Abbildung 35 findet sich eine Darstellung eines einzelnen Moleküls. Quecksilber(II) ist tetraedrisch koordiniert. Iod-Atome befinden sich im Abstand von 266,75(9) pm und 267,52(9) pm und schliessen mit Quecksilber einen Winkel von 142,86(3)° ein. Die beiden Pyridin-Moleküle koordinieren über die Stickstoffatome im Abstand von 241,9(6) pm zum Quecksilber; der Winkel N1 – Hg – N1 beträgt 93,8(3)°. Die Pyridin-Moleküle sind dabei um jeweils 15° bezüglich der I – Hg – I – Achse zueinander geneigt. Die Packung dieser Moleküle wird aus Abbildung 34 deutlich, d.h. es findet sich eine Stapelung der Pyridin-Moleküle in Richtung der c-Achse.

Abbildung 35: Darstellung eines HgPy₂I₂-Moleküles

Die Aufbewahrung der Kristalle im offenen Gefäss führt bereits nach 2-3 Stunden zur Abgabe des Pyridins, so dass Quecksilber(II)-iodid in der roten Modifikation zurückbleibt.

2.2.4 Kristallstruktur von Hg₃(Pyridin)₂Cl₆

Hg₃(Py)₂Cl₆ (Py = Pyridin = C₅H₅N) kristallisiert triklin in der Raumgruppe P $\overline{1}$ mit den Gitterparametern a = 401,88(14) pm, b = 923,3(3) pm, c = 1311,7(5) pm, α = 93,61(3)°, β = 96,79(3)°, γ = 102,48(3)°. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 7 und Tabelle **8**. Abbildung 36 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 36: Perspektivische Darstellung der Elementarzelle von Hg₃Py₂Cl₆ in Richtung [100]

Die Struktur von $Hg_3(Py)_2Cl_6$ besteht aus Doppelsträngen von kantenverknüpften [HgCl₅(NC₅H₅)]-Oktaedern in Richtung [100], die wiederum eckenverknüpft sind mit kantenverknüpften [HgCl_{4/2}Cl_{2/2}]-Oktaedersträngen, so dass sich insgesamt eine Verknüpfung zu Schichten findet. Die Oktaeder mit Pyridin-Molekülen in der Koordinationssphäre sind leicht verzerrt, d.h. der Winkel Cl1-Hg-N1 beträgt 161,3(6)° und der Winkel Cl1- Hg- Cl2 97,65(17)°. Abbildung 37 zeigt einen Ausschnitt aus der Struktur entlang der Oktaeder-Doppelstränge.

Abbildung 37: Darstellung eines Strukturausschnittes von Hg₃Py₂Cl₆ entlang eines Doppelstranges in Richtung [001]

Der Abstand der Quecksilberatome zum Stickstoffatom der Pyridin-Moleküle beträgt 221,6(18) pm und die gegenüberliegenden Chloratome koordinieren im Abstand von 240,1(5) pm. In den kantenverknüpften [HgCl_{4/2}Cl_{2/2}]-Oktaedersträngen findet sich Quecksilber zweimal in kurzen Abständen von 230,8(6) pm von Chlor koordiniert. Die weiter zu den Doppelsträngen über Ecken verknüpfenden Chloratome befinden sich in einem Abstand von 307,8(5) pm von Quecksilber. Die weiter innerhalb der Stränge verbrückenden Chloratome besitzen einen "assoziativen" Abstand von 322,0(54) pm.

2.2.5 Kristallstruktur von Hg₃(Pyridin)₂Br₆

Hg₃(Pyridin)₂Br₆ kristallisiert triklin in der Raumgruppe P $\overline{1}$ mit den Gitterparametern a = 409,68(15) pm, b = 962,4(5) pm, c = 1363,0(6) pm, α = 87,94(4)°, β = 81,74(3)°, γ = 80,11(3)°. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 7 und Tabelle **8**. Abbildung 38 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 38: Perspektivische Darstellung der Elementarzelle von Hg₃Py₂Br₆ in Richtung [100]

Die Struktur von Hg₃(Py)₂Br₆ hat Ähnlichkeit mit der aus Doppelsträngen bestehenden Struktur von Hg₃(Py)₂Cl₆, die Abstände zwischen jeweils zwei Pyridin-koordinierten Strängen liegen jedoch bei 371(7) pm, so dass diese Abstände nicht einmal mehr als "assoziativ" bezeichnet werden können. Somit kann als Strukturmerkmal von Hg₃(Py)₂Br₆ eine Verknüpfung von Pyridin-koordinierten HgBr₂-Molekülen über "assoziative" Abstände von 309,3(3) pm zu Strängen in Richtung [100] beschrieben werden. Die kurzen Hg-Br-Abstände betragen 242,4(3) pm, 247,5(3) pm und 248,4(3) pm. Die Quecksilber-Stickstoff-Abstände betragen 236(3) pm und sind damit kleiner als im Hg(Py)₂Br₂ mit 240(1) pm. Daneben finden sich Stränge aus HgBr₂-Einheiten mit Hg-Br-Abständen von 242,4(3) pm. Die Umgebung der Quecksilberatome wird hier durch vier Brom-Atome im Abstand von 2 × 333(1) pm zu den Brom-Atomen der Pyridin-koordinierten Stränge und 2 × 333(4) pm innerhalb der Stränge Richtung [100] zu verzerrten Oktaedern ergänzt. Der Br-Hg-Br- Winkel beträgt hier 158,1(1)°. Abbildung 39 zeigt einen Ausschnitt aus den Pyridin-koordinierten HgBr₂-Strängen.

Abbildung 39: Ausschnitt aus der Struktur von Hg₃Py₂Br₆ in Richtung [001] entlang eines Stranges

2.2.6 Schwingungsspektroskopische Untersuchungen an Pyridin-koordinierten Quecksilber(II)halogeniden

Für die "Addukte" von Pyridin an Quecksilber(II)-Halogenide wurden Infrarotspektren im MIR-Bereich $(4000 - 400 \text{ cm}^{-1})$ aufgenommen. In Abbildung 40 findet sich eine Darstellung der IR-Spektren in einem Diagramm. Die vorgefundenen Banden lassen sich alle entsprechenden Pyridin-Banden zuordnen, da die Quecksilber-Stickstoff-Schwingungen bzw. die Quecksilber-Halogenid-Schwingungen im FIR-Bereich angeregt werden. Je nach Stärke der Quecksilber-Stickstoff-Bindung ist ein Shift aller entsprechenden Pyridin-Schwingungsbanden zu beobachten. Eine Auftragung der Schwingungsfrequenz einer (willkürlich ausgewählten) C=N-Valenzschwingung gegen die Bindungslänge der Quecksilber-Stickstoff-Bindung in Abbildung 41 zeigt eine deutliche Korrelation, die bei zunehmender Stärke der Bindung eine Verschiebung zu größeren Wellenzahlen aufweist. Dieser Verlauf lässt sich insofern verstehen, als die zunehmende Bindungsstärke auch mit einer zunehmenden Beeinflussung des π -Pyridin-Ring einhergeht Elektronen-Systems im und Ouecksilber einen elektronenziehenden Effekt durch die Affinität zum Elektronenpaar des Stickstoffs im Heterocyclus ausübt. Der in grober Näherung angenommene lineare Verlauf dieser Korrelation gibt aufgrund der kleinen Datenbasis sicherlich nur einen Trend wieder.

Abbildung 40: Schwingungsspektren (IR) der Pyridin-Addukte an Quecksilber-Halogenide

Abbildung 41: Korrelation zwischen der Verschiebung einer C=N-Valenzschwingung der Pyridin-Moleküle in Quecksilber-Halogenid-Addukten sowie [Hg(py)₄](ClO₄)₂ und der Quecksilber-Stickstoff-Bindungslänge

2.2.7 Thermische Zersetzung von HgPy₂Cl₂ und HgPy₂Br₂

Die thermische Zersetung von HgPy₂Cl₂ unter Argon-Atmosphäre beginnt bei etwa 75°C (siehe Abbildung 42) unter Abgabe von einem Äquivalent Pyridin, so dass als Summenformel "HgPyCl₂" resultiert. Bei etwa 118°C setzt sich die Zersetzung unter Abgabe von 1/3 Äquivalent Pyridin auf 75 Massenprozent fort, so dass als Summenformel die oben vorgestellte Verbindung Hg₃Py₂Cl₆ folgt. Im Anschluss wird ab etwa 150°C eine langsame Massenabnahme durch Abgabe weiterer 2/3 Äquivalente Pyridin auf 63% beobachtet, der dann ab 190°C die Sublimation von Quecksilber(II)-chlorid folgt.

Die in Abbildung 42 dargestellte thermische Zersetzung von HgPy₂Br₂ unter Argon-Atmosphäre beginnt bei etwa 88°C. Nach Abgabe von einem Äquivalent Pyridin kann eine kleine Stufe beobachtet werden, die der Zusammensetzung HgPyBr₂ entspricht. Kurz darauf erfolgt bei 142°C die Zersetzung und nach Abgabe von 1/3 Äquivalent Pyridin ist eine ebenfalls sehr kleine Stufe zu erkennen. Eine anschliessende Abgabe von weiteren 2/3 Äquivalenten Pyridin bis 161°C gehen kontinuierlich in die Sublimation von Quecksilber(II)-bromid über. Im Vergleich zur Zersetzung des entsprechenden Chlorids HgPy₂Cl₂ sind die Zwischenstufen "HgPyBr₂" und Hg₃Py₂Br₆ undeutlicher ausgeprägt.

In der Literatur [63] finden sich von 1888 bei LANG auf Elementaranalysen gestützte Untersuchungen mit Hinweisen auf die Verbindungen HgPyCl₂ und HgPyBr₂. Für die Struktur des Adduktes an das Chlorid wird dort die Ausbildung von isolierten Py-HgCl₂-HgCl₂-Py - Dimeren diskutiert. Diese Vermutung erscheint jedoch angesichts der koordinationspolymeren Strukturen HgPv₂Cl₂ und Hg₃Py₂Cl₆ von eher unwahrscheinlich. Im Sinne der vorgestellten Struktursystematik ist für HgPyCl₂ und HgPyBr₂ die Ausbildung von koordinationspolymeren Doppelsträngen gemäss der auch in Hg₃Py₂Cl₆ vorliegenden Teilstruktur zu erwarten. Die in der Literatur bei LANG [63] beschriebene Synthese von HgPyCl₂ erfolgte durch Umkristallisation von HgPy₂Cl₂ in Ethanol. Die Synthese von Hg₃Py₂Cl₆ erfolgte (siehe Exp. Teil) durch Umkristallisation von HgPy₂Cl₂ in 70°C warmem Ethanol.

Die thermische Zersetzung von $HgPy_2I_2$ wurde nicht näher untersucht, da die Verbindung bereits bei Raumtemperatur Pyridin abgibt und nach etwa 2-3 Stunden im offenen Gefäß rotes Quecksilber(II)-iodid vorliegt. Kristalle von $HgPy_2I_2$ sind nur in einer Pyridin-Atmosphäre haltbar.

Für die thermische Zersetzung der Chlorid- und Bromid-Verbindungen sind sicherlich auch kinetische Effekte zu berücksichtigen, da auch z.B. für die Chloridverbindung in der Literatur die langsame Abgabe von Pyridin bereits bei Raumtemperatur bis zum HgCl₂ berichtet wird, so dass die beobachteten Zwischenstufen als metastabil zu bezeichnen sind, was auch eine Erklärung für den unregelmäßigen Verlauf der DTA-Kurve sein könnte.

Abbildung 42: Thermische Zersetzung von HgPy₂Cl₂ und HgPy₂Br₂ unter Argon-Atmosphäre

Abbildung **43**: Schematische Darstellung der thermischen Zersetzung von Pyridin-Addukten an Quecksilberhalogeniden

2.3 Diskussion der Trends für Quecksilber(II)-halogenide mit Pyridin-Liganden

Im Pyridin setzt sich das aromatische Sextett aus je einem p-Elektron von jedem Kohlenstoffatom und einem p-Elektron des Stickstoffatoms zusammen. Dem Stickstoffatom bleibt noch ein einsames Elektronenpaar in einem sp²-Orbital. Dieses liegt in der Molekülebene und steht senkrecht zum aromatischen System. Da das Pyridin ein freies, nichtbindendes Elektronenpaar besitzt, das nicht am aromatischen Sextett beteiligt ist, reagiert es wie ein normales Amin. Da sich dieses "basische" Elektronenpaar aber in einem sp²-Orbital befindet, beträgt der pK_a -Wert des Pyridinium-Ions nur 5,2. Abbildung 44 zeigt die Orbitalstruktur des Pyridins.

Abbildung 44: Orbitalschema von Pyridin

Die vorgestellten Quecksilber(II)-halogenide mit Pyridin-Liganden zeigen im Unterschied zu den binären Halogeniden eine Tendenz zur zunehmenden Polymerisation vom Iodid über Bromid zum Chlorid. So liegen in HgPy₂I₂ und HgPy₂Br₂ isolierte Moleküle mit verzerrt tetraedrischer Koordination des Quecksilbers vor, während beim Chlorid koordinationspolymere, chloridverbrückte Stränge vorliegen. In Hg₃Py₂Cl₆ kondensieren diese Stränge weiter zu Doppelsträngen. Auch in Hg₃Py₂Br₆ können koordinationspolymere Stränge beobachtet werden, die jedoch nicht mehr zu Doppelsträngen kondensiert sind. Zudem finden sich hier nahezu isolierte HgBr₂-Moleküle. Ein entsprechendes Iodid konnte nicht isoliert werden, da z.B. beim Lösen in Ethanol Pyridin vollständig verloren geht und HgI₂ zurückbleibt. Diese Tendenz zur abnehmenden Bindungsstärke der Quecksilber-Stickstoff-Bindung vom Chlorid zum Iodid spiegelt sich in der zunehmenden Bindungslänge von 222 pm bis 241 pm sowie der Zunahme der X-Hg-X – Bindungswinkel von 141° in HgPy₂Br₂ bis 143°

in HgPy₂I₂ wider. Zudem ist in den Infrarotspektren ein "Shift" in Richtung abnehmender Wellenzahlen der Pyridin-Moleküle zu beobachten. Thermoanalytische Untersuchungen zeigen, dass Hg₃Py₂Cl₆ und Hg₃Py₂Br₆ auch als Abbauprodukte bei der thermischen Zersetzung der entsprechenden 1 : 2 – Verbindungen zu erhalten sind. Daneben geben diese Untersuchungen Hinweise auf eine 1 : 1 – Verbindung. Für die Stabilität der betrachteten Halogenide in Verbindungen der Form HgX₂·2Py und 3HgX₂·2Py ist somit folgende Reihenfolge zu formulieren: X = Cl > Br > I.

	ll g(Pyridin) ₂ Cl ₂	.][g()Pyrridlin)_z 31t2	10(g((fy.nic.in.) ₂)s		
Gittenkonstantsın / pun Winkel / god	a = 392,25(5), b= 861,8(1), c = 1808,5(2), c = 100,4501)	z=1311,5(1), b=280,7(1), c=851,1(3)	x = 1460,2(3), b = 1140,6(1) c = 853,3(1)	ε = √01,9(1), b = 923,3(3), c = 1311,7(5), α=93,61(3), β=96,79(3), γ=102,48(3)	æ~(19,1(2), b~962,1(5), c= 13,633(6), a=87,94(4), p=81,74(3), 9=80,11(3)
Zellvolumen / pm ³ Zzhi der Exereteinfreiten	y − 100,700,13 601,300(14)+1.0 ⁶ 4	1373,9(5)°.: 0 ⁶ 4	142:,1(4) •10 ⁶ 4	469,9(3) •1.0 ⁶ 3	523,9(4) .10 ⁶ 3
n sun susunus neu. Reungruppe Messgerth Verwendele Sueulung Monseinonator Messismiperetur Sten-Modus	monokin P21/ c	crittonhomisisch P. c. a. 2 ₁	crihenhembisch P n n. a Stee IPDS MaKa, Å = 71,05 Cregáni 20°C 20°C	tarikdhira 12-1 1220a	torikilin Pa-1
Messbereich grd Index grenzen hjsjl Berechnete Dichten. R(800)	3,8° < 23 < 53,9% 4√, 410, 422 2,318 g/om² 375	3,8° < 29 < 53,95° ±25, ±11, ±9 2,597 g/end ³ 536	3,8° < 28 < 53,97° +1.8, +1.4, +1.0 2,816 g/cm² 1.040 mannertisch, %-SHAA	3,8° < 28 < 53,97° +4, +1.0, -1.3 <i<14 3,402 g/cm2 41.6</i<14 	3,8° < 29 < 53,97° ±4, ±1.0, ±1.4 3,896 g/cma ³ 524.
lin. Absorptionskoeff. u / mm ^{.1}				25,23	
zahl der genessenen Reflexa	7321	13225	16226	5250	3192
Symmetricus.bh. Reflexe	1132	2793	1626	1442	948
R _{ist} S'rukhurbestinnnung und	0,0433	C,0850 Progra	0,0969 umine SHIELXS-97 [51] ui	0,0783 1d SHELX-97 [52]	0,1234
-vancinating Sirqui Eldorran Mussie dae			International Tables, 73		
r au cuntsuss	/ 0,0367 .Thr 958 Fo > 4.0(Fo) 0,0441 .Thr all a Daten		72 0,0317 fitr 1141 Fc > 4∞(Fc) 0,0508 fitr alle Daten	>s 0,0542 filr 1007 Fo > 40(Fo) 0,0816 filr alle Daten	> ; 0,04/3 fit: 513 Fc > 4.0(Fo) 0,0909 fit: allo Daten.
wR., (aile Datan) F.ack-Parameter	0,0969 -	0,0749 -0,0252	0,0742 -	0,1293 -	
Goodness of fit	1_308	0,803	0,928	0.966	0,796

Tabelle 7: Kristalldaten und Details zur Strukturbestimmung für $Hg(py)_2Cl_2$, $Hg(py)_2Br_2$, $Hg(py)_2I_2$, $Hg_3(py)_2Cl_6$ und $Hg_3(py)_2Br_6$

(Pyridin) ₂ CJ		Hg(Pyridin)_E	Ta			Hgs(Pyridin)2CI		Eg(Pyridin) ₂ B	
	2,28,3(6)		239,5(13)	Hg1-N1	241,9(6)	.Hg1-Cl3	230,8(6)		242,4(3)
51-CI1	276,4(2)	Hg1-N2	240,5(10)	H <u>g</u> 1=11	266,75(9)	Hg1Cl2	307,8(5)	Hg1-Br3	242,4(3)
g1=C11	$2'77_{s}'7(2)$	Hg1-Br1	249,54(15)	H <u>e</u> 1=12	267,52(9)	Hg2=N1	222,4(18)	Hg2=N1	236(3)
	132,4(12)	Hg1-Br2			133,6(10)	E2=C11	239,1(5)	Hg2-Br5	247,5(3)
	133,9(11)	NI-CIO	$129_{s}(17)$		135,0(8)	Hg2-C12	268,2(5)	Hg2-Br4	248,4(3)
1-C2	$135_{s}6(18)$	NI-C9	136,9(18)		139,9(10)	H#2-012	272,6(6)	Hg2-Br5	309,3(3)
	136,9(17)	N2-C2	132,8(16)	CZ-CS		H22-Cl1	313,8(5)	BrS-Hg2	247,5(3)
2-C3	142,9(14)	N2-C1	134,5(15)			Hg2-Cl1	$314_{s}7(6)$	N1-C2	146(4)
	140, 2(13)		139(2)			N1-C2	133(3)	N1-CI	149(4)
		C2-C3	142(2)				133(3)		
			139(2)					C2-C3	106(7)
								C3-C5	157(6)
IN-ISE-I	150,0(3)	N1-Hg1-N2	89,7(4)	NI-Hel-INI	93.8(3)	013-Hg1-013	180,0(3)	C21-C5	151(6)
	88, 8(2)	NI-H <u>s</u> I-Brl	102,3(3)	N1-Hg1-II	102,99(14)	CI3-Hg1-CL2	90,94(18)		
	91,2(2)	N2-Hg1-Br1	104.3(3)	N1-Hg1-12	102, 15(13)	Cl2-Hz1-Cl2	180,0(2)	Br3-Hg1-Br3	130.0
IL-Hg1-CII	89,847(6)	N1-Hg1-Br2	103,5(3)	11=Hg1=12	142,86(3)	NI-192-011	161,3(6)	NI-Hg2=Br5	99,0(6)
11-Hg1-Cl1	180,0	N2-Hg1-Br2	104,6(3)	C2-N1-C1		N1-Hg2-C12	37,6(5)	N1-Hg2-Br4	102,5(6)
S-NI-C4.	119,6(7)	Brl-Hgl-Br2	140,91(6)	C2-N1-Hg1		NI-BE2-CII	86,6(6)	Br5-Hg2-Br4	158,06(13)
1-N1-Hg1	11.8,9(6)	C9-NI-Hg1	120,4(1,1)			NI-HEZ-CII	\$1, \$(5)	N1-Hg2-Bc5	85,2(6)
g1-C1-Hg1		C2-N2-Hg1	121,1(10)			Cl1-Hg2-Cl2	97,65(17)	Br5-Hg2-Br5	94,10(11)
		C1-N2-Hg1	$120_{4}(10)$			011-Hz2-Cl2		Br4-Hg2-Br5	92, 11(9)
						C12-Hg2-C12	95,99(17)	Hg2-Br5-Hg2	94,10(11)
						CI1=Hg2=CI1	81,82(17)	C2=N1=C1	107(3)
						C12,-H22,-C11	172,05(17)		
						012-Hg2-011			
						CH-H\$2-CH	81,97(18)		
						C2-N1-C1	121(2)		
						C2-N1-Hg2	122,8(16)		

Tabelle 8:	Ausgewählte	internukleare	Abstände /	pm und	Bindungswinkel	/	grd	für
Hg(py) ₂ Cl ₂	$Hg(py)_2Br_2,$	Hg(py) ₂ I ₂ , Hg ₃	3(py)2Cl ₆ und	d Hg ₃ (py)	$_2\mathrm{Br}_6$			

2.4 Diazine als Liganden von Quecksilber(II)-halogeniden

2.4.1 Kristallstruktur von Hg(Pyridazin)Cl₂

 $Hg(1,2-N_2C_4H_4)Cl_2$ kristallisiert orthorhombisch in der Raumgruppe Imma mit den Gitterparametern a = 745,8(2) pm, b = 716,67(16) pm, c = 1313,6(4) pm. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 9 und Tabelle 10. Abbildung 45 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 45: Perspektivische Darstellung der Elementarzelle von $Hg(Pyridazin)Cl_2$ in Richtung [100]

Die Struktur von Hg(Pyridazin)Cl₂ ist charakterisiert durch Stränge von kantenverknüpften, über Chlorid verbrückten HgCl₄N₂-Oktaedern. Die Oktaeder sind entlang der verknüpfenden Kanten um einen Winkel von 55,6° verkippt. Abbildung 46 zeigt einen Ausschnitt aus einem der in Richtung [010] verlaufenden Oktaederstränge. Zwei benachbarte Oktaeder koordinieren jeweils gemeinsam an ein Pyridazin-Molekül.

Die Abstände zu den Stickstoffatomen betragen 241,1(5) pm, die Quecksilber-Chlor-Abstände 268,20(17) pm. Entlang der verknüpfenden Kanten schliessen die Chloratome mit Quecksilber einen Winkel von Cl1-Hg-Cl1 = $82,81(8)^\circ$ ein.

Abbildung 46: Darstellung eines koordinationspolymeren Strukturausschnittes entlang [001] von Hg(Pyridazin)Cl₂

2.4.2 Kristallstruktur von Hg(Pyridazin)Br₂

Hg(Pyridazin)Br₂ kristallisiert monoklin in der Raumgruppe C2/c mit den Gitterparametern a = 1017,8(3) pm, b = 1365,3(3) pm, c = 743,8(2) pm, β = 131,06(2)° und Z = 4. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 9 und Tabelle 10. Abbildung 47 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 47: Perspektivische Darstellung der Elementarzelle von Hg(Pyridazin)Br₂ in Richtung [101]

Die Struktur von Hg(Pyridazin)Br₂ besteht, ähnlich wie jene von Hg(Pyridazin)Cl₂, aus Strängen von kantenverknüpften, über Bromid verbrückten HgBr₄N₂-Oktaedern. Diese Oktaeder sind jeweils paarweise wie im Chlorid zueinander verkippt und über die Koordination zu den Stickstoffatomen der Pyridazin-Moleküle verbunden. Die Quecksilber-Brom-Abstände sind jedoch nicht wie im Chlorid gleich lang, sondern es finden sich jeweils zwei kurze Abstände mit 259,70(16) pm und zwei lange Abstände mit 302,8(2) pm. Dies führt zu einer zusätzlichen Verkippung der Oktaeder gegeneinander um etwa 10° und erklärt den Symmetrieabbau vom orthorhombischen Hg(Pyridazin)Cl₂ in der Raumgruppe Imma zur monoklinen Raumgruppe C2/c im Bromid. Abbildung 48 zeigt einen Ausschnitt aus einem der in Richtung [10 $\overline{1}$] verlaufenden Oktaederstränge. Die Abstände zu den Stickstoffatomen betragen 253,9(12) pm. Entlang der verknüpfenden Kanten schliessen die Bromatome mit Quecksilber einen Winkel von Br1-Hg1-Br1 = 84,31(5)° ein.

Abbildung 48: Darstellung eines koordinationspolymeren Strukturausschnittes entlang [001] von Hg(Pyridazin)Br₂

2.4.3 Kristallstruktur von Hg(Pyrimidin)Cl₂

Hg(Pyrimidin)Cl₂ kristallisiert monoklin in der Raumgruppe P2₁/m mit den Gitterkonstanten a = 381,84(10) pm, b = 1316,8(2) pm, c = 707,65(19) pm, β = 92,49(2)°. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 9 und Tabelle 10. Abbildung 49 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und Anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 49: Perspektivische Darstellung der Elementarzelle von Hg(Pyrimidin)Cl₂ in Richtung [100]

Die Struktur von Hg(Pyrimidin)Cl₂ besteht aus kantenverknüpften, über Chlorid verbrückten HgCl₄N₂ – Oktaedern in Richtung [100]. Jedes Quecksilberatom koordiniert an zwei Pyrimidin-Moleküle, die die Oktaederstränge untereinander verknüpfen, so dass sich eine gewellte Schichtstruktur ergibt. Abbildung 50 zeigt einen Ausschnitt aus der Struktur.

Abbildung 50: Darstellung eines koordinationspolymeren Strukturausschnittes von Hg(Pyrimidin)Cl₂

Die Quecksilber-Stickstoff-Abstände betragen 250,5(14) pm. Innerhalb der Oktaeder finden sich zwei unterschiedliche Quecksilber-Chlor-Abstände – zwei kurze Abstände mit 250,3(5) pm und zwei lange mit 284,1(5) pm. Die Winkel im Oktaeder liegen alle bei nahezu 90°. Die kürzesten Quecksilber-Quecksilber-Abstände von Schicht zu Schicht liegen bei über 700 pm.

2.4.4 Kristallstruktur von Hg(Pyrimidin)Br₂

Hg(Pyrimidin)Br₂ kristallisiert monoklin in der Raumgruppe P2₁/m mit den Gitterkonstanten a = 394,10(6) pm, b = 1347,8(3) pm, c = 746,6(1) pm, β = 94,32(2)° und Z = 2. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 9 und Tabelle 10. Abbildung 51 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Die Struktur von Hg(Pyrimidin)Br₂ ist gekennzeichnet durch kantenverknüpfte, über Bromid verbrückte HgBr₄N₂ – Oktaeder in Richtung [100]. Jedes Quecksilberatom koordiniert an zwei Pyrimidin-Moleküle, die die Oktaederstränge untereinander verknüpfen, so dass sich eine gewellte Schichtstruktur ergibt. Abbildung 52 zeigt einen Ausschnitt aus der Struktur.

Abbildung 51: Perspektivische Darstellung der Elementarzelle von Hg(Pyrimidin)Br2

Die Quecksilber-Stickstoff-Abstände betragen 257,0(8) pm. Innerhalb der Oktaeder finden sich zwei unterschiedliche Quecksilber-Brom-Abstände – zwei kurze Abstände mit 258,09(9) pm und zwei lange mit 302,7(1) pm. Das Verhältnis der kurzen Quecksilber-Brom-Abstände zu den langen Kontakten wird bei dem Bromid im Vergleich zu dem Chlorid zugunsten einer deutlicheren Ausprägung der linearen Br-Hg-Br- Koordination entschieden. Die Winkel im Oktaeder liegen alle bei nahezu 90°. Die kürzesten Quecksilber-Quecksilber-Abstände von Schicht zu Schicht liegen bei über 700 pm.

Abbildung 52: Darstellung eines Strukturausschnittes von Hg(Pyrimidin)Br2

2.4.5 Kristallstruktur von Hg(Pyrazin)Cl₂

Hg(Pyrazin)Cl₂ (Pyrazin = 1,4-Diazin = 1,4-N₂C₄H₄) kristallisiert monoklin in der Raumgruppe C2/c mit den Gitterkonstanten a = 1189,70(17) pm, b = 778,3(3) pm, c = 384,0(7) pm, β = 90,99(6)°. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 9 und Tabelle 10. Abbildung 53 zeigt eine perspektivische Darstellung der Elementarzelle.

Abbildung 53: Perspektivische Darstellung der Elementarzelle von Hg(Pyrazin)Cl₂ in Richtung [001]

Die Struktur von Hg(Pyrazin)Cl₂ besteht aus kantenverknüpften, über Chlorid verbrückten HgCl₄N₂ – Oktaedern in Richtung [001]. Jedes Quecksilberatom koordiniert an zwei Pyrazin-Moleküle, die die Oktaederstränge untereinander verknüpfen, so dass sich eine Schichtstruktur ergibt. Abbildung 54 zeigt einen Ausschnitt aus der Struktur. Die Quecksilber-Stickstoff-Abstände betragen 250,3(3) pm. Innerhalb der Oktaeder finden sich zwei unterschiedliche Quecksilber-Chlor-Abstände – zwei kurze Abstände mit 250,3(3) pm und zwei lange mit 284,1(4) pm. Die Winkel im

Oktaeder liegen alle bei nahezu 90°. Die Schichten in $Hg(Pyrazin)Cl_2$ sind um b/2 gegeneinander versetzt.

Abbildung 54: Darstellung eine Ausschnitts der koordinationspolymeren Schichtverknüpfung in Hg(Pyrazin)Cl₂, parallel (100)

2.4.6 Kristallstruktur von Hg(Pyrazin)₂Br₂

 $Hg(Pyrazin)_2Br_2$ (Pyrazin = 1,4-Diazin = 1,4-N_2C_4H_4) kristallisiert orthorhombisch in der Raumgruppe Pnma mit den Gitterkonstanten a = 1156,03(10) pm, b= 830,73(19) pm, c = 1299,06(16) pm. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 9 und Tabelle 10. Abbildung 55 zeigt eine perspektivische Darstellung der Elementarzelle.

Die Struktur von $Hg(Pyrazin)_2Br_2$ besteht aus $HgBr_2$ – Einheiten, die in Richtung [010] über Pyrazin-Moleküle zu Strängen verknüpft werden. Diese Stränge werden über zick-zack-förmig angeordnete Pyrazin-Moleküle mit jeweils einem weiteren Strang verknüpft. Abbildung 56 zeigt einen Ausschnitt aus diesen Doppelsträngen. Die

Quecksilber-Stickstoff-Abstände sind innerhalb der Stränge mit 284,7(5) pm relativ groß; zu den strangverbrückenden Pyrazin-Molekülen betragen sie 272,2(5) pm.

Abbildung 55: Perspektivische Darstellung der Elementarzelle von Hg(Pyrazin)₂Br₂ in Richtung [010]

Die HgBr₂-Einheiten schliessen in Richtung der Aussenkanten der Doppelstränge einen Winkel von 167,76(4)° ein. Die Quecksilber-Brom-Abstände betragen 246,95(11) pm und 247,29(10) pm, und sind damit etwas länger als im Quecksilber(II)-bromid mit 244,5 pm. Die Quecksilber-Quecksilber-Abstände sind innerhalb der Doppelstränge mit über 800 pm sehr groß; von Strang zu Strang finden sich Abstände von etwa 620 pm. Diese Verhältnisse spiegeln sich auch in einer mit 2,729 g/cm³ um etwa 0,5 g/cm³ geringeren berechneten Dichte als etwa in Hg(Pyrazin)Cl₂ wider.

Abbildung 56: Darstellung eines Strukturausschnittes von Hg(Pyrazin)₂Br₂ in Richtung [001]

2.5 Diskussion der koordinationspolymeren Addukte von Diazinen an Quecksilber(II)-halogenide

Pyridazin besitzt unter den Diazinen die höchste Basizität ($pK_a = 2,3$; Pyrimidin 1,3; Pyrazin 0,4), ist aber wie alle Diazine deutlich schwächer basisch als Pyridin ($pK_a = 5,2$). Auch sein Dipolmoment ($\mu = 3,95$ D) ist höher als das von Pyrimidin ($\mu = 2,10$ D), Pyrazin besitzt kein Dipolmoment. Die N-N-Bindung im Pyridazin besitzt Einfachbindungs-Charakter, dieser zeigt sich auch in der Koordinationsverbindung mit HgCl₂ und HgBr₂ mit einer Bindungslänge von 133(1) pm bzw. 135(2) pm.

Die koordinationspolymeren Addukte an Halogenide mit den Liganden Pyridazin, Pyrimidin und Pyrazin weisen bis auf Hg(Pyrazin)₂Br₂ oktaedrische bzw. verzerrt oktaederische Umgebungen für Quecksilber auf. Hg(Pyrazin)₂Br₂ könnte noch mit einer extrem verzerrten Oktaederumgebung eingeordnet werden. Abbildung 57 zeigt eine Übersicht über die vorgefundenen Oktaederverknüpfungen bei Quecksilber(II)chloriden. Die Diazine koordinieren jeweils über beide Stickstoffatome und sind Teil der beschriebenen oktaedrischen Koordination des Quecksilbers.

In der Verbindung Hg(Pyridazin)Cl₂ finden sich gestauchte Oktaeder, die jedoch weiter nicht verzerrt sind. Bezüglich der Quecksilber-Stickstoff-Abstände findet sich ein längerer Abstand als in der oktaedrischen Koordination des Quecksilbers in HgPy₂Cl₂, nämlich von 241,1(5) pm gegenüber 228,3(6) pm. Für die Quecksilber-Chlor-Abstände ist umgekehrt eine Abnahme zu verzeichnen – diese betragen in Hg(Pyridazin)Cl₂ 268,2(2) pm gegenüber 277,7(2) pm in HgPy₂Cl₂. Die Zunahme der Bindungslänge HgN in Hg(Pyridazin)Cl₂ gegenüber einer mittleren linearen und kovalenten Koordination mit etwa 205 pm beträgt etwa 35 pm. Eine ähnliche Betrachtung bezüglich der Chlorid-Liganden ergibt mit mittlerer Hg-Cl-Bindungslänge von etwa 230 pm eine Zunahme der Bindungslänge um etwa 38 pm. Während somit die oktaedrische Koordination von Quecksilber in HgPy₂Cl₂ noch als eine "2+4"-Koordination bezeichnet werden kann, d.h. mit einer deutlichen, linearen N-Hg-N-Achse mit noch hohem kovalenten Bindungsanteil und vier Chlorid-Ionen, die aus "elektrostatischen" Gründen die Oktaederumgebung ergänzen, muss im Fall von Hg(Pyridazin)Cl₂ von einer "echten" oktaedrischen Koordination des Quecksilbers gesprochen werden. Die Übergänge zwischen diesen Koordinationen scheinen fliessend und vor allem von der Basizität des Stickstoff-Liganden geprägt zu sein. Diese ist wie oben erwähnt für Pyridin als Elektronendonor deutlich höher als für Pyridazin. Inwiefern hier auch sterische Ursachen, d.h. die durch den Pyridazin-Liganden vorgegebene Geometrie der Zick-Zack-Anordnung verknüpfter Oktaeder, eine Rolle spielen, ist schwer zu beurteilen. Abbildung 57 zeigt eine Übersicht der vorgefundenen Oktaederverknüpfungen.

Doch auch der Halogenid-Ligand beeinflusst das Koordinationsverhalten am Quecksilber. So geht beim Übergang von Hg(Pyridazin)Cl₂ zu Hg(Pyridazin)Br₂ die beschriebene oktaedrische Koordination wieder zugunsten einer verzerrt oktaedrischen "2+4"- oder besser noch "2+2+2"-Koordination verloren. Hier zeigt sich wie von HgPy₂Cl₂ zu HgPy₂Br₂ oder von Hg₃Py₂Cl₆ zu Hg₃Py₂Br₆ eine Tendenz zur Depolymerisation zugunsten der Ausbildung von HgBr₂-Einheiten. Diese Tendenz ist im Sinne des HSAB-Konzeptes verständlich, da Bromid besser polarisierbar und damit weicher ist und somit der kovalente Anteil einer Quecksilber-Brom-Bindung in Konkurrenz zur Quecksilber-Stickstoff-Bindung zunimmt.

Diese Tendenz setzt sich auch für die schwächer basischen Liganden Pyrimidin und Pyrazin fort, wobei hier jedoch bereits bei Hg(Pyrimidin)Cl₂ die Ausbildung von "2+4"-Koordinationen zu beobachten ist. Mit dem schwächer basischen Pyrimidin ist auch zugleich eine Zunahme des Quecksilber-Stickstoff-Abstandes auf 250(1) pm zu verzeichnen. Eine weitere Zunahme der Bindungslänge Hg-N ist dann noch bei der entsprechenden Pyrazin-Verbindung mit d(Hg-N) = 251(1) pm zu finden. Bei der Verbindung Hg(Pyrazin)₂Br₂ ist dann offenbar die Basizität des Pyrazins gerade so gering, dass sich nunmehr nur noch praktisch isolierte HgBr₂-Einheiten bilden, die dann über sehr lange Quecksilber-Stickstoff-Kontakte bei 272,2(5) pm und 284,7(5) pm zu den oben beschriebenen Doppelsträngen verknüpft werden. Dass auch bei diesen grossen Quecksilber-Stickstoff-Abständen durchaus noch Wechselwirkungen vorhanden sind, wird am Bindungswinkel Br1-Hg1-Br2 deutlich, der bei 167,76(4)° liegt.

		.C.g.Orynticianin) Bry	10(g(Pyrintilin)Ch	H. EOF yr timidlin) &: 2	11g(Pynerain)Olg	L g(kyrazin), 3k2
Olderkonskuten / pro	a = 74.5, 8(2), b = 71.6, 67(.1.6), c = 1.3(3, 6(4))	e=1077,8(3), b= 1365,3(3), c = 742,8(2), 3 = 13065(18)*	a = 381,84(10), b = 1316,82(2), c = 707,65(19), 3 = 92,49(2)*	a = 394,10(6), b = 1347,5(3), c = 746,5(1,1), $b = 94,317(17)^{2}$	a = 1189,70(17), b = 778,3(3), c = 384,0(7), ß = 50,99(6)*	a = 11.56,03(.0%) b= 830,73(19%) c = 1299,06(16)
Zellwoiumen/pm. ³ Zahl dar Formoleinheiten	702,1(3) ·10 ⁵ 4	779,3(4) -10 ⁸ 4	```\$\$\$,<\$(``\$)`10° Z	595,46(1⊥)`10° 2	355,6(7) -10° 2	.1247,6(3) ~10 ⁶ .4
Kristallsystem. Raumgruppe Wessarft	ortharíarnóiscla I m m s	meneklin C2/e	moraklín P 2, / m	manaklin F 2 ₁ / m lime liPUSS		
Varwalow Stallug Morechenteer Messtanparatur Sam Weina			Maxa 2-38cm	a, k = 7.5.07 pera Craphit 20°C Write 1100 Bi' der		
Messbercich/grú Italesgrenzen Lak,l Romminnen Didatem	3,8° < 28 < 53,95° 49, -9×1×3°, ±16 3 326 m/mm ³	3,8° < 20 < 53,95° ±L1±L5, ±15, =7<<8 5-730; m/core ³	3,8° < 28 < 53,95° ±4, ±15, ±8 * 247 alerra	3,8º < 2& < 53,95ª ±4, ±17, ±9 3 && atron ³	3,8° < 20 < 53,97° ±14, ±9, ±4. ≈ 2016 =4mm ³	3,8° < 28 < 53,57° ±13, -8⊲‰9, ±14. © 720 admon ³
F(OOC) Absorptionskorrektur 	operate security	752 	sos 305 aunorisc		304 304	2.04) 2.04)
lin. Absorphionskoeld. 2. / <u>mm⁻¹</u>	22,59	29,91	22,30	29,48	22,30	18,72
Zahl der gemessenen Refiske		6719	8637	₹J\$\$\$	1972	27408
Symmotrourablingigo Refiexe	A.A.B.		587	927	354	1055
Ri _{tat} Manual maniformana ana d	0,0454	0,2.671	$\mathbb{O}_{p}[1,4/7]$	0,0770	0,0787	0,0766
s rushurosymmetring unu - venfeinerurg Strenfaktoren			Frogramme SHELX. Internetio	3-97 [51] und SHELX-97 nel Tables, Vol. C	[52]	
Fizzarnejez Raj	35 0,02/13 für 296 Fa > 46(Fo) 0,0476 für alle Daten	44 0,0645 Altr 296 Ro > 4.0689 Altr alle Daten. 0,0689 Altr alle Daten.	47 8,0624 Art 4.58 Fo > 40(30) 8,0774 Art alls Datea	47 0,0464 ftr 765 Fo > 4:0(Fo) 0,0545 ftr alle Darer	26 0,0233 fitr 354 Fo> 40(Fo) 0,0233 fitr aile Daten	74 0,02.14 ftr 790 Fo> 40(Ho) 0,04.02 ftr sLe Deven
wik _a (alle Daten) Fiack-Persmeter	0,03.09 -	0,1569 -		0,1112	0,0533	0,04.03
Cooriess of if:	0,456		0,5%2	1_2042 .	1°703	0,858

Tabelle 9: Kristalldaten und Details zur Strukturbestimmung für Hg(Pyridazin)	X ₂ ,
Hg(Pyrimidin)X ₂ (X=Cl, Br), Hg(Pyrazin)Cl ₂ und Hg(Pyrazin) ₂ Br ₂	

in)2Br2	246,95(11) 247,29(10) 272,255 284,7(5) 131,8(9) 134,0(8) 139,4(10) 139,4(10) 139,4(10) 138,0(14) 138,1(14)	167,76(4) 96,34(14) 93,82(14) 67,7(2) 87,83(12) 87,83(12) 88,17(12) 138,07(15) 70,40(16) 87,83(12) 151,53(19) 119,8(5) 119,8(5) 117,4(4) 117,4(4) 117,4(4) 117,4(4) 122,1(6) 121,7(4)
Hg(Pyraz	Hgl-Br2 Hgl-Br1 Hgl-Nl Hgl-Nl Hgl-N2 Nl-C1 N2-C3 C1-C2 C2-C1 C3-C3 C3-C3 C4-C4	Br2-Hg1-Br1 Br2-Hg1-N1 Br1-Hg1-N1 N1-Hg1-N1 Br2-Hg1-N1 Br2-Hg1-N2 N1-Hg1-N2 N1-Hg1-N2 N1-Hg1-N2 N2-Hg1-N2 C2-N1-Hg1 C1-N1-Hg1 C3-N2-Hg1 C1-N1-Hg1
ızin)Cl ₂	250,3(3) 251,0(7) 284,1(4) 384,0(7) 132,9(7) 140,4(12)	180,00(6) 90,0 180,0 88,34(12) 88,34(12) 180,00(6) 91,66(12) 118,5(8) 120,7(4)
Hg(Pyra	HgI-ClI HgI-NI HgI-ClI HgI-ClI HgI-HgI NI-CI CI-CI	CII-Hg1-CII CII-Hg1-NI NI-Hg1-NI CII-Hg1-CII CII-Hg1-CII Hg1-CII-Hg1 CI-NI-CI CI-NI-CI CI-NI-Hg1 CI-NI-Hg1
iidin)Br ₂	257,0(8) 258,09(9) 302,66(10) 132,4(10) 133,5(11) 132,4(10) 137,6(12)	$\begin{array}{c} 180,0(3)\\ 180,0\\ 88,94(2)\\ 89,45(19)\\ 88,94(2)\\ 116,9(8)\\ 121,5(6)\\ 121,5(6)\\ 122,5(10)\\ 121,4(9)\\ 117,5(13)\\ \end{array}$
Hg(Pyrim	Hg1-N1 Hg1-Br1 Hg1-Br1 N1-C6 N1-C7 C6-N1 C7-C8	NI-Hg1-NI Br1-Hg1-Br1 Br1-Hg1-Br1 N1-Hg1-Br1 Hg1-Br1-Hg1 C6-N1-C7 C6-N1-Hg1 N1-C6-N1 N1-C6-N1 N1-C7-C8 C7-C8-C7
iidin)Cl ₂	250,3(5) 250,5(14) 284,1(5) 284,1(5) 134,3(18) 134,3(18) 135(2) 136(2)	$\begin{array}{c} 180,000(2)\\ 89,6(4)\\ 180,000(5)\\ 89,02(14)\\ 87,2(4)\\ 180,000(1)\\ 90,98(14)\\ 119,4(17)\\ 119,4(17)\\ 119,1(12)\\ 119,1(12)\\ 120,7(12)\\ 121(2)\\ 121(2)\end{array}$
Hg(Pyrin	HgI-CII HgI-NI HgI-CII CII-HgI NI-C2 NI-C2 CI-C3 CI-C3	CII-Hg1-CII CII-Hg1-NI NI-Hg1-NI OII-Hg1-CII NI-Hg1-CII Hg1-CII-Hg1-CII Hg1-CII-Hg1 C2-NI-CI C2-NI-Hg1 C1-NI-Hg1 NI-C2-NI C1-C3-CI C1-C3-CI
lazin)Br2	253,9(12) 259,70(16) 302,75(17) 133,0(19) 135(2) 135(2) 136(3) 136(3) 133(2)	$\begin{array}{c} 180,000(1)\\ 88,6(3)\\ 91,4(3)\\ 180,0\\ 87,7(2)\\ 87,7(2)\\ 87,7(2)\\ 117,7(8)\\ 117,7(8)\\ 117,7(8)\\ 117,7(8)\\ 117,5(3)\\ 117,5(3)\\ 117,5(3)\\ 117,5(3)\\ 117,5(3)\\ 117,5(3)\\ 117,5(3)\\ 125,0(13)\\ \end{array}$
Hg(Pyrid	Hgl-Nl Hgl-Brl Hgl-Brl Hgl-Brl Nl-C4 Nl-Nl C3-C4 C3-C3 C4-C3	NI-HgI-NI NI-HgI-BrI NI-HgI-BrI BrI-HgI-BrI NI-HgI-BrI BrI-HgI-BrI C4-NI-NI C4-NI-HgI NI-NI-HgI NI-NI-HgI NI-NI-HgI NI-C4-C3 NI-C4-C3
azin)Cl ₂	$\begin{array}{c} 241,1(5)\\ 268,20(17)\\ 130,7(19)\\ 133,5(10)\\ 140(2)\\ 135,3(15)\\ 135,3(15)\end{array}$	$\begin{array}{c} 180,00(11)\\ 89,44(10)\\ 180,0\\ 89,44(10)\\ 82,81(8)\\ 90,56(10)\\ 82,81(8)\\ 180,00(7)\\ 83,83(6)\\ 119,6(6)\\ 117,80(12)\\ 117,80(12)\end{array}$
Hg(Pyrid	HgI-NI HgI-CII NI-CI NI-CI CI-C2 C2-C2 C2-C2	NI-HgI-NI NI-HgI-CII CII-HgI-CII NI-HgI-CII NI-HgI-CII NI-HgI-CII NI-HgI-CII HgI-CII-HgI CII-HgI-CII HgI-CII-HgI CI-NI-HgI NI-NI-HgI NI-NI-HgI

Tabelle 10: Ausgewählte internukleare Abstände und Bindungswinkel für Hg(Pyridazin)X₂, Hg(Pyrimidin)X₂ (X=Cl, Br), Hg(Pyrazin)Cl₂ und Hg(Pyrazin)₂Br₂

2.6 Purin als Ligand von Quecksilber(II)-chlorid und –bis-trifluormethylat

2.6.1 Kristallstruktur von [HgCl][Hg(Purin)Cl₂]

[HgCl][Hg(Purin)Cl₂] kristallisiert monoklin in der Raumgruppe P2₁/c mit den Gitterparametern a = 697,7(1) pm, b = 1396,8(2) pm, c = 1192,2(2) pm, β = 117,14(1)° und Z = 4. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 11 und Tabelle 12. Abbildung 58 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 58: Perspektivische Darstellung der Elementarzelle von [HgCl][Hg(Purin)Cl₂] in Richtung [101]

Die Struktur von [HgCl][Hg(Purin)Cl₂] besteht aus Purin-Molekülen, die über alle vier Stickstoffatome zum Quecksilber koordinieren. Abbildung 59 zeigt die Umgebung eines Purin-Moleküls. Dabei koordiniert Quecksilber zweimal am Fünfring des Purins mit relativ kurzen Quecksilber-Stickstoff-Abständen an Position 7 mit 211,4(6) pm und an Position 9 mit 220,4(6) pm, und zweimal in längeren Abständen mit 247,7(6) pm an Position 1 und 266,8(7) pm an Position 3. Für Purine besteht für das Proton im Fünfring eine Tautomerie, d.h. in einer Lösung liegt eine Mischung von Tautomeren in Position 7 und 9 vor. In der vorliegenden Verbindung geschieht eine Deprotonierung in Position 7, so dass das Purin hier am Quecksilber gleichzeitig als Anion auftritt. Positionen 1 und 9 sowie Positionen 3 und 7 des Purins koordinieren an äquivalente Quecksilberpositionen.

Abbildung 59: Darstellung der koordinationspolymeren Flächenverknüpfung in [HgCl][Hg(Purin)Cl₂]

Die Umgebung des Quecksilberatome an Position 1 und 9 ist verzerrt tetraedrisch. Die Quecksilber-Stickstoff-Abstände zu jeweils zwei Purinmolekülen betragen 247,7(6) pm und 220,4(6) pm mit einem Winkel von $83,9(2)^{\circ}$. Die Quecksilber-Chlor-Abstände liegen bei 234,8(2) pm und 266,3(3) pm; der Winkel Cl2-Hg1-Cl3 beträgt 113,98(8)°. Der Winkel N3-Hg1-Cl2 beträgt 147,0(2)°; Winkel N3-Hg1-Cl3 liegt bei 96,6(2)°. Die Umgebung des Quecksilberatoms an Position 3 und 7 kann als T-förmig beschrieben werden – werden auch "assoziative" Abstände um 300 pm berücksichtigt, so wird die Umgebung des Quecksilbers zu einem verzerrten Oktaeder ergänzt. Nahezu linear mit einem Winkel von 178,7(2)° stehen sich hier Stickstoff im Abstand von 211,4(6) pm

zum Quecksilber und Chlor im Abstand von 232,6(2) pm gegenüber. Senkrecht zu dieser Achse findet sich eine Stickstoffkoordination zu einem weiteren Purinmolekül im Abstand von 266,8(7) pm. Der Winkel N1-Hg2-N4 beträgt 83,9(2)°.

Abbildung 60: Umgebung und Koordination eines Purin-Moleküles in [HgCl][Hg(Purin)Cl₂]

Abbildung 59 zeigt einen Ausschnitt, der die Verknüpfung innerhalb der Schichten verdeutlicht. Abbildung 58 mit der perspektivischen Darstellung der Elementarzelle verdeutlicht die Ausbildung zick-zack-förmiger Schichten und einen Schichtverbund über die "assoziativen" Quecksilber-Chlor-Kontakte um 300 pm. Diese dreidimensionale Verknüpfung spiegelt sich auch in der Spaltbarkeit der gut ausgebildeten Kristalle von isometrischem Habitus wider, für die sich im Gegensatz zu vielen der hier vorgestellten Schicht- oder Kettenstrukturen keine bevorzugte Richtung ausmachen lässt. Abbildung 61 zeigt die Art der Verknüpfung der verzerrten Oktaeder in [HgCl][Hg(Purin)Cl₂].

Abbildung 61: Darstellung der Verknüpfung der verzerrten Oktaeder in [HgCl][Hg(Purin)Cl₂]

2.6.2 Kristallstruktur von [Hg(Purin)(CF₃)₂]₄

 $[Hg(Purin)(CF_3)_2]_4$ kristallisiert tetragonal in der Raumgruppe P $\overline{4}$ mit den Gitterparametern a = 1486,8(2) pm, c = 1026,2(1) pm und Z = 8. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 11 und Tabelle 12. Abbildung 62 zeigt eine perspektivische Darstellung der Elementarzelle.

Die Struktur von [Hg(Purin)(CF₃)₂]₄ besteht aus Hg(CF₃)₂ – Molekülen, die über Purin-Moleküle in stark verzerrter tetraedrischer Geometrie am Quecksilberatom zu tetrameren Einheiten verknüpft werden. Die Abbildung 63 und Abbildung 64 zeigen die Tetramere aus zwei unterschiedlichen Richtungen. Der Abstand von Quecksilber zum Kohlenstoff der CF₃-Gruppen beträgt 203(2) pm und 209(2) pm. Die Quecksilber – Stickstoff-Abstände sind mit 265,8(15) pm und 279,4(15) pm relativ gross. Der Winkel C-Hg-C beträgt 167,1(8)°. Der Winkel C1-Hg1-N2 liegt bei 95,0(7)°; C1-Hg1-N1 bei 88,9(6)°. Der Öffnungswinkel zwischen den beiden Stickstoffatomen beträgt N1-Hg1-N2 = 75,6(5)°. Für die Fluor-Atome finden sich auch bei der Messtemperatur von 170 K relativ grosse anisotrope Temperaturfaktoren. Diese sind für CF₃ – Gruppen jedoch aufgrund von dynamischen Fehlordnungen üblich.

Abbildung 62: Perspektivische Darstellung der Elementarzelle von [Hg(Purin)(CF₃)₂]₄ in Richtung [001]

Abbildung 63: Darstellung der Tetramere in Hg(Purin)(CF₃)₂ in Richtung [110]

Abbildung 64: Darstellung der Tetramere in [Hg(Purin)(CF₃)₂]₄ in Richtung [001]

2.6.3 Diskussion der Reaktivität von Purin als Ligand von Quecksilber(II)-Verbindungen

Purin, Imidazo[4,5-d]pyrimidin, ist ein aromatisches 10π -Elektronen-System und kann Reaktionen sowohl mit Elektrophilen als auch mit Nucleophilen eingehen. Purin ist wasserlöslich und kann als schwache Base (pK_a = 2,4) und als schwache Säure (pK_a = 8,9) fungieren. Purin ist der Grundbaustein einer Gruppe wichtiger, in der Natur weit verbreiteter und an menschlichen, pflanzlichen und mikrobiellen Stoffwechselvorgängen beteiligter Verbindungen. Zudem ist Purin der Grundbaustein der Nucleinbasen Adenin und Guanin. Neben der auf der blockierenden Wirkung des Quecksilbers an SH-Funktionen von Enzymen beruhenden Giftigkeit wird auch eine mutagene Wirkung durch praktisch irreversible Koordination an die Stickstoff-Atome der Nucleinbasen z.B. bei CARRABINE und SUNDARALINGAM [67] diskutiert. In der Additionsverbindung an Quecksilber(II)-chlorid tritt Purin, für das das oben erwähnte Tautomerie-Gleichgewicht gilt, in deprotonierter Form als Anion auf. Da die Umsetzung mit Purin in neutraler Lösung erfolgte, ist auch von der Bildung einer Verbindung mit protoniertem Purin als Kation und Quecksilber(II)-chlorid-Anionen auszugehen. Diese konnten bislang für das Chlorid noch nicht in Form von Einkristallen zur Strukturbestimmung nachgewiesen werden. Das Infrarotspektrum zeigt im von reinem Purin freien Produkt immer noch N-H-Schwingungen, die sich nur auf eine derartige Verbindung zurückführen lassen. In Abbildung 65 findet sich der daraus folgende Reaktionsmechanismus. Bei der Reaktion von Quecksilber(II)-bromid mit Purin konnte das Homologe zur postulierten Verbindung strukturell charakterisiert werden [25]. Die Protonierung des Purins erfolgt an Position 1.

Abbildung 65: Vorgeschlagener Reaktionsmechanismus für die Bildung von $[HgCl][Hg(Purin)Cl_2]$

In [HgCl][Hg(Purin)Cl₂] koordiniert Quecksilber an vier Stickstoffatome unterschiedlicher Basizität. Der kürzeste Quecksilber-Stickstoff-Abstand findet sich dabei an der deprotonierten Position 7. Eine derartige Vernetzung zu einer Schichtstruktur ist für die Trifluormethyl-Gruppen anscheinend nicht möglich. Die Trifluormethylgruppen sind bezüglich ihrer Härte und Elektronegativität etwa mit dem Chlorid vergleichbar. Die Grösse entspricht jedoch eher der eines Iodides. Damit ist vermutlich eine analoge Koordination wie im Chlorid allein aus sterischen Gründen nicht möglich, so dass tetramere Einheiten über relativ lange Quecksilber-Stickstoff-Kontakte ausgebildet werden. Hier findet eine Koordination nur über die Stickstoffatome 1 und 7 statt, so dass bezüglich der Tautomerie von Wasserstoffatomen auf Position 7 und 9 im Gegensatz zum Chlorid, bei dem an Position 9 deprotoniert wurde, hier die Position 7 protoniert ist. Beim Chlorid spielt sicherlich auch die "effektiv" oktaedrische Koordination eine strukturbestimmende Rolle.

Tabelle 11: Kristalldaten und Details zur Strukturbestimmung für [HgCl][Hg(Purin)Cl2] und[Hg(Purin)(CF3)2]4[HgCl][Hg(Purin)Cl2][Hg(Purin)(CF3)2]4

Gitterkonstanten / pm	a=697,77(13), b=1396,80(18),	a=1486,77(19),
Winkel / grd	$c=1192,2(2), \beta=117,145(13)$	b=1026,20(14)
Zellvolumen/pm ³	1034,0(3)	2268,4(5)
Zahl der Formeleinheiten	4	8
Kristallsystem	monoklin	tetragonal
Raumgruppe	$P2_1/c$	P-4
Messgerät	Stoe	IPDS
Verwendete Strahlung	$MoK_{\alpha}, \lambda \in$	= 71,07 pm
Monochromator	Gra	aphit
Messtemperatur	293 K	170 K
Scan-Modus	2°-Schritte	, 100 Bilder
Messbereich/grd	3,8° < 20 < 53,95°	3,8° < 20 < 53,95°
Indexgrenzen h,k,l	±8,-16 <k<17,±14< td=""><td>$\pm 16, \pm 16, \pm 11$</td></k<17,±14<>	$\pm 16, \pm 16, \pm 11$
Berechnete Dichten	$4,006 \text{ g/cm}^3$	$2,663 \text{ g/cm}^3$
F(000)	1076	1631
Absorptionskorrektur	numerisch, X	X-SHAPE [50]
lin. Absorptionskoeff.	30,39	13,64
μ/mm^{-1}		
Zahl der gemessenen	18347	23092
Reflexe		
Symmetrieunabhängige	2042	1780
Reflexe		
R _{int}	0,0789	0,3206
Strukturbestimmung und -	Programme SHELXS-97	[51] und SHELX-97 [52]
verfeinerung		
Streufaktoren	International	Tables, Vol. C
Parameter	128	164
R_1	0,0257 für 1532 Fo > 4σ(Fo)	0,0506 für 1595 Fo > 4σ(Fo)
	0,0435 für alle Daten	0,0550 für alle Daten
wR_2 (alle Daten)	0,0486	0,1031
Flack-Parameter		
Goodness of fit	0,875	0,915

[HgCl][H	[g(Purin)Cl ₂]	[Hg(Purin)(CF ₃) ₂] ₄			
Hal-N2	220 4(6)	Hg1-C1	203 2(17)		
Hg_1 - C_1^2	220,4(0) 234.8(2)	Hg_1-C_2	203,2(17) 209(2)		
$H_{g1} N2$	234,0(2) 247.7(6)	$H_{g1} N2$	209(2) 265 8(15)		
$H_{g1} C_{13}$	247,7(0) 266.3(3)	Hg1 N1	203,8(13) 279 $A(15)$		
Hg_1-Hg_2	200, 3(3) 385 18(9)	F_2C_2	279,4(13) 129(3)		
$H_{\sigma}^{2}-N_{d}^{2}$	211 4(6)	F3-C2	123(3)		
H_{σ}^{2} -Cl1	211, 4(0) 232 6(2)	F4-C2	128(3)		
Hg_2-N1	252,0(2) 266.8(7)	N1-C4	120(3) 130(2)		
H_{σ}^{2} -Cl3	200,0(7) 293 9(3)	N1-C3	130(2) 141(2)		
Hg_2 -Cl	2)5,7(5) 306 3(2)	N2-C6	136(3)		
Hg_2 -Cll	3135(2)	N2-C5	130(3) 138(2)		
Hg2-Cl5 Hg2-Hg2	376 55(9)	N3-C4	136(2)		
$C_{11}H_{\sigma}^{2}$	306 3(2)	N3-C7	130(3) 137(2)		
C13-Hg2	3135(2)	N4-C6	137(2) 132(2)		
N1-C1	1333(10)	N4-C7	132(2) 133(2)		
N1-C3	135,3(10) 135,3(10)	C_3 - C_5	133(2) 131(3)		
N2-C4	133,3(10) 134 0(11)	C3-C7	131(3) 141(2)		
N2-C3	134 6(11)	$C_{5}-C_{3}$	131(3)		
N2-Hø1	247 7(6)	C7-N4	133(2)		
112 1161	217,7(0)		155(2)		
N3-Hg1-Cl2	147,0(2)	C1-Hg1-C2	167,1(8)		
N3-Hg1-N2	89,8(2)	C1-Hg1-N2	95,0(7)		
Cl2-Hg1-N2	96,70(16)	C2-Hg1-N2	96,0(7)		
N3-Hg1-Cl3	96,57(19)	C1-Hg1-N1	88,9(6)		
Cl2-Hg1-Cl3	113,98(8)	C2-Hg1-N1	100,3(7)		
N2-Hg1-Cl3	99,69(19)	N2-Hg1-N1	75,6(5)		
N4-Hg2-Cl1	178,7(2)	C4-N1-C3	103,9(15)		
N4-Hg2-N1	83,9(2)	C4-N1-Hg1	127,3(12)		
Cl1-Hg2-N1	95,67(16)	C3-N1-Hg1	124,5(11)		
N4-Hg2-Cl3	91,70(19)	C6-N2-C5	116,6(14)		
Cl1-Hg2-Cl3	89,49(7)	C6-N2-Hg1	122,0(12)		
N1-Hg2-Cl3	89,07(15)	C5-N2-Hg1	121,0(12)		
N4-Hg2-Cl1	92,7(2)	C4-N3-C7	104,0(13)		
Cl1-Hg2-Cl1	86,01(7)	C6-N4-C7	110,2(14)		
N1-Hg2-Cl1	76,46(15)	F1-C1-Hg1	121,8(18)		
Cl3-Hg2-Cl1	164,32(7)	F5-C1-Hg1	117(2)		
N4-Hg2-Cl3	86,62(18)	F6-C1-Hg1	120,2(13)		
Cl1-Hg2-Cl3	93,55(7)				
N1-Hg2-Cl3	164,51(14)				
Cl3-Hg2-Cl3	103,45(6)				
CII-Hg2-Cl3	91,82(6)				
C1-N1-Hg2	130,8(5)				
C3-N1-Hg2	115,9(5)				
C4-N2-Hg1	121,2(5)				
C3-N2-Hg1	119,5(5)				
C2-N3-Hg1	119,8(5)				
C1-N3-Hg1	134,3(5)				

Tabelle 12: Internukleare Abstände und Bindungswinkel für [HgCl][Hg(Purin)Cl] und [Hg(Purin)(CF₃)₂]₄

2.7 3,5-Dimethyl-4'-Amino-1,2,4-triazol als Ligand von Quecksilber(II)halogeniden

2.7.1 Kristallstruktur von Hg₂(admtrz)Cl₄

Hg₂(admtrz)Cl₄ (admtrz = 3,5-Dimethyl-4'-Amino-1,2,4-triazol) kristallisiert monoklin in der Raumgruppe P2₁/c mit den Gitterparametern a = 1156,96(18) pm, b = 932,48(10) pm, c = 1474,5(3) pm, β = 126,056(10)° und Z = 8. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 13 und Tabelle 14. Abbildung 66 zeigt eine perspektivische Darstellung der Elementarzelle.

Die Struktur von Hg(admtrz)Cl₂ besteht aus einer Packung von Hg₂(admtrz)Cl₄-Molekülen. Die Hg₂(admtrz)Cl₄-Moleküle, dargestellt in Abbildung 67, bestehen aus jeweils zwei HgCl₂-Einheiten, die an die zwei benachbarten Stickstoffatome der 2,5-Dimethyl-1-Amino-1,3,4-triazol - Moleküle koordiniert sind.

Abbildung 66: Perspektivische Darstellung der Elementarzelle von Hg₂(admtrz)Cl₄

Der Quecksilber-Stickstoff-Abstand beträgt dabei 244,0(7) pm. Die Quecksilber-Chlor-Abstände liegen zwischen 233,3(2) pm und 235,5(3) pm; der Abstand Hg1-Cl2 beträgt 298,2(2) pm. Die Winkel Cl-Hg-Cl liegen bei 158,21(9)° und 159,1(1)°. Entlang der Hg-Hg-Achse besitzen die HgCl₂-Einheiten einen Torsionswinkel von etwa 20° und sind dabei nahezu parallel im Winkel von ca. 44° zur Ebene des (admtrz) -Moleküls ausgerichtet.

Die Packung der Moleküle erfolgt in Richtung [100] derart, dass die aromatischen Ringe parallel zueinander liegen und entlang eines solchen "Stapels" die Moleküle alternierend 180° gegeneinander verdreht sind. Die benachbarten Reihen sind dagegen insgesamt um 90° gedreht.

Abbildung 67: Darstellung eines Hg₂(admtrz)Cl₂-Moleküles

Auffallend an der Umgebung der Quecksilber-Atome ist, dass in "assoziativen" Abständen im Bereich von etwa 280 bis 350 pm die "effektive" Koordinationssphäre des Quecksilber-Atoms zu einer oktaedrischen Umgebung ergänzt wird. Abbildung 68 zeigt eine Darstellung der Verknüpfung dieser verzerrt oktaedrischen Umgebungen des Quecksilbers.

Abbildung 68: Darstellung der verzerrt oktaedrischen Umgebung der Quecksilber-Atome in $Hg_2(admtrz)Cl_4$

2.7.2 Kristallstruktur von Hg₂(admtrz)Br₄

Hg₂(admtrz)Br₄ (admtrz = 3,5-Dimethyl-4'-Amino-1,2,4-triazol) kristallisiert monoklin in der Raumgruppe P2₁/c mit den Gitterparametern a = 1177,3(2) pm, b = 961,5(1) pm, c = 1527,4(2) pm, β = 124,88(2)° und Z = 8. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 13 und Tabelle 14. Abbildung 69 zeigt eine perspektivische Darstellung der Elementarzelle.

Abbildung 69: Perspektivische Darstellung der Elementarzelle von Hg₂(admtrz)Br₄

Die Struktur von Hg₂(admtrz)Br₄ besteht aus einer Packung von Molekülen. Die Hg₂(admtrz)Br₄-Moleküle bestehen aus jeweils zwei HgBr₂-Einheiten, die an die zwei benachbarten Stickstoffatome der 3,5-Dimethyl-4'-Amino-1,2,4-triazol -Moleküle koordiniert sind. Der Quecksilber-Stickstoff-Abstand beträgt dabei 246,7(8) pm und 246,3(2) pm. Die Quecksilber-Brom-Abstände liegen zwischen 246,3(2) pm und 235,5(3) pm; der Abstand Hg1-Br1 beträgt 307,2(1) pm. Die Winkel Br-Hg-Br liegen bei 156,23(6) und 158,46(5)°. Entlang der Hg–Hg-Achse besitzen die HgBr₂-Einheiten einen Torsionswinkel von etwa 31° und sind dabei nahezu parallel im Winkel von ca. 47° zur Ebene des admtrz -Moleküls ausgerichtet. Die Packung der Moleküle ist isotyp

zu Hg₂(admtrz)Cl₄. Über die Hg-Br-Abstände >300 pm kann ebenfalls eine Oktaederverknüpfung wie in Abbildung 68 konstruiert werden.

Abbildung 70: Darstellung eines Hg₂(admtrz)Br₄ - Moleküles

Abbildung 71: Wechselwirkungen zwischen den Molekülen über die Abstände um etwa 300 pm hinaus.

2.7.3 Kristallstruktur von RT-[Hg(admtrz)(CF₃)₂]₂

[Hg(admtrz)(CF₃)₂]₂ (admtrz = 3,5-Dimethyl-4'-Amino-1,2,4-triazol) kristallisiert monoklin in der Raumgruppe P2₁/c mit den Gitterparametern a = 879,77(15) pm, b = 1731,0(3) pm, c = 1593,9(3) pm, β = 106,89(1)° und Z = 2. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 13 und Tabelle 14. Abbildung 72 zeigt eine perspektivische Darstellung der Elementarzelle.

Abbildung 72: Perspektivische Darstellung der Elementarzelle der RT-Modifikation von [Hg(admtrz)(CF₃)₂]₂

Die Struktur von [Hg(admtrz)(CF₃)₂]₂ besteht aus einer Packung von über die Stickstoffatome von admtrz-Molekülen verbrückten Dimeren von Hg(CF₃)₂-Molekülen. Abbildung 73 zeigt ein solches [Hg(CF₃)₂]₂-(admtrz)₂ - Dimer. Die Hg(CF₃)₂-Moleküle liegen dabei parallel im Winkel von etwa 50° zur leicht gewellten Ebene der admtrz -Moleküle. Die Quecksilber-Stickstoff-Abstände liegen zwischen 264,5(15) pm und 290,2(17) pm. Die C-Hg-C- Winkel der Hg(CF₃)₂-Moleküle betragen beide etwa 170°. Die Fluor-Atome der CF₃-Gruppen zeigen relativ große anisotrope Auslenkungsparameter. Die [Hg(CF₃)₂]₂- (admtrz)₂ – Moleküle sind in der Packung um etwa 110° gegeneinander verkippt.

Abbildung 73: Darstellung eines [Hg(admtrz)(CF₃)₂]₂ - Dimers (RT-Modifikation)

2.7.4 Kristallstruktur von TT-[Hg(admtrz)(CF₃)₂]₂

Die Tieftemperaturmodifikation von $[Hg(admtrz)(CF_3)_2]_2$ kristallisiert triklin in der Raumgruppe P-1 mit den Gitterparametern a = 814,9(2) pm, b = 845,4(2) pm, c = 968,4(3) pm, α = 106,55(2)°, β = 103,41(2)°, γ = 110,79(2)° und Z = 2. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 13 und Tabelle 14. Abbildung 74 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung 74: Perspektivische Darstellung der Elementarzelle der TT-Modifikation von [Hg(admtrz)(CF₃)₂]₂

Die Struktur der Tieftemperaturmodifikation von $[Hg(admtrz)(CF_3)_2]_2$ unterscheidet sich von der Raumtemperaturmodifikation in erster Linie durch eine parallele Anordnung der $[Hg(admtrz)(CF_3)_2]_2$ –Dimere gegenüber der um 110° gegeneinander verkippten Packung der Moleküle bei Raumtemperatur. Die $[Hg(admtrz)(CF_3)_2]_2$ – Dimere weisen nun auf der durch die Quecksilberatome und die benachbarten Stickstoffatome der admtrz -Moleküle aufgespannten Ebene eine nahezu senkrechte Ausrichtung der Hg-CF₃-Achsen aus, wobei die Hg(CF₃)₂-Moleküle vom Zentrum des Dimers weg einen Winkel von 173° aufweisen. Abbildung 75 zeigt ein $[Hg(admtrz)(CF_3)_2]_2$ - Dimer in der TT-Modifikation.

Abbildung 75: Darstellung eines [Hg(admtrz)(CF₃)₂]₂ - Dimers (TT-Modifikation)

2.7.5 Diskussion der Additionsverbindungen von "admtrz" an Quecksilber(II)-Verbindungen

Triazole und speziell die 1,2,4-Triazole sind sehr vielfältige Liganden, die insbesondere mit Übergangsmetallen zahlreiche interessante Koordinationsverbindungen eingehen [64]. Die heterocyclische Verbindung 3,5-Dimethyl-4'-Amino-1,2,4-triazol (admtrz) stellt im Hinblick auf die durchgeführten Untersuchungen bezüglich der Stickstoffaffinität von Quecksilber(II) eine interessante Modellsubstanz dar, da sie im Prinzip über vier Postitionen zur Koordination fähig ist. Diese Positionen sind von unterschiedlichem Charakter – zwei Stickstoffatome im Ring direkt nebeneinander – vergleichbar der Situation im Pyridazin; ein Stickstoffatom im Fünfring mit einer Amin-Gruppe, über die auch eine Koordination prinzipiell möglich ist, wie dies z.B. mit

Anilin (siehe unten) gezeigt wurde. In der Literatur werden bislang nur sehr wenige Verbindungen mit diesem Liganden referiert, darunter ein hexanuklearer Kupfer(II)-Komplex mit interessanten magnetischen Eigenschaften [65], sowie eine strukturelle Charakterisierung von einem dimeren "ZnLCl₂" [66].

Die vorgestellten Addukte an Quecksilber(II)chlorid, -bromid und -trifluormethylat als "Pseudohalogenid" koordinieren alle über die 1,2-Positionen von "admtrz". Hier liegt offensichtlich die grösste Basizität am Stickstoff vor. Dass prinzipiell eine Koordination auch zusätzlich über die Amingruppe möglich ist, zeigt die in Abbildung 76 dargestellte Additionsverbindung an Silbernitrat, die im Rahmen dieser Arbeit jedoch nicht näher vorgestellt wird [25]. Hier zeigt sich eine zweidimensionale Vernetzung mit dem admtrz-Liganden. Bezeichnenderweise gelingt dies mit dem eher "schlechten" Anion Nitrat. Eine entsprechende Quecksilberverbindung scheint sich ebenfalls zu bilden, konnte jedoch bislang nicht in Form von Einkristallen erhalten werden. An dieser Stelle kann nur darüber spekuliert werden, ob beispielsweise der Zusatz einer Base bzw. die gezielte Deprotonierung der Amid-Funktion bei den Quecksilberhalogeniden zu einem weiter vernetzten Koordinationsverhalten führen würde.

Abbildung 76: [Ag₃(admtrz)₂](NO₃)₃: Vernetzung über admtrz-Moleküle zu Doppelschichten

Die Verbindungen Hg₂(admtrz)Cl₄ und Hg₂(admtrz)Br₄ zeichnen sich durch gewinkelte HgX₂-Einheiten aus, mit Winkeln von 159,1(1)° (X=Cl) und 156,23(6)° (X=Br). Die Quecksilber-Stickstoff-Bindungslängen liegen bei 244,0(7) pm und 241,7(7) pm für X=Cl und bei 247,1(14) pm und 246,7(8) pm für X=Br. In beiden Verbindungen ist die

Ausbildung von Halogenid-Dimeren gemäss Abbildung 4 zu beobachten. Die Quecksilber-Halogenid-Abstände dieser eher als "assoziativ" zu bezeichnenden Wechselwirkung sind jedoch relativ lang – für das Chlorid betragen diese 298,2(2) pm und für das Bromid 307,2(1) pm. Wie oben erläutert wurde, findet über Quecksilber-Chlor-Abstände bis zu etwa 350 pm eine Ergänzung der "effektiven" Koordination zu Oktaedern statt, die in Abbildung 68 ihren Ausdruck finden.

Eine derartige Dimerisierung ist für die Trifluormethyl-Gruppen nicht möglich. Die Trifluormethylgruppen sind bezüglich ihrer Härte und Elektronegativität etwa mit dem Chlorid vergleichbar. Die Grösse entspricht jedoch eher der eines Iodides. Aufgrund der Abschirmung durch die Fluor-Atome ist eine analoge Koordination wie im Chlorid und Bromid nicht möglich und als Konsequenz finden sich zwei lange Quecksilber-Stickstoff-Bindungen zu zwei admtrz-Molekülen.

Die Packung dieser $[Hg(admtrz)(CF_3)_2]_2$ – Dimere zeigt praktisch keine Anzeichen von Wechselwirkungen zwischen diesen Molekülen. Daher ist vermutlich auch die bei tiefen Temperaturen einsetzende Phasenumwandlung, die nur mit geringfügigen Effekten innerhalb der Moleküle einhergeht, in erster Linie auf die Bildung einer effizienteren Molekülpackung zurückzuführen, die wiederum Folge der sich "beruhigenden" dynamischen Effekte der CF₃-Gruppen ist.

Interessanterweise existieren in der Literatur zwei Koordinationsverbindung von "admtrz" mit ZnCl₂ und CdCl₂, die ebenfalls ähnliche Dimere wie bei $[Hg(admtrz)(CF_3)_2]_2$ ausbilden, allerdings mit einer ausgeprägteren tetraedrischen Koordination.

Das Beispiel dieser Koordinationsverbindungen mit "admtrz" macht deutlich, inwiefern die von GRDENIĆ als "effektive" Koordination bezeichnete Einbeziehung der weiteren Koordinationssphäre am Quecksilber durchaus strukturbestimmenden Einfluss ausüben kann. Die elektronische "Äquivalenz" von Chlorid und dem "Pseudohalogenid" Trifluor-methylat sowie eine Abschirmung der CF₃-Gruppen gegenüber weiterer Koordination erlaubt eine gute Vergleichbarkeit zur Einschätzung dieses Effektes. Zudem wird dieser strukturbestimmende Einfluss beim Vergleich mit den Homologen Zink und Cadmium deutlich, für die das Erreichen einer tetraedrischen Koordination von grösserer Bedeutung ist. Somit kann auch hier der Unterschied in der Koordination zwischen Quecksilber und den leichteren Homologen letztlich wieder auf den relativistischen Effekt zurückgeführt werden, da dieser für die Bevorzugung der linearen, "charakteristischen" Koordination und die damit verbundene Ergänzung zur "effektiv" oktaedrischen Koordination verantwortlich zu machen ist.

	Hg ₂ (admtrz)Cl ₄	Hg ₂ (admtrz)Br ₄	RT-Modifikation [Hg(admtrz)(CF ₃) ₂] ₂	TT-Modifikation [Hg(admtrz)(CF ₃) ₂] ₂	
Gitterkonstanten / pm Winkel / grd		a = 1177,29(18), b= 961,53(11), c=1527,4(2), β =124,885(18)	$ \begin{array}{l} a = 879,77(15), \\ b = 1731,0(3), \\ c = 1593,9(3), \\ \beta = 106,885(14) \end{array} $	a=814,94(19), b=845,35(19), c=968,4(3), α =106,554(19), β =103,41(2), γ =110,793(17)	
Zellvolumen/pm ³	$1286.0(4) \cdot 10^{6}$	$1418\ 3(3)\cdot 10^6$	$2322.6(7) \cdot 10^{6}$	$5550(2)\cdot10^{6}$	
Zahl der	8	8	8	2	
Formeleinheiten	°	°	•	-	
Kristallsystem	monoklin	monoklin	monoklin	triklin	
Raumgruppe	$P2_1/c$	$P2_1/c$	$P2_1/c$	P-1	
Messgerät	1	S	toe IPDS		
Verwendete Strahlung		MoKa	$\lambda = 71.07 \text{ pm}$		
Monochromator		u	Graphit		
Messtemperatur		293 K		170 K	
Scan-Modus		2°-Schritte, 100 Bil	der		
Messbereich/grd		3.8° -	< 20 < 53.95°		
Indexgrenzen h,k,l	$\pm 14, \pm 11, \pm 18$	$\pm 14, \pm 11, \pm 17$	-9 <h<10, td="" ±18<="" ±19,=""><td>$\pm 9, \pm 9, \pm 11$</td></h<10,>	$\pm 9, \pm 9, \pm 11$	
Berechnete Dichten	$3,342 \text{ g/cm}^3$	$3,863 \text{ g/cm}^3$	$2,532 \text{ g/cm}^3$	$2,649 \text{ g/cm}^3$	
F(000)	1120	1408	1583	396	
Absorptionskorrektur		numerisc	h, X-SHAPE [50]		
lin. Absorptionskoeff. μ/mm ⁻¹	24,65	32,86	13,31	13,93	
Zahl der gemessenen Reflexe	26564	13597	48860	15048	
Symmetrieunabh, Reflexe	2526	2633	3608	1747	
R _{int}	0,0877	0,1058	0,1461	0,1018	
Strukturbestimmung und -verfeinerung	Programme SHELXS-97 und SHELX-97 [51]				
Streufaktoren	Streufaktoren International Tables, Vol. C				
Parameter	128	128	308	145	
R_1	0,0291 für 1811	0,0450 für 1749 Fo	0,0566 für 1959 Fo >	0,1076 für 1560 Fo>	
	$Fo > 4\sigma(Fo)$	> 4 σ (Fo)	4σ(Fo)	4σ(Fo)	
	0,0486 für alle Daten	0,0672 für alle Daten	0,1197 für alle Daten	0,1156 für alle Daten	
wR ₂ (alle Daten)	0,0679	0,0990	0,1196	0,2633	
Flack-Parameter	-	-	-	-	
Goodness of fit	0,842	0,895	0,932	1,231	

Tabelle 13: Kristalldaten und Details zur Strukturbestimmung für Hg ₂ (admtrz)C	l ₄ ,
Hg ₂ (admtrz)Br ₄ , RT-[Hg(admtrz)(CF ₃) ₂] ₂ , TT-[Hg(admtrz)(CF ₃) ₂] ₂	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hg ₂ (admtrz)(Cl ₄	Hg ₂ (admtrz)B	r ₄	RT-Modifikat [Hg(admtrz)(0	ion CF ₃) ₂] ₂	TT-Modifika [Hg(admtrz)(tion CF ₃) ₂] ₂
Hgl-C4 235,5(3) Hgl-N1 247,1(12) Hgl-C5 205(2) Hgl-C3 215(4) Hgl-N2 244,0(7) Hgl-Hat 248,1(2) Hgl-C6 202(3) F1-C3 136(4) Hgl-C12 234,0(2) Hg2-N2 246,7(8) Hg2-C4 204(3) F3-C3 126(5) Hg2-C13 244,6(3) Hg2-B4 246,7(2) Hg2-N1 284,1(2) F4-C6 134(4) Hg2-C13 244,6(3) Hg2-B4 306,0(2) F1-C5 132(2) F6-C6 136(4) N1-C3 131,6(11) N1-C3 133,1(15) F2-C5 138(2) N1-C4 130(4) N3-C1 135,1(12) N3-C3 130,4(17) N1-N2 136(2) N3-C4 134(5) N3-C1 135,1(12) N3-C3 130,4(17) N3-C1 130(2) N3-C4 138(5) N3-N4 141,8(10) N3-N4 143,7(14) N3-C1 130(2) N3-N4 143(4) C1-C2 148,7(13) C3-C4 154,5(18)	Hg1-Cl1	233,3(2)	Hg1-Br2	246,3(2)	Hg1-C7	203(3)	Hg1-C6	208(4)
Hg1-N2244,0(7)Hg1-Br4248,1(2)Hg1-N4264,5(1)F1-C3137(5)Hg1-C12298,2(2)Hg1-Br1307,2(1)Hg2-C6204(3)F3-C3126(5)Hg2-C12234,0(2)Hg2-N2246/7(8)Hg2-C4204(3)F3-C3126(5)Hg2-C13234,6(3)Hg2-N3246/7(8)Hg2-C4204(3)F3-C3136(4)Hg2-C14297,4(3)Hg2-Br3246,9(2)Hg2-N1268,1(15)F4-C6136(4)N1-C3133,1(1)F2-C5132(2)F5-C6136(4)N1-C3133,1(1)N1-C3133,1(1)F3-C5132(3)N1-C4136(4)N3-C1135,2(1)N3-C3130,4(7)N1-N2136(2)N3-C4134(5)N3-C3136,5(1)N3-C3130,4(7)N1-N2136(2)N3-C4134(5)N3-C3136,5(1)N3-C4134,7(14)N3-C1130(2)N3-C4134(5)N3-C4448,7(13)C3-C4144,7(18)N3-C1130(2)N3-C4134(5)C1-C2488,7(13)C3-C4144,7(18)N3-C1130(2)N3-C4137(2)C1-Hg1-N2107,0(2)Br2-Hg1-Br4156,23(6)C7-Hg1-N420,6(8)C4-N1-N2110(3)C1-Hg1-N293,0(2)Br2-Hg1-Br494,7(2)C5-Hg1-N495,7(7)C1-N2-N1106(3)C1-Hg1-N293,0(2)Br2-Hg1-Br494,7(2)C6-Hg2-N189,1(7)C4-N3-N4126(3)C1-Hg1-N293,0(2)Br2-Hg1-B	Hg1-Cl4	235,5(3)	Hg1-N1	247,1(12)	Hg1-C5	205(2)	Hg1-C3	215(4)
Hg1-Cl2298,2(2)Hg1-Br1307,2(1)Hg2-C6202(3)F2-C3136(4)Hg2-Cl2234,0(3)Hg2-Br3246,7(8)Hg2-N1204(3)F3-C3126(5)Hg2-N1244,7(7)Hg2-Br1246,7(2)Hg2-N1287,1(5)F4-C6134(4)Hg2-N1214,7(7)Hg2-Br1247,3(2)Hg2-N3277,1(15)F5-C6136(4)N1-C3131,6(1)N1-C3133,1(15)F2-C5138(2)N1-C4130(4)N1-C1132,1(1)N1-C3133,1(15)F2-C5138(2)N1-C4130(4)N1-C1135,1(12)N3-C2129,2(17)N1-C11131(2)N3-C1134(5)N3-C1135,5(12)N3-C2138,2(16)N2-C10130(2)N3-C1134(5)N3-N4141,8(10)N3-N4143,7(14)N3-C1130(2)N3-N4144(4)C1-C2148,8(13)C1-C2149,(2)N5-N6144,2(18)C1-C2152(5)C3-C4148,7(13)C3-C4154,5(18)N8-C10134(3)C4-C5173(2)C1-Hg1-N210,9(2)B2-Hg1-B4156,23(6)C7-Hg1-N492,5(8)C4-N1-N2110(3)C1-Hg1-N210,9(2)B2-Hg1-B4156,23(6)C7-Hg1-N492,5(8)C4-N1-N2110(3)C1-Hg1-N210,9(2)B2-Hg1-B494,72)C5-Hg1-N492,5(8)C4-N1-N2110(3)C1-Hg1-N210,9(2)B2-Hg1-B494,72)C5-Hg1-N492,5(8)C4-N1-N2110(3) <t< td=""><td>Hg1-N2</td><td>244,0(7)</td><td>Hg1-Br4</td><td>248,1(2)</td><td>Hg1-N4</td><td>264,5(15)</td><td>F1-C3</td><td>137(5)</td></t<>	Hg1-N2	244,0(7)	Hg1-Br4	248,1(2)	Hg1-N4	264,5(15)	F1-C3	137(5)
Hg2-C12 244,0(2) Hg2-R2 246,9(2) Hg2-C4 204(3) F4-C3 126(5) Hg2-N1 268,1(15) F4-C6 134(4) Hg2-N1 241,7(7) Hg2-H3 240,9(2) Hg2-N1 268,1(15) F5-C6 134(5) Hg2-C14 297,4(3) Hg2-Br4 306,0(2) F1-C5 132(2) F6-C6 136(4) N1-N2 139,1(10) N1-N2 138,2(14) F3-C5 138(2) N1-C4 130(4) N2-C1 132,1(11) N2-C2 129,2(17) N1-N1 133(2) N3-C4 134(5) N3-C4 135,2(12) N3-C3 130,4(17) N1-N2 136(2) N3-C4 134(5) N3-N4 141,8(0) O3-C4 133,2(16) N3-C1 130(2) N3-C4 144(4) C1-C2 148,8(13) C1-C2 149(2) N5-N6 144,2(18) C1-C2 152,5(5) C3-C4 148,7(13) C3-C4 154,5(18) N8-C10 134(3) C4-C5 173(2)	Hg1-Cl2	298,2(2)	Hg1-Br1	307,2(1)	Hg2-C6	202(3)	F2-C3	136(4)
Hg2-C13 234,6(3) Hg2-Br3 246,9(2) Hg2-N1 268,1(15) F4-C6 134(4) Hg2-N1 247,4(3) Hg2-Br4 247,3(2) Hg2-Br4 306,0(2) F1-C5 132(2) F6-C6 136(4) N1-C3 131,6(11) N1-C3 133,1(15) F2-C5 132(3) N1-C4 130,4(1) N1-C3 132,1(11) N2-C2 129,2(17) N1-C1 132(2) N3-C1 136,5(1) N3-C1 135,2(12) N3-C2 138,2(16) N2-C10 133(2) N3-C1 136,5(1) N3-C3 136,5(12) N3-C2 138,2(16) N2-C10 133(2) N3-C1 136,5(1) N3-C4 148,7(10) N3-C2 149(2) N5-N6 144,2(18) C1-C2 152,6(3) C1-C4 148,7(13) C3-C4 149(2) N5-N6 144,2(18) C4-N1-N2 110(3) C1-Hg1-N2 197,0(2) Br2-Hg1-N1 107,4(3) C7-Hg1-N4 92,5(8) C4-N1-N2 106(3) C11-Hg1-N2	Hg2-Cl2	234,0(2)	Hg2-N2	246,7(8)	Hg2-C4	204(3)	F3-C3	126(5)
Hg2-NI 241,7(7) Hg2-Bri 247,3(2) Hg2-N3 277,1(15) F5-C6 134(5) Hg2-CH 297,4(3) Hg2-Bri 306,0(2) F1-C5 132(2) F6-C6 136(4) N1-C3 131,6(11) N1-C3 133,1(15) F2-C5 132(3) N1-C4 130(4) N1-C4 132,1(11) N2-C2 129,2(17) N1-C11 133(2) N2-C1 129(4) N3-C1 135,2(12) N3-C3 139,4(17) N1-N2 136(2) N3-C1 136(5) N3-N4 141,8(10) N3-N4 143,7(14) N3-C1 130(2) N3-M4 143(7) C1-C2 148,8(13) C1-C2 149(2) N5-N6 144,2(18) C1-C2 152(5) C3-C4 148,7(13) C3-C4 154,5(18) N8-C10 134(3) C4-C5 147(6) C1-Hg1-C2 90,0(2) N1-Hg1-Br4 156,23(6) C7-Hg1-C5 170,4(10) C6-Hg1-C3 173(2) C1-Hg1-C2 90,1(8) Br2-Hg1-Br4 <td< td=""><td>Hg2-Cl3</td><td>234,6(3)</td><td>Hg2-Br3</td><td>246,9(2)</td><td>Hg2-N1</td><td>268,1(15)</td><td>F4-C6</td><td>134(4)</td></td<>	Hg2-Cl3	234,6(3)	Hg2-Br3	246,9(2)	Hg2-N1	268,1(15)	F4-C6	134(4)
Hg2-CH 297(4) Hg2-Br4 306(02) F1-C5 132(2) F6-C6 13(4) N1-C3 131,6(11) N1-C3 133,1(15) F2-C5 138(2) N1-C4 130(4) N1-N2 139,1(10) N1-N2 138,2(14) F3-C5 132(3) N1-N2 140(4) N2-C1 135,2(12) N3-C3 130,4(17) N1-N2 136(2) N3-C4 134(5) N3-N4 141,8(10) N3-A4 143,7(14) N3-C1 130(2) N3-N4 143,8(13) C1-C2 149(2) N3-N6 144,2(18) C1-C2 152(5) C3-C4 148,7(13) C3-C4 154,5(18) N8-C10 134(3) C4-C5 147(6) C11-Hg1-N2 90,0(2) N1-Hg1-Br4 156,23(6) C7-Hg1-N4 92,5(8) C4-N1-N2 110(3) C14-Hg1-N2 90,0(2) N1-Hg1-Br4 94,7(2) C5-Hg1-N4 95,7(7) C1-N3-N4 128(3) C1-Hg1-C12 96,6(9) N1-Hg1-Br4 94,7(2) C4-Hg2-N1 89,7(7) <td>Hg2-N1</td> <td>241,7(7)</td> <td>Hg2-Br1</td> <td>247,3(2)</td> <td>Hg2-N3</td> <td>277,1(15)</td> <td>F5-C6</td> <td>134(5)</td>	Hg2-N1	241,7(7)	Hg2-Br1	247,3(2)	Hg2-N3	277,1(15)	F5-C6	134(5)
N1-C3 13,6(11) N1-C3 133,1(15) F2-C5 138(2) N1-C4 130(4) N1-N2 139,1(10) N1-N2 138,2(14) F3-C5 132(3) N1-N2 140(4) N2-C1 132,1(11) N2-C2 129,2(17) N1-C1 133(2) N3-C4 134(5) N3-C3 136,5(12) N3-C2 138,2(16) N2-C10 133(2) N3-C1 138(5) N3-C3 136,5(12) N3-C2 138,2(16) N2-C10 134(2) C1-C2 152(5) C3-C4 148,(10) N3-N4 143,7(14) N3-C1 130(2) N3-C1 130(2) C1-C2 152(3) C1-C2 148,(13) C1-C2 154,5(18) N8-C10 134(3) C4-C5 147(6) C4-H2 107(3) C1-H1 107(3) C1-L2 152(3) 173(2) C1-H1 197(2) C1-H2-N1 106(3) C1-L2 106(3) C1-L2 106(3) C1-L2 106(3) C1-L3 106(3) C1-H2-N1 96,3(2) C4-	Hg2-Cl4	297,4(3)	Hg2-Br4	306,0(2)	F1-C5	132(2)	F6-C6	136(4)
N1-N2 139,1(10) N1-N2 138,2(14) F3-C5 132(3) N1-N2 140(4) N2-C1 132,1(11) N2-C2 129,2(17) N1-C11 133(2) N2-C1 129(4) N3-C1 135,2(12) N3-C2 138,2(16) N2-C10 133(2) N3-C1 138(5) N3-N4 141,8(10) N3-N4 143,7(14) N3-C1 130(2) N3-C1 138(5) C1-C2 148,8(13) C1-C2 149(2) N5-N6 144,2(18) C1-C2 152(3) C11-Hg1-C4 159,1(1) Br2-Hg1-N1 107,4(3) C7-Hg1-C5 170,4(10) C6-Hg1-C3 173(2) C11-Hg1-N2 93,0(2) N1-Hg1-Br4 156,23(6) C7-Hg1-V5 170,4(10) C6-Hg1-C3 173(2) C14-Hg1-N2 93,0(2) N1-Hg1-Br4 94,7(2) C5-Hg1-N4 92,5(8) C4-N1-N2 106(3) C14-Hg1-N2 96,0(19) N1-Hg1-Br4 94,7(2) C5-Hg1-N4 95,7(7) C1-N2-N1 106(3) C14-Hg1-N2 96,6(19)<	N1-C3	131,6(11)	N1-C3	133,1(15)	F2-C5	138(2)	N1-C4	130(4)
N2-C1 132,(11) N2-C2 129,2(17) N1-C11 133(2) N2-C1 129(4) N3-C1 135,2(12) N3-C3 130,4(17) N1-N2 136(2) N3-C4 134(5) N3-C3 136,5(12) N3-C2 138,2(16) N2-C10 133(2) N3-C4 134(5) N3-N4 141,8(10) N3-N4 143,7(14) N3-C1 130(2) N3-N4 143(4) C1-C2 148,8(13) C1-C2 149(2) N5-N6 144,2(18) C1-C2 152(5) C3-C4 148,7(13) C3-C4 154,5(18) N8-C10 134(3) C4-C5 147(6) C11-Hg1-N2 107,0(2) Br2-Hg1-Br4 156,23(6) C7-Hg1-N4 92,5(8) C4-N1-N2 110(3) C14-Hg1-N2 90,0(2) N1-Hg1-Br4 94,7(2) C5-Hg1-N4 92,5(8) C4-N1-N2 1106(3) C14-Hg1-C12 90,6(2) R-Hg1-Br1 90,5(2) C6-Hg2-N1 89,1(7) C4-N3-N4 128(3) N2-Hg1-C12 87,6(2) Br4-	N1-N2	139,1(10)	N1-N2	138,2(14)	F3-C5	132(3)	N1-N2	140(4)
N3-C1 135,2(12) N3-C3 130,4(17) N1-N2 136(2) N3-C4 134(5) N3-C3 136,5(12) N3-C2 138,2(16) N2-C10 133(2) N3-C1 138(5) N3-N4 141,8(10) N3-N4 143,7(14) N3-C1 130(2) N3-N4 143(4) C1-C2 148,8(13) C1-C2 149(2) N5-N6 144,2(18) C1-C2 152(5) C3-C4 148,7(13) C3-C4 154,5(18) N8-C10 134(3) C4-C5 147(6) C1-C2 152(3) N3-H4 156,23(6) C7-Hg1-C5 170,4(10) C6-Hg1-C3 173(2) C1-Hg1-N2 107,0(2) Br2-Hg1-Br4 156,23(6) C7-Hg1-N4 95,7(7) C1-N2-N1 106(3) C1-Hg1-C12 96,13(8) Br2-Hg1-Br1 95,5(1) C6-Hg2-N3 89,1(7) C4-N3-N4 125(3) C12-Hg2-C13 158,21(9) N2-Hg2-Br3 96,3(2) C6-Hg2-N3 89,5(7) N2-C1-C2 129(3) C12-Hg2-C14 93,7(2)	N2-C1	132,1(11)	N2-C2	129,2(17)	N1-C11	133(2)	N2-C1	129(4)
N3-C3 135,(512) N3-C2 138,(216) N2-C10 133(2) N3-C1 138(5) N3-N4 141,8(10) N3-N4 143,7(14) N3-C1 130(2) N3-N4 143(4) C1-C2 148,8(13) C1-C2 149(2) N5-N6 144,2(18) C1-C2 152(5) C3-C4 148,7(13) C3-C4 154,5(18) N8-C10 134(3) C4-C5 147(6) C11-Hg1-N2 107,0(2) Br2-Hg1-Br4 156,23(6) C7-Hg1-C5 170,4(10) C6-Hg1-C3 173(2) C11-Hg1-N2 93,0(2) N1-Hg1-Br4 94,7(2) C5-Hg1-N4 95,7(7) C1-N2-N1 106(3) C14-Hg1-C2 96,1(8) Br2-Hg1-Br1 95,41(4) C6-Hg2-C4 170,5(9) C4-N3-N4 125(3) C1-Hg1-C1 80,61(9) N1-Hg1-Br1 90,5(2) C6-Hg2-N1 89,5(7) N2-H3 109(3) C12-Hg2-C13 158,21(9) N2-Hg2-Br1 105,2(2) C4-Hg2-N3 89,5(7) N2-H2 129(3) C12-Hg2-C14 <	N3-C1	135,2(12)	N3-C3	130,4(17)	N1-N2	136(2)	N3-C4	134(5)
N3-N4 141,8(10) N3-N4 143,7(14) N3-C1 130(2) N3-N4 143(4) C1-C2 148,8(13) C1-C2 149(2) N5-N6 144,2(18) C1-C2 152(5) C3-C4 148,7(13) C3-C4 154,5(18) N8-C10 134(3) C4-C5 147(6) C11-Hg1-N2 107,0(2) Br2-Hg1-Br4 156,23(6) C7-Hg1-C5 170,4(10) C6-Hg1-C3 173(2) C11-Hg1-N2 90,3(02) N1-Hg1-Br4 94,7(2) C5-Hg1-N4 95,7(7) C1-N2-N1 106(3) C14-Hg1-N2 90,6(10) N1-Hg1-Br1 90,5(2) C6-Hg2-C4 170,5(9) C4-N3-N4 128(3) C12-Hg2-C13 158,21(9) N2-Hg2-Br3 96,3(2) C6-Hg2-N3 89,5(7) N2-C1-C2 129(3) C13-Hg2-C14 93,7(2) Br3-Hg2-Br4 105,2(2) C4-Hg2-N3 95,4(8) N2-C1-C2 122(3) C12-Hg2-C13 158,21(9) N2-Hg2-Br4 91,8(6) N2-H1-Hg2 120,0(13) F3-C3-F2 106(4) C13-Hg2-C14 89,7(1) Br3-Hg2-Br4 93,18(6) N2-H1-Hg2 120,1(13)<	N3-C3	136,5(12)	N3-C2	138,2(16)	N2-C10	133(2)	N3-C1	138(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3-N4	141,8(10)	N3-N4	143,7(14)	N3-C1	130(2)	N3-N4	143(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2	148,8(13)	C1-C2	149(2)	N5-N6	144,2(18)	C1-C2	152(5)
Cli-Hg1-Cl4 152,1(1) Br2-Hg1-N1 107,4(3) C7-Hg1-C5 170,4(10) C6-Hg1-C3 173(2) Cli-Hg1-N2 107,0(2) Br2-Hg1-Br4 156,23(6) C7-Hg1-N4 92,5(8) C4-N1-N2 110(3) Cli+Hg1-N2 93,0(2) N1-Hg1-Br4 94,7(2) C5-Hg1-N4 95,7(7) C1-N2-N1 106(3) Cli+Hg1-C12 96,13(8) Br2-Hg1-Br1 95,41(4) C6-Hg2-C4 170,5(9) C4-N3-C1 108(3) Cl4-Hg1-C12 90,61(9) N1-Hg1-Br1 90,5(2) C6-Hg2-N1 89,1(7) C4-N3-N4 125(3) N2-Hg2-C13 158,21(9) N2-Hg2-Br3 96,3(2) C6-Hg2-N3 89,5(7) N2-C1-N3 109(3) C12-Hg2-N1 108,0(2) N2-Hg2-Br1 158,46(5) N1-Hg2-N3 106,5(5) N3-C1-C2 129(3) C13-Hg2-C14 89,7(10) Br3-Hg2-Br4 91,8(6) N2-HHg2 120,0(13) F3-C3-F1 105(4) C13-Hg2-C14 89,7(10) Br3-Hg2-Br4 91,8(6) N2-HHg2 120,1(11) F3-C3-F1	C3-C4	148,7(13)	C3-C4	154,5(18)	N8-C10	134(3)	C4-C5	147(6)
Cl1-Hg1-Cl4 159,1(1) Br2-Hg1-N1 107,4(3) C7-Hg1-C5 170,4(10) C6-Hg1-C3 173(2) Cl1-Hg1-N2 107,0(2) Br2-Hg1-Br4 156,23(6) C7-Hg1-N4 92,5(8) C4-N1-N2 110(3) Cl4-Hg1-N2 93,0(2) N1-Hg1-Br4 94,7(2) C5-Hg1-N4 95,7(7) C1-N2-N1 106(3) Cl4-Hg1-C12 96,61(9) N1-Hg1-Br1 90,5(2) C6-Hg2-C4 170,5(9) C4-N3-N4 125(3) N2-Hg1-C12 87,6(2) Br4-Hg1-Br1 93,1(2) C4-Hg2-N1 97,2(8) C1-N3-N4 128(3) Cl2-Hg2-C13 158,21(9) N2-Hg2-Br3 96,3(2) C6-Hg2-N3 89,5(7) N2-C1-N3 109(3) Cl2-Hg2-N1 93,7(2) Br3-Hg2-Br1 105,2(2) C4-Hg2-N3 95,4(8) N2-C1-C2 129(3) Cl2-Hg2-C14 93,7(2) Br3-Hg2-Br1 158,4(5) N1-Hg2-N3 95,6(5) N3-C1-C2 122(3) Cl2-Hg2-C14 89,7(10) Br3-Hg2-Br4 81,3(3) C1-N1-Hg2 126,0(13) F3-C3-F1					C1-C2	152(3)		
Cl1-Hg1-N2107,0(2)Br2-Hg1-Br4156,23(6)C7-Hg1-N492,5(8)C4-N1-N2110(3)Cl4-Hg1-N293,0(2)N1-Hg1-Br494,7(2)C5-Hg1-N495,7(7)C1-N2-N1106(3)Cl1-Hg1-Cl296,13(8)Br2-Hg1-Br195,41(4)C6-Hg2-C4170,5(9)C4-N3-C1108(3)Cl4-Hg1-Cl296,61(9)N1-Hg1-Br195,2(2)C6-Hg2-N189,1(7)C4-N3-N4125(3)N2-Hg1-Cl287,6(2)Br4-Hg1-Br193,12(5)C4-Hg2-N189,1(7)C4-N3-N4128(3)Cl2-Hg2-Cl3158,21(9)N2-Hg2-Br396,3(2)C6-Hg2-N389,5(7)N2-C1-N3109(3)Cl2-Hg2-N1108,0(2)N2-Hg2-Br1105,2(2)C4-Hg2-N395,4(8)N2-C1-C2122(3)Cl2-Hg2-Cl493,35(8)N2-Hg2-Br481,3(3)C11-N1-Hg2126,0(13)F3-C3-F1105(4)Cl3-Hg2-Cl489,70(10)Br3-Hg2-Br491,8(6)N2-N1-Hg2123,0(12)F3-C3-F2107(4)N1-Hg2-Cl480,04(18)Br1-Hg2-Br491,64(5)C1-N3-Hg2121,0(13)F1-C3-F2106(3)C3-N1-N2107,7(7)C3-N1-N2106,4(10)N4-N3-Hg2126,1(11)F3-C3-Hg1113(3)C3-N1-Hg2133,7(6)C3-N1-Hg1130,5(9)F3-C5-Hg1115,8(16)F1-C3-Hg1112(2)N2-N1-Hg2118,4(5)N2-N1-Hg1118,9(7)F1-C5-Hg1117,1(13)F2-C3-Hg1112(3)C1-N2-N1108,0(7)C2-N2-N1108,6(9)F2-C5-Hg1114,0(16)<	Cl1-Hg1-Cl4	159,1(1)	Br2-Hg1-N1	107,4(3)	C7-Hg1-C5	170,4(10)	C6-Hg1-C3	173(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1-Hg1-N2	107,0(2)	Br2-Hg1-Br4	156,23(6)	C7-Hg1-N4	92,5(8)	C4-N1-N2	110(3)
Cl1-Hg1-Cl296,13(8)Br2-Hg1-Br195,41(4)C6-Hg2-C4170,5(9)C4-N3-C1108(3)Cl4-Hg1-Cl290,61(9)N1-Hg1-Br190,5(2)C6-Hg2-N1 $89,1(7)$ C4-N3-N4125(3)N2-Hg1-Cl2 $87,6(2)$ Br4-Hg1-Br193,12(5)C4-Hg2-N1 $97,2(8)$ C1-N3-N4128(3)Cl2-Hg2-Cl3158,21(9)N2-Hg2-Br396,3(2)C6-Hg2-N3 $89,5(7)$ N2-C1-N3109(3)Cl2-Hg2-N1108,0(2)N2-Hg2-Br1105,2(2)C4-Hg2-N3 $95,4(8)$ N2-C1-C2129(3)Cl3-Hg2-N193,7(2)Br3-Hg2-Br1158,46(5)N1-Hg2-N3106,5(5)N3-C1-C2122(3)Cl2-Hg2-Cl493,35(8)N2-Hg2-Br4 $81,3(3)$ C11-N1-Hg2123,0(12)F3-C3-F1105(4)Cl3-Hg2-Cl489,70(10)Br3-Hg2-Br4 $93,18(6)$ N2-N1-Hg2123,0(12)F3-C3-F2107(4)N1-Hg2-Cl480,04(18)Br1-Hg2-Br4 $91,64(5)$ C1-N3-Hg2121,0(13)F1-C3-Hg1113(3)C3-N1-N2107,7(7)C3-N1-N2106,4(10)N4-N3-Hg2126,1(11)F3-C3-Hg1113(3)C3-N1-Hg2133,7(6)C3-N1-Hg1130,5(9)F3-C5-Hg1115,8(16)F1-C3-Hg1112(2)N2-N1-Hg2118,4(5)N2-N1-Hg1130,5(9)F3-C5-Hg1114,0(16)N1-C4-N3107(3)C1-N2-Hg1130,4(6)C2-N2-N1108,6(9)F2-C5-Hg1114,0(16)N1-C4-N3107(3)C1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9	Cl4-Hg1-N2	93,0(2)	N1-Hg1-Br4	94,7(2)	C5-Hg1-N4	95,7(7)	C1-N2-N1	106(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1-Hg1-Cl2	96,13(8)	Br2-Hg1-Br1	95,41(4)	C6-Hg2-C4	170,5(9)	C4-N3-C1	108(3)
N2-Hg1-Cl2 $87,6(2)$ Br4-Hg1-Br1 $93,12(5)$ C4-Hg2-N1 $97,2(8)$ C1-N3-N4 $128(3)$ Cl2-Hg2-Cl3 $158,21(9)$ N2-Hg2-Br3 $96,3(2)$ C6-Hg2-N3 $89,5(7)$ N2-C1-N3 $109(3)$ Cl2-Hg2-N1 $108,0(2)$ N2-Hg2-Br1 $105,2(2)$ C4-Hg2-N3 $95,4(8)$ N2-C1-C2 $129(3)$ Cl3-Hg2-N1 $93,7(2)$ Br3-Hg2-Br1 $158,46(5)$ N1-Hg2-N3 $106,5(5)$ N3-C1-C2 $122(3)$ Cl2-Hg2-Cl4 $93,35(8)$ N2-Hg2-Br4 $81,3(3)$ C11-N1-Hg2 $123,0(12)$ F3-C3-F1 $105(4)$ Cl3-Hg2-Cl4 $89,70(10)$ Br3-Hg2-Br4 $93,18(6)$ N2-N1-Hg2 $123,0(12)$ F3-C3-F2 $107(4)$ N1-Hg2-Cl4 $80,04(18)$ Br1-Hg2-Br4 $91,64(5)$ C1-N3-Hg2 $123,0(12)$ F3-C3-F2 $106(3)$ C3-N1-N2 $107,7(7)$ C3-N1-N2 $106,4(10)$ N4-N3-Hg2 $126,1(11)$ F3-C3-Hg1 $113(3)$ C3-N1-Hg2 $133,7(6)$ C3-N1-Hg1 $130,5(9)$ F3-C5-Hg1 $115,8(16)$ F1-C3-Hg1 $112(2)$ N2-N1-Hg2 $118,4(5)$ N2-N1-Hg1 $118,9(7)$ F1-C5-Hg1 $117,1(13)$ F2-C3-Hg1 $112(3)$ C1-N2-N1 $108,0(7)$ C2-N2-N1 $108,6(9)$ F2-C5-Hg1 $114,0(16)$ N1-C4-C5 $125(3)$ N1-N2-Hg1 $130,4(6)$ C2-N2-Hg2 $132,9(9)$ N4-C8-N5 $106(2)$ N1-C4-C5 $125(3)$ N1-N2-Hg1 $117,8(5)$ N1-N2-Hg2 $117,9(7)$ N4-C8-C9 $128(2)$ N3-C4-C5 $127(3)$ C1-N3-N	Cl4-Hg1-Cl2	90,61(9)	N1-Hg1-Br1	90,5(2)	C6-Hg2-N1	89,1(7)	C4-N3-N4	125(3)
Cl2-Hg2-Cl3 158,21(9) N2-Hg2-Br3 96,3(2) C6-Hg2-N3 89,5(7) N2-Cl-N3 109(3) Cl2-Hg2-N1 108,0(2) N2-Hg2-Br1 105,2(2) C4-Hg2-N3 95,4(8) N2-Cl-C2 129(3) Cl3-Hg2-N1 93,7(2) Br3-Hg2-Br1 158,46(5) N1-Hg2-N3 106,5(5) N3-Cl-C2 122(3) Cl2-Hg2-Cl4 93,35(8) N2-Hg2-Br4 81,3(3) Cl1-N1-Hg2 126,0(13) F3-C3-F1 105(4) Cl3-Hg2-Cl4 89,70(10) Br3-Hg2-Br4 93,18(6) N2-N1-Hg2 123,0(12) F3-C3-F2 107(4) N1-Hg2-Cl4 80,04(18) Br1-Hg2-Br4 91,64(5) C1-N3-Hg2 121,0(13) F1-C3-F2 106(3) C3-N1-N2 107,7(7) C3-N1-N2 106,4(10) N4-N3-Hg2 126,1(11) F3-C3-Hg1 113(3) C3-N1-Hg2 133,7(6) C3-N1-Hg1 130,5(9) F3-C5-Hg1 115,8(16) F1-C3-Hg1 112(2) N2-N1-Hg2 118,4(5) N2-N1-Hg1 118,9(7) F1-C5-Hg1 117,1(13) F2-C3-Hg1 112(3) C1-N2-N1 108,0(7) C2-N2-N1 108,6(9)<	N2-Hg1-Cl2	87,6(2)	Br4-Hg1-Br1	93,12(5)	C4-Hg2-N1	97,2(8)	C1-N3-N4	128(3)
Cl2-Hg2-N1 108,0(2) N2-Hg2-Br1 105,2(2) C4-Hg2-N3 95,4(8) N2-C1-C2 129(3) Cl3-Hg2-N1 93,7(2) Br3-Hg2-Br1 158,46(5) N1-Hg2-N3 106,5(5) N3-C1-C2 122(3) Cl2-Hg2-Cl4 93,35(8) N2-Hg2-Br4 81,3(3) C11-N1-Hg2 126,0(13) F3-C3-F1 105(4) Cl3-Hg2-Cl4 89,70(10) Br3-Hg2-Br4 93,18(6) N2-N1-Hg2 123,0(12) F3-C3-F2 107(4) N1-Hg2-Cl4 80,04(18) Br1-Hg2-Br4 91,64(5) C1-N3-Hg2 121,0(13) F1-C3-F2 106(3) C3-N1-N2 107,7(7) C3-N1-N2 106,4(10) N4-N3-Hg2 126,1(11) F3-C3-Hg1 113(3) C3-N1-Hg2 133,7(6) C3-N1-Hg1 130,5(9) F3-C5-Hg1 115,8(16) F1-C3-Hg1 112(2) N2-N1-Hg2 118,9(7) C1-N2-Hg1 108,0(7) C2-N2-N1 108,6(9) F2-C5-Hg1 114,0(16) N1-C4-C5 125(3) N1-N2-Hg1 130,4(6) C2-N2-Hg2 132,9(9) N4-C8-N5 106(2) N1-C4-C5 125(3) N1-N2-Hg1 117,8(5)	Cl2-Hg2-Cl3	158,21(9)	N2-Hg2-Br3	96,3(2)	C6-Hg2-N3	89,5(7)	N2-C1-N3	109(3)
Cl3-Hg2-N193,7(2)Br3-Hg2-Br1158,46(5)N1-Hg2-N3106,5(5)N3-C1-C2122(3)Cl2-Hg2-Cl493,35(8)N2-Hg2-Br481,3(3)Cl1-N1-Hg2126,0(13)F3-C3-F1105(4)Cl3-Hg2-Cl489,70(10)Br3-Hg2-Br493,18(6)N2-N1-Hg2123,0(12)F3-C3-F2107(4)N1-Hg2-Cl480,04(18)Br1-Hg2-Br491,64(5)C1-N3-Hg2121,0(13)F1-C3-F2106(3)C3-N1-N2107,7(7)C3-N1-N2106,4(10)N4-N3-Hg2126,1(11)F3-C3-Hg1113(3)C3-N1-Hg2133,7(6)C3-N1-Hg1130,5(9)F3-C5-Hg1115,8(16)F1-C3-Hg1112(2)N2-N1-Hg2118,4(5)N2-N1-Hg1118,9(7)F1-C5-Hg1117,1(13)F2-C3-Hg1112(3)C1-N2-N1108,0(7)C2-N2-N1108,6(9)F2-C5-Hg1114,0(16)N1-C4-N3107(3)C1-N2-Hg1130,4(6)C2-N2-Hg2132,9(9)N4-C8-N5106(2)N1-C4-C5125(3)N1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9128(2)N3-C4-C5127(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F4104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-C2125,9(8)N2-C2-C1128,1(12)N1-C11-C12130,2(17)F6-C6-Hg1116(3)N3-C1-C2126,1(8)N3-C2-C1124,2(12)N1-C11-C12130,2(17)F6-C6-Hg1 <td>Cl2-Hg2-N1</td> <td>108,0(2)</td> <td>N2-Hg2-Br1</td> <td>105,2(2)</td> <td>C4-Hg2-N3</td> <td>95,4(8)</td> <td>N2-C1-C2</td> <td>129(3)</td>	Cl2-Hg2-N1	108,0(2)	N2-Hg2-Br1	105,2(2)	C4-Hg2-N3	95,4(8)	N2-C1-C2	129(3)
Cl2-Hg2-Cl493,35(8)N2-Hg2-Br481,3(3)Cl1-N1-Hg2126,0(13)F3-C3-F1105(4)Cl3-Hg2-Cl489,70(10)Br3-Hg2-Br493,18(6)N2-N1-Hg2123,0(12)F3-C3-F2107(4)N1-Hg2-Cl480,04(18)Br1-Hg2-Br491,64(5)C1-N3-Hg2121,0(13)F1-C3-F2106(3)C3-N1-N2107,7(7)C3-N1-N2106,4(10)N4-N3-Hg2126,1(11)F3-C3-Hg1113(3)C3-N1-Hg2133,7(6)C3-N1-Hg1130,5(9)F3-C5-Hg1115,8(16)F1-C3-Hg1112(2)N2-N1-Hg2118,4(5)N2-N1-Hg1118,9(7)F1-C5-Hg1117,1(13)F2-C3-Hg1112(3)C1-N2-N1108,0(7)C2-N2-N1108,6(9)F2-C5-Hg1114,0(16)N1-C4-N3107(3)C1-N2-Hg1130,4(6)C2-N2-Hg2132,9(9)N4-C8-N5106(2)N1-C4-C5125(3)N1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9128(2)N3-C4-C5127(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F4104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-C3125,9(8)N2-C2-C1128,1(12)N1-C11-C12130,2(17)F6-C6-Hg1116(3)N3-C1-C2126,1(8)N3-C2-C1124,2(12)N1-C11-C12130,2(17)F6-C6-Hg1115(3)N1-C3-N3108,1(8)N3-C3-N1109,5(11)N8-C11-C12124,9(18)N1-C3-C4	Cl3-Hg2-N1	93,7(2)	Br3-Hg2-Br1	158,46(5)	N1-Hg2-N3	106,5(5)	N3-C1-C2	122(3)
Cl3-Hg2-Cl489,70(10)Br3-Hg2-Br493,18(6)N2-N1-Hg2123,0(12)F3-C3-F2107(4)N1-Hg2-Cl480,04(18)Br1-Hg2-Br491,64(5)Cl-N3-Hg2121,0(13)F1-C3-F2106(3)C3-N1-N2107,7(7)C3-N1-N2106,4(10)N4-N3-Hg2126,1(11)F3-C3-Hg1113(3)C3-N1-Hg2133,7(6)C3-N1-Hg1130,5(9)F3-C5-Hg1115,8(16)F1-C3-Hg1112(2)N2-N1-Hg2118,4(5)N2-N1-Hg1118,9(7)F1-C5-Hg1117,1(13)F2-C3-Hg1112(3)C1-N2-N1108,0(7)C2-N2-N1108,6(9)F2-C5-Hg1114,0(16)N1-C4-N3107(3)C1-N2-Hg1130,4(6)C2-N2-Hg2132,9(9)N4-C8-N5106(2)N1-C4-C5125(3)N1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9128(2)N3-C4-C5127(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F6104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-C2125,9(8)N2-C2-C1128,1(12)N1-C11-N8104,8(19)F4-C6-Hg1116(3)N3-C1-C2126,1(8)N3-C2-C1124,2(12)N1-C11-C12130,2(17)F6-C6-Hg1115(3)N1-C3-N3108,1(8)N3-C3-N1109,5(11)N8-C11-C12124,9(18)N1-C3-C4125,1(9)N1-C3-C4127,1(9)N3-C3-C4126,7(11)N3-C1-C14124,9(18)N3-C3-C4 <td< td=""><td>Cl2-Hg2-Cl4</td><td>93,35(8)</td><td>N2-Hg2-Br4</td><td>81,3(3)</td><td>C11-N1-Hg2</td><td>126,0(13)</td><td>F3-C3-F1</td><td>105(4)</td></td<>	Cl2-Hg2-Cl4	93,35(8)	N2-Hg2-Br4	81,3(3)	C11-N1-Hg2	126,0(13)	F3-C3-F1	105(4)
N1-Hg2-Cl480,04(18)BF1-Hg2-BF491,64(5)C1-N5-Hg2121,0(13)F1-C3-F2106(3)C3-N1-N2107,7(7)C3-N1-N2106,4(10)N4-N3-Hg2126,1(11)F3-C3-Hg1113(3)C3-N1-Hg2133,7(6)C3-N1-Hg1130,5(9)F3-C5-Hg1115,8(16)F1-C3-Hg1112(2)N2-N1-Hg2118,4(5)N2-N1-Hg1118,9(7)F1-C5-Hg1117,1(13)F2-C3-Hg1112(3)C1-N2-N1108,0(7)C2-N2-N1108,6(9)F2-C5-Hg1114,0(16)N1-C4-N3107(3)C1-N2-Hg1130,4(6)C2-N2-Hg2132,9(9)N4-C8-N5106(2)N1-C4-C5125(3)N1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9128(2)N3-C4-C5127(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F4104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-N3108,0(8)N2-C2-N3107,7(12)N8-C10-C3128,9(17)F5-C6-Hg1114(3)N2-C1-C2125,9(8)N2-C2-C1124,2(12)N1-C11-N8104,8(19)F4-C6-Hg1116(3)N3-C1-C2126,1(8)N3-C3-N1109,5(11)N8-C11-C12130,2(17)F6-C6-Hg1115(3)N1-C3-N3108,1(8)N3-C3-N4126,7(11)N8-C11-C12124,9(18)N1-C3-C4127,1(9)	Cl3-Hg2-Cl4	89,70(10)	Br3-Hg2-Br4	93,18(6)	N2-N1-Hg2	123,0(12)	F3-C3-F2	107(4)
C3-N1-N2107, (7)C3-N1-N2106,4(10)N4-N3-Hg2126,1(11)F3-C3-Hg1113(3)C3-N1-Hg2133,7(6)C3-N1-Hg1130,5(9)F3-C5-Hg1115,8(16)F1-C3-Hg1112(2)N2-N1-Hg2118,4(5)N2-N1-Hg1118,9(7)F1-C5-Hg1117,1(13)F2-C3-Hg1112(3)C1-N2-N1108,0(7)C2-N2-N1108,6(9)F2-C5-Hg1114,0(16)N1-C4-N3107(3)C1-N2-Hg1130,4(6)C2-N2-Hg2132,9(9)N4-C8-N5106(2)N1-C4-C5125(3)N1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9128(2)N3-C4-C5127(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F4104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-N3108,0(8)N2-C2-N3107,7(12)N8-C10-C3128,9(17)F5-C6-Hg1114(3)N2-C1-C2125,9(8)N2-C2-C1128,1(12)N1-C11-N8104,8(19)F4-C6-Hg1116(3)N3-C1-C2126,1(8)N3-C2-C1124,2(12)N1-C11-C12130,2(17)F6-C6-Hg1115(3)N1-C3-N3108,1(8)N3-C3-N1109,5(11)N8-C11-C12124,9(18)115(3)	N1-Hg2-Cl4	80,04(18)	Br1-Hg2-Br4	91,64(5)	C1-N3-Hg2	121,0(13)	F1-C3-F2	106(3)
C3-N1-Hg2133,7(6)C3-N1-Hg1130,3(9)F3-C3-Hg1113,8(16)F1-C3-Hg1112(2)N2-N1-Hg2118,4(5)N2-N1-Hg1118,9(7)F1-C5-Hg1117,1(13)F2-C3-Hg1112(3)C1-N2-N1108,0(7)C2-N2-N1108,6(9)F2-C5-Hg1114,0(16)N1-C4-N3107(3)C1-N2-Hg1130,4(6)C2-N2-Hg2132,9(9)N4-C8-N5106(2)N1-C4-C5125(3)N1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9128(2)N3-C4-C5127(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F4104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-N8107,1(19)F5-C6-F6104(3)C3-N3-N4123,5(8)C2-N3-N4121,9(12)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-N3108,0(8)N2-C2-C1128,1(12)N1-C11-N8104,8(19)F4-C6-Hg1116(3)N3-C1-C2125,9(8)N3-C2-C1124,2(12)N1-C11-C12130,2(17)F6-C6-Hg1115(3)N1-C3-N3108,1(8)N3-C3-N1109,5(11)N8-C11-C12124,9(18)115(3)N1-C3-C4127,1(9)N3-C3-C4126,7(11)N2-C1-C12124,9(18)	C3-N1-N2	107,7(7)	C3-N1-N2	106,4(10) 120,5(0)	N4-N3-Hg2	126,1(11)	F3-C3-Hg1	113(3)
N2-N1-Hg2118,4(3)N2-N1-Hg1118,9(7)P1-C3-Hg1117,1(13)P2-C5-Hg1112(3)C1-N2-N1108,0(7)C2-N2-N1108,6(9)F2-C5-Hg1114,0(16)N1-C4-N3107(3)C1-N2-Hg1130,4(6)C2-N2-Hg2132,9(9)N4-C8-N5106(2)N1-C4-C5125(3)N1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9128(2)N3-C4-C5127(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F4104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-N8107,1(19)F5-C6-F6104(3)C3-N3-N4123,5(8)C2-N3-N4121,9(12)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-N3108,0(8)N2-C2-N3107,7(12)N8-C10-C3128,9(17)F5-C6-Hg1114(3)N2-C1-C2125,9(8)N2-C2-C1128,1(12)N1-C11-N8104,8(19)F4-C6-Hg1116(3)N3-C1-C2126,1(8)N3-C2-C1124,2(12)N1-C11-C12130,2(17)F6-C6-Hg1115(3)N1-C3-N3108,1(8)N3-C3-N1109,5(11)N8-C11-C12124,9(18)N1-C3-C4127,1(9)N3-C3-C4126,7(11)	N2 N1 H22	133, /(0) 119, $4(5)$	N2 N1 Ha1	130,3(9)	F3-C5-Hg1	115,8(10) 117,1(12)	FI-C3-Hg1	112(2) 112(2)
C1-N2-IN1108,0(7)C2-N2-IN1108,0(9)P2-C3-Hg1114,0(10)N1-C4-N3107(3)C1-N2-Hg1130,4(6)C2-N2-Hg2132,9(9)N4-C8-N5106(2)N1-C4-C5125(3)N1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9128(2)N3-C4-C5127(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F4104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-N8107,1(19)F5-C6-F6104(3)C3-N3-N4123,5(8)C2-N3-N4121,9(12)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-N3108,0(8)N2-C2-N3107,7(12)N8-C10-C3128,9(17)F5-C6-Hg1114(3)N2-C1-C2125,9(8)N2-C2-C1128,1(12)N1-C11-N8104,8(19)F4-C6-Hg1116(3)N3-C1-C2126,1(8)N3-C2-C1124,2(12)N1-C11-C12130,2(17)F6-C6-Hg1115(3)N1-C3-N3108,1(8)N3-C3-N1109,5(11)N8-C11-C12124,9(18)N1-C3-C4127,1(9)N3-C3-C4126,7(11)	N2-N1-П <u>2</u>	110,4(3) 108,0(7)	N2-N1-П <u>g</u> 1 С2 N2 N1	118,9(7) 108.6(0)	F1-C3-Hg1	117,1(15) 114.0(16)	F2-C3-Hg1	112(3) 107(3)
C1-N2-Hg1150,4(0)C2-N2-Hg2152,9(9)N4-C8-N3100(2)N1-C4-C3125(3)N1-N2-Hg1117,8(5)N1-N2-Hg2117,9(7)N4-C8-C9128(2)N3-C4-C5127(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F4104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-N8107,1(19)F5-C6-F6104(3)C3-N3-N4123,5(8)C2-N3-N4121,9(12)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-N3108,0(8)N2-C2-N3107,7(12)N8-C10-C3128,9(17)F5-C6-Hg1114(3)N2-C1-C2125,9(8)N2-C2-C1128,1(12)N1-C11-N8104,8(19)F4-C6-Hg1116(3)N3-C1-C2126,1(8)N3-C2-C1124,2(12)N1-C11-C12130,2(17)F6-C6-Hg1115(3)N1-C3-N3108,1(8)N3-C3-N1109,5(11)N8-C11-C12124,9(18)115(3)N1-C3-C4127,1(9)N3-C3-C4126,7(11)126,7(11)124,9(18)	C1 N2 Hg1	100,0(7) 130 $4(6)$	$C_2 = N_2 = N_1$	108,0(9)	N4 C8 N5	114,0(10) 106(2)	N1-C4-N3	107(3) 125(3)
N1-N2-Hg1H17,3(5)N1-N2-Hg2H17,3(7)N4-C3-C9H23(2)H3-C4-C3H27(3)C1-N3-C3108,1(7)C3-N3-C2107,8(10)N5-C8-C9126(2)F5-C6-F4104(3)C1-N3-N4128,3(8)C3-N3-N4130,2(11)N2-C10-N8107,1(19)F5-C6-F6104(3)C3-N3-N4123,5(8)C2-N3-N4121,9(12)N2-C10-C3123,9(19)F4-C6-F6103(3)N2-C1-N3108,0(8)N2-C2-N3107,7(12)N8-C10-C3128,9(17)F5-C6-Hg1114(3)N2-C1-C2125,9(8)N2-C2-C1128,1(12)N1-C11-N8104,8(19)F4-C6-Hg1116(3)N3-C1-C2126,1(8)N3-C2-C1124,2(12)N1-C11-C12130,2(17)F6-C6-Hg1115(3)N1-C3-N3108,1(8)N3-C3-N1109,5(11)N8-C11-C12124,9(18)115(3)N1-C3-C4127,1(9)N3-C3-C4126,7(11)126,7(11)124,9(18)	N1-N2-Hg1	130,4(0) 117.8(5)	N1-N2-Hg2	132,9(9) 117.9(7)	N4-C8-C9	100(2) 128(2)	N1-C4-C5	123(3) 127(3)
C1-N3-C2 100,0(1) C3-N3-C2 100,0(1) N3-C3-C4 120(2) 10-C0-14 100(3) C1-N3-N4 128,3(8) C3-N3-N4 130,2(11) N2-C10-N8 107,1(19) F5-C6-F6 104(3) C3-N3-N4 123,5(8) C2-N3-N4 121,9(12) N2-C10-C3 123,9(19) F4-C6-F6 103(3) N2-C1-N3 108,0(8) N2-C2-N3 107,7(12) N8-C10-C3 128,9(17) F5-C6-Hg1 114(3) N2-C1-C2 125,9(8) N2-C2-C1 128,1(12) N1-C11-N8 104,8(19) F4-C6-Hg1 116(3) N3-C1-C2 126,1(8) N3-C2-C1 124,2(12) N1-C11-C12 130,2(17) F6-C6-Hg1 115(3) N1-C3-N3 108,1(8) N3-C3-N1 109,5(11) N8-C11-C12 124,9(18) 115(3) N1-C3-C4 127,1(9) N3-C3-C4 126,7(11) 124,9(18) 115(3)	C1-N3-C3	108 1(7)	C3-N3-C2	117,9(7) 107.8(10)	N5-C8-C9	126(2)	F5-C6-F4	127(3) 104(3)
C3-N3-N4 123,5(8) C2-N3-N4 121,9(12) N2-C10-C3 123,9(19) F4-C6-F6 103(3) N2-C1-N3 108,0(8) N2-C2-N3 107,7(12) N8-C10-C3 128,9(17) F5-C6-Hg1 114(3) N2-C1-C2 125,9(8) N2-C2-C1 128,1(12) N1-C11-N8 104,8(19) F4-C6-Hg1 116(3) N3-C1-C2 126,1(8) N3-C2-C1 124,2(12) N1-C11-C12 130,2(17) F6-C6-Hg1 115(3) N1-C3-N3 108,1(8) N3-C3-C4 126,7(11) N8-C11-C12 124,9(18) 115(3)	C1-N3-N4	100,1(7) 128 3(8)	C3-N3-N4	130.2(11)	N2-C10-N8	120(2) 107 1(19)	F5-C6-F6	104(3)
N2-C1-N3 108,0(8) N2-C2-N3 107,7(12) N8-C10-C3 128,9(17) F5-C6-Hg1 114(3) N2-C1-C2 125,9(8) N2-C2-C1 128,1(12) N1-C11-N8 104,8(19) F4-C6-Hg1 116(3) N3-C1-C2 126,1(8) N3-C2-C1 124,2(12) N1-C11-C12 130,2(17) F6-C6-Hg1 115(3) N1-C3-N3 108,1(8) N3-C3-C4 126,7(11) N8-C11-C12 124,9(18) F4-C6-Hg1 115(3)	C3-N3-N4	123,5(8)	C2-N3-N4	121.9(12)	N2-C10-C3	107,1(17) 123.9(19)	F4-C6-F6	103(3)
N2-C1-C2 125,9(8) N2-C2-C1 128,1(12) N1-C11-N8 104,8(19) F4-C6-Hg1 116(3) N3-C1-C2 126,1(8) N3-C2-C1 124,2(12) N1-C11-C12 130,2(17) F6-C6-Hg1 115(3) N1-C3-N3 108,1(8) N3-C3-C4 126,7(11) N8-C11-C12 124,9(18) F6-C6-Hg1 115(3)	N2-C1-N3	108.0(8)	N2-C2-N3	107.7(12)	N8-C10-C3	128.9(17)	F5-C6-Hø1	114(3)
N3-C1-C2 126,1(8) N3-C2-C1 124,2(12) N1-C11-C12 130,2(17) F6-C6-Hg1 115(3) N1-C3-N3 108,1(8) N3-C3-C4 126,7(11) N8-C11-C12 124,9(18) F6-C6-Hg1 115(3)	N2-C1-C2	125.9(8)	N2-C2-C1	128.1(12)	N1-C11-N8	104.8(19)	F4-C6-Hg1	116(3)
N1-C3-N3 108,1(8) N3-C3-N1 109,5(11) N8-C11-C12 124,9(18) N1-C3-C4 127,1(9) N3-C3-C4 126,7(11)	N3-C1-C2	126,1(8)	N3-C2-C1	124,2(12)	N1-C11-C12	130,2(17)	F6-C6-Hg1	115(3)
N1-C3-C4 127,1(9) N3-C3-C4 126,7(11)	N1-C3-N3	108,1(8)	N3-C3-N1	109.5(11)	N8-C11-C12	124,9(18)		- (-)
	N1-C3-C4	127,1(9)	N3-C3-C4	126,7(11)	-	/ \ _/		
N3-C3-C4 124,8(8) N1-C3-C4 123,7(13)	N3-C3-C4	124,8(8)	N1-C3-C4	123,7(13)				

Tabelle **14**: Internukleare Abstände und Bindungswinkel für Hg₂(admtrz)Cl₄, Hg₂(admtrz)Br₄, RT-[Hg(admtrz)(CF₃)₂]₂, TT-[Hg(admtrz)(CF₃)₂]₂

2.8 Anilin, Melamin und Urotropin als Liganden von Quecksilber(II)halogeniden

2.8.1 Kristallstruktur von Hg(Anilin)₂Cl₂

Hg(Anilin)₂Cl₂ (Anilin = C₆H₅NH₂) kristallisiert monoklin in der Raumgruppe C2/c mit den Gitterparametern a = 2704,45(19) pm, b = 467,45(5) pm und c = 1186,4(5) pm, β = 108,70(2)° und Z = 4. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 15 und Tabelle 16. Abbildung 77 zeigt eine perspektivische Darstellung der Elementarzelle.

Abbildung 77: Perspektivische Darstellung der Elementarzelle von Hg(Anilin)₂Cl₂ in Richtung [010]

Die Struktur von $Hg(C_6H_5NH_2)_2Cl_2$ besteht aus einer Packung von $HgCl_2-(C_6H_5NH_2)_2-$ Molekülen. Quecksilber ist dabei verzerrt tetraedrisch von zwei Chloratomen und zwei NH₂-Gruppen von Anilin-Molekülen umgeben.

Abbildung 78: Darstellung eines Hg(Anilin)₂Cl₂ - Moleküles

Der Abstand zu den Chloratomen beträgt 251,85(13) pm. Der Winkel Cl – Hg - Cl beträgt 98,81(6)°; der Winkel, den die Stickstoffatome einschliessen beträgt 125,6(2)°. Die Winkel N-Hg-Cl betragen 105,40(10)° und 109,22(9)°. Der Torsionswinkel entlang der Achse C1-C1 beträgt für die Atome C2 – C3 56,4° und für die Atome C3 – C3 85,7°. Abbildung 78 zeigt das [HgCl₂-(C₆H₅NH₂)₂]- Molekül. Die Packung weist parallel liegende Anilin-Moleküle auf. Die kürzesten Hg-Hg-Abstände liegen bei 467,4(1) pm.

2.8.2 Kristallstruktur von Hg₂(utp)Cl₄

 $Hg_2(utp)Cl_4$ (utp = Urotropin = Hexamethylentetramin) kristallisiert orthorhombisch in der Raumgruppe Fddd mit den Gitterparametern a = 3195,0(4) pm, b = 1094,52(15) pm, c = 748,25(8) pm und Z = 16. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 15 und Tabelle 16. Abbildung 80 zeigt eine perspektivische Darstellung der Elementarzelle.

Die Struktur von Hg₂(utp)Cl₄ ist charakterisiert durch Doppelschichten von HgCl₂-Einheiten, die über Urotropin-Moleküle verknüpft sind. Abbildung 79 zeigt einen Ausschnitt aus der Flächenverknüpfung über alle vier Stickstoffatome der Urotropin-Moleküle. Die Quecksilber-Stickstoff-Abstände sind mit 277,8(4) pm sehr lang; die Quecksilber-Chlor-Abstände sind entsprechend kurz mit 233,6(1) pm. Abbildung 82 zeigt die Umgebung eines Urotropin-Moleküls.

Abbildung 79: Darstellung der Verknüpfung innerhalb der Schichten in Hg₂(utp)Cl₄

Abbildung 80: Darstellung der Elementarzelle von Hg₂(utp)Cl₄ in Richtung [011]

Der Winkel Cl-Hg-Cl beträgt 170,29(6)°, der Winkel N-Hg-N 99,84(16)°. In einem Abstand von 314,22(13) pm folgen Chlor-Atome einer zweiten "HgCl₂"-Schicht, so dass die Quecksilber-Koordination "effektiv" als verzerrtes unregelmäßiges Oktaeder beschrieben werden kann. Abbildung 81 verdeutlicht die Verknüpfung über verzerrte Oktaeder. Der Torsionswinkel der HgCl₂-Einheiten einer Schicht zur zweiten Schicht beträgt entlang einer Hg-Hg-Achse 49°.

In Kapitel 2.9.8 findet sich das Schwingungsspektrum im MIR-Bereich für Hg₂(utp)Cl₄ im Vergleich mit [Hg(utp)₂(NO₃)₃]⁻utp·H₃O⁺.

Abbildung 81: Darstellung zur Verdeutlichung der Verknüpfung über verzerrte Oktaeder in $Hg_2(utp)Cl_4$

Abbildung 82: Umgebung und Koordination der Urotropin-Moleküle in Hg₂(utp)Cl₄

2.8.3 Kristallstruktur von [MelaminH⁺(HgCl₃)⁻]·Melamin

[MelaminH⁺(HgCl₃)⁻]·Melamin kristallisiert monoklin in der azentrischen Raumgruppe P2₁ mit den Gitterparametern a = 939,43(18) pm, b = 682,80(9) pm, c = 1218,9(2) pm, β = 99,61(2)° und Z = 2. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 15 und Tabelle 16. Abbildung 83 zeigt eine perspektivische Darstellung der Elementarzelle. Lageparameter und anisotrope Temperaturfaktoren finden sich im Anhang.

Abbildung **83**: Perspektivische Darstellung der Elementarzelle von $[MelaminH^+(HgCl_3)^-]$ ·Melamin

Die Struktur von [MelaminH⁺(HgCl₃)⁻]·Melamin besteht aus einer Packung von [MelaminH⁺(HgCl₃)⁻]-Molekülen, wie in Abbildung 84 gezeigt und "freien" Melamin-Molekülen. Quecksilber ist dabei verzerrt tetraedrisch von drei Chloratomen und einem koordinierenden Melamin-Molekül umgeben. Der Quecksilber-Stickstoff-Abstand
beträgt 233,5(6) pm. Zu den Chloratomen bestehen drei unterschiedliche Abstände von 243,9(2), 248,2(2) und 249,2(2) pm.

Abbildung 84: "Zwitterion" [Melamin]⁺[HgCl₃]⁻

2.8.4 Diskussion der Additionsverbindungen von HgCl₂ an Anilin, Urotropin und Melamin

Allgemein gilt für Arylamine wie Anilin, dass sie deutlich weniger basisch als Alkylamine sind. Dementsprechend ist auch die Acidität des Anilinium-Ions deutlich grösser und vergleichbar mit Natriumacetat. Die verminderte Basizität des Anilins wird zum Teil durch den elektronenziehenden induktiven Einfluss der Phenylgruppe bewirkt. Dieser Einfluss ist jedoch im Vergleich zu dem Delokalisierungseffekt des einsamen Elektronenpaares am Stickstoff klein. Das Elektronenpaar kann teilweise auf das benzolische System übertragen werden. Diese Delokalisierung bewirkt, dass das Elektronenpaar nicht so leicht eine Bindung ausbildet. Die Amingruppe besitzt eine pyramidale Struktur mit einem Bindungswinkel H-N-H von 113,9°. Das einsame Elektronenpaar hat mehr p-Charakter als in NH₃, so dass die NH₂-Gruppe zwar pyramidal ist, aber einen grösseren Bindungswinkel aufweist. Abbildung 85 zeigt die Orbitalstruktur des Anilins. Der pK_a-Wert von Anilin beträgt 11,60.

Abbildung 85: Gegenüberstellung des Orbitalmodells von Anilin und der Koordination des Quecksilbers am freien Elektronenpaar

Der Winkel C1-N1-Hg1 beträgt in Hg(Anilin)₂Cl₂ 114,8(3)° und entspricht damit der Anordnung innerhalb einer tetraedrischen Koordination um das Stickstoffatom.

Mit Urotropin (Hexamethylentetramin) wurde ein nichtaromatischer Heterocyclus mit vier potentiellen Koordinationsstellen für Quecksilber(II) eingesetzt. Diese vier Positionen werden in Hg₂(utp)Cl₄ auch alle belegt, führen jedoch nicht wie erwartet zu einer Raumnetzverknüpfung, sondern mit Quecksilber(II) in verzerrt- ψ -tetraedrischer Koordinationssphäre zu einer Schichtstruktur. Lange Quecksilber-Chlor-Kontakte um 314 pm ergänzen eine verzerrt-oktaedrische Umgebung des Quecksilbers. Die Quecksilber-Stickstoff-Abstände sind entsprechend der geringen Basizität des Urotropins mit 277,8(4) pm sehr lang.

Melamin (2,4,6-Triamino-1,3,5-triazin) ist aufgrund seiner Aminogruppen eine schwache Base und bildet leicht mit Säuren stabile, schwerlösliche Salze. Melamin ist eine chemisch und thermisch sehr beständige Verbindung, die weder durch Säuren noch Basen zersetzt wird. In der beschriebenen Koordinationsverbindung mit Quecksilber(II)-chlorid liegt Melamin in einer protonierten Form vor, so dass sich Zwitterionen mit [HgCl₃]⁻ - Anionen bilden, die über Stickstoff zum Quecksilberatom koordinieren. Da die Protonen bei der Röntgenstrukturanalyse aufgrund der hohen Elektronendichte am Quecksilber nicht lokalisiert werden konnten, kann sich die Aussage über die Position des zusätzlichen Protons nur auf die geringfügig grössere C- NH_3^+ - Bindungslänge mit 134(1) pm gegenüber 132(1) pm stützen und ist damit noch näher zu untersuchen. Eine ebenfalls denkbare Protonierung der Amingruppen der "freien" Melamin-Moleküle erscheint aufgrund der dann eintretenden grossen Ladungstrennung mit Anion - Kation - Abständen von deutlich mehr als 4 pm als unwahrscheinlich.

Abbildung 86: Inter- und intramolekulare Wechselwirkungen der [MelaminH⁺(HgCl₃)⁻] - Zwitterionen

Alternativ wäre noch eine Protonierung der beiden Amin-Gruppen denkbar, die dem koordinierenden Stickstoffatom des Melamins benachbart sind. Diese Position ist jedoch aufgrund der sich dann einstellenden Kation-Kation-Abstände von etwa 320 pm zum Quecksilber(II) als sehr unwahrscheinlich zu betrachten. Hier ist vielmehr von einer Wechselwirkung der um die C-N-Achse drehbaren freien Elektronenpaare der sp³-hybridisierten Amingruppe mit dem Quecksilber auszugehen, wie dies in Abbildung 86 schematisch dargestellt ist.

Da die Lösung zur Darstellung der vorliegenden Verbindung nicht angesäuert wurde, muss die Protonierung des Melamins in einer Gleichgewichtsreaktion erfolgt sein, die etwa folgendermassen zu formulieren ist:

Abbildung 87: Vorschlag für den Reaktionsmechanismus der Addition von Melamin an Quecksilber(II)-chlorid bei der Bildung von [MelaminH⁺(HgCl₃)⁻]·Melamin

Es ergibt sich somit folgende Reaktionsgleichung:

 $HgCl_{2} + 3 C_{3}H_{6}N_{6} \rightarrow [C_{3}H_{7}N_{6}]^{+}[HgCl_{3}]^{-} \cdot C_{3}H_{6}N_{6} + \mathbf{K}^{"}C_{3}H_{5}N_{6} - HgCl^{"}$ Die Triebkraft dieser hypothetischen Reaktion könnte von der Ausbildung einer Quecksilber-Stickstoff-Bindung über eine der recht stark basischen Amingruppen des Melamins erfolgen, die sogar zu einer "Verdrängung" des Chlorid-Liganden am Quecksilber unter Abspaltung von HCl führt. Die entstehende Salzsäure ermöglicht anschliessend die Bildung des vorgestellten Produktes. Die hier nur aufgrund eines nicht identifizierten Nebenproduktes postulierte Verbindung "Melamin-HgCl" konnte bislang noch nicht isoliert und charakterisiert werden. Damit stellt das Melamin eine interessante Kombination von Stickstoffdonoren mit Amingruppen und N-Heteroatomen im aromatischen Ring dar. Durch die Variation des pH-Wertes und ein entsprechendes Melamin/Ouecksilberchlorid-Verhältnis sind möglicherweise noch weitere Verbindungen in diesem System zu erwarten. Ein Vergleich mit dem Koordinationsverhalten von Triazin würde in diesem Zusammenhang weiteren Aufschluss über die N-Donorfähigkeit von N-Heterocyclen geben und den Einfluss der Amingruppen im Melamin verdeutlichen. Versuche mit Triazin führten bislang jedoch nur zu einer Koordinationsverbindung mit einem Hydrolyseprodukt des Triazins.

Durch gezielte Protonierung mit HBr konnte aus einer Quecksilber(II)-bromid / Melamin–Lösung. die Verbindung [MelaminH₂]²⁺[HgBr₄]²⁻ isoliert werden. Diese enthält ein zweifach protoniertes Melamin-Kation und tetraedrische [HgBr₄]²⁻ - Anionen. Die Hg²⁺ - NH₃⁺ - Abstände liegen im Bereich um 380 pm. Abbildung 88 zeigt eine Darstellung der Elementarzelle von [MelaminH₂]²⁺[HgBr₄]²⁻; im Rahmen dieser Arbeit erfolgt jedoch keine nähere Beschreibung [25].

Abbildung 88: Darstellung der Elementarzelle von [MelaminH₂]²⁺[HgBr₄]²⁻

	Hg(Anilin) ₂ Cl ₂	Hg ₂ (utp)Cl ₄	[MMH ⁺ (HgCl ₃) ⁻]·MM
Gitterkonstanten / pm	a = 2704.45(19).	a = 3195.0(4).	a = 939.43(18).
Winkel / grd	b = 467,45(5)	b = 1094,52(15),	b = 682,80(9),
C	c = 1186, 4(5),	c = 748,25(8)	c = 1218.9(2)
	$\beta = 108.70(2)$, ()	$\beta = 99.61(2)$
Zellvolumen/pm ³	$1420,7(6)\cdot 10^{6}$	$2616,6(6) \cdot 10^6$	$770,9(2)\cdot10^{6}$
Zahl der Formeleinheiten	4	16	2
Kristallsystem	monoklin	orthorhombisch	monoklin
Raumgruppe	C 2/c	Fddd	P 2 ₁
Messgerät		Stoe IPDS	
Verwendete Strahlung		MoK _{α} , $\lambda = 71,07$	pm
Monochromator		Graphit	-
Messtemperatur		20°C	
Scan-Modus		2°-Schritte, 100 Bi	lder
Messbereich/grd	3,8° < 20 < 53,95°	3,8° < 20 < 53,95°	3,8° < 20 < 53,97°
Indexgrenzen h,k,l	±34, ±5, ±15	±40, ±13, -8<1<9	±10, ±7, ±13
Berechnete Dichten	$2,074 \text{ g/cm}^3$	$3,407 \text{ g/cm}^3$	$2,357 \text{ g/cm}^3$
F(000)	800	2335	502
Absorptionskorrektur	n	umerisch, X-SHAP	E [50]
lin. Absorptionskoeff.	11,19	24,23	10,52
μ/mm^{-1}			
Zahl der gemessenen	8524	23814	9240
Reflexe			
Symmetrieunabhängige	1453	722	2318
Reflexe			
R _{int}	0,0497	0,1106	0,0646
Strukturbestimmung und - verfeinerung	Programme SHELXS-97 [51] und SHELX-97 [52]		
Streufaktoren	In	ternational Tables,	Vol, C
Parameter	79	40	200
R_1	0,0245 für 1082 Fo	0,0227 für 682	0,0587 für 2191 Fo >
	$> 4\sigma(Fo)$	$Fo > 4\sigma(Fo)$	4σ(Fo)
	0,0349 für alle	0,0239 für alle	0,0611 für alle Daten
	Daten	Daten	
wR ₂ (alle Daten)	0,0625	0,0586	0,1656
Flack-Parameter	-	-	0,0216
Goodness of fit	0,976	1,074	1,045

Tabelle 15: Kristalldaten und Details zur Strukturbestimmung für Hg(Anilin)₂Cl₂, Hg₂(utp)Cl₄ und [MMH⁺(HgCl₃)⁻]·MM

Hg(Anilin) ₂ C	l ₂	Hg ₂ (utp)Cl ₄		[MMH ⁺ ([HgCl ₃) ⁻]∙M	Μ	
Hg1-N1	226 7(4)	Hg1-Cl1	233 64(12)	Hg1-N1	233 5(6)	N1-Hg1-Cl1	110 84(15)
Hg1-Cl1	251.85(13)	Hg1-N1	277.8(4)	Hg1-Cl1	243.9(2)	N1-Hg1-Cl2	95.02(16)
N1-C1	143.4(6)	Hg1-Cl1	314.22(13)	Hg1-Cl1	248.2(2)	Cl1-Hg1-Cl3	123.00(8)
C1-C2	139,5(6)	N1-C1	147,1(6)	Hg1-Cl2	249,2(2)	N1-Hg1-Cl2	108,41(16)
C1-C3	140,0(7)	N1-C3	147,6(5)	N1-C6	136,1(10)	Cl1-Hg1-Cl2	112,83(8)
C2-C4	138,9(10)	N1-C2	149,3(6)	N1-C5	136,8(10)	Cl3-Hg1-Cl2	104,81(8)
C3-C6	137,8(8)		, , ,	N2-C1	133,8(10)	C6-N1-C5	117,3(6)
C5-C6	141,0(9)			N2-C3	135,9(10)	C6-N1-Hg1	119,6(5)
				N3-C2	132,3(10)	C5-N1-Hg1	122,9(5)
				N3-C3	133,6(11)	C1-N2-C3	115,6(7)
N1-Hg1-N1	125,6(2)	Cl1-Hg1-Cl1	170,29(6)	N4-C3	133,2(11)	C2-N3-C3	116,9(6)
N1-Hg1-Cl1	109,22(9)	Cl1-Hg1-N1	87,02(9)	N5-C5	134,8(11)	C5-N5-C4	115,3(7)
N1-Hg1-Cl1	105,40(10)	Cl1-Hg1-N1	99,26(9)	N5-C4	136,2(11)	C2-N6-C1	118,8(7)
Cl1-Hg1-Cl1	98,81(6)	N1-Hg1-N1	99,84(16)	N6-C2	136,9(10)	C4-N8-C6	115,5(7)
C1-N1-Hg1	114,8(3)	Cl1-Hg1-Cl1	79,24(4)	N6-C1	136,6(10)	N10-C1-N2	120,2(7)
C2-C1-C3	120,1(5)	Cl1-Hg1-Cl1	93,09(4)	N7-C5	132,7(10)	N10-C1-N6	118,2(7)
C2-C1-N1	119,6(4)	N1-Hg1-Cl1	162,38(9)	N8-C4	134,2(10)	N2-C1-N6	121,6(7)
C4-C2-C1	119,1(5)	N1-Hg1-Cl1	93,26(9)	N8-C6	137,0(10)	N3-C2-N11	120,6(7)
C6-C3-C1	120,0(5)	Cl1-Hg1-Cl1	76,68(6)	N9-C6	131,1(11)	N3-C2-N6	121,4(7)
C2-C4-C5	121,7(5)	C1-N1-C3	108,7(3)	N10-C1	133,2(11)	N11-C2-N6	117,9(7)
C4-C5-C6	118,3(6)	C1-N1-C2	107,7(3)	N11-C2	134,7(10)	N4-C3-N3	117,9(7)
C3-C6-C5	120,7(5)	C3-N1-C2	108,5(3)	N12-C4	133,6(11)	N4-C3-N2	116,5(7)
		C1-N1-Hg1	102,9(3)			N3-C3-N2	125,5(7)
		C3-N1-Hg1	104,1(3)			N8-C4-N12	117,3(7)
		C2-N1-Hg1	124,2(3)			N8-C4-N5	125,8(7)
		N1-C1-N1	112,8(6)			N12-C4-N5	116,8(7)
		N1-C2-N1	111,1(6)			N7-C5-N5	118,1(7)
		N1-C3-N1	111,4(5)			N5-C5-N1	123,4(7)
						N9-C6-N1	119,2(7)
						N1-C6-N8	122,6(7)

Tabelle 16: Ausgewählte internukleare Abstände und Bindungswinkel für Hg(Anilin)₂Cl₂, Hg₂(utp)Cl₄, [MMH⁺(HgCl₃)⁻]·MM

2.9 N-Heterocyclen als Liganden in Quecksilber(II)nitraten und –perchloraten

2.9.1 Kristallstruktur von [Hg(Pyridin)₄](ClO₄)₂

 $[Hg(Py)_4](ClO_4)_2$ kristallisiert orthorhombisch in der azentrischen Raumgruppe P2₁2₁2₁ mit den Gitterkonstanten a = 1455,0(2) pm, b = 1030,49(10) pm, c = 1672,18(19) pm und Z = 4. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 17 und Tabelle 18.

Die Struktur von [Hg(Py)₄](ClO₄)₂ besteht aus einer Packung von Molekülen von vierfach verzerrt quadratisch-planar von Pyridin-Molekülen koordiniertem Quecksilber. Zwei Perchlorat-Anionen ergänzen die Quecksilberumgebung zu einer verzerrten Oktaederkoordination.

Abbildung 89: Perspektivische Darstellung der Elementarzelle von $[Hg(py)_4](ClO_4)_2$ in Richtung [010]

Abbildung 89 zeigt eine perspektivische Darstellung der Elementarzelle von $[Hg(py)_4](ClO_4)_2$ in Richtung [010]. Abbildung 90 zeigt ein $[Hg(py)_4](ClO_4)_2$ – Molekül.

Dabei finden sich zwei kurze Quecksilber-Stickstoff-Abstände von 217,4(12) pm und 218,1(11) pm sowie zwei lange Abstände mit 251,3(10) pm und 253,3(10) pm. Der Quecksilber-Sauerstoff-Abstand zu den Perchlorat-Gruppen beträgt 282(2) pm.

Entlang der kurzen Stickstoff-Quecksilber-Stickstoff-Achse besitzen die Pyridin-Moleküle einen Torsionswinkel von etwa 75°, entlang der langen Achse beträgt dieser Winkel 110°. Der Winkel N-Hg-N entlang der kurzen Achse beträgt 177,2(4); entlang der langen Achse beträgt er 174,1(4)°.

Abbildung 90: Darstellung eines [Hg(py)₄](ClO₄)₂ – Moleküles

Die Azentrizität der Verbindung wurde durch Beobachtung des SHG-Effektes bestätigt. Das durch Frequenzverdopplung auftretende grüne Aufleuchten einer Pulverprobe im Infrarotlaser war ausgesprochen deutlich zu beobachten. Die Erwärmung im Laserstrahl führte jedoch auch zu einer schnellen Zersetzung der Substanz. An der Luft findet ebenfalls recht schnell Abbau zu $[Hg(py)_2](ClO_4)_2$ statt, dazu siehe auch die infrarotspektroskopische Charakterisierung in Abbildung 93.

2.9.2 Kristallstruktur von [Hg(Py)₄](ClO₄)₂·2Py

[Hg(Py)₄](ClO₄)₂·2Py (Py = Pyridin) kristallisiert monoklin in der Raumgruppe C2/c mit den Gitterkonstanten a = 1022,3(1) pm, b = 1724,1(3) pm, c = 1023,3(1) pm, β = 100,84(1)° und Z = 4. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 17 und Tabelle 18. Abbildung 91 zeigt eine perspektivische Darstellung der Elementarzelle.

Die Struktur von $[Hg(Py)_4](ClO_4)_2$ ·2Py besteht aus einer Packung von Molekülen von vierfach verzerrt quadratisch-planar von Pyridin-Molekülen koordiniertem Quecksilber und pro Formeleinheit zwei weiteren "freien" Pyridinmolekülen. Zwei Perchlorat-Anionen ergänzen die Quecksilberumgebung zu einer verzerrten Oktaederkoordination. Dabei finden sich zwei kurze Quecksilber-Stickstoff-Abstände von 217(1) pm und 218(1) pm sowie zwei lange Abstände mit 251(1) pm und 253(1) pm. Der Quecksilber-Sauerstoff-Abstand zu den Perchlorat-Gruppen beträgt 282(2) pm.

Abbildung 91: Perspektivische Darstellung der Elementarzelle von $[Hg(py)_4](ClO_4)_2 \cdot 2(py)$

Entlang der kurzen Stickstoff-Stickstoff-Achse besitzen die Pyridin-Moleküle einen Torsionswinkel von etwa 75°, entlang der langen Achse beträgt dieser Winkel 110°. Der

Winkel N-Hg-N entlang der kurzen Achse beträgt 177,2(4); entlang der langen Achse beträgt er 174,1(4)°.

Abbildung 92: Darstellung eines $[Hg(py)_4](ClO_4)_2 - Moleküles von [Hg(py)_4](ClO_4)_2 \cdot 2(py)$

2.9.3 Schwingungsspektroskopischer Vergleich von [Hg(Py)₄](ClO₄)₂ und [Hg(Py)₂](ClO₄)₂

Abbildung 93: MIR-Spektren von [Hg(Pyridin)₄](ClO₄)₂ und [Hg(Pyridin)₂](ClO₄)₂

Das Infrarotspektrum von $[Hg(py)_4](ClO_4)_2$ zeigt eine neben der im Bereich zwischen 1000 und 1200 cm⁻¹ erscheinenden Perchlorat-Bande bei 465 und 428 cm⁻¹ zwei

unterschiedliche Quecksilber-Stickstoff-Valenzschwingungen. Die Schwingung bei 465 cm⁻¹ entspricht der kurzen kovalenten Hg-N-Bindung von etwa 218 pm, während die Schwingung bei 428 cm⁻¹ der Hg-N-Bindung mit etwa 250 pm zuzuordnen ist. Erstaunlich ist, dass zudem alle Pyridin-Banden je nach Stärke der Quecksilber-Stickstoff-Bindung aufgespalten sind.

Abbildung 94: Exemplarisch vergrösserter Ausschnitt aus dem MIR-Spektrum von $[Hg(py)_4](ClO_4)_2$ und $[Hg(py)_2](ClO_4)_2$

So findet sich bezüglich der oben für die Pyridin-Addukte an die Quecksilber(II)halogenide vorgestellten Verschiebung der C=N-Valenzschwingung um 1580 cm⁻¹ für freies Pyridin auch hier im [Hg(py)₄](ClO₄)₂ eine Aufspaltung der C=N-Valenzschwingung im Pyridin-Molekül in Banden bei 1596 cm⁻¹ und 1615 cm⁻¹. Die Schwingung bei 1615 cm⁻¹ lässt sich gut in die in Abbildung 41 vorgestellte Korrelation zwischen dem Shift der Pyridin-Banden und den Quecksilber-Stickstoff-Bindungslängen einordnen. Bezüglich der langen Quecksilber-Stickstoff-Bindung mit etwa 252 pm ist eine Zuordnung in diesem Schema nicht möglich, so dass dies den Schluss nahelegt, dass die Unterscheidung zwischen "charakteristischer" und "effektiver" Koordination, mit der wie oben ausgeführt auch Unterschiede in der Hybridisierung verbunden sind, auch Konsequenzen für die elektronische Situation des Liganden hat. Umgekehrt könnte damit ein Ligand wie Pyridin bezüglich der Verschiebungen im IR-Spektrum auch als sensibler "Detektor" für die elektronische Situation am Quecksilber bzw. allgemein am Koordinationszentrum betrachtet werden.

2.9.4 Kristallstruktur von [Hg(Pyrimidin)₂](ClO₄)₂

[Hg(Pyrimidin)₂](ClO₄)₂ kristallisiert monoklin in der Raumgruppe C2/c mit den Gitterkonstanten a = 1021,05(19) pm, b = 739,36(9) pm, c = 1083,4(2) pm, β = 120,45(1)° und Z = 2. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 17 und Tabelle 18. Abbildung 95 zeigt eine perspektivische Darstellung der Elementarzelle.

Die Struktur von $[Hg(Pyrimidin)_2](ClO_4)_2$ besteht aus vierfach verzerrt quadratisch planar von Pyridimidin-Molekülen koordiniertem Quecksilber, senkrecht dazu von zwei koordinieren zwei Perchlorat-Gruppen. Die Pyrimidin-Moleküle verknüpfen über die Stickstoffatome der Pyrimidin-Moleküle in 1,3-Stellung weiter zu zweidimensionalen, gewellten koordinationspolymeren Schichten. Die Pyrimidin-Moleküle bilden relativ zur Quecksilber-Stickstoff-Ebene einen Neigungswinkel von 57°; die Sauerstoff-Atome der Perchlorat-Gruppen stehen zu dieser Ebene in einem Winkel von 69,9(3)°. Die Quecksilber-Stickstoff-Abstände sind zweimal kurz mit 213,6(8) pm und zweimal länger im Abstand von 274,8(8) pm.

Abbildung 95: Perspektivische Darstellung der Elementarzelle von [Hg(Pyrimidin)₂](ClO₄)₂

Der Quecksilber-Sauerstoff-Abstand liegt bei 277(1) pm. Die kürzesten Quecksilber-Quecksilber-Abstände innerhalb der Schichten liegen bei etwa 650 pm und von Schicht zu Schicht über 1000 pm. Abbildung 96 zeigt die Verknüpfung innerhalb der Schichten.

Abbildung 96: Ebenenverknüpfung über Pyrimidin-Moleküle in [Hg(Pyrimidin)₂](ClO₄)₂

Abbildung 97: Quecksilber-Koordination in [Hg(Pyrimidin)₂](ClO₄)₂

2.9.5 Kristallstruktur von [Hg(Pyrazin)₂](ClO₄)₂

[Hg(Pyrazin)₂](ClO₄)₂ kristallisiert monoklin in der Raumgruppe C2/c mit den Gitterkonstanten a = 1022,3(1) pm, b = 1724,1(3) pm, c = 1023,3(1) pm, β = 100,84(1)° und Z = 4. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 17 und Tabelle 18. Abbildung 98 zeigt eine perspektivische Darstellung der Elementarzelle.

Abbildung 98: Perspektivische Darstellung der Elementarzelle von [Hg(Pyrazin)₂](ClO₄)₂

Die Struktur von [Hg(Pyrazin)₂](ClO₄)₂ besteht aus vierfach verzerrt quadratisch-planar von Pyrazin-Molekülen koordiniertem Quecksilber, senkrecht dazu koordinieren zwei Perchlorat-Gruppen. Die Pyrazin-Moleküle verknüpfen über die Stickstoffatome der Pyrazin-Moleküle in 1,4-Stellung weiter zu zweidimensionalen, koordinationspolymeren Schichten. Die Pyrazin-Moleküle bilden relativ zur Quecksilber-Stickstoff-Ebene einen Neigungswinkel von 50°; die Sauerstoff-Atome der Perchlorat-Gruppen stehen zu dieser Ebene in einem Winkel von 90°. Gegenüberliegende Pyrazin-Moleküle stehen in einem Torsionswinkel von 76,3(5)° zueinander. Die Quecksilber-Stickstoff-Abstände sind zweimal kurz mit 215,0(5) pm und zweimal länger im Abstand von 273,8(3) pm. Der Quecksilber-Sauerstoff-Abstand liegt bei 293,0(5) pm, wobei die Perchlorat-Gruppen im Gegensatz zu [Hg(Pyrimidin)₂](ClO₄)₂ jeweils chelatisierend am Quecksilber angreifen. Die kürzesten Quecksilber-Quecksilber-Abstände innerhalb der Schichten liegen bei 761,9(1) pm und von Schicht zu Schicht bei 826,4(1) pm. Abbildung 99 zeigt die Verknüpfung innerhalb der Schichten.

Abbildung 99: Darstellung der Verknüpfung über Pyrazin-Moleküle zu Schichten in [Hg(Pyrazin)₂](ClO₄)₂

Tabelle 17: Kristalldaten und Details zur Strukturbestimmung für [Hg(py) ₄](ClO ₄)2,
[Hg(py) ₄](ClO ₄) ₂ ·2py, [Hg(Pyrimidin) ₂](ClO ₄) ₂ und [Hg(Pyrazin) ₂](ClO ₄) ₂	

	[Hg(py) ₄](ClO ₄) ₂	[Hg(py) ₄](ClO ₄) ₂ ·2py	[Hg(Pyrimidin) ₂](ClO ₄) ₂	[Hg(Pyrazin) ₂](ClO ₄) ₂
Gitterkonstanten / pm	a=1455,0(2),	a=1022,29(11),	a=1021,05(19),	a=1077,53(12),
Winkel / grd	b=1030,49(10), c=1672,18(19)	b=1724,1(3), c=1023,27(12), e=100,840(14)	b=739,36(9), c=1083,4(2), b=120,452(12)	c=2506,7(4)
Zellvolumen/nm ³	$2507\ 2(5)\ \cdot10^{6}$	p=100,840(14) 1771 4(4) $\cdot 10^{6}$	p=120,433(13) 705 0(2) $\cdot 10^{6}$	$2910.5(7) \cdot 10^{6}$
Zahl der	4	4	2	8
Formeleinheiten		•	-	0
Kristallsystem	orthorhombisch	monoklin	monoklin	tetragonal
Raumgruppe	P 21 21 21	C 2/c	$P 2_1 / c$	$I 4_1/a c d$
Messgerät	1 -1 -1	/ -	Stoe IPDS	
Verwendete Strahlung		MoK	$\lambda = 71.07 \text{ pm}$	
Monochromator			Graphit	
Messtemperatur			20°C	
Scan-Modus		2°-Sch	nritte, 100 Bilder	
Messbereich/grd	$3.8^{\circ} < 2\theta < 53.95^{\circ}$	$3.8^{\circ} < 2\theta < 53.95^{\circ}$	$3.8^{\circ} < 2\theta < 53.97^{\circ}$	$3.8^{\circ} < 2\theta < 53.97^{\circ}$
Indexgrenzen h.k.l	±1610 <k<11.< td=""><td>-16<h<15, td="" ±19,="" ±21<=""><td>$\pm 12, -9 \le k \le 8, \pm 13$</td><td>$\pm 13, \pm 13, -32 < 1 < 28$</td></h<15,></td></k<11.<>	-16 <h<15, td="" ±19,="" ±21<=""><td>$\pm 12, -9 \le k \le 8, \pm 13$</td><td>$\pm 13, \pm 13, -32 < 1 < 28$</td></h<15,>	$\pm 12, -9 \le k \le 8, \pm 13$	$\pm 13, \pm 13, -32 < 1 < 28$
8	±19	, ,	, ,	, ,
Berechnete Dichten	1.843 g/cm^3	1.582 g/cm^3	$2,598 \text{ g/cm}^3$	2.554 g/cm^3
F(000)	1304	1856	508	2033
Absorptionskorrektur		numeriso	ch, X-SHAPE [50]	
lin. Absorptionskoeff.	6,40	4,58	11,34	10,99
μ/mm^{-1}				
Zahl der gemessenen	16028	16873	13520	27747
Reflexe				
Symmetrieunabh,	3911	3481	1385	798
Reflexe				
R _{int}	0,0892	0,0758	0,0728	0,0705
Strukturbestimmung		Programme SHELX	S-97 [51] und SHELX-97 [52	2]
und -verfeinerung		-		-
Streufaktoren		Internatio	onal Tables, Vol, C	
Parameter	311	216	107	64
R ₁	0,0461 für 2447 Fo	0,0566 für 1897 Fo>	0,0421 für 995 Fo>	0,0196 für 413 Fo >
	> 4o(Fo)	4σ(Fo)	4σ(Fo)	4σ(Fo)
	0,0809 für alle	0,1087 für alle Daten	0,0573 für alle Daten	0,0467 für alle Daten
	Daten			
wR ₂ (alle Daten)	0,1076	0,1450	0,1116	0,0501
Flack-Parameter	0,0031	-	-	-
Goodness of fit	0,884	0,925	1,027	0,845

[Hg(py) ₄](Cl	$(0_4)_2$	[Hg(py) ₄](Cl	O ₄)₂·2py	[Hg(Pyrimid	$in)_2](ClO_4)_2$	[Hg(Pyrazin)	$_{2}](ClO_{4})_{2}$
Hg1-N2	217,4(12)	Hg1-N1	213,9(11)	Hg1-N1	213,6(8)	Hg1-N1	215,0(5)
Hg1-N1	218,1(11)	Hg1-N2	219,0(10)	Hg1-N1	213,6(8)	Cl1-O2	139,5(6)
Hg1-N4	251,3(10)	Hg1-N3	257,5(9)	Hg1-N2	274,8(8)	Cl1-O1	142,8(4)
Hg1-N3	253,3(10)	Hg1-O4	282(2)	Hg1-N2	274,8(8)	N1-C2	130,6(6)
Hg1-O1	282(2)	Cl1-O1	126,5(13)	Hg1-O1	277,3(11)	N2-C1	133,9(5)
N1-C9	130,1(16)	C11-O4	129,2(13)	Hg1-O1	277,3(11)	C1-C2	138,5(8)
N1-C2	141,7(17)	C11-O3	136(2)	Cl1-O2	132,4(14)		
N2-C5	133,4(18)	C11-O2	140,2(13)	Cl1-O3	134,8(16)		
N2-C6	134,3(18)	N1-C1	136,2(14)	Cl1-O4	138,9(17)		
N3-C1	132,8(15)			Cl1-O1	141,0(9)		
N3-C3	134,5(16)			N1-C1	132,4(13)		
N4-C7	131,2(18)			N1-C3	135,6(13)		
N4-C10	135,9(18)			N2-C3	132,6(12)		
Cl1O3	120,9(15)			N2-C4	134,6(14)		
Cl1-O2	129,3(14)			C1-C2	140,5(15)		
Cl1-O1	135(2)			C2-C4	135,0(16)		
Cl1-O4	133(2)			C3-N2	132,6(12)		
				C4-C2	135,0(16)		
NO 11.1 N1	177 2(4)	N1 11 1 N2	100.000(1)	N11 II. 1 N11	100.0(2)	N11 11. 1 N11	190.0
N2-Hg1-N1	1//,2(4)	NI-HgI-NZ	180,000(1)	NI-HgI-NI	180,0(3)	NI-HgI-NI	180,0
N2-Hg1-N4	89,7(4)	NI-HgI-N3	89,2(2)	NI-HgI-NZ	80,2(3)	02-CII-02	108,3(8) 110.2(5)
N1-Hg1-N4	92,2(4)	N2-Hg1-N3	90,8(2)	NI-HgI-NZ	80,2(3)	02-CII-OI	110,3(5) 108,0(4)
NZ-HgI-NS	88,9(4)	N3-Hg1-N3	1/8,4(4)	N2-Hg1-N2	180,000(1)	02-011-01	108,9(4)
INT-INT-IND NATE-1 N2	09,4(4)	N2-Hg1-04	83,9(3)	NI-HgI-OI	(0,0(2))	02-011-01	108,9(4)
N4-Hg1-N5	1/4,1(4)	N3-Hg1-04	/0,9(4)	N2-Hg1-O1	(9,9(3))	02-CII-OI	110,3(5) 110,2(4)
N2-Hg1-O1	04,2(0)	N3-Hg1-04	105,5(4)	NI-пgI-01	89,3(3) 180.0	C2 N1 C2	110,2(4) 120,2(6)
NI-HgI-OI	95,2(8)	N3-Hg1-04	1(7,9(4)	O1-ng1- $O1$	160,0	C2-N1-C2	120,3(0) 110,0(2)
N4-Hg1-O1	109,3(7)	04-Hg1-04	107,8(9) 122.0(14)	02-CI1-O3	110, 7(17) 106.8(16)	C2-N1-Hg1	119,9(5)
N3-Hg1-O1	70,3(0) 120,4(12)	01-011-04	125,9(14)	02-011-04	100,8(10)	C1 N2 C1	119,9(5)
C9 - N1 - C2	120,4(13) 120,4(0)	01-01-03	100,1(17)	03-011-04	102,9(19) 112,2(10)	N2 C1 C2	11/,4(0) 120.8(5)
$O_2 C I I O_2$	120,4(9)	04-01-03	90,0(13)	02-011-01	115,2(10) 115,2(12)	N1 C2 C1	120,0(3) 120,4(5)
$O_{3} C_{11} O_{2}$	111,0(1/) 117(2)	$C_{11} O_{1} U_{1}^{-1}$	110,4(11) 122.5(12)	03-011-01	113,2(13) 107,2(10)	INI-C2-CI	120,4(5)
$O_2 C_{11} O_4$	$\frac{11}{(2)}$	C1 N1 C1	122,3(12)	C1 N1 C2	107,2(10) 120,0(0)		
03-011-04	112(2) 114(10)	CI-NI-UI	110,4(14)	C1 - N1 - C3	120,0(9)		
02-CII-04	114,1(18) 110,2(14)	CI-NI-Hgl	121,8(7)	CI-NI-Hgl	120,3(7)		
CII-OI-Hgl	119,3(14)	1		C3-NI-Hgl	119,0(6)	1	

Tabelle 18: Ausgewählte internukleare Abstände und Bindungswinkel für [Hg(py) ₄](ClO ₄) ₂ ,	
[Hg(py) ₄](ClO ₄) ₂ ·2py, [Hg(Pyrimidin) ₂](ClO ₄) ₂ und [Hg(Pyrazin) ₂](ClO ₄) ₂	

2.9.6 Kristallstruktur von [Hg(Pyrimidin)₂](NO₃)₂

 $[Hg(Pyrimidin)_2](NO_3)_2$ kristallisiert orthorhombisch in der Raumgruppe Pbca mit den Gitterkonstanten a = 679,34(9) pm, b = 1116,04(12) pm, c = 1612,92(17) pm und Z = 4. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 19 und Tabelle 20. Abbildung 101 zeigt eine perspektivische Darstellung der Elementarzelle.

Abbildung 101: Perspektivische Darstellung der Elementarzelle von [Hg(Pyrimidin)₂](NO₃)₂

Die Struktur von [Hg(Pyrimidin)₂](NO₃)₂ besteht aus vierfach verzerrt quadratischplanar von Pyrimidin-Molekülen koordiniertem Quecksilber und wird senkrecht dazu von zwei Nitrat-Gruppen koordiniert. Die Pyrimidin-Moleküle verknüpfen über die Stickstoffatome der Pyrimidin-Moleküle in 1,3-Stellung weiter zu zweidimensionalen, gewellten koordinationspolymeren Schichten. Die Pyrimidin-Moleküle bilden relativ zur Quecksilber-Stickstoff-Ebene einen Neigungswinkel von 47°. Die Quecksilber-Stickstoff-Abstände sind zweimal kurz mit 215,4(4) pm und zweimal länger im Abstand von 277,4(4) pm. Die Quecksilber-Sauerstoff-Abstände zu chelatisierend koordinierenden Nitrat-Gruppen betragen 277,2(5) pm und 280,7(6) pm. Die kürzesten Quecksilber-Quecksilber-Abstände innerhalb der Schichten liegen bei 653,3(1) pm und von Schicht zu Schicht bei 980,7(1) pm. Abbildung 102 zeigt die Verknüpfung innerhalb der Schichten.

Abbildung 102: Darstellung der Verknüpfung über Pyrimidin-Moleküle innerhalb der Schichten in [Hg(Pyrimidin)₂](ClO₄)₂

Abbildung 103: Koordination von Quecksilber in [Hg(Pyrimidin)₂](NO₃)₂

2.9.7 Kristallstruktur von [Hg(utp)₂(NO₃)₃]⁻utp·H₃O⁺

 $[Hg(utp)_2(NO_3)_3]$ -utp· H_3O^+ (utp = Urotropin = Hexamethyentetramin, C₆H₁₂N₄) kristallisiert monoklin in der Raumgruppe P2₁/m mit den Gitterkonstanten a = 1058,4(3) pm, b = 1444,1(3) pm , c = 1200,4(3) pm, β = 90,30(2)° und Z = 2. Einzelheiten zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel finden sich in Tabelle 19 und Tabelle 20. Abbildung 104 zeigt eine perspektivische Darstellung der Elementarzelle.

Die Struktur von $[Hg(utp)_2](NO_3)_3 \cdot utp \cdot H_3O^+$ besteht aus einer Packung von $[Hg(utp)_2(NO_3)_3]^-$ - Anionen, "freien" Urotropin-Molekülen und H_3O^+ -Kationen. Bei den $[Hg(utp)_2(NO_3)_3]^-$ - Anionen sind zwei Urotropin-Moleküle einander gegenüber im Abstand von 214,0(10) pm koordiniert. Senkrecht zu dieser Achse koordinieren drei Nitrat-Gruppen chelatisierend zum Quecksilber mit Quecksilber–Sauerstoff–Abständen von 257,6(19) pm bis 277(2) pm. Als Kationen werden H_3O^+ -Ionen angenommen, die zwar röntgenographisch nicht von H_2O -Molekülen unterscheidbar sind, die jedoch schwingungsspektroskopisch identifiziert werden konnten (siehe dazu Kapitel 2.9.8). Die Packung der Moleküle zeichnet sich durch Schichten von Urotropin-Molekülen und daran anschliessende Schichten von $[Hg(NO_3)_3]^- / H_3O^+$ aus.

Abbildung 104: Perspektivische Darstellung der Elementarzelle von [Hg(utp)₂](NO₃)₃·utp·H₃O⁺

Abbildung 105: Darstellung eines [Hg(utp)₂(NO₃)₃]⁻ - Anions

2.9.8 Schwingungsspektroskopische Charakterisierung von Hg(utp)Cl₂ und [Hg(utp)₂(NO₃)₃]•utp•H₃O⁺

Abbildung 106 zeigt das MIR-Spektrum von $[Hg(utp)_2(NO_3)_3]$ -utp $\cdot H_3O^+$ im Vergleich mit dem MIR-Spektrum von Hg₂(utp)Cl₄. Die Spektren unterscheiden sich in diesem Bereich in erster Linie durch die bei $[Hg(utp)_2(NO_3)_3]$ -utp $\cdot H_3O^+$ auftretenden Nitrat-Banden mit v_1 (N=O) = 1439 cm⁻¹, v_a (NO₂) = 1237 cm⁻¹ und eine starke und breite Bande bei v_s (NO₂) = 1006 cm⁻¹. Die H₃O⁺ - Gruppe ist durch den verbreiterten und stärkeren Absorptionsbereich zwischen 2850 cm⁻¹ und 3000 cm⁻¹ zu erkennen, wird jedoch durch drei starke Urotropin-Banden (N-H-Valenzschwingungen), die ebenfalls in diesem Bereich liegen, teilweise überlagert. Der Vergleich mit Hg2(utp)Cl4 macht deutlich, dass dort durch die über alle vier Stickstoff-Atome koordinierten HgCl2-Intensität der N-H-Valenzschwingungen Einheiten die im Vergleich zum $[Hg(utp)_2(NO_3)_3]$ -utp·H₃O⁺ stark eingeschränkt ist.

Abbildung 106: MIR-Spektren von Hg₂(utp)Cl₄ und [Hg(utp)₂(NO₃)₃]·utp·H₃O⁺

2.9.9 Diskussion der Quecksilber-Stickstoff-Koordinationsverbindungen mit den "härteren" Anionen Perchlorat und Nitrat

Die Koordinationschemie der Quecksilber(II)-Verbindungen mit den "härteren" Anionen Perchlorat und Nitrat ist durch die pseudo-oktaedrische "2+4" bzw. "2+2+2" – Koordination am Quecksilberatom geprägt. Im Gegensatz zu den noch weitgehend kovalent gebundenen Halogeniden ist mit Perchlorat- bzw. Nitrat-Anionen eine vierfache Stickstoff-Koordination möglich, meist mit zwei kurzen kovalenten Bindungen im Abstand von etwa 210 – 220 pm und zwei weiteren im Abstand von etwa 250 – 280 pm. Diese höhere Koordinationszahl von Stickstoff am Quecksilberatom ermöglicht mit den Diazinen mit Stickstoff in 1,3- bzw. in 1,4-Position eine Verknüpfung über die heterocyclischen Liganden zu Schichten.

Mit der strukturellen Charakterisierung der Verbindung $[Hg(py)_4](ClO_4)_2$ konnte die Frage nach der tetraedrischen oder oktaedrischen Konstitution der Molekülverbindung geklärt werden. Insbesondere stellte sich diese Frage für die der Zusammensetzung nach bekannte und bereits bei SINHA und RAY [68] beschriebene Verbindung "Hg(ClO₄)₂·6Py" und konnte im Sinne der Molekülverbindung $[Hg(Py)_4](ClO_4)_2·2Py$ mit zwei "freien" Pyridin-Molekülen in der Struktur geklärt werden.

Damit konnte gezeigt werden, dass eine höhere Stickstoff-Koordinationszahl als vier trotz der relativ hohen Basizität des Pyridins mit Perchlorat oder Nitrat-Anionen wohl nicht möglich ist. Auch in der Literatur konnte mit diesen Anionen kein Beispiel für eine sechsfache Stickstoffkoordination gefunden werden. Eine der wenigen bislang strukturell charakterisierten Verbindungen besitzt ein noch "schlechteres" Anion - es handelt sich um ein von ÅKESSON et al. [69] vorgestelltes Trifluoromethansulfonat, Die Quecksilber-Stickstoff-Abstände $[Hg(py)_6](CF_3SO_3)_2.$ der oktaedrischen Quecksilber-Koordinationssphäre werden danach als etwa äquidistant mit Bindungslängen im Bereich von 242 pm – 249 pm angegeben. Bei ÅKESSON et al. [69] werden auch thermoanalytische Untersuchungen an $, [Hg(py)_6](ClO_4)_2^{\circ}, vermutlich$ [Hg(Py)₄](ClO₄)₂·2Py, beschrieben, die einen Abbau bei über 300°C zunächst zu [Hg(py)₄](ClO₄)₂ und anschliessend unter Abgabe zweier weiterer Äquivalente Pyridin zu " $[Hg(py)_2](ClO_4)_2$ " postulieren. Die Abgabe von Pyridin zum $[Hg(py)_4](ClO_4)_2$ kann durch eigene Beobachtungen bestätigt werden; diese vollzieht sich jedoch auch bereits nach 24-stündigem Stehenlassen an der Luft. Der Abbau von "[Hg(py)₆](ClO₄)₂" zu $[Hg(py)_4](ClO_4)_2$ findet sich in der Literatur auch bei CHUDINOVA [70].

Eine Ausnahme unter den vorgestellten Verbindungen mit Nitrat- und Perchlorat-Anionen stellt die Verbindung $[Hg(utp)_2(NO_3)_3]$ ·utp·H₃O⁺ dar, die nur zwei Stickstoff-Liganden aufweist. Trotz der relativ geringen Basizität des Urotropins bildet sich hier eine vergleichsweise kurze kovalente Quecksilber-Stickstoff-Bindung mit einer Bindungslänge Hg-N von 214(1) pm aus; in "Konkurrenz" mit den Chlorid-Liganden ist in der oben vorgestellten Verbindung Hg(utp)Cl₂ ein Quecksilber-Stickstoff-Abstand von 277,8(4) pm zu beobachten. Ungewöhnlich ist bei $[Hg(utp)_2(NO_3)_3]$ ·utp·H₃O⁺, dass dort drei Nitrat-Gruppen senkrecht zur N-Hg-N-Achse chelatisierend koordiniert sind, so dass dies als eine "2+6"- Koordination bezeichnet werden könnte. Hier spielt sicherlich auch die Anwesenheit eines zweiten Kations (H₃O⁺) eine Rolle. Durch Variation des pH-Wertes ist vermutlich noch mit der Existenz weiterer Additionsverbindungen an Quecksilber(II)-nitrate zu rechnen. In der älteren Literatur wird bei MOSCHATOS und TOLLENS [71] aus analytischen Daten auf die Existenz einer Verbindung der Zusammensetzung "3 HgOHNO₃·4 C₆H₁₂N₄·10 H₂O" geschlossen.

11g(utp)2(1103)2 utp 1130	[Hg(Pyrimidin) ₂](NO ₃) ₂	Hg(utp) ₂ (NO ₃) ₂ •utp•H ₃ O ⁺	
Gitterkonstanten / nm	a=679.34(9) b=1116.04(12)	a=10584(3) $b=14441(3)$	
Winkel / grd	a=079, 54(9), 0=1110, 04(12), c=1612, 02(17)	a=1000, 4(3), 0=1444, 1(3), a=1200, 4(3), 0=00, 20(2)	
Zellvolumen/nm ³	$1222 0(2) \cdot 10^{6}$	$1824.7(8), 10^{6}$	
Zehl der Formaleinheiten	1222,9(2) 10	2	
Kristallsystem	arthorhombisch	2 monoklin	
Rungruppe	Phoa	P_{2}/m	
Messgerät	Stoe		
Verwendete Strahlung	Mak a	= 71.07 nm	
Monochromator	$\operatorname{MOR}_{\alpha}, \lambda$	- /1,0/ pill	
Monochiomator	202 V	170 V	
Seen Medus	293 K 2º Sobritto	1/0 K	
Massharajah/ard	2 - 5 = 2 - 5 = 2 - 5 = 2 - 5 = 2 - 5 = 2 = 2 - 5 = 2 = 5 = 5	2,99 < 20 < 52,059	
	$5,8^{\circ} < 20 < 53,95^{\circ}$	$3,8^{\circ} < 20 < 55,95^{\circ}$	
Indexgrenzen n,k,i	± 8 , ± 14 , ± 20	$-11 \le n \le 10, \pm 10, \pm 13$	
Ecolo	2,589 g/cm ² 2,663 g/cm ²		
F(000)	0/2 0/5		
Absorptionskorrektur	numerisch, X-SHAPE [50]		
μ/mm^{-1}	12,63	4,27	
Zahl der gemessenen	33951	23903	
Reflexe			
Symmetrieunabhängige	1341	2660	
Reflexe			
R _{int}	0,0512	0,2159	
Strukturbestimmung und -	Programme SHELXS-97 [51] und SHELX-97 [52]		
verfeinerung			
Streufaktoren	International Tables, Vol, C		
Parameter	98	263	
R_1	0,0186 für 747 Fo > 4σ(Fo)	0,0711 für 1601 Fo > 4σ(Fo)	
	0,0421 für alle Daten	0,1142 für alle Daten	
wR ₂ (alle Daten)	0,0432	0,1796	
Flack-Parameter	-	-	
Goodness of fit	0,963	0,888	

Tabelle 19: Kristalldaten und Details zur Strukturbestimmung für $[Hg(Pyrimidin)_2](NO_3)_2$ und $Hg(utp)_2(NO_3)_2$ •utp• H_3O^+

[Hg(Pyrimidin) ₂](NO ₃) ₂		[Hg(utp) ₂ (NO ₃) ₂]	[Hg(utp) ₂ (NO ₃) ₂]•utp•H ₃ O ⁺		
Hg1-N2 Hg1-O3 Hg1-N1 Hg1-O1 N1-C2 N1-C1 N2-C2 N2-C4 N3-O1 N3-O2 N3-O3 C1-C3 C3-C4	215,4(4) $277,2(5)$ $277,4(4)$ $280,7(6)$ $133,2(6)$ $132,5(6)$ $132,5(6)$ $123,1(5)$ $123,2(5)$ $124,5(5)$ $139,4(7)$ $137,6(6)$	Hg1-N1 Hg1-O1 Hg1-O7 Hg1-O4 O1-N5 O2-N5 O3-N5 N1-C3 N1-C3 N1-C2 N1-C4 N2-C6 N2-C4 N2-C1	$\begin{array}{c} 214,0(10)\\ 257,6(19)\\ 272(3)\\ 277(2)\\ 139(3)\\ 122(2)\\ 124(3)\\ 146(2)\\ 152(3)\\ 156,6(18)\\ 143(2)\\ 145,6(19)\\ 146(2)\\ \end{array}$		
N2-Hg1-N2 N2-Hg1-O3 O3-Hg1-O3 N2-Hg1-N1 O3-Hg1-N1 N1-Hg1-N1 N2-Hg1-O1 O3-Hg1-O1 O1-Hg1-O1 C2-N1-Hg1 C1-N1-Hg1 C2-N2-Hg1 O1-N3-O2 O1-N3-O3 O2-N3-O3	$180,000(1) \\87,64(14) \\180,0 \\85,15(13) \\68,01(11) \\180,00(14) \\81,86(17) \\44,65(12) \\67,92(13) \\180,0(2) \\119,6(3) \\122,3(3) \\120,8(3) \\120,2(3) \\120,4(5) \\117,8(5) \\121,7(4)$	N1-Hg1-N1 N1-Hg1-O1 N1-Hg1-O7 O1-Hg1-O7 N1-Hg1-O4 N1-Hg1-O4 O1-Hg1-O4 O7-Hg1-O4 O7-Hg1-O4 N5-O1-Hg1 N6-O4-Hg1 N7-O7-Hg1 C3-N1-C2 C3-N1-C4 C2-N1-C4 C3-N1-Hg1 C2-N1-Hg1 C2-N1-Hg1 O2-N5-O3 O2-N5-O1 O3-N5-O1	175,3(8) $92,2(4)$ $89,7(4)$ $112,8(6)$ $88,4(3)$ $117,4(8)$ $129,8(8)$ $102,8(12)$ $106,3(19)$ $104(3)$ $107,3(12)$ $107,9(14)$ $108,0(13)$ $111,0(10)$ $110,8(10)$ $111,7(8)$ $123(2)$ $117,(2)$ $119,4(19)$		

Tabelle 20: Ausgewählte internukleare Abstä	inde und Bindungswinkel für
[Hg(Pyrimidin) ₂](NO ₃) ₂ und [Hg(utp) ₂ (NO ₃)	₂]·utp·H ₃ O ⁺

2.10 Zusammenfassende Betrachtung des Koordinationsverhaltens von Stickstoff-Donatoren in der Koordinationssphäre des Quecksilbers im Hinblick auf die Stickstoff-Affinität

Eine rein lineare Koordination des zweiwertigen Quecksilbers mit Stickstoff wird mit Ammoniak als starkem Elektronendonator erreicht – mit Quecksilberchlorid erfolgt die Bildung von Diamminen, so zu dem von MACGILLAVRY und BIJVOET [72] beschriebenen [Hg(NH₃)₂]Cl₂ mit fehlgeordneten [NH₃-Hg-NH₃]²⁺-Einheiten und dem oben beschriebenen [Hg(NH₃)₂][HgCl₃]₂. Je nach der Ammoniak- bzw. der Ammoniumionen-Konzentration kann es weiter zur Bildung von Aminen, Imiden und schliesslich "Nitriden", d.h. Salzen der "Millonschen Base" kommen, die sich ebenfalls durch lineare Stickstoffkoordination mit kurzen Quecksilber-Stickstoff-Bindungen um 200 pm auszeichnen. Die Behandlung von Quecksilber(II)-nitrat mit Ammoniak führt direkt zur Bildung eines Imides, dem NH₄[Hg₃(NH)₂](NO₃)₃. Auch hier liegt wie im "Abbauprodukt" [Hg₂N]NO₃, dem Nitrat der "Millonschen Base", eine Verknüpfung linearer N-Hg-N-Einheiten vor. Mit dem "harten" Anion Perchlorat, [ClO₄]⁻, wird die Bildung eines Tetrammins [Hg(NH₃)₄](ClO₄)₂ (1), mit verzerrter tetraedrischer Koordination am Quecksilber erreicht.

Abbildung 107: Übersicht über die vorgefundenen tetraedrischen bzw. pseudotetraedrischen Koordinationen am Quecksilber

Die Quecksilber-Stickstoff-Abstände liegen bei 224 und 228 pm und sind damit entsprechend einer tetraedrischen gegenüber der linearen Koordination etwas aufgeweitet. In Abbildung 109 findet sich eine Übersicht der untersuchten tetraedrischen Quecksilber(II)-Koordinationen. Auch bei einer reinen Chlorid-Koordination wie in $[Me_3PhN]^+[HgCl_3]^-$ (6) [25] findet sich ein in Richtung einer linearen Cl-Hg-Cl – Einheit verzerrter Tetraeder.

Die Ausbildung einer verzerrten tetraedrischen Koordination findet sich auch mit den ebenfalls starken Stickstoff-Donatoren Anilin und Purin (deprotoniert). Hier finden sich Quecksilber-Stickstoff-Abstände im Bereich von 220 pm bis 240 pm. Hier ist jedoch keine Verdrängung von Chlorid aus der Koordinationssphäre des Quecksilbers zu beobachten.

Das mit $[(Melamin)^+(HgCl_3)^-]$ ·Melamin (5) vorgestellte –NHgCl₃ – Tetraeder weist auch eine Verzerrung der Winkel auf; die Quecksilber-Ligand-Abstände sind entlang der mit 123° größten Aufweitung des Tetraederwinkels entlang der N-Hg-Cl–,,Achse" auch die kürzeren mit d(Hg-N) = 233 pm und d(Hg-Cl) = 244 pm gegenüber zweimal d(Hg-Cl) = 249 pm. Somit besteht auch hier die aufgrund der in Teil I erläuterten elektronischen Struktur des Quecksilbers bestehende Tendenz zur Ausbildung verzerrter Tetraeder.

Die Addukte des ebenfalls noch relativ starken Elektronen-Donators Pyridin an Quecksilber(II)-bromid und –iodid zeigen mit einem Quecksilber-Stickstoff-Abstand von etwa 240 pm und einem Winkel Br-Hg-Br = 143° bzw. I-Hg-I = 141° eine starke Verzerrung der Tetraeder. Mit den weichen Liganden Bromid und Iodid und der zunehmenden Kovalenz der Quecksilber-Halogenid-Bindung zeigt sich eine Abnahme der Tetraedrizität und eine zunehmende Prägung der Koordination durch die linearen X-Hg-X-Einheiten.

Mit einer schwächeren Elektronen-Donor-Fähigkeit des Stickstoffs wie mit Urotropin in Hg₂(utp)Cl₄ (**4**) oder einer Zunahme der Kovalenz der am Quecksilber koordinierten Liganden wie in Hg(CF₃)₂ (**9**) dominiert die lineare Koordination. Dies äussert sich in den Bindungswinkeln X-Hg-X von jeweils um 170° mit nur leicht aufgeweiteten Bindungslängen gegenüber der typischen linearen Koordination sowie den als "assoziativ" zu bezeichnenden langen Quecksilber-Stickstoff-Abständen im Bereich von 265-277 pm. Für diese pseudo-tetraedrische Koordination am Quecksilber wird in Analogie zur pseudo-oktaedrischen, als "2+4" bezeichneten Koordination z.B. in (NH₄)₂HgBr4 [25], hier die Bezeichnung "2+2"-Koordination vorgeschlagen.

Für Additionsverbindungen an Quecksilber(II)-chlorid findet sich bei den untersuchten Verbindungen mit Liganden mittlerer bis schwacher Basizität im pK_a-Bereich von 0,4 (Pyrazin) bis 5,2 (Pyridin) in der Regel oktaedrische Koordination. In Abbildung 108 findet sich eine Übersicht der oktaedrischen Koordinationen in Quecksilber(II)-chlorid-Addukten. Chlorid stellt aus Sicht der HSAB-Theorie den Grenzfall zwischen gut polarisierbaren, "weichen" Anionen und "härteren" Anionen dar. In der Reihe der Homologen Iodid, Bromid und Chlorid zeigt Letzteres das ausgeprägteste Bestreben zur Ausbildung von koordinationspolymeren Addukten. Die oktaedrische Koordination stellt sich dabei zumeist als die oben beschriebene "2+4"-Koordination dar. Mit den schwächer basischen Liganden Pyrazin (4) und Pyrimidin (3) wird als "kurze" lineare Achse Cl-Hg-Cl mit Quecksilber-Chlor-Abständen um 250 pm beobachtet. Quecksilber-Stickstoff-Abstände liegen hier im Bereich von 250 pm. Mit dem vergleichsweise starken Elektronen-Donor Pyridin (1) wird die N-Hg-N-Einheit zur "kurzen" linearen Achse mit Hg-N-Bindungslängen um 227 pm. Quecksilber-Chlor-Abstände liegen hier im Bereich von etwa 278 pm.

Abbildung 108: Übersicht der vorgefundenen oktaedrischen bzw. pseudooktaedrischen Koordinationen am Quecksilber

Im Pyridazin scheint die Elektronen-Donizität des Heterocyclus in einem mit Chlorid-Liganden vergleichbaren Bereich zu liegen, da sich in $[Hg(Pyridazin)]Cl_2$ (11) keine Präferenz für die Ausbildung einer kurzen Achse zeigt. Sowohl die Quecksilber-Stickstoff-Abstände als auch die Quecksilber-Chlor-Abstände liegen etwa 30 pm über der rein linearen Koordination. Bei dem analogen Bromid [Hg(Pyridazin)] Br_2 (17) ist dieses Gleichgewicht zugunsten einer kurzen Br-Hg-Br-Achse gestört.

Bei [HgCl][Hg(Purin)Cl₂] (**15**) fungiert der Stickstoff-Donor Purin nicht allein als Elektronenpaar-Donator, sondern auch in deprotonierter Form als Anion. Dadurch bildet sich als "kurze" lineare Koordination eine Cl-Hg-N-Achse mit Quecksilber-Chlor- und Quecksilber-Stickstoff-Abständen wie sie auch für HgCl₂ oder [Hg(NH₃)₂]²⁺ gefunden werden. Senkrecht zu dieser linearen Achse findet sich im Abstand von etwa 240 pm ein weiterer Stickstoff-Kontakt. Drei weitere Chlorid-Ionen ergänzen zur oktaedrischen Umgebung des Quecksilbers in eher als "assoziativ" zu bezeichnenden Abständen um 300 pm. Diese Kontakte machen jedoch die Einbettung der linearen Einheit über elektrostatische Wechselwirkungen in die oben beschriebene Schichtstruktur der Verbindung plausibel. Besonders deutlich werden diese starken elektrostatischen Wechselwirkungen senkrecht zur [Hg(NH₃)₂]²⁺-Hantel in [Hg(NH₃)₂][HgCl₃]₂ (**16**).

Abbildung 109: Übersicht der verzerrt oktaedrischen Koordinationspolyeder an Quecksilber(II)bromid

Bereits in Kap. 2 ist für die Stickstoff-Addukte an Quecksilber(II)-bromide im Vergleich zu den Quecksilber(II)-chloriden die Tendenz zur zunehmenden Depolymerisation zugunsten der Ausbildung von "kurzen" Br-Hg-Br-Einheiten. Diese Tendenz zur zunehmenden Depolymerisation steht im Gegensatz zu den binären Halogeniden des Quecksilbers, wo im Quecksilber(II)-chlorid nahezu isolierte HgCl₂-Einheiten vorliegen, während im Quecksilber(II)-iodid ein autokomplexes Hg[HgI4] mit tetraedrisch gebautem [HgI4]⁻ eine Schichtstruktur bildet. Ein sehr deutliches Beispiel dafür findet sich im Vergleich der Verbindungen Hg(Pyrazin)Cl₂ (**13**) und [Hg(Pyrazin)₂]Br₂ (**19**). (**19**) zeigt nahezu isolierte HgBr₂-Einheiten, die über den vergleichsweise schwachen N-Donor Pyrazin zu Doppelsträngen verknüpft werden,

während in (13) noch ein über Chlorid verbrücktes Koordinationspolymer zu beobachten ist.

In Abbildung 110 findet sich eine Auftragung der pK_a -Werte der N-Donor-Liganden gegen die Quecksilber-Stickstoff-Abstände bzw. die jeweils kürzesten Quecksilber-Halogenid-Abstände. Die pK_a -Werte der Stickstoff-Basen als Maß für die Basizität wurde hier in grober Näherung auch als Maß für die Elektronen-Donizität verstanden.

Näherungsweise lässt sich aus dem Diagramm die bei zunehmender Basizität auch zunehmende Stickstoff-Affinität des Quecksilbers anhand der kürzer werdenden Quecksilber-Stickstoff-Abstände ablesen. Sicherlich erlaubt diese anhand von Stichproben erfolgte Betrachtung keine generellen Aussagen zum Koordinationsverhalten von Quecksilber, Tendenzen lassen sich hier jedoch aufzeigen. Zudem ist zu berücksichtigen, dass in den Kristallstrukturen die Moleküle im Festkörper vorliegen und hier auch z.B. Packungseffekte das Koordinationsverhalten beeinflussen können. Auch die Anordnung zu koordinationspolymeren Verbindungen, sowie die Geometrie der N-Heterocyclen kann die Struktur der Koordinationsverbindungen beeinflussen.

Abbildung 110: Auftragung der pK_a-Werte von organischen Stickstoff-Basen gegen die Quecksilber-Stickstoff- bzw. Quecksilber-Halogen-Bindungslängen bei Addukten an Quecksilber(II)-halogeniden

Kennzeichnend für die untersuchten Koordinationsverbindungen des Quecksilbers mit Nitrat- und Perchlorat-Anionen ist die Ausbildung einer vierfachen Stickstoffkoordination in einer verzerrt oktaedrischen Umgebung. In der Verbindung $[Hg(Pyrimidin)_2](NO_3)_2$ (20) und $[Hg(Pyrazin)_2](ClO_4)_2$ (21)greifen Nitrat und Perchlorat chelatisierend mit etwa äquidistanten Abständen vom Quecksilber an. Für $[Hg(Pyrimidin)_2](ClO_4)_2$ (22), $[Hg(Pyridin)_4](ClO_4)_2$ (23) und $[Hg(Pyridin)_4](ClO_4)_2 \cdot 2Py$ (24) finden sich einzähnig angreifende Perchlorat-Anionen; die weiteren Quecksilber-Sauerstoff-Kontakte liegen über 300 pm.

Allen oktaedrischen bzw. pseudo-oktaedrischen Koordinationen ist eine kurze N-Hg-N-Achse gemeinsam. Diese kurzen Quecksilber-Stickstoff-Abstände liegen um 215 pm und bleiben auch bei Variation der Elektronen-Donizität der N-Heterocyclen relativ unverändert. Für den schwachen Elektronen-Donator Pyrazin (**21**) liegen die weiten Quecksilber-Stickstoff-Abstände im Bereich um 270 pm, die Quecksilber-Sauerstoff-Abstände im Bereich um 290 pm. Die einzige Veränderung bei einer Koordination des etwas stärkeren Donors Pyrimidin liegt in der Verkürzung des Quecksilber-Sauerstoff-Abstandes auf etwa 275 pm. Erst mit dem vergleichsweise stärkeren Elektronen-Donor Pyridin verkürzt sich der "lange" Quecksilber-Stickstoff-Abstand auf etwa 250 pm. In Abbildung 112 sind für die Addukte an Quecksilber(II)-perchlorat die genannten Bindungslängen gegen den pK_a-Wert der Stickstoff-Base aufgetragen.

Abbildung 111: Übersicht der Koordinationen bei Addukten an Quecksilber(II)-Verbindungen mit Nitrat- und Perchlorat-Anionen

Als "Faustregel" kann somit für die Halogenide gelten, dass eine Zunahme der Basizität der Stickstoff-Liganden proportional zur Zunahme der Stärke der Quecksilber-Stickstoff-Bindung ist und mit zunehmender Elektronen-Donizität eine Bevorzugung niedrigerer Koordinationszahlen mit tetraedrischer oder linearer Koordination zu beobachten ist. Je "weicher" und damit polarisierbarer das am Quecksilber gebundene Halogenid-Ion ist bzw. je stärker der kovalente Bindungscharakter zu den Halogeniden ausgeprägt ist, umso mehr konkurrieren diese mit den Stickstoff-Donoren unter Schwächung der Quecksilber-Stickstoff-Bindung. Entgegen der Zunahme des Polymerisationsgrades der binären Halogenide in der Reihenfolge Cl < Br < I ist mit Elektronen-Donatoren ein umgekehrter Trend zur Depolymerisation zu beobachten.

Als "Faustregel" für die Quecksilber(II)-Verbindungen mit den "härteren" Anionen Nitrat und Perchlorat kann formuliert werden, dass hier in der Regel eine als "2+2+2"-Anordnung zu bezeichnende Koordination mit einer "2+2"-Stickstoffkoordination vorliegt. Zweimal koordinieren Stickstoff-Liganden in kurzen, kovalenten Bindungen entsprechenden Abständen unabhängig von der Basizität des Stickstoff-Donors. Eine Zunahme der Basizität bewirkt zunächst eine Verkürzung des Abstandes zu den chelatisierend oder einzähnig angreifenden Anionen und anschliessend eine Verkürzung des Abstandes zu den langen Quecksilber-Stickstoff-Kontakten.

Wie Beispiele aus der Literatur belegen, ist mit stärkeren Elektronen-Donatoren wie z.B. Aza-Kryptanden [73] oder noch härteren Anionen wie z.B. Trifluormethylsulfonaten [69] eine Verdrängung der Anionen aus der Koordinationssphäre, verbunden mit einer sechsfachen Stickstoff-Koordination, möglich. Auch spektroskopische Untersuchungen an Lösungen von Quecksilber(II)-perchlorat in Pyridin belegen, dass in diesem Zustand eine sechsfache Koordination von Pyridin vorliegt.

Um mithilfe dieser Betrachtungen wirklich exakte Strukturvorhersagen für Quecksilber-Stickstoff-Verbindungen machen zu können, muss eine derartige Untersuchung sicherlich auf eine breitere statistische Grundlage gestellt werden. Zudem wird eine exaktere Definition der "Elektronen-Donizität" und die genauere Klassifizierung der Stickstoff-Donatoren erforderlich sein, die hier nur in grober Näherung mit dem pK_a-Wert der Basen gleichgesetzt wurde. Dennoch konnten mit einigen der vorgestellten Verbindungen Tendenzen in der Quecksilber-Stickstoff-Affinität aufgezeigt werden, da gerade unter den sechsgliedrigen Heterocyclen auch eine gute Vergleichbarkeit gewährleistet ist.

Abbildung 112: Auftragung der pKa-Werte organischer N-Heterocyclen gegen die Quecksilber-Stickstoff bzw. -Sauerstoff- Bindungslänge bei Addukten an Quecksilber(II)-perchlorat

3 Stabile Quecksilber(I)- Stickstoff-Verbindungen

3.1 Einleitung

"Kalomel" (griech. = schön schwarz), das weisse Quecksilber(I)chlorid, Hg₂Cl₂, reagiert bekanntlich bei Zugabe von Ammoniak zu einem schwarzen unlöslichen Produkt, da sich unter Disproportionierung neben dem "unschmelzbaren Präzipitat", HgNH₂Cl, feinverteiltes Quecksilber abscheidet. Diese schwarzen Produkte wurden in älteren Publikationen noch als Ouecksilber(I)-Stickstoff-Verbindungen angesehen [74]. Bei der Einhaltung bestimmter Aciditätsgrenzen können auch Ammoniak- und Hydrazinderivate durch Quecksilber der Oxidationsstufe +1 "merkuriert" werden. Eine der ersten Substanzen dieser Verbindungsklasse war das von BRODERSEN und KUNKEL [75] charakterisierte Quecksilber(I)-diacetylhydrazid. Quecksilber(I)-verbindungen reagieren auch mit vielen organischen Stickstoffverbindungen wie z.B. Pyridin oder unter Disproportionierung. Erste strukturell charakterisierte Imidazol echte Quecksilber(I)-Verbindungen mit axialen Stickstoffliganden wurden von KEPERT et al. [76] und BRODERSEN et al. [75], [77] vorgestellt. Dabei wurde deutlich, dass sich die Elektronendichte am Stickstoff innerhalb enger Grenzen bewegen muß, d.h. bei zu großer Elektronendonizität der Stickstoffbase kommt es zur Disproportionierung, bei einer zu geringen Basizität am Stickstoff bleibt die übliche Koordination mit zwei Wassermolekülen gemäß H₂O⁺Hg-Hg⁺-OH₂ erhalten. So erwiesen sich beispielsweise bei KEPERT et al. [78] substituierte Pyridine wie z.B. das 3-Chlor-Pyridin oder bei BRODERSEN et al. [77] das 1.4-Diazin als geeignete Liganden und führten zu einer linearen Stickstoffkoordination am Quecksilber(I). Ziel der Untersuchungen war es, nach weiteren geeigneten Stickstoffliganden für Quecksilber(I) zu suchen und die Verbindungen strukturell zu charakterisieren. Dabei war von besonderem Interesse, ob oder inwiefern die Liganden je nach Koordinationsart Einfluß auf die Quecksilber-Quecksilber-Bindung haben. Untersuchungen von DORM [80] an Quecksilber(I)halogeniden zeigten keine Zusammenhänge, doch bei BRODERSEN et al. [75] wird der Einfluss von einfacher und mehrfacher Koordination auf Quecksilber(I)-Hanteln diskutiert.
3.2 Kristallstruktur von [Hg₂(dmgly)₂](NO₃)₂

[Hg₂(dmgly)₂](NO₃)₂ (dmgly = Dimethylglyoxim = C₄H₈N₂(OH)₂) kristallisiert in der triklinen Raumgruppe P $\overline{1}$ mit den Gitterparametern a = 728,50(13) pm, b = 1066,8(2) pm, c = 1167,9(2) pm, α = 93,78(2)°, β = 94,16(2)°, γ = 98,61(2)° und Z = 2. Einzelheiten zu Kristalldaten und Strukturbestimmung sowie ausgewählte internukleare Abstände und Bindungswinkel sind in Tabelle 21 bzw. Tabelle 22 zu finden. Eine perspektivische Darstellung der Elementarzelle findet sich in Abbildung 113.

Die Struktur von Hg₂(dmgly)₂(NO₃)₂ besteht aus Quecksilber(I)-Hanteln, die beidseitig von jeweils zwei Stickstoffatomen der Dimethylglyoxim-Liganden koordiniert werden. Die Quecksilber-Stickstoff-Abstände reichen dabei von 235,7(8) pm bis 238,8(9) pm; der Winkel N1-Hg1-N2 beträgt 66,8(3)°. Die Quecksilber(I)-Hanteln liegen mit diesen Liganden nahezu in einer Ebene; der Winkel N4-Hg2-N3 beträgt 148,5(2)°, N3-Hg2-Hg1 dagegen 143,8(2)°, d.h. die Liganden greifen nicht ganz symmetrisch am Quecksilber an. Die Quecksilber-Quecksilber-Abstände betragen 252,23(8) pm. Die Nitratgruppen um N5 verbinden diese Moleküle untereinander, wie dies in Abbildung 114 deutlich wird, indem sie jeweils einmal chelatisierend über O5 und O6 im Abstand von 2,803(9) pm und 311,0(14) pm an die Hanteln koordinieren sowie über O7 an drei Quecksilberatome benachbarter Moleküle in Abständen von 284,8(10) pm bis 336,7(10) pm. Zudem bestehen zwischen OH-Gruppen der Dimethylglyoxim-Liganden und dieser Nitrat-Gruppen Wasserstoffbrücken im Abstand O5-O1 = 271,2(28) pm und O6-O3 = 269,9(29) pm. Die Nitratgruppen um N6 koordinieren nur in Abständen von über 350 pm an Quecksilberatome. Die OH-Gruppen um O10 bilden zudem zu O8 schwache Wasserstoffbrückenbindungen im Abstand von 295,1(33) pm aus.

Abbildung 113: Perspektivische Darstellung der Elementarzelle von [Hg₂(dmgly)₂](NO₃)₂

Abbildung 114: Intermolekulare Wechselwirkungen über Wasserstoffbrückenbindungen in $[Hg_2(dmgly)_2](NO_3)_2$

3.3 Kristallstruktur von [Hg₂(Pyrimidin)](NO₃)₂

[Hg₂(Pyrimidin)](NO₃)₂ kristallisiert in der monoklinen Raumgruppe C2/c mit den Gitterparametern a = 1607,4(2) pm, b = 652,79(7) pm, c = 2000,5(2) pm, β = 103,42(2)° und Z = 8. Einzelheiten zu Kristalldaten und Strukturbestimmung sowie ausgewählte internukleare Abstände und Bindungswinkel sind in Tabelle 21 bzw. Tabelle 22 zu finden. Eine perspektivische Darstellung der Elementarzelle findet sich in Abbildung 115.

Die Struktur zeichnet sich aus durch Quecksilber(I)-Hanteln, die über Pyrimidin-Moleküle über die Stickstoffatome zu Strängen verknüpft sind. Die Quecksilber-Quecksilber-Abstände betragen 252,18(5) pm. Die Stickstoff-Koordination ist zu einer Seite der Quecksilber(I)-Hantel mit N1-Hg2-Hg1 = $176,6(2)^{\circ}$ nahezu linear und mit einem Abstand von Hg2-N1 = $221,0(8)^{\circ}$ durchaus noch als kovalent zu bezeichnen. Die zweite Stickstoff-Koordination zeigt mit einem Winkel von N4-Hg1-Hg2 = 118,39(18)° eine deutliche Abweichung von der linearen Koordination. Mit einem Abstand von Hg1-N4 = 248,1(9) pm finden sich hier auch deutlich längere Abstände. Neben Stickstoff finden sich in nächster Koordinationssphäre des Quecksilbers mit Abständen von Hg1-O1 = 246,4(7) pm und Hg1-O2 = 246,8(8) pm und Winkeln von O1-Hg1-Hg2 = $147.5(2)^{\circ}$ sowie O2-Hg1-Hg2 = $133.7(2)^{\circ}$ zusätzlich zwei Sauerstoffatome von koordinierenden Nitrat-Gruppen. An Hg2 koordinieren drei Nitrat-Gruppen nahezu senkrecht zur Hg-Hg-Achse mit Abständen im Bereich von 273,1(7) pm bis 285,6(9) pm. Da die Bindungslängen der C-C-Abstände zwischen 133,2 pm und 145,4 pm alternieren ist von einer Aufhebung der Mesomerie im Pyrimidin-Ring auszugehen. Ein ähnlicher Befund ist auch für Pyrazin in [Hg₂(Pyrazin)](NO₃)₂ zu beobachten. Abbildung 116 zeigt einen Ausschnitt aus der Struktur von [Hg₂(Pyrimidin)](NO₃)₂ entlang eines der über Pyrimidin-Moleküle verknüpften Hg₂²⁺ - Stränge. Abbildung 117 zeigt die Umgebung der zwei kristallographisch verschiedenen Nitrat-Gruppen.

Abbildung 115: Perspektivische Darstellung der Elementarzelle von [Hg₂(Pyrimidin)](NO₃)₂

Abbildung 116: Strukturausschnitt entlang eines über Pyrimidin-Moleküle verknüpften Stranges in [Hg₂(Pyrimidin)](NO₃)₂

Abbildung 117: Umgebung der zwei kristallographisch unterschiedlichen Nitrat-Gruppen in [Hg₂(Pyrimidin)](NO₃)₂

3.4 Kristallstruktur von [Hg₂(Pyrimidin)](ClO₄)₂

 $[Hg_2(Pyrimidin)](ClO_4)_2$ kristallisiert in der orthorhombischen Raumgruppe Pnma mit den Gitterparametern a = 1182,7(2) pm, b = 1662,5(2) pm, c = 607,9(1) pm und Z = 8. Einzelheiten zu Kristalldaten und Strukturbestimmung sowie ausgewählte internukleare Abstände und Bindungswinkel sind in Tabelle 21 bzw. Tabelle 22 zu finden. Eine perspektivische Darstellung der Elementarzelle findet sich in Abbildung 118.

Die Struktur von $[Hg_2(Pyrimidin)](ClO_4)_2$ ist charakterisiert durch eine Packung von polymeren $[C_4H_4N_2Hg_2]^{2+}$ - Ketten in Richtung der c-Achse. Zwischen diesen Ketten liegen die Perchlorat-Gruppen. Abbildung 119 zeigt die Umgebung der Quecksilber(I)-Hanteln. Die Quecksilber-Quecksilber-Abstände betragen 250,27(8) pm und sind damit die kürzesten unter den vorgestellten Quecksilber(I)-Verbindungen. Die Hg₂²⁺-Einheiten sind nahezu linear im Abstand von 218,7(9) pm von den Stickstoff-Atomen der Pyrimidin-Moleküle koordiniert; der Winkel N1-Hg1-Hg1 beträgt 178,5°. Betrachtet man die Umgebung der Perchlorat-Gruppen, wie in Abbildung 120 dargestellt, so koordinieren diese jeweils einmal chelatisierend an eine Quecksilber-Hantel über O2 und O4 im Abstand von 287,6(14) pm sowie 297,6(12) pm sowie jeweils an eine weitere Quecksilber-Hantel über O1 mit 294,1(14) pm und O3 mit 286,3(12) pm. Die Pyrimidin-Moleküle sind leicht verzerrt; so beträgt der Winkel N1-C1-N1 123,3(15)°. Die Mesomerie der Pyrimidin-Moleküle ist jedoch nicht wie im Pyrazin der Verbindung [Hg₂(Pyrazin)](NO₃)₂ [77] sowie in [Hg₂(Pyrimidin)](NO₃)₂ aufgehoben, da die C-C-Abstände mit 135,7(15) pm und die C-N-Abstände mit 136,7(14) pm und 132,4(11) pm zwischen Einfach- und Doppelbindung und damit im Bereich für freies Pyrimidin liegen.

Abbildung 118: Perspektivische Darstellung der Elementarzelle von [Hg₂(Pyrimidin)](ClO₄)₂

Abbildung 119: Umgebung einer Hg₂ - Hantel in [Hg₂(Pyrimidin)](ClO₄)₂

Abbildung 120: Umgebung einer Perchlorat-Gruppe in [Hg₂(Pyrimidin)](ClO₄)₂

3.5 Kristallstruktur von [Hg₂(Pyrazin)₂](ClO₄)₂

 $[Hg_2(Pyrazin)_2](ClO_4)_2$ kristallisiert azentrisch in der orthorhombischen Raumgruppe Aba2 mit den Gitterkonstanten a = 1529,39(9) pm, b = 1047,10(14) pm, c = 1133,49(15) pm und Z = 8. Einzelheiten zu Kristalldaten und Strukturbestimmung sowie ausgewählte internukleare Abstände und Bindungswinkel sind in Tabelle 21 bzw. Tabelle 22 zu finden. Eine perspektivische Darstellung der Elementarzelle findet sich in Abbildung 121.

Die Struktur von $[Hg_2(Pyrazin)_2](CIO_4)_2$ besteht aus Schichten von zweidimensional über Pyrazin-Moleküle vernetzten Hg_2^{2+} -Hanteln und Perchlorat-Anionen, die diese Schichten verbinden. In einem Winkel von N1-Hg1-Hg1 = 162,8(3)° bezüglich der Quecksilber-Quecksilber-Achse koordinieren zwei Pyrazin-Moleküle in einem kurzen Abstand von 225,0(10) pm. Zwei weitere Pyrazin-Moleküle koordinieren in einem größeren Abstand von 257,3(12) pm unter einem Winkel von N1-Hg1-N2 = 83,0(4)° bzw. bezüglich der Hg₂-Hantel mit einem Winkel von Hg1-Hg1-N2 = 113,3(3)°. Alle vier koordinierenden Pyrazin-Moleküle gehören einer kristallographischen Lage an. Abbildung 122 zeigt die Verknüpfung der Pyrazin-Moleküle zu weiteren Hg₂-Hanteln und damit die Ausbildung eines Flächennetzwerkes. Die Pyrazin-Moleküle bilden zu der durch die Hg₂-Hantel und die koordinierenden Stickstoffatome gebildeten Ebene einen Winkel von etwa 35°; gegenüberliegende Pyrazin-Moleküle stehen bezüglich der N-N-Achse nahezu senkrecht zueinander.

Die Perchlorat-Anionen besetzen eine kristallographische Lage und "verknüpfen" die Schichten untereinander, allerdings ausschliesslich über assoziative Abstände zum Quecksilber. Perchlorat greift einmal chelatisierend an im Abstand Hg1-O1 = 289,9(14) pm und Hg1-O3 = 331,4(16) pm, und über ein Sauerstoff-Atom zu einem Quecksilber-Atom der nächsten Schicht in einem grösseren Abstand von Hg1-O3 = 346,3(18) pm.

Abbildung 121: Perspektivische Darstellung der Elementarzelle von [Hg₂(Pyrazin)₂](ClO₄)₂ in Richtung [010]

Abbildung 122: Verknüpfung der Hg₂-Hanteln über Pyrazin-Moleküle zu Schichten in $[Hg_2(Pyrazin)_2](ClO_4)_2$

Abbildung 123: Umgebung einer Hg₂-Hantel in [Hg₂(Pyrazin)₂](ClO₄)₂

Abbildung 124: Umgebung einer Perchlorat-Gruppe in [Hg₂(Pyrazin)₂](ClO₄)₂

3.6 Schwingungsspektroskopische Messungen

Im Ramanspektrum von $[Hg_2(Pyrimidin)](ClO_4)_2$ findet sich die Hg-N-Schwingung bei 426 cm⁻¹ sowie die Hg-Hg-Schwingung bei 168 cm⁻¹. Die Hg-Hg-Schwingung entspricht damit in etwa der Wellenzahl von Quecksilber(I) in Lösungen mit 169 cm⁻¹ und einer Kraftkonstante von f = 1,7 N/cm (siehe Nakamoto [53]). Der Quecksilber-Quecksilber-Abstand beträgt 250,27(8) pm und ist damit kürzer als bei den anderen beiden Verbindungen.

Abbildung 125: Raman-Spektren von [Hg₂(Pyrimidin)](ClO₄)₂ und [Hg₂(Pyrimidin)](NO₃)₂

Für [Hg₂(Pyrimidin)](NO₃)₂ mit einem Quecksilber-Quecksilber-Abstand von 252,18(5) pm findet sich die Hg-Hg-Schwingung im Raman-Spektrum bei 145 cm⁻¹; dies entspricht einer Kraftkonstante von f = 1,24 N/cm. Auch die kleinere Wellenzahl von

426 cm⁻¹ für die Quecksilber-Stickstoff-Schwingung gibt den etwas schwächeren Bindungscharakter mit einem Abstand von Hg2-N1 = 221,0(8) pm wieder. Aus dem Infrarotspektrum für [Hg₂(dmgly)₂](NO₃)₂ lassen sich zudem zwei Banden für die OH-Schwingungen erkennen, eine Bande bei 3585 cm⁻¹ und eine durch Wasserstoffbrückenbindungen zwischen O10 und O8 zu kleineren Wellenzahlen verschobene Bande bei 3523 cm⁻¹.

3.7 Diskussion der stabilen Quecksilber(I)-Stickstoff-Verbindungen

Aus den Normalpotentialen für die Systeme Hg/Hg(I) und Hg(I)/Hg(II) geht hervor, dass sich aus Hg und Hg²⁺ in wässriger Lösung Hg₂²⁺ bilden kann. Diese Reaktion kann sich allerdings auch umkehren, wenn etwa infolge einer Schwerlöslichkeit von z.B. HgS oder HgO bzw. einer mangelnden elektrolytischen Dissoziation wie in Hg(CN)₂ die Konzentration bzw. Aktivität von Hg²⁺ in wesentlich grösserem Maß herabgesetzt ist, so dass sich das folgende Gleichgewicht auf die linke Seite verlagert:

$$Hg + Hg^{2+} \implies Hg_2^{2+}$$

Nach Brodersen [Chiuz] erfolgt die Disproportionierung von Quecksilber(I)-Verbindungen vor allem aufgrund der Bildung stabiler Komplexe des Quecksilber(II)-Ions mit dem Elektronenpaar-Donator. Nur wenn die Aktivität des Hg^{2+} -Ions durch die Lewis-Base nicht zu stark erniedrigt wird, ist das Hg_2^{2+} -Ion stabil gegenüber Disproportionierung, wie dies auch aus den Standardpotentialen hervorgeht:

Hg₂²⁺ ⇒ Hg + Hg²⁺ E₀ = -0,115 V

$$K = \frac{[Hg^{2+}]}{[Hg_2^{2+}]} = 1,15 \cdot 10^{-2}$$

Somit werden stabile Quecksilber(I)-Verbindungen nur dann ausgebildet, wenn die Stabilitätskonstanten der Hg²⁺- und Hg₂²⁺-Komplexe keine allzu grossen Unterschiede aufweisen, was nur bei gering ausgeprägter Donizität der Lewis-Base erfüllt ist.

Anhand der vier strukturell charakterisierten Quecksilber(I)-Stickstoffverbindungen $[Hg_2(dmgly)_2](NO_3)_2$, $[Hg_2(Pyrimidin)](NO_3)_2$, $[Hg_2(Pyrimidin)](ClO_4)_2$ sowie $[Hg_2(Pyrazin)_2](ClO_4)_2$ konnte der Ligandeneinfluss auf die Quecksilber-Quecksilber-Bindung untersucht werden. Es konnte gezeigt werden, dass die Bindungslänge und damit die symmetrische Streckschwingung der Quecksilber(I)-Hantel von der Art der Koordination der Liganden abhängt, d.h. bei chelatisierend angreifendem Liganden wie

in $[Hg_2(dmgly)_2](NO_3)_2$ bzw. $[Hg_2(Pyrimidin)](ClO_4)_2$ einen relativ weiten Abstand von 252,23(8) pm bzw. 253,03(8) pm aufweist; mit einer kurzen linearen kovalenten und einer mehrfachen Koordination durch Nitrat-Gruppen wie in $[Hg_2(Pyrimidin)](NO_3)_2$ einen nur geringfügig kleineren Hg-Hg-Abstand von 252,18(5) pm zeigt und erst bei zweifacher linearer Koordination wie in $[Hg_2(Pyrimidin)](ClO_4)_2$ ein kurzer Abstand von 250,27(8) pm zu beobachten ist.

In einer ältere Untersuchung von Dorm [80] wurden die Halogenide Hg₂X₂ untersucht, deren Hg-Hg-Bindungslänge zwischen 250 und 270 pm variieren. In dieser Publikation wurde spekuliert, dass diese Bindungslänge von der Elektronegativität des Liganden abhängt. In einer neueren theoretischen Studie zur Quecksilber-Quecksilber-Bindung von Schwerdtfeger et al. [81], die mithilfe der relativistischen Pseudopotenial-Methoden bzw. der LDA-Methoden (LDA = local density approach) für elektronegative Liganden eine energetische Stabilisierung der Quecksilber-Quecksilber-Bindung postuliert, werden diese Annahmen teilweise bestätigt. Diese elektronegativen Liganden erhöhen demnach den radikalischen Charakter eines hypothetischen HgX-Radikals und damit die Tendenz zur Ausbildung von Hg₂X₂. Auch relativistische Effekte spielen eine Rolle für die Stabilität der Hg-Hg-Bindung, indem diese einerseits die Bindungsstärke erhöhen, andererseits jedoch auch die Disproportionierung erleichtern. Ein interessantes Ergebnis der theoretischen Berechnungen ist, dass aus Orbitalenergie-Berechnungen folgt, dass eine signifikante Hg(6p)- aber zu vernachlässigende Hg(5d)-Beteiligung an der Quecksilber-Quecksilber- bzw. Quecksilber-Stickstoff-Bindung zu verzeichnen ist. Die vorgestellten Verbindungen machen deutlich, dass kein direkter Zusammenhang

ausschliesslich zwischen der Hg-Hg-Bindungslänge und der Elektronegativität bzw. der Basizität der Stickstoff-Donorliganden vorliegt, sondern hier auch die Art der Koordination, d.h. linear oder chelatisierend, von entscheidender Bedeutung für die Stabilität von $Hg_2^{2^+}$ ist.

	Hg ₂ (dmgly) ₂ (NO ₃) ₂	Hg ₂ (Pyrimidin)(NO ₃) ₂	Hg ₂ (Pyrimidin)(ClO ₄) ₂	Hg ₂ (Pyrazin) ₂ (ClO ₄) ₂
Gitterkonstanten / pm Winkel / grd	a = 728,50(13), b = 1066,8(2), c = 1167,9(2), α = 93,78(2)°, β = 94,16(2)°, γ = 98,61(2)°		a = 1182,7(2), b = 1662,5(2), c = 607,9(1)	a = 1529,39(9) b = 1047,10(14) c = 1133,49(15)
Zellvolumen / pm ³ Zahl der Formeleinheiten	892,3(3)·10 ⁶ 2	2041,8(4) ·10 ⁶ 8	1195,4(3) ·10 ⁶ 8	1815.2(4) 8
Kristallsystem Raumgruppe Messgerät	triklin P-1	monoklin C2/c Stoe	orthorhombisch Pnma IPDS	orthorhombisch Aba2
Verwendete Strahlung Monochromator	$MoK_{\alpha}, \lambda = 71,07 \text{ pm}$ Graphit			
Messtemperatur / K Scan-Modus	293(2)	293(2) 2°-Schritte	170(2) , 100 Bilder	170(2)
Messbereich/grd Indexgrenzen h,k,l Berechnete Dichten F(000)	$3,8^{\circ} < 2\theta < 56,3^{\circ}$ $\pm 7, \pm 12, \pm 13$ $2,759 \text{ g/cm}^3$ 659,7	3,8° < 20 < 56,3° ±20, ±8, ±25 3,912 g/cm ³ 2079,1	$3,8^{\circ} < 2\theta < 56,3^{\circ}$ $\pm 12, \pm 19, \pm 6$ $3,757 \text{ g/cm}^{3}$ 1183,6	$3,8^{\circ} < 2\theta < 56,3^{\circ}$ $\pm 18, \pm 12, \pm 13$ $2,694 \text{ g/cm}^{3}$ 1304,0
Absorptionskorrektur lin. Absorptionskoeff.	17,24	numerisch, X 30,06	26,13	17,22
Zahl der gemessenen Reflexe	10727	12357	8623	22165
Symmetrieunabhängige Reflexe	2651	2224	898	1783
R _{int} Strukturbestimmung und -verfeinerung	0,0494 0,1256 0,0900 0,0897 Programme SHELXS-97[51] und SHELXL-97 [52]			0,0897
Streufaktoren	International Tables, Vol. C			
Parameter R ₁	235 0,0290 für 1533 Fo > 4σ(Fo) 0 0726 für alle Daten	145 0,0398 für 1752 Fo > 4σ(Fo) 0 0530 für alle Daten	86 0,0303 für 668 Fo > 4σ(Fo) 0 0438 für alle Daten	110 0,0338 für 1594 Fo > 4σ(Fo) 0.0381 für alle Daten
wR ₂ (alle Daten) Goodness of fit	0,0726 0,791	0,0922 1,012	0,0795 1,018	0,1008 0,841

Tabelle 21: Kristalldaten und Einzelheiten zur Strukturbestimmung für [Hg₂(dmgly)₂](NO₃)₂, [Hg₂(Pyrimidin)](NO₃)₂, [Hg₂(Pyrimidin)](ClO₄)₂ und [Hg₂(Pyrazin)₂](ClO₄)₂

[Hg ₂ (dmgly) ₂](NO ₃) ₂		[Hg ₂ (Pyrimidin)](NO ₃) ₂		[Hg ₂ (Pyrimidin)](ClO ₄) ₂		[Hg ₂ (Pyrazin) ₂](ClO ₄) ₂	
Hg1-Hg2	252,23(8)	Hg1-Hg2	252,18(5)	Hg1-Hg1	250,27(8)	Hg1-Hg1	253,03(8)
Hg1-N1 Hg1-N2 Hg2-N4 Hg2-N3	236,2(8) 237,1(8) 235,7(8) 238,8(9)	Hg1-N4 Hg2-N1	248,1(9) 221,0(8)	Hg1-N1	218,7(9)	Hg1-N2 Hg1-N1	257,3(12) 225,0(10)
Hg1-O6 Hg1-O7 N1-C1 N1-O1 N2-C2 N2-O2 N5-O7 N5-O5 N5-O6	280,3(9) 285,8(11) 127,2(12) 143,4(10) 127,5(11) 139,0(10) 122,8(12) 123,7(11) 127,0(12)	Hg1-O1 Hg1-O2 Hg1-O5 Hg2-O5 Hg2-O6 Hg2-O3 O1-N3 O2-N2 O3-N3	236,3(7) 246,8(8) 280,6(7) 273,1(7) 285,2(10) 285,6(9) 128,3(11) 126,8(14) 124,6(11)	Hg1-O3 Hg1-O2 Cl1-O2 Cl1-O3 Cl1-O4 Cl1-O1 N1-C1 N1-C2	286,3(12) 287,7(14) 138,7(13) 140,5(13) 142,8(12) 145,5(10) 132,5(11) 136,6(14)	N1-C1 N1-C3 N2-C2 N2-C4 C1-C2 C3-C4 C11-O3 C11-O2 C11-O4 C11-O1	$135(2) \\136(2) \\133,1(19) \\135,0(19) \\140(2) \\141,5(19) \\142,8(14) \\144,6(13) \\147,2(18) \\158,3(15)$
N1-Hg1-N2 N1-Hg1-Hg2 N2-Hg1-Hg2 N1-Hg1-O6 Hg2-Hg1-O6 Hg2-Hg1-O6 Hg2-Hg1-O7 Hg2-Hg1-O7 O6-Hg1-O7 N4-Hg2-N3 N4-Hg2-Hg1 O1-N1-Hg1 O1-N1-Hg1 O2-N2-Hg1 O2-N2-Hg1 O3-N3-Hg2 O3-N3-Hg2 O4-N4-Hg2 N5-O6-Hg1 N5-O7-Hg1	66,8(3) 147,1(2) 144,8(2) 71,1(3) 91,5(3) 94,12(15) 67,4(3) 89,2(3) 110,6(2) 134,3(3) 66,9(3) 148,5(2) 143,8(2) 119,9(8) 123,6(6) 119,6(7) 124,5(5) 119,3(8) 125,7(6) 119,9(8) 125,0(6) 123,2(7) 131,4(8)	O1-Hg1-O2 O1-Hg1-N4 O2-Hg1-N4 O1-Hg1-Hg2 O2-Hg1-Hg2 O1-Hg1-O5 O2-Hg1-O5 N4-Hg1-O5 Hg2-Hg1-O5 N1-Hg2-Hg1 N1-Hg2-O5 Hg1-Hg2-O5 N1-Hg2-O6 Hg1-Hg2-O6 N1-Hg2-O3 Hg1-Hg2-O3 O5-Hg2-O3 O5-Hg2-O3 N3-O1-Hg1 N2-O2-Hg1 N3-O5-Hg2 N3-O5-Hg1 Hg2-O5-Hg1 Hg2-O5-Hg1	73,5(3) 80,0(3) 78,2(4) 147,5(2) 133,7(2) 118,39(18) 48,9(2) 65,1(3) 122,6(2) 118,93(16) 176,6(2) 76,4(3) 104,78(15) 83,1(4) 97,9(3) 137,4(3) 81,5(3) 95,09(16) 102,6(3) 110,9(3) 106,0(6) 114,0(6) 112,4(7) 120,5(6) 85,7(5) 133,6(3) 97,0(7)	N1-Hg1-Hg1 N1-Hg1-O3 Hg1-Hg1-O2 Hg1-Hg1-O2 O3-Hg1-O2 C1-N1-C2 C1-N1-Hg1 O2-C11-O3 O2-C11-O4 O3-C11-O4 O3-C11-O1 O3-C11-O1 O4-C11-O1 C11-O2-Hg1 C11-O3-Hg1 N1-C1-N1 C3-C2-N1	178,5(2) 75,6(4) 103,3(3) 91,0(4) 88,3(3) 99,3(6) 118,3(10) 121,8(9) 119,9(6) 113,1(14) 109,8(9) 108,3(7) 107,0(12) 106,9(8) 111,6(8) 125,1(7) 125,7(6) 123,3(15) 120,8(10)	N1-Hg1-Hg1 N1-Hg1-N2 Hg1-Hg1-N2 O3-Cl1-O2 O3-Cl1-O4 O2-Cl1-O4 O2-Cl1-O1 O4-Cl1-O1 C1-N1-C3 C1-N1-Hg1 C3-N1-Hg1 C2-N2-C4 C2-N2-Hg1 N1-C1-C2 N2-C2-C1 N1-C3-C4 N2-C4-C3	$162,8(3) \\ 83,0(4) \\ 113,3(3) \\ 107,6(9) \\ 110,3(9) \\ 111,0(11) \\ 114,3(10) \\ 104,2(8) \\ 109,2(6) \\ 119,1(11) \\ 119,7(11) \\ 121,2(10) \\ 117,0(12) \\ 121,2(9) \\ 118,4(9) \\ 119,2(14) \\ 123,5(13) \\ 119,7(13) \\ 121,4(12) \\ 12$

Tabelle 22: Ausgewählte internukleare Abstände und Bindungswinkel für $[Hg_2(dmgly)_2](NO_3)_2$, $[Hg_2(Pyrimidin)](NO_3)_2$, $[Hg_2(Pyrimidin)](ClO_4)_2$ und $[Hg_2(Pyrazin)_2](ClO_4)_2$

4 Zusammenfassung und Ausblick

Mit [Hg(NH₃)₂][HgCl₃]₂ wurde erstmals röntgenographisch die Struktur eines ausgeordneten Diammins des Quecksilbers bestimmt.

 $2 \operatorname{HgCl}_2 + \operatorname{NH}_4\operatorname{Cl} + \operatorname{HgNH}_2\operatorname{Cl} \rightarrow [\operatorname{Hg}(\operatorname{NH}_3)_2][\operatorname{HgCl}_3]_2$

Für die strukturell erstmals charakterisierte Verbindung [Hg(NH₃)₄](ClO₄)₂ wurde eine im Gegensatz zu den Homologen Zink und Cadmium verzerrte [Hg(NH₃)₄]²⁺-Tetraedersymmetrie gefunden. Die Struktur von [Hg(NH₃)₄](ClO₄)₂ besteht aus einer Packung von verzerrt tetraedrischen [Hg(NH₃)₄]²⁺-Ionen und Perchlorat-Anionen. Die Packung leitet sich bezüglich der Schweratome von einer monoklin verzerrten Variante des Fluorit-Typs, dem Baddeleyit-Strukturtyp (α -ZrO₂) ab, d.h. Quecksilber ist in der Packung von jeweils sieben der zwei kristallographisch unterschiedlichen Chlorlagen umgeben. Damit unterscheidet sich die Packung deutlich von [Zn(NH₃)₄](ClO₄)₂, welches in der Raumgruppe F-43m kristallisiert. Die Ursache der Tetraederverzerrung liegt in der elektronischen Situation des d¹⁰-Systems im Zusammenhang mit relativistischen Effekten.

Mit NH₄[Hg₃(NH)₂](NO₃)₃ konnte erstmals die Struktur einer über Imid-Gruppen verknüpften Raumnetzstruktur des Quecksilbers am Einkristall bestimmt werden. Die Struktur konnte zudem schwingungsspektroskopisch charakterisiert werden. Die Azentrizität der in der Raumgruppe P4132 kristallisierenden Verbindung sowie die Möglichkeit, in einfacher Weise gut ausgebildete größere Kristalle der Substanz zu züchten, können Anlass zu weiteren kristalloptischen Untersuchungen bieten. Der Abbau thermische dieser auch Mineral vorkommenden luftals und feuchtigkeitsunempfindlichen Verbindung unterstreicht die verhältnismäßig hohe Stabilität der Substanz, die sich unter Erhalt der Kristallinität in das "Nitrat der Millonschen Base" [Hg₂N]NO₃ umwandeln lässt. Eine isotype Verbindung konnte mit K[Hg₃(NH)₂](NO₃)₃, d.h. mit Kalium als Kation synthetisiert werden. Diese Stabilität und die Flexibilität des Quecksilber-Stickstoff-Gerüsts bei der strukturellen Umwandlung, die sich u.a. in der beachtlichen Beugung der linearen N-Hg-N-Einheiten auf Winkel von bis zu 168° zeigt, ist vor allem durch die außerordentliche Stabilität der Quecksilber-Stickstoff-Bindung geprägt. In [Hg₂N]NO₃, welches durch hydrothermale einkristallin erhalten wurde, findet sich eine dreidimensionale Synthese Eckenverknüpfung von NHg₄-Tetraedern, dabei jedoch nicht in einer dem β-Cristobalit

analogen Verknüpfung, wie in älterer Literatur als eine Modifikation vermutet, sondern tetragonal in der azentrischen Raumgruppe P4₃2₁2 kristallisiert.

$$2 \text{ NH}_{4}[\text{Hg}_{3}(\text{NH})_{2}](\text{NO}_{3})_{3} \xrightarrow{\sim 270^{\circ}\text{C}} 3 [\text{Hg}_{2}\text{N}](\text{NO}_{3}) + 3 \text{ NH}_{4}\text{NO}_{3}$$

Die Verbindungen $Hg(py)_2Cl_2$, $Hg(py)_2Br_2$ und $Hg(py)_2I_2$ wurden strukturell neu bestimmt und infrarotspektroskopisch und thermoanalytisch charakterisiert. Dabei wurden insbesondere der thermische Abbau und die strukturelle Umwandlung in $Hg_3(py)_2Cl_6$ und $Hg_3(py)_2Br_6$ untersucht, deren Struktur ebenfalls anhand von Einkristallen aufgeklärt werden konnte.

Durch Umsetzung der Diazine Pyridazin (1,2-Diazin), Pyrimidin (1,3-Diazin) und Pyrazin (1,4-Diazin) mit Quecksilber(II)-chlorid und -bromid wurden koordinationspolymere Verbindungen erhalten. Mit Pyridazin konnten die Verbindungen Hg(Pyridazin)Cl₂ und Hg(Pyridazin)Br₂ synthetisiert werden, die sich durch Chlorid-verbrückte, kantenverknüpfte Oktaederstränge mit Pyridazin-Molekülen, die die Spitzen der Oktaeder verknüpfen, auszeichnen.

Pyrimidin führt zu den Produkten **Hg(Pyrimidin)**Cl₂ und **Hg(Pyrimidin)**Br₂, deren Struktur sich durch Stränge von Chlorid-verbrückten Oktaedern auszeichnet, die über die Pyrimidin-Moleküle an den Oktaederspitzen zu gewellten Schichten verknüpft werden.

Mit Pyrazin lassen sich in geschlossenen Glasampullen bei 130°C die Verbindungen **Hg(Pyrazin)Cl₂** und **Hg(Pyrazin)₂Br₂** synthetisieren. Das Chlorid ist charakterisiert durch Chlorid-verbrückte Oktaederstränge, die über Pyrazin-Moleküle zu Schichten verknüpft werden. [Hg(Pyrazin)₂]Br₂ zeichnet sich durch "isolierte" HgBr₂-Einheiten aus, die über jeweils vier lange Quecksilber-Stickstoff-Kontakte zu Doppelsträngen verknüpft werden.

Die Struktur von **[HgCl][Hg(Purin)Cl₂]** besteht aus Purin-Molekülen, die über alle vier Stickstoffatome an Quecksilber koordinieren. Dabei koordiniert Quecksilber zweimal am Fünfring des Purins mit relativ kurzen Quecksilber-Stickstoff-Abständen an Position 7 und Position 9 und zweimal in längeren Abständen an Position 1 und Position 3. Für Purine besteht für das Proton im Fünfring eine Tautomerie, d.h. in einer Lösung liegt eine Mischung von Tautomeren in Position 7 und 9 vor. In der vorliegenden Verbindung liegt eine Deprotonierung in Position 7 vor, so dass das Purin hier am Quecksilber gleichzeitig als Anion auftritt. Es erfolgt durch die Verknüpfung eine Ausbildung zick-zack-förmiger Schichten, die über die assoziativen Quecksilber-Chlor-Kontakte um 300 pm einen dreidimensionalen Schichtenverbund ermöglichen.

Die Struktur von $[Hg(H-Purin)(CF_3)_2]_4$ ist charakterisiert durch $Hg(CF_3)_2$ –Moleküle, die über Purin-Moleküle in stark verzerrter tetraedrischer Geometrie am Quecksilber zu tetrameren Einheiten verknüpft werden.

Mit 3,5-Dimethyl-4'-Amino-1,2,4-Triazol (admtrz), einem N-Heterocyclus mit drei Stickstoffatomen im Ring und einer Amin-Gruppe gelingt die Synthese von **Hg₂(admtrz)Cl₄**. Die Struktur besteht aus einer Packung von [HgCl₂]₂-(admtrz) -Molekülen. Diese bestehen aus jeweils zwei HgCl₂-Einheiten, die an die zwei benachbarten Stickstoffatome der 3,5-Dimethyl-4'-Amino-1,2,4-Triazol- Moleküle koordiniert sind. **Hg₂(admtrz)Br₄** kristallisiert isotyp zur Chlorid-Verbindung.

Durch Umsetzung von Hg(CF₃)₂ mit dem 3,5-Dimethyl-4'-Amino-1,2,4-Triazol (admtrz) wird β -[Hg(admtrz)(CF₃)₂]₂ erhalten, dessen Struktur aus einer Packung von über die Stickstoffatome von admtrz -Molekülen verbrückten Dimeren von Hg(CF₃)₂-Molekülen besteht. Die Struktur der bei 170 K auftretenden Tieftemperaturmodifikation α -[Hg(admtrz)(CF₃)₂]₂ unterscheidet sich von der Raumtemperaturmodifikation in erster Linie durch eine parallele Anordnung der [Hg(admtrz)(CF₃)₂]₂-Dimere gegenüber der um 110° gegeneinander verkippten Packung der Moleküle.

Die Struktur der durch Umsetzung von Quecksilber(II)-chlorid mit Anilin erhaltenen Verbindung $Hg(Anilin)_2Cl_2$ besteht aus einer Packung von $HgCl_2-(C_6H_5NH_2)_2$ -Molekülen. Quecksilber ist dabei verzerrt tetraedrisch von zwei Chloratomen und zwei NH₂-Gruppen von Anilin-Molekülen umgeben.

Die Struktur von **Hg(utp)Cl₂** ist charakterisiert durch Doppelschichten von HgCl₂-Einheiten, die durch Urotropin-Molekül-Schichten über relativ lange Quecksilber-Stickstoff-Kontakte verknüpft sind.

In [(MMH)⁺(HgCl₃)⁻]·MM liegt Melamin in einer protonierten Form vor, so dass sich Zwitterionen mit [HgCl₃]⁻ - Anionen bilden, die über Stickstoff zum Quecksilberatom koordinieren. Der Reaktionsmechanismus wird folgendermaßen als Autoprotolyse-Reaktion gedeutet:

$$HgCl_{2} + 3 C_{3}H_{6}N_{6} \rightarrow [C_{3}H_{7}N_{6}]^{+} [HgCl_{3}]^{-} \cdot C_{3}H_{6}N_{6} + \mathbf{K}''C_{3}H_{5}N_{6} - HgCl''$$

Die Struktur von $[Hg(py)_4](ClO_4)_2$ kennzeichnet eine Molekülpackung von vierfach verzerrt quadratisch-planar von Pyridin-Molekülen koordiniertem Quecksilber. Zwei Perchlorat-Anionen ergänzen die Quecksilberumgebung zu einer verzerrten Oktaederkoordination. Die Verbindung kristallisiert azentrisch in der Raumgruppe $P2_12_12_1$. Die aus reinem Pyridin erhaltene Verbindung [Hg(py)₄](ClO₄)₂·2Py weist dasselbe Strukturmotiv auf, enthält jedoch noch zwei "freie" Pyridin-Moleküle und kristallisiert in der zentrischen Raumgruppe C2/c.

Die Struktur von [Hg(Pyrimidin)₂](ClO₄)₂ besteht aus vierfach verzerrt quadratischplanar von Pyrimidin-Molekülen koordiniertem Quecksilber und wird senkrecht dazu von zwei Perchlorat-Gruppen koordiniert. Die Pyrimidin-Moleküle verknüpfen über die Stickstoffatome der Pyrimidin-Moleküle in 1,3-Stellung weiter zu zweidimensionalen, gewellten koordinationspolymeren Schichten. Eine ähnliche, zweidimensional koordinationspolymere Struktur weisen auch [Hg(Pyrazin)₂](ClO₄)₂ und [Hg(Pyrimidin)₂](NO₃)₂ auf.

Aus einer sauren Quecksilber(II)-nitrat-Lösung mit Urotropin wird $[Hg(utp)_2(NO_3)_3]$ ·utp·H₃O⁺ erhalten. Die Struktur besteht aus einer Packung von $[Hg(utp)_2(NO_3)_3]$ ⁻-Anionen, "freien" Urotropin- Molekülen sowie H₃O⁺ - Kationen. Bei den $[Hg(utp)_2(NO_3)_3]$ ⁻-Anionen sind zwei Urotropin-Moleküle einander gegenüber im Abstand von 214,0(10) pm koordiniert. Senkrecht zu dieser Achse koordinieren drei Nitrat-Gruppen chelatisierend zum Quecksilber. Die H₃O⁺-Ionen konnten IR-spektroskopisch detektiert werden.

Als "Faustregel" konnte für die Halogenide abgeleitet werden, dass eine Zunahme der Basizität der Stickstoff-Liganden proportional zur Zunahme der Stärke der Quecksilber-Stickstoff-Bindung ist und mit zunehmender Elektronen-Donizität eine Bevorzugung niedrigerer Koordinationszahlen mit tetraedrischer oder linearer Koordination zu beobachten ist. Je "weicher" und damit polarisierbarer das am Quecksilber gebundene Halogenid-Ion ist bzw. je stärker der kovalente Bindungscharakter zu den Halogenid-Ionen ausgeprägt ist, umso mehr konkurrieren diese mit den Stickstoff-Donoren unter Schwächung der Quecksilber-Stickstoff-Bindung. Entgegen der Zunahme des Polymerisationsgrades der binären Halogenide in der Reihenfolge Cl < Br < I ist mit Elektronen-Donatoren ein umgekehrter Trend zur Depolymerisation zu beobachten.

Als "Faustregel" für die Quecksilber(II)-Verbindungen mit den "härteren" Anionen Nitrat und Perchlorat wurde aus den Beobachtungen an den charakterisierten Verbindungen abgeleitet, dass hier in der Regel eine als "2+2+2"-Anordnung zu bezeichnende Koordination mit einer "2+2"-Stickstoffkoordination vorliegt. Zweimal koordinieren Stickstoff-Liganden in kurzen, kovalenten Bindungen entsprechenden Abständen unabhängig von der Basizität des Stickstoff-Donors. Eine Zunahme der Basizität bewirkt zunächst eine Verkürzung des Abstandes zu den chelatisierend oder einzähnig angreifenden Anionen und anschließend eine Verkürzung des Abstandes zu den langen Quecksilber-Stickstoff-Kontakten.

Quecksilber(I)-Verbindungen reagieren mit vielen anorganischen und organischen Stickstoffverbindungen wie z.B. Ammoniak, Pyridin oder Imidazol unter Disproportionierung. Ziel der durchgeführten Untersuchungen war es, nach weiteren geeigneten Stickstoffliganden für Quecksilber(I) zu suchen und die Verbindungen strukturell zu charakterisieren. Dabei wurde deutlich, dass sich die Elektronendichte am Stickstoff innerhalb enger Grenzen bewegen muss, d.h. bei zu großer Elektronendichte kommt es zur Disproportionierung, bei einer zu geringen Basizität am Stickstoff bleibt die übliche Koordination mit zwei Wassermolekülen gemäß $H_2O-^{+}Hg-Hg^{+}-OH_2$ erhalten.

Die Struktur von [Hg₂(dmgly)₂](NO₃)₂ besteht aus Quecksilber(I)-Hanteln, die beidseitig von jeweils zwei Stickstoffatomen der Dimethylglyoxim-Liganden koordiniert sind. Die Nitratgruppen um N5 verbinden diese Moleküle miteinander, indem sie jeweils einmal chelatisierend an die Quecksilber(I)-Hanteln koordinieren sowie über ein Sauerstoff-Atom an jeweils drei Quecksilberatome benachbarter Moleküle. Zudem bestehen zwischen OH-Gruppen der Dimethylglyoxim-Liganden und den Nitrat-Gruppen Wasserstoffbrücken-Bindungen.

Durch Umsetzung von Pyrimidin mit Quecksilber(I)-nitrat gelingt die Synthese von [**Hg₂(Pyrimidin)**](**NO₃)**₂. Die Struktur zeichnet sich aus durch Quecksilber(I)-Hanteln, die über Pyrimidin-Moleküle über die Stickstoffatome zu Strängen verknüpft sind.

Die Struktur von $[Hg_2(Pyrimidin)](CIO_4)_2$ ist charakterisiert durch eine Packung von polymeren $[C_4H_4N_2Hg_2]^{2^+}$ -Ketten in Richtung der c-Achse. Zwischen diesen Ketten liegen die Perchlorat-Gruppen. Die Quecksilber-Quecksilber-Abstände betragen 250,27(8) pm und sind damit die kürzesten unter den vorgestellten Quecksilber(I)-Verbindungen. Die Hg2²⁺- Einheiten sind nahezu linear im Abstand von 218,7(9) pm von den Stickstoff-Atomen der Pyrimidin-Moleküle koordiniert.

 $[Hg_2(Pyrazin)_2](CIO_4)_2$ kristallisiert in der azentrischen Raumgruppe Aba2 und besteht aus Schichten von zweidimensional über Pyrazin-Moleküle vernetzten $Hg_2^{2^+}$ -Hanteln und Perchlorat-Anionen, die diese Schichten verbinden. In einem Winkel von N1-Hg1-Hg1 = 162,8(3)° bezüglich der Quecksilber-Quecksilber-Achse koordinieren zwei Pyrazin-Moleküle in einem kurzen Abstand von 225,0(10) pm. Über die Pyrazin-Moleküle verknüpfen die Hg₂-Hanteln unter Ausbildung eines Flächennetzwerkes.

III Experimenteller Teil

1 Verzeichnis verwendeter Geräte

Gerätebezeichnung	Тур	Hersteller
Pulverdiffraktometer	$\theta/2\theta$ STADI P	Stoe & Cie, Darmstadt /D
Pulverdiffraktometer	θ/θ G645	Huber, Rimsting /D
Imaging-Plate-Diffraction- System	IPDS I S/N 48029	Stoe & Cie, Darmstadt /D
Imaging-Plate-Diffraction- System II	IPDS II	Stoe & Cie, Darmstadt /D
Generatoren und Röntgenröhren	verschiedene Typen	Seifert, Ahrensburg; Enraf-Nonius, Delft, NL; Stoe & Cie, Darmstadt /D
Infrarotspektrometer	IFS 66v/S	Fa. Bruker, Rheinstetten /D
UV-VIS-Spektrometer	Cary 5E	Fa. Varian, Australia
Differenz-Thermo-Analyse	TA1	Mettler-Instrumente AG, Schweiz
TG/DTA/DSC mit Massenspektrometer	STA 409	Netzsch, Selb / D
Weissenberg-Kamera	FR590	Fa. Enraf Nonius, Deft / NL
Debye-Scherrer-Kamera	102032	Fa. Seifert, Ahrensburg / D
Argon-Glove-Box	versch. Typen	M. Braun, Garching / D
Hochtemperaturdiffraktometer- Kammer	HDK S 2.4	Edmund Bühler, Laborausrüstung, Bodelshausen
Guinier-Kamera	FR552	Enraf-Nonius, Delft / NL

2 Verzeichnis verwendeter Chemikalien

Bezeichnung	Formel	Reinheit / Konzentration	Herkunft
Quecksilber	Hg	99,995%	Degussa, Frankfurt
Quecksilber(II)-chlorid	HgCl ₂	99,5%	Riedel-de-Haën AG, Seelze
Quecksilber(II)-bromid	HgBr ₂	99,5%	Riedel-de-Haën AG, Seelze
Quecksilber(II)-iodid	HgI ₂	99,5%	Riedel-de-Haën AG, Seelze
Quecksilber(II)nitrat- Hydrat	$Hg(NO_3)_2 \cdot 2H_2O$	reinst	Fa. Merck, Darmstadt

Quecksilber(II)- perchlorat-Hexabydrat	$Hg(ClO_4)_2 \cdot 6H_2O$	röntgenrein	eigene Herstellung
Ouecksilber(II)-oxid	HoO oelh	reinst	Fa Merck
Queekshoel(II) oxid	1150, 5010	remst	Darmstadt
Ouecksilber(D-nitrat-	$Hg_2(NO_2)_2 \cdot 2H_2O_1$	reinst	Fa Merck
Dihvdrat	11 <u>9</u> 2(1103)2 21120		Darmstadt
Ouecksilber(I)-	$Hg_2(ClO_4)_2 \cdot 2H_2O$	röntgenrein	eigene Herstellung
perchlorat-Dihydrat	02(
Ammoniak	NH ₃	Reinheit 6.0	Linde AG,
	-		Hannover
Ammoniak-Lösung	NH ₃	p.a. 25 %	Fa. Merck,
			Darmstadt
Pyridin	C ₅ H ₅ N	>99%	Fa. Merck,
			Darmstadt
Pyridazin	$C_4H_4N_2$	98%	Fa. Sigma-Aldrich
			GmbH, Steinheim
Pyrimidin	$C_4H_4N_2$	99%	Fa. Acros Organics,
			Geel, Belgium
Pyrazin	$C_4H_4N_2$	99%	Fa. ABCR,
			Karlsruhe
Anilin / Aminobenzol	$C_6H_5NH_2$	>99%	Fa. Merck,
			Darmstadt
Urotropin /	$C_6H_{12}N_4$	>99%	Fa. Merck,
Hexamethylentetramin			Darmstadt
Melamin / 2,4,6-	$C_3H_6N_6$	>99%	Fa. Merck,
Triamino-1,3,5-triazin	C U V	0.00 (Darmstadt
Purin	$C_5H_4N_4$	99%	Fa. Acros Organics,
· · · ·		: 00.00/	Geel, Belgium
Ammoniumnitrat	NH ₄ NO ₃	min. 99,9%	Fa. Merck,
A mana a minum ala la mi d	NIL CI	min 00.00/	Darmstadt
Ammoniumeniorid	NH4CI	min. 99,9%	Fa. Merck,
Argon	۸.r	Doinhait 19	Lindo A.G.
Aigon	AI	Kennien 4.0	Lillue AO, Hannover
Methanol	СН.ОН	080/2	Fa Merck
wiculation	0113011	9070	Darmstadt
Ethanol	СНаСНаОН	98%	Fa Merck
Ethanol	chi3chi2011	2070	Darmstadt
Perchlorsäure	HClO4	konz 65% reinst	Fa Merck
1 cromorbaure	110104		Darmstadt
Acetonitril	CH ₃ CN	reinst. >99%	Fa. Merck.
			Darmstadt
Hydraziniumhydroxid	N ₂ H ₄ ·H ₂ O	24%ig, reinst	Fa. Merck,
5	2 1 2	<i>U</i> ,	Darmstadt
Dimethylglyoxim	$C_4H_6N_2(OH)_2$	min. 99%	Fa. Merck,
			Darmstadt
Tetramethyl-Orthosilikat	C ₄ H ₁₂ O ₄ Si	99%	Fa. Acros Organics,
-			Geel, Belgium
Natriumhydroxid	NaOH	>99%	Fa. Merck,
			Darmstadt

Programm	Verwendung
SHELXS-97 [51]	Berechnung von Strukturvorschlägen aus Diffraktometerdaten
	unter Verwendung der Pattersonsynthese und der Direkten
	Methoden
SHELXL-93/97 [52]	Verfeinerung der Strukturparameter durch Fourier- und
	Differenzfourier-Synthese, "least-squares"-Verfahren; Berech-
	nung der Streufaktoren gemäss International Tables for
	Crystallography, Vol. C
STOE Win XPOW v. 1.07	Programmpaket zur Steuerung von Pulverdiffraktometern sowie
	zur Auswertung und Indizierung von Pulverdiffraktogrammen,
	zur Berechnung theoretischer Diffraktogramme aus
	Einkristalldaten und zur Gitterkonstantenverfeinerung
MAPLE 4.0	Berechnung von interatomaren Abständen, Winkeln, ECoN- und
	MAPLE-Werten aus Strukturparametern
X-SHAPE [50],	Programm zur Kristallgestalt-Optimierung bei der
	Absorptionskorrektur
X-RED, X-STEP, X-STEP 32	Programmpaket der Firma STOE zur Aufbereitung, Reduktion
	und zur Absorptionskorrektur von Einkristalldatensätzen;
	mithilfe von X-RED ist die Raumgruppenbestimmung aus den
	Auslöschungsbedingungen möglich
PLATON32	Programmpaket u.a. zur Überprüfung der Symmetrie der
	gewählten Raumgruppe
WinGX	Programmpaket u.a. zur Darstellung von Differenzfourier-karten
ICSD / Retrieve 2.01	Datenbank der Einkristalldaten bekannter anorganischer
	Verbindungen
CSD / Crysdat	Online-Datenbank der Einkristalldaten bekannter organischer
	und organometallischer Verbindungen
OPUS/IR 3.02	Programmpaket zur Auswertung graphischen Darstellung von
	IR-Spektren sowie zur Steuerung von Bruker-IR-Spektrometern
X-AREA	Programmpaket der Firma STOE zur Steuerung von
	Diffraktometern sowie zur Integration und Zellbestimmung von
	Einkristalldaten
DIAMOND 2.1c	Zeichenprogramm für Kristallstrukturen, G. Bergerhoff, Bonn
	1999.

Verzeichnis verwendeter Computerprogramme

4 Zur Kristallisation aus Lösungen

4.1 Hydrothermale und solvothermale Kristallzüchtung^[83]

Bei der hydrothermalen Kristallzüchtung, die oft unter den etwas allgemeineren Begriff der Hydrothermalsynthese gestellt wird, erfolgt die Kristallisation aus einer wässrigen Lösung bei höheren Temperaturen und unter hohen Drücken. Der Arbeitsbereich der Hydrothermalsynthesen wird im Temperaturbereich bis etwa 600°C und Drücken von bis zu 3·10⁸ Pa angesiedelt. Der wichtigste Aspekt der hydrothermalen Kristallzüchtung liegt darin, dass die Löslichkeit gewisser, ansonsten schwerlöslicher Substanzen bei erhöhten Temperaturen wesentlich höher ist. Die in Autoklaven erfolgende Druckerhöhung hat als solche nur geringen Einfluss auf die Löslichkeit. Ein Vorzug der Lösungskristallisation liegt in den geringen Temperaturgradienten und damit verbunden einer geringen thermomechanischen Beanspruchung, denen der wachsende Kristall ausgesetzt ist. Die geringe Viskosität der hydrothermalen Lösungen bedingt eine intensive Konvektion und damit sehr effektive Transportleistungen und demnach große Wachstumsgeschwindigkeiten.

Wesentlich ist, dass die sog. kritischen Phänomene beim Wasser in den Arbeitsbereich der Hydrothermalsynthesen fallen, was durch eine Projektion des P-V-T-Diagramms auf die V-T-Ebene in Abbildung 126 verdeutlicht werden kann. Dieses Diagramm verdeutlicht, dass ein zweiphasiger Bereich existiert, in dem flüssiges Wasser mit dem Dampf im Gleichgewicht steht. Mit steigender Temperatur nimmt dabei die Dichte der flüssigen Phase ab und die Dichte der gasförmigen Phase zu. Am kritischen Punkt K wird die Dichte beider Phasen gleich und auch die übrigen Eigenschaften werden gleich, so dass der Unterschied zwischen flüssiger und gasförmiger Phase verschwindet. In der Umgebung des kritischen Punktes rufen Temperaturschwankungen sehr starke lokale Dichteunterschiede hervor, die eine intensive Durchmischung bewirken.

Bei den Hydrothermalsynthesen hat man sich mit dem Dampfdruck von gesättigten Lösungen auseinanderzusetzen, d.h. es ist ein Dreiphasengleichgewicht Kristall – (gesättigte) Lösung – (gesättigter) Dampf zu betrachten. Hinsichtlich der Löslichkeit in Wasser lässt sich die Mehrzahl der Stoffe in zwei Typen einteilen: Zum ersten Typ gehören Verbindungen mit relativ grossen Löslichkeiten in Wasser, welche mit steigender Temperatur kontinuierlich bis zum Schmelzpunkt der reinen Komponente ansteigt. Beispiele sind Alkalihalogenide, viele Bromide, Iodide und Nitrate. Der Dampfdruck der gesättigten Lösungen dieser Salze steigt zunächst gleichfalls mit der Temperatur T an und erreicht ein Maximum P_{max} bei der Temperatur T_{max} , welche der empirischen Beziehung $1/T_{max}=1/T^m$ -0.00021K⁻¹ mit T_m als Schmelzpunkt des Salzes folgt.

Abbildung 126: Projektion des P-V-T-Diagramms auf die V-T-Ebene für Wasser [83]

Verbindungen des zweiten Löslichkeitstyps sind durch eine geringe Löslichkeit in Wasser nahe der kritischen Temperatur gekennzeichnet. Hierzu gehören Verbindungen, die auch bei erhöhten Temperaturen schwerlöslich sind oder negative Temperaturkoeffizienten haben. Infolge der geringen Löslichkeit kommt es hier auch in gesättigten Lösungen zu kritischen Phänomenen. Wesentlich sind in diesen Systemen divariante Zweiphasengleichgewichte zwischen dem Bodenkörper und einer hyperkritischen fluiden Phase.

Im System Quecksilber(II)-nitrat / Ammoniak / Wasser hat die Hydrothermalsynthese zu gut ausgebildeten Einkristallen des gewünschten Produktes [Hg₂N]NO₃ geführt. Diese Reaktion wurde in einem Teflon-Autoklaven (siehe Abbildung 127) bei 180°C durchgeführt. Versuche mit Stahlautoklaven führten zur Reduktion der Quecksilbersalze zum Metall und zur Anoxidation der Autoklavenwände. Eine Kristallisation aus Lösungen führt nur zu allenfalls mikrokristallinen Produkten.

Das Produkt [Hg₂N]NO₃ ist sowohl in Wasser als auch in organischen Lösemitteln schwerstlöslich, so dass auch eine Umkristallisation nicht in Frage kommt. Ob diese Verbindung dem zweiten Löslichkeitstyp zuzuordnen ist und damit auch nahe der kritischen Temperatur noch schwerlöslich ist, kann nur vermutet werden. Quecksilber(II)-nitrat und Ammoniak besitzen beide grosse Löslichkeit in Wasser; Ammoniak spielt in diesem System nicht nur als Reaktionspartner sondern auch als zweites Lösemittel mit eigenem Dampfdruckverhalten eine Rolle. Entscheidend für die Kristallisation in diesem System ist jedoch sicherlich die geringe Viskosität der hydrothermalen bzw. ammonothermalen Lösung, die eine intensive Konvektion bewirkt und damit sehr effektive Transportleistungen erbringt.

Abbildung 127: Schematische Darstellung eines Teflon-Autoklaven

Eine weitere hydrothermale Kristallisation gelang im System Quecksilber(II)-bromid / Purin / Wasser [25]. Diese Reaktion wurde in einem zugeschmolzenen Duranglas-Röhrchen mit einem Innendurchmesser von 5 mm und einer Wandstärke von 2,5 mm bei 180°C durchgeführt. Auch hier wurden gut ausgebildete Kristalle erhalten. Das Produkt Hg(Purin)Br₂ ist schwerlöslich. Eine Reaktion durch Zugabe einer wässrigen Purinlösung zu einer Quecksilber(II)-bromid- Lösung erfolgt augenblicklich, führt jedoch nur zu mikrokristallinem Produkt. Auch hier ist das Hauptproblem für die Kristallisation die hohe Bildungsgeschwindigkeit, bedingt durch die grosse Quecksilber-Stickstoff-Affinität. Hier steckt sicherlich in der Methode der hydrothermalen Kristallisation noch ein enormes Synthesepotential zur röntgenographischen Charakterisierung einer ganzen Reihe von bislang nur unzulänglich beschriebenen Quecksilber-Stickstoff-Verbindungen. Gerade für die organischen Stickstoff-Heterocyclen dürfte sich diese Form der "Rekristallisation" als relativ schonend erweisen. Eine Kristallisation aus Schmelzlösungen, wie im System Pyrazin / Quecksilberchlorid und -bromid gezeigt (siehe oben), ist sicherlich nur im Ausnahmefall möglich.

4.2 Kristallzüchtung und Kristallwachstum

Bei der Diffusion resultiert aus der ungeordnet-statistischen Bewegung der Teilchen ein Netto-Teilchenstrom (Diffusionsstrom) $j_i = N_i/At$, welcher die Zahl N_i der in der Zeit t durch die Fläche A in der Richtung x netto hindurchtretenden Teilchen der Sorte i bezeichnet. Nach dem 1. Fickschen Gesetz ist dieser Teilchenstrom dem Gradienten $\delta c_i/\delta x$ der Teilchendichte $c_i = N_i/V$ proportional:

$$j_i = -D_i = \frac{\delta c_i}{\delta x}$$

Der partielle Diffusionskoeffizient D_i der Teilchensorte *i* hängt dabei sowohl von der Konzentration c_i der Komponente *i* selbst als auch von den Konzentrationen und den Konzentrationsgradienten aller übrigen Komponenten des Systems ab. Für wässrige Lösungen sind Diffusionskoeffizienten um 10^{-8} m²/s typisch. Die Temperaturabhängigkeit der Diffusionskoeffizienten wird durch eine Arrhenius-Beziehung wiedergegeben:

$$D_i = D_i^0 \cdot e^{\frac{-E_A^i}{kT}}$$

Der Zeitablauf der Diffusion wird durch das zweite Ficksche Gesetz beschrieben:

$$\frac{\delta c_i}{\delta t} = \frac{\delta}{\delta x} \left(D_i \frac{\delta c_i}{\delta x} \right)$$

Durch thermodynamische Betrachtungen kann auf die Konzentrationsabhängigkeit des partiellen Diffusionskoeffizienten D_i geschlossen werden:

$$D_i = B_i kT \left(1 + \frac{\delta \ln f_i}{\delta \ln x_i} \right)$$

Bei der Kristallzüchtung aus Lösung wird je nach dem Verlauf der Löslichkeitskurve in Abhängigkeit von der Temperatur wird für die Kristallisation notwendige Übersättigung durch Abkühlen oder Verdunsten des Lösungsmittels hergestellt.

Für die Kristallzüchtung von schwer löslichen Verbindungen, wie sie viele der Quecksilber-Stickstoff-Verbindungen darstellen, können Diffusionsverfahren angewendet werden, bei denen die Komponenten in einer geeigneten Anordnung in der Lösung zueinander diffundieren und in einer Reaktionszone auskristallisieren. Um die Diffusion zu verlangsamen, eignen sich Gele, die die Konvektion weitgehend verhindern und die Diffusion kontrolliert ablaufen lassen und damit eine bessere Kristallisation ermöglichen. Dazu wird das mit einem Reaktionspartner präparierte Gel in einem Reagenzglas mit der den anderen Reaktionspartner enthaltenden Lösung überschichtet, welcher dann in das Gel eindiffundiert. Zur Bereitung des Gels werden meist Natriumsilicatlösungen verwendet. In dieser Arbeit wurde ein Tetramethoxysilan benutzt. Die Gelbildung vollzieht sich auch in Abhängigkeit von der Acidität der Lösung, wobei sich der pH-Wert während der Gelbildung leicht verändern kann. Die unerwünschte, grosse Anzahl von Kristallkeimen lässt sich durch eine Schicht neutralen Gels verringern sowie die Grösse und Qualität der Kristalle verbessern.

5 Synthesen der Quecksilber-Stickstoff-Verbindungen

5.1 Synthese von Quecksilber(II)-Ammoniakaten

5.1.1 Darstellung von [Hg(NH₃)₂][HgCl₃]₂

Die Darstellung von [Hg(NH₃)₂][HgCl₃]₂ erfolgte durch Lösen von 0,54 g (2 mmol) HgCl₂ und 0,034 g (1 mmol) NH₄Cl in 100 ml Wasser. Nach Erwärmung auf 60°C wurde HgNH₂Cl bis zur Sättigung der Lösung zugegeben. Die ansonsten schwerlösliche Verbindung löst sich in der HgCl₂/NH₄Cl–Mischung teilweise auf. Von überschüssigem HgNH₂Cl wurde noch warm abfiltriert. Beim langsamen Abkühlen der Lösung kristallisierte die Verbindung in klaren, prismatischen und farblosen Kristallen aus. Die Darstellung von HgNH₂Cl erfolgte zuvor nach einer Vorschrift von Sen [82],

ble Darstenung von HgNH₂CI erfolgte zuvor nach einer vorschrift von sen [82], wonach zu einer Lösung von 20 g HgCl₂ in 400 ml H₂O 31 ml 6N (10%ige) Ammoniak zugefügt werden. Nach dem Absetzen des Niederschlages wird abgesaugt und mit 180 ml kaltem H₂O ausgewaschen. Die Menge des Waschwassers muss dabei genau eingehalten werden, um nicht die Zusammensetzung des Produktes zum Hg₂NCl·H₂O zu ändern.

5.1.2 Darstellung von [Hg(NH₃)₄](ClO₄)₂

Die Darstellung von [Hg(NH₃)₄](ClO₄)₂ erfolgte durch langsames Einleiten von gasförmigem Ammoniak in eine eisgekühlte Quecksilber(II)-perchlorat-Lösung mit 3g (1,52 mmol) Hg(ClO₄)₂·6H₂O auf 100 ml Wasser. Die Einleitung des Ammoniaks erfolgte so langsam, dass die kurzzeitige Erwärmung der Lösung nicht zu einem Temperaturanstieg über 10°C führte und erfolgte bis zur Sättigung der Lösung mit Ammoniak. Eine Kristallisation des Produktes erfolgte nach etwa 2-3 Stunden nach

Abdampfen eines Teils des Ammoniaks bei Raumtemperatur in grossen, gut ausgebildeten prismatischen Kristallen.

Die Darstellung von Hg(ClO₄)₂·6H₂O erfolgte durch Sättigung einer 60%igen Perchlorsäure-Lösung mit Quecksilber(II)-oxid und anschliessendes Eindampfen der Lösung. Nach Abkühlen der Lösung kristallisiert Hg(ClO₄)₂·6H₂O in grossen prismatischen Nadeln aus.

5.1.3 Darstellung von NH₄[Hg₃(NH)₂](NO₃)₃

 $NH_4[Hg_3(NH)_2](NO_3)_3$ kristallisierte nach 3 Tagen in farblosen gut ausgebildeten Kristallen mit rhombendodekaedrischem Habitus aus einer Lösung von 1g (2,92 mmol) $Hg(NO_3)_2 \cdot H_2O$ in 100 ml 25% iger Ammoniaklösung (p.a.) nach isothermem Verdampfen des Ammoniaks.

5.1.4 Darstellung von K[Hg₃(NH)₂](NO₃)₃

 $K[Hg_3(NH)_2](NO_3)_3$ kristallisierte nach 3 Tagen in farblosen gut ausgebildeten Kristallen mit rhombendodekaedrischem Habitus aus einer Lösung von 1g (2,92 mmol) $Hg(NO_3)_2 \cdot H_2O$ mit 30 g (3,33 mmol) KNO₃ in 100 ml 25% iger Ammoniaklösung (p.a.) nach isothermem Verdampfen des Ammoniaks.

5.1.5 Darstellung von [Hg₂N]NO₃

 $[Hg_2N]NO_3$ entstand nach 21 Tagen aus einer Lösung von 0,1g (2,92 mmol) Hg(NO₃)₂·H₂O in 10 ml 25%iger Ammoniaklösung (p.a.) in einem Teflon-Autoklaven bei 180 °C mit einer Heizrate von 20°C/h und einer Kühlrate von 10°C/h. Die klar durchscheinenden Kristalle kristallisieren als quadratische Prismen mit Endpyramiden und weisen eine dunkelgelbe bis hellbraune Farbe auf.

Abbildung 128: Übersicht der verwendeten Liganden mit Trivialnamen bzw. Abkürzungen

5.2 Synthese von Quecksilber(II)-halogeniden mit Pyridin als Ligand

5.2.1 Darstellung von [Hg(Py)₂]Cl₂

Die Darstellung von [Hg(Py)₂]Cl₂ erfolgte durch Lösen von 1g (3,70 mmol) HgCl₂ in 30 ml Pyridin bei 60°C. Beim langsamen Abkühlen der Lösung kristallisierte die Verbindung in grossen, teils zentimeterlangen, nadelförmigen, farblosen Kristallen aus.

5.2.2 Darstellung von [Hg(Py)₂]Br₂

Die Darstellung von $[Hg(Py)_2]Br_2$ erfolgte durch Lösen von 1g (2,77 mmol) HgBr₂ in 30 ml Pyridin bei 60°C. Beim langsamen Abkühlen der Lösung kristallisierte die Verbindung in grossen, teils zentimeterlangen, nadelförmigen, hellbraunen Kristallen aus.

5.2.3 Darstellung von [Hg(Py)₂]I₂

Die Darstellung von $[Hg(Py)_2]I_2$ erfolgte durch Lösen von 1g (2,20 mmol) HgI₂ in 30 ml Pyridin bei 60°C. Beim langsamen Abkühlen der Lösung kristallisierte die Verbindung in grossen, teils zentimeterlangen, nadelförmigen, gelbbraunen Kristallen aus.

5.2.4 Darstellung von Hg₃(Py)₂Cl₆

Die Darstellung von $Hg_3(Py)_2Cl_6$ erfolgte durch Lösen von 1g (2,33 mmol) [$Hg(Py)_2$] Cl_2 in 50 ml Ethanol bei 70°C. Die Verbindung kristallisierte beim langsamen Abkühlen der Lösung in sehr langen, extrem dünnen und teilweise biegsamen, farblosen Nadeln aus.

5.2.5 Darstellung von Hg₃(Py)₂Br₆

Die Darstellung von $Hg_3(Py)_2Br_6$ erfolgte durch Lösen von 1g (1,93 mmol) [$Hg(Py)_2$] Br_2 in 50 ml Ethanol bei 70°C. Die Verbindung kristallisierte beim langsamen Abkühlen der Lösung in sehr langen, extrem dünnen und teilweise biegsamen, farblosen Nadeln aus.

5.3 Synthese von Quecksilber(II)-halogeniden mit Diazinen als Liganden

5.3.1 Darstellung von Hg(Pyridazin)Cl₂

Die Darstellung von Hg(Pyridazin)Cl₂ (Pyridazin = 1,2–Diazin, 1,2–C₄H₄N₂) erfolgte durch tropfenweise langsame Zugabe einer Lösung von 1 ml Pyridazin in 20 ml Methanol zu 10 ml einer wässrigen, 0,1 molaren Lösung von Quecksilber(II)-chlorid. Die Verbindung kristallisierte nach isothermem Verdamfen von etwa 50% des Lösungsmittels in klaren farblosen Prismen aus.

5.3.2 Darstellung von Hg(Pyridazin)Br₂

Die Darstellung von Hg(Pyridazin)Br₂ (Pyridazin = 1,2–Diazin, 1,2–C₄H₄N₂) erfolgte durch Zugabe einer Lösung von 1 ml Pyrimidin in 20 ml Methanol zu 10 ml einer wässrigen, 0,1 molaren Lösung von Quecksilber(II)-bromid. Die Verbindung kristallisierte nach isothermem Verdampfen von etwa 50% des Lösungsmittels in klaren farblosen Prismen.

5.3.3 Darstellung von Hg(Pyrimidin)Cl₂

Die Darstellung von Hg(Pyrimidin)Cl₂ (Pyrimidin = 1,3–Diazin, 1,3–C₄H₄N₂) erfolgte durch Zugabe einer Lösung von 1 ml Pyrimdin in 20 ml Methanol zu 10 ml einer wässrigen, 0,1 molaren Lösung von Quecksilber(II)-bromid. Die Verbindung kristallisierte nach isothermem Verdampfen von etwa 50% des Lösungsmittels in klaren farblosen Prismen.

5.3.4 Darstellung von Hg(Pyrimidin)Br₂

Die Darstellung von Hg(Pyrimidin)Br₂ (Pyrimidin = 1,3–Diazin, 1,3–C₄H₄N₂) erfolgte durch Zugabe einer Lösung von 1 ml Pyrimidin in 20 ml Methanol zu 10 ml einer wässrigen, 0,1 molaren Lösung von Quecksilber(II)-bromid. Die Verbindung kristallisierte nach isothermem Verdampfen von etwa 50% des Lösungsmittels in klaren farblosen Prismen.

5.3.5 Darstellung von Hg(Pyrazin)Cl₂

Die Darstellung von Hg(Pyrazin)Cl₂ (Pyrazin = 1,4 - Diazin, 1,4 – C₄H₄N₂) erfolgte durch Erwärmen einer Mischung von 1 mmol Quecksilber(II)-chlorid mit Pyrazin im Überschuss (etwa 3 g) in einer unter Argon-Schutzgas abgeschmolzenen Glasampulle auf 125°C für 7 Tage bei einer Aufheiztemperatur von 10°C/h und einer Abkühlrate von 5°C/h. Die Verbindung kristallisiert in klaren, farblosen Prismen. Versuche, die Verbindung aus wässrigen oder methanolischen Lösungen zu kristallisieren, führten alle zu mehrfach verzwillingten oder schlecht ausgebildeten Kristallen.

5.3.6 Darstellung von Hg(Pyrazin)₂Br₂

Die Darstellung von $Hg(Pyrazin)_2Br_2$ (Pyrazin = 1,4 - Diazin, 1,4 – C₄H₄N₂) erfolgte durch Erwärmen einer Mischung von 1 mmol Quecksilber(II)-bromid mit Pyrazin im Überschuss in einer unter Argon-Schutzgas abgeschmolzenen Duranglasampulle auf 125°C für 7 Tage bei einer Aufheiztemperatur von 10°C/h und einer Abkühlrate von 5°C/h. Die Verbindung kristallisierte in klaren, bräunlichen Prismen. Versuche, die Verbindung aus wässrigen oder methanolischen Lösungen zu kristallisieren, führten alle zu mehrfach verzwillingten oder schlecht ausgebildeten Kristallen.

5.4 Darstellung von Verbindungen mit Purin als Ligand von Quecksilber(II)chlorid und –bis-trifluormethylat

5.4.1 Darstellung von [HgCl][Hg(Purin)Cl₂]

Die Darstellung von [HgCl][Hg(Purin)Cl₂] erfolgte durch Überschichtung von 20 ml einer wässrigen Lösung von 1 mmol Purin mit 10 ml Ether und anschliessende tropfenweise Überschichtung mit einer Lösung von 2 mmol HgCl₂ in 20 ml Ether. Die Ether-Zwischenschicht vermindert die Kristallkeimbildung und führt zu besser ausgebildeten Kristallen. Die Kristalle bilden sich nach wenigen Stunden an der Phasengrenzfläche in gut ausgebildeten Prismen. Diese Methode zur Kristallisation bot sich an, da eine direkte Mischung der Komponenten zur Ausfällung von flockigen Niederschlägen und nicht zu kristallinen Produkten führte. Purin ist gut wasserlöslich, löst sich jedoch nicht bzw. nur sehr wenig in Ether, während HgCl₂ sich auch gut in Ether löst.

5.4.2 Darstellung von [Hg(Purin)(CF₃)₂]₄

Die Darstellung von $[Hg(Purin)(CF_3)_2]_4$ erfolgte durch Überschichten von 20 ml einer wässrigen Lösung von 1 mmol Purin mit 10 ml Ether und anschliessende tropfenweise

Überschichtung mit einer Lösung von 2 mmol $Hg(CF_3)_2$ in 20 ml Ether. Die Ether-Zwischenschicht vermindert die Kristallkeimbildung und führt zu besser ausgebildeten Kristallen. Die Kristalle bilden sich nach wenigen Stunden an der Phasengrenzfläche in gut ausgebildeten Prismen. Diese Methode zur Kristallisation bot sich wie bei [Hg(Purin)Cl₂][HgCl₂] an, da eine direkte Mischung der Komponenten zur Ausfällung von flockigen Niederschlägen und nicht zu kristallinen Produkten führte. Purin ist gut wasserlöslich, löst sich jedoch nicht bzw. nur sehr wenig in Ether, während Hg(CF₃)₂ sich auch gut in Ether löst.

5.5 Darstellung von Verbindungen mit 3,5-Dimethyl-4'-Amino-1,2,4-triazol als Ligand von Quecksilber(II)halogeniden

5.5.1 Darstellung von Hg₂(admtrz)Cl₄

Die Kristallisation von Hg₂(admtrz)Cl₄ (admtrz = 3,5-Dimethyl-4'-Amino-1,2,4-triazol) erfolgte mithilfe der Gel-Methode. Dazu wurden 50 ml einer 0,1 molaren Quecksilber(II)-chlorid–Lösung 3 Stunden mit 1 ml Tetramethoxysilan bei 60°C verrührt, so dass sich eine zähflüssige Konsistenz einstellte. Diese Flüssigkeit wurde in ein verschraubbares Reagenzglas gebracht, mit 2 ml einer ebenfalls 3 Stunden gerührten, auf 60°C erwärmten wässrigen Lösung von Tetramethoxysilan überschichtet und anschliessend mit einer gesättigten wässrigen Lösung von 2,4-Dimethyl-1-Amino-1,4,5-triazol überschichtet. Das Reagenzglas wurde verschlossen. Die Bildung von gut ausgebildeten prismatischen Kristallen war nach etwa 5 Tagen zu beobachten.

Die Darstellung von 3,5-Dimethyl-4'-Amino-1,2,4-triazol erfolgte durch Umsetzung von 100 ml Acetonitril mit 50 ml 80%igem Hydrazin-hydrat im Rückfluss für drei Wochen. Anschliessend wurde überschüssiges Hydrazin-hydrat und nicht umgesetztes Acetonitril abdestilliert und durch Kochen im Rückfluss mit einer Natriumnitrat / Eisessig – Mischung oxidiert. Durch Ausschütteln mit Ether wird das purpurrote Dimethyl-Tetrazin entfernt. Abbildung 129 zeigt eine Übersicht des Syntheseweges von 2,4-Dimethyl-1-Amino-1,4,5-triazol.

Abbildung 129: Darstellung des Syntheseweges von 3,5-Dimethyl-4'-Amino-1,2,4-triazol

5.5.2 Darstellung von Hg₂(admtrz)Br₄

Die Kristallisation von Hg₂(admtrz)Br₄ (admtrz = 3,5-Dimethyl-4'-Amino-1,2,4-triazol) erfolgte analog zu Hg₂(admtrz)Cl₄ mithilfe der Gel-Methode. Dazu wurden 50 ml einer 0,1 molaren Quecksilber(II)-bromid–Lösung 3 Stunden mit 1 ml Tetramethoxysilan bei 60°C verrührt, so dass sich eine zähflüssige Konsistenz einstellte. Diese Flüssigkeit wurde in ein verschraubbares Reagenzglas gebracht, mit 2 ml einer ebenfalls 3 Stunden gerührten, auf 60°C erwärmten wässrigen Lösung von Tetramethoxysilan überschichtet und anschliessend mit einer gesättigten wässrigen Lösung von 3,5-Dimethyl-4'-Amino-1,2,4-triazol überschichtet. Das Reagenzglas wurde verschlossen. Die Bildung von gut ausgebildeten prismatischen Kristallen war nach etwa 5 Tagen zu beobachten.

5.5.3 Darstellung von [Hg(admtrz)(CF₃)₂]₂

Die Darstellung von $[Hg(admtrz)(CF_3)_2]_2$ (admtrz = 3,5-Dimethyl-4'-Amino-1,2,4triazol) erfolgte durch Überschichten von 20 ml einer wässrigen Lösung von 1 mmol 3,5-Dimethyl-4'-Amino-1,2,4-triazol mit 10 ml Ether und anschliessende tropfenweise Überschichtung mit einer Lösung von 2 mmol Hg(CF_3)₂ in 20 ml Ether. Die Ether-Zwischenschicht vermindert die Kristallkeimbildung und führt zu besser ausgebildeten Kristallen. Die Kristalle bilden sich nach wenigen Stunden an der Phasengrenzfläche in gut ausgebildeten Prismen.

5.5.4 Darstellung von Hg(Anilin)₂Cl₂

Die Darstellung von $Hg(Anilin)_2Cl_2$ (Anilin = Aminobenzol) erfolgte durch Zugabe einer Lösung von 5 ml frisch destilliertem Anilin in 10 ml Methanol zu 10 ml einer 0,1 molaren Lösung von Quecksilber(II)-chlorid in Methanol. Die Verbindung kristallisiert in langen, sehr dünnen, farblosen Nadeln.

5.5.5 Darstellung von Hg₂(utp)Cl₄

Die Darstellung von $Hg(utp)_2Cl_2$ (utp = Urotropin = Hexamethylentetramin) erfolgte durch Zugabe einer Lösung von 1 mol Urotropin in 10 ml Methanol zu 10 ml einer Lösung von 0,1 molaren Lösung von Quecksilber(II)-chlorid in Methanol. Die Verbindung kristallisiert in langen, gut ausgebildeten, farblosen Nadeln.

5.5.6 Darstellung von [MelaminH⁺(HgCl₃)⁻]· Melamin

Die Darstellung von [MelaminH⁺(HgCl₃)⁻]·Melamin erfolgte durch Zugabe einer Lösung von 2 mmol Melamin in 10 ml eines Methanol/Wasser-1:1-Gemisches zu 10 ml einer Lösung von 0,1 molaren Lösung von Quecksilber(II)-chlorid in Methanol. Die Verbindung kristallisiert in langen, sehr dünnen, farblosen Nadeln.

5.5.7 Darstellung von [Hg(Py)₄](ClO₄)₂

Die Verbindung $[Hg(Py)_4](ClO_4)_2$ kristallisiert aus einer Lösung von 3 g Hg $(ClO_4)_2 \cdot 6H_2O$ in 50 ml einer 60°C warmen 10% igen Pyridinlösung in langen, farblosen Nadeln. Die Darstellung von Hg $(ClO_4)_2 \cdot 6H_2O$ erfolgte zuvor durch Sättigung einer 60% igen Perchlorsäure-Lösung mit Quecksilber(II)-oxid und anschliessendes Eindampfen der Lösung. Nach Abkühlen der Lösung kristallisiert Hg $(ClO_4)_2 \cdot 6H_2O$ in grossen prismatischen Nadeln aus.

5.5.8 Darstellung von [Hg(Py)₄](ClO₄)₂·2Py

Die Verbindung $[Hg(Py)_4](ClO_4)_2 \cdot 2Py$ kristallisierte aus einer Lösung von 3 g Hg(ClO₄)_2 \cdot 6H_2O in 50 ml reinem Pyridin in großen, farblosen Nadeln. Die Darstellung von Hg(ClO₄)_2 \cdot 6H_2O erfolgte wie oben beschrieben.

5.5.9 Darstellung von [Hg(Pyrimidin)₂](ClO₄)₂

Die Verbindung $[Hg(Pyrimidin)_2](ClO_4)_2$ (Pyrimidin = 1,3–Diazin, 1,3–C₄H₄N₂) kristallisierte aus einer Lösung von 0,3 g Hg(ClO₄)₂·6H₂O in 10 ml einer 10% igen Pyrimidinlösung in langen, farblosen Nadeln. Die Darstellung von Hg(ClO₄)₂·6H₂O erfolgte wie oben beschrieben.

5.5.10 Darstellung von [Hg(Pyrazin)₂](ClO₄)₂

Die Verbindung $[Hg(Pyrazin)_2](ClO_4)_2$ (Pyrazin = 1,4 - Diazin, 1,4 - C₄H₄N₂) kristallisierte aus 30 ml einer wässrigen Lösung von 0,3 g Hg(ClO₄)₂·6H₂O, zu der 10 ml einer 10% igen Pyrazinlösung tropfenweise zugegeben werden, in langen, farblosen Nadeln. Die Darstellung von Hg(ClO₄)₂·6H₂O erfolgte wie oben beschrieben.

5.5.11 Darstellung von [Hg(Pyrimidin)₂](NO₃)₂

Die Verbindung [Hg(Pyrimidin)₂](NO₃)₂ (Pyrimidin = 1,3–Diazin, 1,3–C₄H₄N₂) kristallisiert aus 30 ml einer wässrigen Lösung von 0,3 g Hg(ClO₄)₂·6H₂O, zu der tropfenweise 10 ml einer 10% igen Pyrimidinlösung zugegeben werden, in langen, farblosen Nadeln. Die Darstellung von Hg(ClO₄)₂·6H₂O erfolgte wie oben beschrieben.

5.5.12 Darstellung von [Hg(utp)₂(NO₃)₃]⁻·utp·H₃O⁺

Die Darstellung von $[Hg(utp)_2(NO_3)_3]^-utp \cdot H_3O^+$ (utp = Urotropin = Hexamethyentetramin, $C_6H_{12}N_4$) erfolgt durch tropfenweise Zugabe einer Lösung von 2 mmol Urotropin in 20 ml Wasser zu einer schwach salpetersauren Lösung von 1mmol $Hg(NO_3)_2 \cdot H_2O$ in 20 ml Wasser. Nach Verdunsten von etwa 50% des Wassers kristallisiert die Verbindung in gut ausgebildeten prismatischen Kristallen aus.
5.6 Synthese von Quecksilber(I)-Verbindungen mit N-Heterocyclen als Liganden

5.6.1 Darstellung von [Hg₂(dmgly)₂](NO₃)₂

 $[Hg_2(dmgly)_2](NO_3)_2$ (dmgly = Dimethylglyoxim, C₄H₆N₂(OH)₂) kristallisiert nach 8 Tagen in farblosen gut ausgebildeten Kristallen mit quaderförmigem Habitus aus einer leicht salpetersauren Lösung von 0,1 g (0,292 mmol) Hg₂(NO₃)₂·2H₂O (Merck, 99%) in 50 ml einer wässrigen 5%igen Lösung von Dimethylglyoxim (p.a.) nach isothermem Verdampfen der Lösung.

5.6.2 Darstellung von [Hg₂(Pyrimidin)](NO₃)₂

 $[Hg_2(Pyrimidin)](NO_3)_2$ (Pyrimidin = 1,3–Diazin, 1,3–C₄H₄N₂) entstand nach 8 Tagen in farblosen, gut ausgebildeten Kristallen mit quaderförmigem Habitus aus einer leicht salpetersauren wässrigen Lösung von 0,1 g (0,292 mmol) Hg₂(NO₃)₂·2H₂O (Merck, 99%) mit 1 ml Pyrimidin nach isothermem Verdampfen von etwa 50% des Wassers. Bei der Zugabe des Pyrimidins muss eine Durchmischung der Lösung vermieden werden, da es sonst schnell zur Ausfällung eines flockigen Niederschlages kommt und die Kristallbildung nicht oder unzureichend erfolgt.

5.6.3 Darstellung von [Hg₂(Pyrimidin)](ClO₄)₂

 $[Hg_2(Pyrimidin)](ClO_4)_2$ (Pyrimidin = 1,3–Diazin, 1,3–C₄H₄N₂) kristallisierte nach 3 Tagen aus einer wässrigen, leicht perchlorsauren Lösung von Hg₂(ClO₄)₂·2H₂O, die mit einer verdünnten wässrigen Lösung von 1 ml Pyrimidin tropfenweise versetzt wird, in Form von quaderförmigen Kristallen. Bei der Zugabe des Pyrimidins muss eine Durchmischung der Lösung vermieden werden, da es sonst schnell zur Ausfällung eines flockigen Niederschlages kommt und die Kristallbildung nicht oder unzureichend erfolgt.

Die Darstellung von Hg₂(ClO₄)₂·2H₂O erfolgte durch Sättigung einer 60%igen Perchlorsäure-Lösung mit Quecksilber(II)-oxid und anschliessendes Eindampfen der Lösung. Das Quecksilber(II)-oxid wird dabei frisch gefällt aus einer Lösung von Quecksilber(II)-chlorid mit einer konzentrierten NaOH-Lösung. Nach Abkühlen der Lösung kristallisiert Hg(ClO₄)₂·6H₂O in grossen prismatischen Nadeln aus. Eine wässrige Lösung von Hg(ClO₄)₂·6H₂O wurde mit einem Überschuss von elementarem Quecksilber versetzt, so dass sich Hg₂(ClO₄)₂·2H₂O durch Komproportionierung bildet.

5.6.4 Darstellung von [Hg₂(Pyrazin)₂](ClO₄)₂

 $[Hg_2(Pyrazin)_2](ClO_4)_2$ (Pyrazin = 1,4 - Diazin, 1,4 - C_4H_4N_2) kristallisierte nach 3 Tagen aus 10 ml einer 0,1 molaren wässrigen Lösung von Hg₂(ClO₄)₂·6H₂O mit 10 ml einer verdünnten wässrigen Lösung von 1 mmol Pyrazin in Form von quaderförmigen Kristallen. Die Darstellung von Hg₂(ClO₄)₂·2H₂O erfolgte wie oben beschrieben.

6 Methoden zur Produktcharakterisierung

6.1 Kristallstrukturbestimmung^{[85],[86],[87],[88]}

6.1.1 Der Strukturfaktor

Bei der Beugung von Röntgenstrahlen an Kristallgittern erhält man aus einer Einkristallmessung neben der Metrik der Elementarzelle auch die Intensität jedes Beugungsreflexes. Da die Intensität gebeugter Röntgenstrahlung von der Art und Anzahl der Atome im Kristall abhängt, werden diese Informationen zur Bestimmung der Kristallstruktur verwendet. Die Beziehung zwischen der Anordnung der Atome des Kristalls und der Intensität der gebeugten Röntgenstrahlung wird durch den Strukturfaktor F_{hkl} ausgedrückt:

$$F_{hkl} = \sum_{j=1} F_j \cdot \exp[-2\pi \cdot i(hx_j + ky_j + lz_j)] = [F_{hkl}] \cdot \exp(i \cdot \phi)$$
(1)

f_j = Atomfaktor des j-ten Atoms

hkl = Millersche Indizes

x_j, y_j, z_j = Koordinaten des j-ten Atoms

Die Intensitäten der Beugungsreflexe sind dem Quadrat des Strukturfaktors proportional, daher gilt:

$$I_{hkl} = \left| F_{hkl} \right|^2 \cdot e^{(i\varphi)} \tag{2}$$

Da die Elektronenhüllen die Beugung der Röntgenstrahlung bewirken, kann der Strukturfaktor über eine Elektronendichtefunktion beschrieben werden:

$$F_{hkl} = \int_{V} \rho(x, y, z) \cdot e^{[2\pi i (hx + ky + lz)]}$$
(3)

Wird Röntgenstrahlung am Kristallgitter gebeugt, so tritt der Primärstrahl mit den Elektronenhüllen der Gitterbausteine in Wechselwirkung. Nimmt man an, dass die Elektronen in Form einer kontinuierlichen räumlichen Dichtefunktion ρ (x,y,z) über das gesamte Volumen der Elementarzelle verteilt sind, so kann man eine Fourier-Reihe formulieren:

$$\rho(x, y, z) = \frac{1}{V} \sum_{h=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} F_{hkl} e^{-2\pi i (hx+ky+k)}$$
(4)

Aus den messbaren Intensitäten I_{hkl} ist nur der Strukturfaktor F_{hkl}^2 bzw. der Betrag der komplexen Strukturamplitude F_{hkl} , nicht aber ihr Phasenwinkel zugänglich.

6.1.2 Die Patterson-Methode

Eine Möglichkeit zur Umgehung des Phasenproblems stellt die Patterson-Synthese dar, die eine modifizierte Fourier-Reihenentwicklung ist, bei der nicht die komplexen Strukturamplituden, sondern deren Quadrate als Fourier-Koeffizienten eingesetzt werden:

$$P(u,v,w) = \frac{1}{V} \sum_{h=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \left| F_{hkl} \right|^2 \cos 2\pi (hu + kv + lw)$$
(5)

Die Patterson-Synthese ist eine Fourier-Synthese, deren Ergebnisse nicht die Atomlagen, sondern Intensitätsmaxima an den Endpunkten von Vektoren zwischen Atomschwerpunkten sind. Sie arbeitet nur dann zuverlässig, wenn nur wenige Schweratome in der Elementarzelle vorhanden sind. Darüber hinaus müssen die Schweratome gegenüber den übrigen Atomen ein erheblich größeres Streuvermögen für Röntgenstrahlung aufweisen, so dass eine Unterscheidbarkeit der Atome gegeben ist.

6.1.3 Die Direkten Methoden

Die Direkten Methoden ermitteln unmittelbar über statistische Methoden Zusammenhänge zwischen den Strukturfaktoren und den Millerschen Indices, wobei hier das Phasenproblem bereits berücksichtigt ist und die Ergebnisse zu weiteren Strukturfaktoren führen. Durch Fourier-Synthese erhält man aus den Strukturfaktoren die gesuchten Lageparameter.

Von grundlegender Bedeutung für die Anwendung Direkter Methoden ist ein von Sayre erstmals entdeckter Zusammenhang, dessen Gültigkeit im Grunde darauf beruht, dass die Elektronendichte im Kristall niemals negative Werte annehmen kann und in annähernd punktförmigen Maxima konzentriert ist:

$$F_{hkl} = k \cdot \sum_{h'k'l'} F_{h'k'l'} \cdot F_{h-h',k-k',l-l'}$$
(6)

Sie besagt, dass man den Strukturfaktor eines Reflexes hkl aus der Summe von Produkten der Strukturfaktoren aller Reflexpaare berechnen kann, die jeweils der Bedingung genügen, dass ihre Indices sich zu denen des gesuchten Reflexes addieren.

6.1.4 Strukturverfeinerung

Ein erstes mit den oben beschriebenen Methoden bestimmtes Strukturmodell enthält meist noch Fehler in seinen Parametern, die auf Unzulänglichkeiten der Lösungsmethoden, der Bestimmung von Elektronendichtemaxima aus Fouriersynthesen und natürlichen Fehlern im Datensatz begründet sind. Daher werden Optimierungsschritte eingeführt, durch die die Parameter des Strukturmodells so variiert werden, dass diese Differenzen möglichst klein werden. Die mathematische Methode, derer man sich dabei bedient, ist die Methode der kleinsten Fehlerquadrate.

6.1.5 Kristallographische R-Werte

Eine erfolgreich abgeschlossene Strukturbestimmung, bei der nach der Differenz-Fouriersynthese keine ausgeprägten Maxima, d.h. keine große Restelektronendichte zurückbleibt, führt zu einer weitgehenden Übereinstimmung zwischen berechneten (F_c) und beobachteten Strukturfaktoren (F_0). Als Gütefaktor einer Strukturbestimmung dient der so genannte R-Wert (residual-Wert) :

$$R = \frac{\sum \|F_0| - |F_c\|}{\sum |F_0|}$$
(7)

Mit 100 multipliziert gibt dieser R-Wert die mittlere prozentuale Abweichung zwischen beobachteten und berechneten Strukturamplituden an. Bei diesem Wert gehen allerdings die Wichtungen nicht ein, die bei der Verfeinerung des Strukturmodells verwendet wurden.

Die Wichtungen sind enthalten im gewogenen R-Wert wR, bei dem direkt die bei der Verfeinerung minimalisierten Fehlerquadratsummen eingehen.

Wenn dieser gegen F_0^2 verfeinert wird, lautet er wie folgt:

$$wR_{2} = \sqrt{\frac{\sum_{hkl} w\Delta_{2}^{2}}{\sum_{hkl} w(F_{0}^{2})^{2}}} = \sqrt{\frac{\sum_{hkl} w(F_{0}^{2} - F_{c}^{2})^{2}}{\sum_{hkl} w(F_{0}^{2})^{2}}}$$
(8)

Ein weiteres Qualitätsmerkmal ist der "Gütefaktor" oder "Goodness of fit":

$$S = \sqrt{\frac{\sum_{hkl} w\Delta^e}{m-n}}$$
(9)

m = Anzahl der Reflexe

n = Zahl der Parameter

Hier geht in der Differenz m-n auch der Grad der Übereinstimmung der Strukturparameter ein. S sollte bei richtiger Struktur und korrekter Gewichtung Werte um 1 annehmen.

6.1.6 Absorptionskorrektur

Die Röntgenstrahlung wird auf dem Weg durch den Kristall durch verschiedene physikalische Prozesse geschwächt. Zu diesen Prozessen gehört der Photoeffekt, d.h. das Herausschlagen eines inneren Elektrons mit anschließender Emission der charakteristischen Strahlung sowie eventuell noch der Auger-Effekt, so dass bei wachsender Energie der eingestrahlten Röntgenstrahlung die photoelektrische Absorption zunächst stetig abnimmt, um dann an der Absorptionskante sprunghaft anzusteigen. Eine weitere Ursache ist der Compton-Effekt, d.h. die inelastische Röntgenstreuung, bei der das Röntgenquant einen Teil seiner Energie verliert. Die Absorption von ultraharten Röntgenstrahlen führt zudem zum Paarbildungseffekt, d.h. ein Photon bestimmter Energie wandelt sich in ein Elektron-Positron-Paar mit jeweils maximal der halben Energie um; eine eventuelle Restenergie wird den Teilchen als kinetische Energie mitgegeben.

Diese Absorptionseffekte wachsen mit der 4. Potenz der Ordnungszahl der absorbierenden Atome und etwa der 3. Potenz der Wellenlänge der Röntgenstrahlung an. Sie können durch den linearen Absorptionskoeffizienten m beschrieben werden:

$$Y = I_0 \cdot e^{-\mu x} \tag{10}$$

Der Absorptionskoeffizient m gibt an, um welchen Faktor die Intensität eines Röntgenstrahles geschwächt wird, wenn er den Weg x durchläuft.

Bei der numerischen Absorptionskorrektur werden für jeden Reflex die Weglänge von ein- und ausfallendem Strahl aus dem Kristallformat und seiner Orientierung berechnet.

6.1.7 Extinktion

Nach optimaler Verfeinerung des kompletten Strukturmodelles sind bei besonders starken und den bei niedrigen Beugungswinkeln erscheinenden Reflexen systematisch die beobachteten Strukturfaktoren F_0 niedriger als die berechneten F_c -Werte. Dies kann durch so genannte Extinktionseffekte verursacht werden. Reale Kristalle besitzen eine Mosaikstruktur, die dazu führt, dass der reflektierte Strahl gegenüber dem einfallenden Strahl eine höhere Divergenz und reduzierte Kohärenz zeigt, so dass er den Kristall verlässt, ohne selbst nochmals Beugungseffekte zu verursachen.

Bei der Primärextinktion wird der an einer stark streuenden Netzebene reflektierte Strahl selbst zum "Primärstrahl", der durch weitere Reflektion geschwächt wird. Unter der Sekundar-Extinktion versteht man den Vorgang, bei dem der Primärstrahl in den oberen Schichten des Kristalls durch eine stark reflektierende Netzebene bereits so stark geschwächt wird, dass die tieferen Schichten nur noch schwächer "beleuchtet" werden, so dass insgesamt für den ganzen Kristall dieser Reflex geschwächt wird. An den F_c-Werten wird bei den Strukturbestimmungen ein Korrekturfaktor ε mitverfeinert:

$$F_{c}(korr) = \frac{F_{c}}{\left(1 + \varepsilon F_{c}^{2} \lambda^{3} / \sin 2\theta\right)^{\frac{1}{4}}}$$
(11)

6.1.8 Temperaturfaktor

Der Atomformfaktor beschreibt das Streuvermögen ruhender Atome oder Ionen. Diese führen jedoch infolge der Wärmebewegungen Schwingungen um ihre Ruhelagen aus. Der Atomformfaktor f_j hängt vom Streuvermögen der Atome, welches proportional zur Elektronendichte ist, vom Beugungswinkel θ und von der Wellenlänge λ ab. Der Einfluss der thermischen Schwingung der Gitterteilchen auf die Schwingungsamplitude wird durch den Debye-Waller-Faktor B_j, der dem mittleren Auslenkungsquadrat u_j² des Atoms j senkrecht zur reflektierenden Netzebene proportional ist, berücksichtigt:

$$B_j = 8\pi \overline{u_j^2} \tag{12}$$

Dieser Ausdruck für den Debye-Waller-Faktor gilt jedoch nur für den Fall, dass die rücktreibenden Kräfte in allen Richtungen gleich groß sind – diese sind im allgemeinen jedoch richtungsabhängig, so dass die thermische Bewegung eines Atoms durch ein Ellipsoid zu beschreiben ist.

$$F(hkl) = \sum_{j} f_{j} \exp\left(-B_{j} \frac{\sin^{2} \theta}{\lambda^{2}}\right) \cdot \exp\left\{2\pi i \left(hx_{j} + ky_{j} + lz_{j}\right)\right\} = \sum \left|F(hkl) \cdot \exp(i\phi)\right|$$
(13)

x_j, y_j, z_j = Koordinaten des Atoms j h, k, l = *Miller*sche Indizes $2\pi i(hx_j + ky_j + lz_j) = \Phi$ = Phasenwinkel F(hkl) = Strukturfaktor |F(hkl)| = Strukturamplitude B_j = Debye-Waller-Temperaturfaktor des Atoms j Θ = Braggscher Beugungswinkel f_j = Atomformfaktor des Atoms j

Häufig wird anstelle von B der Temperaturfaktor U definiert:

$$U = u^2 = \frac{B}{8\pi^2} \tag{14}$$

Zur Berücksichtigung der Anisotropie der thermischen Bewegung der Gitteratome wird der Exponentialausdruck durch den anisotropen Temperaturfaktor (T_{anis}) ersetzt, der die Temperaturkoeffizienten U in sechs richtungsabhängige Tensorkomponenten U_{ij} aufgliedert:

$$T_{anis} = e^{-2\pi^2 (U_{11}h^2 a^{*2} + U_{22}k^2 b^{*2} + U_{33}l^2 c^{*2} + 2U_{12}hka^* b^* + U_{23}klb^* c^* + 2U_{13}lhc^* a^*)}$$
(15)

Neben den isotropen und anisotropen Auslenkungsparametern U_{ij} werden häufig äquivalente Auslenkungsparameter U_{eq} verwendet:

$$U_{eq} = \frac{1}{3} \left[U_{11} \left(aa^* \right)^2 + U_{22} \left(bb^* \right)^2 + U_{33} \left(cc^* \right)^2 + 2U_{23} bcb^* c^* \cos \alpha + 2U_{13} aca^* c^* \cos \beta + 2U_{12} aba^* b^* \cos \gamma \right]$$
(16)

6.2 Pulverdiffraktometrie

Die Registrierung der abgebeugten Röntgenstrahlung kann mithilfe eines Zählrohrgoniometers erfolgen. Bei den Szintillationszählern treffen Röntgenquanten auf einen Detektor, der ihre Energie in Fluoreszenzlicht umwandelt. Die entstandenen Lichtquanten lösen auf einer Photokathode Photoelektronen aus, deren Strom in einem Sekundärelektronenvervielfacher ("multiplier") verstärkt wird. Mit Halbleiterdetektoren lässt sich das Prinzip auf großflächige, ortsauflösende Flächenzähler übertragen. Das Zählrohr bzw. der entsprechende Detektor befindet sich auf einem Goniometer, mit welchem bei der Messung ein vorgesehener Winkelbereich durchfahren wird, so daß die Stellung des Kristallpräparates mit der Stellung des Zählrohrs stets korreliert ist. Diese Methoden sind den photographischen Methoden sowohl hinsichtlich der Intensitätsmessung als auch des Winkelauflösungsvermögens überlegen.

6.3 Temperaturaufgelöste "in-situ"- Pulverdiffratometrie

Der "Bühler-Ofen" ist eine Hochtemperatur-Diffraktometerkammer (HDK), in der unter Stickstoff oder Ammoniak bis zu einer Temperatur von 1600°C *in-situ*-Pulverdiffraktometrie betrieben werden kann. Dieses Zusatzgerät für das STOE-Θ/Θ-Diffraktometer besteht aus einem zylindrischen, doppelwandigen Edelstahlaufsatz. Der Deckel im Innenraum besteht zusätzlich aus einem Elektrodenpaar mit eingespanntem Platinband als Probenträger, das wahlweise auch zusätzlich mit einem Silberschiffchen belegt werden kann. Unter dem Probenträger ist ein punktgelötetes Platin-Platin/Rhodium-Thermoelement angebracht. Zusätzlich besteht eine Umgebungsheizung aus Platinblech. In den Deckel wurden Gaszufuhr bzw. Gasauslaßleitungen eingesetzt.

Im Boden der Kammer befindet sich ein Vakuumanschluß direkt unter dem Probenträger. In der Wand der Kammer ist ein 0,5 mm starkes Beryllium-Fenster, das 85 % der verwendeten Cu-K α -Strahlung durchläßt, hochvakuumdicht eingeklebt, um röntgenographische Untersuchungen im Bereich von 2 θ = 0-180° durchzuführen. Die gesamte Apparatur befindet sich in einer speziell für Röntgenuntersuchungen geeigneten Argon-Glove-Box. Damit ist es möglich, die Substanzen inert für die Röntgenuntersuchung zu präparieren.

6.4 Einkristallstrukturanalyse mit dem Imaging Plate Diffraction System

Das Imaging Plate Diffraction System (IPDS) der Fa. Stoe, Darmstadt, ist ein Einkristalldiffraktometer. Die Messung der Reflexintensitäten erfolgt durch Belichten einer mit Eu²⁺-dotiertem BaFCl beschichteten Platte, die nach dem Belichten mit einem Laser ausgelesen wird und anschließend wieder gelöscht werden kann. Durch diese Messtechnik können viele Reflexe gleichzeitig gemessen werden, wodurch bei Kristallen mit großen Gitterkonstanten große Zeitersparnis erreicht wird. Die Technik bedingt jedoch auch, daß Zwischenreflexe und Fremdreflexe stets berücksichtigt werden und zu falschen Elementarzellenvorschlägen führen können, die aber bei der Integration der Reflexe vernachlässigt werden können. Der Vorteil dieser Methode liegt in ihrer hohen Verarbeitungsgeschwindigkeit, mit der es möglich ist, innerhalb eines Tages einen vollständigen Intensitäts-Datensatz zu messen.

6.5 Infrarot- und Ramanspektroskopie

In Feststoffen schwingen Atome mit Frequenzen von etwa 10¹² bis 10¹³ Hz. Die Schwingungszustände betreffen Paare oder Gruppen von miteinander verbundenen Atomen, die durch Absorption von Strahlung geeigneter Frequenz in höhere Energiezustände versetzt werden können. Die Intensität der Absorption (IR) bzw. Streuung (Raman) wird als Funktion von Frequenz oder Wellenzahl erhalten.

Bei der IR-Strahlung wird die Frequenz der Primärstrahlung geändert und die Intensität des durch die Probe absorbierten bzw. transmittierten Strahlung bestimmt. Bei einem IR-aktiven Zustand muß sich bei der entsprechenden Schwingung das Dipolmoment ändern; aus diesem Grund sind zentrosymmetrische Schwingungszustände IRspektroskopisch inaktiv. Der Frequenzbereich bei der klassischen IR-Spektroskopie liegt im Bereich von 400 - 4000 cm⁻¹ und wird mit einem Gitter-Spektrometer kontinuierlich durchfahren. Die Fourier-Transform-IR-Spektroskopie stellt eine Weiterentwicklung dieser Technik dar: Bei der Messung wird während der Meßzeit Strahlung im gesamten Frequenzbereich absorbiert, wodurch ein gutes Signal-Rausch-Verhältnis erzielt wird. Eine anschließende Fouriertransformation erzeugt aus dem Interferrogramm ein klassisches IR-Spektrum. Neben der Zeitersparnis zeichnet sich diese Technik durch eine hohe Empfindlichkeit und erhöhte Wellenzahlpräzision aus.

In der Raman-Spektroskopie wird die Probe mit monochromatischer Laserstrahlung bestrahlt. An der Probe entstehen zwei Arten von Lichtstreuung: Die Rayleigh-Streuung tritt mit genau der gleichen Energie und Wellenlänge auf wie das einfallende Licht. Für einen Schwingungsübergang der Frequenz v_1 ergeben sich die Ramanlinien der Frequenz $v_0 \pm v_1$ im gestreuten Strahl. Dieses gestreute Licht wird in senkrechter Richtung zum Ursprungsstrahl gemessen. Die Auswahlregel für die Raman-Spektroskopie setzt für aktive Schwingungszustände eine Änderung der Polarisierbarkeit voraus.

6.6 SHG - Effekt

Die Azentrizität von Verbindungen wurde durch Beobachtung des SHG - Effektes (SHG: Second Harmonic Generation) bestätigt. Zur Messung des SHG-Effektes wurde die fundamentale Strahlung eines Nd:YAG Lasers (GCR 11, Spectra Physics, 1064 nm, 8ns Pulslänge, 100 mJ/Puls) verwendet. Beim Einbringen von phasenreinen Pulverproben der Verbindungen wurde grüne Strahlung der Wellenlänge 532 nm beobachtet.

6.7 Thermische Analysen

Bei der thermischen Analyse werden physikalische und chemische Materialeigenschaften als Funktion der Temperatur gemessen. Dies sind die Enthalpie, die Wärmekapazität, die Masse und der thermische Ausdehnungskoeffizient. Die thermische Analyse kann in die im folgenden beschriebenen Bereiche unterteilt werden:

Bei der Thermogravimetrie wird die Gewichtsänderung einer Substanz als Funktion der Temperatur mit der Zeit gemessen. Unter den Bedingungen der dynamischen Heizung tritt die Zersetzung meist in einem Temperaturintervall T_i bis T_f ein. Oberhalb dieser Temperatur wird ein Temperaturbereich mit konstantem Gewicht beobachtet. Dieses Restgewicht und die Gewichtsdifferenz sind grundsätzliche Eigenschaften der Probe und geben quantitativ Aufschluß über Änderungen der Zusammensetzung. Die Temperaturen T_i und T_f sind jedoch abhängig von der Heizrate, der Form des Feststoffs (Teilchengröße bzw. Kristallinität) und der Atmosphäre über der Probe. Die TG-Kurve liefert somit im Prinzip quantitativ das Ausmaß der Massenänderung mit der Temperatur, also den Reaktionsfortschritt. Aus nach der Zeit abgeleiteten Meßsignalen ergeben sich DTG-Kurven, aus denen Rückschlüsse auf die Reaktionsgeschwindigkeiten möglich sind.

Abbildung 130: Schematischer Aufbau einer DTA/DSC – Apparatur [84]

Bei der Differenz-Thermoanalyse (DTA) wird die Temperatur einer Probe mit der eines inerten Referenzmaterials während einer definierten Temperaturänderung verglichen. Die Temperatur von Probe und Referenzmaterial sollten so lange gleich sein, bis in der Probe ein thermisch induzierter Vorgang wie z.B. Schmelzen, Zersetzen oder eine Änderung der Kristallstruktur eintritt. In der Referenzsubstanz bleibt die Temperaturänderung konstant, während die Temperatur in der Probe entweder langsamer (endothermer Vorgang) oder schneller (exothermer Vorgang) steigt. Mithilfe dieser Methode lassen sich folgende Informationen gewinnen:

- · Ermittlung von Phasendiagrammen
- · Beobachtung des Reaktionsverlaufes von Festkörperreaktionen und Bestimmung der entsprechenden Reaktionstemperaturen
- · Reinheitsbestimmungen von Substanzen über die Schmelz- und Abkühlkurven
- · Ermittlung der Reaktionsenthalpien
- \cdot Detektion von Phasenumwandlungen in Ein- und Mehrkomponentensystemen

Bei reversiblen Prozessen, d.h. Vorgängen, die sowohl beim Aufheizen als auch beim Abkühlen auftreten, ist häufig eine Hysterese zu beobachten, die vor allem von der Art der Umwandlung abhängt.

IV Literaturverzeichnis

[1] G. Agricola, De natura fossilium lib., 1558, X, 333.

[2] Paracelsus, *Sämtliche Werke*, Herausg. B. Aschner, Verlag G. Fischer, Jena, **1926**, 800.

[3] D. Breitinger, K. Brodersen, Angew. Chem., 1970, 82, 379.

[4] W. N. Lipscomb, Acta cryst., 1951, 4, 156.

[5] L. H. Gade, Koordinationschemie, 1998, 1. Auflage, VCH-Wiley, Weinheim.

[6] N. N. Greenwood, A. Earnshaw, *Chemie der Elemente*, 1988, Verlag Chemie, Weinheim.

[7] J. E. Huheey, Anorganische Chemie, 1988, W. de Gruyter, Berlin.

[8] A. F. Holleman, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, 1985, W. de Gruyter, Berlin.

[9] A. F. Wells, *Structural Inorganic Chemistry*, **1984**, 5. Aufl., Clarendon Press, Oxford.

- [10] A. Putnis, Introduction to Mineral Sciences, 1992, Cambridge Univ. Press.
- [11] U. Müller, Anorganische Strukturchemie, 1992, 2. Auflage, Teubner, Stuttgart.

[12] L.E. Orgel, J. Chem. Soc. 1958, 4186.

[13] K.J. Fischer, R.S. Drago, Inorg. Chem., 1975, 14, 2804.

- [14] T. Ziegler, J. G. Snijders, E. J. Baerends, J. Chem. Phys., 1981, 75, 1271.
- [15] R.P.Neisler, K.S. Pitzer, J. Phys. Chem., 1987, 91, 1084.

[16] P. Pyykkö, Adv. Quantum Chem., 1978, 11, 353

- [17] E.C.M. Chen, W.E. Wentworth, J. Chem. Educ., 52,486
- [18] R.G. Pearson, J. Am. Chem. Soc., 1963, 85, 3522
- [19] S. Ahrland, Struct. Bonding, 1966, 1, 207.
- [20] D.B. McCormick, Acc. Chem. Res., 1970, 3, 201.
- [21] C.K. Jørgensen, Inorg. Chem., 1964, 3, 1201.
- [22] G. Grdenić, Quart. Rev., 1965, 19, 303.

[23] V. N. Sereshkin, L. B. Sereshkina, A. S. Ulanov, O. A. D'yachenko, *Cryst. Reports*, **2001**, 46/3, 425.

- [24] M. Kaupp, H. G. von Schnering, Inorg. Chem., 1994, 33, 2555.
- [25] P. Nockemann, unveröffentlichte Arbeiten, Köln, 2002.
- [26] G. Guinourt, J. Pharm., 1820, 6, 218.
- [27] A. Soubeiran, J. Pharm., 1826, 12, 238.

- [28] E. Mitscherlich, Ann. Physik, 1840, 49, 401.
- [29] J. Liebig, Ann. Chem., 1838, 26, 203.
- [30] E. Millon, Ann. Chim. Phys., 1846, 18, 333.
- [31] P. Nockemann, Diplomarbeit, Köln, 2000.
- [32] C.H. MacGillavry, J.M. Bijvoet, Z. Krist., 1936, 94, 231.
- [33] W. Peters, Z. Anorg. Allg. Chem., 1912, 77, 137.
- [34] W. Biltz, E. Rahlfs, Z. Anorg. Allg. Chem., 1927, 166, 351.
- [35] M. C. C. Holmes, J. Chem. Soc., 1918, 113, 74.
- [36] E. Weitz, K. Blasberg, E. Wernicke, Z. Anorg. Allgem. Chem., 1930, 188, 344.
- [37] H. Hillebrecht, G. Thiele, A. Koppenhöfer, H. Vahrenkamp, *Naturforsch.*, 1994, 49b, 1163.
- [38] F. Ephraim, C. Zapata, Helv. chim. Acta, 1934, 17, 296.
- [39] J. D. Dunitz, L. Orgel, Adv. Inorg. Chem. Radiochem., 1960, 2, 1.
- [40] D. Grdenic, Quart. Rev., 19, 1965, 303.
- [41] W. N. Lipscomb, Acta Cryst., 1951, 4, 156.
- [42] S. D. Arora, W. N. Lipscomb, M. C. Sneed, J. Amer. Chem. Soc., 1951, 73, 1015.
- [43] W. Rüdorff, K. Brodersen, Z. Anorg. Allg. Chem., 1953, 274, 323.
- [44] E. Hayek, P. Inama, Monatsh. Chem., 1965, 96, 1454.
- [45] K. Brodersen, Acta Cryst. 1955, 8, 723.
- [46] C. J. Randall, D. R. Peacor, R. C. Rouse, P. J. Dunn, J. Solid State Chem., 1982, 42, 221.
- [47] P. Pyykkö, Chem. Rev. 1997, 97, 597.
- [48] M. Jansen, Angew. Chem., 1987, 99, 1136.
- [49] V.W.-W. Yam, K. K. W. Lo, Chem. Soc. Rev., 1999, 28, 323.
- [50] STOE X-SHAPE Vers. 1.01, Crystal Optimization for Absorption Correction,
- STOE & CIE Darmstadt, 1996.
- [51] G. M. Sheldrick, SHELXS-97, *A Program for Crystal Structure Solution*, Universität Göttingen **1997**.
- [52] G. M. Sheldrick, SHELXL-97, *A Program for Crystal Structure Refinement*, Universität Göttingen **1997**.
- [53] K. Nakamoto, *Infrared Spectra of Inorganic and Coordination Compounds*, J.Wiley & Sons, 2nd Edit., New York **1970**.
- [54] J. Weidlein, U. Müller, K. Dehnicke; *Schwingungsspektroskopie*, 2. Aufl. 1988, Thieme Verlag, Stuttgart, New York.

- [55] R. Kane, Ann. Chim. Phys., 1839, 72, 225.
- [56] L. Pesci, Gazz. Chim. Ital., 1890, 20, 485.
- [57] J. Bjerrum, *Metal Ammine Formation in Aqueous Solution*, Copenhagen, **1941**, 164.
- [58] G. Denigès, Bull. Trav. Soc. Pharm. Bordeaux, 1918, 56, 129.
- [59] K. Brodersen, Chem. i. u. Zeit, 1982, 16, 23.
- [60] A. Werner, Z. Anorg. Allg. Chem. 1897, 15, 1/41, 5.
- [61] L. Pesci, Gazz. Chim. Ital., 1895, 25/II, 423.
- [62] D. Grdenić, Krstanović, Akhiv Kem., 1955, 27, 143.
- [63] W. Lang, Ber. d. Chem. Ges., 1888, 21, 1578.
- [64] Inoue, M., M. Kubo, Coord. Chem. Rev. 1976, 21, 1.
- [65] J.C. Liu, J.Z. Zhuang, X.Z.You, X.Y. Huang, Chem. Lett., 1999, 651.
- [66] L. G. Lavrenova, A. Baidinai, V. N. Ikorski, L. A. Šeludjakova, S. V. Djakova, Ž. Neorg. Chim., **1992**, 37, 630.
- [67] J. A. Carrabine, M. Sundaralingam, Biochemistry, 1971, 10/2, 292.
- [68] P.C. Sinha, R.C. Ray, J. Indian Chem. Soc. 1943, 20, 32.
- [69] R. Åkesson, M. Sandström, C. Stålhandske, I. Persson, *Acta Chem. Scand.*, 1991, 45, 165.
- [70] L. I. Chudinova, Russ. J. Inorg. Chem. 1969, 14, 1568.
- [71] H. Moschatos, B. Tollens, Ann. Chem. 1893, 272, 271.
- [72] C. H. MacGillavry, J.M. Bijvoet, Z. Anorg. Allg. Chem., 1936, 94,231.
- [73] D. C. Apperley, W. Clegg, S. Coles, J. L. Coyle, N. Martin, B. Maubert, V.
- McKee, J. Nelson, J. Chem. Soc., Dalton Trans., 1999, 229.
- [74] F. Feigl, A Sucharipa, Z. Anorg. Chem., 1925, 67, 134.
- [75] K. Brodersen, L. Kunkel, Chem. Ber., 1958, 91, 2698.
- [76] D. L. Kepert, D. Taylor, A. H. White, Inorg. Chem., 1972, 11, 1639.
- [77] K. Brodersen, N. Hacke, G. Liehr, Z. Anorg. Allg. Chem., 1974, 409, 1.
- [78] D. L. Kepert, D. Taylor, A. H. White, J. Chem. Soc. Dalton, 1973, 893.
- [79] D. Breitinger, K. Brodersen, J. Limmer, Chem. Ber., 1970, 103, 2388.
- [80] E. Dorm, Chem. Comm., 1971, 466.
- [81] P. Schwerdtfeger, P. D. W. Boyd, S. Brienne, J. S. McFeaters, M. Dolg, M.-S.
- Liao, W. H. E. Schwarz, Inorg. Chim. Acta, 1993, 213, 233.
- [82] J. Sen, Z. Anorg. Allgem. Chem., 1903, 33, 197.

[83] K. T. Wilke, Kristallzüchtung, 1988, 2. Aufl., Verlag Harri Deutsch, Frankfurt.

[84] W. F. Hemminger, H. K. Cammenga, Methoden der thermischen Analyse, 1980,

Springer Verlag (Berlin, Heidelberg, New York, London, Paris, Tokyo.).

[85] W. Massa, Kristallstrukturbestimmung, 1996, 2. Aufl., Teubner Verlag, Stuttgart.

[86] S. Haussühl, Kristallstrukturbestimmung, 1979, Verlag Chemie, Weinheim.

[87] W. Kleber, *Einführung in die Kristallographie*, **1998**, 18. Auflage, Verlag Technik, Berlin.

[88] M. Buerger, Kristallographie, 1977, Walter de Gruyter, Berlin, New York.

V Anhang

1 Infrarot- und Ramanspektren

1.1 Infrarotspektren und Zuordnung von Hg(Pyrimidin)X₂ (X = Cl, Br)

Abbildung 131: Ausschnitt aus dem MIR - Spektrum von Hg(Pyrimidin)Cl₂ und Hg(Pyrimidin)Br₂

Hg(Pyrimidin)Cl ₂	Hg(Pyrimidin)Br ₂	Pyrir	nidin		
642	642	623	VS		
681	681	678	S		
715	715	719	VS		
805 825	803	809	S		
1011 1032	1011	990	VS		
1072	1070	1069	S		
1137	1137	1138	m		
1173	1173	1158	S		
1221	1222	1225	VS		
1384	1404	1398	VS		
1461	1460	1468	VS		
1566 1582	1563 1580	1570	VS		
3082	3079	3040	S		

 Tabelle 23: Auflistung der Banden von Hg(Pyrimidin)Cl2 und Hg(Pyrimidin)Br2 und Vergleich mit den Banden von "freiem" Pyrimidin

1.2 Infrarotspektren und Zuordnung von Hg(Pyrimidin)X₂ (X=ClO₄, NO₃)

Abbildung 132: MIR-Spektren von [Hg(Pyrimidin)₂](ClO₄)₂ und [Hg(Pyrimidin)₂](NO₃)₂

Hg(Pyrimidin)(ClO ₄) ₂		Hg(Pyrimidin)(NO ₃) ₂		Pyrimidin	
	626		641	623	vs
	676		653	678	S
	700		700	719	vs
	783		826	809	s
	ClO ₄ -		1012	990	vs
	-		1073	1069	S
	-		1138	1138	m
	-		1183	1158	S
	-		1221	1225	vs
	1398		1383	1398	vs
	1448		1462	1468	vs
	1588		1581	1570	vs
	3073		3090	3040	S
ClO ₄ ⁻		NO ₃ ⁻			
2 v _d	2019	v ₁ (N=O)	1383		
$v_1 + v_4$	1448	$\nu_a (NO_2)$	1299		
$v_3, v_d (F_2)$	1086	v_{s} (NO ₂)	1034		
v_1 , vs (A ₁)	940				
$v_4, \delta_d (F_2)$	626				

Tabelle 24: Auflistung und Zuordnung der Banden von [Hg(Pyrimidin)₂](ClO₄)₂ und [Hg(Pyrimidin)₂](NO₃)₂ und Vergleich mit den Banden von "freiem" Pyrimidin

1.3 Infrarotspektrum von Hg₂(admtrz)Cl₄

Abbildung 133: MIR - Spektren von $Hg_2(admtrz)Cl_4$ und $Hg_2(admtrz)Br_4$ (,,*admtrz* " = 3,5-Dimethyl-4-amino-1,2,4-triazol)

Hg ₂ (admtrz)Cl ₄	admtrz
479	462
509	525
599	594
662	659
724	730
762	770
-	887
970	-
991	989
1048	1039
1090	1075
1259	1259
1319	1324
1353	1348
1380	1378
1424	1419
1380	1378
1424	1419
1537	1537
1652	1632
2933	2933
3007	2974
3152	3287
3244	3353

Tabelle 25: Vergleich der Ban	den der MIR-Spektren vo	on Hg ₂ (admtrz)Cl ₄	und admtrz
0	1		

2 Lageparameter und anisotrope Temperaturfaktoren

$$U_{eq} = \frac{1}{3} \Big[U_{11} (aa^*)^2 + U_{22} (bb^*)^2 + U_{33} (cc^*)^2 + 2U_{23} bcb^* c^* \cos \alpha + 2U_{13} aca^* c^* \cos \beta + 2U_{12} aba^* b^* \cos \gamma \Big]$$

$$U_{ij} = e^{[-2\pi(h^2 a^{*2} U_{11} + \dots + 2hka^{*} b^{*} U_{12})]}$$

Tabelle 26: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg(NH₃)₂][HgCl₃]₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4h	0,0000	0,34761(8)	0,35235(7)	37,4(3)
Hg2	2a	0,0000	0,0000	0,0000	46,1(4)
CI1	4h	0,0000	0,0536(6)	0,3661(4)	39 (1)
CI2	4h	0,0000	0,6393(5)	0,3793(4)	35 (1)
CI3	4h	0,0000	0,3443(6)	0,1272(4)	37(1)
N1	4h	0,0000	0,830(2)	0,126(1)	38(4)

Tabelle 27: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von [Hg(NH₃)₂][HgCl₃]₂

Hg1 0,0481(5) 0,0169(4) 0,0472(5) -0,0006(3) 0,000 0,000	
Hg2 0,0405(7) 0,0477(8) 0,0502(7) 0,0068(5) 0,000 0,000	
Cl1 0,046(3) 0,031(2) 0,040(3) 0,003(2) 0,000 0,000	
Cl2 0,043(3) 0,018(2) 0,045(3) 0,002(2) 0,000 0,000	
Cl3 0,031(2) 0,046(3) 0,034(2) 0,003(2) 0,000 0,000	
N1 0,05(1) 0,037(9) 0,032(9) 0,001(6) 0,000 0,000	

Tabelle 28: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg(NH₃)₄](ClO₄)₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4e	0,1626(1)	0,27167(7)	0,40508(6)	47,3(3)
N1	4e	0,132(2)	0,477(1)	0,382(1)	45(4)
N2	4e	0,851(2)	0,203(2)	0,349(1)	61(5)
N3	4e	0,336(3)	0,179(2)	0,552(1)	71(6)
N4	4e	0,304(2)	0,206(2)	0,317(1)	58(4)
CI1	4e	0,6005(7)	0,4958(4)	0,3482(3)	40,9(10)
O1	4e	0,455(2)	0,577(2)	0,343(2)	93(6)
O2	4e	0,629(3)	0,397(1)	0,414(1)	81(6)
O3	4e	0,771(2)	0,567(2)	0,386(1)	79(5)
O4	4e	0,554(4)	0,448(2)	0,257(1)	126(10)
CI2	4e	0,8592(6)	0,3712(4)	0,0996(3)	37,9(9)
O5	4e	1,020(3)	0,330(4)	0,097(2)	181(15)
O6	4e	0,893(4)	0,477(2)	0,157(1)	109(8)
07	4e	0,825(5)	0,271(2)	0,143(2)	174(14)
08	4e	0,713(3)	0,395(2)	0,001(1)	98(7)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0481(4)	0,0465(4)	0,0468(4)	0,0056(4)	0,0236(3)	0,0039(4)
N1	0,044(9)	0,034(8)	0,05(1)	0,002(6)	0,020(8)	0,005(6)
N2	0,041(9)	0,06(1)	0,09(1)	-0,01(1)	0,037(9)	-0,013(8)
N3	0,12(2)	0,043(9)	0,027(8)	0,008(7)	0,017(9)	0,01(1)
N4	0,06(1)	0,06(1)	0,08(1)	-0,010(9)	0,05(1)	0,001(8)
CI1	0,046(2)	0,037(2)	0,043(2)	0,001(2)	0,024(2)	0,003(2)
O1	0,06(1)	0,06(1)	0,16(2)	-0,01(1)	0,06(1)	0,013(8)
02	0,13(2)	0,040(8)	0,06(1)	0,012(7)	0,04(1)	0,000(9)
O3	0,047(8)	0,07(1)	0,12(1)	-0,03(1)	0,046(9)	-0,018(8)
O4	0,21(3)	0,08(1)	0,05(1)	-0,02(1)	0,04(1)	-0,02(2)
CI2	0,037(2)	0,035(2)	0,040(2)	0,001(2)	0,018(2)	0,003(2)
O5	0,09(2)	0,31(4)	0,13(2)	0,01(2)	0,05(2)	0,10(2)
O6	0,17(2)	0,05(1)	0,06(1)	-0,009(8)	0,02(1)	-0,02(1)
07	0,31(4)	0,07(1)	0,10(2)	0,03(1)	0,07(2)	-0,04(2)
08	0,15(2)	0,06(1)	0,038(8)	0,010(7)	0,01(1)	0,00(1)

Tabelle 29: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von [Hg(NH₃)₄](ClO₄)₂

Tabelle 30: Atomkoordinaten und äquivalente Temperaturfaktoren Ueq (10⁻¹ pm²) von NH₄[Hg₃(NH)₂](NO₃)₃

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	12d	0,84352 (4)	0,6250	0,59352 (4)	10,4(3)
N1	8c	0,7206 (7)	0,7206 (7)	0,7206 (7)	3(3)
N2	12d	0,3550	0,838 (1)	0,912 (1)	11(2)
N3	4a	0,8750	0,1250	0,6250	27(6)
01	12d	0,3750	0,752 (1)	0,998 (1)	40(4)
O2	24e	0,480 (1)	0,879 (2)	0,871 (1)	60(4)

Tabelle 31: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von NH₄[Hg₃(NH)₂](NO₃)₃

Atom	U_{11}	U_{22}	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0108(3)	0,0095(4)	0,0108(3)	-0,0005(2)	0,0023(2)	0,0005(2)
N2	0,003(5)	0,015(4)	0,015(4)	-0,005(5)	0,001(3)	0,001(3)
N3	0,027(6)	0,027(6)	0,027(6)	-0,007(6)	0,007(6)	0,007(6)
01	0,080(1)	0,020(4)	0,020(4)	0,005(6)	-0,006(6)	-0,006(6)
O2	0,054(8)	0,09(1)	0,041(7)	-0,043(7)	0,038(6)	-0,051(7)

Tabelle 32: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von K[Hg₃(NH)₂](NO₃)₃

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	12d	0,40525(4)	0,84475(4)	0,1250	24,4(2)
K1	4a	0,1250	1,1250	0,1250	41(2)
N1	8c	0,5281(9)	0,9719(9)	0,0281(9)	20(3)
N2	12d	-0,084(1)	0,8750	0,166(1)	28(3)
01	12d	-0,001(1)	0,8750	0,249(1)	84(8)
02	24e	0,875(1)	0,980(2)	0,126(2)	95(6)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0246(3)	0,0246(3)	0,0239(3)	0,001(2)	0,001(2)	-0,0023(2)
K1	0,041(2)	0,041(2)	0,041(2)	-0,000(2)	-0,001(2)	-0,001(2)
N1	0,020(3)	0,020(3)	0,020(3)	-0,004(3)	0,004(3)	-0,004(3)
N2	0,029(4)	0,025(7)	0,029(4)	0,005(3)	0,008(5)	-0,005(3)
01	0,041(5)	0,17(2)	0,041(5)	0,005(9)	-0,010(7)	-0,005(9)
02	0,066(8)	0,10(1)	0,120(1)	0,07(1)	0,051(8)	0,057(8)

Tabelle 33: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von K[Hg₃(NH)₂](NO₃)₃

Tabelle 34: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg₂N]NO₃

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	8b	0,32224(6)	0,17896(6)	0,0897(1)	12,1(2)
Hg2	8b	0,46759(6)	0,10587(7)	0,3242(1)	11,3(2)
Hg3	8b	0,38715(6)	0,32382(6)	0,8349(1)	11,5(2)
Hg4	8b	0,25900(6)	0,02906(6)	0,3312(1)	12,6(2)
Hg5	4a	0,56594(6)	0,43406(6)	0,7500	11,0(3)
Hg6	4a	0,58843(6)	0,58843(6)	0,0000	11,4(3)
N1	4a	0,298(1)	0,298(1)	0,0000	2(5)
N2	8b	0,651(1)	0,527(1)	0,830(2)	2(3)
N3	8b	0,360(1)	0,072(2)	0,207(3)	17(4)
N4	8b	0,332(2)	0,544(2)	0,855(4)	39(8)
N5	8b	0,746(2)	0,746(2)	0,0000	22(7)
N6	4a	0,637(2)	0,952(2)	0,182(3)	24(6)
01	8b	0,397(2)	0,514(2)	0,925(4)	53(8)
O2	8b	0,301(2)	0,491(2)	0,750(4)	64(9)
O3	8b	0,304(2)	0,615(2)	0,873(4)	68(11)
O4	8b	0,740(2)	0,689(2)	0,098(3)	56(9)
O5	8b	0,575(2)	0,953(2)	0,272(4)	69(10)
O6	8b	0,495(2)	0,198(2)	0,946(6)	97(18)
07	8b	0,637(2)	0,896(2)	0,083(4)	65(9)
08	4a	0,802(2)	0,802(2)	0,0000	63(12)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0115(4)	0,0071(4)	0,0177(5)	0,0024(4)	-0,0009(4)	0,0008(3)
Hg2	0,0073(4)	0,0095(4)	0,0172(5)	-0,0013(4)	-0,0019(4)	-0,0001(3)
Hg3	0,0085(4)	0,0112(4)	0,0148(5)	0,0010(4)	0,0010(4)	-0,0004(3)
Hg4	0,0083(4)	0,0111(4)	0,0184(6)	0,0009(4)	0,0030(4)	-0,0013(3)
Hg5	0,0082(4)	0,0082(4)	0,0168(8)	-0,0017(4)	-0,0017(4)	-0,0003(5)
Hg6	0,0092(4)	0,0092(4)	0,0157(7)	-0,0010(4)	0,0010(4)	0,0020(5)
N4	0,04(2)	0,05(2)	0,03(2)	-0,01(2)	-0,02(1)	0,00(1)
N5	0,03(1)	0,03(2)	0,02(2)	-0,01(1)	0,01(1)	-0,01(1)
01	0,06(2)	0,05(2)	0,06(2)	-0,02(2)	-0,02(2)	0,00(1)
O2	0,05(2)	0,06(2)	0,07(2)	0,03(2)	-0,03(2)	0,02(2)
O3	0,10(3)	0,02(1)	0,08(3)	0,02(2)	0,00(2)	0,02(2)
O4	0,05(2)	0,10(2)	0,03(1)	0,01(2)	-0,01(1)	-0,05(2)
O5	0,06(2)	0,05(2)	0,10(3)	-0,03(2)	0,03(2)	-0,03(2)
O6	0,03(1)	0,05(2)	0,21(6)	-0,03(3)	0,03(2)	0,02(1)

Tabelle 35: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von [Hg₂N]NO₃

Tabelle 36: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg(py)₂Cl₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	2a	0,0000	0,0000	0,0000	43,2(3)
CI1	4e	0,4293(6)	0,8475(2)	-0,0815(1)	44,4(5)
N1	4e	-0,062(2)	0,1943(8)	-0,0872(4)	42(2)
C1	4e	0,866(3)	0,424(1)	0,8047(7)	64(3)
C2	4e	0,008(4)	0,459(1)	0,8767(8)	68(3)
C3	4e	0,043(3)	0,338(1)	-0,0689(5)	52(2)
C4	4e	0,7910(3)	0,162(1)	0,8418(5)	49(2)
C5	4e	0,7510(4)	0,277(1)	0,7860(5)	66(3)

Tabelle 37: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von Hg(py)₂Cl₂

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₃	U_{23}	U ₁₂
Hg1	0,0572(4)	0,0362(3)	0,0349(3)	0,0081(2)	0,0047(2)	-0,0054(2)
CI1	0,051(1)	0,041(1)	0,0404(9)	-0,0062(8)	0,0066(7)	-0,0100(9)
N1	0,061(5)	0,032(3)	0,035(3)	0,003(3)	0,010(3)	-0,003(3)
C1	0,074(8)	0,052(6)	0,067(6)	0,027(5)	0,019(5)	0,007(5)
C2	0,079(9)	0,033(4)	0,091(9)	0,014(5)	0,011(6)	-0,010(5)
C3	0,058(6)	0,039(4)	0,056(5)	0,003(4)	0,007(4)	0,002(4)
C4	0,057(6)	0,050(5)	0,040(4)	0,005(4)	0,006(3)	-0,003(4)
C5	0,087(9)	0,069(7)	0,039(5)	0,018(4)	0,004(5)	-0,005(6)

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4a	0,39181(2)	0,70840(5)	0,22407(8)	84,6(2)
Br1	4a	0,31780(9)	0,4855(2)	0,1360(2)	106,9(5)
Br2	4a	0,49827(9)	0,8695(2)	0,1420(2)	104,4(5)
N1	4a	0,4213(6)	0,642(1)	0,486(2)	83(3)
N2	4a	0,3013(6)	0,886(1)	0,318(1)	91(3)
C1	4a	0,2288(8)	0,855(2)	0,306(2)	111(6)
C2	4a	0,3213(8)	0,018(2)	0,380(2)	121(6)
C3	4a	0,269(1)	0,125(2)	0,434(2)	126(7)
C4	4a	0,1945(9)	0,089(2)	0,428(2)	112(6)
C5	4a	0,395(1)	0,509(2)	0,714(3)	109(4)
C6	4a	0,4887(9)	0,691(2)	0,716(3)	112(4)
C7	4a	0,1749(9)	0,952(2)	0,363(2)	116(5)
C8	4a	0,449(1)	0,585(3)	0,792(2)	119(6)
C9	4a	0,4750(8)	0,719(2)	0,565(2)	99(4)
C10	4a	0,3845(8)	0,539(2)	0,562(2)	93(4)
H1	4a	0,2144	0,7646	0,2584	133
H2	4a	0,3713	0,0397	0,3887	145
H3	4a	0,2847	0,2187	0,4731	151
H4	4a	0,1590	0,1547	0,4665	134
H5	4a	0,3664	0,4376	0,7650	131
H6	4a	0,5254	0,7443	0,7683	134
H7	4a	0,1253	0,9248	0,3571	139
H8	4a	0,4582	0,5642	0,8956	143
H9	4a	0,5026	0,7923	0,5139	118
H10	4a	0,3490	0,4831	0,5084	112

Tabelle 38: Atomkoordinaten und äc	uivalente Temper	raturfaktoren U _{eq} (10	J⁻¹ pm²) von Hg(py) ₂ Br ₂

Tabelle 39: Koeffizienten de	r anisotropen Terr	peraturfaktoren U _{ii} ((10 ⁻⁴ pm ²) von Hg(r	$(y)_2Br_2$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0777(2)	0,0752(2)	0,1008(3)	-0,0073(4)	0,0035(4)	-0,0081(2)
Br1	0,0957(9)	0,0898(9)	0,135(1)	-0,0304(9)	-0,0004(9)	-0,0174(7)
Br2	0,0878(9)	0,0996(9)	0,126(1)	0,0082(9)	0,0086(8)	-0,0243(8)
N1	0,067(7)	0,069(6)	0,11(1)	-0,003(6)	0,011(6)	0,004(5)
N2	0,073(7)	0,069(7)	0,131(9)	-0,019(6)	0,026(6)	0,002(5)
C1	0,068(9)	0,084(9)	0,18(2)	-0,008(8)	-0,017(9)	-0,014(8)
C2	0,09(1)	0,055(9)	0,21(2)	-0,021(9)	-0,04(1)	-0,028(8)
C3	0,15(2)	0,048(8)	0,18(2)	-0,02(1)	0,04(1)	0,01(1)
C4	0,11(2)	0,08(1)	0,15(2)	-0,010(9)	0,04(1)	0,003(9)
C5	0,13(1)	0,10(1)	0,10(1)	0,02(2)	0,04(2)	0,01(1)
C6	0,12(1)	0,14(1)	0,08(1)	-0,01(1)	0,01(2)	0,02(1)
C7	0,08(1)	0,11(1)	0,17(2)	-0,01(1)	0,02(1)	0,022(9)
C8	0,09(1)	0,16(2)	0,10(2)	0,02(1)	-0,01(1)	0,06(1)
C9	0,08(1)	0,10(1)	0,11(2)	-0,00(1)	0,012(9)	-0,021(8)
C10	0,074(9)	0,09(1)	0,12(2)	-0,006(9)	0,02(1)	-0,015(7)

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4c	0,00447(3)	0,2500	0,93403(4)	48,1(1)
11	4c	-0,06885(5)	0,2500	0,22037(8)	58,8(2)
12	4c	0,16441(5)	0,2500	0,78110(9)	56,6(2)
N1	8d	-0,0785(4)	0,0952(5)	0,8022(7)	47(1)
C1	8d	0,8700(5)	0,0179(6)	0,8835(8)	48(2)
C2	8d	-0,0749(5)	0,0850(7)	0,6464(9)	55(2)
C3	8d	0,8186(5)	-0,0696(7)	0,809(1)	59(2)
C4	8d	0,8222(5)	-0,0763(7)	0,647(1)	61(2)
C5	8d	0,8761(6)	0,0023(7)	0,5648(9)	59(2)

Tabelle 40: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg(py)₂I₂

Tabelle 41: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von Hg(py)₂I₂

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0505(2)	0,0533(2)	0,0406(2)	0,000	0,0046(2)	0,000
11	0,0605(4)	0,0780(5)	0,0379(4)	0,000	0,0058(3)	0,000
12	0,0519(4)	0,0707(5)	0,0473(4)	0,000	0,0090(3)	0,000
N1	0,050(3)	0,048(3)	0,044(3)	-0,006(3)	0,001(2)	0,002(2)
C1	0,047(4)	0,043(4)	0,054(4)	0,003(3)	0,005(3)	-0,002(3)
C2	0,059(5)	0,060(5)	0,047(4)	-0,004(4)	0,000(4)	-0,007(3)
C3	0,059(5)	0,055(4)	0,062(5)	0,006(4)	0,003(4)	0,001(3)
C4	0,059(5)	0,050(4)	0,074(6)	-0,007(4)	-0,008(4)	0,002(3)
C5	0,072(5)	0,056(4)	0,049(4)	0,001(4)	-0,006(4)	0,002(4)

Tabelle 42: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg₃(py)₂Cl₆

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	1a	0,0000	0,0000	0,0000	49,8(5)
Hg2	2i	0,7777(2)	-0,06009(9)	0,36044(7)	45,3(4)
CI1	2i	0,823(1)	0,1631(6)	0,4747(4)	43(1)
CI2	2i	0,163(1)	0,0148(6)	0,2362(4)	42(1)
CI3	2i	0,763(2)	0,2059(7)	0,0129(5)	59(2)
N1	2i	0,563(5)	0,711(2)	0,302(2)	54(6)
C1	2i	0,645(7)	0,672(2)	0,209(2)	52(7)
C2	2i	0,455(8)	0,591(3)	0,3590(2)	58(7)
C3	2i	0,483(9)	0,410(3)	0,228(2)	69(9)
C4	2i	0,499(8)	0,522(3)	0,165(2)	65(8)
C5	2i	0,420(7)	0,442(2)	0,325(2)	57(7)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0524(8)	0,0444(8)	0,0589(9)	0,0055(6)	0,0125(7)	0,0215(6)
Hg2	0,0541(6)	0,0313(5)	0,0506(6)	-0,0032(4)	0,0064(4)	0,0123(4)
CI1	0,049(3)	0,034(3)	0,046(3)	0,000(2)	0,007(3)	0,008(2)
Cl2	0,042(3)	0,044(3)	0,041(3)	0,008(2)	0,008(2)	0,009(2)
CI3	0,069(4)	0,057(4)	0,059(4)	0,001(3)	0,008(3)	0,036(3)
N1	0,06(1)	0,04(1)	0,06(1)	-0,02(1)	0,01(1)	0,02(1)
C1	0,08(2)	0,04(1)	0,03(1)	-0,01(1)	-0,01(1)	0,01(1)
C2	0,09(2)	0,05(1)	0,04(1)	0,02(1)	0,01(1)	0,02(1)
C3	0,12(2)	0,03(1)	0,06(2)	0,01(1)	0,000(2)	0,01(1)
C4	0,09(2)	0,05(2)	0,05(1)	-0,00(1)	0,02(1)	-0,01(1)
C5	0,07(2)	0,03(1)	0,07(2)	0,00(1)	0,02(2)	0,01(1)

Tabelle 43: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von Hg₃(py)₂Cl₆

Tabelle 44: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg₃(py)₂Br₆

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	1a	0,5000	0,5000	0,5000	56,6(6)
Br3	2i	0,9299(5)	0,2920(4)	0,4949(2)	54,0(9)
Hg2	2i	0,8494(2)	0,3628(2)	0,1424(1)	52,7(4)
Br4	2i	0,4123(5)	0,5052(4)	0,2607(2)	51,0(9)
Br5	2i	0,3309(5)	0,3124(4)	0,0092(2)	57(1)
N1	2i	0,825(5)	0,131(3)	0,200(2)	51(8)
C1	2i	0,992(6)	-0,003(4)	0,150(2)	51(10)
C2	2i	0,647(9)	0,093(5)	0,295(2)	60(14)
C3	2i	0,556(8)	0,002(7)	0,325(3)	10(2)
C4	2i	0,959(7)	0,866(5)	0,187(3)	91(17)
C5	2i	0,742(7)	0,854(5)	0,285(3)	66(12)

Tabelle 45: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von Hg₃(py)₂Br₆

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₃	U_{23}	U ₁₂
Hg1	0,0394(9)	0,058(2)	0,069(1)	0,002(1)	-0,0049(8)	-0,0034(7)
Br3	0,046(1)	0,055(3)	0,059(2)	-0,003(2)	-0,005(1)	-0,003(1)
Hg2	0,0430(6)	0,062(1)	0,0493(8)	-0,0026(8)	0,0050(5)	-0,0070(5)
Br4	0,049(2)	0,052(3)	0,048(2)	-0,006(2)	0,001(1)	-0,004(1)
Br5	0,040(2)	0,085(3)	0,046(2)	-0,012(2)	0,004(1)	-0,016(1)
N1	0,07(2)	0,04(2)	0,04(2)	0,02(2)	-0,02(1)	0,001(11)
C1	0,07(2)	0,05(3)	0,03(2)	0,05(2)	-0,01(1)	-0,02(2)
C2	0,08(2)	0,12(4)	0,00(1)	0,02(2)	0,003(14)	-0,08(3)
C3	0,05(2)	0,17(7)	0,08(3)	-0,03(4)	0,01(2)	-0,05(3)
C4	0,05(2)	0,15(6)	0,08(3)	-0,01(3)	-0,03(2)	-0,04(2)
C5	0,07(2)	0,07(4)	0,06(3)	0,01(3)	-0,06(2)	0,01(2)

Tabelle 46: Atomkoordinaten und äquivalente Temperaturfaktoren U _{eq} (10 ⁻¹ pm²) von Hg(Pyridazin	ı)Cl₂
--	-------

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4a	0,0000	0,5000	0,0000	48,5(1)
CI1	8i	0,2378(3)	0,7500	-0,0696(1)	47,1(5)
N1	8h	0,0000	0,6569(7)	0,1624(4)	36(1)
C1	8h	0,0000	0,567(1)	0,249(2)	47(3)
C2	8h	0,0000	0,656(1)	0,3436(5)	46(2)
H1	8h	0,0000	0,44(1)	0,25(1)	40(3)
H2	8h	0,0000	0,59(1)	0,392(6)	60(3)

Tabelle 47: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von Hg(Pyridazin)Cl₂

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U_{23}	U ₁₂
Hg1	0,0898(3)	0,0212(1)	0,0345(2)	-0,0027(4)	0,000	0,000
CI1	0,055(1)	0,0398(8)	0,0470(9)	0,000	-0,0004(9)	0,000
N1	0,053(4)	0,022(2)	0,033(2)	-0,005(2)	0,000	0,000
C1	0,071(7)	0,029(3)	0,041(4)	0,001(3)	0,000	0,000
C2	0,058(6)	0,047(4)	0,034(3)	0,007(3)	0,000	0,000

Tabelle 48: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg(Pyridazin)Br₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4a	0,0000	0,0000	0,5000	63,1(6)
Br1	8i	0,2431(2)	-0,0699(1)	0,0123(2)	59,1(6)
N1	8h	-0,011(2)	0,1641(9)	0,650(2)	58(3)
C3	8h	0,510(2)	0,163(1)	0,350(2)	62(3)
C4	8h	-0,017(2)	0,250(1)	0,562(3)	60(4)

|--|

Atom	U_{11}	U_{22}	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0987(8)	0,0546(7)	0,0719(8)	-0,0150(3)	0,0716(6)	-0,0169(3)
Br1	0,0700(8)	0,0606(9)	0,0567(9)	0,0041(6)	0,0460(7)	0,0035(6)
N1	0,085(6)	0,058(6)	0,057(6)	0,002(5)	0,059(6)	0,005(6)
C3	0,097(9)	0,046(7)	0,065(7)	0,002(6)	0,063(7)	0,001(7)
C4	0,078(8)	0,046(7)	0,072(8)	0,003(6)	0,056(7)	-0,008(6)

Tabelle 50: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg(Pyrimidin)Cl₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	2a	0,0000	0,5000	1,0000	36,1(6)
CI1	4f	0,420(1)	0,4213(4)	0,7812(6)	43(1)
N1	4f	0,012(4)	0,661(1)	0,811(2)	37(4)
C1	4f	0,111(6)	0,660(2)	0,631(2)	41(5)
C2	2e	-0,030(6)	0,7500	0,899(3)	36(6)
C3	2e	0,139(9)	0,7500	0,538(4)	51(7)

_

Tabelle 51: Koeffizienten der anisotrope	en Temperaturfaktoren	U _{ii} (10 ⁻⁴ pn	n ²) von Hg(Pyrimidin)Cl ₂
--	-----------------------	--------------------------------------	---

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0399(8)	0,0312(8)	0,0383(8)	0,0033(4)	0,0130(4)	0,0026(4)
CI1	0,047(2)	0,045(2)	0,037(2)	-0,012(2)	0,009(2)	0,001(2)
N1	0,045(9)	0,022(8)	0,043(9)	0,001(6)	0,007(7)	-0,001(6)
C1	0,06(1)	0,05(1)	0,017(8)	0,000(7)	0,002(8)	0,008(9)
C2	0,04(1)	0,04(2)	0,03(1)	0,000	0,01(1)	0,000
C3	0,06(2)	0,06(2)	0,03(1)	0,000	-0,01(1)	0,000

Tabelle 52: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg(Pyrimidin)Br₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	2a	0,0000	0,5000	0,0000	38,7(3)
Br1	4f	0,4519(3)	0,57677(8)	0,2270(1)	43,6(3)
N1	4f	0,018(2)	0,3375(6)	0,1807(9)	43(2)
C6	4f	0,030(4)	0,2500	0,101(2)	43(3)
C7	2e	0,001(3)	0,3373(7)	0,359(1)	47(2)
C8	2e	-0,010(5)	0,2500	0,454(2)	57(4)

Tabelle 53: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von Hg(Pyrimidin)Br₂

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₃	U_{23}	U ₁₂
Hg1 (0,0483(4)	0,0272(3)	0,0395(4)	0,0029(2)	-0,0045(2)	-0,0043(2)
Br1 (0,0475(6)	0,0434(5)	0,0396(5)	-0,0118(4)	0,0013(3)	-0,0004(4)
N1	0,066(6)	0,034(4)	0,030(3)	0,002(3)	0,002(3)	0,000(4)
C6	0,07(1)	0,032(7)	0,029(6)	0,000	0,006(6)	0,000
C7	0,066(7)	0,035(5)	0,038(4)	-0,003(4)	0,003(4)	0,009(4)
C8	0,09(1)	0,049(9)	0,032(6)	0,000	0,009(7)	0,000

Tabelle 54: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg(Pyrazin)Cl₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	2d	0,0000	0,5000	0,5000	34,7(3)
CI1	4i	0,1556(2)	0,5000	0,0696(6)	39,1(4)
N1	4h	0,0000	0,8225(9)	0,5000	34(1)
C1	8j	0,0904(5)	-0,0902(8)	0,404(2)	40(1)

Tabelle 55: Koeffizienten der anisotropen Temperaturfaktoren U _{ii} (10 ⁻⁴ pm ²) von Hg(Pyrazin)Cl ₂

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0386(3)	0,0316(3)	0,0343(3)	0,000	0,0137(2)	0,000
CI1	0,0304(9)	0,046(1)	0,041(1)	0,000	0,0088(7)	0,000
N1	0,029(3)	0,039(3)	0,033(4)	0,000	0,008(2)	0,000
C1	0,031(3)	0,038(3)	0,051(4)	-0,002(3)	0,010(2)	0,003(2)

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4c	0,30515(3)	0,7500	-0,01734(3)	42,3(1)
Br1	4c	0,31147(9)	0,7500	0,79238(7)	49,5(2)
Br2	4c	0,34423(7)	0,7500	0,16954(7)	47,1(3)
N1	8d	0,1098(4)	0,5676(7)	-0,0085(5)	61(2)
N2	8d	0,3657(4)	0,0822(6)	-0,0189(5)	48(1)
C1	8d	0,0461(7)	0,535(1)	-0,0900(6)	67(2)
C2	8d	0,0648(7)	0,530(1)	0,0815(6)	67(2)
C3	8d	0,3396(5)	0,1669(9)	0,8964(5)	48(2)
C4	8d	0,3935(6)	0,1669(9)	0,0661(5)	48(2)

Tabelle 56: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg(Pyrazin)₂Br₂

Tabelle 57: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von Hg(Pyrazin)₂Br₂

Atom	U_{11}	U ₂₂	U ₃₃	U ₁₃	U_{23}	U ₁₂
Hg1	0,0427(2)	0,0513(2)	0,0328(2)	0,000	0,0008(2)	0,000
Br1	0,0689(6)	0,0458(6)	0,0339(5)	0,000	0,0027(5)	0,000
Br2	0,0581(5)	0,0490(6)	0,0344(5)	0,000	-0,0007(4)	0,000
N1	0,045(3)	0,070(4)	0,066(4)	0,006(4)	-0,003(3)	-0,010(3)
N2	0,046(2)	0,042(3)	0,056(3)	0,004(3)	-0,004(3)	0,001(2)
C1	0,063(5)	0,085(8)	0,053(5)	0,002(4)	-0,001(4)	-0,027(5)
C2	0,067(5)	0,083(7)	0,050(5)	0,013(4)	-0,002(3)	-0,022(5)
C3	0,057(4)	0,040(4)	0,048(4)	0,004(3)	-0,001(3)	0,003(3)
C4	0,055(4)	0,043(4)	0,048(4)	-0,002(3)	-0,007(3)	0,000(3)

Tabelle 58: Atomkoordinaten und äquivalente Temperaturfaktoren Ueg (10⁻¹ pm²) von Hg(Anilin)₂Cl₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4e	0,0000	0,49869(7)	0,2500	46,4(1)
CI1	8f	-0,04500(6)	0,1481(3)	0,08849(8)	49,4(3)
N1	8f	0,0650(2)	0,7204(8)	0,2015(3)	40,2(9)
C1	8f	0,1135(2)	0,5674(9)	0,2344(3)	36 (1)
C2	8f	0,1501(2)	0,612(2)	0,3462(4)	54(1)
C3	8f	0,1237(2)	0,371(2)	0,1556(4)	47 (1)
C4	8f	0,1966(3)	0,459(1)	0,3781(5)	67(2)
C5	8f	0,2081(3)	0,269(1)	0,3001(5)	66(2)
C6	8f	0,1701(3)	0,2220(13)	0,1883(5)	60(2)

Tabelle 59: Koeffizienten der anisotropen Temperaturfaktoren U _{ii} (10 ⁻⁴ pm ²) von Hg(Anilin) ₂ Cl ₂									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂			
Hg1	0,0379(2)	0,0510(2)	0,0524(2)	0,000	0,0175(10)	0,000			
CI1	0,0646(8)	0,0493(8)	0,0317(4)	-0,0021(5)	0,0119(4)	-0,0019(7)			
N1	0,037(2)	0,043(3)	0,043(2)	0,007(1)	0,016(2)	0,001(2)			
C1	0,039(3)	0,036(3)	0,037(2)	0,005(1)	0,018(2)	-0,002(2)			
C2	0,049(3)	0,062(3)	0,044(2)	0,001(2)	0,007(2)	-0,004(3)			
C3	0,054(3)	0,046(3)	0,047(2)	0,001(2)	0,023(2)	0,006(3)			
C4	0,049(3)	0,075(5)	0,064(3)	0,008(2)	0,000(2)	0,002(3)			
C5	0,050(4)	0,069(5)	0,082(3)	0,020(3)	0,025(3)	0,009(3)			
C6	0,058(4)	0,062(4)	0,070(3)	0,010(2)	0,033(3)	0,013(3)			

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	1a	0,041664(7)	0,3750	0,3750	38,6(2)
CI1	1a	0,03547(4)	0,3008(1)	0,0834(2)	44,2(3)
N1	1a	0,0977(1)	0,2042(4)	0,5103(5)	35,7(8)
C1	1a	0,1250	0,2786(7)	0,6250	40(2)
C2	1a	0,1250	0,1250	0,398(1)	39(2)
C3	1a	0,0716(2)	0,1250	0,6250	35(1)

Tabelle 60: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg(Urotropin)Cl₂

Tabelle 61: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von Hg(Urotropin)Cl₂

U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
0,0401(2)	0,0502(2)	0,0254(2)	-0,00182(9)	0,000	0,000
0,0442(5)	0,0615(7)	0,0269(5)	-0,0060(5)	0,0059(5)	-0,0141(5)
0,033(2)	0,044(2)	0,030(2)	0,003(2)	-0,009(2)	-0,006(2)
0,036(3)	0,041(3)	0,044(4)	0,000	-0,015(3)	0,000
0,040(3)	0,055(4)	0,022(3)	0,000	0,000	-0,010(3)
0,028(3)	0,044(3)	0,034(3)	0,004(3)	0,000	0,000
	U ₁₁ 0,0401(2) 0,0442(5) 0,033(2) 0,036(3) 0,040(3) 0,028(3)	U11 U22 0,0401(2) 0,0502(2) 0,0442(5) 0,0615(7) 0,033(2) 0,044(2) 0,036(3) 0,041(3) 0,040(3) 0,055(4) 0,028(3) 0,044(3)	U11U22U330,0401(2)0,0502(2)0,0254(2)0,0442(5)0,0615(7)0,0269(5)0,033(2)0,044(2)0,030(2)0,036(3)0,041(3)0,044(4)0,040(3)0,055(4)0,022(3)0,028(3)0,044(3)0,034(3)	U11U22U33U130,0401(2)0,0502(2)0,0254(2)-0,00182(9)0,0442(5)0,0615(7)0,0269(5)-0,0060(5)0,033(2)0,044(2)0,030(2)0,003(2)0,036(3)0,041(3)0,044(4)0,0000,040(3)0,055(4)0,022(3)0,004(3)0,028(3)0,044(3)0,034(3)0,004(3)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Tabelle 62: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von ______Melamin⁺[Hg(Melamin)Cl₃]

Atom	Lage	x/a	y/b	z/c	U _{eq}
Hg1	2a	0,06741(3)	0,26800(8)	0,76318(2)	30,1(2)
CI1	2a	0,0006(2)	0,4444(4)	-0,0790(2)	36,1(5)
Cl2	2a	-0,0026(2)	0,4453(3)	0,5836(2)	30,6(5)
CI3	2a	-0,0013(2)	-0,0780(4)	0,7202(2)	35,8(5)
N1	2a	0,3158(6)	0,2103(9)	0,7900(5)	19(2)
N2	2a	0,5175(7)	0,633(1)	0,5923(5)	24(2)
N3	2a	0,5155(7)	0,642(1)	0,7886(5)	20(1)
N4	2a	0,7237(7)	0,589(1)	0,7192(6)	32(2)
N5	2a	0,5305(7)	0,129(1)	0,7186(5)	24 (2)
N6	2a	0,3031(7)	0,703(1)	0,6619(5)	23(2)
N7	2a	0,3198(8)	0,199(1)	0,6006(5)	29 (2)
N8	2a	0,5349(7)	0,147(1)	-0,0835(5)	25(2)
N9	2a	0,3217(7)	0,206(1)	-0,0202(5)	34(2)
N10	2a	0,3015(8)	0,677(1)	0,4733(5)	37(2)
N11	2a	0,3022(8)	0,713(1)	0,8526(5)	29(2)
N12	2a	0,7363(7)	0,064(1)	0,8440(6)	32(2)
C1	2a	0,3759(8)	0,672(1)	0,5753(6)	24(2)
C2	2a	0,3766(8)	0,687(1)	0,7683(6)	21(2)
C3	2a	0,5821(9)	0,622(1)	0,7006(6)	22(2)
C4	2a	0,5974(9)	0,117(1)	0,8265(6)	22(2)
C5	2a	0,3900(8)	0,181(1)	0,7039(6)	19(2)
C6	2a	0,3903(8)	0,189(1)	0,8951(6)	22(2)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0214(2)	0,0396(2)	0,0281(2)	-0,0039(2)	0,0005(1)	0,0023(2)
CI1	0,028(1)	0,050(1)	0,0289(9)	-0,0109(9)	0,0004(8)	0,009(1)
CI2	0,025(1)	0,038(1)	0,0283(9)	0,0048(8)	0,0003(7)	-0,0019(9)
CI3	0,024(1)	0,032(1)	0,052(1)	-0,009(1)	0,0099(9)	-0,0037(9)
N1	0,012(3)	0,029(5)	0,015(3)	-0,005(2)	0,001(2)	0,002(2)
N2	0,010(3)	0,037(5)	0,023(3)	0,003(3)	0,002(3)	-0,001(3)
N3	0,013(3)	0,028(5)	0,018(3)	0,000(3)	0,001(2)	-0,002(3)
N4	0,013(4)	0,054(5)	0,027(4)	-0,006(3)	0,004(3)	0,001(3)
N5	0,021(4)	0,032(5)	0,019(3)	0,002(3)	0,005(3)	0,005(3)
N6	0,016(3)	0,031(5)	0,021(3)	0,002(2)	0,003(2)	0,004(3)
N7	0,025(3)	0,044(5)	0,018(3)	-0,003(3)	0,000(3)	0,006(3)
N8	0,009(3)	0,041(5)	0,027(3)	-0,002(3)	0,006(3)	0,001(3)
N9	0,022(3)	0,060(7)	0,019(3)	0,000(3)	-0,002(3)	0,010(3)
N10	0,027(4)	0,064(6)	0,020(3)	0,002(3)	0,002(3)	0,003(4)
N11	0,029(4)	0,035(6)	0,023(3)	-0,002(3)	0,010(3)	0,006(3)
N12	0,013(4)	0,052(6)	0,030(3)	-0,002(3)	0,000(3)	0,002(3)
C1	0,012(4)	0,033(5)	0,024(4)	0,000(3)	-0,002(3)	0,007(3)
C2	0,021(4)	0,018(4)	0,025(4)	-0,001(3)	0,003(3)	-0,003(3)
C3	0,027(5)	0,019(5)	0,019(4)	0,001(3)	-0,001(3)	0,004(3)
C4	0,018(4)	0,028(5)	0,019(4)	-0,001(3)	0,002(3)	-0,004(3)
C5	0,018(4)	0,021(4)	0,017(3)	-0,001(3)	0,002(3)	-0,002(3)
C6	0,018(4)	0,024(5)	0,023(4)	0,003(3)	-0,004(3)	-0,002(3)

Tabelle 63: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von Melamin⁺[Hg(Melamin)Cl₃]⁻

	Tabelle 64: Atomkoordinaten und äguivalente To	emperaturfaktoren U _{eg} (10 ⁻¹	pm ²) von Hg ₂ (admtrz)Cl ₄
--	--	---	---

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4e	0,83158(4)	0,88953(4)	0,82006(3)	44,2(1)
Hg2	4e	0,14033(4)	0,18618(4)	0,88786(3)	46,5(1)
CI1	4e	0,6609(3)	-0,0983(3)	0,8564(2)	51,4(6)
CI2	4e	0,9538(3)	0,1808(3)	0,9074(2)	44,3(5)
CI3	4e	0,2973(3)	0,1019(3)	0,8483(3)	60,4(7)
Cl4	4e	0,0400(3)	-0,1808(3)	0,8386(2)	59,2(7)
N1	4e	0,7607(8)	-0,0744(7)	0,5676(6)	39(2)
N2	4e	0,7203(8)	-0,0153(8)	0,6317(6)	37(2)
N3	4e	0,6644(8)	0,1341(7)	0,4993(6)	37(2)
N4	4e	0,617(1)	0,2565(9)	0,4290(7)	53(2)
C1	4e	0,6624(9)	0,112(1)	0,5890(7)	39(2)
C2	4e	0,607(1)	0,213(1)	0,6331(9)	53(3)
C3	4e	0,725(1)	0,0173(9)	0,4872(7)	41(2)
C4	4e	0,747(1)	0,0002(12)	0,3979(9)	62(3)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0492(2)	0,0499(2)	0,0446(2)	-0,00004(14)	0,0337(2)	-0,0012(2)
Hg2	0,0542(2)	0,0479(2)	0,0511(2)	0,0010(2)	0,0386(2)	-0,0038(2)
CI1	0,048(1)	0,061(2)	0,055(1)	0,001(1)	0,036(1)	-0,001(1)
Cl2	0,046(1)	0,048(1)	0,048(1)	-0,003(1)	0,032(1)	-0,004(1)
CI3	0,069(2)	0,057(2)	0,082(2)	-0,017(1)	0,059(2)	-0,007(1)
Cl4	0,043(1)	0,087(2)	0,045(1)	-0,006(1)	0,024(1)	0,013(1)
N1	0,053(5)	0,029(4)	0,040(4)	0,007(3)	0,031(4)	0,008(3)
N2	0,054(5)	0,032(4)	0,036(4)	0,002(3)	0,031(4)	0,009(3)
N3	0,038(4)	0,034(4)	0,030(3)	0,004(3)	0,014(3)	0,003(3)
N4	0,067(6)	0,037(4)	0,049(5)	0,020(4)	0,031(4)	0,012(4)
C1	0,031(4)	0,042(5)	0,032(4)	-0,005(4)	0,012(4)	0,002(4)
C2	0,063(7)	0,046(6)	0,056(6)	-0,007(4)	0,039(5)	0,009(5)
C3	0,054(6)	0,031(4)	0,040(5)	0,001(4)	0,029(4)	-0,003(4)
C4	0,109(9)	0,047(6)	0,066(6)	0,009(5)	0,071(7)	0,001(6)

Tabelle 65: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von Hg₂(admtrz)Cl₄

Tabelle 66: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von Hg₂(admtrz)Br₄

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4e	0,17735(6)	0,60989(5)	0,68498(5)	57,5(2)
Hg2	4e	0,85559(6)	0,32242(5)	0,61453(5)	56,7(2)
Br1	4e	0,0513(2)	0,3214(1)	0,5964(1)	55,0(4)
Br2	4e	0,3562(2)	0,5909(1)	0,6494(2)	64,1(4)
Br3	4e	0,6845(2)	0,4163(1)	0,6436(2)	69,2(5)
Br4	4e	0,0367(2)	0,1996(2)	0,8394(1)	72,0(5)
N1	4e	0,719(2)	0,0268(9)	0,631(1)	53(3)
N2	4e	0,765(1)	0,0826(8)	0,573(1)	48(3)
N3	4e	0,668(1)	0,8843(9)	0,5047(9)	45(2)
N4	4e	0,626(2)	0,766(1)	0,435(1)	67(3)
C1	4e	0,763(2)	0,012(1)	0,414(1)	69(5)
C2	4e	0,733(1)	-0,002(1)	0,497(1)	51(3)
C3	4e	0,660(1)	-0,094(1)	0,585(1)	49(3)
C4	4e	0,600(2)	0,805(1)	0,628(2)	67(4)

Tabelle 67: Koeffizienten	der anisotronen	Temperaturfaktoren	$11(10^{-4})$	nm^2) von	Has(admtrz)Br.
Tabelle 07. Nuellizienten	uer amsou open	remperaturiaktoren		pm) von	ng2(aunitz)Di4

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U_{12}
Hg1	0,0626(4)	0,0567(3)	0,0670(4)	0,0036(2)	0,0451(3)	0,0028(2)
Hg2	0,0652(4)	0,0489(3)	0,0698(4)	-0,0003(2)	0,0466(3)	-0,0040(2)
Br1	0,0620(9)	0,0499(6)	0,0652(9)	-0,0051(6)	0,0434(8)	-0,0044(6)
Br2	0,064(1)	0,0667(8)	0,078(1)	0,0022(7)	0,0501(9)	-0,0016(6)
Br3	0,076(1)	0,0577(7)	0,096(1)	-0,0165(7)	0,062(1)	-0,0066(7)
Br4	0,0559(9)	0,092(1)	0,060(1)	0,0110(7)	0,0284(8)	-0,0172(7)
N1	0,069(8)	0,031(5)	0,074(9)	-0,005(5)	0,050(7)	-0,009(5)
N2	0,068(8)	0,029(4)	0,062(8)	-0,007(4)	0,046(7)	-0,006(4)
N3	0,048(7)	0,040(5)	0,047(7)	-0,003(4)	0,027(6)	-0,002(4)
N4	0,09(1)	0,042(5)	0,065(8)	-0,024(5)	0,042(8)	-0,014(6)
C1	0,10(1)	0,050(7)	0,08(1)	-0,004(7)	0,07(1)	0,001(7)

C2	0,056(8)	0,034(5)	0,055(9)	0,011(5)	0,028(7)	0,014(5)
C3	0,045(8)	0,034(6)	0,063(9)	0,006(5)	0,028(7)	0,008(5)
C4	0,09(1)	0,044(7)	0,092(13)	-0,002(6)	0,06(1)	-0,018(7)

Fortsetzung von Tabelle 67.

Tabelle 68: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von RT-[Hg(admtrz)(CF₃)₂]₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4e	0,22314(9)	0,83343(5)	0,82539(5)	59,5(3)
Hg2	4e	0,22582(9)	0,57523(5)	0,88963(5)	60,2(3)
F1	4e	0,500(2)	0,909(1)	-0,0591(9)	118(5)
F2	4e	0,349(2)	0,868(1)	0,0105(8)	141(7)
F3	4e	0,289(2)	0,968(1)	-0,064(1)	155(7)
F4	4e	0,521(2)	0,583(1)	0,0351(8)	123(6)
F5	4e	0,317(2)	0,586(1)	0,0802(8)	128(6)
F6	4e	0,385(2)	0,683(1)	0,0255(8)	104(4)
F7	4e	-0,067(2)	0,513(2)	0,775(1)	186(11)
F8	4e	0,118(2)	0,456(1)	0,759(1)	152(7)
F9	4e	0,079(3)	0,557(1)	0,705(1)	205(11)
F10	4e	0,185(2)	0,757(2)	0,658(1)	178(10)
F11	4e	0,012(3)	0,7300(2)	0,705(1)	257(19)
F12	4e	0,010(4)	0,829(1)	0,651(1)	267(19)
N1	4e	0,432(2)	0,643(1)	0,818(1)	064(5)
N2	4e	0,467(2)	0,720(1)	0,827(1)	58(4)
N3	4e	0,010(2)	0,688(1)	-0,098(1)	61(4)
N4	4e	0,036(2)	0,766(1)	-0,093(1)	70(5)
N5	4e	0,854(2)	0,741(1)	-0,0300(9)	54(4)
N6	4e	0,731(2)	0,755(1)	0,011(1)	79(5)
N7	4e	0,661(2)	0,670(1)	0,670(1)	96(7)
N8	4e	0,570(2)	0,672(1)	0,7314(9)	63(4)
C1	4e	-0,099(2)	0,674(1)	-0,059(1)	59(5)
C2	4e	0,833(3)	0,596(1)	-0,046(1)	81(7)
C3	4e	0,612(3)	0,818(1)	0,762(1)	73(6)
C4	4e	0,084(3)	0,527(1)	0,778(2)	79(7)
C5	4e	0,346(3)	0,899(1)	-0,070(1)	70(6)
C6	4e	0,367(3)	0,606(1)	0,010(2)	80(7)
C7	4e	0,108(3)	0,783(2)	0,709(2)	85(8)
C8	4e	-0,058(3)	0,800(2)	-0,050(1)	69(7)
C9	4e	-0,066(3)	0,882(1)	-0,028(2)	91(8)
C10	4e	0,553(2)	0,737(1)	0,773(1)	61(6)
C11	4e	0,492(2)	0,612(1)	0,758(1)	61(6)
C12	4e	0,490(3)	0,532(1)	0,728(2)	84(7)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0528(5)	0,0691(6)	0,0543(4)	-0,0011(4)	0,0122(3)	-0,0065(4)
Hg2	0,0578(5)	0,0645(6)	0,0621(5)	-0,0007(4)	0,0234(4)	-0,0045(4)
F1	0,08(1)	0,13(1)	0,13(1)	-0,04(1)	0,017(9)	-0,03(1)
F2	0,17(2)	0,20(2)	0,042(7)	-0,025(9)	0,008(8)	-0,08(1)
F3	0,14(1)	0,11(1)	0,17(2)	-0,07(1)	-0,04(1)	0,03(1)
F4	0,070(9)	0,19(2)	0,10(1)	-0,03(1)	0,000(8)	0,02(1)
F5	0,15(1)	0,18(2)	0,069(8)	-0,008(9)	0,058(9)	-0,05(1)
F6	0,10(1)	0,12(1)	0,091(9)	-0,022(9)	0,025(8)	-0,022(9)
F7	0,08(1)	0,32(3)	0,17(2)	-0,14(2)	0,04(1)	-0,06(2)
F8	0,13(2)	0,15(2)	0,16(2)	-0,06(1)	0,01(1)	-0,02(1)
F9	0,30(3)	0,14(2)	0,12(1)	0,04(1)	-0,04(2)	-0,06(2)
F10	0,14(1)	0,29(3)	0,11(1)	-0,09(2)	0,05(1)	-0,03(2)
F11	0,26(3)	0,43(5)	0,08(1)	-0,10(2)	0,06(2)	-0,24(3)
F12	0,40(4)	0,13(2)	0,14(2)	-0,06(2)	-0,12(2)	0,11(3)
N1	0,09(1)	0,06(1)	0,06(1)	0,015(8)	0,04(1)	-0,007(9)
N2	0,06(1)	0,05(1)	0,07(1)	-0,003(8)	0,026(9)	0,000(8)
N3	0,07(1)	0,05(1)	0,08(1)	0,000(9)	0,049(9)	0,009(9)
N4	0,07(1)	0,08(2)	0,07(1)	-0,001(1)	0,03(1)	-0,01(1)
N5	0,06(1)	0,06(1)	0,043(8)	-0,001(8)	0,009(8)	0,002(9)
N6	0,07(1)	0,11(2)	0,08(1)	-0,002(11)	0,06(1)	0,003(11)
N7	0,08(1)	0,14(2)	0,08(1)	-0,05(1)	0,06(1)	-0,02(1)
N8	0,07(1)	0,07(1)	0,049(8)	-0,010(9)	0,025(8)	0,001(10)
C1	0,06(1)	0,07(2)	0,06(1)	0,01(1)	0,02(1)	0,01(1)
C2	0,08(2)	0,08(2)	0,09(2)	-0,01(1)	0,03(1)	-0,02(1)
C3	0,08(2)	0,08(2)	0,07(1)	0,01(1)	0,04(1)	-0,01(1)
C4	0,08(2)	0,04(2)	0,11(2)	0,02(1)	0,02(2)	0,000(13)
C5	0,08(2)	0,09(2)	0,05(1)	-0,001(11)	0,04(1)	0,02(1)
C6	0,08(2)	0,06(2)	0,12(2)	-0,004(14)	0,05(1)	0,001(13)
C7	0,04(1)	0,12(2)	0,10(2)	0,01(2)	0,03(1)	-0,004(14)
C8	0,06(1)	0,11(2)	0,020(8)	-0,01(1)	-0,006(9)	-0,004(13)
C9	0,13(2)	0,04(1)	0,11(2)	-0,02(1)	0,04(2)	0,001(14)
C10	0,05(1)	0,09(2)	0,05(1)	0,01(1)	0,02(1)	0,01(1)
C11	0,06(1)	0,07(2)	0,06(1)	0,01(1)	0,02(1)	-0,02(1)
C12	0,12(2)	0,05(2)	0,10(2)	-0,01(1)	0,06(2)	-0,01(1)

Tabelle 69: Koeffizienten der anisotropen Tempera	aturfaktoren U _{ii} (10 ⁻⁴ prr	1 ²) von RT-[Hg(admtrz)(CF ₃) ₂] ₂
---	--	---

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	2i	0,8535(2)	0,8620(2)	0,2246(2)	43,1(7)
F1	2i	0,520(3)	0,545(3)	0,197(4)	83(10)
F2	2i	0,439(3)	0,705(4)	0,080(3)	70(7)
F3	2i	0,536(5)	0,797(4)	0,324(4)	98(10)
F4	2i	0,144(4)	0,135(4)	0,170(4)	77(8)
F5	2i	0,262(4)	0,067(5)	0,349(3)	101(11)
F6	2i	0,163(4)	0,884(4)	0,113(4)	82(9)
N1	2i	0,900(4)	0,190(4)	0,422(4)	40(7)
N2	2i	0,989(4)	0,270(4)	0,584(4)	45(8)
N3	2i	0,782(4)	0,366(4)	0,511(4)	46(8)
N4	2i	0,672(5)	0,466(5)	0,515(4)	54(9)
C1	2i	0,918(5)	0,378(5)	0,635(5)	43(9)
C2	2i	0,955(5)	0,493(5)	0,802(5)	44(9)
C3	2i	0,567(6)	0,721(6)	0,208(4)	50(10)
C4	2i	0,776(4)	0,248(4)	0,381(5)	37(8)
C5	2i	0,651(7)	0,190(6)	0,220(5)	61(11)
C6	2i	0,117(5)	-0,007(5)	0,213(4)	46(9)

Tabelle 70: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von TT-[Hg(admtrz)(CF₃)₂]₂

Tabelle 71: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von TT-[Hg(admtrz)(CF₃)₂]₂

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₃	U_{23}	U ₁₂
Hg1	0,0401(9)	0,0400(9)	0,059(1)	0,0222(7)	0,0207(7)	0,0244(7)
F1	0,04(1)	0,05(1)	0,18(3)	0,06(2)	0,04(2)	0,02(1)
F2	0,04(1)	0,09(2)	0,10(2)	0,05(2)	0,03(1)	0,03(1)
F3	0,10(2)	0,07(2)	0,09(2)	0,01(2)	0,05(2)	0,01(2)
F4	0,07(2)	0,05(2)	0,12(2)	0,06(2)	0,05(2)	0,03(1)
F5	0,06(2)	0,10(2)	0,07(2)	0,04(2)	-0,01(2)	-0,01(2)
F6	0,06(2)	0,07(2)	0,17(3)	0,06(2)	0,09(2)	0,04(1)
N1	0,04(2)	0,03(2)	0,06(2)	0,02(2)	0,03(2)	0,02(1)
N2	0,04(2)	0,03(2)	0,07(2)	0,02(2)	0,02(2)	0,03(1)
N3	0,04(2)	0,05(2)	0,09(2)	0,05(2)	0,04(2)	0,03(2)
N4	0,06(2)	0,06(2)	0,09(3)	0,04(2)	0,04(2)	0,06(2)
C1	0,03(2)	0,03(2)	0,06(2)	0,02(2)	0,01(2)	0,01(2)
C2	0,03(2)	0,05(2)	0,06(2)	0,01(2)	0,02(2)	0,03(2)
C3	0,05(2)	0,06(3)	0,03(2)	0,01(2)	0,01(2)	0,03(2)
C4	0,02(2)	0,03(2)	0,07(3)	0,02(2)	0,03(2)	0,01(1)
C5	0,08(3)	0,06(3)	0,06(3)	0,03(2)	0,03(2)	0,04(3)

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4e	0,58596(6)	-0,07611(2)	0,85998(3)	29,8(1)
Hg2	4e	0,25736(6)	-0,05985(2)	0,49887(3)	27,0(1)
CI1	4e	0,2356(4)	0,0523(1)	0,6368(2)	32,1(5)
CI2	4e	0,6570(4)	0,0760(1)	-0,0457(2)	39,8(6)
CI3	4e	0,7088(4)	-0,0964(2)	0,6801(2)	33,7(5)
N1	4e	0,141(1)	0,7906(4)	0,5933(6)	21(2)
N2	4e	0,886(1)	0,6608(4)	0,5347(6)	23(2)
N3	4e	0,390(1)	0,7926(4)	0,8163(6)	20(2)
N4	4e	0,270(1)	0,8380(4)	0,3715(6)	20 (2)
C1	4e	0,220(1)	0,7579(5)	0,711(7)	16(2)
C2	4e	0,414(2)	0,7676(5)	0,4096(8)	25(2)
C3	4e	-0,028(1)	0,7391(5)	0,5097(8)	26(2)
C4	4e	-0,027(1)	0,6265(6)	0,6526(8)	24(2)
C5	4e	0,144(1)	0,8259(5)	0,2446(7)	20 (2)

Taballa 72: Atomkoordinaton und är	uivalanta Tam	noraturfaktaran II	$(10^{-1} n$	m^2) von	[Ua/Durin)Cl1UaCl
Tabelle 72. Alomkoorumalen unu al	juivalente rem	iperaturiaktoren U _{eq}	(10 p	111) VOIT	լпу(բաп)ԵլլпуԵլ2

Tabelle 73: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von [Hg(Purin)Cl]HgCl₂

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0356(2)	0,0179(1)	0,0216(2)	-0,0007(1)	0,0008(1)	-0,0030(1)
Hg2	0,0283(2)	0,0275(2)	0,0237(2)	-0,0084(1)	0,0106(1)	0,0015(1)
CI1	0,035(1)	0,029(1)	0,025(1)	-0,0072(8)	0,007(1)	0,0100(9)
Cl2	0,055(2)	0,0228(9)	0,049(2)	-0,0131(9)	0,030(1)	-0,013(1)
CI3	0,035(1)	0,039(1)	0,025(1)	-0,0043(9)	0,011(1)	0,0003(1)
N1	0,021(4)	0,022(3)	0,015(4)	0,000(3)	0,003(3)	-0,004(3)
N2	0,021(4)	0,025(3)	0,014(4)	-0,002(3)	0,000(3)	0,000(3)
N3	0,022(4)	0,016(3)	0,015(3)	0,000(2)	0,003(3)	-0,003(3)
N4	0,025(4)	0,023(3)	0,012(4)	-0,002(2)	0,008(3)	0,003(3)
C1	0,014(4)	0,019(3)	0,013(4)	-0,002(3)	0,004(3)	0,005(3)
C2	0,037(5)	0,014(3)	0,026(5)	0,000(3)	0,017(4)	0,007(3)
C3	0,022(5)	0,017(4)	0,027(5)	-0,003(3)	0,002(4)	-0,005(3)
C4	0,027(5)	0,029(4)	0,017(5)	0,003(3)	0,011(4)	-0,001(3)
C5	0,019(4)	0,023(4)	0,016(5)	0,000(3)	0,004(4)	0,002(3)

	Tabelle 74: Atomkoordinaten und äc	uivalente Tempera	aturfaktoren U _{eq} (10⁻'	' pm²) vor	n [Hg(PurinH)(CF ₃) ₂] ₄
--	------------------------------------	-------------------	------------------------------------	------------	---

.

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	8g	0,05391(3)	0,33652(4)	0,47555(6)	39,5(2)
F1	8g	0,235(2)	0,289(2)	0,531(8)	34(4)
F2	8g	0,8647(8)	0,355(2)	0,515(2)	126(7)
F3	8g	0,888(1)	0,290(2)	0,340(2)	116(7)
F4	8g	-0,095(1)	0,429(2)	0,360(4)	190(15)
F5	8g	0,199(2)	0,359(4)	0,651(2)	32(4)
F6	8g	0,233(1)	0,410(2)	0,682(2)	157(11)
N1	8g	0,033(1)	0,200(1)	0,660(2)	49(4)
N2	8g	0,081(1)	0,186(1)	0,342(2)	55(4)
N3	8g	0,034(1)	0,142(1)	0,864(1)	48(3)
N4	8g	0,0695(8)	0,1101(8)	0,135(1)	39(3)
C1	8g	0,184(1)	0,350(1)	0,532(2)	60(5)
C2	8g	-0,080(1)	0,354(2)	0,418(2)	62(5)
----	----	-----------	----------	----------	-------
C3	8g	-0,046(1)	0,150(1)	0,678(2)	38(3)
C4	8g	0,076(1)	0,191(1)	0,770(2)	45(4)
C5	8g	0,132(1)	0,117(1)	0,393(2)	46(4)
C6	8g	0,055(1)	0,177(1)	0,216(2)	51(5)
C7	8g	-0,046(1)	0,118(1)	0,808(1)	31(3)

Fortsetzung von Tabelle 74.

Tabelle 75: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von [Hg(PurinH)(CF₃)₂]₄

Atom	U_{11}	U_{22}	U ₃₃	U ₁₃	U_{23}	U ₁₂
Hg1	0,0376(3)	0,0396(3)	0,0414(3)	0,0011(2)	-0,0046(2)	-0,0026(3)
F1	0,09(2)	0,12(2)	0,8(1)	0,00(4)	-0,18(4)	-0,01(1)
F2	0,047(7)	0,21(2)	0,13(2)	0,01(1)	0,024(9)	0,024(9)
F3	0,07(1)	0,15(2)	0,13(2)	-0,06(1)	-0,05(1)	0,02(1)
F4	0,060(9)	0,16(2)	0,35(4)	0,15(2)	-0,03(1)	0,02(1)
F5	0,14(2)	0,8(1)	0,07(2)	0,09(3)	-0,04(1)	-0,21(5)
F6	0,09(1)	0,22(2)	0,16(2)	0,13(2)	-0,06(1)	-0,09(1)
N1	0,052(9)	0,060(9)	0,037(9)	0,004(6)	0,007(7)	-0,010(7)
N2	0,07(1)	0,057(9)	0,034(9)	-0,017(7)	-0,003(8)	0,018(8)
N3	0,053(8)	0,054(8)	0,037(8)	0,008(6)	-0,002(6)	0,003(7)
N4	0,038(7)	0,039(7)	0,040(8)	-0,006(6)	-0,011(5)	-0,004(5)
C1	0,04(1)	0,07(1)	0,07(1)	0,01(1)	-0,019(9)	-0,006(8)
C2	0,06(1)	0,08(1)	0,05(1)	-0,002(11)	0,02(1)	-0,01(1)
C3	0,05(1)	0,035(8)	0,024(8)	0,006(6)	0,005(6)	-0,008(6)
C4	0,05(1)	0,05(1)	0,03(1)	0,005(7)	-0,014(7)	0,006(8)
C5	0,05(1)	0,06(1)	0,025(9)	0,001(7)	-0,017(7)	0,010(8)
C6	0,04(1)	0,07(1)	0,05(1)	0,010(9)	-0,007(7)	0,013(9)
C7	0,050(8)	0,038(8)	0,005(7)	0,006(5)	0,001(6)	-0,003(6)

Tabelle 76: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg(py)₄](ClO₄)₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4a	0,01453(3)	0,52030(4)	-0,00013(5)	68,7(2)
N1	4a	0,0645(8)	0,689(1)	0,0654(6)	68(3)
N2	4a	-0,0329(7)	0,356(1)	-0,0708(5)	68(3)
N3	4a	0,1716(7)	0,496(1)	-0,0636(6)	71(3)
N4	4a	0,8628(7)	0,525(1)	0,0716(7)	79(3)
C1	4a	0,250(1)	0,510(1)	-0,0241(8)	81(4)
C2	4a	0,057(1)	0,691(2)	0,1498(9)	105(7)
C3	4a	0,177(1)	0,473(2)	-0,1427(8)	80(4)
C4	4a	0,258(1)	0,464(2)	0,817(1)	90(4)
C5	4a	0,887(1)	0,363(2)	0,890(1)	95(5)
C6	4a	0,014(1)	0,244(2)	-0,0713(8)	78(4)
C7	4a	0,822(1)	0,418(2)	0,0953(9)	74(4)
C8	4a	0,342(1)	0,479(2)	0,861(1)	99(5)
C9	4a	0,099(1)	0,788(2)	0,0273(7)	79(4)
C10	4a	0,823(1)	0,638(2)	0,0950(9)	82(4)
C11	4a	0,745(1)	0,645(2)	0,1388(9)	83(4)
C12	4a	0,337(1)	0,503(2)	-0,059(1)	100(5)

	Anhang								
C13	4a	0,744(1)	0,414(2)	0,143(1)	86(4)				
C14	4a	-0,015(1)	0,139(2)	0,8893(9)	97(5)				
C15	4a	0,135(1)	0,896(2)	0,066(1)	105(5)				
C16	4a	0,704(1)	0,528(2)	0,1683(8)	81(4)				
C17	4a	0,130(1)	0,900(2)	0,148(1)	102(5)				
C18	4a	0,859(1)	0,259(2)	0,8472(9)	88(5)				
C19	4a	0,093(2)	0,793(2)	0,190(1)	109(6)				
C20	4a	-0,097(1)	0,145(2)	0,8476(9)	100(6)				
CI1	4a	0,429(3)	0,7577(4)	0,1547(2)	78,7(10)				
O1	4a	0,499(2)	0,842(3)	0,145(2)	33(2)				
O2	4a	0,398(2)	0,739(3)	0,0828(9)	306(16)				
O3	4a	0,368(2)	0,790(4)	0,200(1)	323(18)				
O4	4a	0,478(3)	0,659(3)	0,184(2)	37(2)				
CI2	4a	0,0960(3)	0,2794(5)	0,1439(3)	93,4(12)				
O5	4a	0,121(1)	0,236(2)	0,2142(9)	0,178(8)				
O6	4a	0,014(1)	0,253(4)	0,125(1)	0,309(19)				
07	4a	0,157(1)	0,227(2)	0,0805(8)	0,168(7)				
08	4a	0,100(3)	0,398(2)	0,137(2)	0,37(3)				

Fortsetzung von Tabelle 76.

Tabelle 77: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von [Hg(py)₄](ClO₄)₂

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0804(3)	0,0659(3)	0,0595(2)	-0,0048(6)	-0,0024(6)	-0,0021(2)
N1	0,083(8)	0,071(8)	0,050(6)	-0,004(5)	0,007(5)	0,006(6)
N2	0,053(7)	0,10(1)	0,048(6)	0,013(5)	-0,002(5)	0,004(6)
N3	0,077(7)	0,080(9)	0,056(6)	-0,006(6)	-0,003(5)	0,003(6)
N4	0,079(7)	0,075(9)	0,082(8)	0,007(7)	0,015(6)	0,001(7)
C1	0,076(8)	0,09(1)	0,078(1)	0,009(7)	-0,018(7)	-0,005(7)
C2	0,13(2)	0,15(2)	0,034(8)	0,018(9)	-0,003(9)	0,02(1)
C3	0,10(1)	0,08(1)	0,065(9)	0,005(8)	0,026(7)	0,001(8)
C4	0,10(1)	0,07(1)	0,10(1)	-0,005(9)	0,009(9)	0,002(8)
C5	0,06(1)	0,14(2)	0,08(1)	-0,01(1)	-0,003(8)	-0,01(1)
C6	0,08(1)	0,10(1)	0,054(7)	0,005(7)	0,020(7)	0,006(9)
C7	0,08(1)	0,07(1)	0,08(1)	0,007(8)	0,016(8)	0,004(8)
C8	0,10(1)	0,08(1)	0,12(1)	0,02(1)	0,01(1)	0,005(9)
C9	0,10(1)	0,08(1)	0,063(9)	0,003(7)	0,001(6)	-0,020(7)
C10	0,10(1)	0,06(1)	0,10(1)	-0,004(8)	0,01(1)	0,011(8)
C11	0,10(1)	0,08(1)	0,07(1)	-0,020(8)	-0,006(9)	0,011(9)
C12	0,10(1)	0,11(2)	0,09(1)	0,02(1)	-0,012(9)	-0,002(10)
C13	0,90(1)	0,08(1)	0,09(1)	0,002(9)	-0,017(9)	-0,005(9)
C14	0,12(1)	0,11(1)	0,069(9)	-0,026(8)	0,02(1)	-0,01(1)
C15	0,15(2)	0,09(1)	0,08(1)	0,001(9)	-0,02(1)	-0,04(1)
C16	0,09(1)	0,09(1)	0,063(8)	0,003(9)	0,000(7)	-0,003(1)
C17	0,13(2)	0,10(2)	0,08(1)	-0,02(1)	-0,001(10)	0,000(11)
C18	0,08(1)	0,13(2)	0,050(9)	0,03(1)	-0,007(8)	-0,03(1)
C19	0,17(2)	0,09(2)	0,07(1)	-0,01(1)	-0,02(1)	-0,01(1)
C20	0,10(1)	0,14(2)	0,06(1)	-0,01(1)	-0,002(9)	-0,04(1)
CI1	0,110(3)	0,07(3)	0,061(2)	0,0001(2)	0,015(2)	0,003(2)
01	0,46(5)	0,30(3)	0,23(2)	0,10(2)	-0,06(3)	-0,28(3)

02	0,29(3)	0,55(5)	0,08(1)	-0,06(2)	-0,06(1)	-0,07(3)
O3	0,22(2)	0,58(5)	0,17(2)	0,02(2)	0,14(2)	0,14(3)
O4	0,63(6)	0,17(2)	0,30(3)	-0,08(2)	-0,18(4)	0,19(3)
Cl2	0,095(3)	0,100(4)	0,085(3)	0,021(2)	-0,025(2)	0,002(2)
O5	0,20(2)	0,24(2)	0,097(9)	0,06(1)	-0,02(1)	0,08(1)
O6	0,09(1)	0,70(6)	0,13(2)	-0,06(3)	-0,03(1)	0,00(2)
07	0,13(1)	0,28(2)	0,10(1)	-0,02(1)	-0,022(9)	0,03(1)
O8	0,79(8)	0,08(2)	0,25(3)	0,04(2)	0,12(4)	0,08(3)

Fortsetzung von Tabelle 77.

Tabelle 78: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg(py)₄](ClO₄)₂·2(py)

Atom	Lage	x/a	y/b	z/c	U _{eq}
Hg1	4e	0,0000	0,24300(3)	0,2500	63,5(3)
CI1	8f	0,28191(18)	0,24771(19)	0,25019(15)	69,7(6)
01	8f	0,3754(9)	0,2425(10)	0,2311(15)	246(11)
O2	8f	0,2627(15)	0,3250(9)	0,2877(13)	215(8)
O3	8f	0,268(2)	0,1909(16)	0,3082(12)	309(16)
O4	8f	0,2069(14)	0,2240(15)	0,2063(10)	246(10)
N1	4e	0,0000	0,3787(7)	0,2500	52(3)
N2	4e	0,0000	0,1041(6)	0,2500	66(4)
N3	8f	0,0081(9)	0,2452(6)	0,3992(5)	86(3)
N4	8f	0,2439(16)	0,0194(15)	-0,0488(9)	162(7)
C1	8f	0,0683(10)	0,4242(9)	0,2071(8)	86(4)
C2	8f	0,0847(14)	0,2904(12)	0,4338(9)	123(6)
C3	8f	-0,0613(14)	0,2031(10)	0,4404(9)	113(5)
C4	8f	0,0708(11)	0,5113(8)	0,2057(8)	90(4)
C5	8f	0,0896(15)	0,2929(13)	0,5157(11)	126(6)
C6	8f	0,0145(17)	0,2469(13)	0,5589(9)	124(5)
C7	8f	-0,0575(19)	0,2044(13)	0,5197(11)	140(7)
C8	4e	0,0000	0,5550(10)	0,2500	82(6)
C9	4e	0,0000	-0,0703(10)	0,2500	88(6)
C10	8f	-0,0709(10)	0,0627(7)	0,2086(7)	77(3)
C11	8f	-0,0727(11)	-0,0231(8)	0,2079(8)	87(4)
C12	8f	0,3117(19)	0,0677(16)	-0,0094(13)	154(7)
C13	8f	0,187(2)	-0,0393(17)	-0,0096(13)	166(9)
C14	8f	0,1916(18)	-0,0404(12)	0,0697(13)	138(7)
C15	8f	0,3160(16)	0,0625(16)	0,0740(13)	150(7)
C16	8f	0,2545(18)	0,0065(16)	0,1103(11)	133(6)

Tabelle 79	: Koeffizienten o	der anisotropen	Temperaturfakto	oren U _{ij} (10 ⁻⁴ pm	l²) von [Hg(py)₄]	(ClO ₄) ₂ ·2(py)
Atom	U ₁₁	U_{22}	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0824(5)	0,0455(3)	0,0626(4)	0,000	0,0000(2)	0,000
CI1	0,052(1)	0,071(2)	0,087(2)	-0,006(2)	0,001(1)	-0,008(2)
01	0,070(8)	0,17(1)	0,50(4)	-0,02(2)	0,02(1)	-0,002(1)
O2	0,23(2)	0,14(1)	0,27(2)	-0,08(1)	0,04(2)	0,01(1)
O3	0,45(4)	0,32(3)	0,16(2)	0,01(2)	0,02(2)	-0,26(3)
O4	0,19(2)	0,38(3)	0,17(2)	-0,04(2)	-0,05(1)	-0,15(2)
N1	0,055(9)	0,061(6)	0,040(7)	0,000	0,000(6)	0,000
N2	0,07(1)	0,043(6)	0,08(1)	0,000	0,012(9)	0,000
N3	0,124(8)	0,075(6)	0,060(5)	0,001(5)	0,001(5)	-0,011(7)
N4	0,17(2)	0,24(2)	0,08(1)	-0,01(1)	-0,003(11)	-0,01(2)
C1	0,076(9)	0,099(9)	0,084(9)	0,013(7)	-0,006(7)	0,001(7)
C2	0,13(1)	0,16(1)	0,073(9)	-0,019(9)	-0,009(9)	-0,03(1)
C3	0,14(1)	0,12(1)	0,09(1)	0,007(8)	0,01(1)	-0,03(1)
C4	0,09(1)	0,080(8)	0,10(1)	0,022(7)	-0,006(8)	-0,009(7)
C5	0,13(1)	0,15(1)	0,10(1)	-0,02(1)	-0,01(1)	-0,01(1)
C6	0,16(2)	0,13(1)	0,084(9)	0,03(1)	-0,01(1)	0,01(1)
C7	0,18(2)	0,16(2)	0,09(1)	0,04(1)	0,02(1)	-0,01(1)
C8	0,08(2)	0,059(9)	0,11(2)	0,000	-0,02(1)	0,000
C9	0,09(2)	0,063(9)	0,11(2)	0,000	0,03(1)	0,000
C10	0,073(8)	0,078(7)	0,081(8)	-0,017(6)	-0,003(6)	-0,003(6)
C11	0,089(10)	0,086(8)	0,087(9)	-0,022(7)	0,002(7)	-0,011(7)
C12	0,140(17)	0,21(2)	0,108(15)	0,002(15)	-0,006(14)	-0,029(17)
C13	0,18(2)	0,21(2)	0,111(16)	0,033(15)	-0,009(15)	-0,060(19)
C14	0,158(19)	0,131(14)	0,124(16)	-0,006(12)	-0,013(14)	0,000(13)
C15	0,118(16)	0,21(2)	0,118(16)	-0,028(15)	-0,015(13)	-0,032(15)
C16	0,125(16)	0,183(19)	0,092(13)	0,016(13)	0,006(11)	0,020(15)

Tabelle 79: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von [Hg(py)₄](ClO₄)₂·2(py)

Tabelle 80: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg(Pyrazin)₂](ClO₄)₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	8b	0,0000	0,2500	0,1250	34,6(1)
CI1	16d	0,5000	0,2500	0,01474(5)	52,5(4)
01	32g	0,4289(5)	0,1678(6)	-0,0179(2)	75(1)
02	32g	0,5782(8)	0,1800(7)	0,0473(3)	131(3)
N1	16f	0,1411(3)	0,3911(3)	0,1250	29(1)
N2	16f	0,3203(3)	0,5703(3)	0,1250	37(1)
C1	32g	0,2283(5)	0,5710(6)	0,0891(2)	46(2)
C2	32g	0,1373(5)	0,4803(5)	0,0898(3)	44(1)
H1	32g	0,226(6)	0,637(7)	0,060(3)	70(2)
H2	32g	0,070(8)	0,474(8)	0,064(3)	80(2)

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₃	U_{23}	U ₁₂
Hg1	0,0310(2)	0,0310(1)	0,0419(2)	0,000	0,000	-0,0072(2)
CI1	0,064(2)	0,058(2)	0,0361(6)	0,000	0,000	-0,018(1)
01	0,065(4)	0,095(5)	0,064(2)	-0,030(3)	0,004(3)	-0,024(3)
O2	0,161(8)	0,097(6)	0,135(6)	0,051(5)	-0,091(6)	-0,042(5)
N1	0,026(1)	0,026(1)	0,035(2)	0,001(3)	-0,001(3)	0,002(2)
N2	0,033(2)	0,033(2)	0,044(3)	0,003(3)	-0,003(3)	-0,011(2)
C1	0,038(3)	0,046(3)	0,053(3)	0,026(3)	-0,025(3)	-0,014(2)
C2	0,038(3)	0,042(3)	0,053(3)	0,013(3)	-0,008(3)	-0,012(3)

Tabelle 81: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von [Hg(Pyrazin)₂](ClO₄)₂

Tabelle 82: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg(Pyrimidin)₂](ClO₄)₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	2a	0,0000	0,5000	0,5000	36,5(3)
CI1	4e	0,2713(3)	0,8572(3)	0,6262(3)	40,8(5)
01	4e	0,249(1)	0,704(1)	0,691(1)	77(3)
O2	4e	0,412(2)	0,921(3)	0,698(3)	186(11)
O3	4e	0,169(3)	0,991(2)	0,594(4)	183(12)
O4	4e	0,246(3)	0,804(3)	0,493(2)	206(12)
N1	4e	0,1349(9)	0,362(1)	0,4305(8)	37(2)
N2	4e	0,858(1)	0,661(1)	0,2349(9)	42(2)
C1	4e	0,285(1)	0,365(2)	0,510(1)	43(2)
C2	4e	0,371(1)	0,261(2)	0,468(1)	48(3)
C3	4e	0,066(1)	0,259(1)	0,310(1)	39(2)
C4	4e	0,705(1)	0,661(2)	0,152(1)	48(2)

Tabelle 83: Koeffizienten der anisotropen Temperaturfaktoren Uij (10)⁻⁴ pm	í́) von [⊦	-lg(Pyrimidin)2](ClO4)2	2
--	--------	------------	-------------------------	---

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0363(3)	0,0368(3)	0,0398(3)	-0,0064(3)	0,0218(2)	0,0009(3)
CI1	0,035(1)	0,032(1)	0,047(1)	0,001(1)	0,014(1)	-0,003(1)
01	0,087(7)	0,068(6)	0,095(7)	0,012(5)	0,060(6)	-0,013(5)
02	0,057(8)	0,22(2)	0,20(2)	0,08(2)	0,01(1)	-0,05(1)
O3	0,18(2)	0,11(1)	0,29(3)	0,08(2)	0,14(2)	0,10(1)
04	0,38(3)	0,14(2)	0,055(7)	0,005(9)	0,07(1)	-0,06(2)
N1	0,043(4)	0,040(4)	0,031(4)	-0,002(3)	0,020(3)	-0,004(4)
N2	0,040(4)	0,046(5)	0,045(5)	0,015(4)	0,025(4)	0,008(4)
C1	0,036(5)	0,053(6)	0,032(5)	-0,006(5)	0,013(4)	0,004(5)
C2	0,038(6)	0,062(7)	0,043(6)	-0,003(5)	0,019(5)	-0,003(5)
C3	0,040(5)	0,040(5)	0,040(5)	0,001(4)	0,021(5)	0,008(4)
C4	0,044(6)	0,049(6)	0,055(6)	0,001(5)	0,028(5)	-0,011(5)

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	4b	0,0000	0,5000	0,0000	29,8(1)
N1	8c	0,8251(6)	0,3114(4)	0,0844(2)	32,6(9)
N2	8c	0,6318(5)	0,1374(3)	0,0756(2)	24,7(7)
N3	8c	0,3613(5)	0,4980(4)	0,1292(2)	32,2(7)
C1	8c	0,8033(7)	0,3113(4)	0,1675(3)	33 (1)
C2	8c	0,7400(7)	0,2233(4)	0,0418(3)	31(1)
C3	8c	0,6907(7)	0,2236(4)	0,2067(3)	31 (1)
C4	8c	0,6052(7)	0,1371(4)	0,1577(3)	28 (1)
01	8c	0,3431(8)	0,5808(5)	0,0793(4)	94(2)
O2	8c	0,4983(6)	0,4977(4)	0,1793(2)	52,7(8)
O3	8c	0,2320(6)	0,4190(4)	0,1298(3)	55(1)

Tabelle 84: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg(Pyrimidin)₂](NO₃)₂

Tabelle 85: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von [Hg(Pyrimidin)₂](NO₃)₂

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0347(1)	0,0245(1)	0,0303(1)	-0,0058(1)	-0,0007(2)	0,0056(1)
N1	0,037(2)	0,028(2)	0,033(2)	0,0001(2)	-0,001(2)	-0,010(2)
N2	0,030(2)	0,018(2)	0,026(2)	-0,001(2)	-0,003(2)	-0,001(2)
N3	0,031(2)	0,031(2)	0,034(2)	-0,004(2)	-0,002(2)	0,003(2)
C1	0,034(2)	0,033(3)	0,031(2)	0,002(2)	0,002(2)	0,000(2)
C2	0,033(2)	0,027(2)	0,031(2)	0,002(2)	-0,003(2)	-0,005(2)
C3	0,035(2)	0,026(2)	0,031(3)	-0,003(2)	-0,004(2)	0,002(2)
C4	0,033(3)	0,026(2)	0,026(2)	0,0003(2)	-0,004(2)	0,001(2)
01	0,078(3)	0,086(4)	0,118(4)	0,066(4)	-0,026(3)	-0,013(3)
O2	0,0423(16)	0,068(2)	0,0478(17)	-0,010(2)	-0,017(2)	0,005(2)
O3	0,055(2)	0,056(2)	0,054(2)	-0,002(2)	0,001(2)	-0,025(2)

Tabelle 86: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg(utp)₂](NO₃)₃·utp·H₃O⁺

			-		
Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	2e	0,2569(1)	0,2500	0,12176(8)	54,1(4)
O1	2e	0,490(2)	0,2500	0,185(1)	80(5)
O2	2e	0,492(2)	0,2500	0,000(1)	77(6)
O3	2e	0,672(2)	0,2500	0,086(2)	79(5)
O4	2e	0,209(3)	0,2500	0,8948(2)	102(10)
O5	2e	0,020(3)	0,2500	-0,034(2)	95(7)
O6	2e	0,258(5)	0,2500	0,386(3)	160(2)
07	2e	0,093(3)	0,2500	0,296(2)	95(7)
O8	2e	0,103(3)	0,2500	0,474(2)	130(12)
O9	2e	0,048(2)	0,2500	0,782(2)	98(8)
O10	2e	0,308(3)	0,2500	0,658(2)	129(11)
N1	4f	0,250(2)	0,1020(7)	0,1177(1)	53(3)
N2	4f	0,290(2)	-0,0417(8)	0,219(1)	60(4)
N3	4f	0,106(2)	-0,0327(9)	0,096(1)	67(5)
N4	4f	0,321(2)	-0,0360(8)	0,018(1)	56(4)

		Anhang						
N5	2e	0,555(2)	0,2500	0,085(2)	59(5)			
N6	2e	0,078(3)	0,2500	0,883(2)	86(9)			
N7	2e	0,160(5)	0,2500	0,377(3)	119(18)			
N8	4f	0,748(2)	0,1568(8)	0,4068(9)	59(4)			
N9	4f	0,804(2)	0,008(1)	0,496(1)	69(5)			
N10	4f	0,816(2)	0,026(1)	0,293(1)	74(5)			
N11	4f	0,615(2)	0,020(1)	0,382(1)	77(5)			
C1	4f	0,366(2)	-0,073(1)	0,125(1)	60(5)			
C2	4f	0,116(2)	0,0684(9)	0,100(1)	69(6)			
C3	4f	0,326(2)	0,066(1)	0,026(1)	63(5)			
C4	4f	0,301(2)	0,059(1)	0,2290(1)	71(6)			
C5	4f	0,190(2)	-0,061(1)	0,003(1)	66(5)			
C6	4f	0,162(2)	-0,070(1)	0,200(1)	54(4)			
C7	4f	0,877(3)	-0,016(2)	0,392(1)	101(9)			
C8	4f	0,810(2)	0,110(1)	0,509(1)	68(5)			
C9	4f	0,813(3)	0,129(1)	0,305(1)	92(8)			
C10	4f	0,612(2)	0,121(1)	0,393(1)	70(5)			
C11	4f	0,685(2)	-0,005(1)	0,285(1)	70(6)			
C12	4f	0,668(2)	-0,022(1)	0,485(2)	76(6)			

Fortsetzung von Tabelle 86.

<u>Tabelle 87: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von [Hg(utp)₂](NO₃)₃·utp·H₃O⁺</u>

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0539(7)	0,0431(4)	0,0651(5)	0,000	-0,0047(4)	0,000
01	0,03(1)	0,15(2)	0,061(9)	0,000	-0,004(8)	0,000
O2	0,09(2)	0,059(9)	0,08(1)	0,000	-0,03(1)	0,000
O3	0,06(2)	0,07(1)	0,10(1)	0,000	-0,01(1)	0,000
O4	0,13(3)	0,07(1)	0,11(2)	0,000	-0,03(2)	0,000
O5	0,11(2)	0,07(1)	0,10(2)	0,000	0,02(2)	0,000
O6	0,31(7)	0,06(1)	0,11(2)	0,000	-0,12(3)	0,000
07	0,09(2)	0,07(1)	0,12(2)	0,000	-0,006(2)	0,000
O8	0,19(4)	0,14(2)	0,06(1)	0,000	0,06(2)	0,000
O9	0,08(2)	0,10(1)	0,11(2)	0,000	-0,05(1)	0,000
O10	0,15(3)	0,09(1)	0,15(2)	0,000	-0,04(2)	0,000
N1	0,07(1)	0,043(5)	0,048(5)	-0,005(6)	-0,019(6)	-0,002(7)
N2	0,08(1)	0,046(7)	0,055(7)	0,005(5)	-0,020(8)	-0,006(7)
N3	0,06(1)	0,047(7)	0,092(9)	-0,001(6)	-0,032(9)	-0,003(7)
N4	0,05(1)	0,040(6)	0,076(8)	0,002(6)	0,004(7)	0,007(6)
N5	0,03(2)	0,06(1)	0,088(14)	0,000	0,001(1)	0,000
N6	0,09(3)	0,06(1)	0,107(19)	0,000	-0,05(2)	0,000
N7	0,17(5)	0,08(2)	0,10(2)	0,000	-0,10(3)	0,000
N8	0,05(1)	0,059(7)	0,067(8)	0,014(5)	-0,013(8)	-0,006(7)
N9	0,08(2)	0,071(9)	0,061(8)	0,009(7)	-0,004(8)	0,019(8)
N10	0,09(2)	0,074(9)	0,062(8)	0,008(7)	0,004(8)	0,008(9)
N11	0,07(1)	0,09(1)	0,081(9)	-0,006(8)	-0,036(9)	0,012(9)
C1	0,05(1)	0,07(1)	0,057(8)	-0,012(7)	-0,008(8)	0,006(9)
C2	0,09(2)	0,034(7)	0,09(1)	-0,006(7)	-0,007(10)	-0,011(8)
C3	0,06(2)	0,043(8)	0,08(1)	0,004(7)	0,002(9)	-0,012(8)
C4	0,11(2)	0,052(8)	0,052(8)	0,009(7)	-0,015(10)	0,007(9)

C5	0,08(2)	0,08(1)	0,046(8)	-0,007(8)	0,013(8)	-0,01(1)	
C6	0,05(1)	0,050(8)	0,063(8)	0,011(7)	0,013(8)	0,006(8)	
C7	0,12(3)	0,14(2)	0,046(9)	0,003(1)	0,01(1)	0,03(2)	
C8	0,06(2)	0,07(1)	0,08(1)	0,009(8)	-0,02(1)	-0,003(9)	
C9	0,13(3)	0,07(1)	0,08(1)	0,007(9)	0,03(1)	0,01(1)	
C10	0,04(1)	0,054(9)	0,12(1)	-0,008(9)	-0,01(1)	0,002(8)	
C11	0,06(2)	0,10(1)	0,052(9)	0,008(9)	-0,006(9)	0,01(1)	
C12	0,06(2)	0,09(1)	0,08(1)	0,028(9)	-0,02(1)	0,01(1)	
1	T.1.11	. 07					

Fortsetzung von Tabelle 87.

Tabelle 88: Atomkoordinaten und äquivalente Temperaturfaktor	⊆n II (10 ⁻¹ ni	m ²) von [Ha _e (/	dmaly)_1(NIO_)_
Tabelle 00. Atomikoordinaten und aquivalente Temperaturiaktor	chi deq (10 pi		JIIIgiy)2](INO3)2

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	2i	0,69798(7)	0,67630(4)	0,41989(4)	49,6(2)
Hg2	2i	0,72265(8)	0,52036(5)	0,25184(4)	54,3(2)
N1	2i	0,710(1)	0,7154(8)	0,6219(7)	38(2)
N2	2i	0,713(1)	0,8943(8)	0,4804(7)	40(2)
N3	2i	0,800(1)	0,3155(8)	0,2003(8)	47(3)
N4	2i	0,741(1)	0,4817(9)	0,0523(7)	44(3)
N5	2i	0,182(2)	0,6238(9)	0,4604(8)	47(3)
N6	2i	0,677(2)	0,8295(8)	0,1457(8)	49(3)
O1	2i	0,673(1)	0,6173(7)	0,6991(6)	59(2)
O2	2i	0,744(1)	0,9933(7)	0,4090(6)	62(3)
O3	2i	0,810(1)	0,2180(7)	0,2743(6)	69(3)
O4	2i	0,737(1)	0,5729(7)	-0,0281(6)	59(2)
O5	2i	0,131(1)	0,5692(8)	0,3642(6)	75(3)
O6	2i	0,064(1)	0,6768(8)	0,5127(6)	61(2)
07	2i	0,340(2)	0,625(1)	0,5066(8)	86(3)
O8	2i	0,845(2)	0,833(1)	0,1707(8)	97(4)
O9	2i	0,578(1)	0,8905(8)	0,2063(7)	70(3)
O10	2i	0,598(1)	0,7644(9)	0,0565(6)	74(3)
C1	2i	0,704(2)	0,827(1)	0,6660(9)	39(3)
C2	2i	0,733(2)	0,930(1)	0,5875(8)	38(3)
C3	2i	0,788(2)	0,065(1)	0,6342(9)	59(4)
C4	2i	0,676(2)	0,856(1)	0,7930(8)	59(4)
C5	2i	0,785(2)	0,374(1)	0,0118(8)	38(3)
C6	2i	0,801(2)	0,279(1)	0,0926(8)	36(3)
C7	2i	0,809(2)	0,142(1)	0,0473(9)	55(4)
C8	2i	0,818(2)	0,350(1)	0,8843(8)	59(4)

Taballa 90: Kaaffiziantan dar	aniaatronon Tomporaturfakta	(10^{-4} pm^2)	$[Ha_{1}(dmah_{1}), 1(NO_{1})]$
Tabelle 09. Noellizieliten der	anisoliopen remperaturiakit		[Tg2(ungiy)2](INO3)2

Atom	U_{11}	U_{22}	U ₃₃	U ₁₃	U_{23}	U ₁₂
Hg1	0,0564(5)	0,0550(4)	0,0355(3)	-0,0154(3)	0,0045(3)	0,0101(3)
Hg2	0,0580(5)	0,0538(4)	0,0475(4)	-0,0209(3)	0,0132(3)	0,0037(3)
N1	0,047(8)	0,038(6)	0,030(5)	0,002(5)	0,007(4)	0,010(5)
N2	0,054(8)	0,030(5)	0,037(5)	-0,004(4)	0,002(4)	0,012(4)
N3	0,066(9)	0,039(6)	0,040(6)	0,005(5)	0,008(5)	0,016(5)
N4	0,056(8)	0,047(6)	0,032(5)	0,005(5)	0,008(5)	0,012(5)
N5	0,057(9)	0,046(6)	0,043(6)	0,009(5)	0,014(6)	0,011(5)
N6	0,065(10)	0,041(6)	0,043(6)	0,002(5)	0,013(6)	0,015(6)

01	0,084(8)	0,057(6)	0,042(5)	0,012(4)	0,013(4)	0,023(5)
O2	0,111(8)	0,035(5)	0,041(4)	0,007(4)	0,008(4)	0,007(4)
O3	0,121(9)	0,049(5)	0,036(4)	0,008(4)	-0,003(5)	0,011(5)
O4	0,098(8)	0,047(5)	0,039(5)	0,014(4)	0,015(5)	0,022(5)
O5	0,109(9)	0,090(7)	0,032(5)	-0,007(4)	0,002(5)	0,042(6)
O6	0,048(7)	0,092(6)	0,045(4)	-0,013(4)	0,002(4)	0,029(5)
07	0,051(9)	0,15(1)	0,068(6)	0,004(6)	0,009(5)	0,036(7)
O8	0,055(9)	0,127(9)	0,107(8)	-0,040(6)	-0,021(6)	0,037(6)
O9	0,068(8)	0,072(6)	0,073(6)	-0,013(5)	0,011(5)	0,029(5)
O10	0,086(8)	0,095(7)	0,041(5)	-0,026(5)	-0,009(5)	0,030(6)
C1	0,024(8)	0,045(7)	0,047(7)	-0,010(6)	0,004(5)	0,008(5)
C2	0,033(9)	0,050(7)	0,033(6)	0,011(5)	0,003(5)	0,007(6)
C3	0,09(1)	0,032(7)	0,052(7)	-0,016(5)	0,000(7)	-0,008(6)
C4	0,087(1)	0,070(9)	0,024(6)	0,001(6)	0,020(6)	0,018(7)
C5	0,025(8)	0,048(7)	0,040(6)	-0,008(6)	-0,008(5)	0,006(5)
C6	0,032(9)	0,049(7)	0,027(6)	0,000(5)	0,003(5)	0,003(6)
C7	0,09(1)	0,037(7)	0,041(7)	-0,004(5)	-0,003(6)	0,024(6)
C8	0,08(1)	0,077(9)	0,021(6)	0,006(6)	0,024(6)	0,020(7)
		~ ~				

Fortsetzung von Tabelle 89.

Tabelle 90: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg₂(Pyrimidin)](NO₃)₂

	/ /				
Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	8f	0,18805(3)	0,97227(6)	0,09190(2)	37,3(2)
Hg2	8f	0,30304(2)	0,24304(5)	0,11069(2)	31,0(1)
O1	8f	0,1019(5)	0,741(1)	0,0148(4)	37(2)
O2	8f	0,1566(7)	0,684(1)	0,1618(4)	56(3)
O3	8f	0,1119(6)	0,419(1)	-0,0119(5)	50(2)
O4	8f	0,1949(8)	0,881(2)	0,2510(5)	68(3)
O5	8f	0,2240(5)	0,583(1)	0,0460(4)	38(2)
O6	8f	0,1103(7)	0,628(2)	0,2534(5)	69(3)
N1	8f	0,4074(5)	0,470(1)	0,1229(5)	29(2)
N2	8f	0,1540(7)	0,733(1)	0,2226(5)	39(2)
N3	8f	0,1467(6)	0,578(1)	0,0160(5)	31(2)
N4	8f	0,5448(6)	0,567(1)	0,1087(5)	32(2)
C1	8f	0,5383(8)	0,745(2)	0,1376(6)	37(3)
C2	8f	0,4799(6)	0,433(1)	0,1009(6)	27(2)
C3	8f	0,3985(7)	0,652(2)	0,1543(6)	31(2)
C4	8f	0,4645(7)	0,799(2)	0,1618(6)	35(2)

Tabelle 91: Koeffizienten der anisotropen Temperaturfaktoren U_{ii} (10⁻⁴ pm²) von [Hg₂(Pyrimidin)](NO₃)₂

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0253(2)	0,0324(2)	0,0557(3)	-0,0034(2)	0,0126(2)	-0,0115(2)
Hg2	0,0212(2)	0,0300(2)	0,0435(3)	0,0003(2)	0,0107(2)	-0,0082(1)
O1	0,033(4)	0,036(4)	0,041(5)	-0,006(3)	0,005(3)	0,004(3)
02	0,098(8)	0,040(4)	0,034(5)	-0,002(4)	0,025(5)	-0,021(5)
O3	0,046(5)	0,043(4)	0,066(6)	-0,026(4)	0,024(4)	-0,018(4)
O4	0,100(9)	0,061(6)	0,050(6)	-0,016(5)	0,035(6)	-0,037(6)

05	0,023(4)	0,031(4)	0,058(5)	0,001(4)	0,002(3)	0,001(3)	
O6	0,069(7)	0,093(7)	0,050(6)	0,002(5)	0,025(5)	-0,047(6)	
N1	0,021(4)	0,027(4)	0,041(5)	0,002(4)	0,010(4)	-0,005(3)	
N2	0,043(6)	0,037(5)	0,037(6)	-0,001(4)	0,011(4)	-0,009(4)	
N3	0,029(5)	0,032(4)	0,034(5)	-0,006(4)	0,011(4)	-0,011(4)	
N4	0,022(5)	0,027(4)	0,049(6)	-0,009(4)	0,015(4)	-0,005(3)	
C1	0,040(7)	0,030(5)	0,041(7)	-0,009(4)	0,013(5)	-0,004(4)	
C2	0,013(5)	0,028(4)	0,045(6)	-0,009(4)	0,016(4)	-0,014(3)	
C3	0,026(6)	0,030(5)	0,034(6)	-0,002(4)	0,002(4)	0,001(4)	
C4	0,033(6)	0,028(5)	0,049(7)	-0,011(5)	0,019(5)	-0,001(4)	

Fortsetzung von Tabelle 91.

Tabelle 92: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg₂(Pyrimidin)](ClO₄)₂

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	8d	0,02623(4)	0,06580(2)	0,58595(7)	29,4(3)
N1	8d	0,0766(8)	0,1799(5)	0,736(2)	27(2)
CI1	8d	0,3383(3)	0,1023(2)	0,4316(5)	41,0(7)
O1	8d	0,340(1)	0,134(1)	0,655(2)	103(6)
O2	8d	0,373(2)	0,0227(9)	0,442(3)	166(12)
O3	8d	0,227(1)	0,1110(9)	0,354(2)	78(4)
O4	8d	0,412(1)	0,1465(6)	0,290(2)	66(3)
C1	4c	0,047(1)	0,2500	0,650(2)	27(4)
C2	8d	0,142(1)	0,1799(6)	0,921(2)	27(2)
C3	4c	0,175(2)	0,2500	0,016(3)	35(4)

Tabelle 93: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von [Hg₂(Pyrimidin)](ClO₄)₂

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0326(4)	0,0270(3)	0,0286(3)	-0,0045(2)	-0,0028(2)	-0,0020(2)
N1	0,024(5)	0,026(4)	0,034(5)	0,006(4)	-0,001(5)	0,000(4)
CI1	0,038(2)	0,056(2)	0,029(1)	0,001(1)	-0,001(1)	0,010(1)
01	0,043(8)	0,21(2)	0,054(6)	-0,067(9)	0,006(5)	-0,015(9)
O2	0,27(3)	0,11(1)	0,12(1)	0,08(1)	0,13(2)	0,12(2)
O3	0,034(8)	0,16(1)	0,041(5)	0,019(6)	-0,022(5)	-0,025(7)
O4	0,045(7)	0,069(7)	0,086(8)	-0,024(6)	0,016(6)	-0,013(5)
C1	0,04(1)	0,022(8)	0,021(7)	0,000	0,002(6)	0,000
C2	0,025(6)	0,028(6)	0,029(5)	-0,004(4)	0,001(5)	-0,004(5)
C3	0,05(1)	0,024(8)	0,035(8)	0,000	-0,002(8)	0,000

Atom	Lage	x/a	y/b	z/c	U_{eq}
Hg1	8b	0,07192(2)	0,44029(4)	0,30371(4)	19,0(2)
CI1	8b	0,4244(2)	0,3185(4)	0,4986(3)	26,6(8)
01	8b	0,388(1)	0,447(1)	0,554(1)	45(4)
O2	8b	0,350(1)	0,234(1)	0,497(1)	53(4)
O3	8b	0,455(1)	0,331(2)	0,380(1)	57(4)
04	8b	0,494(1)	0,268(1)	0,575(1)	39(4)
N1	8b	0,1730(6)	0,285(1)	0,292(2)	16(3)
N2	8b	0,2946(8)	0,087(1)	0,275(1)	20(3)
C1	8b	0,164(1)	0,179(1)	0,359(1)	22(3)
C2	8b	0,227(1)	0,081(1)	0,348(1)	22(3)
C3	8b	0,2432(9)	0,296(1)	0,219(1)	18(3)
C4	8b	0,3047(9)	0,195(1)	0,212(1)	19(3)

Tabelle 94: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} (10⁻¹ pm²) von [Hg₂(Pyrazin)₂](ClO₄)₂

Tabelle 95: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} (10⁻⁴ pm²) von [Hg₂(Pyrazin)₂](ClO₄)₂

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	U ₂₃	U ₁₂
Hg1	0,0129(3)	0,0183(3)	0,0258(3)	0,0000(6)	0,0012(6)	0,0046(2)
CI1	0,019(2)	0,035(2)	0,026(2)	-0,008(2)	-0,003(2)	-0,002(2)
01	0,070(1)	0,019(5)	0,048(8)	0,014(5)	-0,063(7)	-0,019(6)
O2	0,048(9)	0,052(9)	0,058(9)	-0,022(7)	0,021(7)	-0,028(7)
O3	0,043(8)	0,09(1)	0,033(7)	-0,009(8)	0,015(6)	-0,018(9)
O4	0,038(7)	0,029(8)	0,05(1)	-0,012(6)	-0,014(7)	0,007(6)
N1	0,012(4)	0,017(5)	0,019(8)	0,006(6)	0,009(6)	0,010(3)
N2	0,011(6)	0,017(5)	0,03(1)	-0,004(4)	0,001(5)	-0,003(4)
C1	0,019(7)	0,015(7)	0,031(7)	-0,001(6)	0,003(6)	0,003(6)
C2	0,028(8)	0,013(6)	0,025(7)	0,005(5)	0,006(6)	-0,004(6)
C3	0,013(6)	0,018(7)	0,023(7)	-0,001(6)	0,003(5)	0,000(5)
C4	0,014(6)	0,021(7)	0,022(7)	0,004(6)	0,010(5)	0,004(6)

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt habe, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmung der geltenden Promotionsordnung sind mir bekannt.

Die von mir vorgelegte Dissertation ist von Prof. Dr. Gerd Meyer betreut worden.

Es wurden keine Teile dieser Arbeit bereits publiziert.

Danksagung

Ich möchte an dieser Stelle allen Personen danken, die zum Gelingen dieser Arbeit direkt oder indirekt beigetragen haben:

Herrn Prof. Dr. Gerd Meyer danke ich für die Unterstützung und das Interesse beim Entstehen dieser Arbeit. Zudem danke ich Ihm für den sehr grossen Forschungsfreiraum und die sehr guten Arbeitsbedingungen.

Herrn Prof. Dr. Walter Jung danke ich für die Übernahme des Koreferats. Frau Priv.-Doz. Dr. Angela Möller gilt mein Dank für viele gute Tipps, Ratschläge und Unterstützung bei spektroskopischen Problemen.

Meinen Laborkollegen Stephan Bremm, Peter Amann, Mathias Nolte und Norbert Böhmer gebührt mein grosser Dank für die gute Zusammenarbeit, viele anregende Diskussionen und das gute Klima in Labor 407.

Ingrid Müller und Dr. Ingo Pantenburg sowie Priv.-Doz. Dr. Mathias Wickleder danke ich für viel Geduld und sehr kompetente Hilfe bei unzähligen Messungen am IPDS. Dr. Dirk Göbbels und Dr. Dirk Hinz-Huebner danke ich für die Messungen am Pulverdiffraktometer und am "Bühler-Ofen" sowie für interessante und anregende Diskussionen zum Thema "Quecksilber". Für letzteres gebührt auch Leo Pak und Frank

Schulz mein Dank. Frank Schulz von den "Naumännern" danke ich zudem für die Überlassung von Hg(CF₃)₂.

Catharina Quitmann und Dr. Klaus Müller-Buschbaum danke ich für die Hilfe bei der Übersetzung des Abstracts.

Frau Dr. Claudia Wickleder danke ich für die SHG-Messungen und vor allem für gelegentliche musikalische Ablenkung von der Chemie.

Meinen Praktikanten Laura, Ralf und Holger gilt mein Dank für eine gute und (meist) ertragreiche Zusammenarbeit.

Den Angestellten des Instituts gebührt besonderer Dank, zu nennen sind hier vor allem nochmals Ingrid Müller, Regina Schulze und Horst Schumacher.

Allen Mitarbeitern des AK Meyer, die hier nicht namentlich erwähnt wurden, gilt ebenfalls mein herzlicher Dank.

Zum Schluß gilt natürlich mein grosser Dank meinen Eltern und meinen drei Brüdern. Insbesondere Robert danke ich vor allem noch für die Bildbearbeitungen.

Lebenslauf

Persönliche Daten

Name:	Peter Nockemann
Geburtstag:	25.11.1971
Geburtsort:	Lüdenscheid
Anschrift:	Berrenrather Str. 387, 50937 Köln
Eltern:	Ulrich Nockemann und Irene Nockemann, geb. Franse
Nationalität:	deutsch
Familienstand:	ledig

Schulbesuch

1977 – 1981	Grundschule Halver
1981 - 1982	Realschule Halver
1983 - 1990	Anne-Frank-Gymnasium Halver
	Abschluss: Allgemeine Hochschulreife

Zivildienst

10/1990 - 6/1992	Betätigung im Natur- und Umweltschutz bei der
	Naturwissenschaftlichen Vereinigung Lüdenscheid

Studium

WS/1992 - SS/2000	Studium der Chemie an der Universität zu Köln
ab WS 1995/96	Studium der Mineralogie / Kristallographie
6/2000	mündliche Diplomhauptprüfung Chemie
6/2000 - 11/2000	Diplomarbeit zum Thema "Reaktionen von Quecksilber,
	Quecksilberhalogeniden und Amalgamen mit
	Ammoniumhalogeniden"
Promotion	
seit 1/2001	Wissenschaftlicher Mitarbeiter am Institut für

Anorganische Chemie der Universität zu Köln