Das Papillomvirus E2-Protein: Lokalisation und Modulation der zellulären Transkription

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Dirk Hadaschik

aus Berlin

Köln, 2001

Tag der Disputation:	17.1.2002
Prüfungskommission:	Prof. Dr. R. Krämer
	Prof. Dr. H. Pfister
	Prof. Dr. D. Tautz

1	EI	NLEITUNG	1
1.1]	Klassifizierung und Pathogenese von Papillomviren	1
1.2]	Kapsidaufbau und Genomorganisation der Papillomviren	2
1.3	L	Aufbau des Plattenepithels der Epidermis	3
1.4]	nfektionszyklus der Papillomviren	5
1.5]	Die viralen Proteine	6
1.6]	Das E2-Protein	9
1.7]	Regulation der viralen Transkription	. 12
1.8]	NF-IL6 ein Mitglied der C/EBP-Transkriptionsfaktorfamilie	. 13
2	M	ATERIAL UND METHODEN	, 16
2.1	I	Material	16
2.	1.1	Eukaryontische Zellen	. 16
2.	1.2	Medien und Reagenzien für die Zellkultur	. 17
2.	1.3	Bakterien	. 18
2.	1.4	Medien und Antibiotika für die Bakterienkultur	. 18
2.	1.5	Nukleinsäuren	. 19
	2.1	5.1 Vektoren	. 19
	2.1	5.2 Rekombinante Plasmide	. 20
	2.1	5.3 Oligonukleotide und Adapter	. 22
	2.1	5.4 Klonierungen	. 25
	-	2.1.5.4.1 Klonierung von HPV8-E2-Deletionsmutanten in die Vektoren pEYFP-C1 und -Ad	. 25
	-	2.1.5.4.2 Klonierung von HPV18-E2 in den Vektor pEYFP-C1	. 27
	-	Klonierung von NF-IL6-Deletionsmutanten in die Vektoren pECFP-C1 und -Ad	. 27
		Klonierung von Luziferase-Reporterkonstrukten mit E2- und NF-IL6-Bindestellen	. 28
		2.1.5.4.5 Kionierung von NF-IL6-Deletionsmutanten in pE1-14b	. 31
	-	2.1.5.4.6 Kionierung von NF-IL6-Deletionsmutanten in pGEX-21	. 32
	21	5.5. Sonstiga Nuklainsäuran	. 33
2	2.1. 1.6	Molekulargewichtestandards	. 55
2.	1.0	Fnzvme	34
2.	21	7.1 Restrictionsenzyme	34
	2.1	7.2 Modifizierende Enzyme	. 34
2.	1.8	Reagenziensysteme	. 35
2.	1.9	Sonstige Reagenzien und Säulen	. 35
	2.1	9.1 Microarrays	. 35
2.	1.10	Antikörper	. 36
2.	1.11	Radioisotope	. 36
2.	1.12	Chemikalien	. 36
2.	1.13	Lösungen und Puffer	. 36
2.	1.14	Geräte	. 36
2.2]	Vethoden	. 37
2.	2.1	Bakterienkultur	. 37
	2.2	1.1 Bakterienkulturen für die Plasmidisolation	. 37
	2.2	1.2 Herstellung kompetenter Bakterien	. 37
	2.2	1.3 Transformation	. 37
2.	2.2	Zellkulturtechniken	. 38
	2.2	2.1 Kultivierung eukaryontischer Zellen	. 38

2.2.2.2	Transfektion eukaryontischer Zellen	38
2.2.2.	2.1 Transfektion mit Kalziumphosphat	38
2.2.2.	2.2 Transfektion mit Fugene	
2223	Magnetische Zellsenation	39
2.2.2.3	Nachweis von Oberflächenentigenen mit Antikörnern	30
2.2.2.4	Durah fu (materia (fluoresson on estimated cell series)	39
2.2.2.5	Durchildszytometrie (nuorescence activated cell sorting)	40
2.2.2.6	Luziferase-Assay	40
2.2.2.7	β-Galaktosidase Assay	40
2.2.2.8	Herstellung von Protein- und Kernextrakten aus eukaryontischen Zellen	40
2.2.2.9	Proteinbestimmung	41
2 2 2 10	Immunfluoreszenz	41
2.2.2.10	Konfakale Lasermikrachanie	11
2.2.2.11	Komokale Laseminioskopie	42
2.2.2.12	Heistenung von Kryoschnitten aus Gewebeproben	42
2.2.2.13	Histochemie	42
2.2.3	Molekularbiologische Methoden	43
2.2.3.1	Standardmethoden	43
2.2.3.2	Plasmidisolierung	43
2.2.3.3	Polymerasekettenreaktion (PCR)	43
2234	RNA-Isolierung	44
2235	Northern Blot	 44
2.2.3.5	aDNA Synthese	 11
2.2.3.0	Conversion of the Conversion IIC 1105 A	44
2.2.3.7	Computerauswertung des GeneChips HG-095A	45
2.2.3.8	In vitro Transkription und Translation	45
2.2.3.9	Aufreinigung von bakteriellen GST-Fusionsproteinen	46
2.2.3.10	Aufreinigung von bakteriellen His-Fusionsproteinen	47
2.2.3.11	Kopräzipitationsanalysen (Interaktions-Assay)	47
2.2.3.12	Western-Blot	47
2.2.3.13	EMSA	48
ERGEBNIS	SSE	. 49
21 Laka	Bration von NE II (und E2	40
3.1 Loka	lisation von NF-IL6 und E2	. 49
3.1 Loka	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix	. 49 49
3.1 Loka 3.1.1 3.1.2	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien	. 49 49 50
3.1 Loka 3.1.1 3.1.2 3.1.3	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten	. 49 49 50 51
3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten	. 49 49 50 51 51
3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.1 3.1.3.2	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten	. 49 49 50 51 51 56
3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.1 3.1.3.2 3.1.3.3	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten	. 49 49 50 51 51 56 57
3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von E2 und NF-IL6	. 49 49 50 51 51 56 57 58
3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von E2 und NF-IL6	. 49 49 50 51 51 56 57 58
3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die L	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von E2 und NF-IL6	. 49 49 50 51 51 56 57 58
3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F	lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV8-E2 in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von S2 und NF-IL6 White the set of the set	. 49 49 50 51 51 56 57 58
3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von E2 und NF-IL6 Wantionelle Interaktion zwischen HPV8-E2 und NF-IL6 	• 49 49 50 51 51 56 57 58 • 60 60
3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die H 3.2.1 3.2.2	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten	. 49 49 50 51 56 57 58 . 60 60 63
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von E2 und NF-IL6 Waktionelle Interaktion zwischen HPV8-E2 und NF-IL6 PV8-E2 und NF-IL6 aktivieren die Transkription des Involukrin-Promotors synergistisch Synergistische Transaktivierung von synthetischen Promotoren durch HPV8-E2 und NF-IL6 	. 49 49 50 51 55 57 58 60 63 65
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Physics	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix	. 49 49 50 51 55 57 58 60 63 65
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys	 lisation von NF-IL6 und E2	. 49 49 50 51 55 57 58 60 63 65 66
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 	lisation von NF-IL6 und E2	. 49 49 50 51 55 57 58 60 63 65 65
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von E2 und NF-IL6 	. 49 49 50 51 55 57 58 60 63 65 65 66 67 68
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 	 lisation von NF-IL6 und E2	. 49 49 50 51 55 57 58 60 63 65 65 67 68 69
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 3.4.4 	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 in Epithel der Zervix	. 49 49 50 51 55 57 58 60 63 65 65 67 68 69 70
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.3 3.1.3.4 3.2 Die F 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von E2 und NF-IL6 Waktionelle Interaktion zwischen HPV8-E2 und NF-IL6 Waktionelle Interaktion zwischen HPV8-E2 und NF-IL6 HPV8-E2 und NF-IL6 aktivieren die Transkription des Involukrin-Promotors synergistisch . Synergistische Transaktivierung von synthetischen Promotoren durch HPV8-E2 und NF-IL6 I-E2 und NF-IL6 beeinflussen sich nicht in ihren DNA-Bindungseigenschaften ikalische Interaktion zwischen E2 und NF-IL6 Das E2-Protein verschiedener PV-Typen präzipitiert NF-IL6 aus nukleären Extrakten Für die Interaktion zwischen HPV8-E2 und NF-IL6 ist keine DNA-Bindung notwendig Der C-Terminus des HPV8-E2-Proteins interagiert mit NF-IL6 Die basische Region des NF-IL6-Proteins interagiert mit dem PV E2-Protein HPV18-E2 und NF-IL6 interagieren direkt miteinander 	. 49 49 50 51 55 58 60 63 63 65 65 66 67 68 70 73
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 Mod.	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von HPV18-E2 in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von F2 und NF-IL6 Waktionelle Interaktion zwischen HPV8-E2 und NF-IL6 PV8-E2 und NF-IL6 aktivieren die Transkription des Involukrin-Promotors synergistisch Synergistische Transaktivierung von synthetischen Promotoren durch HPV8-E2 und NF-IL6 I-E2 und NF-IL6 beeinflussen sich nicht in ihren DNA-Bindungseigenschaften Bikalische Interaktion zwischen E2 und NF-IL6 Das E2-Protein verschiedener PV-Typen präzipitiert NF-IL6 aus nukleären Extrakten Für die Interaktion zwischen HPV8-E2 und NF-IL6 ist keine DNA-Bindung notwendig Der C-Terminus des HPV8-E2-Proteins interagiert mit NF-IL6 Die basische Region des NF-IL6-Proteins interagiert mit dem PV E2-Protein HPV18-E2 und NF-IL6 interagieren direkt miteinander 	. 49 49 50 51 55 57 58 60 63 63 65 66 67 68 69 70 73
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 Mod	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix. Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten. Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von E2 und NF-IL6 	. 49 49 50 51 55 57 58 60 63 65 66 67 68 69 70 73 74
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 Mod 3.5.1 	 lisation von NF-IL6 und E2	. 49 49 50 51 55 57 58 60 63 65 65 66 67 70 73 74 75
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 Mod 3.5.1 3.5.2 	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 in Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von E2 und NF-IL6 waktionelle Interaktion zwischen HPV8-E2 und NF-IL6 Waktionelle Interaktion zwischen HPV8-E2 und NF-IL6 HPV8-E2 und NF-IL6 aktivieren die Transkription des Involukrin-Promotors synergistisch Synergistische Transaktivierung von synthetischen Promotoren durch HPV8-E2 und NF-IL6 I-E2 und NF-IL6 beeinflussen sich nicht in ihren DNA-Bindungseigenschaften Bas E2-Protein verschiedener PV-Typen präzipitiert NF-IL6 aus nukleären Extrakten Für die Interaktion zwischen HPV8-E2 und NF-IL6 Der C-Terminus des HPV8-E2-Proteins interagiert mit NF-IL6. Die basische Region des NF-IL6-Proteins interagiert mit dem PV E2-Protein HPV18-E2 und NF-IL6 interagieren direkt miteinander ulation der zellulären Genexpression Etablierung der Selektion H-2K^k Expression in pMACS K^k II/HPV8-E2 transfizierten Zeller Kinetik der HPV8-E2 und H-2K^k Expression in pMACS K^k II/HPV8-E2 transfizierten Zeller 	. 49 49 50 51 55 60 63 65 65 65 67 68 69 70 73 73 75 77
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 Mod 3.5.1 3.5.2 3.5.3 	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 in Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten. Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten. Lokalisation von SP-IL6-Deletionsmutanten in transfizierten Keratinozyten. Lokalisation von SP-IL6-Deletionsmutanten in transfizierten Keratinozyten. Kolokalisation von E2 und NF-IL6. Yunktionelle Interaktion zwischen HPV8-E2 und NF-IL6 Web-E2 und NF-IL6 aktivieren die Transkription des Involukrin-Promotors synergistisch Synergistische Transaktivierung von synthetischen Promotoren durch HPV8-E2 und NF-IL6 I-E2 und NF-IL6 beeinflussen sich nicht in ihren DNA-Bindungseigenschaften I-E2 und NF-IL6 beeinflussen sich nicht in ihren DNA-Bindungseigenschaften I-E2 und NF-IL6 beeinflussen sich nicht in ihren DNA-Bindung notwendig Der C-Terminus des HPV8-E2 und NF-IL6 ist keine DNA-Bindung notwendig Der C-Terminus des HPV8-E2-Proteins interagiert mit NF-IL6 Die basische Region des NF-IL6-Proteins interagiert mit dem PV E2-Protein HPV18-E2 und NF-IL6 interagieren direkt miteinander I-I4100 Genexpression Etablierung der Selektion H-2K ^k transfizierter Zellen Kinetik der HPV8-E2 und H-2K ^k Expression in pMACS K ^k .II/HPV8-E2 transfizierten Zeller Kinetik der HPV18-E2 und H-2K ^k Expression in pMACS K ^k .II/HPV18-E2 transfizierten Zeller Kinetik der HPV18-E2 und H-2K ^k Expression in pMACS K ^k .II/HPV18-E2 transfizierten Zeller	. 49 49 50 51 55 60 63 63 65 66 67 68 69 70 73 73 75 71 81
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 Mod 3.5.1 3.5.2 3.5.3 3.5.4 	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 in Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten. Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten. Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten. Kolokalisation von E2 und NF-IL6 Tunktionelle Interaktion zwischen HPV8-E2 und NF-IL6 WPV8-E2 und NF-IL6 aktivieren die Transkription des Involukrin-Promotors synergistisch . Synergistische Transaktivierung von synthetischen Promotoren durch HPV8-E2 und NF-IL6 I-E2 und NF-IL6 beeinflussen sich nicht in ihren DNA-Bindungseigenschaften Bische Interaktion zwischen E2 und NF-IL6 Das E2-Protein verschiedener PV-Typen präzipitiert NF-IL6 aus nukleären Extrakten Für die Interaktion zwischen HPV8-E2 und NF-IL6 ist keine DNA-Bindung notwendig Der C-Terminus des HPV8-E2-Proteins interagiert mit NF-IL6 Die basische Region des NF-IL6-Proteins interagiert mit dem PV E2-Protein HPV18-E2 und NF-IL6 interagieren direkt miteinander ulation der zellulären Genexpression Etablierung der Selektion H-2K^k transfizierter Zellen. Kinetik der HPV8-E2 und H-2K^k Expression in pMACS K^k. II/HPV18-E2 transfizierten Zeller Kinetik der HPV18-E2 und H-2K^k Expression in pMACS K^k. II/HPV18-E2 transfizierten Zellen 	. 49 49 50 51 55 60 63 65 65 65 66 67 68 69 70 73 73 71 81 82
 3.1 Loka 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.2 Die F 3.2.1 3.2.2 3.3 BPV 3.4 Phys 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 Mod 3.5.1 3.5.2 3.5.3 3.5.4 3.5.4.1 	 lisation von NF-IL6 und E2 Lokalisation von NF-IL6 im Epithel der Zervix Expression von NF-IL6 in humanen Keratinozytenlinien Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten Kolokalisation von E2 und NF-IL6 Waktionelle Interaktion zwischen HPV8-E2 und NF-IL6 HPV8-E2 und NF-IL6 aktivieren die Transkription des Involukrin-Promotors synergistisch Synergistische Transaktivierung von synthetischen Promotoren durch HPV8-E2 und NF-IL6 I-E2 und NF-IL6 beeinflussen sich nicht in ihren DNA-Bindungseigenschaften Bas E2-Protein verschiedener PV-Typen präzipitiert NF-IL6 aus nukleären Extrakten Für die Interaktion zwischen E2 und NF-IL6 Das E2-Protein verschiedener PV-Typen präzipitiert NF-IL6 aus nukleären Extrakten Für die Interaktion zwischen HPV8-E2 und NF-IL6 Der C-Terminus des HPV8-E2-Proteins interagiert mit NF-IL6 Die basische Region des NF-IL6-Proteins interagiert mit NF-IL6 Die basische Region des NF-IL6-Proteins interagiert mit dem PV E2-Protein HPV18-E2 und NF-IL6 interagieren direkt miteinander HPV18-E2 und NF-IL6 interagieren direkt miteinander HPV18-E2 und NF-IL6 interagieren direkt miteinander Anreicherung der Selektion H-2K^k transfizierter Zellen Kinetik der HPV8-E2 und H-2K^k Expression in pMACS K^k II/HPV18-E2 transfizierten Zeller Kinetik der HPV18-E2 und H-2K^k Expression in gMACS K^k II/HPV18-E2 transfizierten Zellen Anreicherung E2-transfizierter Keratinozyten und anschliefende Genexpressionsanalyse Transfektion und m	. 49 49 50 51 55 57 58 60 63 63 65 65 66 67 68 69 70 73 73 71 81 82 82

3.5.4	.3 Synthese der cDNA, <i>in vitro</i> Transkription und Proben-Hybridisierung auf dem Ge	eneChip 88
3.5.4	.4 Computerauswertung der GeneChips HG-U95A	90
3.5.5	Durch HPV8-E2 regulierte Gene	
3.5.6	Durch HPV18-E2 regulierte Gene	
3.5.7	Vergleich der Regulationsmuster von HPV8-E2 und HPV18-E2	
3.5.8	Durch die E2-Proteine von HPV-8 und HPV-18 regulierte funktionelle Gengruppen.	
4 DIS	KUSSION	96
4.1 D	ie Wechselwirkung zwischen dem PV E2-Protein und NF-IL6	
4.2 D	ie subnukleäre Lokalisation von E2 und NF-IL6	102
4.2.1	Lokalisation von HPV8-E2-Deletionsmutanten	
4.2.2	Lokalisation von HPV18-E2	105
4.2.3	Lokalisation von NF-IL6-Deletionsmutanten	105
4.3 M	lodulation der zellulären Genexpression durch E2 (Genechip-Analyse)	106
5 ZUS	SAMMENFASSUNG	111
6 ANI	HANG: GENEXPRESSIONSANALYSE	113
7 LIT	ERATURVERZEICHNIS	120

Abkürzungen:

А	Adenin
AS	Aminosäure
bp	Basenpaare
BPV	bovines Papillomvirus
BSA	Rinderserumalbumin
cDNA	komplementäre DNA
С	Cvtosin
CMV	Cytomegalievirus
DAB	3 3'-Diaminohenzidin
DAPI	4' 6-Diamidin-2'nhenvlindol-dihvdrochlorid
DMSO	Dimethylsulfoxid
DNA	Desovyribonukleinsäure
DNA	Desoxyribonuklease
ANTD	Desoxynukleosidtrinhosphat
	Districtorial
E. COII	
EDIA	Ethylendiamintetraessigsaure
EGFP	enhanced green fluorescent protein
Ev	Epidermodysplasia verruciformis
EXFP	= ECFP oder EYFP
EYFP	enhanced yellow fluorescent protein
FACS	fluorescence activated cell sorting
FCS	fötales Kälberserum
G	Guanin
g	Vielfaches der Erdbeschleunigung
GAR-Domäne	Glycin-Arginin-reiche Domäne
GST	Gluthation-S-Transferase
HEPES	N-2-Hydroxyethylpiperazin-N-2-Ethansulfonsäure
His	Histidin
HPV	Humanes Papillomvirus
IPTG	Isopropyl-1-thio-\beta-D-Galaktosid
kb	10 ³ Basen
kDa	Kilodalton
KE	Kernextrakt
LUC	Luziferase
mut	mutiert
mRNA	massanger Ribonukleinsäure
NI S	nukleäres Lokalisationssignal
nLo	Nuklaatid
	Ontigehe Dighte
ONDC	o Nitronhanal & D. Calabtagid
ONPG	o-Introphenyi-b-D-Galaktosid
OKF	offener Leseranmen; open reaaing jrame
PAGE	Polyacrylamidgelelektrophorese
PBS	phosphate buffered saline
PCR	Polymerase-Kettenreaktion
PMSF	Phenylmethylsulfonylfluorid
POD	PML oncogenic domain
PV	Papillomvirus
RNA	Ribonukleinsäure
RNase	Ribonuklease
RSV	Rous Sarcoma Virus
RT	Raumtemperatur
SDS	Natriumdodecylsulfat
SFC	splicing-factor compartments
Т	Thymin
ТА	Transaktivierung
TBE	Tris-Borat-EDTA
Tris	Tris(hydroxymethyl)-aminoethan
wt	Wildtyp

1.1 Klassifizierung und Pathogenese von Papillomviren

Papillomviren sind kleine, nichtumhüllte, ikosaedrische Viren mit einem zirkulär geschlossenen, doppelsträngigen DNA-Genom. Bis vor kurzem wurden sie noch mit den Polyomaviren in der Familie der Papovaviridae zusammengefaßt, bilden aber inzwischen die eigenständige Familie der Papillomaviridae. Neben humanen sind auch animale Papillomviren bekannt, die v. a. aus höheren Vertebraten wie Säugetieren (z.B. Rind, Primaten), Vögeln, aber auch Reptilien isoliert wurden (Howley, 1996; zur Hausen & de Villiers, 1994). Bis heute sind mehr als 80 humanpathogene Papillomvirustypen (HPV) vollständig sequenziert worden (zur Hausen, 2000). Als neuer HPV-Typ gelten solche Isolate, deren DNA-Sequenz sich im ORF des Hauptkapsidproteins (L1) um mehr als 10% von der Sequenz bereits bekannter Typen unterscheidet. HPV infizieren Keratinozyten in Epithelien der Haut und Schleimhäute und induzieren dort die Bildung benigner Tumoren, wie Warzen, Kondylome, Larynx- und Konjunktivalpapillome. Aufgrund ihres Gewebetropismus können die Papillomviren in zwei Gruppen eingeteilt werden, kutane und Mukosa-assoziierte HPV-Typen. Infektionen mit kutanen HPV-Typen (z.B. HPV-1, -2, -3, -7 und -10) manifestieren sich in der Ausbildung harmloser Hautwarzen unterschiedlicher Morphologie (Shah & Howley, 1996). Außerdem sind einige kutane Typen (v. a. HPV-5 und -8) mit der weltweit selten auftretenden dermatologischen Erkrankung Epidermodysplasia verruciformis (Ev) assoziiert (Pfister & Ter Schegget, 1997). Sie wird meist autosomal rezessiv vererbt und scheint aufgrund eines Immundefekts die Patienten für die Infektion mit einer heterogenen HPV-Gruppe empfänglich zu machen, die in der normalen Bevölkerung kaum Krankheitssymptome hervorruft. Die Ev-Patienten entwickeln am ganzen Körper makulöse Hautläsionen und flache Warzen, die in 30-60% der Fälle nach langer Persistenz (>10 Jahre) meist in Sonnen-exponierten Körperregionen maligne entarten (Fuchs & Pfister, 1996). In diesen Plattenepithelkarzinomen werden überwiegend die HPV-Typen 5 oder 8 (>90%) nachgewiesen (Pfister, 1992).

Bei HPV-Infektionen der anogenitalen oder orolaryngealen Mukosa werden dagegen andere Typen isoliert (Schleimhaut-assoziierte). So werden in den Warzen des Anogentialtraktes (*Condylomata acuminata*) überwiegend die HPV-Typen 6 oder 11 vorgefunden, die auch für die Ausbildung der laryngealen Papillomatose bei Kindern ursächlich sind. Die z.T. massiv vorkommenden Larynxpapillome entarten nur selten, aber Röntgenbestrahlung führte in vielen Fällen zu Karzinomen und ist daher absolut kontraindiziert (Clark & MacKenzie, 1996).

1

Von großer klinischer Bedeutung ist die Ausbildung intraepithelialer Neoplasien des Anogenitaltraktes und v. a. der Zervix (CIN). Je nachdem welchen Anteil die abnormalen Zellen am gesamten Epithel einnehmen, werden *low-grade* und *high-grade* Läsion (SIL) des zervikalen Plattenepithels unterschieden. Sie sind die Vorstufen des invasiven Zervixkarzinoms, der zweithäufigsten Krebsform bei Frauen weltweit (Parkin *et al.*, 1993). Die HPV-Typen 6 und 11 werden überwiegend in *low-grade* SILs vorgefunden und solche weisen ein geringes Risiko auf, maligne zu entarten. Diese Viren werden daher auch als *low-risk*-Typen bezeichnet, während die HPV-Typen 16, 18, 31 und 45 als *high-risk*-Typen gekennzeichnet sind, da sie häufig aus *high-grade* SILs und aus ca. 75% der Zervixkarzinome isoliert werden (Munoz & Bosch, 1996). Heutzutage gilt als gesichert, daß Papillomviren an der Entstehung nahezu aller Zervixkarzinome ursächlich beteiligt sind, da sie in über 95% der Fälle detektiert werden konnten (zur Hausen, 1996). Andere Studien zeigten, daß einer Entwicklung von SILs stets eine HPV-Infektion vorausging (Shah & Howley, 1996). Außerdem induzieren die Hochrisiko-Typen schnell eine Chromosomeninstabilität und einen aneuploiden Karyotyp, während die *low-risk*-Typen dies nicht vermögen (zur Hausen & de Villiers, 1994).

1.2 Kapsidaufbau und Genomorganisation der Papillomviren

Das ikosaedrische Papillomviruskapsid mit einem Durchmesser zwischen 52 und 55 nm setzt sich aus 72 pentameren Kapsomeren zusammen und besteht überwiegend aus dem Hauptkapsidprotein L1 und aus dem Nebenkapsidprotein L2 (Pfister & Fuchs, 1994). Die Kapside enthalten das doppelsträngige, zirkulär geschlossene PV-Genom, das ungefähr 8000 bp umfaßt. Die virale DNA ist mit zellulären Histonen assoziiert und befindet sich somit in einem Chromatin-ähnlichen Komplex (Favre *et al.*, 1977; Stunkel & Bernard, 1999). Anhand

der Analyse viraler Transkripte aus PV-infiziertem Gewebe wurde deutlich, daß lediglich einer der DNA-Stränge für alle viralen Proteine kodiert und damit sämtliche ORFs (*open reading frames*) umfaßt. Die Größe und Anordnung der ORFs (Abb. 1) ist trotz der großen Unterschiede in der Pathogenese unter allen Papillomviren gut konserviert (Howley, 1996). Aufgrund ihrer Lage im Genom und dem Zeitpunkt ihrer Expression während des viralen Replikationszyklus wurden die 8-10 ORFs in frühe (*Early*) bzw. späte (*Late*) Leserahmen eingeteilt. Zwischen dem L1- und E6-Gen befindet sich in jedem PV-Genom eine 400-1000 bp große Region, in der keine ORFs liegen, dafür aber cis-aktive Elemente für die Regulation der viralen Transkription und der *origin of replication* (ori) für die Genom-replikation. Daher wird dieser Genomabschnitt auch LCR (*long control region*) genannt.

1.3 Aufbau des Plattenepithels der Epidermis

Papillomviren infizieren Epithelien der Haut und Schleimhaut. Sie weisen dabei eine starke Wirts- und Zellspezifität auf. Zum besseren Verständnis des viralen Lebenszyklus und seiner Anpassung an die Zielorgane, soll zunächst der Aufbau der Epidermis beschrieben werden (zusammengefaßt in Holbrook, 1994). Die Struktur des Plattenepithels der Haut wird zum größten Teil durch die Keratinozyten vorgegeben, die mehr als 80% aller Zellen im Epithel ausmachen und welche die Wirtszellen der Papillomviren darstellen. Bei den restlichen Zellen handelt es sich um Melanozyten, Langerhans- und Merkel-Zellen, die für die Pigmentierung, Antigenpräsentation oder Verarbeitung mechanischer Reize zuständig sind. Die Epidermis wird von der Dermis durch die Basallamina getrennt (Abb. 2). Direkt an die Basallamina anschließend bildet eine einlagige Schicht proliferationskompetenter, relativ undifferenzierter Basalzellen die unterste Schicht der Epidermis. Diese Basalzellen sind für die ständige Erneuerung der über ihr liegenden Epithelschichten verantwortlich. Nach der Mitose verläßt eine der Tochterzellen die Basalschicht. Auf ihrem zweiwöchigen Weg an die Körperoberfläche durchläuft sie ein fein reguliertes Differenzierungsprogramm, bis sie schließlich vollständig verhornt und abstirbt (Korneozyt). Über der Basalschicht befindet sich das stratum spinosum, dessen Zellen sich durch üppige Desmosomen-Verknüpfungen auszeichnen. Die darüber liegenden Zellschichten bilden das stratum granulosum. Der Name leitet sich von den zahlreichen Granula dieser Zellen ab, in denen sich bereits Material für die Bildung der Korneozytenmembran sammelt (Loricrin, Filaggrin, Cystatin α). Nachdem die Zellen ihre Organellen und DNA durch die Aktivität von Proteinasen, DNasen und weiteren Enzymen verloren haben, erreichen sie das stratum corneum. Diese abgestorbenen Keratinozyten zeichnen sich durch ein ausgeprägtes Keratingerüst aus, um das sich eine stark

quervernetzte Proteinhülle ausgebildet hat (*corneocyte envelope*). Die Proteinhülle liegt direkt unter der Zellmembran und besteht u. a. aus den Strukturproteinen Involukrin, Cystatin- α , Loricrin, SPRs (small Prolin-rich proteins) und Elafin, die durch Transglutaminasen und Disulfidbrücken quervernetzt wurden. Dabei scheint Involukrin eine herausragende Rolle zu spielen, da es von diesen Strukturproteinen als erstes exprimiert wird und daher das Grundgerüst für den Aufbau der Proteinhülle liefern könnte (Eckert *et al.*, 1993). Es weist eine langgestreckte Konformation auf und exponiert über das gesamte Molekül verteilt Glutaminreste an der Oberfläche, die mannigfaltige Möglichkeiten für die Quervernetzung durch Glutaminasen bieten.

Für die Charakterisierung der verschiedenen Differenzierungsstadien in der Epidermis, konnten bestimmte Strukturproteine herangezogen werden, die im Epithel nach einem festgelegten Differenzierungsmuster exprimiert werden (Abb. 2). So werden die Keratine 5 und 14 nur in Basalzellen produziert, während die Keratine 1 und 10 erst ab dem *stratum spinosum* zur Expression kommen. Das Strukturprotein Involukrin und die Transglutaminase 1 werden in den oberen Schichten des *stratum spinosum* und im *stratum granulosum* exprimiert. Loricrin und Filaggrin sind erst im *stratum granulosum* nachweisbar (Eckert *et al.*, 1997b). Die Epidermis der Schleimhaut ist weniger strukturiert aufgebaut und

Abb. 2: Der Aufbau der Epidermis, dem Zielorgan der Papillomviren. Links befinden sich die Bezeichnungen der Epithelschichten. Rechts sind die Expressionsmuster der Differenzierungsmarker, des NF-IL6-Proteins und der viralen Proteine dargestellt. Reife Viruspartikel sind als schwarze Punkte und virale Genome als Kreise dargestellt. (Zeichnung verändert nach S. Modrow, 1998)

besitzt keine verhornenden Schichten. Das fein regulierte Differenzierungsprogramm der Keratinozyten scheint v. a. transkriptionell gesteuert zu werden (Eckert & Welter, 1996). Hier sind insbesondere die Mitglieder zweier Transkriptionsfaktor-Familien beteiligt: die Familie der AP-1- und die Familie der C/EBP-Faktoren. Die Mitglieder beider Familien werden in der Epidermis differentiell exprimiert (Welter & Eckert, 1995; Oh & Smart, 1998). Funktionelle AP-1-Bindestellen wurden beispielsweise in den Promotoren von Keratin 1 und 5 (Lu *et al.*, 1994; Casatorres *et al.*, 1994) sowie in denen von Involukrin und Filaggrin (Jang *et al.*, 1996) entdeckt. Der Involukrin-Promotor, der in dieser Arbeit ebenfalls untersucht wurde, enthält eine distale (-2122/-2114) und eine proximale AP-1-Bindestelle (-125/-117), die beide nur durch bestimmte AP-1-Mitglieder gebunden werden und für die Phorbolester induzierte Aktivierung des Involukringens mitverantwortlich sind (Welter *et al.*, 1995). Interessanterweise sind funktionelle AP-1 Bindestellen ebenfalls in der LCR der HPV zu finden. AP-1 scheint somit auch an der Regulation der differenzierungsspezifischen Transkription von PV-Promotoren beteiligt zu sein (Bernard & Apt, 1994; Chong *et al.*, 1990; Cripe *et al.*, 1990; Thierry *et al.*, 1992).

1.4 Infektionszyklus der Papillomviren

Die Hornschicht der Epidermis bietet dem Körper Schutz gegen Austrocknung und Hydratisierung, aber auch gegen die Infektion mit Pathogenen. Für die Etablierung persistierender Infektionen müssen Papillomviren demnach über Mikrotraumata die teilungsfähigen Basalzellen des Epithels der Haut oder Schleimhaut infizieren. Ob das Oberflächen-Molekül α_6 -Integrin, wie von Evander *et al.* (1997) vorgeschlagen, dabei den allgemeinen PV-Rezeptor darstellt, wird in der Literatur noch kontrovers diskutiert (Sibbet et al., 2000; Giroglou et al., 2001; Yoon et al., 2001). Bisher existieren keine funktionellen Studien, die zeigen, daß es den Eintritt der Virionen vermitteln kann. Unklar bleibt außerdem, auf welche Weise Viruspartikel in die Zelle eintreten, wie die virale DNA das Kapsid verläßt (uncoating) und in den Zellkern lokalisiert. In den proliferierenden Basalzellen des Plattenepithels kommen zunächst geringe Mengen der frühen Proteine E1, E2, E6 und E7 zur Expression. E1 und E2 werden für die Initiation der viralen Replikation benötigt. So werden in den Basalzellen zunächst nur wenige Kopien (50-100 pro Zelle) des episomal vorliegenden Genoms synthetisiert (Stubenrauch & Laimins, 1999). Während der Mitose verteilen sich die Virusgenome auf die Schwesterzellen. Die vegetative Replikation des Virusgenoms, die Expression der späten Strukturproteine und somit die Virusreifung sind in den Basalzellen blockiert und finden erst in höheren Schichten des Epithels in differenzierenden Zellen statt. Somit ist die Virusreifung eng an die Differenzierung der Epithelzellen gebunden (Abb. 2). Aufgrund dieser Tatsache ist es nicht möglich Papillomviren in Zell-Monolayern zu kultivieren. Erst die Entwicklung mehrschichtiger, epithelartiger Strukturen aus Keratinozyten, sogenannte organotypische Kulturen, ermöglichten die Anzucht von Viren in kleinen Titern. Die Steuerung der differenzierungsabhängigen Expression der viralen Proteine erfolgt vermutlich transkriptionell über zelluläre Transkriptionsfaktoren, die differentiell im Epithel exprimiert werden (Turek, 1994). So werden die frühen Proteine erst ab den suprabasalen Epithelschichten verstärkt gebildet, und erst dann liegen E1 und E2 in ausreichenden Mengen vor, um mit der vegetativen Replikation des Virusgenoms zu beginnen. Da Papillomviren für die DNA-Synthese auf zelluläre Proteine angewiesen sind (z.B. DNA-Polymerasen) und die suprabasalen, differenzierenden Keratinozyten jedoch in der G₁-Phase arretiert sind, werden die viralen Proteine E6, E7 und eventuell E5 benötigt, um den Zellzyklusblock aufzuheben und die Zellen in die S-Phase zu treiben (Thomas *et al.*, 1998). Dadurch wird gewährleistet, daß ausreichend zelluläre Proteine für die DNA-Synthese vorliegen. Erst in höheren Epithelschichten kommen die Kapsidproteine L1 und L2 zur Expression und die neuen Virionen können im Nukleus zusammengebaut und aus den absterbenden Zellen freigesetzt werden (Doorbar, 1998).

Aufgrund der verzögerten Differenzierung und verstärkten Proliferation von PV-infizierten Zellen kommt es zu einer vertikalen Ausdehnung des infizierten Gewebes, die makroskopisch als Warze, Kondylom oder Papillom sichtbar wird.

In seltenen Fällen wird das virale Genom in die DNA der Wirtszelle eingebaut. Besonders häufig kann dies in Zellen von HPV-assoziierten Karzinomen beobachtet werden. Durch die Integration geht die transkriptionelle Kontrolle der Onkogene E6 und E7 der Hochrisiko-HPV-Typen verloren, die daraufhin verstärkt exprimiert werden und die genetische Stabilität der Zelle einschränken. Augenscheinlich sind für die Entstehung von Kanzerosen weitere zelluläre Veränderungen nötig (z.B. Aktivierung von zellulären Onkogenen), zu deren Entstehung v. a. E6 auf diese Weise beiträgt (Galloway & McDougall, 1996).

1.5 Die viralen Proteine

Die transformierenden Proteine E6, E7 und E5

Die HPV-Proteine E6, E7 und E5 werden benötigt, um den G₁-Zellzyklusblock in suprabasalen Epithelzellen zu beseitigen und damit die Replikation des viralen Genoms zu ermöglichen. Da diese drei Proteine keine intrinsische Enzymaktivität besitzen, vermitteln sie ihre Funktionen über die Interaktion mit zellulären Proteinen (Smola-Hess & Pfister, in press).

Zu den wichtigsten und am besten untersuchten Wechselwirkungen gehört die des PV **E6**-Proteins mit dem zellulären Tumorsuppressor-Protein p53. Als Antwort auf diverse mitogene Stimuli vermittelt p53 den Zellzyklusblock in der G₁-Phase und ermöglicht auf diese Weise die Reparatur von DNA-Schäden oder induziert Apoptose. Der p53-vermittelte Zellzyklusblock beruht auf der Transaktivierung von p21 (Schwartz & Rotterm, 1998), dem Inhibitor von Zyklin-abhängigen Kinasen (cdk). Zusammen mit der Ubiquitin-Protein Ligase E6-AP (*E6 associated protein*) bindet E6 an p53, führt zu seiner Ubiquitinierung und dadurch zu seiner verstärkten Degradation (Scheffner *et al.*, 1999). Die Fähigkeit an p53 zu binden bzw. seinen Abbau zu forcieren, korreliert mit der transformierenden Aktivität der E6 Proteine und ist bei den *high-risk*-HPV-Typen am stärksten (Mantovani & Banks, 1999). Aufgrund der p53-Degradation führt E6 zum Wegfall von Zellzyklus-Kontrollpunkten und verhindert die p53-induzierte Apoptose. Als Nebeneffekt bewirkt E6 dadurch eine genetische Instabilität der Wirtszelle, die eine Akkumulation von Mutationen begünstigt und daher zu einer malignen Entartung beitragen kann (Galloway & McDougall, 1996).

Die **E7**-Proteine der *high-risk*-HPV sind in der Lage, Mitglieder der Retinoblastoma-Familie zu binden (pRB, p107 und p130) und ihre Degradation zu beschleunigen (Jones & Munger, 1996). Diese Tumorsuppressor-Proteine sind in der Zelle mit dem Transkriptionsfaktor E2F assoziiert und inaktivieren ihn auf diese Weise. Vor dem Eintritt in die S-Phase wird pRB durch Zyklin-abhängige Kinasen phosphoryliert und als Folge E2F freigesetzt. E2F aktiviert daraufhin zahlreiche Gene, die für die DNA-Synthese benötigt werden (Thymidin-Kinase, Dihydrofolat-Reduktase, DNA-Polymerase α ; Turek, 1994), sowie den Zellzyklusregulator Zyklin E, der während des G₁/S-Übergangs die cdk2 aktiviert (Ohtani *et al.*, 1995). Indem E7 an die Mitglieder der pRB-Familie bindet, bewirkt es die Freisetzung von E2F und damit die Aufhebung des Zellzyklusblocks in der G₁-Phase und ermöglicht die DNA-Synthese (Thomas *et al.*, 1998). Außerdem bindet E7 die cdk-Inhibitoren p21 und p27 und verhindert dadurch, daß diese den Zyklin/cdk2-Komplex während des G₁/S-Übergangs bloc??kieren (Funk & Galloway, 1998). Dieser wird für die Phosphorylierung von pRB und den Eintritt in die S-Phase benötigt.

Das kleine, extrem hydrophobe Protein **E5** ist in der Wirtszelle mit Membranen assoziiert. Am besten untersucht ist das E5-Protein des bovinen Papillomvirus 1 (BPV-1), das in der Lage ist, Zellen zu transformieren. Es bindet in der Zellmembran an die Rezeptoren der Wachstumsfaktoren PDGF (*platelet-derived growth factor*) sowie EGF (*epidermal growth factor*) und führt zu ihrer Ligand-unabhängigen Aktivierung (Cohen *et al.*, 1993a; Goldstein *et al.*, 1994). Ferner scheint E5 die Internalisierung des EGF-Rezeptors zu blockieren (Goldstein & Schlegel, 1990; Straight *et al.*, 1995; Cohen *et al.*, 1993b). Über diese Mechanismen verstärkt E5 die Signaltransduktion der Wachstumsfaktor-Rezeptoren und führt so vermutlich zur Zelltransformation.

Die viralen Replikationsproteine E1 und E2

Das DNA-bindende Protein **E2** ist für die Regulation der viralen Transkription und Replikation verantwortlich. Seine genauen Funktionen werden unter 1.6 näher beschrieben.

Das E1-Protein ist ein unter den Papillomviren gut konserviertes, nukleäres Phosphoprotein, das zusammen mit E2 absolut essentiell für die Replikation des viralen Genoms ist. E1 verfügt über eine Nukleotid-Bindungsstelle, eine ATPase- und eine ATP-abhängige Helikase-Aktivität. Der ori der PV enthält eine niedrig affine E1-Bindestelle, die von zwei E2-Bindestellen flankiert wird. Es konnte gezeigt werden, daß der C-Terminus von E1 mit der N-terminalen Transaktivierungsdomäne von E2 interagiert (Hibma et al., 1995; Yasugi et al., 1997). Bindet E2 an seine Bindestellen im ori, kann es durch Protein-Protein-Wechselwirkung E1 rekrutieren und seine Bindeaffinität verstärken (Lusky et al., 1993; Mohr et al., 1990; Frattini & Laimins, 1994). Vice versa verstärkt E1 die Bindeaffinität von E2 (Chao et al., 1999). BPV1-E1 scheint am ori einen hexameren Ring um die DNA zu bilden (Sedman & Stenlund, 1998), der sich am DNA-Strang entlang bewegt und ihn dabei entwindet. In vitro Studien zeigten, daß neben E1 und E2 auch zelluläre Proteine für die virale Replikation benötigt werden, wie RPA (replication protein A - bindet an einzelsträngige DNA und stabilisiert sie), PCNA (proliferating cell nuclear antigene), RFC (replication factor C), die Topoisomerasen I und II sowie die DNA-Polymerase α -Primase und δ (Kuo *et al.*, 1994). Tatsächlich interagiert E1 mit der DNA-Polymerase α-Primase und rekrutiert sie zum ori (Masterson et al., 1998; Park et al., 1994). Ferner bindet E1 an das Histon H1, kann es von der viralen DNA verdrängen und somit die Replikation erleichtern (Swindle & Engler, 1998). Das E2 Protein wiederum rekrutiert RPA zum ori (Li & Botchan, 1993) und schwächt außerdem die Nukleosomen-bedingte Repression der Replikation ab (Li & Botchan, 1994).

Das E4-Protein

Obwohl das **E4**-Gen im Genomabschnitt der frühen Gene liegt, wird es erst spät im viralen Lebenszyklus und in suprabasalen Schichten des Epithels exprimiert. Das E1^E4-Transkript, das durch alternatives Spleißen entsteht und nur wenige Nukleotide des E1-Gens besitzt, scheint das häufigste Transkript in HPV-induzierten Läsionen zu sein. Dennoch ist die präzise Rolle des E1^E4-Proteins im viralen Lebenszyklus weitestgehend unbekannt (Doorbar, 1998). Das E1^E4-Protein von HPV-16 scheint den Kollaps des Zytokeratin-Netzwerks zu induzieren und könnte dadurch die Freisetzung der reifen Viren begünstigen (Doorbar *et al.*, 1991).

Die Strukturproteine L1 und L2

Das Kapsidprotein L2 von BPV-1 rekrutiert sowohl L1 als auch E2 zu nukleären Kompartimenten, die möglicherweise eine Rolle bei der Replikation von verschiedenen Viren (HSV-1, Ad5, SV40) spielen und PODs (PML *oncogenic domains*) genannt werden. Auf diese Weise

könnte der Transport an E2-gebundener viraler Genome zum Ort des Virionen-Zusammenbaus organisiert werden (Day *et al.*, 1998; Heino *et al.*, 2000).

1.6 Das E2-Protein

Das 40-56 kDa große E2-Protein ist der Regulator der viralen Transkription und Replikation. Es bindet als Dimer an seine Bindestelle 5'-ACCN₆GGT-3', die in mehreren Kopien in der LCR des viralen Genoms vorliegt. Das E2-Protein weist wie viele Transkriptionsfaktoren einen modularen Aufbau auf (Abb. 3). Es verfügt über eine N-terminale Transaktivierungsdomäne (ca. 200 AS) und eine C-terminale DNA-Bindungs- und Dimerisierungsdomäne (ca. 90 AS). Beide Domänen sind unter den Papillomviren gut konserviert (ca. 35% Homologie; McBride & Myers, 1996). Zwischen ihnen liegt eine in Länge und AS-Zusammensetzung sehr variable Domäne, die sogenannte Hinge-Region. Zunächst wurde vermutet, daß diese nur als flexibles, unstrukturiertes Verbindungsglied der beiden konservierten Domänen fungiert. Inzwischen mehren sich jedoch Hinweise, daß sie sowohl bei der Lokalisation, als auch bei der Bindung von zellulären Faktoren eine Rolle spielt. In BPV-1-transformierten Zellen wurden drei unterschiedlich lange E2-Proteine identifiziert (Hubbert *et al.*, 1988). Eins wird

vom vollständigen E2-ORF exprimiert und wurde E2-TA benannt, weil es die Transkription aktivieren kann (Abb. 3). Zwei weiteren N-terminal verkürzten Proteinen (E2-TR und E8^E2) fehlen weite Teile der Transaktivierungsdomäne (TA-Domäne). Sie bilden Homodimere und kompetieren mit E2-TA um die DNA-Bindung oder bilden mit E2-TA inaktive Heterodimere, um auf diese Weise Transaktivierung durch E2-TA zu reprimieren (McBride *et al.*, 1991). Das molare Verhältnis der langen zu den zwei kürzeren E2-Formen spielt augenscheinlich eine entscheidende Rolle für die Regulation der transaktivierenden E2-Aktivität und wird Zellzyklus-spezifisch reguliert. So liegt E2-TA v. a. in der S-Phase vor, wenn es auch für die

Replikation benötigt wird (McBride & Myers, 1996). Es gibt Hinweise, daß ähnlich verkürzte E2-Repressorformen auch bei HPV-Infektionen vorkommen (Sherman *et al.*, 1992; Haller *et al.*, 1995).

Heterologe Promotoren mit einer oder mehreren E2-Bindestellen können sowohl durch BPV1-E2-TA als auch durch E2-Proteine verschiedener HPV-Typen transaktiviert werden (Hirochika *et al.*, 1987). Während jedoch Promotoren mit einer E2-Bindestelle nur schwach aktiviert werden (maximal 6-fach), führen zwei oder mehr E2-Bindestellen zu einer synergistischen Transaktivierung (50-100-fach) durch E2 (Desaintes & Demeret, 1996). HPV-Promotoren werden abhängig von der relativen Lage der E2-Bindestellen zu anderen cis-aktiven Elementen durch E2 aktiviert oder reprimiert (Garrido-Guerrero *et al.*, 1996). In der LCR der genitalen Hochrisiko-HPV-Typen 16 und 18 überlappen beispielsweise E2-Bindestellen mit der TATA-Box und mit einer für die Transaktivierung des frühen Promotors essentiellen SP1-Bindestelle. Es wird vermutet, daß E2 durch Bindung an seine Bindestellen die Ausbildung des Präinitiationskomplexes an der TATA-Box und die SP1-Bindung sterisch behindern kann und auf diese Weise die Transkription der frühen Gene E6 und E7 reprimiert (Thierry, 1993).

Bei der Integration des Genoms der Hochrisiko-HPV in die Wirts-DNA wird häufig das E2-ORF unterbrochen und damit seine Expression unterbunden. Dadurch entfällt die E2vermittelte Repression der E6- und E7-Transkription, was wiederum zu einer stärkeren Expression der Onkogene führt und zumindest z.T. zu einer malignen Entartung beiträgt (Turek, 1994). Wird umgekehrt ektopisches E2 in solche HPV-positiven Zervixkarzinomlinien (HeLa, SiHa, Caski) eingebracht, die kein endogenes E2 exprimieren, so wird das Zellwachstum in der G₁-Phase blockiert sowie Zellalterung und z.T. auch Apoptose ausgelöst (Desaintes et al., 1997; Dowhanick et al., 1995; Wells et al., 2000). Über welche Mechanismen E2 die Zellzykluskontrolle wiederherstellt und sogar Apoptose auslösen kann ist ein Feld intensiver Forschung, aber z. T. noch unklar (Desaintes et al., 1999; Webster et al., 2000). Bekannt ist, daß transaktivierungskompetente E2-Proteine von HPV-18, -16 und BPV-1 die E6/E7-Expression in den HPV-positiven Zellen unterbinden (Dowhanick et al., 1995; Francis et al., 2000; Hwang et al., 1993). Die anhaltende Expression dieser Onkogene ist jedoch für die Aufrechterhaltung des malignen Zellstatus essentiell (zur Hausen, 1999). Ohne E6 und E7 werden u. a. die p53- und pRB-Signalwege reaktiviert, welche die Zellzykluskontrolle wieder übernehmen (Hwang et al., 1996; Naeger et al., 1999; Wu et al., 2000). So führt die erhöhte p53-Konzentration beispielsweise zu der Aktivierung des cdk-Inhibitors p21, der den Zellzyklusblock in der G₁-Phase vermittelt (Goodwin & DiMaio, 2000; Wells et al., 2000).

E2-Proteine, die aufgrund von Punktmutationen in der TA-Domäne keine TA-Aktivität mehr aufweisen, sind nicht in der Lage die E6/E7-Transkription zu reprimieren und den Zellzyklusblock zu induzieren (Goodwin *et al.*, 1998). Da solche E2-Mutanten auch die Chromatinverpackte LCR der HPV nicht mehr effizient binden, wurde vermutet, daß die TA-Domäne von E2 die Chromatinstruktur modulieren könnte, um die Bindung zu erleichtern (Nishimura *et al.*, 2000). Lefebvre *et al.* (1997) konnten zeigen, daß die Bindung von BPV1-E2-TA an mehr als eine E2-Bindestelle zu einer Auflockerung der Chromatinstruktur stromaufwärts von den E2-Bindestellen führte. Sie vermuteten, daß die kooperative Transaktivierung durch mehrere E2-Dimere aufgrund der gemeinsamen Verdrängung von Histonen zustande kommen könnte. Dabei könnte auch ein zellulärer, chromatinmodulierender Faktor an die Transaktivierungsdomäne von E2 binden und die Auflockerung des Chromatins bewirken. Solche Faktoren sind die Koaktivatoren p300/CBP, die tatsächlich an die TA-Domäne von E2 binden und eine Histon-Acetyl-Transferase-Aktivität (HAT) besitzen (Peng *et al.*, 2000). Diese HAT-Aktivität scheint für einen Teil des Transaktivierungspotentials von E2 verantwortlich zu sein (Lee *et al.*, 2000).

In HPV-negativen primären Keratinozyten vermittelt das E2-Protein von HPV-31 statt eines Zellzyklusblocks in der G₁-Phase einen Block in der S-Phase und ermöglicht dadurch fortdauernde Replikation viraler und genomischer DNA (Frattini *et al.*, 1997).

Heike *et al.* (1989) konnten zeigen, daß BPV1-E2 in transienten Transfektionsexperimenten die Promotoren einiger Zytokingene (IL-2, IL-3 und GM-CSF) aktivieren kann, obwohl diese keine E2-Bindestelle enthalten. Darüber hinaus wirkt die TA-Domäne von E2 allein bereits transaktivierend (Haugen, 1988). Dafür sind vermutlich direkte Protein-Protein-Wechsel-wirkungen mit zellulären Transkriptionsfaktoren nötig. Solche Interaktionen wurden bereits zwischen E2 und den zellulären Transkriptionsfaktoren TBP, TFIIB, TAF (TBP-assoziierte Faktoren), SP1, YY1 und p53 beschrieben (Rank & Lambert, 1995; Benson *et al.*, 1997; Enzenauer *et al.*, 1998; Heino *et al.*, 2000; Massimi *et al.*, 1999; Yao *et al.*, 1998). Teilweise konnte diesen Interaktionen bereits eine funktionelle Bedeutung nachgewiesen werden. SP1 beispielsweise ist in der Lage, E2 zu Promotoren zu rekrutieren, die keine E2-Bindestellen besitzen. Zusammen mit E2 kann es die Transkription synergistisch aktivieren und mit weit distal gebundenen E2-Dimeren unter DNA-Loop-Bildung interagieren (Li *et al.*, 1991). Außerdem kann E2 über die Wechselwirkungen mit Teilen des Präinitiationskomplexes (TBP, TFIIB, TAF) vermutlich die Ausbildung und Stabilität dieses Komplexes unterstützen (Ham *et al.*, 1994; Steger *et al.*, 1995).

In Haut- oder Zervixschnitten wurde das E2-Protein bisher nicht nachgewiesen, da es vermutlich zu instabil ist und in zu geringen Konzentrationen vorkommt. E2-Transkripte konnten in HPV-positiven Hautläsionen und Fibropapillomen aber mittels *in situ* Hybridisierung suprabasal ab dem *stratum spinosum* nachgewiesen werden (Burnett *et al.*, 1990; Haller *et al.*, 1995). Wird E2 in Zellkulturen zur Expression gebracht, so weist es eine nukleäre Lokalisation auf. Es konnte gezeigt werden, daß es mit verschiedenen subnukleären Strukturen assoziiert ist und dort virusspezifische Funktionen übernimmt. So koppelt es während der Mitose virale Genome an die kondensierten Chromosomen und gewährleistet dadurch ihre gleichmäßige Segregation auf die Tochterzellen (Lehman & Botchan, 1998; Bastien & McBride, 2000; Skiadopoulos & McBride, 1998). Diese E2-Funktion ist für die Langzeiterhaltung der episomalen Virusgenome in proliferierenden Zellen notwendig (Ilves *et al.*, 1999; Piirsoo *et al.*, 1996).

Das HPV5-E2-Protein bindet Komponenten der zellulären Spleißosomen und kolokalisiert mit ihnen in Kernkompartimenten, die in einem gesprenkelten Muster über die nukleäre Matrix verteilt sind. Erste Hinweise deuten darauf hin, daß E2 über die Rekrutierung von solchen Spleißfaktoren die Prozessierung von prä-mRNA unterstützen könnte (Lai *et al.*, 1999). Ferner wurde beobachtet, daß die HPV-11-Proteine E2 und E1 zusammen mit RPA sowie naszenten, viralen Plasmiden in nukleären Foci kolokalisieren – vermutlich den Kompartimenten der viralen DNA-Replikation (Swindle *et al.*, 1999).

Nukleäre Lokalisationssignale (NLS) wurden bisher nur für die E2-Proteine von BPV-1 und HPV-11 identifiziert. BPV-1-E2 besitzt ein NLS in der TA-Domäne und eins in der DNA-Bindungs- und Dimerisierungs-Domäne (Skiadopoulos & McBride, 1996). Das NLS von HPV11-E2 konnte dagegen in der Hinge-Region ausgemacht werden, die auch für die Assoziation des E2-Proteins mit der nukleären Matrix verantwortlich ist (Zou *et al.*, 2000).

1.7 Regulation der viralen Transkription

An der komplexen Regulation der viralen Genexpression sind neben E2 auch zelluläre Faktoren beteiligt. Die meisten cis-aktiven Elemente des HPV-Genoms befinden sich in der LCR, deren Aufbau unter den genitalen HPV stark konserviert ist. Am 3'-Ende ihrer LCR, direkt vor dem E6-ORF befindet sich der ori und der frühe Promotor für die Expression von E6 und E7. In diesem Bereich liegen neben den essentiellen E1-, AP-1- und SP1-Bindestellen sowie der TATA-Box auch drei (#2-#4) der insgesamt vier E2-Bindestellen, deren Positionen stark konserviert sind (O'Connor *et al.*, 1995). In der LCR-Mitte befindet sich eine von zwei E2-Bindestellen (#1,#2) flankierter, gewebespezifischer Enhancer, der nur in epithelialen Zellen aktiv ist und Bindestellen für diverse zelluläre Transkriptionsfaktoren enthält. Einige

von diesen üben einen transaktivierenden (AP-1, NF1, PEF1, TEF1 und Glucocorticoid-Rezeptor), andere einen reprimierenden (NF-IL6, Oct1, p53, Retinoid-Rezeptor) Einfluß auf die frühe PV-Expression aus (Desaintes & Demeret, 1996). Am 5'-Ende der LCR liegt der Transkriptions-Terminator sowie das Polyadenylierungssignal der späten Gene.

Die LCR der *Ev*-assoziierten HPV besitzt einen abweichenden, aber ebenfalls konservierten Aufbau, bei dem die fünf E2-Bindestellen weiter distal vom frühen Promotor liegen. Im 5'-Bereich der LCR befindet sich der Promotor für die späten Gene (Stubenrauch *et al.*, 1992). Geringe E2-Mengen aktivieren den späten Promotor des *Ev*-assoziierten HPV-8. Hohe E2-Konzentrationen reprimieren ihn dagegen (Stubenrauch *et al.*, 1996).

1.8 NF-IL6 ein Mitglied der C/EBP-Transkriptionsfaktorfamilie

In dieser Arbeit sollte die funktionelle und physikalische Interaktion zwischen E2 und dem zellulären Transkriptionsfaktor NF-IL6 untersucht werden. NF-IL6 (C/EBPB) gehört zu der Familie der C/EBP-Transkriptionsfaktoren (CCAAT/enhancer binding protein), die inzwischen sechs Mitglieder (C/EBP α , β , γ , δ , ε , ς) umfa β t (Wedel & Ziegler-Heitbrock, 1995). Allen gemein ist das sogenannte bZIP-Motiv am C-Terminus, das sich aus einem Leucin-Zipper und einer basischen Region zusammensetzt (Abb.4). Mit Hilfe des Leucin-Zippers können die C/EBP-Faktoren miteinander Hetero- oder Homodimere bilden (Williams et al., 1991). Die basische Region vermittelt den Kontakt zur DNA und ermöglicht C/EBP-Dimeren an die Consensus-Sequenz 5'-T(T/G)NNGNAA(T/G)-3' zu binden (Akira et al., 1990). Der N-Terminus weist geringere Homologie auf. NF-IL6 besitzt eine N-terminale Transaktivierungsdomäne. Da das NF-IL6-Gen drei alternative Start-Codone besitzt, die alle im gleichen Leserahmen liegen, können drei unterschiedlich lange NF-IL6-Proteine translatiert werden: Das komplette Protein, ein um 23 AS N-terminal verkürztes Protein und ein Protein, dem die vollständige Transaktivierungsdomäne fehlt (Descombes & Schibler, 1991). Letzteres kann Homo- oder Heterodimere mit den längeren NF-IL6-Formen bilden und DNA binden, aber die Transkription nicht aktivieren. Es dient daher als Repressor der NF-IL6-Transaktivierung und wird auch liver inhibitory protein (LIP) genannt, weil es zunächst in Zellen der Leber

Abb. 4: Der Aufbau des NF-IL6-Proteins.

Das NF-IL6-Gen besitzt drei alternative Initiationscodone im selben Leseraster, die zu der Synthese von drei unterschiedlich großen NF-IL6-Proteinen führen. Die Startpunkte (Methionin) dieser drei Proteine wurden markiert und die basische Region grau unterlegt.

entdeckt wurde. NF-IL6 lokalisiert vornehmlich in den Nukleus und eine zweigeteilte NLS wurde in der basischen Region entdeckt (Williams *et al.*, 1997). Die Translokation von NF-IL6 kann genauso wie die NF-IL6-Aktivität und seine DNA-Bindeaffinität durch Phosphorylierungen (PKA, PKC, Ca²⁺-Calmodulin-abhängige Kinase) reguliert werden (Akira & Kishimoto, 1997).

NF-IL6 und andere Mitglieder der C/EBP-Familie regulieren Differenzierungsprozesse von verschiedenen Zelltypen, wie z.B. von Adipozyten, Hepatozyten, Makrophagen, aber auch von Keratinozyten (Akira & Kishimoto, 1997). In der Epidermis werden die C/EBP-Mitglieder ähnlich wie die AP-1-Faktoren differenziell exprimiert. So kann NF-IL6 im stratum spinosum nachgewiesen werden (Abb. 2), wohingegen C/EBPa erst ab den obersten Schichten des stratum spinosum zur Expression kommt (Maytin & Habener, 1998; Oh & Smart, 1998). Somit scheint NF-IL6 an der Regulation früher Schritte während der Keratinozytendifferenzierung beteiligt zu sein und C/EBPa an späteren. Dazu paßt, daß in der Zellkultur die Überexpression von NF-IL6 das Keratinozytenwachstum reprimiert und die Expression der frühen Differenzierungsmarker Keratin 1 und 10 induziert (Zhu et al., 1999). Auf die Expression der späteren Differenzierungsmarker Loricrin und Involukrin hat NF-IL6 dagegen keinen oder nur einen sehr geringen Einfluß. Das zeigte sich auch bei Promotoranalysen des Involukringens. Im proximalen Promotorteil (-7 bis -241) des Involukringens befindet sich neben einer AP-1- auch eine C/EBP-Bindestelle, die für die Basalaktivität und die Phorbolester-induzierte Aktivierung dieses Promotorfragments essentiell ist (Agarwal et al., 1999). Reporteranalysen mit diesem proximalen Promotorfragment zeigten, daß es durch NF-IL6 reprimiert, dagegen durch C/EBPa aktiviert wird.

Neben epithelialen Genen reguliert NF-IL6 die Expression einer Vielzahl zellulärer Gene, wie z.B. die einiger Zytokingene (z.B. IL-6, IL-8; Akira & Kishimoto, 1997). Dabei interagiert und kooperiert es mit einer Reihe anderer Transkriptionsfaktoren, wie z.B. mit NF- κ B, AP-1, CREB, pRB, STAT, Myb oder SP1 (zusammengefaßt in Akira & Kishimoto, 1997).

Ferner spielt NF-IL6 eine Rolle bei der Regulation von viralen Promotoren/Enhancern. So weisen die regulatorischen Regionen des HIV-1, HBV und einiger HPV-Typen eine oder mehrere NF-IL6 Bindestellen auf. In der LCR von HPV-16 und -18 liegt eine C/EBP-Bindestelle im Bereich des gewebespezifischen Enhancers. Es konnte gezeigt werden, daß NF-IL6 die Transkription der frühen Gene E6 und E7 von HPV-16 reprimiert (Kyo *et al.*, 1993), während sie bei HPV-18, abhängig von der verwendeten Zellinie, durch NF-IL6 entweder aktiviert oder reprimiert wird (Bauknecht *et al.*, 1996; Bauknecht & Shi, 1998). In HPV-11-positiven Zellen hemmt NF-IL6 die virale Transkription und Replikation (Wang *et al.*, 1996).

Somit ist NF-IL6 ähnlich wie das PV E2-Protein an der Regulation der viralen und zellulären Genexpression beteiligt. Außerdem weisen beide Transkriptionsfaktoren ein überlappendes Expressionsmuster in der Epidermis auf und regulieren verwandte Prozesse wie Differenzierung und Apoptose.

Daher sollte in dieser Arbeit untersucht werden, ob NF-IL6 und E2 miteinander wechselwirken und welche Auswirkung eine solche Interaktion für die Regulation der Transkription haben könnte. Dafür sollte zunächst das Verteilungsmuster der beiden Proteine in den Kompartimenten der Zelle festgestellt werden. Außerdem sollte untersucht werden, ob die beiden Proteine direkt miteinander interagieren und ob sie sich in ihrer DNA-Bindung beeinflussen. Anhand synthetischer und natürlicher Promotoren sollte festgestellt werden, ob und über welche Mechanismen sie die Transkription gemeinsam beeinflussen können.

Ob der virale Transaktivator E2 neben der viralen auch die zelluläre Genexpression reguliert, ist bisher wenig erforscht. Deswegen sollte im zweiten Teil dieser Arbeit der generelle Einfluß des E2-Proteins auf die zelluläre Transkription mit Hilfe einer Genechip-Genexpressionsanalyse untersucht werden.

2 Material und Methoden

2.1 Material

2.1.1 Eukaryontische Zellen

- C33A: humane Zervixkarzinomzellinie, die HPV-negativ ist und ein mutiertes p53-Protein besitzt (Srivastava *et al.*, 1992)
- HaCaT 31: spontan immortalisierte, HPV-negative, humane Hautkeratinozytenlinie (Boukamp *et al.*, 1988)

RTS3b: humane Plattenepithelkarzinomzellinie der Haut, die ursprüngliche episomale HPV-Genome enthielt, aber nach mehreren Passagen HPV-negativ getestet wurde (Purdie *et al.*, 1993)

- **HPK IA :** *in vitro* mit HPV-16-Genomen immortalisierte, humane Vorhautkeratinozytenlinie, mit 2-3 integrierten HPV-16-Genomen
- **K5-I :** mit HPV18-DNA *in vitro* immortalisierte, humane Vorhautkeratinozytenlinie, die freundlicherweise von L. Lamins (Chicago) zur Verfügung gestellt wurde
- **I56-A :** *in vitro* mit HPV-18-Genomen immortalisierte, humane Vorhautkeratinozytenlinie, die freundlicherweise von L. Lamins (Chicago) zur Verfügung gestellt wurde
- C-4I: stammt aus einem humanen Zervixkarzinom, enthält HPV-18 DNA und exprimiert HPV18-RNA
- HeLa: eine der am besten untersuchten, permanenten, humanen Zellinien, die aus einem Adenokarzinom der Zervix isoliert wurde und HPV-18 positiv ist (Mincheva *et al.*, 1987)
- Skv: humane Keratinozytenlinie, die aus einer Vulvaläsion einer Bowenoiden Papulose isoliert wurde und 10-20 integrierte Kopien des HPV-16-Genoms enthält

CaSki :	stammt von einem humanen, epidermoiden Karzinom einer Zervixmetastase			
	und enthält integrierte HPV-16-Genome (Mincheva et al., 1987)			
SiHa :	eine Plattenepithelkarzinomzellinie der humanen Zervix, die 1-2 integrierte Kopien des HPV-16-Genoms enthält (Mincheva <i>et al.</i> , 1987)			
SW756 :	wurde aus einem HPV-18-positiven Zervix isoliert (Freedman <i>et al.</i> , 1982)	Plattenepithelkarzinom der humanen		
2.1.2 Medier	n und Reagenzien für die Zellkultur			
Dulbecco's M	Iodified Eagle Medium (DMEM)	Gibco BRL (Karlsruhe)		
DMEM/F12	Nut Mix mit Glutamax	Gibco BRL (Karlsruhe)		
1x Trypsin-E (0,05 % Tryps	DTA-Lösung sin und 0,02 % EDTA)	Gibco BRL (Karlsruhe)		
Phosphat-gep ohne Magnesi	oufferte Salzlösung (Dulbecco's PBS) ium, Calcium und Natriumbicarbonat	Gibco BRL (Karlsruhe)		
Fötales Kälb 30 min bei 56	erserum (FCS) °C inaktiviert	Gibco BRL (Karlsruhe)		
Natrium-Pyr	uvat-Lösung (100 mM)	Gibco BRL (Karlsruhe)		
Penicillin-Str	eptomycin-Lösung	Gibco BRL (Karlsruhe)		
(10.000 U/ml	Penicillin, 10.000 µg/ml Streptomycin)			
Gentamicin-l	L ösung (10 mg/ml)	Gibco BRL (Karlsruhe)		
Keratinocyte .	Basal Medium-2 (KBM-2)	CellSystems (St. Katharinen)		
Standardmed	lium			
DMEM mit fo	olgenden Zusätzen:			
8,2% (v/v) FC	CS			
0,1% (v/v) Pe	0,1% (v/v) Penicillin-Streptomycin			
0,1% (v/v) Na	trium-Pyruvat			

Keratinozytenmedium

DMEM und DMEM/F12 Nut Mix wurden im Verhältnis 1:1 gemischt und folgende Zusätze steril hinzugefügt:

8,2%(v/v)	FCS	Gibco BRL (Karlsruhe)
50 µg/ml	Gentamicin	Gibco BRL (Karlsruhe)
0,4 µg/ml	Hydrocortison	Sigma-Aldrich (Taufkirchen)
10 ng/ml	Choleratoxin	Sigma-Aldrich (Taufkirchen)
5 µg/ml	humanes Transferrin	Sigma-Aldrich (Taufkirchen)
10 ng/ml	rekomb. Epidermaler Wachstumsfaktor	Gibco BRL (Karlsruhe)
2x10 ⁻¹¹ M	Triiodthyronin	Sigma-Aldrich (Taufkirchen)
1,8x10 ⁻⁴ M	Adenin	Sigma-Aldrich (Taufkirchen)
5 µg/ml	Insulin	Sigma-Aldrich (Taufkirchen)

Einfriermedium für eukaryontische Zellen

FCS mit 10% (v/v) DMSO

2.1.3 Bakterien

Epicurian coli XL-2 blue strainStratgene (Amsterdam)recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB lac^qZΔM15 Tn10 (Tet^r) AmyCam^r]

Escherichia coli (E. coli) SureStratagene (Amsterdam) $e14^{-}$ (McrA-) Δ (mcrCB-hsdSR-mrr)171 endA1 supE44 thi-1 gyr96 relA1 lac recB recJ sbsCumuC::Tn5 (Kan^r) uvrC [F' proAB lacI^qZ Δ (M15 Tn19 (Tet^r)]

E. coli BL21 (DE3) pLysSStratagene (Amsterdam)E.coli B F⁻ dcm ompT hsdS(r_B-m_B⁻) gal λ (DE3)[pLysS Cam^r]

E. coli BL21-CodonPlus (DE3)-RILStratagene (Amsterdam)E.coli B F⁻ dcm⁻ ompT hsdS($r_B^-m_B^-$) Tet^r gal λ (DE3) endA Hte [argU ileY leuW Cam^r]

2.1.4 Medien und Antibiotika für die Bakterienkultur

LB-Broth-Base (Lennox L Broth Base)Fertigmedium von Gibco BRL (Karlsruhe)LB-Agar (Lennox L Agar)Fertigmedium von Gibco BRL (Karlsruhe)Ampicillin-Stammlösung (100 mg/ml in H2O)Sigma-Aldrich (Taufkirchenen)

Kanamycin-Stammlösung (50 mg/ml in H₂O)

Gibco BRL (Karlsruhe)

Einfriermedium für Bakterien

LB-Medium mit entsprechendem Antibiotikum und 15% (v/v) Glycerin

2.1.5 Nukleinsäuren

2.1.5.1 Vektoren

Sofern nicht ausdrücklich erwähnt, verfügen alle Vektoren über das β -Lactamasegen, das die Selektion durch Ampicillin ermöglicht.

pcDNA 3.1+ (Invitrogen, Gronigen NL) Ein eukaryontischer Expressionsvektor, der den *immediate-early* Promotor des Cytomegalievirus (CMV) besitzt.

pMACS K^k.II (Miltenyi, Bergisch Gladbach) Ein bicistronischer, eukaryontischer Expressionsvektor, der für ein murines H-2K^k Protein (MHC-I-Molekül der Maus) kodiert, dessen intrazelluläre Domäne deletiert wurde, und dessen Gen von seinem homologen Promotor reguliert wird. Außerdem können Gene in die multiple Klonierungsstelle (MCS) eingefügt werden, die dann unter der Kontrolle des Simian Virus 40 (SV40)-Promotors und -Enhancers exprimiert werden.

pEGFP-C1 (Clontech, Heidelberg) Dieser Vektor enthält den CMV-Promotor, der die eukaryontische Expression des *enhanced green fluorescent protein* (EGFP) ermöglicht. Am C-Terminus des EGFP-Gens schließt sich die MCS dieses Vektors an. Nach Klonierung eines Gens in diese MCS können EGFP-Fusionsproteine exprimiert werden. Außerdem enthält dieser Vektor ein Kanamycin-Resistenzgen für die Selektion positiv transformierter Bakterien.

pECFP-C1 (Clontech, Heidelberg) Durch den Austausch einiger Aminosäuren im EGFP konnte sowohl sein Absorptions- als auch sein Emissionsspektrum so verändert werden, daß es nun cyan fluoresziert (*enhanced cyan fluorescent protein*). Ansonsten entspricht der Vektor pEGFP-C1.

pEYFP-C1 (Clontech, Heidelberg) Durch den Austausch einiger Aminosäuren im EGFP konnte sowohl sein Absorptions- als auch sein Emissionsspektrum so verändert werden, daß

es nun gelb fluoresziert (*enhanced yellow fluorescent protein*). Ansonsten entspricht der Vektor pEGFP-C1.

pALUC (Dong *et al.*, 1994) In die MCS dieses Vektors können Promotoren kloniert werden, die dann die Expression der *firefly*-Luziferase regulieren.

pGEX-2T (Amersham-Pharmacia, Freiburg) Ein prokaryonter Expressionsvektor, der die Expression von GST-Fusionsproteinen erlaubt. Er verfügt über den IPTG-induzierbaren tac-Promotor und das lacI-Gen, dessen Genprodukt (lac-Repressor) den tac-Promotor reprimiert.

pET-14b (Invitrogen, Gronigen NL) Dieser Vektor erlaubt die bakterielle Expression von Fusionsproteinen, die N-terminal mit sechs Histidinresten versehen werden und deren Gene unter der Kontrolle des T7-Promotors stehen. Der T7-Promotor läßt sowohl die bakterielle Expression in geeigneten Prokaryonten zu (mit transgener T7-Polymerase), als auch die *in vitro* Transkription und Translation.

pCAPs (Roche, Mannheim) Dieser Klonierungsvektor diente der Zwischenklonierung aller PCR-Produkte. Durch die *blunt*-Klonierung von DNA-Fragmenten in die MCS (Eco RV) wird der Leserahmen des *catabolite activator protein* (CAP) zerstört, welcher ein für Bakterien toxisches Protein kodiert. Nur Bakterien mit rekombinanten Plasmiden überleben somit die Transformation.

2.1.5.2 Rekombinante Plasmide

pcDNA/HPV8-E2 (S. Smola-Hess, Köln) Dieses Plasmid ermöglicht die eukaryontische Expression des E2-Proteins von HPV-8. Im Anschluß an den CMV-Promotor enthält es die Nukleotide 2682-4440 des HPV8-Genoms, die v.a. den Leserahmen des E2-Gens beinhalten. Da das Plasmid außerdem einen T7-Promotor besitzt, kann es auch für die *in vitro* Transkription und Translation verwendet werden.

pcDNA/BPV1-E2 (S. Smola-Hess, Köln) Dieses Plasmid dient der eukaryontischen Expression sowie der *in vitro* Transkription und Translation des E2-Proteins von BPV-1.

CMV-NF-IL6 (Akira *et al.*, 1990) Dieses Plasmid enthält ein Fragment des NF-IL6-Gens, das 102 bp vor dem ersten AUG beginnt und 30 bp nach dem Polyadenylierungssignal endet. Es unterliegt der Kontrolle des CMV-Promotors und dient der Expression von NF-IL6 in eukaryontischen Zellen.

CMV/\beta-Gal (J. P. Johnson, München) Dieses Konstrukt beinhaltet das β -Galaktosidasegen unter der Kontrolle des CMV-Promotors.

RSV/\beta-Gal (B. Bourachot, Paris) Eukaryontischer Expressionsvektor, dessen β -Galaktosidasegen unter der Kontrolle der LTR des Rous-Sarkoma-Virus (RSV) steht.

pEF Bos/ β -Gal (S. Nagata, Osaka) Eukaryontischer Expressionsvektor dessen β -Galaktosidasegen von dem Promotor des humanen Elongationsfaktors EF-1 α reguliert wird.

C18-LUC (G. Steger, Köln) Dieses Plasmid enthält den *major late promoter* der Adenoviren und stromaufwärts davon vier E2-Bindestellen. Dieses Promotorfragment ermöglicht Untersuchungen über die E2-abhängige Expression des Luziferasegens in eukaryontischen Zellen.

C18-SP1-LUC (G. Steger, Köln) Im Vergleich zu C18-LUC enthält dieses Reporterplasmid noch zwei zusätzliche SP1-Bindestellen zwischen dem *major late promoter* der Adenoviren und den E2-Bindestellen.

pINV 241 (Welter *et al.*, 1995) Dieses eukaryontische Reporterplasmid enthält vor dem Luziferasegen die proximale Region des Involukrinpromotors von nt –7 bis –241. Diese Region enthält eine C/EBP- und eine AP-1-Bindestelle.

pMACS H-2K^k (Miltenyi, Bergisch Gladbach) Dieses Plasmid dient der eukaryontischen Expression des murinen H-2K^k-Gens, das unter der Kontrolle des homologen Promotors steht. Es wird ein H-2K^k-Protein translatiert, dem die zytoplasmatische Domäne fehlt.

pMACS 14.1 (Miltenyi, Bergisch Gladbach) Dieses Plasmid enthält das humane CD14-Gen unter der Kontrolle des SV40-Promotors.

pBR332/HPV18 (Cole & Streeck, 1986) Dieses Plasmid enthält das vollständige Genom von HPV-18.

pCMV-EGFP (W. Krauss, Köln) Mit Hilfe des CMV-Promotors wird das EGFP-Gen in eukaryontischen Zellen exprimiert. Dieses Plasmid wurde für die Abschätzung der Transfektionseffizienz verwendet. Es enthält ein Kanamycin-Resistenzgen.

pGEX-2T/HPV8-E2 (Enzenauer *et al.*, 1998) Kommt dieses Plasmid in Bakterien zur Expression, so entsteht ein Fusionsprotein aus GST und dem E2-Protein von HPV-8.

pGEX-2T/HPV8-E2 ΔN1-194 (Enzenauer *et al.*, 1998) Dieses Konstrukt kodiert für ein GST-HPV8-E2-Fusionsprotein, dem die ersten 194 Aminosäuren des E2-Proteins fehlen.

pGEX-2T/HPV8-E2 ΔN1-329 (Enzenauer *et al.*, 1998) Dieses Konstrukt kodiert für ein GST-HPV8-E2-Fusionsprotein, dem die ersten 329 Aminosäuren des E2-Proteins fehlen.

pGEX-2T/HPV8-E2 ΔH205-409 (Enzenauer *et al.*, 1998) Dieses Konstrukt kodiert für ein GST-HPV8-E2-Fusionsprotein, dem die Hinge-Region (AS 205-409) des E2-Proteins fehlt.

pGEX-2T/HPV8-E2 ΔC410-499 (Enzenauer *et al.*, 1998) Dieses Konstrukt kodiert für ein GST-HPV8-E2-Fusionsprotein, dem die C-terminale DNA-Bindungs- und Dimerisierungsdomäne (AS 410-499) des E2-Proteins fehlen.

pGEX-2T/HPV16-E2 (H. Pajunk, Köln) Dieses Plasmid erlaubt die bakterielle Expression eines Fusionsproteins, bestehend aus dem GST-Protein und dem E2-Protein von HPV-16.

pGEX-2T/HPV18-E2 (A. Müller, Köln) Mit diesem Plasmid kann das Fusionsprotein GST-HPV18-E2 in Prokaryonten zur Expression gebracht werden.

pGEX-2T/BPV1-E2 (G. Steger, Köln) Das Plasmid kodiert für ein Fusionsprotein aus GST und dem E2-Protein von BPV-1.

pGEX-2T/NF-IL6 (K. Hinterkeuser, Köln) Das Plasmid ermöglicht die bakterielle Expression eines GST-NF-IL6-Fusionsproteins.

pET-14b/HPV18-E2 (Demeret *et al.*, 1994) Bei der bakteriellen Expression dieses Plasmids entsteht ein HPV18-E2-Protein, dem N-terminal sechs Histidinreste angefügt sind. Außerdem kann dieses Konstrukt auch für die *in vitro* Transkription und Translation verwendet werden.

2.1.5.3 Oligonukleotide und Adapter

Alle Oligonukleotide, die für die Polymerase-Ketten-Reaktion (PCR), die Sequenzreaktionen, die cDNA-Synthese und *eletromobility shift assays* (EMSA) verwendet wurden, stammten von den Firmen Eurogentec (Brüssel), Gibco BRL (Karlsruhe) und Interactiva (Ulm).

Bezeichnung	Sequenz (5'→3')	Position im NF-IL6-Gen
		(nach Akira)
NFIL6s299	aactcgag ATG CAACGCCTGGTGGCCTGGGACCCA	1-27
NFIL6s368	aa <u>ctcgag</u> ATGGAAGTGGCCAACTTCTACTACGAGGCGGAC	70-102
NFIL6s893	aa <u>ctcgag</u> ATGGCGGCGGGCTTCCCGTACGCGCTG	595-621
NFIL6a1336	aa <u>ctcgag</u> CTAGCAGTGGCCGGAGGAGGCGAGCAG	1035-1012
NFIL6 AC.371s	aa <u>ctcgag</u> GAAGTGGCCAACTTCTACTACGAGGCGGACTGC	73-105
NFIL6 AC.892a	aa <u>ctcgag</u> CTAGCCTGCGCCGCCGCGG	594-577
Sequenz des Gen	s = GROSS Klonierungsstellen = klein Sta	rt- und Stop-Codons = fett

Primer für die Klonierung von NF-IL6-Deletionsmutanten in pET-14b

Xho I Schnittstelle = <u>unterstrichen</u>

Primer für die Klonierung von NF-IL6-Deletionsmutanten in pGEX-2T

Bezeichnung	Sequenz (5'→3')	Position im NF-IL6-Gen
LIP fl.s	ctcgag <i>ggatccATGGCGGCGGGCTTCCCG</i>	595-612
LIP fl.a	ctcgag <u>gaattcCTAGCAGTGGCCGGAGGA</u>	1035-1021
LIP $\Delta Z.a$	ctcgag <u>gaattcCTACTTGTGCTGCGTCTCCAG</u>	906-889
LIP Δb.s	ctcgag <i>ggatcc</i> GTCCTGGAGCTCACGGCC	907-924
LIP B.s	ctcgag <i>ggatcc</i> AAGGCCAAGAAGACCGTG	784-801
LIP B.a	ctcgag <u>gaattcTTACTTGTGCTGCGTCTC</u>	906-892
LIP $\Delta C.s$	ctcgag <i>ggatcc</i> GCGGCGGGCTTCCCGTAC	598-615
LIP ΔC.a	ctcgag <u>gaattc</u> TTAGCTCTTGACCTGCGAGGG	783-766
Sequenz des Gen	s = GROSS Klonierungsstellen = klein	Start- und Stop-Codons = fett

Sequenz des Gens = GROSSBam HI Schnittstelle = *kursiv*

Klonierungsstellen = klein

Eco RI Schnittstelle = <u>unterstrichen</u>

Primer für die Klonierung von NF-IL6-Deletionsmutanten in pECFP-C1

Bezeichnung		Sequenz (5'→3')		Position im NF-IL6-Gen
NFIL6 ANs	aagaattcgGAAGTGGCCAACTTCTACTAC		73-93	
LIPs	aagaattcgGCGGCGGGCTTCCCGTACGCG		598-618	
NFIL6 ANa	aaggatcc CT	AGCAGTGGCCGGAGGAGGC		1038-1018
EXFP.AD.s	gatct <i>ggatcc</i> ctcgagatatc <u>gaattc</u> t		Adapter	
EXFP.AD.a	ctagagaatto	cgatatctcgag <i>ggatcc</i> a		Adapter
Sequenz des Gen	s = GROSS	Klonierungsstellen = klein	Stop-Codon	s = fett
Bam HI Schnittstelle = <i>kursiv</i> Eco RI Schnittstelle = <u>unterstrichen</u>				

Primer für die Klonierung von HPV8-E2-Deletionsmutanten in pEYFP-C1

Bezeichnung	Sequenz (5'→3')	Position im HPV8-E2-
		Gen
8E2.fl.s	aagaattcgGAGAATCTCAGCGAGCGTTTC	4-24
8E2.fl.a	aa <i>ggatccTTATAGACTGTCCAGGTTACC</i>	1497-1477
8E2.N.a	aa <i>ggatccTTAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</i>	612-592
8E2.H.s	aagaattcgGGATCACCACCAGGACAAGCAG	613-634
8E2.H.a	aa <i>ggatccTTACAGTAGTCTTCCAAGTCGCCCTGT</i>	1227-1204
8E2.C.s	aagaattcgGACGAAGCTATCGACCCCCAG	1228-1249
Sequenz des Gen	s = GROSS Klonierungsstellen = klein Stop-Codons	s = fett

Sequenz des Gens = GROSS Klonierungsstellen = klein Bam HI Schnittstelle = *kursiv* Eco RI Schnittstelle = <u>unterstrichen</u>

Bezeichnung		Sequenz (5'→3')	für Klonierung in
EG18E2s	aaaagcttgaa	attcgCAGACACCGAAGGAAACCCTTTCGG	pEYFP-C1
18E2a	ttccgatatco	ggatcc TTA CATTGTCATGTATCCCACC	pEYFP-C1 u. pMACS K ^k .II
MA18E2s	acgaagcttg	atatccaccATGCAGACACCGAAGGAAACCC	pMACS K ^k .II
Sequenz des Gens	s = GROSS	Klonierungsstellen = klein	Start- und Stop-Codons = fett
Bam HI Schnittste	elle = <i>kursiv</i>	Eco RI Schnittstelle = <u>unterstrichen</u>	Eco RV Schnittst.= unterstrichen

Primer für die Klonierung von HPV18-E2 in pEYFP-C1 und pMACS K^k.II

Oligos für die Klonierung von wt und mutierten NF-IL6-Bindestellen in C18-LUC

Bezeichnung	Sequenz (5'→3')	NF-IL6 Bindestelle	
NF-IL6-C18ms	gatctGTCACACTACAAACTCTTAg	mutiert	
NF-IL6-C18ma	gatccTAAGAGTTTGTAGTGTGACa mutiert		
C18.NF.luc.s	gatctGTC AGATTGCACAATCT TAg	wt	
C18.NF.luc.a	gatccTA AGATTGTGCAATCT GAC <u>a</u> wt		
Klonierungsstelle	n = klein Bgl I-Überhang = <u>unterstrichen</u>	Bam HI-Überhang = kursiv	

NF-IL6 wt-Bindestelle aus dem IL-6-Gen = **fett**

PCR-Primer und Oligonukleotide für die Klonierung von E2mut-NFwt-LUC und

E2mut-NFmut-LUC

Bezeichnung	Sequenz (5'→3')	Art
NFIL6 PCR	CTAGAGGATCCTAAGATTGTGC	5'-PCR-Primer
C18-PR1.U	GAAGATCTGGAAGAGAGTGAGG	3'-PCR-Primer
18E2mut1	gatccTCTAG TCTGAAAACGA TCGGG TCTGAAAACGA T	Oligonukleotid
18E2mut2	P-CAGAttagATCGTTTTCAGACCCCGATCGTTTTCAGACTAGAg	Oligonukleotid
18E2mut3	P-ctaa TCTGAAAACGAT CGGG TCTGAAAACGAT CTAGAg	Oligonukleotid
18E2mut4	tcgacTCTAGATCGTTTTCAGACCCCGATCGTTTT	Oligonukleotid
Klonierungsstellen = klein E2-Bindestelle = fett Mutationen in E2-Bindest. = fett /unterstrichen		

Rionerungsstehen – kielinE2-Bindestene – lettMutationen in E2-Bindest. – lettBam HI Schnittstelle = kursivSal I Schnittstelle = unterstrichenP- = phosphoryliert

Sequenzierprimer

Bezeichnung	Sequenz (5'→3')	Vektor oder Position im
_		Gen
NFIL6.seq.i	CTGGTAGCCGAGGTAAGC	642-625 NF-IL6
NFIL6.r.598	AGCCGCCTCGAAGGTGTC	283-300 NF-IL6
NFIL6.f.851	AAGCGGAAGGAGGAGGCC	553-570 NF-IL6
EGFPC1.f	ATCACTCTCGGCATGGACG	pEGFP/pEYFP/pECFP-C1
EGFPC1.r	CTACAAATGTGGTATGGCTG	pEGFP/pEYFP/pECFP-C1
H2Kk.f	TCCAGAAGTAGTGAGGAGGC	pMACS K ^k .II
H2Kk.r	ATGTATCTTATCATGTCTGG	pMACS K ^k .II
LUC.r.250	CATTTCGAAGTATTCCGC	pALUC u. Derivate

Primer für die cDNA-Synthese der Microarray-Analyse

Bezeichnung	Sequenz (5'→3')	Beschreibung
T7-(dT) ₂₄	GGCCAGTGAATTG <u>TAATACGACTCACTATAGGG</u> AGGCGG-	enthält T7-Promotor und
	(dT) ₂₄	eine Poly T-Box mit 24
		Thymidinen

T7-Promotor = <u>unterstrichen</u>

Bezeichnung	Sequenz (5'→3')	Bindestelle	
NFIL6wt.s	GGACGTC ACATTG CA CAATCT TAATAA	NF-IL6wt	
NFIL6wt.a	TTATTA AGATTG TG CAATGT GACGTCC	NF-IL6wt	
NFIL6mut.s	GGACGTC ACA<u>C</u>TA CAAACTCTTAATAA	NF-IL6mut	
NFIL6mut.a	TTATTA AGAGTT TG TAGTGTGACGTCC	NF-IL6mut	
H18E2wts	CTAG ACCGAAAACGGT AGTG	E2wt	
H18E2wta	CACT ACCGTTTTCGGT CTAG	E2wt	
H18E2ms	CTAG <u>TCTGAAAACGA</u> T AGTG	E2mut	
H18E2ma	CACT ATCGTTTTCAGA CTAG	E2mut	

Oligonukleotide für electromobiltity shift assays (EMSAs)

Bindestellen = **fett** Mutationen im Vergleich zur wt-Sequenz = <u>unterstrichen</u>

2.1.5.4 Klonierungen

2.1.5.4.1 Klonierung von HPV8-E2-Deletionsmutanten in die Vektoren pEYFP-C1 und pEYFP+Ad

Um HPV8-E2-Deletionsmutanten an den C-Terminus des enhanced vellow fluorescent protein (EYFP) zu fusionieren, wurden die entsprechenden DNA-Fragmente des HPV8-E2-Gens in die Vektoren pEYFP-C1 und pEYFP+Ad kloniert. Zunächst wurden unterschiedliche HPV8-E2-Fragmente (HPV8-E2 wt, H, ΔC , N, ΔN und C, Abb. 5) mittels Pfu-PCR aus dem Vektor pcDNA/HPV8-E2 amplifiziert (Tab. 1) und in den PCR-Klonierungsvektor pCAPs zwischenkloniert. Ein HPV8-E2-Fragment, dessen Hinge-Domäne vollständig deletiert worden war (HPV8-E2 ΔH), konnte aus dem Vektor pGEX-2T/HPV8-E2 ΔH205-409 (Enzenauer et al., 1998) per PCR amplifiziert und ebenfalls in pCAPs eingefügt werden. Alle HPV8-E2-Fragmente wurden danach mit Eco RI und Bam HI aus pCAPs ausgeschnitten und in den Eco RI/Bam HI-geschnittenen Vektor pEYFP-C1 kloniert (Abb. 5). Wo nötig, wurde das erste Startcodon (AUG) des HPV8-E2-Gens deletiert, um eine interne Initiation der Translation von diesem Startpunkt aus zu verhindern. Die HPV8-E2-Deletionsmutante E2 ΔN329 wurde aus pGEX-2T/HPV8-E2 ΔN1-329 (Enzenauer et al., 1998) mit Bam HI und Eco RI ausgeschnitten. Um das Fragment in pEYFP-C1 zu klonieren, wurde die MCS dieses Vektors mit Bgl II und Xba I weitestgehend entfernt und ein doppelsträngiger Oligonukleotid-Adapter (EG.AD) eingefügt. In diesem lagen die Bam HI und Eco RI-Schnittstellen in der benötigten Reihenfolge. Das entstandene Konstrukt pEYFP+Ad wurde mit Bam HI und Eco RI geschnitten und das Fragment E2 AN329 eingefügt. Alle integrierten HPV8-E2-Fragmente wurden vollständig sequenziert.

Tab. 1: PCR-Primer und -Matrizen für die Klonierung von HPV8-E2-Fragmenten in pGEX-2T			
HPV8-E2- Fragmente	5'-PCR- Primer	3'-PCR- Primer	Matrize
E2 wt	8E2.fl.s	8E2.fl.a	pcDNA/HPV8-E2
E2 N	8E2.fl.s	8E2.N.a	pcDNA/HPV8-E2
E2 H	8E2.H.s	8E2.H.a	pcDNA/HPV8-E2
E2 C	8E2.C.s	8E2.fl.a	pcDNA/HPV8-E2
Ε2 ΔΝ	8E2.H.s	8E2.fl.a	pcDNA/HPV8-E2
Ε2 ΔC	8E2.fl.s	8E2.H.a	pcDNA/HPV8-E2
Ε2 ΔΗ	8E2.fl.s	8E2.fl.a	рGEX-2T/HPV8-E2 ΔH205-409

Abb. 5: Klonierung von HPV8-E2-Deletionsmutanten in die Vektoren pEYFP-C1 und pEYFP+Ad für die eukaryontische Expression von Fusionsproteinen mit dem *enhanced yellow fluorescent protein*. Zum Vergleich wurde auch das vollständige HPV8-E2-Protein dargestellt. Die Vektorkarte wurde dem Clontech-Katalog entnommen.

2.1.5.4.2 Klonierung von HPV18-E2 in den Vektor pEYFP-C1

Um das HPV18-E2-Protein an den C-Terminus des EYFP zu fusionieren, wurde das E2-Gen ohne Startcodon mittels Pfu-PCR aus dem Vektor pBR322/HPV-18 amplifiziert (PCR-Primer: EG18E2s und 18E2a), der das gesamte HPV-18-Genom enthält. Das PCR-Produkt wurde in pCAPs zwischenkloniert, PCR-generierten mit den Schnittstellen Eco RI und Bam HI wieder ausgeschnitten und in den Eco RI/Bam HI-geschnittenen Vektor pEYFP-C1 eingefügt (Abb. 6). Anschließend wurde das gesamte HPV18-E2-Gen sequenziert.

2.1.5.4.3 Klonierung von NF-IL6-Deletionsmutanten in die Vektoren pECFP-C1 und pECFP+Ad

Um Fusionsproteine bestehend aus dem *enhanced cyan fluorescent protein* (ECFP) und NF-IL6-Deletionsmutanten in eukaryontischen Zellen zu exprimieren, wurden verschiedene Fragmente des NF-IL6-Gens in die Vektoren pECFP-C1 und pECFP+Ad kloniert. Dafür wurden zunächst die entsprechenden NF-IL6-Fragmente (NF-IL6 Δ N24 bzw. Lip) aus dem Vektor CMV-NF-IL6 amplifiziert (Primer: NFIL6 Δ Ns bzw. LIPs und NFIL6 Δ Na), in pCAPs zwischenkloniert und dort mit Eco RI und Bam HI wieder ausgeschnitten. Diese DNA-Fragmente wurden in den Eco RI/Bam HI-geschnittenen Vektor pECFP-C1 kloniert (Abb. 7). Ein Fragment, das für die AS 25-196 des NF-IL6-Gens kodierte (NF-IL6 Δ C) wurde aus pET-14b/NF-IL6 Δ C mit Xho I ausgeschnitten. Um es in pECFP-C1 zu klonieren, wurde die MCS dieses Vektors mit Bgl II und Xba I weitestgehend entfernt und durch einen doppelsträngigen Oligonukleotidadapter (EG.Ad) ersetzt, der eine Xho I-Schnittstelle im richtigen Leserahmen besaß (Abb. 7). In die Xho I-Schnittstelle des entstandenen Plasmids pECFP+Ad wurde das NF-IL6 Δ C-Fragment kloniert. Abschließend wurden die klonierten NF-IL6-Fragmente vollständig sequenziert.

2.1.5.4.4 Klonierung von Luziferase-Reporterkonstrukten mit E2- und NF-IL6-Bindestellen

Für Reporteranalysen sollten Luziferase-Expressionsvektoren hergestellt werden, die im Promotorbereich des Luziferasegens vier intakte E2- und zwei wt bzw. mutierte NF-IL6-Bindestellen enthielten. Als Ausgangskonstrukt diente C18-LUC, dessen Luziferase-Expression durch einen Promotor/Enhancer reguliert wurde, der aus vier E2-Bindestellen und dem *major late promoter* der Adenoviren bestand. In die Bam HI-Schnittstelle zwischen diesen beiden Elementen wurden je zwei Oligonukleotid-Adapter mit einer intakten (C18.NF.luc) oder einer mutierten NF-IL6-Bindestelle (NF-IL6-C18m) kloniert (Abb. 8). Die Sequenz der wt-Bindestelle entsprach der NF-IL6-Bindestelle des IL-6-Promotors (Akira *et al.*, 1990). Plasmide mit zwei wt bzw. zwei mutierten NF-IL6 Bindestellen wurden E2wt-NFwt-LUC bzw. E2wt-NFmut-LUC genannt.

Außerdem wurden Reporterplasmide kloniert, die vier mutierte E2-Bindestellen enthielten und zwei wt- bzw. mutierte NF-IL6-Bindestellen. Dafür wurde zunächst ein Promotorfragment von E2wt-NFwt-LUC bzw. E2wt-NFmut-LUC mittels Pfu-PCR (Primer: NFIL6 PCR und C18-PR1.U) amplifiziert (Abb. 8). Diese PCR-Produkte beinhalteten zwei NF-IL6-Bindestellen (wt oder mutiert) und den *major late promoter* der Adenoviren. Nach Zwischenklonierung in den Vektor pCAPs wurde das PCR-Fragment mit Bam HI und Bgl II wieder ausgeschnitten und in den Bam HI-geschnittenen Vektor pALUC eingefügt. Es entstanden die Plasmide NF_{2wt}-LUC und NF_{2mut}-LUC. Diese wurden mit Bam HI und Sal I geschnitten und zwei vorligierte Oligonukleotid-Adapter (18E2mut1+2 und 3+4) eingefügt, die insgesamt vier mutierte E2-Bindestellen enthielten. Auf diese Weise war der Promotorkontext der entstandenen Konstrukte E2mut-NFwt-LUC bzw. E2mut-NFmut-LUC mit dem der Reporter E2wt-NFwt-LUC bzw. E2wt-NFmut-LUC bis auf die eingeführten Mutationen in den E2-Bindestellen identisch. In allen Plasmiden wiesen sämtliche Bindestellen dieselbe Orientierung auf.

2.1.5.4.5 Klonierung von NF-IL6-Deletionsmutanten in pET-14b

Für die bakterielle Expression sowie die in vitro Transkription und Translation von NF-IL6-Deletionsmutanten wurden die entsprechenden Fragmente des NF-IL6-Gens in den Vektor pET-14b kloniert (Abb. 9). Mittels Pfu-PCR wurden zunächst vier verschielange Fragmente des den NF-IL6-Gens aus dem Plasmid CMV-NF-IL6 amplifiziert (Tab. 2). Dabei wurden am 5'und am 3'-Ende der PCR-Produkte jeweils eine Xho I-Schnittstelle generiert. Die Fragmente wurden zunächst in pCAPs (Eco RV-geschnitten) eingefügt, dort mit Xho I wieder ausgeschnitten und in Xho I-Schnittstelle die des pET-14b-Vektors kloniert. Alle NF-IL6-Anteile wurden anschließend mit Hilfe von Sequenzierungen vollständig überprüft.

pET-14b. Zum Vergleich wurde das komplette NF-IL6-Gen dargestellt. Die Vektorkarte wurde dem Invitrogen-Katalog entnommen

Tab. 2: PCR-Primer und -Matrize für die Klonierung von NF-IL6-Fragmenten in pET-14b					
NF-IL6- 5'-PCR- 3'-PCR- Matrize Fragmente Primer Primer					
wt	NFIL6s299	NFIL6a1336	CMV-NF-IL6		
ΔN23	NFIL6s368	NFIL6a1336	CMV-NF-IL6		
ΔC	NFIL6AC.371s	NFIL6∆C.892a	CMV-NF-IL6		
LIP	NFIL6s893	NFIL6a1336	CMV-NF-IL6		

2.1.5.4.6 Klonierung von NF-IL6-Deletionsmutanten in pGEX-2T

Für die bakterielle Expression an GST fusionierter NF-IL6-Deletionsmutanten wurden die entsprechenden Anteile des NF-IL6-Gens in den Vektor pGEX-2T kloniert (Abb. 10). Dafür wurden zunächst Deletionsmutanten von LIP mittels Pfu-PCR aus dem Plasmid CMV-NF-IL6 amplifiziert und in den Vektor pCAPs zwischenkloniert (Tab. 3). Mit Hilfe der PCR-generierten Eco RI- (3') und Bam HI-Schnittstellen (5') konnten sie wieder ausgeschnitten und in dieselben Schnittstellen des Vektors pGEX-2T kloniert werden. Anschließend wurden alle Klonierungen mit Hilfe von Sequenzierungen überprüft.

Tab. 3: PCR-Primer und -Matrize für die Klo- nierung von NF-IL6-Fragmenten in pGEX-2T					
NF-IL6- 5'-PCR- 3'-PCR- Fragmente Primer Primer Matrize					
LIP	LIP fl.s	LIP fl.a	CMV-NF-IL6		
LIP ΔZ	LIP fl.s	LIP $\Delta Z.a$	CMV-NF-IL6		
LIP Z	LIP∆b.s	LIP fl.a	CMV-NF-IL6		
LIP B	LIP B.s	LIP B.a	CMV-NF-IL6		
LIP ΔC	LIP $\Delta C.s$	LIP $\Delta C.a$	CMV-NF-IL6		

Abb. 10: Klonierung von NF-IL6-Deletionsmutanten in pGEX-2T für die bakterielle Expression von GST-Fusionsproteinen. Zum Vergleich wurde das vollständige NF-IL6-Gen abgebildet. Die Vektorkarte wurde dem Amersham-Pharmacia-Katalog entnommen.

2.1.5.4.7 Klonierung der E2-Gene von HPV-8 und HPV-18 in den Vektor pMACS K^k.II

Für die magnetische Selektion HPV8-E2-transfizierter Keratinozyten wurde das E2-Gen von HPV-8 in den bicistronischen Vektor pMACS K^k.II kloniert. Dafür wurde das E2-Gen mit umgebender HPV-8-Sequenz (Abb.11) aus dem Plasmid pcDNA/HPV8-E2 mit dem Restriktionsenzym Pme I ausgeschnitten und in die Eco RV-Schnittstelle des Vektors pMACS K^k.II kloniert. Die Orientierung richtige des Pme I-Fragments wurde durch einen Restriktionsverdau sichergestellt und das HPV8-E2-Gen vollständig sequenziert.

Auch das E2-Gen von HPV-18 wurde in pMACS K^k.II kloniert (Abb. 11). In einer Pfu-PCR wurde es mit den Primern

MA18E2s und 18E2a aus dem Plasmid pBR322/HPV18-E2 amplifiziert. Zwar wurden während der PCR Restriktionsschnittstellen am 5'- und 3'-Ende des PCR-Produktes generiert, dennoch wurde das PCR-Fragment direkt in die Eco RV-Schnittstelle von pMACS K^k.II kloniert. Mit Hilfe des 5'-PCR-Primers wurde außerdem eine optimale Kozak-Sequenz vor dem Initiations-Codon generiert (Kozak, 1986). Die Orientierung des HPV18-E2-Gens wurde mittels Restriktionsverdau überprüft und das gesamte Gen sequenziert.

2.1.5.5 Sonstige Nukleinsäuren

Unspezifische DNA aus Lachssperma (single strand salmon sperm DNA)

Gibco BRL (Karlsruhe)

2.1.6 Molekulargewichtsstandards

Nukleinsäurestandard

1 kb DNA-Leiter

Gibco BRL (Karlsruhe)

Proteinstandards

SDS-Page Molecular Weight Standards, Low Range	Bio-Rad (München)
Prestained SDS-Page Standard, Low Range	Bio-Rad (München)
Benchmark Prestained Protein Ladder	Gibco BRL (Karlsruhe)
Benchmark Protein Ladder	Gibco BRL (Karlsruhe)
Rainbow Markers	Amersham-Pharmacia (Freiburg)

2.1.7 Enzyme

2.1.7.1 Restriktionsenzyme

Die Restriktionsendonucleasen wurden von den Firmen Gibco BRL (Karlsruhe) und NEB Biolabs (Frankfurt) bezogen.

2.1.7.2 Modifizierende Enzyme

Shrimps Alkalische Phosphatase	USB (Dannstadt)
T4-Polynukleotid Kinase	NEB Biolabs (Frankfurt)
Large Fragment of DNA Polymerase I	Gibco BRL (Karlsruhe)
Taq-DNA-Polymerase	Amersham-Phamacia (Freiburg)
Pfu-DNA-Polymerase	Promega (Mannheim)
T4 DNA-Ligase (400U/µl)	NEB Biolabs (Frankfurt)
Superscript II Reverse Transkriptase	Gibco BRL (Karlsruhe)
T7 RNA-Polymerase	Promega (Mannheim)
DNase I	Roche (Mannheim)
RNase A (10 mg/ml in H ₂ O)	Sigma-Aldrich (Taufkirchen)

2.1.8 Reagenziensysteme

QIAprep 8 Miniprep Kit	Qiagen (Hilden)
Plasmid Midi/Maxi Kit	Qiagen (Hilden)
Concert High Purity Plasmid Maxiprep System	Gibco BRL (Karlsruhe)
QIAquick Gel Extraction Kit	Qiagen (Hilden)
QIAEX II Gel Extraction Kit	Qiagen (Hilden)
TNT T7 Coupled Reticulocyte Lysate System	Promega (Mannheim)
SuperScript Choice System for cDNA Synthesis	Gibco BRL (Karlsruhe)
MACSelect K ^k .II-Transfected Cell Selection Kit	Miltenyi Biotec(Bergisch-Galdbach)
RNeasy Mini Kit	Qiagen (Hilden)
Rediprime II	Amersham-Pharmacia (Freiburg)
Human β -Aktin RT-PCR Control Amplimer Set	Clontech (Heidelberg)
BM Chemiluminescence Blotting Substrate (POD)	Roche (Mannheim)
Protein Assay (Bradford Reagenz)	Bio-Rad (München)
Vectastain ABC Kit (Peroxidase rabbit IgG)	Vector (Bulingame, US)

2.1.9 Sonstige Reagenzien und Säulen

Fugene	Roche (Mannheim)
Luziferin	Applichem (Darmstadt)
RNasin	Promega (Mannheim)
Complete Mini (Protease Inhibitor Cocktail)	Roche (Mannheim)
DAPI (4',6-Diamidin-2'phenylindol-dihydrochlorid)	Roche (Mannheim)
ULTRAhyb-Hybridisierungspuffer	Ambion (Huntingdon, UK)
Glutathion Sepharose 4	Amersham-Pharmacia (Freiburg)
Nickel-Agarose	Qiagen (Hilden)
QIAshredder Mini Columns	Qiagen (Hilden)
Large Cell Separation Columns	Miltenyi Biotec(Bergisch-Galdbach)
Jung Tissue Freezing Medium	Leica (Nussloch)
DAB (3,3'-Diaminobenzidin)	DAKO (Carpinteria, Kan.)

2.1.9.1 Microarrays

HumanGenome-U95A

Affymetrix (Santa Clara, US)

2.1.10 Antikörper

Bezeichnung	mana_/nalyklanal	Spezies	Firme
Dezeichnung	Klonbezeichnung	Isotyp	г п ша
rabbit anti-C/EBPβ (NF-IL6)	polykl., C-19	Kaninchen IgG ₁	Santa Cruz Biotechnology (Heidelberg)
goat anti-rabbit IgG, F(ab') ₂ fragment Peroxidase	polyklonal, 111-035-047	Ziege IgG ₁	Dianova (Hamburg)
F(ab') ₂ fragment goat anti-mouse IgG, F(ab') ₂ fragment Texas red	polykl., 115-076-072	Ziege IgG ₁	Dianova (Hamburg)
mouse anti-H-2K ^k -FITC	monokl., H100-27.R55	Maus IgG _{2a}	Miltenyi Biotec (Bergisch Gladbach)
mouse anti-CD14-FITC	monokl., TÜK4	Maus IgG _{2a}	Miltenyi Biotec (Bergisch Gladbach)
mouse anti-nucleolus	monokl., AE-3	Maus IgG ₁	Calbiochem (San Diego, US)
mouse anti-spliceosome	monokl., B4A11	Maus IgG ₁	Oncogene (Camebridge, UK)
mouse anti-PODs	monokl., 5E10	Maus IgG	freundlicherweise von Dr. K. van der Kraan zur Verfügung gestellt
mouse IgG1, κ (MOPC-21)	monoklonal, MOPC-21	Maus Ig $G_{1, \kappa}$	Sigma-Aldrich (Taufkirchen)
rabbit IgG	polyklonal, I-5006	Kaninchen IgG	Sigma-Aldrich (Taufkirchen)

2.1.11 Radioisotope

Die radioaktiv markierten Nukleotide $[\alpha^{-32}P]$ -dATP und $[\gamma^{-32}P]$ -ATP sowie L- $[^{35}S]$ -Methionin wurden von den Firmen Amersham-Pharmacia (Freiburg) und ICN (Eschwege) erworben.

2.1.12 Chemikalien

Die in dieser Arbeit verwendeten Laborchemikalien wurden von Amersham-Pharmacia (Freiburg), Applichem (Darmstadt), Biorad (München), ICN (Eschwege), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) und Sigma-Aldrich (Taufkirchen) bezogen und im Reinheitsgrad "reinst" bzw. "p.a." eingesetzt.

2.1.13 Lösungen und Puffer

Alle in dieser Arbeit verwendeten Puffer für molekularbiologische Experimente (z.B. TBE, SSC, etc.) wurden soweit nicht anders angegeben nach J. Sambrook *et al.* (1989) oder nach F. M. Ausubel *et al.* (1994) angesetzt.

2.1.14 Geräte

Durchflußzytometer FACSCalibur	(Becton Dickinson, Heidelberg)
Konfokales Lasermikroskop Leica DM IRB/E	(Leica, Bensheim)
Kryostat Leica CM 3000	(Leica, Nußloch)
ELISA-Reader	(Tecan, Crailsheim)
Thermocycler	(Biometra, Göttingen)

Plastikwaren wurden von den Firmen Falcon BD (Heidelberg), Greiner (Solingen) und Renner (Dannstadt) bezogen. Für Autoradiographien wurden Biomax MR-Filme (Kodak, Stuttgart) und MP-Hyperfilme (Amersham-Pharmacia, Freiburg) verwendet. Der Chemilumineszenz-Nachweis erfolgte mit ECL-Hyperfilmen (Amersham-Pharmacia, Freiburg).

2.2 Methoden

2.2.1 Bakterienkultur

2.2.1.1 Bakterienkulturen für die Plasmidisolation

Bakterien wurde in LB-Medium kultiviert, das für die Selektion mit dem entsprechenden Antibiotikum (100 μ g/ml Ampicillin oder 50 μ g/ml Kanamycin) versetzt worden war. Nach dem Animpfen wurden die Kulturen über Nacht bei 37°C geschüttelt.

2.2.1.2 Herstellung kompetenter Bakterien

Zur Herstellung kompetenter *E. coli* Sure-Bakterien wurde zunächst eine Bakterienkolonie von einer LB-Platte gepickt, in 15 ml LB-Medium überführt und diese Kultur 16 h bei 37°C geschüttelt. Mit dieser Vorkultur wurden 100 ml LB-Medium angeimpft, so daß sich eine OD₆₀₀ von 0,1 ergab. Diese Hauptkultur wurde solange bei 37°C inkubiert, bis sie eine OD₆₀₀ von 0,3 bis 0,6 erreichte. Daraufhin wurde sie mit 1000 g und bei 4°C für 10 min abzentrifugiert und das Bakterienpellet in 10 ml eiskaltem TSB (10% Polyethylenglykol Typ 4000; 5% DMSO; 10 mM MgCl₂; 10 mM MgSO₄ in LB-Broth-Base pH 6,1) resuspendiert. Nach zehnminütiger Inkubation auf Eis wurde die Bakteriensuspension aliquotiert und mit flüssigem Stickstoff schockgefroren. Die Aliquots wurden bei -80°C gelagert und zur Herstellung neuer kompetenter Bakterien wieder auf einer LB-Platte ausgestrichen.

2.2.1.3 Transformation

Zur Transformation von *E. Coli* Sure-Bakterien wurden die Bakterien auf Eis langsam aufgetaut. Pro Transformation wurden zu 100 μ l Bakteriensuspension bis zu 0,5 μ g der spezifischen DNA gegeben und dieser Ansatz 30 min auf Eis inkubiert. Danach erfolgte die Zugabe von 400 μ l TSB (+20 mM Glukose) und eine einstündige Inkubation bei 37°C unter Schütteln. Jetzt wurde das Gemisch auf eine LB-Platte mit dem entsprechenden Antibiotikum ausplattiert und über Nacht bei 37°C inkubiert. Die Transformation von *E. coli* XL-2 blue Bakterien und *E. coli* BL-21 erfolgte nach dem Herstellerprotokoll (Stratagene) mit dem Hitzschock-Verfahren. Dabei wurden z.T. die Volumina der Ansätze reduziert.

2.2.2 Zellkulturtechniken

2.2.2.1 Kultivierung eukaryontischer Zellen

Zur Stammerhaltung eukaryonter Zellen wurde der konfluente Zellrasen einer großen Gewebekulturflasche (150 cm²) zunächst zweimal mit PBS gewaschen und mit 5 ml Trypsin bei 37°C abgelöst. Durch Schlagen der Kulturflasche gegen die Handfläche wurden noch anhaftende Zellen gelöst und die Reaktion mit 5 ml Medium abgestoppt. Die Zellen wurden nun mit der Pipette vereinzelt und je nach benötigter Dichte in neue Zellgefäße ausgesät und mit dem entsprechenden Medium aufgefüllt. Kultiviert wurden die Zellen in einem Inkubator bei 37°C und einer 6%-igen CO₂-Atmosphäre.

2.2.2.2 Transfektion eukaryontischer Zellen

Für transiente Transfektionsexperimente wurden je nach Zellinie unterschiedliche Transfektionsprotokolle verwendet. Die hier angegebenen Volumina gelten für 6-Lochplatten und wurden für andere Kulturgefäße entsprechend angepaßt.

2.2.2.1 Transfektion mit Kalziumphosphat

C33A-Zellen wurden nach dem Kalziumphosphat-Protokoll transfiziert. Dafür wurden die Zellen am Vortag der Transfektion abgelöst (2.2.2.1) und 260.000 Zellen pro Loch zusammen mit 2 ml Medium ausgesät. Nach 24 h sollten die Zellen eine Konfluenz von 50-60% erreicht haben. Dann wurde zunächst das alte Zellmedium durch 1 ml frisches Medium ersetzt. Die DNA (1-2 µg) wurde in einem Volumen von insgesamt 66,5 µl H₂O vorgelegt und mit 76,5 µl 2xHBS-Puffer (274 mM NaCl; 10 mM KCl; 1,4 mM Na₂HPO₄ pH 7,05; 38,4 mM HEPES) vermischt. Nach Zugabe von 8,7 µl einer 2,2 M CaCl₂-Lösung wurde der Ansatz 10 sec gevortext und für insgesamt 19 min bei RT inkubiert. Dann wurde das Kalziumphosphat-DNA-Präzipitat gleichmäßig auf die Zellen geträufelt und diese für sechs Stunden im Inkubator gehalten. Danach wurden die Zellen zweimal mit Medium (ohne Zusätze) gewaschen. Nach erneuter Zugabe von 2 ml Vollmedium wurden die Zellen für 24 bzw. 48 h im Brutschrank inkubiert.

2.2.2.2 Transfektion mit Fugene

Für die Transfektion von RTS3b-Zellen wurde das Transfektionsreagenz Fugene (Roche) verwendet. Die Zellen wurden 24 h vor der Transfektion abgelöst und 170.000 Zellen pro Loch zusammen mit 2 ml Medium ausgesät. Am nächsten Tag sollten die Zellen eine Konfluenz von 60-70% erreicht haben. Dann wurde zunächst das alte Zellmedium durch 2 ml frisches Keratinozytenmedium ersetzt und die DNA-Ansätze (1-2 μ g; Konz.: 0,5-1 μ g/ μ l) in einem Reaktionsgefäß vorgelegt. In einem neuen Reaktionsgefäß wurden 3-6 μ l Fugene und 97-94 μ l DMEM/F12-Nut Mix (ohne Zusätze) vermischt und nach einer fünfminütigen Inkubation zu den DNA-Ansätzen gegeben. Nach 15 min wurde dieses Gemisch auf die Zellen geträufelt und diese für sechs Stunden im Brutschrank inkubiert. Danach erfolgte ein Mediumwechsel (2 ml Keratinozytenmedium) und eine weitere Inkubation von 24-48 h.

Die Zellen für die Microarray-Analyse wurden nach einem verbesserten Fugene-Protokoll transfiziert, mit dem eine Transfektionseffizienz von 40-50% erreicht wurde. Dafür wurden pro 15 cm Schale 48 µl Fugene in 1479 µl KB-Medium (ohne Zusätze) statt in DMEM/F12-Medium vorinkubiert. Außerdem wurden die Zellen während der sechsstündigen Inkubation des Transfektionsreagenz in 23 ml KB-Medium (100 ng/ml Gentamicin) ohne weitere Zusätze gehalten (statt in Keratinozytenmedium). Danach erfolgte ein Mediumwechsel mit Keratinozytenmedium.

2.2.2.3 Magnetische Zellseparation

Die Methodik und das etablierte Protokoll der magnetischen Zellseparation transient transfizierter Zellen mit dem MACSelect- K^k System (Miltenyi) werden im Ergebnisteil beschrieben.

2.2.2.4 Nachweis von Oberflächenantigenen mit Antikörpern

Um die Oberflächenantigene H-2K^k oder CD14 nachzuweisen, wurden Zellen mit Trypsin abgelöst und für 5 min bei 250 g und 4°C abzentrifugiert. Das Zellpellet wurde in 90 µl PBE (PBS; 5 mM EDTA; 0,5% BSA) resuspendiert und 10 µl des FITC-konjugierten Antikörpers *mouse* anti-H-2K^k bzw. *mouse* anti-CD14 (beide Miltenyi) hinzugefügt. Dieser Ansatz wurde für 10 min bei 4°C im Dunkeln inkubiert. Danach wurden die Zellen zweimal mit 1 ml PBE gewaschen (Zentrifugation s.o.) und das Zellpellet in 1 ml 1% Paraformaldehyd/PBS-Lösung aufgenommen und für 15 min bei RT fixiert.

2.2.2.5 Durchflußzytometrie (fluorescence activated cell sorting)

Mit dem Durchflußzytometer FACSCalibur der Firma Becton Dickinson (Heidelberg) konnten Zellen detektiert werden, die mit Fluoreszenz-gekoppelten Antikörpern markiert oder mit Expressionsvektoren für das *enhanced fluorescent protein* erfolgreich transfiziert worden waren. Auf diese Weise wurde der Anteil fluoreszierender Zellen einer Zellpopulation ermittelt. Für die Geräteeinstellungen wurden die Herstellerangaben befolgt.

2.2.2.6 Luziferase-Assay

48 h nach einer Transfektion wurden die Zellen zweimal mit kaltem PBS (4°C) gewaschen, mit einem Zellschaber abgelöst und in ein Reaktionsgefäß überführt. Während einer dreiminütigen Zentrifugation mit 960 g und bei 4°C wurden die Zellen pelletiert und der Überstand verworfen. Das Pellet wurde in 50 μl Luziferase-Extraktions-Puffer (100 mM K-PO₄ (pH 7,8); 1mM DTT) aufgenommen und die Zellen in vier Zyklen schockgefroren (in flüssigem Stickstoff, 2 min) und wieder aufgetaut (im 37°C-Wasserbad, 2 min). Das Zellysat wurde bei 20.800 g und 4°C für 5 min zentrifugiert und der Überstand in ein neues Gefäß überführt. Für einen Luziferase-Assay wurden zu 10-20 μl dieses Extraktes im Lumimeter automatisch 300 μl Assay-Puffer (100 mM K-PO₄ (pH 7,8); 15 mM MgSO₄; 0,3% rATP; 0,014% Luziferin) hinzugefügt und die Lumineszenz über 10 sec gemessen.

2.2.2.7 Der β-Galaktosidase Assay

Für den β -Galaktosidase-Assay wurden 25 μ l des Luziferase-Extraktes (2.2.2.6) mit 170 μ l PBS (+0,1 M MgCl₂; 4,5 M β -Mercaptoethanol) und 55 μ l ONPG-Lösung (4 mg/ml in Na-PO₄, pH 7,5) vermischt und für mindestens 30 min bei 37°C bis zur Gelbfärbung inkubiert. Die Reaktion wurde mit 250 μ l einer 1 M Na₂CO₃-Lösung gestoppt und 150 μ l in je zwei Löcher einer 96-Lochplatte überführt. Mit einer Wellenlänge von 405 nm und einer Referenzwellenlänge von 620 nm wurde die Absorption mit einem *ELISA-Reader* (Tecan) ermittelt und der Mittelwert aus der Doppelbestimmung berechnet.

2.2.2.8 Herstellung von Protein- und Kernextrakten aus eukaryontischen Zellen

Für die Präparation zytosolischer und nukleärer Proteinextrakte wurden die Protokolle nach Schreiber *et al.* (1989) oder Dignam *et al.* (1983) angewendet.

2.2.2.9 Proteinbestimmung

Für die Proteinbestimmung wurden in die Vertiefungen einer 96-Lochplatte zunächst 8 μ l H₂O vorgelegt und eine BSA-Standardreihe (0; 1; 2; 4; 6; 10 μ g BSA) pipettiert. Dann wurden zweimal 1-5 μ l des Proteinextrakts (bzw. Zell-Lysats) für eine Doppelbestimmung aufgetragen und 150 μ l einer 1:5 mit H₂O verdünnten Bradfordlösung (*Protein Assay Reagent*, Bio-Rad) hinzugefügt. Nach einer 5-10 minütigen Inkubation bei RT wurde die Absorption bei einer Wellenlänge von 620 nm mit Hilfe eines *ELISA-Readers* (Tecan) ermittelt. Die Referenzwellenlänge betrug 405 nm. Anhand der Standardreihe konnte dann die absolute Proteinmenge und daraus die Proteinkonzentration jedes Ansatzes ermittelt werden.

2.2.2.10 Immunfluoreszenz

Für die Immunfluoreszenz wurden eukaryontische Zellen auf Gelatine (0,2%)-beschichteten Deckgläschen in 24-Lochplatten ausgesät und je nach Fragestellung am nächsten Tag transfiziert. Nach Erreichen einer ausreichenden Dichte (24-48 h nach Transfektion) wurden die Zellen zweimal mit PBS gewaschen und nach verschiedenen Protokollen fixiert und permeablisiert (Tab. 4). Danach erfolgte die Absättigung von unspezifischen Bindestellen und der primäre Antikörper wurde in ausreichender Verdünnung und Zeit inkubiert.

Tab. 4	Spleißosomen	PODS	Nukleolus	MOPC-21 Kontrolle
Waschen	2x mit PBS	\rightarrow	\rightarrow	\rightarrow
Fixieren	•30 min, RT, 1% Pfa	•20min, RT, 2%Pfa/ 0,5% Triton X-100	•5min, -20°C, EtOH/ Aceton (1:1, -20°C)	•entsprechend
		•5min; RT; 0,5% Triton X-100 in PBS		
		•10min, RT, 0,1M NH ₄ Cl		
Waschen	3x mit PBS	\rightarrow	\rightarrow	\rightarrow
Blockierung	20 min, RT,	keine	keine	entsprechend
	3% Magermilch			
primärer	über Nacht, 4°C,	über Nacht, 4°C,	über Nacht, 4°C,	über Nacht, 4°C,
Antikörper	1µg/µl mouse anti- spliceosome-AK in 3%Magermilch/PBS/	(Deckgläschen mit der Oberseite nach unten auf einen Tropfen)	(Deckgläschen mit der Oberseite nach unten auf einen Tropfen)	1-5 μ g/ μ l mouse IgG1, κ (MPOC-21) in PBS oder 3% Magermilch (a. Splaigascenar)
	0,1% NaN ₃	35 ul mouse anti-	35 ul mouse anti-	(s. spienbosomen)
		PODs Hybridoma- überstand	nucleolus Hybri- domaüberstand	
Die restlichen Schritte sind für alle Färbungen identisch (siehe Text)				

Für die Isotyp-Kontrolle wurde der Antikörper *mouse* IgG1, κ (MOPC-21) in der gleichen Konzentration eingesetzt. Die Zellen wurden dann dreimal für 3 min mit PBS gewaschen und der sekundäre, fluoreszenzmarkierte Antikörper (Texas red) in einer 1:70 Verdünnung in PBS

für eine Stunde bei RT und im Dunkeln inkubiert. Danach wurde wieder wie vorher mit PBS gewaschen und die Deckgläschen mit Aquatex (Merck) auf Objektträgern eingedeckelt und mit Nagellack versiegelt. Für die Anfärbungen des Zellkerns wurde DAPI (Roche) nach dem Protokoll des Herstellers verwendet.

2.2.2.11 Konfokale Lasermikroskopie

Um kleinste Zellstrukturen darzustellen, wurde ein konfokales Lasermikroskop (Leica) eingesetzt. Als Präparate dienten Zellen, die auf Deckgläschen ausgesät und ggf. am nächsten Tag mit pEYFP- oder pECFP-Plasmiden transfiziert wurden. Wenn die Zellen nach 24-48 h EYFP- bzw. ECFP in ausreichender Menge exprimierten (sichtbar im Fluoreszenzmikroskop), wurden sie zweimal mit PBS gewaschen, für 15 min in 1%-iger Paraformaldehyd-Lösung (in PBS) fixiert und mit Aquatex auf Objektträgern eingedeckelt. Alternativ konnten Zellkernstrukturen, wie unter 2.2.2.10 beschrieben, angefärbt werden. Für die Anregung der Fluoreszenz-Farbstoffe wurden der Argon-Laser (456 nm für ECFP und 488 nm für EYFP) oder der Krypton-Laser (568 nm für Texas red) des Konfokalen Mikroskops verwendet. Die Detektionsfilter konnten so eingestellt werden, daß nur die emittierte Strahlung eines Fluorochroms detektiert wurde (ECFP: 470-510 nm; EYFP: 530-560 nm; Texas red : 600-650 nm). Auf diese Weise konnten Doppelfärbungen untersucht werden. Die Überlagerung von solchen Bildern erfolgte entweder direkt mit der zum Mikroskop gehörenden Software *Leica TCS NT* (Leica) oder mit dem Programm *TCS Merge* (Leica).

2.2.2.12 Herstellung von Kryoschnitten aus Gewebeproben

Zur Herstellung von Kryoschnitten aus Gewebeproben wurden die Präparate zunächst in Einfriermedium (*Jung Tissue Freezing Medium*, Leica) eingebettet und bei -80°C eingefroren. Das gefrorene Präparat wurde auf dem Schneidetisch des Kryostats (Leica CM3000) befestigt und bei einer Objekt-Temperatur von -20°C (Kammer-Temperatur -30°C) zunächst getrimmt. Danach wurden jeweils zwei 6 µm dicke Gewebeschnitte auf einen mit Silan (Fluka) behandelten Objekträger überführt. Diese Schnitte wurden für 3 min in Aceton (4°C) fixiert und bei -80°C bis zur Färbung gelagert.

2.2.2.13 Histochemie

Für die histologischen Färbungen wurden die Aceton-fixierten Kryoschnitte zunächst 30 min in 0,3% H₂O₂/PBS inkubiert, um die endogenen Peroxidasen zu blockieren. Danach erfolgte

die eigentliche Färbung mit Hilfe des Vectastain ABC Kits *Peroxidase rabbit IgG* (Vector) und eines spezifischen anti-NF-IL6-Antikörpers (α C/EBP β IgG₁ aus Kaninchen, Santa Cruz), der in einer Konzentration von 0,2 ng/µl (über Nacht, bei 4°C) verwendet wurde. Zur Kontrolle wurde ein Kaninchen-IgG-Gemisch (Sigma-Aldrich) in derselben Konzentration eingesetzt. Für die Peroxidase-katalysierte Farbreaktion wurde DAB (DAKO) verwendet. Die Zellkerne wurden anschließend für 1 min mit einer Hämatoxylin-Lösung (Denk *et al.*, 1996) angefärbt und die Schnitte mit 98%igem Ethanol entwässert. Abschließend wurden die Präparate mit Aquatex (Merck) eingedeckelt und mit Nagellack versiegelt.

2.2.3 Molekularbiologische Methoden

2.2.3.1 Standardmethoden

Molekularbiologische Standardmethoden, wie Ligationen, Restriktionspaltungen, Phosphorylierungen, Dephosphorylierungen, Phenolextraktionen, Ethanolfällungen, photometrische Konzentrationsbestimmung und Gelelektrophoresen von Nukleinsäuren sowie SDS-Gelelektrophorese von Proteinen, wurden nach Protokollen von J. Sambrook *et al.* (1989) oder F. M. Ausubel *et al.* (1994) durchgeführt. Alle DNA-Sequenzierungen wurden von dem Servicelabor des ZMMK (Zentrum für Molekulare Medizin Köln) durchgeführt.

2.2.3.2 Plasmidisolierung

Für die Präparation kleiner Plasmidmengen zu analytischen Zwecken wurden 5 ml LB-Bakterienkulturen angesetzt und das Qiaprep 8 Reagenziensystem (Qiagen) verwendet. Um größere DNA-Mengen zu gewinnen, wurden 200-500 ml LB-Bakterienkulturen mit Hilfe des QIAGEN Maxi Plasmid Kits (Qiagen) bzw. des *Concert High Purity Plasmid Maxiprep System* (Gibco BRL) aufgearbeitet.

2.2.3.3 Polymerasekettenreaktion (PCR)

Mit Hilfe der Polymerasekettenreaktion (PCR) nach Mullis & Fallona (1984) wurden kurze DNA-Fragmente (bis 1,5 kbp) mit zwei spezifischen Primern amplifiziert. Für die Klonierung von PCR-Fragmenten wurde eine Pfu-DNA-Polymerase (Promega) eingesetzt. Standardmäßig wurden folgende Reagenzien auf Eis zusammengegeben:

50 ng DNA-Matrize; 10 μl 10x Puffer; 100 nM dNTPs; 200 nM Primer#1; 200 nM Primer#2;2,5 U Pfu-DNA-Polymeraseund der Ansatz mit H2O auf 100 μl aufgefüllt.

Je nach Schmelztemperatur der DNA-Matrize wurde noch DMSO (5%) hinzugefügt. In einem Thermocycler (Biometra) wurde meist folgendes Standardprogramm ausgeführt:

1. Denaturierung: 1-2 min 96°C

25-30x wurde der folgende Zyklus (2.-4.) wiederholt

 2. Denaturierung: 3. Hybridisierung: 4. Polymerisierung: 	1 min 45 sec 1-3 min	96°C 38-60°C (je nach Schmelztemperatur der Primer) 73 °C (je nach Länge des PCR-Produktes: 1 min/500 bp)
5. Auffüllen:	5 min	73°C

Für die β -Aktin-PCR wurden die Primer des *Human \beta-Actin RT-PCR Control Amplimer Set* (Clontech) nach dem Protokoll des Herstellers verwendet. Das Set beinhaltete auch ein 838 bp langes Kontroll-PCR-Fragment für die Positivkontrolle.

2.2.3.4 RNA-Isolierung

Die RNA für die Microarray-Analyse wurde mit Hilfe des RNeasy Kits (Qiagen) isoliert. Die genomische DNA wurde dabei durch die Verwendung von Qiashredder-Säulen (Qiagen) geschert.

2.2.3.5 Northern Blot

Northern Blots wurden nach dem Protokoll von J. Sambrook et al. (1989) durchgeführt. Die radioaktive Markierung der GAPDH-Sonde erfolgte mit dem Rediprime II-Kit (Amersham-Pharmacia). Für die Prähybridisierung und die Hybridisierung wurde der Ultrahyb-Hybridisierungspuffer der Firma Ambion verwendet.

2.2.3.6 cDNA-Synthese

Die Synthese der cDNA für die Microarray-Analyse wurde mit 15 µg total RNA und dem *SuperScript Choice System for cDNA Synthesis* (Gibco BRL) nach dem Protokoll der Firma Affymetrix durchgeführt.

2.2.3.7 Computerauswertung des GeneChips HG-U95A

Die gewonnen Datensätze aus den Microarray-Analysen wurden mit den Computerprogrammen *Affymetrix Suite Software*, *Micro DB* und *Data Mining Tool* (alle Affymetrix) ausgewertet. Zunächst mußten mit Hilfe der *Affymetrix Suite Software* die Fluoreszenzintensitäten der gesamten Chips gegeneinander abgeglichen werden. Dafür wurde die "Scaling" Prozedur mit einem Scalingfaktor von 2.500 verwendet.

Dann wurden die Expressionswerte einzelner Gene auf den verschiedenen Chips miteinander verglichen, wobei der Kontrollansatz (ohne E2) als "baseline" diente. Wurde ein Gen also hoch reguliert bzw. runter reguliert, so war die Expression im Kontrollansatz geringer bzw. höher. Die mit der *Affymetrix Suite Software* gewonnen Dateien wurden mit dem Programm *Micro DB* konvertiert, so daß sie vom *Data Mining Tool* verarbeitet werden konnten.

Die Datensätze aus den Expressionsvergleichen wurden mit Hilfe des *Data Mining Tool* geordnet. Für die Auswertung waren nur solche Gene interessant, die mindestens in einem Ansatz exprimiert wurden (*Present* bzw. *Marginal*) und mindestens um den Faktor \geq 2 hoch reguliert (*Increased* bzw. *Marginally Increased*) oder \leq -2 runter reguliert (*Decreased* bzw. *Marginally Decreased*) worden waren. Diese wurden dann nach der Größe des *Fold Change*, also der n-fachen Aktivierung, sortiert. Um die Funktionen jedes so gewonnen Gens näher zu beleuchten, wurde das Internet-Programm *Dragon* (<u>www.dragon.tutorial.com</u>) verwendet, welches anhand der entsprechenden *Accession*-Nummern in den Datenbanken Swissprot und Unigene Informationen über die Gene suchte. Um Einzelheiten über Gene zu erfahren, die auf diese Weise nicht gefunden wurden, mußte in den Datenbanken *Entrez* und *Medline* eine Literatursuche durchgeführt werden. Manche Oligo-Proben repräsentierten nicht nur die Sequenz eines Gens, sondern z.T. auch von ganzen Gruppen von Genen (Cluster). Um diese Gruppenmitglieder zu identifizieren, wurde die *Easi Database* (Affymetrix) und das Internetportal <u>www.netaffx.com</u> (Affymetrix) verwendet.

2.2.3.8 In vitro Transkription und Translation

Zur Herstellung *in vitro* translatierter Proteine wurde das *TNT T7 Coupled Reticulocyte Lysate System* (Promega) verwendet. Außerdem wurden Expressionsplasmide benötigt, die vor dem gewünschten Gen einen T7-Promotor besaßen. Diese Gene wurden zunächst von der T7-Polymerase *in vitro* transkribiert und die entstehende RNA danach translatiert.

2.2.3.9 Aufreinigung von bakteriellen GST-Fusionsproteinen

Von einer mit bakteriellem Expressionsplasmid (pGEX-2T) transformierten *E. coli*-Kolonie (BL21pLys) wurde eine Übernachtkultur angesetzt, die am nächsten Tag 1:50-1:100 in 200 ml LB-Medium (200 µg/ml Ampicillin) verdünnt wurde. Diese Kultur wurde solange bei 37°C geschwenkt, bis eine OD₆₀₀ von 0,8-1,0 erreicht war. Dann erfolgte die Expressions-Induktion der GST-Fusionsproteine durch Zugabe von 1 mM IPTG. Nach einer 1,5-2-stündigen Inkubation wurden die Bakterien bei 3500 g und 4°C für 15 min abzentrifugiert und das Pellet in 20 ml 500 mM LSDB-Puffer (s. u.) aufgenommen. Durch fünfmaliges Sonifizieren (90 W, 30 sec) auf Eis wurden die Bakterien aufgebrochen und anschließend die Zellwandtrümmer zusammen mit der bakteriellen DNA zweimal abzentrifugiert (12.000 g, 20 min, 4°C). Das Bakterienlysat wurde aliquotiert, in flüssigem Stickstoff schockgefroren und bei -80°C gelagert.

Für die weitere Aufreinigung wurden die aufgetauten GST-Fusionsproteine an 100 μl Glutathion-Sepharose (Pharmacia) gekoppelt, die zuvor mit 1 ml H₂O und danach mit 1 ml 500 mM LSDB-Puffer gewaschen worden war. Nach jedem Waschschritt auf Eis erfolgte eine dreiminütige Zentrifugation bei 960 g und 4°C. Der Überstand konnte dann von der pelletierten Sepharose entfernt werden. Die Kopplung der GST-Fusionsproteine an die Sepharose erfolgte innerhalb einer Stunde, bei 4°C und unter kontinuierlichem Schwenken. Danach wurde die Sepharose dreimal mit 1M LSDB-Puffer und zweimal mit 100 mM LSDB-Puffer gewaschen. Für die Konzentrationsbestimmung und zum Mengenabgleich verschiedener GST-Fusionsproteine wurde die Sepharose nun mit 15 μl 4x Lämmli-Puffer (+17% β-Mercaptoethanol) versetzt und für 4 min bei 94°C abgekocht. Nach einer fünfminütigen Zentrifugation bei 960 g und 4°C wurde der Überstand mit den eluierten und denaturierten GST-Fusionsproteinen auf einem SDS-Proteingel aufgetragen und dieses nach dem Lauf mit Coomassie-Blau gefärbt.

Alternativ kann nach der Kopplung der GST-Fusionsproteine an die Sepharose und den nachfolgenden fünf Waschschritten eine Kopräzipitationsanalyse angehängt werden (2.2.3.11).

LSDB-Puffer: 20% Glycerin; 50 mM Tris*HCL (pH 7,9); 1 mM DTT; 0,1% Nonidet NP-40 +KCl (100 mM, 500 mM oder 1 M)

Die LSDB-Puffer werden nach ihrer KCl-Konzentration benannt (z.B. 100 mM LSDB) und gekühlt eingesetzt (4°C).

2.2.3.10 Aufreinigung von bakteriellen His-Fusionsproteinen

Die Aufreinigung von bakteriell exprimierten Proteinen, die N-terminal über einen Anhang von sechs Histidinresten verfügten, erfolgte mit Nickel-Agarose-Säulen (Qiagen) nach dem Protokoll von Hoffmann und Roeder (1991).

2.2.3.11 Kopräzipitationsanalysen (Interaktions-Assay)

Bei Kopräzipitationsanalysen werden Protein-Protein-Wechselwirkungen untersucht. Dafür wurde der eine Interaktionspartner als bakterielles GST-Fusionsprotein aufgereinigt und an Glutathion-Sepharose gekoppelt (2.2.3.9). Das andere Protein wurde entweder *in vitro* translatiert oder bakteriell als His-Fusionsprotein exprimiert. Alternativ konnten auch Proteine aus Kernextrakten verwendet werden. Während einer zweistündigen Inkubation bei 4°C und unter kontinuierlichem Schwenken wurden die Proteine vermischt und konnten aneinander binden. Danach wurde die Sepharose dreimal für 3 min mit 1 ml 500 mM LSDB-Puffer und einmal mit 1 ml 100 mM LSDB-Puffer gewaschen (s. 2.2.3.9). Nach Zugabe von 15 μ l 4x Lämmli-Puffer (+17% β-Mercaptoethanol) wurden sämtliche Proteine von der Glutathion-Sepharose abgekocht (4 min bei 94°C). Die Sepharose wurde abzentrifugiert und die Proteine aus dem Überstand mittels SDS-Page aufgetrennt. Mit einem Western-Blot können an GST-Fusionsproteine gebundene Interaktionspartner mit spezifischen Antikörpern nachgewiesen werden. *In vitro* translatierte Proteine wurden direkt nach dem Trocknen des Gels mit Hilfe einer Autoradiographie detektiert.

2.2.3.12 Western-Blot

Western-Blots wurden nach dem Protokoll von J. Sambrook et. al. (1989) durchgeführt. Für den Nachweis von NF-IL6 mittels Western-Blot wurde die Nitrozellulose-Membran über Nacht mit einem anti-C/EBPβ-Antikörper (1,5 ng/µl, Kanninchen IgG, Santa Cruz) inkubiert. Als Sekundär-Antikörper diente ein Peroxidase-konjugierter Ziege-anti-Kaninchen-Antikörper (160 ng/ml, Dianova), der für 1 h inkubiert wurde. Der Chemilumineszenz-Nachweis erfolgte mit dem *BM Chemiluminescence Blotting Substrate* (Roche) nach den Angaben des Herstellers.

2.2.3.13 EMSA

Electromobility shift assays (EMSA) wurden grundsätzlich nach Standardprotokollen durchgeführt. Komplementäre DNA-Oligonukleotide wurden hybridisiert und entweder mit der T4 Polynukleotidkinase (Biolabs) radioaktive Phosphatreste von $[\gamma^{-32}P]$ NTPs übertragen oder mit Hilfe der *Large fragment polymerase* (Klenow, Gibco BRL) die 5' überhängenden Enden mit radioaktiv markierten $[\alpha^{-32}P]$ dNTPs aufgefüllt. Diese markierten DNA-Fragmente wurden in verschiedenen Bindepuffern (s. u.) mit Proteinen aus Kernextrakten für 20 min bei RT inkubiert. Das DNA-Protein-Gemisch wurde auf 4%-igen TBE-gepufferten Acrylamidgelen bei 160 V aufgetrennt.

E2-Bindepuffer		<u>NF-IL6 Bindepuffer</u>		
150 mM	KCl	0,2 M	Tris*HCl (pH7,5)	
15 mM	HEPES	1 M	NaCl	
6 mM	MgCl ₂	0,1 M	EDTA	
0,07mM	EDTA	30%	Glycerin	
15%	Glycerin	50 µg/ml	dIdc	
0,15%	NP-40	50 µg/ml	Aprotinin	
6 mM	Spermidin	20 mM	DTT	
0,07 mg/ml	dIdc	3 mM	PMSF	
37,5 µg/ml	Aprotinin	2 µg/µl	BSA	
15 mM	DTT	1 μg/μl	ssDNA	
2,2 mM	PMSF			
2,9 µg/ml	BSA			

3 Ergebnisse

In dieser Arbeit sollte der Einfluß des E2-Papillomviren Proteins der auf die zelluläre Genexpression untersucht werden. Als viraler Transkriptionsfaktor könnte E2 direkt an seine Bindestelle in Promotoren und Enhancern zellulärer Gene binden und diese mit Hilfe seiner Transaktivierungsdomäne aktivieren oder die Bildung eines Initiationskomplexes forcieren. Andererseits könnte E2 durch die Bindung an DNA andere Transkriptionsfaktoren von benachbarten Bindestellen verdrängen. Denkbar wäre auch eine Interaktion mit anderen Transaktivatoren ohne direkte DNA-Bindung. Eine Voraussetzung für die Wechselwirkung mit solchen zellulären Transkriptionsfaktoren ist die gemeinsame Lokalisation in denselben Geweben.

Im ersten Teil dieser Arbeit wurde die Lokalisation sowie die funktionelle und physikalische Wechselwirkung des E2 Proteins und des zellulären Transkrip-

Abb. 12: NF-IL6-Verteilung in der humanen Zervix. NF-IL6 wurde mit einem polyklonalen Antikörper immunhistochemisch in Kryoschnitten der humanen Zervix nachgewiesen. Die spezifische Farbreaktion erfolgte mit DAB (braun) und die Zellkerne wurden mit Hämatoxylin violett gefärbt. Der Meßbalken entspricht 25 μm.

tionsfaktors NF-IL6 charakterisiert. Im zweiten Teil wurde der generelle Einfluß des E2-Proteins auf die zelluläre Genexpression mittels einer Genechip-Analyse untersucht.

3.1 Lokalisation von NF-IL6 und E2

3.1.1 Lokalisation von NF-IL6 im Epithel der Zervix

Papillomviren infizieren Epithelien der Haut und Schleimhäute. Das E2-Protein wird zunächst nur in geringen Mengen in der Basalschicht gebildet. Erst in den suprabasalen Schichten (ab dem *stratum spinosum*) erfolgt eine stärkere Expression des E2-Proteins. Bereits bekannt war, daß der zelluläre Transkriptionsfaktor NF-IL6 in denselben Schichten der Epidermis exprimiert wird und dort hauptsächlich in den Kern lokalisiert (Maytin & Habener, 1998; Oh & Smart 1998). In Ergänzung zu diesen Arbeiten sollte das Expressionsmuster von NF-IL6 in der Schleimhaut untersucht werden. Dafür wurden Gefrierschnitte von Biopsien aus Hysterektomien hergestellt und die zervikale Schleimhaut mit einem polyklonalen Antikörper gegen NF-IL6 immunhistochemisch angefärbt. Es zeigte sich, daß NF-IL6 v. a. suprabasal exprimiert wurde und dort vornehmlich nukleär lokalisierte (Abb.12). Eine schwache zytoplasmatische NF-IL6-Färbung wurde außerdem in den Basalzellen beobachtet. Somit ähnelte das Verteilungsmuster von NF-IL6 in der Schleimhaut und in der Epidermis dem des PV E2-Proteins und eine Wechselwirkung beider Faktoren wäre demnach prinzipiell möglich.

3.1.2 Expression von NF-IL6 in humanen Keratinozytenlinien

Als Grundlage für spätere funktionelle Untersuchungen wurde die endogene Expression von NF-IL6 in verschiedenen Keratinozytenlinien mittels Western-Blot untersucht (Abb. 13). Bei allen Zellinien ergab sich ein ähnliches Bandenmuster. Die stärkste Bande entspricht dem vollständigen und dem um 23 Aminosäuren verkürzten NF-IL6-Protein. Die berechneten Molekulargewichte dieser Proteine, betragen 36 bzw. 34 kDa. Wurden sie mittels SDS-PAGE aufgetrennt, so zeigten sie eine leicht verzögerte Laufgeschwindigkeit (ca. 40 kDa). Dies war bereits in der Literatur beschrieben worden (Wedel & Ziegler-Heitbrock, 1995). Gleiches galt

Abb. 13: NF-IL6 Expression in permanenten Keratinozytenlinien.

Mit einer SDS-Page (12%) wurden je 15 µg Kernextrakt verschiedener Keratinozytenlinien aufgetrennt. Der anschließende Western-Blot wurde mit einem polyklonalen Antikörper gegen eine Peptid aus dem C-Terminus des NF-IL6 Proteins durchgeführt. Die 40 kDa Bande des kompletten NF-IL6-Proteins und das verkürzte 21 kDa Protein (LIP) sind mit Pfeilen gekennzeichet. für das kürzere LIP-Protein. Auch dieses wies in der SDS-PAGE eine verzögerte Laufgeschwindigkeit auf (21 kDa statt berechneter 16 kDa). Zwischen der NF-IL6- und der LIP-Bande befinden sich auf dem Western-Blot weitere, die entweder verschieden phosphorylierte NF-IL6 Proteine oder Degradationsprodukte darstellen.

Es zeigte sich, daß sowohl HPV-16- und HPV-18-positive, als auch die HPV-negativen Zelllinien C33A, HaCaT31 und RTS3b NF-IL6 exprimierten. Von Zellinie zu Zellinie variierte jedoch das Verhältnis zwischen der verkürzten und den langen Formen des NF-IL6-Proteins. Eine Korrelation zwischen dem Vorhandensein von HPV-DNA und der Ausprägung der NF-IL6-Expression zeichnete sich jedoch nicht ab. Die HPV-negativen Zellinien C33A und RTS3b wurden später für die Untersuchung der funktionellen Wechselwirkung zwischen E2 und NF-IL6 verwendet.

3.1.3 Lokalisation von E2 und NF-IL6 in transfizierten Keratinozyten

Außerdem wurde untersucht, in welche Kompartimente der Zelle E2 und NF-IL6 lokalisierten. Gleichzeitig sollten die Domänen charakterisiert werden, die möglicherweise Lokalisationssignale enthielten.

3.1.3.1 Lokalisation von HPV8-E2-Deletionsmutanten in transfizierten Keratinozyten

Um die Lokalisation von HPV8-E2 zu untersuchen, wurden Deletionsmutanten dieses Proteins an den C-Terminus des *enhanced yellow fluorescent protein* (EYFP) fusioniert (Abb. 14). EYFP ist eine Variante des *enhanced green fluorescent protein* (EGFP) der biolumineszenten Qualle *Aequorea victoria*. Wird das EGFP-Protein mit blauem oder UV-Licht bestrahlt, so emittiert es grünes Licht. Dafür werden keine weiteren Proteine als Kofaktoren benötigt. Durch vier spezifische Aminosäureaustausche (Ormö *et al.*, 1996) entstand aus dem EGFP das EYFP, dessen Emissionsspektrum sich als Folge der Austausche von Grün (Max. 509 nm) nach Gelbgrün (Max. 527 nm) verschob. Fusionsproteine bestehend aus diesem EYFP und Anteilen des HPV8-E2-Proteins wurden sowohl in RTS3b- als auch in C33A-Zellen zur Expression gebracht. Mit Hilfe der Fluoreszenzmikroskopie wurden sie in den Zellen lokalisiert und danach mit dem Konfokalen Lasermikroskop Aufnahmen angefertigt. Für die Anregung des EYFP wurde der Argon-Laser des Konfokalen Mikroskops gewählt, der Licht mit einer Wellenlänge von 488 nm erzeugte. Das Emissionsmaximum des EYFP liegt bei 527 nm. Daher wurden die Emissionsfilter so eingestellt, daß lediglich Licht in einem Wellenlängenbereich zwischen 530 und 560 nm detektiert wurde.

Die Lokalisation der einzelnen Fusionsproteine war in RTS3b- und in C33A-Zellen identisch. Da RTS3b-Zellen eine klarere Morphologie aufwiesen, werden hier nur Aufnahmen von dieser Zellinie abgedruckt. Das unfusionierte EYFP verteilte sich in allen Kompartimenten der Zelle (Abb.19.IA). Es ist mit 29,4 kDa klein genug, um frei in den Kern zu diffundieren. Proteine mit einem Molekulargewicht unter 40-60 kDa können ohne aktiven Transport durch die Kernporen treten (Görlich & Mattaj, 1996). Auch die Fusionsproteine EYFP-E2 N bzw. EYFP-E2 C wiesen mit einem Molekulargewicht von 52,8 kDa und 39,4 kDa eine geringere Größe auf und waren ebenfalls sowohl zytoplasmatisch als auch nukleär zu finden (Abb. 16.II.A u. IV.A). Dabei sei erwähnt, daß alle E2-Deletionsmutanten, die noch über eine intakte Dimerisierungsdomäne verfügen, vermutlich dimerisieren können und somit in der Lage sind Komplexe mit größerem Molekulargewicht zu bilden (Abb. 14). Wenn EYFP-E2 C auf diese Weise Dimere bildet, liegt deren Molekulargewicht oberhalb der Grenze für die freie Diffusion in den Kern. Vermutlich handelt es sich bei der Dimerisierung jedoch um einen dynamischen Prozeß, bei dem nur ein Teil der Moleküle als Dimer vorliegt.

können Dimere mit doppeltem MW bilden.

Mit Hilfe des Internet-Programms PSORT II (unter www.expasy.ch) wurde im HPV8-E2-Protein nach Lokalisationssignalen gesucht. Wie erwartet, wurden keine möglichen Transmembranregionen, mitochondriale Zielsequenzen, ER-Retentionssignale, peroxisomale Zielsignale, Aktinbindungsmotive oder Transportsignale für den Golgi-Apparat ermittelt. Dagegen wurde mit verschiedenen Berechnungsmethoden und einer hohen Wahrscheinlichkeit eine nukleäre Lokalisation vorhergesagt (78,3-94,1%). Außerdem wurden einige mögliche nukleäre Lokalisationssignal (NLS) ausgemacht. Vier klassische NLS (AS-Position: 326-329; 327-330; 326-332; 371-377), die dem NLS des SV40 large T antigen ähnelten und zwei zweiteilige (bipartite) NLS (AS-Position: 250-266; 360-376) wurden erkannt (Abb. 14). Einige dieser NLS überlappten zum Teil und alle lagen in der Hinge-Region des HPV8-E2-Proteins. Für das E2-Protein von HPV-11 war bereits beschrieben worden, daß die Hinge-Region für die nukleäre Lokalisation verantwortlich ist (Zou et al., 2000). Auch hier zeigte sich, daß alle EYFP-HPV8-E2-Proteine mit der vollständigen oder Teilen der Hinge-Region ausschließlich nukleär lokalisierten (E2 wt, ΔN , ΔC , H und $\Delta N329$; Abb. 15.I-III.A; Abb. 16.III.A und V.A). Das EYFP-E2 AH-Protein, dem die Hinge-Region deletiert wurde, war dagegen in nicht weiter definierten perinukleären Strukturen und nicht im Kern zu finden. Dies konnte mit Hilfe einer spezifischen Kernfärbung mit dem Fluoreszenzfarbstoff DAPI nachgewiesen werden (Abb. 16.VI.B). Wie schon beschrieben, lokalisierten EYFP-Fusionsproteine, die lediglich die N-terminale Transaktivierungsdomäne E2 N oder die C-terminale DNA-Bindungs- und Dimerisierungsdomäne E2 C enthielten, sowohl im Kern als auch im Zytoplasma. Somit war die Hinge-Domäne für die strikte nukleäre Lokalisation essentiell. Die Fusionsproteine EYFP-E2 AN329 und EYFP-E2 H lokalisierten in die Kompartimente des Nukleolus, wie mit Hilfe einer Antikörperfärbung gegen ein nukleoläres Antigen gezeigt werden konnte (Abb. 16.III u. V). Auch EYFP-E2 C wurde dort gefunden, kam jedoch in allen Kompartimenten der Zellen vor, da es scheinbar klein genug war frei zu diffundieren (Abb. 16.IV). Dafür sprach auch, daß sein Verteilungsmuster mit dem des unfusionierten EYFP-Proteins übereinstimmte (Abb. 19.I.A), das u. a. auch im Nukleolus detektiert wurde. Daß die Akkumulation in den Nukleolus jedoch nicht allein auf die Größe der Proteine zurückzuführen war, wurde anhand des Fusionsproteins EYFP-E2 N deutlich. Dieses wies ungefähr dasselbe Molekulargewicht wie EYFP-E2 H auf, sparte den Nukleolus jedoch strikt aus (Abb. 16.II.B). Zusammenfassend konnte festgestellt werden, daß das nukleoläre Erkennungssignal offensichtlich in der C-terminalen Hälfte der Hinge-Region liegt.

Abb. 15: RTS3b-Zellen wurden mit pEYFP-HPV8-E2-Expressionsplasmiden transfiziert und nach 24 h mit 1% Paraformaldehyd/PBS für 15 min fixiert (I.-III.A: Übersichtsbilder) bzw. wie in Material & Methoden beschrieben mit Antikörpern gegen Nukleolus-, PODs- oder Spleißosomen-Antigene und Texas-red markiertem 2. Antikörper gefärbt (I-III.B). Die EYFP-HPV8-E2-Proteine sind grün und die Antikörperfärbungen rot dargestellt. Rechts außen werden die Überlagerungen aus beiden Bildern gezeigt.

Abb. 16: RTS3b-Zellen wurden mit pEYFP-HPV8-E2-Expressionsplasmiden transfiziert und nach 24 h mit 1% Paraformaldehyd/PBS für 15 min fixiert (II.-VI.A: Übersichtsbilder) oder wie in Material & Methoden beschrieben mit Antikörpern gegen Spleißosomen- oder Nukleolus-Antigene sowie Texas-red markiertem 2. Antikörper gefärbt (I-VI.B). Die EYFP-HPV8-E2-Proteine sind grün und die Antikörperfärbungen rot dargestellt. Bei VI.B wurde der Nukleus mit DAPI angefärbt. Rechts außen werden die Überlagerungen aus beiden Bildern gezeigt.

Ergebnisse

Fusionsproteine, bei denen EYFP an das vollständige E2-Protein (wt), an E2 AN und an $E2 \Delta C$ fusioniert worden war, lokalisierten in feineren Strukturen im Zellkern und sparten den Nukleolus strikt aus (Abb. 15.I-III). Mit Hilfe von Antikörperfärbungen konnte festgestellt werden, daß es sich bei diesen subnukleären Strukturen weder um SFC (splicing-factor compartments) noch um PODs (PML oncogenic domains) handelte (Abb. 15.B). Außerdem fiel auf, daß die Strukturen, in denen EYFP-E2 wt lokalisierte kleiner und größer an der Zahl waren, als die in denen EYFP-E2 AN und AC zu finden waren. Ferner lagen die Kompartimente von E2 AN direkt neben den SFC (Abb. 15.II.B). Interessanterweise wies das E2-Protein von HPV-5 – einem engen Verwandten von HPV-8 – ein ähnliches Verteilungsmuster auf (Lai et al., 1999). Dieses Protein kolokalisierte jedoch z.T. mit den SFC, die wiederum mit der nukleären Matrix assoziiert sind. Auch ein Teil des HPV11-E2-Proteins lokalisierte in ähnlichen Strukturen, die ebenfalls mit der nukleären Matrix assoziiert waren (Zou et al., 2000). In den E2-Proteinen von HPV-5 und -11 waren jeweils Teile der Hinge-Region für diese Assoziation mit der nukleären Matrix essentiell. Aufgrund des ähnlichen Verteilungsmusters könnten HPV8-E2 wt, ΔN und ΔC ebenfalls in Kompartimenten an der nukleären Matrix akkumulieren, die jedoch nicht weiter identifiziert werden konnten.

Insgesamt beinhaltet die Hinge-Region von HPV8-E2 mindestens drei unterschiedliche Lokalisationssignale. Eins führte zu der Ansammlung in kleinen subnukleären Strukturen, die vermutlich mit der nukleären Matrix assoziiert waren, sich aber von den SFC oder den PODs unterschieden. Ferner liegen in der C-terminale Hälfte der Hinge-Region ein oder mehrere NLS bzw. nukleäre Retentionssignale. In diesem Teil der Hinge-Region befindet sich außerdem ein Motiv, das die Assoziation mit dem Nukleolus vermittelte. Im vollständigen E2-Protein sowie in den Deletionsproteinen E2 Δ N und Δ C schien dieses nukleoläre Erkennungssignal jedoch maskiert zu werden, da diese den Nukleolus strikt aussparten (Abb. 15.I.B). Untersuchungen über die Lokalisation des BPV1-E2-Proteins zeigten eine ähnliche Maskierung einer NLS, die in der DNA-Bindungs- und Dimerisierungsdomäne liegt (Skiadopoulos & McBride, 1996).

3.1.3.2 Lokalisation von HPV18-E2 in transfizierten Keratinozyten.

Auch das komplette HPV18-E2 Protein wurde an EYFP fusioniert, um seine Verteilung in Keratinozyten zu untersuchen. Im Gegensatz zu HPV8-E2 war dieses Protein sehr toxisch für die Zellen, so daß nach einer transienten Transfektion mit dem entsprechenden Expressionsplasmid die Mehrheit der transfizierten Zellen bereits innerhalb der ersten 24 h nach der Transfektion abstarben. Aufgrund der typischen Morphologie dieser Zellen wurde vermutet,

daß es sich bei diesem Prozeß um Apoptose handeln könnte. Tatsächlich war bereits für die E2 Proteine von HPV-18, -16 und BPV-1 gezeigt worden, daß sie zumindest HPV-positive Zellen in die Apoptose treiben können (Desaintes *et al.*, 1999; Sanchez-Perez *et al.*, 1997). Mit dem Konfokalen Mikroskop konnten daher nur Aufnahmen von solchen EYFP-HPV18-E2 exprimierenden Zellen angefertigt werden, die nur geringe Mengen des Fusionsproteins enthielten. Diese Zellen wiesen nur eine schwache Fluoreszenz auf, die sich weitestgehend auf den Nukleus beschränkte. Im Gegensatz zu dem wt E2-Protein von HPV-8 lokalisierte EYFP-HPV18-E2 diffus im Nukleoplasma (Abb. 19.IV.A). Lediglich die Bereiche der Nukleoli wurden ausgespart.

3.1.3.3 Lokalisation von NF-IL6-Deletionsmutanten in transfizierten Keratinozyten

Um Deletionsmutanten des NF-IL6-Proteins in der Zelle zu lokalisieren, wurden sie an das *enhanced cyan fluorescent protein* (ECFP) fusioniert, einer Variante von EGFP, die bei einer kürzeren Wellenlänge (Max. 433 nm u. 453 nm) angeregt wird (Heim & Tsien, 1996) und cyanfarbenes Licht emittiert (Max. 475 nm). Es unterscheidet sich durch sechs Aminosäure-Substitutionen vom EGFP. Da ECFP in Zellen mit Hilfe des Konfokalen Lasermikroskops

vom EYFP unterschieden werden kann, sind Doppelmarkierungen mit beiden zusammen möglich.

Ein um 24 AS N-terminal verkürztes (ohne 2. Met) NF-IL6-Protein, das LIP-Protein und eine C-terminale Deletionsmutante von NF-IL6 (AS 25-198) wurden an den C-Terminus des EYFP fusioniert (Abb. 18).

Alle ECFP-NF-IL6-Fusionsproteine wurden sowohl in C33A- als auch in RTS3b-Zellen zur Expression gebracht und zeigten in beiden dieselbe Lokalisation. Mit dem Konfokalen Mikroskop wurden Aufnahmen angefertigt. Für die Anregung von ECFP wurde der Argon-Laser mit einer Wellenlänge von 456 nm gewählt. Detektiert wurde die emittierte Strahlung

Ergebnisse

zwischen 470 und 510 nm. Alle drei Fusionsproteine zeigten ein identisches Verteilungsmuster und waren überwiegend diffus im Zellkern lokalisiert (Abb.19.I.-II.A). Ähnlich wie die wt E2-Proteine von HPV-8 und -18 sparten sämtliche NF-IL6-Proteine die nukleolären Strukturen aus, wie mit einer Antikörperfärbung gegen ein Nukleolus-Antigen gezeigt werden konnte (Abb. 19.II.B). Aufgrund der diffusen Verteilung der NF-IL6-Fusionsproteine war es jedoch nicht möglich, eine Lokalisation in SFC oder PODs einwandfrei nachzuweisen (Abb. 19.II.B). In einigen Zellen lokalisierten die drei ECFP-NF-IL6-Fusionsproteine zusätzlich im Zytoplasma, kamen dort jedoch in deutlich geringeren Konzentrationen vor.

In der Literatur war bisher nur ein zweigeteiltes (*bipartite*) NLS in der basischen Region des NF-IL6-Proteins beschrieben worden (Williams *et al.*, 1997). Hier zeigte sich jedoch, daß offenbar im N-terminalen Anteil dieses Proteins ebenfalls ein NLS oder ein nukleäres Retentionssignal enthalten war, weil auch ECFP-NF-IL6 ΔC spezifisch in den Zellkern lokalisierte (Abb. 19.I.A). Da die Dimerisierungsdomäne dieses Proteins deletiert worden war, konnte es nicht mit endogenen C/EBP-Faktoren, die ein NLS enthalten, heterodimerisieren und auf diese Weise passiv in den Kern transportiert werden.

Eine Analyse mit dem Internet-Programm PSORT II ergab drei mögliche NLS (Abb. 18). Davon waren zwei bereits durch Williams et al. (1997) charakterisiert worden. Diese beiden zweigeteilten (bipartite) NLS liegen sich gegenseitig überlappend in der basischen Region des NF-IL6-Proteins (AS 264-280 und 277-293). Nur das C-terminale NLS ist jedoch tatsächlich funktionell. Die dritte mögliche NLS endet 12 AS vor dem Startpunkt des LIP (AS 181-187) und liegt somit noch in NF-IL6 Δ C. Es handelt sich um eine SV40 *large T antigen*-ähnliches NLS, das möglicherweise die nukleäre Lokalisation des ECFP-NF-IL6 Δ C-Proteins vermittelte. Das unfusionierte ECFP lokalisierte wie EYFP in alle Kompartimente der Zelle (Abb. 19.I.A)

3.1.3.4 Kolokalisation von E2 und NF-IL6

Für die Kolokalisation von HPV8-E2 bzw. HPV18-E2 und NF-IL6 wurden die Fusionsproteine EYFP-HPV8-E2 wt bzw. EYFP-HPV18-E2 zusammen mit ECFP-NFIL6 ΔN24 in RTS3b-Zellen exprimiert (Abb.19 III-IV.B). Mit dem Konfokalen Mikroskop wurden Aufnahmen dieser Zellen angefertigt. Die Emissionsfilter wurden dabei so gewählt, daß entweder nur cyan- oder gelbfarbiges Licht detektiert wurde (ECFP: 470-510 nm und EYFP: 530-560 nm). Auch hier war aufgrund der diffusen Verteilung des NF-IL6- und HPV18-E2-Fusionsproteins eine Aussage über die Kolokalisation schwierig.

Ergebnisse

Abb. 19: RTS3b-Zellen wurden mit pEYFP- und pECFP-Expressionsplasmiden transfiziert und nach 24 h mit 1% Paraformaldehyd für 15 min fixiert (I.-VI.A) oder wie in Material & Methoden beschrieben mit Antikörpern gegen Nukleolus-, PODs- oder Spleißosomen-Antigene und Texas-red markiertem 2. Antikörper gefärbt (II.B). Die ECFP-NF-IL6-Proteine sind grün und die Antikörperfärbungen rot dargestellt. Außerdem wurden pEYFP-HPV8-E2 bzw. pEYFP-HPV18-E2 (beide rot) mit pECFP-NF-IL6 Δ N24 (grün) kotransfiziert (III.B+IV.B).

Das Verteilungsmuster von NF-IL6 konnte jedoch mit dem von HPV18-E2 gut und mit dem von HPV8-E2 teilweise zur Deckung gebracht werden. Ob sie in der Zelle tatsächlich kolokalisieren, konnte anhand der Aufnahmen nicht zweifelsfrei belegt werden.

3.2 Die Funktionelle Interaktion zwischen HPV8-E2 und NF-IL6

Ob der virale Transaktivator E2 in die Regulation der zellulären Genexpression eingreifen kann, wurde bisher wenig untersucht. Es konnte gezeigt werden, daß die Expression des E2-Proteins von BPV-1, HPV-16 und -18 in HPV-positiven Zellen die p21-Konzentration sowohl auf RNA- als auch auf Protein-Ebene erhöhen kann (Desaintes *et al.*, 1999; Dowhanick *et al.*, 1995; Hwang *et al.*, 1996; Wells *et al.*, 2000). Dabei handelt es sich möglicherweise um einen indirekten Effekt. In HeLa-Zellen reprimiert E2 die E6-Expression und somit die Inaktivierung des Tumorsuppressors p53. p53 wiederum kann das Gen des Zellzyklusregulators p21 aktivieren. Ob E2 die p21-Expression in HPV-negativen Zellen ebenfalls aktivieren kann, ist unklar. Eigene Experimente mit E2-transfizierten RTS3b-Zellen zeigten jedoch, daß dies nicht der Fall war (*RNase Protection Assay*, Daten nicht gezeigt). In anderen Studien konnte das E2-Protein von BPV-1 in transienten Transfektionsexperimenten einige Zytokin-promotoren (IL-2, IL-3 und GM-CSF) aktivieren (Heike *et al.*, 1989), die keine E2-Bindestelle besaßen. Der Mechanismus dieser Aktivierung ist ungeklärt.

Der virale Transkriptionsfaktor E2 könnte durch Wechselwirkung mit anderen zellulären Transkriptionsfaktoren, die Transkriptionskontrolle zellulärer Gene modulieren und damit ein intrazelluläres Milieu für die Virusreplikation schaffen. Nachdem E2 und NF-IL6 ein ähnliches Verteilungsmuster *in situ* aufwiesen, sollte in dieser Arbeit untersucht werden, ob die NF-IL6-regulierte Genexpression durch E2 moduliert werden kann.

3.2.1 HPV8-E2 und NF-IL6 aktivieren die Transkription des Involukrin-Promotors synergistisch

NF-IL6 wird in denselben Hautschichten wie E2 exprimiert und ist zusammen mit anderen Mitgliedern der C/EBP-Transkriptionsfaktorfamilie an der differenzierungs- und gewebespezifischen Kontrolle der Genexpression in der Epidermis beteiligt. Ein solches differenzierungsspezifisch reguliertes Gen, stellt das Involukringen dar, welches erst ab höheren Schichten des *stratum spinosum* der Epidermis zur Expression kommt und damit ein ähnliches Expressionsmuster aufweist wie E2 und NF-IL6. Das Involukringen kodiert für ein Strukturprotein, welches zusammen mit anderen Proteinen unter der Zellmembran ausdifferenzierter und verhornter Epidermiszellen eine stark vernetzte Proteinhülle bildet (Eckert *et al.*, 1993). Tatsächlich wurde im promotorproximalen Bereich des Involukringens eine C/EBP-Bindestelle (Pos.: –135 bis -144) charakterisiert, die für die Phorbolesterinduzierte, differenzierungsspezifische Expression essentiell ist. Anhand dieses Promotors sollte untersucht werden, ob E2 in der Lage ist, die NF-IL6-regulierte Genexpression zu modulieren.

Es stand das Reporterkonstrukt pINV 241 zur Verfügung, in dem die promotorproximale, regulatorische Region des Involukringens (-7 bis –241) vor das Luziferasegen kloniert worden war (Abb. 20). Dieses Fragment enthält je eine gut charakterisierte AP-1- und C/EBP-Bindestelle, die nur durch 10 bp voneinander getrennt werden. Beide sind für die differenzierungsspezifische Expression des

Involukringens essentiell (Agarwal et al., 1999). Außerdem ist dieses kurze Promotorfragment für 50% der Gesamtpromotoraktivität verantwortlich (Welter et al., 1995). Die Aktivierung des Reporterkonstrukts wurde in den HPV-negativen RTS3b-Zellen untersucht. Diese Zellinie stammt aus einem Plattenepithelkarzinom der Haut, kann aber in organotypischen Kulturen noch Differenzierungsmerkmale ausbilden (S. Smola-Hess, unpublizierte Daten). Um die Wirkung von HPV8-E2 und NF-IL6 gezielt zu untersuchen, wurden neben dem Reporterkonstrukt eukaryontische Expressionsplasmide für beide Faktoren kotransfiziert. Zunächst war jedoch unklar, in welchen Konzentrationsbereichen diese beiden Transkriptionsfaktoren die Aktivität des Repoterplasmids regulieren konnten und in welchen E2 die NF-IL6-vermittelte Expression möglicherweise beeinflußte. Daher wurden verschiedene Mengen des NF-IL6-Expressionsplasmids mit verschiedenen Mengen des HPV8-E2-Expressionsplasmids kombiniert. Es zeigte sich, daß sowohl NF-IL6 allein als auch E2 allein das Reporterkonstrukt schwach, aber konzentrationsabhängig aktivierten (Abb. 21). Verglichen mit dem Basalwert erreichte NF-IL6 eine bis zu 2-fache Aktivierung von pINV 241 und HPV8-E2 eine bis zu 3-fache. Wurden beide Faktoren kombiniert, so zeigte sich bereits in geringen Konzentrationsbereichen eine mehr als additive, also synergistische, Aktivierung. Dieser kooperative Effekt war um so deutlicher, je höhere DNA-Konzentrationen von beiden Expressionsplasmiden eingesetzt wurden. In den Ansätzen mit den höchsten Expressionsplasmid-Konzentrationen wurde somit auch die stärkste Aktivierung ermittelt (12-fach). Alle in dieser Arbeit gezeigten Luziferase-Aktivitäten wurden mit der

Ergebnisse

Proteinkonzentration der Luziferase-Extrakte abgeglichen, da sich zeigte, daß sowohl HPV8-E2 als auch NF-IL6 allein die Promotoren sämtlicher untersuchter Kontrollvektoren beeinflußten. So wurden Expressionsvektoren, die vor dem β -Galaktosidasegen den *immediate-early* Promotor von CMV, die RSV-LTR oder den Promotor des humanen Elongationsfaktors EF-1 α besaßen, sowohl durch HPV8-E2 als auch durch NF-IL6 konzentrationsabhängig aktiviert.

Mit Hilfe des Computerprogramms MatInspector wurde in der Sequenz des Involukrin-Promotors nach möglichen E2-Bindestellen gesucht, jedoch keine gefunden. Somit schien ein Synergismus mit NF-IL6 ohne direkte DNA-Bindung des E2-Proteins möglich. Die Aktivierung durch E2 allein, könnte bereits durch endogenes NF-IL6 vermittelt werden, das E2 zu dem Involukrin-Promotor rekrutierte.

3.2.2 Synergistische Transaktivierung von synthetischen Promotoren durch HPV8-E2 und NF-IL6

Um den Mechanismus der synergistischen Transaktivierung durch HPV8-E2 und NF-IL6 weiter aufzuklären, wurde untersucht, inwieweit das Vorhandensein von E2- und/oder NF-IL6-Bindestellen hierfür notwendig war. Dafür wurden Reporterkonstrukte hergestellt, in denen intakte und mutierte Bindestellen für NF-IL6 und E2 kombiniert wurden.

In Analogie zu HPV-Promotoren, in denen vier E2-Bindestellen vorkommen, wurde ein Reporterkonstrukt hergestellt, das vier E2-Bindestellen und zwei NF-IL6-Bindestellen enthielt (E2wt-NFwt-LUC; Abb. 22). Diese wurden vor den *major late promoter* der Adenoviren kloniert, der als Minimalpromotor für die Expression des Luziferasegens diente. Darüber hinaus wurden Reporterkonstrukte mit mutierten E2- und/oder mutierten NF-IL6-Bindestellen hergestellt. Der Promotorkontext der Konstrukte E2wt-NFwt-LUC, E2wt-NFwt-LUC, E2mut-NFwt-LUC bzw. E2mut-NFmut-LUC war bis auf die eingeführten Mutationen in den E2- und NF-IL6-Bindestellen identisch (Abb. 22). Alle für diese Klonierungen verwendeten Oligonukleotide, die wt- oder mutierte NF-IL6- bzw. mutierte E2-Bindestellen enthielten wurden zuvor in EMSAs getestet, um nachzuweisen, daß sie von den Faktoren gebunden bzw. nicht gebunden wurden (Daten nicht gezeigt).

Mit diesen vier Reporterkonstrukten wurden C33A-Zellen transfiziert, die ähnlich wie RTS3b-Zellen bereits eine geringe endogene NF-IL6-Expression aufwiesen. Dazu wurden dieselben Verdünnungen der HPV8-E2- und NF-IL6-Expressionsvektoren kotransfiziert, die bereits in den Untersuchungen mit dem Reporterkonstrukt pINV 241 verwendet wurden (Daten nicht gezeigt). Nachdem sich v.a. bei hohen DNA-Konzentrationen deutliche Effekte zeigten, wurde anhand von ausgewählten Verdünnungen der E2- und NF-IL6-Expressionspiele die Aktivierung der vier Reporterkonstrukte näher untersucht (Abb.23).

Abb. 23: Aktivierung der synthetischen Reporterkonstrukte mit wt- und mutierten E2 bzw. NF-IL6-Bindestellen durch HPV8-E2 und NF-IL6.

C33A-Zellen wurden mit den Reporterkonstrukten E2wt-NFwt-LUC, E2wt-NFmut-LUC, E2mut-NFwt-LUC und E2mut-NFmut-LUC (je 0,5 μ g) sowie mit Expressionsplasmiden für HPV8-E2 (0,4 μ g) und NF-IL6 (0,8 μ g) kotransfiziert. Die DNA-Menge wurde jeweils mit leerem pcDNA3.1+ Plasmid konstant gehalten. Die ermittelten Luziferase-Aktivitäten wurden mit den Proteinkonzentrationen abgeglichen und der Kontrollwert ohne E2 und NF-IL6 wurde als eins gesetzt. Die Tabelle zeigt die Ergebnisse aus mindestens drei unabhängigen Transfektionen mit mindestens zwei Wiederholungen.

E2wt-NFwt-LUC wurde durch HPV8-E2 allein (8-fach) und noch etwas stärker durch NF-IL6 allein (13-fach) aktiviert. Wurden HPV8-E2 und NF-IL6 kotransfiziert, so transaktivierten sie den Reporter 37-fach und somit synergistisch. Das Reporterkonstrukt E2wt-NFmut-LUC, dessen NF-IL6-Bindestellen mutiert worden waren, wurde dennoch durch NF-IL6 5-fach aktiviert. Ob diese Aktivierung aus der Wechselwirkung mit Faktoren des basalen Initiations-komplexes der Transkription oder aus einer Bindung an kryptische NF-IL6-Bindstellen in der Vektorsequenz resultierte, blieb unklar. E2 aktivierte diesen Reporter 4-fach und somit schwächer als E2wt-NFwt-LUC. Beide Transaktivatoren zusammen aktivierten E2wt-NFmut-LUC lediglich additiv (9-fach). Wurden nur die E2-Bindestellen mutiert und die

NF-IL6-Bindestellen intakt gelassen, konnte E2 diesen Reporter (E2mut-NFwt-LUC) erwartungsgemäß nicht aktivieren. NF-IL6 dagegen zeigte eine starke Aktivierung, die mit der des Reporters E2wt-NFwt-LUC übereinstimmte (beide 13-fach). Beide Transkriptionsfaktoren zusammen transaktivierten das Konstrukt E2mut-NFwt-LUC 21-fach und somit synergistisch - wenn auch schwächer als E2wt-NFwt-LUC. Dieses Ergebnis bestätigte die Untersuchungen mit dem Involukrinpromotor-Fragment, das ebenfalls synergistisch durch beide Faktoren aktiviert wurde, obwohl es nur eine NF-IL6 und keine E2-Bindestelle beinhaltete. Wurden die Bindestellen für beide Transaktivatoren mutiert (E2mut-NFmut-LUC), so konnte wiederum keine Aktivierung durch E2 allein registriert werden. NF-IL6 zeigte jedoch eine ähnlich starke Aktivierung (4-fach) wie bei dem Konstrukt E2wt-NFmut-LUC. Zusammen mit E2 konnte diese Aktivität noch leicht gesteigert werden (7, 5-fach).

Zusammenfassend ließ sich somit feststellen, daß HPV8-E2 und NF-IL6 den Reporter mit Bindestellen für beide Faktoren stark synergistisch aktivierten. NF-IL6- aber nicht E2-Bindestellen erwiesen sich als essentiell für diesen Synergismus. Die Transaktivierung durch NF-IL6 konnte trotz Mutation seiner Bindestellen nie völlig unterdrückt werden, während die Mutation der E2-Bindestellen die Transaktivierung durch E2 völlig verhinderte.

3.3 BPV1-E2 und NF-IL6 beeinflussen sich nicht in ihren DNA-Bindungseigenschaften

Da E2 und NF-IL6 Promotoren synergistisch aktivieren konnten, war es denkbar, daß sie sich gegenseitig in ihrer DNA-Bindeaktivität verstärkten und somit einander zu Promotoren rekrutierten. Um diesen Sachverhalt zu untersuchen, wurden EMSAs mit Oligonukleotiden durchgeführt, die lediglich eine NF-IL6 oder eine E2-Bindestelle enthielten. Dafür wurden Kernextrakte von C33A-Zellen hergestellt, in denen NF-IL6 oder BPV1-E2 durch Transfektion der entsprechenden Expressionsplasmide überexprimiert wurden. Im Vorfeld zeigte sich bereits, daß EMSAs nur mit BPV1-E2 und nicht mit HPV8-E2 oder HPV18-E2 aus Kernextrakten gelangen, obwohl alle an dieselbe Konsensus-Sequenz binden sollten. Möglicherweise waren die E2-Proteine von HPV-8 und HPV-18 zu instabil und degradierten zu schnell. Das Oligonukleotid mit einer NF-IL6-Bindestelle, wurde durch NF-IL6 aus Kernextrakten gebunden. Wurden verschiedene Mengen des BPV1-E2-Extraktes hinzugefügt, so konnte keine Bindungsverstärkung oder -schwächung festgestellt werden (Abb. 24). Anderseits konnte die Bindung des BPV1-E2 Proteins an seine Bindestelle durch NF-IL6 ebenfalls nicht beeinflußt werden. Ferner kam es auch zu keiner Bildung ternärer Komplexe, wie sie bei einer
direkten Wechselwirkung beider Faktoren möglich gewesen wäre. Die beobachteten Banden waren jedoch spezifisch, da unmarkierte Oligonukleotide, die eine E2- oder NF-IL6-Bindestelle enthielten, erfolgreich mit der Bindung an das markierte Oligonukleotid kompetierten (Daten nicht gezeigt). Oligonukleotide mit mutierten Bindestellen vermochten dies hingegen nicht. In einem Supershift mit einem Antikörper gegen NF-IL6 konnte außerdem die Laufgeschwindigkeit des NF-IL6-gebundenen Oligonukleotids weiter retardiert werden (Daten nicht gezeigt).

E2-Bindestelle (H18E2wt) wurde mit 2,5 μ g BPV1-E2-KE inkubiert und ansteigende Mengen eines NF-IL6-KE hinzugefügt (5, 10, 20 μ g). Die spezifischen NF-IL6- bzw. E2-Banden wurden mit Pfeilen markiert.

3.4 Physikalische Interaktion zwischen E2 und NF-IL6

Es war bereits gezeigt worden, daß E2 mit Faktoren des basalen Initiationskomplexes der zellulären Transkription (TBP, TFIID) und anderen Transkriptionsfaktoren (SP1, YY1, p53) direkt interagieren kann (Benson *et al.*, 1997; Enzenauer *et al.*, 1998; Heino *et al.*, 2000; Massimi *et al.*, 1999; Rank & Lambert, 1995; Yao *et al.*, 1998). Beispielsweise rekrutiert der Transkriptionsfaktor SP1 das E2-Protein von BPV-1 zu Promotoren, die keine E2-Bindestelle enthalten (Li *et al.*, 1991). Zusammen aktivieren sie eine Reihe synthetischer Promotoren sowie zwei PV-Promotoren synergistisch. Hier sollte untersucht werden, ob das E2-Protein

der Papillomviren *in vitro* an NF-IL6 binden kann. Über solche Wechselwirkungen könnte NF-IL6 das E2-Protein ebenfalls zu Promotoren rekrutieren, die keine E2-Bindestelle enthalten.

3.4.1 Das E2-Protein verschiedener Papillomvirustypen präzipitiert NF-IL6 aus nukleären Extrakten

Zunächst wurden die E2-Proteine der PV-Typen HPV-8, HPV-16 und BPV-1, als GST-Fusionsproteine bakteriell exprimiert und aufgereinigt (Abb.25). Die Präparation von GST-HPV8-E2 wies eine größere Menge degradierten Proteins auf.

Außerdem wurde NF-IL6 in C33A-Zellen durch Transfektion des Expressionsplasmids CMV-NF-IL6 überexprimiert und es wurde von diesen Zellen ein Kernextrakt hergestellt. Die GST-E2-Proteine aller oben genannten PV-Typen präzipitierten in einem Interaktionsassay NF-IL6 aus diesen Kernextrakten, während GST allein dazu nicht in der Lage war (Abb.26).

Abb. 26: Das E2-Protein verschiedener Papillomvirustypen präzipitiert NF-IL6 aus nukleären Extrakten.

Bakterielle Fusionsproteine zwischen GST und den E2-Proteinen der PV-Typen HPV-8, -16 und BPV-1 wurden in einem Interaktionsassay mit je 10 µg eines C33A-Kernextraktes (von CMV-NF-IL6 transfizierten Zellen) inkubiert. Die gebundenen Proteine wurden abgekocht und auf einem denaturierenden 12%igen SDS-Gel aufgetrennt. Der anschließende Western-Blot wurde mit einem Antikörper gegen den C-Terminus des NF-IL6-Proteins durchgeführt. Die 40 kDa-Bande des vollständigen NF-IL6 Proteins sowie die 21 kDa-Bande des kürzeren LIP wurden mit Pfeilen markiert. Neben den langen Formen des NF-IL6-Proteins wurde auch die verkürzte Form (LIP) präzipitiert. In ähnlichen Interaktionsstudien konnte GST-HPV18-E2 ebenfalls NF-IL6 aus Kernextrakten präzipitieren (Daten nicht gezeigt).

3.4.2 Für die Interaktion zwischen HPV8-E2 und NF-IL6 ist keine DNA-Bindung notwendig

Eine Interaktion zweier DNA-bindender Transkriptionsfaktoren könnte durch das gemeinsame Anheften an DNA-Moleküle vermittelt werden. Um nachzuweisen, daß die Wechselwirkung nicht auf DNA-Verunreinigungen der Proteinextrakte basierte, wurde Kopräzipitationsansätzen Oligonukleotide mit NF-IL6- oder E2-Bindestellen oder Ethidiumbromid zugesetzt (Abb. 27 A&B). Ethidiumbromid (8) interkaliert in die Doppelhelix der DNA und

Abb. 27: Die Interaktion zwischen dem E2 Protein und NF-IL6 wird nicht durch DNA vermittelt. A und B) GST-HPV8-E2 wurde in Interaktionsassays mit NF-IL6 aus nukleären Extrakten (A. 10 μ g) und mit *in vitro* translatiertem NF-IL6 (B) inkubiert. Während dieser Inkubation und während der Kopplung von GST-HPV8-E2 an Glutathion-Sepharose wurden folgende Zusätze zugefügt: 5 μ g/ml Oligonukleotid mit E2-Bindestelle (4); 5 μ g/ml Oligonukleotid mit NF-IL6 Bindestelle (5); 10 μ g/ml Oligonukleotid mit beiden Bindestellen (6); 5 μ g/ml hybridisierte Lachsperma-DNA (7) und 50 μ g/ml Ethidiumbromid (8). In der ersten Spur wurde jeweils 1/10 des eingesetzten NF-IL6-Kernextraktes bzw. des eingesetzten *in vitro* Translatates aufgetragen. C) Wie bei A) wurde GST-HPV8-E2 mit NF-IL6 aus Kernextrakten inkubiert. Dabei wurden einem Ansatz 100 μ g/ml RNase A und 100 U/ml DNase I zugegeben (9). Spur 10 zeigt 1/10 des eingesetzten NF-IL6-Kernextraktes. Die gebundenen Proteine (A-C) wurden abgekocht, auf 12%igen SDS-Gelen aufgetrennt und ein Western-Blot mit α NF-IL6-Proteine wurden mit Pfeilen markiert.

bewirkt damit eine gestreckte Konformation dieser DNA-Moleküle. Auf diese Weise wird die Bindung von DNA-bindenden Faktoren verhindert. Die Oligonukleotide, die entweder nur durch NF-IL6 (5) oder E2 (4) gebunden wurden, sollten mit längeren DNA-Molekülen um die Bindung kompetieren. Außerdem wurde unspezifische, hybridisierte Lachssperma-DNA (7) bzw. ein Oligonukleotid, welches die Bindestellen für beide Transkriptionsfaktoren enthält (6), zu den Ansätzen eines Interaktionsassays zugegeben. Damit sollte getestet werden, ob es durch Vermittlung der DNA zu einer stärkeren Kopräzipitation kommen konnte. Diese Versuche wurden mit GST-HPV8-E2 und wahlweise mit in vitro translatiertem NF-IL6 oder NF-IL6 aus Kernextrakten durchgeführt. Es wurden gleichbleibende Mengen des NF-IL6-Proteins durch GST-HPV8-E2 präzipitiert (Abb. 27 A&B). Um einen Einfluß von Nukleinsäuren völlig auszuschließen, wurde einem Kopräzipitationsansatz während der Sepharose-Aufreinigung von GST-HPV8-E2 und während der folgenden Inkubation mit NF-IL6 aus Kernextrakten DNase I und RNase A zugesetzt (Abb. 27 C). In Vorexperimenten konnte gezeigt werden, daß diese Enzyme auch bei 4°C eine ausreichende Aktivität aufwiesen und große DNA- bzw. RNA-Mengen effizient verdauten. Trotz Zugabe dieser Enzyme blieb die Bindungsstärke unbeeinflußt. Somit verläuft die Interaktion der beiden Proteine unabhängig von der Bindung an DNA.

3.4.3 Der C-Terminus des HPV8-E2-Proteins interagiert mit NF-IL6

Um zu untersuchen, welche Domäne des HPV8-E2-Proteins für die Wechselwirkung mit NF-IL6 essentiell ist, wurden Interaktionsstudien mit NF-IL6-Proteinen aus Kernextrakten

Abb 28: Links sind die an GST fusionierten Domänen von HPV8-E2 relativ zum gesamten E2-Protein (oben) dargestellt. Rechts wurden gleiche Mengen dieser GST-HPV8-E2 Deletionsmutanten und GST allein mit Glutathion-Sepharose aufgereinigt und auf einem 12% igen SDS-Gel aufgetrennt. Die Proteine wurden mit Coomassie-Blau angefärbt.

und GST-HPV8-E2-Proteinen durchgeführt, denen verschiedene E2-Domänen fehlten. Die GST-HPV8-E2 Deletionsmutanten wurden bakteriell exprimiert und aufgereinigt (Abb. 28). Dabei wiesen die Präparationen z.T. einige Degradationen auf. GST-HPV8-E2 Δ H konnte nur in geringen Mengen isoliert werden. Bis auf GST-HPV8-E2 Δ C konnten alle Fusionsproteine NF-IL6 aus Kernextrakten binden (Abb. 29). Somit interagierte NF-IL6 mit der C-terminalen DNA-Bindungs- und Dimerisierungsdomäne von HPV8-E2.

Abb. 29: NF-IL6 interagiert mit dem C-Terminus von HPV8-E2. In einem Interaktionsassay wurden Fusionsproteine zwischen GST und HPV8-E2-Deletionsmutanten mit NF-IL6 aus C33A-Kernextrakten (30 μ g) inkubiert. Die gebundenen Proteine wurden abgekocht und auf einem 12%igen Proteingel aufgetrennt. Der anschließende Western-Blot wurde mit einem α NF-IL6-Antikörper durchgeführt, der den C-Terminus von NF-IL6 erkennt. Die Banden des vollständigen (40 kDa) und des verkürzten (LIP, 21 kDa) NF-IL6-Proteins wurden mit Pfeilen gekennzeichnet.

3.4.4 Die basische Region des NF-IL6-Proteins interagiert mit dem E2-Protein verschiedener PV-Typen

Wie für E2 sollte auch für NF-IL6 geprüft werden, welche Domäne für die Interaktion mit E2

Proteine verfügen über einen N-terminalen Anhang aus sechs Histidinresten.

benötigt wird. Dafür mußten zunächst Deletionsmutanten von NF-IL6 in den bakteriellen Expressionvektor pET-14b kloniert werden. Mit Hilfe dieser Konstrukte konnten die NF-IL6-Deletionsmutanten jedoch in Bakterien nicht zu Expression gebracht bzw. über die sechs Histidinreste am N-Terminus mit Nickel-Agarose nicht aufgereinigt werden. Der T7-Promotor des pET-14b Vektors ermöglichte aber die *in vitro* Transkription mittels der T7-Polymerase und die anschließende *in vitro* Translation der NF-IL6-Proteine (Abb.30).

Abb. 31: Das E2-Protein verschiedener PV-Typen interagiert mit dem C-Terminus von NF-IL6. Fusionsproteine zwischen GST und dem E2-Protein von BPV-1, HPV-18, -16 und -8 präzipitierten *in vitro* translatierte NF-IL6-Deletionsmutanten. Die gebundenen Proteine wurden abgekocht und auf einem 12%igen SDS-Gel aufgetrennt.

Diese Deletionsmutanten von NF-IL6 wurden in Interaktionsassays von GST-HPV8-E2, GST-HPV18-E2, GST-HPV16-E2 und GST-BPV1-E2 präzipitiert (Abb.31). Nur das

Abb. 32: GST-NF-IL6-Fusionsproteine. Links sind die an GST fusionierten Domänen von NF-IL6 relativ zu dem gesamten Protein dargestellt. Das angegebene Molekulargewicht der Deletionsmutanten beinhaltet die 27,5 kDa des GST-Proteins. Rechts wurden diese GST-Fusionsproteine aufgereinigt, abgeglichen und auf einem 12% igen SDS-Gel aufgetragen. Die Proteine wurden mit Coomassie-Blau angefärbt.

C-terminal verkürzte NF-IL6, dessen LIP-Anteil komplett deletiert worden war, interagierte nicht mehr mit E2. Somit band E2 an den LIP-Anteil von NF-IL6. Dies paßte zu den Ergebnissen der ersten Interaktionsstudien, in denen GST-E2-Proteine sowohl die lange als auch die kurze Form von NF-IL6 aus Kernextrakten präzipitierten (3.4.1).

Nun sollte die für die Interaktion relevante Domäne von NF-IL6 weiter eingegrenzt werden. Außerdem sollte untersucht werden, ob NF-IL6 umgekehrt auch in der Lage ist, *in vitro* translatierte E2-Proteine zu präzipitieren. Dafür wurden Deletionsmutanten von NF-IL6 in den Vektor pGEX-2T kloniert. Dieser ermöglicht die bakterielle Expression an GST fusionierter Proteine (Abb. 32). In Interaktionsassays präzipitierten von den GST-NF-IL6-Proteinen lediglich GST-LIP Z und GST-LIP Δ C kein *in vitro* translatiertes HPV8-E2 (Abb. 33). Ähnlich verhielten sich *in vitro* translatierte E2-Proteine von HPV-18 und BPV-1, die durch GST-LIP Z und GST-LIP Δ C ebenfalls am schwächsten gebunden wurden. Somit interagierte E2 mit der basischen Region des NF-IL6-Proteins.

Abb. 33: Das E2-Protein interagiert mit der basischen Region von NF-IL6. GST-Fusionsproteine mit Anteilen des NF-IL6-Proteins präzipitierten in einem Interaktionsassay *in vitro* translatierte E2-Proteine der PV-Typen HPV-8 (56 kDa), -18 (41 kDa) und BPV-1 (48 kDa). Die gebundenen Proteine wurden abgekocht und auf 12%igen SDS-Gelen aufgetrennt. Die Banden der undegradierten E2-Proteine sind durch Pfeile gekennzeichnet.

3.4.5 HPV18-E2 und NF-IL6 interagieren direkt miteinander

In vitro Translationsansätze und Kernextrakte enthalten neben den untersuchten Proteinen noch weitere zelluläre Proteine. Werden solche Proteinpräparationen für Interaktionsanalysen verwendet, so kann nie ausgeschlossen werden, daß ein dritter Faktor aus dem Proteingemisch die Interaktion zwischen den untersuchten Proteinen vermittelt.

Abb 34: Aufreinigung des His-HPV18-E2 Proteins mittels Nickel-Agarose. Das His-HPV18-E2-Protein wurde in Bakterien exprimiert und nach dem Aufschluß an Nickel-Agarose gebunden. Nach stringentem Waschen (5mM Imidazol) wurde schrittweise die Imidazol-Konzentration erhöht, um endlich bei einer Konzentration von 300 mM Imidazol überwiegend His-HPV18-E2 (41 kDa) von der Agarose zu eluieren.

Für den Nachweis einer direkten Interaktion wurde daher bakteriell exprimiertes GST, GST-NF-IL6, GST-LIP und GST-LIP Z mit Glutathion-Sepharose aufgereinigt. Außerdem wurde bakteriell exprimiertes His-HPV18-E2, ein HPV18-E2-Protein, das am N-Terminus über sechs Histidinreste verfügte, mit Nickel-Agarose aufgereinigt (Abb. 34). Es wurde

vergeblich versucht, His-HPV8-E2 und His-BPV1-E2 auf ähnliche Weise zu gewinnen. In Interaktionsassays wurden daher das isolierte His-HPV18-E2-Protein mit den aufgereinigten GST-NF-IL6-Proteinen inkubiert. Es zeigte sich, daß GST-NF-IL6 und GST-LIP in der Lage waren das E2-Protein von HPV-18 zu präzipitieren, nicht aber GST allein oder GST-LIP Z (Abb. 35). Letzteres diente als zusätzliche Negativkontrolle, da es ebenso wie GST nicht E2 binden sollte. Somit konnte auch eine direkte Wechselwirkung zwischen dem E2-Potein und NF-IL6 nachgewiesen werden.

3.5 Modulation der zellulären Genexpression

Um den generellen Einfluß des viralen Transaktivators E2 auf die Genexpression der Wirtszelle zu untersuchen, wurde eine Genechip-Analyse durchgeführt. Im Vorfeld dieser Doktorarbeit stellte sich bereits heraus, daß E2 als proapoptotischer Faktor kaum stabil in Keratinozyten zu transfizieren war. Außerdem bestand bei stabilen Transfektanten die Gefahr, daß sich erhebliche Kompensationsmechanismen ausbildeten, um die proapoptotische Wirkung von E2 zu unterdrücken. Ferner konnte bereits die Selektion mit einem Antibiotikum zu einem veränderten Zellmetabolismus führen. Um diese Einflüsse zu umgehen, wurde E2 durch transiente Transfektionen in Zellen eingebracht. Am geeignetsten erschien eine Transfektion von primären Keratinozyten einer frühen Passage. Es zeigte sich jedoch, daß die im Labor aus Hysterektomien gewonnenen primären Keratinozyten nur mit einer sehr geringen Effizienz transfizierbar waren (≤5%). Um das System zu etablieren, wurde daher auf immortalisierte Keratinozytenlinien zurückgegriffen, die selber HPV-negativ waren und somit kein endogenes E2 besaßen. Hier kamen v.a. die Hautkeratinozytenlinien RTS3b und HaCaT 31 in Frage. HaCaT 31-Zellen waren jedoch ebenfalls mit allen verwendeten Transfektionsreagenzien (Kalziumphosphat, Superfect, Fugene, Effecten) kaum zu transfizieren, so daß im Folgenden alle Experimente mit RTS3b-Zellen durchgeführt wurden. Diese waren bereits in anfänglichen Experimenten mit einer Effizienz von 10-18% mit dem Reagenz Fugene (Roche) zu transfizieren. Damit die zu erwartenden Effekte, die E2 auf die zelluläre Transkription ausübt, nicht durch den Hintergrund der untransfizierten Zellen verdeckt werden, wurden die positiv transfizierten Zellen magnetisch angereichert. Dafür wurde das MACSelect K^k System (Miltenvi) verwendet. Es basiert darauf, daß Zellen mit Expressionsplasmiden für das zu untersuchende Gen (hier E2) und den Oberflächenmarker H-2K^k kotransfiziert werden. Bei dem Oberflächenantigen H-2K^k handelt es sich um die schwere Kette des MHC I-Moleküls der Maus, deren zytoplasmatische Domäne deletiert worden war, damit keine Signaltransduktionseffekte durch diesen Rezeptor zu erwarten sind. Außerdem ist dieses Protein sehr Trypsin-resistent und wird somit nicht bereits beim Ablösen der adhärenten Zellen von dem Kulturgefäß abgespalten. An erfolgreich transfizierte Zellen, die sowohl E2 als auch H-2K^k exprimieren, können nach dem Ablösen paramagnetische Kügelchen (50 nm Durchmesser) binden, die Antikörper gegen H-2K^k auf ihrer Oberfläche tragen. Die Zellen werden auf eine Säule gegeben, die in einem Magnetfeld steht, so daß alle mit paramagnetischen Kügelchen markierten Zellen zurückgehalten werden, während die ungekoppelten Zellen hindurch fließen. Nachdem weitere untransfizierte Zellen herunter

gewaschen worden sind, wird die Säule aus dem Magnetfeld genommen und die verbliebenen Zellen können mit Medium eluiert werden. Nach den Herstellerangaben kann auf diese Weise eine Anreicherung von über 90% erreicht werden. Diese Methodik sollte nun für Keratinozyten (RTS3b) etabliert werden.

3.5.1 Etablierung der Selektion H-2K^k transfizierter Zellen und Koanreicherung von zwei Oberflächenmarkern

Zunächst wurde untersucht, ob die Anreicherung von H-2K^k exprimierenden RTS3b-Zellen mit dem MACSelect K^k System effizient genug funktionierte. Zusätzlich zu dem Expressionsvektor für H-2K^k (pMACS H-2K^k) wurde das Expressionsplasmid pMACS 14.1 kotransfiziert. Es kodiert für humanes CD14 - ein Oberflächenantigen, welches auf Keratinozyten nicht vorkommt. Um zu erreichen, daß annähernd jede Zelle, die das H-2K^k Oberflächenantigen trug, auch CD14 besaß, wurde pMACS 14.1 im Überschuß (1:2,5 mol) transfiziert

Abb. 36: Anreicherung von CD14+ Keratinozyten mit dem MACSelect K^k-System. RTS3b-Zellen wurden in zwei große Gewebekulturschalen (147,8cm²) ausgesät und am nächsten Tag transfiziert. Beide Ansätze erhielten 15,4 µg des CD-14-Expressionsvektors pMACS 14.1 und Ansatz A) wurden zusätzlich 10 µg des H-2K^k-Expressionsvektors pMACS H-2K^k zugefügt. In Ansatz B) wurde die DNA-Gesamtmenge mit pcDNA3.1+ aufgefüllt. Nach 48 h wurden die Zellen abgelöst, an paramagnetischen Kügelchen gekoppelt und auf eine Säule aufgetragen. Nach dem Waschen wurden die verbliebenen Zellen von der Säule eluiert. Aliquots der Zellsuspension vor der Säulenauftragung, des Säulendurchflusses und des Eluats wurden mit α H-2K^k-FITC- bzw. α CD14-FITC-Antikörpern markiert und der Anteil H-2K^k - bzw. CD14-exprimierender Zellen mit einer FACS-Analyse bestimmt. Nach der Kopplung der magnetischen Kügelchen war keine Detektion von H-2K^k mehr möglich (daher nicht dargestellt).

(Siebenkotten *et al.*, 1998). Auf diese Weise sollte festgestellt werden, ob ein kotransfizierter Marker mit aufgereinigt werden konnte.

Auf zwei 15 cm Schalen (147,8 cm²) wurden RTS3b-Zellen ausgesät und am nächsten Tag mit dem Reagenz Fugene (Roche) transfiziert. Der erste Ansatz erhielt sowohl Expressionsplasmide für H-2K^k (pMACS H-2K^k) als auch für CD14 (pMACS 14.1) und der Kontrollansatz lediglich pMACS 14.1. Nach 48 h wurden die Zellen mit Trypsin abgelöst und ein Teil für die Anfärbung von H-2K^k und CD14 abgenommen. Der Rest wurde magnetisch mit MACSelect K^k MicroBeads inkubiert und mit Large Cell Separation Columns (beide Miltenvi) selektioniert. Die H-2K^k-negativen Zellen, die nach der Säulenauftragung direkt durchfließen (Durchfluß), und die Zellen des Eluats wurden gesammelt. Ein Teil dieser Fraktionen wurde, ebenso wie die Aliquots, die vor der Säulenauftragung entnommen wurden, mit FITC-konjugierten Antikörpern gegen H-2K^k und CD14 gefärbt. Um den Anteil H-2K^k- und CD14-tragender Zellen zu bestimmen, wurden diese Zellen mittels Durchflußzytometrie analysiert (Abb. 36). Es zeigte sich, daß die Antikörper der magnetischen Kügelchen die H-2K^k Moleküle auf den Zellen vollständig absättigten, so daß eine spätere Färbung mit dem α H-2K^k-FITC Antikörper (Miltenvi) nicht mehr funktionierte (Daten nicht gezeigt). Vermutlich entsprach dieser Färbeantikörper dem, der an die paramagnetischen Kügelchen gekoppelt worden war.

Wie erwartet exprimierten die Zellen des Kontrollansatzes kein H-2K^k und die CD14tragenden Zellen konnten durch die magnetische Selektion auch nicht angereichert werden (Abb. 36.B). Im Eluat befanden sich nur wenige Zellen, die kaum für eine FACS-Analyse ausreichten und von denen nur ein kleiner Teil CD14 exprimierte. Die Zellen des ersten Ansatzes wiesen sowohl H-2K^k- als auch CD14-Moleküle auf ihrer Oberfläche auf (Abb. 36.A). Dabei war die CD14-Expression mit 25,8%, wie beabsichtigt, höher als die des H-2K^ks (15,2%). Im Durchfluß befanden sich mit 19,5% nur verhältnismäßig wenig CD14tragende Zellen, während sie im Eluat auf 80,9% angereichert werden konnten. Im Vergleich zu den Zellen vor der Säulenauftragung betrug der Anreicherungsfaktor CD14-positiver (CD14+) Zellen 3,1. Obwohl keine direkte Aussage über die Anreicherung von H-2K^k+ Zellen gemacht werden konnte, wurde anhand der CD14+ Zellen deutlich, daß die Methode der magnetischen Anreicherung funktionierte. Die Zellen aus dem Eluat sollten ebenfalls das H-2K^k Molekül tragen, ohne das eine Selektion nicht möglich war (siehe Kontrolle). Demnach konnten auch Plasmide, die kotransfiziert wurden, mit aufgereinigt werden. Um zu untersuchen, ob die von der Säule eluierten Zellen intakt waren, wurden sie neu ausgesät. Am nächsten Tag war ein zu 60% konfluenter Zellrasen gewachsen, dessen Zellen eine normale Morphologie aufwiesen.

3.5.2 Kinetik der HPV8-E2 und H-2K^k Expression in pMACS K^k.II/HPV8-E2 transfizierten Zellen

Während der Etablierung der magnetischen Zellanreicherung entwickelte die Firma Miltenyi einen bicistronischen Vektor, der das verkürzte H-2K^k-Gen unter der Kontrolle des homologen Promotors besitzt (pMACS K^k.II). Außerdem trägt er eine MCS, in die das zu untersuchende Gen kloniert werden kann und dessen Expression dann vom SV40-Promotor reguliert wird. Da dieses System eine Verbesserung zu einer Kotransfektion darstellte, wurde das E2-Gen von HPV-8 in den Vektor pMACS K^k.II kloniert.

Zunächst sollte getestet werden, welche DNA-Mengen des entstandenen Konstruktes pMACS K^k/HPV8-E2 transfiziert werden müssen, um ausreichende Effekte durch E2 zu beobachten und eine zufriedenstellende H-2K^k-Expression zu erhalten. Dafür wurde eine Verdünnungsreihe des Plasmids hergestellt (1; 0,5; 0,25; 0,125 und 0,06 µg), um damit RTS3b-Zellen in 6-Lochplatten zu transfizieren. Außerdem wurden jeweils gleichbleibende Mengen des Reporterplasmids C18-SP1-LUC kotransfiziert. Der Enhancer/Promotor-Bereich dieses Luziferase-Reporterkonstruktes enthält vier E2-Bindestellen, so daß die Luziferase-Expression durch E2 konzentrationsabhängig aktiviert wird. 48 Stunden nach der

Abb. 37: Aktivierung von C18-SP1-LUC durch Kotransfektion mit unterschiedlichen Mengen von pMACS K^k/HPV8-E2 in RTS3b-Zellen. RTS3b-Zellen wurden in 6-Loch-Platten ausgesät und am nächsten Tag mit unterschiedlichen Mengen des Plasmids pMACS K^k/HPV8-E2 transfiziert. Außerdem erhielt jeder Ansatz 0,8 μ g des Reporterplasmids C18-SP1-LUC und die DNA-Gesamtmenge wurde mit pcDNA3.1+ konstant gehalten. 48 h nach der Transfektion wurden alle Zellen abgelöst, die Luziferase-Aktivität ermittelt und diese durch die Proteinkonzentration geteilt.

Transfektion wurden die Zellen abgelöst, die Zellsuspension in zwei gleiche Teile aufgeteilt und die eine Hälfte mit α H-2K^k-FITC gefärbt und von der anderen Hälfte Luziferase-Extrakte hergestellt. Die Luziferase-Aktivität wurde mit der Proteinkonzentration der Luziferase-Extrakte abgeglichen (Abb. 37). Die Luziferase-Aktivität, als Maß für die Aktivität des E2-Proteins, nahm mit absteigenden Mengen von pMACS H-2K^k/HPV8-E2 kontinuierlich ab. Der Anteil H-2K^k-exprimierender Zellen wurde anhand der α H-2K^k-FITC angefärbten Zellen mit Hilfe des Durchflußzytometers ermittelt. Auch hier nahm die H-2K^k-Expression in ähnlicher Weise ab (Daten nicht gezeigt). Somit wurde für die weiteren Versuche eine Mindestmenge von 0,8-1 µg pMACS K^k/HPV8-E2 für Transfektionen in 6-Lochplatten eingesetzt.

Abb. 38: Kinetik der E2-Aktivität und der H-2K^k-Expression in pMACS K^k/HPV8-E2 und pMACS K^k.II transfizierten RTS3b-Zellen. RTS3b-Zellen wurden in 6-Loch-Platten ausgesät und am nächsten Tag transfiziert. Je drei Ansätze erhielten 0,8 μ g des Plasmids pMACS K^k/HPV8-E2 oder 0,6 μ g pMACS K^k.II. Allen Ansätzen wurden 1,3 μ g C18-SP1-LUC zugefügt und die DNA-Gesamtmenge mit pcDNA3.1+ konstant gehalten. 27 h, 50 h und 69,5 h nach der Transfektion wurden von jedem der beiden Versuchsreihen die Zellen eines Lochs abgelöst und in zwei Hälften geteilt. Mit einem Aliquot wurde die Luziferase-Aktivität (A) und mit dem anderen die H-2K^k-Expression (B) ermittelt.

Um den besten Zeitpunkt für die magnetische Selektion E2-exprimierender Zellen zu ermitteln, wurde eine Kinetik der H-2K^k-Expression und der E2-Aktivität in

pMACS K^k/HPV8-E2-transfizierten RTS3b-Zellen erstellt. In je drei Ansätze wurden dafür äquimolare Mengen der Plasmide pMACS K^k/HPV8-E2 oder pMACS K^k.II transfiziert. Außerdem wurde allen Ansätzen die gleiche Menge des Reporterkonstruktes C18-SP1-LUC hinzugefügt und die DNA-Menge mit pcDNA 3.1+ konstant gehalten. Die drei Ansätze, die mit pMACS K^k.II transfiziert wurden, dienten der Ermittlung der Basalaktivität des Reporterkonstruktes in Abwesenheit des E2-Proteins. 27h, 50h und 69,5h nach der Transfektion wurden von jedem der beiden Versuchsreihen die Zellen eines Ansatzes wie oben beschrieben abgelöst und die Luziferase-Aktivität und die H-2K^k-Expression ermittelt.

Die Luziferase-Aktivität war nach 27h am höchsten und fiel danach kontinuierlich ab (Abb. 38.A). Die H-2K^k-Expression blieb dagegen relativ konstant und nur der 50 h-Wert des Kontrollansatzes wies einen leicht erhöhten Anteil H-2K^k-exprimierender Zellen auf (Abb. 38.B). Somit lag der beste Zeitpunkt für die magnetische Anreicherung H-2K^k-exprimierender Zellen zwischen 27h und 50h nach der Transfektion, da dann H-2K^k in ausreichenden Mengen auf der Oberfläche präsentiert wurde und auch die E2-Aktivität stark genug war.

Nun sollte untersucht werden, ob die E2-Aktivität nach Transfektion mit pMACS K^k/HPV8-E2 mit der Methode der magnetischen Zellselektion angereichert werden kann. Außerdem sollte geklärt werden, ob die Verwendung des bicistronischen Vektors zu einem ähnlichen Ergebnis führte, wie die Kotransfektion mit den Expressionsvektoren pcDNA/HPV8-E2 und pMACS H-2K^k. Zur Kontrolle wurde ein Ansatz nur mit pcDNA/HPV8-E2 und einer nur mit pMACS H-2K^k transfiziert. In jeden Ansatz wurde zum Nachweis der E2-Aktivität die gleiche Menge des Reporterkonstrukts C18-SP1-LUC kotransfiziert und die DNA-Menge wurde mit pcDNA3.1+ konstant gehalten. Um die Ergebnisse vergleichen zu können, wurden dieselben Mengen von pMACS K^k/HPV8-E2, pMACS H-2K^k und pcDNA/HPV8-E2 eingesetzt.

48 h nach der Transfektion erfolgte die magnetische Anreicherung der H-2K^k-exprimierenden Zellen mit Hilfe der *MACSelect K^k MicroBeads* und *Large Cell Separation Columns*. Vor der Kopplung der magnetischen Kügelchen wurde ein Aliquot der abgelösten Zellen entnommen und mit αH-2K^k-FITC Antikörpern gefärbt. Mit einer FACS-Analyse konnte danach der Anteil H-2K^k-exprimierender Zellen in jedem Ansatz bestimmt werden. Es zeigte sich, daß die H-2K^k-Expression in dem Ansatz mit pMACS K^k/HPV8-E2 (12% der Gesamtzellen) etwas höher lag als in dem Ansatz mit pMACS H-2K^k (9%, Daten nicht gezeigt). Außerdem wurde von jedem Aufreinigungsschritt (vor der Säule, Säulen-Durchfluß und Eluat) Aliquots der Zellsuspension entnommen, um die Luziferase-Expression zu bestimmen (Abb. 39).

Die LUC-Expression der Ansätze 1-3 war vor der Säulenauftragung vergleichbar. Während die Anreicherung der Enzym-Aktivität der ersten beiden Ansätze ähnlich gut verlief, konnte

im 3. Ansatz ohne H-2K^k-Expression keine Aktivität angereichert werden. Im 4. Ansatz gab es aufgrund der fehlenden E2-Expression keine nennenswerte Aktivierung des Reporterkonstruktes C18-SP1-LUC. Dennoch wurde diese Basalaktivität bei der Selektion H-2K^k-exprimierender Zellen mit angereichert, da vermutlich das kotransfizierte Reporterplasmid mitselektioniert wurde. Abschließend läßt sich feststellen, daß die E2-Aktivität in Ansatz 2 etwas effizienter angereichert wurde als bei der Anwendung des bicistronischen Vektors. Jedoch war die DNA-Kapazität dieses Ansatzes gegenüber der des zweiten Ansatzes nicht ausgeschöpft. So hätte von pMACS K^k/HPV8-E2 die doppelte DNA-Menge eingesetzt werden können. Dies hätte möglicherweise die Expression von H-2K^k und damit die Effizienz der Selektion noch erhöhen können.

Abb. 39: Anreicherung der Luziferase-Aktivität während der magnetischen Aufreinigung H-2K^k-exprimierender Zellen. RTS3b-Zellen wurden in 6cm-Schalen ausgesät und am nächsten Tag transfiziert. Die Ansätze 1-4 erhielten je 1 μ g der Expressionsplasmide pMACS K^k/HPV8-E2 (1), pMACS H-2K^k und pcDNA/HPV8-E2 (2), pcDNA/HPV8-E2 (3) sowie pMACS H-2K^k (4). Zur Überwachung der E2-Aktivität wurden jedem Ansatz 2 μ g des Reporterplasmids C18-SP1-LUC zugefügt. Die DNA-Gesamtmenge aller Ansätze wurde mit pcDNA3.1+ konstant gehalten. 48 h nach der Transfektion wurden die Zellen wie unter Abb. 36 beschrieben abgelöst und magnetisch aufgereinigt. Von Aliquots der Zellsuspension vor der Säuleauftragung, des Säulendurchflusses und des Eluats wurden die Luziferase-Extrakte hergestellt, die Luziferase-Aktivität ermittelt und mit der entsprechenden Proteinkonzentration verrechnet.

3.5.3 Kinetik der HPV18-E2 und H-2K^k-Expression in pMACS K^k.II/HPV18-E2 transfizierten RTS3b-Zellen

Auch das E2-Gen von HPV-18 wurde in pMACS K^k.II kloniert. Auf dieselbe Weise wie für pMACS K^k/HPV8-E2 sollte auch eine Kinetik der E2-Aktivität und der H-2K^k-Expression für das neue Konstrukt pMACS K^k/HPV18-E2 erstellt werden. Dafür wurden je drei RTS3b-Ansätze mit äquimolaren Mengen von pMACS K^k/HPV18-E2 oder pMACS K^k.II transfiziert.

Abb. 40: Kinetik der HPV18-E2-Aktivität und der H-2K^k-Expression in pMACS K^k/HPV18-E2 und pMACS K^k.II-transfizierten RTS3b-Zellen. RTS3b-Zellen wurden in eine 6-Loch-Platte ausgesät und am nächsten Tag transfiziert. Je drei Ansätze erhielten 0,4 μ g pMACS K^k/HPV18-E2 oder 0,3 μ g pMACS K^k.II. Allen Ansätzen wurde 1 μ g des Reporterplasmids C18-SP1-LUC zugefügt und die DNA-Gesamtmenge mit dem Plasmid pBluescript SK+ konstant gehalten. 28h, 46h und 68h nach der Transfektion wurden von jeder der beiden Versuchsreihen die Zellen eines Ansatzes abgelöst und in zwei Hälften geteilt. Mit der einen Hälfte wurde die Luziferase-Aktivität (A) ermittelt und mit der anderen die H-2K^k-Expression (B).

Außerdem wurde das Reporterplasmid C18-SP1-LUC kotransfiziert und die DNA-Menge mit dem leeren Plasmid pBluescript II SK+ konstant gehalten. Nach 28 h, 46 h und 68 h wurden von beiden Versuchsreihen aus je einem Ansatz die Zellen abgelöst und Luziferase-Extrakte präpariert sowie H-2K^k-Färbungen durchgeführt. Wie zu erwarten gab es nur in den pMACS K^k/HPV18-E2-Ansätzen eine nennenswerte Aktivierung von C18-SP1-LUC, die nach 46 h ihr Maximum erreicht hatte (Abb. 40.A). Die H-2K^k-Expression war über die gesamte Zeit relativ konstant und nach 46 h etwas erhöht (Abb. 40.B). Somit schien der optimale Zeitpunkt für eine magnetische Selektion pMACS K^k/HPV18-E2-transfizierter RTS3b-Zellen 46 h nach der Transfektion erreicht zu sein.

3.5.4 Magnetische Anreicherung E2-transfizierter Keratinozyten und anschließende Genexpressionsanalyse mit dem GeneChip HG-U95A (Affymetrix)

Nun wurden RTS3b-Zellen in großem Maßstab mit den bicistronischen Vektoren pMACS K^k/HPV18-E2 und pMACS K^k/HPV8-E2 sowie zur Kontrolle mit pMACS K^k.II transfiziert. Nach 48 h wurden die H-2K^k- und E2-exprimierenden Zellen magnetisch angereichert und ihre RNA präpariert. Diese RNA diente danach einer Genechip-Genexpressionsanalyse.

3.5.4.1 Transfektion von RTS3b-Zellen und magnetische Anreicherung H-2K^k exprimierender Keratinozyten

Zunächst wurden in 15 cm Gewebekulturschalen (147,8 cm²) 1,8 Mio. RTS3b-Zellen ausgesät. Am nächsten Tag wurden je drei Schalen mit äquimolaren Mengen der Plasmide pMACS K^k/HPV18-E2 (13,5 µg, Ansatz 1), pMACS K^k/HPV8-E2 (15 µg, Ansatz 2) und pMACS K^k.II (11,1 µg, Ansatz 3) transfiziert. Geringe Mengen des Luziferase-Reporterkonstrukts C18-SP1-LUC (1 µg) wurden kotransfiziert, um jederzeit während der magnetischen Selektion die Anreicherung der E2-Aktivität zu überwachen. Es war davon auszugehen, daß das Luziferase-Protein keinen großen Einfluß auf den Zellmetabolismus ausübt und daß nicht jede H-2K^k-exprimierende Zelle ebenfalls dieses Reporterkonstrukt besaß, da es im Unterschuß dazugegeben wurde. Die DNA-Gesamtmenge wurde mit dem leeren Klonierungsvektor pBluescript II SK+ konstant gehalten. Um die erfolgreiche Anreicherung transfizierter Zellen noch auf andere Weise zu kontrollieren, wurde eine weitere 15 cm Gewebekulturschale (Ansatz 4) sowohl mit pMACS K^k/HPV8-E2 (15 µg) als auch mit pMACS 14.1 (13 µg, im Verhältnis von 1:1,8 mol) und C18-SP1-LUC (2 µg) transfiziert. So konnte die parallel zu den anderen Ansätzen (1-3) durchgeführte magnetische Anreicherung anhand der CD14-Expression mit Antikörper-Färbung und anschließender Durchflußzyometrie überprüft werden. Jedoch befindet sich in Ansatz 4 insgesamt eine größere DNA-

Menge, so daß die Volumina während der Transfektion entsprechend erhöht wurden.

Die Transfektionseffizienz konnte nach Vorversuchen für dieses Experiment nochmals auf 39-48% gesteigert werden (Abb. 41.A: H-2K^k-Expression vor der Säule). 48 Stunden nach der Transfektion wurden die Zellen abgelöst und mit Hilfe der *MACSelect K^k MicroBeads* in Verbindung mit *Large Cell Separation Columns* selektioniert. Das Protokoll der etablierten, magnetischen Anreicherung H-2K^k-exprimierender Zellen, wie es für diesen Versuch verwendet wurde, ist in Abb. 41.B (rechts) dargestellt. Nach jedem Schritt wurden Aliquots der Zellsuspension entnommen, um entweder die Zellzahl, die Luziferase-, die H-2K^k- oder die CD14-Expression zu ermitteln. Um eine noch höhere Reinheit der transfizierten Zellen zu erreichen, wurde das Eluat der ersten Säule nochmals auf eine neue Säule gegeben.

Der Anteil H-2K^k-exprimierender Zellen war in den Ansätzen 1 und 2 nach dem Ablösen der Zellen relativ gleich und betrug 39,1% und 40,8%. Lediglich der Kontrollansatz (3) wies mit 47,7% eine deutlich stärkere Expression dieses Oberflächenantigens auf (Abb.41.A links). Im CD14-Kontrollansatz (4) war die H-2K^k-Expression mit 28,9% deutlich geringer und der Anteil CD14-exprimierender Zellen lag mit 22,5% überraschenderweise noch darunter, obwohl dieses Expressionsplasmid im Überschuß transfiziert wurde (1:1,8). Nach der Probenauftragung auf die erste Säule waren kaum CD14-exprimierende Zellen (0,9%) im Durchfluß zu finden. Auch durch das Waschen wurden nur wenige CD14-positive (CD14+) Zellen herunter gespült (1,2%), während im ersten Eluat bereits 50,5 % der Zellen das CD14-Antigen trugen. Nachdem dieses Eluat nochmals auf eine Säule gegeben wurde, waren 4,3% der Zellen im Durchfluß (Durchfl. 2) und bereits 46 % der heruntergewaschenen (Waschen 2) Zellen CD14+. Im zweiten Eluat war der Anteil der CD14+ Zellen mit 50,3% nicht höher als im ersten Eluat. Somit hat die zweite Säulenaufreinigung keine weitere Anreicherung ergeben, sondern eher bewirkt, daß CD14-exprimierende Zellen entfernt wurden.

Abb. 41.B: Magnetische Anreicherung pMACS K^k/HPV18-E2, pMACS K^k/HPV8-E2, und pMACS K^k.II transfizierter RTS3b-Zellen (je 3x 15 cm Schalen). Zur Kontrolle der Anreicherung wurde ein mit pMACS K^k/HPV8-E2 und pMACS 14.1 kotransfizierter Kontrollansatz mitaufgereinigt (1x 15 cm Schale). Rechts ist das detailierte Selektionsprotokoll für eine 15 cm Schale angegeben (* für mehrere Schalen wurden die Volumina angepaßt). Links befinden sich die FACS-Analysen der Zellfärbungen mit α H-2K^k-FITC und α CD14-FITC.

Nach der magnetischen Selektion wurden die entnommenen Zellaliquots der einzelnen Schritte weiter verarbeitet. Luziferase-Extrakte wurden hergestellt und die Zellzahl ermittelt. Dann wurde die ermittelte Luziferase-Aktivität aller Ansätze mit den entsprechenden Proteinmengen (Tab. 42.A) oder der Zellzahl abgeglichen (Tab. 42.B).

Die Werte der beiden Abgleich-Methoden führten zu ähnlichen Ergebnissen. Die Aktivierung des Reporterkonstruktes C18-SP1-LUC war in dem HPV18-E2 transfizierten Ansatz immer deutlich höher, als die in dem HPV8-E2-Ansatz - wie schon Vorexperimente gezeigt hatten. In dem Kontrollansatz ohne E2 (3) war nur eine verhältnismäßig geringe Luziferase-Aktivität nachweisbar, die aber durch die Selektion auch angereichert werden konnte, da anscheinend der kotransfizierte Vektor C18-SP1-LUC mitselektioniert wurde. Während der ersten

Säulenaufreinigung war im Durchfluß der Ansätze 1-3 nur eine geringe Luziferaseaktivität nachweisbar. Durch das erste Waschen wurde bereits ein Anteil der Luziferase-exprimierenden Zellen herunter gespült. Im ersten Eluat war die Luziferase-Aktivität in allen Ansätzen bereits angereichert worden, verglichen mit der Luziferase-Expression vor der Selektion. Für die mit Protein abgeglichenen Luziferasewerte der Ansätze 1, 2 bzw. 3 bezifferte sich der Anreicherungsfaktor auf 1,7; 1,8 bzw. 2,2. Dies korrelierte gut mit der Stärke der H-2K^k-Expression in den jeweiligen Ansätzen. Für die nach Zellzahl abgeglichenen Werte ergaben sich die Anreicherungsfaktoren 2,9; 2,1 und 2,0.

Nach der Auftragung des Eluats 1 auf die zweite Säule war im Durchfluß (Durchfluß 2) kaum Luziferase-Aktivität nachweisbar. Auch durch Waschen (Waschen 2) wurden keine weiteren Luziferase-exprimierenden Zellen herunter gespült. Aber im Eluat 2 konnte keine weitere Anreicherung der Enzymaktivität festgestellt werden. Die erste Anreicherung verlief wahrscheinlich schon so effizient, daß keine weitere Steigerung mehr möglich war.

Im CD14-Kontrollansatz entsprach der Verlauf der Luziferase-Anreicherung während der magnetischen Zellselektion dem Verlauf der CD14-Anreicherung. Im Vergleich zu den Ansätzen 1-3 konnte die Aktivität stärker angereichert werden, da die Ausgangszellen weniger H-2K^k exprimierten. Außerdem wurde während des ersten Waschens nur eine geringe und während des zweiten Waschens jedoch eine hohe Luziferase-Aktivität im Durchfluß gefunden. Bei der Aufreinigung der Ansätze 1-3 verhielt es sich genau umgekehrt.

3.5.4.2 Präparation und Qualitätskontrolle der RNA

Nach der magnetischen Selektion wurde von den Zellen (Eluat 2) die total-RNA mit Hilfe des *RNeasy Mini Kits* (Qiagen) präpariert. Dabei wurde die zelluläre DNA mit *QIAshredder Säulen* (Qiagen) geschert und die RNA am Ende zweimal mit je 30 µl DEPC-Wasser von der *RNeasy Minisäule* eluiert. Danach wurde die RNA-Konzentration und Reinheit der Präparationen photometrisch bestimmt (Tab. 5):

Ansatz	E ₂₈₀	E ₂₆₀	E ₂₆₀ /E ₂₈₀ - Verhältnis	Konzentration [µg/µl]	Gesamtmenge [µg/60µl]
1. pMACS K ^k /HPV18-E2	0,41	0,63	1,5	2,5	150
2. pMACS K ^k /HPV8-E2	0,38	0,57	1,5	2,3	138
3. pMACS K ^k .II	0,26	0,40	1,5	1,6	96
Tab. 5 : Konzentration und H	Reinheit	t der pr	äparierten RNA	für die Genechip	-Analyse.
Die Extinktionen bei den We Photometern ermittelt und ein	ellenlän Mittelw	gen 280 ert aus o) nm und 260 nn den kaum abweich	n wurden mit zw nenden Messungen	ei verschiedenen gebildet.

Je 5 µg der RNA wurden auf einem RNA-Gel aufgetragen, um etwaige Degradationen festzustellen. Die 28S und 18S rRNA-Banden waren deutlich zu erkennen (Abb. 43.A) und bei allen Ansätzen von ähnlicher Intensität. Degradationsbanden fehlten dagegen. Um zu erkennen, ob die RNA-Proben gut abgeglichen waren, wurde mit diesem Gel zusätzlich ein Northern-Blot mit einer radioaktiv markierten GAPDH-Sonde durchgeführt. Das Glycerinaldehyd-3-phosphat-Dehydrogenase-Gen (GADPH) wird in vielen Zellinien konstitutiv exprimiert. Tatsächlich wiesen die GAPDH-Banden auf der Autoradiographie eine ähnliche Intensität auf (Abb. 43.B) und die drei RNA-Proben waren demnach ausreichend gut abgeglichen.

3.5.4.3 Synthese der cDNA, *in vitro* Transkription und Proben-Hybridisierung auf dem GeneChip HG-U95A

Je 15 μ g der abgeglichenen RNA der Ansätze 1-3 wurden für die cDNA-Synthese verwendet. Dafür wurde das *SuperScript Choice System for cDNA Synthesis* (Gibco BRL) nach dem Protokoll der Firma Affymetrix angewandt. Von den fertigen cDNA-Ansätzen 1-3 wurde je 1 μ l entnommen und damit eine Verdünnungsreihe hergestellt (1:5; 1:50; 1:500; 1:5000). Mit je 1 μ l jeder Verdünnung wurde eine β -Aktin-PCR (Clontech) durchgeführt, um die gleichmäßige cDNA-Synthese zu überprüfen. Das β -Aktin-Gen wird in vielen Zellen - so auch in RTS3b-Zellen - konstitutiv exprimiert und die entstehenden PCR-Banden sollten somit ebenfalls eine gleichmäßige Stärke aufweisen, wenn die cDNA-Synthese in allen Ansätzen mit derselben Effizienz funktioniert hätte. Tatsächlich wiesen die Banden der verschiedenen Verdünnungen vergleichbare Intensitäten auf und liefen auf derselben Höhe wie die Positivkontrolle (Abb. 44).

Der für die Erststrangsynthese der cDNA verwendete PolyT-Primer enthielt die Sequenz des T7-Promotors. Mit Hilfe der T7-Polymerase konnte somit jede gebildete cDNA *in vitro* transkribiert werden und es entstand eine antisense RNA. Die dabei eingebauten Nukleotide waren biotinyliert. Die entstandene (-)-Strang-RNA wurde fragmentiert und für die Hybridisierung eines HG-U95A GeneChips (Affymetrix) verwendet, auf dem sich DNA-Oligonukleotide für den Nachweis von 12.600 humanen Genen befanden. Jeder der drei Ansätze wurde auf einen eigenen Chip hybridisiert. Nach stringentem Waschen wurden die hybridisierten, Biotinmarkierten RNA-Fragmente mit Phycoerythrin-markiertem Streptavidin angefärbt und die emittierte Strahlung mit Hilfe eines Scanners detektiert. Die Versuchsschritte nach der cDNA-Synthese wurden von dem Service-Labor des Dr. Funke an der Universität zu Münster durchgeführt.

Abb 44: Vergleich der Effizienz der cDNA-Synthese mit einer β-Aktin-PCR.

Von den drei cDNA-Präparationen wurde eine Verdünnungsreihe hergestellt a) 1:5, b)1:50, c)1:500 und d) 1:5000. Mit je 1 μ l jeder Verdünnung wurde eine PCR mit β -Aktin-spezifischen Primern (Clontech) durchgeführt. Zur Positivkontrolle wurde eine β -Aktin-Matrize zugegeben (+) und für die Negativkontrolle (-) wurde H₂O statt einer Matrize zugefügt. Gleiche Mengen der PCR-Ansätze wurden auf einem 0,8%igen Agarosegel aufgetrennt. Die spezifische β -Aktin-Bande (838 bp) wurde mit einem Pfeil gekennzeichnet.

3.5.4.4 Computerauswertung der GeneChips HG-U95A

Die gewonnenen Datensätze der Microarrays wurden wieder selbst mit den Computerprogrammen *Affymetrix Suite Software*, *Micro DB* und *Data Mining Tool* (alle Affymetrix) ausgewertet (2.2.3.7). Es wurden zunächst die Gesamtfluoreszenzen der einzelnen Chips untereinander abgeglichen und danach die Expressionswerte einzelner Gene untereinander verglichen. Der Kontrollansatz (pMACS K^k.II ohne E2) diente dabei als *baseline*. Wurde ein Gen hoch reguliert bzw. runter reguliert, so war die Expression im Kontrollansatz geringer bzw. höher. Außerdem wurden auch die Ansätze 1 (pMACS K^k/HPV18-E2) und 2 (pMACS K^k/HPV8-E2) miteinander verglichen, wobei jeder Ansatz einmal als *baseline* definiert wurde, um die Ergebnisse zu validieren. Die Datensätze aus den Expressionsvergleichen wurden geordnet. Als signifikant reguliert wurden solche Gene eingestuft, die mindestens in einem Ansatz exprimiert wurden (*Present bzw. Marginal*) und mindestens um den Faktor \geq 2 hoch reguliert (*Increased* bzw. *Marginally Increased*) bzw. \leq -2 runter reguliert (*Decreased* bzw. *Marginally Decreased*) wurden. Diese wurden dann nach der Größe des "Fold Change", also der n-fachen Aktivierung sortiert.

Um die Funktionen der so gewonnenen Gene näher zu beleuchten, wurde das Internet-Programm *Dragon* (www.dragon.tutorial.com) verwendet, welches anhand der entsprechenden *Accession*-Nummern in den Datenbanken *Swissprot* und *Unigene* Informationen über die Gene suchte. Um Einzelheiten über Gene zu erfahren, die auf diese Weise nicht gefunden wurden, mußte in den Datenbanken *Entrez* und *Medline* eine Literatursuche durchgeführt werden. Manche Oligo-Proben (*probe sets*) repräsentierten nicht nur die Sequenz eines Gens, sondern z.T. auch von ganzen Gruppen von Genen (*Cluster*). Um diese Gruppenmitglieder zu identifizieren, wurde die *Easi Database* (Affymetrix) verwendet.

3.5.5 Durch HPV8-E2 regulierte Gene

Um zu untersuchen, welche Gene differenziell durch HPV8-E2 reguliert werden, wurden die Expressionsmuster des *baseline*-Chips (3) mit denen des HPV8-E2-Chips (2) verglichen. Insgesamt veränderte HPV8-E2 die Expression von 390 (3,1%) der 12.600 getesteten Gene (und *Cluster*). Davon wurden 144 hoch reguliert (*Increased* 0,8%; *Marginally Increased* 0,3%) und 246 runter reguliert (*Decreased* 1,6%; *Marginally Decreased* 0,3%). Nur 31 Gene und 5 Cluster wurden jedoch signifikant (≥ 2) durch HPV8-E2 aktiviert (Tab. 6; Anhang). Außerdem reprimierte HPV8-E2 62 Gene und 23 Cluster signifikant (\leq -2) (Tab. 7; Anhang).

3.5.6 Durch HPV18-E2 regulierte Gene

Für die Untersuchung, welche Gene durch HPV18-E2 reguliert werden, wurden die Expressionsmuster des *baseline*-Chips mit denen des HPV18-E2-Chips verglichen. Von allen untersuchten Genen wurden 480 differenziell reguliert (3,8%). Davon waren 191 Gene hoch reguliert (*Increased* 1,1%; *Marginally Increased* 0,4%) und 289 runter reguliert (*Decreased* 1,8%; *Marginally Decreased* 0,5%). Von diesen wurden wiederum nur 44 Gene und 8 Cluster signifikant durch HPV18-E2 aktiviert (Tab. 8 Anhang) bzw. 83 Gene und 38 Cluster signifikant reprimiert (Tab. 9 Anhang).

3.5.7 Vergleich der Regulationsmuster von HPV8-E2 und HPV18-E2

Um zu untersuchen, ob die beiden untersuchten E2 Proteine von HPV-8 und HPV-18 die zelluläre Genexpression eher gleichsinnig oder eher verschieden regulieren, wurden auch die Expressions-Ergebnisse dieser beiden Ansätze verglichen. Dabei diente zur Kontrolle mal der HPV18-E2-Ansatz mal der HPV8-E2-Ansatz als *baseline*. Beide Vergleiche führten wie erwartet zu denselben Ergebnissen. Daher werden hier nur die des ersten Vergleichs aufgeführt. Es zeigte sich, daß nur wenige Gene durch die beiden E2-Proteine differenziell reguliert wurden. Verglichen mit HPV18-E2 aktivierte HPV8-E2 lediglich 9 Gene und 2 Cluster signifikant (Tab. 10 Anhang). Ferner wurden vier Gene und ein Cluster durch HPV8-E2 signifikant reprimiert (Tab. 11 Anhang). Somit modulierten die E2-Proteine der beiden untersuchten HPV-Typen die zelluläre Transkription auf ähnliche Weise.

3.5.8 Durch die E2-Proteine von HPV-8 und HPV-18 regulierte funktionelle Gengruppen

Die durch HPV8-E2 und HPV18-E2 regulierten Gene wurden, soweit Informationen vorlagen, in funktionelle Gruppen eingeteilt (Tab. 12 Teil I-III). Insgesamt beeinflußten die E2-Proteine die Expression von Proteinen unterschiedlicher Funktionen.

So modulierten sie die Expression auffällig vieler Faktoren, die an der Signaltransduktion (z.B. MAPKK3, Casein Kinase II oder Proteinphosphatase 5) und der Transkriptionskontrolle beteiligt sind. Beide E2-Proteine reprimieren die Gene einiger Transkriptionsfaktoren (z. B. Fos, Jun B und NF- κ B p65) und einiger Ras-ähnlicher, kleiner GTP-bindender Proteine (z. B. Rho B, Rap 1B, Rab 11B und Tc21). Letztere dienen als "Schalter" von Signaltransduktionswegen und sind an der Regulation der zellulären Genexpression (Ras- und Rho-Familie), des Vesikeltransports (Rab-Familie) und der Reorganisation des Zytoskeletts (Rho-Familie) der

Zelle beteiligt. Beide E2-Poteine modulierten außerdem die Expression solcher Faktoren, welche die Aktivität dieser GTP-bindenden Proteine kontrollieren (Ras-Inhibitor, GTP-Exchange Protein). Neben den Mitgliedern der Rab-Familie modulierten die E2-Proteine die Expression weiterer Faktoren, die an vesikulären Transportvorgängen beteiligt sind.

Darüber hinaus reprimierten HPV8-E2 und HPV18-E2 die Transkription von zahlreichen Strukturproteinen (z.B. Plektin, Lamin B2) und von einigen Histonen. Das Histon H1.0-Gen wurde von allen E2-regulierten Genen am stärksten reprimiert.

Aktiviert wurden durch beide E2-Proteine vornehmlich solche Gene, deren Produkte an Stoffwechselprozessen (z.B. Elektronentransfer Flavoprotein) sowie an der DNA-Replikation und der DNA-Reparatur beteiligt sind (z.B. ERCC1, ERCC5).

Außerdem veränderten HPV8-E2 und HPV18-E2 die Expression von Faktoren, des Ubiquitin-Abbaus, des prä-mRNA Spleißens und der Proteinbiosynthese. Eine Reihe der E2regulierten Gene spielt eine Rolle bei der Kontrolle des Zellzyklus, der Proliferation, der Differenzierung oder der Apoptose.

Somit regulierten die E2-Proteine von HPV-8 und HPV-18 ein breites Spektrum an Genen und führten dadurch zu weit greifenden Veränderungen im Metabolismus der Wirtszelle. Damit spielt E2 augenscheinlich eine Rolle bei der Umprogrammierung der Zelle während einer HPV-Infektion.

Vergleich	Signaltransduktion	Transkriptionsfaktoren	kleine GTP-bindende Proteine	Zellzykuls/Differenzierung/ Proliferation	Apoptose
von HPV18-E2 aktivierte Gene	PLC-y-1 (+4,3) Protein Tyr phosphatase (+3,0) Casein kinase Πα (+2,3) IL-13 (+2,3) Leukocyte elastase inhibitor (+2,1) C: KOX15 (+2,4)	TIs/Chop (+5,3)	GEP (SOS-1 Hom olog) (+3,0) GEP (SOS-Hom olog) (+2,8)	Tls/Chop (+5,3)	
von HPV8-E2 aktivierte Gene	Nīcotinic acetylcholine receptor α2 (+2,6) Cdc6-related protein (+2,6)	TIs/Ch op (+4,8) WAS3 (+2,2)	similar to rat RhoGAP (+2,3)	Tls/Chop (+4,8) Cdc6-related protein (+2,6) Cdc45-related protein (+2,2)	Hsp70 B' (+4,3)
im Vergleich zu HPV18- E2 durch HPV8-E2 aktivierte Gene	Ni cotinic acetylcholine receptor $\alpha 2~(+3,1)$ C: MAPKK $(+2,1)$	TAF 110 kDa (+2,2)			Hsp70 B' (+3,5)
von HPV18-E2 reprimierte Gene	Protein phosphatase 5 (-8,3) Sortilin (-5,0) Tyrosine kinase (ELK1) (-4,1) Ste20-like kinase (-3,7) C: Non-recept. Tyr phosphatase 1 (-4,7) C: MAPKK 3 (-4,1) C: Protein phosphatase 5 (-4,1) C: Protein phosphatase 5 (-4,1) C: Protein phosphatase 5 (-4,1) C: Protein phosphatase 5 (-2,7) C: Protein phosphatase C β 3 (-2,5) C: Fo receptor, TC9 (-2,0)	GRDNABP1 (.4,6) TAF 110 kDa (.2,8) Estrogen receptor-like 1 (.2,3) Bcl-1 (.2,1) NHP/CTF5 (.2,0) C: NF-kappa-B p49 (.5,4) C: Max (.4,1) C: Max (.2,3) C: Nucleolar TF 1 (.2,7) C: Nucleolar TF 1 (.2,7) C: Hsp27 ERE-TBP (.HET) (.2,3) C: Hsp27 ERE-TBP (.HET) (.2,3)	Ras Inhibitor Inf (4,6) Rh & B (-3,8) Rap 1B (-2,8) Rab 6 (-2,7) Tc 21 (-2,4) Rab 11B (-2,1) C: Tc 21 (-6,2)	Histone H1.0 (-13,8) Neurite outgrowth-promot. prot. (-3,7) Tc21 (-2,4) Bcl-1 (-2,1) C: Histone H1.0 (-6,5) C: Tc21 (-6,2) C: Max (-4,0) C: Max (-4,1) C: Max (-4,1) C: Max (-4,1) C: Max (-4,1) C: Max (-2,3) C: Hap27 ERE-TBP (HET) (-2,3) C: Hap27 ERE-TBP (HET) (-2,3) C: Fos (-2,0)	TNFR-relat. death recept.6 (-2,5) Bcl-xL (-2,5) Hsp 70 1B (-2,3) C: Glutathion Peroxidase 4 (-8,2) C: Glutathion Peroxidase 4
von HPV8-E2 reprimierte Gene	Protein phosphatase 5 (-3,8) Ste20-like kinase (-2,8) MAPK 7 (-2,6) Basigin (-2,1) PGE2 receptor (-2,1) C: Protein phosphatase 5 (-6,6) C: Fk506-binding prot. (-2,5)	NF-kB p49 (-3,9) NFD/CTF5 (-2,9) TF 8 (-2,5) activating TF 1 (-2,1) C: Max (-4,6) C: Max (-4,6) C: Max (-3,8) C: Max (-3,8) C: Fos (-3,8) C: Fos (-3,8) C: ZMF1 protein (-3,6) C: Mucleolar TF 1 (-2,3) C: Hsp27 ERE-TBP (HET) (-2,3) C: Fos (-2,0) C: Fos (-2,0)	Rab 6 (-3,3) Ras Inhibitor Inf (-2,9) Rap IB (-2,9) Ran BP1 (-2,1) Rab 11B (-2,1) C: Tc21 (-2,8)	Histone H1.0 (-9,3) Neurite outgrowth-promot. prot. (-3,2) Bone morphogenetic prot. 1 (-2,7) RanBP1 (-2,1) Bcl-1 (-2,1) C: Max (-4,6) C: Histone H1.0 (-4,0) C: Histone H1.0 (-4,0) C: Histone H1.0 (-4,0) C: Fos (-3,8) C: Fos (-3,8) C: Fos (-3,8) C: Hsp27 ERE-TBP (-2,3) C: Fos (-2,0) C: Fos (-2,0)	
im Vergleich zu HPV18- E2 durch HPV8-E2 reprimierte Gene	Protein Tyr-phosphatase (-2,2)				
Tab. 12: Einor	dnung der E2-regulierten G Genschin HG-1195A vertreten G	ene nach ihrer Funkti	ion (Teil I). Es wurden d	lie Namen der Genprodukte ang ise Gene umden in mehr als ein	egeben. Manche Gene waren e Vataooria singaordust

Vergleich	DNA-Reparatur/-Replikation	Spleißen/RNA-Modifikation	Stoffw ech sel	Exozytose / Endozytose / vesikulärer Transport
von HPV18-E2 aktivierte Gene	ER.CC1 (+4,1) Retropseudogene MSSP-1 (+2,0) C: Apurinic endonuclease (+3,7) C: ER.CC5 (+2,8) C: ER.CC5 (+2,8)	U5 snRNP 100 kD (+2,5) U-snRNP-associated cyclophilin (+2,3) Helicase-like protein (+2,1)	Electron transfer flavoprotein β(+7,9) putative Dienoyl-CoA is omerase (+6,6) Stanniocalcin precursor (+2,6) Uroporphyrinogen decarboxylase (+2,3) Erythrocyte 2,3-BPG mutase (+2,1) Glutamine PRPP ami dotran sferase (+2,1) m 6A Methyltransferase (+2,1) Mitochondrien: Thioredozin (+3,6) PEP carboxykinase (+3,2)	rTS β protein (+2,6) Vacuolar H ⁺ ATPase D (+2,5) C: Gangliosid GM2 activator (+6,3)
von HPV8-E2 aktivierte Gene	ER.CC1 (+3,5) Cdc6-related protein (+2,6) Telomeric repeat BF 1 (+2,4) Bloom's syndrom e protein (+2,4) CDC45-related protein (+2,2) C: Apurinic endonuclease (+3,8)	RNA Helicase 1 (+2,4)	Electron transfer flavoprotein β (+6,7) cAMP-dep. 3', 5'-cyclic phosphodiesterase 4D (+2,5) Uroporphyrinogen decarboxylase (+2,4) putative Methyltransferase (+2,3) Mitochondrien: Thioredoxin (+3,2)	Arsenite translocat. ATPase (+2,2) rTS β Protein (+2,1) Clathrin coat assembly protein (+2,0)
im Vergleich zu HPV18-E2 durch HPV8-E2 aktivierte Gene		TTF-I interacting peptide 21 (+3,2)	Glucose-6-phosphate dehydrogenase (+3,2) Pyruvat dehydrogenase kinase 3 (+2,0) C: Glutathion peroxidase 4 (+3,8)	
von HPV18-E2 reprimierte Gene	ER.CC2 (-2,2)	TTF-I interacting peptide 12 (-5,3) Large subunit of splicing fact. U2AF (-2,3) ERCC2 (-2,2) C: ZFM1 protein (-3,6) C: U2 snRNP auxiliary factor (-3,3) C: U2 snRNP auxiliary factor (-3,3) C: U6-snRNA-associated LSm4 (-2,1) C: U6-snRNA-associated LSm4 (-2,1) C: U6-snRNA-associated LSm4 (-2,1)	Oxysterol-BP (-2,8) 1D-myo-ITP- 3-kinase B (-2,5) Acetylhydrolase IB β-subunit (-2,4) Coenzym Q (-2,4) KIAA0838 (glutaminase) (-2,3) Fucosyltransferase 7 (-2,2) C: Phospholipase C β3 (-2,5) Dynuvat-Dehydrogen ase Kinase 3 (-3,1) mitoton drial citrate transport prot. (-2,5) TOM40 (-2,2) Cyclophilm F (-2,1) Mitoch. nbosomal prot. L23 (-2,0) C: Glutathion Peroxi dase 4 (-8,2) C: Glutan ate dehydrogen ase 2 (-2,2)	Sortilin (-5,0) Syntaxin 16 (-4,7) Clathrin light-chain B (-4,1) Gastric H ⁺ , K ⁺ -ATPase (-2,8) Rab 6 (-2,7) Rab 11B (-2,1)
von HPV8-E2 reprimierte Gen <i>e</i>		TTF-I interacting peptide 12 (-3,5) Large subunit of splicing fact. U2AF (-2,6) Cleavage and polyadenyl. spec. fact. (-2,0) C: ZMF1 protein (-3,6) C: U6-snRNA-associated LSm7 (-2,4)	Acetylhydrolase IB β -subunit (-3,3) Oxysterol-BP (-2,4) Cyt. b-245 Apolipoprotein M (-2,1) PGE2 receptor (-2,1) C: Apolipoprotein M (-2,1) Mitoch. ribosomal protein S12 (-2,1) Mitoch. citrate transport prot. (-2,0) MADH-coenzyme Q reductase (-2,0)	Sortilin (-6,2) Syntaxin 16 (-4,2) Rab 6 (-3,3) Clathrin light-chain B (-2,7) RanBP1 (-2,1) Rab 11B (-2,1)
im Vergleich zu HPV 18-E2 durch HPV8-E2 reprimierte Gene		HIV-1 Rev binding protein (-2,0)	C: UDP-galactose translocator (-2,3)	
Fab. 12: Einordnung	der E2-regulierten Ge HG-II05A vertreten Cuber	ne nach ihrer Funktion (Teil	l II). Es wurden die Namen der Genprodukte Gen enthält Finise Gene sunden in mehr als	e angegeben. Manche Gene waren a eine Kotacoria einwordnaf

94

Vergleich	Strukturproteine & Morphologie	Proteinbiosynthese	Ubiquitin-Abbau	Proteinasen	Histone/Chromatin-Modulation
von HPV18-E2 aktivierte Gene	Desmoglein 1 (+2,6)	Alanyl-tRNA synthetase (+2,5) C: HL23 ribosomal protein (+2,1)		C: TIMP (+2,4)	Histone H4.G (+2,7)
von HPV8-E2 aktivierte Gene		Hsp70 B' (+4,3)		C: Endog. retroviral protease (+3,4)	
im Vergleich zu HPV18-E2 durch HPV8-E2 aktivierte Gene		Hsp70 B'(+3,5)			
von HPV18-E2 reprimierte Gene	KISS-1 (-2,6) Lamin B2 (-2,4) Microtubule-AP4 (-2,4) Paralemmin (-2,4) Integrin P4 (-2,2) Kentain 2B (-2,1) C Flectin (-12,8) C: Filamin A (-2,2) C: c.Actinin I (-2,2) C: Smoothelin-B (-2,1) C: Smoothelin-B (-2,1)	Phe-tRNA synthetase-like $(-5,7)$ Phe-t-RNA synthetase like $(-2,8)$ Ribosome binding protein 1 $(-2,6)$ eIF-4 $\gamma(-2,6)$ eIF-4 $\gamma(-2,5)$ Hisp 70 1B $(-2,3)$ Mitoch. ribosomal prot. L23 $(-2,0)$ C: Hsp27 ERE-TBP (HET) $(-2,3)$ C: put. Phe-tRNA-synthetase $(-2,2)$	Ubiquitin-conj. enzyme E2, 24 kDa (-2,4) Ubiquitin-conj. enzyme E2(1 (-2,2) Ubiquitin conj. enzyme E2, 24kDa (-2,1) Ubiquit. carboxyl-terminal esterase L1 (-2)	Plasminogen activator inhibitor 1 (-3,4) Amyloid precursor prot. homolog (-2,3)	Histone H1.0 (-13,8) SWUSNF 60 KD a subunit (-2,7) Histone H2A 2 (-2,5) C Histone H1.0 (-6,5) C H2A.1 (4,0) C Histon H2B.D (-2,4) C Histon H2B.D (-2,4)
von HPV8-E2 reprimierte Gene	BMP-1 (-2,7) Integrin β4 (-2,6) Lamin B2 (-2,6) Laminin, β3 (-2,4) Basigin (-2,1) C: Plectin (-9,8)	Phe-tRNA synthetase like (-4,8) similar to eIF- $4A1$ (-3,3) eIF- 4γ (-2,7) eIF- 4γ (-2,4) in bosne BP1 (-2,3) Mitoch. ribosomal prot. S12 (-2,1) put tRNA-synthetase-like prot (-2,0) C: Hsp27 ERE-TBP (HET) (-2,3)	Ubiquitin conj. enzyme E2, 24kDa (-2,3) Ubiquitin conj. enzyme E2, 24kDa (-2,1)	Amyloid precursor prot. homolog (-2,1) TIMP-3 (-2,0)	Histone H1.0 (-9,3) Histone H24.2 (-2,9) C: Histone H1.0 (-4,0) C: similar Histon H2A.I (-3,5)
im Vergleich zu HPV18-E2 durch HPV8-E2 reprimierte Gene					
Tab. 12: Einord	nung der E2-reg	ulierten Gene nach ihre	er Funktion (Teil III). Es wurd	len die Namen der Genprodukte ar	ngegeben. Manche Gene waren

mehrmals auf dem Genechip HG-U95A vertreten. C: bedeutet Chuster das u. a. das genannte Gen enthält. Einige Gene wurden in mehr als eine Kategorie eingeordnet.

4 Diskussion

Das PV E2-Protein ist der Regulator der viralen Transkription und Replikation. Während relativ viele Informationen über seine Funktion im Verlauf des viralen Infektionszyklus vorliegen, ist wenig bekannt über seinen Einfluß auf den Metabolismus der Wirtszelle. Als viraler Transkriptionsfaktor könnte E2 nicht nur die Expression viraler Gene modulieren, sondern auch die zellulärer Gene. Auf diese Weise könnte E2 ein intrazelluläres Milieu für die Virusreplikation schaffen. Um dieser Frage nachzugehen, wurde hier die Wechselwirkung zwischen dem PV E2-Protein und dem zellulären Transkriptionsfaktor NF-IL6 charakterisiert, sowie der generelle Einfluß des E2-Proteins auf die zelluläre Transkription mit Hilfe einer Genechip-Analyse untersucht.

4.1 Die Wechselwirkung zwischen dem PV E2-Protein und dem zellulären Transkriptionsfaktor NF-IL6

NF-IL6 (C/EBP β) gehört zu der Familie der zellulären C/EBP-Transkriptionsfaktoren, die inzwischen sechs Mitglieder umfaßt (C/EBP α , β , γ , δ , ε und ς). Sie können über das gemeinsame bZIP-Motiv am C-Terminus miteinander Homo- oder Heterodimere bilden und sind an der Regulation der Differenzierung von Adipozyten, B-Zellen und Makrophagen beteiligt (Darlington *et al.*, 1988; Poli, 1998). In letzter Zeit mehren sich die Hinweise, daß die C/EBP-Faktoren auch Differenzierungsprozesse der Keratinozyten regulieren. Dafür spricht u. a., daß sie differenziell in der Epidermis exprimiert werden (Maytin & Habener, 1998; Oh & Smart, 1998). Das NF-IL6-Protein wird v. a. in differenzierenden Zellen in den untersten bis mittleren suprabasalen Schichten der Epidermis detektiert und liegt dort fast ausschließlich nukleär vor. In hyperplastischer Haut und Papillomen wird NF-IL6 zusätzlich in den Zellkernen der obersten lebendigen Zellschichten (*stratum granulosum*) gefunden. Dies entspricht auch dem Expressionsmuster von E2 in HPV-induzierten Läsionen, in denen es hauptsächlich in allen suprabasalen, lebenden Schichten des Epithels exprimiert wird (Burnett *et al.*, 1990; Haller *et al.*, 1995). Daher lag die Vermutung nahe, daß E2 mit NF-IL6 interagieren könnte.

In Plattenepithelkarzinomen der Haut ist die Zahl NF-IL6-exprimierender Zellen stark reduziert und seine Expressionsstärke vermindert (Oh & Smart, 1998). In unseren Untersuchungen wiesen permanente Zellinien, die aus Plattenepithelkarzinomen der Haut (z.B. RTS3b) oder der Zervix (z.B. CaSki oder SW756) isoliert wurden, sowohl das kleinere (LIP) als auch das vollständige NF-IL6-Protein auf. Außerdem waren die NF-IL6-Mengen in diesen Zellen mit denen spontan immortalisierter (HaCaT) oder *in vitro* mit HPV-Genomen immortalisierter Zellen (HPK IA, I56-A) vergleichbar.

Untersuchungen über die NF-IL6-Expression in der Schleimhaut lagen bisher nicht vor. Daher wurde in dieser Arbeit das NF-IL6-Protein in Kryoschnitten der gesunden, humanen Zervix immunhistochemisch angefärbt. NF-IL6 konnte hier ebenfalls hauptsächlich in den suprabasalen Epithelschichten nachgewiesen werden und lag dort ausschließlich im Kern vor. Eine schwache zytoplasmatische NF-IL6-Färbung wurde außerdem in den Zellen der Basalschicht beobachtet. Auch in der Epidermis wird NF-IL6 in gleicher Weise im Zytoplasma der Basalzellen nachgewiesen (Maytin & Habener, 1998). Somit werden E2 und NF-IL6 in ähnlichen Epithelschichten der Haut und Schleimhaut exprimiert.

Ferner ist bekannt, daß E2 und NF-IL6 im Nukleus von kultivierten Keratinozyten akkumulieren (Sanchez-Perez *et al.*, 1997; Skiadopoulos & McBride, 1996; Williams *et al.*, 1997). Hier wurde gezeigt, daß HPV8-E2 in einem gepunkteten Muster in subnukleäre Kompartimente lokalisierte. NF-IL6 dagegen wies eine diffuse, nukleoplasmatische Lokalisation auf, ähnlich wie das E2-Protein von HPV-18. Daher konnte das Verteilungsmuster von NF-IL6 mit dem von HPV18-E2 gut und mit dem von HPV8-E2 nur teilweise zur Deckung gebracht werden. Aufgrund der diffusen Verteilung von NF-IL6 war jedoch anzunehmen, daß es zumindest teilweise in dieselben Kompartimente wie HPV8-E2 lokalisierte und somit eine Wechselwirkung möglich war.

Transiente Transfektionsexperimente zeigten jedoch, daß nur das E2-Protein von HPV-8 nicht aber von HPV-18 (Daten nicht gezeigt) mit NF-IL6 die Transkription synthetischer und zellulärer Promotoren synergistisch aktivieren konnte. Als zellulärer Promotor diente das proximale Promotorfragment des Involukringens, das die Expression des Luziferasegens in dem Reporterkonstrukt pINV 241 regulierte. Das Strukturprotein Involukrin wird differenzierungsspezifisch in der Epidermis ab höheren Schichten des *stratum spinosum* exprimiert und somit in ähnlichen Epithelschichten wie E2 und NF-IL6 (Eckert *et al.*, 1997b). In dem untersuchten proximalen Promotorfragment hatten Agarwal *et al.* (1998) bereits eine AP-1 und eine C/EBP-Bindestelle charakterisiert. In transienten Transfektionsexperimenten mit primären Keratinozyten zeigten sie, daß beide Bindestellen für die durch Phorbolester ausgelöste, differenzierungsspezifische Aktivierung von pINV 241 essentiell sind. Außerdem ist die C/EBP-Bindestelle für die basale Promotoraktivität essentiell.

Hier konnte gezeigt werden, daß pINV 241 durch NF-IL6 konzentrationsabhängig, schwach aktiviert wird (maximal 2-fach). Agarwal *et al.* (1998) beobachteten jedoch in ihren Reporteranalysen eine 4-fache Reduktion der Basalaktivität von pINV 241 durch NF-IL6. Lediglich

Diskussion

C/EBPa, ein anderes Mitglied aus der C/EBP-Familie, war in der Lage dieses Reporterkonstrukt zu aktivieren. Da diese Aktivierung durch C/EBPa eine intakte benachbarte AP-1-Bindestelle benötigte, wird die Aktivität dieses Promotors offensichtlich durch einen Komplex aus C/EBP- und AP-1-Faktoren reguliert. Es ist bekannt, daß nur bestimmte Mitglieder der AP-1-Familie (Fra-1, Jun B und Jun D) an die AP-1 Bindestellen von pINV 241 binden (Welter et al., 1996). NF-IL6 könnte mit anderen AP-1-Faktoren einen aktivierenden Komplex bilden, als C/EBPa. Außerdem wurde beschrieben, daß C/EBP- und AP-1-Faktoren über das gemeinsame bZIP-Motiv miteinander Heterodimere bilden können (Hsu et al., 1994). Solche Heterodimere besitzen eine veränderte DNA-Bindungsaktivität. Auf diese Weise konnten Fos und Jun die Transkriptionsaktivierung durch NF-IL6 reprimieren. Umgekehrt waren LIP-Homodimere in der Lage, auch AP-1-Bindestellen zu erkennen und die AP-1-vermittelte Transaktivierung zu reprimieren. Somit könnte die Transkriptionsfaktor-Ausstattung und das NF-IL6/LIP-Verhältnis der verwendeten Zellen für die Regulation des Reporters pINV 241 eine entscheidende Rolle spielen. Die von Agarwal et al. (1998) verwendeten primären Keratinozyten verfügen wahrscheinlich über eine andere Ausstattung mit Transkriptionsfaktoren als die von uns verwendeten RTS3b-Zellen. Das könnte die unterschiedliche Wirkung von NF-IL6 erklären.

Auch das E2-Protein von HPV-8 aktivierte das Reporterkonstrukt pINV 241 konzentrationsabhängig (maximal 3-fach). Zusammen mit NF-IL6 konnte HPV8-E2 die Transkription mehr als additiv, also synergistisch aktivieren (maximal 12-fach). Eine Computeranalyse detektierte jedoch keine E2-Bindestellen in einem 2,5 kb langen Promotorfragment des Involukringens, das auch die Promotorsequenz von pINV 241 beinhaltete. Dieses 2,5 kb-Fragment ist sowohl für die gewebespezifische als auch für die differenzierungsspezifische Expression des Involukringens in transgenen Mäusen ausreichend (Crish *et al.*, 1993; Crish *et al.*, 1998). Somit schien HPV8-E2 über Wechselwirkung mit zellulären Faktoren zu dem Promotor von pINV 241 rekrutiert zu werden oder kryptische E2-Bindestellen in der Vektorsequenz zu binden.

Um den Mechanismus dieser Kooperativität zwischen HPV8-E2 und NF-IL6 weiter aufzuklären, wurden transiente Transfektionsexperimente mit einer Reihe von Reporterkonstrukten durchgeführt, deren synthetische Promotoren intakte und/oder mutierte Bindestellen für NF-IL6 sowie E2 enthielten. NF-IL6 (13-fach) und HPV8-E2 (8-fach) aktivierten einen Promotor mit vier intakten E2-Bindestellen und zwei intakten C/EBP-Bindestellen synergistisch (37-fach). Auch nach Mutation der E2-Bindestellen blieb dieser Synergismus zwischen NF-IL6 (13-fach) und HPV8-E2 (allein keine Aktivierung = einfach) erhalten (zusammen 21-fach). Wurden jedoch nur die NF-IL6-Bindestellen mutiert und die E2-Bindestellen intakt gelassen, so aktivierten NF-IL6 (5-fach) und HPV8-E2 (4-fach) diesen Promotor nur additiv (9-fach). Daher waren die NF-IL6- nicht aber die E2-Bindestellen für die synergistische Aktivierung durch beide Transkriptionsfaktoren essentiell. Außerdem wurden diese Reporteranalysen in C33A-Zellen, also einer anderen Zellinie, durchgeführt als die Versuche mit dem pINV 241-Konstrukt (RTS3b). Beide Keratinozytenlinien sind HPVnegativ, aber C33A-Zellen stammen aus einem Zervixkarzinom und RTS3b-Zellen aus einem Plattenepithelkarzinom der Haut. Somit konnte die synergistische Transaktivierung durch HPV8-E2 und NF-IL6 in zwei verschiedenen Zellinien und mit unterschiedlichen Reporterkonstrukten bestätigt werden.

Ein solcher Synergismus könnte auf der gegenseitigen Verstärkung der DNA-Bindungsaffinitäten beruhen. In EMSAs mit Oligonukleotiden, die nur E2- oder nur NF-IL6-Bindestellen enthielten, konnte eine solche Affinitätssteigerung zwischen BPV1-E2 und NF-IL6 jedoch nicht festgestellt werden. EMSAs mit HPV8-E2 aus Kernextrakten waren nicht erfolgreich, da dieses E2-Protein sehr instabil war.

Eine synergistische Transaktivierung durch zwei Transkriptionsfaktoren kann dadurch zustande kommen, daß sie unterschiedliche Schritte beim Aufbau des Initiationskomplexes der Transkription fördern. So könnten die Transaktivierungsdomänen von NF-IL6 und HPV8-E2 unterschiedliche Transkriptionsfaktoren zum Initiationsstart rekrutieren oder zusammen den gleichen Faktor stärker binden. Sowohl für NF-IL6 (z.B. mit NF-KB, AP-1 und pRB) als auch für E2 (z.B. mit TBP, TFIIB und SP1) sind bereits mannigfaltige Protein-Protein-Wechselwirkungen mit anderen Transkriptionsfaktoren beschrieben worden (Akira & Kishimoto, 1997; Li et al., 1991; Rank & Lambert, 1995). Andererseits könnte E2 die Expression anderer Transkriptionsfaktoren erhöhen bzw. reprimieren, die wiederum synergistisch mit NF-IL6 die Transkription aktivieren bzw. als Repressor der NF-IL6-Transaktivierung fungieren. Tatsächlich zeigte die Genechip-Analyse, daß E2 die Transkription der AP-1-Faktoren Fos und Jun B reprimierte. Zumindest Fos kann, wie bereits beschrieben, die Repression der NF-IL6-Transaktivierung über Heterodimer-Bildung bewirken (Hsu et al., 1994). Somit könnte E2 indirekt die Transaktivierung durch NF-IL6 über die Repression von AP-1-Faktoren verstärken. Die E2-Proteine von HPV-8 und -18 reprimierten beide die Fos-Expression in ähnlicher Weise, aber nur HPV8-E2 konnte mit NF-IL6 die Transkription kooperativ aktivieren. Daher muß der Synergismus zwischen HPV8-E2 und NF-IL6 noch auf andere Mechanismen beruhen. Die Genechip-Analyse machte darüber hinaus deutlich, daß E2

keinen direkten Einfluß auf die endogene NF-IL6-Expression in RTS3b-Zellen ausübte, die unverändert hoch blieb.

In vitro Interaktionsstudien zeigten, daß die E2-Proteine verschiedener Papillomvirustypen an NF-IL6 binden konnten. Über diese Protein-Protein-Wechselwirkung könnte E2 zu solchen Promotoren rekrutiert werden, die nur NF-IL6- aber keine E2-Bindestellen enthalten. Fusionsproteine bestehend aus GST und E2 (von HPV-8, -16, -18 und BPV-1) konnten NF-IL6 aus Kernextrakten und *in vitro* translatiertes NF-IL6 präzipitieren. *Vice versa* präzipitierten GST-NF-IL6 Fusionsproteine auch *in vitro* translatierte E2 Proteine von HPV-8, -18 und BPV-1. Die Interaktionsdomänen beider Proteine wurden identifiziert. HPV8-E2 band mit seiner C-terminalen DNA-Bindungs- und Dimerisierungsdomäne an NF-IL6. Die basische Region des NF-IL6 Proteins war wiederum für die Wechselwirkung mit den E2-Proteinen von HPV-8, -18 und BPV-1 essentiell. Ferner wurde nachgewiesen, daß die Wechselwirkung der DNA-bindenden Proteine E2 und NF-IL6, nicht durch DNA oder RNA vermittelt wurde. Die Zugabe von DNA bzw. DNase und RNase beeinflußte die Interaktion beider Faktoren nicht.

Mit den durchgeführten Interaktionsassays, in denen Proteine aus Kernextrakten oder aus *in vitro* Translationsansätzen verwendet wurden, konnte nicht ausgeschlossen werden, daß ein dritter Faktor aus dem Proteingemisch die Wechselwirkung zwischen den beiden untersuchten Proteinen vermittelte. Daher war es wichtig zu zeigen, daß NF-IL6 und E2 direkt miteinander interagieren können. Tatsächlich banden bakteriell exprimierte und aufgereinigte GST-NF-IL6 und His-HPV18-E2 Fusionsproteine direkt aneinander.

Da die E2-Proteine verschiedener PV-Typen mit NF-IL6 interagierten, könnte diese Wechselwirkung eine allgemeine Bedeutung für den Replikationszyklus aller Papillomviren haben. Weitere *in vitro* Interaktionsstudien mit dem NF-IL6-Homolog der Ratte zeigten, daß sowohl das vollständige (LAP) als auch das verkürzte (LIP) NF-IL6-Protein der Ratte an den C-Terminus von HPV8-E2 banden (Daten nicht gezeigt). Untersuchungen in unserer Arbeitsgruppe, die parallel zu dieser Arbeit durchgeführt wurden, machten darüber hinaus deutlich, daß PV E2-Proteine auch mit den C/EBP-Faktoren C/EBPα und C/EBPδ *in vitro* interagieren können (Hinterkeuser, 2001). Dies war zu erwarten, nachdem hier gezeigt wurde,

 LAP
 K A K K A V D K L S D E Y K M R R E R N N I A V R K S R D K A K M R N L E T Q H K

 NF-IL6
 K A K K T V D K H S D E Y K I R R E R N N I A V R K S R D K A K M R N L E T Q H K

 C/EBP α
 K A K K S V D K N S N E Y R V R R E R N N I A V R K S R D K A K Q R N V E T Q Q K

 C/EBP δ
 A G K R G P D R G S P E Y R Q R R E R N N I A V R K S R D K A K R R N Q E M Q Q K

 Konsensus
 K A K K V D K S E Y .
 R R E R N N I A V R K S R D K A K R N . E T Q K

Abb. 45: Die basische Region der C/EBP-Faktoren weist hohe Sequenzhomologie auf. Dargestellt sind die Aminosäuresequenzen der basischen Region von NF-IL6 und dem NF-IL6-Homolog der Ratte (LAP) sowie von C/EBPα und C/EBPδ.

Diskussion

daß die basische Region des NF-IL6-Proteins für die Wechselwirkung mit E2 verantwortlich ist. Diese Region ist unter den C/EBP-Faktoren α , β , δ und LAP gut konserviert (76-85%) Homologie; Abb. 45). Ferner wurde gezeigt, daß C/EBPa und HPV8-E2 das Involukrin-Reporterkonstrukt pINV 241 ebenfalls synergistisch aktivieren können (Hinterkeuser, 2001). Die Wechselwirkung zwischen dem PV E2-Protein und den differenzierungsspezifisch in Epithelien exprimierten C/EBP-Faktoren, könnte für die Regulation der zellulären und der viralen Genexpression während einer PV-Infektion eine bedeutende Rolle spielen. E2 wird im Epithel möglicherweise durch C/EBP-Faktoren zu gewebe- und differenzierungsspezifisch regulierten Promotoren rekrutiert und könnte deren Expression modulieren. Tatsächlich befinden sich in den Promotoren einiger differenzierungsspezifisch im Plattenepithel der Haut exprimierter Gene C/EBP-Bindestellen. Neben dem Involukrin-Promotor sind das z.B. die Promotoren der Keratine 1 und 10, die beide ab dem stratum spinosum exprimiert werden (Krieg et al., 1985; Oh & Smart, 1998). Außerdem bewirkt die Überexpression von NF-IL6 in Keratinozyten eine Erhöhung der K1- und K10-Expression (Zhu et al., 1999). In NF-IL6 knock-out Mäusen werden dagegen geringere K1- und K10-Mengen als in normalen Mäusen gebildet. Daher wäre es interessant festzustellen, ob E2 die Promotoren dieser Gene zusammen mit NF-IL6 oder anderen C/EBP-Faktoren modulieren kann.

Ob E2 in vivo tatsächlich einen Einfluß auf die Involukrin-Expression ausübt, bleibt fraglich. Hier wurde nur ein kleiner proximaler Teil des Involukrin-Promotors eingesetzt (-241/-7), der für ca. 50% der TPA-induzierten Gesamtpromotor-Aktivität verantwortlich ist (Welter et al., 1995). Weiter stromaufwärts von dieser proximalen regulatorischen Region befinden sich im natürlichen Promotor ein Silencer (-652/-160) und ein Ca²⁺-induzierbarer Enhancer (-2456/-1272) der Involukrin-Transkription (Lopez-Bayghen et al., 1996; Banks et al., 1998). Außerdem werden für die gewebe- und differenzierungsspezifische Expression des Involukringens wenigstens 2,5 kb seiner stromaufwärts vom Transkriptionsstart liegenden Sequenz benötigt (Crish et al., 1998). Das verdeutlicht, daß die Regulation des Involukrinpromotors viel komplexer ist, als mit dem Reporterkonstrukt pINV 241 dargestellt werden konnte. Die Genechip-Analyse zeigte, daß die E2-Expression in RTS3b-Zellen keine Veränderung der Involukrin-Transkription bewirkte. Weder im Kontroll- noch in den beiden E2-Ansätzen konnten Involukrin-Transkripte festgestellt werden. Auch auf Proteinebene wurde in RTS3b-Zellen keine Induktion der Involukrin-Expression festgestellt, nachdem Expressionsplasmide für HPV8-E2 allein oder für E2 und NF-IL6 zusammen transfiziert wurden (Daten nicht gezeigt). Jedoch wurden für alle Versuche die immortalisierten RTS3b-Zellen verwendet, die am ehesten den undifferenzierten Zellen aus der Basalschicht ähneln, in denen Involukrin
nicht exprimiert wird. Für die *in vivo* Aktivierung der Involukrin-Expression werden demnach noch weitere Stimmuli benötigt, wie vermutlich die Induktion von Differenzierung. Dann könnte E2 zusammen mit C/EBP-Faktoren diese Aktivität modulieren.

Ektopische Expression von NF-IL6 inhibiert außerdem die Proliferation von Keratinozyten und treibt die Zellen in die Differenzierung (Zhu *et al.*, 1999). Durch Interaktion mit NF-IL6 könnte das E2-Protein somit auch in die Regulation der Keratinozyten-Differenzierung eingreifen.

Auch für die Genexpression der HPV könnte die Wechselwirkung zwischen E2 und NF-IL6 von Bedeutung sein, da in der LCR einiger HPV-Typen neben E2-Bindestellen auch funktionelle C/EBP-Bindestellen liegen (Kyo *et al.*, 1993; Bauknecht & Shi, 1998; Wang *et al.*, 1996).

4.2 Die subnukleäre Lokalisation von E2 und NF-IL6

Um Proteine und ihre Deletionsmutanten in der Zelle zu lokalisieren, wurden in dieser Arbeit Fusionsproteine mit Derivaten des *enhanced green fluorescent protein* (EGFP) hergestellt. Das hat den Vorteil, daß die Fusionsproteine direkt in der intakten Zelle geortet werden können, ohne daß eine Fixierung oder einer Permeabilisierung der Zellmembran für eine Antikörperfärbung nötig wäre. Die Verwendung eines Antikörpers für die Detektion intrazellulärer Proteine birgt zudem die Gefahr, daß er die unterschiedlichen Deletionsmutanten eines Proteins nicht gleich gut erkennen kann. Auf die Funktionalität des fusionierten Proteins könnte sich der Anhang des EXFP allerdings nachteilig auswirken. Bereits andere Autoren beschrieben jedoch, daß ein relativ großer Anhang am N-Terminus von E2 (GST oder EGFP) seine Fähigkeiten, die Replikation und Transkription zu regulieren, nur wenig beeinflußt (Lee *et al.*, 1998; Zou *et al.*, 2000). Auch hier konnte gezeigt werden, daß E2 und NF-IL6 trotz Fusion mit EXFP die Transkription weiterhin aktivieren können, wenn auch etwas schwächer als die nativen Proteine (Daten nicht gezeigt). Ferner transaktivierten EYFP-HPV8-E2wt und ECFP-NF-IL6 Δ N24 die Reporterkonstrukte E2wt-NFwt-LUC und E2mut-NFwt-LUC synergistisch so wie die nativen Proteine (Daten nicht gezeigt).

4.2.1 Lokalisation von HPV8-E2-Deletionsmutanten

Mit Hilfe einer Deletionsanalyse konnte die Lage von mindestens drei verschiedenen Lokalisationssignalen im E2-Protein von HPV-8 eingegrenzt werden. Demnach enthielt die Hinge-Domäne mindestens ein NLS, ein nukleoläres Lokalisierungssignal und ein Motiv, das die Verteilung in punktförmige, subnukleäre Kompartimente vermittelte, die vermutlich mit der nukleären Matrix assoziiert waren.

Eine Computeranalyse detektierte lediglich in der Hinge-Region von HPV8-E2 mögliche NLS. Tatsächlich lokalisierten alle E2-Deletionsmutanten, die Anteile der Hinge umfaßten, ausschließlich in den Kern, während EYFP-E2 N und C auch im Zytoplasma zu finden waren. Letztere enthielten keine Hinge-Anteile und waren vermutlich klein genug (52,8 und 39,4 kDa), um passiv in den Kern zu diffundieren. Lediglich Proteine, die größer als 40-60 kDa sind, müssen über aktiven Transport durch die Kernpore geschleust werden (Görlich & Mattaj, 1996). Wurde nur die Hinge-Region deletiert, so akkumulierte das entstehende Protein ausschließlich in perinukleären Kompartimenten außerhalb des Kerns. Da auch EYFP-E2 ΔN329 ausschließlich in den Kern lokalisierte, befinden sich ein oder mehrere NLS in der C-terminalen Hälfte der Hinge-Region (Abb. 46). In diesem Bereich deckte die Computeranalyse zwei mögliche, miteinander überlappende NLS auf. Ob darüber hinaus weitere NLS in der N-terminalen Hälfte der Hinge liegen, wie es die Computeranalyse voraussagte, wurde hier nicht weiter untersucht. Eine andere Studie offenbarte, daß das NLS des E2-Proteins von HPV-11 ebenfalls in der Hinge-Region liegt (Zou *et al.*, 2000).

Abb. 46: Lokalisationssignale und SR-Domänen des E2-Proteins von HPV-8. Dargestellt sind die mit einer Computeranalyse entdeckten möglichen NLS sowie die SR-Domänen und RGG-Boxen. Unterhalb der Hinge-Region sind die Bereiche eingezeichnet, in denen sich die Lokalisationssignale befinden müssen, die durch Deletionsanalysen eingegrenzten wurden. Die Hinge-Region wurde grau unterlegt.

Die C-terminale Hälfte der Hinge von HPV8-E2 mußte auch das Motiv für die Lokalisation in den Nukleolus enthalten, da sich in diesem Kompartiment nur EYFP-E2 H und Δ N329 ansammelten. Tatsächlich befinden sich in diesem Bereich mehrere RG- oder RGG-Boxen (Abb. 46), auch GAR-Domänen (*glycine-arginine rich*) genannt, die bei nukleolären Proteinen häufig zu finden sind (Lai *et al.*, 1999; Shaw & Jordan, 1995). Die Funktion dieser GAR-Domänen ist nicht völlig geklärt. Es wird vermutet, daß sie die nukleoläre Lokalisation und die unspezifische Bindung an RNA unterstützen (Shaw & Jordan, 1995). Das nukleoläre Lokalisationssignal schien im vollständigen HPV8-E2-Protein und den Deletionsmutanten Δ N

Diskussion

und ΔC maskiert zu werden, da diese den Nukleolus strikt aussparten. Eine ähnliche Maskierung eines Lokalisationsmotives war bereits für ein NLS des BPV1-E2-Proteins beschrieben worden (Skiadopoulos & McBride, 1996).

Die Hinge-Region enthielt außerdem ein Motiv, daß zu der gepunkteten Verteilung von EYFP-E2 wt, ΔN und ΔC führte. Dieses Verteilungsmuster ähnelte dem der E2-Proteine von HPV-5 und HPV-11, die beide teilweise in subnukleären Kompartimenten an der nukleären Matrix akkumulierten (Lai et al., 1999; Zou et al., 2000). Lai et al. (1999) zeigten, daß das HPV5-E2-Protein dort mit Spleißfaktoren kolokalisiert und es sich somit um splicing-factor compartments (SFC) handelt. Diese scheinen für die Speicherung und den Zusammenbau von Speißosomen-Komponenten verantwortlich zu sein (Dundr & Mistel, 2001). Färbungen mit demselben Antikörper (mAb B4A11), den auch Lai et al. (1999) verwendeten, zeigten, daß die HPV8-E2-Proteine wt, AN und AC nicht in den SFC akkumulierten, sondern in morphologisch identischen Kompartimenten, die in der nächsten Nachbarschaft lagen. Die Hinge-Regionen der beiden eng verwandten E2-Proteine von HPV-5 und -8 enthalten viele RS-Dipeptid-Wiederholungen (Arg/Ser; Abb. 46), die charakteristisch für eine Familie von zellulären Spleißfaktoren sind, den SR-Proteinen (Lai et al., 1999). Diese interagieren über ihre sogenannten SR-Domänen miteinander. Mit Hilfe solcher Motive wird wahrscheinlich auch der Kontakt zwischen HPV5-E2 und den Spleißfaktoren vermittelt (Lai et al., 1999). Daher liegt nahe, daß auch die SR-reiche Hinge-Region von HPV8-E2 mit solchen Spleißfaktoren interagieren kann und auf diese Weise das Spleißen viraler Transkripte erleichtert. Warum es dennoch nicht in den gleichen Kompartimenten wie HPV5-E2 gefunden wurde, konnte abschließend nicht geklärt werden.

Die punktförmigen Kompartimente, in denen HPV8-E2 wt lokalisierte, könnten auch die Orte darstellen, an denen in der HPV-infizierten Zelle die virale Replikation und Transkription abläuft. Es ist bekannt, daß die nukleäre Matrix das Grundgerüst bildet, auf dem die zelluläre DNA-Replikation sowie die Transkription und Prozessierung der zellulären mRNA stattfindet. Tatsächlich konnten Swindle *et al.* (1999) zeigen, daß die E1- und E2-Proteine von HPV-11 zusammen mit dem zellulären Replikationsfaktor RPA in solchen Matrix-assoziierten, punktförmigen Strukturen kolokalisiern. Da in diesen Foci ebenfalls neusynthetisierte HPV-Plasmide detektiert werden, könnte es sich um die Orte der viralen DNA-Replikation handeln.

Die sogenannten PODs (PML oncogenic domains) sind weitere punktförmige Kompartimente, die ebenfalls mit der nukleären Matrix assoziiert sind. Day *et al.* (1998) beobachteten, daß das PV Strukturprotein L2 sowohl E2 als auch L1 zu den PODs rekrutierte. Daher mutmaßten

Diskussion

sie, daß in den PODs der Virionenzusammenbau während einer HPV-Infektion stattfindet und E2 die Virusgenome zu ihnen transportiert. Anhand von Antikörperfärbungen konnte hier gezeigt werden, daß HPV8-E2-Deletionsmutanten nicht in diesen PODs lokalisierten.

Die Hinge von HPV8-E2 enthält somit wenigstens drei verschiedene Lokalisationssignale. In seiner C-terminalen Hälfte liegen mindestens ein NLS und die Domänen für die Nukleolus-Lokalisation (RGG-Box?). Außerdem enthält die Hinge ein Motiv, das die Assoziation mit der nukleären Matrix vermittelte (eventuell SR-Domänen). Um zu klären, ob die eingegrenzten Motive (NLS und RGG) tatsächlich eine funktionelle Bedeutung besitzen, könnten an diesen Stellen spezifische AS-Austausche eingefügt werden. Dies wurde hier jedoch nicht mehr durchgeführt. Wie die Ergebnisse anderer Arbeitsgruppen zeigen, werden offensichtlich weitere virale Faktoren benötigt, um E2 an alle seine Bestimmungsorte in der Zelle zu bringen.

4.2.2 Lokalisation von HPV18-E2

Das E2-Protein von HPV-18 wies eine diffuse, nukleoplasmatische Verteilung auf und sparte nur den Nukleolus im Zellkern aus. Ein entsprechendes Verteilungsmuster war bereits für die E2-Proteine von HPV-16 (Sanchez-Perez *et al.*, 1997) und BPV-1 (Skiadopoulos & McBride, 1996) beschrieben worden.

4.2.3 Lokalisation von NF-IL6-Deletionsmutanten

Alle ECFP-NF-IL6-Fusionsproteine lokalisierten in ähnlicher Weise in den Zellkern. Dort wiesen sie eine diffuse, nukleoplasmatische Verteilung auf und sparten lediglich den Nukleolus aus. In der Literatur war bereits ein zweigeteiltes NLS in der basischen Region von NF-IL6 beschrieben worden (Williams *et al.*, 1997). Darüber hinaus konnte hier gezeigt werden, daß auch in der N-terminalen Domäne ein NLS liegen mußte, da auch eine NF-IL6-Mutante, deren C-terminales bZIP-Motiv deletiert wurde, in gleicher Weise in den Nukleus lokalisierte. Diese Mutante konnte mit endogenen C/EBP-Faktoren keine Heterodimere bilden und daher nicht passiv über Dimerbildung in den Kern gelangen. Demnach verfügte NF-IL6 Δ C über ein eigenes NLS. Eine Computeranalyse entdeckte tatsächlich ein mögliches NLS in der Transaktivierungsdomäne von NF-IL6.

4.3 Modulation der zellulären Genexpression durch E2 (Genechip-Analyse)

Um den Einfluß des viralen Transaktivators E2 auf die zelluläre Genexpression zu untersuchen, wurden E2-Expressionsvektoren transient in die HPV-negative, immortalisierte Keratinozytenlinie RTS3b eingebracht. Der Vorteil dieser Methodik gegenüber einer stabilen Transfektion bestand darin, daß die Zellen nur eine kurze Zeitspanne inkubiert werden mußten (48 h) und somit die Wahrscheinlichkeit geringer war, daß E2 Kompensationsmechanismen der Zelle induzierte. Solche Adaptionen können ggf. die tatsächlichen Effekte maskieren, die E2 auf die zelluläre Genexpression ausübt. Hinzu kam, daß Zellinien, die den pro-apoptotischen Faktor E2 stabil exprimieren, nur schwer generiert werden können (S. Smola-Hess, unveröffentlichte Beobachtung).

Nachteilig war, daß Keratinozyten nur mit einer geringen Effizienz zu transfizieren waren. Daher wurden hier RTS3b-Zellen verwendet, die von allen untersuchten, HPV-negativen Keratinozyten (HaCaT, primäre Zervixkeratinozyten: \leq 5%) die beste Transfektionseffizienz aufwiesen (10-50%).

Für die Analyse wurde das E2-Protein des Schleimhaut-assoziierten, Hochrisiko HPV-18 und des *Ev*-assozierten, kutanen HPV-8 verwendet. Trotz der erheblichen Unterschiede in der Pathogenese dieser Viren, zeigten ihre E2-Proteine eine gleichsinnige Modulation der zellulären Genexpression, was auf eine konservierte Wirkungsweise schließen läßt. Wurden die Expressionsmuster beider E2-Ansätze direkt miteinander verglichen, so wiesen von den 12.600 untersuchten Genen/Clustern nur insgesamt 16 eine signifikant (\geq +2-fach; \leq -2-fach) veränderte Transkription auf.

Verglichen mit dem Kontrollansatz, dessen Zellen kein E2 exprimierten, modulierten beide E2-Proteine die Expression einer Vielzahl zellulärer Gene unterschiedlichster Funktion. Insgesamt regulierte HPV18-E2 1,4% und HPV8-E2 1% der 12.600 untersuchten Gene und Cluster signifikant (mehr als zweifach). Für die Computerauswertung des HPV8-E2-Ansatzes war ein höherer Fehlerkorrekturfaktor (Noise) nötig als für die der anderen beiden Ansätze. Da dieser Faktor in die Signifikanzberechnungen einfließt, war dies vermutlich der Grund, warum HPV8-E2 insgesamt die Expression weniger Gene signifikant veränderte als HPV18-E2.

Die E2-regulierten Gene wurden nach ihren Hauptfunktionen im Metabolismus der Zelle in Gruppen geordnet. Die größte Gruppe umfaßte Gene, deren Proteine an der Signaltransduktion und der Regulation der Transkription beteiligt sind. Neben einigen Kinasen (z.B. CK II, MAPKK3) und Phosphatasen (PP5, Tyr-P) waren das hauptsächlich Transkriptionsfaktoren

Diskussion

und Ras-ähnliche, GTP-bindende Proteine. So wird die Expression einiger ubiquitär vorkommender Transkriptionsfaktoren (z.B. Fos, Jun B, Max, NF-κB p65 und p49) reprimiert. Außerdem wurde die Transkription einer Reihe kleiner GTP-bindender Proteine (TC21, Rap 1B, Rho B, Rab 11B und Rab 6) runter reguliert, die als "Schalter" von Signaltransduktionswegen fungieren. Sie sind an der Regulation der Transkription (Ras-Familie: TC21, Rap 1B und Rho-Familie: Rho B), des Zellwachstums, der Zytoskelett-Organisation, der Endo- und Exozytose (Rho-Familie) sowie des Vesikelverkehrs (Rab-Familie: Rab 11B, Rab 6) beteiligt (Takai *et al.*, 2001). Die beiden E2-Proteine veränderten ferner die Expression einiger Faktoren, welche die Aktivität kleiner GTP-bindender Proteine kontrollieren (GEP, RhoGAP, Ras Inhibitor). Indem E2 die Expression von Transkriptionsfaktoren und Mitgliedern von Signaltransduktionskaskaden verändert, ist es möglicherweise in der Lage, den komplex regulierten Metabolismus der Zelle umzuprogrammieren und ein Milieu für die Virusreplikation zu schaffen.

In der Zellkultur werden häufig morphologische Veränderungen nach Transfektion mit E2-Expressionsplasmiden beobachtet. So induziert E2 in HPV-positiven Zellen Apoptose und Zellalterung, die mit einer starken Veränderung, der Zellmorphologie einhergehen (Desaintes et al., 1999; Wells et al., 2000). Auch in den hier verwendeten HPV-negativen RTS3b-Zellen verursachte zumindest die Expression von HPV18-E2 Apoptose-ähnliche, morphologische Veränderungen. Die Genechip-Analyse lieferte einige durch E2 reprimierte Gene, deren Genprodukte an der Bildung des Zytoskeletts beteiligt sind (z.B. Microtubul-AP4, α -Actinin 1, Smoothelin-B und Plektin). V. a. das Plektin-Cluster wird durch beide E2-Proteine stark reprimiert. Plektin spielt eine Schlüsselrolle bei der Organisation des Zytoskeletts, da es als Verbindungsglied den Kontakt zwischen den drei Hauptkomponenten des Zytoskeletts - den Mikrofilamenten, den Mikrotubuli und den Intermediären Filamenten herstellt, und sie an Membranen verankert (Andra et al., 1998; Wiche, 1998). Somit könnte die E2-vermittelte starke Repression des Plektin-Gens und Plektin-ähnlicher Gene die Stabilität der Zelle beeinträchtigen und während einer HPV-Infektion möglicherweise die Freisetzung der Virionen begünstigen.

Darüber hinaus reprimiert HPV18-E2 nicht aber HPV8-E2 einige an der Apoptose-Regulation beteiligte Gene signifikant, wie z. B. bcl-x(L). Das bcl-x Gen kodiert für zwei unterschiedlich lange Proteine. Das längere Bcl-xL inhibiert Zelltod, während die kürzere Form Bcl-xS die Induktion von Apoptose unterstützt (Minn et al., 1996). Daher könnte die HPV18-E2-vermittelte Repression der Bcl-xL Transkription die Induktion von Apoptose erleichtern.

Diskussion

Außerdem modulierte E2 die Expression einiger Histon-Gene (H4.G, H2A.2, H2B.D und H1.0). Das H1.0-Gen wurde von allen regulierten Genen am stärksten (-13,8/-9,3) durch HPV18-E2 und HPV8-E2 reprimiert. Neben dem Einzelgen wurde auch das Cluster, welches H1.0 beinhaltete, stark reprimiert (-6,5/-4,0). Interessanterweise werden in den Viruspartikeln der PV lediglich die Core-Histone gefunden, die mit der viralen DNA assoziiert sind, aber nicht H1 (Favre et al., 1977). H1 und H1.0 spielen eine Rolle bei der Modulation der Chromatinstruktur, aber möglicherweise auch während der Differenzierung (Zlatanova & Doenecke, 1994). In differenzierten Zellen, die sich nicht mehr teilen, akkumulieren sie. Nimmt das Verhältnis von H1 und H1.0 im Verhältnis zu den Core-Histonen zu, so vermutete Flickinger (2000), könnte dies Differenzierung induzieren. Daher ist E2 möglicherweise in der Lage die Differenzierung von Keratinozyten, durch die Repression der H1.0-Transkription zu inhibieren. Auch die Expression einiger Core-Histone wurde durch E2 reprimiert, jedoch deutlich schwächer als die des Histon H1.0. Da DNA ohne H1.0 weniger dicht verpackt wird und damit für regulatorische Faktoren leichter zugänglich ist, könnte die virale und zelluläre Transkription und Replikation erleichtert werden. Tatsächlich beschrieben Frattini et al. (1997), daß HPV31-E2 in HPV-negativen primären Keratinozyten mitotische Kontrollpunkte inaktiviert, die Zellen in der S-Phase arretiert und dadurch mehrere Zyklen der zellulären wie viralen Replikation ermöglicht, ohne daß sich die Zellen teilen. Hier wurde außerdem gezeigt, daß E2 auch die Expression von Regulatoren des Zellzyklus, der Proliferation und der Differenzierung moduliert. So wurden beispielsweise die AP-1-Faktoren Jun B und Fos reprimiert, die offenbar an der Differenzierung der Keratinozyten entscheidend mitwirken (Eckert et al., 1997b).

Außerdem könnten die E2-Proteine die zelluläre Proteinbiosynthese, das prä-mRNA-Spleißen, den Ubiquitin-Abbau sowie die DNA-Reparatur und -Replikation beeinflussen, da sie ebenfalls die Expression solcher Faktoren modulierten, die an diesen Prozessen beteiligt waren.

Bisher war wenig über den Einfluß bekannt, den E2 auf die zelluläre Genexpression ausübt. In HPV-positiven Zellen induziert ektopisches E2 die Aktivierung der p21-Expression. Jedoch wird angenommen, daß diese Aktivierung auf der E2-vermittelten Repression der viralen E6/E7-Gene beruht, die wiederum zu einer p53-Akkumulation führt. p53 ist dann in der Lage die p21-Transkription zu aktivieren (Hwang *et al.*, 1996). Die Genechip-Analyse bestätigte die Vermutung, daß die p21-Aktivierung nur ein indirekter Effekt der E2-Expression in HPV-positiven Zellen ist, da in den HPV-negativen RTS3b-Zellen weder mit noch ohne E2-Expression p21-mRNA nachgewiesen werden konnte (Daten nicht gezeigt).

108

Außerdem beobachteten Heike et al. (1989), daß BPV1-E2 in einer T-Zell-Leukämie Zellinie und in GMK-Zellen die Promotoren der Zytokin-Gene IL-2, IL-3 und GM-CSF in transienten Transfektionsexperimenten aktiviert. Mit dieser Genechip-Analyse konnte jedoch kein Einfluß von HPV8-E2 oder HPV18-E2 auf die Transkription dieser Zytokine in Keratinozyten nachgewiesen werden.

Über welche Mechanismen E2 die zelluläre Genexpression reguliert, kann nur gemutmaßt werden. Da es aber nicht wahrscheinlich ist, daß viele zelluläre Promotoren über E2-Bindestellen verfügen, wird E2 am ehesten über die Interaktion mit zellulären Transkriptionsfaktoren, wie z.B. mit NF-IL6, zu Promotoren rekrutiert. Dennoch wäre es interessant die Promotoren der stark regulierten Gene nach E2-Bindestellen zu durchsuchen.

Während einer natürlichen HPV-Infektion werden neben dem E2-Protein auch die viralen Proteine E6 und E7 gebildet, die ebenfalls einen Einfluß auf die zelluläre Genexpression ausüben. So zeigten Nees *et al.* (2001) mit einer Genechip-Analyse, daß die Expression der Onkoproteine E6 und/oder E7 von HPV-16 in differenzierenden Keratinozyten zu einer Repression Interferon-induzierter Gene führt sowie zu einer Induktion NF- κ B-regulierter Gene. Außerdem wird die Expression von Genen moduliert, die an der Regulation des Zellzyklus oder der DNA-Synthese beteiligt sind. Diese von E6 und E7 regulierten Gene unterschieden sich von den durch E2 modulierten.

Keratinozyten, in die Genome von HPV-11 oder HPV-31 transfiziert wurden, zeigten untereinander in Genechip-Analysen ebenfalls unterschiedliche Expressionsmuster (Chang & Laimins, 2000; Thomas *et al.*, 2001). Verglichen mit der hier durchgeführten Analyse, konnten nur wenige, gleichsinnig regulierte Gene gefunden werden, unter ihnen Filamin A, Desmoglein, Serin-Hydroxmethyl-Transferase (HPV-11) und Fos (HPV-31). Somit beruht die Veränderung der zellulären Genexpression durch HPV nicht allein auf der Wirkung des E2-Proteins, sondern auf einem Zusammenspiel zwischen mehreren HPV-Proteinen.

Obwohl die hier durchgeführte Genechip-Analyse nur mit Einfachansätzen durchgeführt wurden, schienen die Ergebnisse verläßlich zu sein, da beide E2-Proteine ein ähnliches Expressionsmuster induzierten. Außerdem wurden einige Gene durch mehrere Probensets auf dem Chip erkannt. Die Analyse zeigte eine gleichsinnige Regulation solcher Probensets. Mit je zwei Pobensets waren beispielsweise die Gene des eIF-4 γ (-2,6/-2,5), des PDGF-assoziierten Proteins (-3,9/-2,8), des Phenylalanin-tRNA Synthetase-ähnlichen Proteins (-5,7/-2,8) und des 24 kDa großen Ubiquitin-konjugierenden Enzyms E2 (-2,4/-2,2) vertreten, die durch HPV18-E2 in ähnlichen Größenordnungen reprimiert wurden. Andere Gene wurden durch ein eigenes Probenset repräsentiert und zusätzlich in Clustern mit anderen Genen zusammenge-

faßt. Auch hier zeigte sich die ähnliche Regulation einzelner Gene und ihrer Cluster, wie es bei dem Histon H1.0-Gen der Fall war.

Für diese Genechip-Analyse wurden immortalisierte RTS3b-Zellen verwendet. Da ihr Metabolismus zu dem natürlicher Zellen größere Veränderungen aufweisen muß, sollten die Ergebnisse an primären Keratinozyten überprüft werden. Diese Genechip-Analyse lieferte wichtige Anhaltspunkte, welche Gene sich für eine solche weitergehende Untersuchung anbieten.

5 Zusammenfassung

Humane Papillomviren (HPV) infizieren Keratinozyten in Epithelien der Haut und der Schleimhaut und induzieren dort benigne und maligne Tumoren. Die Genexpression der HPV ist eng an die Differenzierung der Keratinozyten gekoppelt. So wird der virale Regulator der Replikation und Transkription, E2, vermehrt ab den suprabasalen Schichten des Epithels gebildet. Während die Funktionen des E2-Proteins im Verlauf des viralen Infektionszyklus relativ gut erforscht sind, ist bisher wenig bekannt über den Einfluß, den E2 auf den Metabolismus der Zelle ausübt. Als Transkriptionsfaktor könnte E2 neben der viralen ebenfalls die zelluläre Transkription modulieren.

In dieser Arbeit wurde erstmals eine Interaktion zwischen E2 und dem zellulären Transkriptionsfaktor NF-IL6 nachgewiesen. NF-IL6 gehört zu der Familie der C/EBP-Transkriptionsfaktoren, die in Epithelien ähnlich wie E2 differenzierungsspezifisch exprimiert werden. Beide, NF-IL6 und E2, kommen in der Epidermis hauptsächlich in suprabasalen Schichten zur Expression. Anhand von Gefrierschnitten der humanen Zervix konnte gezeigt werden, daß NF-IL6 auch in der Schleimhaut ein ähnliches, suprabasales Expressionsmuster wie E2 aufweist.

An Derivate des *enhanced green fluorescent protein* (EGFP) fusioniertes NF-IL6 und HPV18-E2 lokalisierten in kultivierten Keratinozyten diffus im Nukleoplasma des Zellkerns. HPV8-E2 wies dagegen ein gepunktetes Verteilungsmuster im Nukleus auf, daß zumindest teilweise mit dem des NF-IL6-Proteins überlappte. Mittels einer Deletionsanalyse konnte im N-Terminus von NF-IL6 ein NLS und in der Hinge-Domäne von HPV8-E2 ein NLS, ein nukleoläres Lokalisationssignal und ein Motiv für die Assoziation mit der nukleären Matrix eingegrenzt werden.

Zusammen waren NF-IL6 und HPV8-E2 in der Lage, synthetische und natürliche Promotoren synergistisch zu aktivieren. Für diesen Synergismus waren NF-IL6-, nicht aber E2-Binde-stellen essentiell. So reichte eine NF-IL6 Bindestelle im proximalen Promotorfragment des Involukringens aus, um zu einer synergistischen Transaktivierung durch beide Faktoren zu führen. Dieser Synergismus beruhte nicht auf einer gegenseitigen DNA-Bindungsverstärkung, wie mit Hilfe von EMSAs gezeigt werden konnte.

Mittels *in vitro* Interaktionsanalysen, wurde eine direkte Wechselwirkung zwischen E2 und NF-IL6 nachgewiesen. HPV8-E2 band mit der C-terminalen DNA-Bindungs- und Dimerisierungsdomäne an die basische Region des bZIP-Motives von NF-IL6. Über diese Wechsel-

wirkung könnte NF-IL6 das E2-Protein zu solchen Promotoren rekrutieren, die keine E2-Bindestellen beinhalten, wie z. B. den des Involukringens.

Schließlich wurde der generelle Einfluß des E2-Proteins von HPV-8 und -18 auf die zelluläre Genexpression mittels einer Genechip-Analyse untersucht. Dafür wurde die HPV-negative Keratinozytenlinie RTS3b mit bicistronische Vektoren transient transfiziert, die sowohl die Expression von E2 als auch die eines Oberflächenmarkers (H-2K^k) erlaubten. Über das Oberflächenmolekül war es möglich, die positiv transfizierten Zellen mit dem MACSelect K^k-System magnetisch anzureichern. Die RNA dieser selektionierten Zellen wurde mit dem Genechip HumanGenome U95-A (Affymetrix) untersucht, der die Expressionsanalyse von 12.600 humanen Genen ermöglicht. Die E2-Proteine von HPV-8 und -18 modulierten die zelluläre Transkription in gleichsinniger Weise und induzierten in den Zellen ein stark übereinstimmendes Expressionsmuster. So veränderten beide v.a. die Expression solcher Gene, die an der Regulation der Signaltransduktion und der Transkription sowie des Zellzyklus, der Proliferation und der Differenzierung beteiligt sind. Ferner modulierten die E2-Proteine die Transkription von Strukturproteinen, Histonen, Proteinen des Stoffwechsels einiger der Proteinbiosynthese, DNAsowie Faktoren der Replikation/Reparatur, der Spleißosomen und des Ubiquitin-Abbaus. Daher ist E2 offenbar an Umprogrammierung des Wirtszell-Metabolismus während einer HPV-Infektion der maßgeblich beteiligt.

6 Anhang: Genexpressionsanalyse

Im Anhang zum Ergebnisteil sind die Daten der Genechip-Analysen aufgelistet. Die signifikant (\leq -2 und Difference Call: Decreased/Marginally Decreased bzw. \geq +2 und Increased/Marginally Increased) regulierten Gene wurden nach der n-fachen Aktivierung sortiert und ihre Accession-Nummern angegeben. Von den modulierten Genen wurden hier die Namen der Genprodukte abgedruckt.

		n-fache
Accession-Nr.	Genprodukt	Veränderung
		<i>.</i> -
X71129	Electron transfer flavoprotein β subunit	+6.7
M65199	Endothelin 2 (ET2)	+5.4
S62138	Tls/Chop	+4.8
X51757	Heat-shock protein HSP70 B	+4.3
M13194	Excision repair protein (ERCC1)	+3.5
AI028290	ESTs (highly similar to tubby like protein 3)	+3.4
U78678	Thioredoxin	+3.2
AB002369	Myotubularin related protein 3	+3.0
X00351	β-Actin	+3.0
AL050090	EST	+2.7
U62431	Nicotinic acetylcholine receptor $\alpha 2$ subunit	+2.6
U77949	Cdc6-related protein	+2.6
U02882	cAMP-dependent 3', 5'-cyclic phosphodiesterase 4D	+2.5
D50487	RNA helicase (HRH1)	+2.4
AF104421	Uroporphyrinogen decarboxylase (UROD)	+2.4
D80007	KIAA0185	+2.4
U39817	Human Bloom's syndrome protein (BLM)	+2.4
U40705	Telomeric repeat binding factor 1 (TRF1)	+2.4
AB007874	KIAA0414	+2.3
AI797997	putative Methyltransferase	+2.3
AL049801	Novel human gene mapping to chomosome 13, similar to rat RhoGAP	+2.3
AF047469	Arsenite translocating ATPase (ASNA1)	+2.2
AJ223728	CDC45-related protein (PORC-PI-1)	+2.2
S69790	WAS protein family, member 3 (WAS3)	+2.2
D29677	KIAA0054	+2.1
X89602	rTS β-protein	+2.1
L12701	Engrailed protein (EN2)	+2.1
AA128314	Clathrin coat assembly protein	+2.0
AF091085	EST	+2.0
AL049974	EST	+2.0
AB018271	KIAA0728	+2.0
Cluster:		
M80261	Cluster: Apurinic endonuclease (APE)	+3.8
S79325	Cluster: SYTSSX1 (translocation breakpoint)	+3.6
D88674	Cluster: Antizyme inhibitor	+3.6
M27826	Cluster: Human endogenous retroviral protease	+3.4
AA151971	Cluster: EST	+2.3

Tab. 6: durch HPV8-E2 aktivierte Gene und Cluster

	•	n-fache
Accession-Nr.	Genprodukt	Veränderung
	*	0
X03473	Histone H1 0	-93
AC004528	FST	-63
X98248	Sortilin	-6.2
W26854	FST	-5.3
AD000092	Phenyl-alanine-tRNA synthetase like	-4.8
U95735	SNARE protein Ykt6 (YKT6)	-4.5
AF038897	Syntaxin 16	-4 2
X61498	NF-rB n49	-3.9
X89416	Protein phosphatase 5	-3.8
AF000421	TTF-L interacting pentide 12	-3 5
M28212	Rah 6	-3 3
U79273	Human clone 23933 similar to eIF-4A1	-3 3
D63390	Acetylhydrolase IB β-subunit	-3 3
L78833	Interferon induced protein p35	-3.2
X55110	Neurite outgrowth-promoting protein	-3.2
AB015345	Cutaneous T-cell lymphoma associated tumor antigene se20-4	-3.0
AC006276	EST	-2.9
U60644	HU-K4	-2.9
X92857	NFI/CAAT-binding transcription factor 5 (CTF5)	-2.9
L19779	Histone H2A 2	-2.9
M37191	Ras Inhibitor Inf	-2.9
M12174	Rho B	-2.9
X99325	Ste20-like kinase	-2.8
X64116	Poliovirus receptor	-2.8
U66879	Bcl-2 binding component 6 (bbc6)	-2.8
U19796	Human melanoma antigen p15	-2.8
M22488	Human bone morphogenetic protein 1 (BMP-1)	-2.7
X92106	Bleomycin hydrolase	-2.7
AI867349	EST	-2.7
M20470	Clathrin light-chain B	-2.7
D12686	Eukarvotic initiation factor 4γ (eIF- 4γ)	-2.7
X53587	Integrin B4	-2.6
U70451	Myleoid differentiation primary response protein MyD88	-2.6
M94362	Lamin B2 (LAMB2)	-2.6
U29725	Mitogen-activated protein kinase 7	-2.6
X64044	Large subunit of splicing factor U2AF (65 kDa)	-2.6
D15050	Transcription factor 8	-2.5
M86917	Oxysterol-binding protein (OSBP)	-2.4
AL023754	Laminin B3	-2.4
AF104913	Eukaryotic initiation factor 4γ (eIF- 4γ)	-2.4
M91670	Ubiquitin conjugating enzyme E^2 (24 kDa)	-2.3
AF006751	Ribosome binding protein 1	-2.3
U41745	PDGF associated protein	-2.2
A 1238381	Paired box gene 9 (nax9)	-2.2
BC000176	Rap 1B	-2.2
D38076	Ran BP1 (Ran-binding protein 1)	-2.1
AW024285	EST	-2.1
M91670	Ubiquitin conjugating enzyme E2 (24 kDa)	-2.1
X55544	Activating transcription factor 1 (ATF-1)	-2.1
X64364	Basigin	-2.1
M21186	Cytochrom b-245 Apolipoprotein M	-2.1
X79780	Rab 11B	-2.1
S60099	Amyloid precursor protein homolog (APPH)	-2.1
L25124	Prostaglandin E2 receptor	-2.1
Y11681	Mitochondrial ribosomal protein S12	-2.1
M73554	Bcl-1	-2.1

Tab. 7: durch HPV8-E2 reprimierte Gene und Cluster

Accession-Nr.GenproduktVeränderungL77567Mitochondrial citrate transport protein (CTP)-2.0AF006621Embryonic lung protein (HUEL)-2.0AI360249NADH-coenzyme Q reductase-2.0U07424Putative tRNA synthetase-like protein-2.0U37012Cleavage and polyadenylation specificity factor-2.0U14394Tissue inhibitor of metalloproteinases-3 (TIMP-3)-2.0Cluster:254367Cluster: Plectin-9.8W32483Cluster: Plectin-9.8W32483Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF-kB p65 Δ 3-4.5X03473Cluster: Fos-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: Huxan endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8		n-fache	
L77567Mitochondrial citrate transport protein (CTP)-2.0AF006621Embryonic lung protein (HUEL)-2.0AI360249NADH-coenzyme Q reductase-2.0U07424Putative tRNA synthetase-like protein-2.0U37012Cleavage and polyadenylation specificity factor-2.0U14394Tissue inhibitor of metalloproteinases-3 (TIMP-3)-2.0Cluster:Z-2.0Z54367Cluster: Plectin-9.8W32483Cluster: MMP in the female reproduktive tract-7.7X89416Cluster: Protein phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF-кB p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	Accession-Nr.	Genprodukt	Veränderung
L77567Mitochondrial citrate transport protein (CTP)-2.0AF006621Embryonic lung protein (HUEL)-2.0AI360249NADH-coenzyme Q reductase-2.0U07424Putative tRNA synthetase-like protein-2.0U37012Cleavage and polyadenylation specificity factor-2.0U14394Tissue inhibitor of metalloproteinases-3 (TIMP-3)-2.0 Cluster: Z-2.0Z54367Cluster: Plectin-9.8W32483Cluster: Protein phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: NF-κB p65 Δ3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Fos-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8			
AF006621Embryonic lung protein (HUEL)-2.0AI360249NADH-coenzyme Q reductase-2.0U07424Putative tRNA synthetase-like protein-2.0U37012Cleavage and polyadenylation specificity factor-2.0U14394Tissue inhibitor of metalloproteinases-3 (TIMP-3)-2.0 Cluster: Z54367Cluster: Plectin-9.8W32483Cluster: Plectin phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: Histone H1.0-4.0X66867Cluster: Fos-3.8V01512Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	L77567	Mitochondrial citrate transport protein (CTP)	-2.0
AI360249NADH-coenzyme Q reductase-2.0U07424Putative tRNA synthetase-like protein-2.0U37012Cleavage and polyadenylation specificity factor-2.0U14394Tissue inhibitor of metalloproteinases-3 (TIMP-3)-2.0Cluster:Z54367Cluster: Plectin-9.8W32483Cluster: Plectin phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF-kB p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6A1200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	AF006621	Embryonic lung protein (HUEL)	-2.0
U07424Putative tRNA synthetase-like protein-2.0U37012Cleavage and polyadenylation specificity factor-2.0U14394Tissue inhibitor of metalloproteinases-3 (TIMP-3)-2.0Cluster:Z54367Cluster: Plectin-9.8W32483Cluster: MMP in the female reproduktive tract-7.7X89416Cluster: Protein phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF-кB p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6A1200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	AI360249	NADH-coenzyme Q reductase	-2.0
U37012Cleavage and polyadenylation specificity factor-2.0U14394Tissue inhibitor of metalloproteinases-3 (TIMP-3)-2.0Cluster:Z54367Cluster: Plectin-9.8W32483Cluster: MMP in the female reproduktive tract-7.7X89416Cluster: Protein phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF- κ B p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: ZFM1 protein-3.6A1200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	U07424	Putative tRNA synthetase-like protein	-2.0
U14394Tissue inhibitor of metalloproteinases-3 (TIMP-3)-2.0Cluster:Z54367Cluster: Plectin-9.8W32483Cluster: MMP in the female reproduktive tract-7.7X89416Cluster: Protein phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF- κ B p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	U37012	Cleavage and polyadenylation specificity factor	-2.0
Cluster:-9.8Z54367Cluster: Plectin-9.8W32483Cluster: MMP in the female reproduktive tract-7.7X89416Cluster: Protein phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF- κ B p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone-3.0HML6.17 putative polymerase and envelope genes-2.8	U14394	Tissue inhibitor of metalloproteinases-3 (TIMP-3)	-2.0
Z54367Cluster: Plectin-9.8W32483Cluster: MMP in the female reproduktive tract-7.7X89416Cluster: Protein phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF- κ B p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	Cluster:		
W32483Cluster: MMP in the female reproduktive tract-7.7X89416Cluster: Protein phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF- κ B p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	Z54367	Cluster: Plectin	-9.8
X89416Cluster: Protein phosphatase 5-6.6D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF- κ B p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone-3.0HML6.17 putative polymerase and envelope genes-2.8	W32483	Cluster: MMP in the female reproduktive tract	-7.7
D13413Cluster: Tumor-associated 120 kDa nuclear protein p120-5.3X60287Cluster: Max-4.6U33838Cluster: NF- κ B p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone-3.0HML6.17 putative polymerase and envelope genes-2.8	X89416	Cluster: Protein phosphatase 5	-6.6
X60287Cluster: Max-4.6U33838Cluster: NF- κ B p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	D13413	Cluster: Tumor-associated 120 kDa nuclear protein p120	-5.3
U33838Cluster: NF- κ B p65 Δ 3-4.5X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-2.8	X60287	Cluster: Max	-4.6
X03473Cluster: Histone H1.0-4.0X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-3.8M31468Cluster: Ras-Like Protein Tc21-2.8	U33838	Cluster: NF- κ B p65 Δ 3	-4.5
X66867Cluster: Max-3.8V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-3.0M31468Cluster: Ras-Like Protein Tc21-2.8	X03473	Cluster: Histone H1.0	-4.0
V01512Cluster: Fos-3.8D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone HML6.17 putative polymerase and envelope genes-3.0M31468Cluster: Ras-Like Protein Tc21-2.8	X66867	Cluster: Max	-3.8
D26121Cluster: ZFM1 protein-3.6AI200373Cluster: H2A histone family member I-3.5U60269Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone-3.0HML6.17 putative polymerase and envelope genes-2.8	V01512	Cluster: Fos	-3.8
AI200373 Cluster: H2A histone family member I -3.5 U60269 Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone -3.0 HML6.17 putative polymerase and envelope genes -3.0 M31468 Cluster: Ras-Like Protein Tc21 -2.8	D26121	Cluster: ZFM1 protein	-3.6
U60269 Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone -3.0 HML6.17 putative polymerase and envelope genes M31468 Cluster: Ras-Like Protein Tc21 -2.8	AI200373	Cluster: H2A histone family member I	-3.5
HML6.17 putative polymerase and envelope genes M31468 Cluster: Ras-Like Protein Tc21 -2.8	U60269	Cluster: Human endogenous retrovirus HERV-K (HML6) proviral clone	-3.0
M31468 Cluster: Ras-Like Protein Tc21 -2.8		HML6.17 putative polymerase and envelope genes	
	M31468	Cluster: Ras-Like Protein Tc21	-2.8
M34539 Cluster: Fk506-Binding Protein -2.5	M34539	Cluster: Fk506-Binding Protein	-2.5
W29091 Cluster: KIAA0130 -2.5	W29091	Cluster: KIAA0130	-2.5
AA121509 Cluster: U6 snRNA-associated Sm-like protein (LSM7) -2.4	AA121509	Cluster: U6 snRNA-associated Sm-like protein (LSM7)	-2.4
X56687 Cluster: Nucleolar transcription factor 1 -2.3	X56687	Cluster: Nucleolar transcription factor 1	-2.3
Z84718 Cluster: EST -2.3	Z84718	Cluster: EST	-2.3
U72355 Cluster: Hsp27 ERE-TATA-binding protein (HET) -2.2	U72355	Cluster: Hsp27 ERE-TATA-binding protein (HET)	-2.2
U63825 Cluster: Human hepatitis δ -antigen interacting protein A (dipA) -2.1	U63825	Cluster: Human hepatitis δ -antigen interacting protein A (dipA)	-2.1
AJ245434 Cluster: Apolipoprotein M -2.1	AJ245434	Cluster: Apolipoprotein M	-2.1
U84971 Cluster: EST -2.1	U84971	Cluster: EST	-2.1
V01512 Cluster: Fos -2.0	V01512	Cluster: Fos	-2.0

durch HPV8-E2 reprimierte Gene und Cluster (Fortsetzung Tab. 7)

n-fache		
Accession-Nr.	Genprodukt	Veränderung
	•	
X71129	Electron transfer flavoprotein β subunit	+7.9
AF030249	Putative dienoyl-CoA isomerase (ECH1)	+6.6
AB029012	KIAA1089	+6.1
S62138	Tls/Chop	+5.3
AL031228	WD40 protein BING4	+4.3
AL022394	1-Phosphatidylinositol-4,5-Bisphosphate- Phosphodiesterase y1	+4.2
M13194	Excision repair protein ERCC1	+4.1
X57398	pM5 protein	+4.1
Z75311	RAD50	+3.7
U78678	Thioredoxin	+3.6
X92720	Phosphoenolpyruvate carboxykinase	+3.2
L13858	Guanine nucleotide exchange factor (SOS-1 Homolog)	+3.0
M64572	Protein typosine phosphatase, non-receptor type 3	+3.0
T83979	Colon cancer antigene 1	+2.8
L13857	Guanine nucleotide exchange factor (SOS-Homolog)	+2.8
AA255502	H4 histone family, member G	+2.7
U25997	Stanniocalcin precursor (STC)	+2.6
AF097935	Desmoglein 1 (DSG1)	+2.6
Z69043	Translocon-associated protein δ	+2.6
X89602	rTS & protein	+2.6
AE026402	US en RNP 100 kD	+2.5
X71/00	Vacualar proton ATPase D	+2.5
D22050	Alanyi tPNA synthetase	+2.5
A F005080	Skin specific protein (xp5)	+2.5
AP003080	VIA A 0502	+2.3
AD011104	NIAA0372 Intorloukin 12 (II 12)	+2.4
A D007874	111111111111111111111111111111111111	+2.3
AD007874	NIAA0414 U anDND associated evalophilin (USA CyD)	+2.3
AF0103/1 D70082	VIA A 0161	+2.3
D/9903	NIAA0101 Uranornhurinagan dagarhayulaga (UROD)	+2.3
AF104421 W26224	Creatin himage II an advantation	+2.3
W 20334	Casein kinase ii α-polypeptide	+2.3
AA88/480	RBP1-like protein	+2.3
D42044		+2.2
AB00/935	Immunoglobulin supertamily, member 3	+2.2
X04327	Erythrocyte 2,3-bisphosphoglycerate mutase	+2.2
AB014566		+2.2
AB014577	KIAA06//	+2.2
AB01110/	KIAA0535	+2.1
U09877	Helicase-like protein (HLP)	+2.1
M34175	β-Adaptin	+2.1
U00238	Glutamine phosphoribosyl pyrophospate amidotransferase	+2.1
M93056	Mononcyte/Neutrophil elastase inhibitor	+2.1
AF014837	m6A Methyltransferase (MT-A70)	+2.1
D82351	Retropseudogene MSSP-1	+2.0
Cluster:		
AA224768	Cluster: Gangliosid GM2 activator	+6.3
M80261	Cluster: Apurinic endonuclease (APE)	+3.7
AB004848	Cluster: EST	+3.0
L20046	Cluster: Excision repair protein ERCC5	+2.8
AA011164	Cluster: Zinc finger protein KOX15	+2.4
D11139	Cluster: Tissue inhibitor of metalloproteinases (TIMP)	+2.4
S79325	Cluster: SYTSSX1 (translocation breakpoint)	+2.2
X55954	Cluster: HL23 ribosomal protein	+2.1

Tab. 8: durch HPV18-E2 aktivierte Gene und Cluster

Accession-Nr. Genprodukt Veränderung X03473 Histone III 0 -13.8 AC04228 EST -0.08 SW116 For -0.08 W2033 Est -0.08 W2034 Est -0.01 W2034 Est -0.01 W2034 Est -0.01 W2035 Est -0.01 W2036 Est -5.1 W2037 TFF-Interesting peptide 12 -5.1 V82248 Sortlin -5.0 M203092 Tyrosine Kinase (El K1) oncogene -4.1 W22209 Tyrosine Kinase (El K1) oncogene -4.1 W4214 Rub B -3.9 M2174 Rub B -3.7 W200276 FST -3.7 W200276 FST -3.7 W20351 Neurite outgrowth-promoting protein -3.7 W20325 St20-like kinase -3.7 W20325 St20-like kinase -3.7 W20326 FST		I I	n-fache
X03473 Histone H1.0 -13.8 X004728 EST -10.8 X38416 Protein phosphatase 5 -6.3 X2854 EST -6.3 L78633 Interfrom induced protein 35 -6.4 A000002 Phorylalamine-RNA synthese-like -5.7 M100421 TTTI interacting peptide 12 -5.1 X98248 Sortilin -5.0 X98249 Sortilin -4.6 X97249 Syntaxin 16 -4.7 X97249 Typicing kenage (FI K1) oncogene -4.1 V1174 Rio Phibitor inf -4.6 X04735 Catamores T-cell prophoma-associated tumor antigene se20-4 -3.9 V1174 Rio P 7.7 -3.7 X99325 Siz20-bike kinase -3.7 -3.7 X99325 Siz20-bike kinase -3.7 -3.6 X99326 Protein -3.4 -3.7 X99325 Siz20-bike kinase isoexcyme 3 -3.3 -3.1 X97809 Rab 1B -3.4 -3.6	Accession-Nr.	Genprodukt	Veränderung
X0473 Histone H1.0 -13.8 AC004528 EST -10.8 X208541 Protein phosphatase 5 -8.3 W208541 FST -6.6 AD000092 Phenylalanne-rRNA synthetase-like -5.7 AD000921 TH-1 intercimi peptide 12 -3.3 W27953 FST -5.1 W27953 FST -5.1 W27953 Syntaxin 16 -4.7 AU38377 Syntaxin 16 -4.6 A1670100 Glucocorticoid receptor DNA binding protein 1 -4.6 A1671100 Glucocorticoid receptor DNA binding protein 1 -4.6 A167120 Cluthrin tight-th-hin B -1.1 M21744 Rbo B -3.3 A201545 Cutancous T-cell lymphoma-associated tumor antigene se20-4 -3.9 A201545 Cutancous T-cell lymphoma-file -3.8 U60644 HU-K4 -3.7 X92525 Ste20-like kinase -3.7 X92510 Nearitic outgrowth-promoting protein -3.3 U31050 B4-2 protein -3.3 U31161 A2.7 -3.4		··· ···	
AC004238 EST -108 X89416 Protein phosphatas 5 -83 W26854 FST -60 AD000902 Phenylalamine-dRNA synthetase-like -57 AP000421 TTF-1 interacting peptide 12 -51 W27953 EST -51 W27970 Syntaxin 16 -47 AlfO1000 Glacocorticoid receptor DNA binding protein 1 -46 AlfO10100 Glacocorticoid receptor DNA binding protein 1 -46 M20470 Clathrin light-chain B -41 W22470 Clathrin light-chain B -31 M2174 Rho B -37 AB015345 Cutatrosu (Fe Kinght) oncogene -31 M2174 Rho B -37 X9325 St20-like kinase -37 X9325 St20-like kinase -37 X9326 Pyrovat-dehydrogenase kinase isoenzyme 3 -31 M20105 H-2 protein -	X03473	Histone H1 0	-13.8
X89416Protein phosphatas 5 $+ 3.3$ V2684EST $- 6.8$ L73833Interfrom induced protein 35 $- 6.0$ AD000021TTF-1 interacting peptide 12 $- 5.3$ V27933EST $- 5.1$ X98248Sortlin $- 5.0$ AF000421TTF-1 interacting peptide 12 $- 5.3$ X98248Sortlin $- 5.0$ X98248Sortlin $- 6.6$ AF00100Claccortroico receptor DNA binding protein 1 $- 6.6$ AF07100Clactoric receptor DNA binding protein 1 $- 6.6$ AF07100Clactoric receptor DNA binding protein 1 $- 6.6$ M22470Clactoric receptor DNA binding protein 1 $- 6.6$ M22470Clactoric receptor DNA binding protein 1 $- 7.6$ M25259PDGF associated protein $- 3.7$ M25259Ste20-like kinase $- 3.7$ X99252Ste20-like kinase $- 3.7$ X99325Ste20-like kinase $- 3.7$ X99325Ste20-like kinase $- 3.7$ X99326Ste20-rotein $- 3.4$ U3105 $- 9.2$ $- 3.4$ U3105 $- 9.2$ $- 3.4$ U3105 $- 9.2$ $- 3.4$ U3105 $- 8.6$ $- 3.7$ X99325Ste20-like kinase isoencyme 3 $- 3.1$ A8073266 $- 9.7$ $- 3.4$ U3105 $- 9.4$ $- 3.4$ U3105 $- 9.4$ $- 3.4$ U3105 $- 1.6$ $- 3.4$ U3105 $- 1.6$ $- 3.4$ U3105 $- 7.7$ <td< td=""><td>AC004528</td><td>EST</td><td>-10.8</td></td<>	AC004528	EST	-10.8
W2684 EST -6.8 L78333 Interferon induced protein 35 -6.0 AD000902 Phenylalamine-RNA synthetise-like -5.3 W27953 FST -5.1 N9700421 TFF-1 interacting peptide 12 -5.3 W27953 FST -5.1 N97208 Syntaxin 16 -4.7 AD7100 Chaccorricoid receptor DNA binding protein 1 -4.6 AD7470 Clathorn light-chain B -4.1 M22569 Tyrosine Kinase (FL K1) locogene -4.1 U41745 PDGF associated protein -3.9 M2174 Rb B -3.3 M20576 ES1 -3.7 AC006276 ES1 -3.7 M2174 Rb B -3.3 M23759 -3.6 -3.7 M20315 St-20-like kinase -3.7 X55110 Neuric outgrowth-pronoting protein -3.6 M20315 R-4.2 protein -3.4 X79780 Rab 11B -3.4 X79780 Rab 11B	X89416	Protein phosphatase 5	-8.3
L78833 Interferon induced protein 35 -6.0 AD000021 TTF-1 interacting peptide 12 -5.3 V27933 EST -5.1 X98248 Sortilin -5.0 AF008897 Syntaxin 16 -4.7 AT0100 Clacocorticoid receptor DNA binding protein 1 -4.6 A1670100 Clathrin lights-chain B -4.1 M20470 Clathrin lights-chain B -3.9 A112174 Rob B -3.9 A12174 Rob B -3.8 U60644 HU-K4 -3.7 X200255 Ste20-like kinase -3.7 X25110 Neurite ourgrowth-promoting protein -3.6 U03105 B4-2 protein -3.5 U33726 Proval-dividrogense kinase isoenzyme 3 -3.1 A8011323 Kinax fungtowth-promoting protein -2.8 U03105 B4-2 protein -3.5 U33764 Praval-dividrogense kinase isoenzyme 3 -3.1 A89126 Pruval-dividrogense kinase isoenzyme 3 -3.1 A891101 Caster H/X-A Prasociated protein -2.8 U6000176	W26854	EST	-6.8
AD00002 Phenylalamine-tRNA synthetase-like 57 AF00042 TTF-1 interacting peptide 12 53 W27953 FST 51 51 W27953 FST 51 51 W27953 FST 51 50 W27953 FST 51 50 W27953 FST 51 50 W27953 FST 50 FS	L78833	Interferon induced protein 35	-6.0
AF000421 TTF-1 interacting peptide 12 5.3 V27953 EST 5.1 X98248 Sortlin 5.0 AF038897 Syntaxin 16 4.7 M37191 Ras Inhibitor inf 4.6 M40700 Clathrain light-chain B 4.1 M25290 Tyrosine kinase (H.K.1) oncogene 4.1 M25290 Tyrosine kinase (H.K.1) oncogene 3.9 AH015345 Cutaneous T-cell lymphoma-associated tumor antigene sc20-4 3.9 M12174 Rho B 3.7 X006276 EST 3.7 X9325 St20-like kinase 3.7 X93125 St20-like kinase 3.7 X93125 St20-like kinase 3.7 X93125 St20-like kinase isoenzyme 3 3.1 AB011803 Kinasi findiny member 5C 2.9 U41745 Human PDCF associated protein 2.8 B0000176 Rap 1H 2.8 B0000176 Rap 1H 2.8 M3001103 Kinesin findiny member 5C 2.9 U41745 Human PDCF associated protein 2.8	AD000092	Phenylalanine-tRNA synthetase-like	-5.7
W2793 EST 5.1 X98248 Sortiin 5.0 AF03897 Syntain 16 5.0 AF03897 Syntain 16 4.7 M37191 Ras Inhibitor inf 4.6 M20470 Clatrin light-chain B 4.1 M22509 Tyrosine Kinse (ELK1) oncogene 4.1 U41745 PDGF associated protein 3.9 M201545 Cutaneous T-cell lymphoma-associated numor antigene se20-4 3.9 M20174 Rio B 3.8 U60644 HU-K4 3.7 X99325 Str20-like kinase 3.7 X99325 Str20-like kinase 3.7 X99325 Str20-like kinase 3.7 X99325 Str20-like kinase 3.7 X97370 Rab 11B 3.3 AA873266 Pyruval-dehydrogenase kinase isoenzyme 3 -1 AB01103 Kinesin family nember 5C 2.9 U41745 Human PDGF associated protein 2.8 BC000176 Rap 1B -2.8 BK0917 Oxysterol-binding protein (OSBP) 2.8 U3054	AF000421	TTF-I interacting peptide 12	-5.3
X98248 Sortilin 50 X033897 Syntaxin 16 47 M37191 Ras Inhibitor inf 46 AlfO3000 Glucocorticol receptor DNA binding protein 1 46 M2101 Clathrin light-chain B 41 M25209 Tyrosine kinase (ELK1) oncogene 41 M21742 Rho B 39 Alf015345 Cutaneous T-cell lymphoma-associated tumor antigene se20-4 39 M12174 Rho B 38 U60644 HU-K4 37 Co006276 EST 37 X99325 St20-like kinase 37 X55110 Neurite ourgrowth-promoting protein 35 J03764 Plasminogen activator inhibitor type 1 34 X19780 Rab 11B 33 A487326 Pyruvar-dehydrogenase kinase isoenzyme 3 31 A48710103 Kinesin family member 5C 29 U41745 Human PDG associated protein 28 M200176 Rap 1B 28 M20054 Transcription factor S1.1 (TAF 110 kDa) 28 U30554 BKCA2 region 27	W27953	EST	-5.1
AF03897Syntaxin 164.7M37191Ras Inhibitor inf4.6Alfor0100Glucocorticoid receptor DNA binding protein 14.6M20470Clathrin Ight-chain B4.1M22620Tyrosinc kinase (ELK1) oncogene4.1U41745PDGF associated protein3.9M12174Rho B3.8U60644HU-K43.7AC006276EST3.7X55110Neurite outgrowth-promoting protein3.7X55110Neurite outgrowth-promoting protein3.6U03105B4-2 protein3.3U03764Plasmicogen activator inhibitor type 13.4X79780Rab 11B3.3AK873266Pyrnvat-dehydrogenase kinase isoenzyme 33.1A801103Kinesin family member SC2.9U141745Human PDGF associated protein2.8B000176Rap 1B2.8M30917Oxysterol-binding protein (OSBP)2.8L30534BRCA2 region2.8M63962Gastric H', K'-ATPase catalytic subunit2.8M23193Rabin and theor SU (17F 110 kDa)2.7V166618SWL/SNF complex 60 KDa subunit (BAF60b)2.7V2328Mucin 12.6V12328Mucin 12.6V12357Malagroutin factor 4y (eIF-4y)2.6V12357Malagroutin factor 4y (eIF-4y)2.5V1266FST2.5V2328Kucin 12.5V1359Anney for complex 10 kDa subunit (BAF60b)2.7V1266	X98248	Sortilin	-5.0
	AF038897	Syntaxin 16	-4.7
Al670100Glacocorticoid receptor DNA binding protein 1 4.6 M20470Clathrin light-chain B 4.1 M25269Tyrosine kinase (EL K1) oncogene 4.1 M25269Tyrosine kinase (EL K1) oncogene 3.9 AB015345Cutaneous T-cell lymphoma-associated tumor antigene sc20-4 3.9 M12174Rho B 3.7 AC006276EST 3.7 AC006276EST 3.7 X55110Neurice outgrowth-promoting protein 3.7 AD018293KLAA0750 3.6 U03105B-4.2 protein 3.3 AN37266Protein activator inhibitor type 1 3.4 X79780Rab 11B 3.3 AA873266Protexit-dehydrogenase kinase isoenzyme 3 3.1 A0801103Kinesin family member 3C 2.8 BC000176Rap 11B 2.8 BC000176Rap 11B 2.8 M86917Oxysterol-binding protein (OSBP) 2.8 U3959Transcription factor SL1 (TAF 110 kDa) 2.8 U3054BRCA2 region 2.8 M23121Rab 6 2.7 A283879Annexin A10 2.7 A283879Annexin A10 2.7 A206612EST 2.5 C17366Eukaryotic initiation factor 4 γ (eIF-4 γ) 2.6 U4745Human protein 1 2.6 U2842Bigmant melanoma metaslasis-suppressor (KISS-1) 2.6 U2750Histone HZA.2 2.5 C1746618EVX 2.5 C275C374 2.5 <	M37191	Ras Inhibitor inf	-4.6
M20470 Clathrn light-chain B 4.1 M25269 Tyrosine Kinase (ELK1) oncogene 4.1 U41745 PDGF associated protein 3.9 M2015345 Cutaneous T-cell hymphoma-associated tumor antigene se20.4 3.9 M212174 Rho B 3.7 X6006276 EST 3.7 X99225 Stc20-like kinase 3.7 X55110 Neurite outgrowth-promoting protein 3.6 03105 B4-2 protein 3.6 03105 B4-2 protein 3.3 103764 Plasminogen activator inhibitor type 1 3.4 X79780 Rab 11B 3.3 AA873266 Pyruvat-dehydrogenase kinase issenzyme 3 3.1 Ab901103 Kinesin family member 5C 2.9 U41745 Hurman PDGF associated protein 2.8 BC000176 Rap 1B 2.8 U50534 BRCA2 region 2.8 L39059 Transcription factor SL1 (TAF 110 kDa) 2.8 U50534 BRCA2 region 2.8 M280170 Qa fastrici fT, K~ATPase catalytic subunit 2.8 M23297	AI670100	Glucocorticoid receptor DNA binding protein 1	-4.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M20470	Clathrin light-chain B	-4.1
U41745 PDGF associated protein -3.9 AB015345 Cutaneous T-cell lymphom-associated tumor antigene sc20-4 -3.8 M12174 Rho B -3.8 M06044 HU-K4 -3.7 X99325 Ste20-like kinase -3.7 X99325 Ste20-like kinase -3.7 X99325 Ste20-like kinase -3.6 U03105 B4-2 protein -3.5 J03764 Plasminogen activator inhibitor type 1 -3.4 X79780 Rab 11B -3.3 AA873266 Pyruvat-dehydrogenase kinase isoenzyme 3 -3.1 AB01103 Kinesin family member 5C -2.9 U41745 Human POGF associated protein -2.8 BC000176 Rap 1B -2.8 M60917 Oxysterol-binding protein (OSBP) -2.8 L39059 Transcription factor SL1 (TAF 110 kDa) -2.8 M28012 Rab 1B -2.7 X52228 Mucin 1 -2.8 M28054 Gastric H', K' -ATPase catalytic subunit -2.7 X5228 Mucin 1 -2.6 V123897 Annexin A10	M25269	Tyrosine kinase (ELK1) oncogene	-4.1
AB01345 Cutaneous 1-ceil lymphoma-associated tumor antigene se20-4 -3.8 U60644 HU-K4 -3.7 AC006276 EST -3.7 X29325 Ste20-like kinase -3.7 X55110 Neurite outgrowth-promoting protein -3.7 X006276 EST -3.6 U03105 B4-2 protein -3.4 X79780 Rab 11B -3.4 X79780 Rab 11B -3.3 AA873266 Pyruvat-dehydrogenase kinase isoenzyme 3 -3.1 AB01103 Kinesin family member 5C -2.9 U41745 Human PDGF associated protein -2.8 BC000176 Rap 1B -2.8 BC000176 Rap 1B -2.8 J39059 Transcription factor SL1 (TAF 110 kDa) -2.8 L39059 Transcription factor SL1 (TAF 110 kDa) -2.8 L39059 Transcription factor SL1 (TAF 110 kDa) -2.7 X52228 Mucin 1 -2.7 X52228 Mucin 1 -2.7 X52228 Mucin 1 -2.7 X52228 Mucin 1 -2.7	U41745	PDGF associated protein	-3.9
M121/4 Kho B -3.8 W121/4 HU-K4 -3.7 AC006276 EST -3.7 X99325 Ste20-like kinase -3.7 X55110 Neurite outgrowth-promoting protein -3.7 AB018293 KIAA0750 -3.6 U30105 B4-2 protein -3.5 J03764 Plasminogen activator inhibitor type I -3.3 X79780 Rab 11B -3.3 AA873266 Pyruvat-dehydrogenase kinase isoenzyme 3 -3.1 AB011103 Kinesin family member 5C 2.9 U41745 Human PDGF associated protein -2.8 BC000176 Ra J IB -2.8 M86917 Oxysterol-binding protein (OSBP) -2.8 L39059 Transcription factor SL1 (TAF 110 kba) -2.8 L39059 Transcription factor SL 1(TAF 110 kba) -2.7 X52228 Mucin 1 -2.8 AD000092 Phenylalamine t-RNA synthetase like -2.8 AD238079 Annexin A10 -2.7 X5228 Mucin 1 -2.6 A1238497 Annexin A10 -2.7	AB015345	Cutaneous 1-cell lymphoma-associated tumor antigene se20-4	-3.9
C00044 10-K4 -5.7 X0006276 EST -3.7 X99325 Ste20-like kinase -3.7 X55110 Neuric outgrowth-promoting protein -3.7 AB018293 KIAA0750 -3.6 U03105 B4-2 protein -3.6 U03105 P4-2 protein -3.4 X79780 Rab 11B -3.3 AA873266 Pyruvat-dehydrogenase kinase isoenzyme 3 -3.1 AB011103 Kinesin family member 5C -2.9 U41745 Human PDGF associated protein -2.8 BC000176 Rap 1B -2.8 L39059 Transcription factor 5L1 (TAF 110 kDa) -2.8 U50534 BRCA2 region -2.8 M28012 Rab 6 -2.7 X52228 Mucin 1 -2.7 X52224 Rab 6 -2.7 X52225 Mucin 1 -2.7 X52228 Mucin 1 -2.6 U25054 BR/CA2 region -2.7 X52228 Mucin 1 -2.7	M121/4	Kho B	-3.8
AC0002/0 Ex1 -5.1 X0002/0 Ex1 -5.1 X55110 Neurite outgrowth-promoting protein -3.7 X55110 Neurite outgrowth-promoting protein -3.6 U03105 B4-2 protein -3.5 J03764 Plasminogen activator inhibitor type 1 -3.4 X79780 Rab 11B -3.3 AA873266 Pyruvat-dehydrogenase kinase isoenzyme 3 -3.1 AB011103 Kinesin family member 5C -2.9 U41745 Human PDGF associated protein -2.8 BC000176 Rap 1B -2.8 M86917 Oxysterol-binding protein (OSBP) -2.8 L39059 Transcription factor SL1 (TAF 110 kDa) -2.8 U50534 BRCA2 region -2.8 M63962 Gastric H, K'-ATPase catalytic subunit -2.8 M28212 Rab 6 -2.7 X5228 Mucin 1 -2.7 AD238979 Annexin A10 -2.7 M228212 Rab 6 -2.7 AV006742 EST -2.6 L17567 Mitochondria citrate transport protein 1	000044 AC006276	HU-K4	-3.7
A29323 Di220-IRC MIBSC -5.7 AB018293 KIAA0750 -3.6 U03105 B-4.2 protein -3.5 J03764 Plasminogen activator inhibitor type 1 -3.4 X79780 Rab 11B -3.3 AA873266 Pyrtuvat-dehydrogenase kinase isoenzyme 3 -3.1 AB01103 Kinesin family member 5C -2.9 U41745 Human PDGF associated protein -2.8 BC000176 Rap 1B -2.8 L39059 Transcription factor SL1 (TAF 110 KDa) -2.8 U50534 BRCA2 region -2.8 M63962 Gastric H [*] , K [*] -ATPase catalytic subunit -2.8 M28212 Rab 6 -2.7 X52228 Mucin 1 -2.7 A238979 Annexin A10 -2.7 Q46618 Eukaryotic initiation factor 4 γ (eIF-4 γ) -2.6 U43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 U43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.5 U7567 Mitochondrial citrate transport protein (CTP) -2.5 U79256 EST -2.5	AC006276	ESI Sta20 lilea kinaga	-3.7
ADD in terms of ungroup protein-5.7AB018293-3.6U03105B4-2 protein-3.6U03105B4-2 protein-3.4X79780Rab 11B-3.4X79780Rab 11B-3.3AA873266Pyruvat-dehydrogenase kinase isoenzyme 3-3.1AB011103Kinesin family member 5C-2.9U41745Human PDGF associated protein-2.8BC000176Rap 1B-2.8U50534BRCA2 region-2.8L30059Transcription factor SL1 (TAF 110 KDa)-2.8U50534BRCA2 region-2.8M63962Gastric HT, K-ATPase catalytic subunit-2.8M28212Rab 6-2.7X52228Mucin 1-2.7V25329Annexin A10-2.7U66618SWI/SNF complex 60 KDa subunit (BAF60b)-2.7AW006742EST-2.6U43527Malignant melanoma metastasis-suppressor (KISS-1)-2.6U43527Malignant melanoma metastasi-suppressor (KISS-1)-2.6U79266EST-2.5U79276EST-2.5U79276EST-2.5U79276EST-2.5U79276EST-2.5U79376Microhubul-associated protein 4 (MAP4)-2.4M6370-2.5-2.5U79276EST-2.5U79276EST-2.5U79276EST-2.5U79276EST-2.5U79379Microhubule-associated protein 4 (MAP4)-2.4<	X99323 X55110	Sie20-like kinase	-3.7
AB016225 KLARO JO 5.0 U03105 B4-2 protein -3.5 J03764 Plasminogen activator inhibitor type 1 -3.4 X79780 Rab 11B -3.3 AA873266 Pyruvat-dehydrogenase kinase isoenzyme 3 -3.1 AB011103 Kinesin family member 5C -2.9 U41745 Human PDGF associated protein -2.8 BC000176 Rap 1B -2.8 M86917 Oxysterol-binding protein (OSBP) -2.8 L30059 Transcription factor SL1 (TAF 110 KDa) -2.8 U50534 BRCA2 region -2.8 M28012 Rab 6 -2.7 X52228 Mucin 1 -2.7 X52228 Mucin 1 -2.7 V46618 SW/SNF complex 60 KDa subunit (BAF60b) -2.7 V4506751 Ribosome binding protein 1 -2.6 V45074 EST -2.6 V4527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 V4557 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 V4527 Malignant melanoma metastasis-suppressor (KISS-1) -2.5	AD018202	Neurice outgrowin-promoting protein	-5.7
Control Display the product of the	H03105	BA-2 protein	-3.5
Job GoldLabel model in the type 1-3.3AA873260Pyruvat-dehydrogenase kinase isoenzyme 3-3.1AA873266Pyruvat-dehydrogenase kinase isoenzyme 3-3.1BOI 1103Kinesin family member 5C-2.9U41745Human PDGF associated protein-2.8BC000176Rap 1B-2.8L39059Transcription factor SL1 (TAF 110 kDa)-2.8U50534BRCA2 region-2.8AD000092Phenylalanine t-RNA synthetase like-2.8M28212Rab 6-2.7X52228Mucin 1-2.7AD28377Annexin A10-2.7U66618SWUSNF complex 60 KDa subunit (BAF60b)-2.7AW006742EST-2.6U43527Malignant melanoma metastasis-suppressor (KISS-1)-2.6U43527Malignant melanoma metastasis-suppressor (KISS-1)-2.6U43527Malignant melanoma metastasis-suppressor (KISS-1)-2.5L19799Histone H2A.2-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79256EST-2.5U79257Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M64571Microtubule-associated p	103764	Plasminogen activator inhibitor type 1	-3.4
AA873266 Pyruval-dehydrogenase kinase isoenzyme 3 -3.1 AB011103 Kinesin family member 5C -2.9 U41745 Human PDGF associated protein -2.8 BC000176 Rap 1B -2.8 M86917 Oxysterol-binding protein (OSBP) -2.8 139059 Transcription factor SL1 (TAF 110 kDa) -2.8 U50534 BRCA2 region -2.8 M63962 Gastric HT, K-ATPase catalytic subunit -2.8 M28212 Rab 6 -2.7 X52228 Mucin 1 -2.7 M223879 Annexin A10 -2.7 V66618 SWUSNF complex 60 KDa subunit (BAF60b) -2.7 V266618 SWUSNF complex 60 KDa subunit (BAF60b) -2.7 V4006742 EST -2.6 P12686 Eukaryotic initiation factor 4\gamma (eIF-4\gamma) -2.6 V43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 V19797 Histone H2A.2 -2.5 V19797 Histone H2A.2 -2.5 V19797 Histone H2A.2 -2.5 V19797 Histone H2A.2 -2.5 V1	X79780	Rab 11B	-3.3
AB011103 Kinesin family member 5C -2.9 U41745 Human PDGF associated protein -2.8 BC000176 Rap 1B -2.8 U3593 Transcription factor SL1 (TAF 110 kDa) -2.8 U50534 BRCA2 region -2.8 M63962 Gastric H ⁺ , K ⁻ ATPase catalytic subunit -2.8 M28212 Rab 6 -2.7 X52228 Mucin 1 -2.7 AJ238979 Annexin A10 -2.7 V52328 Mucin 1 -2.7 AJ238979 Annexin A10 -2.7 V66618 SWI/SNF complex 60 KDa subunit (BAF60b) -2.7 AW006742 EST -2.6 L17567 Ribosome binding protein 1 -2.6 L27557 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 L4867349 EST -2.5 L197979 Histone H2A.2 -2.5 L197797 Histoneh2A.2 -2.5 L19779 Histone H2A.2 -2.5 L19779 Histone H2A.2 -2.5 L19779 Histone H2A.2 -2.5 L19779<	AA873266	Pyruvat-dehydrogenase kinase isoenzyme 3	-3.1
U41745 Human PDGF associated protein -2.8 BC000176 Rap 1B -2.8 BC000176 Rap 1B -2.8 BC000176 Rap 1B -2.8 BC000176 Rap 1B -2.8 L39059 Transcription factor SL1 (TAF 110 kDa) -2.8 U50534 BRCA2 region -2.8 M63962 Gastric H ⁺ ,K ⁺ -ATPase catalytic subunit -2.8 M28212 Rab 6 -2.7 X52228 Mucin 1 -2.7 AJ238979 Annexin A10 -2.7 U66618 SWU/SNF complex 60 KDa subunit (BAF60b) -2.7 AF0006751 Ribosome binding protein 1 -2.6 D12686 Eukaryotic initiation factor 4γ (eIF-4γ) -2.6 L43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 L77567 Mitochondrial citrate transport protein (CTP) -2.5 L19779 Histone H2A.2 -2.5 L19779 Histone H2A.2 -2.5 L19779 Histone H2A.2 -2.5 X57206 ID)-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 X57	AB011103	Kinesin family member 5C	-2.9
BC000176 Rap 1B -2.8 M86917 Oxysterol-binding protein (OSBP) -2.8 L39059 Transcription factor SL1 (TAF 110 kDa) -2.8 US0534 BRCA2 region -2.8 M609002 Phenylalanine t-RNA synthetase like -2.8 M63962 Gastric H ⁺ , K ⁺ -ATPase catalytic subunit -2.8 M28212 Rab 6 -2.7 X52228 Mucin 1 -2.7 AJ238979 Annexin A10 -2.7 U66618 SWU/SNF complex 60 KDa subunit (BAF60b) -2.7 AW006742 EST -2.6 U43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 U43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 U179567 Mitochondrial citrate transport protein (CTP) -2.5 CIAI867349 EST -2.5 V179256 EST -2.5 V179256 ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 V179256 EST -2.5 V179256 EST -2.5 V179256 EST -2.5 V179256	U41745	Human PDGF associated protein	-2.8
M86917 Oxysterol-binding protein (OSBP) -2.8 L39059 Transcription factor SL1 (TAF 110 kDa) -2.8 M000092 Phenylalanine t-RNA synthetase like -2.8 M03962 Gastric H [*] , K [*] -ATPase catalytic subunit -2.8 M28212 Rab 6 -2.7 X52228 Mucin 1 -2.7 M03967 Gastric H [*] , K [*] -ATPase catalytic subunit -2.7 M28212 Rab 6 -2.7 X52228 Mucin 1 -2.7 M006742 EST -2.7 AW006742 EST -2.7 AW006742 EST -2.7 AW006741 Ribosome binding protein 1 -2.6 D12686 Eukaryotic initiation factor 4\gamma (eIF-4\gamma) -2.6 L77567 Mitochondrial citrate transport protein (CTP) -2.5 ClA1867349 EST -2.5 L19779 Histone H2A.2 -2.5 L19779 Histone H2A.2 -2.5 V57206 ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 Z3115 Bcl-xL -2.5 M94362 Lamin B2 (LAMB2)	BC000176	Rap 1B	-2.8
L39059 Transcription factor SL1 (TAF 110 kDa) -2.8 U50534 BRCA2 region -2.8 M63962 Gastric H*,K*-ATPase catalytic subunit -2.8 M28212 Rab 6 -2.7 X52228 Mucin 1 -2.7 AJ238979 Annexin A10 -2.7 U66618 SWI/SNF complex 60 KDa subunit (BAF60b) -2.7 AW006742 EST -2.6 AF006751 Ribosome binding protein 1 -2.6 D12686 Eukaryotic initiation factor 4γ (eIF-4γ) -2.6 L47557 Mitochondrial citrate transport protein (CTP) -2.5 CIAI867349 EST -2.5 CIAI867349 EST -2.5 L19779 Histone H2A.2 -2.5 V179256 EST -2.5 V179256 EST -2.5 V179257 Bcl-xL -2.5 V179256 EST -2.5 V179257 EST -2.5 V179256 EST -2.5 V19256 EST -2.5 V21057 EST -2.5	M86917	Oxysterol-binding protein (OSBP)	-2.8
U50534 BRCA2 region 2.8 AD000092 Phenylalanine t-RNA synthetase like -2.8 M63962 Gastric H ⁷ , K ⁺ -ATPase catalytic subunit -2.7 X52228 Mucin 1 -2.7 AJ238979 Annexin A10 -2.7 U66618 SWUSNF complex 60 KDa subunit (BAF60b) -2.7 AW006742 EST -2.7 AF006751 Ribosome binding protein 1 -2.6 D12686 Eukaryotic initiation factor 4γ (eIF-4γ) -2.6 U43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 L77567 Mitochondrial citrate transport protein (CTP) -2.5 CIA1867349 EST -2.5 L9779 Histone H2A.2 -2.5 U79256 EST -2.5 X57206 ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 AF06888 TNFR-related death receptor-6 (DR6) -2.5 X2115 Bcl-xL -2.5 M91670 Ubiquitin conjugating enzyme E2 (24 kDa) -2.4 M94362 Lamin B2 (LAMB2) -2.4 M54571 Microtubule-associated protein 4 (MAP4) <td>L39059</td> <td>Transcription factor SL1 (TAF 110 kDa)</td> <td>-2.8</td>	L39059	Transcription factor SL1 (TAF 110 kDa)	-2.8
AD000092Phenylalanine t-RNA synthetase like2.8M63962Gastric H ⁺ , K ⁺ -A TPase catalytic subunit-2.8M28212Rab 6-2.7X52228Mucin 1-2.7AJ238979Annexin A10-2.7U66618SWU/SNF complex 60 KDa subunit (BAF60b)-2.7AW006742EST-2.6D12686Eukaryotic initiation factor 4γ (eIF- 4γ)-2.6U43527Malignant melanoma metastais-suppressor (KISS-1)-2.6L77567Mitochondrial citrate transport protein (CTP)-2.5CIA1867349EST-2.5L19779Histone H2A.2-2.5U79256EST-2.5L19779Histone H2A.2-2.5V57206ID-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF1052167EST-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4AC004030Paralemmin-2.4AG04030Paralemmin-2.4AF6078Coenzym Q-2.4W28429EST-2.3M59830Hsp 70 1B-2.3L38487Estrogen receptor-like 1-2.3M59830Hsp 70 1B-2.3L38487Estrogen receptor-like 1-2.3M59830Hsp 70 1B-2.3L3847Estrogen receptor-like 1-2.3L3847<	U50534	BRCA2 region	-2.8
M63962 Gastric H',K'-ATPase catalytic subunit -2.8 M28212 Rab 6 -2.7 M28212 Rab 6 -2.7 AJ238979 Annexin A10 -2.7 JJ38979 Annexin A10 -2.7 U66618 SWI/SNF complex 60 KDa subunit (BAF60b) -2.7 AW006742 EST -2.7 AF006751 Ribosome binding protein 1 -2.6 D12686 Eukaryotic initiation factor 4 γ (eIF-4 γ) -2.6 L43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 L77567 Mitochondrial citrate transport protein (CTP) -2.5 CIA1867349 EST -2.5 L97979 Histone H2A.2 -2.5 U79256 EST -2.5 X57206 ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 X57206 ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 Z23115 Bcl-xL -2.5 M91670 Ubiquitin conjugating enzyme E2 (24 kDa) -2.4 M94362 Lamin B2 (LAMB2) -2.4 M5450 Acetylhydrolase IB β-subunit -2.4 <td>AD000092</td> <td>Phenylalanine t-RNA synthetase like</td> <td>-2.8</td>	AD000092	Phenylalanine t-RNA synthetase like	-2.8
M28212 Rab 6 -2.7 X52228 Mucin 1 -2.7 X5229 Mucin 1 -2.7 M238979 Annexin A10 -2.7 U66618 SWI/SNF complex 60 KDa subunit (BAF60b) -2.7 AW006742 EST -2.7 AF006751 Ribosome binding protein 1 -2.6 D12686 Eukaryotic initiation factor 4γ (eIF-4γ) -2.6 L43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 L77567 Mitochondrial citrate transport protein (CTP) -2.5 L1867349 EST -2.5 V19256 EST -2.5 U79256 EST -2.5 X57206 ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 X57206 ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 Z23115 Bcl-xL -2.5 M91670 Ubiquitin conjugating enzyme E2 (24 kDa) -2.4 M94362 Lamin B2 (LAMB2) -2.4 M64571 Microtubule-associated protein 4 (MAP4) -2.4 M31468 Ras-like protein Tc21 -2.4 D633	M63962	Gastric H ⁺ ,K ⁺ -ATPase catalytic subunit	-2.8
XS2228 Mucn 1 -2.7 AJ238979 Annexin A10 -2.7 U66618 SWI/SNF complex 60 KDa subunit (BAF60b) -2.7 AW006742 EST -2.7 AF006751 Ribosome binding protein 1 -2.6 D12686 Eukaryotic initiation factor 4γ (eIF-4γ) -2.6 L43527 Malignant melanoma metastasis-suppressor (KISS-1) -2.6 L77567 Mitochondrial citrate transport protein (CTP) -2.5 CIA1867349 EST -2.5 L19779 Histone H2A.2 -2.5 L19779 Histone H2A.2 -2.5 X57206 ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 X57206 ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 X57206 ID-myo-inoguating enzyme E2 (24 kDa) -2.5 X5715 Bcl-xL -2.5 M91670 Ubiquitin conjugating enzyme E2 (24 kDa) -2.4 M94362 Lamin B2 (LAMB2) -2.4 M64571 Microtubule-associated protein 4 (MAP4) -2.4 M64571 Microtubule-associated protein 4 (MAP4) -2.4 M53390	M28212	Rab 6	-2.7
AJ2389/9Annexm A10-2.7U66618SWI/SNF complex 60 KDa subunit (BAF60b)-2.7AW006742EST-2.6D12686Eukaryotic initiation factor 4γ (eIF- 4γ)-2.6U43527Malignant melanoma metastasis-suppressor (KISS-1)-2.6L77567Mitochondrial citrate transport protein (CTP)-2.5CIA1867349EST-2.5AF104913Eukaryotic initiation factor 4γ (eIF- 4γ)-2.5L19779Histone H2A.2-2.5U79256EST-2.5X57206ID-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5AF052167EST-2.5Z23115Bcl-xL-2.5M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4AG04030Paralemmin-2.4AT66078Coenzym Q-2.4W28429EST-2.3L38487Estrogen receptor-like 1-2.3AS9830Hsp 70 1B-2.3L38487Estrogen receptor-like 1-2.3AG00455KLAA0838 (Glutaminase)-2.3	X52228	Mucin 1	-2.7
Uceol 8SWDSNF complex 60 KDa subunit (BAF60b) -2.7 AW006742EST -2.7 AF006751Ribosome binding protein 1 -2.6 D12686Eukaryotic initiation factor 4 γ (eIF-4 γ) -2.6 U43527Malignant melanoma metastasis-suppressor (KISS-1) -2.6 L77567Mitochondrial citrate transport protein (CTP) -2.5 ClA1867349EST -2.5 AF104913Eukaryotic initiation factor 4 γ (eIF-4 γ) -2.5 L19779Histone H2A.2 -2.5 U79256EST -2.5 X57206ID-myo-inositol-trisphosphate 3-kinase B isoenzyme -2.5 AF068868TNFR-related death receptor-6 (DR6) -2.5 AF052167EST -2.5 Z23115Bcl-xL -2.5 M94362Lamin B2 (LAMB2) -2.4 M64571Microtubule-associated protein 4 (MAP4) -2.4 M54390Acetylhydrolase IB β -subunit -2.4 AC004030Paralemmin -2.4 AC004030Paralemmin -2.4 M28429EST -2.3 AS9830Hsp 70 1B -2.3 L38487Estrogen receptor-like 1 -2.3 AB020645KIAA0838 (Glutaminase) -2.3	AJ238979	Annexin A10 (0.000 ± 1.000)	-2.7
AW006/42ES1-2./AF006751Ribosome binding protein 1-2.6D12686Eukaryotic initiation factor 4γ (eIF- 4γ)-2.6U43527Malignant melanoma metastasis-suppressor (KISS-1)-2.6L77567Mitochondrial citrate transport protein (CTP)-2.5CIAI867349EST-2.5L19779Histone H2A.2-2.5U79256EST-2.5X57206ID-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4AC004030Paralemmin-2.4AT766078Coenzym Q-2.4W28429EST-2.4S60099Amyloid precursor protein homolog (APPH)-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	U66618	SWI/SNF complex 60 KDa subunit (BAF60b)	-2.7
AF000/51Kbosome binding protein 1-2.6D12686Eukaryotic initiation factor 4γ (eIF- 4γ)-2.6U43527Malignant melanoma metastasis-suppressor (KISS-1)-2.6L77567Mitochondrial citrate transport protein (CTP)-2.5ClAI867349EST-2.5AF104913Eukaryotic initiation factor 4γ (eIF- 4γ)-2.5L19779Histone H2A.2-2.5U79256EST-2.5X572061D-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5AF052167EST-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M64571Microtubule associated protein 4 (MAP4)-2.4AC004030Paralemmin-2.4AC004030Paralemmin-2.4K42429EST-2.4S60099Amyloid precursor protein homolog (APPH)-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	AW006/42	ESI Dilaman hindina matria 1	-2.7
D12000Eukaryotic initiation factor 4 γ (eIF-4 γ)-2.6U43527Malignant melanoma metastasis-suppressor (KISS-1)-2.6L77567Mitochondrial citrate transport protein (CTP)-2.5CIAI867349EST-2.5AF104913Eukaryotic initiation factor 4 γ (eIF-4 γ)-2.5L19779Histone H2A.2-2.5U79256EST-2.5X572061D-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5AF052167EST-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β -subunit-2.4AC004030Paralemmin-2.4AI766078Coenzym Q-2.4W28429EST-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	AF000/31	Ribosome binding protein 1	-2.0
O43527Mangmati metaalona metastasis-suppressor (Kriss-1)-2.6L77567Mitochondrial citrate transport protein (CTP)-2.5ClAI867349EST-2.5AF104913Eukaryotic initiation factor 4γ (eIF- 4γ)-2.5L19779Histone H2A.2-2.5U79256EST-2.5X572061D-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β -subunit-2.4AC004030Paralemmin-2.4AT766078Coenzym Q-2.4W28429EST-2.3K6099Amyloid precursor protein homolog (APPH)-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	D12000	Eukaryotic initiation factor 4γ (eIF- 4γ) Multiment melonome metostoria summerse (KISS 1)	-2.0
L17307Millocholmia entails bit protein (CT1)2-2.5ClAI867349EST-2.5L19717Histone H2A.2-2.5U79256EST-2.5X572061D-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5AF052167EST-2.5W19670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β -subunit-2.4AC004030Paralemmin-2.4AI766078Coenzym Q-2.4K8429EST-2.3K95830Hsp 70 1B-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	U45527 L77567	Manghant metanoma metastasis-suppressor (KISS-1)	-2.0
Childor/347Edit22.5AF104913Eukaryotic initiation factor 4γ (eIF- 4γ)-2.5L19779Histone H2A.2-2.5U79256EST-2.5X57206ID-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5AF052167EST-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β -subunit-2.4AT66078Coenzym Q-2.4W28429EST-2.4K60099Amyloid precursor protein homolog (APPH)-2.3L38487Estrogen receptor-like 1-2.3L38487Estrogen receptor-like 1-2.3	C1A1867349	FST	-2.5
In 1979Historie Hularion factor 4_1 (cfr 4_1)2.5L19779Histone H2A.2-2.5U79256EST-2.5X57206ID-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5AF052167EST-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β -subunit-2.4AT66078Coenzym Q-2.4W28429EST-2.4S60099Amyloid precursor protein homolog (APPH)-2.3M59830Hsp 70 1B-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	AF104913	Eukarvotic initiation factor 4γ (eIE- 4γ)	-2.5
L1717L18000 FLA22.5U79256EST-2.5X572061D-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5AF052167EST-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β-subunit-2.4AC004030Paralemmin-2.4AT766078Coenzym Q-2.4S60099Amyloid precursor protein homolog (APPH)-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	L19779	Histone H2A 2	-2.5
X57206ID-myo-inositol-trisphosphate 3-kinase B isoenzyme-2.5AF068868TNFR-related death receptor-6 (DR6)-2.5AF052167EST-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β -subunit-2.4AC004030Paralemmin-2.4AI766078Coenzym Q-2.4S60099Amyloid precursor protein homolog (APPH)-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	U79256	EST	-2.5
AF068868TNFR-related death receptor-6 (DR6)-2.5AF052167EST-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β-subunit-2.4AC004030Paralemmin-2.4AT66078Coenzym Q-2.4W28429EST-2.4S60099Amyloid precursor protein homolog (APPH)-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	X57206	1D-myo-inositol-trisphosphate 3-kinase B isoenzyme	-2.5
AF052167EST-2.5Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β -subunit-2.4AC004030Paralemmin-2.4AI766078Coenzym Q-2.4S60099Amyloid precursor protein homolog (APPH)-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	AF068868	TNFR-related death receptor-6 (DR6)	-2.5
Z23115Bcl-xL-2.5M91670Ubiquitin conjugating enzyme E2 (24 kDa)-2.4M94362Lamin B2 (LAMB2)-2.4M64571Microtubule-associated protein 4 (MAP4)-2.4M31468Ras-like protein Tc21-2.4D63390Acetylhydrolase IB β -subunit-2.4AC004030Paralemmin-2.4A1766078Coenzym Q-2.4W28429EST-2.4S60099Amyloid precursor protein homolog (APPH)-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	AF052167	EST	-2.5
M91670Ubiquitin conjugating enzyme E2 (24 kDa) -2.4 M94362Lamin B2 (LAMB2) -2.4 M64571Microtubule-associated protein 4 (MAP4) -2.4 M31468Ras-like protein Tc21 -2.4 D63390Acetylhydrolase IB β -subunit -2.4 AC004030Paralemmin -2.4 A1766078Coenzym Q -2.4 W28429EST -2.4 S60099Amyloid precursor protein homolog (APPH) -2.3 L38487Estrogen receptor-like 1 -2.3 AB020645KIAA0838 (Glutaminase) -2.3	Z23115	Bcl-xL	-2.5
M94362Lamin B2 (LAMB2) -2.4 M64571Microtubule-associated protein 4 (MAP4) -2.4 M31468Ras-like protein Tc21 -2.4 D63390Acetylhydrolase IB β -subunit -2.4 AC004030Paralemmin -2.4 AI766078Coenzym Q -2.4 W28429EST -2.4 S60099Amyloid precursor protein homolog (APPH) -2.3 L38487Estrogen receptor-like 1 -2.3 AB020645KIAA0838 (Glutaminase) -2.3	M91670	Ubiquitin conjugating enzyme E2 (24 kDa)	-2.4
M64571Microtubule-associated protein 4 (MAP4) -2.4 M31468Ras-like protein Tc21 -2.4 D63390Acetylhydrolase IB β -subunit -2.4 AC004030Paralemmin -2.4 AI766078Coenzym Q -2.4 W28429EST -2.4 S60099Amyloid precursor protein homolog (APPH) -2.3 M59830Hsp 70 1B -2.3 L38487Estrogen receptor-like 1 -2.3 AB020645KIAA0838 (Glutaminase) -2.3	M94362	Lamin B2 (LAMB2)	-2.4
M31468 Ras-like protein Tc21 -2.4 D63390 Acetylhydrolase IB β-subunit -2.4 AC004030 Paralemmin -2.4 AI766078 Coenzym Q -2.4 W28429 EST -2.4 S60099 Amyloid precursor protein homolog (APPH) -2.3 M59830 Hsp 70 1B -2.3 L38487 Estrogen receptor-like 1 -2.3 AB020645 KIAA0838 (Glutaminase) -2.3	M64571	Microtubule-associated protein 4 (MAP4)	-2.4
D63390 Acetylhydrolase IB β-subunit -2.4 AC004030 Paralemmin -2.4 AI766078 Coenzym Q -2.4 W28429 EST -2.4 S60099 Amyloid precursor protein homolog (APPH) -2.3 M59830 Hsp 70 1B -2.3 L38487 Estrogen receptor-like 1 -2.3 AB020645 KIAA0838 (Glutaminase) -2.3	M31468	Ras-like protein Tc21	-2.4
AC004030 Paralemmin -2.4 AI766078 Coenzym Q -2.4 W28429 EST -2.4 S60099 Amyloid precursor protein homolog (APPH) -2.3 M59830 Hsp 70 1B -2.3 L38487 Estrogen receptor-like 1 -2.3 AB020645 KIAA0838 (Glutaminase) -2.3	D63390	Acetylhydrolase IB β-subunit	-2.4
AI/660/8 Coenzym Q -2.4 W28429 EST -2.4 S60099 Amyloid precursor protein homolog (APPH) -2.3 M59830 Hsp 70 1B -2.3 L38487 Estrogen receptor-like 1 -2.3 AB020645 KIAA0838 (Glutaminase) -2.3	AC004030	Paralemmin	-2.4
W28429 EST -2.4 S60099 Amyloid precursor protein homolog (APPH) -2.3 M59830 Hsp 70 1B -2.3 L38487 Estrogen receptor-like 1 -2.3 AB020645 KIAA0838 (Glutaminase) -2.3	A1766078	Coenzym Q	-2.4
SourceAmyloid precursor protein homolog (APPH)-2.3M59830Hsp 70 1B-2.3L38487Estrogen receptor-like 1-2.3AB020645KIAA0838 (Glutaminase)-2.3	W28429	EST	-2.4
NI39630 HSP /0 1B -2.3 L38487 Estrogen receptor-like 1 -2.3 AB020645 KIAA0838 (Glutaminase) -2.3	500099 M50820	Amylola precursor protein nomolog (APPH)	-2.3
AB020645 KIAA0838 (Glutaminase) -2.3	IVIJ703U I 38/87	nsp /v 1D Estrogen recentor-like 1	-2.3
	AB020645	KIAA0838 (Glutaminase)	-2.3

Tab. 9: durch HPV18-E2 reprimierte Gene und Cluster

		n-fache
Accession-Nr.	Genprodukt	Veränderung
		67
X64044	Large subunit of splicing factor U2AF (65 kDa)	-2.3
AF043250	Mitochondrial outer membrane protein (TOM40)	-2.2
X64116	Poliovirus receptor	-2.2
D78514	Ubiquitin-conjugating enzyme E2G1	-2.2
W80358	EST	-2.2
X53587	Integrin β4	-2.2
AB012668	Fucosyltransferase 7	-2.2
AF063564	EST	-2.2
AF052138	EST	-2.1
M80254	Cyclophilin F (CyP3)	-2.1
M910/0	Dolquitin conjugating enzyme E2 (24 kDa)	-2.1
MI/5554 AI 120374		-2.1
729083	5T4 Oncofetal trophoblast alveoprotein	-2.1
X52221	DNA excision renair protein FRCC2	-2.1
AF019084	Keratin 2E	-2.1
X04741	Ubiquitin carboxyl-terminal esterase L1	-2.0
Z49254	Mitochondrial ribosomal protein L23	-2.0
X92857	NFI/CAAT-binding transcription factor 5 (CTF5)	-2.0
X00351	β-Actin	-2.0
Cluster:	F	
Z54367	Cluster: Plectin	-12.8
W32483	Cluster: MMP in the female reproductive tract	-12.5
D13413	Cluster: Tumor-associated 120 kDa nuclear protein p120	-8.6
AC005390	Cluster: Glutathion peroxidase 4	-8.2
X03473	Cluster: Histone H1.0	-6.5
M31468	Cluster: Ras-like protein Tc21	-6.2
S/6638	Cluster: NF-KB p49 (p50 homolog)	-5.4
M33684	Cluster: Non-receptor tyrosine phosphatase 1 (PTPN1)	-4.7
A0080/	Cluster: Max	-4.0
U43784 X60287	Cluster: Max	-4.1
X89416	Cluster: Protein phosphatase 5	-4.1 -4.1
AI200373	Cluster: H2A histone family member I	-4.0
U60269	Cluster: Human endogenous retrovirus HERV-K proviral clone	-3.9
	HML6.17 putative polymerase and envelope genes	• 12
D26121	Cluster: ZFM1 protein	-3.6
U33838	Cluster: NF- κ B p65 Δ 3	-3.4
D49677	Cluster: U2 snRNP auxiliary factor	-3.3
W27858	Cluster: EST	-3.1
M34539	Cluster: Fk506-binding protein	-2.7
X56687	Cluster: Nucleolar transcription factor 1	-2.7
M29039	Cluster: Jun-B	-2.5
Z16411	Cluster: Phospholipase C β 3	-2.5
W27050	Cluster: Polypyrimidine tract-binding protein-associated splicing factor	-2.4
AA8/3838	Cluster: Fision H2B family member D	-2.4
L11931 L172355	Cluster: Hsp27 EDE TATA binding protein (HET)	-2.4
V01512	Cluster: Fos	-2.3
X53416	Cluster: Filamin A	-2.3
W28275	Cluster: EST	-2.2
M95178	Cluster: Non-muscle α -actinin	-2.2
AA121509	Cluster: U6-snRNA-associated Sm-like protein LSm7	-2.2
U08997	Cluster: Glutamate dehydrogenase 2	-2.2
AD000092	Cluster: Putative human Phenylalanin tRNA-synthetase	-2.2
Z84718	Cluster: EST	-2.1
AJ238096	Cluster: U6-snRNA-associated Sm-like protein Lsm4	-2.1
Y13492	Cluster: Smoothelin-B	-2.1
V01512	Cluster: Fos	-2.0
X62573	Cluster: Fc receptor, TC9	-2.0

durch HPV18-E2 reprimierte Gene (Fortsetzung Tab. 9)

Accession-Nr.	Genprodukt	n-fache Aktivierung
X51757	Heat-shock protein HSP70B	+3.5
W27953	EST	+3.4
M24470	Glucose-6-phosphate dehydrogenase	+3.2
AF000561	TTF-I interacting peptide 21	+3.2
U62431	Nicotinic acetylcholine receptor $\alpha 2$ subunit	+3.1
L12701	Engrailed protein (EN2)	+2.7
AL049378	EST (DKFZp586I1518)	+2.7
L39059	TAF 110 kDa	+2.2
AA873266	Pyruvat dehydrogenase kinase 3	+2.0
Cluster:		
AC005390	Glutathion peroxidase 4	+3.8
X75346	MAP kinase activated protein kinase	+2.1

Tab. 10: Im Vergleich zu HPV18-E2 (baseline) durch HPV8-E2 aktivierte Gene und Cluster

Tab. 11: Im Vergleich zu HPV18-E2 (baseline) durch HPV8-E2 reprimierte Gene und Cluster

Gene und Cluster		n-fache
Accession-Nr.	Genprodukt	Veränderung
AA203213	Interferon-stimulated protein, 15 kDa	-3.8
M64572	Protein tyrosine phosphatase	-2.2
AB023173	KIAA0956 (ATPase)	-2.1
L42025	HIV-1 Rev binding protein	-2.0
Cluster		
D84454	Cluster: UDP-galactose translocator	-2.3

7 Literaturverzeichnis

Agarwal, C., Efimova, T., Welter, J. F., Crish, J. F. & Eckert, R. L. (1999). CCAAT/enhancer-binding proteins. A role in regulation of human involucrin promoter response to phorbol ester. *J Biol Chem* **274**, 6190-6194.

Akira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, T. & Kishimoto, T. (1990). A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. *Embo J* **9**, 1897-1906.

Akira, S. & Kishimoto, T. (1997). NF-IL6 and NF-kappa B in cytokine gene regulation. *Adv Immunol* **65**, 1-46.

Andra, K., Nikolic, B., Stöcher, M., Drenckhahn, D. & Wiche, G. (1998). Not just scaffolding: plectin regulates actin dynamics in cultured cells. *Genes & Development* **12**, 3442-3451.

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors). (1994). Current Protocols in Molecular Biology: John Wiley & Sons, Inc., New York

Banks, E. B., Crish, J. F., Welter, J. F. & Eckert, R. L. (1998). Characterization of human involucrin promoter distal regulatory region transcriptional activator elements-a role for Sp1 and AP1 binding sites. *Biochem J* **331**, 61-68.

Bastien, N. & McBride, A. A. (2000). Interaction of the papillomavirus E2 protein with mitotic chromosomes. *Virology* **270**, 124-134.

Bauknecht, T., See, R. H. & Shi, Y. (1996). A novel C/EBP beta-YY1 complex controls the cell-typespecific activity of the human papillomavirus type 18 upstream regulatory region. *J Virol* **70**, 7695-7705.

Bauknecht, T. & Shi, Y. (1998). Overexpression of C/EBPbeta represses human papillomavirus type 18 upstream regulatory region activity in HeLa cells by interfering with the binding of TATA-binding protein. *J Virol* **72**, 2113-2124.

Benson, J. D., Lawande, R. & Howley, P. M. (1997). Conserved interaction of the papillomavirus E2 transcriptional activator proteins with human and yeast TFIIB proteins. *J Virol* **71**, 8041-8047.

Bernard, H. U. & Apt, D. (1994). Transcriptional control and cell type specificity of HPV gene expression. *Arch Dermatol* **130**, 210-215.

Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A. & Fusenig, N. E. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. *J Cell Biol* **106**, 761-771.

Burnett, S., Strom, A. C., Jareborg, N., Alderborn, A., Dillner, J., Moreno-Lopez, J., Pettersson, U. & Kiessling, U. (1990). Induction of bovine papillomavirus E2 gene expression and early region transcription by cell growth arrest: correlation with viral DNA amplification and evidence for differential promoter induction. *J Virol* **64**, 5529-5541.

Casatorres, J., Navarro, J. M., Blessing, M. & Jorcano, J. L. (1994). Analysis of the control of expression and tissue specificity of the keratin 5 gene, characteristic of basal keratinocytes. Fundamental role of an AP-1 element. *J Biol Chem* **269**, 20489-20496

Chang, Y. E. & Laimins, L. A. (2000). Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. *J Virol* **74**, 4174-4182.

Chao, S. F., Rocque, W. J., Daniel, S., Czyzyk, L. E., Phelps, W. C. & Alexander, K. A. (1999). Subunit affinities and stoichiometries of the human papillomavirus type 11 E1:E2:DNA complex. *Biochemistry* **38**, 4586-4594.

Chong, T., Chan, W. K. & Bernard, H. U. (1990). Transcriptional activation of human papillomavirus 16 by nuclear factor I, AP1, steroid receptors and a possibly novel transcription factor, PVF: a model for the composition of genital papillomavirus enhancers. *Nucleic Acids Res* **18**, 465-470.

Clark, L. J. & MacKenzie, K. (1996). Recurrent respiratory papillomatosis- current knowledge and treatment. *Papillomavirus report* **7**, 113-118.

Cohen, B. D., Goldstein, D. J., Rutledge, L., Vass, W. C., Lowy, D. R., Schlegel, R. & Schiller, J. T. (1993a). Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain. *J Virol* **67**, 5303-5311.

Cohen, B. D., Lowy, D. R. & Schiller, J. T. (1993b). The conserved C-terminal domain of the bovine papillomavirus E5 oncoprotein can associate with an alpha-adaptin-like molecule: a possible link between growth factor receptors and viral transformation. *Mol Cell Biol* **13**, 6462-6468.

Cole, S. T. & Streeck, R. E. (1986). Genome organization and nucleotide sequence of human papillomavirus type 33, which is associated with cervical cancer. *J Virol* **58**, 991-995.

Cripe, T. P., Alderborn, A., Anderson, R. D., Parkkinen, S., Bergman, P., Haugen, T. H., Pettersson, U. & Turek, L. P. (1990). Transcriptional activation of the human papillomavirus-16 P97 promoter by an 88-nucleotide enhancer containing distinct cell-dependent and AP-1-responsive modules. *New Biol* **2**, 450-463.

Crish, J. F., Howard, J. M., Zaim, T. M., Murthy, S. & Eckert, R. L. (1993). Tissue-specific and differentiation-appropriate expression of the human involucrin gene in transgenic mice: an abnormal epidermal phenotype. *Differentiation* **53**, 191-200.

Crish, J. F., Zaim, T. M. & Eckert, R. L. (1998). The distal regulatory region of the human involucrin promoter is required for expression in epidermis. *J Biol Chem* **273**, 30460-30465.

Darlington, G. J., Ross, S. E. & MacDougald, O. A. (1988). The role of C/EBP genes in adipocyte differentiation. *J Biol Chem* **273**, 30057-30060.

Day, P. M., Roden, R. B., Lowy, D. R. & Schiller, J. T. (1998). The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. *J Virol* **72**, 142-150.

Demeret, C., Yaniv, M. & Thierry, F. (1994). The E2 transcriptional repressor can compensate for Sp1 activation of the human papillomavirus type 18 early promoter. *J Virol* **68**, 7075-7082.

Denk, H., Künzel, H., Plenk, H., Rüschoff, J. & Sellner, W. (1996). Romeis Mikroskopische Technik. 17. Aufl., München, Wien, Baltimore: Böck, P.

Desaintes, C. & Demeret, C. (1996). Control of papillomavirus DNA replication and transcription. *Semin Cancer Biol* **7**, 339-347.

Desaintes, C., Demeret, C., Goyat, S., Yaniv, M. & Thierry, F. (1997). Expression of the papillomavirus E2 protein in HeLa cells leads to apoptosis. *Embo J* 16, 504-514.

Desaintes, C., Goyat, S., Garbay, S., Yaniv, M. & Thierry, F. (1999). Papillomavirus E2 induces p53-independent apoptosis in HeLa cells. *Oncogene* 18, 4538-4545.

Descombes, P. & Schibler, U. (1991). A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. *Cell* **67**, 569-579.

Dignam, J. P., Lebovitz, R. M. & Roeder, R. G. (1983). Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. *Nucleic Avids Res* **11**, 1475.

Dong, X. P., Stubenrauch, F., Beyer-Finkler, E. & Pfister, H. (1994). Prevalence of deletions of YY1binding sites in episomal HPV 16 DNA from cervical cancers. *Int J Cancer* **58**, 803-808.

Doorbar, J. (1998). Late stages of the papillomavirus life cycle. Papillomavirus report 9, 119-126.

Doorbar, J., Ely, S., Sterling, J., McLean, C. & Crawford, L. (1991). Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. *Nature* **352**, 824-827.

Dowhanick, J. J., McBride, A. A. & Howley, P. M. (1995). Suppression of cellular proliferation by the papillomavirus E2 protein. *J Virol* **69**, 7791-7799.

Dundr, M. & Mistel, T. (2001). Functional architecture in the cell nucleus. *Biochem J* 356, 297-310.

Eckert, R. L., Yaffe, M. B., Crish, J. F., Murthy, S., Rorke, E. A. & Welter, J. F. (1993). Involucrinstructure and role in envelope assembly. *J Invest Dermatol* **100**, 613-617.

Eckert, R. L., Crish, J. F., Banks, E. B. & Welter, J. F. (1997a). The Epidermis: genes on - genes off. *J Invest Dermatol* **109**, 501-509.

Eckert, R. L., Crish, J. F. & Robinson, N. A. (1997b). The epidermal keratinocyte as a model for study of gene regulation and cell differentiation. *Physiological Reviews* **77**, 397-424.

Eckert, R. L. & Welter, J. F. (1996). Transcription factor regulation of epidermal keratinocyte gene expression. *Mol Biol Rep* 23, 59-70.

Enzenauer, C., Mengus, G., Lavigne, A., Davidson, I., Pfister, H. & May, M. (1998). Interaction of human papillomavirus 8 regulatory proteins E2, E6 and E7 with components of the TFIID complex. *Intervirology* **41**, 80-90.

Evander, M., Frazer, I. H., Payne, E., Qi, Y. M., Hengst, K. & McMillan, N. A. (1997). Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. *J Virol* **71**, 2449-2456.

Favre, M., Breitburd, F., Croissant, O. & Orth, G. (1977). Chromatin-like structures obtained after alkaline disruption of bovine and human papillomaviruses. *J Virol* **21**, 1205-1209.

Flickinger, R. A. (2000). Induction of tumor cell differentiation. Differentiation 65, 241-245.

Francis, D. A., Schmid, S. I. & Howley, P. M. (2000). Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. *J Virol* **74**, 2679-2686.

Frattini, M. G., Hurst, S. D., Lim, H. B., Swaminathan, S. & Laimins, L. A. (1997). Abrogation of a mitotic checkpoint by E2 proteins from oncogenic human papillomaviruses correlates with increased turnover of the p53 tumor suppressor protein. *Embo J* **16**, 318-331.

Frattini, M. G. & Laimins, L. A. (1994). Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein. *Proc Natl Acad Sci USA* **91**, 12398-12402.

Freedman, R. S., Bowen, J. M., Leibovitz, A., Pathak, S., Siciliano, M. J., Gallager, H. S. & Giovanella, B. C. (1982). Characterization of a cell line (SW756) derived from a human squamous carcinoma of the uterine cervix. *In Vitro* **18**, 719-726.

Fuchs, P. G. & Pfister, H. (1996). Papillomaviruses in Epidermodysplasia vertuciformis. In *Papillomavirus reviews: Current research on papillomaviruses*, S. 253-261. by C. Lacey. Leeds: Leeds University press.

Funk, J. O. & Galloway, D. A. (1998). Inhibiting CDK inhibitors: new lessons from DNA tumor viruses. *Trends Biochem Sci* 23, 337-341.

Galloway, D. A. & McDougall, J. K. (1996). The disruption of cell cycle checkpoints by papillomavirus oncoproteins contributes to anogenital neoplasia. *Semin Cancer Biol* **7**, 309-315.

Garrido-Guerrero, E., Carrillo, E., Guido, M., Zamorano, R., Garcia-Carranca, A. & Gariglio, P. (1996). Different arrangement of human papillomavirus E2 binding sites distinguishes cutaneous types from those associated with mucosal lesions. *Arch Med Res* **27**, 389-394.

Giroglou, T., Florin, L., Schafer, F., Streeck, R. E. & Sapp, M. (2001). Human papillomavirus infection requires cell surface heparan sulfate. *J Virol* **75**, 1565-1570.

Goldstein, D. J., Li, W., Wang, L. M., Heidaran, M. A., Aaronson, S., Shinn, R., Schlegel, R. & Pierce, J. H. (1994). The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for the platelet-derived growth factor but not other related tyrosine kinase-containing receptors to induce cellular transformation. *J Virol* **68**, 4432-4441.

Goldstein, D. J. & Schlegel, R. (1990). The E5 oncoprotein of bovine papillomavirus binds to a 16 kd cellular protein. *Embo J* **9**, 137-145.

Goodwin, E. C. & DiMaio, D. (2000). Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. *Proc Natl Acad Sci U S A* **97**, 12513-12518.

Goodwin, E. C., Naeger, L. K., Breiding, D. E., Androphy, E. J. & DiMaio, D. (1998). Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. *J Virol* **72**, 3925-3934.

Görlich, D. & Mattaj, W. (1996). Nucleocytoplasmic transport. Science 271, 1513-1518.

Haller, K., Stubenrauch, F. & Pfister, H. (1995). Differentiation-dependent transcription of the epidermodysplasia verruciformis-associated human papillomavirus type 5 in benign lesions. *Virology* **214**, 245-255.

Ham, J., Steger, G. & Yaniv, M. (1994). Cooperativity in vivo between the E2 transactivator and the TATA box binding protein depends on core promoter structure. *Embo J* **13**, 147-157.

Haugen, T. H., Turek, L. P., Mercurio, F. M., Cripe, T. P., Olson, B. J., Anderson, R. D., Seidl, D., Karin, M. & Schiller, J. (1988). Sequence-specific and general transcriptional activation by the bovine papillomavirus-1 E2 trans-activator require an N-terminal amphipathic helix-containing E2 domain. *Embo J* **7**, 4245-4253.

Heike, T., Miyatake, S., Yoshida, M., Arai, K. & Arai, N. (1989). Bovine papilloma virus encoded E2 protein activates lymphokine genes through DNA elements, distinct from the consensus motif, in the long control region of its own genome. *Embo J* **8**, 1411-1417.

Heim, R. & Tsien, R. Y. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. *Curr. Biol.*, 178-182.

Heino, P., Zhou, J. & Lambert, P. F. (2000). Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2. *Virology* **276**, 304-314.

Hibma, M. H., Raj, K., Ely, S. J., Stanley, M. & Crawford, L. (1995). The interaction between human papillomavirus type 16 E1 and E2 proteins is blocked by an antibody to the N-terminal region of E2. *Eur J Biochem* **229**, 517-525.

Hinterkeuser, K. (2001). Interaktion des Papillomvirus-Genproduktes E2 mit Mitgliedern der C/EBP-Familie und deren Auswirkung auf die Wirtszelle. *Institut für Virologie*, Diplomarbeit,

Hirochika, H., Broker, T. R. & Chow, L. T. (1987). Enhancers and trans-acting E2 transcriptional factors of papillomaviruses. *J Virol* **61**, 2599-2606.

Hoffman, A. & Roeder, R. G. (1991). Purification of his-tagged proteins in non-denaturing conditions suggest a convenient method for protein interaction studies. *Nucleic Acids Res* **19**, 6337-6338.

Holbrook, K. A. (1994). Ultrastructure of the epidermis. In *The Keratinocyte Handbook*, S. 3-39. I. Leigh, B. Lane & F. Watt: Camebridge University Press.

Howley, P. M. (1996). Papillomavirinae: The viruses and their replication. In *Fields Virology*, S. 2045-2076. B. N. Fields, D. M. Knipe & P. M. Howely. Philadelphia: Lippincott-Rave Publishers.

Hsu, W., Kerppola, T. K., Chen, P. L., Curran, T. & Chen-Kiang, S. (1994). Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region. *Mol Cell Biol* **14**, 268-276.

Hubbert, N. L., Schiller, J. T., Lowy, D. R. & Androphy, E. J. (1988). Bovine papilloma virus-transformed cells contain multiple E2 proteins. *Proc Natl Acad Sci U S A* **85**, 5864-5868.

Hwang, E. S., Naeger, L. K. & DiMaio, D. (1996). Activation of the endogenous p53 growth inhibitory pathway in HeLa cervical carcinoma cells by expression of the bovine papillomavirus E2 gene. *Oncogene* **12**, 795-803.

Hwang, E. S., Riese, D. J., 2nd, Settleman, J., Nilson, L. A., Honig, J., Flynn, S. & DiMaio, D. (1993). Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene. *J Virol* **67**, 3720-3729.

Ilves, I., Kivi, S. & Ustav, M. (1999). Long-term episomal maintenance of bovine papillomavirus type 1 plasmids is determined by attachment to host chromosomes, which Is mediated by the viral E2 protein and its binding sites. *J Virol* **73**, 4404-4412.

Jang, S.-I., Steinert, P. M. & Markova, N. G. (1996). Activator protein 1 activity is involved in the regulation of the cell type-specific expression from the proximal promotor of the human profilaggrin gene. *J Biol Chem* **271**, 24105-24114.

Jones, D. L. & Munger, K. (1996). Interactions of the human papillomavirus E7 protein with cell cycle regulators. *Semin Cancer Biol* **7**, 327-337.

Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. *Cell* **44**, 283-292.

Krieg, T. M., Schafer, M. P., Cheng, C. K., Filupa, D., Flaherty, P., Steinert, P. M. & Roop, D. R. (1985). Organization of type I keratin gene: evidence for evolution of intermediate filaments from a common ancestral gene. *J Biol Chem* **260**, 5867-5870.

Kuo, S. R., Liu, J. S., Broker, T. R. & Chow, L. T. (1994). Cell-free replication of the human papillomavirus DNA with homologous viral E1 and E2 proteins and human cell extracts. *J Biol Chem* **269**, 24058-24065.

Kyo, S., Inoue, M., Nishio, Y., Nakanishi, K., Akira, S., Inoue, H., Yutsudo, M., Tanizawa, O. & Hakura, A. (1993). NF-IL6 represses early gene expression of human papillomavirus type 16 through binding to the noncoding region. *J Virol* **67**, 1058-1066.

Lai, M. C., Teh, B. H. & Tarn, W. Y. (1999). A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. *J Biol Chem* **274**, 11832-11841.

Lee, D., Lee, B., Kim, J., Kim, D. W. & Choe, J. (2000). cAMP response element-binding proteinbinding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. *J Biol Chem* **275**, 7045-7051.

Lee, K. Y., Broker, T. R. & Chow, L. T. (1998). Transcription factor YY1 represses cell-free replication from human papillomavirus origins. *J Virol* **72**, 4911-4917.

Lefebvre, O., Steger, G. & Yaniv, M. (1997). Synergistic transcriptional-activation by the papillomavirus E2 protein occurs after DNA binding and correlates with a change in chromatin structure. *J Mol Biol* **266**, 465-478.

Lehman, C. W. & Botchan, M. R. (1998). Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. *Proc Natl Acad Sci U S A* **95**, 4338-4343.

Li, R. & Botchan, M. R. (1993). The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. *Cell* **73**, 1207-1221.

Li, R. & Botchan, M. R. (1994). Acidic transcription factors alleviate nucleosome-mediated repression of DNA replication of bovine papillomavirus type 1. *Proc Natl Acad Sci U S A* **91**, 7051-7055.

Li, R., Knight, J. D., Jackson, S. P., Tjian, R. & Botchan, M. R. (1991). Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription. *Cell* **65**, 493-505.

Lopez-Bayghen, E., Vega, A., Cadena, A., Granados, S. E., Jave, L. F., Gariglio, P. & Alvarez-Salas, L. M. (1996). Transcriptional analysis of the 5'-noncoding region of the human involucrin gene. *J Biol Chem* **271**, 512-520.

Lu, B., Rothnagel, J. A., Longley, M. A., Tsai, S. Y. & Roop D. R. (1994). Differentiation-specific expression of human keratin 1 is mediated by composite AP-1/steroid hormone element. *J Biol Chem* **269**, 7443-7449

Lusky, M., Hurwitz, J. & Seo, Y. S. (1993). Cooperative assembly of the bovine papilloma virus E1 and E2 proteins on the replication origin requires an intact E2 binding site. *J Biol Chem* **268**, 15795-15803.

Mantovani, F. & Banks, L. (1999). The interaction between p53 and papillomaviruses. *Semin Cancer Biol* **9**, 387-395.

Massimi, P., Pim, D., Bertoli, C., Bouvard, V. & Banks, L. (1999). Interaction between the HPV-16 E2 transcriptional activator and p53. *Oncogene* **18**, 7748-7754.

Masterson, P. J., Stanley, M. A., Lewis, A. P. & Romanos, M. A. (1998). A C-terminal helicase domain of the human papillomavirus E1 protein binds E2 and the DNA polymerase alpha-primase p68 subunit. *J Virol* **72**, 7407-7419.

Maytin, E. V. & Habener, J. F. (1998). Transcription factors C/EBPα, C/EBPβ and CHOP (Gadd153) expressed during the differentiation program of keratinocytes *in vitro* and *in vivo*. *J Invest Dermatol* **110**, 238-246.

McBride, A. & Myers, G. (1996). The E2 Proteins. Papillomavirus Colloquium, III 15-31.

McBride, A. A., Romanczuk, H. & Howley, P. M. (1991). The papillomavirus E2 regulatory proteins. *J Biol Chem* **266**, 18411-18414.

Metz, R. & Ziff, E. (1991). cAMP stimulates C/EBP-related transcription factor rNFI-L6 to *trans*-locate to the nucleus and induce *fos*-transcription. *Genes & Dev.* **5**, 1754-1766.

Mincheva, A., Gissmann, L. & zur Hausen, H. (1987). Chromosomal integration sites of human papillomavirus DNA in three cervical cancer cell lines mapped by in situ hybridization. *Med Microbiol Immunol* **176**, 245-256.

Minn, A. J., Boise L.H., Thompson C. B. (1996). Bcl-x(S) antagonizes the protective effects of Bcl-x(L). *J Biol Chem* **271**, 6306-6312.

Mohr, I. J., Clark, R., Sun, S., Androphy, E. J., MacPherson, P. & Botchan, M. R. (1990). Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. *Science* **250**, 1694-1699.

Mullis, K. B. & Fallona, F. A. (1984). Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. *Methods. Enzym.* **155**, 335-350.

Munoz, N. & Bosch, F. X. (1996). The causal link between HPV and cervical cancer and its implications for prevention of cervical cancer. *Bull Pan Am Health Organ* **30**, 362-377.

Naeger, L. K., Goodwin, E. C., Hwang, E. S., DeFilippis, R. A., Zhang, H. & DiMaio, D. (1999). Bovine papillomavirus E2 protein activates a complex growth-inhibitory program in p53-negative HT-3 cervical carcinoma cells that includes repression of cyclin A and cdc25A phosphatase genes and accumulation of hypophosphorylated retinoblastoma protein. *Cell Growth Differ* **10**, 413-422.

Nees, M., Geoghegan, J. M., Hyman, T., Frank, S., Miller, L. & Woodworth, C. D. (2001). Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. *J Virol* **75**, 4283-4296.

Nishimura, A., Ono, T., Ishimoto, A., Dowhanick, J. J., Frizzell, M. A., Howley, P. M. & Sakai, H. (2000). Mechanisms of human papillomavirus E2-mediated repression of viral oncogene expression and cervical cancer cell growth inhibition. *J Virol* **74**, 3752-3760.

O'Connor, M., Chan, S.-Y. & Bernard, H.-U. (1995). Transcription factor binding sites in the long control region of genital HPVs. In *Papillomavirus Report*.

Oh, H.-S. & Smart, R. C. (1998). Expression of CCAAT/enhancer binding proteins (C/EBP) is associated with squamous differentiation in epidermis and isolated primary keratinocytes and is altered in skin neoplasms. *J Invest Dermatol* **110**, 939-945.

Ohtani, K., De Gregori, J. & Nevins, J. R. (1995). Regulation of cyclin E gene by transcription factor E2F1. *Proc Natl Acad Sci USA* **92**, 12146-12150.

Ormö, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y. & Remington, S. J. (1996). Crystal structure of Aequorea victoria green fluorescent protein. *Science* **273**, 1392-1395.

Park, P., Copeland, W., Yang, L., Wang, T., Botchan, M. R. & Mohr, I. J. (1994). The cellular DNA polymerase alpha-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. *Proc Natl Acad Sci U S A* **91**, 8700-8704.

Parkin, D. M., Pisani, P. & Ferlay, J. (1993). Estimates of the worldwide invidence of eight major cancers in 1995. *Int J Cancer* **54**, 594-606.

Peng, Y. C., Breiding, D. E., Sverdrup, F., Richard, J. & Androphy, E. J. (2000). AMF-1/Gps2 binds p300 and enhances its interaction with papillomavirus E2 proteins. *J Virol* **74**, 5872-5879.

Pfister, H. (1992). Human papillomaviruses and skin cancer. Semin Cancer Biol 3, 263-271.

Pfister, H. & Fuchs, P. G. (1994). Anatomy, Taxonomy and evolution of papillomaviruses. *Interviroloy* **37**, 143-149.

Pfister, H. & Ter Schegget, J. (1997). Role of HPV in cutaneous premalignant and malignant tumors. *Clin Dermatol* **15**, 335-347.

Piirsoo, M., Ustav, E., Mandel, T., Stenlund, A. & Ustav, M. (1996). Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator. *Embo J* **15**, 1-11.

Poli, V. (1998). The role of C/EBP Isoforms in the control of inflammatory and native immunity functions. *The Journal of Biological Chemistry* **273**, 29279-29282.

Purdie, K. J., Sexton, C. J., Proby, C. M., Glover, M. T., Williams, A. T., Stables, J. N. & Leigh, I. M. (1993). Malignant transformation of cutaneous lesions in renal allograft patients: a role for human papillomavirus. *Cancer Res* **53**, 5328-5333.

Rank, N. M. & Lambert, P. F. (1995). Bovine papillomavirus type 1 E2 transcriptional regulators directly bind two cellular transcription factors, TFIID and TFIIB. *J Virol* **69**, 6323-6334.

Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning - A Laboratory Manual, 2. Aufl.: Cold Spring Harbour Laboratory Press, Cold Spring Harbour. NY.

Sanchez-Perez, A. M., Soriano, S., Clarke, A. R. & Gaston, K. (1997). Disruption of the human papillomavirus type 16 E2 gene protects cervical carcinoma cells from E2F-induced apoptosis. *J Gen Virol* **78**, 3009-3018.

Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howely, P. M. (1999). The HPV-16 E6 and E6-AP complex function as an ubiquitin-protein ligase in the ubiquitination of p53. *Cell* **75**.

Schreiber, E., Matthias, M., Muller, M. M. & Schaffner, W. (1989). Rapid detection of octamer binding proteins with "mini extracts" prepared from a small number of cells. *Nucleic Acid Research* **17**, 6419.

Schwartz, D. & Rotterm, V. (1998). p53-dependent cell cycle control: response to genotoxic stress. *Cancer Biology* **8**, 325-336.

Sedman, J. & Stenlund, A. (1998). The papillomavirus E1 protein forms a DNA-dependent hexameric complex with ATPase and DNA helicase activities. *J Virol* **72**, 6893-6897.

Shah, K. V. & Howley, P. M. (1996). Papillomaviruses. In: *Fields Virology*, pp. 2077-2109. B. N. Fields, D. M. Knipe & P. M. Howely, edited by B. N. Fields, D. M. Knipe & P. M. Howely. Philadelphia: Lippincott-Rave Publishers.

Shaw, P. J. & Jordan, E. G. (1995). The nucleolus. Annu Rev Cell Dev Biol 11, 93-121.

Sherman, L., Alloul, N., Golan, I., Durst, M. & Baram, A. (1992). Expression and splicing patterns of human papillomavirus type-16 mRNAs in pre-cancerous lesions and carcinomas of the cervix, in human keratinocytes immortalized by HPV 16, and in cell lines established from cervical cancers. *Int J Cancer* **50**, 356-364.

Sibbet, G., Romero-Graillet, C., Meneguzzi, G. & Campo, M. S. (2000). alpha6 integrin is not the obligatory cell receptor for bovine papillomavirus type 4. *J Gen Virol* **81** Pt **2**, 327-334.

Siebenkotten, G., Behrens-Jung, U., Miltenyi, S. (1998). Employing surface markers for the selection of transfected cells. In: *Cell separation methods and applications*. 271-281 edited by D. Recktenwald & A. Radbruch

Skiadopoulos, M. H. & McBride, A. A. (1996). The bovine papillomavirus type 1 E2 transactivator and repressor proteins use different nuclear localization signals. *J Virol* **70**, 1117-1124.

Skiadopoulos, M. H. & McBride, A. A. (1998). Bovine papillomavirus type 1 genomes and the E2 transactivator protein are closely associated with mitotic chromatin. *J Virol* **72**, 2079-2088.

Smola-Hess, S. & Pfister, H. (in press). Interaction of papillomaviral oncoprotein with cellular factors. In *Structure-function relationchips of human pathogenic viruses*. New York, London, Dodrecht, Boston, Moscow: Kluver Academic/Plenum Publishers.

Srivastava, S., Tong, Y. A., Devadas, K., Zou, Z. Q., Chen, Y., Pirollo, K. F. & Chang, E. H. (1992). The status of the p53 gene in human papilloma virus positive or negative cervical carcinoma cell lines. *Carcinogenesis* **13**, 1273-1275.

Steger, G., Ham, J., Lefebvre, O. & Yaniv, M. (1995). The bovine papillomavirus 1 E2 protein contains two activation domains: one that interacts with TBP and another that functions after TBP binding. *Embo J* 14, 329-340.

Straight, S. W., Herman, B. & McCance, D. J. (1995). The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. *J Virol* **69**, 3185-3192.

Stubenrauch, F. & Laimins, L. A. (1999). Human papillomavirus life cycle: active and latent phases. *Semin Cancer Biol* **9**, 379-386.

Stubenrauch, F., Leigh, I. M. & Pfister, H. (1996). E2 represses the late gene promoter of human papillomavirus type 8 at high concentrations by interfering with cellular factors. *J Virol* **70**, 119-126.

Stubenrauch, F., Malejczyk, J., Fuchs, P. G. & Pfister, H. (1992). Late promoter of human papillomavirus type 8 and its regulation. *J Virol* **66**, 3485-3493.

Stunkel, W. & Bernard, H. U. (1999). The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. *J Virol* **73**, 1918-1930.

Swindle, C. S. & Engler, J. A. (1998). Association of the human papillomavirus type 11 E1 protein with histone H1. *J Virol* **72**, 1994-2001.

Swindle, C. S., Zou, N., Van Tine, B. A., Shaw, G. M., Engler, J. A. & Chow, L. T. (1999). Human papillomavirus DNA replication compartments in a transient DNA replication system. *J Virol* **73**, 1001-1009.

Takai, Y., Sasaki, T. & Matozaki, T. (2001). Small GTP-binding proteins. *Physiological reviews* **81**, 153-208.

Thierry, F. (1993). Proteins involved in the control of HPV transcription. *Papillomavirus report* 4, 27-32.

Thierry, F., Spyrou, G., Yaniv, M. & Howley, P. (1992). Two AP1 sites binding JunB are essential for human papillomavirus type 18 transcription in keratinocytes. *J Virol* **66**, 3740-3748.

Thomas, J. T., Laimins, L. A. & Ruesch, M. N. (1998). Pertubation of cell cycle control by E6 and E7 oncoproteins of human papillomaviruses. *Papillomavirus report* **9**, 59-64.

Thomas, J. T., Oh, S. T., Terhune, S. S. & Laimins, L. A. (2001). Cellular changes induced by lowrisk human papillomavirus type 11 in keratinocytes that stably maintain viral episomes. *J Virol* **75**, 7564-7571.

Trautwein, C., van der Geer, P., Karin, M., Hunter, T. & Chojkier, M. (1994). Protein kinase A and C site-specific phosphorylations of LAP (NF-IL6) modulate its binding affinity to DNA recognition elements. *J Clin Invest* **93**, 2554-2561.

Turek, L. P. (1994). The structure, function, and regulation of papillomaviral genes in infection and cervical cancer. *Adv Virus Res* 44, 305-356.

Wang, H., Liu, K., Yuan, F., Berdichevsky, L., Taichman, L. B. & Auborn, K. (1996). C/EBPbeta is a negative regulator of human papillomavirus type 11 in keratinocytes. *J Virol* **70**, 4839-4844.

Webster, K., Parish, J., Pandya, M., Stern, P. L., Clarke, A. R. & Gaston, K. (2000). The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. *J Biol Chem* **275**, 87-94.

Wedel, A. & Ziegler-Heitbrock, H. W. L. (1995). The C/EBP-family of transcription factors. *Immunobiol* 193, 171-185.

Wells, S. I., Francis, D. A., Karpova, A. Y., Dowhanick, J. J., Benson, J. D. & Howley, P. M. (2000). Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. *Embo J* **19**, 5762-5771.

Welter, J. F., Crish, J. F., Agarwal, C. & Eckert, R. L. (1995). Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. *J Biol Chem* **270**, 12614-12622.

Welter, J. F., Crish, J. F., Agarwal, C. & Eckert, R. L. (1995). Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. *J Biol Chem* **270**, 12614-12622.

Welter, J. F. & Eckert, R. L. (1995). Differential expression of the fos and jun family members c-fos, fosB, Fra-1, Fra-2, c-jun, junB and junD during human epidermal keratinocyte differentiation. *Oncogene* **11**, 2681-2687.

Welter, J. F., Gali, H., Crish, J. F. & Eckert, R. L. (1996). Regulation of human involucrin promoter activity by POU domain proteins. *J Biol Chem* **271**, 14727-14733.

Wiche, G. (1998). Role of plectin in cytoskeleton organization and dynamics. *J cell science* 111, 2477-2486.

Williams, S. C., Angerer, N. D. & Johnson, P. F. (1997). C/EBP proteins contain nuclear localisation signals imbedded in their basic region. *Gene Expression* **6**, 371-385.

Williams, S. C., Cantwell, C. A. & Johnson, P. F. (1991). A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. *Genes Dev* **5**, 1553-1567.

Wu, L., Goodwin, E. C., Naeger, L. K., Vigo, E., Galaktionov, K., Helin, K. & DiMaio, D. (2000). E2F-Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression. *Mol Cell Biol* **20**, 7059-7067.

Yao, J. M., Breiding, D. E. & Androphy, E. J. (1998). Functional interaction of the bovine papillomavirus E2 transactivation domain with TFIIB. *J Virol* **72**, 1013-1019.

Yasugi, T., Benson, J. D., Sakai, H., Vidal, M. & Howley, P. M. (1997). Mapping and characterization of the interaction domains of human papillomavirus type 16 E1 and E2 proteins. *J Virol* **71**, 891-899.

Yoon, C. S., Kim, K. D., Park, S. N. & Cheong, S. W. (2001). alpha(6) Integrin is the main receptor for human papillomavirus type 16 VLP. *Biochem Biophys Res Commun* **283**, 668-673.

Zhu, S., Oh, H. S., Shim, M., Sterneck, E., Johnson, P. F. & Smart, R. C. (1999). C/EBPbeta modulates the early events of keratinocyte differentiation involving growth arrest and keratin 1 and keratin 10 expression. *Mol Cell Biol* **19**, 7181-7190.

Zlatanova, J. & Doenecke, D. (1994). Histone H1 zero: a major player in cell differentiation? *FASEB J* **8**, 1260-1268.

Zou, N., Lin, B. Y., Duan, F., Lee, K. Y., Jin, G., Guan, R., Yao, G., Lefkowitz, E. J., Broker, T. R. & Chow, L. T. (2000). The hinge of the human papillomavirus type 11 E2 protein contains major determinants for nuclear localization and nuclear matrix association. *J Virol* **74**, 3761-3770.

zur Hausen, H. (1996). Papillomavirus infections--a major cause of human cancers. *Biochim Biophys Acta* **1288**, F55-78.

zur Hausen, H. (1999). Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. *Semin Cancer Biol* **9**, 405-411.

zur Hausen, H. & de Villiers, E. M. (1994). Human papillomaviruses. Annu Rev Microbiol 48, 427-447.

zur Hausen, H. (2000). Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. *J Natl Cancer Inst* **92**, 690-698.

Abstract:

Human papillomaviruses (HPV) infect keratinocytes of the skin and mucosal epithelium and cause benign and malignant tumors. The viral life cycle is closely linked to the differentiation of the host cell. The HPV E2 protein, the main regulator of viral transcription and replication, is predominantly expressed in suprabasal layers of the epithelium. Although the role of the E2 protein during the viral life cycle is well established, there is less information about its influence on the gene expression and the metabolism of the host cell.

In this study, an interaction between E2 and NF-IL6, a member of the C/EBP family of cellular transcription factors, is demonstrated. The C/EBP factors are involved in keratinocyte differentiation and are differentially expressed in the epidermis. Both, NF-IL6 and E2, are mainly found in the suprabasal layers of the skin. Immunohistochemical analysis of the human cervix showed a similar expression pattern of NF-IL6 in the mucosal epithelium.

In cultured cells fusion proteins consisting of derivatives of the enhanced green fluorescent protein (EGFP) and NF-IL6 or HPV18-E2 were localized in the nucleus in a diffuse, nucleoplasmic pattern. In contrast, HPV8-E2 was detected in a punctuate nuclear pattern which partly overlaps with the compartments of NF-IL6. Analyzing the cellular distribution of deletion mutants of NF-IL6 or HPV8-E2, domains could be identified harboring localization signals. The N-terminal transactivation domain of NF-IL6 contained a NLS while the hinge domain of HPV8-E2 harbored at least three signals: one conferring nucleolar localization, one for the association with the nuclear matrix and one NLS.

In transient transfection assays HPV8-E2 and NF-IL6 synergistically activated transcription of synthetic and natural promoters. This synergism essentially depended on NF-IL6 but not on E2 binding sites. Thus, one NF-IL6 site in the involucrin proximal promoter fragment was sufficient to drive synergistic activation by NF-IL6 and HPV8-E2. In EMSAs it could be shown that this synergism was not due to an enhancement of DNA-binding. However from *in vitro* interaction assays it was clear that E2 and NF-IL6 directly interacted with each other. Via this mechanism NF-IL6 likely recruits E2 to promoters missing E2 sites. The C-terminal domain of HPV8-E2 which confers DNA binding and dimerisation bound to the basic region of the NF-IL6 bZIP motif.

To examine the general effects of HPV8-E2 and HPV18-E2 on the gene expression of the host cell, a microarray analysis was performed. First HPV-negative keratinocytes were transiently transfected with bicistronic vectors allowing expression of E2 and a surface marker (H-2K^k). Via this surface marker positively transfected cells could be magnetically selected using the MACSelect K^k-system. RNA from such E2 transfected and control cells

was analyzed using the GeneChip HG-U95-A (Affymetrix) allowing to investigate the expression patterns of 12.600 human genes. Both, HPV8-E2 and HPV18-E2, showed a largely overlapping pattern of transcriptional regulation of host cell genes. They mainly modulated genes of transcription factors and proteins involved in signal transduction pathways. Furthermore both E2 proteins altered the expression of structural proteins, histones and proteins playing a role in cell cycle control, proliferation, differentiation, protein synthesis, metabolism, pre-mRNA splicing, ubiquitin pathway, DNA-repair and replication. Thus E2 seems to be involved in the HPV-induced modulation of the host cell metabolism during viral life cycle.

Curriculum vitae

Persönliche Daten:

Name:	Dirk Hadaschik	
geb.:	am 13.1.1972 in Berlin	
Staatsangehörigkeit:	deutsch	
Familienstand:	ledig	
Eltern:	Barbara Hadaschik geb. Völz	
	Bernhard Hadaschik	
<u>Schulbildung:</u>		
1978-1982	Besuch der Grundschule Bollenberg in Haan	
1982-1991	Besuch des städtischen Gymnasiums Haan; Abitur am 14.6.1991	
<u>Zivildienst:</u>		
1991-1992	Zivildienst in der Heil- und Pflegeanstalt Benninghof, Mettmann	
<u>Studium:</u>		
ab Oktober 1992	Studium der Biologie an der Universität zu Köln	
Oktober 1994	Vordiplom	
August 1996	Diplom Hauptprüfungen: Genetik, Biochemie und Pharmakologie	
November 1996-	Diplomarbeit am Institut für Virologie der Universität zu Köln	
November 1997	unter Betreuung von Frau Dr. B. Nelsen-Salz. Thema: "Eine	
	Mutation im 2C-Gen einer Echovirus 9 Variante induziert	
	Abhängigkeit von der antiviralen Substanz 2-(α-Hydroxybenzyl)-	
	benzimidazol"	
Dezember 1997-	Promotionsstudium an der Mathematisch-Naturwissenschaftlichen	
Januar 2002	Fakultät der Universität zu Köln. Anfertigung der Doktorarbeit im	
	Institut für Virologie unter der Betreuung von Prof. Dr. H. Pfister.	
	Thema der Dissertation: "Das Papillomvirus E2-Protein:	
	Lokalisation und Modulation der zellulären Transkription"	

Publikationen:

1: Smola-Hess S, Sandaradura De Silva U, Hadaschik D, Pfister HJ.(2001). Soluble interleukin-6 receptor activates the human papillomavirus type 18 long control region in SW756 cervical carcinoma cells in a STAT3-dependent manner. *J Gen Virol.* **82** :2335-2339

2: Smola-Hess S, Schnitzler R, **Hadaschik D**, Smola H, Mauch C, Krieg T, Pfister H. (2001) CD40L induces matrix-metalloproteinase-9 but not tissue inhibitor of metalloproteinases-1 in cervical carcinoma cells: imbalance between NF-kappaB and STAT3 activation. *Exp Cell Res.* **267** (2):205-215

3: Hess S, Smola H, Sandaradura De Silva U, **Hadaschik D**, Kube D, Baldus SE, Flucke U, Pfister H. (2000) Loss of IL-6 receptor expression in cervical carcinoma cells inhibits autocrine IL-6 stimulation: abrogation of constitutive monocyte chemoattractant protein-1 production. *J Immunol.* **165** (4):1939-1948.

4: Klein M, **Hadaschik D**, Zimmermann H, Eggers HJ, Nelsen-Salz B. (2000) The picornavirus replication inhibitors HBB and guanidine in the echovirus-9 system: the significance of viral protein 2C. *J Gen Virol.* **81** :895-901.

5: Hadaschik D, Klein M, Zimmermann H, Eggers HJ, Nelsen-Salz B.(1999) Dependence of echovirus 9 on the enterovirus RNA replication inhibitor 2-(alpha-Hydroxybenzyl)-benzimid-azole maps to nonstructural protein 2C. *J Virol.* **73** (12):10536-10539.

6: Nelsen-Salz B, Schildgen O, Klein M, **Hadaschik D**, Eggers HJ, Zimmermann H. (1999) Determinants of pathogenicity of echovirus 9 in men: significance of a functional RGD-motif. *Zentralbl Bakteriol.* **289** (3):347-354.

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; daß sie - abgesehen von unten angegebenen Teilpublikationen- noch nicht veröffentlicht worden ist sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Herrn Prof. Dr. Herbert Pfister betreut worden.

Dirk Hadaschik

Danksagung

Herrn Prof. Dr. H. Pfister danke ich für die Betreuung meiner Promotion und die immerwährende Diskussionsbereitschaft.

Mein besonderer Dank gilt Frau Dr. S. Smola-Hess, für ihre Unterstützung, ihr Interesse und ihre Bereitschaft jederzeit Probleme zu diskutieren.

Herrn Dr. F. Rivero-Crespo danke ich für die Einweisung in die konfokale Lasermikroskopie.

Frau Dr. N. Jacobs danke ich für die Einführung in immunhistochemische Verfahren.

Frau Dr. G. Steger, Herrn Dr. M. May und Herrn Dr. R. L. Eckert möchte ich für die Bereitstellung einiger Plasmide danken.

Danken möchte ich meinen Laborgenossen für die gute Zusammenarbeit und eine nette Zeit. (Best wishes for the lucky bench side connection !)

Außerdem danke ich Stephanie und meinen Eltern für die verständnisvolle Unterstützung während meiner Schreibphase.

Schließlich möchte ich mich bei allen Mitarbeitern des Instituts für die Hilfsbereitschaft und die angenehme Arbeitsatmosphäre bedanken.

Diese Arbeit wurde aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) gefördert.