Molecular and Functional Analysis of $\boldsymbol{A} G L 2$-like MADS-box Genes in Maize (Zea mays ssp. mays)

Indications for their involvement in grass inflorescence architecture

Inaugural-Dissertation zur
Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Wim Karel Paul Deleu aus Rotterdam, die Niederlande

Köln, 2002

Die vorliegende Arbeit wurde am
Max-Planck-Institut für Züchtungsforschung in Köln durchgeführt.

Berichterstatter: Prof. Dr. Heinz Saedler
Max-Planck-Institut für Züchtungsforschung

Prof. Dr. Martin Hülskamp
Institut für Botanik, Universität zu Köln

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Development 1
1.2 The ABC-model of flower development 2
1.3 AGL2-like MADS-box genes. 4
1.4 Maize inflorescence development. 6
1.5 Goal of the thesis 10
2 MATERIAL AND METHODS 14
2.1 Materials 14
2.1.1 Media 14
2.1.2 Buffers 14
2.1.3 Cloning vectors 14
2.1.4 Plant material 15
2.1.5 E. coli strains. 15
2. 2 Methods 15
2.2.1 Plasmid DNA isolation 15
2.2.2 Genomic library screening 15
2.2.3 Phage lambda DNA isolation 16
2.2.4 Plant genomic DNA isolation 17
2.2.5 DNA digestion, separation and blotting onto membranes. 18
2.2.6 Random prime labelling 18
2.2.7 Hybridization of DNA 18
2.2.8 Polymerase Chain Reaction (PCR) 19
2.2.9 Isolation of RNA 20
2.2.10 Northern analysis 20
2.2.11 Hybridization of RNA. 21
2.2.12 Rapid amplification of genomic ends (RAGE) 21
2.2.13 Electro-competent cells 22
2.2.14 Cloning and subcloning 22
2.2.15 Cloning and transformation of the ZMM6 and ZMM8 constructs for anti-sense and 23
over-expression in maize 23
2.2.16 Crosses and back-crosses 25
2.2.17 Mapping with Recombinant Inbred (RI's) 26
2.2.18 Computer \& sequence analysis 26
2.2.19 Morphological analysis and photographical dataprocessing 26
2.2.20 Quantitative and statistical analysis 27
3 RESULTS 28
3.1 Molecular analysis of AGL2-like genes in maize 28
3.1.1 Genomic library screen 28
3.1.2 Structural characterization of $A G L 2$-like genes 32
3.1.3 Phylogenetic analyses 35
3.1.4 Chromosomal localization of $A G L 2$-like genes 39
3.1.5 RFLP and expression analysis of the ZMM24/Ts6 candidate loci 41
3.2 Functional analysis of ZMM6 and ZMM8 in transgenic maize plants 42
3.2.1 Regeneration and analysis of transgenic ZMM6 plants 42
3.2.2 Phenotypic analysis of transgenic ZMM6 plants 46
3.2.3 Expression analysis of ZMM6 transcripts in transgenic plants 52
3.2.4 Quantitative and statistical analysis of phenotypic characters in ZMM6 plants 53
3.2.5 Regeneration and analysis of transgenic ZMM8 plants 57
3.2.6 Phenotypic analysis of transgenic $Z M M 8$ plants 60
3.2.7 Quantitative and statistical analysis of phenotypic characters in ZMM8 plants 63
4 DISCUSSION 67
4.1 Maize $A G L 2$-like genes contain large regulatory sequences. 67
4.2 Unraveling $A G L 2$-like gene function in maize 68
4.3 ZMM6 confers meristem determinacy on different meristem levels 71
4.4 ZMM8 functions to confer meristem determinacy. 73
4.5 How can these phenotypes be explained in the present-day model of inflorescence and 75
flower development? 75
4.6 More florets, more glumes 77
4.7 Inflorescence branching mutants 78
4.8 Functional equivalency of $A G L 2$-like MADS-box genes 80
4.9 Diversification in function: conferring floral organ identity versus determinacy 84
4.10 Separability of function in conferring floral organ identity and conferring determinacy 85
4.11 Determinacy uncovered: lessons from Arabidopsis 86
5 SUMMARY 88
5.1 Summary (english) 88
5.2 Zusammenfassung (German) 89
6 REFERENCES 90
7 APPENDICES 105
Appendix 7.1. Primer sequences. 105
Appendix 7.2. Sequence of genomic clone λ DASHII-wd33 106
Appendix 7.3. Genomic sequences of loci of $A G L 2$-like genes. 108
Appendix 7.4. Branching characters in the tassel. 130
Appendix 7.5. Branching characters in the ear. 134
Appendix 7.6. Mean values and standard deviation of branching. 138
Appendix 7.7. Statistical analysis of branching. 139
Appendix 7.8. Abbreviations. 140
Appendix 7.9 Mutant map positions. 141
Appendix 7.10 Eidesstattliche Erklärung 142
Appendix 7.11 Acknowledgements 143
Appendix 7.12 Lebenslauf 144

1 INTRODUCTION

1.1 Development

Organisms can be seen as complex chemical system of self-maintenance, in which the acting factors primarily consist of proteins, encoded by genes (Margulis \& Sagan, 1995). These genes are embedded in the smallest unit of the living world, the cell. Functionally, genes are orderly inter-linked and cross-wired into a network (Theißen \& Saedler, 1995). The genetic network ultimately governs basic characteristical programs, such as metabolism and transfer of energy, transmission of heritable information and reproduction, development and aging, that make the living world alive (Westhoff et al., 1998). Development is the total set of changes in form and function that an individual of a certain species is going through. The predefined course of these changes is controlled by the spatial and temporal regulation of developmental genes in the network. This wildtype development can be altered when the normal expression is changed in single genes guiding a particular step in development. This can lead to an abberant shape of the individual, called a mutant phenotype. By isolating mutant alleles of the same gene one can analyze how the gene acts in the developmental process on a molecular level.

The blueprints ('Baupläne') for both plant and animal overall development are realized by developmental control genes. These direct the expression of multiple developmental genes bringing about the formation of a whole organ or body part. Mutations in these genes result in dramatic disruptions of morphogenesis, leading to the formation of organs at the wrong positions (homeotic transformations). These homeotic genes tend to code for transcription factors. The most important animal homeotic selector genes belong to the family of homeobox genes (Gehring, 1994). These factors have characteristic helix-loop-helix elements allowing them to bind to promoter regions of downstream target genes. The homeo-box genes are some of the most stable in evolution and are highly conserved in all eukaryotic organisms. In animals, these homeo-box containing genes are organized in clusters, that have also been conserved during evolution. The arrangement of homeo-box genes is correlated with the anterior-posterior position of the body segments they specify during the embryonic stage of the animal. For example, a consequence of antennapedia mutants is the formation of legs in place of antenna in adult flies (Drosophila melanogaster) (Lawrence, 1992). In addition to this, the ectopic expression in flies of a mouse homeobox gene (hoxB6) leads to a similar homeotic tranformation of antennae into
legs (McGinnis \& Kuziora, 1994). This means that even the function -the formation of a certain part of the overall pattern- has been conserved in evolution during millions of years. This is called 'synteny of function'(Theißen \& Saedler, 1995).

1.2 The ABC-model of flower development

The concept of hierarchical control of development in animals has strongly influenced plant developmental biology. The pattern of body segments laid down by developmental control genes during the embryonic stage of Drosophila has been compared with the pattern of a series of leaflike structures laid down during the development of a flower (Theißen \& Saedler, 1995). Flower formation is a function of floral meristems. Upon flowering, the shoot apical meristem changes fate, giving rise to an inflorescence meristem out of a vegetative one. The inflorescence meristem undergoes further transitions to produce several lateral floral meristems. The meristems grow in size, and from around the periphery of the meristem dome some highly mounded structures bulge out, the floral organ primordia. These primordia emerge in four concentric rings, called whorls. In the outer whorl the sepals are formed, enclosing the petals in the second whorl. Together they make up the perianth. Inside of these, in whorl three, the stamina are formed. In the innermost whorl the carpels develop.

Work in plants was mainly based on two dicot plant model systems, Thale cress (Arabidopsis thaliana) and Snapdragon (Antirrhinum majus). Two groups of mutant plants were investigated that show homeotic transformations of floral meristems and floral organs. In the former group, the identity of the floral meristem is not specified. As shown in squamosa in Antirrhinum, the lateral floral meristems are transformed into an inflorescence-like growth at the site of the flower (Huijser et al., 1992). Within the latter group, the phenotypes of the homeotic transformations could be classified into three functional classes, labeled A-, B- and C- function mutations. Per class different but overlapping sets of organs were affected (for an overview, see: SchwarzSommer et al., 1990; Coen \& Meyerowitz, 1991; Weigel \& Meyerowitz, 1994; Meyerowitz, 1994). In the first class the perianth was transformed, as can be seen in apetalal and apetala 2 in Arabidopsis (Mandel et al., 1992; Jofuku et al., 1994). Sepals are changed into carpels, and petals into stamens. In the second class, examplified by pistillata and apetala3 in Arabidopsis, or deficiens and globosa in Antirrhinum, the petals are converted into sepals, and the stamens into carpels (Goto \& Meyerowitz, 1994; Jack et al., 1992; Sommmer et al., 1990; Tröbner et al.,
1992). As can be seen in agamous in Arabidopsis or plena in Antirrhinum, the last class of floral homeotic mutants has the stamens converted into petals and the carpels are transformed into sepals. The meristem becomes indeterminate, creating a reiterated pattern of sepals and petals (Yanofsky et al., 1990; Bradley et al., 1993). It was observed that A-function genes work antagonistically to C -function genes, and vice versa. In doing so, they mutually exclude each other of functioning in the same whorls. In addition to that, B-function genes can be expressed in the same whorl with either A-, or C- function genes. Since the function of these genes in a whorl specifies which organ is formed, these homeotic genes where called floral organ identity genes. Depending on the combination of functions present in a particular whorl, the respective floral organ is developed. A genes specify sepals; $\mathrm{A}+\mathrm{B}$ genes specify petals; $\mathrm{B}+\mathrm{C}$ genes specify stamens; C genes specify carpels. Genetic crosses of B- and C-function mutations showed an indeterminate flower consisting of a reiteration of only sepals. A-, B, and C-function triple mutants revealed that all floral organs are reverted to their ground state and appear as leaves (Weigel \& Meyerowitz, 1994). The combinatorial action of the floral organ identity genes has been called the 'ABC-model'. Lately, the model has been extended to include a D-function, specifying ovule identity (Angenent et al., 1995). In petunia (Petunia hybrida) ectopic expression of the genes FBP7 and FBP11 lead to the formation of ovules on the perianth.

As the genes have been isolated, the molecular mode of action could be elucidated. The site of expression of the floral meristem and organ identity genes closely correlated with the site of the mutant phenotype, except for $A P 2$ that is more widely expressed. This indicates that the wildtype expression can give a strong suggestion to the function the gene exerts. It showed that all floral meristem and organ identity genes, except $A P 2$, are MADS-box genes. This name is an acronym, derived from $\underline{M C M 1}$ (yeast), \underline{A} GAMOUS (Arabidopsis), $\underline{D E F I C I E N S ~(A n t i r r h i n u m) ~ a n d ~} \underline{S R F}$ (Human). MADS-box genes code for a class of transcription factors, that is present in all eukaryotic species (Schwarz-Sommer et al., 1990). The MADS domain is a highly conserved motif of approximately 57 amino acids long, that can bind to DNA (Riechmann \& Meyerowitz, 1997). In plants, the MADS-domain also contributes to the dimerizing capacity of the protein with other proteins, as does a second domain, the K-domain. The K-domain has sequence conservation with other proteins, that can form keratin-like coiled coil structures, involved in protein-protein interaction (Shore \& Sharrocks, 1995). In Antirrhinum, in vitro transcribed and translated DEF and GLO protein have been shown to bind to DNA as heterodimers. Together they recognize a DNA sequence with CArG motifs containing a palindromic core (SchwarzSommer et al., 1992). Furthermore, MADS-domain proteins can even form ternary complexes in
yeast (Egea-Cortines et al., 1999), as examplified by the heterodimer DEF-GLO interacting with a homodimer of SQUAMOSA. The complex has increased DNA binding affinity compared to either of the two dimers. This type of interaction may augment the capacity with which MADSdomain transcription factors exert their function within the regulatory network. The intervening region between MADS-box and K-box was termed I-region. The C-terminal part of the protein, or C-region, might act as a transactivation domain. In plants, most of the MADS-box genes have this structure composed out of four modules and are therefore called MIKC-type genes (Münster et al., 1997).

1.3 AGL2-like MADS-box genes

The high level of sequence similarity between functionally syntenic MADS-box genes (orthologs such as $A G A M O U S$ and PLENA; see above), lead to the understanding that genes from different species can sometimes function more alike than related genes from within the same species (paralogs). Phylogenetic reconstructions, based on sequence comparison, revealed that the MADS-box genes coding for a floral organ identity can be classified into well-defined monophyletic clades (Theißen et al.,1996). The majority of the member genes exert a highly similar function within these clades, based on mutant or transgenic analysis. Other MADS-box genes from a variety of species have now been isolated that do not cluster in clades that have been functionally defined. In one clade, the MADS-box genes always cluster together with the Arabidopsis gene AGL2. The first genes were isolated based on the homology with AGAMOUS, hence the name AGAMOUS-LIKE2. These genes have been around for at least 300 million of years, as these have been isolated from angiosperms (dicot and monocots) and from gymnosperms (Cacharrón et al., 1999; Mouradov et al, 1998). This suggests that the last common ancestor of seed plants already had at least one $A G L 2$-like gene. The strong selection pressure during more than 300 million years to retain $A G L 2$-like genes in higher plants points to the importance of their function (Münster et al., 1997).

Untill recently, no mutants in any $A G L 2$-like gene were known that could shed light on the function of the genes. A transgenic approach was therefore taken by two groups working on Solanaceous dicot model systems. By down-regulating the level of endogenous AGL2-like gene transcript due to the integration of a transgene into the genome, a phenotype was obtained in petunia for the gene FBP2, and in tomato (Lycopersicon esculentum) for TM5 (Angenent et al.,

1994; Pnueli et al., 1994). FBP2 and TM5 are expressed in petals, stamens, and carpels in the wildtype. In the transgenic plants, both dicots have flowers in which the three inner whorls were converted to sepals, or that have sepaloid petals (i.e. the conversion is partial). In flowers with a strong phenotype, the central floral meristem became indeterminate. In addition to this, in transgenic petunia plants, a new inflorescence-like primordium was formed in the axils of the innermost floral organs. Hence, the phenotype suggests that these $A G L 2$-like genes function by mediating between floral meristem identity genes and floral organ identity genes.

Transgenic approaches using co-suppression or antisense technology may not always lead to an unambiguous result as to the specific disruption of only the target gene. The endogenous gene is left intact. Its expression is reduced by the transgene due to interfering with the transcript based on sequence homology. Therefore, the obtained phenotype may result from a reduction of expression of a highly similar gene, or might not be a null-phenotype (100% reduction of the endogenous transcript), thereby obscuring the proper phenotype that gives clues to the real function. In Arabidopsis a 'reverse genetics' approach (from gene to mutant phenotype, as opposed to the classical way of isolating the gene causing a mutant phenotype, termed forward genetics) was used. T-DNA and transposon insertion populations were screened to find mutants in three $A G L 2$-like genes. Mutant loci of $A G L 2$ and $A G L 4$ showed no phenotype, and AGL9 showed only slightly sepaloid petals (Pelaz et al., 2000). In the wildtype, $A G L 2$ and $A G L 4$ are expressed in all 4 whorls (Flanagan et al.,1994; Savidge et al.,1995), whereas AGL9 expression is found in whorl 2, 3 and 4 (Mandel \& Yanofsky, 1998). In the AGL2/AGL4/AGL9 triple mutant however, all floral organs were converted to sepals, resembling the B/C-function double mutant. The AGL2-like genes were hence renamed SEPALLATA (SEP1-3). The genes act redundantly, and are required in combination with the B - and C -function genes to specify the floral organ identity in the distinct whorls. Therefore, they were included into the ABC-model as the Efunction genes (Theißen, 2001). Additionally, ectopic expression of the E-function genes together with A, B and C-function genes is sufficient to convert leaves into flower organs (Honma \& Goto, 2001; Pelaz et al., 2001), supporting the idea that floral organs represent modified leaves (von Goethe, 1790; Theißen \& Saedler, 2001).

An extensive functional analysis of all $A G L 2$-like genes within a plant species has not been published to date. For Arabidopsis an extra AGL2-like gene is known, AGL3, that is also expressed in leaves (Huang et al., 1995). From different plant species it is clear that other AGL2like genes may have a different expression pattern than the one from SEP1-3, FBP2 or TM5
(Theißen et al., 1996, Cacharrón et al., 1999). Furthermore, it has been observed that other AGL2like genes have obtained a different function during evolution (Theißen et al., 1996). GRCD1, an AGL2-like gene from gerbera (Gerbera hybrida), only specifies whorl three floral organ identity in female marginal florets (Kotilainen et al., 2000), even though the gene is expressed in all four whorls. The AGL2-like gene GRCD2, however, confers determinacy to the two outer regions of the capitulum (i.e. the inflorescence), where of the ray and transflorets are found (Kotilainen et al., 1999; Teeri, pers. comm.). Since the $A G L 2$-like clade is a rather diverse group of genes, there is a need to investigate the function of these genes in its endogenous plant model systems. Until now, MADS-box genes have primarily been investigated in dicot model plants such as Arabidopsis and Antirrhinum. Monocots have been much less characterized functionally, although they include the agronomically important cereal grass species (family Poaceae), like maize (Zea mays ssp. mays) and rice (Oryza sativa). Information about MADS-box gene function in monocots would enable one to make predictions about the degree of conservation of function within the ABC model beyond the dicot-monocot split around 200 milion years ago (Savard et al., 1994), and the way MADS-box genes helped to shape the inflorescences and flower-like structures on these, as compared to the dicot ones. First, an introduction to inflorescence development must be discussed to address the question as to whether the ABC model can be applied to grasses. Maize is described as an example.

1.4 Maize inflorescence development

Maize is a monoecious plant, having two distinct unisexual inflorescences per plant, in which the male and female floral organs are organized (Cheng et al., 1983). The staminate inflorescence, the tassel, is located at the apex of the plant, whereas the pistillate inflorescence, the ear, develops in the leaf axils of the seventh until the tenth leaf, surrounded by husk leaves. In the first developmental stages, the two inflorescences are morphologically almost identical. Via specific abortion of the organs of the opposite sex, the unisexual flowers are created out of initially bisexual floral primordia. Like in all grasses, the flower-like structures are called florets (fig.1.1.A).

Fig 1.1.A-B. Spikelet and spikelet pair architecture. A. Fully developed wild-type male spikelet of maize having two florets. Each male floret consists of a lemma and palea, encircling three stamens and two lodicules. B. Side branch of the tassel showing spikelets pairwise aligned. Each pair consists of a sessile spikelet having a short stalk (pedicel), and a pedicellate one having a longer pedicel. $\mathrm{f}=\mathrm{floret}, \mathrm{l}=\mathrm{lemma}$, $\mathrm{pa}=$ palea, $\mathrm{gl}=\mathrm{glume}, \mathrm{lo}=$ lodicule, $\mathrm{st}=$ stamen, $\mathrm{p}=$ pedicel, $\mathrm{ps}=$ pedicellate, $\mathrm{ss}=$ sessile spikelet, pair=pair of spikelets.

In maize these consist of two papery scales, called lemma and palea, that enclose three stamens and a gynoecium, made up of three carpels. In the male floret also two highly reduced petal-like structures form, the lodicules. The florets are pairwise organized, with an upper and lower floret. These are placed together within two bracts, called glumes. The whole entity, hold together by the glumes, is called the spikelet, which is the basic unit of grass inflorescences (fig.1.1.B.). In maize also the spikelets are pairwise organized. In the tassel one spikelet has a longer stalk (the pedicellate spikelet) than the other (the sessile one). In the ear, however, all spikelets are placed close to the main inflorescence stem. Furthermore, in the ear the lower floret within each spikelet is aborted.

The complex architecture of the maize inflorescence of paired florets within paired spikelets, is the result of the sequential differentiation of the inflorescence meristem (IM) (Irish, 1997). This model of maize inflorescence architecture was based on the SEM analysis of two tassel seed mutants (ts4 and TsØ), that show, apart from a lack of abortion of the gynoecia in the tassel, an abberant branching pattern in the inflorescence. After the transition to flowering has taken place in wild-type plants, the IM gives rise to spikelet pair meristems (SPM) in an acropetal fashion (fig.1.2).

Fig.1.2. A-D Developmental stages in the maize inflorescence based on scanning electron microscopic analysis. A. Initiating wild-type spikelet pair primordia and spikelet primordia on a developing ear. Bar $=300 \mu \mathrm{~m}$ B. Unbranched spikelet meristem (top). Slightly older spikelet meristem laterally branched to form the lower floret meristem (bottom). $\mathrm{Bar}=100 \mu \mathrm{~m}$ C. Development of floral organ initials at the upper floret. Bar $=80 \mu \mathrm{~m}$. SEM pictures (fig. 1A-C) from Chuck et al. (1998). D. Schematic representation of the developmental stages. The inflorescence meristem is converted into spikelet pair meristem (SPM). The SPM creates two spikelet meristems (SM). The SM initiates glume initials first, then produces two floret meristems (FM). The FM forms all the floral organs, before sex specific abortion leads to unisexual florets. Modified after Cheng et al. (1983).

The SPM gives rise to two spikelet meristems (SM), by first producing an extra SM, before converting into an SM itself. Each SM in turn forms two floret meristems (FM), via a similar pattern in which the initial meristem undergoes a change of fate into the next level of meristem identity. The floret meristems finally produce the different floral organs. The sequential emergence of the different meristems is unidirectional. The meristems are only able to initiate a meristem on the next level, not the other way around. This indicates that the level of determinacy is increased with each step from SPM via SM to FM. The two tassel seed mutations show the wild type gene to act on the conversion of SPM to SM (ts4), or on the transition of SM to FM (Ts6) (fig.1.3.A).

The Irish-model of grass inflorescence architecture was challenged by Chuck and co-workers (1998) after analyzing another branching mutant, indeterminate spikeletl (idsl). The phenotype shows the spikelet meristem to be more indeterminate by producing three to ten florets in stead of the wildtype two. All florets appear to have been initiated laterally by the SM on a stalk-like structure in the center of the spikelet, the rachilla (fig.1.3.B). In wild-type maize spikelets, the rachilla is not visible, unlike in other grass species that have a higher number of florets per spikelet.

Fig.1.3. Competing models of maize spikelet architecture. Derived from Irish, 1998. A. Model of spikelet formation in maize after Irish, 1997. Black arrows indicate the initiation of meristems; blue arrows indicate the conversion of fate of the meristems. The spikelet pair meristem initiates a single spikelet meristem, then converts also to a spikelet meristem. Each spikelet meristem initiates a single floral meristem, then also converts to a floral meristem. B. Model of spikelet formation in maize after Chuck et al, 1998. The spikelet meristem laterally initiates two floral meristems, then terminates activity.
Abbrev.:SPM= spikelet pair meristem, $\mathrm{SM}=$ spikelet meristem, $\mathrm{FM}=$ floral meristem.

Due to the fact that grass florets are distinct in structure from dicot flowers and differently organized -in spikelets- on the inflorescence, it remained to be proven, whether the ABC model is applicable to them. Especially the identity of the floral organs and bracts enclosing the two inner
whorls, i.e. the glume, lemma, palea, and lodicules was widely debated. A maize homeotic mutant, called silky, was investigated and found to encode a B-function homolog of DEFICIENS (Ambrose et al., 2000) The phenotype shows that stamens were converted into carpels and lodicules into paleas. Hence, the lodicules in grasses are homologous structures to petals in dicots. Furthermore it showed that the paleas, previously classified as bract-like scales, are homologous to sepals in higher eudicots.

Also in rice, a homolog of AGL2-like genes, OsMADS1, was found to be mutated in leafy hull sterilel plants (Jeon et al., 2000). The wildtype spikelets in rice have, in contrast to maize, only one floret. The mutant phenotype shows a partial conversion of lodicules to paleas, which is consistent with paleas being the grass representatives of dicot sepals. If the spikelet had a strong phenotype, the glumes were surrounding a reiterated set of paleas, resembling the B / C double mutant in Arabidopsis, or likewise, the $\operatorname{SEP}(1-3)$ triple mutant. Additionally to the E-function phenotype, rice lhsl spikelets had sometimes an extra floret, indicating that OsMADSl controls the level of spikelet meristem determinacy as well. This resembles the lack of function of $f b p 2$ in petunia. This is further evidence that the ABC model of eudicot flower development can be applied to grass species.

1.5 Goal of the thesis

The goal of this thesis work was a molecular and functional analysis of $A G L 2$-like genes in maize. AGL2-like genes have been shown to be important in governing inflorescence and flower development in higher eudicots, by mediating between floral meristem and organ identity genes. AGL2-like genes can have highly distinctive patterns of expression, suggesting a diversification in gene functions. The differences in inflorescence 'Bauplan' between grasses and non-grasses (see above), raises the question as to whether the various $A G L 2$-like genes can have a role in guiding this specific development of the architecture of the complex inflorescences. This is all the more suggested for grass $A G L 2$-like genes that can have expression patterns conferring novel positional information not known from dicots. Though AGL2-like genes in some dicot species have rendered a clear phenotype, and hence function, a comparison of these species shows differences in the correlation between expression pattern and phenotype, and in the level of redundancy among AGL2-like genes. A more thorough characterization of the AGL2-like subfamily of MADS-box genes in maize may eventually lead to a better understanding in their
putative role as control genes of grass inflorescence development. In maize, 8 AGL2-like genes have been isolated that have different expression patterns (Theißen \& Saedler, 2001). Among these, two showed extraordinary expression patterns, fitting to only a subset of the total number of primordia, each at only one of the different grass inflorescence meristem levels.

The gene ZMM6 is strongly expressed in both the tassel and the ear in very early stages of development (fig.1.4.). Expression is turned on after the transition of the inflorescence meristem to spikelet pair meristem (SPM) (stage A, after Cheng et al., 1983) (Cacharrón, 1994; Cacharrón et al., 1995). In the SPM the expression is low. After the spikelet pair meristem bifurcates, ZMM6 is expressed in only one of a pair of spikelet primordia (late stage A), and discriminates therefore between the sessile and pedicelate spikelet.

Fig.1.4. Expression of ZMM6 transcript in inflorescences, as revealed by in situ hybridization with digoxigenin-labeled antisense riboprobes. Bar $=100 \mu \mathrm{~m}$. A-C. Transverse cross-sections of female inflorescence, probed with antisense ZMM6. A. IM shows no expression. B. At the early stage A, a weak expression is shown in the spikelet pair primordia (SPp). C. At late stage A, expression is only in one spikelet primordium (SP) out of a pair. D. Tangential section through female spikelets at stage F, showing expression in both upper and lower floret, but not in the glumes (g). Both spikelets of a pair show ZMM6 expression. E. Median longitudinal section through a male spikelet at stage H. Expression is visible in all floral organs, of upper and lower floret primordia. F. Schematic representation of ZMM6 expression (in red) during inflorescence development at stage $\mathrm{A}-\mathrm{F}$. $\mathrm{SPp}=$ spikelet pair primordium, $\mathrm{SP}=$ spikelet primordium, ufp=upper floret primordium, $1 \mathrm{fp}=$ lower floret primordium, $\mathrm{g}=\mathrm{glume}$, Hu=husk leaf, remaining abbreviations as fig $1 \& 2$. (After Cacharrón, 1994).

After the differentiation of the spikelet meristems to floret meristem, ZMM6 is continuously expressed in only one spikelet, at the same level in the upper as well as the lower floret inititials, but not in the glumes (stage A to C). In later stages the gene is also turned on in the second spikelet primordium, except in the glumes (stage D and further). ZMM6 is then expressed in all floral organs.

The gene ZMM8 is strongly expressed in both male and female inflorescences (Cacharrón, 1998; Cacharrón et al., 1999). Expression is turned on starting at stage D, after the spikelet meristem has produced the two floret primordia. ZMM8 transcript is only detected in the upper floret initial. Expression is shown equally in all floret organs, but not in the two glumes surrounding them. The gene continues to be transcribed in only the upper floret primordia, throughout the development of the floret initials (stage H and further). The sustained absence in the lower floret primordia, therefore does not seem to be linked to the delayed development of this primordium. ZMM8 is a developmental marker, discriminating between the upper and the lower floret primordia.

Fig.1.5. Expression of $Z M M 8$ transcript in inflorescences, as revealed by in situ hybridization with digoxigenin-labeled antisense riboprobes. A-D. Probed with antisense $Z M M 8$. Bar= $100 \mu \mathrm{~m}$. A. Median longitudinal section through female spikelets at stage D, when expression in upper floret primordium starts. B. Transverse cross-section through a male spikelet at stage F. C. Median longitudinal section through female inflorescence at stage F. D. Close-up of a median logitudinal section through a male spikelet primordium at stage H , showing a continuation of expression in only the upper floret primordium. E. Schematic representation of ZMM8 expression (in green) during inflorescence development at stage A-F. Abbreviations as in fig 4. (After Cacharrón et al., 1999).

This thesis describes a functional characterization of the AGL2-like genes ZMM6 and ZMM8. Based on the present day models of grass inflorescence architecture, these genes may exert their function at the respective meristem levels in which they are expressed. This may indicate that ZMM6 might act during the transition of spikelet pair meristem to spikelet meristem, since it is differently expressed during development in the two spikelet primordia. ZMM6 may confer sessile versus pedicellate spikelet identity, or regulate the level of determinacy of the spikelet pair primordium, ordering the SPM to stop initiating more spikelet primordia. A similar way of reasoning holds for $Z M M 8$, that might exert its function during the transition of spikelet meristem to floral meristem. ZMM8 might confer upper floret identity to the meristem, thereby preventing it from being aborted as the lower floret is. Another hypothesis is that it might determine the degree of determinacy of the spikelet meristem, signaling to the meristem to stop initiating more floret primordia. Alternatively or additionally, ZMM6 and ZMM8 may function as E-function genes that allow the B- and C-function genes to confer the identities to the respective whorls. As no candidate mutants mapped at the genomic loci of these genes (Neuffer et al, 1997), a transgenic approach was taken to reveal the function.

The $A G L 2$-like gene family in maize is more analyzed in detail by a screen to obtain genomic clones of this family and by a structural characterization of the total genomic sequence of a few members. Furthermore, a new member of the subfamily is presented and analyzed phylogenetically to reveal how it relates to the other members.

2 MATERIAL AND METHODS

2.1 Materials

2.1.1 Media

All media were autoclaved before use.
LB $\quad 1 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}, 1 \%(\mathrm{w} / \mathrm{v})$ bactotryptone, $0.5 \%(\mathrm{w} / \mathrm{v})$ yeast extract.
NZY $\quad 0.5 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}, 0.2 \%(\mathrm{w} / \mathrm{v}) \mathrm{MgSO}_{4}, 0.5 \%(\mathrm{w} / \mathrm{v})$ yeast extract, 10% (w/v) NZ Amine (casein hydrolysate), adjusted to $\mathrm{pH}=7.5$ with NaOH .

NZY plates NZY broth with $1.5 \%(\mathrm{w} / \mathrm{v})$ agar.
NZY top agar NZY broth with 0.7 \% (w/v) agarose.

2.1.2 Buffers

Denhardt's (5x) 0.1 \% (w/v) BSA, $0.1 \%(w / v)$ Ficoll, 0.1% (w/v) PVP.
SSC (20x) $\quad 3 \mathrm{M} \mathrm{NaCl}, 0.3 \mathrm{M}$ sodium citrate.
SM $\quad 0.58 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}, 0.2 \%(\mathrm{w} / \mathrm{v}) \mathrm{MgSO}_{4}, 50 \mathrm{mM}$ Tris- $\mathrm{HCl}(\mathrm{pH} 7.5)$,
0.01 \% gelatin.

TBE (1x) $\quad 0.9 \mathrm{M}$ Tris- $\mathrm{HCl}, 0.9 \mathrm{M}$ boric acid, 25 mM EDTA.

2.1.3 Cloning vectors

pGEM-T	(Promega)
pBluescript II KS $(+)$	(Stratagene)
pRT104	(Töpfer et al., 1993)
pAHC25	(Taylor et al., 1993)
pK225	(Dr. Thompson lab)
p35SAcS/GCM5::GUS	(Dr. Thompson lab)

2.1.4 Plant material

Zea mays ssp. mays L. cv. A69Y+ (backcross partner)
Zea mays ssp. mays L. cv. B73+ (backcross partner)
Zea mays ssp. mays L. cv. HE89+ (for transformation purposes)
Zea mays ssp. mays L. cv. T232+ (for cloning purposes)
Zea mays ssp. mays L. , Ts6/ts6 x ts6/ts6 segregating population (MGSC stock 116 I)
2.1.5 E. coli strains

DH10B: $\quad F \operatorname{mcrA} \Delta(m r r-h s d R M S-m c r B C) \phi 80 d l a c Z \Delta M 15 \Delta l a c X 74$ deoR recA1 endA1 araD139 4 (ara leu) 7607 galU galK ${ }^{-}$rpsl nupG (GIBCO BRL)

XL1-Blue MRA: $\quad \Delta(m c r A) 183 \Delta(m c r C B-h s d S M R-m r r) 173$ endA1 supE44 thi-1 gyrA96 relA1 lac (Stratagene)

2.2 Methods

2.2.1 Plasmid DNA isolation

Plasmid DNA was isolated via the 'alkali lysis minipreparation' protocol (Sambrook et al., 1989). Sequencing grade DNA was obtained with the Qiagen mini-plasmid kit. DNA for plant transformation was obtained in bulk amounts with the Qiagen midi- and maxi plasmid kit, followed by an additional purification with phenol/chloroform and subsequent isopropanol precipitation, ethanol wash and resuspension in de-ionized water (MQ).

2.2.2 Genomic library screening

A genomic library containing DNA of maize inbred line T232, cloned into phage 'Lambda DASH II vector' (Stratagene) within the BamH I restriction site, was kindy provided by prof.dr. G. Theissen. The titer was $2.5^{*} 10^{6}$ plaque-forming units (pfu) per ml. Isolation of genomic clones was performed according to the protocol of the Lambda DASH II/BamHI vector kit (Stratagene).

Host cells of E. coli strain XL1-Blue MRA were grown for 4 to 6 hrs at $37^{\circ} \mathrm{C}$ in LB with 0.2% $(\mathrm{v} / \mathrm{v})$ maltose and 10 mM MgSO 4 up to an $\mathrm{OD}_{600}=1.0$. The bacteria were pelleted at 2000 rpm for 10 minutes, and subsequently resuspended in twice the volume of sterile 10 mM MgSO 4 to $\mathrm{OD}_{600}=0.5$. Aliquots of $6 \mu \mathrm{l}$ of the library suspension containing $15,000 \mathrm{pfu}$ were mixed with 200 $\mu 1$ host cells and incubated for 15 minutes at $37^{\circ} \mathrm{C}$ under gentle shaking. Then 3 ml of NZY top agar of $48^{\circ} \mathrm{C}$ was added and the mixture was plated on NZY plates of 90 mm . The plates were incubated at $37^{\circ} \mathrm{C}$ for 8 hrs , and chilled for 2 hrs at $4^{\circ} \mathrm{C}$. The plaques were transferred to a nitrocellulose membrane for 2 minutes. The orientation of the membrane to the plate was marked by sticking with a needle a few wholes it. After lifting it, the membrane was denatured by submerging it in $1.5 \mathrm{M} \mathrm{NaCl}+0.5 \mathrm{M} \mathrm{NaOH}$ for 2 minutes. Subsequently the membrane was neutralized for 5 minutes in $1.5 \mathrm{M} \mathrm{NaCl}+0.5 \mathrm{M}$ Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$. Then the membrane was rinsed in 0.2 M Tris- $\mathrm{HCl}+2 \mathrm{x} \mathrm{SSC}(\mathrm{pH} 7.5)$ for 20 seconds, and briefy blotted onto Whatmann 3MM paper. The DNA was crosslinked to the filter with a UV crosslinker (Stratagene) by applying $120,000 \mu J^{*} \mathrm{~cm}^{-2}$ of energy. The filter was baked in an oven at $80^{\circ} \mathrm{C}$ for 2 hrs .
The filters were prehybridized, hybridized and washed under non-stringent conditions with labelled probe as described below prior to exposure to an X-ray film. Positive clones were picked after proper orientation of the film to the plate by using a cut-off blue tip. The clones were transferred to 1 ml SM $+20 \mu 1$ chloroform and vortexed. The suspension was 100 fold diluted in SM buffer. Of this $2 \mu \mathrm{l}$ was used to re-infect $200 \mu \mathrm{l}$ of host cells as described above for the second screening. The whole procedure was usually repeated for a third time as most clones were too close to the background plaques.

2.2.3 Phage lambda DNA isolation

The prelysate was made by infecting $25 \mu 1$ host cells with $250 \mu 1$ plaque isolate. The mix was incubated for 15 minutes at $37^{\circ} \mathrm{C}$ before 1 ml NZY was added. Then it was grown overnight at $37^{\circ} \mathrm{C}$ and $150 \mathrm{rpm} .100 \mu \mathrm{l}$ prelysate was mixed with $100 \mu \mathrm{l}$ host cells and $300 \mu \mathrm{l}$ SM. The mix was incubated for 15 minutes at $37^{\circ} \mathrm{C}$ and 25 ml NZY was added. This was incubated overnight at $37{ }^{\circ} \mathrm{C}$ and 150 rpm . From this lysate 10 ml was mixed with $5 \mu \mathrm{RNaseA}(20 \mathrm{mg} / \mathrm{ml})+4 \mu \mathrm{l}$ DNase ($50 \mathrm{mg} / \mathrm{ml}$) in corex tubes and incubated for 3 to 4 hrs at $37{ }^{\circ} \mathrm{C}$. Then $5 \mathrm{ml} \mathrm{PEG}_{6000}+1.5$ M NaCl was added and after mixing it, it was incubated for 1 hr on ice. Subsequently it was
centrifuged for 10 minutes at $4{ }^{\circ} \mathrm{C}$ at $10,000 \mathrm{rpm}$. The phage pellet was resuspended in 1 ml TE (pH 8.0) and transferred to 2 ml Eppendorf tubes. To this $40 \mu \mathrm{l} 0.5 \mathrm{M}$ EDTA $+20 \mu \mathrm{~L} \mathrm{M} \mathrm{NaCl}+$ $50 \mu \mathrm{l} 10 \%$ Triton X-100 was added. After mixing it, it was incubated for 15 minutes at $70{ }^{\circ} \mathrm{C}$. Then the DNA was extracted with 1 volume of phenol/chloroform, and subsequently with 1 volume of $24: 1$ chloroform/isoamylalcohol. The DNA was precipitated with 1 volume of isopropanol, centrifugated for 15 minutes at $13,000 \mathrm{rpm}$ and washed in 1 volume of 70% ethanol. The pellet was dried in the air and dissolved in $50 \mu \mathrm{TE}(\mathrm{pH} 8.0)$.

2.2.4 Plant genomic DNA isolation

Genomic DNA was extracted from maize plants by a protocol derived from the method of Junghans and Metzlaff (1990). 3 g of leaf material was ground by mortar and pestle in liquid nitrogen to a fine powder. 15 ml DNA extraction buffer consisting of 100 mM Tris (pH 8.0), 500 $\mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ EDTA (pH 8.0) with freshly added β-mercaptoethanol was poured onto the powder. Then 2 ml of 20% SDS was added and the mixture was gently stirred and incubated for 10 minutes at $65^{\circ} \mathrm{C}$ before 5 ml of 5 M potassium acetate was added. This was gently mixed and incubated for 20 minutes on ice. After centrifugation for 15 minutes at $5,000 \mathrm{rpm}$ the supernatant was collected through a miracloth and transferred to a new tube. The sample was treated with 10 μl RNaseA ($100 \mathrm{mg} / \mathrm{ml}$) for 30 minutes at $37^{\circ} \mathrm{C}$. Then 1 volume of phenol/chloroform was added and the extraction was shaken. Subsequently it was centrifuged at $5,000 \mathrm{rpm}$ for 10 minutes and transferred to a new tube. The 1 volume of chloroform was added. After gentle shaking the mixture was centrifuged at $5,000 \mathrm{rpm}$ for 10 minutes. The DNA in the supernatant was precipitated with 1 volume of isopropanol and centrifuged at $10,000 \mathrm{rpm}$ for 30 minutes. The pellet was rinsed in 70% ethanol and subsequently dried at room temperature for 30 minutes. The DNA was dissolved overnight in 1 ml TE (pH 8.0). Extracted DNA was quantified by comparison of band-intensity on ethidium bromide stained agarose gels with a DNA molecular weight marker.

2.2.5 DNA digestion, separation and blotting onto membranes

$10 \mu \mathrm{l}$ purified DNA was digested to completion and subsequently loaded and separated overnight via electrophoresis in 0.7% agarose gels with 0.5 x TBE buffer. The DNA was depurinated with 0.125 M HCl for 10 minutes. The gel was soaked for 45 minutes in denaturing solution (1.5 M $\mathrm{NaCl}+0.5 \mathrm{M} \mathrm{NaOH}$) and then for 30 minutes in neutralizing solution ($1.5 \mathrm{M} \mathrm{NaCl}+1 \mathrm{M}$ Tris$\mathrm{Cl}, \mathrm{pH} 7.5)$. After washing in 20 x SSC, the DNA was transferred to a Nylon N membrane (Amersham) according to the standard capillary transfer procedure (Sambrooke et al., 1989). The DNA was crosslinked to the filter with a UV crosslinker (Stratagene) by applying 120,000 $\mu \mathrm{J}^{*} \mathrm{~cm}^{-2}$ of energy. The filter was baked in an oven at $80^{\circ} \mathrm{C}$ for 2 hrs .

2.2.6 Random prime labelling

Probes were prepared from purified DNA fragments that have been isolated from agarose gel using the gel purification kit (QIAGEN). The labelling was caried out in $30 \mu \mathrm{l}$ of the random prime labelling mix described below. The reaction was incubated for 4 hrs at RT. The probe was purified with Qiagen PCR purification Kit and denatured by boiling for 5 minutes and subsequently chilled on ice directly before use.

$$
\begin{aligned}
& \underline{\text { random prime labelling mix }} \\
& \hline 20 \mu 1 \text { denatured DNA }(50 \mathrm{ng}) \\
& 3 \mu \mathrm{l} \text { oligo labelling mix }(10 \mathrm{x}) \\
& 1 \mu 1100 \mathrm{x} \text { BSA (DNase free) } \\
& 5 \mu \mathrm{l}\left[\alpha^{32} \mathrm{P}\right] \text { dCTP }(10 \mu \mathrm{Ci} / \mu \mathrm{l}) \\
& 1 \mu \mathrm{l} \text { Klenow polymerase }(2 \mathrm{U} / \mu \mathrm{l}) \\
& \hline
\end{aligned}
$$

10x oligo labelling mix

```
2.5 \mug/ml pd (N)
0.5 M Tris-Cl (pH7.5)
0.1 M MgCl2
0.5 M dATP, dTTP, dGTP
70 mM }\beta\mathrm{ -mercaptoethanol
```


2.2.7 Hybridization of DNA

Pre-hybridization and hybridization were carried out in hybridization solution in glass tubes (30 $\mathrm{cm} \times 4 \mathrm{~cm}$) at $65^{\circ} \mathrm{C}$ (if under non-stringent conditions, at $58^{\circ} \mathrm{C}$) under continuous rotation in a hybridization oven (Bachofer, Reutlingen, Germany). The pre-hybridization was performed for at least 4 hrs. Upon adding the denatured radio-active probe, the hybridization was performed for at least 16 hrs.

After hybridization the filter was washed accordingly:
hybridization solution

1. twice $50 \mathrm{ml} 2 \times \mathrm{SSC}+0.1 \% \mathrm{SDS}$ at RT for 10 minutes
2. twice $50 \mathrm{ml} 1 \times \mathrm{SSC}+0.1 \% \mathrm{SDS}$ at $65^{\circ} \mathrm{C}$ for 10 minutes
3. once $50 \mathrm{ml} 0.1 \times \mathrm{SSC}+0.1 \% \mathrm{SDS}$ at $65^{\circ} \mathrm{C}$ for 15 minutes The filter was wrapped in thin plastic foil (Saran film) and exposed overnight to a Kodak X-ray film (X-Omat AR) in a
```
5x Denhardt's solution
5x SSC
0.1 % (w/v) SDS
100\mug/ml Herring sperm DNA
``` cassette with Trimax intensifying screen at \(-80^{\circ} \mathrm{C}\).

The probe was removed from the blot for subsequent re-hybridization by triple incubation at 65 \({ }^{\circ} \mathrm{C}\) for 30 minutes with stripping solution (5 mM Tris- HCl (pH 7.5), 2 mM EDTA, \(0.1 \%\) SDS, 0.01 \% Ficoll, 0.02 \% PVP).

\subsection*{2.2.8 Polymerase Chain Reaction (PCR)}

PCR reactions were performed in \(50 \mu 1\) reaction volume in a heating-lid thermo-cycler (Biometra, Göttingen). PCR reactions with the Taq-system were performed in order to screen for positive clones or transgenic plants. For cloning and subsequent sequencing purposes the Expand highfidelity (HF) PCR system (Roche) was used in combination with a manual hot-start. 5 ng plasmid and lambda DNA was used as template, whereas for genomic DNA 200 ng was used.

\section*{Taq-reaction:}
\begin{tabular}{|lr|}
\hline 10 x Taq buffer & \(5 \mu \mathrm{l}\) \\
dNTPs \((10 \mathrm{mM}\) each \()\) & \(5 \mu \mathrm{l}\) \\
primer forward \((10 \mathrm{pM})\) & \(0.5 \mu \mathrm{l}\) \\
primer reverse \((10 \mathrm{pM})\) & \(0.5 \mu \mathrm{l}\) \\
MQ water & \(37.5 \mu \mathrm{l}\) \\
DNA & \(1.0 \mu \mathrm{l}\) \\
Taq-pol. \((5 \mathrm{U} / \mu \mathrm{l})\) & \(0.5 \mu \mathrm{l}\) \\
\hline
\end{tabular}

\section*{HF-reaction:}
\begin{tabular}{|lr|}
\hline \(10 \times\) HF buffer & \(5.0 \mu \mathrm{l}\) \\
dNTPs \((1 \mathrm{mM}\) each \()\) & \(2.5 \mu \mathrm{l}\) \\
primer forward \((1 \mathrm{pM})\) & \(0.75 \mu \mathrm{l}\) \\
primer reverse \((1 \mathrm{pM})\) & \(0.75 \mu \mathrm{l}\) \\
MQ water & \(39.25 \mu \mathrm{l}\) \\
DNA & \(1.0 \mu \mathrm{l}\) \\
Polymerase-mix \((3.5 \mathrm{U} / \mu \mathrm{l})\) & \(0.75 \mu \mathrm{l}\) \\
\hline
\end{tabular}

\section*{Taq-conditions:}
1. \(96^{\circ} \mathrm{C} 2 \mathrm{~min}\).
2. \(96^{\circ} \mathrm{C} 15 \mathrm{sec}\).
3. \(58^{\circ} \mathrm{C} 15 \mathrm{sec}\).
4. \(72{ }^{\circ} \mathrm{C} 1 \mathrm{~min} / \mathrm{kb}\)
5. \(72^{\circ} \mathrm{C} 5 \mathrm{~min}\).
6. \(15{ }^{\circ} \mathrm{C} \infty\)

HF-conditions:
1. \(96^{\circ} \mathrm{C} 2 \mathrm{~min}\).
2. \(94^{\circ} \mathrm{C} 15 \mathrm{sec}\).
3. \(58^{\circ} \mathrm{C} 15 \mathrm{sec}\). \(\square\)
4. \(68^{\circ} \mathrm{C} 45 \mathrm{sec} / \mathrm{kb}-\)
5. \(94^{\circ} \mathrm{C} 15 \mathrm{sec}\).
6. \(58^{\circ} \mathrm{C} 15 \mathrm{sec}\).
7. \(68^{\circ} \mathrm{C} 45 \mathrm{sec} / \mathrm{kb}+10 \mathrm{sec} / \mathrm{cycle}\) -
8. \(68^{\circ} \mathrm{C} 7 \mathrm{~min}\).
9. \(15^{\circ} \mathrm{C} \quad \infty\)

\subsection*{2.2.9 Isolation of RNA}

Total RNA extraction was performed using the RNeasy plant minikit (Qiagen) according to the manufacturer's protocol. Tassel and ear material was harvested in the latest stages of development (J-K) as described by Cheng et al., 1983. Extracted RNA was quantified by comparison of the intensity of the rRNA fraction on ethidium bromide stained agarose gels and by absorbance at \(\lambda=260 \mathrm{~nm}\).

\subsection*{2.2.10 Northern analysis}

Equipment was rinsed thoroughly with DEPC treated water to avoid contamination with RNases. DEPC was added to \(0.1 \%\) (\(\mathrm{v} / \mathrm{v}\)), and left to stirr overnight prior to autoclaving. \(20 \mu \mathrm{~g}\) total RNA was mixed with one fourth volume of 5 x RNA loading buffer, heated to \(60^{\circ} \mathrm{C}\) in a waterbad for 10 minutes and cooled on ice before loading. The samples were separated on a \(1.2 \%\) (\(\mathrm{w} / \mathrm{v}\)) denaturing agarose gel (1.2 g agarose, \(700 \mu \mathrm{l}\) formaldehyde, 10 ml 10 x FA buffer, \(0.5 \mu \mathrm{l}\) (1 \(\mathrm{mg} / \mathrm{ml}\)) ethidium bromide in 100 ml MQ) in \(1 \times\) FA buffer (see below).

The gel was rinsed twice in water for 2 minutes and then soaked in 20 x SSC for 20 minutes. The RNA was transferred to a Biodyne B membrane (PALL) according to the standard capillary transfer procedure (Sambrooke et al., 1989). The RNA was crosslinked to the filter with a UV crosslinker (Stratagene) by applying \(120,000 \mu \mathrm{~J} * \mathrm{~cm}^{-2}\) of energy. The filter was baked in an oven at \(80^{\circ} \mathrm{C}\) for 30 minutes.
\(10 \times\) FA buffer
\begin{tabular}{|c|}
\hline 200 mM MOPS \\
50 mM NaAc \\
10 mM EDTA \\
set to \(\mathrm{pH}=8.0\) \\
with 10 N NaOH \\
\hline
\end{tabular}

\section*{\(5 \times\) RNA loading buffer}
\(2.7 \%\) (\(\mathrm{v} / \mathrm{v}\)) formaldehyde
20 \% (v/v) glycerol
\(30 \%\) (\(\mathrm{v} / \mathrm{v}\)) de-ionized formamide
\(40 \% ~(\mathrm{v} / \mathrm{v}) 10 \mathrm{x}\) FA buffer
\(0.05 \%(\mathrm{w} / \mathrm{v})\) bromophenol blue
4 mM EDTA

\subsection*{2.2.11 Hybridization of RNA}

Pre-hybridization and hybridization were performed in hybridization solution in glass tubes (30 \(\mathrm{cm} \times 4 \mathrm{~cm}\)) at \(42{ }^{\circ} \mathrm{C}\) under continuous rotation in a hybridization oven (Bachofer, Reutlingen, Germany). The pre-hybridization was performed for at least 2 hrs . After adding the denatured radio-active probe, the hybridization was performed for at least 16 hrs . The same procedure was used for labelling as for hybridization of DNA.
After hybridization the filter was washed accordingly:
1. twice \(50 \mathrm{ml} 2 \times \mathrm{SSC}, 0.1 \% \mathrm{SDS}\) at RT for 10 minutes
2. twice \(50 \mathrm{ml} 0.2 \times \mathrm{SSC}, 0.1 \% \mathrm{SDS}\) at \(42{ }^{\circ} \mathrm{C}\) for 10 min .

After washing the filter was kept from drying. Detection of radio-active signals and stripping were performed as
hybridization solution
\begin{tabular}{|l|}
\hline \(100 \mu \mathrm{~g} / \mathrm{ml}\) Herring sperm DNA \\
\(50 \%\) formamide \\
\(5 \times\) SSC \\
\(5 \times\) Denhardt's solution \\
\(0.1 \%(\mathrm{w} / \mathrm{v})\) SDS \\
\hline
\end{tabular} described in §2.2.7.

\subsection*{2.2.12 Rapid amplification of genomic ends (RAGE)}

Flanking DNA to partial genomic clones and/or regulatory elements of unknown sequences were unidirectionally amplified from genomic DNA via a method derived from the Genome Walker kit (Stratagene). Genomic DNA was digested to completion with a specific restriction enzyme creating either a blunt end or a \(5^{\prime}\) overhang. The overhang of a \(100 \mu 1\) restriction digest of \(2 \mu \mathrm{~g}\) genomic DNA was then filled-in by adding \(1 \mu \mathrm{l} 3,5 \mathrm{U} / \mu \mathrm{l}\) Klenow polymerase and \(1 \mu \mathrm{l} 10 \mathrm{mM}\) dNTPs and by incubating at \(37{ }^{\circ} \mathrm{C}\) for 30 minutes. The blunt end genomic fragments were purified via PCR spin columns (QIAGEN) and then ligated to an adaptor made up of the following 2 primers: W620 and W621 (App.7.1). The adaptor was created by annealing the 2 primers in equimolar concentrations in \(1 \times\) PCR Taq buffer and slowly cooling down the mixture from \(80^{\circ} \mathrm{C}\) to RT. The ligation mix was spin column purified. Nested PCR with the high-fidelity PCR system (see above) was performed with 2 gene specific primers and the adaptor primers W622 and W623 (nested one; App.7.1). The first PCR sample was spin column purified to remove the first set of primers and then diluted 50 fold in 10 mM Tris- HCl (pH 8.0). Of this, \(1 \mu \mathrm{l}\) was used for the ultimate amplification with the nested set of primers.

\subsection*{2.2.13 Electro-competent cells}
E. coli DH 10 B cells were grown overnight at \(37^{\circ} \mathrm{C}\) from a glycerin stock in LB medium without antibiotics. This was used to grow a 300 ml LB overnight culture. Of this culture approximately 25 ml was used to start a 500 ml culture of \(\mathrm{OD}_{600}=0.2\) that was grown at \(16{ }^{\circ} \mathrm{C}\). The culture was stopped after about 7 hrs when the \(\mathrm{OD}_{600}=0.4\). The cells were pelleted for 10 minutes at 5,000 rpm at \(4{ }^{\circ} \mathrm{C}\), and resuspended in pre-cooled 350 ml MQ water. The suspension was centrifuged for 10 minutes at \(5,000 \mathrm{rpm}\) at \(4^{\circ} \mathrm{C}\), and resuspended in pre-cooled 250 ml MQ water. The centrifugation and subsequent resuspension were repeated in increasingly smaller volumes of 50 \(\mathrm{ml}, 25 \mathrm{ml}\) and 5 ml . Finally the cells were resuspended in \(800 \mu \mathrm{l} 7 \% \mathrm{DMSO}\) and alliquotted in 50 \(\mu l\) batches that were snap-freezed in liquid nitrogen.

\subsection*{2.2.14 Cloning and subcloning}

The DNA fragment to be cloned was purified after restriction digestion from agarose gel using the gel purification kit (QIAGEN) The plasmid pBluescript (\(\mathrm{S} / \mathrm{K}+\)) into which it was to be cloned was linearized with the same restriction enzyme. \(2 \mu \mathrm{~g}\) vector was dephosphorylated with calf intestine alkaline phosphatase (CIAP) (Pharmacia Biotech) to prevent self-ligation with 0.2 Weiss units by a 30 minute incubation at \(37{ }^{\circ} \mathrm{C}\) in a buffer consisting of \(10 \mathrm{mM} \mathrm{MgAc}+10 \mathrm{mM}\) Tris-Ac +50 mM KAc. The phosphatase was heat inactivated at \(85^{\circ} \mathrm{C}\) for 15 minutes. The vector was then gel purified in the same way as the insert DNA. Alternatively, if the DNA fragment was a PCR fragment, it was cloned into pGEM-T (Promega), with neighter restriction digestion, nor dephosphorylation. 100 ng insert was ligated into 50 ng vector in \(10 \mu \mathrm{~T} 4\) DNA ligase buffer (30 mM Tris- \(\mathrm{HCl}(\mathrm{pH} 7.8), 10 \mathrm{mM} \mathrm{MgCl}_{2}, 10 \mathrm{mM}\) DTT, 1 mM ATP) using 3 Weiss units T4 DNA ligase at \(16^{\circ} \mathrm{C}\) overnight. The ligation mix was precipitated with 3 volumes ethanol after adding a \(10^{\text {th }}\) volume \(3 \mathrm{M} \mathrm{NaAc}(\mathrm{pH} 5.2\)). The pellet was washed with \(70 \%\) ethanol, dried in the air for 15 minutes and dissolved in \(2 \mu \mathrm{MQ}\) water. A `gene pulser` cuvette (0.1 cm gap) (Biorad) was precooled on ice. Then \(1 \mu\) l ligation mix was added to a batch of \(50 \mu\) l electro-competent cells that was slowly thawn on ice. This was transferred to the voltage cubicule of a Biorad electroporator and a discharge of 1.8 kV was given for 4.5 mseconds. Immediately \(500 \mu \mathrm{LB}\) without antibiotic was added and the cells were incubated for 2 hrs at \(37^{\circ} \mathrm{C}\). Then they were plated out on LB medium containing \(100 \mu \mathrm{~g} / \mathrm{ml}\) ampicillin for plasmid selection and 0.5 mM IPTG \(+80 \mu \mathrm{~g} / \mathrm{ml} \mathrm{X}-\)
gal for blue-white screening for insert selection. Single colonies were grown overnight for subsequent PCR selection prior to verification via sequencing. Fragments were agarose gel purified and cloned into pGEM-T.

\subsection*{2.2.15 Cloning and transformation of the ZMM6 and ZMM8 constructs for anti-sense and over-expression in maize}

A full length cDNA fragment of ZMM6 was amplified from clone pBLUE/ZMCDK5 with the high-fidelity PCR system using primers M601 and M602 to facilitate cloning of the construct for over-expression (for primer sequences, see App.7.1). Primer M601 contained a restriction site for NcoI in order to conserve the ATG start codon of the gene. M602 had a restriction site for EcoRI at the 5 'end. The primers were placed between bp-15-7 and bp756-769 respectively, relative to the start codon. The full length ZMM6 fragment was cloned after digestion with the respective enzymes into the plasmid pRT104 between the CaMV 35S promoter and the NOS-terminator of transcription (NOS-ter) for constitutive expression (Töpfer et al., 1993). The use of NcoI ensured a translational fusion between promoter and coding sequence in order to obtain a functionally active protein in planta upon translation.

The construct for anti-sense expression of ZMM6 was made by cloning in reverse orientation the 3'part of the cDNA clone pBLUE/ZMCDK5 encoding the IKC-domains (see §1.2). The MADSbox was excluded in order to prevent the possible down regulation of other highly similar genes. Cloning followed an analogous PCR amplification step as described above, using primers A601 and A602. The 5 'end of primer A601 contained a restriction site for EcoRI, primer A602 introduced with a NcoI restriction site a novel ATG start codon. The primers were placed between bp173-199 and bp740-766 respectively, relative to the start codon of pBLUE/ZMCDK5. The fragment was cloned into the multiple cloning site of pRT104 between the CaMV 35S promoter and the \(N O S\)-terminator.

The casettes harbouring sense and anti-sense fragments of ZMM8 were cloned into pRT104 using the same PCR-based approach. The fragments were amplified from the cDNA clone pGEM/SW24. For the sense construct driving the over-expression of \(Z M M 8\), the primers M801 and M802 were used, having a restriction site of BalI (=MluNI) and BamHI, respectively. The ZMM8 antisense fragment, lacking the MADS-box, was amplified using A801 and A802, having
a XbaI and a NcoI restriction site respectively. The positions of the four primers M801, M802, A801 and A802 are, relative to the start codon of clone pGEM/SW24, bp-19-8, bp760-786, bp192-220 and bp610-635.

As a control an antisense construct of the ZMM15 gene was used. ZMM15 is a member of the maize SQUA-like subfamily of MADS-box genes (Cacharrón, 1998). An antisense fragment was amplified from clone pGEM/JC3 using primers aJ31 and aJ32, positioned between bp182-213 and bp725-751 from the ATG codon. The fragment was cloned into pRT104 into EcoRI and NcoI.

The cassettes, consisting out of promoter-ORF-terminator, were in turn cloned into the plant transformation vector pK 225 using the unique restriction site HindIII (fig.2.1). The plasmid pK225 is a derivative of pAHC25 (Taylor et al., 1993) containing a small DNA fragment insertion that enlarges the multiple cloning site (Dr. R. Thompson, pers. comm.). Additionally, the plasmid pK225 contained the ubiquitin (UBI) promoter (Christensen et al, 1992) for constitutive expression of the \(B A R\) gene as a selectable marker for transgenic plantlets.

Fig.2.1. Structure of the sense and anti-sense \(Z M M 6\) and \(Z M M 8\) contructs for maize plant transformation. \(\mathrm{H}=H i n d \mathrm{III}, \mathrm{N}=N c o \mathrm{I}, \mathrm{E}=E c o \mathrm{RI}, \mathrm{M}=M l u \mathrm{NI}, \mathrm{X}=X b a \mathrm{I}\). Arrows indicate primers. Bend arrows indicate transcription start point.

The BAR gene encodes phosphinotricin acetyl transferase (PAT), a protein that inactivates phosphinotricin, the active component of the herbicides Bialaphos and Basta (Thompson et al., 1987). After the cloning procedure, the cassettes were sequenced to ascertain that the PCR step involved did not introduce any base pair exchanges. Furthermore, for each construct a clone was picked in which the MADS-box gene cassette was inserted in trans with the BAR gene. In this way a possible interference of transcription was avoided stemming from a back-to-back positioning of the CaMV 35S and UBI promoter.

In addition to the antisense ZMM15 construct, a empty pK225 plant transformation vector was used as a control. Furthermore, to increase the number of controls for comparison, inflorescences of plants with the maize p35SAcS/GCM5::GUS construct were kindly provided by Dr. R. Thompson \& R. Bhat. This is a pAHC25 derivative in which the \(B A R\) gene is fused with the CaMV 35S promoter, and GUS expression is driven by the promoter of the un-related, non-MADS-box gene GCM5 involved in chromatin deacetylation (Dr. R. Thompson, pers.comm.).

PEG-mediated transformation of maize embryogenic protoplasts of line HE89+ was performed in Dr. Steinbiss' group at the Max Planck Institute Institute for Breeding research (MPI), Cologne with the sense and anti-sense constructs, and with sense constructs only at Hoechst AgrEvo, Frankfurt (Mórocz et al., 1990). Transformed calli were obtained after selection with the herbicide Basta, after which a regeneration step lead to Basta resistant plantlets. All plants obtained from Hoechst AgrEvo were already in the first daughter generation \(T_{1}\), back-crossed to line B73+. The MPI T \(0_{0}\)-plants were back-crosses to line \(\mathrm{A} 69 \mathrm{Y}+\) for further functional analysis of the phenotype with a larger sampling, and to investigate the inheritance of the transgene.

\subsection*{2.2.16 Crosses and back-crosses}

Controlled pollinations of maize female inflorescences were performed based on protocols described at http://www.agron.missouri.edu/IMP/WEB/pollen.htm. The transgenes were rescued into the next generation in order to observe the inheritance of the trait. The ear shoots were bagged prior to the emergence of silks from the husk leaves to avoid contamination. Then, one day old silks were cut back with a knife for pollination the next day. The old pollen was released from the tassel before bagging the previous night and discarded. In the next morning viable pollen was applied to the silks within 10 minutes after collection.

\subsection*{2.2.17 Mapping with Recombinant Inbred (RI's)}

Mapping was performed based on a RFLP (restriction fragment length polymorphism) found between parental alleles in recombinant inbreds (RI's) (Burr \& Burr, 1991). An RFLP was obtained after Southern analysis of a restriction digestion of genomic DNA of the RI plants. RI's are derivatives of a segregating \(F_{2}\) population of inbred parents, in which linked blocks of parental alleles are essentially fixed. Two families were used for mapping, that are called after the parents used in the cross, TxCM (for T 232 x CM37) and \(\mathrm{COxT}_{\mathrm{x}}\) (for CO159 x Tx 303). The parental allele distribution pattern, as shown by the polymorphic bands of the RFLP, is compared to the database at the Brookhaven National Laboratory (http://burr.bio.bnl.gov/acemaz.html) in collaboration with Prof. B. Burr to reveal the map position, relative to previously mapped markers. The mapping filters were kindly provided by Prof. Dr. G. Theißen.

\subsection*{2.2.18 Computer \& sequence analysis}

DNA sequencing was performed at the MPI-sequencing unit (ADIS) with an automatic DNA sequencer (model 377, Applied Biosystems). Sequences were analyzed on a `DEC Alpha Workstation` with help of sequence analysis programs of the Wisconsin Packet Version 8.0 from GCG (Genetics Computer Group, Wisconsin). Multiple protein sequences were compared with Clustal W (Thompson et al., 1994) from the MacVector \({ }^{\text {TM }}\) Packet Version 6.0. Blast searches were performed in the WWW at the NCBI server (http://www.ncbi.nlm.nih.gov) (Altschul et al., 1990).

\subsection*{2.2.19 Morphological analysis and photographical dataprocessing}

Pictures were taken with assistance of Mrs. Kalda, MPI-photo Laboratory. Photos were scanned, processed and assembled using Adobe Photoshop 5.5 (Adobe Systems Inc.) and Canvas 6.0 (Deneba Systems Inc).

\subsection*{2.2.20 Quantitative and statistical analysis}

Phenotypic values for all characters, that were morphologically different from the wild-type as defined in \(\S 1.4\), of transgenic and control plants were arranged in Excel (Microsoft). Absolute phenotypic values were converted into phenotypic ratios to take into account the different numbers of spikelets per inflorescence due to a difference in inflorescence size. Phenotypic ratios were calculated by dividing the absolute number of morphologically different structures with the absolute numbers of spikelets per inflorescence. The standard deviations of the means of the phenotypic ratios per trait were calculated in Excel as described by Kesel and co-workers, 1999. The Excel files containing the phenotypic ratios were loaded into the statistical program SPSS for statistical evaluation (Voß, 2000). As the analysis of the means and their standard deviations suggested that the occurrence of the phenotypes displayed a non-normal distribution, the comparisons of the groups of plants were statistically evaluated using the non-parametrical MannWhitney (U)-test (Kesel et al., 1999; Voß, 2000). The starting hypothesis was \(H_{0}: \mu 1=\mu 2 . \mu 1\) consists of the trait of the batch of control plants, whereas \(\mu 2\) consists of that trait in either the sense or the anti-sense plants of either \(Z M M 6\) or \(Z M M 8\) transformed plants in the \(T_{0}\). The starting hypothesis was overthrown when the probability of the asymptotic significance \(p\) was \(0 \leq p \leq 0.05\) (Kesel et al., 1999). In that case, the compared character was not equal between the groups in a statistically significant way.

Furthermore, the quantitative analysis was performed by displaying the phenotypic ratios per group of transgenic plants in a graphic, compared to those of the control group. Only independent lines were included when the number of analyzed plants in that line was more than three. As the phenotypes in the plants showed a non-normal distribution, the strength of the phenotypes is only indicative. The distinctly counted phenotypic ratios were combined with respect to the type of inflorescence meristem that was affected. In the tassel, non-basal monopedicellate spikelet pairs were clustered with non-basal triplets, and 3-floretted spikelets were clustered with 4-floretted spikelets. The height of these mean values indicate how many spikelet pairs or spikelet meristems, respectively were affected. In the ear, the ratios of the triplets were grouped with those of the quadruplets, since these phenotypes both result from a loss of spikelet pair meristem determinacy.

\section*{3 RESULTS}

\subsection*{3.1 Molecular analysis of \(\boldsymbol{A G L} 2\)-like genes in maize}

A molecular analysis of maize \(A G L 2\)-like genes was performed to obtain data that could render information about this subfamily of MADS-box genes. This subfamily has been shown to play an important role in inflorescence development of higher plants by mediating between floral meristem and floral organ identity genes. Most of the previously characterized members stem from dicotyledonous plants that produce simple inflorescences, contrary to the more compound inflorescence structures in grass flowers, such as maize. AGL2-like genes in maize have very extraordinary expression patterns suggesting that these genes may have been recruited to establish novel positional information not found within eudicot inflorescences. As the exact expression of these genes is directed by regulatory elements within genomic sequences, such as promoter and first intron, the characterization was started by screening a genomic library. A phylogenetic evaluation, the chromosomal localization and a structural characterization of members of the AGL2-like subfamily was performed using sequence information of genomic and cDNA clones. Furthermore, a functional analysis of members of the \(A G L 2\)-like gene subfamily has been performed via a transgenic approach and a candidate gene approach.

\subsection*{3.1.1 Genomic library screen}

A wild-type maize (Zea mays ssp. mays var. T232) genomic library, cloned into phage lambda DASHII/BamHI, was kindly provided by Prof. dr. G. Theißen. The genomic library was screened by plaque hybridization under non-stringent conditions with a radio-actively labeled probe. The probe consisted of a mixture of the 3'part of cDNA fragments from four \(A G L 2\)-like genes. Three maize genes, being ZMM3, ZMM8 and ZMM24, were kindly provided by Prof. dr. G. Theißen. Their cDNA fragments were partially amplified with primers \(\mathrm{CER}_{(\mathrm{RQvT})} 2\) and P 018 from the respective clones pGEM/WFE030, pGEM/WFE031 and pGEM/WFE068 (App.7.1). The fourth gene was from lily (Lilium regale) (AK21), and was kindly provided by dr. A. Kanno. Its fragment was partially amplified using the primers P018 and P038 from cDNA clone pGEM/LRM70. The gene fragments were subsequently labeled using the random prime labeling method. Approximately \(1,8^{*} 10^{6}\) pfu's were screened in three rounds, and positives plaques having a strong signal were re-plated for removing contaminating clones. The DNA of 70 single
recombinant \(\lambda\) phage clones was isolated. The DNA was used for a restriction digestion analysis by a double digestion with EcoRI and BamHI in order to remove the duplicate clones. The restriction digestion pattern was revealed by separation of the restriction fragments via gel electrophoresis (Fig.3.1).
\begin{tabular}{|lllll|}
\hline\(=1,3,8,12,13,14,18,56,65,70,74,78\) & \(=4,44,60\) & \(=38,73,80\) & \(\mathrm{O}=64,64 \mathrm{~b}\) \\
\(=10,17,31,37,61,63,67\) & \(\mathrm{O}=19,35\) & \(=79,73\) & \(\mathrm{O}=23,53\) \\
\(=42,54,76,82\) & O & \(=6,43\) & O & \(=39,41\)
\end{tabular}

Fig.3.1. Restriction digestion analysis of putative positives from an AGL2-like MADS-box gene genomic screen. Restriction digestion was performed using EcoRI and BamHI. Numbers indicate the isolated genomic clones. Colored dots indicate duplicate clones. Marker fragment sizes of the 1.6 kb -ladder (lane M) are indicated in kb. Control MADS-box gene genomic clones were kindly provided by prof. dr. G. Theißen (lane C1-C5). (C1-C3, unpubl. results; C4 \& C5, Theißen et al., 1995). C1= \(=\lambda\) EMBL4-B1,2N (ZMM6, teosinte (Z. m. ssp. parviglumis)); C2= 2 DASHII-3-1-1.1 (ZMM6, maize); C3= 1 DASHII-14-2-1 (B9_20); C4 \(=\lambda\) EMBL4-I16b (ZMM1); C5= \(=\lambda\) EMBL4-I17b (ZAG2).

Upon comparison of the restriction fragment patterns, 10 clones showed to have been isolated more than once. Additionally, clone \(\lambda\) DASHII-wd79 had been isolated before as shown by
comparison with control lane C 3 that contains a genomic clone of the gene \(B 9 _20\). In total, 42 genomic clones displayed a unique pattern, indicating these contained independent genomic inserts. In order to look for putative \(A G L 2\)-like MADS-box gene containing genomic clones among these, the gel was blotted onto a nylon membrane for Southern analysis and hybridized under stringent conditions with labeled probes of the eight maize \(A G L 2\)-like MADS-box genes ZMM3, ZMM6, ZMM7, ZMM8, ZMM14, ZMM24, B9_20 and WFH24, and of a MADS-box fragment from ZMM6 (table 3.1).

Table.3.1. Southern blot analysis of restriction digested genomic clone DNA, hybridized with the 3'part of cDNA's of the AGL2-like genes ZMM3, ZMM6, ZMM7, ZMM8, ZMM14, ZMM24, B9_20 and WFH24, and with the MADS-box of ZMM6 (indicated as 'MADS'). The genomic clones are placed in rows, the different cDNA probes are aligned per column. A positive signal is indicated as a ' + ', a weak signal as '+/-', no signal is left blank.

As to the genes \(Z M M 3, Z M M 8\) and \(Z M M 24\), the fragments for labeling were produced as described above. The MADS-box fragment and the 3'part cDNA fragments of ZMM6, ZMM7, ZMM14, B9_20 and WFH243 were amplified from the respective cDNA clones pBLUE/ZMCDK5, pBLUE/ZMCDK5, pGEM/WFE023, pGEM/WFI005, pGEM/WFH231 and pGEM/WFH243 by the primer pairs WD02/M602, WD01/WD09, WD01/WD06, W258/W270, WD01/W268 and W257/W263 respectively (App.7.1).

Of the 42 clones, 18 clones showed no signal to the MADS-box probe. Therefore, these could be partial MADS-box gene genomic clones, or no MADS-box genes at all. Some clones were showing no positive signals. These clones, \(\lambda\) DASHII-wd7, \(-26,-32,-39,-40,-45,47,-48,-52\), \(62,-66,-68,-75,-53 \mathrm{~b}\), most probably do not contain \(A G L 2\)-like MADS-box genes, or even MADS-box genes at all, and were therefore excluded from further analysis. Of the remaining clones, fragments were amplified for sequencing via PCR with the high fidelity EXPAND system. In this way, laborious subcloning procedures could be avoided. In the case a clone showed a positive signal to the MADS-box probe, a MADS-box fragment was amplified using one primer annealing to a highly conserved region in the MADS-box (WD01 or \(\mathrm{CER}_{\left(\mathrm{RQVT}^{2}\right.} 2\)) and one primer fitting to either site of the multiple cloning site of the vector phage lambda (LDL1 or LDR1; App.7.1). The conserved region codes for a peptide domain -consisting of the amino acid sequence 'RQVT'- that is present in the majority of the MADS-box genes including members of the AGL2-like subfamily (dr.T. Münster, pers. comm.). In case a genomic clone did not seem to have a (part of the) MADS-box, the whole insert was amplified using LDL1 in combination with LDR1. The same procedure was performed when a clone containing a MADS-box could not be amplified using the MADS-box specific primer. The fragments were purified over a QIAGEN PCR purification column and sequenced in order to find out the exact sequence identity of the gene contained by it (table 3.2). Sequencing was initiated from one of the primers used for amplification. Sequence identity was obtained by a sequence alignment based on comparative analysis in the PILEUP program of the GCG package with other maize MADS-box gene sequences from the MADS-database (http://www.mpiz-koeln.mpg.de/mads/).

An amplification product for further sequence analysis could not be obtained from roughly half of the clones, and for some partial genomic clones the initial sequencing reactions did not lead to a sequence that showed homology to any known MADS-box gene sequence upon alignment.

Table.3.2. Sequence analysis of the inserts of the genomic clones from the \(A G L 2\)-like screen. The sequences of the inserts were compared to MADS-box gene sequences of known genes taken from the MADS-database (http://www.mpiz-koeln.mpg.de/mads/) and aligned by PILEUP of the GCG package, using a gap weight of 3.0 and a gap weight of 0.1 . Different subfamilies (=subf.) are defined by monophyletic clades, described in Theißen et al., 2000. TMZ1 indicates the clone contains an \(A G\)-like MADS-box sequence in a transposable element, as described in Fischer et al., 1995.
\begin{tabular}{|c|c|c|c|c|}
\hline clone & gene & clade & clone gene & clade \\
\hline & 1 ZMM24 & AGL2 & 9 ZAG4 & AG (TMZ1) \\
\hline & 2 ZMM8 & AGL2 & 20 ZAG4 & AG (TMZ1) \\
\hline & 6 ZMM7 & AGL2 & 57 ZMM2 & \(A G\) \\
\hline 58 & 8 ZMM7 & AGL2 & 38 SW159 & SQUA \\
\hline 72 & 2 ZMM7 & AGL2 & 64 ZMM4 & SQUA \\
\hline & ZMM3 & AGL2 & 19 ZMM5 & TM3 \\
\hline 33 & 3 New ! & AGL2 & 36 ZMM5 & TM3 \\
\hline 51 & 1 ZMM14 & AGL2 & 23 ZAG5 & AGL6 \\
\hline & B9_20 & AGL2 & 71 ZAG5 & AGL6 \\
\hline & ZMM16 & GLO & & \\
\hline
\end{tabular}

Of the nineteen other clones, eighteen contained genomic sequences belonging to previously known MADS-box genes belonging to six different subfamilies The subfamilies are AGL2-like,
 like6) subfamily (for review, see Theißen et al., 2000). All of these genes share the MIKC-type domain structure of MADS-box genes from higher plants. Only \(47 \%\) of the clones were members of the \(A G L 2\)-like subfamily that was screened for with specific probes, due to the non-stringent hybridization conditions. However, these conditions allowed for the isolation of new genes. One clone, \(\lambda\) DASHII-wd33, contained an unknown and untill now unpublished member of the AGL2like subfamily. This makes the total number of \(A G L 2\)-like MADS-box genes in maize to be nine. Clone \(\lambda\) DASHII-wd33 is a partial genomic clone, and harbours the promoter, MADS-box and 3 kb of the first intron. Its sequence is displayed in appendix 7.2. The MADS-box of \(\lambda\) DASHIIwd33 was used to reveal its phylogenetic relationship to the previously isolated AGL2-like genes. Some of the genomic clones containing AGL2-like gene sequences were analyzed in detail, in order to reveal and compare the exon-intron structures.

\subsection*{3.1.2 Structural characterization of \(\boldsymbol{A G L} 2\)-like genes}

The genomic sequence of ZMM3, ZMM6, ZMM14 and B9_20 were characterized structurally (fig.3.2). The \(Z M M 3\) sequence was obtained from \(\lambda\) DASHII-wd10. A partial genomic clone of

ZMM6, \(\lambda\) DASHII-3-1-1.1, spanning part of the \(I^{\text {st }}\) intron and the 3 'part of the gene, kindly provided by Prof. dr. G. Theißen, was sequenced. The MADS-box and remaining part of the first intron were amplified from genomic T232 DNA using the primer pair WD32/W126 (App.7.1) from the \(5^{\prime}\) UTR of the cDNA pBLUE/ZMCDK5 and the \(5^{\prime}\) end of the genomic clone \(\lambda\) DASHII-3-1-1.1 respectively (App.7.3). A 1.1 kb promoter fragment was amplified based on sequence information of the ZMM6 genomic locus from teosinte (Z. m. sp. parviglumis) (M. Tur, pers. comm.) using primer pair PT059/WD34 (App.7.1). An extra 1.5 kb upstream promoter fragment was isolated via RAGE with gene specific nested primers W618 and W619 (App.7.1). The partial genomic clone of ZMM14, \(\lambda\) DASHII-wd51 was totally sequenced and the 3'part was directly amplified from genomic T232 DNA with primer pair W756/W762 (App.7.1). The genomic B9_20 sequence of clone \(\lambda\) DASHII-14-2-1 was kindly provided by Dr. Zh. Meng, as well as the genomic ZMM1 sequence of \(\lambda E M B L 4-I 16 \mathrm{~b}\) for comparison (Theißen et al, 1995). The AGL9/SEP3 genomic and cDNA sequence of the dicot Arabidopsis thaliana was extracted via Blast (acc. no. AC002396, chromosome I, BAC F2I6; AF015552) from the database at NCBI (http://www.ncbi.nlm.nih.gov) for comparison (Mandel \& Yanofsky, 1998). The AGL2-like sequences used for the structural analysis are displayed in App.7.3.

All \(A G L 2\)-like genes, including the dicot one, were shown to have 8 exons, instead of the 7 exons of the \(A G\)-like gene \(Z M M 1\). The extra intron is positioned in the C-region, coding for a more variable domain. The length of the exons IV, V and VII were conserved. As the former two exons are part of the region coding for the highly conserved K-box, believed to be involved in protein dimerization, the importance of this may be reflected by the structural conservation.

Some of the introns in the maize \(A G L 2\)-like sequences were clearly much larger than those of the \(\operatorname{dicot} A G L 9\) gene. Among the maize \(A G L 2\)-like genes, however, there was no conservation in size of the expanded introns, nor conservation as to which introns where larger. Additionally, some of these introns were also much larger than in the maize ZMMI gene. As introns have been shown to contain regulatory sequences, apart from the promoter, the variation in the lengths of the different AGL2-like introns may point to the large diversity in expression patterns of these genes, not seen in dicots, nor in \(A G\)-like genes.

Fig.3.2. Genomic structures of \(A G L 2\)-like genes. The exon-intron structures of \(Z M M 3, Z M M 6, Z M M 14\) and B9_20 are compared to the A. thaliana AGL2-like gene \(A G L 9\), and to \(Z M M 1\), a maize \(A G\)-like gene. Exons of the different genes encoding highly related protein domains are connected with thin lines. Exons are indicated as E1-E8, introns as I1-I7. The length of the exons and introns (in bp) are indicated above or below the respective regions. Question marks refer to regions of undetermined structural organization. The MADS-box is indicated in black, the I-region in red, the K-box in blue, and theC-region in green. UTR's are shown in white boxes.

Nearly all of the introns had the typical plant gene dinucleotides GU and AG at the \(5^{\prime}\)-donor and \(3^{\prime}\)-acceptor site, respectively, as well as a significantly higher amount of adenosine and uridine residues, as part of the only loosely conserved plant intron recognition and splice site sequences (Lou, et al, 1993; Luehrsen et al, 1994).

\subsection*{3.1.3 Phylogenetic analyses}

The phylogenetic relationships between members of the \(A G L 2\)-like subfamily were investigated. The sequences were obtained from databases on the world wide web and from the MADShomepage (http://www.mpiz-koeln.mpg.de/mads/). Based on sequence comparison of the MIKdomain region, an alignment was made using the program PILEUP and the relations were subsequently visualized using the program PLOT, both from the GCG package. The algorithm used to construct the tree was Neighbour Joining method. The relationship among the genes could be inferred from the way the genes were positioned at the branches of the tree (fig.3.3).

Fig.3.3. Phylogenetic analysis of \(A G L 2\)-like MADS-box genes. The resulting phylogenetic tree was produced with the 'Neighbour-Joining ' method using default parameters and standard conditions. The amino acid sequence used for comparison was the 3' part of the genes, consisting of the MIK domains. The species name is given in between brackets behind the gene name. Monocot genes are written in bold, unlike dicot ones. The monocot genes that do not belong to the grass family (Poaceae) are underlined. The depicted tree, that contains only \(A G L 2\)-like genes, is part of a larger tree containing also other genes. These latter ones are grouped together on a branch indicated 'non-AGL2-like MADS-box genes'. The bootstrap values are indicated next to the branching point. The units indicate the relative degree of difference of a gene to its most recent common ancestor with other genes.

A similar phylogenetic tree could be obtained by using other algorithms such as 'maximum parsimony', indicating that this method is capable of reliably depict the degree of relationship among the genes. The genes within the tree predominantly cluster in groups that are correlated with the described taxonomical, and hence evolutionary, relationship. The dicot genes built two groups separately from the two monocot gene containing clades. Among the monocots, the grass genes cluster together as do non-grass genes. Some of the genes show to be more closely related to genes from different species than they are to genes from the same species. More clearly, within the order of the Liliiflorae, the genes OM1 and LRAGL2A from Aranda and Lilium revealed their shared origin, by clustering closely together. These genes are called 'orthologous'genes since they have arisen by a speciation event.

Most of the maize \(A G L 2\)-like genes cluster pairwise on the tree, reflecting the allotetraploid nature of the maize due to a recent whole genome duplication (Gaut \& Doebley, 1997). The genes ZMM8 and ZMM14, and ZMM7 and B9_20, and ZMM24 and WFH243 are subclustered in pairs. These gene couples are young paralogous genes. They were created during a hybridization event in the phylogenetic line leading up to a single species. The paralogous maize genes often cluster closely together with only a single rice gene. Rice and maize are members of the grass family and therefore related among the monocots. The allotetraploidization event that generated the maize genome occurred after the lineages that led to maize and rice had already been separated. These rice genes are therefore the orthologous genes to both of the paralogous maize genes in the subclade. However, it could be that more related genes are present in the rice genome, so that the paralogy of their orthologous maize genes is not supported anymore. Alternatively, in case of more thorough sampling in maize, one could find a paralogous gene partner to a gene that has none at present. This latter situation could be proven or disproven by a chromosomal localization of the genes involved, since the map positions of the genes should normally be found in duplicated regions of the genome.

In order to establish the phylogenetic relationship of the newly isolated gene WD33 to the other maize genes, a phylogenetic tree was made. Due to fact that only the MADS-box was available on the partial genomic clone, this part of the genes was used for comparison (fig.3.4).

Fig.3.4. Phylogenetic analysis of maize \(A G L 2\)-like MADS-box genes. The resulting phylogenetic tree was produced with the 'Neighbour-Joining ' method using default parameters and standard conditions. The nucleotide sequence used for comparison was the MADS-box. ZAG3, a member of the closely related AGL6-like family, was included to form the outgroup. The bootstrap values are indicated next to the branching point. The units indicate the relative degree of difference of a gene to its most recent common ancestor with other genes.

The pairs of paralogous maize genes found in the previous tree were still observed, suggesting the tree reflect most likely the true phylogenetic relationship among these genes. Furthermore, the latter tree also confirms the close relationship of \(Z M M 3\) to the \(Z M M 8 / Z M M 14\) gene pair. Interestingly, the gene ZMM3 clusters even more closely together with WD33. Whether the suggestion of a new gene pair is true has to be investigated further by mapping the new gene, isolation of new subfamily members, as well as expression studies and functional studies, although young paralogs could have changed expression or function after the allotetraploidization event.

In order to further establish the degree of relatedness between the different members of the AGL2-like gene subfamily their amino acid sequences were compared. The sequence comparison among the conceptual amino acid sequences of eight full length cDNAs of these \(A G L 2\)-like genes showed sequence identities between \(51.3 \%\) and \(94.4 \%\), and sequence similarities between \(61.3 \%\) and 96.8\% (table 3.3).

Table 3.3. Sequence comparison of the conceptual amino acid sequences encoded by cDNAs of \(A G L 2\)-like genes. Comparisons are made using the program GAP of the GCG package. Parameters for gap creation penalty is 8.0 , for gap extension penalty is 2.0 . Above the diagonal lining are indicated the sequence identities, below are indicated the sequence similarities, both in percentages. The upper most and lower most values are indicated in grey.
\begin{tabular}{lcccccccc}
& ZMM3 & ZMM6 & ZMM7 & ZMM8 & ZMM14 & ZMM24 & B9_20 & WFH243 \\
\hline ZMM3 & - & 58.9 & 61.4 & 77.2 & 75.2 & 59.3 & 61.5 & 61.8 \\
ZMM6 & 66.7 & - & 76.3 & 54.6 & 53.8 & 50.0 & 78.2 & 53.7 \\
ZMM7 & 70.4 & 84.5 & - & 55.7 & 55.3 & 51.7 & 94.4 & 56.8 \\
ZMM8 & 83.6 & 63.8 & 65.8 & - & 89.1 & 53.6 & 55.4 & 63.2 \\
ZMM14 & 81.2 & 63.3 & 66.2 & 92.3 & - & 53.4 & 56.6 & 59.1 \\
ZMM24 & 67.7 & 61.3 & 62.1 & 63.2 & 62.6 & - & 51.3 & 89.5 \\
B9_20 & 69.3 & 84.8 & 96.8 & 64.5 & 66.8 & 61.3 & - & 56.9 \\
WFH243 & 71.1 & 66.8 & 68.0 & 73.6 & 68.5 & 91.5 & 67.6 & -
\end{tabular}

The comparison of the MADS domain, including the new AGL2-like gene \(\lambda\) DASHII-wd33, showed sequence identities between \(75.4 \%\) and \(100.0 \%\), and sequence similarities between \(82.0 \%\) and \(100.0 \%\) (table 3.4). Although \(W D 33\) is most similar to \(Z M M 3, Z M M 3\) is more similar to ZMM8 and ZMM14. This indicates that WD33 and ZMM3 probably do not form a gene pair as is suggested from their position on the phylogenetic tree (fig.3.4)

Table 3.4. Sequence comparison of the conceptual amino acid sequences in the MADS domain of AGL2like genes. Comparisons are made using the program GAP of the GCG package. Parameters for gap creation penalty is 8.0 , for gap extension penalty is 2.0 . Above the diagonal lining are indicated the sequence identities, below are indicated the sequence similarities, both in percentages. The upper most and lower most values are indicated in grey.
\begin{tabular}{lccccccccc}
& ZMM3 & ZMM6 & ZMM7 & ZMM8 & ZMM14 & ZMM24 & B9_20 & WFH243 & WD33 \\
\hline ZMM3 & - & 86.9 & 83.6 & 95.1 & 95.1 & 85.2 & 85.2 & 83.6 & 90.2 \\
ZMM6 & 91.8 & - & 93.4 & 86.9 & 86.9 & 80.3 & 96.7 & 78.7 & 77.0 \\
ZMM7 & 90.2 & 95.1 & - & 83.6 & 83.6 & 78.7 & 96.7 & 77.0 & 73.8 \\
ZMM8 & 95.1 & 91.8 & 90.2 & - & 100.0 & 85.2 & 85.2 & 85.2 & 85.2 \\
ZMM14 & 95.1 & 91.8 & 90.2 & 100.0 & - & 85.2 & 85.2 & 85.2 & 85.2 \\
ZMM24 & 91.8 & 88.5 & 85.3 & 91.8 & 91.8 & - & 78.7 & 98.4 & 77.0 \\
B9_20 & 90.2 & 96.7 & 98.4 & 90.2 & 90.2 & 86.9 & - & 77.0 & 75.4 \\
WFH243 & 91.8 & 88.5 & 85.2 & 93.4 & 93.4 & 100.0 & 86.9 & - & 75.4 \\
WD33 & 91.8 & 83.6 & 82.0 & 86.9 & 86.9 & 85.2 & 82.0 & 85.2 & -
\end{tabular}

\subsection*{3.1.4 Chromosomal localization of \(\boldsymbol{A} G L 2\)-like genes}

The map position of genes can be important to obtain information about their phylogenetic relationships. In maize, large duplicated regions can be found that have arisen after a recent genome duplication event (Gaut \& Doebley, 1997). When paralogous genes map in such a region, most likely their paralogous partner gene maps in the duplicate partner region. Furthermore, when a map position of a gene correlates closely with the map position of a mutant, this becomes a likely candidate gene conferring that phenotype upon mutation. Hence, the chromosomal position can be informative as to the genealogical relationship as well as to the function of a gene.

For six of the nine \(A G L 2\)-like genes restriction fragment length polymorphisms (RFLP) have been found with which these genes could be mapped in recombinant inbreds (RI) (Prof. dr. G. Theißen, W. Faigl, and Prof. dr. B. Burr, pers. comm.; Cacharrón et al., 1999; Fischer et al., 1995). The positions of the following genes are indicated in the map of the Brookhaven National Laboratory (BNL) (http://burr.bio.bnl.gov/acemaz.html) (table 3.5):

Table 3.5. Map positions of \(A G L 2\)-like genes in maize. Indicated is on which chromosomal arm the genes lay, the position in centimorgans \((\mathrm{cM})\) and the marker name of the gene on the map.
\begin{tabular}{llll}
gene & chromosome & cM & marker \\
\hline ZMM3 & short arm chromosome 9 & (9S034) & mpik25 \\
ZMM6 & long arm chromosome 1 & (1L131) & mpik23A \\
ZMM7 & long arm chromosome 7 & (7L095) & mpik27 \\
ZMM8 & long arm chromosome 9 & (9L115) & mpik28 \\
ZMM14 & short arm chromosome 1 & (1S058) & mpik38 \\
ZMM24 & long arm chromosome 1 & \((1 \mathrm{~L} 253)\) & kws7
\end{tabular}

B9_20, WFH243 and \(\lambda\) DASHII-wd33 could not be mapped as no RFLP could be found between the parental alleles of the mapping population of the RI's. The position of the genes on the maize chromosomes is depicted schematically in figure 3.5.

Fig.3.5. Chromosomal localization of MADS-box genes and inflorescence branching mutants in maize.
The map positions are based on the map of the Brookhaven National Laboratory (BNL) (http://burr.bio.bnl.gov/acemaz.html). The genes are indicated right of the chromosomes and their approximate map positions are indicated by arrow heads. AGL2-like genes are shown in boxes. The information about the genetic loci of the mutants originate from Neuffer (1997) and the maize database (MAIZE DB; http://www.agron.missouri.edu) (App.7.9). Integration of the mutant loci on the map is indicated by a vertical line left of the chromosome. Thick black boxes indicate the approximate positions of the centromeres. Abbreviations: \(\mathrm{cM}=\) centimorgan, \(b d 1=\) branched silkless 1 , ids \(1=\) indeterminate spikeletl, ifa1 \(=\) indeterminate floral apex1, ra1 \(=\) ramosa1, ra2 \(=\) ramosa2, ra3 \(=\) ramosa3, rgo1=reverse germ orientation1, sil=silky1, Sos1 = suppressor of sessile spikelet1; ts \(4=\) tasselseed4, trl \(=\) two ranked ear1; Ts6= Tasselseed6.

The \(A G L 2\)-like genes are dispersed over the genome, as is the case for other MADS-box genes as well. The map position of two of the \(A G L 2\)-like genes correlated with the approximate loci of two developmental mutants. The ZMM14/ifal candidate pair has been described previously (Cacharrón et al., 1999). The newly mapped Ts6 dominant mutation was localized in the same region as the recently isolated AGL2-like gene ZMM24. Ts6 maps at 1L254, between npi238 and
bnl8.29a. This candidate couple, described in \(\S 3.1 .5\), has been preliminarily investigated since it was discovered just recently.

\subsection*{3.1.5 RFLP and expression analysis of the ZMM24/Ts6 candidate loci}

Out of a population segregating for the mutant Ts 6 -phenotype (Irish, 1997), one wild-type and one mutant sibling were investigated. A Southern analysis was performed with genomic DNA isolated from the two siblings to identify an RFLP (fig3.6). The DNA was digested with several restriction enzymes, and the blotted DNA was hybridized to a labeled 5'UTR fragment of ZMM24 clone pGEM/WF1557. The fragment was amplified via PCR using primers T7/W785 (App.7.1). The Southern showed an RFLP with 4 out of 5 restriction enzymes.

Fig.3.6. Southern analysis of the ZMM24/Ts6 candidate locus. A mutant sibling plant 6659 and a wild-type sibling, plant 6655, were investigated. Genomic DNA of the siblings was restricted with NcoI, SalI, HindIII, BamHI and EcoRV. All enzymes but SalI show a polymorphism.

The correlation between the 'segregation' of the dominant mutant phenotype and the polymorphism in the promoter region, did not falsify the hypothesis that the loci of the gene and the mutant might be the same. Therefore, the expression of ZMM24 was analyzed in male inflorescences in siblings of the segregating population. The transcript level of two wild-type siblings, plant 6655 and 6657, were compared to the one from phenotypic plant 6659 (fig.3.7)
after hybridization of the blot to a 3 'specific probe. The probe was amplified by primers W812/W813 amplified from pGEM/WFE068 (App.7.1). In the dominant mutant the ZMM24 transcript was more abundant than in the wild-type siblings, strengthening the hypothesis of the candidate locus \(T s 6\) to the \(A G L 2\)-like gene \(Z M M 24\).

Fig.3.7. Northern blot analysis with total RNA from the male inflorescence of wild-type siblings 6655 and 6657 ((s \(6 /\) ts 6) and the mutant sibling 6659 (Ts \(6 / t s 6\)). The blot was hybridized with a 3 '-specific probe of the \(A G L 2\)-like gene ZMM24. As a control for RNA quality and loading amounts the loaded rRNA was quantified by comparison of band-intensity by ethidium bromide staining of the blotted agarose gel. Apparent transcript size was 1.4 kb .

\subsection*{3.2 Functional analysis of ZMM6 and ZMM8 in transgenic maize plants}

A functional analysis of ZMM6 and ZMM8 was performed. Mapping data for these genes were compared with all presently mapped morphological mutants. Mapping of classical mutants as well as molecular markers in maize is coordinated by the MAIZE genetic stock center, where continuously up-dated maps and mapping data are placed onto the homepage of the center, directly available for the maize community (http://www.agron.missouri.edu). Although the mutant ifal mapped close to ZMM14, the duplicate gene of ZMM8, (Cacharrón et al., 1999), no mutants' map position correlated with the map positions of ZMM6 and ZMM8. Therefore, a transgenic approach was undertaken to reveal the function of these genes. Cloning and transformation of the ZMM6 and ZMM8 constructs for antisense and over-expression in maize are described in §2.2.15.

\subsection*{3.2.1 Regeneration and analysis of transgenic ZMM6 plants}

A PCR was performed on genomic DNA isolated from young leaf material to screen for the presence of the transgene in the genome. The primers used in the assay depend on the construct to be screened (for primer positions, see \(\S 2.2 .15\); for primer sequences, App.7.1). For the sense
construct the primers CMV1 and W126 were used, spanning the CaMV 35S promoter and part of the ORF of ZMM6, rendering a 0.7 kb fragment. For the anti-sense construct PLA2 and W126 were used, spanning part of the ORF of ZMM6 and the NOS-terminator, resulting in a 0.4 kb fragment. As an example a genomic PCR of pK225/ZMM6 transgenic plantlets of the \(\mathrm{T}_{0}\) generation is presented in fig.3.8.

Fig.3.8 Genomic PCR assay on regenerated plantlets \(\left(T_{0}\right)\) to screen for the presence of pK225/ZMM6 constructs (line 4). The control plants were BASTA resistant, containing the empty vector. The PCR positive control sample contained pK225/ZMM6, the negative PCR control contained no DNA. The arrow head indicates the transgene specific 0.7 kb fragment

As to pK225/aZMM6, the PCR screening of the \(\mathrm{T}_{0}\)-generation from the MPI involved in total 20 plants, of which 2 were PCR negative \((=10.0 \%)\). Since most of the \(T_{0}\) plants were male sterile they were crossed back using pollen of the wild-type line A69Y+. Out of \(56 \mathrm{~T}_{1}\)-plants, 32 were negative (\(57.7 \%\)), whereas of \(197 \mathrm{~T}_{2}\)-plants from back crosses of \(\mathrm{T}_{1}\)-plants to \(\mathrm{A} 69 \mathrm{Y}+, 100\) plants were negative (50.8\%).

As to \(\mathrm{pK} 225 / \mathrm{ZMM6}\), the PCR screening of the \(\mathrm{T}_{0}\)-generation from the MPI involved in total 86 plants, of which 9 were PCR negative \((=10.5 \%)\). The PCR screen on plants of the \(\mathrm{T}_{1}\) generation was combined with plants obtained from Hoechst AgrEvo. In total \(465 \mathrm{~T}_{1}\) plants were screened, and from the \(T_{2}\) generation 10 plants. In the \(T_{1}\)-plants, 285 were PCR-negative, and \(5 \mathrm{~T}_{2}\) plants from a \(\mathrm{T}_{1}\)-plant, back crossed to \(\mathrm{A} 69 \mathrm{Y}+\), were negative. The high numbers of PCR negative plants \((61.3 \%\) and \(50.0 \%)\) stem from the out-segregation event of the transgene in a portion of the daughter plants (see below), as well as from a number of plants obtained from Hoechst of which the Basta resistant parent plant did not have the transgene, yielding only PCR negative daughter plants.

In order to check for independent transgenic lines, a Southern analysis was performed with the PCR positive plants derived from different calli and transformation experiments (fig.3.9). The genomic DNA was digested with EcoRV, a methylation insensitive restriction endonuclease, that

Fig.3.9. Southern blot analysis of maize plants transformed with a sense and anti-sense construct of ZMM6. Lines 1-3 contain pK225/aZMM6, lines 4-24 contain pK225/ZMM6. Lines 1-6 are \(\mathrm{T}_{0}\)-plants (MPI), lines 7-24 are \(\mathrm{T}_{1}\)-plants (Hoechst). The marker fragments are indicated in kilobases (kb). Plant numbers correspond to greenhouse numbers, parental labels show construct (F), independent transformation experiment (T), and parent plant number (P). As a control, wild-type A69Y+ DNA is included. Both sense and anti-sense lines contain only one to three copies of the construct.
does not cut within the sense and anti-sense cassettes, but only once within the pK225 vector. As a probe the CaMV 35S promoter, amplified out of pRT104 by primers CMV1 and CMV2, was random prime labeled and hybridized to the blots.

In all samples hybridizing bands were observed, indicating that the plant was transformed, except for the wild-type A69+ plant. The different integration sites in the genome were reflected by different sizes of the fragments containing the constructs. Both the sense and antisense lines showed only one to three fragments per genome, corresponding to the inserted copies of the transgene. The \(\mathrm{T}_{0}\)-plants with \(\mathrm{pK} 225 / \mathrm{aZMM}\) 6 construct from the MPI were derived from 4 calli (no.2, 6, 9 \& 10) from the same transformation experiment (not shown). Plants from calli no. 2 and 6 had the same EcoRV restriction pattern, and were hence derived from the same integration event (line 1). Calli no. 9 and 10 led to line 3 and 2 respectively. Similar holds for plants with the pK225/ZMM6 construct from the MPI. They were derived from 5 calli (no.1, 3, 4, \(5 \& 6\)) from one transformation experiment (not shown). Three calli (no.4, \(5 \& 6\)) were probably derived from the same integration event (line 6). Line 4 and 5 were obtained from calli no. 3 and 1 respectively. The Hoechst \(\mathrm{T}_{1}\)-plants were derived from independent transformation events, and hence originated from different integration events into the genome, as shown by Southern analysis. In total, 3 independent anti-sense lines were obtained, and 21 sense lines.

The inheritance of the transgenes was investigated by PCR screening for the transgene of populations of sibling plants of the \(\mathrm{T}_{2}\) and \(\mathrm{T}_{3}\) generation. All parent plants were back crossed with wild-type pollen, except one that was selfed. Per family, the line, parent, copy number, number of siblings and the number of transgenic (PCR positive) siblings was indicated (table3.6).

Even though the Southern suggested multiple copies per genome, the transgenes behaved as a single locus. The siblings out of a back crossed parent showed in about \(50 \%\) of the cases the presence of the transgene, fitting to a \(1: 1\) segregation pattern. Furthermore, in the population of siblings derived from the selfed parent, in \(75 \%\) of the offspring the transgene was present. This correlates well with a segregation pattern 3:1 ratio, indicating the transgene was inherited as a single locus. This suggests that in case multiple copies were integrated into the genome it occured at only one locus.

Table 3.6. Inheritance of the transgene in transgenic plants. Independent lines are compared, in T 2 and T 3. Abbr.: pos. \(=\) number of positive plants per family, sibl. \(=\) number of siblings in the family, \(\mathrm{Tn}=\) generation (n).
\begin{tabular}{crrrr}
line & parent & copy & \multicolumn{1}{c}{ pos. } & \multicolumn{1}{c}{ sibl. Tn } \\
\hline 1 & 4826 & 3 & 17 & 37 T 2 \\
1 & \(4834 \times 4831\) & 3 & 21 & 28 T 3 \\
2 & 4563 & 1 & 4 & 10 T 2 \\
4 & 4484 & 2 & 2 & 5 T 2 \\
4 & 4744 & 2 & 5 & 10 T 3 \\
7 & F70T10P2 & 1 & 5 & 10 T 2 \\
13 F68T50P1 & 2 & 5 & 10 T 2 \\
14 F68T57P1 & 2 & 5 & 9 T 2 \\
15 F68T60P1 & 1 & 3 & 10 T 2 \\
17 F68T03P1 & 1 & 6 & 10 T 2 \\
19 F68T18P1 & 3 & 5 & 10 T 2
\end{tabular}

\subsection*{3.2.2 Phenotypic analysis of transgenic ZMM6 plants}

Transgenic plants harbouring the pK225/aZMM6 anti-sense construct were analyzed morphologically and compared to plants of the wild-type lines T232+, A69Y+ and B73+, control plants harbouring the empty vector, and plants transformed with the control pK225/aZMM15 contruct and p35SAcS/GCM5::GUS construct.

A qualitive analysis of the tassel showed that the transformed plants displayed various branching phenotypes as compared to the controls. For an overview, the main tassel phenotypes are schematically depicted in figure 3.10.

Fig.3.10. Schematic representation of branching phenotypes in transgenic tassels. Morphologically distinct structures are displayed between the two arrows. Drawn left is a wild-type pair (WT) having a sessile (s) and a pedicellate (p) spikelet. In a monopedicellate spikelet pair the two spikelets are placed on the same pedicel (arrowhead). A triplet or a quadruplet consists of three or four spikelets joined together, respectively. A 3-floretted or 4 floretted spikelet holds three or four florets, respectively, enclosed by the same number of glumes.

As an example male phenotypic spikelets of plant 5107 (anti-sense, line 2) are shown. On the inflorescence level, two spikelets were observed to have emerged from the same pedicel, designated a 'monopedicellate spikelet pair'. The extra spikelet on the pedicel, defined by the appearance of two glumes surrounding each other, could be empty (fig.3.11B), or even harbouring the wild-type number of floral organs (fig.3.11C). The position of the two spikelets of a monopedicellate spikelet pair varied, too. The extra spikelet could arise from the base of the pedicel, close to the rachis of the inflorescence (fig.3.11B), to the end of the pedicel, sharing the whole pedicel with its partner (fig.3.11C).

Fig.3.11. Functional analysis of ZMM6 in \(\mathrm{pK} 225 / \mathrm{aZM} 6\) transformed plants. Phenotypic male spikelets of plant 5107 (line 2) are shown, compared to a wild-type spikelet pair of line B73+. A. Wild-type spikelet pair. B. Monopedicellate spikelet pair, in which the latterally formed empty spikelet has its own stem. C. Monopedicellate spikelet pair in which the extra spikelet, containing the wild-type number of floral organs, is formed at the edge of the pedicel. D. Monopedicellate triplet. Three spikelets branch off of only one pedicel. E. Triplet 'pair' of spikelets arising from one point on the rachis. F. Spikelet pair in which the pedicellate spikelet has three glumes and three florets. G. Perfectly doubled spikelet harbouring four florets and glumes (side view). H. Doubled spikelet, showing four glumes enwrapping four florets (top view). \(\mathrm{s}=\) sessile spikelet; \(\mathrm{p}=\) pedicellate spikelet.

The wild-type pair of spikelets were also found to be converted into triplets, consisting out of three spikelets grouped together as a unit. In the wild-type this morphology was only observed at the base of the main inflorescence stem, where ZMM6 is expressed at a lower level (Cacharrón, 1994), but hardly in the rest of the inflorescence (see below). In the transgenic plants, the position of the spikelets in the triplets could differ. The three spikelets could be placed onto the same pedicel, leading to a monopedicellate triplet (fig.3.11D). Alternatively, the three spikelets could have their own pedicel, the pedicels fused together at the inflorescence stem like in the wild-type situation (fig.3.11E).

On the spikelet level, spikelets were seen to contain up to four florets rather than two, as in the wild-type. In case the spikelet had three florets, these were surrounded by three glumes (fig.3.11F). The four floretted-spikelets contained also four glumes (fig.3.11G,H). The higher number of floral organs could lead to perfectly doubled spikelets (fig.3.11H), however, spikelets were also observed to lack some of the floret organs in the supernumerary florets, leading to a range of phenotypes from the wild-type two-floretted spikelet, via imperfect to perfect threefloretted spikelets until imperfect to perfect four-floretted spikelets. More florets per spikelets were not observed, contrary to the \(i d s l\) phenotype (Chuck et al., 1998). Furthermore, an increase in floret numbers coincided with a proportional increase in glumes. An out-growth of the rachilla or spikelet axis was not observed. All the (extra) florets were positioned at the same horizontal plane at the base of the spikelet, next to each other, instead of on top of each other as in ids 1 .

In plants containing the construct pK225/ZMM6 for over-expression of ZMM6, the same range of phenotypes could be observed in the tassel on the inflorescence level (fig.3.12). The shown phenotypes of monopedicellate spikelet pairs (fig.3.12A), triplets including a pedicellate monopedicellate spikelet pair (fig.3.12B), a monopedicellate triplet (fig.3.12C), and a triplet directly branching off of the rachis (fig.3.12D) were most prominent. On the spikelet level, spikelets were found to contain up to four per spikelets (fig.3.12E,F), like in plants transformed with the anti-sense construct.

Fig.3.12. Functional analysis of transgenic tassels containing the sense pK225/ZMM6 construct. A,C, plant 4535 , line 6 , B, plant 4540 , line 6 , D, 4746 , line 4 , E-F, plant 7013 , line 23 . A. Monopedicellate spikelet pair. B. Triplet, formed ot of a pedicellate spikelet converted to a monopedicellate spikelet pair. C. Monopedicellate triplet. D. Triplet directly branched off the rachis. E. Spikelet having 4 glumes, filled with 3 to 4 florets. F. Glumes folded open showing the imperfectly doubled number of florets within the spikelet.

In a very few cases, spikelets were clearly grouped per four instead of the wild-type two spikelets per pair (fig.3.13), so-called 'quadruplets'. Their arrangement onto the rachis however, was different, due to the distinct site of branching of the spikelets on the pedicel. In the first example, the extra spikelets were braching off of the main pedicel (belonging to the actual pedicellate spikelet), thereby converting this pedicel into a small side branch of the main inflorescence stem. In the second quadruplet, the four spikelets have each retained their own pedicel, creating a losely organized panicle. Only at the base of the quadruplet the pedicels were fused before branching off of the rachis. The last quadruplet was different from the second, in that the pedicels of the two pedicellate spikelets in the middle were fused to give rise to a monopedicellate spikelet pair within the quadruplet.

In the examined tassels, more spikelets were grouped per four, that were directly branching off of the rachis, without any sign of fusion of the pedicels. These doubled spikelet pairs could therefore not be distinguished from pairs of spikelets that were placed directly next to each other. All three combinations were observed, -groups of four spikelets that had the sessile or the pedicellate
spikelets touching each other, and groups in which one sessile and one pedicellate spikelet were surrounded by one pedicellate and one sessile spikelet.

Fig.3.13. Distinct quadruplets of tassels of plants transformed with sense and anti-sense constructs. In one quadruplet (left) the extra spikelets were sideways branching off of the pedicel of the pedicellate spikelet In an other quadruplet (middle), having four pedicellate spikelets, the pedicels were only fused at the base of the quadruplet near the branching-off point from the rachis. The third quadruplet (right) displayed a total fusion of the pedicels of the spikelets that were formed in the middle. (left, plant 6022, anti-sense, line 1 ; middle \& right, plant 4454, sense, line 4).

In the female inflorescences of transgenic plants similar branching phenotypes were observed. Since the plants transformed with sense construct displayed the same phenotypes as the ones having the anti-sense construct, they are presented together (fig.3.14). Compared to transformed control plants, most transgenic plants looked wild-type, showing a pair-wise arrangement of only the upper florets within the spikelets (fig.3.14A). Due to the restricted space on the ear rachis, corresponding to a predetermined number of florets or kernels, extra produced primordia that distorted the linear arrangement were more easily recognized. Single branching events on the spikelet pair primordial level gave rise to isolated triplets (fig.3.14B). Depending of the strength of the extra branching events, a range of triplet related phenotypes was observed. Pairs of spikelets could be converted into a stretch of triplets (fig.3.14C), or even into quadruplets via a triplet intermediate (fig.3.14D). Also isolated quadruplets were produced (fig.3.14E), after which the spikelet pair meristem resumed its wild-type activity by forming pairs of spikelets again. This finding re-enforced the observed quadruplet phenotype of the tassel where the spikelets are more losely organized in the inflorescence. Analogous to the tassel phenotype, ear spikelets were found to have an extra floret (fig.3.14F), the so-called pistillate florets. In pistillate florets the extra floret is formed at the position of the lower floret, because of an absence of abortion. The lower floret was of opposite orientation to the upper one, and upon fertilization this led to a 'reverse
germ orientation' phenotype, in which the embryo is pointing to the base of the inflorescence in contrast to embryo's in the wild-type kernels (fig.3.14G,H).

Fig.3.14. Functional analysis of ZMM6 in female inflorescences of sense and anti-sense transformed plants. A. Plant 4627, line 1, showing a wild-type like arrangement of pair-wise aligned spikelets. B. An isolated triplet among spikelet pairs (plant 6011, line 1). C. Stretch of triplets (plant 5674, line 24) D. Conversion of a paired alignment of spikelets via a triplet into quadruplets, re-organized in double pairs of spikelets (plant 7004, line 18). E. Single quadruplet within a row of paired spikelets (plant 6020, line 1). F. Pistillate floret having an extra, lower, floret per spikelet, pointing downwards (plant 6993, line 18) G. Wildtype ear (A69Y+) showing an ordened rowing of pairwise aligned kernels. H. Kernel on plant 5721 (line 1) showing a reverse germ orientation after seed set in the lower floret of a pistillate floret spikelet. I. Kernel on plant 5721 (line 1) showing a reversely oriented kernel. Due to the pressure of neighbouring kernels the downward direction of the kernel may be a bit off-set.

Transgenic ZMM6 plants also displayed a phenotype within the florets (fig.3.15). Floral organ numbers were often increased. As displayed in fig 3.15B and C, florets revealing four stamina
were present, compared to the wild-type number of three stamina per floret (fig.3.15A). Also paleas or palea-like structures could be observed in spikelets showing a branching phenotype as described above. Some of the organs were found to be intermediate to lodicules and paleas, suggesting the lodicules were converted into paleas (fig.3.15D-F).

Fig.3.15. Floral organ phenotypes of ZMM6 transformed plants. A. Wild-type HE98+ spikelet having two florets with each 3 stamina (control plant with empty vector). B-C, plant 4593 (line 2), D-F, plant 5723 (line 1) B. Spikelet in which one floret is wildtype-like, the second floret contains 4 stamina. Numbers indicate stamina. C. Close-up of a floret with four stamina D. Wildtype-like lodicule. E. Lodicule partially converted into palea (close-up). Arrow indicates the transition point. F. Wildtype-like palea. (D-E, bar= \(0.5 \mathrm{~mm} ; \mathbf{F}\), bar \(=1 \mathrm{~mm}\)).

\subsection*{3.2.3 Expression analysis of \(Z M M 6\) transcripts in transgenic plants}

Plants transformed with a sense construct of ZMM6 displayed the same phenotype as anti-sense transgenic plants. This suggested that the observed phenotypes are caused by a loss of function of ZMM6. In order to find a correlation between the transgenic phenotype and a difference (i.e. an expected decrease) in the ZMM6 transcript level, Northern analyses were performed (Fig.3.16).

Total RNA from phenotypic (lane \(1-3\) and \(7-12\)) and wildtype-like spikelets (lane 4-5) from transgenic ZMM6 sense plants were compared with total RNA from wild-type lines B73+ (lane 6) and T232+ (lane 13) (Fig3.16). In several cases (plant 6446, 6475, 6502) the amount of ZMM6 mRNA was not significantly changed from the amount in wild-type plants. Furthermore, transgenic ZMM6 plants could either have a reduced (plants 6333 and 6338) or an increased

Fig.3.16. Northern analysis of ZMM6 expression in ZMM6 sense construct transformed plants. The blot contains total RNA from ear (lane 1-6) and tassel (lane 7-13). The transgenic plants from independent lines (lane1-5, 7-12) are compared with wild-type lines B73+ (lane 6) and T232+ (lane 13). Phenotypic spikelets (lane 1-3, lane 7-12) are compared with wild-type or wildtype-like spikelets (4-6, 13). The blot was hybridized with a \(3^{\prime}\)-specific probe of ZMM6. Apparent transcript size is shown on the left side.
amount of ZMM6 transcript (plants 6388, 6332, 6333 and 6142). The up- or down regulation was independent from the line to which the plant belonged. Interestingly, in different samples of plant 6333 (of phenotypic (lane 8) versus non-phenotypic material (lane 4)) altered levels of ZMM6 transcript were formed. Additionally, comparisons of ZMM6 expression of plant 6332 and 6333 (lane 7, 8) with plant 6338 (lane 9) show that there is variation within lines, apart from variation among lines (see above). Furthermore, in plant 6388 also an abberant ZMM6 transcript was detected. A total co-suppression of the endogenous ZMM6 gene in the transgenic plants was not observed, neither in phenotypic, nor in wild-type looking spikelets. Taken together, in the plants transformed with the sense construct, a correlation between the phenotypes of the transgenic spikelets and a difference in the level of ZMM6 transcript as compared to the wild-type was not observed. Similar results were obtained with the anti-sense plants (data not shown).

\subsection*{3.2.4 Quantitative and statistical analysis of phenotypic characters in ZMM6 plants}

In order to provide evidence that the observed morphologically distinct characters in the inflorescences of the ZMM6 transformed plants are consistent transgenic phenotypes rather than just morphological random fluctuations, a quantitative and subsequent statistical analysis was performed in which only transgenic plants were compared to (transgene negative) control plants.

Plants obtained from the transformation experiments that were transgene-negative as shown by PCR or Southern analysis (see above) were discarded. Because of possible effects on the morphology by methylation of the endogenous gene, due to the presence of the transgene in the parental generation or callus during the regeneration period, these plants were excluded from quantitative and statistical analysis.

As the transgenic tassels and ears displayed different but related phenotypes due to the similar but not identical inflorescence morphology, their phenotypic categories differed accordingly. Since in some wild-type male inflorescences triplets and monopedicellate spikelet pairs were found at the base of the inflorescence, it was distinguished between these characters appearing at the base and elsewhere in the inflorescence, -the basal and non-basal groups, respectively (App.7.4)-. The base of the inflorescence is defined here as 2 cm above the upper most side branch or, in case of absence of side branches, 2 cm above the lower most spikelet pair. The more indeterminate nature of the basal spikelet pairs in the wild-type is explained by Irish (1998) who states that the more apically placed spikelet pair meristems directly produce the spikelet pairs, whereas the spikelet pair meristems at the base of the tassel can first grow out to give rise to side branches. Intermediately positioned spikelet pair meristems may occasionnally form monopedicellate spikelet pairs and triplets. The characters analyzed in the tassel were non-basal triplets, non-basal monopedicellate spikelet pairs, 3 -floretted spikelets, and 4-floretted spikelets. In the ears the groups consisted of triplets, quadruplets and pistillate floretted spikelets.

The total numbers of wild-type spikelets and the total number of morphologically distinct spikelets were counted, and divided by each other to obtain the phenotypic ratio of the different characters (App7.4 and App.7.5). The quantitative data suggested that the observed branching phenotypes displayed a non-normal distribution. This is indicated by the fact that the mean of the ratios of the characters have the same order of magnitude as the standard deviation, or could even be lower than the standard deviation of that mean (App7.6).

Therefore, the non-parametric Mann-Whitney (U)-test was used as described in §2.2.20 for comparing the groups of transgenic plants to the groups of control plants with respect to the above mentioned characters. The resulting asymptotic significances of the U-tests, indicating the chance that the members between the compared group are the same, are displayed in table 3.7.

Table 3.7. Statistical evaluation of morphologically distinct branching characters of ZMM6 sense and antisense transformed \(T_{0}\)-plants in the tassel using the Mann-Whitney (U)-test. Shown are the asymptotic significances that indicate the chance that members of the groups are the same. The test compares the phenotypic ratios of a character of individual \(\mathrm{T}_{0}\)-plants in a group of transgenic plants, compared to those of the control plants. The original data used for the test are displayed in App.7.4. The groups used for comparison are numbered (\(\mathrm{U} 2(\mathrm{x}, \mathrm{y})\)), where x is the control group, compared to the transgenic group y . Column \(\mathrm{N}(\mathrm{x}, \mathrm{y})\) indicates the total number of compared plants in group x and y , respectively. Abbrev.: \(\mathrm{NBmono}=\) non-basal monopedicellate spikelets; NBtrplt \(=\) non-basal triplets; 3-floret=3-floretted spikelets; 4 -floret \(=4\)-floretted spikelets, \(\mathrm{aZMM6}=\) anti-sense plants, ZMM6=sense plants.
\begin{tabular}{lrrrrrl}
\hline compared groups (U2(x,y)) & NBmono & NBtrplt & 3-floret & 4-floret & groups \((x-y)\) & \(\mathbf{N}(\mathbf{x}, \mathrm{y})\) \\
\hline \(\mathbf{U 2 (1 , 3)}\) & 0 & 0 & 0.003 & 0 & controls,To-aZMM6,To & 36,17 \\
\(\mathbf{U 2 (1 , 4)}\) & 0.001 & 0.002 & 0.045 & 0.047 & controls,To-ZMM6,To & 36,57
\end{tabular}

The asymptotic significances of the tests for each of the four individually evaluated characters were between 0 and 0.05 . This means that these tested characters differed statistically in a significant way between the control group and the transgenic group of plants. Hence, these can be considered mutant phenotypes, due to the presence of the transgene in those plants. Similar results were obtained after more extensive statistical evaluation of these phenotypes in groups of transgenic plants in a different generation or background (e.g. Hoechst plants) (App.7.7). Similar results for the evaluated characters were seen in the female inflorescence, albeit with a lower frequency of the phenotypes (see below). The three characters (triplets, quadruplets and pistillate floretted spikelets) were therefore grouped together as a single trait. Comparison against the control plants indicated that the branching was also affected in the ear, due to the presence of the ZMM6 transgene (App.7.7).

In order to show the frequency with which the phenotypes occurred, the phenotypic means of groups of sense and anti-sense transformed ZMM6 \(\mathrm{T}_{0}\)-plants in the tassel were compared to the controls and graphically displayed (fig.3.17). The phenotypic ratios of phenotypes of an affected spikelet pair meristem (SPM) were grouped together (non-basal monopedicellate spikelet pairs and non-basal triplets), as well as those of a defect in the spikelet meristem (SM) (3-floretted and 4-floretted spikelets).

The anti-sense lines showed in general to be more affected in the spikelet pair meristem than the sense lines. Similar results were obtained in the female inflorescence (data not shown; App.7.5).

Fig.3.17. Phenotypic ratios of non-basal monopedicellate spikelet pairs and triplets in the \(\mathrm{T}_{0}\)-generation in the tassel. Columns represent the \(\mathrm{T}_{0}\)-control group (CNTRL), total antisense (aZMM6) and sense (ZMM6) transformed plants, and lines within the latter two groups. The total number of plants per column is indicated under the columns by (n).

Also with respect to the phenotypes on the spikelet meristem level, the anti-sense lines showed a stronger phenotype than the sense lines (fig.3.18). Furthermore, there is a tendency that the branching phenotypes derived from a defect in the spikelet pair meristem occur more frequently than the spikelet meristem phenotypes. In the ear, similar results were observed (data not shown; App.7.5).

Fig.3.18. Phenotypic ratios in the tassel of 3-floretted and 4-floretted spikelets in the \(\mathrm{T}_{0}\)-generation. Columns represent the \(\mathrm{T}_{0}\)-control group (CNTRL), total antisense (aZMM6) and sense(ZMM6) transformed plants, and lines within the latter two groups. The total number of plants per column is indicated under the columns by (n).

In total, the above mentioned phenotypes were present -in tassel and/or ear- in 18 lines out of the total 24 lines (\(=75 \%\)) (App.7.4 and App.7.5). These are the lines 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, \(15,18,19,21,22,23\) and 24 . The phenotypes were present over four generations \(\left(\mathrm{T}_{0}-\mathrm{T}_{3}\right)\).

\subsection*{3.2.5 Regeneration and analysis of transgenic ZMM8 plants}

To screen for the presence of the transgene, a PCR on genomic DNA from young leaves was performed. The primer pairs only span an amplifiable region in the transgene, not in the genomic DNA of the wild-type plants. One of the primers in the pair anneals to the ORF of the gene, the other either to the CaMV 35S promoter (sense construct) or the NOS-terminator (anti-sense construct). For the sense construct the primers CMV1 and WD54 were used (App.7.1), rendering a 0.8 kb fragment, and a fragment from the anti-sense construct was amplified by PLA2 and WD54, resulting in a 0.4 kb sized fragment, as is examplified by figure 3.19 , presenting a genomic PCR of \(\mathrm{pK} 225 / \mathrm{ZMM} 8\) and \(\mathrm{pK} 225 / \mathrm{aZMM} 8\) transgenic plantlets of the \(\mathrm{T}_{1}\) generation.

Fig.3.19 Genomic PCR assay on plantlets (\(\mathrm{T}_{1}\)) to screen for the presence of pK225/ZMM8 and pK225/aZMM8 constructs. The PCR negative control sample contains no DNA, the PCR positive control sample contains \(\mathrm{pK} 225 / \mathrm{ZMM} 8\). Plants \(6221-6230\) are screened for the \(\mathrm{pK} 225 / \mathrm{ZMM} 8\) sense construct, whereas plants 6231-6241 are screened for the pK225/aZMM8 anti-sense construct. The positive sense plants show a transgene specific 0.8 kb fragment, the positive anti-sense plants show a transgene specific 0.4 kb fragment.

As to \(\mathrm{pK} 225 / \mathrm{aZMM} 8\), the PCR screening of the \(\mathrm{T}_{0}\)-generation from the MPI involved a total of 69 plants, of which 11 were PCR negative \((=15.9 \%)\). Since most of the \(T_{0}\) plants were male sterile they were crossed back using pollen of the wild-type line A69Y+. Out of \(90 \mathrm{~T}_{1}\)-plants, 49 were negative (\(54.4 \%\)), whereas from \(17 \mathrm{~T}_{2}\)-plants from a back crosses of \(\mathrm{T}_{1}\)-plants to A69Y+, 8 plants were negative (47.1\%).

As to pK225/ZMM8, the PCR screening of the \(\mathrm{T}_{0}\)-generation from the MPI involved in total 16 plants, of which 2 were PCR negative (\(=12.5 \%\)). The PCR screen on plants of the \(\mathrm{T}_{1}\) generation was combined with plants obtained from Hoechst AgrEvo. In total \(180 \mathrm{~T}_{1}\) plants were screened, of which 124 were negative (\(68.9 \%\)), and from the \(17 \mathrm{~T}_{2}\)-plants, 9 were not positive (\(52.9 \%\)). The high numbers plants without a transgene stem from the out-segregation event of the transgene, and as well as from \(\mathrm{T}_{1}\)-plants obtained from Hoechst of which the parent plant \(\left(\mathrm{T}_{0}\right)\) was negative. Out of three crosses between an anti-sense construct containing mother and a sense construct containing father, 22 plants segregated for the transgenes. Five plants did not contain any transgene, 9 contained the antisense, 2 contained the sense construct, and 6 contained both.

In order to check for independent transgenic lines, a Southern analysis was performed with the PCR positive plants derived from different calli and transformation experiments. The genomic DNA was digested with EcoRV, a methylation insensitive restriction endonuclease, that cuts once within the sense cassettes, and once within the pK 225 vector, rendering a 1.5 kb fragment. The CaMV 35S promoter was used as a probe. It was amplified out of pRT104 by primers CMV1 and CMV2, and subsequently random prime labeled and hybridized to the blots (fig.3.20).

In all samples hybridizing bands were observed, indicating that every plant was transformed, except for the control plant (6047). The different integration sites in the genome were reflected by different sizes of the fragments containing the constructs. The sense lines had one to five fragments per genome, corresponding to one to four copies, because the internal EcoRV fragment does not contribute to the copy number. The antisense lines showed two to four fragments directly corresponding to the inserted copies of the transgene. The \(\mathrm{T}_{0}\)-plants with \(\mathrm{pK} 225 / \mathrm{aZMM} 8\) construct from the MPI were derived from 4 calli (no.2, 7, 8 \& 9 (data not shown) for lines 1, 2, 3 \& 4) originating from independent transformation events within one transformation experiment, as displayed by the different EcoRV restriction digestion pattern. The MPI \(\mathrm{T}_{0}\)-plants with the sense construct regenerated from calli no.2/1, 6 and 2/2 (data not shown) revealed distinct EcoRV restriction patterns, and were hence derived from independent integration events (line \(5,6 \& 7\)). The Hoechst \(\mathrm{T}_{1}\)-plants were derived from independent transformation events, forming independent lines (lines 8-29), as shown by Southern analysis. In total, 4 different anti-sense lines were obtained, and 25 sense lines. The sense lines showed the EcoRV internal fragment of 1.5 kb , except from the lines \(5,14,23\) and 26 . In these lines the construct may have integrated only partially into the genome, or the sequence of integration lies within the 1.5 kb EcoRV fragment.

Fig.3.20. Southern blot analysis of maize plants transformed with a sense or anti-sense construct of ZMM8. Lines 1-4 contain pK225/aZMM8, lines 5-29 contain pK225/ZMM8. Lines 1-7 are \(\mathrm{T}_{0}\)-plants (MPI), lines 8-29 are \(\mathrm{T}_{1}\)-plants (Hoechst). The marker fragments are indicated in kilobases (kb). Plant numbers correspond to greenhouse numbers, parental labels show construct (F), independent transformation experiment \((\mathrm{T})\), and parent plant number (P). As a control, the DNA of a non-transformed HE89 plant (6047) is included. The fragment number of the transgenes ranges from 1 to 5 . In most of the sense lines, the 1.5 kb EcoRV fragment of the construct pK225/ZMM8 is present.

The inheritance of the transgenes was investigated by PCR screening of populations of sibling plants of the \(T_{2}\). All parent plants were back crossed with wild-type pollen. Per family, the line, parent, copy number, number of siblings, the number of transgenic (PCR positive) siblings and the generation was indicated (table3.8).

Table 3.8. Inheritance of the \(Z M M 8\) transgene in transgenic \(\mathrm{T}_{2}\)-plants of different lines with sense and antisense constructs. The presence of the transgenes occurs in about \(50 \%\) of the offspring, independent of the copy number. Abbr.: pos. \(=\) number of positive plants per family, sibl.=number of siblings in the family, \(\mathrm{Tn}=\) generation (n).
\begin{tabular}{lrrrr}
\(l\) & \multicolumn{1}{c}{ line } & parent & copy & pos. \\
\hline 2 & 4521 & 2 & 4 & 8 Th \\
\hline 2 & 4517 & 2 & 5 & 11 T2 \\
4 & 4527 & 2 & 7 & 14 T2 \\
4 & 4996 & 2 & 11 & 19 T2 \\
8 F69T15P3 & 4 & 4 & 10 T2 \\
9 F71T12P1 & 2 & 6 & 10 T2 \\
11 F71T05P1 & 3 & 2 & 5 T2 \\
12 F69T25P1 & 2 & 9 & 15 T2
\end{tabular}

Although the Southern showed multiple copies per transgenic line, the transgenes behaved as a single locus. The offspring of the back crossed parents showed in all lines about \(50 \%\) of the cases the presence of the transgene, fitting to \(1: 1\) segregation pattern, indicating the transgenes were inherited as a single locus. This suggests that when multiple copies were integrated into the genome the integration occurred at one locus only.

\subsection*{3.2.6 Phenotypic analysis of transgenic \(Z M M 8\) plants}

Transgenic plants harbouring the sense or anti-sense construct were analyzed morphologically and compared to plants of the wild-type lines T232+, A69Y+ and B73+, control plants harbouring the empty vector, and plants transformed with the control pK225/aZMM15 contruct and p35SAcS/GCM5::GUS construct. A qualitive analysis of the tassel showed that plants transformed with the sense construct, as well as plants having the anti-sense construct displayed a similar branching phenotype as compared to the controls (fig.3.21). The phenotypes were similar to the ZMM6 transformed plants, suggesting these two \(A G L 2\)-like genes function highly similarly, although their expression patterns are different.

ZMM8 transformed plants showed in the male inflorescence branching phenotypes originating from a malfunctioning spikelet pair meristem, like monopedicellate spikelet pairs (fig.3.21B),
triplets (fig.3.21C), including combinations stemming from spikelets that were differently positioned along the length of only one pedicel, and combinations among these. Linked to a spikelet meristem defect were spikelets having three glumes, yet, encompassing two wild-type florets (fig.3.21D), spikelets having three perfectly developed florets within three glumes (fig.3.21E,F), up to perfectly developed four-floretted spikelets (fig.3.21H) and intermediate branching variations between the latter (fig. \(3 \cdot 21 \mathrm{G}\)).

Fig.3.21. Functional analysis of transgenic plants with sense and anti-sense \(Z M M 8\) constructs. A. Wild-type rachis section, showing a pair of spikelets consisting of a sessile and a pedicellate one (line B73+). B. Monopedicellate spikelet pair in which the pedicel of the sessile spikelet is fused to the pedicellate spikelet's pedicel (plant 6883, line \(4 x\) line 25). C. Triplet formation of three spikelets (plant 6922, line 3). D. Three glumed spikelet with two wild-type florets (plant 4517, line 2). E. Three-glumed spikelet surrounding three wild-type florets. Plant 4517, line 2). F. Three floretted spikelet as the pedicellate one of a pair of spikelets (plant 6909, line 25). G. Intemediate branched spikelet, having between three and four florets (plant 6883, line \(4 x\) line 25). H. Perfectly developed four-floretted spikelet (plant 4801, line 1).

In the female inflorescences of plants transformed with sense and anti-sense constructs of ZMM8, branching phenotypes were observed analogous to the tassel phenotypes, and to the ones in inflorescences of plants transformed with ZMM6 constructs (fig.3.22). Although most of the spikelets were organized in a wild-type-like fashion (fig.3.22A), transgenic plants were found to contain spikelets that were arranged per three (fig.3.22B). Astronger phenotype, interfering with the regular wild-type rowing, was seen in spikelet pairs that were converted via triplets into quadruplets (fig.3.22C). Singularly organized quadruplets were also observed (fig.3.22D). Extra florets within the female spikelets, the pistillate floret-spikelets, were sometimes grouped together, and sometimes found independently placed (fig.3.22E). Upon fertilization of these lower florets, that were reversely positioned to upper floret within the spikelet, a kernel developed with the embryo facing the ground ('RGO`-phenotype) (fig.3.22F).

Fig.3.22. Functional analysis of \(Z M M 8\) in female inflorescences of sense and anti-sense transformed plants. A. Wild-type rowing of spikelet pairs (plant 6981, line 20). B. Triplet formation disrupting the regular rowing of spikelets (plant 6982, line 20). C. Conversion of a single row of paired spikelets into two rows of spikelets (quadruplets) via a triplet intermediate (plant 6931, line 1). D. Quadruplet formed by a single defective branching event (plant 6923, line 3). E. Pistillate floret spikelets having, in addition to the wildtype upper floret, an oppositely oriented lower floret (plant 6985, line 20). F. Reverse germ orientation phenotype in a fertilized pistillate floret. The embryo is directed to the base of the inflorescence (plant 4817, line2).

Within the florets, similar phenotypes were observed as in plants transformed with ZMM6 constructs. The floral organ numbers of lodicules (not shown), stamina (fig.3.23A,B) and paleas (not shown) could be increased, and lodicules were sometimes partially converted into paleas (fig.3.23D).

Fig.3.23. Floret phenotypes of \(Z M M 8\) transformed plants. A. Spikelet pair with each spikelet having two florets. One of the four florets has 4 stamina (arrow) (plant 4518, line 2). B. Close-up of a floret with 4 stamina (plant 4518, line 2). C. Wild-type lodicule (plant 4643, line 3). D. lodicule, partially converted into palea, 'paleatic' tissue at its outer rim (arrow) (plant 4643, line 3). E. Lodicule partially converted into palea (plant 4643, line 3). \(\mathrm{Bar}=0.5 \mathrm{~mm} ; \mathrm{p}=\) pedicellate spikelet; \(\mathrm{s}=\) sessile spikelet.

\subsection*{3.2.7 Quantitative and statistical analysis of phenotypic characters in ZMM8 plants}

The analyses of the ZMM8 transcript in transgenic plants yielded similar results as described for ZMM6 (see §3.2.3). Since a correlation between the observed phenotypes and a change in expression could not be observed (data not shown), the presence of the transgene was causally related to the changes in morphology via a statistical analysis. The quantitative and subsequent statistical analysis was performed with only transgenic plants, compared to negative control plants, analogous to the analysis of ZMM6 transformed plants (see §3.2.4).

The morphologically distinct branching traits were counted per inflorescence, as well as the total number of spikelets. In the tassel all non-basal triplets, non-basal monopedicellate spikelet pairs, 3 -floretted spikelets, and 4 -floretted spikelets were counted. In the ears triplets, quadruplets and pistillate floretted spikelets formed the distinct classes. In order to avoid abberations in phenotypic quantities that merely stem from differences in inflorescence size, the total numbers
of morphologically distinct spikelets were divided by those of the wild-type spikelets to obtain the phenotypic ratios (App7.4 and App.7.5). Analyses of the means of the traits showed they had the same order of magnitude as, or were lower than the standard deviation (App7.6). The branching phenotypes were therefore not normal distributed over the inflorescences.

The ratios of the individual traits in the transgenic plants were tested against those in control plants (table 3.9). The statistical test for this was the Mann-Whitney (U)-test (§2.2.20). The outcome of the test is the asymptotic significance. This states the chance event that the evaluated trait is the same between the control and transgenic batch of plants.

Table 3.9. Statistical evaluation of morphologically distinct branching characters of \(Z M M 8\) sense and antisense transformed \(\mathrm{T}_{0}\)-plants in the tassel using the Mann-Whitney (U)-test. Shown are the asymptotic significances that indicate the chance that members of the groups are the same. The test compares the phenotypic ratios of a character of individual \(\mathrm{T}_{0}\)-plants in a group of transgenic plants, compared to those of the control plants. The original data used for the test are displayed in App.7.4. The groups used for comparison are numbered (\(U 2(\mathrm{x}, \mathrm{y})\)), where x is the control group, compared to the transgenic group y . Column \(\mathrm{N}(\mathrm{x}, \mathrm{y})\) indicates the total number of compared plants in group x and y , respectively. Abbrev.: NBmono= non-basal monopedicellate spikelets; NBtrplt= non-basal triplets; 3-floret= 3 -floretted spikelets; 4 -floret \(=4\)-floretted spikelets, aZMM8=anti-sense plants, ZMM8=sense plants.
\begin{tabular}{lrrrrrl}
\hline compared groups (U2(\(\mathrm{x}, \mathrm{y})\)) & NBmono & NBtrplt & 3-floret & 4-floret & groups (\(\mathbf{x}-\mathrm{y}\)) & \(\mathbf{N (x , y)}\) \\
\hline U2(1,8) & 0 & 0 & 0 & 0 & controls,To-aZMM8,To & 36,33 \\
U2(1,9) & 0.01 & 0.03 & 0.001 & 0.01 & controls,To-ZMM8,To & 36,11
\end{tabular}

The asymptotic significances of the tests for each of the four individually evaluated characters were between 0 and 0.05 , indicating that the trait was significantly different between the control plants and the transgenic plants. The altered morphology of these spikelets can therefore be considered as mutant phenotypes, due to the presence of the transgene in those plants. Similar results were obtained after further statistical evaluation of the phenotypes in other groups of transgenic ZMM8 plants in a different generation or background, including the female inflorescence (App.7.7). As the occurrence of the phenotypes in the ear was much lower than in the tassel, the three characters (triplets, quadruplets and pistillate floretted spikelets) were joined and tested as a single branching trait. The results showed that the presence of the ZMM8 transgene also cause an increase of branching in the ear .

Furthermore, the occurrence of the phenotypes were analyzed in the tassel in the \(\mathrm{T}_{0}\)-plants. The phenotypic means of groups of sense and anti-sense transformed \(Z M M 8 \mathrm{~T}_{0}\)-plants were compared to the controls (fig.3.24). The phenotypic ratios of the non-basal monopedicellate spikelet pairs and non-basal triplets were put together as an indication of the expressivity of the phenotype in
the spikelet pair meristem (SPM). Similarly, the values of the 3-floretted and 4-floretted spikelets were joined to indicate the occurrence of a loss of function in the spikelet meristem (SM) (fig.3.25).

Fig.3.24. Phenotypic ratios of non-basal monopedicellate spikelet pairs and triplets in the \(\mathrm{T}_{0}\)-generation in the tassel. Columns represent the \(\mathrm{T}_{0}\)-control group (CNTRL), total antisense (aZMM8) and sense (ZMM8) transformed plants, and lines within the latter two groups. The total number of plants per column is indicated by (n).

The sense and anti-sense lines showed that the phenotypes occurred with approximately equal frequency. However, due to the low number of sense \(Z M M 8 \mathrm{~T}_{0}\)-plants and the non-normal distribution of the phenotypes, this result must be considered with caution.

The 3- and 4-floretted spikelets were more frequently occuring in the anti-sense lines than in the sense lines. The latter phenotypic ratios equalled those of the loss of SPM-function, unlike the situation for the ZMM6 gene. This was also observed in the ear \((S P M\) ratio \(=0.0015\) vs. SM ratio \(=0.0012\) (data not shown); App7.5).The ZMM8 phenotypes were in both male or female inflorescences observed in 22 lines out of the total 29 lines (\(=76 \%\)) (App.7.4 and App.7.5). These are the lines \(1,2,3,4,5,6,7,8,12,13,14,16,17,18,20,21,22,24,25,26,28\) and 29 . The phenotypes were present over three generations \(\left(T_{0}-T_{2}\right)\).

Fig.3.25. Phenotypic ratios in the tassel of 3-floretted and 4-floretted spikelets in the \(\mathrm{T}_{0}\)-generation. Columns represent the \(\mathrm{T}_{0}\)-control group (CNTRL), total antisense (aZMM8) and sense(ZMM8) transformed plants, and lines within the latter two groups. The total number of plants per column is indicated by (n).

\section*{4 DISCUSSION}

\subsection*{4.1 Maize \(\boldsymbol{A G L}\)-like genes contain large regulatory sequences}

The genomic library screen for the isolation of \(A G L 2\)-like genes from maize delivered genomic clones to several previously isolated MADS-box gene cDNAs, due to the mixed probe and the non-stringent screening conditions. The latter made it inefficient to isolate clones of specific genes directly, though it allowed for the isolation of new genes, like the clone \(\lambda\) DASHII-wd33. In particular, genes can be isolated that will escape the regular cDNA screens, due to their low expression level or their expression during a restricted phase of development (Foster \& Twell, 1996).

The non-stringent hybridization conditions still rendered a large amount of \(A G L 2\)-like genes to be isolated. Upon examination, the genomic inserts often contained a partial sequence of the AGL2like MADS-box genes. In order to lower the chance of isolating partial genomic clones, a large insert genomic library could be screened, like YAC or BAC libraries, available from various maize varieties (Edwards et al, 1992; O`Sullivan et al, 2001; http://hbz.tamu.edu; http://genome.clemson.edu). Whereas in the phage \(\lambda\) replacement vector the insert size measures between nine and 25 kb on average, BAC's can have an average insert size of around \(100-150 \mathrm{~kb}\), making it more likely to contain the whole genomic locus of a gene.

The extended size of maize \(A G L 2\)-like genes is mainly caused by the large size of the introns and the extra intron I7, compared to the genomic \(A G\)-like ZMM1 gene. This has also been reported for OsMADS1 from rice (Oryza sativa) (Jeon et al., 2000), that is closely related to ZMM8 and ZMM14 (Cacharrón et al., 1999). Compared to the situation in Arabidopsis, an extra seventh intron as in \(A G L 9\) has also been reported in the \(A G L 2\)-like gene \(A G L 3\) by Huang and co-workers (1995), though the other two AGL2-like Arabidopsis genes AGL2 and AGL4 (Ma et al., 1991) contain the same number of introns and exons as ZMM1. The first intron in particular is very large in size in the maize \(A G L 2\)-like genes, yet, it is of different size per gene. Intragenic sequences, such as the large second intron in the Arabidopsis MADS-box gene Agamous have been implicated in the specific spacial regulation (Sieburth \& Meyerowitz, 1997). Additionally, downstream sequences such as the \(3^{\prime}\) UTR have also been shown to be necessary for the proper transcript expression during development (Larkin et al., 1993). As the various maize AGL2-like genes are expressed each in a different but highly specific manner during development, it is likely
to suggest that, apart from promoter and \(3^{\prime}\) UTR sequences, these different but impressively large introns may be directly involved in the establishment of their extraordinary expression patterns.

As to the coding regions, the amino-terminal location of the MADS-box and the remaining IKCdomain structure has been well conserved within the AGL2-like genes, like in most of the plant MADS-box genes. In addition, even the size of three exons (E4, E5 and E6) has been conserved beyond the divergence of monocots and dicots. The strong structural conservation and sequence similarity may reflect similarities in function. However, the exact functional signification of the similarities and differences in sequence and structure can only be determined after an experimental characterization of the respective genes.

\subsection*{4.2 Unraveling \(\boldsymbol{A G L}\)-like gene function in maize}

The classical method to elucidate gene function is to describe a (natural or induced) mutant, and to isolate the corresponding gene via map-based cloning. The isolation of several mutant alleles, or a complementation via transformation of the mutant with the genomic locus of the wild-type will prove that the isolated gene codes for the mutation. Unfortunately, in most crop plant species like maize, this remains impossible to do due to the excessive size of the genome, and, until recently, a lack of libraries that saturate the genome with contigs. As this method starts with a phenotype (of the mutant), and progresses towards the gene, it is called 'forward genetics'. A modern 'forward genetics' approach is via T-DNA or transposon tagging. The tagged gene is then isolated out of a population, segregating for the trait, via recovery of a co-segregating fragment of an RFLP obtained by hybridizing the plant DNA to a probe of the T-DNA or transposon. In the case that a gene is available, but not a mutant, the gene function can be revealed ('reverse genetics') by isolating a mutant from a population of tagged plants, by screening via PCR, based on sequence information of the target gene and the T-DNA or transposon, or by regenerating plants transformed with the gene of interest.

Due to the limited number of functional analyses done on \(A G L 2\)-like genes, it was decided to unravel the function of some of the members of this subfamily of MADS-box genes in maize. Screening of a tagged insertional population owned by Pioneer Hybrid (http://www.pioneer.com) was in conflict with the patent rules of the project due to the participation of agrochemical and plant breeding companies. Furthermore, a lack of candidate mutations that, besides a correlation
of the map positions, showed a phenotype fitting to the expression pattern of the genes suggested a transgenic approach. Plants were transformed with sense and antisense constructs, in order to bring about co-suppression or ectopic expression phenotypes, or phenotypes due to an antisense inhibition of the endogenous transcript.

The sense and antisense lines showed a similar phenotype. This suggests that the plants show a transgene-induced loss of function phenotype. For antisense lines it has been described that the antisense RNA may inhibit the endogenous (i.e. sense) transcript by annealing to this complementary strand and thereby rendering it non-functional (Rothstein et al., 1987; Hamilton et al., 1990; Dougherty \& Parks, 1995). The sense-lines may have led to a co-suppression effect of the endogenous gene (Que \& Jorgensen, 1998, and refs. therein). Co-suppression is a phenomenon in which sometimes the transcription of the target gene is reduced, due to the presence of a transgene, that is also silenced (Napoli et al., 1990; Meyer \& Heidmann, 1994). This can explain the loss of function phenotypes in the AGL2-like genes transformed plants that show a lower level of expression. However, the majority of the maize plants examinated did not display a (total) loss of transcript. There is evidence that in sense plants displaying a phenotype the expression of a transgene can deregulate the control of the endogenous target gene, leading to elevated levels of the transgene and endogene mRNA (Metzlaff et al., 1997). Van Blokland and colleagues (1994) have shown via run-on transcription tests in isolated nuclei that loss of the endogenous gene function is actually not associated with reduced transcription. Hence, cosuppression is presently recognized as a post-transcriptional gene silencing (PTGS) event (Baulcombe, 1999). The loss of gene function has furthermore been linked to sequence specific degradation of the transcript (van Eldik et al, 1998; Baulcombe, 2001). This seems to occur via double stranded RNA intermediates (dsRNA), that are created by RNA-dependent RNA polymerase (RdRP) of the plant (Wassenegger \& Pélissier, 1998). The dsRNA is subsequently degraded by RNases. The nature of the RNAs that can induce the formation of dsRNA, leading to PTGS, is believed to include normal transcripts (above a certain `threshold` level), as well as antisense and abberant transcripts (Lindbo et al, 1993; Baulcombe, 1996; Metzlaff et al 1997; Wassenegger \& Pélissier, 1998). Abberant transcripts of the transgenes of ZMM6 and ZMM8 have also been observed in phenotypic plants (this work). Abberant transcripts usually stem from a single complex locus with multiple rearranged copies of the transgene (Iyer et al, 2000 and refs. therein). Direct DNA transfer methods, like PEG-mediated plant transformation used here, are especially prone to generate complex rearranged transgenes, compared to Agrobacteriummediated transformation (Rossi et al., 1996; Iyer et al, 2000).

The transgenic approach to investigate \(A G L 2\)-like gene function showed a low occurrence of the phenotypes. This might be because different silencing approaches (sense vs. antisense) were not always effective at inducing silencing. Alternatively, other genes that have the same function might (partially) complement the transgenic phenotype - e.g. ZMM6 in ZMM8 transformed plants, or vice versa-. As sense and antisense silencing might be traced back to the same mechanism of PTGS, co-expression of sense and antisense mRNA was persued by crossing the single transformed plants, as described by Waterhouse and colleagues (1998) (see fig.3.21B,G). Some of these plants showed a higher frequency of the phenotype than the average single transformed plants (data not shown), yet the phenotypes did not become present in all the spikelets of the inflorescences. This suggests that the phenotype of either gene (ZMM6 or ZMM8) can (at least partially) be complemented by the other, or even by yet other ones than the two mentioned. It is noticed here that especially the many maize \(A G L 2\)-like genes come into question for such a function, as is suggested by the candidate gene/mutant couples Ts6/ZMM24, ifal/ZMM14. In addition to crossing sense and antisense lines, silencing can be more efficiently induced via coexpression of sense and antisense transgenes by co-localization of the ORFs on the same construct or by a single transcript that has self-complementarity (Waterhouse et al, 1998; Smith et \(a l, 2000)\).

Silencing in plants has been described as a naturally occurring host defense mechanism against virusses and transposable elements (Baulcombe, 2001). Recently, it has been suggested that RNA silencing is also involved in regulating genes required for normal growth and development (Jacobsen et al., 1999). Mutation of the CARPEL FACTORY gene in Arabidopsis leads to defective flowers, apart from a defect in silencing. The gene is a homolog of DICER, an RNAcleaving enzyme in Drosophila melanogaster (Bernstein et al, 2001). When silencing is a natural feature of plants during development, PTGS might be induced by mutant genes that are over expressing their (full length) transcript, above the 'threshold' level (see above). It is postulated here, that the \(A G L 2\)-like candidate gene ZMM24 to the dominantly inheriting and ZMM24 overexpressing mutant Ts 6 , might actually show a silencing phenotype, due to deregulation of transcription of ZMM24. This would be in agreement with the phenotypes of other AGL2-like genes showing also a decreased degree of determinacy (see below).

\subsection*{4.3 ZMM6 confers meristem determinacy on different meristem levels}

Expression analysis shows ZMM6 distinguishes between the sessile and pedicellate spikelet of a pair of spikelets. The phenotypic analysis of the transgenic plants at this level of reproductive development showed a higher degree of branching, leading to 'triplet'or even 'quadruplet' formation in contrast to the wild-type arrangement of paired spikelets. The phenotype correlates therefore well with the early site of expression of the gene. However, it must be pointed out that although the expression of ZMM6 makes a distinction between the two spikelets out of a pair, that may be molecularly tagged as having different identities, it has previously not been specifically linked with the identity of either the sessile or the pedicellate nature of the spikelets.

There is evidence that the two spikelets have different identities, since some mutations only affect one type of spikelet, but not the other. Maize plants carrying the dominant mutation Suppressor of sessile spikelets1 (Sos1) lack the sessile spikelet in ear and tassel due to the inhibition of branching of the spikelet pair meristem (Doebley et al., 1995). Remarkably, in the wild ancestor of maize, teosinte (Z.m. ssp. parviglumis) both spikelet primordia are formed initially, but then the pedicellate spikelet is specifically aborted, leaving only the sessile spikelets to develop to maturity (Doebley et al., 1995). In the mutant Tasselseed6 (Ts6) the development of the pedicellate spikelet is affected (Irish, 1997). The spikelet pair meristem produces the sessile spikelet, but stays indeterminate after its conversion to the pedicellate spikelet meristem, producing supernumerary floret primordia, thereby becoming a sort of branch. The development of Ts6 inflorescences resembles those of ramosa2 (ra2) in which the pedicellate spikelet meristem becomes indeterminate (Neuffer et al., 1997). None of these mutants however, is allelic to ZMM6 (Neuffer et al., 1997). Furthermore, a different spikelet identity may be revealed by the different speed of development. The sessile spikelet is initiated before the pedicellate one, but the latter develops in advance (Cheng et al., 1983).

ZMM6 expression has been shown to be consistently present in only one spikelet of a pair of spikelets, however, the position of that spikelet initial within the pair was placed at random at the inflorescence (Cacharrón \& Theißen, pers. comm.). This correlates well with the random orientation of the position of the pedicellate spikelet (or sessile spikelet) within the pair of spikelets with respect to their arrangement to the main inflorescence stem. Morphologically the two spikelets look nearly identical, and can only be identified in the male inflorescence by the
length of the pedicel. As the spikelets in the female inflorescence are not positioned on a stalk, they can not be distinguished morphologically.

The phenotypic analysis at the spikelet pair level of tassel and ear shows the same structures arise, irrespective of the morphological detectability of their identity. This suggests that the disruption of the wild-type ZMM6 function specifies the degree of branching (i.e. the level of determinacy of the respective meristem), rather than the identity of the primordium. If ZMM6 would be involved in specifying one of the two particular spikelet identities, this would be displayed in the transgenic plants by an occurrence of spikelet pairs only containing either pedicellate or sessile spikelets. Alternatively, it would be shown by an absence of one of the spikelet types, depending on which identity is specified. The latter would indicate a function in meristem initiation as well, a function that has been stated for the co-localized mutant barren inflorescence2 (bif2) (McSteen \& Hake, 2001). Both scenarios, however, have not been observed. In contrast, the higher degree of branching of the spikelet pair meristem led to an array of different triplets and quadruplets, in which different numbers of sessile and pedicellate spikelets were arranged together, and positioned at random with respect to each other. This is additional evidence for a decrease in determinacy of the spikelet pair meristem, irrespective of the identity the newly created spikelets adopt. Also, although ZMM6 expression initially distinguishes between the two spikelets, later on throughout development the expression is turned on in both primordia. Again this suggests that ZMM6 does not have a function in the specification of identity.

An identity-specifying scenario should also not lead to a phenotype within the spikelet, as ZMM6 is expressed equally in both floret meristems, and therefore, does not distinguish between either one of them. The fact that the upper and lower floret might have a different identity, is shown by the specific abortion of only the lower floret in the female spikelets (Cheng et al, 1983), or by mutants that affect the development of one of the two florets. In the mutant reverse germ orientationl (rgol) (Sachan \& Sarkar, 1978) as well in the double mutant pistillate florets (pilpi2) (Neuffer et al., 1997) the lower floret can develop due to an absence of abortion. Furthermore, in wildtype plants the two florets may have adopted different identities for they develop at a different speed, similarly to the sessile and pedicellate spikelet (Cheng et al., 1983). The upper floret develops in advance of the lower one, although it is initiated later.

If ZMM6 would also have a function within the spikelet primordium in establishing the level of determinacy of the floret meristems, one would expect a phenotype upon interfering with the ZMM6 expression. In the ZMM6 transformed plants such a phenotype was observed, in tassel and ear. The spikelet meristem produced a higher number of floret primordia in transgenic plants, supporting the idea that ZMM6 is involved in conferring meristem determinacy to both the floret meristems, irrespective of their identity. In the female inflorescence up to two florets developed. It could not be distinguished whether the proliferation of the spikelet meristem interfered with the actual abortion process of the lower floret, or that the extra floret was produced after abortion of the first initiated lower floret, thereby nullifying the effect of the abortion. However, the number of initiated glumes (see below) in the phenotypic spikelets was not increased in contrast to the tassel, where three to four florets developed within three to four glumes. This suggests that the developing lower floret in the ear arose due to an inhibition of the abortion, that in turn was accompanied with, or even caused by a more indeterminate spikelet meristem.

Within the floret the ZMM6 transgenic plants showed a phenotype, too, correlated to its expression in the floral organ primordia. Here the number of floral organs (stamina, lodicules, paleae) was increased, and in addition evidence was found that lodicules were changed into paleae. So, on the flower level, there is a function for ZMM6 to specify the identity, apart from a function in maintaining determinacy. This observation strongly resembles the dual functions described for \(A G\) in Arabidopsis (Yanofsky et al., 1990; Mizukami \& Ma, 1995) (see below).

\subsection*{4.4 ZMM8 functions to confer meristem determinacy}

The transgene-induced silencing phenotypes of ZMM8 are highly similar to those caused by the transgene ZMM6. This suggests that the genes work directly together to regulate inflorescence branching, or that they work in parallel developmental pathways bringing about the same developmental process. Alternatively, both genes might be affected simultaneously in the transgenic plants. The latter assumption would also explain the ZMM8 phenotypes of triplets and quadruplets, fitting to a disruption of the spikelet pair meristem, eventhough the gene does not seem to be expressed there in the wild-type (Cacharrón, 1994; Cacharrón et al, 1999). Interestingly, MADS-box genes have previously been reported to be specifically expressed in the tisssues that they affect (Theißen \& Saedler, 1995). Therefore, it is postulated here, that expression might in addition be present at the spikelet pair meristem, but under the detection
level. Circumstantial evidence for this comes from the candidate ZMM14 gene -the partner gene of ZMM8- to the ifal mutation (see also below; §4.7). Although ZMM14 is similarly expressed as ZMM8 (Cacharrón et al, 1999), ifal is also affected in the spikelet pair meristem (McSteen et al, 2000).

In what way does \(Z M M 8\) function? The ZMM8 expression pattern shows it distinguishes between the two florets within a spikelet (Cacharrón et al., 1999). These have been termed upper and lower floret (Cheng et al., 1983) due to their fixed position on the female inflorescence, although in the male inflorescence such a distinction as to the place within the spikelet can not be made. This led to the interpretation of the floret primordia as lateral initials of the rachilla by Bonnet (1953), later supported by Chuck and colleagues (1998) based on phenotypic analysis of the mutant ids1, having multiple florets distichously placed onto the extended spikelet axis. In contrast to ZMM6 that is initially only expressed in one spikelet meristem of a pair, but at a later developmental stage in both, ZMM8 expression continues to be visible in only the upper floret meristem, never in the lower, nor in both. This led to the hypothesis that ZMM8 might confer upper floret identity to the respective meristem (Cacharrón et al, 1998). A disruption in the ZMM8 function would accordingly lead to an absence of upper floret identity, and hence possibly to an abortion of the upper floret, in addition to the abortion of the lower floret in the ear. This however has not been observed. In both the tassel and ear the number of florets per spikelet increased, suggesting the transgene-induced silencing of \(Z M M 8\) leads to a decrease in determinacy of the (upper) floret meristems, having for a longer period of time spikelet meristem identity and thereby producing more than the wild-type number of florets. As this function does not seem to be linked to a identity of upper floret, one can hypothesize that ZMM3, a highly related \(A G L 2\)-like gene with opposite expression pattern in only the lower floret, might confer determinacy to the lower floret (Cacharrón, 1994). Inhibition of ZMM3 function would accordingly lead to a similar phenotype of an increased number of florets, as has been seen in rgol (Sachan \& Sarkar, 1978; Kaplinsky et al, 1999).

Within the floret the ZMM8 transgenic plants showed a similar phenotype as the ZMM6 plants, correlated to the expression in the floral organs. On the floret level, \(Z M M 8\) contributes to specify the identity, apart from a function in maintaining determinacy.

\subsection*{4.5 How can these phenotypes be explained in the present-day model of inflorescence and flower development?}

The question whether the upper floret differs developmentally from the lower one remains elusive. The same holds for the developmental origins of the sessile and pedicellate spikelet. Clear is that the compound maize inflorescences are generated from the inflorescence meristem in a step by step process (Cheng et al., 1983; Irish, 1997, Irish, 1998). The inflorescence meristem produces lateral initials, the spikelet pair meristems, from which two initials arise, the spikelet meristems. These in turn give rise to each two floret meristems, which form the floral organs. The step-wise initiation of the four different meristem types in the inflorescence is accompanied by an increasingly higher level of determinacy in the respective meristem types (Irish, 1997). The establishment of the structures is unidirectional, indicating there are factors necessary that specify the determinacy in order to prevent a reversion of the identity of one meristem into a previous, less determinate one (Battey \& Lindon, 1990; Okamura et al, 1996; Venglat \& Sawhney, 1996; Irish, 1997). The sequential initiation of reproductive meristems is a clearly defined process in which the size of the meristems is specified by timing the on-set of the respective determinacy level. This potentially regulates the number of initials that the meristem subsequently produces, and therefore it is important determinant of the inflorescence architecture (Sundberg \& Orr, 1996; Kerstetter, et al, 1997; Chuck et al, 1998). Treatments that influence or interfere with the expression of homeotic genes, including \(A G L 2\)-like MADS-box genes like TM5, have been shown to bring about a back transformation of one meristem type into another, or to lead to alterations in meristem number and identity (Battey \& Lindon, 1990; Okamura et al, 1996; Lozano et al., 1998) Furthermore, specifically in MADS-box gene mutant backgrounds reversal of meristem determinacy has been accomplished (Mizukami \& Ma, 1997; Okamura et al, 1997).

The four reproductive meristems have a different identity as well as a different degree of determinacy. Irish (1998) makes these two aspects fuse by reasoning that the different meristem types accomplish a higher determinacy because of a change in identity: a spikelet pair meristem, after initiating a single spikelet meristem, becomes a spikelet meristem itself. Similarly, each spikelet meristem becomes a floret meristem after initiating a single floret meristem. This model was established based on analysis of two inflorescence mutants, \(t s 4\) and \(T s 6\), that are impaired, or delayed in acquiring determinacy in either the spikelet meristem (ts4) or floret meristem (Ts \(\sigma\)) level, respectively. Chuck and co-workers (1998) challenged this view on inflorescence development based on mutant analysis of idsl by stating that all floral meristems are derived laterally from the spikelet meristem. An intermediate model was proposed by Irish (1998) that
combines the lateral branching model with the identity convertion model. After the spikelet meristem laterally initiates two floral meristems, the second floral meristem recruits almost all of the cells of the spikelet meristem, leaving only a small non-functional zone behind retaining the fate of the spikelet meristem. The incorporation of cells of the spikelet meristem by the laterally formed second floret meristem should constitute the change of identity by which directly the increased level of determinacy is achieved.

In the Arabidopsis mutant terminal flowerl (tfll), and the Anthirrhinum counterpart centroradialis (cen), the apex of the main inflorescence meristem looses its indeterminacy, and changes identity to a terminal flower meristem (Shannon \& Meeks-Wagner, 1991; Bradley et al., 1996). This determinate meristem develops faster, like the upper floret within a spikelet in maize, and like the pedicellate spikelet within a pair of spikelets. Therefore, the conferring of determinacy seems to give the respective meristems a more `terminal-like'character. Recently, homologous genes in the grasses Lolium perenne (LpTFL1) and rice (FDR1 and FDR2) have been isolated, indicating that a similar mechanism may act in maize as well (Jensen et al., 2001; acc. no. AAD42896, AAD42895).

ZMM6 and ZMM8 seem to function on the last three reproductive meristem levels as deteminacy genes. Transgenic plants show deficiencies in the transition of one spikelet meristem to another, leading to a prolonged period of indeterminacy of the former meristem. Thereby they create 'branching' phenotypes on those meristem levels, resembling back transformations of one meristem type to another. The terminal state of the lastly formed meristem at the respective levels of inflorescence development is not inhibited, but eventually adopted. Therefore, the two genes do not distinguish between the different identities of the primordia on the different meristem levels (sessile vs. pedicellate and upper vs. lower), but merely act before or independent from these identities. Furthermore, their phenotypes look similar to mutants that also have been implicated in inflorescence development by a loss of determinacy of the respective meristems (see below).

\subsection*{4.6 More florets, more glumes}

In the transgenic ZMM6 and ZMM8 plants, a higher number of florets was accompanied by a proportional increase in the number of glumes. The spikelet meristems that are delayed in determinacy, first create extra glumes, and in the axils of those the extra florets develop. Finally determinacy is bestowed upon the last meristem, rendering it terminal, and abolishing the outgrowth of the spikelet apex. In contrast, the extra florets in the spikelets of \(i d s l\) do not have a subtending glume (Chuck et al., 1998) (fig.4.1). This suggests the conferring of indeterminacy in ids 1 is occurring at a later time point, namely after the initiation of the glumes by the spikelet meristem, or is accomplished via a different mode of action. This is suggested from the fact that, the meristem continues to stay indeterminate from that point on, producing floral meristems repetitively, without the conversion of the ultimate one to a terminal position.

Fig.4.1. Phenotypic spikelets of idsl compared to those of antisense ZMM6 transgene silenced plants. Column one showns the wildtype, column two shows ids 1 , and column three shows ZMM6 transgenic plants. In row one the phenotypes are displayed, in row two and three the phenotypes are schematically represented from a top view and a side view, respectively.The idsl spikelets have only two glumes containing between 5 to 10 florets, distichously positioned on the extended spikelet apex. The spikelets of ZMM6 or ZMM8 transgenic plants only have 3 to 4 florets, each subtended by a glume. The rachilla is not visible. Phenotypes are compared to wildtype. (ids1 photo from Chuck et al., 1998).

According to the phytomer hypothesis (Lyndon, 1998; Koppstech et al., 1998; Irish, 1998), plants develop modularly via the repeated production of morphological units (phytomers) by their apical meristems. The above-ground part of the plant, including the inflorescence is derived from phytomeres initiated by the shoot apical meristem (SAM). The phytomer consists out of a leaf,
node, internode and axillary bud, that are modified, after the transition to flowering, into bract, node, part of the inflorescence stem (internode) and flower (axillary bud), produced by the inflorescence meristem. Differences in morphology between the shoot and inflorescence apex are based on the extended or compressed nature of the compounds within the phytomere, as well as the suppression of those (Irish, 1998; Long \& Barton, 2000). If the same developmental modular organization is applicable to maize, one could interprete the glume as a bract subtending the floral meristem, that develops in its axil, fitting to part of the rachilla (internode), that is not grown out. In this model the genes ZMM6 and ZMM8 act to confer determinacy on the total meristem, so that a whole new phytomer can be formed. However, due to the compressed nature of the phytomer that is not affected by the genes, the extra units develop in close proximity to each other. In contrast to this, in the idsl mutant, the compressed nature is affected, leading to an extension of the rachilla. Furthermore, the idsl spikelet meristem is initially only partially indeterminate, as it is not capable of forming extra glumes.

On the inflorescence level, the phytomers might consist of spikelet pair primordium as the axillary bud, connected to a part of the rachis (internode) and subtended by a cryptic bract. The presence of a cryptic bract is revealed by the mutation tasselsheath1 (tsh1), in which the suppression of the structure is undone (Neuffer et al, 1997; McSteen \& Hake, 2001). Similar observations have been made for Arabidopsis in which the initiation of a suppressed bract subtending each flower is suggested (Long \& Barton, 2000).

\subsection*{4.7 Inflorescence branching mutants}

Several branching mutants in maize show similar phenotypes to those of the putative transgene induced silenced plants. The ramosa mutants (ral/2/3), characterized by the outgrowth of branches at the base of the female inflorescence, reveal a higher degree of branching at the spikelet pair and spikelet primordia (Neuffer et al., 1997). ral was recently isolated and was found to encode a small protein with a single EPF-type zinc finger motif (Vollbrecht \& Martienssen, 2002).

Indeterminate floral apexl (ifal) is affected in spikelet pair-, spikelet-, and floret meristem determinacy, too (Laudencia-Chinguanco \& Hake, 1998; McSteen et al, 2000). In addition to this, a mass of pistillate material develops in the center of the floret, indicating the floral meristem
continues to proliferate (http://www.agron.missouri.edu/db_images/Variation/33laudencia.jpg). ZMM14 maps within a 6 cM chromosomal interval to ifal, in a duplicated region of the genome to which the partner gene ZMM8 maps (Cacharrón et al., 1999). Both genes show expression in only the upper floret, with ZMM14 having a stronger expression in the developing carpel. These data make ZMM14 a likely candidate for ifal (Cacharrón et al., 1999). Furthermore, the (unmapped) double mutant pistillate florets (pilpi2) might also be a candidate for the genes ZMM8 and ZMM14 (Neuffer et al., 1997; Huelsen \& Gillis, 1929). The mutant tassel shows a loss of determinacy of the spikelet pair-, spikelet- and floret meristem. In the ear, the two floret primordia produced in every spikelet develop both to maturity. Independent double mutant accessions with the same phenotype were described by Lorenzoni and colleagues (1971) and Micu and colleagues (1983).

Another mutant, branched silkless1 (bdl) shows the formation of branches in the ear (Kempton, 1934; Colombo et al, 1998). The spikelet meristem remains indeterminate, forming more florets than the wildtype. Furthermore, the floral meristem is more indeterminate, creating occasionally four stamina instead of three, and giving rise to sterile florets consisting of 'glume-like' structures. These glume-like structures do not assume the typical shape of glumes, but instead are two-lobed at the top, reminiscent of paleas. \(B d 1\) has recently been cloned and shown to encode a new member of the AP2-like genes (Chuck et al., 2002)

Reverse germ orientation1 (rgol) also displays similar branching phenotypes in tassel and ear on the different meristem levels (http://www.agron.missouri.edu/mnl/72/33kaplinsky.html; http://mtm.cshl.org/cgi-perl/image.cgi?name=6659.1.JPG\&class=Image; Sachan \& Sarkar, 1978; Kaplinsky et al, 1999). In homozygous rgol plants the phenotype of a supernumerary florets is present in all spikelets. Its map position to bin 9.04 (chromosome 9; App.7.9) makes it a candidate mutation to the \(A G L 2\)-like MADS-box gene \(Z M M 3\) (9 S 034 ; table 3.5). Interestingly, ZMM3 transcript is present in the lower floret of the spikelet (Cacharrón, 1994).

Furthermore, at the tip of inflorescences of the \(t s 4\) mutant, spikelet meristems fail to form out of spikelet pair meristems, that are turned into branches (Irish, 1997). In the more basal regions of the inflorescence, ts 4 resembles Ts6 plants, having wildtype sessile spikelets but pedicellate spikelets in which more florets are produced (Irish, 1997). Interestingly, ts4 has been suggested to encode a mutation in the \(A G\)-like MADS-box gene \(Z A G 2\) due to the correlation in their map positions (http://www.agron.missouri.edu:80/cgi-bin/sybgw_mdb/mdb3/Map/258947) (Veit et
al., 1993). Combined with the previously mentioned \(A G L 2\)-like ZMM24 candidate gene to the Ts6 mutation, it seems likely to suggest that determinacy is at least in part bestowed upon the meristems by MADS-box genes, some of which belonging to the \(A G L 2\)-like subfamily. The fact that also \(A G\)-like genes in maize can contribute of conferring determinacy is examplified and discussed below for ZAG1 (§4.9).

Isolation of the genes causing the above mentioned mutant phenotypes will help clarifying in what way the inflorescences of maize develop. Furthermore, the respective mutants can be used to investigate the function of ZMM6 and ZMM8 further. By performing in situ hybridization experiment on mutant inflorescences, one might find out whether the wildtype pattern of expression is altered. Alternatively, one might cross the transgenes into a mutant background. When ZMM6 or ZMM8 are part of a different pathway regulating inflorescence development, one would expect the phenotype to be additive. When the mutant acts before ZMM6 or ZMM8 in the same pathway, the double mutant plants would have the same phenotype as the mutant (epistatic interaction). In case that the genes are in the same pathway as the mutant, the phenotype should be stronger.

\subsection*{4.8 Functional equivalency of \(\boldsymbol{A G L}\) 2-like MADS-box genes}

The functional analysis of leafy hull sterile1 (lhsl) rice plants (Oryza sativa) showed that OsMADS1 is mutated (Jeon et al., 2000). This AGL2-like gene is the closest relative of ZMM8 and ZMM14 in this related grass species. The map position of OsMADS1 (on chrosome 3) suggests it is located in a syntenic region to ZMM8 and ZMM14 (Cacharrón et al, 1999). Although expressed in only palea, lemma and carpel (Chung et al., 1994), the phenotype of lhsl plants strongly resembles the loss of function phenotype of ZMM8 plants (fig.4.2). Spikelets in rice, containing only one floret, are bisexual, with a lemma, a palea, two lodicules, six stamina, and a carpel. Mutant \(l h s l\) florets often have eight stamina, pointing to a higher indeterminacy, and the lodicules show a transition to palea-like structures. In strongly affected florets, all floral organs are converted into 'leafy' organs, resembling paleas. The spikelet meristem is more indeterminate, sometimes producing an extra floret, on a grown out rachilla. The fact that the lhsl and ZMM8 phenotypes are not identical may point to a divergence in function during evolution.

Fig.4.2. Phenotypes of the rice \(A G L 2\)-like gene \(O s M A D S 1\) in mutant leafy hull sterilel (lhsl) plants.
A. Wildtype rice spikelets have only one floret. The spikelet consists of two glumes, two lodicules, six stamens and a carpel. The lemma and palea have been removed. B. lhs 1 spikelet shows a lodicule that has converted into a palea, a stamen that is partially converted into a palea and an extra floret primordium sprouting from the elongated rachilla. C. Cross section through a wildtype spikelet. D. lhsl spikelet (glumes are not visible). The spikelet contains eight stamens, and the lodicules have converted into paleas. \(\mathrm{g}=\) glume, \(\mathrm{lo}=\) lodicule, \(\mathrm{s} / \mathrm{st}=\mathrm{stamen}, \mathrm{c}=\) carpel, \(\mathrm{f}=\) floret, \(\mathrm{l}=\) lemma, \(\mathrm{p}=\) palea, \(\mathrm{a}=\) anther. (Figure modified after Jeon et al., 2000)

The complete conversion of floral organs into paleas leading to a reiterated pattern of paleas in rice compared to maize suggests there may be additional factors in maize such as \(Z M M 6\), that (at least partially) substitute for a total loss of \(Z M M 8\) function as seen in rice. In maize there might be a larger number of genes, causing similar, eg. ZMM6, yet not identical phenotypes, eg. ifal, that may encode ZMM14, the partner gene in maize. However, neither in lhsl nor in the ZMM8 plants an increased number of carpels or ovaries has been seen. In another grass species, barley (Hordeum vulgare), the AGL2-like gene \(B M 7\) is presently the most related gene from a phylogenetic perspective (this work; Schmitz et al., 2000). BM7 is closely linked to the classical mutant multi ovaryl (mol) (Castiglione et al., 1998), that produces a conversion of lodicules into palea-like structures, and a supernumerary number of ovaries in the center of the florets (Soule et al., 1995; Schmitz et al., 2000), reminiscent of the ifal phenotype (Laudencia-Chingcuanco \& Hake, 1998). Isolation of the loci causing the mutations of ifal and mol might ultimately shed light on their functional and evolutionary relationships. In addition, it must be added that the reiterated pattern of paleae in \(l h s l\) strongly resembles the \(b d l\) phenotype in maize, so that it can not be excluded that in maize BD1 partially complements this part of the phenotype in ZMM8 silenced plants, and hence is partially functionally redundant to it. This aspect of the phenotype could be revealed by analyzing \(b d 1 / b d 1 / 35 \mathrm{~S}::\) ZMM 8 plants.

In the eudicot Arabidopsis three AGL2-like genes (SEP1/2/3) have been functionally analyzed (Pelaz et al., 2000). Initially, no mutant phenotype was reported for each single homozygous mutant locus. Due to their relatedness as shown from phylogenetic analyses, a high level of functional redundancy was expected. Therefore, the single mutant loci were crossed, and the triple mutant was analyzed. The floral organs in the three inner whorls of the triple mutant had converted into sepals. Additionally, the meristem had become more indeterminate, producing a higher number of floral organs. Therefore, SEPALLATA genes do not only specify organ identity in the inner whorls of a flower by assisting B- and C-function genes (the E-function, Theißen \& Saedler, 2001). They also participate in conferring determinacy to the floral meristem (Pelaz et \(a l, 2000)\). This phenotype strongly resembles the lhsl phenotype of a reiterated pattern of paleas. Analysis of the SEP3 gene by means of antisense plants showed a partial conversion of petals to sepals, and in addition, the occurrence of axillary flowers within a flower (Pelaz et al., 2001). These phenotypes correlate well with those for ZMM6 and ZMM8 in maize. Since Ambrose and co-workers (2000) stated that monocot lodicules and paleas are homologous to eudicot petals and sepals, the sepaloid petals are homologous to the observed palea-like lodicules. The production of an axillary flower places the subtending sepal in the position normally occupied by a bract. This resembles the formation of an extra floret, subtended by a glume in maize. Furthermore, Prof. M. Yanofsky kindly provided seeds, that are segregating for the \(S E P\) triple mutant phenotype (fig.4.3). The plants were analyzed morphologically and via PCR to identify the T-DNA or transposon insertions (as described in Pelaz et al., 2000) (Deleu \& Theißen, unpubl. results). Plants with up to three mutant sep alleles displayed neither homeotic changes, nor a loss of determinacy (fig.4.3B), resembling wildtype plants (fig.4.3A). Double mutant plants (seplsep3) showed a range of flowers with sepaloid petals (fig.4.3C). Plants having only one wildtype allele (SEP2) had a determinate flower consisting of a higher number of sepals encircling a carpel on a pedicel (fig.4.4D). The triple mutant was as described by Pelaz and colleagues (2000) (fig.4.3E), however, in a later stage the floral meristems did not scenesce, but continued to proliferate after having produced the reiterated pattern of sepals (fig.4.3F). The flower-like structure was transformed into an inflorescence, in which the flowers consisted of a reiteration of sepals, that in turn were converted into a similar inflorescence (fig.4.3G). The sepal-like organs were thereby turned into bracts. Therefore, in addition to the organ identity function (Pelaz et al., 2000), the SEP genes function to build the inflorescence by conferring determinacy to floral meristems. Knocking out these genes leads to an endless proliferation of the inflorescence meristem that is not able to form flowers.

Fig.4.3. Functional analysis of Arabidopsis AGL2-like genes SEPALLATA1-3 in a segregating population. A. Wildtype flower. B. SEP1SEP1/SEP2sep2/sep3sep3 flower. The SEPALLATA genes function redundantly, displaying no phenotype when up to three \(S E P\) alleles are mutated. C. sep 1 sep \(1 / S E P 2 S E P 2 /\) sep 3 sep 3 flower, showing sepaloid petals. D. sep 1 sep \(1 / S E P 2\) sep \(2 /\) sep 3 sep 3 flower. If five \(S E P\) alleles are knocked out, the flower consists of a higher number of sepaloid petals and petals completely converted into sepals, surrounding a terminal pedicellate carpel. E. In case all \(6 S E P\) alleles are mutated, the inner 3 whorl organs are first converted into sepals (Pelaz et al, 2000). F. Triple sep 1/2/3 mutant, a few days later than shown in E. The axillary primordia of the 'sepals'/bract-like structures are grown out into flower-like structures. G. At a later stage, the `flower` reiterates the production of flowerlike structures, thereby transforming into an inflorescence. (fig.4.3A,E, modified after Pelaz et al, 2000).

In the eudicot Petunia co-suppression of the \(A G L 2\)-like gene \(F B P 2\) caused similar phenotypes as described in Arabidopsis (Angenent et al., 1994). Plants formed sepaloid petals, suggesting the floral organ identity function has been conserved. Furthermore, some plants produced stronger phenotypes including a reiterated pattern of sepals, and the formation of an inflorescence-like structure sprouting from the axils of the carpels. These latter phenotypes point to a conserved function in conferring determinacy as well.

Antisense inhibition of TM5, the tomato ortholog of SEP3 and FBP2, caused sepaloid petals, and more inner floral organs were formed, suggesting similar functions to the above mentioned \(A G L 2\)-like genes have been conserved.

In the dicot Gerbera, 2 AGL2-like genes, GRCD1 and GRCD2, have been functionally analyzed by means of antisense inhibition of transformed plants (Kotilainen et al., 1999; Kotilainen et al.,
2000). GRCD1 is expressed in the all four floral whorls but is only involved in specifying the identity of the third whorl organs (Kotilainen et al., 2000). This suggests that there may be other AGL2-like genes in Gerbera that co-specify the organ identity in the remaining whorls, together with the B - and C -function genes. This in turn points to a diversification of the floral organ identity specifying functions of Gerbera AGL2-like genes. Furthermore, the GRCD2 is expressed in the outer two regions of the capitulum (i.e. inflorescence in Compositae), and showed upon antisense inhibition a proliferation of those inflorescence parts, thereby producing supernumerary wildtype trans- and ray florets (Kotilainen et al., 1999; Prof. T. Teeri, pers. comm.). In addition, a loss of organ identity specification in the third whorl was observed. Therefore, GRCD2 is not only specifying identity, but is also conferring determinacy to those inflorescence regions in which it is expressed. Thus, it is likely to suggest that during evolution the AGL2-like ancestral genes within the monophyletic taxonomic clade of the Compositae, underwent a functional diversification as to the determinacy function and the floral organ identity specifying function.

\subsection*{4.9 Diversification in function: conferring floral organ identity versus determinacy}

A similar diversification has been suggested for the two duplicate \(A G\)-like maize genes \(Z A G 1\) and ZMM2 by Mena and colleagues (1998). A transposon-induced mutation in ZAG1 (zagl-muml) was isolated and characterized. ZAG1 is phylogenetically closely related to the Arabidopsis \(A G\) gene, that is required for specifying reproductive organ identity and for floral determinacy (Yanofsky et al, 1990). ZAG1 mutants exhibited only a loss of determinacy, forming two or more silks in whorl four. The identity of the inner two whorl floret organs remained largely unaffected. The authors state that ZAG1 is expressed as a C-function gene like \(A G\) in carpels and stamina, but expression is stronger in the carpels, supporting the phenotype. That zagl-muml plant had wildtype floral organs pointing to redundancy in organ specification. The duplicate gene of ZAG1, ZMM2 is expressed in the stamina and in carpels as well, but expression is stronger in the stamina. This suggests \(Z M M 2\) itself may participate in regulating the development of the reproductive organs. Because of extensive sequence similarity between ZAG1 and ZMM2, it is likely that they share some redundancy in function, and yet, evolved partially distinct roles in floret development, unlike \(A G A M O U S\).

Similar partially distinct expression patterns are described for the duplicate AGL2-like genes ZMM8 and ZMM14 (Cacharrón et al., 1999). The stronger expression of ZMM14 in the carpel
may point to a partial diversification in function, not redundant with \(Z M M 8\) 's function. The colocalization of ZMM14 with ifal, suggesting that ZMM14 is mutated in this mutant, is supported by the distinct phenotype of a mass of pistillate tissue in the center of the floret of ifal plants (Laudencia-Chingcuanco \& Hake, 1998), not present in ZMM8 transgenic plants. The suggestion that ifal might encode a mutant allele of ZMM14 is further supported by the following data. Fan and co-workers (1997) showed that AGAMOUS interacts with (among others) the AGL2-like proteins SEP1, SEP2 and SEP3. Similarly, protein interactions between the Antirrhinum AG-like PLE and AGL2-like DEFH200 and DEFH72 proteins were also revealed (Davies et al., 1996). In analogy to this, one could expect ZAG1 to interact with maize \(A G L 2\)-like genes, such as ZMM14. Crossing of ifal to zagl-muml plants led to an increase in the phenotype in double mutant ifal/zag1 plants by developing ectopic inflorescences in the center of the floret (LaudenciaChingcuanco \& Hake, 1998). Therefore, ZAG1 and IFA1 interact and function partially redundantly. The cloning of the gene causing the ifal mutant phenotype might finally resolve whether homologous functional interactions exist between \(A G\)-like and \(A G L 2\)-like genes in maize versus Arabidopsis, and in addition to this, whether similar diversifications among \(A G\)-like and AGL2-like genes regulating flower development have been conserved after the divergence of the monocots and eudicots.

\subsection*{4.10 Separability of function in conferring floral organ identity and conferring determinacy}

Strong alleles of \(A G\), like \(a g-1\), always show two functions, specification of reproductive organ identity and controlling floral meristem determinacy (Yanofsky et al., 1990). However, weak \(A G\) alleles like ag-4 are reminiscent of the indeterminate floral phenotype of zag1-mum1 plants (Sieburth et al, 1995; Mizukami \& Ma, 1995). Mizukami and Ma (1995) show that the two functions can also be separated in Arabidopsis. They analyzed antisense inhibited ag plants and observed three different classes of mutant flowers: flowers phenocopying the ag-l flowers; indeterminate flowers containing partially converted reproductive organs; and flowers having wildtype floral organs enclosing an indeterminate floral meristem inside the fourth whorl carpels. The existence of the third class of flowers indicates that \(A G\) function can be perturbed to affect only floral meristem determinacy, but not floral organ identity. Furthermore, Mizukami and Ma show that the different phenotypes correlate with a proportional reduction in \(A G\) expression, stating that the maintenance of a determinate floral meristem requires a higher level of AG activity than the specification of the stamen and carpel identity.

Similar phenotypic observations have been made in the ZMM6 and ZMM8 transgenic plants in maize. A large number of phenotypic spikelets had wildtype florets, yet a higher number of them. Similarly, phenotypic spikelet 'pairs' showed wildtype spikelets, yet a higher number arranged together than the wildtype sessile and pedicellate. In addition, a loss of organ identity has not been observed without loss of determinacy, whereas loss of determinacy can be seen without homeotic conversions. These finding suggest a similar mode of action to confer organ identity and to maintain determinacy by maize \(A G L 2\)-like genes as \(A G\) does in Arabidopsis, either directly, or indirectly by interacting with \(A G\) homologs.

\subsection*{4.11 Determinacy uncovered: lessons from Arabidopsis}

Indeterminacy is achieved by the ongoing activity of meristems, that continue to initiate new primordia. The indeterminate apical meristem must contain a pluripotent stem-cell population, that can replenish those regions from which cells have been recruited to establish lateral (determinate) organs, as well as maintain the pool of stem-cells required for further growth (Lenhard \& Laux, 1999). The imposition of determinacy of a meristem can therefore be seen as the inhibition of stem-cell division in that meristem.

WUSCHEL (WUS), a homeodomain protein, functions to maintain the integrity of the central zone in apical meristems by conferring stem-cell identity in Arabidopsis (Mayer et al, 1998). CLAVATA3 (CLV3) acts as a secreted ligand to CLAVATA1 (CLV1), a Leucine-rich receptor kinase, activating a signal transduction cascade that restricts the size of the central zone (Brand et al., 2000; Trotochaud et al., 2000). The CLV signalling pathway leads to the repression of the transcription of \(W U S\), starting a self-regulatory feedback loop that controls the stem-cell population in the center of the meristem (Schoof et al, 2000).

After the transition to flowering the shoot apical meristem (SAM) is converted into the inflorescence meristem, that finally produces lateral determinate floral meristems. In Arabidopsis, LEAFY (LFY) is a master regulator of the floral initiation process, conferring a floral fate to meristematic cells (Schultz \& Haughn, 1991; Weigel et al., 1992). Floral identity brings about determinacy once the initiation of floral organs has been completed, due to the actions of \(A G\) (Yanofsky et al., 1990). LFY has been shown to directly activate \(A G\) transcription (Busch et al.,
1999). Furthermore, WUS activates \(A G\) as well, and in turn, AG represses \(W U S\) expression, dependent of LFY (Lenhard et al, 2001; Lohmann et al., 2001). Therefore, LFY is a flower specific factor involved in the negative regulation of the floral meristem stem-cell population by AG, leading to the determinate nature of flowers.

Whether a similar pathway conferring determinacy also functions in monocots like maize awaits the isolation, functional characterization and interaction of the individual components of this model (i.e. the functional equivalent genes) in maize.

\section*{5 SUMMARY}

\subsection*{5.1 Summary (english)}

This thesis describes a molecular and functional analysis of \(A G L 2\)-like MADS-box genes in maize and discusses their involvement in the grass inflorescence architecture. MADS-box genes are homeotic selector genes that are usually transcribed in those tissues whose identity they specify. The complex maize inflorescence is composed of paired spikelets, that have each two florets. Previous research indicated that maize \(A G L 2\)-like MADS-box genes have extraordinary expression patterns, suggesting they have been recruited to establish novel positional information not found within eudicot inflorescences. Screening of a genomic library resulted in the isolation of several genomic clones of \(A G L 2\)-like MADS-box genes, including a new member of the subfamily. Comparison of the genomic sequences of members of the \(A G L 2\)-like gene subfamily showed that some of the introns were much larger than those of AGL2-like MADS-box genes in other species like Arabidopsis, pointing to a role in the diversification of the expression patterns during evolution. The genes ZMM6 and ZMM8 were chosen for further functional characterization based on previous expression analysis. ZMM6 distinguishes between the spikelets of a pair and becomes subsequently expressed in both florets of both spikelets. ZMM8 is expressed in the upper floret in both spikelets of a pair. A transgenic approach in maize led to loss of function phenotypes that are complex in nature, due to the action of the genes on several of the reproductive meristems. The ZMM6 and ZMM8 transformed plants showed the same complex phenotypes, indicating that the genes function alike. These transgenic phenotypes consist of a higher number of spikelets per 'pair'. Their point of branching could be at the inflorescence stem, directly below the base of the spikelet, or at an intermediate position. Furthermore, the number of florets per spikelet was increased, proportional to the number of glumes. Also a higher number of floret organs was seen. Finally, lodicules were observed that were converted into paleas, indicating a change in floret organ identity.

These data suggest that the investigated genes are involved in conferring determinacy to different kinds of meristems in the maize inflorescences, as well as in specifying organ identity. It is further discussed how these phenotypes relate to the function of \(A G L 2\)-like MADS-box genes in other plants, as well as what can be learned concerning the development of the inflorescences.

\subsection*{5.2 Zusammenfassung (German)}

Dieser Doktorarbeit beschreibt eine molekulare und funktionelle Analyse von AGL2-ähnlichen MADS-box Genen in Mais und diskutiert ihre Beteiligung an der Ausprägung der Infloreszenz Architektur bei Gräser. MADS-box Gene sind homeotische Selektor Gene, die normalerweise in den Geweben transkribiert werden, deren Identität sie spezifizieren. Die komplizierte Mais Infloreszenz besteht aus gepaarten Ährchen, die zwei Blüten haben. Vorherige Untersuchungen haben gezeigt, daß Mais AGL2-ähnlichen MADS-box Gene außergewöhnliche Expressionsmuster haben. Dieser Befund legt nahe, daß sie rekrutiert worden sind, um neue positionelle Informationen zu etablieren, die in Eudikotylen Pflanzen nicht vorhanden ist. Durchmusterung einer genomischen Bank resultierte in der Isolation mehrerer genomischen Klone von AGL2-ähnlicher Genen, sowie einem neuen Mitglied der Subfamilie. Vergleiche der genomischen Sequenzen der Mitglieder der AGL2-ähnliche Gen Subfamilie haben gezeigt, daß einige Intronen viel großer sind als die der AGL2-ähnlichen MADS-box Gene in anderen Species wie Arabidopsis. Dies deutet auf eine Rolle in die Diversifizierung der Expressionsmuster während der Evolution. Die Gene ZMM6 und ZMM8 sind ausgewählt worden für eine nähere funktionelle Characterisierung, basierend auf vorhandenen Expressionsanalysen. ZMM6 unterscheidet zwischen die Ährchen einer Paar und wird später exprimiert in beider Blüten in beider Ährchen. ZMM8 ist exprimiert in der oberen Blüte beider Ährchen eines Paares. Ein transgener Versuch in Mais führte zu komplexen `loss-of-function` Phenotypen, weil die Gene in mehreren Reproduktionsmeristemen aktiv sind. ZMM6 und ZMM8 transformierte Pflanzen zeigten dieselben Phenotypen, was nahelegt, daß die Genen ähnliche Funktionen haben. Die Phenotypen zeigen ein höhere Zahl der Ährchen pro `Paar`. Ihr Verastungspunkt könnte am Infloreszenzstamm sein, direkt unten der Boden eines Ährchen, oder an einer zwischengestellten Lage. Weiterhin war die Zahl der Blüte pro Ärchen erhöht, proportional zur Zahl der Hüllspelzen. Ein erhöhte Anzahl an Blütenorgane ist auch gesehen worden. Weiterhin wurden Schwellkörper beobachtet, die umgewandelt waren zu Vorspelzen, was eine Veränderung der Blütenorganidentität andeutet.

Diese Daten legen nahe, daß die untersuchte Gene involviert sind bei der Vermittlung der Determinanz der verschiedenen Meristemtypen in der Maisinfloreszenz und in der Spezification der Blütenorganidentität. Weiterhin ist diskutiert worden wie sich diese Phenotypen zu der Funktion der \(A G L 2\)-ähnlichen Gene in anderen Pflanzen verhalten und was man von der Infloreszenzentwicklung lernen kann.

\section*{6 REFERENCES}

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. \& Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215(3): 403.

Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F. \& Schmidt, R.J., 2000. Molecular and genetic analysis of the Silkyl gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell 5: 569-579.

Angenent, G.C., Franken, J., Busscher, M., Weiss, D. \& van Tunen, A.J., 1994. Co-suppression of the petunia homeotic gene \(f b p 2\) affects the identity of the generative meristem. Plant. J. 5: 3344.

Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., Went, J.L., Dons, H.J.M. \& van Tunen, A.J., 1995. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569-1582.

Battey, N.H. \& Lyndon, R.F., 1990. Reversion of flowering. Bot. Rev. 56, 162-189.

Baulcombe, 1996. RNA as a target and initiator of post-transcriptional gene silencing in plants. Pl. Mol. Biol. 32: 79-88.

Baulcombe, 1999. Viruses and gene silencing in plants Arch. Virol. Suppl. 15: 189-201.

Baulcombe, 2001. Diced Defense. Nature 409: 295-296.

Bernstein, E., Caudy, A.A., Hammond, S.M. \& Hannon, G.J., 2001 Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409: 363-366.

Bonnet, O.T., 1953. Developmental morphology of the vegetative and floral shoots of maize. Ill. Agr. Expt. Sta. Bull. 568.

Bradley, D., Carpenter, R., Sommer, H., Hartley, N. \& Coen, E., 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 85-95.

Bradley, D., Carpenter, R., Copsey, L., Vincent, C., Rothstein, S. \& Coen, E., 1996. Control of inflorescence architecture in Antirrhinum. Nature 379: 791-797.

Brand, U., Fletcher, J.C., Hobe, M, Meyerowitz, E.M. \& Simon, R., 2000. Dependence of sem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617-619.

Burr, B. \& Burr, F.A., 1991. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. TIG 7: 55-60.

Busch, M.A., Bomblies, B. \& Weigel, D., 1999. Activation of a floral homeotic gene in Arabidopsis. Science 285: 585-587.

Cacharrón, J., 1994. Untersuchung von MADS-box genen mit der Methode der in situHybridisierung in Zea mays. Graduate thesis, Faculty of Biology, Philipps-Universität Marburg, Germany.

Cacharrón, J., Fischer, A., Saedler, H. \& Theißen, G., 1995. Expression patterns of MADS-box genes in maize as studied by in situ hybridization. Maize Genet. Coop. Newsl. 69: 37-38.

Cacharrón, J., 1998. MADS-box gene in Zea mays: Vergleichende Expressionsuntersuchungen an Modellen paraloger und orthologer Genpaare. Ph.D. thesis, Mathematisch-Naturwissenschaftliche Fakultät der Universität zu Köln, Germany.

Cacharrón, J., Saedler, Saedler, H. \& Theißen, G., 1999. Expression of MADS box genes ZMM8 and ZMM14 during inflorescence development of Zea mays discriminates between the upper and lower floret of each spikelet. Dev. Genes Evol. 209: 411-420.

Castiglioni, P., Pozzi, C., Heun, M., Terzi, V., Müller, K.J., Rohde, W. \& Salamini., 1998. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149: 2039-2056.

Cheng, P.C., Greyson, R.I. \& Walden, D.B., 1983. Organ initiation and development of unisexual flowers in the tassel and ear of Zea mays. Amer. J. Bot. 70 (3): 450-462.

Christensen, A.H., Sharrocks, R.A. \& Quail, P.H., 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Pl. Mol. Biol. 18: 675-689.

Chuck, G., Meeley, R.B. \& Hake, S., 1998. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12: 1145-1154.

Chuck, G., Hake, S. \& Schmidt, R., 2002. The control of spikelet meristem identity by the branched silkless1 gene, a new member of the maize AP2 gene family. Maize Genet. Conf. Abstract. 44: 38.

Chung, Y.Y., Kim, S.R., Finkel, D., Yanofsky, M.F. \& An, G., 1994. Early flowering and reduced apical dominance result from ectopic expression of rice MADS-box gene. Plant Mol. Biol. 26: 657-665.

Coen, E.S. \& Meyerowitz, E.M., 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.

Colombo, L., Marziani, G., Masiero, S., Wittich, P.E., Schmidt, R.J., Sari Gorla, M. \& Pè, M.E., 1998. Branched silkless mediates the transition from spikelet to floral meristem during Zea mays ear development. Plant J. 16(3): 355-363.

Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H. \& Sommer, H., 1996. Multiple interactions amongst floral homeotic MADS-box proteins. EMBO J. 15: 4330-4343.

Doebley, J., Stec, A. \& Kent, B., 1995. Suppressor of sessile spikelets1: a dominant mutant affecting inflorescence development in maize. Am. J. of Bot. 82 (5): 571-577.

Dougherty, W.G. \& Parks, T.D., 1995. Transgenes and gene suppression: telling us something new? Curr. Opin. Cell Biol. 7: 399-405.

Edwards, K.J., Thompson, H., Edwards, D., de Saizieu, A., Sparks, C., Thompson, J.A., Greenland, A.J., Eyers, M. \& Schuch, W., 1992. Construction and characterization of a yeast artificial chromosome library containing three haploid maize genome equivalents. Plant Mol. Biol. 19: 299-308.

Egea-Cortines, M., Saedler, H. \& Sommer, H., 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379.

Fan,, H.Y., Hu, Y., Tudor, M. \& Ma, H., 1997. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12: 9991010.

Fischer, A., Baum, N., Saedler, H. \& Theissen, G., 1995 Chromosomal mapping of the MADSbox multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucl. Acids Res. 23: 1901-1911.

Flanagan, C.A. \& Ma, H., 1994. Spatially and temporally regulated expression of the MADS box gene \(A G L 2\) in wild-type and mutant Arabidopsis flowers. Plant Mol. Biol. 26: 581-595.

Fischer, A., 1995. Entwicklungs- und evolutionsbiologische Aspekte der MADS-box-Genfamilie in Mais. PhD.-thesis, Mathematisch-Naturwissenschaftlichen Fakultät, university of Cologne, Germany.

Foster, G.D. \&D. Twell, 1996. In: 'Plant gene isolation, principles and practice'. p51-74. John Wiley \& Sons Ltd.

Gaut, B. \& Doebley, J., 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94: 6809-6814.

Gehring, W.J., Qian, Y.Q., Billeter, M., Furuku-Tokunaga, K., Schier, A.F. Resendez-Perez, D. Affolter, M., Otting, G. \& Wuttrich, K., 1994. Homeodomain-DNA recognition. Cell 78: 211223.

Goto, K. \& Meyerowitz, E.M., 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes. Dev. 8: 1548-1560.

Hamilton, A.J., Lycet, G.W. \& Gierson, D. 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284-287.

Honma,T. \& Goto K., 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.

Huang, H., Tudor, M., Weiss, C., Hu, Y. \& Ma, H., 1995. The Arabidopsis MADS-box gene \(A G L 3\) is widely expressed and encodes a sequence-specific DNA binding protein. Plant Mol. Biol. 28: 549-567.

Huelsen, W.W. \& Gillis, M.C., 1929. Inheritance of kernel arrangement in sweet corn. Ill. Agr. Exp. Sta. Bull. 320: 301-336.

Huijser, P., Klein, J., Lönnig, W.-E., Meijer, H., Saedler, H. \& Sommer, H., 1992. Bractomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11(4): 1239-1249.

Irish, E.E., 1997. Class II tassel seed mutations provide evidence for multiple types of inflorescence meristems in maize. Amer. J. Bot. 84: 1502-1515.

Irish, E.E., 1997. Experimental analysis of tassel development in the maize mutant Tassel seed6. Pl. Physiol. 114: 817-825.

Irish, E.E., 1998. Grass spikelets: a thorny problem. BioEssays 20: 789-793.

Iyer, L.M., Kumpatla, S.P., Chandrasekharan, M.B. \& Hall, T.C., 2000. Transgene silencing in monocots. Pl. Mol. Biol. 43: 323-346.

Jack, T., Brockman, L.L. \& Meyerowitz, E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell 68: 683697.

Jacobsen, S.E., Running, M.P. \& Meyerowitz, E.M, 1999. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126: 5231-5243.

Jensen, C.S., Salchert, K. \& Nielsen, K.K., 2001. A Terminal Flower 1 -like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol. 125: 15171528.

Jeon, J.-S., Jang, S., Lee, S., Nam, J., Kim, C., Lee, S.-H., Chung, Y.-Y., Kim, S.-R., Lee, Y.H., Cho, Y.-G. \& An, G., 2000. Leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12: 871-884.

Jofuku, K. D., Den Boer, B.G.W., Van Montagu, M. \& Okamura, J.K., 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 12111225.

Junghans, H. \& Metzlaff, M., 1990. A simple and rapid method for the preparation of total plant DNA. Biotechniques 8, 176 .

Kaplinsky, N., Jackson, J.D. \& Freeling, M., 1999. Analysis of rgol and rgo2 - a progress report. Maize Genet. Conf. Abstract. 41: 27.

Kempton, J.H., 1934. Heritable characters in maize. XLVII. Branched silkless. J. Hered. 25: 2932.

Kerstetter, R.A., Laudencia-Chingcuanco, D., Smith, L.G. \& Hake, S., 1997. Loss-of function mutations in the maize homeobox gene, knottedl, are defective in shoot meristem maintenance. Development 124: 3045-3054.

Kesel, A.B., Junge, M.M. \& Nachtigall, W., 1999. Einführung in die angewandte Statistik für Biowissenschaftler. Birkhäuser Verlag, Basel.

Kotilainen, M., Albert, V.A., Elomaa, P., Helariutta, Y., Koskela, S., Mehto, M., Pöllänen, E., Yu, D. \& Teeri, T.H., 1999. Flower development and secondary metabolism in Gerbera hybrida, Asteraceae. Flowering Newsletter 28, 20-31.

Kotilainen, M., Elomaa, P., Uimri, A., Albert, V.A., Yu, D. \& Teeri, T.H., 2000. GRCD1, an AGL2-like MADS-box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12: 1893-1902.

Larkin, J.C., Oppenheimer, D.G., Pollock, S. \& Marks, M.D., 1993. Arabidopsis GLABROUSI gene requires downstream sequences for function. Plant Cell 5: 1739-1748.

Laudencia-Chingcuanco, D. \& Hake, S., 1998. ifal maps to chromosome 1S. Maize Genet. Coop. Newsletter 72:3.

Lawrence, P. A., 1992. The making of a fly: The genetics of animal design. Oxford: Blackwell Scientific Publication.

Lenhard, M. \& Laux, T., 1999. Shoot meristem formation and maintenance. Curr. Opin. Pl. Biol.2: 44-50.

Lenhard, M, Bohnert, A., Jürgens, G. \& Laux, T., 2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105: 805815.

Lindbo, J.A., Silva Rosales, L., Proebsting, W.M. \& Dougherty, W.G., 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5: 1749-1759.

Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R. \& Weigel, D., 2001. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105: 793803.

Long, J. \& Barton, M.K., 2000. Initiation of axillary and floral meristems in Arabidopsis. Dev. Biol. 218: 341-353.

Lorenzoni, C., Baldi, G., Maggiore, T. \& Salamini, F., 1971. Spighette biflore sulla infliorescenza femminile del mais. Maydica XV: 65-82.

Lou, H., McCullough, A.J. \& Schuler, M.A., 1993. 3' Splice site selection in dicot plant nuclei is position dependent. Mol. \& Cell. Biol. 13 (8): 4485-449

Lozano, R., Angosto, T., Gómez, P., Payán, C., Capel, J., Huijser, P., Salinas, J. \& MartínezZapater, J.M., 1998. Tomato flower abnormalities induces by low temperatures are associated with changes of expression of MADS-box genes. Plant Physiol. 117: 91-100.

Luehrsen, K.R., Taha, S. \& Walbot, V., 1994. Nuclear pre-mRNA processing in higher plants. Prog. Nucleic Acid Res. Mol. Biol. 47: 149-193.

Lyndon, R.F., 1998. The shoot apical meristem, its growth and development. Cambridge University Press.

Ma, H., Yanofsky, M. \& Meyerowitz, E.M., 1991. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes \& Dev. 5: 484-495.

Mandel, M.A., Gustafson-Brown, C., Savidge, B. \& Yanofsky, M.F., 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-276.

Mandel, M.A. \& Yanofsky, M.F., 1998. The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex. Plant Reprod. 11: 22-28.

Margulis, L. \& Sagan, D., 1995. In: `What is life?` p69-86. University of California Press.

Mayer, K.F..X., Schoof, H., Haecker, A., Lenhard, A., Jürgens, G \& Laux, T., 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95: 805-815.

McGinnis, M. \& Kuziora, M., 1994. The molecular architects of body design. Sci. Am. 270: 3642.

McSteen, P., Laudencia-Chingcuanco, D. \& Colasanti, J., 2000. A floret by any other name: control of meristem identity in maize. Trends in Pl. Sci. 5(2): 61-66.

McSteen, P. \& Hake, S., 2001. barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128: 2881-2891.

Mena, M., Ambrose, B.A., Meeley, R.B., Briggs, S.P., Yanofsky, M.F. \& Schmidt, R.J., 1996. Diversification of C-function in maize flower development. Science 270: 1537-1540.

Metzlaff, M., O'Dell, M., Cluster,P.D. \& Flavell, R.B., 1997. RNA-mediated RNA degradation and chalcone synthase A silencing. Cell 88:845-854.

Meyer, P. \& Heidmann, I., 1994. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DN: an indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243: 390-399.

Meyerowitz, E.M., 1994. The genetics of flower development. Sci.Am. 271 (11): 40-47.

Micu, V.E., Rotar, A.I. \& Palii, A.F., 1983. Genetic study of maize mutants with development of both florets in the female spikelet. Genetika 19:1020-1023.

Mizukami, Y. \& Ma, H., 1997. Determination of Arabidopsis floral meristem identity by Agamous. Plant Cell 9: 393-408.

Mórocz, S., Donn, G., Németh, J. \& Dudits, J., 1990. An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor. Appl. Genet. 80: 721-726.

Mourdov, A., Glassick, T.V., Hamdorf, B.A., Murphy, L.C., Marla, S.S., Yang, Y. \& Teasdale, R., 1998. Family of MAD-box genes expressed early in male and female reproductive structures of Monterey pine. Plant Physiology 117: 55-61.

Münster, T, Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H. \& Theißen, G., 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94: 2415-2420.

Napoli, C., Lemieux, C. \& Jorgensen, R., 1990. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279-289.

Neuffer, M.G., Coe, E.H. \& Wessler, S.R., 1997. Mutant of maize. Cold Spring Harbor Laboratory, Cold Spring Harbor.

Okamura, J.K., den Boer, B.G.W., Lotys-Prass, C., Szeto, W. \& Jofuku, K. D., 1996. Flowers to shoots: photo and hormonal control of a meristem identity switch in Arabidopsis. Proc. Natl. Acad. Sci. USA 93: 13831-13836.

Okamura, J.K., Szeto, W., Lotys-Prass, C. \& Jofuku, K.D., 1997. Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetalal and apetala2. Plant Cell 9: 37-47.

O'Sullivan, D.M, Ripoll, P.J., Rodgers, M \& Edwards, K.J., 2001. A maize artificial chromosome (BAC) library from the European flint line F2. Theor. Appl. Genet. 103: 425-432.

Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. \& Yanofsky, M.F., 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.

Pelaz, S., Tapia-López, R. Alvarez-Buylla, E.R. \& Yanofsky, M.F., 2001. Conversion of leaves into petals in Arabidopsis. Curr. Biology 11: 182-184.

Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L. \& Yanofsky, M.F., 2001. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26(4): 385-394.

Pnueli, L., Hareven, D., Broday, L., Hurwitz, C. \& Lifschitz, E., 1994. The TM5 MADS-box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6: 175-186.

Que, Q. \& Jorgensen, R.A., 1998. Homology based control of gene expression patterns in transgenic petunia flowers. Dev. Genet. 22: 100-109.

Riechmann, J.L. \& Meyerowitz, E.M., 1997. MADS domain proteins in plant development. Biol. Chem. 378: 1078-1101.

Rossi, L., Hoh, B. \& Tinland, B., 1996. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc. Natl. Acad. USA 93: 126-130.

Rothstein, S.J., Dimaio, J., Strand, M. \& Rice, D., 1987. Stable and inheritable inhibition of the expression of nopaline synthase in tobacco expressing antisense RNA. Proc. Natl. Acad. Sci.USA 84: 8439-8443.

Sachan, J.K.S. \& Sarkar, K.R., 1978. Reverse germ orientation. Maize Genet. Coop. News Lett. 52: 119-120.

Sambrook, J., Fritsch, E.F. \& Maniatis, T., 1989. Molecular cloning. Cold Spring Harbor Laboratory Press.

Savard, L.L.P., Strauss, S.H., Chase, M.W., Michaud, M \& Bousquet, J., 1994. Chloroplast and nuclear gene sequences indicate Late Pennsylvanian time for the last common ancestor of extant seed plants. Proc. Natl. Acad. Sci. USA 91: 5163-5167.

Savidge, B. Rounsley, S.D., Yanofsky, M.F., 1995. Temporal relationships between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721-733.

Schmitz, J., Frantzen, R., Nguyen, T.H., Garcia-Moto, F., Pozzi, C., Salamini, F. \& Rohde, W., 2000. Cloning, mapping and expression analysis of barley MADS-box genes. Plant Mol. Biol. 42: 899-913.

Schultz, E.A. \& Haughn, G.W., 1991. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3: 771-781.

Schwarz-Sommer, Z., Huijser, P., Nacken, W. , Saedler, H. \& Sommer, H., 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931-936.

Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lönnig, W.-E., Saedler, H. \& Sommer, H., 1992. Characterization of the Antirrhinum floral homeotic MADSbox gene DEFICIENS: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11: 251-263.

Shannon, S. \& Meeks-Wagner, D.R., 1991. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3: 877-892.

Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jürgens, G. \& Laux, T., 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between CLAVATA and WUSCHEL genes.

Shore, P. \& Sharrocks, A.D., 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229: 1-13.

Sieburth, L.E., Running, M.P. \& Meyerowitz, E.M, 1995. Genetic separation of third and fourth whorl functions of \(A\) GAMOUS. Plant Cell 7: 1249-1258.

Sieburth, L.E. \& Meyerowitz, E.M, 1997. Molecular dissection of the AGAMOUS control region shows that cis-elements for spatial regulation are located intragenically. Plant Cell 9: 355-365.

Smith, N.A., Singh, S.P., Wang, M.B., Stoutjesdijk, P.A., Green, A.G. \& Waterhouse, P.M., 2000. Total silencing by intron-spliced hairpin RNAs. Nature 407: 319-320.

Sommer, H., Beltrán, J.-P., Huijser, P., Pape, H., Lönnig, W.-E., Saedler, H., Schwarz-Sommer, Z., 1990. DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605-613.

Soule, J., Skodova, I., Kudrna, D., Kilian, A. \& Kleinhofs, A., 1995. Molecular and genetic characterization of barley flower development mutants. Barley Genetic newslett. 25: 76-80.

Sundberg, M.D. \& Orr, A.R., 1996. Early inflorescence and floral development in Zea mays Land Race Chapalote (Poaceae) Am. J. of Bot., 83: 1255-1265.

Taylor M.G., Vasil, V. \& Vasil, I.K., 1993. Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25. Plant Cell Rep.12: 491-495.

Theißen, G. \& Saedler, H., 1995. MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic' law revisited. Curr. Opin. Genet. Dev. 5: 625-639.

Theißen, G., Strater, T., Fischer, A. \& Saedler, H., 1995. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADSbox genes from maize. Gene 156: 155-166.

Theißen, G. Kim., J. \& Saedler, H., 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.

Theißen, G. Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.-U. \& Saedler, H., 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.

Theißen, G., 2001. Development of floral organ identity: stories from the MADS house. Curr. Opinion Plant Biol. 4: 75-85.

Theißen, G. \& Saedler, H., 2001. Floral quartets. Nature 409: 469-471.

Thompson, C.J., Movva, N.R., Tizard, R., Crameri, R., Davies, J.E., Lauwereys, M. \& Botterman, J., 1987. Characterization of the herbicide-resistance gene Bar from Streptomyces hygrocopicus. EMBO J. 6: 2519-2524.

Thompson, J.D., Higgin D.G. \& Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22(22): 4673.

Töpfer, R., Maas, C., Horicke-Grand-Pierre, C., Schell, J. \& Steinbiss, H.-H., 1993. Expression vectors for high-level gene expression in dicotyledonous and monocotyledonous pants. Methods Enzymol. 217: 67-78.

Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.-E., Saedler, H., Sommer, H. \& Schwarz-Sommer, Z., 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11: 4693-4704.

Trotochaud, A.E., Jeong, S. \& Clark, S.E., 2000. CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase. Science 289: 613-6-17.

Van Eldik, G.J., Litiere, K., Jacobs, J.J., Van Montagu, M \& Cornelissen, M., 1998. Silencing of \(\beta-1,3\)-glucanases in tobacco correlates with an increased abundance of RNA degradation intermediates. Nucl. Acids Res. 26: 5176-5181.

Van Blokland, R., van der Geest, N., Mol, J.N.M. \& Kooter, J.M., 1994. Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Pl. Journal 6: 861-877.

Veit, B., Schmidt, R.J., Hake, S. \& Yanofsy, M.F., 1993. Maize floral development -new genes, old mutants. Plant Cell 5: 1205-1215.

Venglat, S.P. \& Sawhney, 1996. Benzylaminopurine induces phenocopies of floral organ and meristem identity mutants in wild-type Arabidopsis plants. Planta 198:480-487.

Vollbrecht, E. \& Martienssen, R., 2002. Molecular and evolutionary analysis of ramosal in inflorescence architecture. Maize Genet. Conf. Abstract. 44: 70.

Von Goethe, J.W., 1790. Versuch die Metamorphose der Pflanzen zu erklären. Gotha, Germany, C.W. Ettinger.

Voß, W., 2000. Praktische Statistik mit SPSS. Hanser Verlag, Munich.

Wassenegger, M. \& Pélissier, T., 1998. A model for RNA-mediated gene silencing in higher plants. Pl. Mol. Biol. 37: 349-362.

Waterhouse, P.M., Graham, M.W. \& Wang, M.-B., 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95: 13959-13964.

Weigel, D, Alvarez, J., Smyth, D.R., Yanofsky, M.F: \& Meyerowitz, E.M., 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.

Weigel, D. \& Meyerowitz, E.M., 1994. The ABCs of floral homeotic genes. Cell 78: 203-29.

Westhoff, P., Jeske, H., Jürgens, G., Kloppstech, K. \& Link, G., 1998. In: `Molecular plant development, from gene to plant . p.7-37. Oxford University Press.

Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., \& Meyerowitz, E.M., 1990. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346: 35-39.

\section*{On-line references:}
\begin{tabular}{ll}
\hline Maize Co-operative Genetic Stock Center & http://www.ag.uiuc.edu/maize-coop \\
BAC Center Clemson University & http://genome.clemson.edu \\
BAC Center Texas A. \& M. University & http://hbz.tamu.edu \\
Maize Database & http://agron.missouri.edu \\
MADS-box gene database & http://www.mpiz-koeln.mpg.de/mads/ \\
Brook Haven National Laboratory (BNL) & http://burr.bio.bnl.gov/acemaz.html \\
Pioneer Hybrid & http://www.pioneer.com \\
pollinations protocols & http://www.agron.missouri.edu/IMP/WEB/pollen.htm. \\
Blast at NCBI & http://www.ncbi.nlm.nih.gov \\
ifal phenotype & http://www.agron.missouri.edu/db_images/Variation/33laudencia.jpg \\
rgol phenotype & http://www.agron.missouri.edu/mnl/72/33kaplinsky.html \\
rgol phenotype & http://mtm.cshl.org/cgi-perl/image.cgi?name=6659.1.JPG\&class=Image \\
\(t s 4 / Z A G 2\) loci & http://www.agron.missouri.edu:80/cgi-bin/sybgw_mdb/mdb3/Map/258947
\end{tabular}

\section*{7 APPENDICES}

\section*{Appendix 7.1. Primer sequences.}
```

A601: CCA GCA CGC AGA GAA TTC CAA AAA CAC
A602: CAG TAG TTC GAT CCC ATG GCA ACC ACG
A801: ACA AAA CAC TCT AGA GAT ACC GCA GCT CC
A802: GCA GGG AAG GAT CAT TGC CAT GGT AC
AJ31: CAT GTA TGG ACA GAA TTC TTG ACC GGT ACG
AJ32: CAG GTG GCT AAG CAT CCA TGG TGG TAG
CER(RQVT) 2: CA(A/G) CA(A/G) GTG AC(G/C) TTC T(G/C)C AA(A/G) CG
CMV1: CTT GCA TGC CTG CAG GTC AAC ATG G
CMV2: TAG AGG AAG GGT CTT GCG AAG G
LDL1: CGG AAT TAA CCC TCA CTA AAG GGA ACG AAT TCG
LDR1: CGT AAT ACG ACT CAC TAT AGG GCG AAG AAT TCG
M601: AAG TCG GCG CCG ACC ATG GGG AG
M602: ATT CGG AAT TCC GCA GTA GTT CG
M801: CAA GCA GAA GCT TGG CCA GAT GGG TCC
M802: GCA TAC CGC AGG ATC CTA TAT GCA TGC
PLA2: GCT TGC ATG CCT GCA GGT CAC TGG
PT059: TCG TTC GTT TCG CAC CTG CTGC
P018: GAC TCG AGT CGA CAT CG
P038: GAT CAA G(A/C)G (G/C)AT CGA GAA
WD01: GCC TGC TCA AGA AGG CGT ACG AGC
WD02: AAC TCG TAG AGC TTG CCG CGG TTG G
WD06: CTC AAA GAT CCA TCT TCA GGG TAG CCA TGC
WD09: GCG CAG TAG TTC GAT CTC ATG GCA ACC
WD32: CTG CGC TCT GCC TTG CTT TCC TGC
WD34: GTT CTC GAT CCG CTT GAG CTC GAC C
WD54: CTC TGG TCC TCA ACT TCA AGT AGT CCT GG
WD56: CCG CAT ACC GCA GGA AAC TAT ATG CAT GC
WD57: CCA TCC AGA CCG ACC GTG CTC GT
W121: GAG TTG CAG GAT CTC AAC AAA GAC CTA AGG
W124: GTG AAG CAA ATA AGT GTC TTC G
W126: CAC GTG CCT TCA GTT TGA GGT ACT CAT TGC
W128: CTG AAG TTC TGT CAG TTG ATC AAC CAT GTG T
W167: AGC TCG AGC AGC TGG AGA ACC AGA TAG
W171: CGA GGG AGC TTT TAG AGC AAG AGA GGA C
W257: GCA CGA GTT GAG GTT TTA CAA CAC TCG C
W263: GTC CAT AGT ATG GTA TGT AGG TTG CAG AGG
W268: TCT TCA GGG TAG CCA TGT TGG CAT GAA G
W258: GGA CAA GGg TTG AAT TCC TCC AAA CTA CAC
W270: GTA GGC CTG CTG ATG GTA CCC GAA C
W618: AGC AGC CAA CGC AAG TAC GCG ACC
W619: CCA GCT CGC AAC AGC GAC CAA AGC
W620: }\mp@subsup{\textrm{PO}}{4}{}\mathrm{ -ACC AGC CC-NH
W621: GTA ATA CGA CTC ACT ATA GGG CAC GCG TGG TCG ACG GCC CGG GCT
W622: GTA ATA CGA CTC ACT ATA GGG C
W623: ACT ATA GGG CAC GCG TGG T
W762: CTG CTG TGC ATC AAC TTT ATT TTG GGT CAT CAG
W753: AGC TAG AGG GAC GCA AAA CAA GCT AGC
W756: TCT TGG GGA GGA TCT GGG TCC ACT TAG
W785: CCT TCC CGC GCC CCA TGG TGC
W812: GGA AGC TGG GCG AGT TTG AGG CAG

```

W813: AAG CAC TGG CTA AGA CAT CCA TGC AGG
W816: GAA CTA GGT TTG TCG GTT TGT TTG GGA AAC ACG

\section*{Appendix 7.2. Sequence of genomic clone \(\lambda\) DASHII-wd33}

Sequence of partial genomic clone \(\lambda\) DASHII-wd33 of \(A G L 2\)-like gene \(W D 33\), containing the promoter, MADS-box and 3 kb of the first intron. The nucleotide sequences coding for the conceptual amino acid sequences are displayed in bold.
```

AGTCGACCGC GGACTGTTGG ATCTGGCGTG TGCGGCTCTG ATTAGATAGG
AGATACCCTT TCGCTCGGTT GAATTGCATC CATCGATGTT CAATCGGGCG
ATCCGCGATG CTTTGACCAC CATAAGATCT GAGCCATCCA TATGCAATCC
TGGGGCTCCT ACGCAATACC GGTTCATTAT TGCGCTCGAT CTGATCCCAC
CGTCGGTTTC GGATCTGATG GCCGGGGGTT AGACGATACC CCTTCGTGAC
AGCAATTACA CTAAAGAGTC CCTCTGTTTA TCTAAAAACA ACCCGTCGTC
CACCTCTACA GTGCCCTGAG TCTTAGGTTT AGTTGCGCCG AGGCCCCTGA
TCTTTCTGAA AATAGACGCC CAGTCCAGAA CTTATTTAAA ATGAATAAAT
GAATTAGTAA ATGCATAGAA AACTGTTTTG ACATGAAACT GGTAAAATGC
ATAGAAAATT CTAGAAACTG GTAAAATGCA TAGAAAATTC ATTTTAGCTC
CAAATTCATC CATTCTAATT TCTAAAATTT TGTAATATTA TTGTCTATCA
TTTAGTGTCT CTGTTTTGAC ATGAAAACAA TAAGAAAATT AATTTCTCAT
TTAATCATAT TTCAAGCACA TTAAACCTTT GGAAATTCAT AATTCAAAAT
CCATAACTCC AAAATTAACG ATTCCTGTTC CTAGGTTCTT ATTTTAATGT
GTAGATTTTT ATTGTATATT TTATTTACCT GTTTGGTGTG ATGTTAATTT
TCGCTATACT ATGTATGTAT TGTGTTGATG CGAGTAGACG AGCAAGCTAC
TGTAGATCCT GAGGTTCAGC AGGTAGAAGT TGCTGAGCAG GAGCTCATTG
AAGGCAAGTT GTGCACTTGA TCACTTACTT TTTCCAGCCA TGTTCATATT
AATTATAATG ACTGCATAGG TTAATTTTGA TGGGATCCAA TAGGTTACCC
TAGTATTGGT TATCTTTATA CCTTGTTTAC CTCTGAAATT TTTTTGGGTA
GTATCTGCTA TTGCTTTATG TGGATTTGGG TATGGAGATA CTTTATTCAT
GATTATACTT TTATTATCAT TTTAGTATTA CTGTTCATGT TAAGATCATT
ATGTTAATGG GAACATGGAG CGACCACCCG GGAAAACAGT GCTACCACAA
GGGTTTAATG GGACGCCCTT GGCTGATTAA CTAGGAAAGC TAGTGGATGA
CTTCCTTACC CGAAAGGGGC AAGGGCAGTA GGGGAGTGGT CAGTGTAGGG
AGGTCCTTGG GTTGATTTTG CTGCGATGGT GGTCAGGCGA GGGATTCCTG
CACTGGAGCT TCCTATAAAC TGTAGCGGGA TTTCTGAAGC TAGTGGAACT
TTGTAAAGGC CTCATAGTGT TACCCTGCCT CGCCTCCTTG GTAGAGGTGT
ATGGGATTGG CCGTCTCTTG GCAGATGGGT AACATGACTT GTGGGTAAAG
ATGTGCAACC TCTGCATAGT GTAAAACTGG TATACTAGTC GTGCTCACGG
TCATGAGCAG CTCAGACCCT CACATGATTA ATCTATGTAA TTAAAACTCA
ATTTGACATT TGCATCACAT TTGGGATTAT TTTATTATTA CTTTTCTTTA
TTATTATTAA GGTTTGGTAT TTACTTACAC TTAGTAATTG CTAATAAAAC
TTTGACCAAC TTATAAAAGC AATGCTTAGC TTCAGCCTAT ATTTTATTGA
TCAGCCTTAC ACTTCACATG AACTCCCACC TTTGGTGAGT TCATGCACAT
TATTCCCCAC GACTTGTTGA GCTATGAACG TATGTGAGCT CACTCTTGCT
GTCTCACACC CCCCACAGGA GAAGAACAAG TGGTCGAAGA GGAGCCGCCT
AACACTGAGG CTTTCGACTT GATCTAGGTG GCGTCTCCCA GTCAGCTTTG
TGGCGCCAGG GAATAATATT TAGTTCGCTT TATTTTATCA TTTATTTTTG
TAAGACTTCC GCTATGTAAT AAGTACATTA TGATATTTAT GACATTTATC
TCTATGCACT CCGTTATTAT GTGTGTTGTT CTTCCTTGAC GCATATATGA
GATGCACCCG GATTTGCTCC TTAAATCCGA GTGTGACAAC CCTACACCCT
TACGTATACG TCGTCCCGGT TCTACCTACG TATATGTTAC ACGCTGCACG
GCGCATGCTC AGCTGAGCTG CAAATTAAAG GCATATATAG GCAATTAGTA
CAAGTAATAG TAGCGACGAC TAGCGAGAGA GAAAGCAGTG CTACTGCTAC
GACTACTCAG CTCGTAGTTA GTAGAATGCT AGATAGAAGG TGACGAGAGA
GAGGGGGAGA GGAGATTCTT GATAGGGATG AAAACGGTCG GAAACGGTCG

```

GTAAACACTA AAACCATTAC CGTTTTCGTA TTTTTTATCG GAAACAAAAT CGAAATCGGT AACTCCGGAA ACGGAAACGA TATCGGTATT TCGGAAACAT CGGAAACGAA AATTTGGTGC GGAAAATACA CCGGTAACGG TCGAAATCTA AAATACGATC GGTAAACATA TCAAACTTCA TAATACAAAA AAGTTGACAA AAGATCACAA GTTCACAATT CATAATATAA CAAGTTCACA ATATAACAAG TTCACAAGGA TCACAAATTT ATAATATAAA AAATTTACAA AGATCACAAG TTCACAATAT AACAAGTTCA CAGTAAAACA AGTTCATAAA GATTACAAGT TCACAGGCTC AAAGTTCACA ATTCAGAATA TCCACTCGAT CTAGCTGACA TGGCATGCTT ACTTATGAAA TATTTTTTTC TCACATAAAG AGTTTTTCAC AACCTCACAG GAAAACCATA AAACCTAGTG TGTGAAAAAG ACCAAATCGT TAATCTCAAC TGCCTTCCAA CACCATCTAT CCCAAAAAAT CTTAAGGCAT CCAGAAAATA CAAAAATAAG TGATCCTTAT CTAAAGACGT ACAGGCGATG CGAAAAATCA CATGCTGGAA AATTCCAAAA AATTTCGAGA CACAATTCCG AAAATTTCCG AGACACAAAT CCGGTAATTT TCGACAAAAC CGGTAACTGA AGGAAACGGT CGGTAAAACA CCACGCCGAT TCCGATACCG ATTCCGATAG AAAATTCCGA AAACTTATTT CGTTTTCGAA AAATACCGTT ACCGGTGAAT CCGATCGAAA AAATTCGAAA TCGGTTTCCA GAATTTCGAA AAATTCCGAA ACTGTTTTCA TCCTTAATTC TTGATCTAGT TGAGTGCTAA CGATCGAGGA GAGCAGTGGA GGAACTGAGC TAGCTAGGAA GGAGAATCGA AGAAAAAGTA GGAGATGGGG CGCGACAAGG TGGAGCTGAA GCGGATCGAG AACAAGATCA \(\begin{array}{lllllllllllllll}\mathrm{M} & \mathrm{G} & \mathrm{R} & \mathrm{D} & \mathrm{K} & \mathrm{V} & \mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{R} & \mathrm{I} & \mathrm{E} & \mathrm{N} & \mathrm{K} & \mathrm{I} \\ \mathrm{S}\end{array}\) GCCGGCAGGT GACGTTCGCC AAGCGCCGGA ACGAGCTGCT CAAGAAGGCG
 TACGATCTAT CGGTGCTCTG CGACGCCGAG GTCGCCCTCA TCATCATCTC \(\begin{array}{lllllllllllllllll}\mathrm{Y} & \mathrm{D} & \mathrm{L} & \mathrm{S} & \mathrm{V} & \mathrm{L} & \mathrm{C} & \mathrm{D} & \mathrm{A} & \mathrm{E} & \mathrm{V} & \mathrm{A} & \mathrm{L} & \mathrm{I} & \mathrm{I} & \mathrm{I} & \mathrm{S}\end{array}\) CAGCTGTGCC CGCCTCTTCG AGTTCTCCAC CTCCTCCTCG TGGTACACAT \(\begin{array}{llllllllllll}S & C & A & R & L & F & E & F & S & T & S & S\end{array}\)
GCTGCTCCGC CCCACCTGTG CCTTACATAC CCAGACGATC TGGTTTTGAA CATGAACGTT GAACGCATCT TCTGTTTGTC ATGCATTTTT CTACGGTGTA CGTTACTCCT CTTAGCGCTA GTTTGACAAA CTTTTTTTCT AAGGGATTTT TATTTTCTTG AAAAATTAGT TTATTTTCTT TGGAAAATGA AAATATCTTA AAAAACTGGA GTTGCCCTTT CTGCCTCTAA TAATTATTCC CTATGTTTAT TTATTTCTCT TGCTTTGCTT GGACTTTACT GTTCCATTAA GACACAGTCT CTCTCTGTGG AAAATGGCAT CTGCTCTAGC TAGACTCTAC TGTTCCATTG GGGAACTGAT CAGCGTGTTG TCGCTCTCTC TCTCTACGTC TCTCAAACAT GTTAAAAGAA CTTTTAAGAT AATAACTTAA TAGTAAAATG TCGAATAATT AGTAGCCACG CGTTCATAAC CCGGTCGTAT TTAAACATGT TAAAAGAACT TTTAAGATAA TACTATAATA TATATCTTTT TATTTATTTG TTGCTTGGTA TGAATATTTT TAGATGTGTC TTTAGTTTAT ATATTGCACT ACCGGAATCG CGTTCTTTGT CGAGTGTCTA AGACACTCGG CAAAGACTAT TTTACACTCG GCAAAGGCTT TGCTGAGTAT AACACTCGGC AAAGAAAAAC ACTCGGCAAA TTAAGAATTG AAAAAAAATA AAAAAAACAG TAAAATAATT TTTTAAATTA TAGGAACAAC TCTCCACAAT AGGAACAACT CTCCACAACC TACCCATTAT CTTACCCATT GCCCTATCAT ATTCACTATT ATTTGAATCA AATTTATATA TTGTGAATGG TGAGATTGGA ACTCGCAACC TCTCTCGCGT GCATACCCTT CTAACCACTC ACTACTACAC CTATGTTTAT ATTACGTTTT TATTCCCCAT GTACTATAAC AAACCGAGAG TATTTGATTA TTTAAGGCAC TAAATGAGTT TATTTGAAAA TGTAACCAAC TATAAAGTTG CATAACGTTT TAAGATCTAC AAGTTTTATT TTAATAGTTT CTACATCCGA GACCGTTCAC AAATTTTATA CATCTCTCTC TTAGTTTCAT AAACTACGAG AGAGATATAG GTTTTATGAA CAAATTTATT TTTATTTTGT CATATGAATA AATGTTGAAT ATATAAATTG TACATCATAA TGAGTTATAC AAATTTGTAG TTGAAAACTT TTTCATTTAA ATTAATTTAC TGCTTTAAAA TGTGATTTTT AAATTGTCTT TGCCTAGTGT TGGAAAAAAG CACCCGGCAA AGAGCTCTTT GCCGAGTGTC AACAAAAAAC ACTCGATGGC CCAGAATATG ATCCGAGCAC CGAGCAGATC GACCCCGATG TGCTTATGAA GGTCGGAGGA AGCAAGAGAC ATGGGCGGTA CTGGATTGCC GACAGGGAAA TTGACTCGTC CTCCACTCCC ACTCTGTCTT AGGTGCGAGC AAGGAGCACG GGCTCGAGTC CAACCATACG ACCTCGGCAC GATAGCTCAC AACATCACAT ACAGCAACTC GAGGTTAGTG CTTCTGTAAC TCGTCCTTAC TTGAGTTATA TACCTTCTCT TTGAGTTACT ATAACATTGG CTTGTAATAT TACAGACCCA ACTAGAAGAG ATGGAGGCGA GGATGATGGC GGAGCGGGTG GCTCGCGAGG CAGATCATCA GAGGATGACA GAGATGTTTC AATACATGCA GAGCCTTGGC GCCGCACAGG GTTTCGCTCA GCCACCTCCA TTGTTCCCTA
```

5301
551
5401
5451
501
551
501
5651
5 7 0 1
5751
501
551
5901
5 9 5 1
6 0 0 1
6 0 5 1
6 1 0 1
6 1 5 1
6 2 0 1
6 2 5 1
6 3 0 1
6 3 5 1
6 4 0 1
6 4 5 1
6 5 0 1
6 5 5 1
6 6 0 1
6 6 5 1
CAATGGACCC TGCTCTATTC CATACTCCTG TGAGTATCAA AATTGTAGTT

```

\section*{Appendix 7.3. Genomic sequences of loci of \(\boldsymbol{A G L} 2\)-like genes.}

The nucleotide sequences coding for the conceptual amino acid sequences are displayed in bold. The MADS-box is displayed in black, the I-region is displayed in red, the K-box is displayed in blue and the C-region is displayed in green.
A. Genomic sequence of Arabidopsis \(A G L 2\)-like gene \(A G L 9\), obtained from the database at NCBI (http://www.ncbi.nlm.nih.gov) (acc. no. AC002396, chromosome I, BAC F2I6). The cDNA sequence (acc.no. AF015552) used for comparison was published by Mandel \& Yanofsky (1998).
101
151
201
251
301
351
401
4 5 1
501
551
6 0 1
6 5 1
701
```

```
```

1 ~ A C T G A T C A A A ~ G G G T T T A T G A ~ A A A A C A C T A A ~ C T T C T T A T C C ~ T C T A A T T G C G ~

```
```

1 ~ A C T G A T C A A A ~ G G G T T T A T G A ~ A A A A C A C T A A ~ C T T C T T A T C C ~ T C T A A T T G C G ~
5 1 ~ A T T A C C C A T A ~ G A C G A A A C C A ~ A T A A A A A A G C ~ A A T G G A G A A C ~ T A G A G C A C A G ~
5 1 ~ A T T A C C C A T A ~ G A C G A A A C C A ~ A T A A A A A A G C ~ A A T G G A G A A C ~ T A G A G C A C A G ~

```
TCACTACAAG AAATACCCTA TAAAAGTACC GACCTGCACC GATGAGGATG
```

TCACTACAAG AAATACCCTA TAAAAGTACC GACCTGCACC GATGAGGATG
GTGAGCTTCC CGAGCGGAAG AGCCATGGCT AGAGACGAGC TTATACGGCG
GTGAGCTTCC CGAGCGGAAG AGCCATGGCT AGAGACGAGC TTATACGGCG
AAGAACTAAG ATGGCAAACG AATCCGCGTG AGAATATCTA AGAGAGTATT
AAGAACTAAG ATGGCAAACG AATCCGCGTG AGAATATCTA AGAGAGTATT
GGTAAGAGAG AGCTGCAGGA ACGTACCGGT GAAACAGAGG CGTTTTTTGG
GGTAAGAGAG AGCTGCAGGA ACGTACCGGT GAAACAGAGG CGTTTTTTGG
GACGATGAAG TGAGGCAGCG AGAGAGATAC GACGTGCGAC TATATTGTTC
GACGATGAAG TGAGGCAGCG AGAGAGATAC GACGTGCGAC TATATTGTTC
GCTTGTTGAG GCAACAAAAC AGAGTTGCTT CTAAAACCCG AACCGAAATG
GCTTGTTGAG GCAACAAAAC AGAGTTGCTT CTAAAACCCG AACCGAAATG
TCCGGTCTGA TTCGGTCTAA ATCACGATTA GGTTCGTTTT AAAACCTAGG
TCCGGTCTGA TTCGGTCTAA ATCACGATTA GGTTCGTTTT AAAACCTAGG
AGGCAATAAC CGGACGGATC ATAAATTCAT AATAGAGACA GACAAATTGG
AGGCAATAAC CGGACGGATC ATAAATTCAT AATAGAGACA GACAAATTGG
TCCATTATTA AAATCACTTG GGCATTTGGG GATGATTCAA ATGCCCAAGT
TCCATTATTA AAATCACTTG GGCATTTGGG GATGATTCAA ATGCCCAAGT
TTTCTCAAAT TTGGACGATT CATTCACCTA AGACATACTT GAGCAACAAC
TTTCTCAAAT TTGGACGATT CATTCACCTA AGACATACTT GAGCAACAAC
AAAGTGAAGT CCACTGTCAT ATCTTATGTC TCAAAAAGTA TTGAAATGTG
AAAGTGAAGT CCACTGTCAT ATCTTATGTC TCAAAAAGTA TTGAAATGTG
TCAATTGATA TTGGAGAGGC ACACTAGCTA AGGGATTATT CAATCAATTT
TCAATTGATA TTGGAGAGGC ACACTAGCTA AGGGATTATT CAATCAATTT
CCAGCAATTT AATTAAACTT ATTTGTAGTG AAAGTGGGAA GATAAAAGAT

```
CCAGCAATTT AATTAAACTT ATTTGTAGTG AAAGTGGGAA GATAAAAGAT
```


## 751

801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451

CTCACCCTCA CATGTTCAAA AAAAAAAGTT GAAAATGGAA GTAATTCAAC ATGTAGCATA GAGCCCAAAT ATGTCTCATT TTTTTAATCC ATATAATCTC AAATCCTCTT ACTTACTTCT AAACATATGG TTCCCATAAT CATAACAATG CTATGTTAAC ATGGCCGGTT CTAAAGGAAG CCAAGTGCAG CAACTGCCTT ACGCCTCTAC GTGTTAAAAT GAAAATGAAG ACCACTGACC ACTTCTATTA AAGCTTCATT CACTAGTGTA TAATTACACA TTTTTTTAAG GATTTATGAG TAGTGATTGA GGCCCATATG TTTGTATGTT TGTTTTTCTT ACTATATCAT TACTTGACTA TAAGAGTTGG TTTCCTATTC CATTCTCTTT TCTAACAGCC TATATATGTA AAAATCTAAG CAAAATTTCT TGTCAAGAGG ATGATTGTAC ATTTGTACTT GGTTATCTCG CCCCGGCCCA AAACATACCT AAGGCCAGGT GCTATATCCT CAACCTGCTT TGGCATTCAT CAATCTACGA ACTTTGGCGT GAAACGGTGA CAAGATTAAC AAGATTCACT CTCAACTACG ATGTTCTACT ATCTCAAATC TTTAAAAAAG TGGATCAAAC TGTCAAAAGT CTAGTTCGAT GGACTAGCTT CAACACTCCT CCAAATCTAG TTCGATGGAC TATATATTCT CTTCTGATGC TATCCTTATC TTGGATTAGG CATCTAAACT ATGGTTTTAA TGGTGTCATG AGGTTTTACA ACTTACAAGG ATGAAAGTTA TTTACTCCCA GTCACTATCT TAATCAAATG ACAAAATGTT AACTAGTTTG AGTGCTTATA TATTAGTTAT GAATCTGAAA TTTATTAGTG TGTACATAAG TGATACAACA CTTAAATAAC ATCTACATGA GTTTTTAAAT AACATAATAA TCCATTATAG TAGTTTACGG CATAAGGTAT GAACCAAATT TTTCATTGCA CGCTGAAAAG TGAAAACCTT TAAAATGCAT AATGACTAAG AGTCTATGAC AACAGTAACT TACTATATAT TAGAGGAGGG GTGAAAAAAA AAGTAGAGAG ACTGGTCCAA AAACTTAACC CCACTCAATA AACCCAGACG TGACTTGTTT GACGATAACT CCATCTTTCT ATTTTGGGTA ACGAGGTCCC CTTCCCATTA CGTCTTGACG TGGACCCTGT CCGTCTATTT TTAGCAGATT AATCCAACGG TTCTTATTCT TTCTTCGACC CTTCACGACA TTGCCTCAAA GCCGTCCGAT TCTCATCTCA CGCCCAATGG ACCACATATA TCACCAGTAC TCCGCAACTT AGCTGTCGTG TAGGATTTCA CGTGGCATTT ATTTGTTCTA GTTTGTAGTG CAAACATTGC AAGTTGATAT GGTCCCCTAT CGATCACCGT CGTCTCTTTA GCTTCACATC GAGATTCTTC TTTCTTTCCT ACGTGTAATA GCATTTTTGA TTTTGAGAAT TTCTTTAGAA CCGTTGGATC TCTCATCGTT GGTTGATCCA TCCATCCAAA TGGGACCTGT GTGTGCTCCA TCCAGGGCAT ATGATCCCAA AGCCAAAAGA GTATTTCCAA GTGCTTTCTT TCTTTCTTTC TTTCTTTCTT ACTAACCTTT TTTTTTCTTA TGCTTTAGAC TAAGAAATTT ATTCGGCCAT ATCCACTTTT ACGAATATAC TTCTTACAAG ATCTAGATTT TTTTGAGTTA ATTCGGTGTA TATAACATTG GCATAGACTG CAATTAAGTA AATGATAATG TGATAATGAT GCGATGTGTT GTTATCAAGT AGTATAATAT AGATGGCTAA ATAGGTAAAC AAAATTACGT GTTATATGTA CACAATTAGG TAGAACCGTA GAAATTAAAC TGAATAAAAC CTTTATTAAT TTTAAAATTA TATGGTACAG ATAAATACGG AAAAACATTC ACGCTTTACG TAACAATTAA GTGGAAAGTA AAATTATCCC AAAAATATTT ATATCACATC ATTGTTATAT TTCTAAGTTT TTTTTATTTC TCTAATGGTA TATGTTTTAC AGATTGTTTT TTGGGAAAAT TCTTAAAGAG ACTTGAAGAA TGTTTTTTTT TTATTTTCTT GAAATGTTTG ACACTTGAAA CCGTTTAAAA ACTAAATATA GTATATATCA TTGTTGGTCT CATACCTTGT AATTCACCAC ATATATTATC AATGGGGAAG ATTTGAAAAT TTTTGGGGGA TCACAAAACG AAGGAAAGAG TACAAAAAGA GAAGGAAAAG ATAGAAGATA TATGTTTTTA ACTTCATTGG TATGACATCA ATAAATAAAT AGTTGAATGT ACTTTAGTTT CTCTTTTGGT TTAATGCACA TCATCTCGAT CAATTGTCAT CATCTTACAT TGAATTATAC GACCAGATCT GATAACAAGT GAATTCGTAC TTGCCCTTCC CTTTCTTCTC ATACGTCCTT CTAACTAATT TTGATTGTAA CTTATAATTA TATAACCATA TTTAATTTTA TTTTATCTAA AACCAATTGA AGCAAATTAA AATATCATAA ATCTTGAGTC CCACATGAAG ACAATATATA AAACTCGTGC AAATTTGCTT AAAATGCTTC TATGAGACCA TGACCAAGTG AGATTAATAA GCGATTCAAT GTGCAAATCA AAAGAGAAAA GAAGCTAATG GGTTTAAATA TAACCAAACA GAATAATAAT GCTATGTTTA GTTTTTCTAA TTGAATCATA CCTTTGTGTC CATCACCTAC TTACCGGTCA GAATAAAGCA ATTACGTCTG CAACCAAAAA GCACTAAGAC TTTCGGTCAG ACATGATCTC TAACATCGGA CGAACCCTAA GATAACCAAA ATAAACTATA TCTTATATTC AAATCTCTGT TTATTTTATC CATTTATGTT TTCTTTCTTT CCCATAATTT TTTTTGTGTC TCATCAGACT CTCTTACCAA ACTGAATTTA TCAACATGGT TTTTTTTTTG GCCACATCAA AATGGTGGTT TATAAAGTAG ACTAATACAA AAGACATTTC TGTTAATTTC ACTAACAAAA ATAATCTTAG CAGTACTATA GATTGGAAAA GGAAAAGCAA ATCTAGCAGT AAGATTTATC AAAACTAGCA 6101 AgCCAGCAGG AGTATCTCAA GCTTAAGGAG CGTTATGACG CCTTACAAAG $\begin{array}{lllllllllllllllll}S & Q & Q & E & Y & L & K & L & K & E & R & Y & D & A & L & Q & R\end{array}$
6151 AACCCAAAGG TAAACTAATT AGCTTCTTCA GCTACCTTCA GAGAGTGTTT T Q R
6201 GTTTTTTTAG TAGATTTTTT TGATGGTTTT GATGTTGAAA TAGGAATCTG
N L
6251 TTGGGAGAAG ATCTTGGACC TCTAAGTACA AAGGAGCTTG AGTCACTTGA L $\quad \mathrm{G} \quad \mathrm{E} \quad \mathrm{D} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{P} \quad \mathrm{L} \quad \mathrm{S} \quad \mathrm{T} \quad \mathrm{K} \quad \mathrm{E} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{E}$
GTAAGAGTTT TAGATATCAT GAAAACATCA CAAACGAGTA GTGTTTTACT TTACATTTTT AACCAATCAC AAGGGTAGTT CCGTAAGTTG GGAAAATCGT ACGAGGCTTC ACCTAGTTAA GGTTAGGTCA CATGATTCCC TGAACTCGAT TTTATAAGTA AAAAAGAAAA ATTTATAAAA TCAAAATTTT TTATATAAAA AAATCAGGTG GATTTATCAG ACCCTACCAT CGAGATGTCG ACACGTGTCC AAACTCATTC ATTGCCCTAC TATTTTCTGT TTAGGGTTGC AATCACTCAT CGCACACGCG CCATCTCCAC CTTCCATTAT TAATCTCTCA TTTTCAACAT CACACTCTTA CGAATCATAC GATTTTAATA TCTCTGTCTC TCTCAACGTA TTAAATAAAA ATGGTTTTAA ATGTTAGGGT TTTTTGTAGG ATTTTCAATT ATTAATCTCT ATAATTCGAT GAACTAAGTA AAAAAGCATC AAACTTTCTT GGCAGAATCA CATTTTTCTC TAAACTAAAT ATGGACTGAA ATTGAAAAAT TAAACCACTA GCTAGAATAA AGTGTTGGTG AGAGTGGAAC TCTAATTTCT CTCCTTTACT AATTATGTAT AAACACAAAA ATGCACCAAA TTTTTAGGTT TGAAAATATC TAAGCATGGA TAGGGTAATT AACATTTTTT CTTTCAATTT TGCAATATTT GAATAAATCC TATGAGGGTC TTTGGTACAC AATAATTGGA GGGTATATAG TTGAGTCTGA GAGTATATTA GAAAGAGAAT ATTTCAAGTA ATGAAGCTGA CATGTTTATA TGTACTTTGA GAGAAGTGTT GTGAGATTTG TACAAATGTA TATGTACACT TTAAAAAGCA ATATAAGATA GATAAAAAAA ATATAAAGAA AAAAAGAAAG AAAGAAAGAA AGAAAGAGAG AGGCTCATAT ATATATAGAA TTGCTTGCAA GGAAAGAGAG AGAGAGAGAT TGAGATATCT TTTGGGAGAG GAGAAAGAAA AAGAAAATGG GAAGAGGGAG AGTAGAATTG $M \quad G \quad R \quad G \quad R \quad V \quad E \quad I$ AAGAGGATAG AGAACAAGAT CAATAGGCAA GTGACGTTTG CAAAGAGAAG $\begin{array}{lllllllllllllllll}\mathrm{K} & \mathrm{R} & \mathrm{I} & \mathrm{E} & \mathrm{N} & \mathrm{K} & \mathrm{I} & \mathrm{N} & \mathrm{R} & \mathrm{Q} & \mathrm{V} & \mathrm{T} & \mathrm{F} & \mathrm{A} & \mathrm{K} & \mathrm{R} & \mathrm{R}\end{array}$ AATGGTCTT TTGAAGAAAG CATACGAGCT TTCAGTTCTA TGTGATGCAG
 AAGTTGCTCT CATCATCTTC TCAAATAGAG GAAAGCTGTA CGAGTTTTGC V A L I I F S I $\mathrm{N} \quad \mathrm{R} \quad \mathrm{G} \quad \mathrm{K} \quad \mathrm{L}$ AgTAGTTCGA GGTATATATC TACTTTTGTA TATATATTAC TTATAACATA $\mathrm{S} \quad \mathrm{S} \quad \mathrm{S}$

AACATTTTAT ATACATATTA AGTAACACAA AAATGTCTTG TATGTATGGG TCTCTCTGTG ATGTGTTGTT GTGTCGTACG TACGTGTTCT ATCATATCCT TTTAAAAGAA GCAAAGAGGA AAAAAAATTT GGGATACCCC AAATCTGTAT CATTTTATAA CAAGTTTGCT TTTTTGATGT TCTTTTGTGT TTCTCTTTGA TTTCCATTTT TGTTTTTGAT TTTTTTTCTA TTTCTCTTTA CATCTATCAA AGTTTTTTTT CTTATATTTT ATTGCTTATT TGTTTGTCTA CTTAATTCAC ATTATCTGAG AGAAGAACAA TCTATCTGAT ATGAAATTAG GGTTAATTTC TCTTGTGAGT ACTCTTTAAT TCACATAAGC TTAAAGTTTC CACCTTTTGA TTCTGGGGGT CGTCCAATTC GATCAAATCA CTCAATTTTG TTGTCAGATT GATATAAGTT CATAGGGGGA TATTGTTTCC ACGACAATCC ATTTTAGTAA CCCTTAGGGG TTTCCAATTT TGGGTTTTGA ATTGACGCTA ATGTCAAATT CATCTAAAGT CCGTTGGATA TGTATACTTG GGGATGGGAT TCATCCTTTT TTCTGGGTTC TTTAGATCTT CTCTTAAAAG ACTAACAGAT TTTGTTGTAA ACCCTAGGAA ACAGTTAAAA ATCCCATTTT TAAAAACATG TTTTGAACTT GATGAGTAAG ATTAATGGAA GAAATGATGT TTTTGTGTGG TGTGAAGCAT

GCTTCGGACA CTGGAGAGGT ACCAAAAGTG TAACTATGGA GCACCAGAAC $\begin{array}{lllllllllllllllll}\mathrm{L} & \mathrm{R} & \mathrm{T} & \mathrm{L} & \mathrm{E} & \mathrm{R} & \mathrm{Y} & \mathrm{Q} & \mathrm{K} & \mathrm{C} & \mathrm{N} & \mathrm{Y} & \mathrm{G} & \mathrm{A} & \mathrm{P} & \mathrm{E} & \mathrm{P}\end{array}$ CCAATGTGCC TTCAAGAGAG GCCTTAGCAG TTGTACCCAA TTCTCTTCTC $\begin{array}{llllllllll}\mathrm{N} & \mathrm{V} & \mathrm{P} & \mathrm{S} & \mathrm{R} & \mathrm{E} & \mathrm{A} & \mathrm{L} & \mathrm{A} & \mathrm{V}\end{array}$ TTTCTTCTAA TTACCTTAAT TAATTACTCT CAATTTTTAC TTTGATTTTT AGAGTCAAAT GATTAATGTT ATAATTTGTC ATATACTTCA GGAACTTAGT GAGACAGCTT GATTCTTCCT TGAAGCAGAT CAGAGCTCTC AGGGTACTAC $\begin{array}{llllllllllllll}R & Q & L & D & S & S & L & K & Q & I & R & A & L & R\end{array}$

6351 TTTGTTCATC AATATCTTTA TACACTGATC TATTTCCATA GTAAGATTAA ATTTGGTGTT TAATTCTGCA GACACAGTTT ATGCTTGACC AGCTCAACGA $\begin{array}{llllllllll}T & \mathrm{Q} & \mathrm{F} & \mathrm{M} & \mathrm{L} & \mathrm{D} & \mathrm{Q} & \mathrm{L} & \mathrm{N} & \mathrm{D}\end{array}$
6451 TCTTCAGAGT AAGGTAAATA AAGAAACACT CATTCTCCTC TCTAAATTCC L Q S K
6501 TCATCTAAAA GTAATGTAAC CAAGAAAACA CAAATATTTG GAGCAGGAAC E $\quad R$ GCATGCTGAC TGAGACAAAT AAAACTCTAA GACTAAGGGT AATTAATATA $\begin{array}{llllllllllll}M & L & T & E & T & N & K & T & L & R & L & R\end{array}$ CATTCTCATA TCACCAAATT AATGCATCAC TAAATTTGGT TATAATGTGT GTGTGTATAT ACATATGTGA CAGTTAGCTG ATGGGTATCA GATGCCACTC $\begin{array}{lllllllll}\mathrm{L} & \mathrm{A} & \mathrm{D} & \mathrm{G} & \mathrm{Y} & \mathrm{Q} & \mathrm{M} & \mathrm{P} & \mathrm{L}\end{array}$ CAGCTGAACC CTAACCAAGA AGAGGTTGAT CACTACGGTC GTCATCATCA $\begin{array}{lllllllllllllllll}\mathrm{Q} & \mathrm{L} & \mathrm{N} & \mathrm{P} & \mathrm{N} & \mathrm{Q} & \mathrm{E} & \mathrm{E} & \mathrm{V} & \mathrm{D} & \mathrm{H} & \mathrm{Y} & \mathrm{G} & \mathrm{R} & \mathrm{H} & \mathrm{H} & \mathrm{H}\end{array}$ 6751 TCAACAACAA CAACACTCCC AAGCTTTCTT CCAGCCTTTG GAATGTGAAC $\mathrm{Q} \quad \mathrm{Q} \quad \mathrm{Q} \quad \mathrm{Q} \quad \mathrm{H} \quad \mathrm{S} \quad \mathrm{Q} \quad \mathrm{A} \quad \mathrm{F} \quad \mathrm{F} \quad \mathrm{Q} \quad \mathrm{P} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{C} \quad \mathrm{E} \quad \mathrm{P}$ CCATTCTTCA GATCGGGTAA CTTTAGACTA GTATAACCAA TTTGATTTGA I L Q I G
GTTCTATTAT AAGCTTTTCT TAAGAAAGTA TCTCAAACTA CTAAATTTTA TGGAGCAGGT ATCAGGGGCA GCAAGATGGA ATGGGAGCAG GACCAAGTGT $\begin{array}{llllllllllllll}Y & Q & G & Q & Q & D & G & M & G & A & G & P & S & V\end{array}$ GAATAATTAC ATGTTGGGTT GGTTACCTTA TGACACCAAC TCTATTTGAA $\begin{array}{llllllllllllllll}\mathrm{N} & \mathrm{N} & \mathrm{Y} & \mathrm{M} & \mathrm{L} & \mathrm{G} & \mathrm{W} & \mathrm{L} & \mathrm{P} & \mathrm{Y} & \mathrm{D} & \mathrm{T} & \mathrm{N} & \mathrm{S} & \mathrm{I} & \text { * }\end{array}$ TCTTTCTCAC TTAATTAATC TCTCTTTTTT TTGACATTTT TAAGATGATG TTTCTATTTT ATTACCTCTC TCACGTTTTC TGTCTTGTGT GCATGTGTCT GTGTAATGTT TATTGCCCTT CTATTATTCA ATGATTTCTC GACAATTTTG CTTCCTATTT TTACCCATTA CTCCTAAACT TCCTGATCCA GTTTCTTTTA AAATAACTCC CATTTTATGC ATGTTATCTA ACCAATTCTC TTAACTATGA TTTATGGTAC GATATAACTC ACAGTCTCAC ACTATCTATT TGGTGTTTTT TTGTTTGAGT CTTGAGAAGG GACCGCTTGT TTATCTCTCT TGTTAAAGAG CAACTCACTG GCCACTGCTT ATGTATCTGT AGGCCCCACC TATATCATTT TGGCTATATC TATACTTTTG TAGAGGGAGT ATTACTATAG AGAAGAAGAT AAATTTGGTT CTAATATATC TTGCAGGTAG TTGATATTCT CAATTATCAT GAAGATTTGA TAGACAAGTT TATCAGATAC CTTAAACATA GGTTTAAGAT CTCAATTGAA ATGTGAATTC ACCCGACGAT TAGAGTTACG ATCTAAGGAA GCGTTTCTTG AATTTTGAGT TTGTTTGATC AAGAGTAGAA TGCTTTTCTA TTACTAAGGT TGTTAATGCT TATATTCCAT GACCAAGGCC AAGAGAACAA ACAAAAACAT GGTGCCTCTT GATGTATAGT AATGGCTCTT AATGGTCATA TACAGAGAAA AAAAGATTAA TGTCGTTGCA CAAGCTTGAA GTTACTTACT CCTCGTCTTC CTCATTAGTG TCTTCGTCTT CCTCATCCTC ATCGCTCCCA ATATAGGGCT TCATCTACTT GAAAACCAAA TGCTCATGCA GTGGAAAAAG ATAACAGAGG TTCAAATTAA GGCAAACAAA ACTACAAGTG AGAAAGGGAA ACTACAAGTG GTAAGATGTA ATGTTTTGAC TCAAAACCAG ATCAGACAAT GAAAAAAAGT ATTGATACAA AAAGTCCATC CGGAAGCATA ATTACCGCTT GCAGGATGTC ATCAGAGATG TCTGTTAGTC GGCCAATGGC ATAGATGGTG AGCGGACCAG AGTAGCGTAA ATCCTCTAAA TACTGTCTAA AAGCCGGACC GACCCGACAA GGATCACAGT CAAGGGGAAT AGGACACCTA TTGATATCCC AAAAGACTGT TGTTACAGCC ACATCATCCT TGTCCAACTG GGTAGCCCAA AgGgAAACTA GTTGTGGTAA GAGCTTGTTT GACTCAAAAA ATGGCTAACT AGGATGATGC TGAATTACCA TCTGTTCATG TTTTTGACTA GAGAGATGGG TAGTGAAATT TTCAAAGCCT TTGCAAAACG CCTGTGGGAC CTGTTTCAGA AAAAGACTTA AAAGACTTGA GACTCAAGGA AAATAATATC CATTATATAA AGATGACAAC AAATATTAAC GGAAGTAGGA GTGATTGAGA ACGATTCTAG TAGAAGAGAC GGCTCGCAGG ACGTCGTTTA TAATAGGCCA ATGGCAGAGA TAGTGAGAGG ACCGGAGTAG CCTAAATTCT TTAAATGTCG TTTGATACAC GGACCAACTA GACGAGCATC ATACTCAGAG GGAACCGGAC ACGTCTTGAT ATCCCAGAAG ACCGATGTTA CGGCCTTAGC TTGCTGCCGC GTTGCCTTCA TCATCATCTT CTCCTTTTAA TCTATAACGG AAATCAAACA TCAGATAAAG CATTCGAAAA GATAGATTGA CACAGGTTAA ATCATCCACT TCAGAGAAAA AGAGAGGGAC ATGGCCGTAA ACAATGAGAT AAGGATCGGC CTAATGTTTA TAATGGGCTT GCGTTTAATG GGCCTACAGT TTCTTGAATC AGCCTTATGC ATGAGTCCTA GTATTTTATC AACTTTTTTT TTTCATCTTT CTTTAGTTAC AATAGATTTA AAGTGTTTTT TGTTAATGCC ATTGCAAAAT TTGGTAACTG

9001
9051
9101
9151
9201
9251
9301
9351
9401
9451
9501
9551
9601
9651
9701
9751
9801
9851
9901
9951
10001
10051

TTTATAACAT TGTTCCTCAC TTCAAAATTT AAAGCACCAT TAATAAAAGC TATACATATA ATTATAACTT GGGTTTTGTG CAAAAAAAAC AAACAAATTA ACCTTTCATT TTAAATAAAT GCAATTCAAT ACCGCAATAT CAAAAGTAAC CCGTATAACC TTTATTCGTG TATAGATTTT AGAAACAGTA TAAGTCAAAT TATCAAAACT ATGTTGTTTT AAGCATTTTA AAAATAAGAA TAATAATAAT GTTGAAGGGT GGATTTGAAC CCATGAACTA TAGAACAAAC CAAAGCATGC ATAACCACAT GCGCCGAACA AACCAAAAAC TCATGGCTTT GTTAAACATA TAAAAATATT CGAATAAAAA ATGTGGGGAA CTTGTTACCA GTTTTGGTTC TTTTTGGAGC CATTTTTTTC AACACAGATA TTGTTAAGGA GTTTCAGGTA AAACTGTATA TTATGCAGGG AACCACAGTA GGCTATAATG AAAGTCACAC TGTGAAGTTA GCAGACAAGT TTTTACTTAA AGATGTGAGT TGTGATCTTT TTGATGTAAG TCTTGATGTA TATGTTGACA AATTATATAA GTTTGTATTG CATATTCTAT GACTTACGAA GTTTCTATGC AAGAAAAGCC GGGAGAAAAT TTCCGTCAAG TAACTAAGAG ATCGTAATTC TTGTCTGAAG AACAACCCTT TTTTATTATT TGAGTTTAGG TTGCCAACAG TGAACAAAGG GACGAGATAC CATATGACAA ATATCCTCTA ACGCCATTTC AACAGTTAAT CAACAGTGTC GGCTATATGC ATGTGCTAAC AATGCACAAG AACATTGTCA CCATCCCGTG AATATGAATA TTAATGATTA TGAACGAGTT TGTAGAGTTC CAAGAGGAAG GTACTACCTT CTCATACTCA TTGATCATAT ATTTTGTTTC TTGTTTGTTT TAGTAACTAG GGTTATTCGG ATTGTTTTTC AAAATAATAG TAATATGTCA ACTATATTTA TAAAAAAAAA AACTAAATAA CTTTTGTACA ATTGATCATT TTTTAAATAT ATCATAAAGA TTCATC
B. Genomic sequence of maize $A G L 2$-like gene $B 9 \_20$, obtained from genomic clone $\lambda$ DASHII-

14-2-1, kindly provided by Dr. Zh. Meng.

TCGGATCAAT TCATCTCCTT ACTGTTTTTC ATTCTACAAA TTATATATGT TCATACCTGC TGTTTTATTT ATAGTCATAA ATTTATCCAA TCGGTTTTGT CGTATTATAT CATGACGTGT CTGATGCCTG ATCATACTAG TAATATTGTT GTCTTAATTT TACATTCATG CTGTTTATGT TGCTATCTGT TTATTTTCGG TTGTTCCTTA ATAATACATG TTCCATGTTT ATTTGCTTAT TATATTTATA TGGTTCATAT GTTTCATGTT CTCTTGATCC ATATTGTTAT GGATATATTT GAGATAATGA TTTCTATGAT TAAACATATT TTATATGTCA TCATCATAAT GTTAATTTAT GGAATTAAAA TAATACGGAA AATGCCTATA TTTCTAACAA TTTAGTCCTT TTTGCCAAAC ACTAGGACTA AAATATTGAC TAAAATGATT TAGTCTTTAG TCATTCACAT ATGTGCTAAA ATGGACTAAA CCATATTAAT TTCATATTTA CCCCTTATTT AGTTCAATTG TACTAATAGC AGGAGAATGT TAAAGACCAT TTTAGTCTTC TTAGGAGTCA TTTAGTATAT TCTTACTATT TTTAGCCCTA AAAACAAACA TGTTAGAAAC TAAACTTTAG TCCCCTAACT AAACTTTAGT CTCTAGACTA AAGAAACCAA ACATGACCAA AGCCCAGAAC TCCACACATG CATCATCTTT ACACTTATTG CTTGCACACA TGCATGCCGC GAGTCTGGAA CAAGAACATC CCGGATCGAT CCCTAGGCTG AAACGGATCA TATATATAGC GTCTCCTTTC TGGAAAAAGG CGATGCAAAA CGGATCGATG AGCTCTCACC ACGTCACCCG TGTGTGCTCA TGAGGAGCTC CGTCCTGTCT TCGCGAACTA TGGCAATGCA TGGCGACCGA CCTCTTCCGA ATCAGAACGG CATGTCTGCA GGCTCGATCG CTGCAAGCAT GCATGCCCGT TGGAAGACGC CGGAACGAAA ACGGGTGGAG CTCGAATCGA TCGATGGAGG AAAGAGGAAA GCAGCGCGCC GAGCCTAGCA GCCATGGCAG TTAGCAGGGG AGGGCCTCTA GCGGCAGGGG GCTTTGCCCA AAACCACGAC AAGCCGAGGT TGCATCCCAG AAAAGCCCAC GCCCTTTCAG CCTTTCTCTC CTTTTTCTCT CTCTAGCATC GACCTGCTGT CGAGTCCTCA CTGGTCAATT CAGCTGAGCG ATGAGAGAGA TGGAGTGACG GGAGGCTGAC ACATGGCCGG GTATTGAGGC GCGGAATTGA ATTTGATTAA ATAACGCAAA AAGGTGGCGT GCCAGGACGG AGGACAGAAA GCAATCACGA GACGGGAGGG GTTGGCCTTT CGCCTCTAGG GTTCCGGGTC GCCCACCACC TTACCGGAAA TGGCAATTGC GGGACGCGCC CCCAATCACT CACCACCCCT TTCGTCTCGC CCTTTTAACC CAATCCCCTC TCCACGACTC CATCCACCCA TCTCCTGAGT CCTGCCTGCG CTCGCCTCCT TTCTTCCCCC CCGGCCCCTT GGCTTTTGCT TGGTTGCATC GGGCCGGTCG AGCCGGAGAG

GCCGGAAAAG CTAGCTAGCT ACCAGCTCTC CGGTGTGGTA GTACGTCTGC CTGCAGCTGG GGTTAGCTGC AAGGGTTGGG AGCCATGGGG AGGGGTCGGG $\begin{array}{llllll}M & G & R & G & R & V\end{array}$ TGGAGCTCAA GCGGATCGAG AACAAGATCA ACCGCCAGGT CACCTTCGCC $\begin{array}{llllllllllllllll}\mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{R} & \mathrm{I} & \mathrm{E} & \mathrm{N} & \mathrm{K} & \mathrm{I} & \mathrm{N} & \mathrm{R} & \mathrm{Q} & \mathrm{V} & \mathrm{T} & \mathrm{F} & \mathrm{A}\end{array}$ AAGCGCCGCA ACGGCCTGCT CAAGAAGGCG TACGAGCTCT CCGTGCTCTG $\begin{array}{lllllllllllllllll}K & R & R & N & G & L & L & K & K & A & Y & E & L & S & V & L & C\end{array}$ CGACGCCGAA GTCGCGCTCA TCATCTTCTC CAACCGCGGC AAGCTCTACG D $\begin{array}{lllllllllllllllll}\text { A } & \mathrm{E} & \mathrm{V} & \mathrm{A} & \mathrm{L} & \mathrm{I} & \mathrm{I} & \mathrm{F} & \mathrm{S} & \mathrm{N} & \mathrm{R} & \mathrm{G} & \mathrm{K} & \mathrm{L} & \mathrm{Y} & \mathrm{E}\end{array}$ Agttctacag cggacagagg tatacgcacg catccgtgtg cgaichccac $F \quad C \quad S \quad G \quad Q \quad S$
TCACGCACAT ATACATGGAC ACATGGTACA TGTGTGTGTT CTGTGGCAGT TGCCGGAAGG CCGCAGATCC TCTCTCGGAT CTGACATCCG GGGAAGCGCG GGGTGGTGGC GGGAGCTTAG ACGGTTTTTG TGCTTGTTTA TAGGGGCGTA GTTTCACGGg GATCTGGGTA CCACAGGGTG GATCCGCGCA CGTGCGAGGC CAAGCTCGTC GTTTCTCATT TCTGGTGATC TGTGATTCGT TTTTTAGGGT TTAATCTGGG AGTAGAAATT AAGCCTGATG GATTTCTTTC CGAATTAGTT AGGGTTCTGA ATTGCTCCTT GGCTTGTGAA GAATGGTGAT TTTAGCAGAT CTGGTCAATT TTCGTTTGTT CCTGGGGTTG TGGAGTACTT GTATTATTGA TGGATCGATT GGTCTAGAGA TGGCGTGAAT CCCCAGTTAA ATTAATCGCT ATtTGTATAT GCATAAAAAG CTACAAAATT CGGGTGAGCA AAGGGCGAGG ACTAGGGCCC TCTATCGAAT TTGTCGTGTT GCACGTACAT GTAAGCTTTA ATTTCACCCG GGATCGAATC CGGCCGTTTT TCTCAGATTT TTCATTTGCA TGTTTTGGTC TCATATTTGG CAAGCTTAGC TTAGAGGCTC AGTTCAAGCA TGAATGGACG TCACGTGTTG CTTATTACTA GCTGATCTTC GAATGCAATC TCTTTGAAAA TAAAAATGAA TTTTGTTACT GCCAAATAAA TGAGATTTAG TACACGTTAT AAACCTTCTC TATCTATCCC TGCGTCCCTC CCACGGTCAA AATTAGGAAT ACACTTTTAC TGATATCATT ATGAAAAGAT CTCAGTTGCA TTTGCTTCAT ATGGAGTAGT GTATATATAA TATTTTTATC AAGTACCCAT ATCATTGTTC ATGATCCGAA AAGGGCATTA TATATATGAC AATCTGTTTT AATTAAATGA CTCAAAAAAC CATTGAAATC AACCCATTAA TTAGCAATGT TTGTCTAGAT CAAGTAAGCC CTCACACAAT TAAAATTAAA CCGTTAGCAT TGTTGTCTAG ATCAATTAAC CCAATCAGAT TTTTTCACTA ACCTTTTTTCA TTTTTGTGGA CAGAAAATTA AATACAATCA CATAACTTAT TACTGGGAAG ACTATATAAG ATCAAACCAT ATGGGTGGTT AATTTGTTTA TATATGGTAA CGTCTTAAAA TTTTTGTATT GCCTAGGAAG ATCTCTTAAT TTCCACAATG TTCTGTAACG TAACTAGATA ACAGCATTGT GTCCAACTCT CTTGCTGTTT GTCTAAGGCT TGTGTCAGTA TTAGTTTTGT TGGGATGCTG AAAATTTTCA GTTAATGATT CCATGATCCA GCAAGTGCGG CAAGCATTTA ATATTTTATA AATTTATTAG TTTTAAATTT GGAATTAAAT TCTCCTTGCA ATTTGCAAGT GTGTAGAAAT ACTAGATTAT ATTAAGGTTT TCTTTACTCC AAGATTTGTT CTGTAAGCGG GATAGTATGT ATTGTTAGCT TTATTTTCTT TCCAATAATA TAAACATGAT GCTCATCTTT TGCACCTCAT ATTTTATATA CATGTTTGTA ATTTCATTTG GGTGGGTGGG TTGGGGGGGG GGGAGGGCTA ACTACTCTAA CGTTATAATT TTTTTAGTTT GTAATATTAT TTAAGTGTAC ATAACTGAAC ACCTTGTAAA CAGGATTCCT AGGACTGCCC TGGAGGTATA AACTAGAGTA CAATCAAGTG TCAGGTTTCA AATGTCATTC GTTGTGTCCC ACTGACTCCA CCTTTCTGAT CGAACTGTCC TTTCATTTCA CTGCATTTCA ATCCCCTTGC CCGCAAAACT CTCCAAAGCA AAAGCTTTAT CATATGTCCC TTCTATGGTC TACACAATTG GCACCTACTA TTGCTCTACA CTAGTACTAG TATTTTATGC ATGCTGTCAC ATATATATGC ATGCATATCT TCAACATATA TACTATATAT ATGCATGCAA ATCTTCAACA TAGACTGTAT ACTAGATTTT GTTCATGATC ACTCACGTCA AATGATTTCA AGTCGTCCGA CTAATCGCAA TTAATCGCGA TTAGTCGGGC TAGTCGGTAA TTAGTACACG ATTTGCTGGA CGACTCGACC AGACAACCTA GTCGTCCTGG TCGTCCGACT AATCGTCGAC TAGGGCGACT AGTCGTCCGA CTTATGTGTC CTGGTCGTCC CGGCTAGGGT TTAGTTATTG AGCCTTTTTT AGCCCATGTA CAGTCACAGC ACGTCTCCTC TCCTCTCCTA TTCTAACCTA CCCGCCAACA GTCTCTGGCT CTTTGCACGT СТССТСТССТ CTCCTCTCTT GCACTGCCCC TGCAGTCCTG GACTTTGATG TCGACGGATA CACCGACGGG CGGCGGCTAC AGCACCCTAC GTCCCTGCCC CTTCTCCTGG AGTCCTGCAG CCTGCTGCAC TACTGCAGTC TCTAATTTAT ATAATGTATA CATGTATATT TATATATATA CCTATATAAG TATAGCTACT AGTGTAGGAC GACCAGGGAC CGACTAGGAC CGACTAGGGG TCGACTAGTC GCCCTAGTCG

TCGCCTAATC GCGACTAGTC GCCTGGTCGG TCCCAGGGTT CGACCAGGCG ACTAGGCGAC TTGAAATCAT TGCTCACGTC TTTTTTCTTT CTGAAAGTCT AAAGCACATG TTGTTAGGGC AACTGACACT CCCGTGGTAT TGAGGGAAAT TAAATACTCT ATATATGGTT TTGCTGGGTC AAGACATAAT TTTTCTATTA TTTTGTTTGT TACAATGTAT CGTAAGCTTA AATCAGGAAT TTTCTGTGTT ATAACTGCGA CAGATGTAAA TCACATTAAT TATGTGAACT TGAAGTATTG ATAGGAAGAT ATAGTAAAAC TAGCGATGCG CTATAAGATT TGTTTCGTCG ACAAGCATAT GCTAATACGT ATGCATATTA TTATCCTTGT TGACAAAATT TAGTTGCATA TTATTATCCT TGTTGACAAT GCTTCATCTT CTCCATGAAC CACATATTTT CTGTGGTCTG CTAACTATCC ATGCTAATTT TGAACTTGTA GCATCACCAA AACACTTGAG AGGTATGAAA AAAACAGTTA TGGAGGACCA
$\begin{array}{llllllllllllllll}I & T & K & T & L & E & R & Y & E & K & N & S & Y & G & G & P\end{array}$ GATACTGCTG TACAGAACAA GGAGAACGAG GTAATCTATC TAAGCTCGAC $\begin{array}{llllllllll}D & T & A & V & Q & N & K & E & N & E\end{array}$
ACATTTATTT ACCTGAATCA ATGTCAGGAG TTCTCTTCTG TTTTACTAGT ATTATATTTC CTCATACAAA GATTCTAGTA CTCATTGGTT TGATGAAAAC TTAAATCCAT ATATTGATGT TTAAAAAATT AGTTTCATGA TTCAACATCT CTTTGTGAAA ATTTAAAAGA TACAGTGGTT TTGTTCTCGT ACAGTTATCA CATATAATTA AAAAGATTCT AGAACTCTAA TTTGGAAAAT ACAGTTATTA TAGAAGCTAC ATCTTCGTTT TGTTCAAGTG AACATCTTAT TCTGTTTGTG TAGGGCTGGC AATTACAGAA GCTACATTTT CGTTTTGTTA TTTCCTGTTT CTTTTTATCG CGCGTACTTC CCAATTAGAG TTACTAGAAT CATTGGATAT ATAATTCCTA TGTTGTAGAA AACACAAGTT TACATTGAGC ATGTGAACTG ATATTCCATT CCCGTCACTA TTGCCCAGCC ACTATTTGCT TCAAAAGCAT TTAATGCTCA CTTTTTTTCA ATATATTTTG GTGGACTGAA GTACCTCTTA TTTTGCAGTT AGTCCAGAGC AGTCGTAATG AGTACCTCAA GCTGAAAGCG L $\quad \mathrm{V} \quad \mathrm{Q} \quad \mathrm{S} \quad \mathrm{S} \quad \mathrm{R} \quad \mathrm{N} \quad \mathrm{E} \quad \mathrm{Y} \quad \mathrm{L} \quad \mathrm{K} \quad \mathrm{L} \quad \mathrm{K} \quad \mathrm{A}$ AGGGTGGATA ATTTACAGAG GACTCAGAGG CAAGTTGACT CTACGTTTGA $\begin{array}{llllllllll}R & V & D & N & L & Q & R & T & Q & R\end{array}$
GTTGTATCTT CGCAACAAAA GGAATCTCTC TTGCCCGATC CATATTGTCC ATTAGAAAAA TTGCTACACA TGTTTGGACA ATTTCATCAA AATAAATTTG TGGAACTGTC ATTTCCAGTG TATGAACTAT TAGGTACCAG GTAAATGACA TCCCTTTTCA GGGAAAAATG TTTCTGTATT GTTTGTTTGC CCTACTTTGG TGATTAACTA GTACAAAACA TAAAGATCCA TTGCATAGCT AAAGCATTGG GTCTTCAGCA TATATGCATA CCTGAAAAGA GTTTCAGAAT TCTCATAACC TTTGAATTAG ATATCATTTA TGTACACAAA ATGAATCCAG AAACCATAAT TTAATCTCAA CGAAGTTAAA CTAAGTTTCT TAATGGAATG TGTAATGCTT AGCTAAGATG CACATATTTG ATTTTCGCTT TATTCACAAT TACAGGAATT

N L
TGCTTGGTGA AGATCTGGGG TCACTTGGTG TCAAAGAGCT TGAGCAGCTT
$\begin{array}{llllllllllllllll}\mathrm{L} & \mathrm{G} & \mathrm{E} & \mathrm{D} & \mathrm{L} & \mathrm{G} & \mathrm{S} & \mathrm{L} & \mathrm{G} & \mathrm{V} & \mathrm{K} & \mathrm{E} & \mathrm{L} & \mathrm{E} & \mathrm{Q} & \mathrm{L}\end{array}$ GAGAAGCAAC TTGATTCATC CTTAAGGCAC ATAAGATCCA CAAGGGAATT $\begin{array}{lllllllllllllll}\mathrm{E} & \mathrm{K} & \mathrm{Q} & \mathrm{L} & \mathrm{D} & \mathrm{S} & \mathrm{S} & \mathrm{L} & \mathrm{R} & \mathrm{H} & \mathrm{I} & \mathrm{R} & \mathrm{S} & \mathrm{T} & \mathrm{R}\end{array}$ CATGAGAAAC CATTTTCTAA TGCGTTATTT TTTTGGATGA AGCTAGTGTT GATAACACAG TTCATATTTC TAATTAACAA GCCATTTTGA ATATAGAGTA CTCTATATAT AATTGTGATC GTCACACTAG TATATAAAAG CTCTATACTG TTAGAGGTAA ACCTATTTGC ACTGGCGTTT TTTTACAATC GTCAGTACTA GAGGTCAGTA GAAATAATTT TTTCTACAAA CGTGTAACTG AAAACCTCCA CTGGCAGTTG AACTAAGAAA ACCGTAGTGA AACTCGAATT CCATAGGCGG TCAAGGTAAT AAAACCGCCG GTGAAAATAT TTTCCAAGAA ACATAAAAAT AGGTTTAAAA ATAGCAAAAA GATATTTTTA TTAGGAGGGA GGTTCTCAAC TACGTATAGT ATAGTACTCC TATTTATAGT ATATATGACT TTAATTTGTA ATGGGACTCC TGTTACCTTT AGAAGGTAAG ATCTTATAGA AATCATAACC CTTGGTTTAT TATAAAAAAT AAACAATCAA ATGATATAAT AAGCAAATTT CTAAAATCGC ACCATCCCTC AAGAAATAAA TATCTTTTGC CCCCTCCTTA TTTGCCCGAC ATGATCAAGC ATGGACGGAG CCAGAAAAAA GTTTAGAAGG GACTGATCTA AACTGATGCA GTATAGAAGC CTCTTCTATA TTATATTGTG CACATTTTAG ATTAGGAGAG GCTCTAGTAA GACTACGTGG GATCCGAAGC GATAAGGGAT CTCGAGCCTC GCCTGCCCCA CCGCTCGATC CGTCTCTGTG ATCAGGTAAA GAGAATCGTT TGGTATACAC GATGAAATTG TACACGCACG TGAGTAATTT TTTTATCTTC GCATTGGCTT GAGTAAGTTT GAGTAGTGAA GCGTCAAGAG CATAATAAAA CTACCAAAGC CATTTTTTCT ACCCCCAAAG TTGTGATCAG AACGGTGAAG AATTGCACCA CTTGTATCCT TTCGTTAGAT

CTAAACTAGG GTTGTATATA TAGAGTAGTT AGGTATTTTT TTTCAAAGTC GCAAGATCTG ATGTAATTTT TTCTTCACGT CATAAAAATG TTGTGAATCC CGTCAGTTTT TTTTCCAAAA ATGCTACACT TAAACTTTTTT TTATTACAAA TAAATAATTT GAAGAAATAC ACTTACATTT TATACCGTAT GTCACGACAT CACGTTACAT TAAATAGGAA AGTTGGATTA TACATGTACG TTCGATCTAA TGGAAGATAG TTTCCCTAGC TATTTCTCCT CCTACCACCA AGGAAGTCAT AAACATCTTC ATAATCTACT CCAAATCTTG ATTCCCTGGC AAGATTTTAA AAAATGTTCC CCCACGATTC TCTATCTTAA CTCCCAACAC TGGCCCAACC ACGCGGAAAT ATACACATGT ATATTGATTG GCCAAACTAA AGACATAATG ATGTGGGGAA GAATAACTGG AACATGGTTC TCAATGCAAA TATACAAGTG AGAAAGAAAA TATATAAGCA ATCATAGTGA TTTGGATATA GTCCATGATT TCTGATACAA AATTGTTATA TATATTTTAG GAGTGGGATT TTGAAAACTA TTGGAGAAGC TCAACCAATA ATCTCCCAAT TAAGTTTTTT AGCCACTTGA AAAACTTACT GATTTACCAA TTGATTTTTG GAAATATTAA AGAGTCCAAC ATATGAAACT TAACATATGG ATTAACAGTC CATAGATATT TGAGAGTCCA TCTATTGTAA TTCATCTCTA ATATTTTCTG TGACTAATGC ACCTTAATTA GGTAGGTCTG GAATTTGAAA TATTTTGAAT GATGAGATTC ATTTCATATA AAAAAACTCG ACAAACGGGG GTATGAGAGC CTCATACATT ATATTAAGAA GACTTTCTCA TGCAAGTCGA GAAAACCCTC GAACACCTAT CACACCCATA CACAATGGCA CCATAAATCA TATGAGAAAC GACTGTGGTC GGGACCGGGC CTTAGACCCA TGCTTTGGCG TGGTACTGAC GAGGAGATTT CTTTAACCAC AACCTGAAAT TCGCTCCCAT GGGAAGTCAA CTCCAGGATC TGAGTAGTGC TACTCAGACC ACCTAACTAA CTCAGCTATA ACCCTTTCGC ACATACATTT CATATAGGTA TGAACGATTT TGTATTTTGT ATCTTTCAAA TGCTAATCAA GGAAATTTCT GATTTCGCAG ACACAACATA TGCTTGATCA GCTCACTGAT $\begin{array}{llllllllll}T & Q & H & M & L & D & Q & L & T & D\end{array}$ CTTCAGAGGA GGGTATGCTA TTAATATGAT AGAATTTATA AATATTTCTA L $\quad \mathrm{Q} \quad \mathrm{R} \quad \mathrm{R}$
CATGTAGATA TCTTTTTGGA TGATTTCTTC CTAGATAAGA GCATATGTAC TGTTCTAACT AATTAATGAT ATCGCTAAAC CATGTCCAGG AGCAAATGCT E $\quad$ Q M L GTGTGAAGCA AATAAGTGCC TTAGAAGAAA GGTATGCATG CATAATGCTC $\begin{array}{llllllllll}\text { C } & \mathrm{E} & \mathrm{A} & \mathrm{N} & \mathrm{K} & \mathrm{C} & \mathrm{L} & \mathrm{R} & \mathrm{R} & \mathrm{K}\end{array}$
CTAACCATGT CCCTTAAATG CTGCATATAC ATATTTTACC CGGTCTTATT TAGATACTCG AGAAAACATC TTATTATTTT GTTTTGATGT CATGTTTTGA GTTAAAATAA ATGGAATATA TCAATAAAGC AGCATTGAGC TCTTCAAGTT GGAAGATCTG TTTTGATGCA TATGCTCGTT GCACACATAT AATCTGCGTA TATATGTTTG CGAATACATG TGCAATGAAC ACATTAAATT GAGTTTCCAT GAGCACAAAT ATACACTAGT ACTGGTTCAT GTTAAACAGT TGAACCAGCT ATCACTTATA TATGCTGTCT CCAGCAGCAG CTACGACCCT ATCACGTCCC CAATCTCATC TATTATTTCA AACTTTACTC TATATATAAA TAGTATAATA TACAGTACAA ATTCTTATTT TACATGATCT GTTGCGGATA ATACTTCTCT ATGCATGGTG TTTGTCTTAA TATATCCGCC ACAGGATGTT TTGCATAAGG AATACTGTTG TTCAACTGTG GCAGCACAAC TGTAATTCAT ATATTAACCT CTCAAAATAT ATATTGTGCA TATTGTTACA TTTGACTGCT ATTACAGTAT GCATGTGATA ACAGTATTTA CCAACTAAAT GAGTTTTAAG GGGGGTTTCT GAGATCAATG AGGTTTCTTG TTTCGTATAA AAAAATTAAT GTGGTTTCTT CACGTGATTG TTTTGCAAAT AAAAAGCTGG AGGAGACCAG CAACCAGGTG $\begin{array}{llllllll}\mathrm{L} & \mathrm{E} & \mathrm{E} & \mathrm{T} & \mathrm{S} & \mathrm{N} & \mathrm{Q} & \mathrm{V}\end{array}$ CATGGCCAAG TGTGGGAGCA CGGTGCCAAC TTACTCGGCT ACGAGAGGCA
 СТСТССТСА СА $\operatorname{CACAGGCCC}$ CATCACATGT TGGCAATGGT TTGTTCTTTC $\begin{array}{lllllllllllllllll}S & P & Q & Q & Q & A & P & S & H & V & G & N & G & L & F & F & H\end{array}$ ATCCCCTGGA AGCTGCAGCA GAGCCAACCC TGCAGATCGG GTATGTCATC $\begin{array}{lllllllllllll}\text { P } & \mathrm{L} & \mathrm{E} & \mathrm{A} & \mathrm{A} & \mathrm{A} & \mathrm{E} & \mathrm{P} & \mathrm{T} & \mathrm{L} & \mathrm{Q} & \mathrm{I} & \mathrm{G}\end{array}$ ATATGCCTCC AGATGCATCA TGTGATTCGC TATATCGTAC ATAAAGCGAG CCTGTGCATC GATCTGATCA TGTCTTGTTG TTGTGTTTGG CATATGCATG TTTGCAGGTT CGCTCCTGAG CATATGAATA ACTTCATGCC AACATGGCTA
$\begin{array}{llllllllllllll}\mathrm{F} & \mathrm{A} & \mathrm{P} & \mathrm{E} & \mathrm{H} & \mathrm{M} & \mathrm{N} & \mathrm{N} & \mathrm{F} & \mathrm{M} & \mathrm{P} & \mathrm{T} & \mathrm{W} & \mathrm{L}\end{array}$ CCCTGAAGAT GGATCTTGAG GCAAAGGAAA TAAATAAAGA TGCGGTGGCA P *
GCATCATACT CTATGCAAGC TAAGAGTGAC AGCTGTGTTT CAGTCACATA tatgatctag tctatgtgtc antgtgtcga AAAACATGTC tGTGAttTtG

9951

TTATATGAAT GTAACGCGCA ATGAAACATA CAGGACTAGC TGCTTGCTTG acgatgcgtt tgcgtgtatc cgtatanatt anaggctata agccacatcg tATATGCGTA CTGCACATGC GTGCATTATC TAAAGGGCGT GATTGAAAGC CTGCATAGAT TCTAGGTTAG GTTCCACGGG TGCAGGTAGC GTAATGTTTG GATGCCTGTA TTGGTCTTTG GACCAAGCTG GATTCATGGA ACTAGAAAAA AATATAAAAA TTTTGACTTT TTTGAAATTT AAACACACTC AATCTACGTT GATTCAGAGC AAAACGAAAG TCATAAAATA GACGTGGGGA TCAGGGTTGA GCGTATCTAG TGGAGCCAAG TTGAGTTGGT GCAGGCACAC AAATCAAGAA AGCGTTTTAT TTATATTTTT TGTTATATCC TTTTAATTGA TATATCTAAT TAATAAATCG ATTGCACTTT CGTGTTTACA AAACTAAACT ACTACACTTA CTATATAACA TATTATATAT TTATTTATTC ATCTTGTTAA CCCAGTAAAC CAAACATTGT TTCCTCTCCT AGCCTCGCAT GCATATGGCC AAACCAATCA CATTTGTATG TGTACCAAAT CAATATGGCT CAACATGGTT CGGCTCTGTT GAGCACTAAA AAGAGCACCG GACGGTCCGC GCCTGTGGTT CGGATGGTCC GCGGAAGCGC AGAACAGATT AGGGTTCCGA GTTTCTTGCT ATGTTTATTG GCGAGAATCT CGGGATTAGC TCGGAATTTT GTTGGTAACG GGTCCAGCCC CСTCCTCTAT CAATCAATCG AACCCTCAAT CAATATAATT TACATTTATT CTTAGTAGTA GTTCTAGTCT AGTTCTAGGT TAGTCTTCCA ATCTCCAAAA TCTTCGCTTC TCTTCGACTC TACGTCGATT AGAGGAGTCT ATGTCGGCCT GCCGAGCCTA GACATCTCCT AGGATCTCTC CTCCCCGACG GGGTCCCTCC CGGGAGCGAG ATCCAGGCGC CGCTGGCGAC TTCCGCCGCC CTGCGCACGC GCGGACCGTC TTGCCCCAGG GCGCGGACCG GCAGGCAGGA AATCCTAGCC CTACGCCAGG CCGCGGACCG TTGGCCCCTG TGCAGAGAGC ACCGCCATGG TTCGTGTTGA GTGATTGGCG CCCGAAAAAG GTGTCAACAT ACTTTTGGCG ACTCCGCTGG GGACAACACA TCTAGACCCA TCAAATCGGC CCTCAATGGC CGGTTCAAGG GATAGTTCTG AAGTCTCCCC CAGCAACATT ATAGAGCCGA CTTGGGAAAC CTTGCTGGCT CACGAACAGC TCCAGTTCGA GGAGCACAAG GAGCAGTTGA TTCAAGAGGC AAAGGCGAAA TTCCTGGCTA ACTTCAAAGT GGACAGGAAC AATAAAGTCG TCTGACAACG GGCGATGGAT CCGGCTTCGC
C. Genomic sequence of maize $A G L 2$-like gene ZMM3 (clone $\lambda$ DASHII-wd10).

GGATCCACAT GGTCCCGTTG TGTAGACATG ATCGTTTCCT CACGCGGTTA AGCGTAAAAT GAGGCACGAA GCTCTGATAC CAATTGAAAG TAGCCTAGAG GGGGGGTGAA TAGGCTACAC CTGAAAATTT TCACTAAAAA CTTCGAAATA GGTTAAATCA AAGTTGCACG GGTGCAAACC AGTTCAGTCG ATTTTAATCC CAACTGAACA AGTTTGAACC CACTCAACTT GAATTTAGTA ATCTATTGAA CAAATTCGAA GTAGTAAAGA AAACAGCTAA AGATTTGCCC TACACAAGAA CTACTTGAAT GAATAATATG AACCAACCAC CGAATATGAA AGCTTAACAA GAACACACAA GAACACGCGA TATATCCCGA GGTTCGGCAA CCACCACAAA GGTGTCCTAC TCCTCGTTGA GGAACCCACA AAGGGCCGGG TCTTTTCCAA СССTAATCCT CCACAAGCCG ACCACAAAGG TCAAGGCAAT CTCTTCTCAA ATCTGCTCAA GGAGCGGGTG ATACAAACTT CTTGGGGTCG TCCACAAATT TGGAGACTCC CAAGCAACCT CTAACCGTCA AGGAACACGA GGTTCCAAGA GTAACAAATC CGCACACGGT CAAGTTTGCA ACGAGCTCAA GAACAAGAGA AAGGGAGAAT CAAGATGAAA TTGACAGCGA GTTCGATCGA GTTCACCTCA CACCAAGGGT CCTTCAAATG ATTGAAGGAG ATGCGATTGC GGGTGTGAGA GGTGAAGTGA ATGCTCTTGT TTGAGGGTTG GTCAGCCAAA GATTCGTGGG AGAGGTAGAA GTAAATGAGA GAGAGAGTGT GAGGGGGGTA TATAAGGGAT CCCCCAAAAG CTGGCAGCCG TTGGGAGAAA GAGGGCAAAA ACCGGTTGAA CCGGTTTTCA AACCGGTTGA ACCGGTTTCT ACCAGGGGGA TCCCGGTCCA CTGGTCTACT CAGCCGGACA CTGGACCGGT TTCAAAACCG GCTGAGTAGG GTCAAAATTC GGCTCAACCG GTTTCAGAAA AATATCTGCT CCGACTTTTC TGACAGCTCT GACTGTCAGA CAGGTCAGAG CAGAGGTGGC AGGATGAACA GTACCAAAAC CGGTTGAACC GGTTTTGGGA CCGGTTGAAC CGGTTTTGGG GGCTGAAACC AAACTTTGAG AATTTTGAAG AGAACTTAGG TGGAGACTTT GTGGGAAGTG AAATTTGTTT TTCTCAAGAG CATTCATGAT CTGGGAAAAA TGATCTCAAG GAGTTTTCAA AAGAATTGAA CTTGGCTCGT TTCACAACTT ACTTAACCGT CGCGGATCCC TCTTAATTGT ACGGCGATTC CTATGACTCA AGAATTATAA ACTTAGTACC GCCGACGATT CATAGCACTT GGAGCACGCC

ATTTGATGTG GAATTTTAAA TCTGCTGTGC TTTATACTTT TACGCTCGTA GGATCTGTGC TTCTCCTGTC TGTAAAAATA CTGTGTACAC ACTAGGAGCA AACTTGTTAG AATCTTAGTT TGTTTTGTCA TTAATCACCA AAACCCTCAA TTAGGGTTGA TTGCACTTAC AATGTGACAT TGCCAACTAG AATTATGTAG GTGAGCTCCA TCTAACTCGA CCCCTTAATT GCTTAATTAA AATCTTTGTA AGGCATTTGT GATAAATAGA GGGATGCAAT CTTAGCTTGG CCATTTAGTT TATTTTTATA TTTGTTTTGG TTAGCATGCG TGATTAGATT TTAGAAAGGA ATATTCATCC TCTCTAGTCC ATCATCTTGA TCATACACGC TTCCATCACC CGCGGTCGGC GGCTCTCGCC ACCTCACATG TCACCCACCT CTTGCTGCCA TCCCCTTGAC CCCATCCTCC CTTAATCATA GGGTAGCCAT CAACCACTTT ATCGTGATGC CCCACTGCCA ACCTTTTCTA ACCGTTGTCT CACACTGCCC CTATGGATAG CGCTCCACCT AGGGTGCTAA TGGATCTCGA TCAAAATATT TATTCACAAT TGGTTTGGGC CATTAATTAC TTTTAGTTCA AAAAGAATAG AAATGATGTC AAATCCTAAT TCGATTTGAT CCTTAAATCT TATAGCGTAA AATTTAGAGC CTGTTACCAC CCCTGGCTCC ACCGCTCCAT GGTACCGTTT GCTCGTCCTC CACCACCTAT GTGTCACGAC CACCGCCTCT TAAACCCTAA TCCTACACCA TCCGCTGAGT GAATCTTCTG AAATCCAAAC CCTACTCTTA CCGACTCTTT TTATTCTTCT CTGTGAGAGG CAGATGGGTC ACATGAGTAT ATGAACACAC GACACATAAA AGTTTTCGCG TGATTATATG ATAAACATAC TGAATGAAGT TTCATGTGAA AAATCGCTAT GTTTTGTTTT TCTTTCTTAA GCCAAGACAA GTGTGCATAT GATTCTATTT GATCTTGTCA CCAGCCAAAA CCAAATTAAG GTGTCGTTTG GTTCTAGAGA TTAATCTTTA GTCCCTGGTT TTTAGTCCTG TTTAGTCCTT TTTCGCCAAA CAGAAGTACT AAAATATAGA CTAATCGGCT TTAGTTTTTT AGTTCCTCAA AGGGTAGTTA AAAGGGACTA AAGCACTTTT ATTCCTCTTC TTGCCCTTCG TCTATTGCTC TCTCTCTCTC TCCGCGATGT CTTAAACATA CAAGGGGTAT TTAAGTCTTT TTTTATAATG CACTTAATGT GTCCTAAACA TATTTAGTCG CTGGAAATAA ACATGTAGAA ACTAAATTTT TTGTTCTAGG GCTAATATAG GCCCAAACAG GGTGTAAAGT TGTGCCACTC ACAATCAGGG GCGGAGCCAA AGGGGGGGGG CAGCAGGGGC CATGGCCCCG CCCAAGGCTG CGGCGCACAC ACACAGATAT ATACACTCTA AATTTTGTAT AGTCTAAATA TATATAATTT AGATTTTGTG CAGTATAATT AATCAAAGGT ATAATATAGT GGTTGCTAAT ATATGATCCA TAACTCTGTT GTAGTATGTC AACCAAAGTT TAAAAAAACA TAATATAAGA TAAAATACTC GTTAAATGAG CAATCGATGA TATGAGACGT CAAAGCTAAT TCGCTTGCAA ACGTTGATAT CTAAACCTCA CTCGTTTATG ATCCATCTTA TCATCTAGCT GGGCAGCTAT CGATTGCCGT CGACCATTTG ACTTGCCTCT TCAATAGCCC CACAACCAAA GTCCAGAGAA GGTGATCACG CGAAACAACA GAATGAGCGC CAAGAGTCCA ACAACATCAA TCACCAGAAC CACATGTCGC AACCGGGACA TCCGCATAGA CTACAAAACT AGATCCAAAT ATGGTTAACT TTATTATTTT GGTATTGTTA CCGCGACAAC TTTAGTTCAA TATATCAATT AACTAGAAAA TGAATTCATG GACTAAGATA ATTTATAAAG AACTAGAATT CTTATTCCAT ATCGAGTGCT TAAGATTAAT AACATCATAT AATATTTTTT CACCATATAG TATTGATGAA TTGATCGGTC CCCCTTATAT TGTAATCTTA GCTCCGCCCC TACTCACAAG TCACCATCAC AATCACAAGA GTGTTTTCTT GAGGCTGCCT TACCTAGCCC TCATCCCATA AGCCATCGAC ACGTATCCCT ACATCCCCTA CGTCGTCCTG GGCCTATATA TGCTACACTG CACGGCGTGT GCTCTCTCCC CCCTTTGCCC TACGCTTGAC TCGCAGCAGC GGCACGCGTG ACGCGTGCGA GCGAGAGGAC GGCGTCCAGA AAACAGCCGC TGCCACGTGG GCCATCCCAG ACCATGCAGG TACGTACGGT CCGGTGGCCA GGGACCAATC ACGTCGCCGC TGGCTGTGTT TAACAAGTTA GCTGTGGGAG AAAGCAACAG TGATAGGGAG AGAGAAAAGC ACAGGAGACC TCCGTCGTCG CTGTGTTCTC TCTCTACGCA GGCCGATGGA CAGGTGAACA GAGACCGGCC GGAAGGGGAG AGGAGAGGAT GGGAGAAAGA GAGAGACTTT CACTATAAAC AGACAGACTT GCGTTGCGAG AGAGGAGACG GAGAGTCAGA GACCGAGAGA GGGACGATAG AAGGCATAGG AGCTAGGAGC GATGACCGTA CGCGCATATA CTAGGAGCAG CAAATTAAAG gCATATATAG GCAAATAGTA GTAGTAGCGA GTAGCGACGG GCGAGAGAGA AAGCAGTGCT ACTGCTACGA CTACTCCTTA GCTCGTAGCC GGGTAGAAGG TGACGAGAGA GAGAGAGAGA AAGGGGGAGA GAGATCTTGA TCTAGTTCTA GTAGACTGCT AGCAGTGAAC AGGCCCGGTG GAGGAGCTGA GGTAGCTGGG AAGGAGAAGG AAGGAATCGA AGAAAAAGGC AGCAAAACAA GCAGGATGGG M G GCGCGGCAAG GTGGAGCTGA AGCGGATCGA GAACAAGATC AGCCGGCAGG $\begin{array}{lllllllllllllllll}\mathrm{R} & \mathrm{G} & \mathrm{K} & \mathrm{V} & \mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{R} & \mathrm{I} & \mathrm{E} & \mathrm{N} & \mathrm{K} & \mathrm{I} & \mathrm{S} & \mathrm{R} & \mathrm{Q} & \mathrm{V}\end{array}$

## 4451

4501
4551
4601
4651
4701
4751
4801
4851
4901
4951
5001
5051
5101
5151
5201
5251
5301
5351
5401
5451
5501
5551
5601
5651
5701
5751
5801
5851
5901
5951
6001
6051
6101
6151
6201
6251
6301
6351
6401
6451
6501
6551
6601

TGACGTTCGC CAAGCGCCGG AACGGGCTGC TCAAGAAGGC GTACGAGCTG $\begin{array}{lllllllllllllllll}T & F & A & K & R & R & N & G & L & L & K & K & A & Y & E & L\end{array}$ TCGGTGCTCT GCGACGCCGA GGTCGCCCTC ATCATCTTCT CCAGCCGCGG
 CCGCCTCTTC GAGTTCTCCA CCTCCTCATG GTACACGCGC GCGCTCTGGC $\begin{array}{llllllllll}R & L & F & E & F & S & T & S & S & C\end{array}$ CACCTGCTGC GCGGCCTTAT TAGCCCTCCG CTCCTCCCTT CTTTTAATTT ACCACACCAC ACGCTCGTCG TTGCTCCAGA GCATCGATCA TCGGATCTCC AACAGCTCTG GGTCTCCACC TAGCATCTGG ATCTCCAACA GCTCTGGCCC TCCGCTCCTC TTGAATCTTG AGAACCATCC ATGCATGTGC GCGTGACATT TTGTGCCAAG AAGGATTTCA GACACGTACG GTAGGACGAT ACTTGCTTGG AATTTGGTGT TCATCCGTGC CAGTTCTATA TATTTCCTAT TTTCCCCCTT TGTGGACACA GGTCCTGAAA TTTCCCATAA ATAAGATAGT TTTTGGTTGA GTTTGGCGTT TTTTAGTGGG ATTTCATGTG AAGGCTAGCT AGCTGTTTTC TCGTACATAT ATATAACTCC TGTATGCTTT CTTTCTTCTG TCTGGGGGAA TATCGGTTCT GGTCATTTTA TCATCTCTCT CAGCTAGTCA GCTGTCGCCT TCCCTCTTTC GTTTTCTGCG CGCGAGTTCA GTAAAACTTC AGTTAATACA TACGTCTGCG GTAAAGGGGC AGTCGATATA TAGAAGAGGA CAGCACATAG ATGATCTCGA TCTCTTCACA ATCCGTTTGA TCTATCTATC TGTAGGCTGC AGCTCTAACA CTCCGATCCT CGCCTCTTTT TTAGCTCATG CATGTCAGCA GGAGATCATT AGCTTCTTGC TTCCTGGTGA TGTTTCATCA TCAAAGGTCA AAGGAGCTAG CTTGCAGTTG CTCAGCTACT ACCTGCTGGA CTGGCGAACC ATTCATACAG ATCCAGATCT AGCTGTGAAC ACCAAACATA CCATATCCCC CCCCCCTCTC GTGTTTACCA TGCATTTTTC TGCGTTTATT TCTCTTAGCT TGCTTGGATT CTACTGTTCC ATTGAGACCC AATCCCACGG CATCTGCTCT AGCTAGATTC TACTGTTCCA TTGGGCAACT TGAGAGTGCT GAGACCTCTC TCACTCTCTC TCTACGTCTT GTCAAATGTC TAGGCTCCTC TGTCGTCGTG CAAGCGGCTG CAGCAGGAGg CAAAGCCACT GATGGGAGAG AGAGAGGCAC ACAACACATG TAGTACTAGA GGTGTGGTGT ATCGATTGGC CCGTCAGGAG TTATCCCCAG TCGACCATGG CCATGGACAG GCGGCATCAT CAGTGTAGTA GTACTGCATG CATGCCTTTC ACTCCTTTCA GGCATGCCCT TTCACCCTTT TAGGCATGCA GGCGAGAGGC TGCAAGGTTC ATATGTATCC GGACCATGTA TGAGCATCGT GTCATATCCT ATGCAAAACA ATAGAAAATG CATGCTAGCC CCGTTCTTGT TTTATGTGCG TGCGTGCGTG TTGGCGTGGA GTGGAGCTAG CTGCTAGCTG ACGATGCAGA CAAATCCAAT GCAGGCTGAC GATGCACGTC ATGTGTCGTT TCTTCCAAAA AGCATGAATG CGTCGGAGGG AGCTCTAAAT AAATTTACTG ATTCCAGTTG TCCAGACCGT ATTCGGTCAA GAAAATCCAA TTTTGTGTCG GGACTCGGGA GGTGTATATT ATGCATGCAT GTGTAGTCCA ACCTTGTTCA TTTGTCTAGT TCAAGGCTAT ATTACAAGTC TCTAAAATTA ATAGTTAGTA GCTAAAATTA GTTGGAAGGT TTAAAAACAT GTCAGCTAGT AGATCAGCTA ATTATTAGTT ATACCTCTTA AATAGCTGCT TCAACCCAAC TAAAACATGA CAATAACTTA TTAGCTGACT AACGATTAGG TTTAGAACAT GACCTAAGTA TATCTCAGAA TATGATGATT AGTGAATATA CCTTTGACAA TTGTTATATG TTTTGTGCAT ATTTAATATA TTTTTTCTCC TAATTAATAG GAgGggtaca Aatatataga grgatangat trgattatta gagatgatag GCTACTGGTA TTAATTGGTT TTACCTTTCT ATGAAGTATA TATAAACACA AAGTATTGAA TCAACCATAT GTAAAAGTTT GTTGGTGTCT TGTCCTCTTA TTGATCCTCA ATGCTTGCTT TCCTCAACAG CATCTACAAG ACGCTGGAGC $\begin{array}{lllllll}I & Y & K & T & L & E\end{array}$ GATACCGCAG CTGCAGCTTT GCATCCGAAG CATCAGCTCC ACTAGAGGCT $\begin{array}{lllllllllllllllll}\mathrm{Y} & \mathrm{R} & \mathrm{S} & \mathrm{C} & \mathrm{S} & \mathrm{F} & \mathrm{A} & \mathrm{S} & \mathrm{E} & \mathrm{A} & \mathrm{S} & \mathrm{A} & \mathrm{P} & \mathrm{L} & \mathrm{E} & \mathrm{A}\end{array}$ GAATTAGTAA TCTTATTACC GATTTCTTCA CACTACTTTT AGTGAGTGTG E L
TGTATGCATT CCATGTGTGA ACAGAAGCAT GCATTTTTAA AGAGTAAACG CATCTTCAAA GAACACATTA CACATGCCTT AATAATTATT TCTGGATATA tatatatata agagatatgg tacgcacait anatantata anatgtaggg AGATGTTTGA CTAACTGTGG GTAGATAATG TCTTCATTAT TAACAAAATA ATAAACACTA TGTTTTTAAA TGAAGTCTTA AAGCTTTGTC TTCATTATTA ACAAACTAAT AAACACTATA TATGTTTTAT GGCTGAGTAA TAAACATTCA CCTTAATTTG TTGTGGTTAT GTTGTATCTA GGATATTCTA TCTAATAAAT AATGAAATAA TAATGCTGGC AAGAGGTACT GATGGACATA TAACACTTTT GCAACTGAGT GTGTATAATA TATCTACTAT TTAGTTTTTA CACTTCGATC TTGTGTTTCA TGTGCTAGCT AGCTGTGTAA TGTCAGCATG CACGTATGCT

AACAAGAGGT CGTCCTGCAT TTCAATCTCA TCATTTGCAT TTTGCACTAC ATTTAAAATG CAACCAATAT AATCATGTCA TATACATGAA TCAACATTTT CAAAATGACA CACTATATAT ATGTCTTAAT TACTAGTAAT AAGCTAGGTT TTATGTATGT TCACCAAGAC ACATTTCTGT ATTTTAATAA TTACGATTTT ACTCAAGCTA ATTCTTAGAC CTCCTTTTCT TGTCCAACAG AATAATTATC $N \quad N \quad Y \quad Q$
AGGAGTACTT GAAGTTAAAG ACAAGAGTTG AGTTCTTACA AACAACTCAG $\begin{array}{llllllllllllllll}\mathrm{E} & \mathrm{Y} & \mathrm{L} & \mathrm{K} & \mathrm{L} & \mathrm{K} & \mathrm{T} & \mathrm{R} & \mathrm{V} & \mathrm{E} & \mathrm{F} & \mathrm{L} & \mathrm{Q} & \mathrm{T} & \mathrm{T} & \mathrm{Q}\end{array}$ AgGTAAGAGA CATGCATTAC TTTACTGTCA GTGAACTATA ATGGTGGAAA R
ATTGGAATAT ATATATCTAT AACAAGTGGC AGTCTAATTA GGTTTGGTTA TCTTAATCTG CAGAAATCTA CTTGGTGAGG ACTTGGGTCC ACTTAGCGTG

| N | L | L | G | E | D | L | $G$ | P | L | S | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AAGGAGTTAG AGCAACTTGA GAACCAAATT GAGATATCTC TCAAGCATAT $\begin{array}{lllllllllllllllll}K & E & L & E & Q & L & E & N & Q & I & E & I & S & L & K & H & I\end{array}$ CCGATCATCA AAGGTAGAGC CAATGAAAAT TTAGTAACAA GCAATAAACA R S S K ATAACATAAG ATCAAATTCA GTAATTTTCT AACTAGCGAT AAACATTTAC AGAACCAGCA GATGCTCGAC CAGCTCTTTG ATCTCAAGCG CAAGGTGATC

$\begin{array}{llllllllllllll}\mathrm{N} & \mathrm{Q} & \mathrm{Q} & \mathrm{M} & \mathrm{L} & \mathrm{D} & \mathrm{Q} & \mathrm{L} & \mathrm{F} & \mathrm{D} & \mathrm{L} & \mathrm{K} & \mathrm{R} & \mathrm{K}\end{array}$ AAATCATTTT CATTTTTTTT TTGCTCGCTT TTGGGCTCTC TTCCTAAAAG ACTCCCGAAA TACTAATCAA CGGTGAGGTT TTGCAGGAAC AACAACTGCA E Q Q L Q AGATGCTAAC AAGGATTTAA GAATGAAGGT AATGCATTGT GAATAGTAAG D $\quad \mathrm{A} \quad \mathrm{N} \quad \mathrm{K} \quad \mathrm{D} \quad \mathrm{L} \quad \mathrm{R} \quad \mathrm{M} \quad \mathrm{K}$ GCTCAGCCTG TTAATACATT TTATTCCCAG TGATGTGTAC GTTTGCACCT AATAATACAC ACACTATTTA TCATTTATGG TGATAAATCA ATAGCCCACT ACCAGCATCC GATCGAACAC ATTCAGTCAA GTCAGCCACA CGCATCCAGA CGACTAAGCG AGGACCGAGC ACGTTCTAAA CATGATAAAA CGAGTCTATC GGATACCCAA TCCGTTACAA AAATGACTTA AATAACATGA AATAAATTAA AATAGTTGAA TATCAGATAA AAGGGAAAGA CCCAATCCTA CGATGCATGG CAGGAATGAC TTAGATGTAA CACATAATGT CTTAAATGCT ATGAGCTAAA AAGAATGACT TACTGCAATG CATGAATAAA TTAAATGAAA TATAAAAAAA CTTGGAAACC TTGCATTAGA AAGAATGACT TAGATTCAAC TCTGCATAAC TGGAATGACA TAGATGTAAA TAAAATATCA TAAATACTAT AAATACTTAG ATGCAACATA AAATGTCTTA AATAGTACTG TAAGTCGGAA GGAATGACTT AGATTAAATA CTCATTGTAT AAATGACTTA GATGATATAT AAAAATATCT TAGAAACTAT GGGTTGGAAA GAATAACTTA GATTCAATTC TGCAATAGCA GGAATGATTT AATGTAAATA AAATATTTTA AATACCAGAA TAAGTTACAT GCAACATATA ATGTCTTGAA TACTATGAGT TGGAAGAAAT AAATTAGATT TAATCCTATA ATGTAGAAAT GACTTTGATG CAATATAAAA ATATCTTTAA AACCGAGTTA AAAAGAATGA CTTAGATTTA ACTTTGCAAT AGCAAGAACG ATAAAATATC TTAGCTTAAA TACTGGAATG ACTTAGATGC AACACATAAT ATCTTAAATA TTATACATTA GAAAAATTTT GACTTAGATT CTATCTTGCA ATACATGAAG GGCTTAGATG TAATATAAAA TTTCCTAGAA ACTATGAGTT GAAAATAATA TCTTAGATTC AACTCTACAA TAATAAGAAT AACTTAGATG TAAATAAAAT GTCTTAAATA CTAGAATGAC TTAGATGCAA CATATAAAGT CTTAAACATT GTGAGTTGGA AGAAATAACT TGGATCCAAT CATGCAATGC AAAAATGACT TAGATGTAAT ATAAAAATGC CTTAGAAACC ATGAGTTGAA AAAATGACTT AGATTCAACT CTACAGTAGC AGAAATGACT TTGATGTAAA TAAAATGTCT TAAGTACTAG AATAAGTTAG ATACAACATA TAATCTCTTA AATATTGTGA GATAGAGACA TGTATGAATA AAATAGATGC AATACAAAAA ATGTCTTAGA AAACCATGAA TTGAAAAAAC GACTTAGATT CAACTCTTCA ATACTAGTAT CGACTTAAAT GTAAATAAAA TATCTTAAAT GCTATTAAAT GTAAATAAAA TGTCTTAAAT ACTAGAATGA CTTAGATGCA ACATATAATG TCTTAAATAT TGTAAGTTGA AAGAAATGAC TTAGATTCAA TCTTACAATG CATGAGTGAC TTAGATACAA TATAAAAATA TTTTAGAAGG TGTGAGTTGG ATAGAACAAC TTAGACTCAA CTCTTCAATG GTTGCAATGA CTTAGATATG GATAAAATAT CTTAAATAAA ATGTCTTAAA TACTGGAATG ACTTAGATAC AACATATAAT GTCTTAAATA CCGTGAGTTG GATGAAATGA CTTAAATCCA ATCCTGCAAT GCATGAATAA CTTGGACACA ATATAAAAAT ATCTTAGAAA CTGTGATTTG AAAAAATGGC TTAAATTTAG CTGTGCAATA ACAGCAATGA CTTAGATGTA AATAAAATGT CTTAAATACT ATGAGTTATA GCGATGTAAC

10001
10051
10101
10151

10201

10251

10301

10351
10401
10451
10501
10551
10601

10651

10701
10751
10801
10851
10901
10951
11001
11051
11101
11151
11201
11251
11301
11351
11401
11451
11501
11551
11601
11651
11701
11751
11801
11851
11901
11951
12001
12051
12101
12151
12201
12251
12301
12351
12401
12451
12501
12551
12601
12651
12701
12751
12801

TCTGAAATTG TTTGTCCGAC CCGTTAGACG GTGGGAACCT AAGAAACAGC ATCTTTTTTA TGTTTGGTTA GTTCAACTAT GAATTTACAC AAGTATTGTA GCTATATGTA CCTTTTGTAC CCCATCAAGA GAAGTTTTAT TTATATTCTC TCATTTCAAG TCTTCTATCA CTGTACCAGA TAGAAGAAAC TAGTGAAGAA I E E T S E E AATGTGCTGC GACTGTCTAG CCAGGATATT GGGTGTAGTG GATCTAGTGG $\begin{array}{lllllllllllllllll}\mathrm{N} & \mathrm{V} & \mathrm{L} & \mathrm{R} & \mathrm{L} & \mathrm{S} & \mathrm{S} & \mathrm{Q} & \mathrm{D} & \mathrm{I} & \mathrm{G} & \mathrm{C} & \mathrm{S} & \mathrm{G} & \mathrm{S} & \mathrm{S} & \mathrm{G}\end{array}$ GCATGGTGAT GAAGCCAACC AAGAACACCT TCAACTTGCT CTTGATCCTT $\begin{array}{lllllllllllllllll}H & G & D & E & A & N & Q & E & H & L & Q & L & A & L & D & P & S\end{array}$ CGCTGCATAT AGGGTGATCA TTCTTCACCT GTTTCAAGTA CAGAATTTAT L H I G CCACTAGCAA ATGGTCGTTA AAAATTCAAT ATATATTGCT TACTTTGTAT AAATTATATA GTTCTTCTTT GCTTCTGTAT TGTCAGAATA ATTCAACAGA ACACAACTGA ATTGGTACGG CAATTCATTG AAAAGAATAT ATGTGTGGTA TAGTATATAT AATTAAAGTG AGTCGCCAGC GTACAAAATG CTCTTGCATA TTATCAATGG AGTATTTAAA AACTATAGTA CCTGCAAAAA AAAATATATC CTTCAGACTA TCTGATCCTT TTACTCTCCT ATGTAGGTAT CAAGCTTACA $Y \quad Q \quad A \quad Y \quad M$ TGGACCACCT GAACAATGAT TAAGTTGCTT CTTTGTGCGC TGTGTGCTCT D $\mathrm{H} \quad \mathrm{L} \quad \mathrm{N} \quad \mathrm{N} \quad \mathrm{D}$ *
agtggccatg gatctictat atatgttgga cgtantgctu ttgatanatc CTCTATATAT AACCATATCG GTCCTAGCTT TATGCATGCT ACTGTATGTA CTAAACTAAG AAGCCCTACG ACTTCTGTTG AGGAAGAATG TTCTGACGAT CATGACTTTT TCTTGCTAAA TAATAACTAC TGTATCTCAT TTTGAATTGA TCGTCTAATG AAGAGCCATG CTTTTGTGAG TACTTAGCAA CTAATATGTG ATAACGCTCT CTGATCATGT GATTAGTGCC TTGTTACACA TTTATAAGGT GTTTGGTTTG AGAAATAAGG TGGTCCATCA TATTCTCGCT TCTCACTTTT TTGTTTGATT TGTAGAATGA AATGAGTTGA TCTATCATCA TCTCATTCCT TATAGTTAGA TAGTTTATTT TTCTTTCCTC GTGCATTTCG CAGCTTTTCT TTTCCTTTCA TTTTTTTGTG TCGTTGATTA TTCGCATCTG TTTTCTTTGA GTTGTGTCAG CGTATCAAGA AGACAGCCTC GCGTTGCGTG GCTGCAAAGC CATCAGCGCG GAGGTTCTAT GGGAGGCAAG TATATAGGGC CCTGTTTGGA TCACTTCAAT AATTTCAACT TTAATTTTTT AGCTTTATCA TAAAATAGAT TTAATAAATT GTTGAGATAG CTTTGAAGAA TGTTTAACTT ACACATAGAC TTTAGCTTCC GTAATACAAT TAATTTATGT GAGTTACCTA TTTTACCCTT GATGAATTGT GGGCTCTAGT GTCTTAGGGG CTTGTTTATT GGGCTGAAAT TATGTTGGTC GGCTGCTGGA TTCGAGCGCC ATCTTTACAA AAATGCAAGT AAACAAAATT GTTTGTATAC GCTATTTCGG ACGTTTGGAT CGCTTTATTT TAGAAGAATT AGAATTCACT CAATAAAGTA ACTTATTTAG TTTGAAATTT AACATTCACC ACTTTTCAAA GTTCAAATAT ACGTCTATCT CAAATTCATG GgGTGGAGGA TGAGAAATGA TTTTATGCAT TAGTAGAATT TATTTATACT CTGTAACTTA CATGACACTA TTTATCTCAC TCCTCTATAG TAAAAATATA ACACATAAAT ATCTCCGACA TCTTGCTAAT AACAGTATAC AAATATATTT TGCATAAAAC CGAATTAGAT ATATGCCTAA ATTACTATTA TTAGAATGAA ATTCAATTCC AATGATTCAA ATGGGGCATT AGATTATTAT CGGAACTTGC ATCGATTTTG AGGAACACGC AAATGCATTA TTCTATTAAT CTTAAAATTT TCATGTAGCT TTTGTACTAA CATCCCATAT ATATATATAT ATATATATAT ATATATATTT CAATAACTAA AGAAAGCTCA GGTCAGACGG TGCAATCCGG TCGAGCCGGA CTAGATCCGG GCTGCTATAA AAACAACCCA ACGCCGCCAG GGATTAGTTT TTAGCGGCGA CGGCGGTTCC CTCAGGCGTG CGAGCGGCAG TGATCCTGGG GGCCAGCGAC GGTGTCGCCC CGAGGCGGGC GACCGACGAC GGCTCCACCA GGAACCAGCA ACGGCGACGC TCCCGAGGCG GGCGGGCAAG CGGTGAGGGC GCTCCCGAAG CGGACGGGCG GTGACGGTGC ACCCTAGGCC CGGTGGCAAC AACAGTTGTG TGAGACGCGG TAGGCATCGG CAGCGGCAGT GGTGGCCACG AGGTACGTGG GTCGCTCTCT GGCGATGGCA GCCACGCGAG GCGTGGGTGG CTCTGGCATC CTTCGACGAC CAACTCCTCC GATCCGGCGG CTTCGGCGGC ATCCTTTGAT CTAGCAGCCT CGGGATTGTC CTCCAGCGAC GAACTATCCG ATCTATGTTT ATGCCATCGA TGATTATGTT TTATGCCTGT TACTTACACT ATTGATGCAT TCCAATGATG ATTTTTAAAA CGATGAATAC GATTTTATGT TGCTATAAAA CTGTTCCTAA TTCCTGCGAA GGCTATTAGT TAAAACGATA TTAGGTTTAT TTATCAATTA TACTACACAG TGTATGTATT TATGCGACTT TGTATATGAA TTTATGCTCT GCGTGAACCA TGTCATCCTA TTTTTTTGCA TGCGTGCAGT GAAAACGAAA ATATCATCCA AAATTTTCGC

## 12851

12901
12951
13001
13051
13101
13151
13201
13251
13301
13351
13401
13451
13501
13551
13601
13651
13701
13751
13801
13851
13901
13951
14001
14051
14101
14151
14201
14251
14301

GCATGCAATG GAAACTCCAA CGATCTGCCA TAATTTTTGG ATCTGCACAA AAGTGAAAAC CCCATGGATG CGTCTCCCAT ATTTTTCGAA ACTGCCATAA AAATAGGATT GTGAATACAA CCTACCATAG ATATCAATCT CTCACATTGG TTCAGTATTT ACGCTTATAA CCGAGGAGTT TTATGCTCAA AACTTAAGAT TTTTACGCTT GAACAAAGAG ATGCGTCGAC TAGTGAACCA CGTGTCATAT TTTTTACGCA GTGTACAACA TTTTATAAAT ACATACACCG TGTAACACAA TTTATATAAG TATATATCAT AAACTGTTTC TAACGAGTCT AATTGCATGG TTGTTGGAGC GATCCTATAT TTATAGAGTA AATAAAGCAT TAAATACATT TTTTTGTTTC CATACATGCC AATCTATTTT ATTTCATCGT ACATTTTTGT CATCCTAATT TTGTGCGCAT GCAGCAGGTA ACAGATTTTT ACGCAGTGTA CCGTATTACA TAAATATCTA CACCGTGTAG CATAATTAGT ATCAGTATAT ATATCATAAA CTGATCCTCA TGAGGCTAGC TACATGGCTA TTGGAACGAT CCTATATTGT GGAGGAAATA AAGCATTAAA TACGATTTTT TTATTTCCAT AGATGACAAT CCATTTCCTT TCATCATACA TTTTTGTCAT CCTAATTTTG TGCATGCAGC ATGTAACAGA TTTTTACGTA GTGTACTGAT TTGCATAAAT ATCTAAACTG TGTAGCATAA TTAGTATCAG TATATGTCAT AAATTGGTCC TGACGAGTCT AGCTGCATGT CTGTTGCATC GATTCTATAT TTATGGAGGC AATCAAGCAT TTAAAAATAA ACCATCACAT ATCTCTTTCC TAAATTTACG CGTATGAAGG AAAACGGGTT TGACTCATGC ATGTCTTTCT ATTTTTTTTT GCATGCACAG ACGTGGGGGT GGGGAGGCAC ATCCGACAGC CTGGCTTGGC GAGTGGGTGC AGTGAGCGCG CCGAGCTAGA CCAGATCGCA GGGGTGGTCG GCCTGGGCCC TAGGGCTCCT AATATACCTG CCCTATATAT ATATAGTTTG TATATTTGGA GCCTTGTACT TCCAATAATT AGAGGAAGAC CTAGTTTAAT GGTGCCATCC GGTTCAGCCG TTCGGGCGGC TATAAAAACA CCCCCAGGCC GCCAAGGATT AGTTTTTAGC GGGGGCAGCG GTGAAAGGAT CACGATGCCC AAGCGGGGGG GGGGGGTGAA TTGGGCTTTT CTAAAAATCA ACACTAATTA AAACCTAAGC AAGAGCTAAG CAAGAGCCCA ACTTCACCCC AACAACTAGC ACTAAGAATA TAATACTAGA AATGCAACAA TGCTAAGACA ATACTTCAAA TACTTGCTAA ACAAATACAC AATATAAAGT GCTTGAATTA AGTGCGGAAT GTAAAGCAAG GTTTAGAAGA CTCCTCCAAT TTTTCCCGAG GTATCGAAGA GTCGGCACTC TCCACTAGTC CTCGTTGGAG CACCCGCACA AGGGTATCGC TCCCCCTTGG TCCTTGCAAG AACCAAGTGC TCACTACGAG ATGATCCTTT GCCACTCCGG CGCGATGGAT CC
D. Genomic sequence of maize $A G L 2$-like gene ZMM6.

1

ACtATAGGGC ACGCGTGGTC GGACGGCCCG GGCTGGTAAT TCTATTGGTC TGACGCCCCC AAGAATTACT AATCCTGTGG ACGCTGCAGT AAATCTAATG CAGCAGCTCA ATGTTTCCTT CTCTATGGAA ATTGTCATTC TCATGACTTG GAGCATTTGG AAGTGCCGTA ATGCCTGACT TTTCAGGATA AGGACCCAAC AGTGCAGCAT TGTAAAAATG AGTTCGCAAA GGAATTACAT CTGATCATGC TTAGAGCTAA AGGAAGATTT GATTCGACAA TACCTGAATG GCTTCAGCAT TGGCAGTAGA TCCCGCCAAT TTTACCCTTT TGTAATTTTG TAATTTACTT TCCTGTATGC TTCTAACTCT GTCCTTTTAA AATTTTAATA AAATTTCAGT AGGGGCTTGC CCCTCCTGTC CTATAAAAAA AACCTCATGC TGAGCTGTCA ACCCACACAT CTTTATTTAT AGGTGCGCTG CAACAGAGGC CCATCAGTCT CTTGTTGGGC TGGACGCCTC CATCAAGGCG CGAGGTCAAG GGCACAGTTA ACCGTTGTGC TAACTGGTGG AGATCAATTC CAACACACTG GACTAGTGCT GGGACTAACT TAAAAATAGG AGCCTAAAGC ACGGTCCAAC AAGAAATAAA ATAGGTCGGG CTACCACGAC TCGAAGGTGG GTCTAGACCT GACCTCAAGT TACGGCCTGT TGGGCCCAGT ACGGCCCACA CATATGGGTC GGTTTGGGCC TACACGGCCC CAATGAAGCC TATATTATTT AATTTCTTTA ATTTCGTAAA TTTATAAACT TTATATTGTT GTGATATTTG GACTTTATGC GGTCAAATGA TGCTAGCATT GTTTAATATT GTGGTTGCAA TATTTGAATT TTACGAGGTT TGAATATATA GGACGGGCTT GGACCGGCAC GATTCAACCA AAGCACGGCT TGCTTTATAG TAGAACTGAC CATTGTTTCT ACTTTTCAGG CCCTAAAAGT TTTTTTTTAT CTTCTTAGCC CGATCCCAGC ACTAGATTGG ACTGGACTGA GACCTTGTAC TTTGTAGTAA GATGCATGAG TTCGTTATGC GGATTCGCAA GGCGCGCGTA CAGTACAGCT CGGCACCCAA CAGCTAGTAG TACGCACGTT

CCGTTAATCC GCTGGATGGA TGGATCGATC GGAGACGGAC AGGGGCGGAC GCGCGGCAGA CGTACGGTGC AGTTATTGTC GTCCGCCGGA TCGATCAATC GACCGGCGCG GCGGACGGAT CGAACAGTGC CCGAACATGC ACGTCCGTCC CCTACGCCTG CGGCGTGCAG CATGCGCGCG GATCGTAGTC CCCGGTCGAT CGGATGCGCG GGCCGGACCC CGGCGCTGCC GACCGGGAGG CGGGAGACTT GGTTCGTTTC GCACCTGCTG CCTTGTCTCG CGCTCGCGCG GCGCGTCAGG GGTGGTTGGT CGCGTACTTG CGTTGGCTGC TGCCTGGGTG GCTCTCCGCC TCTCCTGGCC ACGGCGAGAC TGATGCGCGC GCTGGCCCAG CTTTGGTCGC TGTTGCGAGC TGGTCTGGAC AGCGACCCGG CCCGGCCGGC CGGCCGGCCG CCGAGACCGA AAGGAAGCAA CGTACAACCA GCAGGAAGCA AGGGGTGAGA GAGAGCGAGA GAGGAGGGGC GTGCAGCCGT CCGGTCCAGC AGGCGACGGA ATGGAGGACA CGCCGGGCAG GTCGCTGTGC GCCTGTGCCT GCGTGCGCGA TCGCGAGTGG CCAGTCACCA GCAGGCCGGC CATTAAAGGA GAGCACGTGA CGGCGCGCCA GTCGCTTCCT TCGCTTCGCT TGCTCGGGCG CCGGCGGGGA CCACCAGGGT AAAAGCCGAG CGCGCAGGAC GCGACGGCGA CGGCGACGGC GACGGACGGG ACGGGTCCCA TGAGCCCATC ACCACGAGCG GCGTGGACGT GGAGGTGGAT GGAATGACCG ATCGACCGAT CGATCGCGAG TGATGACTGA TGAGTGTGGC GTGACTCCGA TCCCTGATCC CTCCCCATCC CTAGCTTTCC GGCAACGCGC TACCGGGCCG GGGGCCTAGG GTTTCCCCCC CTACGGATGC TTTGCCGGAA ACGGCAACCT GACGCCGAGG CGCGCGCACC ACCCCTGCGC CCACCGGCTC CTTCCCTGCG CCGCGCTGAT GATAACTCAG TCCCTGCACA GGCCCCGGCC CCGGCCCCAG CCCCACCACC GCTACTCCAC TAGGCCCTGG TTGCTAGCCA GCTCGCTTGC TTGCTTCGAT TCCTATCCTA GCCCCCGTGC CATCGCTTTC CTCTCGTTAT TTAGCCCTCC GTTCCCGACC CTCATCCTCC GCTCCAGACT TCCAGCATCT CCGCTCCGGC TGCGCTCTGC CTTGCTTTCC TGCTACCTGC TCTAGCGCGA GCGAGAGAGG TACGGCGGCC GATCTGGCGG CGCAGGCGGA GGGCTCGGCC GGGGCCGGCA AGTCGGCGCC GAACATGGGG

M G
AgGgGccggg tcgagctana gcggatcgag ancangatca acccccaggt $\begin{array}{lllllllllllllllll}R & G & R & V & E & L & K & R & I & E & N & K & I & N & R & Q & V\end{array}$ CACCTTCGCC AAGCGCCGCA ACGGCCTGCT CAAGAAGGCG TACGAGCTCT $\begin{array}{lllllllllllllllll}\mathrm{T} & \mathrm{F} & \mathrm{A} & \mathrm{K} & \mathrm{R} & \mathrm{R} & \mathrm{N} & \mathrm{G} & \mathrm{L} & \mathrm{L} & \mathrm{K} & \mathrm{K} & \mathrm{A} & \mathrm{Y} & \mathrm{E} & \mathrm{L} & \mathrm{S}\end{array}$ CGGTGCTCTG CGACGCCGAG GTCGCGCTCA TCATCTTCTC CAACCGCGGC
$\begin{array}{lllllllllllllll}\mathrm{V} & \mathrm{L} & \mathrm{C} & \mathrm{D} & \mathrm{A} & \mathrm{E} & \mathrm{V} & \mathrm{A} & \mathrm{L} & \mathrm{I} & \mathrm{I} & \mathrm{F} & \mathrm{S} & \mathrm{N} & \mathrm{R}\end{array} \mathrm{G}$ AAGCTCTACG AGTTCTCCAG CACGCAGAGG TATACACGCG CGCGCGCATG $\begin{array}{llllllllll}K & L & Y & E & F & S & S & T & Q & S\end{array}$
TACTACTACT ACCCGGCAGC GTGCCCGCGG TCACCTTGCC GCTGCCGGGC AGTGGTCACA CGGCGCTGGA GTGCCTTGGT CTCGCCGGAT CTCGCTAGAT CTGCCCGTGG GATGTTGCTG GATCGAGCGT CGCGAGCAGT TTCTGTCTTG CGCGAGGCGA GAGAGTCAGA GAGGAGAGCC GAGAGAGCTG CCGTTTCATG TGGCTTCCGG ACACGGGATC CGGCTACTGC CACGGCTCAT CTTGGGTTTA GTTAGGGTTT TGCTTTTCTG GTCCCTTGGG TAGATCGACC TCTCGCATCA CTTTTGTCGA TCGGCATCAC GCTGCGTCTT GAATTGATCC GTTGGTCTTA GAAGTGTAGT CGCGGCTGTC AAAGCTCAAC TCTTCAAATT CATGACGACC TGAGCAGCAG CGCATGAATT CCCTATATAT GGATCTGGTT AAACAAAACG GCTCCTGGTT TCAGTTACTA CAGACGTAGT CCAAAGTCTA GAATAATACA TGAAGTTTCA GAAGCATCAC CTTCCTTCTT CTTTGTTTTA TTTTTTTAAA GAAGCATCAT AAATTGACTT TTGTTTGAAC TGAAAAGTCG TCTCAAGTAG TAGGTTCGTT TATGGGCCTG TTTGGTTCGG CTTTTTTCTG ACGAGCTTTT CTGAAAAGCT GGCTGTGGAA AAAAGCTGGC TGTGGCGGAT TCTGGCGCCC AgAAgccgTA AgAATCCGAA CCAAACACAG CGTATATATG ATCCAAAGGA AAACTCGACC AAAGAAAAGA AAAAAAGCTT TGACATATAT CTTTATCTAT GCTGTTAAGA TGCTTAAGCA TATCATGTAA TGATAAATCA ATTCTCGAAA TTCTAATTCT TCCACGTTGC CCTAGAGGGT ATTCATGTCA TGCCACGTTG CTTTATTTTC AATTGGTCTG TCTAAATATA CAAATAAACT CAACATTTTC CCCTATAATA AACAGTTTCT GTGGGCCTGC AAAATGAATC GTCAATAAAA TTTGTTTCCT AGATTAGCAT TGTATCAAAC TACTCTGGAT CAACTTGTTT CCTTGGTCAA CCATATAAAC CTTGGAAAGA TGATCTAGTT CAATACTTGA GGCTCCATTC AAAGCTGAGC CAAAATTTGG TTGCCACATA CTATATCATC TCTACCATGC ATGTGTGCAT TTAATTAAGT TGGTGCCATC ATTGTGTATC GTATGAAATG AAACAAGGCG AGAGTTAACC GTCATCTCTT CCATTATTTG TACATAATTA GACAAGAGTA GCCTTCATAG TACTATGTAA GAACTCCTAG AGCTGTTTTT TTACGCTAGC CCTAGGGGCA GCTAGCTATC CACTAGGACT

## 4051

4101
4151

## 4201

4251
4301
4351
4401
4451
4501
4551
4601
4651
4701
4751
4801
4851
4901
4951
5001
5051
5101
5151
5201
5251
5301
5351
5401
5451
5501
5551
5601
5651
5701
5751
5801
5851
5901
5951
6001
6051
6101
6151
6201
6251
6301
6351
6401
6451
6501
6551
6601
6651
6701
6751

6801

6851
6901
6951
7001
7051

CACGGCTCAG GCTGCGGCCA GGATAAAATG AATATATATA TTTGGATTAC TGCTAGCATA TGGTATAGTC CAAATAAGAT GGAACAAATT AAATCATTAG CTATCATATT GTCTGGTGCA TTATACATGC ATGCACTACC TTTTCCATGT TTCATTTGAG AAACACAGTC CTTGGCCCAA AAGTTAAAAT TGAAGATCCC TTGAGGTAAA ACATCATGAT ATAATTAATA TACCTCGGCC ATTGGCATAG TAATGTTTGC CGATAGTCTT TTTAACTAAG CTACCTCGCC ATCCTTCTAT CTCACGTCTA TATATAGATC ATCTCCTATA TATCCAGTAT CTTGTTAGAT CGACACCCCT TGAGAATTCC ACAAATATAG TATCTTATGT GGGCTGAATA TTTCACCTTT TGTCCAGCGT AGTATATACT TCTGTATTTA CTAGCCAGAT GACCGTGTTT TGCTACGATT TTTATATATC ATATAAATAG ATATGGAGAT ATTTATTCAA ATATAGTTAT TGTTTATTTC TAAACACTAA GGTATGTATA ATCTGATGGT TATTCTTAAA TTTTTGGAGT AGGAGGGTGT AGGTTCGAGT GCTCACTCTG CATTATTTTT TGCACGACTA CATGGACGGA GCACTATTTT TTGCACGGTG TGGTAGTTAC GCGGGTGGGG TCGGTGCTAG GCAAGCGCAT TAGCTGACTA CGCAGACACT GAGGTCCACA ACTCAGTAGT TGAGAGAGCA TTGCACGTGC GCTGGGCGTG GGGCCCACAG GGCACGACGC CGAGGCGGGG CGCGTGTGGC GGGCCTAGAA TGTCAGCGTT GAGGGTGAAT GCGTGGTTGC ACCAAGTATC ACATTAGGTT TTTATAGAGT AGTATATATA TAGATAGGGA AATTCCATTT TTTCAAAAAA TATTAATATA TTTTTAAGCT GTGGGGGTCT CCCCTACAGT CTCTTACAGT AATTTTTTTG TGAACCCATT AATATGTTGT TTGTTTTGTT CTTATTATGT ATGATAACTC GCGCAATGAC TTCATTAATT ATTAACAGTA GCAAATTCTA GGTAACGTTT TCTTCAGTGG AACTTTTATT TGCTGGGTGC AGTGAGGGTG ACACATATTC ACATGCATAT TGCTACAAAA TAAACGTTGG ATTTATCTAA GAAAAAGACA ACTTTATTTT TTCCAATATA TACAACTATA CAAGAAATGT TTTTAATCAA GTTTCCTCTC GGATTAAGCA ATTTTTAGGT AATGGGATAA AAGGACCCGA CTTATGCCTC CATAAAGGCT ACAGTCGCTT ATTACAGAAC GTGATAGGAA AAACAGCTGG TGTCTCACAC GACACTAGAC CCGACACCAC ACAACACAGA TAAAGAAATC TAAAAGCAAA TCCTATAAGT AGATCCCTTG AAAAAATCCG CATCACCAAC ACCACCATGT TACGACAAGA AGTCTTCATT TGCTCTTGAT TGTCTTCCTT ATGCTGAAGC TGAGTCCAAA AGTGGAGCCA ATGTGTAGTT CGGAATACCA GCATAGGAGT TTTCAAAGGA GAATTATCAA AGACCACGTC ATTCTTACTC AACTAGAGAC TAGGAGCAAC ATTAGTCTCA TTTATACATT CCTGCCATTA AGCCAAGAAC TAAAAATATG TGTTACATTG TGTGGAGGTC TTACTCCACA CCGTATTTGA AACAATCGCC ATAATTTTTT TGCATAATGA CAATGAAAGA GGAGGTGTCA ATAGTTTTTT TTCTACCACA AAAAGAACAA TTTGCATTAC TCTTCCAATT ACGCTTTACA AGTTGTCCTT AGTAAGTGTA ACTCCATGGC ATAAGTACCA CATGAAGACC TTAATATTTG GGGGCATTTT AATCTTTCAT ATATCCTTAT TCGTGACAAT ATTATCATTT GCTAACAAAC TACTCCCTCC ATTCTTTTTT ATTTGTCATA TTTTAATTCA AAAATGAACT AACAGACGAC AAATATTTGA GAATGGAGGT AgTATTATAC ATCGATTGAA CACTGAAGAT ACCACTGCTC ATCAAATTCC ATCGAAAAGT GTCCCTTTTT ATTCAATAGA ACATGTGCAA TTTGTGCCAC TAGATTCATC CATTGGACCC AATATTGTTC TACCAATCCA TGACAAAAAG AAACATTTAG AACGGTGCTA AAAACACTTG CCACCACCGT GTTCTTTCGT CTTACTAAAT TGTAGAGTTG TGGGAACTGA TCTTTCAAAG AGAAGTTTCT CGGCCATTTG TCCTCCCAAA ATCTCACATG ATTACCATCA TTAAGCTGAA AGGTTCCAAA GCTGAAAAAT ATCTTATTTT ACTTTCATTA GTCCCCCCCT AAATGTGAAT CGGTTGGCCG CCTCTGTACC TGAGGTAAAA TTTGGTTTTG TAAGTATTTC TGCCTAAGCA GTGTCTGCCA ATCCCTCTTC ATTCAGCAGA TTAAACAACC ACTTACTTAA TAAACATCTA TTCTGTATAT CAAGATTCTT AATGCCTAAA CCCCCCACAT ACTTAGGTTG GTAAATAATA TTCCATTTGA TGAGCCTATA CTTCTTATGT CCTTCCCCTT GCCAATGTTG GCTTTATTTT CATTCCTCTG TGTTAAGTTT GCACTCAATA TTTTTCAATG ACATGTGTGA ATTTTCTAGA TATTAGCTGC TGTATGCCTG GGTTTTCATG CCTTTCCTAT CTGCAGCATG CCAAAAACAC TTGAAAAGTA CCAAAAATGC $\begin{array}{lllllllllll}M & P & K & T & L & E & K & Y & Q & K & C\end{array}$ AGTTTTGCAG GGCCTGAAAC AGCACTCCAG AATAGAGAGA ATGAGGTAAG $\begin{array}{lllllllllllllll}S & F & A & G & P & E & T & A & L & Q & N & R & E & N & E\end{array}$ ATCTTTTTCT CTAGTTAAGA CAAGCGTGGA CAAGTTTTTT GCAAATATCT ATAGCATCGA TGTATACTCC GAAAAACATT AATCAACAGC TACTTTGCTA CTAAGATGTT TCATCTACGA AATCACGTTG TCTAAATAAA TGTTATCTTC GAAATATAAT GGTTTGGATT TGTCATGTGT GAAACATGTA CATATATTTA TTATTAAAAA AAAATCAAAA GTGCCTCCTG TACAAGGCTA TTCGAGGAGA

	TTTTTGAATA	AAAGCAACTA	TAAAAGCACT	TATTCTTTTA	AATAATAGAT
7151	ATGAATATCA	AATTTTAATT	TTGATGCGAA	ATTTCTTCCT	AATGAGTATT
7201	CACTGTGACA	CTTTTGGAGA	TTGAGCATAT	ATGCGTATTA	TTCTGTTTCA
7251	TAAATAGACC	CAAACCAAGC	AAATAAAGGA	T	A
7301	CTTTACTACA	TTTATTCCCT	TGTACGAGAA	ATTTATTATA	TTGTTCACAT
7351	ATTTCATGCG	AGGTATAAAA	TAATGCATGT	GAAACCAGTA	AATATTGTCA
7401	TATATAAAAA	CCTATTATTG	ATTTAAGGAC	GTGCTCCACA	GCCATAGACC
7451	ATCATTAGCT	GTATTATCTT	TACATTCAGA	AATCAGAACT	CTAGTAGTAG
7501	GCCCTTACTA	AAATCCTGTG	TTGCACACCT	TAGAAGTTAT	TATTGCAACA
7551	TAATTGATGT	AGTGGATATG	CTACCATGTA	ACAGCAAAAA	ATGTCTTGTA
7601	ATGTGTGCGT	GAGCATAATT	GTTGATGTGG	TAATGTTCTA	TATATACCAT
7651	GTGTGGTCTT	TTGCAAGCAA	GGAAATATAT	ATAAGCATCT	CTATTCTTCT
7701	GTTACAATTT	AAATTATGTT	TTTCTAGTGA	CAATTATGAG	GCCTAATATA
7751	GAGATCATCA	TTGTGATCTC	AATATAGTTT	GTTGAACAAG	GCATTCCTGT
7801	TTATGCTAAA	CATACATAAT	GACATTTTTT	CAGCAACTGA	AAAGTAGCCG
				Q L K	S
7851	CAATGAGTAC	CTCAAACTGA	AGGCACGTGT	TGATAATTTA	CAGCGGACTC
	$\mathrm{N} \quad \mathrm{E}$	L K	A $R$	D N	$Q \quad \mathrm{R}$ T T Q
7901	AAAGGTGAGT R	TCTGTTATAC	AATTAAGATA	AATTTGTTAT	TTCTGTACAT
7951	ACTTAAAAAT	AGCAATTTAT	GTTTGAATGT	GCTTTGTTTT	T
8001	GCTTAAAGCA	AAATAGCATG	GCTTATTTAT	TCATCTCAAA	TCAGTAAATT
8051	CATGAAGCAA	CATTGAATTT	AAATTGAAAT	AGTGCAAAGC	TAGGAATACC
8101	AAAACGTTCA	ATATATTTTG	CCGATATGAT	TGTTGTCCTT	TCAAATATAC
8151	CATAGAAACT	ACTTAATGTC	TCTCTGGAAC	GACCATTATT	GTGTAGAACT
8201	ATATATCGTA	ACTTTGCAAT	ATAAAAACAA	ATGAAATGTG	GAATGTGCTA
8251	CATTCTGAAA	CTAACATGCA	TGCAGGTTAG	TAAACTGATG	CTACCATTTT
8301	ATTTACACAT	AATTAGTACA	GGTGAAAATG	AAGATTTCTA	GTATTGCCTG
8351	AATATGTCGT	CTGTATAACA	TTTCTAGTCT	GCATCATATA	TTTTTATTTT
8401	AAAAAAGGTA	TAAATGGGGG	AGTTAGCTCA	ATGCATTTCT	TTCAGTGTAA
845	TCAAAGGTAG	ATGGATTCTT	ATTTTGATAA	CCAATTAAAA	GTTCGAATGT
8501	TTTACTAACA	ATCCCCTCAG	GAACTTGCTT	GGTGAAGATC	TTGAGTCATT
			N L L	$\mathrm{G} \quad \mathrm{E} \quad \mathrm{D} \quad \mathrm{L}$	E S
8551	AGGCATAAAA	GAGCTGGAGC	ACCTGGAGAA	GCAGCTCGAT	TCGTCCTTGA
	G I K	E L E H	L E K	Q	$S$ S L K
8601	AGCACATAAG $\mathrm{H} \quad \mathrm{I} \quad \mathrm{R}$	ATCTACAAGG	GTACTGAAAA	GTGCTAACAC	CATAAACGAA
8651	TTATATTGTA	TTTCCTGTTT	TATATGAAGA	AGTACATGGA	ATATTTAAGT
8701	TCTCCCTTTT	GTAAAACTGT	GCCGCTAGTT	TTCATATATG	TCACTGCTCT
8751	CTGATTTCTT	AACTACAATC	CTTTTCTGCT	AGACTATGAT	AATATGAGTT
8801	CGTGGGGAGT	CAAGTTTATA	AAAACGGTGC	ATCAGTGCAT	GTAGCCTCTT
8851	TCTGAGTATA	TGTTCTGACC	CAGTTCTTTT	CCTTCTCTTT	TTCTCCTGTA
8901	GACACAACAC	ATGGTTGATC	AACTGACAGA	ACTTCAGAAA	AAAGTATGCT
	$T$ Q H	$\mathrm{M} \quad \mathrm{V} \quad \mathrm{D}$ Q	L T E	L Q K	K
8951	ATTCTTCATG	ATTTAACAAA	AATAATATTG	GTGACTTCAC	TCAAGCAACT
9001	TTACTTATTC	AATTTGCAGG	AACAAATGTT	TTGTGAAGCA	AATAAGTGTC
		E	Q M F	$C \mathrm{E} A$	$\mathrm{N} \quad \mathrm{K} \quad \mathrm{C} \quad \mathrm{L}$
9051	TTCGAAGAAG	AGTAAGTTGT	AAAATTCACT	GCATCATTCA	AACAAACATT
	$R \quad R \quad R$				
9101	TTTATGATGT	TTCTTTTCGG	GTCCCTGTCA	TAGTATCACT	GCATTTGTCA
9151	TACATAATTG	CAACAAGATG	AAGAGACATG	TAGTAACCTA	GACAGCCATC
9201	CAGTTTCCTC	ATAAATTTCT	GAGTTTGAAT	AGGGATGCAC	ATTTCTATAC
9251	ATACGGGATC	ATAATTAACC	ACATATAGGG	CTGGTTTGGT	GACAAACGAA
9301	TTGGAGGGGA	TCTCCAATTC	CCTTGTCACC	AAACCAGGCC	ATAAGGTCTC
9351	AGGCAGTAAG	GATTATTTAC	CTTCTTCATT	GTTTTGAGAT	GTGCAGCTGG
					L E
9401	AGGAGAGCAA	CCAGGTTATA	TGGCAGCATG	CGTGGGAGCA	AAGCGAGCGG
	$E \quad \mathrm{~S}$ N	Q V I	W Q H A	W E Q	$S$ E R
9451	CATTCTGAAG	TGCAGCCGCA	GCAGCTCAAT	GGCAATAACT	TCTTCCATCC
	H S E V	$Q \quad \mathrm{P}$ Q	Q L N	$\mathrm{G} \quad \mathrm{N} \quad \mathrm{N} \quad \mathrm{F}$	F H P
9501	CCTCGATGGT	GCTGGTGAAC	CCACCCTTCA	GATAGGGTAT	GGTCCTCATA
	L D G	$A \quad G \quad E \quad P$	T L Q		
9551	TATTTTCCGT	GAATCTCTCT	TCCTACCCTA	AATATTGTGT	AATACTATTT


	CGATGCCTAG				
51	TTATCATATA	GAAATGATCT	TCAAACTAAA	TGGTGTTTTC	
9701	ATTAATTTTA	CCCTATGCTC	GTTTGATCGT	CCTATACCAA	
9751	CATCAAAATG	ATACCTTGTC	CTATTATTTT	CCT	
9801	ATCACATGCA	tGgtatgtca	CAAACTAGAG	A	
9851	TTAAATCTTT	AACTACAAAT	TAAACAAGAC	CAATGTAG	
9901	GATGACAAGT	TCTT	GAGT	T	
9951	TGATTCGTTC	CTCCATTTGT	GCAATTTGTT	TGCAGGTATC	CTTCAGAGGC
					E A
10001	ACTGACTAGC				
	L T S	S C M T	I F	P	- P *
10051	ATCGAACTAC	TGCGCAATTC	CGAATTAATA	GG	CATGCA
10	CCTGTGCTAT	ACGTTGTGCT	tGgagtata	AG	TTGCATGGCA
10	AGtatgtatg	TAACATTTGT	GA		
10	CGAATAATCA	ATGAACTGGG	TAAGATTGT	AC	TTATGCCTGA
10	AACATTAATT	TAGGCTGCGT	GTGAATGATG	GAGGTTGTG	TCCGCGTGTT
10	CAGTTTACTA	GTAACAGCAG	TTTAGGGTTG	GTGAGGAAAG	
10	AAGCAGTTTT	CTAGTAACAG	CAGTT	AGA	CTGCCACGTC
10	ACGCATTGAT	CCCATGCTAT	GGA	CTGGCCTAGG	
	CGTCACTGGT	CGACGTAGAA	T	TGCCTATATT	
10501	GCCTCAAATT	CTTGGTTTCT	CTTTAGCTCT	ACGTCGATTA	GAA
10	G	C	ACAACACCTA		
10	GGTCCCTCCT	GGGAGCGAGA	TTCAGGCGTT	GG	
10	CGCACGCGCG	G	CCTATAGGCG	TGGACTGTCT	
	GCAGGGAAAT	CGAGCCCCGC	GCCAAGTCGC	AG	
10	GCGGACCGTC	CGTGCATGTG	AAGAGAGCAC	CGCCGCCGGT	TCTCAATGCA
10	GTAATTAATT	GACG	TCG	CA	
10	AT	CACATATAGA	T	GA	TGGCCGGTTC
10901	AAGG	TCTGACATCT	CCCCAACAAT	A	
10	AACCTTG	GCTGACGAAC	ААСТССА	CGA	AAGGAGCAGC
11001	TGATCCAAGA	AGCAAAGGTG	AAGTTCCTGG	CCA	AGT
11051	AACAACAAGg	TTGTTCGGCA	ACGGGCAACT	GAT	
11	CACAACGGAT	ACCCCCAATG	TAAGTAACAC	CAACGAGCTC	CAA
11151	AAGTTTACAT	AGATGAACAG	CGAGAGCAAA	TGCAACATAT	CG
11201	TACAAAAGGA	TTATAAAAGG	CTAGTGCGT	CGTTTGAT	T
11251	GCAAATTTTC	CTTCGCACGA	GGTTAAGTTG	GgGgGanaca	CGC
11301	ATCGTCCACA	GGTTGTCAC	AC		
11351	TACCCTA	AACCACA			

CGATGCCTAG CTAGCAGGCT TGGGAAGATG CATGAACATC CAAATAGTTT TTATCATATA GAAATGATCT TCAAACTAAA TGGTGTTTTC TTTTAACTAG ATTAATTTTA CCCTATGCTC GTTTGATCGT CCTATACCAA CGTACACGAC CATCAAAATG ATACCIIGIC CIATIAIIII CCTGACGGAA GAAAGGCIAA ATCACATGCA TGGTATGTCA CAAACTAGAG AACACTGTGA TTGTAAATTG CAA AACTACAAAT TAAACAAGAC CAATGTAGTA CTGAACTACT GATGACAAGT TCTTATCACA GAGTAGCTCT TTGTAATGAA ATTTAAAAGC TGATTCGTTC CTCCATTTGT GCAATTTGTT TGCAGGTATC CTTCAGAGGC
$Y \quad \mathrm{P} \quad \mathrm{E}$ A T S S C M T T F T P P W I P * ATCGAACTAC TGCGCAATTC CGAATTAATA AGCATGGCCG CATGCAGCTG CCTGTGCTAT ACGTTGTGCT TGGAGTGTAC TTTAAGGTTC TTGCATGGCA AGTATGTGTG TAACATTTGT GATGAACATG GAAACTATCC ACTTAATTCT CGAA CAGTTTACTA GTAACAGCAG TTTAGGGTTG GTGAGGAAAG TGATAAATTT AAGCAGTTTT CTAGTAACAG CAGTTTAATT AGAGCTGGAG CTGCCACGTC ACGCATTGAT CCCATGCTAT GGACCCACAC CTGGCCTAGG ATTTTGAAAC GICACTGGT CGACGTAGAA TTTCTTATTA TGCCTATATT AGTCTTCCCA GCCTCAAATT CTTGGTTTCT CTTTAGCTCT ACGTCGATTA GAAGTATCTA GGATGGACTG CCAGCCCTAG ACAACACCTA AGTTCTCTCC TCTCCCGATG GGGAGCGAGA IICAGGCGII GGCGAACICC GCCGCCCCIG GCAGGGA A T CGAGCCCCGC GCGGACCGTC CGTGCATGTG AAGAGAGCAC CGCCGCCGGT TCTCAATGCA GTAATTAATT GACGTCCGGA TCGACGCTAA CACACTTTTT GGCGACTCCG CIGGGGACAT CACAIATAGA CCIAICAGAT CGACCCCCAA TGGCCGGITC AACCTTGTTG GCTGACGAAC AACTCCAGTT CGAGGAGCAC AAGGAGCAGC TGATCCAAGA AGCAAAGGTG AAGTTCCTGG CCAACTTCAA AGTGGACAGG AACAACAAGG TTGTTCGGCA ACGGGCAACT GATCTGGCTT CTCTCCGACC CACAACGGAT ACCCCCAATG TAAGTAACAC CAACGAGCTC CAATCTCTTA AAGTTTACAT AGATGAACAG CGAGAGCAAA TGCAACATAT CGTAGGGGTA TACAAAAGGA TTATAAAAGG CTAGTGCGTG CGTTTGATAA ATCTACCACT GCAAAIII CIICGCACGA GGIIAAGIIG GGGGGAAACA CGCGIGATIC TACCCTAGGC AACCACA
E. Genomic sequence of maize $A G L 2$-like gene ZMM14 .

1 GCCAACAAAG TTGCTAATCA GCTCAAGGGC ACAAAATTAT CCGGTATTGA TCTGGACATT CTTATTTATT CTCCTTATGC TGGTTAGGGT GACAAACAGA AAAATCTTCG TTGTTATGCT ATTCTTTGGT TTATCATGTA TTCATATTTC CTTAAACTAC TATGACTGGA GTGCATGTTT CCATGACAGA TTGCAACTTT TTTCTGTTTG AGGTGATTTG AGCCCTATTT GGATTATATT CTGCTAAGCT ATTTTCAAAT TTTAACGATC TAGCTGAGTT AGTTAAGTGG TCTGAGTAGC ACTCCTCTGG TCATTGATTC GACTCCCCGT GGGAGCGGAT GAGGTTAATA AAAGTTACTC GCTGGTTCTC TTAGTCGGCA TGGGTGAACC AACCTATGGT GGGCGGGCCC TCGTGTAAGG GGCTGGTCGT GTGGATGAGG TCTCAAAGCA TGGGTCAAGG TCCGAACCAT TGGGGGCGGC ATCTCCATGT ATGAGGGCGC CAGCTTTTGT GGTTTTTTTT TTGGCCAGGC TCCGGTTGAG TTCTTATTGA AATGCTGTGG GGGCGGTCTT TCCCCCAGCC AAGTTTTTTT TGTTTAGTTT TTTTCTCGGT TCCCTTTCAG ATGGAGGAAC AAAAAAGGGA CCAAAGAAAC AATCTGGTGG TTCGAAATCG AAGACAGCTG ATGCTGATAT TACGGTTGCA AAATTGGATA TTAGAGTGGG CCTTATCAGG AAAGCAGAGA AGCATCCAGA TGCTGATTCC CTTTACGTGG AGGAGATTGA TGTTGGAGAG GACACACCAA GAACAGTGGT CAGTGGCCTC GTCAAATTCA TACCTCTCGA AGAAATGCAG GTTGCCCTTT CTAAGCATCA TTTTGATCTT TCTAGATACT GTCTTTTGAT

## 901

951
1001

## 1051

1101
1151
1201
1251
1301
1351
1401
1451
1501
1551
1601
1651
1701
1751
1801
1851
1901
1951
2001
2051
2101
2151
2201
2251
2301
2351
2401
2451
2501
2551
2601
2651
2701
2751
2801
2851
2901
2951
3001
3051
3101
3151
3201
3251
3301
3351
3401
3451
3501
3551
3601
3651
3701
3751
3801
3851
3901
3951
4001

GCCCTGTATC ACTTAACATC TACTATGGAT CAGCAGAACC GGAAAGTTTG CGTACTCTGC AATCTGAAAC CTGTGGCAAT GCGTGGTATA AAATCACATG CAATGGTTTT GGCTGCATCG AATGAGGACC ACACGAAGGT GAGTCATCTA TATTAACCTT CAAATACAGT TAACTTCACA CCGAACCATT TTTAGCTCTC AATTGGAAAC CATCAATGTA AGACAGCACA GTACCAGTCA TTTTGATTTC CGACTACGCT TGTAAGGTTG AGTTGGTGGA GCCACCCGAA TCTGCTGCCG TGGGCGAGCG TGTTACCTTT GCTGGGTACT CGGGGGAGCC TGAGGCTTCC CTCAGTGGCA AGAGCAAGAC GTGGGAGAAG CTGGCCGCCG AGCTGCACAG TAACGGTGAG CTCGTGGCGT GCTACAAAGA TGTGCCCTTC ACAACCTCGG CTGGAATCTG CAAGGTCAAG ACAATAGCAA ACGGAGAGAT TCGCTAGGCA CATCTCCGAA CTGCAGCCAG CTGACCCAAT CTGGGAAGTG CTAAACTTTA GCATCATGAA CCTAAACAAG CCTAAAGCCT TTTATGTTTG AAAAGTCGTG TACAAGACAA ACTCTCCGTG AAGAGATGCT TTTTTTTTAC TTACTCTACT AGAGACTCCT AAAAAATACC GATATTAATT GGGGTTATAC ATGTCCTAAG CATAGATCAA ATATAGGTAG CACTCGCTGA TAGTTTAGTA AAACACAATT ATTATGTTTA CAGAAAATAC GATTATTTGG CAAATTTAAA TAATGAAAAA CTTATAAAAT AATATATAAT ACATATTTTA ATAACGTAAT ATACCAAAAA TCGATAAACT ACAAATACAT ACTTAAAAAT ATAAAAAATA ATCGATATAT AAATAACTAA AGTACTTAAA CTCAATATGA TTAGTTATAT TGAAATTAGT AAAAATAGAT ATTTATATAT ATCTTTAATA TTGATAAAAT TAATATAACA TCTAATATTA TATGTTTAAA AAAAATAATA CAGATGTGGA GCTAGAGAAA AAACAACGGA AAATAATTCG GATAAATTCA GATAGTATTT ATGTTAAAAT CAAATAGGAA TATAGAGATA ACGTAAAAAC GAATACTGCA GCTGGGCTGC TGCTGTGCCA GTGCCAGGCG CCCGTCACAC TCACACACCC CCACTCCACG AgCTGGTAGC AGTTGCTCGG GGATCTAGGA CGGGGGTCCT GTGATGCAAC AGCGAGTCAG ACTGCGTCTG CGTCCAGCCA AGTACTTCCC CCGCCCCGCC TACGCAAAAA GAGAAGAACA CGCGGCGCCA ACAAGCTTAA GTACTCGTCT CTTTTGTTCC TTTACCACCT TTTCTCCATA TGATTAAAGA GGAGAGCTCC CTTCCGGCAT CCAGCCTAAC GCGCGCGATG TACTGTGCCG TGCATCTAAG ACACAGTTAC CTACAGTACT ACTTTGAGAA GGCCTGCATG CAAGTATGTT AGAGAACGGA AAGAGACATA TTTACTTTGC AGGTGTCCTT TTTGCGCGAG ATTGCATGGT GTTTTATTTG AAAAGCACGC CGGACTTGTA AACGGATCCC GAAATAAAAA CAACTGGTTT ACCTGAAATC ATACACACGA TTTTGATCGT CGTCGTTCTC CACTGGCAGG AGATTTTGGT AGTCCCTGTC GGGATATCGT ATAGTATGGC TTCATTATTA TAACCCCTTT CGATTGGATT GCCGGATAGG GTACGATATT ACAAATCCAA TCTCGCGCCC TAGCTAATAA ACGGTGTGGA ATCCAATCTC ACAACCATGC ATGGGCCAGT TATTGTTAAC GTGGAGTATG ATCAAGGTTT GCCTTCGGTC GTTCGTCTCC CCAACGTTAC CTTTTGCATC GATCATTGTA TATTATTGCA TGAAGTTCCC CATCATCCTT CATCAAATGA TGAATAATAA TCATCCATAG TGCAGTCAAC TATAGTTCAT ATATAGCATG AAGTTCCTCC TACAAGTGAA TCTAACAAAA ACGTGCGGCT ACAACAACAT GCGTATGCAT GGAACCCTTG TTGATATGGT AACTAAAATC TGATTGAATC CGCAAAACAA TCCAATCCAA CGGAATACGG ATGAAACTTG TGTAAACTAG GACGGAGGAG GACCCAAAGC AAAAACTCCG CAGGCATTTT GAAATTGAGC TATACTACGT ACATGCATGA CTCCGTCGAG GCTCCAATTG TCTTCCTGGA CAAAAAAAAA ACAAGGGGGA GGGGGGGAGT GGACACTGTA GCAGAGAGCA GCCAAAAGAA AAAACCCTGA CAGGAAAGAA AGCCGAAGTC CTACGAGCCC TAGAGCCGAA CACCTATGCC GTAGACACAG CAGGGCGTGG GGCCAGTCCT GTCGGTTCCA GCCAGCTCTC CAGCCGCACG CGCATCGACA CGCGTCGCCC ACTTCCTGAC ATGTGCTGTG CCTGCCTCGC CTAGTGCTCC TGCGCCTCTC TCTCTCTCTC TCTCTCTGTC CGACTCACTC GCGTACGGCA ACCTTTATTG CATCGCATCG CACCTCCTGT CCTCGGTCCT CCTCGCGCGA GGCCGCGAGA TTATTGCGGT CTGGACGTCC GCCAGCGCGA GCGCGCCGCA CCAGCACGCA GGCGGACGCA GGACGAGGCC GAGGGGGCGC GCGCTGGTAC GGGCGAACTG GGGGCACATC AATCGGTTAT CACGCGTCGA TCAGGGCGCT CTGCCCCGTC CCCTCGCCTT CGATGGAGGC CCCCACCATG CAGCTCGCAA AAAGCAACAG CTCCTGGCGA TGCCGTGGTG GGCGAGTGAT TGGTCGCTAG CTGATGGATC ACAGCGCTGC CAGGTACATA GGTCGATAAG GCTATCCGTA CTACTCTAAA AAAATATTTT ATTTTTATCA TCAAAAGTAT TTACCATATA TCACAATAAT CATCTGCAGT CATATTTATT TCATATATCA ACTCTACACC AACAACCATA TATTTTATCA TTTCTTTCCC ACCATACCTC AACCAAATAG TGGATAGCGT ACCCCGAGTA GTACAAACGC TACATCAAAG GTTCCAACTC TCCTACGGCA AAATAGCGTA GGGCATACAG TCTGCGGCTG CAGATTTTTT TTTTGTTTCG

## 4051

4101
4151
4201
4251
4301

## 4351

4401
4451
4501
4551
4601
4651
4701
4751
4801
4851
4901
4951
5001
5051
5101
5151
5201
5251
5301
5351

5401

5451

5501

5551

5601
5651
5701
5751
5801
5851
5901
5951
6001
6051
6101
6151
6201
6251
6301
6351
6401
6451
6501
6551
6601
6651
6701
6751
6801
6851
6901

AGCAACCCTA TCTTCGATAG CATAGGACAT ACAATCTCTT AGTGTATATA GCCTAAGGTT GGTGCCAATG GGGCGGCAGT GTGGGCGAGA GCGTGCTGCT ACGCCCAGCC GTGGGCAAGA GCCAATGGAG GGAGCCCCTC GGGCGCCGCA GCTCGCGCCG GCGAGAGCGA GCGGTATCAC ACTGCTCTCA CCCTCGCTGG AACGCGTGCC TGGGCGACAA GCGGGCGAGA GGGAGGCGAG GCGCTGATGA TGGTGGGTGC GCGGGCAAGA GCAAGTTGGC GCGATCTGAT TGGTCCATGT GGCGTCACAT GTGCTAACTG TTGCAACTAG CCTTTTTTGG CCGTTTGAAG TCCAAAAAAT TCAAACAAAT GCAAAAAACC ACAAATTTCA TTCTCAATCC CTCTATAAAT ATCCCTACCC GGTGGAGCTC ATTTCACACA TCGTTTCATC TGATTTCTCT CTCCTAAACT CGCCTTTTCT AATCATCTTC ACGTCATGCC TTCCTCGAGC ACAAACTCAA GTGAAGGAGC CAAAGGTGCA ATGTGGAATG CATTGCAAGC AGCCATGGAG GAGGCTATGC TCAACCGCAG TGAAGAGTCA TCGAGCCAGC CCAAGCGTCG TCGACGGTAC ATCAATCTTG ATTGTGAGTC TTCCCATGCT CGACTTCATC AAGACTACTT CGCCGATGAT TGTGTATCCT CCAAATTAAT TTTGGTGGAT CCATCTACTA CAATGCAACC CCGAGCCTAG CAACCAGGAT TCAAATGGAC AACGAGATGA CAGACACATG GACGTATACA CAACTCCTAA ATGATTTAGT TGAACATGTA TAGAGACATA ATAATCATTA GATTTATGTA ATTTTGTATT AAGTATTATG TATTTTTTTA ATTATCATGT ACTTTTCTTT TAATTAGTAT GTAGTTTGTA CTTTTAATTA AATAAAAAAT TAGTTGTGCG ATTTTTTAGC GTTAAAATAA TTGTGTATGA ATTATTTTCT AAAATAGAAA AGCTGATGTG GCTATAGACT GAGGCTATAA CCTACTGCAG GCTGTGCACT AGAGCGGCAG AGGCGAAAAT GAAGTGATCT AACATGGGGC GAGAGAGATG CCTATGTACT TAGTGTGTGT GAGAGAGAGG GCGACACAGA
 AGGGTACGAA TACGATCACG CAATATAAGC ATCTCTCTCT GCTGCTTAAA GCAACCCAGG ACTCTGCTGC tTAGAGCTAG AGAGGACACG GAGGTAGAGA GAGACGAAGC TAGAGGGACG CAAAACAAGC TAGCTAAGCT AGGAGGAAGA
TGGGTCGCGG CAAGGTGGAG CTGAAGCGGA TCGAGAACAA GATCAGCCGC $\begin{array}{llllllllllllllll}G & R & G & K & V & E & L & K & R & I & E & N & K & I & S & R\end{array}$ CAGGTGACGT TCGCCAAGCG CCGCAACGGA CTGCTCAAGA AGGCGTACGA Q $\quad \begin{array}{llllllllllllllll} & T & T & F & A & K & R & R & N & G & L & L & K & K & A & Y \\ E\end{array}$ GCTGTCGCTG TTGTGCGACG CGGAGGTCGC GCTCATCATC TTCTCCGGCC $\begin{array}{lllllllllllllllll}\mathrm{L} & \mathrm{S} & \mathrm{L} & \mathrm{L} & \mathrm{C} & \mathrm{D} & \mathrm{A} & \mathrm{E} & \mathrm{V} & \mathrm{A} & \mathrm{L} & \mathrm{I} & \mathrm{I} & \mathrm{F} & \mathrm{S} & \mathrm{G} & \mathrm{R}\end{array}$ GCGGCCGCCT CTTTGAGTTC TCCAGCTCCT CATGGTACGA CGCACGCGCG $\begin{array}{lllllllllll}G & R & L & F & E & F & S & S & S & S & C\end{array}$ CTCCGGCCAG CCTTGTCCTG CCCTGCATGC ATCTGATCTA TGTGTAGCCC GCAACACGCA TCCCCCCCCC AAATGAACGA TATTAATATA TACTAAAGGG GAGCACCTGC ACTTTGGGTC TTTTTTTTGT TTATTTTCCT CATTCTCGTT TTCACTTTAA GAACACGTTT TTTATTGTTA GATTTGCTCT CTTAATTTAT GGCTTGTAAG TCTCGCAATT GCTCATAGAT CTTGTTCTTT GGAAAGATCT CTTCTCCTTT TAGTCATGGA TGGATGCTGT CTTTCTGTTC GTCCTTGTTT AGTTTGGAAT TTATGGTCGC CCTCTTTGGA CAATTTGCTC TCTTCCTTCT TGGTCTGTGC TGATTCGTTT TCCTTCTTGG CTGCTCATCA TTTATTTGAC AGCTACTCTT ACGTATCTTG TTTGGTCCCC GTGGGCCAGG TAACCAAGAT CTGGGCACAT GAACCTAGAT CTTCCTCTAT TAATTGTGTC CTATTACTTA TGTATATACA TCACCAAAAC ACGATATCAC GACCATCCTT TGTTCACCAA AAGAATTAGT AGCATATATA TCCTCGCTTT TGTTGCTTAC AGCTCATCAC CTAACAAAAC AAGGGAACAT ATCCGGTGCA TATTAGACTT TTGTCCACAT ATGGTGTACA TGAACTAACA AAGTTCACAA AAAATCTTTA AAAATTCATA CATATTCTTT TCATCATACT CCAATTATAT TCAAAATTTT AAGTTTAAAT CCGTTATACT TTAGCTATAA TAAAAAAGAG AACATTTTAG CTGATTTTCA AATTTAAACT TGTTGAAATT TATCTTTTTT ATTACAGTTG AAGTATAACG AATTTAAACT TGAAATTTTG TATATAATTA GAGTAAAATG GAAAGAATAT GTATGATTTT TTCAGATTTT TTTGTAAACT TTGTTAGTTT ATGTGCACTA TATGTGCACC AAAGTCTAAT ATGCACCGGA TAGTTTCCAC AAAACAAACT TTTTTCTTCA GCACAACTAT GTCTATAATT GCTAAATATG CATACAGTTC TTCCATTTAC CAAGGTAGAT CTCGTGAACT TGTCGTATAG TAGACCTGTA CCTCAAACAA GATTTGAGTT TTTCAACTTG TTCTCTTGCA ATAAGAAGCA AGAGTAAAAA AAAACATCAG TGCATTATTT ACTACCTTCT TCCTTCCCTT TTTAGCATTG TTGCCAGACT GACAGTGTTG CCACATTCCA TATCCAGTTA TCCAATCCCA AGTTTTATTT TTACTTCATA TTTCATCTCC TTTATTTTTG TCAACTCATT TTATCTTCCA AACAAGCTGA TGTGCTTAGC TCACCGGTTC

6951
7001
7051
7101
7151
7201
7251
7301
7351
7401
7451
7501
7551
7601
7651
7701
7751
7801
7851
7901
7951
8001
8051
8101
8151
8201
8251
8301
8351
8401
8451
8501
8551
8601
8651
8701
8751
8801
8851
8901
8951
9001
9051
9101
9151
9201
9251
9301
9351
9401
9451
9501

10051

AGTCACTAGA GCTGTAGGTT CAGTCACTGG AGCTGTATGA AGCCCTCAGC TGCTGATCTA TATGCTACTG TTTCATTCGT TACTGTTCCA TAGAGGGTAC ATGGGCGGAA CGGTAGCTGA TGCTCGAGAC CTCGAAATGC TATCTCGCAT CTTTCTTGAG TCCCGTGCAG AGTCATATCA AGCAGCTCAG CATATACAGC ATGCAATATT ACGAAGGTTC AACGTCATGC TTTCATCCAT GTGCGTAAGC TAGCTGCATG AACAGATGTG CAGGAGCATT TCATTTCATA GTTTTTTTTC CTGAAGAAGA TTTGTCTATC ATATCAGTGT TTTATCGAAG TTGTAGAAAG TAGCATATAT ATCTCGTCTT CCTCTATTTG TCTTTTCGAT CTTATGCATT CAAGATTTTT CTCAGTTTTC TGTTCAATAT CGTTTCTCTG GTTTTCTCTG CCATTTTCAC AGATTTTCAT CCTTTTTAGT GACTCCATAG GTGGAGAATG TATGGTTGTA TCCCTGCCTA TAGGTGATTC GTTAGTAATA TATATTTTTT CATCCAGTAA AAAATTCTTG ATGTTTTAAG CAAGATGCAG TCAAACTCTT GAAAGAATGT CCATCAATAA GTTAGAACGA CATTTGTAGT CTAAAATGTA AAAGTAACAG AAATTTGCTT GAAAAGAAAA TTCATAATCA TAAACTTATA TGTATAACCA TGTTTGAATA AAAATATAAT AACGACCAAC TACTTTTGGC TGGACGAACT ACTATACATG CATGTGTATA TACTCTCTAA TCACAAATAA AATGTTTATG GTCAAACTTC AATTTTACAA CCTTTGACTA TCGAAGGTTT TACTAGCTAG ATCAAATCAT GAAATAGTTT GTGAATATTT ATTTTGAATT TTACTTTCAT GATACTATAT AAGTTTACTA GATTTTTCTA ATACATTTTA ATATATAACA TTTATGGTCA AAGTTATATT TTATAGACCA TATAGGAAAT GTCGTCATTC AAACAATCAA GCGTTTTCAA CATTATGTAT TTAAGTGCAT GTAGGGAGTT TGATCAATTC GGTTGTAGAA GTGTTGACAT AAGTAATAAA ACAATGCATA AAAGGAAAAA ACATAACATA ATAATTTACC TATTAATACC GGTGTGACAT GGAAATATGT ATATATGTAC AACTTTATCC ACACAAGATA GTAATATATA GTATATAGAG AGCTTTGTAC CATCAATACA TCTTCATATT TTATTGTAAT TCTCCTATGA TTGTTAAATT ATTGTGTGGA GCTAGCCACA AAGCATAGTT AATATGTGTA TAAAAATATT ATATGCAACC ACTATAGATA GGGCTGATAA TGGGCTATAA ATTTTGCACT ATAAGATTGA AGGATCGAAG CGGGTTAGGA TCGAGCTCTA TTTCTAGTCA TTTTTGAGCT ATAATTTATT TAGGGCCTTG ACATTTTGTG GAGAACTATT TGGATCACAA TCCATTACCA CCCCTAACTA TAGATGATAG GAATTCAAAA AGATCTTTGA AAAATCATGC TTTACGTTGT AAGATGTAAT TTATAAATTT AGATAATAGA GTAAGCATGC ATATTTGTAC AACTATTGTA ATTAATTGTT TAAGGCAATG TTGTGGTTAT AGGCCATGTG GTGGCATATA TTATGTCAAC AATGGAGCTT GACCAAACAA GGGGAGCAGT CTATATAATT GAGGAGTAAA CACTAAAATA TCACTATTTA GACAATGGGG ATCACATTGA GAAAGGGTGG CTATGGGCTA GCTAGTTTGG TCTTAACCAA GATCCTCCCC TGTAATTAGG TGTGTGGTGC TGACTAACTG ACATCCTAGT GGCACTAATT ATTAGAGTTC TTTGTTTCAA CTTTGTTTTT CACATGTTAG AAAATACAAT TATCCAAAAT CTCTTTAACT ATATGTTTTT AATGTGGACG ACCCACAACC TTAGAGCGTC ATGCATTAGA ATATACAAAA GGAACTCCAA ACTAACTAAT GGATTCTAGT ACACCCGCCA TATTATATTT GATATTGCAT GGTCTTCCAC ATCTGAAAGG TGACTTAATT ATTTAAACAC gGgactacat ggacataigc AtaiAtgrtg tattactatg Attagagtai TAAACAACCA AATAATTTGT TTTATTCTAA GAATCATCTA AAAATATTTA TTCTAGTTTC CAACAAAAAC AAATAAATTG GTTTCCAAAG TAAAGTATAT TGTTTTGTTT TTGCTAGCAT CCTCAATTCC TCAGGTATGT TTTTGCTACA TAAATTATAT TACGATTGAG GTCTCAAGAA TTTTGAGAAG ATACTTTAGC ATATCTAAGA CTTTAAAATA GATGGCAGCT ATCGATCTAT ATGACTGTTT GAAGAAGAAA AAGTTCATAT AGTTATATTA ACTAATCATG CTATGGATCG GGTTACATTA CCTTATTTAC TTCCACTCAA TATTAAATAT ACAATTTGTA AACACAAGAC AATCCATCGG TTAGGTGTTT AATTGAAACA CCACAAATCT AATGGGTAAA TTAAATGCAT TTTGTCTAAA TATGCATTAT AGATTCATGG ATAGATTTAG CAGACATGAA ATCTTGACAT AAATCTCATG GAAGAGTTAT TAGTCTCCGG AGTTTCTAGA CCTAGTAGTT TTCTAAAATT ACAATAGAGC TCAATAGTAC AGATATTTAC CTTTGGATTC ATTCATGGAT AAAAGGCTGC TAACACGTAG TGGAGTTCTC TGGTGAGTTT CAGTCCAATA TATGTAGGTT CTTTAGTGGA GATTGTAGTC ATTTTCTTAG ATATTTTTAT GAACTATATA CCATTATTCC ATTACCATGG TCTTTCACAA GTAAATTCGT TATAATATTT GTGTGGCATA CAATACATCA TTTGTGCTTT TACATTCAGT ATTTAAGTAT TTTATGCTAT GATACTAAAA GTTCAATTCA CTGGTAGTCT GGTACTAAAC CTTCAATTCA CAATACAACG AAACGTCATT GCCAGTTTGC CACTCATGGC CTATGGCCCT ATGCTATAAC ATCGGTTGCT GTGCTGCACT TGCAAGTACG TAGGAGTATA TGAACCCTCA ACTTAGTTCC TATATTTGCG TTTCCACTAC

10101
10151
10201
10251
10301
10351
10401
10451
10501
10551
10601
10651
10701
10751
10801
10851
10901
10951

11001

11051
11101
11151
11201
11251
11301
11351
11401
11451
11501
11551
11601
11651
11701
11751
11801
11851
11901
11951
12001
12051
12101
12151
12201
12251
12301
12351
12401
12451
12501
12551
12601
12651
12701
12751
12801
12851
12901
12951
13001
13051
13101

CAGTCTACCA TGCAAGCAGC GTTTCCACTA CCATGCAATG ATGCAATGCC TCTCTCTCTC TCACCCCTTG GTTAATGGTG CTATATCAGC CCTATGACAT GCTAACATGC ACAAGATCAC ACATTTTCTG TTTTAGTTTC ACACCCAAAT TTGGACCATG ATGGCCCCCC GGGAGATATA TGGTCTCTCT TTTTTGTCCT GTAAAGGGGT GCAACCTATT TTTCTATAGC TGTCAATGGC ATAAATAGAT AAAAGGATTA TCTATGAACA TAGACACATG ATGAGAAGAT TAAAGAGAAG GGAAAAAAGG TGAATGGACG AAGCCCTTGT AGTTTGTAAA TCAGTCTAAG TTGCAAACAC TCTCTCTGCA TGCGTTACAT AGTTGCATTT AGCACCCCCG GCCCAGCATC TCTCACTCTG CTGCAATCTC ACAAGTCACA CCCAAGAGTG GCACAAAAAG GAACGAGTTT CCAAATATAT AATAACTAAC TATATATTTC AATTATTGTG CAAGGGTATT TGCAACTTAG ACTCAAACCT AGGATTTATC ATATATAAGC GTACATTTAC ATTACACACG GGAGGTGTGA ATGGACTGAA CTATGAAACT ATAAGCCTAT TCCCTATTCT TGTATCGTGT GGTGTCAAAC ACGCCATGTC TTCTAAAGAG CAAATGCTAC TTACAATTTA CAACATATAG TACAATATGG CATTATTTCT TAGAAATGGT GCAACAATTA ATCGTTTTAT GAATGACAGT GGCCGGCCTT GAAATCAAAG AATGTTTGTT TGTGCTACTA GCTGTCGTTT TTCAAATGCT GTCATTGATC ACTTTTGCCT TGTGCCAACA GCATGTACAA AACACTCGAG AGATACCGCA GCTCCAACTA CTCACAAGAA
$\begin{array}{llllllllllllllll}M & Y & K & T & L & E & R & Y & R & S & S & N & Y & S & Q & E\end{array}$ GTAAAAACTC CACTGGACAC TGAAGTAAGT GTAATGAGTT CTTGACATCC $\begin{array}{llllllll}V & K & T & P & L & D & T & E\end{array}$ TTTTTCGACG TAACAGTGCA TTTGTAAATT TATTTCTGTG AGCACATAAA TCACCTGTAA TATCTTATAT AAACAAGAAT ATTGTAGCAA GCTAATAAAA TACTCCCTCT GTTTCGTTTT AGTTGTCGCT GTATAGTGCA AAATTGAACT ATTCAGCGAC AACTAAAAAG AAACGAAGGG AATATGTTGC TTGCTTCCAG AGCCACCAAT CGCTCAAAAA ATGAACAAAC CAGCGATCTG CTTTATCATC GGTCAAGTGA TTATATTCAT GTATTTTCCA AGCTAACTGA TACCATACCT TATGTTTAAA TTTCTGTTTT TTGAATTCAG GTAGATTTAT TTTTCGCATC ATAAACACTC CAACAAGTGT GAAGACATCC TTGCTCAGTA TTGTCTATAC CAGGGATAGA CGTATAGCCG TATAGGATTG GCCTAGCAGC AGGATCGAAT ATAGTCATAA AGAACCGTAG GAACATATAT ATAAGGTTAT TCTATAATAA TCTGAATTAC TATAAAGCAA ATATTTCCTA TAATCTAGCT AATTGGTTTA GATGGCATTG AAGTATCTTG TCCTATCCGA GTTTATGTTT TTAGATAGAC TTGTGCGGGT GCTCGTACCT CCCCGTTTGT AGACACAAAT GTATGTGTGT TTTCGTGCTG GACATGTGCT AGTTTATGGG TGCAAGTCAT TGTCTAAAAA ATGTTTATGA ATGTTGTATA TGGACACATA TACTCTCTCT GTTTCAAAAT ATAATTTATT TAGACTAAAC ATATATATTC ATCTATTAAC TTATGAATGT AGTTTATATG TATTTTTATA TTTATTATCA TTTATTTGAA TGTGGACTGA AAAAACAGGA CTATAAAGAA CTATATTTTA GAACTGAGAG AGTATATGTT TGCGATGTTT CTACGTGAAT GCGCAAGTAT GCACAAATTG TGCTATCAGA AAAGAAACTA TTCTTTTTGT TAACAGACGT AGTTAAAATT AGAGCATAGA ACCGTGGGCA GCAGCACTCC GGCCAGTGGC ATAGTAAAAT TAGAGAAATT TGACTCAAAG TAATTAGAAA TGTTCACATT TTGGAAAGGA GGAAGGTCCT AATTGCACTA TAGCCAATAA TTAACTGCTA AAATAAATTG TAGACATTCA AACAGCTCAA CCAATAATTC AGTATTAGCT AGCCTTTTAG TAAAGTCGTC AATAGCTAGC CAACTATTTG TTAACCAGCT AATTCTACTA CTAGTTTTTT ATTGAGCTAA CTAGCTCTCT AGTGCATTCA AATAGGCCGA AGTATATCTC CAGCGCTGTA GAGATTCACT TAGTTGGGCT TGGGTTGGTC GTTGGTTTGA TTGTCATCAA TGAGTAAACG AAGGCGCGAA AGTGAACATT TTTTACATGT CAGCTTAGAA TTTCTCTCTC TATAGAATAG AATAAACTAG AAGCATAACT TCTTTGTTGC TGTGGATCTT TTTTTTTCAA AATTAAAACC ATTGCACATG TTCTTGTAAT TCTCATATAC TCTCTTTGTC CCAAATTAAA ATTCGTTTTT AAAAACTAAT AGATTCATAC CATACTTGAT TTATATGTTT TATATATGTG TTTAGATTTA TCATCATCTA TTTGGATATA GACATAAAAA TTGAGAGCTA AAGCGAATAC TATTTTAGAA TGGGGAGTAT TAAAAATAGT GTTGGACTTA GTAGAGGTGA TGCAGATGTC TTGCATTCAT AGGTTTAAAG TTACTGGACA CGTGGTATCC GTGGAAGATG GTATGGATAG TTAGTGAGAA ATGATGTAGT CATGTAGAGC TTGTATGCCG AGATAGATTT TATAGTAGAG TTTAAAAATC TAAGATAACA TATATAAATA TATATTGCAA TGAAGATGGG GGCTCAAATT AGCTACCATT TGTGGCCCTG ATATCAACCT GACAGGCTGA GCCTTTATTT TGGTTTGCAA GTAAGAGACT GGGCTGGGGG CTGGACAACT GAGCCAGATA TAAACATACC TATCTTCCTC TGGCGGAGCC CATCATATAC AATTCCGGCC CATCTCTCTT ATCAAAGTAA TGGATGCGTG CTGCTGATTT TGTGGTAAAA

```
13151
13201
13251
13301
13351
13401
13451
13501
13601
13651
1 3 7 0 1
13751
13801
13851
13901
13951
4001
14051
14101
14151
14201
4251
14301
1 4 3 5 1
14401
14451
14501
14551
1 4 6 0 1
14651
14701
1 4 7 5 1 ~ G T G A T G C A C A ~ G C A G G G A T T C ~ A C C C T G C A G G ~ A C G C G A G A C T ~ A T G T A T T G A A ~
1 4 8 0 1 ~ G C T A A G A C C T ~ C G T G T G T G T T ~ G T G T T G T G T G ~ C G A A G C T T G G ~ A A C T T T A T A A ~
1 4 8 5 1 ~ A T C G T T G T C A ~ T G C C C A T G G C ~ T T T C T A T T T C ~ T T T C T C G G A G ~ C T G C G C ~
```


## Appendix 7.4. Branching characters in the tassel.

Displayed are the branching characters of the tassels in control and transgenic plants. The analyzed plants are grouped per control group, construct, gene, generation and line, as indicated by the number in columns U1 and U2. The numbers indicate the assignment of plants into this group for statistical analysis by the Mann-Whitney (U)-test.
$\mathrm{U} 1=$ U-test grouping of control plants only; U2= U-test grouping of transgenic and control plants.
Abbrev.: gr.h.no. $=$ greenhouse number, constr. $=$ construct, $\mathrm{Tn}=$ generation, spklts= spikelets, $\mathrm{mN}=$ nonbasal monopedicellate spikelet pair, $\mathrm{mB}=$ basal monopedicellate spikelet pair, $\mathrm{tN}=$ non-basal triplet, $\mathrm{tB}=$ basal triplet, 3 flr $=3$-floretted spikelet, $4 \mathrm{flr}=4$-floretted spikelet, $\mathrm{sng}=$ single unpaired spikelet, monoNB= phenotypic ratio of mN , monoB= phenotypic ratio of mB , $\operatorname{trpltNB}=$ phenotypic ratio of tN , trpltB= phenotypic ratio of tB , 3-floret= phenotypic ratio of 3 flr, 4 -floret $=$ phenotypic ratio of 4 flr , single $=$ phenotypic ratio of sng, branching= sum of the monoNB, monoB, trpltNB, trpltB, 3-floret, 4-floret and single, empty v.=empty vector pK 225 , GCN5= p35SAcS/GCM5::GUS, aZM15= pK225/aZMM15, $\mathrm{aZMM} 6=\mathrm{pK} 225 / \mathrm{aZMM} 6, \mathrm{ZM} 6=\mathrm{pK} 225 / \mathrm{ZMM} 6, \mathrm{aZMM} 8=\mathrm{pK} 225 / \mathrm{aZMM} 8, \mathrm{ZMM} 8=\mathrm{pK} 225 / \mathrm{ZMM} 8$.

U1		gr.h.no. constr.	Tn	spklts		mB	tN	tB	3flr			monoNB	monoB	tpltNB	tpltB	3-floret	4-floret	single	branching	
1		4436 empty v.	T0	240	0	0	0	0 1	0	0	0	0	0	0	0.00417	0	0	0	0.004167	
1	1	4437 empty v.	T0	250	0	0	0	- 1	0	0	0	0	0	0	0.004	0	0	0	0.004	
1	1	4438 empty v.	T0	316	0	0	0	0	0	0	0	0	0	0	0.00633	0	0	0	0.006329	
1	1	4439 empty v.	T0	172	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	1	4440 empty v.	T0	328	0	0	0	- 1	0	0	0	0	0	0	0.00305	0	0	0	0.003049	
1	1	4770 empty v.	T0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	1	4771 empty v.	T0	54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	1	4772 empty v.	T0	102	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	GCN5	T0	236	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	GCN5	T0	388	0	0	0	0	0	0	2	0	0	0	0	0	0	0.00515	0.005155	
2	1	GCN5	T0	220	0	1	0	- 1	0	0	0	0	0.00455	0	0.00455	0	0	0	0.009091	
2	1	GCN5	T0	218	0	0	1	1	0	0	1	0	0	0.00459	0.00459	0	0	0.00459	0.013761	
2	1	GCN5	T0	290	0	0	0	0	0	0	1	0	0	0	0	0	0	0.00345	0.003448	
2	1	GCN5	T0	308	0	0	1	10	0	0	2	0	0	0.00325	0	0	0	0.00649	0.00974	
2	1	GCN5	T0	386	0	0	1	1	0	0	0	0	0	0.00259	0.00259	0	0	0	0.005181	
2	1	GCN5	T0	292	0	2	0	0	0	0	2	0	0.0069	0	0	0	0	0.0069	0.013793	
2	1	GCN5	T0	230	0	1	1	12	0	0	3	0	0.00435	0.00435	0.0087	0	0	0.01304	0.030435	
2	1	GCN5	T0	132	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	GCN5	T0	174	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	GCN5	T0	190	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	GCN5	T0	108	0	1	0	- 1	0	0	0	0	0.00926	0	0.00926	0	0	0	0.018519	
2	1	GCN5	T0	234	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	GCN5	T0	446	0	1	0	02	0	0	0	0	0.00224	0	0.00448	0	0	0	0.006726	
2	1	GCN5	T0	238	0	0	0	- 2	0	0	2	0	0	0	0.0084	0	0	0.0084	0.016807	
2	1	GCN5	T0	308	0	0	2	2	0	0	0	0	0	0.00649	0.00974	0	0	0	0.016234	
2	1	GCN5	T0	296	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	GCN5	T0	272	0	0	1	10	0	0	0	0	0	0.00368	0	0	0	0	0.003676	
2	1	GCN5	T0	198	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	1	4525 aZM15	T0	406	0	0	1	1	0	0	0	0	0	0.00246	0.00246	0	0	0	0.004926	1
3	1	4526 aZM15	T0	206	0	0	0	- 2	0	0	0	0	0	0	0.00971	0	0	0	0.009709	1
3	1	4579 aZM15	T0	452	0	1	0	0	0	0	0	0	0.00221	0	0	0	0	0	0.002212	1
3	1	4583 aZM15	T0	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3	1	4735 aZM15	T0	196	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3	1	4760 aZM15	T0	360	0	0	2	21	0	0	0	0	0	0.00556	0.00278	0	0	0	0.008333	1
3	1	4548 aZM15	T0	316	0	0	0	2	0	0	0	0	0	0	0.00633	0	0	0	0.006329	2
3	1	4523 aZM15	T0	394	0	0	3	31	0	0	2	0	0	0.00761	0.00254	0	0	0.00508	0.015228	4
4	2	4975 aZM15	T1	436	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
4	2	4984 aZM15	T1	786	0	1	2	24	0	0	1	0	0.00127	0.00254	0.00509	0	0	0.00127	0.010178	2
4	2	4989 aZM15	T1	638	0	0	2	2	0	0	0	0	0	0.00313	0.00313	0	0	0	0.00627	2
4	2	4990 aZM15	T1	760	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
4	2	4992 aZM15	T1	702	0	0	0	0	0	0	2	0	0	0	0	0	0	0.00285	0.002849	2
4	2	4976 aZM15	T1	662	0	0	0	0	0	0	2	0	0	0	0.00302	0	0	0.00302	0.006042	2
4	2	4980 aZM15	T1	520	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
4	2	4983 aZM15	T1	686	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
4	2	4987 aZM15	T1	578	0	0	0	0	0	0	2	0	0	0	0	0	0	0.00346	0.00346	2
4	2	4954 aZM15	T1	712	0	0	1	10	0	0	2	0	0	0.0014	0	0	0	0.00281	0.004213	4
4	2	4956 aZM15	T1	674	0	0	2	2	0	0	0	0	0	0.00297	0.00445	0	0	0	0.007418	4
4	2	4959 aZM15	T1	720	0	0	3	31	0	0	0	0	0	0.00417	0.00139	0	0	0	0.005556	4
4	2	4973 aZM15	T1	580	0	0	2	2	0	0	1	0	0	0.00345	0.00345	0	0	0.00172	0.008621	4
4	2	5011 aZM15	T1	522	0	0	0	0	0	0	1	0	0	0	0	0	0	0.00192	0.001916	4
4	2	5012 aZM15	T1	624	0	0	0	- 1	0	0	0	0	0	0	0.0016	0	0	0	0.001603	4
4	2	5013 aZM15	T1	684	0	0	1	1	0	0	0	0	0	0.00146	0.00146	0	0	0	0.002924	4
	3	4542 aZMM6	T0	395	12	5	5	5	4	2	0	0.03038	0.01266	0.01266	0	0.01013	0.00506	0	0.070886	1
	3	4506 aZMM6	T0	132	4	2	0	0	0	0	0	0.0303	0.01515	0	0	0	0	0	0.045455	1
	3	4508 aZMM6	T0	106	5	1	2	20	0	0	0	0.04717	0.00943	0.01887	0	0	0	0	0.075472	1
	3	4509 aZMM6	T0	164	2	3	1	10	0	0	1	0.0122	0.01829	0.0061	0	0	0	0.0061	0.042683	1
	3	4510 aZMM6	T0	274	2	3	5	5	0	0	2	0.0073	0.01095	0.01825	0.01095	0	0	0.0073	0.054745	1
	3	4562 aZMM6	T0	340	9	3	5	5	0	1	3	0.02647	0.00882	0.01471	0.00882	0	0.00294	0.00882	0.070588	1
	3	4627 aZMM6	T0	290	4	0	10	0	0	0	0	0.01379	0	0.03448	0	0	0	0	0.048276	1
	3	4706 aZMM6	T0	41	3	2	0	0	0	0	0	0.07317	0.04878	0	0	0	0	0	0.121954	1
	3	4728 aZMM6	T0	108	2	0	3	31	0	1	1	0.01852	0	0.02778	0.00926	0	0.00926	0.00926	0.074074	1
	3	4563 aZMM6	T0	390	2	3	16	6	2	2	0	0.00513	0.00769	0.04103	0.01538	0.00513	0.00513	0	0.079487	2
	3	4565 aZMM6	T0	326	3	2	4	42	1	0	0	0.0092	0.00613	0.01227	0.00613	0.00307	0	0	0.03681	2
	3	4709 aZMM6	T0	106	0	0	1	10	0	0	0	0	0	0.00943	0	0	0	0	0.009434	2
	3	4778 aZMM6	T0	248	0	0	2	2	0	0	0	0	0	0.00806	0.00403	0	0	0	0.012097	2
	3	4511 aZMM6	T0	232	31	0	5	50	0	1	0	0.13362	0	0.02155	0	0	0.00431	0	0.159483	3
	3	4707 aZMM6	T0	84	1	1	1	1	0	0	1	0.0119	0.0119	0.0119	0.0119	0	0	0.0119	0.059524	3
	3	4719 aZMM6	T0	192	10	2	6	62	0	1	2	0.05208	0.01042	0.03125	0.01042	0	0.00521	0.01042	0.119792	3
	3	4758 aZMM6	T0	276	8	2	3	32	3	0	7	0.01449	0.00362	0.01087	0.00362	0.01087	0	0.02536	0.068841	3


U1 U2	gr.h.no. constr.	Tn	spklts		mB	tN	tB	3 flr		sng	onoNB	monoB	tpltNB	tpltB	3-floret	4-floret	single	branching	
4	4418 ZMM6	T0	152	0	0	0	2	0	0	2	0	0	0	0.01316	0	0	0.01316	0.026316	4
4	4419 ZMM6	T0	110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4420 ZMM6	T0	246	0	3	4	3	0	0	3	0	0.0122	0.01626	0.0122	0	0	0.0122	0.052846	4
4	4421 ZMM6	T0	156	2	2	2	2	0	1	0	0.01282	0.01282	0.01282	0.01282	0	0.00641	0	0.057692	4
4	4423 ZMM6	T0	198	1	1	1	3	0	0	0	0.00505	0.00505	0.00505	0.01515	0	0	0	0.030303	4
4	4424 ZMM6	T0	118	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4425 ZMM6	T0	102	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4427 ZMM6	T0	88	0	0	1	0	0	0	0	0	0	0.01136	0	0	0	0	0.011364	4
4	4428 ZMM6	T0	98	2	0	4	1	0	0	0	0.02041	0	0.04082	0.0102	0	0	0	0.071429	4
4	4429 ZMM6	T0	34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4431 ZMM6	T0	114	1	1	2	1	0	0	0	0.00877	0.00877	0.01754	0.00877	0	0	0	0.04386	4
4	4432 ZMM6	T0	62	0	0	3	1	0	0	0	0	0	0.04839	0.01613	0	0	0	0.064516	4
4	4434 ZMM6	T0	72	0	0	1	0	0	0	0	0	0	0.01389	0	0	0	0	0.013889	4
4	4435 ZMM6	T0	42	0	2	0	2	0	0	0	0	0.04762	0	0.04762	0	0	0	0.095238	4
4	4453 ZMM6	T0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4455 ZMM6	T0	40	0	0	0	1	0	0	0	0	0	0	0.025	0	0	0	0.025	4
4	4456 ZMM6	T0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4457 ZMM6	T0	38	2	1	6	2	0	0	0	0.05263	0.02632	0.15789	0.05263	0	0	0	0.289473	4
4	4460 ZMM6	T0	148	0	0	1	0	0	0	1	0	0	0.00676	0	0	0	0.00676	0.013514	4
4	4461 ZMM6	T0	116	0	0	1	0	0	0	3	0	0	0.00862	0	0	0	0.02586	0.034483	4
4	4462 ZMM6	T0	78	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4463 ZMM6	T0	90	0	0	1	0	0	0	0	0	0	0.01111	0	0	0	0	0.011111	4
4	4464 ZMM6	T0	242	1	3	2	2	1	1	3	0.00413	0.0124	0.00826	0.0124	0.00413	0.00413	0.0124	0.057851	4
4	4479 ZMM6	T0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4480 ZMM6	T0	126	0	1	2	0	0	0	0	0	0.00794	0.01587	0	0	0	0	0.02381	4
4	4481 ZMM6	T0	82	0	0	0	1	0	0	0	0	0	0	0.0122	0	0	0	0.012195	4
4	4482 ZMM6	T0	192	0	0	0	0	0	0	2	0	0	0	0	0	0	0.01042	0.010417	4
4	4485 ZMM6	T0	120	0	0	0	0	0	0	1	0	0	0	0	0	0	0.00833	0.008333	4
4	4486 ZMM6	T0	86	0	0	0	0	0	0	1	0	0	0	0	0	0	0.00116	0.001163	4
4	4532 ZMM6	T0	128	1	0	1	2	0	0	0	0.00781	0	0.00781	0.01563	0	0	0	0.03125	4
4	4533 ZMM6	T0	52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4534 ZMM6	T0	58	0	0	1	0	0	0	1	0	0	0.01724	0	0	0	0.01724	0.034483	4
4	4535 ZMM6	T0	106	4	2	7	2	1	0	4	0.03774	0.01887	0.06604	0.01887	0.00943	0	0.03774	0.188679	4
4	4536 ZMM6	T0	80	0	0	0	1	0	0	0	0	0	0	0.0125	0	0	0	0.0125	4
4	4537 ZMM6	T0	88	0	0	1	2	1	0	2	0	0	0.01136	0.00727	0.01136	0	0.00727	0.037273	4
4	4538 ZMM6	T0	178	0	0	0	0	0	2	0	0	0	0	0	0	0.01124	0	0.011236	4
4	4539 ZMM6	T0	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
4	4540 ZMM6	T0	102	3	0	5	2	0	0	2	0	0	0.04902	0.01961	0	0	0.01961	0.088235	4
4	4593 ZMM6	T0	174	1	0	1	0	0	0	0	0.00575	0	0.00575	0	0	0	0	0.011494	5
4	4594 ZMM6	T0	224	0	1	0	1	0	0	1	0	0.00446	0	0.00446	0	0	0.00446	0.013393	5
4	4598 ZMM6	T0	128	0	2	0	3	0	0	2	0	0.01563	0	0.02344	0	0	0.01563	0.054688	5
4	4599 ZMM6	T0	242	1	1	1	1	0	0	1	0.00413	0.00413	0.00413	0.00413	0	0	0.00413	0.020661	5
4	4842 ZMM6	T0	116	1	0	2	0	0	0	0	0.00862	0	0.01724	0	0	0	0	0.025862	5
4	4561 ZMM6	T0	250	0	0	0	0	0	0	2	0	0	0	0	0	0	0.008	0.008	6
4	4685 ZMM6	T0	56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
4	4688 ZMM6	T0	166	0	0	0	0	0	0	2	0	0	0	0	0	0	0.01205	0.012048	6
4	4724 ZMM6	T0	178	1	0	0	1	0	0	1	0.00562	0	0	0.00562	0	0	0.00562	0.016854	6
4	4739 ZMM6	T0	166	0	0	1	0	0	1	0	0	0	0.00602	0	0	0.00602	0	0.012048	6
4	4740 ZMM6	T0	136	0	1	0	0	0	0	4	0	0.00735	0	0	0	0	0.02941	0.036765	6
4	4762 ZMM6	T0	170	0	0	0	1	0	0	0	0	0	0	0.00588	0	0	0	0.005882	6
4	4765 ZMM6	T0	192	0	0	7	3	0	0	0	0	0	0.03646	0.01563	0	0	0	0.052083	6
4	4843 ZMM6	T0	104	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
4	4843b ZMM6	T0	308	1	1	2	2	2	2	0	0.00325	0.00325	0.00649	0.00649	0.00649	0.00649	0	0.032468	6
4	4844 ZMM6	T0	152	0	0	1	2	1	0	0	0	0	0.00658	0.01316	0.00658	0	0	0.026316	6
4	4845 ZMM6	T0	236	1	0	1	2	1	0	0	0.00424	0	0.00424	0.00847	0.00424	0	0	0.021186	6
4	4853 ZMM6	T0	244	0	1	1	3	0	0	2	0	0.0041	0.0041	0.0123	0	0	0.0082	0.028689	6
4	4854 ZMM6	T0	210	0	0	0	0	0	0	1	0	0	0	0	0	0	0.00476	0.004762	6
5	4826 aZMM6	T1	728	0	0	3	3	0	0	0	0	0	0.00412	0	0	0	0	0.004121	1
5	4830 aZMM6	T1	788	0	1	3	3	0	1	0	0	0.00127	0.00381	0	0	0.00127	0	0.006345	1
5	4831 aZMM6	T1	794	2	0	8	0	0	1	0	0.00252	0	0.01008	0	0	0.00126	0	0.013854	1
5	4833 aZMM6	T1	684	0	0	14	0	4	2	0	0	0	0.02047	0	0.00585	0.00292	0	0.02924	1
5	4834 aZMM6	T1	738	0	0	5	2	1	1	1	0	0	0.00678	0.00271	0.00136	0.00136	0.00136	0.01355	1
5	4835 aZMM6	T1	764	0	0	4	4	0	0	0	0	0	0.00524	0.00262	0	0	0	0.007853	1
5	5111 aZMM6	T1	510	0	0	0	3	0	0	2	0	0	0	0.00588	0	0	0.00392	0.009804	1
5	5115 aZMM6	T1	586	0	0	5	1	1	2	1	0	0	0.00853	0.00171	0.00171	0.00341	0.00171	0.017065	1
5	5116 aZMM6	T1	736	0	0	9	0	1	3	0	0	0	0.01223	0	0.00136	0.00408	0	0.017663	1
5	5117 aZMM6	T1	596	0	0	10	1	2	1	0	0	0	0.01678	0.00168	0.00336	0.00168	0	0.02349	1
5	5118 aZMM6	T1	754	2	0	6	2	0	1	0	0.00265	0	0.00796	0.00265	0	0.00133	0	0.014589	1
5	5824 aZMM6	T1	186	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5	5844 aZMM6	T1	188	0	0	0	0	0	0	7	0	0	0	0	0	0	0.03723	0.037234	1
5	5093 aZMM6	T1	440	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5	5098 aZMM6	T1	542	0	0	2	0	0	0	0	0	0	0.00369	0	0	0	0	0.00369	2
5	5099 aZMM6	T1	628	0	0	2	2	0	0	0	0	0	0.00318	0	0	0	0	0.003185	2
5	5101 aZMM6	T1	526	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2


U1 U2	gr.h.no. constr.	Tn	spklts		mB	tN	tB	3 flr		sng	monoNB	monoB	tpltNB	tpltB	3-floret	4-floret	single	branching	
5	5102 aZMM6	T1	618	0	0	0	2	0	0	0	0	0	0	0.00324	0	0	0	0.003236	2
5	5121 aZMM6	T1	582	0	0	5	2	0	0	0	0	0	0.00859	0.00344	0	0	0	0.012027	2
5	5122 aZMM6	T1	614	0	0	6	1	2	0	0	0	0	0.00977	0.00163	0.00326	0	0	0.014658	2
5	6033 aZMM6	T1	343	0	0	2	3	0	1	0	0	0	0.00583	0.00875	0	0.00292	0	0.017493	2
6	4745 ZMM6	T1	402	0	0	11	4	0	4	0	0	0	0.02736	0.00995	0	0.00995	0	0.047264	4
6	4746 ZMM6	T1	528	0	0	14	0	2	4	7	0	0	0.02652	0	0.00379	0.00758	0.01326	0.051136	4
6	4747 ZMM6	T1	520	1	10	1	0	0	0	1	0.00192	0	0.00192	0	0	0	0.00192	0.005769	4
6	4799 ZMM6	T1	632	0	0	7	3	0	0	2	0	0	0.01108	0.00475	0	0	0.00316	0.018987	4
6	4887 ZMM6	T1	504	0	0	4	2	0	0	0	0	0	0.00794	0.00397	0	0	0	0.011905	4
6	4890 ZMM6	T1	588	0	0	3	1	0	0	0	0	0	0.0051	0.0017	0	0	0	0.006803	4
6	5682 ZMM6	T1	502	0	0	2	0	1	0	1	0	0	0.00398	0	0.00199	0	0.00199	0.007968	6
7	6350 ZMM6	T1	308	0	0	1	2	0	1	2	0	0	0.00325	0.00649	0	0.00325	0.00649	0.019481	8
7	6399 ZMM6	T1	312	0	0	2	0	2	0	0	0	0	0.00641	0	0.00641	0	0	0.012821	13
7	6402 ZMM6	T1	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
7	6403 ZMM6	T1	236	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
7	6432 ZMM6	T1	170	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17
7	5670 ZMM6	T1	208	0	0	5	0	0	0	0	0	0	0.02404	0	0	0	0	0.024038	24
7	5671 ZMM6	T1	304	0	0	2	0	2	2	1	0	0	0.00658	0	0.00658	0.00658	0.00329	0.023026	24
7	5673 ZMM6	T1	290	0	0	4	3	0	1	1	0	0	0.01379	0.01034	0	0.00345	0.00345	0.031034	24
7	5674 ZMM6	T1	425	0	0	4	0	1	1	0	0	0	0.00941	0	0.00235	0.00235	0	0.014118	24
8	4513 aZMM8	T0	212	1	1	0	2	0	0	0	0.00472	0.00472	0	0.00943	0	0	0	0.018868	1
8	4514 aZMM8	T0	270	1	2	6	1	0	0	3	0.0037	0.00741	0.02222	0.0037	0	0	0.01111	0.048148	1
8	4603 aZMM8	T0	338	2	24	2	2	5	1	2	0.00592	0.11834	0.00592	0.00592	0.01479	0.00296	0.00592	0.159763	1
8	4604 aZMM8	T0	240	0	) 2	1	3	1	0	1	0	0.00833	0.00417	0.0125	0.00417	0	0.00417	0.033333	1
8	4631 aZMM8	T0	198	0	) 1	0	2	0	0	0	0	0.00505	0	0.0101	0	0	0	0.015152	1
8	4779 aZMM8	T0	128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8	4861 aZMM8	T0	208	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8	4516 aZMM8	T0	196	0	) 2	0	1	0	0	7	0	0.0102	0	0.0051	0	0	0.03571	0.05102	2
8	4517 aZMM8	T0	267	0	0	0	2	3	3	0	0	0	0	0.00749	0.01124	0.01124	0	0.029963	2
8	4518 aZMM8	T0	246	1	1	2	1	1	0	0	0.00407	0.00407	0.00813	0.00407	0.00407	0	0	0.02439	2
8	4520 aZMM8	T0	164	0	0	1	3	3	0	3	0	0	0.0061	0.01829	0.01829	0	0.01829	0.060976	2
8	4521 aZMM8	T0	282	0	0	3	1	0	0	0	0	0	0.01064	0.00355	0	0	0	0.014185	2
8	4544 aZMM8	T0	284	0	0	5	2	2	4	0	0	0	0.01761	0.00704	0.00704	0.01408	0	0.045775	2
8	4545 aZMM8	T0	250	0	0	1	3	3	1	0	0	0	0.004	0.012	0.012	0.004	0	0.032	2
8	4546 aZMM8	T0	404	0	0	2	3	3	7	0	0	0	0.00495	0.00743	0.00743	0.01733	0	0.037129	2
8	4574 aZMM8	T0	190	2	20	2	0	1	0	1	0.01053	0	0.01053	0	0.00526	0	0.00526	0.031579	2
8	4612 aZMM8	T0	252	0	0	0	2	1	0	0	0	0	0	0.00794	0.00397	0	0	0.011905	2
8	4613 aZMM8	T0	222	2	23	4	3	3	1	0	0.00901	0.01351	0.01802	0.01351	0.01351	0.0045	0	0.072072	2
8	4638 aZMM8	T0	146	0	0	2	0	0	0	0	0	0	0.0137	0	0	0	0	0.013699	2
8	4710 aZMM8	T0	182	0	0	1	0	0	0	0	0	0	0.00549	0	0	0	0	0.005495	2
8	4733 aZMM8	T0	116	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8	4759 aZMM8	T0	250	0	0	3	1	0	0	0	0	0	0.012	0.004	0	0	0	0.016	2
8	4767 aZMM8	T0	138	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
8	4768 aZMM8	T0	204	0	0	3	1	0	0	0	0	0	0.01471	0.0049	0	0	0	0.019608	3
8	4769 aZMM8	T0	86	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
8	4640 aZMM8	T0	234	1	13	1	4	3	1	0	0.00427	0.01282	0.00427	0.01709	0.01282	0.00427	0	0.055556	3
8	4642 aZMM8	T0	262	0	0	2	3	0	0	0	0	0	0.00763	0.01145	0	0	0	0.019084	3
8	4643 aZMM8	T0	358	1	1	5	2	3	3	1	0.00279	0.00279	0.01397	0.00559	0.00838	0.00838	0.00279	0.044693	3
8	4646 aZMM8	T0	212	0	0	0	0	0	5	0	0	0	0	0	0	0.02358	0	0.023585	3
8	4647 aZMM8	T0	208	2	20	0	0	3	0	4	0.00962	0	0	0	0.01442	0	0.01923	0.043269	3
8	4712 aZMM8	T0	326	0	0	7	0	1	1	0	0	0	0.02147	0	0.00307	0.00307	0	0.027607	3
8	4615 aZMM8	T0	286	1	0	2	2	3	0	1	0.0035	0	0.00699	0.00699	0.01049	0	0.0035	0.031469	4
8	4616 aZMM8	T0	366	0	- 1	0	2	4	2	2	0	0.00273	0	0.00546	0.01093	0.00546	0.00546	0.030055	4
9	4595 ZMM8	T0	190	0	0	1	0	0	0	2	0	0	0.00526	0	0	0	0.01053	0.015789	5
9	4596 ZMM8	T0	340	0	0	1	2	1	1	0	0	0	0.00294	0.00588	0.00294	0.00294	0	0.014706	5
9	4690 ZMM8	T0	160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
9	4693 ZMM8	T0	156	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
9	4695 ZMM8	T0	210	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
9	4766 ZMM8	T0	148	3	30	1	0	1	1	0	0.02027	0	0.00676	0	0.00676	0.00676	0	0.040541	6
9	4847 ZMM8	T0	154	0	0	4	0	1	0	0	0	0	0.02597	0	0.00649	0	0	0.032468	6
9	4856 ZMM8	T0	184	0	0	1	0	0	0	3	0	0	0.00543	0	0	0	0.0163	0.021739	6
9	4858 ZMM8	T0	114	0	0	0	0	0	0	2	0	0	0	0	0	0	0.01754	0.017544	6
9	4859 ZMM8	T0	148	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
9	4725 ZMM8	T0	164	4	4	3	0	0	0	0	0.02439	0.01829	0.01829	0	0	0	0	0.060976	7
10	4801 aZMM8	T1	450	0	0	1	0	0	0	0	0	0	0.00222	0	0	0	0	0.002222	1
10	4802 aZMM8	T1	616	0	0	1	0	0	0	0	0	0	0.00162	0	0	0	0	0.001623	1
10	4804 aZMM8	T1	612	0	0	1	0	0	0	0	0	0	0.00163	0	0	0	0	0.001634	1
10	4806 aZMM8	T1	708	0	0	0	0	0	0	2	0	0	0	0	0	0	0.00282	0.002825	1
10	4817 aZMM8	T1	838	3	30	6	0	3	3	0	0.00358	0	0.00716	0	0.00358	0.00358	0	0.0179	2
10	4822 aZMM8	T1	726	0	0	4	0	0	0	0	0	0	0.00551	0	0	0	0	0.00551	2
10	4823 aZMM8	T1	688	0	0	3	0	2	0	0	0	0	0.00436	0	0.00291	0	0	0.007267	2
10	4824 aZMM8	T1	650	1	10	2	0	2	1	0	0.00154	0	0.00308	0	0.00308	0.00154	0	0.009231	2
10	5042 aZMM8	T1	410	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2


U1 U2	gr.h.no. constr.	Tn	spklts			tN		B	3flr			monoNB	monoB	tpltNB	tpltB	3-floret	4-floret	single	branching	
10	5051 aZMM8	T1	538	3	1		8	0	1	0	3	0.00558	0.00186	0.01487	0	0.00186	0	0.00558	0.02974	2
10	5054 aZMM8	T1	354	0	1		1	0	0	0	2	0	0.00282	0.00282	0	0	0	0.0565	0.062147	2
10	5056 aZMM8	T1	550	0	0	2	2	0	0	0	0	0	0	0.00364	0	0	0	0	0.003636	2
10	5062 aZMM8	T1	644	0	0		1	1	0	0	0	0	0	0.00155	0.00155	0	0	0	0.003106	2
10	5064 aZMM8	T1	530	0	0		1	0	0	0	0	0	0	0.00189	0	0	0	0	0.001887	2
10	5068 aZMM8	T1	740	0	0		16	2	2	0	2	0	0	0.02162	0.0027	0.0027	0	0.0027	0.02973	3
10	5070 aZMM8	T1	756	0	1		2	1	0	0	0	0	0.00132	0.00265	0.00132	0	0	0	0.005291	3
10	5072 aZMM8	T1	704	0	0		13	1	4	0	0	0	0	0.01847	0.00142	0.00568	0	0	0.025568	3
10	4937 aZMM8	T1	538	0	0		3	1	1	0	0	0	0	0.00558	0.00186	0.00186	0	0	0.009294	4
10	4938 aZMM8	T1	676	0	1		7	2	2	2	0	0	0.00148	0.01036	0.00296	0.00296	0.00296	0	0.02071	4
10	4942 aZMM8	T1	724	0	0		4	2	2	1	0	0	0	0.00552	0.00276	0.00276	0.00138	0	0.012431	4
10	4943 aZMM8	T1	558	0	1		0	2	0	0	0	0	0.00179	0	0.00358	0	0	0	0.005376	4
10	4996 aZMM8	T1	552	0	0		2	1	2	1	0	0	0	0.00361	0.00181	0.00361	0.00181	0	0.010843	4
10	6234 aZMM8	T1	224	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
10	6243 aZMM8	T1	542	0	1		8	2	1	3	0	0	0.00185	0.01476	0.00369	0.00185	0.00554	0	0.027675	4
11	5014 ZMM8	T1	560	0	0		6	0	1	0	0	0	0	0.01071	0	0.00179	0	0	0.0125	5
11	5015 ZMM8	T1	462	0	0		3	0	0	1	0	0	0	0.00649	0	0	0.00216	0	0.008658	5
12	6073 ZMM8	T1	390	0	1		0	3	0	1	0	0	0.00256	0	0.00769	0	0.00256	0	0.012821	8
12	6084 ZMM8	T1	348	0	1		1	7	2	2	4	0	0.00287	0.00287	0.02011	0.00575	0.00575	0.01149	0.048851	8
12	6066 ZMM8	T1	298	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	9
12	6069 ZMM8	T1	376	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	9
12	6086 ZMM8	T1	296	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	12
12	6088 ZMM8	T1	226	0	0		0	2	0	0	0	0	0	0	0.00885	0	0	0	0.00885	12
12	6091 ZMM8	T1	194	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	13
12	6093 ZMM8	T1	292	0	0		1	8	1	2	0	0	0	0.00342	0.27397	0.00342	0.00685	0	0.287671	13
12	6096 ZMM8	T1	306	0	2		0	3	0	0	0	0	0.00654	0	0.0098	0	0	0	0.01634	14
12	6098 ZMM8	T1	272	0	0		1	0	0	0	0	0	0	0.00368	0	0	0	0	0.003676	14
12	6099 ZMM8	T1	442	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	14
12	6116 ZMM8	T1	354	1	0		4	2	0	3	0	0.00282	0	0.0113	0.00565	0	0.00847	0	0.028249	16
12	6117 ZMM8	T1	334	0	0	4	4	4	0	1	3	0	0	0.01198	0.01198	0	0.00299	0.00898	0.035928	16
12	6120 ZMM8	T1	308	0	0		1	1	0	0	3	0	0	0.00325	0.00325	0	0	0.00974	0.016234	16
12	6121 ZMM8	T1	244	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	17
12	6142 ZMM8	T1	414	0	0		18	2	0	4	0	0	0	0.04348	0.00483	0	0.00966	0	0.057971	20
12	6144 ZMM8	T1	470	0	0		12	3	3	4	1	0	0	0.02553	0.00638	0.00638	0.00851	0.00213	0.048936	20
12	6200 ZMM8	T1	420	0	1		2	2	0	0	3	0	0.00238	0.00476	0.00476	0	0	0.00714	0.019048	25
12	6204 ZMM8	T1	488	2	2		11	3	0	3	0	0.0041	0.0041	0.02254	0.00615	0	0.00615	0	0.043033	26
12	6221 ZMM8	T1	378	0	0		5	1	3	1	0	0	0	0.01323	0.00265	0.00794	0.00265	0	0.026455	28

## Appendix 7.5. Branching characters in the ear.

Displayed are the branching characters of the ears in control and transgenic plants. The analyzed plants are grouped per control group, construct, gene, generation and line, as indicated by the number in column U1. The numbers indicate the assignment of plants into a group used for statistical analysis by the Mann-Whitney (U)-test.
Abbrev.: trplt= triplet, pipi= pistillate spikelet, quad= quadruplet, triplet= phenotypic ratio of trpt, pistil= phenotypic ratio of pipi, quadr= phenotypic ratio of quad, singl= phenotypic ratio of sng, branch= sum of tripet, pistil, quadr and singl, pitriquad= sum of triplet, pistil and quadr. Remaining abbreviations as in App.7.4.


U1	gr.h.no. constr.	Tn	spklt	trplt	pipi	quad	sng	triplet	pistil	quadr	singl		branch	pitriquad	line
2	6041 aZM15	T1	330	0	0	00	0	0	0	0	0	0	0	0	
2	6042a aZM15	T1	180	0	0	0	0	0	0	0	0	0	0	0	
2	6042b aZM15	T1	330	0	0	0	0	0	0	0	0	0	0	0	
2	6043 aZM15	T1	400	0	0	0	0	0	0	0	0	0	0	0	
2	6044 aZM15	T1	250	0	0	0	0	0	0	0	0	0	0	0	
2	6045 aZM15	T1	120	0	0	0	0	0	0	0	0	0	0	0	
2	6047 aZM15	T1	290	0	0	0	0	0	0	0	0	0	0	0	
2	6048 aZM15	T1	380	0	0	0	0	0	0	0	0	0	0	0	
2	6049 aZM15	T1	240	0	0	0	0	0	0	0	0	0	0	0	
2	6050 aZM15	T1	480	0	0	0	0	0	0	0	0	0	0	0	
3	5692 aZMM6	T1	96	0	0	0	0	0	0	0	0	0	0	0	1
3	5695 aZMM6	T1	200	0	0	0	0	0	0	0	0	0	0	0	1
3	5698 aZMM6	T1	308	0	0	0	0	0	0	0	0	0	0	0	1
3	5699 aZMM6	T1	180	0	0	0	0	0	0	0		0	0	0	1
3	5704 aZMM6	T1	110	0	0	0	0	0	0	0	0	0	0	0	1
3	5708 aZMM6	T1	180	12	0	0	0	0.066667	0	0	0	0	0.0666667	0.0666667	1
3	5714 aZMM6	T1	180	0	0	0	0	0	0	0	0	0	0	0	1
3	5716 aZMM6	T1	156	2	0	0	0	0.012821	0	0	0	0	0.0128205	0.0128205	1
3	5719 aZMM6	T1	130	0	0	0	0	0	0	0		0	0	0	1
3	5721 aZMM6	T1	200	0	3	30	0	0	0.015	0	0	0	0.015	0.015	1
3	5723 aZMM6	T1	190	0	0	0	0	0	0	0	0	0	0	0	1
3	5726 aZMM6	T1	120	0	0	0	0	0	0	0	0	0	0	0	1
3	5729 aZMM6	T1	200	0	0	0	0	0	0	0	0	0	0	0	1
3	5733 aZMM6	T1	140	5	6	0	0	0.035714	0.0428571	0	0	0	0.0785714	0.0785714	1
3	5734 aZMM6	T1	340	0	0	0	0	0	0	0	0	0	0	0	1
3	5735 aZMM6	T1	140	1	0	0	0	0.007143	0	0		0	0.0071429	0.0071429	1
3	5741 aZMM6	T1	190	0	0	0	0	0	0	0	0	0	0	0	1
3	5742 aZMM6	T1	280	0	0	0	0	0	0	0	0	0	0	0	1
3	5746 aZMM6	T1	110	0	0	0	0	0	0	0	0	0	0	0	1
3	5750 aZMM6	T1	55	0	0	0	0	0	0	0	0	0	0	0	1
3	5751 aZMM6	T1	240	0	0	0	0	0	0	0	0	0	0	0	1
3	5755 aZMM6	T1	190	0	0	0	0	0	0	0	0	0	0	0	1
3	5756 aZMM6	T1	300	0	0	0	0	0	0	0	0	0	0	0	1
3	5759 aZMM6	T1	72	0	0	0	0	0	0	0	0	0	0	0	1
3	5770 aZMM6	T1	150	0	0	0	0	0	0	0	0	0	0	0	1
3	5771 aZMM6	T1	100	0	0	0	0	0	0	0		0	0	0	1
3	5774 aZMM6	T1	130	3	0	0	0	0.023077	0	0	0	0	0.0230769	0.0230769	1
3	5780 aZMM6	T1	210	0	0	0	0	0	0	0	0	0	0	0	1
3	5784 aZMM6	T1	140	0	0	0	0	0	0	0	0	0	0	0	1
3	5786 aZMM6	T1	330	0	0	0	0	0	0	0	0	0	0	0	1
3	5787 aZMM6	T1	200	0	0	0	0	0	0	0		0	0	0	1
3	5790 aZMM6	T1	220	0	0	0	0	0	0	0	0	0	0	0	
3	5796 aZMM6	T1	260	0	0	0	0	0	0	0	0	0	0	0	1
3	5799 aZMM6	T1	240	0	3	30	0	0	0.0125	0	0	0	0.0125	0.0125	1
3	5800 aZMM6	T1	98	0	0	0	0	0	0	0	0	0	0	0	1
3	5803 aZMM6	T1	180	0	0	0	0	0	0	0	0	0	0	0	1
3	5806 aZMM6	T1	182	0	0	0	0	0	0	0	0	0	0	0	
3	5808 aZMM6	T1	200	0	1	10	0	0	0.005	0		0	0.005	0.005	1
3	5821 aZMM6	T1	220	0	0	0	0	0	0	0	0	0	0	0	
3	5828 aZMM6	T1	180	0	0	0	0	0	0	0	0	0	0	0	1
3	5831 aZMM6	T1	200	0	1	10	0	0	0.005	0	0	0	0.005	0.005	1
3	5833 aZMM6	T1	200	0	0	0	0	0	0	0	0	0	0	0	
3	5835 aZMM6	T1	310	0	0	0	0	0	0	0		0	0	0	1
3	5836 aZMM6	T1	350	0	1	10	0	0	0.0028571	0	0	0	0.0028571	0.0028571	1
3	5837 aZMM6	T1	90	0	0	0	0	0	0	0	0	0	0	0	1
3	5838 aZMM6	T1	290	0	0	0	0	0	0	0	0	0	0	0	1
3	5842 aZMM6	T1	300	0		0	0	0	0	0	0	0	0	0	1
3	5846 aZMM6	T1	200	0		0	0	0	0	0		0	0	0	1
3	5847 aZMM6	T1	250	0	0	0	0	0	0	0	0	0	0	0	1
3	6025 aZMM6	T1	150	0		0	0	0	0	0	0	0	0	0	2
3	6026 aZMM6	T1	300	0	0	0	0	0	0	0	0	0	0	0	2
3	6029 aZMM6	T1	280	0		0	0	0	0	0	0	0	0	0	2
3	6030 aZMM6	T1	160	0	0	01	0	0	0	0.00625		0	0.00625	0.00625	2
3	6033 aZMM6	T1	400	0		0	0	0	0	0	0	0	0	0	2
3	6034 aZMM6	T1	320	0		0	0	0	0	0	0	0	0	0	2
3	6035 aZMM6	T1	440	0	0	0	0	0	0	0	0	0	0	0	2
4	5856 aZMM6	T2	220	0		0	0	0	0	0	0	0	0	0	1
4	5861 aZMM6	T2	380	0		0	0	0	0	0	0	0	0	0	1
4	5862 aZMM6	T2	280	0	0	0	0	0	0	0	0	0	0	0	1
4	5864 aZMM6	T2	370	0		0	0	0	0	0	0	0	0	0	1
4	5865 aZMM6	T2	170	0	0	0	0	0	0	0	0	0	0	0	1
4	6003 aZMM6	T2	260	0		0	0	0	0	0	0	0	0	0	1
4	6006 aZMM6	T2	350	0	0	0	0	0	0	0	0	0	0	0	1


U1	r.h.no. constr.	Tn	spklt	trplt	pipi	quad	sng	triplet	pistil	quadr	singl		branch	pitriquad	line
4	6008 aZMM6	T2	220	0	0	0	0	0	0	0	O	0	0	0	1
4	6010 aZMM6	T2	390	0	0	0	0	0	0	0		0	0	0	1
4	6011 aZMM6	T2	340	3	0	0	0	0.008824	0	0		0	0.0088235	0.0088235	1
4	6013 aZMM6	T2	320	0	0	0	0	0	0	0		0	0	0	1
4	6014 aZMM6	T2	280	0	0	0	0	0	0	0		0	0	0	1
4	6019 aZMM6	T2	250	1	0	0	0	0.004	0	0		0	0.004	0.004	1
4	6020 aZMM6	T2	260	6	0	1	0	0.023077	0	0.003846		0	0.0269231	0.0269231	1
5	4423 ZMM6	T0	120	0	0	0	0	0	0	0		0	0	0	4
5	4419 ZMM6	T0	80	0	0	0	0	0	0	0		0	0	0	4
5	4424 ZMM6	T0	128	0	0	0	0	0	0	0		0	0	0	4
5	4421 ZMM6	T0	128	0	1	0	0	0	0.0078125	0		0	0.0078125	0.0078125	4
5	4418 ZMM6	T0	120	0	0	0	0	0	0	0		0	0	0	4
5	4420 ZMM6	T0	112	0	0	0	0	0	0	0		0	0	0	4
5	4461 ZMM6	T0	112	0	0	0	0	0	0	0		0	0	0	4
5	4480 ZMM6	T0	112	0	0	0	0	0	0	0		0	0	0	4
5	4482 ZMM6	T0	140	0	0	0	0	0	0	0		0	0	0	4
5	4487 ZMM6	T0	160	0	0	0	- 1	0	0	0		0.00625	0.00625	0	4
5	4486 ZMM6	T0	128	0	0	0	0	0	0	0	0	0	0	0	4
6	5446 ZMM6	T1	180	0	0	0	0	0	0	0	0	0	0	0	6
6	5447 ZMM6	T1	240	0	0	0	0	0	0	0	0	0	0	0	6
6	5448 ZMM6	T1	150	0	0	0	0	0	0	0	0	0	0	0	6
6	5449 ZMM6	T1	200	0	0	0	0	0	0	0	0	0	0	0	6
6	5450 ZMM6	T1	182	0	0	0	0	0	0	0	0	0	0	0	6
6	5463 ZMM6	T1	140	0	0	0	0	0	0	0	0	0	0	0	6
6	5468 ZMM6	T1	110	0	0	0	0	0	0	0	0	0	0	0	6
7	5477 ZMM6	T1	320	12	0	0	0	0.0375	0	0	0	0	0.0375	0.0375	7
7	5480 ZMM6	T1	410	0	0	0	0	0	0	0	0	0	0	0	7
7	5481 ZMM6	T1	220	0	0	0	0	0	0	0	0	0	0	0	7
7	5484 ZMM6	T1	260	0	0	0	0	0	0	0		0	0	0	7
7	5486 ZMM6	T1	240	0	0	0	0	0	0	0	0	0	0	0	7
7	6332 ZMM6	T1	640	0	0	0	0	0	0	0	0	0	0	0	7
7	6333 ZMM6	T1	640	0	0	0	0	0	0	0	0	0	0	0	7
7	6334 ZMM6	T1	560	2	0	0	0	0.003571	0	0	0	0	0.0035714	0.0035714	7
7	6335 ZMM6	T1	500	1	0	0	0	0.002	0	0	0	0	0.002	0.002	7
7	6336 ZMM6	T1	620	0	0	0	0	0	0	0	0	0	0	0	7
7	6337 ZMM6	T1	650	0	0	0	0	0	0	0	0	0	0	0	7
7	6338 ZMM6	T1	560	1	0	2	0	0.001786	0	0.003571		0	0.0053571	0.0053571	7
7	6339 ZMM6	T1	640	0	0	0	0	0	0	0	0	0	0	0	7
7	6340 ZMM6	T1	610	0	0	0	0	0	0	0	0	0	0	0	7
7	5490 ZMM6	T1	300	0	0	0	0	0	0	0	0	0	0	0	8
7	6342 ZMM6	T1	630	0	0	0	0	0	0	0	0	0	0	0	8
7	6344 ZMM6	T1	340	0	0	0	0	0	0	0	0	0	0	0	8
7	6348 ZMM6	T1	500	0	0	0	0	0	0	0	0	0	0	0	8
7	6349 ZMM6	T1	520	0	0	0	0	0	0	0	0	0	0	0	8
7	6350 ZMM6	T1	650	0	0	0	0	0	0	0	0	0	0	0	8
7	5508 ZMM6	T1	260	0	0	0	0	0	0	0	0	0	0	0	9
7	5543 ZMM6	T1	180	0	0	0	0	0	0	0	0	0	0	0	12
7	6382 ZMM6	T1	400	0	0	0	0	0	0	0	0	0	0	0	12
7	6383 ZMM6	T1	400	0	0	1	0	0	0	0.0025		0	0.0025	0.0025	12
7	6388 ZMM6	T1	480	3	0	2	0	0.00625	0	0.004167		0	0.0104167	0.0104167	12
7	5544 ZMM6	T1	150	0	0	0	0	0	0	0	0	0	0	0	13
7	5545 ZMM6	T1	200	0	0	0	0	0	0	0	0	0	0	0	13
7	5546 ZMM6	T1	220	0	0	0	0	0	0	0	0	0	0	0	13
7	6391 ZMM6	T1	560	0	0	0	0	0	0	0	0	0	0	0	13
7	6396 ZMM6	T1	600	0	0	3	3	0	0	0.005		0	0.005	0.005	13
7	6398 ZMM6	T1	540	0	0	0	0	0	0	0	0	0	0	0	13
7	6399 ZMM6	T1	470	0	0	0	0	0	0	0	0	0	0	0	13
7	5554 ZMM6	T1	250	0	0	0	0	0	0	0	0	0	0	0	14
7	5556 ZMM6	T1	155	1	0	0	0	0.006452	0	0	0	0	0.0064516	0.0064516	14
7	6402 ZMM6	T1	340	0	11	0	0	0	0.0323529	0	0	0	0.0323529	0.0323529	14
7	6403 ZMM6	T1	360	0	0	0	0	0	0		0	0	0	0	14
7	6405 ZMM6	T1	430	0	0	5	0	0	0	0.011628		0	0.0116279	0.0116279	14
7	6409 ZMM6	T1	340	0	0	0	0	0	0		0	0	0	0	14
7	6410 ZMM6	T1	560	0	0	0	0	0	0	0	0	0	0	0	14
7	5562 ZMM6	T1	270	0	0	0	0	0	0		0	0	0	0	15
7	6412 ZMM6	T1	600	0	0	0	0	0	0	0	0	0	0	0	15
7	6413 ZMM6	T1	540	0	0	0	0	0	0		0	0	0	0	15
7	6418 ZMM6	T1	490	0	0	5	5	0	0	0.010204		0	0.0102041	0.0102041	15
7	5580 ZMM6	T1	200	0	0	0	0	0	0	0	0	0	0	0	16
7	5582 ZMM6	T1	180	0	0	0	0	0	0	0	0	0	0	0	16
7	6428 ZMM6	T1	350	0	0	0	0	0	0	0	0	0	0	0	16
7	5588 ZMM6	T1	120	0	0	0	0	0	0	0	0	0	0	0	17
7	6431 ZMM6	T1	570	0	0	0	0	0	0	0	0	0	0	0	17
7	6432 ZMM6	T1	560	0	0	0	0	0	0	0	0	0	0	0	17


	gr.h.no. constr.	Tn	spklt	trplt	pipi	quad	sng	triplet	pistil	quadr	sing		branch	pitriquad	line
7	6434 ZMM6	T1	460	0	0	00	0 0	0	0		0	0	0	0	17
7	6437 ZMM6	T1	470	0	0	00	00	0	0		0	0	0	0	17
7	6438 ZMM6	T1	400	0	0	00	00	0	0		0	0	0	0	17
7	6440 ZMM6	T1	400	0	0	00	00	0	0		0	0	0	0	17
7	5592 ZMM6	T1	100	0	0	00	00	0	0		0	0	0	0	18
7	5598 ZMM6	T1	270	0	0	00	00	0	0		0	0	0	0	18
7	6441 ZMM6	T1	460	0	0	00	00	0	0	0	0	0	0	0	18
7	6442 ZMM6	T1	540	0	0	00	00	0	0		0	0	0	0	18
7	6443 ZMM6	T1	400	0	0	00	00	0	0		0	0	0	0	18
7	6446 ZMM6	T1	530	0	1	10	00	0	0.0018868		0	0	0.0018868	0.0018868	18
7	5609 ZMM6	T1	155	0	0	00	00	0	0		0	0	0	0	19
7	5613 ZMM6	T1	280	0	0	00	00	0	0		0	0	0	0	19
7	5614 ZMM6	T1	170	0	0	00	00	0	0		0	0	0	0	19
7	5616 ZMM6	T1	130	0	0	00	00	0	0		0	0	0	0	19
7	5619 ZMM6	T1	160	0	0	00	00	0	0	0	0	0	0	0	19
7	5620 ZMM6	T1	180	0	0	00	00	0	0		0	0	0	0	19
7	5625 ZMM6	T1	220	0	0	00	00	0	0		0	0	0	0	19
7	5627 ZMM6	T1	280	0	0	00	00	0	0		0	0	0	0	19
7	5628 ZMM6	T1	250	0	0	00	00	0	0		0	0	0	0	19
7	6452 ZMM6	T1	450	0	0	01	10	0	0	0.002222		0	0.0022222	0.0022222	19
7	6453 ZMM6	T1	470	0	0	00	00	0	0		0	0	0	0	19
7	6454 ZMM6	T1	460	0	0	00	00	0	0		0	0	0	0	19
7	5640 ZMM6	T1	88	0	0	00	00	0	0		0	0	0	0	20
7	5641 ZMM6	T1	180	0	0	00	00	0	0		0	0	0	0	20
7	5643 ZMM6	T1	170	0	0	00	00	0	0		0	0	0	0	20
7	6461 ZMM6	T1	330	0	0	00	00	0	0	0	0	0	0	0	20
7	6464 ZMM6	T1	370	0	0	00	00	0	0		0	0	0	0	20
7	6465 ZMM6	T1	530	0	0	00	00	0	0		0	0	0	0	20
7	6466 ZMM6	T1	380	0	0	00	00	0	0	0	0	0	0	0	20
7	6467 ZMM6	T1	360	0	0	00	00	0	0		0	0	0	0	20
7	6468 ZMM6	T1	380	0	0	00	00	0	0	0	0	0	0	0	20
7	5649 ZMM6	T1	170	0	0	00	00	0	0		0	0	0	0	21
7	6471 ZMM6	T1	480	0	0	00	00	0	0		0	0	0	0	21
7	6472 ZMM6	T1	380	0	0	00	00	0	0	0	0	0	0	0	21
7	6475 ZMM6	T1	510	1	10	00	00	0.001961	0		0	0	0.0019608	0.0019608	21
7	6476 ZMM6	T1	570	0	0	00	00	0	0	0	0	0	0	0	21
7	6478 ZMM6	T1	520	0	0	00	00	0	0		0	0	0	0	21
7	6479 ZMM6	T1	510	0	0	00	00	0	0		0	0	0	0	21
7	6480 ZMM6	T1	290	0	0	00	00	0	0	0	0	0	0	0	21
7	5651 ZMM6	T1	200	0	0	00	00	0	0		0	0	0	0	22
7	6482 ZMM6	T1	460	0	0	00	00	0	0	0	0	0	0	0	22
7	6489 ZMM6	T1	420	1	10	00	00	0.002381	0		0	0	0.002381	0.002381	22
7	5659 ZMM6	T1	96	2	20	00	00	0.020833	0		0	0	0.0208333	0.0208333	23
7	6493 ZMM6	T1	470	3	30	00	00	0.006383	0		0	0	0.006383	0.006383	23
7	6494 ZMM6	T1	530	0	0	00	00	0	0		0	0	0	0	23
7	6496 ZMM6	T1	700	0	0	00	00	0	0		0	0	0	0	23
7	5673 ZMM6	T1	170	1	10	00	00	0.005882	0		0	0	0.0058824	0.0058824	24
7	6507 ZMM6	T1	640	0	0	00	00	0	0	0	0	0	0	0	24
7	6508 ZMM6	T1	670	1	10	00	00	0.001493	0		0	0	0.0014925	0.0014925	24
7	6510 ZMM6	T1	650	0	0	0 0	0	0	0	0	0	0	0	0	24
8	6248 aZMM8	T2	450	0	0	0 0	0 0	0	0		0	0	0	0	1
8	6236 aZMM8	T2	420	0	0	00	00	0	0		0	0	0	0	2
8	6239 aZMM8	T2	340	0	0	00	00	0	0		0	0	0	0	2
8	6232 aZMM8	T2	330	0	0	00	00	0	0	0	0	0	0	0	3
8	6241 aZMM8	T2	420	0	0	00	00	0	0		0	0	0	0	3
8	6243 aZMM8	T2	450	0	0	00	00	0	0	0	0	0	0	0	3
8	6245 aZMM8	T2	290	0	0	00	0	0	0	0	0	0	0	0	3
9	6059 ZMM8	T1	480	0	0	0 0	0 0	0	0		0	0	0	0	8
9	6060 ZMM8	T1	490	1	10	00	00	0.002041	0	0	0	0	0.0020408	0.0020408	8
9	6066 ZMM8	T1	330	0	0	00	00	0	0		0	0	0	0	9
9	6068 ZMM8	T1	490	0	0	00	00	0	0	0	0	0	0	0	9
9	6069 ZMM8	T1	440	0	0	00	00	0	0	0	0	0	0	0	9
9	6073 ZMM8	T1	490	0	0	00	00	0	0		0	0	0	0	10
9	6074 ZMM8	T1	450	0	0	00	00	0	0	0	0	0	0	0	10
9	6082 ZMM8	T1	400	0	0	00	00	0	0		0	0	0	0	11
9	6083 ZMM8	T1	550	0	0	00	00	0	0	0	0	0	0	0	11
9	6084 ZMM8	T1	410	0	0	00	00	0	0	0	0	0	0	0	11
9	6086 ZMM8	T1	480	0	- 7	70	00	0	0.0145833		0	0	0.0145833	0.0145833	12
9	6087 ZMM8	T1	480	0	0	00	00	0	0	0	0	0	0	0	12
9	6088 ZMM8	T1	480	3	30	00	00	0.00625	0		0	0	0.00625	0.00625	12
9	6582 ZMM8	T1	430	0	0	00	00	0	0	0	0	0	0	0	12
9	6584 ZMM8	T1	500	0	0	0	0	0	0	0	0	0	0	0	12


U1	gr.h.no. constr.	Tn	spklt	trplt	pipi	quad	sng	triplet	pistil	quadr	singl	branch	pitriquad	line
9	6585 ZMM8	T1	540	0	0	0	0	0	0	0	0	0	0	12
9	6586 ZMM8	T1	600	0	0	0	0	0	0	0	0	0	0	12
9	6588 ZMM8	T1	620	0	0	0	0	0	0	0	0	0	0	12
9	6589 ZMM8	T1	570	0	0	0	0	0	0	0	0	0	0	12
9	6091 ZMM8	T1	460	0	0	0	0	0	0	0	0	0	0	13
9	6093 ZMM8	T1	440	0	5	0	0	0	0.0113636	0	0	0.0113636	0.0113636	13
9	6096 ZMM8	T1	430	0	0	0	0	0	0	0	0	0	0	14
9	6098 ZMM8	T1	420	1	0	0	0	0.002381	0	0	0	0.002381	0.002381	14
9	6099 ZMM8	T1	400	2	0	0	0	0.005	0	0	0	0.005	0.005	14
9	6106 ZMM8	T1	410	0	0	0	0	0	0	0	0	0	0	15
9	6116 ZMM8	T1	460	0		20	1	0	0.0043478	0	0.00217391	0.0065217	0.0043478	16
9	6117 ZMM8	T1	420	0	0	0	0	0	0	0	0	0	0	16
9	6120 ZMM8	T1	540	1	0	0	0	0.001852	0	0	0	0.0018519	0.0018519	16
9	6121 ZMM8	T1	330	1		0	0	0.00303	0	0	0	0.0030303	0.0030303	17
9	6122 ZMM8	T1	460	0	0	0	0	0	0	0	0	0	0	17
9	6124 ZMM8	T1	310	0	0	0	0	0	0	0	0	0	0	17
9	6125 ZMM8	T1	370	0	0	0	0	0	0	0	0	0	0	17
9	6127 ZMM8	T1	420	0	0	0	0	0	0	0	0	0	0	18
9	6129 ZMM8	T1	350	2		40	- 1	0.005714	0.0114286	0	0.00285714	0.02	0.0171429	18
9	6132 ZMM8	T1	400	0	0	0	0	0	0	0	0	0	0	19
9	6141 ZMM8	T1	380	1	0	0	0	0.026316	0	0	0	0.0263158	0.0263158	20
9	6142 ZMM8	T1	230	0	0	1	0	0	0	0.004348	0	0.0043478	0.0043478	20
9	6143 ZMM8	T1	480	0	6	0	0	0	0.0125	0	0	0.0125	0.0125	20
9	6144 ZMM8	T1	410	0	0	0	0	0	0	0	0	0	0	20
9	6145 ZMM8	T1	420	0	0	0	0	0	0	0	0	0	0	20
9	6156 ZMM8	T1	490	2		32	0	0.004082	0.0061224	0.004082	0	0.0142857	0.0142857	21
9	6157 ZMM8	T1	360	0	0	0	0	0	0	0	0	0	0	21
9	6163 ZMM8	T1	420	0	5	50	0	0	0.0119048	0	0	0.0119048	0.0119048	22
9	6164 ZMM8	T1	300	0	0	0	0	0	0	0	0	0	0	22
9	6172 ZMM8	T1	420	0	0	0	0	0	0	0	0	0	0	23
9	6173 ZMM8	T1	490	0	0	0	0	0	0	0	0	0	0	23
9	6174 ZMM8	T1	350	0	0	0	0	0	0	0	0	0	0	23
9	6185 ZMM8	T1	400	2	0	0	0	0.005	0	0	0	0.005	0.005	24
9	6196 ZMM8	T1	390	0	0	0	0	0	0	0	0	0	0	25
9	6198 ZMM8	T1	500	0		00	0	0	0	0	0	0	0	25
9	6199 ZMM8	T1	540	0	0	00	0	0	0	0	0	0	0	25
9	6200 ZMM8	T1	420	1		20	0	0.002381	0.0047619	0	0	0.0071429	0.0071429	25
9	6202 ZMM8	T1	390	0		00	0	0	0	0	0	0	0	26
9	6203 ZMM8	T1	500	0	0	00	0	0	0	0	0	0	0	26
9	6204 ZMM8	T1	520	1		00	0	0.001923	0	0	0	0.0019231	0.0019231	26
9	6216 ZMM8	T1	156	1	0	00	0	0.00641	0	0	0	0.0064103	0.0064103	27
9	6219 ZMM8	T1	480	3		00	0	0.006522	0	0	0	0.0065217	0.0065217	27
9	6220 ZMM8	T1	530	3	0	0 0	0	0.00566	0	0	0	0.0056604	0.0056604	27
9	6221 ZMM8	T1	480	0	0	00	0	0	0	0	0	0	0	28
9	6225 ZMM8	T1	490	0		00	0	0	0	0	0	0	0	28
9	6230 ZMM8	T1	570	0	0	04	0	0	0	0.007018	0	0.0070175	0.0070175	29

## Appendix 7.6. Mean values and standard deviation of branching.

Displayed are the mean values and standard deviation of the branching phenotypes of ZMM6 and ZMM8 transgenic $\mathrm{T}_{0}$-plants. The original data for the calculation of the mean and the standard deviation is shown in column 'branching' in App.7.4 and App.7.5. Group (Ux) indicates the number of the group in these appendices, from which data the mean and standard deviation is calculated. ( n ) is the number of plants in that group. Abbrev.: Stdev= standard deviation, CNTRL $=$ control plants, hoechst= plant obtained from Hoechst (= var. HE89xA73+)(see §2.2.15).

A.		CNTRL		aZMM6	ZMM6	aZMM8	ZMM8
	Mean	0.0060236	0.0676234	0.0305554	0.0307993	0.0185238	
tassel	Stdev	0.0070463	0.0383359	0.0471796	0.0298289	0.019716	
branching	(n)	36	17	57	33	11	
	group (U2)	1	3	4	8	9	


B.		CNTRL	aZMM6		ZM6hoechst	aZMM8(T2)
ear	ZM8hoechst					
	Mean	0	0.0041944	0.0017174	0	0.0029845
branching		0.0140513	0.0056755	0	0.0054553	
	Stdev	10	56	99	7	61
	(n)	group (U1)	2	3	7	8

## Appendix 7.7. Statistical analysis of branching.

Mann-Whitney (U)-test results of comparison of the phenotypic ratios of traits in tassel (A.) and ear (B.) of transgenic plants versus control plants, and among groups of control plants. Data is obtained from App.7.4 for the tassel and from App.7.5 for the ear. Groups are classified as listed under column U1 and U2 (App.7.4) and under U1 (App.7.5). The indicated outcome of the test is the asymptotic significance (§2.2.20). Significant differences are highlighted in yellow ( $0 \geq \mathrm{p} \geq 0.05$ ). Comparison of group x versus group y is indicated as $\mathrm{Uz}(\mathrm{x}, \mathrm{y})$, with z specifying the column in App.7.4 or App.7.5 that assigns the group number. $\mathrm{N}(\mathrm{x}, \mathrm{y})$ indicates the number of plants in the tested group x and y . Abbreviations as in App.7.4 and App.7.5.

compared groups ( Uz(x,y) )	monoNB	monoB	trpltNB	trpltB	3-floret	4-floret	single	groups (x-y)	N(x,y)
U1(1,2)	1	0.128	0.089	0.955	1	1	0.061	empty v.-GCN5	8,20
U1(1,3)	1	0.285	0.118	0.855	1	1		empty v.-aZM15,To	8, 8
U1(3,4)	1	0.566	0.918	0.403	1	1	0.229	aZM15, T0-T1	8, 16
U1(1+2,3)	1	0.618	0.317	0.636	1	1	0.418	emptyv.\&GCN5-aZM15,To	28, 8
U2 $(1,2)$	1	0.27	0.403	0.535	1	1	0.386	emptv.\&GCN5\&aZM15,To-aZM15,T1	36,16
U2(1,3)	0	0	0	0.231	0.003	0	0.068	cntrls,To-aZM6,To	36, 17
U2 $(1,4)$	0.001	0.182	0.002	0.127	0.045	0.047	0.072	cntrls,To-ZM6,To	36, 57
U2(1,5)	0.042	0.164	0	0.469	0.001	0	0.659	cntrls,To-aZM6,T1	36, 21
U2 $(1,6)$	0.023	0.252	0.001	0.711	0.001	0.001	0.132	cntrls,To-ZM6,T1	36, 7
U2(1+2,3+4+5+6)	0.001	0.022	0	0.135	0.002	0	0.146	cntrls,To,T1-(a)ZM6, To,T1	52, 102
U2(1+2,3+5)	0	0.008	0	0.636	0	0	0.694	cntrls,To,T1-aZM6, To,T1	52, 38
U2(1+2,4+6)	0	0.107	0	0.078	0.009	0.014	0.077	cntrls,To,T1-ZM6, To,T1	52, 64
U2(1+2,3+4+5+6+7)	0	0.046	0	0.235	0.001	0	0.032	cntrls,To,T1-(a)ZM6,To,T1+Hoechst	52, 111
U2(1,3+4)	0	0.013	0	0.103	0.021	0.015	0.045	cntrls,To-(a)ZM6,To	36, 74
U2 $(1,8)$	0	0.07	0	0.015	0	0	0.41	cntrls,To-aZM8,To	36, 33
U2 $(1,9)$	0.01	0.626	0.03	0.064	0.001	0.01	0.477	cntrls,To-ZM8,To	36, 11
U2 $(1,10)$	0.035	0.719	0	0.16	0	0.002	0.447	cntrls,To-aZM8,T1	36, 25
U2(1,11)	1	0.728	0.05	0.223	0	0	0.463	cntrls,To-ZM8,T1	36, 2
U2(1+2,8+9+10+11)	0	0.093	0	0.683	0	0	0.821	cntrls,To,T1-aZM8,ZM8, To,T1	52, 71
U2(1+2,8+10)	0	0.041	0	0.194	0	0	0.781	cntrls,To,T1-aZM8, To,T1	52, 58
U2(1+2,9+11)	0.004	0.646	0.005	0.015	0	0	0.976	cntrls,To,T1-ZM8, To,T1	52, 13
U2(1+2,8+9+10+11+12)	0.001	0.087	0	0.268	0	0	0.855	cntrls,To,T1-(a)ZM8,To,T1+Hoechst	52, 91
$\underline{\mathrm{U}} \mathbf{( 1 , 8 + 9 )}$	0.001	0.177	0	0.215	0	0	0.355	cntrls,To-(a)ZM8,To	36, 44
$B$ : female inflorescences									
compared groups ( Uz (x,y) )	triplet	pistillate flo	quad	single	pitriquad			groups (x-y)	N(x,y)
U1(1,2)	1	1	1	1	1			CNTRL, T0-T1	11,10
U1(1+2,3)	0.16	0.121	0.54	1	0.03			cntrl,T0,T1-aZM6,T1	21,56
U1(1+2,7)	0.095	0.513	0.211	1	0.03			cntrl,T0,T1-ZM6,T1 hoechst	21,99
U1(1+2,6+7)	0.107	0.527	0.228	1	0.037			cntrl,T0,T1-ZM6,T1+hoechst	21, 106
U1(1+2,4)	0.029	1	0.221	1	0.029			cntrl,T0,T1-aZM6,T2	21,14
U1(1+2,3+4)	0.107	0.168	0.436	1	0.027			cntrl,T0,T1-aZM6,T1,T2	21,70
U1(1+2,3+6)	0.186	0.145	0.564	1	0.042			cntrl, T0,T1-(a)ZM6,T1	21,63
U1(1+2,3+6+7)	0.121	0.299	0.299	1	0.032			cntrl,T0,T1-(a)ZM6+hoechst,T0,T1	21, 162
$\underline{U 1}(1+2,3+4+5+6+7)$	0.111	0.299	0.299	0.734	0.031			cntrl,T0,T1-(a)ZM6+hoechst,T0,T1,T2	21, 187
U1(1+2,8)	1	1	1	1	1			cntrl,T0,T1-aZM8,T2	21,7
U1(1+2,9)	0.013	0.083	0.304	0.404	0.002			cntrl,T0,T1-ZM8,T1 hoechst	21,61
$\underline{\mathbf{U 1}(1+2,8+9)}$	0.02	0.102	0.33	0.429	0.003			cntrl,T0,T1-aZM8,T2+ZM8,T1 hoechst	21,68

## Appendix 7.8. Abbreviations.

A. thaliana	Arabidopsis thaliana
Amp	ampicillin
bp	base pair(s)
BSA	Bovine Serum Albumin
cDNA	complementary deoxyribonucleic acid
dATP	deoxyadenosinetriphosphate
dCTP	deoxycytosinetriphosphate
dGTP	deoxyguanosinetriphosphate
dTTP	deoxythymidinetriphosphate
dNTP	deoxynucleotide
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
DEPC	diethylpyrocarbonate
DMSO	dimethylsulfoxide
DTT	dithiothreitol
E. coli	Escherichia coli
EDTA	ethylene diamine tetra-acetic acid
EtBr	ethidiumbromide
EtOH	ethanol
IPTG	isopropylthio- $\beta$-0-galactopyranoside
kb	kilobase(s)
MOPS	3-(N-morpholino)-propanesulfonic acid
mRNA	messenger RNA
PCR	polymerase chain reaction
PEG	polyethylene glycol
RNA	ribonucleic acid
RNase	ribonuclease
SDS	sodium dodecyl sulphate
X-gal	5-bromo-4-chloro-3-indolyl- $\beta$-D-galactopyranoside
Z.m.ssp. mays	Zea mays subspecies mays

## Appendix 7.9 Mutant map positions.

Mutant		map position	markers
bd1	branched silkess1	7L140	npi611a-umc35a
ids1	indeterminate spikelet1	1L255	bnlg504-bn16.32
ifal	indeterminate inflorescence1	1 S 048	umc115-umc11a
ra1	ramosa1	7 L 087	bn115.40-umc136
ra2	ramosa2	2 S 030	cdo511-bn18.35a
ra3	ramosa3	chrom3	bin4.00-4.11
rgo1	reverse germ orientation1	chrom9	bin9.04(-9.05)
Sos1	Suppressor of sessile spikelet1	4 S 025	umc277-bnl17.13b
tr1	two ranked ear1	2 S 052	bn16.22a-bn110.12a
ts4	tasselseed4	3 S 069	umc102-bnlg1108
Ts6	Tasselseed6	1 L 254	npi238-bn18.29a

## Appendix 7.10 Eidesstattliche Erklärung

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jeder Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; das Sie abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Heinz Saedler betreut worden.

Köln, den 25.03.2002

## Wim Deleu

Teile dieser Arbeit sind in folgenden Veröffentlichungen enthalten:

Cacharrón, J., Theißen, G., Deleu, W., Saedler, H. (inventors), 1999. ‘Novel MADS-box genes and uses thereof'. Max-Planck-Gesellschaft zur Förderung der Wissenschaften (owner). PCT/EP9910116. Intl. Publ. No.: WO 00/37488.

Deleu, W., Cacharrón, J., Saedler, H. \& Theißen, G., 2002. The maize MADS-box gene ZMM6 affects inflorescence branching. Maize Genet. Conference Abstract 44: 41.

## Appendix 7.11 Acknowledgements

I would like to thank Prof. Dr. Heinz Saedler for giving me the opportunity to realize this work at the Max Planck Institute for Breeding Research. I am grateful for his continuous support and interest in the project.

I am especially thankful to my supervisor Prof. Dr. Günter Theißen for his advice and guidance during these past years.

I would like to thank Prof. Dr. Martin Hülskamp for being co-referent for this thesis.

Thanks to all the members of the lab and department for their help, support and kindness. Special thanks for giving advice and solving practical problems to Dr. Zsuzsanna Schwarz-Sommer, Dr. Mark Wilkinson, Dr. Zheng Meng, Dr. Akira Kanno, Dr. Agim Ballvora, Dr. Roger Rubiera, Dr. Cristina Navarro, Dr. Winfried Hofmann, Ralf Schäfer-Pregl, Juan Perez and Rik van Wijk. I am grateful to Dr. Günter Donn (Hoechst AgrEvo) and Anja Seidel their help in obtaining the transgenic plants.

Thanks to my parents and other family members and all my friends for their encouragement and continuous support. I am especially grateful to Rosa Castillo for her love and support.

## Appendix 7.12 Lebenslauf

## Persönliche Angaben:

Name:	Deleu
Vorname:	Wim Karel Paul
Geburtsdatum:	18. May 1972
Geburtsort:	Rotterdam, die Niederlande
Geschlecht:	männlich
Familienstand:	ledig
Staatsangehörigkeit:	Niederländisch
Eltern:	Dr. Herman Willem Oscar Deleu
	Maria-Helena Deleu-Vanhorenbeeck



## Privatanschrift:

Kolibriweg 14
Vogelsang
50829
Köln, Deutschland
Tel.: ++49.221.5811083
wim_deleu@hotmail.com
win deleu@mpiz-koeln.mpg.de
http://www.mpiz-koeln.mpg.de/~theissen/grouphome/maize.html

## Ausbildung/Arbeit:

1984-1990 Stedelijk Gymnasium Nijmegen
1990-1996 Wageningen Agricultural University (WAU)
Studium Pflanzenzüchtung, molekulare Spezialisation
1996-1997 Plant Research Intl. (PRI ), freiwillige Laborarbeit
1997-2002 Max-Planck-Institut für Züchtungsforschung, Doktorand

## Diplomarbeit:

Institut de Recherche en Biologie Végétale (IRBV), Montreal, Canada.
'Gametophytic incompatibility in Solanum chacoense'.
Abteilung für Genetik, WAU., Wageningen, NL.
'Search for the FWA gene in Arabidopsis via map-based cloning'
MOGEN International nv., Abteilung für Biochemie, Leiden, NL. 'Isolation and in vitro testing of antifungal proteins'

Abteilung für Entwicklungsbiologie, Plant Research Intl. (PRI), Wageningen, NL. 'Isolation of genes involved in microspore embryogenesis in Brassica napus using differential display PCR’.

## Doktorarbeit:

Max-Planck-Institut für Züchtungsforschung, Köln, Deutschland.
'Molecular and Functional Analysis of Maize AGL2-like MADS-box genes.
Indications for their involvement in grass inflorescence architecture'.

