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Abstract

The color-avor transformation mediates between two equivalent formulations of a quantum
�eld theory. The corresponding partition function is expressed in two di�erent ways, namely
as an integral over one of the two Lie groups of a dual pair in the group of canonical trans-
formations.
In context of quantum chromodynamics one of the groups is connected with the color de-
grees of freedom and the other one with the avor and spin degrees of freedom. The original
color-avor transformation (Zirnbauer, 1996) applies to an integral over the unitary group.
We extend it to a version for the special unitary group, the gauge group of quantum chromo-
dynamics.
In this dissertation we apply the color-avor transformation to two limits of quantum chro-
modynamics: to gluodynamics, a Yang-Mills theory of the gauge �eld without coupling to the
quarks, and to the strong coupling limit of chromodynamics, corresponding to the neglection
of the kinetic energy of the gluons. In both cases, we proceed from a formulation of quantum
chromodynamics on a lattice.
In case of gluodynamics, the color-avor transformation does not apply directly to the common
lattice action which was introduced by Wilson. We replace Wilson's action by a physically
equivalent expression that can be generated by integration over heavy bosons.
In the strong coupling limit, the color-avor transformation can be applied immediately:
The partition function decomposes into a sum of contributions belonging to the possible
distributions of baryons on the lattice. We consider the vacuum con�guration and a further
con�guration with the intention to model a static baryon.
In the vacuum action the color degrees of freedom are completely decoupled. After integration
over the quark �elds they enter the partition function only through a factor Nc (number of
colors) in front of the action. This structure organizes the theory in a perturbation series
with 1=Nc as parameter. The lowest order of this large-Nc expansion is the saddle point
approximation, where the partition function is approximated by its value at the saddle point.
The solutions of the corresponding saddle point equations are the low energy modes of the
theory. By considering space-time uctuations of this modes we derive an e�ective low energy
theory of quantum chromodynamics.
In case of the static baryon, the situation is more complicated. We study an approximate
solution of the saddle point equation that is valid far away from the baryon. We obtain a
Klein-Gordon equation and reproduce the Yukawa potential for the nuclear force.



Zusammenfassung

Die Color-Flavor-Transformation vermittelt zwischen zwei �aquivalenten Formulierungen einer
Quantenfeldtheorie. Die dieser Transformation zugrundeliegende Struktur ist ein duales Paar
von Liegruppen in der Gruppe der kanonischen Transformationen. Basierend darauf l�a�t
sich die Zustandssumme der Feldtheorie einerseits als Integral �uber den einen Partner und
andererseits als Integral �uber den anderen Partner des dualen Paares ausdr�ucken.
Im Zusammenhang mit der Quantenchromodynamik identi�zieren wir die eine der beiden
Gruppen mit der Eichgruppe, die auf die Farbfreiheitsgrade wirkt, die andere mit der Sym-
metriegruppe der Flavor- und Spinfreiheitsgrade. Die Color-Flavor-Transformation in ihrer
ersten Version (Zirnbauer, 1996), ist auf den Fall der unit�aren Gruppe als Farbgruppe an-
wendbar. Wir verallgemeinern diese auf eine Version f�ur die spezielle unit�are Gruppe, die
Eichgruppe der Quantenchromodynamik.
In dieser Arbeit wenden wir die Color-Flavor-Transformation auf zwei Grenzf�alle der Quan-
tenchromodynamik an: auf die Gluodynamik, die das Eichfeld alleine, d. h. ohne Kopplung
an die Quarkfreiheitsgrade beschreibt, und den Limes starker Kopplung, bei dem die kine-
tische Energie der Gluonen vernachl�assigt wird. In beiden F�allen bedienen wir uns einer
Gitterformulierung der Chromodynamik.
F�ur den Fall der Gluodynamik ist eine direkte Anwendung der Color-Flavor-Transformation
auf die �ubliche, von Wilson eingef�uhrte Gitterwirkung nicht m�oglich. Wir ersetzen Wilsons
Wirkung durch einen physikalisch �aquivalenten Term, der sich aus einem Integral �uber schwere
Bosonenfelder erzeugen l�asst.
Im Starkkopplungslimes kann die Color-Flavor-Transformation unmittelbar angewendet wer-
den: Die Zustandssumme zerf�allt in eine Summe von Beitr�agen, die den m�oglichen Verteilun-
gen von Baryonen auf dem Gitter entsprechen. Wir betrachten die Vakuumkon�guration {
in diesem Fall sind �uberhaupt keine Baryonen vorhanden { und eine weitere Kon�guration,
die ein einzelnes, statisches Baryon modelliert.
F�ur die Vakuumkon�guration tritt nach Integration �uber die Quarkfelder die Anzahl der
Farben Nc als Faktor vor der e�ektiven Wirkung auf. Dieser organisiert die Zustandssum-
me in eine St�orungsreihe in 1=Nc, deren niedrigste Ordnung durch die Sattelpunktsn�aherung
gegeben ist. Die L�osungen der zugeh�origen Sattelpunktsgleichungen bilden die niederener-
getischsten Moden der Theorie. Wir betrachten Raumzeit-Fluktuationen dieser Moden und
leiten so eine e�ektive Niederenergietheorie der Quantenchromodynamik ab.
Im Fall des statischen Baryons ist die Situation komplizierter: Hier gelingt uns die L�osung
der Sattelpunktsgleichungen nur in einer weit entfernt vom Baryon g�ultigen N�ahrung. Wir
werden auf eine Klein-Gordon-Gleichung gef�uhrt und k�onnen das Yukawa-Potential f�ur das
die Kernkr�afte vermittelnde Feld reproduzieren.
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Chapter 1

Introduction

1.1 From Atoms to Quarks

What is matter? This question has challenged the human mind since the beginning of physics
and philosophy. About 400 b.c. the Greek philosopher Demokrit advanced the theory that
matter is built of small, indivisible particles (later called atoms). First experimental evidence
for the existence of atoms came from chemistry around 1800. Dalton developed his atom
theory according to which a substance is composed of di�erent kinds of atoms which are in a
constant proportion. It was found that the di�erent atom sorts can be systematically arranged
in the periodic table of elements (Mendelejew 1870). After the discovery of the electron
(Thomson 1897) Rutherford's scattering experiment (1910) revealed the inner structure of
the atoms: They are built of a nucleus (consisting of protons and neutrons) and electrons
moving around it.
It has become clear only in the last 50 years that protons and neutrons have a substructure:
they are composed of three quarks. The quarks were introduced to bring order in a large
set of new particles (today called hadrons) which had been discovered meanwhile. These
new particles, unstable under normal conditions on earth, were �rst observed in cosmic rays
and later produced in colliders. The hadrons consist of either three (baryons) or two quarks
(mesons). The nucleons (proton and neutron) belong to the baryons. There are Nf = 6
di�erent kinds (called avors) of quarks, named up (u), down (d), strange (s), charm (c),
bottom (b) and top (t). Their mass, electric charge and spin are listed in Table I.
Di�erent from the nucleons, the electrons have (as far as we know) no substructure and are
therefore considered as elementary. They belong to another family of particles, the leptons,
that besides the electron e� contains the myon � and the tauon � . Associated with each of
these three particles are three further leptons, the neutrinos. The neutrinos are electrically
neutral and very light (very recent experiments [20] suggest that they are not massless).
Let us return to the hadrons. A short period after the quark model was proposed, an enthu-
siastic search for free quarks { based on their fractional electric charge { was beginning. The
result was disappointing, no such particle could be found. So far, if they exist, they seemed
never to leave the hadrons, being forever con�ned inside them.
Later, evidence for the existence of quarks could be obtained from the following experiments
which rest on dynamic properties of the quarks: deep inelastic scattering of leptons (for
example of electrons) on hadrons and positron-electron annihilation into hadrons. The results
of the �rst experiment could be interpreted in terms of the elastic scattering of the lepton by
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quark electric charge spin mass [MeV]

u +2=3 1=2 1 to 5
d �1=3 1=2 3 to 9
s �1=3 1=2 75 to 170
c +2=3 1=2 1,150 to 1,350
b �1=3 1=2 4,000 to 4,400
t +2=3 1=2 174,300 � 5,100

Table I: Quarks { electric charge (in units of the electron charge), spin and mass [20].

a quasi-free, point-like constituent of the hadron. This led to a picture of the hadron as a
loosely bound assemblage of constituents which can be identi�ed with the quarks. The second
experiment, the annihilation of positron-electron into hadrons \jets" could be understood by
the production of a quark-antiquark pair as intermediate state.
The cross section of the annihilation e+e� ! hadrons was compared with that of the lepton-
lepton scattering e+e� ! �+��. It turned out that { under consideration of the contributing
avors { the former cross section is three times larger than expected. This was one of the
reasons to introduce { in addition to the avor degree of freedom { a color degree of freedom
of the quarks. The quarks were postulated to come in three \colors": red, green, and blue.
The introduction of the color also allows to put right the antisymmetric quark statistics which
is connected with their non-integer spin. Colored particles have never been directly observed.
The hadrons are colorless: the mesons are quark-antiquarks pairs of two quarks with the same
color, and baryons consist of three quarks, one of each color. The question for the reason of
this color con�nement has to be addressed to a theory of the strong interaction.
We have briey recapitulated the history of elementary particles physics with a focus on the
hadrons and their structure. Having discussed the static quark model, now we turn to a
dynamical theory of quark interaction.
Today, four kinds of forces acting between the elementary particles are known: gravitation,
electromagnetism, the weak interaction and the strong interaction. We disregard gravitation
which is connected with the geometry of space-time. Since the mid-1970 there is a wide
agreement that the three remaining interactions are mediated through the exchange of vector
bosons between the elementary particles. The widely accepted theoretical model is a gauge
theory, where the exchange bosons are identi�ed with the gauge �eld. We now focus on the
strong interaction which is responsible for nuclear binding and the interaction of the quarks.

1.2 Quantum Chromodynamics

The gauge group of quantum chromodynamics (QCD) is the color group SU(Nc), where the
number of colors in nature is Nc = 3. The corresponding gauge bosons are called gluons and
couple to the color degrees of freedom of the quarks.
The most important property of quantum chromodynamics is the so-called asymptotic free-

dom which is connected with its non-Abelian gauge group. As a quantum �eld theory, QCD
is ultraviolet divergent and the divergences have to be removed by regularization and a renor-
malization of the coupling constants. From the one-loop order of perturbation theory [38] one
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obtains the running coupling constant

g2(k) =
g2

1 + g2

(4�)2

�
11
3 Nc � 2

3 Nf

�
ln (k2=M2)

; (1.1)

where M is an arbitrary renormalization scale. In the real world, the number of colors and
the number of avors are Nc = 3 and Nf = 6. As a consequence, the factor in front of the
logarithm is positive and the coupling g(k) ows to zero, when the momentum is increased.
Quantum �eld theories with such a behavior of the coupling constant are called asymptotically
free. This behavior of the coupling between the quarks �ts to the experimental results from
deep inelastic scattering. Indeed, the constituents of the hadron do not behave exactly like
free particles, but in a way which is in agreement with the logarithmic scaling (1.1).
QCD is the widely accepted theory of strong interaction and at weak coupling it can be
evaluated by perturbation theory. Due to asymptotic freedom weak coupling belongs to
high energies. In contrast to the perturbative high energy sector, the low energy sector is
non-perturbative and worse understood. Experimentally, the color degrees of freedom are
con�ned inside the hadrons. However { in spite of intensive research in that area { there is
no convincing theoretical proof of color-con�nement based on QCD.
In order to reach the non-perturbative low energy sector, in 1974 Wilson proposed a lattice
formulation of QCD. His guiding idea was to implement the gauge symmetry on the lattice.
In doing so, the gauge �eld having values in the Lie algebra of the gauge group is replaced by
a �eld U which has values in the gauge group and is placed on the lattice links (see Chapter
4 for details).
In this formulation QCD is open to an application of the color-avor transformation. This
transformation was recently developed by Zirnbauer in the of context disordered systems [53];
later { in view of applications to QCD { it got its present name.

1.3 The Color-Flavor Transformation

The color-avor transformation connects an integral over the unitary group U(Nc) with an in-
tegral over complexNf�Nf matrices which parametrize the symmetric space U(2Nf )=U(Nf )�
U(Nf ),Z

U(Nc)
dU exp

�
�qi+aU

ijqj+a � �qi�bU
yijqj�b

�
= const.�

Z
C
Nf �Nf

dZdZy

Det(1 + ZZy)2Nf+Nc
exp

�
�qi+aZabq

i
�b + �qj�bZ

y
baq

j
+a

�
: (1.2)

In this dissertation we will develop another version of this transformation where the unitary
group is replaced by the special unitary group. One of the central ideas of this work is to build
a bridge between two di�erent formulations of QCD: a formulation in terms of the quarks and
gluons which are the high energy degrees of freedom and a formulation in terms of hadrons,
the low energy degrees of freedom. Indeed, the color-avor transformation replaces the gauge
�eld U by a colorless �eld Z that couples quarks which are in a color singlet. After integration
over the quark �elds, one obtains an e�ective action of Z-�eld with a factor Nc in front of it
which comes from the color content of the quarks. Thus, in the large-Nc limit the theory is
organized in a 1=Nc-perturbation series.
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The color-avor transformation is an exact identity, but in the form (1.2) it applies only to
the strong coupling limit of QCD. In this dissertation we will show that it applies also to
gluodynamics and, in principle, to full QCD.

1.4 Outline

Our work is organized as follows: In the �rst two chapters we discuss di�erent versions of
the color-avor transformation. We start o� with a review of the canonical transformations
of a multi-particle quantum system. To each \dual pair" of groups in the group of canonical
transformations there is an associated color-avor transformation. We work out in detail the
color-avor transformation for the dual pair (U(Nc);U(2Nf )) for a system of bosons and a
system of fermions (Chapter 2).
The color group of QCD is the special unitary group SU(Nc) and not the full unitary group
U(Nc). For the smaller color group the set of colorless states is larger: It does not only contain
mesons, but also baryons. This gives rise to a more complicated version of the color-avor
transformation which is discussed in Chapter 3.
In Chapter 4 we review the lattice formulation of QCD. Special attention is paid to how the
symmetries of the original continuum theory are realized on the lattice. We discuss in detail
the chiral symmetry and the chiral symmetry breaking mechanisms.
The next three chapters deal with applications of the color-avor transformation to QCD. In
Chapter 5 we apply it to gluodynamics which is modeled by a U(Nc) Yang-Mills theory on a
lattice. The color-avor transformation does not apply to Wilson's lattice action which is a
sum over traces of plaquette terms. We introduce a new lattice action which can be generated
by Gaussian integration over a number of auxiliary bosons. We study the physics behind the
new action in d = 2 spacetime dimensions. Further, we present �rst results concerning the
color-avor transformation of our gluodynamic action.
The last two chapters are devoted to the color-avor transformation of strong coupling QCD.
The strong coupling limit is reached by neglecting the kinetic energy of the gluons in the QCD
action. It can be employed as an approximation to QCD, when one wants to calculate a low
energy e�ective theory. In Chapter 6 we consider the mesonic sector of strong coupling QCD
which can be reached by the U(Nc) color-avor transformation. The color-avor transformed
action comes up with a factor Nc in front of it which organizes the partition function in a
1=Nc perturbation series. From a saddle point approximation, which is valid in the large-Nc

limit, we obtain a low energy e�ective action. In the spirit of chiral perturbation theory, this
action is an expansion in the momenta p of the mesons and the quark masses m, where the
order O(m) is treated as O(p2).
Chapter 7 deals with full strong coupling QCD, taking into account mesons and baryons.
We work with the more complicated SU(Nc) color-avor transformation. The color-avor
transformed partition function decomposes into a sum over the di�erent possible distributions
of baryons on the lattice. Modeling a static baryon, we consider a special baryonic ux and
calculate the corresponding e�ective action. We try to get information about the shape of
the mesonic background �eld around the baryon in the large-Nc limit. In order to obtain
the behavior of this �eld far away from the baryon, we linearize the saddle point equations
around its vacuum value.



Chapter 2

Canonical Transformations and the
Color-Flavor Transformation

Zirnbauer's color-avor transformation [53] is an exact identity which connects two formula-
tions of a certain �eld theory. The purpose of this chapter is to discuss the algebraic structures
which underlie this transformation.
The �eld theory we are going to consider is connected with a corresponding multi particle
quantum system. While the original version of the color-avor transformation [53] deals with
a supersymmetric system, we consider a pure bosonic and a pure fermionic system. The basic
structure of such a quantum system are the canonical (anti-) commutation relations which
are satis�ed by the creation and annihilation operators. The transformations, which keep the
canonical commutation relations invariant, form the group of canonical transformations.
To each dual pair (K;G) of subgroups inside the group of canonical transformation there is a
associated color-avor transformation. The notion of dual pairs inside a group goes back to
Howe [23] and will be explained later.
In view of applications to QCD we work out the color-avor transformation for the dual pair
consisting of K = U(Nc) and G = U(Nf ; Nf ) for the bosonic system, as well as K = U(Nc)
and G = U(2Nf ) for the fermionic system.

2.1 Multi Particle Quantum Systems

The basic operators for the description of a quantum system with N degrees of freedom are
the creation operators �ai and the annihilation operators ai (i = 1; :::; N). For a system of
bosons they satisfy the canonical commutation relations

[ai; �aj ] = Æij ; [ai; aj ] = [�ai; �aj ] = 0; (2.1)

while for a system of fermions they obey the canonical anticommutation relations

fai; �ajg = Æij ; fai; ajg = f�ai; �ajg = 0: (2.2)

The algebra generated by the creators and annihilators is called Weyl algebra (bosons) or
Cli�ord algebra (fermions). We consider a linear transformations of the basic operators,

�a0j = �aiQij + aiSij

a0j = �aiRij + aiTij;
(2.3)

11
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where Q;R; S; T denote arbitrary complex N �N matrices. Here and thereafter we assume
the usual summation convention, i. e. one has to sum over repeated indices as long as nothing
else is demanded. (The transformation (2.3) does not necessarily preserve the commutation
relations (2.1), (2.2). Canonical transformations are considered in the next subsection.) The
composition of two transformations of that kind is given by matrix multiplication, if we ar-

range the four block to a 2N�2N matrix X =
�
Q R
S T

�
. Thus we deal with a representation of

gl(2N; C ) on the complex vector space which is spanned by the creators �ai and the annihilators
ai.
Our aim is to show that some of the transformations (2.3) can be realized as interior operations
inside the Weyl or Cli�ord algebra [6, 37, 54]. For that purpose we de�ne quadratic operators

Q̂ij = �aiaj; R̂ij = " �ai�aj;

Ŝij = aiaj; T̂ij = " ai�aj ;
where " :=

� �1 for the bosonic system;
+1 for the fermionic system:

(2.4)

and map the complex 2N � 2N matrix X to an operator X̂ by

X =

�
Q R
S T

�
7! X̂ :=

1

2

NX
i;j=1

�
QijQ̂ij +RijR̂ij + SijŜij + TijT̂ij

�
: (2.5)

We make use of the general formulas for commutators (anticommutators) inside an associative
algebra

[ab; c] = a[b; c] + [a; c]b; (2.6)

fab; cg = afb; cg � fa; cg (2.7)

and obtain straightforwardly

[X̂; �aj ] =
1

2
�ai(Q� T t)ij + 1

2
ai(S � "St)ij ;

[X̂; aj ] =
1

2
�ai(R� "Rt)ij +

1

2
ai(T �Qt)ij :

(2.8)

From now on we restrict the matrices X by the constraint

Qt = �T; Rt = �"R; St = �"S; (2.9)

so that the last two equations take the simple form

[X̂; �aj ] = �aiQij + aiSij ;

[X̂; aj ] = �aiRij + aiTij :
(2.10)

To sum up, we have implemented the representation (2.3) by the adjoint action of the quad-
ratic operator X̂ for matrices X which ful�ll the conditions (2.9).
Let us have a closer look at the constraint. It can be described by passing from gl(2N; C ) to
the symplectic (orthogonal) complex Lie algebra,

sp(2N; C ) := fX 2 gl(2N; C ) j XtJ + JX = 0g or (2.11)

o(2N; C ) := fX 2 gl(2N; C ) j Xt�x +�xX = 0g (2.12)
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for the bosonic system (fermionic system). As de�ned above J and �x denote the 2N � 2N
block matrices

J =

�
0 1
�1 0

�
and �x =

�
0 1
1 0

�
: (2.13)

For X;Y inside the two subalgebras the map (2.5) respects the Lie bracket, 1

[X̂; Ŷ ] =\[X;Y ]; (2.14)

and the maps

w : sp(2N; C ) ! spanf�aiaj + aj�ai; aiaj; �ai�ajg and (2.15)

X 7! wX := X̂

w : o(2N; C ) ! spanf�aiaj � aj�ai; aiaj ; �ai�ajg (2.16)

X 7! wX := X̂

are Lie algebra isomorphisms [37].

2.2 Canonical Transformations and Real Transformations

We turn to the study of canonical transformations, that are invertible transformations, which
respect the canonical commutation or anticommutation relations. We switch from a Lie
algebra to a group formulation: Corresponding to (2.3) the matrix of an invertible transform-

ation G = expX =
�
A B
C D

�
acts on the basic operators by

�a0j = �aiAij + aiCij

a0j = �aiBij + aiDij :
(2.17)

The transformation G preserves the (anti-) commutation relations, i� 2

"BtC +DtA = I;

"BtD +DtB = 0;

"AtC + CtA = 0:

(2.18)

Thus G gives rise to a canonical transformation, i� it belongs to the following complex sym-
plectic (orthogonal) group,

Sp(2N; C ) := fG 2 GL(2N; C ) j GtJG = Jg and (2.19)

O(2N; C ) := fG 2 GL(2N; C ) j Gt�xG = �xg: (2.20)

We make use of the general formula exp[X̂; �]b = exp(X̂)b exp(�X̂) for two arbitrary operators
X̂ and b, and we obtain by exponentiating the representation (2.10)

exp(X̂)�aj exp(�X̂) = �aiAij + aiCij

exp(X̂)aj exp(�X̂) = �aiBij + aiDij ;
(2.21)

1[[X̂; Ŷ ]; b] = [X̂; [Ŷ ; b]]� [Ŷ ; [X̂; b]] = [\[X; Y ]; b] for all basic operators b follows directly from (2.10), but to
prove (2.14) additional considerations are necessary.

2We write \i� " as an abbreviation for if and only if.
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for canonical transformations G =
�
A B
C D

�
= exp

�
Q R
S T

�
= expX.

There is an involution y on the Weyl algebra de�ned by its action

ayi = �ai; �ayi = ai (2.22)

on the basic operators and the rules

(zb)y = �zby; (bc)y = cyby (2.23)

for all complex numbers z and all operators b, c. (In the next section we construct a represent-
ation of the operator algebra on a Hilbert space, the Fock space. In that context y will become
the hermitian conjugation with respect to the scalar product of the Hilbert space.) There-
fore it is natural to call a transformation (2.3) real, if it is compatible with the \hermitian
conjugation", that is

(a0i)
y = �a0i; for i = 1; :::; N : (2.24)

It is easy to see that a transformation X =
�
Q R
S T

�
is real, i� it satis�es S = �R and T = �Q,

that is, it belongs to the subalgebra

r :=
�
X 2 gl(2N; C ) j X�x = �x

�X
	

(2.25)

of gl(2N; C ). Note that the algebra r is closed, not only under the Lie bracket, but also under
the matrix multiplication of two of its elements.
The intersection between the complex Lie algebras sp(2N; C ) and o(2N; C ) and the algebra r

of real transformations are the following real forms of the Lie algebras,

sp(2N;R) := fX 2 r j Xy�z +�zX = 0g; where �z =

�
1 0
0 �1

�
and (2.26)

so(2N;R) := fX 2 r j Xy +X = 0g; (2.27)

Therefore the set of real and canonical transformations is given by the following real forms
of the groups Sp(2N;R) , O(2N;R) ,

Sp(2N;R) := fG 2 r j Gy�zG = �zg and (2.28)

O(2N;R) := fG 2 r j GyG = Ig: (2.29)

Up to now the creation and annihilation operators were considered as elements of an abstract
algebra. In the next section we realize them as operators of the Fock space.

2.3 Representations on the Fock Space

The Fock space H is generated by the action of the creators and annihilators on a vacuum
state j0i. The vacuum is exterminated by the annihilators, ajj0i = 0, the transpose of the
vacuum by the creators, h0j�aj = 0. The bosonic Fock space is in�nite dimensional, while the
dimension of the fermionic Fock space is 2N . The maps w (2.15) and (2.16) can be considered
as representations of the symplectic or the orthogonal Lie algebra on the Hilbert space,

w : sp(2N;R) ! gl(H) w : o(2N;R) ! gl(H) (2.30)

X 7! w(X) := X̂; X 7! w(X) := X̂:
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(By gl(H) we denote the algebra of all linear maps H ! H.) The Lie groups Sp(2N;R)
and O(2N;R) corresponding to the above Lie algebras are not simply connected. Simple
connectivity is a condition to apply a general theorem of Lie group theory (cf. any book on Lie
group theory, e.g. [43]) to press a homomorphism of Lie algebras down to the corresponding
groups. It turns out that there is an obstruction in our case: One has to pass the twofold
following coverings, the metaplectic group Mp(2N) for the symplectic group and the Pin
group Pin(2N) for the orthogonal group to press the representations down [37]. In doing so
we get representations

! : Mp(2N; C ) ! Gl(H) ! : Pin(2N; C ) ! Gl(H) (2.31)
G 7! !(G); G 7! !(G)

with the property

!(^exp(X)) = exp (w(X)) (2.32)

for all elements X of the Lie algebra. (By gl(H) we denote the group of all invertible linear

maps H ! H.) Here ^exp(X) denotes one of the two elements of the covering group which is
mapped to exp(X) by the covering homomorphism. The representation ! is called oscillator

representation (spin representation) in the case of the bosonic system (fermionic system).
From the de�nition (2.5) we get X̂y = �X̂ for both X 2 sp(2N;R) and X 2 o(2N;R) and
conclude

wy = �w; !y = !�1; (2.33)

that is ! is a unitary representation in both cases.

To sum up, an element ~G of the covering group, which is mapped to G =
�
A B
C D

�
by the

covering homomorphism, acts on the basic operator by

!( ~G)�aj!( ~G)
�1 = �aiAij + aiCij

!( ~G)aj!( ~G)
�1 = �aiBij + aiDij:

(2.34)

The oscillator and the spin representation are built by exponentiating quadratic operators.
Therefore the Hilbert space is not irreducible under these representations, but it decomposes
according to the parity of the number of particles, H = H+�H�. The subspaces of even and
odd particle numbers are irreducible under the oscillator and the spin representation [37].
We de�ne standard coherent states by

h�	j := h0j exp � � jaj� ; j	i := exp (�aj j) j0i: (2.35)

In the expression above � and  denote two independent vectors of complex numbers (bo-
sonic case) or Grassmann numbers (fermionic case). The coherent states are eigenstates of
annihilators or the creators,

h�	j�aj = � jh�	j; ajj	i = j	i j : (2.36)

From [ � iai; �aj j] = � i i we obtain with the help of the Baker-Campbell-Hausdor� formula 3

exp(�ai i + � iai) = exp

�
1

2
�  

�
exp(�ai i) exp( � iai); (2.37)

exp( � iai) exp(�ai i) = exp( �  ) exp(�ai i) exp( � iai): (2.38)

3exp(Â+B̂) = exp
�
� 1

2
[Â; B̂]

�
exp Â exp B̂ for operators Â, B̂, which both commute with their commutator

[Â; B̂].
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To calculate the action of the oscillator (spin) representation, we use the generalized Gaussian
decomposition of G (cf. Appendix A) into an upper diagonal matrix Z+, a diagonal matrix
H and a lower diagonal matrix Z�,

G = Z+HZ� =

�
1 BD�1

0 1

��
A�BD�1C 0

0 D

��
1 0

D�1C 1

�
: (2.39)

The vacuum state and its transpose are eigenstates of H,

h0j!(H) = (DetD)
"
2 h0j; !(H)j0i = j0i(DetD) "2 ; (2.40)

while the coherent state h�	j is an eigenstate of Z+ and the coherent state j	i is an eigenstate
of Z�,

h�	j!(Z+) = exp
�"
2
� BD�1 � 

�
h�	j; !(Z�)j	i = j	i exp

�
1

2
 D�1C 

�
: (2.41)

The formulas above can be used to calculate the matrix elements of the oscillator represent-
ation (spin representation) with respect to the bose (fermi) coherent states,

h�	j!( eG)j	i = �(DetD)"=2 exp�"
2
� BD�1 � 

�
exp

��" D�1 � 
�
exp

�
1

2
 D�1C 

�
: (2.42)

In deriving the last formula we made use of A�BD�1C = (D�1)t, which follows from (2.18).

2.4 The Color-Flavor Transformation for the Unitary Group

2.4.1 Charge Conservation

We consider a system of N = p + q charged species, where all particles carry the same
amount of charge and p particles are positively, q particles negatively charged. We label the
positive charged particles by i = 1; :::; p and the negative particles by i = �1; :::;�q. The
charge operator counts the positive charged particles minus the number of negatively charged
particles and is given by

Q̂ =

pX
i=1

�a+ia+i �
qX
i=1

�a�ia�i: (2.43)

Corresponding to the particles with positive and negative charge, we split each block of the

matrix X =
�
Q R
S T

�
into four blocks, Q =

�
Q++ Q+�
Q�+ Q��

�
and in the same way for R, S, T .

We say a transformation X conserves the charge, i� X̂ commutes with the charge operator
Q̂. The charge conserving transformations form the algebra

c :=
n
X 2 gl(2N; C ) j X ~�z = ~�zX

o
; where ~�z = diag(1;�1;�1; 1): (2.44)

Note that Q̂ = ~̂�z +
"
2(p � q) and a charge conserving transformation X 2 c has the block

structure

X =

0BB@
Q++ 0 0 R+�
0 Q�� R�+ 0
0 S+� T++ 0

S�+ 0 0 T��:

1CCA : (2.45)
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Therefore the representation of c as 2N � 2N -matrices decomposes into a direct sum of two
sub-representations,

X $
�
X 0 =

�
Q++ R+�
S�+ T��

�
;X 00 =

�
Q�� R�+
S+� T++

��
; (2.46)

where X 0 and X 00 are N � N -matrices. For transformations X 2 sp(2N; C ) \ c and X 2
o(2N; C ) \ c the matrices X 0 and X 00 are connected via

X 00 = �
�
0 1
" 0

�
X 0t

�
0 1
" 0

��1
: (2.47)

Because (2.9) put no further constraints on X 0 and X 00, we obtain

sp(2N; C ) \ c �= gl(N; C ); o(2N; C ) \ c �= gl(N; C ) (2.48)

and switching to the group level we conclude

Sp(2N; C ) \ c �= Gl(N; C ); O(2N; C ) \ c �= Gl(N; C ): (2.49)

The representations of the former groups decompose into a sum of the fundamental repres-
entation of Gl(N; C ) and a representation equivalent to the contragredient representation,

G $ �
G0; G00

�
; where G00 =

�
0 1
" 0

�
(G0�1)t

�
0 1
" 0

��1
: (2.50)

A restriction of the charge conserving transformations to real transformations leads the fol-
lowing real forms of the Lie algebras and Lie groups,

sp(2N;R) \ c �= u(p; q); o(2N;R) \ c �= u(p+ q); (2.51)

Sp(2N;R) \ c �= U(p; q); O(2N;R) \ c �= U(p+ q): (2.52)

Finally we note that the operator corresponding to a charge conserving transformation X 2
sp(2N; C ) \ c and X 2 o(2N; C ) \ c can be described in terms of X 0 alone,

X̂ =
X
i;j

(Q+i;+j�a+ia+j + "R+i;�j�a+i�a�j + S�i;+ja�ia+j + "T�i;�ja�i�a�j)

� "

2
TrQ++ � "

2
TrT��:

(2.53)

2.4.2 Representation on the Fock Space

For charge conserving transformations it is convenient to modify the representations (2.30)
a little bit: We add the term "

2 TrX
0 = "

2 TrQ++ + "
2 TrT�� to X̂ to cancel the last line of

(2.53) and we de�ne

t : gl(N; C ) ! gl(H) (2.54)

X 0 7! tX0 := X̂ +
1

2
TrX 0:
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The modi�ed representation has the property exp (2�i tEii) = exp (�2�i �aiai) = 1 (no sum
over i), because the spectrum of the counting operator �aiai is the set f0; 1g. Therefore (cf.
Appendix B) the Lie algebra representation can be pressed down to a group representation 4,

T : Gl(N; C ) ! Gl(H) (2.55)
G0 7! TG0 :

The representation of the Lie algebra and the group representation are connected via

TexpX0 = exp tX0 : (2.56)

From now on we write G0 =
�
A0 B0
C0 D0

�
, G00 =

�
A00 B00
C00 D00

�
and suppress the signs + and � in

front of the indices of the blocks, more explicitly A0 = A++, B
0 = B+�, C 0 = C�+, D0 = D��

and A00 = A��, B00 = B�+, C 00 = C+� and D00 = D++. The operator TG0 acts on the basic
operators of the Weyl algebra by

TG0�a+jT
�1
G0 = �a+iA

0
ij + a�iC 0ij; TG0�a�jT�1G0 = �a�iA00ij + a+iC

00
ij; (2.57)

TG0a+jT
�1
G0 = �a+iB

00
ij + a+iD

00
ij; TG0a�jT�1G0 = �a+iB

0
ij + a�iD0

ij; (2.58)

where, according to (2.50), the primed variables are given by

A00 =
�
(D0 � C 0A0�1B0)�1

�t
= �D0 (2.59)

B00 = "
�
(C 0 �D0B0�1A0)�1

�t
= �C 0 (2.60)

C 00 = "
�
(B0 �A0C 0�1D0)�1

�t
= �B0 (2.61)

D00 =
�
(A0 �B0D0�1C 0)�1

�t
= �A0: (2.62)

The left equalities are valid in general, provided that A0, B0, C 0 and D0 are invertible, while
the right equalities are only valid, if G0 is pseudounitary (unitary). Because the transform-
ations TG0 conserve the charge, it is clear that the Hilbert space decomposes into subsectors
characterized by a �xed charge Q under the representation T . These subspaces are irreducible
under the representation T .
Following the line of section 2.3 we decompose G0 2 Gl(p+ q; C ) into

G0 = Z 0+H
0Z 0� =

�
1 B0D0�1

0 1

��
A0 �B0D0�1C 0 0

0 D0

��
1 0

D0�1C 0 1

�
: (2.63)

and get
h0jTH0 = (DetD0)"h0j; TH0 j0i = j0i(DetD0)"; (2.64)

h�	jTZ0+ = exp
�
" � +B

0D0�1 � �
�
h�	j; TZ0� j	i = j	i exp

�
 �D0�1C 0 +

�
: (2.65)

Finally we get for the matrix element of the representation T with respect to the standard
coherent states

h�	jTG0 j	i =(DetD)" exp
�
" � +B

0D0�1 � �
�
exp

�
 �D0�1C 0 +

�
exp

�
� +(A

0 �B0D0�1C 0) + � " �D0�1 � �
�
:

(2.66)

4Note that Gl(N; C ) is not simply connected and there could be a topological obstruction.
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For a real transformation (i.e. G0 is pseudounitary (unitary)) the last line of the previous
expression simpli�es to

exp
�
� +(A

0 �B0D0�1C 0) + � " �D0�1 � �
�
= exp

�
�"
�
 + �A0�1 � + +  �D0�1 � �

��
:

(2.67)

2.4.3 The Color-Flavor Transformation

We consider a set of creation and annihilation operators �aiA and aiA which carry two di�erent
indices. The lower index takes values +a or �a, with range a = 1; :::; Nf , while the upper
index takes values i = 1; :::; Nc. Having QCD in mind 5, we interpret the operators �ai+a and
�ai�a as creation operators for quarks and antiquarks, respectively; the index i corresponds
to the color (i.e. gauge) degrees of freedom, while the index a labels the di�erent avors of
the quarks. (The quarks are regarded as being spinless.) The connection to the preceding
subsections is built by the identi�cations p = q = NfNc, that is N = p+ q = 2NfNc.
The Lie algebra gl(2NfNc) has two subalgebras gl(Nc) and gl(2Nf ), which are embedded
in a natural way: A matrix X 2 gl(Nc) is identi�ed with I2Nf


 X, and a matrix Y 2
gl(2Nf ) with Y 
INc . Through these embeddings, gl(Nc) and gl(2Nf ) form a pair of maximal
commuting subalgebras of gl(2NfNc). The subgroups GL(Nc) and GL(2Nf ) are embedded
into GL(2NfNc) in the same way. We de�ne the color group to be the subgroup U(Nc) of
GL(Nc), and the avor group to be the subgroup U(Nf ; Nf ) (bosonic system) or U(2Nf )
(fermionic system) of GL(2Nf ).
Let now  iA and � iA be two independent vectors of complex variables (bosonic system) or
Grassmann variables (fermionic system). We consider the following integral over the color
group,

Z( ; � ) :=
Z
U(Nc)

dU exp( � i+aU
ij j+a +

� i�b �U
ij j�b): (2.68)

The integration measure dU is the Haar measure, which is invariant under left- and right-
multiplication and normalized by

R
U(Nc)

dU = 1.

A key step towards the color-avor transformation is the interpretation of Z( ; � ) as matrix
element of the projector on the colorless sector of the Fock space. We denote this projector by
P. An example for a colorless state is the vacuum, which transforms under the color group as
TU j0i = j0i(DetU)"Nf . We de�ne the colorless sector (or avor sector) to contain all states
which transform under the color group like the vacuum, that is

TU javori = (DetU)"Nf javori; for all U 2 U(Nc): (2.69)

Making use of the representation T , the projector P can be expressed as an integral over the
color group,

P =

Z
U(Nc)

dU

(DetU)"Nf
TU : (2.70)

To prove (2.70) we �rst observe, that due to the normalization of the Haar measure, P acts as
the identity on the colorless sector. Secondly, we get from the invariance of the Haar measure
TUP = (DetU)"NfP, that is, P projects on the colorless sector.

5Nevertheless we still consider fermionic and bosonic systems.
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From (2.66) and (2.67) we can read o� the matrix elements of the representation of the color
group with respect to the standard coherent states,

h�	jTU j	i = (DetU)"Nf exp
�
� i+aU

ij j+a +
� i�b �U

ij j�b
�

(2.71)

and conclude that

Z( ; � ) = h�	jPj	i: (2.72)

By formula (2.70) we have expressed the projector P as an integral over the color group. The
color-avor transformation is established by expressing the projector in an alternative way.
It turns out that an investigation of the colorless sector of the Fock space allows us to express
P as an integral over the avor group. The color group acts an the Fock space by

TU�a+jT
�1
U = �a+iUij; TU�a�jT�1U = �a�i �Uij ; (2.73)

TUa+jT
�1
U = a+i �Uij; TUa�jT�1U = a�iUij ; (2.74)

which are special cases of (2.57) and (2.58). Based on this formulas, one can describe the
colorless sector of the Fock space, as it was done in [53]: It consists of the vacuum andmesonic
excitations above it. A prototype of such an excitation is the one-meson state

jm+a;�bi =
NcX
i=1

�ai+a�a
i
�bj0i: (2.75)

By multiple action of the gl(2Nf ) generators �a
i
+a�a

i
�b (we implicitly sum over the color indices),

one can build states containing two and more mesons with di�erent avors. In the case of
fermions the number of mesons is limited by NfNc. These states are automatically U(Nc)-
invariant and conversely all U(Nc)-invariant states are linear combinations of such multi-
meson states. The avor group U(Nf ; Nf ) (bosonic system) or U(2Nf ) (fermionic system)
keeps the avor sector invariant and acts irreducible on it.
Having analysed the avor sector, we will express the projector P as an integral over the
avor group. For that purpose we will use coherent states in the spirit of Perelomov [37].
On the avor sector, we build generalized coherent states by acting with the avor group
G = U(Nf ; Nf ) (bosonic system) or G = U(2Nf ) (fermionic system) on the vacuum state,

jgi := Tgj0i; hgj := h0jT yg : (2.76)

The crucial property of coherent states we will use now, is that they supply a resolution of
unity. Because the avor sector is irreducible under the action of the avor group,

P = �0

Z
G
dg jgihgj (2.77)

is the orthogonal projector on that sector, when the normalization constant �0 is chosen
appropriately. Indeed the operator on the r.h.s. commutes with all element of avor group.
(That can be shown by a simple calculation, which makes use of the invariance of the Haar
measure.) Thus Schur's lemma ensures that it is proportional to the identity on the avor
sector, which is an irreducible space of this group. Because hgj is orthogonal to the states
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outside the avor sector, it vanishes there. Finally P becomes the identity operator on the
avor sector, when we �x the normalization constant at

�0 =

�Z
G
dg h0jTgj0i2

��1
: (2.78)

For fermionic version of the color-avor transformation, the value of the normalization con-
stant is calculated in Chapter 3.
We have expressed the projector on the avor space as an integral over the avor group and
can rewrite the partition function (2.68) as

Z( ; � ) = �0

Z
G
dg h�	jgihgj	i: (2.79)

On an open dense subset of G (de�ned by DetD 6= 0) we have the generalized Gaussian
decomposition

g =

�
1 Z
0 1

��
F 0
0 D

��
1 0
Y 1

�
;

g�1 =
�
1 0
0 "

�
gy
�
1 0
0 "

�
=

�
1 "Y y

0 1

��
F y 0
0 Dy

��
1 0
"Zy 1

�
:

(2.80)

Using the decompositions of g and g�1 we can directly read o� the overlaps between the
standard coherent states and the coherent states of the avor sector from (2.66),

h�	jgi = h�	jTgj0i = (DetD)"Nc exp
�
" � i+aZab

� i�b
�

(2.81)

hgj	i = h0jT�1g j	i = (DetDy)"Nc exp
�
" j�bZ

y
ab 

j
+a

�
: (2.82)

We note that DDy = (1 + "ZyZ)�1 (cf. Appendix A) and therefore the integrand of (2.79)
depends on the group elements g only via Z and Zy, i.e. on the right coset gH of g, where
H is the subgroup H = U(N) � U(N) of G. Thus the integral in (2.79) can be restricted
to the coset space G=H, which is parameterized by the complex matrices Z 2 C Nf�Nf . The
matrices Z are arbitrary for the fermionic system and constrained for the bosonic system,
namely by the requirement that the eigenvalues of the positive semide�nite matrix ZZy are
less than unity. The invariant measure on the coset space G=H is (cf. Appendix A),

D�(Z;Zy) = CNf
Det(1 + "ZZy)�2Nf

Y
i;j

dZij d �Zij : (2.83)

Finally we get the following expressions for the bosonic and the fermionic partition function,

ZB( ; � ) = �0

Z
C
Nf �Nf

D�(Z;Zy) Det(1� ZZy)Nc exp
�
� i+aZab

� i�b +  j�bZ
y
ba 

j
+a

�
; (2.84)

ZF( ; � ) = �0

Z
C
Nf �Nf

D�(Z;Zy) Det(1 + ZZy)�Nc exp
�
� i+aZab

� i�b +  j�bZ
y
ba 

j
+a

�
:

(2.85)

To bring the bosonic integral into the form (2.84), we have applied the substitution (Z;Zy) 7!
(�Z;�Zy). While fermionic partition is a convergent integral for all values of Nf and Nc,
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the number of avors has to be restricted by 2Nf � Nc for the bosonic �eld theory. (In
polar coordinates with radius r the integrand of (2.84) behaves like (1� r)Nc�2Nf for r ! 1.)
Note that we have expressed the original partition function in terms of the matrix U and the
complex conjugated matrix �U , while the transformed partition function is written down as a
function of the matrix Z and the Hermitian conjugated matrix Zy. This convention allows
us to avoid minus signs in the expressions of both, the bosonic and the fermionic version of
the transformation.
The scheme which converts the partition function (2.68) to the expression ZB or ZF is called
color-avor transformation. Indeed it transforms an action S(U) = � i+aU

ij j+a +
� i�b �U

ij j�b
which couples the color degrees of freedom of the quark �elds through the gauge �eld U into
an action S(Z;Zy) =  i+aZab 

i
�b + � j�bZ

y
ba
� j+a which couples the avor degrees of freedom

through the mesonic 6 �eld Z. The scheme was discovered in 1996 by Zirnbauer and initially
formulated in a supersymmetric setting [53]. The pure bosonic and pure fermionic versions
can be derived from the supersymmetric color-avor transformation by putting the fermionic
or the bosonic components of the �eld to zero. After that it remains to do the Berezin integral.
We have done so (cf. Appendix C) and obtained a result which is consistent with (2.84) and
(2.85).
The most general formulation of the color-avor transformation involves a number Nf;B of
bosons and a number Nf;F of fermions. For reasons of convergence these numbers have to be
restricted to 2(Nf;B �Nf;F) � Nc.

2.5 Outlook: Dual Pairs

The color-avor transformation relates an integral over the color group K = U(Nc) to an
integral over the avor group G = U(Nf ; Nf ) or G = U(2Nf ). Both groups are subgroups
of the group of real, canonical transformations S = Sp(2NfNc;R) or S = O(2NfNc;R). The
pair of subgroups (K;G) of S has the property that K is the centralizer 7 of G and vice
versa. According to Howe such a pair of groups is called a dual pair in S and there is a
decomposition of the oscillator representation in terms of representations of the members of
each dual pair in the symplectic group [23]. The color-avor transformation, which rests
on two di�erent descriptions of the projector on the avor sector, is intimately related to
that structure. The classi�cations of irreducible dual pairs in the symplectic group is an
interesting but manageable problem [23]. We are interested in dual pairs where one member
(the color group) is compact. A complete list of these dual pairs is shown in Table II. The

(K, G) dual pair in K G H class of G=H

Sp(2n(p+ q);R) U(n) U(p; q) U(p)�U(q) AIII

Sp(2nm;R) O(n) Sp(2m;R) U(m) CI

Sp(4nm;R) Sp(2n) O�(2m) U(m) DIII

Table II: Dual pairs in the symplectic group

corresponding dual pairs in the orthogonal group are listed in Table III. There is a color-avor
transformation corresponding to each dual pair of the two above lists, that is the color group

6This term is justi�ed, because Z couples to a color singlet built by quark-antiquark pair.
7The centralizer K of G in S contains all elements of S which commute with each element of G.



2.5 Outlook: Dual Pairs 23

(K, G) dual pair in K G H class of G=H

O(2n(p+ q)) U(n) U(p+ q) U(p)�U(q) AIII

O(2nm) O(n) O(2m) U(m) DIII

O(4nm) Sp(2n) Sp(2m) U(m) CI

Table III: Dual pairs in the orthogonal group

U(Nc) can be replaced by each of the compact groups O(Nc) and Sp(2Nc). The integral over
the group is replaced by an integral over the symmetric space G=H formed by quotienting
the avor group by a subgroup. The class printed in the tables refers to Cartan's complete
list of the symmetric spaces [22]. Recently this Cartan's classi�cation was extended to a
superanalytic setting, leading to a complete list of Riemannian symmetric superspaces [52].
Some of the latter spaces are involved in the color-avor transformations of systems with
bosons and fermions.
Finally we point out that the gauge group of quantum chromodynamics, the special unit-

ary group SU(Nc), does not occur as a member of a dual pair and the derivation of the
corresponding color-avor transformation involves a special technique.





Chapter 3

The Color-Flavor Transformation
for the Special Unitary Group

In the last chapter we have reviewed the color-avor transformation for the unitary group.
The purpose of this chapter is to generalize the transformation to the special unitary group.
We de�ne the color group now to be the smaller group SU(Nc).
Again, the central idea is to express the projector on the colorless sector of the Fock space
in two di�erent ways. In doing so we have to take into account that the colorless sector for
the special unitary group is larger than the colorless sector for the unitary group. Restricting
ourselves to the case of fermions, two kinds of colorless particles can be composed of the
quarks: mesons which are quark-antiquark pairs and the baryons which are totally antisym-
metric combinations of Nc quarks. While the mesonic excitations over the vacuum of the Fock
space were already considered in Chapter 2, we additionally have to take into consideration
the baryons when we replace the color group U(Nc) by SU(Nc).

3.1 The Partition Function as an Integral over the Color Group

We restrict ourselves to a fermionic system and let  iA,
� iA be two vectors of Grassmann

variables. We consider the following partition function which is de�ned as an integral over
the color group,

Z( ; � ) =
Z
SU(Nc)

dU exp( � i+aU
ij j+a +

� i�b �U
ij j�b): (3.1)

Again, the �rst step towards the color-avor transformation is to express the partition function
as a matrix element of the projector P on the colorless sector,

Z( ; � ) = h�	jPj	i: (3.2)

The colorless sector (or avor sector) is given by the set of states which transform trivially
under the color group, that is

TU javori = javori; for all U 2 SU(Nc): (3.3)

Equation (3.2) can be established by expressing the projector P as an integral over the color
group,

P =

Z
SU(Nc)

dU TU : (3.4)

25
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Thanks to the restriction from the unitary group to the special unitary group there is no
factor (DetU)"Nf in the last two formulas.

3.2 The Flavor Sector

To express the projector P as an integral over the avor group, we investigate the colorless
sector of the Fock space. The set of SU(Nc)-colorless states contains the mesonic excitations,
which were already considered in Chapter 2, but is larger and, moreover, contains states with
baryons. A prototype of the latter states is a baryon with avors a1; : : : ; aNc which is de�ned
as

jbA1:::ANc
i := 1

Nc!
"i1:::iNc�a

i1
A1
� : : : � �aiNcANc

j0i: (3.5)

The indices Ak = �ak have to be taken either all positive (baryon), or all negative (antiba-
ryon). A matrix U 2 GL(Nc) acts on this state by multiplication with Det(U) (baryon) or
Det�1(U) (antibaryon). Therefore these states are invariant under the color group SU(Nc).
We de�ne the baryon number operator by

B̂ :=
1

Nc
Q̂ =

1

Nc

 
NcX
i=1

�a+ia+i �
NcX
i=1

�a�ia�i

!
: (3.6)

The above baryon (antibaryon) is an eigenstate of the baryon number operator B̂ with ei-
genvalue B = 1 (�1). More generally, B̂ counts the number of baryons minus the number
of antibaryons contained in a colorless state. Acting on the state (3.5) with the generators
of the avor algebra gl(2Nf ) one builds other colorless states with the same baryon number.
These states form an irreducible subspace for the avor group U(2Nf ): the one-baryon and
the one-antibaryon sector, respectively.
The one-baryon sector can be generated from the state (3.5) with all aj = 1. One can similarly
build B-baryon and B-antibaryon states by

jBBi :=
BY
a=1

�f1+a � ::: � �fNc
+a j0i; jB0i := j0i; jB�Bi :=

BY
a=1

�f1�a � ::: � �fNc�a j0i: (3.7)

In doing so the value of the baryon number B is restricted by Pauli's exclusion principle
and ranges from �Nf to Nf . As with the one-baryon state, acting on jBBi with the algebra
gl(2Nf ) builds the full B-baryon part of the avor sector, so that the group U(2Nf ) acts
irreducibly on this part. This can be proved by making use of the dual-pair property of the
subalgebras gl(2Nf ) and gl(Nc), as exposed in [24].
To summarize, the avor sector of Fock space decomposes into 2Nf + 1 subsectors, charac-
terized by the baryon number B. Each sector carries an irreducible unitary representation of
the avor group U(2Nf ).

3.3 The Partition Function as an Integral over the Flavor
Group

Having explored the structure of the avor sector, we are now in position to express the
projector P as an integral over the avor group. For this purpose we will use the coherent
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states, in the spirit of Perelomov [37]. On each subsector with a �xed baryon number B, we
consider the generalized coherent states built by the action of G := U(2Nf ) on the reference
state jBBi, i. e. the states

jgBi := TgjBBi; hgB j := hBBjT yg ; for all B = �Nf ; :::; Nf : (3.8)

The crucial property of coherent states is that they supply a resolution of unity. Because of
the irreducibility of the U(2Nf ) action on each subsector of baryon number B, the operator

PB := �B

Z
G
dg jgBihgB j (3.9)

coincides with the orthogonal projector on that subsector, provided that the normalization
constant �B is chosen in an appropriate way. Indeed, by the invariance of the Haar measure
the operator PB commutes with every element of the avor group; Schur's lemma then ensures
that it is proportional to the identity on each irreducible space of this group, thus on each
subsector of a �xed baryon number. Owing to orthogonality, PB vanishes on all subsectors
with B0 6= B, whereas it is the identity on the B-subsector if the normalization constant is
�xed at

�B =

�Z
G
dg jhBBjTgjBBij2

��1
: (3.10)

Some particular values of the constant (namely �0 and ��1) are computed in Subsection 3.6.
The projector P on the full avor sector is an orthogonal sum of the projectors on the
subspaces with �xed baryon number B,

P =

NfM
B=�Nf

PB; (3.11)

and its matrix elements can be written as

Z( ; � ) =
NfX

B=�Nf

�B

Z
G
dg h�	jgBihgB j	i: (3.12)

With equation (3.12) we have obtained a representation of the partition function as an integral
over the avor group.

3.4 Gaussian Decomposition

To compute the overlaps h�	jgBi and hgB j	i, we again make use of the Gaussian decomposition
of G = U(2Nf ): almost any matrix g 2 G can be factored into

g = z+hz� =

�
1 Z
0 1

��
F 0
0 D

��
1 0
Y 1

�
; (3.13)

where the relations Z = BD�1, Y = D�1C, and F = A� BD�1C hold. The decomposition
becomes singular if D does, but this happens only on a submanifold of codimension one (and
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hence measure zero) of G. The unitarity of g implies ~Z = �D�1ZyA and allows to write the
central matrix in the form�

F 0
0 D

�
=

�
(1 + ZZy)1=2 0

0 (1 + ZyZ)�1=2

��U 0
0 V

�
; (3.14)

with two unitary Nf �Nf -matrices U and V.
�U 0
0 V

�
is an element of the diagonal U(Nf )�

U(Nf ) subgroup of G, which we call H. It can thus be shown that the elements g of an open
dense subset of G are in one-to-one correspondence with the triplets (Z;U ;V), where the pair
diag(U ;V) is an element of H, while Z represents a point in the coset space G=H and can be
any complex Nf �Nf matrix. Moreover, the Haar measure dg of G factorizes intoZ

G
dg =

Z
G=H

d(gH)

Z
H
dh =

Z
C
Nf �Nf

d�(Z;Zy)
Z
H
dU dV: (3.15)

Both dU and dV are normalized Haar measures on U(Nf ), and

d�(Z;Zy) = CNf
Det(1 + ZZy)�2Nf

Y
i;j

dZijd �Zij (3.16)

is the normalized invariant measure on G=H. The normalization factor CNf
is computed in

Section 3.6; see Eq. (3.46).
We now explain how to use this decomposition to compute the overlaps. The Gaussian
decomposition (3.13) carries over to any representation of G, so for every g 2 G we can write
the operator Tg as

Tg = Tz+ Th Tz� : (3.17)

According to the relations (2.57) and (2.58), the factors T� and T~� act trivially on the reference
states:

T~� jBBi = jBBi; and hBB jT� = hBB j; for all B = �Nf ; :::;+Nf : (3.18)

The action of the block-diagonal operator is slightly more subtle. 1

Thj0i = (DetD)Nc j0i;

ThjB1i = (DetD)Nc

NcY
i=1

Fa1 �f
i
+aj0i;

ThjB�1i = (DetD)Nc

NcY
i=1

(D�1)1a �f i�aj0i:

(3.19)

(To make sense of these formulas one must remember that we are using the summation
convention: the avor index a under the product is understood to be summed over.) These

1ThjB1i = Th
QNc

i=1 �a
i
+1j0i =

QNc
i=1 Th�a

i
+1T

�1
h j0i=(2.57)

QNc
i=1 �a

i
+aFa1j0i
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formulas directly yield the desired overlaps with h�	j:

h�	jg0i = (DetD)Nc

NcY
i=1

exp( � i+aZab
� i�b) ;

h�	jg1i = (DetD)Nc

NcY
i=1

� i+cFc1 exp(
� i+aZab

� i�b) ;

h�	jg�1i = (DetD)Nc

NcY
i=1

(D�1)1c � i�c exp( � 
i
+aZab

� i�b) ;

as well as the overlaps with j	i:

hg0j	i = (DetDy)Nc

NcY
i=1

exp( i�aZ
y
ab 

i
+b) ;

hg1j	i = (DetDy)Nc

NcY
i=1

F y1c i+c exp( 
i
�aZ

y
ab 

i
+b) ;

hg�1j	i = (DetDy)Nc

NcY
i=1

 i�c(D
�1)yc1 exp( 

i
�aZ

y
ab 

i
+b) :

The overlaps with the coherent states jgBi containing more than one baryon (jBj > 1) can
be computed in the same way; in front of the exponential factors, there will be jBj similar
products, with avor indices 1; : : : ; jBj.
We now insert the above expressions for the overlaps into (3.12), and use the factorization
(3.15) to arrive at an integral over triples (Z;U ;V). Leaving the Z-integral for later, we next
carry out the integrations over the unitary matrices U and V. They enter in the overlaps via
the matrix elements of F and D; see Eq. (3.14). To simplify the notation, we �rst perform a
avor rotation on the Grassmann �elds:

�i+b = (1 + ZZy)1=2ba  
i
+a; �i�b=  i�a(1 + ZyZ)1=2ab ; (3.20)

��i+b =
� i+a(1 + ZZy)1=2ab ;

��i�b= (1 + ZyZ)1=2ba
� i�a: (3.21)

The integrals we need to compute then read as follows (assuming B > 0):

�B(��+; �+) := �B

Z
U(Nf )

dU
BY
c=1

NcY
i=1

(��i+aUac)(�i+bU�1cb ); (3.22)

��B(���; ��) := ��B
Z

U(Nf )

dV
BY
c=1

NcY
i=1

(��i�aV�1ca )(�
i
�bVbc): (3.23)

We also set �0 := �0, �B( � ; ;Z) := �B(��+; �+), and ��B( � ; ;Z) := ��B(���; ��). The
function �1( ��+; �+) will play a distinguished role in the lattice gauge theory application in
Chapter 7, and we therefore evaluate it explicitly in the next section.
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Having done the integration over H, we are left with an integral over G=H, i.e. over a Z-
dependent integrand, in each B-subsector. Putting everything together, we �nally arrive at
the following identity:Z

SU(Nc)
dU exp( � i+aU

ij j+a +
� i�b �U

ij j�b)

=

NfX
B=�Nf

Z
C
Nf �Nf

d�(Z;Zy)
Det(1 + ZZy)Nc

�B( � ; ;Z) exp( � 
i
+aZab

� i�b +  j�bZ
y
ba 

j
+a);

(3.24)

which is called the color-avor transformation for SU(Nc), and it is the central result of the
present chapter. Note that the right-hand side of the transformation has the attractive feature
of organizing the contributions according to the di�erent baryonic sectors.

3.5 The Functions �1(��+; �+) and ��1(���; ��)

We consider the coeÆcient in front of the contribution from the one-baryon subsector to the
partition function,

�+1(��+; �+) = �1

Z
U(Nf )

dU
NcY
i=1

(��i+aUa1)(�i+b �Ub1): (3.25)

Note that only the �rst column of the unitary matrix U occurs in the integrand, so the
integral is e�ectively over an unit sphere inNf -dimensional complex space, S

2Nf�1 = C Nf =R+ .
Parametrizing the latter by a complex vector z = (z1; : : : ; zNf

) with unit norm jzj = 1, we
have

�+1(��+; �+) = �+1

R
jzj=1 d
(z; �z)

NcQ
i=1

(��i+aza)(�
i
+b�zb)R

jzj=1 d
(z; �z)
; (3.26)

where d
(z; �z) is an U(Nf )-invariant measure on the unit sphere jzj = 1. Because of the
homogeneity in z and �z, we may apply the trick of replacing the numerator by an integral
over C Nf , with a Gaussian weight function exp(�jzj2) included in the integrand. This integral
can be generated by di�erentiating the function

I(J; �J) := ��Nf

Z
C
Nf

dzd�z = exp( �JJ) (3.27)

with respect to the bosonic currents J , �J which are two independent vectors in avor space,

NcY
i=1

�
��i+a

@

@ �Ja
�i+b

@

@Jb

� ����
�J=J=0

I(J; �J) = ��Nf

Z
C
Nf

dzd�z exp(��zz)
NcY
i=1

�
��i+aza�

i
+bzb

�
=��Nf

�Z 1

0
dr r2Nc+2Nf�1

�  Z
jzj=1

d
(z; �z)

NcY
i=1

�
��i+aza�

i
+bzb

�!

=��Nf

�Z 1

0
dr r2Nc+2Nf�1

�  Z
jzj=1

d
(z; �z)

!
1

�1
�+1(��+; �+)

=��Nf
1

2
�(Nc +Nf )

2Nf�
Nf

�(Nf + 1)

1

�1
�+1(��+; �+) =

(Nc +Nf � 1)!

(Nf � 1)!

1

�1
�+1(��+; �+):

(3.28)

The crucial point in the calculations above is the homogeneity of degree 2Nc of the integrand,
which allows to split the integral over C Nf into an integral over R+ and the sphere S2Nf�1.
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On the other hand the derivative of the generating function can be calculated by di�erentiating

exp( �JJ) =
QNf

c=1 exp(
�JcJc),

NcY
i=1

�
��i+a

@

@ �Ja
�i+b

@

@Jb

� ����
�J=J=0

I(J; �J) =
NcY
i=1

�
��i+a

@

@ �Ja
�i+b

@

@Jb

� ����
�J=J=0

NfY
c=1

�JcJc

=
X

�2SNc

sgn(�)

NcY
i=1

�
��i+a�

�(i)
+a

�
;

(3.29)

where SNc denotes the group of permutations of the numbers 1; : : : ; Nc.
Recognizing that the last expression is Leibniz' formula for a determinant, we obtain the �nal
result

�+1(��+; �+) = �+1
(Nf � 1)!

(Nc +Nf � 1)!
Det(��+�

t
+): (3.30)

The Nc �Nc-matrix under the determinant is given by

(��+�
t
+)

ij := ��i+a�
j
+a =

� i+a(1 + ZZy)ab � 
j
+b (3.31)

In an analogous way we obtain for the coeÆcient in front of the contribution from the one-
antibaryon sector

��1(���; ��) = ��1
(Nf � 1)!

(Nc +Nf � 1)!
Det(����t�); (3.32)

where
(����t�)

ij := ��i�a�
j
�a = � i�a(1 + ZyZ)ab � 

j
�b: (3.33)

After our work on the SU(Nc) generalization had been completed and presented on a con-
ference [11], we learned that it also has been worked out by Schlittgen and Wettig [39].
Their result includes the evaluation of the coeÆcient �B( � ; ) for all baryon numbers B =
�Nf ; :::;+Nf and coincides with (3.30) and (3.32) for B = +1 and B = �1.

3.6 The Normalization Constants ��1, �0, �1

We are going to calculate the normalization constants ��1B =
R
G dg jhBB jTgjBBij2 introduced

in Eq. (3.10) { for the values B = 1; 0;�1. To that end, we employ the decomposition of the
group G = U(2Nf ) given by Eqs. (3.13) and (3.14). This yields

jhB1jTgjB1ij2 = j(
p
1 + ZZy)1aUa1j2Nc

Det(1 + ZZy)Nc
(3.34)

for B = 1, and similar expressions for the other two cases. The �rst step now is to do
the integral over U 2 U(Nf ), which for B = �1 is e�ectively an integral over a (2Nf � 1)-
dimensional sphere. Carrying it out by the method of Section 3.5, we get the preliminary
expressions

��10 = CNf

Z
C
Nf �Nf

dZdZy

Det(1 + ZZy)2Nf+Nc
; (3.35)

��11 = ��1�1 = CNf

(Nf � 1)!Nc!

(Nc +Nf � 1)!

Z
C
Nf �Nf

[(1 + ZyZ)11]Nc dZdZy

Det(1 + ZZy)2Nf+Nc
; (3.36)

where CNf
is de�ned by

C�1Nf
=

Z
C
Nf �Nf

dZdZy

Det(1 + ZZy)2Nf
: (3.37)
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For later convenience, we have made a change of integration variables Z $ Zy in the numer-
ator of the integral in (3.36).
In the second step we perform the integration over the Nf �Nf matrix Z using a recursion
procedure similar to that in [25]. From here on we use the simpli�ed notation n = Nf . The
recursion consists of slicing the matrix Z into vertical vectors, step by step. We now detail
the �rst step of the recursion. We decompose Z as Z = (Zn;n�1; z1), where z1 is a (column)
n-vector, and Zn;n�1 is a n� (n� 1) matrix. We then have the expressions

ZZy = Zn;n�1Z
y
n;n�1 + z1z

y
1;

(ZyZ)11 = (Zyn;n�1Zn;n�1)11:
(3.38)

Using the (positive de�nite) n� n matrix �1 which is de�ned as the square root of

�21 = 1 + Zn;n�1Z
y
n;n�1; (3.39)

we make a change of variables, from z1 to w1 = ��11 z1. From 1 +ZZy = �1(1 +w1w
y
1)�1, we

get the relation
Det(1 + ZZy) = (1 + wy1w1)Det(1 + Zn;n�1Z

y
n;n�1): (3.40)

The change of variables from Z to fZn;n�1; w1g has the Jacobian Det(1+Zn;n�1Zyn;n�1). Each
of the integrals (3.35), (3.36), and (3.37) can now be written as the product of a Zn;n�1-integral
times a w1-integral.
The former can in turn be expressed as the product of a Zn;n�2-integral times a w2-integral
(with w2 a n-vector), which can be decomposed in turn, and so on, until we reach, at the
n-th step, a Zn;1-integral, i.e. an integral over the �rst column of the original matrix Z. We
call this column vector wn for reasons of homogeneity.
The successive Jacobians multiply to give the following integration measure:

dZdZy = dwy1dw1 (1 + wy2w2)dw
y
2dw2 � � � (1 + wynwn)

n�1dwndwyn : (3.41)

The integrands in (3.35), (3.36), (3.37) also have simple expressions in the new variables, due

to the identities (ZyZ)11 = wynwn and

Det(1 + ZZy) = (1 + wy1w1)(1 +wy2w2) � � � (1 + wynwn) : (3.42)

The wi-integrals to be performed are all of the type (N � n)Z
Cn

dwydw
(1 + wyw)N+1

= �n
(N � n)!
N !

: (3.43)

The resulting expressions for the normalization constants are

�0 =
1

CNf
�N

2
f

(2Nf +Nc � 1)! � � � (Nf +Nc)!

(Nc +Nf � 1)! � � �Nc!
; (3.44)

�1 = ��1 =
1

CNf
�N

2
f

Nf (2Nf +Nc � 1)! � � � (Nf +Nc + 1)!

(Nc +Nf � 2)! � � �Nc!
; (3.45)

CNf
=

1

�N
2
f

(2Nf � 1)! � � �Nf !

(Nf � 1)! � � � 0! ; (3.46)

where we have reinstated n = Nf . The quantity of physical interest is the ratio

�1
�0

=
Nf

Nf +Nc
: (3.47)



Chapter 4

Lattice Quantum Chromodynamics

In this chapter we review the lattice formulation of QCD which was introduced by Wilson.
Special attention is paid to the symmetries of QCD: we compare their realization in the con-
tinuum and the lattice theory. We discuss in detail the chiral symmetry and chiral symmetry
breaking mechanisms.

4.1 Continuum QCD

Quarks, the elementary building blocks of hadronic matter, appear in Nc colors (Nc = 3 in
the real word) and Nf avors (Nf = 6 in the real world). The strong interaction that con�nes
them to hadrons is mediated by the exchange of gluons which couple to their color degrees of
freedom. Quantum chromodynamics (QCD) is a SU(Nc) gauge theory, which identi�es the
gluons with the gauge �eld and couples it with the quarks in its fundamental representation.
QCD is believed to be the theory of strong interaction. The QCD continuum action in
d-dimensional Euclidean space-time is given by

Scont.[A; �q; q] =

Z
ddx

0@1

2
Tr (F ��F��) +

X
avours f

�qf (6D +mf )qf

1A : (4.1)

The gauge �eld A takes values in the hermitian traceless matrices 1 and the corresponding
�eld strength is

F�� = @�A� � @�A� + ig[A�; A� ]: (4.2)

The �rst term in the action describes the kinetic energy of the gluons, while the second
term corresponds to the kinetic energy of the quarks and the coupling between the gluons
and quarks. The quarks �elds q are considered as Nc-component vectors in color space, Nf -
component vectors in avor space and Dirac spinors with Ns = 2[d=2] components 2 (Ns = 4 in
four space-time dimensions). Their dynamics is described by the antihermitian Dirac operator

6D = �(@� + igA�); (4.3)

1In our convention A takes values in the hermitian matrices and the coupling constant appears explicitly
in (4.2) \physicists convention"). Another possibility is to absorb the factor ig into the de�nition of A and
F (\mathematician's convention"). Then the 1-form A = A�dx

� and the 2-form F = F��dx
� ^ dx� are

dimensionless geometrical quantities, which take values in the Lie algebra su(Nc).
2[d=2] = greatest integer smaller or equal to d=2.

33
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where the Euclidean -matrices satisfy the Cli�ord algebra relations

�� + �� = 2Æ�� : (4.4)

We refer to Appendix D for a derivation of the Dirac action in Euclidean space-time.
For the action we can read o� the following physical dimensions of the di�erent quantities,

[F�� ] = [length]�d=2; [A�] = [length]�d=2+1; [qf �qf ] = [length]�d+1; [mf ] = [length]�1: (4.5)

We work in a system of units, where [time] = [length] and [mass] = [length]�1. From the
physical dimensions of the gauge �eld and its potential, we get the physical dimensions of the
coupling constant,

[g] = [F�� ][A�]
�2 = [A�]

�1[length]�1 = [length]d=2�2; (4.6)

in particular it is dimensionless in four space-time dimensions.
How does one derive a quantum theory from the classical action (4.1)? In principle, there
are two methods, canonical quantization and the path integral formulation. The �rst method
leads to a quantum �eld theory in d� 1 space dimensions and one time dimension, while the
result of the second method is a system of statistical mechanics in d dimensions. Both methods
can be shown to be equivalent by a transfer matrix argument [30]. Further, both methods are
plagued by the same diÆculty: The invariance of the theory under gauge transformations of
the gauge potential A. In the �rst case it leads to a constrained system (i. e. it is impossible
to express the velocities in terms of the canonical momenta), in the second case it leads to a
diverging partition function (in�nite contribution of the gauge volume). On the level of the
continuum theory the only way to overcome this diÆculty on the level is to break the gauge
invariance and �x the gauge.
Lattice gauge theory, which is considered in the next chapter, is an elegant way to keep the
gauge invariance and to get a well-de�ned partition function at the same time. Passing from
the continuum to the lattice theory corresponds to the transition from the Lie algebra to
the corresponding compact Lie group, where the gauge volume is no longer in�nite. As an
extra bene�t the discretisation of space-time introduces an ultraviolett cuto� and serves as
a renormalization scheme. Lattice gauge theory is the main non-perturbative approach to
QCD.

4.2 Quarks and Gluons on a Lattice

4.2.1 Construction of a Gauge Invariant Lattice Action

Consider a d-dimensional hypercubic lattice with lattice constant a. A gauge invariant lattice
action with continuum limit (4.1) was introduced by Wilson in 1974, [48]. In his formulation
the quarks are put on the lattice sites, while the gluons (or the gauge �eld) are put on the
lattice links, see Figure I. We label the lattice sites with a multi-index n, the d directions
with a positive integer �, the unit vector in positive �-direction with �̂ and the lattice links
with their middle points. To put the quark �eld on the lattice one has to do nothing more
than to restrict the space-time coordinates to x = an, while the gauge �eld on the lattice is
obtained by exponenting the gauge potential to the Lie group,

U(n+ �̂=2) := exp (iag A�((n+ �̂=2)a)) : (4.7)
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U(n+ �̂=2)

q(n+ �̂ + �̂)

UP
��(n) U(n+ �̂+ �̂=2)

q(n) U(n+ �̂=2) q(n+ �̂)

q(n+ �̂) U(n+ �̂ + �̂=2)

Figure I: Quarks and Gluons on a Lattice

A lattice gauge transformation is de�ned as a set of unitary transformations U(n) 2 U(Nc),
which act on the lattice �elds as

q(n) ! U(n) q(n) (4.8)

�q(n) ! �q(n)Uy(n) (4.9)

U(n+ �̂=2) ! U(n+ �̂)U(n+ �̂=2)Uy(n): (4.10)

Out of these ingredients Wilson constructed a lattice action

Slattice = Sgluons + Squarks; (4.11)

where the two terms have the �rst and second summand of (4.1) as continuum limit.
The action for the gauge �eld is to be constructed of gauge invariant expressions. The simplest
such expression is the product of the gauge �eld along a elementary plaquette

UP
��(n) := U(n+ �̂=2)U(n+ �̂+ �̂=2)U�1(n+ �̂ + �̂=2)U�1(n+ �̂=2): (4.12)

Using the Baker-Campbell-Hausdor� formula 3 we obtain

UP
��(n) = exp(iga2 F��(n) +O(a3)): (4.13)

Looking at excitations of long wavelengths compared to a, ga2F�� � 1, one can expand the
exponential up to second order,

TrUP
��(n) � Nc + iga2 TrF��(n)� 1

2
g2a4 TrF 2

��(n): (4.14)

3A version for more than two operators reads exp(A1) exp(A2)::: exp(An) = exp(A1 + A2 + ::: + An +P
i<j [Ai; Aj ] + :::), where the dots at the end of the second expression stand for higher commutators.
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Note that the second term is purely imaginary, because the �eld strength F��(n) is hermitian.
It cancels when one adds its complex conjugate, and we conclude that the gauge lattice action
introduced by Wilson,

Sgluons = �a
d�4

2g2

X
plaquettes (n;��)

�
Tr
�
UP
��(n)

�
+Tr

�
UP
��
y
(n)
��

(4.15)

has the desired continuum limit.
To construct gauge invariant expressions, a term with a product of quark �elds at two di�erent
lattice sites must contain a product of gluons �elds along a path of lattice links connecting
the two sites. In doing so the orientation of the path has to be considered: If it runs through
a link in negative orientation, the corresponding gluon �eld has to be conjugated. A quark
lattice action can be constructed of terms containing the quark �eld on two neighboring sites
and the gluon �eld on the link between them,

Squarks =
X
sites n

 
ad�1

2

dX
�=1

�
�q(n)�U(n+ �̂=2)q(n+ �̂)

��q(n+ �̂)�U
y(n+ �̂=2)q(n)

�
+ ad �q(n)Mq(n)

!
:

(4.16)

In the action above, M := diag(m1; :::;mNf
) is the quark mass matrix, which contains the

masses of the quarks of the di�erent avors. Inserting the expression (4.7) for the gluons into
the last equation and expanding it up to �rst order in the lattice constant, it is straightforward
to prove that (4.16) has the Dirac action as continuum limit.

4.2.2 The Doubling Problem

After Wilson's pioneering work, it was soon realized that putting Dirac fermions on a lattice
is plagued by a problem: In the naive formulation of lattice fermions, one can identify not
only one Dirac particle in the continuum limit, but for each dimension a doubled number
of alltogether 2d Dirac particles (\species doubling"). To understand this phenomenon, we
consider a system of massless Dirac fermions on a d-dimensional lattice with a length L,

Squarks = ad�1

2

X
sites n

dX
�=1

(�q(n)�q(n+ �̂)� �q(n+ �̂)�q(n)) : (4.17)

We apply a lattice Fourier transformation (cf. Appendix F) and express the action in terms
of the �elds in momentum space,

Squarks = ad�1
X
k

dX
�=1

�q(k) � sin(k�) q(k): (4.18)

Because the action is diagonal in momentum space, we can easily evaluate the propagator,

h�q(n)q(m)i = a1�d
X
k

eik�(m�n)D(k); with D(k) =
1Pd

�=1 � sink�
: (4.19)
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For small wave vectors k � 1 this reduces to the usual Dirac propagator 1=6 k. But because
of the properties of the sine function, the propagator has not only poles at k = 0, but also at
some point at the boundary of the Brillouin zone ]��; �]d. To be more precise, the propagator
has poles, if all components of the wave vector take values k� 2 f0; �g, and we deal with 2d

fermion species, even though we initially seemed to have only one.
In the early days of lattice QCD the species doubling was regarded as lattice artifact and much
e�ort has gone in studying more complex fermion actions. There are two popular approaches
to overcome the doubling problem: The �rst one [40] staggers the spin components of the
fermions over the lattice (Kogut-Susskind fermions).
The other traditional approach [49] (Wilson fermions) completely destroys the chiral sym-
metry. In this approach one introduces a mass to the doublers at nonzero wave vectors. This
\mass" depends on the wave-vector in such a way that it does not a�ect the fermion at k = 0.
The choice r(1� cos k�) for this extra \mass" term, where r is an arbitrary parameter, leads
to a local form of the modi�ed action in position space.
Later, in the early 1980s, Nielsen and Ninomiya presented their no-go theorems [36] for chiral
fermions on a lattice and for the regularization of chiral fermions independently of a lattice.
Nevertheless, in recent days there is an exciting new approach (overlap Dirac operators),
which might completely solve the doubling problem. It is connected with the introduction of
an in�nite dimensional avor space, for details of the still ongoing research see [35].

4.3 The Symmetries of QCD

This section is devoted to the study of the symmetries of lattice QCD. While the gauge
symmetry was already discussed in the last section, we consider here the space-time symmetry
and the chiral symmetry. The main aspect of our investigations will be the comparison
between lattice symmetries and the corresponding continuum symmetries.

4.3.1 Space-time Symmetry

The Euclidean formulation of continuum QCD has the Euclidean group in d dimensions E(d)
as space-time symmetry group. It consists of rotations which form the orthogonal group O(d)
and d-dimensional translations. Switching from the continuum formulation to a formulation
on a lattice the space-time symmetry group is broken down to a discrete subgroup of the
continuum symmetry group.

Hypercubic Lattice

The rotational symmetry group Ohc(d) of an d-dimensional hypercubic (hc) lattice can be
constructed as follows: It consists of all maps which are permutations of the basis B1 =
fe1; :::; edg of Rd and in addition may map some of the basis elements to their negative.
Thus Ohc(d) is a (2d d!)-element subgroup of O(d), in particular has 384 elements in four
dimensions.
In some of the next chapters of this dissertation we will follow the strategy to start with
lattice QCD, to apply the color-avor transformation, and then to transform to a continuum
theory of the considered degrees of freedom. In doing so it is desirable to recover the full
symmetry of the original continuum theory. This is not always possible; the resulting action
can lack the full continuum symmetry. For example on the hc lattice the recovering of the
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continuum symmetry can only be guaranteed for tensors up to second order. Indeed there
are tensors of fourth order, for example

P
� @

4
�, which are invariant on the hc lattice, but do

not have the full continuum symmetry. Therefore we would like to work on a lattice with
the highest possible symmetry. In two and three dimensions the hc lattice has the largest
symmetry group, but in four dimensions there is a lattice with a larger one, the bodycentered
hypercubic (bhc) lattice.

Bodycentered Hypercubic Lattice

The existence of a lattice with a higher symmetry than the hc lattice in four dimensions is
based on the fact that the 16 vectors (�1

2 ;�1
2 ;�1

2 ;�1
2 ) from the origin to the centers of the

neighboring hypercubes have the same length as the hc lattice vectors e1; :::; ed. This is a
special feature of four space-time dimensions.
To construct the symmetry group of the bhc lattice, we consider two more orthonormal bases
B2 = ff1; f2; f3; f4g and B3 = ff; f12; f13; f14g of R4 . In this notation a vector fijk::: has the
entries �1=2 at the positions i; j; k; ::: and 1=2 elsewhere, in particular f = (12 ;

1
2 ;

1
2 ;

1
2 ). The

symmetry transformations of the four-dimensional bhc lattice can be generated as follows:
The elements of B1 can be mapped bijectively to the elements of B1, B2 or B3 and after that
each basis vector can acquire an arbitrary sign. This leads to a symmetry group Obhc(4),
which is three times (1152 elements) larger than the one of the hc lattice. One can prove that
the more symmetric bhc lattice in four dimensions guarantees the restoration of the continuum
symmetry for tensors up to fourth order [34]. The proof is based on the identi�cation of the
four-dimensional bhc lattice as the lattice formed by the roots of the exceptional Lie algebra
f4.
There is another parametrisation of the bhc lattice [31, 32] which represents the vectors from a
lattice site to a nearest neighbor in a more symmetric way. It is connected with the formulation
above from switching to the new orthonormal basis e01 =

1p
2
(1; 1; 0; 0), e02 =

1p
2
(�1; 1; 0; 0),

e03 = 1p
2
(0; 0; 1; 1), e04 = 1p

2
(0; 0;�1; 1). In the new basis, the vectors to the 24 nearest

neighbors from a lattice site are given by

v���� =
�e0� + �e0�p

2
; 1 � � < � � 4; � = �1; � = �1: (4.20)

Among these vectors we call the ones with � > 0 positive. In doing so we have de�ned an
orientation on the bhc lattice.
In the context of lattice gauge theory the four-dimensional bhc lattice was �rst considered by
Celmaster [12, 45]. The generalizations of the gluon action and the quark action from sect.
4.2 to an arbitrary oriented lattice [31, 32] read

Sgluons = �K1
ad�4

g2

X
plaquettes (n;vw)

�
Tr
�
UP
vw(n)

��
; (4.21)

Squarks =
X
sites n

 
K2a

d�1X
v

�
�q(n)vU(n+ v=2)q(n+ v)

��q(n+ v)vU
y(n+ v=2)q(n)

�
+K3a

d �q(n)mq(n)

!
:

(4.22)
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The sum extends over all lattice sites and the links to the next neighbors in positive direction.
(For the four-dimensional bhc lattice the sum runs over the 12 vectors v from (4.20) with
positive �). The quarks are coupled through the -matrix in v-direction v :=

P
� v��. The

values of the constants K1, K2, K3 depend on the type of lattice, see Table IV. They are
obtained from the continuum limit of the corresponding lattice formulation; for the continuum
limit of quantities on the hc lattice we refer to Appendix G.

lattice type K1 K2 K3

hc lattice 1/2 1/2 1
bhc lattice 1/12 1/12 1/2

Table IV: Values of the Constants K1, K2, K3 for the hypercubic and the body-centered
hypercubic lattice

4.3.2 Chiral Symmetry

The continuum QCD Lagrangian with Nf massless avors (chiral limit of QCD) possesses
a global chiral U(Nf )L � U(Nf )R symmetry. The symmetry group is a product of left and
right chiral transformations, which is based on the fact that the avor transformations can
act on the left- and right-handed components of the spinors separately. The basics of the
chiral structure of the spinor space are laid down in Appendix D.1. Left- and right-handed
components of the quark �elds can be de�ned with the help of the projectors P� = 1

2 (1��5)
introduced there,

qL := P�q; qR := P+q;

�qL := �qP+; �qR := �qP�:
(4.23)

Under a chiral transformation (VL; VR) 2 U(Nf )L �U(Nf )R they transform according to

qR ! VRqR; qL ! VLqL;

�qR ! �qRV
�1
R ; �qL ! �qLV

�1
L :

(4.24)

Writing down the Dirac operator in terms of the left- and right-handed components of the
spinors,

�q 6Dq = �qL 6DqL + �qR 6DqR (4.25)

the chiral invariance becomes transparent. In the chiral limit the continuum action (4.1) is
invariant under the chiral transformations, while a mass term

�qMq = �qLMqR + �qRMqL (4.26)

explicitly breaks the chiral symmetry.

Chiral Transformations on the Lattice

Chiral transformations act on the spin and the avor degrees of freedom of the quarks. Al-
lowing an independent transformation for each lattice site, we consider two independent sets
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of matrices V(n), �V(n) 2 U(NsNf ) and the transformations

q(n) ! V(n)q(n);
�q(n) ! �q(n)�V(n): (4.27)

In the chiral limit the lattice action is invariant under the transformation (4.27), i� for all
lattice sites n and all vectors v to next neighbors in positive direction,

�V(n) = vV(n+ v)�1v;
�V(n+ v) = vV(n)�1v:

(4.28)

The last two conditions are equivalent to

V(n+ v + w) = wvV(n)vw
�V(n) = vV(n+ v)�1v

(4.29)

for all n and positive v, w. We remark that the right hande side of the second equation (4.29)
is automatically independent of v, if the �rst equation is satis�ed. Further these equations
imply V(n+ 2v) = V(n).
The set of solutions of (4.29) depends very much on the structure of the underlying lattice.
We distinguish the following cases:

(i) General Lattice

Independently of the structure of the lattice, a set of solutions of equations (4.29) is
given by the homogeneous ansatz

V(n) = P� 
 VL + P+ 
 VR;
�V(n) = P� 
 V �1R + P+ 
 V �1L :

(4.30)

These solutions correspond to the usual continuum chiral transformations (4.24). How-
ever, on some lattices, equation (4.29) admits additional solutions.

(ii) Bipartite Lattice

A lattice is called bipartite, if there is a decomposition of the lattice into two nested
sublattices A and B such that, whenever two sites are nearest neighbors, one of the
sites belongs to A and the other site belongs to B. On bipartite lattices there is another
solution of (4.29), where the quark �elds on the sites of lattice A transform independ-
ently of the quarks on the lattice B. The existence of that solution is based on the fact,
that in all terms of lattice action the quark �eld �q on one of the sublattices is coupled
with the quark �eld q on the other lattice. Labeling the sites of the sublattice A by a
and the sites of B by b this solution is given by

V(a) = �V�1(b) = 1
 VA
V(b) = �V�1(a) = 1
 VB :

(4.31)

This kind of chiral structure which is still present if one neglects the spinor degrees of
freedom, was considered in [3], [2]. Indeed, analogous to the Cli�ord element �5, for
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bipartite lattices there is a chiral operator ~�5 which acts on the lattice and not on the
spin degrees of freedom,

(~�5q)(a) = q(a); (~�5q)(b) = �q(b)
(~�5�q)(a) = ��q(a); (~�5�q)(b) = �q(b):

(4.32)

The left- and right-handed components of the quarks with respect to this chiral operator
are their components on the sublattice A or B, respectively.

(iii) Hypercubic Lattice

For the bipartite hc lattice the group of chiral transformations is enlarged to U(NsNf )A�
U(NsNf )B . Indeed, one may choose a site a0 and a site b0 from each of the sublattices
and rotate the quarks in an arbitrary way in spin and avor space,

V(a0) = VA; V(b0) = VB with VA;VB 2 U(NsNf ): (4.33)

Having �xed the transformation for two lattice sites, the transformations on all other
lattice sites are determined by (4.29). Note, that because of the square structure of the
elementary plaquettes on the hc lattice, the �rst equation of (4.29) in combination with
the existence of closed paths on the lattice does not lead to any conditions on VA and
VB .

(iv) Bodycentered Hypercubic Lattice

On the four-dimensional bhc lattice the group of chiral transformations is not enlarged
compared to the continuum. To prove that, we derive in a �rst step the structure of a
chiral transformation on the spin sector and show in a second step that the transforma-
tion is homogeneous. To learn something about the structure of a chiral transformation
on the spin sector, we calculate

V(n+ v + w) = wvV(n)vw
= (hv; wi � vw)V(n) (hv; wi � wv)
= hv; wi (hv; wiV(n) � vwV(n)� V(n)wv) + vwV(n)wv
= hv; wi(wvV(n)� V(n)wv) + V(n+ w + v)

(4.34)

and conclude
wvV(n) = V(n)wv; whenever hv; wi 6= 0: (4.35)

For v and w we consider the following three positive elementary lattice vectors of the
bhc lattice,

v =
1p
2
(e0� + e0�); w1 =

1p
2
(e0� + e0!); w2 =

1p
2
(e0� � e0!) (4.36)

with �; �; ! 2 1; :::; 4 and � 6= !, which have the properties

hv; w1i 6= 0; hv; w2i 6= 0; and w1v + w2v = 1 + 0�
0
� : (4.37)

Then we apply condition (4.35) to both (v; w1) as well to (v; w2) and add the corres-
ponding equations, getting

0�
0
�V(n) = V(n)0�0� for all �, �: (4.38)
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Decomposing V(n) with respect to a basis of the Cli�ord algebra, cf. (D.13), this implies
that V(n) can only contain contributions proportional to basis elements 1 and 5, that
is

V(n) = P+ 
 VL(n) + P� 
 VR(n): (4.39)

with suitable matrices VR(n); VL(n) 2 U(Nf ). In terms of these matrices condition
(4.29) takes the form

VL=R(n+ v + w) = VL=R(n): (4.40)

We turn to the second step and apply the last equation twice, to get a similar equation
for di�erences (v � w) of positive lattice vectors,

VL=R(n+ v � w) = VL=R(n+ (v + w)� (w + w)) = VL=R(n): (4.41)

Now we make use of the triangular structure of the elementary plaquettes of the bhc
lattice and �nd that each of the positive vectors (4.20) can be written as a sum v + w
or a di�erence v � w of positive vectors v, w.

Applying (4.40) and (4.41) in forward and backward direction, we deduce that VL=R
does not depend on the lattice site n. We conclude that the only transformations
(4.27) that leave invariant the quark action on the bhc lattice are the continuum chiral
transformations (4.30).

4.4 Chiral Symmetry Breaking

4.4.1 The Lightest Mesons as Goldstone Bosons

Realistic QCD has an approximate chiral symmetry when one considers the two or three
lightest avors. Indeed, the (current) quark masses mu � 4 MeV, md � 7 MeV (and ms �
150 MeV) are light compared to (most of) the hadron masses.
However, the full chiral symmetry group U(Nf )L � U(Nf )R is not a symmetry of the ex-
perimental observed particle spectrum. In fact, we do not observe a parity degeneracy of
the hadron states, which would be caused by the axial chiral transformations U(Nf )L�R
(these transformations are de�ned by the identity VL = V �1R ). The conclusion is that the
approximate chiral symmetry of the QCD Lagrangian is broken spontaneously ; to be more
precise the vacuum is only invariant under the vector chiral transformations U(Nf )L+R (these
transformations satisfy VL = VR).
A spontaneously broken symmetry leads to the appearance of massless modes (Goldstone bo-
sons) in the spectrum of the theory. Due to the Goldstone theorem there is a massless particle
corresponding to each broken generator of the symmetry group. Because chiral symmetry is
only an approximate symmetry of QCD, the corresponding Goldstone bosons acquire a small
mass. These pseudo Goldstone bosons should be identi�ed with the lightest mesons.
Let us have a look at the zoo of the lightest mesons, see Table V. By far the lightest mesons
are the pions; they form an isospin (Nf = 2) triplet. The pions, kaons and the �-particle
built a avor (Nf = 3) octet, while the �0 -particle is a avor singlet. There is a non-trivial
mixing between the � and the �0 particle.
The table contains nine particles and it is tempting to identify them with the Goldstone
bosons of a spontaneous symmetry breaking pattern U(3)L�U(3)R ! U(3)L+R. The higher
masses of the kaons and the �0-particle compared to the pions can be attributed to the high
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particle quark content mass [MeV]

�0 u�u� d �d 135
�+ u �d 140
�� d�u 140
K+ s�u 494
K� u�s 494
K0 d�s 498
�K0 s �d 498
� � u�u+ d �d� 2s�s 547
�0 � u�u+ d �d+ s�s 958

Table V: Masses of the light pseudoscalar Mesons [20]. The quark contents of the � and the
�0 particle is given approximately; the real quark contents are a mixing between the listed
ones.

mass of the strange quark. However, the mass of the �0-particle is much higher than the
masses of all other listed mesons. The �0-meson badly �ts into the spontaneous symmetry
breaking pattern mentioned above; this is called the strong U(1)-problem.
A �rst step toward the resolution of the strong U(1)-problem is to realize the axial anomaly.
Due to Adler, Bell and Jackiv [1], [5] the axial U(1)A-symmetry of the Lagrangian does not
lead to a conserved current; the divergence of the axial vector current is di�erent from zero due
to quantum e�ects. Based on that, there is a widely accepted reasoning, which makes the �
and �0 particles behave as they should [42]. 't Hooft's reasoning is connected with instantons,
which are topologically nontrivial con�gurations of the gauge �eld. Their presence leads to
a violation of the axial current conservation and provides the �- and the �0-particle with an
anomalous contributions to their masses.
Taking the axial anomaly into account, we get the following spontaneous symmetry breaking
patterns: The pions are the pseudo Goldstone bosons due to the spontaneous symmetry
breaking of the isospin group, SU(2)L � SU(2)R ! SU(2)L+R. The particles of the avor
octet (�, K, �) are the pseudo Goldstone bosons of the spontaneous symmetry breaking
SU(3)L�SU(3)R ! SU(3)L+R. Note that the vector U(1)V -symmetry which corresponds to
the baryon number is not spontaneously broken.

4.4.2 Chiral Condensate

As an indicator for chiral symmetry breaking, one usually makes use of the chiral condensate,

h�qqi = h�qLqRi+ h�qRqLi: (4.42)

It takes a value di�erent from zero if the axial chiral symmetry is broken. In the real world
chiral symmetry is explicitly broken by the �nite quark masses. We will show that this explicit
symmetry breaking gives rise to a nonzero chiral condensate by an argument of perturbation
theory with the quark masses as small parameters. To do this, we decompose the QCD
Lagrangian L 4 into a chiral invariant part plus a part containing the symmetry breaking

4Because we are working in Euclidean space-time the Lagrangian is the energy density of the system.



44 Lattice Quantum Chromodynamics

quark masses,

L = L0 + L1;
L0 = 1

2
Tr (F ��F��) +

X
avors f

�qf 6Dqf ; L1 =
X

avors f

mf �qfqf :
(4.43)

We consider the following chiral transformation, which transforms a quark of one avor f0
with a transformation T� generated by �5 and leaves all other quarks invariant,

T�qf0 = ei��5 qf0 ; �qf0T� = �qf0 e
i��5 (4.44)

T�qf = qf ; �qfT� = �qf ; for all avors f 6= f0: (4.45)

The transformation T�, which acts on the classical variables, is implemented as a transform-
ation on Hilbert space by an unitary operator T�,

T�q̂�T �1� = (T�)��q� ; T� �̂q�T �1� = �̂q�(T�)��: (4.46)

Let j0i be the ground state of the complete system L = L0 + L1. The chiral rotated state
j�i = T�j0i is still a ground state of the chiral limit of QCD L0, but not of the quark mass
term L1. To the lowest order of perturbation theory the correction to the vacuum energy is
given by

�E(�) = h�jL1j�i =
X
f

mf h�j �̂qf q̂f j�i

=
X
f

mf h0jT �1� �̂qfT� T �1� q̂fT�j0i

= mf0h0j �̂qf0e�2i��5 q̂f0 j0i+
X
f 6=f0

mf h0j �̂qf q̂f j0i:

(4.47)

The energy has to take a minimum for � = 0, which gives the conditions

@�E

@�

����
�=0

= 0;
@2�E

@�2

����
�=0

> 0: (4.48)

We conclude, that for all avors f the corresponding chiral condensates satisfy

h0j�qf�5qf j0i = 0

h0j�qfqf j0i < 0:
(4.49)

This is in agreement with the negative sign of the experimental value < �qfqf >exp= �((250�
35) MeV)3 for the chiral condensate.



Chapter 5

Gluodynamics

This chapter deals with a new approach to gluodynamics that is connected with the color-
avor transformation. Wilson introduced a gauge invariant lattice action Sgauge[U ] which has
gluodynamics as formal continuum limit (cf. Chapter 4.2). However, Wilson's action does not
allow a direct application of the color-avor transformation. Our approach to gluodynamics
is based on the replacement of Wilson's action by a new lattice action which can be generated
as a Gaussian integral over an auxiliary �eld. In doing so we pro�t from a freedom in the
choice of the lattice theory; indeed there are several lattice theories with the same continuum
limit.
For sake of simplicity we work with the unitary group U(Nc) instead of SU(Nc) as gauge
group. Physically this simpli�cation means that we restrict the hadronic matter to meson
and allow no baryons. However, in the Nc !1 limit, the choice of U(Nc) instead of SU(Nc)
is irrelevant [41].

5.1 A New Lattice Action for the Gauge Field

In Chapter 4.2 we have already introduced Wilsons gauge action on a hc lattice,

Sgluons[U ] = �a
d�4

2g2

X
plaquettes p

�
TrUP(p) + TrUPy(p)

�
: (5.1)

It is a gauge-invariant functional of the plaquette variables UP(p), which is given by the
product of the gauge �eld along a plaquette, see (4.12). We replace Wilson's action by a new
action, which is still a gauge invariant functional of the plaquette terms,

S0gluons[U ] = Na

X
plaquettes p

�
lnDet(1� �UP(p)) + lnDet(1� �UPy(p))

�
: (5.2)

The parameter � 2 [0; 1[ is a dimensionless coupling constant, which will be set into corres-
pondence to the coupling constant g of QCD. There is a second dimensionless parameter Na

which will be �xed at a positive integer. Only for integer values of Na the action S0gluons[U ]
can generated by Gaussian integration over an auxiliary �eld.) The partition function of the

45
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Figure II: Movement of the auxiliary bosons and their coupling to the gauge �eld.

new action reads

Z 0 :=
Z
[dU ] e�S

0
gluons [U ]

=

Z
[dU ]

Y
plaquettes p

Det�Na(1� �UP(p))Det�Na(1� �UPy(p)):
(5.3)

In the next subsection we will present a way to generate the action (5.2) by a Gaussian integral
over auxiliary �elds. The remaining subsections deal with the connection between the lattice
theory de�ned by the new action S0gluons[U ] and gluodynamics.

5.1.1 Generation of the Action by a Gaussian Integral over an auxiliary

�eld

The motivation to replace Wilsons action by a new action is to represent it in a way that the
color-avor transformation can be applied. Indeed, the action S0gluons[U ] can be generated
as a Gaussian integral over a bosonic auxiliary �eld. For each plaquette p we introduce
two bosons, one hopping counterclockwise and the other one hopping clockwise around the
plaquette, see Figure II. We denote the corresponding �elds by '+;n(p) and '�;n(p), where
the index n labels the four sites of the plaquette. Further we assume the auxiliary �elds to
have the following inner degrees of freedom: both �elds are vectors in color space as well in
an auxiliary space of dimension Na. From the counterclockwise hopping auxiliary �eld the
gauge �eld we construct the action

S+[U; �'+; '+] :=
X
p

4X
n=1

�� �'+;n+1(p)Un+1;n(p)'+;n(p) + m̂ �'+;n(p)'+;n(p)
�
; (5.4)

where the indices are evaluated modulo 4. Being suppressed in the notation above, the indices
labeling the spin and the auxiliary space are implicitly summed over. The action contains a
hopping term and mass term for the auxiliary �eld. The mass m̂ is measured in units of the
inverse lattice constant. We are using a new labeling of the gauge �eld, which we set into
correspondence to the notations in Chapter 4: For a plaquette p labeled by the lattice site n
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and the directions �; � with � < � we de�ne

U21(p) := U(n+ �̂=2); U32(p) := U(n+ �̂+ �̂=2); (5.5)

U14(p) := U y(n+ �̂=2); U43(p) := U y(n+ �̂ + �̂=2): (5.6)

The gauge �eld on the links of opposite direction is de�ned by Un;n+1 = U yn+1;n. By making
use of the new labeling the product of the gauge �eld around a plaquette p in respective
counterclockwise or clockwise direction can be expressed as

UP(p) = UP
��(n) = U21(p)U32(p)U43(p)U14(p);

UPy(p) = UPy
�� (n) = U41(p)U34(p)U23(p)U12(p):

(5.7)

Neglecting an irrelevant factor, the integration over the gauge �eld yields

Z
[d �'+d'+] exp (�S+[U; �'+; '+]) =

Y
p

Det�Na

0BB@
m̂ 0 0 �U14(p)

�U21(p) m̂ 0 0
0 �U32(p) m̂ 0
0 0 �U43(p) m̂

1CCA
=
Y
p

Det�Na

��
m̂ 0

�U21(p)

�
�
�
0 �U14(p)
0 0

��
m̂ 0

U43(p) m̂

��
0 �U32(p)
0 0

��

=
Y
p

Det�Na

�
m̂2 �3U14(p)U43(p)U32(p)

�bU21(p) m̂2

�
=
Y
p

Det�Na
�
m̂4 � U21(p)U14(p)U43(p)U32(p)

�
:

(5.8)

When we identify � := m̂�4, this can be rewritten asZ
[d �'+d'+] exp (�S+[U; �'+; '+]) =

Y
p

Det�Na(1� �UP(p)); (5.9)

where we have droped a m̂-depended constant. The clockwise hopping auxiliary �eld is
governed by the action

S�[U; �'�; '�] :=
X
p

4X
n=1

�� �'�;n(p)Un;n+1(p)'�;n+1(p) + m̂ �'�;n(p)'�;n(p)
�

(5.10)

and the result of the Gaussian integration isZ
[d �'�d'�] exp(�S�[U; �'�; '�]) =

Y
p

Det�Na(1� �UPy(p)): (5.11)

Putting the two auxiliary �elds together, we obtainZ
[d �'+d'+d �'�d'�] exp(�S+[U; �'+; '+]� S�[U; �'�; '�])

=
Y
p

Det�Na(1� �UP(p))Det�Na(1� �UPy(p))

= exp(�S0gluons[U ]):

(5.12)
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To sum up, the action S0gluons[U ] can be written as a Gaussian integral over 2Na bosons, which
hop clockwise and counterclockwise around the elementary plaquettes of the lattice. In this
formulation the lattice gauge theory de�ned by S0gluons[U ] is open to an application of the
color-avor transformation.

5.1.2 Strong Coupling Limit

By an expansion of the logarithm for small � we obtain

S0gluons[U ] = Na

X
plaquettes p

�
lnDet(1� �UP(p)) + lnDet(1� �UPy(p))

�
= Na

X
plaquettes p

�
Tr ln(1� �UP(p)) + Tr ln(1� �UPy(p))

�
� �Na�

X
plaquettes p

�
TrUP(p) + TrUPy(p)

�
+O(�2):

(5.13)

Comparison with (5.1) shows that the new action converges to Wilson's action in the limit
� ! 0. In that limit the coupling parameters are related by

g =
1p
2Na�

ad=2�2 (for � � 1): (5.14)

We conclude that the limit � ! 0 (in�nite heavy auxiliary bosons) corresponds to the strong
coupling limit g !1 of QCD.

5.1.3 Continuum limit

We generalize the correspondence between the plaquette variables and the �eld strength (4.14)
by raising them to the power of a positive integer k,

(UP
��)

k = exp(ikga2F�� +O(a3))

� 1 + ikga2F�� � 1

2
k2g2a4F 2

�� :
(5.15)

This expansion up to second order is a good approximation as long as the argument of the
exponential function is small. We assume that this condition is ful�lled for all k lower or
equal to a �xed integer l,

jkga2F�� j � 1; for all k � l: (5.16)

We split the expansions of the logarithms in the action S0gluons[U ] into a sum up to l and
a remainder. The terms in the sum up to l, by making use of (5.15), can be replaced by
continuum expressions,

Tr ln(1� �UP
��) + Tr ln(1� �UPy

�� )

=�
1X
k=1

1

k
�k
�
Tr(UP

��)
k +Tr(UPy

�� )
k
�

�g2a4TrF 2
��

lX
k=1

k�k �
1X

k=l+1

1

k
�k
�
Tr(UP

��)
k +Tr(UPy

�� )
k
�

=g2a4
�
a0(�)� al(�)

�
TrF 2

�� +Rl(�;U
P):

(5.17)
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Here and thereafter we make use of the following abbreviations for two in�nite series

al(�) :=
1X

k=l+1

k�k; bl(�) :=
1X

k=l+1

1

k
�k (5.18)

and for the remainder term

Rl(�; U
P) := �

1X
k=l+1

1

k
�k
�
TrUP

�� +Tr(UPy
�� )

k
�
: (5.19)

The remainder term has an upper bound which involves the second in�nite series,

jRl(�;U
P)j � 2Ncbl(�); for all UP 2 U(Nc): (5.20)

In order to drive the remainder term to zero, l should be sent to in�nity. However, this would
lead to a violation of (5.16) which would spoil the expansion in power of the �eld strength
F�� . To solve this problem, we introduce a dependence of l on the coupling parameter,

l(�) :=

�
1

(1� �)1+"
�

(5.21)

where " is a small positive number. 1 By the relation (5.21) the integer l is driven to in�nity
in the limit � ! 1 which we expect to correspond to the weak coupling limit g ! 0. In
Appendix E we have shown that

lim
�!1

al(�)(�) = 0; lim
�!1
jRl(�)(�; U

P)j = lim
�!1

bl(�)(�) = 0 (5.22)

and

a0(�) =
�

(1� �)2 : (5.23)

We conclude that the lattice action converges to the continuum action

S0gluons[A] = Nag
2a4�d

�

(1� �)2
Z
ddx TrF 2

�� (5.24)

in the limit � ! 1 and we recover the gluodynamics action provided that

g =
1� �p
2Na�

ad=2�2 (for a! 0, � ! 1): (5.25)

To summarize, the lattice theory de�ned by the action S0gluons[U ] has gluodynamics as a formal
continuum limit. Passing from one theory to the other, the coupling constant of the lattice
theory � 2]0; 1[ is connected with the continuum coupling constant g 2]0;1[ via (5.25). It
remains to check condition (5.16), which is crucial for our derivation.
Recall that the lattice constant can be thought as an ultraviolet cuto� of the divergent con-
tinuum theory. Recovering the continuum theory one must address the question of renormal-
ization. The divergences of the continuum theory must be removed in the calculation of the
physical observables. Through the process of renormalization the bare couplings acquire an

1[x] denotes the greatest integer smaller or equal to x.
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cuto� dependence chosen in such a manner that the physical quantities have a �nite limit
when the cuto� is removed. Thus the couplings become functions g(a) and �(a) of the lattice
constant and (5.16) should be read as

l
�
�(a)

�
g(a)a2 ! 0; for a! 0: (5.26)

While the evaluation of the four-dimensional lattice theory is diÆcult, as drastic simpli�cation
occurs it in two space-time dimensions. We will show that condition the (5.26) is ful�lled in
that case.

5.2 Gluodynamics in Two Space-Time Dimensions

In two space-time dimensions lattice gauge theories turn out to have a much simpler structure
than in higher dimensions. Indeed, having solved the gauge theory in a space-time consisting
of only one plaquette one has essentially solved the full two-dimensional lattice gauge theory.

5.2.1 Factorization of Partition Function and Wilson Loop

In this section we review that the calculation of the partition function and the Wilson loop of
the two-dimensional gauge theory can be reduced to the calculation of a single integral over
the unitary group [21]. This is true for both, the theory de�ned by Wilsons action Sgauge[U ]
and the one de�ned by the action S0gauge[U ].
Starting point is the gauge invariance of the theory, that is the invariance under

U(n+ �̂=2) ! U(n+ �̂)U(n+ �̂=2)Uy(n): (5.27)

We exploit the gauge freedom as follow:

� We chose the temporal gauge U((x; t) + 0̂=2) = I for all x and t; this gauge choice
corresponds to A0 = 0 for the continuum theory.

� Further we �x a time t0 and assume U((x; t0) + 1̂=2) = I for all x, corresponding to
A1(t0; x) = 0 for all x for the continuum theory.

The physical degrees of freedom, which remain after this gauge �xing, are drawn as circles in
Figure III.
In the temporal gauge the plaquette variables reduce to

UP
01(n) = U(n+ 0̂ + 1̂=2)U�1(n+ 1̂=2): (5.28)

As a consequence the partition function can be evaluated by a change of variables from the
link variables to the plaquette variables. The crucial point is that both actions have the
structure

S[U ] =
X
p

SP(UP(p)); S0[U ] =
X
p

S0P(UP(p)); (5.29)

i. e. they are sums over the plaquettes p of a local action

SPgluons(U) = �
1

2a2g2

�
TrUP +TrUPy

�
; resp.

S0Pgluons(U) = �Na

�
Tr ln(1� �UP) + Tr ln(1� �UPy)

� (5.30)
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R

t = t0

T

n

Figure III: Fixing of the gauge and Wilson loop: the remaining degrees of freedom of the
gauge �eld are depicted by �lled circles on the links.

evaluated at the corresponding plaquette variable UP(p). As a result the partition functions
decompose into a product of independed factors coming from the di�erent plaquettes,

Z = (ZP)N ; Z 0 = (Z 0P)N : (5.31)

In the expression above we have introduced the one-plaquette partition functions

ZP =

Z
dU exp(�SP(U)); Z 0P =

Z
dU exp(�S0P(U)) (5.32)

and N denotes the number of plaquettes.
Ground-state expectation values of physical observables O, which are gauge invariant func-
tionals of the gauge �eld, are given by

hO[U ]i := 1

Z

Z
[dU ] exp(�Sgluons[U ])O[U ]; hO[U ]i0 := 1

Z 0

Z
[dU ] exp(�S0gluons[U ])O[U ]:

(5.33)
We consider the Wilson loop, which is a product of the gauge �eld along a closed loop L,

WL :=
1

Nc

D
Tr
�Y

L

U
�E
; W 0

L :=
1

Nc

D
Tr
�Y

L

U
�E0

: (5.34)

We chose the loop to be rectangular with a spatial extend Ra and a time extend Ta. Passing
to the plaquette variables, the Wilson loop can be expressed as

WL =
1

Nc

D
Tr

0Y
j=R�1

U
�
n+ T 0̂ + (j + 1=2)

�
=

1

Nc

D
Tr

0Y
j=R�1

0Y
i=T�1

UP(n+ i0̂ + j1̂)
E
:

(5.35)
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The last equality is illustrated in Figure III: The contributions from two adjacent plaquettes
inside the Wilson loop to the common link cancel each other. Further we took advantage
from the temporal gauge and the gauge at the �xed time t = t0.
We now consider the integral over a particular plaquette variable UP in (5.35). Making use
of the invariance of the Haar measure and the invariance of the action SP(V UV y) = SP(U)
for V 2 U(Nc), we obtainZ

dU exp(�SP(U))Tr(AUB) =
Z
dU exp(�SP(U))Tr(AV UV yB): (5.36)

Here A and B represent the product of the remaining plaquette variables. We integrate (5.36)
over V with respect to the Haar measure dV of U(Nc). From the orthogonalityZ

U(Nc)
dV VijV

y
kl =

1

Nc
ÆilÆjk (5.37)

we conclude that Tr(AUPB) can be replaced by 1=Nc Tr(U
P)Tr(AB). Therefore we can

iterate the argument and obtain the result

WL = (WP)RT ; W 0
L = (W 0P)RT (5.38)

where we have introduced the one-plaquette Wilson loops

WP =
1

ZP

Z
U(Nc)

dU exp(�SP(U)) 1

Nc
TrU; W 0P =

1

Z 0P

Z
U(Nc)

dU exp(�S0P(U)) 1

Nc
TrU

(5.39)
and RT is the number of plaquettes inside the Wilson loop L.
The expectation value of the Wilson loop is directly related to an observable quantity. In
fact, it measures the force law between two static sources which are placed in the system [48],
[30]. A transfer matrix argument shows that for large T

WL � exp(��(R)Ta); W 0
L � exp(��0(R)Ta) (5.40)

where �(R) and �0(R) respectively is the gauge �eld energy associated with static quark-
antiquark sources separated by a distance R.

�(R) = � ln(W
P)

a
R; �(R) = � ln(W

0P)
a

R: (5.41)

For both lattice gauge theories, the energy rises linearly with the separation of the quark-
antiquarks-pair. Since WP < 1 and W 0P < 1 for � > 0 the constant of proportionality is
always positive. To summarize, both two-dimensional lattice gauge theories con�ne quark-
antiquarks-pairs in a linear potential.

5.2.2 Partition Function and Wilson Loop of an Elementary Plaquette

This subsection is devoted to the calculation of the one-plaquette partition function Z 0P and
the one-plaquette Wilson loop W 0P.
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Monte Carlo Simulations

Monte Carlo simulations can be used to estimate the expectation value of an observable

hO(U)i0 = 1

Z 0P

Z
dU exp(�S0P(U))O(U) (5.42)

with respect to the action S0P(U). The method works e�ectively, when the weight exp(�S0P(U))
is sharply peaked around a matrix U0. In case of our action

S0P(U) = �Na

�
Tr ln(1� �U) + Tr ln(1� �U y)

�
(5.43)

the weight exp(�S0P(U)) is distributed more and more tightly around U0 = I in the limit
� ! 1. (In a thermodynamical analog � ! 1 corresponds to the low temperature and � ! 0
to the high temperature limit.) The idea of the Monte Carlo method [14] is to replace the
integral (5.42) by a sum over a random chosen con�guration 2 fUg which is typical for the
distribution exp(�S0P(U)):

hO(U)i0 � 1

#fUg
X
fUg

exp(�S0P(U))O(U): (5.44)

To generate such a con�guration we make use of the Metropolis algorithm which is implemen-
ted in the following way:

(i) Generate a list fUg of unitary matrices which are weighted towards the unity I.

(ii) Choose a start matrix U .

(iii) Build a trial matrix V by multiplying U with a random matrix from the list.

(iv) If the action is lowered (S0P(V ) < S0P(U)) take V as new matrix. If the action is raised,

(S0P(V ) � S0P(U)) accept a change from U to V with the probability e�(S
0P(V )�S0P(U))

(v) Add the new matrix to the list fUg, designate it as U and go on with (iii).

By its de�nition the algorithm satis�es the detailed balance relation

P (V;U) exp(�S0P(V )) = P (U; V ) exp(�S0P(U)) (5.45)

where P (V;U) is the probability to change the matrix U into V in one step of the stochastic
process. Detailed balance is a suÆcient condition to obtain a list fUg with the distribution
exp(�S0P(U)), see [14].
The results of the Monte Carlo simulation for Nc = 3 colors and di�erent values of the
parameter Na are presented in Figure IV. The diagram shows the expectation value of the
one-plaquette Wilson loop in dependence of the coupling parameter �. The number of Monte-
Carlo steps (that is the number of contributions to the sum (5.44)) was chosen as 80; 000 for
all values of the constants.

2The list fUg is not a set in the mathematical sense, because it may contain the same element twice or
several times



54 Gluodynamics

0 0.2 0.4 0.6 0.8 1

β

0

0.2

0.4

0.6

0.8

1

1/
N

c <
T

r 
U

P >
’

N
a
=1

N
a
=2

N
a
=3

N
a
=4

N
a
=5

N
a
=6

Figure IV: Expectation value of the Wilson loop operator in dependence of the coupling
constant �. Results of Monte Carlo simulations (symbols) and analytical results (lines) for
Nc = 3 colors and Na = 1; :::; 6. The lines are given by the functions f(�) = Na

Nc
�.

The Wilson loop is a monotonically increasing function of the coupling parameter �. The
slope of this function is equal to Na=Nc, in general for small values of � and for arbitrary �
if Na � Nc. The slope for small values of � can be estimated from the expansion

Z
dU
��Det(1� �U)���2Na TrU �

Z
dU j1� � TrU j�2Na TrU

�
Z
dU

�
1 +Na�(TrU +TrU y)

�
TrU = Na�

(5.46)

which gives the result

W 0P =
1

Nc
hTrUi0 = Na

Nc
� +O(�2) (5.47)

for the Wilson loop. The next subsection is devoted to an analytical calculation of the Wilson
loop. We are able to obtain an exact result for all Nc and all Na � Nc which con�rms the
linear dependence of the one-plaquette Wilson loop on the coupling parameter � with slope
Na=Nc over the whole range of the coupling parameter.

Analytical Approach

The integrand of the partition function Z 0P depends on U only through its eigenvalues. In a
�rst step we simplify the integration by a change of the integration variables to the eigenvalues
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of U and certain angular variables, which can be integrated out,

Z 0P =

Z
U(Nc)

dU jDet(1� �U)j�2Na

�
Z 2�

0
d�1 � � �

Z 2�

0
d�Nc

Q
k<l

j exp(i�k)� exp(i�l)j2

NcQ
k=1

j1� � exp(i�k)j2Na

:
(5.48)

With the sign� we denote equality up to a �-independent factor. The factor can be restored at
the end of the calculations by the condition Z 0P(� = 0) = 1. To rewrite (5.48) as a multiple
complex contour integral over the unit circle, we put zk = exp(i�k) and dzk = izkd�k for
k = 1; :::; Nc. Noting that �zk =

1
zk

on the contour, we obtain

Z 0P � 1

�NaNc

Z
S1
dz1 � � �

Z
S1
dzNc

Q
k<l

(zk � zl)2

NcQ
k=1

zNc�Na

k (zk � �)Na(zk � 1
� )

Na

: (5.49)

Our approach to calculate the partition function is based on the theorem of residues, which
is applied iterated to the variables z1; :::; zNc . Evaluating the residues, we have to take into
account the poles of the integrand in the unit disc. They occur at 0 and �. Recall the following
formula for the residuum: If f : Df ! C is analytic at z0, the corresponding residuum is
given by

Resz0
f(z)

(z � z0)n =
f (n�1)(z0)
(n� 1)!

: (5.50)

We are now ready to evaluate the integral (5.49): We separately consider the cases Na = Nc

and Na < Nc. The case Na > Nc is more involved and not considered further.

Case Na = Nc: In this case the integrand has a Nc-fold poles at zk = � for all k and no
poles at zk = 0. Due to (5.50) the partition function is proportional to

@Nc�1
z1 :::@Nc�1

zNc

Q
k<l

(zk � zl)2

�N2
c

NcQ
k=1

(zk � 1
� )

Nc

�����
z1=:::zk=�

� 1

�N2
c (� � 1

� )
N2
c

(5.51)

Under consideration of Z 0P(� = 0) = 1 we conclude

Z 0P =
1

(1� �2)N2
c
: (5.52)

Case Na < Nc: To label the di�erent contributions to the partition function, we divide the
set f1; :::; Ncg in two subsets A and B of cardinality a and b respectively. The contribution
belonging to the partition (A;B) is de�ned by taking iterated residues of the integrand at
zk = 0 for k 2 A and at zk = � for k 2 B. Without loss of generality we assume A =
fz1; :::; zag and B = fza+1; :::; zNcg. Now we again make use of the formula (5.50) for the
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residuum. As a result we �nd contribution to the partition function corresponding to the
partition (A;B) to be proportional to

@Nc�Na�1
z1 :::@Nc�Na�1

za @Na�1
za+1 :::@

Na�1
zNc

Q
k<l

(zk � zl)2

�NaNc

NcQ
k=a+1

zNc�Na

k

aQ
k=1

(zk � �)Na

NcQ
k=1

(zk � 1
� )

Na

(5.53)

evaluated at z1 = ::: = za = 0 and za+1 = ::: = zNc = �. We split the numerator of (5.53)
into contributions from the set A, cross-terms, and contributions from the set B,Y

k<l

(zk � zl)2 =
Y

k;l2A;k<l
(zk � zl)2

Y
k2A; l2B

(zk � zl)2
Y

k;l2B;k<l
(zk � zl)2: (5.54)

To pick the partitions (A;B) with a non-vanishing contribution to the partition function we
remark that

@j1z1 :::@
ja
za

���
z1=:::=zn

NcY
k;l2A;k<l

(zk � zl)2 = 0; if j1 + :::+ jn 6= a(a+ 1);

@ja+1za+1 :::@
jNc
zNc

���
za+1=:::=zNc

NcY
k;l2B;k<l

(zk � zl)2 = 0; if ja+1 + :::+ jNc 6= b(b+ 1):

(5.55)

Thus, to get a contribution, the �rst factor in (5.54) needs to be di�erentiated a(a�1) times,
and the last factor b(b� 1) times. Comparing with (5.53) we get a(a� 1) � a(Nc �Na � 1)
and b(b� 1) � b(Na � 1). Because of a+ b = Nc the only non-vanishing contributions come
from a = Nc�Na and b = Na. We �x the normalization constant by Z 0P(� = 0) = 1 and get
the result

Z 0P =
1

(1� �2)N2
a
: (5.56)

The expression for the one-plaquette Wilson loop can be rewritten in the same way,

hTrUi0 = Nc

Z
S1
dz1 � � �

Z
S1
dzNc

z1
Q
k<l

(zk � zl)2

NQ
k=1

zNc�Na

k (zk � �)Na(zk � 1
� )

Na

,

Z
S1
dz1 � � �

Z
S1
dzNc

Q
k<l

(zk � zl)2

NQ
k=1

zNc�Na

k (zk � �)Na(zk � 1
� )

Na

:

(5.57)

We employ the method developed above to evaluate this expression for Na � Nc. The extra
factor z1 in the numerator needs to be evaluated at �. Thus the ratio of the two integrals
gives the combinatorial factor

�
Nc�1
Na�1

�
=
�
Nc

Na

�
= Na

Nc
times �:

W 0P =
1

Nc
hTrUi0 = Na

Nc
� (5.58)

The analytical result (Na � Nc) is in agreement with the Monte Carlo data, see Figure IV.
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5.2.3 String Tension and Running Coupling Constant

We have already shown that the two-dimensional lattice gauge theory de�ned by the action
S0P[U ] con�nes the quarks in a linear potential. We write

�0(R) = �0Ra; (5.59)

where we introduced the string tension

�0 = � 1

a2
lnW

0P
L : (5.60)

We now restrict ourselves to the theory where the parameter Na is lower or equal to the
number of colors, Na � Nc. In that case we can work with the analytical result for the
Wilson loop from the last subsection and obtain for the string tension

�0 = � 1

a2
ln

�
Na

Nc
�

�
: (5.61)

Passing to the continuum with the aim to reach gluodynamics, one has to renormalize the
coupling parameter in such a way that the physical observables like the string tension �0 is kept
constant. This is impossible in the case Na < Nc and we conclude the lattice gauge theory is
ill de�ned in that case in the sense that it cannot be considered as a lattice regularization of
gluodynamics. In the case Na = Nc we obtain the renormalization group equation

�(a) = exp(��0a2): (5.62)

Having calculated the renormalization of the coupling parameter � we are in position to
rigorously justify the way we obtained gluodynamics from the lattice theory for the two-
dimensional theories. The validity of the calculations in Subsection 5.1.3 follows from

lga2 � ad=2p
2Na�(1� �)" =

ad=2�2"p
2Na�

0"

�
1 +O(a2)

�
; (5.63)

that is lga2 ! 0 in the continuum limit.

5.3 Color-Flavor Transformation of Gluodynamics

In this section we consider lattice gluodynamics in an arbitrary number of space-time di-
mensions. Our idea is to apply the color-avor transformation to the action S+[U; ��+; �+] +
S�[U; ���; ��], de�ned by (5.4) and (5.10). However, there is a problem with the convergence
of the color-avor transformation: for bosonic �elds it only converges if the number of avors,
which we identify with the dimension of the auxiliary space Na, and the number of colors
Nc satisfy Na � 2Nc, cf. the discussion after Eq. (2.84). This condition is in conict to the
inequality Na � Nc that has to be satis�ed for physical reasons. We overcome this problem
by the introduction of a fermion as a partner to each of the bosons. For the resulting su-
persymmetric theory the color-avor transformation is always convergent. Note that one can
keep the inuence of the fermions small by making their mass large. In order to apply the
color-avor transformation, we write the partition function of the theory as a product over
the lattice links

Z[�; ��] =
Y
n;�

Z
U(Nc)

dU(n+ �̂=2) e�SU;�;��(n+�̂=2)�Sm̂B ;m̂F;�;
��(n+�̂=2) : (5.64)
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We introduce a labeling of the 2(d � 1) plaquettes neighboring a lattice link n + �̂=2. The
plane of such a plaquette can be characterized by �̂ and a second vector �̂. We denote the
plaquette spanned by attaching the vectors �̂ and �̂ to the site n by (n; +��) and the one
spanned by attaching the vectors �̂ and ��̂ to this site by (n;���). (Note that the order
of � and � is important here.) With this preparation we are ready to write down the action
belonging to a link n+ �̂=2,

SU;�;��(n+ �̂=2) =X
�>�

�
��+;n+�̂(n;��)U(n+ �̂=2)�+;n(n;��) + ���;n(n;��)U y(n+ �̂=2)��;n+�̂(n;��)

+��+;n(n;���)U y(n+ �̂=2)�+;n+�̂(n;���) + ���;n+�̂(n;���)U(n+ �̂=2)��;n(n;���)
�

+
X
�<�

�
��+;n(n;��)U

y(n+ �̂=2)�+;n+�̂(n;��) + ���;n+�̂(n;��)U(n+ �̂=2)��;n(n;��)

+��+;n+�̂(n;���)U(n+ �̂=2)�+;n(n;���) + ���;n(n;���)U y(n+ �̂=2)��;n+�̂(n;���)
�
:

(5.65)

The corresponding mass term is given by

Sm̂B;m̂F;�;��
(n+ �̂=2) =

1

d
m̂B

��B(n)�B(n) +
1

d
m̂F

��F(n)�F(n); (5.66)

where we have split the supersymmetric �eld into the bosonic components and the fermionic
components �B and �F with di�erent masses m̂F and m̂B. Now it is straightforward to apply
the color-avor transformation, separately to each of the links. The color-avor transformed
action reads

SZ;�;��(n+ �̂=2) =
X

�;�0>�

�
��+;n+�̂(n; +��); ���;n+�̂(n;���)

�
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�
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�
�;n+�̂(n;+��)

�

+
�
��+;n(n;���); ���;n(n;+��)

�
~Zt
��0(n+ �̂=2)

�
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�
�;n(n;���)

�

X
�>�>�0

�
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(5.67)
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Figure V: Coupling of the Z-�eld to the auxiliary �eld at the site n. The �lled circles inside
the plaquettes symbolize the auxiliary �eld �n belonging to that plaquette.

As the gauge �eld, the new �eld Z is located on the lattice links. For a link n+ �̂=2 it is a
matrix in the space of the links � 6= � and two-dimensional space of + and �,

Z��0(n+ �̂=2) =

�
Z��0;++(n+ �̂=2) Z��0;+�(n+ �̂=2)
Z��0;��(n+ �̂=2) Z��0;��(n+ �̂=2):

�
(5.68)

In terms of the color-avor transformed action, the partition function (5.64) reads

Z[�; ��] =
Y
n;�

Z
U(Nc)

dU(n+ �̂=2) e
�SZ;�;��(n+�̂=2)�Sm̂B ;m̂F;�;

��(n+�̂=2) : (5.69)

The coupling of the auxiliary �elds ��n, �n to the Z-�eld in the ��-plane is shown in Figure
V. Following the arrows of this picture, one could perform the integration over the quarks
in two space-time dimensions. However, the two-dimensional theory is trivial and we have
already evaluated it in the last chapter. The situation in higher dimensions is much more
involved: in this case the Z-�eld couples to �-�elds in di�erent planes.
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5.4 Conclusion

We have found a way to put gluodynamics on a lattice that allows an application of the
color-avor transformation. The idea is to replace Wilson's lattice action by another action
which can be generated by an integral over bosonic auxiliary �elds. The new action depends
on a coupling parameter �, where � ! 1 corresponds to g ! 0 and � ! 0 to g ! 1 (g
is the coupling constant of gluodynamics). If one wants to work with a �nite number of
auxiliary particles (Na < 1), it is decisive to employ bosons (and not fermions), because
only in this case the integrand of the partition function shows the right behavior. It needs to
develop a pole at UP = I in the limit � ! 1. This pole ensures that the main contribution
to the partition function comes from matrices near the unity matrix. If this e�ect is strong
enough, the uctuations of the large contributions to the partition function can be controlled
by sending � ! 1 and a continuum limit exists.
It turns out that this is true only when the order of the pole in the integrand of the partition
function is higher than the number of colors. This is the case, when the dimension of the
auxiliary space is greater than the number of colors, Na � Nc.
On the other hand the bosonic color-avor transformation needs 2Na � Nc in order to be
convergent. We have lifted this conict by passing to a supersymmetric theory and applied
the color-avor transformation. Further evaluation of the color-avor transformed partition
function is left for the future. The next step would be to perform the integration over the
auxiliary �elds.



Chapter 6

Strong Coupling Quantum
Chromodynamics (Mesons Sector)

This and the next chapter deal with the strong coupling limit of QCD. It is reached by
neglecting the gluon term (4.15) in the lattice action Slattice = Sgluons + Squarks, which is
suppressed as 1=g2. The lattice approach should be thought as an ultraviolet regularization
of QCD with lattice constant as cuto�. Through the process of renormalization the coupling
constant acquires a dependence on the lattice constant a. In case of QCD the running coupling
constant g(a) goes to zero in the continuum limit a! 0, which reect the asymptotic freedom.
In the opposite limit of strong coupling g(a) � 1 the lattice constant has to be kept at a
�nite value and the theory can be thought as an approximation to low energy physics.
In the present chapter we restrict ourselves to a simpli�ed theory of mesons and leave the full
theory with baryons to the next chapter. This corresponds to a replacement of the special
unitary group SU(Nc) by the full unitary group U(Nc) as gauge group, a fact that can be
explicitly seen in the formalism of the color-avor transformation: Taking SU(Nc) as gauge
group, the color-avor transformed partition decomposes into a sum over contributions char-
acterized by di�erent baryon numbers, as exposed in Chapter 2. The contribution belonging
to baryon number zero is exactly the color-avor transform of the partitions function with
U(Nc) as gauge group.

6.1 Color-Flavor Transformation of the Lattice Action

We consider a U(Nc) gauge theory in d-dimensional Euclidean space-time placed on an ori-
entated lattice. The coordination number of the lattice (the number of nearest neighbours
of a lattice site) is denoted by 2Æ. On a hypercubic lattice we have Æ = d, but we will also
consider the four-dimensional bhc lattice, where coordination number is bigger than twice the
number of dimensions. The theory is de�ned by the partition function, which can be written
as a product over all lattice links,

Z =

Z
[dqd�q]Z[q; �q]; where

Z[q; �q] =
Y
n;v

Z
U(Nc)

dU(n+ v=2) e�SU;q;�q(n+v=2)�SM;q;�q (n) :
(6.1)

61



62 Strong Coupling Quantum Chromodynamics (Mesons Sector)

The corresponding lattice action Squarks =
P

n;v (SU;q;�q(n+ v=2) + SM;q;�q(n)) was already
introduced in Chapter 4. Recall that the quarks q(n) are put on the lattice sites n, while
the gluons represented by a matrix �eld U(n+ v=2) are placed on the lattice links. The sum
runs over all lattice links, which are parametrized by the lattice sites n and the vectors to the
nearest neighbors in positive direction v. The quarks on two neighboring sites are coupled
through the gauge �eld on the connecting link,

SU;q;�q(n+ v=2) = K2a
d�1
�
�qia(n)vU

ij(n+ v=2)qja(n+ v)

��qib(n+ v)vU
yij(n+ v=2)qjb (n)

� (6.2)

Additionally there is a mass term for the quarks,

SM;q;�q(n) =
K3

Æ
ad�qa(n)Mabqb(n); (6.3)

which is diagonal in avor space, M = diag(m1; :::;mNf
). There is a factor 1=Æ in front of

this term to cancel the summation over the Æ links which correspond to each lattice site. The
upper indices i, j label the color degrees of freedom, while the lower indices a, b refer to the
avor degrees of freedom. We employ the naive description of lattice fermions and ignore the
doubling problem.
On each link we perform a U(Nc) color-avor transform which replaces the gauge �eld U(n+
v=2) by a complex �eld Z(n + v=2). We recall that we are considering Dirac matter with
avor and spin degrees of freedom complementing the color degrees of freedom; therefore the
�eld Z becomes a matrix in spin and avor space, Z(n + v=2) 2 C NsNf�NsNf . To link the
notations above to the corresponding ones of Chapter 2, we put

� + = ��q(n)v;  + = q(n+ v); � � = q(n);  � = ��q(n+ v)v (6.4)

and obtain the color-avor transformed partition function

Z[q; �q] = �0
Y
n;v

Z
C
NsNf�NsNf

D�(Z;Zy(n+ v=2))

Det(1 + (ZZy)(n+ v=2))Nc
e�SZ;q;�q(n+v=2)�SM;q;�q(n) : (6.5)

The action corresponding to the link n+ v=2 is given by

SZ;q;�q(n+ v=2) = K2a
d�1
�
�qia(n)vZab(n+ v=2)qib(n)

+�qja(n+ v)vZ
y
ab(n+ v=2)qjb (n+ v)

�
:

(6.6)

The �eld Z parametrizes the symmetric space U(2NsNf )=U(NsNf )�U(NsNf ) equipped with
its U(2NsNf )-invariant measure

D�(Z;Zy) = CNf
Det(1 + ZZy)�2Nf

Y
i;j

dZij d �Zij : (6.7)

The quarks are now coupled through their avor indices, whereas in the original action the
coupling had been mediated by the color degrees of freedom. Moreover, the coupling has
become ultralocal: A quark at the site n is coupled to another one at the same site via
Z(n + �̂=2), a quark at the site n + �̂ via Zy(n + �̂=2). Correlations between neighboring
quarks are solely due to the relation between Z and Zy, Hermitian conjugation. A graphical
description of the change of the coupling scheme is given in Figure VI. Note that the quarks
enter the color-avor transformed action only through color singlets built by quark-antiquark
pairs, where the �eld Z mediates the coupling between these \mesons".
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n + v

�qia(n)
U ij

qja(n+ v)

�qjb(n+ v)qib(n)
�U yij

n

Zy
abZab

Figure VI: coupling of the quarks �elds before (horizontal arrows) and after (vertical arrows)
color-avor transformation.

6.2 Chiral Symmetry

In Chapter 4 we have extensively studied chiral transformations on the lattice. They are
de�ned by two sets of matrices V(n), �V(n) 2 U(NsNf ), which satisfy

V(n+ v + w) = wvV(n)vw
�V(n) = vV(n+ v)�1v:

(6.8)

These transformations act on the quark �eld by

q(n) ! V(n)q(n);
�q(n) ! �q(n)�V(n); (6.9)

while the gauge �eld is left unchanged. In order to keep the color-avor transformed action
invariant, the meson �eld Z has to be transformed in the following way,

vZ(n+ v=2) ! �V�1(n) vZ(n+ v=2)V�1(n);
vZ

y(n+ v=2) ! �V�1(n+ v) vZ
y(n+ v=2)V�1(n+ v):

(6.10)

Making use of condition (6.8) this transformation can be rewritten as

Z(n+ v=2) ! V(n+ v)Z(n+ v=2)V�1(n)
Zy(n+ v=2) ! V(n)Zy(n+ v=2)V�1(n+ v):

(6.11)

One easily checks that the determinant coming from the color-avor transformations is in-
variant under the chiral transformation,

Det
�
1 + (ZZy)(n+ v=2)

�
! Det

�
1 + V(n+ v) (ZZy)(n+ v=2)V�1(n+ v)

�
= Det

�
V(n+ v)

�
1 + (ZZy)(n+ v=2)

�
V�1(n+ v)

�
= Det

�
1 + (ZZy)(n+ v=2)

�
:

(6.12)

To sum up, chiral symmetry at the level of the color-avor transformed action is realized by
simultaneous transformations of the quarks (6.9) and the �eld Z (6.11).
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6.3 Integration over the Fermions

The integration over the quark �elds yields

Z =

Z
[dqd�q]Z[q; �q] =

Z
D�[Z;Zy] exp(�NcSvacuum[Z]); (6.13)

where we have sent the result of the integration back to the exponent. The factor Nc in
the exponent comes from the color content of the quarks: since the action SZ;q;�q(n+ v=2) is
diagonal in the color degrees of freedom, the Grassmann integral factorizes into Nc identical
integrals. The resulting e�ective action reads

Svacuum[Z] =�
X
n

Tr ln

 X
v

v

�
Zy(n� v=2) + Z(n+ v=2)

�
+ M̂

!
+
X
n;v

Tr ln
�
1 + Z(n+ v=2)Zy(n+ v=2)

�
;

(6.14)

where we have introduced a dimensionless mass matrix

M̂ :=
K3

K2
aM;

�
M̂ = 2aM on a hc lattice ; M̂ = 6aM on a bhc lattice

�
: (6.15)

and neglected an additive constant in the action.
The action Svacuum[Z] is a complicated functional of the meson �eld Z which is invariant under
the chiral transformations (6.11) by construction. The color degrees of freedom are completely
decoupled and appear only through the factor Nc in front of the action. This structure
organizes the partition function in a perturbation series with 1=Nc as small parameter.

6.4 Saddle Point Approximation

The lowest order of the large-Nc expansion is the saddle point approximation, where the
partition function is approximated by the value of the action on its saddle point, Z �
exp(�NcSvacuum[Zsaddle]). The saddle point can be indenti�ed by solving the saddle point
equations

v

�
1

Zy(n+ v=2)
+ Z(n+ v=2)

�
=
X
w

w

�
Zy(n� w=2) + Z(n+ w=2)

�
+ M̂;

v

�
1

Z(n� v=2) + Zy(n� v=2)
�
=
X
w

w

�
Zy(n� w=2) + Z(n+ w=2)

�
+ M̂:

(6.16)

This system of equations, labeled by the lattice links (n runs over all lattice sites and w over
all positive directions), is obtained by setting the �rst variation of the e�ective action with
respect to Z and Zy to zero.
Our results of the search for solutions of the saddle point equations are presented in the next
subsections. There is a saddle point for all values of the quark masses, which is proportional
to the identity on the avor sector (Section 6.4.1). The study of deformations of this saddle
point (Section 6.4.2) shows that it blows up to a saddle point manifold in the chiral limit
(Section 6.4.3), while no deformations are possible away from the chiral limit. In Section
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6.4.4 we show that the occurence of a saddle point manifold in the chiral limit is directly
connected to chiral symmetry and calculate it for di�erent lattices. For the theory placed on
the four-dimensional bhc lattice, the saddle point manifold is di�eomorphic to U(Nf ).
The pattern of symmetry groups �ts perfectly with the one predicted by the Goldstone the-

orem: In the chiral limit the theory on the four-dimensional bhc lattice has a U(Nf )L�U(Nf )R
chiral symmetry. The saddle point (6.22) breaks the symmetry to the subgroup U(Nf )L+R,
de�ned by the pairs (VL; VR) 2 U(Nf )L � U(Nf )R with VL = VR. In fact there are zero
modes g 2 U(Nf ) �= U(Nf )L � U(Nf )R=U(Nf )L+R, which occurs as the parametrization of
the saddle point manifold. In case of the bhc lattice the pattern of chiral symmetry breaking
exactly corresponds to the continuum theory.
By the way of contrast, the theory on a hc lattice has an enlarged chiral symmetry group:
Qualitatively the same symmetry breaking pattern occurs in that case, but the number of
involved degrees of freedom changes (Nf ! NsNf ). This enlargement of the symmetry group
should be seen as an artifact connected with a too small lattice symmetry group.

6.4.1 Saddle Point

We start with a homogeneous ansatz for the collective �eld, where Z(n + v=2) is given by
v in the spin sector tensored with an arbitrary position-independed matrix X in the avor
sector,

Zsaddle(n+ v=2) = vX; Zysaddle(n+ v=2) = vX
y; (6.17)

Inserting the ansatz into the saddle point equations (6.16), they reduce to

1 +XyX = Xy
�
ÆXy + ÆX + M̂

�
;

1 +XyX =
�
ÆXy + ÆX + M̂

�
X:

(6.18)

Subtraction the second equation of from the �rst one we obtain

Æ(Xy2 �X2) +XyM̂ � M̂X = 0: (6.19)

We now assume that X is a diagonal matrix and obtain by commutating the matrices of the
last equation �

Xy �X
��

Xy +X + M̂=Æ
�
= 0: (6.20)

We discuss the solutions of this equation: The solution whereXy+X+M̂=Æ = 0 is unphysical,
because in that case the argument of the �rst logarithm of the action (6.14) vanishes and the
action grows to in�nity. The solution with X = Xy yields the quadratic equation

(2Æ � 1)X2 + M̂X � 1 = 0 (6.21)

with the real solutions

X� = Xy
� = x

0@�
s
1 +

�
1

2
xM̂

�2

� 1

2
xM̂

1A ; where x :=
1p

2Æ � 1
: (6.22)

The expression for the saddle point X� contains the square root of a diagonal matrix. For
each of the diagonal elements one may choose the positive or the negative square root. In
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our notation X+ refers to the term, where the positive root is taken for all diagonal elements,
while X� is a generic notation for a term, where at least one negative square root is taken.
At the saddle points (6.22) the action (6.14) takes the values

S
(0)
� = N Tr ln

(1 +X2�)Æ

2ÆX� + M̂ ; (6.23)

where N is the total number of lattice sites. The solutions (6.22) of the saddle point equations
are trivial in the spin sector and diagonal in the avor sector. To decide which of the two
saddle points X+ and X� is dominant, we compare the corresponding values of the action.
For one of the saddle points (X�) the argument under the logarithm might become negative;
in that case we look at the real part of the action. In the chiral limit the real part of
the action takes the same value for both X+ and X�. But away from this limit we have
ReSvacuum[X+] < ReSvacuum[X�] and conclude that X := X+ is the dominant saddle point.
In what follows we will often make use of its expansion around the chiral limit,

X = xI � 1

2
x2M̂+

1

8
x3M̂2 + � � � ; (6.24)

where I is the identity matrix in avor space. In the next subsection we look for further
solutions of the saddle point equations which are continuous deformations of the ansatz (6.17).

6.4.2 Linearized Saddle Point Equations

Consider a non-homgenious deformation of the saddle point,

Z(n+ v=2) = vX (1 + �(n+ v=2)) ;

Zy(n+ v=2) =
�
1 + �y(n+ v=2)

�
Xv:

(6.25)

The parameters of the deformation, a set of matrices in avor space �(n+v=2) and �y(n+v=2),
are assumed to be small. We expand the saddle point equations (6.16) up to linear order in
these parameters,

�X�1�y(n+ v=2) +X�(n+ v=2) = �(n);

��(n� v=2)X�1 + �y(n� v=2)X = v�(n)v:
(6.26)

The new �eld �(n) on the r.h.s. is a sum over the �elds � and �y on the links adjacent to the
site n, de�ned by

�(n) :=
X
v

�
v�

y(n� v=2)vX +X�(n+ v=2)
�
: (6.27)

The linearized saddle point equations (6.26) and their spatially shifted version

�X�1�y(n� v=2) +X�(n� v=2) = �(n� v);
��(n+ v=2)X�1 + �y(n+ v=2)X = v�(n+ v)v

(6.28)

build a system of linear equations which can be solved for variables �(n+v=2) and �y(n�v=2),
namely

X2�(n+ v=2) � �(n+ v=2)X�2 = X�(n) + v�(n+ v)vX
�1;

�y(n� v=2)X2 �X�2�y(n� v=2) = X�1�(n� v) + v�(n)vX:
(6.29)
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Writing the saddle point as X = diag(x1; :::; xn), we obtain explicit expressions for the matrix
elements of the �elds � and �y (the indices a; b = 1; :::; Nf refer to the avor degrees of
freedom),

�ab(n+ v=2) =
1

x2a � x�2b
�
xa�ab(n) + x�1b v�ab(n+ v)v

�
v�

y
ab(n� v=2)v ; =

1

x2b � x�2a
�
x�1a v�ab(n� v)v + xb�ab(n)

�
:

(6.30)

In the case of one space-time dimension and only two next neighbors the solution above is not
useful, because in that case the r.h.s. of (6.30) is not well-de�ned in the chiral limit, where
xa = xb = 1. From here on we assume the number of space-time dimensions to be bigger
than one. 1

Inserting the last two equations into the de�nition of the sum variable �(n), the saddle point
equations can be rewritten as set of linear equations for the new variable,�

1

xaxb
+ (2Æ � 1) xaxb

�
�ab(n) +

X
v

�
v�ab(n� v)v + v�ab(n+ v)v

�
= 0: (6.31)

Calculation of the coeÆcient in front �(n) enables us to bring this equation into the remark-
able simple formX

v

�
v�ab(n� v)v + 2�ab(n) + v�ab(n+ v)v

�
+Mab�ab(n) = 0; (6.32)

where we introduced the abbreviation

Mab :=
�
1� xaxb

x2

�� 1

xaxb
� 1

�
=

Æ � 1p
2Æ � 1

(m̂a + m̂b) +O(m̂2): (6.33)

The matrix M vanishes in the chiral limit and its matrix entries are proportional to the
sum of two quark masses in �rst order of an expansion in the quark masses. The equations
above in terms of the sum variable � are completely equivalent to the linearized saddle
point equations (6.26) in terms of � and �y. Note that up to now � and �y were treated as
independent variables.

1In the case of one space-time dimensions Æ = d = 1 the linearized saddle point equations read

�(n+ v=2) = �X�(n� v=2)X; �y(n� v=2) = �X�1�y(n + v=2)X�1:

Taking into account that � and �y are the hermitian conjugated matrix of each other, this equations have only
nontrivial solutions, if xa = �1 for all avors a that is in the chiral limit. The solution in the chiral limit is
given by

�(n+ v=2) = ��(n� v=2); �y(n+ v=2) = ��y(n� v=2)

and exponenting it back to the group yields

Z(n+ v=2) = Z�1(n� v=2); Zy(n + v=2) = Zy
�1

(n� v=2):

The general solution of saddle point equations in d = 1 space-time dimensions is an staggered con�guration
of the Z-�eld along a one-dimensional chain. The zero modes belong to the general linear group Gl(Nf ) in
di�erence to the theory in higher space-time dimensions, where the zero modes belong to an unitary group.
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6.4.3 Hermitian Structure

In the color-avor transformed partition function the variables Z and Zy are related by
Hermitian conjugation. Thus, looking for a saddle point, one would assume the deformation
parameters � and �y to be the conjugated matrix of each other. (There are situations, when
{ assuming that Z and Zy are related by Hermitian conjugation { no solutions of the saddle
point equations exists. This happens in context of a model of a static baryon, see Chapter
7. In that case one can lift the relation between Z and Zy and try to �nd a solution of the
saddle point equations treating Z and Zy as independend variables.) By making use of (6.26)
and (6.28) we translate the relation between Z and Zy into an equation for the sum variable,

�(n+ v) = v�
y(n)v: (6.34)

As a consequence of the last equation there is only one free variable (for example �(n = 0))
that determines all other �(n).
Inserting the last equation into the saddle point equation (6.32) we get the condition

�yab(n) +
�
1 +

Mab

2Æ

�
�ab(n) = 0 (6.35)

for all avors a and b. Because hermitian conjugation is an involution, a non-trivial solution
of this equation requires

1 +
Mab

2Æ
= �1: (6.36)

This equation can only be ful�lled in the chiral limit, where Mab = 0. 2 We conclude that
away from the chiral limit the saddle point can not be deformed without enlarging the action.
This result is in agreement with a uniqueness theorem for the solutions of the saddle point
equations [33].
From here up to the end of the section we consider the chiral limit M̂ = 0. In this limit
equation (6.35) reduces to

�y(n) = ��(n): (6.37)

As a consequence equation (6.34) reads v�(n � v)v = ��(n) and from (6.30) we obtain
that �(n+ v=2) and v�

y(n� v=2)v are independent of the direction v, namely

�(n+ v=2) = v�
y(n� v=2)v = x

1 + x2
�(n) =

p
2Æ � 1

2Æ
�(n): (6.38)

Let us exponentiate the small deformation �(n) and de�ne

G(n) := e
p
2Æ�1
2Æ

�(n): (6.39)

In doing so we pass from the Lie algebra of antihermitian matrices �(n) to the unitary group
U(NsNf ) of matrices G(n). The condition (6.34), which is equivalent to the saddle point
equations, can rewritten in the form

G(n+ v) = vG�1(n)v : (6.40)

2The condition can be only ful�lled if Mab � 0 for all avors a and b, especially for b = a. Let us assume
that one of the quark masses is di�erent from zero, for example ma 6= 0.
We conclude maa = maxa(x

�2
a � 1) � 0 , x2a � 1 , 2Æ � 1 +maxa � 1 � 0 , maxa � �2(Æ � 1) < 0,

which is a contradiction to ma > 0 and xa > 0. Applying this argument to all avors a, we conclude that the
condition can be only ful�lled in the chiral limit.
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The equations (6.38) can be considered as the beginning of an expansion in �(n + v=2),
�y(n+ v=2) and �(n) of

e�(n+v=2) = G(n); e�
y(n+v=2) = G�1(n): (6.41)

Further the ansatz (6.25) can be read as the linearized version of

Z(n+ v=2) = vXG(n); Zy(n+ v=2) = G�1(n)Xv: (6.42)

In the next subsection we proove that (6.42), when G(n) satis�es the condition (6.40), is an
exact solution of the saddle point equations.

6.4.4 Saddle Point Manifold

Inserting the ansatz (6.42) into the e�ective action (6.14) yields

S[G] = �
X
n

Tr ln

 X
v

�
vG�1(n� v)vX +XG(n)�+ M̂!+

X
n;v

Tr ln
�
1 +X2

�
: (6.43)

Making use of relation (6.40) and assuming the chiral limit, this expression simpli�es to

S[G] = S(0) �
X
n

Tr lnG(n): (6.44)

A further application of (6.40) allows to rewrite the term under the sum as follows,

Tr lnG(n) = 1

2
Tr lnG(n) + 1

2Æ

X
w

Tr ln(wG(n+ w)�1w)

=
1

2
Tr lnG(n)� 1

2Æ

X
w

Tr lnG(n+ w):
(6.45)

This epression vanishes, when we perform the sum over the lattice sites. In the chiral limit we
deal with a saddle point manifold: It is parameterized by a set of matrices G(n) 2 U(NsNf )
which satis�es (6.40).
The replacement of the saddle point by a saddle point manifold is related to the invariance of
the action under the chiral transformations (6.11). Indeed, the saddle point Zsaddle transforms
under this transformations like

Zsaddle(n+ v=2) ! Zsaddle(n+ v=2)(vV(n+ v)vV�1(n))
Zy0(n+ v=2) ! (V(n)vV�1(n+ v)v)Z

y
0(n+ v=2)

(6.46)

and with the identi�cation

G(n) = vV(n+ v)vV�1(n) (6.47)

we obtain the saddle point manifold. In this framework (6.40) is consequence of the relation
V(n+ 2v) = V(n) for chiral transformations.
Some of the chiral transformations leave the saddle point invariant: This happens if and only
if

V(n+ v) = vV�1(n)v: (6.48)
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We are faced with the following symmetry breaking pattern: The saddle point breaks the
symmetry of the chiral group, de�ned by the condition

V(n+ v + w) = wvV(n)vw; (6.49)

to a subgroup, de�ned by the stronger condition (6.48).
We calculate the saddle point manifold for di�erent types of lattices. It turns out that the
possible solutions of (6.40) depend on the structure of the underlying lattice. This is related
to the dependence of the group of chiral transformations on the lattice, see Chapter 4. Again
we consider the following lattices:

(i) General Lattice
Independent of the lattice there is a homogeneous solution of the saddle point equations
in the chiral limit,

G(n) = P� 
 g�1 + P+ 
 g (6.50)

with an arbitrary matrix g 2 U(Nf ).

(ii) Bipartite Lattice

On a bipartite lattice there is further solution of (6.40), where the matrix G staggers
from a lattice site a to its neighbor b in the way

G(a) = 1
 g�1; G(b) = 1
 g: (6.51)

In the equation above g 2 U(Nf ) and a 2 A and b 2 B label the sites of the two nested
sublattices.

(iii) Hypercubic Lattice

On the d-dimensional hypercubic (HC) lattice, the saddle point manifold is parameter-
ized by U(NsNf ). Indeed, we may choose a site n0 of the lattice and let the parameter
at this site take an arbitrary value G(n0) = G 2 U(NsNf ). Then (6.40) is satis�ed, i�

G(n0 +
dX

�=1

k�e�) = k11 :::
kd
d G(�1)

P
� k�

kdd :::
k1
1 : (6.52)

The choice of boundary conditions can possibly spoil the existence of this solution. We
assume an in�nite lattice or a lattice with an even number of sites in each direction and
periodic boundary conditions.

(iv) Bodycentered Hypercubic Lattice

A twofold application of (6.40) shows that the parameters of the saddle point manifold
satisfy

G(n+ v + w) = wvG(n)vw: (6.53)

On the four-dimensional bhc lattice this relation implies

G(n) = P� 
 gL + P+ 
 gR (6.54)

with gL, gR 2 U(Nf ), as we have proved in Chapter 4.3.2. The l. h. s. of the last
equation has to be equal to

vG�1(n)v = P+ 
 g�1L + P� 
 g�1R ; (6.55)
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and we conclude gR = g�1L =: g. The saddle point manifold is given by

G(n) = P� 
 g�1 + P+ 
 g; (6.56)

where the parameter g 2 U(Nf ) runs over the unitary matrices in avor space.

6.5 Gradient Expansion (Hypercubic Lattice)

Our aim is to derive an e�ective theory describing the long range behavior of the zero modes.
We obtain an e�ective continuum action by a long distance approximation in combination
with a gradient expansion around the saddle point manifold, as it was developed in [3, 2].
The e�ective action replaces the color-avor-transformed lattice action,

Svacuum[Z] �! S[G] = S(0) + S(2)[G] + S(4)[G] + � � � : (6.57)

The low energy expansion is carried out in the momenta of the zero modes; the indices k =
0; 2; 4 refer to the corresponding order O(pk) of the low energy expansion. The contributions
to the e�ective action come from the uctuations of the zero modes but also from the breaking
of chiral symmetry by the quark masses mf . The masses of the light quarks are considered
as small. To be more precise, the momenta of the zero modes p and the quark masses mf are
treated as small parameters, while the quotient p2=mf may take any value. In the low energy
expansion, the quarks masses count like O(p2). We will justify this chiral power counting

later. The expansion (6.57) involves only terms of even order, because contributions which
are odd in the momenta would violate the space-time parity.
There is another way to split the action into two terms, which have a di�erent origin from
the calculational point of view,

S[G] = Szero[G] + Smassive[G]: (6.58)

In passing to the low energy theory, the physical degrees of freedom are divided into massless
modes, whose dynamics is described by the e�ective action, and massive modes, which are
integrated out. The �rst term comes from the uctuations of the massless modes and their
coupling to the quark masses. The second term comes from the coupling of the massless modes
to massive modes; in the lowest order of the saddle point approximation this contribution is
given by a Gaussian integral over the massive modes. This section is devoted to the calculation
of Szero[G], while some of the contributions to Smassive[G] are calculated in the next section.
Recall that the zero modes can be written as

Z(n+ v=2) = vXG(n); Zy(n+ v=2) = G�1(n)Xv; (6.59)

where the �eld G(n) is placed on the lattice sites and has to satisfy the relation

G(n+ v) = vG�1(n)v : (6.60)

In the chiral limit they parameterize the saddle point manifold. As pointed out before,
the solutions of equation (6.60) and the shape of the saddle point manifold depend on the
underlying lattice.
On the hc lattice the solutions of (6.60) are staggered con�gurations of the �eld G. In view
of the continuum limit it is convenient to employ (instead of G(n)) a new �eld G(n), which
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Figure VII: Construction of a smooth parametrization of the massless modes

gives rise to a smooth parametrization of the saddle point manifold. To de�ne the new �eld,
we view the original lattice as a coarser lattice (with lattice constant 2a) with a non-trivial
elementary cell containing 2d sites of the original lattice. On the sites of the coarser lattice
n0 the new �eld coincides with the old one,

G(n0) := G(n0); (6.61)

but the two �elds di�er on the other 2d � 1 sites of the elementary cell,

G(n0 + v1 + :::+ vk) := 1:::k G�1(n0 + v1 + :::+ vk) k:::1: (6.62)

On the r. h. s. of the last formula on has to take G if k is even and G�1 if k is odd. The
construction of the �eld G is visualized in Figure VII.
We insert the ansatz (6.59) into the vacuum action and obtain

Szero[G] = �
X
n

Tr ln

 X
v

�
vG�1(n� v)vX +XG(n)�+ M̂! : (6.63)

The ansatz does not reach all possible �eld con�gurations; it belongs to the massless modes,
which are now allowed to uctuate in space-time and are not constrained by (6.60). In the
next step we pass to the variable G(n), which is the appropriate �eld in the continuum limit.
If n = n0 + v1 + :::+ vk, where n

0 is a site of the coarser lattice the connection is built by

vG�1(n� v)v + G(n) = 1:::k
�
G�1(n� v) +G�1(n)

�
k:::1: (6.64)

On the r.h.s. of the expression above, one has to take G for even k and G�1 for odd k.
Because of the dependence of this expression on the parity of k, it is useful to divide the hc
lattice in two nested sublattices A and B to express the action in terms of the new �eld,

Szero[G] =�
X
a2A

Tr ln

 X
v

(G(a� v)X +XG(a)) + M̂
!

�
X
b2B

Tr ln

 X
v

�
G�1(b� v)X +XG�1(b)

�
+ M̂

!
:

(6.65)
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Our aim is to expand the action Szero[G] up to order O(p4) in the momenta of the massless
modes. In doing so we make use of the Taylor expansions

G(n) = G(n� v=2) + a

2
@vG(n� v=2) + 1

2!

�a
2

�2
@2vG(n� v=2)

+
1

3!

�a
2

�3
@3vG(n� v=2) +

1

4!

�a
2

�4
@4vG(n� v=2) + :::;

G(n� v) = G(n� v=2) � a

2
@vG(n� v=2) + 1

2!

�a
2

�2
@2vG(n� v=2)

� 1

3!

�a
2

�3
@3vG(n� v=2) +

1

4!

�a
2

�4
@4vG(n� v=2) �+:::

(6.66)

and the expansion of the saddle point in powers of the quark masses (6.24).
Inserting these expression into the action Szero[G], we obtain the following contribution from
sublattice A,

Szero;A[G] =� 1

2ad

Z
ddx Tr ln

 
dfX;Gg+ M̂

+
X
v

�
a

2
[X; @vG] +

1

2!

�a
2

�2 fX; @2vGg+ 1

3!

�a
2

�3
[X; @3vG] +

1

4!

�a
2

�4 fX; @4vGg�
!

=� 1

2ad

Z
ddx Tr ln(2dxG)

� 1

2ad

Z
ddx Tr ln

 
1 +

G�1

2dx

�
M̂ � d

2
x2fM̂; Gg+ d

8
x3fM̂2; Gg

� a

4
x2[M̂; @G] +

a2

4
x�G� a2

16
x2fM̂;�Gg+ a4

192
x@4G

�!
:

(6.67)

For the di�erential operators which are acting on the massless modes we have introduced the
abbreviations @ :=

P
v @v and @

4 :=
P

v @
4
v . The contribution from sublattice B is obtained

from the result for the sublattice A by the replacement G ! G�1. When we sum both
contributions the integral in the third line of (6.67) cancels against the corresponding term
from sublattice B.
The next step is to expand the logarithm; the straightforward but cumbersome calculations
are presented in Appendix H.3. We arrange the result in the form

Szero[G] = S[G] + SM[G] + S;M[G]; (6.68)

where the �rst term belongs to the uctuations of the massless modes, the second term to the
breaking of chiral symmetry due to �nite quark massesM and the third term to a coupling
between the uctuations and the quarks masses. Expressed in terms of the left currents

L� := G�1@�G the three contributions are given by

S[G] =� a2�d

8d

Z
ddx

X
�

TrL2
�

+
a4�d

128d

Z
ddx

 
1

d

X
�;�

�
Tr(L2

�L
2
�) + Tr(@�L�@�L�)

�
+
1

3

X
�

�
Tr(@�L�)

2 � TrL4
�

�!
;

(6.69)
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SM[G] =� a�d

4dx

Z
ddx Tr

�M̂(G+G�1)
�

+
a�d

16d2x2

Z
ddx Tr

�M̂G�1M̂G�1 + M̂GM̂G
�

� a�d

8d

Z
ddx Tr

�M̂2(G+G�1)
�
+
x2a�d

16

Z
ddx Tr

�M̂G�1M̂G
�
;

(6.70)

S;M[G] = +
xa1�d

8d

Z
ddx Tr

�M̂(G�1@G� @GG�1)�
� a2�d

32d2x

Z
ddx

X
�

�
Tr
�
L2
�(G

�1M̂+ M̂G)
�
+Tr

�
@�L�(G

�1M̂ � M̂G)
��
:

(6.71)

Our result for the action Szero[G] contains two terms which do not have the full O(d) con-
tinuum symmetry: The last term of (6.69) which is proportional to

P
� @

4
� and the �rst term

of (6.71) which involves a �rst derivative in direction e1 + ::: + ed. The occurrence of the
former term is an artifact of the hc lattice. As we will see later it does not occur on the bhc
lattice.

6.6 Massive Modes (Hypercubic Lattice)

Starting point is the color-avor transformed action of strong-coupling QCD on a d-dimensional
hc lattice,

Svacuum[Z;Z
y] =�

X
n

Tr ln

0@ dX
�=1

�

�
Zy(n� �̂=2) + Z(n+ �̂=2)

�
+ M̂

1A
+
X
n

dX
�=1

Tr ln
�
1 + Z(n+ �̂=2)Zy(n+ �̂=2)

�
:

(6.72)

In this section we assume all quarks masses to have the equal value, m := m1 = ::: = mNf
.

In this case the mass matrix M̂ and the saddle point X proportional to the identity matrix
in avor space and they can be treated as scalars. Further we restrict ourselves to an even

number of space-time dimensions. In this case the structure of the Cli�ord algebra is analogous
to the one of the 4-dimensional Cli�ord algebra (cf. Appendix D).

6.6.1 Second Order Expansion

We introduce a set of coordinates �(n+�̂=2), �y(n+�̂=2) which parameterize the con�guration
manifold relative to the saddle point,

Z(n+ �̂=2) = �X (1 + �(n+ �̂=2))

Zy(n+ �̂=2) =
�
1 + �y(n+ �̂=2)

�
X�:

(6.73)
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In these coordinates the action reads

S[�; �y] = S(0) �
X
n

Tr ln

0@1 +D

dX
�=1

�
��

y
�(n� �̂=2)� + �(n+ �̂=2)

�1A
+
X
n

dX
�=1

Tr ln
�
1 +D

�
�(n+ �̂=2) + �y(n+ �̂=2) + �(n+ �̂=2)�y(n+ �̂=2)

��
;

(6.74)

where we have introduced the mass dependent parameter

D :=
X2

1 +X2
=

1

2d

1

1 + M̂=2dX
: (6.75)

We assume that the deviations �, �y from the saddle point are small and expand the action
in these parameters,

S = S(0) + S(2)[�; �y] + � � � : (6.76)

In this expansion the zeroth order S(0) is the value of the action at the saddle point, the �rst
order of the expansion vanishes, because we are expanding around a saddle point, and the
second order is given by

S(2)[�; �y] =
X
n

1

2
D2
X
�;�

�
Tr
�
�y(n+ �̂=2)�(n+ �̂=2)

�
+ 2Tr

�
�(n+ �̂=2)��

y(n� �̂=2)�
�
+Tr

�
��

y(n� �̂=2)���y(n� �̂=2)�
��

+D
X
�

Tr
�
�y�(n)��(n)

�
� 1

2
D2
X
�

�
Tr
�
�2�(n)

�
+ 2Tr

�
��(n)�

y(n� �̂=2)�+Tr
�
�y2� (n)

��
(6.77)

The traces in the action above include avor and spin degrees of freedom. In the next section
we will evaluate the trace over the spin space.

6.6.2 Decomposition of the Spin Sector

In this subsection we make use of some properties of the Cli�ord algebra in even dimensions
(cf. Appendix D). Consider a matrix � in spin and avor space. Concerning the spin
components it can be decomposed into a sum of the Cli�ord basis elements fmg, namely

� =
X
m

�mm: (6.78)

The sum extends over all subsets m of f1; :::; dg and the coeÆcients coeÆcients �(m) are
matrices in avor space. In particular, �m with m = ; is the scalar part of �, and �m with
m = f1; :::; dg the pseudoscalar part.
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We insert the decomposition (6.78) into the second order action (6.77). In an even dimensional
space, the traces of all basic Cli�ord elements except the unity matrix vanish. We conclude
that there is no coupling between the sectors of di�erent indicesm and the action decomposes
into a sum over these sectors,

S(2)[�; �y] = Ns

X
m

S(2)m [�m; �
y
m]: (6.79)

For an index m = f�1; :::; �kg we de�ne

jmj := #m = k (6.80)

Æ�m :=

(
1 if � 2 m
0 otherwise:

(6.81)

With the help of this de�nitions the combinations of -matrices appearing in the action can
be expressed as

�m� = (�1)Æ�m+jmjm; (6.82)

where the action belonging sector m is given by

S(2)m (�; �y) =
X
n

1

2
D2
X
�;�

�
Tr(�(n+ �̂=2)�(n+ �̂=2))

+2(�1)jmj+Æ�m Tr(�(n+ �̂=2)�y(n� �̂=2))

+(�1)Æ�m+Æ�m Tr(�y(n� �̂=2)�y(n� �̂=2))
�

+D
X
�

Tr(�y�(n)��(n))

�1
2
D2
X
�

�
Tr(�2�(n)) + 2Tr(��(n)�

y(n� �̂=2)) + Tr(�y2� (n))
�
:

(6.83)

In order to calculate the eigenmodes of the action (6.83), we will exploit its periodicity over
the lattice.

6.6.3 Fourier Transformation

Fourier Transformation of the Fields

Note, that the �eld is located on a lattice built by the centers of the links of the d-dimensional
hypercubic lattice (the line graph of the later). It can be easily seen that in dimensions d > 2
this lattice is no Bravais lattice, because it is not homogeneous with respect to its sites. Thus
we will apply the Fourier transformation to an hypercubic lattice with lattice constant a

2 ,
which includes all the points of the line graph. Its �rst Brillouin zone is given the wave
vectors k with

�2��̂ < k� � 2��̂: (6.84)

Further we assume periodic boundary conditions in each of the d directions,

�(n+ L�̂) = �(n); (6.85)
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which lead to a quantization of the wave vector,

k 2 span
�
2�

L
1̂; :::;

2�

L
d̂

�
: (6.86)

Having done all the preparations we label the sites of the �ner lattice by the variable l and
de�ne Fourier coeÆcients through

�m(k) := L�d=2
1

Nd

X
l

e�ikl�m(l): (6.87)

Using the Fourier theorem, the spacetime �elds can be expressed as

�m(l) = L�d=2
X
k

eikl�m(k); �ym(l) = L�d=2
X
k

eikl�ym(�k): (6.88)

Fourier Transformation of the Action

Inserting the Fourier transformed �elds into the second order action, we get

S(2)m = NsD
2
X
m

X
k

�
Am(k)Tr �m(k)�m(�k)

+Bm(k)Tr �m(k)�
y
m(k) + Cm(k)Tr �

y
m(k)�

y
m(�k)

�
; (6.89)

where coeÆcients Am, Bm, Cm are given by

Am(k) =
X
�<�

cos
k� � k�

2

ReBm(k) = (�1)jmj
X
�;�

(�1)Æm� cos
k� + k�

2
+

d

X2

ImBm(k) = �(�1)jmj
X
�;�

(�1)Æm� sin
k� + k�

2

Cm(k) =
X
�<�

(�1)Æm�+Æm� cos
k� � k�

2

(6.90)

In the next step we decompose the �eld in the con�guration space �(l) into an hermitian part
�(l) and an antihermitian part �(l), namely

�(l) = �(l) + �(l); where �y(n) = �(n) and �y(n) = ��(n): (6.91)

The Fourier coeÆcients of � and � satisfy

�y(k) = �(�k); �y(k) = ��(�k): (6.92)

In Fourier space � and � are no longer restricted to be hermitian or antihermitian, but may
take arbitrary complex values. In term of the new variables the action takes the form

S(2)[�; �] = NsD
2
X
m

X
k

�
A0m(k)Tr �

y
m(k)�m(k) +B0m(k)Tr �

y
m(k)�m(k)+

C 0m(k)Tr �
y
m(k)�m(k) +D0

m(k)Tr �
y
m(k)�m(k)

�
; (6.93)
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where the primed coeÆcients are given by

A0(k) = A(k) +B(k) + C(k);

B0(k) = A(k) +B(k)� C(k);
C 0(k) = �A(k) +B(k) +C(k);

D0(k) = �A(k) +B(k)�C(k):

(6.94)

Hermitian conjugation has to be combined with PT (parity and time reversion) transformation
to be a symmetry of the �eld �(k) resp. �(k). Thus we can restrict the summation over the
Fourier vectors k to the half of the �rst Brillouin zone. We de�ne a subset of the �rst Brillouin
zone by M := fk 2 1. BZ j (k1 > 0) or (k1 = 0 and k2 > 0) or ::: or (k1 = 0; :::; kd�1 =
0 and kd > 0)g. In doing so we get a decomposition of the �rst Brillouin zone, 1. BZ =
f0g [M [ (�M). In what follows for a function f(k) on Fourier space we make use of the
restricted sum X0

k

f(k) :=
1

2
f(0) +

X
k2M

f(k): (6.95)

Switching to the �elds �, � and restricting the values of k to the half of the �rst Brillouin
zone we get for the second order action

S(2)[�; �] = NsD
2
X
m

X0

k

�
A00m(k)Tr �

y
m(k)�m(k) +B00m(k)Tr �

y
m(k)�m(k)+

C 00m(k)Tr �
y
m(k)�m(k) +D00 m(k)Tr �ym(k)�m(k)

�
= NsD

2
X
m

X0

k

Qm;k(�m(k); �m(k));

(6.96)

where Q
(m)
k denotes the quadratic form

Qm;k(�; �) = (�y; �y)
�
A00m(k) B00m(k)
C 00m(k) D00

m(k)

��
�
�

�
: (6.97)

The coeÆcients of the quadratic form Qk follow from (6.90) and are given by

A00m(k) = 2Am(k) + 2ReBm(k) + 2Cm(k);

B00m(k) = 2Am(k) + 2i ImBm(k)� 2Cm(k);

C 00m(k) = �2Am(k) + 2i ImBm(k) + 2Cm(k);

D00
m(k) = �2Am(k) + 2ReBm(k)� 2Cm(k):

(6.98)

6.6.4 Masseless and Massive Modes

Positive Semide�niteness and Zero Modes

Det(Qk � �kI) = Det

�
A00(k)� �k B00(k)
C 00(k) D00(k)� �k

�
= �2 � (A00(k) +D00(k))� +A00(k)D00(k)�B00(k)C 00(k)
= �2k � 4Re(B)�k + 4(jBj2 � 4AC):

(6.99)

�k = 2
�
ReB(k)�

p
4A(k)C(k) � (ImB(k))2

�
(6.100)
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We specialize to the scalar (m = ;) and the pseudoscalar (m = f1; :::; dg) sector. In this sectors
two o� the coeÆcients are equal, Am(k) = Cm(k), and we obtain the following estimate for
the eigenvalue with the smaller real part,

Re� � 2ReB � 4A

= �2
X
�;�

cos
k� + k�

2
+

2d

X2
� 4

X
�<�

cos
k� � k�

2

� �2d2 + 2d

X2
� 2d(d � 1)

= 2d(2d � 1)

�
1

1� M̂X
� 1

�
� 0:

(6.101)

The plus sign (minus sign) in the second line corresponds to the scalar (pseudoscalar) sector.
The last inequality is valid, because we expanded the action around z = z� < 0.
Having proved that Qm(k) is positive semide�nite in the considered sectors we now look
for zero eigenvalues of the quadratic form. In doing so we have to distinguish between the
scalar and the pseudoscalar sector. In the scalar sector equality at the �rst and the third
line of (6.101) occurs if and only if sin

k�+k�
2 = 0, cos

k�+k�
2 = �1 and cos

k��k�
2 = 1 that is

k� + k� 2 2� + 4�Z and k� � k� 2 4�Z. In the pseudoscalar sector a zero mode appears for

sin
k�+k�

2 = 0, cos
k�+k�

2 = 1 and cos
k��k�

2 = 1 that is k� + k� 2 4�Z and k� � k� 2 4�Z.
Restricting the values of k to the half of the �rst Brillouin zone there are zero modes for

k1 = ::: = kd = � (scalar sector); (6.102)

k1 = ::: = kd = 0 (pseudoscalar sector): (6.103)

(In d = 2 there is another zero mode in the pseudoscalar sector: k1 = k2 = 2�.) Equality at
the last line of (6.101) occurs only in the chiral limit m = 0, i.e. massless excitations in the
two considered sectors exist only in the chiral limit.

Integration over the Massive Modes (Pseudoscalar Sector)

In the pseudo-scalar sector the coeÆcients of the second-order quadratic form take the values
(we drop the subscripts m = f1; 2; :::; dg)

A00(k) = 4

 X
�

sin
k�
2

!2

� 2d+
2d

X2
(6.104)

B00(k) = C 00(k) = 2i
X
�;�

sin
k� + k�

2
(6.105)

D00(k) = �4
 X

�

cos
k�
2

!2

� 2d+
2d

X2
: (6.106)

Thus the quadratic form at zero wave vector is given by

Q(k = 0) =

�
4d(d� 1) + �(m) 0

0 �(m)

�
; (6.107)
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where we introduced a function of the quark masses, which for aM � 1 is linear in that
masses, namely

�(m) := 2d(2d � 1)

 
1

1� M̂=X
� 1

!
� 4d

p
2d� 1 am:

(6.108)

The next step is to do the Gaussian integral over the massive �eld �, which gives the resultZ
d�(k)d�y(k) exp

��NcNsD
2Qk(�(k); �(k))

�
� const.� exp

�
�NcNsD

2

�
D00(k)� B00(k)C 00(k)

A00(k)

�
Tr �y(k)�(k)

�
= const.� exp

�
�Nc(D0(k) +D2(k))Tr �

y(k)�(k)
�
;

(6.109)

where the coeÆcient in front of the quadratic term in �

D0(k) := NsD
2D00(k) = NsD

2

0@4d2 � 4

 X
�

cos
k�
2

!2

+ �(M)

1A
� NsD

2

 
a2d

X
�

k2� + �(M)

! (6.110)

picks up the correction

D2(k) := �NsD
2B

00(k)C 00(k)
A00(k)

= NsD
2

�Pd
�=1 sin

k�
2

�2 �Pd
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k�
2

�2
�Pd

�=1 sin
k�
2

�2
+ d(d� 1) + �(m)

4

� a2NsD
2 d2

4d(d � 1) + �(m)

 X
�

k�

!2

:

(6.111)

The term
�P

� k�

�2
is not invariant under the lattice symmetry group: its breaks the sym-

metry under reections on hyperplanes parallel to the coordinate axis. In what follows we
replace it by the invariant term

P
� k

2
�.

In the chiral limit the correction is

D2(k) =
1

4(d � 1)
D0(k); (6.112)

that are about 8:3% of D0(k) in d = 4 dimensions.

6.6.5 Long Distance Approximation

There are two equivalent ways to get a continuum action in space time from the discrete
action in Fourier space

S2[�; �
y] =

1

2

X
k

(D0(k) +D2(k)) Tr �
y(k)�(k)) (6.113)
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One can now proceed in two di�erent way: start with the inverse Fourier transformation
and then do the continuum limit or begin with the continuum limit and then do the inverse
Fourier transformation. Applying the latter method, we replace the sum over the Fourier
space by an integral, X

k

�!
�
La

2�

�d Z
Rd

ddp: (6.114)

Note that lattice Fourier transformed and the continuum Fourier transformed functions are
not identical (see Appendix F), but di�er by a factor,

�(k) �! a�d
�
2�

L

�d=2
�(p) (6.115)

Because we are dealing with quadratic expression, we will pick up an overall factor a�d, when
we pass from the lattice to an continuum formulation.
We exponentiate the hermitian �eld � to an unitary �eld g := exp � 2 U(Nf ). Making use of
Parseval's relation and the expansion g � 1 + � + 1

2�
2, we obtainZ

ddp Tr �y(p)�(p) =
Z
ddx Tr �y(x)�(x)

= �
Z
ddx Tr(g(x) + g�1(x)):

(6.116)

Using Parseval's relation again and an expansion g � 1 + � we getZ
ddp p2Tr �y(p)�(p) =

Z
ddp Tr(ip�(k))y(ip�(k))

=

Z
ddx Tr @�y(x)@�(x)

=

Z
ddx Tr @g�1(x)@g(x):

(6.117)

Finally we obtain a continuum action in spacetime which consists of two contributions,

S(2)(g) = S(g) + SM (M): (6.118)

The �rst summand contains the kinetic energy of uctuations up to second order in the chiral
limit and is given by

S(g) = Ns
a2�d

8d

�
1 +

1

4(d� 1)

�Z
ddx Tr

�
@g�1(x)@g(x)

�
: (6.119)

The second part describes the e�ect of nonzero quarks masses M in �rst order,

Sm(g) = �Ns
a1�d

2d

p
2d� 1m

Z
ddx Tr

�
g(x) + g�1(x)

�
: (6.120)

The results are in agreement with calculations in spacetime done before. New is the replace-
ment 1! 1 + 1

4(d�1) due to the contribution of the Gaussian integration.
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6.7 Gradient Expansion (Bodycentered Hypercubic Lattice)

We follow the line of the gradient expansion on the hc lattice (6.5) to obtain an e�ective
action on the bhc lattice. Again, the massless modes are given by

Z(n+ v=2) = vXG(n); Zy(n+ v=2) = G�1(n)Xv; (6.121)

where the �eld G(n) has to satisfy G(n + v) = vG�1(v)v . We have already studied the
solutions of this equation on the bhc lattice: On this lattice the �eld G(n) has the shape

G(n) = P� 
 g�1(n) + P+ 
 g(n); (6.122)

with g(n) 2 U(Nf ) and the saddle point manifold is given by the homogeneous con�gurations
g(n) = const. Thus the above parametrisation of the saddle point manifold corresponds to a
smooth con�guration of the �eld g and the dynamics of the massless modes can be described
by an continuum action S[g], which replaces the color avor-transformed lattice action,

Svacuum[Z] �! S[g] = S(0) + S(2)[g] + S(4)[g] + � � � : (6.123)

The three contributions refer to the order of the expansion in the momenta of the massless
modes, as in the case of the hc lattice.
Neglecting the coupling between the massless and the massive modes, we only consider the
contribution to the e�ective action S[g], which comes from inserting the massless modes
(6.121) into the color-avor transformed action. By making use of the property vG�1(n)v =
G(n) which follows from (6.122), we obtain the action

Szero[g] = �
X
n

Tr ln

 X
v

(G(n� v)X +XG(n)) + M̂
!
: (6.124)

The next step is to perform an expansion in the momenta of the zero modes and the quark
masses in complete analogy to what we have done for the theory on the hc lattice; we again
arrange the result in the form Szero[g] = S[g] + SM[g] + S;M[g]. In doing so we pass from
the theory on the four-dimensional bhc lattice to a continuum formulation. The connection
between these formulations is built by the formulasX

n

! 2

a4

Z
d4x;

X
v

@2v ! 3�;
X
v

@4v !
3

2
�2; (6.125)

which are derived in G.
Di�erent from the theory on the hc lattice, where the Goldstone �eld is a NsNf � NsNf

matrix, the Goldstone �eld obtained from the theory on the bhc lattice is a Nf �Nf matrix
and the trace over the spin sector can be performed,

TrG = Ns

2
(Tr g +Tr g�1) = 2(Tr g +Tr g�1): (6.126)

Having paid attention to the special qualities of the theory on the bhc lattice, we are now in
position to derive the corresponding low energy action directly from the expression which we
have obtained in appendix H.3. The three contributions to the e�ective action are given by

S[g] =� 1

4a2

Z
d4x

X
�

TrL2
�

+
1

768

Z
d4x

X
�;�

�
Tr(L2

�L
2
�) + 5Tr(@�L�@�L�)

�
;

(6.127)
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SM̂[g] =�
p
23

6a4

Z
d4x Tr

�M̂(g + g�1)
�

+
23

288a4

Z
ddx Tr

�M̂g�1M̂g�1 + M̂gM̂g
�

� 1

12a4

Z
ddx Tr

�M̂2(g + g�1)
�
+

1

46a4

Z
ddx Tr

�M̂g�1M̂g
�
;

(6.128)

S;M[g] = +
1

12
p
23a3

Z
ddx Tr

�M̂(g�1@g � @gg�1)�
�
p
23

192a2

Z
ddx

X
�

�
Tr
�
L2
�(g

�1M̂+ M̂g)
�
+Tr

�
@�L�(g

�1M̂ � M̂g)
�
:
(6.129)

For the bhc lattice all terms except the �rst term of S;M[g] have the full O(4) continuum
symmetry. There are no fourth order contributions to S[g] that break the continuum sym-
metry, as for the hc lattice. As we discussed before (cf. Chapter 4.3.1), this is a consequence
of the fact that the bhc lattice has a larger symmetry group than the hc lattice.

6.8 Comparison with Experimental Data

We have applied the color-avor transformation to the strong coupling limit of QCD. The
transformed partition function was evaluated in the large-Nc limit and an e�ective low energy
theory was derived. This section deals with the calculation of observable quantities from the
e�ective theory and comparison of their values with experimental data. We start with an
estimate for the value for the chiral condensate. Then we compare the coeÆcients in front of
the di�erent terms of the e�ective Lagrangian with experimental values.
Having worked with a lattice formulation of QCD, one would expect that the lattice constant
a has to be driven to zero to recover a continuum theory. But the second order uctuation
action is proportional to a2�d and would diverge in that limit. We conclude that the lattice
constant has to be �xed at a �nite value and a continuum action can be obtained in a long
distance approximation, where uctuations of the e�ective �eld on scales smaller than the
lattice constant are neglected. The impossibility to reach the continuum limit a ! 0 is
connected with the strong coupling approximation of QCD which we employed right from the
beginning: QCD is an asymptotically free theory, i. e. it is weakly coupled at small distances.
Thus a continuum limit would contradict the strong coupling approximation.
The e�ective �eld of the low energy theory is a collective �eld of quarks and gluons which
should describe the lightest mesons. Fitting the e�ective theory to their properties, the lattice
constant a should be seen as a free parameter, which sets the energy scale of the theory.
Di�erent estimates for this parameter will be obtained in the next sections from comparison
with experimental data.

6.8.1 Chiral Condensate

The chiral condensate is the expectation value of the quantity �qfqf of a quark �eld of avor
f = u; d; s; ::: in the ground state. With help of the partition function (2.68) and the volume
of space-time V it can be expressed as

h�qfqf i = 1

V

Z
[d�qdq] �qfqfZ(�q; q)

�Z
[d�qdq]Z(�q; q): (6.130)
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The chiral condensate of the lightest avors f = u; d should be well approximated by its value
in the chiral limit, which can be expressed as a logarithmic derivate,

h�qfqf i � � 1

V

d

dmf

����
mf=0

lnZ = �K3a

K2V

d

dm̂f

����
m̂f=0

lnZ: (6.131)

Because we do not have an exact expression for the dependence of the partition function on
the quark masses m̂f , we make use of the saddle point approximation Z � e�NcSsaddle which
is exact in the large Nc limit,

h�qfqf i � NcK3a

K2V

d

dm̂f

����
m̂f=0

Ssaddle

= � NcNs

K2ad�1
d

dm̂f

����
m̂f=0

ln(2Æxf + m̂f )

= � NcNs

K2ad�1
Æ � 1

2Æ
p
2Æ � 1

:

(6.132)

Recall that 2Æ is the coordination number of the lattice. In the calculations above the volume
of space-time was expressed in terms of the number of lattice sites, V = K3Nad. Note the
presence of the factor K3 in this formula, which takes into account that the bhc lattice consists
of two nested sublattices.
The negative value for the chiral condensate is in agreement with general theoretical con-
siderations (cf. Section 4.3). We compare it with the experimental value h�qfqf iexp =
�((250 � 35) MeV)3 to get an estimate for the lattice constant a. The result is

a�qq, hc = (166 MeV)�1 (6.133)

for the theory on the hc lattice and

a�qq, bhc = (104 MeV)�1 (6.134)

for the theory on the bhc lattice. We conclude that for a realistic theory, the lattice constant
has to be �xed at about 1 fm (200 MeV � 1 fm).

6.8.2 Low Energy E�ective Lagrangians

Chiral Lagrangians have been shown to work well in the description of low energy properties
of mesons and baryons since their introduction by Weinberg. They were �rst introduced to
recover the relations of the current algebra [46] and later justi�ed by symmetry arguments
[47]. Based on the chiral symmetry, Gasser and Leutwyler developed a technique which allows
to expand the QCD Green's functions in terms of momenta p of the low energy modes and
the masses of the lightest quarks m [17], [18]. This formalism is known as chiral perturbation
theory and treats p2 and m as small, while p2=m is allowed to have any value (chiral power
counting). The expansion was carried out up to fourth order in p and the coeÆcients in
front of the di�erent terms were determined by experimental data [18], [7]. More recently the
expansion was extended up to sixth order [16].
Di�erent attempts were made to obtain chiral Lagrangians as low energy approximation of
more fundamental theories. Low energy e�ective Lagrangians were obtained from the Nambu-
Jona-Lasino model [15] or the strong coupling limit of QCD [28], [29], [26], [31]. We employed
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the color-avor transformation to connect the usual formulation of QCD in terms of quarks
and gluons with an equivalent, but in view of low energy physics more suitable formulation.
The color-avor transformation is an exact identity, but we are working in the strong coupling
limit and make use of a large Nc approximation.
We identi�ed the Goldstone modes in the color-avor transformed formulation and obtained
an e�ective Lagrangian which describes their dynamics. We have neglected the axial anomaly;
therefore we expect the symmetry breaking pattern U(Nf )L�U(Nf )R ! U(Nf )L+R and N2

f

Goldstone modes. In fact the expected number of Goldstone particles appears in the theory
on the bhc lattice, but the theory on the hc lattice has N2

sN
2
f Goldstone modes. This enlarged

number of Goldstone modes should be regarded as a lattice artifact; QCD on the hc lattice
has an enlarged chiral symmetry group compared with the continuum theory (cf. Chapter
4). We therefore restrict ourselves to the theory on the bhc lattice, when we try to identify
the Goldstone particles with the experimentally observed light mesons.

Second Order Chiral Perturbation Theory

A general second order Lagrangian is given by the kinetic energy of the Goldstone bosons
plus symmetry breaking term which is of �rst order in the quark masses,

L(2)[g] = L(2) [g] + L(2)M [g] =
F 2

4

�
Tr(@g�1@g)� 2B TrM(g�1 + g)

�
: (6.135)

Comparing this expression with our result (bhc lattice, Nc = 3 colors), the coupling constants
come out as

F =
p
Nc

1

a
; B = 2

p
23
1

a
: (6.136)

The nine Goldstone bosons arising from the spontaneous symmetry breaking are collected in
the U(3) matrix

g(x) = exp(i�(x)=F ); (6.137)

which is set into correspondence to the physical mesons by the identi�cation

� =
p
2

0B@
1p
2
�0 + 1p

6
� + 1p

3
�0 �+ K+

�� � 1p
2
�0 + 1p

6
� + 1p

3
�0 K0

K� �K0 � 2p
6
� + 1p

3
�0

1CA : (6.138)

We expand the Lagrangian in terms of the physical �elds, to obtain the masses of the mesons.
In doing so we split the charged pions in real and imaginary part �� = �r � i�i and put all
pions together to an isospin vector � = (�r; �i; �0). Analogously we put the charged kaons
together to a spinor K0 = (K0;r;K0;i) as well as the neutral kaon and its antiparticle to a
spinor K = (K0

r ;K
0
i ). An expansion of the Lagrangian around � = 0 gives

L(2)[g] � 1

4
Tr(@�)2 �B TrM

�
F 2 � 1

2
�2
�

=
1

2

�
(@�)2 + (@�)2 + (@K)2 + (@K0)

2 + (@�0)2
�

�BF 2 (mu +md +ms)

+
1

2

�
M2

��
2 +M2

� �
2 +M2

KK
2 +M2

K0
K0

2 +M2
�0�

02
�

(6.139)
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Figure VIII: Masses of the light pseudoscalar mesons versus the masses of their quark content.
Data (diamonds) from [20]. The mass of the �0-particle is anomalous and left out of the �t.
Slope of the �tted line: B = 1:48 � 0:08 GeV.

with the masses

M2
� = B(mu +md)

M2
� =

1

3
B (mu +md + 4ms)

M2
K = B(mu +ms)

M2
K0

= B(md +ms)

M2
�0 =

2

3
B (mu +md +ms) :

(6.140)

As result we obtain the standard kinetic energy and a mass terms for all the mesons. The
square of the meson masses turn out to be linear in the quark masses. That is the reason
why the quark masses have to be considered as O(p2) in the framework of chiral perturbation
theory. The constant B can be obtained from a linear �t, see Figure VIII.
Further, in the chiral limit, we get for the chiral condensate of a avor f = u; d; s

h�qfqf i � d

dm̂f

����
m̂f=0

��BF 2 (mu +md +ms)
�
= �BF 2: (6.141)

Solving this equation for the constant B and inserting it into the equation for the pion mass
(6.140) we recover the Gellmann-Oakes-Renner relation [19],

M2
�F

2 = �mu +md

2
(h�ququi+ h�qdqdi) +O(m2): (6.142)

We conclude that the constant F has to be identi�ed with the pion decay constant F�. Having
�xed the two low energy constants at their physical values

F = F� = 93 MeV; B = 1480 MeV; (6.143)
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we make use of (6.136) to get an estimate for the lattice constant from each of the two values,

aF , bhc = (54 MeV)�1; aB, bhc = (154 MeV)�1: (6.144)

Fourth Order Chiral Perturbation Theory

Neglecting the axial anomaly, the chiral Lagrangian at order p4 contains two di�erent classes
of contributions:

(i) The most general fourth order Lagrangian L(4)[g] which is compatible with gauge and
Poincar�e invariance.

(ii) One-loop graphs associated with the Lagrangian of order O(p2); they are also of order
O(p4).

Gasser and Leutwyler obtained the most general form of the fourth order Lagrangian, which
contains ten low energy constants `1; :::; `10 as parameters [18]. Their result is related to a
SU(3) meson �eld g which corresponds to the octet of the lightest mesons without the heavier
�0 particle. The �rst eight terms of their Lagrangian read

L(4)GL[g] = `1
�
Tr(@�g

y@�g)
�2
+ `2 Tr(@�g

y@�g)Tr(@�gy@�g) + `3Tr(@�g
y@�g@�gy@�g)

+`4Tr(@�g
y@�g)Tr(�yg + �gy) + `5 Tr(@�g

y@�g(�yg + gy�))

+`6
�
Tr(�yg + �gy)

�2
+ `7

�
Tr(�yg � �gy)�2 + `8Tr(�

yg�yg + �gy�gy):

(6.145)

We have omitted two more terms which contain couplings of the meson �eld to external
vector currents. The �eld �(x) has physical dimension [length]�1 and in absence of external
perturbations it is given by

�(x) = 2BM: (6.146)

The calculation of the loops associated with the second order Lagrangian gives a divergent
result. The method of dimensional regularization was applied [18] to absorb the divergences
into the coupling constants `1; :::; `10 and to renormalize them. The renormalized low energy
constants are given by

`ri = `i � �i�; (6.147)

where the scale dependent divergence enters through the parameter

� =
1

32�2
�d�4

�
2

d� 4
� ln 4� � 1 + 

�
: (6.148)

When the renormalization scale � changes from �1 to �2 the renormalized coupling constants
experience a change

`ri(�2) = `ri(�1) +
�i
16�2

ln

�
�1
�2

�
: (6.149)

The renormalization coeÆcients �i for the low energy constants `1; :::`8 are listed in Table
VI. The table also contains estimates of the low energy constants from experimental data.
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i �i low energy constants

experiment `ri theory `i
1 3=32 0:9� 0:3 0
2 3=16 1:7� 0:7 0
3 0 �4:4� 2:5 3.9
4 1=8 0� 0:5 0
5 3=8 2:2� 0:5 15.0
6 11=144 0� 0:3 0
7 0 �0:4� 0:2 0
8 5=48 1:1� 0:3 26.8

Table VI: Low energy coupling constants in units of 10�3. Experimental values at the scale
� =M�. Predictions of our theory for a�1 = 100 MeV.

Let us collect the terms of order O(p4) which we have obtained from our approach to strong
coupling QCD. The result is a Lagrangian

L(4)[g] = Nc

�
l1Tr(L

2
�L

2
�) + l2 Tr(@�L�@�L�)

+ l3a
�1 Tr

�
L2
�(g

�1M+Mg)
�
+ l4a

�1Tr
�
@�L�(g

�1M�Mg)
�

+ l5a
�2 Tr

�Mg�1Mg�1 +MgMg
�

+ l6a
�2 Tr

�M2(g + g�1)
�
+ l7a

�2Tr
�Mg�1Mg

��
;

(6.150)

with the dimensionless constants

l1 =
1

768
; l2 =

5

768
; l3 = l4 = �

p
23

32
; l5 =

23

8
; l6 = �3; l7 = 18

23
: (6.151)

Our Lagrangian does not contain contributions, which are a product of two traces,

`1 = `2 = `4 = `6 = `7 = 0: (6.152)

(Such terms can arise, when one calculates the mass action, which describes the inuence of
the massive modes on the Goldstone modes, to higher order than we did. As on example of
such a term, in Ref. [2] the Garde term (H.22) was obtained.) Not all of the above coeÆcient
are independent. At order O(p4) of chiral perturbation theory we have to consider the classical
equation of motion

@�L� +Bg�1M�BMg = 0 (6.153)

which follows from the second order Lagrangian (6.139). Applying this relations, we ob-
serve that all contributions of our Lagrangian except the two last ones appear in the general
Lagrangian of Gasser and Leutwyler. The predictions for the corresponding coeÆcients are

`3 = Ncl1;

`5 = �1
2
Ncl3(aB)

�1;

`8 =
1

2
Ncl2 � 1

4
Ncl4(aB)

�1 +
1

4
Ncl5(aB)

�2:

(6.154)
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Our values for the low energy constants `3, `5, `8 with a = (100 MeV)�1 are plotted in Table
VI.

6.8.3 Discussion

Our predictions for the low energy constants are in bad agreement with the experimental
values. This must be connected with the approximations we have done: the strong coupling
limit and the saddle point approximation. In the strong coupling limit one loses all inform-
ation about the dynamics of the quarks. For that reason one should not expect quantitative
agreement between the predictions of the theory and the experimental values. While the
1=Nc expansion in principle could be extended to higher orders, QCD is de�nitely much more
complicated than its strong coupling limit.





Chapter 7

Strong Coupling Quantum
Chromodynamics (Static Baryon)

In this chapter we calculate the color-avor transformation of strong coupled QCD and discuss
a model of a static baryon. In contrast to the last chapter, where we restricted ourselves to
the mesonic sector of the theory, we now treat the full theory with baryons. As a consequence
of the structure of the color-avor transformation for the special unitary group SU(Nc), the
color-avor-transformed partition function decomposes into a sum of contributions which
correspond to mesonic excitations over the baryonic vacuum as well as over con�gurations
with baryons and antibaryons.

7.1 Color-Flavor Transformation of the Lattice Action

We consider the strong coupling limit of QCD in the formulation of a SU(Nc) lattice gauge
theory. With the notations of Chapter 6, the partition function is given by

Z =

Z
[dqd�q]Z[q; �q]; where

Z[q; �q] =
Y
n;v

Z
SU(Nc)

dU(n+ v=2) e�SU (n+v=2)�SM;q;�q(n) :
(7.1)

We perform the color-avor transformation in the same way as in the last chapter. Now make
use of its more complicated version for the special unitary group SU(Nc) which was stated in
Chapter 3. The result of the transformation reads

Z[q; �q] =
X
fBg

Y
n;v

Z
D�(Z;Zy(n+ v=2))

Det(1 + (ZZy)(n+ v=2))Nc
�BZ;q;�q(n+v=2) e

�SZ;q;�q(n+v=2)�SM;q;�q (n); (7.2)

where the sum extends over all possible distributions fBg of the baryon number (actually,
the baryonic ux) over the links of the lattice. As before, the color-avor transformed action
on a link n+ v=2 given by

SZ;q;�q(n+ v=2) = K2a
d�1
�
�qia(n)vZab(n+ v=2)qib(n)

+�qjb(n+ v)vZ
y
ab(n+ v=2)qjb (n+ v)

�
:

(7.3)
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The only new ingredients are the coeÆcients �0(n+�̂=2) := �0 and (with B = B(n+�̂=2) > 0)

�BZ;q;�q(n+ v=2) :=

�B(n+v=2)

�
��q(n)v

q
1 + ZZy(n+ v=2);

q
1 + ZZy(n+ v=2)q(n+ v)

�
; (7.4)

��BZ;q;�q(n+ v=2) :=

��B(n+v=2)

�q
1 + ZyZ(n+ v=2))q(n);��q(n+ v)v

q
1 + ZyZ(n+ v=2)

�
: (7.5)

with functions �B , B = �Nf ; :::;+Nf from Chapter 3. The partition function (7.2) is a sum
over all con�gurations of the baryonic ux fB(n + v=2)g on the lattice. For most of these
con�gurations, the Grassmann integral over the quarks vanishes identically. To see that, we
expand the integrand for a given con�guration into a polynomial in the Grassmann �elds,
and count (for each site n) the number of fermions q(n); �q(n) in the various monomials:

� For every direction v, the coeÆcient �BZ;q;�q(n+v=2) contains NcjBj Grassmann variables
�qia(n) if B > 0, and the same number of Grassmann variables qia(n) if B < 0.

� For the coeÆcients �BZ;q;�q(n� v=2) the situation is the same, except that q(n) and �q(n)
change their roles.

� Each term of the expansion of e�SZ;q;�q(n+v=2)�SM;q;�q(n) involves as many �q(n) as q(n).

The Grassmann integral
R
dq(n)d�q(n) extracts the coeÆcient of the top{monomial,

Z
d�q(n)dq(n)

NcY
i=1

NfY
a=1

qia(n)�q
i
a(n) = 1 ; (7.6)

setting all others to zero. This monomial contains just as many �q(n) as q(n). Hence, in view
of the counting above, the contribution from a con�guration fB(n + v=2)g vanishes unless
the following condition is met:X

v

B(n+ v=2) =
X
v

B(n� v=2): (7.7)

The physical meaning of this equation is conservation of the baryon current: the (algebraic)
number of baryons \arriving" at the site n (from the links n � v=2) must equal the number
of baryons \leaving" the site (via the links n+ v=2).
The general structure of the partition function (7.2) corresponds to the hadronic correlation
function written in terms of colorless Nc{quark currents [27], [13].
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7.2 Static Baryon: Integration over the Fermions

We consider the color-avor-transformed SU(Nc) lattice gauge theory on a d-dimensional
hypercubic lattice. We introduce a split into space and time: The time direction is labeled
by � = 0 and the d � 1 space directions by � = 1; ::; d � 1, the corresponding unit vectors
by �̂. The static baryon is modeled 1 by the following distribution of baryonic ux over the
lattice: B(n+ �̂=2) = 1 along the links of the \world line" (or \string") n = (t; 0; : : : ; 0) 2 Zd
in direction �̂ = 0̂, with t = 0; : : : ; T � 1; on all other links B = 0. This distribution satis�es
the current conservation law (7.7) at all sites but the ends t = 0 and t = T of the world
line. There it also does, if we impose periodic (or antiperiodic) boundary conditions on the
Grassmann �elds: for a lattice of length T in the time direction, we set q(T;~r) = q(0; ~r) and
�q(T;~r) = �q(0; ~r). As for the meson sector (Chapter 6), we do the integration over the quarks
and write the partition function in the form

Zbaryon =
Z
[d�qdq]Zbaryon[q; �q] =

Z
D[Z;Zy] exp(�NcSbaryon[Z]): (7.8)

The e�ective action Sbaryon[Z] contains the \sea" term Svacuum[Z], plus an extra part coming
from the factors �1 along the world line of the baryon. The sea term can be written in the
form

Svacuum[Z] = �
X
n

Tr lnM(n) +
X
n

d�1X
�=0

N(n+ �=2); (7.9)

where we have introduced the short-hand notations

M(n) :=
d�1X
�=0

�
�
Zy(n� �̂=2) + Z(n+ �̂=2)

�
+ M̂; (7.10)

N(n+ �=2) := 1 + Z(n+ �̂=2)Zy(n+ �=2): (7.11)

To calculate the extra part, we need to integrate polynomials in the quark �elds along the
world line of the baryon, weighted by the same Gaussian as in the vacuum sector. From the
explicit form of the �-coeÆcient for B = 1, (3.30), we �nd

�1Z;q;�q(n+ 0̂=2) = �1(�q(n); ~N (n+ 0̂=2)q(n)); (7.12)

where ~N(n + 0̂=2) := �0N(n + 0̂=2) The part of the integrand containing the quark �elds
located on the string, namely q(t0̂), �q(t0̂) for t = 0; : : : ; T � 1, then reads

�1
�
�q(0); ~N (1=2 0̂)q(10̂)

�
�1
�
�q(10̂); ~N(3=2 0̂)q(20̂)

� � :::
::: � �1

�
�q((T � 1)0̂); ~N ((T � 1=2)0̂)q(T 0̂)

�� exp

 
�

T�1X
t=0

�q(t0̂)M(t0̂)q(t0̂)

!
: (7.13)

(We use the abbreviation t0̂ := (0; :::; 0) + t0̂ to denote the sites and link on the world line of
the baryon.)

1This is a very simple model of a baryon. More correct the real baryon should be thought as an excitation
to which di�erent distributions of the baryonic ux can contribute.
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Isolating the terms with fermions at the site n = t0̂, we are faced with the integralZ
d�q(n)dq(n)�1

�
�q(n�0̂); ~N(n�0̂=2)q(n)� e��q(n)M(n)q(n) �1

�
�q(n); ~N (n+0̂=2)q(n+0̂)

�
=

�
�1

(Nf � 1)!

(Nc +Nf � 1)!

�2 Z Y
k;c

d�qkc (n)dq
k
c (n) e

��qka(n)Mab(n)q
k
b (n)

X
�;�2SNc

sgn� sgn �
Y
i

�qia(n�0̂) ~Nab(n�0̂=2)q�(i)b (n)
Y
j

�qja0(n)
~Na0b0(n+0̂=2)q

�(j)
b0 (n+0̂)

=

�
�1

(Nf � 1)!

(Nc +Nf � 1)!

�2 X
�;�2SNc

sgn(��)
Y
i

�
�q�
�1(i)

ai (n�0̂)0 ~Naibi(n�0̂=2)�Z
d�qi(n)dqi(n) qibi(n)�q

i
a0i
(n) e��qi(n)M(n)qi(n)

�
~Na0ib

0
i
(n+0̂=2)q

�(i)
b0i

(n+0̂)

�
;

(7.14)

where the �rst equality sign uses expression (3.30) for the function �1. Note that the integral
between curly brackets involves only fermions of color i. The fermionic version of Wick's
theorem yields for it the valueM�1

bia0i
(n)DetM(n), so after combining the permutations � and

� , the above expression becomes

�21
(Nf � 1)!2

(Nc +Nf � 1)!2
Nc! DetM(n)Nc

X
�2SNc

sgn �
Y
i

�qiai(n�0̂)Gaib0i(n�0̂! n+0̂)q
�(i)
b0i

(n+0̂)

= �1DetM(n)Nc

�
Nc +Nf � 1

Nf � 1

��1
�1
�
�q(n� 0̂); G(n�0̂! n+0̂)q(n+ 0̂)

�
;

(7.15)

with the \propagator" G(n�0̂! n+0̂) := ~N(n� 0̂=2)M(n)�1 ~N(n+ 0̂=2).
Repeating the procedure, we successively integrate over the quark �elds along the string.
By this process the matrices N and M get organized into a single propagator. In the �nal
integration step, we need to take into account the periodic boundary conditions for the quark
�elds: q(T 0̂) = q(0). The �nal integral over q(0) then readsZ

d�q(0)dq(0)�1
�
�q(0); G(0 ! T 0̂)q(0)

�
e��q(0)M(0)q(0) : (7.16)

We now make use of an alternative expression for the �-coeÆcient,

�1(��; �) = �1
(Nf � 1)!

(Nc +Nf � 1)!

X
faig

X
�2SNc

NcY
i=1

��iai�
i
a�(i)

; (7.17)

which is easily obtained from Eq. (3.30) by interchanging the product over colors with the
sum over avors. Wick's theorem then yields for the q(0)-integral the result

�1
(Nf � 1)!

(Nc +Nf � 1)!
DetM(0)Nc(�1)Nc

X
fai;big

X
�2SNc

Y
i

Ga�(i)bi(0! T 0̂)M�1
biai

(0): (7.18)

The last matrix product may also be expressed in terms of the propagator G along the closed
string which we de�ne as G := G(0! T 0̂)M(0)�1.
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What is the interpretation of the sign factor (�1)Nc? To answer this question, recall that
we evaluated the Grassmann �eld integral using time{periodic boundary conditions (instead
of the conventional time-antiperiodic ones). In a d{dimensional quantum mechanical frame
work with Hamiltonian H and inverse temperature �, this would mean that we are computing
not the usual partition function but rather the supertrace Tr (�1)NFe��H with NF the total
fermion number. The overall sign factor (�1)Nc originates from that very fermion number,
and is simply telling us that the baryon is a fermion (boson) if Nc is odd (respective even).
Dropping the factor (�1)Nc and collecting the contributions from all the sites of the string,
we obtain

e�Nc Sbaryon[Z] =
1

Nc!

�
�0
�1

�
Nc +Nf � 1

Nc

���T X
fag

X
�2SNc

Y
i

Ga�(i)ai e
�Nc Svacuum[Z]; (7.19)

The extra term coming from the static baryon depends on the values of the �eld Z on its
world line and enters the partition function through the matrix

G := ~N(1=2 0̂)M(10̂)�1 ~N(3=2 0̂) � � �M((T � 1)0̂)�1 ~N((T � 1=2)0̂)M(T 0̂)�1: (7.20)

This product of matrices runs over all sites n on the closed baryon world line (it is expressed
as a \quark propagator" along that line).
Let us take a closer look at the contributions from the sum over permutations � 2 SNc . Each
permutation � can be uniquely decomposed into a product of independent cycles. Denoting
by cl(�) the number of cycles of length l in this decomposition, the contribution from � to
the partition function can be written as

X
faig

NcY
i=1

Gaia�(i) =

NcY
l=1

(TrGl)cl(�): (7.21)

The permutation group SNc may be partitioned into disjoint classes with respect to conjug-
ation (�; �0 are said to be conjugate to each other i� there exists a permutation � such that
�0 = ��1��). Two permutations � and �0 are in the same conjugacy class i� they have the
same cycle structure, i. e. cl(�) = cl(�

0) for all l. This allows to rewrite the sum over � as
a sum over the conjugacy classes �̂ 2 ŜNc , taking into account the cardinality N (�̂) of each
class. The result is

X
�2SNc

X
faig

NcY
i=1

Gaia�(i) =
X

�̂2ŜNc

N (�̂)

NcY
l=1

�
TrGl

�cl(�̂)
: (7.22)

Each class �̂ is uniquely speci�ed by the sequence fclg, or equivalently by a Young diagram.
The weight factor N (�̂) is the number of di�erent permutations which can be obtained by
distributing Nc numbers in the Young corresponding to �̂. Dividing the number of all per-
mutations by the number of (in the sense of the last sentence) equivalent permutations, we
obtain

N (�̂) =
Nc!

NcQ
l=1

lcl(�̂)cl(�̂)!

: (7.23)
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The main result of this section is the e�ective action of the static baryon,

Sbaryon[Z] = Svacuum[Z] + SNc(G[Z]) +CNc;Nf
(7.24)

which consists of the following contributions: of the sea term (7.9), the string term 2

SNc(G) := �
X

�̂2ŜNc

N (�̂)

NcY
l=1

�
TrGl

�cl(�̂)
(7.25)

and the constant

CNc;Nf
:=

1

Nc

�
T ln

�
�0
�1

�
Nc +Nf � 1

Nc

��
� lnNc!

�
: (7.26)

The Nc- and Nf -dependent constant needs to be taken into account when one wants to
compare the energy of the static baryon with the energy of the vacuum. Thus it makes
contribution to the baryon mass which was worked out in [10].
For the lowest numbers of colors the explicit expressions for the string term are

S1(G) = � lnTrG
S2(G) = �1

2
ln
�
(TrG)2 +TrG2

�
S3(G) = �1

3
ln
�
(TrG)3 + 3TrG2 TrG+ 2TrG3

�
:

(7.27)

In the following section, we look for the saddle-point con�gurations of the e�ective action
Sbaryon[Z].

7.3 Saddle Point Equations

In Chapter 6 we have used the saddle point approximation to evaluate the partition function
Zvacuum = exp(�NcSvacuum[Z]). In the mesonic sector, where Nc appears explicitly as a
factor in front of the action, the saddle-point approximation is fully justi�ed in the large-Nc

limit. The situation is less transparent for the e�ective action of the static baryon (7.24).
However, if the matrix G is proportional to the unity matrix G = g INsNf

with scalar �eld g,
the static-baryon action simpli�es to

Sbaryon[Z] = Svacuum[Z]� lng+ const. (7.28)

Therefore the large-Nc saddle-point expansion of Zbaryon = exp(�NcSbaryon[Z]) is rigorously
justi�ed if the partition function is restricted to these con�gurations. However, we will use it
to approximate the full integral.
The e�ective action Sbaryon[Z] for the static-baryon sector (7.24) contains a string term
SNc(G[Z]) in addition to the sea term Svacuum[Z]. While the sea term depends on each
of the matrices Z(n+ �̂=2), the string term involves only those matrices Z and Zy that are
situated in the near vicinity of the string. More precisely, what enters into the baryon world

2The string term can be written in an elegant way, SNc (G) = � 1
Nc

�
d
d�

�Nc ��
0
Det�1(1 � �G) which follows

from the expansion Det(1� �G)�1 =
P1

Nc=0
�Nc

Nc!
e�NcSNc(G).
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line propagator, G, are the matrices N((t + 1
2)0̂) and M(t0̂) . Of these, the former depend

only on Z and Zy along the string, whereas the latter also involve the matrices Z(t0̂ + �̂=2)
and Zy(t0̂� �̂=2) on the spacelike links next to the string. Taking into account this structure
of the baryon action, we have to distinguish three di�erent cases deriving the saddle point
equations: variation with respect to the Z-�eld on the string, variation with respect to the
Z-�eld on the spacelike links next to the string and variation with respect to the Z-�eld on
all other links.
Starting with the last case, the only contribution to the variation of the static baryon action
comes from the sea term Svacuum[Z]. Making use of expression (7.9) for this term, we obtain

ÆSbaryon=ÆZ(n+ �̂=2) = Zy(n+ �̂=2)N�1(n+ �̂=2)�M�1(n)� = 0;

ÆSbaryon=ÆZ
y(n� �̂=2) = N�1(n� �̂=2)Z(n� �̂=2) �M�1(n)� = 0

(7.29)

and recover the vacuum saddle point equations (6.16).
Turning to the two other cases we additionally have to take into account the string term
SNc [Z]. For sake of simplicity, we restrict ourselves to a low number of colors, Nc = 1; 2; 3.
The most general variation of the expressions (7.27) yields

ÆS1 = �Tr(ÆG)
TrG

ÆS2 = �Tr(GÆG) + Tr(G)Tr(ÆG)

Tr(G2) + (TrG)2
;

ÆS3 = �(TrG)
2 Tr ÆG+ 2TrGTr(GÆG) + Tr(G2)Tr(ÆG) + 2Tr(G2ÆG)

(TrG)3 + 3TrG Tr(G2) + 2TrG3
:

(7.30)

In the next step, we work out how the various traces of powers of G respond to variations of
the matrices Z and Zy entering the de�nition of G. For instance, variations of Z(t0̂ + �̂=2)
with � 6= 0 a�ect only the matrix M(t0̂), whereas varying Z((t + 1=2)0̂) a�ects both M(t0̂)
and N((t+ 1=2)0̂). These computations are simpli�ed by the use of cyclicity properties: given
any decomposition G = G1G2, we may replace G in the static{baryon action by the matrix
G0 = G2G1, as G always appears under a trace.
We provide detailed calculations for the variation with respect to � := Z((t + 1=2)0̂). The
modi�ed factors of G in this case are M(t0̂)�1 and N((t+ 1=2)0̂), and the modi�ed matrix G
reads

G+ÆG = � � �M(t0̂)�10
�
1+Æ�

��M(t0̂)�10+�yN((t+ 1=2 )0̂)
�1�	0 ~N((t+ 1=2 )0̂) � � � : (7.31)

It is now natural to conjugate G+ ÆG into

S (G+ ÆG) S�1 = G0 + Æ�
��M(t0̂)�10 + �yN((t+ 1=2)0̂)

�1�G0; (7.32)

where G0 := 0 ~N((t+ 1=2)0̂)M((t + 1)0̂)�1 � � � ~N((t� 1=2)0̂)M(t0̂)�10.
The variation with respect to � 0y := Zy((t� 1=2)0̂) can be worked out in the same way. In this
case it is convenient to conjugate G+ ÆG into

T (G+ ÆG) T�1 = G00 + G00
�
N�1((t� 1=2)0̂)�

0 �M�1(n)0
�
Æ� 0y; (7.33)

where G00 =M(t0̂)�1 ~N((t+ 1=2)0̂) � � �M((t� 1)0̂)�1 ~N((t� 1=2)0̂).
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As result of the variations, we obtain the following saddle point equations: for all sites n on
the string, �

Zy(n+ 0̂=2)N�1(n+ 0̂=2) �M�1(n)0
� �
INsNf

+ FNc(G
0)
�
= 0;�

N�1(n� 0̂=2)Z(n� 0̂=2)�M�1(n)0
� �
INsNf

+ FNc(G
00)
�
= 0;

(7.34)

where matrix-valued function FNc(G) is given by

F1(G) := � G

Tr(G)
;

F2(G) := � G2 + GTrG

Tr(G2) + (TrG)2
;

F3(G) := �G(TrG)
2 + 2G2 TrG+ GTr(G2) + 2G3

(TrG)3 + 3TrG Tr(G2) + 2Tr(G3)
:

(7.35)

The saddle point equations for the timelike links on the string and away from it di�er only
by the factor INsNf

+ FNc(G
0) or INsNf

+ FNc(G
00). We conclude that the saddle point

equations for the timelike links equivalent to the vacuum saddle point equations, i� the
matrices INsNf

+ FNc(G
0) and INsNf

+ FNc(G
00) are non-singular.

In the last step consider the variation of the static baryon action with respect to the Z-�eld
on the spacelike links next to the baryon. This components of the Z-�eld enter the string
term of the action only throughM(n). In analogy to the variations done before, we obtain the
following saddle point equations: for all sites n on the string and for all spacelike directions
� = 1; ::; d � 1,

Zy(n+ �̂=2)N�1(n+ �̂=2)�M�1(n)�
�
INsNf

+ FNc(G
0)
�
= 0;

N�1(n� �̂=2)Z(n� �̂=2)�M�1(n)�
�
INsNf

+ FNc(G
00)
�
= 0:

(7.36)

where the matrices G0, G00 are the same as before. To get an idea of the matrix INsNf
+FNc(G),

we compute in the vacuum con�guration Z(n + �̂=2) = Z(n + �̂=2) = x�. In this case
all M(n) and all N(n + �̂) are scalar matrices. Then, assuming that the extension of the
lattice in time direction T is an even number of sites, the propagator is also a scalar matrix
G = G0 = G00 = gINf

. (Otherwise, if the lattice extended over an odd number of lattice sites,
the propagator would be proportional to 0.) For any scalar matrix gINf

the factor that
occurs in the saddle point equations (7.34) and (7.36) takes the value

INsNf
+ FNc(g INsNf

) = (1� 1=Nf ) INsNf
: (7.37)

This equation holds for all number of colors Nc. Note that in the limit Nf ! 1 the static
baryon saddle point equations for a scalar con�guration reduce to the vacuum saddle point
equations.
Let us consider a con�guration of the Z-�eld that yields scalar propagators G0 and G00. In that
case the saddle point equations obtained by variation on the spacelike links next to the string
(7.36) represent the only obstruction that prevents the vacuum con�guration from being also
a saddle point in the static-baryon sector.
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7.4 Solutions of the Saddle Point Equations

Let us consider the �rst set of saddle point equations (7.36) which are identical to the vacuum
saddle point equations. Recall from Chapter 6 that treating Zy as the Hermitian conjugate of
Z leads to a homogeneous con�guration, where the �elds are either constant over the whole
lattice for the bhc lattice (cf. Eq. (6.56)) or staggered over 2d sublattices for the d-dimensional
hc lattice (cf. Eq. (6.52)). Such a homogeneous con�guration cannot satisfy the last set of
saddle point equations (7.36) (as long as G0 = G00 6= 0). In Ref. [33] it was shown that the
homogeneous con�guration is the unique solution of the saddle point equations, for a theory
of spinless fermions similar to our one. We expect that the uniqueness of solution carries over
to the theory we are considering. It seems that there are no solutions of the static baryon
saddle point equations, as long as we treat Zy as the Hermitian conjugate of Z. To get a
solution describing a static baryon, we need to relax this Hermiticity relation.
By its construction via the color{avor transformation, the integrand exp(�Sbaryon[Z] is to be
viewed primarily as a function of the real variables f(Zab+Zyba)(n+�̂=2); i(Zab�Zyba)(n+�̂=2)g,
the total number of which is D := 2N2

sN
2
f dN . (Recall the N denotes the number of lattice

sites and dN is the number of lattice links.) If this function does not have a saddle point on
RD , one can try to analytically continue it into CD , where a complex saddle point may exist.
For such a saddle point con�guration there must exist at least one link (n+ �̂=2) where the
matrix Zy di�ers from the Hermitian conjugate of Z. If a complex saddle point is not \too
far" from the original contour of integration, it contributes to the vacuum-sector partition
function, upon deforming the contour of integration so as to reach that point.

7.4.1 Linearized Saddle Point Equations

We want the baryon to be a localized object, in the sense that a baryonic saddle point con-
�guration should di�er signi�cantly from a vacuum con�guration only in some neighborhood
of the baryon world line. The baryonic saddle point con�guration should converge to the va-
cuum con�guration for large distances from the baryon. Therefore it makes sense to linearize
the saddle point equations around the vacuum con�guration: In doing so one obtains the
behavior of the Z-�eld far away from the baryon.
In Chapter 6, considering the meson sector, we have linearized the saddle point equation
around the saddle point and studied its solutions. Under consideration of the Hermiticity
relation of Z and Zy we have found a saddle manifold in the chiral limit. This solution does
not satisfy the set of saddle point equations for the static baryon which are corresponding to
the spacelike links next to the string (7.36). In order to obtain a solution of the whole system
of saddle point equations in the static-baryon sector, we drop the Hermiticity condition.
Recall that the linearized saddle point equations can be written as a set of equations (6.31)
for the sum variable �(n) which is placed on the sites of the lattice:X

�

�
��ab(n� �̂)� + 2�ab(n) + ��ab(n+ �̂)�

�
+Mab�ab(n) = 0; (7.38)

for all a; b = 1; :::; Nf . This system of equations is decoupled with respect the avor degrees of
freedom. The constant M is a matrix in avor space that depends on the quarks masses and
is given by expression (6.33). The �eld � is in one-to-one correspondence to the linearized
versions �, � of the original �elds Z, Zy.
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Lets us consider the pseudoscalar ansatz

�ab(n) = �5 
 �ab(n); (7.39)

where �5 is proportional to the product of all -matrices, see Eq. (D.5), and �(n) is an
arbitrary Nf �Nf matrix. For this ansatz the linearized saddle point equations (7.38) readX

�

(�ab(n+ �̂)� 2�ab(n) + �ab(n� �̂)) =Mab �ab(n): (7.40)

Assuming that the uctuations of the �eld �(n) on scales of order of lattice constant are
small, we may convert this di�erence equation into a di�erential equation

��ab =M2
ab �ab: (7.41)

Here � denotes the d-dimensional Laplace operator and the massMab on r. h. s. is de�ned by

Mab :=
p
Mab

1

a
: (7.42)

Eq. (7.41) is the Klein-Gordon equation for a particle �ab of mass Mab in d-dimensional
Euclidean space-time. Making use of (6.33) the mass can be expanded in powers of the quark
masses (which are assumed to be small compared with the scale a of the theory),

M2
ab = 2

d� 1p
2d� 1

1

a
(ma +mb) +O(m2): (7.43)

Recall that in linear approximation, the �eld �(n) is in one-to-one correspondence to the
�eld Z(n). The latter is a collective, colorless �eld which was introduced by the color-avor
transformation and has replaced the quark and gauge degrees of freedom. We have worked
out the strong coupling approximation of lattice QCD with an cuto� a in order to reach the
low energy regime. It is tempting to identify � with uctuations of a mesonic background
around the static baryon.
To the lowest order in m square of the mass of �ab is proportional to the sum of two quark
masses (ma +mb). Similar formulas are know from the second order of chiral perturbation
theory (cf. Chapter 6), for exampleM2

� = B(mu+md). The pions are the lightest mesons; one
can expect that they give the main contribution to the uctuations of the mesonic background
and set their mass into correspondence to the mass of �ud, M� =Mud. As a consequence the
prefactor in front of the quark masses in (7.43) must be equal to the constant B = 1480 MeV.
To check the consistence of this considerations, we calculate the lattice constant from this
correspondence,

a�;hc = (653 MeV)�1 (7.44)

The result is of the same order as the estimates in Chapter 6, but the agreement is bad.
However, the Klein-Gordon equation (7.41) �ts perfectly an old idea in connection with the
nuclear forces. Yukawa suggested in 1935 that the nuclear forces are mediated by exchange of
a massive particle between the nucleons [51]. The exchange particle should satisfy the Klein-
Gordon equation, which is the quantized version of the formula for the energy of a relativistic
particle,

(�+M2)�(~x; t) = 0 (7.45)
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On the one hand side the Klein-Gordon equation has plain wave solutions describing propagat-
ing particles of mass M . On the other hand side it has a static solution

�(~x; t) = C
e�M j~xj

4�j~xj : (7.46)

This solution is singular at the origin and decreases exponentially. According to Yukawa
this solution is identi�ed with the �eld of the exchange particle around the nucleon. As
a consequence the range l of the exchange particle is set into correspondence to its mass,
l = 1=M . In that way Yukawa concluded from the short range of the nuclear force that the
corresponding exchange particle should be massive. The typical range l � 1 fm of the nuclear
force also allows to estimate the mass of the corresponding exchange particle, M � 200 MeV.
By way of contrast the exchange particle of the long range electromagnetic interaction, the
photon, is massless.

7.4.2 Static Baryons in 1 + 1 dimensions

In this subsection we consider the simplest nontrivial case for solutions of the static baryon
saddle point equations, the two-dimensional Euclidean square lattice (d = 2). Assuming a
static con�guration, the �eld depends only on an integer n which labels the distance from the
baryon in units of the lattice constant. We consider a pseudoscalar and a scalar ansatz for
the �eld �(n),

�ab(n) = �5 
 �ab(n); (7.47)

�0ab(n) = INs 
 �0ab(n); (7.48)

where �(n) and �0(n) are matrices in avor space. The corresponding saddle point equations
(7.38) read

�ab(n+ 1)� (2 +Mab)�ab(n) + �ab(n� 1) = 0 (7.49)

�0ab(n+ 1) + (6 +Mab)�
0
ab(n) + �0ab(n� 1) = 0 (7.50)

As a bene�t of the low number of dimensions, we can exactly solve these di�erence equations.
In the chiral limit, where Mab = 0, the solutions are given by

�(n) = C(1)n+C(0); (7.51)

�0(n) = C 0(�1)n e��0n : (7.52)

The parameters C(1), C(0), C 0 are arbitrary complex Nf �Nf matrices, while �
0 is determin-

ated by the equation e��0 �6 + e�
0
= 0. This condition has the solutions

�0 = � arcosh 3 = � ln(3 + 2
p
2): (7.53)

Thus, we have found two linear independent solutions for each of the saddle point equations
(7.49). They span the full solution space of these di�erence equations. Away from the chiral
limit, we obtain the following solutions of the saddle point equations,

�ab(n) = Cab e
��abn; with �ab = � arcosh(1 +Mab=2) (7.54)

�0ab(n) = C 0ab(�1)n e��
0
abn; with �0ab = � arcosh(3 +Mab=2): (7.55)
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Thus, giving the quarks a mass m leads to corrections of order ma in the exponents.
We expect the static baryon con�guration to converge to the vacuum con�guration, when
the distance from the baryon is large: �ab(x); �

0
ab ! 0 for x ! �1. We conclude that only

the exponential decreasing solutions are physical and the parameters mentioned above have
to satisfy C(1) = C(0) = 0, �ab > 0, �0ab > 0. Note that for the pseudoscalar ansatz (7.47) a
static baryon con�guration exists only away from the chiral limit.
To get the expression for the meson �eld Z, corresponding to the two approximate solutions of
the saddle point equations, we make use of equations (6.30) and (6.25). For the pseudoscalar
solution we obtain

Zab(n+ 0̂=2) = 0Xab + 1CabAabe
��abn;

Zab(n+ 1̂=2) = 1Xab + 0CabBabe
��abn;

Zyab(n+ 0̂=2) = 0Xab + 1CabAabe
��abn;

Zyab(n+ 1̂=2) = 1Xab � 0Cab ~Babe
��abn;

(7.56)

where we have introduced the constants

Aab :=
xaxb

1 + xaxb
; Bab :=

xaxb
�
xaxb � e��ab

�
(1 + xaxb)(1� xaxb) ;

~Bab :=
xaxb

�
1� xaxbe��ab

�
(1 + xaxb)(1 � xaxb) : (7.57)

We have absorbed a factor i into the constants Cab that comes from �5 = i01. For the
scalar solution we obtain

Z 0ab(n+ 0̂=2) = 0

�
Xab � C 0abA0ab(�1)ne��

0
abn
�
;

Z 0ab(n+ 1̂=2) = 1

�
Xab � C 0abB0ab(�1)ne��

0
abn
�
;

Z 0yab(n+ 0̂=2) = 0

�
Xab � C 0abA0ab(�1)ne��

0
abn
�
;

Z 0yab(n+ 1̂=2) = 1

�
Xab � C 0ab ~B0ab(�1)ne��

0
abn
�

(7.58)

with the constants

A0ab :=
xaxb

1� xaxb ; B0ab :=
xaxb

�
xaxb � e��0ab

�
(1 + xaxb)(1� xaxb) ;

~B0ab :=
xaxb

�
1� xaxbe��0ab

�
(1 + xaxb)(1 � xaxb) : (7.59)

The scalar solution can be specialized to the chiral limit: In this case, the rate of decrease is
given by (7.53) and the above constants have the values

A0ab(M = 0) =
1

2
; B0ab(M = 0) =

3

4

p
2� 1; ~B0ab(M = 0) =

1

4

p
2: (7.60)

To summarize, we have obtained a pseudoscalar and scalar (7.58) solution of the saddle point
equations, printed in formula (7.56) and (7.58). Calculated from small perturbations of the
vacuum con�guration, they describe the behavior of the meson �eld Z far away from the
baryon. Both solutions contain an undeterminated constant, called C 0ab or C

0
ab, respectively.

This constant has to be �xed by matching to solutions of the saddle point equations at and
near the baryon.
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7.4.3 Discussion

There is an important di�erence between the pseudoscalar and the scalar lattice solution,
when one approaches the chiral limit. For small quarks masses, the rate of decrease of the
two solutions behaves like

�ab = arcosh(1 +Mab=2) �
p
Mab +O(Mab); (7.61)

�0ab = arcosh(3 +Mab=2) � arcosh 3 +
1

8

p
2Mab +O(M2

ab): (7.62)

For the scalar solution there is a �xed rate, �0ab(M = 0) = arcosh 3, which acquires a small
correction from the quark masses. By the way of contrast, for pseudoscalar solution { in
the lowest order of the quark masses { the rate is proportional the square root of the quark
masses.
The decrease rate (7.61) of the pseudoscalar lattice solution near the chiral limit is in agree-
ment with the predictions from the continuum method developed in Section 7.4.1: Static
solutions of the (1 + 1)-dimensional Euclidean Klein-Gordon equation (7.41) decrease with a
rate

p
Mab. Non-vanishing quarks masses are essential for the short-range character of the

pseudoscalar solution: In the chiral limit there are no static, spherical symmetric short range
solutions of the Klein-Gordon equation. The solutions increase linearly or logarithmically
(d = 1 + 1, d = 1 + 2) with the distance of the baryon or decrease (d = 1 + 3) inverse
proportionally to the distance from the baryon.
So far we have only considered the saddle point equation far away from the baryon which are
identical with the vacuum saddle point equations. In Ref. [10] we have searched for solutions
of the full system of saddle point equations (7.29), (7.34), and (7.36). In this paper we have
considered a simpli�ed model without spin degrees of freedom. All �eld were chosen scalar,
that is proportional to the unity matrix in avor space INf

. We have employed Newton's
method and obtained a numerical solution of the saddle point equations on a �nite lattice.
We have con�rmed this solution by its agreement with an approximate analytical solution.
The structure of the solution of the full system of saddle point equations is exactly the one
predicted by the scalar asymptotic solution Eq. (7.58). We compare the above predictions for
the constants appearing in (7.58) with the corresponding values from [10]. We consider the
chiral limit. There is agreement about the rate of decrease which takes the value � = ln(3 +
2
p
2). Further all the amplitudes (C 0abA

0
ab, C

0
abB

0
ab, C

0
ab
~B0ab) can be brought in agreement, if

the value of the undeterminated constant C 0ab is �xed at

C 0ab � 0:92 Æab: (7.63)

Further investigations are necessary to decide, if and how the asymptotic pseudoscalar solution
can be continued to a solution of the full saddle point equations.





Chapter 8

Conclusion

In this dissertation we have stated di�erent versions of the color-avor transformation. They
were applied to two limits of quantum chromodynamics, to gluodynamics and to the strong
coupling limit. In both cases we have worked with the formulation as a lattice gauge theory
that was introduced by Wilson.

Color-Flavor Transformation

In Chapter 2 we reviewed some mathematical structures which are fundamental for the color-
avor transformation. We consider a quantum multi-particle system characterized by the
canonical (anti-)commutation relations of a set of creation and annihilation operators. The
color-avor transformation is based on a structure in the corresponding group of canonical
transformations: For each \dual pair"of subgroups in the group of canonical transformations
there is an associated version of the color-avor transformation. In view of quantum chro-
modynamics we have considered the case of a dual pair consisting of two unitary groups. In
our applications we connect one of the two groups with the color degrees of freedom, and the
other one with the avor and spin degrees of freedom. We have worked out this version of
the color-avor transformation for a pure bosonic and a pure fermionic system.
However, the gauge group of chromodynamics is not a unitary group, but the special unitary
group SU(3). For that reason we have generalized the color-avor transformation to the
special unitary groups (Chapter 3). The result is a sum over contributions coming from
disconnected sectors characterized by the baryon number B = �Nf ; :::; Nf . The contribution
belonging to B = 0 is exactly the result of the color-avor transformation for the unitary
group.

Gluodynamics

Wilson lattice action for gluodynamics, which is a sum over traces of plaquette terms, does
not allow an application of the color-avor transformation. We have replaced it by a phys-
ically equivalent action that can be generated by an integral over bosonic auxiliary �elds
(Chapter 5). In this formalism each plaquette has its own auxiliary �eld that additionally
carries inner degrees of freedom. It turned out that the dimension of the inner space Na and
the number of colors Nc should satisfy Na � Nc. We have argued that only if this condition
is ful�lled one is in the position to recover gluodynamics as continuum limit of the lattice
theory.
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Two-dimensional gauge theories have a much simpler structure than higher dimensional ones.
In this case the calculation of the general Wilson loop can be reduced to the calculation of the
one-plaquette Wilson loop. As a well-known conclusion, two-dimensional gauge theories are
con�ning in the sense that the quark-antiquark potential is linear in the distance. Concerning
our model, we have obtained an exact result for the string tension, in the case Na � Nc. From
Monte Carlo simulations also some results for Na > Nc are available.
In four space-time dimensions gauge theories are more complicated. In that case we hope to
make progress with the help of the color-avor transformation. However, there are sometimes
problems with the convergence of the bosonic color-avor transformation: In our case it works
only for Nc � 2Na. This is in conict with the physical condition discussed above. One can
overcome the convergence problems by passing to a supersymmetric theory. In this framework
the inuence of the fermions can be kept small by making them heavy. We have applied the
color-avor transformation to the supersymmetric theory and obtained a result, which can
be the starting point for further investigations.

QCD in strong coupling approximation

In the strong coupling limit, the color-avor transformation can be applied immediately: The
partition function decomposes into a sum of contributions belonging to the di�erent possible
distributions of baryons on the lattice. We have studied the contribution of the vacuum and
static baryon con�guration in detail.
In the vacuum action the color degrees of freedom are completely decoupled. After integration
over the quark �elds they enter the partition function only through a factor Nc (number of
colors) in front of the action. This structure organizes the theory in a perturbation series with
1=Nc as parameter. The lowest order of this large-Nc expansion is the saddle point approxim-
ation. We have solved the corresponding saddle point equations and obtained a single saddle
point for non-vanishing quarks masses and a saddle point manifold in the chiral limit. We
have shown that this result { ignoring the strong U(1)-problem { perfectly �ts the common
picture of the spontaneous chiral symmetry breaking. The saddle point manifold paramet-
erizes the Goldstone mode which are set into correspondence with the lightest pseudoscalar
mesons.
Chiral perturbation theory is a modern approach to describe the low energy properties of the
lightest mesons. It is an expansion of a low energy e�ective Lagrangian in the momenta p
of the low energy modes and the quark masses m, where p2 and m are treated as small, but
p2=m may take any value. Starting from the color-avor transformed action of strong coupling
QCD, we have obtained such an expansion up to order O(p4). The resulting theory has the
lattice constant as a free parameter. From comparison with experimentally know quantities,
we have estimated the lattice constant in three di�erent ways: By the chiral Lagrangian of
order O(p2) the lattice constant is connected with the pion decay constant on the one hand
side and with the pion mass on the other hand side. A third, independent estimate can be
obtained from the experimental value of the chiral condensate. All methods yield a lattice
constant of order a � 1 fm, but are in bad agreement. In order O(p4) we were able to recover
some of the terms of the general chiral Lagrangian introduced by Gasser and Leutwyler.
However, the values for the coeÆcients in front of di�erent terms are in bad agreement with
their phenomenological values. Recall that from the beginning we were working in the strong
coupling limit. This is a crude approximation to QCD. It is useful to understand the structure
of the low energy sector, but one would not expect to obtain quantitative good results.
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Let us summarize our results for the static baryon con�guration: In this case e�ective action
comes out as a sum of a \sea term"and a \string term". The sea term is identical to the
vacuum e�ective action, while the string term depends only on �elds in the nearest vicinity
of the static baryon. Therefore, the saddle point equations for the static baryon are identical
with the vacuum saddle point equations unless we are in the vicinity of the static baryon.
To get information about the background �eld far away from the baryon we have linearized
the vacuum saddle point equations around the vacuum solution. We have shown that { in
the pseudoscalar sector of the theory { the deviations from the vacuum obey a Klein-Gordon
equation with a mass proportional to the square root of the quark masses. In this way one
obtains a Yukawa potential, with a range inverse proportional to the square root of the quark
masses.

Bodycentered Hypercubic Lattice

In this dissertation we have discussed �eld theories on di�erent kind of lattices. They are
thought as a model for the isotropic and continuous physical world. Remarkably, in four space-
time dimension there is a lattice with a larger symmetry group than the one of the hypercubic
(hc) lattice. The bodycentered hypercubic (bhc) lattice is obtained by introducing an extra
site at the middle of each elementary cell of the hypercubic lattice. In four dimensions this
construction enlarges the symmetry group by a factor three. The following aspects of our
work are connected with the bhc lattice: The chiral symmetry group of lattice QCD is exactly
the continuum chiral group for the bhc lattice, while it is enlarged for the hc lattice. This was
proven in Chapter 4. Another fact was helpful in the context of the calculation of the fourth
order of chiral perturbation theory: For tensors up to fourth order, the bhc lattice symmetry
implies continuum symmetry. This is only true for tensors up to order two in case of the hc
lattice.



Appendix A

The Hermitian Symmetric Spaces
U(2N)=U(N)� U(N) and U(N;N)=U(N) � U(N)

In this appendix we examine the analysis and geometry of the coset spaces U(2N)=U(N) �
U(N) and U(N;N)=U(N) � U(N). In the �rst section we introduce suitable coordinates Z,
Zy on it and embed it into the vector space of complex 2N�2N matrices, see for example [53].
In the second section we describe the generalized Gaussian decomposition for the complex
extension of respective U(2N) and U(N;N). The coset space considered is an hermitian
symmetric space [22], in particular it is carrying an invariant K�ahler metric. Section A.3
is devoted to the K�ahler metric and the corresponding symplectic structure, which can be
used to construct the invariant measure of the coset space. In the last section we introduce
canonical coordinates for the symplectic structure, in which the invariant measure appears as
a at measure. These coordinates were already considered in [44].

A.1 Coordinates and Embedding into a Matrix Space

We consider the unitary group G = U(2N) and the pseudounitary group G = U(N;N) in
2N dimensions. Making use of a decomposition of a complex 2N � 2N matrix into N � N
blocks, g =

�
A B
C D

�
, the group G is de�ned by the condition

�
A B
C D

�y�
1 0
0 "

��
A B
C D

�
=

�
1 0
0 "

�
; where " =

� �1 pseudounitary case;
+1 unitary case:

(A.1)

The subgroup H = U(N) � U(N) of G consists of the matrices h, which commute with a
matrix �z,

h =

�
H1 0
0 H2

�
and �z =

�
1 0
0 �1

�
: (A.2)

The next step is to pass from the group G to the right coset space G=H and to introduce
coordinates on it. We begin with the observation that the invariants for the right action of
h 2 H on G are

Z := BD�1 and ~Z := CA�1: (A.3)

They provide coordinates for the right coset space. The condition A.1 in terms of the four
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blocks takes the form

Ay = (A�BD�1C)�1

By = "(B �AC�1D)�1
Cy = "(C �DB�1A)�1
Dy = (D � CA�1B)�1:

(A.4)

Therefore Z and ~Z are connected via

~Z = CA�1 = �"Zy: (A.5)

In the case " = �1 we get further
ZZy = BD�1CA�1 = 1� (AAy)�1: (A.6)

Thus ZZy is restricted to have eigenvalues less than unity in the case G = U(N;N), while
there is no such restriction in the case G = U(2N).
The coordinates (Z; ~Z) of the coset space transform under the left action of G on G=H
(g � g0H := gg0H for g 2 G) like

g � Z = (AZ +B)(CZ +D)�1 (A.7)

g � ~Z = (C +D ~Z)(A+B ~Z)�1: (A.8)

To embed G=H into the space of complex 2N � 2N matrices we look at the action of G on
itself by conjugation: g0 7! cg(g

0) := gg0g�1. We make use of the general fact, that the orbit
of a point is isomorphic to the group factored by the isotropy group of that point, in our case
cG(�z) �= G=G�z . The isotropy group of �z is G�z = H, and we get

fQ = g�zg
�1 j g 2 U(2N)g �= G=H: (A.9)

For later use we note that

Q = g�zg
�1

=

�
1 Z
~Z 1

��
A 0
0 D

��
1 0
0 �1

��
A 0
0 D

��1�
1 Z
~Z 1

��1
=

�
1 Z
�"Zy 1

�
�z

�
1 Z
�"Zy 1

��1
:

(A.10)

A.2 Generalized Gaussian Decomposition

The generalized Gaussian decomposition of a unitary or pseudounitary matrix leads to factors,
which lie in the complex extensions GC of the unitary or pseudounitary group G. The complex
extension GC is obtained from the real form G of the group by exponenting the complex
extension of the Lie algebra of G. Passing to the complex extension GC = GL(2N; C ) of G,

every complex matrix g =
�
A B
C D

�
with an invertible D can be decomposed into�

A B
C D

�
=

�
1 Z
0 1

��
F 0
0 D

��
1 0
Y 1

�
; (A.11)
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where
Z = BD�1; Y = D�1C; F = A�BD�1C: (A.12)

Thus the determinant can be calculated as

Det

�
A B
C D

�
= Det(A�BD�1C) DetD: (A.13)

Restricting again to the unitary (pseudounitary) group G we get from (A.4) the relations

Y = D�1 ~ZA = �"D�1ZyA (A.14)

and we de�ne

V := AAy = (1 + "ZZy)�1;

W := DDy = (1 + "ZyZ)�1:
(A.15)

A.3 U(2N)-invariant Geometry

In section A.1 we have embedded the coset space G=H into the vector space of complex
2N � 2N matrices. The canonical metric on the latter space is

~g =
1

2
Tr dZy � dZ; (A.16)

where dZy � dZ = 1
2(dZ

y 
 dZ + dZ 
 dZy) denotes the symmetric tensor product. More
explicitly the metric is given by

~g(X;Y ) = ReTr(XyY ) =
2NX
i;j=1

(ReXij ReYij + ImXij ImYij): (A.17)

Pulling back ~g to G=H with the help of the embedding Q we get a metric for the coset space
(note: Qy = Q):

g = Q�~g = Tr dQ� dQ: (A.18)

The metric ~g of the matrix space is bi-invariant under the action of G. It is easy to see that
g inherits the invariance property from ~g: From Q Æ lg = rg�1 Æ lg ÆQ we conclude

l�gg = l�gQ
�~g = (Q Æ lg)�~g = (rg�1 Æ lg ÆQ)�~g = Q�l�gr

�
g�1~g = Q�~g = g; (A.19)

i. e. g is left-invariant under the action of G. To express g in the coordinates Z and Zy, we
note that

dQ = dg�zg
�1 � g�zg

�1dg g�1; (A.20)

where

g =

�
1 Z
�"Zy 1

�
; g�1 =

�
V �ZW

"ZyV W

�
(A.21)

with V , W as in (A.15). Further calculations lead to

g�1dg =
�
"ZWdZy V dZ
"WdZy "ZyV dZ

�
; �zg

�1dg =
�
"ZWdZy V dZ
"WdZy �"ZyV dZ

�
(A.22)
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and the result

g = Tr(dQ� dQ) = Tr(�zg
�1dg � �zg

�1dg)� Tr(g�1dg � g�1dg)
= 4"TrV dZ �WdZy:

(A.23)

In terms of the parametrization Z, Zy of the the coset space G=H, the complex structure is
the multiplication with i. We may choose !(X;Y ) = "

4ig(iX; Y ) as an invariant symplectic
structure on the coset space, that is

! = TrV dZ ^WdZy: (A.24)

From the symplectic structure we can construct the invariant volume element for G=H,


 = !N = Det V N DetWN
2N̂

i;j=1

dZij ^ d �Zij

= Det(1� ZZy)�2N
2N̂

i;j=1

dZij ^ d �Zij ;
(A.25)

where we have to put the plus (minus) sign for the coset space U(2N)=U(N)�U(N) (U(N;N)=U(N)�
U(N)) of the unitary (pseudounitary) group.

A.4 Canonical coordinates for the Symplectic Structure

The purpose of this section is to introduce coordinates in which the volume form 
 = !N

takes the standard form

d
 =

2N̂

i;j=1

d�ij ^ d��ij : (A.26)

The Darboux theorem guarantees the existence of coordinates, in which the symplectic struc-
ture takes the canonical form

! = Trd� ^ d�y (A.27)

A possible choice for the canonical coordinates was given in [44],

� = V 1=2Z = (1� ZZy)1=2Z;
�y = ZyV 1=2 = Zy(1� ZZy)1=2;

(A.28)

with plus (minus) sign for the coset space of the unitary (pseudounitary) group. Due to
the non-commutativity (for N > 1) the calculations are cumbersome and we will give them
explicitly. For example there is no simply expression for the di�erential of the square-root
dV 1=2, but only for

dV 1=2V 1=2 + V 1=2dV 1=2 = dV = �V (ZdZy + dZZy)V: (A.29)
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Making use of (A.29) and the relation Tr�^� = 0 for an arbitrary matrix-valued 1-form, we
get

Tr d� ^ d�y =TrV 1=2dV 1=2 ^ ZdZy � Tr dV 1=2ZZydV 1=2 ^ dV 1=2

+TrV dZ ^ dZy � Tr dV 1=2V 1=2 ^ dZZy
=TrV 1=2dV 1=2 ^ (ZdZy + dZZy)� Tr dV 1=2ZZydV 1=2 ^ dV 1=2

+TrV dZ ^ dZy � TrV ZdZyV ^ dZy
=Tr(V �1 � ZZy)dV 1=2 ^ dV 1=2 +TrV dZ ^ (1� ZyV Z)dZy
=TrV dZ ^WdZy = !:

(A.30)

Thus the volume element 
 takes the canonical from (A.26), when it is expressed in the
coordinates �, �y.



Appendix B

Can a representation of the Lie
Algebra of GL(N; C ) pressed down to
the Group?

The purpose of this appendix is to give a criterion for the existence of a group representation
T : GL(N; C ) ! GL(H) with the property T Æ exp = exp Æt, when a representation of the
corresponding Lie algebra t : gl(N; C ) ! gl(H) is given. For simply connected groups the
existence of such a representation is guaranteed by a general theorem of Lie group theory
[43]. But the general linear group is not simply connected. In fact the path c : [0; 1] !
GL(N; C ); t 7! I � E11 + e2�i tE11 cannot be deformed into a single point. Here I denotes
the identity matrix and E11 the matrix with one at the place (1; 1) and zero elsewhere. Thus
GL(N; C ) has a nontrivial topological structure, which we examine in sect. B.1. In doing so
we make use of some basic facts from homotopy theory [8].
In sect. B.2 a necessary and suÆcient condition for the existence of the group representation
is given: exp(2�i tE11) = idH. Note that there is a connection between the occurrence of
E11 in the condition and the path mentioned above, which generates the nontrivial funda-
mental group of GL(N; C ). The criterion is quite easy to check for concrete realizations of
t : gl(N; C ) ! gl(H). In cases where tE11 is diagonalizable, it is ful�lled i� the eigenvalues of
tE11 are integers.

B.1 Fundamental Groups

The fundamental groups of the special linear group and the general linear group over the
complex numbers in N dimensions are

�1(SL(N; C )) = 0; (B.1)

�1(GL(N; C )) = Z: (B.2)

To prove statement (B.1) we let SL(N+1; C ) act on C N+1 . For a group action, the coset space
with respect to the isotropy group of a �xed vector is di�eomorphic to its orbit. In our case we
obtain SL(N+1; C )=SL(N; C ) �= C N+1 nf0g. From the �bration SL(N; C ) ,! SL(N+1; C ) !
SL(N + 1; C )=SL(N; C ) we pass to the corresponding exact sequence of homotopy groups

�1(SL(N; C )) ! �1(SL(N + 1; C )) ! �1(C
N+1 n f0g): (B.3)
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But �1(C
N+1 n f0g) = 0 for N � 1 and from �1(SL(1; C )) = 0 we conclude inductively

�1(SL(N; C )) = 0 for all N .
To prove (B.2) we consider the determinant homomorphism Det : GL(N; C ) ! C � . Its kernel
is SL(N; C ) and so there is a �bration SL(N; C ) ,! GL(N; C ) ! C � . The corresponding exact
sequence of homotopy groups reads

�1(SL(N; C )) ! �1(GL(N; C )) ! �1(S
1)! �0(SL(N; C )) (B.4)

and from �1(SL(N; C )) = 0 and �0(SL(N; C )) = 0 we conclude �1(GL(N; C )) = �1(S
1) = Z.

The universal covering group of GL(N; C ) can be modeled as

fGL(N; C ) = SL(N; C ) � C ; (B.5)

where the group multiplication is given by (A; b) Æ (A0; b0) = (AA0; b + b0) and the covering
homomorphism reads

� : fGL(N; C ) ! GL(N; C ) (B.6)

(A; b) 7! ebA:

In fact, the di�erential at the unity element

��(X; y) =
d

dt

���
0
�(exp(tX); ty) =

d

dt

���
0

�
ety exp(tX)

�
= X + yI (B.7)

is a Lie algebra isomorphism and therefore � : fGL(N; C ) ! GL(N; C ) is a covering. Its kernel

ker � =
n�
e�2�ik=NI; 2�i(k=N + l)

� ��� k; l 2 Zo (B.8)

is isomorphic to Z in agreement with the fundamental group of GL(N; C ), which we calculated
before.

B.2 Representations

Proposition: A representation of the Lie algebra of the general linear group over the complex
numbers t : gl(N; C ) ! gl(H) can be pressed down to a representation of the group, i�
exp(2�i tE11) = idH, where

E11 =

0B@1
0

. . .

0

1CA : (B.9)

To prove the proposition we consider the commutative diagram

gl(N; C )

gexp
��

t
// gl(H)

exp

��fGL(N; C )
�

��

eT
// GL(H)

id
��

GL(N; C )
T

//___ GL(H):

(B.10)



B.2 Representations 115

The �rst step is to press down the representation of the Lie algebra to a representationeT : fGl(N; C ) ! H of the simply connected covering group fGL(N; C ). This is guaranteed by
a general theorem of Lie group theory [43]. The representations of the Lie algebra and the

Lie group are linked by eT Ægexp = exp Æt. The exponential map of fGl(N; C ) can be expressed
in terms of the decomposition of an element M 2 gl(n; C ) into M = X + yI, where X is the
traceless part of M and y = 1

N TrX, namely

gexp : gl(N; C ) ! fGL(N; C ) (B.11)
X + yI 7! (expX; y):

The second step is to press down the representation of the covering group to a representation of
the general linear group T : GL(N; C ) ! GL(H). This is possible, i� the former representation
maps the kernel of the covering map to the identity of the Hilbert space. To get a more explicit
criterion, note that, by decomposing E11 into its traceless and its trace part,

gexp �2�iE11
�
=
�
e�2�i=NI; 2�i=N

�
: (B.12)

Because the matrix on the r.h.s. belongs to the kernel of the covering map, the \only if" part
follows immediately from exp(2�i tE11) = eT �gexp(2�iE11)

�
.

Turning to the \if" part we start with the observation, that the matrix E11 in equation (B.12)
can be replaced by each of the matrices Eaa (a = 2; :::; N), which have one at the place (a; a)
and zero elsewhere. In doing so the r.h.s. of (B.12) does not change and we conclude

gexp (2�iEaa) =gexp �2�iE11
�
: (B.13)

Thus, by making use of the decomposition of the identity into pairwise commuting matrices
I =

PN
a=1E

aa, we conclude

gexp (2�iI) =gexp �2�iNE11
�
: (B.14)

Finally we consider an arbitrary element of the kernel of the covering map and let the rep-
resentation of the covering group act on it:

eT �e�2�i k=NI; 2�i(k=N + l)
�
= eT �gexp �2�i (kE11 + lI)

��
= eT �gexp �2�i kE11

� Ægexp (2�i lI)�
= eT �gexp �2�i kE11

� Ægexp �2�i lNE11
��

= (exp (2�i tE11))k Æ (exp (2�i tE11))lN

= idH :

(B.15)

In the last step the condition on the representation of the Lie algebra entered the argument-
ation. Indeed, the kernel elements are mapped to the identity on the Hilbert space and we
conclude that representation of the covering group can be pressed down to GL(N; C ), q.e.d.



Appendix C

From the Supersymmetric
Color-Flavor Transformation to
Bosonic and Fermionic Versions

The �rst version of the color avor transformation [53] was proven in a supersymmetric
setting. It transforms an integral over U(N) into an integral over Efetov's �-model space
with unitary symmetry,

Z
U(N)

dU exp
�
� i+aU

ij j+a +
� j+a

�U ij i�b
�

=

Z
D(Z; ~Z) SDet(1� ~ZZ)N exp

�
� i+aZab 

i
�b + � j�b ~Zba 

j
+a

�
:

(C.1)

The new integration variables are 2Nf�2Nf supermatrices with boson-fermion decomposition

Z =

�
ZBB ZBF
ZFB ZFF

�
; ~Z =

�
~ZBB ~ZBF
~ZFB ~ZFF

�
: (C.2)

The integration measure is the at Berezin measure D(Z; ~Z) and the integration domain is
given by

~ZBB = ZyBB and 1� ~ZBBZBB > 0; ~ZFF = �ZyFF : (C.3)

The purpose of this appendix is to rederive the bosonic and the fermionic color-avor trans-
formation (which were derived in chapter 2) as special cases of the supersymmetric formula
(C.1). For simplicity we restrict ourselves to the case Nf = 1, while N := Nc is arbitrary.
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Thus the �elds ZBB and ZFF are just numbers and evaluation of the superdeterminant yields

SDet(1� ~ZZ) = SDet

�
1� ~ZBBZBB � ~ZBFZFB ~ZBBZBF + ~ZBFZFF
~ZFBZBB + ~ZFFZFB 1� ~ZFBZBF � ~ZFFZFF

�
=

��
1� ~ZBBZBB � ~ZBFZFB

��
1� ~ZFBZBF � ~ZFFZFF

�
�
�
~ZBBZBF + ~ZBFZFF

��
~ZFBZBB + ~ZFFZFB

����
1� ~ZFBZBF � ~ZFFZFF

�2
=

��
1� ~ZBBZBB

��
1� ~ZFFZFF

�
� ~ZBFZFB �

�
1� 2 ~ZBBZBB

�
~ZFBZBF

� ~ZBB ~ZFFZBFZFB � ZFFZBB ~ZBF ~ZFB + ~ZBFZFB ~ZFBZBF

���
1� ~ZFBZBF � ~ZFFZFF

�2
:

(C.4)

To remove the Grassmann variables from the denominator of the last expression, we manip-
ulate it as follows,

�
1� ~ZFBZBF � ~ZFFZFF

��2
=
�
1� ~ZFFZFF

��2 
1�

~ZFBZBF

1� ~ZFFZFF

!�2

=
�
1� ~ZFFZFF

��2 
1 + 2

~ZFBZBF

1� ~ZFFZFF

!
:

(C.5)

Now we are in position to rewrite the superdeterminant as a power series in the Grassmann
variables,

SDet(1� ~ZZ) =
1� ~ZBBZBB

1� ~ZFFZFF

+
� ~ZBFZFB + ~ZFBZBF � ~ZBB ~ZFFZBFZFB � ZFFZBB ~ZBF ~ZFB�

1� ~ZFFZFF

�2
�
�
1 + ~ZFFZFF

�
~ZBFZFB ~ZFBZBF�

1� ~ZFFZFF

�3 :

(C.6)

We start to calculate the integral over the Berezin measure,

D(Z; ~Z) = const.� dZBBd ~ZBBdZFFd ~ZFF @4

@ZBF ~ZBFZFB ~ZFB
; (C.7)
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by performing the \integration" over the Grassmann variables,

	(ZBB ; ~ZBB ; ZFF ; ~ZFF ) :=
@4

@ZBF ~ZBFZFB ~ZBF
SDet(1� ~ZZ)N

=N

 
1� ~ZBBZBB

1� ~ZFFZFF

!N�1
1 + ~ZFFZFF�
1� ~ZFFZFF

�3
�N(N � 1)

 
1� ~ZBBZBB

1� ~ZFFZFF

!N�2
0B@�1 + ~ZBBZBB ~ZFFZFF�

1� ~ZFFZFF

�4
1CA

=
N
�
N � ~ZBBZBB + ~ZFFZFF �N ~ZBBZBB ~ZFFZFF

�
�
1� ~ZBBZBB

�2�N �
1� ~ZFFZFF

�2+N :

(C.8)

To get the color-avor transformation for the pure bosonic and the pure fermionic case, we
have to do the integral over ZFF and ZBB , respectively. These integrals can be done by
making use of the identitiesZ

C

dZd �Z

(1 + Z �Z)2+N
=

�

N + 1
=

Z
jZj<1

dZd �Z

(1� Z �Z)2�N
; (C.9)

which can be derived by passing to polar coordinates in the complex plane. The corresponding
integrals with additional Z �Z in the numerator can be obtained from (C.9) viaZ

Z �Z dZd �Z

(1 + Z �Z)2+N
=

Z
dZd �Z

(1 + Z �Z)1+N
�
Z

dZd �Z

(1 + Z �Z)2+N
;Z

Z �Z dZd �Z

(1� Z �Z)2�N
= �

Z
dZd �Z

(1� Z �Z)1�N
+

Z
dZd �Z

(1� Z �Z)2�N
:

(C.10)

Finally we get the resultsZ
C

dZFFd �ZFF 	(ZBB ; ~ZBB ; ZFF ; ~ZFF ) =
(1� 1=N) ��

1 + ZBB �ZBB
�2�N ; (C.11)Z

jZj<1
dZBBd �ZBB 	(ZBB ; ~ZBB ; ZFF ; ~ZFF ) =

(1 + 1=N) ��
1 + ZFF �ZFF

�2+N ; (C.12)

which are in agreement with the factors in front of the exponentials in equations (2.84) and
(2.85).



Appendix D

Cli�ord Algebras and Dirac
operators

The �rst section of this appendix is devoted to Cli�ord algebras and -matrices. We point
out the chiral structure of the spinor space over a space-time of even dimensions. Again in
an even number of dimensions, we calculate the traces of products of -matrices.
The remaining sections deal with the derivation of the correct expression for the Dirac op-
erator, the Dirac action and the partition function in Euclidean space-time. This will be
done starting with the formulation in Minkowski space-time, where the physics takes place,
and then performing a Wick rotation to switch to Euclidean space-time. The Dirac operator
in Minkowski space-time turns out to be hermitian with respect to an inde�nite product
on the space of wave functions, while the Dirac operator in Euclidean space-time comes out
antihermitian with respect to the usual scalar product on the space of wave functions. To
understand the structure of the Dirac operators, it is useful to start with a study of invariant
quadratic forms on spinor spaces.

D.1 Cli�ord Algebra

Let g�� = diag(+1; :::;+1;�1; :::;�1) be a metric with r positive and s negative eigenvalues.
We consider the d = r+s-dimensional Cli�ord algebra associated to the pseudoeuclidean space
(Rd ; g) and its representation on the complex spinor space C Ns of the dimension Ns = 2[d=2]
1. The corresponding -matrices satisfy the relations

�� + �� = 2g�� : (D.1)

Left and Right Chirality

The volume element of the Cli�ord algebra is de�ned to be

! := 1 � ::: � d: (D.2)

It is elementary to check that the volume element has the properties

!2 = (�1)d(d�1)=2+s (D.3)

�! + (�1)d!� = 0 for � = 1; :::; d: (D.4)

1[d=2] = greatest integer smaller or equal to d=2.
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120 Cli�ord Algebras and Dirac operators

From the last relation, we read of that the volume element in even dimensions anticommutes
with the -matrices, while it belongs to the center of the Cli�ord algebra in odd dimensions.
Therefore the volume element is proportional to the identity in odd dimensions, if the Cli�ord
representation is irreducible. 2 Some of the following results are based on the anticommutation
of the volume element and the -matrices; in such cases we have to restrict ourselves to an
even number of space-time dimensions.
To discuss the chiral structure of the spinor space, we de�ne a Cli�ord element, which is
idempotent and proportional to the volume element,

�5 := id(d�1)=2 1 � ::: � d: (D.5)

This de�nition reads for two special cases of a Euclidean space-time in low dimensions

�5 = i12 (d = 2); (D.6)

�5 = �1234 = �5 (d = 4): (D.7)

A Dirac spinor  can always be decomposed into a left- and a right-handed part according to

 =  L +  R with  L := P� ;  R := P+ ; (D.8)

where

P� :=
1

2
(1� 5); P+ :=

1

2
(1 + 5): (D.9)

Indeed, P+ and P� are orthogonal projectors, which sum up to the identity,

P 2
� = P�; P+P� = P�P+ = 0; P+ + P� = 1: (D.10)

The customary decomposition of the spinor in left- and a right-handed parts works only in
even dimensions, where the projectors satisfy

�P� = P�� for all �: (D.11)

In odd dimensions the Spinor space has no chiral structure. In that case, one of the projectors
vanishes, as long as the spinor space is irreducible.

Basis of the Cli�ord Algebra

To label a basis of the Cli�ord algebra we introduce the sets m = f�1; :::; �kg with k = 0; :::d,
and �j 2 f1; :::; dg for j = 1; :::; k. THe corresponding Cli�ord elements are given by

m := �1 � ::: � �k ; where 1 � �1 < �2 < ::: < �d � d: (D.12)

For the empty set this de�nition (D.12) should be read as � := 1. From the de�ning relation
of the Cli�ord (D.1) it follows that the set

fmgm = f1; �1 ; �1�2 ; :::; 1 � ::: � dg (D.13)

contains a basis of the Cli�ord algebra. In even dimensions d the spinor space has dimension
Ns = 2d=2 and we conclude, that for even d the 2d matrices (D.13) form a basis of the complex
Ns � Ns matrices, considered as a complex vector space. In an odd number of dimensions,
the set (D.13) still contains a basis of the matrix space, but it is linear dependent.

2The Cli�ord algebra itself decomposes into a sum of two subalgebras, i� s� r � 3 modulo 4, as it can be
seen from the classi�cation of Cli�ord algebras, see e.g. [9].
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Traces of Cli�ord Elements in Even Dimensions

Finally we will show that in even dimensions, the traces of the basis elements (D.13) except
the unitary matrix 1, vanish. That can be seen by looking at the even and odd basis elements
separately: For even k we make use of the anticommutation relations (D.1) and the cyclicity
of the trace to get

Tr(�1 � ::: � �k) =
1

2
Tr(�1 � ::: � �k)�

1

2
Tr(�2 � ::: � �k�1)

=
1

2
Tr(�1 � ::: � �k)�

1

2
Tr(�1 � ::: � �k)

= 0:

(D.14)

For odd k, we may write the basis element as a product of the volume element (D.2) and a
matrix � that consists of a product of an odd number of -matrices,

�1 � ::: � �k = !�: (D.15)

By anticommutation relations (D.4) (n even!) and the cyclicity of the trace, we conclude

Tr(�1 � ::: � �k) = Tr(!�)

=
1

2
Tr(!�) � 1

2
Tr(�!)

=
1

2
Tr(!�) � 1

2
Tr(!�)

= 0:

(D.16)

Combining both cases we have shown that the traces of -matrices in even dimensions vanish,
as long as they do not cancel each other to the identity matrix.

D.2 Invariant Forms on Spinor Spaces (Euclidean Case)

Let us �rst consider the case of Euclidean signature g�� = Æ�� . Choose an arbitrary positive
de�nite hermitian form (; ) on C Ns . We will construct an invariant form by averaging over
the basis B = fmgm = f1; �1 ; �1�2 ; :::; 1 � ::: � dg of the Cli�ord algebra,

hv; wi = 1

#B

X
2B

(v; w) (D.17)

Here #B = 2d denotes the number of elements in B. Multiplying the elements of B from
the right with a matrix �, we get a new set B� = B�. Up to signs, B� contains the same
elements as B. Thus the sum in (D.17) does not change its value, when extended over B�

instead of B, so that

h�v; �wi = hv; wi: (D.18)
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More generaly, the form is invariant under a =
Pd

�=1 a�k with g(a; a) = 1:

hav; awi =
dX

�;�=1

a�a�h�v; �wi

=
dX

�=1

a2�h�v; �wi+
X
�<�

a�a�
�h��v; 2�wi+ h��v; 2�wi�

=
dX

�=1

a2�hv; wi +
X
�<�

a�a�h(�� + ��)v; wi

= hv; wi:

(D.19)

To summarize, h; i is a positive de�nite Pin(n)-invariant hermitian product on the spinor
space. Recall that Pin(n) = fa1 � ::: � ak j a1; :::; ak 2 Sng, where Sn = fa j g(a; a) = 1g.
The gamma-matrices are hermitian with respect to that product:

hav; wi = hv; awi: (D.20)

Denoting hermitian conjugation with respect to h; i with y, we may write ya = a.

D.3 Invariant Form (General Case)

Now we assume a pseudoeuclidean signature with an odd number r of positive and an arbitrary
number s of negative eigenvalues. Now there are indices � with 2� = 1 and other indices �
with 2� = �1, and therefore one can no longer drop the sum

P
�<� in (D.19). The quadratic

from needs to be modi�ed to be invariant. De�ning t = ir(r�1)=21:::r, one gets

t� = �t for � � r (D.21)

t� = ��t for � > r: (D.22)

A new sesquilinear form, which is not positive de�nite, is introduced by

hhv; wii = htv; wi: (D.23)

For a =
Pd

�=1 a�� with an arbitrary a 2 C d one gets

hhav; awii =
dX

�;�=1

a�a�ht�v; �wi

=
dX

�=1

a2�ht�v; �wi+
X
�<�

a�a�
�h�t�v; 2�wi+ h�t�v; 2�wi�

=
dX

�=1

a2�g��h�tv; �wi +
X
�<�

a�a� (ht��v; wi + ht��v; wi)

= g(a; a) hhv; wii:

(D.24)
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To summarize, hh; ii is a Pin(r; s)+-invariant sesquilinear form on the spinor space. Here
Pin(r; s)+ = fa1 � ::: � ak j a1; :::; ak 2 Sr;s and for an even number of a� : g(a�; a�) = �1g,
where Sr;s = fa j jg(a; a)j = 1g. For a 2 Sr;s

hhav; wii = hhv; awii: (D.25)

Further
h�v; wi = �hv; �wi; (D.26)

where the plus sign occurs for � � r and the minus sign for � > r.

D.4 Dirac Operator

The following considerations take place in the 4-dimensional Minkowski space-time with sig-
nature (+���). Greek indices run from 0; :::; 3 and Latin indices from 1; :::; 3. The dimension
of the spinor space on which the -matrices are acting is Ns = 4. Specializing the results of
the preceding section to r = 1 and s = 3, we get t = 0 and

y0 = 0; yk = �k = 0k0: (D.27)

Now the representation of the Cli�ord algebra is chosen in such a way, that h; i is the canonical
inner product on C 4 (hv; wi =P3

�=0 v
�
�w�). (This can be done by performing an equivalence

transformation with a matrix which maps an orthonormal basis related to h; i to an orthonor-
mal basis related to the usual scalar product.) As usual the Dirac conjugation is de�ned by
� =  y0. Thus the scalar products of the preceding sections translate to h�;  i = �� and
hh�;  ii = �� . The Dirac operator, de�ned by

6D = i�(@
� + iA�); (D.28)

is hermitian with respect to the product

hh�;  iiR4 =
Z
d4x hh�(x);  (x)ii =

Z
d4x�y(x)0 (x) (D.29)

of spinor wave functions. Proof (arrows over partial derivatives mark, whether they act to
the left or to the right):

hh6D�; iiR4 =
Z
d4x (6D�)y0 

=

Z
d4x�y(�iy�)(

 �
@� � iA�)0 

=

Z
d4x�y0(�i�)(

 �
@� � iA�) 

=

Z
d4x�y0(�i�)(�

�!
@� � iA�) 

=

Z
d4x�y0 6D 

= hh�; 6D iiR4 :

(D.30)

Integration by parts was employed to let the partial derivatives act to the right instead to
the left. Action and partition function of the Dirac operator on Minkowski space read

Z =

Z
d d � exp(iS); S =

Z
d4x � (6D �m) : (D.31)
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D.5 Euclidean Dirac Operator

To switch to the Euclidean formulation, we perform a Wick rotation t! �i� , @t ! i@� . Since
in Euclidean space, the covering group of the Lorentz group, Pin(1; 3), has to be replaced
by the covering group of the four-dimensional Euclidean rotations Pin(4), it is convenient to
express the Dirac operator in terms of Euclidean -matrices. They are given by Ek = �ik ,
E0 = 0 and satisfy

E� 
E
� + E� 

E
� = 2Æ�� (D.32)

as well as
Ey� = E� : (D.33)

Carrying out the Wick rotation, we have to do the replacement 6D ! � 6DE, where

6DE = E� (@
� + iA�) (D.34)

is the Euclidean Dirac operator. It is antihermitian with respect to the Hermitian product

h�;  iR4 =
Z
d4x h�(x);  (x)i =

Z
d4x�y(x) (x) (D.35)

Proof:

h6DE�;  iR4 =
Z
d4x (6DE�)y 

=

Z
d4x�yE� (

 �
@� � iA�) 

=

Z
d4x�yE� (�

�!
@� � iA�) 

= �h�; 6DE iR4

(D.36)

The Euclidean partition function and the Euclidean action are given by (d4x! �id4x)

ZE =

Z
d d � exp(�SE); SE =

Z
d4x � (6DE +m) : (D.37)

Note that  and � are Grassmann variables, and therefore independent variables. Thus the
replacement � !  y = � 0 can be done by the theorem of substitution for integrals.



Appendix E

Two In�nite Series

In this appendix we calculate the limit of two in�nite series. They arise in context with the
continuum limit of a lattice gauge theory, which is considered in Chapter 5. The �rst series
can be expressed as derivative of the geometric series,

al(�) :=
1X

k=l+1

k�k = �
d

dx

���
�

1X
k=l+1

xk

=�
d

dx

���
�

xl+1

1� x
=

�l+1

(1� �)2 (1 + l(1� �)):

(E.1)

The second series can be expressed as an integral over the geometric series,

bl(�) :=

1X
k=l+1

1

k
�k =

Z �

0
dx

1X
k=l

xk

=

Z �

0
dx

xl

1� x:
(E.2)

In Chapter 5 we have introduced a dependence of the integer index l on parameter �. It is
de�ned by the unequalities

l(�) � 1

(1� �)1+" ; l(�) + 1 � 1

(1� �)1+" ; (E.3)

where " is a �xed small positive number. To connect the lattice gauge theory with quenched
QCD, it turns out to be crucial that

lim
�!1

al(�)(�) = 0; lim
�!1

bl(�)(�) = 0: (E.4)

To prove that both sequences converge to zero, we note that they are positive and have the
following upper bounds,

al(�)(�) �
�1=(1��)1+"

(1� �)2
�
1 +

1

(1� �)"
�
; bl(�)(�) � �

�l(�)

1� � �
�1=(1��)1+"

1� � : (E.5)
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126 Two In�nite Series

To obtain the upper bound for the second sequence we have estimated the integral (E.2) by
the length of the integration interval times the maximum of the integrand.
The simplest way to show that the right hand sides of the inequalities (E.5) converge to zero
for � ! 1, is to take the logarithm these expressions:

lnal(�)(�) �
1

(1� �)1+" ln(1� (1� �))� (2 + ") ln(1� �) + ln(1 + (1� �)")

= �(1� �)�" +O((1� �)1�") +O(ln(1� �)) +O((1� �)")
! �1:

(E.6)

The convergence to minus in�nity follows from the fact that the power (1 � �)�" dominates
the logarithm ln(1� �) in the limit � ! 1. For the second sequence we obtain

ln bl(�)(�) �
1

(1� �)1+" ln(1� (1� �))� ln(1� �)

= �(1� �)�" +O((1� �)1�") +O(ln(1� �))
! �1:

(E.7)

Again we took into account that a logarithm is increasing slower than any power.



Appendix F

Fourier Transform

In this appendix we shortly discuss the Fourier transform and some related formulas. For the
omitted proofs we refer to [50] for the continuum version and to [4] for the lattice version of
the Fourier transform.

The Continuum Fourier Transform

The Fourier transform of a suÆciently fast decreasing function is de�ned by

f(p) := (2�)�d=2
Z
Rd

ddx e�i(p�x)f(x): (F.1)

One can get back the original function by Fourier's inversion theorem,

f(x) = (2�)�d=2
Z
Rd

ddp ei(p�x)f(p): (F.2)

Parseval's relation states that the hermitian product between two functions can be calculated
in real space and in Fourier space,Z

Rd

ddx �f(x)g(x) =

Z
Rd

ddp �f(p)g(p): (F.3)

The normalization constant in the de�nition of the Fourier transform is chosen such, that
no additional factors appear in Parseval's relation. The Fourier transform of the �rst partial
derivatives of a function is given by�

@f

@xk

�
(p) = ipkf(p): (F.4)

This formula can be derived from (F.1) by di�erentiation under the integral followed by a
partial integration.

The Lattice Fourier Transform

On a d-dimensional hypercubic lattice with lattice constant a and a length L in lattice sites
in each direction we de�ne the Fourier transform as

f(k) := L�d=2
X
n

e�i(k�n)f(n): (F.5)
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We use the convention that the position on the lattice and the wave vectors in Fourier space
are labeled by dimensionless variables n and k. The wave vector takes discrete values and is
restricted to the �rst Brillouin zone,

k� =
2�

L
l; with l 2 Z and k� 2]� �; �]: (F.6)

Again the original function can be recovered by Fourier's inversion theorem,

f(n) = L�d=2
X
k

ei(k�n)f(k): (F.7)

Parseval's relation on the lattice readsX
n

�f(n)g(n) =
X
k

�f(k)g(k): (F.8)

Again we have chosen the normalization in the de�nition of the Fourier transform such that
Parseval's relation takes this simple form.

Connection between the Continuum and the Lattice version of Fourier Transform

The multi-indices n and k which label the lattices, are related to the d-dimensional continuum
variables x and p via

x = na; p =
k

a
: (F.9)

Integrals over the position space and the momentum space can be translated in sum on the
lattices via Z

ddx  ! ad
X
n

(F.10)

Z
ddp  !

�
2�

La

�dX
k

: (F.11)

For the position space the correspondence between the integral and the sum becomes an
equation in the continuum limit a! 0. For the momentum space this is the case in the limit
La ! 1 of an in�nitely large system. To connect the continuum Fourier transformation
with the discrete version, one has to combine both limits. The functions on position and
momentum space are connected with the corresponding quantities on the lattice by

fcont.(x = na) = flattice(n) (F.12)

fcont.

�
p =

k

a

�
= ad

�
L

2�

�d=2
flattice(k): (F.13)



Appendix G

Continuum Limit on the
Four-Dimensional Bodycentered
Hypercubic Lattice

The purpose of this appendix is to put di�erence operators on the bhc lattice into corres-
pondence to continuum di�erential operators. Sums over the sites of a four-dimensional bhc
lattice translate in the continuum limit into an integral by

ad

2

X
n

 !
Z
d4x: (G.1)

Note the extra factor 1=2 on the l. h. s. compared to the corresponding formula for the hc
lattice. It takes into account that the bhc lattices consist of two nested hc lattices.
In performing the continuum limit, the di�erences on the lattice are replaced by derivatives
in direction of the elementary lattice vectors

v���� =
�e0� + �e0�p

2
; 1 � � < � � 4; � = �1; � = �1: (G.2)

We will calculate the expressions for a �rst, a second and a third order di�erential operator.
All sums

P
v run over the positive lattice vectors, that is the vectors (G.2) with � = 1. We

start with the calculation of a Dirac operator,

X
v

v@v =
1

2

X
�<�;�=�1

(� + ��) (@� + �@�)

=
1

2

X
�<�;�=�1

(�@� + �@� + �(�@� + �@�))

=
X
�<�

(�@� + �@�)

= 3 6D

(G.3)
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In a completely analogous way, one obtains the following expression for the Laplace operator,X
v

@2v =
1

2

X
�<�;�=�1

�
@2� + @2� + 2�@�@�

�
=
X
�<�

�
@2� + @2�

�
= 3�:

(G.4)

Finally we calculate the expression for the following di�erential operator of fourth order:X
v

@4v =
1

4

X
�<�;�=�1

�
@2� + @2� + 2�@�@�

�2
=

1

4

X
�<�;�=�1

�
(@2� + @2�)

2 + 4�@�@�(@
2
� + @2�) + 4@2�@

2
�

�
=

1

2

X
�<�

�
@4� + 6@2�@

2
� + @4�

�
= 3

X
�<�

@2�@
2
� +

3

2

X
�

@4�

=
3

2
�2:

(G.5)



Appendix H

Invariant Lagrangian Densities

In non-linear �eld theories the �eld cannot take arbitrary values in a vector space, but is
restricted by certain constraints. We consider the case, where it is a map from space-time
into a matrix group, g : Rd ! G. In our applications this group is either the unitary group
G = U(N) or the special unitary group G = SU(N).
The �eld theory is de�ned by an action functional, which is given by an space-time integral
over a Lagrangian density,

S[g] =

Z
Rd

ddxL(g; @�g; @�@�g): (H.1)

The Lagrangian density has to respect the symmetries of the physical problem; we assume it
to be invariant under

(i) the Euclidean space time symmetry, that is under the translations R4 as well as the
rotations O(d),

(ii) left as well as right multiplication with elements of the group G.

It is convenient to built the Lagrangian density of the left currents 1

L� := g�1@�g: (H.2)

The left currents are left invariant under group transformations; under a general transforma-
tion g 7! h1gh2 with h1, h2 2 G they transforms like L� ! h�12 L�h2. By taking a trace over
products of left currents one can obtain expressions which are left- and rightinvariant. The
left currents take values in the Lie algebra of the group G. In particular if G = U(N) the

left currents are antihermitian (Ly� = �L�) and if G = SU(N) they are antihermitian and
traceless.

H.1 Higher Derivatives

Left invariant expressions containing higher derivatives can be written in terms of the left
currents. To show that, we make use of the relation L� = g�1@�g = �(@�g�1)g, which

1Alternatively one could make use of the right currents R� := (@�g)g
�1.
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follows from di�erentiation of the equation g�1g = I. Under a trace the following set of
equations hold:

L2
� = �@�g�1@�g; (H.3)

g�1(@2�g) = L2
� + @�L�; (H.4)

(@2�g
�1)g = L2

� � @�L�; (H.5)

g�1(@3�g) = L3
� + 3L�@�L� + @2�L�; (H.6)

g�1(@4�g) = L4
� + 6L2

�@�L� + 4L�@
2
�L� + 3(@�L�)

2 + @3�L�; (H.7)

= L4
� + 2@�(L

3
�) + 4@�(L�@�L�)� (@�L�)

2 + @3�L�: (H.8)

H.2 Invariant Lagrangians

We built Lagrangian densities of the left currents, which are compatible with space-time
and group symmetries. In doing so, each space-time index should be contracted with a
partner, to get a scalar with respect to space-time transformations. Invariance under the
group transformations can be achieved by building a trace over the group space.
A general invariant Lagrangian density L(g) can be expanded in powers of the momentum,

L(g) = L(0)(g) + L(2)(g) + L(4)(g) + ::: (H.9)

In the expansion above, the �rst term is of order O(p0) and contains no derivatives, the
second term is of order O(p2) and contains two derivatives, the third term is of order O(p4)
and contains four derivatives, and so on. We have left out terms of an odd order because they
are in conict with space-time symmetry, to be more precise with reections on hyperplanes
and the parity transformation.
Firstly we construct Lagrangian densities for a SU(N)-valued �eld. Later we show some
additional terms, which are admissible for a U(N)-valued but not for a SU(N)-valued �eld.

Special Unitary Group

At order O(p0), the group invariant terms are constants, which do not contribute to the
equations of motion. There can be symmetry breaking terms, for example

L(0)(g) = TrM(g + g�1); (H.10)

where the symmetry breaking parameterM is a N �N -matrix.
At order O(p2), there is only one term, which is compatible with the required invariance
properties,

L(2)(g) = ��1
X
�

TrL2
�; (H.11)

where �1 is a constant. Making use of (H.4) and a partial integration, it can be rewritten as

L(2)(g) = �1 Tr(rg�1rg) �= ��1Tr(g�1�g): (H.12)

With the sign \�=" we denote equality up to a divergence term.
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At order O(p4) there are ten possible terms at �rst sight,

L(4)(g) =
X
�;�

�
�1 Tr(L

2
�)Tr(L

2
�) + �2 Tr(L�L�)Tr(L�L�)

+�3 Tr(L
2
�L

2
�) + �4 Tr(L�L�L�L�)

+�5 Tr(L
2
�@�L�) + �6 Tr(L�L�@�L�) + �7 Tr(L�L�@�L�)

+�8 Tr(@�L�@�L�) + �9 Tr(@�L�@�L�) + �10 Tr(@�L�@�L�)

�
:

(H.13)

Four of the contributions to L(4)(g) can be transformed into other terms due to partial
integration and the Maurer-Cartan equation

@�L� � @�L� + [L�; L� ] = 0; (H.14)

the result is that we can set �6 = �7 = �9 = �10 = 0. For a low number of group degrees of
freedom not all of the left contribution are independent. They are connected through trace
relations; there are two such relations for the special unitary group in two dimensions and
one such relation for the special unitary in three dimensions: For two traceless 2� 2 matrices
L� and L� it is elementary to derive the identity

Tr(L2
�)Tr(L

2
�) = Tr(L2

�L
2
�) + Tr(L�L�L�L�)

Tr(L�L�)Tr(L�L�) = 2Tr(L2
�L

2
�):

(H.15)

For two traceless 3� 3 matrices L� and L� the following identity holds,

Tr(L�L�L�L�) = �2Tr(L2
�L

2
�) +

1

2
Tr(L2

�)Tr(L
2
�) + Tr(L�L�)Tr(L�L�): (H.16)

For a proof of this relation see [16]. To sum up, the general form of a fourth order Lagrangian
density for a SU(3)-valued �eld has the form

L(4)(g) =
X
�;�

�
�1 Tr(L

2
�)Tr(L

2
�) + �2 Tr(L�L�)Tr(L�L�) + �3 Tr(L

2
�L

2
�)

+�5 Tr(L
2
�@�L�) + �8 Tr(@�L�@�L�)

�
:

(H.17)

The �rst three terms are identical to the �rst terms of the Gasser-Leutwyler expansion [18].
Both other terms contain second derivatives of the �eld, namely

P
� @�L�.

Finally we consider the transformation behavior of the di�erent contributions under the group
inversion g ! g�1. It elementary to prove that

Tr(L2
�@�L�) ! �Tr(L2

�@�L�) for g ! g�1; (H.18)

while all other contributions are invariant under the group inversion.
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Unitary Group

In case of an U(N)-valued �eld the currents the corresponding Lie algebra may be decomposed
into

u(N) = u(1) � su(N): (H.19)

One easily can write down a term, which involves only the subgroup U(1) of U(N), namely

L(0)
u(1)[g] = m0Det(g + g�1) (H.20)

with a scalar parameter m0. It is of order O(1) and breaks the U(1) symmetry.
The decomposition (H.19) is orthogonal with respect to the bi-invariant inner product hL�; L�i =
�Tr(Ly�L�) of the Lie algebra. As a consequence, one can consider contributions, which cor-
respond to the u(1) subalgebra inside u(N) and do not depend on the value of the currents
in the su(N) subalgebra. A terms of such a kind is the trace of a single left current,

TrL� = Tr(g�1@�g) = Tr(@� ln g) = @� Tr ln g = @� lnDet g: (H.21)

At order O(p2) the list of the last section has to be extended by one extra term, the so-called
Garde term

L(2)
u(1)[g] = �2

X
�

(TrL�)
2: (H.22)

Making use of (H.21) and a partial integration, it can be written as

L(2)
u(1)[g] = �2(r lnDet g)2 �= ��2(lnDet g)�(lnDet g): (H.23)

At order O(p4) there are di�erent terms due to possible mixing of u(1) and su(N) depended
contributions.

H.3 Calculation of an E�ective Action for Strong Coupling
QCD (hc Lattice)

In this section we display details of the calculation of a QCD low energy action. Starting
point for a expansion in the momenta of the light mesons p and the quark masses mf is the
action (6.67). The expansion is carried out up to order O(p4); in doing so the quark masses
count as O(p2) in the spirit of chiral power counting. The �rst contribution is the uctuation
action, which is obtained be setting the quark masses to zero,

S[G] =� a�d

2

Z
ddx Tr ln

�
1 +

a2

8d
G�1�G+

a4

384d
G�1@4G

�
+G $ G�1

=� a2�d

16d

Z
ddx Tr(G�1�G)

+
a4�d

256d

Z
ddx

�
1

d
Tr(G�1�G)2 � 1

3
Tr(G�1@4G)

�
+G $ G�1

=� a2�d

8d

Z
ddx

X
�

TrL2
�

+
a4�d

128d

Z
ddx

 
1

d

X
�;�

�
Tr(L2

�L
2
�) + Tr(@�L�@�L�)

�
+
1

3

X
�

�
Tr(@�L�)

2 � TrL4
�

�!
:

(H.24)
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In the last step of the calculation, we made use of the identities G�1�G =
P

�

�
L2
� + @�L�

�
and G�1@4G �=P�

�
L4
� � (@�L�)

2
�
. This relations where derived in H.1; the second identity

is valid up to divergence terms. Performing the square of the �rst expression we get a mixed
term 2

P
�;� Tr(L

2
�@�L�). This terms is odd with respect to the group inversion G $ G�1

and cancels when the symmetrization is done.
The second contribution is the mass action, which is obtained by setting the derivatives of
the Goldstone �eld to zero. During the calculation we neglect constant terms, which do not
contain the Goldstone �eld,

SM[G] =� a�d

2

Z
ddx Tr ln

�
1 +

1

2dx
G�1M̂ � x

4
G�1fM̂; Gg+ x2

16
G�1fM̂2; Gg

�
+G $ G�1

=� a�d

4dx

Z
ddx Tr

�
G�1M̂�

+
a�d

4

Z
ddx Tr

�
1

2dx
G�1M̂ � x

4
G�1fM̂; Gg

�2

+G $ G�1

=� a�d

4dx

Z
ddx Tr

�M̂(G+G�1)
�

+
a�d

16d2x2

Z
ddx Tr

�M̂G�1M̂G�1 + M̂GM̂G
�

� a�d

8d

Z
ddx Tr

�M̂2(G+G�1)
�
+
x2a�d

16

Z
ddx Tr

�M̂G�1M̂G
�
:

(H.25)

Last but not least we turn to the third contribution which couples the uctuations of the
Goldstone �eld and the quark masses. During the calculation we neglect all terms which do
not contain both derivatives and the quark masses,

S;M[G] =� a�d

2

Z
ddx Tr ln

�
1 +

1

2dx
G�1M̂ � x

4
G�1fM̂; Gg

� xa

8d
G�1[M̂; @G] +

a2

8d
G�1�G� xa2

32d
G�1fM̂;�Gg

�
+G $ G�1

=+
xa1�d

16d

Z
ddx Tr

�M̂(G�1@G� @GG�1�
� xa2�d

64d

Z
ddx Tr

�M̂(G�1�G+�GG�1)
�

� a�d

4

Z
ddx Tr

�
1

2dx
G�1M̂ � x

4
G�1fM̂; Gg+ a2

8d
G�1�G

�2

+G $ G�1

=+
xa1�d

8d

Z
ddx Tr

�M̂(G�1@G� @GG�1)�
� a2�d

32d2x

Z
ddx Tr

�M̂(G�1�GG�1 +G�G�1G)
�

=+
xa1�d

8d

Z
ddx Tr

�M̂(G�1@G� @GG�1)�
� a2�d

32d2x

Z
ddx

X
�

�
Tr
�
L2
�(G

�1M̂+ M̂G)
�
+Tr

�
@�L�(G

�1M̂ � M̂G)
��
:

(H.26)
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Zusammenfassung

Das heutige Bild der mikroskopischen physikalischen Welt, ihrer Grundbestandteile und der
Kr�afte zwischen ihnen, ist das Standardmodell der Elementarteilchenphysik. Im Standardmo-
dell werden die Kr�afte zwischen den Grundbausteinen der Materie, den Quarks und den Lep-
tonen, durch den Austausch von Eichbosonen vermittelt. Die mathematische Modellierung
dieser Vorstellung geschieht im Rahmen von quantisierten Eichtheorien, die den verschiedenen
Wechselwirkungen zugeordnet sind.
Diese Arbeit ist einem neuen Zugang zur Quantenchromodynamik (QCD), der Theorie der
starken Wechselwirkung, gewidmet. Die QCD ist die Eichtheorie der Gluonen und Quarks,
die �uber die Farbfreiheitsgrade aneinander koppeln. Komplement�ar zu der Farbe besitzen die
Quarks Spin und Flavor als weitere Freiheitsgrade, die nicht an die Gluonen koppeln.

Die Color-Flavor-Transformation

Diese Struktur bildet den Ausgangspunkt f�ur die Anwendung der Color-Flavor-Transformation,
einer k�urzlich entdeckten �Aquivalenz zwischen zwei Formulierungen bestimmter Quantenfeld-
theorien [53]. Einer der im Hinblick auf die Quantenchromodynamik interessanten Aspekte
an der Color-Flavor-Transformation ist, da� diese die durch das Eichfeld vermittelte Kopp-
lung der Farbfreiheitsgrade der Quarks durch eine Kopplung der dazu komplement�aren Spin-
und Flavorfreiheitsgrade ersetzt. Das diese Kopplung vermittelnde Feld bezeichnen wir als

"
Mesonenfeld\, da es an Farbsinguletts von Quarks koppelt und mit den physikalischen Me-
sonen in Verbindung gebracht werden kann. Die zentrale Idee dieser Arbeit ist, mit Hilfe der
Color-Flavor-Transformation eine Verbindung zwischen den Hochenergie- und den Nieder-
energiesektor der Quantenchromodynamik herzustellen. Im Hochenergiesektor ist die Kopp-
lungskonstante der QCD klein und die Theorie st�orungstheoretisch auswertbar, der Nieder-
energiesektor ist hingegen nicht st�orungstheoretisch zug�anglich. F�ur niedrige Energien sollte
die Chromodynamik in eine Theorie von schwach gekoppelten Mesonen und Baryonen �uber-
gehen. Ziel dieser Arbeit ist es, zum Verst�andnis dieses �Ubergangs beizutragen.
In Kapitel 2 dieser Arbeit haben wir uns mit den mathematischen Grundlagen der Color-
Flavor-Transformation auseinandergesetzt. Wir betrachten ein Quantenvielteilchensystem,
das durch die kanonischen Vertauschungsrelationen von Erzeugungs- und Vernichtungsope-
ratoren charakterisiert ist. Die Color-Flavor-Transformation baut auf einer Struktur in der
Gruppe der kanonischen Transformationen der Erzeugungs- und Vernichtungsoperatoren auf:
Jedem dualen Paar von Untergruppen dieser Gruppe ist eine Version der Color-Flavor-
Transformation zugeordnet. Die f�ur uns in Zusammenhang mit der Quantenchromodyna-
mik interessante Color-Flavor-Transformation geh�ort zu einem aus zwei unit�aren Gruppen
bestehenden dualen Paar. Eine diesem Fall entsprechende Version haben wir f�ur ein rein
bosonisches und rein fermionisches System ausgearbeitet.
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Nun ist die Eichgruppe der Quantenchromodynamik aber keine unit�are Gruppe, sondern die
spezielle unit�are Gruppe in drei Dimensionen. Dies f�uhrt dazu, da� farblose Zust�ande nicht
nur aus Quark-Antiquark-Paaren sondern auch aus drei Quarks, von denen jedes eine andere
Farbe besitzt, gebildet werden k�onnen. Anders ausgedr�uckt: Neben Mesonen gibt es auch
Baryonen. Es war daher n�otig, die Color-Flavor-Transformation auf die spezielle unit�are
Gruppe zu verallgemeinern (Kapitel 3). Als Ergebnis erhalten wir Summe von Beitr�agen, von
denen jeder durch eine Baryonenzahl B gekennzeichnet ist. Der zu B = 0 geh�orende Beitrag
entspricht genau dem Ergebnis der Color-Flavor-Transformation f�ur die unit�are Gruppe. Die
anderen Terme enthalten zus�atzlich einen Vorfaktor, der aus einem Produkt von Quarkfeldern
besteht. Die Anzahl der Baryonen, zu denen sich diese zusammensetzen, kennzeichnet den
jeweiligen Beitrag.

Gitterformulierung der Quantenchromodynamik

Die QCD ist als relativistische Feldtheorie invariant unter Poincar�e-Transformationen, den
Symmetrietransformationen der relativistischen Raumzeit. Wir arbeiten stets in der eukli-
dischen Formulierung der Feldtheorie, die den Vorteil hat, da� Raum und Zeit v�ollig sym-
metrisch behandelt werden. Die Color-Flavor-Transformation ist aber nicht auf die Kontinu-
umsformulierung der QCD, sondern auf ihre Gitterformulierung anwendbar. Der �Ubergang
zum Gitter bricht die kontinuierliche Raumzeitsymmetrie zu einer endlichen Gittersymme-
triegruppe. Wir arbeiten mit zwei unterschiedlichen Gittern: mit dem hyperkubischen (hc)
Gitter und dem raumzentrierten hyperkubischen (bhc) Gitter. Bemerkenswerter Weise gibt
es n�amlich in vier Raumzeitdimensionen (anders als in zwei oder drei Dimensionen) ein Gitter
mit einer gr�o�eren Symmetriegruppe als das hc Gitter: das bhc Gitter. Dabei ist der Fall von
vier Raumzeitdimensionen besonders ausgezeichnet, da das bhc Gitter nur in diesem Fall ein
Bravais-Gitter ist.
Wichtig f�ur das Verst�andnis der starken Wechselwirkung bei niedrigen Energien ist die appro-
ximativ g�ultige chirale Symmetrie der QCD. Man geht davon aus, da� diese vom Grundzu-
stand der Quantenchromodynamik gebrochen wird. Nach dem Goldstonetheorem besitzt die
Theorie dann massenlose Anregungen, die den gebrochenen Symmetriegeneratoren zugeord-
net sind. Im Fall der chiralen Symmetriebrechung identi�ziert man diese Goldstonebosonen
mit den leichtesten experimentell beobachteten Mesonen. Die Goldstonebosonen w�aren mas-
selos, wenn die chiralen Transformationen eine exakte Symmetrie der QCD w�aren. In der
QCD wird die chirale Symmetrie aber explizit durch die endlichen Quarkmassen gebrochen.
So erkl�art man die nicht-verschwindenden Massen der leichtesten Mesonen, die proportional
zur Wurzel aus den Quarkmassen sind. Um die Color-Flavor-Transformation anwenden zu
k�onnen, sind wir auf die Gitterformulierung der QCD angewiesen. Daher haben wir unter-
sucht, welchen Einu� der �Ubergang zum Gitter auf die chirale Symmetriegruppe hat (Kapitel
4). Es stellt sich heraus, da� im Fall des hc Gitters eine vergr�o�erte chirale Symmetriegruppe
auftritt, w�ahrend die Theorie auf dem bhc Gitter dieselbe chirale Symmetriegruppe wie die
Kontinuumstheorie besitzt.

Gluodynamik

In dieser Arbeit haben wir die Color-Flavor-Transformation auf zwei Grenzf�alle der Quan-
tenchromodynamik angewendet: auf die Gluodynamik und auf den Starkkopplungslimes der
QCD. F�ur den Fall der Gluodynamik, formuliert mit Hilfe der von Wilson eingef�uhrten eichin-
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varianten Gitterwirkung [48], ist eine direkte Anwendung der Color-Flavor-Transformation
nicht m�oglich. Wir haben Wilsons Wirkung durch einen physikalisch �aquivalenten Term
ersetzt, der sich aus einem Integral �uber massive Hilfsbosonenfelder erzeugen l�a�t (Kapitel
5). Es hat sich dabei gezeigt, da� in unserem Ansatz die Zahl der Hilfsfelder mindestens
gleich der Zahl der Farben gew�ahlt werden mu�, damit unsere Gittertheorie tats�achlich die
Gluodynamik als Kontinuumslimes besitzt.
Eine vollst�andige Auswertung unserer Theorie gelingt in zwei Raumzeitdimensionen, in denen
Gittereichtheorien eine wesentlich einfachere Struktur als in h�oheren Dimensionen besitzen.
Bekanntlich tritt in den zweidimensionalen Theorien stets Con�nement mit einem im Abstand
linearen Potential zwischen Quark und Antiquark auf. Die zu diesem Potential geh�orende Sei-
tenspannung haben wir f�ur unsere Theorie einerseits mit Hilfe von Monte-Carlo-Simulationen
und andererseits analytisch berechnet. Durch die analytische Rechnung konnten wir ein ex-
aktes Ergebnis erzielen, das f�ur eine beliebige Anzahl von Farben und Hilfsbosonen g�ultig
ist, solange die Zahl der Hilfsbosonen kleiner oder gleich der Zahl der Farben ist. Beim
�Ubergang zum Kontinuum, das hei�t dem �Ubergang von der Gittertheorie zur Gluodynamik,
streben Gitterkonstante und Kopplungskonstante gleichzeitig gegen Null. Die beiden Kon-
stanten m�ussen so miteinander verkn�upft werden, da� sich die physikalischen Observablen
bei der Durchf�uhrung des Kontinuumslimes nicht �andern. Dadurch wird die Abh�angigkeit
der Kopplungskonstanten von der Gitterkonstante, d. h. die Renormierungsgruppengleichung
de�niert. F�ur unsere Theorie hat sich gezeigt, da� die Seitenspannung im Kontinuumslimes
nur konstant gehalten werden kann, falls die Zahl der Hilfsbosonen gr�o�er oder gleich der Zahl
der Farben ist. In diesem Fall haben wir die Renormierungsgruppengleichung f�ur die Kopp-
lungskonstante hergeleitet und gezeigt, da� unsere Gittertheorie tats�achlich die Gluodynamik
als Kontinuumslimes besitzt.
Die grundlegende Idee ist, den komplizierteren Fall der vierdimensionalen Gluodynamik mit
der Color-Flavor-Transformation zu bearbeiten. Hier ergibt sich ein Problem mit der Kon-
vergenz der Color-Flavor-Transformation: Die Color-Flavor-Transformation konvergiert f�ur
bosonische Felder nur, falls die Zahl der Farben gr�o�er oder gleich der Zahl der doppelten Zahl
der Bosonen ist. Andererseits mu� aber die Zahl der Hilfsbosonen gr�o�er als die Zahl der Far-
ben sein, um die Gluodynamik als Kontinuumslimes der Gittertheorie zu erhalten. Als Aus-
weg aus dieser Situation f�uhren wir f�ur jedes Hilfsboson einen fermionischen Partner ein und
gelangen so zu einer supersymmetrischen Theorie, f�ur die die Color-Flavor-Transformation
immer konvergiert. Der Einu� der Hilfsfermionen kann beliebig gering gehalten werden, in-
dem man sie beliebig schwer werden l�a�t. Auf diese supersymmetrischen Theorie haben wir
die Color-Flavor-Transformation angewandt und so einen Ausdruck f�ur die Zustandssumme
der Gluodynamik hergeleitet, der als Ausgangspunkt f�ur weitere Rechnungen dienen kann.

Starkkopplungslimes der Chromodynamik

Auf den Starkkopplungslimes der QCD kann die Color-Flavor-Transformation unmittelbar
angewandt werden. Sie organisiert die Zustandssumme der Theorie in eine Summe von Bei-
tr�agen, von denen jeder zu einer Verteilung von Baryonen auf dem Gitter (d. h. zu einem
baryonischen Flu� in der Raumzeit) geh�ort. Zwei physikalisch besonders interessante Bei-
tr�age haben wir weiter ausgewertet: Das

"
Vakuum\ { hier existiert zu keiner Zeit ein Baryon

im System { und ein Modell eines statischen Baryons, bei dem sich jeweils ein Baryon auf
den Kanten einer fest gew�ahlten Gerade in Zeitrichtung be�ndet.
Im Fall der Vakuumskon�guration tritt nach Integration �uber die Quarkfelder die Anzahl der
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Farben Nc als Faktor vor der e�ektiven Wirkung auf. Dieser organisiert die Zustandssum-
me in eine St�orungsreihe in 1=Nc, deren niedrigste Ordnung durch die Sattelpunktsn�aherung
gegeben ist. Die L�osungen der zugeh�origen Sattelpunktsgleichungen bilden die niederenerge-
tischsten Moden der Theorie. Die Analyse der Sattelpunktsgleichungen ergab im Fall nicht-
verschwindender Quarkmassen einen isolierten Sattelpunkt, w�ahrend im chiralen Limes ei-
ne ganze Sattelpunktsmannigfaltigkeit existiert. Diese Sattelpunktsmannigfaltigkeit ensteht
durch die Wirkung der chiralen Symmetriegruppe auf den Sattelpunkt. Diese Strukturen
k�onnen mit dem Schema der spontanen chiralen Symmetriebrechung in Einklang gebracht
werden. Dabei lassen wir das starke U(1)-Problem au�er acht. (Dieses besteht in der anomal
hohen Masse des �0-Teilchens, die nach einer Theorie von 't Hooft aus der axialen Anomalie
der QCD folgt.) In unserer Theorie tritt folgendes Schema der chiralen Symmetriebrechung
wie folgt auf: Der Sattelpunkt bricht die chirale Symmetrie zu einer Untergruppe, wobei die
gebrochenen Symmetriegeneratoren die im chiralen Limes auftretende Sattelpunktsmannig-
faltigkeit parametrisieren. Die Sattelpunktsmannigfaltigkeit sollte daher mit den Goldstone-
moden der spontanen chiralen Symmetriebrechung identi�ziert werden.
Seit langem ist bekannt, da� die Niederenergieeigenschaften der leichtesten Mesonen erfolg-
reich durch ph�anomenologische Lagrangedichten beschrieben werden k�onnen. Diese Technik,
bei der die chirale Symmetrie eine entscheidende Rolle spielt, wurde von Weinberg [46] ein-
gef�uhrt und von Gasser und Leutwyler [18] weiterentwickelt. Die

"
chirale St�orungstheorie\

besteht in einer Entwicklung der Niederenergie-Lagrangedichte in den Impulsen p der Nieder-
energiemoden und den Quarkmassenm. Dabei werden p2 undm als klein behandelt, w�ahrend
p2=m jeden Wert annehmen darf. Es sind verschiedene Versuche unternommen worden (siehe
die Referenzen in Kapitel 6), Niederenergie-Lagrangedichten aus der QCD herzuleiten. Ausge-
hend von der color-avor-transformierten Zustandssumme der QCD im Starkkopplungslimes
haben wir eine chirale Entwicklung bis zur Ordnung O(p4) durchgef�uhrt. Bei unserem Zu-
gang erh�alt man die Niederenergiemoden als L�osung der Sattelpunktsgleichungen. Durch eine
Gradientenentwicklung haben wir eine auf gro�en L�angenskalen g�ultige Kontinuumstheorie
hergeleitet, die die Dynamik dieser Moden beschreibt. Es handelt sich um eine Entwicklung
in der Art der chiralen St�orungstheorie, die wir bis zur Ordnung O(p4) durchgef�uhrt haben.
Durch den Vergleich dieses Ergebnisses mit experimentellen Daten wird der Wert des einzi-
gen freien Parameters der Theorie, der Gitterkonstanten, �xiert. Insgesamt sch�atzen wir die
Gitterkonstante auf drei verschiedenen Arten ab: �Uber die zwei Terme in der chiralen La-
grangedichte der Ordnung O(p2) steht die Gitterkonstante einerseits im Zusammenhang mit
der Pionenzerfallskonstante und andererseits mit der Pionenmasse. Eine dritte, unabh�angige
Absch�atzung erhalten wir aus dem experimentellen Wert f�ur das chirale Kondensat. Dieses
k�onnen wir theoretisch direkt aus der Zustandssumme in Sattelpunktsn�aherung berechnen.
Alle drei Absch�atzungen ergeben f�ur die Gitterkonstante eine Gr�o�enordnung von a � 1 fm,
stimmen untereinander aber schlecht �uberein. In der Ordnung O(p4) der chiralen St�orungs-
theorie k�onnen wir einige Terme der allgemeinen Lagrangedichte von Gasser und Leutwyler
reproduzieren. Unsere Werte f�ur die Kopplungkonstanten in der Ordnung O(p4) weichen
erheblich von den aus experimentellen Daten gewonnenen ph�anomenologischen Werten ab.
Daraus l�a�t sich schlie�en, da� die angewandten N�aherungen { Starkkopplungslimes und Sat-
telpunktsn�aherung { bereits in der Ordnung O(p2) der chiralen St�orungstheorie erhebliche
Fehler hervorrufen und zu roh sind, um vern�unftige Werte f�ur die Kopplungskonstanten der
Terme von der Ordnung O(p4) zu liefern.
Abschlie�end kommen wir zu den Ergebnissen, die wir f�ur das Modell des statischen Baryons
erzielt haben (Kapitel 7). Auch in diesem Fall konnten wir die Integration �uber die Quarks
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ausf�uhren und eine e�ektive Wirkung herleiten. Diese besteht aus einem
"
Seeterm\, der iden-

tisch mit der e�ektiven Wirkung f�ur die Vakuumskon�guration ist und einem Term, der nur
von den Feldern l�angs der Weltlinie des Baryons abh�angt. Von den Sattelpunktsgleichungen
weichen daher nur diejenigen, die aus der Variation nach den Feldern in unmittelbarer N�ahe
des Baryons resultieren, von den Vakuumsattelpunktsgleichungen ab. Das nutzen wir aus,
um n�aherungsweise das Verhalten des Mesonenfelds weit entfernt vom Baryon zu beschreiben.
Dazu linearisieren wir die Sattelpunktsgleichungen um die Vakuumskon�guration. In dieser
N�aherung werden wir im pseudoskalaren Sektor auf eine Klein-Gordon-Gleichung mit einer
zur Wurzel aus Quarksmassen proportionalen Masse gef�uhrt. (Die physikalischen Dimensio-
nen kommen hier wie folgt aus: die in der Klein-Gordon-Gleichung auftretende Masse ist
proportional zur Wurzel aus Quarkmassen und umgekehrt proportional zur Wurzel aus der
Gitterkonstanten.) Die Klein-Gordon-Gleichung besitzt eine statische, kugelsymmetrische,
mit dem Abstand vom Ursprung exponentiell abfallende L�osung, die am Ursprung singul�ar
wird. In dieser Weise erhalten wir ein Yukawa-Potential, dessen typische L�angenskala umge-
kehrt proportional zur Wurzel aus der Quarkmasse ist.
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