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ARTICLE INFAQ ABSTRACT

Waves in shallow water are computed by moving blocks of water in the direction of the flow using a
Lagrangian method. The rmass and momentumn in the displaced-and-deformed blocks after the Lagrangian
advection are re-distributed back on to the Eulerian mesh to form new blocks at every increment of time.
This Lagrangian block advection guarantees for positive water depth. 1t also prevents the occurrence of
unphysical numerical oscillations. Several numerically challenging problems are considered in a series
of simulations using the methed. The first problem is the tracking of wetting-and-drying interface in 2
parabolic bowl. The second problem is the capture of depth and velecity discontinuities across the sheck
waves. Finally, the block advection methed is applied to calculate the flood waves overtopping a mean-
dering river. The results of the simulations are compared with the exact solutions. The convergence of
Lagrangian block advection towards the exact solutions is first-order accurate in the simulations of the
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1. Introduction

Computational stability is crucial to many engineering simula-
tion problems including the floed waves over lands, the evolution
of avalanches, the run-up of waves on beaches and the overtopping
of water on levees. The computation must capture the discontinu-
ities across the shoclc waves and the discontinuities at the wave
fronts where the wet water meets the dry land. In the classical fi-
nite-volume simulations, the discontinuities are the source of
unphystcal numerical oscillations which often lead the computa-
tion to failure. A variety of ad-hoc numerical methods have been
developed to manage the computational instability. Shock capture
schemes [6,7,26] and flux limiters [10,14,17] have been the meth-
ods to control the unphysicat numerical oscillations. The advance
and the retreat of waters on dry land have been attempted with
sorne sitccess using the wet-and-dry threshold [13,15], the wet cell
mapping [9], the artificial porosity techniques [27}, the volume-of-
fluid method [8,11], the Lagrangian-Eulerian algorithms [1.2,12],
and the technique of the artificial viscosity {28,18].

As an alternative Lo the classical methods, a Lagrangian block
advection (LBA} method has been developed by Tan and Chu
[22,21] for one-dimensional simulaticns of water waves in shallow
water. In the LBA simulations, the mass and momentum in the
water waves are transferred by the Lagrangian advection of the
blocks. The LBA method always gives positive water depth. It

* Corresponding author,
E-mail address: vincent.chu@mecgill.ca (VH Chu)

0045-7930/5 - see front matter @ 2012 Elsevier Ltd. All rights reserved,
htep:/fdx.doi.org{10.1016{j compfluid.2012.04.014

correctly captures the depth-and-velocity discontinuities while
maintaining absolute computational stability. The method has
since been applied to a number of one-dimensional (1D) water
engineering problems. These include the dam-break waves [21].
the collapsing bore [22,19,16), the runup and overtopping of seli-
tary waves [23] and the runup and overtopping of the regular
waves [24].

This paper will show how the LBA method is generalized for
application to two-dimensional (2D) problems. A couple of 2D ana-
Iytical solutions involving flow discontinuities is used as the
benchmarks. The first of the 2D benchmarks is the solution for
water waves in a parabolic bowl by Thacker [25]. The second of
the 2D benchmarks is the solution for the shock waves by Stoker
|20]. The 2D» LBA stmulations for these benchmark problems are
carried out using progressively smaller block sizes. The conver-
gence is verified by the comparison of the simulations with the
analytical soluttons. Finally, the versatility of 2D LBA method for
engineering application is demonstrated by routing flood waves
in a meandering river.

2. Lagrangian block advection

The lagrangian blocks as the computational elements are
defined by the dimensions of the blocks Ax" and Ay" and the con-
tents such as volume and momentum in the blocks. Three separate
systems of blocks for the volume, htAx*Ay*, x-momentums,
uphi;Ax-AY- and y-momentum #4h7AxtAY", are employed for the
LBA simulations on a staggered grid. The superscript 'L
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distinguishes the Lagrangian variables from the Eulerian variables.
Fig. 1 shows {a) the staggered grid, (b) the volume block, (c) the x-
momentum block, and (d) the y-momenturm block. As shown in (b-
d) of the figure, the blocks initially occupy the same area as the
Eulerian cell at the beginning of time step. The contents in the
blocks move with the blocks as the blocks are displaced and de-
formed with the flow. The transfer of the block's contents to its
neighboring cells is completed when the old blocks are break up
along the grid lines and the new blocks are formed at the end of
the Lagrangian advection time step.

Fig. 1b delineates the Lagrangian advection of the volume block.
At the beginning of the Lagrangian advection at time t, the edges of
the blocks match the Eulerian mesh, ie.,

X8 = x5(2), Yh(6) =y, 00). ' M
At the end of the advection at time £+ At,
At r
K (AL = x(0) + / / @, @)
uAt a-t ,
YE(E+ A = yy{6) + / / atide'de. 3)
v 0 “ 0
For the waves in shallow-waters, the pressure over the depth may
be assumed hydrostatic. The x- and y-components of the depth-

averaged flow accelerations are given by the shallow-water equa-
tions as follows:
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Fig 1. (a) The staggered grid, (b) the volume blocks, {c) the x-momentum biocks,
and (d) the y-momentum blocks. The solid rectangles show the blocks before the
Lagrangian advection, The dashed rectangles delineate the edges of the blocks after
the Lagrangian advectian.

surface elevation, ht, = water depth, z{, = channel bottom elevation,
g = gravity, and (I’;, ,’;) = %- and y-components of the other forces
such as the friction force, The integrations for the edge co-ordinates

of the block, (xb,yh), are carried out using the approximation that
(ot a2)
the Lagrangian advection from time t to ¢+ AL

Fig. 2 shows how the area of the {ij)-block is displaced-and-
deformed from AxAy to Ax'A y* due the Lagrangian advection.
The block occupies initially the same area as the Eulerian cell.
The displaced-and-deformed block may occupy an area covering
as much as eight neighboring cells as shown. The displaced-
and-deformed block is divided along the grid lines into portions
and then re-distributed onto the Eulerian mesh to form new blocks
at the end of the advection step. A block re-distribution algorithm
had been developed to (i} subdivide the old block along the grid
lines, (ii) re-distribute the block’s conteni onto its neighboring
cells, and (iii} re-construct the new blocks at every time increment.
Using the block re-distribution algorithm, the contents jn the block
are transported across the grid lines from the cell to its neighboring
cells. The computational time step must not be too large te cause
advection beyond its neighbors. The block re-distribution
algorithm was developed by Chu and Altai [4,5] based on a
requiremnent that the displaced-and-deformed block beoundary
stays within the immediate neighboring cells. This requirement
gives a necessary condition for the computational stability. Over
the period of one AL, the displacements of all block boundaries
Maxu;|At and Max|#,[At must not exceed Ax and Ay in the
x- and y-directions, respectively. Therefore, The Courant numbers
Co, and Co, must kept below the value of unity during the
computation as follows:

the accelerations are constant throughout the period of

MEXEU[J]A['
Co, = =W 6
0y <1, (6)
Max|zy;|At
Co, = — W2 7
a, Ay <1 (7

These necessary conditions for stability would keep the time step
At sufficiently small so that the deformation in one advection step
would not be excessive to cause Lagrangien entanglement. The area
of the block Axk Ay, ; may become negative after the Lagrangian
advection if the edge on one side of the block overtakes the other
side from behind.

The third necessary condition for the computational stability is
the Courant-Friedrichs-Lewy (CFL) condition for the shallow-
water waves:

gMax[h At (8)

where /gMax[h; ] is the wave speed of the shallow-water waves.
The time step must be selected to meet all three necessary condi-
tions as given by the formula:

Ax Ax Ay
/EMax(h;,] Max|u;;| ' Max|vy|

At = Min{ } Co. (9)

According to this formula, the time step At is proportional to the
Courant number Co. The necessary condition for computational sta-
bility 1s Co< 1.

As the stability, the accuracy of the Lagrangian advection also
depends on the time step size and Co. Since the vaiue of Co=0.2
was used in most of the computations carried out using the classi-
cal finite-volume {CFV} method, the same value Co = 0.2 is selected
for the present series of LBA simulations. With this selection, the
results of the present LBA simulations are comparable with the
results obtained using the CFV method.
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Fig- 2. Thesubdivision of the displaced-and-deformed Lagrangian block into portiens along the grid lines and the re-distribution of the block's content on to the Eulerian cells
[4,5]. (2} The block initially occupies the same area as the Eulerian cell (solid rectangle) at the start of the Lagrangian advection, The displaced-and-deformed block (dashed
rectamgle) may occupy as much as eight neighboring cells at the end of the Lagrangian advection time step, {b] The re-distribution of the contents in the displaced-and-

deforrmed block on to its neighboring cells,

The contents in the blocks may er may not be constant during
the Lagrangian advection. Since the water is incompressible, the
volurme in the block is constant during the advection, i.e.,

D [t =0

The re-distribution algorithm does not change the overall content in
the blocls. Therefore, the volume in the block is conservation dur-
ing the Lagrangian advection. The overall volume also is conserved
during the subsequent re-distribution of the volume among the
blocks.

The computations for the momentum blocks follow the same
procedure as the volume blocks. However, the momentums are
changed by the forces acting on the momentum blocks as follows:

(10)

D -4
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where h“ = (hi 1J+h )=the depth in the wu-block and

h, #l(hl + A 1) =the depih in the zhlock. The first term on

the right hand side of the equations is the hydrostatic pressure
force. The second term on the right hand side is the friction forces,
which has been ignored for simplicity in all simulations presented
in this paper.

The maost significant advantage of this 2D LBA method is com-
putational stability. The method ensures positive water depth.
Unphysical numerical oscillation is not possible even in region of
steep gradients near the flow discontinuities. The application of
the method to shallow-water waves is demonstrated through a
series of simulations of the flow discontinuities to be presented
in the subsequent sections.

3. Water waves in a parabolic bowl

The first series of the 2D LBA simulations was carried out for the
standing waves of water inside a paraholic bowl, Fig. 3 shows the
blocks of water when very large bloclks are used in the simulation.
Standing wave motion is produced by a parabolic mound of water,
which moves up and dewn under the influence of the gravity. The
analytical solution of this problem for non-breaking waves of small

amplitude in shallow water was due to Thacker [25]. Fig. 4 shows
the LBA simulation results of the standing waves of maximum
height (h,)msx = 1.72 m in a parabolic bowl of 4000 m radius. The
analytical solution of Thacker was closely reproduced by the LBA
simulation when the sufficiently small block size of Ax=Ay=5m
was used in the simulation.

The water in the bowl is initially at rest, The gravity potential
energy is maximum at the initial position when the time t= 0. As
the water in the bowl starts to fall under the influence of the grav-
ity, linetic energy of the water increases at the expense of the po-
tential energy. The kinetic energy of the water in the bowl reaches
its maximum as water moves downward to the lowest position at
time ¢ = §. The entire process repeats itself after one wave period T
of the standing wave. The velocity is zero initially at time t=0 and
is again zero afier ane-half of one wave period at the time t = T and
after one wave period at the time r=T.

As shown in the middle column of the figure, the velocity distri-
bution across the bowl is linear. The maximum of the velocity is at
the wave front where the wet water meets the dry susface of the
bowl. The discontinuity of the velocity at the wave front would
be most difficult to be simulated by the classical finite-volume
method, Remarkably, this discontinuity is perfectly simulated by
the Lagrangian block advection without encountering any nurner-
ical oscillations. With this stability of the computation, infinite cy-
cles of the advance and recede of the wet water on the dry surface
of the bowl were simulated by the LBA in perpetuity without
interruption.

Although the stability of the computation is assured, the total
{potential plus kinetic) energy of the water in the bowl, E, isnot ex-
actly constant. A detectable dissipation of total energy, E, is ob-
served over the 18 wave-period of simulation as shewn in
Fig. 5a. Since friction is not included in the formulation, this energy
dissipation is not physical and is due to the inaccuracy of the com-
putation. Simulations were carried out for the progressively re-
duced black sizes varying from Ax=Ay=80mto Ax=Ay=40m,
20 m, 10 m and 5 m. The dimensionless rate of the dissipation over
one wave period, (T/E;)AE/At, was determined as the parameter to
measure the computation error. The correlation of this error
parameter with the block size Axf(f,)max IS shown Fig. 5b, which
shows the error approaches zero as the simulation approaches
the exact solution. The canvergence to the exact solution is first or-
der with the value of p ~ T using the error-estimation method rec-
ommended by Celik et al. [3]. Higher oder of accuracy is achievable
and has been reported. Using an Eulerian-lagrangian scheme,
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plan view

A-A section

Fig. 3. The werting and drying of the surface of a parabalic howl produced by a parabolic mound of water under the gravity, The block sizes are Ax=Ay=32 min a bowl of

40 m radius. The crest height of the initial mound of water is {A,)max =0.02 m.

Bokhove [2] were able to obtained second-order accuracy in track-
ing the wetting and drying at the wave front.

4. Oblique shock wave

[20]. While the oblique shock waves are simulated by the LBA
method without interruption, the accuracy of the results neverthe-
less are dependent oo the size of the block. Improvement to the
accuracy of the simulation is possible as the bloclk size is reduced.
Fig. 7a-c show the fractional errors and their relation to the block

The second series of LBA simulations was designed to examine
the shock capture capability of the method, Oblique shock waves
were produced in a 100 m x> 100 m square basin by the sudden re-
moval of a dam in the diagonal direction. Initially, the water depth
was h, = 10 m on one side of the dam and was iy =1 m on the other
side. Shock waves were produced in the basin immediately after
the removal of the dam. Fig. 6a—c show the propagation and the
reflection of the shock waves at time t=0.01s, 255 and 45,
respectively, The computation was carried out using a block size
Ax= Ay =0.04 m. The accuracy of the simulation was determined
by comparing the simulations with the analytical solution of Stoker
[20]. Fig. 6d and e show the shock-wave depth and velocity profiles
along a section A-A at time £ = 2.5 s. The analytical solution of Sto-
ler [20] gives the height of the shock wave to be (h)seoked
h,=0396 and the velocity of the shock wave to be
(U srauer/ VER, =0.741 at this time £=2.5s. These héight and
velocity of the shack were accurately determined by the LBA sim-
ulation in excellent agreement with the exact solution of Stoker

size Ax(=Ay). Using Stoker's |20] analytical solution.as the bepch-

mark, the fractional errors for the shock-wave pasition, the shock-
wave height and shock-wave velocity are:

hs - {hS)Smker

A — (XS )Sml(er
)
(hi ) stoleer

and i — (US)Stuker. ('l 3)
(KS)Smker

(uﬁ' )Stuker

1

These fractional errors are plotted in the logarithmic scales in
Fig. 7a—c. As shown in these figures, the simulations approach the
exact solution foliowing the order of accuracy of p~1, p=2, and
p =1 for the [ocation, depth and velocity, respectively. The p-values
were determined using the definition introduced by Celik et al. [3].
The formal order of accuracy for the LBA simulations of the shocle
waves is not entirely clear. The LBA formulation does not follow
the classical order of approximation. Nevertheless, the orders of
accuracy obtained from the LBA simulations of the shock wave
are consistent with the assessment by Godunov [6] on the discon-
tinuous solutions of the shallow-water equations.
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Fig. 4. Depth k {left-hand-side cofumn). velacity u (middle column) and discharge g = vh (right-hand-side column) profiles at time t =0, r=%, t=¥, ¢t=I1, r=%, r=%
and r= T The Lagrangian block advection simulations was obtained using the block sizes of Ax = Ay = 5 m. The initial maximum depth of the parabolic mound of water at rest
18 {hg)max = 1.72 m. The radius of the parabelic bowl] is 4000 m, The solid lines denate the block advection simulation profiles on the plane of symmetry. The circle symbal

denotes the analytical solution of Thacker [25].

Fig. 8 shows the total potential energy and total kinetic energy
in the 100-m x 100-m basin and their variations with time. The
LBA simulation of the shock waves is absolutely stable. As the
shock waves of diminishing amplitude are reflected back and forth
across the basin, more than 90% of the energy are dissipated over
the period of 100 s.

5. Flood waves overtopping a meandering river

The final series of 2D LBA simulations was carried out for flood
waves in an idealized meandering river. The calculations was con-
ducted for a 10 m wide river of 1 m water depth. The meander
wave length is 50 m and the meander amplitude is 5 m as shown
in Fig. 9. Periodic boundary conditions are imposed every 150 m
to produce the equivalent river of infinite length. The elevation
of the floodplain is 2 m higher than the river bed. The water is

accelerated from rest until the flow through the river reaches a
quasi-steady state. Fig. 10 shows the vorticity profiles of the qua-
si-steady flow through the meander for a range of channel slopes
varying from S, = —dz,fdx = 0.0025 to S,=0.005, 0.01, and 0.02.
The flow is sub-critical when the channel has a small slope of
So=0.0025. Part of the flow becomes super-critical as the velocity
in the channel increase with the slope. The flow is primarity super-
critical when the channel has a large slope of 5, = 0.02.

The sub-critical shear flow is characterized by the formation of
the eddies as the flow negotiates through the meander. The super-
critical flow on the other hand is dominated by the shock waves
and the energy dissipation by the shock waves. The conveyance
resistance produced by the eddies and the shock waves in the
meander has been examined in some details by Wang et al. [29].
The simulations by Wang et al. however were carried out using
the classical finite-volume (CFV) formulation. Fig. 10 shows the
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{Fr < 1) to super-critical {Fr > 1) aross the shock waves. The channel bettom slope §,

comparison between the vorticity profiles obtained using the LBA
method and CFV method. The LBA results are shown on the left
hand side of the figure and the CFV results on the right hand side
of the figure, While the LBA simulation are more stable, the CFV re-
sults are more refined and possibly more accurate. However, the
computer-usage time of the CFV simulation is three to four time
greater partly because the need to use the flux limiter to control
the unphysical numerical oscillations. Given a fixed computer re-
source, the LBA simulations can afford using a finer block size than
the CFV calculations of the same problem. So, the accuracy of the
LBA computation can be improved by using smaller block size.
The stability of the computation is not always possible when using
the CFV method. Although the flux limiter is effective in minimiz-

=0.02.

ing the unphysical numerical oscillations, it does not guarantee for
positive water depth. In fact, the negative water depth is the most
common cause for the failure of the computation. At the wave front
where the wet water meets the dry land, very small numerical
oscillations can lead to negative water depth and the catastrophic
collapse of the computation using the CFV method.

The fact that the overtopping of the river waters onto the flood-
plain can be simulated is entirely due to the compurtational stabil-
ity of the LBA method. Fig. 11 shows the LBA simulations on a steep
slope 5, =0.02 at the time t=40s, 465 and 52 s when the flood
waves begins to advance onto the dry floodplain. On this steep
slope, the flow is super-critical in which the Froude number of
the flow is greater than unity in the central region of the river.
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The computation using the LBA method has captured the shock
waves and as well the wave front of the wet water on the dry
floodplain. Clearly, the computational stability is a significant
advantage, The abrupt 2 m change in the bottom elevation at the
edge between the idealized river and the floodplain has not inter-
rupted the LBA computations. The simulation of the river waters
overtopping its bank would be a difficult problem, and the wet-
ting-and-drying treatment [2,15,12,11] would be required if the
CFV method were employed in the simulations. In contrast, the
LBA sinwlation of the floods is simple as the treatment for the wet-
ting and drying is not necessary using the LBA methoed. The sim-
plicity in the implementation and the stability of the 2D LBA
method are advantageous in dealing with the floods through erod-
ible rivers. The erosion at the wave front may need a three-dimen-
sional model. However, stable 2D LBA simulations always can be
carried out with certainty even when the floods are regotiating
through the complex terrain of a realistic river valley,

6. Conclusions

The two-dimensional Lagrangian block advection (2D} LBA)
methed has been developed for the computation of the shallow-
water waves. A series of simulations using progressively refined
biock sizes has been carried out. The convergence to the exact solu-
tions for the two benchmark problems follows approximately the
first-order accuracy, which is consistent with the assessment by
Godunov [6] on the discontinuous solutions of the shallow-water
equations, The LBA method is distinguished from the classical
method for its ability to capture discantinuities without sacrifices
the computational stability and accuracy. The classical Anite-vol-
ume (CFV) method of estimating the fluxes using the truncated
series is not accurate in the regions where the depth and velocity
change rapidly. The error due to the series truncation has been
the source of unphysical numerical oscillations and computational
instability at the discontinuities, The LBA method on the other
hand is not dependent on the fluxes. Therefore, the steep gradients
near the discontinuities are not adversely affecting the accuracy
and the stability of the LBA simulations. A number of applications
to water-engineering problems had been carried out recently to
take advantage of the computational stability of rhe LBA methods.
These include the 2D LBA simulations of turbulent flows by Chu
and Altai [4,5] and the series of 1D simulations for the dam-break
waves, the waves on beaches and the waves overtopping of levee
by Tan and Chu [21-24]. Chu and Altai [4,5) conducted the 2D
LBA simulations of turbulent flow using the vorticity-and-stream-
function formulation. The present 2D LBA simulation method for
the shallow-water waves was developed based on the primitive-
variable formulation.
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