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Abstract:  This paper discusses stress intensity factor (S1F) calculations for surface cracks in round bars subjected to combined
torsion and bending loadings. Different crack aspect ratios, afb, ranging from 0.0 to 1.2 and relative crack depths, a/D, ranging
from 0.1 to 0.6 were considered. Since the [oading was non-symmetrical for torsion loadings, a whole finite element model was
constructed. Then, the individual and combined bending and torsion loadings were remotely applied to the model. The equivalent
SIF method, F*EQ, was then vsed explicitly to combine the individual S1Fs from the bending and torsion loadings. A comparison
was then carried out with the combined SIF, 7' g, obtained using the finite element analysis (FEA) under similar loadings. 1t was
found that the equivalent SIF method successfully predicted the combined SIF for Mode 1. However, discrepancies between the
results determined from the different approaches occurred when £y was involved. 1t was also noted that the predicted F‘FE using
FEA was higher than the F*EQ predicted through the equivalent SIF method due to the difference in crack face interactions.
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1 Introduction

Round bars are generally used to transmit power
from one component to another (Carpinteri, 1992;
1993). These componenis are subjected to fatigue
stresses which can cause mechanical damage and
premature failure. The initiation of fatigue cracks on
the surface is usually due to mechanical defects, such
as notches (Alshoaibi and Ariffin, 2006; Alshoaibi et
al., 2007; Ismail ef al, 2011) and metallurgical de-
fects (Cray et al., 1985). In service, a rotating shaft is
generally subjected to a combined loading due to its
self-weight, which induces a bending moment, and
torsion loadings. In fact, any arbitrary shapes of crack
initiation may grow and take a semi-elliptical shape
(Lin and Smith, 1997). Then, linear elastic fracture
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mechanics (LEFM) has been used to analyze stress
intensity factors (SIFs) along the crack front. The
solution of SiFs for a wide range of geometries under
Mode [ loadings has been reported (Raju and New-
man, 1986; Carpinteri, 1992; Fonte and Freitas, 1999,
Carpinteri et al., 2006; Mahmoud; 2007). However,
the calculation of SIFs for bars subjected to Mode {Il
loadings and that of SIFs under combined loadings,
such as bending and torsion, have rarely been studied
(Fonte and Freitas, 1999; Shahani and Habibi, 2007).

Therefore, the aim of this study was to obtain the
SIFs for semi-elliptical surface cracks subjected toa
bending moment, a torsion moment and the combina-
tion of bending and torsion loadings. This work was
also carried out to investigate whether the SIFs from
different modes could be explicitly cotnbined using the
superposition or equivalent SIF methods. The resulis
from these methods were compared with the SIF
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obtained using finite element analysis (FEA) under
combined bending and torsion loadings. Finally, the
discrepancies between the two metheds are discussed
in terms of mesh deformation, focusing mainly on
crack face interactions.

2 Evaluation of stress intensity factors

The finite element methed (FEM) is an appro-
priate method to calculate the SIF for linear elastic
fracture mechanics problems. To determine the SIFs,
a displacement extrapolation method (ANSY S, 2007)
was used in this study. Several other published
methods were also available (Aslantas, 2003;
Agrawal and Karlsson, 2006; Aslantas et al,, 2006},
Fig. 1 shows the arbitrary crack shape where the crack
face is parallel to the x- and z-axis is normal to the x-y
plane. The displacement components in x-, y- and
z-axis are represented by u, v and w, respectively.
Local polar coordinates (r,#) originated at the crack
tip are used to predict the stress distributions around
the crack front.
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Crack fronl

Crack faces A\

Fig. 1 Arbitrary crack shape

Fig. 2 shows the arrangemeni of singular finite
elemnents around the crack tip used in this work where

K, —zgmw_zc}m%, ©)

where K|, Ky and Ky are the Mode 1, II and 1IT SIFs,
respectively, Av, Au and Aw are the relative nodal
displacements between two crack faces in the direc-
tion of y-, x- and z-axis, respectively, and G is the
modulus of rigidity. For plain strain condition,
x=3—4v, where v is Poisson’s ratio.
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Fig. 2 Singular elements around the crack tip

3 Finite element modeling

A circular cross-section of a component with a
surface crack is shown in Fig. 3 (Toribio ef «/., 2008).
The geometry of the crack can be described by the
dimensionless /D and a/b, the so-called relative
crack depth and crack aspect ratios, where D, @ and &
are the diameter of the bar, the crack depth and the
major diameter of the ellipse, respectively. Any arbi-
trary points on the crack front can also be normalized
as x/h, where h is the crack width, and x is the arbi-
trary distance of point P from the symmetry axis. The
outer diameter of the c¢ylinder was 50 mm and the
total length was 200 mm. Due to the non-symmetrical

points ¢ and ¢ are the quarter distance from point e analysis involved, = fult finite etement model-was

(crack tip) and L is the length of element. After ob-
taining the elastic finite element solution of the par-
ticular problem, nodal displacements between two
crack faces were determined and used to compute the
SIFs as follows:

PN e 2 ol L
YT lek \/; i+« \/;’
P u, o, 2Gy2m |Au|
L T R

(2)

(1

constructed, in which the surface crack was situated at
the centre of the cylinder.

In addition, a finite element model was developed
using the ANSYS software with special attention given
to the crack tip by employing 20-node iso-parametric
quadratic brick elements. The square-root singularities

"of stresses ‘and strains were modeled by shifting the

mid-point nodes to the quarter-point locations around
the crack-tip region. The detail of the finite element
model is shown in Fig. 4 with the associated singular
finite elements around the crack tip.
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Fig. 4 Symmetrical finite element model

To remotely apply loadings to the structural
component, a rigi¢ efement or multi-point constraint
(MPC) elements were used to connect the nodes at a
circumferential line at the end of the component, to an
independent node. Fig. 5 shows a technique for con-
structing the independent node connected to the
model using rigid beam elements. The bending mo-
ment, M,, and the torsion moment, 7T, were directly
applied to this node, whereas the axial force was di-
rectly applied in the x-direction on the cross-sectional
area of the bar.

At the other end, the component was fully con-
strained in a!l degrees of freedom. All the SIFs ob-
tained from the analysis were converted into nor-
malized values to ensure the generality of the results.
A normalized SIF, F, can be defined as follows (Fonte
and Freitas, 1999}:

F=——t— @

Anindependent
hode

T

Fig. 5 Remotely applied moments using an MPC184
element
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where Kj are the SIFs under bending or the axial stress,
o, and Ky, or Ky are the SIFs under shear stress, 7.
Two loading ratios can be written as

3:%, (7
Ty

ye_ (8)
b

where § is the loading ratio between the bending
stress, oy, and the axial stress, o;, whereas y is the
ratio between the shear stress, 7, and the bending
stress, op. The three values of both ratios were 0.5, 1.0
and 2.0,

To obtain a suitable finite element model, it was
necessary to compare the proposed model with other
published models (Carpinteri e/ a., 2006; Toribio et
al , 2008; Carpinteri and Vantadori, 2009). Fig. 6

3.0
—— afh=1.0 — a/b=0.0
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E 20 —+— Shin and Chal {2004)
o —-#= Shin and Chai {2004)
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Fig. 6 Comparison and validation of the proposed finile
element model with the previous resuits
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shows a comparison of the dimensionless SIFs under
bending moment, Fip. The findings of this study are
in good agreement with those of previous models,
Until now, the solution of Mode III SIFs has been
difficult to obtain (Fonte and Freitas, 1999; Shahani
and Habibi, 2007). We concluded that the model de-
veloped in this study was capable of analyzing Mode
IIT condition.

4 Stress intensity factors under different
loadings

Figs. 7 to 9 show the dimensionless SIFs, Fip, Fu
and Fin respectively, along the crack front under pure
bending and torsion moments for the selected crack
conditions. The SIFs were calculated at every point
along the crack front. However, the SIF at the inter-
section between the crack and the surface was not
determined due to the square-rcot singularity problem.
Also, the use of a quarter point finite element did not
generally produce reliable results for the outer inter-
section surface. The nearest point was approximately
819% from where x/#=0.0 or the deepest point. When
the x/h point approached the outer surface of the bar,
F,, was found to be slightly higher than other values.
It was clearly shown that the maximum Fiy always
occurred at the intersection point area.

Under bending moment, the crack growth staried
at the intersection point and the semi-elliptical crack
frant sometimes flattened as the cracks grew {Lin and
Smith, 1997). For the case of a/b=1.2, F\ was not
strongly affected by al/D, whereas Flp seemed to
converge at a certain value, particularly when ath<
0.5. When F reached x/h=0.6, Fyp diverged to its
individual maximum value but the maximum value
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Fig. 7 Behavior of normalized stress intensity (actors

under bending moment, fy against normalized co-

ordinates, x/h for two crack aspect ratios {(a) a/b=0.4

and (b) a/h=1.2
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still oceurred at the outer surface of the bar.

Atx/h=0.0, F,=0 (Fig. 8) and it increased steeply
to the intersection point. Fig. 9 shows Fum along the
crack front subjected to torsion loading. The effect on
Fu was strengly related to the relative crack depth,
a/D. For a/D<0.3, the maximum Fin oceurred at the
deepest point in the _crack, and when g/>0.3, the
maximum Fyy was shifted to the intersection surface
area. The transition x/h was cbserved when a/b in-
creased to the outer edge of the bar, implying different
crack evolutions could be obtained during crack
growth,

_loadings . .. _

Fig- 8 Behavior of normalized stress intensity factors
under torsion mement, Fp against normalized coordi-
nates, x/h for two erack aspect ratios (a) a/b=0.4 and (b}
a/b=1.0 '

5 Stress intensity factors under combined

In previous studies (Fonte and Freitas, 1999;
Shahani and Habibi, 2007}, it is hard to find the SIFs
under combined loadings. This is because it was as-
sumed that all normalized SIFs could be obtained
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Fig. 9 Behavior of normalized stress intensity factors un-
der torsion moment, Fy, against normalized coordinates,
X'k for two crack aspect ratios (a) @/4=0.4 and (b) a/#=1.0

using the superposition technique. This assumption
was established for a similar type of loading mode, for
example Mode [ (Raju and Newman, 1986). The
combined SIF, F‘EQ, under Mode | loadings are here
obtained by the superposition method through Eq. (9)
defined as

FEQ = }Tl,a + 'gFib (9)

Then, these combined SIFs are compared with the
combined SIFs, F*FEA, obtained using FEA, with
excellent agreement (Fig. 10).

Further modification of the superposition tech-
nique was required to include / and Fyy. Therefore,
the equivalent SIF method is used instead of a su-
perposition method. The equivalent SIF is defined as
(Qian and Fatemi, 1996)

Koy = Kl +Kj+ Ky , (10)
1—v

where Ko is the equivalent SIF. It is assumed that

Ke=Kgo. Substituting Egs. (4)~(6) into Eq. (10)
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Fig. 10 Comparisons of nurmallzed stress intensity lac-
tors under combined loadings, F plotted against relative
crack depths, @/D for two crack aspect ratios, (a) a/b=0.2
and {b) a/6=0.6 obtained at x/41=0.0

Substituting Eq. {8) into Eq. (11), we can obtain

K = ((odna) | (F,) +(7F) + [i’ "'” (12)

Rearranging Eq. (12} in terms of combined. dimen-
sionless SIF, £ is given by

Eq. (13) can be divided into two separate equations
given as

r
* KFE

I ==
Lb—MILFE — >
gy, T

‘Fltb—mm:\ﬁb)l"'(?’ ) {y ]“J (15)

where F*[_b_]u)r:g is the normalised SIF obtained di-
rectly from FEA, and F*l,b-lll,EO is the normalised SIF
obtained explicitly by combining the individual SIFs
F[!b, F“ and F|||. At x/hZO.O, Fi1:0.0 (Flg 8) To

(14




simplify the problem in this study, our analysis fo-
cused only on this location. Therefore, Eqg. (15) can be
then reduced to the following expression:

(Ef+Pﬁi}-

1—-v

+

I

Lh=lILlG —

(16)

Figs. 11aand 11b show Fyy and Fyy, respectively
obtained at x/h=0.0 under bending and torsion
morments. Then, Fi, and 7y are combined explicitly
through Eq. (16} using different stress ratio values, y.
It was hard to obtain a single value of SIF directly
from ANSYS. Therefore, an elastic J-integral was
used by assuming that a single value of J-integreal
under the combined loading represented the unified
SIFs consisting of K;, Ky and K. This is because in
ANSYS, if J-integral is used in the elastic or plastic
regions, it calculates only a single value of J-integral
even under combined loadings. The elastic Jintegral,
J., can therefore be represented, as follows (Lei,
2004):

J=toae, a7)

where £ is the modulus of elasticity. Rearranging
Eq. (17) in terms of SIF, K, yields

(2)
af=0.0 —M— al/b=0.2 —&— a/b=04
alb=06 —w— a/b=0.8
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>
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. E
Kee = J\:[ 2} (18}
1-v

Eq. (18) was used to convert the J-integral into the
combined SIF, K*FE, under combined loadings using
FEA, and it was then substituted into Eq. (14},

F oo in Eq. (16) and £\ e from FEA in
Eq. {14) were compared (Fig. 12). The discrepancies
in F*I,b-lll between the two approaches were deter-
mined largely by different values of a/b, a/D and x/h.
In the case of a/b=0.2 (Fig. 12a), the combined SIF,
F*I.b-lll was successfully predicted and was in agree-
ment with all values of loading ratios except for
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Fig. 11 Behavior of normalized stress intensity factors
under {a) bending moment, Fip and (b) torsion mo-
ment, Fy; obtained at x/#=0.0 plotted against relative
crack depths, a/D
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Fig. 1Z Behavior of normalized stress intensity factors
under combined loadings, F*l.h-lll plotted against relative
crack depths, a/D for three crack aspect ratios, (a) a/6=0.2,
(b) a/b=0.6 and (c) a/b=1.0 at x/h=0.0 using dilferent
loading ratio,
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122.0. When a/b increased, the discrepancies between

the results were greatly reduced and all the F*I,b.m )

values converged to the single value which occurred
at a/D=0.6 (Figs. 12b and 12c). The discrepancies
between combined SIFs obtained through different
approaches are discussed below in relation to crack
face interactions.

6 Crack deformation mechanisms

Figs. 13 to 15 show the stress distribution around
the tip that is situated at the outer surface. Figs. 13 and
14 include the deformed meshes of the cracks sub-
jected to pure torsion and bending moments, respec-
tively. The SIFs from Figs. 13 and 14 are shown in
Fig. 11, obtained at x/A=0.0. Clearly, the crack faces
are completely closed when the cracks are subjected
to torsion loading, whereas the crack faces subjected
to bending moment are open (Fig. 14). The situation
in Fig. 15 was then reproduced using the FEA sub-
jected to a combined loading. QObviously, under
combined loadings, the crack faces are open even in
the presence of the torsion moment. The behavior of
the crack face mechanism was responsible for pro-
ducing the discrepancies between the results oblained
using the two distinct methods,

In the FEA, the SIFs were calculated by referring
to the relative distance between the two nodes situated
on the crack faces. It is important to note that under
the combined loadings, F'pg was found to be greater
than F‘EQ due to the fact that longer relative node
distances were produced under combined loadings
compared to the single loading. Therefore, ANSYS
had calculated a greater Fi; compared to the Fyy; ob-
tained under complete closed crack faces subjected to
pure torsion loading. By comparing the dimensionless
SIFs obtained under a single loading as depicted in
Figs. 7and 9, F1, was greater than F),.

If »=0.5 was used in the analysis, the torsion
stress was half of the bending stress, producing larger
crack face displacement or wider crack opening dis-
tances. This affected the value of Fy;; compared with
the Fy; obtained under pure torsion moments where
the crack faces were found to be compietely closed.
Therefore, if Fip under pure torsion was used to
combine with £, through Eq. (14), a lower com-
bined SIF, F’I,hulll,EQ was obviously produced com-
pared with the combined SIF, F*l_b,m}FE directly

Fig. 13 Deformed meshes under torsion moment
(a) Whole model; {b) Crack tip; {c) Surface crack

Fig. 14 Deformed meshes under bending moment
(a) Whole model; (b) Crack tip; {¢) Surface crack

b)

(

Fig. 15 Deformed meshes under combined loadings
(a) Whole model; (b) Crack tip, (¢) Surface crack

obtained using FEA (Fig. 12a). If =2.0 was used, the
shear stress was twice as great as the bending stress,
This meant that less bending stress was allocated to
open the crack faces. The stress condition in the bar
was dominated by torsion moment, meaning that this
condition was closely related to pure torsion moment.
However, the SIF due to the bending moment was
insignificantly affected by the combined SIF, £ *I,b—llh
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(Fig. 12¢), where the combined SIFs, F\p., were
almost in agreement with each other.

7 Conclusions

FEA were performed for semi-elliptical surface
cracks in round bars under combined torsion and
bending loadings. No published solutions were found
to calculate the normalized SIFs, especialiy under the
combined loadings. It had been assumed that the SIFs
could be directly combined. Based on the findings of
this study, the direct SIF combinations were rather
questionable and inappropriate when different modes
were involved, when compared with FEA results. The
discrepancies in the results between the explicitly
combined SIFs and the SIFs obtained using FEA were
due to the different crack opening mechanisms shown
by the deformed meshes, in which the crack faces
were closed under pure torsion. The crack faces were
opened under combined loadings even in the presence
of torsion momenis. The opening crack faces under
the, combined loadings increased the relative node
distances. ANSYS then used these relative distances
to calculate the SIFs. As a result, a higher F'eg was
obtained, relative to the F*EQ due to the different
mechanisms of ¢rack deformation.
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