
SIMULATION STUDY ON THE PERFORMANCE OF VERTICAL AXIS WIND 
TURBINE 

NOR AFZANIZAM BIN HJ. SAMIRAN 

A thesis submitted in 
Fulfillment of the requirement for the award of the 

Degree of Master of Mechanical Engineering 

Faculty Mechanical and Manufacturing Engineering 
Universiti Tun Hussein Onn Malaysia 



ABSTRACT 

Nowadays, people start to think the Drag type of vertical axis wind turbine (VAWT) as a 

potential and reliable wind machine in the future. It advantageous of simpler and 

significantly cheap to build and maintain than conventional Horizontal axis wind turbine 

(HAWT) attract the world attention. However, such rotor is suffering from poor 

efficiency problems. The present study will consider the design improvement of 

Savonius rotor, which is the basic geometry of drag machine, as a critical step to 

increase the efficiency of output power. Investigation is conducted to study the effect of 

geometrical configuration on the performance of the rotor in terms of coefficient of 

torque, coefficient of power and power output. There are three different types of 

modification; number of blades variable, shielding method and combination of both 

configuration. Computerized Fluid Dynamics (CFD) simulation is conducted to analyze 

the flow characteristic of all the rotor types. The continuity and Reynolds Averaged 

Navier-Stokes (RANS) equations and realizable k- E epsilon turbulence model are 

numerically solved by commercial software Ansys-Fluent 14.0. Simulation computed 

the pressure and velocity field of the flow and the force acting on the rotor blades. The 

resultant force, pressure and torque coefficient obtained will be used to calculate power 

coefficient and power output. The results obtained by transient and steady method for 

the conventional two bladed Savonius rotor are in agreement with those obtained 

experimentally by other authors and this indicates that the method can be successfully 

used for such analysis. The modified 3 and 4 bladed rotors with hybrid shielding method 

give the highest maximum power coefficient which 0.37 at TSR 0.5. 



ABSTRAK 

Pada ketika ini, dunia mula menyedari kehadiran turbin angin paksi menegak jenis 

seretan sebagai mesin angin yang sangat berpotensi di masa akan datang. Kelebihannya 

yang mempunyai bentuk yang mudah dan sangat murah untuk dibina dan diselenggara 

berbanding turbin angin paksi mendatar yang konvensional menarik perhatian dunia. 

Walaubagaimanapun, pemutar sebegini mengalami masalah kecekapan. Kajian didalam 

tesis ini akan dijalankan untuk menambah baik rekabentuk pemutar jenis 'Savonius', 

dimana ia adalah geometri jenis seretan yang paling asas, sebagai langkah penting untuk 

meningkatkan kecekapan kuasa keluaran. Penyelidikan dijalanakan untuk mengkaji 

kesan perubahan geometri terhadap prestasi pemutar dari segi pekali torque, pekali kuasa 

dan kuasa keluaran.Terdapat tiga jenis penambahbaikan iaitu penambahan bilangan 

bilah, kaedah perisai, dan kombinasi kedua-duanya. Simulasi komputeran dinamik 

bendalir (CFD) dijalankan untuk menganalisis sifat aliran pada setiap jenis pemutar 

yang dikaji. Persamaan kesinambungan, Reynolds Averaged Navier-Stokes (RANS) dan 

gelora k-E epsilon realisasi diselesaikan dengan perisian Ansys-Fluent 14.0. Simulasi ini 

mengira tekanan, halaju dan daya yang bertindak keatas bilah pemutar. Paduan daya, 

tekanan dan pekali tork yang diperolehi akan digunakan untuk mengira pekali kuasa dan 

kuasa keluaran. Keputusan yang diperolehi dengan kaedah 'pengaruh masa' dan kaedah 

'mantap' untuk pemutar Savonius dua bilah yang konvensional menghampiri keputusan 

yang diperolehi dengan kaedah eksperimen yang telah dijalankan oleh penulis terdahulu 

dan ia menunjukkan bahawa kaedah yang dijalankan adalah sesuai digunakan untuk 

analisis seperti ini. Penambahbaikan dengan pemutar 3 dan 4 bilah yang beroperasi 

dengan kaedah perisai gabungan memberikan pekali kuasa maksimum yang paling 

tinggi iaitu 0.37 pada TSR 0.5. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Wind has become an important source of alternative energy for the world since the 

late of 2oth century. By the early 1990's, wind energy industries started to grow 

rapidly and attracted worldwide interest to develop the technology. The depletion of 

fossil fuel also becomes the main factor to why the wind starts to get high attention. 

In the middle of 1990's wind energy conversion systems were drastically developed 

due to the transformation from small sized to megawatt-sized wind power machines, 

consolidation of wind technology manufacture and the development of off-shore 

wind power generation systems. In the 21St century, this trend of development 

continued, and European countries become the main manufacturers by the support of 

government policies. The policies highlighted the issues of the development of 

sustainable energy supplies and reducing the pollutant of emissions [lo]. 

At the start of the re-occurrence wind energy usage, the cost to produce 

energy from wind power method was far higher compared to fossil fuel. A lot of 

research, development and testing were carried out to enhance the development of 

new technology. Wind turbine is the perfect matter to describe of how does modem 

wind technology look like and how it operates to generate huge amount of mega-watt 

power. The important issue here is to provide regulation of how the turbines 

interconnect with electrical networks. 

A wind turbine is a device that converts kinetic energy from the wind into 

mechanical energy. Then, the mechanical energy is used to produce electricity and to 



drive machinery for grinding or pumping water. The result of over a millennium of 

windmill development and modem engineering, today's wind turbines are 

manufactured in a wide range of vertical and horizontal axis types. Vertical and 

horizontal axes describe the way of how the turbines interconnect with electrical 

networks. 

Horizontal axis wind turbine (HAWT) is widely used nowadays across the 

region of around the world and already proven its high efficiency in generating 

power from the wind. However the existence of Vertical wind axis (VAWT) 

becomes new phenomenon in wind technology development. The advantages of 

VAWT which not own by HAWT give high interest to researcher to perform more 

study on this type of wind turbine. VAWT have the advantages of simple 

construction, cheaper to build and maintain and also able to catch wind fiom any 

direction without re-orientation. 

In Malaysia, the interest in wind turbine had emerged since past few years. 

Few designs were developed by worldwide but still don't give an expected result. An 

important reason could be that wind velocity in Malaysia, apart fiom coastal region, 

is relatively low and varies with seasons. (Christopher 2010). This low velocity and 

seasonal wind requires high cost of exploitation of wind energy. So, it becomes huge 

challenge to design appropriate wind turbine which can be used in small scale 

especially in rural area. VAWT gives promising solution to this particular problem 

since it is low cost and simple construction rather than HAWT which requires high 

tech company with advanced technology to set it up. 

There are two types of VAWT which are the lift type and the drag type. Lift 

type has low torque but high speed of rotation that makes it applicable to produce 

high electricity power. Drag type has high torque but low rotational speed makes it 

applicable for pumping water purpose. Low torque or lift type gives huge 

disadvantage where it requires external power source to initiate the rotation. It is 

quite impossible to deal with this problem since further improvement seems not 

possible with this kind of design. But for the drag type, since it already own the 

advantages of the high torque, the weakness of its low rotation can still undergo an 

improvement. This is because; it looks possible to do modification since it only needs 

to rotate faster. Therefore, in this paper, our interest is for the drag type. A few 

designs of drag type will be analyzed to determine the performance of generating 



1.2 Background study 

Advanced in V A W  lift type analysis made it suitable as an alternative mean to 

H A W  in producing high electricity power. The aerodynamic effects on VAWT are 

mostly known since the design is approaching the airfoil geometry. Drag type is still 

very poorly understood since the application is only restricted for pumping purpose 

which is not very popular in industry. Analysis of performance for several designs of 

drag type was already performed by previous researchers. But there is still no 

particular study in comparing all those designs and determine the best among them. 

Most of the previous studies use the simulation CFD method to analyze the 

characteristic of flow which then will be validated with experimental method. CFD is 

known as a powerful tool in applying finite element volume method to characterize 

external flow problems. CFD methods are based on numerically solving the 

Reynolds Averaged Navier-Stokes (RANS) equations with an accompanying 

turbulence model 1241. Jianhui Zhang said in his study Numerical Modeling of 

Vertical Axis Wind Turbine (VAWT), with finite difference volume, the turbine is 

represented as an actuator disk and flow field is described either by Navier-Stokes or 

Eular equation, and the modified k-epsilon model for shear flow under gravitational 

influence has been chosen for the closure of time-averaged turbulent flow. 

Previous studies also have proven that, by the CFD method, power coefficient 

(Cp) and tip speed ratio (TSR) can be determined from result of rotational force and 

torque. The curve of Cp versus TSR is very important in determining the efficiency 

of VAWT. Ivan Dobreva and Fawaz Massouha mentioned in their studies that values 

of Cp are between TSR 0.6 and 1.05. Aerodynamic analysis is also important in 

determining the drag force and drag coefficient of the VAWT where the maximum 

power of the drag based wind turbine can be determined with the knowing of these 

values. 

Since this study is aiming to choose the best geometry of drag type VAWT, 

critical evaluation and observation need to be done before choosing the various types 

of these VAWT to perform analysis on them. There are a few types which become 

our interest to study on such as, savonius, multi bladed and twisted VAWT. VAWT 

Shield or casing with different angles of inlet will become new features of 



modification to optimize the angle of attack. This paper will also study the 

aerodynamic effect of the rotor radius to height ratio variation. 

1.3 Problem statement 

Drag base VAWT due to its low running speed have low efficiency which the value 

of the corresponding power coefficient Cp (which can be identified with the 

efficiency) reaches only 50% of the one of the best fast running horizontal axis wind 

turbines (this is essentially due to the low aerodynamics performances of such rotors, 

based on the difference between the drag forces on the paddles). (Menet, 2004). 

Menet et al conclude that this particular phenomenon made the savonius rotors have 

high productivity but low technicality as a wind machines device. It is maybe why 

savonius is often used for water pumping instead of electricity generation purpose. 

Due to this matter where drag type is known of it low technicality 

characteristic, blade geometry and configuration become crucial in determining the 

performance on wind capturing to improve the power generation. Several geometry 

efficiency developments have been conducted in previous study. Some modification 

have been made on the shape of conventional savonius such as adjusting overlap 

ratio and aspect ratio (Sargolzaei and Kianifar (2007), Saha (2008)), use other type of 

drag based VAWT such as Helical shape and multi blade shape (Kamoji (2008), 

Saha (2005)) and add an external feature to improve wind capturing ability (Altan 

(2008)). 

All of these studies have been conducted successfully and each of them 

claims a good result of their design in improving the efficiency of the drag base 

VAWT performance. But yet, among all those geometry shape, there is still no 

particular study that discuss briefly which geometry is the best among them. So it is 

essential to do the performance comparison and for that reason, this study will 

conduct an analysis of VAWT by treating the various type of drag-base geometry as 

a variable. High torque performance also an important issue to be analyzes since lift 

type do not have self-start ability. Several study were conducted on drag type to 

make it available for the electricity generating purpose. 



1.4 Objective 

The objectives of this study are: 

i). to investigate the wind effect on vertical axis wind turbine performance in 

generating electricity. 

ii). to investigate the effect of multi bladed wind turbine by means of varying the 

number of blades from 2 to 5 rotor bucket. 

iii). to investigate the effect of shieldlcasing to the wind turbine speed by 

determining the optimal inlet angle of the shield as the wind flow past 

through the turbine blade. 

iv). to determine optimum type of vertical axis turbine blade that lead to the 

highest performance in generating electrical power. 



1.5 Scope of study 

The scopes are: 

i). the types of the vertical wind turbines involve in this study are the modem 

savonius, multi-bladed and twisted blade. Additional modification features 

for the installation is the shield or casing to cover-up the wind turbine. 

ii). the variables of concerned are: 

a) The blade geometry of drag types which is the modem savonius type, 

semicircular and multi blade. 

b) the angle inlet variation for Shieldcasing, (20' to 90°), 

c) The dimension of the wind turbine constant for all type (height, 0.2m and 

rotor diameter, 0 . 2 4 .  

d) Wind speed is set from 20 k m h  to 120km/hr. 

The optimal relationships to be determined are on the basis of tip speed ratio, power 

coeficient, and torque coefficient and power measurement from the turning blade 

due to the wind impact. 

1.6 Importance of study 

It is important to study the behavior of VAWT for drag types that have the potential 

to become good wind machines in delivering power. Since this type of VAWT has 

the high torque characteristic where it gives the ability to produce continues power, 

but the low rotational speed makes it hard to produce high density power. 

So with this present study, it will help manufacturer to determine which 

geometry can increase the rotational speed of the drag type and as a result can also 

make this type of VAWT suitable for electricity generation. 

The method that will be applied in this study is the simulation method that will not 

only help to determine the optimum value of VAWT efficiency but also reduce the 

production cost by means of modeling simulation at the very f ~ s t  stage. Any 

modification at this stage does not cost anything. But if modification is performing 



on the manufacturing process stage to provide desirable geometry outcomes, the cost 

will far beyond the expectation. 

So this guide of simulation study will give a very good practice in the design 

and manufacturing industries and of course is a good step of advancement in the 

development of Vertical axis wind turbine field. 

1.7 Expected Outcome. 

Analysis with CFD simulation is expected to give reasonable result that will lead to 

better precision. Data collected from the simulation also can give information 

efficiency for different type of VAWT. This information will then be converted into 

measureable data and comparing process will be conducted to determine the 

optimum geometry of the VAWT. 

Analysis on additional features and modification like installing casing and 

controlling the height to radius ratio of rotor is expected to increase the efficiency of 

the VAWT performance in terms of rotational speed, power and torque generation. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Wind energy as renewable energy sources is growing faster nowadays. In the future 

of renewable energy derives from wind turbine is expected to play an important role 

as a tool in generating electrical power. The turbines can be divided into two types 

that are Horizontal axis Wind turbine (HAWT) and Vertical axis wind turbine 

(VAWT). The different between these two types is based on the axis position. 

HAWT are already commonly used with an abundance of manufacturer. VAWT is 

still very new to be implemented as commercial usage. VAWT also still been studied 

by various researchers using modem analysis technique. Unlike VAWT, HAWT is 

not omni-directional. As the wind direction change, HAWT must also change 

direction to enable continues functioning. There are several techniques to orienting 

the HAWT to the direction of Wind. One of the popular methods is yaw system. 

Zhi Wu (201 1) said that Current all modem big wind turbines use active yaw 

system, which, according to senor signal, adjust wind turbines to the windward 

position by electric or hydraulic device. Active yaw is a control electric (hydraulic) 

way, which is flexibility and controllability, yaw stably and accurately to avoid 

frequent rotation, reduce the mechanism wear. As the daily electric consumption of 

user increasing, the market need of kw-class or even 10 kw wind turbines is also on 

the rise. Power of wind turbines increases, structure becomes complex, components' 

weight and load increase, the moment of inertia also increases. 



Biegel, (201 1) said in his study, the wind field from which they generate 

power is also the source of large fatigue load on the turbine, which creates the 

structural wear and tear, increasing maintenance costs and decreasing the operational 

lifetime of the turbine. To reduce fatigue load of H A W ,  critical design on blade 

pitching must nndergo critical controlling. Ajedegba, (2008) said that the rotor speed 

and power output need to control by pitching the rotor blades along the longitudinal 

axis. They need a mechanical or electronic blade pitch control mechanism to control 

pitch angle. 

From the above previous study, it is prove that HAWT are expensive to build 

and maintain because of it complex construction. The existence of VAWT gives new 

approach in wind turbine technology. The advantages of VAWT are they can catch 

wind from any direction and thus eliminating the need to re-orienting towards the 

wind. As a result, VAWT promising new hope for simple construction and design, 

reduce cost to build and maintenance, aid installation, and eliminates the problem 

imposed by gyroscopic forces on the rotor of a conventional machine, as a turbine 

track the wind. The vertical axis of rotation also permits mounting the generator and 

drivetrain at ground level. VAWT is attracting a growing interest over the 

worldwide. It's modular and scalable size, among other advantages over 

conventional H A W  is attracting researchers and developers to improve the 

performance of VAWT. 

2.2 VAWT's Background 

Vawt is originally invented from Persia. The windmill was used as a source of 

mechanical power in tenth century natives, who live in eastern Persia, utilized the 

windmill as vertical axis and drag type of windmill as shown in figure 2.1. The basic 

mechanism of the vertical axis windmills in far ahead eras, such as placing the sail 

above the millstone, is elevating the driver to a more open exposure, which improved 

output by exposing the rotor to the higher wind speeds, and using reeds instead of 

cloth to provide the working surface. [lo] 



Figure 2.1 : Persian windmill [lo] 

A transition from windmill that supply mechanical power, to wind turbine generating 

electrical power was occur towards the end of nineteenth century. The basic used of 

wind for electricity generation which different to mechanical power, lead to 

successful commercial development of small wind generators, further research and 

experiment with large turbines.[lO] 

There are two types of VAWT that commercialized today in the wind energy 

market that are Darrieus lift type and Savonius drag type. The next section will 

discuss briefly about these two turbines. 

2.2.1 Darrieus lift base 

French aeronautical engineer Georges Jean Marie Darrieus patented in 1931 a 

"Turbine having its shaft transverse to the flow of the current", and his previous 

patent (1927) covered practically any possible arrangement using vertical airfoils. 

Actually this kind of turbines has becomes a starting point for further studies on 

VAWT to improve efficiency [I]. 

Darrieus VAWT is significantly shown the phenomenon of lift. This lift type 

consist two types of turbines, "eggbeater-type and "H-type". The lift phenomenon 

was created by the airfoil shape of the turbines blades. When these kind of blades 

shape cut through the air with an angle of attack to the wind, pressure differential 

will occur. The resulting pressure differentials will cause a force called lift, which 

drives the blade to move forward. In order to drives the turbine, the net torque caused 

by lift forces must be greater than net torque caused by drag forces. 



*: . 
2.2.2 Darrieus Use and operation 

The swept area on a Darrieus turbine is A= 213 x D', a narrow range of tip speed 

ratios around 6 and power coefficient C, just above 0.3 as in figure 2.2. 

Figure 2.2: Cp-h diagram for different type of wind turbines [2] 

Each blade seems to have maximum lift (torque) only twice per revolution, resulting 

a huge torque and power sinusoidal output that is not present in HAWTs. The long 

VAWT blades cause many natural frequency of vibration occur which must be 

avoided during operation. [I] Clear visualization on how force act on a turbine is 

shown in figure 2.3. 
Y 

Figure 2.3: Forces that act on the turbines [2] 



One problem with lift type is that the angle of attack changes as the turbine spins, so 

each blade generates it maximum torque at two points on its cycle front and back of 

the turbine). This leads to a sinusoidal power cycle that complicates design. 

Another problem of VAWT is because the majority of the mass of the 

rotating mechanism is at the periphery rather than at the hub, as it is with a propeller. 

This leads to very high centrifugal stresses on the mechanism, which supposed to be 

stronger and heavier to withstand them. The most common shape is the one similar to 

an egg-bitter that can avoid in part this problem, having most of the rotating mass not 

far from the axis. Usually I have 2 or 3 blades, but some studies during the 80's 

demonstrate that the 2 bladed configurations have higher efficiency. [I] 

2.2.3 Savonius Drag base 

Savonius wind turbines were invented by the Finnish engineer Sigurd J. Savonius in 

1992, but Johann Emst Elias Bessler (born 1680) was the first to attempt to build a 

horizontal windmill of the Savonius type in the town of Furstenburg in Germany in 

1745. Nowadays they are not usually connected to electric power grids. [I] 

2.2.4 Savonius Use and operation 

The Savonius is a drag-type VAWT, so it cannot rotate faster than the wind speed. 

This means that the tip speed ratio is equal to 1 or smaller. The efficiency also very 

low compared to t=other types, so it usually use for pumping water or grinding grain. 

Savonius wind machines have a low cut-in speed and can operate in wind as low as 5 

mph. This makes the machine suitable for electricity generation in low-power 

applications such as individual domestic installations. This machine is particularly 

suited to locations of variable wind direction. A swiss company markets a 6kW 

version of the savonius machine. The peak efficiency of this form of turbine is about 

30% and the tip-speed ratio is low. 

The disadvantages of the savonius design is it high-solidity factor. Also the 

machine is heavy if metal vanes are used. Because of the nature of the construction, 

the vane or sail area cannot be modified, so that the machine may need to be tied 

stationary in high winds. [1,11]. 



2.3 Modern Savonius Turbines development analysis tools. 

As we know from the previous section, the lift based VAWT have very low self- 

starting torque and it was a major disadvantages in wind machine requirement. A as 

result, the average torque of Lift base at low tip speed ratio is almost zero or 

sometimes negative. As a counter action for this problem, starting motors or engines 

are required to initiate the VAIVT rotation. [9,11]. The other problem with this 

VAWT is their small effective operation range. Although the maximum power 

coefficient of the darrieus VAWT is close to the magnitude of conventional turbine 

which is HAWT, the effective TSR operation range is too narrow for electric power 

generators [9]. This disadvantage reduces the net amount of electricity generation. 

Therefore, the savonius becomes new study matter and interest due to their high 

starting torque among other reasons. 

ti& 
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the drag based wind turbine, which will help improve its presence in the global wind 

market. Some related fields that have contributed to a new generation of wind 

turbines include material science, aerodynamic, analytical methods, experiment and 

testing. 

Our Focus is on the aerodynamic performance since this study is very significant to 

analyze power generation behavior due to aerodynamics characteristic. 

Yao (2012) in his study mention that the study way for the vertical axis wind 

turbine's aerodynamic performance can be classifies as analytical solution, wind 

tunnel experiment, wind field experiment and numerical simulation. He said that pipe 

flow model method and eddy method is an approach to predict the performance of 

the vertical axis wind turbine in analytical solution. This method is all can be used to 

calculate the overall performance of the vertical axis wind turbine as resistance, force 

moment, power and so on. But when the tip speed ratio is much higher or lower, the 

solution may not be convergence. The analysis result of wind tunnel experiment and 

wind field experiment are reliable, but are limited by the experimental and techmcal 

conditions, have high cost and long cycle. With the development of the 

computational and CFD technology, CFD is becoming an important part of the 

aerodynamic performance analysis for wind turbine. 



2.3.1 Computational Fluid Dynamic approaches (CFD). 

CFD is the method that uses numerical approximation to the equation that governs 

fluid motion. The steps require to analyze fluid problem in CFD are as follow. First, 

the mathematical equations are written to describe fluid flow. These are usually a set 

of partial differential equations. These equations will then discretize to produce a 

numerical analogue of the equations. The domain is then divided into small grids or 

elements. Finally, the initial conditions and the boundary conditions of the specific 

problem are used to solve these equations. The solution method can be direct or 

iterative. In addition, certain control parameters are used to control the convergence. 

[I21 

2.3.2 Drag VAWT analysis by CFD software tools. 

Since 1970, several fluid dynamics prediction models have been formulated for 

vertical axis turbines such as the Dmieus turbines [4]. Previous authors have 

performed CFD computations of wind turbines with a variety of methods. CFD 

simulation can be performed either in 3D or 2D computation. The general steps to 

perform CFD analysis involve geometry development, meshing, domain and 

boundary definition and finally execute the simulation. Different researcher use 

different type of software and different way to defining their model of simulation. 

McTavish (201 1) use steady two-dimensional simulations and rotating three 

dimensional simulations and he choose commercial software CFdesign 2010 to 

simulate his model. He performed three-dimensional simulations using a single rotor 

stage. A schematic of the computational domain, including a cylinder which 

represents the rotating portion of the domain, is presented in figure 2.4. He also set 

all of the rotor walls had a no-slip boundary condition, the inlet had a uniform 

velocity of 6m/s, the outlet had a zero gauge static pressure boundary condition and 

the remaining four outer boundaries had a free slip condition. 



Figure 2.4: Schematic of the computational domain [5] 

Dobrev & Massouha (2011) creates meshing or grid using Ansys gambit 2.4.6 

software and solves the simulation using Ansys Fluent 12.1 solver. Dobrev et. a1 used 

the concept of sliding mesh because the rotor changes its position with respect to 

upstream wind direction. The grid has two distinct parts: an external stationary, 

which represents the flow around the turbine and an internal, which rotates in order 

to represent the rotor blade. Figure 2.5 a and b below show how he visualizes his 

model. 

(a) 07) 

Figure 2.5: (a) three dimensional simulation domains, (b) Moving internal grid [6] 



2.4 Development and performance of Savonius VAWT geometry. 

Analysis of drag-base type had been perform for various type and many time by 

previous researcher. Early section fiom figure 2.1, it prove that slow running vertical 

axis wind turbine such as savonius in this case produce power at very low wind 

speed. Power coefficient, Cp also not exceeds 0.3 which means only reach's 50% of 

the one of the best fast running HAWT. But previous study also proved that modified 

savonius and other type of drag-based V A W  can affect their efficiency. 

Sargolzaei & Kianifar (2007) comparing six prototype of vertical axis turbine 

as in figure 2.6. J. Sargolzaei et.al adds that a vertical axis turbine especially for drag 

based rotation speed is low and torque is high. Therefore, this device could be used 

for local production of electricity. Sargolzaei et.al simulates Rotor's power factor and 

different angles of blade in proportion to blowing wind in a complete rotation. Figure 

2.7 show the comparison of power factor between all the tested rotors. 

b l m  lV Rotor V RabrVI 

Figure 2.6: Six rotor blade prototype. [7] 

Figure 2.7: Comparison between power factors. [7] 



Sargolzaei et.al conclude from the result fiat curves for rotors "II" to "IV" have 

greater power factor than other rotors, because of the gap distance, leads to decrease 

of power factor. So the best blade curve is rotor "11". Other results prove that, 

increase of wind speed (Reynolds number) leads to serious increase of output power 

(is related to third exponent of speed). 

Graph of power coefficient as figure 2.8 also show that Rotor "11" can 

increase the Cp up until 0.3 which was quiet high compared to the origin savonius. 

1 Expeximentd Rotor 111 
- ANN 

Figure 2.8: Comparison between Power factor rotorl'I" to "III". [7] 

In this study, Sargolzaei et.al also performed the torque analysis. From the result that 

gains from the experiment, Chart of torque on different blades in wind speed 12mIs is 

presented as figure 2.9 below. By comparing different charts, he prove that, although 

rotor "I" has greatest torque in angles 0' to 60°, in angles greater then 60" there is 

serious decrease in torque. This decrease continues until angle160°. Totally, for a 

complete rotation, rotor "II" has the greatest outlet torque. According to figures, 

increasing wind speed leads to increase of torque. For all examined rotors, maximum 

amount of torque happens in angle about 60" and minimum amount of torque 

happens in angle about 120'. Figure 2.10 show the torque of rotor 11 at different wind 

speed. 
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Figure 2.9: Comparison output torque of different rotors in wind speed 12 d s .  [7] 
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Figure 2.10: Torque vs. angular position of rotor "II" in different wind speeds. [7] 

Akwa (201 1) performed almost similar studies as Sargolzaei et. al. He improvise the 

way of previous studies was performed by identifying the exact value of overlap ratio 

for optimum rotor (which is rotor 11) from previous section. He conclude, the 

configuration that shows the best performance is the one where Rs = 0.15 as in figure 

2.11, which gives an averaged power coefficient equals to 0.3161 for the tip speed 

ratio 1.25. 

Figure 2.1 1: Savonius rotor geometry changes. 1201 



2.5 Development and performance of Savonius VAWT geometry with 

additional features. 

From the previous study, some modification of savonius does not require any 

geometrical changing from the original shape. The idea is to add an external 

accessory to enhance the speed of wind so that it can turn the savonius blade faster. 

This kind of modification seems to give promising higher efficiency compared with 

the original shape without any external support. 

Altan & Atilgan (2008) introduces a curtain design where it has been 

arranged to improve the low performance levels of the savonius wind rotors. It was 

design to prevent the negative torque on the convex blade of the rotor. It has been 

placed in front of the rotor as shown in figure 2.12, and performance experiments 

have been carried out when the rotor is with and without curtain. 

banrin plate 
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Figure 2.12: Curtain design parameters and design of the curtain arrangement. [14] 

Altan et. a1 serves several types of curtain arrangements which classified as 

curtain 1, curtain 2 and curtain 3. Curtains was classified due to it long, medium and 

short dimension. The curtain 1 has the optimum length as shown in figure 2.13 due to 

high power coefficient gain. The lengths of the curtain 2 and 3 are 75% and 50% of 

the optimum lengths, respectively. 

The best performance has been obtained from curtain 1 at its position 0 = 60 

for the angles = 15 and a = 45 from both with experimental measurements and 

numerical analysis 



Altan et. a1 said most of the fluid guided by the curtain when the rotor's 

position is 0 = 90 escapes from over the convex blade will leads to an negative 

torque effect. This is the critical reason why it is when the rotor position is 0 = 90 , 

the lower torque value is obtained. When the rotor's position is0 = 45, however, 

more fluid escapes from between the end of the curtain and blade and the value of the 

applied torque decrease. 

Figure 2.13: Comparison of the power changes with the rotor without curtain and the 
rotor with different curtain types for a a = 45 and P = 15. [14] 

The other researcher idea instead of curtain is obstacle shielding. It seems to have the 

same concept but different approach and more simple construction. Mohamed, 

(2010) highlight the present study that considers an improved design in order to 

increase the output power of a savonius turbine by considering the usage either two 

or three blades. Mohamed et. a1 add that to achieve the improved design leads to a 

better self-starting capability, position of an obstacle shielding as shown in figure 

2.14 should be set and determine which could lead to optimizing a better flow 

orientation toward the advancing blade. 



Figure 2.14: Schematic description of the geometry and hee optimization parameters 
XI, Y1, X2 used to modify the position of the shielding obstacle. Top: two-blade 

Savonius rotor; bottom: three-blade savonius. [15, 161. 

From this study, followed result and conclusion are obtained. The overall effect of 

this obstacle is extremely positive for both designs. Considering the obtained output 

power coefficient and the cost and complexity of the rotor, the two-blade 

configuration is clearly better than the three-blade turbine. This optimal configuration 

leads to a peak power output coefficient of 0.258 at /l = 0.8, and seems therefore 

very promising for wind energy generation in urban areas. 

Mohamed et. a1 add another one important modification on his savonius 

turbine shape as shown in figure 2.15, He said from result obtained, the modified 

shape leads to an increase of the positive moment of the advancing blade as shown 

result in figure 2.16. For the overall conclusion, better configuration might be 

perhaps found by optimizing simultaneously blade shape and size and position of the 

obstacle plate. 
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Figure 2.1 5: Optimum configuration (right) obtained with the optimization procedure 
compared to the classical Savonius turbine (semi-cylindrical shape:left).[l5,16] 
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Figure 2.16: Performance of the optimized configuration (black plus) compared to 
the conventional Savonius with and without obstacle plate (filled an empty squares, 

respectively) (a) torque coefficient; (b) power coefficient. The corresponding relative 
increase compared to the standard configuration is shown with stars.[l5,16] 

Another one interesting design of external features of savonius turbine is 

guide box tunnel. Irabu & Roy, (2006) investigates to improve and adjust the output 

power of savonius rotor under various wind power and the method to prevent the 

rotor from strong wind disaster need to be suggest. So he employed guide-box tunnel 

(GBT) as drawn in figure 2.17, as an appropriate device to achieve the purpose. The 

GBT is like a rectangular box as wind passage in which a test rotor is included. The 

ratio between the inlet and exit of it is variable to adjust the inlet mass flow rate or 

input power. 

In this study, Irabu et. a1 introduce new parameter to measure optimum size of 

GBT passage that is widths ratio 

I 
where6 = z; 1 = width of GBT, dt = rotor diameter. Using the GBT, as shown in 

figure 2.18, this study found that the maximum output power coefficient for two 

blades rotor is about 1.23 times at the largest compared with that without GBT and 

1.5 times for three blades rotor of which reasonable width ratio of GBT is 1.4 and 

area ratio of it is 0.43. 

The maximum output power coefficient of the two blades rotor in GBT is 

approximately 1.08 times as large as that for the three blades rotor configuration in 

GBT. Therefore, the two blades configuration is better than that of three blades to 

effectively convert wind power through GBT, except for rotation starting. 



Figure 2.17: Details of test rotors and guide-box tunnel: (a) guide-box tunnel with 
rotor; (b) two-blade rotor; and (c) three-blade rotor. [17] 

Figure 2.18: Power coefficients vs. tip speed ratio of the rotors with GBT of a fixed 
ARg: (a) two blades rotor; (b) three blades rotor. [17] 



2.6 Development and performance of various types' geometry of drag-based 

VAWT. 

Drag-based VAWT not only restricted in the form of savonius shape only. 

Nowadays, there are numerous numbers of different types and shape of VAWT in the 

market. Helical turbine, twisted, hunter turbine, zephyr vane are few example of 

drag-based VAWT. There is still lack study of performance of all those VAWT until 

today. 

Hassan et. a1 presents CFD analysis on helical blade savonius (figure 2.19). 

He said that design twisted rotor will be used in a small seafloor power generation 

system. Since this research study set the purpose below the sea, whch means the 

fluid flow is water instead of air, so the Power coefficient is low. But the author said 

the simulation results show better performance of twisted savonius as compared to 

the other conventional Savonius rotors which in this case the fluid is water. So it's 

quite possible to predict that performance of twisted savonius might be interesting to 

study in the air fluid stream condition. 

Figure 2.19: Half pitch turn (180') helical Savonius turbine [8] 
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