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Abstract—Mathematical programming plays a pivotal role in 

finding the solution for optimization problems in various 

practical, real-life applications. Conventionally, the modeling 

used in mathematical programming is based on numerical 

values. It is however complicated to accurately provide such 

rigid numerical values because uncertain elements do exist in 

the decision-making process. Furthermore, building a 

mathematical programming model with crisp and precise 

values can result in the production of an infeasible or improper 

solution. Hence, uncertain based decision making is exemplify 

in this paper by using possibilistic theory to capture human 

uncertain judgment to develop mathematical programming 

model which sufficiently able to find an acceptable solution. 

The implementation of the proposed method shows the 

significant capabilities to solve real application problem which 

retain the uncertainties in its problem model.  

Keywords- uncertain judgment; decision making; 

possibilistic theory; necessity measure 

1  INTRODUCTION 

Decision-making theory has become one of the most 

important fields for real-world decision-making. 

Fundamentally, decision making involves imprecision and 

uncertainty when human knowledge and evaluation are 

considered in the decision-making process. In the real-world 

situation, the problems are much depending on the 

mathematical programming model which is used to explain 

the problem and to find the solution.  Typically, a practical 

real-world problem is translated and developed into 

mathematical programming problem model with numerical 

values which neglects the uncertainties. However, providing 

precise values for mathematical problem models raises 

difficulties [1] because the nature of the decision-making 

process is inherently dependent upon the knowledge and 

professional experiences of decision makers (experts). 

Moreover, if the problem model’s parameters are not 

appropriately determined as crisp values in the mathematical 

model, the formulated problem may yield an infeasible or 

improper solution [2]. In fact, the measurement and 

evaluation of imprecise values of decision criteria are 

difficult [3], and dealing with this imprecision is a 

challenging task in decision making. 

In decision-making process, model setting and goal 

attainment are fundamental aspects of human decision-

making. However, the information available to a decision 

maker is often imprecise because of inaccurate attribute 

measurements and inconsistency in priorities. Until recently, 

the decision-making process still utilized subjective 

judgments when considering human evaluations for certain 

cases, such as resource planning problems. Therefore, a 

decision is often made on the basis of vague information or 

uncertain data. Because many evaluations depend on human 

judgment, which is usually based on intuition and 

experience, the expression of crisp values in mathematical 

models is a complicated problem. Moreover, extracting 

human judgment and personal subjectivity is difficult in the 

traditional decision-analysis models. Thus, certain 

approaches, such as probability distribution, fuzzy numbers, 

and different types of thresholds [4], have been used to 

model uncertainty and imprecision, in the distinct occurrence 

of the uncertainty. Yet, few studies discuss on the hybrid 

uncertainty in the decision-making problem model, even 

though it is important to consider such situation while 

modeling real-world decision-making problem.  

As many evaluations depend on human judgment, which 

is usually based on intuition and experience, the expression 

of accurate values in mathematical models is a complicated 

problem. Given this imprecise situation, the uncertainties 

should be handled properly to ensure that the mathematical 

model developed for the problem takes the uncertainties in 

the evaluation into consideration. It is important to address 

uncertainty to obtain a proper solution, and to avoid the 

formulated problem model obtain misleading result. For this 

reason, fuzzy sets [5] are useful for representing uncertain 

and imprecise information in mathematical programming. It 

makes fuzzy mathematical programming is important for 

dealing with uncertainties for cases in which the 

mathematical programming model’s parameters cannot be 

estimated precisely from the real situation in question. 

Given this imprecise situation, the uncertainties should 

be handled properly to ensure that the mathematical model 

developed for the problem takes the uncertainties of 

evaluations into consideration. It is important to address 

uncertainty to obtain an optimal solution. For that reason, it 

is inspired to sufficiently explain the method which captures 

intuitive human judgment and preference to developed the 

mathematical programming model and solve the problem 

using possibilistic concept. The decision maker’s aspiration 

is therefore reflected properly within the developed 

mathematical programming model, and the uncertainties are 
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retained to ensure that the model does not diverge from the 

problem. It is remarkable that the proposed method shows 

that a decision maker can realize the extent to which their 

target goal can be satisficed. 

The remainder of this paper is organized as follows. 

Section 2 describes the background study based on 

possibilistic system. Section 3 explains the model’s 

development of possibilistic decision making. Section 

4illustrates the model with a numerical example, and Section 

5 concludes this paper with some additional remarks. 

2 POSSIBILISTIC PROGRAMMING 

Fuzzy mathematical programming models are classified into 

two categories [6]. One category addresses the fuzziness of 

the decision makers’ aspirations with respect to goals and/or 

constraints (i.e., vagueness in fuzzy goals). The other 

category addresses the ambiguity of the coefficients of the 

objective functions and/or constraints. Possibilistic 

programming is the term used to describe the type of fuzzy 

mathematical programming produced if the vagueness in the 

decision maker’s aspiration is modeled as an objective 

function using a fuzzy preference relation and the 

ambiguities in the coefficients are represented in terms of a 

possibility distribution [7]. Thus, possibilistic programming 

differs from fuzzy mathematical programming because the 

uncertainty in the former is incorporated into the coefficients 

of the goals and/or the constraints of the mathematical 

programming model, and these imprecise coefficients are 

restricted by possibilistic distributions. Studies ([2]; [7];[8]) 

have shown that possibilistic programming provides 

advantages in addressing the ambiguity and vagueness 

contained in a decision-making model and, therefore, that its 

integration with other concepts and methods can improve the 

efficiency of such a model in solving problems. 

Possibility theory ([9]; [10]) expresses an impression by 

means of a possibility distribution [9]. Within possibility 

theory, fuzzy parameters are associated with possibility 

distributions, just as random variables have traditionally been 

associated with probability distributions. Stochastic and 

possibilistic linear programming may be distinguished 

because the former considers uncertainty in model 

parameters due to randomness, whereas the latter considers 

the uncertainty in model parameters due to fuzziness. Since 

the 1980s, possibility theory has become more important in 

the decision-making field, and several methods have been 

developed to solve possibilistic programming problems. 

Additionally, possibilistic linear programming has also been 

applied to multi-objective programming problems in which 

all of the parameters are fuzzy. In multi-objective 

programming problems, parameters such as coefficients and 

the right-hand-side values of the constraints are 

conventionally assumed to be real numbers. However, in real 

world problems, we may face cases for which the expert 

knowledge is not sufficiently certain to specify that these 

parameters as real numbers or cases in which parameters 

fluctuate in certain ranges. 

Decision makers commonly face fuzziness, which can 

arise from factors such as the ambiguity of received 

information and the vagueness in a decision maker’s goal 

[11]. When the mathematical model contains uncertain 

information, that is, the coefficients and goal are fuzzy or not 

exactly known, the problem should be modeled with an 

approach that addresses and incorporates these uncertainties 

into the solution of the mathematical model. Thus, the 

uncertainties that are included in decision making increase 

the complexities of problem modeling, and as a result, it is 

difficult to solve such models properly, as the uncertainties 

involved cannot be described precisely using numerical 

values. That is, in most real-world situations, it is reasonable 

to assume that the possible values of a model’s attributes and 

its coefficients are uncertain. Hence, it is realistic to consider 

the estimated value of the coefficients as imprecise values 

rather than precise ones. A possible range for each 

coefficient can be represented by a fuzzy set, which is also 

regarded as a possibility distribution. Thus, the mathematical 

programming models for decision support must explicitly 

consider such issues, and correct treatment of the inherent 

uncertainty associated with the model coefficients is 

essential.  

3 MODEL DEVELOPMENT 

In possibilistic programming, the concepts of possibility and 

necessity measures [9] are introduced to deal with the 

vagueness and ambiguity included in the objective function 

and/or constraints. The interpretation of the problem plays an 

essential role in formulating the problem into mathematical 

programming model. From the perspective of possibility 

theory, the interpretation is developed based on the 

possibility measure and necessity measure. 

3.1 Possibility and Necessity Measures 

Let A and B be fuzzy sets of the universe X . A possibility 

measure ( )BA∏ and a necessity measure ( )BAη are defined as 

follows: 

( ) { }

( ) { },,1maxinf

,,minsup

xxB

xxB

BA
x

A

BA
x

A

µπη

µπ

−=

=∏
(1) 

where 
Aµ and 

Bµ are membership functions of fuzzy sets 

A and B . From (1), possibility measure ( )BA∏  evaluates to

what extent it is possible that under the restrictions of the 

possibility distribution
Aµ , the possibilistic variable α is in 

the fuzzy set B . Likewise, ( )BAη evaluates to what extent it

is certain that under the restrictions of the possibility 

distribution
Aµ , the possibilistic variable α is in the fuzzy

set B . 

The following relations always hold: 
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where B  is the complement of B . 

Let α be a possibilistic variable. Let ( ]gB ,∞−=  be a 

non-fuzzy set of real numbers which is not greater than g . 

The possibility and necessity measures defined by (1) are 

written as follows: 
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where ( )gPoss ≤α  and ( )gNec ≤α are the possibility 

and certainty degrees to what extent α is not greater than g , 

respectively. 

 

3.2 Treating Uncertainties Through Necessity Measure  

In this work, the expression of uncertainty adopted is based 

on fuzzy sets [5]. In this formulation, uncertain problem 

parameters are defined by fuzzy sets and characterized by 

membership functions. In general, the membership covers 

from zero to one. The definition of uncertainty by means of 

fuzzy sets enhances the ability to model real-world problems 

and gives a methodology for exploiting tolerance for 

imprecision or uncertainties [12]. 

A fuzzy number combines two ideas of confidence 

interval and membership degree or satisfaction level. 

Depending on the imprecise parameters,the constraints and 

the optimal solution constitute a class of alternatives whose 

boundaries are not well defined.  

Let us consider the possibilistic linear programming 

problem (4) with constraints, as follows: 

( )
.0;

~~~
:subject to

max

≥≤ xbxA

αx jf
  (4) 

where x is an −n dimensional vector and ≤
~

describes a 

fuzzy goal. α , A
~

and b
~

are possibilistic variable 

vectors. ( )
jjjf xα=  and bxA

~~
≤ denotes objective 

function and constraints, respectively. 

To solve possibilistic programming problem (4), the 

constraints and objective function are treated using necessity 

and possibility measure. In this paper, we restrict ourselves 

to explain necessity measure in the treatment of constraints 

and objective function. Necessity measure evaluates to what 

extent the decision maker’s aim can be achieved certainly.  

 

3.3 Dealing the constraints 

It is important to treat the constraint that is described in 

ambiguous coefficient in the mathematical model. The 

treatment is prepared by giving the interpretation to the 

constraint so as the constraint in the model is closely 

translates the meaning of decision maker’s desire. Using the 

necessity measure, the certainty of decision maker intention 

to the constraint is indicated. 

Let [ ]m
1,0∈ηv  be a necessity aspiration degree that a 

decision maker is aspired to achieve certainly. The 

constraints bxA
~~

≤ can be treated as follows: 

( )( )ηvbxA ≥≤
~~

Nec   (5) 

Note that, this is the case where the decision maker feels 

that a certainty degree is not less than
Ω

v . The symmetric 

fuzzy number is written as ∑∑=
==

n

j
jj

n

j
jj dxaxA

11

, . 

From (5), let us assume that s  is less than
η

v to obtain the 

formulation as follows:  









∑+∑=
==

n

j
jj

n

j
jj dxvaxs

11

η
  (6) 

Thus, expression (6) is the treated constraint which 

considers the certainty degree of decision maker’s intention 

to the problem constraint.  

 

3.4 Dealing the Objectives  

In a fuzzy mathematical programming problem, each 

objective functionvalue is not always a real number. The 

objective function value is frequentlyonly restricted by a 

possibility distribution ( )xα . Therefore, the meaning of the 

objective should be interpreted. 

 Let us consider that the decision maker wants to 

maximize the certainty degree that the event is not smaller 

than
η

g , and is modeled as max ( )ηα gxNec ≥ .  

 Using additional variable h , the following model 

expresses the decision maker’s intention. 

( )( )hgxNec

h

≥≥ ηα:subject to

max
 (7) 

 Problem (7) is equivalent to the following. 

h

dx

x

h

n

j
jj

n

j
jj
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∑

∑

=

=

1

1
:subject to

max

α   (8) 

Problem (8) is rewritten by using the treated objective 

function and constraints as follows: 
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3.5 A Possibilistic Evaluation Scheme 

 

The possibilistic evaluation scheme for decision making is 

simplified as follows: 

 

a) Problem description and modeling. 

Describe the problem and build the problem model. If 

there’s a random situation exists then the problem model 

can be built by using fuzzy random regression method 

([13]; [14]; [15]).  

b) Treating the constraints. 

Analyze the problem constraints to treat the ambiguity 

data as equation (5). Set the degree of certainty
N

v  and 

transform the constraints as expression (6). 

c) Treating the objective. 

Obtain the necessity aspiration level
N

g of the objective 

function. Transform the objective function in an 

expression of ( )N
gNec ≥αxmax , for the case of 

decision maker want to maximize the objective function.   

 

d) Modeling, solution and analysis. 

Develop a possibilistic programming model as Equation 

(9) which contain fuzzy random based coefficient. Solve 

problem model (9) to obtain the solution x . Analyze the 

decision.  
 

4 NUMERICAL EXAMPLE 

Let us consider a production planning problems with two 

decision variables and one functional objective are 

investigated under four system constraints. The objective of 

the decision maker is to maximize the return of the profit, 

that are constrained with available resources; raw material, 

labor, mills capacity and capital. The coefficients values 

were estimated based on historical data. The vague target is 

derived from the aspiration of the decision maker to achieve 

some target, and fuzzy value in the data is considered as 

ambiguous data.  Such situation results in possibilistic 

problem whereby the inherent uncertainties occur are 

characterized by fuzzy vague and ambiguous data.  

The problem is modeled as follows: 

( )

)(

,15.2065.0,98.065.0,87.0:capital

,20.7527.0,16.285.0,35.17:capacity mill

,42.1409.0,90.055.0,65.0:labor

,75.8708.0,91.006.0,75.3:material raw

:subject to

a3.0,10.31.0,86.1profitmax 

21

21

21

21

,21

b

xx

xx

xx

xx

xx













≤+

≤+

≤+

≤+

+  (10) 

where all model coefficient is obtained by fuzzy random 

regression approach.  

Based on Step 2 that is dealing with the constraints, let us 

assume that the decision maker decide that certainty degree 

not less than 7.0=
N

v  is high enough for the system 

constraint (b) in the Problem (10). To satisfy the decision 

maker aim, analyze the constraints under expression (5). Use 

expression (5) to transform the constraints based on decision 

maker aim as follows: 

( )( )
( )( )
( )( )
( )( )

( )b

,15.2065.0,98.065.0,87.0

,20.7527.0,16.285.0,35.17

,42.1409.0,90.055.0,65.0

,75.8708.0,91.006.0,75.3

21

21

21

21













≥≤+

≥≤+

≥≤+
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vxxNec

vxxNec

vxxNec

vxxNec

 (11) 

For the objective part, the decision maker aims to 

maximize the certainty degree of profit is larger than 5.0 

million dollars. Based on (7), the decision maker target is 

modeled as follows: 

( )( )hxxNec

h

≥≥+ 30.1210.386.1:subject to

max

21

 (12) 

The problem (5.22) is rewritten as follows by applying 

model (5.8): 

.0

,15.2043.132.1

,20.7534.294.17

,42.1496.003.1

,75.8795.079.3:subject to

1.31.0

30.121.386.1
max

21

21

21

21

21

21

≥
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The equivalent linear programming for problem (9) is as 

follows: 

.0,

,13.01.0

,015.2043.132.1

,020.7534.294.17

,042.1496.003.1

,075.8795.079.3:subject to

30.121.386.1max

21
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21
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≤−+
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izt

xx

zz

tzz

tzz
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tzz
  (14) 

 The optimal solution of the fractional programming is 

( ) ( )6.11,6.2, 21 ≈xx . The solution of problem (10) makes 

the certainty degree of the event that the profit is not smaller 

than 12.30 million dollars. It means that, the solution (14) 
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confirms the decision maker that the profit is not smaller 

than 12.30 million dollars are certain.  

The solution of problem (10) makes the certainty degree 

of the event that the profit as higher as 0.7. It means that, the 

solution (10) confirms the decision maker that the profit rate 

is as larger as 0.7 are certain. 

5 CONCLUDING REMARKS 

In this paper, the decision making process is explain 

to include the ambiguous and vague data using possibilistic 

theory. The necessity measure is used to express the decision 

maker’s aims to achieve certainly the objective function 

value and the ambiguous coefficients. From the result, it is 

shown that possibilistic programming is efficient to deal with 

the uncertainty. The proposed method can be repeated 

iteratively and various solutions can be obtained depending 

on the decision maker aim. It is remarkable that the proposed 

method shows that a decision maker can realize the extent to 

which their target goal can be satisficed. In the above 

models, the difficult issues to address include determining 

and transmitting the decision maker’s objectives, 

preferences, and intentions as well as developing the initial 

stage of an improved mathematical programming model.  
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