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Abstract. Magnesium alloys create increasing interest in structural application where weight 

reduction is vast concern. However, its low corrosion resistance especially in atmosphere 

environment restricts their wide application. In this study, AlN and TiN were coated on AZ91 Mg 

alloy using PVD magnetron sputtering. AlN and TiN existence is confirmed via grazing angle x-ray 

diffraction (GA-XRD). The corrosion behaviors of uncoated and coated AZ91 Mg alloy in3.5% 

NaCl and Hank’s solutions were investigated using a potentiostat during electrochemical corrosion 

test. AlN and TiN coated samples showed better performance in Hank’s solution with TiN coated 

samples have the least corrosion rate (penetration rate=0.040mm/yr and mass loss rate=0.191g/m
2
d) 

in Hank’s solution. These create interest to further works on exploring the potential of coated AZ91 

Mg alloy in biomaterial application.  

 

1. Introduction 

AZ91 (9 % Al–1 % Zn), among all magnesium alloys is the most widely used because of its 

good castability and mechanical properties with good corrosion resistance for the high purity 

version of the alloys [1]. However, Mg alloys have poor resistance to wear and corrosion which is a 

serious barrier against wider application of Mg alloys [2, 3]. It is because Mg alloys is 

thermodynamic instable that makes Mg alloys highly reactive. The interaction of oxygen with Mg 

leads to the formation of a thin, protective oxide layer. However, temperatures as well as moisture 

accelerate the transition to less protective films. At elevated temperatures the MgO film rapidly 

attains a critical thickness and starts to crack, thus allowing further oxidation [4].  

Surface modification by coatings has become an essential step to improve the surface properties 

such as wear, corrosion and oxidation. Coatings can protect a substrate by providing a barrier 

between the metal and its environment and/or through the presence of corrosion inhibiting 

chemicals in them [5]. Nitride based hard coatings like TiN, (TiAl)N, BN and etc. have proved their 

capability to increase tool lifetime when exposed to abrasive and corrosive environments found in 

plastic transformation processes [6]. Thus, hard surface coating on Mg alloys substrate improved 

and overcome the drawbacks of Mg alloys such as poor corrosion and wears resistance [7]. 

However, it is also observed that in a coating-substrate system, the degradation of the corrosion 

properties is a result of galvanic corrosion between the magnesium and the coating material itself 

[8]. At coating defects like pinholes, inclusions and microporosity, the electrolyte can reach the 

substrate material which causes a high current density at the anodic magnesium, causing accelerated 

dissolution of the metal [9]. 
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In this paper, the corrosion behavior of AlN and TiN coating on AZ91 Mg alloy deposited via 

PVD magnetron sputtering in two different corrosion medium which are 3.5% NaCl and Hank’s 

solution are reported. The assessment of the corrosion behavior in Hank’s solution is an effort to 

improve current understanding on the performance of AlN and TiN coating which is commonly 

limited only in NaCl medium. The results would contribute towards exploring the potential of 

coated AZ91 Mg alloy in biomaterial area application.  

 

2. Materials and methods and characterization 

 

2.1 Sample preparation 

 

For coating deposition, AZ91 Mg alloy samples were ground successively with 400–1200 grit 

SiC paper and were polished with Al2O3 paste 1µm and 3µm; they were degreased in acetone and 

washed with distilled water ultrasonically in 10 minutes and dried with high pressure. 

All coatings were carried out using a SNTEK DC and RF magnetron sputtering model 

PSP5004. A high-purity (99.99%) aluminum target was used in the AlN coating deposition and for 

TiN coating deposition, high-purity titanium (99.99 %). The substrate to target distance was 14cm. 

The AlN films were deposited using the following process parameters; power 200W, gas 

composition nitrogen: argon 6 sccm: 19 sccm and deposition time was 90 minutes whereas the TiN 

films were deposited using the following parameters; power 400W, gas composition nitrogen: argon 

3 sccm: 10 sccm and deposition time was 45 minute. Both coating depositions are conducted at 

180ºC due to temperature stability of mg alloy with -60V bias voltage and 10mTorr working 

pressure. Prior to deposition, ion cleaning using inert argon gas was carried out to avoid 

contamination and to improve adhesion [1]. Grazing-angle x-ray diffraction (GA-XRD) 

Diffractrometer XPERT-PRO system (copper anode, K® radiation, wavelength =1.54 A°) was 

utilize for phase constituent determination. 

 

2.2 Electrochemical tests 

 

For electrochemical tests, coated samples were mounted in epoxy resin to an expose area of 

3.142 cm
2
. The potentiodynamic polarization scans were performed according to ASTM G 5 

(Standard Reference Test Method for Making Potentiostat and Potentiodynamic Anodic 

Polarization Measurements) using Gamry Instrument for the uncoated and coated samples in a 3.5 

wt. % NaCl and Hank’s solution. Table 1 shows the chemical composition of NaCl and Hank’s 

solution used in this work.  The electrodes for this purpose were prepared by connecting a wire to 

one side of the sample that was covered with cold setting resin. One side of the specimen, whose 

area was 3.142 cm
2
, was exposed to the solution. The polarization measurements were carried out in 

corrosion cell containing 500 ml solution at room temperature for the 3.5 wt. % NaCl solution and 

37°C for Hank’s solution. The specimens were immersed in the test solution, and a polarization 

scan was carried out towards more noble values at a rate of 1 mV/s, after allowing a steady state 

potential to develop. 

 

Table 1: The chemical composition of NaCl and Hank’s solution used in this work 
 

Solution 

Chemical composition in terms of substance that make up the solution (mmol/L) 

NaCl Mg(OH)2 CaCl.2H2O MgSO4(anhydrous) KCl KH2P4(anhydrous) Na2PO4 

(anhydrous) 

D-

Glucose 

NaHCO3 

Hank’s 137 - 2.5 0.8 5.4 0.4 0.3 5.6 4.2 

NaCl 550 8.6 - - - - - - - 
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3. Results and Discussion 

 

3.1 Phase Analysis 

3.1.1 Grazing-angle x-ray diffraction (GA-XRD) 

 

Figure 1 shows the GA-XRD patterns of AZ91 uncoated sample (substrate), AZ91-AlN 

coated and AZ91-TiN coated samples. AlN phases with hexagonal structures (ICDD: 00-025-1133) 

were identified by the presence of the diffraction peaks at 2θ=35.9º, 37.8º and 49.8º assigning to the 

[101], [102] and [103] planes. Diffraction peak with the highest intensity were observed at 

2θ=35.9º. These confirm the presence of AlN. The presence of TiN phases (ICDD: 03-065-5744) 

was characterized by diffraction peaks at 2θ=42.65º, 62.13º and 78.36º assigning to the [200], [222] 

and [311] planes. The presence of diffraction peak (though with a very low intensity) at 62.13º and 

78.36º confirmed the presence of TiN.  

 
Figure 1: GA-XRD patterns of AlN and TiN coated on AZ91 magnesium alloy substrate 

 

3.2 Electrochemical test 

 

Figure 2 shows the polarization curves of uncoated and coated AZ91 Mg alloy in3.5wt. % 

NaCl and Hank’s solution. From Figure 2a, it was observed that the anodic branches of the 

polarization curves for all sample (uncoated and coated) in NaCl solution were almost the same. 

Thus, the corrosion potential and current density are very close to each other. The corrosion 

potential and the current density of AZ91-uncoated are -1.56 mV and 250.35µA/cm
2
; AZ91-AlN is 

-1.49mV and 35.22µA/cm
2 

and AZ91-TiN is -1.44 mV and 16.10µA/cm
2
. In contrast, the 

polarization curve of all samples in Hank’s solution (Figure 2b) is slightly differences in anodic 

branches. The corrosion potential and current density for each sample are; AZ91-uncoated is -1.48 

mV and 67.75µA/cm
2
; AZ91-AlN is -1.47 mV and 15.08µA/cm

2 
and AZ91-TiN is -1.43 mV and 

1.75µA/cm
2 

respectively.  

Based on the polarization curves observed in both solutions, it can be seen that AZ91-TiN 

shows better corrosion performance compared to AZ91-AlN. It could be deduced that the better 

performance of TiN is generally due to the formation of TiO2 in the interlayer of the deposited 

coating whereby TiO2 act as a protective layer reducing the potential of corrosion of the coated 

sample. Furthermore, a pure metal interlayer of Ti that could exist in the TiN coatings may 

contribute to the improve corrosion protection; substantially due to the corrosion resistance 

properties of Ti itself [10]. In contrast, for the AlN, the formation of Al2O3 layer may reduce the 

potential of corrosion protection due to low corrosion resistance of Al [10]. Nevertheless, further 

investigation is needed to properly justify this corrosion behavior. 

The penetration rate and mass loss rate calculated based on the corrosion potential and 

current density obtains during the electrochemical test is summarized in Table 2. The corrosion 

rates of uncoated and coated AZ91 Mg alloy in both solutions increased according to the following: 

AZ91-TiN < AZ91-AlN < AZ91-uncoated. For example, penetration rate and mass loss rate in 
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Hank’s solution for AZ91-TiN is 0.040mm/yr and 0.191g/m
2
d respectively; while it is 0.344mm/yr 

and 1.641g/m
2
d for AZ91-AlN in Hank’s solution. The low current density is correlated to the 

better corrosion resistance of metals [11].  

Overall, AZ91-TiN shows better corrosion performance in Hank’s solution compared to 

3.5wt.% NaCl solution due to the least aggressive of chloride ions in Hank’s solution. It should be 

noted that TiN penetration rate 0.040mm/yr and mass loss rate 0.191g/m
2
d in Hank’s solution 

whereby the penetration rate 0.367mm/yr and mass loss rate 1.752g/m
2
d in 3.5wt.% NaCl solution. 

This is related to the fact that the presence of chloride ions in the solution affects the passivity of 

Mg alloy substrate [12]. The higher chloride ionsconcentration leads to higher tendency for the 

protective surface film (the layer formed on the coated sample during the electrochemical) to 

breakdown and allowing microgalvanic corrosion acceleration hence increased rate of corrosion 

[13, 14, 15].  

 

 
Figure 2: Polarization curves of uncoated and coated AZ91 Mg alloys in (a) NaCl solution 

(b) Hank’s solution 

 

Table 2: Penetration rate and mass loss rate in NaCl solutionand Hank’s solution 

Samples 
Sodium Chloride (NaCl) Hank's solution 

Penetration rate 

(CR) 
Mass Loss rate 

(MR) 
Penetration rate 

(CR) 
Mass Loss rate (MR) 

AZ91-Uncoated 5.716 27.235 1.547 7.371 

AZ91-AlN 0.804 3.832 0.3444 1.641 

AZ91-TiN 0.368 1.752 0.040 0.191 

 

 

4. Conclusion 

AlN and TiN was successfully deposited via magnetron sputtering technique and its presence is 

confirmed by GAXRD analysis. AlN and TiN shows better performance of corrosion behavior in 

Hank’s solution. Overall TiN show the least mass loss rate and penetration rate in Hank’s solution. 

Thus, it was suggested that the corrosion behavior of coated samples (AlN and TiN) of AZ91 Mg 

alloy substrate should be subjected to further investigation in order to look into the potential of this 

metal in the area of biomaterial. 
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