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Abstract The research on the analysis of cause and effect relationships in castings has always been a

centre of attention in the manufacturing industry. An intelligent diagnosis system should be able to
diagnose effectively the causal representation and also justiff its diagnosis. Recently, a method,

known as the Knowledge Hyper-surface method which used Lagrange Interpolation polynomials has

gained more popularity in learning cause and eflect analysis in casting processes. The current method

show that the belief value of the occlurence of cause with respect to the change in the belief value in
the occurrence of effect can be modelled by linear, quadratic or cubic relationships and the method

retained the advantages of neural networks and overcomes their limitations in learning the

input-output mapping function in the presence of noisy, limited and sparse data. However, the

methodology was unable to model exponential increase/decrease in belief values in cause and effect
relationships. This paper proposed an enhancement to the curent Knowledge Hyper-strrface method

by intoducing midpoints in the existing shape forrrulation which firther constrains the shape of the

Knowledge hyper-surfaces to model an exponential rise in belief values but without exposing the

dataset to the limitations of 'over fitting'. The ability of the proposed method to capture the

exponential change in the belief variation of the cause when the belief in the effect is at its minimum
is compared to tlre current method on real casting data.

Introduction

Every day foundries manufacture a large number of castings. Every time a casting is produced, a large

amount of data is generated involving process-pararneter values and one or more indicators on

whether the casting is defective or not. This data is encoded for each type of defect, for each day,

week and month of the casting process and is available for all casting components.

The rejection data for a given casting and time frame, norrrally indicates a pattern, which has

normally few defects occurring at significanfly high proportions and some occurring at significantly
low proportions. Therefore, the diagnostic casting problem was defined as recognising patterns in the

casting rejection data and identiffing a corresponding combination of causes. It was observed that a

combination of defects generally occrrs as a result of a combination of causes [1].
The cause and effect relationship in a casting process is complex and non-linear. Furthennore, a

large number of parameters are needed to be coordinated with each other in an optimal way to
minimise ttre occurrence of defective castings. This has led to the necessity of developing
computer-based optimisation techniques. An optimisation process is a computational technique that
determines an optimal value for process parameters such that the magnitude of one or more response

variables of the process is minimised. It also ensures ttrat the process operates within established
limits or constraints [2]. Casting process optimisation has facilitated foundry men in making right
choices, but it still remains a challenging area that has drawn the attention of many researchers during
the last two decades.

Recent studies have used the response surface method (RSM) to optimise parameters inthe casting
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of process parameters increase [a]. This is mainly because RSM techniques show the same
limitations as showed by polynomial-regression techniques; the nunber of unknowns in the system
increases exponentially with the number of parameters.

In contrast, Taguchi's robust design method provides a process engineer with a systematic and
efficient approach for conducting experimentation to determine near optimum settings of design
parameters for performance and cost [5]. The robust design method uses orthogonal arrays (OA) to
study the parameter space, usually containing alarge number of decision parameters, with a small
number of experiments. To this date, a quite significant amount of research and development work
has been done in order to optimize parameters ofthe casting process by using the Taguchi method [6].

Recently, the artificial-neural networks (ANN), or simply neural-networks (NN), technique has
gained more popularity in learning cause and effect analysis in casting processes [7]. ANN consists of
interconnected cells, called neurons, and simulates the behaviour of the biological neural network in a
human brain [8]. Neural-networks' techniques are able to adapt, learn from examples and are
generally used to model complex relationships between inputs and outputs or to classi& data finding
common patterns [9]. This ability rnakes the field of diagnosis a potential application for neural
networks.

Ransing [l] proposed a method that retains advantages of regression analysis and neural-network
techniques and at the same time overcomes the limitations of both techniques. The Knowledge
Hyper-surface method described that the belief variation in the occlurence of a cause, with respectio
a change in the belief value of the occrurence of an effect, follows a pattern. Such a variation is
generally linear, quadratic or cubic and certainly not an arbitary higher-ordered polynornial.

Despite the superior e:rhapolation abilities of the current knowledge Hyper-surface method two
major limitations have been identified: (a) the use of higher ordered polynomials can lead to the
'over-fitting' effect as observed in other interpolation techniques including neural networks, O) An
exponential rise in the belief value cannot be modelled by lower'ordered polynomialr ro"L *
quadratic and cubic Lagrange inrcrpolation polynomials.

This paper proposed an enbancement to the current Knowledge Hyper-surface method by
introduces midpoints in the existing shape-firnction formulation so that an exponential rise in the
belief-value variation can be modelled without inhoducing the effects of 'over fittittg,.

The remaining of the paper is organized as follows: Section trvo illustrates the pioposed method
which enhanced the curent knowledge hyper-surface method. In Section three, tne aUitities of the
proposed method to captue the exponential change in the belief variation of the cause when the belief
in the effect is at itsminimum is compared with the outputs from the current method on a real casting
data set. The paper is concluded in the final section along with short discussion on firrttrer research.

The Proposed Enhancement

In this section, 
,a 

detail description of the proposed enhancement on the current Knowledge
Hyper-surface method proposed by Ransing [1] is given. The proposed e,lrhancements ie
implemented in the method to overcome the limitations by constnrcting midpoints between each
primary weight along each dimension. The new improved algorithm is then tested on real casting data
in the next section.

The Knowledge Hyper-surface method described that the belief variation in the occurrence of a
cause, with respect to a change in the belief value of the occwrence of an effect, follows a pattern.
Such a variation is generally linear, quadratic or cubic and certainly not an arbitrary higher-ordered
polynomial.

The method described that to model an nn order relationship along a dimension, (n +t)
equidistant reference points between -l and +1 axe chosen. For each referencepoint'i' (f =l to n+l), a one-dimensional Lagrange Interpolation Polynomial is used
based on the following formula:
r /e\ fnlt\
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where:
n : Arder of the Lagrange Interpolation Polynomial (e.g. one for linear; two for quadratic;

tlree for cubic; etc.)

k : A reference point at which the one-dimensional Lagrange Interpolation Polynomial

IXG) is constructed ( fr ranges from 0 ton).
i : Ranges from one to total number of reference points, i.e. (z+l).

The variable f is used to store the belief value representing the strength of the

corresponding effects, ranges from -l to +1. For one-dimensional Lagrange Polynomial
Interpolation the reference points are drawn along this dimension. Whereas for a given cause

connected to' p 'effects, the Lagrange Interpolation Polynomialatareference point'i'is
defined as' p' dimensional and is given by the following equation:

l,(€t,€"€t,...,€t,-..,90)=ltG\*ttc\*.-.*l;:Gj)*--lx:<€'l Q)

where:

€1, - €i
(3)

flj: The order of one dimensional Lagrange Interpolation Polynomial (ry:Gt))

corresponding to 7'fr dimension that represents the relationship between i'h effectand the

cause under consideration.

kj : Reference point along 7'fr dimension, at which the one-dimensional Lagrange

Interpolation Polynomial lX:Gi) is evaluated.(ki Independently ranges from Q 6 ni for

each Lagrange Polynomial Interpolation).

4,€{,€1,...,€t, arc (nr*1) reference points along the i'h dimension'

i : for ao p'dimensional case, 'i' ranges from one to the total number of reference points

' q' as given below:

e = (nr+ 1) * (n, +1) * (n, *1) * ... * (n i +l) * ... * (n o +l)
The method also prescribed that a Lagrange Interpolation polynomial and a weight value can be

associated with each of the said reference points as shown by the equation below:

s
The belief value in the cause= Z'J,G' ,6' ,"',€o)

where:

Q : Total number of reference points.

l,(€',€',...,€o ) is given by Equation I

w, : Weight variable associated with the i'h reference point.

By considering a weight value at a reference point to be representative of the belief value in the

calse, the total number of weights is therefore the same as the total number of reference points.

However, as the number of dimensions increased, the total number of weights in a network also

increased exponentially. This rapidly increased the number of unknown variables within the network

tXlG')=
rj -Fj

(4)

(s)



Applied Mechanics and tabrials Vols.229-231 687

and it was not a practical implementation, as it would not only slow down the system, but also
requires an excessively large training dataset.

In order to overcome that limitation, this research proposed an enhancement by dividing the
reference points into two categories, referred to as primary and secondary reference points. Weight
values associated with these primary reference points have been considered as independent variables
(primary weight values) and other weight values associated with secondary reference points
(secondary weight values), have been considered to be linearly dependent on one or more primary
weight values.

For a 'p ' dimensional problem, tlre total nr.unber of primary weights is calculated as:

f(p \ I
primaryweights=ll tr, *l l- @-r) | tutL\4" ) J

As a result, all weights associated with primary reference points 1,2,3,4 and 7 are pnmary
weights. The secondary weight values at locations 5, 6, 8 and 9 are expressed as a linear combination
of the primary weights and in particular:

,. - 
c(w, *'o)

'2

w. =c(wt 
+wo)

"2

(7)

(8)

(e)

(10)wg=
c(w, +wr)

Results and l)iscussions

The abilities of the proposed algorithm to capture the exponential change in the belief variation ofthe
cause when the belief in the effect is at its minimum is compared with the outputs from both the
current method on a real casting data set used by Ransing []. The data was collected from .Kaye
Preistigne'- a pressure die casting foundry. A total of 14 defects were identified and associated with
43 process, material or design parameters. The data was collected for similar components over a
period of one year. A total of 60 representative examples were finalised.

A belief value in the occurence of defects was calculated as corresponding to the belief values
repfesenting the occurrence and non-occturence of associated process, design and material
parameters as given by the experts in the foundry. Three defects known as 'Porosity', 'Mismakes'
and'Dimensional' are identified.

For the purpose of comparison, the graphical variation of belief surfaces learnt by the conventional
neural network, Ransing [l] and the proposed method is showed only on two defects which are
'Porosity' and'Mismakes'.

Fignres I and2 shows the variation in the belief values in the occlurence of "The position of gate',
for belief values for defects "Porosiqr" and "Mismakes" using the proposed method and RansLg's
method. It can be easily observed the proposed method has an ability to accurately model the
exponential rise in the belief values than the other two techniques.

,r=ry
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Fig.l: The performance of Ransing's method and the proposed method for l-Dnal belief value
variation modeled by Quadratic Network for defect Porosity.
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Fig.2: The performance of Ransing's method and the proposed metlod for two dimensional
Quadratic network for defect Mismakes.

Summary

An enhancement to the current Knowledge Hyper-surface method has been proposed in this paper.
The method introduces mid points in the existing shape function forrrulation so that an exponential
rise in the belief value variation can be modelled without introducing the effects of 'over fiuing'. The
performance ofthe proposed method was compared with the current method proposed by Ransing[l]
on the same casting data used by Ransing []. The results clearly demonstated that the proposed
method does not have limitations as been identified by t}re current method. Ftrthermore, with the
result of this research achievement, it will.now be possible to correctly predict the sensitivity of
process parameter variations to the occurrence of defects. This is an important area of research in a
robust design methodology.
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