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Abstract—This paper proposes the performance comparison
for optimal traffic signal controls based on the following
two frameworks: M/M/1 and D/D/1 queueing models, and Q-
learning approach. Firstly, using the M/M/1 and D/D/1 models,
the optimal split derivation has been obtained to minimise
the mean waiting time of an intersection. Additionally, the
Q-learning framework has been proposed in conjunction with
the use of the macroscopic cell transmission model (CTM) to
update the vehicle state dynamics upon Q-learning actions. The
two approaches have been compared in terms of the network
throughput and the average vehicle delay per completed trip
in nine scenarios. The simulation results from the microscopic
AIMSUN traffic simulator show that the Q-learning approach
can greatly improve the intersection throughput and can sig-
nificantly reduce the average vehicle delay per completed trip
with the respective M/M/1 and D/D/1 approaches.

Keywords-Q-learning, queueing theory, cell transmission
model (CTM).

I. INTRODUCTION

Due to the increase of traffic demands, the burden on

the traffic control systems becomes a major concern. From

the past history, the first sophisticated traffic control strategy

has been manually operated by a policeman. The evolution

of the control methodology for traffic signal grows rapidly.

Fortunately, the growing emphasis on information systems

and communication technologies is able to handle the traffic

problem by using advanced traffic information and control

systems. One of the most common goals of the researchers

is to improve the efficiency of the traffic signal control by

maximising the traffic throughput at an intersection.

Methods have been reported in the literature for control-

ling traffic signals at an intersection. Due to the capacity

limitation of urban area, it is therefore critical to improve

the performance of traffic network. A classical method is to

analyse an isolated traffic intersection in the steady-state by

adopting the queueing theory for traffic signal control. Yu

and Stubberud [1] are the first to address the traffic signal

control problem as a Markov decision process. Newell [2]

proposes an adaptive control strategy for traffic signal control

by modifying the green time until a queue vanishes within a

finite time horizon. Mirchandani and Ning [3] develop and

evaluate an adaptive signal control method based on queueing

theory. Their proposed method is based on the First-in First-

out (FIFO) queueing systems. The method trying to minimise

the average vehicle delay by using minimal weight matching

has been proposed by Wunderlich et. al [4]. The shortcoming

of these analytical methods is that they cannot deal with

abrupt changes of traffic patterns.

To cope with the dynamic changes, a flexible approach

has been proposed to learn good traffic signal controls from

experiences gained gradually by interacting directly with the

environment. This approach, referred to as a reinforcement

learning (RL), is a class of machine learning related to the ar-

tificial intelligence [5]. RL is a class of unsupervised learning

that has potentials to deal with traffic engineering problems

[6]. Jacob and Abdulhai [7] addresses Q-learning which is

an RL tool to deal with the highway traffic problems. For

an isolated intersection control, [8], [9], [10], [11] consider

Q-learning with different objective functions, whereas [12]

investigates the green splits weighted by employing RL in

order to minimise the number of vehicles in the system.

Hong et. al [13] and Choy et. al [14] investigate the traffic

signal control using a neural network which yields a high

computational complexity and results in the impracticality in

realistic scenarios. The literature above seek for an optimal

traffic signal control for an isolated intersection. However,

these RL approaches have been considered the individual

movement of the vehicles in the microscopic level. Therefore,

the computational burden becomes demanding.

To alleviate the computation burden caused by the micro-

scopic behavior, a simple macroscopic model cell transmis-

sion model (CTM) is employed in this paper. Similar to our

approach, Sadek and Basha [15] propose Q-learning for a

traffic route guidance problem and uses also CTM. The CTM

represents traffic flow phenomena for updating the vehicle
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state of the system. However, this paper differs from [15] in

that we are interested in the traffic signal control instead.

In addition, this paper compares the performance of Q-

learning with the optimal split which has been derived for

an isolated intersection with two conflicting flows whose

steady state dynamics are captured by two queueing models,

i.e. M/M/1 and D/D/1. The comparative results have been

reported from our AIMSUN platform.

The rest of this paper is organised as follows. Section II

presents the optimal split formula for the traffic queueing

models. Section III formulates the Q-learning approach ex-

plainable in two parts. Firstly, the state of the system uses

CTM to update flow dynamics. Secondly, the Q-learning

algorithm is presented in Section IV. The simulation results

are given in Section V and the conclusion is given in Section

VI.

II. QUEUEING TRAFFIC MODEL

This section introduces a simplified queueing model with

two buffers and single server which can be mapped into two

conflicting flows in an isolated intersection.

Figure 1. Model for two conflicting flows in an isolated intersection.

Fig. 1 illustrates an isolated intersection which serves two

flows from west to east and north to south. Fig. 1 can be

converted into a basic queueing model with two buffers and

a single server as shown in Fig. 2, where λp denotes the

traffic arrival rate of the system for direction p = 1, 2. Let μ
be the intersection service rate of the system. Let wp be the

ratio of green time allocated to direction p (or its split) in a

signal cycle. The objective here is to find the optimal split

w∗p that minimises the mean waiting time of the considered

intersection system.

Figure 2. Queueing model with two incoming requests.

A. Steady State Analysis

The steady-state derivation is based on an M/M/1 queue-

ing model where the vehicle arrivals in each direction are

assumed to be an independent Poisson process and, during

their green time period, each vehicle is assumed to spend

exponentially distributed travel time through the intersection.

As illustrated in Fig. 1, an intersection has two individual

conflicting flows with mean arrival rates λ1 and λ2, respec-

tively. Let μ be the saturation flow rate, the flow rate at which

vehicles can pass through a signalised intersection in a stable

moving queue [16]. Let ρp be the offered load in direction p

so ρp =
λp

wpμ
for p = 1, 2. To guarantee the stability condition

of the system, it is assumed that the intersection’s saturation

flow rate is greater than the total input flow rate from all

approaching directions. Let L denote the total loss time value

per signal cycle being normalised by the cycle period. Thus,∑
∀p

wp + L = 1. (1)

In the queueing steady state, the mean waiting time Tp in the

system for direction p can then be obtained as follows [17]

Tp =
ρp

1− ρp

=
λp

wpμ− λp
. (2)

The total network delay T is given by

T =
∑
∀p

Tp (3)

To minimise the total network delay, differentiating T in (3)

with respect to w1 and equating it to zero finally give:

0 =
∂

∂w1

[
λ1

w1μ− λ1

]
+

∂

∂w2

[
λ2

w2μ− λ2

]
∂w2

∂w1
. (4)

Therefore, the equation becomes

λ1μ

(w1μ− λ1)2
=

λ2μ

(w2μ− λ2)2
, (5)
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where

∂w1

∂w1
+

∂w2

∂w1
+

∂L

∂w1
=

∂1

∂w1
(6)

∂w2

∂w1
= −1. (7)

The optimal split from M/M/1 model w∗1,MM1 and w∗2,MM1

can be expressed finally as

w∗1,MM1 =

[
Λ (1− L) +

(
λ1−λ2Λ

μ

)]
(1 + Λ)

w∗2,MM1 =

[
(1− L) +

(
λ2Λ−λ1

μ

)]
(1 + Λ)

, (8)

where Λ =
√
λ1/λ2. This result from equation (8) represents

an optimal split weighted to each individual flow.

In a realistic scenario, the arrival process and queueing

service time may not be Poisson and exponential. Thus, in

this paper, another model, D/D/1, has also been used, where

the incoming stream of vehicles arrive at a fixed deterministic

rate and their service time through the intersection is assumed

constant for every vehicle. The optimal split of D/D/1 model

can be obtained similarly to the case of M/M/1 model and

the final result becomes

w∗1,DD1 =
Λ(1− L)

(1 + Λ)

w∗2,DD1 =
1− L

(1 + Λ)
. (9)

III. Q-LEARNING MODEL

A. State Space Definition

Define S as the state space of the intersection system with

two conflicting flows. Let s ∈ S ⊂ Z
2
+ be the state vector

which represents the total number of vehicles waiting for the

green light at the intersection. Let sp(t) be the state variable

which represents the number of vehicles in direction p at

time instance t where p = 1, 2. Therefore, the state space S
of all vehicle profiles in the system is given by

S := {s = [s1(t), s2(t)]} . (10)

B. Cell Transmission Model

CTM [18] is here employed to update the Q-learning state

dynamics. CTM captures the effect of control actions decided

by Q-learning on the flow of vehicles in the system. The

updating state depends on the green time allocated to each

of approaching directions. The updating process of CTM can

be summarised as follows.

1) Sending Capability: Let yp(t) be the number of vehi-

cles that can pass through the intersection in direction p at

time step t:

yp(t) = min {sp(t), qp(t)} , (11)

where qp(t) represents the maximum flow rate at which vehi-

cles can flow from their intersection upstream to downstream

road segments along each direction p at time step t.

2) Receiving Capability: The receiving capability in CTM

normally depends on the maximum flow rate qp(t)as

rp(t) = min {qp(t), εp(t)} , (12)

where εp(t) denotes the residual capacity in direction p at

time step t.

C. Action Space Definition

In each interval, the agent must select whether it would

remain in the current signal indication or change it. The

decision is referred to as an action. The action space, denoted

by A, is the set of all possible actions which the traffic signal

controller of the considered intersection can take. Action

a ∈ A (s) refers to the action which the agent can take at

state s.

D. Vehicle Delay

Vehicle delay is defined as the number of vehicles that

cannot pass through the intersection. The vehicle delay

accumulated at time step t can be expressed as

dp(t) = sp(t)− yp(t). (13)

Note that if the allocated green time can serve all traffic in

sp(t), i.e., sp(t) = yp(t), then there is no delay happening.

E. Reward Function

The aim of Q-learning here is to find the optimal policy

that minimises the total network delay, which can be ex-

pressed in terms of the delay dp(t) at each time step t as:

Υ(t) =
∑
∀p

dp(t)

=
∑
∀p

(sp(t)− yp(t)) . (14)

Note that qp(t) is affected by the action a, which specifies

the direction that receives the green light as follows

qp(t) =

{
μ , a = p

0 , a �= p.
(15)

Equation (15) represents an action which allows the vehicles

to pass through the intersection in direction p at time step t.
The state dynamics of CTM can then be updated in according

to the chosen action in each time step as

sp(t+ 1) = sp(t) + xp(t)− yp(t), (16)

where xp(t) represents the newly incoming demands in

direction p at time step t.
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Table I
PSUEDO-CODE OF Q-LEARNING ALGORITHM [5]

1. Initialise Q(s, a) arbitrarily (here, set to zeros).
2. Repeat (for each episode):
3. Initialise s to the state of empty roads
4. Repeat (for each time step of episode):
5. Choose a from A(s) using policy derived from Q

(e.g., we adopt the ε-greedy)
6. Take action a, observe Υ, and the next CTM state s′

as the result of the taken action
7. Update the action value function:

Q(s, a) ← Q(s, a) + α [Υ + γmina′Q(s′, a′)−Q(s, a)]
8. Update to the next CTM state: s ← s′;
9. until the end of simulation period.

IV. Q-LEARNING ALGORITHM

Table I depicts the standard Q-learning algorithm which is

applied to solve the problem formulated as an MDP.

In Table I, Q(s, a) represents the action value function rep-

resenting the average future reward expected to be incurred

given that the action a has been taken at the state s [5].

According to the epsilon greedy policy, on the best apparent

action will be selected with high probability of 1 − ε, and

the other actions will be tried out randomly with a small

probability of ε. Therefore, the best apparent action or greedy
action is exploited most of the time. And with probability

ε, the concept of exploration is to ensure that all of states

are adequately visited. The parameter α is a small positive

fraction, namely, the step-size parameter which influences

the learning rate. Step-size parameter determines how much

the new state action value tends towards the newly obtained

reward and value of the next state-action pair. The parameter

γ represents the discount rate which is used to determine the

present value of future reward.

V. RESULTS AND DISCUSSIONS

In this section, the research finding from our results will

be reported. The reported results are obtained from the

MATLAB� and the AIMSUN. Firstly, the optimal split ob-

tained from the CTM-based Q-learning, the queueing model

M/M/1 and the queueing model D/D/1 have been calculated

from MATLAB�. Secondly, the obtained optimal split is set

to the allocation of the green signal in 1 cycle time to each

direction where 1 cycle time is 120 seconds. The reported

results from the AIMSUN are the network throughput, the

link delay, the average vehicle delay per completed trip and

the mean queue length, respectively.

For the system environments, suppose the length of each

road from the entry of the road to the stop line is 800 metres.

The maximum flow rate has been measured from AIMSUN

under the condition that the vehicles are unaffected by the

red signal. From the measurement, the maximum flow rate

is 2.61 pcu/s (peak car unit per second). The results from

AIMSUN have been reported from 1 hour of the simulation

time. For the Q-learning environment, an action decision has

been chosen every 60 seconds. By using the CTM-based

Q-learning approach, the algorithm will repeat the learning

process as illustrated in Table I for 50 episodes to reach the

desired accuracy.

Table II illustrates the nine different sets of traffic arrival

where each arrival process is Poisson. The results have been

considered into two operation regions, which are the under-

saturated and jamming regions, respectively. Note that all

nine cases are identical, except for the approaching demand

to an intersection and the allocated green time. In fact,

the undersaturated traffic conditions occur when the vehicle

arrival rate is less than the maximum flow rate. However, if

the vehicle arrival rate is greater than the maximum flow rate,

then the mathematical solution cannot be solved analytically.

The vehicle arrival rates have been varied to produce the

offered load ratio varying from 0.2 to 1.2. Although the

stability condition is not held, the jamming conditions have

been investigated for reporting the applicable range.

Load type λ1 pcu/s λ2 pcu/s Offered load ratio
1 0.435 0.087 0.2 μ
2 0.87 0.174 0.4 μ
3 1.305 0.261 0.6 μ
4 1.74 0.348 0.8 μ
5 2.175 0.435 1.0 μ
6 2.61 0.522 1.2 μ
7 3.045 0.609 1.4 μ
8 3.48 0.696 1.6 μ
9 3.915 0.783 1.8 μ

Table II
TYPES OF LOAD

As illustrated in Fig. 3, the results show the allocated green

time to each direction for each scenario. In D/D/1 queueing

model, the optimal split from (9) is unaffected by the service

rate. Therefore, the optimal split from the D/D/1 depends on

the proportion of vehicle arrival rates only.
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Figure 3. Allocated green time to each direction

Fig. 4 reveals that the improvement of the network

throughput in the jamming conditions can be greatly im-

proved by up to 1.7-8.3% from the M/M/1 and can be
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Figure 4. Network throughput comparison among Q-learning, Queueing
M/M/1 and Queueing D/D/1
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Figure 5. Link delay obtained from AIMSUN

significantly improved up to 3.2-14.8% from the D/D/1. Note

that in the undersaturated conditions, the network throughput

by both the M/M/1 and the D/D/1 also outperform the

proposed CTM-based Q-learning algorithm. Fig. 5 explains

why Q-learning performs well and badly in different traffic

conditions. The link delay is generally known as the dif-

ference between the time spent to travel along a particular

road and the free flow travel time along the road. Fig. 5

illustrates the individual link delay for each direction and
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Figure 6. Mean queue length obtained from AIMSUN
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Figure 7. Average vehicle delay per completed trip comparison among
Q-learning, Queueing M/M/1 and Queueing D/D/1

the average link delay from two directions. In each cycle

time, the Q-learning has been allocated the green time more

often to the direction that has higher vehicle arrival rates.

However, in both queueing models, the allocated green time

in each direction is directly proportional to the incoming

traffic demand of its direction. Therefore, by using Q-learning

in the undersaturated conditions, the obtained optimal split

leads the system to the wasted green scenario. However,

the link delay of Q-learning performs well in the jamming

conditions because the Q-learning can reduce the link delay

from the higher vehicle arrival rates that dominate the overall

link delay of the systems. As illustrated in Fig 6, the results

for the mean queue length can be used explained with the

same discussions as the link delay.

These three approaches share the common goal of min-

imising the total network delay. Generally, the total network

delay has been calculated from the difference of the time

spent to complete a network trip and the free flow travel

time along the network path. For each vehicle, the average

vehicle delay per completed trip ÃD can be calculated by

ÃD =

∑
∀p
(ALDp × CPTp)∑

p
CPTp

, (17)

where ALDp is the average link delay in direction p and

CPTp is the number of completed trips in direction p. In

Fig 7, for the jamming condition, the reduction of the average

vehicle delay per completed trip can be greatly reduced by

up to 7.0-63.4% from the M/M/1 and can be significantly

reduced up to 18.9-80.7% from the D/D/1.

VI. CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

This paper evaluates an optimality analysis based on

queueing models and compares with Q-learning to control

the traffic signal at an isolated two-phase intersection. The

Q-learning approach can improve the intersection throughput

by up to 1.7-8.3% and by up to 3.2-14.8% in jamming
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condition in comparison with the respective M/M/1 and

D/D/1 approaches. Moreover, the average vehicle delay per

completed trip can also reduce by up to 7.0-63.4% and by

up to 18.9-80.7% in comparison with the respective M/M/1

and D/D/1 approaches.

In this paper, the basic assumptions are based on the

M/M/1 model which is rather restricted, thus we are currently

investigating other distributions. Furthermore, we are also

investigating the scenario when the actual state (i.e. the

number of vehicles) is concealed from the agent. In such

case, the agent does not have a complete knowledge of

the state of the system and must select a traffic signal

under such a circumstance. In addition, the existing works

related to Q-learning have not considered the scalability

issues due to the limitation in terms state space explosion.

However, we attempt to alleviate the explosion by employing

state space quantisation and control traffic signal in such

network scenarios. Methods to find the best possible traffic

signal for the road traffic problems in a jamming condition

become crucial. Therefore, the extension of the CTM-based

Q-learning algorithm and its ability to deal with the jamming

conditions will be reported in the forthcoming paper.
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