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Abstract 

A series of AK-constant fatigue crack growth tests in Paris regime were carried out to 

investigate the effect of second phase particle on fatigue crack growth behavior of 

microstructure controlled steels with uniformly distributed hard particles. Three kinds of 

materials were used in this study, ferrite matrix with pearlite particles (FP), ferrite matrix with 

bainite particles (FB) and ferrite matrix with martensite particles (FM). The fatigue crack 

growth tests by using a single edge cracked tension (SECT) type specimen was performed 

inside a scanning electron microscope chamber equipped with a servo-hydraulic fatigue 

machine. The results showed that the fatigue crack growth rates for all materials did not 

coincide with each other, even when the crack growth curves were arranged by the effective 

stress intensity factor range. From the in-situ observations, crack tip stress shielding 

phenomena, such as interlocking, branching, etc. were found on the crack wake, which 

enhanced fatigue crack growth resistance. In ferrite-pearlite (FP) steel, small size and small 

spacing of hard particles seemed to induce small but frequent crack deflections, which 

resulted in crack closure phenomena. On the other hand, large size of pearlite particle seemed 

to induce stress shielding phenomena and then contribute to high crack growth resistance, 

which was the main reason for higher fatigue crack growth resistance of the large size and 

spacing of pearlite particle compared to the small size of pearlite particle. It was similar result 

for the ferrite-bainite (FB) steel where the large size and large spacing of bainite particles 

enhanced the fatigue crack growth resistance. The higher volume fraction of hard particle also 

influenced the fatigue crack growth behavior. In this investigation, the result indicated the 

higher volume fiaction of hard particle in the ferrite-bainite (FBI) steel has significantly 

increased the fatigue crack growth resistance compared to the ferrite-bainite (FB2) with lower 

volume fraction and ferrite-pearlite (FP) steels. The effect of hardness of second phase 



particle was also investigated. The results revealed that the ferrite-martensite (FM) steel 

showed significantly higher fatigue crack growth resistance compared to the ferrite-pearlite 

(FP) and ferrite-bainite (FB) steels. From the in-situ observations, the crack tip stress 

shielding phenomena, such as interlocking, branching, etc were found on the crack wake, 

which enhanced fatigue crack growth resistance. In the FM steel, the deformation of plastic 

constrained at the crack tip in ferrite region seemed to induce stress shielding phenomena and 

then contribute to high crack growth resistance, which was the main reason for lower fatigue 

crack growth rate of the FM steel with harden martensite particle compared to the FP and FB 

steels with soften pearlite and bainite particles. 

Keywords : Fatigue crack growth behavior, AK-constant fatigue crack growth tests, crack tip 
stress shielding, interlocking, crack closure, ferrite-pearlite, ferrite-bainite, ferrite-martensite, 
hardparticle, plastic zone size, plastic constrained deformation. 























































specimens indicated lower fatigue crack growth rate, higher threshold value and crack closure. 

a s  is due to high Mode I1 displacement for SEN specimens, which increase the surface 

roughness, enhance fretting and crack to close at higher applied stress intensity. 

Duta et al. [91] observed the long fatigue crack growth behavior of Fe-2Si-O.1C dual 

phase steel with femtic-martensitic microstructures. They reported that the duplex 

microstructure pronounced fatigue crack growth at load ratio, R (0.05) over wide range from 

to mm per cycle, without changing its strength level. They also reported that 

microstructure with coarse martensite in continuous femte (similar to FEM) and 

microstructure with fine globular martensite along ferrite boundaries, possesses the highest 

threshold values, 17.1 MPa & and 19.5 MPa &I , respectively. This is attributed to a 

meandering crack path, generated by the coarser macrostructure, which promotes roughness 

induced crack closure and crack deflection effects. 

Ramage et al. [94] investigated the effect of phase continuity on fatigue crack growth 

of a Fe-C-Mn steel with two different microstructures: (a) continuous ferrite (similar to FEM) 

and (b) continuous martensite (similar to MEF) and reported that the continuous martensite 

steels exhibited an extremely high fatigue threshold value (20MPa & ), compared to 

continuous femte microstructure (threshold value was 16 M P a h ) .  This is due to the higher 

crack closure in continuous martensite steels, which comes from the high constraint plastic 

deformation in the femte phase. 

Shang et al. [69] investigated the effect of volume fraction of martensite of dud phase 

steel on fatigue crack growth behavior of low carbon steel AISI 1008. The result showed that 

the volume fraction of martensite was 53% increase the fatigue crack growth resistance. This 

is due to higher crack closure which was considered to result in a significant contribution to 

crack tip shielding such as crack deflection and roughness-induced crack closure. 
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In contrast, Wasynczuk et al.[89] investigated the effects of particle size of ferrite and 

rnartensite in a duplex ferrite-martensite microstructured ASIS 1018 steels on fatigue crack 

growth and reported that the threshold region is not influenced by the volume fraction of 

rnartensite. 

More recently, Korda et al. [95] was investigated the effect of pearlite morphology on 

FCG behavior in ferrite-pearlite steel. The results showed that the Steel D (uniformly 

distributed peralite particle in a ferrite matrix) was lower FCG rate compared to the Steel N (a 

coarse network pearlite phase with encapsulated ferrite phase). They explained that the higher 

FCG resistance of Steel D due to the higher crack closure and crack tip stress shielding. 

1.9 Significance and objectives of study 

In recent years, with the increasing number of aging ships, damage of ship hulls 

caused by corrosion and fatigue has become a problem. Fatigue damage in ship hull smctures 

are resulted from various type of cyclic loadings including the action of waves, vibmtion 

caused by the engine and propellers, and changes in internal pressure due to load. In particular, 

because the cyclic loadings caused by waves reach an average of roughly 10' cycles in 20 

years of ship service, these are considered a main factor with a possibility of causing serious 

accidents in hull structural components [12]. Nippon Kaiji Kyokai [l 1 I] lists the intersection 

between vertical and horizontal members (side longl., trans ring) and the ends of side struts as 

the category of fatigue memberdparts (Fig. 1.12). In 1990s, a lot of fatigue damage occurred 

at these parts in single-hull very large crude carrier (VLCC) [112]. From a structural 

viewpoint, it is considerable that these types of damage may also occur in double-hulled 

VLCC. Moreover, the area around slot openings in double-bottom floor plates is a part where 
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