
V.K. Sahu et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4

*Corresponding author: nwahid@students.latrobe.edu.au
2011 UTHM Publisher. All right reserved.
penerbit.uthm.edu.my/ojs/index.php/ijie

1

Enabling Business Rule oriented Constraint in XML Update
Validation

Norfaradilla Wahid

Department of Computer Science and Engineering
La Trobe University, Australia

Received 21 June 2012; accepted , available online

1. Introduction
Business rules represent the primary means by which

an organisation can direct its business, defining the
operative way to reach its objectives and perform its
actions; the rules may also include policies, standards and
facts. Two common ways to enforce business rules are
through application logic and data constraint e.g.
embedded integrity constraints. The constraints act as a
system-rule and always have to do with the integrity of
data, which ensure that data of the system are constantly
in valid condition.

1.1 Motivation

We are often unaware that there is a softer side of
business rules. These types of rules are hard to be
expressed in the form of data constraint, as they require
human decisions, senses, conducts, etc. In data-recording
environment, these rules are not as critical as the integrity
constraint and are unsuitable to be handled as one;
however, they can somehow influence the accurateness of
data of the system in their own way. The motivation of
our research is to handle the softer type of business rules,
w.r.t. XML updates validation.

In XML research, a lot of efforts have been expended
in expressing and maintaining integrity constraints.
According to [12] there are two major types of
constraints, i.e. structural constraint and semantic
constraint. We believe that these two constraints are
rather static than dynamic. A dynamic constraint is meant
to express the condition that involves facts/requirements
between two and more states during their transition

within a given state space. As an example, “a salary must
never decrease” can be read as the new salary (state)
must be always higher than the previous salary (state). In
a managerial context, dynamic constraint can be seen as
representations of “real world” constraints and business
rules [2]. We would like to suggest that, the dynamic
constraint is a softer type of business rule; hence, it is
unsuitable to be expressed in data layer of information
system architecture. Therefore, dynamic constraint can be
added on top of the database system.

Generally, dynamic constraint is far more important in
Temporal Database research (for example [9], [11] and
[18]) than non-temporal database. This is because
temporal database needs a set of constraints to specify the
requirements between sequences of state changes within
the timeline. However, we have to agree that dynamic
constraints have their own importance for non-temporal
type of database, especially during updates validation.
We suggest that this is an important issue to raise and to
investigate further. The XML document in Figure 1 can
be considered as an example to show the dynamic
constraint.

Based on the example, “state” can exist randomly
from the element and attribute collection. For example,
there is a query delete node
$target//AccountDetail/ Type, or a query
insert node data as first into
$target//Account[1]. In this example, the states
that require changes are Type and Account[1].
However, it is fairly obvious that changing target
Account[1] and Type in this case does not require us
to check or to compare the current condition of target

Abstract: In the database update validation field, we are often unaware that there is a softer side of business rules,
where it is hard to be expressed in the form of data constraint, as they require human decisions, etc. Even though it
is not as critical as data constraint; but it may influence the accurateness of system data in their own way. The
motivation of our research is to handle this type of rule, particularly for XML update validation. We have come out
with the concept of dynamic constraint validation special for XML data, which is based from soft type business
rules. We also have proposed a few different types of dynamic constraints and an algorithm to extract only
necessary information for dynamic type of rules w.r.t. the validation operation. In this paper, we mainly focus only
on the single node updating for single step transition, which will affect the dynamic constraint. The dynamic
constraint is expressed using Schematron and should be flexible enough to sit on top of any existing XML
database. The analysis shows that the algorithm is in polynomial efficiency.

Keywords: business rule, static constraint, dynamic constraint, XML update validation, Schematron.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/12007755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

V.K. Sahu et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4

 2

state with the new condition that is going to replace them,
i.e. checking of a special property needs to be maintained.
The query is intended to replace current value of
MaritalStatus= married with a new value

Fig. 1 Account.xml

Now, consider a query, replace value of

node $target//AccountHolder/
[$ssn=1212]/MaritalStatus with single.
MaritalStatus=single. If we refer to system rules,
there is nothing wrong with the changes.However, by
human judgment it is impossible for someone who is
married to go back to single status; logically the marital
status can only be changed to divorced or widowed.
Therefore, the update is inappropriate. From this
example, MaritalStatus is the state, and we need to
check whether the update violates the properties in order
to make changes from the current to new state. This is the
‘fact’ to be maintained between the two states. It is not
compulsory for one to maintain this kind of properties,
but without knowing the consequence, this inaccuracy
might lead to the problem of deducing false facts in the
future.

It is shown that, dynamic constraint checking is
necessary during XML update, even in non-temporal
environment. To ensure dynamic constraint violation can
be detected before an update is performed, we need to
specify clearly that constraint is part of the validation
process during updates.

Specifying dynamic constraints explicitly in XML
database specification gives the advantage of supporting
data relevance. In XML, XML Schema, DTD and Relax
NG, there are a few common schema languages, which
can be used to enforce integrity constraints [12].
However, these languages suffer from the drawback of
expressing any constraint that is not meant for structural
information. In order to support dynamic constraints, a
language that can accommodate business rules is
required.

1.2 Motivation

In this paper, we start by introducing the concept of
dynamic constraint for XML data. The constraint that will
be discussed is transition constraint, particularly in single
transition as explained in [6] and [8]. While some of the
previous works deal with dynamic constraints as non-

database constraints in information systems (for example
[1], [16], [22] and [10]), our work focuses on ways to
represent the constraints in XML and the proposal of
them to be part of the validation process during XML
database updates. To prove the workability of the
concept, we employ the capability of Schematron[13] to
express the dynamic constraints; Schematron can function
on top of any XML schema. As the main focus is on
single transition constraints, we assume that we do not
require any specific physical medium to store sequence
information of states as is used in the temporal system.
Nevertheless, we propose a special XML file for the
dynamic constraint validation.

The rest of the paper is structured as the following.
Section 2 discusses background of the study, the
definition of single transition constraint and some related
works. Section 3 discusses a few possible cases of single
transition checking for single node updating w.r.t.
replace node or replace value of node
operators and delete-insert pairing; we present the
proposed algorithm for dynamic constraint checking.
Finally, in the last section, we present the implementation
and analysis of the algorithm.

2. Dynamic Constraint in Literature
2.1 Background and related work

In the present study, a comprehensive combustion In
the field of information systems and databases, the term
integrity normally refers to the correctness or validity of
stored data, as defined explicitly by integrity rules or
integrity constraints [19]. Integrity is a very important
property of information systems. Lack of integrity usually
has negative consequences, which in some cases may
lead to serious problems [20]. As has been quoted by [1],
the terms integrity and integrity constraints are sometimes
treated differently.

In [3], Motro defines the concept of integrity as two
main components: valid and complete. We can say that a
database has integrity if all its data are correct (valid), and
if it contains all relevant data (it is complete). Based on
the definition of Fratenali and Panaboschi in [4], integrity
constraints can be divided into two classes: inherent and
explicit. The former express restrictions due to the
semantics of the data model, i.e. they are implicit in the
database schema. The latter are arbitrary properties to be
satisfied by the database that cannot be captured by
schema restrictions. Constraints can also be distinguished
as static and dynamic constraints [5].

From our observations in XML database research, the
works only hover around the left branches of the
integrity/integrity constraint definitions discussed above.
This happens especially during database update
validation. The validation process is usually
accomplished by checking the inherent and static rules (of
hard constraint) where it is meant for checking the
correctness (validity) of database. Nevertheless, ensuring
the relevance or completeness of data is also a goal to be
achieved. The lack of it may cause the system to deduce
facts that are not valid. As such, we need to ensure that

<?xml version=”1.0” standalone=”yes”?>
<BankAccounts>
 <Account><AccountDetail no = ‘1231’>
 <Type>Saving</Type>
 <OpenDate>11/04/1974</OpenDate>
 <Balance>55555.55</Balance></AccountDetail>
 <AccountDetail no = ‘1331’>
 <Type>Credit</Type>
 <OpenDate>11/04/1999</OpenDate>
 <Balance>130.00</Balance>
 <Limit>5000</Limit></AccountDetail>
 <AccountHolder ssn = ‘1212’>
 <LastName>Doe</LastName>
 <FirstName>John</FirstName>
 <BasicSalary>1500</BasicSalary>
 <MaritalStatus>married</MaritalStatus>
 </AccountHolder></Account>
</BankAccounts>

V.K. Sahu et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4

 3

both couplings are achieved. Based on our study, we
notice that explicit constraints and dynamic constraints
come from softer type of business rules as explained in
the introduction. Based on this motivation, we choose to
propose a way to handle this type of business rules and
propose to incorporate the rules to be part of XML
validation process.

In [1], the author defines dynamic constraints as a
way to express conditions that involve facts of two or
more states of the database. On the other hand, a static
constraint expresses state-independent properties that
must hold in any state of the database. It depends only on
the current state, and is independent of any previous state
of the database [5]. Below are examples of static
constraints and dynamic constraints:

Example 1.
(static) an employee’s salary must be less than that of his
manager
(dynamic) an employee’s salary must never decrease

Example 2.
(static) a student must register at least a subject
(dynamic) a student that has dropped a subject and has
not been immediately (in subsequence) reinstated, would
not be allowed to be readmitted

Example 3.
(static) a person is allowed to get married
(dynamic) a person that is single, is only allowed to
change his/her status to married

Example 4.
(static) every employee will get a chance to be promoted
(change job rank)
(dynamic) an employee can possibly be promoted by
using the following sequence:
 trainee junior senior assistant manager

manager

The most popular types of dynamic constraints that
have been studied are general constraints and transition
constraints. In the literature, there is no clear
differentiation between 'general' and 'transition'
constraints. Halpin in [7] states that dynamic constraint is
actually the 'transition constraint' that restricts how the
business may change to the new state. On the other hand,
Fraternali and Paraboschi [4] state that transition
constraint is a special type of dynamic integrity
constraint.

In this paper, we would like to treat the former and the
latter as one type of constraint; we call it single transition
constraint and will deal with the problem by adding a
business rule language on top of XML Schema. We
follow the definition of single transition constraint as in
[6].

Definition 1 Single transition constraint for XML is a
constraint to restrict the change between an old state (the
input of the transaction) and a new state (resulting from
that transaction) of an XML node w.r.t content of the

node. It specifies the condition stating the properties of
the new state, including relation between the new state
and the old state.

Let tree T =(N, E, r, Σ, λ) be the XML tree in
document; D. N is a set of node. E ⊆ N x N is a set of
edges. r is the root node. Σ is the set of element names
appearing in D. There is a subset of Σwhich associate
with attributes att . λ is labelling function which
associates an element name with each node other than the
root, where λ: N - {r} → Σ .

There is a set of target state Φ = ΣΦ ∪attΦ where
ΣΦ and attΦare subset of Σ and att . Let Xi be a node
in T. There is
a transition queried by XQuery, xq .
Xi ca
⎯ →⎯ Xi '

Where ca is a constraint for the transition, and Xi has a

content xa . Note that ca is constructed from an element

of Φ . If Φ ≠∅ , xa ≠ null and ca ≠ null , and for any
XPath, p = r / /Xi , where i ≥ 1, and p leads to xa , then
Xi ' can only be true if c(Xi) yields true.

As a matter of fact, we would like to include the
problem of life-cycle constraint as in [2] to be in this
category as well. This is because life-cycle restriction (as
in Example 4) is also evaluated one state at a time.

Single transition constraint is very minimal and does
not require any specific medium to hold the historical
information, for instance by using historic schema in [21],
auxiliary relation in [17], etc. We only require
information held by existing state in order to accept the
new state.

2.2 XQuery Update

XML Updates refer to the acts of modifying XML
data through the operators by an XML manipulation
language [12]. To support XML Updates, The XQuery
Update Facility [15] has been designed to extend XQuery
in order to facilitate updates to XML nodes. For instance,
the XQuery Update Facility enables the following
functions: insert new elements, delete elements, rename
elements and replace the content of an element. The
extension is due to the nature of XQuery 1.0 that is free
from side effects, i.e. an XQuery expression cannot alter
an XML node. In XQuery Updates, all modifications are
performed as soon as the expression is entirely evaluated,
i.e. there are no side effects until the end; the side effects
of the former instructions do not appear with the
execution of the current instructions. The following
contains two examples of updates, deletion and insertion
of AccountDetail from Account.xml:

let $source := doc('Account.xml')
return

 (delete node $source//Account[last()]/
AccountDetail[1],

insert node <AccountDetail no=1234>
</AccountDetail> into $source//
Account[last()]/

V.K. Sahu et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4

 4

)

On the other hand, XML Update validation can be
explained as a process of checking the correctness of each
XML update towards each constraint of the database. It is
performed to ensure that database states are always free
from any violation, regardless of any updates. In the last
decade, we have witnessed various research works in
update validation of XML documents. Focus of the
studies is on areas such as revalidation of XML
documents within time-based, validation based on
updating attempt, changes detection in XML documents,
etc. These works cover mainly the structural part of the
validation, but interests have also been noted in semantic
validation (Refer to [12] for literature). Most of these
constraints can be expressed by using XML schemas.
However, these schema languages are not capable of
expressing constraints related to business rules.

The Schematron assertion language provides a
mechanism for making assertions about the validity of an
XML document by using XPath expressions. There are
six commonly used elements in a Schematron document:
schema, ns, pattern, rule, assert, and report.
ISO Schematron is a validation and reporting language,
which is based on the presence or absence of XPath in
one or more XML documents. It has an emphasis on
human-understandability and is simple to use and
implement. Schematron is an ISO standard frequently
used to complement ISO RELAX NG grammars. In short,
Schematron is capable of expressing more business-rule
constraints and it is usually used on top of XML schema.
Figure 2 shows an example of business rule expressed in
Schematron language:

<?xml version="1.0" encoding="UTF-8"?>
<sch:schema
xmlns:sch="http://www.ascc.net/xml/schematron">
 <sch:pattern name="Bank Account Rules">
 <sch:rule context="AccountHolder">
 <sch:assert test="BasicSalary>500
">Basic salary must bigger than
500</sch:assert>
 </sch:rule>
 </sch:pattern>
</sch:schema>

Fig. 2. Example of Schematron language

3. Propose Method for Dynamic Constraint

Checking
3.1 Single node XML Update affecting dynamic

constraint

The domain has been divided in to several As
discussed in the previous section, our goal is to propose a
method for dynamic constraint validation during XML
Updates. For any dynamic constraints, particularly the
transition constraint, XML nodes involved are either
single or multiple nodes. In the former situation, it
happens if the substitution behaviour queried by XQuery
is on a single independent node. In the latter situation, we
need to consider the association of the updating node with
another node, for instance, dynamic dependency,

aggregation, etc. In this paper, we restrict the work on
single transition for single node updating.

Since dynamic constraint is not a hard constraint, we
propose that, the validation result is treated more as a
trigger rather than outright error warning as in structural
validation. Because dynamic constraint is a soft
constraint, it is good to subject it to final human judgment
or confirmation before an update can be effected.

As recommended in [15], XQuery Update extension
offers a few update operations: insert, delete,
replace and rename. Since dynamic constraint deals
with properties of ‘current’ and ‘new’ states, we only
consider the replace and delete-insert pairing
for our validation. This is because these operators have
the behaviour of substituting the properties that are
currently held by a state.

Replace operations can be achieved by using
replace node or replace value of node
operators. replace value of node is used to
update value or content of a node. In this instance, the
identity of the target node is preserved. Only its value or
contents (for an element or a document) is replaced. On
the other hand, to replace a node, we use the replace
node operator..

Case by case scenario for single node updating.

We describe here a few possible cases that can exist
deliberately during XML updates. There are two main
cases that could appear: the leaf node and non-leaf node.
On the leaf node problem, the checking is further
differentiated based on the targeted node, i.e. element and
attribute.

Fig.3. Example for case-based scenario

• Case 1: Refer to example C1 in Figure 3. Node c is
a leaf element node. Say c contains a value 2.
Consider the following query update:

replace value of node a/b/c
with "3"

In this case, the new state is “3” and the current
state is “2”. The idea is to make sure that replacing 2
with 3 will not cause violation against single
transition constraint.

replace node a/b/c with <x> 3
</x>
Checking a replace node operator is also meant
for checking the value contained in the replacing
node, just like in replace value of node
case; hence the operation is a bit tricky. This is
because if the target is an element or a document
node, all its former children will be removed and
replaced. The replacing items are treated exactly as

V.K. Sahu et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4

 5

the contents of a text constructor; all node items are
replaced by their string-value. Even though the
instruction is to replace a node and not a value, but
it is possible for the replacing item to hold a value
within it, which has a matching dynamic constraint;
hence it could cause hidden violation.

• Case 2: Refer to example C2 in Figure 3 above.
Node t is an attribute node and holds a value; hence
it can be treated as a leaf node. Consider the
following query update. Say @t content has a value
“10”

replace value of node
a/b[@t]/@t with "12"

and for replace node example,
replace node $path/b[@t]/@t
with @u=12
Note that, for attribute type of node replacing,

we only allow the replacing item to be of attribute
type too. For this reason, validation with schema is
required before dynamic constraint validation can be
conducted. It will first decide whether the replacing
item is from a valid name of namespace. The
transition constraint checking will be treated exactly
the same as for element node.

• Case 3: Refer to example C3 in Figure 3 above.
Updating node e is also a bit tricky. Since e is a
non-leaf, only replace node operation is
allowed. Replacing a non-leaf node will replace all
children nodes and will be handled as a string.
However, it is also possible for the operation to
implicitly involve value substitution.
Say c content has a value of 2

replace node a/e with <g
@t=1><f>New sub</f></g>

This will yield a new sub-tree as requested.
<a><g @t=1><f>New sub</f<g> in the
above example.

Notice that the query implicitly replaces a value held
by f, which possibly is violating a transition
constraint.

• Case 4: Replacement can also be seen as a
combination of deletion and insertion. This method
has been applied long before replace operator was
introduced in XQuery as a new facility. The
circumstances can happen in all cases 1 to 3 above.
Let us consider the node in C1. For example, say we
have the following query:

delete nodes a/b/c,
insert nodes <c>value</c> as
last into a/b

These queries will be treated just like replace
node or replace value as in previous cases.

3.2 Propose Algorithm for Single Transition

Checking
The velocity, temperature and species mass fractions

Figure 4 shows a generic view of how validation is
handled. We begin the whole validation with a pre-
processing module to generate a special XML file, which
is meant to store only required data for validation. The
process is completed by parsing the XQuery statements

and extracting only necessary value, which in this case is
any value w.r.t the operators in the previous section.

Generating the XML file needs the support of good
XQuery Parser (see for example [14]). As query is
executed, XQuery parser can be employed to produce the
XML file. We propose the file to be simple and minimal;
this file should be generic enough to work with different
types of business-rule languages. In the following
diagram, we called the file as dyn_data.xml.

Fig. 4. XML Update validation flow

We proposed the file as in W3C XML Schema
definition contained in Figure 5. target_name is the
target element or attribute name, new_state is the new
value requested by the query and old_state is the
value extracted from original XML document.

<?xml version="1.0" encoding="utf-16"?>
<xsd:schema version="1.0"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="query">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="target_name">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="new_state"
minOccurs="0" />
 <xsd:element name="old_state"
minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="path"
type="xsd:string" />
 <xsd:attribute name="file_name"
type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Fig. 5. Lightweight XML for Single Transition Constraint

For our experiment, we use Schematron[13] as the
business-rule language to express dynamic constraints.
Figure 6 shows an example of Schematron document with
transition constraints to be matched with XML document
in Figure 1.

<?xml version="1.0" encoding="UTF-8"?>
<sch:schema
xmlns:sch="http://www.ascc.net/xml/schematron
">
 <sch:pattern name="Dynamic Constraint

Test">
 <sch:rule context="target">

 <sch:assert test="@name = 'age'
and newstate > oldstate">Age can
never
decrease”</sch:assert></sch:rule>

<sch:assert test= “name =
‘MaritalStatus’ AND oldstate

V.K. Sahu et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4

 6

=’single’ AND newstate=’married’>
Not possible </sch:assert>

<sch:assert test= “name =
‘MaritalStatus’ AND oldstate=
’married’ AND
newstate=(‘divorce’|’widow’)> Not
possible </sch:assert>

<sch:assert test= “name =
‘MaritalStatus’ AND
oldstate=’divorce’ AND
newstate=’married’> Not possible
</sch:assert>

<sch:assert test= “name =
‘BasicSalary’ AND newstate>oldstate
AND newstate>1000> Minimum salary
not achieved </sch:assert>

 </sch:pattern>
</sch:schema>

Fig. 6. Example of Schematron rules

Meanwhile, the following is the proposed algorithm
for single transition constraint validation. Let Q= update
query, D= XML document and Scht= Schematron rule.
While t=target name, i.e. element/attribute name, p=
path expression of the target name, f= file_name,
ns=new_state(new value to update), os= old_state(old
value to replace), and tn= target name(for checking). For
readability, we separate the steps to generate
dyn_data.xml into sub-algorithm in Figure 8. But, for
analysis purpose in the next subsection, we will treat the
algorithm in Figure 7 and 8 as a one algorithm.

ALGORITHM: Dynamic Constraint Validation
1. START
2. Get Q, D[] and Scht.
3. Let Q= q

1
, q

2
,…,q

m
 where q

i
 to q

m
 are the sub

queries of Q
4. Set i = 0
5. Generate dyn_data.xml (refer to Figure 8)
6. VALIDATE dyn_data.xml with Scht
7. IF Result = true
8. Proceed update
9. ELSE
10. Trigger warning
11. IF user choose true
12. Proceed update
13. ELSE
14. Cancel update
15. END-IF
16. END-IF
17. END

Fig. 7. Proposed algorithm for single transition constraint
checking

Extracting data for replace operations is quite
straightforward. In the case of delete-insert
pairing, we test if there is any delete operation in the
query. If there is any, we then test if any insert
operation exists in the same query. We store these two
pieces of information into Del[] and Ins[] which can
be compared (if only both are not null). If there is any
equality between both data, then it will also be treated as
dynamic data and related information will be extracted
from the original XML document. This strategy is used,
as the nature of XQuery update is to evaluate all the sub-
queries, and then perform all the updates in batches.
Therefore, the strategy will provide fair and general
evaluation on all sub-queries because they might not
appear in the straightforward sequences.

SUB-ALGORITHM: Generating dyn_data.xml

1. WHILE i<= m DO // XQuery parser usage

2. IF qi contains ‘replace value of node’

3. Extract t, f, p, ns
4. Set s1= t, f, p, ns
5. Write s1 into file x

6. ELSE IF qi contains ‘replace node’

7. Extract p and t
8. Get tn based on p //Get the real

containing node
9. IF (tn == t)
10. Extract t, f, p, ns
11. Set s2= t, f, p, ns
12. Write s2 into file x
13. END-IF

14. ELSE IF qi contains ‘delete node’

15. IF Q contains ‘insert node’
16. Add into Del[] t, p
17. END-IF

18. ELSE IF qi contains ‘insert node’

19. IF Q contains ‘delete node’
20. Extract t, f, p, ns
21. Write s3_temp = t, f, p, ns into file y
22. Add into Ins[] t,p
23. END-IF
24. END-IF
25. i++
26. END-WHILE //end XQuery parser usage
27. IF (Del[]!null && Ins[]!null)
28. j= 0 // Delete- Insert pairing started
29. WHILE j < SIZE OF Del[], DO
30. Get p from e

j
 of Del[]

31. Add to DelList p
32. j++
33. END-WHILE
34. k =0
35. WHILE k < SIZE OF Ins[], DO
36. Get p from e

k
 of Ins[]

37. Add to InsList p
38. k++
39. END-WHILE
40. FOR i 0 to i< DelList size DO
41. FOR j 0 to j< InsList size DO
42. IF element e

i
equal to e

j

43. k 0
44. WHILE !EOF of y, DO
45. IF k==j
46. Read line k of file y = s3
47. Write s3 into file x
48. END-IF
49. END-WHILE
50. END-IF
51. j++
52. END-FOR
53. i++
54. END-FOR
55. END-IF //end pairing
56. WHILE (!EOF of x)
57. Read t,f,p,ns
58. FOR i 0 to SIZE OF D[], DO
59. Get os based on p
60. Transform into related element and

attribute,
XML=TransformToXML(t, f, p, ns, os)

61. i++
62. END-FOR
63. END-WHILE
64. Write XML into dyn_data.xml

Fig. 8. Proposed algorithm to generate dyn_data.xml

With regard to the cases discussed in the previous
section, we can see that if a query forms a sequence of
nodes to be updated, the algorithm will always extract the
data w.r.t the internal content of nodes.

V.K. Sahu et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4

 7

Assuming that there is an XQuery statement to
replace values of MaritalStatus and
BasicSalary as in Section I, the dyn_data.xml is
as follows.

<?xml version="1.0" encoding="UTF-8"
standalone="no"?>
<queries>
 <target file_name="Account.xml"
name="MaritalStatus"
path="$target//AccountHolder/[$ssn=1212]/Mari
talStatus">
 <oldvalue>married</oldvalue>
 <newvalue>single</newvalue>
 </target>
 <target file_name="Account.xml"
name="MaritalStatus"
path="$target//AccountHolder/[$ssn=1212]/Basi
cSalary">
 <oldvalue>1500</oldvalue>
 <newvalue>900</newvalue>
 </target>
</queries>

Fig. 9. Example of generated dyn_data.xml

The dyn_data.xml in Figure 9 will be checked
against Schematron file as in Figure 6 in order to identify
any violation of single transition constraint. In the
proposed algorithm, we show the transformation of
XQuery Update statements into a proper input is achieved
by getting only necessary value for dynamic constraint
checking. This is the main contribution of our proposed
algorithm. This generic data can be used with any
business-rule languages. Since Schematron can exist
independent of any other schema language, we use this
language on top of XML Schema.

3.3 Experimental Setup

For experiment purpose, we run the program on Java
platform with the support of BaseX[14] for the XQuery
parser. The experiment is conducted in 2.3GHz Intel Core
i5 computer running Windows XP. We use five synthetic
XML datasets of varying sizes and store the dynamic
constraints in a single Schematron file. Then, we run
various update queries for each dataset. Examples of the
XML data and the related file are shown in Figure 1, 6
and 9.

3.4 Analysis

Two important aspects of the algorithm efficiency are
the amount of time required to execute the
algorithm and the memory space it consumes. To analyse
the algorithm, we calculate the performance by applying
run-time complexity of Big-O notation and by means of
worst-case scenario. By using this calculation, we can see
how the run-time will grow as the number of input N
grows. The strategy is by dividing the algorithm into
fundamental operations, i.e. the loops and other
statements. By dividing the analysis fragment by
fragment, we can evaluate the part that needs to be
improved in the algorithm. Table 1 shows the summary of
computational complexity calculation. By the sum and
product rules, the total cost becomes,

Total cost, f(N) = O(N)+O(N)+ O(N3)+ O(N2)+O(N),

where it can be simplified into O(N3) for worst case
scenario. Fragments (a) to (d) basically come from sub-
algorithm in Figure 8. The fragment that contributes to
the most computational time is fragment (c). Figure 10
shows the worst-case performance of our algorithm. The
dashing lines show the performance of each fundamental
operation as in Table 1 while the thick line shows the
overall performance of f(N). Number of queries and
number of documents both give impact to the number of
N. We can say that as number of N increases, the required
time for execution increases in cubic growth.

Table 1. Summary Of Asymptotic Complexity
Fundamental
Operation

Summary of complexity in
worst case scenario.

WHILE-LOOP
(a)

The first while-loop on lines 1-26
costs 18N+2 which is in O(N)
asymptotic time.

WHILE-LOOP
(b)

The second while loop on lines
29-39 costs 8N+6 which is in
O(N) asymptotic time.

FOR-LOOP (c) The for-loop on lines 40-54 costs
n3+3n2+4n+2 time i.e. O(N3).

WHILE-LOOP
(d)

The last while-loop on lines 56-63
costs 4N2+4 i.e. O(N2).

OTHER
STATEMENTS
(e)

Other statements out of the loop
costs 12+N, i.e. O(N) .

The constraints that we have discussed in the sections

above are with the assumption that all the updates are
based on all the naming convention as standardised in the
namespace. However in real situations, referring to a
namespaces is not compulsory. Someone could
possibly have the intention to update or change node with
a different name, as if it has the same intended meaning
as the name before. For example, say we have a query
replace node $path/c with <x> 3</x>,
it is noticed that node c has been replaced with x. If
the intended meaning of node x is actually the same as c,
dynamic constraint still needs to be applied (if any). This
problem is beyond the capability of what have discussed
in this paper.

Figure 1. Asymptotic run-time performance

V.K. Sahu et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4

 8

DISCUSSION
An issue that needs to be raised is that, the above

algorithm actually extracts all data related to replace and
delete-insert operation with the assumption that all might
have a matching dynamic constraint. Hence, it could
possibly deal with unnecessary data. Another issue is that
current algorithm could not deal with indirect states
transitions. For example, between the transitions of s1
into s2, there are actually a few sub-queries that need to
be performed in the middle before s2 could be achieved.
Our dynamic constraint data format is not minimal
enough for this type of problem.

As a matter of fact, it is quite possible to operate the
same validation via procedural trigger at the data level of
a system. However, we believe that our proposed
algorithm is much more significant in terms of organising
the rules and it is less costly for larger size of data. In
some situations, dynamic constraints can be derived from
company policies and conflicts may occur between users
who have the same roles. The policy with a soft rule
characteristic is a flexible policy that can be modified
depending on user’s current situation. In contrast, hard
rules cannot be modified. It is difficult to handle this
problem through data level validation.

4. Future Work

Our most recent focus is in defining as many as
possible dynamic constraints for XML Update validation.
We are currently working on handling multiple nodes
update and we called it as cumulative node constraint.
With some extension of definition of this constraint, we
manage to come out with another constraint i.e. dynamic
Inclusion Dependency. And the main focus at the time
being is to proposed an algorithm based on object
identification technique to identify cumulative nodes
constraint for the validation purpose.

5. Summary
One way to enforce business rules in XML

applications is through XML data constraints, which can
be static or dynamic. There are several works that deal
with the maintenance of static constraints in the area of
XML applications and XML databases. However, very
few works have been done for the maintenance of
dynamic constraints. In this paper, we propose a method
to handle XML dynamic constraints during XML updates
w.r.t single transition constraint on single node updating.
To support the validation, we propose a lightweight XML
file to store only required data for the validation, i.e.
states that need to be changed are extracted from XQuery
and original XML documents. We prove the concept of
transition constraint validation by Java experiment with
the support of BaseX. Based on the experiment, we find
that the validation is particularly useful especially in
ensuring the data conform to the business rules identified
in the business rules schema data during updates. The
analysis shows that our algorithm is in polynomial
efficiency but it can be improved in the future for better

polynomial function. For future works, we would like to
extend the study to cover more types of dynamic
constraints. We are currently working on the effects of
single transition constraint in relation to multiple XML
nodes w.r.t any node dependencies.

Acknowledgement

Contents of this paper will appear in the Proceeding of
the 15th International Conference on Network-Based
Information Systems, Melbourne in September 2012.

References
[1] M.A. Pacheco, Dynamic integrity constraints

definition and enforcement in databases: a
classification framework, Proc. of the First Working
Conference on Integrity and Internal Control in
Information System, Zurich, Switzerland, 1997, pp
65-87.

[2] B.O.D. Brock, A General Treatment of Dynamic
Integrity Constraints., Data Knowl. Eng., 32(3),
2000, pp.223-46.

[3] A. Motro, Integrity = validity + completeness.,
ACM Transactions on Database Systems, 14(4),
1989, pp. 480-502.

[4] P. Fraternali and S. Paraboschi, A Review of
Repairing Techniques for Integrity Maintenance,
Proc. of the First International Workshop on Rules
in Database Systems , Edinburgh, Scotlan, , 1993,
pp.333-46.

[5] D. Plexousakis, Semantic integrity enforcement in
knowledge bases, PhD. Qualifying Examination
Paper, Department of Computer Science, University
of Toronto, Canada, 1991.

[6] H. Balsters, and T. Halpin, Formal semantics of
dynamic rules in ORM, Lecture Notes in Computer
Science, 5333, pp. 699–708.

[7] T. Halpin, Fact-Orientation Meets Agent-
Orientation, Proc. of Sixtth International Bi-
Conference Workshop Agent-Oriented Information
Systems II, Riga, Latvia, 2004, pp.97-109.

[8] H. Balsters, A. Carver, T. Halpin and T. Morgan,
Modeling Dynamic Rules in ORM, Lecture Notes in
Computer Science, 4278, pp. 1201-10.

[9] J. Chomicki and D. Toman, Implementing Temporal
Integrity Constraints Using an Active DBMS, IEEE
Trans. Knowl. Data Eng. 7(4), 1995, pp.566-82.

[10] M. Iwaihara, Supporting Dynamic Constraints for
Commerce Negotiations, Proc. Second International
Workshop on Advance Issues of E-Commerce and
Web-Based Information Systems, Milpitas,
California, pp.12-20, 2000.

[11] F. Rizzolo and A. A.Vaisman, Temporal XML:
modeling, indexing, and query processing, VLDB J.,
17(5), 2008, pp. 1179-12.

[12] N. Wahid, and E. Pardede, XML Semantic
Constraint Validation for XML Updates: A Survey,
Proc. of International Conference on Semantic
Technology and Information Retrieval, Malaysia,
2011, pp.57-63.

[13] Schematron, http://www.schematron.com/
[14] BaseX, http://www.basex.org
[15] XQuery Update Facility,

http://www.w3.org/TR/xquery-update-10/
[16] A.D. Sarma, A. Jain and C. Yu, Dynamic

relationship and event discovery, Proc. of the Forth
International Conference on Web Search and Web
Data Mining, Hong Kong, 2011, pp. 207-16.

V.K. Sahu et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4

 9

[17] J. Chomicki, History-less Checking of Dynamic
Integrity Constraints, Proc. of the Eighth
International Conference on Data Engineering,
Tempe, Arizon, 1992, pp. 557-64.

[18] A. Artale, C. Parent and S. Spaccapietra, Evolving
objects in temporal information systems, Annals of
Mathematics and Artificial Intelligence 50(1-2),
2007, pp. 5–38.

[19] P. Grefen and P. Apers, Integrity control in
relational database systems - an overview, Data
Knowl. Eng., 10(2), 193, pp. 187-223.

[20] A. Olivé, Integrity constraints specification,
Technical report LSI, Universitat Politècnica de
Catalunya, Barcelona, Spain, 1995.

[21] D. Gubiani and A. Montanari, A relational encoding
of a conceptual model with multiple temporal
dimensions, Proc. of the Twentieth International
Conference on Database and Expert Systems
Applications, Linz, Austria, 2009, pp.792-806.

[22] M.A. Cibrán and B. Verheecke, Dynamic Business
Rules for Web Service Composition, Proc. of the
Second Dynamic Aspects Workshop, Chicago,
USA, 2005, pp.13-8.

	Case by case scenario for single node updating.
	Discussion

