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ABSTRACT 

 

 

 

 The objective of this study was to develop and characterize the 

polyethersulfone (PES) incorporated with silver (Ag) as an antibacterial membrane 

which can remove and disinfect bacteria in a single step for environmental 

application. The PES-Ag membrane was developed from PES, silver nitrate as an 

antibacterial agent and 2,4,6-triaminopyrimidine (TAP) as compatibilizer. The 

influence of AgNO3 loading, molecular weights (MW) of polyvinylpyrrolidone 

(PVP) as dispersant and type of compatibilizer have been investigated. The resulting 

membranes were characterized based on their thermal, tensile and structural 

properties which were used in correlation with the membrane antibacterial properties. 

The incorporation of Ag in PES membrane has increased the tensile strength doubled 

as compared to the unmodified PES. Furthermore, it was observed that the highest 

AgNO3 loading (2 wt%) and the highest MW (360,000) of PVP as dispersant has led 

to higher silver content on membrane surfaces. This is evidenced from energy 

dispersive X-ray (EDX) analysis and X-ray photoelectron spectroscopy (XPS). These 

properties have induced a better antibacterial activity in a disc-diffusion test against 

Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). The structural 

characterization by field emission scanning electron microscope (FESEM) revealed 

that by incorporating TAP as compatibilizer, smaller Ag particles size with improved 

distribution and average pore size of 0.174 µm was obtained. In addition, the silver 

residue during fabrication monitored by inductive coupled plasma-mass spectrometry 

(ICP-MS) was significantly reduced (62.6%). These parameters have led to E.coli 

removal of log reduction value (LRV) 3.59 and 100% growth inhibition tested on 

E.coli suspension of 1×10
6
 colony forming unit (CFU/mL). From the adhesion test, 

this membrane exhibited the least E.coli adherence which in turn evidenced its anti-

adhesion property. In conclusion, the PES-Ag membrane with TAP as compatibilizer 

produced was potential in bacteria removal and disinfection below the CFU 

maximum range for water and waste water treatment.  

 

 

 

 

 



 

 

 

 

ABSTRAK 

 

 

 

Objektif kajian ini ialah untuk membangun dan mencirikan selaput 

(membran) poliethersulfona (PES) yang digabungkan dengan perak (argentum) 

sebagai selaput anti-bakteria yang akan dapat menyingkir dan menyahjangkit 

bakteria dalam satu langkah untuk aplikasi alam sekitar. Membran PES-Ag 

dibangunkan daripada PES, garam nitrat perak (AgNO3) sebagai agen anti-bakteria 

dan 2,4,6-triaminopyrimidine (TAP) sebagai bahan bantu serasi. Pengaruh muatan 

AgNO3, berat molekul polivinilpirolidone (PVP) yang bertindak sebagai bahan bantu 

serak (dispersant) dan jenis bahan bantu serasi (compatibilizer) juga telah dikaji. 

Membran yang terhasil dicirikan bagi menilai sifat terma, kekuatan tegangan (tensil) 

dan struktur yang kemudiannya dikorelasi kepada sifat anti-bakteria membran 

tersebut. Penggabungan Ag ke dalam membran PES telah meningkatkan kekuatan 

tegangan membran dua kali ganda berbanding membran PES tidak terubahsuai. 

Muatan AgNO3 tertinggi (2 wt%) dan PVP pada berat molekul tertinggi (360,000 

Da) didapati telah berjaya menghasilkan kandungan Ag yang lebih tinggi. Ciri ini 

telah dibuktikan melalui analisis yang menggunakan kaedah spektroskopi penyebar 

tenaga sinar-X (EDX) dan kaedah spektroskopi elektron-foto sinar-X (XPS). Sifat-

sifat ini seterusnya telah mencetuskan sifat anti-bakteria yang lebih baik, dibuktikan 

melalui ujian pembauran-cakera (disc-diffusion) terhadap bakteria Escherichia coli 

(E.coli) dan Staphylococcus aureus (S.aureus). Pencirian struktur dengan 

menggunakan mikroskopi imbasan elektron pemancaran medan (FESEM) telah 

memberi maklumat bahawa dengan menggunakan TAP sebagai bahan bantu serasi, 

partikel Ag yang lebih kecil dengan taburan yang lebih baik pada saiz liang purata 

0.174 m telah dperolehi. Di samping itu, sisa Ag yang terlarut resap (leach) semasa 

pembuatan membran yang dikawal dengan menggunakan spektrometri jisim-

berganding plasma teraruh (ICP-MS) didapati menurun dengan nyata sebanyak 

62.6%. Keseluruhan parameter yang dikaji telah menunjukkan bahawa penyingkiran 

E.coli adalah pada nilai penurunan log (LRV) 3.59 dan 100%  perencatan 

pertumbuhan apabila diuji pada 1×10
6
 unit koloni terbentuk per mL (CFU/mL). 

Membran ini juga didapati menunjukkan lekatan bakteria (bacterial adherence) yang 

terkecil dalam ujian lekatan terhadap E.coli sekaligus membuktikan sifat anti-

lekatan. Kesimpulan daripada kajian ialah membran PES-Ag dengan TAP sebagai 

bahan bantu serasi adalah sangat berpotensi dalam penyingkiran dan perencatan 

bakteria di bawah julat CFU untuk air dan rawatan air. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Microbiological contamination of water sources has long been a concern to 

the public. According to some authors, there were numbers of various bacterial 

species available (ranging from 10
2
 to 10

4
 mL

−1
) in raw water as well as sewage 

effluents (Bonnélye et al., 2008; Goldman et al., 2009) tend to adhere to surfaces and 

grow mainly at the expense of nutrients accumulated from the water phase. 

Microbiological contamination in any sources should be avoided at any cost since in 

the production of potable water, only a limited number of bacteria (depends on the 

type of bacteria) are acceptable. The process for the removal of contaminants 

depends not only on the nature of the microorganisms but also on the desired levels 

of purity.  

 

The use of membrane filtration in water treatment has greatly contributed to 

greener technology. For example, microfiltration (MF) membrane has been widely 

applied in water purification process due to its capability to remove microorganisms 

and to treat harmful pollutants as well as dissolved organic matters (DOM) (Ghayeni 

et al.,1996; Oh et al., 2007). Laine et al. reported that ultrafiltration (UF) 

applications represent 74% of the total installed low-pressure membrane full-scale 

plants (identified world-wide) in water industry in order to meet more stringent 

regulations in producing drinking water (Laine et al., 2000).  

 

It was reported in the open literature that membrane technology is one of the 

disinfection technique where microorganisms are retained without any chemicals 



engagement. However, the problem of biofouling aroused when membrane is 

applied, due to the accumulation of microorganisms on membrane surfaces. In 

addition, the current practice of membrane filtration required additional step 

addressed as disinfection step via techniques such as chlorination (the most common 

one), ozonation and UV. There were many and thorough discussion available in the 

use of chlorination recently. The use of chlorination may lead to the disinfection by-

products (DBPs) release which in turn exposed consumers to potential carcinogenic 

compounds such as the derivatives of chloramines. 

 

Many studies have been conducted to overcome/meet the restrictions as well 

as to resolve membrane fouling problems due to the uncontrolled accumulations of 

micro-species. In handling biofouling problems, membrane modification, low-flux 

operation and chemical cleaning are areas to be explored (Chang et al., 2002; Khor et 

al., 2007). The effective prevention of microbial growth in a membrane system can 

only be achieved when continuous and sufficiently high chlorine concentration is 

maintained. However, due to stricter legislative regulation on chlorine usage, other 

effective and environmental-friendly alternative is needed.  

 

 In membrane modification, the research in combining inorganics into 

polymer matrices has been expanding since 1990-s. The inorganics chosen were 

tailored with the application such as catalysis, biochemistry, separation and sensing. 

In gas separation, the inorganic fillers namely zeolite, carbon molecular sieve, silica 

and metal oxides has contributed to enhance membrane separation performance 

specifically in addressing flux decline and selectivity (Rafizah et al., 2008; Kusworo 

et al., 2008; Ismail et al., 2009; Mataram et al., 2010).The combination of inorganics 

in polymer matrices or well-known as mixed-matrix provides the solution for highly 

cost-maintenance and brittleness of inorganic membranes. The inorganic fillers in 

mixed matrix membrane act to create preferential permeation pathways for selective 

permeability while posing a barrier for undesired permeation in order to improve the 

separation performance (Goh et al., 2011).  

 In water application, attempts were made in addressing flux decline due to the 

accumulation of (micro- or macro-)species onto membrane surfaces which in turn 

affecting the separation performance. The important issue in membrane 

manufacturing is to develop membrane with suitable pore size in order to attain 



various sizes of contaminants. In addition, membrane must also show sufficient 

resistance towards the feed components as well as the operating condition. In 

antibacterial application, a number of researches have been conducted in exploring 

silver-incorporation to polymeric materials such as cellulose acetate (CA), 

polacrylonitrile (PAN), polysulfone (PSf) and chitosan for the application of water 

treatment, nano-fibre and food-packaging (Chou et. al., 2005; Wang et. al., 2005; Ma 

et. al., 2008, Zodrow et. al., 2009). Silver was found to leach in the reported articles 

and to date; attempts on overcoming this problem are still not published in the open 

literature.     

 

 

 

 

1.2 Problem statements 

 

 

 The conventional UF membrane in water and waste water treatment 

established in bacteria removal has achieved a promising rejection value of >99% or 

to be specific, a log reduction value (LRV) of >3. However, after the membrane 

filtration process, it is necessary to perform an extra step which is disinfection as a 

secondary bacteria control barrier and distribution system protection (Ghayeni et al., 

1996; Zio et al., 2005). The options available for disinfection are: UV, ozonation and 

chlorination. The most commonly used method is chlorination due to the easy-

handling process and cost effectiveness. However, the major drawbacks of this 

method is when greater number of bacteria present, higher concentration of chlorine 

is needed, hence more disinfection by-products (DBPs) will be released in the water 

distribution system. Current waste water treatment with microbial burden is facing 

the problem of biofouling due to the accumulation of microorganisms over operation 

time. In order to address the issues, current research is conducted to explore the 

possibility and effectiveness of using a UF membrane incorporated with an 

antibacterial agent in removing bacteria as well as to investigate its potential in 

behaving anti-biofouling properties.   

 

 

1.3 Objectives of the study 

 

 



 Based on the existing problem statements, the current study has been 

performed with the following objectives: 

 

i. To develop an antibacterial membrane by incorporating silver (Ag) as an 

antibacterial agent without sacrificing membrane fluxes and removal abilities and to 

characterize the membrane in terms of mechanical, morphological, water permeation, 

hydrophilicity and pore sizes. 

ii. To study the effect of incorporating a compatibilizer, PVP of different 

molecular weights in membrane properties and performances. 

iii. To evaluate the effect of incorporating different compatibilizers in membrane 

properties and performances. 

iv. To evaluate the fluxes of prepared membranes using pure water permeation 

test on the custom-made test-rig. 

v. To evaluate the antibacterial performance of membrane using disc diffusion 

method, filtration of bacterial suspension and anti-biofouling tests. 

 

 

 

 

1.4 Research scopes 

 

 

 In order to achieve the above mentioned objectives, the following scopes of 

study were drawn. 

 

i. Preparation of dope using PES as polymeric material, NMP as solvent and 

AgNO3 as an additive or precursor of antibacterial agent, silver (Ag).  

ii. Selection of AgNO3-loading and compatibilizer based on the evaluation in the 

miscibility and antibacterial tests. 

iii. Fabrication of PES-AgNO3 asymmetric membrane using phase inversion 

technique and characterization of membranes in terms of mechanical strength, 

hydrophilicity, overall porosity, pore sizes and water permeation. 

iv. Evaluation of Ag-entrapment in prepared membranes by using ICP-MS, EDX 

and XPS techniques. 

v. Membrane fluxes measurement was carried out by using custom-made test rig 

at pressure range 1-6 bar. 



vi. Performance measurement of prepared membranes was conducted in terms of 

antibacterial activity by using disc diffusion method and bacteria removal via 

the filtration of bacterial suspension. 

vii. Performance measurement of prepared membranes was conducted in terms of 

anti-biofouling properties through an anti-adhesion test. 

viii. Comparison of PES pristine membrane with PES antibacterial membrane in 

all characterization and antibacterial tests. 

 

 

 

 

1.5 Research significance 

 

 

 This study is of significance to the research of water treatment which 

involves disinfection steps. The antibacterial membrane extends the multi-steps 

options for water treatment to a stand-alone removal and disinfection of bacteria. The 

results obtained in the study also provide the information in bacteria-removal and 

bacteria-killing mechanisms which lead to the most effective options in treating 

polluted water. Furthermore, the information on silver entrapment obtained in this 

study would be beneficial to the other related fields such as in medicinal and 

electrical field where silver is optimized in wound dressings and conducting material.   

 

 

 

 

1.6 Organization of the thesis 

 

 

The thesis is divided into six chapters. The first chapter presents the research 

background as well as the problem statement. The research objectives, scopes and 

significance are also highlighted in first chapter. Chapter two provides the literature 

review on bacteria removal which includes the theories of the whole process and the 

options available for bacteria removal. The advantages of antibacterial membrane, 

current status and future direction of the technology are also discussed in this 

chapter. Chapter three is dedicated to the detailed description of the research 

methodology. The material selection for dope preparation, membrane fabrication and 

performance testing conducted in this work are explained in this chapter. In chapter 



four, the effect of silver content on the properties and performance of fabricated 

membranes are explored and discussed. Subsequently, Chapter five describes the 

effect of polyvinylpyrrolidone (PVP) of various molecular weights on antibacterial 

properties of the resulting membranes. Chapter six discusses the significant 

contribution of different compatibilizers in membrane antibacterial activities. Other 

improved properties and the comprehensive discussions on the anti-adhesion 

properties of resultant membranes are also included. Finally in Chapter seven, 

conclusion of the research is drawn and the potential future works are proposed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 2 

 

 

 

 

ANTIBACTERIAL MEMBRANE FOR BACTERIA REMOVAL: 

 A REVIEW  

 

 

 

 

2.1 Introduction 

 

 

In conventional treatment of contaminated water sources, several methods 

have been applied to provide multiple barriers to the spread of pathogenic 

microorganisms and have minimize the spread of waterborne disease. Table 2.1 lists 

each treatment which can either be used individually or couple with other methods in 

a multi- step process.  

 

Amongst the processes listed, sedimentation is considered as an easy and 

widely accepted technique due to its natural principle which uses earth gravitational 

force to settle down particles/suspended solids (SS) from a suspension. The process 

consumes low energy therefore reduce the processing cost. However, some 

drawbacks quoted by Guazzelli (1984) was the low loading rates which is only 1- 2 

m
3
m

-2
hr

-1
 plus large space needed, hence higher construction cost will be required. 

Other than the natural force, sedimentation applies coagulants as an aid to cater high 

sludge loading. The efficient sweep coagulation can only be achieved at higher 

coagulant dose. Excessive slime bacteria which result in filter clogging are another 

drawback in sedimentation (Horan and Mara, 2003). 

 

 



Table 2.1: Available treatment methods in tackling the spread of pathogenic microorganisms 

Treatment 

method 

Processes Effectiveness References 

Coagulation Coagulation or coagulation-flocculation is a conventional 

technique to remove organic and inorganic suspension, 

colloids and other natural organic matter (NOM). This 

process uses chemicals addressed as coagulants and 

coagulant aids. Examples of common coagulants are 

Al2(SO4)3 (alum), Fe2(SO4)3 (copperas), FeSO4 and FeCl3 

while examples of the aids are bentonite, 

(Al2O3)4SiO2.2H2O, sodium silicate, Na2SiO3, lime, 

Ca(OH)2 and calcium carbonate, CaCO3. Primary 

coagulants neutralizes the electrical charges of particles 

in the water which cause the particles to clump together, 

while the aids are generally used to reduce flocculation 

time and specifically used for clear water with very low 

turbidity that does not coagulate well with usual 

procedures. 

 

 

Removes 

 Turbidity at ~ 99% 

 NOM (in terms of dissolved 

organic carbon, DOC (up to 

59.5%) 

 Bacteria at >3 log reduction 

value, LRV 

 

(Konieczny et al., 

2009) 

(www.thewatertrea

tments.com) 

(Qin et al., 2006) 

Sedimentation Sedimentation is a physical water treatment process to 

settle suspended solid that has been deposited by natural 

processes in water under the influence of gravity. The 

settling rate of sedimentation can be dramatically 

improved by the addition of small dosages of polymeric 

flocculants. The higher the solid concentration, the faster 

the flocculation occurs and hence larger flogs will be 

produced. 

 E.coli removal of >50% 

(depending on turbidity and 

the characteristics of 

particular sediment). 

 For 50 mL of E.coli 

suspension, population was 

reduced to 1/120, 1/100,000 

and 1/1,400,000 after 24, 48 

and 72 h respectively. 

(Gutbai and 

Gregory, 1991) 

(Milne et al., 

1986) 

(Kawabata & 

Tanabe, 2005)  

http://www.thewatertreatments.com/
http://www.thewatertreatments.com/


 

  

 

 

 

 

Filtration Filtration is a process to separate matters from fluid by 

passing the mixture through a porous media that entraps 

the solids in its matrix or retains them on its surface. The 

amount of removal is a function of the filtering media. 

The removal was subject to several factors including 

mechanisms (straining or adsorption), the grain size of 

porous media, organic matter content, bacteria species 

and etc.  

 The median reduction is 10
4
. 

 Soil-filtration has reduced 

total bacteria up to 99.94%. 

 Filtration of E.coli 

suspension on an 

antibacterial membrane has 

resulted in 100% growth 

inhibition. 

 

(Sterik et al., 

2004) 

(Vanderbroucke et 

al, 1995) 

(Gilbert et al., 

1976) 

(Basri et al., 2010) 

 

Disinfection 

 

 

Disinfection is considered as a primary mechanism for 

the inactivation of pathogenic organisms to prevent the 

spread of waterborne disease to downstream users and the 

environment. Disinfection is performed via physical or 

chemical techniques. Radiation, filtration and heating are 

some examples of physical disinfection while 

chlorination and ozonation are chemical disinfecting 

method.  

 

By UV disinfection, the 

N

N0

10log
: 

 E.coli 3.8 

 Total coliform 3.3 

 Enterococci 3.3 

 

 

(Madaeni, 1999) 

(Olanczuk-Neyman 

et al., 2001)
 

  

 



Sedimentation and further flocculation were needed to produce good quality 

water while the use of powder activated carbon (PAC) was possibly needed to 

remove taste and odor (Hagen, 1998). In order to complement the conventional water 

treatment processes, disinfection was performed by using chemical disinfectants or 

physical methods. The objective of disinfection is to render an object or field free 

from infection in which the infection may represent a risk to persons or environment 

(Gilbert and Brown, 1995).  

 

 

 

 

2.2 Disinfection in water and wastewater treatment 

 

 

Diseases caused by pathogenic bacteria, viruses, protozoa or helminthes are 

the most common and wide-spread health risk associated with drinking water. For 

this reason, the World of Health Organization (WHO) has placed the greatest 

importance on the microbiological quality of drinking water emphasized the potential 

consequences of microbial contamination are such that its control must never be 

compromised (Gorchev, 1996). To the least, water sources must be protected from 

contamination by human and animal wastes which contain a variety of bacterial, 

viral, protozoa and helminthes pathogens which are the sources of the waterborne 

disease. The characteristics of the main waterborne disease source are listed in Table 

2.3. 

 

Waterborne disease is disease resulted from improper sanitary disposal of 

human feces. The feces of healthy persons contain 1 to 1000 million per gram of 

each of the following groups of bacteria: enterobacteria (e.g E.coli), enterococci, 

lactobacilli, clostridia, bacteriodas, bifidobacteria and eubacteria (Hammer and 

Hammer Jr, 2008).  

  

In order to meet the stringent regulations by WHO, disinfection methods 

(chemical and/or physical) has been adopted in water and wastewater treatment.  The 

commonly used disinfectants are listed in Table 2.2 with their risks, advantages and 

efficiency against different contaminants for general comparison. Several studies 

have shown that the efficiency of UV as a disinfection method is highly dependent 

on the concentration of SS (Narkis et al., 1995; Hurst, 1996; Blume et al., 2002). 



This is due to the fact that SS can protect the bacteria through a ‘sheltering’ flogs 

which prevented the UV-light from penetrating and destroyed by the disinfectants 

(LeChevallier, 1988). The UV-light cannot penetrate large particles from ~50 m in 

diameter, thus the required energy will be raised drastically (Neis and Blume, 2003). 

 

 

Table 2.2: The difference between bacteria, viruses and protozoa  

                                    (Madigan et al., 2000). 

Organism Size Description Examples (waterborne) 

Viruses 20-120 nm Biological agents 

consisting of 

molecules of nucleic 

acids and protein 

envelope. 

 

Enterovirus, 

coxsackievirus, 

echovirus, rotavirus, 

hepatitis A & B. 

Bacteria 1-6 m Unicellular and 

organism with 

nucleus 

 

E.coli, Salmonella sp., 

Shigella sp. 

Protozoa Cryptosporidium 

sp. (4-6 m) 

Giardia sp. (8-12 

length) × (7-10 

m width) 

Protozoa are single-

celled eukaryotes 

(organisms whose 

cells have nuclei) 

that show some 

characteristics 

usually associated 

with animals, most 

notably mobility and 

heterotrophy 

Giardia duodenalis, 

Cryptosporidium sp., 

Entamoeba 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.3: Comparison of commonly used disinfectants in water 

reclamation (Asano et al., 2007) 

Characteristics Chlorine 

gas 

Sodium 

hypochlorite 

Chlorine 

dioxide 

ozone UV radiation 

Deodorizing ability 

 

High Moderate High High na* 

Interaction with 

organic matters 

Oxidizes 

organic 

matter 

 

Oxidizes 

organic 

matter 

Oxidizes 

organic 

matter 

Oxidizes 

organic 

matter 

Absorbance 

of UV 

irradiation 

Corrosiveness Highly 

corrosive 

 

Corrosive Highly 

corrosive 

Highly 

corrosive 

na* 

Toxic to higher 

forms of life 

Highly 

toxic 

 

Highly toxic Toxic Toxic Toxic 

Penetration of 

particles 

 

High High High High Moderate 

Safety concern High Moderate to 

Low 

 

High Moderate Low 

 

Solubility Moderate High High High na* 

 

Stability Stable Slightly 

unstable 

Unstable Unstable na* 

Effectiveness as disinfectant 

 

Bacteria Excellent Excellent Excellent Excellent Good 

 

Protozoa Fair to 

poor 

 

Fair to poor Good Good Excellent 

Viruses Excellent Excellent Excellent Excellent Good 

 

Byproduct 

formation 

THMs and 

HAAs 

THMs and 

HAAs 

Chlorite 

and 

chlorate 

 

Bromate None known 

in measurable 

concentrations 

Increases TDS Yes Yes Yes No No 

 

Use as a 

disinfectant 

Common Common Occasional Occasional Increasing 

rapidly 

*na = not applicable 

 

 

The recent development in the area of disinfection has been discovered to 

reflect a great diversity and complexity of product. As an example, for chlorination, 

chlorine in its free form may react with a group of organic acid available in water 

and result in trihalomethanes (THM) or other DBPs formation (Asano et al., 2007). 



Basically when chlorine in gas form is added to water, hydrolysis molecules will 

occur and hypochlorous acid (HOCl) will be formed (Smethurst, 1988): 

 

Cl2  +  H2O  →   HOCl  +  H
+
  +  Cl

- 
              (2.1) 

Because hypochlorous acid is a very active oxidizing agent, it may also react with 

nitrogen derivatives for an example ammonia and form chloramines; 

 

 NH3  +  HOCl  →   NH2Cl (monochloramine) +  H2O           (2.2) 

NH2Cl +  HOCl  →   NHCl2 (dichloramine) +  H2O            (2.3) 

NHCl2   +  HOCl →   NCl3 (trichloramine) +  H2O            (2.4) 

 

The equations (2.1-2.4) are the pathways that show the DBPs formation resulted 

from chlorination. The action of bacteria-killing by chlorine was due to the direct 

toxic action not only by chlorine in its free form but also by hypochlorous acids and 

chloramines (Smethurst, 1988). Other than the DBPs formation, Scholz (2006) also 

highlighted the disadvantage of chlorination which is the ‘chlorine taste’ of water 

and the need of extra care of storage and handling.     

 

Effective  prevention  of microbial  growth  in  water treatment  systems  can 

only be achieved  when  a  continuous and  sufficiently  high  chlorine  concentration  

is maintained.  However,  this condition cannot  be  viewed  as  an ultimate  solution,  

considering  growing  environmental  concerns  and  stricter  legislative  regulations  

regarding  the discharge  of  chlorinated  brines.  Therefore, membrane materials 

with reduced bacterial affinity have been actively researched  (Flemming, 1997). The 

investigation by Hagen (1998) revealed that the present disinfection and filtration 

methods should be replaced by a more suitable membrane filtration process. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

Figure 2.1: Pressure driven membrane processes classified principally by 

average pore diameter (Eykamp, 1995). 

   

 

2.3 Membrane technology in bacteria removal 

 

 

In general, membrane is a barrier that separates two phases and restricts the 

transport of various species in a specific manner when a driving force is applied. In 

other words, when driving force is applied, the membrane placed in a fluid system 

will retain one component by sieving or size-exclusion mechanism and produce 

purified solution. Pressure-driven membrane processes which are reverse osmosis, 

nano-, ultra- and microfiltration are now being extensively used for the purification 

of natural and waste waters. Figure 2.1 illustrates the pore size range of pressure 

driven membrane processes that are used to separate particles of various size range. 

 

Ultrafiltration (UF) is a pressure driven membrane process whose nature lies 

between nanofiltration and microfiltration (MF). MF is typically known and used for 

turbidity reduction and removal of suspended solids within the approximately size of 

1-30 m (Li et al., 2003) meanwhile UF membranes are commonly used to remove 

some viruses, color, odor, and some colloidal natural organic matter. Both processes 
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require low transmembrane pressure (1- 30 psi) to operate, and both are now being 

used as pretreatment in desalination processes such as reverse osmosis, 

nanofiltration, and electrodialysis. As a pressure driven membrane process, UF 

membrane normally possesses asymmetric structure with thin but relatively dense 

top layer (thickness 0.1-1.0 µm), supported by a porous substructure (thickness ≈50-

150 µm) in which suspended colloids and particles in the approximate size range of 

10-1000 Å are retained. An illustration in Figure 2.2 simplified the separation 

concept in membrane. Although UF has been commonly used in current market, the 

improvement on the available system is still necessary.  

 

Transportation of molecules or particles via membrane occurs due to the 

driving forces applied. This driving force can be chemical potential gradient, e.g 

concentration gradient or pH gradient; pressure difference; electrical potential 

difference or combination of these (Mulder, 1991). In bacteria removal, bacteria 

transport is generalized to occur by advection, diffusion (for small bacteria) and 

chemotaxis (Corapcioglu, 1996). Chemotaxis is the preferential movement of 

bacteria in response to chemical gradients such as areas of higher nutrient 

concentrations. 

 

 

 

 

 

 

 

 

 

Figure 2.2: Simplified concept schematic of membrane separation. A  

desired component (water) is allowed to pass through while 

non-desired component (bacteria) is retained. 
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When membrane with smaller pore size is used or bigger solute species need 

to be retained, the higher pressure has to be applied in the operating system. The 

proportional relationship between the membrane fluxes and the driving force is: 

 

 Flux  = Proportionality factor × Driving force 

 J = A × X                (2.5) 

 

where A is the proportionality factor determines how fast the components or particles 

is transported through the membrane. In other words, A is a resistance measurement 

exerted by membrane as a diffusion medium when force is applied to the components 

or particles.  

According to Song and Elimetech (1995), the net velocity of bacterial cell 

normal to the membrane surface is largely determined by normal convection with 

small contributions by tangential correction and Brownian diffusion. The interaction 

force profile suggested that aggregation were enhanced in acidic medium even 

though the bacterial deposition rate is lower. The model studied also suggested that 

the increment of permeation velocity resulted in higher bacterial deposition rate. 

 

 

 

 

2.4 Physicochemical interaction between bacteria and surface 

 

 

The physicochemical interaction between bacteria and surfaces has been 

highlighted. The schematic in Figure 2.3 illustrates the interaction among bacterial 

cell, inorganic particles and the surface of porous media. Removal of bacteria from 

the flowing liquid phase generally occurs by filtration and adsorption or cell death 

(Corapcioglu, 1996). The various bacterial attachment and detachment mechanisms 

are affected by one or more factors as listed in Table 2.4. According to Yuehuei and 

Friedman (2000), bacteria surface hydrophobicity is an important physical factor for 

adhesion. Generally, hydrophobic bacteria prefer materials with hydrophobic 

surfaces while hydrophilic characteristics prefer hydrophilic surfaces. However, 

hydrophobic bacteria adhere to a greater extent than hydrophilic bacteria. 

 

 



 

  

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic of the physicochemistry between bacteria- 

nanoparticles and membrane matrices.  

(Yuehei and Friedman, 2000) 

 

 

 When approaching the entrance of a pore, Leblue et al. (2009) explained that 

bacteria are submitted to the shear and drag forces created by the trans-membrane 

pressure (TMP) applied during the filtration step. Such stress may lead to bacteria 

volume reduction and surface deformation (governed by the cell wall Young 

Modulus value) which would allow the cell to penetrate into the membrane pore. 

Whether the cell membrane is disrupted or not, the bacteria still have the possibility 

to pass the pore. If the bacteria penetrate the membrane and retain its integrity, these 

bacteria will keep their pathogenicity and hence risk consumers. To address the 

problem, the inorganic antimicrobial agent attached on the membrane surfaces and in 

membrane pores will act and perform biocidal action. The system which combined 

membrane technology with inorganic antimicrobial is efficient in such a way that the 

metal ion is bound within a delivery system that stabilizes them and then releases 

them through a process of ion exchange at the surface (Peinemann and Nunes, 2010).  
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 Table 2.4: Factors affecting bacterial attachment and transport  

(Corapcioglu, 1996) 

Factor Effect on transport or attachment 

pH An attachment favors low pHs. 
 

Ionic strength Attachment increases with higher ionic strength due to the ‘particle 

double-layer’ size reduction. 
 

Clay-content Attachment increases with high clay content due to larger specific area 

for adsorption. 
 

Oxygen 

limitations 

Oxygen-limited biofilms exhibit lower shear removal rates but higher 

sloughing. 
 

Change on media Attachment of negative bacteria will be high in positive charges media. 
 

Flow rate  Higher flow rates reduce bacterial attachment. 
 

Nutrient 

concentration 

Bacterial size reduced in higher nutrient concentrations. 

Bacterial size Smaller bacteria may interact with media less and may not be removed 

by filtration as easy as bigger bacteria. On the other hand, larger 

bacteria have been shown to move faster than small bacteria. 
 

Cell 

concentration 

At low cell density, attachment is favored. Bacteria tend to move from 

high concentration areas to low concentration areas by a tumbling 

diffusive flux. 
 

Bacterial motility Motile bacteria may migrate faster than non-motile bacteria through 

chemotaxis. 
 

Water content Bacteria moves faster through unsaturated soil at higher water content. 

 

 

 

 

2.5 Bacteria retention in porous media 

 

 

According to Dunne Jr., (2002) the process of bacterial adhesion is dictated 

by the variables including the species of bacteria, surface composition, 

environmental factors and the essential gene products. From an evolutionary 

standpoint, the selective advantage of bacterial adhesion was postulated to favor a 

nutritional and non-hostile environment and provide a level of protection. Frimmel et 

al. (2007) discusses the two types of deposition mechanism namely straining and 

interception. Straining is generally about retaining big agglomerates while 

interception is about retaining small aggregates on porous surface after collision. The 

interception mechanism which is dominated by physicochemical interactions 

between the cell surface and the porous medium has been reported to govern the 



adhesion of cells. In order to understand the process of bacterial adhesion, the two 

mechanisms in bacteria removal are discussed. 

 

 

 

 

2.5.1 Bacteria retention via straining 

 

 

According to Stevik et al. (2004) straining mechanism depends on the grain 

size of the porous media. Generally, the extent to which the bacteria are retained by 

straining is inversely proportional to the size of the filter media particles. In other 

words, the smaller the filter media size, the more bacteria will be retained via 

straining. By considering filter-media factors, straining will become a dominant 

mechanism when the average cell size of the bacteria is greater than the size of 5% of 

the grains that compose the porous material (Stevik et al., 2004). The presence of 

macropores in filtration has been found to result in poor volume utilization and allow 

a more rapid and distant bacteria movement (Chandler et al., 1981). In brief, the 

transport for most of the bacteria in a system on saturated flow (e.g waste water 

treatment) is found to favorably take place in the smaller pores. Generally, larger 

cells will be more efficiently removed by filtration.  

 

Weiss et al. (1995) studied the effect of bacterial cell shape on the transport 

in porous media and suggested a preferential removal of long, rod-shaped cells 

during transport. Bacterial straining can also be influenced by flow rates and 

hydraulic loading. A high flow-rate may increase the average water suction in an 

unsaturated filter medium. As a result, greater transport may occur via larger pores 

which in turn decrease the effect of bacterial straining by porous material. Ausland et 

al. (2002) observed a higher removal of fecal coliform bacteria in filtration systems 

using uniform pressure distribution as compared to gravity dosing. Another factor to 

be considered in bacteria removal via straining is clogging (Vandevivere and 

Baveye, 1992). Clogging occurs due to the biomass growth in the porous media. 

Bacteria removal is more efficient in clogged filtration system due to the hydraulic 

disfunction which diminishes the purification of wastewater (Bouwer, 1974; Gannon 

et al., 1991). 

 



2.5.2 Bacteria retention via adsorption 

 

 

In contrast to straining mechanism, adsorption is the dominant mechanism in 

bacteria retention when media pores sizes are larger than that of bacteria (Sharma et 

al., 1985). The bacterial adsorption on solid surfaces involves two stages 

mechanisms that conform to the classical Derjaguin-Landau and Verwey-Overbeek 

(DLVO) theory which has been first suggested on charged colloidal particles. The 

stages were illustrated in Figure 2.4. The first stage is a reversible mechanism 

controlled by electrostatic interactions between the cell surface and the adsorbent 

(porous media). Weak interaction is present between the bacterium and porous 

material. During this stage, reversibly attached bacteria can detach from the surface 

of a particle and return to the water phase, depending on the conductance and 

chemical properties of the fluid or aqueous solution.  

 

In second stage, bacterial adsorption forms a much more persistent bond 

between adsorbent (porous media) and adsorbate (bacterium). This mechanism is 

irreversible and sometimes referred as adhesion (Olson et al., 1991). According to 

the classical DLVO theory, the energy of interaction (VT) between a bacterium and 

solid surface is (Derjaguin and Landau, 1941):  

 

   ART VVV 
               (2.6) 

VR = repulsive energy resulting from the overlapping of the electrical double layer of 

cell and substratum (generally repulsive), VA = attractive energy resulting from van 

der Waals interactions (generally attractive).  

 

 

 

 

 
 



 

 

 

 

 

 

 

Figure 2.4: Stages of biofilm formation and the two-stages bacterial 

adsorption (Katsikogianni and Missirlis, 2004; Houdt and 

Michiels, 2005). 

 

 

According to Hermansson, who extended the classical DLVO theory, VA 

(Hermansson, 1999): 

   d

Ar
VA

6


               (2.7) 

where A is the Hamaker constant, d is the separation distance between the cell and 

the solid surface and r is the cell radius (assuming cells are spherical). The DLVO 

theory states that the distance of separation between colloidal adsorbents (porous 

media) and adsorbates (bacterium) is the distance at which the repulsive (VR) and 

attractive (VA) energy are balanced. 

 

Hori and Matsumoto (2010) explained the two steps mechanism in DLVO 

theory by relating them to the ionic strength as illustrated in Figure 2.3. At low ionic 

strength, the energy barrier prevents the bacterium from approaching solid surfaces 

via Brownian motion.When the energy barrier becomes higher and further from the 

solid surface (at lower ionic strengths), the bacterial cells is found unable to adhere 

on the surface. In contrast, at high ionic strength, the energy disappears and bacterial 

cells can easily and rapidly attain irreversible adhesion. 
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Figure 2.5: Total interaction energy between a bacterial cell and a surface 

depending on ionic strength (Hori and Matsumoto, 2010). 

 

The retention of bacteria via adsorption mechanism is influenced by porous 

media designation (Huysman and Verstraete, 1993). The smaller the particle sizes, 

the larger the surface area, hence more adhesion sites will be provided (DeFlaun and 

Mayer, 1983; McDowell-Boyer, 1986).The surface roughness of the porous media 

may increase the adsorption (as a result of reduced sheer forces) and lower 

desorption rates, thus increase the media surface area (Donlan, 2002). 

 

 

 

 

2.6 Bacterial adhesion and biofouling 

 

 

Water filtration based on membrane technology is frequently coupled with an 

undesired decline in flux which is caused by membrane fouling. Fouling is generally 

defined as a reduction in water transport per unit area of membrane caused by the 

accumulation of substances including microorganisms, inorganic, particulates, 

colloidal and organic matter on or in the membrane (Lee et al., 2010). Biofouling 

during bacteria removal may cause significant effect to osmotic pressure and hence 

require frequent chemical cleaning which eventually shorten membrane life.  
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The adhesion/interaction between particles, including both inorganic colloidal 

particles and bacterial cells has led to biofilm formation. The particles adhered on or 

in the membrane form biofilm and reduce the flow through the membrane, which in 

turn result in great reduction in the filtration efficiency and working lifetime of the 

membranes (Hilal et al., 2009). Biofilms that composed primarily of microorganisms 

and extracellular polymeric substances is the major hindrance in membrane filtration 

and cause severe loss of performance.   

 

 A study of Lee et al. (2010) which explored the PES UF membrane (350 Da) 

and polyamide (PA) NF membrane performances on Staphylococcus epidermis 

(S.epidermis) (0.5 m, gram positive, sphere), Flavobacterium lutescens 

(F.lutescens) (2.5 m × 0.3m, gram negative, rod) and Escherichia coli (E.coli) (1.5 

m × 0.5 m, gram negative, rod) has resulted in few conclusions: 

 

i) In terms of particles retention (under a high ionic strength condition), 

the PA NF membrane exhibited a much lower fouling than that of 

PES UF membrane. 

ii) PES UF membrane which is rougher and more hydrophilic surface 

showed lower retention time in which the lower the retention time, the 

lower propensity for membrane biofouling. 

iii) Bacteria retention on membrane surfaces were longer in KCl solution 

(stronger ionic) compared to deionized water. 

iv) Among the three bacteria sp., E.coli and F.lutescens exhibited the 

highest potential of fouling for both membranes.  

 

 Kochkodan et al. (2008) studied the adhesion of different microorganisms to 

polymeric membrane of various chemical natures. Results revealed that membranes 

deposited with TiO2 particles reduced the number of cells in colony forming unit per 

mL (CFU/mL) about 98.1 % under uv-irradiation for six hours. The mechanism of 

bactericidal action of TiO2 under black uv-irradiation is based on the formation of 

OH, O2
-
 and HO2 radicals in aqueous system (Salih, 2002). It was also found that 

microorganisms adhered more on hydrophobic PES or PSf than on hydrophilic 

cellulose membrane. Hydrophilic E.coli was found to adhere less compared to 



hydrophobic P.putida. In addition, the fluxes of membrane deposited with 

microorganisms was found to decrease with time and TiO2 particles presence has 

provided a strong photo bactericidal under black uv-irradiation.  

  

 According to Hori and Matsumoto (2010), the bacterial adhesion can be 

controlled by antimicrobial agents’ addition, surface modifications or electro-

classical methods. 

 

 

 

 

2.7 Advantages of antibacterial membrane over the other bacteria removal 

method 

 

 

 Conventional membranes have optimized pore sizes and other membrane 

properties such as hydrophilicity to remove bacteria. The key advantage of an 

antibacterial membrane is the enhanced antibacterial action by the incorporated 

antibacterial agent. Permeability on the inner and outer antibacterial membranes will 

lead to the release of antibacterial agent and ultimately disrupt the bacterial cell wall 

membrane. Therefore, instead of bacteria removal via retaining them on membrane 

surfaces, an antibacterial membrane offers removal (via suitable pore size ranges) 

and disinfection in a standalone system. 

 

 As a result, biofilm formation can be substantially hindered and biofouling 

can be obstructed. The formation of smoother and anti-adherence membrane surfaces 

is another value added which then extend an antibacterial membrane as a promising 

candidate in bacteria removal for wastewater treatment. It has been proposed that the 

interaction energy between a colloidal particle and a rough membrane surface has 

considerable lateral variations thus particles will have greater tendency to accumulate 

(Rizwan and Bhattacharjee, 2007). In contrast, a smooth surface reduces or 

eliminates any non-contacting areas thus increases the repulsive interaction energy 

barrier between a colloidal particle and membranes surfaces (Hoek et al., 2003). 
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