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FINDING THE GALOIS GROUP OF A POLYNOMIAL: A DEMONSTRATION OF
STAUDUHAR’S METHOD

TENGKU MUHAMMAD ANDRI

ABSTRACT. The purpose of this paper is to demonstrate an algorithm to find the Galois group of any monic
irreducible polynomial over the field of the rationals with integer coefficients. This algorithm was invented
by Richard Stauduhar [15], hence, for the rest it is called the Stauduhar’s method. In order to identify the
correct subgroup of Sn, several conditions are assumed. Since in every case complex roots, discriminants,
and the conjugate values of some functions (to be defined later) must be computed the coefficients of input
polynomial must be chosen so there will be relatively small round-off errors. It is further assumed that no
two roots are very close to each other and there are no exceptionally large or small roots.

1. HISTORICAL NOTES

The definition of the Galois group itself already implies the course should be taken to solve this
problem. Unfortunately, previous methods like one of van der Waerden, demands a factorization of a
polynomial of degree n!. This method could be described in short as follows:

Let p(x) be the polynomial of degree n over the field ∆ (say this is the rational field), and let Σ be
the splitting field. We consider the ring Σ(u1, u2, . . . un, z) of polynomials with coefficients in ∆, in the
(n + 1) variables u1, u2, . . . , un, z. From this ring we form the expression

Θ = α1u1 + α2u2 + · · ·+ αnun

where αi are the roots of the polynomial (which are in Σ). For each permutation s in the symmetric
group Sn, we consider it as a permutation of the variables ui, and we form the transformed expression
sΘ (e.g if s = (12) then s = α1u2 + α2u1 + · · · + αnun. Finally, we form the product F of all the
expressions z− sΘ for all s ∈ S. Now F is a symmetric function of the αi, and hence, can be expressed
in terms of elementary symmetric function of the αi. These are precisely the coefficients of p(x), and
in fact lie in ∆. So F is actually in the smaller ring ∆(u1, u2, . . . , un). We decompose F into irreducible
factors F1F2, . . . , Fn in this ring, and we apply the permutations s as above to the resulting equation

F = F1F2 · · ·Fn.

Now, for an arbitrary factor (say F1), those permutations which carry this factor into itself form a
group which is isomorphic to the galois group of the given equation.

Later, with the help of electronic computers, Zassenhaus and Cockayne put this method into more
practice. However, this method doesn’t compute the Galois group in all cases but leaves us with
several choices. The advantages of this method is that the same program could be used for different
values of n. In order to demonstrate this method the effective version of Tchabotareff density function
is used.

The software MAPLE computes the Galois group of monic irreducible polynomials over infinite or
finite fields, It computes the Galois group of polynomials up to degree seven. This software based on
the works of L. Soicher, J. McKay, and Butler which in turn based on the van der Waerden’s method.

Stauduhar’s method, on the other hand, uses only the basic facts about galois group and will cer-
tainly give a single solution to the input polynomial provided that minimum accuracy of the roots is
attained.

2. OVERVIEW OF THE METHOD

In order to find the galois group of an irreducible monic polynomial with integer coefficients this
method makes use of the complex roots of the given polynomial. Hence these roots are computed first
and are placed in an initial ordering r1, r2, . . . , rn. Let Γ be the galois group of p(x) with respect to
this ordering. Suppose M is a maximal transitive subgroup of Sn, M 6= An, and [Sn : M ] = k. To
determine if Γ is a subgroup of M , or some conjugate of M , we calculate a resolvent polynomial of
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degree k, Q(Sn,M)(y) numerically, using a function F (x1, x2, . . . , xn) belonging to M in Sn, and a set
π1, π2, . . . , πk of right coset representatives for M in Sn.

This resolvent is monic with integer coefficients (see theorem). It is tested for integer roots. If it has
none, then Γ is not contained in any of the conjugates of M , and similar resolvents may be computed,
corresponding to other conjugacy classes of maximal transitive subgroups of Sn.

Suppose Q(Sn,M)(y) has an integer root. Then this root is πiF (r1r2, . . . rn) where πi is one of the
coset representatives, and hence, Γ is a subgroup of πiMπ−1

i .
The roots of p(x) now is reordered so that r′j = rπi(j). After the reordering, according to theorem, Γ

is a subgroup of M .
Assuming that Γ is a subgroup of M , let M∗ be a maximal transitive subgroup of M , and F ∗ is a

function belonging to M∗ in M . The resolvent polynomial Q(M,M∗)(y) of degree [M : M∗] is computed,
and this new polynomial is tested for integer roots. If an integer root of Q(M,M∗) is found, the roots of
p(x) are once again reordered to ensure that Γ is a subgroup of M∗.

The search is continued in this way until either none of the resolvents at a given level give an
integer root or a minimal transitive subgroup of Sn is located. At each level of searching, only groups
not previously eliminated is considered. For example, if Sn has maximal subgroups M1 and M2, and it
is discovered that Q(Sn,M1) has no integer roots, but Q(Sn,M2) does, so Γ is not a subgroup of M1, and
Γ is a subgroup of M2, then groups which lie within the intersection of M1 and M2 are ruled out as the
candidates for Γ.

It is further assumed that those integer roots of resolvents with respect to which reordering is taking
place are not repeated roots. In the case the integer roots of a resolvent have multiplicity greater than
one, the resolvent can be calculated with respect to a new function.

The discriminant D2 is used in two ways. First, if none of the resolvents associated with the maximal
transitive subgroup of Sn yield an integer root, then Γ = An or Γ = Sn depending on whether D2 is a
perfect square (van der Waerden’s theorem ). Second, if D2 is a square, and we have determined that Γ
is a subgroup of M then Γ is a subgroup of the intersection of M and An. This will simplify the search
procedure.

2.1. Ordering of the roots. Let p(x) be a monic irreducible polynomial over the rationals. Let K be
the splitting field of Let G be the group of all field automorphisms fixing the rationals. Let s ∈ G, then

s(rk) = rs(k) = rik

rk
s //rik

k //ik
Hence, whenever the galois group is given as a group of permutation of n letters, an ordering of the

roots is also given, and vice versa. This happens because we have freedom to label the subgroups of
Sn.

Let +V4 be our example,
1 2

4 3
generators: (14)(23), (12)(34), or,

1 2

3 4
generators: (13)(24), (12)(34).

Let the first be the initial ordering 1, 2, 3, 4. Then the second ordering comes out as the result of
mapping (34) works on 1, 2, 3, 4. So, if the galois group is +V 4 under the first ordering, then under the
second ordering it is

(34)V4(34)−1.
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2.2. Function belongs to a subgroup of Sn. Let F (x1, x2, . . . , xn) be a function of n indeterminate.
Let G be a group of permutations of n letters. If F is unchanged by precisely the permutations of G

we say that F belongs to G. Such functions are constructible.
Let F ∗(x1x2, . . . xn) = x1x

2
2 · · ·xn

n. F =
∑

σ∈G σF ∗ (x1x2, . . . xn) where

σF (x1, x2, . . . , xn) = F (xσ(1), xσ(2), . . . , xσ(n)).

This function belongs to G.
EXAMPLE. For n = 3, the function

F = x1x
2
2x

3
3 + x2x

2
3x

3
1 + x3x

2
2x

3
2

= x1x2x3(x2x
2
3 + x3x

2
1 + x1x

2
2).

(Note: x1x2x3 is a constant)
F ′ = x2x

2
3 + x3x

2
1 + x1x

2
2

belongs to A3.
Particularly for any alternating groups An, a function of the form

D2 = Πi<j(xi − xj)2

belongs to An.
Given the function F (x1x2, . . . , xn) and a permutation π ∈ Sn, the function πF (x1, x2, , . . . , xn) is

called the conjugate function or the conjugate value of the function F (x1, x2, . . . xn).
Let H be a subgroup of Sn. Let F belong to G in Sn. Then F takes exactly [H : HG] distinct conjugate

values under the permutations of H , exactly those of G′ = GH leave unchanged. Suppose G and H
are subgroups of Sn, G is in H , and F belong to G in H . Then for π ∈ H , πF belongs to πGπ−1 in H .

2.3. Generating the polynomial resolvents. Let p(x) ∈ Q[x], monic, irreducible with integral coeffi-
cients. Let r1, r2, . . . , rn be the initial ordering of the roots.

Let H be a transitive subgroup of Sn. Suppose with respect to this ordering, Γ the galois group of
p(x) is a subgroup of H . For any G in H and F , a function belonging to G, let π1, π2, . . . πk, be the set
of coset representatives w.r.t H , then

Q(H,G)(y) = Πk
i=1(y − πi(F (r1, r2, . . . , rn))

is called the resolvent polynomial of G with respect to H and having integral coefficients.
F (r1, r2, . . . , rn) is a root of of Q(H,G)(y) since the identity (e) is one of coset representatives.

Theorem 2.1. If F (r1, r2, . . . , rn) is not a repeated root of Q(H,G)(y) then Γ is a subgroup of G if and only if
F (r1, r2, . . . , rn) is an integer.

Theorem 2.2. Assume πi(F (r1, r2, . . . rn)) is not a repeated root of Q(H,G)(y); then Γ is a subgroup of πiGπ−1

if and only if
πiF (r1, r2, . . . , rn) is an integer.

Theorem 2.3. Then if Γ is a subgroup of πiGπ−1
i and is not a repeated root of Q(H,G)(y) under a new ordering

r′j = rπi(j)′

Γ is a subgroup of G.

The following theorem is useful to simplify our search:

Theorem 2.4 (van der Waerden). Let p(x) be irreducible, monic polynomial of degree n with integral coeffi-
cients. If the discriminant D2 is a perfect square then the galois group is a subgroup of the alternating group.

Note: perfect square means integer, or
√

D2 ∈ Q.
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3. HOW TO APPLY THEOREMS AND RESULT

For polynomials of degree three van der Waerden’s theorem is used to determine the galois group.
If the discriminant D2 is a perfect square then the Galois group is +An, otherwise it is Sn, since the
only candidates for it are +A3 and S3.
EXAMPLE. Let p(x) = 1 + x + x3.

r1 = 0.341163901914 + 1.1615414i

r2 = 0.341163901914− 1.1615414i

r3 = −0.682327803828

D2 = −31 (not a square) Then the Galois group is full, S3.
EXAMPLE. Let p(x) = −1− 2x + x2 + x3.

r1 = −7.80193773581
r2 = 1.24697960372
r3 = −0.445041867913

D2 = 49 (a perfect square). Then the galois group is the alternating group A3. For polynomials of
degree four, a simplified form of the lattice of S4, which is called a search tree, is needed.

S4

D4

||
||

||
||

EE
EE

EE
EE

+A4

Z4 +V4

If D2 is not a perfect square, then +A4 and +V4 are ruled out. The search starts form the left. If the
polynomial resolvent Q(S4,D4) gives an integer root and not a repeated root then the galois group Γ is
a subgroup of D4 under a suitable ordering. If Γ is also a subgroup of Z4 then Γ = Z4 since Z4 is a
minimal transitive subgroup in S4. If Γ is not a subgroup of D4 then Γ = S4. If Γ is a subgroup of D4

but not of Z4 then Γ = D4. In case D2 is a perfect square, S4, D4, and Z4 are ruled out. The candidates
are +A4 and +V4. We check whether Γ is a subgroup of D4, if it is, then Γ = +V4, if it is not then
Γ = +A4.
EXAMPLE. Let p(x) = 1 + x4. Initial ordering of the roots:





r1 = −0.707106781186 + 0.707106781186i

r2 = −0.707106781186− 0.707106781186i

r3 = 0.707106781186 + 0.707106781186i

r4 = 0.707106781186− 0.707106781186i

D2 = 256 (a perfect square). The candidates are +A4 and +V4. If Γ is also a subgroup of D4 then
Γ = +V4. To decide whether this is the case we compute πiF for every coset representative of D4 with
respect to S4

F =
∑

σ∈D4

xσ(1)x
2
σ(2) · · ·x4

σ(4)

after cancelling constant factors we get

F = x1x3 + x2x4

(see Appendix Two).
The coset representatives of D4 with respect to S4 are {(e), (23), (34)} (see Appendix Three). So,

(e)F = −2

(23)F = 2

(34)F = 0
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Since at least one of the conjugate values of F give an integer root then the galois group of p(x) = 1+x4

is +V4.
For polynomials of degree five the search tree is as follows:

S5

F20 +A5

+D5

+Z5

Suppose D2 is not a perfect square, then Γ is not one of these: +A5, +D5, +Z5. The remaining
candidates of Γ are S5 and F20. Computing the polynomial resolvent of F20 with respect to S5 we
could decide whether Γ is a subgroup of F20 or not. If Γ is a subgroup of F20 then Γ = F20. If none of
the conjugate functions give an integer then Γ is not a subgroup of F20, in this case the galois group Γ
is full, the symmetric group S5.

Suppose D2 is a perfect square, then the candidates for ΓF are +A5,+D5, +Z5. Hence there is no
need to find out whether Γ is a subgroup of F20 or not. We proceed further to find out whether Γ is
a subgroup of +D5 or not. If it is, then we check whether it is a subgroup of +Z5. If once again Γ
is a subgroup of +Z5 then Γ = +Z5 since +Z5 is a minimal subgroup and in fact the only minimal
transitive subgroup of the search tree. If Γ is not a subgroup of +Z5 but it is a subgroup of +D5 then
Γ = +D5. If Γ is not a subgroup of +D5 then Γ = +D5.

EXAMPLE. Let p(x) = 2 + x5.



r1 = −1.148698355
r2 = −0.354967313105 + 1.09247705578i

r3 = −0.354967313105− 1.09247705578i

r4 = 0.929316490603 + 0.67518795240i

r5 = 0.929316490603− 0.67518795240i

D2 = 50000 (not a perfect square).

F = (x1x2 + x2x3 + x3x4 + x4x5 + x5x1 − x1x3 − x3x5 − x5x2 − x2x4 − x4x1)2.

(e)F = 10.7605967409− 33.1177114395i

(12)(34)F = −28.1716080068 + 20.467871299i

(12435)F = 0

(15243)F = 10.7605967409 + 33.1177114395i

(12453)F = 34.8220225319

(12543)F = −28.1716080068− 20.4678712992i

Since (12435)F is an integer then Γ is a subgroup of F20 under the new ordering




r1 = 0.929316490603− 0.6751879524i,

r2 = −1.148698355,

r3 = 0.929316490603 + 0.6751879524i

r4 = −0.354967313105 + 1.09247705578i

r5 = −0.354967313105− 1.092477055781i

Conclusion: Γ = F20.
EXAMPLE. Let p(x) = 1 + x + x5.
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Initial ordering: 



r1 = 0.877438833123 + 0.74486176662i

r2 = 0.877438833123− 0.74486176662i

r3 = −0.500000000000 + 0.8660254037841
r4 = −0.500000000000− 0.8660254037841
r5 = −0.754877666247

D2 = 3381 (not a perfect square).

F = (x1x2 + x2x3 + x3x4 + x4x5 + x5x1 − x1x3 − x3x5 − x5x2 − x2x4 − x4x1)2.
(e)F = 14.1901768507 + 21.9903048657i

(12)(34)F = 14.1901768507− 21.9903048657i

(12435)F = −6.62872926169 + 12.263503695i

(15243)F = 0.030963071708

(12453)F = 24.8461417502

(12543)F = −4.55952615721− 3.69442145371i

None of the conjugates give an integer, then Γ is not a subgroup of F20. Γ = S5.
EXAMPLE. p(x) = 12− 5x + x5.

Initial ordering: 



r1 = −1.84208596619
r2 = −0.351854240828 + 1.70956104337i

r3 = −0.351854240828− 1.70956104337i

r4 = 1.27289722392 + 0.719798681484i

r5 = 1.27289722392− 0.719798681484i

D2 = 64000000 (a perfect square).

F = (x1x2 + x2x3 + x3x4 + x4x5 + x5x1 − x1x3 − x3x5 − x5x2 − x2x4 − x4x1)2

eF = 0.621045428367− 145.295693239i

(12)(34)F = −3.08195506973− 1.36227509475i

(12435)F = 100

(15243)F = 0.024236798106

(12453)F = −150.633163828− 92.6277364613i

(12543)F = 0.621045428367 + 145.295693239i

Hence, Γ is a subgroup of (12435)F20(12435)−1, since Γ is also a subgroup of A5 then Γ is a subgroup
of F20&A5 = D5. The roots are reordered:




r1 = 1.27289722392− 0.719798681484i

r2 = −1.84208596619
r3 = 1.2728922392 + 0.719798681484i

r4 = −0.351854240828 + 1.70956104337i

r5 = −0.351854240828− 1.70956104337i

The following function belongs to Z5:

F = x1x
2
2 + x2x

2
3 + x3x

2
4 + x4x2

5 + x5x
2
1

eF = −5− 15.8113883008i

(35)(12)F = −5 + 15.8113883008i

Since none of the conjugate values of F gives an integer, then Γ is not a subgroup of Z5. Γ = +D5.

EXAMPLE. p(x) = 1 + 3x− 3x2 − 4x3 + x4 + x5.
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Initial ordering of the roots: 



r1 = −1.91898594723
r2 = 1.68250706566
r3 = −1.30972146789
r4 = 0.830830026004
r5 = −0.284629676546

D2 = 14641 (a perfect square).

F = (x1x2 + x3x4 + x4x5 + x5x1 − x1x3 − x3x5 − x5x2 − x2x4 − x4x1)2.
(e)F = 70.9219146335

(12)(34)F = 64.5554503713

(12435)F = 1.07701459367

(15243)F = 95.6627758542

(12543)F = 0
Hence Γ is a subgroup of F20 and since it is also a subgroup of A5 then Γ is a subgroup of D5. The new
ordering:

r1 = −1.30972146789
r2 = −1.91898594723
r3 = 0.830830026004
r4 = −0.284629676546
r5 = 1.68250706566

The following function belongs to Z5:

F = x1x
2
2 + x2x

2
3 + x3x

2
4 + x4x

2
5 + x5x

2
1

(e)F = −4

(12)(35)F = 8
Hence, Γ = Z4. For polynomials of degree six the search tree:

S6

FF
FF

FF
FF

F

TTTTTTTTTTTTTTTTT

32D4

FFFFFFFF 2S4

IIIIIIIII

TTTTTTTTTTTTTTTTTTTT

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW PGL2(5)

WWWWWWWWWWWWWWWWWWWWWWWWWW +A6

G2
36

FFFFFFFF
G1

36 G1
24 G1

24 G3
24 +PSL2(5)

3S3

GGGGGGGG D6 +A4

S3 +Z6

Suppose D2 is a perfect square, then the candidates are:

+G1
36, +Z6, +G3

24,+A4,+PSL2(5), and + A6.

The search starts from the left. If Γ is a subgroup of 32D4 then Γ = +G1
36. If it is not, we proceed to

the second left branch of the tree. If Γ is a subgroup of 2S4 then there are two possibilities: +G3
24 and

+A4. If Γ is a subgroup of +A4 then Γ = +A4. If it is not then Γ = +G3
24. If Γ is not a subgroup of 2S4

we proceed to PGL2(5). If Γ is a subgroup of PGL2(5) then Γ = +PSL2(5). If it is not then Γ = +A6.
Similar procedure is applied for D2 is not a square.

For polynomials of degree seven, the search tree:
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S7

HHHHHHHHH

TTTTTTTTTTTTTTTTTTTT

A7 +PSL(2) F42

+F21 D7

+Z7

Suppose D2 is a perfect square then the candidates are A7, +PSL3(2),+F21, and Z7. If Γ is a sub-
group of +PSL3(2) then A7 is ruled out. If Γ is not a subgroup of F21 then Γ = +PSL3(2). If it is then
we proceed further to find out whether it is a subgroup of +Z7. If it is then Γ = +Z7. Suppose D2 is
not a perfect square. Then the candidates are S7, F42, and D7. If Γ is a subgroup of F42 then S7 is ruled
out. If Γ is a subgroup of D7 then Γ = D7. It is important to notice that in each level of searching the
roots are reordered.

APPENDIX ONE
Transposition. Transposition is a mapping of the form (ij) where i, j ∈ N , the set of n letters.
Even permutations. An even permutation is a permutation consists of even number of transpositions,
e.g (ij)(`k) is an even permutation, where i, j, k, ` ∈ N .
Proposition. A mapping σ ∈ Sn could be represented in an infinitely many ways as product of trans-
positions.
Proposition. If n is even, the rotation of n side polygon is always odd, other wise, if n is odd the
rotation is even.

(1234) = (12)(13)(14)
while

(12345) = (12)(13)(14)(15).
Hence, if n is even Zn, is not a subgroup of An, while in case n is odd, Zn is a subgroup of An.
Proposition. The set of all even permutations of Sn forms a group, the alternating group An.
Transitivity. A subgroup G of Sn is transitive whenever for any i, j ∈ N , there exists a mapping σ ∈ G
such that σ(i) = j, e.g., for n ≥ 3, Z2 is not transitive, Zn is always transitive, Dn is always transitive.
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APPENDIX TWO

Degrees Group Contained in Function Generators
4 D4 S4 x1x3 + x2x4 (1234), (13)
4 Z4 D4 x1x

2
2 + x2x

2
3 + x3x

2
4 + x4x

2
1 (1234)

4 +V4 – – (12)(34), (13)(24)

5 F20 S5 (x1x2 + x2x3 + x3x4 + x4x5 + x5x1

−x1x3 − x3x5 − x5x2 − x2x4 − x4x1)
2 (1234)

5 +D5 – – (12345),(25),(34)
5 +Z5 +D5 x1x

2
2 + x2x

2
3 + x3x

2
4 + x4x

2
5 + x5x

2
1 (12345)

6 32D4 S6 x1x2x3 + x4x5 + x6 (123),(456),(12),(45),(14)(25)(36)
6 +G1

36 – – (123),(456),(12)(45),(1425)(36)
6 +G2

36 32D4 (x1 − x2)(x2 − x3)(x3 − x1)
(x4 − x5)(x5 − x6)(x6 − x4) (123),(456),(12)(45),(1425)(36)

6 3S3 G2
36 (x1 − x2)(x2 − x3)(x3 − x1)

(x4 − x5)(x5 − x6)(x6 − x4) (123),(456),(14)(25)(36)
6 D6 G2

36 (x1x4 + x2x5 + x3x6) (123)(456),(12)(45),(14)(25)(36)
6 S3 3S3 x1x4 + x2x6 + x3x5 (123)(456),(1425)(36)
6 Z6 3S3 x1x

2
6 + x2x

2
4 + x3x

2
5

+x4x
2
2 + x5x

2
1 + x6x

2
2 (123)(456),(14)(25)(36)

6 2S4 S6 x1x2 + x3x4 + x5x6 (12),(34),(56)(135),(246),(13)(24)
6 G1

24 2S4 (x1 + x2 − x3 − x4) (12)(34)
(x3 + x4 − x5 − x6) (34)(56)
(x5 − x6 − x1 − x6) (12)(56)
(x1 − x2) (135)(246)
(x3 − x4)(x5 − x6 (14)(23)(56)

6 G2
24 2S4 (x1 + x2 − x3 − x4) (12)(34)(56)

(x3 + x4 − x5 − x6) (34)(56),(56)
(x5 + x6 − x1 − x2) (135)(246)

6 +S4/V4 2S4 – (135)(246),(13)(24),(12)(34),(34)(56)
6 +A4 +S4/V4 see G2

24 (12)(34),(34)(56),(12)(56),(135),(246)
6 PGL2(5) S6 (x1x2 + x3x5 + x4x6) (126)(354),

(x1x3 + x4x5 + x2x6) (2354)
(x3x4 + x1x6 + x2x5)
(x1x5 + x2x4 + x3x6)

6 +PSL2(5) (126)(354),
(12345),
(2354)

7 +PSL3(2) S7 x1x2x4 + x1x3x7 + x1x5x6 (1234567),
+x2x3x5 + x2x6x7 + x3x4x6 + x4x5x7 (235)(476),(2743)(56)

7 F42 S7 x1x2x4 + x1x2x6 + x1x3x4 + x1x3x7 (1234567),
+x1x5x6 + x1x5x7 + x2x3x5 + x2x3x7 (243756)
+x2x4x5 + x2x6x7 + x3x4x6 + x3x5x6

+x4x5x7 + x4x6x7

7 +F21 +PSL3(2) see F42 ¹ S7 (1234567),(235)(476)
7 D7 F42 x1x2 + x2x3 + x3x4 (1234567),

x4x5 + x5x6 + x6x7 + x7x1 (27)(45)(36)
7 +Z7 +F21 see D7 ¹ F42 (1234567)
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APPENDIX THREE

Degree four Coset representatives
D4 in S4 e,(23),(34)
Z4 in D4 e,(12)(34)
Degree five Coset representatives
F20 in S5 e,(12)(34),(12345),(15243),(12453),(12543)
Z5 in +D5 e, (12)(35)
Degree six Coset representatives
32D4 in S6 e,(2543),(236)(45),(25436),(25)(34),(2453),(25),(2345),(24536),((3645)
G2

36 in 32D4 e,(56))
3S3 in 32D4 e,(12)(45),(56),(12)(465)
S3 in 3S3 e,(123),(132)
Z6 in 3S3 e,(123),(132)
D6 in 32D4 e,(123),(132),(56),(123)(56),(132)(56)
2S4 in S6 e,(24635),(26)(35),(345),(2345),(253),(345),(256)(34),(26435),(2346)

(234),(25)(36),(2435),(24)(35),(26543)
G1

24 in 2S4 e,(12)
G2

24 in 2S4 e,(13)(24)
+A4 in +S4/V4 e,(13)(24)
PGL2(5) in S6 e,(13),(123),(132),(12)
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