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ABSTRACT

The 5-seater Aerospatiale AS350B helicopter has been chosen in this analysis
in order to investigate the capabilities of the vortex trap in increasing the helicopter
blade lift. Blade Element Theory (BET) was applied to scrutinize the lift force and
angle of attack distribution along the helicopter blade. From BET, the retreating
blade must operate at a higher coefficient of lift for the purpose to balance the lift
force on both sides of the rotor. In the process of designing and analyzing the groove,
commercial CFD, Fluent 6.3 and pre-processor Gambit were utilised in order to.
investigate the effect of groove which was applied on the upper surface of the
helicopter airfoil. The Shear-Stress Transport (SST) k£ — @ turbulence model was
utilized in this analysis because of its capability in producing the flow inside the
groove and the ability on predicting the separation of the airfoil. The mesh sensitivity
analysis had also been accounted in the numerical study. The optimization of the
groove was done by analyzing the numbers and locations of the grooves, the design
depth and length of the groove and modification of the groove shape to smoothen the
velocities flow. Finally, the data from BET was used with data from numerical
analysis to obtain the lift force achieved by the vortex trap method to increase the lift
of helicopter blade. Thus, the small increment of lift was achieved when applying
groove on the upper surface of the retreating blade due to the small area contribution

at high angle of attack.
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CHAPTER 1

INTRODUCTION

1.0 Research background

Helicopter flight was probably the first type of flight envisioned by man. The
idea dated back to ancient China, where children played with homemade tops of slightly
twisted feathers attached to the ends of sticks. The flying Chinese top was a stick with a

propeller on top, which was spun by hands and released [1].

Helicopter is a flying machine that uses the rotating wing to produce both the
thrust and propulsive forces. The types of rotary-wing flying machines so-called
helicopter that can be distinguished by its rotor arrangement, for example: conventional
helicopter, side-by-side helicopter, synchropter helicopter, twin tandem helicopter, and
coaxial helicopter. The capability to hover out of ground shows that the helicopter is a
very practical flight vehicle for completing several flight missions such as air patrol,
logistic, military application, air ambulance, skyscraper building construction, timber
transporting, search and rescue (SAR) operation, and so on. Unlike the fixed-wing

aircraft, the helicopter requires only a small area for take off and landing.



1.1 Research motivation

Nowadays, the flight speed of the helicopter is still considered slower than the
fixed-wing aircraft. This is due to the complexity in the control mechanism and factors

low speed of flight depicted in Figure 1.1.

Figure 1.1: Multiple limitation factors occur during fast cruising flight [2,3].

One of the limitation factors in the helicopter speed is dynamic stall which
occurs at retreating blade. Retreating blade is a critical condition due to the small area
lift which must be equal to the large area lift of advancing blade in order to maintain
level and coordinated forward flight which is depicted in Figure 1.2. The high angle of
attack at retreating blade is required to generate a lift force that is equal to the lift force
produced by the blade of advancing side [4]. In this regard, the retreating blade operates
at much lower Mach number than the advancing side but encounters high angle of attack

close to stall [5,6].
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Figure 1.2: Retreating blade stall area [7].

The occurrence of dynamic stall on a rotor blade has adverse effects on the

performance of the helicopter which includes:
a) High control system loads.
b) Vibration affecting the helicopter dynamic performance in terms of speed, lift,
manoeuvres capability and handling qualities.
c) Aerodynamic performance limitations such as a loss of lift thrust and control.

d) Stall flutter, causing blade structural damage and excessive cabin vibration,

The understanding and modification of the dynamic stall vortex that is formed
under such conditions remains a major research topic in the rotorcraft industry.
Suppressing or eliminating the formation of the dynamic stall vortex will enhance the
performance of the helicopter rotor and, hence, expand the helicopter flight envelope
and vehicle utility [8, 9]. Several researches have been carried out to control the flow

separation on aircraft wing and helicopter rotor blade. Nevertheless, some of the designs



are very complicated to be adapted to the helicopter rotor blades that require high

structural intensity.

1.2 Problem statement

The problem of dynamic stall is caused by the rapid change in angle of attack
that occurs at the retreating blade of the rotor when helicopter is in forward flight. As the
blade revolves to the retreating side, it must operate at a higher coefficient of lift to
balance the lift force on both sides of the rotor. This is done by increasing the angle of
attack of the blade. However, the helicopter has a limitation angle of attack in producing
a lift at retreating blade. So, this phenomenon will limit the speed of the helicopter and
its manoeuvrability. Therefore, with using the vortex trap method, it may be. \}fﬁl‘"

s

increase the lift at retreating helicopter blade and also delay the dynamic stall.

1.3 Research objective

The objective of this research is to increase the lift of existing helicopter airfoil

when blade in the retreating condition.

1.4  Research scope

The research study covered the following scopes:
i .- Theoretical determination of the aerodynamic characteristics of an existing
helicopter airfoil.
ii.  Analyze the lift coefficient and the angle of attack of helicopter blade when
helicopter in steady and level flight at sea level using Blade Element Theory
(BET).



iil.

v.

1.5

5

Numerical simulation in two dimensional of unmodified helicopter airfoil and
airfoil with vortex trap at below Mach Number, M < 1 and Reynolds Numbers
in range between 6.5x 10° < Re < 6.3x10° are applied for simulating the effect of
the vortex trap on the upper surface of the helicopter airfoil at retreating blade
and advancing blade.

Analyze and simulate the effect of vortex traps on helicopter blade.

Research design

The research design comprises of

i.

ii.

iii.

iv.

1.6

Literature review on the previous works which related to main rotor bladg:,‘{q‘_f
helicopter. P
Theoretical analysis on the aerodynamic characteristic of the helicopter airfoil
using Blade Element Theory (BET). 7
Computational fluid dynamic (CFD) analysis using Fluent and Gambit software
in simulating the effect of the vortex trap on helicopter blade.

The optimization of vortex trap for an application on the helicopter airfoil.

Project significance

Vortex trap is used to delay separation thus increasing the stalling pitch angle of

the retreating helicopter blade. This will give the safer helicopter operation margin.

1.7

The type of helicopter used

The 5-seater Aerospatiale AS350B helicopter has been chosen for the present

study. This helicopter is first version manufactured by Eurocopter company for AS

model. Dimension of fuselage, main rotor and tail rotor are nearly same for all AS



models but different in aerodynamic and engine which used for new version. The basic

parameter descriptions of this helicopter are given in Table 1.1 and three view drawings

are illustrated in Figure 1.3.

Table 1.1: Parameter of descriptions of Aei'ospatiale AS350B helicopter [10].

DESCRIPTION
Weight (kg)

Empty 1051

Maximum Takeoff with Internal load 1950

Maximum Takeoff with External load 2100

Engine Rating

Type of Engine IxTurbomeca
Ariel IB

Maximum Takeoff power 478kW

Main Rotor Parameters

Airfoil NACA 0012

Radius (m) 5.345

Chord (m) 0.3

Solidity 0.0536

Number of Blades 3

Blade Twist Angle (Deg) -12.275

Maximum Cruise Speed (km/hr) 232

Maximum Speed (km/hr) 272

R
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1.8 Thesis outline

This thesis is organized in six chapters. The chapters are briefly described as
follows. Chapter 2 reviews the previous works related to the helicopter blade and also
discovers the previous stall control method used at helicopter blade and the vortex trap

method.

Chapter 3 discusses the theory of blade element theory (BET) which was used
to investigate the blade lift and blade angle of attack of the Aerospatiale AS350B
helicopter. The equations of rotor blade motions with trim control angles for helicopter
in forward flight were discussed in this chapter. This chapter also discusses the theory of

computational fluid dynamic that uses throughout this analysis.

N opes,
o
o

Chapter 4 describes how simulation is carried out using Fluent 6.3. This chapter
explains the airfoil geometry with the groove, the type and size of mesh, the boundary

condition, the flow solver and turbulence model used in this analysis.

Chapter § evaluates the capability of the groove (vortex trap) on increasing the
lift of retreating helicopter blade. The data from blade clement theory (BET) was used
with the data from numerical analysis to obtain the lift force achieved by the vortex trap

method to increase the lift of helicopter blade.

Lastly, Chapter 6 summarizes the works that have been done and followed by

the recommendations for future studies.



CHAPTER 2

LITERATURE REVIEW

2.0 Introduction . wﬂ
The aim of this research is focused on the increasing lift of helicopter retréaﬁng
blade by delaying the stall effect using the vortex trap method. Thus, it is necessary to
investigate the characteristic which are related to the helicopter blade. This chapter will
spread out the effect of the changing number of blade, the blade planform modification,
researching on British Experimental Rotor Program (BERP) blade which attained the
world speed record and the dynamic stall of helicopter blade. This chapter also discover

the previous stall control method used at helicopter blade and the vortex trap method.

2.1 Number of blade

~ The feasibility on improving a Eurocopter AS 355F2 helicopter forward flight
speed via applying the different combination between rotor and engine was presented by
Nik Mohd N.A.R. and Wahab A.A [11]. Their study was emphasizing the changing of
the number of blade from 3 to 4 blades and also blade sizing in order to find the better
forward flight speed from the existing rotor design. The modification of the blade
dimension by reducing the blade radius is about 10.19% and chord about 11.4% of

Eurocopter AS 355F2 helicopter which can improve the maximum cruising speed by
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about 6.687%. The increment of the main rotor number of blade from 3 to 4 biades did
not excessively affect the cruising speed capability of this particular aircrafi. However it
had shown a slightly improvement on helicopter Figure of Merit (FM)[12]. Nik Mohd
[11] also found that the large ratio between reverse flows 1o the rotor area will cause the

unstability of the helicopter.

The effect of changing the number of blades also depends on the solidity (the
ratio of total blade area to disc area) of the blade to discover the better efficiency of
hover performance. It was clearly show from the experimental done by Micheal A. M
and Francis .M [13] in Figure 2.1. The lower solidity is the best in hover performance
rather than the highest solidity because of the increments of the Figure of Merit (the ratio
of induced power to actual power). Prouty [10] explained that in determining the number
of blade, the vibration, noise, weight and the blade storage should be concerne&f%omé

of the concern can be organized in terms of the advantages shown in Table 2.1.
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& .60F /
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Figure 2.1: Effect of blade number and chord on hover performance
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Table 2.1 Advantages of low and high number of blades

Advantages of Low Advantages of High
Number of Blades Number of Blades
Low rotor weight Low rotor-induced vibration
Low rotor cost Reduce induced tip loss effect
Easy of folding or storing | Less distinctive noise signature

2.2 Blade planform modification

An alternative approach to improve the aerodynamic design of helicopter rotor
blade is by using the blade planform modification. In this method, the modification of
the blade tip is the most popular one. The blade tips play an important role in the
aerodynamic rotor performance. The blade tips encounter the highest dynamic pressure,
highest Mach numbers and strong trailed tip vortices. The poorly blade tip design will

contribute to the serious implications on the rotor performance.

Figure 2.2 shows several of blade tip designs which are very successful design to
optimize the hovering flight. The result of a flight test of a swept back parabolic tip on a
Dauphin 365N helicopter was reported by Guillet, F and Phillipe, 1.I. [14]. Additional
Weights were added at 45% radius for the dynamic tuning of the second lead-lag mode.
The tip planform improved about 1 to 6% of forward flight performance by minimizing

the profile power and also improve overall rotor cruise efficiency.
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Figure 2.2: Variety of blade tip designs

The tip shapes of blade affected the efficiency of hover performance. It was done
by Michael A.M and Francis J.M [15] using wind tunnel testing with the rotor of same
twist, airfoils and main chord is shown in Figure 2.3. The basic square tip blade reaches
a peak figure of merit (FM) of 0.707 at Cr= 0.016. Tapering the tip to 60% and
sweeping the quarter chord 30 degrees starting form 0.95R resulted in a very small
improvement in efficiency but did not change the maximum value, although the thrust
coefficient at which the maximum figure of merit achieved was reduced. The effect of
10° of sweepback from 0.85R to the tip has increase a peak performance at 1% and
provides a small increment in the operating range over the square tip blade. Reduction of
the blade area in the tips improves the loading by moving the peak circulation inboard

which can decrease the velocity induced by tip vortex on the following blade.

~ Michael A.M and Francis IM [15] also study the effects of tip shape on overall
rotor performances and cruise lift to drag ratio (L/D). All four rotors were flown at the
same lift and propulsive. force and were trimmed into zero one-per-rev flapping. The
tapered tip was found to give about 10% higher 'equivalent L/D ratio compared to the
rectangular blade. From the Figure 2.4, the rectangular blades provide a better maximum

cruise L/D ratio than either of the swept or swept tapered blade.
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Hong Hu [16] was used Computational Fluid Dynamic (CFD) code to apply at four
types of tip shapes which are elaborated in Figure 2.5. This analysis was investigated to
obtain tip vortex strength and aerodynamic load when helicopter was in hovering
motion. There was several conclusions that had been made on his investigation:

1. The tip vortices of Ogee-type and sub wing tips were weaker than the tilt and 45°

swept-tapered tips under hovering motions.

2. The double vortices were found on Ogee-type and sub-wing tips that reduce

strength of tip vortices and reduce blade interaction vortex (BVI) noise.

A Tilt

A modified Tilt rotor

with an Oiee-ﬁ ﬁi R

A medified Tilt rotor
with a Subwing

N

A modified Tl rolor with a
45deg Sweptt-tapered Tig

Figure 2.5: Planform of four tip shapes

Fu-Shang Wei and Cliff Gunsallus from Kaman Aerospace Corporation [17]
presented the new design concept to select an optimal in a systematic manner. Five
different blade planforms in Figure 2.6 were chosen in the analysis. These were:

1. Baseline blade with the rectangular planform
ii. 6 :1 taper ratio blade starting from 85% radius to the tip
iii. 4 :1 taper ratio blade starting from 75% radius to the tip
iv. 3 :1 taper ratio blade starting from 50% radius to the tip
V. Modified 4 :1 taper ratio blade starting from 75% radius to the tip
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Figure 2.6: Sketch for five blade planform

The entire blade was divided into three major sections: (i) tip region, (ii) mid-span
region, and (iii) inboard region. Each region can be adjusted separately to have non-

constant blade local chords to enhance the performance:

i. In the outboard blade section, reduce the tip chord to improve blade out of
ground effect (OGE) hover performance. The blade to tip chord ratio can be
designed as high as 3:1, 4:1 or 6:1. The blade chord reduction station starts at
approximately 50%R, 75%R or 85%R depending on the design requirements.
The minimum blade chord is located at the tip. It can be designed as small as
33%, 25% or 15% of the original blade chord.

ii. In the blade mid-section, increase the blade local chords starting from station
40%R to 75%R. The increment of the blade chord will increase the blade lift
capability. The aerodynamic loading area increases will benefit blade forward

flight performance. But in real blade design, there is a certain limitation in
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choosing the blade airfoil thickness. Because of the limitation of the airfoil
thickness used on a helicopter and the shop manufacturing technique restriction,

the maximum blade local chord can not be 50% larger than the original blade.

In the inboard blade section, reduce the blade local chords to reduce acrodynamic
drag. The starting blade radial station is from 10%R to 30%R. The maximum

reduction in blade local chord is also limited to 50% of the original blade chord.

There are several design options to design helicopter blade [17]:

i
ii.

iii.

iv.

Maximum blade local in the mid-section up to 150% of the original blade chord
The maximum chord is designed around the 75% blade radial section area
Design a very small blade chord with very ratio around 15%,25% or 33% of the
original blade chord at the tip

The airfoil also can be started at 14% thickness at the inboard section of the "
blade, then transitioning to 12% and 10% thickness around the mid-span region

and finally transitioning to 8% thickness at the tip.

Desopper et al [18] in their work have observed that modification of the blade-tip

planform may improve the aerodynamic performance of the rotor by reducing the wave

drag and the intensity of the transonic flow that appear on the rectangular blade for fast

forward flight speed. Several blade tip designs including rectangular, sweptback with

constant sweep angle, swept forward with constant sweep angle, sweptback-parabolic

tip, FL5, RAE, PF2 and rectangular with an anhedral tip shape have been tested in S2

Chalais-Meudon wind tunnel (Figure 2.7). And as reported by Desopper, for almost all

the advancing blade side:

a) The intensity of the transonic flows was smaller on the PF2 tip when compared

to the straight tip,

b) The swept tip rotor has a lower drag and requires less power than the same rotor

with straight tip,
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¢) It was possible to decrease the intensity of the transonic flow for a large azimuth
sector of the advancing side by using a 30 deg swept back tip, and therefore it is
possible to decrease the power needed to drive the rotor, and

d) The total performance measurements of the model rotor for rectangular and
sweptback parabolic tips showed that the PF2 tip has made a possible significant

reduction (5-8%) in the power required by the rotor.

0.194: Rectangula —li F30
FL5 l B ,-
w -
~—-0 39—-,
RAE 1 | s
) LY n

[“'——! 250
Figure 2.7: Example of rotor blade tip tested in S2 Chalais-Meudon wind tunnel [20].

Matthew T.Scott et el [19] reported comparisons of computational predictions
with data from a BERP tip configuration with rectangular tip, swept tip, ONERA PF2
and FL2 tips in fixed wing mode. Swept tip reduce the shock strength but not
continuously as much sweeping the leading and trailing edge. The PF2 and FLS5 tips both
lessen the shock strength appreciably over the outer two chords of the blade. The
double-swept BERP planform, however, decreases the strength of the shock farther
inboard than any single-swept tip. The maximum Mach number on the surface of the
BERP tip was lower than that found on any of the other tips, and that the shock was
diffused over the outer three chords of the blade. The BERP tip generates downwash
(Figure 2.8) which induced over the paddle part of the planform between the vortices.
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This downwash energizes the boundary layer and reduces the local angle of attack seen
by the outboard portion of the blade. Thus, the flow over the blade between the two
vortices is braced and remains attached at higher angle of attack. The corollary to this
rule also holds the flow inboard of the forward sweep break was more likely to separate

because of the presence of the nearby vortex.

Figure 2.8: Vortical flows for the BERP planform at high angle of attack

2.3 British Experimental Rotor Program (BERP) blade

The collaboration between Westland Helicopter Limited and the Royal
Aerospace Establishment (RAE) developed the unique design of helicopter blade called
British Experimental Rotor program (BERP) blade. The BERP rotor was designed
specially to meet conflicting requirement of the advancing and retreating blade
condition, either of which can limit the C/Cp of the blades and the performance of the
rotor in high-speed forward flight. The BERP blade was started design since 1975 which
called BERP I where this blade was changed from the metal to composite blade.
However, the enhancement in the blade profile consistency resulted at 5% reduction in
fuel burn [20]. After BERP I, the BERP II was introduced with new advanced composite
apply in the blade. Then in year 1986, with using the new shape BERP 1II fitted at GKN-
Westland Super Lynx which aerodynamic of the blade design refine attained the world
absolute speed record of 400.87km/h for conventional helicopter [21].The BERP III



19

blade shows in Figure 2.9 uses a number of high performance airfoils based on the RAE

family.

Highly swept
exireme edge

Leading edge noich

Large swept tip

Figure 2.9: BERP blade geometry

The BERP blades have a large swept tip, which also incorporated forward notch
offset and highly swept outer tip edge. The RAE airfoils were distributed by the sections
along the blade shows in Figure 2.10 which get the greater 30% of the thrust and extends

the forward speed potential of the edgewise rotor to well in excess of 200 knots [22].

The BERP blade uses a high performance airfoil based on the RAE family. The
RAE 9645 is an aftloaded which is located on the blade from 65 to 85% radius, high-lift
airfoil with a nose-down pitching moment. To counteract the 9645's pitching moment,
the reflexed (nose-up pitching moment) RAE 9648 was used on inboard blade sections
[23]. The thinner RAE 9634 airfoil used outboard for more reduction of transonic effect
and produced the best advancing blade performance [23,24]. The shape of the tip of the
BERP blades are design in order to perform as a swept tip at high Mach numbers and
low angle of attack. Yet, it is also designed to operate at very high angles of attack

without stalling [25]. It was also for the purpose to reduce transonic effect of advancing
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side [24], the outboard 15% of the span was swept back to reduce Mach Number normal
to leading edge [23.24], produced the best retreating blade performance in as much as it
is best able to maintain attached flow conditions to the highest angle of attack and most
tip sweep produced the best advancing blade performance [20], reduce noise [26] and
vibration [24]. Tip with anhedral has contributed greatly to the success of the BERP
blade, in that is helps to balance sweep effects in forward flight and also enhances the
performance in hover [27]. To delay retreating-blade stall, Westland incorporated a
delta-wing-like platform at the extreme spanwise location (delta wings maintain high-lift

at high angles of attack by forming a stable vortex structure over the wing surface) [23].

Thinned Tip $ectionEmploying
Large L.E Radiua and nose Drocp Lvl_{._;-
T
AR Loaded Aiffoil Section -~

3

" Reflexed Airfoil Section

Figure 2.10: Cambered airfoil section distributions [22]

Brocklehurst et al [23] in their work have observed in experimental and
simulation using CFD to obtain detailed information of the flow over the BERP tip for
range of angle of attack. In their observation, both the computation and experiment
exhibit attached flows on the regions beyond the north. A tip vortex formation at the
delta wing planform part of the blade is also captured show in Figure 2.11. The location
of the primary separation line inboard of the notch was not well predicted. However, the
trend for the flow is to change from stalled flow inboard of the notch to attach flow

outboard of the notch is captured.
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Figure 2.11: Computed and experimental surface streamline patterns at high 1r1<:1t;1e_t:u;e1
and sweep. SR

In year 2003, Brocklehurst [27] continued the previous work with producing a
complete helicopter Navier-Stokes analysis in CFD and validate with experimental using
wind tunnel. The flow separation patterns at swept tip in Figure 2.12 same in previous
work in Figure 2.11, when angle of attacks increase, the stall areas are closely to the
notch of the blade. This work also comes out with flow stall patiern along the blade
without swept tip. Figure 2.13 shows the stall areas were nearly at trailing edge when

angle incident were increased.

yellow colour indicates
stalled area

Figure 2.12: CFD Results for the flow separation near the notch region of a BERP blade.
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Figure 2.13: Stall area in yellow colour along the BERP airfoil when the angles of attack
increase (Re=0.64x10%, M=0.2) [27].

The work of Brocklehurst [23,27] obtained a flow configuration along the BERP
planform wich only for fixed wing configuration and also not include the effect of rotar ,
centrifugal force. This centrifugal force are studied by Fu-Lin Tsung [28] done inr €rD
using 3-D Navier Stokes to simulate the flow separation for rotor and fixed wings. This
study concentrated on the outer 35% of the planform, from just inboard of the forward
sweep notch to the tip of the platform. The Figure 2.15, Figure 2.16 and Table 2.2 show
the difference of flow separation between rotor and fixed wing at /R = 0.65 and

t/R=0.88 during 20 degree of angle of attack.

Fixed wing Rotary wing

Figure 2.14; Particle trace of outboard flowfield for both rotor and wing at 20 degree
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Fixed wing Rotary wing

r/R=0.65

-

Figure 2.16: Cross-sectional view of flowfield at two spanwise stations for both rotor
and wing at 20 degree

Table 2.2: Comparison the flow separation between fixed wing and rotary wing of
BERP blade at angle of attack 20 degree [28].

Fixed wing Rotary wing

Figure 2.15 | The leading edge separation | The leading edge separated flow
and the tip vortex have | and the tip have merged into one
merged into one. The vortex | dominant vertical flow over the
burst on the planform about | outboard region, similar to the high
half way to trailing edge. angle of attack delta wing flow.
Strong vortex is dominant, it is

bounded and tightly wound vortex.

Figure 2.16 | The size of vortex burst caused a large separation at 65 % of the tip

radius (0.65 r/R) and 88 % radius (0.88 t/R)
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The new BERP introduced in 2008 is called BERP IV. Rob Harrison et el

[20] were design the new tip concepts apply to BERP TV that considered are shown in

Figure 2.16.

Novel BERP IV
Tip Shepes

Contemporary '
Tip Shapes

BERP IV Tip
Developed from
BERP (Il

Figure 2.16: Various tip shapes assessed during BERP IV [7].

With this tip concept the BERP IV was improving the BERP III in

influencing the advancing blade, retreating blade and hover performance. In particular,

the outer tip edge of BERP IV is now more streamwise and the notch refinement reduces

the tendency for any local separation at high angle of attack. The new tip also gave the

better chordwise balance, giving improved stability and some relief on control load. The

designs are summarized below and illustrated in Figure 2.17 [20].

1) The tip has a more smoothly blended notch geometry (the feature at the inboard

end of the forward chord extension) that acts to reduce drag

2) The increased tip chord was fundamental to the tip’s high incidence capability.

This was retained in the BERP IV design and was optimised for reduced profile

drag, whilst still maintaining the high incidence performance.
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