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ABSTRACT 
 

 
 
 
This study aims to investigate the feasibility of Arenga Pinnata fiber to be applied 

for acoustical material component.  There different binders namely polyurethane, 

urea formaldehyde and latex were employed as binder.  The weight percentages of 

binder used were 10%, 15%, 20%, 25%, and 30%.  Hand layup process was used in 

specimens production.  The physical, acoustical and durability properties of the 

panels were investigated experimentally.  The result shows that panel with high 

percentages of binder tends to have high density and tortuosity, but less porosity.  

The optimum porosity of 0.94 was obtained from panel that added with 10% Latex.  

In general, Arenga Pinnata panels show good sound absorption from mid to high 

frequency that is from 2000 Hz to 5000 Hz.  The best sound absorption is performed 

by panel added with 10 % Latex with a maximum absorption coefficient (α) of 0.96 

at 3000 Hz.  The average Noise Reduction Coefficient (NRC) for all panels is 0.40.  

The value indicates that Arenga Pinnata panels are highly absorptive material.  

However, Arenga Pinnata panel is poor insulator since the optimum sound 

transmission loss (STL) is only 9.37 dB from panel added with 15% polyurethane at 

5000 Hz.  Thus, Arenga Pinnata panel is applicable to reduce echo caused by 

reflection effects within a room.  Sound absorption increases as porosity increase and 

decrease as density-tortuosity increase.  Hence, Arenga pinnata fiber is applicable for 

acoustical component panel.  Moreover, Arenga Pinnata panels are durable that 

resist in water, heat, and fire.  It is applicable for heat insulation.   
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ABSTRAK 
 
 
 
 

Kajian ini bertujuan untuk mengkaji kebolehgunaan serat Arenga Pinnata  sebagai 

komponen bahan akustik.  Tiga pengikat yang berbeza telah digunakan sebagai 

pengikat serat iaitu polyurethane, urea formaldehid  dan latex.  Peratus berat pengikat 

yang digunakan dalam kajian ini adalah 10%, 15%, 20%, 25%, dan 30%.  Spesimen 

kajian dihasilkan dengan menggunakan proses gelekan tangan. Sifat-sifat fizikal, 

akustikal dan ketahanan panel spesimen telah dikaji secara ujikaji. Hasil kajian 

menunjukkan bahawa panel yang mempunyai peratus berat pengikat paling tinggi 

mempunyai ketumpatan dan  ketidaklurusan liang yang tinggi tetapi keliangannya 

kurang . Keliangan yang optimum, 0.94 diperolehi dari panel yang dicampur dengan 

10% Latex.  Pada umumnya, Arenga Pinnata  mempunyai ciri-ciri penyerapan bunyi 

yang baik dari frekuensi pertengahan ke frequency tinggi, ia itu dari 2000 Hz hingga 

5000 Hz.  Penyerapan bunyi yang paling baik diperolehi dari panel yang dicampur 

dengan 10% Latex, di mana pekali penyerapan maksimum (α) adalah 0.96 pada 3000 

Hz. Nilai purata pekali pengurangan bunyi (NRC) semua panel spesimen ialah 0.40.  

Nilai ini menunjukkan bahawa panel-panel Arenga Pinnata adalah merupakan bahan 

penyerap bunyi yang baik. Bagaimana pun, panel Arenga Pinnata didapati 

merupakan penebat yang tidak baik kerana kehilangan hantaran bunyi yang optimum 

(STL) hanyalah 9.37 dB diperolehi dari panel yang dicampur dengan 15% 

polyurethane pada 5000 Hz. Oleh kerana itu, panel Arenga Pinnata sesuai digunakan 

untuk mengurangi gema di dalam bilik.  Penyerapan bunyi di dapati meningkat 

dengan meningkatnya keliangan dan berkurang dengan meningkatnya ketumpatan - 

ketidaklurusan liang.  Oleh itu, Serat Arenga Pinnata didapati boleh digunakan 

sebagai panel komponen  akustik.  Selain dari itu, panel Arenga Pinnata juga adalah 

tahan lasak yang boleh merintangi air, haba dan api. Ianya sesuai digunakan sebagai 

penebat haba.   
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1  Research Background 

 
 
The increase in population has consequently contributed in increasing the noise 

problem of the world, recently.  Noise as undesirable sound is involved in one of the 

most dangerous pollution.  Expansion of modern industrial operation and 

transportation such as aircraft, train, cars or buses are the main causes of noise 

problem in urban areas.  In addition, human daily activities have great contribution in 

generating noise levels that can annoy to other people.   

 The effect of noise on people have been widely published, whether 

physiological or psychological effects (Atmaca et al., 2005).  The psychological 

effect is related to emotional annoyance, e.g. eager, insomnia, fear, and stress (Saeki 

et al., 2004).  The physiological effect is related to human body, e.g. hypertension, 

cardiac disease, colitis, headache, dizziness, and the worst are hearing loss 

(Blomkvist et al., 2005).  Both psychological and physiological effects have been 

hypothesized caused by high noise level exposure in a long period.  Owing to the risk 

affected on people, noise control is highly required to create acoustically pleasing 

environment.  Noise cannot be destroyed but it can be broken down into acceptable 

level for human ear. 

 In any circumstances, noise may be controlled at any of these elements: 

source, path, and receiver, as listed in Table 1.1.  It is essential to treat at least one of 

these elements.  The source is the element that directly responsible for sound 

generation.  The path covers sound propagation media such as air, water or solid 

material, in where sound wave reacts with as they travel from the source to the 
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receiver (Hansen and Goelzer, 2006).  Here, the receiver is where all the sound 

generated was received.    

 

Table 1.1: Noise Control Approaches at Source-Path-Receiver (Rossing, 2007) 

 

Control at the source Control in the path Control at the receiver 

 

Maintenance 

Avoid Resonance 

Relocate source/space planning 

Remove noise source 

Use quitter model 

Redesign source to be quitter 

 

Enclosure 

Barriers 

Mufflers 

Absorptive treatment 

Vibration isolation 

Active noise control 

 

Relocate listener 

Enclosure listener 

Hearing Protection 

Masking 

 
 
 The source-path-receiver model of noise control was first recommended by 

Bolt and Ingard in 1965 (Rossing, 2007).  This model has been approved as a very 

useful way to represent noise problems.  The most effective one to control the noise 

is by treating the noise source directly.  It consequently helps to reduce noise level at 

the receiver.  However it is not always feasible to be implemented, in practical.  

Maintenance factors such as redesign, redevelop, retool and also costs should be 

taken into consideration.  Control noise at the receiver is the least concern since each 

receiver must be treated individually (Kutthruf, 1991).  Noise control option is 

limited by controlling the transmission path by using acoustic materials, in this case 

sound absorbing material (Kidner and Hansen, 2008).   

 Sound absorbing material is effective in reducing noise level within the space 

by converting sound wave into heat.  Various sound absorbing materials with variety 

of colours, shapes, and sizes are already in the market places.  They are not only 

providing the desired acoustical properties but also thermal conductivity and 

flammability.  Most of available sound absorbing materials are fibrous materials.  

Conventionally, synthetic fibers such as fiberglass, glass wool or rock wool are 

chosen as raw material.  These materials offer good acoustical performance 

nevertheless they are quite expensive and are not sustainable (Nick et al., 2002).  The 

environmental concerns over the use of synthetic fiber for acoustical material have 

enhanced the demand for an alternative material.  For that reason, some researchers 
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showed their great interest in developing alternative sound absorber from recycled 

materials, such as textile, plastics, foam, or rubber (Paulain et al., 2006; 

Stankevicious et al., 2007 and Zhou et al., 2007).  Even products made from recycled 

material are welcomed, it is not correlated with ecological issue that required low 

cost and environmentally friendly material.  End of life disposal strategies and 

environmental friendly technologies for their recycling become a great concern of 

material development.  Indeed, as acoustical panel applied for interior finishes, the 

performance involving durability as exposed to typical environmental condition, 

water and extreme temperature, are important of considerations. 

 
 
 
 
1.2  Problem Statement 
 
 
Regarding to environmental concerns, material developer has looking for natural 

fiber.  The low cost, abundance, weightless, and biodegradable makes natural fibers 

an attractive material considered for sound absorbers (Zulkifli et al., 2010).  Several 

researches and investigations on natural fibers for sound absorbing material 

development have been reported.  It includes the utilization of bamboo (Kai, 2005), 

kenaf (Tormos, et al., 2007), paddy straw (Mediastika, 2007; 2008), jute (Haryanto, 

2008), aspen-wheat- barley straw (Saadatnia, et al., 2008), coconut coir  (Zulkifli et 

al., 2008-2011), palm oil (Zulkifli et al., 2008), tea-leaf waste(Ersoy and Kucuk, 

2009), sugar-cane (Ismail et al., 2010), rami (Chen et al., 2010), and jute felt (Fatima 

and Mohanty, 2011).  The main significant findings with these natural fibers are due 

to its superior to synthetic fiber with better electrical resistance, mechanical, thermal 

and acoustical properties.  Therefore, natural fibers can be considered as a good 

potential replacement to substitute commercially synthetic-product based on 

advanced material manufactures (Joshi et al., 2004).  On the other hand, natural fiber 

panel has poor durability properties when expose to such environmental condition.  

Therefore, a material with high strength and durability is obviously needed. 

Arenga Pinnata fiber, known as ijuk, is a tough-black-fiber that directly 

obtained from the trunk of sugar palm.  Since last decade, ijuk has been extensively 

used for a number of products such as broom, brushes, mat, water filter, decoration, 

rope, roof, and many others (Mogea et al., 1991).  The attractive features of Arenga 
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Pinnata fibers are low cost, strong and durable in any typical environment condition 

such as wet, humid, and extreme temperature (Florido and de Mesa, 2003).  

Regarding to features offered, Arenga Pinnata fibers are appropriate for an 

alternative engineering material.   

Previous investigation by Sastra et al., (2005) confirmed that Arenga Pinnata 

fibers are applicable for composite material component.  Composite made from 

woven roving Arenga Pinnata fiber demonstrated high flexural strength.  

Furthermore, a single Arenga Pinnata fiber has moderate tensile strength that almost 

similar to coir, kenaf, bamboo and hemp fibres (in the range of 138.7 – 270 MPa).  

Arenga Pinnata fibre has high strain strength and flexible compared to others 

(Bachtiar et al., 2010).  Owing to its mechanical and physical properties, Arenga 

Pinnata fibers are flexible to be used in broadly engineering applications.  Very 

recently, Sarwidi (2011) stated that Arenga Pinnata fibers can be used as vibration 

insulator for vertically earthquake.  It is also used for sound proofing in theater and 

recording studio.  Unfortunately, there is lack of information on acoustical properties 

of Arenga Pinnata fibers.  Therefore, more research and finding on acoustical 

properties of Arenga Pinnata fiber must be identified.   

  
 
 
 
1.3  Research Questions 

 
 

Based on explanation above, some important questions are given: 

1. Is Arenga Pinnata fibers feasible to be applied for acoustical panel 

component? 

2. If so, what is their acoustical property of Arenga Pinnata panel? 

3. What is their physical property and how is its influence on acoustical 

properties of Arenga Pinnata panel? 

4. How durable is Arenga Pinnata panel as exposed to typical environmental 

conditions including water and extreme temperature? 
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1.4 Research Objectives 
 
 

The aim of this research is to investigate the feasibility of Arenga Pinnata fiber to be 

employed as acoustical panels component.  To achieve this aim, several objectives 

have been described as follows: 

1. To determine the acoustical properties of Arenga Pinnata fibers panel. 

2. To obtain the physical properties of Arenga Pinnata fibers panel and 

investigate its effect on its acoustical properties of Arenga Pinnata fibers 

panel. 

3. To identify the durability of Arenga Pinnata fibers panel as exposed to 

typical environmental conditions including water and extreme temperature. 

 
 
 
  

1.5  Scope of Research 
 
 

The scope of the study is limited to: 

1. The samples are made from Arenga Pinnata natural fiber reinforced binders; 

Polyurethane (PU), Urea Formaldehyde (UF), and Latex. 

2. The weight percentages of fiber and binder are 90%:10%, 85%:15%, 

80%:20%, 75%:25%, and 70%:30%. 

3. The physical properties determined are density, porosity, and tortuosity. 

4. The acoustical properties determined are sound absorption coefficient (α), 

noise reduction index (NRC), sound transmission loss (STL), and sound 

transmission class (STC). 

5. The durability properties determined are hardness, moisture resistant, water 

resistant, heat and fire resistant. 

 
 
 
  



6 
 

 
 

1.6  Thesis Outline  
 
 
This section gives a brief summary of the thesis layout.  The thesis is organized in 

five chapters with the following scopes.  Chapter one introduces the research topics, 

which includes background, objective and scope of research.  

 Chapter two gives a comprehensive literature review about the acoustical 

properties of material.  Definition, theory, and related work outcomes related to the 

research are elaborated in chapter two.  Two common methods, reverberation room 

and impedance tube method, often used to measure the acoustical properties is also 

explicated.    

Chapter three presents research methodology including material preparation, 

sample production, and experimental work.  Measurement techniques to evaluate 

acoustical properties of specimens presented in this chapter.        

The results of experimental work including physical, acoustical, and 

durability properties of panel reinforced with Arenga Pinnata fiber are presented in 

chapter four.  The influence of density, porosity, and turtuosity on acoustical 

properties of samples is discussed in this chapter.  The performance of panel 

including durability and resistance is also explained in detailed.   

Chapter five pointed out the conclusion of research.  Some further works or 

recommendations are also presented in this chapter.  
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CHAPTER 2 
 
 
 
 

LITERATURE REVIEW 
 
 
 
 

2.1 Introduction to Acoustics 
 

 
Acoustics is defined as the scientific study of sound, which revolves around the 

generation, transmission and effect.  Sound is generated by a vibrating surface 

causing pressure variations in an elastic medium that is called a wave (Hansen, 

2004).  The more elastic a substance, the better it is able to conduct sound waves. 

The best example is steel, which is highly elastic and an excellent sound conductor.   

Sound propagates in the air, water or building material with a certain 

velocity, normally 344 m/s in the air.  Two principal parameters must be aware of 

when dealing with any acoustics concerns that are frequency and wavelength.  

Frequency, f, is measured as the number of waves that occur per second and 

measured in terms of hertz (Hz).  Wavelength, λ, is the distance of wave propagation 

along the medium in one complete wave cycle.  These two measures express the 

nature of pressure variation in a medium that are experienced as sound in the brain.  

The human ear can detect sounds ranged from approximately 20 to 20,000 Hz but 

most sensitive in frequency range 500 Hz to 4000 Hz.  This upper limit tends to 

decrease with age.  Sound of frequencies below 500 Hz and above 4000 Hz cannot 

be perceived as sound in the ear but can be felt as vibration in human bodies.  

Frequency has inverse relationship to wavelength. They are related to each 

other through the velocity of sound, v, which points out the direction and time of 

sound travel to reach listeners.  Wavelength is increased as frequency decreased, and 

conversely as shown in equation 2.1.   
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f
v

=λ        (2.1) 

 

where,  f = frequency (Hz),  

λ = wavelength (m),   

v = velocity of sound (m/s). 

 
 

Besides, sound wave has amplitude properties, which is determine how far 

wave travel above and below the static pressure of the elastic medium they are 

traveling through are measured in decibels (dB).  The higher the decibel level, the 

higher the volume produces the loudness of a sound.  A jet airplane, for example, has 

amplitude of 140dB, while a human whisper is approximately 20dB.  For typical 

office environment, the amplitude of sound usually falls in the range of 40 and 60dB. 

When sound level exceed than 65 dB, the human ears take it as a noise (Crocker, 

1998).   

Noise as unwanted sound, is one of the most nuisances that decrease the 

quality of human life.  Noise control plays an important role in creating acoustically 

comfort environment.  In order to effort pleasing environment, noise should be 

broken down into acceptable level to human ears. The simplest way in reducing 

noise is by treating the noise propagation, by means of putting the acoustical material 

between source and receiver (Arenas and Crocker, 2010).   

Four basic principles can be employed to reduce noise in the propagation path 

those are noise isolation, noise absorption, vibration isolation and vibration damping.  

It depends on where the noise generated.  If the noise is airborne generated from 

noisy environment, insulation treatment by means of using barrier is required.  If the 

noise is structure airborne generated from structure vibration, vibration isolation or 

vibration damping is needed.  If the noise is generated within the space, usually 

reverberations and echoes, absorptive treatment is required.  Reverberation is the 

undesirable effects of sound reflection by hard, rigid and interior surfaces within the 

room.  Echo is repetition of the original sound caused by distinct reflections of long 

delay.  Sound absorption treatment is an effective noise control solution for echo and 

reverberation in small room, where the intelligibility is important (Long, 2006).  

 



 

 

2.2 Sound Absorption

 
 
Sound absorption is defined as incident sound

when the wavelength of sound waves that strikes on a surface is smaller than 

dimensions of the materials surface.  Sound energy is dissipated into small number of 

heat as waves bounce around within the material 

In large auditorium, the echo in audience areas near to the stage can be 

optimally reduced by adding sound absorption material at rear wall.  Figure 2.1 

illustrates room condition with and without sound absorbing treatment.  Here, 

computer acts as sound source while computer operator and worker act as receiver.  

In the room with no acoustical treatment, the computer operators hear sound from the 

computer directly (direct sound).  On the other hand, office workers hear reflected 

sound from ceiling, floor, and walls.  
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computer directly (direct sound).  On the other hand, office workers hear reflected 

rom ceiling, floor, and walls.   
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ensure proper intelligibility of speech.  Figure 2.2 give another example of effect of 

sound absorbing material addition within noise spaces.     
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2.3  Sound Absorptive Materials 

 
 
Sound absorbing materials are a passive medium where incidence sound is converted 

into heat.  It is extensively used to reduce noise level in any industrial operation 

(Sagartzazu et al., 2008).  In general, there are three common types of sound 

absorbing materials used in reducing noise.  They are membrane resonator, 

Helmholtz resonator and porous absorber.   

i. Membrane Resonators are usually solid, non-porous, and non-rigid or 

perforated with cavity behind them.  Material like thin wood paneling over 

framing, lightweight solid ceilings and floors and other large surfaces are 

experienced of resonating in response to sound.  Often, it is used in room 

designed with special low frequency noise problem such as for music to 

balance the natural high frequency absorption. 

 
ii. Helmholtz Resonators is typically described like a bottle that consists of an 

enclosed air volume connected to the room by a narrow opening (Xu et al., 

2010).  Helmholtz resonators are widely used to achieve adequate noise 

absorption at lower frequencies (Kim and Kim, 2004).  

 
iii. Porous Absorbers are extensively used in the noise control engineering 

(Chao and Jiunn, 2001).  Most of available porous absorbers are fibrous 

media.  Fibrous material is considered as a composites medium in which the 

fibers are suspended in air under certain binding forces (Sides et al., 1971).  

Foams, fabrics, carpet, and cushions are examples of porous absorbers.  

These are commonly composed of cellulose or mineral fibers that guaranteed 

high acoustic absorption and fireproof.  

 
 

Different absorbers have different sound absorption characteristics for 

different frequencies.  Figure 2.3 demonstrates the sound absorption characteristics 

of each absorber.  Membrane resonators effectively absorb at lower to mid frequency 

range.  Helmholtz resonators are effective at lower frequency but focus in very 

narrow band of frequencies.  Porous absorbers effective absorb at high frequency 

range (Cox and Antonio, 2004).  Thus, when sound absorption treatment is required 

as solution for noise problem within the room, the material chosen must be proper 
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2.4 Natural Fibrous Absorbers 
 
 

Natural fiber is fiber that directly obtained from an animal, mineral, or vegetable 

source.  The fibers are usually freed from the stalk by a retting process (Frankovich, 

2008).  Numerous studies to investigate natural fibers for sound absorbing material 

have been done.  Xu et al., (2004) investigated sound absorption properties of kenaf 

core fiber using impedance tube method.  Allesandro and Pispola (2005) did the 

evaluation of the sound absorption performances of kenaf as innovative sustainable 

fibrous materials using reverberation method.  Additionally, Tormos et al., (2007) 

proposed an empirical model to determine absorption behaviour of absorbent 

materials based on kenaf.  Likewise, Ramis et al., (2010) investigate the sound 

absorption of material based kenaf using the same method, empirical model.  Their 

results demonstrated that materials based on kenaf have good sound absorption and 

suitable for thermal insulation and sound absorbing material.  They are good sound 

absorber at higher frequency band.  According to Arenas and Crockers (2010), 

acoustical materials made of a mix of natural kenaf fibers and polyester are currently 

available commercially. 

Composite panel made from jute and ramie fiber, were found demonstrated 

good sound absorption at high frequencies.  The maximum sound absorption 

coefficient reached out at 4000 Hz from jute fiber and at 5000 Hz from ramie fiber 

(Sabri, 2007).  Single layer panel from paddy husk sodium silicate performed good 

sound absorption in high frequency range (Fahmi, 2006).  Moreover, paddy straw is 

viable for acoustical panel (Mediatika, 2007).  It has large hollow space (porosity) 

allows sound to propagate inside it (Mediastika, 2008).  In addition, the acoustic 

board made of aspen particles with different percentage of wheat and barley straw 

notified that no significant difference on sound absorption coefficient of wheat and 

barley straw.  Both straws demonstrated optimum sound absorption at 2000 Hz.  

Increasing in straw percentage has increased sound absorption coefficient values 

(Saadatnia et al., 2008).   

Several studies reported that coir fiber is suitable for sound absorbing 

material (Nor et al., 2004).  Multi-layer coir fiber panel contributed to increase the 

sound absorption coefficient in a wide range of frequency (Zulkifli et al., 2008).  The 

coir fiber with the perforated panel gives higher sound absorption coefficient (α) for 

the lower frequencies range from 800 Hz until 1800 Hz but lower at higher 
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frequency.  The sound absorption coefficient (α) for coir fiber with perforated panel 

is around 0.70-0.80 for the frequency range of 1000 to 1800 Hz (Zulkifli et al., 

2009a).  Later on, Zulkifli et al., (2009b) compared the acoustical properties of 

composite based coir fibers and oil palm treated with Polyvinyl Acrylic (PVA).  

Composite with oil palm fiber showed higher sound absorption than coir fiber, but in 

average both composite panels have a high potential to be used as a sound absorber 

materials.  As a natural material, tea-leaf fiber-waste was tested and demonstrated 

good absorption properties than polyester and polypropylene based non-woven fiber 

material (Ersoy and Kucuk, 2009).  Acoustic board made from Bagasse also show 

good sound absorption properties at high frequency (Ismail et al., 2010).  At lower 

frequency, sound absorption of material can be improved by giving some air gap, air 

back and perforated layer with cavity behind them, (Zulkifli et al., 2010; Ayoub et 

al., 2009; Fouladi et al., 2010). 

Very recently studied by Fatima and Mohanty (2011) concluded that 

composite from jute felts has higher sound absorption than fiber felts.  The 

absorption properties of sound-absorbing materials made of these fibers can be 

similar to those made from minerals (Chen et al., 2010).  Those results show that 

natural fiber composites are likely to be advanced to glass fiber composites in most 

cases for the following reasons: 

i. Natural fiber production has lower environmental impacts compared to glass 

fiber production. 

ii. Natural fiber composites have higher fiber content for equivalent 

performance, reducing more polluting base polymer content. 

iii. In auto application, the lightweight natural fiber composites improve fuel 

efficiency and reduce emissions in the use phase of the component. 

iv. Natural fiber reported provides good thermal and noise insulator (Badri and 

Amin, 2006).    

 
 
Though many advantages of using natural fibers for composites, they also 

have some disadvantages.  Frequently, natural composites have lower durability 

when exposed to certain environmental condition.  They have lower strength 

properties, high moisture absorption that causes fiber swelling.  Arenga Pinnata fiber 

is one of natural fiber that has high naturally strength and durability.   
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2.4.1 Arenga Pinnata Fiber 
 
 
Arenga Pinnata fiber, known as Ijuk, is the fibers produced from sugar palm. Sugar 

palm is one of the oldest cultivated plants in Asia.  Geographically, it distributed in 

all of tropical South and Southeast Asia countries, from India to Guam and from 

Myanmar to Nusa Tenggara Timur in Indonesia.  Typically, it grows close to human 

settlements where anthropochoric breeding plays a major role.  It is a fast growing 

palm that reaches maturity within 10 years.  It has become an enduring match 

throughout the world and a most economically important plant in Asia.  Sugar palm 

is one of the most diverse multipurpose tree species in culture.  Almost of all parts of 

the tree is daily utilized, since the last decade (Mogea et al., 1991).  Table 2.1 lists 

the utilization of sugar palm.  

 
 
Table 2.1: The utilization of Arenga Pinnata (Mogea et al., 1991) 

 

Part of Sugar Palm Utilization 

 
Root 
 
 

Stem core 

Pitch of leaf’s rachis 

Young leaves 

Leaflet midrid 

Fruit 

Endosperm of unripe 

Flower 

Old woody leaf bases 

Timber 

 
Hair of base of the leaf  Sheaths 

 
Tea to bladder stones, insect repellent, post for pepper, 
boards, tool handles, water pipes, musical instruments like 
drums, and, Erosion control 

Sago, fibers 

Drinking cup 

Cigarette paper, salads 

Brooms, baskets, meat skewers 

Sap tapped for fresh drink, wine, vinegar, and palm sugar 

Kolang kaling (cocktail) 

Source of nectar for honey production 

Biofuel 

The very hard outer part of the trunk is used for barrels, 
flooring and furniture. 

Fire ignition 

 

 
The most important product of sugar palm is sugar.  Sugar palm is more 

productive four to eight times than sugar cane.  Another important product of sugar 

palm is ijuk (Arenga Pinnata fiber). 
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(ii)  Previous Study on Arenga Pinnata Fiber 

 
 
Several investigations have been done to investigate the potentiality of Arenga 

Pinnata fibers.  Sastra et al., (2005) investigated the viability of Arenga Pinnata 

fibers to be applied for composite material.  The composites were produced from 

woven roving, long, and chop random fibers reinforced with epoxy resin.  The 10 wt. 

% woven roving fiber content demonstrated the highest flexural strength 

(108.15MPa) and Young’s modulus (4421.8MPa) compared to chop and long fiber.  

It means that Arenga Pinnata fibers are applicable for composite material component 

overall.  

Furthermore, Leman et al. (in Ticoalu et al., 2011) investigated the tensile 

strength of Arenga Pinnata fiber reinforced composite.  The fibers (chop fiber) were 

treated in both fresh and seawater for 30 days.  It found that both freshwater and 

seawater treatment contribute to the improvement of the tensile strength of the 

specimens up to more than 50%.  Otherwise, Bachtiar et al., (2008) did alkali 

treatment on the fiber.  The alkali treatment was also demostrated significant tensile 

strength.  Furthermore, Bachtiar et al., (2010) identified the physical-mechanical 

properties of single Arenga Pinnata fiber.  The results obtained were compared with 

other fiber, as shown in Table 2.2.   

 
 
Table 2.2: Physical-Mechanical of Arenga Pinnata (Bachtiar et al., 2010) 
 

Natural Fibers Density, 
g/cm3 

Tensile 
Stregth, 

MPa 

Young 
modulus, 

GPa 
Strain, % Diameter, 

µm 

 
Bamboo 

Caurana 

Coir 

E-Glass 

Hemp 

Kenaf 

Jute 

Arenga Pinnata 

 
0.6-0.8 

1.33 

1.25 

2.55 

1.48 

1.4 

1.18 

1.29 

 
200.5(7.08) 

665-1404 

138.7 

1800-3000 

550-900 

215.4 

393-773 

190.29(46.77) 

 
 

20-36 

6 

72-83 

73 

13-17 

26.5 

3.69 (0.54) 

 
10.2 

2-3 

10.5 

3 

1.6 

1.18-1.31 

1.8 

19.6(6.7) 

 
 

49-100 

396.98 

8-14 

 

 

200 

99-311 
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As seen in Table 2.2, single Arenga Pinnata fiber showed the moderate 

tensile strength that almost similar to coir, kenaf, bamboo and hemp fibres (in the 

range of 138.7 – 270 MPa).  The strain of Arenga Pinnata fibre gave the highest 

value compared to others.  Arenga Pinnata fibre is more flexible than the other 

natural fibers.  Those results showed that Arenga Pinnata fibre are applicable for 

polymer composites component.   

Recently, Ticoulu et al., (2011) investigated the mechanical properties of 

Arenga Pinnata panel reinforced polyester resin.  The study reported that 

unidirectional Arenga Pinnata fibers/polyester composites have the highest tensile 

strength, whereas, the woven roving fibers/polyester composites have the highest 

flexural strength.  Owing to chemical, mechanical and physical properties, Arenga 

Pinnata fibers are flexible to be used in wide applications.   

Sitepu et al., (2006) investigated the feasibility of using Arenga Pinnata fiber 

based composite for nuclear radiation shielding.  The panel was radiated by Gamma 

(γ) and Beta (β) ray.  Gamma (γ) ray was generated from Co-60 whereas Beta (β) ray 

was generated from Sr-90.  The results found that composite with optimum Arenga 

Pinnata fibers content established higher radiation absorption coefficient than 

aluminum.  Thus, Arenga Pinnata based composite has the potential to replace the 

aluminum that recently used as radiation shielding.  In this research, the feasibility of 

using Arenga Pinnata fibers for acoustical panel is investigated.   

 
 
 
 

 
2.5 Mechanism of Sound Absorption in Fibrous Absorbers 
 
 
The sound absorption of fibrous material has been studied for several decades.  

According to Kinsler (1980), sound absorption is a result of dissipating incident 

sound into thermal energy.  Fibrous absorber is a dissipative media, which acts as a 

transducer, converting sound incident wave into thermal energy as the results of 

particular process related to viscosity, thermal conductivity, and molecular relaxation 

(Crockers, 1998).   

When a sound wave impinges the surface of the absorber, some sound wave 

would be in motion within absorber.  The motion of sound wave sets the fibers into 
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vibration.  The fibers vibrations allow air to flow in the interstices between fiber and 

particles.  The air motions through narrow constrictions cause some energy loss 

(Long, 2006).  The losses of sound energy indicate some sound energy is absorbed 

within material through dissipation process.  Dissipation is accounted for by friction 

due to the relative velocity between air and fibers as results of viscous boundary 

layer effects.  This effect takes account to the high frequency losses.  The velocity of 

sound in porous absorber is lower than in the air.  A lower sound velocity within 

porous material also contributes to absorption. 

As well as viscosity, energy is absorbed through thermal losses as sound 

propagates through these small orifices within fibrous material.  Since thermal 

equilibrium is restored fast, fluctuation in pressure and density are isothermal.  

Increasing temperature in the gas has transported heat away from interaction site to 

dissipate.  In air-filled sound absorbing materials, the frequency dependence of the 

compressibility varies from isothermal at low frequencies to adiabatic in the high-

frequency regime (Cortis, 2001).  At lower frequency, absorption effect caused by 

fibers that relatively efficient conductor of heat.  In addition, dissipation can be a 

result of scattering and vibration of the fibers.  The fibers of the material wipe 

together up under the influence of the sound waves (Arenas and Crocker, 2010).  

However, dissipation due to scattering is neglected; therefore, it must be assumed 

that the wavelength is large relative to the pore size (Biot, 1962).   

 
 
 
 
2.6 Physical Properties Influencing Sound Absorption of Fibrous Material  

 
 

Typically, fibrous materials are excellent in absorbing noise at high frequency range.  

The effectiveness of Arenga Pinnata depends upon its physical and microstructure 

properties such as density, porosity, and tortuosity.  Different methods have been 

developed in order to characterize these parameters.  All of these parameters are 

potentially measurable or can be calculated by non-acoustic means (Ballagh, 1996).  

Some of them are based on the physical and mathematical definition of the 

parameters.   

 
 
 



 

 

2.6.1 Density (ρ) 
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with the sound absorption behavior of the material.  Materials with different densities 

tend to have different sound absorption properties.  A study by 

reported that density of porous material would considerably influence the sound 

absorption coefficient of the acoustic materials.  It was figured out in Figure 2.5. 
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Density of a material is often considered as one of the important factor when dealing 

with the sound absorption behavior of the material.  Materials with different densities 

tend to have different sound absorption properties.  A study by 

reported that density of porous material would considerably influence the sound 

absorption coefficient of the acoustic materials.  It was figured out in Figure 2.5. 
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Density of a material is often considered as one of the important factor when dealing 

with the sound absorption behavior of the material.  Materials with different densities 

tend to have different sound absorption properties.  A study by Xu et al., (2004) 

reported that density of porous material would considerably influence the sound 

absorption coefficient of the acoustic materials.  It was figured out in Figure 2.5.  
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2.6.2 Porosity (ø) 
 
 

Porosity is one of the important factors that should be considered while studying 

sound absorption mechanism in porous material.  Porosity of absorbers consist 

frictional drag; thereby the sound energy propagated is converted to heat.  Porous 

materials are excellent in sound absorption and good heat insulator.  Its open pores 

allow restricted airflow through the material thus absorbing sound and also 

preventing efficient heat exchange.  

For typical absorbers such as rock wool or mineral wool, the porosity 

to unity, and so the value is often assumed rather than measured (Rossing, 2002).  

The influence of porosity on sound absorption coefficient of material is illustrated in 

Figure 2.6. 
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(1999) plotted the influence of tortuosity on sound absorption coefficient in Figure 
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Tortuosity is a measure of the “non-straightness” of the pore structure of the porous 

For fibrous materials, tortuosity (α∞) is approximately unity while for 

granular materials, such as soil, α∞=2.0 (Cox and Antonio, 2004).  Sakagami, 

(1999) plotted the influence of tortuosity on sound absorption coefficient in Figure 
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2.7 Acoustical Properties of Fibrous Absorber 
 
 
In principle, all building materials have some acoustical properties that will reflect, 

absorb, or transmit the sound striking them (Bilova and Lumnitzer, 2010).  When 

sound wave interacts with surface of a wall or ceiling, a part of energy is reflected, 

another part is absorbed by the wall and the other part is transmitted through the 

wall.  Figure 2.8 shows the interaction of incident sound wave on material surface.  

The amounts of energy going to reflection, absorption, or transmission are depending 

on the acoustical performance of the material surface.   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Interaction of Sound Wave on Materia
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2.7.1 Sound Absorption Coefficient (α) 

 
 
Sound absorption coefficient (α) is a key feature when determine the performance of 

sound absorbing by a material.  It is defined as the ratio of sound energy absorbed by 

a material to incident sound energy striking them, as expressed in equation 2.5.  

 
 

2.5 

 

                                             
 
Where, α = sound absorption coefficient, 

 Ii = incident sound energy, and 

 Ia= sound absorbed.   

 
 
Typically, sound absorption coefficient is a unitless quantity, ranging 

between 0 and 1.0.  Value of 0 means all of incidence sound energy is reflected or 

transmitted, whereas, value of 1.0 means all of incidence sound energy is absorbed.  

In facts, value of 0 and 1.0 are ideal values that do not exist since all material will 

reflect, absorb, or transmit some sound striking those (Cox and Antonio, 2004).  For 

an example, an acoustical material that suspended on wall has a sound absorption 

coefficient (α) of 0.45 at 500 Hz.  It shows that this material absorbs of 45 % incident 

sound striking it and the rest of 55% incident sound energy is reflected back into the 

space or transmitted through the wall.   

Sometimes, certain materials quote sound absorption coefficient greater than 

1.0.  This is commonly resulted from reverberation room method measurement that 

attribute to edge effects or diffraction effects caused by lack of diffuse field in the 

measuring room.  If any sound absorption coefficient value is greater than 1.0, it 

should be taken as 1.0 in any consideration or calculation (Long, 2006; Rossing, 

2007).   

 Table 2.3 presents sound absorption coefficient of common commercial 

absorbers in human speech frequency.  For typical cases, it is convenient to use a 

single number to describe sound absorption of material denoted as noise reduction 

coefficient (NRC).  

iI
Iαα =
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