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Abstract

Trajectory tracking with high accuracy is a very
challenging topic in direct drive robot control. This is
due to the nonlinearities and input couplings present in
the dynamics of the arm. This paper deals with the
tracking control of a class of direct-drive robot
manipulators. A robust Proportional-Integral (PI)
sliding mode control law is derived so that the robot
trajectory tracks a desired trajectory as closely as
possible despite the highly non-linear and coupled
dynamics. The controller is designed using the
decentralized approaches. Application to a two degree
of freedom direct drive robot arm is considered.

1 Introduction

Variable Structure Control (VSC) with Sliding
Mode Control (SMC) has been widely applied to system
with uncertainties and/or input couplings [1]. The idea
of the SMC is simple; first the desired system dynamics
is defined on sliding mode surface. Then, controller is
designed to drive the closed loop system to reach the
sliding mode surface. In other words, the desired
dynamics of the closed loop system is defined first and
the state trajectory of the system is then forced to slide
on this surface. This can be done through an appropriate
switching of the control structures such that the system
state will be attracted and stay there afterwards.

When a system is in the sliding mode, its dynamics
is strictly determined by the dynamics of the sliding
surfaces and hence insensitive to parameter variations
and system disturbances. Nevertheless, the system
posses no such insensitivity properties during the
reaching phase. Therefore insensitivity cannot be
ensured throughout the entire response and the
robustness during the reaching phase is normally
improved by designing the system in such a way that the
reaching phase is as short as possible [1].

A variety of the SMC known as Integral Sliding
Mode Control (ISMC) has also been reported in the
literature [2]. Different from the conventional SMC
design approaches, the order of the motion equation in

ISMC is equal to the order of the original system, rather
than reduced by the number of dimension of the control
input. Moreover, by using this approach, the robustness
of the system can be guaranteed throughout the entire
response of the system starting from the initial time
instance.

In this paper, the problem of robust tracking for
robot manipulator is considered. On the basis of sliding
mode control theory, a class of VSC controllers for
robust tracking of robot manipulators is proposed under
decentralized approaches. It is shown theoretically that
for system with matched uncertainties, the tracking error
is guaranteed to decrease asymptotically to zero and the
system dynamics during the sliding phase can easily be
shaped up using any conventional pole placement
method.

2  Problem Formulation

Consider the dynamics of the robot as an uncertain
composite system S defined by an N interconnected sub-
systems S, ,i=12,.,N is  with each sub-system

described by
S, 0 xi(1) = [A +AA (D)]x, (1) + [ B, + AB,(1)]u, (1) )

+ ZN: [A, +AA, (D]x, (1) + ZN: (B, + AB,()]u, (1)

j=1j#i j=lj#i

n. m.
where x;(eR ' u;()e R ' represent the state and

input of sub-system S, respectively. A;, B;, A; and B;; are
constant nominal matrices. AA;, AA;, AB; and ABj;
representing uncertainties present in the system,
interconnection, input and coupling matrices,
respectively.

The following assumptions are introduced:

(1)  Every state vector x() can be locally observed;
(2)  There exist continuous functions H,(1), H;(1), E(t)
and E;(?) such that for all X e RY and all £:

AA; ()= BiH (1) [H; ()] < a;

AA; ()= BH ()5 [H ;0] <
AB;(t)=B,E.(t) : ||E; ()| < By
AB (1) = B,E; (1) ; ||Ej (,)"S B;

(@)
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(3)  There exist a Lebesgue function Qi (t)e R:

xai (1) = Aix (1) + B,Q, (1) 3)
where A; and B; are the i-th subsystem nominal

system and input matrices, respectively;
(4)  The pair (A;, B;) is controllable.

The state vector of the composite system S is defined as
X(0) =[xl (0, x7 e x5 0] 5 x, ()€ R )
Let X ,(t)e R"™" be the desired state trajectory:

X, 0 =[x (1), x5, 0 - 0] s x, ()€ R” (5)
Define the tracking error, z,(f) as
zl.(t)=xl.(l‘)—xdl.(t) (6)

In view of equations (2), (3) and (6), equation (1) can be
written as

;;(z) = [Ai + B"Hi (t)]zl. (t)+ BH ; (z)xdl. (1)
- B.Q,(t)+[B, + B,E,(")]u, (t)

N
A.+B.H. (Dl
+j:1?j¢i[ U+ ; U(I)]Xj(f)
N
% B +BE (Ol () 0
j=tj=i Y o

Define the local PI sliding surface for S; as
0,(t) = Ciz,( = [[C,A, + C,;B,K 1z, (v)d7 ®)
0

where C,e R"™™ and K,e R Xt are constant
matrices. The matrix K; satisfies

A (A, +B,K,)<0 ©))
and C; is chosen such that C;B; is nonsingular. For this
class of system, the sliding manifold can be described as

o(t)y=[o/,05,..0,] (10)

The control problem is to design a decentralized

controller for each sub-system using the PI sliding mode
(17) such that the system state trajectory X,(¢) tracks the
desired state trajectory X (#) as closely as possible for
all 7 in spite of the uncertainties and non-linearities
present in the system.

3 System Dynamics During Sliding Mode

Differentiating equation (8) and substitute equation (7)
into it, and equating the resulting equation to zero gives
the equivalent control, u,,(?):

Uy () =~11, +E, (O] {(H, (1)~ K,)z,(t)
—Q, (1) +H,(t)x, (1)

N
+ D (C,B,)"'C,[A; +B,H (Dlx, (1)
Py (11)

+ ﬁ (C,B,))"'C,[B, +B,E;()lu, (1)}

j=l i

The system dynamics during sliding mode can be found
by substituting the equivalent control (11) into the
system error dynamics (7):

20 =14, + B,K, 1z, ()

+[1,, - B,(C,B)"'C.1{ YA, +B.H,D]x, (1)

j=1, j#i

+ ZN:[BU. +B.E;(D]u; ()} (12)

j=1, j#i
Define P All, —B,(C,B,)"'C,] (13)
where P is a projection operator and satisfies the
following two equations [2]:

C,P,=0 and P B, =0 (14
In view of assumption (2), then it follows that by the
projection property, equation (14) can be reduced as

zi(t) =[A, + B,K,1z,(t) 15)
Hence if the matching condition is satisfied, the system
error dynamics during sliding mode are independent of
the interconnection between the subsystems and
couplings between the inputs, and, insensitive to the
parameter variations. Equation (15) shows that the error

dynamics during sliding mode can be specified by the
designer through appropriate choice of the matrix K;.

4 Sliding Mode Tracking Controller
Design

The composite manifold (10) is asymptotically
stable in the large, if the following hitting condition is
held [3]:

N
PACAGY
i=1

As a proof, let the positive definite Lyapunov function
be

V=2

Then v (¢) = i(o-lf’ ®)/|o, ([)H)&i (1) (8)
i=1

o) o) <0 (16)

x a7

Following the Lyapunov stability theory, if equation
(16) holds, then the sliding manifold ;) is

asymptotically stable in the large.

Theorem 4.2: The global hitting condition (16) of the
composite manifold (10) is satisfied if every local
control u,(f) of the error system (7) is given by :

u, (1) = ~(CB) "' [7ul|e: O+ o[ O + 73| O] (19)
+7,4|Q|ISGN (o,(1)) + &, (1)
where
a;|CB| +|CBK; (20)
7/'] > N
ta+gcal+ Yllcs,|+8.jcBnes)
j=1, j#i



5]

N
e,
J=1 j#i

N
+ llc;B,
Jj=1, j#i

CB,

+a,
> 21)
i2

{a+B)|cB, +B,c.B1cB)y

@;

N
+ 7
=L, i

N
+ ]
j=1, j#i

N
+ s,
J=L j#

(22)

Vs>

{0+ B)|CB,

c.B

Ji

+ﬂj[

¢B[1neB)

B

CB

C;B,

+5;

cs))
v, > 23)

{1+ 5)
Proof: See [4].

CB,

+,3ji

¢;B[1CBY

It is shown in [4] that the system (1) is stable in the
sense of Lyapunov if the system is control by the input
(19). The structure of the Decentralized Integral Sliding
Mode Controller is shown in Figure 1.

5 Simulation Example

Consider a two-link manipulator with rigid links of
nominally equal length / and mass m shown in Figure 2.
The dynamics of the manipulator is [5]:

[Tl]_ 2.351+0.168 cos(q,)  0.102+0.084 cos(¢5) [Zl]
7,17 10.102+0.084 cos(q,)  0.102 o b

fasgn(q,)

—0.168sin(q,)q, + b, + —0.084sin(q,)q,

49, |:1 i
0.084sin(q,)q, by + Je23END) [ 4>
4>
38.465 sin(q,) +1.8247 sin(q, + q,)
q (24)
118247 si : ls,]
. sin(q, +4g,)
X
Define
X(t)é[x] NG XX ‘xﬁ]T:[ql 4 4 9 @ %] (25
UMAl, u,] (26)
Then the plant can be represented in the form of
X (1) = A(X)X (t) + B()U (1) 27)
where,
[0 1 0 0 0 O] o 0]
0O 0 1 0 0 O 0 0
A= a4y ay A 0 a5 ay andB= by, by (28)
0O 0 0 0 1 0 0 0
0O 0 0 0 0 1 0 0
L% Y52 Gs3 0 a A | b, bsz_

the nonzero elements of matrices A and B are shown in
the Appendix.

Suppose that the bounds of the 8.(r) and é,.(;) are:
0°<0, <55, 05" <0, <150°s™, (29)

0'<0, <185, 0°s™ <0, <4385
It is assumed that each sub-system is required to track a
pre-specified cycloidal function of the form:

A.
6,0+ 2127 _in?™y,  0s<i<t (30)
2t T T
0.(7), <t
where A, =6,(z)-6,(0),i=12. In this example, the

6,)=

input trajectory data used are as follows:
Start time, #(0) = 0.0 s
Final time, T=10.0 s
Start positions, 6;(0) = 10 deg ; 6(0) =15 deg
Final positions, (1) = 50 deg ; 6 (t) = 60 deg

6 Results and Discussion

With the given bounds, the plant can be represented in
the form of equation (1). Each joint of the robot is treated as a
sub-system with the nominal value of A; Aj; B; and Bj; is
calculated as:

0 1 0 ] 0 1 0
A=l 0 0 1 [A,=0 0 1
~1046 —1.66 —4.55) |0 —0.081 —0.135

o o o1 r

A,=l0 0 0 |a,
0 —00034 0.1383

0 0 0
0 0 0
10974 0.0996 02913

0 0
B, = 0 |; B, = 0
0.55 1 0.934 |
0 0 ]

B, = 0 ; By = 0
-0.0179 —0.0365)

Using equation (2), the bounds of H{(#) and E(f) can be
computed:

|H, (1) <o, =9.838,
|H,,@)| < 0, =94715
|E @) <B, =0.0302
|E0)] <B), =0.8101

|, (0| < @, =0.0225;
|Fyy ()] < @y, =1032895
|E,0)| <B, =0.0021

|E, (1) <B,, =0.811

In this study, the gains are chosen as follows:

K, =[-10.8423 13.3527 1.7282]
HA +BK)=(-1-15-3};

so that



K,=[4.8175 9.5482 5.7435] so that
A(A, +B,K,)={~1,-1.5,—3}; and
C,=[25 15 1]land C,=[3 2 1]

Therefore, from equations (20)-(23):

¥, >6.0253y,, >4.1263 y,, >2.1853 y,, >0.3276
¥, >1.5837y,, >0.1006,7,, >0.0140, ,, >0.3105

For simulation purposes, two sets of controller
parameters are chosen:

Setl:

7,=0.5; 7,=05; »,=01 7,=0.04

Yo =4 7, =01 7,=00L »,=02

Set2:

=8 7,=6 ;=3 7,=045

v =10; %, =0.2; 7,, =0.02; ,, =0.9383

Set 1 contains the controller parameter selected to study
the performance of the system if equations (20)-(23) are
not met; while Set 2 contains the parameters satisfying
the condition imposed on the controller are met. It can
be seen that the tracking performance for both
subsystems when Set 1 parameters were used are
unsatisfactory (Figures 3a and 3b). The simulation was
run again but this time with the decentralized controller
parameter was supplied from Set 2 (Figures 3c and 3d).
As predicted theoretically, the tracking performance is
good for both subsystems.

6 Conclusions

Precise trajectory tracking is important in the robotic
control. In this project, a Decentralized Integral Sliding
Mode controller is designed and used to track the
desired trajectory of direct drive robot arm. It is shown
mathematically that the error dynamics during sliding
mode is stable and can easily be shaped-up using the
conventional pole-placement technique. Besides, the
system stability is also guaranteed during the reaching
phase. Application to a two degree of freedom direct
drive robot arm shows that this controller is a reliable
solution to a robust tracking problem of uncertain
dynamical systems.
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Figure 2: A configuration of 2 DOF Direct Drive
Robot Arm
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Appendix

Elements of the matrices A and Bhgh

a3l =

1.07/((-0.03-0.02c0s(x4))(0.1+0.08cos(x4))+1.96+

0.06c0s(x4))(-0.07(38.47sin(x;)+1.82sin(x;+x4))/x;-0.35

(38.47cos(x;)-3.65sin(x;)sin(x4)+3.65¢c0s(X ;) cos(x4))/x)+

(-0.04-0.03c0s(x4))/((-0.03-0.02cos(x4)) (0.1+0.08cos(x4))

+1.96+0.06c0s(x4))(-0.28sin(x+x,) /x;-0.71(-3.65sin(x,)

sin(x4)+3.65¢c0s(x;)cos(X4))/x;)

a32=

1.07/((-0.03-0.02c0s(x4))(0.1+0.08c0s(x4))+1.96+ 0.06c0s(x4))

(-0.16+0.01sin(x4)x5-0.49/x2+0.06c0s(x4) xs5)+(-0.04-

0.03 cos(x4))/((-0.03-0.02c0s(x,4))(0.1+0.08 cos(x4)) +1.96+

0.06c0s(x4))(-.007sin(x4)x2-0.12sin(x4))

a33 =

1.07/((-0.03-0.02c0s(x4))(0.14+0.08cos(x4))+1.96+

0.06c0s(x4))(-8.39-0.01cos(x4)+0.06sin(x4)+0.06sin(x4) X5)+

(-0.04-0.03c0s(x4))/((-0.03-0.02c0s(x4))(0.1+0.08cos(x4) )+

1.96+ 0.06c0s(x4))(-0.02-0.01cos(x4)+ 0.06sin(x4)X,)

a35=

1.07/((-0.03-0.02c0s(x4))(0.1+0.08c0s(x4))+1.96+0.06c0s(x4))

(0.01sin(x4)x5+0.03cos(x4)x5)+(-0.04-0.03cos(x4))/((-0.03-

0.02 cos(x4))(0.1+0.08cos(x4))+1.96+0.06c0s(x4))(-0.03-

0.27/xs)

a36 =

1.07/((-0.03-0.02c0s(x4))(0.1+0.08cos(x4))+1.96+

0.06c0s(x4))(-0.01-0.01cos(x4)+0.03sin(x4)+0.06 sin(x4)x2)-

7.99(-0.04-0.03c0s(x4))/((-0.03-0.02c0s(x4)) (0.1+0.08cos(x4))

+1.96+0.06c0s(x4))

b31 = 1.07/((-0.03-0.02c0s(x4))(0.14+0.08cos(x4))+1.96
+0.06c0s(x4))

b32 = (-0.04-0.03c0s(x4))/((-0.03-0.02cos(x4))(0. 1+
0.08cos(x4)) +1.96+0.06c0s(x4))

a6l =

(-0.07-0.06c0s(x4))/((-0.03-0.02co0s(x4))(0.1+0.08

€08(X4))+1.96+0.06c0s(x4))(-0.07(38.47sin(x;)+1.82

sin(X;+X4))/x,-0.35(38.47cos(x,)-3.65sin(x)sin(x,)+

3.65c0s(x;)cos(x4))/x1)-(-1.82-0.06c0s(x4))/((-0.03-2/95

€08(X4))(0.1+0.08co0s(x4))+1.96+0.06c0s(x4))(-0.2sin (X,

+x4)/x1-0.71(3.65sin(X;)sin(x4) +3.65¢c0s(X;)cos(X4))/X;)

a62 =

(-0.07-0.06c0s(x4))/((-0.03-0.02c0s(x4))(0.1+

0.08c0s(x4))+1.96+0.06c0s(x4))(-0.16+0.01sin(x4)X5-

0.49/x,+0.06c0s(x4)x5)-(-1.82-0.06c0s(x4))/((-0.03-

0.02c0s(x4))(0.1+0.08cos(x4))+1.96+0.06c0s(x4))

(-0.07sin(x4)x,-0.12sin(x4))

a63 =(-0.07-0.06c0s(x4))/((-0.03-0.02c0s(x4))(0.1+

0.08c0s(x4))+1.96+0.06c0s(x4))(-8.39-0.01cos(x4)

+0.06sin(x,4) +0.06sin(x4)xs)-(-1.82-28/475c0s(x4))/((-0.03-

0.02cos(x4)) (0.1+0.08cos(x4))+1.96+ 0.06c0s(x4) ) (-0.02-

0.01cos(x4) +0.06sin(x4)X5)

a6s =

(-0.07-0.06c0s(x4))/((-0.03-0.02co0s(x4))(0.1+0.08

€08(X4))+1.96+0.06c0s(x4))(1701/296875sin(x4)x5+14/475

c0s(X4)X5)-(-1.82-28/475c0s(x4))/((-0.03-0.02co0s(x4))

(0.140.08c0s(x4))+1.96+0.06c0s(x4))(-0.03-0.27/x5)

a66 =

(-0.07-0.06c0s(x4))/((-0.03-0.02co0s(x4))(0.1+0.08

c08(x4))+1.96+0.06c0s(x4))(-0.01-0.01cos(x4)+ 0.03

sin(x4)+0.06sin(x4)x,)+0.14(-1.82-28/475c0s(x4))/ ((-0.03-

0.02c0s(x4))(0.1+0.08c0s(x4))+1.96+0.06c0s(x4))

b61=(-0.07-0.06c0s(x4))/((-0.03-0.02co0s(x4))(0.1+

0.08c0s(x4))+1.96+0.06c0s(x4))



b62 =(1.82+0.06c0s(x4))/((-0.03-0.02c0s(x4))
(0.14+0.08cos(x4)) +1.96+0.06c0s(x4))



