Proceeding - book 1

:PERFORMANCE IMPROVEMENT OF BACK-PROPAGATION
- NEURAL NETWORK LEARNING ALGORITHMS BY
 INTRODUCING GAIN VARIATION OF ACTIVATION
| - FUNCTION

tract —We propose a method for improving the
formance of the back propagation algarithm by
introducing gain variation of the activation fimction. In

JSunction is directly influenced by a parameter referred
as ‘gain’. In this paper, the influence of the variation
.--of ‘gain’ on the learning ability of a neural network is
-analysed. Multi layer feed forward neural networks
 have been assessed. Physical interpretation of the
relationship between the gain value and the learning
_rate and weight values is given. Instead of a constant
- - ‘gain’ value, we propose an algorithm 1o change the
.. gain value adaptively for each node. The efficacy of the
- proposed method is verified by means of simulation on a
parity problem and classification problem. The results
show that the proposed method considerably improves
the learning speed of the general back-propagation
algorithm.

Keywerds: Back-propagation Neural Nenvorks, Gain.
Activation function, Learning rate, Training Efficiency

1. Introduction

We consider standard multi-layer feed forward neural

networks that have an input layer of neurons, a hidden
layer of neurons and an output layer of neurons, and in
that every node in a layer is connected to every other
node in the adjacent forward layer. The back-
propagation algorithm has been the most popular and
- most widely implemented for training these types of
neural network. When using the back-propagation
algorithm to train a multilayer neural network, the
designer is required to arbitrarily select parameter such
as the network topology, initial weights and biases, a
leaming rate value, the activation function, and a value
for the gain in the activation function. An improper
choice’ of any of these parameters can result in slow
- Convergence or even network paralysis where the
training process comes to a virtual standstill. Another
~problem is the tendency of the steepest descent
technique, which is used in the training process, to get
stuck at local minima.
In recent years, a number of research studies have
attempted to overcome these problems. Theses involved

a feed forward’ algorithm, the slope of the activation
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the development of heuristic techniques, based on studies
of properties of the general back-propagation algorithm.
These techniques include such idea as varying the
learning rate, using momentum, gain tuning of activation
function. Perantonis et. al. [1] proposed an algorithm for
efficient learning in feed forward neural networks using

-momentum acceleration. Kamarthi et. al. [2] presents a

universal acceleration technique for the back-
propagation algorithm based on extrapolation of each
focused on the use of standard numerical optimisation
techniques. Moller [3] explained how conjugate gradient
algorithm could be used to train multi-layer feed forward
neural networks while Lera et. al. [4] described the use
of Levenberg-Marquardt algorithm for training multi-
layer feed forward peural networks. However, most of
these methods are quite complex, require excessive
memory and are computationally very expensive.

In order to improve the performance of the back-
propagation algorithm an algorithm has been proposed in
this paper to change the gain value adaptively. It is
shown that changing the ‘gain’ value adaptively for each
node can significantly reduce the training time. In order
to verify the efficacy of the proposed method, and to
compare it with the general back-propagation algorithm,
we perform simulation experiments on a function
approximation problem using the sequential as well as
batch modes of training.

1.1 Effect of the gain parameter on. the

performance of a neural network
An activation function is used for limiting the
amplitude of the output of a neuron. It generates an
output vajue for a node in a predefined range as the
closed unit interval [0, 1] or alternatively [-1, +1]. This
value is a function of the weighted inputs of the
corresponding node. The most commonly used activation
function is the logistic sigmoid activation function.
Alternative choices are the hyperbolic tangent, linear,
step activation functions. For the j* node, a logistic
sigmoid activation function which has a range of [0, 1] is
a function of the following variables, viz.
1
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'o, Outputofthe] unit.

Wy Wclght of the link from unit i to unit _]

a,,; et mput activation function for the j* unit.
; bias for the j* unit.

c, gain of the activation function.

The value of the gain parameter,c,, directly
influences the slope of the activation function. For large
gain values (¢ >> 1), the activation function approaches a
‘step function’ whereas for small gain values (0 < ¢ <<
1), the output values change from zero to unity over a
large range of the weighted sum of the input values and
the sigmoid function approximates a linear function.

Most of the application oriented papers on neural
networks tend to advocate that neural networks operate
like a ‘magic black box’, which can simulate the
“learning from example” ability of our brain with the
help of network parameters such as weights, biases, gain,
hidden nodes etc. There are very few publications, or
textbooks, which give physical interpretation for various
parameters used in the network. Also, a unit value for
gain has generally been used for most of the research
reported in the literature but a few authors have
researched the relationship of the gain parameter with
other parameters used in back-propagation algorithms.
The recent results [5] show that learing rate, momentum
constant and gain of the activation function have a
significant impact on training speed. However, higher
values of learning rate and/or gain cause instability [6].
Thimm et. al. {7] also proved that a relationship between
the gain value, a set of initial weight values, and a
learning rate value exists. Looney [8] suggested to adjust
the gain value in small increments during the early
iterations and to keep it fixed somewhere around halfway

through the learning. Eom et. al. [9] proposed a method

for automatic gain tuning using a fuzzy logic system.

However, the authors have not come across
publications in the literature that have implemented
adaptive gain variation as proposed in this research
work.

2. The Proposed Method

In this section, a novel approach for improving the
training efficiency of back propagation neural network
algorithms is proposed. The proposed algorithm modifies
the initial search direction by changing the gain value
adaptively for each node. The following subsection
describes the algorithm. The advantages of using an
adaptive gain value have been explored. Gain update
expressions as well as weight and bias update
expressions for output and hidden nodes have also been
proposed. These expressions have been derived using

same principles as- used in denvmg weight updating

expressions.
The sequential mode of training requires an nnmedxate

* updating: of weights, biases and gains after the
‘presentation of training example whereas in the batch

mode of training the weight, bias and gain updation

_ terms are calculated and summed for all the training

.examples. In this paper, we only consider on the batch
mode training as in the batch mode training the weights,
biases and gains are updated after one complete

- presentation of the entire training set. An epoch is said to

be complete after the presentation of the entire training

_set. A sum squared error value is calculated after the

presentation of the training set and compared with the:
target error. Training is done on an epoch-by-epoch basis
until the sum squared etror falls below the desired target
value. The following iterative algorithm is proposed by
the authors for the batch mode of training. Weights,
biases and gains are calculated and updated for the entire
training set, which is being presented to the network. '
The following iterative algorithm is proposed by the
authors for the batch mode of training. Weight, biases
and gains are calculated and updated for each training
example, which is being presented to the network.

For a given epoch,
For each example,

Step 1 Calculate the weight and bias values using
the previously converged gain value.

Step 2 Use the weight and bias value calculated in
step (1) to calculate the new gain value.

Repeat steps (1) and (2) for each example on an epoch-
by-epoch basis until the error on the entire waining dara
set reduces to a predefined value.

The gain update expression for a gradient descent
method is calculated by differentiating the following
error term E with respect to the corresponding gain
parameter.

The network error E is defined as follows:
= ---Z(t,r 0,(0,,¢,))* 3)

For output unit, %“: needs to be calculated whereas for
Cx
hidden units. 9 “is also required. The respective gain
oc; ‘
values would then be updated with the following
equations.
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'merefore, ‘the gain update expression for the lmks
rinecting hidden nodes is:
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- Similarly, the wéight and bias expressions are calculated
‘as follows:

.The weight update expression for the links connecting to
output nodes with a bias is:

Awg =7, ~0,)0,(1~0,)c,0, - (10)

= Similarly, the bias update exprcss:ons for the output
nodes wouldbe
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hidden nodes is:
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Similarly, the bias update expressmns for the hidden
nodes would be:

Ag, ='{ch"’1&"1¢(“0&)(‘; =0, )]_cioi (1—01‘) - (13)
k

3. Results and Discussions
_ The performance criterion used in this research
focuses on the speed of convergence, measured in
number of iterations and CPU time. The benchmark
Problems used to verify our algorithm are taken from the
open literature. Four classification problems have been
fested including parity 7 bit, Wisconsin breast cancer,
Diabetes and IRIS classification problem. The
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re, the gam update expressmn for lmks.

The weight update expression for the links connecting to -

sﬁnulations have been carried out on a Pentium IV w1th'

3GHzPCDell,lGBRAMandusmgMATLAB
version 6.5.0 (R13). -

On each problem, the followmg three algonthms were.

analyzed and simulated.

1) The standard gradient descent with momentum = _
_(traingdm) from ‘Matlab 'Neural N_etwork SR,

Toolbox version 4. 0.1".

2) -The standard Gmdxent descent with momentum

(GDM)
_ 3) The proposed Gradient descent with momentum
and Adaptive Gain (GDM/AG)

- To compare the pcrformanoe of the proposed .
~ algorithm with ‘respect to other standard optimization

algorithms from the MATLAB neural network toolbox,
network parameters such as network size and
architecture (number of nodes, hidden layers etc), values
for the initial weights and gain parameters were kept
same. For all problems the neural network. had one
hidden layer with five hidden nodes and sigmoid
activation function was used for all nodes. All algorithms
were tested using the same initial weights, - initialized
randomly from range [0, 1] and received the input
patterns for training in the same sequence.

Foralltmnmgalgonthns,theleammgmtevalue-

was 0.3 and the momentum term value was 0.7. The
initial value used for the gain parameter was one. For
each run, the numerical data is stored in two files- the
results file, and the summary file. The result file lists data
about each network. The number of iterations until
convergence is accumulated for each algorithm from
which the mean, the standard deviation and the number
of failures are calculated. The networks that fail to
converge are obviously excluded from the calculations of
the mean and standard deviation but are reported as
failures.

For each problem. 100 ditferent trials were run, each
with different initial random set of weights. For each run,
the number of iterations required for convergence is
reported. For an experiment of 100 runs, the mean of the

number of iterations (mean), the standard deviation (SD),

and the number of failures are collected. A failure occurs
when the network exceeds the maximum iteration limit;
each experiment is run to ten thousand iterations;
otherwise, it is halted and the run is reported as a failure.
Convergence is achieved when the outputs of the
network conform to the error criterion as compared to
the desired outputs.

3.17 Bit Parity Problem

The parify problem is also one of the most popular
initial testing tasks and very demanding classification for
neural network to solve, because the target-output
changes whenever a single bit in the input vector
changes and this makes generalization difficult and
leamning does not always converge easily[10]. The
selected architecture of the FNN is 7-5-1. The target
error has been set to 0.0S.

The results in table 1 show that the convergence
success rate of GDM/AG is 96%, and that the average
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' pumber leaming iterations is reduced by sbout 60%

compared to GDM, and by about 96% compared to

traingdm. An outstandmg characteristic of the proposed

GDM/AG method is that the parity 7 bit problem can be -

solved with very fewlearmngxtemtlons
hrﬂy?BltProblem,TargetError-
005
traingdm | GDM | GDM/AG
Mean 1272 1 1347 537
CPU 9.81x10% | 3.80x10* | 3.99x 107
s : _
{ Total CPU 14002 | 5115 2142
| time(s) of - -
converge - .
sD 1 272x10 | 5.09x10° | 1.83x10° .
| Failures T 12 1 4

Table l Algonthm Performance for Panty 7 bit problem

Themmmummunberofpages for.your paper is 5. The
maximum number of pages accepted is 8. Changing the
formats described in the template may result in exclusion
_ from the proceedings if repeated in your final accepted

camera-ready paper. Rather, take some time to review

_ the text again for improvement or consult the Conference

3.2 Breast Cancer Classification Problem

~ This dataset was created based on the ‘breast cancer
Wisconsin® problem dataset from. UCI repository of
machine learning databases from Dr. William H.
Wolberg{11]. This problem tries to diagnesis of breast
cancer by trying to classify a tumor as either benign or
malignant based on cell descriptions gathered by
microscopic examination. The selected architecture of
the Feed- forward Neural Network is 9-5-2. The target
error is set as to 0.02.

Table 2 clearly shows that algorithms which
implement our proposed method exhibit very good
average performance in order to reach target error.
Furthermore the number of failures for the proposed
method is smaller as compared to others. GDM/AG
needs only 405 epochs to converge as opposed to the
standard GDM at about 1105 epochs and traingdm with
3419 epochs. The results clearly show that the proposed
method GDM/AG outperform neural network toolbex
algorithm with an improvement ratio, nearly 3.2, for the
total time of converge.

Breast Cancer Problem, Target Error =
0.02
traingdm GDM GDM/A

Mean 3419 1105 405
"CPU 1.60x10° | 471x10° | 445x10°
| time(s)Epoch -

Total CPU 54.59 52.05 18.02

time(s) of :

converge '

) 1.22x 10° 1.16 x 10° | 6.64 x 10°

Failures 14 4 3

Tab[e 2. Algorithm Performance for Breast Cancer

~ problem([14] ,

Type the title approxxmately 3.5 centimeters below the '
top border of the letter size paper sheet and use a 20
point size typefont. Center the title (horizontally) on the

"page. Leave approximatély 1 cm (0.4 inches) between

the title and the name and address of yourself and of

- your co-authors, if any. Type the name(s), address(es)

and email in an 11 point- font and center them

(horizontally) on the page.

3.3 IRIS Classification problem. .
This is a classical classification dataset made famous
by Fisher[12], who used it to illustrate principles of

~ discriminant snalysis. This is perliaps the best-known '
- database to be found in the pattern recognition literature.

Fisher's paper is a classic in the field and is referenced
frequently to this day. The selected architecture of the
Feed- forward Neural Network is 4~5-3 with target error
was set as 0.05.

IRIS Problem, Target Error = 0.05
traingdm GDM | GDM/AG
Mean 1609 - 754 ' 581
CPU 2.69x10° |[3.89x10 [ 3.69x10%
| time(sV/Epoch :
Total CPU 43.30 29.28 21.42
time(s) of
| COnV/
'SD =R 6.58x10° [294x10° | 243x10°
Failures 15 4 ° 3

Table 3. Algorithm Performance for IRIS problem[13]

In table 3 shows that algorithms which implement the
proposed method still outperforms other algorithms in
term of CPU time and number of epochs. As we can see
that GDM/AG was 97% successful at learning the
patterns and the average number of leaming iterations
was reduced grcatly as it is three times faster as
compared to neural network toolbox.

3.4 Diabetes Classification Problem

This dataset was created based on the ‘Pima Indians
diabetes’ problem dataset from the UCI repository of
machine learning database. From the dataset doctors try
to diagnose diabetes of Pima Indians based on personal
data (age, number of times pregnant) and the results of
medical examinations (e.g. blood pressure, body mass
index, result of glucose tolerance test, etc.) before decide
whether a Pima Indian individual is diabetes positive or
not. The selected architecture of the Feed-forward Neural
Network is 8-5-2. The target error is set to 0.01.

In table 4, it is worth noticing that the performance of
the proposed GDM/AG is almost twice faster as

-compared to neural network toolbox. GDM/AG took

only 417 epochs to reach the target error compare to
GDM at about 520 epochs and worst for traingdm that
need about 965 epochs to converge, Still the proposed
algorithm outperform other algonthms in term of the.
total time of converge.




Diabetes Problem, TargetEmr-
u o001
> traingdm GDM | GDM/A |
" Mean’ — 965 | s20 417 |
3Wx 10T 500X 10 [ 354 %10 |-
3036 | 97 | 1476
T X0 | Lidx 107 | 1.02% 10°
r 13 5 4
Table 4. Algorithm Performance for Diabetes
problem[l4}

Advantages of Using Adapative

- Gain Variation
An algorithm has been proposed in this paper for the
efficient calculation of the adaptive gain value in both
sequential and batch modes of learning. We proposed
‘that the total learning rate value can be split into two
patts — a local (nodal) learning rate value and a global
(same for all nodes in a network) learning rate value. The
value of paramecter gain is interpreted as the local
leaming rate of a 'node in the network. The network is
trained using a fixed value of learning rate equal to 0.3
' which i§ interpreted as the global learning rate of the
network. However, as the gain value was modified, the
weights and biases were updated using the new value of
. gain. This resulted in higher values of gain which caused
instability [7]. To avoid oscillations during training and
to achieve convergence, an upper limit of 2.0 is set for
the gain value. This will be explained in detail in our
next publication. The method has been illustrated for
Gradient Descent training algorithm using the sequential
and batch modes of training. An advantage of using the
adaptive gain procedure is that it is easy to introduce into
a back-propagation algorithm and it also accelerates the
learning process without a need to invoke solution
procedures other than the Gradient Descent method. The
adaptive gain procedure has a-positive effect in the
leamning process by modifying the magnitude, and not
the direction, of the weight change vector. This greatly
increases the learning speed by amplifying the directions
in the weight space that are successfully chosen by the
Gradient-Descent method. However, the method will
also be advantageous when using other faster
_optimization algorithms such as Conjugate-Gradient
method and Quasi-Newton method. These methods can
only optimize an equivalent of the global learning rate
(the step length). By mn'oducmg an additional local
rate parameter, further increase in the learning
speed can be achieved. Work is currently under progress
_to implement this algorithm using other optimization

methods.

5. Conclusion
While the back-propagation algorithm is used in the
majority of practical neural networks application and has

.
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~ been shown to perform relatively well, there still' exist

areas where improvement can be made. We proposed an
algorithm to adapuvely charige the gain parameter of the
activation function to improve the learning speed. It was

observed that the influence of variation in the gain value - N

is similar to the influence of variation in the learing rate
value. Analgontlnnbasbeenpmposedmthxspaperto‘

. change the gain value adaptively for each node.

In order to verify the effectiveness of the proposed

algonﬂ:m, some benchmark problems were simulated
"and analyzed using batch modes of training. The results

showed that the proposed adaptive gain algorithm has a

- better convergence ratc and learning efficiency as

oomparedtoﬂwgenenlbackpmpaganonalgonthm.
The network also demonstraied the principles of over

'ﬁttmg vs. generalization as the number of hidden nodes

in the network was increased and the target error was
reduced further. The choice of normally distributed
random numbers in the range [ol +1] for the initial
values of weights and biascs in the network greatly
speededtheh’ammgprocess The results strengthen our
belief in the better working of the adaptive gain
algorithm,
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