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The modelling of hydnulic and hydtological prccess€s is imporht in viorw of the marry uscs of uater rcsources
suoh as hydropower gpneratioo, inigrtiorl rvcer supply, and flood conuol. Therc arc many prcvious works using
tte artifioial noural netwonh (ANN) method for modelling vorious complor non-lincar reluionships of hydr,ologi-
ploc€os€s. Tho ANN is well kmwn as a flexible mathematioal suucnne and has the ability to geoerdiz, perns
in imprcoiso or noisy rnd mbiguous input ad ouQut drta scts. In this snvdy, ffc muhi-layor fccdforsad neural
network is appliod in fto content of ninfrll-nuofr rnodclling on tho hourly dara of seldcted calchment. The
me(hodolog5r is ass€ssod using nultilayor perc.ption (ItrA,P) to pedict hourly nrnoff as a fimction of hourly
rainfrll for the S*ngai Bekok catohment (Johc, lrfahyeia). Furdcr, fte rssulb are omparcd barveen ANN and
HEC.HMS apProach model. It has b€€n found thd the ANN models show a good genoralization of rainfall-
runoffrelationship and is bofior rhqn HEC-HMS model.

Iftywodr

Artificial Noural Netwost (ANN); Multilarer perceetrc$n p), Rainfall-RunofrModoltin& HEC-HMS

Introducdon

Determining the rcldionship b€tc/oGn rainfr[ ard runofr fq wrcrsheds is one of the most impofiant poblems
ftced by hydrologisb and engineers. The problems arc thoir afieqpt to pfiovide rtional aruwcrs to probtans that
arise by issues if nonJincarity of physicsl proocsses, un €ftainty in ponmcer estimalo$ the sitntion of an

carchn€nts' eto. The runofr is criticsl to nrany activitic suoh as designing flood prctection wor*s for
u6an aleas and agrioularal land and assossing how muoh waler may be ocrrgted fion a rivcr for planning
design and managcmsnt of rvater supply, inigrtion, dninage sy$€m, eb. It is rcc€scary for the investigation of
complor syshm in oities, where a huge amount ofdcb is nooded and utilized.

lvlany approachcs hrve wolved ove,r last few docadcs in hydrclogical modctling and fa*asting. They are
dstErministic as well as stochascic in natue, and include concepnral and stdistical m€&ods. MIKEI I-NAlvL
HBC-HMS, RORB, MIKE SI{E, SWIvOA etc. arc the conceptual and physically based hydrological models. The
methods used in thir oommercisl model acc olassioal m€{hods md can bc used as comparison and gridanoe for
firther rcsoaroh dovelopment Thece modcls g€oorEly applied quito similar mc{hodolog. For oramplg losses
re, initial losos, transfer function, r.nsform ro0c, lag timc, deficit and consbfi. Thocc me&ods rcquire mrny
paraneters for calibration aod somctinec gtill cannot fit well in calibrdio prcoess€s. So tbat errnpiricism plays
an impomant role in modclling shtdies in the new era The ounent trcnd s€€ms to bc to modcl thc do rathcr thrn
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1xe- nntd^ inJreary in the caprcity of modorn computas hs opqr€d up ! ncw wcld of mcthodologies for
natb€mrtioal modclling. Those rceoannes focus on the applioation of new ryroach to solve proUlcm in

Tho ndral behaviour of hydrological prcoosses is aprpropride fc tto application of Al.lN mcthod-
Tbs Artitrcial Noural Nefiryolt (AI{N) tecbn{ue is proposd as r nsw improvement to rcducc problcrms of data
oolloction_and calibrtion gocessos. An Al.{N can be dofined as 'a dcr proccssing syst€m consisting of a lrrgo
numbor of simple, higlly intorconneo-tod processing elements (utificial neurons) in an architoc{urr impit€d by the
stnrctur€ of the cerebral oorbr of tho brain' I1l. An afnctivo feahle of A].lN is tbch ability to o<tact the
relation bstwoen the inputs aad ouquts of a pocosg wilhout the physicr being oglicitly providcd to thco, and
wcn if tte dq is noisy and contaminated with enors. Tho Al.{N modols have bcen usod succossirl$ to modol
oomplcx non-linear inps-oulput rcldionshipe in an extrromely inreodisciplinary field. This new tcahniquc also
shows a beter performarce and the time trte,n in modelling prooess is much shorG rh"n fto conmercial models.
The Al.[N ncflod h.s bocn provar to be potcntially uscfrrl toob in hy&ologicsl modelling guch as fm rainfrll-
runofrmodeliog processes I2,3, a,5l; flow prdiction [5, 4; $,e quality prodicions [E]; oper*ion of rereivoir
systom [9, l0]; and g,oundwnter r€clamition problems, [11]. This stdy omploys thc muhila],cr p€ficoptrrgn
(MLP) ncthod to modcl the event-basod rainfrll-nuoffrclationship. Tho objectivee of this sttdy.r€ to cxamine
and evaluo hon' succossfid AI.IN has bc€n utitizod in rainfsll-runofrnodolling

Study Arcr

The modelling work is orriod out using the l0 ycars of rainfrll and rumfr rccods of SungEi Bckok (Iohor,
Mahysia) as shown in Fig. l. The Sungi Bokok is r nghual cdchm€nt witb a size of 350 km2. It is looatod on
the southw*torn prrt of lohc, ldr'hr& 020 07' 15" and longiurde lO30 02' 30'. Fig I also illusnrns the location
ofthe rringarges and wdcr lovel gauging stations.

50 ltt rrrlt

ng. f : Sungoi Bekok c€tchmcnt arca

Artificid Neurrl Nctworh (AltIN)

The MLP cottsigts of threo layers: lhe input lqrcr, where fte dala arc introdred to the notwofiL; the hiddon layer,
whene the dm se processd (that can bo onc or more) and lhe ortput hyer, wherc the rcsults for given inpus are
prcducd, The architsctun! of m AI.IN is deeigped I weigh8 barveon nernong a aansf,er firnction rh4 controls
the gencrdion of ouFnt in s neuron, aad leoming laws rhat dofine tbc rcldive importanoe of woights for inFx to a
noumn [12]. It witl process the infqmation in a way dra it is prcviorsly trrind to gcn€rate sEtkfaptory r€sults.
Neural netwqt oao loarn Arom xpcriearco, generralizc Aom previous examgles to new ones, and aboact eeeential
cbaractcristias from inputs containing inelevant ddE n3l. The main ootrol p.nm€tor8 of A}IN modol ar€
interneu,on conaoction strcngfhs abo knovm as wcights and thc bi.s6. t5] t€po{ted ttat tho moet cornmonly uscd
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asiivatio function in lhe backpropogation networ* is the hypcrbolio-trngcnt (nnsig) fimctions. It is a cotinuous
transfer fimctions that accomplished tho modification of the n€twort weights. This firnctioo is nonline.rity,
diftrcntirblo, which is antiqynneEic with respect to the origin ad fc which the amplinrde of 6e orlput lics
betwcen -l and +1. Tho transfer firnctio also intoduoos a aonlinearity rlnt finttcr €ohooos thc rctwort's
ability to nodel complor funotions. Itr fiuctiond form dst€rninos tb€ nonlinear rcsponsc of a rod€ to the total
input signal it rtccives to produce a codinuors valuo. Notmally, lhe ortrprtr lryer is chosen a liner activation.
firnc'tion.

Tnining of At{N

There are two types of tnining apeqoaches to tmining Al.,lN namely supor,yisod learning and unsup€rvis€d
loarning Supavisod loaming is the most oontmon tpc of toarning usd in AI.IN. Adading the valuos of the
weight md thrcsholds by prcseoting tr€ inprtr md output de b l<nos'n as loarning or training. Traidng is th€
actual proccss of adjusting weigh frc-tors bascd on trial-and-enor. The traiaing of a MLP is usually per,fcnred
with thc backpopagation algorittn, which is dosigpod to minimize the moan squrrp cnor betwccn the actual
odPut end the dcsir€d otdpts. Bao&-Fopsgrtion dgpri$m is the most po,pulrr algorithn for the supervised
training of multilayer pcrc€ptrcns to adjust trc intoraonnoction wcight, [3, 5, 13]. [U rceortod th4 today it is
cstin lod ih4 W of all applications utilize this Uaclrproprgrtim dgpritbn in one form or another. It is a
gradient (denivative) techaique fiet aro simple to computo looatly, and it perforos stoc,hastic gradictr dcccent it
weight sp.ce (for pafbtr b pafi€rn updeting of synaptio rvoights). The back-propegation algorittm involves two
step,s. Tte first $ep is a forward pasq in which tho crfrcct of the input fu passod forward through the networt to
r€rch thc oulput lay€r. After the enor is cmputed, a socond stcp $r!ts backwad through the rctwor*. The
qrors at tho outpnt layer are gopagalod book to$,ad thc input la1,or with the weight boing moditred. In any
trdning dgorifu& the objec'tive is to rc&rce the enon E trrt fu d€finod as,

'=f,n',
where P is the total number of training patterns; and E o is the error for training fitsny p

Eo=;;0r-hY

(t)

(2)

urherc lV is the total number of or4rt nodes; y. is the n€twork output at thc ith ouSut node and t* is

oorrcsponding A}fN or{put at lhe t th output nodo.

The rrahitocfiup of a typical neu,on is shos,n in Fig 2. Input lal,er is ttc pruvious ninfrll drta and the ouQut
lryer constitute the runoff data- Each la1,cr is nndc up of several nodcs, and layens ac interconnGotod by s€ts of
conclation weights. Eseh input mde unit (i=1,...,2) in input hy€r bnoodc|sb thc inprs signal to tho hidden layer.
Each hi.ld€o nodc (l-I,...,r) sums its wcightcd input signals,

z -inr:woj +I xiwti
i=l

applies its activation function to compute its output signal from the input data as

zj=fV-in,)
and rends this signal to all unia in the hiddon layer. Note ttat ury is tho rvoigbt bGtu/een thc input layor and the

hidden layor, ro, is tbe weight for the bir$ md x, is tho input ninfrll signal. In this strdy, a sigmoid function

usod is trnsig ss Foposod by I5]. This fimction is continuous, diftrcntiable everywherc, monotonically
and it is tho most commonly used fuoctiou in tbe boplpropagdion networl<s. Tho hsig rctivation

function will process the signal thd posocs fiom oach node by,

(3)

(4)

(5)rQ-in,)=ftE'



Then, from_ the sooond laycr, lhc signrl is transnised to thc third layer. Thc orput unit (F.l) sums its weightcd
input signals aq

x-inr=rf'*i r,rlf)
j-l

and applies its activation finction to compute its output signal,

y<h> = f(x _in) (j)
where cjr) is the weight between the second layer and the third lryer, and c[*) is tre weigbt for the bias. The
output nde (l-l) r€ceivos I targct pott€nl conesponding to the input traiaing prua computes its enor
infomstion tam,

6r =8r - Inr)f,(, _ink)
calculates its weight corection (used to updafie cf) tatsry, aod

Atf' = a5 rz ,
calculates its bias comection term (used to update c[t) hter),

Ar[*' - a6r,

wt€r€ d is learning tadrr, tt iE tte target nounl aetwort oupuq .l(t) is the neunl n€twork outs1;1 as inFx
variable; afr f'(x) = f (x)ll -"f(r)]. Thc enq iafonnation is Eaasftrr€d ton the output layor beok ro oarlier
layers to updato weights 8nd bias€s. This is knonm as the backpmpogEtion of thc output enor to lhe itrpr1rt nodes
to ood€at the weights. Eac,h outprr node j, (h =1,2"...,m ) updates ie bias and q,6i8h$ 1j = el,...,rr),

wr(new)=wii@ld)+Awu (l l)
Each hidden node zt (i =1,1...,n) updes ib bias ad wGiihb (i = 0J,...,n). The pr,ocess is terminated whcn
rhi. diffctEtrce aohieves a specifiod valuo. The tnining phaeo noods to prcducc rtr AIIN trst is 691[ stsble aad
conv€rgent, to ptroduce accuraG input-ouFut rtldions. Aftsr fti$ frc network ca8 be t€sted rqing dsto tbat have
not boen assigned dudng leaming.

x1Q =l'""n)

Itg. 2: Stuchtrc of a MLP model with one hiddon layer

Levcnborgltfiuqrrdt (LM) Aloritin

In the ourrcnt study, the Lovenberg-lvlarquardt (LIvf) algori6n is usod. The LM dgorifrn is an approximation to
Ncwton's M€alpd 1141. Nendon's method is an alt€rnative to the conjugntc gradient methods for fast

(6)

(8)

(e)

(10)

z j(i =1,...,n)



optimisaion aad often converges &st€r' rhen conjugple gradicnt m€thods (sce [l5l). The ll\d algeriftn
usos this appoximation to tte ltrossian mrtrk in the following Newton's method,

vk*r=wk-Hi'gr

= wk -lt't + ptT'f e

Wk*r=wr+Lw

(r2)

(13)

(14)

where 4 is a vec'tor of ourrcnt weights and bhs€s, gr is thc curtr gradient ad aw=-Hi'gr. This equation

is applied iteruively, with the computod valuc of wr*, being urod rcpe&dly as the 'new' w. . when the soalar
p is zeno, this is just Newton's mctho4 using ttc aprorimcio llessian msfuL U/h€o ,1r is large, this bocome
gradieNf dcsc€nt with a snall step sizo, Newton's m€lhod is frgr and mqs aoourare near an enor minimrnn, s6
tho aim is to shift towads Nowton's mcthod as quickly as possible. Thus, p is d€q€Esed after eaoh succeesful
step and is increasod only when a tffitiv€ sbp would increosc the perfornaace firnstion. In this way, the
performanoc fraCion will alrnays be rcduced c cech itorcio of fte dgodbn.

Scbcdon of thc nunbcr of hlddcn hycr ud tbe nunbcr of hlddcl mdce

Dc€rminatio of stsuctu€ of hiddon laycrs and number of n€urola (x nodes is ilneoftant in the multilaycr
p€rccptlon modolling Thcrp so no hd End ftst rulos for defming oarro* pcectors. [16] gave throc sinple
guidclinos to follor,. The first is to usG one hidden layor; second is to usc v€ay f€w hiddcn rcurcns; ad the third
is b nrin tho modsl until rve get fu bost odimd numbor of lqrcrs Ed trodcs. It is importmt to noG thit
baokpopagrtion can be applied to m utificid neural networt wilh rny number of hidden layors tl7l. Thorr are
no fixed nrles about the number of neurcns in tbc hidden layer. Howcvsr, if this n-661 fu srnell" 6e ncrrork may
not have sufficient dogrees of teedom to lcarn tho proccss corrcctly, and if the number is too high, the nctwork
will takc a long time to gpt traind and may som€timcs ovcr fit the &ta t181. The hidden laycrs enhanco the
netwo* ability to model complox firnations. A trial and €nor pmccdurc is gencnlV applied il solccrting lhc
number ofhiddon layers ard in r<cigning thp nuabor of nodos to each ofthcsc lrycrs. An apgoprito numbcr of
neurons can bc formd by cdibrding the nctwort aad waluCing if pcrfornoco bD, incl€asiog thc nrmrber of
hiddcn layer neurons in od€r to obtEia high efrcioooy with as fcw n€urons. If 6e hidde layer has too msny
neuron+ thon thcre are too mrsy paran€ters to be estimated. t19l proposed that normally, neural netwol<3 wcrr
dwol@ usiag 15' 30' 45, 60 ad 100 hidden nodcs. This procdurc also invc*igres over lte performrncc of
neural nstwor* nodcl with difromnt number ofhiddcn nodes.

Appltcetton of EEC-Elt[Sl Modcl

Hydrologic Modclling Systcm (HEC-HMS) prrogram was developod by a eam of Hydrologic Enginoering Centcr,
US Amy Corps of Engino€rs, lcad b, thc Dir€ctor, Darryl Davis U4l. Th€ program featrrcs a oompletely
integraled wort environmocrt includiag a databose! dda ontry trtilitie, comprtrrtkm cnginer md results rrporting
tools. HEGHMII was run with tho previous hourly rrinfill-nrnoff data in order to pmvidp hourly prdiction of
runofr eattoring selcctod catchnents. Fa Srmgai Bekok cmhrnont, tle nodels usod are Initill4onstmt
intrlbrtion/lo$ panncteri$tion, the Chrt hydrograph tusfqoation mrting and a rocgssion base flow
componmt The initial loss and initial flow .r€ te8tgd as initial cotrditions and vary fiom simulrtion to
simulation. CalibrCion prameErs for the HEGHMS nodol for Sungai Bekok arc shoum in Tablc I .

Table 1: Celibntion Coefficientg of Sungei Bckok catchment
Model perrmetar Crlibretcd Yeluc

ConstantRate (mm/hr)
Impcrviousness (7o)

Time of Concentation (hr)
Storage Cocfficiart (hr)
Recession Constant
Threshold Flow (curnecs)

3

l6
1E.25

IE
0.98

I



Model Applicrtion

Tho ninfrll-runofr modcl is rcqufucd to arc€rtain the rclationship bctcve€n rrinfrll and runofr. In astual frct the
rclationship of ninfrll-runoff is knom to bc highly nonJincar and complor. Ir{any of today's softwu€ tools
ae well-designed and nrcll-suited for designing buildin& and testing maay of these future ryplications.
However, thcre re ako rneny arcas rrvtcre today's tools are lacking the fcmres and functions aeeded to
build these ryplicetions effectively [20], Various rvell-knorvn cunrntly available ninfrll-nraoffmodels
such as IIEC-HMS, MIKBll, SWil,llvt, eto have beeo succcssfu[y ryplied in many problems and
wabrsheds. However, the erdstilg popular rainfrll-nrnoff models can be dAected as lot flodble and
they rcqufue many paramet€rs for calibration Tho spctial and temporal rainfrll pctterns and thc varirbility of
$,ttor$Gd c,hrrcEristics waie more oomplor hy&,ologio phcnomcna. The steps invohed in rte identification of
a dynamic model ofa system arc soloction of input-output data suihble fc oslib(dion and vorificdion; selection
of a modcl stsucfire and estimation of its psramotors; and validation of tho idotified nodels [3]. The seloction of
training &ta tltd r€prcs€ots the chrract ristics of a nater$od and neFdological psttqns is ortomo$ important
in modclling [21].

Input vrriable is sohcted to decctibe thc physical phonomena of ths rainfrll-runofr proooss, in od€r to for€cast
runoff. To aocomplish thig the networt is traincd with a large number of input-outpu pain of aar" Rocords of
l0 years of hourly irinfall-runoff series of Sungai B€kok cehmont (1991-2000) are usod. A good quality input-
oupfi peirs of data sets was s€lec't d to &velop and walualc lh€ ncural nctwort nodcls. Tho nGural notrvolt was
trained uder two scts of conditims. In lhis strdy, 55 sots of dab hlve bcou solec'tod Aom the reoods. the first
50 sets of datr arc usod for nodel calibrcion (haining)t and the rcaraining 5 sets of data are used for modcl
verifiodion (tcsting). It b antici@d tbc incrtasing thc numbe'r of raining du ir the training phase, with no
oht8gc in neurEl nGtwqlc stsucu|ro, will improvo porformancc on thc trEining Ead tosting phare. thusr it dQeNds
on providing an adcquab number and quality oftaining dU.

In this particular sbdy, lt€ stsucfru€ of AI.IN nodsl is dosignod bared on a tial and erru procedure to find the
approprhlo numbor of timc-dclayed input vriables to the model. [3, 5, 7] trcat 6e rainfrll as dircctly rel&d to
runofrat the precart time f by using thc following oqudion,

y(t) = f {x(t), x(t - 1), x(t -2),... x(t - n), y(t - 1), y(t - n)l (ls)
This mod€l trcat thc rainfrll as dirccdy Flstcd to runofr at the pr€sent tirct. The goodnces.of-fit statistics ar€
computod for both training aad testing fa eech Al.[N architecturc. At th€ frst step, fre rairfrll at time I rvas
addod to tho modcl. The goodness.of-fit *ri*ics for the procent modol wcre computcd for taining rnd tcsting
procoduros. Thcn rainfrll st tine (t-l) rvas addcd as an additional inprtr variable to thc modsl, and tbe
goodncss-of-ftt gtrtistics wer€ compued. Thir procedure is repoolod by rdding rainfall c provious timc periods
as input variablc mtil there is no significant cbange in nodel trrining and testing aacuracy. After tho first step
was completed, another input variable thc nnrofr at previous tine poriod$ (t - 2) is added to the bost-fit model
obtained ftom thc first $op. Thcn, lho goodnoss.of-fit strtistics for the prcsont modol werc conrputsd for taining
and testing proceduts. This prooodure is rcp€dod fo adding runofr at prcvious tino periods as input variable
rmtil therc is no significant change in nodcl raining and tcsting aacuraoy. The optimal number of inprtr nodes for
Sttngd Bckok cdshnent is detsrmincd ag follow:

y(t) = f {x(t), x(t- 1), x(t -2), x(t - 3), x(t - 4), x(t- 5), y(r - 1)} (16)

Model Pcrfomrncc Criterir

Tho MLP model is designed to simuble tho ninfrll-runoff procosccs of wausheds systans, Bccause there was
no d€finitive tost to evaluale tb€ succcs ofeach model, a multi+ritorh asccssm€Nrt was c{rriGd out. Basically, the
pcrfornance of modcl will be evaluatod bascd on the comperison botnrecn the computed oubut and ar:tud drtr-
The prodiction of each model is waluated uslng the corrclatio of coeffioiont (n2), root m€an squarE €nor
(RMSE), relative rcot m€.n squrr€ oror @RMSE) and mean abaoluto pcrocntagc cnu (MAPB), A RMSE is one



of the most commotrly used perfomance measurlcs in hydrological modcling. Thc otbr fu to try to fill sme of
tho gaps left by considering only RMSE. Formulas for oaloulding.R2, RMS$ RRMSg and MAPE arc givon as
follows:

fkg"u,-O^r)(gn -on,,I
R2= (17)
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*berc, QoQ) atrd QsQ) are the obserrred and simulaled values of outsuq z is tte number of observations or

time periods ovor whioh tho errors are simulaed. The value of R2 of gW/o indicates a vcry satisfactory model
performancc while a value in the rrnge E{}.907o indicotcs a frirly good model. Valucs of .R2 in rlre nnge 6O80/o
would indicab unscidactory mod.l fit t221. Crcn€rally, RIVISE and RRMSE fornulas evaluate tho modsls bosed
on a oompariso of the ostiD&d edor3 betrvceo the acfrnl obscrvations and the fitted model. A modol with the
minimum orI,or is oomidcrod tho bect choice. 1231 assigd trrt thc MAPE around 309/o is oonsidcrcd a
r€asonable prediation. FurtrGr, the ambris will be considorsd very aocuraG whcn the MAPE is in the range of
So/ob lWo.

Rsultr rnd Dircugion

Rogults of ANN modelling rre showl in Table 2a and 2b. Mcanwhile results of HEC-HMS modolling are shom
in Tablo 2o. Figrncs 3(a)-(D and figures a(aX! illustnrc the gr4hical r€sults of 3-layer and 4-laycr of
MLP mod€l respectively dudng training and testitrg. Thc moasurw of porfrrnancc of each model are

indicatod by oonelation of coefficiont (X'), root meart sque enra (RMSE), rclativo root m€an squae snor
(RRMSE), and mcan absolute percentrgo crmr (MAPE).

The Suagd Bckok is a fully nafinl oalohncnt. To evaluate fie performancc ofthe model, reoords of l0 ycors of
hourly ninfall-runoff de of Sungai Bekok cehment ars uscd. A lrge numbcr of training dab sets is rcquired to
perfom successful training. There are, 50 sclectsd dan see ud for trsining tesk rnd 5 solccbd scts ofdara usod
rs tho podiction s€t. The numbom of input nodes cosidsrd f6 MLP is 7 nodcs for Sungri Bokok colsh€nt.
For thc ncural netrvort training Fooorsr the best hidd€n nodes ar€ chosea brscd on 6e rninimum root meon
squarc onc (RMSE) comp ed for ftc tnining ddl

Most valucs of R2 approaoh 1.0. This ouhorc indicates that the MIJ modcl consistently show a good

perfornance in ninfrll-runoff modeliag t22l rcported that when .tt2 morp than 9Wo, tlrc model is is very
scisfrctory. It is frirly good with .R2 in 6c nnge of E07o to 9Wu I2!'J dooided on modol accuracy bssed on
MAPE value. The prediction model cosidorcd reasonablo with MAPE bolonr 30lzo and very accurde with
MAPE loss t,htn l@/o. Rosults of Dodolling fc Sungli B€&ok with MAPB lcss rh.n l@/o en bo coneidered as
vef,y accuratc. Rcsults of HEC-HMS with MAPE locc than \E/o ats coridored as rcasorablo prediction,



Meanwtile, rR2 is betrvecn 2Oh b 60P/o and this conditio shows tb.t the model pcrfcmance ig unsatisfrctory
mod€l fit

Table 2a: Results of 3 Laver MLP models for Sunsai Bekok catchment

MODEL
Data Set

Model
Structure

No. of
Parameter

Correlation of
Coefficient

(R2)
RMSE

(cumecs)
RRMSE N,TAPE

ea
MLP

TRAINING
MLP.TEST

Set I
MLP.TEST

Set 2
MLP.TEST

Sst 3
MLP-TEST

SGt 4
MLP.TEST

Sst 5

7+li

76-li

7+ll

7&l+

7+l]

7{,-l]

6t

6t

6l

6l

6l

6l

0.9927

0.9976

0.9968

0.9E96

0.9875

0.9861

0.u77

0.0082

0.0091

0.0065

0.0082

0.0033

0.0r05

0.0016

0.0018

0.0013

0.0019

0.000E

0.1891

0.1077

0.t r7r

0.0t79

0.1422

0.06%
n&-hidden cumccs-mcG sccqdrinpt n&-hidden nG-ougU nodcs;

Teble 2b: Results of 4 layer MLP models for Sungai Bekok catchment

MODEL
Data Set

Model
Stnrcture

No. of
Parameter

Correlation of
Coefficient

( rR')
RMSE

(cumecs)
RRMSE MAPE

e/a
MLP

TRAINING
MLP.TEST

Set I
MLP.TEST

Set 2
MLP.TEST

Set 3
MLP.TEST

Set 4
MLP.TEST

Sst 5

7+E-lr

7fi-lr
76E'-li

7-ffi-lf

7fi-lr

7ff-lr

l19

n9

ll9

ll9

ll9

ll9

0.9927

0.9927

0.9976

0.9923

0.9908

0.9745

0.u77

0.0088

0.0076

0.0056

0.0077

0.0036

0.0105

0.0017

0.0015

0.0011

0.0018

0.m09

0.1901

0.1125

0.0972

0.0750

0.1346

0.0785
|inNt nodcstiddcn nodcsdrtrut nodcs; cumocs{Gtrr

Teble 2c : Results of HEC-HMS model for Sunsai Bekok catchment

MODEL
Data Set No. ofParameter

Correlation of
Coefficient

(rtt)
RMSE

(cumecs)
RRMSE MAPE

e/t
HEC

TRAINING
TIEC.TEST

Sct I
IIEC-TEST

Set 2
IIEC.TEST

Sct 3
HEC.TEST

Sst 4
HEC-TEST

Sct 5

9

9

9

9

9

9

0.@97

0.5t28

0.373

0.324

0.15lE

0.2066,

0.s329

0.3508

0.t719

0.E794

l.l28t

0.6248

0.(B45

0.0577

0.1092

0.1759

0.3922

0.0362

7.ztyt

5.1,004

14.0590

13.78/,9

16.8040

7.6862
cumccs-mctcr



During the training phase, the RMSE fa Sungi Bokok is oonsisErtly less lhrn 0.1 cumecs for tho 3 lEy€r (7-61)
rnd 4 iayer (7-6-8-1) model structurcs. The RRMSE also nriatEins at 0,0105 fa bdh modcl stnrcnues. Dning
testing the RMSE (4.01 cunecs) and RRMSE (<0.002) oome closc to rro. Obviously, tho application of MLP
m€ttod to model ninfrll-runoff relationship of Sungai B6kok is vory uccossfirl. 

^ 
Thc Sungd Bokok bas an

obsorvcd flon, ofbctc/eon 3.q) oumcos to 5.4 cumecs and a cochmsrt sizo of350 kn'.
The ncural netwo* p€rformnc€8 are inftrcncod S the level of nmlinsaity and tbc selection of haining dat '
quality of the dU, md tho characteristics of the c&hm€nB areo- Noraally, for a large catchmeat sirc, thp riv€r
flow is highly nonlinear and influenced by stmgp offcct. In additioo, the effoot of sFtid ninfrll and oontol
shrc.tur€s msy contributc to the complority of the sysGm. RosulB of rsinfrll-runoff modoling indiosto thrt
applicdion of MLP mothod is vcry acouro for Sunpi Bokok oabhm€nt.

Tho training procoss is tino consuming. If ttc schilochut of thc tnining algoriltns is not euitrble! it will afro.t
lhe acouracy of predictions and a netwo*'s loaming ability. Tho nunber of hiddoo nodes significantly influmoes
the porfotmanco of a n€two* md thc time takon to tnin thc modsl, The numbe,r of nodes in the hiddco layor can

be as small or large as roquired. It is rchlod to ihc complority of the sy*oan boing modoled and to the rpsolution

ofthe {rlr fit The number of nodos in fte hiddcn layer was dctermind by ttid and error fm each casc. Ifthis
number of hidden no&s is snall, thc netwoft can suffcr Aom undcr fit of lh€ dalr and may not achieve the

desirod levcl of acouracy, rvhile with too mmy nodos it will ttkc a log timo to bG rd€qudcly traisd and may

some timss over fit tho de" Ovcrall by inortasing the number of hidden layer and number of hiddcn nodcs in
the modol, it will inorc.sc th€ oompl€xity of tho system, urd it nay slow down the oalibration prococs without
substantially inproving tbe effioie'ncy of the netwo,rt.

Conclurion

Tho cfirdy domonsfded thd tho nourat nctwor{< modol based on MLP is $itrblo for mod.lling the ninfrll-ruroff
rehtionship. It havc the ability to lcarn spCial rainfall-nrnofr rhf,a fiom diftrcnrt locCions. Tlto MLP bas bo€n

identificd as a robust model in nodcling the rainbll-nrmff relrtionship. It cu modcl acounbly the storm

hydrogrph for single-storm od muftiplestorn evcnts. Tho predicted pcak dischargp and timo to p€ak arc in
ciosc ag€€ment to the ac'tral valuos. Obviously, ths MLP ap,plioatim to modol thc hourly strcmflow hydrognph
was suocegfirl.
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X'igures 3: (a) the graphical ruultr of &layer MLP model during training;
(bXD the graphical regults of 3-lryer MLP model during testing
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Figures 4: (a) the graphical results of 4-leyer MLP model during training;
(bXD the gnphicrl regults of &leyer MLP model during testing
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