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Abstract

The modelling of hydraulic and hydrological processes is important in view of the many uses of water resources
such as hydropower generation, irrigation, water supply, and flood control. There are many previous works using
the artificial neural network (ANN) method for modelling various complex non-linear relationships of hydrologic
processes. The ANN is well known as a flexible mathematical structure and has the ability to generalize patterns
in imprecise or noisy and ambiguous input and output data sets. In this study, the multi-layer feedforward neural
network is applied in the context of rainfall-runoff modelling on the hourly data of selécted catchment. The
methodology is assessed using multilayer perceptron (MLP) to predict hourly runoff as a function of hourly
rainfall for the Sungai Bekok catchment (Johor, Malaysia). Further, the results are compared between ANN and
HEC-HMS approach model. It has been found that the ANN models show a good generalization of rainfall-
runoff relationship and is better than HEC-HMS model.
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Introduction |

Determining the relationship between rainfall and runoff for watersheds is one of the most important problems
faced by hydrologists and engineers. The problems are their attempt to provide rational answers to problems that
arise by issues if non-linearity of physical processes, uncertainty in parameter estimates, the situation of an
ungauged catchments, etc. The runoff is critical to many activities such as designing flood protection works for
urban areas and agricultural land and assessing how much water may be extracted from a river for planning,
design and management of water supply, irrigation, drainage system, etc. It is necessary for the investigation of
complex system in cities, where a huge amount of data is needed and utilized.

Many approaches have evolved over last few decades in hydrological modelling and forecasting. They are
deterministic as well as stochastic in nature, and include conceptual and statistical methods. MIKE11-NAM,
HEC-HMS, RORB, MIKE-SHE, SWMM, etc. are the conceptual and physically based hydrological models. The
methods used in this commercial model are classical methods and can be used as comparison and guidance for
further research development. These models generally applied quite similar methodology. For example, losses
rate, initial loses, transfer function, transform rate, lag time, deficit, and constant. These methods require many
parameters for calibration and sometimes still cannot fit well in calibration processes. So that empiricism plays
an important role in modelling studies in the new era. The current trend seems to be to model the data rather than
the physical process.
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The rapid increase in the capacity of modern computers has opened up a new world of methodologies for
mathematical modelling. These researches focus on the application of new approach to solve problem in
hydrology. The natural behaviour of hydrological processes is appropriate for the application of ANN method.
The Artificial Neural Network (ANN) technique is proposed as a new improvement to reduce problems of data
collection and calibration processes. An ANN can be defined as ‘a data processing system consisting of a large
number of simple, highly interconnected processing elements (artificial neurons) in an architecture inspired by the
structure of the cerebral cortex of the brain’ [1]. An attractive feature of ANN is their ability to extract the
relation between the inputs and outputs of a process, without the physics being explicitly provided to them, and
even if the data is noisy and contaminated with errors. The ANN models have been used successfully to model
complex non-linear input-output relationships in an extremely interdisciplinary field. This new technique also
shows a better performance and the time taken in modelling process is much shorter than the commercial models.
The ANN method has been proven to be potentially useful tools in hydrological modelling such as for rainfall-
runoff modeling processes [2, 3, 4, 5]; flow prediction [6, 7]; water quality predictions [8]; operation of reservoir
system [9, 10]; and groundwater reclamation problems, [11]. This study employs the multilayer perceptron
(MLP) method to model the event-based rainfall-runoff relationship. The objectives of this study are to examine
and evaluate how successful ANN has been utilized in rainfall-runoff modelling.

Study Area

The modelling work is carried out using the 10 years of rainfall and runoff records of Sungai Bekok (Johor,
Malaysia) as shown in Fig. 1. The Sungai Bekok is a natural catchment with a size of 350 km*. It is located on
the southwestern part of Johor, latitude 02° 07’ 15” and longitude 103° 02’ 30”. Fig. 1 also illustrates the location
of the raingauges and water level gauging stations.
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Fig. 1 : Sungai Bekok catchment area
Artificial Neural Network (ANN)

The MLP consists of three layers: the input layer, where the data are introduced to the network; the hidden layer,
where the data are processed (that can be one or more) and the output layer, where the results for given inputs are
produced. The architecture of an ANN is designed by weights between neurons, a transfer function that controls
the generation of output in a neuron, and learning laws that define the relative importance of weights for input to a
neuron [12]. It will process the information in a way that it is previously trained, to generate satisfactory results.
Neural network can learn from experience, generalize from previous examples to new ones, and abstract essential
characteristics from inputs containing irrelevant data [13]. The main control parameters of ANN model are
interneuron connection strengths also known as weights and the biases. [5] reported that the most commonly used



activation function in the backpropagation network is the hyperbolic-tangent (tansig) functions. It is a continuous
transfer functions that accomplished the modification of the network weights. This function is nonlinearity,
differentiable, which is antisymmetric with respect to the origin and for which the amplitude of the output lies
between —1 and +1. The transfer function also introduces a nonlinearity that further enhances the network’s
ability to model complex functions. Its functional form determines the nonlinear response of a node to the total
input signal it receives to produce a continuous value. Normally, the output layer is chosen a linear activation.
function.

Training of ANN

There are two types of training approaches to training ANN namely supervised learning and unsupervised
learning. Supervised learning is the most common type of learning used in ANN. Adapting the values of the
weight and thresholds by presenting the input and output data is known as learning or training. Training is the
actual process of adjusting weight factors based on trial-and-error. The training of a MLP is usually performed
with the backpropagation algorithm, which is designed to minimize the mean square error between the actual
output and the desired output. Back-propagation algorithm is the most popular algorithm for the supervised
training of multilayer perceptrons to adjust the interconnection weights, [3, 5, 13]. [1] reported that, today it is
estimated that 80% of all applications utilize this backpropagation algorithm in one form or another. It is a
gradient (derivative) technique that are simple to compute locally, and it performs stochastic gradient descent in
weight space (for pattern by pattern updating of synaptic weights). The back-propagation algorithm involves two
steps. The first step is a forward pass, in which the effect of the input is passed forward through the network to
reach the output layer. After the error is computed, a second step starts backward through the network. The
errors at the output layer are propagated back toward the input layer with the weight being modified. In any
training algorithm, the objective is to reduce the error E that is defined as,

E=1E M
p P=1
where P is the total number of training patterns; and E, is the error for training pattern, p
l N
E, ==Y -0) @
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where N is the total number of output nodes; y, is the network output at the kth output node and ¢, is
corresponding ANN output at the £ th output node.

The architecture of a typical neuron is shown in Fig. 2. Input layer is the previous rainfall data and the output
layer constitute the runoff data. Each layer is made up of several nodes, and layers are interconnected by sets of
correlation weights. Each input node unit (i=1,...,m) in input layer broadcasts the input signal to the hidden layer.
Each hidden node (j=1, ...,n) sums its weighted input signals,

m
z_in; =w,, +Zx,wg A3
i=1
applies its activation function to compute its output signal from the input data as
z,=flz_in,) @

and sends this signal to all units in the hidden layer. Note that Wij

hidden layer, w,; is the weight for the bias; and x; is the input rainfall signal. In this study, a sigmoid function
used is tansig as proposed by [S5]. This function is continuous, differentiable everywhere, monotonically
increasing, and it is the most commonly used function in the backpropagation networks. The tansig activation
function will process the signal that passes from each node by,

f(z_in,)=—_22,:,;7-1 )

l+e

is the weight between the input layer and the



Then, from the second layer, the signal is transmitted to the third layer. The output unit (k=1I) sums its weighted
input signals as,
x_imy =c® +Y z,cP ©6)
=
and applies its activation function to compute its output signal,
7O = f(x_in,) 0]
where cf.k’ is the weight between the second layer and the third layer, and cf,") is the weight for the bias. The

output node (k=1I) receives a target pattern corresponding to the input training pattern, computes its error

information term,
8, =(t, 5% ) (x_in,) » @)
calculates its weight correction (used to update c}") later), and
Ac® = b,z o
calculates its bias correction term (used to update c{*’ later),
Ac® = ab, (10)

where @ is learning rate; f, is the target neural network output; $*) is the neural network output as input
variable; and f"(x) = f(x)[1- f(x)]. The error information is transferred from the output layer back to earlier
layers to update weights and biases. This is known as the backpropagation of the output error to the input nodes
to correct the weights. Each output node 3, (k =1,2,...,m ) updates its bias and weights ( j =0,1,...,m),

w, (new) = w, (old) + Aw, (1
Each hidden node z (= L,2,...,n) updates its bias and weights (i =0,1,...,m ). The process is terminated when

this difference achieves a specified value. The training phase needs to produce an ANN that is both stable and
convergent, to produce accurate input-output relations. After this, the network can be tested using data that have
not been assigned during learning.

Input layer Hidden layer Output layer

xj(i=1,...,m)
Fig. 2: Structure of a MLP model with one hidden layer
Levenberg-Marquardt (LM) Algorithm

In the current study, the Levenberg-Marquardt (LM) algorithm is used. The LM algorithm is an approximation to
Newton’s Method [14]. Newton’s method is an alternative to the conjugate gradient methods for fast



optimisation and often converges faster than conjugate gradient methods (see [15]). The LM algorithm
uses this approximation to the Hessian matrix in the following Newton’s method,

Wea =W, —H;'g, (12)

=w, =TT+ e (13)

Wea =W, +Aw ‘ (14)

where w, is a vector of current weights and biases, g, is the current gradient and Aw = —H, ! 8, - This equation

is applied iteratively, with the computed value of w,,, being used repeatedly as the ‘new’ w,. When the scalar
M is zero, this is just Newton’s method, using the approximation Hessian matrix. When g is large, this become

gradient descent with a small step size. Newton’s method is faster and more accurate near an error minimum, so
the aim is to shift towards Newton’s method as quickly as possible. Thus, u is decreased after each successful

step and is increased only when a tentative step would increase the performance function. In this way, the
performance function will always be reduced at each iteration of the algorithm.

Selection of the number of hidden layers and the number of hidden nodes

Determination of structure of hidden layers and number of neurons or nodes is important in the multilayer
perceptron modelling. There are no hard and fast rules for defining network parameters. [16] gave three simple
guidelines to follow. The first is to use one hidden layer; second is to use very few hidden neurons; and the third
is to train the model until we get the best optimal number of layers and nodes. It is important to note that
backpropagation can be applied to an artificial neural network with any number of hidden layers [17]. There are
no fixed rules about the number of neurons in the hidden layer. However, if this number is small, the network may
not have sufficient degrees of freedom to learn the process correctly, and if the number is too high, the network
will take a long time to get trained and may sometimes over fit the data [18]. The hidden layers enhance the
network ability to model complex functions. A trial and error procedure is generally applied in selecting the
number of hidden layers and in assigning the number of nodes to each of these layers. An appropriate number of
neurons can be found by calibrating the network and evaluating its performance by increasing the number of
hidden layer neurons in order to obtain high efficiency with as few neurons. If the hidden layer has too many
neurons, then there are too many parameters to be estimated. [19] proposed that normally, neural networks were
developed using 15, 30, 45, 60 and 100 hidden nodes. This procedure also investigates over the performance of
neural network model with different number of hidden nodes.

Application of HEC-HMS Model

Hydrologic Modelling System (HEC-HMS) program was developed by a team of Hydrologic Engineering Center,
US Army Corps of Engineers, lead by the Director, Darryl Davis [14]. The program features a completely
integrated work environment including a database, data entry utilities, computation engine, and results reporting
tools. HEC-HMS was run with the previous hourly rainfall-runoff data in order to provide hourly prediction of
runoff entering selected catchments. For Sungai Bekok catchment, the models used are Initial-Constant
infiltration/loss parameterisation, the Clark hydrograph transformation routine, and a recession base flow
component. The initial loss and initial flow are treated as initial conditions and vary from simulation to
simulation. Calibration parameters for the HEC-HMS model for Sungai Bekok are shown in Table 1.

Table 1: Calibration Coefficients of Sungai Bekok catchment

Model parameter Calibrated value
Constant Rate (mm/hr) 3
Imperviousness (%) 16
Time of Concentration (hr) 18.25
Storage Coefficient (hr) 18
Recession Constant 0.98

Threshold Flow (cumecs) 1




Model Application

The rainfall-runoff model is required to ascertain the relationship between rainfall and runoff. In actual fact the
relationship of rainfall-runoff is known to be highly non-linear and complex. Many of today’s software tools
are well-designed and well-suited for designing, building, and testing many of these future applications.
However, there are also many areas where today’s tools are lacking the features and functions needed to
build these applications effectively [20]. Various well-known currently available rainfall-runoff models
such as HEC-HMS, MIKE-11, SWMM, etc have been successfully applied in many problems and
watersheds. However, the existing popular rainfall-runoff models can be detected as not flexible and
they require many parameters for calibration. The spatial and temporal rainfall patterns and the variability of
watershed characteristics create more complex hydrologic phenomena. The steps involved in the identification of
a dynamic model of a system are selection of input-output data suitable for calibration and verification; selection
of a model structure and estimation of its parameters; and validation of the identified models [3]. The selection of
training data that represents the characteristics of a watershed and meteorological patterns is extremely important
in modelling [21].

Input variable is selected to describe the physical phenomena of the rainfall-runoff process, in order to forecast
runoff. To accomplish this, the network is trained with a large number of input-output pairs of data. Records of
10 years of hourly rainfall-runoff series of Sungai Bekok catchment (1991-2000) are used. A good quality input-
output pairs of data sets was selected to develop and evaluate the neural network models. The neural network was
trained under two sets of conditions. In this study, 55 sets of data have been selected from the records. The first
50 sets of data are used for model calibration (training), and the remaining 5 sets of data are used for model
verification (testing). It is anticipated that increasing the number of training data in the training phase, with no
change in neural network structure, will improve performance on the training and testing phase. Thus, it depends
on providing an adequate number and quality of training data.

In this particular study, the structure of ANN model is designed based on a trial and error procedure to find the
appropriate number of time-delayed input variables to the model. [3, 5, 7] treat the rainfall as directly related to
runoff at the present time ¢ by using the following equation,
y(t) = f{x(t)3 x(t - 1)9 x(t - 2)9'" x(t - n), y(t - 1)9 y(t - n)} (15)
This model treat the rainfall as directly related to runoff at the present timef. The goodness-of-fit statistics are
computed for both training and testing for each ANN architecture. At the first step, the rainfall at time ¢ was
added to the model. The goodness-of-fit statistics for the present model were computed for training and testing
procedures. Then rainfall at time (#—1) was added as an additional input variable to the model, and the
goodness-of-fit statistics were computed. This procedure is repeated by adding rainfall at previous time periods
as input variable until there is no significant change in model training and testing accuracy. After the first step
.was completed, another input variable; the runoff at previous time periods, (# —2) is added to the best-fit model
obtained from the first step. Then, the goodness-of-fit statistics for the present model were computed for training
and testing procedures. This procedure is repeated by adding runoff at previous time periods as input variable
- until there is no significant change in model training and testing accuracy. The optimal number of input nodes for
Sungai Bekok catchment is determined as follow:

Y(@) = f{x(t), x(¢ —1), x(t - 2), x(t - 3), x(t — 4), x(t -5), y(t - 1)} - (16)
Model Performance Criteria

The MLP model is designed to simulate the rainfall-runoff processes of watersheds systems. Because there was
no definitive test to evaluate the success of each model, a multi-criteria assessment was carried out. Basically, the
performance of model will be evaluated based on the comparison between the computed output and actual data.

The prediction of each model is evaluated using the correlation of coefficient (R?), root mean square error
(RMSE), relative root mean square error (RRMSE), and mean absolute percentage error (MAPE). A RMSE is one



of the most commonly used performance measures in hydrological modeling. The other is to try to fill some of
the gaps left by considering only RMSE. Formulas for calculating R?, RMSE, RRMSE, and MAPE are given as

follows:
; [(Qo(v) - Q,m ) (Qs(l) - Q(:) )]

R < i an
[Z (Qa(r) - Q)(l) )2 § (Q.r(l) - Q:(t) )z]

=1

RMSE = ['rl;i(Qom - )2]2 : (18)

t=1

RRMSE = li[(go«) ~Gu )] (19)

L= Qo(t)
1 QO(’)‘Q-(:) 0,
MAPE=-Y" x100% (20)
L= Qo(t)

where, Q0 o) and Q 0 are the observed and simulated values of output; n is the number of observations or

time periods over which the errors are simulated. The value of R? of 90% indicates a very satisfactory mociel

performance while a value in the range 80-90% indicates a fairly good model. Values of R? in the range 60-80%
would indicate unsatisfactory model fit [22]. Generally, RMSE and RRMSE formulas evaluate the models based
on a comparison of the estimated errors between the actual observations and the fitted model. A model with the
minimum error is considered the best choice. [23] assigned that the MAPE around 30% is considered a
reasonable prediction. Further, the analysis will be considered very accurate when the MAPE is in the range of
5% to 10%.

Results and Discussion

Results of ANN modelling are shown in Table 2a and 2b. Meanwhile results of HEC-HMS modelling are shown
in Table 2c. Figures 3(a)-(f) and figures 4(a)-(f) illustrate the graphical results of 3-layer and 4-layer of
MLP model respectively during training and testing. The measures of performance of each model are

indicated by correlation of coefficient (R?), root mean square error (RMSE), relative root mean square error
(RRMSE), and mean absolute percentage error (MAPE).

The Sungai Bekok is a fully natural catchment. To evaluate the performance of the model, records of 10 years of
hourly rainfall-runoff data of Sungai Bekok catchment are used. A large number of training data sets is required to
perform successful training. There are, 50 selected data sets used for training task and 5 selected sets of data used
as the prediction set. The numbers of input nodes considered for MLP is 7 nodes for Sungai Bekok catchment.
For the neural network training process, the best hidden nodes are chosen based on the minimum root mean
square error (RMSE) computed for the training data.

Most values of R? approach 1.0. This outcome indicates that the MLP model consistently show a good
performance in rainfall-runoff modeling. [22] reported that when R’more than 90%, the model is is very
satisfactory. It is fairly good with R? in the range of 80% to 90%. [23] decided on model accuracy based on
MAPE value. The prediction model considered reasonable with MAPE below 30% and very accurate with
MAPE less than 10%. Results of modelling for Sungai Bekok with MAPE less than 10% can be considered as
very accurate. Results of HEC-HMS with MAPE less than 30% are considered as reasonable prediction.



Meanwhile, R? is between 20% to 60% and this condition shows that the model performance is unsatisfactory
model fit.

Table 2a: Results of 3 Layer MLP models for Sungai Bekok catchment

Correlation of
MODEL Model No. of Coefficient RMSE RRMSE MAPE
Data Set Structure Parameter ( R? ) (cumecs) (%)
MLP
TRAINING 7-6-1* 61 0.9927 0.0477 0.0105 0.1891
MLP-TEST
Setl 7-6-1% 61 0.9976 0.0082 0.0016 0.1077
MLP-TEST '
Set2 7-6-1* 61 0.9968 0.0091 0.0018 0.1171
MLP-TEST .
Set 3 7-6-1* 61 0.9896 0.0066 0.0013 0.0879
MLP-TEST ’
Set 4 7-6-1% 61 0.9875 0.0082 0.0019 0.1422
MLP-TEST
Set5 7-6-1% 61 0.9861 0.0033 0.0008 0.0694

*input nodes-hidden nodes-output nodes; cumecs-meter cubic second

Table 2b: Results of 4 Layer MLP models for Sungai Bekok catchment

Correlation of
MODEL Model No. of Coefficient RMSE RRMSE MAPE
Data Set Structure Parameter ( R? ) (cumecs) (%)
MLP
TRAINING 7-6-8-1* 119 0.9927 0.0477 0.0105 0.1901
MLP-TEST
Set 1 7-6-8-1* 119 0.9927 0.0088 0.0017 0.1125
MLP-TEST
Set 2 7-6-8-1* 119 0.9976 0.0076 0.0015 0.0972
MLP-TEST
Set 3 7-6-8-1* 119 0.9923 0.0056 0.0011 0.0750
MLP-TEST
Set 4 7-6-8-1* 119 0.9908 0.0077 0.0018 0.1346
MLP-TEST
Set § 7-6-8-1* 119 0.9745 0.0036 0.0009 0.0785

*input nodes-hidden nodes-output nodes; cumecs-meter cubic second

Table 2¢ : Results of HEC-HMS model for Sungai Bekok catchment

Correlation of
MODEL Coefficient RMSE RRMSE MAPE
Data Set No. of Parameter ( R? ) (cumecs) (%)
HEC
TRAINING 9 0.6097 0.5329 0.0945 7.2194
HEC-TEST
Set 1 9 0.6128 0.3508 0.0677 5.1404
HEC-TEST
Set 2 9 0.373 0.8719 0.1092 14.0590
HEC-TEST ‘
Set 3 9 0.324 0.8794 0.1759 13.7849
HEC-TEST
Set4 9 0.1518 1.1288 0.3922 16.8040
HEC-TEST
Set 5 9 0.2066 0.6248 0.0362 7.6862

* cumecs-meter cubic second



During the training phase, the RMSE for Sungai Bekok is consistently less than 0.1 cumecs for the 3 layer (7-6-1)
and 4 layer (7-6-8-1) model structures. The RRMSE also maintains at 0.0105 for both model structures. During
testing, the RMSE (<0.01 cumecs) and RRMSE (<0.002) come close to zero. Obviously, the application of MLP
method to model rainfall-runoff relationship of Sungai Bekok is very successful. The Sungai Bekok has an
observed flow of between 3.90 cumecs to 5.4 cumecs and a catchment size of 350 km’.

The neural network performances are influenced by the level of nonlinearity and the selection of training data,
quality of the data, and the characteristics of the catchments area. Normally, for a large catchment size, the river
flow is highly nonlinear and influenced by storage effect. In addition, the effect of spatial rainfall and control
structures may contribute to the complexity of the system. Results of rainfall-runoff modeling indicate that
application of MLP method is very accurate for Sungai Bekok catchment.

The training process is time consuming. If the architecture of the training algorithms is not suitable, it will affect
the accuracy of predictions and a network’s learning ability. The number of hidden nodes significantly influences
the performance of a network and the time taken to train the model. The number of nodes in the hidden layer can
be as small or large as required. It is related to the complexity of the system being modeled and to the resolution
of the data fit. The number of nodes in the hidden layer was determined by trial and error for each case. If this
number of hidden nodes is small, the network can suffer from under fit of the data and may not achieve the
desired level of accuracy, while with too many nodes it will take a long time to be adequately trained and may
some times over fit the data. Overall, by increasing the number of hidden layer and number of hidden nodes in
the model, it will increase the complexity of the system, and it may slow down the calibration process without
substantially improving the efficiency of the network.

Conclusion

The study demonstrated that the neural network model based on MLP is suitable for modelling the rainfall-runoff
relationship. It have the ability to learn spatial rainfall-runoff data from different locations. The MLP has been
identified as a robust model in modeling the rainfall-runoff relationship. It can model accurately the storm
hydrograph for single-storm and multiple-storm events. The predicted peak discharge and time to peak are in
close agreement to the actual values. Obviously, the MLP application to model the hourly streamflow hydrograph
was successful.
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Figures 3: (a) the graphical results of 3-layer MLP model during training;
(b)~(f) the graphical results of 3-layer MLP model during testing




. Gropls fainboll Runell ve Thme . . By .
f Y
" ] Tinepanty ' ! u -
(a) ()
. Graph Maluket Rmeft ve T "
# ) I I
i: v ]. i:
_:: ..... — MR "
© ()

Paintall grvwm)
S GEssasn .

Peanelt teumese)

Computed

SREFEEREE_ &

Figures 4: (a) the graphical results of 4-layer MLP model during training;
(b)-(f) the graphical results of 4-layer MLP model during testing
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