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ABSTRACT 
In this paper, we investigate an integration of individual and social 
learning, utilising co-evolutionary neural networks. Individual 
learning takes place by playing copies of a player against itself. 
Social learning allows poor performing players to learn from those 
players, which are playing at a higher level. The networks are 
evolved via evolutionary strategies with the network output being 
used as input to a minimax search tree. Our experiments show that 
learning is taking place at the 99% confidence level. In terms of 
performance, the co-evolutionary neural network player has the 
ability to block two adjacent stones of an opponent. 

1. INTRODUCTION 
Game playing, as a testbed for investigating artificial intelligence 
techniques has a long history, and some notable results have been 
achieved, e.g. Deep Blue in chess [1, 2, 3], Chinook in checkers [4, 
5], Victoria (Go-moku) [6], Logistello (Othello) [7, 8], TD-
Gammon [9] and Neurogammon [10] (Backgammon), and 
Connect-Four [11, 12, 13]. Whilst some of these are, arguably, not 
artificial intelligence (e.g. is Deep Blue intelligent?). The results of 
these achievement are regularly reported in artificial intelligence 
publications (e.g. [1,2]. 

Deep Blue achieved world champion status when, in 1997, it 
beat Garry Kasparov [1], Deep Blue executed sophisticated search 
algorithms to analyse up to 200 million positions per second by 
utilising custom-built hardware [14]. 

Chinook, developed by Jonathan Schaeffer's team at The 
University of Alberta, won the world checkers title in 1994 [4, 5]. 
Chinook used an opening and endgame database together with an 
extensive checkers knowledge base. 

In contrast, Fogel and Chellapilla developed a checkers program, 
which did not rely on human expert knowledge [15,16], In [15, 16], 
the program learned checkers strategy using a co-evolutionary 
approach without utilising any pre-programmed knowledge. The 
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neural networks play against themselves for a number of 
generations. At each generation, the players only receive points 
based on whether they have won, lost, or drawn. Without any 
expert knowledge, Fogel and Chellapilla have demonstrated that a 
program can learn to play a game and reach the level of a human 
expert. 

A learning methodology that does not rely on human expertise 
is the aim of the work we present here. The objective of this 
research is to investigate an integration of individual and social 
learning in co-evolutionary neural networks for the game of 
Connect-Four. A feed forward neural network player is played 
against itself, and an evolutionary strategy is used to evolve these 
networks. We call this individual learning. After a period of 
individual learning we allow the players to "learn" from one 
another. We call this social learning. 

The overall aim is to evolve a neural network, which is able to 
play a competitive game of Connect-Four. The output of the neural 
network is used as an evaluation of the current game position and is 
used at the leaf nodes of a minimax tree. 

In real-life, humans have a variety of techniques in order to 
develop strategies to defeat other humans. Humans can improve 
their strategy by themselves or through the experience of 
competing against other humans. Humans can also copy strategies 
from a better player and develop their own strategy based on this 
copy. 

Fogel and Chellapilla showed in [15, 16] that an automated 
player can learn to play checkers by competing against other 
players. However, none of these players copied their strategy from 
other, superior, players. In this work, we give an opportunity for a 
player to learn to play the game through its own experience and via 
the experience of others. 

According to Vriend [17] and Tesfatsion [18], in the context of 
agent-based computational economics, in individual learning, the 
agents learn exclusively from its own experience, and in social 
learning, the agents learn from the experience of other agents. 

The techniques we present in this paper are motivated from [19] 
with some minor modifications. In [19], a simulated stock market 
uses co-evolving neural networks, which are integrated with 
individual and social learning. The results show that the artificial 
stock traders are better than a baseline buy-and-hold strategy. 

In this paper, the individual learning is similar to a (1+1)ES [20], 
where a single parent will mutate and produce a single offspring, 
and they will compete against each other for survival to the next 
generation. Meanwhile, we create a central pool to capture all the 
best players at the end of each period of individual learning (in our 
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experiment this is at the end of every 1000lh generation). This pool 
can be used by poor players to provide them with a better strategy 
from which to start learning again. 

Figure 1 shows the general structure of individual and social 
learning in this work. The details of each phase will be discussed in 
the next section. Based on Figure 1, we start by instantiating a 
population of random neural networks and then enter an individual 
learning phase. The players will play in pairs for a period of time 
before entering social learning. In social learning players can 
compare their strategy with the players in the central pool and 
either continue with their current strategy or copy a strategy from 
the central pool, or generate a new random strategy. 

Instantiate Population 
of Neural Networks 

Enter individual 
learning 

V 

Enter social learning Return to individual 
learning after 
comple ted 

depends solely on knowledge, VICTOR easily solved a small board 
game, 4x4, 6x4, 4x5, 6x5, 4x6 and 6x6. After a combination of 
depth-first and conspiracy-number search was added to the 
program, VICTOR easily wins when playing as a white and drawing 
as a black on a 7x6 board. 

Further research on Connect-Four can be found in [24, 25], In 
[24], Neural Connect 4, an automated Connect-Four player, was 
trained to play the game from four different strategies, i.e. Nai've 4, 
Constructor/Destroyer (CD), Constructor/Destructor+ (CD+), and 
Search 4, which had been saved in a database and all these four 
strategies are used to test the performance of Neural Connect 4. 
The backpropagation algorithm in Neural Connect 4 beat all four 
strategies. 

A simulated tournament is presented in [25]. It uses minimax to 
play the game and the results show that the program can easily win 
when playing as the first player on Connect-Three1. However, the 
performance was not so good when a combination of minimax 
search and heuristic-based (hyper-graph, weighting strategy) search 
were used. 

2 . R U L E S O F C O N N E C T - F O U R 

Connect-Four is a board game (although often presented as a 
vertical board so that players can view both sides) with the standard 
size being seven columns and six rows. The aim of the game is to 
get four stones connected in a row (vertically, horizontally or 
diagonally). 

This game is played between two players, normally called white 
and black. White always starts and alternately places a stone on any 
available column. A player will choose any available column and 
their token will be placed at the lowest square of a chosen column 
(the vertical board, due to the effects of gravity, ensure this). 

Once a stone has been placed on the board, it will never be 
removed (or moved) until the end of the game. The game ends 
when four stones with the same colour form a line (horizontally, 
vertically or diagonally). Figure 2 shows a board where white has 
won the game. The game is considered drawn if neither player can 
make a move that can lead to a win. 

a b c d e f 
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Figure 1: General structure of individual and social learning 

Connect-Four was introduced by Milton Bradley in 1974 and 
known as "The Captain's Mistress" [21]. Allen [11] and Allis [12, 
13] solved this game in 1989. 

Allen uses brute-force, depth-first search with alpha-beta 
pruning, a database of prior-positions, and a heuristic of killer-
move prediction to play the game. Allen also assigned "tweaking" 
to the program using expert knowledge. 

The VICTOR, Connect-Four program [12, 13], uses a 
combination of strategic rules, depth-first search and conspiracy-
number search [22, 23] to solve the program. At the start of 
development VICTOR had no search techniques. Initially, nine 
strategic rules were used simultaneously, but combinations were 
also allowed depending on the situation, and these are used to 
resolve threats from the opponent. Without any searching, i.e. it 

Figure 2: White wins the game as four of its stones are connected 
diagonally. 

Connect-Four is a very simple game, but contains a lot of 
tactical elements. Players can win the game if they can arrive at one 
of two situations, i.e. two open lines or a forced open line. Two 
open lines are where the opponent cannot block the opponent as 
there are two positions that can be played which lead to a win. 
Figure 3 shows an example of two open lines. The black player 
cannot block both bl and f t , and the white player is guaranteed to 
win. To avoid this situation, the opponent must block any two 
connected stones. 

1 Similar to Connect-Four, but only three stones in a row are 
needed to win the game. 
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Figure 3: An example of two open lines. 

Forced open lines are where the opponent does not have any 
choices but to block the current three stones in row, but that same 
move will give the opponent a chance to make another connection. 
Figure 4 shows an example of forced open lines. 
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Figure 4: An example of forced open lines (black to play). 

In order to block the white player from making four stones 
connected in row, the black player must play at b l . However, this 
move will give white a move that gives a line of four stones from 
al to d4. 

3. EXPERIMENTAL SETUP 

The 42 squares on the board are used as input to a neural network. 
The inputs are -1 , 0 or +1, which indicates a black stone, an empty 
square or a white stone respectively. A hyperbolic tangent (tanh, 
bounded by ±1) function is chosen as a non-linear function for each 
hidden and output node. 

The neural network consists of 42 nodes in the input layer, a 
single hidden layer with 14 nodes and an output node (in total 602 
weights). The number of hidden nodes (14) was chosen to be about 
one third of the number of input nodes. This appears to be a good 
rule of thumb in the absence of any other data. 

All weights in the neural network are mutated at each 
generation using an evolutionary strategy. Each weight has an 
associated self-adaptive parameter, a , which serves to control the 
step size of the search for the mutated parameters of the neural 
network [15]. 

Initially, a Gaussian random generator is used to generate all the 
weights. The self-adaptive parameter and the weights are then 
adapted by 

a'j = a,, exp (T. N/0,1)), (1) 

w) = Wj + a).Nj(0.I) , (2) 

j = 1 Nw 
Where: 

Nw is a number of weights, wj, in the neural network 

Nj(0,1) is a standard Gaussian random variable resampled 
anew for every j 
x is a learning rate, which is x = (2NW

0'5)"0 5 

In fact, formula (1) and formula (2) are taken from [15, 16, 26, 27, 
28], 

3.1 Individual Learning 

All players (10 in this work) go through individual learning and 
play in pairs, e.g. player 1 plays against player 2, player 3 against 
player 4 and so on. In fact, player 2 is just a copy of player 1 with 
some mutation. Likewise, 3/4, 5/6, 7/8, 9/10 are, essentially the 
same player. All these players will play and mutate over 200,000 
generations with social learning (see below) occurring at every 
1000th generations. 

In individual learning, a single parent will mutate and produce 
an offspring, and they will play against each other for survival to 
the next generation. The same players will be evolved until end of 
one interval. Therefore, we keep evolving the same player and this 
player learns to play the game via just its own experience. 

Each player will play two games, i.e. as white and black, and 
receives points based on whether they win, lose or draw, +2, -1 and 
0 respectively. The winning score, +2, is a bonus for the winner and 
the losing point, -1 , is a penalty for the loser. Based on these 
scores, which is used as a fitness measure for each player, the poor 
player will be eliminated from the game and replaced with the 
offspring mutated from the superior player. One of the player will 
be chosen randomly if the result is a draw. 

3.2 Social Learning 

At the end of one interval (1000 generations), the program will 
have five superior players to enter social learning. We create a 
central pool to group all the best players after each interval. 

In social learning, the players from individual learning have an 
opportunity to compare their strategy with the other players in the 
central pool. The structure of social learning as follows: 

1. Each superior player will play against all the others. The 
same scoring mechanism is used as in individual learning. 

2. Rank the players from the highest to the lowest. 
3. Normalise each player from 0.0 to 1.0, and based on the 

normalisation value, F„ the player might choose to: 
a. I f (V , = 1.0): 

i. If never been published: 
Publish the player into the central pool and set initial 
score, B„ to 1.0 for the player. 

ii. If already been published before: 
Do not publish the player, but update (see below) 
the current score for the player in the central pool. 

b. If {Vt >= 0.9 and F, < 1.0): 
The player remains for the next generation. 

c. If < 0.9): 
The player has two probabilities either copy a strategy 
from the central pool or generate a new random strategy. 
If the player decides to copy a strategy from the central 
pool, roulette wheel selection is used to choose a player. 

The score for each player in the central pool will be updated at 
every interval, 

a b c d e f g 
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B" 
B°id - 0 . 1 , If the player has not been selected for 

copy 

Bf +1.0, 
Where. 

If strategy has been copied from the 
pool and subsequently becomes the 
best player in a future generation 

Bj is a score for each player, 
i is a player (i = 0, 1, ..., 9) 

If (B°ld < 0.1), we will set B"ew = 0.01. This still allows a 
small probability for the player to be selected and avoids the player 
having a negative value. When the player in the central pool 
reaches a value of 0.01, we call this player an "old player" in the 
rest of this paper. All "old players" are retained in the central pool 
until the end of the experiment. 

In our initial experiment, we have tested with variety of 
decrement values and lowest scores, and we found that 0.1 and 0.01 
are the best values to use. 

4. EXPERIMENTS AND RESULT 

In the experiment, a population of 10 networks played in pairs in 
the individual learning phase. This lasted for 1000 generations 
before a period of social learning was entered. The experiment was 
run for 200,000 generations (200 intervals) and at every 1000lh 

generation, the best player was kept in the central pool and these 
players were played against each other at the end of the experiment. 
This resulted in 262 "best" players. The number of best players is 
not the same as the number of intervals because some intervals 
might produce more than one best player, depending on the 
normalised value. 

Figure 5 shows the total points for each best player in the 
central pool after playing against each of the other players when 
played as white and black, i.e. each player played 261 games in 
total. The same scoring mechanism as in individual learning is 
used. 

600 
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0 
-100 
-200 
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Best Player 

- Total Points • •Linear (Total Points) 

Figure 5: Total points for each best player in the central pool 

Based on Figure 5, the regression line indicates that learning has 
occurred (i.e. players in later generations perform better than 
players from earlier generations) even though the graph looks 
chaotic. From 262 best players, a Mest shows that the regression 
line is statistically significant different from zero at the 99% 
confidence level. 

5. CONCLUSIONS AND FUTURE WORKS 

Even though the graph looks chaotic, the positive regression line 
shows that some learning has occurred at the 99% confidence level. 

When any player in the central pool has been chosen for copy, 
we do not have any mechanism to evaluate whether the player in 
the pool is better than the player it is going to replace. This, we 
believe is one of the reason why the graph looks chaotic. That is, a 
poorer player in the central pool could be chosen for copy. 

In social learning, if the normalisation value, V„ is less than 0.9, 
the player has two probabilities, copy a strategy from the pool or 
generates a new strategy. When we create a new strategy, the new 
strategy should be better than or at least equal with the current 
strategy. However, in this experiment, we do not evaluate how 
good the new strategy is before we use it for the next generation. 
This may also go some way to explain the chaotic graph. 

Another possible reason could be due to the fact that the best 
player in a given generation is not actually that good. Based on our 
normalisation, the highest score will always get value 1.0 and 
publish to the central pool (if it has never been published). Player A 
might be the best among the superior players in individual learning, 
but we do not know how good that player is when compared 
against the other players in the central pool. 

The game of Connect-Four has previously been solved using 
knowledge-based approaches. We have shown that evolving neural 
networks integrated with individual and social learning has the 
potential as a technique for evolving a good automated Connect-
Four. However, more generations are needed to determine whether 
the program can become a good player. 

Even though the playing performance of our program is not 
very good, the program has the ability to block the opponent from 
making two open lines, which is one of the strategies to win the 
game. 

Based on our initial findings, our future research will consider: 
Increased Population Size: A larger population may increase the 
diversity, but will lead to increase computation time. 
Evaluate the player in the central pool before copy: To avoid 
copying a poor strategy from the central pool, we will evaluate 
whether it is better than the current strategy before copying. 
Evaluate the new random strategy: Before using a new random 
strategy, we will evaluate whether it is better than, or at least equal 
to the current strategy. 
Evaluate how good the player is before publishing to the 
central pool: Before publishing the player to the central pool, we 
will apply a new mechanism to evaluate the player to determine 
that the player is good enough to publish. 

In this paper, we have introduced a new technique for learning 
how to play games. This technique of individual and social learning 
has previously, successfully, been applied in an economic domain 
but has not been used as a learning mechanism for game playing. 

The contribution of this paper is to introduce this technique and 
we show that learning does take place. As yet, we cannot beat a 
commercial program, even at a beginner level but we hope that the 
work in this paper can serve as a platform to evolve strong game 
playing agents. 
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